1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/aio.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include <linux/slab.h> 41 #include <linux/ratelimit.h> 42 #include <linux/mount.h> 43 #include <linux/btrfs.h> 44 #include <linux/blkdev.h> 45 #include <linux/posix_acl_xattr.h> 46 #include "compat.h" 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "ordered-data.h" 53 #include "xattr.h" 54 #include "tree-log.h" 55 #include "volumes.h" 56 #include "compression.h" 57 #include "locking.h" 58 #include "free-space-cache.h" 59 #include "inode-map.h" 60 #include "backref.h" 61 #include "hash.h" 62 63 struct btrfs_iget_args { 64 u64 ino; 65 struct btrfs_root *root; 66 }; 67 68 static const struct inode_operations btrfs_dir_inode_operations; 69 static const struct inode_operations btrfs_symlink_inode_operations; 70 static const struct inode_operations btrfs_dir_ro_inode_operations; 71 static const struct inode_operations btrfs_special_inode_operations; 72 static const struct inode_operations btrfs_file_inode_operations; 73 static const struct address_space_operations btrfs_aops; 74 static const struct address_space_operations btrfs_symlink_aops; 75 static const struct file_operations btrfs_dir_file_operations; 76 static struct extent_io_ops btrfs_extent_io_ops; 77 78 static struct kmem_cache *btrfs_inode_cachep; 79 static struct kmem_cache *btrfs_delalloc_work_cachep; 80 struct kmem_cache *btrfs_trans_handle_cachep; 81 struct kmem_cache *btrfs_transaction_cachep; 82 struct kmem_cache *btrfs_path_cachep; 83 struct kmem_cache *btrfs_free_space_cachep; 84 85 #define S_SHIFT 12 86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 94 }; 95 96 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 97 static int btrfs_truncate(struct inode *inode); 98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 99 static noinline int cow_file_range(struct inode *inode, 100 struct page *locked_page, 101 u64 start, u64 end, int *page_started, 102 unsigned long *nr_written, int unlock); 103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 104 u64 len, u64 orig_start, 105 u64 block_start, u64 block_len, 106 u64 orig_block_len, u64 ram_bytes, 107 int type); 108 109 static int btrfs_dirty_inode(struct inode *inode); 110 111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 112 struct inode *inode, struct inode *dir, 113 const struct qstr *qstr) 114 { 115 int err; 116 117 err = btrfs_init_acl(trans, inode, dir); 118 if (!err) 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 120 return err; 121 } 122 123 /* 124 * this does all the hard work for inserting an inline extent into 125 * the btree. The caller should have done a btrfs_drop_extents so that 126 * no overlapping inline items exist in the btree 127 */ 128 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 129 struct btrfs_root *root, struct inode *inode, 130 u64 start, size_t size, size_t compressed_size, 131 int compress_type, 132 struct page **compressed_pages) 133 { 134 struct btrfs_key key; 135 struct btrfs_path *path; 136 struct extent_buffer *leaf; 137 struct page *page = NULL; 138 char *kaddr; 139 unsigned long ptr; 140 struct btrfs_file_extent_item *ei; 141 int err = 0; 142 int ret; 143 size_t cur_size = size; 144 size_t datasize; 145 unsigned long offset; 146 147 if (compressed_size && compressed_pages) 148 cur_size = compressed_size; 149 150 path = btrfs_alloc_path(); 151 if (!path) 152 return -ENOMEM; 153 154 path->leave_spinning = 1; 155 156 key.objectid = btrfs_ino(inode); 157 key.offset = start; 158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 159 datasize = btrfs_file_extent_calc_inline_size(cur_size); 160 161 inode_add_bytes(inode, size); 162 ret = btrfs_insert_empty_item(trans, root, path, &key, 163 datasize); 164 if (ret) { 165 err = ret; 166 goto fail; 167 } 168 leaf = path->nodes[0]; 169 ei = btrfs_item_ptr(leaf, path->slots[0], 170 struct btrfs_file_extent_item); 171 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 172 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 173 btrfs_set_file_extent_encryption(leaf, ei, 0); 174 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 175 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 176 ptr = btrfs_file_extent_inline_start(ei); 177 178 if (compress_type != BTRFS_COMPRESS_NONE) { 179 struct page *cpage; 180 int i = 0; 181 while (compressed_size > 0) { 182 cpage = compressed_pages[i]; 183 cur_size = min_t(unsigned long, compressed_size, 184 PAGE_CACHE_SIZE); 185 186 kaddr = kmap_atomic(cpage); 187 write_extent_buffer(leaf, kaddr, ptr, cur_size); 188 kunmap_atomic(kaddr); 189 190 i++; 191 ptr += cur_size; 192 compressed_size -= cur_size; 193 } 194 btrfs_set_file_extent_compression(leaf, ei, 195 compress_type); 196 } else { 197 page = find_get_page(inode->i_mapping, 198 start >> PAGE_CACHE_SHIFT); 199 btrfs_set_file_extent_compression(leaf, ei, 0); 200 kaddr = kmap_atomic(page); 201 offset = start & (PAGE_CACHE_SIZE - 1); 202 write_extent_buffer(leaf, kaddr + offset, ptr, size); 203 kunmap_atomic(kaddr); 204 page_cache_release(page); 205 } 206 btrfs_mark_buffer_dirty(leaf); 207 btrfs_free_path(path); 208 209 /* 210 * we're an inline extent, so nobody can 211 * extend the file past i_size without locking 212 * a page we already have locked. 213 * 214 * We must do any isize and inode updates 215 * before we unlock the pages. Otherwise we 216 * could end up racing with unlink. 217 */ 218 BTRFS_I(inode)->disk_i_size = inode->i_size; 219 ret = btrfs_update_inode(trans, root, inode); 220 221 return ret; 222 fail: 223 btrfs_free_path(path); 224 return err; 225 } 226 227 228 /* 229 * conditionally insert an inline extent into the file. This 230 * does the checks required to make sure the data is small enough 231 * to fit as an inline extent. 232 */ 233 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 234 struct btrfs_root *root, 235 struct inode *inode, u64 start, u64 end, 236 size_t compressed_size, int compress_type, 237 struct page **compressed_pages) 238 { 239 u64 isize = i_size_read(inode); 240 u64 actual_end = min(end + 1, isize); 241 u64 inline_len = actual_end - start; 242 u64 aligned_end = ALIGN(end, root->sectorsize); 243 u64 data_len = inline_len; 244 int ret; 245 246 if (compressed_size) 247 data_len = compressed_size; 248 249 if (start > 0 || 250 actual_end >= PAGE_CACHE_SIZE || 251 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 252 (!compressed_size && 253 (actual_end & (root->sectorsize - 1)) == 0) || 254 end + 1 < isize || 255 data_len > root->fs_info->max_inline) { 256 return 1; 257 } 258 259 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1); 260 if (ret) 261 return ret; 262 263 if (isize > actual_end) 264 inline_len = min_t(u64, isize, actual_end); 265 ret = insert_inline_extent(trans, root, inode, start, 266 inline_len, compressed_size, 267 compress_type, compressed_pages); 268 if (ret && ret != -ENOSPC) { 269 btrfs_abort_transaction(trans, root, ret); 270 return ret; 271 } else if (ret == -ENOSPC) { 272 return 1; 273 } 274 275 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 276 btrfs_delalloc_release_metadata(inode, end + 1 - start); 277 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 278 return 0; 279 } 280 281 struct async_extent { 282 u64 start; 283 u64 ram_size; 284 u64 compressed_size; 285 struct page **pages; 286 unsigned long nr_pages; 287 int compress_type; 288 struct list_head list; 289 }; 290 291 struct async_cow { 292 struct inode *inode; 293 struct btrfs_root *root; 294 struct page *locked_page; 295 u64 start; 296 u64 end; 297 struct list_head extents; 298 struct btrfs_work work; 299 }; 300 301 static noinline int add_async_extent(struct async_cow *cow, 302 u64 start, u64 ram_size, 303 u64 compressed_size, 304 struct page **pages, 305 unsigned long nr_pages, 306 int compress_type) 307 { 308 struct async_extent *async_extent; 309 310 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 311 BUG_ON(!async_extent); /* -ENOMEM */ 312 async_extent->start = start; 313 async_extent->ram_size = ram_size; 314 async_extent->compressed_size = compressed_size; 315 async_extent->pages = pages; 316 async_extent->nr_pages = nr_pages; 317 async_extent->compress_type = compress_type; 318 list_add_tail(&async_extent->list, &cow->extents); 319 return 0; 320 } 321 322 /* 323 * we create compressed extents in two phases. The first 324 * phase compresses a range of pages that have already been 325 * locked (both pages and state bits are locked). 326 * 327 * This is done inside an ordered work queue, and the compression 328 * is spread across many cpus. The actual IO submission is step 329 * two, and the ordered work queue takes care of making sure that 330 * happens in the same order things were put onto the queue by 331 * writepages and friends. 332 * 333 * If this code finds it can't get good compression, it puts an 334 * entry onto the work queue to write the uncompressed bytes. This 335 * makes sure that both compressed inodes and uncompressed inodes 336 * are written in the same order that the flusher thread sent them 337 * down. 338 */ 339 static noinline int compress_file_range(struct inode *inode, 340 struct page *locked_page, 341 u64 start, u64 end, 342 struct async_cow *async_cow, 343 int *num_added) 344 { 345 struct btrfs_root *root = BTRFS_I(inode)->root; 346 struct btrfs_trans_handle *trans; 347 u64 num_bytes; 348 u64 blocksize = root->sectorsize; 349 u64 actual_end; 350 u64 isize = i_size_read(inode); 351 int ret = 0; 352 struct page **pages = NULL; 353 unsigned long nr_pages; 354 unsigned long nr_pages_ret = 0; 355 unsigned long total_compressed = 0; 356 unsigned long total_in = 0; 357 unsigned long max_compressed = 128 * 1024; 358 unsigned long max_uncompressed = 128 * 1024; 359 int i; 360 int will_compress; 361 int compress_type = root->fs_info->compress_type; 362 int redirty = 0; 363 364 /* if this is a small write inside eof, kick off a defrag */ 365 if ((end - start + 1) < 16 * 1024 && 366 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 367 btrfs_add_inode_defrag(NULL, inode); 368 369 actual_end = min_t(u64, isize, end + 1); 370 again: 371 will_compress = 0; 372 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 373 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 374 375 /* 376 * we don't want to send crud past the end of i_size through 377 * compression, that's just a waste of CPU time. So, if the 378 * end of the file is before the start of our current 379 * requested range of bytes, we bail out to the uncompressed 380 * cleanup code that can deal with all of this. 381 * 382 * It isn't really the fastest way to fix things, but this is a 383 * very uncommon corner. 384 */ 385 if (actual_end <= start) 386 goto cleanup_and_bail_uncompressed; 387 388 total_compressed = actual_end - start; 389 390 /* we want to make sure that amount of ram required to uncompress 391 * an extent is reasonable, so we limit the total size in ram 392 * of a compressed extent to 128k. This is a crucial number 393 * because it also controls how easily we can spread reads across 394 * cpus for decompression. 395 * 396 * We also want to make sure the amount of IO required to do 397 * a random read is reasonably small, so we limit the size of 398 * a compressed extent to 128k. 399 */ 400 total_compressed = min(total_compressed, max_uncompressed); 401 num_bytes = ALIGN(end - start + 1, blocksize); 402 num_bytes = max(blocksize, num_bytes); 403 total_in = 0; 404 ret = 0; 405 406 /* 407 * we do compression for mount -o compress and when the 408 * inode has not been flagged as nocompress. This flag can 409 * change at any time if we discover bad compression ratios. 410 */ 411 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 412 (btrfs_test_opt(root, COMPRESS) || 413 (BTRFS_I(inode)->force_compress) || 414 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 415 WARN_ON(pages); 416 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 417 if (!pages) { 418 /* just bail out to the uncompressed code */ 419 goto cont; 420 } 421 422 if (BTRFS_I(inode)->force_compress) 423 compress_type = BTRFS_I(inode)->force_compress; 424 425 /* 426 * we need to call clear_page_dirty_for_io on each 427 * page in the range. Otherwise applications with the file 428 * mmap'd can wander in and change the page contents while 429 * we are compressing them. 430 * 431 * If the compression fails for any reason, we set the pages 432 * dirty again later on. 433 */ 434 extent_range_clear_dirty_for_io(inode, start, end); 435 redirty = 1; 436 ret = btrfs_compress_pages(compress_type, 437 inode->i_mapping, start, 438 total_compressed, pages, 439 nr_pages, &nr_pages_ret, 440 &total_in, 441 &total_compressed, 442 max_compressed); 443 444 if (!ret) { 445 unsigned long offset = total_compressed & 446 (PAGE_CACHE_SIZE - 1); 447 struct page *page = pages[nr_pages_ret - 1]; 448 char *kaddr; 449 450 /* zero the tail end of the last page, we might be 451 * sending it down to disk 452 */ 453 if (offset) { 454 kaddr = kmap_atomic(page); 455 memset(kaddr + offset, 0, 456 PAGE_CACHE_SIZE - offset); 457 kunmap_atomic(kaddr); 458 } 459 will_compress = 1; 460 } 461 } 462 cont: 463 if (start == 0) { 464 trans = btrfs_join_transaction(root); 465 if (IS_ERR(trans)) { 466 ret = PTR_ERR(trans); 467 trans = NULL; 468 goto cleanup_and_out; 469 } 470 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 471 472 /* lets try to make an inline extent */ 473 if (ret || total_in < (actual_end - start)) { 474 /* we didn't compress the entire range, try 475 * to make an uncompressed inline extent. 476 */ 477 ret = cow_file_range_inline(trans, root, inode, 478 start, end, 0, 0, NULL); 479 } else { 480 /* try making a compressed inline extent */ 481 ret = cow_file_range_inline(trans, root, inode, 482 start, end, 483 total_compressed, 484 compress_type, pages); 485 } 486 if (ret <= 0) { 487 /* 488 * inline extent creation worked or returned error, 489 * we don't need to create any more async work items. 490 * Unlock and free up our temp pages. 491 */ 492 extent_clear_unlock_delalloc(inode, 493 &BTRFS_I(inode)->io_tree, 494 start, end, NULL, 495 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 496 EXTENT_CLEAR_DELALLOC | 497 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 498 499 btrfs_end_transaction(trans, root); 500 goto free_pages_out; 501 } 502 btrfs_end_transaction(trans, root); 503 } 504 505 if (will_compress) { 506 /* 507 * we aren't doing an inline extent round the compressed size 508 * up to a block size boundary so the allocator does sane 509 * things 510 */ 511 total_compressed = ALIGN(total_compressed, blocksize); 512 513 /* 514 * one last check to make sure the compression is really a 515 * win, compare the page count read with the blocks on disk 516 */ 517 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 518 if (total_compressed >= total_in) { 519 will_compress = 0; 520 } else { 521 num_bytes = total_in; 522 } 523 } 524 if (!will_compress && pages) { 525 /* 526 * the compression code ran but failed to make things smaller, 527 * free any pages it allocated and our page pointer array 528 */ 529 for (i = 0; i < nr_pages_ret; i++) { 530 WARN_ON(pages[i]->mapping); 531 page_cache_release(pages[i]); 532 } 533 kfree(pages); 534 pages = NULL; 535 total_compressed = 0; 536 nr_pages_ret = 0; 537 538 /* flag the file so we don't compress in the future */ 539 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 540 !(BTRFS_I(inode)->force_compress)) { 541 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 542 } 543 } 544 if (will_compress) { 545 *num_added += 1; 546 547 /* the async work queues will take care of doing actual 548 * allocation on disk for these compressed pages, 549 * and will submit them to the elevator. 550 */ 551 add_async_extent(async_cow, start, num_bytes, 552 total_compressed, pages, nr_pages_ret, 553 compress_type); 554 555 if (start + num_bytes < end) { 556 start += num_bytes; 557 pages = NULL; 558 cond_resched(); 559 goto again; 560 } 561 } else { 562 cleanup_and_bail_uncompressed: 563 /* 564 * No compression, but we still need to write the pages in 565 * the file we've been given so far. redirty the locked 566 * page if it corresponds to our extent and set things up 567 * for the async work queue to run cow_file_range to do 568 * the normal delalloc dance 569 */ 570 if (page_offset(locked_page) >= start && 571 page_offset(locked_page) <= end) { 572 __set_page_dirty_nobuffers(locked_page); 573 /* unlocked later on in the async handlers */ 574 } 575 if (redirty) 576 extent_range_redirty_for_io(inode, start, end); 577 add_async_extent(async_cow, start, end - start + 1, 578 0, NULL, 0, BTRFS_COMPRESS_NONE); 579 *num_added += 1; 580 } 581 582 out: 583 return ret; 584 585 free_pages_out: 586 for (i = 0; i < nr_pages_ret; i++) { 587 WARN_ON(pages[i]->mapping); 588 page_cache_release(pages[i]); 589 } 590 kfree(pages); 591 592 goto out; 593 594 cleanup_and_out: 595 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 596 start, end, NULL, 597 EXTENT_CLEAR_UNLOCK_PAGE | 598 EXTENT_CLEAR_DIRTY | 599 EXTENT_CLEAR_DELALLOC | 600 EXTENT_SET_WRITEBACK | 601 EXTENT_END_WRITEBACK); 602 if (!trans || IS_ERR(trans)) 603 btrfs_error(root->fs_info, ret, "Failed to join transaction"); 604 else 605 btrfs_abort_transaction(trans, root, ret); 606 goto free_pages_out; 607 } 608 609 /* 610 * phase two of compressed writeback. This is the ordered portion 611 * of the code, which only gets called in the order the work was 612 * queued. We walk all the async extents created by compress_file_range 613 * and send them down to the disk. 614 */ 615 static noinline int submit_compressed_extents(struct inode *inode, 616 struct async_cow *async_cow) 617 { 618 struct async_extent *async_extent; 619 u64 alloc_hint = 0; 620 struct btrfs_trans_handle *trans; 621 struct btrfs_key ins; 622 struct extent_map *em; 623 struct btrfs_root *root = BTRFS_I(inode)->root; 624 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 625 struct extent_io_tree *io_tree; 626 int ret = 0; 627 628 if (list_empty(&async_cow->extents)) 629 return 0; 630 631 again: 632 while (!list_empty(&async_cow->extents)) { 633 async_extent = list_entry(async_cow->extents.next, 634 struct async_extent, list); 635 list_del(&async_extent->list); 636 637 io_tree = &BTRFS_I(inode)->io_tree; 638 639 retry: 640 /* did the compression code fall back to uncompressed IO? */ 641 if (!async_extent->pages) { 642 int page_started = 0; 643 unsigned long nr_written = 0; 644 645 lock_extent(io_tree, async_extent->start, 646 async_extent->start + 647 async_extent->ram_size - 1); 648 649 /* allocate blocks */ 650 ret = cow_file_range(inode, async_cow->locked_page, 651 async_extent->start, 652 async_extent->start + 653 async_extent->ram_size - 1, 654 &page_started, &nr_written, 0); 655 656 /* JDM XXX */ 657 658 /* 659 * if page_started, cow_file_range inserted an 660 * inline extent and took care of all the unlocking 661 * and IO for us. Otherwise, we need to submit 662 * all those pages down to the drive. 663 */ 664 if (!page_started && !ret) 665 extent_write_locked_range(io_tree, 666 inode, async_extent->start, 667 async_extent->start + 668 async_extent->ram_size - 1, 669 btrfs_get_extent, 670 WB_SYNC_ALL); 671 else if (ret) 672 unlock_page(async_cow->locked_page); 673 kfree(async_extent); 674 cond_resched(); 675 continue; 676 } 677 678 lock_extent(io_tree, async_extent->start, 679 async_extent->start + async_extent->ram_size - 1); 680 681 trans = btrfs_join_transaction(root); 682 if (IS_ERR(trans)) { 683 ret = PTR_ERR(trans); 684 } else { 685 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 686 ret = btrfs_reserve_extent(trans, root, 687 async_extent->compressed_size, 688 async_extent->compressed_size, 689 0, alloc_hint, &ins, 1); 690 if (ret && ret != -ENOSPC) 691 btrfs_abort_transaction(trans, root, ret); 692 btrfs_end_transaction(trans, root); 693 } 694 695 if (ret) { 696 int i; 697 698 for (i = 0; i < async_extent->nr_pages; i++) { 699 WARN_ON(async_extent->pages[i]->mapping); 700 page_cache_release(async_extent->pages[i]); 701 } 702 kfree(async_extent->pages); 703 async_extent->nr_pages = 0; 704 async_extent->pages = NULL; 705 706 if (ret == -ENOSPC) { 707 unlock_extent(io_tree, async_extent->start, 708 async_extent->start + 709 async_extent->ram_size - 1); 710 goto retry; 711 } 712 goto out_free; 713 } 714 715 /* 716 * here we're doing allocation and writeback of the 717 * compressed pages 718 */ 719 btrfs_drop_extent_cache(inode, async_extent->start, 720 async_extent->start + 721 async_extent->ram_size - 1, 0); 722 723 em = alloc_extent_map(); 724 if (!em) { 725 ret = -ENOMEM; 726 goto out_free_reserve; 727 } 728 em->start = async_extent->start; 729 em->len = async_extent->ram_size; 730 em->orig_start = em->start; 731 em->mod_start = em->start; 732 em->mod_len = em->len; 733 734 em->block_start = ins.objectid; 735 em->block_len = ins.offset; 736 em->orig_block_len = ins.offset; 737 em->ram_bytes = async_extent->ram_size; 738 em->bdev = root->fs_info->fs_devices->latest_bdev; 739 em->compress_type = async_extent->compress_type; 740 set_bit(EXTENT_FLAG_PINNED, &em->flags); 741 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 742 em->generation = -1; 743 744 while (1) { 745 write_lock(&em_tree->lock); 746 ret = add_extent_mapping(em_tree, em, 1); 747 write_unlock(&em_tree->lock); 748 if (ret != -EEXIST) { 749 free_extent_map(em); 750 break; 751 } 752 btrfs_drop_extent_cache(inode, async_extent->start, 753 async_extent->start + 754 async_extent->ram_size - 1, 0); 755 } 756 757 if (ret) 758 goto out_free_reserve; 759 760 ret = btrfs_add_ordered_extent_compress(inode, 761 async_extent->start, 762 ins.objectid, 763 async_extent->ram_size, 764 ins.offset, 765 BTRFS_ORDERED_COMPRESSED, 766 async_extent->compress_type); 767 if (ret) 768 goto out_free_reserve; 769 770 /* 771 * clear dirty, set writeback and unlock the pages. 772 */ 773 extent_clear_unlock_delalloc(inode, 774 &BTRFS_I(inode)->io_tree, 775 async_extent->start, 776 async_extent->start + 777 async_extent->ram_size - 1, 778 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 779 EXTENT_CLEAR_UNLOCK | 780 EXTENT_CLEAR_DELALLOC | 781 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 782 783 ret = btrfs_submit_compressed_write(inode, 784 async_extent->start, 785 async_extent->ram_size, 786 ins.objectid, 787 ins.offset, async_extent->pages, 788 async_extent->nr_pages); 789 alloc_hint = ins.objectid + ins.offset; 790 kfree(async_extent); 791 if (ret) 792 goto out; 793 cond_resched(); 794 } 795 ret = 0; 796 out: 797 return ret; 798 out_free_reserve: 799 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 800 out_free: 801 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 802 async_extent->start, 803 async_extent->start + 804 async_extent->ram_size - 1, 805 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 806 EXTENT_CLEAR_UNLOCK | 807 EXTENT_CLEAR_DELALLOC | 808 EXTENT_CLEAR_DIRTY | 809 EXTENT_SET_WRITEBACK | 810 EXTENT_END_WRITEBACK); 811 kfree(async_extent); 812 goto again; 813 } 814 815 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 816 u64 num_bytes) 817 { 818 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 819 struct extent_map *em; 820 u64 alloc_hint = 0; 821 822 read_lock(&em_tree->lock); 823 em = search_extent_mapping(em_tree, start, num_bytes); 824 if (em) { 825 /* 826 * if block start isn't an actual block number then find the 827 * first block in this inode and use that as a hint. If that 828 * block is also bogus then just don't worry about it. 829 */ 830 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 831 free_extent_map(em); 832 em = search_extent_mapping(em_tree, 0, 0); 833 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 834 alloc_hint = em->block_start; 835 if (em) 836 free_extent_map(em); 837 } else { 838 alloc_hint = em->block_start; 839 free_extent_map(em); 840 } 841 } 842 read_unlock(&em_tree->lock); 843 844 return alloc_hint; 845 } 846 847 /* 848 * when extent_io.c finds a delayed allocation range in the file, 849 * the call backs end up in this code. The basic idea is to 850 * allocate extents on disk for the range, and create ordered data structs 851 * in ram to track those extents. 852 * 853 * locked_page is the page that writepage had locked already. We use 854 * it to make sure we don't do extra locks or unlocks. 855 * 856 * *page_started is set to one if we unlock locked_page and do everything 857 * required to start IO on it. It may be clean and already done with 858 * IO when we return. 859 */ 860 static noinline int __cow_file_range(struct btrfs_trans_handle *trans, 861 struct inode *inode, 862 struct btrfs_root *root, 863 struct page *locked_page, 864 u64 start, u64 end, int *page_started, 865 unsigned long *nr_written, 866 int unlock) 867 { 868 u64 alloc_hint = 0; 869 u64 num_bytes; 870 unsigned long ram_size; 871 u64 disk_num_bytes; 872 u64 cur_alloc_size; 873 u64 blocksize = root->sectorsize; 874 struct btrfs_key ins; 875 struct extent_map *em; 876 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 877 int ret = 0; 878 879 BUG_ON(btrfs_is_free_space_inode(inode)); 880 881 num_bytes = ALIGN(end - start + 1, blocksize); 882 num_bytes = max(blocksize, num_bytes); 883 disk_num_bytes = num_bytes; 884 885 /* if this is a small write inside eof, kick off defrag */ 886 if (num_bytes < 64 * 1024 && 887 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 888 btrfs_add_inode_defrag(trans, inode); 889 890 if (start == 0) { 891 /* lets try to make an inline extent */ 892 ret = cow_file_range_inline(trans, root, inode, 893 start, end, 0, 0, NULL); 894 if (ret == 0) { 895 extent_clear_unlock_delalloc(inode, 896 &BTRFS_I(inode)->io_tree, 897 start, end, NULL, 898 EXTENT_CLEAR_UNLOCK_PAGE | 899 EXTENT_CLEAR_UNLOCK | 900 EXTENT_CLEAR_DELALLOC | 901 EXTENT_CLEAR_DIRTY | 902 EXTENT_SET_WRITEBACK | 903 EXTENT_END_WRITEBACK); 904 905 *nr_written = *nr_written + 906 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 907 *page_started = 1; 908 goto out; 909 } else if (ret < 0) { 910 btrfs_abort_transaction(trans, root, ret); 911 goto out_unlock; 912 } 913 } 914 915 BUG_ON(disk_num_bytes > 916 btrfs_super_total_bytes(root->fs_info->super_copy)); 917 918 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 919 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 920 921 while (disk_num_bytes > 0) { 922 unsigned long op; 923 924 cur_alloc_size = disk_num_bytes; 925 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 926 root->sectorsize, 0, alloc_hint, 927 &ins, 1); 928 if (ret < 0) { 929 btrfs_abort_transaction(trans, root, ret); 930 goto out_unlock; 931 } 932 933 em = alloc_extent_map(); 934 if (!em) { 935 ret = -ENOMEM; 936 goto out_reserve; 937 } 938 em->start = start; 939 em->orig_start = em->start; 940 ram_size = ins.offset; 941 em->len = ins.offset; 942 em->mod_start = em->start; 943 em->mod_len = em->len; 944 945 em->block_start = ins.objectid; 946 em->block_len = ins.offset; 947 em->orig_block_len = ins.offset; 948 em->ram_bytes = ram_size; 949 em->bdev = root->fs_info->fs_devices->latest_bdev; 950 set_bit(EXTENT_FLAG_PINNED, &em->flags); 951 em->generation = -1; 952 953 while (1) { 954 write_lock(&em_tree->lock); 955 ret = add_extent_mapping(em_tree, em, 1); 956 write_unlock(&em_tree->lock); 957 if (ret != -EEXIST) { 958 free_extent_map(em); 959 break; 960 } 961 btrfs_drop_extent_cache(inode, start, 962 start + ram_size - 1, 0); 963 } 964 if (ret) 965 goto out_reserve; 966 967 cur_alloc_size = ins.offset; 968 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 969 ram_size, cur_alloc_size, 0); 970 if (ret) 971 goto out_reserve; 972 973 if (root->root_key.objectid == 974 BTRFS_DATA_RELOC_TREE_OBJECTID) { 975 ret = btrfs_reloc_clone_csums(inode, start, 976 cur_alloc_size); 977 if (ret) { 978 btrfs_abort_transaction(trans, root, ret); 979 goto out_reserve; 980 } 981 } 982 983 if (disk_num_bytes < cur_alloc_size) 984 break; 985 986 /* we're not doing compressed IO, don't unlock the first 987 * page (which the caller expects to stay locked), don't 988 * clear any dirty bits and don't set any writeback bits 989 * 990 * Do set the Private2 bit so we know this page was properly 991 * setup for writepage 992 */ 993 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 994 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 995 EXTENT_SET_PRIVATE2; 996 997 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 998 start, start + ram_size - 1, 999 locked_page, op); 1000 disk_num_bytes -= cur_alloc_size; 1001 num_bytes -= cur_alloc_size; 1002 alloc_hint = ins.objectid + ins.offset; 1003 start += cur_alloc_size; 1004 } 1005 out: 1006 return ret; 1007 1008 out_reserve: 1009 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 1010 out_unlock: 1011 extent_clear_unlock_delalloc(inode, 1012 &BTRFS_I(inode)->io_tree, 1013 start, end, locked_page, 1014 EXTENT_CLEAR_UNLOCK_PAGE | 1015 EXTENT_CLEAR_UNLOCK | 1016 EXTENT_CLEAR_DELALLOC | 1017 EXTENT_CLEAR_DIRTY | 1018 EXTENT_SET_WRITEBACK | 1019 EXTENT_END_WRITEBACK); 1020 1021 goto out; 1022 } 1023 1024 static noinline int cow_file_range(struct inode *inode, 1025 struct page *locked_page, 1026 u64 start, u64 end, int *page_started, 1027 unsigned long *nr_written, 1028 int unlock) 1029 { 1030 struct btrfs_trans_handle *trans; 1031 struct btrfs_root *root = BTRFS_I(inode)->root; 1032 int ret; 1033 1034 trans = btrfs_join_transaction(root); 1035 if (IS_ERR(trans)) { 1036 extent_clear_unlock_delalloc(inode, 1037 &BTRFS_I(inode)->io_tree, 1038 start, end, locked_page, 1039 EXTENT_CLEAR_UNLOCK_PAGE | 1040 EXTENT_CLEAR_UNLOCK | 1041 EXTENT_CLEAR_DELALLOC | 1042 EXTENT_CLEAR_DIRTY | 1043 EXTENT_SET_WRITEBACK | 1044 EXTENT_END_WRITEBACK); 1045 return PTR_ERR(trans); 1046 } 1047 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1048 1049 ret = __cow_file_range(trans, inode, root, locked_page, start, end, 1050 page_started, nr_written, unlock); 1051 1052 btrfs_end_transaction(trans, root); 1053 1054 return ret; 1055 } 1056 1057 /* 1058 * work queue call back to started compression on a file and pages 1059 */ 1060 static noinline void async_cow_start(struct btrfs_work *work) 1061 { 1062 struct async_cow *async_cow; 1063 int num_added = 0; 1064 async_cow = container_of(work, struct async_cow, work); 1065 1066 compress_file_range(async_cow->inode, async_cow->locked_page, 1067 async_cow->start, async_cow->end, async_cow, 1068 &num_added); 1069 if (num_added == 0) { 1070 btrfs_add_delayed_iput(async_cow->inode); 1071 async_cow->inode = NULL; 1072 } 1073 } 1074 1075 /* 1076 * work queue call back to submit previously compressed pages 1077 */ 1078 static noinline void async_cow_submit(struct btrfs_work *work) 1079 { 1080 struct async_cow *async_cow; 1081 struct btrfs_root *root; 1082 unsigned long nr_pages; 1083 1084 async_cow = container_of(work, struct async_cow, work); 1085 1086 root = async_cow->root; 1087 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1088 PAGE_CACHE_SHIFT; 1089 1090 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1091 5 * 1024 * 1024 && 1092 waitqueue_active(&root->fs_info->async_submit_wait)) 1093 wake_up(&root->fs_info->async_submit_wait); 1094 1095 if (async_cow->inode) 1096 submit_compressed_extents(async_cow->inode, async_cow); 1097 } 1098 1099 static noinline void async_cow_free(struct btrfs_work *work) 1100 { 1101 struct async_cow *async_cow; 1102 async_cow = container_of(work, struct async_cow, work); 1103 if (async_cow->inode) 1104 btrfs_add_delayed_iput(async_cow->inode); 1105 kfree(async_cow); 1106 } 1107 1108 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1109 u64 start, u64 end, int *page_started, 1110 unsigned long *nr_written) 1111 { 1112 struct async_cow *async_cow; 1113 struct btrfs_root *root = BTRFS_I(inode)->root; 1114 unsigned long nr_pages; 1115 u64 cur_end; 1116 int limit = 10 * 1024 * 1024; 1117 1118 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1119 1, 0, NULL, GFP_NOFS); 1120 while (start < end) { 1121 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1122 BUG_ON(!async_cow); /* -ENOMEM */ 1123 async_cow->inode = igrab(inode); 1124 async_cow->root = root; 1125 async_cow->locked_page = locked_page; 1126 async_cow->start = start; 1127 1128 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1129 cur_end = end; 1130 else 1131 cur_end = min(end, start + 512 * 1024 - 1); 1132 1133 async_cow->end = cur_end; 1134 INIT_LIST_HEAD(&async_cow->extents); 1135 1136 async_cow->work.func = async_cow_start; 1137 async_cow->work.ordered_func = async_cow_submit; 1138 async_cow->work.ordered_free = async_cow_free; 1139 async_cow->work.flags = 0; 1140 1141 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1142 PAGE_CACHE_SHIFT; 1143 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1144 1145 btrfs_queue_worker(&root->fs_info->delalloc_workers, 1146 &async_cow->work); 1147 1148 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1149 wait_event(root->fs_info->async_submit_wait, 1150 (atomic_read(&root->fs_info->async_delalloc_pages) < 1151 limit)); 1152 } 1153 1154 while (atomic_read(&root->fs_info->async_submit_draining) && 1155 atomic_read(&root->fs_info->async_delalloc_pages)) { 1156 wait_event(root->fs_info->async_submit_wait, 1157 (atomic_read(&root->fs_info->async_delalloc_pages) == 1158 0)); 1159 } 1160 1161 *nr_written += nr_pages; 1162 start = cur_end + 1; 1163 } 1164 *page_started = 1; 1165 return 0; 1166 } 1167 1168 static noinline int csum_exist_in_range(struct btrfs_root *root, 1169 u64 bytenr, u64 num_bytes) 1170 { 1171 int ret; 1172 struct btrfs_ordered_sum *sums; 1173 LIST_HEAD(list); 1174 1175 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1176 bytenr + num_bytes - 1, &list, 0); 1177 if (ret == 0 && list_empty(&list)) 1178 return 0; 1179 1180 while (!list_empty(&list)) { 1181 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1182 list_del(&sums->list); 1183 kfree(sums); 1184 } 1185 return 1; 1186 } 1187 1188 /* 1189 * when nowcow writeback call back. This checks for snapshots or COW copies 1190 * of the extents that exist in the file, and COWs the file as required. 