1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/compat.h> 34 #include <linux/bit_spinlock.h> 35 #include <linux/xattr.h> 36 #include <linux/posix_acl.h> 37 #include <linux/falloc.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/mount.h> 41 #include <linux/btrfs.h> 42 #include <linux/blkdev.h> 43 #include <linux/posix_acl_xattr.h> 44 #include <linux/uio.h> 45 #include <linux/magic.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 #include "dedupe.h" 64 65 struct btrfs_iget_args { 66 struct btrfs_key *location; 67 struct btrfs_root *root; 68 }; 69 70 struct btrfs_dio_data { 71 u64 reserve; 72 u64 unsubmitted_oe_range_start; 73 u64 unsubmitted_oe_range_end; 74 int overwrite; 75 }; 76 77 static const struct inode_operations btrfs_dir_inode_operations; 78 static const struct inode_operations btrfs_symlink_inode_operations; 79 static const struct inode_operations btrfs_dir_ro_inode_operations; 80 static const struct inode_operations btrfs_special_inode_operations; 81 static const struct inode_operations btrfs_file_inode_operations; 82 static const struct address_space_operations btrfs_aops; 83 static const struct address_space_operations btrfs_symlink_aops; 84 static const struct file_operations btrfs_dir_file_operations; 85 static const struct extent_io_ops btrfs_extent_io_ops; 86 87 static struct kmem_cache *btrfs_inode_cachep; 88 struct kmem_cache *btrfs_trans_handle_cachep; 89 struct kmem_cache *btrfs_path_cachep; 90 struct kmem_cache *btrfs_free_space_cachep; 91 92 #define S_SHIFT 12 93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 101 }; 102 103 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 104 static int btrfs_truncate(struct inode *inode); 105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 106 static noinline int cow_file_range(struct inode *inode, 107 struct page *locked_page, 108 u64 start, u64 end, u64 delalloc_end, 109 int *page_started, unsigned long *nr_written, 110 int unlock, struct btrfs_dedupe_hash *hash); 111 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 112 u64 orig_start, u64 block_start, 113 u64 block_len, u64 orig_block_len, 114 u64 ram_bytes, int compress_type, 115 int type); 116 117 static void __endio_write_update_ordered(struct inode *inode, 118 const u64 offset, const u64 bytes, 119 const bool uptodate); 120 121 /* 122 * Cleanup all submitted ordered extents in specified range to handle errors 123 * from the fill_dellaloc() callback. 124 * 125 * NOTE: caller must ensure that when an error happens, it can not call 126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 128 * to be released, which we want to happen only when finishing the ordered 129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 130 * fill_delalloc() callback already does proper cleanup for the first page of 131 * the range, that is, it invokes the callback writepage_end_io_hook() for the 132 * range of the first page. 133 */ 134 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 135 const u64 offset, 136 const u64 bytes) 137 { 138 unsigned long index = offset >> PAGE_SHIFT; 139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 140 struct page *page; 141 142 while (index <= end_index) { 143 page = find_get_page(inode->i_mapping, index); 144 index++; 145 if (!page) 146 continue; 147 ClearPagePrivate2(page); 148 put_page(page); 149 } 150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 151 bytes - PAGE_SIZE, false); 152 } 153 154 static int btrfs_dirty_inode(struct inode *inode); 155 156 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 157 void btrfs_test_inode_set_ops(struct inode *inode) 158 { 159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 160 } 161 #endif 162 163 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 164 struct inode *inode, struct inode *dir, 165 const struct qstr *qstr) 166 { 167 int err; 168 169 err = btrfs_init_acl(trans, inode, dir); 170 if (!err) 171 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 172 return err; 173 } 174 175 /* 176 * this does all the hard work for inserting an inline extent into 177 * the btree. The caller should have done a btrfs_drop_extents so that 178 * no overlapping inline items exist in the btree 179 */ 180 static int insert_inline_extent(struct btrfs_trans_handle *trans, 181 struct btrfs_path *path, int extent_inserted, 182 struct btrfs_root *root, struct inode *inode, 183 u64 start, size_t size, size_t compressed_size, 184 int compress_type, 185 struct page **compressed_pages) 186 { 187 struct extent_buffer *leaf; 188 struct page *page = NULL; 189 char *kaddr; 190 unsigned long ptr; 191 struct btrfs_file_extent_item *ei; 192 int ret; 193 size_t cur_size = size; 194 unsigned long offset; 195 196 if (compressed_size && compressed_pages) 197 cur_size = compressed_size; 198 199 inode_add_bytes(inode, size); 200 201 if (!extent_inserted) { 202 struct btrfs_key key; 203 size_t datasize; 204 205 key.objectid = btrfs_ino(BTRFS_I(inode)); 206 key.offset = start; 207 key.type = BTRFS_EXTENT_DATA_KEY; 208 209 datasize = btrfs_file_extent_calc_inline_size(cur_size); 210 path->leave_spinning = 1; 211 ret = btrfs_insert_empty_item(trans, root, path, &key, 212 datasize); 213 if (ret) 214 goto fail; 215 } 216 leaf = path->nodes[0]; 217 ei = btrfs_item_ptr(leaf, path->slots[0], 218 struct btrfs_file_extent_item); 219 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 221 btrfs_set_file_extent_encryption(leaf, ei, 0); 222 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 223 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 224 ptr = btrfs_file_extent_inline_start(ei); 225 226 if (compress_type != BTRFS_COMPRESS_NONE) { 227 struct page *cpage; 228 int i = 0; 229 while (compressed_size > 0) { 230 cpage = compressed_pages[i]; 231 cur_size = min_t(unsigned long, compressed_size, 232 PAGE_SIZE); 233 234 kaddr = kmap_atomic(cpage); 235 write_extent_buffer(leaf, kaddr, ptr, cur_size); 236 kunmap_atomic(kaddr); 237 238 i++; 239 ptr += cur_size; 240 compressed_size -= cur_size; 241 } 242 btrfs_set_file_extent_compression(leaf, ei, 243 compress_type); 244 } else { 245 page = find_get_page(inode->i_mapping, 246 start >> PAGE_SHIFT); 247 btrfs_set_file_extent_compression(leaf, ei, 0); 248 kaddr = kmap_atomic(page); 249 offset = start & (PAGE_SIZE - 1); 250 write_extent_buffer(leaf, kaddr + offset, ptr, size); 251 kunmap_atomic(kaddr); 252 put_page(page); 253 } 254 btrfs_mark_buffer_dirty(leaf); 255 btrfs_release_path(path); 256 257 /* 258 * we're an inline extent, so nobody can 259 * extend the file past i_size without locking 260 * a page we already have locked. 261 * 262 * We must do any isize and inode updates 263 * before we unlock the pages. Otherwise we 264 * could end up racing with unlink. 265 */ 266 BTRFS_I(inode)->disk_i_size = inode->i_size; 267 ret = btrfs_update_inode(trans, root, inode); 268 269 fail: 270 return ret; 271 } 272 273 274 /* 275 * conditionally insert an inline extent into the file. This 276 * does the checks required to make sure the data is small enough 277 * to fit as an inline extent. 278 */ 279 static noinline int cow_file_range_inline(struct btrfs_root *root, 280 struct inode *inode, u64 start, 281 u64 end, size_t compressed_size, 282 int compress_type, 283 struct page **compressed_pages) 284 { 285 struct btrfs_fs_info *fs_info = root->fs_info; 286 struct btrfs_trans_handle *trans; 287 u64 isize = i_size_read(inode); 288 u64 actual_end = min(end + 1, isize); 289 u64 inline_len = actual_end - start; 290 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 291 u64 data_len = inline_len; 292 int ret; 293 struct btrfs_path *path; 294 int extent_inserted = 0; 295 u32 extent_item_size; 296 297 if (compressed_size) 298 data_len = compressed_size; 299 300 if (start > 0 || 301 actual_end > fs_info->sectorsize || 302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 303 (!compressed_size && 304 (actual_end & (fs_info->sectorsize - 1)) == 0) || 305 end + 1 < isize || 306 data_len > fs_info->max_inline) { 307 return 1; 308 } 309 310 path = btrfs_alloc_path(); 311 if (!path) 312 return -ENOMEM; 313 314 trans = btrfs_join_transaction(root); 315 if (IS_ERR(trans)) { 316 btrfs_free_path(path); 317 return PTR_ERR(trans); 318 } 319 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 320 321 if (compressed_size && compressed_pages) 322 extent_item_size = btrfs_file_extent_calc_inline_size( 323 compressed_size); 324 else 325 extent_item_size = btrfs_file_extent_calc_inline_size( 326 inline_len); 327 328 ret = __btrfs_drop_extents(trans, root, inode, path, 329 start, aligned_end, NULL, 330 1, 1, extent_item_size, &extent_inserted); 331 if (ret) { 332 btrfs_abort_transaction(trans, ret); 333 goto out; 334 } 335 336 if (isize > actual_end) 337 inline_len = min_t(u64, isize, actual_end); 338 ret = insert_inline_extent(trans, path, extent_inserted, 339 root, inode, start, 340 inline_len, compressed_size, 341 compress_type, compressed_pages); 342 if (ret && ret != -ENOSPC) { 343 btrfs_abort_transaction(trans, ret); 344 goto out; 345 } else if (ret == -ENOSPC) { 346 ret = 1; 347 goto out; 348 } 349 350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 351 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 352 out: 353 /* 354 * Don't forget to free the reserved space, as for inlined extent 355 * it won't count as data extent, free them directly here. 356 * And at reserve time, it's always aligned to page size, so 357 * just free one page here. 358 */ 359 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 360 btrfs_free_path(path); 361 btrfs_end_transaction(trans); 362 return ret; 363 } 364 365 struct async_extent { 366 u64 start; 367 u64 ram_size; 368 u64 compressed_size; 369 struct page **pages; 370 unsigned long nr_pages; 371 int compress_type; 372 struct list_head list; 373 }; 374 375 struct async_cow { 376 struct inode *inode; 377 struct btrfs_root *root; 378 struct page *locked_page; 379 u64 start; 380 u64 end; 381 unsigned int write_flags; 382 struct list_head extents; 383 struct btrfs_work work; 384 }; 385 386 static noinline int add_async_extent(struct async_cow *cow, 387 u64 start, u64 ram_size, 388 u64 compressed_size, 389 struct page **pages, 390 unsigned long nr_pages, 391 int compress_type) 392 { 393 struct async_extent *async_extent; 394 395 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 396 BUG_ON(!async_extent); /* -ENOMEM */ 397 async_extent->start = start; 398 async_extent->ram_size = ram_size; 399 async_extent->compressed_size = compressed_size; 400 async_extent->pages = pages; 401 async_extent->nr_pages = nr_pages; 402 async_extent->compress_type = compress_type; 403 list_add_tail(&async_extent->list, &cow->extents); 404 return 0; 405 } 406 407 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 408 { 409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 410 411 /* force compress */ 412 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 413 return 1; 414 /* defrag ioctl */ 415 if (BTRFS_I(inode)->defrag_compress) 416 return 1; 417 /* bad compression ratios */ 418 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 419 return 0; 420 if (btrfs_test_opt(fs_info, COMPRESS) || 421 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 422 BTRFS_I(inode)->prop_compress) 423 return btrfs_compress_heuristic(inode, start, end); 424 return 0; 425 } 426 427 static inline void inode_should_defrag(struct btrfs_inode *inode, 428 u64 start, u64 end, u64 num_bytes, u64 small_write) 429 { 430 /* If this is a small write inside eof, kick off a defrag */ 431 if (num_bytes < small_write && 432 (start > 0 || end + 1 < inode->disk_i_size)) 433 btrfs_add_inode_defrag(NULL, inode); 434 } 435 436 /* 437 * we create compressed extents in two phases. The first 438 * phase compresses a range of pages that have already been 439 * locked (both pages and state bits are locked). 440 * 441 * This is done inside an ordered work queue, and the compression 442 * is spread across many cpus. The actual IO submission is step 443 * two, and the ordered work queue takes care of making sure that 444 * happens in the same order things were put onto the queue by 445 * writepages and friends. 446 * 447 * If this code finds it can't get good compression, it puts an 448 * entry onto the work queue to write the uncompressed bytes. This 449 * makes sure that both compressed inodes and uncompressed inodes 450 * are written in the same order that the flusher thread sent them 451 * down. 452 */ 453 static noinline void compress_file_range(struct inode *inode, 454 struct page *locked_page, 455 u64 start, u64 end, 456 struct async_cow *async_cow, 457 int *num_added) 458 { 459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 460 struct btrfs_root *root = BTRFS_I(inode)->root; 461 u64 blocksize = fs_info->sectorsize; 462 u64 actual_end; 463 u64 isize = i_size_read(inode); 464 int ret = 0; 465 struct page **pages = NULL; 466 unsigned long nr_pages; 467 unsigned long total_compressed = 0; 468 unsigned long total_in = 0; 469 int i; 470 int will_compress; 471 int compress_type = fs_info->compress_type; 472 int redirty = 0; 473 474 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 475 SZ_16K); 476 477 actual_end = min_t(u64, isize, end + 1); 478 again: 479 will_compress = 0; 480 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 481 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 482 nr_pages = min_t(unsigned long, nr_pages, 483 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 484 485 /* 486 * we don't want to send crud past the end of i_size through 487 * compression, that's just a waste of CPU time. So, if the 488 * end of the file is before the start of our current 489 * requested range of bytes, we bail out to the uncompressed 490 * cleanup code that can deal with all of this. 491 * 492 * It isn't really the fastest way to fix things, but this is a 493 * very uncommon corner. 494 */ 495 if (actual_end <= start) 496 goto cleanup_and_bail_uncompressed; 497 498 total_compressed = actual_end - start; 499 500 /* 501 * skip compression for a small file range(<=blocksize) that 502 * isn't an inline extent, since it doesn't save disk space at all. 503 */ 504 if (total_compressed <= blocksize && 505 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 506 goto cleanup_and_bail_uncompressed; 507 508 total_compressed = min_t(unsigned long, total_compressed, 509 BTRFS_MAX_UNCOMPRESSED); 510 total_in = 0; 511 ret = 0; 512 513 /* 514 * we do compression for mount -o compress and when the 515 * inode has not been flagged as nocompress. This flag can 516 * change at any time if we discover bad compression ratios. 517 */ 518 if (inode_need_compress(inode, start, end)) { 519 WARN_ON(pages); 520 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 521 if (!pages) { 522 /* just bail out to the uncompressed code */ 523 goto cont; 524 } 525 526 if (BTRFS_I(inode)->defrag_compress) 527 compress_type = BTRFS_I(inode)->defrag_compress; 528 else if (BTRFS_I(inode)->prop_compress) 529 compress_type = BTRFS_I(inode)->prop_compress; 530 531 /* 532 * we need to call clear_page_dirty_for_io on each 533 * page in the range. Otherwise applications with the file 534 * mmap'd can wander in and change the page contents while 535 * we are compressing them. 536 * 537 * If the compression fails for any reason, we set the pages 538 * dirty again later on. 539 */ 540 extent_range_clear_dirty_for_io(inode, start, end); 541 redirty = 1; 542 543 /* Compression level is applied here and only here */ 544 ret = btrfs_compress_pages( 545 compress_type | (fs_info->compress_level << 4), 546 inode->i_mapping, start, 547 pages, 548 &nr_pages, 549 &total_in, 550 &total_compressed); 551 552 if (!ret) { 553 unsigned long offset = total_compressed & 554 (PAGE_SIZE - 1); 555 struct page *page = pages[nr_pages - 1]; 556 char *kaddr; 557 558 /* zero the tail end of the last page, we might be 559 * sending it down to disk 560 */ 561 if (offset) { 562 kaddr = kmap_atomic(page); 563 memset(kaddr + offset, 0, 564 PAGE_SIZE - offset); 565 kunmap_atomic(kaddr); 566 } 567 will_compress = 1; 568 } 569 } 570 cont: 571 if (start == 0) { 572 /* lets try to make an inline extent */ 573 if (ret || total_in < actual_end) { 574 /* we didn't compress the entire range, try 575 * to make an uncompressed inline extent. 576 */ 577 ret = cow_file_range_inline(root, inode, start, end, 578 0, BTRFS_COMPRESS_NONE, NULL); 579 } else { 580 /* try making a compressed inline extent */ 581 ret = cow_file_range_inline(root, inode, start, end, 582 total_compressed, 583 compress_type, pages); 584 } 585 if (ret <= 0) { 586 unsigned long clear_flags = EXTENT_DELALLOC | 587 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 588 EXTENT_DO_ACCOUNTING; 589 unsigned long page_error_op; 590 591 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 592 593 /* 594 * inline extent creation worked or returned error, 595 * we don't need to create any more async work items. 596 * Unlock and free up our temp pages. 597 * 598 * We use DO_ACCOUNTING here because we need the 599 * delalloc_release_metadata to be done _after_ we drop 600 * our outstanding extent for clearing delalloc for this 601 * range. 602 */ 603 extent_clear_unlock_delalloc(inode, start, end, end, 604 NULL, clear_flags, 605 PAGE_UNLOCK | 606 PAGE_CLEAR_DIRTY | 607 PAGE_SET_WRITEBACK | 608 page_error_op | 609 PAGE_END_WRITEBACK); 610 goto free_pages_out; 611 } 612 } 613 614 if (will_compress) { 615 /* 616 * we aren't doing an inline extent round the compressed size 617 * up to a block size boundary so the allocator does sane 618 * things 619 */ 620 total_compressed = ALIGN(total_compressed, blocksize); 621 622 /* 623 * one last check to make sure the compression is really a 624 * win, compare the page count read with the blocks on disk, 625 * compression must free at least one sector size 626 */ 627 total_in = ALIGN(total_in, PAGE_SIZE); 628 if (total_compressed + blocksize <= total_in) { 629 *num_added += 1; 630 631 /* 632 * The async work queues will take care of doing actual 633 * allocation on disk for these compressed pages, and 634 * will submit them to the elevator. 635 */ 636 add_async_extent(async_cow, start, total_in, 637 total_compressed, pages, nr_pages, 638 compress_type); 639 640 if (start + total_in < end) { 641 start += total_in; 642 pages = NULL; 643 cond_resched(); 644 goto again; 645 } 646 return; 647 } 648 } 649 if (pages) { 650 /* 651 * the compression code ran but failed to make things smaller, 652 * free any pages it allocated and our page pointer array 653 */ 654 for (i = 0; i < nr_pages; i++) { 655 WARN_ON(pages[i]->mapping); 656 put_page(pages[i]); 657 } 658 kfree(pages); 659 pages = NULL; 660 total_compressed = 0; 661 nr_pages = 0; 662 663 /* flag the file so we don't compress in the future */ 664 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 665 !(BTRFS_I(inode)->prop_compress)) { 666 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 667 } 668 } 669 cleanup_and_bail_uncompressed: 670 /* 671 * No compression, but we still need to write the pages in the file 672 * we've been given so far. redirty the locked page if it corresponds 673 * to our extent and set things up for the async work queue to run 674 * cow_file_range to do the normal delalloc dance. 675 */ 676 if (page_offset(locked_page) >= start && 677 page_offset(locked_page) <= end) 678 __set_page_dirty_nobuffers(locked_page); 679 /* unlocked later on in the async handlers */ 680 681 if (redirty) 682 extent_range_redirty_for_io(inode, start, end); 683 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 684 BTRFS_COMPRESS_NONE); 685 *num_added += 1; 686 687 return; 688 689 free_pages_out: 690 for (i = 0; i < nr_pages; i++) { 691 WARN_ON(pages[i]->mapping); 692 put_page(pages[i]); 693 } 694 kfree(pages); 695 } 696 697 static void free_async_extent_pages(struct async_extent *async_extent) 698 { 699 int i; 700 701 if (!async_extent->pages) 702 return; 703 704 for (i = 0; i < async_extent->nr_pages; i++) { 705 WARN_ON(async_extent->pages[i]->mapping); 706 put_page(async_extent->pages[i]); 707 } 708 kfree(async_extent->pages); 709 async_extent->nr_pages = 0; 710 async_extent->pages = NULL; 711 } 712 713 /* 714 * phase two of compressed writeback. This is the ordered portion 715 * of the code, which only gets called in the order the work was 716 * queued. We walk all the async extents created by compress_file_range 717 * and send them down to the disk. 718 */ 719 static noinline void submit_compressed_extents(struct inode *inode, 720 struct async_cow *async_cow) 721 { 722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 723 struct async_extent *async_extent; 724 u64 alloc_hint = 0; 725 struct btrfs_key ins; 726 struct extent_map *em; 727 struct btrfs_root *root = BTRFS_I(inode)->root; 728 struct extent_io_tree *io_tree; 729 int ret = 0; 730 731 again: 732 while (!list_empty(&async_cow->extents)) { 733 async_extent = list_entry(async_cow->extents.next, 734 struct async_extent, list); 735 list_del(&async_extent->list); 736 737 io_tree = &BTRFS_I(inode)->io_tree; 738 739 retry: 740 /* did the compression code fall back to uncompressed IO? */ 741 if (!async_extent->pages) { 742 int page_started = 0; 743 unsigned long nr_written = 0; 744 745 lock_extent(io_tree, async_extent->start, 746 async_extent->start + 747 async_extent->ram_size - 1); 748 749 /* allocate blocks */ 750 ret = cow_file_range(inode, async_cow->locked_page, 751 async_extent->start, 752 async_extent->start + 753 async_extent->ram_size - 1, 754 async_extent->start + 755 async_extent->ram_size - 1, 756 &page_started, &nr_written, 0, 757 NULL); 758 759 /* JDM XXX */ 760 761 /* 762 * if page_started, cow_file_range inserted an 763 * inline extent and took care of all the unlocking 764 * and IO for us. Otherwise, we need to submit 765 * all those pages down to the drive. 766 */ 767 if (!page_started && !ret) 768 extent_write_locked_range(io_tree, 769 inode, async_extent->start, 770 async_extent->start + 771 async_extent->ram_size - 1, 772 btrfs_get_extent, 773 WB_SYNC_ALL); 774 else if (ret) 775 unlock_page(async_cow->locked_page); 776 kfree(async_extent); 777 cond_resched(); 778 continue; 779 } 780 781 lock_extent(io_tree, async_extent->start, 782 async_extent->start + async_extent->ram_size - 1); 783 784 ret = btrfs_reserve_extent(root, async_extent->ram_size, 785 async_extent->compressed_size, 786 async_extent->compressed_size, 787 0, alloc_hint, &ins, 1, 1); 788 if (ret) { 789 free_async_extent_pages(async_extent); 790 791 if (ret == -ENOSPC) { 792 unlock_extent(io_tree, async_extent->start, 793 async_extent->start + 794 async_extent->ram_size - 1); 795 796 /* 797 * we need to redirty the pages if we decide to 798 * fallback to uncompressed IO, otherwise we 799 * will not submit these pages down to lower 800 * layers. 801 */ 802 extent_range_redirty_for_io(inode, 803 async_extent->start, 804 async_extent->start + 805 async_extent->ram_size - 1); 806 807 goto retry; 808 } 809 goto out_free; 810 } 811 /* 812 * here we're doing allocation and writeback of the 813 * compressed pages 814 */ 815 em = create_io_em(inode, async_extent->start, 816 async_extent->ram_size, /* len */ 817 async_extent->start, /* orig_start */ 818 ins.objectid, /* block_start */ 819 ins.offset, /* block_len */ 820 ins.offset, /* orig_block_len */ 821 async_extent->ram_size, /* ram_bytes */ 822 async_extent->compress_type, 823 BTRFS_ORDERED_COMPRESSED); 824 if (IS_ERR(em)) 825 /* ret value is not necessary due to void function */ 826 goto out_free_reserve; 827 free_extent_map(em); 828 829 ret = btrfs_add_ordered_extent_compress(inode, 830 async_extent->start, 831 ins.objectid, 832 async_extent->ram_size, 833 ins.offset, 834 BTRFS_ORDERED_COMPRESSED, 835 async_extent->compress_type); 836 if (ret) { 837 btrfs_drop_extent_cache(BTRFS_I(inode), 838 async_extent->start, 839 async_extent->start + 840 async_extent->ram_size - 1, 0); 841 goto out_free_reserve; 842 } 843 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 844 845 /* 846 * clear dirty, set writeback and unlock the pages. 847 */ 848 extent_clear_unlock_delalloc(inode, async_extent->start, 849 async_extent->start + 850 async_extent->ram_size - 1, 851 async_extent->start + 852 async_extent->ram_size - 1, 853 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 854 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 855 PAGE_SET_WRITEBACK); 856 if (btrfs_submit_compressed_write(inode, 857 async_extent->start, 858 async_extent->ram_size, 859 ins.objectid, 860 ins.offset, async_extent->pages, 861 async_extent->nr_pages, 862 async_cow->write_flags)) { 863 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 864 struct page *p = async_extent->pages[0]; 865 const u64 start = async_extent->start; 866 const u64 end = start + async_extent->ram_size - 1; 867 868 p->mapping = inode->i_mapping; 869 tree->ops->writepage_end_io_hook(p, start, end, 870 NULL, 0); 871 p->mapping = NULL; 872 extent_clear_unlock_delalloc(inode, start, end, end, 873 NULL, 0, 874 PAGE_END_WRITEBACK | 875 PAGE_SET_ERROR); 876 free_async_extent_pages(async_extent); 877 } 878 alloc_hint = ins.objectid + ins.offset; 879 kfree(async_extent); 880 cond_resched(); 881 } 882 return; 883 out_free_reserve: 884 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 885 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 886 out_free: 887 extent_clear_unlock_delalloc(inode, async_extent->start, 888 async_extent->start + 889 async_extent->ram_size - 1, 890 async_extent->start + 891 async_extent->ram_size - 1, 892 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 893 EXTENT_DELALLOC_NEW | 894 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 895 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 896 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 897 PAGE_SET_ERROR); 898 free_async_extent_pages(async_extent); 899 kfree(async_extent); 900 goto again; 901 } 902 903 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 904 u64 num_bytes) 905 { 906 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 907 struct extent_map *em; 908 u64 alloc_hint = 0; 909 910 read_lock(&em_tree->lock); 911 em = search_extent_mapping(em_tree, start, num_bytes); 912 if (em) { 913 /* 914 * if block start isn't an actual block number then find the 915 * first block in this inode and use that as a hint. If that 916 * block is also bogus then just don't worry about it. 917 */ 918 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 919 free_extent_map(em); 920 em = search_extent_mapping(em_tree, 0, 0); 921 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 922 alloc_hint = em->block_start; 923 if (em) 924 free_extent_map(em); 925 } else { 926 alloc_hint = em->block_start; 927 free_extent_map(em); 928 } 929 } 930 read_unlock(&em_tree->lock); 931 932 return alloc_hint; 933 } 934 935 /* 936 * when extent_io.c finds a delayed allocation range in the file, 937 * the call backs end up in this code. The basic idea is to 938 * allocate extents on disk for the range, and create ordered data structs 939 * in ram to track those extents. 940 * 941 * locked_page is the page that writepage had locked already. We use 942 * it to make sure we don't do extra locks or unlocks. 943 * 944 * *page_started is set to one if we unlock locked_page and do everything 945 * required to start IO on it. It may be clean and already done with 946 * IO when we return. 947 */ 948 static noinline int cow_file_range(struct inode *inode, 949 struct page *locked_page, 950 u64 start, u64 end, u64 delalloc_end, 951 int *page_started, unsigned long *nr_written, 952 int unlock, struct btrfs_dedupe_hash *hash) 953 { 954 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 955 struct btrfs_root *root = BTRFS_I(inode)->root; 956 u64 alloc_hint = 0; 957 u64 num_bytes; 958 unsigned long ram_size; 959 u64 disk_num_bytes; 960 u64 cur_alloc_size = 0; 961 u64 blocksize = fs_info->sectorsize; 962 struct btrfs_key ins; 963 struct extent_map *em; 964 unsigned clear_bits; 965 unsigned long page_ops; 966 bool extent_reserved = false; 967 int ret = 0; 968 969 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 970 WARN_ON_ONCE(1); 971 ret = -EINVAL; 972 goto out_unlock; 973 } 974 975 num_bytes = ALIGN(end - start + 1, blocksize); 976 num_bytes = max(blocksize, num_bytes); 977 disk_num_bytes = num_bytes; 978 979 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 980 981 if (start == 0) { 982 /* lets try to make an inline extent */ 983 ret = cow_file_range_inline(root, inode, start, end, 0, 984 BTRFS_COMPRESS_NONE, NULL); 985 if (ret == 0) { 986 /* 987 * We use DO_ACCOUNTING here because we need the 988 * delalloc_release_metadata to be run _after_ we drop 989 * our outstanding extent for clearing delalloc for this 990 * range. 991 */ 992 extent_clear_unlock_delalloc(inode, start, end, 993 delalloc_end, NULL, 994 EXTENT_LOCKED | EXTENT_DELALLOC | 995 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 996 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 997 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 998 PAGE_END_WRITEBACK); 999 *nr_written = *nr_written + 1000 (end - start + PAGE_SIZE) / PAGE_SIZE; 1001 *page_started = 1; 1002 goto out; 1003 } else if (ret < 0) { 1004 goto out_unlock; 1005 } 1006 } 1007 1008 BUG_ON(disk_num_bytes > 1009 btrfs_super_total_bytes(fs_info->super_copy)); 1010 1011 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1012 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1013 start + num_bytes - 1, 0); 1014 1015 while (disk_num_bytes > 0) { 1016 cur_alloc_size = disk_num_bytes; 1017 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1018 fs_info->sectorsize, 0, alloc_hint, 1019 &ins, 1, 1); 1020 if (ret < 0) 1021 goto out_unlock; 1022 cur_alloc_size = ins.offset; 1023 extent_reserved = true; 1024 1025 ram_size = ins.offset; 1026 em = create_io_em(inode, start, ins.offset, /* len */ 1027 start, /* orig_start */ 1028 ins.objectid, /* block_start */ 1029 ins.offset, /* block_len */ 1030 ins.offset, /* orig_block_len */ 1031 ram_size, /* ram_bytes */ 1032 BTRFS_COMPRESS_NONE, /* compress_type */ 1033 BTRFS_ORDERED_REGULAR /* type */); 1034 if (IS_ERR(em)) 1035 goto out_reserve; 1036 free_extent_map(em); 1037 1038 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1039 ram_size, cur_alloc_size, 0); 1040 if (ret) 1041 goto out_drop_extent_cache; 1042 1043 if (root->root_key.objectid == 1044 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1045 ret = btrfs_reloc_clone_csums(inode, start, 1046 cur_alloc_size); 1047 /* 1048 * Only drop cache here, and process as normal. 1049 * 1050 * We must not allow extent_clear_unlock_delalloc() 1051 * at out_unlock label to free meta of this ordered 1052 * extent, as its meta should be freed by 1053 * btrfs_finish_ordered_io(). 1054 * 1055 * So we must continue until @start is increased to 1056 * skip current ordered extent. 1057 */ 1058 if (ret) 1059 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1060 start + ram_size - 1, 0); 1061 } 1062 1063 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1064 1065 /* we're not doing compressed IO, don't unlock the first 1066 * page (which the caller expects to stay locked), don't 1067 * clear any dirty bits and don't set any writeback bits 1068 * 1069 * Do set the Private2 bit so we know this page was properly 1070 * setup for writepage 1071 */ 1072 page_ops = unlock ? PAGE_UNLOCK : 0; 1073 page_ops |= PAGE_SET_PRIVATE2; 1074 1075 extent_clear_unlock_delalloc(inode, start, 1076 start + ram_size - 1, 1077 delalloc_end, locked_page, 1078 EXTENT_LOCKED | EXTENT_DELALLOC, 1079 page_ops); 1080 if (disk_num_bytes < cur_alloc_size) 1081 disk_num_bytes = 0; 1082 else 1083 disk_num_bytes -= cur_alloc_size; 1084 num_bytes -= cur_alloc_size; 1085 alloc_hint = ins.objectid + ins.offset; 1086 start += cur_alloc_size; 1087 extent_reserved = false; 1088 1089 /* 1090 * btrfs_reloc_clone_csums() error, since start is increased 1091 * extent_clear_unlock_delalloc() at out_unlock label won't 1092 * free metadata of current ordered extent, we're OK to exit. 1093 */ 1094 if (ret) 1095 goto out_unlock; 1096 } 1097 out: 1098 return ret; 1099 1100 out_drop_extent_cache: 1101 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1102 out_reserve: 1103 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1104 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1105 out_unlock: 1106 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1107 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1108 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1109 PAGE_END_WRITEBACK; 1110 /* 1111 * If we reserved an extent for our delalloc range (or a subrange) and 1112 * failed to create the respective ordered extent, then it means that 1113 * when we reserved the extent we decremented the extent's size from 1114 * the data space_info's bytes_may_use counter and incremented the 1115 * space_info's bytes_reserved counter by the same amount. We must make 1116 * sure extent_clear_unlock_delalloc() does not try to decrement again 1117 * the data space_info's bytes_may_use counter, therefore we do not pass 1118 * it the flag EXTENT_CLEAR_DATA_RESV. 1119 */ 1120 if (extent_reserved) { 1121 extent_clear_unlock_delalloc(inode, start, 1122 start + cur_alloc_size, 1123 start + cur_alloc_size, 1124 locked_page, 1125 clear_bits, 1126 page_ops); 1127 start += cur_alloc_size; 1128 if (start >= end) 1129 goto out; 1130 } 1131 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1132 locked_page, 1133 clear_bits | EXTENT_CLEAR_DATA_RESV, 1134 page_ops); 1135 goto out; 1136 } 1137 1138 /* 1139 * work queue call back to started compression on a file and pages 1140 */ 1141 static noinline void async_cow_start(struct btrfs_work *work) 1142 { 1143 struct async_cow *async_cow; 1144 int num_added = 0; 1145 async_cow = container_of(work, struct async_cow, work); 1146 1147 compress_file_range(async_cow->inode, async_cow->locked_page, 1148 async_cow->start, async_cow->end, async_cow, 1149 &num_added); 1150 if (num_added == 0) { 1151 btrfs_add_delayed_iput(async_cow->inode); 1152 async_cow->inode = NULL; 1153 } 1154 } 1155 1156 /* 1157 * work queue call back to submit previously compressed pages 1158 */ 1159 static noinline void async_cow_submit(struct btrfs_work *work) 1160 { 1161 struct btrfs_fs_info *fs_info; 1162 struct async_cow *async_cow; 1163 struct btrfs_root *root; 1164 unsigned long nr_pages; 1165 1166 async_cow = container_of(work, struct async_cow, work); 1167 1168 root = async_cow->root; 1169 fs_info = root->fs_info; 1170 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1171 PAGE_SHIFT; 1172 1173 /* 1174 * atomic_sub_return implies a barrier for waitqueue_active 1175 */ 1176 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1177 5 * SZ_1M && 1178 waitqueue_active(&fs_info->async_submit_wait)) 1179 wake_up(&fs_info->async_submit_wait); 1180 1181 if (async_cow->inode) 1182 submit_compressed_extents(async_cow->inode, async_cow); 1183 } 1184 1185 static noinline void async_cow_free(struct btrfs_work *work) 1186 { 1187 struct async_cow *async_cow; 1188 async_cow = container_of(work, struct async_cow, work); 1189 if (async_cow->inode) 1190 btrfs_add_delayed_iput(async_cow->inode); 1191 kfree(async_cow); 1192 } 1193 1194 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1195 u64 start, u64 end, int *page_started, 1196 unsigned long *nr_written, 1197 unsigned int write_flags) 1198 { 1199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1200 struct async_cow *async_cow; 1201 struct btrfs_root *root = BTRFS_I(inode)->root; 1202 unsigned long nr_pages; 1203 u64 cur_end; 1204 1205 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1206 1, 0, NULL, GFP_NOFS); 1207 while (start < end) { 1208 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1209 BUG_ON(!async_cow); /* -ENOMEM */ 1210 async_cow->inode = igrab(inode); 1211 async_cow->root = root; 1212 async_cow->locked_page = locked_page; 1213 async_cow->start = start; 1214 async_cow->write_flags = write_flags; 1215 1216 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1217 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1218 cur_end = end; 1219 else 1220 cur_end = min(end, start + SZ_512K - 1); 1221 1222 async_cow->end = cur_end; 1223 INIT_LIST_HEAD(&async_cow->extents); 1224 1225 btrfs_init_work(&async_cow->work, 1226 btrfs_delalloc_helper, 1227 async_cow_start, async_cow_submit, 1228 async_cow_free); 1229 1230 nr_pages = (cur_end - start + PAGE_SIZE) >> 1231 PAGE_SHIFT; 1232 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1233 1234 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1235 1236 *nr_written += nr_pages; 1237 start = cur_end + 1; 1238 } 1239 *page_started = 1; 1240 return 0; 1241 } 1242 1243 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1244 u64 bytenr, u64 num_bytes) 1245 { 1246 int ret; 1247 struct btrfs_ordered_sum *sums; 1248 LIST_HEAD(list); 1249 1250 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1251 bytenr + num_bytes - 1, &list, 0); 1252 if (ret == 0 && list_empty(&list)) 1253 return 0; 1254 1255 while (!list_empty(&list)) { 1256 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1257 list_del(&sums->list); 1258 kfree(sums); 1259 } 1260 return 1; 1261 } 1262 1263 /* 1264 * when nowcow writeback call back. This checks for snapshots or COW copies 1265 * of the extents that exist in the file, and COWs the file as required. 1266 * 1267 * If no cow copies or snapshots exist, we write directly to the existing 1268 * blocks on disk 1269 */ 1270 static noinline int run_delalloc_nocow(struct inode *inode, 1271 struct page *locked_page, 1272 u64 start, u64 end, int *page_started, int force, 1273 unsigned long *nr_written) 1274 { 1275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1276 struct btrfs_root *root = BTRFS_I(inode)->root; 1277 struct extent_buffer *leaf; 1278 struct btrfs_path *path; 1279 struct btrfs_file_extent_item *fi; 1280 struct btrfs_key found_key; 1281 struct extent_map *em; 1282 u64 cow_start; 1283 u64 cur_offset; 1284 u64 extent_end; 1285 u64 extent_offset; 1286 u64 disk_bytenr; 1287 u64 num_bytes; 1288 u64 disk_num_bytes; 1289 u64 ram_bytes; 1290 int extent_type; 1291 int ret, err; 1292 int type; 1293 int nocow; 1294 int check_prev = 1; 1295 bool nolock; 1296 u64 ino = btrfs_ino(BTRFS_I(inode)); 1297 1298 path = btrfs_alloc_path(); 1299 if (!path) { 1300 extent_clear_unlock_delalloc(inode, start, end, end, 1301 locked_page, 1302 EXTENT_LOCKED | EXTENT_DELALLOC | 1303 EXTENT_DO_ACCOUNTING | 1304 EXTENT_DEFRAG, PAGE_UNLOCK | 1305 PAGE_CLEAR_DIRTY | 1306 PAGE_SET_WRITEBACK | 1307 PAGE_END_WRITEBACK); 1308 return -ENOMEM; 1309 } 1310 1311 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1312 1313 cow_start = (u64)-1; 1314 cur_offset = start; 1315 while (1) { 1316 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1317 cur_offset, 0); 1318 if (ret < 0) 1319 goto error; 1320 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1321 leaf = path->nodes[0]; 1322 btrfs_item_key_to_cpu(leaf, &found_key, 1323 path->slots[0] - 1); 1324 if (found_key.objectid == ino && 1325 found_key.type == BTRFS_EXTENT_DATA_KEY) 1326 path->slots[0]--; 1327 } 1328 check_prev = 0; 1329 next_slot: 1330 leaf = path->nodes[0]; 1331 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1332 ret = btrfs_next_leaf(root, path); 1333 if (ret < 0) 1334 goto error; 1335 if (ret > 0) 1336 break; 1337 leaf = path->nodes[0]; 1338 } 1339 1340 nocow = 0; 1341 disk_bytenr = 0; 1342 num_bytes = 0; 1343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1344 1345 if (found_key.objectid > ino) 1346 break; 1347 if (WARN_ON_ONCE(found_key.objectid < ino) || 1348 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1349 path->slots[0]++; 1350 goto next_slot; 1351 } 1352 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1353 found_key.offset > end) 1354 break; 1355 1356 if (found_key.offset > cur_offset) { 1357 extent_end = found_key.offset; 1358 extent_type = 0; 1359 goto out_check; 1360 } 1361 1362 fi = btrfs_item_ptr(leaf, path->slots[0], 1363 struct btrfs_file_extent_item); 1364 extent_type = btrfs_file_extent_type(leaf, fi); 1365 1366 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1367 if (extent_type == BTRFS_FILE_EXTENT_REG || 1368 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1369 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1370 extent_offset = btrfs_file_extent_offset(leaf, fi); 1371 extent_end = found_key.offset + 1372 btrfs_file_extent_num_bytes(leaf, fi); 1373 disk_num_bytes = 1374 btrfs_file_extent_disk_num_bytes(leaf, fi); 1375 if (extent_end <= start) { 1376 path->slots[0]++; 1377 goto next_slot; 1378 } 1379 if (disk_bytenr == 0) 1380 goto out_check; 1381 if (btrfs_file_extent_compression(leaf, fi) || 1382 btrfs_file_extent_encryption(leaf, fi) || 1383 btrfs_file_extent_other_encoding(leaf, fi)) 1384 goto out_check; 1385 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1386 goto out_check; 1387 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1388 goto out_check; 1389 if (btrfs_cross_ref_exist(root, ino, 1390 found_key.offset - 1391 extent_offset, disk_bytenr)) 1392 goto out_check; 1393 disk_bytenr += extent_offset; 1394 disk_bytenr += cur_offset - found_key.offset; 1395 num_bytes = min(end + 1, extent_end) - cur_offset; 1396 /* 1397 * if there are pending snapshots for this root, 1398 * we fall into common COW way. 1399 */ 1400 if (!nolock) { 1401 err = btrfs_start_write_no_snapshotting(root); 1402 if (!err) 1403 goto out_check; 1404 } 1405 /* 1406 * force cow if csum exists in the range. 