xref: /openbmc/linux/fs/btrfs/inode.c (revision 80ecbd24)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "compat.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "ordered-data.h"
53 #include "xattr.h"
54 #include "tree-log.h"
55 #include "volumes.h"
56 #include "compression.h"
57 #include "locking.h"
58 #include "free-space-cache.h"
59 #include "inode-map.h"
60 #include "backref.h"
61 #include "hash.h"
62 
63 struct btrfs_iget_args {
64 	u64 ino;
65 	struct btrfs_root *root;
66 };
67 
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77 
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84 
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
88 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
89 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
90 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
91 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
92 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
93 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
94 };
95 
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100 				   struct page *locked_page,
101 				   u64 start, u64 end, int *page_started,
102 				   unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 					   u64 len, u64 orig_start,
105 					   u64 block_start, u64 block_len,
106 					   u64 orig_block_len, u64 ram_bytes,
107 					   int type);
108 
109 static int btrfs_dirty_inode(struct inode *inode);
110 
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112 				     struct inode *inode,  struct inode *dir,
113 				     const struct qstr *qstr)
114 {
115 	int err;
116 
117 	err = btrfs_init_acl(trans, inode, dir);
118 	if (!err)
119 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120 	return err;
121 }
122 
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
129 				struct btrfs_root *root, struct inode *inode,
130 				u64 start, size_t size, size_t compressed_size,
131 				int compress_type,
132 				struct page **compressed_pages)
133 {
134 	struct btrfs_key key;
135 	struct btrfs_path *path;
136 	struct extent_buffer *leaf;
137 	struct page *page = NULL;
138 	char *kaddr;
139 	unsigned long ptr;
140 	struct btrfs_file_extent_item *ei;
141 	int err = 0;
142 	int ret;
143 	size_t cur_size = size;
144 	size_t datasize;
145 	unsigned long offset;
146 
147 	if (compressed_size && compressed_pages)
148 		cur_size = compressed_size;
149 
150 	path = btrfs_alloc_path();
151 	if (!path)
152 		return -ENOMEM;
153 
154 	path->leave_spinning = 1;
155 
156 	key.objectid = btrfs_ino(inode);
157 	key.offset = start;
158 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
159 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
160 
161 	inode_add_bytes(inode, size);
162 	ret = btrfs_insert_empty_item(trans, root, path, &key,
163 				      datasize);
164 	if (ret) {
165 		err = ret;
166 		goto fail;
167 	}
168 	leaf = path->nodes[0];
169 	ei = btrfs_item_ptr(leaf, path->slots[0],
170 			    struct btrfs_file_extent_item);
171 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
172 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
173 	btrfs_set_file_extent_encryption(leaf, ei, 0);
174 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
175 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
176 	ptr = btrfs_file_extent_inline_start(ei);
177 
178 	if (compress_type != BTRFS_COMPRESS_NONE) {
179 		struct page *cpage;
180 		int i = 0;
181 		while (compressed_size > 0) {
182 			cpage = compressed_pages[i];
183 			cur_size = min_t(unsigned long, compressed_size,
184 				       PAGE_CACHE_SIZE);
185 
186 			kaddr = kmap_atomic(cpage);
187 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
188 			kunmap_atomic(kaddr);
189 
190 			i++;
191 			ptr += cur_size;
192 			compressed_size -= cur_size;
193 		}
194 		btrfs_set_file_extent_compression(leaf, ei,
195 						  compress_type);
196 	} else {
197 		page = find_get_page(inode->i_mapping,
198 				     start >> PAGE_CACHE_SHIFT);
199 		btrfs_set_file_extent_compression(leaf, ei, 0);
200 		kaddr = kmap_atomic(page);
201 		offset = start & (PAGE_CACHE_SIZE - 1);
202 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
203 		kunmap_atomic(kaddr);
204 		page_cache_release(page);
205 	}
206 	btrfs_mark_buffer_dirty(leaf);
207 	btrfs_free_path(path);
208 
209 	/*
210 	 * we're an inline extent, so nobody can
211 	 * extend the file past i_size without locking
212 	 * a page we already have locked.
213 	 *
214 	 * We must do any isize and inode updates
215 	 * before we unlock the pages.  Otherwise we
216 	 * could end up racing with unlink.
217 	 */
218 	BTRFS_I(inode)->disk_i_size = inode->i_size;
219 	ret = btrfs_update_inode(trans, root, inode);
220 
221 	return ret;
222 fail:
223 	btrfs_free_path(path);
224 	return err;
225 }
226 
227 
228 /*
229  * conditionally insert an inline extent into the file.  This
230  * does the checks required to make sure the data is small enough
231  * to fit as an inline extent.
232  */
233 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
234 				 struct btrfs_root *root,
235 				 struct inode *inode, u64 start, u64 end,
236 				 size_t compressed_size, int compress_type,
237 				 struct page **compressed_pages)
238 {
239 	u64 isize = i_size_read(inode);
240 	u64 actual_end = min(end + 1, isize);
241 	u64 inline_len = actual_end - start;
242 	u64 aligned_end = ALIGN(end, root->sectorsize);
243 	u64 data_len = inline_len;
244 	int ret;
245 
246 	if (compressed_size)
247 		data_len = compressed_size;
248 
249 	if (start > 0 ||
250 	    actual_end >= PAGE_CACHE_SIZE ||
251 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
252 	    (!compressed_size &&
253 	    (actual_end & (root->sectorsize - 1)) == 0) ||
254 	    end + 1 < isize ||
255 	    data_len > root->fs_info->max_inline) {
256 		return 1;
257 	}
258 
259 	ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
260 	if (ret)
261 		return ret;
262 
263 	if (isize > actual_end)
264 		inline_len = min_t(u64, isize, actual_end);
265 	ret = insert_inline_extent(trans, root, inode, start,
266 				   inline_len, compressed_size,
267 				   compress_type, compressed_pages);
268 	if (ret && ret != -ENOSPC) {
269 		btrfs_abort_transaction(trans, root, ret);
270 		return ret;
271 	} else if (ret == -ENOSPC) {
272 		return 1;
273 	}
274 
275 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
276 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
277 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
278 	return 0;
279 }
280 
281 struct async_extent {
282 	u64 start;
283 	u64 ram_size;
284 	u64 compressed_size;
285 	struct page **pages;
286 	unsigned long nr_pages;
287 	int compress_type;
288 	struct list_head list;
289 };
290 
291 struct async_cow {
292 	struct inode *inode;
293 	struct btrfs_root *root;
294 	struct page *locked_page;
295 	u64 start;
296 	u64 end;
297 	struct list_head extents;
298 	struct btrfs_work work;
299 };
300 
301 static noinline int add_async_extent(struct async_cow *cow,
302 				     u64 start, u64 ram_size,
303 				     u64 compressed_size,
304 				     struct page **pages,
305 				     unsigned long nr_pages,
306 				     int compress_type)
307 {
308 	struct async_extent *async_extent;
309 
310 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
311 	BUG_ON(!async_extent); /* -ENOMEM */
312 	async_extent->start = start;
313 	async_extent->ram_size = ram_size;
314 	async_extent->compressed_size = compressed_size;
315 	async_extent->pages = pages;
316 	async_extent->nr_pages = nr_pages;
317 	async_extent->compress_type = compress_type;
318 	list_add_tail(&async_extent->list, &cow->extents);
319 	return 0;
320 }
321 
322 /*
323  * we create compressed extents in two phases.  The first
324  * phase compresses a range of pages that have already been
325  * locked (both pages and state bits are locked).
326  *
327  * This is done inside an ordered work queue, and the compression
328  * is spread across many cpus.  The actual IO submission is step
329  * two, and the ordered work queue takes care of making sure that
330  * happens in the same order things were put onto the queue by
331  * writepages and friends.
332  *
333  * If this code finds it can't get good compression, it puts an
334  * entry onto the work queue to write the uncompressed bytes.  This
335  * makes sure that both compressed inodes and uncompressed inodes
336  * are written in the same order that the flusher thread sent them
337  * down.
338  */
339 static noinline int compress_file_range(struct inode *inode,
340 					struct page *locked_page,
341 					u64 start, u64 end,
342 					struct async_cow *async_cow,
343 					int *num_added)
344 {
345 	struct btrfs_root *root = BTRFS_I(inode)->root;
346 	struct btrfs_trans_handle *trans;
347 	u64 num_bytes;
348 	u64 blocksize = root->sectorsize;
349 	u64 actual_end;
350 	u64 isize = i_size_read(inode);
351 	int ret = 0;
352 	struct page **pages = NULL;
353 	unsigned long nr_pages;
354 	unsigned long nr_pages_ret = 0;
355 	unsigned long total_compressed = 0;
356 	unsigned long total_in = 0;
357 	unsigned long max_compressed = 128 * 1024;
358 	unsigned long max_uncompressed = 128 * 1024;
359 	int i;
360 	int will_compress;
361 	int compress_type = root->fs_info->compress_type;
362 	int redirty = 0;
363 
364 	/* if this is a small write inside eof, kick off a defrag */
365 	if ((end - start + 1) < 16 * 1024 &&
366 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
367 		btrfs_add_inode_defrag(NULL, inode);
368 
369 	actual_end = min_t(u64, isize, end + 1);
370 again:
371 	will_compress = 0;
372 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
373 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
374 
375 	/*
376 	 * we don't want to send crud past the end of i_size through
377 	 * compression, that's just a waste of CPU time.  So, if the
378 	 * end of the file is before the start of our current
379 	 * requested range of bytes, we bail out to the uncompressed
380 	 * cleanup code that can deal with all of this.
381 	 *
382 	 * It isn't really the fastest way to fix things, but this is a
383 	 * very uncommon corner.
384 	 */
385 	if (actual_end <= start)
386 		goto cleanup_and_bail_uncompressed;
387 
388 	total_compressed = actual_end - start;
389 
390 	/* we want to make sure that amount of ram required to uncompress
391 	 * an extent is reasonable, so we limit the total size in ram
392 	 * of a compressed extent to 128k.  This is a crucial number
393 	 * because it also controls how easily we can spread reads across
394 	 * cpus for decompression.
395 	 *
396 	 * We also want to make sure the amount of IO required to do
397 	 * a random read is reasonably small, so we limit the size of
398 	 * a compressed extent to 128k.
399 	 */
400 	total_compressed = min(total_compressed, max_uncompressed);
401 	num_bytes = ALIGN(end - start + 1, blocksize);
402 	num_bytes = max(blocksize,  num_bytes);
403 	total_in = 0;
404 	ret = 0;
405 
406 	/*
407 	 * we do compression for mount -o compress and when the
408 	 * inode has not been flagged as nocompress.  This flag can
409 	 * change at any time if we discover bad compression ratios.
410 	 */
411 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
412 	    (btrfs_test_opt(root, COMPRESS) ||
413 	     (BTRFS_I(inode)->force_compress) ||
414 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
415 		WARN_ON(pages);
416 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
417 		if (!pages) {
418 			/* just bail out to the uncompressed code */
419 			goto cont;
420 		}
421 
422 		if (BTRFS_I(inode)->force_compress)
423 			compress_type = BTRFS_I(inode)->force_compress;
424 
425 		/*
426 		 * we need to call clear_page_dirty_for_io on each
427 		 * page in the range.  Otherwise applications with the file
428 		 * mmap'd can wander in and change the page contents while
429 		 * we are compressing them.
430 		 *
431 		 * If the compression fails for any reason, we set the pages
432 		 * dirty again later on.
433 		 */
434 		extent_range_clear_dirty_for_io(inode, start, end);
435 		redirty = 1;
436 		ret = btrfs_compress_pages(compress_type,
437 					   inode->i_mapping, start,
438 					   total_compressed, pages,
439 					   nr_pages, &nr_pages_ret,
440 					   &total_in,
441 					   &total_compressed,
442 					   max_compressed);
443 
444 		if (!ret) {
445 			unsigned long offset = total_compressed &
446 				(PAGE_CACHE_SIZE - 1);
447 			struct page *page = pages[nr_pages_ret - 1];
448 			char *kaddr;
449 
450 			/* zero the tail end of the last page, we might be
451 			 * sending it down to disk
452 			 */
453 			if (offset) {
454 				kaddr = kmap_atomic(page);
455 				memset(kaddr + offset, 0,
456 				       PAGE_CACHE_SIZE - offset);
457 				kunmap_atomic(kaddr);
458 			}
459 			will_compress = 1;
460 		}
461 	}
462 cont:
463 	if (start == 0) {
464 		trans = btrfs_join_transaction(root);
465 		if (IS_ERR(trans)) {
466 			ret = PTR_ERR(trans);
467 			trans = NULL;
468 			goto cleanup_and_out;
469 		}
470 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
471 
472 		/* lets try to make an inline extent */
473 		if (ret || total_in < (actual_end - start)) {
474 			/* we didn't compress the entire range, try
475 			 * to make an uncompressed inline extent.
476 			 */
477 			ret = cow_file_range_inline(trans, root, inode,
478 						    start, end, 0, 0, NULL);
479 		} else {
480 			/* try making a compressed inline extent */
481 			ret = cow_file_range_inline(trans, root, inode,
482 						    start, end,
483 						    total_compressed,
484 						    compress_type, pages);
485 		}
486 		if (ret <= 0) {
487 			/*
488 			 * inline extent creation worked or returned error,
489 			 * we don't need to create any more async work items.
490 			 * Unlock and free up our temp pages.
491 			 */
492 			extent_clear_unlock_delalloc(inode,
493 			     &BTRFS_I(inode)->io_tree,
494 			     start, end, NULL,
495 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
496 			     EXTENT_CLEAR_DELALLOC |
497 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
498 
499 			btrfs_end_transaction(trans, root);
500 			goto free_pages_out;
501 		}
502 		btrfs_end_transaction(trans, root);
503 	}
504 
505 	if (will_compress) {
506 		/*
507 		 * we aren't doing an inline extent round the compressed size
508 		 * up to a block size boundary so the allocator does sane
509 		 * things
510 		 */
511 		total_compressed = ALIGN(total_compressed, blocksize);
512 
513 		/*
514 		 * one last check to make sure the compression is really a
515 		 * win, compare the page count read with the blocks on disk
516 		 */
517 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
518 		if (total_compressed >= total_in) {
519 			will_compress = 0;
520 		} else {
521 			num_bytes = total_in;
522 		}
523 	}
524 	if (!will_compress && pages) {
525 		/*
526 		 * the compression code ran but failed to make things smaller,
527 		 * free any pages it allocated and our page pointer array
528 		 */
529 		for (i = 0; i < nr_pages_ret; i++) {
530 			WARN_ON(pages[i]->mapping);
531 			page_cache_release(pages[i]);
532 		}
533 		kfree(pages);
534 		pages = NULL;
535 		total_compressed = 0;
536 		nr_pages_ret = 0;
537 
538 		/* flag the file so we don't compress in the future */
539 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
540 		    !(BTRFS_I(inode)->force_compress)) {
541 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
542 		}
543 	}
544 	if (will_compress) {
545 		*num_added += 1;
546 
547 		/* the async work queues will take care of doing actual
548 		 * allocation on disk for these compressed pages,
549 		 * and will submit them to the elevator.
550 		 */
551 		add_async_extent(async_cow, start, num_bytes,
552 				 total_compressed, pages, nr_pages_ret,
553 				 compress_type);
554 
555 		if (start + num_bytes < end) {
556 			start += num_bytes;
557 			pages = NULL;
558 			cond_resched();
559 			goto again;
560 		}
561 	} else {
562 cleanup_and_bail_uncompressed:
563 		/*
564 		 * No compression, but we still need to write the pages in
565 		 * the file we've been given so far.  redirty the locked
566 		 * page if it corresponds to our extent and set things up
567 		 * for the async work queue to run cow_file_range to do
568 		 * the normal delalloc dance
569 		 */
570 		if (page_offset(locked_page) >= start &&
571 		    page_offset(locked_page) <= end) {
572 			__set_page_dirty_nobuffers(locked_page);
573 			/* unlocked later on in the async handlers */
574 		}
575 		if (redirty)
576 			extent_range_redirty_for_io(inode, start, end);
577 		add_async_extent(async_cow, start, end - start + 1,
578 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
579 		*num_added += 1;
580 	}
581 
582 out:
583 	return ret;
584 
585 free_pages_out:
586 	for (i = 0; i < nr_pages_ret; i++) {
587 		WARN_ON(pages[i]->mapping);
588 		page_cache_release(pages[i]);
589 	}
590 	kfree(pages);
591 
592 	goto out;
593 
594 cleanup_and_out:
595 	extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
596 				     start, end, NULL,
597 				     EXTENT_CLEAR_UNLOCK_PAGE |
598 				     EXTENT_CLEAR_DIRTY |
599 				     EXTENT_CLEAR_DELALLOC |
600 				     EXTENT_SET_WRITEBACK |
601 				     EXTENT_END_WRITEBACK);
602 	if (!trans || IS_ERR(trans))
603 		btrfs_error(root->fs_info, ret, "Failed to join transaction");
604 	else
605 		btrfs_abort_transaction(trans, root, ret);
606 	goto free_pages_out;
607 }
608 
609 /*
610  * phase two of compressed writeback.  This is the ordered portion
611  * of the code, which only gets called in the order the work was
612  * queued.  We walk all the async extents created by compress_file_range
613  * and send them down to the disk.
614  */
615 static noinline int submit_compressed_extents(struct inode *inode,
616 					      struct async_cow *async_cow)
617 {
618 	struct async_extent *async_extent;
619 	u64 alloc_hint = 0;
620 	struct btrfs_trans_handle *trans;
621 	struct btrfs_key ins;
622 	struct extent_map *em;
623 	struct btrfs_root *root = BTRFS_I(inode)->root;
624 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
625 	struct extent_io_tree *io_tree;
626 	int ret = 0;
627 
628 	if (list_empty(&async_cow->extents))
629 		return 0;
630 
631 again:
632 	while (!list_empty(&async_cow->extents)) {
633 		async_extent = list_entry(async_cow->extents.next,
634 					  struct async_extent, list);
635 		list_del(&async_extent->list);
636 
637 		io_tree = &BTRFS_I(inode)->io_tree;
638 
639 retry:
640 		/* did the compression code fall back to uncompressed IO? */
641 		if (!async_extent->pages) {
642 			int page_started = 0;
643 			unsigned long nr_written = 0;
644 
645 			lock_extent(io_tree, async_extent->start,
646 					 async_extent->start +
647 					 async_extent->ram_size - 1);
648 
649 			/* allocate blocks */
650 			ret = cow_file_range(inode, async_cow->locked_page,
651 					     async_extent->start,
652 					     async_extent->start +
653 					     async_extent->ram_size - 1,
654 					     &page_started, &nr_written, 0);
655 
656 			/* JDM XXX */
657 
658 			/*
659 			 * if page_started, cow_file_range inserted an
660 			 * inline extent and took care of all the unlocking
661 			 * and IO for us.  Otherwise, we need to submit
662 			 * all those pages down to the drive.
663 			 */
664 			if (!page_started && !ret)
665 				extent_write_locked_range(io_tree,
666 						  inode, async_extent->start,
667 						  async_extent->start +
668 						  async_extent->ram_size - 1,
669 						  btrfs_get_extent,
670 						  WB_SYNC_ALL);
671 			else if (ret)
672 				unlock_page(async_cow->locked_page);
673 			kfree(async_extent);
674 			cond_resched();
675 			continue;
676 		}
677 
678 		lock_extent(io_tree, async_extent->start,
679 			    async_extent->start + async_extent->ram_size - 1);
680 
681 		trans = btrfs_join_transaction(root);
682 		if (IS_ERR(trans)) {
683 			ret = PTR_ERR(trans);
684 		} else {
685 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
686 			ret = btrfs_reserve_extent(trans, root,
687 					   async_extent->compressed_size,
688 					   async_extent->compressed_size,
689 					   0, alloc_hint, &ins, 1);
690 			if (ret && ret != -ENOSPC)
691 				btrfs_abort_transaction(trans, root, ret);
692 			btrfs_end_transaction(trans, root);
693 		}
694 
695 		if (ret) {
696 			int i;
697 
698 			for (i = 0; i < async_extent->nr_pages; i++) {
699 				WARN_ON(async_extent->pages[i]->mapping);
700 				page_cache_release(async_extent->pages[i]);
701 			}
702 			kfree(async_extent->pages);
703 			async_extent->nr_pages = 0;
704 			async_extent->pages = NULL;
705 
706 			if (ret == -ENOSPC) {
707 				unlock_extent(io_tree, async_extent->start,
708 					      async_extent->start +
709 					      async_extent->ram_size - 1);
710 				goto retry;
711 			}
712 			goto out_free;
713 		}
714 
715 		/*
716 		 * here we're doing allocation and writeback of the
717 		 * compressed pages
718 		 */
719 		btrfs_drop_extent_cache(inode, async_extent->start,
720 					async_extent->start +
721 					async_extent->ram_size - 1, 0);
722 
723 		em = alloc_extent_map();
724 		if (!em) {
725 			ret = -ENOMEM;
726 			goto out_free_reserve;
727 		}
728 		em->start = async_extent->start;
729 		em->len = async_extent->ram_size;
730 		em->orig_start = em->start;
731 		em->mod_start = em->start;
732 		em->mod_len = em->len;
733 
734 		em->block_start = ins.objectid;
735 		em->block_len = ins.offset;
736 		em->orig_block_len = ins.offset;
737 		em->ram_bytes = async_extent->ram_size;
738 		em->bdev = root->fs_info->fs_devices->latest_bdev;
739 		em->compress_type = async_extent->compress_type;
740 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
741 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
742 		em->generation = -1;
743 
744 		while (1) {
745 			write_lock(&em_tree->lock);
746 			ret = add_extent_mapping(em_tree, em, 1);
747 			write_unlock(&em_tree->lock);
748 			if (ret != -EEXIST) {
749 				free_extent_map(em);
750 				break;
751 			}
752 			btrfs_drop_extent_cache(inode, async_extent->start,
753 						async_extent->start +
754 						async_extent->ram_size - 1, 0);
755 		}
756 
757 		if (ret)
758 			goto out_free_reserve;
759 
760 		ret = btrfs_add_ordered_extent_compress(inode,
761 						async_extent->start,
762 						ins.objectid,
763 						async_extent->ram_size,
764 						ins.offset,
765 						BTRFS_ORDERED_COMPRESSED,
766 						async_extent->compress_type);
767 		if (ret)
768 			goto out_free_reserve;
769 
770 		/*
771 		 * clear dirty, set writeback and unlock the pages.
772 		 */
773 		extent_clear_unlock_delalloc(inode,
774 				&BTRFS_I(inode)->io_tree,
775 				async_extent->start,
776 				async_extent->start +
777 				async_extent->ram_size - 1,
778 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
779 				EXTENT_CLEAR_UNLOCK |
780 				EXTENT_CLEAR_DELALLOC |
781 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
782 
783 		ret = btrfs_submit_compressed_write(inode,
784 				    async_extent->start,
785 				    async_extent->ram_size,
786 				    ins.objectid,
787 				    ins.offset, async_extent->pages,
788 				    async_extent->nr_pages);
789 		alloc_hint = ins.objectid + ins.offset;
790 		kfree(async_extent);
791 		if (ret)
792 			goto out;
793 		cond_resched();
794 	}
795 	ret = 0;
796 out:
797 	return ret;
798 out_free_reserve:
799 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
800 out_free:
801 	extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
802 				     async_extent->start,
803 				     async_extent->start +
804 				     async_extent->ram_size - 1,
805 				     NULL, EXTENT_CLEAR_UNLOCK_PAGE |
806 				     EXTENT_CLEAR_UNLOCK |
807 				     EXTENT_CLEAR_DELALLOC |
808 				     EXTENT_CLEAR_DIRTY |
809 				     EXTENT_SET_WRITEBACK |
810 				     EXTENT_END_WRITEBACK);
811 	kfree(async_extent);
812 	goto again;
813 }
814 
815 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
816 				      u64 num_bytes)
817 {
818 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
819 	struct extent_map *em;
820 	u64 alloc_hint = 0;
821 
822 	read_lock(&em_tree->lock);
823 	em = search_extent_mapping(em_tree, start, num_bytes);
824 	if (em) {
825 		/*
826 		 * if block start isn't an actual block number then find the
827 		 * first block in this inode and use that as a hint.  If that
828 		 * block is also bogus then just don't worry about it.
829 		 */
830 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
831 			free_extent_map(em);
832 			em = search_extent_mapping(em_tree, 0, 0);
833 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
834 				alloc_hint = em->block_start;
835 			if (em)
836 				free_extent_map(em);
837 		} else {
838 			alloc_hint = em->block_start;
839 			free_extent_map(em);
840 		}
841 	}
842 	read_unlock(&em_tree->lock);
843 
844 	return alloc_hint;
845 }
846 
847 /*
848  * when extent_io.c finds a delayed allocation range in the file,
849  * the call backs end up in this code.  The basic idea is to
850  * allocate extents on disk for the range, and create ordered data structs
851  * in ram to track those extents.
852  *
853  * locked_page is the page that writepage had locked already.  We use
854  * it to make sure we don't do extra locks or unlocks.
855  *
856  * *page_started is set to one if we unlock locked_page and do everything
857  * required to start IO on it.  It may be clean and already done with
858  * IO when we return.