1191 * 1192 * If no cow copies or snapshots exist, we write directly to the existing 1193 * blocks on disk 1194 */ 1195 static noinline int run_delalloc_nocow(struct inode *inode, 1196 struct page *locked_page, 1197 u64 start, u64 end, int *page_started, int force, 1198 unsigned long *nr_written) 1199 { 1200 struct btrfs_root *root = BTRFS_I(inode)->root; 1201 struct btrfs_trans_handle *trans; 1202 struct extent_buffer *leaf; 1203 struct btrfs_path *path; 1204 struct btrfs_file_extent_item *fi; 1205 struct btrfs_key found_key; 1206 u64 cow_start; 1207 u64 cur_offset; 1208 u64 extent_end; 1209 u64 extent_offset; 1210 u64 disk_bytenr; 1211 u64 num_bytes; 1212 u64 disk_num_bytes; 1213 u64 ram_bytes; 1214 int extent_type; 1215 int ret, err; 1216 int type; 1217 int nocow; 1218 int check_prev = 1; 1219 bool nolock; 1220 u64 ino = btrfs_ino(inode); 1221 1222 path = btrfs_alloc_path(); 1223 if (!path) { 1224 extent_clear_unlock_delalloc(inode, 1225 &BTRFS_I(inode)->io_tree, 1226 start, end, locked_page, 1227 EXTENT_CLEAR_UNLOCK_PAGE | 1228 EXTENT_CLEAR_UNLOCK | 1229 EXTENT_CLEAR_DELALLOC | 1230 EXTENT_CLEAR_DIRTY | 1231 EXTENT_SET_WRITEBACK | 1232 EXTENT_END_WRITEBACK); 1233 return -ENOMEM; 1234 } 1235 1236 nolock = btrfs_is_free_space_inode(inode); 1237 1238 if (nolock) 1239 trans = btrfs_join_transaction_nolock(root); 1240 else 1241 trans = btrfs_join_transaction(root); 1242 1243 if (IS_ERR(trans)) { 1244 extent_clear_unlock_delalloc(inode, 1245 &BTRFS_I(inode)->io_tree, 1246 start, end, locked_page, 1247 EXTENT_CLEAR_UNLOCK_PAGE | 1248 EXTENT_CLEAR_UNLOCK | 1249 EXTENT_CLEAR_DELALLOC | 1250 EXTENT_CLEAR_DIRTY | 1251 EXTENT_SET_WRITEBACK | 1252 EXTENT_END_WRITEBACK); 1253 btrfs_free_path(path); 1254 return PTR_ERR(trans); 1255 } 1256 1257 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1258 1259 cow_start = (u64)-1; 1260 cur_offset = start; 1261 while (1) { 1262 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1263 cur_offset, 0); 1264 if (ret < 0) { 1265 btrfs_abort_transaction(trans, root, ret); 1266 goto error; 1267 } 1268 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1269 leaf = path->nodes[0]; 1270 btrfs_item_key_to_cpu(leaf, &found_key, 1271 path->slots[0] - 1); 1272 if (found_key.objectid == ino && 1273 found_key.type == BTRFS_EXTENT_DATA_KEY) 1274 path->slots[0]--; 1275 } 1276 check_prev = 0; 1277 next_slot: 1278 leaf = path->nodes[0]; 1279 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1280 ret = btrfs_next_leaf(root, path); 1281 if (ret < 0) { 1282 btrfs_abort_transaction(trans, root, ret); 1283 goto error; 1284 } 1285 if (ret > 0) 1286 break; 1287 leaf = path->nodes[0]; 1288 } 1289 1290 nocow = 0; 1291 disk_bytenr = 0; 1292 num_bytes = 0; 1293 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1294 1295 if (found_key.objectid > ino || 1296 found_key.type > BTRFS_EXTENT_DATA_KEY || 1297 found_key.offset > end) 1298 break; 1299 1300 if (found_key.offset > cur_offset) { 1301 extent_end = found_key.offset; 1302 extent_type = 0; 1303 goto out_check; 1304 } 1305 1306 fi = btrfs_item_ptr(leaf, path->slots[0], 1307 struct btrfs_file_extent_item); 1308 extent_type = btrfs_file_extent_type(leaf, fi); 1309 1310 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1311 if (extent_type == BTRFS_FILE_EXTENT_REG || 1312 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1313 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1314 extent_offset = btrfs_file_extent_offset(leaf, fi); 1315 extent_end = found_key.offset + 1316 btrfs_file_extent_num_bytes(leaf, fi); 1317 disk_num_bytes = 1318 btrfs_file_extent_disk_num_bytes(leaf, fi); 1319 if (extent_end <= start) { 1320 path->slots[0]++; 1321 goto next_slot; 1322 } 1323 if (disk_bytenr == 0) 1324 goto out_check; 1325 if (btrfs_file_extent_compression(leaf, fi) || 1326 btrfs_file_extent_encryption(leaf, fi) || 1327 btrfs_file_extent_other_encoding(leaf, fi)) 1328 goto out_check; 1329 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1330 goto out_check; 1331 if (btrfs_extent_readonly(root, disk_bytenr)) 1332 goto out_check; 1333 if (btrfs_cross_ref_exist(trans, root, ino, 1334 found_key.offset - 1335 extent_offset, disk_bytenr)) 1336 goto out_check; 1337 disk_bytenr += extent_offset; 1338 disk_bytenr += cur_offset - found_key.offset; 1339 num_bytes = min(end + 1, extent_end) - cur_offset; 1340 /* 1341 * force cow if csum exists in the range. 1342 * this ensure that csum for a given extent are 1343 * either valid or do not exist. 1344 */ 1345 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1346 goto out_check; 1347 nocow = 1; 1348 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1349 extent_end = found_key.offset + 1350 btrfs_file_extent_inline_len(leaf, fi); 1351 extent_end = ALIGN(extent_end, root->sectorsize); 1352 } else { 1353 BUG_ON(1); 1354 } 1355 out_check: 1356 if (extent_end <= start) { 1357 path->slots[0]++; 1358 goto next_slot; 1359 } 1360 if (!nocow) { 1361 if (cow_start == (u64)-1) 1362 cow_start = cur_offset; 1363 cur_offset = extent_end; 1364 if (cur_offset > end) 1365 break; 1366 path->slots[0]++; 1367 goto next_slot; 1368 } 1369 1370 btrfs_release_path(path); 1371 if (cow_start != (u64)-1) { 1372 ret = __cow_file_range(trans, inode, root, locked_page, 1373 cow_start, found_key.offset - 1, 1374 page_started, nr_written, 1); 1375 if (ret) { 1376 btrfs_abort_transaction(trans, root, ret); 1377 goto error; 1378 } 1379 cow_start = (u64)-1; 1380 } 1381 1382 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1383 struct extent_map *em; 1384 struct extent_map_tree *em_tree; 1385 em_tree = &BTRFS_I(inode)->extent_tree; 1386 em = alloc_extent_map(); 1387 BUG_ON(!em); /* -ENOMEM */ 1388 em->start = cur_offset; 1389 em->orig_start = found_key.offset - extent_offset; 1390 em->len = num_bytes; 1391 em->block_len = num_bytes; 1392 em->block_start = disk_bytenr; 1393 em->orig_block_len = disk_num_bytes; 1394 em->ram_bytes = ram_bytes; 1395 em->bdev = root->fs_info->fs_devices->latest_bdev; 1396 em->mod_start = em->start; 1397 em->mod_len = em->len; 1398 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1399 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1400 em->generation = -1; 1401 while (1) { 1402 write_lock(&em_tree->lock); 1403 ret = add_extent_mapping(em_tree, em, 1); 1404 write_unlock(&em_tree->lock); 1405 if (ret != -EEXIST) { 1406 free_extent_map(em); 1407 break; 1408 } 1409 btrfs_drop_extent_cache(inode, em->start, 1410 em->start + em->len - 1, 0); 1411 } 1412 type = BTRFS_ORDERED_PREALLOC; 1413 } else { 1414 type = BTRFS_ORDERED_NOCOW; 1415 } 1416 1417 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1418 num_bytes, num_bytes, type); 1419 BUG_ON(ret); /* -ENOMEM */ 1420 1421 if (root->root_key.objectid == 1422 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1423 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1424 num_bytes); 1425 if (ret) { 1426 btrfs_abort_transaction(trans, root, ret); 1427 goto error; 1428 } 1429 } 1430 1431 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1432 cur_offset, cur_offset + num_bytes - 1, 1433 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1434 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1435 EXTENT_SET_PRIVATE2); 1436 cur_offset = extent_end; 1437 if (cur_offset > end) 1438 break; 1439 } 1440 btrfs_release_path(path); 1441 1442 if (cur_offset <= end && cow_start == (u64)-1) { 1443 cow_start = cur_offset; 1444 cur_offset = end; 1445 } 1446 1447 if (cow_start != (u64)-1) { 1448 ret = __cow_file_range(trans, inode, root, locked_page, 1449 cow_start, end, 1450 page_started, nr_written, 1); 1451 if (ret) { 1452 btrfs_abort_transaction(trans, root, ret); 1453 goto error; 1454 } 1455 } 1456 1457 error: 1458 err = btrfs_end_transaction(trans, root); 1459 if (!ret) 1460 ret = err; 1461 1462 if (ret && cur_offset < end) 1463 extent_clear_unlock_delalloc(inode, 1464 &BTRFS_I(inode)->io_tree, 1465 cur_offset, end, locked_page, 1466 EXTENT_CLEAR_UNLOCK_PAGE | 1467 EXTENT_CLEAR_UNLOCK | 1468 EXTENT_CLEAR_DELALLOC | 1469 EXTENT_CLEAR_DIRTY | 1470 EXTENT_SET_WRITEBACK | 1471 EXTENT_END_WRITEBACK); 1472 1473 btrfs_free_path(path); 1474 return ret; 1475 } 1476 1477 /* 1478 * extent_io.c call back to do delayed allocation processing 1479 */ 1480 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1481 u64 start, u64 end, int *page_started, 1482 unsigned long *nr_written) 1483 { 1484 int ret; 1485 struct btrfs_root *root = BTRFS_I(inode)->root; 1486 1487 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1488 ret = run_delalloc_nocow(inode, locked_page, start, end, 1489 page_started, 1, nr_written); 1490 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1491 ret = run_delalloc_nocow(inode, locked_page, start, end, 1492 page_started, 0, nr_written); 1493 } else if (!btrfs_test_opt(root, COMPRESS) && 1494 !(BTRFS_I(inode)->force_compress) && 1495 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1496 ret = cow_file_range(inode, locked_page, start, end, 1497 page_started, nr_written, 1); 1498 } else { 1499 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1500 &BTRFS_I(inode)->runtime_flags); 1501 ret = cow_file_range_async(inode, locked_page, start, end, 1502 page_started, nr_written); 1503 } 1504 return ret; 1505 } 1506 1507 static void btrfs_split_extent_hook(struct inode *inode, 1508 struct extent_state *orig, u64 split) 1509 { 1510 /* not delalloc, ignore it */ 1511 if (!(orig->state & EXTENT_DELALLOC)) 1512 return; 1513 1514 spin_lock(&BTRFS_I(inode)->lock); 1515 BTRFS_I(inode)->outstanding_extents++; 1516 spin_unlock(&BTRFS_I(inode)->lock); 1517 } 1518 1519 /* 1520 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1521 * extents so we can keep track of new extents that are just merged onto old 1522 * extents, such as when we are doing sequential writes, so we can properly 1523 * account for the metadata space we'll need. 1524 */ 1525 static void btrfs_merge_extent_hook(struct inode *inode, 1526 struct extent_state *new, 1527 struct extent_state *other) 1528 { 1529 /* not delalloc, ignore it */ 1530 if (!(other->state & EXTENT_DELALLOC)) 1531 return; 1532 1533 spin_lock(&BTRFS_I(inode)->lock); 1534 BTRFS_I(inode)->outstanding_extents--; 1535 spin_unlock(&BTRFS_I(inode)->lock); 1536 } 1537 1538 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1539 struct inode *inode) 1540 { 1541 spin_lock(&root->delalloc_lock); 1542 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1543 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1544 &root->delalloc_inodes); 1545 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1546 &BTRFS_I(inode)->runtime_flags); 1547 root->nr_delalloc_inodes++; 1548 if (root->nr_delalloc_inodes == 1) { 1549 spin_lock(&root->fs_info->delalloc_root_lock); 1550 BUG_ON(!list_empty(&root->delalloc_root)); 1551 list_add_tail(&root->delalloc_root, 1552 &root->fs_info->delalloc_roots); 1553 spin_unlock(&root->fs_info->delalloc_root_lock); 1554 } 1555 } 1556 spin_unlock(&root->delalloc_lock); 1557 } 1558 1559 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1560 struct inode *inode) 1561 { 1562 spin_lock(&root->delalloc_lock); 1563 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1564 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1565 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1566 &BTRFS_I(inode)->runtime_flags); 1567 root->nr_delalloc_inodes--; 1568 if (!root->nr_delalloc_inodes) { 1569 spin_lock(&root->fs_info->delalloc_root_lock); 1570 BUG_ON(list_empty(&root->delalloc_root)); 1571 list_del_init(&root->delalloc_root); 1572 spin_unlock(&root->fs_info->delalloc_root_lock); 1573 } 1574 } 1575 spin_unlock(&root->delalloc_lock); 1576 } 1577 1578 /* 1579 * extent_io.c set_bit_hook, used to track delayed allocation 1580 * bytes in this file, and to maintain the list of inodes that 1581 * have pending delalloc work to be done. 1582 */ 1583 static void btrfs_set_bit_hook(struct inode *inode, 1584 struct extent_state *state, unsigned long *bits) 1585 { 1586 1587 /* 1588 * set_bit and clear bit hooks normally require _irqsave/restore 1589 * but in this case, we are only testing for the DELALLOC 1590 * bit, which is only set or cleared with irqs on 1591 */ 1592 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1593 struct btrfs_root *root = BTRFS_I(inode)->root; 1594 u64 len = state->end + 1 - state->start; 1595 bool do_list = !btrfs_is_free_space_inode(inode); 1596 1597 if (*bits & EXTENT_FIRST_DELALLOC) { 1598 *bits &= ~EXTENT_FIRST_DELALLOC; 1599 } else { 1600 spin_lock(&BTRFS_I(inode)->lock); 1601 BTRFS_I(inode)->outstanding_extents++; 1602 spin_unlock(&BTRFS_I(inode)->lock); 1603 } 1604 1605 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1606 root->fs_info->delalloc_batch); 1607 spin_lock(&BTRFS_I(inode)->lock); 1608 BTRFS_I(inode)->delalloc_bytes += len; 1609 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1610 &BTRFS_I(inode)->runtime_flags)) 1611 btrfs_add_delalloc_inodes(root, inode); 1612 spin_unlock(&BTRFS_I(inode)->lock); 1613 } 1614 } 1615 1616 /* 1617 * extent_io.c clear_bit_hook, see set_bit_hook for why 1618 */ 1619 static void btrfs_clear_bit_hook(struct inode *inode, 1620 struct extent_state *state, 1621 unsigned long *bits) 1622 { 1623 /* 1624 * set_bit and clear bit hooks normally require _irqsave/restore 1625 * but in this case, we are only testing for the DELALLOC 1626 * bit, which is only set or cleared with irqs on 1627 */ 1628 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1629 struct btrfs_root *root = BTRFS_I(inode)->root; 1630 u64 len = state->end + 1 - state->start; 1631 bool do_list = !btrfs_is_free_space_inode(inode); 1632 1633 if (*bits & EXTENT_FIRST_DELALLOC) { 1634 *bits &= ~EXTENT_FIRST_DELALLOC; 1635 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1636 spin_lock(&BTRFS_I(inode)->lock); 1637 BTRFS_I(inode)->outstanding_extents--; 1638 spin_unlock(&BTRFS_I(inode)->lock); 1639 } 1640 1641 if (*bits & EXTENT_DO_ACCOUNTING) 1642 btrfs_delalloc_release_metadata(inode, len); 1643 1644 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1645 && do_list && !(state->state & EXTENT_NORESERVE)) 1646 btrfs_free_reserved_data_space(inode, len); 1647 1648 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1649 root->fs_info->delalloc_batch); 1650 spin_lock(&BTRFS_I(inode)->lock); 1651 BTRFS_I(inode)->delalloc_bytes -= len; 1652 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1653 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1654 &BTRFS_I(inode)->runtime_flags)) 1655 btrfs_del_delalloc_inode(root, inode); 1656 spin_unlock(&BTRFS_I(inode)->lock); 1657 } 1658 } 1659 1660 /* 1661 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1662 * we don't create bios that span stripes or chunks 1663 */ 1664 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1665 size_t size, struct bio *bio, 1666 unsigned long bio_flags) 1667 { 1668 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1669 u64 logical = (u64)bio->bi_sector << 9; 1670 u64 length = 0; 1671 u64 map_length; 1672 int ret; 1673 1674 if (bio_flags & EXTENT_BIO_COMPRESSED) 1675 return 0; 1676 1677 length = bio->bi_size; 1678 map_length = length; 1679 ret = btrfs_map_block(root->fs_info, rw, logical, 1680 &map_length, NULL, 0); 1681 /* Will always return 0 with map_multi == NULL */ 1682 BUG_ON(ret < 0); 1683 if (map_length < length + size) 1684 return 1; 1685 return 0; 1686 } 1687 1688 /* 1689 * in order to insert checksums into the metadata in large chunks, 1690 * we wait until bio submission time. All the pages in the bio are 1691 * checksummed and sums are attached onto the ordered extent record. 1692 * 1693 * At IO completion time the cums attached on the ordered extent record 1694 * are inserted into the btree 1695 */ 1696 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1697 struct bio *bio, int mirror_num, 1698 unsigned long bio_flags, 1699 u64 bio_offset) 1700 { 1701 struct btrfs_root *root = BTRFS_I(inode)->root; 1702 int ret = 0; 1703 1704 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1705 BUG_ON(ret); /* -ENOMEM */ 1706 return 0; 1707 } 1708 1709 /* 1710 * in order to insert checksums into the metadata in large chunks, 1711 * we wait until bio submission time. All the pages in the bio are 1712 * checksummed and sums are attached onto the ordered extent record. 1713 * 1714 * At IO completion time the cums attached on the ordered extent record 1715 * are inserted into the btree 1716 */ 1717 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1718 int mirror_num, unsigned long bio_flags, 1719 u64 bio_offset) 1720 { 1721 struct btrfs_root *root = BTRFS_I(inode)->root; 1722 int ret; 1723 1724 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1725 if (ret) 1726 bio_endio(bio, ret); 1727 return ret; 1728 } 1729 1730 /* 1731 * extent_io.c submission hook. This does the right thing for csum calculation 1732 * on write, or reading the csums from the tree before a read 1733 */ 1734 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1735 int mirror_num, unsigned long bio_flags, 1736 u64 bio_offset) 1737 { 1738 struct btrfs_root *root = BTRFS_I(inode)->root; 1739 int ret = 0; 1740 int skip_sum; 1741 int metadata = 0; 1742 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1743 1744 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1745 1746 if (btrfs_is_free_space_inode(inode)) 1747 metadata = 2; 1748 1749 if (!(rw & REQ_WRITE)) { 1750 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1751 if (ret) 1752 goto out; 1753 1754 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1755 ret = btrfs_submit_compressed_read(inode, bio, 1756 mirror_num, 1757 bio_flags); 1758 goto out; 1759 } else if (!skip_sum) { 1760 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1761 if (ret) 1762 goto out; 1763 } 1764 goto mapit; 1765 } else if (async && !skip_sum) { 1766 /* csum items have already been cloned */ 1767 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1768 goto mapit; 1769 /* we're doing a write, do the async checksumming */ 1770 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1771 inode, rw, bio, mirror_num, 1772 bio_flags, bio_offset, 1773 __btrfs_submit_bio_start, 1774 __btrfs_submit_bio_done); 1775 goto out; 1776 } else if (!skip_sum) { 1777 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1778 if (ret) 1779 goto out; 1780 } 1781 1782 mapit: 1783 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1784 1785 out: 1786 if (ret < 0) 1787 bio_endio(bio, ret); 1788 return ret; 1789 } 1790 1791 /* 1792 * given a list of ordered sums record them in the inode. This happens 1793 * at IO completion time based on sums calculated at bio submission time. 1794 */ 1795 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1796 struct inode *inode, u64 file_offset, 1797 struct list_head *list) 1798 { 1799 struct btrfs_ordered_sum *sum; 1800 1801 list_for_each_entry(sum, list, list) { 1802 trans->adding_csums = 1; 1803 btrfs_csum_file_blocks(trans, 1804 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1805 trans->adding_csums = 0; 1806 } 1807 return 0; 1808 } 1809 1810 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1811 struct extent_state **cached_state) 1812 { 1813 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1814 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1815 cached_state, GFP_NOFS); 1816 } 1817 1818 /* see btrfs_writepage_start_hook for details on why this is required */ 1819 struct btrfs_writepage_fixup { 1820 struct page *page; 1821 struct btrfs_work work; 1822 }; 1823 1824 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1825 { 1826 struct btrfs_writepage_fixup *fixup; 1827 struct btrfs_ordered_extent *ordered; 1828 struct extent_state *cached_state = NULL; 1829 struct page *page; 1830 struct inode *inode; 1831 u64 page_start; 1832 u64 page_end; 1833 int ret; 1834 1835 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1836 page = fixup->page; 1837 again: 1838 lock_page(page); 1839 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1840 ClearPageChecked(page); 1841 goto out_page; 1842 } 1843 1844 inode = page->mapping->host; 1845 page_start = page_offset(page); 1846 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1847 1848 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1849 &cached_state); 1850 1851 /* already ordered? We're done */ 1852 if (PagePrivate2(page)) 1853 goto out; 1854 1855 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1856 if (ordered) { 1857 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1858 page_end, &cached_state, GFP_NOFS); 1859 unlock_page(page); 1860 btrfs_start_ordered_extent(inode, ordered, 1); 1861 btrfs_put_ordered_extent(ordered); 1862 goto again; 1863 } 1864 1865 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1866 if (ret) { 1867 mapping_set_error(page->mapping, ret); 1868 end_extent_writepage(page, ret, page_start, page_end); 1869 ClearPageChecked(page); 1870 goto out; 1871 } 1872 1873 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1874 ClearPageChecked(page); 1875 set_page_dirty(page); 1876 out: 1877 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1878 &cached_state, GFP_NOFS); 1879 out_page: 1880 unlock_page(page); 1881 page_cache_release(page); 1882 kfree(fixup); 1883 } 1884 1885 /* 1886 * There are a few paths in the higher layers of the kernel that directly 1887 * set the page dirty bit without asking the filesystem if it is a 1888 * good idea. This causes problems because we want to make sure COW 1889 * properly happens and the data=ordered rules are followed. 1890 * 1891 * In our case any range that doesn't have the ORDERED bit set 1892 * hasn't been properly setup for IO. We kick off an async process 1893 * to fix it up. The async helper will wait for ordered extents, set 1894 * the delalloc bit and make it safe to write the page. 1895 */ 1896 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1897 { 1898 struct inode *inode = page->mapping->host; 1899 struct btrfs_writepage_fixup *fixup; 1900 struct btrfs_root *root = BTRFS_I(inode)->root; 1901 1902 /* this page is properly in the ordered list */ 1903 if (TestClearPagePrivate2(page)) 1904 return 0; 1905 1906 if (PageChecked(page)) 1907 return -EAGAIN; 1908 1909 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1910 if (!fixup) 1911 return -EAGAIN; 1912 1913 SetPageChecked(page); 1914 page_cache_get(page); 1915 fixup->work.func = btrfs_writepage_fixup_worker; 1916 fixup->page = page; 1917 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1918 return -EBUSY; 1919 } 1920 1921 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1922 struct inode *inode, u64 file_pos, 1923 u64 disk_bytenr, u64 disk_num_bytes, 1924 u64 num_bytes, u64 ram_bytes, 1925 u8 compression, u8 encryption, 1926 u16 other_encoding, int extent_type) 1927 { 1928 struct btrfs_root *root = BTRFS_I(inode)->root; 1929 struct btrfs_file_extent_item *fi; 1930 struct btrfs_path *path; 1931 struct extent_buffer *leaf; 1932 struct btrfs_key ins; 1933 int ret; 1934 1935 path = btrfs_alloc_path(); 1936 if (!path) 1937 return -ENOMEM; 1938 1939 path->leave_spinning = 1; 1940 1941 /* 1942 * we may be replacing one extent in the tree with another. 1943 * The new extent is pinned in the extent map, and we don't want 1944 * to drop it from the cache until it is completely in the btree. 1945 * 1946 * So, tell btrfs_drop_extents to leave this extent in the cache. 1947 * the caller is expected to unpin it and allow it to be merged 1948 * with the others. 1949 */ 1950 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1951 file_pos + num_bytes, 0); 1952 if (ret) 1953 goto out; 1954 1955 ins.objectid = btrfs_ino(inode); 1956 ins.offset = file_pos; 1957 ins.type = BTRFS_EXTENT_DATA_KEY; 1958 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1959 if (ret) 1960 goto out; 1961 leaf = path->nodes[0]; 1962 fi = btrfs_item_ptr(leaf, path->slots[0], 1963 struct btrfs_file_extent_item); 1964 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1965 btrfs_set_file_extent_type(leaf, fi, extent_type); 1966 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1967 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1968 btrfs_set_file_extent_offset(leaf, fi, 0); 1969 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1970 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1971 btrfs_set_file_extent_compression(leaf, fi, compression); 1972 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1973 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1974 1975 btrfs_mark_buffer_dirty(leaf); 1976 btrfs_release_path(path); 1977 1978 inode_add_bytes(inode, num_bytes); 1979 1980 ins.objectid = disk_bytenr; 1981 ins.offset = disk_num_bytes; 1982 ins.type = BTRFS_EXTENT_ITEM_KEY; 1983 ret = btrfs_alloc_reserved_file_extent(trans, root, 1984 root->root_key.objectid, 1985 btrfs_ino(inode), file_pos, &ins); 1986 out: 1987 btrfs_free_path(path); 1988 1989 return ret; 1990 } 1991 1992 /* snapshot-aware defrag */ 1993 struct sa_defrag_extent_backref { 1994 struct rb_node node; 1995 struct old_sa_defrag_extent *old; 1996 u64 root_id; 1997 u64 inum; 1998 u64 file_pos; 1999 u64 extent_offset; 2000 u64 num_bytes; 2001 u64 generation; 2002 }; 2003 2004 struct old_sa_defrag_extent { 2005 struct list_head list; 2006 struct new_sa_defrag_extent *new; 2007 2008 u64 extent_offset; 2009 u64 bytenr; 2010 u64 offset; 2011 u64 len; 2012 int count; 2013 }; 2014 2015 struct new_sa_defrag_extent { 2016 struct rb_root root; 2017 struct list_head head; 2018 struct btrfs_path *path; 2019 struct inode *inode; 2020 u64 file_pos; 2021 u64 len; 2022 u64 bytenr; 2023 u64 disk_len; 2024 u8 compress_type; 2025 }; 2026 2027 static int backref_comp(struct sa_defrag_extent_backref *b1, 2028 struct sa_defrag_extent_backref *b2) 2029 { 2030 if (b1->root_id < b2->root_id) 2031 return -1; 2032 else if (b1->root_id > b2->root_id) 2033 return 1; 2034 2035 if (b1->inum < b2->inum) 2036 return -1; 2037 else if (b1->inum > b2->inum) 2038 return 1; 2039 2040 if (b1->file_pos < b2->file_pos) 2041 return -1; 2042 else if (b1->file_pos > b2->file_pos) 2043 return 1; 2044 2045 /* 2046 * [------------------------------] ===> (a range of space) 2047 * |<--->| |<---->| =============> (fs/file tree A) 2048 * |<---------------------------->| ===> (fs/file tree B) 2049 * 2050 * A range of space can refer to two file extents in one tree while 2051 * refer to only one file extent in another tree. 2052 * 2053 * So we may process a disk offset more than one time(two extents in A) 2054 * and locate at the same extent(one extent in B), then insert two same 2055 * backrefs(both refer to the extent in B). 2056 */ 2057 return 0; 2058 } 2059 2060 static void backref_insert(struct rb_root *root, 2061 struct sa_defrag_extent_backref *backref) 2062 { 2063 struct rb_node **p = &root->rb_node; 2064 struct rb_node *parent = NULL; 2065 struct sa_defrag_extent_backref *entry; 2066 int ret; 2067 2068 while (*p) { 2069 parent = *p; 2070 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2071 2072 ret = backref_comp(backref, entry); 2073 if (ret < 0) 2074 p = &(*p)->rb_left; 2075 else 2076 p = &(*p)->rb_right; 2077 } 2078 2079 rb_link_node(&backref->node, parent, p); 2080 rb_insert_color(&backref->node, root); 2081 } 2082 2083 /* 2084 * Note the backref might has changed, and in this case we just return 0. 2085 */ 2086 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2087 void *ctx) 2088 { 2089 struct btrfs_file_extent_item *extent; 2090 struct btrfs_fs_info *fs_info; 2091 struct old_sa_defrag_extent *old = ctx; 2092 struct new_sa_defrag_extent *new = old->new; 2093 struct btrfs_path *path = new->path; 2094 struct btrfs_key key; 2095 struct btrfs_root *root; 2096 struct sa_defrag_extent_backref *backref; 2097 struct extent_buffer *leaf; 2098 struct inode *inode = new->inode; 2099 int slot; 2100 int ret; 2101 u64 extent_offset; 2102 u64 num_bytes; 2103 2104 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2105 inum == btrfs_ino(inode)) 2106 return 0; 2107 2108 key.objectid = root_id; 2109 key.type = BTRFS_ROOT_ITEM_KEY; 2110 key.offset = (u64)-1; 2111 2112 fs_info = BTRFS_I(inode)->root->fs_info; 2113 root = btrfs_read_fs_root_no_name(fs_info, &key); 2114 if (IS_ERR(root)) { 2115 if (PTR_ERR(root) == -ENOENT) 2116 return 0; 2117 WARN_ON(1); 2118 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2119 inum, offset, root_id); 2120 return PTR_ERR(root); 2121 } 2122 2123 key.objectid = inum; 2124 key.type = BTRFS_EXTENT_DATA_KEY; 2125 if (offset > (u64)-1 << 32) 2126 key.offset = 0; 2127 else 2128 key.offset = offset; 2129 2130 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2131 if (ret < 0) { 2132 WARN_ON(1); 2133 return ret; 2134 } 2135 2136 while (1) { 2137 cond_resched(); 2138 2139 leaf = path->nodes[0]; 2140 slot = path->slots[0]; 2141 2142 if (slot >= btrfs_header_nritems(leaf)) { 2143 ret = btrfs_next_leaf(root, path); 2144 if (ret < 0) { 2145 goto out; 2146 } else if (ret > 0) { 2147 ret = 0; 2148 goto out; 2149 } 2150 continue; 2151 } 2152 2153 path->slots[0]++; 2154 2155 btrfs_item_key_to_cpu(leaf, &key, slot); 2156 2157 if (key.objectid > inum) 2158 goto out; 2159 2160 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2161 continue; 2162 2163 extent = btrfs_item_ptr(leaf, slot, 2164 struct btrfs_file_extent_item); 2165 2166 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2167 continue; 2168 2169 /* 2170 * 'offset' refers to the exact key.offset, 2171 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2172 * (key.offset - extent_offset). 