1407 * this ensure that csum for a given extent are 1408 * either valid or do not exist. 1409 */ 1410 if (csum_exist_in_range(fs_info, disk_bytenr, 1411 num_bytes)) { 1412 if (!nolock) 1413 btrfs_end_write_no_snapshotting(root); 1414 goto out_check; 1415 } 1416 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) { 1417 if (!nolock) 1418 btrfs_end_write_no_snapshotting(root); 1419 goto out_check; 1420 } 1421 nocow = 1; 1422 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1423 extent_end = found_key.offset + 1424 btrfs_file_extent_inline_len(leaf, 1425 path->slots[0], fi); 1426 extent_end = ALIGN(extent_end, 1427 fs_info->sectorsize); 1428 } else { 1429 BUG_ON(1); 1430 } 1431 out_check: 1432 if (extent_end <= start) { 1433 path->slots[0]++; 1434 if (!nolock && nocow) 1435 btrfs_end_write_no_snapshotting(root); 1436 if (nocow) 1437 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1438 goto next_slot; 1439 } 1440 if (!nocow) { 1441 if (cow_start == (u64)-1) 1442 cow_start = cur_offset; 1443 cur_offset = extent_end; 1444 if (cur_offset > end) 1445 break; 1446 path->slots[0]++; 1447 goto next_slot; 1448 } 1449 1450 btrfs_release_path(path); 1451 if (cow_start != (u64)-1) { 1452 ret = cow_file_range(inode, locked_page, 1453 cow_start, found_key.offset - 1, 1454 end, page_started, nr_written, 1, 1455 NULL); 1456 if (ret) { 1457 if (!nolock && nocow) 1458 btrfs_end_write_no_snapshotting(root); 1459 if (nocow) 1460 btrfs_dec_nocow_writers(fs_info, 1461 disk_bytenr); 1462 goto error; 1463 } 1464 cow_start = (u64)-1; 1465 } 1466 1467 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1468 u64 orig_start = found_key.offset - extent_offset; 1469 1470 em = create_io_em(inode, cur_offset, num_bytes, 1471 orig_start, 1472 disk_bytenr, /* block_start */ 1473 num_bytes, /* block_len */ 1474 disk_num_bytes, /* orig_block_len */ 1475 ram_bytes, BTRFS_COMPRESS_NONE, 1476 BTRFS_ORDERED_PREALLOC); 1477 if (IS_ERR(em)) { 1478 if (!nolock && nocow) 1479 btrfs_end_write_no_snapshotting(root); 1480 if (nocow) 1481 btrfs_dec_nocow_writers(fs_info, 1482 disk_bytenr); 1483 ret = PTR_ERR(em); 1484 goto error; 1485 } 1486 free_extent_map(em); 1487 } 1488 1489 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1490 type = BTRFS_ORDERED_PREALLOC; 1491 } else { 1492 type = BTRFS_ORDERED_NOCOW; 1493 } 1494 1495 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1496 num_bytes, num_bytes, type); 1497 if (nocow) 1498 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1499 BUG_ON(ret); /* -ENOMEM */ 1500 1501 if (root->root_key.objectid == 1502 BTRFS_DATA_RELOC_TREE_OBJECTID) 1503 /* 1504 * Error handled later, as we must prevent 1505 * extent_clear_unlock_delalloc() in error handler 1506 * from freeing metadata of created ordered extent. 1507 */ 1508 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1509 num_bytes); 1510 1511 extent_clear_unlock_delalloc(inode, cur_offset, 1512 cur_offset + num_bytes - 1, end, 1513 locked_page, EXTENT_LOCKED | 1514 EXTENT_DELALLOC | 1515 EXTENT_CLEAR_DATA_RESV, 1516 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1517 1518 if (!nolock && nocow) 1519 btrfs_end_write_no_snapshotting(root); 1520 cur_offset = extent_end; 1521 1522 /* 1523 * btrfs_reloc_clone_csums() error, now we're OK to call error 1524 * handler, as metadata for created ordered extent will only 1525 * be freed by btrfs_finish_ordered_io(). 1526 */ 1527 if (ret) 1528 goto error; 1529 if (cur_offset > end) 1530 break; 1531 } 1532 btrfs_release_path(path); 1533 1534 if (cur_offset <= end && cow_start == (u64)-1) { 1535 cow_start = cur_offset; 1536 cur_offset = end; 1537 } 1538 1539 if (cow_start != (u64)-1) { 1540 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1541 page_started, nr_written, 1, NULL); 1542 if (ret) 1543 goto error; 1544 } 1545 1546 error: 1547 if (ret && cur_offset < end) 1548 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1549 locked_page, EXTENT_LOCKED | 1550 EXTENT_DELALLOC | EXTENT_DEFRAG | 1551 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1552 PAGE_CLEAR_DIRTY | 1553 PAGE_SET_WRITEBACK | 1554 PAGE_END_WRITEBACK); 1555 btrfs_free_path(path); 1556 return ret; 1557 } 1558 1559 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1560 { 1561 1562 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1563 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1564 return 0; 1565 1566 /* 1567 * @defrag_bytes is a hint value, no spinlock held here, 1568 * if is not zero, it means the file is defragging. 1569 * Force cow if given extent needs to be defragged. 1570 */ 1571 if (BTRFS_I(inode)->defrag_bytes && 1572 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1573 EXTENT_DEFRAG, 0, NULL)) 1574 return 1; 1575 1576 return 0; 1577 } 1578 1579 /* 1580 * extent_io.c call back to do delayed allocation processing 1581 */ 1582 static int run_delalloc_range(void *private_data, struct page *locked_page, 1583 u64 start, u64 end, int *page_started, 1584 unsigned long *nr_written, 1585 struct writeback_control *wbc) 1586 { 1587 struct inode *inode = private_data; 1588 int ret; 1589 int force_cow = need_force_cow(inode, start, end); 1590 unsigned int write_flags = wbc_to_write_flags(wbc); 1591 1592 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1593 ret = run_delalloc_nocow(inode, locked_page, start, end, 1594 page_started, 1, nr_written); 1595 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1596 ret = run_delalloc_nocow(inode, locked_page, start, end, 1597 page_started, 0, nr_written); 1598 } else if (!inode_need_compress(inode, start, end)) { 1599 ret = cow_file_range(inode, locked_page, start, end, end, 1600 page_started, nr_written, 1, NULL); 1601 } else { 1602 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1603 &BTRFS_I(inode)->runtime_flags); 1604 ret = cow_file_range_async(inode, locked_page, start, end, 1605 page_started, nr_written, 1606 write_flags); 1607 } 1608 if (ret) 1609 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1610 return ret; 1611 } 1612 1613 static void btrfs_split_extent_hook(void *private_data, 1614 struct extent_state *orig, u64 split) 1615 { 1616 struct inode *inode = private_data; 1617 u64 size; 1618 1619 /* not delalloc, ignore it */ 1620 if (!(orig->state & EXTENT_DELALLOC)) 1621 return; 1622 1623 size = orig->end - orig->start + 1; 1624 if (size > BTRFS_MAX_EXTENT_SIZE) { 1625 u32 num_extents; 1626 u64 new_size; 1627 1628 /* 1629 * See the explanation in btrfs_merge_extent_hook, the same 1630 * applies here, just in reverse. 1631 */ 1632 new_size = orig->end - split + 1; 1633 num_extents = count_max_extents(new_size); 1634 new_size = split - orig->start; 1635 num_extents += count_max_extents(new_size); 1636 if (count_max_extents(size) >= num_extents) 1637 return; 1638 } 1639 1640 spin_lock(&BTRFS_I(inode)->lock); 1641 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1642 spin_unlock(&BTRFS_I(inode)->lock); 1643 } 1644 1645 /* 1646 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1647 * extents so we can keep track of new extents that are just merged onto old 1648 * extents, such as when we are doing sequential writes, so we can properly 1649 * account for the metadata space we'll need. 1650 */ 1651 static void btrfs_merge_extent_hook(void *private_data, 1652 struct extent_state *new, 1653 struct extent_state *other) 1654 { 1655 struct inode *inode = private_data; 1656 u64 new_size, old_size; 1657 u32 num_extents; 1658 1659 /* not delalloc, ignore it */ 1660 if (!(other->state & EXTENT_DELALLOC)) 1661 return; 1662 1663 if (new->start > other->start) 1664 new_size = new->end - other->start + 1; 1665 else 1666 new_size = other->end - new->start + 1; 1667 1668 /* we're not bigger than the max, unreserve the space and go */ 1669 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1670 spin_lock(&BTRFS_I(inode)->lock); 1671 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1672 spin_unlock(&BTRFS_I(inode)->lock); 1673 return; 1674 } 1675 1676 /* 1677 * We have to add up either side to figure out how many extents were 1678 * accounted for before we merged into one big extent. If the number of 1679 * extents we accounted for is <= the amount we need for the new range 1680 * then we can return, otherwise drop. Think of it like this 1681 * 1682 * [ 4k][MAX_SIZE] 1683 * 1684 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1685 * need 2 outstanding extents, on one side we have 1 and the other side 1686 * we have 1 so they are == and we can return. But in this case 1687 * 1688 * [MAX_SIZE+4k][MAX_SIZE+4k] 1689 * 1690 * Each range on their own accounts for 2 extents, but merged together 1691 * they are only 3 extents worth of accounting, so we need to drop in 1692 * this case. 1693 */ 1694 old_size = other->end - other->start + 1; 1695 num_extents = count_max_extents(old_size); 1696 old_size = new->end - new->start + 1; 1697 num_extents += count_max_extents(old_size); 1698 if (count_max_extents(new_size) >= num_extents) 1699 return; 1700 1701 spin_lock(&BTRFS_I(inode)->lock); 1702 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1703 spin_unlock(&BTRFS_I(inode)->lock); 1704 } 1705 1706 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1707 struct inode *inode) 1708 { 1709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1710 1711 spin_lock(&root->delalloc_lock); 1712 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1713 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1714 &root->delalloc_inodes); 1715 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1716 &BTRFS_I(inode)->runtime_flags); 1717 root->nr_delalloc_inodes++; 1718 if (root->nr_delalloc_inodes == 1) { 1719 spin_lock(&fs_info->delalloc_root_lock); 1720 BUG_ON(!list_empty(&root->delalloc_root)); 1721 list_add_tail(&root->delalloc_root, 1722 &fs_info->delalloc_roots); 1723 spin_unlock(&fs_info->delalloc_root_lock); 1724 } 1725 } 1726 spin_unlock(&root->delalloc_lock); 1727 } 1728 1729 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1730 struct btrfs_inode *inode) 1731 { 1732 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1733 1734 spin_lock(&root->delalloc_lock); 1735 if (!list_empty(&inode->delalloc_inodes)) { 1736 list_del_init(&inode->delalloc_inodes); 1737 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1738 &inode->runtime_flags); 1739 root->nr_delalloc_inodes--; 1740 if (!root->nr_delalloc_inodes) { 1741 spin_lock(&fs_info->delalloc_root_lock); 1742 BUG_ON(list_empty(&root->delalloc_root)); 1743 list_del_init(&root->delalloc_root); 1744 spin_unlock(&fs_info->delalloc_root_lock); 1745 } 1746 } 1747 spin_unlock(&root->delalloc_lock); 1748 } 1749 1750 /* 1751 * extent_io.c set_bit_hook, used to track delayed allocation 1752 * bytes in this file, and to maintain the list of inodes that 1753 * have pending delalloc work to be done. 1754 */ 1755 static void btrfs_set_bit_hook(void *private_data, 1756 struct extent_state *state, unsigned *bits) 1757 { 1758 struct inode *inode = private_data; 1759 1760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1761 1762 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1763 WARN_ON(1); 1764 /* 1765 * set_bit and clear bit hooks normally require _irqsave/restore 1766 * but in this case, we are only testing for the DELALLOC 1767 * bit, which is only set or cleared with irqs on 1768 */ 1769 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1770 struct btrfs_root *root = BTRFS_I(inode)->root; 1771 u64 len = state->end + 1 - state->start; 1772 u32 num_extents = count_max_extents(len); 1773 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1774 1775 spin_lock(&BTRFS_I(inode)->lock); 1776 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1777 spin_unlock(&BTRFS_I(inode)->lock); 1778 1779 /* For sanity tests */ 1780 if (btrfs_is_testing(fs_info)) 1781 return; 1782 1783 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1784 fs_info->delalloc_batch); 1785 spin_lock(&BTRFS_I(inode)->lock); 1786 BTRFS_I(inode)->delalloc_bytes += len; 1787 if (*bits & EXTENT_DEFRAG) 1788 BTRFS_I(inode)->defrag_bytes += len; 1789 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1790 &BTRFS_I(inode)->runtime_flags)) 1791 btrfs_add_delalloc_inodes(root, inode); 1792 spin_unlock(&BTRFS_I(inode)->lock); 1793 } 1794 1795 if (!(state->state & EXTENT_DELALLOC_NEW) && 1796 (*bits & EXTENT_DELALLOC_NEW)) { 1797 spin_lock(&BTRFS_I(inode)->lock); 1798 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1799 state->start; 1800 spin_unlock(&BTRFS_I(inode)->lock); 1801 } 1802 } 1803 1804 /* 1805 * extent_io.c clear_bit_hook, see set_bit_hook for why 1806 */ 1807 static void btrfs_clear_bit_hook(void *private_data, 1808 struct extent_state *state, 1809 unsigned *bits) 1810 { 1811 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); 1812 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1813 u64 len = state->end + 1 - state->start; 1814 u32 num_extents = count_max_extents(len); 1815 1816 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1817 spin_lock(&inode->lock); 1818 inode->defrag_bytes -= len; 1819 spin_unlock(&inode->lock); 1820 } 1821 1822 /* 1823 * set_bit and clear bit hooks normally require _irqsave/restore 1824 * but in this case, we are only testing for the DELALLOC 1825 * bit, which is only set or cleared with irqs on 1826 */ 1827 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1828 struct btrfs_root *root = inode->root; 1829 bool do_list = !btrfs_is_free_space_inode(inode); 1830 1831 spin_lock(&inode->lock); 1832 btrfs_mod_outstanding_extents(inode, -num_extents); 1833 spin_unlock(&inode->lock); 1834 1835 /* 1836 * We don't reserve metadata space for space cache inodes so we 1837 * don't need to call dellalloc_release_metadata if there is an 1838 * error. 1839 */ 1840 if (*bits & EXTENT_CLEAR_META_RESV && 1841 root != fs_info->tree_root) 1842 btrfs_delalloc_release_metadata(inode, len); 1843 1844 /* For sanity tests. */ 1845 if (btrfs_is_testing(fs_info)) 1846 return; 1847 1848 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1849 do_list && !(state->state & EXTENT_NORESERVE) && 1850 (*bits & EXTENT_CLEAR_DATA_RESV)) 1851 btrfs_free_reserved_data_space_noquota( 1852 &inode->vfs_inode, 1853 state->start, len); 1854 1855 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1856 fs_info->delalloc_batch); 1857 spin_lock(&inode->lock); 1858 inode->delalloc_bytes -= len; 1859 if (do_list && inode->delalloc_bytes == 0 && 1860 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1861 &inode->runtime_flags)) 1862 btrfs_del_delalloc_inode(root, inode); 1863 spin_unlock(&inode->lock); 1864 } 1865 1866 if ((state->state & EXTENT_DELALLOC_NEW) && 1867 (*bits & EXTENT_DELALLOC_NEW)) { 1868 spin_lock(&inode->lock); 1869 ASSERT(inode->new_delalloc_bytes >= len); 1870 inode->new_delalloc_bytes -= len; 1871 spin_unlock(&inode->lock); 1872 } 1873 } 1874 1875 /* 1876 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1877 * we don't create bios that span stripes or chunks 1878 * 1879 * return 1 if page cannot be merged to bio 1880 * return 0 if page can be merged to bio 1881 * return error otherwise 1882 */ 1883 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1884 size_t size, struct bio *bio, 1885 unsigned long bio_flags) 1886 { 1887 struct inode *inode = page->mapping->host; 1888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1889 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1890 u64 length = 0; 1891 u64 map_length; 1892 int ret; 1893 1894 if (bio_flags & EXTENT_BIO_COMPRESSED) 1895 return 0; 1896 1897 length = bio->bi_iter.bi_size; 1898 map_length = length; 1899 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1900 NULL, 0); 1901 if (ret < 0) 1902 return ret; 1903 if (map_length < length + size) 1904 return 1; 1905 return 0; 1906 } 1907 1908 /* 1909 * in order to insert checksums into the metadata in large chunks, 1910 * we wait until bio submission time. All the pages in the bio are 1911 * checksummed and sums are attached onto the ordered extent record. 1912 * 1913 * At IO completion time the cums attached on the ordered extent record 1914 * are inserted into the btree 1915 */ 1916 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio, 1917 int mirror_num, unsigned long bio_flags, 1918 u64 bio_offset) 1919 { 1920 struct inode *inode = private_data; 1921 blk_status_t ret = 0; 1922 1923 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1924 BUG_ON(ret); /* -ENOMEM */ 1925 return 0; 1926 } 1927 1928 /* 1929 * in order to insert checksums into the metadata in large chunks, 1930 * we wait until bio submission time. All the pages in the bio are 1931 * checksummed and sums are attached onto the ordered extent record. 1932 * 1933 * At IO completion time the cums attached on the ordered extent record 1934 * are inserted into the btree 1935 */ 1936 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio, 1937 int mirror_num, unsigned long bio_flags, 1938 u64 bio_offset) 1939 { 1940 struct inode *inode = private_data; 1941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1942 blk_status_t ret; 1943 1944 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1945 if (ret) { 1946 bio->bi_status = ret; 1947 bio_endio(bio); 1948 } 1949 return ret; 1950 } 1951 1952 /* 1953 * extent_io.c submission hook. This does the right thing for csum calculation 1954 * on write, or reading the csums from the tree before a read 1955 */ 1956 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1957 int mirror_num, unsigned long bio_flags, 1958 u64 bio_offset) 1959 { 1960 struct inode *inode = private_data; 1961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1962 struct btrfs_root *root = BTRFS_I(inode)->root; 1963 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1964 blk_status_t ret = 0; 1965 int skip_sum; 1966 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1967 1968 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1969 1970 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1971 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1972 1973 if (bio_op(bio) != REQ_OP_WRITE) { 1974 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1975 if (ret) 1976 goto out; 1977 1978 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1979 ret = btrfs_submit_compressed_read(inode, bio, 1980 mirror_num, 1981 bio_flags); 1982 goto out; 1983 } else if (!skip_sum) { 1984 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 1985 if (ret) 1986 goto out; 1987 } 1988 goto mapit; 1989 } else if (async && !skip_sum) { 1990 /* csum items have already been cloned */ 1991 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1992 goto mapit; 1993 /* we're doing a write, do the async checksumming */ 1994 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 1995 bio_offset, inode, 1996 __btrfs_submit_bio_start, 1997 __btrfs_submit_bio_done); 1998 goto out; 1999 } else if (!skip_sum) { 2000 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2001 if (ret) 2002 goto out; 2003 } 2004 2005 mapit: 2006 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2007 2008 out: 2009 if (ret) { 2010 bio->bi_status = ret; 2011 bio_endio(bio); 2012 } 2013 return ret; 2014 } 2015 2016 /* 2017 * given a list of ordered sums record them in the inode. This happens 2018 * at IO completion time based on sums calculated at bio submission time. 2019 */ 2020 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2021 struct inode *inode, struct list_head *list) 2022 { 2023 struct btrfs_ordered_sum *sum; 2024 2025 list_for_each_entry(sum, list, list) { 2026 trans->adding_csums = 1; 2027 btrfs_csum_file_blocks(trans, 2028 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2029 trans->adding_csums = 0; 2030 } 2031 return 0; 2032 } 2033 2034 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2035 unsigned int extra_bits, 2036 struct extent_state **cached_state, int dedupe) 2037 { 2038 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2039 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2040 extra_bits, cached_state); 2041 } 2042 2043 /* see btrfs_writepage_start_hook for details on why this is required */ 2044 struct btrfs_writepage_fixup { 2045 struct page *page; 2046 struct btrfs_work work; 2047 }; 2048 2049 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2050 { 2051 struct btrfs_writepage_fixup *fixup; 2052 struct btrfs_ordered_extent *ordered; 2053 struct extent_state *cached_state = NULL; 2054 struct extent_changeset *data_reserved = NULL; 2055 struct page *page; 2056 struct inode *inode; 2057 u64 page_start; 2058 u64 page_end; 2059 int ret; 2060 2061 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2062 page = fixup->page; 2063 again: 2064 lock_page(page); 2065 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2066 ClearPageChecked(page); 2067 goto out_page; 2068 } 2069 2070 inode = page->mapping->host; 2071 page_start = page_offset(page); 2072 page_end = page_offset(page) + PAGE_SIZE - 1; 2073 2074 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2075 &cached_state); 2076 2077 /* already ordered? We're done */ 2078 if (PagePrivate2(page)) 2079 goto out; 2080 2081 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2082 PAGE_SIZE); 2083 if (ordered) { 2084 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2085 page_end, &cached_state, GFP_NOFS); 2086 unlock_page(page); 2087 btrfs_start_ordered_extent(inode, ordered, 1); 2088 btrfs_put_ordered_extent(ordered); 2089 goto again; 2090 } 2091 2092 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2093 PAGE_SIZE); 2094 if (ret) { 2095 mapping_set_error(page->mapping, ret); 2096 end_extent_writepage(page, ret, page_start, page_end); 2097 ClearPageChecked(page); 2098 goto out; 2099 } 2100 2101 btrfs_set_extent_delalloc(inode, page_start, page_end, 0, &cached_state, 2102 0); 2103 ClearPageChecked(page); 2104 set_page_dirty(page); 2105 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2106 out: 2107 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2108 &cached_state, GFP_NOFS); 2109 out_page: 2110 unlock_page(page); 2111 put_page(page); 2112 kfree(fixup); 2113 extent_changeset_free(data_reserved); 2114 } 2115 2116 /* 2117 * There are a few paths in the higher layers of the kernel that directly 2118 * set the page dirty bit without asking the filesystem if it is a 2119 * good idea. This causes problems because we want to make sure COW 2120 * properly happens and the data=ordered rules are followed. 2121 * 2122 * In our case any range that doesn't have the ORDERED bit set 2123 * hasn't been properly setup for IO. We kick off an async process 2124 * to fix it up. The async helper will wait for ordered extents, set 2125 * the delalloc bit and make it safe to write the page. 2126 */ 2127 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2128 { 2129 struct inode *inode = page->mapping->host; 2130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2131 struct btrfs_writepage_fixup *fixup; 2132 2133 /* this page is properly in the ordered list */ 2134 if (TestClearPagePrivate2(page)) 2135 return 0; 2136 2137 if (PageChecked(page)) 2138 return -EAGAIN; 2139 2140 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2141 if (!fixup) 2142 return -EAGAIN; 2143 2144 SetPageChecked(page); 2145 get_page(page); 2146 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2147 btrfs_writepage_fixup_worker, NULL, NULL); 2148 fixup->page = page; 2149 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2150 return -EBUSY; 2151 } 2152 2153 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2154 struct inode *inode, u64 file_pos, 2155 u64 disk_bytenr, u64 disk_num_bytes, 2156 u64 num_bytes, u64 ram_bytes, 2157 u8 compression, u8 encryption, 2158 u16 other_encoding, int extent_type) 2159 { 2160 struct btrfs_root *root = BTRFS_I(inode)->root; 2161 struct btrfs_file_extent_item *fi; 2162 struct btrfs_path *path; 2163 struct extent_buffer *leaf; 2164 struct btrfs_key ins; 2165 u64 qg_released; 2166 int extent_inserted = 0; 2167 int ret; 2168 2169 path = btrfs_alloc_path(); 2170 if (!path) 2171 return -ENOMEM; 2172 2173 /* 2174 * we may be replacing one extent in the tree with another. 2175 * The new extent is pinned in the extent map, and we don't want 2176 * to drop it from the cache until it is completely in the btree. 2177 * 2178 * So, tell btrfs_drop_extents to leave this extent in the cache. 2179 * the caller is expected to unpin it and allow it to be merged 2180 * with the others. 2181 */ 2182 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2183 file_pos + num_bytes, NULL, 0, 2184 1, sizeof(*fi), &extent_inserted); 2185 if (ret) 2186 goto out; 2187 2188 if (!extent_inserted) { 2189 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2190 ins.offset = file_pos; 2191 ins.type = BTRFS_EXTENT_DATA_KEY; 2192 2193 path->leave_spinning = 1; 2194 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2195 sizeof(*fi)); 2196 if (ret) 2197 goto out; 2198 } 2199 leaf = path->nodes[0]; 2200 fi = btrfs_item_ptr(leaf, path->slots[0], 2201 struct btrfs_file_extent_item); 2202 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2203 btrfs_set_file_extent_type(leaf, fi, extent_type); 2204 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2205 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2206 btrfs_set_file_extent_offset(leaf, fi, 0); 2207 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2208 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2209 btrfs_set_file_extent_compression(leaf, fi, compression); 2210 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2211 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2212 2213 btrfs_mark_buffer_dirty(leaf); 2214 btrfs_release_path(path); 2215 2216 inode_add_bytes(inode, num_bytes); 2217 2218 ins.objectid = disk_bytenr; 2219 ins.offset = disk_num_bytes; 2220 ins.type = BTRFS_EXTENT_ITEM_KEY; 2221 2222 /* 2223 * Release the reserved range from inode dirty range map, as it is 2224 * already moved into delayed_ref_head 2225 */ 2226 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2227 if (ret < 0) 2228 goto out; 2229 qg_released = ret; 2230 ret = btrfs_alloc_reserved_file_extent(trans, root, 2231 btrfs_ino(BTRFS_I(inode)), 2232 file_pos, qg_released, &ins); 2233 out: 2234 btrfs_free_path(path); 2235 2236 return ret; 2237 } 2238 2239 /* snapshot-aware defrag */ 2240 struct sa_defrag_extent_backref { 2241 struct rb_node node; 2242 struct old_sa_defrag_extent *old; 2243 u64 root_id; 2244 u64 inum; 2245 u64 file_pos; 2246 u64 extent_offset; 2247 u64 num_bytes; 2248 u64 generation; 2249 }; 2250 2251 struct old_sa_defrag_extent { 2252 struct list_head list; 2253 struct new_sa_defrag_extent *new; 2254 2255 u64 extent_offset; 2256 u64 bytenr; 2257 u64 offset; 2258 u64 len; 2259 int count; 2260 }; 2261 2262 struct new_sa_defrag_extent { 2263 struct rb_root root; 2264 struct list_head head; 2265 struct btrfs_path *path; 2266 struct inode *inode; 2267 u64 file_pos; 2268 u64 len; 2269 u64 bytenr; 2270 u64 disk_len; 2271 u8 compress_type; 2272 }; 2273 2274 static int backref_comp(struct sa_defrag_extent_backref *b1, 2275 struct sa_defrag_extent_backref *b2) 2276 { 2277 if (b1->root_id < b2->root_id) 2278 return -1; 2279 else if (b1->root_id > b2->root_id) 2280 return 1; 2281 2282 if (b1->inum < b2->inum) 2283 return -1; 2284 else if (b1->inum > b2->inum) 2285 return 1; 2286 2287 if (b1->file_pos < b2->file_pos) 2288 return -1; 2289 else if (b1->file_pos > b2->file_pos) 2290 return 1; 2291 2292 /* 2293 * [------------------------------] ===> (a range of space) 2294 * |<--->| |<---->| =============> (fs/file tree A) 2295 * |<---------------------------->| ===> (fs/file tree B) 2296 * 2297 * A range of space can refer to two file extents in one tree while 2298 * refer to only one file extent in another tree. 2299 * 2300 * So we may process a disk offset more than one time(two extents in A) 2301 * and locate at the same extent(one extent in B), then insert two same 2302 * backrefs(both refer to the extent in B). 2303 */ 2304 return 0; 2305 } 2306 2307 static void backref_insert(struct rb_root *root, 2308 struct sa_defrag_extent_backref *backref) 2309 { 2310 struct rb_node **p = &root->rb_node; 2311 struct rb_node *parent = NULL; 2312 struct sa_defrag_extent_backref *entry; 2313 int ret; 2314 2315 while (*p) { 2316 parent = *p; 2317 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2318 2319 ret = backref_comp(backref, entry); 2320 if (ret < 0) 2321 p = &(*p)->rb_left; 2322 else 2323 p = &(*p)->rb_right; 2324 } 2325 2326 rb_link_node(&backref->node, parent, p); 2327 rb_insert_color(&backref->node, root); 2328 } 2329 2330 /* 2331 * Note the backref might has changed, and in this case we just return 0. 2332 */ 2333 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2334 void *ctx) 2335 { 2336 struct btrfs_file_extent_item *extent; 2337 struct old_sa_defrag_extent *old = ctx; 2338 struct new_sa_defrag_extent *new = old->new; 2339 struct btrfs_path *path = new->path; 2340 struct btrfs_key key; 2341 struct btrfs_root *root; 2342 struct sa_defrag_extent_backref *backref; 2343 struct extent_buffer *leaf; 2344 struct inode *inode = new->inode; 2345 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2346 int slot; 2347 int ret; 2348 u64 extent_offset; 2349 u64 num_bytes; 2350 2351 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2352 inum == btrfs_ino(BTRFS_I(inode))) 2353 return 0; 2354 2355 key.objectid = root_id; 2356 key.type = BTRFS_ROOT_ITEM_KEY; 2357 key.offset = (u64)-1; 2358 2359 root = btrfs_read_fs_root_no_name(fs_info, &key); 2360 if (IS_ERR(root)) { 2361 if (PTR_ERR(root) == -ENOENT) 2362 return 0; 2363 WARN_ON(1); 2364 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2365 inum, offset, root_id); 2366 return PTR_ERR(root); 2367 } 2368 2369 key.objectid = inum; 2370 key.type = BTRFS_EXTENT_DATA_KEY; 2371 if (offset > (u64)-1 << 32) 2372 key.offset = 0; 2373 else 2374 key.offset = offset; 2375 2376 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2377 if (WARN_ON(ret < 0)) 2378 return ret; 2379 ret = 0; 2380 2381 while (1) { 2382 cond_resched(); 2383 2384 leaf = path->nodes[0]; 2385 slot = path->slots[0]; 2386 2387 if (slot >= btrfs_header_nritems(leaf)) { 2388 ret = btrfs_next_leaf(root, path); 2389 if (ret < 0) { 2390 goto out; 2391 } else if (ret > 0) { 2392 ret = 0; 2393 goto out; 2394 } 2395 continue; 2396 } 2397 2398 path->slots[0]++; 2399 2400 btrfs_item_key_to_cpu(leaf, &key, slot); 2401 2402 if (key.objectid > inum) 2403 goto out; 2404 2405 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2406 continue; 2407 2408 extent = btrfs_item_ptr(leaf, slot, 2409 struct btrfs_file_extent_item); 2410 2411 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2412 continue; 2413 2414 /* 2415 * 'offset' refers to the exact key.offset, 2416 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2417 * (key.offset - extent_offset). 2418 */ 2419 if (key.offset != offset) 2420 continue; 2421 2422 extent_offset = btrfs_file_extent_offset(leaf, extent); 2423 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2424 2425 if (extent_offset >= old->extent_offset + old->offset + 2426 old->len || extent_offset + num_bytes <= 2427 old->extent_offset + old->offset) 2428 continue; 2429 break; 2430 } 2431 2432 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2433 if (!backref) { 2434 ret = -ENOENT; 2435 goto out; 2436 } 2437 2438 backref->root_id = root_id; 2439 backref->inum = inum; 2440 backref->file_pos = offset; 2441 backref->num_bytes = num_bytes; 2442 backref->extent_offset = extent_offset; 2443 backref->generation = btrfs_file_extent_generation(leaf, extent); 2444 backref->old = old; 2445 backref_insert(&new->root, backref); 2446 old->count++; 2447 out: 2448 btrfs_release_path(path); 2449 WARN_ON(ret); 2450 return ret; 2451 } 2452 2453 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2454 struct new_sa_defrag_extent *new) 2455 { 2456 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2457 struct old_sa_defrag_extent *old, *tmp; 2458 int ret; 2459 2460 new->path = path; 2461 2462 list_for_each_entry_safe(old, tmp, &new->head, list) { 2463 ret = iterate_inodes_from_logical(old->bytenr + 2464 old->extent_offset, fs_info, 2465 path, record_one_backref, 2466 old, false); 2467 if (ret < 0 && ret != -ENOENT) 2468 return false; 2469 2470 /* no backref to be processed for this extent */ 2471 if (!old->count) { 2472 list_del(&old->list); 2473 kfree(old); 2474 } 2475 } 2476 2477 if (list_empty(&new->head)) 2478 return false; 2479 2480 return true; 2481 } 2482 2483 static int relink_is_mergable(struct extent_buffer *leaf, 2484 struct btrfs_file_extent_item *fi, 2485 struct new_sa_defrag_extent *new) 2486 { 2487 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2488 return 0; 2489 2490 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2491 return 0; 2492 2493 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2494 return 0; 2495 2496 if (btrfs_file_extent_encryption(leaf, fi) || 2497 btrfs_file_extent_other_encoding(leaf, fi)) 2498 return 0; 2499 2500 return 1; 2501 } 2502 2503 /* 2504 * Note the backref might has changed, and in this case we just return 0. 2505 */ 2506 static noinline int relink_extent_backref(struct btrfs_path *path, 2507 struct sa_defrag_extent_backref *prev, 2508 struct sa_defrag_extent_backref *backref) 2509 { 2510 struct btrfs_file_extent_item *extent; 2511 struct btrfs_file_extent_item *item; 2512 struct btrfs_ordered_extent *ordered; 2513 struct btrfs_trans_handle *trans; 2514 struct btrfs_root *root; 2515 struct btrfs_key key; 2516 struct extent_buffer *leaf; 2517 struct old_sa_defrag_extent *old = backref->old; 2518 struct new_sa_defrag_extent *new = old->new; 2519 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2520 struct inode *inode; 2521 struct extent_state *cached = NULL; 2522 int ret = 0; 2523 u64 start; 2524 u64 len; 2525 u64 lock_start; 2526 u64 lock_end; 2527 bool merge = false; 2528 int index; 2529 2530 if (prev && prev->root_id == backref->root_id && 2531 prev->inum == backref->inum && 2532 prev->file_pos + prev->num_bytes == backref->file_pos) 2533 merge = true; 2534 2535 /* step 1: get root */ 2536 key.objectid = backref->root_id; 2537 key.type = BTRFS_ROOT_ITEM_KEY; 2538 key.offset = (u64)-1; 2539 2540 index = srcu_read_lock(&fs_info->subvol_srcu); 2541 2542 root = btrfs_read_fs_root_no_name(fs_info, &key); 2543 if (IS_ERR(root)) { 2544 srcu_read_unlock(&fs_info->subvol_srcu, index); 2545 if (PTR_ERR(root) == -ENOENT) 2546 return 0; 2547 return PTR_ERR(root); 2548 } 2549 2550 if (btrfs_root_readonly(root)) { 2551 srcu_read_unlock(&fs_info->subvol_srcu, index); 2552 return 0; 2553 } 2554 2555 /* step 2: get inode */ 2556 key.objectid = backref->inum; 2557 key.type = BTRFS_INODE_ITEM_KEY; 2558 key.offset = 0; 2559 2560 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2561 if (IS_ERR(inode)) { 2562 srcu_read_unlock(&fs_info->subvol_srcu, index); 2563 return 0; 2564 } 2565 2566 srcu_read_unlock(&fs_info->subvol_srcu, index); 2567 2568 /* step 3: relink backref */ 2569 lock_start = backref->file_pos; 2570 lock_end = backref->file_pos + backref->num_bytes - 1; 2571 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2572 &cached); 2573 2574 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2575 if (ordered) { 2576 btrfs_put_ordered_extent(ordered); 2577 goto out_unlock; 2578 } 2579 2580 trans = btrfs_join_transaction(root); 2581 if (IS_ERR(trans)) { 2582 ret = PTR_ERR(trans); 2583 goto out_unlock; 2584 } 2585 2586 key.objectid = backref->inum; 2587 key.type = BTRFS_EXTENT_DATA_KEY; 2588 key.offset = backref->file_pos; 2589 2590 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2591 if (ret < 0) { 2592 goto out_free_path; 2593 } else if (ret > 0) { 2594 ret = 0; 2595 goto out_free_path; 2596 } 2597 2598 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2599 struct btrfs_file_extent_item); 2600 2601 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2602 backref->generation) 2603 goto out_free_path; 2604 2605 btrfs_release_path(path); 2606 2607 start = backref->file_pos; 2608 if (backref->extent_offset < old->extent_offset + old->offset) 2609 start += old->extent_offset + old->offset - 2610 backref->extent_offset; 2611 2612 len = min(backref->extent_offset + backref->num_bytes, 2613 old->extent_offset + old->offset + old->len); 2614 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2615 2616 ret = btrfs_drop_extents(trans, root, inode, start, 2617 start + len, 1); 2618 if (ret) 2619 goto out_free_path; 2620 again: 2621 key.objectid = btrfs_ino(BTRFS_I(inode)); 2622 key.type = BTRFS_EXTENT_DATA_KEY; 2623 key.offset = start; 2624 2625 path->leave_spinning = 1; 2626 if (merge) { 2627 struct btrfs_file_extent_item *fi; 2628 u64 extent_len; 2629 struct btrfs_key found_key; 2630 2631 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2632 if (ret < 0) 2633 goto out_free_path; 2634 2635 path->slots[0]--; 2636 leaf = path->nodes[0]; 2637 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2638 2639 fi = btrfs_item_ptr(leaf, path->slots[0], 2640 struct btrfs_file_extent_item); 2641 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2642 2643 if (extent_len + found_key.offset == start && 2644 relink_is_mergable(leaf, fi, new)) { 2645 btrfs_set_file_extent_num_bytes(leaf, fi, 2646 extent_len + len); 2647 btrfs_mark_buffer_dirty(leaf); 2648 inode_add_bytes(inode, len); 2649 2650 ret = 1; 2651 goto out_free_path; 2652 } else { 2653 merge = false; 2654 btrfs_release_path(path); 2655 goto again; 2656 } 2657 } 2658 2659 ret = btrfs_insert_empty_item(trans, root, path, &key, 2660 sizeof(*extent)); 2661 if (ret) { 2662 btrfs_abort_transaction(trans, ret); 2663 goto out_free_path; 2664 } 2665 2666 leaf = path->nodes[0]; 2667 item = btrfs_item_ptr(leaf, path->slots[0], 2668 struct btrfs_file_extent_item); 2669 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2670 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2671 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2672 btrfs_set_file_extent_num_bytes(leaf, item, len); 2673 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2674 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2675 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2676 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2677 btrfs_set_file_extent_encryption(leaf, item, 0); 2678 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2679 2680 btrfs_mark_buffer_dirty(leaf); 2681 inode_add_bytes(inode, len); 2682 btrfs_release_path(path); 2683 2684 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2685 new->disk_len, 0, 2686 backref->root_id, backref->inum, 2687 new->file_pos); /* start - extent_offset */ 2688 if (ret) { 2689 btrfs_abort_transaction(trans, ret); 2690 goto out_free_path; 2691 } 2692 2693 ret = 1; 2694 out_free_path: 2695 btrfs_release_path(path); 2696 path->leave_spinning = 0; 2697 btrfs_end_transaction(trans); 2698 out_unlock: 2699 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2700 &cached, GFP_NOFS); 2701 iput(inode); 2702 return ret; 2703 } 2704 2705 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2706 { 2707 struct old_sa_defrag_extent *old, *tmp; 2708 2709 if (!new) 2710 return; 2711 2712 list_for_each_entry_safe(old, tmp, &new->head, list) { 2713 kfree(old); 2714 } 2715 kfree(new); 2716 } 2717 2718 static void relink_file_extents(struct new_sa_defrag_extent *new) 2719 { 2720 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2721 struct btrfs_path *path; 2722 struct sa_defrag_extent_backref *backref; 2723 struct sa_defrag_extent_backref *prev = NULL; 2724 struct inode *inode; 2725 struct btrfs_root *root; 2726 struct rb_node *node; 2727 int ret; 2728 2729 inode = new->inode; 2730 root = BTRFS_I(inode)->root; 2731 2732 path = btrfs_alloc_path(); 2733 if (!path) 2734 return; 2735 2736 if (!record_extent_backrefs(path, new)) { 2737 btrfs_free_path(path); 2738 goto out; 2739 } 2740 btrfs_release_path(path); 2741 2742 while (1) { 2743 node = rb_first(&new->root); 2744 if (!node) 2745 break; 2746 rb_erase(node, &new->root); 2747 2748 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2749 2750 ret = relink_extent_backref(path, prev, backref); 2751 WARN_ON(ret < 0); 2752 2753 kfree(prev); 2754 2755 if (ret == 1) 2756 prev = backref; 2757 else 2758 prev = NULL; 2759 cond_resched(); 2760 } 2761 kfree(prev); 2762 2763 btrfs_free_path(path); 2764 out: 2765 free_sa_defrag_extent(new); 2766 2767 atomic_dec(&fs_info->defrag_running); 2768 wake_up(&fs_info->transaction_wait); 2769 } 2770 2771 static struct new_sa_defrag_extent * 2772 record_old_file_extents(struct inode *inode, 2773 struct btrfs_ordered_extent *ordered) 2774 { 2775 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2776 struct btrfs_root *root = BTRFS_I(inode)->root; 2777 struct btrfs_path *path; 2778 struct btrfs_key key; 2779 struct old_sa_defrag_extent *old; 2780 struct new_sa_defrag_extent *new; 2781 int ret; 2782 2783 new = kmalloc(sizeof(*new), GFP_NOFS); 2784 if (!new) 2785 return NULL; 2786 2787 new->inode = inode; 2788 new->file_pos = ordered->file_offset; 2789 new->len = ordered->len; 2790 new->bytenr = ordered->start; 2791 new->disk_len = ordered->disk_len; 2792 new->compress_type = ordered->compress_type; 2793 new->root = RB_ROOT; 2794 INIT_LIST_HEAD(&new->head); 2795 2796 path = btrfs_alloc_path(); 2797 if (!path) 2798 goto out_kfree; 2799 2800 key.objectid = btrfs_ino(BTRFS_I(inode)); 2801 key.type = BTRFS_EXTENT_DATA_KEY; 2802 key.offset = new->file_pos; 2803 2804 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2805 if (ret < 0) 2806 goto out_free_path; 2807 if (ret > 0 && path->slots[0] > 0) 2808 path->slots[0]--; 2809 2810 /* find out all the old extents for the file range */ 2811 while (1) { 2812 struct btrfs_file_extent_item *extent; 2813 struct extent_buffer *l; 2814 int slot; 2815 u64 num_bytes; 2816 u64 offset; 2817 u64 end; 2818 u64 disk_bytenr; 2819 u64 extent_offset; 2820 2821 l = path->nodes[0]; 2822 slot = path->slots[0]; 2823 2824 if (slot >= btrfs_header_nritems(l)) { 2825 ret = btrfs_next_leaf(root, path); 2826 if (ret < 0) 2827 goto out_free_path; 2828 else if (ret > 0) 2829 break; 2830 continue; 2831 } 2832 2833 btrfs_item_key_to_cpu(l, &key, slot); 2834 2835 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2836 break; 2837 if (key.type != BTRFS_EXTENT_DATA_KEY) 2838 break; 2839 if (key.offset >= new->file_pos + new->len) 2840 break; 2841 2842 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2843 2844 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2845 if (key.offset + num_bytes < new->file_pos) 2846 goto next; 2847 2848 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2849 if (!disk_bytenr) 2850 goto next; 2851 2852 extent_offset = btrfs_file_extent_offset(l, extent); 2853 2854 old = kmalloc(sizeof(*old), GFP_NOFS); 2855 if (!old) 2856 goto out_free_path; 2857 2858 offset = max(new->file_pos, key.offset); 2859 end = min(new->file_pos + new->len, key.offset + num_bytes); 2860 2861 old->bytenr = disk_bytenr; 2862 old->extent_offset = extent_offset; 2863 old->offset = offset - key.offset; 2864 old->len = end - offset; 2865 old->new = new; 2866 old->count = 0; 2867 list_add_tail(&old->list, &new->head); 2868 next: 2869 path->slots[0]++; 2870 cond_resched(); 2871 } 2872 2873 btrfs_free_path(path); 2874 atomic_inc(&fs_info->defrag_running); 2875 2876 return new; 2877 2878 out_free_path: 2879 btrfs_free_path(path); 2880 out_kfree: 2881 free_sa_defrag_extent(new); 2882 return NULL; 2883 } 2884 2885 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2886 u64 start, u64 len) 2887 { 2888 struct btrfs_block_group_cache *cache; 2889 2890 cache = btrfs_lookup_block_group(fs_info, start); 2891 ASSERT(cache); 2892 2893 spin_lock(&cache->lock); 2894 cache->delalloc_bytes -= len; 2895 spin_unlock(&cache->lock); 2896 2897 btrfs_put_block_group(cache); 2898 } 2899 2900 /* as ordered data IO finishes, this gets called so we can finish 2901 * an ordered extent if the range of bytes in the file it covers are 2902 * fully written. 