859  */
860 static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
861 				     struct inode *inode,
862 				     struct btrfs_root *root,
863 				     struct page *locked_page,
864 				     u64 start, u64 end, int *page_started,
865 				     unsigned long *nr_written,
866 				     int unlock)
867 {
868 	u64 alloc_hint = 0;
869 	u64 num_bytes;
870 	unsigned long ram_size;
871 	u64 disk_num_bytes;
872 	u64 cur_alloc_size;
873 	u64 blocksize = root->sectorsize;
874 	struct btrfs_key ins;
875 	struct extent_map *em;
876 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
877 	int ret = 0;
878 
879 	BUG_ON(btrfs_is_free_space_inode(inode));
880 
881 	num_bytes = ALIGN(end - start + 1, blocksize);
882 	num_bytes = max(blocksize,  num_bytes);
883 	disk_num_bytes = num_bytes;
884 
885 	/* if this is a small write inside eof, kick off defrag */
886 	if (num_bytes < 64 * 1024 &&
887 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
888 		btrfs_add_inode_defrag(trans, inode);
889 
890 	if (start == 0) {
891 		/* lets try to make an inline extent */
892 		ret = cow_file_range_inline(trans, root, inode,
893 					    start, end, 0, 0, NULL);
894 		if (ret == 0) {
895 			extent_clear_unlock_delalloc(inode,
896 				     &BTRFS_I(inode)->io_tree,
897 				     start, end, NULL,
898 				     EXTENT_CLEAR_UNLOCK_PAGE |
899 				     EXTENT_CLEAR_UNLOCK |
900 				     EXTENT_CLEAR_DELALLOC |
901 				     EXTENT_CLEAR_DIRTY |
902 				     EXTENT_SET_WRITEBACK |
903 				     EXTENT_END_WRITEBACK);
904 
905 			*nr_written = *nr_written +
906 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
907 			*page_started = 1;
908 			goto out;
909 		} else if (ret < 0) {
910 			btrfs_abort_transaction(trans, root, ret);
911 			goto out_unlock;
912 		}
913 	}
914 
915 	BUG_ON(disk_num_bytes >
916 	       btrfs_super_total_bytes(root->fs_info->super_copy));
917 
918 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
919 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
920 
921 	while (disk_num_bytes > 0) {
922 		unsigned long op;
923 
924 		cur_alloc_size = disk_num_bytes;
925 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
926 					   root->sectorsize, 0, alloc_hint,
927 					   &ins, 1);
928 		if (ret < 0) {
929 			btrfs_abort_transaction(trans, root, ret);
930 			goto out_unlock;
931 		}
932 
933 		em = alloc_extent_map();
934 		if (!em) {
935 			ret = -ENOMEM;
936 			goto out_reserve;
937 		}
938 		em->start = start;
939 		em->orig_start = em->start;
940 		ram_size = ins.offset;
941 		em->len = ins.offset;
942 		em->mod_start = em->start;
943 		em->mod_len = em->len;
944 
945 		em->block_start = ins.objectid;
946 		em->block_len = ins.offset;
947 		em->orig_block_len = ins.offset;
948 		em->ram_bytes = ram_size;
949 		em->bdev = root->fs_info->fs_devices->latest_bdev;
950 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
951 		em->generation = -1;
952 
953 		while (1) {
954 			write_lock(&em_tree->lock);
955 			ret = add_extent_mapping(em_tree, em, 1);
956 			write_unlock(&em_tree->lock);
957 			if (ret != -EEXIST) {
958 				free_extent_map(em);
959 				break;
960 			}
961 			btrfs_drop_extent_cache(inode, start,
962 						start + ram_size - 1, 0);
963 		}
964 		if (ret)
965 			goto out_reserve;
966 
967 		cur_alloc_size = ins.offset;
968 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
969 					       ram_size, cur_alloc_size, 0);
970 		if (ret)
971 			goto out_reserve;
972 
973 		if (root->root_key.objectid ==
974 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
975 			ret = btrfs_reloc_clone_csums(inode, start,
976 						      cur_alloc_size);
977 			if (ret) {
978 				btrfs_abort_transaction(trans, root, ret);
979 				goto out_reserve;
980 			}
981 		}
982 
983 		if (disk_num_bytes < cur_alloc_size)
984 			break;
985 
986 		/* we're not doing compressed IO, don't unlock the first
987 		 * page (which the caller expects to stay locked), don't
988 		 * clear any dirty bits and don't set any writeback bits
989 		 *
990 		 * Do set the Private2 bit so we know this page was properly
991 		 * setup for writepage
992 		 */
993 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
994 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
995 			EXTENT_SET_PRIVATE2;
996 
997 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
998 					     start, start + ram_size - 1,
999 					     locked_page, op);
1000 		disk_num_bytes -= cur_alloc_size;
1001 		num_bytes -= cur_alloc_size;
1002 		alloc_hint = ins.objectid + ins.offset;
1003 		start += cur_alloc_size;
1004 	}
1005 out:
1006 	return ret;
1007 
1008 out_reserve:
1009 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
1010 out_unlock:
1011 	extent_clear_unlock_delalloc(inode,
1012 		     &BTRFS_I(inode)->io_tree,
1013 		     start, end, locked_page,
1014 		     EXTENT_CLEAR_UNLOCK_PAGE |
1015 		     EXTENT_CLEAR_UNLOCK |
1016 		     EXTENT_CLEAR_DELALLOC |
1017 		     EXTENT_CLEAR_DIRTY |
1018 		     EXTENT_SET_WRITEBACK |
1019 		     EXTENT_END_WRITEBACK);
1020 
1021 	goto out;
1022 }
1023 
1024 static noinline int cow_file_range(struct inode *inode,
1025 				   struct page *locked_page,
1026 				   u64 start, u64 end, int *page_started,
1027 				   unsigned long *nr_written,
1028 				   int unlock)
1029 {
1030 	struct btrfs_trans_handle *trans;
1031 	struct btrfs_root *root = BTRFS_I(inode)->root;
1032 	int ret;
1033 
1034 	trans = btrfs_join_transaction(root);
1035 	if (IS_ERR(trans)) {
1036 		extent_clear_unlock_delalloc(inode,
1037 			     &BTRFS_I(inode)->io_tree,
1038 			     start, end, locked_page,
1039 			     EXTENT_CLEAR_UNLOCK_PAGE |
1040 			     EXTENT_CLEAR_UNLOCK |
1041 			     EXTENT_CLEAR_DELALLOC |
1042 			     EXTENT_CLEAR_DIRTY |
1043 			     EXTENT_SET_WRITEBACK |
1044 			     EXTENT_END_WRITEBACK);
1045 		return PTR_ERR(trans);
1046 	}
1047 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1048 
1049 	ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1050 			       page_started, nr_written, unlock);
1051 
1052 	btrfs_end_transaction(trans, root);
1053 
1054 	return ret;
1055 }
1056 
1057 /*
1058  * work queue call back to started compression on a file and pages
1059  */
1060 static noinline void async_cow_start(struct btrfs_work *work)
1061 {
1062 	struct async_cow *async_cow;
1063 	int num_added = 0;
1064 	async_cow = container_of(work, struct async_cow, work);
1065 
1066 	compress_file_range(async_cow->inode, async_cow->locked_page,
1067 			    async_cow->start, async_cow->end, async_cow,
1068 			    &num_added);
1069 	if (num_added == 0) {
1070 		btrfs_add_delayed_iput(async_cow->inode);
1071 		async_cow->inode = NULL;
1072 	}
1073 }
1074 
1075 /*
1076  * work queue call back to submit previously compressed pages
1077  */
1078 static noinline void async_cow_submit(struct btrfs_work *work)
1079 {
1080 	struct async_cow *async_cow;
1081 	struct btrfs_root *root;
1082 	unsigned long nr_pages;
1083 
1084 	async_cow = container_of(work, struct async_cow, work);
1085 
1086 	root = async_cow->root;
1087 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1088 		PAGE_CACHE_SHIFT;
1089 
1090 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1091 	    5 * 1024 * 1024 &&
1092 	    waitqueue_active(&root->fs_info->async_submit_wait))
1093 		wake_up(&root->fs_info->async_submit_wait);
1094 
1095 	if (async_cow->inode)
1096 		submit_compressed_extents(async_cow->inode, async_cow);
1097 }
1098 
1099 static noinline void async_cow_free(struct btrfs_work *work)
1100 {
1101 	struct async_cow *async_cow;
1102 	async_cow = container_of(work, struct async_cow, work);
1103 	if (async_cow->inode)
1104 		btrfs_add_delayed_iput(async_cow->inode);
1105 	kfree(async_cow);
1106 }
1107 
1108 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1109 				u64 start, u64 end, int *page_started,
1110 				unsigned long *nr_written)
1111 {
1112 	struct async_cow *async_cow;
1113 	struct btrfs_root *root = BTRFS_I(inode)->root;
1114 	unsigned long nr_pages;
1115 	u64 cur_end;
1116 	int limit = 10 * 1024 * 1024;
1117 
1118 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1119 			 1, 0, NULL, GFP_NOFS);
1120 	while (start < end) {
1121 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1122 		BUG_ON(!async_cow); /* -ENOMEM */
1123 		async_cow->inode = igrab(inode);
1124 		async_cow->root = root;
1125 		async_cow->locked_page = locked_page;
1126 		async_cow->start = start;
1127 
1128 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1129 			cur_end = end;
1130 		else
1131 			cur_end = min(end, start + 512 * 1024 - 1);
1132 
1133 		async_cow->end = cur_end;
1134 		INIT_LIST_HEAD(&async_cow->extents);
1135 
1136 		async_cow->work.func = async_cow_start;
1137 		async_cow->work.ordered_func = async_cow_submit;
1138 		async_cow->work.ordered_free = async_cow_free;
1139 		async_cow->work.flags = 0;
1140 
1141 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1142 			PAGE_CACHE_SHIFT;
1143 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1144 
1145 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
1146 				   &async_cow->work);
1147 
1148 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1149 			wait_event(root->fs_info->async_submit_wait,
1150 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1151 			    limit));
1152 		}
1153 
1154 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1155 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1156 			wait_event(root->fs_info->async_submit_wait,
1157 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1158 			   0));
1159 		}
1160 
1161 		*nr_written += nr_pages;
1162 		start = cur_end + 1;
1163 	}
1164 	*page_started = 1;
1165 	return 0;
1166 }
1167 
1168 static noinline int csum_exist_in_range(struct btrfs_root *root,
1169 					u64 bytenr, u64 num_bytes)
1170 {
1171 	int ret;
1172 	struct btrfs_ordered_sum *sums;
1173 	LIST_HEAD(list);
1174 
1175 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1176 				       bytenr + num_bytes - 1, &list, 0);
1177 	if (ret == 0 && list_empty(&list))
1178 		return 0;
1179 
1180 	while (!list_empty(&list)) {
1181 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1182 		list_del(&sums->list);
1183 		kfree(sums);
1184 	}
1185 	return 1;
1186 }
1187 
1188 /*
1189  * when nowcow writeback call back.  This checks for snapshots or COW copies
1190  * of the extents that exist in the file, and COWs the file as required.
1191  *
1192  * If no cow copies or snapshots exist, we write directly to the existing
1193  * blocks on disk
1194  */
1195 static noinline int run_delalloc_nocow(struct inode *inode,
1196 				       struct page *locked_page,
1197 			      u64 start, u64 end, int *page_started, int force,
1198 			      unsigned long *nr_written)
1199 {
1200 	struct btrfs_root *root = BTRFS_I(inode)->root;
1201 	struct btrfs_trans_handle *trans;
1202 	struct extent_buffer *leaf;
1203 	struct btrfs_path *path;
1204 	struct btrfs_file_extent_item *fi;
1205 	struct btrfs_key found_key;
1206 	u64 cow_start;
1207 	u64 cur_offset;
1208 	u64 extent_end;
1209 	u64 extent_offset;
1210 	u64 disk_bytenr;
1211 	u64 num_bytes;
1212 	u64 disk_num_bytes;
1213 	u64 ram_bytes;
1214 	int extent_type;
1215 	int ret, err;
1216 	int type;
1217 	int nocow;
1218 	int check_prev = 1;
1219 	bool nolock;
1220 	u64 ino = btrfs_ino(inode);
1221 
1222 	path = btrfs_alloc_path();
1223 	if (!path) {
1224 		extent_clear_unlock_delalloc(inode,
1225 			     &BTRFS_I(inode)->io_tree,
1226 			     start, end, locked_page,
1227 			     EXTENT_CLEAR_UNLOCK_PAGE |
1228 			     EXTENT_CLEAR_UNLOCK |
1229 			     EXTENT_CLEAR_DELALLOC |
1230 			     EXTENT_CLEAR_DIRTY |
1231 			     EXTENT_SET_WRITEBACK |
1232 			     EXTENT_END_WRITEBACK);
1233 		return -ENOMEM;
1234 	}
1235 
1236 	nolock = btrfs_is_free_space_inode(inode);
1237 
1238 	if (nolock)
1239 		trans = btrfs_join_transaction_nolock(root);
1240 	else
1241 		trans = btrfs_join_transaction(root);
1242 
1243 	if (IS_ERR(trans)) {
1244 		extent_clear_unlock_delalloc(inode,
1245 			     &BTRFS_I(inode)->io_tree,
1246 			     start, end, locked_page,
1247 			     EXTENT_CLEAR_UNLOCK_PAGE |
1248 			     EXTENT_CLEAR_UNLOCK |
1249 			     EXTENT_CLEAR_DELALLOC |
1250 			     EXTENT_CLEAR_DIRTY |
1251 			     EXTENT_SET_WRITEBACK |
1252 			     EXTENT_END_WRITEBACK);
1253 		btrfs_free_path(path);
1254 		return PTR_ERR(trans);
1255 	}
1256 
1257 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1258 
1259 	cow_start = (u64)-1;
1260 	cur_offset = start;
1261 	while (1) {
1262 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1263 					       cur_offset, 0);
1264 		if (ret < 0) {
1265 			btrfs_abort_transaction(trans, root, ret);
1266 			goto error;
1267 		}
1268 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1269 			leaf = path->nodes[0];
1270 			btrfs_item_key_to_cpu(leaf, &found_key,
1271 					      path->slots[0] - 1);
1272 			if (found_key.objectid == ino &&
1273 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1274 				path->slots[0]--;
1275 		}
1276 		check_prev = 0;
1277 next_slot:
1278 		leaf = path->nodes[0];
1279 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1280 			ret = btrfs_next_leaf(root, path);
1281 			if (ret < 0) {
1282 				btrfs_abort_transaction(trans, root, ret);
1283 				goto error;
1284 			}
1285 			if (ret > 0)
1286 				break;
1287 			leaf = path->nodes[0];
1288 		}
1289 
1290 		nocow = 0;
1291 		disk_bytenr = 0;
1292 		num_bytes = 0;
1293 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1294 
1295 		if (found_key.objectid > ino ||
1296 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1297 		    found_key.offset > end)
1298 			break;
1299 
1300 		if (found_key.offset > cur_offset) {
1301 			extent_end = found_key.offset;
1302 			extent_type = 0;
1303 			goto out_check;
1304 		}
1305 
1306 		fi = btrfs_item_ptr(leaf, path->slots[0],
1307 				    struct btrfs_file_extent_item);
1308 		extent_type = btrfs_file_extent_type(leaf, fi);
1309 
1310 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1311 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1312 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1313 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1314 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1315 			extent_end = found_key.offset +
1316 				btrfs_file_extent_num_bytes(leaf, fi);
1317 			disk_num_bytes =
1318 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1319 			if (extent_end <= start) {
1320 				path->slots[0]++;
1321 				goto next_slot;
1322 			}
1323 			if (disk_bytenr == 0)
1324 				goto out_check;
1325 			if (btrfs_file_extent_compression(leaf, fi) ||
1326 			    btrfs_file_extent_encryption(leaf, fi) ||
1327 			    btrfs_file_extent_other_encoding(leaf, fi))
1328 				goto out_check;
1329 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1330 				goto out_check;
1331 			if (btrfs_extent_readonly(root, disk_bytenr))
1332 				goto out_check;
1333 			if (btrfs_cross_ref_exist(trans, root, ino,
1334 						  found_key.offset -
1335 						  extent_offset, disk_bytenr))
1336 				goto out_check;
1337 			disk_bytenr += extent_offset;
1338 			disk_bytenr += cur_offset - found_key.offset;
1339 			num_bytes = min(end + 1, extent_end) - cur_offset;
1340 			/*
1341 			 * force cow if csum exists in the range.
1342 			 * this ensure that csum for a given extent are
1343 			 * either valid or do not exist.
1344 			 */
1345 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1346 				goto out_check;
1347 			nocow = 1;
1348 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1349 			extent_end = found_key.offset +
1350 				btrfs_file_extent_inline_len(leaf, fi);
1351 			extent_end = ALIGN(extent_end, root->sectorsize);
1352 		} else {
1353 			BUG_ON(1);
1354 		}
1355 out_check:
1356 		if (extent_end <= start) {
1357 			path->slots[0]++;
1358 			goto next_slot;
1359 		}
1360 		if (!nocow) {
1361 			if (cow_start == (u64)-1)
1362 				cow_start = cur_offset;
1363 			cur_offset = extent_end;
1364 			if (cur_offset > end)
1365 				break;
1366 			path->slots[0]++;
1367 			goto next_slot;
1368 		}
1369 
1370 		btrfs_release_path(path);
1371 		if (cow_start != (u64)-1) {
1372 			ret = __cow_file_range(trans, inode, root, locked_page,
1373 					       cow_start, found_key.offset - 1,
1374 					       page_started, nr_written, 1);
1375 			if (ret) {
1376 				btrfs_abort_transaction(trans, root, ret);
1377 				goto error;
1378 			}
1379 			cow_start = (u64)-1;
1380 		}
1381 
1382 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1383 			struct extent_map *em;
1384 			struct extent_map_tree *em_tree;
1385 			em_tree = &BTRFS_I(inode)->extent_tree;
1386 			em = alloc_extent_map();
1387 			BUG_ON(!em); /* -ENOMEM */
1388 			em->start = cur_offset;
1389 			em->orig_start = found_key.offset - extent_offset;
1390 			em->len = num_bytes;
1391 			em->block_len = num_bytes;
1392 			em->block_start = disk_bytenr;
1393 			em->orig_block_len = disk_num_bytes;
1394 			em->ram_bytes = ram_bytes;
1395 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1396 			em->mod_start = em->start;
1397 			em->mod_len = em->len;
1398 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1399 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1400 			em->generation = -1;
1401 			while (1) {
1402 				write_lock(&em_tree->lock);
1403 				ret = add_extent_mapping(em_tree, em, 1);
1404 				write_unlock(&em_tree->lock);
1405 				if (ret != -EEXIST) {
1406 					free_extent_map(em);
1407 					break;
1408 				}
1409 				btrfs_drop_extent_cache(inode, em->start,
1410 						em->start + em->len - 1, 0);
1411 			}
1412 			type = BTRFS_ORDERED_PREALLOC;
1413 		} else {
1414 			type = BTRFS_ORDERED_NOCOW;
1415 		}
1416 
1417 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1418 					       num_bytes, num_bytes, type);
1419 		BUG_ON(ret); /* -ENOMEM */
1420 
1421 		if (root->root_key.objectid ==
1422 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1423 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1424 						      num_bytes);
1425 			if (ret) {
1426 				btrfs_abort_transaction(trans, root, ret);
1427 				goto error;
1428 			}
1429 		}
1430 
1431 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1432 				cur_offset, cur_offset + num_bytes - 1,
1433 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1434 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1435 				EXTENT_SET_PRIVATE2);
1436 		cur_offset = extent_end;
1437 		if (cur_offset > end)
1438 			break;
1439 	}
1440 	btrfs_release_path(path);
1441 
1442 	if (cur_offset <= end && cow_start == (u64)-1) {
1443 		cow_start = cur_offset;
1444 		cur_offset = end;
1445 	}
1446 
1447 	if (cow_start != (u64)-1) {
1448 		ret = __cow_file_range(trans, inode, root, locked_page,
1449 				       cow_start, end,
1450 				       page_started, nr_written, 1);
1451 		if (ret) {
1452 			btrfs_abort_transaction(trans, root, ret);
1453 			goto error;
1454 		}
1455 	}
1456 
1457 error:
1458 	err = btrfs_end_transaction(trans, root);
1459 	if (!ret)
1460 		ret = err;
1461 
1462 	if (ret && cur_offset < end)
1463 		extent_clear_unlock_delalloc(inode,
1464 			     &BTRFS_I(inode)->io_tree,
1465 			     cur_offset, end, locked_page,
1466 			     EXTENT_CLEAR_UNLOCK_PAGE |
1467 			     EXTENT_CLEAR_UNLOCK |
1468 			     EXTENT_CLEAR_DELALLOC |
1469 			     EXTENT_CLEAR_DIRTY |
1470 			     EXTENT_SET_WRITEBACK |
1471 			     EXTENT_END_WRITEBACK);
1472 
1473 	btrfs_free_path(path);
1474 	return ret;
1475 }
1476 
1477 /*
1478  * extent_io.c call back to do delayed allocation processing
1479  */
1480 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1481 			      u64 start, u64 end, int *page_started,
1482 			      unsigned long *nr_written)
1483 {
1484 	int ret;
1485 	struct btrfs_root *root = BTRFS_I(inode)->root;
1486 
1487 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1488 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1489 					 page_started, 1, nr_written);
1490 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1491 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1492 					 page_started, 0, nr_written);
1493 	} else if (!btrfs_test_opt(root, COMPRESS) &&
1494 		   !(BTRFS_I(inode)->force_compress) &&
1495 		   !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1496 		ret = cow_file_range(inode, locked_page, start, end,
1497 				      page_started, nr_written, 1);
1498 	} else {
1499 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1500 			&BTRFS_I(inode)->runtime_flags);
1501 		ret = cow_file_range_async(inode, locked_page, start, end,
1502 					   page_started, nr_written);
1503 	}
1504 	return ret;
1505 }
1506 
1507 static void btrfs_split_extent_hook(struct inode *inode,
1508 				    struct extent_state *orig, u64 split)
1509 {
1510 	/* not delalloc, ignore it */
1511 	if (!(orig->state & EXTENT_DELALLOC))
1512 		return;
1513 
1514 	spin_lock(&BTRFS_I(inode)->lock);
1515 	BTRFS_I(inode)->outstanding_extents++;
1516 	spin_unlock(&BTRFS_I(inode)->lock);
1517 }
1518 
1519 /*
1520  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1521  * extents so we can keep track of new extents that are just merged onto old
1522  * extents, such as when we are doing sequential writes, so we can properly
1523  * account for the metadata space we'll need.
1524  */
1525 static void btrfs_merge_extent_hook(struct inode *inode,
1526 				    struct extent_state *new,
1527 				    struct extent_state *other)
1528 {
1529 	/* not delalloc, ignore it */
1530 	if (!(other->state & EXTENT_DELALLOC))
1531 		return;
1532 
1533 	spin_lock(&BTRFS_I(inode)->lock);
1534 	BTRFS_I(inode)->outstanding_extents--;
1535 	spin_unlock(&BTRFS_I(inode)->lock);
1536 }
1537 
1538 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1539 				      struct inode *inode)
1540 {
1541 	spin_lock(&root->delalloc_lock);
1542 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1543 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1544 			      &root->delalloc_inodes);
1545 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1546 			&BTRFS_I(inode)->runtime_flags);
1547 		root->nr_delalloc_inodes++;
1548 		if (root->nr_delalloc_inodes == 1) {
1549 			spin_lock(&root->fs_info->delalloc_root_lock);
1550 			BUG_ON(!list_empty(&root->delalloc_root));
1551 			list_add_tail(&root->delalloc_root,
1552 				      &root->fs_info->delalloc_roots);
1553 			spin_unlock(&root->fs_info->delalloc_root_lock);
1554 		}
1555 	}
1556 	spin_unlock(&root->delalloc_lock);
1557 }
1558 
1559 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1560 				     struct inode *inode)
1561 {
1562 	spin_lock(&root->delalloc_lock);
1563 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1564 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1565 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1566 			  &BTRFS_I(inode)->runtime_flags);
1567 		root->nr_delalloc_inodes--;
1568 		if (!root->nr_delalloc_inodes) {
1569 			spin_lock(&root->fs_info->delalloc_root_lock);
1570 			BUG_ON(list_empty(&root->delalloc_root));
1571 			list_del_init(&root->delalloc_root);
1572 			spin_unlock(&root->fs_info->delalloc_root_lock);
1573 		}
1574 	}
1575 	spin_unlock(&root->delalloc_lock);
1576 }
1577 
1578 /*
1579  * extent_io.c set_bit_hook, used to track delayed allocation
1580  * bytes in this file, and to maintain the list of inodes that
1581  * have pending delalloc work to be done.
1582  */
1583 static void btrfs_set_bit_hook(struct inode *inode,
1584 			       struct extent_state *state, unsigned long *bits)
1585 {
1586 
1587 	/*
1588 	 * set_bit and clear bit hooks normally require _irqsave/restore
1589 	 * but in this case, we are only testing for the DELALLOC
1590 	 * bit, which is only set or cleared with irqs on
1591 	 */
1592 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1593 		struct btrfs_root *root = BTRFS_I(inode)->root;
1594 		u64 len = state->end + 1 - state->start;
1595 		bool do_list = !btrfs_is_free_space_inode(inode);
1596 
1597 		if (*bits & EXTENT_FIRST_DELALLOC) {
1598 			*bits &= ~EXTENT_FIRST_DELALLOC;
1599 		} else {
1600 			spin_lock(&BTRFS_I(inode)->lock);
1601 			BTRFS_I(inode)->outstanding_extents++;
1602 			spin_unlock(&BTRFS_I(inode)->lock);
1603 		}
1604 
1605 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1606 				     root->fs_info->delalloc_batch);
1607 		spin_lock(&BTRFS_I(inode)->lock);
1608 		BTRFS_I(inode)->delalloc_bytes += len;
1609 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1610 					 &BTRFS_I(inode)->runtime_flags))
1611 			btrfs_add_delalloc_inodes(root, inode);
1612 		spin_unlock(&BTRFS_I(inode)->lock);
1613 	}
1614 }
1615 
1616 /*
1617  * extent_io.c clear_bit_hook, see set_bit_hook for why
1618  */
1619 static void btrfs_clear_bit_hook(struct inode *inode,
1620 				 struct extent_state *state,
1621 				 unsigned long *bits)
1622 {
1623 	/*
1624 	 * set_bit and clear bit hooks normally require _irqsave/restore
1625 	 * but in this case, we are only testing for the DELALLOC
1626 	 * bit, which is only set or cleared with irqs on
1627 	 */
1628 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1629 		struct btrfs_root *root = BTRFS_I(inode)->root;
1630 		u64 len = state->end + 1 - state->start;
1631 		bool do_list = !btrfs_is_free_space_inode(inode);
1632 
1633 		if (*bits & EXTENT_FIRST_DELALLOC) {
1634 			*bits &= ~EXTENT_FIRST_DELALLOC;
1635 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1636 			spin_lock(&BTRFS_I(inode)->lock);
1637 			BTRFS_I(inode)->outstanding_extents--;
1638 			spin_unlock(&BTRFS_I(inode)->lock);
1639 		}
1640 
1641 		if (*bits & EXTENT_DO_ACCOUNTING)
1642 			btrfs_delalloc_release_metadata(inode, len);
1643 
1644 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1645 		    && do_list && !(state->state & EXTENT_NORESERVE))
1646 			btrfs_free_reserved_data_space(inode, len);
1647 
1648 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1649 				     root->fs_info->delalloc_batch);
1650 		spin_lock(&BTRFS_I(inode)->lock);
1651 		BTRFS_I(inode)->delalloc_bytes -= len;
1652 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1653 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1654 			     &BTRFS_I(inode)->runtime_flags))
1655 			btrfs_del_delalloc_inode(root, inode);
1656 		spin_unlock(&BTRFS_I(inode)->lock);
1657 	}
1658 }
1659 
1660 /*
1661  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1662  * we don't create bios that span stripes or chunks
1663  */
1664 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1665 			 size_t size, struct bio *bio,
1666 			 unsigned long bio_flags)
1667 {
1668 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1669 	u64 logical = (u64)bio->bi_sector << 9;
1670 	u64 length = 0;
1671 	u64 map_length;
1672 	int ret;
1673 
1674 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1675 		return 0;
1676 
1677 	length = bio->bi_size;
1678 	map_length = length;
1679 	ret = btrfs_map_block(root->fs_info, rw, logical,
1680 			      &map_length, NULL, 0);
1681 	/* Will always return 0 with map_multi == NULL */
1682 	BUG_ON(ret < 0);
1683 	if (map_length < length + size)
1684 		return 1;
1685 	return 0;
1686 }
1687 
1688 /*
1689  * in order to insert checksums into the metadata in large chunks,
1690  * we wait until bio submission time.   All the pages in the bio are
1691  * checksummed and sums are attached onto the ordered extent record.
1692  *
1693  * At IO completion time the cums attached on the ordered extent record
1694  * are inserted into the btree
1695  */
1696 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1697 				    struct bio *bio, int mirror_num,
1698 				    unsigned long bio_flags,
1699 				    u64 bio_offset)
1700 {
1701 	struct btrfs_root *root = BTRFS_I(inode)->root;
1702 	int ret = 0;
1703 
1704 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1705 	BUG_ON(ret); /* -ENOMEM */
1706 	return 0;
1707 }
1708 
1709 /*
1710  * in order to insert checksums into the metadata in large chunks,
1711  * we wait until bio submission time.   All the pages in the bio are
1712  * checksummed and sums are attached onto the ordered extent record.
1713  *
1714  * At IO completion time the cums attached on the ordered extent record
1715  * are inserted into the btree
1716  */
1717 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1718 			  int mirror_num, unsigned long bio_flags,
1719 			  u64 bio_offset)
1720 {
1721 	struct btrfs_root *root = BTRFS_I(inode)->root;
1722 	int ret;
1723 
1724 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1725 	if (ret)
1726 		bio_endio(bio, ret);
1727 	return ret;
1728 }
1729 
1730 /*
1731  * extent_io.c submission hook. This does the right thing for csum calculation
1732  * on write, or reading the csums from the tree before a read
1733  */
1734 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1735 			  int mirror_num, unsigned long bio_flags,
1736 			  u64 bio_offset)
1737 {
1738 	struct btrfs_root *root = BTRFS_I(inode)->root;
1739 	int ret = 0;
1740 	int skip_sum;
1741 	int metadata = 0;
1742 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1743 
1744 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1745 
1746 	if (btrfs_is_free_space_inode(inode))
1747 		metadata = 2;
1748 
1749 	if (!(rw & REQ_WRITE)) {
1750 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1751 		if (ret)
1752 			goto out;
1753 
1754 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1755 			ret = btrfs_submit_compressed_read(inode, bio,
1756 							   mirror_num,
1757 							   bio_flags);
1758 			goto out;
1759 		} else if (!skip_sum) {
1760 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1761 			if (ret)
1762 				goto out;
1763 		}
1764 		goto mapit;
1765 	} else if (async && !skip_sum) {
1766 		/* csum items have already been cloned */
1767 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1768 			goto mapit;
1769 		/* we're doing a write, do the async checksumming */
1770 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1771 				   inode, rw, bio, mirror_num,
1772 				   bio_flags, bio_offset,
1773 				   __btrfs_submit_bio_start,
1774 				   __btrfs_submit_bio_done);
1775 		goto out;
1776 	} else if (!skip_sum) {
1777 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1778 		if (ret)
1779 			goto out;
1780 	}
1781 
1782 mapit:
1783 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1784 
1785 out:
1786 	if (ret < 0)
1787 		bio_endio(bio, ret);
1788 	return ret;
1789 }
1790 
1791 /*
1792  * given a list of ordered sums record them in the inode.  This happens
1793  * at IO completion time based on sums calculated at bio submission time.
1794  */
1795 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1796 			     struct inode *inode, u64 file_offset,
1797 			     struct list_head *list)
1798 {
1799 	struct btrfs_ordered_sum *sum;
1800 
1801 	list_for_each_entry(sum, list, list) {
1802 		trans->adding_csums = 1;
1803 		btrfs_csum_file_blocks(trans,
1804 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1805 		trans->adding_csums = 0;
1806 	}
1807 	return 0;
1808 }
1809 
1810 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1811 			      struct extent_state **cached_state)
1812 {
1813 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1814 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1815 				   cached_state, GFP_NOFS);
1816 }
1817 
1818 /* see btrfs_writepage_start_hook for details on why this is required */
1819 struct btrfs_writepage_fixup {
1820 	struct page *page;
1821 	struct btrfs_work work;
1822 };
1823 
1824 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1825 {
1826 	struct btrfs_writepage_fixup *fixup;
1827 	struct btrfs_ordered_extent *ordered;
1828 	struct extent_state *cached_state = NULL;
1829 	struct page *page;
1830 	struct inode *inode;
1831 	u64 page_start;
1832 	u64 page_end;
1833 	int ret;
1834 
1835 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1836 	page = fixup->page;
1837 again:
1838 	lock_page(page);
1839 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1840 		ClearPageChecked(page);
1841 		goto out_page;
1842 	}
1843 
1844 	inode = page->mapping->host;
1845 	page_start = page_offset(page);
1846 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1847 
1848 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1849 			 &cached_state);
1850 
1851 	/* already ordered? We're done */
1852 	if (PagePrivate2(page))
1853 		goto out;
1854 
1855 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1856 	if (ordered) {
1857 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1858 				     page_end, &cached_state, GFP_NOFS);
1859 		unlock_page(page);
1860 		btrfs_start_ordered_extent(inode, ordered, 1);
1861 		btrfs_put_ordered_extent(ordered);
1862 		goto again;
1863 	}
1864 
1865 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1866 	if (ret) {
1867 		mapping_set_error(page->mapping, ret);
1868 		end_extent_writepage(page, ret, page_start, page_end);
1869 		ClearPageChecked(page);
1870 		goto out;
1871 	 }
1872 
1873 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1874 	ClearPageChecked(page);
1875 	set_page_dirty(page);
1876 out:
1877 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1878 			     &cached_state, GFP_NOFS);
1879 out_page:
1880 	unlock_page(page);
1881 	page_cache_release(page);
1882 	kfree(fixup);
1883 }
1884 
1885 /*
1886  * There are a few paths in the higher layers of the kernel that directly
1887  * set the page dirty bit without asking the filesystem if it is a
1888  * good idea.  This causes problems because we want to make sure COW
1889  * properly happens and the data=ordered rules are followed.