2173 */ 2174 if (key.offset != offset) 2175 continue; 2176 2177 extent_offset = btrfs_file_extent_offset(leaf, extent); 2178 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2179 2180 if (extent_offset >= old->extent_offset + old->offset + 2181 old->len || extent_offset + num_bytes <= 2182 old->extent_offset + old->offset) 2183 continue; 2184 2185 ret = 0; 2186 break; 2187 } 2188 2189 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2190 if (!backref) { 2191 ret = -ENOENT; 2192 goto out; 2193 } 2194 2195 backref->root_id = root_id; 2196 backref->inum = inum; 2197 backref->file_pos = offset; 2198 backref->num_bytes = num_bytes; 2199 backref->extent_offset = extent_offset; 2200 backref->generation = btrfs_file_extent_generation(leaf, extent); 2201 backref->old = old; 2202 backref_insert(&new->root, backref); 2203 old->count++; 2204 out: 2205 btrfs_release_path(path); 2206 WARN_ON(ret); 2207 return ret; 2208 } 2209 2210 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2211 struct new_sa_defrag_extent *new) 2212 { 2213 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2214 struct old_sa_defrag_extent *old, *tmp; 2215 int ret; 2216 2217 new->path = path; 2218 2219 list_for_each_entry_safe(old, tmp, &new->head, list) { 2220 ret = iterate_inodes_from_logical(old->bytenr + 2221 old->extent_offset, fs_info, 2222 path, record_one_backref, 2223 old); 2224 BUG_ON(ret < 0 && ret != -ENOENT); 2225 2226 /* no backref to be processed for this extent */ 2227 if (!old->count) { 2228 list_del(&old->list); 2229 kfree(old); 2230 } 2231 } 2232 2233 if (list_empty(&new->head)) 2234 return false; 2235 2236 return true; 2237 } 2238 2239 static int relink_is_mergable(struct extent_buffer *leaf, 2240 struct btrfs_file_extent_item *fi, 2241 u64 disk_bytenr) 2242 { 2243 if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr) 2244 return 0; 2245 2246 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2247 return 0; 2248 2249 if (btrfs_file_extent_compression(leaf, fi) || 2250 btrfs_file_extent_encryption(leaf, fi) || 2251 btrfs_file_extent_other_encoding(leaf, fi)) 2252 return 0; 2253 2254 return 1; 2255 } 2256 2257 /* 2258 * Note the backref might has changed, and in this case we just return 0. 2259 */ 2260 static noinline int relink_extent_backref(struct btrfs_path *path, 2261 struct sa_defrag_extent_backref *prev, 2262 struct sa_defrag_extent_backref *backref) 2263 { 2264 struct btrfs_file_extent_item *extent; 2265 struct btrfs_file_extent_item *item; 2266 struct btrfs_ordered_extent *ordered; 2267 struct btrfs_trans_handle *trans; 2268 struct btrfs_fs_info *fs_info; 2269 struct btrfs_root *root; 2270 struct btrfs_key key; 2271 struct extent_buffer *leaf; 2272 struct old_sa_defrag_extent *old = backref->old; 2273 struct new_sa_defrag_extent *new = old->new; 2274 struct inode *src_inode = new->inode; 2275 struct inode *inode; 2276 struct extent_state *cached = NULL; 2277 int ret = 0; 2278 u64 start; 2279 u64 len; 2280 u64 lock_start; 2281 u64 lock_end; 2282 bool merge = false; 2283 int index; 2284 2285 if (prev && prev->root_id == backref->root_id && 2286 prev->inum == backref->inum && 2287 prev->file_pos + prev->num_bytes == backref->file_pos) 2288 merge = true; 2289 2290 /* step 1: get root */ 2291 key.objectid = backref->root_id; 2292 key.type = BTRFS_ROOT_ITEM_KEY; 2293 key.offset = (u64)-1; 2294 2295 fs_info = BTRFS_I(src_inode)->root->fs_info; 2296 index = srcu_read_lock(&fs_info->subvol_srcu); 2297 2298 root = btrfs_read_fs_root_no_name(fs_info, &key); 2299 if (IS_ERR(root)) { 2300 srcu_read_unlock(&fs_info->subvol_srcu, index); 2301 if (PTR_ERR(root) == -ENOENT) 2302 return 0; 2303 return PTR_ERR(root); 2304 } 2305 2306 /* step 2: get inode */ 2307 key.objectid = backref->inum; 2308 key.type = BTRFS_INODE_ITEM_KEY; 2309 key.offset = 0; 2310 2311 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2312 if (IS_ERR(inode)) { 2313 srcu_read_unlock(&fs_info->subvol_srcu, index); 2314 return 0; 2315 } 2316 2317 srcu_read_unlock(&fs_info->subvol_srcu, index); 2318 2319 /* step 3: relink backref */ 2320 lock_start = backref->file_pos; 2321 lock_end = backref->file_pos + backref->num_bytes - 1; 2322 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2323 0, &cached); 2324 2325 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2326 if (ordered) { 2327 btrfs_put_ordered_extent(ordered); 2328 goto out_unlock; 2329 } 2330 2331 trans = btrfs_join_transaction(root); 2332 if (IS_ERR(trans)) { 2333 ret = PTR_ERR(trans); 2334 goto out_unlock; 2335 } 2336 2337 key.objectid = backref->inum; 2338 key.type = BTRFS_EXTENT_DATA_KEY; 2339 key.offset = backref->file_pos; 2340 2341 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2342 if (ret < 0) { 2343 goto out_free_path; 2344 } else if (ret > 0) { 2345 ret = 0; 2346 goto out_free_path; 2347 } 2348 2349 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2350 struct btrfs_file_extent_item); 2351 2352 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2353 backref->generation) 2354 goto out_free_path; 2355 2356 btrfs_release_path(path); 2357 2358 start = backref->file_pos; 2359 if (backref->extent_offset < old->extent_offset + old->offset) 2360 start += old->extent_offset + old->offset - 2361 backref->extent_offset; 2362 2363 len = min(backref->extent_offset + backref->num_bytes, 2364 old->extent_offset + old->offset + old->len); 2365 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2366 2367 ret = btrfs_drop_extents(trans, root, inode, start, 2368 start + len, 1); 2369 if (ret) 2370 goto out_free_path; 2371 again: 2372 key.objectid = btrfs_ino(inode); 2373 key.type = BTRFS_EXTENT_DATA_KEY; 2374 key.offset = start; 2375 2376 path->leave_spinning = 1; 2377 if (merge) { 2378 struct btrfs_file_extent_item *fi; 2379 u64 extent_len; 2380 struct btrfs_key found_key; 2381 2382 ret = btrfs_search_slot(trans, root, &key, path, 1, 1); 2383 if (ret < 0) 2384 goto out_free_path; 2385 2386 path->slots[0]--; 2387 leaf = path->nodes[0]; 2388 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2389 2390 fi = btrfs_item_ptr(leaf, path->slots[0], 2391 struct btrfs_file_extent_item); 2392 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2393 2394 if (relink_is_mergable(leaf, fi, new->bytenr) && 2395 extent_len + found_key.offset == start) { 2396 btrfs_set_file_extent_num_bytes(leaf, fi, 2397 extent_len + len); 2398 btrfs_mark_buffer_dirty(leaf); 2399 inode_add_bytes(inode, len); 2400 2401 ret = 1; 2402 goto out_free_path; 2403 } else { 2404 merge = false; 2405 btrfs_release_path(path); 2406 goto again; 2407 } 2408 } 2409 2410 ret = btrfs_insert_empty_item(trans, root, path, &key, 2411 sizeof(*extent)); 2412 if (ret) { 2413 btrfs_abort_transaction(trans, root, ret); 2414 goto out_free_path; 2415 } 2416 2417 leaf = path->nodes[0]; 2418 item = btrfs_item_ptr(leaf, path->slots[0], 2419 struct btrfs_file_extent_item); 2420 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2421 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2422 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2423 btrfs_set_file_extent_num_bytes(leaf, item, len); 2424 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2425 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2426 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2427 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2428 btrfs_set_file_extent_encryption(leaf, item, 0); 2429 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2430 2431 btrfs_mark_buffer_dirty(leaf); 2432 inode_add_bytes(inode, len); 2433 btrfs_release_path(path); 2434 2435 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2436 new->disk_len, 0, 2437 backref->root_id, backref->inum, 2438 new->file_pos, 0); /* start - extent_offset */ 2439 if (ret) { 2440 btrfs_abort_transaction(trans, root, ret); 2441 goto out_free_path; 2442 } 2443 2444 ret = 1; 2445 out_free_path: 2446 btrfs_release_path(path); 2447 path->leave_spinning = 0; 2448 btrfs_end_transaction(trans, root); 2449 out_unlock: 2450 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2451 &cached, GFP_NOFS); 2452 iput(inode); 2453 return ret; 2454 } 2455 2456 static void relink_file_extents(struct new_sa_defrag_extent *new) 2457 { 2458 struct btrfs_path *path; 2459 struct old_sa_defrag_extent *old, *tmp; 2460 struct sa_defrag_extent_backref *backref; 2461 struct sa_defrag_extent_backref *prev = NULL; 2462 struct inode *inode; 2463 struct btrfs_root *root; 2464 struct rb_node *node; 2465 int ret; 2466 2467 inode = new->inode; 2468 root = BTRFS_I(inode)->root; 2469 2470 path = btrfs_alloc_path(); 2471 if (!path) 2472 return; 2473 2474 if (!record_extent_backrefs(path, new)) { 2475 btrfs_free_path(path); 2476 goto out; 2477 } 2478 btrfs_release_path(path); 2479 2480 while (1) { 2481 node = rb_first(&new->root); 2482 if (!node) 2483 break; 2484 rb_erase(node, &new->root); 2485 2486 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2487 2488 ret = relink_extent_backref(path, prev, backref); 2489 WARN_ON(ret < 0); 2490 2491 kfree(prev); 2492 2493 if (ret == 1) 2494 prev = backref; 2495 else 2496 prev = NULL; 2497 cond_resched(); 2498 } 2499 kfree(prev); 2500 2501 btrfs_free_path(path); 2502 2503 list_for_each_entry_safe(old, tmp, &new->head, list) { 2504 list_del(&old->list); 2505 kfree(old); 2506 } 2507 out: 2508 atomic_dec(&root->fs_info->defrag_running); 2509 wake_up(&root->fs_info->transaction_wait); 2510 2511 kfree(new); 2512 } 2513 2514 static struct new_sa_defrag_extent * 2515 record_old_file_extents(struct inode *inode, 2516 struct btrfs_ordered_extent *ordered) 2517 { 2518 struct btrfs_root *root = BTRFS_I(inode)->root; 2519 struct btrfs_path *path; 2520 struct btrfs_key key; 2521 struct old_sa_defrag_extent *old, *tmp; 2522 struct new_sa_defrag_extent *new; 2523 int ret; 2524 2525 new = kmalloc(sizeof(*new), GFP_NOFS); 2526 if (!new) 2527 return NULL; 2528 2529 new->inode = inode; 2530 new->file_pos = ordered->file_offset; 2531 new->len = ordered->len; 2532 new->bytenr = ordered->start; 2533 new->disk_len = ordered->disk_len; 2534 new->compress_type = ordered->compress_type; 2535 new->root = RB_ROOT; 2536 INIT_LIST_HEAD(&new->head); 2537 2538 path = btrfs_alloc_path(); 2539 if (!path) 2540 goto out_kfree; 2541 2542 key.objectid = btrfs_ino(inode); 2543 key.type = BTRFS_EXTENT_DATA_KEY; 2544 key.offset = new->file_pos; 2545 2546 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2547 if (ret < 0) 2548 goto out_free_path; 2549 if (ret > 0 && path->slots[0] > 0) 2550 path->slots[0]--; 2551 2552 /* find out all the old extents for the file range */ 2553 while (1) { 2554 struct btrfs_file_extent_item *extent; 2555 struct extent_buffer *l; 2556 int slot; 2557 u64 num_bytes; 2558 u64 offset; 2559 u64 end; 2560 u64 disk_bytenr; 2561 u64 extent_offset; 2562 2563 l = path->nodes[0]; 2564 slot = path->slots[0]; 2565 2566 if (slot >= btrfs_header_nritems(l)) { 2567 ret = btrfs_next_leaf(root, path); 2568 if (ret < 0) 2569 goto out_free_list; 2570 else if (ret > 0) 2571 break; 2572 continue; 2573 } 2574 2575 btrfs_item_key_to_cpu(l, &key, slot); 2576 2577 if (key.objectid != btrfs_ino(inode)) 2578 break; 2579 if (key.type != BTRFS_EXTENT_DATA_KEY) 2580 break; 2581 if (key.offset >= new->file_pos + new->len) 2582 break; 2583 2584 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2585 2586 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2587 if (key.offset + num_bytes < new->file_pos) 2588 goto next; 2589 2590 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2591 if (!disk_bytenr) 2592 goto next; 2593 2594 extent_offset = btrfs_file_extent_offset(l, extent); 2595 2596 old = kmalloc(sizeof(*old), GFP_NOFS); 2597 if (!old) 2598 goto out_free_list; 2599 2600 offset = max(new->file_pos, key.offset); 2601 end = min(new->file_pos + new->len, key.offset + num_bytes); 2602 2603 old->bytenr = disk_bytenr; 2604 old->extent_offset = extent_offset; 2605 old->offset = offset - key.offset; 2606 old->len = end - offset; 2607 old->new = new; 2608 old->count = 0; 2609 list_add_tail(&old->list, &new->head); 2610 next: 2611 path->slots[0]++; 2612 cond_resched(); 2613 } 2614 2615 btrfs_free_path(path); 2616 atomic_inc(&root->fs_info->defrag_running); 2617 2618 return new; 2619 2620 out_free_list: 2621 list_for_each_entry_safe(old, tmp, &new->head, list) { 2622 list_del(&old->list); 2623 kfree(old); 2624 } 2625 out_free_path: 2626 btrfs_free_path(path); 2627 out_kfree: 2628 kfree(new); 2629 return NULL; 2630 } 2631 2632 /* 2633 * helper function for btrfs_finish_ordered_io, this 2634 * just reads in some of the csum leaves to prime them into ram 2635 * before we start the transaction. It limits the amount of btree 2636 * reads required while inside the transaction. 2637 */ 2638 /* as ordered data IO finishes, this gets called so we can finish 2639 * an ordered extent if the range of bytes in the file it covers are 2640 * fully written. 2641 */ 2642 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2643 { 2644 struct inode *inode = ordered_extent->inode; 2645 struct btrfs_root *root = BTRFS_I(inode)->root; 2646 struct btrfs_trans_handle *trans = NULL; 2647 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2648 struct extent_state *cached_state = NULL; 2649 struct new_sa_defrag_extent *new = NULL; 2650 int compress_type = 0; 2651 int ret; 2652 bool nolock; 2653 2654 nolock = btrfs_is_free_space_inode(inode); 2655 2656 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2657 ret = -EIO; 2658 goto out; 2659 } 2660 2661 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2662 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2663 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2664 if (nolock) 2665 trans = btrfs_join_transaction_nolock(root); 2666 else 2667 trans = btrfs_join_transaction(root); 2668 if (IS_ERR(trans)) { 2669 ret = PTR_ERR(trans); 2670 trans = NULL; 2671 goto out; 2672 } 2673 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2674 ret = btrfs_update_inode_fallback(trans, root, inode); 2675 if (ret) /* -ENOMEM or corruption */ 2676 btrfs_abort_transaction(trans, root, ret); 2677 goto out; 2678 } 2679 2680 lock_extent_bits(io_tree, ordered_extent->file_offset, 2681 ordered_extent->file_offset + ordered_extent->len - 1, 2682 0, &cached_state); 2683 2684 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2685 ordered_extent->file_offset + ordered_extent->len - 1, 2686 EXTENT_DEFRAG, 1, cached_state); 2687 if (ret) { 2688 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2689 if (last_snapshot >= BTRFS_I(inode)->generation) 2690 /* the inode is shared */ 2691 new = record_old_file_extents(inode, ordered_extent); 2692 2693 clear_extent_bit(io_tree, ordered_extent->file_offset, 2694 ordered_extent->file_offset + ordered_extent->len - 1, 2695 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2696 } 2697 2698 if (nolock) 2699 trans = btrfs_join_transaction_nolock(root); 2700 else 2701 trans = btrfs_join_transaction(root); 2702 if (IS_ERR(trans)) { 2703 ret = PTR_ERR(trans); 2704 trans = NULL; 2705 goto out_unlock; 2706 } 2707 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2708 2709 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2710 compress_type = ordered_extent->compress_type; 2711 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2712 BUG_ON(compress_type); 2713 ret = btrfs_mark_extent_written(trans, inode, 2714 ordered_extent->file_offset, 2715 ordered_extent->file_offset + 2716 ordered_extent->len); 2717 } else { 2718 BUG_ON(root == root->fs_info->tree_root); 2719 ret = insert_reserved_file_extent(trans, inode, 2720 ordered_extent->file_offset, 2721 ordered_extent->start, 2722 ordered_extent->disk_len, 2723 ordered_extent->len, 2724 ordered_extent->len, 2725 compress_type, 0, 0, 2726 BTRFS_FILE_EXTENT_REG); 2727 } 2728 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2729 ordered_extent->file_offset, ordered_extent->len, 2730 trans->transid); 2731 if (ret < 0) { 2732 btrfs_abort_transaction(trans, root, ret); 2733 goto out_unlock; 2734 } 2735 2736 add_pending_csums(trans, inode, ordered_extent->file_offset, 2737 &ordered_extent->list); 2738 2739 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2740 ret = btrfs_update_inode_fallback(trans, root, inode); 2741 if (ret) { /* -ENOMEM or corruption */ 2742 btrfs_abort_transaction(trans, root, ret); 2743 goto out_unlock; 2744 } 2745 ret = 0; 2746 out_unlock: 2747 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2748 ordered_extent->file_offset + 2749 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2750 out: 2751 if (root != root->fs_info->tree_root) 2752 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2753 if (trans) 2754 btrfs_end_transaction(trans, root); 2755 2756 if (ret) { 2757 clear_extent_uptodate(io_tree, ordered_extent->file_offset, 2758 ordered_extent->file_offset + 2759 ordered_extent->len - 1, NULL, GFP_NOFS); 2760 2761 /* 2762 * If the ordered extent had an IOERR or something else went 2763 * wrong we need to return the space for this ordered extent 2764 * back to the allocator. 2765 */ 2766 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2767 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2768 btrfs_free_reserved_extent(root, ordered_extent->start, 2769 ordered_extent->disk_len); 2770 } 2771 2772 2773 /* 2774 * This needs to be done to make sure anybody waiting knows we are done 2775 * updating everything for this ordered extent. 2776 */ 2777 btrfs_remove_ordered_extent(inode, ordered_extent); 2778 2779 /* for snapshot-aware defrag */ 2780 if (new) 2781 relink_file_extents(new); 2782 2783 /* once for us */ 2784 btrfs_put_ordered_extent(ordered_extent); 2785 /* once for the tree */ 2786 btrfs_put_ordered_extent(ordered_extent); 2787 2788 return ret; 2789 } 2790 2791 static void finish_ordered_fn(struct btrfs_work *work) 2792 { 2793 struct btrfs_ordered_extent *ordered_extent; 2794 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2795 btrfs_finish_ordered_io(ordered_extent); 2796 } 2797 2798 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2799 struct extent_state *state, int uptodate) 2800 { 2801 struct inode *inode = page->mapping->host; 2802 struct btrfs_root *root = BTRFS_I(inode)->root; 2803 struct btrfs_ordered_extent *ordered_extent = NULL; 2804 struct btrfs_workers *workers; 2805 2806 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2807 2808 ClearPagePrivate2(page); 2809 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2810 end - start + 1, uptodate)) 2811 return 0; 2812 2813 ordered_extent->work.func = finish_ordered_fn; 2814 ordered_extent->work.flags = 0; 2815 2816 if (btrfs_is_free_space_inode(inode)) 2817 workers = &root->fs_info->endio_freespace_worker; 2818 else 2819 workers = &root->fs_info->endio_write_workers; 2820 btrfs_queue_worker(workers, &ordered_extent->work); 2821 2822 return 0; 2823 } 2824 2825 /* 2826 * when reads are done, we need to check csums to verify the data is correct 2827 * if there's a match, we allow the bio to finish. If not, the code in 2828 * extent_io.c will try to find good copies for us. 2829 */ 2830 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 2831 struct extent_state *state, int mirror) 2832 { 2833 size_t offset = start - page_offset(page); 2834 struct inode *inode = page->mapping->host; 2835 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2836 char *kaddr; 2837 u64 private = ~(u32)0; 2838 int ret; 2839 struct btrfs_root *root = BTRFS_I(inode)->root; 2840 u32 csum = ~(u32)0; 2841 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 2842 DEFAULT_RATELIMIT_BURST); 2843 2844 if (PageChecked(page)) { 2845 ClearPageChecked(page); 2846 goto good; 2847 } 2848 2849 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2850 goto good; 2851 2852 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2853 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2854 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2855 GFP_NOFS); 2856 return 0; 2857 } 2858 2859 if (state && state->start == start) { 2860 private = state->private; 2861 ret = 0; 2862 } else { 2863 ret = get_state_private(io_tree, start, &private); 2864 } 2865 kaddr = kmap_atomic(page); 2866 if (ret) 2867 goto zeroit; 2868 2869 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1); 2870 btrfs_csum_final(csum, (char *)&csum); 2871 if (csum != private) 2872 goto zeroit; 2873 2874 kunmap_atomic(kaddr); 2875 good: 2876 return 0; 2877 2878 zeroit: 2879 if (__ratelimit(&_rs)) 2880 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u private %llu", 2881 (unsigned long long)btrfs_ino(page->mapping->host), 2882 (unsigned long long)start, csum, 2883 (unsigned long long)private); 2884 memset(kaddr + offset, 1, end - start + 1); 2885 flush_dcache_page(page); 2886 kunmap_atomic(kaddr); 2887 if (private == 0) 2888 return 0; 2889 return -EIO; 2890 } 2891 2892 struct delayed_iput { 2893 struct list_head list; 2894 struct inode *inode; 2895 }; 2896 2897 /* JDM: If this is fs-wide, why can't we add a pointer to 2898 * btrfs_inode instead and avoid the allocation? */ 2899 void btrfs_add_delayed_iput(struct inode *inode) 2900 { 2901 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2902 struct delayed_iput *delayed; 2903 2904 if (atomic_add_unless(&inode->i_count, -1, 1)) 2905 return; 2906 2907 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2908 delayed->inode = inode; 2909 2910 spin_lock(&fs_info->delayed_iput_lock); 2911 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2912 spin_unlock(&fs_info->delayed_iput_lock); 2913 } 2914 2915 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2916 { 2917 LIST_HEAD(list); 2918 struct btrfs_fs_info *fs_info = root->fs_info; 2919 struct delayed_iput *delayed; 2920 int empty; 2921 2922 spin_lock(&fs_info->delayed_iput_lock); 2923 empty = list_empty(&fs_info->delayed_iputs); 2924 spin_unlock(&fs_info->delayed_iput_lock); 2925 if (empty) 2926 return; 2927 2928 spin_lock(&fs_info->delayed_iput_lock); 2929 list_splice_init(&fs_info->delayed_iputs, &list); 2930 spin_unlock(&fs_info->delayed_iput_lock); 2931 2932 while (!list_empty(&list)) { 2933 delayed = list_entry(list.next, struct delayed_iput, list); 2934 list_del(&delayed->list); 2935 iput(delayed->inode); 2936 kfree(delayed); 2937 } 2938 } 2939 2940 /* 2941 * This is called in transaction commit time. If there are no orphan 2942 * files in the subvolume, it removes orphan item and frees block_rsv 2943 * structure. 2944 */ 2945 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2946 struct btrfs_root *root) 2947 { 2948 struct btrfs_block_rsv *block_rsv; 2949 int ret; 2950 2951 if (atomic_read(&root->orphan_inodes) || 2952 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2953 return; 2954 2955 spin_lock(&root->orphan_lock); 2956 if (atomic_read(&root->orphan_inodes)) { 2957 spin_unlock(&root->orphan_lock); 2958 return; 2959 } 2960 2961 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2962 spin_unlock(&root->orphan_lock); 2963 return; 2964 } 2965 2966 block_rsv = root->orphan_block_rsv; 2967 root->orphan_block_rsv = NULL; 2968 spin_unlock(&root->orphan_lock); 2969 2970 if (root->orphan_item_inserted && 2971 btrfs_root_refs(&root->root_item) > 0) { 2972 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2973 root->root_key.objectid); 2974 BUG_ON(ret); 2975 root->orphan_item_inserted = 0; 2976 } 2977 2978 if (block_rsv) { 2979 WARN_ON(block_rsv->size > 0); 2980 btrfs_free_block_rsv(root, block_rsv); 2981 } 2982 } 2983 2984 /* 2985 * This creates an orphan entry for the given inode in case something goes 2986 * wrong in the middle of an unlink/truncate. 2987 * 2988 * NOTE: caller of this function should reserve 5 units of metadata for 2989 * this function. 2990 */ 2991 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2992 { 2993 struct btrfs_root *root = BTRFS_I(inode)->root; 2994 struct btrfs_block_rsv *block_rsv = NULL; 2995 int reserve = 0; 2996 int insert = 0; 2997 int ret; 2998 2999 if (!root->orphan_block_rsv) { 3000 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3001 if (!block_rsv) 3002 return -ENOMEM; 3003 } 3004 3005 spin_lock(&root->orphan_lock); 3006 if (!root->orphan_block_rsv) { 3007 root->orphan_block_rsv = block_rsv; 3008 } else if (block_rsv) { 3009 btrfs_free_block_rsv(root, block_rsv); 3010 block_rsv = NULL; 3011 } 3012 3013 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3014 &BTRFS_I(inode)->runtime_flags)) { 3015 #if 0 3016 /* 3017 * For proper ENOSPC handling, we should do orphan 3018 * cleanup when mounting. But this introduces backward 3019 * compatibility issue. 3020 */ 3021 if (!xchg(&root->orphan_item_inserted, 1)) 3022 insert = 2; 3023 else 3024 insert = 1; 3025 #endif 3026 insert = 1; 3027 atomic_inc(&root->orphan_inodes); 3028 } 3029 3030 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3031 &BTRFS_I(inode)->runtime_flags)) 3032 reserve = 1; 3033 spin_unlock(&root->orphan_lock); 3034 3035 /* grab metadata reservation from transaction handle */ 3036 if (reserve) { 3037 ret = btrfs_orphan_reserve_metadata(trans, inode); 3038 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3039 } 3040 3041 /* insert an orphan item to track this unlinked/truncated file */ 3042 if (insert >= 1) { 3043 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3044 if (ret && ret != -EEXIST) { 3045 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3046 &BTRFS_I(inode)->runtime_flags); 3047 btrfs_abort_transaction(trans, root, ret); 3048 return ret; 3049 } 3050 ret = 0; 3051 } 3052 3053 /* insert an orphan item to track subvolume contains orphan files */ 3054 if (insert >= 2) { 3055 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3056 root->root_key.objectid); 3057 if (ret && ret != -EEXIST) { 3058 btrfs_abort_transaction(trans, root, ret); 3059 return ret; 3060 } 3061 } 3062 return 0; 3063 } 3064 3065 /* 3066 * We have done the truncate/delete so we can go ahead and remove the orphan 3067 * item for this particular inode. 3068 */ 3069 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3070 struct inode *inode) 3071 { 3072 struct btrfs_root *root = BTRFS_I(inode)->root; 3073 int delete_item = 0; 3074 int release_rsv = 0; 3075 int ret = 0; 3076 3077 spin_lock(&root->orphan_lock); 3078 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3079 &BTRFS_I(inode)->runtime_flags)) 3080 delete_item = 1; 3081 3082 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3083 &BTRFS_I(inode)->runtime_flags)) 3084 release_rsv = 1; 3085 spin_unlock(&root->orphan_lock); 3086 3087 if (trans && delete_item) { 3088 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 3089 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 3090 } 3091 3092 if (release_rsv) { 3093 btrfs_orphan_release_metadata(inode); 3094 atomic_dec(&root->orphan_inodes); 3095 } 3096 3097 return 0; 3098 } 3099 3100 /* 3101 * this cleans up any orphans that may be left on the list from the last use 3102 * of this root. 3103 */ 3104 int btrfs_orphan_cleanup(struct btrfs_root *root) 3105 { 3106 struct btrfs_path *path; 3107 struct extent_buffer *leaf; 3108 struct btrfs_key key, found_key; 3109 struct btrfs_trans_handle *trans; 3110 struct inode *inode; 3111 u64 last_objectid = 0; 3112 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3113 3114 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3115 return 0; 3116 3117 path = btrfs_alloc_path(); 3118 if (!path) { 3119 ret = -ENOMEM; 3120 goto out; 3121 } 3122 path->reada = -1; 3123 3124 key.objectid = BTRFS_ORPHAN_OBJECTID; 3125 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 3126 key.offset = (u64)-1; 3127 3128 while (1) { 3129 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3130 if (ret < 0) 3131 goto out; 3132 3133 /* 3134 * if ret == 0 means we found what we were searching for, which 3135 * is weird, but possible, so only screw with path if we didn't 3136 * find the key and see if we have stuff that matches 3137 */ 3138 if (ret > 0) { 3139 ret = 0; 3140 if (path->slots[0] == 0) 3141 break; 3142 path->slots[0]--; 3143 } 3144 3145 /* pull out the item */ 3146 leaf = path->nodes[0]; 3147 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3148 3149 /* make sure the item matches what we want */ 3150 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3151 break; 3152 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 3153 break; 3154 3155 /* release the path since we're done with it */ 3156 btrfs_release_path(path); 3157 3158 /* 3159 * this is where we are basically btrfs_lookup, without the 3160 * crossing root thing. we store the inode number in the 3161 * offset of the orphan item. 3162 */ 3163 3164 if (found_key.offset == last_objectid) { 3165 btrfs_err(root->fs_info, 3166 "Error removing orphan entry, stopping orphan cleanup"); 3167 ret = -EINVAL; 3168 goto out; 3169 } 3170 3171 last_objectid = found_key.offset; 3172 3173 found_key.objectid = found_key.offset; 3174 found_key.type = BTRFS_INODE_ITEM_KEY; 3175 found_key.offset = 0; 3176 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3177 ret = PTR_RET(inode); 3178 if (ret && ret != -ESTALE) 3179 goto out; 3180 3181 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3182 struct btrfs_root *dead_root; 3183 struct btrfs_fs_info *fs_info = root->fs_info; 3184 int is_dead_root = 0; 3185 3186 /* 3187 * this is an orphan in the tree root. Currently these 3188 * could come from 2 sources: 3189 * a) a snapshot deletion in progress 3190 * b) a free space cache inode 3191 * We need to distinguish those two, as the snapshot 3192 * orphan must not get deleted. 