2903 */ 2904 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2905 { 2906 struct inode *inode = ordered_extent->inode; 2907 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2908 struct btrfs_root *root = BTRFS_I(inode)->root; 2909 struct btrfs_trans_handle *trans = NULL; 2910 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2911 struct extent_state *cached_state = NULL; 2912 struct new_sa_defrag_extent *new = NULL; 2913 int compress_type = 0; 2914 int ret = 0; 2915 u64 logical_len = ordered_extent->len; 2916 bool nolock; 2917 bool truncated = false; 2918 bool range_locked = false; 2919 bool clear_new_delalloc_bytes = false; 2920 2921 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2922 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2923 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2924 clear_new_delalloc_bytes = true; 2925 2926 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2927 2928 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2929 ret = -EIO; 2930 goto out; 2931 } 2932 2933 btrfs_free_io_failure_record(BTRFS_I(inode), 2934 ordered_extent->file_offset, 2935 ordered_extent->file_offset + 2936 ordered_extent->len - 1); 2937 2938 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2939 truncated = true; 2940 logical_len = ordered_extent->truncated_len; 2941 /* Truncated the entire extent, don't bother adding */ 2942 if (!logical_len) 2943 goto out; 2944 } 2945 2946 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2947 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2948 2949 /* 2950 * For mwrite(mmap + memset to write) case, we still reserve 2951 * space for NOCOW range. 2952 * As NOCOW won't cause a new delayed ref, just free the space 2953 */ 2954 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2955 ordered_extent->len); 2956 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2957 if (nolock) 2958 trans = btrfs_join_transaction_nolock(root); 2959 else 2960 trans = btrfs_join_transaction(root); 2961 if (IS_ERR(trans)) { 2962 ret = PTR_ERR(trans); 2963 trans = NULL; 2964 goto out; 2965 } 2966 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2967 ret = btrfs_update_inode_fallback(trans, root, inode); 2968 if (ret) /* -ENOMEM or corruption */ 2969 btrfs_abort_transaction(trans, ret); 2970 goto out; 2971 } 2972 2973 range_locked = true; 2974 lock_extent_bits(io_tree, ordered_extent->file_offset, 2975 ordered_extent->file_offset + ordered_extent->len - 1, 2976 &cached_state); 2977 2978 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2979 ordered_extent->file_offset + ordered_extent->len - 1, 2980 EXTENT_DEFRAG, 0, cached_state); 2981 if (ret) { 2982 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2983 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2984 /* the inode is shared */ 2985 new = record_old_file_extents(inode, ordered_extent); 2986 2987 clear_extent_bit(io_tree, ordered_extent->file_offset, 2988 ordered_extent->file_offset + ordered_extent->len - 1, 2989 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2990 } 2991 2992 if (nolock) 2993 trans = btrfs_join_transaction_nolock(root); 2994 else 2995 trans = btrfs_join_transaction(root); 2996 if (IS_ERR(trans)) { 2997 ret = PTR_ERR(trans); 2998 trans = NULL; 2999 goto out; 3000 } 3001 3002 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3003 3004 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3005 compress_type = ordered_extent->compress_type; 3006 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3007 BUG_ON(compress_type); 3008 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3009 ordered_extent->file_offset, 3010 ordered_extent->file_offset + 3011 logical_len); 3012 } else { 3013 BUG_ON(root == fs_info->tree_root); 3014 ret = insert_reserved_file_extent(trans, inode, 3015 ordered_extent->file_offset, 3016 ordered_extent->start, 3017 ordered_extent->disk_len, 3018 logical_len, logical_len, 3019 compress_type, 0, 0, 3020 BTRFS_FILE_EXTENT_REG); 3021 if (!ret) 3022 btrfs_release_delalloc_bytes(fs_info, 3023 ordered_extent->start, 3024 ordered_extent->disk_len); 3025 } 3026 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3027 ordered_extent->file_offset, ordered_extent->len, 3028 trans->transid); 3029 if (ret < 0) { 3030 btrfs_abort_transaction(trans, ret); 3031 goto out; 3032 } 3033 3034 add_pending_csums(trans, inode, &ordered_extent->list); 3035 3036 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3037 ret = btrfs_update_inode_fallback(trans, root, inode); 3038 if (ret) { /* -ENOMEM or corruption */ 3039 btrfs_abort_transaction(trans, ret); 3040 goto out; 3041 } 3042 ret = 0; 3043 out: 3044 if (range_locked || clear_new_delalloc_bytes) { 3045 unsigned int clear_bits = 0; 3046 3047 if (range_locked) 3048 clear_bits |= EXTENT_LOCKED; 3049 if (clear_new_delalloc_bytes) 3050 clear_bits |= EXTENT_DELALLOC_NEW; 3051 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3052 ordered_extent->file_offset, 3053 ordered_extent->file_offset + 3054 ordered_extent->len - 1, 3055 clear_bits, 3056 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3057 0, &cached_state, GFP_NOFS); 3058 } 3059 3060 if (trans) 3061 btrfs_end_transaction(trans); 3062 3063 if (ret || truncated) { 3064 u64 start, end; 3065 3066 if (truncated) 3067 start = ordered_extent->file_offset + logical_len; 3068 else 3069 start = ordered_extent->file_offset; 3070 end = ordered_extent->file_offset + ordered_extent->len - 1; 3071 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 3072 3073 /* Drop the cache for the part of the extent we didn't write. */ 3074 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3075 3076 /* 3077 * If the ordered extent had an IOERR or something else went 3078 * wrong we need to return the space for this ordered extent 3079 * back to the allocator. We only free the extent in the 3080 * truncated case if we didn't write out the extent at all. 3081 */ 3082 if ((ret || !logical_len) && 3083 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3084 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3085 btrfs_free_reserved_extent(fs_info, 3086 ordered_extent->start, 3087 ordered_extent->disk_len, 1); 3088 } 3089 3090 3091 /* 3092 * This needs to be done to make sure anybody waiting knows we are done 3093 * updating everything for this ordered extent. 3094 */ 3095 btrfs_remove_ordered_extent(inode, ordered_extent); 3096 3097 /* for snapshot-aware defrag */ 3098 if (new) { 3099 if (ret) { 3100 free_sa_defrag_extent(new); 3101 atomic_dec(&fs_info->defrag_running); 3102 } else { 3103 relink_file_extents(new); 3104 } 3105 } 3106 3107 /* once for us */ 3108 btrfs_put_ordered_extent(ordered_extent); 3109 /* once for the tree */ 3110 btrfs_put_ordered_extent(ordered_extent); 3111 3112 return ret; 3113 } 3114 3115 static void finish_ordered_fn(struct btrfs_work *work) 3116 { 3117 struct btrfs_ordered_extent *ordered_extent; 3118 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3119 btrfs_finish_ordered_io(ordered_extent); 3120 } 3121 3122 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3123 struct extent_state *state, int uptodate) 3124 { 3125 struct inode *inode = page->mapping->host; 3126 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3127 struct btrfs_ordered_extent *ordered_extent = NULL; 3128 struct btrfs_workqueue *wq; 3129 btrfs_work_func_t func; 3130 3131 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3132 3133 ClearPagePrivate2(page); 3134 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3135 end - start + 1, uptodate)) 3136 return; 3137 3138 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3139 wq = fs_info->endio_freespace_worker; 3140 func = btrfs_freespace_write_helper; 3141 } else { 3142 wq = fs_info->endio_write_workers; 3143 func = btrfs_endio_write_helper; 3144 } 3145 3146 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3147 NULL); 3148 btrfs_queue_work(wq, &ordered_extent->work); 3149 } 3150 3151 static int __readpage_endio_check(struct inode *inode, 3152 struct btrfs_io_bio *io_bio, 3153 int icsum, struct page *page, 3154 int pgoff, u64 start, size_t len) 3155 { 3156 char *kaddr; 3157 u32 csum_expected; 3158 u32 csum = ~(u32)0; 3159 3160 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3161 3162 kaddr = kmap_atomic(page); 3163 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3164 btrfs_csum_final(csum, (u8 *)&csum); 3165 if (csum != csum_expected) 3166 goto zeroit; 3167 3168 kunmap_atomic(kaddr); 3169 return 0; 3170 zeroit: 3171 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3172 io_bio->mirror_num); 3173 memset(kaddr + pgoff, 1, len); 3174 flush_dcache_page(page); 3175 kunmap_atomic(kaddr); 3176 return -EIO; 3177 } 3178 3179 /* 3180 * when reads are done, we need to check csums to verify the data is correct 3181 * if there's a match, we allow the bio to finish. If not, the code in 3182 * extent_io.c will try to find good copies for us. 3183 */ 3184 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3185 u64 phy_offset, struct page *page, 3186 u64 start, u64 end, int mirror) 3187 { 3188 size_t offset = start - page_offset(page); 3189 struct inode *inode = page->mapping->host; 3190 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3191 struct btrfs_root *root = BTRFS_I(inode)->root; 3192 3193 if (PageChecked(page)) { 3194 ClearPageChecked(page); 3195 return 0; 3196 } 3197 3198 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3199 return 0; 3200 3201 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3202 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3203 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3204 return 0; 3205 } 3206 3207 phy_offset >>= inode->i_sb->s_blocksize_bits; 3208 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3209 start, (size_t)(end - start + 1)); 3210 } 3211 3212 void btrfs_add_delayed_iput(struct inode *inode) 3213 { 3214 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3215 struct btrfs_inode *binode = BTRFS_I(inode); 3216 3217 if (atomic_add_unless(&inode->i_count, -1, 1)) 3218 return; 3219 3220 spin_lock(&fs_info->delayed_iput_lock); 3221 if (binode->delayed_iput_count == 0) { 3222 ASSERT(list_empty(&binode->delayed_iput)); 3223 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3224 } else { 3225 binode->delayed_iput_count++; 3226 } 3227 spin_unlock(&fs_info->delayed_iput_lock); 3228 } 3229 3230 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3231 { 3232 3233 spin_lock(&fs_info->delayed_iput_lock); 3234 while (!list_empty(&fs_info->delayed_iputs)) { 3235 struct btrfs_inode *inode; 3236 3237 inode = list_first_entry(&fs_info->delayed_iputs, 3238 struct btrfs_inode, delayed_iput); 3239 if (inode->delayed_iput_count) { 3240 inode->delayed_iput_count--; 3241 list_move_tail(&inode->delayed_iput, 3242 &fs_info->delayed_iputs); 3243 } else { 3244 list_del_init(&inode->delayed_iput); 3245 } 3246 spin_unlock(&fs_info->delayed_iput_lock); 3247 iput(&inode->vfs_inode); 3248 spin_lock(&fs_info->delayed_iput_lock); 3249 } 3250 spin_unlock(&fs_info->delayed_iput_lock); 3251 } 3252 3253 /* 3254 * This is called in transaction commit time. If there are no orphan 3255 * files in the subvolume, it removes orphan item and frees block_rsv 3256 * structure. 3257 */ 3258 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3259 struct btrfs_root *root) 3260 { 3261 struct btrfs_fs_info *fs_info = root->fs_info; 3262 struct btrfs_block_rsv *block_rsv; 3263 int ret; 3264 3265 if (atomic_read(&root->orphan_inodes) || 3266 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3267 return; 3268 3269 spin_lock(&root->orphan_lock); 3270 if (atomic_read(&root->orphan_inodes)) { 3271 spin_unlock(&root->orphan_lock); 3272 return; 3273 } 3274 3275 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3276 spin_unlock(&root->orphan_lock); 3277 return; 3278 } 3279 3280 block_rsv = root->orphan_block_rsv; 3281 root->orphan_block_rsv = NULL; 3282 spin_unlock(&root->orphan_lock); 3283 3284 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3285 btrfs_root_refs(&root->root_item) > 0) { 3286 ret = btrfs_del_orphan_item(trans, fs_info->tree_root, 3287 root->root_key.objectid); 3288 if (ret) 3289 btrfs_abort_transaction(trans, ret); 3290 else 3291 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3292 &root->state); 3293 } 3294 3295 if (block_rsv) { 3296 WARN_ON(block_rsv->size > 0); 3297 btrfs_free_block_rsv(fs_info, block_rsv); 3298 } 3299 } 3300 3301 /* 3302 * This creates an orphan entry for the given inode in case something goes 3303 * wrong in the middle of an unlink/truncate. 3304 * 3305 * NOTE: caller of this function should reserve 5 units of metadata for 3306 * this function. 3307 */ 3308 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3309 struct btrfs_inode *inode) 3310 { 3311 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 3312 struct btrfs_root *root = inode->root; 3313 struct btrfs_block_rsv *block_rsv = NULL; 3314 int reserve = 0; 3315 int insert = 0; 3316 int ret; 3317 3318 if (!root->orphan_block_rsv) { 3319 block_rsv = btrfs_alloc_block_rsv(fs_info, 3320 BTRFS_BLOCK_RSV_TEMP); 3321 if (!block_rsv) 3322 return -ENOMEM; 3323 } 3324 3325 spin_lock(&root->orphan_lock); 3326 if (!root->orphan_block_rsv) { 3327 root->orphan_block_rsv = block_rsv; 3328 } else if (block_rsv) { 3329 btrfs_free_block_rsv(fs_info, block_rsv); 3330 block_rsv = NULL; 3331 } 3332 3333 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3334 &inode->runtime_flags)) { 3335 #if 0 3336 /* 3337 * For proper ENOSPC handling, we should do orphan 3338 * cleanup when mounting. But this introduces backward 3339 * compatibility issue. 3340 */ 3341 if (!xchg(&root->orphan_item_inserted, 1)) 3342 insert = 2; 3343 else 3344 insert = 1; 3345 #endif 3346 insert = 1; 3347 atomic_inc(&root->orphan_inodes); 3348 } 3349 3350 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3351 &inode->runtime_flags)) 3352 reserve = 1; 3353 spin_unlock(&root->orphan_lock); 3354 3355 /* grab metadata reservation from transaction handle */ 3356 if (reserve) { 3357 ret = btrfs_orphan_reserve_metadata(trans, inode); 3358 ASSERT(!ret); 3359 if (ret) { 3360 atomic_dec(&root->orphan_inodes); 3361 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3362 &inode->runtime_flags); 3363 if (insert) 3364 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3365 &inode->runtime_flags); 3366 return ret; 3367 } 3368 } 3369 3370 /* insert an orphan item to track this unlinked/truncated file */ 3371 if (insert >= 1) { 3372 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3373 if (ret) { 3374 atomic_dec(&root->orphan_inodes); 3375 if (reserve) { 3376 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3377 &inode->runtime_flags); 3378 btrfs_orphan_release_metadata(inode); 3379 } 3380 if (ret != -EEXIST) { 3381 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3382 &inode->runtime_flags); 3383 btrfs_abort_transaction(trans, ret); 3384 return ret; 3385 } 3386 } 3387 ret = 0; 3388 } 3389 3390 /* insert an orphan item to track subvolume contains orphan files */ 3391 if (insert >= 2) { 3392 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root, 3393 root->root_key.objectid); 3394 if (ret && ret != -EEXIST) { 3395 btrfs_abort_transaction(trans, ret); 3396 return ret; 3397 } 3398 } 3399 return 0; 3400 } 3401 3402 /* 3403 * We have done the truncate/delete so we can go ahead and remove the orphan 3404 * item for this particular inode. 3405 */ 3406 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3407 struct btrfs_inode *inode) 3408 { 3409 struct btrfs_root *root = inode->root; 3410 int delete_item = 0; 3411 int release_rsv = 0; 3412 int ret = 0; 3413 3414 spin_lock(&root->orphan_lock); 3415 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3416 &inode->runtime_flags)) 3417 delete_item = 1; 3418 3419 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3420 &inode->runtime_flags)) 3421 release_rsv = 1; 3422 spin_unlock(&root->orphan_lock); 3423 3424 if (delete_item) { 3425 atomic_dec(&root->orphan_inodes); 3426 if (trans) 3427 ret = btrfs_del_orphan_item(trans, root, 3428 btrfs_ino(inode)); 3429 } 3430 3431 if (release_rsv) 3432 btrfs_orphan_release_metadata(inode); 3433 3434 return ret; 3435 } 3436 3437 /* 3438 * this cleans up any orphans that may be left on the list from the last use 3439 * of this root. 3440 */ 3441 int btrfs_orphan_cleanup(struct btrfs_root *root) 3442 { 3443 struct btrfs_fs_info *fs_info = root->fs_info; 3444 struct btrfs_path *path; 3445 struct extent_buffer *leaf; 3446 struct btrfs_key key, found_key; 3447 struct btrfs_trans_handle *trans; 3448 struct inode *inode; 3449 u64 last_objectid = 0; 3450 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3451 3452 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3453 return 0; 3454 3455 path = btrfs_alloc_path(); 3456 if (!path) { 3457 ret = -ENOMEM; 3458 goto out; 3459 } 3460 path->reada = READA_BACK; 3461 3462 key.objectid = BTRFS_ORPHAN_OBJECTID; 3463 key.type = BTRFS_ORPHAN_ITEM_KEY; 3464 key.offset = (u64)-1; 3465 3466 while (1) { 3467 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3468 if (ret < 0) 3469 goto out; 3470 3471 /* 3472 * if ret == 0 means we found what we were searching for, which 3473 * is weird, but possible, so only screw with path if we didn't 3474 * find the key and see if we have stuff that matches 3475 */ 3476 if (ret > 0) { 3477 ret = 0; 3478 if (path->slots[0] == 0) 3479 break; 3480 path->slots[0]--; 3481 } 3482 3483 /* pull out the item */ 3484 leaf = path->nodes[0]; 3485 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3486 3487 /* make sure the item matches what we want */ 3488 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3489 break; 3490 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3491 break; 3492 3493 /* release the path since we're done with it */ 3494 btrfs_release_path(path); 3495 3496 /* 3497 * this is where we are basically btrfs_lookup, without the 3498 * crossing root thing. we store the inode number in the 3499 * offset of the orphan item. 3500 */ 3501 3502 if (found_key.offset == last_objectid) { 3503 btrfs_err(fs_info, 3504 "Error removing orphan entry, stopping orphan cleanup"); 3505 ret = -EINVAL; 3506 goto out; 3507 } 3508 3509 last_objectid = found_key.offset; 3510 3511 found_key.objectid = found_key.offset; 3512 found_key.type = BTRFS_INODE_ITEM_KEY; 3513 found_key.offset = 0; 3514 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3515 ret = PTR_ERR_OR_ZERO(inode); 3516 if (ret && ret != -ENOENT) 3517 goto out; 3518 3519 if (ret == -ENOENT && root == fs_info->tree_root) { 3520 struct btrfs_root *dead_root; 3521 struct btrfs_fs_info *fs_info = root->fs_info; 3522 int is_dead_root = 0; 3523 3524 /* 3525 * this is an orphan in the tree root. Currently these 3526 * could come from 2 sources: 3527 * a) a snapshot deletion in progress 3528 * b) a free space cache inode 3529 * We need to distinguish those two, as the snapshot 3530 * orphan must not get deleted. 3531 * find_dead_roots already ran before us, so if this 3532 * is a snapshot deletion, we should find the root 3533 * in the dead_roots list 3534 */ 3535 spin_lock(&fs_info->trans_lock); 3536 list_for_each_entry(dead_root, &fs_info->dead_roots, 3537 root_list) { 3538 if (dead_root->root_key.objectid == 3539 found_key.objectid) { 3540 is_dead_root = 1; 3541 break; 3542 } 3543 } 3544 spin_unlock(&fs_info->trans_lock); 3545 if (is_dead_root) { 3546 /* prevent this orphan from being found again */ 3547 key.offset = found_key.objectid - 1; 3548 continue; 3549 } 3550 } 3551 /* 3552 * Inode is already gone but the orphan item is still there, 3553 * kill the orphan item. 3554 */ 3555 if (ret == -ENOENT) { 3556 trans = btrfs_start_transaction(root, 1); 3557 if (IS_ERR(trans)) { 3558 ret = PTR_ERR(trans); 3559 goto out; 3560 } 3561 btrfs_debug(fs_info, "auto deleting %Lu", 3562 found_key.objectid); 3563 ret = btrfs_del_orphan_item(trans, root, 3564 found_key.objectid); 3565 btrfs_end_transaction(trans); 3566 if (ret) 3567 goto out; 3568 continue; 3569 } 3570 3571 /* 3572 * add this inode to the orphan list so btrfs_orphan_del does 3573 * the proper thing when we hit it 3574 */ 3575 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3576 &BTRFS_I(inode)->runtime_flags); 3577 atomic_inc(&root->orphan_inodes); 3578 3579 /* if we have links, this was a truncate, lets do that */ 3580 if (inode->i_nlink) { 3581 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3582 iput(inode); 3583 continue; 3584 } 3585 nr_truncate++; 3586 3587 /* 1 for the orphan item deletion. */ 3588 trans = btrfs_start_transaction(root, 1); 3589 if (IS_ERR(trans)) { 3590 iput(inode); 3591 ret = PTR_ERR(trans); 3592 goto out; 3593 } 3594 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3595 btrfs_end_transaction(trans); 3596 if (ret) { 3597 iput(inode); 3598 goto out; 3599 } 3600 3601 ret = btrfs_truncate(inode); 3602 if (ret) 3603 btrfs_orphan_del(NULL, BTRFS_I(inode)); 3604 } else { 3605 nr_unlink++; 3606 } 3607 3608 /* this will do delete_inode and everything for us */ 3609 iput(inode); 3610 if (ret) 3611 goto out; 3612 } 3613 /* release the path since we're done with it */ 3614 btrfs_release_path(path); 3615 3616 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3617 3618 if (root->orphan_block_rsv) 3619 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, 3620 (u64)-1); 3621 3622 if (root->orphan_block_rsv || 3623 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3624 trans = btrfs_join_transaction(root); 3625 if (!IS_ERR(trans)) 3626 btrfs_end_transaction(trans); 3627 } 3628 3629 if (nr_unlink) 3630 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3631 if (nr_truncate) 3632 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate); 3633 3634 out: 3635 if (ret) 3636 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3637 btrfs_free_path(path); 3638 return ret; 3639 } 3640 3641 /* 3642 * very simple check to peek ahead in the leaf looking for xattrs. If we 3643 * don't find any xattrs, we know there can't be any acls. 3644 * 3645 * slot is the slot the inode is in, objectid is the objectid of the inode 3646 */ 3647 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3648 int slot, u64 objectid, 3649 int *first_xattr_slot) 3650 { 3651 u32 nritems = btrfs_header_nritems(leaf); 3652 struct btrfs_key found_key; 3653 static u64 xattr_access = 0; 3654 static u64 xattr_default = 0; 3655 int scanned = 0; 3656 3657 if (!xattr_access) { 3658 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3659 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3660 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3661 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3662 } 3663 3664 slot++; 3665 *first_xattr_slot = -1; 3666 while (slot < nritems) { 3667 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3668 3669 /* we found a different objectid, there must not be acls */ 3670 if (found_key.objectid != objectid) 3671 return 0; 3672 3673 /* we found an xattr, assume we've got an acl */ 3674 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3675 if (*first_xattr_slot == -1) 3676 *first_xattr_slot = slot; 3677 if (found_key.offset == xattr_access || 3678 found_key.offset == xattr_default) 3679 return 1; 3680 } 3681 3682 /* 3683 * we found a key greater than an xattr key, there can't 3684 * be any acls later on 3685 */ 3686 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3687 return 0; 3688 3689 slot++; 3690 scanned++; 3691 3692 /* 3693 * it goes inode, inode backrefs, xattrs, extents, 3694 * so if there are a ton of hard links to an inode there can 3695 * be a lot of backrefs. Don't waste time searching too hard, 3696 * this is just an optimization 3697 */ 3698 if (scanned >= 8) 3699 break; 3700 } 3701 /* we hit the end of the leaf before we found an xattr or 3702 * something larger than an xattr. We have to assume the inode 3703 * has acls 3704 */ 3705 if (*first_xattr_slot == -1) 3706 *first_xattr_slot = slot; 3707 return 1; 3708 } 3709 3710 /* 3711 * read an inode from the btree into the in-memory inode 3712 */ 3713 static int btrfs_read_locked_inode(struct inode *inode) 3714 { 3715 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3716 struct btrfs_path *path; 3717 struct extent_buffer *leaf; 3718 struct btrfs_inode_item *inode_item; 3719 struct btrfs_root *root = BTRFS_I(inode)->root; 3720 struct btrfs_key location; 3721 unsigned long ptr; 3722 int maybe_acls; 3723 u32 rdev; 3724 int ret; 3725 bool filled = false; 3726 int first_xattr_slot; 3727 3728 ret = btrfs_fill_inode(inode, &rdev); 3729 if (!ret) 3730 filled = true; 3731 3732 path = btrfs_alloc_path(); 3733 if (!path) { 3734 ret = -ENOMEM; 3735 goto make_bad; 3736 } 3737 3738 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3739 3740 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3741 if (ret) { 3742 if (ret > 0) 3743 ret = -ENOENT; 3744 goto make_bad; 3745 } 3746 3747 leaf = path->nodes[0]; 3748 3749 if (filled) 3750 goto cache_index; 3751 3752 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3753 struct btrfs_inode_item); 3754 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3755 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3756 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3757 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3758 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3759 3760 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3761 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3762 3763 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3764 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3765 3766 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3767 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3768 3769 BTRFS_I(inode)->i_otime.tv_sec = 3770 btrfs_timespec_sec(leaf, &inode_item->otime); 3771 BTRFS_I(inode)->i_otime.tv_nsec = 3772 btrfs_timespec_nsec(leaf, &inode_item->otime); 3773 3774 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3775 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3776 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3777 3778 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3779 inode->i_generation = BTRFS_I(inode)->generation; 3780 inode->i_rdev = 0; 3781 rdev = btrfs_inode_rdev(leaf, inode_item); 3782 3783 BTRFS_I(inode)->index_cnt = (u64)-1; 3784 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3785 3786 cache_index: 3787 /* 3788 * If we were modified in the current generation and evicted from memory 3789 * and then re-read we need to do a full sync since we don't have any 3790 * idea about which extents were modified before we were evicted from 3791 * cache. 3792 * 3793 * This is required for both inode re-read from disk and delayed inode 3794 * in delayed_nodes_tree. 3795 */ 3796 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3797 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3798 &BTRFS_I(inode)->runtime_flags); 3799 3800 /* 3801 * We don't persist the id of the transaction where an unlink operation 3802 * against the inode was last made. So here we assume the inode might 3803 * have been evicted, and therefore the exact value of last_unlink_trans 3804 * lost, and set it to last_trans to avoid metadata inconsistencies 3805 * between the inode and its parent if the inode is fsync'ed and the log 3806 * replayed. For example, in the scenario: 3807 * 3808 * touch mydir/foo 3809 * ln mydir/foo mydir/bar 3810 * sync 3811 * unlink mydir/bar 3812 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3813 * xfs_io -c fsync mydir/foo 3814 * <power failure> 3815 * mount fs, triggers fsync log replay 3816 * 3817 * We must make sure that when we fsync our inode foo we also log its 3818 * parent inode, otherwise after log replay the parent still has the 3819 * dentry with the "bar" name but our inode foo has a link count of 1 3820 * and doesn't have an inode ref with the name "bar" anymore. 3821 * 3822 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3823 * but it guarantees correctness at the expense of occasional full 3824 * transaction commits on fsync if our inode is a directory, or if our 3825 * inode is not a directory, logging its parent unnecessarily. 3826 */ 3827 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3828 3829 path->slots[0]++; 3830 if (inode->i_nlink != 1 || 3831 path->slots[0] >= btrfs_header_nritems(leaf)) 3832 goto cache_acl; 3833 3834 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3835 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3836 goto cache_acl; 3837 3838 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3839 if (location.type == BTRFS_INODE_REF_KEY) { 3840 struct btrfs_inode_ref *ref; 3841 3842 ref = (struct btrfs_inode_ref *)ptr; 3843 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3844 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3845 struct btrfs_inode_extref *extref; 3846 3847 extref = (struct btrfs_inode_extref *)ptr; 3848 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3849 extref); 3850 } 3851 cache_acl: 3852 /* 3853 * try to precache a NULL acl entry for files that don't have 3854 * any xattrs or acls 3855 */ 3856 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3857 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3858 if (first_xattr_slot != -1) { 3859 path->slots[0] = first_xattr_slot; 3860 ret = btrfs_load_inode_props(inode, path); 3861 if (ret) 3862 btrfs_err(fs_info, 3863 "error loading props for ino %llu (root %llu): %d", 3864 btrfs_ino(BTRFS_I(inode)), 3865 root->root_key.objectid, ret); 3866 } 3867 btrfs_free_path(path); 3868 3869 if (!maybe_acls) 3870 cache_no_acl(inode); 3871 3872 switch (inode->i_mode & S_IFMT) { 3873 case S_IFREG: 3874 inode->i_mapping->a_ops = &btrfs_aops; 3875 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3876 inode->i_fop = &btrfs_file_operations; 3877 inode->i_op = &btrfs_file_inode_operations; 3878 break; 3879 case S_IFDIR: 3880 inode->i_fop = &btrfs_dir_file_operations; 3881 inode->i_op = &btrfs_dir_inode_operations; 3882 break; 3883 case S_IFLNK: 3884 inode->i_op = &btrfs_symlink_inode_operations; 3885 inode_nohighmem(inode); 3886 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3887 break; 3888 default: 3889 inode->i_op = &btrfs_special_inode_operations; 3890 init_special_inode(inode, inode->i_mode, rdev); 3891 break; 3892 } 3893 3894 btrfs_update_iflags(inode); 3895 return 0; 3896 3897 make_bad: 3898 btrfs_free_path(path); 3899 make_bad_inode(inode); 3900 return ret; 3901 } 3902 3903 /* 3904 * given a leaf and an inode, copy the inode fields into the leaf 3905 */ 3906 static void fill_inode_item(struct btrfs_trans_handle *trans, 3907 struct extent_buffer *leaf, 3908 struct btrfs_inode_item *item, 3909 struct inode *inode) 3910 { 3911 struct btrfs_map_token token; 3912 3913 btrfs_init_map_token(&token); 3914 3915 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3916 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3917 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3918 &token); 3919 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3920 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3921 3922 btrfs_set_token_timespec_sec(leaf, &item->atime, 3923 inode->i_atime.tv_sec, &token); 3924 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3925 inode->i_atime.tv_nsec, &token); 3926 3927 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3928 inode->i_mtime.tv_sec, &token); 3929 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3930 inode->i_mtime.tv_nsec, &token); 3931 3932 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3933 inode->i_ctime.tv_sec, &token); 3934 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3935 inode->i_ctime.tv_nsec, &token); 3936 3937 btrfs_set_token_timespec_sec(leaf, &item->otime, 3938 BTRFS_I(inode)->i_otime.tv_sec, &token); 3939 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3940 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3941 3942 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3943 &token); 3944 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3945 &token); 3946 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3947 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3948 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3949 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3950 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3951 } 3952 3953 /* 3954 * copy everything in the in-memory inode into the btree. 3955 */ 3956 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3957 struct btrfs_root *root, struct inode *inode) 3958 { 3959 struct btrfs_inode_item *inode_item; 3960 struct btrfs_path *path; 3961 struct extent_buffer *leaf; 3962 int ret; 3963 3964 path = btrfs_alloc_path(); 3965 if (!path) 3966 return -ENOMEM; 3967 3968 path->leave_spinning = 1; 3969 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3970 1); 3971 if (ret) { 3972 if (ret > 0) 3973 ret = -ENOENT; 3974 goto failed; 3975 } 3976 3977 leaf = path->nodes[0]; 3978 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3979 struct btrfs_inode_item); 3980 3981 fill_inode_item(trans, leaf, inode_item, inode); 3982 btrfs_mark_buffer_dirty(leaf); 3983 btrfs_set_inode_last_trans(trans, inode); 3984 ret = 0; 3985 failed: 3986 btrfs_free_path(path); 3987 return ret; 3988 } 3989 3990 /* 3991 * copy everything in the in-memory inode into the btree. 3992 */ 3993 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3994 struct btrfs_root *root, struct inode *inode) 3995 { 3996 struct btrfs_fs_info *fs_info = root->fs_info; 3997 int ret; 3998 3999 /* 4000 * If the inode is a free space inode, we can deadlock during commit 4001 * if we put it into the delayed code. 4002 * 4003 * The data relocation inode should also be directly updated 4004 * without delay 4005 */ 4006 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 4007 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 4008 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4009 btrfs_update_root_times(trans, root); 4010 4011 ret = btrfs_delayed_update_inode(trans, root, inode); 4012 if (!ret) 4013 btrfs_set_inode_last_trans(trans, inode); 4014 return ret; 4015 } 4016 4017 return btrfs_update_inode_item(trans, root, inode); 4018 } 4019 4020 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4021 struct btrfs_root *root, 4022 struct inode *inode) 4023 { 4024 int ret; 4025 4026 ret = btrfs_update_inode(trans, root, inode); 4027 if (ret == -ENOSPC) 4028 return btrfs_update_inode_item(trans, root, inode); 4029 return ret; 4030 } 4031 4032 /* 4033 * unlink helper that gets used here in inode.c and in the tree logging 4034 * recovery code. It remove a link in a directory with a given name, and 4035 * also drops the back refs in the inode to the directory 4036 */ 4037 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4038 struct btrfs_root *root, 4039 struct btrfs_inode *dir, 4040 struct btrfs_inode *inode, 4041 const char *name, int name_len) 4042 { 4043 struct btrfs_fs_info *fs_info = root->fs_info; 4044 struct btrfs_path *path; 4045 int ret = 0; 4046 struct extent_buffer *leaf; 4047 struct btrfs_dir_item *di; 4048 struct btrfs_key key; 4049 u64 index; 4050 u64 ino = btrfs_ino(inode); 4051 u64 dir_ino = btrfs_ino(dir); 4052 4053 path = btrfs_alloc_path(); 4054 if (!path) { 4055 ret = -ENOMEM; 4056 goto out; 4057 } 4058 4059 path->leave_spinning = 1; 4060 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4061 name, name_len, -1); 4062 if (IS_ERR(di)) { 4063 ret = PTR_ERR(di); 4064 goto err; 4065 } 4066 if (!di) { 4067 ret = -ENOENT; 4068 goto err; 4069 } 4070 leaf = path->nodes[0]; 4071 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4072 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4073 if (ret) 4074 goto err; 4075 btrfs_release_path(path); 4076 4077 /* 4078 * If we don't have dir index, we have to get it by looking up 4079 * the inode ref, since we get the inode ref, remove it directly, 4080 * it is unnecessary to do delayed deletion. 