1890  *
1891  * In our case any range that doesn't have the ORDERED bit set
1892  * hasn't been properly setup for IO.  We kick off an async process
1893  * to fix it up.  The async helper will wait for ordered extents, set
1894  * the delalloc bit and make it safe to write the page.
1895  */
1896 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1897 {
1898 	struct inode *inode = page->mapping->host;
1899 	struct btrfs_writepage_fixup *fixup;
1900 	struct btrfs_root *root = BTRFS_I(inode)->root;
1901 
1902 	/* this page is properly in the ordered list */
1903 	if (TestClearPagePrivate2(page))
1904 		return 0;
1905 
1906 	if (PageChecked(page))
1907 		return -EAGAIN;
1908 
1909 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1910 	if (!fixup)
1911 		return -EAGAIN;
1912 
1913 	SetPageChecked(page);
1914 	page_cache_get(page);
1915 	fixup->work.func = btrfs_writepage_fixup_worker;
1916 	fixup->page = page;
1917 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1918 	return -EBUSY;
1919 }
1920 
1921 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1922 				       struct inode *inode, u64 file_pos,
1923 				       u64 disk_bytenr, u64 disk_num_bytes,
1924 				       u64 num_bytes, u64 ram_bytes,
1925 				       u8 compression, u8 encryption,
1926 				       u16 other_encoding, int extent_type)
1927 {
1928 	struct btrfs_root *root = BTRFS_I(inode)->root;
1929 	struct btrfs_file_extent_item *fi;
1930 	struct btrfs_path *path;
1931 	struct extent_buffer *leaf;
1932 	struct btrfs_key ins;
1933 	int ret;
1934 
1935 	path = btrfs_alloc_path();
1936 	if (!path)
1937 		return -ENOMEM;
1938 
1939 	path->leave_spinning = 1;
1940 
1941 	/*
1942 	 * we may be replacing one extent in the tree with another.
1943 	 * The new extent is pinned in the extent map, and we don't want
1944 	 * to drop it from the cache until it is completely in the btree.
1945 	 *
1946 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1947 	 * the caller is expected to unpin it and allow it to be merged
1948 	 * with the others.
1949 	 */
1950 	ret = btrfs_drop_extents(trans, root, inode, file_pos,
1951 				 file_pos + num_bytes, 0);
1952 	if (ret)
1953 		goto out;
1954 
1955 	ins.objectid = btrfs_ino(inode);
1956 	ins.offset = file_pos;
1957 	ins.type = BTRFS_EXTENT_DATA_KEY;
1958 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1959 	if (ret)
1960 		goto out;
1961 	leaf = path->nodes[0];
1962 	fi = btrfs_item_ptr(leaf, path->slots[0],
1963 			    struct btrfs_file_extent_item);
1964 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1965 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1966 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1967 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1968 	btrfs_set_file_extent_offset(leaf, fi, 0);
1969 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1970 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1971 	btrfs_set_file_extent_compression(leaf, fi, compression);
1972 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1973 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1974 
1975 	btrfs_mark_buffer_dirty(leaf);
1976 	btrfs_release_path(path);
1977 
1978 	inode_add_bytes(inode, num_bytes);
1979 
1980 	ins.objectid = disk_bytenr;
1981 	ins.offset = disk_num_bytes;
1982 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1983 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1984 					root->root_key.objectid,
1985 					btrfs_ino(inode), file_pos, &ins);
1986 out:
1987 	btrfs_free_path(path);
1988 
1989 	return ret;
1990 }
1991 
1992 /* snapshot-aware defrag */
1993 struct sa_defrag_extent_backref {
1994 	struct rb_node node;
1995 	struct old_sa_defrag_extent *old;
1996 	u64 root_id;
1997 	u64 inum;
1998 	u64 file_pos;
1999 	u64 extent_offset;
2000 	u64 num_bytes;
2001 	u64 generation;
2002 };
2003 
2004 struct old_sa_defrag_extent {
2005 	struct list_head list;
2006 	struct new_sa_defrag_extent *new;
2007 
2008 	u64 extent_offset;
2009 	u64 bytenr;
2010 	u64 offset;
2011 	u64 len;
2012 	int count;
2013 };
2014 
2015 struct new_sa_defrag_extent {
2016 	struct rb_root root;
2017 	struct list_head head;
2018 	struct btrfs_path *path;
2019 	struct inode *inode;
2020 	u64 file_pos;
2021 	u64 len;
2022 	u64 bytenr;
2023 	u64 disk_len;
2024 	u8 compress_type;
2025 };
2026 
2027 static int backref_comp(struct sa_defrag_extent_backref *b1,
2028 			struct sa_defrag_extent_backref *b2)
2029 {
2030 	if (b1->root_id < b2->root_id)
2031 		return -1;
2032 	else if (b1->root_id > b2->root_id)
2033 		return 1;
2034 
2035 	if (b1->inum < b2->inum)
2036 		return -1;
2037 	else if (b1->inum > b2->inum)
2038 		return 1;
2039 
2040 	if (b1->file_pos < b2->file_pos)
2041 		return -1;
2042 	else if (b1->file_pos > b2->file_pos)
2043 		return 1;
2044 
2045 	/*
2046 	 * [------------------------------] ===> (a range of space)
2047 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2048 	 * |<---------------------------->| ===> (fs/file tree B)
2049 	 *
2050 	 * A range of space can refer to two file extents in one tree while
2051 	 * refer to only one file extent in another tree.
2052 	 *
2053 	 * So we may process a disk offset more than one time(two extents in A)
2054 	 * and locate at the same extent(one extent in B), then insert two same
2055 	 * backrefs(both refer to the extent in B).
2056 	 */
2057 	return 0;
2058 }
2059 
2060 static void backref_insert(struct rb_root *root,
2061 			   struct sa_defrag_extent_backref *backref)
2062 {
2063 	struct rb_node **p = &root->rb_node;
2064 	struct rb_node *parent = NULL;
2065 	struct sa_defrag_extent_backref *entry;
2066 	int ret;
2067 
2068 	while (*p) {
2069 		parent = *p;
2070 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2071 
2072 		ret = backref_comp(backref, entry);
2073 		if (ret < 0)
2074 			p = &(*p)->rb_left;
2075 		else
2076 			p = &(*p)->rb_right;
2077 	}
2078 
2079 	rb_link_node(&backref->node, parent, p);
2080 	rb_insert_color(&backref->node, root);
2081 }
2082 
2083 /*
2084  * Note the backref might has changed, and in this case we just return 0.
2085  */
2086 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2087 				       void *ctx)
2088 {
2089 	struct btrfs_file_extent_item *extent;
2090 	struct btrfs_fs_info *fs_info;
2091 	struct old_sa_defrag_extent *old = ctx;
2092 	struct new_sa_defrag_extent *new = old->new;
2093 	struct btrfs_path *path = new->path;
2094 	struct btrfs_key key;
2095 	struct btrfs_root *root;
2096 	struct sa_defrag_extent_backref *backref;
2097 	struct extent_buffer *leaf;
2098 	struct inode *inode = new->inode;
2099 	int slot;
2100 	int ret;
2101 	u64 extent_offset;
2102 	u64 num_bytes;
2103 
2104 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2105 	    inum == btrfs_ino(inode))
2106 		return 0;
2107 
2108 	key.objectid = root_id;
2109 	key.type = BTRFS_ROOT_ITEM_KEY;
2110 	key.offset = (u64)-1;
2111 
2112 	fs_info = BTRFS_I(inode)->root->fs_info;
2113 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2114 	if (IS_ERR(root)) {
2115 		if (PTR_ERR(root) == -ENOENT)
2116 			return 0;
2117 		WARN_ON(1);
2118 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2119 			 inum, offset, root_id);
2120 		return PTR_ERR(root);
2121 	}
2122 
2123 	key.objectid = inum;
2124 	key.type = BTRFS_EXTENT_DATA_KEY;
2125 	if (offset > (u64)-1 << 32)
2126 		key.offset = 0;
2127 	else
2128 		key.offset = offset;
2129 
2130 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2131 	if (ret < 0) {
2132 		WARN_ON(1);
2133 		return ret;
2134 	}
2135 
2136 	while (1) {
2137 		cond_resched();
2138 
2139 		leaf = path->nodes[0];
2140 		slot = path->slots[0];
2141 
2142 		if (slot >= btrfs_header_nritems(leaf)) {
2143 			ret = btrfs_next_leaf(root, path);
2144 			if (ret < 0) {
2145 				goto out;
2146 			} else if (ret > 0) {
2147 				ret = 0;
2148 				goto out;
2149 			}
2150 			continue;
2151 		}
2152 
2153 		path->slots[0]++;
2154 
2155 		btrfs_item_key_to_cpu(leaf, &key, slot);
2156 
2157 		if (key.objectid > inum)
2158 			goto out;
2159 
2160 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2161 			continue;
2162 
2163 		extent = btrfs_item_ptr(leaf, slot,
2164 					struct btrfs_file_extent_item);
2165 
2166 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2167 			continue;
2168 
2169 		/*
2170 		 * 'offset' refers to the exact key.offset,
2171 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2172 		 * (key.offset - extent_offset).
2173 		 */
2174 		if (key.offset != offset)
2175 			continue;
2176 
2177 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2178 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2179 
2180 		if (extent_offset >= old->extent_offset + old->offset +
2181 		    old->len || extent_offset + num_bytes <=
2182 		    old->extent_offset + old->offset)
2183 			continue;
2184 
2185 		ret = 0;
2186 		break;
2187 	}
2188 
2189 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2190 	if (!backref) {
2191 		ret = -ENOENT;
2192 		goto out;
2193 	}
2194 
2195 	backref->root_id = root_id;
2196 	backref->inum = inum;
2197 	backref->file_pos = offset;
2198 	backref->num_bytes = num_bytes;
2199 	backref->extent_offset = extent_offset;
2200 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2201 	backref->old = old;
2202 	backref_insert(&new->root, backref);
2203 	old->count++;
2204 out:
2205 	btrfs_release_path(path);
2206 	WARN_ON(ret);
2207 	return ret;
2208 }
2209 
2210 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2211 				   struct new_sa_defrag_extent *new)
2212 {
2213 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2214 	struct old_sa_defrag_extent *old, *tmp;
2215 	int ret;
2216 
2217 	new->path = path;
2218 
2219 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2220 		ret = iterate_inodes_from_logical(old->bytenr +
2221 						  old->extent_offset, fs_info,
2222 						  path, record_one_backref,
2223 						  old);
2224 		BUG_ON(ret < 0 && ret != -ENOENT);
2225 
2226 		/* no backref to be processed for this extent */
2227 		if (!old->count) {
2228 			list_del(&old->list);
2229 			kfree(old);
2230 		}
2231 	}
2232 
2233 	if (list_empty(&new->head))
2234 		return false;
2235 
2236 	return true;
2237 }
2238 
2239 static int relink_is_mergable(struct extent_buffer *leaf,
2240 			      struct btrfs_file_extent_item *fi,
2241 			      u64 disk_bytenr)
2242 {
2243 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr)
2244 		return 0;
2245 
2246 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2247 		return 0;
2248 
2249 	if (btrfs_file_extent_compression(leaf, fi) ||
2250 	    btrfs_file_extent_encryption(leaf, fi) ||
2251 	    btrfs_file_extent_other_encoding(leaf, fi))
2252 		return 0;
2253 
2254 	return 1;
2255 }
2256 
2257 /*
2258  * Note the backref might has changed, and in this case we just return 0.
2259  */
2260 static noinline int relink_extent_backref(struct btrfs_path *path,
2261 				 struct sa_defrag_extent_backref *prev,
2262 				 struct sa_defrag_extent_backref *backref)
2263 {
2264 	struct btrfs_file_extent_item *extent;
2265 	struct btrfs_file_extent_item *item;
2266 	struct btrfs_ordered_extent *ordered;
2267 	struct btrfs_trans_handle *trans;
2268 	struct btrfs_fs_info *fs_info;
2269 	struct btrfs_root *root;
2270 	struct btrfs_key key;
2271 	struct extent_buffer *leaf;
2272 	struct old_sa_defrag_extent *old = backref->old;
2273 	struct new_sa_defrag_extent *new = old->new;
2274 	struct inode *src_inode = new->inode;
2275 	struct inode *inode;
2276 	struct extent_state *cached = NULL;
2277 	int ret = 0;
2278 	u64 start;
2279 	u64 len;
2280 	u64 lock_start;
2281 	u64 lock_end;
2282 	bool merge = false;
2283 	int index;
2284 
2285 	if (prev && prev->root_id == backref->root_id &&
2286 	    prev->inum == backref->inum &&
2287 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2288 		merge = true;
2289 
2290 	/* step 1: get root */
2291 	key.objectid = backref->root_id;
2292 	key.type = BTRFS_ROOT_ITEM_KEY;
2293 	key.offset = (u64)-1;
2294 
2295 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2296 	index = srcu_read_lock(&fs_info->subvol_srcu);
2297 
2298 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2299 	if (IS_ERR(root)) {
2300 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2301 		if (PTR_ERR(root) == -ENOENT)
2302 			return 0;
2303 		return PTR_ERR(root);
2304 	}
2305 
2306 	/* step 2: get inode */
2307 	key.objectid = backref->inum;
2308 	key.type = BTRFS_INODE_ITEM_KEY;
2309 	key.offset = 0;
2310 
2311 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2312 	if (IS_ERR(inode)) {
2313 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2314 		return 0;
2315 	}
2316 
2317 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2318 
2319 	/* step 3: relink backref */
2320 	lock_start = backref->file_pos;
2321 	lock_end = backref->file_pos + backref->num_bytes - 1;
2322 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2323 			 0, &cached);
2324 
2325 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2326 	if (ordered) {
2327 		btrfs_put_ordered_extent(ordered);
2328 		goto out_unlock;
2329 	}
2330 
2331 	trans = btrfs_join_transaction(root);
2332 	if (IS_ERR(trans)) {
2333 		ret = PTR_ERR(trans);
2334 		goto out_unlock;
2335 	}
2336 
2337 	key.objectid = backref->inum;
2338 	key.type = BTRFS_EXTENT_DATA_KEY;
2339 	key.offset = backref->file_pos;
2340 
2341 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2342 	if (ret < 0) {
2343 		goto out_free_path;
2344 	} else if (ret > 0) {
2345 		ret = 0;
2346 		goto out_free_path;
2347 	}
2348 
2349 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2350 				struct btrfs_file_extent_item);
2351 
2352 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2353 	    backref->generation)
2354 		goto out_free_path;
2355 
2356 	btrfs_release_path(path);
2357 
2358 	start = backref->file_pos;
2359 	if (backref->extent_offset < old->extent_offset + old->offset)
2360 		start += old->extent_offset + old->offset -
2361 			 backref->extent_offset;
2362 
2363 	len = min(backref->extent_offset + backref->num_bytes,
2364 		  old->extent_offset + old->offset + old->len);
2365 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2366 
2367 	ret = btrfs_drop_extents(trans, root, inode, start,
2368 				 start + len, 1);
2369 	if (ret)
2370 		goto out_free_path;
2371 again:
2372 	key.objectid = btrfs_ino(inode);
2373 	key.type = BTRFS_EXTENT_DATA_KEY;
2374 	key.offset = start;
2375 
2376 	path->leave_spinning = 1;
2377 	if (merge) {
2378 		struct btrfs_file_extent_item *fi;
2379 		u64 extent_len;
2380 		struct btrfs_key found_key;
2381 
2382 		ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2383 		if (ret < 0)
2384 			goto out_free_path;
2385 
2386 		path->slots[0]--;
2387 		leaf = path->nodes[0];
2388 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2389 
2390 		fi = btrfs_item_ptr(leaf, path->slots[0],
2391 				    struct btrfs_file_extent_item);
2392 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2393 
2394 		if (relink_is_mergable(leaf, fi, new->bytenr) &&
2395 		    extent_len + found_key.offset == start) {
2396 			btrfs_set_file_extent_num_bytes(leaf, fi,
2397 							extent_len + len);
2398 			btrfs_mark_buffer_dirty(leaf);
2399 			inode_add_bytes(inode, len);
2400 
2401 			ret = 1;
2402 			goto out_free_path;
2403 		} else {
2404 			merge = false;
2405 			btrfs_release_path(path);
2406 			goto again;
2407 		}
2408 	}
2409 
2410 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2411 					sizeof(*extent));
2412 	if (ret) {
2413 		btrfs_abort_transaction(trans, root, ret);
2414 		goto out_free_path;
2415 	}
2416 
2417 	leaf = path->nodes[0];
2418 	item = btrfs_item_ptr(leaf, path->slots[0],
2419 				struct btrfs_file_extent_item);
2420 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2421 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2422 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2423 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2424 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2425 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2426 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2427 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2428 	btrfs_set_file_extent_encryption(leaf, item, 0);
2429 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2430 
2431 	btrfs_mark_buffer_dirty(leaf);
2432 	inode_add_bytes(inode, len);
2433 	btrfs_release_path(path);
2434 
2435 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2436 			new->disk_len, 0,
2437 			backref->root_id, backref->inum,
2438 			new->file_pos, 0);	/* start - extent_offset */
2439 	if (ret) {
2440 		btrfs_abort_transaction(trans, root, ret);
2441 		goto out_free_path;
2442 	}
2443 
2444 	ret = 1;
2445 out_free_path:
2446 	btrfs_release_path(path);
2447 	path->leave_spinning = 0;
2448 	btrfs_end_transaction(trans, root);
2449 out_unlock:
2450 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2451 			     &cached, GFP_NOFS);
2452 	iput(inode);
2453 	return ret;
2454 }
2455 
2456 static void relink_file_extents(struct new_sa_defrag_extent *new)
2457 {
2458 	struct btrfs_path *path;
2459 	struct old_sa_defrag_extent *old, *tmp;
2460 	struct sa_defrag_extent_backref *backref;
2461 	struct sa_defrag_extent_backref *prev = NULL;
2462 	struct inode *inode;
2463 	struct btrfs_root *root;
2464 	struct rb_node *node;
2465 	int ret;
2466 
2467 	inode = new->inode;
2468 	root = BTRFS_I(inode)->root;
2469 
2470 	path = btrfs_alloc_path();
2471 	if (!path)
2472 		return;
2473 
2474 	if (!record_extent_backrefs(path, new)) {
2475 		btrfs_free_path(path);
2476 		goto out;
2477 	}
2478 	btrfs_release_path(path);
2479 
2480 	while (1) {
2481 		node = rb_first(&new->root);
2482 		if (!node)
2483 			break;
2484 		rb_erase(node, &new->root);
2485 
2486 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2487 
2488 		ret = relink_extent_backref(path, prev, backref);
2489 		WARN_ON(ret < 0);
2490 
2491 		kfree(prev);
2492 
2493 		if (ret == 1)
2494 			prev = backref;
2495 		else
2496 			prev = NULL;
2497 		cond_resched();
2498 	}
2499 	kfree(prev);
2500 
2501 	btrfs_free_path(path);
2502 
2503 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2504 		list_del(&old->list);
2505 		kfree(old);
2506 	}
2507 out:
2508 	atomic_dec(&root->fs_info->defrag_running);
2509 	wake_up(&root->fs_info->transaction_wait);
2510 
2511 	kfree(new);
2512 }
2513 
2514 static struct new_sa_defrag_extent *
2515 record_old_file_extents(struct inode *inode,
2516 			struct btrfs_ordered_extent *ordered)
2517 {
2518 	struct btrfs_root *root = BTRFS_I(inode)->root;
2519 	struct btrfs_path *path;
2520 	struct btrfs_key key;
2521 	struct old_sa_defrag_extent *old, *tmp;
2522 	struct new_sa_defrag_extent *new;
2523 	int ret;
2524 
2525 	new = kmalloc(sizeof(*new), GFP_NOFS);
2526 	if (!new)
2527 		return NULL;
2528 
2529 	new->inode = inode;
2530 	new->file_pos = ordered->file_offset;
2531 	new->len = ordered->len;
2532 	new->bytenr = ordered->start;
2533 	new->disk_len = ordered->disk_len;
2534 	new->compress_type = ordered->compress_type;
2535 	new->root = RB_ROOT;
2536 	INIT_LIST_HEAD(&new->head);
2537 
2538 	path = btrfs_alloc_path();
2539 	if (!path)
2540 		goto out_kfree;
2541 
2542 	key.objectid = btrfs_ino(inode);
2543 	key.type = BTRFS_EXTENT_DATA_KEY;
2544 	key.offset = new->file_pos;
2545 
2546 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2547 	if (ret < 0)
2548 		goto out_free_path;
2549 	if (ret > 0 && path->slots[0] > 0)
2550 		path->slots[0]--;
2551 
2552 	/* find out all the old extents for the file range */
2553 	while (1) {
2554 		struct btrfs_file_extent_item *extent;
2555 		struct extent_buffer *l;
2556 		int slot;
2557 		u64 num_bytes;
2558 		u64 offset;
2559 		u64 end;
2560 		u64 disk_bytenr;
2561 		u64 extent_offset;
2562 
2563 		l = path->nodes[0];
2564 		slot = path->slots[0];
2565 
2566 		if (slot >= btrfs_header_nritems(l)) {
2567 			ret = btrfs_next_leaf(root, path);
2568 			if (ret < 0)
2569 				goto out_free_list;
2570 			else if (ret > 0)
2571 				break;
2572 			continue;
2573 		}
2574 
2575 		btrfs_item_key_to_cpu(l, &key, slot);
2576 
2577 		if (key.objectid != btrfs_ino(inode))
2578 			break;
2579 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2580 			break;
2581 		if (key.offset >= new->file_pos + new->len)
2582 			break;
2583 
2584 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2585 
2586 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2587 		if (key.offset + num_bytes < new->file_pos)
2588 			goto next;
2589 
2590 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2591 		if (!disk_bytenr)
2592 			goto next;
2593 
2594 		extent_offset = btrfs_file_extent_offset(l, extent);
2595 
2596 		old = kmalloc(sizeof(*old), GFP_NOFS);
2597 		if (!old)
2598 			goto out_free_list;
2599 
2600 		offset = max(new->file_pos, key.offset);
2601 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2602 
2603 		old->bytenr = disk_bytenr;
2604 		old->extent_offset = extent_offset;
2605 		old->offset = offset - key.offset;
2606 		old->len = end - offset;
2607 		old->new = new;
2608 		old->count = 0;
2609 		list_add_tail(&old->list, &new->head);
2610 next:
2611 		path->slots[0]++;
2612 		cond_resched();
2613 	}
2614 
2615 	btrfs_free_path(path);
2616 	atomic_inc(&root->fs_info->defrag_running);
2617 
2618 	return new;
2619 
2620 out_free_list:
2621 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2622 		list_del(&old->list);
2623 		kfree(old);
2624 	}
2625 out_free_path:
2626 	btrfs_free_path(path);
2627 out_kfree:
2628 	kfree(new);
2629 	return NULL;
2630 }
2631 
2632 /*
2633  * helper function for btrfs_finish_ordered_io, this
2634  * just reads in some of the csum leaves to prime them into ram
2635  * before we start the transaction.  It limits the amount of btree
2636  * reads required while inside the transaction.
2637  */
2638 /* as ordered data IO finishes, this gets called so we can finish
2639  * an ordered extent if the range of bytes in the file it covers are
2640  * fully written.
2641  */
2642 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2643 {
2644 	struct inode *inode = ordered_extent->inode;
2645 	struct btrfs_root *root = BTRFS_I(inode)->root;
2646 	struct btrfs_trans_handle *trans = NULL;
2647 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2648 	struct extent_state *cached_state = NULL;
2649 	struct new_sa_defrag_extent *new = NULL;
2650 	int compress_type = 0;
2651 	int ret;
2652 	bool nolock;
2653 
2654 	nolock = btrfs_is_free_space_inode(inode);
2655 
2656 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2657 		ret = -EIO;
2658 		goto out;
2659 	}
2660 
2661 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2662 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2663 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2664 		if (nolock)
2665 			trans = btrfs_join_transaction_nolock(root);
2666 		else
2667 			trans = btrfs_join_transaction(root);
2668 		if (IS_ERR(trans)) {
2669 			ret = PTR_ERR(trans);
2670 			trans = NULL;
2671 			goto out;
2672 		}
2673 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2674 		ret = btrfs_update_inode_fallback(trans, root, inode);
2675 		if (ret) /* -ENOMEM or corruption */
2676 			btrfs_abort_transaction(trans, root, ret);
2677 		goto out;
2678 	}
2679 
2680 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2681 			 ordered_extent->file_offset + ordered_extent->len - 1,
2682 			 0, &cached_state);
2683 
2684 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2685 			ordered_extent->file_offset + ordered_extent->len - 1,
2686 			EXTENT_DEFRAG, 1, cached_state);
2687 	if (ret) {
2688 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2689 		if (last_snapshot >= BTRFS_I(inode)->generation)
2690 			/* the inode is shared */
2691 			new = record_old_file_extents(inode, ordered_extent);
2692 
2693 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2694 			ordered_extent->file_offset + ordered_extent->len - 1,
2695 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2696 	}
2697 
2698 	if (nolock)
2699 		trans = btrfs_join_transaction_nolock(root);
2700 	else
2701 		trans = btrfs_join_transaction(root);
2702 	if (IS_ERR(trans)) {
2703 		ret = PTR_ERR(trans);
2704 		trans = NULL;
2705 		goto out_unlock;
2706 	}
2707 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2708 
2709 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2710 		compress_type = ordered_extent->compress_type;
2711 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2712 		BUG_ON(compress_type);
2713 		ret = btrfs_mark_extent_written(trans, inode,
2714 						ordered_extent->file_offset,
2715 						ordered_extent->file_offset +
2716 						ordered_extent->len);
2717 	} else {
2718 		BUG_ON(root == root->fs_info->tree_root);
2719 		ret = insert_reserved_file_extent(trans, inode,
2720 						ordered_extent->file_offset,
2721 						ordered_extent->start,
2722 						ordered_extent->disk_len,
2723 						ordered_extent->len,
2724 						ordered_extent->len,
2725 						compress_type, 0, 0,
2726 						BTRFS_FILE_EXTENT_REG);
2727 	}
2728 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2729 			   ordered_extent->file_offset, ordered_extent->len,
2730 			   trans->transid);
2731 	if (ret < 0) {
2732 		btrfs_abort_transaction(trans, root, ret);
2733 		goto out_unlock;
2734 	}
2735 
2736 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2737 			  &ordered_extent->list);
2738 
2739 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2740 	ret = btrfs_update_inode_fallback(trans, root, inode);
2741 	if (ret) { /* -ENOMEM or corruption */
2742 		btrfs_abort_transaction(trans, root, ret);
2743 		goto out_unlock;
2744 	}
2745 	ret = 0;
2746 out_unlock:
2747 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2748 			     ordered_extent->file_offset +
2749 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2750 out:
2751 	if (root != root->fs_info->tree_root)
2752 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2753 	if (trans)
2754 		btrfs_end_transaction(trans, root);
2755 
2756 	if (ret) {
2757 		clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2758 				      ordered_extent->file_offset +
2759 				      ordered_extent->len - 1, NULL, GFP_NOFS);
2760 
2761 		/*
2762 		 * If the ordered extent had an IOERR or something else went
2763 		 * wrong we need to return the space for this ordered extent
2764 		 * back to the allocator.
2765 		 */
2766 		if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2767 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2768 			btrfs_free_reserved_extent(root, ordered_extent->start,
2769 						   ordered_extent->disk_len);
2770 	}
2771 
2772 
2773 	/*
2774 	 * This needs to be done to make sure anybody waiting knows we are done
2775 	 * updating everything for this ordered extent.
2776 	 */
2777 	btrfs_remove_ordered_extent(inode, ordered_extent);
2778 
2779 	/* for snapshot-aware defrag */
2780 	if (new)
2781 		relink_file_extents(new);
2782 
2783 	/* once for us */
2784 	btrfs_put_ordered_extent(ordered_extent);
2785 	/* once for the tree */
2786 	btrfs_put_ordered_extent(ordered_extent);
2787 
2788 	return ret;
2789 }
2790 
2791 static void finish_ordered_fn(struct btrfs_work *work)
2792 {
2793 	struct btrfs_ordered_extent *ordered_extent;
2794 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2795 	btrfs_finish_ordered_io(ordered_extent);
2796 }
2797 
2798 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2799 				struct extent_state *state, int uptodate)
2800 {
2801 	struct inode *inode = page->mapping->host;
2802 	struct btrfs_root *root = BTRFS_I(inode)->root;
2803 	struct btrfs_ordered_extent *ordered_extent = NULL;
2804 	struct btrfs_workers *workers;
2805 
2806 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2807 
2808 	ClearPagePrivate2(page);
2809 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2810 					    end - start + 1, uptodate))
2811 		return 0;
2812 
2813 	ordered_extent->work.func = finish_ordered_fn;
2814 	ordered_extent->work.flags = 0;
2815 
2816 	if (btrfs_is_free_space_inode(inode))
2817 		workers = &root->fs_info->endio_freespace_worker;
2818 	else
2819 		workers = &root->fs_info->endio_write_workers;
2820 	btrfs_queue_worker(workers, &ordered_extent->work);
2821 
2822 	return 0;
2823 }
2824 
2825 /*
2826  * when reads are done, we need to check csums to verify the data is correct
2827  * if there's a match, we allow the bio to finish.  If not, the code in
2828  * extent_io.c will try to find good copies for us.