3193 * find_dead_roots already ran before us, so if this 3194 * is a snapshot deletion, we should find the root 3195 * in the dead_roots list 3196 */ 3197 spin_lock(&fs_info->trans_lock); 3198 list_for_each_entry(dead_root, &fs_info->dead_roots, 3199 root_list) { 3200 if (dead_root->root_key.objectid == 3201 found_key.objectid) { 3202 is_dead_root = 1; 3203 break; 3204 } 3205 } 3206 spin_unlock(&fs_info->trans_lock); 3207 if (is_dead_root) { 3208 /* prevent this orphan from being found again */ 3209 key.offset = found_key.objectid - 1; 3210 continue; 3211 } 3212 } 3213 /* 3214 * Inode is already gone but the orphan item is still there, 3215 * kill the orphan item. 3216 */ 3217 if (ret == -ESTALE) { 3218 trans = btrfs_start_transaction(root, 1); 3219 if (IS_ERR(trans)) { 3220 ret = PTR_ERR(trans); 3221 goto out; 3222 } 3223 btrfs_debug(root->fs_info, "auto deleting %Lu", 3224 found_key.objectid); 3225 ret = btrfs_del_orphan_item(trans, root, 3226 found_key.objectid); 3227 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 3228 btrfs_end_transaction(trans, root); 3229 continue; 3230 } 3231 3232 /* 3233 * add this inode to the orphan list so btrfs_orphan_del does 3234 * the proper thing when we hit it 3235 */ 3236 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3237 &BTRFS_I(inode)->runtime_flags); 3238 atomic_inc(&root->orphan_inodes); 3239 3240 /* if we have links, this was a truncate, lets do that */ 3241 if (inode->i_nlink) { 3242 if (!S_ISREG(inode->i_mode)) { 3243 WARN_ON(1); 3244 iput(inode); 3245 continue; 3246 } 3247 nr_truncate++; 3248 3249 /* 1 for the orphan item deletion. */ 3250 trans = btrfs_start_transaction(root, 1); 3251 if (IS_ERR(trans)) { 3252 iput(inode); 3253 ret = PTR_ERR(trans); 3254 goto out; 3255 } 3256 ret = btrfs_orphan_add(trans, inode); 3257 btrfs_end_transaction(trans, root); 3258 if (ret) { 3259 iput(inode); 3260 goto out; 3261 } 3262 3263 ret = btrfs_truncate(inode); 3264 if (ret) 3265 btrfs_orphan_del(NULL, inode); 3266 } else { 3267 nr_unlink++; 3268 } 3269 3270 /* this will do delete_inode and everything for us */ 3271 iput(inode); 3272 if (ret) 3273 goto out; 3274 } 3275 /* release the path since we're done with it */ 3276 btrfs_release_path(path); 3277 3278 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3279 3280 if (root->orphan_block_rsv) 3281 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3282 (u64)-1); 3283 3284 if (root->orphan_block_rsv || root->orphan_item_inserted) { 3285 trans = btrfs_join_transaction(root); 3286 if (!IS_ERR(trans)) 3287 btrfs_end_transaction(trans, root); 3288 } 3289 3290 if (nr_unlink) 3291 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3292 if (nr_truncate) 3293 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3294 3295 out: 3296 if (ret) 3297 btrfs_crit(root->fs_info, 3298 "could not do orphan cleanup %d", ret); 3299 btrfs_free_path(path); 3300 return ret; 3301 } 3302 3303 /* 3304 * very simple check to peek ahead in the leaf looking for xattrs. If we 3305 * don't find any xattrs, we know there can't be any acls. 3306 * 3307 * slot is the slot the inode is in, objectid is the objectid of the inode 3308 */ 3309 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3310 int slot, u64 objectid) 3311 { 3312 u32 nritems = btrfs_header_nritems(leaf); 3313 struct btrfs_key found_key; 3314 static u64 xattr_access = 0; 3315 static u64 xattr_default = 0; 3316 int scanned = 0; 3317 3318 if (!xattr_access) { 3319 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3320 strlen(POSIX_ACL_XATTR_ACCESS)); 3321 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3322 strlen(POSIX_ACL_XATTR_DEFAULT)); 3323 } 3324 3325 slot++; 3326 while (slot < nritems) { 3327 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3328 3329 /* we found a different objectid, there must not be acls */ 3330 if (found_key.objectid != objectid) 3331 return 0; 3332 3333 /* we found an xattr, assume we've got an acl */ 3334 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3335 if (found_key.offset == xattr_access || 3336 found_key.offset == xattr_default) 3337 return 1; 3338 } 3339 3340 /* 3341 * we found a key greater than an xattr key, there can't 3342 * be any acls later on 3343 */ 3344 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3345 return 0; 3346 3347 slot++; 3348 scanned++; 3349 3350 /* 3351 * it goes inode, inode backrefs, xattrs, extents, 3352 * so if there are a ton of hard links to an inode there can 3353 * be a lot of backrefs. Don't waste time searching too hard, 3354 * this is just an optimization 3355 */ 3356 if (scanned >= 8) 3357 break; 3358 } 3359 /* we hit the end of the leaf before we found an xattr or 3360 * something larger than an xattr. We have to assume the inode 3361 * has acls 3362 */ 3363 return 1; 3364 } 3365 3366 /* 3367 * read an inode from the btree into the in-memory inode 3368 */ 3369 static void btrfs_read_locked_inode(struct inode *inode) 3370 { 3371 struct btrfs_path *path; 3372 struct extent_buffer *leaf; 3373 struct btrfs_inode_item *inode_item; 3374 struct btrfs_timespec *tspec; 3375 struct btrfs_root *root = BTRFS_I(inode)->root; 3376 struct btrfs_key location; 3377 int maybe_acls; 3378 u32 rdev; 3379 int ret; 3380 bool filled = false; 3381 3382 ret = btrfs_fill_inode(inode, &rdev); 3383 if (!ret) 3384 filled = true; 3385 3386 path = btrfs_alloc_path(); 3387 if (!path) 3388 goto make_bad; 3389 3390 path->leave_spinning = 1; 3391 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3392 3393 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3394 if (ret) 3395 goto make_bad; 3396 3397 leaf = path->nodes[0]; 3398 3399 if (filled) 3400 goto cache_acl; 3401 3402 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3403 struct btrfs_inode_item); 3404 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3405 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3406 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3407 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3408 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3409 3410 tspec = btrfs_inode_atime(inode_item); 3411 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3412 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3413 3414 tspec = btrfs_inode_mtime(inode_item); 3415 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3416 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3417 3418 tspec = btrfs_inode_ctime(inode_item); 3419 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3420 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3421 3422 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3423 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3424 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3425 3426 /* 3427 * If we were modified in the current generation and evicted from memory 3428 * and then re-read we need to do a full sync since we don't have any 3429 * idea about which extents were modified before we were evicted from 3430 * cache. 3431 */ 3432 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3433 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3434 &BTRFS_I(inode)->runtime_flags); 3435 3436 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3437 inode->i_generation = BTRFS_I(inode)->generation; 3438 inode->i_rdev = 0; 3439 rdev = btrfs_inode_rdev(leaf, inode_item); 3440 3441 BTRFS_I(inode)->index_cnt = (u64)-1; 3442 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3443 cache_acl: 3444 /* 3445 * try to precache a NULL acl entry for files that don't have 3446 * any xattrs or acls 3447 */ 3448 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3449 btrfs_ino(inode)); 3450 if (!maybe_acls) 3451 cache_no_acl(inode); 3452 3453 btrfs_free_path(path); 3454 3455 switch (inode->i_mode & S_IFMT) { 3456 case S_IFREG: 3457 inode->i_mapping->a_ops = &btrfs_aops; 3458 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3459 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3460 inode->i_fop = &btrfs_file_operations; 3461 inode->i_op = &btrfs_file_inode_operations; 3462 break; 3463 case S_IFDIR: 3464 inode->i_fop = &btrfs_dir_file_operations; 3465 if (root == root->fs_info->tree_root) 3466 inode->i_op = &btrfs_dir_ro_inode_operations; 3467 else 3468 inode->i_op = &btrfs_dir_inode_operations; 3469 break; 3470 case S_IFLNK: 3471 inode->i_op = &btrfs_symlink_inode_operations; 3472 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3473 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3474 break; 3475 default: 3476 inode->i_op = &btrfs_special_inode_operations; 3477 init_special_inode(inode, inode->i_mode, rdev); 3478 break; 3479 } 3480 3481 btrfs_update_iflags(inode); 3482 return; 3483 3484 make_bad: 3485 btrfs_free_path(path); 3486 make_bad_inode(inode); 3487 } 3488 3489 /* 3490 * given a leaf and an inode, copy the inode fields into the leaf 3491 */ 3492 static void fill_inode_item(struct btrfs_trans_handle *trans, 3493 struct extent_buffer *leaf, 3494 struct btrfs_inode_item *item, 3495 struct inode *inode) 3496 { 3497 struct btrfs_map_token token; 3498 3499 btrfs_init_map_token(&token); 3500 3501 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3502 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3503 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3504 &token); 3505 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3506 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3507 3508 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3509 inode->i_atime.tv_sec, &token); 3510 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3511 inode->i_atime.tv_nsec, &token); 3512 3513 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3514 inode->i_mtime.tv_sec, &token); 3515 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3516 inode->i_mtime.tv_nsec, &token); 3517 3518 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3519 inode->i_ctime.tv_sec, &token); 3520 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3521 inode->i_ctime.tv_nsec, &token); 3522 3523 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3524 &token); 3525 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3526 &token); 3527 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3528 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3529 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3530 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3531 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3532 } 3533 3534 /* 3535 * copy everything in the in-memory inode into the btree. 3536 */ 3537 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3538 struct btrfs_root *root, struct inode *inode) 3539 { 3540 struct btrfs_inode_item *inode_item; 3541 struct btrfs_path *path; 3542 struct extent_buffer *leaf; 3543 int ret; 3544 3545 path = btrfs_alloc_path(); 3546 if (!path) 3547 return -ENOMEM; 3548 3549 path->leave_spinning = 1; 3550 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3551 1); 3552 if (ret) { 3553 if (ret > 0) 3554 ret = -ENOENT; 3555 goto failed; 3556 } 3557 3558 btrfs_unlock_up_safe(path, 1); 3559 leaf = path->nodes[0]; 3560 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3561 struct btrfs_inode_item); 3562 3563 fill_inode_item(trans, leaf, inode_item, inode); 3564 btrfs_mark_buffer_dirty(leaf); 3565 btrfs_set_inode_last_trans(trans, inode); 3566 ret = 0; 3567 failed: 3568 btrfs_free_path(path); 3569 return ret; 3570 } 3571 3572 /* 3573 * copy everything in the in-memory inode into the btree. 3574 */ 3575 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3576 struct btrfs_root *root, struct inode *inode) 3577 { 3578 int ret; 3579 3580 /* 3581 * If the inode is a free space inode, we can deadlock during commit 3582 * if we put it into the delayed code. 3583 * 3584 * The data relocation inode should also be directly updated 3585 * without delay 3586 */ 3587 if (!btrfs_is_free_space_inode(inode) 3588 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 3589 btrfs_update_root_times(trans, root); 3590 3591 ret = btrfs_delayed_update_inode(trans, root, inode); 3592 if (!ret) 3593 btrfs_set_inode_last_trans(trans, inode); 3594 return ret; 3595 } 3596 3597 return btrfs_update_inode_item(trans, root, inode); 3598 } 3599 3600 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3601 struct btrfs_root *root, 3602 struct inode *inode) 3603 { 3604 int ret; 3605 3606 ret = btrfs_update_inode(trans, root, inode); 3607 if (ret == -ENOSPC) 3608 return btrfs_update_inode_item(trans, root, inode); 3609 return ret; 3610 } 3611 3612 /* 3613 * unlink helper that gets used here in inode.c and in the tree logging 3614 * recovery code. It remove a link in a directory with a given name, and 3615 * also drops the back refs in the inode to the directory 3616 */ 3617 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3618 struct btrfs_root *root, 3619 struct inode *dir, struct inode *inode, 3620 const char *name, int name_len) 3621 { 3622 struct btrfs_path *path; 3623 int ret = 0; 3624 struct extent_buffer *leaf; 3625 struct btrfs_dir_item *di; 3626 struct btrfs_key key; 3627 u64 index; 3628 u64 ino = btrfs_ino(inode); 3629 u64 dir_ino = btrfs_ino(dir); 3630 3631 path = btrfs_alloc_path(); 3632 if (!path) { 3633 ret = -ENOMEM; 3634 goto out; 3635 } 3636 3637 path->leave_spinning = 1; 3638 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3639 name, name_len, -1); 3640 if (IS_ERR(di)) { 3641 ret = PTR_ERR(di); 3642 goto err; 3643 } 3644 if (!di) { 3645 ret = -ENOENT; 3646 goto err; 3647 } 3648 leaf = path->nodes[0]; 3649 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3650 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3651 if (ret) 3652 goto err; 3653 btrfs_release_path(path); 3654 3655 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3656 dir_ino, &index); 3657 if (ret) { 3658 btrfs_info(root->fs_info, 3659 "failed to delete reference to %.*s, inode %llu parent %llu", 3660 name_len, name, 3661 (unsigned long long)ino, (unsigned long long)dir_ino); 3662 btrfs_abort_transaction(trans, root, ret); 3663 goto err; 3664 } 3665 3666 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3667 if (ret) { 3668 btrfs_abort_transaction(trans, root, ret); 3669 goto err; 3670 } 3671 3672 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3673 inode, dir_ino); 3674 if (ret != 0 && ret != -ENOENT) { 3675 btrfs_abort_transaction(trans, root, ret); 3676 goto err; 3677 } 3678 3679 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3680 dir, index); 3681 if (ret == -ENOENT) 3682 ret = 0; 3683 else if (ret) 3684 btrfs_abort_transaction(trans, root, ret); 3685 err: 3686 btrfs_free_path(path); 3687 if (ret) 3688 goto out; 3689 3690 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3691 inode_inc_iversion(inode); 3692 inode_inc_iversion(dir); 3693 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3694 ret = btrfs_update_inode(trans, root, dir); 3695 out: 3696 return ret; 3697 } 3698 3699 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3700 struct btrfs_root *root, 3701 struct inode *dir, struct inode *inode, 3702 const char *name, int name_len) 3703 { 3704 int ret; 3705 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3706 if (!ret) { 3707 btrfs_drop_nlink(inode); 3708 ret = btrfs_update_inode(trans, root, inode); 3709 } 3710 return ret; 3711 } 3712 3713 /* 3714 * helper to start transaction for unlink and rmdir. 3715 * 3716 * unlink and rmdir are special in btrfs, they do not always free space, so 3717 * if we cannot make our reservations the normal way try and see if there is 3718 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3719 * allow the unlink to occur. 3720 */ 3721 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3722 { 3723 struct btrfs_trans_handle *trans; 3724 struct btrfs_root *root = BTRFS_I(dir)->root; 3725 int ret; 3726 3727 /* 3728 * 1 for the possible orphan item 3729 * 1 for the dir item 3730 * 1 for the dir index 3731 * 1 for the inode ref 3732 * 1 for the inode 3733 */ 3734 trans = btrfs_start_transaction(root, 5); 3735 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3736 return trans; 3737 3738 if (PTR_ERR(trans) == -ENOSPC) { 3739 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 3740 3741 trans = btrfs_start_transaction(root, 0); 3742 if (IS_ERR(trans)) 3743 return trans; 3744 ret = btrfs_cond_migrate_bytes(root->fs_info, 3745 &root->fs_info->trans_block_rsv, 3746 num_bytes, 5); 3747 if (ret) { 3748 btrfs_end_transaction(trans, root); 3749 return ERR_PTR(ret); 3750 } 3751 trans->block_rsv = &root->fs_info->trans_block_rsv; 3752 trans->bytes_reserved = num_bytes; 3753 } 3754 return trans; 3755 } 3756 3757 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3758 { 3759 struct btrfs_root *root = BTRFS_I(dir)->root; 3760 struct btrfs_trans_handle *trans; 3761 struct inode *inode = dentry->d_inode; 3762 int ret; 3763 3764 trans = __unlink_start_trans(dir); 3765 if (IS_ERR(trans)) 3766 return PTR_ERR(trans); 3767 3768 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3769 3770 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3771 dentry->d_name.name, dentry->d_name.len); 3772 if (ret) 3773 goto out; 3774 3775 if (inode->i_nlink == 0) { 3776 ret = btrfs_orphan_add(trans, inode); 3777 if (ret) 3778 goto out; 3779 } 3780 3781 out: 3782 btrfs_end_transaction(trans, root); 3783 btrfs_btree_balance_dirty(root); 3784 return ret; 3785 } 3786 3787 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3788 struct btrfs_root *root, 3789 struct inode *dir, u64 objectid, 3790 const char *name, int name_len) 3791 { 3792 struct btrfs_path *path; 3793 struct extent_buffer *leaf; 3794 struct btrfs_dir_item *di; 3795 struct btrfs_key key; 3796 u64 index; 3797 int ret; 3798 u64 dir_ino = btrfs_ino(dir); 3799 3800 path = btrfs_alloc_path(); 3801 if (!path) 3802 return -ENOMEM; 3803 3804 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3805 name, name_len, -1); 3806 if (IS_ERR_OR_NULL(di)) { 3807 if (!di) 3808 ret = -ENOENT; 3809 else 3810 ret = PTR_ERR(di); 3811 goto out; 3812 } 3813 3814 leaf = path->nodes[0]; 3815 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3816 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3817 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3818 if (ret) { 3819 btrfs_abort_transaction(trans, root, ret); 3820 goto out; 3821 } 3822 btrfs_release_path(path); 3823 3824 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3825 objectid, root->root_key.objectid, 3826 dir_ino, &index, name, name_len); 3827 if (ret < 0) { 3828 if (ret != -ENOENT) { 3829 btrfs_abort_transaction(trans, root, ret); 3830 goto out; 3831 } 3832 di = btrfs_search_dir_index_item(root, path, dir_ino, 3833 name, name_len); 3834 if (IS_ERR_OR_NULL(di)) { 3835 if (!di) 3836 ret = -ENOENT; 3837 else 3838 ret = PTR_ERR(di); 3839 btrfs_abort_transaction(trans, root, ret); 3840 goto out; 3841 } 3842 3843 leaf = path->nodes[0]; 3844 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3845 btrfs_release_path(path); 3846 index = key.offset; 3847 } 3848 btrfs_release_path(path); 3849 3850 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3851 if (ret) { 3852 btrfs_abort_transaction(trans, root, ret); 3853 goto out; 3854 } 3855 3856 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3857 inode_inc_iversion(dir); 3858 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3859 ret = btrfs_update_inode_fallback(trans, root, dir); 3860 if (ret) 3861 btrfs_abort_transaction(trans, root, ret); 3862 out: 3863 btrfs_free_path(path); 3864 return ret; 3865 } 3866 3867 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3868 { 3869 struct inode *inode = dentry->d_inode; 3870 int err = 0; 3871 struct btrfs_root *root = BTRFS_I(dir)->root; 3872 struct btrfs_trans_handle *trans; 3873 3874 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3875 return -ENOTEMPTY; 3876 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3877 return -EPERM; 3878 3879 trans = __unlink_start_trans(dir); 3880 if (IS_ERR(trans)) 3881 return PTR_ERR(trans); 3882 3883 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3884 err = btrfs_unlink_subvol(trans, root, dir, 3885 BTRFS_I(inode)->location.objectid, 3886 dentry->d_name.name, 3887 dentry->d_name.len); 3888 goto out; 3889 } 3890 3891 err = btrfs_orphan_add(trans, inode); 3892 if (err) 3893 goto out; 3894 3895 /* now the directory is empty */ 3896 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3897 dentry->d_name.name, dentry->d_name.len); 3898 if (!err) 3899 btrfs_i_size_write(inode, 0); 3900 out: 3901 btrfs_end_transaction(trans, root); 3902 btrfs_btree_balance_dirty(root); 3903 3904 return err; 3905 } 3906 3907 /* 3908 * this can truncate away extent items, csum items and directory items. 3909 * It starts at a high offset and removes keys until it can't find 3910 * any higher than new_size 3911 * 3912 * csum items that cross the new i_size are truncated to the new size 3913 * as well. 3914 * 3915 * min_type is the minimum key type to truncate down to. If set to 0, this 3916 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3917 */ 3918 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3919 struct btrfs_root *root, 3920 struct inode *inode, 3921 u64 new_size, u32 min_type) 3922 { 3923 struct btrfs_path *path; 3924 struct extent_buffer *leaf; 3925 struct btrfs_file_extent_item *fi; 3926 struct btrfs_key key; 3927 struct btrfs_key found_key; 3928 u64 extent_start = 0; 3929 u64 extent_num_bytes = 0; 3930 u64 extent_offset = 0; 3931 u64 item_end = 0; 3932 u32 found_type = (u8)-1; 3933 int found_extent; 3934 int del_item; 3935 int pending_del_nr = 0; 3936 int pending_del_slot = 0; 3937 int extent_type = -1; 3938 int ret; 3939 int err = 0; 3940 u64 ino = btrfs_ino(inode); 3941 3942 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3943 3944 path = btrfs_alloc_path(); 3945 if (!path) 3946 return -ENOMEM; 3947 path->reada = -1; 3948 3949 /* 3950 * We want to drop from the next block forward in case this new size is 3951 * not block aligned since we will be keeping the last block of the 3952 * extent just the way it is. 3953 */ 3954 if (root->ref_cows || root == root->fs_info->tree_root) 3955 btrfs_drop_extent_cache(inode, ALIGN(new_size, 3956 root->sectorsize), (u64)-1, 0); 3957 3958 /* 3959 * This function is also used to drop the items in the log tree before 3960 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3961 * it is used to drop the loged items. So we shouldn't kill the delayed 3962 * items. 3963 */ 3964 if (min_type == 0 && root == BTRFS_I(inode)->root) 3965 btrfs_kill_delayed_inode_items(inode); 3966 3967 key.objectid = ino; 3968 key.offset = (u64)-1; 3969 key.type = (u8)-1; 3970 3971 search_again: 3972 path->leave_spinning = 1; 3973 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3974 if (ret < 0) { 3975 err = ret; 3976 goto out; 3977 } 3978 3979 if (ret > 0) { 3980 /* there are no items in the tree for us to truncate, we're 3981 * done 3982 */ 3983 if (path->slots[0] == 0) 3984 goto out; 3985 path->slots[0]--; 3986 } 3987 3988 while (1) { 3989 fi = NULL; 3990 leaf = path->nodes[0]; 3991 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3992 found_type = btrfs_key_type(&found_key); 3993 3994 if (found_key.objectid != ino) 3995 break; 3996 3997 if (found_type < min_type) 3998 break; 3999 4000 item_end = found_key.offset; 4001 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4002 fi = btrfs_item_ptr(leaf, path->slots[0], 4003 struct btrfs_file_extent_item); 4004 extent_type = btrfs_file_extent_type(leaf, fi); 4005 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4006 item_end += 4007 btrfs_file_extent_num_bytes(leaf, fi); 4008 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4009 item_end += btrfs_file_extent_inline_len(leaf, 4010 fi); 4011 } 4012 item_end--; 4013 } 4014 if (found_type > min_type) { 4015 del_item = 1; 4016 } else { 4017 if (item_end < new_size) 4018 break; 4019 if (found_key.offset >= new_size) 4020 del_item = 1; 4021 else 4022 del_item = 0; 4023 } 4024 found_extent = 0; 4025 /* FIXME, shrink the extent if the ref count is only 1 */ 4026 if (found_type != BTRFS_EXTENT_DATA_KEY) 4027 goto delete; 4028 4029 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4030 u64 num_dec; 4031 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4032 if (!del_item) { 4033 u64 orig_num_bytes = 4034 btrfs_file_extent_num_bytes(leaf, fi); 4035 extent_num_bytes = ALIGN(new_size - 4036 found_key.offset, 4037 root->sectorsize); 4038 btrfs_set_file_extent_num_bytes(leaf, fi, 4039 extent_num_bytes); 4040 num_dec = (orig_num_bytes - 4041 extent_num_bytes); 4042 if (root->ref_cows && extent_start != 0) 4043 inode_sub_bytes(inode, num_dec); 4044 btrfs_mark_buffer_dirty(leaf); 4045 } else { 4046 extent_num_bytes = 4047 btrfs_file_extent_disk_num_bytes(leaf, 4048 fi); 4049 extent_offset = found_key.offset - 4050 btrfs_file_extent_offset(leaf, fi); 4051 4052 /* FIXME blocksize != 4096 */ 4053 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4054 if (extent_start != 0) { 4055 found_extent = 1; 4056 if (root->ref_cows) 4057 inode_sub_bytes(inode, num_dec); 4058 } 4059 } 4060 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4061 /* 4062 * we can't truncate inline items that have had 4063 * special encodings 4064 */ 4065 if (!del_item && 4066 btrfs_file_extent_compression(leaf, fi) == 0 && 4067 btrfs_file_extent_encryption(leaf, fi) == 0 && 4068 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4069 u32 size = new_size - found_key.offset; 4070 4071 if (root->ref_cows) { 4072 inode_sub_bytes(inode, item_end + 1 - 4073 new_size); 4074 } 4075 size = 4076 btrfs_file_extent_calc_inline_size(size); 4077 btrfs_truncate_item(root, path, size, 1); 4078 } else if (root->ref_cows) { 4079 inode_sub_bytes(inode, item_end + 1 - 4080 found_key.offset); 4081 } 4082 } 4083 delete: 4084 if (del_item) { 4085 if (!pending_del_nr) { 4086 /* no pending yet, add ourselves */ 4087 pending_del_slot = path->slots[0]; 4088 pending_del_nr = 1; 4089 } else if (pending_del_nr && 4090 path->slots[0] + 1 == pending_del_slot) { 4091 /* hop on the pending chunk */ 4092 pending_del_nr++; 4093 pending_del_slot = path->slots[0]; 4094 } else { 4095 BUG(); 4096 } 4097 } else { 4098 break; 4099 } 4100 if (found_extent && (root->ref_cows || 4101 root == root->fs_info->tree_root)) { 4102 btrfs_set_path_blocking(path); 4103 ret = btrfs_free_extent(trans, root, extent_start, 4104 extent_num_bytes, 0, 4105 btrfs_header_owner(leaf), 4106 ino, extent_offset, 0); 4107 BUG_ON(ret); 4108 } 4109 4110 if (found_type == BTRFS_INODE_ITEM_KEY) 4111 break; 4112 4113 if (path->slots[0] == 0 || 4114 path->slots[0] != pending_del_slot) { 4115 if (pending_del_nr) { 4116 ret = btrfs_del_items(trans, root, path, 4117 pending_del_slot, 4118 pending_del_nr); 4119 if (ret) { 4120 btrfs_abort_transaction(trans, 4121 root, ret); 4122 goto error; 4123 } 4124 pending_del_nr = 0; 4125 } 4126 btrfs_release_path(path); 4127 goto search_again; 4128 } else { 4129 path->slots[0]--; 4130 } 4131 } 4132 out: 4133 if (pending_del_nr) { 4134 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4135 pending_del_nr); 4136 if (ret) 4137 btrfs_abort_transaction(trans, root, ret); 4138 } 4139 error: 4140 btrfs_free_path(path); 4141 return err; 4142 } 4143 4144 /* 4145 * btrfs_truncate_page - read, zero a chunk and write a page 4146 * @inode - inode that we're zeroing 4147 * @from - the offset to start zeroing 4148 * @len - the length to zero, 0 to zero the entire range respective to the 4149 * offset 4150 * @front - zero up to the offset instead of from the offset on 4151 * 4152 * This will find the page for the "from" offset and cow the page and zero the 4153 * part we want to zero. This is used with truncate and hole punching. 4154 */ 4155 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4156 int front) 4157 { 4158 struct address_space *mapping = inode->i_mapping; 4159 struct btrfs_root *root = BTRFS_I(inode)->root; 4160 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4161 struct btrfs_ordered_extent *ordered; 4162 struct extent_state *cached_state = NULL; 4163 char *kaddr; 4164 u32 blocksize = root->sectorsize; 4165 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4166 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4167 struct page *page; 4168 gfp_t mask = btrfs_alloc_write_mask(mapping); 4169 int ret = 0; 4170 u64 page_start; 4171 u64 page_end; 4172 4173 if ((offset & (blocksize - 1)) == 0 && 4174 (!len || ((len & (blocksize - 1)) == 0))) 4175 goto out; 4176 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4177 if (ret) 4178 goto out; 4179 4180 again: 4181 page = find_or_create_page(mapping, index, mask); 4182 if (!page) { 4183 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4184 ret = -ENOMEM; 4185 goto out; 4186 } 4187 4188 page_start = page_offset(page); 4189 page_end = page_start + PAGE_CACHE_SIZE - 1; 4190 4191 if (!PageUptodate(page)) { 4192 ret = btrfs_readpage(NULL, page); 4193 lock_page(page); 4194 if (page->mapping != mapping) { 4195 unlock_page(page); 4196 page_cache_release(page); 4197 goto again; 4198 } 4199 if (!PageUptodate(page)) { 4200 ret = -EIO; 4201 goto out_unlock; 4202 } 4203 } 4204 wait_on_page_writeback(page); 4205 4206 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4207 set_page_extent_mapped(page); 4208 4209 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4210 if (ordered) { 4211 unlock_extent_cached(io_tree, page_start, page_end, 4212 &cached_state, GFP_NOFS); 4213 unlock_page(page); 4214 page_cache_release(page); 4215 btrfs_start_ordered_extent(inode, ordered, 1); 4216 btrfs_put_ordered_extent(ordered); 4217 goto again; 4218 } 4219 4220 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4221 EXTENT_DIRTY | EXTENT_DELALLOC | 4222 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4223 0, 0, &cached_state, GFP_NOFS); 4224 4225 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4226 &cached_state); 4227 if (ret) { 4228 unlock_extent_cached(io_tree, page_start, page_end, 4229 &cached_state, GFP_NOFS); 4230 goto out_unlock; 4231 } 4232 4233 if (offset != PAGE_CACHE_SIZE) { 4234 if (!len) 4235 len = PAGE_CACHE_SIZE - offset; 4236 kaddr = kmap(page); 4237 if (front) 4238 memset(kaddr, 0, offset); 4239 else 4240 memset(kaddr + offset, 0, len); 4241 flush_dcache_page(page); 4242 kunmap(page); 4243 } 4244 ClearPageChecked(page); 4245 set_page_dirty(page); 4246 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4247 GFP_NOFS); 4248 4249 out_unlock: 4250 if (ret) 4251 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4252 unlock_page(page); 4253 page_cache_release(page); 4254 out: 4255 return ret; 4256 } 4257 4258 /* 4259 * This function puts in dummy file extents for the area we're creating a hole 4260 * for. So if we are truncating this file to a larger size we need to insert 4261 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4262 * the range between oldsize and size 4263 */ 4264 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4265 { 4266 struct btrfs_trans_handle *trans; 4267 struct btrfs_root *root = BTRFS_I(inode)->root; 4268 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4269 struct extent_map *em = NULL; 4270 struct extent_state *cached_state = NULL; 4271 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4272 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4273 u64 block_end = ALIGN(size, root->sectorsize); 4274 u64 last_byte; 4275 u64 cur_offset; 4276 u64 hole_size; 4277 int err = 0; 4278 4279 /* 4280 * If our size started in the middle of a page we need to zero out the 4281 * rest of the page before we expand the i_size, otherwise we could 4282 * expose stale data. 4283 */ 4284 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4285 if (err) 4286 return err; 4287 4288 if (size <= hole_start) 4289 return 0; 4290 4291 while (1) { 4292 struct btrfs_ordered_extent *ordered; 4293 btrfs_wait_ordered_range(inode, hole_start, 4294 block_end - hole_start); 4295 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4296 &cached_state); 4297 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 4298 if (!ordered) 4299 break; 4300 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4301 &cached_state, GFP_NOFS); 4302 btrfs_put_ordered_extent(ordered); 4303 } 4304 4305 cur_offset = hole_start; 4306 while (1) { 4307 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4308 block_end - cur_offset, 0); 4309 if (IS_ERR(em)) { 4310 err = PTR_ERR(em); 4311 em = NULL; 4312 break; 4313 } 4314 last_byte = min(extent_map_end(em), block_end); 4315 last_byte = ALIGN(last_byte , root->sectorsize); 4316 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4317 struct extent_map *hole_em; 4318 hole_size = last_byte - cur_offset; 4319 4320 trans = btrfs_start_transaction(root, 3); 4321 if (IS_ERR(trans)) { 4322 err = PTR_ERR(trans); 4323 break; 4324 } 4325 4326 err = btrfs_drop_extents(trans, root, inode, 4327 cur_offset, 4328 cur_offset + hole_size, 1); 4329 if (err) { 4330 btrfs_abort_transaction(trans, root, err); 4331 btrfs_end_transaction(trans, root); 4332 break; 4333 } 4334 4335 err = btrfs_insert_file_extent(trans, root, 4336 btrfs_ino(inode), cur_offset, 0, 4337 0, hole_size, 0, hole_size, 4338 0, 0, 0); 4339 if (err) { 4340 btrfs_abort_transaction(trans, root, err); 4341 btrfs_end_transaction(trans, root); 4342 break; 4343 } 4344 4345 btrfs_drop_extent_cache(inode, cur_offset, 4346 cur_offset + hole_size - 1, 0); 4347 hole_em = alloc_extent_map(); 4348 if (!hole_em) { 4349 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4350 &BTRFS_I(inode)->runtime_flags); 4351 goto next; 4352 } 4353 hole_em->start = cur_offset; 4354 hole_em->len = hole_size; 4355 hole_em->orig_start = cur_offset; 4356 4357 hole_em->block_start = EXTENT_MAP_HOLE; 4358 hole_em->block_len = 0; 4359 hole_em->orig_block_len = 0; 4360 hole_em->ram_bytes = hole_size; 4361 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4362 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4363 hole_em->generation = trans->transid; 4364 4365 while (1) { 4366 write_lock(&em_tree->lock); 4367 err = add_extent_mapping(em_tree, hole_em, 1); 4368 write_unlock(&em_tree->lock); 4369 if (err != -EEXIST) 4370 break; 4371 btrfs_drop_extent_cache(inode, cur_offset, 4372 cur_offset + 4373 hole_size - 1, 0); 4374 } 4375 free_extent_map(hole_em); 4376 next: 4377 btrfs_update_inode(trans, root, inode); 4378 btrfs_end_transaction(trans, root); 4379 } 4380 free_extent_map(em); 4381 em = NULL; 4382 cur_offset = last_byte; 4383 if (cur_offset >= block_end) 4384 break; 4385 } 4386 4387 free_extent_map(em); 4388 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4389 GFP_NOFS); 4390 return err; 4391 } 4392 4393 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4394 { 4395 struct btrfs_root *root = BTRFS_I(inode)->root; 4396 struct btrfs_trans_handle *trans; 4397 loff_t oldsize = i_size_read(inode); 4398 loff_t newsize = attr->ia_size; 4399 int mask = attr->ia_valid; 4400 int ret; 4401 4402 /* 4403 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4404 * special case where we need to update the times despite not having 4405 * these flags set. For all other operations the VFS set these flags 4406 * explicitly if it wants a timestamp update. 