4081 * 4082 * But if we have dir index, needn't search inode ref to get it. 4083 * Since the inode ref is close to the inode item, it is better 4084 * that we delay to delete it, and just do this deletion when 4085 * we update the inode item. 4086 */ 4087 if (inode->dir_index) { 4088 ret = btrfs_delayed_delete_inode_ref(inode); 4089 if (!ret) { 4090 index = inode->dir_index; 4091 goto skip_backref; 4092 } 4093 } 4094 4095 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4096 dir_ino, &index); 4097 if (ret) { 4098 btrfs_info(fs_info, 4099 "failed to delete reference to %.*s, inode %llu parent %llu", 4100 name_len, name, ino, dir_ino); 4101 btrfs_abort_transaction(trans, ret); 4102 goto err; 4103 } 4104 skip_backref: 4105 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index); 4106 if (ret) { 4107 btrfs_abort_transaction(trans, ret); 4108 goto err; 4109 } 4110 4111 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4112 dir_ino); 4113 if (ret != 0 && ret != -ENOENT) { 4114 btrfs_abort_transaction(trans, ret); 4115 goto err; 4116 } 4117 4118 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4119 index); 4120 if (ret == -ENOENT) 4121 ret = 0; 4122 else if (ret) 4123 btrfs_abort_transaction(trans, ret); 4124 err: 4125 btrfs_free_path(path); 4126 if (ret) 4127 goto out; 4128 4129 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4130 inode_inc_iversion(&inode->vfs_inode); 4131 inode_inc_iversion(&dir->vfs_inode); 4132 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4133 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4134 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4135 out: 4136 return ret; 4137 } 4138 4139 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4140 struct btrfs_root *root, 4141 struct btrfs_inode *dir, struct btrfs_inode *inode, 4142 const char *name, int name_len) 4143 { 4144 int ret; 4145 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4146 if (!ret) { 4147 drop_nlink(&inode->vfs_inode); 4148 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4149 } 4150 return ret; 4151 } 4152 4153 /* 4154 * helper to start transaction for unlink and rmdir. 4155 * 4156 * unlink and rmdir are special in btrfs, they do not always free space, so 4157 * if we cannot make our reservations the normal way try and see if there is 4158 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4159 * allow the unlink to occur. 4160 */ 4161 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4162 { 4163 struct btrfs_root *root = BTRFS_I(dir)->root; 4164 4165 /* 4166 * 1 for the possible orphan item 4167 * 1 for the dir item 4168 * 1 for the dir index 4169 * 1 for the inode ref 4170 * 1 for the inode 4171 */ 4172 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4173 } 4174 4175 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4176 { 4177 struct btrfs_root *root = BTRFS_I(dir)->root; 4178 struct btrfs_trans_handle *trans; 4179 struct inode *inode = d_inode(dentry); 4180 int ret; 4181 4182 trans = __unlink_start_trans(dir); 4183 if (IS_ERR(trans)) 4184 return PTR_ERR(trans); 4185 4186 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4187 0); 4188 4189 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4190 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4191 dentry->d_name.len); 4192 if (ret) 4193 goto out; 4194 4195 if (inode->i_nlink == 0) { 4196 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4197 if (ret) 4198 goto out; 4199 } 4200 4201 out: 4202 btrfs_end_transaction(trans); 4203 btrfs_btree_balance_dirty(root->fs_info); 4204 return ret; 4205 } 4206 4207 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4208 struct btrfs_root *root, 4209 struct inode *dir, u64 objectid, 4210 const char *name, int name_len) 4211 { 4212 struct btrfs_fs_info *fs_info = root->fs_info; 4213 struct btrfs_path *path; 4214 struct extent_buffer *leaf; 4215 struct btrfs_dir_item *di; 4216 struct btrfs_key key; 4217 u64 index; 4218 int ret; 4219 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4220 4221 path = btrfs_alloc_path(); 4222 if (!path) 4223 return -ENOMEM; 4224 4225 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4226 name, name_len, -1); 4227 if (IS_ERR_OR_NULL(di)) { 4228 if (!di) 4229 ret = -ENOENT; 4230 else 4231 ret = PTR_ERR(di); 4232 goto out; 4233 } 4234 4235 leaf = path->nodes[0]; 4236 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4237 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4238 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4239 if (ret) { 4240 btrfs_abort_transaction(trans, ret); 4241 goto out; 4242 } 4243 btrfs_release_path(path); 4244 4245 ret = btrfs_del_root_ref(trans, fs_info, objectid, 4246 root->root_key.objectid, dir_ino, 4247 &index, name, name_len); 4248 if (ret < 0) { 4249 if (ret != -ENOENT) { 4250 btrfs_abort_transaction(trans, ret); 4251 goto out; 4252 } 4253 di = btrfs_search_dir_index_item(root, path, dir_ino, 4254 name, name_len); 4255 if (IS_ERR_OR_NULL(di)) { 4256 if (!di) 4257 ret = -ENOENT; 4258 else 4259 ret = PTR_ERR(di); 4260 btrfs_abort_transaction(trans, ret); 4261 goto out; 4262 } 4263 4264 leaf = path->nodes[0]; 4265 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4266 btrfs_release_path(path); 4267 index = key.offset; 4268 } 4269 btrfs_release_path(path); 4270 4271 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index); 4272 if (ret) { 4273 btrfs_abort_transaction(trans, ret); 4274 goto out; 4275 } 4276 4277 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4278 inode_inc_iversion(dir); 4279 dir->i_mtime = dir->i_ctime = current_time(dir); 4280 ret = btrfs_update_inode_fallback(trans, root, dir); 4281 if (ret) 4282 btrfs_abort_transaction(trans, ret); 4283 out: 4284 btrfs_free_path(path); 4285 return ret; 4286 } 4287 4288 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4289 { 4290 struct inode *inode = d_inode(dentry); 4291 int err = 0; 4292 struct btrfs_root *root = BTRFS_I(dir)->root; 4293 struct btrfs_trans_handle *trans; 4294 u64 last_unlink_trans; 4295 4296 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4297 return -ENOTEMPTY; 4298 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4299 return -EPERM; 4300 4301 trans = __unlink_start_trans(dir); 4302 if (IS_ERR(trans)) 4303 return PTR_ERR(trans); 4304 4305 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4306 err = btrfs_unlink_subvol(trans, root, dir, 4307 BTRFS_I(inode)->location.objectid, 4308 dentry->d_name.name, 4309 dentry->d_name.len); 4310 goto out; 4311 } 4312 4313 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4314 if (err) 4315 goto out; 4316 4317 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4318 4319 /* now the directory is empty */ 4320 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4321 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4322 dentry->d_name.len); 4323 if (!err) { 4324 btrfs_i_size_write(BTRFS_I(inode), 0); 4325 /* 4326 * Propagate the last_unlink_trans value of the deleted dir to 4327 * its parent directory. This is to prevent an unrecoverable 4328 * log tree in the case we do something like this: 4329 * 1) create dir foo 4330 * 2) create snapshot under dir foo 4331 * 3) delete the snapshot 4332 * 4) rmdir foo 4333 * 5) mkdir foo 4334 * 6) fsync foo or some file inside foo 4335 */ 4336 if (last_unlink_trans >= trans->transid) 4337 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4338 } 4339 out: 4340 btrfs_end_transaction(trans); 4341 btrfs_btree_balance_dirty(root->fs_info); 4342 4343 return err; 4344 } 4345 4346 static int truncate_space_check(struct btrfs_trans_handle *trans, 4347 struct btrfs_root *root, 4348 u64 bytes_deleted) 4349 { 4350 struct btrfs_fs_info *fs_info = root->fs_info; 4351 int ret; 4352 4353 /* 4354 * This is only used to apply pressure to the enospc system, we don't 4355 * intend to use this reservation at all. 4356 */ 4357 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4358 bytes_deleted *= fs_info->nodesize; 4359 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4360 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4361 if (!ret) { 4362 trace_btrfs_space_reservation(fs_info, "transaction", 4363 trans->transid, 4364 bytes_deleted, 1); 4365 trans->bytes_reserved += bytes_deleted; 4366 } 4367 return ret; 4368 4369 } 4370 4371 /* 4372 * Return this if we need to call truncate_block for the last bit of the 4373 * truncate. 4374 */ 4375 #define NEED_TRUNCATE_BLOCK 1 4376 4377 /* 4378 * this can truncate away extent items, csum items and directory items. 4379 * It starts at a high offset and removes keys until it can't find 4380 * any higher than new_size 4381 * 4382 * csum items that cross the new i_size are truncated to the new size 4383 * as well. 4384 * 4385 * min_type is the minimum key type to truncate down to. If set to 0, this 4386 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4387 */ 4388 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4389 struct btrfs_root *root, 4390 struct inode *inode, 4391 u64 new_size, u32 min_type) 4392 { 4393 struct btrfs_fs_info *fs_info = root->fs_info; 4394 struct btrfs_path *path; 4395 struct extent_buffer *leaf; 4396 struct btrfs_file_extent_item *fi; 4397 struct btrfs_key key; 4398 struct btrfs_key found_key; 4399 u64 extent_start = 0; 4400 u64 extent_num_bytes = 0; 4401 u64 extent_offset = 0; 4402 u64 item_end = 0; 4403 u64 last_size = new_size; 4404 u32 found_type = (u8)-1; 4405 int found_extent; 4406 int del_item; 4407 int pending_del_nr = 0; 4408 int pending_del_slot = 0; 4409 int extent_type = -1; 4410 int ret; 4411 int err = 0; 4412 u64 ino = btrfs_ino(BTRFS_I(inode)); 4413 u64 bytes_deleted = 0; 4414 bool be_nice = false; 4415 bool should_throttle = false; 4416 bool should_end = false; 4417 4418 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4419 4420 /* 4421 * for non-free space inodes and ref cows, we want to back off from 4422 * time to time 4423 */ 4424 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4425 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4426 be_nice = true; 4427 4428 path = btrfs_alloc_path(); 4429 if (!path) 4430 return -ENOMEM; 4431 path->reada = READA_BACK; 4432 4433 /* 4434 * We want to drop from the next block forward in case this new size is 4435 * not block aligned since we will be keeping the last block of the 4436 * extent just the way it is. 4437 */ 4438 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4439 root == fs_info->tree_root) 4440 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4441 fs_info->sectorsize), 4442 (u64)-1, 0); 4443 4444 /* 4445 * This function is also used to drop the items in the log tree before 4446 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4447 * it is used to drop the loged items. So we shouldn't kill the delayed 4448 * items. 4449 */ 4450 if (min_type == 0 && root == BTRFS_I(inode)->root) 4451 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4452 4453 key.objectid = ino; 4454 key.offset = (u64)-1; 4455 key.type = (u8)-1; 4456 4457 search_again: 4458 /* 4459 * with a 16K leaf size and 128MB extents, you can actually queue 4460 * up a huge file in a single leaf. Most of the time that 4461 * bytes_deleted is > 0, it will be huge by the time we get here 4462 */ 4463 if (be_nice && bytes_deleted > SZ_32M) { 4464 if (btrfs_should_end_transaction(trans)) { 4465 err = -EAGAIN; 4466 goto error; 4467 } 4468 } 4469 4470 4471 path->leave_spinning = 1; 4472 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4473 if (ret < 0) { 4474 err = ret; 4475 goto out; 4476 } 4477 4478 if (ret > 0) { 4479 /* there are no items in the tree for us to truncate, we're 4480 * done 4481 */ 4482 if (path->slots[0] == 0) 4483 goto out; 4484 path->slots[0]--; 4485 } 4486 4487 while (1) { 4488 fi = NULL; 4489 leaf = path->nodes[0]; 4490 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4491 found_type = found_key.type; 4492 4493 if (found_key.objectid != ino) 4494 break; 4495 4496 if (found_type < min_type) 4497 break; 4498 4499 item_end = found_key.offset; 4500 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4501 fi = btrfs_item_ptr(leaf, path->slots[0], 4502 struct btrfs_file_extent_item); 4503 extent_type = btrfs_file_extent_type(leaf, fi); 4504 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4505 item_end += 4506 btrfs_file_extent_num_bytes(leaf, fi); 4507 4508 trace_btrfs_truncate_show_fi_regular( 4509 BTRFS_I(inode), leaf, fi, 4510 found_key.offset); 4511 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4512 item_end += btrfs_file_extent_inline_len(leaf, 4513 path->slots[0], fi); 4514 4515 trace_btrfs_truncate_show_fi_inline( 4516 BTRFS_I(inode), leaf, fi, path->slots[0], 4517 found_key.offset); 4518 } 4519 item_end--; 4520 } 4521 if (found_type > min_type) { 4522 del_item = 1; 4523 } else { 4524 if (item_end < new_size) 4525 break; 4526 if (found_key.offset >= new_size) 4527 del_item = 1; 4528 else 4529 del_item = 0; 4530 } 4531 found_extent = 0; 4532 /* FIXME, shrink the extent if the ref count is only 1 */ 4533 if (found_type != BTRFS_EXTENT_DATA_KEY) 4534 goto delete; 4535 4536 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4537 u64 num_dec; 4538 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4539 if (!del_item) { 4540 u64 orig_num_bytes = 4541 btrfs_file_extent_num_bytes(leaf, fi); 4542 extent_num_bytes = ALIGN(new_size - 4543 found_key.offset, 4544 fs_info->sectorsize); 4545 btrfs_set_file_extent_num_bytes(leaf, fi, 4546 extent_num_bytes); 4547 num_dec = (orig_num_bytes - 4548 extent_num_bytes); 4549 if (test_bit(BTRFS_ROOT_REF_COWS, 4550 &root->state) && 4551 extent_start != 0) 4552 inode_sub_bytes(inode, num_dec); 4553 btrfs_mark_buffer_dirty(leaf); 4554 } else { 4555 extent_num_bytes = 4556 btrfs_file_extent_disk_num_bytes(leaf, 4557 fi); 4558 extent_offset = found_key.offset - 4559 btrfs_file_extent_offset(leaf, fi); 4560 4561 /* FIXME blocksize != 4096 */ 4562 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4563 if (extent_start != 0) { 4564 found_extent = 1; 4565 if (test_bit(BTRFS_ROOT_REF_COWS, 4566 &root->state)) 4567 inode_sub_bytes(inode, num_dec); 4568 } 4569 } 4570 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4571 /* 4572 * we can't truncate inline items that have had 4573 * special encodings 4574 */ 4575 if (!del_item && 4576 btrfs_file_extent_encryption(leaf, fi) == 0 && 4577 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4578 btrfs_file_extent_compression(leaf, fi) == 0) { 4579 u32 size = (u32)(new_size - found_key.offset); 4580 4581 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4582 size = btrfs_file_extent_calc_inline_size(size); 4583 btrfs_truncate_item(root->fs_info, path, size, 1); 4584 } else if (!del_item) { 4585 /* 4586 * We have to bail so the last_size is set to 4587 * just before this extent. 4588 */ 4589 err = NEED_TRUNCATE_BLOCK; 4590 break; 4591 } 4592 4593 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4594 inode_sub_bytes(inode, item_end + 1 - new_size); 4595 } 4596 delete: 4597 if (del_item) 4598 last_size = found_key.offset; 4599 else 4600 last_size = new_size; 4601 if (del_item) { 4602 if (!pending_del_nr) { 4603 /* no pending yet, add ourselves */ 4604 pending_del_slot = path->slots[0]; 4605 pending_del_nr = 1; 4606 } else if (pending_del_nr && 4607 path->slots[0] + 1 == pending_del_slot) { 4608 /* hop on the pending chunk */ 4609 pending_del_nr++; 4610 pending_del_slot = path->slots[0]; 4611 } else { 4612 BUG(); 4613 } 4614 } else { 4615 break; 4616 } 4617 should_throttle = false; 4618 4619 if (found_extent && 4620 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4621 root == fs_info->tree_root)) { 4622 btrfs_set_path_blocking(path); 4623 bytes_deleted += extent_num_bytes; 4624 ret = btrfs_free_extent(trans, root, extent_start, 4625 extent_num_bytes, 0, 4626 btrfs_header_owner(leaf), 4627 ino, extent_offset); 4628 BUG_ON(ret); 4629 if (btrfs_should_throttle_delayed_refs(trans, fs_info)) 4630 btrfs_async_run_delayed_refs(fs_info, 4631 trans->delayed_ref_updates * 2, 4632 trans->transid, 0); 4633 if (be_nice) { 4634 if (truncate_space_check(trans, root, 4635 extent_num_bytes)) { 4636 should_end = true; 4637 } 4638 if (btrfs_should_throttle_delayed_refs(trans, 4639 fs_info)) 4640 should_throttle = true; 4641 } 4642 } 4643 4644 if (found_type == BTRFS_INODE_ITEM_KEY) 4645 break; 4646 4647 if (path->slots[0] == 0 || 4648 path->slots[0] != pending_del_slot || 4649 should_throttle || should_end) { 4650 if (pending_del_nr) { 4651 ret = btrfs_del_items(trans, root, path, 4652 pending_del_slot, 4653 pending_del_nr); 4654 if (ret) { 4655 btrfs_abort_transaction(trans, ret); 4656 goto error; 4657 } 4658 pending_del_nr = 0; 4659 } 4660 btrfs_release_path(path); 4661 if (should_throttle) { 4662 unsigned long updates = trans->delayed_ref_updates; 4663 if (updates) { 4664 trans->delayed_ref_updates = 0; 4665 ret = btrfs_run_delayed_refs(trans, 4666 fs_info, 4667 updates * 2); 4668 if (ret && !err) 4669 err = ret; 4670 } 4671 } 4672 /* 4673 * if we failed to refill our space rsv, bail out 4674 * and let the transaction restart 4675 */ 4676 if (should_end) { 4677 err = -EAGAIN; 4678 goto error; 4679 } 4680 goto search_again; 4681 } else { 4682 path->slots[0]--; 4683 } 4684 } 4685 out: 4686 if (pending_del_nr) { 4687 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4688 pending_del_nr); 4689 if (ret) 4690 btrfs_abort_transaction(trans, ret); 4691 } 4692 error: 4693 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4694 ASSERT(last_size >= new_size); 4695 if (!err && last_size > new_size) 4696 last_size = new_size; 4697 btrfs_ordered_update_i_size(inode, last_size, NULL); 4698 } 4699 4700 btrfs_free_path(path); 4701 4702 if (be_nice && bytes_deleted > SZ_32M) { 4703 unsigned long updates = trans->delayed_ref_updates; 4704 if (updates) { 4705 trans->delayed_ref_updates = 0; 4706 ret = btrfs_run_delayed_refs(trans, fs_info, 4707 updates * 2); 4708 if (ret && !err) 4709 err = ret; 4710 } 4711 } 4712 return err; 4713 } 4714 4715 /* 4716 * btrfs_truncate_block - read, zero a chunk and write a block 4717 * @inode - inode that we're zeroing 4718 * @from - the offset to start zeroing 4719 * @len - the length to zero, 0 to zero the entire range respective to the 4720 * offset 4721 * @front - zero up to the offset instead of from the offset on 4722 * 4723 * This will find the block for the "from" offset and cow the block and zero the 4724 * part we want to zero. This is used with truncate and hole punching. 4725 */ 4726 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4727 int front) 4728 { 4729 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4730 struct address_space *mapping = inode->i_mapping; 4731 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4732 struct btrfs_ordered_extent *ordered; 4733 struct extent_state *cached_state = NULL; 4734 struct extent_changeset *data_reserved = NULL; 4735 char *kaddr; 4736 u32 blocksize = fs_info->sectorsize; 4737 pgoff_t index = from >> PAGE_SHIFT; 4738 unsigned offset = from & (blocksize - 1); 4739 struct page *page; 4740 gfp_t mask = btrfs_alloc_write_mask(mapping); 4741 int ret = 0; 4742 u64 block_start; 4743 u64 block_end; 4744 4745 if ((offset & (blocksize - 1)) == 0 && 4746 (!len || ((len & (blocksize - 1)) == 0))) 4747 goto out; 4748 4749 block_start = round_down(from, blocksize); 4750 block_end = block_start + blocksize - 1; 4751 4752 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4753 block_start, blocksize); 4754 if (ret) 4755 goto out; 4756 4757 again: 4758 page = find_or_create_page(mapping, index, mask); 4759 if (!page) { 4760 btrfs_delalloc_release_space(inode, data_reserved, 4761 block_start, blocksize); 4762 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4763 ret = -ENOMEM; 4764 goto out; 4765 } 4766 4767 if (!PageUptodate(page)) { 4768 ret = btrfs_readpage(NULL, page); 4769 lock_page(page); 4770 if (page->mapping != mapping) { 4771 unlock_page(page); 4772 put_page(page); 4773 goto again; 4774 } 4775 if (!PageUptodate(page)) { 4776 ret = -EIO; 4777 goto out_unlock; 4778 } 4779 } 4780 wait_on_page_writeback(page); 4781 4782 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4783 set_page_extent_mapped(page); 4784 4785 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4786 if (ordered) { 4787 unlock_extent_cached(io_tree, block_start, block_end, 4788 &cached_state, GFP_NOFS); 4789 unlock_page(page); 4790 put_page(page); 4791 btrfs_start_ordered_extent(inode, ordered, 1); 4792 btrfs_put_ordered_extent(ordered); 4793 goto again; 4794 } 4795 4796 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4797 EXTENT_DIRTY | EXTENT_DELALLOC | 4798 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4799 0, 0, &cached_state, GFP_NOFS); 4800 4801 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4802 &cached_state, 0); 4803 if (ret) { 4804 unlock_extent_cached(io_tree, block_start, block_end, 4805 &cached_state, GFP_NOFS); 4806 goto out_unlock; 4807 } 4808 4809 if (offset != blocksize) { 4810 if (!len) 4811 len = blocksize - offset; 4812 kaddr = kmap(page); 4813 if (front) 4814 memset(kaddr + (block_start - page_offset(page)), 4815 0, offset); 4816 else 4817 memset(kaddr + (block_start - page_offset(page)) + offset, 4818 0, len); 4819 flush_dcache_page(page); 4820 kunmap(page); 4821 } 4822 ClearPageChecked(page); 4823 set_page_dirty(page); 4824 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4825 GFP_NOFS); 4826 4827 out_unlock: 4828 if (ret) 4829 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4830 blocksize); 4831 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4832 unlock_page(page); 4833 put_page(page); 4834 out: 4835 extent_changeset_free(data_reserved); 4836 return ret; 4837 } 4838 4839 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4840 u64 offset, u64 len) 4841 { 4842 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4843 struct btrfs_trans_handle *trans; 4844 int ret; 4845 4846 /* 4847 * Still need to make sure the inode looks like it's been updated so 4848 * that any holes get logged if we fsync. 4849 */ 4850 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4851 BTRFS_I(inode)->last_trans = fs_info->generation; 4852 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4853 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4854 return 0; 4855 } 4856 4857 /* 4858 * 1 - for the one we're dropping 4859 * 1 - for the one we're adding 4860 * 1 - for updating the inode. 4861 */ 4862 trans = btrfs_start_transaction(root, 3); 4863 if (IS_ERR(trans)) 4864 return PTR_ERR(trans); 4865 4866 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4867 if (ret) { 4868 btrfs_abort_transaction(trans, ret); 4869 btrfs_end_transaction(trans); 4870 return ret; 4871 } 4872 4873 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4874 offset, 0, 0, len, 0, len, 0, 0, 0); 4875 if (ret) 4876 btrfs_abort_transaction(trans, ret); 4877 else 4878 btrfs_update_inode(trans, root, inode); 4879 btrfs_end_transaction(trans); 4880 return ret; 4881 } 4882 4883 /* 4884 * This function puts in dummy file extents for the area we're creating a hole 4885 * for. So if we are truncating this file to a larger size we need to insert 4886 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4887 * the range between oldsize and size 4888 */ 4889 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4890 { 4891 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4892 struct btrfs_root *root = BTRFS_I(inode)->root; 4893 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4894 struct extent_map *em = NULL; 4895 struct extent_state *cached_state = NULL; 4896 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4897 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4898 u64 block_end = ALIGN(size, fs_info->sectorsize); 4899 u64 last_byte; 4900 u64 cur_offset; 4901 u64 hole_size; 4902 int err = 0; 4903 4904 /* 4905 * If our size started in the middle of a block we need to zero out the 4906 * rest of the block before we expand the i_size, otherwise we could 4907 * expose stale data. 4908 */ 4909 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4910 if (err) 4911 return err; 4912 4913 if (size <= hole_start) 4914 return 0; 4915 4916 while (1) { 4917 struct btrfs_ordered_extent *ordered; 4918 4919 lock_extent_bits(io_tree, hole_start, block_end - 1, 4920 &cached_state); 4921 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 4922 block_end - hole_start); 4923 if (!ordered) 4924 break; 4925 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4926 &cached_state, GFP_NOFS); 4927 btrfs_start_ordered_extent(inode, ordered, 1); 4928 btrfs_put_ordered_extent(ordered); 4929 } 4930 4931 cur_offset = hole_start; 4932 while (1) { 4933 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4934 block_end - cur_offset, 0); 4935 if (IS_ERR(em)) { 4936 err = PTR_ERR(em); 4937 em = NULL; 4938 break; 4939 } 4940 last_byte = min(extent_map_end(em), block_end); 4941 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4942 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4943 struct extent_map *hole_em; 4944 hole_size = last_byte - cur_offset; 4945 4946 err = maybe_insert_hole(root, inode, cur_offset, 4947 hole_size); 4948 if (err) 4949 break; 4950 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4951 cur_offset + hole_size - 1, 0); 4952 hole_em = alloc_extent_map(); 4953 if (!hole_em) { 4954 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4955 &BTRFS_I(inode)->runtime_flags); 4956 goto next; 4957 } 4958 hole_em->start = cur_offset; 4959 hole_em->len = hole_size; 4960 hole_em->orig_start = cur_offset; 4961 4962 hole_em->block_start = EXTENT_MAP_HOLE; 4963 hole_em->block_len = 0; 4964 hole_em->orig_block_len = 0; 4965 hole_em->ram_bytes = hole_size; 4966 hole_em->bdev = fs_info->fs_devices->latest_bdev; 4967 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4968 hole_em->generation = fs_info->generation; 4969 4970 while (1) { 4971 write_lock(&em_tree->lock); 4972 err = add_extent_mapping(em_tree, hole_em, 1); 4973 write_unlock(&em_tree->lock); 4974 if (err != -EEXIST) 4975 break; 4976 btrfs_drop_extent_cache(BTRFS_I(inode), 4977 cur_offset, 4978 cur_offset + 4979 hole_size - 1, 0); 4980 } 4981 free_extent_map(hole_em); 4982 } 4983 next: 4984 free_extent_map(em); 4985 em = NULL; 4986 cur_offset = last_byte; 4987 if (cur_offset >= block_end) 4988 break; 4989 } 4990 free_extent_map(em); 4991 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4992 GFP_NOFS); 4993 return err; 4994 } 4995 4996 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4997 { 4998 struct btrfs_root *root = BTRFS_I(inode)->root; 4999 struct btrfs_trans_handle *trans; 5000 loff_t oldsize = i_size_read(inode); 5001 loff_t newsize = attr->ia_size; 5002 int mask = attr->ia_valid; 5003 int ret; 5004 5005 /* 5006 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5007 * special case where we need to update the times despite not having 5008 * these flags set. For all other operations the VFS set these flags 5009 * explicitly if it wants a timestamp update. 5010 */ 5011 if (newsize != oldsize) { 5012 inode_inc_iversion(inode); 5013 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5014 inode->i_ctime = inode->i_mtime = 5015 current_time(inode); 5016 } 5017 5018 if (newsize > oldsize) { 5019 /* 5020 * Don't do an expanding truncate while snapshotting is ongoing. 5021 * This is to ensure the snapshot captures a fully consistent 5022 * state of this file - if the snapshot captures this expanding 5023 * truncation, it must capture all writes that happened before 5024 * this truncation. 5025 */ 5026 btrfs_wait_for_snapshot_creation(root); 5027 ret = btrfs_cont_expand(inode, oldsize, newsize); 5028 if (ret) { 5029 btrfs_end_write_no_snapshotting(root); 5030 return ret; 5031 } 5032 5033 trans = btrfs_start_transaction(root, 1); 5034 if (IS_ERR(trans)) { 5035 btrfs_end_write_no_snapshotting(root); 5036 return PTR_ERR(trans); 5037 } 5038 5039 i_size_write(inode, newsize); 5040 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5041 pagecache_isize_extended(inode, oldsize, newsize); 5042 ret = btrfs_update_inode(trans, root, inode); 5043 btrfs_end_write_no_snapshotting(root); 5044 btrfs_end_transaction(trans); 5045 } else { 5046 5047 /* 5048 * We're truncating a file that used to have good data down to 5049 * zero. Make sure it gets into the ordered flush list so that 5050 * any new writes get down to disk quickly. 5051 */ 5052 if (newsize == 0) 5053 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5054 &BTRFS_I(inode)->runtime_flags); 5055 5056 /* 5057 * 1 for the orphan item we're going to add 5058 * 1 for the orphan item deletion. 5059 */ 5060 trans = btrfs_start_transaction(root, 2); 5061 if (IS_ERR(trans)) 5062 return PTR_ERR(trans); 5063 5064 /* 5065 * We need to do this in case we fail at _any_ point during the 5066 * actual truncate. Once we do the truncate_setsize we could 5067 * invalidate pages which forces any outstanding ordered io to 5068 * be instantly completed which will give us extents that need 5069 * to be truncated. If we fail to get an orphan inode down we 5070 * could have left over extents that were never meant to live, 5071 * so we need to guarantee from this point on that everything 5072 * will be consistent. 5073 */ 5074 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 5075 btrfs_end_transaction(trans); 5076 if (ret) 5077 return ret; 5078 5079 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5080 truncate_setsize(inode, newsize); 5081 5082 /* Disable nonlocked read DIO to avoid the end less truncate */ 5083 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5084 inode_dio_wait(inode); 5085 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5086 5087 ret = btrfs_truncate(inode); 5088 if (ret && inode->i_nlink) { 5089 int err; 5090 5091 /* To get a stable disk_i_size */ 5092 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5093 if (err) { 5094 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5095 return err; 5096 } 5097 5098 /* 5099 * failed to truncate, disk_i_size is only adjusted down 5100 * as we remove extents, so it should represent the true 5101 * size of the inode, so reset the in memory size and 5102 * delete our orphan entry. 5103 */ 5104 trans = btrfs_join_transaction(root); 5105 if (IS_ERR(trans)) { 5106 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5107 return ret; 5108 } 5109 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5110 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 5111 if (err) 5112 btrfs_abort_transaction(trans, err); 5113 btrfs_end_transaction(trans); 5114 } 5115 } 5116 5117 return ret; 5118 } 5119 5120 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5121 { 5122 struct inode *inode = d_inode(dentry); 5123 struct btrfs_root *root = BTRFS_I(inode)->root; 5124 int err; 5125 5126 if (btrfs_root_readonly(root)) 5127 return -EROFS; 5128 5129 err = setattr_prepare(dentry, attr); 5130 if (err) 5131 return err; 5132 5133 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5134 err = btrfs_setsize(inode, attr); 5135 if (err) 5136 return err; 5137 } 5138 5139 if (attr->ia_valid) { 5140 setattr_copy(inode, attr); 5141 inode_inc_iversion(inode); 5142 err = btrfs_dirty_inode(inode); 5143 5144 if (!err && attr->ia_valid & ATTR_MODE) 5145 err = posix_acl_chmod(inode, inode->i_mode); 5146 } 5147 5148 return err; 5149 } 5150 5151 /* 5152 * While truncating the inode pages during eviction, we get the VFS calling 5153 * btrfs_invalidatepage() against each page of the inode. This is slow because 5154 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5155 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5156 * extent_state structures over and over, wasting lots of time. 5157 * 5158 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5159 * those expensive operations on a per page basis and do only the ordered io 5160 * finishing, while we release here the extent_map and extent_state structures, 5161 * without the excessive merging and splitting. 5162 */ 5163 static void evict_inode_truncate_pages(struct inode *inode) 5164 { 5165 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5166 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5167 struct rb_node *node; 5168 5169 ASSERT(inode->i_state & I_FREEING); 5170 truncate_inode_pages_final(&inode->i_data); 5171 5172 write_lock(&map_tree->lock); 5173 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5174 struct extent_map *em; 5175 5176 node = rb_first(&map_tree->map); 5177 em = rb_entry(node, struct extent_map, rb_node); 5178 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5179 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5180 remove_extent_mapping(map_tree, em); 5181 free_extent_map(em); 5182 if (need_resched()) { 5183 write_unlock(&map_tree->lock); 5184 cond_resched(); 5185 write_lock(&map_tree->lock); 5186 } 5187 } 5188 write_unlock(&map_tree->lock); 5189 5190 /* 5191 * Keep looping until we have no more ranges in the io tree. 5192 * We can have ongoing bios started by readpages (called from readahead) 5193 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5194 * still in progress (unlocked the pages in the bio but did not yet 5195 * unlocked the ranges in the io tree). Therefore this means some 5196 * ranges can still be locked and eviction started because before 5197 * submitting those bios, which are executed by a separate task (work 5198 * queue kthread), inode references (inode->i_count) were not taken 5199 * (which would be dropped in the end io callback of each bio). 5200 * Therefore here we effectively end up waiting for those bios and 5201 * anyone else holding locked ranges without having bumped the inode's 5202 * reference count - if we don't do it, when they access the inode's 5203 * io_tree to unlock a range it may be too late, leading to an 5204 * use-after-free issue. 5205 */ 5206 spin_lock(&io_tree->lock); 5207 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5208 struct extent_state *state; 5209 struct extent_state *cached_state = NULL; 5210 u64 start; 5211 u64 end; 5212 5213 node = rb_first(&io_tree->state); 5214 state = rb_entry(node, struct extent_state, rb_node); 5215 start = state->start; 5216 end = state->end; 5217 spin_unlock(&io_tree->lock); 5218 5219 lock_extent_bits(io_tree, start, end, &cached_state); 5220 5221 /* 5222 * If still has DELALLOC flag, the extent didn't reach disk, 5223 * and its reserved space won't be freed by delayed_ref. 5224 * So we need to free its reserved space here. 5225 * (Refer to comment in btrfs_invalidatepage, case 2) 5226 * 5227 * Note, end is the bytenr of last byte, so we need + 1 here. 5228 */ 5229 if (state->state & EXTENT_DELALLOC) 5230 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5231 5232 clear_extent_bit(io_tree, start, end, 5233 EXTENT_LOCKED | EXTENT_DIRTY | 5234 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5235 EXTENT_DEFRAG, 1, 1, 5236 &cached_state, GFP_NOFS); 5237 5238 cond_resched(); 5239 spin_lock(&io_tree->lock); 5240 } 5241 spin_unlock(&io_tree->lock); 5242 } 5243 5244 void btrfs_evict_inode(struct inode *inode) 5245 { 5246 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5247 struct btrfs_trans_handle *trans; 5248 struct btrfs_root *root = BTRFS_I(inode)->root; 5249 struct btrfs_block_rsv *rsv, *global_rsv; 5250 int steal_from_global = 0; 5251 u64 min_size; 5252 int ret; 5253 5254 trace_btrfs_inode_evict(inode); 5255 5256 if (!root) { 5257 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 5258 return; 5259 } 5260 5261 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5262 5263 evict_inode_truncate_pages(inode); 5264 5265 if (inode->i_nlink && 5266 ((btrfs_root_refs(&root->root_item) != 0 && 5267 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5268 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5269 goto no_delete; 5270 5271 if (is_bad_inode(inode)) { 5272 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5273 goto no_delete; 5274 } 5275 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5276 if (!special_file(inode->i_mode)) 5277 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5278 5279 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5280 5281 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 5282 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5283 &BTRFS_I(inode)->runtime_flags)); 5284 goto no_delete; 5285 } 5286 5287 if (inode->i_nlink > 0) { 5288 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5289 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5290 goto no_delete; 5291 } 5292 5293 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5294 if (ret) { 5295 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5296 goto no_delete; 5297 } 5298 5299 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5300 if (!rsv) { 5301 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5302 goto no_delete; 5303 } 5304 rsv->size = min_size; 5305 rsv->failfast = 1; 5306 global_rsv = &fs_info->global_block_rsv; 5307 5308 btrfs_i_size_write(BTRFS_I(inode), 0); 5309 5310 /* 5311 * This is a bit simpler than btrfs_truncate since we've already 5312 * reserved our space for our orphan item in the unlink, so we just 5313 * need to reserve some slack space in case we add bytes and update 5314 * inode item when doing the truncate. 5315 */ 5316 while (1) { 5317 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5318 BTRFS_RESERVE_FLUSH_LIMIT); 5319 5320 /* 5321 * Try and steal from the global reserve since we will 5322 * likely not use this space anyway, we want to try as 5323 * hard as possible to get this to work. 5324 */ 5325 if (ret) 5326 steal_from_global++; 5327 else 5328 steal_from_global = 0; 5329 ret = 0; 5330 5331 /* 5332 * steal_from_global == 0: we reserved stuff, hooray! 5333 * steal_from_global == 1: we didn't reserve stuff, boo! 5334 * steal_from_global == 2: we've committed, still not a lot of 5335 * room but maybe we'll have room in the global reserve this 5336 * time. 5337 * steal_from_global == 3: abandon all hope! 5338 */ 5339 if (steal_from_global > 2) { 5340 btrfs_warn(fs_info, 5341 "Could not get space for a delete, will truncate on mount %d", 5342 ret); 5343 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5344 btrfs_free_block_rsv(fs_info, rsv); 5345 goto no_delete; 5346 } 5347 5348 trans = btrfs_join_transaction(root); 5349 if (IS_ERR(trans)) { 5350 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5351 btrfs_free_block_rsv(fs_info, rsv); 5352 goto no_delete; 5353 } 5354 5355 /* 5356 * We can't just steal from the global reserve, we need to make 5357 * sure there is room to do it, if not we need to commit and try 5358 * again. 5359 */ 5360 if (steal_from_global) { 5361 if (!btrfs_check_space_for_delayed_refs(trans, fs_info)) 5362 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5363 min_size, 0); 5364 else 5365 ret = -ENOSPC; 5366 } 5367 5368 /* 5369 * Couldn't steal from the global reserve, we have too much 5370 * pending stuff built up, commit the transaction and try it 5371 * again. 5372 */ 5373 if (ret) { 5374 ret = btrfs_commit_transaction(trans); 5375 if (ret) { 5376 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5377 btrfs_free_block_rsv(fs_info, rsv); 5378 goto no_delete; 5379 } 5380 continue; 5381 } else { 5382 steal_from_global = 0; 5383 } 5384 5385 trans->block_rsv = rsv; 5386 5387 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5388 if (ret != -ENOSPC && ret != -EAGAIN) 5389 break; 5390 5391 trans->block_rsv = &fs_info->trans_block_rsv; 5392 btrfs_end_transaction(trans); 5393 trans = NULL; 5394 btrfs_btree_balance_dirty(fs_info); 5395 } 5396 5397 btrfs_free_block_rsv(fs_info, rsv); 5398 5399 /* 5400 * Errors here aren't a big deal, it just means we leave orphan items 5401 * in the tree. They will be cleaned up on the next mount. 5402 */ 5403 if (ret == 0) { 5404 trans->block_rsv = root->orphan_block_rsv; 5405 btrfs_orphan_del(trans, BTRFS_I(inode)); 5406 } else { 5407 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5408 } 5409 5410 trans->block_rsv = &fs_info->trans_block_rsv; 5411 if (!