2829  */
2830 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2831 			       struct extent_state *state, int mirror)
2832 {
2833 	size_t offset = start - page_offset(page);
2834 	struct inode *inode = page->mapping->host;
2835 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2836 	char *kaddr;
2837 	u64 private = ~(u32)0;
2838 	int ret;
2839 	struct btrfs_root *root = BTRFS_I(inode)->root;
2840 	u32 csum = ~(u32)0;
2841 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2842 	                              DEFAULT_RATELIMIT_BURST);
2843 
2844 	if (PageChecked(page)) {
2845 		ClearPageChecked(page);
2846 		goto good;
2847 	}
2848 
2849 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2850 		goto good;
2851 
2852 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2853 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2854 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2855 				  GFP_NOFS);
2856 		return 0;
2857 	}
2858 
2859 	if (state && state->start == start) {
2860 		private = state->private;
2861 		ret = 0;
2862 	} else {
2863 		ret = get_state_private(io_tree, start, &private);
2864 	}
2865 	kaddr = kmap_atomic(page);
2866 	if (ret)
2867 		goto zeroit;
2868 
2869 	csum = btrfs_csum_data(kaddr + offset, csum,  end - start + 1);
2870 	btrfs_csum_final(csum, (char *)&csum);
2871 	if (csum != private)
2872 		goto zeroit;
2873 
2874 	kunmap_atomic(kaddr);
2875 good:
2876 	return 0;
2877 
2878 zeroit:
2879 	if (__ratelimit(&_rs))
2880 		btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u private %llu",
2881 			(unsigned long long)btrfs_ino(page->mapping->host),
2882 			(unsigned long long)start, csum,
2883 			(unsigned long long)private);
2884 	memset(kaddr + offset, 1, end - start + 1);
2885 	flush_dcache_page(page);
2886 	kunmap_atomic(kaddr);
2887 	if (private == 0)
2888 		return 0;
2889 	return -EIO;
2890 }
2891 
2892 struct delayed_iput {
2893 	struct list_head list;
2894 	struct inode *inode;
2895 };
2896 
2897 /* JDM: If this is fs-wide, why can't we add a pointer to
2898  * btrfs_inode instead and avoid the allocation? */
2899 void btrfs_add_delayed_iput(struct inode *inode)
2900 {
2901 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2902 	struct delayed_iput *delayed;
2903 
2904 	if (atomic_add_unless(&inode->i_count, -1, 1))
2905 		return;
2906 
2907 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2908 	delayed->inode = inode;
2909 
2910 	spin_lock(&fs_info->delayed_iput_lock);
2911 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2912 	spin_unlock(&fs_info->delayed_iput_lock);
2913 }
2914 
2915 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2916 {
2917 	LIST_HEAD(list);
2918 	struct btrfs_fs_info *fs_info = root->fs_info;
2919 	struct delayed_iput *delayed;
2920 	int empty;
2921 
2922 	spin_lock(&fs_info->delayed_iput_lock);
2923 	empty = list_empty(&fs_info->delayed_iputs);
2924 	spin_unlock(&fs_info->delayed_iput_lock);
2925 	if (empty)
2926 		return;
2927 
2928 	spin_lock(&fs_info->delayed_iput_lock);
2929 	list_splice_init(&fs_info->delayed_iputs, &list);
2930 	spin_unlock(&fs_info->delayed_iput_lock);
2931 
2932 	while (!list_empty(&list)) {
2933 		delayed = list_entry(list.next, struct delayed_iput, list);
2934 		list_del(&delayed->list);
2935 		iput(delayed->inode);
2936 		kfree(delayed);
2937 	}
2938 }
2939 
2940 /*
2941  * This is called in transaction commit time. If there are no orphan
2942  * files in the subvolume, it removes orphan item and frees block_rsv
2943  * structure.
2944  */
2945 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2946 			      struct btrfs_root *root)
2947 {
2948 	struct btrfs_block_rsv *block_rsv;
2949 	int ret;
2950 
2951 	if (atomic_read(&root->orphan_inodes) ||
2952 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2953 		return;
2954 
2955 	spin_lock(&root->orphan_lock);
2956 	if (atomic_read(&root->orphan_inodes)) {
2957 		spin_unlock(&root->orphan_lock);
2958 		return;
2959 	}
2960 
2961 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2962 		spin_unlock(&root->orphan_lock);
2963 		return;
2964 	}
2965 
2966 	block_rsv = root->orphan_block_rsv;
2967 	root->orphan_block_rsv = NULL;
2968 	spin_unlock(&root->orphan_lock);
2969 
2970 	if (root->orphan_item_inserted &&
2971 	    btrfs_root_refs(&root->root_item) > 0) {
2972 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2973 					    root->root_key.objectid);
2974 		BUG_ON(ret);
2975 		root->orphan_item_inserted = 0;
2976 	}
2977 
2978 	if (block_rsv) {
2979 		WARN_ON(block_rsv->size > 0);
2980 		btrfs_free_block_rsv(root, block_rsv);
2981 	}
2982 }
2983 
2984 /*
2985  * This creates an orphan entry for the given inode in case something goes
2986  * wrong in the middle of an unlink/truncate.
2987  *
2988  * NOTE: caller of this function should reserve 5 units of metadata for
2989  *	 this function.
2990  */
2991 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2992 {
2993 	struct btrfs_root *root = BTRFS_I(inode)->root;
2994 	struct btrfs_block_rsv *block_rsv = NULL;
2995 	int reserve = 0;
2996 	int insert = 0;
2997 	int ret;
2998 
2999 	if (!root->orphan_block_rsv) {
3000 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3001 		if (!block_rsv)
3002 			return -ENOMEM;
3003 	}
3004 
3005 	spin_lock(&root->orphan_lock);
3006 	if (!root->orphan_block_rsv) {
3007 		root->orphan_block_rsv = block_rsv;
3008 	} else if (block_rsv) {
3009 		btrfs_free_block_rsv(root, block_rsv);
3010 		block_rsv = NULL;
3011 	}
3012 
3013 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3014 			      &BTRFS_I(inode)->runtime_flags)) {
3015 #if 0
3016 		/*
3017 		 * For proper ENOSPC handling, we should do orphan
3018 		 * cleanup when mounting. But this introduces backward
3019 		 * compatibility issue.
3020 		 */
3021 		if (!xchg(&root->orphan_item_inserted, 1))
3022 			insert = 2;
3023 		else
3024 			insert = 1;
3025 #endif
3026 		insert = 1;
3027 		atomic_inc(&root->orphan_inodes);
3028 	}
3029 
3030 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3031 			      &BTRFS_I(inode)->runtime_flags))
3032 		reserve = 1;
3033 	spin_unlock(&root->orphan_lock);
3034 
3035 	/* grab metadata reservation from transaction handle */
3036 	if (reserve) {
3037 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3038 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3039 	}
3040 
3041 	/* insert an orphan item to track this unlinked/truncated file */
3042 	if (insert >= 1) {
3043 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3044 		if (ret && ret != -EEXIST) {
3045 			clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3046 				  &BTRFS_I(inode)->runtime_flags);
3047 			btrfs_abort_transaction(trans, root, ret);
3048 			return ret;
3049 		}
3050 		ret = 0;
3051 	}
3052 
3053 	/* insert an orphan item to track subvolume contains orphan files */
3054 	if (insert >= 2) {
3055 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3056 					       root->root_key.objectid);
3057 		if (ret && ret != -EEXIST) {
3058 			btrfs_abort_transaction(trans, root, ret);
3059 			return ret;
3060 		}
3061 	}
3062 	return 0;
3063 }
3064 
3065 /*
3066  * We have done the truncate/delete so we can go ahead and remove the orphan
3067  * item for this particular inode.
3068  */
3069 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3070 			    struct inode *inode)
3071 {
3072 	struct btrfs_root *root = BTRFS_I(inode)->root;
3073 	int delete_item = 0;
3074 	int release_rsv = 0;
3075 	int ret = 0;
3076 
3077 	spin_lock(&root->orphan_lock);
3078 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3079 			       &BTRFS_I(inode)->runtime_flags))
3080 		delete_item = 1;
3081 
3082 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3083 			       &BTRFS_I(inode)->runtime_flags))
3084 		release_rsv = 1;
3085 	spin_unlock(&root->orphan_lock);
3086 
3087 	if (trans && delete_item) {
3088 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3089 		BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3090 	}
3091 
3092 	if (release_rsv) {
3093 		btrfs_orphan_release_metadata(inode);
3094 		atomic_dec(&root->orphan_inodes);
3095 	}
3096 
3097 	return 0;
3098 }
3099 
3100 /*
3101  * this cleans up any orphans that may be left on the list from the last use
3102  * of this root.
3103  */
3104 int btrfs_orphan_cleanup(struct btrfs_root *root)
3105 {
3106 	struct btrfs_path *path;
3107 	struct extent_buffer *leaf;
3108 	struct btrfs_key key, found_key;
3109 	struct btrfs_trans_handle *trans;
3110 	struct inode *inode;
3111 	u64 last_objectid = 0;
3112 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3113 
3114 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3115 		return 0;
3116 
3117 	path = btrfs_alloc_path();
3118 	if (!path) {
3119 		ret = -ENOMEM;
3120 		goto out;
3121 	}
3122 	path->reada = -1;
3123 
3124 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3125 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3126 	key.offset = (u64)-1;
3127 
3128 	while (1) {
3129 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3130 		if (ret < 0)
3131 			goto out;
3132 
3133 		/*
3134 		 * if ret == 0 means we found what we were searching for, which
3135 		 * is weird, but possible, so only screw with path if we didn't
3136 		 * find the key and see if we have stuff that matches
3137 		 */
3138 		if (ret > 0) {
3139 			ret = 0;
3140 			if (path->slots[0] == 0)
3141 				break;
3142 			path->slots[0]--;
3143 		}
3144 
3145 		/* pull out the item */
3146 		leaf = path->nodes[0];
3147 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3148 
3149 		/* make sure the item matches what we want */
3150 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3151 			break;
3152 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3153 			break;
3154 
3155 		/* release the path since we're done with it */
3156 		btrfs_release_path(path);
3157 
3158 		/*
3159 		 * this is where we are basically btrfs_lookup, without the
3160 		 * crossing root thing.  we store the inode number in the
3161 		 * offset of the orphan item.
3162 		 */
3163 
3164 		if (found_key.offset == last_objectid) {
3165 			btrfs_err(root->fs_info,
3166 				"Error removing orphan entry, stopping orphan cleanup");
3167 			ret = -EINVAL;
3168 			goto out;
3169 		}
3170 
3171 		last_objectid = found_key.offset;
3172 
3173 		found_key.objectid = found_key.offset;
3174 		found_key.type = BTRFS_INODE_ITEM_KEY;
3175 		found_key.offset = 0;
3176 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3177 		ret = PTR_RET(inode);
3178 		if (ret && ret != -ESTALE)
3179 			goto out;
3180 
3181 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3182 			struct btrfs_root *dead_root;
3183 			struct btrfs_fs_info *fs_info = root->fs_info;
3184 			int is_dead_root = 0;
3185 
3186 			/*
3187 			 * this is an orphan in the tree root. Currently these
3188 			 * could come from 2 sources:
3189 			 *  a) a snapshot deletion in progress
3190 			 *  b) a free space cache inode
3191 			 * We need to distinguish those two, as the snapshot
3192 			 * orphan must not get deleted.
3193 			 * find_dead_roots already ran before us, so if this
3194 			 * is a snapshot deletion, we should find the root
3195 			 * in the dead_roots list
3196 			 */
3197 			spin_lock(&fs_info->trans_lock);
3198 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3199 					    root_list) {
3200 				if (dead_root->root_key.objectid ==
3201 				    found_key.objectid) {
3202 					is_dead_root = 1;
3203 					break;
3204 				}
3205 			}
3206 			spin_unlock(&fs_info->trans_lock);
3207 			if (is_dead_root) {
3208 				/* prevent this orphan from being found again */
3209 				key.offset = found_key.objectid - 1;
3210 				continue;
3211 			}
3212 		}
3213 		/*
3214 		 * Inode is already gone but the orphan item is still there,
3215 		 * kill the orphan item.
3216 		 */
3217 		if (ret == -ESTALE) {
3218 			trans = btrfs_start_transaction(root, 1);
3219 			if (IS_ERR(trans)) {
3220 				ret = PTR_ERR(trans);
3221 				goto out;
3222 			}
3223 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3224 				found_key.objectid);
3225 			ret = btrfs_del_orphan_item(trans, root,
3226 						    found_key.objectid);
3227 			BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3228 			btrfs_end_transaction(trans, root);
3229 			continue;
3230 		}
3231 
3232 		/*
3233 		 * add this inode to the orphan list so btrfs_orphan_del does
3234 		 * the proper thing when we hit it
3235 		 */
3236 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3237 			&BTRFS_I(inode)->runtime_flags);
3238 		atomic_inc(&root->orphan_inodes);
3239 
3240 		/* if we have links, this was a truncate, lets do that */
3241 		if (inode->i_nlink) {
3242 			if (!S_ISREG(inode->i_mode)) {
3243 				WARN_ON(1);
3244 				iput(inode);
3245 				continue;
3246 			}
3247 			nr_truncate++;
3248 
3249 			/* 1 for the orphan item deletion. */
3250 			trans = btrfs_start_transaction(root, 1);
3251 			if (IS_ERR(trans)) {
3252 				iput(inode);
3253 				ret = PTR_ERR(trans);
3254 				goto out;
3255 			}
3256 			ret = btrfs_orphan_add(trans, inode);
3257 			btrfs_end_transaction(trans, root);
3258 			if (ret) {
3259 				iput(inode);
3260 				goto out;
3261 			}
3262 
3263 			ret = btrfs_truncate(inode);
3264 			if (ret)
3265 				btrfs_orphan_del(NULL, inode);
3266 		} else {
3267 			nr_unlink++;
3268 		}
3269 
3270 		/* this will do delete_inode and everything for us */
3271 		iput(inode);
3272 		if (ret)
3273 			goto out;
3274 	}
3275 	/* release the path since we're done with it */
3276 	btrfs_release_path(path);
3277 
3278 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3279 
3280 	if (root->orphan_block_rsv)
3281 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3282 					(u64)-1);
3283 
3284 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
3285 		trans = btrfs_join_transaction(root);
3286 		if (!IS_ERR(trans))
3287 			btrfs_end_transaction(trans, root);
3288 	}
3289 
3290 	if (nr_unlink)
3291 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3292 	if (nr_truncate)
3293 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3294 
3295 out:
3296 	if (ret)
3297 		btrfs_crit(root->fs_info,
3298 			"could not do orphan cleanup %d", ret);
3299 	btrfs_free_path(path);
3300 	return ret;
3301 }
3302 
3303 /*
3304  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3305  * don't find any xattrs, we know there can't be any acls.
3306  *
3307  * slot is the slot the inode is in, objectid is the objectid of the inode
3308  */
3309 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3310 					  int slot, u64 objectid)
3311 {
3312 	u32 nritems = btrfs_header_nritems(leaf);
3313 	struct btrfs_key found_key;
3314 	static u64 xattr_access = 0;
3315 	static u64 xattr_default = 0;
3316 	int scanned = 0;
3317 
3318 	if (!xattr_access) {
3319 		xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3320 					strlen(POSIX_ACL_XATTR_ACCESS));
3321 		xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3322 					strlen(POSIX_ACL_XATTR_DEFAULT));
3323 	}
3324 
3325 	slot++;
3326 	while (slot < nritems) {
3327 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3328 
3329 		/* we found a different objectid, there must not be acls */
3330 		if (found_key.objectid != objectid)
3331 			return 0;
3332 
3333 		/* we found an xattr, assume we've got an acl */
3334 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3335 			if (found_key.offset == xattr_access ||
3336 			    found_key.offset == xattr_default)
3337 				return 1;
3338 		}
3339 
3340 		/*
3341 		 * we found a key greater than an xattr key, there can't
3342 		 * be any acls later on
3343 		 */
3344 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3345 			return 0;
3346 
3347 		slot++;
3348 		scanned++;
3349 
3350 		/*
3351 		 * it goes inode, inode backrefs, xattrs, extents,
3352 		 * so if there are a ton of hard links to an inode there can
3353 		 * be a lot of backrefs.  Don't waste time searching too hard,
3354 		 * this is just an optimization
3355 		 */
3356 		if (scanned >= 8)
3357 			break;
3358 	}
3359 	/* we hit the end of the leaf before we found an xattr or
3360 	 * something larger than an xattr.  We have to assume the inode
3361 	 * has acls
3362 	 */
3363 	return 1;
3364 }
3365 
3366 /*
3367  * read an inode from the btree into the in-memory inode
3368  */
3369 static void btrfs_read_locked_inode(struct inode *inode)
3370 {
3371 	struct btrfs_path *path;
3372 	struct extent_buffer *leaf;
3373 	struct btrfs_inode_item *inode_item;
3374 	struct btrfs_timespec *tspec;
3375 	struct btrfs_root *root = BTRFS_I(inode)->root;
3376 	struct btrfs_key location;
3377 	int maybe_acls;
3378 	u32 rdev;
3379 	int ret;
3380 	bool filled = false;
3381 
3382 	ret = btrfs_fill_inode(inode, &rdev);
3383 	if (!ret)
3384 		filled = true;
3385 
3386 	path = btrfs_alloc_path();
3387 	if (!path)
3388 		goto make_bad;
3389 
3390 	path->leave_spinning = 1;
3391 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3392 
3393 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3394 	if (ret)
3395 		goto make_bad;
3396 
3397 	leaf = path->nodes[0];
3398 
3399 	if (filled)
3400 		goto cache_acl;
3401 
3402 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3403 				    struct btrfs_inode_item);
3404 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3405 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3406 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3407 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3408 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3409 
3410 	tspec = btrfs_inode_atime(inode_item);
3411 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3412 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3413 
3414 	tspec = btrfs_inode_mtime(inode_item);
3415 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3416 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3417 
3418 	tspec = btrfs_inode_ctime(inode_item);
3419 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3420 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3421 
3422 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3423 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3424 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3425 
3426 	/*
3427 	 * If we were modified in the current generation and evicted from memory
3428 	 * and then re-read we need to do a full sync since we don't have any
3429 	 * idea about which extents were modified before we were evicted from
3430 	 * cache.
3431 	 */
3432 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3433 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3434 			&BTRFS_I(inode)->runtime_flags);
3435 
3436 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3437 	inode->i_generation = BTRFS_I(inode)->generation;
3438 	inode->i_rdev = 0;
3439 	rdev = btrfs_inode_rdev(leaf, inode_item);
3440 
3441 	BTRFS_I(inode)->index_cnt = (u64)-1;
3442 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3443 cache_acl:
3444 	/*
3445 	 * try to precache a NULL acl entry for files that don't have
3446 	 * any xattrs or acls
3447 	 */
3448 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3449 					   btrfs_ino(inode));
3450 	if (!maybe_acls)
3451 		cache_no_acl(inode);
3452 
3453 	btrfs_free_path(path);
3454 
3455 	switch (inode->i_mode & S_IFMT) {
3456 	case S_IFREG:
3457 		inode->i_mapping->a_ops = &btrfs_aops;
3458 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3459 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3460 		inode->i_fop = &btrfs_file_operations;
3461 		inode->i_op = &btrfs_file_inode_operations;
3462 		break;
3463 	case S_IFDIR:
3464 		inode->i_fop = &btrfs_dir_file_operations;
3465 		if (root == root->fs_info->tree_root)
3466 			inode->i_op = &btrfs_dir_ro_inode_operations;
3467 		else
3468 			inode->i_op = &btrfs_dir_inode_operations;
3469 		break;
3470 	case S_IFLNK:
3471 		inode->i_op = &btrfs_symlink_inode_operations;
3472 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3473 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3474 		break;
3475 	default:
3476 		inode->i_op = &btrfs_special_inode_operations;
3477 		init_special_inode(inode, inode->i_mode, rdev);
3478 		break;
3479 	}
3480 
3481 	btrfs_update_iflags(inode);
3482 	return;
3483 
3484 make_bad:
3485 	btrfs_free_path(path);
3486 	make_bad_inode(inode);
3487 }
3488 
3489 /*
3490  * given a leaf and an inode, copy the inode fields into the leaf
3491  */
3492 static void fill_inode_item(struct btrfs_trans_handle *trans,
3493 			    struct extent_buffer *leaf,
3494 			    struct btrfs_inode_item *item,
3495 			    struct inode *inode)
3496 {
3497 	struct btrfs_map_token token;
3498 
3499 	btrfs_init_map_token(&token);
3500 
3501 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3502 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3503 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3504 				   &token);
3505 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3506 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3507 
3508 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3509 				     inode->i_atime.tv_sec, &token);
3510 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3511 				      inode->i_atime.tv_nsec, &token);
3512 
3513 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3514 				     inode->i_mtime.tv_sec, &token);
3515 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3516 				      inode->i_mtime.tv_nsec, &token);
3517 
3518 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3519 				     inode->i_ctime.tv_sec, &token);
3520 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3521 				      inode->i_ctime.tv_nsec, &token);
3522 
3523 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3524 				     &token);
3525 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3526 					 &token);
3527 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3528 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3529 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3530 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3531 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3532 }
3533 
3534 /*
3535  * copy everything in the in-memory inode into the btree.
3536  */
3537 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3538 				struct btrfs_root *root, struct inode *inode)
3539 {
3540 	struct btrfs_inode_item *inode_item;
3541 	struct btrfs_path *path;
3542 	struct extent_buffer *leaf;
3543 	int ret;
3544 
3545 	path = btrfs_alloc_path();
3546 	if (!path)
3547 		return -ENOMEM;
3548 
3549 	path->leave_spinning = 1;
3550 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3551 				 1);
3552 	if (ret) {
3553 		if (ret > 0)
3554 			ret = -ENOENT;
3555 		goto failed;
3556 	}
3557 
3558 	btrfs_unlock_up_safe(path, 1);
3559 	leaf = path->nodes[0];
3560 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3561 				    struct btrfs_inode_item);
3562 
3563 	fill_inode_item(trans, leaf, inode_item, inode);
3564 	btrfs_mark_buffer_dirty(leaf);
3565 	btrfs_set_inode_last_trans(trans, inode);
3566 	ret = 0;
3567 failed:
3568 	btrfs_free_path(path);
3569 	return ret;
3570 }
3571 
3572 /*
3573  * copy everything in the in-memory inode into the btree.
3574  */
3575 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3576 				struct btrfs_root *root, struct inode *inode)
3577 {
3578 	int ret;
3579 
3580 	/*
3581 	 * If the inode is a free space inode, we can deadlock during commit
3582 	 * if we put it into the delayed code.
3583 	 *
3584 	 * The data relocation inode should also be directly updated
3585 	 * without delay
3586 	 */
3587 	if (!btrfs_is_free_space_inode(inode)
3588 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3589 		btrfs_update_root_times(trans, root);
3590 
3591 		ret = btrfs_delayed_update_inode(trans, root, inode);
3592 		if (!ret)
3593 			btrfs_set_inode_last_trans(trans, inode);
3594 		return ret;
3595 	}
3596 
3597 	return btrfs_update_inode_item(trans, root, inode);
3598 }
3599 
3600 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3601 					 struct btrfs_root *root,
3602 					 struct inode *inode)
3603 {
3604 	int ret;
3605 
3606 	ret = btrfs_update_inode(trans, root, inode);
3607 	if (ret == -ENOSPC)
3608 		return btrfs_update_inode_item(trans, root, inode);
3609 	return ret;
3610 }
3611 
3612 /*
3613  * unlink helper that gets used here in inode.c and in the tree logging
3614  * recovery code.  It remove a link in a directory with a given name, and
3615  * also drops the back refs in the inode to the directory
3616  */
3617 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3618 				struct btrfs_root *root,
3619 				struct inode *dir, struct inode *inode,
3620 				const char *name, int name_len)
3621 {
3622 	struct btrfs_path *path;
3623 	int ret = 0;
3624 	struct extent_buffer *leaf;
3625 	struct btrfs_dir_item *di;
3626 	struct btrfs_key key;
3627 	u64 index;
3628 	u64 ino = btrfs_ino(inode);
3629 	u64 dir_ino = btrfs_ino(dir);
3630 
3631 	path = btrfs_alloc_path();
3632 	if (!path) {
3633 		ret = -ENOMEM;
3634 		goto out;
3635 	}
3636 
3637 	path->leave_spinning = 1;
3638 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3639 				    name, name_len, -1);
3640 	if (IS_ERR(di)) {
3641 		ret = PTR_ERR(di);
3642 		goto err;
3643 	}
3644 	if (!di) {
3645 		ret = -ENOENT;
3646 		goto err;
3647 	}
3648 	leaf = path->nodes[0];
3649 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3650 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3651 	if (ret)
3652 		goto err;
3653 	btrfs_release_path(path);
3654 
3655 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3656 				  dir_ino, &index);
3657 	if (ret) {
3658 		btrfs_info(root->fs_info,
3659 			"failed to delete reference to %.*s, inode %llu parent %llu",
3660 			name_len, name,
3661 			(unsigned long long)ino, (unsigned long long)dir_ino);
3662 		btrfs_abort_transaction(trans, root, ret);
3663 		goto err;
3664 	}
3665 
3666 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3667 	if (ret) {
3668 		btrfs_abort_transaction(trans, root, ret);
3669 		goto err;
3670 	}
3671 
3672 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3673 					 inode, dir_ino);
3674 	if (ret != 0 && ret != -ENOENT) {
3675 		btrfs_abort_transaction(trans, root, ret);
3676 		goto err;
3677 	}
3678 
3679 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3680 					   dir, index);
3681 	if (ret == -ENOENT)
3682 		ret = 0;
3683 	else if (ret)
3684 		btrfs_abort_transaction(trans, root, ret);
3685 err:
3686 	btrfs_free_path(path);
3687 	if (ret)
3688 		goto out;
3689 
3690 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3691 	inode_inc_iversion(inode);
3692 	inode_inc_iversion(dir);
3693 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3694 	ret = btrfs_update_inode(trans, root, dir);
3695 out:
3696 	return ret;
3697 }
3698 
3699 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3700 		       struct btrfs_root *root,
3701 		       struct inode *dir, struct inode *inode,
3702 		       const char *name, int name_len)
3703 {
3704 	int ret;
3705 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3706 	if (!ret) {
3707 		btrfs_drop_nlink(inode);
3708 		ret = btrfs_update_inode(trans, root, inode);
3709 	}
3710 	return ret;
3711 }
3712 
3713 /*
3714  * helper to start transaction for unlink and rmdir.
3715  *
3716  * unlink and rmdir are special in btrfs, they do not always free space, so
3717  * if we cannot make our reservations the normal way try and see if there is
3718  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3719  * allow the unlink to occur.