4407 */ 4408 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME)))) 4409 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb); 4410 4411 if (newsize > oldsize) { 4412 truncate_pagecache(inode, oldsize, newsize); 4413 ret = btrfs_cont_expand(inode, oldsize, newsize); 4414 if (ret) 4415 return ret; 4416 4417 trans = btrfs_start_transaction(root, 1); 4418 if (IS_ERR(trans)) 4419 return PTR_ERR(trans); 4420 4421 i_size_write(inode, newsize); 4422 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4423 ret = btrfs_update_inode(trans, root, inode); 4424 btrfs_end_transaction(trans, root); 4425 } else { 4426 4427 /* 4428 * We're truncating a file that used to have good data down to 4429 * zero. Make sure it gets into the ordered flush list so that 4430 * any new writes get down to disk quickly. 4431 */ 4432 if (newsize == 0) 4433 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4434 &BTRFS_I(inode)->runtime_flags); 4435 4436 /* 4437 * 1 for the orphan item we're going to add 4438 * 1 for the orphan item deletion. 4439 */ 4440 trans = btrfs_start_transaction(root, 2); 4441 if (IS_ERR(trans)) 4442 return PTR_ERR(trans); 4443 4444 /* 4445 * We need to do this in case we fail at _any_ point during the 4446 * actual truncate. Once we do the truncate_setsize we could 4447 * invalidate pages which forces any outstanding ordered io to 4448 * be instantly completed which will give us extents that need 4449 * to be truncated. If we fail to get an orphan inode down we 4450 * could have left over extents that were never meant to live, 4451 * so we need to garuntee from this point on that everything 4452 * will be consistent. 4453 */ 4454 ret = btrfs_orphan_add(trans, inode); 4455 btrfs_end_transaction(trans, root); 4456 if (ret) 4457 return ret; 4458 4459 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4460 truncate_setsize(inode, newsize); 4461 4462 /* Disable nonlocked read DIO to avoid the end less truncate */ 4463 btrfs_inode_block_unlocked_dio(inode); 4464 inode_dio_wait(inode); 4465 btrfs_inode_resume_unlocked_dio(inode); 4466 4467 ret = btrfs_truncate(inode); 4468 if (ret && inode->i_nlink) 4469 btrfs_orphan_del(NULL, inode); 4470 } 4471 4472 return ret; 4473 } 4474 4475 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4476 { 4477 struct inode *inode = dentry->d_inode; 4478 struct btrfs_root *root = BTRFS_I(inode)->root; 4479 int err; 4480 4481 if (btrfs_root_readonly(root)) 4482 return -EROFS; 4483 4484 err = inode_change_ok(inode, attr); 4485 if (err) 4486 return err; 4487 4488 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4489 err = btrfs_setsize(inode, attr); 4490 if (err) 4491 return err; 4492 } 4493 4494 if (attr->ia_valid) { 4495 setattr_copy(inode, attr); 4496 inode_inc_iversion(inode); 4497 err = btrfs_dirty_inode(inode); 4498 4499 if (!err && attr->ia_valid & ATTR_MODE) 4500 err = btrfs_acl_chmod(inode); 4501 } 4502 4503 return err; 4504 } 4505 4506 void btrfs_evict_inode(struct inode *inode) 4507 { 4508 struct btrfs_trans_handle *trans; 4509 struct btrfs_root *root = BTRFS_I(inode)->root; 4510 struct btrfs_block_rsv *rsv, *global_rsv; 4511 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 4512 int ret; 4513 4514 trace_btrfs_inode_evict(inode); 4515 4516 truncate_inode_pages(&inode->i_data, 0); 4517 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 4518 btrfs_is_free_space_inode(inode))) 4519 goto no_delete; 4520 4521 if (is_bad_inode(inode)) { 4522 btrfs_orphan_del(NULL, inode); 4523 goto no_delete; 4524 } 4525 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 4526 btrfs_wait_ordered_range(inode, 0, (u64)-1); 4527 4528 if (root->fs_info->log_root_recovering) { 4529 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 4530 &BTRFS_I(inode)->runtime_flags)); 4531 goto no_delete; 4532 } 4533 4534 if (inode->i_nlink > 0) { 4535 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 4536 goto no_delete; 4537 } 4538 4539 ret = btrfs_commit_inode_delayed_inode(inode); 4540 if (ret) { 4541 btrfs_orphan_del(NULL, inode); 4542 goto no_delete; 4543 } 4544 4545 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 4546 if (!rsv) { 4547 btrfs_orphan_del(NULL, inode); 4548 goto no_delete; 4549 } 4550 rsv->size = min_size; 4551 rsv->failfast = 1; 4552 global_rsv = &root->fs_info->global_block_rsv; 4553 4554 btrfs_i_size_write(inode, 0); 4555 4556 /* 4557 * This is a bit simpler than btrfs_truncate since we've already 4558 * reserved our space for our orphan item in the unlink, so we just 4559 * need to reserve some slack space in case we add bytes and update 4560 * inode item when doing the truncate. 4561 */ 4562 while (1) { 4563 ret = btrfs_block_rsv_refill(root, rsv, min_size, 4564 BTRFS_RESERVE_FLUSH_LIMIT); 4565 4566 /* 4567 * Try and steal from the global reserve since we will 4568 * likely not use this space anyway, we want to try as 4569 * hard as possible to get this to work. 4570 */ 4571 if (ret) 4572 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 4573 4574 if (ret) { 4575 btrfs_warn(root->fs_info, 4576 "Could not get space for a delete, will truncate on mount %d", 4577 ret); 4578 btrfs_orphan_del(NULL, inode); 4579 btrfs_free_block_rsv(root, rsv); 4580 goto no_delete; 4581 } 4582 4583 trans = btrfs_join_transaction(root); 4584 if (IS_ERR(trans)) { 4585 btrfs_orphan_del(NULL, inode); 4586 btrfs_free_block_rsv(root, rsv); 4587 goto no_delete; 4588 } 4589 4590 trans->block_rsv = rsv; 4591 4592 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4593 if (ret != -ENOSPC) 4594 break; 4595 4596 trans->block_rsv = &root->fs_info->trans_block_rsv; 4597 btrfs_end_transaction(trans, root); 4598 trans = NULL; 4599 btrfs_btree_balance_dirty(root); 4600 } 4601 4602 btrfs_free_block_rsv(root, rsv); 4603 4604 if (ret == 0) { 4605 trans->block_rsv = root->orphan_block_rsv; 4606 ret = btrfs_orphan_del(trans, inode); 4607 BUG_ON(ret); 4608 } 4609 4610 trans->block_rsv = &root->fs_info->trans_block_rsv; 4611 if (!(root == root->fs_info->tree_root || 4612 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4613 btrfs_return_ino(root, btrfs_ino(inode)); 4614 4615 btrfs_end_transaction(trans, root); 4616 btrfs_btree_balance_dirty(root); 4617 no_delete: 4618 btrfs_remove_delayed_node(inode); 4619 clear_inode(inode); 4620 return; 4621 } 4622 4623 /* 4624 * this returns the key found in the dir entry in the location pointer. 4625 * If no dir entries were found, location->objectid is 0. 4626 */ 4627 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 4628 struct btrfs_key *location) 4629 { 4630 const char *name = dentry->d_name.name; 4631 int namelen = dentry->d_name.len; 4632 struct btrfs_dir_item *di; 4633 struct btrfs_path *path; 4634 struct btrfs_root *root = BTRFS_I(dir)->root; 4635 int ret = 0; 4636 4637 path = btrfs_alloc_path(); 4638 if (!path) 4639 return -ENOMEM; 4640 4641 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 4642 namelen, 0); 4643 if (IS_ERR(di)) 4644 ret = PTR_ERR(di); 4645 4646 if (IS_ERR_OR_NULL(di)) 4647 goto out_err; 4648 4649 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 4650 out: 4651 btrfs_free_path(path); 4652 return ret; 4653 out_err: 4654 location->objectid = 0; 4655 goto out; 4656 } 4657 4658 /* 4659 * when we hit a tree root in a directory, the btrfs part of the inode 4660 * needs to be changed to reflect the root directory of the tree root. This 4661 * is kind of like crossing a mount point. 4662 */ 4663 static int fixup_tree_root_location(struct btrfs_root *root, 4664 struct inode *dir, 4665 struct dentry *dentry, 4666 struct btrfs_key *location, 4667 struct btrfs_root **sub_root) 4668 { 4669 struct btrfs_path *path; 4670 struct btrfs_root *new_root; 4671 struct btrfs_root_ref *ref; 4672 struct extent_buffer *leaf; 4673 int ret; 4674 int err = 0; 4675 4676 path = btrfs_alloc_path(); 4677 if (!path) { 4678 err = -ENOMEM; 4679 goto out; 4680 } 4681 4682 err = -ENOENT; 4683 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 4684 BTRFS_I(dir)->root->root_key.objectid, 4685 location->objectid); 4686 if (ret) { 4687 if (ret < 0) 4688 err = ret; 4689 goto out; 4690 } 4691 4692 leaf = path->nodes[0]; 4693 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 4694 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 4695 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 4696 goto out; 4697 4698 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 4699 (unsigned long)(ref + 1), 4700 dentry->d_name.len); 4701 if (ret) 4702 goto out; 4703 4704 btrfs_release_path(path); 4705 4706 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 4707 if (IS_ERR(new_root)) { 4708 err = PTR_ERR(new_root); 4709 goto out; 4710 } 4711 4712 *sub_root = new_root; 4713 location->objectid = btrfs_root_dirid(&new_root->root_item); 4714 location->type = BTRFS_INODE_ITEM_KEY; 4715 location->offset = 0; 4716 err = 0; 4717 out: 4718 btrfs_free_path(path); 4719 return err; 4720 } 4721 4722 static void inode_tree_add(struct inode *inode) 4723 { 4724 struct btrfs_root *root = BTRFS_I(inode)->root; 4725 struct btrfs_inode *entry; 4726 struct rb_node **p; 4727 struct rb_node *parent; 4728 u64 ino = btrfs_ino(inode); 4729 4730 if (inode_unhashed(inode)) 4731 return; 4732 again: 4733 parent = NULL; 4734 spin_lock(&root->inode_lock); 4735 p = &root->inode_tree.rb_node; 4736 while (*p) { 4737 parent = *p; 4738 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4739 4740 if (ino < btrfs_ino(&entry->vfs_inode)) 4741 p = &parent->rb_left; 4742 else if (ino > btrfs_ino(&entry->vfs_inode)) 4743 p = &parent->rb_right; 4744 else { 4745 WARN_ON(!(entry->vfs_inode.i_state & 4746 (I_WILL_FREE | I_FREEING))); 4747 rb_erase(parent, &root->inode_tree); 4748 RB_CLEAR_NODE(parent); 4749 spin_unlock(&root->inode_lock); 4750 goto again; 4751 } 4752 } 4753 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 4754 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4755 spin_unlock(&root->inode_lock); 4756 } 4757 4758 static void inode_tree_del(struct inode *inode) 4759 { 4760 struct btrfs_root *root = BTRFS_I(inode)->root; 4761 int empty = 0; 4762 4763 spin_lock(&root->inode_lock); 4764 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4765 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4766 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4767 empty = RB_EMPTY_ROOT(&root->inode_tree); 4768 } 4769 spin_unlock(&root->inode_lock); 4770 4771 /* 4772 * Free space cache has inodes in the tree root, but the tree root has a 4773 * root_refs of 0, so this could end up dropping the tree root as a 4774 * snapshot, so we need the extra !root->fs_info->tree_root check to 4775 * make sure we don't drop it. 4776 */ 4777 if (empty && btrfs_root_refs(&root->root_item) == 0 && 4778 root != root->fs_info->tree_root) { 4779 synchronize_srcu(&root->fs_info->subvol_srcu); 4780 spin_lock(&root->inode_lock); 4781 empty = RB_EMPTY_ROOT(&root->inode_tree); 4782 spin_unlock(&root->inode_lock); 4783 if (empty) 4784 btrfs_add_dead_root(root); 4785 } 4786 } 4787 4788 void btrfs_invalidate_inodes(struct btrfs_root *root) 4789 { 4790 struct rb_node *node; 4791 struct rb_node *prev; 4792 struct btrfs_inode *entry; 4793 struct inode *inode; 4794 u64 objectid = 0; 4795 4796 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4797 4798 spin_lock(&root->inode_lock); 4799 again: 4800 node = root->inode_tree.rb_node; 4801 prev = NULL; 4802 while (node) { 4803 prev = node; 4804 entry = rb_entry(node, struct btrfs_inode, rb_node); 4805 4806 if (objectid < btrfs_ino(&entry->vfs_inode)) 4807 node = node->rb_left; 4808 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4809 node = node->rb_right; 4810 else 4811 break; 4812 } 4813 if (!node) { 4814 while (prev) { 4815 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4816 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4817 node = prev; 4818 break; 4819 } 4820 prev = rb_next(prev); 4821 } 4822 } 4823 while (node) { 4824 entry = rb_entry(node, struct btrfs_inode, rb_node); 4825 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4826 inode = igrab(&entry->vfs_inode); 4827 if (inode) { 4828 spin_unlock(&root->inode_lock); 4829 if (atomic_read(&inode->i_count) > 1) 4830 d_prune_aliases(inode); 4831 /* 4832 * btrfs_drop_inode will have it removed from 4833 * the inode cache when its usage count 4834 * hits zero. 4835 */ 4836 iput(inode); 4837 cond_resched(); 4838 spin_lock(&root->inode_lock); 4839 goto again; 4840 } 4841 4842 if (cond_resched_lock(&root->inode_lock)) 4843 goto again; 4844 4845 node = rb_next(node); 4846 } 4847 spin_unlock(&root->inode_lock); 4848 } 4849 4850 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4851 { 4852 struct btrfs_iget_args *args = p; 4853 inode->i_ino = args->ino; 4854 BTRFS_I(inode)->root = args->root; 4855 return 0; 4856 } 4857 4858 static int btrfs_find_actor(struct inode *inode, void *opaque) 4859 { 4860 struct btrfs_iget_args *args = opaque; 4861 return args->ino == btrfs_ino(inode) && 4862 args->root == BTRFS_I(inode)->root; 4863 } 4864 4865 static struct inode *btrfs_iget_locked(struct super_block *s, 4866 u64 objectid, 4867 struct btrfs_root *root) 4868 { 4869 struct inode *inode; 4870 struct btrfs_iget_args args; 4871 args.ino = objectid; 4872 args.root = root; 4873 4874 inode = iget5_locked(s, objectid, btrfs_find_actor, 4875 btrfs_init_locked_inode, 4876 (void *)&args); 4877 return inode; 4878 } 4879 4880 /* Get an inode object given its location and corresponding root. 4881 * Returns in *is_new if the inode was read from disk 4882 */ 4883 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4884 struct btrfs_root *root, int *new) 4885 { 4886 struct inode *inode; 4887 4888 inode = btrfs_iget_locked(s, location->objectid, root); 4889 if (!inode) 4890 return ERR_PTR(-ENOMEM); 4891 4892 if (inode->i_state & I_NEW) { 4893 BTRFS_I(inode)->root = root; 4894 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4895 btrfs_read_locked_inode(inode); 4896 if (!is_bad_inode(inode)) { 4897 inode_tree_add(inode); 4898 unlock_new_inode(inode); 4899 if (new) 4900 *new = 1; 4901 } else { 4902 unlock_new_inode(inode); 4903 iput(inode); 4904 inode = ERR_PTR(-ESTALE); 4905 } 4906 } 4907 4908 return inode; 4909 } 4910 4911 static struct inode *new_simple_dir(struct super_block *s, 4912 struct btrfs_key *key, 4913 struct btrfs_root *root) 4914 { 4915 struct inode *inode = new_inode(s); 4916 4917 if (!inode) 4918 return ERR_PTR(-ENOMEM); 4919 4920 BTRFS_I(inode)->root = root; 4921 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4922 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 4923 4924 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4925 inode->i_op = &btrfs_dir_ro_inode_operations; 4926 inode->i_fop = &simple_dir_operations; 4927 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4928 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4929 4930 return inode; 4931 } 4932 4933 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4934 { 4935 struct inode *inode; 4936 struct btrfs_root *root = BTRFS_I(dir)->root; 4937 struct btrfs_root *sub_root = root; 4938 struct btrfs_key location; 4939 int index; 4940 int ret = 0; 4941 4942 if (dentry->d_name.len > BTRFS_NAME_LEN) 4943 return ERR_PTR(-ENAMETOOLONG); 4944 4945 ret = btrfs_inode_by_name(dir, dentry, &location); 4946 if (ret < 0) 4947 return ERR_PTR(ret); 4948 4949 if (location.objectid == 0) 4950 return NULL; 4951 4952 if (location.type == BTRFS_INODE_ITEM_KEY) { 4953 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4954 return inode; 4955 } 4956 4957 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4958 4959 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4960 ret = fixup_tree_root_location(root, dir, dentry, 4961 &location, &sub_root); 4962 if (ret < 0) { 4963 if (ret != -ENOENT) 4964 inode = ERR_PTR(ret); 4965 else 4966 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4967 } else { 4968 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4969 } 4970 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4971 4972 if (!IS_ERR(inode) && root != sub_root) { 4973 down_read(&root->fs_info->cleanup_work_sem); 4974 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4975 ret = btrfs_orphan_cleanup(sub_root); 4976 up_read(&root->fs_info->cleanup_work_sem); 4977 if (ret) { 4978 iput(inode); 4979 inode = ERR_PTR(ret); 4980 } 4981 } 4982 4983 return inode; 4984 } 4985 4986 static int btrfs_dentry_delete(const struct dentry *dentry) 4987 { 4988 struct btrfs_root *root; 4989 struct inode *inode = dentry->d_inode; 4990 4991 if (!inode && !IS_ROOT(dentry)) 4992 inode = dentry->d_parent->d_inode; 4993 4994 if (inode) { 4995 root = BTRFS_I(inode)->root; 4996 if (btrfs_root_refs(&root->root_item) == 0) 4997 return 1; 4998 4999 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5000 return 1; 5001 } 5002 return 0; 5003 } 5004 5005 static void btrfs_dentry_release(struct dentry *dentry) 5006 { 5007 if (dentry->d_fsdata) 5008 kfree(dentry->d_fsdata); 5009 } 5010 5011 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5012 unsigned int flags) 5013 { 5014 struct dentry *ret; 5015 5016 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 5017 return ret; 5018 } 5019 5020 unsigned char btrfs_filetype_table[] = { 5021 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5022 }; 5023 5024 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5025 { 5026 struct inode *inode = file_inode(file); 5027 struct btrfs_root *root = BTRFS_I(inode)->root; 5028 struct btrfs_item *item; 5029 struct btrfs_dir_item *di; 5030 struct btrfs_key key; 5031 struct btrfs_key found_key; 5032 struct btrfs_path *path; 5033 struct list_head ins_list; 5034 struct list_head del_list; 5035 int ret; 5036 struct extent_buffer *leaf; 5037 int slot; 5038 unsigned char d_type; 5039 int over = 0; 5040 u32 di_cur; 5041 u32 di_total; 5042 u32 di_len; 5043 int key_type = BTRFS_DIR_INDEX_KEY; 5044 char tmp_name[32]; 5045 char *name_ptr; 5046 int name_len; 5047 int is_curr = 0; /* ctx->pos points to the current index? */ 5048 5049 /* FIXME, use a real flag for deciding about the key type */ 5050 if (root->fs_info->tree_root == root) 5051 key_type = BTRFS_DIR_ITEM_KEY; 5052 5053 if (!dir_emit_dots(file, ctx)) 5054 return 0; 5055 5056 path = btrfs_alloc_path(); 5057 if (!path) 5058 return -ENOMEM; 5059 5060 path->reada = 1; 5061 5062 if (key_type == BTRFS_DIR_INDEX_KEY) { 5063 INIT_LIST_HEAD(&ins_list); 5064 INIT_LIST_HEAD(&del_list); 5065 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5066 } 5067 5068 btrfs_set_key_type(&key, key_type); 5069 key.offset = ctx->pos; 5070 key.objectid = btrfs_ino(inode); 5071 5072 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5073 if (ret < 0) 5074 goto err; 5075 5076 while (1) { 5077 leaf = path->nodes[0]; 5078 slot = path->slots[0]; 5079 if (slot >= btrfs_header_nritems(leaf)) { 5080 ret = btrfs_next_leaf(root, path); 5081 if (ret < 0) 5082 goto err; 5083 else if (ret > 0) 5084 break; 5085 continue; 5086 } 5087 5088 item = btrfs_item_nr(leaf, slot); 5089 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5090 5091 if (found_key.objectid != key.objectid) 5092 break; 5093 if (btrfs_key_type(&found_key) != key_type) 5094 break; 5095 if (found_key.offset < ctx->pos) 5096 goto next; 5097 if (key_type == BTRFS_DIR_INDEX_KEY && 5098 btrfs_should_delete_dir_index(&del_list, 5099 found_key.offset)) 5100 goto next; 5101 5102 ctx->pos = found_key.offset; 5103 is_curr = 1; 5104 5105 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5106 di_cur = 0; 5107 di_total = btrfs_item_size(leaf, item); 5108 5109 while (di_cur < di_total) { 5110 struct btrfs_key location; 5111 5112 if (verify_dir_item(root, leaf, di)) 5113 break; 5114 5115 name_len = btrfs_dir_name_len(leaf, di); 5116 if (name_len <= sizeof(tmp_name)) { 5117 name_ptr = tmp_name; 5118 } else { 5119 name_ptr = kmalloc(name_len, GFP_NOFS); 5120 if (!name_ptr) { 5121 ret = -ENOMEM; 5122 goto err; 5123 } 5124 } 5125 read_extent_buffer(leaf, name_ptr, 5126 (unsigned long)(di + 1), name_len); 5127 5128 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5129 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5130 5131 5132 /* is this a reference to our own snapshot? If so 5133 * skip it. 5134 * 5135 * In contrast to old kernels, we insert the snapshot's 5136 * dir item and dir index after it has been created, so 5137 * we won't find a reference to our own snapshot. We 5138 * still keep the following code for backward 5139 * compatibility. 5140 */ 5141 if (location.type == BTRFS_ROOT_ITEM_KEY && 5142 location.objectid == root->root_key.objectid) { 5143 over = 0; 5144 goto skip; 5145 } 5146 over = !dir_emit(ctx, name_ptr, name_len, 5147 location.objectid, d_type); 5148 5149 skip: 5150 if (name_ptr != tmp_name) 5151 kfree(name_ptr); 5152 5153 if (over) 5154 goto nopos; 5155 di_len = btrfs_dir_name_len(leaf, di) + 5156 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5157 di_cur += di_len; 5158 di = (struct btrfs_dir_item *)((char *)di + di_len); 5159 } 5160 next: 5161 path->slots[0]++; 5162 } 5163 5164 if (key_type == BTRFS_DIR_INDEX_KEY) { 5165 if (is_curr) 5166 ctx->pos++; 5167 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5168 if (ret) 5169 goto nopos; 5170 } 5171 5172 /* Reached end of directory/root. Bump pos past the last item. */ 5173 ctx->pos++; 5174 5175 /* 5176 * Stop new entries from being returned after we return the last 5177 * entry. 5178 * 5179 * New directory entries are assigned a strictly increasing 5180 * offset. This means that new entries created during readdir 5181 * are *guaranteed* to be seen in the future by that readdir. 5182 * This has broken buggy programs which operate on names as 5183 * they're returned by readdir. Until we re-use freed offsets 5184 * we have this hack to stop new entries from being returned 5185 * under the assumption that they'll never reach this huge 5186 * offset. 5187 * 5188 * This is being careful not to overflow 32bit loff_t unless the 5189 * last entry requires it because doing so has broken 32bit apps 5190 * in the past. 5191 */ 5192 if (key_type == BTRFS_DIR_INDEX_KEY) { 5193 if (ctx->pos >= INT_MAX) 5194 ctx->pos = LLONG_MAX; 5195 else 5196 ctx->pos = INT_MAX; 5197 } 5198 nopos: 5199 ret = 0; 5200 err: 5201 if (key_type == BTRFS_DIR_INDEX_KEY) 5202 btrfs_put_delayed_items(&ins_list, &del_list); 5203 btrfs_free_path(path); 5204 return ret; 5205 } 5206 5207 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5208 { 5209 struct btrfs_root *root = BTRFS_I(inode)->root; 5210 struct btrfs_trans_handle *trans; 5211 int ret = 0; 5212 bool nolock = false; 5213 5214 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5215 return 0; 5216 5217 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5218 nolock = true; 5219 5220 if (wbc->sync_mode == WB_SYNC_ALL) { 5221 if (nolock) 5222 trans = btrfs_join_transaction_nolock(root); 5223 else 5224 trans = btrfs_join_transaction(root); 5225 if (IS_ERR(trans)) 5226 return PTR_ERR(trans); 5227 ret = btrfs_commit_transaction(trans, root); 5228 } 5229 return ret; 5230 } 5231 5232 /* 5233 * This is somewhat expensive, updating the tree every time the 5234 * inode changes. But, it is most likely to find the inode in cache. 5235 * FIXME, needs more benchmarking...there are no reasons other than performance 5236 * to keep or drop this code. 5237 */ 5238 static int btrfs_dirty_inode(struct inode *inode) 5239 { 5240 struct btrfs_root *root = BTRFS_I(inode)->root; 5241 struct btrfs_trans_handle *trans; 5242 int ret; 5243 5244 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5245 return 0; 5246 5247 trans = btrfs_join_transaction(root); 5248 if (IS_ERR(trans)) 5249 return PTR_ERR(trans); 5250 5251 ret = btrfs_update_inode(trans, root, inode); 5252 if (ret && ret == -ENOSPC) { 5253 /* whoops, lets try again with the full transaction */ 5254 btrfs_end_transaction(trans, root); 5255 trans = btrfs_start_transaction(root, 1); 5256 if (IS_ERR(trans)) 5257 return PTR_ERR(trans); 5258 5259 ret = btrfs_update_inode(trans, root, inode); 5260 } 5261 btrfs_end_transaction(trans, root); 5262 if (BTRFS_I(inode)->delayed_node) 5263 btrfs_balance_delayed_items(root); 5264 5265 return ret; 5266 } 5267 5268 /* 5269 * This is a copy of file_update_time. We need this so we can return error on 5270 * ENOSPC for updating the inode in the case of file write and mmap writes. 5271 */ 5272 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5273 int flags) 5274 { 5275 struct btrfs_root *root = BTRFS_I(inode)->root; 5276 5277 if (btrfs_root_readonly(root)) 5278 return -EROFS; 5279 5280 if (flags & S_VERSION) 5281 inode_inc_iversion(inode); 5282 if (flags & S_CTIME) 5283 inode->i_ctime = *now; 5284 if (flags & S_MTIME) 5285 inode->i_mtime = *now; 5286 if (flags & S_ATIME) 5287 inode->i_atime = *now; 5288 return btrfs_dirty_inode(inode); 5289 } 5290 5291 /* 5292 * find the highest existing sequence number in a directory 5293 * and then set the in-memory index_cnt variable to reflect 5294 * free sequence numbers 5295 */ 5296 static int btrfs_set_inode_index_count(struct inode *inode) 5297 { 5298 struct btrfs_root *root = BTRFS_I(inode)->root; 5299 struct btrfs_key key, found_key; 5300 struct btrfs_path *path; 5301 struct extent_buffer *leaf; 5302 int ret; 5303 5304 key.objectid = btrfs_ino(inode); 5305 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 5306 key.offset = (u64)-1; 5307 5308 path = btrfs_alloc_path(); 5309 if (!path) 5310 return -ENOMEM; 5311 5312 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5313 if (ret < 0) 5314 goto out; 5315 /* FIXME: we should be able to handle this */ 5316 if (ret == 0) 5317 goto out; 5318 ret = 0; 5319 5320 /* 5321 * MAGIC NUMBER EXPLANATION: 5322 * since we search a directory based on f_pos we have to start at 2 5323 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5324 * else has to start at 2 5325 */ 5326 if (path->slots[0] == 0) { 5327 BTRFS_I(inode)->index_cnt = 2; 5328 goto out; 5329 } 5330 5331 path->slots[0]--; 5332 5333 leaf = path->nodes[0]; 5334 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5335 5336 if (found_key.objectid != btrfs_ino(inode) || 5337 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 5338 BTRFS_I(inode)->index_cnt = 2; 5339 goto out; 5340 } 5341 5342 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5343 out: 5344 btrfs_free_path(path); 5345 return ret; 5346 } 5347 5348 /* 5349 * helper to find a free sequence number in a given directory. This current 5350 * code is very simple, later versions will do smarter things in the btree 5351 */ 5352 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5353 { 5354 int ret = 0; 5355 5356 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5357 ret = btrfs_inode_delayed_dir_index_count(dir); 5358 if (ret) { 5359 ret = btrfs_set_inode_index_count(dir); 5360 if (ret) 5361 return ret; 5362 } 5363 } 5364 5365 *index = BTRFS_I(dir)->index_cnt; 5366 BTRFS_I(dir)->index_cnt++; 5367 5368 return ret; 5369 } 5370 5371 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5372 struct btrfs_root *root, 5373 struct inode *dir, 5374 const char *name, int name_len, 5375 u64 ref_objectid, u64 objectid, 5376 umode_t mode, u64 *index) 5377 { 5378 struct inode *inode; 5379 struct btrfs_inode_item *inode_item; 5380 struct btrfs_key *location; 5381 struct btrfs_path *path; 5382 struct btrfs_inode_ref *ref; 5383 struct btrfs_key key[2]; 5384 u32 sizes[2]; 5385 unsigned long ptr; 5386 int ret; 5387 int owner; 5388 5389 path = btrfs_alloc_path(); 5390 if (!path) 5391 return ERR_PTR(-ENOMEM); 5392 5393 inode = new_inode(root->fs_info->sb); 5394 if (!inode) { 5395 btrfs_free_path(path); 5396 return ERR_PTR(-ENOMEM); 5397 } 5398 5399 /* 5400 * we have to initialize this early, so we can reclaim the inode 5401 * number if we fail afterwards in this function. 5402 */ 5403 inode->i_ino = objectid; 5404 5405 if (dir) { 5406 trace_btrfs_inode_request(dir); 5407 5408 ret = btrfs_set_inode_index(dir, index); 5409 if (ret) { 5410 btrfs_free_path(path); 5411 iput(inode); 5412 return ERR_PTR(ret); 5413 } 5414 } 5415 /* 5416 * index_cnt is ignored for everything but a dir, 5417 * btrfs_get_inode_index_count has an explanation for the magic 5418 * number 5419 */ 5420 BTRFS_I(inode)->index_cnt = 2; 5421 BTRFS_I(inode)->root = root; 5422 BTRFS_I(inode)->generation = trans->transid; 5423 inode->i_generation = BTRFS_I(inode)->generation; 5424 5425 /* 5426 * We could have gotten an inode number from somebody who was fsynced 5427 * and then removed in this same transaction, so let's just set full 5428 * sync since it will be a full sync anyway and this will blow away the 5429 * old info in the log. 5430 */ 5431 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5432 5433 if (S_ISDIR(mode)) 5434 owner = 0; 5435 else 5436 owner = 1; 5437 5438 key[0].objectid = objectid; 5439 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 5440 key[0].offset = 0; 5441 5442 /* 5443 * Start new inodes with an inode_ref. This is slightly more 5444 * efficient for small numbers of hard links since they will 5445 * be packed into one item. Extended refs will kick in if we 5446 * add more hard links than can fit in the ref item. 5447 */ 5448 key[1].objectid = objectid; 5449 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 5450 key[1].offset = ref_objectid; 5451 5452 sizes[0] = sizeof(struct btrfs_inode_item); 5453 sizes[1] = name_len + sizeof(*ref); 5454 5455 path->leave_spinning = 1; 5456 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 5457 if (ret != 0) 5458 goto fail; 5459 5460 inode_init_owner(inode, dir, mode); 5461 inode_set_bytes(inode, 0); 5462 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5463 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5464 struct btrfs_inode_item); 5465 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 5466 sizeof(*inode_item)); 5467 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5468 5469 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5470 struct btrfs_inode_ref); 5471 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5472 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5473 ptr = (unsigned long)(ref + 1); 5474 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5475 5476 btrfs_mark_buffer_dirty(path->nodes[0]); 5477 btrfs_free_path(path); 5478 5479 location = &BTRFS_I(inode)->location; 5480 location->objectid = objectid; 5481 location->offset = 0; 5482 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 5483 5484 btrfs_inherit_iflags(inode, dir); 5485 5486 if (S_ISREG(mode)) { 5487 if (btrfs_test_opt(root, NODATASUM)) 5488 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5489 if (btrfs_test_opt(root, NODATACOW)) 5490 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5491 BTRFS_INODE_NODATASUM; 5492 } 5493 5494 insert_inode_hash(inode); 5495 inode_tree_add(inode); 5496 5497 trace_btrfs_inode_new(inode); 5498 btrfs_set_inode_last_trans(trans, inode); 5499 5500 btrfs_update_root_times(trans, root); 5501 5502 return inode; 5503 fail: 5504 if (dir) 5505 BTRFS_I(dir)->index_cnt--; 5506 btrfs_free_path(path); 5507 iput(inode); 5508 return ERR_PTR(ret); 5509 } 5510 5511 static inline u8 btrfs_inode_type(struct inode *inode) 5512 { 5513 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 5514 } 5515 5516 /* 5517 * utility function to add 'inode' into 'parent_inode' with 5518 * a give name and a given sequence number. 5519 * if 'add_backref' is true, also insert a backref from the 5520 * inode to the parent directory. 