(root == fs_info->tree_root || 5412 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5413 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5414 5415 btrfs_end_transaction(trans); 5416 btrfs_btree_balance_dirty(fs_info); 5417 no_delete: 5418 btrfs_remove_delayed_node(BTRFS_I(inode)); 5419 clear_inode(inode); 5420 } 5421 5422 /* 5423 * this returns the key found in the dir entry in the location pointer. 5424 * If no dir entries were found, location->objectid is 0. 5425 */ 5426 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5427 struct btrfs_key *location) 5428 { 5429 const char *name = dentry->d_name.name; 5430 int namelen = dentry->d_name.len; 5431 struct btrfs_dir_item *di; 5432 struct btrfs_path *path; 5433 struct btrfs_root *root = BTRFS_I(dir)->root; 5434 int ret = 0; 5435 5436 path = btrfs_alloc_path(); 5437 if (!path) 5438 return -ENOMEM; 5439 5440 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5441 name, namelen, 0); 5442 if (IS_ERR(di)) 5443 ret = PTR_ERR(di); 5444 5445 if (IS_ERR_OR_NULL(di)) 5446 goto out_err; 5447 5448 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5449 if (location->type != BTRFS_INODE_ITEM_KEY && 5450 location->type != BTRFS_ROOT_ITEM_KEY) { 5451 btrfs_warn(root->fs_info, 5452 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5453 __func__, name, btrfs_ino(BTRFS_I(dir)), 5454 location->objectid, location->type, location->offset); 5455 goto out_err; 5456 } 5457 out: 5458 btrfs_free_path(path); 5459 return ret; 5460 out_err: 5461 location->objectid = 0; 5462 goto out; 5463 } 5464 5465 /* 5466 * when we hit a tree root in a directory, the btrfs part of the inode 5467 * needs to be changed to reflect the root directory of the tree root. This 5468 * is kind of like crossing a mount point. 5469 */ 5470 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5471 struct inode *dir, 5472 struct dentry *dentry, 5473 struct btrfs_key *location, 5474 struct btrfs_root **sub_root) 5475 { 5476 struct btrfs_path *path; 5477 struct btrfs_root *new_root; 5478 struct btrfs_root_ref *ref; 5479 struct extent_buffer *leaf; 5480 struct btrfs_key key; 5481 int ret; 5482 int err = 0; 5483 5484 path = btrfs_alloc_path(); 5485 if (!path) { 5486 err = -ENOMEM; 5487 goto out; 5488 } 5489 5490 err = -ENOENT; 5491 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5492 key.type = BTRFS_ROOT_REF_KEY; 5493 key.offset = location->objectid; 5494 5495 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5496 if (ret) { 5497 if (ret < 0) 5498 err = ret; 5499 goto out; 5500 } 5501 5502 leaf = path->nodes[0]; 5503 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5504 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5505 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5506 goto out; 5507 5508 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5509 (unsigned long)(ref + 1), 5510 dentry->d_name.len); 5511 if (ret) 5512 goto out; 5513 5514 btrfs_release_path(path); 5515 5516 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5517 if (IS_ERR(new_root)) { 5518 err = PTR_ERR(new_root); 5519 goto out; 5520 } 5521 5522 *sub_root = new_root; 5523 location->objectid = btrfs_root_dirid(&new_root->root_item); 5524 location->type = BTRFS_INODE_ITEM_KEY; 5525 location->offset = 0; 5526 err = 0; 5527 out: 5528 btrfs_free_path(path); 5529 return err; 5530 } 5531 5532 static void inode_tree_add(struct inode *inode) 5533 { 5534 struct btrfs_root *root = BTRFS_I(inode)->root; 5535 struct btrfs_inode *entry; 5536 struct rb_node **p; 5537 struct rb_node *parent; 5538 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5539 u64 ino = btrfs_ino(BTRFS_I(inode)); 5540 5541 if (inode_unhashed(inode)) 5542 return; 5543 parent = NULL; 5544 spin_lock(&root->inode_lock); 5545 p = &root->inode_tree.rb_node; 5546 while (*p) { 5547 parent = *p; 5548 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5549 5550 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5551 p = &parent->rb_left; 5552 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5553 p = &parent->rb_right; 5554 else { 5555 WARN_ON(!(entry->vfs_inode.i_state & 5556 (I_WILL_FREE | I_FREEING))); 5557 rb_replace_node(parent, new, &root->inode_tree); 5558 RB_CLEAR_NODE(parent); 5559 spin_unlock(&root->inode_lock); 5560 return; 5561 } 5562 } 5563 rb_link_node(new, parent, p); 5564 rb_insert_color(new, &root->inode_tree); 5565 spin_unlock(&root->inode_lock); 5566 } 5567 5568 static void inode_tree_del(struct inode *inode) 5569 { 5570 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5571 struct btrfs_root *root = BTRFS_I(inode)->root; 5572 int empty = 0; 5573 5574 spin_lock(&root->inode_lock); 5575 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5576 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5577 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5578 empty = RB_EMPTY_ROOT(&root->inode_tree); 5579 } 5580 spin_unlock(&root->inode_lock); 5581 5582 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5583 synchronize_srcu(&fs_info->subvol_srcu); 5584 spin_lock(&root->inode_lock); 5585 empty = RB_EMPTY_ROOT(&root->inode_tree); 5586 spin_unlock(&root->inode_lock); 5587 if (empty) 5588 btrfs_add_dead_root(root); 5589 } 5590 } 5591 5592 void btrfs_invalidate_inodes(struct btrfs_root *root) 5593 { 5594 struct btrfs_fs_info *fs_info = root->fs_info; 5595 struct rb_node *node; 5596 struct rb_node *prev; 5597 struct btrfs_inode *entry; 5598 struct inode *inode; 5599 u64 objectid = 0; 5600 5601 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 5602 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5603 5604 spin_lock(&root->inode_lock); 5605 again: 5606 node = root->inode_tree.rb_node; 5607 prev = NULL; 5608 while (node) { 5609 prev = node; 5610 entry = rb_entry(node, struct btrfs_inode, rb_node); 5611 5612 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5613 node = node->rb_left; 5614 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5615 node = node->rb_right; 5616 else 5617 break; 5618 } 5619 if (!node) { 5620 while (prev) { 5621 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5622 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) { 5623 node = prev; 5624 break; 5625 } 5626 prev = rb_next(prev); 5627 } 5628 } 5629 while (node) { 5630 entry = rb_entry(node, struct btrfs_inode, rb_node); 5631 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1; 5632 inode = igrab(&entry->vfs_inode); 5633 if (inode) { 5634 spin_unlock(&root->inode_lock); 5635 if (atomic_read(&inode->i_count) > 1) 5636 d_prune_aliases(inode); 5637 /* 5638 * btrfs_drop_inode will have it removed from 5639 * the inode cache when its usage count 5640 * hits zero. 5641 */ 5642 iput(inode); 5643 cond_resched(); 5644 spin_lock(&root->inode_lock); 5645 goto again; 5646 } 5647 5648 if (cond_resched_lock(&root->inode_lock)) 5649 goto again; 5650 5651 node = rb_next(node); 5652 } 5653 spin_unlock(&root->inode_lock); 5654 } 5655 5656 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5657 { 5658 struct btrfs_iget_args *args = p; 5659 inode->i_ino = args->location->objectid; 5660 memcpy(&BTRFS_I(inode)->location, args->location, 5661 sizeof(*args->location)); 5662 BTRFS_I(inode)->root = args->root; 5663 return 0; 5664 } 5665 5666 static int btrfs_find_actor(struct inode *inode, void *opaque) 5667 { 5668 struct btrfs_iget_args *args = opaque; 5669 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5670 args->root == BTRFS_I(inode)->root; 5671 } 5672 5673 static struct inode *btrfs_iget_locked(struct super_block *s, 5674 struct btrfs_key *location, 5675 struct btrfs_root *root) 5676 { 5677 struct inode *inode; 5678 struct btrfs_iget_args args; 5679 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5680 5681 args.location = location; 5682 args.root = root; 5683 5684 inode = iget5_locked(s, hashval, btrfs_find_actor, 5685 btrfs_init_locked_inode, 5686 (void *)&args); 5687 return inode; 5688 } 5689 5690 /* Get an inode object given its location and corresponding root. 5691 * Returns in *is_new if the inode was read from disk 5692 */ 5693 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5694 struct btrfs_root *root, int *new) 5695 { 5696 struct inode *inode; 5697 5698 inode = btrfs_iget_locked(s, location, root); 5699 if (!inode) 5700 return ERR_PTR(-ENOMEM); 5701 5702 if (inode->i_state & I_NEW) { 5703 int ret; 5704 5705 ret = btrfs_read_locked_inode(inode); 5706 if (!is_bad_inode(inode)) { 5707 inode_tree_add(inode); 5708 unlock_new_inode(inode); 5709 if (new) 5710 *new = 1; 5711 } else { 5712 unlock_new_inode(inode); 5713 iput(inode); 5714 ASSERT(ret < 0); 5715 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5716 } 5717 } 5718 5719 return inode; 5720 } 5721 5722 static struct inode *new_simple_dir(struct super_block *s, 5723 struct btrfs_key *key, 5724 struct btrfs_root *root) 5725 { 5726 struct inode *inode = new_inode(s); 5727 5728 if (!inode) 5729 return ERR_PTR(-ENOMEM); 5730 5731 BTRFS_I(inode)->root = root; 5732 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5733 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5734 5735 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5736 inode->i_op = &btrfs_dir_ro_inode_operations; 5737 inode->i_opflags &= ~IOP_XATTR; 5738 inode->i_fop = &simple_dir_operations; 5739 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5740 inode->i_mtime = current_time(inode); 5741 inode->i_atime = inode->i_mtime; 5742 inode->i_ctime = inode->i_mtime; 5743 BTRFS_I(inode)->i_otime = inode->i_mtime; 5744 5745 return inode; 5746 } 5747 5748 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5749 { 5750 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5751 struct inode *inode; 5752 struct btrfs_root *root = BTRFS_I(dir)->root; 5753 struct btrfs_root *sub_root = root; 5754 struct btrfs_key location; 5755 int index; 5756 int ret = 0; 5757 5758 if (dentry->d_name.len > BTRFS_NAME_LEN) 5759 return ERR_PTR(-ENAMETOOLONG); 5760 5761 ret = btrfs_inode_by_name(dir, dentry, &location); 5762 if (ret < 0) 5763 return ERR_PTR(ret); 5764 5765 if (location.objectid == 0) 5766 return ERR_PTR(-ENOENT); 5767 5768 if (location.type == BTRFS_INODE_ITEM_KEY) { 5769 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5770 return inode; 5771 } 5772 5773 index = srcu_read_lock(&fs_info->subvol_srcu); 5774 ret = fixup_tree_root_location(fs_info, dir, dentry, 5775 &location, &sub_root); 5776 if (ret < 0) { 5777 if (ret != -ENOENT) 5778 inode = ERR_PTR(ret); 5779 else 5780 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5781 } else { 5782 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5783 } 5784 srcu_read_unlock(&fs_info->subvol_srcu, index); 5785 5786 if (!IS_ERR(inode) && root != sub_root) { 5787 down_read(&fs_info->cleanup_work_sem); 5788 if (!sb_rdonly(inode->i_sb)) 5789 ret = btrfs_orphan_cleanup(sub_root); 5790 up_read(&fs_info->cleanup_work_sem); 5791 if (ret) { 5792 iput(inode); 5793 inode = ERR_PTR(ret); 5794 } 5795 } 5796 5797 return inode; 5798 } 5799 5800 static int btrfs_dentry_delete(const struct dentry *dentry) 5801 { 5802 struct btrfs_root *root; 5803 struct inode *inode = d_inode(dentry); 5804 5805 if (!inode && !IS_ROOT(dentry)) 5806 inode = d_inode(dentry->d_parent); 5807 5808 if (inode) { 5809 root = BTRFS_I(inode)->root; 5810 if (btrfs_root_refs(&root->root_item) == 0) 5811 return 1; 5812 5813 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5814 return 1; 5815 } 5816 return 0; 5817 } 5818 5819 static void btrfs_dentry_release(struct dentry *dentry) 5820 { 5821 kfree(dentry->d_fsdata); 5822 } 5823 5824 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5825 unsigned int flags) 5826 { 5827 struct inode *inode; 5828 5829 inode = btrfs_lookup_dentry(dir, dentry); 5830 if (IS_ERR(inode)) { 5831 if (PTR_ERR(inode) == -ENOENT) 5832 inode = NULL; 5833 else 5834 return ERR_CAST(inode); 5835 } 5836 5837 return d_splice_alias(inode, dentry); 5838 } 5839 5840 unsigned char btrfs_filetype_table[] = { 5841 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5842 }; 5843 5844 /* 5845 * All this infrastructure exists because dir_emit can fault, and we are holding 5846 * the tree lock when doing readdir. For now just allocate a buffer and copy 5847 * our information into that, and then dir_emit from the buffer. This is 5848 * similar to what NFS does, only we don't keep the buffer around in pagecache 5849 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5850 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5851 * tree lock. 5852 */ 5853 static int btrfs_opendir(struct inode *inode, struct file *file) 5854 { 5855 struct btrfs_file_private *private; 5856 5857 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5858 if (!private) 5859 return -ENOMEM; 5860 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5861 if (!private->filldir_buf) { 5862 kfree(private); 5863 return -ENOMEM; 5864 } 5865 file->private_data = private; 5866 return 0; 5867 } 5868 5869 struct dir_entry { 5870 u64 ino; 5871 u64 offset; 5872 unsigned type; 5873 int name_len; 5874 }; 5875 5876 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5877 { 5878 while (entries--) { 5879 struct dir_entry *entry = addr; 5880 char *name = (char *)(entry + 1); 5881 5882 ctx->pos = entry->offset; 5883 if (!dir_emit(ctx, name, entry->name_len, entry->ino, 5884 entry->type)) 5885 return 1; 5886 addr += sizeof(struct dir_entry) + entry->name_len; 5887 ctx->pos++; 5888 } 5889 return 0; 5890 } 5891 5892 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5893 { 5894 struct inode *inode = file_inode(file); 5895 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5896 struct btrfs_root *root = BTRFS_I(inode)->root; 5897 struct btrfs_file_private *private = file->private_data; 5898 struct btrfs_dir_item *di; 5899 struct btrfs_key key; 5900 struct btrfs_key found_key; 5901 struct btrfs_path *path; 5902 void *addr; 5903 struct list_head ins_list; 5904 struct list_head del_list; 5905 int ret; 5906 struct extent_buffer *leaf; 5907 int slot; 5908 char *name_ptr; 5909 int name_len; 5910 int entries = 0; 5911 int total_len = 0; 5912 bool put = false; 5913 struct btrfs_key location; 5914 5915 if (!dir_emit_dots(file, ctx)) 5916 return 0; 5917 5918 path = btrfs_alloc_path(); 5919 if (!path) 5920 return -ENOMEM; 5921 5922 addr = private->filldir_buf; 5923 path->reada = READA_FORWARD; 5924 5925 INIT_LIST_HEAD(&ins_list); 5926 INIT_LIST_HEAD(&del_list); 5927 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5928 5929 again: 5930 key.type = BTRFS_DIR_INDEX_KEY; 5931 key.offset = ctx->pos; 5932 key.objectid = btrfs_ino(BTRFS_I(inode)); 5933 5934 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5935 if (ret < 0) 5936 goto err; 5937 5938 while (1) { 5939 struct dir_entry *entry; 5940 5941 leaf = path->nodes[0]; 5942 slot = path->slots[0]; 5943 if (slot >= btrfs_header_nritems(leaf)) { 5944 ret = btrfs_next_leaf(root, path); 5945 if (ret < 0) 5946 goto err; 5947 else if (ret > 0) 5948 break; 5949 continue; 5950 } 5951 5952 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5953 5954 if (found_key.objectid != key.objectid) 5955 break; 5956 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5957 break; 5958 if (found_key.offset < ctx->pos) 5959 goto next; 5960 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5961 goto next; 5962 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5963 if (verify_dir_item(fs_info, leaf, slot, di)) 5964 goto next; 5965 5966 name_len = btrfs_dir_name_len(leaf, di); 5967 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5968 PAGE_SIZE) { 5969 btrfs_release_path(path); 5970 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5971 if (ret) 5972 goto nopos; 5973 addr = private->filldir_buf; 5974 entries = 0; 5975 total_len = 0; 5976 goto again; 5977 } 5978 5979 entry = addr; 5980 entry->name_len = name_len; 5981 name_ptr = (char *)(entry + 1); 5982 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5983 name_len); 5984 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5985 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5986 entry->ino = location.objectid; 5987 entry->offset = found_key.offset; 5988 entries++; 5989 addr += sizeof(struct dir_entry) + name_len; 5990 total_len += sizeof(struct dir_entry) + name_len; 5991 next: 5992 path->slots[0]++; 5993 } 5994 btrfs_release_path(path); 5995 5996 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5997 if (ret) 5998 goto nopos; 5999 6000 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6001 if (ret) 6002 goto nopos; 6003 6004 /* 6005 * Stop new entries from being returned after we return the last 6006 * entry. 6007 * 6008 * New directory entries are assigned a strictly increasing 6009 * offset. This means that new entries created during readdir 6010 * are *guaranteed* to be seen in the future by that readdir. 6011 * This has broken buggy programs which operate on names as 6012 * they're returned by readdir. Until we re-use freed offsets 6013 * we have this hack to stop new entries from being returned 6014 * under the assumption that they'll never reach this huge 6015 * offset. 6016 * 6017 * This is being careful not to overflow 32bit loff_t unless the 6018 * last entry requires it because doing so has broken 32bit apps 6019 * in the past. 6020 */ 6021 if (ctx->pos >= INT_MAX) 6022 ctx->pos = LLONG_MAX; 6023 else 6024 ctx->pos = INT_MAX; 6025 nopos: 6026 ret = 0; 6027 err: 6028 if (put) 6029 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6030 btrfs_free_path(path); 6031 return ret; 6032 } 6033 6034 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 6035 { 6036 struct btrfs_root *root = BTRFS_I(inode)->root; 6037 struct btrfs_trans_handle *trans; 6038 int ret = 0; 6039 bool nolock = false; 6040 6041 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6042 return 0; 6043 6044 if (btrfs_fs_closing(root->fs_info) && 6045 btrfs_is_free_space_inode(BTRFS_I(inode))) 6046 nolock = true; 6047 6048 if (wbc->sync_mode == WB_SYNC_ALL) { 6049 if (nolock) 6050 trans = btrfs_join_transaction_nolock(root); 6051 else 6052 trans = btrfs_join_transaction(root); 6053 if (IS_ERR(trans)) 6054 return PTR_ERR(trans); 6055 ret = btrfs_commit_transaction(trans); 6056 } 6057 return ret; 6058 } 6059 6060 /* 6061 * This is somewhat expensive, updating the tree every time the 6062 * inode changes. But, it is most likely to find the inode in cache. 6063 * FIXME, needs more benchmarking...there are no reasons other than performance 6064 * to keep or drop this code. 6065 */ 6066 static int btrfs_dirty_inode(struct inode *inode) 6067 { 6068 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6069 struct btrfs_root *root = BTRFS_I(inode)->root; 6070 struct btrfs_trans_handle *trans; 6071 int ret; 6072 6073 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6074 return 0; 6075 6076 trans = btrfs_join_transaction(root); 6077 if (IS_ERR(trans)) 6078 return PTR_ERR(trans); 6079 6080 ret = btrfs_update_inode(trans, root, inode); 6081 if (ret && ret == -ENOSPC) { 6082 /* whoops, lets try again with the full transaction */ 6083 btrfs_end_transaction(trans); 6084 trans = btrfs_start_transaction(root, 1); 6085 if (IS_ERR(trans)) 6086 return PTR_ERR(trans); 6087 6088 ret = btrfs_update_inode(trans, root, inode); 6089 } 6090 btrfs_end_transaction(trans); 6091 if (BTRFS_I(inode)->delayed_node) 6092 btrfs_balance_delayed_items(fs_info); 6093 6094 return ret; 6095 } 6096 6097 /* 6098 * This is a copy of file_update_time. We need this so we can return error on 6099 * ENOSPC for updating the inode in the case of file write and mmap writes. 6100 */ 6101 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6102 int flags) 6103 { 6104 struct btrfs_root *root = BTRFS_I(inode)->root; 6105 6106 if (btrfs_root_readonly(root)) 6107 return -EROFS; 6108 6109 if (flags & S_VERSION) 6110 inode_inc_iversion(inode); 6111 if (flags & S_CTIME) 6112 inode->i_ctime = *now; 6113 if (flags & S_MTIME) 6114 inode->i_mtime = *now; 6115 if (flags & S_ATIME) 6116 inode->i_atime = *now; 6117 return btrfs_dirty_inode(inode); 6118 } 6119 6120 /* 6121 * find the highest existing sequence number in a directory 6122 * and then set the in-memory index_cnt variable to reflect 6123 * free sequence numbers 6124 */ 6125 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6126 { 6127 struct btrfs_root *root = inode->root; 6128 struct btrfs_key key, found_key; 6129 struct btrfs_path *path; 6130 struct extent_buffer *leaf; 6131 int ret; 6132 6133 key.objectid = btrfs_ino(inode); 6134 key.type = BTRFS_DIR_INDEX_KEY; 6135 key.offset = (u64)-1; 6136 6137 path = btrfs_alloc_path(); 6138 if (!path) 6139 return -ENOMEM; 6140 6141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6142 if (ret < 0) 6143 goto out; 6144 /* FIXME: we should be able to handle this */ 6145 if (ret == 0) 6146 goto out; 6147 ret = 0; 6148 6149 /* 6150 * MAGIC NUMBER EXPLANATION: 6151 * since we search a directory based on f_pos we have to start at 2 6152 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6153 * else has to start at 2 6154 */ 6155 if (path->slots[0] == 0) { 6156 inode->index_cnt = 2; 6157 goto out; 6158 } 6159 6160 path->slots[0]--; 6161 6162 leaf = path->nodes[0]; 6163 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6164 6165 if (found_key.objectid != btrfs_ino(inode) || 6166 found_key.type != BTRFS_DIR_INDEX_KEY) { 6167 inode->index_cnt = 2; 6168 goto out; 6169 } 6170 6171 inode->index_cnt = found_key.offset + 1; 6172 out: 6173 btrfs_free_path(path); 6174 return ret; 6175 } 6176 6177 /* 6178 * helper to find a free sequence number in a given directory. This current 6179 * code is very simple, later versions will do smarter things in the btree 6180 */ 6181 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6182 { 6183 int ret = 0; 6184 6185 if (dir->index_cnt == (u64)-1) { 6186 ret = btrfs_inode_delayed_dir_index_count(dir); 6187 if (ret) { 6188 ret = btrfs_set_inode_index_count(dir); 6189 if (ret) 6190 return ret; 6191 } 6192 } 6193 6194 *index = dir->index_cnt; 6195 dir->index_cnt++; 6196 6197 return ret; 6198 } 6199 6200 static int btrfs_insert_inode_locked(struct inode *inode) 6201 { 6202 struct btrfs_iget_args args; 6203 args.location = &BTRFS_I(inode)->location; 6204 args.root = BTRFS_I(inode)->root; 6205 6206 return insert_inode_locked4(inode, 6207 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6208 btrfs_find_actor, &args); 6209 } 6210 6211 /* 6212 * Inherit flags from the parent inode. 6213 * 6214 * Currently only the compression flags and the cow flags are inherited. 6215 */ 6216 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6217 { 6218 unsigned int flags; 6219 6220 if (!dir) 6221 return; 6222 6223 flags = BTRFS_I(dir)->flags; 6224 6225 if (flags & BTRFS_INODE_NOCOMPRESS) { 6226 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6227 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6228 } else if (flags & BTRFS_INODE_COMPRESS) { 6229 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6230 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6231 } 6232 6233 if (flags & BTRFS_INODE_NODATACOW) { 6234 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6235 if (S_ISREG(inode->i_mode)) 6236 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6237 } 6238 6239 btrfs_update_iflags(inode); 6240 } 6241 6242 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6243 struct btrfs_root *root, 6244 struct inode *dir, 6245 const char *name, int name_len, 6246 u64 ref_objectid, u64 objectid, 6247 umode_t mode, u64 *index) 6248 { 6249 struct btrfs_fs_info *fs_info = root->fs_info; 6250 struct inode *inode; 6251 struct btrfs_inode_item *inode_item; 6252 struct btrfs_key *location; 6253 struct btrfs_path *path; 6254 struct btrfs_inode_ref *ref; 6255 struct btrfs_key key[2]; 6256 u32 sizes[2]; 6257 int nitems = name ? 2 : 1; 6258 unsigned long ptr; 6259 int ret; 6260 6261 path = btrfs_alloc_path(); 6262 if (!path) 6263 return ERR_PTR(-ENOMEM); 6264 6265 inode = new_inode(fs_info->sb); 6266 if (!inode) { 6267 btrfs_free_path(path); 6268 return ERR_PTR(-ENOMEM); 6269 } 6270 6271 /* 6272 * O_TMPFILE, set link count to 0, so that after this point, 6273 * we fill in an inode item with the correct link count. 6274 */ 6275 if (!name) 6276 set_nlink(inode, 0); 6277 6278 /* 6279 * we have to initialize this early, so we can reclaim the inode 6280 * number if we fail afterwards in this function. 6281 */ 6282 inode->i_ino = objectid; 6283 6284 if (dir && name) { 6285 trace_btrfs_inode_request(dir); 6286 6287 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6288 if (ret) { 6289 btrfs_free_path(path); 6290 iput(inode); 6291 return ERR_PTR(ret); 6292 } 6293 } else if (dir) { 6294 *index = 0; 6295 } 6296 /* 6297 * index_cnt is ignored for everything but a dir, 6298 * btrfs_get_inode_index_count has an explanation for the magic 6299 * number 6300 */ 6301 BTRFS_I(inode)->index_cnt = 2; 6302 BTRFS_I(inode)->dir_index = *index; 6303 BTRFS_I(inode)->root = root; 6304 BTRFS_I(inode)->generation = trans->transid; 6305 inode->i_generation = BTRFS_I(inode)->generation; 6306 6307 /* 6308 * We could have gotten an inode number from somebody who was fsynced 6309 * and then removed in this same transaction, so let's just set full 6310 * sync since it will be a full sync anyway and this will blow away the 6311 * old info in the log. 6312 */ 6313 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6314 6315 key[0].objectid = objectid; 6316 key[0].type = BTRFS_INODE_ITEM_KEY; 6317 key[0].offset = 0; 6318 6319 sizes[0] = sizeof(struct btrfs_inode_item); 6320 6321 if (name) { 6322 /* 6323 * Start new inodes with an inode_ref. This is slightly more 6324 * efficient for small numbers of hard links since they will 6325 * be packed into one item. Extended refs will kick in if we 6326 * add more hard links than can fit in the ref item. 6327 */ 6328 key[1].objectid = objectid; 6329 key[1].type = BTRFS_INODE_REF_KEY; 6330 key[1].offset = ref_objectid; 6331 6332 sizes[1] = name_len + sizeof(*ref); 6333 } 6334 6335 location = &BTRFS_I(inode)->location; 6336 location->objectid = objectid; 6337 location->offset = 0; 6338 location->type = BTRFS_INODE_ITEM_KEY; 6339 6340 ret = btrfs_insert_inode_locked(inode); 6341 if (ret < 0) 6342 goto fail; 6343 6344 path->leave_spinning = 1; 6345 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6346 if (ret != 0) 6347 goto fail_unlock; 6348 6349 inode_init_owner(inode, dir, mode); 6350 inode_set_bytes(inode, 0); 6351 6352 inode->i_mtime = current_time(inode); 6353 inode->i_atime = inode->i_mtime; 6354 inode->i_ctime = inode->i_mtime; 6355 BTRFS_I(inode)->i_otime = inode->i_mtime; 6356 6357 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6358 struct btrfs_inode_item); 6359 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6360 sizeof(*inode_item)); 6361 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6362 6363 if (name) { 6364 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6365 struct btrfs_inode_ref); 6366 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6367 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6368 ptr = (unsigned long)(ref + 1); 6369 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6370 } 6371 6372 btrfs_mark_buffer_dirty(path->nodes[0]); 6373 btrfs_free_path(path); 6374 6375 btrfs_inherit_iflags(inode, dir); 6376 6377 if (S_ISREG(mode)) { 6378 if (btrfs_test_opt(fs_info, NODATASUM)) 6379 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6380 if (btrfs_test_opt(fs_info, NODATACOW)) 6381 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6382 BTRFS_INODE_NODATASUM; 6383 } 6384 6385 inode_tree_add(inode); 6386 6387 trace_btrfs_inode_new(inode); 6388 btrfs_set_inode_last_trans(trans, inode); 6389 6390 btrfs_update_root_times(trans, root); 6391 6392 ret = btrfs_inode_inherit_props(trans, inode, dir); 6393 if (ret) 6394 btrfs_err(fs_info, 6395 "error inheriting props for ino %llu (root %llu): %d", 6396 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6397 6398 return inode; 6399 6400 fail_unlock: 6401 unlock_new_inode(inode); 6402 fail: 6403 if (dir && name) 6404 BTRFS_I(dir)->index_cnt--; 6405 btrfs_free_path(path); 6406 iput(inode); 6407 return ERR_PTR(ret); 6408 } 6409 6410 static inline u8 btrfs_inode_type(struct inode *inode) 6411 { 6412 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6413 } 6414 6415 /* 6416 * utility function to add 'inode' into 'parent_inode' with 6417 * a give name and a given sequence number. 6418 * if 'add_backref' is true, also insert a backref from the 6419 * inode to the parent directory. 6420 */ 6421 int btrfs_add_link(struct btrfs_trans_handle *trans, 6422 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6423 const char *name, int name_len, int add_backref, u64 index) 6424 { 6425 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6426 int ret = 0; 6427 struct btrfs_key key; 6428 struct btrfs_root *root = parent_inode->root; 6429 u64 ino = btrfs_ino(inode); 6430 u64 parent_ino = btrfs_ino(parent_inode); 6431 6432 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6433 memcpy(&key, &inode->root->root_key, sizeof(key)); 6434 } else { 6435 key.objectid = ino; 6436 key.type = BTRFS_INODE_ITEM_KEY; 6437 key.offset = 0; 6438 } 6439 6440 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6441 ret = btrfs_add_root_ref(trans, fs_info, key.objectid, 6442 root->root_key.objectid, parent_ino, 6443 index, name, name_len); 6444 } else if (add_backref) { 6445 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6446 parent_ino, index); 6447 } 6448 6449 /* Nothing to clean up yet */ 6450 if (ret) 6451 return ret; 6452 6453 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6454 parent_inode, &key, 6455 btrfs_inode_type(&inode->vfs_inode), index); 6456 if (ret == -EEXIST || ret == -EOVERFLOW) 6457 goto fail_dir_item; 6458 else if (ret) { 6459 btrfs_abort_transaction(trans, ret); 6460 return ret; 6461 } 6462 6463 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6464 name_len * 2); 6465 inode_inc_iversion(&parent_inode->vfs_inode); 6466 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6467 current_time(&parent_inode->vfs_inode); 6468 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6469 if (ret) 6470 btrfs_abort_transaction(trans, ret); 6471 return ret; 6472 6473 fail_dir_item: 6474 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6475 u64 local_index; 6476 int err; 6477 err = btrfs_del_root_ref(trans, fs_info, key.objectid, 6478 root->root_key.objectid, parent_ino, 6479 &local_index, name, name_len); 6480 6481 } else if (add_backref) { 6482 u64 local_index; 6483 int err; 6484 6485 err = btrfs_del_inode_ref(trans, root, name, name_len, 6486 ino, parent_ino, &local_index); 6487 } 6488 return ret; 6489 } 6490 6491 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6492 struct btrfs_inode *dir, struct dentry *dentry, 6493 struct btrfs_inode *inode, int backref, u64 index) 6494 { 6495 int err = btrfs_add_link(trans, dir, inode, 6496 dentry->d_name.name, dentry->d_name.len, 6497 backref, index); 6498 if (err > 0) 6499 err = -EEXIST; 6500 return err; 6501 } 6502 6503 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6504 umode_t mode, dev_t rdev) 6505 { 6506 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6507 struct btrfs_trans_handle *trans; 6508 struct btrfs_root *root = BTRFS_I(dir)->root; 6509 struct inode *inode = NULL; 6510 int err; 6511 int drop_inode = 0; 6512 u64 objectid; 6513 u64 index = 0; 6514 6515 /* 6516 * 2 for inode item and ref 6517 * 2 for dir items 6518 * 1 for xattr if selinux is on 6519 */ 6520 trans = btrfs_start_transaction(root, 5); 6521 if (IS_ERR(trans)) 6522 return PTR_ERR(trans); 6523 6524 err = btrfs_find_free_ino(root, &objectid); 6525 if (err) 6526 goto out_unlock; 6527 6528 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6529 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6530 mode, &index); 6531 if (IS_ERR(inode)) { 6532 err = PTR_ERR(inode); 6533 goto out_unlock; 6534 } 6535 6536 /* 6537 * If the active LSM wants to access the inode during 6538 * d_instantiate it needs these. Smack checks to see 6539 * if the filesystem supports xattrs by looking at the 6540 * ops vector. 6541 */ 6542 inode->i_op = &btrfs_special_inode_operations; 6543 init_special_inode(inode, inode->i_mode, rdev); 6544 6545 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6546 if (err) 6547 goto out_unlock_inode; 6548 6549 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6550 0, index); 6551 if (err) { 6552 goto out_unlock_inode; 6553 } else { 6554 btrfs_update_inode(trans, root, inode); 6555 unlock_new_inode(inode); 6556 d_instantiate(dentry, inode); 6557 } 6558 6559 out_unlock: 6560 btrfs_end_transaction(trans); 6561 btrfs_balance_delayed_items(fs_info); 6562 btrfs_btree_balance_dirty(fs_info); 6563 if (drop_inode) { 6564 inode_dec_link_count(inode); 6565 iput(inode); 6566 } 6567 return err; 6568 6569 out_unlock_inode: 6570 drop_inode = 1; 6571 unlock_new_inode(inode); 6572 goto out_unlock; 6573 6574 } 6575 6576 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6577 umode_t mode, bool excl) 6578 { 6579 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6580 struct btrfs_trans_handle *trans; 6581 struct btrfs_root *root = BTRFS_I(dir)->root; 6582 struct inode *inode = NULL; 6583 int drop_inode_on_err = 0; 6584 int err; 6585 u64 objectid; 6586 u64 index = 0; 6587 6588 /* 6589 * 2 for inode item and ref 6590 * 2 for dir items 6591 * 1 for xattr if selinux is on 6592 */ 6593 trans = btrfs_start_transaction(root, 5); 6594 if (IS_ERR(trans)) 6595 return PTR_ERR(trans); 6596 6597 err = btrfs_find_free_ino(root, &objectid); 6598 if (err) 6599 goto out_unlock; 6600 6601 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6602 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6603 mode, &index); 6604 if (IS_ERR(inode)) { 6605 err = PTR_ERR(inode); 6606 goto out_unlock; 6607 } 6608 drop_inode_on_err = 1; 6609 /* 6610 * If the active LSM wants to access the inode during 6611 * d_instantiate it needs these. Smack checks to see 6612 * if the filesystem supports xattrs by looking at the 6613 * ops vector. 6614 */ 6615 inode->i_fop = &btrfs_file_operations; 6616 inode->i_op = &btrfs_file_inode_operations; 6617 inode->i_mapping->a_ops = &btrfs_aops; 6618 6619 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6620 if (err) 6621 goto out_unlock_inode; 6622 6623 err = btrfs_update_inode(trans, root, inode); 6624 if (err) 6625 goto out_unlock_inode; 6626 6627 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6628 0, index); 6629 if (err) 6630 goto out_unlock_inode; 6631 6632 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6633 unlock_new_inode(inode); 6634 d_instantiate(dentry, inode); 6635 6636 out_unlock: 6637 btrfs_end_transaction(trans); 6638 if (err && drop_inode_on_err) { 6639 inode_dec_link_count(inode); 6640 iput(inode); 6641 } 6642 btrfs_balance_delayed_items(fs_info); 6643 btrfs_btree_balance_dirty(fs_info); 6644 return err; 6645 6646 out_unlock_inode: 6647 unlock_new_inode(inode); 6648 goto out_unlock; 6649 6650 } 6651 6652 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6653 struct dentry *dentry) 6654 { 6655 struct btrfs_trans_handle *trans = NULL; 6656 struct btrfs_root *root = BTRFS_I(dir)->root; 6657 struct inode *inode = d_inode(old_dentry); 6658 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6659 u64 index; 6660 int err; 6661 int drop_inode = 0; 6662 6663 /* do not allow sys_link's with other subvols of the same device */ 6664 if (root->objectid != BTRFS_I(inode)->root->objectid) 6665 return -EXDEV; 6666 6667 if (inode->i_nlink >= BTRFS_LINK_MAX) 6668 return -EMLINK; 6669 6670 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6671 if (err) 6672 goto fail; 6673 6674 /* 6675 * 2 items for inode and inode ref 6676 * 2 items for dir items 6677 * 1 item for parent inode 6678 */ 6679 trans = btrfs_start_transaction(root, 5); 6680 if (IS_ERR(trans)) { 6681 err = PTR_ERR(trans); 6682 trans = NULL; 6683 goto fail; 6684 } 6685 6686 /* There are several dir indexes for this inode, clear the cache. */ 6687 BTRFS_I(inode)->dir_index = 0ULL; 6688 inc_nlink(inode); 6689 inode_inc_iversion(inode); 6690 inode->i_ctime = current_time(inode); 6691 ihold(inode); 6692 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6693 6694 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6695 1, index); 6696 6697 if (err) { 6698 drop_inode = 1; 6699 } else { 6700 struct dentry *parent = dentry->d_parent; 6701 err = btrfs_update_inode(trans, root, inode); 6702 if (err) 6703 goto fail; 6704 if (inode->i_nlink == 1) { 6705 /* 6706 * If new hard link count is 1, it's a file created 6707 * with open(2) O_TMPFILE flag. 6708 */ 6709 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6710 if (err) 6711 goto fail; 6712 } 6713 d_instantiate(dentry, inode); 6714 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6715 } 6716 6717 btrfs_balance_delayed_items(fs_info); 6718 fail: 6719 if (trans) 6720 btrfs_end_transaction(trans); 6721 if (drop_inode) { 6722 inode_dec_link_count(inode); 6723 iput(inode); 6724 } 6725 btrfs_btree_balance_dirty(fs_info); 6726 return err; 6727 } 6728 6729 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6730 { 6731 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6732 struct inode *inode = NULL; 6733 struct btrfs_trans_handle *trans; 6734 struct btrfs_root *root = BTRFS_I(dir)->root; 6735 int err = 0; 6736 int drop_on_err = 0; 6737 u64 objectid = 0; 6738 u64 index = 0; 6739 6740 /* 6741 * 2 items for inode and ref 6742 * 2 items for dir items 6743 * 1 for xattr if selinux is on 6744 */ 6745 trans = btrfs_start_transaction(root, 5); 6746 if (IS_ERR(trans)) 6747 return PTR_ERR(trans); 6748 6749 err = btrfs_find_free_ino(root, &objectid); 6750 if (err) 6751 goto out_fail; 6752 6753 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6754 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6755 S_IFDIR | mode, &index); 6756 if (IS_ERR(inode)) { 6757 err = PTR_ERR(inode); 6758 goto out_fail; 6759 } 6760 6761 drop_on_err = 1; 6762 /* these must be set before we unlock the inode */ 6763 inode->i_op = &btrfs_dir_inode_operations; 6764 inode->i_fop = &btrfs_dir_file_operations; 6765 6766 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6767 if (err) 6768 goto out_fail_inode; 6769 6770 btrfs_i_size_write(BTRFS_I(inode), 0); 6771 err = btrfs_update_inode(trans, root, inode); 6772 if (err) 6773 goto out_fail_inode; 6774 6775 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6776 dentry->d_name.name, 6777 dentry->d_name.len, 0, index); 6778 if (err) 6779 goto out_fail_inode; 6780 6781 d_instantiate(dentry, inode); 6782 /* 6783 * mkdir is special. We're unlocking after we call d_instantiate 6784 * to avoid a race with nfsd calling d_instantiate. 