3720  */
3721 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3722 {
3723 	struct btrfs_trans_handle *trans;
3724 	struct btrfs_root *root = BTRFS_I(dir)->root;
3725 	int ret;
3726 
3727 	/*
3728 	 * 1 for the possible orphan item
3729 	 * 1 for the dir item
3730 	 * 1 for the dir index
3731 	 * 1 for the inode ref
3732 	 * 1 for the inode
3733 	 */
3734 	trans = btrfs_start_transaction(root, 5);
3735 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3736 		return trans;
3737 
3738 	if (PTR_ERR(trans) == -ENOSPC) {
3739 		u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3740 
3741 		trans = btrfs_start_transaction(root, 0);
3742 		if (IS_ERR(trans))
3743 			return trans;
3744 		ret = btrfs_cond_migrate_bytes(root->fs_info,
3745 					       &root->fs_info->trans_block_rsv,
3746 					       num_bytes, 5);
3747 		if (ret) {
3748 			btrfs_end_transaction(trans, root);
3749 			return ERR_PTR(ret);
3750 		}
3751 		trans->block_rsv = &root->fs_info->trans_block_rsv;
3752 		trans->bytes_reserved = num_bytes;
3753 	}
3754 	return trans;
3755 }
3756 
3757 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3758 {
3759 	struct btrfs_root *root = BTRFS_I(dir)->root;
3760 	struct btrfs_trans_handle *trans;
3761 	struct inode *inode = dentry->d_inode;
3762 	int ret;
3763 
3764 	trans = __unlink_start_trans(dir);
3765 	if (IS_ERR(trans))
3766 		return PTR_ERR(trans);
3767 
3768 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3769 
3770 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3771 				 dentry->d_name.name, dentry->d_name.len);
3772 	if (ret)
3773 		goto out;
3774 
3775 	if (inode->i_nlink == 0) {
3776 		ret = btrfs_orphan_add(trans, inode);
3777 		if (ret)
3778 			goto out;
3779 	}
3780 
3781 out:
3782 	btrfs_end_transaction(trans, root);
3783 	btrfs_btree_balance_dirty(root);
3784 	return ret;
3785 }
3786 
3787 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3788 			struct btrfs_root *root,
3789 			struct inode *dir, u64 objectid,
3790 			const char *name, int name_len)
3791 {
3792 	struct btrfs_path *path;
3793 	struct extent_buffer *leaf;
3794 	struct btrfs_dir_item *di;
3795 	struct btrfs_key key;
3796 	u64 index;
3797 	int ret;
3798 	u64 dir_ino = btrfs_ino(dir);
3799 
3800 	path = btrfs_alloc_path();
3801 	if (!path)
3802 		return -ENOMEM;
3803 
3804 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3805 				   name, name_len, -1);
3806 	if (IS_ERR_OR_NULL(di)) {
3807 		if (!di)
3808 			ret = -ENOENT;
3809 		else
3810 			ret = PTR_ERR(di);
3811 		goto out;
3812 	}
3813 
3814 	leaf = path->nodes[0];
3815 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3816 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3817 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3818 	if (ret) {
3819 		btrfs_abort_transaction(trans, root, ret);
3820 		goto out;
3821 	}
3822 	btrfs_release_path(path);
3823 
3824 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3825 				 objectid, root->root_key.objectid,
3826 				 dir_ino, &index, name, name_len);
3827 	if (ret < 0) {
3828 		if (ret != -ENOENT) {
3829 			btrfs_abort_transaction(trans, root, ret);
3830 			goto out;
3831 		}
3832 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3833 						 name, name_len);
3834 		if (IS_ERR_OR_NULL(di)) {
3835 			if (!di)
3836 				ret = -ENOENT;
3837 			else
3838 				ret = PTR_ERR(di);
3839 			btrfs_abort_transaction(trans, root, ret);
3840 			goto out;
3841 		}
3842 
3843 		leaf = path->nodes[0];
3844 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3845 		btrfs_release_path(path);
3846 		index = key.offset;
3847 	}
3848 	btrfs_release_path(path);
3849 
3850 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3851 	if (ret) {
3852 		btrfs_abort_transaction(trans, root, ret);
3853 		goto out;
3854 	}
3855 
3856 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3857 	inode_inc_iversion(dir);
3858 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3859 	ret = btrfs_update_inode_fallback(trans, root, dir);
3860 	if (ret)
3861 		btrfs_abort_transaction(trans, root, ret);
3862 out:
3863 	btrfs_free_path(path);
3864 	return ret;
3865 }
3866 
3867 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3868 {
3869 	struct inode *inode = dentry->d_inode;
3870 	int err = 0;
3871 	struct btrfs_root *root = BTRFS_I(dir)->root;
3872 	struct btrfs_trans_handle *trans;
3873 
3874 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3875 		return -ENOTEMPTY;
3876 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3877 		return -EPERM;
3878 
3879 	trans = __unlink_start_trans(dir);
3880 	if (IS_ERR(trans))
3881 		return PTR_ERR(trans);
3882 
3883 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3884 		err = btrfs_unlink_subvol(trans, root, dir,
3885 					  BTRFS_I(inode)->location.objectid,
3886 					  dentry->d_name.name,
3887 					  dentry->d_name.len);
3888 		goto out;
3889 	}
3890 
3891 	err = btrfs_orphan_add(trans, inode);
3892 	if (err)
3893 		goto out;
3894 
3895 	/* now the directory is empty */
3896 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3897 				 dentry->d_name.name, dentry->d_name.len);
3898 	if (!err)
3899 		btrfs_i_size_write(inode, 0);
3900 out:
3901 	btrfs_end_transaction(trans, root);
3902 	btrfs_btree_balance_dirty(root);
3903 
3904 	return err;
3905 }
3906 
3907 /*
3908  * this can truncate away extent items, csum items and directory items.
3909  * It starts at a high offset and removes keys until it can't find
3910  * any higher than new_size
3911  *
3912  * csum items that cross the new i_size are truncated to the new size
3913  * as well.
3914  *
3915  * min_type is the minimum key type to truncate down to.  If set to 0, this
3916  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3917  */
3918 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3919 			       struct btrfs_root *root,
3920 			       struct inode *inode,
3921 			       u64 new_size, u32 min_type)
3922 {
3923 	struct btrfs_path *path;
3924 	struct extent_buffer *leaf;
3925 	struct btrfs_file_extent_item *fi;
3926 	struct btrfs_key key;
3927 	struct btrfs_key found_key;
3928 	u64 extent_start = 0;
3929 	u64 extent_num_bytes = 0;
3930 	u64 extent_offset = 0;
3931 	u64 item_end = 0;
3932 	u32 found_type = (u8)-1;
3933 	int found_extent;
3934 	int del_item;
3935 	int pending_del_nr = 0;
3936 	int pending_del_slot = 0;
3937 	int extent_type = -1;
3938 	int ret;
3939 	int err = 0;
3940 	u64 ino = btrfs_ino(inode);
3941 
3942 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3943 
3944 	path = btrfs_alloc_path();
3945 	if (!path)
3946 		return -ENOMEM;
3947 	path->reada = -1;
3948 
3949 	/*
3950 	 * We want to drop from the next block forward in case this new size is
3951 	 * not block aligned since we will be keeping the last block of the
3952 	 * extent just the way it is.
3953 	 */
3954 	if (root->ref_cows || root == root->fs_info->tree_root)
3955 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
3956 					root->sectorsize), (u64)-1, 0);
3957 
3958 	/*
3959 	 * This function is also used to drop the items in the log tree before
3960 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3961 	 * it is used to drop the loged items. So we shouldn't kill the delayed
3962 	 * items.
3963 	 */
3964 	if (min_type == 0 && root == BTRFS_I(inode)->root)
3965 		btrfs_kill_delayed_inode_items(inode);
3966 
3967 	key.objectid = ino;
3968 	key.offset = (u64)-1;
3969 	key.type = (u8)-1;
3970 
3971 search_again:
3972 	path->leave_spinning = 1;
3973 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3974 	if (ret < 0) {
3975 		err = ret;
3976 		goto out;
3977 	}
3978 
3979 	if (ret > 0) {
3980 		/* there are no items in the tree for us to truncate, we're
3981 		 * done
3982 		 */
3983 		if (path->slots[0] == 0)
3984 			goto out;
3985 		path->slots[0]--;
3986 	}
3987 
3988 	while (1) {
3989 		fi = NULL;
3990 		leaf = path->nodes[0];
3991 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3992 		found_type = btrfs_key_type(&found_key);
3993 
3994 		if (found_key.objectid != ino)
3995 			break;
3996 
3997 		if (found_type < min_type)
3998 			break;
3999 
4000 		item_end = found_key.offset;
4001 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4002 			fi = btrfs_item_ptr(leaf, path->slots[0],
4003 					    struct btrfs_file_extent_item);
4004 			extent_type = btrfs_file_extent_type(leaf, fi);
4005 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4006 				item_end +=
4007 				    btrfs_file_extent_num_bytes(leaf, fi);
4008 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4009 				item_end += btrfs_file_extent_inline_len(leaf,
4010 									 fi);
4011 			}
4012 			item_end--;
4013 		}
4014 		if (found_type > min_type) {
4015 			del_item = 1;
4016 		} else {
4017 			if (item_end < new_size)
4018 				break;
4019 			if (found_key.offset >= new_size)
4020 				del_item = 1;
4021 			else
4022 				del_item = 0;
4023 		}
4024 		found_extent = 0;
4025 		/* FIXME, shrink the extent if the ref count is only 1 */
4026 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4027 			goto delete;
4028 
4029 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4030 			u64 num_dec;
4031 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4032 			if (!del_item) {
4033 				u64 orig_num_bytes =
4034 					btrfs_file_extent_num_bytes(leaf, fi);
4035 				extent_num_bytes = ALIGN(new_size -
4036 						found_key.offset,
4037 						root->sectorsize);
4038 				btrfs_set_file_extent_num_bytes(leaf, fi,
4039 							 extent_num_bytes);
4040 				num_dec = (orig_num_bytes -
4041 					   extent_num_bytes);
4042 				if (root->ref_cows && extent_start != 0)
4043 					inode_sub_bytes(inode, num_dec);
4044 				btrfs_mark_buffer_dirty(leaf);
4045 			} else {
4046 				extent_num_bytes =
4047 					btrfs_file_extent_disk_num_bytes(leaf,
4048 									 fi);
4049 				extent_offset = found_key.offset -
4050 					btrfs_file_extent_offset(leaf, fi);
4051 
4052 				/* FIXME blocksize != 4096 */
4053 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4054 				if (extent_start != 0) {
4055 					found_extent = 1;
4056 					if (root->ref_cows)
4057 						inode_sub_bytes(inode, num_dec);
4058 				}
4059 			}
4060 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4061 			/*
4062 			 * we can't truncate inline items that have had
4063 			 * special encodings
4064 			 */
4065 			if (!del_item &&
4066 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
4067 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4068 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4069 				u32 size = new_size - found_key.offset;
4070 
4071 				if (root->ref_cows) {
4072 					inode_sub_bytes(inode, item_end + 1 -
4073 							new_size);
4074 				}
4075 				size =
4076 				    btrfs_file_extent_calc_inline_size(size);
4077 				btrfs_truncate_item(root, path, size, 1);
4078 			} else if (root->ref_cows) {
4079 				inode_sub_bytes(inode, item_end + 1 -
4080 						found_key.offset);
4081 			}
4082 		}
4083 delete:
4084 		if (del_item) {
4085 			if (!pending_del_nr) {
4086 				/* no pending yet, add ourselves */
4087 				pending_del_slot = path->slots[0];
4088 				pending_del_nr = 1;
4089 			} else if (pending_del_nr &&
4090 				   path->slots[0] + 1 == pending_del_slot) {
4091 				/* hop on the pending chunk */
4092 				pending_del_nr++;
4093 				pending_del_slot = path->slots[0];
4094 			} else {
4095 				BUG();
4096 			}
4097 		} else {
4098 			break;
4099 		}
4100 		if (found_extent && (root->ref_cows ||
4101 				     root == root->fs_info->tree_root)) {
4102 			btrfs_set_path_blocking(path);
4103 			ret = btrfs_free_extent(trans, root, extent_start,
4104 						extent_num_bytes, 0,
4105 						btrfs_header_owner(leaf),
4106 						ino, extent_offset, 0);
4107 			BUG_ON(ret);
4108 		}
4109 
4110 		if (found_type == BTRFS_INODE_ITEM_KEY)
4111 			break;
4112 
4113 		if (path->slots[0] == 0 ||
4114 		    path->slots[0] != pending_del_slot) {
4115 			if (pending_del_nr) {
4116 				ret = btrfs_del_items(trans, root, path,
4117 						pending_del_slot,
4118 						pending_del_nr);
4119 				if (ret) {
4120 					btrfs_abort_transaction(trans,
4121 								root, ret);
4122 					goto error;
4123 				}
4124 				pending_del_nr = 0;
4125 			}
4126 			btrfs_release_path(path);
4127 			goto search_again;
4128 		} else {
4129 			path->slots[0]--;
4130 		}
4131 	}
4132 out:
4133 	if (pending_del_nr) {
4134 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4135 				      pending_del_nr);
4136 		if (ret)
4137 			btrfs_abort_transaction(trans, root, ret);
4138 	}
4139 error:
4140 	btrfs_free_path(path);
4141 	return err;
4142 }
4143 
4144 /*
4145  * btrfs_truncate_page - read, zero a chunk and write a page
4146  * @inode - inode that we're zeroing
4147  * @from - the offset to start zeroing
4148  * @len - the length to zero, 0 to zero the entire range respective to the
4149  *	offset
4150  * @front - zero up to the offset instead of from the offset on
4151  *
4152  * This will find the page for the "from" offset and cow the page and zero the
4153  * part we want to zero.  This is used with truncate and hole punching.
4154  */
4155 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4156 			int front)
4157 {
4158 	struct address_space *mapping = inode->i_mapping;
4159 	struct btrfs_root *root = BTRFS_I(inode)->root;
4160 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4161 	struct btrfs_ordered_extent *ordered;
4162 	struct extent_state *cached_state = NULL;
4163 	char *kaddr;
4164 	u32 blocksize = root->sectorsize;
4165 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4166 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4167 	struct page *page;
4168 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4169 	int ret = 0;
4170 	u64 page_start;
4171 	u64 page_end;
4172 
4173 	if ((offset & (blocksize - 1)) == 0 &&
4174 	    (!len || ((len & (blocksize - 1)) == 0)))
4175 		goto out;
4176 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4177 	if (ret)
4178 		goto out;
4179 
4180 again:
4181 	page = find_or_create_page(mapping, index, mask);
4182 	if (!page) {
4183 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4184 		ret = -ENOMEM;
4185 		goto out;
4186 	}
4187 
4188 	page_start = page_offset(page);
4189 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4190 
4191 	if (!PageUptodate(page)) {
4192 		ret = btrfs_readpage(NULL, page);
4193 		lock_page(page);
4194 		if (page->mapping != mapping) {
4195 			unlock_page(page);
4196 			page_cache_release(page);
4197 			goto again;
4198 		}
4199 		if (!PageUptodate(page)) {
4200 			ret = -EIO;
4201 			goto out_unlock;
4202 		}
4203 	}
4204 	wait_on_page_writeback(page);
4205 
4206 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4207 	set_page_extent_mapped(page);
4208 
4209 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4210 	if (ordered) {
4211 		unlock_extent_cached(io_tree, page_start, page_end,
4212 				     &cached_state, GFP_NOFS);
4213 		unlock_page(page);
4214 		page_cache_release(page);
4215 		btrfs_start_ordered_extent(inode, ordered, 1);
4216 		btrfs_put_ordered_extent(ordered);
4217 		goto again;
4218 	}
4219 
4220 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4221 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4222 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4223 			  0, 0, &cached_state, GFP_NOFS);
4224 
4225 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4226 					&cached_state);
4227 	if (ret) {
4228 		unlock_extent_cached(io_tree, page_start, page_end,
4229 				     &cached_state, GFP_NOFS);
4230 		goto out_unlock;
4231 	}
4232 
4233 	if (offset != PAGE_CACHE_SIZE) {
4234 		if (!len)
4235 			len = PAGE_CACHE_SIZE - offset;
4236 		kaddr = kmap(page);
4237 		if (front)
4238 			memset(kaddr, 0, offset);
4239 		else
4240 			memset(kaddr + offset, 0, len);
4241 		flush_dcache_page(page);
4242 		kunmap(page);
4243 	}
4244 	ClearPageChecked(page);
4245 	set_page_dirty(page);
4246 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4247 			     GFP_NOFS);
4248 
4249 out_unlock:
4250 	if (ret)
4251 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4252 	unlock_page(page);
4253 	page_cache_release(page);
4254 out:
4255 	return ret;
4256 }
4257 
4258 /*
4259  * This function puts in dummy file extents for the area we're creating a hole
4260  * for.  So if we are truncating this file to a larger size we need to insert
4261  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4262  * the range between oldsize and size
4263  */
4264 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4265 {
4266 	struct btrfs_trans_handle *trans;
4267 	struct btrfs_root *root = BTRFS_I(inode)->root;
4268 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4269 	struct extent_map *em = NULL;
4270 	struct extent_state *cached_state = NULL;
4271 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4272 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4273 	u64 block_end = ALIGN(size, root->sectorsize);
4274 	u64 last_byte;
4275 	u64 cur_offset;
4276 	u64 hole_size;
4277 	int err = 0;
4278 
4279 	/*
4280 	 * If our size started in the middle of a page we need to zero out the
4281 	 * rest of the page before we expand the i_size, otherwise we could
4282 	 * expose stale data.
4283 	 */
4284 	err = btrfs_truncate_page(inode, oldsize, 0, 0);
4285 	if (err)
4286 		return err;
4287 
4288 	if (size <= hole_start)
4289 		return 0;
4290 
4291 	while (1) {
4292 		struct btrfs_ordered_extent *ordered;
4293 		btrfs_wait_ordered_range(inode, hole_start,
4294 					 block_end - hole_start);
4295 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4296 				 &cached_state);
4297 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4298 		if (!ordered)
4299 			break;
4300 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4301 				     &cached_state, GFP_NOFS);
4302 		btrfs_put_ordered_extent(ordered);
4303 	}
4304 
4305 	cur_offset = hole_start;
4306 	while (1) {
4307 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4308 				block_end - cur_offset, 0);
4309 		if (IS_ERR(em)) {
4310 			err = PTR_ERR(em);
4311 			em = NULL;
4312 			break;
4313 		}
4314 		last_byte = min(extent_map_end(em), block_end);
4315 		last_byte = ALIGN(last_byte , root->sectorsize);
4316 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4317 			struct extent_map *hole_em;
4318 			hole_size = last_byte - cur_offset;
4319 
4320 			trans = btrfs_start_transaction(root, 3);
4321 			if (IS_ERR(trans)) {
4322 				err = PTR_ERR(trans);
4323 				break;
4324 			}
4325 
4326 			err = btrfs_drop_extents(trans, root, inode,
4327 						 cur_offset,
4328 						 cur_offset + hole_size, 1);
4329 			if (err) {
4330 				btrfs_abort_transaction(trans, root, err);
4331 				btrfs_end_transaction(trans, root);
4332 				break;
4333 			}
4334 
4335 			err = btrfs_insert_file_extent(trans, root,
4336 					btrfs_ino(inode), cur_offset, 0,
4337 					0, hole_size, 0, hole_size,
4338 					0, 0, 0);
4339 			if (err) {
4340 				btrfs_abort_transaction(trans, root, err);
4341 				btrfs_end_transaction(trans, root);
4342 				break;
4343 			}
4344 
4345 			btrfs_drop_extent_cache(inode, cur_offset,
4346 						cur_offset + hole_size - 1, 0);
4347 			hole_em = alloc_extent_map();
4348 			if (!hole_em) {
4349 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4350 					&BTRFS_I(inode)->runtime_flags);
4351 				goto next;
4352 			}
4353 			hole_em->start = cur_offset;
4354 			hole_em->len = hole_size;
4355 			hole_em->orig_start = cur_offset;
4356 
4357 			hole_em->block_start = EXTENT_MAP_HOLE;
4358 			hole_em->block_len = 0;
4359 			hole_em->orig_block_len = 0;
4360 			hole_em->ram_bytes = hole_size;
4361 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4362 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4363 			hole_em->generation = trans->transid;
4364 
4365 			while (1) {
4366 				write_lock(&em_tree->lock);
4367 				err = add_extent_mapping(em_tree, hole_em, 1);
4368 				write_unlock(&em_tree->lock);
4369 				if (err != -EEXIST)
4370 					break;
4371 				btrfs_drop_extent_cache(inode, cur_offset,
4372 							cur_offset +
4373 							hole_size - 1, 0);
4374 			}
4375 			free_extent_map(hole_em);
4376 next:
4377 			btrfs_update_inode(trans, root, inode);
4378 			btrfs_end_transaction(trans, root);
4379 		}
4380 		free_extent_map(em);
4381 		em = NULL;
4382 		cur_offset = last_byte;
4383 		if (cur_offset >= block_end)
4384 			break;
4385 	}
4386 
4387 	free_extent_map(em);
4388 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4389 			     GFP_NOFS);
4390 	return err;
4391 }
4392 
4393 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4394 {
4395 	struct btrfs_root *root = BTRFS_I(inode)->root;
4396 	struct btrfs_trans_handle *trans;
4397 	loff_t oldsize = i_size_read(inode);
4398 	loff_t newsize = attr->ia_size;
4399 	int mask = attr->ia_valid;
4400 	int ret;
4401 
4402 	/*
4403 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4404 	 * special case where we need to update the times despite not having
4405 	 * these flags set.  For all other operations the VFS set these flags
4406 	 * explicitly if it wants a timestamp update.
4407 	 */
4408 	if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4409 		inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4410 
4411 	if (newsize > oldsize) {
4412 		truncate_pagecache(inode, oldsize, newsize);
4413 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4414 		if (ret)
4415 			return ret;
4416 
4417 		trans = btrfs_start_transaction(root, 1);
4418 		if (IS_ERR(trans))
4419 			return PTR_ERR(trans);
4420 
4421 		i_size_write(inode, newsize);
4422 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4423 		ret = btrfs_update_inode(trans, root, inode);
4424 		btrfs_end_transaction(trans, root);
4425 	} else {
4426 
4427 		/*
4428 		 * We're truncating a file that used to have good data down to
4429 		 * zero. Make sure it gets into the ordered flush list so that
4430 		 * any new writes get down to disk quickly.
4431 		 */
4432 		if (newsize == 0)
4433 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4434 				&BTRFS_I(inode)->runtime_flags);
4435 
4436 		/*
4437 		 * 1 for the orphan item we're going to add
4438 		 * 1 for the orphan item deletion.
4439 		 */
4440 		trans = btrfs_start_transaction(root, 2);
4441 		if (IS_ERR(trans))
4442 			return PTR_ERR(trans);
4443 
4444 		/*
4445 		 * We need to do this in case we fail at _any_ point during the
4446 		 * actual truncate.  Once we do the truncate_setsize we could
4447 		 * invalidate pages which forces any outstanding ordered io to
4448 		 * be instantly completed which will give us extents that need
4449 		 * to be truncated.  If we fail to get an orphan inode down we
4450 		 * could have left over extents that were never meant to live,
4451 		 * so we need to garuntee from this point on that everything
4452 		 * will be consistent.
4453 		 */
4454 		ret = btrfs_orphan_add(trans, inode);
4455 		btrfs_end_transaction(trans, root);
4456 		if (ret)
4457 			return ret;
4458 
4459 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4460 		truncate_setsize(inode, newsize);
4461 
4462 		/* Disable nonlocked read DIO to avoid the end less truncate */
4463 		btrfs_inode_block_unlocked_dio(inode);
4464 		inode_dio_wait(inode);
4465 		btrfs_inode_resume_unlocked_dio(inode);
4466 
4467 		ret = btrfs_truncate(inode);
4468 		if (ret && inode->i_nlink)
4469 			btrfs_orphan_del(NULL, inode);
4470 	}
4471 
4472 	return ret;
4473 }
4474 
4475 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4476 {
4477 	struct inode *inode = dentry->d_inode;
4478 	struct btrfs_root *root = BTRFS_I(inode)->root;
4479 	int err;
4480 
4481 	if (btrfs_root_readonly(root))
4482 		return -EROFS;
4483 
4484 	err = inode_change_ok(inode, attr);
4485 	if (err)
4486 		return err;
4487 
4488 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4489 		err = btrfs_setsize(inode, attr);
4490 		if (err)
4491 			return err;
4492 	}
4493 
4494 	if (attr->ia_valid) {
4495 		setattr_copy(inode, attr);
4496 		inode_inc_iversion(inode);
4497 		err = btrfs_dirty_inode(inode);
4498 
4499 		if (!err && attr->ia_valid & ATTR_MODE)
4500 			err = btrfs_acl_chmod(inode);
4501 	}
4502 
4503 	return err;
4504 }
4505 
4506 void btrfs_evict_inode(struct inode *inode)
4507 {
4508 	struct btrfs_trans_handle *trans;
4509 	struct btrfs_root *root = BTRFS_I(inode)->root;
4510 	struct btrfs_block_rsv *rsv, *global_rsv;
4511 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4512 	int ret;
4513 
4514 	trace_btrfs_inode_evict(inode);
4515 
4516 	truncate_inode_pages(&inode->i_data, 0);
4517 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
4518 			       btrfs_is_free_space_inode(inode)))
4519 		goto no_delete;
4520 
4521 	if (is_bad_inode(inode)) {
4522 		btrfs_orphan_del(NULL, inode);
4523 		goto no_delete;
4524 	}
4525 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4526 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
4527 
4528 	if (root->fs_info->log_root_recovering) {
4529 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4530 				 &BTRFS_I(inode)->runtime_flags));
4531 		goto no_delete;
4532 	}
4533 
4534 	if (inode->i_nlink > 0) {
4535 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4536 		goto no_delete;
4537 	}
4538 
4539 	ret = btrfs_commit_inode_delayed_inode(inode);
4540 	if (ret) {
4541 		btrfs_orphan_del(NULL, inode);
4542 		goto no_delete;
4543 	}
4544 
4545 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4546 	if (!rsv) {
4547 		btrfs_orphan_del(NULL, inode);
4548 		goto no_delete;
4549 	}
4550 	rsv->size = min_size;
4551 	rsv->failfast = 1;
4552 	global_rsv = &root->fs_info->global_block_rsv;
4553 
4554 	btrfs_i_size_write(inode, 0);
4555 
4556 	/*
4557 	 * This is a bit simpler than btrfs_truncate since we've already
4558 	 * reserved our space for our orphan item in the unlink, so we just
4559 	 * need to reserve some slack space in case we add bytes and update
4560 	 * inode item when doing the truncate.
4561 	 */
4562 	while (1) {
4563 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
4564 					     BTRFS_RESERVE_FLUSH_LIMIT);
4565 
4566 		/*
4567 		 * Try and steal from the global reserve since we will
4568 		 * likely not use this space anyway, we want to try as
4569 		 * hard as possible to get this to work.
4570 		 */
4571 		if (ret)
4572 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4573 
4574 		if (ret) {
4575 			btrfs_warn(root->fs_info,
4576 				"Could not get space for a delete, will truncate on mount %d",
4577 				ret);
4578 			btrfs_orphan_del(NULL, inode);
4579 			btrfs_free_block_rsv(root, rsv);
4580 			goto no_delete;
4581 		}
4582 
4583 		trans = btrfs_join_transaction(root);
4584 		if (IS_ERR(trans)) {
4585 			btrfs_orphan_del(NULL, inode);
4586 			btrfs_free_block_rsv(root, rsv);
4587 			goto no_delete;
4588 		}
4589 
4590 		trans->block_rsv = rsv;
4591 
4592 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4593 		if (ret != -ENOSPC)
4594 			break;
4595 
4596 		trans->block_rsv = &root->fs_info->trans_block_rsv;
4597 		btrfs_end_transaction(trans, root);
4598 		trans = NULL;
4599 		btrfs_btree_balance_dirty(root);
4600 	}
4601 
4602 	btrfs_free_block_rsv(root, rsv);
4603 
4604 	if (ret == 0) {
4605 		trans->block_rsv = root->orphan_block_rsv;
4606 		ret = btrfs_orphan_del(trans, inode);
4607 		BUG_ON(ret);
4608 	}
4609 
4610 	trans->block_rsv = &root->fs_info->trans_block_rsv;
4611 	if (!(root == root->fs_info->tree_root ||
4612 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4613 		btrfs_return_ino(root, btrfs_ino(inode));
4614 
4615 	btrfs_end_transaction(trans, root);
4616 	btrfs_btree_balance_dirty(root);
4617 no_delete:
4618 	btrfs_remove_delayed_node(inode);
4619 	clear_inode(inode);
4620 	return;
4621 }
4622 
4623 /*
4624  * this returns the key found in the dir entry in the location pointer.
4625  * If no dir entries were found, location->objectid is 0.
4626  */
4627 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4628 			       struct btrfs_key *location)
4629 {
4630 	const char *name = dentry->d_name.name;
4631 	int namelen = dentry->d_name.len;
4632 	struct btrfs_dir_item *di;
4633 	struct btrfs_path *path;
4634 	struct btrfs_root *root = BTRFS_I(dir)->root;
4635 	int ret = 0;
4636 
4637 	path = btrfs_alloc_path();
4638 	if (!path)
4639 		return -ENOMEM;
4640 
4641 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4642 				    namelen, 0);
4643 	if (IS_ERR(di))
4644 		ret = PTR_ERR(di);
4645 
4646 	if (IS_ERR_OR_NULL(di))
4647 		goto out_err;
4648 
4649 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4650 out:
4651 	btrfs_free_path(path);
4652 	return ret;
4653 out_err:
4654 	location->objectid = 0;
4655 	goto out;
4656 }
4657 
4658 /*
4659  * when we hit a tree root in a directory, the btrfs part of the inode
4660  * needs to be changed to reflect the root directory of the tree root.  This
4661  * is kind of like crossing a mount point.