5521 */ 5522 int btrfs_add_link(struct btrfs_trans_handle *trans, 5523 struct inode *parent_inode, struct inode *inode, 5524 const char *name, int name_len, int add_backref, u64 index) 5525 { 5526 int ret = 0; 5527 struct btrfs_key key; 5528 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 5529 u64 ino = btrfs_ino(inode); 5530 u64 parent_ino = btrfs_ino(parent_inode); 5531 5532 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5533 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 5534 } else { 5535 key.objectid = ino; 5536 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 5537 key.offset = 0; 5538 } 5539 5540 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5541 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 5542 key.objectid, root->root_key.objectid, 5543 parent_ino, index, name, name_len); 5544 } else if (add_backref) { 5545 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5546 parent_ino, index); 5547 } 5548 5549 /* Nothing to clean up yet */ 5550 if (ret) 5551 return ret; 5552 5553 ret = btrfs_insert_dir_item(trans, root, name, name_len, 5554 parent_inode, &key, 5555 btrfs_inode_type(inode), index); 5556 if (ret == -EEXIST || ret == -EOVERFLOW) 5557 goto fail_dir_item; 5558 else if (ret) { 5559 btrfs_abort_transaction(trans, root, ret); 5560 return ret; 5561 } 5562 5563 btrfs_i_size_write(parent_inode, parent_inode->i_size + 5564 name_len * 2); 5565 inode_inc_iversion(parent_inode); 5566 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 5567 ret = btrfs_update_inode(trans, root, parent_inode); 5568 if (ret) 5569 btrfs_abort_transaction(trans, root, ret); 5570 return ret; 5571 5572 fail_dir_item: 5573 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5574 u64 local_index; 5575 int err; 5576 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 5577 key.objectid, root->root_key.objectid, 5578 parent_ino, &local_index, name, name_len); 5579 5580 } else if (add_backref) { 5581 u64 local_index; 5582 int err; 5583 5584 err = btrfs_del_inode_ref(trans, root, name, name_len, 5585 ino, parent_ino, &local_index); 5586 } 5587 return ret; 5588 } 5589 5590 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 5591 struct inode *dir, struct dentry *dentry, 5592 struct inode *inode, int backref, u64 index) 5593 { 5594 int err = btrfs_add_link(trans, dir, inode, 5595 dentry->d_name.name, dentry->d_name.len, 5596 backref, index); 5597 if (err > 0) 5598 err = -EEXIST; 5599 return err; 5600 } 5601 5602 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 5603 umode_t mode, dev_t rdev) 5604 { 5605 struct btrfs_trans_handle *trans; 5606 struct btrfs_root *root = BTRFS_I(dir)->root; 5607 struct inode *inode = NULL; 5608 int err; 5609 int drop_inode = 0; 5610 u64 objectid; 5611 u64 index = 0; 5612 5613 if (!new_valid_dev(rdev)) 5614 return -EINVAL; 5615 5616 /* 5617 * 2 for inode item and ref 5618 * 2 for dir items 5619 * 1 for xattr if selinux is on 5620 */ 5621 trans = btrfs_start_transaction(root, 5); 5622 if (IS_ERR(trans)) 5623 return PTR_ERR(trans); 5624 5625 err = btrfs_find_free_ino(root, &objectid); 5626 if (err) 5627 goto out_unlock; 5628 5629 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5630 dentry->d_name.len, btrfs_ino(dir), objectid, 5631 mode, &index); 5632 if (IS_ERR(inode)) { 5633 err = PTR_ERR(inode); 5634 goto out_unlock; 5635 } 5636 5637 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5638 if (err) { 5639 drop_inode = 1; 5640 goto out_unlock; 5641 } 5642 5643 /* 5644 * If the active LSM wants to access the inode during 5645 * d_instantiate it needs these. Smack checks to see 5646 * if the filesystem supports xattrs by looking at the 5647 * ops vector. 5648 */ 5649 5650 inode->i_op = &btrfs_special_inode_operations; 5651 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5652 if (err) 5653 drop_inode = 1; 5654 else { 5655 init_special_inode(inode, inode->i_mode, rdev); 5656 btrfs_update_inode(trans, root, inode); 5657 d_instantiate(dentry, inode); 5658 } 5659 out_unlock: 5660 btrfs_end_transaction(trans, root); 5661 btrfs_btree_balance_dirty(root); 5662 if (drop_inode) { 5663 inode_dec_link_count(inode); 5664 iput(inode); 5665 } 5666 return err; 5667 } 5668 5669 static int btrfs_create(struct inode *dir, struct dentry *dentry, 5670 umode_t mode, bool excl) 5671 { 5672 struct btrfs_trans_handle *trans; 5673 struct btrfs_root *root = BTRFS_I(dir)->root; 5674 struct inode *inode = NULL; 5675 int drop_inode_on_err = 0; 5676 int err; 5677 u64 objectid; 5678 u64 index = 0; 5679 5680 /* 5681 * 2 for inode item and ref 5682 * 2 for dir items 5683 * 1 for xattr if selinux is on 5684 */ 5685 trans = btrfs_start_transaction(root, 5); 5686 if (IS_ERR(trans)) 5687 return PTR_ERR(trans); 5688 5689 err = btrfs_find_free_ino(root, &objectid); 5690 if (err) 5691 goto out_unlock; 5692 5693 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5694 dentry->d_name.len, btrfs_ino(dir), objectid, 5695 mode, &index); 5696 if (IS_ERR(inode)) { 5697 err = PTR_ERR(inode); 5698 goto out_unlock; 5699 } 5700 drop_inode_on_err = 1; 5701 5702 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5703 if (err) 5704 goto out_unlock; 5705 5706 err = btrfs_update_inode(trans, root, inode); 5707 if (err) 5708 goto out_unlock; 5709 5710 /* 5711 * If the active LSM wants to access the inode during 5712 * d_instantiate it needs these. Smack checks to see 5713 * if the filesystem supports xattrs by looking at the 5714 * ops vector. 5715 */ 5716 inode->i_fop = &btrfs_file_operations; 5717 inode->i_op = &btrfs_file_inode_operations; 5718 5719 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5720 if (err) 5721 goto out_unlock; 5722 5723 inode->i_mapping->a_ops = &btrfs_aops; 5724 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5725 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5726 d_instantiate(dentry, inode); 5727 5728 out_unlock: 5729 btrfs_end_transaction(trans, root); 5730 if (err && drop_inode_on_err) { 5731 inode_dec_link_count(inode); 5732 iput(inode); 5733 } 5734 btrfs_btree_balance_dirty(root); 5735 return err; 5736 } 5737 5738 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5739 struct dentry *dentry) 5740 { 5741 struct btrfs_trans_handle *trans; 5742 struct btrfs_root *root = BTRFS_I(dir)->root; 5743 struct inode *inode = old_dentry->d_inode; 5744 u64 index; 5745 int err; 5746 int drop_inode = 0; 5747 5748 /* do not allow sys_link's with other subvols of the same device */ 5749 if (root->objectid != BTRFS_I(inode)->root->objectid) 5750 return -EXDEV; 5751 5752 if (inode->i_nlink >= BTRFS_LINK_MAX) 5753 return -EMLINK; 5754 5755 err = btrfs_set_inode_index(dir, &index); 5756 if (err) 5757 goto fail; 5758 5759 /* 5760 * 2 items for inode and inode ref 5761 * 2 items for dir items 5762 * 1 item for parent inode 5763 */ 5764 trans = btrfs_start_transaction(root, 5); 5765 if (IS_ERR(trans)) { 5766 err = PTR_ERR(trans); 5767 goto fail; 5768 } 5769 5770 btrfs_inc_nlink(inode); 5771 inode_inc_iversion(inode); 5772 inode->i_ctime = CURRENT_TIME; 5773 ihold(inode); 5774 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 5775 5776 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5777 5778 if (err) { 5779 drop_inode = 1; 5780 } else { 5781 struct dentry *parent = dentry->d_parent; 5782 err = btrfs_update_inode(trans, root, inode); 5783 if (err) 5784 goto fail; 5785 d_instantiate(dentry, inode); 5786 btrfs_log_new_name(trans, inode, NULL, parent); 5787 } 5788 5789 btrfs_end_transaction(trans, root); 5790 fail: 5791 if (drop_inode) { 5792 inode_dec_link_count(inode); 5793 iput(inode); 5794 } 5795 btrfs_btree_balance_dirty(root); 5796 return err; 5797 } 5798 5799 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 5800 { 5801 struct inode *inode = NULL; 5802 struct btrfs_trans_handle *trans; 5803 struct btrfs_root *root = BTRFS_I(dir)->root; 5804 int err = 0; 5805 int drop_on_err = 0; 5806 u64 objectid = 0; 5807 u64 index = 0; 5808 5809 /* 5810 * 2 items for inode and ref 5811 * 2 items for dir items 5812 * 1 for xattr if selinux is on 5813 */ 5814 trans = btrfs_start_transaction(root, 5); 5815 if (IS_ERR(trans)) 5816 return PTR_ERR(trans); 5817 5818 err = btrfs_find_free_ino(root, &objectid); 5819 if (err) 5820 goto out_fail; 5821 5822 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5823 dentry->d_name.len, btrfs_ino(dir), objectid, 5824 S_IFDIR | mode, &index); 5825 if (IS_ERR(inode)) { 5826 err = PTR_ERR(inode); 5827 goto out_fail; 5828 } 5829 5830 drop_on_err = 1; 5831 5832 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5833 if (err) 5834 goto out_fail; 5835 5836 inode->i_op = &btrfs_dir_inode_operations; 5837 inode->i_fop = &btrfs_dir_file_operations; 5838 5839 btrfs_i_size_write(inode, 0); 5840 err = btrfs_update_inode(trans, root, inode); 5841 if (err) 5842 goto out_fail; 5843 5844 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 5845 dentry->d_name.len, 0, index); 5846 if (err) 5847 goto out_fail; 5848 5849 d_instantiate(dentry, inode); 5850 drop_on_err = 0; 5851 5852 out_fail: 5853 btrfs_end_transaction(trans, root); 5854 if (drop_on_err) 5855 iput(inode); 5856 btrfs_btree_balance_dirty(root); 5857 return err; 5858 } 5859 5860 /* helper for btfs_get_extent. Given an existing extent in the tree, 5861 * and an extent that you want to insert, deal with overlap and insert 5862 * the new extent into the tree. 5863 */ 5864 static int merge_extent_mapping(struct extent_map_tree *em_tree, 5865 struct extent_map *existing, 5866 struct extent_map *em, 5867 u64 map_start, u64 map_len) 5868 { 5869 u64 start_diff; 5870 5871 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 5872 start_diff = map_start - em->start; 5873 em->start = map_start; 5874 em->len = map_len; 5875 if (em->block_start < EXTENT_MAP_LAST_BYTE && 5876 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 5877 em->block_start += start_diff; 5878 em->block_len -= start_diff; 5879 } 5880 return add_extent_mapping(em_tree, em, 0); 5881 } 5882 5883 static noinline int uncompress_inline(struct btrfs_path *path, 5884 struct inode *inode, struct page *page, 5885 size_t pg_offset, u64 extent_offset, 5886 struct btrfs_file_extent_item *item) 5887 { 5888 int ret; 5889 struct extent_buffer *leaf = path->nodes[0]; 5890 char *tmp; 5891 size_t max_size; 5892 unsigned long inline_size; 5893 unsigned long ptr; 5894 int compress_type; 5895 5896 WARN_ON(pg_offset != 0); 5897 compress_type = btrfs_file_extent_compression(leaf, item); 5898 max_size = btrfs_file_extent_ram_bytes(leaf, item); 5899 inline_size = btrfs_file_extent_inline_item_len(leaf, 5900 btrfs_item_nr(leaf, path->slots[0])); 5901 tmp = kmalloc(inline_size, GFP_NOFS); 5902 if (!tmp) 5903 return -ENOMEM; 5904 ptr = btrfs_file_extent_inline_start(item); 5905 5906 read_extent_buffer(leaf, tmp, ptr, inline_size); 5907 5908 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 5909 ret = btrfs_decompress(compress_type, tmp, page, 5910 extent_offset, inline_size, max_size); 5911 if (ret) { 5912 char *kaddr = kmap_atomic(page); 5913 unsigned long copy_size = min_t(u64, 5914 PAGE_CACHE_SIZE - pg_offset, 5915 max_size - extent_offset); 5916 memset(kaddr + pg_offset, 0, copy_size); 5917 kunmap_atomic(kaddr); 5918 } 5919 kfree(tmp); 5920 return 0; 5921 } 5922 5923 /* 5924 * a bit scary, this does extent mapping from logical file offset to the disk. 5925 * the ugly parts come from merging extents from the disk with the in-ram 5926 * representation. This gets more complex because of the data=ordered code, 5927 * where the in-ram extents might be locked pending data=ordered completion. 5928 * 5929 * This also copies inline extents directly into the page. 5930 */ 5931 5932 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 5933 size_t pg_offset, u64 start, u64 len, 5934 int create) 5935 { 5936 int ret; 5937 int err = 0; 5938 u64 bytenr; 5939 u64 extent_start = 0; 5940 u64 extent_end = 0; 5941 u64 objectid = btrfs_ino(inode); 5942 u32 found_type; 5943 struct btrfs_path *path = NULL; 5944 struct btrfs_root *root = BTRFS_I(inode)->root; 5945 struct btrfs_file_extent_item *item; 5946 struct extent_buffer *leaf; 5947 struct btrfs_key found_key; 5948 struct extent_map *em = NULL; 5949 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5950 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5951 struct btrfs_trans_handle *trans = NULL; 5952 int compress_type; 5953 5954 again: 5955 read_lock(&em_tree->lock); 5956 em = lookup_extent_mapping(em_tree, start, len); 5957 if (em) 5958 em->bdev = root->fs_info->fs_devices->latest_bdev; 5959 read_unlock(&em_tree->lock); 5960 5961 if (em) { 5962 if (em->start > start || em->start + em->len <= start) 5963 free_extent_map(em); 5964 else if (em->block_start == EXTENT_MAP_INLINE && page) 5965 free_extent_map(em); 5966 else 5967 goto out; 5968 } 5969 em = alloc_extent_map(); 5970 if (!em) { 5971 err = -ENOMEM; 5972 goto out; 5973 } 5974 em->bdev = root->fs_info->fs_devices->latest_bdev; 5975 em->start = EXTENT_MAP_HOLE; 5976 em->orig_start = EXTENT_MAP_HOLE; 5977 em->len = (u64)-1; 5978 em->block_len = (u64)-1; 5979 5980 if (!path) { 5981 path = btrfs_alloc_path(); 5982 if (!path) { 5983 err = -ENOMEM; 5984 goto out; 5985 } 5986 /* 5987 * Chances are we'll be called again, so go ahead and do 5988 * readahead 5989 */ 5990 path->reada = 1; 5991 } 5992 5993 ret = btrfs_lookup_file_extent(trans, root, path, 5994 objectid, start, trans != NULL); 5995 if (ret < 0) { 5996 err = ret; 5997 goto out; 5998 } 5999 6000 if (ret != 0) { 6001 if (path->slots[0] == 0) 6002 goto not_found; 6003 path->slots[0]--; 6004 } 6005 6006 leaf = path->nodes[0]; 6007 item = btrfs_item_ptr(leaf, path->slots[0], 6008 struct btrfs_file_extent_item); 6009 /* are we inside the extent that was found? */ 6010 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6011 found_type = btrfs_key_type(&found_key); 6012 if (found_key.objectid != objectid || 6013 found_type != BTRFS_EXTENT_DATA_KEY) { 6014 goto not_found; 6015 } 6016 6017 found_type = btrfs_file_extent_type(leaf, item); 6018 extent_start = found_key.offset; 6019 compress_type = btrfs_file_extent_compression(leaf, item); 6020 if (found_type == BTRFS_FILE_EXTENT_REG || 6021 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6022 extent_end = extent_start + 6023 btrfs_file_extent_num_bytes(leaf, item); 6024 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6025 size_t size; 6026 size = btrfs_file_extent_inline_len(leaf, item); 6027 extent_end = ALIGN(extent_start + size, root->sectorsize); 6028 } 6029 6030 if (start >= extent_end) { 6031 path->slots[0]++; 6032 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6033 ret = btrfs_next_leaf(root, path); 6034 if (ret < 0) { 6035 err = ret; 6036 goto out; 6037 } 6038 if (ret > 0) 6039 goto not_found; 6040 leaf = path->nodes[0]; 6041 } 6042 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6043 if (found_key.objectid != objectid || 6044 found_key.type != BTRFS_EXTENT_DATA_KEY) 6045 goto not_found; 6046 if (start + len <= found_key.offset) 6047 goto not_found; 6048 em->start = start; 6049 em->orig_start = start; 6050 em->len = found_key.offset - start; 6051 goto not_found_em; 6052 } 6053 6054 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 6055 if (found_type == BTRFS_FILE_EXTENT_REG || 6056 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6057 em->start = extent_start; 6058 em->len = extent_end - extent_start; 6059 em->orig_start = extent_start - 6060 btrfs_file_extent_offset(leaf, item); 6061 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, 6062 item); 6063 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 6064 if (bytenr == 0) { 6065 em->block_start = EXTENT_MAP_HOLE; 6066 goto insert; 6067 } 6068 if (compress_type != BTRFS_COMPRESS_NONE) { 6069 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6070 em->compress_type = compress_type; 6071 em->block_start = bytenr; 6072 em->block_len = em->orig_block_len; 6073 } else { 6074 bytenr += btrfs_file_extent_offset(leaf, item); 6075 em->block_start = bytenr; 6076 em->block_len = em->len; 6077 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 6078 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6079 } 6080 goto insert; 6081 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6082 unsigned long ptr; 6083 char *map; 6084 size_t size; 6085 size_t extent_offset; 6086 size_t copy_size; 6087 6088 em->block_start = EXTENT_MAP_INLINE; 6089 if (!page || create) { 6090 em->start = extent_start; 6091 em->len = extent_end - extent_start; 6092 goto out; 6093 } 6094 6095 size = btrfs_file_extent_inline_len(leaf, item); 6096 extent_offset = page_offset(page) + pg_offset - extent_start; 6097 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6098 size - extent_offset); 6099 em->start = extent_start + extent_offset; 6100 em->len = ALIGN(copy_size, root->sectorsize); 6101 em->orig_block_len = em->len; 6102 em->orig_start = em->start; 6103 if (compress_type) { 6104 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6105 em->compress_type = compress_type; 6106 } 6107 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6108 if (create == 0 && !PageUptodate(page)) { 6109 if (btrfs_file_extent_compression(leaf, item) != 6110 BTRFS_COMPRESS_NONE) { 6111 ret = uncompress_inline(path, inode, page, 6112 pg_offset, 6113 extent_offset, item); 6114 BUG_ON(ret); /* -ENOMEM */ 6115 } else { 6116 map = kmap(page); 6117 read_extent_buffer(leaf, map + pg_offset, ptr, 6118 copy_size); 6119 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6120 memset(map + pg_offset + copy_size, 0, 6121 PAGE_CACHE_SIZE - pg_offset - 6122 copy_size); 6123 } 6124 kunmap(page); 6125 } 6126 flush_dcache_page(page); 6127 } else if (create && PageUptodate(page)) { 6128 BUG(); 6129 if (!trans) { 6130 kunmap(page); 6131 free_extent_map(em); 6132 em = NULL; 6133 6134 btrfs_release_path(path); 6135 trans = btrfs_join_transaction(root); 6136 6137 if (IS_ERR(trans)) 6138 return ERR_CAST(trans); 6139 goto again; 6140 } 6141 map = kmap(page); 6142 write_extent_buffer(leaf, map + pg_offset, ptr, 6143 copy_size); 6144 kunmap(page); 6145 btrfs_mark_buffer_dirty(leaf); 6146 } 6147 set_extent_uptodate(io_tree, em->start, 6148 extent_map_end(em) - 1, NULL, GFP_NOFS); 6149 goto insert; 6150 } else { 6151 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type); 6152 } 6153 not_found: 6154 em->start = start; 6155 em->orig_start = start; 6156 em->len = len; 6157 not_found_em: 6158 em->block_start = EXTENT_MAP_HOLE; 6159 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6160 insert: 6161 btrfs_release_path(path); 6162 if (em->start > start || extent_map_end(em) <= start) { 6163 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6164 (unsigned long long)em->start, 6165 (unsigned long long)em->len, 6166 (unsigned long long)start, 6167 (unsigned long long)len); 6168 err = -EIO; 6169 goto out; 6170 } 6171 6172 err = 0; 6173 write_lock(&em_tree->lock); 6174 ret = add_extent_mapping(em_tree, em, 0); 6175 /* it is possible that someone inserted the extent into the tree 6176 * while we had the lock dropped. It is also possible that 6177 * an overlapping map exists in the tree 6178 */ 6179 if (ret == -EEXIST) { 6180 struct extent_map *existing; 6181 6182 ret = 0; 6183 6184 existing = lookup_extent_mapping(em_tree, start, len); 6185 if (existing && (existing->start > start || 6186 existing->start + existing->len <= start)) { 6187 free_extent_map(existing); 6188 existing = NULL; 6189 } 6190 if (!existing) { 6191 existing = lookup_extent_mapping(em_tree, em->start, 6192 em->len); 6193 if (existing) { 6194 err = merge_extent_mapping(em_tree, existing, 6195 em, start, 6196 root->sectorsize); 6197 free_extent_map(existing); 6198 if (err) { 6199 free_extent_map(em); 6200 em = NULL; 6201 } 6202 } else { 6203 err = -EIO; 6204 free_extent_map(em); 6205 em = NULL; 6206 } 6207 } else { 6208 free_extent_map(em); 6209 em = existing; 6210 err = 0; 6211 } 6212 } 6213 write_unlock(&em_tree->lock); 6214 out: 6215 6216 if (em) 6217 trace_btrfs_get_extent(root, em); 6218 6219 if (path) 6220 btrfs_free_path(path); 6221 if (trans) { 6222 ret = btrfs_end_transaction(trans, root); 6223 if (!err) 6224 err = ret; 6225 } 6226 if (err) { 6227 free_extent_map(em); 6228 return ERR_PTR(err); 6229 } 6230 BUG_ON(!em); /* Error is always set */ 6231 return em; 6232 } 6233 6234 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6235 size_t pg_offset, u64 start, u64 len, 6236 int create) 6237 { 6238 struct extent_map *em; 6239 struct extent_map *hole_em = NULL; 6240 u64 range_start = start; 6241 u64 end; 6242 u64 found; 6243 u64 found_end; 6244 int err = 0; 6245 6246 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6247 if (IS_ERR(em)) 6248 return em; 6249 if (em) { 6250 /* 6251 * if our em maps to 6252 * - a hole or 6253 * - a pre-alloc extent, 6254 * there might actually be delalloc bytes behind it. 6255 */ 6256 if (em->block_start != EXTENT_MAP_HOLE && 6257 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6258 return em; 6259 else 6260 hole_em = em; 6261 } 6262 6263 /* check to see if we've wrapped (len == -1 or similar) */ 6264 end = start + len; 6265 if (end < start) 6266 end = (u64)-1; 6267 else 6268 end -= 1; 6269 6270 em = NULL; 6271 6272 /* ok, we didn't find anything, lets look for delalloc */ 6273 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6274 end, len, EXTENT_DELALLOC, 1); 6275 found_end = range_start + found; 6276 if (found_end < range_start) 6277 found_end = (u64)-1; 6278 6279 /* 6280 * we didn't find anything useful, return 6281 * the original results from get_extent() 6282 */ 6283 if (range_start > end || found_end <= start) { 6284 em = hole_em; 6285 hole_em = NULL; 6286 goto out; 6287 } 6288 6289 /* adjust the range_start to make sure it doesn't 6290 * go backwards from the start they passed in 6291 */ 6292 range_start = max(start,range_start); 6293 found = found_end - range_start; 6294 6295 if (found > 0) { 6296 u64 hole_start = start; 6297 u64 hole_len = len; 6298 6299 em = alloc_extent_map(); 6300 if (!em) { 6301 err = -ENOMEM; 6302 goto out; 6303 } 6304 /* 6305 * when btrfs_get_extent can't find anything it 6306 * returns one huge hole 6307 * 6308 * make sure what it found really fits our range, and 6309 * adjust to make sure it is based on the start from 6310 * the caller 6311 */ 6312 if (hole_em) { 6313 u64 calc_end = extent_map_end(hole_em); 6314 6315 if (calc_end <= start || (hole_em->start > end)) { 6316 free_extent_map(hole_em); 6317 hole_em = NULL; 6318 } else { 6319 hole_start = max(hole_em->start, start); 6320 hole_len = calc_end - hole_start; 6321 } 6322 } 6323 em->bdev = NULL; 6324 if (hole_em && range_start > hole_start) { 6325 /* our hole starts before our delalloc, so we 6326 * have to return just the parts of the hole 6327 * that go until the delalloc starts 6328 */ 6329 em->len = min(hole_len, 6330 range_start - hole_start); 6331 em->start = hole_start; 6332 em->orig_start = hole_start; 6333 /* 6334 * don't adjust block start at all, 6335 * it is fixed at EXTENT_MAP_HOLE 6336 */ 6337 em->block_start = hole_em->block_start; 6338 em->block_len = hole_len; 6339 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6340 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6341 } else { 6342 em->start = range_start; 6343 em->len = found; 6344 em->orig_start = range_start; 6345 em->block_start = EXTENT_MAP_DELALLOC; 6346 em->block_len = found; 6347 } 6348 } else if (hole_em) { 6349 return hole_em; 6350 } 6351 out: 6352 6353 free_extent_map(hole_em); 6354 if (err) { 6355 free_extent_map(em); 6356 return ERR_PTR(err); 6357 } 6358 return em; 6359 } 6360 6361 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6362 u64 start, u64 len) 6363 { 6364 struct btrfs_root *root = BTRFS_I(inode)->root; 6365 struct btrfs_trans_handle *trans; 6366 struct extent_map *em; 6367 struct btrfs_key ins; 6368 u64 alloc_hint; 6369 int ret; 6370 6371 trans = btrfs_join_transaction(root); 6372 if (IS_ERR(trans)) 6373 return ERR_CAST(trans); 6374 6375 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 6376 6377 alloc_hint = get_extent_allocation_hint(inode, start, len); 6378 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 6379 alloc_hint, &ins, 1); 6380 if (ret) { 6381 em = ERR_PTR(ret); 6382 goto out; 6383 } 6384 6385 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 6386 ins.offset, ins.offset, ins.offset, 0); 6387 if (IS_ERR(em)) 6388 goto out; 6389 6390 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 6391 ins.offset, ins.offset, 0); 6392 if (ret) { 6393 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6394 em = ERR_PTR(ret); 6395 } 6396 out: 6397 btrfs_end_transaction(trans, root); 6398 return em; 6399 } 6400 6401 /* 6402 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6403 * block must be cow'd 6404 */ 6405 noinline int can_nocow_extent(struct btrfs_trans_handle *trans, 6406 struct inode *inode, u64 offset, u64 *len, 6407 u64 *orig_start, u64 *orig_block_len, 6408 u64 *ram_bytes) 6409 { 6410 struct btrfs_path *path; 6411 int ret; 6412 struct extent_buffer *leaf; 6413 struct btrfs_root *root = BTRFS_I(inode)->root; 6414 struct btrfs_file_extent_item *fi; 6415 struct btrfs_key key; 6416 u64 disk_bytenr; 6417 u64 backref_offset; 6418 u64 extent_end; 6419 u64 num_bytes; 6420 int slot; 6421 int found_type; 6422 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6423 path = btrfs_alloc_path(); 6424 if (!path) 6425 return -ENOMEM; 6426 6427 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 6428 offset, 0); 6429 if (ret < 0) 6430 goto out; 6431 6432 slot = path->slots[0]; 6433 if (ret == 1) { 6434 if (slot == 0) { 6435 /* can't find the item, must cow */ 6436 ret = 0; 6437 goto out; 6438 } 6439 slot--; 6440 } 6441 ret = 0; 6442 leaf = path->nodes[0]; 6443 btrfs_item_key_to_cpu(leaf, &key, slot); 6444 if (key.objectid != btrfs_ino(inode) || 6445 key.type != BTRFS_EXTENT_DATA_KEY) { 6446 /* not our file or wrong item type, must cow */ 6447 goto out; 6448 } 6449 6450 if (key.offset > offset) { 6451 /* Wrong offset, must cow */ 6452 goto out; 6453 } 6454 6455 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6456 found_type = btrfs_file_extent_type(leaf, fi); 6457 if (found_type != BTRFS_FILE_EXTENT_REG && 6458 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6459 /* not a regular extent, must cow */ 6460 goto out; 6461 } 6462 6463 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6464 goto out; 6465 6466 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6467 if (disk_bytenr == 0) 6468 goto out; 6469 6470 if (btrfs_file_extent_compression(leaf, fi) || 6471 btrfs_file_extent_encryption(leaf, fi) || 6472 btrfs_file_extent_other_encoding(leaf, fi)) 6473 goto out; 6474 6475 backref_offset = btrfs_file_extent_offset(leaf, fi); 6476 6477 if (orig_start) { 6478 *orig_start = key.offset - backref_offset; 6479 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6480 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6481 } 6482 6483 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6484 6485 if (btrfs_extent_readonly(root, disk_bytenr)) 6486 goto out; 6487 6488 /* 6489 * look for other files referencing this extent, if we 6490 * find any we must cow 6491 */ 6492 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 6493 key.offset - backref_offset, disk_bytenr)) 6494 goto out; 6495 6496 /* 6497 * adjust disk_bytenr and num_bytes to cover just the bytes 6498 * in this extent we are about to write. If there 6499 * are any csums in that range we have to cow in order 6500 * to keep the csums correct 6501 */ 6502 disk_bytenr += backref_offset; 6503 disk_bytenr += offset - key.offset; 6504 num_bytes = min(offset + *len, extent_end) - offset; 6505 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 6506 goto out; 6507 /* 6508 * all of the above have passed, it is safe to overwrite this extent 6509 * without cow 6510 */ 6511 *len = num_bytes; 6512 ret = 1; 6513 out: 6514 btrfs_free_path(path); 6515 return ret; 6516 } 6517 6518 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6519 struct extent_state **cached_state, int writing) 6520 { 6521 struct btrfs_ordered_extent *ordered; 6522 int ret = 0; 6523 6524 while (1) { 6525 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6526 0, cached_state); 6527 /* 6528 * We're concerned with the entire range that we're going to be 6529 * doing DIO to, so we need to make sure theres no ordered 6530 * extents in this range. 6531 */ 6532 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6533 lockend - lockstart + 1); 6534 6535 /* 6536 * We need to make sure there are no buffered pages in this 6537 * range either, we could have raced between the invalidate in 6538 * generic_file_direct_write and locking the extent. The 6539 * invalidate needs to happen so that reads after a write do not 6540 * get stale data. 6541 */ 6542 if (!ordered && (!writing || 6543 !test_range_bit(&BTRFS_I(inode)->io_tree, 6544 lockstart, lockend, EXTENT_UPTODATE, 0, 6545 *cached_state))) 6546 break; 6547 6548 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6549 cached_state, GFP_NOFS); 6550 6551 if (ordered) { 6552 btrfs_start_ordered_extent(inode, ordered, 1); 6553 btrfs_put_ordered_extent(ordered); 6554 } else { 6555 /* Screw you mmap */ 6556 ret = filemap_write_and_wait_range(inode->i_mapping, 6557 lockstart, 6558 lockend); 6559 if (ret) 6560 break; 6561 6562 /* 6563 * If we found a page that couldn't be invalidated just 6564 * fall back to buffered. 6565 */ 6566 ret = invalidate_inode_pages2_range(inode->i_mapping, 6567 lockstart >> PAGE_CACHE_SHIFT, 6568 lockend >> PAGE_CACHE_SHIFT); 6569 if (ret) 6570 break; 6571 } 6572 6573 cond_resched(); 6574 } 6575 6576 return ret; 6577 } 6578 6579 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 6580 u64 len, u64 orig_start, 6581 u64 block_start, u64 block_len, 6582 u64 orig_block_len, u64 ram_bytes, 6583 int type) 6584 { 6585 struct extent_map_tree *em_tree; 6586 struct extent_map *em; 6587 struct btrfs_root *root = BTRFS_I(inode)->root; 6588 int ret; 6589 6590 em_tree = &BTRFS_I(inode)->extent_tree; 6591 em = alloc_extent_map(); 6592 if (!em) 6593 return ERR_PTR(-ENOMEM); 6594 6595 em->start = start; 6596 em->orig_start = orig_start; 6597 em->mod_start = start; 6598 em->mod_len = len; 6599 em->len = len; 6600 em->block_len = block_len; 6601 em->block_start = block_start; 6602 em->bdev = root->fs_info->fs_devices->latest_bdev; 6603 em->orig_block_len = orig_block_len; 6604 em->ram_bytes = ram_bytes; 6605 em->generation = -1; 6606 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6607 if (type == BTRFS_ORDERED_PREALLOC) 6608 set_bit(EXTENT_FLAG_FILLING, &em->flags); 6609 6610 do { 6611 btrfs_drop_extent_cache(inode, em->start, 6612 em->start + em->len - 1, 0); 6613 write_lock(&em_tree->lock); 6614 ret = add_extent_mapping(em_tree, em, 1); 6615 write_unlock(&em_tree->lock); 6616 } while (ret == -EEXIST); 6617 6618 if (ret) { 6619 free_extent_map(em); 6620 return ERR_PTR(ret); 6621 } 6622 6623 return em; 6624 } 6625 6626 6627 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 6628 struct buffer_head *bh_result, int create) 6629 { 6630 struct extent_map *em; 6631 struct btrfs_root *root = BTRFS_I(inode)->root; 6632 struct extent_state *cached_state = NULL; 6633 u64 start = iblock << inode->i_blkbits; 6634 u64 lockstart, lockend; 6635 u64 len = bh_result->b_size; 6636 struct btrfs_trans_handle *trans; 6637 int unlock_bits = EXTENT_LOCKED; 6638 int ret = 0; 6639 6640 if (create) 6641 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 6642 else 6643 len = min_t(u64, len, root->sectorsize); 6644 6645 lockstart = start; 6646 lockend = start + len - 1; 6647 6648 /* 6649 * If this errors out it's because we couldn't invalidate pagecache for 6650 * this range and we need to fallback to buffered. 6651 */ 6652 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 6653 return -ENOTBLK; 6654 6655 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 6656 if (IS_ERR(em)) { 6657 ret = PTR_ERR(em); 6658 goto unlock_err; 6659 } 6660 6661 /* 6662 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 6663 * io. INLINE is special, and we could probably kludge it in here, but 6664 * it's still buffered so for safety lets just fall back to the generic 6665 * buffered path. 6666 * 6667 * For COMPRESSED we _have_ to read the entire extent in so we can 6668 * decompress it, so there will be buffering required no matter what we 6669 * do, so go ahead and fallback to buffered. 