6785 */ 6786 unlock_new_inode(inode); 6787 drop_on_err = 0; 6788 6789 out_fail: 6790 btrfs_end_transaction(trans); 6791 if (drop_on_err) { 6792 inode_dec_link_count(inode); 6793 iput(inode); 6794 } 6795 btrfs_balance_delayed_items(fs_info); 6796 btrfs_btree_balance_dirty(fs_info); 6797 return err; 6798 6799 out_fail_inode: 6800 unlock_new_inode(inode); 6801 goto out_fail; 6802 } 6803 6804 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6805 static struct extent_map *next_extent_map(struct extent_map *em) 6806 { 6807 struct rb_node *next; 6808 6809 next = rb_next(&em->rb_node); 6810 if (!next) 6811 return NULL; 6812 return container_of(next, struct extent_map, rb_node); 6813 } 6814 6815 static struct extent_map *prev_extent_map(struct extent_map *em) 6816 { 6817 struct rb_node *prev; 6818 6819 prev = rb_prev(&em->rb_node); 6820 if (!prev) 6821 return NULL; 6822 return container_of(prev, struct extent_map, rb_node); 6823 } 6824 6825 /* helper for btfs_get_extent. Given an existing extent in the tree, 6826 * the existing extent is the nearest extent to map_start, 6827 * and an extent that you want to insert, deal with overlap and insert 6828 * the best fitted new extent into the tree. 6829 */ 6830 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6831 struct extent_map *existing, 6832 struct extent_map *em, 6833 u64 map_start) 6834 { 6835 struct extent_map *prev; 6836 struct extent_map *next; 6837 u64 start; 6838 u64 end; 6839 u64 start_diff; 6840 6841 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6842 6843 if (existing->start > map_start) { 6844 next = existing; 6845 prev = prev_extent_map(next); 6846 } else { 6847 prev = existing; 6848 next = next_extent_map(prev); 6849 } 6850 6851 start = prev ? extent_map_end(prev) : em->start; 6852 start = max_t(u64, start, em->start); 6853 end = next ? next->start : extent_map_end(em); 6854 end = min_t(u64, end, extent_map_end(em)); 6855 start_diff = start - em->start; 6856 em->start = start; 6857 em->len = end - start; 6858 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6859 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6860 em->block_start += start_diff; 6861 em->block_len -= start_diff; 6862 } 6863 return add_extent_mapping(em_tree, em, 0); 6864 } 6865 6866 static noinline int uncompress_inline(struct btrfs_path *path, 6867 struct page *page, 6868 size_t pg_offset, u64 extent_offset, 6869 struct btrfs_file_extent_item *item) 6870 { 6871 int ret; 6872 struct extent_buffer *leaf = path->nodes[0]; 6873 char *tmp; 6874 size_t max_size; 6875 unsigned long inline_size; 6876 unsigned long ptr; 6877 int compress_type; 6878 6879 WARN_ON(pg_offset != 0); 6880 compress_type = btrfs_file_extent_compression(leaf, item); 6881 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6882 inline_size = btrfs_file_extent_inline_item_len(leaf, 6883 btrfs_item_nr(path->slots[0])); 6884 tmp = kmalloc(inline_size, GFP_NOFS); 6885 if (!tmp) 6886 return -ENOMEM; 6887 ptr = btrfs_file_extent_inline_start(item); 6888 6889 read_extent_buffer(leaf, tmp, ptr, inline_size); 6890 6891 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6892 ret = btrfs_decompress(compress_type, tmp, page, 6893 extent_offset, inline_size, max_size); 6894 6895 /* 6896 * decompression code contains a memset to fill in any space between the end 6897 * of the uncompressed data and the end of max_size in case the decompressed 6898 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6899 * the end of an inline extent and the beginning of the next block, so we 6900 * cover that region here. 6901 */ 6902 6903 if (max_size + pg_offset < PAGE_SIZE) { 6904 char *map = kmap(page); 6905 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6906 kunmap(page); 6907 } 6908 kfree(tmp); 6909 return ret; 6910 } 6911 6912 /* 6913 * a bit scary, this does extent mapping from logical file offset to the disk. 6914 * the ugly parts come from merging extents from the disk with the in-ram 6915 * representation. This gets more complex because of the data=ordered code, 6916 * where the in-ram extents might be locked pending data=ordered completion. 6917 * 6918 * This also copies inline extents directly into the page. 6919 */ 6920 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6921 struct page *page, 6922 size_t pg_offset, u64 start, u64 len, 6923 int create) 6924 { 6925 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6926 int ret; 6927 int err = 0; 6928 u64 extent_start = 0; 6929 u64 extent_end = 0; 6930 u64 objectid = btrfs_ino(inode); 6931 u32 found_type; 6932 struct btrfs_path *path = NULL; 6933 struct btrfs_root *root = inode->root; 6934 struct btrfs_file_extent_item *item; 6935 struct extent_buffer *leaf; 6936 struct btrfs_key found_key; 6937 struct extent_map *em = NULL; 6938 struct extent_map_tree *em_tree = &inode->extent_tree; 6939 struct extent_io_tree *io_tree = &inode->io_tree; 6940 struct btrfs_trans_handle *trans = NULL; 6941 const bool new_inline = !page || create; 6942 6943 again: 6944 read_lock(&em_tree->lock); 6945 em = lookup_extent_mapping(em_tree, start, len); 6946 if (em) 6947 em->bdev = fs_info->fs_devices->latest_bdev; 6948 read_unlock(&em_tree->lock); 6949 6950 if (em) { 6951 if (em->start > start || em->start + em->len <= start) 6952 free_extent_map(em); 6953 else if (em->block_start == EXTENT_MAP_INLINE && page) 6954 free_extent_map(em); 6955 else 6956 goto out; 6957 } 6958 em = alloc_extent_map(); 6959 if (!em) { 6960 err = -ENOMEM; 6961 goto out; 6962 } 6963 em->bdev = fs_info->fs_devices->latest_bdev; 6964 em->start = EXTENT_MAP_HOLE; 6965 em->orig_start = EXTENT_MAP_HOLE; 6966 em->len = (u64)-1; 6967 em->block_len = (u64)-1; 6968 6969 if (!path) { 6970 path = btrfs_alloc_path(); 6971 if (!path) { 6972 err = -ENOMEM; 6973 goto out; 6974 } 6975 /* 6976 * Chances are we'll be called again, so go ahead and do 6977 * readahead 6978 */ 6979 path->reada = READA_FORWARD; 6980 } 6981 6982 ret = btrfs_lookup_file_extent(trans, root, path, 6983 objectid, start, trans != NULL); 6984 if (ret < 0) { 6985 err = ret; 6986 goto out; 6987 } 6988 6989 if (ret != 0) { 6990 if (path->slots[0] == 0) 6991 goto not_found; 6992 path->slots[0]--; 6993 } 6994 6995 leaf = path->nodes[0]; 6996 item = btrfs_item_ptr(leaf, path->slots[0], 6997 struct btrfs_file_extent_item); 6998 /* are we inside the extent that was found? */ 6999 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7000 found_type = found_key.type; 7001 if (found_key.objectid != objectid || 7002 found_type != BTRFS_EXTENT_DATA_KEY) { 7003 /* 7004 * If we backup past the first extent we want to move forward 7005 * and see if there is an extent in front of us, otherwise we'll 7006 * say there is a hole for our whole search range which can 7007 * cause problems. 7008 */ 7009 extent_end = start; 7010 goto next; 7011 } 7012 7013 found_type = btrfs_file_extent_type(leaf, item); 7014 extent_start = found_key.offset; 7015 if (found_type == BTRFS_FILE_EXTENT_REG || 7016 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7017 extent_end = extent_start + 7018 btrfs_file_extent_num_bytes(leaf, item); 7019 7020 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7021 extent_start); 7022 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7023 size_t size; 7024 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7025 extent_end = ALIGN(extent_start + size, 7026 fs_info->sectorsize); 7027 7028 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7029 path->slots[0], 7030 extent_start); 7031 } 7032 next: 7033 if (start >= extent_end) { 7034 path->slots[0]++; 7035 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7036 ret = btrfs_next_leaf(root, path); 7037 if (ret < 0) { 7038 err = ret; 7039 goto out; 7040 } 7041 if (ret > 0) 7042 goto not_found; 7043 leaf = path->nodes[0]; 7044 } 7045 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7046 if (found_key.objectid != objectid || 7047 found_key.type != BTRFS_EXTENT_DATA_KEY) 7048 goto not_found; 7049 if (start + len <= found_key.offset) 7050 goto not_found; 7051 if (start > found_key.offset) 7052 goto next; 7053 em->start = start; 7054 em->orig_start = start; 7055 em->len = found_key.offset - start; 7056 goto not_found_em; 7057 } 7058 7059 btrfs_extent_item_to_extent_map(inode, path, item, 7060 new_inline, em); 7061 7062 if (found_type == BTRFS_FILE_EXTENT_REG || 7063 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7064 goto insert; 7065 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7066 unsigned long ptr; 7067 char *map; 7068 size_t size; 7069 size_t extent_offset; 7070 size_t copy_size; 7071 7072 if (new_inline) 7073 goto out; 7074 7075 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7076 extent_offset = page_offset(page) + pg_offset - extent_start; 7077 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7078 size - extent_offset); 7079 em->start = extent_start + extent_offset; 7080 em->len = ALIGN(copy_size, fs_info->sectorsize); 7081 em->orig_block_len = em->len; 7082 em->orig_start = em->start; 7083 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7084 if (create == 0 && !PageUptodate(page)) { 7085 if (btrfs_file_extent_compression(leaf, item) != 7086 BTRFS_COMPRESS_NONE) { 7087 ret = uncompress_inline(path, page, pg_offset, 7088 extent_offset, item); 7089 if (ret) { 7090 err = ret; 7091 goto out; 7092 } 7093 } else { 7094 map = kmap(page); 7095 read_extent_buffer(leaf, map + pg_offset, ptr, 7096 copy_size); 7097 if (pg_offset + copy_size < PAGE_SIZE) { 7098 memset(map + pg_offset + copy_size, 0, 7099 PAGE_SIZE - pg_offset - 7100 copy_size); 7101 } 7102 kunmap(page); 7103 } 7104 flush_dcache_page(page); 7105 } else if (create && PageUptodate(page)) { 7106 BUG(); 7107 if (!trans) { 7108 kunmap(page); 7109 free_extent_map(em); 7110 em = NULL; 7111 7112 btrfs_release_path(path); 7113 trans = btrfs_join_transaction(root); 7114 7115 if (IS_ERR(trans)) 7116 return ERR_CAST(trans); 7117 goto again; 7118 } 7119 map = kmap(page); 7120 write_extent_buffer(leaf, map + pg_offset, ptr, 7121 copy_size); 7122 kunmap(page); 7123 btrfs_mark_buffer_dirty(leaf); 7124 } 7125 set_extent_uptodate(io_tree, em->start, 7126 extent_map_end(em) - 1, NULL, GFP_NOFS); 7127 goto insert; 7128 } 7129 not_found: 7130 em->start = start; 7131 em->orig_start = start; 7132 em->len = len; 7133 not_found_em: 7134 em->block_start = EXTENT_MAP_HOLE; 7135 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 7136 insert: 7137 btrfs_release_path(path); 7138 if (em->start > start || extent_map_end(em) <= start) { 7139 btrfs_err(fs_info, 7140 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7141 em->start, em->len, start, len); 7142 err = -EIO; 7143 goto out; 7144 } 7145 7146 err = 0; 7147 write_lock(&em_tree->lock); 7148 ret = add_extent_mapping(em_tree, em, 0); 7149 /* it is possible that someone inserted the extent into the tree 7150 * while we had the lock dropped. It is also possible that 7151 * an overlapping map exists in the tree 7152 */ 7153 if (ret == -EEXIST) { 7154 struct extent_map *existing; 7155 7156 ret = 0; 7157 7158 existing = search_extent_mapping(em_tree, start, len); 7159 /* 7160 * existing will always be non-NULL, since there must be 7161 * extent causing the -EEXIST. 7162 */ 7163 if (existing->start == em->start && 7164 extent_map_end(existing) >= extent_map_end(em) && 7165 em->block_start == existing->block_start) { 7166 /* 7167 * The existing extent map already encompasses the 7168 * entire extent map we tried to add. 7169 */ 7170 free_extent_map(em); 7171 em = existing; 7172 err = 0; 7173 7174 } else if (start >= extent_map_end(existing) || 7175 start <= existing->start) { 7176 /* 7177 * The existing extent map is the one nearest to 7178 * the [start, start + len) range which overlaps 7179 */ 7180 err = merge_extent_mapping(em_tree, existing, 7181 em, start); 7182 free_extent_map(existing); 7183 if (err) { 7184 free_extent_map(em); 7185 em = NULL; 7186 } 7187 } else { 7188 free_extent_map(em); 7189 em = existing; 7190 err = 0; 7191 } 7192 } 7193 write_unlock(&em_tree->lock); 7194 out: 7195 7196 trace_btrfs_get_extent(root, inode, em); 7197 7198 btrfs_free_path(path); 7199 if (trans) { 7200 ret = btrfs_end_transaction(trans); 7201 if (!err) 7202 err = ret; 7203 } 7204 if (err) { 7205 free_extent_map(em); 7206 return ERR_PTR(err); 7207 } 7208 BUG_ON(!em); /* Error is always set */ 7209 return em; 7210 } 7211 7212 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7213 struct page *page, 7214 size_t pg_offset, u64 start, u64 len, 7215 int create) 7216 { 7217 struct extent_map *em; 7218 struct extent_map *hole_em = NULL; 7219 u64 range_start = start; 7220 u64 end; 7221 u64 found; 7222 u64 found_end; 7223 int err = 0; 7224 7225 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7226 if (IS_ERR(em)) 7227 return em; 7228 /* 7229 * If our em maps to: 7230 * - a hole or 7231 * - a pre-alloc extent, 7232 * there might actually be delalloc bytes behind it. 7233 */ 7234 if (em->block_start != EXTENT_MAP_HOLE && 7235 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7236 return em; 7237 else 7238 hole_em = em; 7239 7240 /* check to see if we've wrapped (len == -1 or similar) */ 7241 end = start + len; 7242 if (end < start) 7243 end = (u64)-1; 7244 else 7245 end -= 1; 7246 7247 em = NULL; 7248 7249 /* ok, we didn't find anything, lets look for delalloc */ 7250 found = count_range_bits(&inode->io_tree, &range_start, 7251 end, len, EXTENT_DELALLOC, 1); 7252 found_end = range_start + found; 7253 if (found_end < range_start) 7254 found_end = (u64)-1; 7255 7256 /* 7257 * we didn't find anything useful, return 7258 * the original results from get_extent() 7259 */ 7260 if (range_start > end || found_end <= start) { 7261 em = hole_em; 7262 hole_em = NULL; 7263 goto out; 7264 } 7265 7266 /* adjust the range_start to make sure it doesn't 7267 * go backwards from the start they passed in 7268 */ 7269 range_start = max(start, range_start); 7270 found = found_end - range_start; 7271 7272 if (found > 0) { 7273 u64 hole_start = start; 7274 u64 hole_len = len; 7275 7276 em = alloc_extent_map(); 7277 if (!em) { 7278 err = -ENOMEM; 7279 goto out; 7280 } 7281 /* 7282 * when btrfs_get_extent can't find anything it 7283 * returns one huge hole 7284 * 7285 * make sure what it found really fits our range, and 7286 * adjust to make sure it is based on the start from 7287 * the caller 7288 */ 7289 if (hole_em) { 7290 u64 calc_end = extent_map_end(hole_em); 7291 7292 if (calc_end <= start || (hole_em->start > end)) { 7293 free_extent_map(hole_em); 7294 hole_em = NULL; 7295 } else { 7296 hole_start = max(hole_em->start, start); 7297 hole_len = calc_end - hole_start; 7298 } 7299 } 7300 em->bdev = NULL; 7301 if (hole_em && range_start > hole_start) { 7302 /* our hole starts before our delalloc, so we 7303 * have to return just the parts of the hole 7304 * that go until the delalloc starts 7305 */ 7306 em->len = min(hole_len, 7307 range_start - hole_start); 7308 em->start = hole_start; 7309 em->orig_start = hole_start; 7310 /* 7311 * don't adjust block start at all, 7312 * it is fixed at EXTENT_MAP_HOLE 7313 */ 7314 em->block_start = hole_em->block_start; 7315 em->block_len = hole_len; 7316 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7317 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7318 } else { 7319 em->start = range_start; 7320 em->len = found; 7321 em->orig_start = range_start; 7322 em->block_start = EXTENT_MAP_DELALLOC; 7323 em->block_len = found; 7324 } 7325 } else if (hole_em) { 7326 return hole_em; 7327 } 7328 out: 7329 7330 free_extent_map(hole_em); 7331 if (err) { 7332 free_extent_map(em); 7333 return ERR_PTR(err); 7334 } 7335 return em; 7336 } 7337 7338 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7339 const u64 start, 7340 const u64 len, 7341 const u64 orig_start, 7342 const u64 block_start, 7343 const u64 block_len, 7344 const u64 orig_block_len, 7345 const u64 ram_bytes, 7346 const int type) 7347 { 7348 struct extent_map *em = NULL; 7349 int ret; 7350 7351 if (type != BTRFS_ORDERED_NOCOW) { 7352 em = create_io_em(inode, start, len, orig_start, 7353 block_start, block_len, orig_block_len, 7354 ram_bytes, 7355 BTRFS_COMPRESS_NONE, /* compress_type */ 7356 type); 7357 if (IS_ERR(em)) 7358 goto out; 7359 } 7360 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7361 len, block_len, type); 7362 if (ret) { 7363 if (em) { 7364 free_extent_map(em); 7365 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7366 start + len - 1, 0); 7367 } 7368 em = ERR_PTR(ret); 7369 } 7370 out: 7371 7372 return em; 7373 } 7374 7375 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7376 u64 start, u64 len) 7377 { 7378 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7379 struct btrfs_root *root = BTRFS_I(inode)->root; 7380 struct extent_map *em; 7381 struct btrfs_key ins; 7382 u64 alloc_hint; 7383 int ret; 7384 7385 alloc_hint = get_extent_allocation_hint(inode, start, len); 7386 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7387 0, alloc_hint, &ins, 1, 1); 7388 if (ret) 7389 return ERR_PTR(ret); 7390 7391 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7392 ins.objectid, ins.offset, ins.offset, 7393 ins.offset, BTRFS_ORDERED_REGULAR); 7394 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7395 if (IS_ERR(em)) 7396 btrfs_free_reserved_extent(fs_info, ins.objectid, 7397 ins.offset, 1); 7398 7399 return em; 7400 } 7401 7402 /* 7403 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7404 * block must be cow'd 7405 */ 7406 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7407 u64 *orig_start, u64 *orig_block_len, 7408 u64 *ram_bytes) 7409 { 7410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7411 struct btrfs_path *path; 7412 int ret; 7413 struct extent_buffer *leaf; 7414 struct btrfs_root *root = BTRFS_I(inode)->root; 7415 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7416 struct btrfs_file_extent_item *fi; 7417 struct btrfs_key key; 7418 u64 disk_bytenr; 7419 u64 backref_offset; 7420 u64 extent_end; 7421 u64 num_bytes; 7422 int slot; 7423 int found_type; 7424 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7425 7426 path = btrfs_alloc_path(); 7427 if (!path) 7428 return -ENOMEM; 7429 7430 ret = btrfs_lookup_file_extent(NULL, root, path, 7431 btrfs_ino(BTRFS_I(inode)), offset, 0); 7432 if (ret < 0) 7433 goto out; 7434 7435 slot = path->slots[0]; 7436 if (ret == 1) { 7437 if (slot == 0) { 7438 /* can't find the item, must cow */ 7439 ret = 0; 7440 goto out; 7441 } 7442 slot--; 7443 } 7444 ret = 0; 7445 leaf = path->nodes[0]; 7446 btrfs_item_key_to_cpu(leaf, &key, slot); 7447 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7448 key.type != BTRFS_EXTENT_DATA_KEY) { 7449 /* not our file or wrong item type, must cow */ 7450 goto out; 7451 } 7452 7453 if (key.offset > offset) { 7454 /* Wrong offset, must cow */ 7455 goto out; 7456 } 7457 7458 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7459 found_type = btrfs_file_extent_type(leaf, fi); 7460 if (found_type != BTRFS_FILE_EXTENT_REG && 7461 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7462 /* not a regular extent, must cow */ 7463 goto out; 7464 } 7465 7466 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7467 goto out; 7468 7469 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7470 if (extent_end <= offset) 7471 goto out; 7472 7473 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7474 if (disk_bytenr == 0) 7475 goto out; 7476 7477 if (btrfs_file_extent_compression(leaf, fi) || 7478 btrfs_file_extent_encryption(leaf, fi) || 7479 btrfs_file_extent_other_encoding(leaf, fi)) 7480 goto out; 7481 7482 backref_offset = btrfs_file_extent_offset(leaf, fi); 7483 7484 if (orig_start) { 7485 *orig_start = key.offset - backref_offset; 7486 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7487 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7488 } 7489 7490 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7491 goto out; 7492 7493 num_bytes = min(offset + *len, extent_end) - offset; 7494 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7495 u64 range_end; 7496 7497 range_end = round_up(offset + num_bytes, 7498 root->fs_info->sectorsize) - 1; 7499 ret = test_range_bit(io_tree, offset, range_end, 7500 EXTENT_DELALLOC, 0, NULL); 7501 if (ret) { 7502 ret = -EAGAIN; 7503 goto out; 7504 } 7505 } 7506 7507 btrfs_release_path(path); 7508 7509 /* 7510 * look for other files referencing this extent, if we 7511 * find any we must cow 7512 */ 7513 7514 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7515 key.offset - backref_offset, disk_bytenr); 7516 if (ret) { 7517 ret = 0; 7518 goto out; 7519 } 7520 7521 /* 7522 * adjust disk_bytenr and num_bytes to cover just the bytes 7523 * in this extent we are about to write. If there 7524 * are any csums in that range we have to cow in order 7525 * to keep the csums correct 7526 */ 7527 disk_bytenr += backref_offset; 7528 disk_bytenr += offset - key.offset; 7529 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7530 goto out; 7531 /* 7532 * all of the above have passed, it is safe to overwrite this extent 7533 * without cow 7534 */ 7535 *len = num_bytes; 7536 ret = 1; 7537 out: 7538 btrfs_free_path(path); 7539 return ret; 7540 } 7541 7542 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7543 { 7544 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7545 bool found = false; 7546 void **pagep = NULL; 7547 struct page *page = NULL; 7548 unsigned long start_idx; 7549 unsigned long end_idx; 7550 7551 start_idx = start >> PAGE_SHIFT; 7552 7553 /* 7554 * end is the last byte in the last page. end == start is legal 7555 */ 7556 end_idx = end >> PAGE_SHIFT; 7557 7558 rcu_read_lock(); 7559 7560 /* Most of the code in this while loop is lifted from 7561 * find_get_page. It's been modified to begin searching from a 7562 * page and return just the first page found in that range. If the 7563 * found idx is less than or equal to the end idx then we know that 7564 * a page exists. If no pages are found or if those pages are 7565 * outside of the range then we're fine (yay!) */ 7566 while (page == NULL && 7567 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7568 page = radix_tree_deref_slot(pagep); 7569 if (unlikely(!page)) 7570 break; 7571 7572 if (radix_tree_exception(page)) { 7573 if (radix_tree_deref_retry(page)) { 7574 page = NULL; 7575 continue; 7576 } 7577 /* 7578 * Otherwise, shmem/tmpfs must be storing a swap entry 7579 * here as an exceptional entry: so return it without 7580 * attempting to raise page count. 7581 */ 7582 page = NULL; 7583 break; /* TODO: Is this relevant for this use case? */ 7584 } 7585 7586 if (!page_cache_get_speculative(page)) { 7587 page = NULL; 7588 continue; 7589 } 7590 7591 /* 7592 * Has the page moved? 7593 * This is part of the lockless pagecache protocol. See 7594 * include/linux/pagemap.h for details. 7595 */ 7596 if (unlikely(page != *pagep)) { 7597 put_page(page); 7598 page = NULL; 7599 } 7600 } 7601 7602 if (page) { 7603 if (page->index <= end_idx) 7604 found = true; 7605 put_page(page); 7606 } 7607 7608 rcu_read_unlock(); 7609 return found; 7610 } 7611 7612 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7613 struct extent_state **cached_state, int writing) 7614 { 7615 struct btrfs_ordered_extent *ordered; 7616 int ret = 0; 7617 7618 while (1) { 7619 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7620 cached_state); 7621 /* 7622 * We're concerned with the entire range that we're going to be 7623 * doing DIO to, so we need to make sure there's no ordered 7624 * extents in this range. 7625 */ 7626 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7627 lockend - lockstart + 1); 7628 7629 /* 7630 * We need to make sure there are no buffered pages in this 7631 * range either, we could have raced between the invalidate in 7632 * generic_file_direct_write and locking the extent. The 7633 * invalidate needs to happen so that reads after a write do not 7634 * get stale data. 7635 */ 7636 if (!ordered && 7637 (!writing || 7638 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7639 break; 7640 7641 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7642 cached_state, GFP_NOFS); 7643 7644 if (ordered) { 7645 /* 7646 * If we are doing a DIO read and the ordered extent we 7647 * found is for a buffered write, we can not wait for it 7648 * to complete and retry, because if we do so we can 7649 * deadlock with concurrent buffered writes on page 7650 * locks. This happens only if our DIO read covers more 7651 * than one extent map, if at this point has already 7652 * created an ordered extent for a previous extent map 7653 * and locked its range in the inode's io tree, and a 7654 * concurrent write against that previous extent map's 7655 * range and this range started (we unlock the ranges 7656 * in the io tree only when the bios complete and 7657 * buffered writes always lock pages before attempting 7658 * to lock range in the io tree). 7659 */ 7660 if (writing || 7661 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7662 btrfs_start_ordered_extent(inode, ordered, 1); 7663 else 7664 ret = -ENOTBLK; 7665 btrfs_put_ordered_extent(ordered); 7666 } else { 7667 /* 7668 * We could trigger writeback for this range (and wait 7669 * for it to complete) and then invalidate the pages for 7670 * this range (through invalidate_inode_pages2_range()), 7671 * but that can lead us to a deadlock with a concurrent 7672 * call to readpages() (a buffered read or a defrag call 7673 * triggered a readahead) on a page lock due to an 7674 * ordered dio extent we created before but did not have 7675 * yet a corresponding bio submitted (whence it can not 7676 * complete), which makes readpages() wait for that 7677 * ordered extent to complete while holding a lock on 7678 * that page. 7679 */ 7680 ret = -ENOTBLK; 7681 } 7682 7683 if (ret) 7684 break; 7685 7686 cond_resched(); 7687 } 7688 7689 return ret; 7690 } 7691 7692 /* The callers of this must take lock_extent() */ 7693 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7694 u64 orig_start, u64 block_start, 7695 u64 block_len, u64 orig_block_len, 7696 u64 ram_bytes, int compress_type, 7697 int type) 7698 { 7699 struct extent_map_tree *em_tree; 7700 struct extent_map *em; 7701 struct btrfs_root *root = BTRFS_I(inode)->root; 7702 int ret; 7703 7704 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7705 type == BTRFS_ORDERED_COMPRESSED || 7706 type == BTRFS_ORDERED_NOCOW || 7707 type == BTRFS_ORDERED_REGULAR); 7708 7709 em_tree = &BTRFS_I(inode)->extent_tree; 7710 em = alloc_extent_map(); 7711 if (!em) 7712 return ERR_PTR(-ENOMEM); 7713 7714 em->start = start; 7715 em->orig_start = orig_start; 7716 em->len = len; 7717 em->block_len = block_len; 7718 em->block_start = block_start; 7719 em->bdev = root->fs_info->fs_devices->latest_bdev; 7720 em->orig_block_len = orig_block_len; 7721 em->ram_bytes = ram_bytes; 7722 em->generation = -1; 7723 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7724 if (type == BTRFS_ORDERED_PREALLOC) { 7725 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7726 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7727 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7728 em->compress_type = compress_type; 7729 } 7730 7731 do { 7732 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7733 em->start + em->len - 1, 0); 7734 write_lock(&em_tree->lock); 7735 ret = add_extent_mapping(em_tree, em, 1); 7736 write_unlock(&em_tree->lock); 7737 /* 7738 * The caller has taken lock_extent(), who could race with us 7739 * to add em? 7740 */ 7741 } while (ret == -EEXIST); 7742 7743 if (ret) { 7744 free_extent_map(em); 7745 return ERR_PTR(ret); 7746 } 7747 7748 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7749 return em; 7750 } 7751 7752 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7753 struct buffer_head *bh_result, int create) 7754 { 7755 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7756 struct extent_map *em; 7757 struct extent_state *cached_state = NULL; 7758 struct btrfs_dio_data *dio_data = NULL; 7759 u64 start = iblock << inode->i_blkbits; 7760 u64 lockstart, lockend; 7761 u64 len = bh_result->b_size; 7762 int unlock_bits = EXTENT_LOCKED; 7763 int ret = 0; 7764 7765 if (create) 7766 unlock_bits |= EXTENT_DIRTY; 7767 else 7768 len = min_t(u64, len, fs_info->sectorsize); 7769 7770 lockstart = start; 7771 lockend = start + len - 1; 7772 7773 if (current->journal_info) { 7774 /* 7775 * Need to pull our outstanding extents and set journal_info to NULL so 7776 * that anything that needs to check if there's a transaction doesn't get 7777 * confused. 7778 */ 7779 dio_data = current->journal_info; 7780 current->journal_info = NULL; 7781 } 7782 7783 /* 7784 * If this errors out it's because we couldn't invalidate pagecache for 7785 * this range and we need to fallback to buffered. 7786 */ 7787 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7788 create)) { 7789 ret = -ENOTBLK; 7790 goto err; 7791 } 7792 7793 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7794 if (IS_ERR(em)) { 7795 ret = PTR_ERR(em); 7796 goto unlock_err; 7797 } 7798 7799 /* 7800 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7801 * io. INLINE is special, and we could probably kludge it in here, but 7802 * it's still buffered so for safety lets just fall back to the generic 7803 * buffered path. 7804 * 7805 * For COMPRESSED we _have_ to read the entire extent in so we can 7806 * decompress it, so there will be buffering required no matter what we 7807 * do, so go ahead and fallback to buffered. 7808 * 7809 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7810 * to buffered IO. Don't blame me, this is the price we pay for using 7811 * the generic code. 7812 */ 7813 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7814 em->block_start == EXTENT_MAP_INLINE) { 7815 free_extent_map(em); 7816 ret = -ENOTBLK; 7817 goto unlock_err; 7818 } 7819 7820 /* Just a good old fashioned hole, return */ 7821 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7822 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7823 free_extent_map(em); 7824 goto unlock_err; 7825 } 7826 7827 /* 7828 * We don't allocate a new extent in the following cases 7829 * 7830 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7831 * existing extent. 7832 * 2) The extent is marked as PREALLOC. We're good to go here and can 7833 * just use the extent. 7834 * 7835 */ 7836 if (!create) { 7837 len = min(len, em->len - (start - em->start)); 7838 lockstart = start + len; 7839 goto unlock; 7840 } 7841 7842 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7843 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7844 em->block_start != EXTENT_MAP_HOLE)) { 7845 int type; 7846 u64 block_start, orig_start, orig_block_len, ram_bytes; 7847 7848 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7849 type = BTRFS_ORDERED_PREALLOC; 7850 else 7851 type = BTRFS_ORDERED_NOCOW; 7852 len = min(len, em->len - (start - em->start)); 7853 block_start = em->block_start + (start - em->start); 7854 7855 if (can_nocow_extent(inode, start, &len, &orig_start, 7856 &orig_block_len, &ram_bytes) == 1 && 7857 btrfs_inc_nocow_writers(fs_info, block_start)) { 7858 struct extent_map *em2; 7859 7860 em2 = btrfs_create_dio_extent(inode, start, len, 7861 orig_start, block_start, 7862 len, orig_block_len, 7863 ram_bytes, type); 7864 btrfs_dec_nocow_writers(fs_info, block_start); 7865 if (type == BTRFS_ORDERED_PREALLOC) { 7866 free_extent_map(em); 7867 em = em2; 7868 } 7869 if (em2 && IS_ERR(em2)) { 7870 ret = PTR_ERR(em2); 7871 goto unlock_err; 7872 } 7873 /* 7874 * For inode marked NODATACOW or extent marked PREALLOC, 7875 * use the existing or preallocated extent, so does not 7876 * need to adjust btrfs_space_info's bytes_may_use. 7877 */ 7878 btrfs_free_reserved_data_space_noquota(inode, 7879 start, len); 7880 goto unlock; 7881 } 7882 } 7883 7884 /* 7885 * this will cow the extent, reset the len in case we changed 7886 * it above 7887 */ 7888 len = bh_result->b_size; 7889 free_extent_map(em); 7890 em = btrfs_new_extent_direct(inode, start, len); 7891 if (IS_ERR(em)) { 7892 ret = PTR_ERR(em); 7893 goto unlock_err; 7894 } 7895 len = min(len, em->len - (start - em->start)); 7896 unlock: 7897 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7898 inode->i_blkbits; 7899 bh_result->b_size = len; 7900 bh_result->b_bdev = em->bdev; 7901 set_buffer_mapped(bh_result); 7902 if (create) { 7903 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7904 set_buffer_new(bh_result); 7905 7906 /* 7907 * Need to update the i_size under the extent lock so buffered 7908 * readers will get the updated i_size when we unlock. 7909 */ 7910 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7911 i_size_write(inode, start + len); 7912 7913 WARN_ON(dio_data->reserve < len); 7914 dio_data->reserve -= len; 7915 dio_data->unsubmitted_oe_range_end = start + len; 7916 current->journal_info = dio_data; 7917 } 7918 7919 /* 7920 * In the case of write we need to clear and unlock the entire range, 7921 * in the case of read we need to unlock only the end area that we 7922 * aren't using if there is any left over space. 7923 */ 7924 if (lockstart < lockend) { 7925 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7926 lockend, unlock_bits, 1, 0, 7927 &cached_state, GFP_NOFS); 7928 } else { 7929 free_extent_state(cached_state); 7930 } 7931 7932 free_extent_map(em); 7933 7934 return 0; 7935 7936 unlock_err: 7937 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7938 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7939 err: 7940 if (dio_data) 7941 current->journal_info = dio_data; 7942 return ret; 7943 } 7944 7945 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7946 struct bio *bio, 7947 int mirror_num) 7948 { 7949 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7950 blk_status_t ret; 7951 7952 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7953 7954 bio_get(bio); 7955 7956 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7957 if (ret) 7958 goto err; 7959 7960 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7961 err: 7962 bio_put(bio); 7963 return ret; 7964 } 7965 7966 static int btrfs_check_dio_repairable(struct inode *inode, 7967 struct bio *failed_bio, 7968 struct io_failure_record *failrec, 7969 int failed_mirror) 7970 { 7971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7972 int num_copies; 7973 7974 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7975 if (num_copies == 1) { 7976 /* 7977 * we only have a single copy of the data, so don't bother with 7978 * all the retry and error correction code that follows. no 7979 * matter what the error is, it is very likely to persist. 7980 */ 7981 btrfs_debug(fs_info, 7982 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7983 num_copies, failrec->this_mirror, failed_mirror); 7984 return 0; 7985 } 7986 7987 failrec->failed_mirror = failed_mirror; 7988 failrec->this_mirror++; 7989 if (failrec->this_mirror == failed_mirror) 7990 failrec->this_mirror++; 7991 7992 if (failrec->this_mirror > num_copies) { 7993 btrfs_debug(fs_info, 7994 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7995 num_copies, failrec->this_mirror, failed_mirror); 7996 return 0; 7997 } 7998 7999 return 1; 8000 } 8001 8002 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 8003 struct page *page, unsigned int pgoff, 8004 u64 start, u64 end, int failed_mirror, 8005 bio_end_io_t *repair_endio, void *repair_arg) 8006 { 8007 struct io_failure_record *failrec; 8008 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8009 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 8010 struct bio *bio; 8011 int isector; 8012 unsigned int read_mode = 0; 8013 int segs; 8014 int ret; 8015 blk_status_t status; 8016 8017 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 8018 8019 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 8020 if (ret) 8021 return errno_to_blk_status(ret); 8022 8023 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 8024 failed_mirror); 8025 if (!ret) { 8026 free_io_failure(failure_tree, io_tree, failrec); 8027 return BLK_STS_IOERR; 8028 } 8029 8030 segs = bio_segments(failed_bio); 8031 if (segs > 1 || 8032 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode))) 8033 read_mode |= REQ_FAILFAST_DEV; 8034 8035 isector = start - btrfs_io_bio(failed_bio)->logical; 8036 isector >>= inode->i_sb->s_blocksize_bits; 8037 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 8038 pgoff, isector, repair_endio, repair_arg); 8039 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 8040 8041 btrfs_debug(BTRFS_I(inode)->root->fs_info, 8042 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 8043 read_mode, failrec->this_mirror, failrec->in_validation); 8044 8045 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 8046 if (status) { 8047 free_io_failure(failure_tree, io_tree, failrec); 8048 bio_put(bio); 8049 } 8050 8051 return status; 8052 } 8053 8054 struct btrfs_retry_complete { 8055 struct completion done; 8056 struct inode *inode; 8057 u64 start; 8058 int uptodate; 8059 }; 8060 8061 static void btrfs_retry_endio_nocsum(struct bio *bio) 8062 { 8063 struct btrfs_retry_complete *done = bio->bi_private; 8064 struct inode *inode = done->inode; 8065 struct bio_vec *bvec; 8066 struct extent_io_tree *io_tree, *failure_tree; 8067 int i; 8068 8069 if (bio->bi_status) 8070 goto end; 8071 8072 ASSERT(bio->bi_vcnt == 1); 8073 io_tree = &BTRFS_I(inode)->io_tree; 8074 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8075 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode)); 8076 8077 done->uptodate = 1; 8078 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8079 bio_for_each_segment_all(bvec, bio, i) 8080 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 8081 io_tree, done->start, bvec->bv_page, 8082 btrfs_ino(BTRFS_I(inode)), 0); 8083 end: 8084 complete(&done->done); 8085 bio_put(bio); 8086 } 8087 8088 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 8089 struct btrfs_io_bio *io_bio) 8090 { 8091 struct btrfs_fs_info *fs_info; 8092 struct bio_vec bvec; 8093 struct bvec_iter iter; 8094 struct btrfs_retry_complete done; 8095 u64 start; 8096 unsigned int pgoff; 8097 u32 sectorsize; 8098 int nr_sectors; 8099 blk_status_t ret; 8100 blk_status_t err = BLK_STS_OK; 8101 8102 fs_info = BTRFS_I(inode)->root->fs_info; 8103 sectorsize = fs_info->sectorsize; 8104 8105 start = io_bio->logical; 8106 done.inode = inode; 8107 io_bio->bio.bi_iter = io_bio->iter; 8108 8109 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8110 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8111 pgoff = bvec.bv_offset; 8112 8113 next_block_or_try_again: 8114 done.uptodate = 0; 8115 done.start = start; 8116 init_completion(&done.done); 8117 8118 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8119 pgoff, start, start + sectorsize - 1, 8120 io_bio->mirror_num, 8121 btrfs_retry_endio_nocsum, &done); 8122 if (ret) { 8123 err = ret; 8124 goto next; 8125 } 8126 8127 wait_for_completion_io(&done.done); 8128 8129 if (!done.uptodate) { 8130 /* We might have another mirror, so try again */ 8131 goto next_block_or_try_again; 8132 } 8133 8134 next: 8135 start += sectorsize; 8136 8137 nr_sectors--; 8138 if (nr_sectors) { 8139 pgoff += sectorsize; 8140 ASSERT(pgoff < PAGE_SIZE); 8141 goto next_block_or_try_again; 8142 } 8143 } 8144 8145 return err; 8146 } 8147 8148 static void btrfs_retry_endio(struct bio *bio) 8149 { 8150 struct btrfs_retry_complete *done = bio->bi_private; 8151 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8152 struct extent_io_tree *io_tree, *failure_tree; 8153 struct inode *inode = done->inode; 8154 struct bio_vec *bvec; 8155 int uptodate; 8156 int ret; 8157 int i; 8158 8159 if (bio->bi_status) 8160 goto end; 8161 8162 uptodate = 1; 8163 8164 ASSERT(bio->bi_vcnt == 1); 8165 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode)); 8166 8167 io_tree = &BTRFS_I(inode)->io_tree; 8168 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8169 8170 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8171 bio_for_each_segment_all(bvec, bio, i) { 8172 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8173 bvec->bv_offset, done->start, 8174 bvec->bv_len); 8175 if (!ret) 8176 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8177 failure_tree, io_tree, done->start, 8178 bvec->bv_page, 8179 btrfs_ino(BTRFS_I(inode)), 8180 bvec->bv_offset); 8181 else 8182 uptodate = 0; 8183 } 8184 8185 done->uptodate = uptodate; 8186 end: 8187 complete(&done->done); 8188 bio_put(bio); 8189 } 8190 8191 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8192 struct btrfs_io_bio *io_bio, blk_status_t err) 8193 { 8194 struct btrfs_fs_info *fs_info; 8195 struct bio_vec bvec; 8196 struct bvec_iter iter; 8197 struct btrfs_retry_complete done; 8198 u64 start; 8199 u64 offset = 0; 8200 u32 sectorsize; 8201 int nr_sectors; 8202 unsigned int pgoff; 8203 int csum_pos; 8204 bool uptodate = (err == 0); 8205 int ret; 8206 blk_status_t status; 8207 8208 fs_info = BTRFS_I(inode)->root->fs_info; 8209 sectorsize = fs_info->sectorsize; 8210 8211 err = BLK_STS_OK; 8212 start = io_bio->logical; 8213 done.inode = inode; 8214 io_bio->bio.bi_iter = io_bio->iter; 8215 8216 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8217 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8218 8219 pgoff = bvec.bv_offset; 8220 next_block: 8221 if (uptodate) { 8222 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8223 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8224 bvec.bv_page, pgoff, start, sectorsize); 8225 if (likely(!ret)) 8226 goto next; 8227 } 8228 try_again: 8229 done.uptodate = 0; 8230 done.start = start; 8231 init_completion(&done.done); 8232 8233 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8234 pgoff, start, start + sectorsize - 1, 8235 io_bio->mirror_num, btrfs_retry_endio, 8236 &done); 8237 if (status) { 8238 err = status; 8239 goto next; 8240 } 8241 8242 wait_for_completion_io(&done.done); 8243 8244 if (!done.uptodate) { 8245 /* We might have another mirror, so try again */ 8246 goto try_again; 8247 } 8248 next: 8249 offset += sectorsize; 8250 start += sectorsize; 8251 8252 ASSERT(nr_sectors); 8253 8254 nr_sectors--; 8255 if (nr_sectors) { 8256 pgoff += sectorsize; 8257 ASSERT(pgoff < PAGE_SIZE); 8258 goto next_block; 8259 } 8260 } 8261 8262 return err; 8263 } 8264 8265 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8266 struct btrfs_io_bio *io_bio, blk_status_t err) 8267 { 8268 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8269 8270 if (skip_csum) { 8271 if (unlikely(err)) 8272 return __btrfs_correct_data_nocsum(inode, io_bio); 8273 else 8274 return BLK_STS_OK; 8275 } else { 8276 return __btrfs_subio_endio_read(inode, io_bio, err); 8277 } 8278 } 8279 8280 static void btrfs_endio_direct_read(struct bio *bio) 8281 { 8282 struct btrfs_dio_private *dip = bio->bi_private; 8283 struct inode *inode = dip->inode; 8284 struct bio *dio_bio; 8285 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8286 blk_status_t err = bio->bi_status; 8287 8288 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8289 err = btrfs_subio_endio_read(inode, io_bio, err); 8290 8291 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8292 dip->logical_offset + dip->bytes - 1); 8293 dio_bio = dip->dio_bio; 8294 8295 kfree(dip); 8296 8297 dio_bio->bi_status = err; 8298 dio_end_io(dio_bio); 8299 8300 if (io_bio->end_io) 8301 io_bio->end_io(io_bio, blk_status_to_errno(err)); 8302 bio_put(bio); 8303 } 8304 8305 static void __endio_write_update_ordered(struct inode *inode, 8306 const u64 offset, const u64 bytes, 8307 const bool uptodate) 8308 { 8309 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8310 struct btrfs_ordered_extent *ordered = NULL; 8311 struct btrfs_workqueue *wq; 8312 btrfs_work_func_t func; 8313 u64 ordered_offset = offset; 8314 u64 ordered_bytes = bytes; 8315 u64 last_offset; 8316 int ret; 8317 8318 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8319 wq = fs_info->endio_freespace_worker; 8320 func = btrfs_freespace_write_helper; 8321 } else { 8322 wq = fs_info->endio_write_workers; 8323 func = btrfs_endio_write_helper; 8324 } 8325 8326 again: 8327 last_offset = ordered_offset; 8328 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8329 &ordered_offset, 8330 ordered_bytes, 8331 uptodate); 8332 if (!ret) 8333 goto out_test; 8334 8335 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL); 8336 btrfs_queue_work(wq, &ordered->work); 8337 out_test: 8338 /* 8339 * If btrfs_dec_test_ordered_pending does not find any ordered extent 8340 * in the range, we can exit. 8341 */ 8342 if (ordered_offset == last_offset) 8343 return; 8344 /* 8345 * our bio might span multiple ordered extents. If we haven't 8346 * completed the accounting for the whole dio, go back and try again 8347 */ 8348 if (ordered_offset < offset + bytes) { 8349 ordered_bytes = offset + bytes - ordered_offset; 8350 ordered = NULL; 8351 goto again; 8352 } 8353 } 8354 8355 static void btrfs_endio_direct_write(struct bio *bio) 8356 { 8357 struct btrfs_dio_private *dip = bio->bi_private; 8358 struct bio *dio_bio = dip->dio_bio; 8359 8360 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8361 dip->bytes, !bio->bi_status); 8362 8363 kfree(dip); 8364 8365 dio_bio->bi_status = bio->bi_status; 8366 dio_end_io(dio_bio); 8367 bio_put(bio); 8368 } 8369 8370 static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data, 8371 struct bio *bio, int mirror_num, 8372 unsigned long bio_flags, u64 offset) 8373 { 8374 struct inode *inode = private_data; 8375 blk_status_t ret; 8376 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8377 BUG_ON(ret); /* -ENOMEM */ 8378 return 0; 8379 } 8380 8381 static void btrfs_end_dio_bio(struct bio *bio) 8382 { 8383 struct btrfs_dio_private *dip = bio->bi_private; 8384 blk_status_t err = bio->bi_status; 8385 8386 if (err) 8387 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8388 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8389 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8390 bio->bi_opf, 8391 (unsigned long long)bio->bi_iter.bi_sector, 8392 bio->bi_iter.bi_size, err); 8393 8394 if (dip->subio_endio) 8395 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8396 8397 if (err) { 8398 dip->errors = 1; 8399 8400 /* 8401 * before atomic variable goto zero, we must make sure 8402 * dip->errors is perceived to be set. 8403 */ 8404 smp_mb__before_atomic(); 8405 } 8406 8407 /* if there are more bios still pending for this dio, just exit */ 8408 if (!atomic_dec_and_test(&dip->pending_bios)) 8409 goto out; 8410 8411 if (dip->errors) { 8412 bio_io_error(dip->orig_bio); 8413 } else { 8414 dip->dio_bio->bi_status = BLK_STS_OK; 8415 bio_endio(dip->orig_bio); 8416 } 8417 out: 8418 bio_put(bio); 8419 } 8420 8421 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8422 struct btrfs_dio_private *dip, 8423 struct bio *bio, 8424 u64 file_offset) 8425 { 8426 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8427 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8428 blk_status_t ret; 8429 8430 /* 8431 * We load all the csum data we need when we submit 8432 * the first bio to reduce the csum tree search and 8433 * contention. 