4662  */
4663 static int fixup_tree_root_location(struct btrfs_root *root,
4664 				    struct inode *dir,
4665 				    struct dentry *dentry,
4666 				    struct btrfs_key *location,
4667 				    struct btrfs_root **sub_root)
4668 {
4669 	struct btrfs_path *path;
4670 	struct btrfs_root *new_root;
4671 	struct btrfs_root_ref *ref;
4672 	struct extent_buffer *leaf;
4673 	int ret;
4674 	int err = 0;
4675 
4676 	path = btrfs_alloc_path();
4677 	if (!path) {
4678 		err = -ENOMEM;
4679 		goto out;
4680 	}
4681 
4682 	err = -ENOENT;
4683 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4684 				  BTRFS_I(dir)->root->root_key.objectid,
4685 				  location->objectid);
4686 	if (ret) {
4687 		if (ret < 0)
4688 			err = ret;
4689 		goto out;
4690 	}
4691 
4692 	leaf = path->nodes[0];
4693 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4694 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4695 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4696 		goto out;
4697 
4698 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4699 				   (unsigned long)(ref + 1),
4700 				   dentry->d_name.len);
4701 	if (ret)
4702 		goto out;
4703 
4704 	btrfs_release_path(path);
4705 
4706 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4707 	if (IS_ERR(new_root)) {
4708 		err = PTR_ERR(new_root);
4709 		goto out;
4710 	}
4711 
4712 	*sub_root = new_root;
4713 	location->objectid = btrfs_root_dirid(&new_root->root_item);
4714 	location->type = BTRFS_INODE_ITEM_KEY;
4715 	location->offset = 0;
4716 	err = 0;
4717 out:
4718 	btrfs_free_path(path);
4719 	return err;
4720 }
4721 
4722 static void inode_tree_add(struct inode *inode)
4723 {
4724 	struct btrfs_root *root = BTRFS_I(inode)->root;
4725 	struct btrfs_inode *entry;
4726 	struct rb_node **p;
4727 	struct rb_node *parent;
4728 	u64 ino = btrfs_ino(inode);
4729 
4730 	if (inode_unhashed(inode))
4731 		return;
4732 again:
4733 	parent = NULL;
4734 	spin_lock(&root->inode_lock);
4735 	p = &root->inode_tree.rb_node;
4736 	while (*p) {
4737 		parent = *p;
4738 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
4739 
4740 		if (ino < btrfs_ino(&entry->vfs_inode))
4741 			p = &parent->rb_left;
4742 		else if (ino > btrfs_ino(&entry->vfs_inode))
4743 			p = &parent->rb_right;
4744 		else {
4745 			WARN_ON(!(entry->vfs_inode.i_state &
4746 				  (I_WILL_FREE | I_FREEING)));
4747 			rb_erase(parent, &root->inode_tree);
4748 			RB_CLEAR_NODE(parent);
4749 			spin_unlock(&root->inode_lock);
4750 			goto again;
4751 		}
4752 	}
4753 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4754 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4755 	spin_unlock(&root->inode_lock);
4756 }
4757 
4758 static void inode_tree_del(struct inode *inode)
4759 {
4760 	struct btrfs_root *root = BTRFS_I(inode)->root;
4761 	int empty = 0;
4762 
4763 	spin_lock(&root->inode_lock);
4764 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4765 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4766 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4767 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4768 	}
4769 	spin_unlock(&root->inode_lock);
4770 
4771 	/*
4772 	 * Free space cache has inodes in the tree root, but the tree root has a
4773 	 * root_refs of 0, so this could end up dropping the tree root as a
4774 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
4775 	 * make sure we don't drop it.
4776 	 */
4777 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4778 	    root != root->fs_info->tree_root) {
4779 		synchronize_srcu(&root->fs_info->subvol_srcu);
4780 		spin_lock(&root->inode_lock);
4781 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4782 		spin_unlock(&root->inode_lock);
4783 		if (empty)
4784 			btrfs_add_dead_root(root);
4785 	}
4786 }
4787 
4788 void btrfs_invalidate_inodes(struct btrfs_root *root)
4789 {
4790 	struct rb_node *node;
4791 	struct rb_node *prev;
4792 	struct btrfs_inode *entry;
4793 	struct inode *inode;
4794 	u64 objectid = 0;
4795 
4796 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4797 
4798 	spin_lock(&root->inode_lock);
4799 again:
4800 	node = root->inode_tree.rb_node;
4801 	prev = NULL;
4802 	while (node) {
4803 		prev = node;
4804 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4805 
4806 		if (objectid < btrfs_ino(&entry->vfs_inode))
4807 			node = node->rb_left;
4808 		else if (objectid > btrfs_ino(&entry->vfs_inode))
4809 			node = node->rb_right;
4810 		else
4811 			break;
4812 	}
4813 	if (!node) {
4814 		while (prev) {
4815 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4816 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4817 				node = prev;
4818 				break;
4819 			}
4820 			prev = rb_next(prev);
4821 		}
4822 	}
4823 	while (node) {
4824 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4825 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
4826 		inode = igrab(&entry->vfs_inode);
4827 		if (inode) {
4828 			spin_unlock(&root->inode_lock);
4829 			if (atomic_read(&inode->i_count) > 1)
4830 				d_prune_aliases(inode);
4831 			/*
4832 			 * btrfs_drop_inode will have it removed from
4833 			 * the inode cache when its usage count
4834 			 * hits zero.
4835 			 */
4836 			iput(inode);
4837 			cond_resched();
4838 			spin_lock(&root->inode_lock);
4839 			goto again;
4840 		}
4841 
4842 		if (cond_resched_lock(&root->inode_lock))
4843 			goto again;
4844 
4845 		node = rb_next(node);
4846 	}
4847 	spin_unlock(&root->inode_lock);
4848 }
4849 
4850 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4851 {
4852 	struct btrfs_iget_args *args = p;
4853 	inode->i_ino = args->ino;
4854 	BTRFS_I(inode)->root = args->root;
4855 	return 0;
4856 }
4857 
4858 static int btrfs_find_actor(struct inode *inode, void *opaque)
4859 {
4860 	struct btrfs_iget_args *args = opaque;
4861 	return args->ino == btrfs_ino(inode) &&
4862 		args->root == BTRFS_I(inode)->root;
4863 }
4864 
4865 static struct inode *btrfs_iget_locked(struct super_block *s,
4866 				       u64 objectid,
4867 				       struct btrfs_root *root)
4868 {
4869 	struct inode *inode;
4870 	struct btrfs_iget_args args;
4871 	args.ino = objectid;
4872 	args.root = root;
4873 
4874 	inode = iget5_locked(s, objectid, btrfs_find_actor,
4875 			     btrfs_init_locked_inode,
4876 			     (void *)&args);
4877 	return inode;
4878 }
4879 
4880 /* Get an inode object given its location and corresponding root.
4881  * Returns in *is_new if the inode was read from disk
4882  */
4883 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4884 			 struct btrfs_root *root, int *new)
4885 {
4886 	struct inode *inode;
4887 
4888 	inode = btrfs_iget_locked(s, location->objectid, root);
4889 	if (!inode)
4890 		return ERR_PTR(-ENOMEM);
4891 
4892 	if (inode->i_state & I_NEW) {
4893 		BTRFS_I(inode)->root = root;
4894 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4895 		btrfs_read_locked_inode(inode);
4896 		if (!is_bad_inode(inode)) {
4897 			inode_tree_add(inode);
4898 			unlock_new_inode(inode);
4899 			if (new)
4900 				*new = 1;
4901 		} else {
4902 			unlock_new_inode(inode);
4903 			iput(inode);
4904 			inode = ERR_PTR(-ESTALE);
4905 		}
4906 	}
4907 
4908 	return inode;
4909 }
4910 
4911 static struct inode *new_simple_dir(struct super_block *s,
4912 				    struct btrfs_key *key,
4913 				    struct btrfs_root *root)
4914 {
4915 	struct inode *inode = new_inode(s);
4916 
4917 	if (!inode)
4918 		return ERR_PTR(-ENOMEM);
4919 
4920 	BTRFS_I(inode)->root = root;
4921 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4922 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4923 
4924 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4925 	inode->i_op = &btrfs_dir_ro_inode_operations;
4926 	inode->i_fop = &simple_dir_operations;
4927 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4928 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4929 
4930 	return inode;
4931 }
4932 
4933 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4934 {
4935 	struct inode *inode;
4936 	struct btrfs_root *root = BTRFS_I(dir)->root;
4937 	struct btrfs_root *sub_root = root;
4938 	struct btrfs_key location;
4939 	int index;
4940 	int ret = 0;
4941 
4942 	if (dentry->d_name.len > BTRFS_NAME_LEN)
4943 		return ERR_PTR(-ENAMETOOLONG);
4944 
4945 	ret = btrfs_inode_by_name(dir, dentry, &location);
4946 	if (ret < 0)
4947 		return ERR_PTR(ret);
4948 
4949 	if (location.objectid == 0)
4950 		return NULL;
4951 
4952 	if (location.type == BTRFS_INODE_ITEM_KEY) {
4953 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4954 		return inode;
4955 	}
4956 
4957 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4958 
4959 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
4960 	ret = fixup_tree_root_location(root, dir, dentry,
4961 				       &location, &sub_root);
4962 	if (ret < 0) {
4963 		if (ret != -ENOENT)
4964 			inode = ERR_PTR(ret);
4965 		else
4966 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
4967 	} else {
4968 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4969 	}
4970 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4971 
4972 	if (!IS_ERR(inode) && root != sub_root) {
4973 		down_read(&root->fs_info->cleanup_work_sem);
4974 		if (!(inode->i_sb->s_flags & MS_RDONLY))
4975 			ret = btrfs_orphan_cleanup(sub_root);
4976 		up_read(&root->fs_info->cleanup_work_sem);
4977 		if (ret) {
4978 			iput(inode);
4979 			inode = ERR_PTR(ret);
4980 		}
4981 	}
4982 
4983 	return inode;
4984 }
4985 
4986 static int btrfs_dentry_delete(const struct dentry *dentry)
4987 {
4988 	struct btrfs_root *root;
4989 	struct inode *inode = dentry->d_inode;
4990 
4991 	if (!inode && !IS_ROOT(dentry))
4992 		inode = dentry->d_parent->d_inode;
4993 
4994 	if (inode) {
4995 		root = BTRFS_I(inode)->root;
4996 		if (btrfs_root_refs(&root->root_item) == 0)
4997 			return 1;
4998 
4999 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5000 			return 1;
5001 	}
5002 	return 0;
5003 }
5004 
5005 static void btrfs_dentry_release(struct dentry *dentry)
5006 {
5007 	if (dentry->d_fsdata)
5008 		kfree(dentry->d_fsdata);
5009 }
5010 
5011 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5012 				   unsigned int flags)
5013 {
5014 	struct dentry *ret;
5015 
5016 	ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
5017 	return ret;
5018 }
5019 
5020 unsigned char btrfs_filetype_table[] = {
5021 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5022 };
5023 
5024 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5025 {
5026 	struct inode *inode = file_inode(file);
5027 	struct btrfs_root *root = BTRFS_I(inode)->root;
5028 	struct btrfs_item *item;
5029 	struct btrfs_dir_item *di;
5030 	struct btrfs_key key;
5031 	struct btrfs_key found_key;
5032 	struct btrfs_path *path;
5033 	struct list_head ins_list;
5034 	struct list_head del_list;
5035 	int ret;
5036 	struct extent_buffer *leaf;
5037 	int slot;
5038 	unsigned char d_type;
5039 	int over = 0;
5040 	u32 di_cur;
5041 	u32 di_total;
5042 	u32 di_len;
5043 	int key_type = BTRFS_DIR_INDEX_KEY;
5044 	char tmp_name[32];
5045 	char *name_ptr;
5046 	int name_len;
5047 	int is_curr = 0;	/* ctx->pos points to the current index? */
5048 
5049 	/* FIXME, use a real flag for deciding about the key type */
5050 	if (root->fs_info->tree_root == root)
5051 		key_type = BTRFS_DIR_ITEM_KEY;
5052 
5053 	if (!dir_emit_dots(file, ctx))
5054 		return 0;
5055 
5056 	path = btrfs_alloc_path();
5057 	if (!path)
5058 		return -ENOMEM;
5059 
5060 	path->reada = 1;
5061 
5062 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5063 		INIT_LIST_HEAD(&ins_list);
5064 		INIT_LIST_HEAD(&del_list);
5065 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5066 	}
5067 
5068 	btrfs_set_key_type(&key, key_type);
5069 	key.offset = ctx->pos;
5070 	key.objectid = btrfs_ino(inode);
5071 
5072 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5073 	if (ret < 0)
5074 		goto err;
5075 
5076 	while (1) {
5077 		leaf = path->nodes[0];
5078 		slot = path->slots[0];
5079 		if (slot >= btrfs_header_nritems(leaf)) {
5080 			ret = btrfs_next_leaf(root, path);
5081 			if (ret < 0)
5082 				goto err;
5083 			else if (ret > 0)
5084 				break;
5085 			continue;
5086 		}
5087 
5088 		item = btrfs_item_nr(leaf, slot);
5089 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5090 
5091 		if (found_key.objectid != key.objectid)
5092 			break;
5093 		if (btrfs_key_type(&found_key) != key_type)
5094 			break;
5095 		if (found_key.offset < ctx->pos)
5096 			goto next;
5097 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5098 		    btrfs_should_delete_dir_index(&del_list,
5099 						  found_key.offset))
5100 			goto next;
5101 
5102 		ctx->pos = found_key.offset;
5103 		is_curr = 1;
5104 
5105 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5106 		di_cur = 0;
5107 		di_total = btrfs_item_size(leaf, item);
5108 
5109 		while (di_cur < di_total) {
5110 			struct btrfs_key location;
5111 
5112 			if (verify_dir_item(root, leaf, di))
5113 				break;
5114 
5115 			name_len = btrfs_dir_name_len(leaf, di);
5116 			if (name_len <= sizeof(tmp_name)) {
5117 				name_ptr = tmp_name;
5118 			} else {
5119 				name_ptr = kmalloc(name_len, GFP_NOFS);
5120 				if (!name_ptr) {
5121 					ret = -ENOMEM;
5122 					goto err;
5123 				}
5124 			}
5125 			read_extent_buffer(leaf, name_ptr,
5126 					   (unsigned long)(di + 1), name_len);
5127 
5128 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5129 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5130 
5131 
5132 			/* is this a reference to our own snapshot? If so
5133 			 * skip it.
5134 			 *
5135 			 * In contrast to old kernels, we insert the snapshot's
5136 			 * dir item and dir index after it has been created, so
5137 			 * we won't find a reference to our own snapshot. We
5138 			 * still keep the following code for backward
5139 			 * compatibility.
5140 			 */
5141 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5142 			    location.objectid == root->root_key.objectid) {
5143 				over = 0;
5144 				goto skip;
5145 			}
5146 			over = !dir_emit(ctx, name_ptr, name_len,
5147 				       location.objectid, d_type);
5148 
5149 skip:
5150 			if (name_ptr != tmp_name)
5151 				kfree(name_ptr);
5152 
5153 			if (over)
5154 				goto nopos;
5155 			di_len = btrfs_dir_name_len(leaf, di) +
5156 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5157 			di_cur += di_len;
5158 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5159 		}
5160 next:
5161 		path->slots[0]++;
5162 	}
5163 
5164 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5165 		if (is_curr)
5166 			ctx->pos++;
5167 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5168 		if (ret)
5169 			goto nopos;
5170 	}
5171 
5172 	/* Reached end of directory/root. Bump pos past the last item. */
5173 	ctx->pos++;
5174 
5175 	/*
5176 	 * Stop new entries from being returned after we return the last
5177 	 * entry.
5178 	 *
5179 	 * New directory entries are assigned a strictly increasing
5180 	 * offset.  This means that new entries created during readdir
5181 	 * are *guaranteed* to be seen in the future by that readdir.
5182 	 * This has broken buggy programs which operate on names as
5183 	 * they're returned by readdir.  Until we re-use freed offsets
5184 	 * we have this hack to stop new entries from being returned
5185 	 * under the assumption that they'll never reach this huge
5186 	 * offset.
5187 	 *
5188 	 * This is being careful not to overflow 32bit loff_t unless the
5189 	 * last entry requires it because doing so has broken 32bit apps
5190 	 * in the past.
5191 	 */
5192 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5193 		if (ctx->pos >= INT_MAX)
5194 			ctx->pos = LLONG_MAX;
5195 		else
5196 			ctx->pos = INT_MAX;
5197 	}
5198 nopos:
5199 	ret = 0;
5200 err:
5201 	if (key_type == BTRFS_DIR_INDEX_KEY)
5202 		btrfs_put_delayed_items(&ins_list, &del_list);
5203 	btrfs_free_path(path);
5204 	return ret;
5205 }
5206 
5207 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5208 {
5209 	struct btrfs_root *root = BTRFS_I(inode)->root;
5210 	struct btrfs_trans_handle *trans;
5211 	int ret = 0;
5212 	bool nolock = false;
5213 
5214 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5215 		return 0;
5216 
5217 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5218 		nolock = true;
5219 
5220 	if (wbc->sync_mode == WB_SYNC_ALL) {
5221 		if (nolock)
5222 			trans = btrfs_join_transaction_nolock(root);
5223 		else
5224 			trans = btrfs_join_transaction(root);
5225 		if (IS_ERR(trans))
5226 			return PTR_ERR(trans);
5227 		ret = btrfs_commit_transaction(trans, root);
5228 	}
5229 	return ret;
5230 }
5231 
5232 /*
5233  * This is somewhat expensive, updating the tree every time the
5234  * inode changes.  But, it is most likely to find the inode in cache.
5235  * FIXME, needs more benchmarking...there are no reasons other than performance
5236  * to keep or drop this code.
5237  */
5238 static int btrfs_dirty_inode(struct inode *inode)
5239 {
5240 	struct btrfs_root *root = BTRFS_I(inode)->root;
5241 	struct btrfs_trans_handle *trans;
5242 	int ret;
5243 
5244 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5245 		return 0;
5246 
5247 	trans = btrfs_join_transaction(root);
5248 	if (IS_ERR(trans))
5249 		return PTR_ERR(trans);
5250 
5251 	ret = btrfs_update_inode(trans, root, inode);
5252 	if (ret && ret == -ENOSPC) {
5253 		/* whoops, lets try again with the full transaction */
5254 		btrfs_end_transaction(trans, root);
5255 		trans = btrfs_start_transaction(root, 1);
5256 		if (IS_ERR(trans))
5257 			return PTR_ERR(trans);
5258 
5259 		ret = btrfs_update_inode(trans, root, inode);
5260 	}
5261 	btrfs_end_transaction(trans, root);
5262 	if (BTRFS_I(inode)->delayed_node)
5263 		btrfs_balance_delayed_items(root);
5264 
5265 	return ret;
5266 }
5267 
5268 /*
5269  * This is a copy of file_update_time.  We need this so we can return error on
5270  * ENOSPC for updating the inode in the case of file write and mmap writes.
5271  */
5272 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5273 			     int flags)
5274 {
5275 	struct btrfs_root *root = BTRFS_I(inode)->root;
5276 
5277 	if (btrfs_root_readonly(root))
5278 		return -EROFS;
5279 
5280 	if (flags & S_VERSION)
5281 		inode_inc_iversion(inode);
5282 	if (flags & S_CTIME)
5283 		inode->i_ctime = *now;
5284 	if (flags & S_MTIME)
5285 		inode->i_mtime = *now;
5286 	if (flags & S_ATIME)
5287 		inode->i_atime = *now;
5288 	return btrfs_dirty_inode(inode);
5289 }
5290 
5291 /*
5292  * find the highest existing sequence number in a directory
5293  * and then set the in-memory index_cnt variable to reflect
5294  * free sequence numbers
5295  */
5296 static int btrfs_set_inode_index_count(struct inode *inode)
5297 {
5298 	struct btrfs_root *root = BTRFS_I(inode)->root;
5299 	struct btrfs_key key, found_key;
5300 	struct btrfs_path *path;
5301 	struct extent_buffer *leaf;
5302 	int ret;
5303 
5304 	key.objectid = btrfs_ino(inode);
5305 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5306 	key.offset = (u64)-1;
5307 
5308 	path = btrfs_alloc_path();
5309 	if (!path)
5310 		return -ENOMEM;
5311 
5312 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5313 	if (ret < 0)
5314 		goto out;
5315 	/* FIXME: we should be able to handle this */
5316 	if (ret == 0)
5317 		goto out;
5318 	ret = 0;
5319 
5320 	/*
5321 	 * MAGIC NUMBER EXPLANATION:
5322 	 * since we search a directory based on f_pos we have to start at 2
5323 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5324 	 * else has to start at 2
5325 	 */
5326 	if (path->slots[0] == 0) {
5327 		BTRFS_I(inode)->index_cnt = 2;
5328 		goto out;
5329 	}
5330 
5331 	path->slots[0]--;
5332 
5333 	leaf = path->nodes[0];
5334 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5335 
5336 	if (found_key.objectid != btrfs_ino(inode) ||
5337 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5338 		BTRFS_I(inode)->index_cnt = 2;
5339 		goto out;
5340 	}
5341 
5342 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5343 out:
5344 	btrfs_free_path(path);
5345 	return ret;
5346 }
5347 
5348 /*
5349  * helper to find a free sequence number in a given directory.  This current
5350  * code is very simple, later versions will do smarter things in the btree
5351  */
5352 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5353 {
5354 	int ret = 0;
5355 
5356 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5357 		ret = btrfs_inode_delayed_dir_index_count(dir);
5358 		if (ret) {
5359 			ret = btrfs_set_inode_index_count(dir);
5360 			if (ret)
5361 				return ret;
5362 		}
5363 	}
5364 
5365 	*index = BTRFS_I(dir)->index_cnt;
5366 	BTRFS_I(dir)->index_cnt++;
5367 
5368 	return ret;
5369 }
5370 
5371 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5372 				     struct btrfs_root *root,
5373 				     struct inode *dir,
5374 				     const char *name, int name_len,
5375 				     u64 ref_objectid, u64 objectid,
5376 				     umode_t mode, u64 *index)
5377 {
5378 	struct inode *inode;
5379 	struct btrfs_inode_item *inode_item;
5380 	struct btrfs_key *location;
5381 	struct btrfs_path *path;
5382 	struct btrfs_inode_ref *ref;
5383 	struct btrfs_key key[2];
5384 	u32 sizes[2];
5385 	unsigned long ptr;
5386 	int ret;
5387 	int owner;
5388 
5389 	path = btrfs_alloc_path();
5390 	if (!path)
5391 		return ERR_PTR(-ENOMEM);
5392 
5393 	inode = new_inode(root->fs_info->sb);
5394 	if (!inode) {
5395 		btrfs_free_path(path);
5396 		return ERR_PTR(-ENOMEM);
5397 	}
5398 
5399 	/*
5400 	 * we have to initialize this early, so we can reclaim the inode
5401 	 * number if we fail afterwards in this function.
5402 	 */
5403 	inode->i_ino = objectid;
5404 
5405 	if (dir) {
5406 		trace_btrfs_inode_request(dir);
5407 
5408 		ret = btrfs_set_inode_index(dir, index);
5409 		if (ret) {
5410 			btrfs_free_path(path);
5411 			iput(inode);
5412 			return ERR_PTR(ret);
5413 		}
5414 	}
5415 	/*
5416 	 * index_cnt is ignored for everything but a dir,
5417 	 * btrfs_get_inode_index_count has an explanation for the magic
5418 	 * number
5419 	 */
5420 	BTRFS_I(inode)->index_cnt = 2;
5421 	BTRFS_I(inode)->root = root;
5422 	BTRFS_I(inode)->generation = trans->transid;
5423 	inode->i_generation = BTRFS_I(inode)->generation;
5424 
5425 	/*
5426 	 * We could have gotten an inode number from somebody who was fsynced
5427 	 * and then removed in this same transaction, so let's just set full
5428 	 * sync since it will be a full sync anyway and this will blow away the
5429 	 * old info in the log.
5430 	 */
5431 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5432 
5433 	if (S_ISDIR(mode))
5434 		owner = 0;
5435 	else
5436 		owner = 1;
5437 
5438 	key[0].objectid = objectid;
5439 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5440 	key[0].offset = 0;
5441 
5442 	/*
5443 	 * Start new inodes with an inode_ref. This is slightly more
5444 	 * efficient for small numbers of hard links since they will
5445 	 * be packed into one item. Extended refs will kick in if we
5446 	 * add more hard links than can fit in the ref item.
5447 	 */
5448 	key[1].objectid = objectid;
5449 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5450 	key[1].offset = ref_objectid;
5451 
5452 	sizes[0] = sizeof(struct btrfs_inode_item);
5453 	sizes[1] = name_len + sizeof(*ref);
5454 
5455 	path->leave_spinning = 1;
5456 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5457 	if (ret != 0)
5458 		goto fail;
5459 
5460 	inode_init_owner(inode, dir, mode);
5461 	inode_set_bytes(inode, 0);
5462 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5463 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5464 				  struct btrfs_inode_item);
5465 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5466 			     sizeof(*inode_item));
5467 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
5468 
5469 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5470 			     struct btrfs_inode_ref);
5471 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5472 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5473 	ptr = (unsigned long)(ref + 1);
5474 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
5475 
5476 	btrfs_mark_buffer_dirty(path->nodes[0]);
5477 	btrfs_free_path(path);
5478 
5479 	location = &BTRFS_I(inode)->location;
5480 	location->objectid = objectid;
5481 	location->offset = 0;
5482 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5483 
5484 	btrfs_inherit_iflags(inode, dir);
5485 
5486 	if (S_ISREG(mode)) {
5487 		if (btrfs_test_opt(root, NODATASUM))
5488 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5489 		if (btrfs_test_opt(root, NODATACOW))
5490 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5491 				BTRFS_INODE_NODATASUM;
5492 	}
5493 
5494 	insert_inode_hash(inode);
5495 	inode_tree_add(inode);
5496 
5497 	trace_btrfs_inode_new(inode);
5498 	btrfs_set_inode_last_trans(trans, inode);
5499 
5500 	btrfs_update_root_times(trans, root);
5501 
5502 	return inode;
5503 fail:
5504 	if (dir)
5505 		BTRFS_I(dir)->index_cnt--;
5506 	btrfs_free_path(path);
5507 	iput(inode);
5508 	return ERR_PTR(ret);
5509 }
5510 
5511 static inline u8 btrfs_inode_type(struct inode *inode)
5512 {
5513 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5514 }
5515 
5516 /*
5517  * utility function to add 'inode' into 'parent_inode' with
5518  * a give name and a given sequence number.
5519  * if 'add_backref' is true, also insert a backref from the
5520  * inode to the parent directory.
5521  */
5522 int btrfs_add_link(struct btrfs_trans_handle *trans,
5523 		   struct inode *parent_inode, struct inode *inode,
5524 		   const char *name, int name_len, int add_backref, u64 index)
5525 {
5526 	int ret = 0;
5527 	struct btrfs_key key;
5528 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5529 	u64 ino = btrfs_ino(inode);
5530 	u64 parent_ino = btrfs_ino(parent_inode);
5531 
5532 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5533 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5534 	} else {
5535 		key.objectid = ino;
5536 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5537 		key.offset = 0;
5538 	}
5539 
5540 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5541 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5542 					 key.objectid, root->root_key.objectid,
5543 					 parent_ino, index, name, name_len);
5544 	} else if (add_backref) {
5545 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5546 					     parent_ino, index);
5547 	}
5548 
5549 	/* Nothing to clean up yet */
5550 	if (ret)
5551 		return ret;
5552 
5553 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
5554 				    parent_inode, &key,
5555 				    btrfs_inode_type(inode), index);
5556 	if (ret == -EEXIST || ret == -EOVERFLOW)
5557 		goto fail_dir_item;
5558 	else if (ret) {
5559 		btrfs_abort_transaction(trans, root, ret);
5560 		return ret;
5561 	}
5562 
5563 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
5564 			   name_len * 2);
5565 	inode_inc_iversion(parent_inode);
5566 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5567 	ret = btrfs_update_inode(trans, root, parent_inode);
5568 	if (ret)
5569 		btrfs_abort_transaction(trans, root, ret);
5570 	return ret;
5571 
5572 fail_dir_item:
5573 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5574 		u64 local_index;
5575 		int err;
5576 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5577 				 key.objectid, root->root_key.objectid,
5578 				 parent_ino, &local_index, name, name_len);
5579 
5580 	} else if (add_backref) {
5581 		u64 local_index;
5582 		int err;
5583 
5584 		err = btrfs_del_inode_ref(trans, root, name, name_len,
5585 					  ino, parent_ino, &local_index);
5586 	}
5587 	return ret;
5588 }
5589 
5590 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5591 			    struct inode *dir, struct dentry *dentry,
5592 			    struct inode *inode, int backref, u64 index)
5593 {
5594 	int err = btrfs_add_link(trans, dir, inode,
5595 				 dentry->d_name.name, dentry->d_name.len,
5596 				 backref, index);
5597 	if (err > 0)
5598 		err = -EEXIST;
5599 	return err;
5600 }
5601 
5602 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5603 			umode_t mode, dev_t rdev)
5604 {
5605 	struct btrfs_trans_handle *trans;
5606 	struct btrfs_root *root = BTRFS_I(dir)->root;
5607 	struct inode *inode = NULL;
5608 	int err;
5609 	int drop_inode = 0;
5610 	u64 objectid;
5611 	u64 index = 0;
5612 
5613 	if (!new_valid_dev(rdev))
5614 		return -EINVAL;
5615 
5616 	/*
5617 	 * 2 for inode item and ref
5618 	 * 2 for dir items
5619 	 * 1 for xattr if selinux is on
5620 	 */
5621 	trans = btrfs_start_transaction(root, 5);
5622 	if (IS_ERR(trans))
5623 		return PTR_ERR(trans);
5624 
5625 	err = btrfs_find_free_ino(root, &objectid);
5626 	if (err)
5627 		goto out_unlock;
5628 
5629 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5630 				dentry->d_name.len, btrfs_ino(dir), objectid,
5631 				mode, &index);
5632 	if (IS_ERR(inode)) {
5633 		err = PTR_ERR(inode);
5634 		goto out_unlock;
5635 	}
5636 
5637 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5638 	if (err) {
5639 		drop_inode = 1;
5640 		goto out_unlock;
5641 	}
5642 
5643 	/*
5644 	* If the active LSM wants to access the inode during
5645 	* d_instantiate it needs these. Smack checks to see
5646 	* if the filesystem supports xattrs by looking at the
5647 	* ops vector.