6670 * 6671 * We return -ENOTBLK because thats what makes DIO go ahead and go back 6672 * to buffered IO. Don't blame me, this is the price we pay for using 6673 * the generic code. 6674 */ 6675 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 6676 em->block_start == EXTENT_MAP_INLINE) { 6677 free_extent_map(em); 6678 ret = -ENOTBLK; 6679 goto unlock_err; 6680 } 6681 6682 /* Just a good old fashioned hole, return */ 6683 if (!create && (em->block_start == EXTENT_MAP_HOLE || 6684 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6685 free_extent_map(em); 6686 goto unlock_err; 6687 } 6688 6689 /* 6690 * We don't allocate a new extent in the following cases 6691 * 6692 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6693 * existing extent. 6694 * 2) The extent is marked as PREALLOC. We're good to go here and can 6695 * just use the extent. 6696 * 6697 */ 6698 if (!create) { 6699 len = min(len, em->len - (start - em->start)); 6700 lockstart = start + len; 6701 goto unlock; 6702 } 6703 6704 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6705 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6706 em->block_start != EXTENT_MAP_HOLE)) { 6707 int type; 6708 int ret; 6709 u64 block_start, orig_start, orig_block_len, ram_bytes; 6710 6711 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6712 type = BTRFS_ORDERED_PREALLOC; 6713 else 6714 type = BTRFS_ORDERED_NOCOW; 6715 len = min(len, em->len - (start - em->start)); 6716 block_start = em->block_start + (start - em->start); 6717 6718 /* 6719 * we're not going to log anything, but we do need 6720 * to make sure the current transaction stays open 6721 * while we look for nocow cross refs 6722 */ 6723 trans = btrfs_join_transaction(root); 6724 if (IS_ERR(trans)) 6725 goto must_cow; 6726 6727 if (can_nocow_extent(trans, inode, start, &len, &orig_start, 6728 &orig_block_len, &ram_bytes) == 1) { 6729 if (type == BTRFS_ORDERED_PREALLOC) { 6730 free_extent_map(em); 6731 em = create_pinned_em(inode, start, len, 6732 orig_start, 6733 block_start, len, 6734 orig_block_len, 6735 ram_bytes, type); 6736 if (IS_ERR(em)) { 6737 btrfs_end_transaction(trans, root); 6738 goto unlock_err; 6739 } 6740 } 6741 6742 ret = btrfs_add_ordered_extent_dio(inode, start, 6743 block_start, len, len, type); 6744 btrfs_end_transaction(trans, root); 6745 if (ret) { 6746 free_extent_map(em); 6747 goto unlock_err; 6748 } 6749 goto unlock; 6750 } 6751 btrfs_end_transaction(trans, root); 6752 } 6753 must_cow: 6754 /* 6755 * this will cow the extent, reset the len in case we changed 6756 * it above 6757 */ 6758 len = bh_result->b_size; 6759 free_extent_map(em); 6760 em = btrfs_new_extent_direct(inode, start, len); 6761 if (IS_ERR(em)) { 6762 ret = PTR_ERR(em); 6763 goto unlock_err; 6764 } 6765 len = min(len, em->len - (start - em->start)); 6766 unlock: 6767 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 6768 inode->i_blkbits; 6769 bh_result->b_size = len; 6770 bh_result->b_bdev = em->bdev; 6771 set_buffer_mapped(bh_result); 6772 if (create) { 6773 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6774 set_buffer_new(bh_result); 6775 6776 /* 6777 * Need to update the i_size under the extent lock so buffered 6778 * readers will get the updated i_size when we unlock. 6779 */ 6780 if (start + len > i_size_read(inode)) 6781 i_size_write(inode, start + len); 6782 6783 spin_lock(&BTRFS_I(inode)->lock); 6784 BTRFS_I(inode)->outstanding_extents++; 6785 spin_unlock(&BTRFS_I(inode)->lock); 6786 6787 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6788 lockstart + len - 1, EXTENT_DELALLOC, NULL, 6789 &cached_state, GFP_NOFS); 6790 BUG_ON(ret); 6791 } 6792 6793 /* 6794 * In the case of write we need to clear and unlock the entire range, 6795 * in the case of read we need to unlock only the end area that we 6796 * aren't using if there is any left over space. 6797 */ 6798 if (lockstart < lockend) { 6799 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6800 lockend, unlock_bits, 1, 0, 6801 &cached_state, GFP_NOFS); 6802 } else { 6803 free_extent_state(cached_state); 6804 } 6805 6806 free_extent_map(em); 6807 6808 return 0; 6809 6810 unlock_err: 6811 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6812 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 6813 return ret; 6814 } 6815 6816 struct btrfs_dio_private { 6817 struct inode *inode; 6818 u64 logical_offset; 6819 u64 disk_bytenr; 6820 u64 bytes; 6821 void *private; 6822 6823 /* number of bios pending for this dio */ 6824 atomic_t pending_bios; 6825 6826 /* IO errors */ 6827 int errors; 6828 6829 /* orig_bio is our btrfs_io_bio */ 6830 struct bio *orig_bio; 6831 6832 /* dio_bio came from fs/direct-io.c */ 6833 struct bio *dio_bio; 6834 }; 6835 6836 static void btrfs_endio_direct_read(struct bio *bio, int err) 6837 { 6838 struct btrfs_dio_private *dip = bio->bi_private; 6839 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 6840 struct bio_vec *bvec = bio->bi_io_vec; 6841 struct inode *inode = dip->inode; 6842 struct btrfs_root *root = BTRFS_I(inode)->root; 6843 struct bio *dio_bio; 6844 u64 start; 6845 6846 start = dip->logical_offset; 6847 do { 6848 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 6849 struct page *page = bvec->bv_page; 6850 char *kaddr; 6851 u32 csum = ~(u32)0; 6852 u64 private = ~(u32)0; 6853 unsigned long flags; 6854 6855 if (get_state_private(&BTRFS_I(inode)->io_tree, 6856 start, &private)) 6857 goto failed; 6858 local_irq_save(flags); 6859 kaddr = kmap_atomic(page); 6860 csum = btrfs_csum_data(kaddr + bvec->bv_offset, 6861 csum, bvec->bv_len); 6862 btrfs_csum_final(csum, (char *)&csum); 6863 kunmap_atomic(kaddr); 6864 local_irq_restore(flags); 6865 6866 flush_dcache_page(bvec->bv_page); 6867 if (csum != private) { 6868 failed: 6869 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u private %u", 6870 (unsigned long long)btrfs_ino(inode), 6871 (unsigned long long)start, 6872 csum, (unsigned)private); 6873 err = -EIO; 6874 } 6875 } 6876 6877 start += bvec->bv_len; 6878 bvec++; 6879 } while (bvec <= bvec_end); 6880 6881 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 6882 dip->logical_offset + dip->bytes - 1); 6883 dio_bio = dip->dio_bio; 6884 6885 kfree(dip); 6886 6887 /* If we had a csum failure make sure to clear the uptodate flag */ 6888 if (err) 6889 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 6890 dio_end_io(dio_bio, err); 6891 bio_put(bio); 6892 } 6893 6894 static void btrfs_endio_direct_write(struct bio *bio, int err) 6895 { 6896 struct btrfs_dio_private *dip = bio->bi_private; 6897 struct inode *inode = dip->inode; 6898 struct btrfs_root *root = BTRFS_I(inode)->root; 6899 struct btrfs_ordered_extent *ordered = NULL; 6900 u64 ordered_offset = dip->logical_offset; 6901 u64 ordered_bytes = dip->bytes; 6902 struct bio *dio_bio; 6903 int ret; 6904 6905 if (err) 6906 goto out_done; 6907 again: 6908 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 6909 &ordered_offset, 6910 ordered_bytes, !err); 6911 if (!ret) 6912 goto out_test; 6913 6914 ordered->work.func = finish_ordered_fn; 6915 ordered->work.flags = 0; 6916 btrfs_queue_worker(&root->fs_info->endio_write_workers, 6917 &ordered->work); 6918 out_test: 6919 /* 6920 * our bio might span multiple ordered extents. If we haven't 6921 * completed the accounting for the whole dio, go back and try again 6922 */ 6923 if (ordered_offset < dip->logical_offset + dip->bytes) { 6924 ordered_bytes = dip->logical_offset + dip->bytes - 6925 ordered_offset; 6926 ordered = NULL; 6927 goto again; 6928 } 6929 out_done: 6930 dio_bio = dip->dio_bio; 6931 6932 kfree(dip); 6933 6934 /* If we had an error make sure to clear the uptodate flag */ 6935 if (err) 6936 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 6937 dio_end_io(dio_bio, err); 6938 bio_put(bio); 6939 } 6940 6941 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 6942 struct bio *bio, int mirror_num, 6943 unsigned long bio_flags, u64 offset) 6944 { 6945 int ret; 6946 struct btrfs_root *root = BTRFS_I(inode)->root; 6947 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 6948 BUG_ON(ret); /* -ENOMEM */ 6949 return 0; 6950 } 6951 6952 static void btrfs_end_dio_bio(struct bio *bio, int err) 6953 { 6954 struct btrfs_dio_private *dip = bio->bi_private; 6955 6956 if (err) { 6957 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 6958 "sector %#Lx len %u err no %d\n", 6959 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 6960 (unsigned long long)bio->bi_sector, bio->bi_size, err); 6961 dip->errors = 1; 6962 6963 /* 6964 * before atomic variable goto zero, we must make sure 6965 * dip->errors is perceived to be set. 6966 */ 6967 smp_mb__before_atomic_dec(); 6968 } 6969 6970 /* if there are more bios still pending for this dio, just exit */ 6971 if (!atomic_dec_and_test(&dip->pending_bios)) 6972 goto out; 6973 6974 if (dip->errors) { 6975 bio_io_error(dip->orig_bio); 6976 } else { 6977 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 6978 bio_endio(dip->orig_bio, 0); 6979 } 6980 out: 6981 bio_put(bio); 6982 } 6983 6984 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 6985 u64 first_sector, gfp_t gfp_flags) 6986 { 6987 int nr_vecs = bio_get_nr_vecs(bdev); 6988 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 6989 } 6990 6991 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 6992 int rw, u64 file_offset, int skip_sum, 6993 int async_submit) 6994 { 6995 int write = rw & REQ_WRITE; 6996 struct btrfs_root *root = BTRFS_I(inode)->root; 6997 int ret; 6998 6999 if (async_submit) 7000 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7001 7002 bio_get(bio); 7003 7004 if (!write) { 7005 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 7006 if (ret) 7007 goto err; 7008 } 7009 7010 if (skip_sum) 7011 goto map; 7012 7013 if (write && async_submit) { 7014 ret = btrfs_wq_submit_bio(root->fs_info, 7015 inode, rw, bio, 0, 0, 7016 file_offset, 7017 __btrfs_submit_bio_start_direct_io, 7018 __btrfs_submit_bio_done); 7019 goto err; 7020 } else if (write) { 7021 /* 7022 * If we aren't doing async submit, calculate the csum of the 7023 * bio now. 7024 */ 7025 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 7026 if (ret) 7027 goto err; 7028 } else if (!skip_sum) { 7029 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset); 7030 if (ret) 7031 goto err; 7032 } 7033 7034 map: 7035 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 7036 err: 7037 bio_put(bio); 7038 return ret; 7039 } 7040 7041 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 7042 int skip_sum) 7043 { 7044 struct inode *inode = dip->inode; 7045 struct btrfs_root *root = BTRFS_I(inode)->root; 7046 struct bio *bio; 7047 struct bio *orig_bio = dip->orig_bio; 7048 struct bio_vec *bvec = orig_bio->bi_io_vec; 7049 u64 start_sector = orig_bio->bi_sector; 7050 u64 file_offset = dip->logical_offset; 7051 u64 submit_len = 0; 7052 u64 map_length; 7053 int nr_pages = 0; 7054 int ret = 0; 7055 int async_submit = 0; 7056 7057 map_length = orig_bio->bi_size; 7058 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 7059 &map_length, NULL, 0); 7060 if (ret) { 7061 bio_put(orig_bio); 7062 return -EIO; 7063 } 7064 if (map_length >= orig_bio->bi_size) { 7065 bio = orig_bio; 7066 goto submit; 7067 } 7068 7069 /* async crcs make it difficult to collect full stripe writes. */ 7070 if (btrfs_get_alloc_profile(root, 1) & 7071 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) 7072 async_submit = 0; 7073 else 7074 async_submit = 1; 7075 7076 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 7077 if (!bio) 7078 return -ENOMEM; 7079 bio->bi_private = dip; 7080 bio->bi_end_io = btrfs_end_dio_bio; 7081 atomic_inc(&dip->pending_bios); 7082 7083 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 7084 if (unlikely(map_length < submit_len + bvec->bv_len || 7085 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 7086 bvec->bv_offset) < bvec->bv_len)) { 7087 /* 7088 * inc the count before we submit the bio so 7089 * we know the end IO handler won't happen before 7090 * we inc the count. Otherwise, the dip might get freed 7091 * before we're done setting it up 7092 */ 7093 atomic_inc(&dip->pending_bios); 7094 ret = __btrfs_submit_dio_bio(bio, inode, rw, 7095 file_offset, skip_sum, 7096 async_submit); 7097 if (ret) { 7098 bio_put(bio); 7099 atomic_dec(&dip->pending_bios); 7100 goto out_err; 7101 } 7102 7103 start_sector += submit_len >> 9; 7104 file_offset += submit_len; 7105 7106 submit_len = 0; 7107 nr_pages = 0; 7108 7109 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 7110 start_sector, GFP_NOFS); 7111 if (!bio) 7112 goto out_err; 7113 bio->bi_private = dip; 7114 bio->bi_end_io = btrfs_end_dio_bio; 7115 7116 map_length = orig_bio->bi_size; 7117 ret = btrfs_map_block(root->fs_info, rw, 7118 start_sector << 9, 7119 &map_length, NULL, 0); 7120 if (ret) { 7121 bio_put(bio); 7122 goto out_err; 7123 } 7124 } else { 7125 submit_len += bvec->bv_len; 7126 nr_pages ++; 7127 bvec++; 7128 } 7129 } 7130 7131 submit: 7132 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 7133 async_submit); 7134 if (!ret) 7135 return 0; 7136 7137 bio_put(bio); 7138 out_err: 7139 dip->errors = 1; 7140 /* 7141 * before atomic variable goto zero, we must 7142 * make sure dip->errors is perceived to be set. 7143 */ 7144 smp_mb__before_atomic_dec(); 7145 if (atomic_dec_and_test(&dip->pending_bios)) 7146 bio_io_error(dip->orig_bio); 7147 7148 /* bio_end_io() will handle error, so we needn't return it */ 7149 return 0; 7150 } 7151 7152 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 7153 struct inode *inode, loff_t file_offset) 7154 { 7155 struct btrfs_root *root = BTRFS_I(inode)->root; 7156 struct btrfs_dio_private *dip; 7157 struct bio *io_bio; 7158 int skip_sum; 7159 int write = rw & REQ_WRITE; 7160 int ret = 0; 7161 7162 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7163 7164 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 7165 7166 if (!io_bio) { 7167 ret = -ENOMEM; 7168 goto free_ordered; 7169 } 7170 7171 dip = kmalloc(sizeof(*dip), GFP_NOFS); 7172 if (!dip) { 7173 ret = -ENOMEM; 7174 goto free_io_bio; 7175 } 7176 7177 dip->private = dio_bio->bi_private; 7178 dip->inode = inode; 7179 dip->logical_offset = file_offset; 7180 dip->bytes = dio_bio->bi_size; 7181 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9; 7182 io_bio->bi_private = dip; 7183 dip->errors = 0; 7184 dip->orig_bio = io_bio; 7185 dip->dio_bio = dio_bio; 7186 atomic_set(&dip->pending_bios, 0); 7187 7188 if (write) 7189 io_bio->bi_end_io = btrfs_endio_direct_write; 7190 else 7191 io_bio->bi_end_io = btrfs_endio_direct_read; 7192 7193 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 7194 if (!ret) 7195 return; 7196 7197 free_io_bio: 7198 bio_put(io_bio); 7199 7200 free_ordered: 7201 /* 7202 * If this is a write, we need to clean up the reserved space and kill 7203 * the ordered extent. 7204 */ 7205 if (write) { 7206 struct btrfs_ordered_extent *ordered; 7207 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 7208 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 7209 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 7210 btrfs_free_reserved_extent(root, ordered->start, 7211 ordered->disk_len); 7212 btrfs_put_ordered_extent(ordered); 7213 btrfs_put_ordered_extent(ordered); 7214 } 7215 bio_endio(dio_bio, ret); 7216 } 7217 7218 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 7219 const struct iovec *iov, loff_t offset, 7220 unsigned long nr_segs) 7221 { 7222 int seg; 7223 int i; 7224 size_t size; 7225 unsigned long addr; 7226 unsigned blocksize_mask = root->sectorsize - 1; 7227 ssize_t retval = -EINVAL; 7228 loff_t end = offset; 7229 7230 if (offset & blocksize_mask) 7231 goto out; 7232 7233 /* Check the memory alignment. Blocks cannot straddle pages */ 7234 for (seg = 0; seg < nr_segs; seg++) { 7235 addr = (unsigned long)iov[seg].iov_base; 7236 size = iov[seg].iov_len; 7237 end += size; 7238 if ((addr & blocksize_mask) || (size & blocksize_mask)) 7239 goto out; 7240 7241 /* If this is a write we don't need to check anymore */ 7242 if (rw & WRITE) 7243 continue; 7244 7245 /* 7246 * Check to make sure we don't have duplicate iov_base's in this 7247 * iovec, if so return EINVAL, otherwise we'll get csum errors 7248 * when reading back. 7249 */ 7250 for (i = seg + 1; i < nr_segs; i++) { 7251 if (iov[seg].iov_base == iov[i].iov_base) 7252 goto out; 7253 } 7254 } 7255 retval = 0; 7256 out: 7257 return retval; 7258 } 7259 7260 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 7261 const struct iovec *iov, loff_t offset, 7262 unsigned long nr_segs) 7263 { 7264 struct file *file = iocb->ki_filp; 7265 struct inode *inode = file->f_mapping->host; 7266 size_t count = 0; 7267 int flags = 0; 7268 bool wakeup = true; 7269 bool relock = false; 7270 ssize_t ret; 7271 7272 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 7273 offset, nr_segs)) 7274 return 0; 7275 7276 atomic_inc(&inode->i_dio_count); 7277 smp_mb__after_atomic_inc(); 7278 7279 /* 7280 * The generic stuff only does filemap_write_and_wait_range, which isn't 7281 * enough if we've written compressed pages to this area, so we need to 7282 * call btrfs_wait_ordered_range to make absolutely sure that any 7283 * outstanding dirty pages are on disk. 7284 */ 7285 count = iov_length(iov, nr_segs); 7286 btrfs_wait_ordered_range(inode, offset, count); 7287 7288 if (rw & WRITE) { 7289 /* 7290 * If the write DIO is beyond the EOF, we need update 7291 * the isize, but it is protected by i_mutex. So we can 7292 * not unlock the i_mutex at this case. 7293 */ 7294 if (offset + count <= inode->i_size) { 7295 mutex_unlock(&inode->i_mutex); 7296 relock = true; 7297 } 7298 ret = btrfs_delalloc_reserve_space(inode, count); 7299 if (ret) 7300 goto out; 7301 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7302 &BTRFS_I(inode)->runtime_flags))) { 7303 inode_dio_done(inode); 7304 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7305 wakeup = false; 7306 } 7307 7308 ret = __blockdev_direct_IO(rw, iocb, inode, 7309 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 7310 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 7311 btrfs_submit_direct, flags); 7312 if (rw & WRITE) { 7313 if (ret < 0 && ret != -EIOCBQUEUED) 7314 btrfs_delalloc_release_space(inode, count); 7315 else if (ret >= 0 && (size_t)ret < count) 7316 btrfs_delalloc_release_space(inode, 7317 count - (size_t)ret); 7318 else 7319 btrfs_delalloc_release_metadata(inode, 0); 7320 } 7321 out: 7322 if (wakeup) 7323 inode_dio_done(inode); 7324 if (relock) 7325 mutex_lock(&inode->i_mutex); 7326 7327 return ret; 7328 } 7329 7330 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 7331 7332 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7333 __u64 start, __u64 len) 7334 { 7335 int ret; 7336 7337 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 7338 if (ret) 7339 return ret; 7340 7341 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 7342 } 7343 7344 int btrfs_readpage(struct file *file, struct page *page) 7345 { 7346 struct extent_io_tree *tree; 7347 tree = &BTRFS_I(page->mapping->host)->io_tree; 7348 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 7349 } 7350 7351 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7352 { 7353 struct extent_io_tree *tree; 7354 7355 7356 if (current->flags & PF_MEMALLOC) { 7357 redirty_page_for_writepage(wbc, page); 7358 unlock_page(page); 7359 return 0; 7360 } 7361 tree = &BTRFS_I(page->mapping->host)->io_tree; 7362 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 7363 } 7364 7365 static int btrfs_writepages(struct address_space *mapping, 7366 struct writeback_control *wbc) 7367 { 7368 struct extent_io_tree *tree; 7369 7370 tree = &BTRFS_I(mapping->host)->io_tree; 7371 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 7372 } 7373 7374 static int 7375 btrfs_readpages(struct file *file, struct address_space *mapping, 7376 struct list_head *pages, unsigned nr_pages) 7377 { 7378 struct extent_io_tree *tree; 7379 tree = &BTRFS_I(mapping->host)->io_tree; 7380 return extent_readpages(tree, mapping, pages, nr_pages, 7381 btrfs_get_extent); 7382 } 7383 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7384 { 7385 struct extent_io_tree *tree; 7386 struct extent_map_tree *map; 7387 int ret; 7388 7389 tree = &BTRFS_I(page->mapping->host)->io_tree; 7390 map = &BTRFS_I(page->mapping->host)->extent_tree; 7391 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 7392 if (ret == 1) { 7393 ClearPagePrivate(page); 7394 set_page_private(page, 0); 7395 page_cache_release(page); 7396 } 7397 return ret; 7398 } 7399 7400 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7401 { 7402 if (PageWriteback(page) || PageDirty(page)) 7403 return 0; 7404 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 7405 } 7406 7407 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 7408 unsigned int length) 7409 { 7410 struct inode *inode = page->mapping->host; 7411 struct extent_io_tree *tree; 7412 struct btrfs_ordered_extent *ordered; 7413 struct extent_state *cached_state = NULL; 7414 u64 page_start = page_offset(page); 7415 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 7416 7417 /* 7418 * we have the page locked, so new writeback can't start, 7419 * and the dirty bit won't be cleared while we are here. 7420 * 7421 * Wait for IO on this page so that we can safely clear 7422 * the PagePrivate2 bit and do ordered accounting 7423 */ 7424 wait_on_page_writeback(page); 7425 7426 tree = &BTRFS_I(inode)->io_tree; 7427 if (offset) { 7428 btrfs_releasepage(page, GFP_NOFS); 7429 return; 7430 } 7431 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7432 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page)); 7433 if (ordered) { 7434 /* 7435 * IO on this page will never be started, so we need 7436 * to account for any ordered extents now 7437 */ 7438 clear_extent_bit(tree, page_start, page_end, 7439 EXTENT_DIRTY | EXTENT_DELALLOC | 7440 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7441 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS); 7442 /* 7443 * whoever cleared the private bit is responsible 7444 * for the finish_ordered_io 7445 */ 7446 if (TestClearPagePrivate2(page) && 7447 btrfs_dec_test_ordered_pending(inode, &ordered, page_start, 7448 PAGE_CACHE_SIZE, 1)) { 7449 btrfs_finish_ordered_io(ordered); 7450 } 7451 btrfs_put_ordered_extent(ordered); 7452 cached_state = NULL; 7453 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7454 } 7455 clear_extent_bit(tree, page_start, page_end, 7456 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 7457 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 7458 &cached_state, GFP_NOFS); 7459 __btrfs_releasepage(page, GFP_NOFS); 7460 7461 ClearPageChecked(page); 7462 if (PagePrivate(page)) { 7463 ClearPagePrivate(page); 7464 set_page_private(page, 0); 7465 page_cache_release(page); 7466 } 7467 } 7468 7469 /* 7470 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 7471 * called from a page fault handler when a page is first dirtied. Hence we must 7472 * be careful to check for EOF conditions here. We set the page up correctly 7473 * for a written page which means we get ENOSPC checking when writing into 7474 * holes and correct delalloc and unwritten extent mapping on filesystems that 7475 * support these features. 7476 * 7477 * We are not allowed to take the i_mutex here so we have to play games to 7478 * protect against truncate races as the page could now be beyond EOF. Because 7479 * vmtruncate() writes the inode size before removing pages, once we have the 7480 * page lock we can determine safely if the page is beyond EOF. If it is not 7481 * beyond EOF, then the page is guaranteed safe against truncation until we 7482 * unlock the page. 7483 */ 7484 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 7485 { 7486 struct page *page = vmf->page; 7487 struct inode *inode = file_inode(vma->vm_file); 7488 struct btrfs_root *root = BTRFS_I(inode)->root; 7489 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7490 struct btrfs_ordered_extent *ordered; 7491 struct extent_state *cached_state = NULL; 7492 char *kaddr; 7493 unsigned long zero_start; 7494 loff_t size; 7495 int ret; 7496 int reserved = 0; 7497 u64 page_start; 7498 u64 page_end; 7499 7500 sb_start_pagefault(inode->i_sb); 7501 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 7502 if (!ret) { 7503 ret = file_update_time(vma->vm_file); 7504 reserved = 1; 7505 } 7506 if (ret) { 7507 if (ret == -ENOMEM) 7508 ret = VM_FAULT_OOM; 7509 else /* -ENOSPC, -EIO, etc */ 7510 ret = VM_FAULT_SIGBUS; 7511 if (reserved) 7512 goto out; 7513 goto out_noreserve; 7514 } 7515 7516 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 7517 again: 7518 lock_page(page); 7519 size = i_size_read(inode); 7520 page_start = page_offset(page); 7521 page_end = page_start + PAGE_CACHE_SIZE - 1; 7522 7523 if ((page->mapping != inode->i_mapping) || 7524 (page_start >= size)) { 7525 /* page got truncated out from underneath us */ 7526 goto out_unlock; 7527 } 7528 wait_on_page_writeback(page); 7529 7530 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 7531 set_page_extent_mapped(page); 7532 7533 /* 7534 * we can't set the delalloc bits if there are pending ordered 7535 * extents. Drop our locks and wait for them to finish 7536 */ 7537 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7538 if (ordered) { 7539 unlock_extent_cached(io_tree, page_start, page_end, 7540 &cached_state, GFP_NOFS); 7541 unlock_page(page); 7542 btrfs_start_ordered_extent(inode, ordered, 1); 7543 btrfs_put_ordered_extent(ordered); 7544 goto again; 7545 } 7546 7547 /* 7548 * XXX - page_mkwrite gets called every time the page is dirtied, even 7549 * if it was already dirty, so for space accounting reasons we need to 7550 * clear any delalloc bits for the range we are fixing to save. There 7551 * is probably a better way to do this, but for now keep consistent with 7552 * prepare_pages in the normal write path. 7553 */ 7554 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 7555 EXTENT_DIRTY | EXTENT_DELALLOC | 7556 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 7557 0, 0, &cached_state, GFP_NOFS); 7558 7559 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 7560 &cached_state); 7561 if (ret) { 7562 unlock_extent_cached(io_tree, page_start, page_end, 7563 &cached_state, GFP_NOFS); 7564 ret = VM_FAULT_SIGBUS; 7565 goto out_unlock; 7566 } 7567 ret = 0; 7568 7569 /* page is wholly or partially inside EOF */ 7570 if (page_start + PAGE_CACHE_SIZE > size) 7571 zero_start = size & ~PAGE_CACHE_MASK; 7572 else 7573 zero_start = PAGE_CACHE_SIZE; 7574 7575 if (zero_start != PAGE_CACHE_SIZE) { 7576 kaddr = kmap(page); 7577 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 7578 flush_dcache_page(page); 7579 kunmap(page); 7580 } 7581 ClearPageChecked(page); 7582 set_page_dirty(page); 7583 SetPageUptodate(page); 7584 7585 BTRFS_I(inode)->last_trans = root->fs_info->generation; 7586 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 7587 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 7588 7589 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 7590 7591 out_unlock: 7592 if (!ret) { 7593 sb_end_pagefault(inode->i_sb); 7594 return VM_FAULT_LOCKED; 7595 } 7596 unlock_page(page); 7597 out: 7598 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 7599 out_noreserve: 7600 sb_end_pagefault(inode->i_sb); 7601 return ret; 7602 } 7603 7604 static int btrfs_truncate(struct inode *inode) 7605 { 7606 struct btrfs_root *root = BTRFS_I(inode)->root; 7607 struct btrfs_block_rsv *rsv; 7608 int ret = 0; 7609 int err = 0; 7610 struct btrfs_trans_handle *trans; 7611 u64 mask = root->sectorsize - 1; 7612 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 7613 7614 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 7615 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 7616 7617 /* 7618 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 7619 * 3 things going on here 7620 * 7621 * 1) We need to reserve space for our orphan item and the space to 7622 * delete our orphan item. Lord knows we don't want to have a dangling 7623 * orphan item because we didn't reserve space to remove it. 7624 * 7625 * 2) We need to reserve space to update our inode. 7626 * 7627 * 3) We need to have something to cache all the space that is going to 7628 * be free'd up by the truncate operation, but also have some slack 7629 * space reserved in case it uses space during the truncate (thank you 7630 * very much snapshotting). 7631 * 7632 * And we need these to all be seperate. The fact is we can use alot of 7633 * space doing the truncate, and we have no earthly idea how much space 7634 * we will use, so we need the truncate reservation to be seperate so it 7635 * doesn't end up using space reserved for updating the inode or 7636 * removing the orphan item. We also need to be able to stop the 7637 * transaction and start a new one, which means we need to be able to 7638 * update the inode several times, and we have no idea of knowing how 7639 * many times that will be, so we can't just reserve 1 item for the 7640 * entirety of the opration, so that has to be done seperately as well. 7641 * Then there is the orphan item, which does indeed need to be held on 7642 * to for the whole operation, and we need nobody to touch this reserved 7643 * space except the orphan code. 7644 * 7645 * So that leaves us with 7646 * 7647 * 1) root->orphan_block_rsv - for the orphan deletion. 7648 * 2) rsv - for the truncate reservation, which we will steal from the 7649 * transaction reservation. 7650 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 7651 * updating the inode. 7652 */ 7653 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 7654 if (!rsv) 7655 return -ENOMEM; 7656 rsv->size = min_size; 7657 rsv->failfast = 1; 7658 7659 /* 7660 * 1 for the truncate slack space 7661 * 1 for updating the inode. 7662 */ 7663 trans = btrfs_start_transaction(root, 2); 7664 if (IS_ERR(trans)) { 7665 err = PTR_ERR(trans); 7666 goto out; 7667 } 7668 7669 /* Migrate the slack space for the truncate to our reserve */ 7670 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 7671 min_size); 7672 BUG_ON(ret); 7673 7674 /* 7675 * setattr is responsible for setting the ordered_data_close flag, 7676 * but that is only tested during the last file release. That 7677 * could happen well after the next commit, leaving a great big 7678 * window where new writes may get lost if someone chooses to write 7679 * to this file after truncating to zero 7680 * 7681 * The inode doesn't have any dirty data here, and so if we commit 7682 * this is a noop. If someone immediately starts writing to the inode 7683 * it is very likely we'll catch some of their writes in this 7684 * transaction, and the commit will find this file on the ordered 7685 * data list with good things to send down. 7686 * 7687 * This is a best effort solution, there is still a window where 7688 * using truncate to replace the contents of the file will 7689 * end up with a zero length file after a crash. 7690 */ 7691 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 7692 &BTRFS_I(inode)->runtime_flags)) 7693 btrfs_add_ordered_operation(trans, root, inode); 7694 7695 /* 7696 * So if we truncate and then write and fsync we normally would just 7697 * write the extents that changed, which is a problem if we need to 7698 * first truncate that entire inode. So set this flag so we write out 7699 * all of the extents in the inode to the sync log so we're completely 7700 * safe. 7701 */ 7702 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 7703 trans->block_rsv = rsv; 7704 7705 while (1) { 7706 ret = btrfs_truncate_inode_items(trans, root, inode, 7707 inode->i_size, 7708 BTRFS_EXTENT_DATA_KEY); 7709 if (ret != -ENOSPC) { 7710 err = ret; 7711 break; 7712 } 7713 7714 trans->block_rsv = &root->fs_info->trans_block_rsv; 7715 ret = btrfs_update_inode(trans, root, inode); 7716 if (ret) { 7717 err = ret; 7718 break; 7719 } 7720 7721 btrfs_end_transaction(trans, root); 7722 btrfs_btree_balance_dirty(root); 7723 7724 trans = btrfs_start_transaction(root, 2); 7725 if (IS_ERR(trans)) { 7726 ret = err = PTR_ERR(trans); 7727 trans = NULL; 7728 break; 7729 } 7730 7731 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 7732 rsv, min_size); 7733 BUG_ON(ret); /* shouldn't happen */ 7734 trans->block_rsv = rsv; 7735 } 7736 7737 if (ret == 0 && inode->i_nlink > 0) { 7738 trans->block_rsv = root->orphan_block_rsv; 7739 ret = btrfs_orphan_del(trans, inode); 7740 if (ret) 7741 err = ret; 7742 } 7743 7744 if (trans) { 7745 trans->block_rsv = &root->fs_info->trans_block_rsv; 7746 ret = btrfs_update_inode(trans, root, inode); 7747 if (ret && !err) 7748 err = ret; 7749 7750 ret = btrfs_end_transaction(trans, root); 7751 btrfs_btree_balance_dirty(root); 7752 } 7753 7754 out: 7755 btrfs_free_block_rsv(root, rsv); 7756 7757 if (ret && !err) 7758 err = ret; 7759 7760 return err; 7761 } 7762 7763 /* 7764 * create a new subvolume directory/inode (helper for the ioctl). 