8434 */ 8435 if (dip->logical_offset == file_offset) { 8436 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8437 file_offset); 8438 if (ret) 8439 return ret; 8440 } 8441 8442 if (bio == dip->orig_bio) 8443 return 0; 8444 8445 file_offset -= dip->logical_offset; 8446 file_offset >>= inode->i_sb->s_blocksize_bits; 8447 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8448 8449 return 0; 8450 } 8451 8452 static inline blk_status_t 8453 __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset, 8454 int async_submit) 8455 { 8456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8457 struct btrfs_dio_private *dip = bio->bi_private; 8458 bool write = bio_op(bio) == REQ_OP_WRITE; 8459 blk_status_t ret; 8460 8461 if (async_submit) 8462 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8463 8464 bio_get(bio); 8465 8466 if (!write) { 8467 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8468 if (ret) 8469 goto err; 8470 } 8471 8472 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8473 goto map; 8474 8475 if (write && async_submit) { 8476 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8477 file_offset, inode, 8478 __btrfs_submit_bio_start_direct_io, 8479 __btrfs_submit_bio_done); 8480 goto err; 8481 } else if (write) { 8482 /* 8483 * If we aren't doing async submit, calculate the csum of the 8484 * bio now. 8485 */ 8486 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8487 if (ret) 8488 goto err; 8489 } else { 8490 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8491 file_offset); 8492 if (ret) 8493 goto err; 8494 } 8495 map: 8496 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8497 err: 8498 bio_put(bio); 8499 return ret; 8500 } 8501 8502 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8503 { 8504 struct inode *inode = dip->inode; 8505 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8506 struct bio *bio; 8507 struct bio *orig_bio = dip->orig_bio; 8508 u64 start_sector = orig_bio->bi_iter.bi_sector; 8509 u64 file_offset = dip->logical_offset; 8510 u64 map_length; 8511 int async_submit = 0; 8512 u64 submit_len; 8513 int clone_offset = 0; 8514 int clone_len; 8515 int ret; 8516 blk_status_t status; 8517 8518 map_length = orig_bio->bi_iter.bi_size; 8519 submit_len = map_length; 8520 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8521 &map_length, NULL, 0); 8522 if (ret) 8523 return -EIO; 8524 8525 if (map_length >= submit_len) { 8526 bio = orig_bio; 8527 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8528 goto submit; 8529 } 8530 8531 /* async crcs make it difficult to collect full stripe writes. */ 8532 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8533 async_submit = 0; 8534 else 8535 async_submit = 1; 8536 8537 /* bio split */ 8538 ASSERT(map_length <= INT_MAX); 8539 atomic_inc(&dip->pending_bios); 8540 do { 8541 clone_len = min_t(int, submit_len, map_length); 8542 8543 /* 8544 * This will never fail as it's passing GPF_NOFS and 8545 * the allocation is backed by btrfs_bioset. 8546 */ 8547 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8548 clone_len); 8549 bio->bi_private = dip; 8550 bio->bi_end_io = btrfs_end_dio_bio; 8551 btrfs_io_bio(bio)->logical = file_offset; 8552 8553 ASSERT(submit_len >= clone_len); 8554 submit_len -= clone_len; 8555 if (submit_len == 0) 8556 break; 8557 8558 /* 8559 * Increase the count before we submit the bio so we know 8560 * the end IO handler won't happen before we increase the 8561 * count. Otherwise, the dip might get freed before we're 8562 * done setting it up. 8563 */ 8564 atomic_inc(&dip->pending_bios); 8565 8566 status = __btrfs_submit_dio_bio(bio, inode, file_offset, 8567 async_submit); 8568 if (status) { 8569 bio_put(bio); 8570 atomic_dec(&dip->pending_bios); 8571 goto out_err; 8572 } 8573 8574 clone_offset += clone_len; 8575 start_sector += clone_len >> 9; 8576 file_offset += clone_len; 8577 8578 map_length = submit_len; 8579 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8580 start_sector << 9, &map_length, NULL, 0); 8581 if (ret) 8582 goto out_err; 8583 } while (submit_len > 0); 8584 8585 submit: 8586 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8587 if (!status) 8588 return 0; 8589 8590 bio_put(bio); 8591 out_err: 8592 dip->errors = 1; 8593 /* 8594 * before atomic variable goto zero, we must 8595 * make sure dip->errors is perceived to be set. 8596 */ 8597 smp_mb__before_atomic(); 8598 if (atomic_dec_and_test(&dip->pending_bios)) 8599 bio_io_error(dip->orig_bio); 8600 8601 /* bio_end_io() will handle error, so we needn't return it */ 8602 return 0; 8603 } 8604 8605 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8606 loff_t file_offset) 8607 { 8608 struct btrfs_dio_private *dip = NULL; 8609 struct bio *bio = NULL; 8610 struct btrfs_io_bio *io_bio; 8611 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8612 int ret = 0; 8613 8614 bio = btrfs_bio_clone(dio_bio); 8615 8616 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8617 if (!dip) { 8618 ret = -ENOMEM; 8619 goto free_ordered; 8620 } 8621 8622 dip->private = dio_bio->bi_private; 8623 dip->inode = inode; 8624 dip->logical_offset = file_offset; 8625 dip->bytes = dio_bio->bi_iter.bi_size; 8626 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8627 bio->bi_private = dip; 8628 dip->orig_bio = bio; 8629 dip->dio_bio = dio_bio; 8630 atomic_set(&dip->pending_bios, 0); 8631 io_bio = btrfs_io_bio(bio); 8632 io_bio->logical = file_offset; 8633 8634 if (write) { 8635 bio->bi_end_io = btrfs_endio_direct_write; 8636 } else { 8637 bio->bi_end_io = btrfs_endio_direct_read; 8638 dip->subio_endio = btrfs_subio_endio_read; 8639 } 8640 8641 /* 8642 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8643 * even if we fail to submit a bio, because in such case we do the 8644 * corresponding error handling below and it must not be done a second 8645 * time by btrfs_direct_IO(). 8646 */ 8647 if (write) { 8648 struct btrfs_dio_data *dio_data = current->journal_info; 8649 8650 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8651 dip->bytes; 8652 dio_data->unsubmitted_oe_range_start = 8653 dio_data->unsubmitted_oe_range_end; 8654 } 8655 8656 ret = btrfs_submit_direct_hook(dip); 8657 if (!ret) 8658 return; 8659 8660 if (io_bio->end_io) 8661 io_bio->end_io(io_bio, ret); 8662 8663 free_ordered: 8664 /* 8665 * If we arrived here it means either we failed to submit the dip 8666 * or we either failed to clone the dio_bio or failed to allocate the 8667 * dip. If we cloned the dio_bio and allocated the dip, we can just 8668 * call bio_endio against our io_bio so that we get proper resource 8669 * cleanup if we fail to submit the dip, otherwise, we must do the 8670 * same as btrfs_endio_direct_[write|read] because we can't call these 8671 * callbacks - they require an allocated dip and a clone of dio_bio. 8672 */ 8673 if (bio && dip) { 8674 bio_io_error(bio); 8675 /* 8676 * The end io callbacks free our dip, do the final put on bio 8677 * and all the cleanup and final put for dio_bio (through 8678 * dio_end_io()). 8679 */ 8680 dip = NULL; 8681 bio = NULL; 8682 } else { 8683 if (write) 8684 __endio_write_update_ordered(inode, 8685 file_offset, 8686 dio_bio->bi_iter.bi_size, 8687 false); 8688 else 8689 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8690 file_offset + dio_bio->bi_iter.bi_size - 1); 8691 8692 dio_bio->bi_status = BLK_STS_IOERR; 8693 /* 8694 * Releases and cleans up our dio_bio, no need to bio_put() 8695 * nor bio_endio()/bio_io_error() against dio_bio. 8696 */ 8697 dio_end_io(dio_bio); 8698 } 8699 if (bio) 8700 bio_put(bio); 8701 kfree(dip); 8702 } 8703 8704 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8705 const struct iov_iter *iter, loff_t offset) 8706 { 8707 int seg; 8708 int i; 8709 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8710 ssize_t retval = -EINVAL; 8711 8712 if (offset & blocksize_mask) 8713 goto out; 8714 8715 if (iov_iter_alignment(iter) & blocksize_mask) 8716 goto out; 8717 8718 /* If this is a write we don't need to check anymore */ 8719 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8720 return 0; 8721 /* 8722 * Check to make sure we don't have duplicate iov_base's in this 8723 * iovec, if so return EINVAL, otherwise we'll get csum errors 8724 * when reading back. 8725 */ 8726 for (seg = 0; seg < iter->nr_segs; seg++) { 8727 for (i = seg + 1; i < iter->nr_segs; i++) { 8728 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8729 goto out; 8730 } 8731 } 8732 retval = 0; 8733 out: 8734 return retval; 8735 } 8736 8737 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8738 { 8739 struct file *file = iocb->ki_filp; 8740 struct inode *inode = file->f_mapping->host; 8741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8742 struct btrfs_dio_data dio_data = { 0 }; 8743 struct extent_changeset *data_reserved = NULL; 8744 loff_t offset = iocb->ki_pos; 8745 size_t count = 0; 8746 int flags = 0; 8747 bool wakeup = true; 8748 bool relock = false; 8749 ssize_t ret; 8750 8751 if (check_direct_IO(fs_info, iter, offset)) 8752 return 0; 8753 8754 inode_dio_begin(inode); 8755 8756 /* 8757 * The generic stuff only does filemap_write_and_wait_range, which 8758 * isn't enough if we've written compressed pages to this area, so 8759 * we need to flush the dirty pages again to make absolutely sure 8760 * that any outstanding dirty pages are on disk. 8761 */ 8762 count = iov_iter_count(iter); 8763 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8764 &BTRFS_I(inode)->runtime_flags)) 8765 filemap_fdatawrite_range(inode->i_mapping, offset, 8766 offset + count - 1); 8767 8768 if (iov_iter_rw(iter) == WRITE) { 8769 /* 8770 * If the write DIO is beyond the EOF, we need update 8771 * the isize, but it is protected by i_mutex. So we can 8772 * not unlock the i_mutex at this case. 8773 */ 8774 if (offset + count <= inode->i_size) { 8775 dio_data.overwrite = 1; 8776 inode_unlock(inode); 8777 relock = true; 8778 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8779 ret = -EAGAIN; 8780 goto out; 8781 } 8782 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8783 offset, count); 8784 if (ret) 8785 goto out; 8786 8787 /* 8788 * We need to know how many extents we reserved so that we can 8789 * do the accounting properly if we go over the number we 8790 * originally calculated. Abuse current->journal_info for this. 8791 */ 8792 dio_data.reserve = round_up(count, 8793 fs_info->sectorsize); 8794 dio_data.unsubmitted_oe_range_start = (u64)offset; 8795 dio_data.unsubmitted_oe_range_end = (u64)offset; 8796 current->journal_info = &dio_data; 8797 down_read(&BTRFS_I(inode)->dio_sem); 8798 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8799 &BTRFS_I(inode)->runtime_flags)) { 8800 inode_dio_end(inode); 8801 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8802 wakeup = false; 8803 } 8804 8805 ret = __blockdev_direct_IO(iocb, inode, 8806 fs_info->fs_devices->latest_bdev, 8807 iter, btrfs_get_blocks_direct, NULL, 8808 btrfs_submit_direct, flags); 8809 if (iov_iter_rw(iter) == WRITE) { 8810 up_read(&BTRFS_I(inode)->dio_sem); 8811 current->journal_info = NULL; 8812 if (ret < 0 && ret != -EIOCBQUEUED) { 8813 if (dio_data.reserve) 8814 btrfs_delalloc_release_space(inode, data_reserved, 8815 offset, dio_data.reserve); 8816 /* 8817 * On error we might have left some ordered extents 8818 * without submitting corresponding bios for them, so 8819 * cleanup them up to avoid other tasks getting them 8820 * and waiting for them to complete forever. 8821 */ 8822 if (dio_data.unsubmitted_oe_range_start < 8823 dio_data.unsubmitted_oe_range_end) 8824 __endio_write_update_ordered(inode, 8825 dio_data.unsubmitted_oe_range_start, 8826 dio_data.unsubmitted_oe_range_end - 8827 dio_data.unsubmitted_oe_range_start, 8828 false); 8829 } else if (ret >= 0 && (size_t)ret < count) 8830 btrfs_delalloc_release_space(inode, data_reserved, 8831 offset, count - (size_t)ret); 8832 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 8833 } 8834 out: 8835 if (wakeup) 8836 inode_dio_end(inode); 8837 if (relock) 8838 inode_lock(inode); 8839 8840 extent_changeset_free(data_reserved); 8841 return ret; 8842 } 8843 8844 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8845 8846 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8847 __u64 start, __u64 len) 8848 { 8849 int ret; 8850 8851 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8852 if (ret) 8853 return ret; 8854 8855 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8856 } 8857 8858 int btrfs_readpage(struct file *file, struct page *page) 8859 { 8860 struct extent_io_tree *tree; 8861 tree = &BTRFS_I(page->mapping->host)->io_tree; 8862 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8863 } 8864 8865 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8866 { 8867 struct extent_io_tree *tree; 8868 struct inode *inode = page->mapping->host; 8869 int ret; 8870 8871 if (current->flags & PF_MEMALLOC) { 8872 redirty_page_for_writepage(wbc, page); 8873 unlock_page(page); 8874 return 0; 8875 } 8876 8877 /* 8878 * If we are under memory pressure we will call this directly from the 8879 * VM, we need to make sure we have the inode referenced for the ordered 8880 * extent. If not just return like we didn't do anything. 8881 */ 8882 if (!igrab(inode)) { 8883 redirty_page_for_writepage(wbc, page); 8884 return AOP_WRITEPAGE_ACTIVATE; 8885 } 8886 tree = &BTRFS_I(page->mapping->host)->io_tree; 8887 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8888 btrfs_add_delayed_iput(inode); 8889 return ret; 8890 } 8891 8892 static int btrfs_writepages(struct address_space *mapping, 8893 struct writeback_control *wbc) 8894 { 8895 struct extent_io_tree *tree; 8896 8897 tree = &BTRFS_I(mapping->host)->io_tree; 8898 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8899 } 8900 8901 static int 8902 btrfs_readpages(struct file *file, struct address_space *mapping, 8903 struct list_head *pages, unsigned nr_pages) 8904 { 8905 struct extent_io_tree *tree; 8906 tree = &BTRFS_I(mapping->host)->io_tree; 8907 return extent_readpages(tree, mapping, pages, nr_pages, 8908 btrfs_get_extent); 8909 } 8910 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8911 { 8912 struct extent_io_tree *tree; 8913 struct extent_map_tree *map; 8914 int ret; 8915 8916 tree = &BTRFS_I(page->mapping->host)->io_tree; 8917 map = &BTRFS_I(page->mapping->host)->extent_tree; 8918 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8919 if (ret == 1) { 8920 ClearPagePrivate(page); 8921 set_page_private(page, 0); 8922 put_page(page); 8923 } 8924 return ret; 8925 } 8926 8927 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8928 { 8929 if (PageWriteback(page) || PageDirty(page)) 8930 return 0; 8931 return __btrfs_releasepage(page, gfp_flags); 8932 } 8933 8934 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8935 unsigned int length) 8936 { 8937 struct inode *inode = page->mapping->host; 8938 struct extent_io_tree *tree; 8939 struct btrfs_ordered_extent *ordered; 8940 struct extent_state *cached_state = NULL; 8941 u64 page_start = page_offset(page); 8942 u64 page_end = page_start + PAGE_SIZE - 1; 8943 u64 start; 8944 u64 end; 8945 int inode_evicting = inode->i_state & I_FREEING; 8946 8947 /* 8948 * we have the page locked, so new writeback can't start, 8949 * and the dirty bit won't be cleared while we are here. 8950 * 8951 * Wait for IO on this page so that we can safely clear 8952 * the PagePrivate2 bit and do ordered accounting 8953 */ 8954 wait_on_page_writeback(page); 8955 8956 tree = &BTRFS_I(inode)->io_tree; 8957 if (offset) { 8958 btrfs_releasepage(page, GFP_NOFS); 8959 return; 8960 } 8961 8962 if (!inode_evicting) 8963 lock_extent_bits(tree, page_start, page_end, &cached_state); 8964 again: 8965 start = page_start; 8966 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8967 page_end - start + 1); 8968 if (ordered) { 8969 end = min(page_end, ordered->file_offset + ordered->len - 1); 8970 /* 8971 * IO on this page will never be started, so we need 8972 * to account for any ordered extents now 8973 */ 8974 if (!inode_evicting) 8975 clear_extent_bit(tree, start, end, 8976 EXTENT_DIRTY | EXTENT_DELALLOC | 8977 EXTENT_DELALLOC_NEW | 8978 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8979 EXTENT_DEFRAG, 1, 0, &cached_state, 8980 GFP_NOFS); 8981 /* 8982 * whoever cleared the private bit is responsible 8983 * for the finish_ordered_io 8984 */ 8985 if (TestClearPagePrivate2(page)) { 8986 struct btrfs_ordered_inode_tree *tree; 8987 u64 new_len; 8988 8989 tree = &BTRFS_I(inode)->ordered_tree; 8990 8991 spin_lock_irq(&tree->lock); 8992 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8993 new_len = start - ordered->file_offset; 8994 if (new_len < ordered->truncated_len) 8995 ordered->truncated_len = new_len; 8996 spin_unlock_irq(&tree->lock); 8997 8998 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8999 start, 9000 end - start + 1, 1)) 9001 btrfs_finish_ordered_io(ordered); 9002 } 9003 btrfs_put_ordered_extent(ordered); 9004 if (!inode_evicting) { 9005 cached_state = NULL; 9006 lock_extent_bits(tree, start, end, 9007 &cached_state); 9008 } 9009 9010 start = end + 1; 9011 if (start < page_end) 9012 goto again; 9013 } 9014 9015 /* 9016 * Qgroup reserved space handler 9017 * Page here will be either 9018 * 1) Already written to disk 9019 * In this case, its reserved space is released from data rsv map 9020 * and will be freed by delayed_ref handler finally. 9021 * So even we call qgroup_free_data(), it won't decrease reserved 9022 * space. 9023 * 2) Not written to disk 9024 * This means the reserved space should be freed here. However, 9025 * if a truncate invalidates the page (by clearing PageDirty) 9026 * and the page is accounted for while allocating extent 9027 * in btrfs_check_data_free_space() we let delayed_ref to 9028 * free the entire extent. 9029 */ 9030 if (PageDirty(page)) 9031 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 9032 if (!inode_evicting) { 9033 clear_extent_bit(tree, page_start, page_end, 9034 EXTENT_LOCKED | EXTENT_DIRTY | 9035 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 9036 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 9037 &cached_state, GFP_NOFS); 9038 9039 __btrfs_releasepage(page, GFP_NOFS); 9040 } 9041 9042 ClearPageChecked(page); 9043 if (PagePrivate(page)) { 9044 ClearPagePrivate(page); 9045 set_page_private(page, 0); 9046 put_page(page); 9047 } 9048 } 9049 9050 /* 9051 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 9052 * called from a page fault handler when a page is first dirtied. Hence we must 9053 * be careful to check for EOF conditions here. We set the page up correctly 9054 * for a written page which means we get ENOSPC checking when writing into 9055 * holes and correct delalloc and unwritten extent mapping on filesystems that 9056 * support these features. 9057 * 9058 * We are not allowed to take the i_mutex here so we have to play games to 9059 * protect against truncate races as the page could now be beyond EOF. Because 9060 * vmtruncate() writes the inode size before removing pages, once we have the 9061 * page lock we can determine safely if the page is beyond EOF. If it is not 9062 * beyond EOF, then the page is guaranteed safe against truncation until we 9063 * unlock the page. 9064 */ 9065 int btrfs_page_mkwrite(struct vm_fault *vmf) 9066 { 9067 struct page *page = vmf->page; 9068 struct inode *inode = file_inode(vmf->vma->vm_file); 9069 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9070 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9071 struct btrfs_ordered_extent *ordered; 9072 struct extent_state *cached_state = NULL; 9073 struct extent_changeset *data_reserved = NULL; 9074 char *kaddr; 9075 unsigned long zero_start; 9076 loff_t size; 9077 int ret; 9078 int reserved = 0; 9079 u64 reserved_space; 9080 u64 page_start; 9081 u64 page_end; 9082 u64 end; 9083 9084 reserved_space = PAGE_SIZE; 9085 9086 sb_start_pagefault(inode->i_sb); 9087 page_start = page_offset(page); 9088 page_end = page_start + PAGE_SIZE - 1; 9089 end = page_end; 9090 9091 /* 9092 * Reserving delalloc space after obtaining the page lock can lead to 9093 * deadlock. For example, if a dirty page is locked by this function 9094 * and the call to btrfs_delalloc_reserve_space() ends up triggering 9095 * dirty page write out, then the btrfs_writepage() function could 9096 * end up waiting indefinitely to get a lock on the page currently 9097 * being processed by btrfs_page_mkwrite() function. 9098 */ 9099 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 9100 reserved_space); 9101 if (!ret) { 9102 ret = file_update_time(vmf->vma->vm_file); 9103 reserved = 1; 9104 } 9105 if (ret) { 9106 if (ret == -ENOMEM) 9107 ret = VM_FAULT_OOM; 9108 else /* -ENOSPC, -EIO, etc */ 9109 ret = VM_FAULT_SIGBUS; 9110 if (reserved) 9111 goto out; 9112 goto out_noreserve; 9113 } 9114 9115 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 9116 again: 9117 lock_page(page); 9118 size = i_size_read(inode); 9119 9120 if ((page->mapping != inode->i_mapping) || 9121 (page_start >= size)) { 9122 /* page got truncated out from underneath us */ 9123 goto out_unlock; 9124 } 9125 wait_on_page_writeback(page); 9126 9127 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9128 set_page_extent_mapped(page); 9129 9130 /* 9131 * we can't set the delalloc bits if there are pending ordered 9132 * extents. Drop our locks and wait for them to finish 9133 */ 9134 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 9135 PAGE_SIZE); 9136 if (ordered) { 9137 unlock_extent_cached(io_tree, page_start, page_end, 9138 &cached_state, GFP_NOFS); 9139 unlock_page(page); 9140 btrfs_start_ordered_extent(inode, ordered, 1); 9141 btrfs_put_ordered_extent(ordered); 9142 goto again; 9143 } 9144 9145 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9146 reserved_space = round_up(size - page_start, 9147 fs_info->sectorsize); 9148 if (reserved_space < PAGE_SIZE) { 9149 end = page_start + reserved_space - 1; 9150 btrfs_delalloc_release_space(inode, data_reserved, 9151 page_start, PAGE_SIZE - reserved_space); 9152 } 9153 } 9154 9155 /* 9156 * page_mkwrite gets called when the page is firstly dirtied after it's 9157 * faulted in, but write(2) could also dirty a page and set delalloc 9158 * bits, thus in this case for space account reason, we still need to 9159 * clear any delalloc bits within this page range since we have to 9160 * reserve data&meta space before lock_page() (see above comments). 9161 */ 9162 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9163 EXTENT_DIRTY | EXTENT_DELALLOC | 9164 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9165 0, 0, &cached_state, GFP_NOFS); 9166 9167 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0, 9168 &cached_state, 0); 9169 if (ret) { 9170 unlock_extent_cached(io_tree, page_start, page_end, 9171 &cached_state, GFP_NOFS); 9172 ret = VM_FAULT_SIGBUS; 9173 goto out_unlock; 9174 } 9175 ret = 0; 9176 9177 /* page is wholly or partially inside EOF */ 9178 if (page_start + PAGE_SIZE > size) 9179 zero_start = size & ~PAGE_MASK; 9180 else 9181 zero_start = PAGE_SIZE; 9182 9183 if (zero_start != PAGE_SIZE) { 9184 kaddr = kmap(page); 9185 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9186 flush_dcache_page(page); 9187 kunmap(page); 9188 } 9189 ClearPageChecked(page); 9190 set_page_dirty(page); 9191 SetPageUptodate(page); 9192 9193 BTRFS_I(inode)->last_trans = fs_info->generation; 9194 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9195 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9196 9197 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9198 9199 out_unlock: 9200 if (!ret) { 9201 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9202 sb_end_pagefault(inode->i_sb); 9203 extent_changeset_free(data_reserved); 9204 return VM_FAULT_LOCKED; 9205 } 9206 unlock_page(page); 9207 out: 9208 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9209 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9210 reserved_space); 9211 out_noreserve: 9212 sb_end_pagefault(inode->i_sb); 9213 extent_changeset_free(data_reserved); 9214 return ret; 9215 } 9216 9217 static int btrfs_truncate(struct inode *inode) 9218 { 9219 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9220 struct btrfs_root *root = BTRFS_I(inode)->root; 9221 struct btrfs_block_rsv *rsv; 9222 int ret = 0; 9223 int err = 0; 9224 struct btrfs_trans_handle *trans; 9225 u64 mask = fs_info->sectorsize - 1; 9226 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9227 9228 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9229 (u64)-1); 9230 if (ret) 9231 return ret; 9232 9233 /* 9234 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9235 * 3 things going on here 9236 * 9237 * 1) We need to reserve space for our orphan item and the space to 9238 * delete our orphan item. Lord knows we don't want to have a dangling 9239 * orphan item because we didn't reserve space to remove it. 9240 * 9241 * 2) We need to reserve space to update our inode. 9242 * 9243 * 3) We need to have something to cache all the space that is going to 9244 * be free'd up by the truncate operation, but also have some slack 9245 * space reserved in case it uses space during the truncate (thank you 9246 * very much snapshotting). 9247 * 9248 * And we need these to all be separate. The fact is we can use a lot of 9249 * space doing the truncate, and we have no earthly idea how much space 9250 * we will use, so we need the truncate reservation to be separate so it 9251 * doesn't end up using space reserved for updating the inode or 9252 * removing the orphan item. We also need to be able to stop the 9253 * transaction and start a new one, which means we need to be able to 9254 * update the inode several times, and we have no idea of knowing how 9255 * many times that will be, so we can't just reserve 1 item for the 9256 * entirety of the operation, so that has to be done separately as well. 9257 * Then there is the orphan item, which does indeed need to be held on 9258 * to for the whole operation, and we need nobody to touch this reserved 9259 * space except the orphan code. 9260 * 9261 * So that leaves us with 9262 * 9263 * 1) root->orphan_block_rsv - for the orphan deletion. 9264 * 2) rsv - for the truncate reservation, which we will steal from the 9265 * transaction reservation. 9266 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9267 * updating the inode. 9268 */ 9269 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9270 if (!rsv) 9271 return -ENOMEM; 9272 rsv->size = min_size; 9273 rsv->failfast = 1; 9274 9275 /* 9276 * 1 for the truncate slack space 9277 * 1 for updating the inode. 9278 */ 9279 trans = btrfs_start_transaction(root, 2); 9280 if (IS_ERR(trans)) { 9281 err = PTR_ERR(trans); 9282 goto out; 9283 } 9284 9285 /* Migrate the slack space for the truncate to our reserve */ 9286 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9287 min_size, 0); 9288 BUG_ON(ret); 9289 9290 /* 9291 * So if we truncate and then write and fsync we normally would just 9292 * write the extents that changed, which is a problem if we need to 9293 * first truncate that entire inode. So set this flag so we write out 9294 * all of the extents in the inode to the sync log so we're completely 9295 * safe. 9296 */ 9297 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9298 trans->block_rsv = rsv; 9299 9300 while (1) { 9301 ret = btrfs_truncate_inode_items(trans, root, inode, 9302 inode->i_size, 9303 BTRFS_EXTENT_DATA_KEY); 9304 trans->block_rsv = &fs_info->trans_block_rsv; 9305 if (ret != -ENOSPC && ret != -EAGAIN) { 9306 err = ret; 9307 break; 9308 } 9309 9310 ret = btrfs_update_inode(trans, root, inode); 9311 if (ret) { 9312 err = ret; 9313 break; 9314 } 9315 9316 btrfs_end_transaction(trans); 9317 btrfs_btree_balance_dirty(fs_info); 9318 9319 trans = btrfs_start_transaction(root, 2); 9320 if (IS_ERR(trans)) { 9321 ret = err = PTR_ERR(trans); 9322 trans = NULL; 9323 break; 9324 } 9325 9326 btrfs_block_rsv_release(fs_info, rsv, -1); 9327 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9328 rsv, min_size, 0); 9329 BUG_ON(ret); /* shouldn't happen */ 9330 trans->block_rsv = rsv; 9331 } 9332 9333 /* 9334 * We can't call btrfs_truncate_block inside a trans handle as we could 9335 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9336 * we've truncated everything except the last little bit, and can do 9337 * btrfs_truncate_block and then update the disk_i_size. 9338 */ 9339 if (ret == NEED_TRUNCATE_BLOCK) { 9340 btrfs_end_transaction(trans); 9341 btrfs_btree_balance_dirty(fs_info); 9342 9343 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9344 if (ret) 9345 goto out; 9346 trans = btrfs_start_transaction(root, 1); 9347 if (IS_ERR(trans)) { 9348 ret = PTR_ERR(trans); 9349 goto out; 9350 } 9351 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9352 } 9353 9354 if (ret == 0 && inode->i_nlink > 0) { 9355 trans->block_rsv = root->orphan_block_rsv; 9356 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 9357 if (ret) 9358 err = ret; 9359 } 9360 9361 if (trans) { 9362 trans->block_rsv = &fs_info->trans_block_rsv; 9363 ret = btrfs_update_inode(trans, root, inode); 9364 if (ret && !err) 9365 err = ret; 9366 9367 ret = btrfs_end_transaction(trans); 9368 btrfs_btree_balance_dirty(fs_info); 9369 } 9370 out: 9371 btrfs_free_block_rsv(fs_info, rsv); 9372 9373 if (ret && !err) 9374 err = ret; 9375 9376 return err; 9377 } 9378 9379 /* 9380 * create a new subvolume directory/inode (helper for the ioctl). 9381 */ 9382 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9383 struct btrfs_root *new_root, 9384 struct btrfs_root *parent_root, 9385 u64 new_dirid) 9386 { 9387 struct inode *inode; 9388 int err; 9389 u64 index = 0; 9390 9391 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9392 new_dirid, new_dirid, 9393 S_IFDIR | (~current_umask() & S_IRWXUGO), 9394 &index); 9395 if (IS_ERR(inode)) 9396 return PTR_ERR(inode); 9397 inode->i_op = &btrfs_dir_inode_operations; 9398 inode->i_fop = &btrfs_dir_file_operations; 9399 9400 set_nlink(inode, 1); 9401 btrfs_i_size_write(BTRFS_I(inode), 0); 9402 unlock_new_inode(inode); 9403 9404 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9405 if (err) 9406 btrfs_err(new_root->fs_info, 9407 "error inheriting subvolume %llu properties: %d", 9408 new_root->root_key.objectid, err); 9409 9410 err = btrfs_update_inode(trans, new_root, inode); 9411 9412 iput(inode); 9413 return err; 9414 } 9415 9416 struct inode *btrfs_alloc_inode(struct super_block *sb) 9417 { 9418 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9419 struct btrfs_inode *ei; 9420 struct inode *inode; 9421 9422 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9423 if (!ei) 9424 return NULL; 9425 9426 ei->root = NULL; 9427 ei->generation = 0; 9428 ei->last_trans = 0; 9429 ei->last_sub_trans = 0; 9430 ei->logged_trans = 0; 9431 ei->delalloc_bytes = 0; 9432 ei->new_delalloc_bytes = 0; 9433 ei->defrag_bytes = 0; 9434 ei->disk_i_size = 0; 9435 ei->flags = 0; 9436 ei->csum_bytes = 0; 9437 ei->index_cnt = (u64)-1; 9438 ei->dir_index = 0; 9439 ei->last_unlink_trans = 0; 9440 ei->last_log_commit = 0; 9441 ei->delayed_iput_count = 0; 9442 9443 spin_lock_init(&ei->lock); 9444 ei->outstanding_extents = 0; 9445 if (sb->s_magic != BTRFS_TEST_MAGIC) 9446 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9447 BTRFS_BLOCK_RSV_DELALLOC); 9448 ei->runtime_flags = 0; 9449 ei->prop_compress = BTRFS_COMPRESS_NONE; 9450 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9451 9452 ei->delayed_node = NULL; 9453 9454 ei->i_otime.tv_sec = 0; 9455 ei->i_otime.tv_nsec = 0; 9456 9457 inode = &ei->vfs_inode; 9458 extent_map_tree_init(&ei->extent_tree); 9459 extent_io_tree_init(&ei->io_tree, inode); 9460 extent_io_tree_init(&ei->io_failure_tree, inode); 9461 ei->io_tree.track_uptodate = 1; 9462 ei->io_failure_tree.track_uptodate = 1; 9463 atomic_set(&ei->sync_writers, 0); 9464 mutex_init(&ei->log_mutex); 9465 mutex_init(&ei->delalloc_mutex); 9466 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9467 INIT_LIST_HEAD(&ei->delalloc_inodes); 9468 INIT_LIST_HEAD(&ei->delayed_iput); 9469 RB_CLEAR_NODE(&ei->rb_node); 9470 init_rwsem(&ei->dio_sem); 9471 9472 return inode; 9473 } 9474 9475 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9476 void btrfs_test_destroy_inode(struct inode *inode) 9477 { 9478 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9479 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9480 } 9481 #endif 9482 9483 static void btrfs_i_callback(struct rcu_head *head) 9484 { 9485 struct inode *inode = container_of(head, struct inode, i_rcu); 9486 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9487 } 9488 9489 void btrfs_destroy_inode(struct inode *inode) 9490 { 9491 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9492 struct btrfs_ordered_extent *ordered; 9493 struct btrfs_root *root = BTRFS_I(inode)->root; 9494 9495 WARN_ON(!hlist_empty(&inode->i_dentry)); 9496 WARN_ON(inode->i_data.nrpages); 9497 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9498 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9499 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9500 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9501 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9502 WARN_ON(BTRFS_I(inode)->csum_bytes); 9503 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9504 9505 /* 9506 * This can happen where we create an inode, but somebody else also 9507 * created the same inode and we need to destroy the one we already 9508 * created. 9509 */ 9510 if (!root) 9511 goto free; 9512 9513 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9514 &BTRFS_I(inode)->runtime_flags)) { 9515 btrfs_info(fs_info, "inode %llu still on the orphan list", 9516 btrfs_ino(BTRFS_I(inode))); 9517 atomic_dec(&root->orphan_inodes); 9518 } 9519 9520 while (1) { 9521 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9522 if (!ordered) 9523 break; 9524 else { 9525 btrfs_err(fs_info, 9526 "found ordered extent %llu %llu on inode cleanup", 9527 ordered->file_offset, ordered->len); 9528 btrfs_remove_ordered_extent(inode, ordered); 9529 btrfs_put_ordered_extent(ordered); 9530 btrfs_put_ordered_extent(ordered); 9531 } 9532 } 9533 btrfs_qgroup_check_reserved_leak(inode); 9534 inode_tree_del(inode); 9535 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9536 free: 9537 call_rcu(&inode->i_rcu, btrfs_i_callback); 9538 } 9539 9540 int btrfs_drop_inode(struct inode *inode) 9541 { 9542 struct btrfs_root *root = BTRFS_I(inode)->root; 9543 9544 if (root == NULL) 9545 return 1; 9546 9547 /* the snap/subvol tree is on deleting */ 9548 if (btrfs_root_refs(&root->root_item) == 0) 9549 return 1; 9550 else 9551 return generic_drop_inode(inode); 9552 } 9553 9554 static void init_once(void *foo) 9555 { 9556 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9557 9558 inode_init_once(&ei->vfs_inode); 9559 } 9560 9561 void btrfs_destroy_cachep(void) 9562 { 9563 /* 9564 * Make sure all delayed rcu free inodes are flushed before we 9565 * destroy cache. 