5648 	*/
5649 
5650 	inode->i_op = &btrfs_special_inode_operations;
5651 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5652 	if (err)
5653 		drop_inode = 1;
5654 	else {
5655 		init_special_inode(inode, inode->i_mode, rdev);
5656 		btrfs_update_inode(trans, root, inode);
5657 		d_instantiate(dentry, inode);
5658 	}
5659 out_unlock:
5660 	btrfs_end_transaction(trans, root);
5661 	btrfs_btree_balance_dirty(root);
5662 	if (drop_inode) {
5663 		inode_dec_link_count(inode);
5664 		iput(inode);
5665 	}
5666 	return err;
5667 }
5668 
5669 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5670 			umode_t mode, bool excl)
5671 {
5672 	struct btrfs_trans_handle *trans;
5673 	struct btrfs_root *root = BTRFS_I(dir)->root;
5674 	struct inode *inode = NULL;
5675 	int drop_inode_on_err = 0;
5676 	int err;
5677 	u64 objectid;
5678 	u64 index = 0;
5679 
5680 	/*
5681 	 * 2 for inode item and ref
5682 	 * 2 for dir items
5683 	 * 1 for xattr if selinux is on
5684 	 */
5685 	trans = btrfs_start_transaction(root, 5);
5686 	if (IS_ERR(trans))
5687 		return PTR_ERR(trans);
5688 
5689 	err = btrfs_find_free_ino(root, &objectid);
5690 	if (err)
5691 		goto out_unlock;
5692 
5693 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5694 				dentry->d_name.len, btrfs_ino(dir), objectid,
5695 				mode, &index);
5696 	if (IS_ERR(inode)) {
5697 		err = PTR_ERR(inode);
5698 		goto out_unlock;
5699 	}
5700 	drop_inode_on_err = 1;
5701 
5702 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5703 	if (err)
5704 		goto out_unlock;
5705 
5706 	err = btrfs_update_inode(trans, root, inode);
5707 	if (err)
5708 		goto out_unlock;
5709 
5710 	/*
5711 	* If the active LSM wants to access the inode during
5712 	* d_instantiate it needs these. Smack checks to see
5713 	* if the filesystem supports xattrs by looking at the
5714 	* ops vector.
5715 	*/
5716 	inode->i_fop = &btrfs_file_operations;
5717 	inode->i_op = &btrfs_file_inode_operations;
5718 
5719 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5720 	if (err)
5721 		goto out_unlock;
5722 
5723 	inode->i_mapping->a_ops = &btrfs_aops;
5724 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5725 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5726 	d_instantiate(dentry, inode);
5727 
5728 out_unlock:
5729 	btrfs_end_transaction(trans, root);
5730 	if (err && drop_inode_on_err) {
5731 		inode_dec_link_count(inode);
5732 		iput(inode);
5733 	}
5734 	btrfs_btree_balance_dirty(root);
5735 	return err;
5736 }
5737 
5738 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5739 		      struct dentry *dentry)
5740 {
5741 	struct btrfs_trans_handle *trans;
5742 	struct btrfs_root *root = BTRFS_I(dir)->root;
5743 	struct inode *inode = old_dentry->d_inode;
5744 	u64 index;
5745 	int err;
5746 	int drop_inode = 0;
5747 
5748 	/* do not allow sys_link's with other subvols of the same device */
5749 	if (root->objectid != BTRFS_I(inode)->root->objectid)
5750 		return -EXDEV;
5751 
5752 	if (inode->i_nlink >= BTRFS_LINK_MAX)
5753 		return -EMLINK;
5754 
5755 	err = btrfs_set_inode_index(dir, &index);
5756 	if (err)
5757 		goto fail;
5758 
5759 	/*
5760 	 * 2 items for inode and inode ref
5761 	 * 2 items for dir items
5762 	 * 1 item for parent inode
5763 	 */
5764 	trans = btrfs_start_transaction(root, 5);
5765 	if (IS_ERR(trans)) {
5766 		err = PTR_ERR(trans);
5767 		goto fail;
5768 	}
5769 
5770 	btrfs_inc_nlink(inode);
5771 	inode_inc_iversion(inode);
5772 	inode->i_ctime = CURRENT_TIME;
5773 	ihold(inode);
5774 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5775 
5776 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5777 
5778 	if (err) {
5779 		drop_inode = 1;
5780 	} else {
5781 		struct dentry *parent = dentry->d_parent;
5782 		err = btrfs_update_inode(trans, root, inode);
5783 		if (err)
5784 			goto fail;
5785 		d_instantiate(dentry, inode);
5786 		btrfs_log_new_name(trans, inode, NULL, parent);
5787 	}
5788 
5789 	btrfs_end_transaction(trans, root);
5790 fail:
5791 	if (drop_inode) {
5792 		inode_dec_link_count(inode);
5793 		iput(inode);
5794 	}
5795 	btrfs_btree_balance_dirty(root);
5796 	return err;
5797 }
5798 
5799 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5800 {
5801 	struct inode *inode = NULL;
5802 	struct btrfs_trans_handle *trans;
5803 	struct btrfs_root *root = BTRFS_I(dir)->root;
5804 	int err = 0;
5805 	int drop_on_err = 0;
5806 	u64 objectid = 0;
5807 	u64 index = 0;
5808 
5809 	/*
5810 	 * 2 items for inode and ref
5811 	 * 2 items for dir items
5812 	 * 1 for xattr if selinux is on
5813 	 */
5814 	trans = btrfs_start_transaction(root, 5);
5815 	if (IS_ERR(trans))
5816 		return PTR_ERR(trans);
5817 
5818 	err = btrfs_find_free_ino(root, &objectid);
5819 	if (err)
5820 		goto out_fail;
5821 
5822 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5823 				dentry->d_name.len, btrfs_ino(dir), objectid,
5824 				S_IFDIR | mode, &index);
5825 	if (IS_ERR(inode)) {
5826 		err = PTR_ERR(inode);
5827 		goto out_fail;
5828 	}
5829 
5830 	drop_on_err = 1;
5831 
5832 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5833 	if (err)
5834 		goto out_fail;
5835 
5836 	inode->i_op = &btrfs_dir_inode_operations;
5837 	inode->i_fop = &btrfs_dir_file_operations;
5838 
5839 	btrfs_i_size_write(inode, 0);
5840 	err = btrfs_update_inode(trans, root, inode);
5841 	if (err)
5842 		goto out_fail;
5843 
5844 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5845 			     dentry->d_name.len, 0, index);
5846 	if (err)
5847 		goto out_fail;
5848 
5849 	d_instantiate(dentry, inode);
5850 	drop_on_err = 0;
5851 
5852 out_fail:
5853 	btrfs_end_transaction(trans, root);
5854 	if (drop_on_err)
5855 		iput(inode);
5856 	btrfs_btree_balance_dirty(root);
5857 	return err;
5858 }
5859 
5860 /* helper for btfs_get_extent.  Given an existing extent in the tree,
5861  * and an extent that you want to insert, deal with overlap and insert
5862  * the new extent into the tree.
5863  */
5864 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5865 				struct extent_map *existing,
5866 				struct extent_map *em,
5867 				u64 map_start, u64 map_len)
5868 {
5869 	u64 start_diff;
5870 
5871 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5872 	start_diff = map_start - em->start;
5873 	em->start = map_start;
5874 	em->len = map_len;
5875 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5876 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5877 		em->block_start += start_diff;
5878 		em->block_len -= start_diff;
5879 	}
5880 	return add_extent_mapping(em_tree, em, 0);
5881 }
5882 
5883 static noinline int uncompress_inline(struct btrfs_path *path,
5884 				      struct inode *inode, struct page *page,
5885 				      size_t pg_offset, u64 extent_offset,
5886 				      struct btrfs_file_extent_item *item)
5887 {
5888 	int ret;
5889 	struct extent_buffer *leaf = path->nodes[0];
5890 	char *tmp;
5891 	size_t max_size;
5892 	unsigned long inline_size;
5893 	unsigned long ptr;
5894 	int compress_type;
5895 
5896 	WARN_ON(pg_offset != 0);
5897 	compress_type = btrfs_file_extent_compression(leaf, item);
5898 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
5899 	inline_size = btrfs_file_extent_inline_item_len(leaf,
5900 					btrfs_item_nr(leaf, path->slots[0]));
5901 	tmp = kmalloc(inline_size, GFP_NOFS);
5902 	if (!tmp)
5903 		return -ENOMEM;
5904 	ptr = btrfs_file_extent_inline_start(item);
5905 
5906 	read_extent_buffer(leaf, tmp, ptr, inline_size);
5907 
5908 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5909 	ret = btrfs_decompress(compress_type, tmp, page,
5910 			       extent_offset, inline_size, max_size);
5911 	if (ret) {
5912 		char *kaddr = kmap_atomic(page);
5913 		unsigned long copy_size = min_t(u64,
5914 				  PAGE_CACHE_SIZE - pg_offset,
5915 				  max_size - extent_offset);
5916 		memset(kaddr + pg_offset, 0, copy_size);
5917 		kunmap_atomic(kaddr);
5918 	}
5919 	kfree(tmp);
5920 	return 0;
5921 }
5922 
5923 /*
5924  * a bit scary, this does extent mapping from logical file offset to the disk.
5925  * the ugly parts come from merging extents from the disk with the in-ram
5926  * representation.  This gets more complex because of the data=ordered code,
5927  * where the in-ram extents might be locked pending data=ordered completion.
5928  *
5929  * This also copies inline extents directly into the page.
5930  */
5931 
5932 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5933 				    size_t pg_offset, u64 start, u64 len,
5934 				    int create)
5935 {
5936 	int ret;
5937 	int err = 0;
5938 	u64 bytenr;
5939 	u64 extent_start = 0;
5940 	u64 extent_end = 0;
5941 	u64 objectid = btrfs_ino(inode);
5942 	u32 found_type;
5943 	struct btrfs_path *path = NULL;
5944 	struct btrfs_root *root = BTRFS_I(inode)->root;
5945 	struct btrfs_file_extent_item *item;
5946 	struct extent_buffer *leaf;
5947 	struct btrfs_key found_key;
5948 	struct extent_map *em = NULL;
5949 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5950 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5951 	struct btrfs_trans_handle *trans = NULL;
5952 	int compress_type;
5953 
5954 again:
5955 	read_lock(&em_tree->lock);
5956 	em = lookup_extent_mapping(em_tree, start, len);
5957 	if (em)
5958 		em->bdev = root->fs_info->fs_devices->latest_bdev;
5959 	read_unlock(&em_tree->lock);
5960 
5961 	if (em) {
5962 		if (em->start > start || em->start + em->len <= start)
5963 			free_extent_map(em);
5964 		else if (em->block_start == EXTENT_MAP_INLINE && page)
5965 			free_extent_map(em);
5966 		else
5967 			goto out;
5968 	}
5969 	em = alloc_extent_map();
5970 	if (!em) {
5971 		err = -ENOMEM;
5972 		goto out;
5973 	}
5974 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5975 	em->start = EXTENT_MAP_HOLE;
5976 	em->orig_start = EXTENT_MAP_HOLE;
5977 	em->len = (u64)-1;
5978 	em->block_len = (u64)-1;
5979 
5980 	if (!path) {
5981 		path = btrfs_alloc_path();
5982 		if (!path) {
5983 			err = -ENOMEM;
5984 			goto out;
5985 		}
5986 		/*
5987 		 * Chances are we'll be called again, so go ahead and do
5988 		 * readahead
5989 		 */
5990 		path->reada = 1;
5991 	}
5992 
5993 	ret = btrfs_lookup_file_extent(trans, root, path,
5994 				       objectid, start, trans != NULL);
5995 	if (ret < 0) {
5996 		err = ret;
5997 		goto out;
5998 	}
5999 
6000 	if (ret != 0) {
6001 		if (path->slots[0] == 0)
6002 			goto not_found;
6003 		path->slots[0]--;
6004 	}
6005 
6006 	leaf = path->nodes[0];
6007 	item = btrfs_item_ptr(leaf, path->slots[0],
6008 			      struct btrfs_file_extent_item);
6009 	/* are we inside the extent that was found? */
6010 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6011 	found_type = btrfs_key_type(&found_key);
6012 	if (found_key.objectid != objectid ||
6013 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6014 		goto not_found;
6015 	}
6016 
6017 	found_type = btrfs_file_extent_type(leaf, item);
6018 	extent_start = found_key.offset;
6019 	compress_type = btrfs_file_extent_compression(leaf, item);
6020 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6021 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6022 		extent_end = extent_start +
6023 		       btrfs_file_extent_num_bytes(leaf, item);
6024 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6025 		size_t size;
6026 		size = btrfs_file_extent_inline_len(leaf, item);
6027 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6028 	}
6029 
6030 	if (start >= extent_end) {
6031 		path->slots[0]++;
6032 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6033 			ret = btrfs_next_leaf(root, path);
6034 			if (ret < 0) {
6035 				err = ret;
6036 				goto out;
6037 			}
6038 			if (ret > 0)
6039 				goto not_found;
6040 			leaf = path->nodes[0];
6041 		}
6042 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6043 		if (found_key.objectid != objectid ||
6044 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6045 			goto not_found;
6046 		if (start + len <= found_key.offset)
6047 			goto not_found;
6048 		em->start = start;
6049 		em->orig_start = start;
6050 		em->len = found_key.offset - start;
6051 		goto not_found_em;
6052 	}
6053 
6054 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
6055 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6056 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6057 		em->start = extent_start;
6058 		em->len = extent_end - extent_start;
6059 		em->orig_start = extent_start -
6060 				 btrfs_file_extent_offset(leaf, item);
6061 		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6062 								      item);
6063 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6064 		if (bytenr == 0) {
6065 			em->block_start = EXTENT_MAP_HOLE;
6066 			goto insert;
6067 		}
6068 		if (compress_type != BTRFS_COMPRESS_NONE) {
6069 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6070 			em->compress_type = compress_type;
6071 			em->block_start = bytenr;
6072 			em->block_len = em->orig_block_len;
6073 		} else {
6074 			bytenr += btrfs_file_extent_offset(leaf, item);
6075 			em->block_start = bytenr;
6076 			em->block_len = em->len;
6077 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6078 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6079 		}
6080 		goto insert;
6081 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6082 		unsigned long ptr;
6083 		char *map;
6084 		size_t size;
6085 		size_t extent_offset;
6086 		size_t copy_size;
6087 
6088 		em->block_start = EXTENT_MAP_INLINE;
6089 		if (!page || create) {
6090 			em->start = extent_start;
6091 			em->len = extent_end - extent_start;
6092 			goto out;
6093 		}
6094 
6095 		size = btrfs_file_extent_inline_len(leaf, item);
6096 		extent_offset = page_offset(page) + pg_offset - extent_start;
6097 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6098 				size - extent_offset);
6099 		em->start = extent_start + extent_offset;
6100 		em->len = ALIGN(copy_size, root->sectorsize);
6101 		em->orig_block_len = em->len;
6102 		em->orig_start = em->start;
6103 		if (compress_type) {
6104 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6105 			em->compress_type = compress_type;
6106 		}
6107 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6108 		if (create == 0 && !PageUptodate(page)) {
6109 			if (btrfs_file_extent_compression(leaf, item) !=
6110 			    BTRFS_COMPRESS_NONE) {
6111 				ret = uncompress_inline(path, inode, page,
6112 							pg_offset,
6113 							extent_offset, item);
6114 				BUG_ON(ret); /* -ENOMEM */
6115 			} else {
6116 				map = kmap(page);
6117 				read_extent_buffer(leaf, map + pg_offset, ptr,
6118 						   copy_size);
6119 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6120 					memset(map + pg_offset + copy_size, 0,
6121 					       PAGE_CACHE_SIZE - pg_offset -
6122 					       copy_size);
6123 				}
6124 				kunmap(page);
6125 			}
6126 			flush_dcache_page(page);
6127 		} else if (create && PageUptodate(page)) {
6128 			BUG();
6129 			if (!trans) {
6130 				kunmap(page);
6131 				free_extent_map(em);
6132 				em = NULL;
6133 
6134 				btrfs_release_path(path);
6135 				trans = btrfs_join_transaction(root);
6136 
6137 				if (IS_ERR(trans))
6138 					return ERR_CAST(trans);
6139 				goto again;
6140 			}
6141 			map = kmap(page);
6142 			write_extent_buffer(leaf, map + pg_offset, ptr,
6143 					    copy_size);
6144 			kunmap(page);
6145 			btrfs_mark_buffer_dirty(leaf);
6146 		}
6147 		set_extent_uptodate(io_tree, em->start,
6148 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6149 		goto insert;
6150 	} else {
6151 		WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6152 	}
6153 not_found:
6154 	em->start = start;
6155 	em->orig_start = start;
6156 	em->len = len;
6157 not_found_em:
6158 	em->block_start = EXTENT_MAP_HOLE;
6159 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6160 insert:
6161 	btrfs_release_path(path);
6162 	if (em->start > start || extent_map_end(em) <= start) {
6163 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6164 			(unsigned long long)em->start,
6165 			(unsigned long long)em->len,
6166 			(unsigned long long)start,
6167 			(unsigned long long)len);
6168 		err = -EIO;
6169 		goto out;
6170 	}
6171 
6172 	err = 0;
6173 	write_lock(&em_tree->lock);
6174 	ret = add_extent_mapping(em_tree, em, 0);
6175 	/* it is possible that someone inserted the extent into the tree
6176 	 * while we had the lock dropped.  It is also possible that
6177 	 * an overlapping map exists in the tree
6178 	 */
6179 	if (ret == -EEXIST) {
6180 		struct extent_map *existing;
6181 
6182 		ret = 0;
6183 
6184 		existing = lookup_extent_mapping(em_tree, start, len);
6185 		if (existing && (existing->start > start ||
6186 		    existing->start + existing->len <= start)) {
6187 			free_extent_map(existing);
6188 			existing = NULL;
6189 		}
6190 		if (!existing) {
6191 			existing = lookup_extent_mapping(em_tree, em->start,
6192 							 em->len);
6193 			if (existing) {
6194 				err = merge_extent_mapping(em_tree, existing,
6195 							   em, start,
6196 							   root->sectorsize);
6197 				free_extent_map(existing);
6198 				if (err) {
6199 					free_extent_map(em);
6200 					em = NULL;
6201 				}
6202 			} else {
6203 				err = -EIO;
6204 				free_extent_map(em);
6205 				em = NULL;
6206 			}
6207 		} else {
6208 			free_extent_map(em);
6209 			em = existing;
6210 			err = 0;
6211 		}
6212 	}
6213 	write_unlock(&em_tree->lock);
6214 out:
6215 
6216 	if (em)
6217 		trace_btrfs_get_extent(root, em);
6218 
6219 	if (path)
6220 		btrfs_free_path(path);
6221 	if (trans) {
6222 		ret = btrfs_end_transaction(trans, root);
6223 		if (!err)
6224 			err = ret;
6225 	}
6226 	if (err) {
6227 		free_extent_map(em);
6228 		return ERR_PTR(err);
6229 	}
6230 	BUG_ON(!em); /* Error is always set */
6231 	return em;
6232 }
6233 
6234 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6235 					   size_t pg_offset, u64 start, u64 len,
6236 					   int create)
6237 {
6238 	struct extent_map *em;
6239 	struct extent_map *hole_em = NULL;
6240 	u64 range_start = start;
6241 	u64 end;
6242 	u64 found;
6243 	u64 found_end;
6244 	int err = 0;
6245 
6246 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6247 	if (IS_ERR(em))
6248 		return em;
6249 	if (em) {
6250 		/*
6251 		 * if our em maps to
6252 		 * -  a hole or
6253 		 * -  a pre-alloc extent,
6254 		 * there might actually be delalloc bytes behind it.
6255 		 */
6256 		if (em->block_start != EXTENT_MAP_HOLE &&
6257 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6258 			return em;
6259 		else
6260 			hole_em = em;
6261 	}
6262 
6263 	/* check to see if we've wrapped (len == -1 or similar) */
6264 	end = start + len;
6265 	if (end < start)
6266 		end = (u64)-1;
6267 	else
6268 		end -= 1;
6269 
6270 	em = NULL;
6271 
6272 	/* ok, we didn't find anything, lets look for delalloc */
6273 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6274 				 end, len, EXTENT_DELALLOC, 1);
6275 	found_end = range_start + found;
6276 	if (found_end < range_start)
6277 		found_end = (u64)-1;
6278 
6279 	/*
6280 	 * we didn't find anything useful, return
6281 	 * the original results from get_extent()
6282 	 */
6283 	if (range_start > end || found_end <= start) {
6284 		em = hole_em;
6285 		hole_em = NULL;
6286 		goto out;
6287 	}
6288 
6289 	/* adjust the range_start to make sure it doesn't
6290 	 * go backwards from the start they passed in
6291 	 */
6292 	range_start = max(start,range_start);
6293 	found = found_end - range_start;
6294 
6295 	if (found > 0) {
6296 		u64 hole_start = start;
6297 		u64 hole_len = len;
6298 
6299 		em = alloc_extent_map();
6300 		if (!em) {
6301 			err = -ENOMEM;
6302 			goto out;
6303 		}
6304 		/*
6305 		 * when btrfs_get_extent can't find anything it
6306 		 * returns one huge hole
6307 		 *
6308 		 * make sure what it found really fits our range, and
6309 		 * adjust to make sure it is based on the start from
6310 		 * the caller
6311 		 */
6312 		if (hole_em) {
6313 			u64 calc_end = extent_map_end(hole_em);
6314 
6315 			if (calc_end <= start || (hole_em->start > end)) {
6316 				free_extent_map(hole_em);
6317 				hole_em = NULL;
6318 			} else {
6319 				hole_start = max(hole_em->start, start);
6320 				hole_len = calc_end - hole_start;
6321 			}
6322 		}
6323 		em->bdev = NULL;
6324 		if (hole_em && range_start > hole_start) {
6325 			/* our hole starts before our delalloc, so we
6326 			 * have to return just the parts of the hole
6327 			 * that go until  the delalloc starts
6328 			 */
6329 			em->len = min(hole_len,
6330 				      range_start - hole_start);
6331 			em->start = hole_start;
6332 			em->orig_start = hole_start;
6333 			/*
6334 			 * don't adjust block start at all,
6335 			 * it is fixed at EXTENT_MAP_HOLE
6336 			 */
6337 			em->block_start = hole_em->block_start;
6338 			em->block_len = hole_len;
6339 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6340 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6341 		} else {
6342 			em->start = range_start;
6343 			em->len = found;
6344 			em->orig_start = range_start;
6345 			em->block_start = EXTENT_MAP_DELALLOC;
6346 			em->block_len = found;
6347 		}
6348 	} else if (hole_em) {
6349 		return hole_em;
6350 	}
6351 out:
6352 
6353 	free_extent_map(hole_em);
6354 	if (err) {
6355 		free_extent_map(em);
6356 		return ERR_PTR(err);
6357 	}
6358 	return em;
6359 }
6360 
6361 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6362 						  u64 start, u64 len)
6363 {
6364 	struct btrfs_root *root = BTRFS_I(inode)->root;
6365 	struct btrfs_trans_handle *trans;
6366 	struct extent_map *em;
6367 	struct btrfs_key ins;
6368 	u64 alloc_hint;
6369 	int ret;
6370 
6371 	trans = btrfs_join_transaction(root);
6372 	if (IS_ERR(trans))
6373 		return ERR_CAST(trans);
6374 
6375 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6376 
6377 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6378 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
6379 				   alloc_hint, &ins, 1);
6380 	if (ret) {
6381 		em = ERR_PTR(ret);
6382 		goto out;
6383 	}
6384 
6385 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6386 			      ins.offset, ins.offset, ins.offset, 0);
6387 	if (IS_ERR(em))
6388 		goto out;
6389 
6390 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6391 					   ins.offset, ins.offset, 0);
6392 	if (ret) {
6393 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6394 		em = ERR_PTR(ret);
6395 	}
6396 out:
6397 	btrfs_end_transaction(trans, root);
6398 	return em;
6399 }
6400 
6401 /*
6402  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6403  * block must be cow'd
6404  */
6405 noinline int can_nocow_extent(struct btrfs_trans_handle *trans,
6406 			      struct inode *inode, u64 offset, u64 *len,
6407 			      u64 *orig_start, u64 *orig_block_len,
6408 			      u64 *ram_bytes)
6409 {
6410 	struct btrfs_path *path;
6411 	int ret;
6412 	struct extent_buffer *leaf;
6413 	struct btrfs_root *root = BTRFS_I(inode)->root;
6414 	struct btrfs_file_extent_item *fi;
6415 	struct btrfs_key key;
6416 	u64 disk_bytenr;
6417 	u64 backref_offset;
6418 	u64 extent_end;
6419 	u64 num_bytes;
6420 	int slot;
6421 	int found_type;
6422 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6423 	path = btrfs_alloc_path();
6424 	if (!path)
6425 		return -ENOMEM;
6426 
6427 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
6428 				       offset, 0);
6429 	if (ret < 0)
6430 		goto out;
6431 
6432 	slot = path->slots[0];
6433 	if (ret == 1) {
6434 		if (slot == 0) {
6435 			/* can't find the item, must cow */
6436 			ret = 0;
6437 			goto out;
6438 		}
6439 		slot--;
6440 	}
6441 	ret = 0;
6442 	leaf = path->nodes[0];
6443 	btrfs_item_key_to_cpu(leaf, &key, slot);
6444 	if (key.objectid != btrfs_ino(inode) ||
6445 	    key.type != BTRFS_EXTENT_DATA_KEY) {
6446 		/* not our file or wrong item type, must cow */
6447 		goto out;
6448 	}
6449 
6450 	if (key.offset > offset) {
6451 		/* Wrong offset, must cow */
6452 		goto out;
6453 	}
6454 
6455 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6456 	found_type = btrfs_file_extent_type(leaf, fi);
6457 	if (found_type != BTRFS_FILE_EXTENT_REG &&
6458 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6459 		/* not a regular extent, must cow */
6460 		goto out;
6461 	}
6462 
6463 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6464 		goto out;
6465 
6466 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6467 	if (disk_bytenr == 0)
6468 		goto out;
6469 
6470 	if (btrfs_file_extent_compression(leaf, fi) ||
6471 	    btrfs_file_extent_encryption(leaf, fi) ||
6472 	    btrfs_file_extent_other_encoding(leaf, fi))
6473 		goto out;
6474 
6475 	backref_offset = btrfs_file_extent_offset(leaf, fi);
6476 
6477 	if (orig_start) {
6478 		*orig_start = key.offset - backref_offset;
6479 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6480 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6481 	}
6482 
6483 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6484 
6485 	if (btrfs_extent_readonly(root, disk_bytenr))
6486 		goto out;
6487 
6488 	/*
6489 	 * look for other files referencing this extent, if we
6490 	 * find any we must cow
6491 	 */
6492 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6493 				  key.offset - backref_offset, disk_bytenr))
6494 		goto out;
6495 
6496 	/*
6497 	 * adjust disk_bytenr and num_bytes to cover just the bytes
6498 	 * in this extent we are about to write.  If there
6499 	 * are any csums in that range we have to cow in order
6500 	 * to keep the csums correct
6501 	 */
6502 	disk_bytenr += backref_offset;
6503 	disk_bytenr += offset - key.offset;
6504 	num_bytes = min(offset + *len, extent_end) - offset;
6505 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6506 				goto out;
6507 	/*
6508 	 * all of the above have passed, it is safe to overwrite this extent
6509 	 * without cow
6510 	 */
6511 	*len = num_bytes;
6512 	ret = 1;
6513 out:
6514 	btrfs_free_path(path);
6515 	return ret;
6516 }
6517 
6518 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6519 			      struct extent_state **cached_state, int writing)
6520 {
6521 	struct btrfs_ordered_extent *ordered;
6522 	int ret = 0;
6523 
6524 	while (1) {
6525 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6526 				 0, cached_state);
6527 		/*
6528 		 * We're concerned with the entire range that we're going to be
6529 		 * doing DIO to, so we need to make sure theres no ordered
6530 		 * extents in this range.
6531 		 */
6532 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6533 						     lockend - lockstart + 1);
6534 
6535 		/*
6536 		 * We need to make sure there are no buffered pages in this
6537 		 * range either, we could have raced between the invalidate in
6538 		 * generic_file_direct_write and locking the extent.  The
6539 		 * invalidate needs to happen so that reads after a write do not
6540 		 * get stale data.
6541 		 */
6542 		if (!ordered && (!writing ||
6543 		    !test_range_bit(&BTRFS_I(inode)->io_tree,
6544 				    lockstart, lockend, EXTENT_UPTODATE, 0,
6545 				    *cached_state)))
6546 			break;
6547 
6548 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6549 				     cached_state, GFP_NOFS);
6550 
6551 		if (ordered) {
6552 			btrfs_start_ordered_extent(inode, ordered, 1);
6553 			btrfs_put_ordered_extent(ordered);
6554 		} else {
6555 			/* Screw you mmap */
6556 			ret = filemap_write_and_wait_range(inode->i_mapping,
6557 							   lockstart,
6558 							   lockend);
6559 			if (ret)
6560 				break;
6561 
6562 			/*
6563 			 * If we found a page that couldn't be invalidated just
6564 			 * fall back to buffered.