7765 */ 7766 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 7767 struct btrfs_root *new_root, u64 new_dirid) 7768 { 7769 struct inode *inode; 7770 int err; 7771 u64 index = 0; 7772 7773 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 7774 new_dirid, new_dirid, 7775 S_IFDIR | (~current_umask() & S_IRWXUGO), 7776 &index); 7777 if (IS_ERR(inode)) 7778 return PTR_ERR(inode); 7779 inode->i_op = &btrfs_dir_inode_operations; 7780 inode->i_fop = &btrfs_dir_file_operations; 7781 7782 set_nlink(inode, 1); 7783 btrfs_i_size_write(inode, 0); 7784 7785 err = btrfs_update_inode(trans, new_root, inode); 7786 7787 iput(inode); 7788 return err; 7789 } 7790 7791 struct inode *btrfs_alloc_inode(struct super_block *sb) 7792 { 7793 struct btrfs_inode *ei; 7794 struct inode *inode; 7795 7796 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 7797 if (!ei) 7798 return NULL; 7799 7800 ei->root = NULL; 7801 ei->generation = 0; 7802 ei->last_trans = 0; 7803 ei->last_sub_trans = 0; 7804 ei->logged_trans = 0; 7805 ei->delalloc_bytes = 0; 7806 ei->disk_i_size = 0; 7807 ei->flags = 0; 7808 ei->csum_bytes = 0; 7809 ei->index_cnt = (u64)-1; 7810 ei->last_unlink_trans = 0; 7811 ei->last_log_commit = 0; 7812 7813 spin_lock_init(&ei->lock); 7814 ei->outstanding_extents = 0; 7815 ei->reserved_extents = 0; 7816 7817 ei->runtime_flags = 0; 7818 ei->force_compress = BTRFS_COMPRESS_NONE; 7819 7820 ei->delayed_node = NULL; 7821 7822 inode = &ei->vfs_inode; 7823 extent_map_tree_init(&ei->extent_tree); 7824 extent_io_tree_init(&ei->io_tree, &inode->i_data); 7825 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 7826 ei->io_tree.track_uptodate = 1; 7827 ei->io_failure_tree.track_uptodate = 1; 7828 atomic_set(&ei->sync_writers, 0); 7829 mutex_init(&ei->log_mutex); 7830 mutex_init(&ei->delalloc_mutex); 7831 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 7832 INIT_LIST_HEAD(&ei->delalloc_inodes); 7833 INIT_LIST_HEAD(&ei->ordered_operations); 7834 RB_CLEAR_NODE(&ei->rb_node); 7835 7836 return inode; 7837 } 7838 7839 static void btrfs_i_callback(struct rcu_head *head) 7840 { 7841 struct inode *inode = container_of(head, struct inode, i_rcu); 7842 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7843 } 7844 7845 void btrfs_destroy_inode(struct inode *inode) 7846 { 7847 struct btrfs_ordered_extent *ordered; 7848 struct btrfs_root *root = BTRFS_I(inode)->root; 7849 7850 WARN_ON(!hlist_empty(&inode->i_dentry)); 7851 WARN_ON(inode->i_data.nrpages); 7852 WARN_ON(BTRFS_I(inode)->outstanding_extents); 7853 WARN_ON(BTRFS_I(inode)->reserved_extents); 7854 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 7855 WARN_ON(BTRFS_I(inode)->csum_bytes); 7856 7857 /* 7858 * This can happen where we create an inode, but somebody else also 7859 * created the same inode and we need to destroy the one we already 7860 * created. 7861 */ 7862 if (!root) 7863 goto free; 7864 7865 /* 7866 * Make sure we're properly removed from the ordered operation 7867 * lists. 7868 */ 7869 smp_mb(); 7870 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 7871 spin_lock(&root->fs_info->ordered_root_lock); 7872 list_del_init(&BTRFS_I(inode)->ordered_operations); 7873 spin_unlock(&root->fs_info->ordered_root_lock); 7874 } 7875 7876 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 7877 &BTRFS_I(inode)->runtime_flags)) { 7878 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 7879 (unsigned long long)btrfs_ino(inode)); 7880 atomic_dec(&root->orphan_inodes); 7881 } 7882 7883 while (1) { 7884 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7885 if (!ordered) 7886 break; 7887 else { 7888 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 7889 (unsigned long long)ordered->file_offset, 7890 (unsigned long long)ordered->len); 7891 btrfs_remove_ordered_extent(inode, ordered); 7892 btrfs_put_ordered_extent(ordered); 7893 btrfs_put_ordered_extent(ordered); 7894 } 7895 } 7896 inode_tree_del(inode); 7897 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 7898 free: 7899 call_rcu(&inode->i_rcu, btrfs_i_callback); 7900 } 7901 7902 int btrfs_drop_inode(struct inode *inode) 7903 { 7904 struct btrfs_root *root = BTRFS_I(inode)->root; 7905 7906 if (root == NULL) 7907 return 1; 7908 7909 /* the snap/subvol tree is on deleting */ 7910 if (btrfs_root_refs(&root->root_item) == 0 && 7911 root != root->fs_info->tree_root) 7912 return 1; 7913 else 7914 return generic_drop_inode(inode); 7915 } 7916 7917 static void init_once(void *foo) 7918 { 7919 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 7920 7921 inode_init_once(&ei->vfs_inode); 7922 } 7923 7924 void btrfs_destroy_cachep(void) 7925 { 7926 /* 7927 * Make sure all delayed rcu free inodes are flushed before we 7928 * destroy cache. 7929 */ 7930 rcu_barrier(); 7931 if (btrfs_inode_cachep) 7932 kmem_cache_destroy(btrfs_inode_cachep); 7933 if (btrfs_trans_handle_cachep) 7934 kmem_cache_destroy(btrfs_trans_handle_cachep); 7935 if (btrfs_transaction_cachep) 7936 kmem_cache_destroy(btrfs_transaction_cachep); 7937 if (btrfs_path_cachep) 7938 kmem_cache_destroy(btrfs_path_cachep); 7939 if (btrfs_free_space_cachep) 7940 kmem_cache_destroy(btrfs_free_space_cachep); 7941 if (btrfs_delalloc_work_cachep) 7942 kmem_cache_destroy(btrfs_delalloc_work_cachep); 7943 } 7944 7945 int btrfs_init_cachep(void) 7946 { 7947 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7948 sizeof(struct btrfs_inode), 0, 7949 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 7950 if (!btrfs_inode_cachep) 7951 goto fail; 7952 7953 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 7954 sizeof(struct btrfs_trans_handle), 0, 7955 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7956 if (!btrfs_trans_handle_cachep) 7957 goto fail; 7958 7959 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 7960 sizeof(struct btrfs_transaction), 0, 7961 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7962 if (!btrfs_transaction_cachep) 7963 goto fail; 7964 7965 btrfs_path_cachep = kmem_cache_create("btrfs_path", 7966 sizeof(struct btrfs_path), 0, 7967 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7968 if (!btrfs_path_cachep) 7969 goto fail; 7970 7971 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 7972 sizeof(struct btrfs_free_space), 0, 7973 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7974 if (!btrfs_free_space_cachep) 7975 goto fail; 7976 7977 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 7978 sizeof(struct btrfs_delalloc_work), 0, 7979 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 7980 NULL); 7981 if (!btrfs_delalloc_work_cachep) 7982 goto fail; 7983 7984 return 0; 7985 fail: 7986 btrfs_destroy_cachep(); 7987 return -ENOMEM; 7988 } 7989 7990 static int btrfs_getattr(struct vfsmount *mnt, 7991 struct dentry *dentry, struct kstat *stat) 7992 { 7993 u64 delalloc_bytes; 7994 struct inode *inode = dentry->d_inode; 7995 u32 blocksize = inode->i_sb->s_blocksize; 7996 7997 generic_fillattr(inode, stat); 7998 stat->dev = BTRFS_I(inode)->root->anon_dev; 7999 stat->blksize = PAGE_CACHE_SIZE; 8000 8001 spin_lock(&BTRFS_I(inode)->lock); 8002 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 8003 spin_unlock(&BTRFS_I(inode)->lock); 8004 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8005 ALIGN(delalloc_bytes, blocksize)) >> 9; 8006 return 0; 8007 } 8008 8009 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 8010 struct inode *new_dir, struct dentry *new_dentry) 8011 { 8012 struct btrfs_trans_handle *trans; 8013 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8014 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8015 struct inode *new_inode = new_dentry->d_inode; 8016 struct inode *old_inode = old_dentry->d_inode; 8017 struct timespec ctime = CURRENT_TIME; 8018 u64 index = 0; 8019 u64 root_objectid; 8020 int ret; 8021 u64 old_ino = btrfs_ino(old_inode); 8022 8023 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8024 return -EPERM; 8025 8026 /* we only allow rename subvolume link between subvolumes */ 8027 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8028 return -EXDEV; 8029 8030 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8031 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 8032 return -ENOTEMPTY; 8033 8034 if (S_ISDIR(old_inode->i_mode) && new_inode && 8035 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8036 return -ENOTEMPTY; 8037 8038 8039 /* check for collisions, even if the name isn't there */ 8040 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino, 8041 new_dentry->d_name.name, 8042 new_dentry->d_name.len); 8043 8044 if (ret) { 8045 if (ret == -EEXIST) { 8046 /* we shouldn't get 8047 * eexist without a new_inode */ 8048 if (!new_inode) { 8049 WARN_ON(1); 8050 return ret; 8051 } 8052 } else { 8053 /* maybe -EOVERFLOW */ 8054 return ret; 8055 } 8056 } 8057 ret = 0; 8058 8059 /* 8060 * we're using rename to replace one file with another. 8061 * and the replacement file is large. Start IO on it now so 8062 * we don't add too much work to the end of the transaction 8063 */ 8064 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 8065 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 8066 filemap_flush(old_inode->i_mapping); 8067 8068 /* close the racy window with snapshot create/destroy ioctl */ 8069 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8070 down_read(&root->fs_info->subvol_sem); 8071 /* 8072 * We want to reserve the absolute worst case amount of items. So if 8073 * both inodes are subvols and we need to unlink them then that would 8074 * require 4 item modifications, but if they are both normal inodes it 8075 * would require 5 item modifications, so we'll assume their normal 8076 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 8077 * should cover the worst case number of items we'll modify. 8078 */ 8079 trans = btrfs_start_transaction(root, 11); 8080 if (IS_ERR(trans)) { 8081 ret = PTR_ERR(trans); 8082 goto out_notrans; 8083 } 8084 8085 if (dest != root) 8086 btrfs_record_root_in_trans(trans, dest); 8087 8088 ret = btrfs_set_inode_index(new_dir, &index); 8089 if (ret) 8090 goto out_fail; 8091 8092 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8093 /* force full log commit if subvolume involved. */ 8094 root->fs_info->last_trans_log_full_commit = trans->transid; 8095 } else { 8096 ret = btrfs_insert_inode_ref(trans, dest, 8097 new_dentry->d_name.name, 8098 new_dentry->d_name.len, 8099 old_ino, 8100 btrfs_ino(new_dir), index); 8101 if (ret) 8102 goto out_fail; 8103 /* 8104 * this is an ugly little race, but the rename is required 8105 * to make sure that if we crash, the inode is either at the 8106 * old name or the new one. pinning the log transaction lets 8107 * us make sure we don't allow a log commit to come in after 8108 * we unlink the name but before we add the new name back in. 8109 */ 8110 btrfs_pin_log_trans(root); 8111 } 8112 /* 8113 * make sure the inode gets flushed if it is replacing 8114 * something. 8115 */ 8116 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 8117 btrfs_add_ordered_operation(trans, root, old_inode); 8118 8119 inode_inc_iversion(old_dir); 8120 inode_inc_iversion(new_dir); 8121 inode_inc_iversion(old_inode); 8122 old_dir->i_ctime = old_dir->i_mtime = ctime; 8123 new_dir->i_ctime = new_dir->i_mtime = ctime; 8124 old_inode->i_ctime = ctime; 8125 8126 if (old_dentry->d_parent != new_dentry->d_parent) 8127 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 8128 8129 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8130 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 8131 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 8132 old_dentry->d_name.name, 8133 old_dentry->d_name.len); 8134 } else { 8135 ret = __btrfs_unlink_inode(trans, root, old_dir, 8136 old_dentry->d_inode, 8137 old_dentry->d_name.name, 8138 old_dentry->d_name.len); 8139 if (!ret) 8140 ret = btrfs_update_inode(trans, root, old_inode); 8141 } 8142 if (ret) { 8143 btrfs_abort_transaction(trans, root, ret); 8144 goto out_fail; 8145 } 8146 8147 if (new_inode) { 8148 inode_inc_iversion(new_inode); 8149 new_inode->i_ctime = CURRENT_TIME; 8150 if (unlikely(btrfs_ino(new_inode) == 8151 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8152 root_objectid = BTRFS_I(new_inode)->location.objectid; 8153 ret = btrfs_unlink_subvol(trans, dest, new_dir, 8154 root_objectid, 8155 new_dentry->d_name.name, 8156 new_dentry->d_name.len); 8157 BUG_ON(new_inode->i_nlink == 0); 8158 } else { 8159 ret = btrfs_unlink_inode(trans, dest, new_dir, 8160 new_dentry->d_inode, 8161 new_dentry->d_name.name, 8162 new_dentry->d_name.len); 8163 } 8164 if (!ret && new_inode->i_nlink == 0) { 8165 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 8166 BUG_ON(ret); 8167 } 8168 if (ret) { 8169 btrfs_abort_transaction(trans, root, ret); 8170 goto out_fail; 8171 } 8172 } 8173 8174 ret = btrfs_add_link(trans, new_dir, old_inode, 8175 new_dentry->d_name.name, 8176 new_dentry->d_name.len, 0, index); 8177 if (ret) { 8178 btrfs_abort_transaction(trans, root, ret); 8179 goto out_fail; 8180 } 8181 8182 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8183 struct dentry *parent = new_dentry->d_parent; 8184 btrfs_log_new_name(trans, old_inode, old_dir, parent); 8185 btrfs_end_log_trans(root); 8186 } 8187 out_fail: 8188 btrfs_end_transaction(trans, root); 8189 out_notrans: 8190 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8191 up_read(&root->fs_info->subvol_sem); 8192 8193 return ret; 8194 } 8195 8196 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8197 { 8198 struct btrfs_delalloc_work *delalloc_work; 8199 8200 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8201 work); 8202 if (delalloc_work->wait) 8203 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1); 8204 else 8205 filemap_flush(delalloc_work->inode->i_mapping); 8206 8207 if (delalloc_work->delay_iput) 8208 btrfs_add_delayed_iput(delalloc_work->inode); 8209 else 8210 iput(delalloc_work->inode); 8211 complete(&delalloc_work->completion); 8212 } 8213 8214 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 8215 int wait, int delay_iput) 8216 { 8217 struct btrfs_delalloc_work *work; 8218 8219 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 8220 if (!work) 8221 return NULL; 8222 8223 init_completion(&work->completion); 8224 INIT_LIST_HEAD(&work->list); 8225 work->inode = inode; 8226 work->wait = wait; 8227 work->delay_iput = delay_iput; 8228 work->work.func = btrfs_run_delalloc_work; 8229 8230 return work; 8231 } 8232 8233 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 8234 { 8235 wait_for_completion(&work->completion); 8236 kmem_cache_free(btrfs_delalloc_work_cachep, work); 8237 } 8238 8239 /* 8240 * some fairly slow code that needs optimization. This walks the list 8241 * of all the inodes with pending delalloc and forces them to disk. 8242 */ 8243 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8244 { 8245 struct btrfs_inode *binode; 8246 struct inode *inode; 8247 struct btrfs_delalloc_work *work, *next; 8248 struct list_head works; 8249 struct list_head splice; 8250 int ret = 0; 8251 8252 INIT_LIST_HEAD(&works); 8253 INIT_LIST_HEAD(&splice); 8254 8255 spin_lock(&root->delalloc_lock); 8256 list_splice_init(&root->delalloc_inodes, &splice); 8257 while (!list_empty(&splice)) { 8258 binode = list_entry(splice.next, struct btrfs_inode, 8259 delalloc_inodes); 8260 8261 list_move_tail(&binode->delalloc_inodes, 8262 &root->delalloc_inodes); 8263 inode = igrab(&binode->vfs_inode); 8264 if (!inode) { 8265 cond_resched_lock(&root->delalloc_lock); 8266 continue; 8267 } 8268 spin_unlock(&root->delalloc_lock); 8269 8270 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 8271 if (unlikely(!work)) { 8272 ret = -ENOMEM; 8273 goto out; 8274 } 8275 list_add_tail(&work->list, &works); 8276 btrfs_queue_worker(&root->fs_info->flush_workers, 8277 &work->work); 8278 8279 cond_resched(); 8280 spin_lock(&root->delalloc_lock); 8281 } 8282 spin_unlock(&root->delalloc_lock); 8283 8284 list_for_each_entry_safe(work, next, &works, list) { 8285 list_del_init(&work->list); 8286 btrfs_wait_and_free_delalloc_work(work); 8287 } 8288 return 0; 8289 out: 8290 list_for_each_entry_safe(work, next, &works, list) { 8291 list_del_init(&work->list); 8292 btrfs_wait_and_free_delalloc_work(work); 8293 } 8294 8295 if (!list_empty_careful(&splice)) { 8296 spin_lock(&root->delalloc_lock); 8297 list_splice_tail(&splice, &root->delalloc_inodes); 8298 spin_unlock(&root->delalloc_lock); 8299 } 8300 return ret; 8301 } 8302 8303 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8304 { 8305 int ret; 8306 8307 if (root->fs_info->sb->s_flags & MS_RDONLY) 8308 return -EROFS; 8309 8310 ret = __start_delalloc_inodes(root, delay_iput); 8311 /* 8312 * the filemap_flush will queue IO into the worker threads, but 8313 * we have to make sure the IO is actually started and that 8314 * ordered extents get created before we return 8315 */ 8316 atomic_inc(&root->fs_info->async_submit_draining); 8317 while (atomic_read(&root->fs_info->nr_async_submits) || 8318 atomic_read(&root->fs_info->async_delalloc_pages)) { 8319 wait_event(root->fs_info->async_submit_wait, 8320 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 8321 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 8322 } 8323 atomic_dec(&root->fs_info->async_submit_draining); 8324 return ret; 8325 } 8326 8327 int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info, 8328 int delay_iput) 8329 { 8330 struct btrfs_root *root; 8331 struct list_head splice; 8332 int ret; 8333 8334 if (fs_info->sb->s_flags & MS_RDONLY) 8335 return -EROFS; 8336 8337 INIT_LIST_HEAD(&splice); 8338 8339 spin_lock(&fs_info->delalloc_root_lock); 8340 list_splice_init(&fs_info->delalloc_roots, &splice); 8341 while (!list_empty(&splice)) { 8342 root = list_first_entry(&splice, struct btrfs_root, 8343 delalloc_root); 8344 root = btrfs_grab_fs_root(root); 8345 BUG_ON(!root); 8346 list_move_tail(&root->delalloc_root, 8347 &fs_info->delalloc_roots); 8348 spin_unlock(&fs_info->delalloc_root_lock); 8349 8350 ret = __start_delalloc_inodes(root, delay_iput); 8351 btrfs_put_fs_root(root); 8352 if (ret) 8353 goto out; 8354 8355 spin_lock(&fs_info->delalloc_root_lock); 8356 } 8357 spin_unlock(&fs_info->delalloc_root_lock); 8358 8359 atomic_inc(&fs_info->async_submit_draining); 8360 while (atomic_read(&fs_info->nr_async_submits) || 8361 atomic_read(&fs_info->async_delalloc_pages)) { 8362 wait_event(fs_info->async_submit_wait, 8363 (atomic_read(&fs_info->nr_async_submits) == 0 && 8364 atomic_read(&fs_info->async_delalloc_pages) == 0)); 8365 } 8366 atomic_dec(&fs_info->async_submit_draining); 8367 return 0; 8368 out: 8369 if (!list_empty_careful(&splice)) { 8370 spin_lock(&fs_info->delalloc_root_lock); 8371 list_splice_tail(&splice, &fs_info->delalloc_roots); 8372 spin_unlock(&fs_info->delalloc_root_lock); 8373 } 8374 return ret; 8375 } 8376 8377 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 8378 const char *symname) 8379 { 8380 struct btrfs_trans_handle *trans; 8381 struct btrfs_root *root = BTRFS_I(dir)->root; 8382 struct btrfs_path *path; 8383 struct btrfs_key key; 8384 struct inode *inode = NULL; 8385 int err; 8386 int drop_inode = 0; 8387 u64 objectid; 8388 u64 index = 0 ; 8389 int name_len; 8390 int datasize; 8391 unsigned long ptr; 8392 struct btrfs_file_extent_item *ei; 8393 struct extent_buffer *leaf; 8394 8395 name_len = strlen(symname) + 1; 8396 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 8397 return -ENAMETOOLONG; 8398 8399 /* 8400 * 2 items for inode item and ref 8401 * 2 items for dir items 8402 * 1 item for xattr if selinux is on 8403 */ 8404 trans = btrfs_start_transaction(root, 5); 8405 if (IS_ERR(trans)) 8406 return PTR_ERR(trans); 8407 8408 err = btrfs_find_free_ino(root, &objectid); 8409 if (err) 8410 goto out_unlock; 8411 8412 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 8413 dentry->d_name.len, btrfs_ino(dir), objectid, 8414 S_IFLNK|S_IRWXUGO, &index); 8415 if (IS_ERR(inode)) { 8416 err = PTR_ERR(inode); 8417 goto out_unlock; 8418 } 8419 8420 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 8421 if (err) { 8422 drop_inode = 1; 8423 goto out_unlock; 8424 } 8425 8426 /* 8427 * If the active LSM wants to access the inode during 8428 * d_instantiate it needs these. Smack checks to see 8429 * if the filesystem supports xattrs by looking at the 8430 * ops vector. 8431 */ 8432 inode->i_fop = &btrfs_file_operations; 8433 inode->i_op = &btrfs_file_inode_operations; 8434 8435 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 8436 if (err) 8437 drop_inode = 1; 8438 else { 8439 inode->i_mapping->a_ops = &btrfs_aops; 8440 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8441 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 8442 } 8443 if (drop_inode) 8444 goto out_unlock; 8445 8446 path = btrfs_alloc_path(); 8447 if (!path) { 8448 err = -ENOMEM; 8449 drop_inode = 1; 8450 goto out_unlock; 8451 } 8452 key.objectid = btrfs_ino(inode); 8453 key.offset = 0; 8454 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 8455 datasize = btrfs_file_extent_calc_inline_size(name_len); 8456 err = btrfs_insert_empty_item(trans, root, path, &key, 8457 datasize); 8458 if (err) { 8459 drop_inode = 1; 8460 btrfs_free_path(path); 8461 goto out_unlock; 8462 } 8463 leaf = path->nodes[0]; 8464 ei = btrfs_item_ptr(leaf, path->slots[0], 8465 struct btrfs_file_extent_item); 8466 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8467 btrfs_set_file_extent_type(leaf, ei, 8468 BTRFS_FILE_EXTENT_INLINE); 8469 btrfs_set_file_extent_encryption(leaf, ei, 0); 8470 btrfs_set_file_extent_compression(leaf, ei, 0); 8471 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8472 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8473 8474 ptr = btrfs_file_extent_inline_start(ei); 8475 write_extent_buffer(leaf, symname, ptr, name_len); 8476 btrfs_mark_buffer_dirty(leaf); 8477 btrfs_free_path(path); 8478 8479 inode->i_op = &btrfs_symlink_inode_operations; 8480 inode->i_mapping->a_ops = &btrfs_symlink_aops; 8481 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8482 inode_set_bytes(inode, name_len); 8483 btrfs_i_size_write(inode, name_len - 1); 8484 err = btrfs_update_inode(trans, root, inode); 8485 if (err) 8486 drop_inode = 1; 8487 8488 out_unlock: 8489 if (!err) 8490 d_instantiate(dentry, inode); 8491 btrfs_end_transaction(trans, root); 8492 if (drop_inode) { 8493 inode_dec_link_count(inode); 8494 iput(inode); 8495 } 8496 btrfs_btree_balance_dirty(root); 8497 return err; 8498 } 8499 8500 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8501 u64 start, u64 num_bytes, u64 min_size, 8502 loff_t actual_len, u64 *alloc_hint, 8503 struct btrfs_trans_handle *trans) 8504 { 8505 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 8506 struct extent_map *em; 8507 struct btrfs_root *root = BTRFS_I(inode)->root; 8508 struct btrfs_key ins; 8509 u64 cur_offset = start; 8510 u64 i_size; 8511 u64 cur_bytes; 8512 int ret = 0; 8513 bool own_trans = true; 8514 8515 if (trans) 8516 own_trans = false; 8517 while (num_bytes > 0) { 8518 if (own_trans) { 8519 trans = btrfs_start_transaction(root, 3); 8520 if (IS_ERR(trans)) { 8521 ret = PTR_ERR(trans); 8522 break; 8523 } 8524 } 8525 8526 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 8527 cur_bytes = max(cur_bytes, min_size); 8528 ret = btrfs_reserve_extent(trans, root, cur_bytes, 8529 min_size, 0, *alloc_hint, &ins, 1); 8530 if (ret) { 8531 if (own_trans) 8532 btrfs_end_transaction(trans, root); 8533 break; 8534 } 8535 8536 ret = insert_reserved_file_extent(trans, inode, 8537 cur_offset, ins.objectid, 8538 ins.offset, ins.offset, 8539 ins.offset, 0, 0, 0, 8540 BTRFS_FILE_EXTENT_PREALLOC); 8541 if (ret) { 8542 btrfs_abort_transaction(trans, root, ret); 8543 if (own_trans) 8544 btrfs_end_transaction(trans, root); 8545 break; 8546 } 8547 btrfs_drop_extent_cache(inode, cur_offset, 8548 cur_offset + ins.offset -1, 0); 8549 8550 em = alloc_extent_map(); 8551 if (!em) { 8552 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 8553 &BTRFS_I(inode)->runtime_flags); 8554 goto next; 8555 } 8556 8557 em->start = cur_offset; 8558 em->orig_start = cur_offset; 8559 em->len = ins.offset; 8560 em->block_start = ins.objectid; 8561 em->block_len = ins.offset; 8562 em->orig_block_len = ins.offset; 8563 em->ram_bytes = ins.offset; 8564 em->bdev = root->fs_info->fs_devices->latest_bdev; 8565 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 8566 em->generation = trans->transid; 8567 8568 while (1) { 8569 write_lock(&em_tree->lock); 8570 ret = add_extent_mapping(em_tree, em, 1); 8571 write_unlock(&em_tree->lock); 8572 if (ret != -EEXIST) 8573 break; 8574 btrfs_drop_extent_cache(inode, cur_offset, 8575 cur_offset + ins.offset - 1, 8576 0); 8577 } 8578 free_extent_map(em); 8579 next: 8580 num_bytes -= ins.offset; 8581 cur_offset += ins.offset; 8582 *alloc_hint = ins.objectid + ins.offset; 8583 8584 inode_inc_iversion(inode); 8585 inode->i_ctime = CURRENT_TIME; 8586 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8587 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8588 (actual_len > inode->i_size) && 8589 (cur_offset > inode->i_size)) { 8590 if (cur_offset > actual_len) 8591 i_size = actual_len; 8592 else 8593 i_size = cur_offset; 8594 i_size_write(inode, i_size); 8595 btrfs_ordered_update_i_size(inode, i_size, NULL); 8596 } 8597 8598 ret = btrfs_update_inode(trans, root, inode); 8599 8600 if (ret) { 8601 btrfs_abort_transaction(trans, root, ret); 8602 if (own_trans) 8603 btrfs_end_transaction(trans, root); 8604 break; 8605 } 8606 8607 if (own_trans) 8608 btrfs_end_transaction(trans, root); 8609 } 8610 return ret; 8611 } 8612 8613 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8614 u64 start, u64 num_bytes, u64 min_size, 8615 loff_t actual_len, u64 *alloc_hint) 8616 { 8617 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8618 min_size, actual_len, alloc_hint, 8619 NULL); 8620 } 8621 8622 int btrfs_prealloc_file_range_trans(struct inode *inode, 8623 struct btrfs_trans_handle *trans, int mode, 8624 u64 start, u64 num_bytes, u64 min_size, 8625 loff_t actual_len, u64 *alloc_hint) 8626 { 8627 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8628 min_size, actual_len, alloc_hint, trans); 8629 } 8630 8631 static int btrfs_set_page_dirty(struct page *page) 8632 { 8633 return __set_page_dirty_nobuffers(page); 8634 } 8635 8636 static int btrfs_permission(struct inode *inode, int mask) 8637 { 8638 struct btrfs_root *root = BTRFS_I(inode)->root; 8639 umode_t mode = inode->i_mode; 8640 8641 if (mask & MAY_WRITE && 8642 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8643 if (btrfs_root_readonly(root)) 8644 return -EROFS; 8645 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8646 return -EACCES; 8647 } 8648 return generic_permission(inode, mask); 8649 } 8650 8651 static const struct inode_operations btrfs_dir_inode_operations = { 8652 .getattr = btrfs_getattr, 8653 .lookup = btrfs_lookup, 8654 .create = btrfs_create, 8655 .unlink = btrfs_unlink, 8656 .link = btrfs_link, 8657 .mkdir = btrfs_mkdir, 8658 .rmdir = btrfs_rmdir, 8659 .rename = btrfs_rename, 8660 .symlink = btrfs_symlink, 8661 .setattr = btrfs_setattr, 8662 .mknod = btrfs_mknod, 8663 .setxattr = btrfs_setxattr, 8664 .getxattr = btrfs_getxattr, 8665 .listxattr = btrfs_listxattr, 8666 .removexattr = btrfs_removexattr, 8667 .permission = btrfs_permission, 8668 .get_acl = btrfs_get_acl, 8669 }; 8670 static const struct inode_operations btrfs_dir_ro_inode_operations = { 8671 .lookup = btrfs_lookup, 8672 .permission = btrfs_permission, 8673 .get_acl = btrfs_get_acl, 8674 }; 8675 8676 static const struct file_operations btrfs_dir_file_operations = { 8677 .llseek = generic_file_llseek, 8678 .read = generic_read_dir, 8679 .iterate = btrfs_real_readdir, 8680 .unlocked_ioctl = btrfs_ioctl, 8681 #ifdef CONFIG_COMPAT 8682 .compat_ioctl = btrfs_ioctl, 8683 #endif 8684 .release = btrfs_release_file, 8685 .fsync = btrfs_sync_file, 8686 }; 8687 8688 static struct extent_io_ops btrfs_extent_io_ops = { 8689 .fill_delalloc = run_delalloc_range, 8690 .submit_bio_hook = btrfs_submit_bio_hook, 8691 .merge_bio_hook = btrfs_merge_bio_hook, 8692 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 8693 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 8694 .writepage_start_hook = btrfs_writepage_start_hook, 8695 .set_bit_hook = btrfs_set_bit_hook, 8696 .clear_bit_hook = btrfs_clear_bit_hook, 8697 .merge_extent_hook = btrfs_merge_extent_hook, 8698 .split_extent_hook = btrfs_split_extent_hook, 8699 }; 8700 8701 /* 8702 * btrfs doesn't support the bmap operation because swapfiles 8703 * use bmap to make a mapping of extents in the file. They assume 8704 * these extents won't change over the life of the file and they 8705 * use the bmap result to do IO directly to the drive. 8706 * 8707 * the btrfs bmap call would return logical addresses that aren't 8708 * suitable for IO and they also will change frequently as COW 8709 * operations happen. So, swapfile + btrfs == corruption. 8710 * 8711 * For now we're avoiding this by dropping bmap. 8712 */ 8713 static const struct address_space_operations btrfs_aops = { 8714 .readpage = btrfs_readpage, 8715 .writepage = btrfs_writepage, 8716 .writepages = btrfs_writepages, 8717 .readpages = btrfs_readpages, 8718 .direct_IO = btrfs_direct_IO, 8719 .invalidatepage = btrfs_invalidatepage, 8720 .releasepage = btrfs_releasepage, 8721 .set_page_dirty = btrfs_set_page_dirty, 8722 .error_remove_page = generic_error_remove_page, 8723 }; 8724 8725 static const struct address_space_operations btrfs_symlink_aops = { 8726 .readpage = btrfs_readpage, 8727 .writepage = btrfs_writepage, 8728 .invalidatepage = btrfs_invalidatepage, 8729 .releasepage = btrfs_releasepage, 8730 }; 8731 8732 static const struct inode_operations btrfs_file_inode_operations = { 8733 .getattr = btrfs_getattr, 8734 .setattr = btrfs_setattr, 8735 .setxattr = btrfs_setxattr, 8736 .getxattr = btrfs_getxattr, 8737 .listxattr = btrfs_listxattr, 8738 .removexattr = btrfs_removexattr, 8739 .permission = btrfs_permission, 8740 .fiemap = btrfs_fiemap, 8741 .get_acl = btrfs_get_acl, 8742 .update_time = btrfs_update_time, 8743 }; 8744 static const struct inode_operations btrfs_special_inode_operations = { 8745 .getattr = btrfs_getattr, 8746 .setattr = btrfs_setattr, 8747 .permission = btrfs_permission, 8748 .setxattr = btrfs_setxattr, 8749 .getxattr = btrfs_getxattr, 8750 .listxattr = btrfs_listxattr, 8751 .removexattr = btrfs_removexattr, 8752 .get_acl = btrfs_get_acl, 8753 .update_time = btrfs_update_time, 8754 }; 8755 static const struct inode_operations btrfs_symlink_inode_operations = { 8756 .readlink = generic_readlink, 8757 .follow_link = page_follow_link_light, 8758 .put_link = page_put_link, 8759 .getattr = btrfs_getattr, 8760 .setattr = btrfs_setattr, 8761 .permission = btrfs_permission, 8762 .setxattr = btrfs_setxattr, 8763 .getxattr = btrfs_getxattr, 8764 .listxattr = btrfs_listxattr, 8765 .removexattr = btrfs_removexattr, 8766 .get_acl = btrfs_get_acl, 8767 .update_time = btrfs_update_time, 8768 }; 8769 8770 const struct dentry_operations btrfs_dentry_operations = { 8771 .d_delete = btrfs_dentry_delete, 8772 .d_release = btrfs_dentry_release, 8773 }; 8774