9566 */ 9567 rcu_barrier(); 9568 kmem_cache_destroy(btrfs_inode_cachep); 9569 kmem_cache_destroy(btrfs_trans_handle_cachep); 9570 kmem_cache_destroy(btrfs_path_cachep); 9571 kmem_cache_destroy(btrfs_free_space_cachep); 9572 } 9573 9574 int btrfs_init_cachep(void) 9575 { 9576 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9577 sizeof(struct btrfs_inode), 0, 9578 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9579 init_once); 9580 if (!btrfs_inode_cachep) 9581 goto fail; 9582 9583 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9584 sizeof(struct btrfs_trans_handle), 0, 9585 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9586 if (!btrfs_trans_handle_cachep) 9587 goto fail; 9588 9589 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9590 sizeof(struct btrfs_path), 0, 9591 SLAB_MEM_SPREAD, NULL); 9592 if (!btrfs_path_cachep) 9593 goto fail; 9594 9595 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9596 sizeof(struct btrfs_free_space), 0, 9597 SLAB_MEM_SPREAD, NULL); 9598 if (!btrfs_free_space_cachep) 9599 goto fail; 9600 9601 return 0; 9602 fail: 9603 btrfs_destroy_cachep(); 9604 return -ENOMEM; 9605 } 9606 9607 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9608 u32 request_mask, unsigned int flags) 9609 { 9610 u64 delalloc_bytes; 9611 struct inode *inode = d_inode(path->dentry); 9612 u32 blocksize = inode->i_sb->s_blocksize; 9613 u32 bi_flags = BTRFS_I(inode)->flags; 9614 9615 stat->result_mask |= STATX_BTIME; 9616 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9617 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9618 if (bi_flags & BTRFS_INODE_APPEND) 9619 stat->attributes |= STATX_ATTR_APPEND; 9620 if (bi_flags & BTRFS_INODE_COMPRESS) 9621 stat->attributes |= STATX_ATTR_COMPRESSED; 9622 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9623 stat->attributes |= STATX_ATTR_IMMUTABLE; 9624 if (bi_flags & BTRFS_INODE_NODUMP) 9625 stat->attributes |= STATX_ATTR_NODUMP; 9626 9627 stat->attributes_mask |= (STATX_ATTR_APPEND | 9628 STATX_ATTR_COMPRESSED | 9629 STATX_ATTR_IMMUTABLE | 9630 STATX_ATTR_NODUMP); 9631 9632 generic_fillattr(inode, stat); 9633 stat->dev = BTRFS_I(inode)->root->anon_dev; 9634 9635 spin_lock(&BTRFS_I(inode)->lock); 9636 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9637 spin_unlock(&BTRFS_I(inode)->lock); 9638 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9639 ALIGN(delalloc_bytes, blocksize)) >> 9; 9640 return 0; 9641 } 9642 9643 static int btrfs_rename_exchange(struct inode *old_dir, 9644 struct dentry *old_dentry, 9645 struct inode *new_dir, 9646 struct dentry *new_dentry) 9647 { 9648 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9649 struct btrfs_trans_handle *trans; 9650 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9651 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9652 struct inode *new_inode = new_dentry->d_inode; 9653 struct inode *old_inode = old_dentry->d_inode; 9654 struct timespec ctime = current_time(old_inode); 9655 struct dentry *parent; 9656 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9657 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9658 u64 old_idx = 0; 9659 u64 new_idx = 0; 9660 u64 root_objectid; 9661 int ret; 9662 bool root_log_pinned = false; 9663 bool dest_log_pinned = false; 9664 9665 /* we only allow rename subvolume link between subvolumes */ 9666 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9667 return -EXDEV; 9668 9669 /* close the race window with snapshot create/destroy ioctl */ 9670 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9671 down_read(&fs_info->subvol_sem); 9672 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9673 down_read(&fs_info->subvol_sem); 9674 9675 /* 9676 * We want to reserve the absolute worst case amount of items. So if 9677 * both inodes are subvols and we need to unlink them then that would 9678 * require 4 item modifications, but if they are both normal inodes it 9679 * would require 5 item modifications, so we'll assume their normal 9680 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9681 * should cover the worst case number of items we'll modify. 9682 */ 9683 trans = btrfs_start_transaction(root, 12); 9684 if (IS_ERR(trans)) { 9685 ret = PTR_ERR(trans); 9686 goto out_notrans; 9687 } 9688 9689 /* 9690 * We need to find a free sequence number both in the source and 9691 * in the destination directory for the exchange. 9692 */ 9693 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9694 if (ret) 9695 goto out_fail; 9696 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9697 if (ret) 9698 goto out_fail; 9699 9700 BTRFS_I(old_inode)->dir_index = 0ULL; 9701 BTRFS_I(new_inode)->dir_index = 0ULL; 9702 9703 /* Reference for the source. */ 9704 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9705 /* force full log commit if subvolume involved. */ 9706 btrfs_set_log_full_commit(fs_info, trans); 9707 } else { 9708 btrfs_pin_log_trans(root); 9709 root_log_pinned = true; 9710 ret = btrfs_insert_inode_ref(trans, dest, 9711 new_dentry->d_name.name, 9712 new_dentry->d_name.len, 9713 old_ino, 9714 btrfs_ino(BTRFS_I(new_dir)), 9715 old_idx); 9716 if (ret) 9717 goto out_fail; 9718 } 9719 9720 /* And now for the dest. */ 9721 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9722 /* force full log commit if subvolume involved. */ 9723 btrfs_set_log_full_commit(fs_info, trans); 9724 } else { 9725 btrfs_pin_log_trans(dest); 9726 dest_log_pinned = true; 9727 ret = btrfs_insert_inode_ref(trans, root, 9728 old_dentry->d_name.name, 9729 old_dentry->d_name.len, 9730 new_ino, 9731 btrfs_ino(BTRFS_I(old_dir)), 9732 new_idx); 9733 if (ret) 9734 goto out_fail; 9735 } 9736 9737 /* Update inode version and ctime/mtime. */ 9738 inode_inc_iversion(old_dir); 9739 inode_inc_iversion(new_dir); 9740 inode_inc_iversion(old_inode); 9741 inode_inc_iversion(new_inode); 9742 old_dir->i_ctime = old_dir->i_mtime = ctime; 9743 new_dir->i_ctime = new_dir->i_mtime = ctime; 9744 old_inode->i_ctime = ctime; 9745 new_inode->i_ctime = ctime; 9746 9747 if (old_dentry->d_parent != new_dentry->d_parent) { 9748 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9749 BTRFS_I(old_inode), 1); 9750 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9751 BTRFS_I(new_inode), 1); 9752 } 9753 9754 /* src is a subvolume */ 9755 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9756 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9757 ret = btrfs_unlink_subvol(trans, root, old_dir, 9758 root_objectid, 9759 old_dentry->d_name.name, 9760 old_dentry->d_name.len); 9761 } else { /* src is an inode */ 9762 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9763 BTRFS_I(old_dentry->d_inode), 9764 old_dentry->d_name.name, 9765 old_dentry->d_name.len); 9766 if (!ret) 9767 ret = btrfs_update_inode(trans, root, old_inode); 9768 } 9769 if (ret) { 9770 btrfs_abort_transaction(trans, ret); 9771 goto out_fail; 9772 } 9773 9774 /* dest is a subvolume */ 9775 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9776 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9777 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9778 root_objectid, 9779 new_dentry->d_name.name, 9780 new_dentry->d_name.len); 9781 } else { /* dest is an inode */ 9782 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9783 BTRFS_I(new_dentry->d_inode), 9784 new_dentry->d_name.name, 9785 new_dentry->d_name.len); 9786 if (!ret) 9787 ret = btrfs_update_inode(trans, dest, new_inode); 9788 } 9789 if (ret) { 9790 btrfs_abort_transaction(trans, ret); 9791 goto out_fail; 9792 } 9793 9794 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9795 new_dentry->d_name.name, 9796 new_dentry->d_name.len, 0, old_idx); 9797 if (ret) { 9798 btrfs_abort_transaction(trans, ret); 9799 goto out_fail; 9800 } 9801 9802 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9803 old_dentry->d_name.name, 9804 old_dentry->d_name.len, 0, new_idx); 9805 if (ret) { 9806 btrfs_abort_transaction(trans, ret); 9807 goto out_fail; 9808 } 9809 9810 if (old_inode->i_nlink == 1) 9811 BTRFS_I(old_inode)->dir_index = old_idx; 9812 if (new_inode->i_nlink == 1) 9813 BTRFS_I(new_inode)->dir_index = new_idx; 9814 9815 if (root_log_pinned) { 9816 parent = new_dentry->d_parent; 9817 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9818 parent); 9819 btrfs_end_log_trans(root); 9820 root_log_pinned = false; 9821 } 9822 if (dest_log_pinned) { 9823 parent = old_dentry->d_parent; 9824 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9825 parent); 9826 btrfs_end_log_trans(dest); 9827 dest_log_pinned = false; 9828 } 9829 out_fail: 9830 /* 9831 * If we have pinned a log and an error happened, we unpin tasks 9832 * trying to sync the log and force them to fallback to a transaction 9833 * commit if the log currently contains any of the inodes involved in 9834 * this rename operation (to ensure we do not persist a log with an 9835 * inconsistent state for any of these inodes or leading to any 9836 * inconsistencies when replayed). If the transaction was aborted, the 9837 * abortion reason is propagated to userspace when attempting to commit 9838 * the transaction. If the log does not contain any of these inodes, we 9839 * allow the tasks to sync it. 9840 */ 9841 if (ret && (root_log_pinned || dest_log_pinned)) { 9842 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9843 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9844 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9845 (new_inode && 9846 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9847 btrfs_set_log_full_commit(fs_info, trans); 9848 9849 if (root_log_pinned) { 9850 btrfs_end_log_trans(root); 9851 root_log_pinned = false; 9852 } 9853 if (dest_log_pinned) { 9854 btrfs_end_log_trans(dest); 9855 dest_log_pinned = false; 9856 } 9857 } 9858 ret = btrfs_end_transaction(trans); 9859 out_notrans: 9860 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9861 up_read(&fs_info->subvol_sem); 9862 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9863 up_read(&fs_info->subvol_sem); 9864 9865 return ret; 9866 } 9867 9868 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9869 struct btrfs_root *root, 9870 struct inode *dir, 9871 struct dentry *dentry) 9872 { 9873 int ret; 9874 struct inode *inode; 9875 u64 objectid; 9876 u64 index; 9877 9878 ret = btrfs_find_free_ino(root, &objectid); 9879 if (ret) 9880 return ret; 9881 9882 inode = btrfs_new_inode(trans, root, dir, 9883 dentry->d_name.name, 9884 dentry->d_name.len, 9885 btrfs_ino(BTRFS_I(dir)), 9886 objectid, 9887 S_IFCHR | WHITEOUT_MODE, 9888 &index); 9889 9890 if (IS_ERR(inode)) { 9891 ret = PTR_ERR(inode); 9892 return ret; 9893 } 9894 9895 inode->i_op = &btrfs_special_inode_operations; 9896 init_special_inode(inode, inode->i_mode, 9897 WHITEOUT_DEV); 9898 9899 ret = btrfs_init_inode_security(trans, inode, dir, 9900 &dentry->d_name); 9901 if (ret) 9902 goto out; 9903 9904 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9905 BTRFS_I(inode), 0, index); 9906 if (ret) 9907 goto out; 9908 9909 ret = btrfs_update_inode(trans, root, inode); 9910 out: 9911 unlock_new_inode(inode); 9912 if (ret) 9913 inode_dec_link_count(inode); 9914 iput(inode); 9915 9916 return ret; 9917 } 9918 9919 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9920 struct inode *new_dir, struct dentry *new_dentry, 9921 unsigned int flags) 9922 { 9923 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9924 struct btrfs_trans_handle *trans; 9925 unsigned int trans_num_items; 9926 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9927 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9928 struct inode *new_inode = d_inode(new_dentry); 9929 struct inode *old_inode = d_inode(old_dentry); 9930 u64 index = 0; 9931 u64 root_objectid; 9932 int ret; 9933 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9934 bool log_pinned = false; 9935 9936 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9937 return -EPERM; 9938 9939 /* we only allow rename subvolume link between subvolumes */ 9940 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9941 return -EXDEV; 9942 9943 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9944 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9945 return -ENOTEMPTY; 9946 9947 if (S_ISDIR(old_inode->i_mode) && new_inode && 9948 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9949 return -ENOTEMPTY; 9950 9951 9952 /* check for collisions, even if the name isn't there */ 9953 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9954 new_dentry->d_name.name, 9955 new_dentry->d_name.len); 9956 9957 if (ret) { 9958 if (ret == -EEXIST) { 9959 /* we shouldn't get 9960 * eexist without a new_inode */ 9961 if (WARN_ON(!new_inode)) { 9962 return ret; 9963 } 9964 } else { 9965 /* maybe -EOVERFLOW */ 9966 return ret; 9967 } 9968 } 9969 ret = 0; 9970 9971 /* 9972 * we're using rename to replace one file with another. Start IO on it 9973 * now so we don't add too much work to the end of the transaction 9974 */ 9975 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9976 filemap_flush(old_inode->i_mapping); 9977 9978 /* close the racy window with snapshot create/destroy ioctl */ 9979 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9980 down_read(&fs_info->subvol_sem); 9981 /* 9982 * We want to reserve the absolute worst case amount of items. So if 9983 * both inodes are subvols and we need to unlink them then that would 9984 * require 4 item modifications, but if they are both normal inodes it 9985 * would require 5 item modifications, so we'll assume they are normal 9986 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9987 * should cover the worst case number of items we'll modify. 9988 * If our rename has the whiteout flag, we need more 5 units for the 9989 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9990 * when selinux is enabled). 9991 */ 9992 trans_num_items = 11; 9993 if (flags & RENAME_WHITEOUT) 9994 trans_num_items += 5; 9995 trans = btrfs_start_transaction(root, trans_num_items); 9996 if (IS_ERR(trans)) { 9997 ret = PTR_ERR(trans); 9998 goto out_notrans; 9999 } 10000 10001 if (dest != root) 10002 btrfs_record_root_in_trans(trans, dest); 10003 10004 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 10005 if (ret) 10006 goto out_fail; 10007 10008 BTRFS_I(old_inode)->dir_index = 0ULL; 10009 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 10010 /* force full log commit if subvolume involved. */ 10011 btrfs_set_log_full_commit(fs_info, trans); 10012 } else { 10013 btrfs_pin_log_trans(root); 10014 log_pinned = true; 10015 ret = btrfs_insert_inode_ref(trans, dest, 10016 new_dentry->d_name.name, 10017 new_dentry->d_name.len, 10018 old_ino, 10019 btrfs_ino(BTRFS_I(new_dir)), index); 10020 if (ret) 10021 goto out_fail; 10022 } 10023 10024 inode_inc_iversion(old_dir); 10025 inode_inc_iversion(new_dir); 10026 inode_inc_iversion(old_inode); 10027 old_dir->i_ctime = old_dir->i_mtime = 10028 new_dir->i_ctime = new_dir->i_mtime = 10029 old_inode->i_ctime = current_time(old_dir); 10030 10031 if (old_dentry->d_parent != new_dentry->d_parent) 10032 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 10033 BTRFS_I(old_inode), 1); 10034 10035 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 10036 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 10037 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 10038 old_dentry->d_name.name, 10039 old_dentry->d_name.len); 10040 } else { 10041 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 10042 BTRFS_I(d_inode(old_dentry)), 10043 old_dentry->d_name.name, 10044 old_dentry->d_name.len); 10045 if (!ret) 10046 ret = btrfs_update_inode(trans, root, old_inode); 10047 } 10048 if (ret) { 10049 btrfs_abort_transaction(trans, ret); 10050 goto out_fail; 10051 } 10052 10053 if (new_inode) { 10054 inode_inc_iversion(new_inode); 10055 new_inode->i_ctime = current_time(new_inode); 10056 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 10057 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 10058 root_objectid = BTRFS_I(new_inode)->location.objectid; 10059 ret = btrfs_unlink_subvol(trans, dest, new_dir, 10060 root_objectid, 10061 new_dentry->d_name.name, 10062 new_dentry->d_name.len); 10063 BUG_ON(new_inode->i_nlink == 0); 10064 } else { 10065 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 10066 BTRFS_I(d_inode(new_dentry)), 10067 new_dentry->d_name.name, 10068 new_dentry->d_name.len); 10069 } 10070 if (!ret && new_inode->i_nlink == 0) 10071 ret = btrfs_orphan_add(trans, 10072 BTRFS_I(d_inode(new_dentry))); 10073 if (ret) { 10074 btrfs_abort_transaction(trans, ret); 10075 goto out_fail; 10076 } 10077 } 10078 10079 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 10080 new_dentry->d_name.name, 10081 new_dentry->d_name.len, 0, index); 10082 if (ret) { 10083 btrfs_abort_transaction(trans, ret); 10084 goto out_fail; 10085 } 10086 10087 if (old_inode->i_nlink == 1) 10088 BTRFS_I(old_inode)->dir_index = index; 10089 10090 if (log_pinned) { 10091 struct dentry *parent = new_dentry->d_parent; 10092 10093 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 10094 parent); 10095 btrfs_end_log_trans(root); 10096 log_pinned = false; 10097 } 10098 10099 if (flags & RENAME_WHITEOUT) { 10100 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 10101 old_dentry); 10102 10103 if (ret) { 10104 btrfs_abort_transaction(trans, ret); 10105 goto out_fail; 10106 } 10107 } 10108 out_fail: 10109 /* 10110 * If we have pinned the log and an error happened, we unpin tasks 10111 * trying to sync the log and force them to fallback to a transaction 10112 * commit if the log currently contains any of the inodes involved in 10113 * this rename operation (to ensure we do not persist a log with an 10114 * inconsistent state for any of these inodes or leading to any 10115 * inconsistencies when replayed). If the transaction was aborted, the 10116 * abortion reason is propagated to userspace when attempting to commit 10117 * the transaction. If the log does not contain any of these inodes, we 10118 * allow the tasks to sync it. 10119 */ 10120 if (ret && log_pinned) { 10121 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 10122 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 10123 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 10124 (new_inode && 10125 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 10126 btrfs_set_log_full_commit(fs_info, trans); 10127 10128 btrfs_end_log_trans(root); 10129 log_pinned = false; 10130 } 10131 btrfs_end_transaction(trans); 10132 out_notrans: 10133 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10134 up_read(&fs_info->subvol_sem); 10135 10136 return ret; 10137 } 10138 10139 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10140 struct inode *new_dir, struct dentry *new_dentry, 10141 unsigned int flags) 10142 { 10143 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10144 return -EINVAL; 10145 10146 if (flags & RENAME_EXCHANGE) 10147 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10148 new_dentry); 10149 10150 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10151 } 10152 10153 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10154 { 10155 struct btrfs_delalloc_work *delalloc_work; 10156 struct inode *inode; 10157 10158 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10159 work); 10160 inode = delalloc_work->inode; 10161 filemap_flush(inode->i_mapping); 10162 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10163 &BTRFS_I(inode)->runtime_flags)) 10164 filemap_flush(inode->i_mapping); 10165 10166 if (delalloc_work->delay_iput) 10167 btrfs_add_delayed_iput(inode); 10168 else 10169 iput(inode); 10170 complete(&delalloc_work->completion); 10171 } 10172 10173 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 10174 int delay_iput) 10175 { 10176 struct btrfs_delalloc_work *work; 10177 10178 work = kmalloc(sizeof(*work), GFP_NOFS); 10179 if (!work) 10180 return NULL; 10181 10182 init_completion(&work->completion); 10183 INIT_LIST_HEAD(&work->list); 10184 work->inode = inode; 10185 work->delay_iput = delay_iput; 10186 WARN_ON_ONCE(!inode); 10187 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10188 btrfs_run_delalloc_work, NULL, NULL); 10189 10190 return work; 10191 } 10192 10193 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10194 { 10195 wait_for_completion(&work->completion); 10196 kfree(work); 10197 } 10198 10199 /* 10200 * some fairly slow code that needs optimization. This walks the list 10201 * of all the inodes with pending delalloc and forces them to disk. 10202 */ 10203 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10204 int nr) 10205 { 10206 struct btrfs_inode *binode; 10207 struct inode *inode; 10208 struct btrfs_delalloc_work *work, *next; 10209 struct list_head works; 10210 struct list_head splice; 10211 int ret = 0; 10212 10213 INIT_LIST_HEAD(&works); 10214 INIT_LIST_HEAD(&splice); 10215 10216 mutex_lock(&root->delalloc_mutex); 10217 spin_lock(&root->delalloc_lock); 10218 list_splice_init(&root->delalloc_inodes, &splice); 10219 while (!list_empty(&splice)) { 10220 binode = list_entry(splice.next, struct btrfs_inode, 10221 delalloc_inodes); 10222 10223 list_move_tail(&binode->delalloc_inodes, 10224 &root->delalloc_inodes); 10225 inode = igrab(&binode->vfs_inode); 10226 if (!inode) { 10227 cond_resched_lock(&root->delalloc_lock); 10228 continue; 10229 } 10230 spin_unlock(&root->delalloc_lock); 10231 10232 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10233 if (!work) { 10234 if (delay_iput) 10235 btrfs_add_delayed_iput(inode); 10236 else 10237 iput(inode); 10238 ret = -ENOMEM; 10239 goto out; 10240 } 10241 list_add_tail(&work->list, &works); 10242 btrfs_queue_work(root->fs_info->flush_workers, 10243 &work->work); 10244 ret++; 10245 if (nr != -1 && ret >= nr) 10246 goto out; 10247 cond_resched(); 10248 spin_lock(&root->delalloc_lock); 10249 } 10250 spin_unlock(&root->delalloc_lock); 10251 10252 out: 10253 list_for_each_entry_safe(work, next, &works, list) { 10254 list_del_init(&work->list); 10255 btrfs_wait_and_free_delalloc_work(work); 10256 } 10257 10258 if (!list_empty_careful(&splice)) { 10259 spin_lock(&root->delalloc_lock); 10260 list_splice_tail(&splice, &root->delalloc_inodes); 10261 spin_unlock(&root->delalloc_lock); 10262 } 10263 mutex_unlock(&root->delalloc_mutex); 10264 return ret; 10265 } 10266 10267 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10268 { 10269 struct btrfs_fs_info *fs_info = root->fs_info; 10270 int ret; 10271 10272 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10273 return -EROFS; 10274 10275 ret = __start_delalloc_inodes(root, delay_iput, -1); 10276 if (ret > 0) 10277 ret = 0; 10278 return ret; 10279 } 10280 10281 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10282 int nr) 10283 { 10284 struct btrfs_root *root; 10285 struct list_head splice; 10286 int ret; 10287 10288 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10289 return -EROFS; 10290 10291 INIT_LIST_HEAD(&splice); 10292 10293 mutex_lock(&fs_info->delalloc_root_mutex); 10294 spin_lock(&fs_info->delalloc_root_lock); 10295 list_splice_init(&fs_info->delalloc_roots, &splice); 10296 while (!list_empty(&splice) && nr) { 10297 root = list_first_entry(&splice, struct btrfs_root, 10298 delalloc_root); 10299 root = btrfs_grab_fs_root(root); 10300 BUG_ON(!root); 10301 list_move_tail(&root->delalloc_root, 10302 &fs_info->delalloc_roots); 10303 spin_unlock(&fs_info->delalloc_root_lock); 10304 10305 ret = __start_delalloc_inodes(root, delay_iput, nr); 10306 btrfs_put_fs_root(root); 10307 if (ret < 0) 10308 goto out; 10309 10310 if (nr != -1) { 10311 nr -= ret; 10312 WARN_ON(nr < 0); 10313 } 10314 spin_lock(&fs_info->delalloc_root_lock); 10315 } 10316 spin_unlock(&fs_info->delalloc_root_lock); 10317 10318 ret = 0; 10319 out: 10320 if (!list_empty_careful(&splice)) { 10321 spin_lock(&fs_info->delalloc_root_lock); 10322 list_splice_tail(&splice, &fs_info->delalloc_roots); 10323 spin_unlock(&fs_info->delalloc_root_lock); 10324 } 10325 mutex_unlock(&fs_info->delalloc_root_mutex); 10326 return ret; 10327 } 10328 10329 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10330 const char *symname) 10331 { 10332 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10333 struct btrfs_trans_handle *trans; 10334 struct btrfs_root *root = BTRFS_I(dir)->root; 10335 struct btrfs_path *path; 10336 struct btrfs_key key; 10337 struct inode *inode = NULL; 10338 int err; 10339 int drop_inode = 0; 10340 u64 objectid; 10341 u64 index = 0; 10342 int name_len; 10343 int datasize; 10344 unsigned long ptr; 10345 struct btrfs_file_extent_item *ei; 10346 struct extent_buffer *leaf; 10347 10348 name_len = strlen(symname); 10349 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10350 return -ENAMETOOLONG; 10351 10352 /* 10353 * 2 items for inode item and ref 10354 * 2 items for dir items 10355 * 1 item for updating parent inode item 10356 * 1 item for the inline extent item 10357 * 1 item for xattr if selinux is on 10358 */ 10359 trans = btrfs_start_transaction(root, 7); 10360 if (IS_ERR(trans)) 10361 return PTR_ERR(trans); 10362 10363 err = btrfs_find_free_ino(root, &objectid); 10364 if (err) 10365 goto out_unlock; 10366 10367 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10368 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10369 objectid, S_IFLNK|S_IRWXUGO, &index); 10370 if (IS_ERR(inode)) { 10371 err = PTR_ERR(inode); 10372 goto out_unlock; 10373 } 10374 10375 /* 10376 * If the active LSM wants to access the inode during 10377 * d_instantiate it needs these. Smack checks to see 10378 * if the filesystem supports xattrs by looking at the 10379 * ops vector. 10380 */ 10381 inode->i_fop = &btrfs_file_operations; 10382 inode->i_op = &btrfs_file_inode_operations; 10383 inode->i_mapping->a_ops = &btrfs_aops; 10384 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10385 10386 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10387 if (err) 10388 goto out_unlock_inode; 10389 10390 path = btrfs_alloc_path(); 10391 if (!path) { 10392 err = -ENOMEM; 10393 goto out_unlock_inode; 10394 } 10395 key.objectid = btrfs_ino(BTRFS_I(inode)); 10396 key.offset = 0; 10397 key.type = BTRFS_EXTENT_DATA_KEY; 10398 datasize = btrfs_file_extent_calc_inline_size(name_len); 10399 err = btrfs_insert_empty_item(trans, root, path, &key, 10400 datasize); 10401 if (err) { 10402 btrfs_free_path(path); 10403 goto out_unlock_inode; 10404 } 10405 leaf = path->nodes[0]; 10406 ei = btrfs_item_ptr(leaf, path->slots[0], 10407 struct btrfs_file_extent_item); 10408 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10409 btrfs_set_file_extent_type(leaf, ei, 10410 BTRFS_FILE_EXTENT_INLINE); 10411 btrfs_set_file_extent_encryption(leaf, ei, 0); 10412 btrfs_set_file_extent_compression(leaf, ei, 0); 10413 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10414 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10415 10416 ptr = btrfs_file_extent_inline_start(ei); 10417 write_extent_buffer(leaf, symname, ptr, name_len); 10418 btrfs_mark_buffer_dirty(leaf); 10419 btrfs_free_path(path); 10420 10421 inode->i_op = &btrfs_symlink_inode_operations; 10422 inode_nohighmem(inode); 10423 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10424 inode_set_bytes(inode, name_len); 10425 btrfs_i_size_write(BTRFS_I(inode), name_len); 10426 err = btrfs_update_inode(trans, root, inode); 10427 /* 10428 * Last step, add directory indexes for our symlink inode. This is the 10429 * last step to avoid extra cleanup of these indexes if an error happens 10430 * elsewhere above. 10431 */ 10432 if (!err) 10433 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10434 BTRFS_I(inode), 0, index); 10435 if (err) { 10436 drop_inode = 1; 10437 goto out_unlock_inode; 10438 } 10439 10440 unlock_new_inode(inode); 10441 d_instantiate(dentry, inode); 10442 10443 out_unlock: 10444 btrfs_end_transaction(trans); 10445 if (drop_inode) { 10446 inode_dec_link_count(inode); 10447 iput(inode); 10448 } 10449 btrfs_btree_balance_dirty(fs_info); 10450 return err; 10451 10452 out_unlock_inode: 10453 drop_inode = 1; 10454 unlock_new_inode(inode); 10455 goto out_unlock; 10456 } 10457 10458 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10459 u64 start, u64 num_bytes, u64 min_size, 10460 loff_t actual_len, u64 *alloc_hint, 10461 struct btrfs_trans_handle *trans) 10462 { 10463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10464 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10465 struct extent_map *em; 10466 struct btrfs_root *root = BTRFS_I(inode)->root; 10467 struct btrfs_key ins; 10468 u64 cur_offset = start; 10469 u64 i_size; 10470 u64 cur_bytes; 10471 u64 last_alloc = (u64)-1; 10472 int ret = 0; 10473 bool own_trans = true; 10474 u64 end = start + num_bytes - 1; 10475 10476 if (trans) 10477 own_trans = false; 10478 while (num_bytes > 0) { 10479 if (own_trans) { 10480 trans = btrfs_start_transaction(root, 3); 10481 if (IS_ERR(trans)) { 10482 ret = PTR_ERR(trans); 10483 break; 10484 } 10485 } 10486 10487 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10488 cur_bytes = max(cur_bytes, min_size); 10489 /* 10490 * If we are severely fragmented we could end up with really 10491 * small allocations, so if the allocator is returning small 10492 * chunks lets make its job easier by only searching for those 10493 * sized chunks. 10494 */ 10495 cur_bytes = min(cur_bytes, last_alloc); 10496 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10497 min_size, 0, *alloc_hint, &ins, 1, 0); 10498 if (ret) { 10499 if (own_trans) 10500 btrfs_end_transaction(trans); 10501 break; 10502 } 10503 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10504 10505 last_alloc = ins.offset; 10506 ret = insert_reserved_file_extent(trans, inode, 10507 cur_offset, ins.objectid, 10508 ins.offset, ins.offset, 10509 ins.offset, 0, 0, 0, 10510 BTRFS_FILE_EXTENT_PREALLOC); 10511 if (ret) { 10512 btrfs_free_reserved_extent(fs_info, ins.objectid, 10513 ins.offset, 0); 10514 btrfs_abort_transaction(trans, ret); 10515 if (own_trans) 10516 btrfs_end_transaction(trans); 10517 break; 10518 } 10519 10520 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10521 cur_offset + ins.offset -1, 0); 10522 10523 em = alloc_extent_map(); 10524 if (!em) { 10525 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10526 &BTRFS_I(inode)->runtime_flags); 10527 goto next; 10528 } 10529 10530 em->start = cur_offset; 10531 em->orig_start = cur_offset; 10532 em->len = ins.offset; 10533 em->block_start = ins.objectid; 10534 em->block_len = ins.offset; 10535 em->orig_block_len = ins.offset; 10536 em->ram_bytes = ins.offset; 10537 em->bdev = fs_info->fs_devices->latest_bdev; 10538 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10539 em->generation = trans->transid; 10540 10541 while (1) { 10542 write_lock(&em_tree->lock); 10543 ret = add_extent_mapping(em_tree, em, 1); 10544 write_unlock(&em_tree->lock); 10545 if (ret != -EEXIST) 10546 break; 10547 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10548 cur_offset + ins.offset - 1, 10549 0); 10550 } 10551 free_extent_map(em); 10552 next: 10553 num_bytes -= ins.offset; 10554 cur_offset += ins.offset; 10555 *alloc_hint = ins.objectid + ins.offset; 10556 10557 inode_inc_iversion(inode); 10558 inode->i_ctime = current_time(inode); 10559 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10560 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10561 (actual_len > inode->i_size) && 10562 (cur_offset > inode->i_size)) { 10563 if (cur_offset > actual_len) 10564 i_size = actual_len; 10565 else 10566 i_size = cur_offset; 10567 i_size_write(inode, i_size); 10568 btrfs_ordered_update_i_size(inode, i_size, NULL); 10569 } 10570 10571 ret = btrfs_update_inode(trans, root, inode); 10572 10573 if (ret) { 10574 btrfs_abort_transaction(trans, ret); 10575 if (own_trans) 10576 btrfs_end_transaction(trans); 10577 break; 10578 } 10579 10580 if (own_trans) 10581 btrfs_end_transaction(trans); 10582 } 10583 if (cur_offset < end) 10584 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10585 end - cur_offset + 1); 10586 return ret; 10587 } 10588 10589 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10590 u64 start, u64 num_bytes, u64 min_size, 10591 loff_t actual_len, u64 *alloc_hint) 10592 { 10593 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10594 min_size, actual_len, alloc_hint, 10595 NULL); 10596 } 10597 10598 int btrfs_prealloc_file_range_trans(struct inode *inode, 10599 struct btrfs_trans_handle *trans, int mode, 10600 u64 start, u64 num_bytes, u64 min_size, 10601 loff_t actual_len, u64 *alloc_hint) 10602 { 10603 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10604 min_size, actual_len, alloc_hint, trans); 10605 } 10606 10607 static int btrfs_set_page_dirty(struct page *page) 10608 { 10609 return __set_page_dirty_nobuffers(page); 10610 } 10611 10612 static int btrfs_permission(struct inode *inode, int mask) 10613 { 10614 struct btrfs_root *root = BTRFS_I(inode)->root; 10615 umode_t mode = inode->i_mode; 10616 10617 if (mask & MAY_WRITE && 10618 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10619 if (btrfs_root_readonly(root)) 10620 return -EROFS; 10621 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10622 return -EACCES; 10623 } 10624 return generic_permission(inode, mask); 10625 } 10626 10627 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10628 { 10629 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10630 struct btrfs_trans_handle *trans; 10631 struct btrfs_root *root = BTRFS_I(dir)->root; 10632 struct inode *inode = NULL; 10633 u64 objectid; 10634 u64 index; 10635 int ret = 0; 10636 10637 /* 10638 * 5 units required for adding orphan entry 10639 */ 10640 trans = btrfs_start_transaction(root, 5); 10641 if (IS_ERR(trans)) 10642 return PTR_ERR(trans); 10643 10644 ret = btrfs_find_free_ino(root, &objectid); 10645 if (ret) 10646 goto out; 10647 10648 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10649 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10650 if (IS_ERR(inode)) { 10651 ret = PTR_ERR(inode); 10652 inode = NULL; 10653 goto out; 10654 } 10655 10656 inode->i_fop = &btrfs_file_operations; 10657 inode->i_op = &btrfs_file_inode_operations; 10658 10659 inode->i_mapping->a_ops = &btrfs_aops; 10660 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10661 10662 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10663 if (ret) 10664 goto out_inode; 10665 10666 ret = btrfs_update_inode(trans, root, inode); 10667 if (ret) 10668 goto out_inode; 10669 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10670 if (ret) 10671 goto out_inode; 10672 10673 /* 10674 * We set number of links to 0 in btrfs_new_inode(), and here we set 10675 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10676 * through: 10677 * 10678 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10679 */ 10680 set_nlink(inode, 1); 10681 unlock_new_inode(inode); 10682 d_tmpfile(dentry, inode); 10683 mark_inode_dirty(inode); 10684 10685 out: 10686 btrfs_end_transaction(trans); 10687 if (ret) 10688 iput(inode); 10689 btrfs_balance_delayed_items(fs_info); 10690 btrfs_btree_balance_dirty(fs_info); 10691 return ret; 10692 10693 out_inode: 10694 unlock_new_inode(inode); 10695 goto out; 10696 10697 } 10698 10699 __attribute__((const)) 10700 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10701 { 10702 return -EAGAIN; 10703 } 10704 10705 static struct btrfs_fs_info *iotree_fs_info(void *private_data) 10706 { 10707 struct inode *inode = private_data; 10708 return btrfs_sb(inode->i_sb); 10709 } 10710 10711 static void btrfs_check_extent_io_range(void *private_data, const char *caller, 10712 u64 start, u64 end) 10713 { 10714 struct inode *inode = private_data; 10715 u64 isize; 10716 10717 isize = i_size_read(inode); 10718 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 10719 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 10720 "%s: ino %llu isize %llu odd range [%llu,%llu]", 10721 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 10722 } 10723 } 10724 10725 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end) 10726 { 10727 struct inode *inode = private_data; 10728 unsigned long index = start >> PAGE_SHIFT; 10729 unsigned long end_index = end >> PAGE_SHIFT; 10730 struct page *page; 10731 10732 while (index <= end_index) { 10733 page = find_get_page(inode->i_mapping, index); 10734 ASSERT(page); /* Pages should be in the extent_io_tree */ 10735 set_page_writeback(page); 10736 put_page(page); 10737 index++; 10738 } 10739 } 10740 10741 static const struct inode_operations btrfs_dir_inode_operations = { 10742 .getattr = btrfs_getattr, 10743 .lookup = btrfs_lookup, 10744 .create = btrfs_create, 10745 .unlink = btrfs_unlink, 10746 .link = btrfs_link, 10747 .mkdir = btrfs_mkdir, 10748 .rmdir = btrfs_rmdir, 10749 .rename = btrfs_rename2, 10750 .symlink = btrfs_symlink, 10751 .setattr = btrfs_setattr, 10752 .mknod = btrfs_mknod, 10753 .listxattr = btrfs_listxattr, 10754 .permission = btrfs_permission, 10755 .get_acl = btrfs_get_acl, 10756 .set_acl = btrfs_set_acl, 10757 .update_time = btrfs_update_time, 10758 .tmpfile = btrfs_tmpfile, 10759 }; 10760 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10761 .lookup = btrfs_lookup, 10762 .permission = btrfs_permission, 10763 .update_time = btrfs_update_time, 10764 }; 10765 10766 static const struct file_operations btrfs_dir_file_operations = { 10767 .llseek = generic_file_llseek, 10768 .read = generic_read_dir, 10769 .iterate_shared = btrfs_real_readdir, 10770 .open = btrfs_opendir, 10771 .unlocked_ioctl = btrfs_ioctl, 10772 #ifdef CONFIG_COMPAT 10773 .compat_ioctl = btrfs_compat_ioctl, 10774 #endif 10775 .release = btrfs_release_file, 10776 .fsync = btrfs_sync_file, 10777 }; 10778 10779 static const struct extent_io_ops btrfs_extent_io_ops = { 10780 /* mandatory callbacks */ 10781 .submit_bio_hook = btrfs_submit_bio_hook, 10782 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10783 .merge_bio_hook = btrfs_merge_bio_hook, 10784 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10785 .tree_fs_info = iotree_fs_info, 10786 .set_range_writeback = btrfs_set_range_writeback, 10787 10788 /* optional callbacks */ 10789 .fill_delalloc = run_delalloc_range, 10790 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10791 .writepage_start_hook = btrfs_writepage_start_hook, 10792 .set_bit_hook = btrfs_set_bit_hook, 10793 .clear_bit_hook = btrfs_clear_bit_hook, 10794 .merge_extent_hook = btrfs_merge_extent_hook, 10795 .split_extent_hook = btrfs_split_extent_hook, 10796 .check_extent_io_range = btrfs_check_extent_io_range, 10797 }; 10798 10799 /* 10800 * btrfs doesn't support the bmap operation because swapfiles 10801 * use bmap to make a mapping of extents in the file. They assume 10802 * these extents won't change over the life of the file and they 10803 * use the bmap result to do IO directly to the drive. 10804 * 10805 * the btrfs bmap call would return logical addresses that aren't 10806 * suitable for IO and they also will change frequently as COW 10807 * operations happen. So, swapfile + btrfs == corruption. 10808 * 10809 * For now we're avoiding this by dropping bmap. 10810 */ 10811 static const struct address_space_operations btrfs_aops = { 10812 .readpage = btrfs_readpage, 10813 .writepage = btrfs_writepage, 10814 .writepages = btrfs_writepages, 10815 .readpages = btrfs_readpages, 10816 .direct_IO = btrfs_direct_IO, 10817 .invalidatepage = btrfs_invalidatepage, 10818 .releasepage = btrfs_releasepage, 10819 .set_page_dirty = btrfs_set_page_dirty, 10820 .error_remove_page = generic_error_remove_page, 10821 }; 10822 10823 static const struct address_space_operations btrfs_symlink_aops = { 10824 .readpage = btrfs_readpage, 10825 .writepage = btrfs_writepage, 10826 .invalidatepage = btrfs_invalidatepage, 10827 .releasepage = btrfs_releasepage, 10828 }; 10829 10830 static const struct inode_operations btrfs_file_inode_operations = { 10831 .getattr = btrfs_getattr, 10832 .setattr = btrfs_setattr, 10833 .listxattr = btrfs_listxattr, 10834 .permission = btrfs_permission, 10835 .fiemap = btrfs_fiemap, 10836 .get_acl = btrfs_get_acl, 10837 .set_acl = btrfs_set_acl, 10838 .update_time = btrfs_update_time, 10839 }; 10840 static const struct inode_operations btrfs_special_inode_operations = { 10841 .getattr = btrfs_getattr, 10842 .setattr = btrfs_setattr, 10843 .permission = btrfs_permission, 10844 .listxattr = btrfs_listxattr, 10845 .get_acl = btrfs_get_acl, 10846 .set_acl = btrfs_set_acl, 10847 .update_time = btrfs_update_time, 10848 }; 10849 static const struct inode_operations btrfs_symlink_inode_operations = { 10850 .get_link = page_get_link, 10851 .getattr = btrfs_getattr, 10852 .setattr = btrfs_setattr, 10853 .permission = btrfs_permission, 10854 .listxattr = btrfs_listxattr, 10855 .update_time = btrfs_update_time, 10856 }; 10857 10858 const struct dentry_operations btrfs_dentry_operations = { 10859 .d_delete = btrfs_dentry_delete, 10860 .d_release = btrfs_dentry_release, 10861 }; 10862