6565 			 */
6566 			ret = invalidate_inode_pages2_range(inode->i_mapping,
6567 					lockstart >> PAGE_CACHE_SHIFT,
6568 					lockend >> PAGE_CACHE_SHIFT);
6569 			if (ret)
6570 				break;
6571 		}
6572 
6573 		cond_resched();
6574 	}
6575 
6576 	return ret;
6577 }
6578 
6579 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6580 					   u64 len, u64 orig_start,
6581 					   u64 block_start, u64 block_len,
6582 					   u64 orig_block_len, u64 ram_bytes,
6583 					   int type)
6584 {
6585 	struct extent_map_tree *em_tree;
6586 	struct extent_map *em;
6587 	struct btrfs_root *root = BTRFS_I(inode)->root;
6588 	int ret;
6589 
6590 	em_tree = &BTRFS_I(inode)->extent_tree;
6591 	em = alloc_extent_map();
6592 	if (!em)
6593 		return ERR_PTR(-ENOMEM);
6594 
6595 	em->start = start;
6596 	em->orig_start = orig_start;
6597 	em->mod_start = start;
6598 	em->mod_len = len;
6599 	em->len = len;
6600 	em->block_len = block_len;
6601 	em->block_start = block_start;
6602 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6603 	em->orig_block_len = orig_block_len;
6604 	em->ram_bytes = ram_bytes;
6605 	em->generation = -1;
6606 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
6607 	if (type == BTRFS_ORDERED_PREALLOC)
6608 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
6609 
6610 	do {
6611 		btrfs_drop_extent_cache(inode, em->start,
6612 				em->start + em->len - 1, 0);
6613 		write_lock(&em_tree->lock);
6614 		ret = add_extent_mapping(em_tree, em, 1);
6615 		write_unlock(&em_tree->lock);
6616 	} while (ret == -EEXIST);
6617 
6618 	if (ret) {
6619 		free_extent_map(em);
6620 		return ERR_PTR(ret);
6621 	}
6622 
6623 	return em;
6624 }
6625 
6626 
6627 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6628 				   struct buffer_head *bh_result, int create)
6629 {
6630 	struct extent_map *em;
6631 	struct btrfs_root *root = BTRFS_I(inode)->root;
6632 	struct extent_state *cached_state = NULL;
6633 	u64 start = iblock << inode->i_blkbits;
6634 	u64 lockstart, lockend;
6635 	u64 len = bh_result->b_size;
6636 	struct btrfs_trans_handle *trans;
6637 	int unlock_bits = EXTENT_LOCKED;
6638 	int ret = 0;
6639 
6640 	if (create)
6641 		unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6642 	else
6643 		len = min_t(u64, len, root->sectorsize);
6644 
6645 	lockstart = start;
6646 	lockend = start + len - 1;
6647 
6648 	/*
6649 	 * If this errors out it's because we couldn't invalidate pagecache for
6650 	 * this range and we need to fallback to buffered.
6651 	 */
6652 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6653 		return -ENOTBLK;
6654 
6655 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6656 	if (IS_ERR(em)) {
6657 		ret = PTR_ERR(em);
6658 		goto unlock_err;
6659 	}
6660 
6661 	/*
6662 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6663 	 * io.  INLINE is special, and we could probably kludge it in here, but
6664 	 * it's still buffered so for safety lets just fall back to the generic
6665 	 * buffered path.
6666 	 *
6667 	 * For COMPRESSED we _have_ to read the entire extent in so we can
6668 	 * decompress it, so there will be buffering required no matter what we
6669 	 * do, so go ahead and fallback to buffered.
6670 	 *
6671 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6672 	 * to buffered IO.  Don't blame me, this is the price we pay for using
6673 	 * the generic code.
6674 	 */
6675 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6676 	    em->block_start == EXTENT_MAP_INLINE) {
6677 		free_extent_map(em);
6678 		ret = -ENOTBLK;
6679 		goto unlock_err;
6680 	}
6681 
6682 	/* Just a good old fashioned hole, return */
6683 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6684 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6685 		free_extent_map(em);
6686 		goto unlock_err;
6687 	}
6688 
6689 	/*
6690 	 * We don't allocate a new extent in the following cases
6691 	 *
6692 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
6693 	 * existing extent.
6694 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
6695 	 * just use the extent.
6696 	 *
6697 	 */
6698 	if (!create) {
6699 		len = min(len, em->len - (start - em->start));
6700 		lockstart = start + len;
6701 		goto unlock;
6702 	}
6703 
6704 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6705 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6706 	     em->block_start != EXTENT_MAP_HOLE)) {
6707 		int type;
6708 		int ret;
6709 		u64 block_start, orig_start, orig_block_len, ram_bytes;
6710 
6711 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6712 			type = BTRFS_ORDERED_PREALLOC;
6713 		else
6714 			type = BTRFS_ORDERED_NOCOW;
6715 		len = min(len, em->len - (start - em->start));
6716 		block_start = em->block_start + (start - em->start);
6717 
6718 		/*
6719 		 * we're not going to log anything, but we do need
6720 		 * to make sure the current transaction stays open
6721 		 * while we look for nocow cross refs
6722 		 */
6723 		trans = btrfs_join_transaction(root);
6724 		if (IS_ERR(trans))
6725 			goto must_cow;
6726 
6727 		if (can_nocow_extent(trans, inode, start, &len, &orig_start,
6728 				     &orig_block_len, &ram_bytes) == 1) {
6729 			if (type == BTRFS_ORDERED_PREALLOC) {
6730 				free_extent_map(em);
6731 				em = create_pinned_em(inode, start, len,
6732 						       orig_start,
6733 						       block_start, len,
6734 						       orig_block_len,
6735 						       ram_bytes, type);
6736 				if (IS_ERR(em)) {
6737 					btrfs_end_transaction(trans, root);
6738 					goto unlock_err;
6739 				}
6740 			}
6741 
6742 			ret = btrfs_add_ordered_extent_dio(inode, start,
6743 					   block_start, len, len, type);
6744 			btrfs_end_transaction(trans, root);
6745 			if (ret) {
6746 				free_extent_map(em);
6747 				goto unlock_err;
6748 			}
6749 			goto unlock;
6750 		}
6751 		btrfs_end_transaction(trans, root);
6752 	}
6753 must_cow:
6754 	/*
6755 	 * this will cow the extent, reset the len in case we changed
6756 	 * it above
6757 	 */
6758 	len = bh_result->b_size;
6759 	free_extent_map(em);
6760 	em = btrfs_new_extent_direct(inode, start, len);
6761 	if (IS_ERR(em)) {
6762 		ret = PTR_ERR(em);
6763 		goto unlock_err;
6764 	}
6765 	len = min(len, em->len - (start - em->start));
6766 unlock:
6767 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6768 		inode->i_blkbits;
6769 	bh_result->b_size = len;
6770 	bh_result->b_bdev = em->bdev;
6771 	set_buffer_mapped(bh_result);
6772 	if (create) {
6773 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6774 			set_buffer_new(bh_result);
6775 
6776 		/*
6777 		 * Need to update the i_size under the extent lock so buffered
6778 		 * readers will get the updated i_size when we unlock.
6779 		 */
6780 		if (start + len > i_size_read(inode))
6781 			i_size_write(inode, start + len);
6782 
6783 		spin_lock(&BTRFS_I(inode)->lock);
6784 		BTRFS_I(inode)->outstanding_extents++;
6785 		spin_unlock(&BTRFS_I(inode)->lock);
6786 
6787 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6788 				     lockstart + len - 1, EXTENT_DELALLOC, NULL,
6789 				     &cached_state, GFP_NOFS);
6790 		BUG_ON(ret);
6791 	}
6792 
6793 	/*
6794 	 * In the case of write we need to clear and unlock the entire range,
6795 	 * in the case of read we need to unlock only the end area that we
6796 	 * aren't using if there is any left over space.
6797 	 */
6798 	if (lockstart < lockend) {
6799 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6800 				 lockend, unlock_bits, 1, 0,
6801 				 &cached_state, GFP_NOFS);
6802 	} else {
6803 		free_extent_state(cached_state);
6804 	}
6805 
6806 	free_extent_map(em);
6807 
6808 	return 0;
6809 
6810 unlock_err:
6811 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6812 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6813 	return ret;
6814 }
6815 
6816 struct btrfs_dio_private {
6817 	struct inode *inode;
6818 	u64 logical_offset;
6819 	u64 disk_bytenr;
6820 	u64 bytes;
6821 	void *private;
6822 
6823 	/* number of bios pending for this dio */
6824 	atomic_t pending_bios;
6825 
6826 	/* IO errors */
6827 	int errors;
6828 
6829 	/* orig_bio is our btrfs_io_bio */
6830 	struct bio *orig_bio;
6831 
6832 	/* dio_bio came from fs/direct-io.c */
6833 	struct bio *dio_bio;
6834 };
6835 
6836 static void btrfs_endio_direct_read(struct bio *bio, int err)
6837 {
6838 	struct btrfs_dio_private *dip = bio->bi_private;
6839 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6840 	struct bio_vec *bvec = bio->bi_io_vec;
6841 	struct inode *inode = dip->inode;
6842 	struct btrfs_root *root = BTRFS_I(inode)->root;
6843 	struct bio *dio_bio;
6844 	u64 start;
6845 
6846 	start = dip->logical_offset;
6847 	do {
6848 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6849 			struct page *page = bvec->bv_page;
6850 			char *kaddr;
6851 			u32 csum = ~(u32)0;
6852 			u64 private = ~(u32)0;
6853 			unsigned long flags;
6854 
6855 			if (get_state_private(&BTRFS_I(inode)->io_tree,
6856 					      start, &private))
6857 				goto failed;
6858 			local_irq_save(flags);
6859 			kaddr = kmap_atomic(page);
6860 			csum = btrfs_csum_data(kaddr + bvec->bv_offset,
6861 					       csum, bvec->bv_len);
6862 			btrfs_csum_final(csum, (char *)&csum);
6863 			kunmap_atomic(kaddr);
6864 			local_irq_restore(flags);
6865 
6866 			flush_dcache_page(bvec->bv_page);
6867 			if (csum != private) {
6868 failed:
6869 				btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u private %u",
6870 					(unsigned long long)btrfs_ino(inode),
6871 					(unsigned long long)start,
6872 					csum, (unsigned)private);
6873 				err = -EIO;
6874 			}
6875 		}
6876 
6877 		start += bvec->bv_len;
6878 		bvec++;
6879 	} while (bvec <= bvec_end);
6880 
6881 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6882 		      dip->logical_offset + dip->bytes - 1);
6883 	dio_bio = dip->dio_bio;
6884 
6885 	kfree(dip);
6886 
6887 	/* If we had a csum failure make sure to clear the uptodate flag */
6888 	if (err)
6889 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6890 	dio_end_io(dio_bio, err);
6891 	bio_put(bio);
6892 }
6893 
6894 static void btrfs_endio_direct_write(struct bio *bio, int err)
6895 {
6896 	struct btrfs_dio_private *dip = bio->bi_private;
6897 	struct inode *inode = dip->inode;
6898 	struct btrfs_root *root = BTRFS_I(inode)->root;
6899 	struct btrfs_ordered_extent *ordered = NULL;
6900 	u64 ordered_offset = dip->logical_offset;
6901 	u64 ordered_bytes = dip->bytes;
6902 	struct bio *dio_bio;
6903 	int ret;
6904 
6905 	if (err)
6906 		goto out_done;
6907 again:
6908 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6909 						   &ordered_offset,
6910 						   ordered_bytes, !err);
6911 	if (!ret)
6912 		goto out_test;
6913 
6914 	ordered->work.func = finish_ordered_fn;
6915 	ordered->work.flags = 0;
6916 	btrfs_queue_worker(&root->fs_info->endio_write_workers,
6917 			   &ordered->work);
6918 out_test:
6919 	/*
6920 	 * our bio might span multiple ordered extents.  If we haven't
6921 	 * completed the accounting for the whole dio, go back and try again
6922 	 */
6923 	if (ordered_offset < dip->logical_offset + dip->bytes) {
6924 		ordered_bytes = dip->logical_offset + dip->bytes -
6925 			ordered_offset;
6926 		ordered = NULL;
6927 		goto again;
6928 	}
6929 out_done:
6930 	dio_bio = dip->dio_bio;
6931 
6932 	kfree(dip);
6933 
6934 	/* If we had an error make sure to clear the uptodate flag */
6935 	if (err)
6936 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6937 	dio_end_io(dio_bio, err);
6938 	bio_put(bio);
6939 }
6940 
6941 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6942 				    struct bio *bio, int mirror_num,
6943 				    unsigned long bio_flags, u64 offset)
6944 {
6945 	int ret;
6946 	struct btrfs_root *root = BTRFS_I(inode)->root;
6947 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6948 	BUG_ON(ret); /* -ENOMEM */
6949 	return 0;
6950 }
6951 
6952 static void btrfs_end_dio_bio(struct bio *bio, int err)
6953 {
6954 	struct btrfs_dio_private *dip = bio->bi_private;
6955 
6956 	if (err) {
6957 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6958 		      "sector %#Lx len %u err no %d\n",
6959 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6960 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
6961 		dip->errors = 1;
6962 
6963 		/*
6964 		 * before atomic variable goto zero, we must make sure
6965 		 * dip->errors is perceived to be set.
6966 		 */
6967 		smp_mb__before_atomic_dec();
6968 	}
6969 
6970 	/* if there are more bios still pending for this dio, just exit */
6971 	if (!atomic_dec_and_test(&dip->pending_bios))
6972 		goto out;
6973 
6974 	if (dip->errors) {
6975 		bio_io_error(dip->orig_bio);
6976 	} else {
6977 		set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
6978 		bio_endio(dip->orig_bio, 0);
6979 	}
6980 out:
6981 	bio_put(bio);
6982 }
6983 
6984 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6985 				       u64 first_sector, gfp_t gfp_flags)
6986 {
6987 	int nr_vecs = bio_get_nr_vecs(bdev);
6988 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6989 }
6990 
6991 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6992 					 int rw, u64 file_offset, int skip_sum,
6993 					 int async_submit)
6994 {
6995 	int write = rw & REQ_WRITE;
6996 	struct btrfs_root *root = BTRFS_I(inode)->root;
6997 	int ret;
6998 
6999 	if (async_submit)
7000 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7001 
7002 	bio_get(bio);
7003 
7004 	if (!write) {
7005 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7006 		if (ret)
7007 			goto err;
7008 	}
7009 
7010 	if (skip_sum)
7011 		goto map;
7012 
7013 	if (write && async_submit) {
7014 		ret = btrfs_wq_submit_bio(root->fs_info,
7015 				   inode, rw, bio, 0, 0,
7016 				   file_offset,
7017 				   __btrfs_submit_bio_start_direct_io,
7018 				   __btrfs_submit_bio_done);
7019 		goto err;
7020 	} else if (write) {
7021 		/*
7022 		 * If we aren't doing async submit, calculate the csum of the
7023 		 * bio now.
7024 		 */
7025 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7026 		if (ret)
7027 			goto err;
7028 	} else if (!skip_sum) {
7029 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
7030 		if (ret)
7031 			goto err;
7032 	}
7033 
7034 map:
7035 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7036 err:
7037 	bio_put(bio);
7038 	return ret;
7039 }
7040 
7041 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7042 				    int skip_sum)
7043 {
7044 	struct inode *inode = dip->inode;
7045 	struct btrfs_root *root = BTRFS_I(inode)->root;
7046 	struct bio *bio;
7047 	struct bio *orig_bio = dip->orig_bio;
7048 	struct bio_vec *bvec = orig_bio->bi_io_vec;
7049 	u64 start_sector = orig_bio->bi_sector;
7050 	u64 file_offset = dip->logical_offset;
7051 	u64 submit_len = 0;
7052 	u64 map_length;
7053 	int nr_pages = 0;
7054 	int ret = 0;
7055 	int async_submit = 0;
7056 
7057 	map_length = orig_bio->bi_size;
7058 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7059 			      &map_length, NULL, 0);
7060 	if (ret) {
7061 		bio_put(orig_bio);
7062 		return -EIO;
7063 	}
7064 	if (map_length >= orig_bio->bi_size) {
7065 		bio = orig_bio;
7066 		goto submit;
7067 	}
7068 
7069 	/* async crcs make it difficult to collect full stripe writes. */
7070 	if (btrfs_get_alloc_profile(root, 1) &
7071 	    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7072 		async_submit = 0;
7073 	else
7074 		async_submit = 1;
7075 
7076 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7077 	if (!bio)
7078 		return -ENOMEM;
7079 	bio->bi_private = dip;
7080 	bio->bi_end_io = btrfs_end_dio_bio;
7081 	atomic_inc(&dip->pending_bios);
7082 
7083 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7084 		if (unlikely(map_length < submit_len + bvec->bv_len ||
7085 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7086 				 bvec->bv_offset) < bvec->bv_len)) {
7087 			/*
7088 			 * inc the count before we submit the bio so
7089 			 * we know the end IO handler won't happen before
7090 			 * we inc the count. Otherwise, the dip might get freed
7091 			 * before we're done setting it up
7092 			 */
7093 			atomic_inc(&dip->pending_bios);
7094 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
7095 						     file_offset, skip_sum,
7096 						     async_submit);
7097 			if (ret) {
7098 				bio_put(bio);
7099 				atomic_dec(&dip->pending_bios);
7100 				goto out_err;
7101 			}
7102 
7103 			start_sector += submit_len >> 9;
7104 			file_offset += submit_len;
7105 
7106 			submit_len = 0;
7107 			nr_pages = 0;
7108 
7109 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7110 						  start_sector, GFP_NOFS);
7111 			if (!bio)
7112 				goto out_err;
7113 			bio->bi_private = dip;
7114 			bio->bi_end_io = btrfs_end_dio_bio;
7115 
7116 			map_length = orig_bio->bi_size;
7117 			ret = btrfs_map_block(root->fs_info, rw,
7118 					      start_sector << 9,
7119 					      &map_length, NULL, 0);
7120 			if (ret) {
7121 				bio_put(bio);
7122 				goto out_err;
7123 			}
7124 		} else {
7125 			submit_len += bvec->bv_len;
7126 			nr_pages ++;
7127 			bvec++;
7128 		}
7129 	}
7130 
7131 submit:
7132 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7133 				     async_submit);
7134 	if (!ret)
7135 		return 0;
7136 
7137 	bio_put(bio);
7138 out_err:
7139 	dip->errors = 1;
7140 	/*
7141 	 * before atomic variable goto zero, we must
7142 	 * make sure dip->errors is perceived to be set.
7143 	 */
7144 	smp_mb__before_atomic_dec();
7145 	if (atomic_dec_and_test(&dip->pending_bios))
7146 		bio_io_error(dip->orig_bio);
7147 
7148 	/* bio_end_io() will handle error, so we needn't return it */
7149 	return 0;
7150 }
7151 
7152 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7153 				struct inode *inode, loff_t file_offset)
7154 {
7155 	struct btrfs_root *root = BTRFS_I(inode)->root;
7156 	struct btrfs_dio_private *dip;
7157 	struct bio *io_bio;
7158 	int skip_sum;
7159 	int write = rw & REQ_WRITE;
7160 	int ret = 0;
7161 
7162 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7163 
7164 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7165 
7166 	if (!io_bio) {
7167 		ret = -ENOMEM;
7168 		goto free_ordered;
7169 	}
7170 
7171 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
7172 	if (!dip) {
7173 		ret = -ENOMEM;
7174 		goto free_io_bio;
7175 	}
7176 
7177 	dip->private = dio_bio->bi_private;
7178 	dip->inode = inode;
7179 	dip->logical_offset = file_offset;
7180 	dip->bytes = dio_bio->bi_size;
7181 	dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7182 	io_bio->bi_private = dip;
7183 	dip->errors = 0;
7184 	dip->orig_bio = io_bio;
7185 	dip->dio_bio = dio_bio;
7186 	atomic_set(&dip->pending_bios, 0);
7187 
7188 	if (write)
7189 		io_bio->bi_end_io = btrfs_endio_direct_write;
7190 	else
7191 		io_bio->bi_end_io = btrfs_endio_direct_read;
7192 
7193 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7194 	if (!ret)
7195 		return;
7196 
7197 free_io_bio:
7198 	bio_put(io_bio);
7199 
7200 free_ordered:
7201 	/*
7202 	 * If this is a write, we need to clean up the reserved space and kill
7203 	 * the ordered extent.
7204 	 */
7205 	if (write) {
7206 		struct btrfs_ordered_extent *ordered;
7207 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7208 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7209 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7210 			btrfs_free_reserved_extent(root, ordered->start,
7211 						   ordered->disk_len);
7212 		btrfs_put_ordered_extent(ordered);
7213 		btrfs_put_ordered_extent(ordered);
7214 	}
7215 	bio_endio(dio_bio, ret);
7216 }
7217 
7218 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7219 			const struct iovec *iov, loff_t offset,
7220 			unsigned long nr_segs)
7221 {
7222 	int seg;
7223 	int i;
7224 	size_t size;
7225 	unsigned long addr;
7226 	unsigned blocksize_mask = root->sectorsize - 1;
7227 	ssize_t retval = -EINVAL;
7228 	loff_t end = offset;
7229 
7230 	if (offset & blocksize_mask)
7231 		goto out;
7232 
7233 	/* Check the memory alignment.  Blocks cannot straddle pages */
7234 	for (seg = 0; seg < nr_segs; seg++) {
7235 		addr = (unsigned long)iov[seg].iov_base;
7236 		size = iov[seg].iov_len;
7237 		end += size;
7238 		if ((addr & blocksize_mask) || (size & blocksize_mask))
7239 			goto out;
7240 
7241 		/* If this is a write we don't need to check anymore */
7242 		if (rw & WRITE)
7243 			continue;
7244 
7245 		/*
7246 		 * Check to make sure we don't have duplicate iov_base's in this
7247 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
7248 		 * when reading back.
7249 		 */
7250 		for (i = seg + 1; i < nr_segs; i++) {
7251 			if (iov[seg].iov_base == iov[i].iov_base)
7252 				goto out;
7253 		}
7254 	}
7255 	retval = 0;
7256 out:
7257 	return retval;
7258 }
7259 
7260 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7261 			const struct iovec *iov, loff_t offset,
7262 			unsigned long nr_segs)
7263 {
7264 	struct file *file = iocb->ki_filp;
7265 	struct inode *inode = file->f_mapping->host;
7266 	size_t count = 0;
7267 	int flags = 0;
7268 	bool wakeup = true;
7269 	bool relock = false;
7270 	ssize_t ret;
7271 
7272 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7273 			    offset, nr_segs))
7274 		return 0;
7275 
7276 	atomic_inc(&inode->i_dio_count);
7277 	smp_mb__after_atomic_inc();
7278 
7279 	/*
7280 	 * The generic stuff only does filemap_write_and_wait_range, which isn't
7281 	 * enough if we've written compressed pages to this area, so we need to
7282 	 * call btrfs_wait_ordered_range to make absolutely sure that any
7283 	 * outstanding dirty pages are on disk.
7284 	 */
7285 	count = iov_length(iov, nr_segs);
7286 	btrfs_wait_ordered_range(inode, offset, count);
7287 
7288 	if (rw & WRITE) {
7289 		/*
7290 		 * If the write DIO is beyond the EOF, we need update
7291 		 * the isize, but it is protected by i_mutex. So we can
7292 		 * not unlock the i_mutex at this case.
7293 		 */
7294 		if (offset + count <= inode->i_size) {
7295 			mutex_unlock(&inode->i_mutex);
7296 			relock = true;
7297 		}
7298 		ret = btrfs_delalloc_reserve_space(inode, count);
7299 		if (ret)
7300 			goto out;
7301 	} else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7302 				     &BTRFS_I(inode)->runtime_flags))) {
7303 		inode_dio_done(inode);
7304 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
7305 		wakeup = false;
7306 	}
7307 
7308 	ret = __blockdev_direct_IO(rw, iocb, inode,
7309 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7310 			iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7311 			btrfs_submit_direct, flags);
7312 	if (rw & WRITE) {
7313 		if (ret < 0 && ret != -EIOCBQUEUED)
7314 			btrfs_delalloc_release_space(inode, count);
7315 		else if (ret >= 0 && (size_t)ret < count)
7316 			btrfs_delalloc_release_space(inode,
7317 						     count - (size_t)ret);
7318 		else
7319 			btrfs_delalloc_release_metadata(inode, 0);
7320 	}
7321 out:
7322 	if (wakeup)
7323 		inode_dio_done(inode);
7324 	if (relock)
7325 		mutex_lock(&inode->i_mutex);
7326 
7327 	return ret;
7328 }
7329 
7330 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
7331 
7332 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7333 		__u64 start, __u64 len)
7334 {
7335 	int	ret;
7336 
7337 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7338 	if (ret)
7339 		return ret;
7340 
7341 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7342 }
7343 
7344 int btrfs_readpage(struct file *file, struct page *page)
7345 {
7346 	struct extent_io_tree *tree;
7347 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7348 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7349 }
7350 
7351 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7352 {
7353 	struct extent_io_tree *tree;
7354 
7355 
7356 	if (current->flags & PF_MEMALLOC) {
7357 		redirty_page_for_writepage(wbc, page);
7358 		unlock_page(page);
7359 		return 0;
7360 	}
7361 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7362 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7363 }
7364 
7365 static int btrfs_writepages(struct address_space *mapping,
7366 			    struct writeback_control *wbc)
7367 {
7368 	struct extent_io_tree *tree;
7369 
7370 	tree = &BTRFS_I(mapping->host)->io_tree;
7371 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7372 }
7373 
7374 static int
7375 btrfs_readpages(struct file *file, struct address_space *mapping,
7376 		struct list_head *pages, unsigned nr_pages)
7377 {
7378 	struct extent_io_tree *tree;
7379 	tree = &BTRFS_I(mapping->host)->io_tree;
7380 	return extent_readpages(tree, mapping, pages, nr_pages,
7381 				btrfs_get_extent);
7382 }
7383 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7384 {
7385 	struct extent_io_tree *tree;
7386 	struct extent_map_tree *map;
7387 	int ret;
7388 
7389 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7390 	map = &BTRFS_I(page->mapping->host)->extent_tree;
7391 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7392 	if (ret == 1) {
7393 		ClearPagePrivate(page);
7394 		set_page_private(page, 0);
7395 		page_cache_release(page);
7396 	}
7397 	return ret;
7398 }
7399 
7400 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7401 {
7402 	if (PageWriteback(page) || PageDirty(page))
7403 		return 0;
7404 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7405 }
7406 
7407 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7408 				 unsigned int length)
7409 {
7410 	struct inode *inode = page->mapping->host;
7411 	struct extent_io_tree *tree;
7412 	struct btrfs_ordered_extent *ordered;
7413 	struct extent_state *cached_state = NULL;
7414 	u64 page_start = page_offset(page);
7415 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7416 
7417 	/*
7418 	 * we have the page locked, so new writeback can't start,
7419 	 * and the dirty bit won't be cleared while we are here.
7420 	 *
7421 	 * Wait for IO on this page so that we can safely clear
7422 	 * the PagePrivate2 bit and do ordered accounting
7423 	 */
7424 	wait_on_page_writeback(page);
7425 
7426 	tree = &BTRFS_I(inode)->io_tree;
7427 	if (offset) {
7428 		btrfs_releasepage(page, GFP_NOFS);
7429 		return;
7430 	}
7431 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7432 	ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
7433 	if (ordered) {
7434 		/*
7435 		 * IO on this page will never be started, so we need
7436 		 * to account for any ordered extents now
7437 		 */
7438 		clear_extent_bit(tree, page_start, page_end,
7439 				 EXTENT_DIRTY | EXTENT_DELALLOC |
7440 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7441 				 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
7442 		/*
7443 		 * whoever cleared the private bit is responsible
7444 		 * for the finish_ordered_io
7445 		 */
7446 		if (TestClearPagePrivate2(page) &&
7447 		    btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7448 						   PAGE_CACHE_SIZE, 1)) {
7449 			btrfs_finish_ordered_io(ordered);
7450 		}
7451 		btrfs_put_ordered_extent(ordered);
7452 		cached_state = NULL;
7453 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7454 	}
7455 	clear_extent_bit(tree, page_start, page_end,
7456 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
7457 		 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7458 		 &cached_state, GFP_NOFS);
7459 	__btrfs_releasepage(page, GFP_NOFS);
7460 
7461 	ClearPageChecked(page);
7462 	if (PagePrivate(page)) {
7463 		ClearPagePrivate(page);
7464 		set_page_private(page, 0);
7465 		page_cache_release(page);
7466 	}
7467 }
7468 
7469 /*
7470  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7471  * called from a page fault handler when a page is first dirtied. Hence we must
7472  * be careful to check for EOF conditions here. We set the page up correctly
7473  * for a written page which means we get ENOSPC checking when writing into
7474  * holes and correct delalloc and unwritten extent mapping on filesystems that
7475  * support these features.
7476  *
7477  * We are not allowed to take the i_mutex here so we have to play games to
7478  * protect against truncate races as the page could now be beyond EOF.  Because
7479  * vmtruncate() writes the inode size before removing pages, once we have the
7480  * page lock we can determine safely if the page is beyond EOF. If it is not
7481  * beyond EOF, then the page is guaranteed safe against truncation until we
7482  * unlock the page.
7483  */
7484 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7485 {
7486 	struct page *page = vmf->page;
7487 	struct inode *inode = file_inode(vma->vm_file);
7488 	struct btrfs_root *root = BTRFS_I(inode)->root;
7489 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7490 	struct btrfs_ordered_extent *ordered;
7491 	struct extent_state *cached_state = NULL;
7492 	char *kaddr;
7493 	unsigned long zero_start;
7494 	loff_t size;
7495 	int ret;
7496 	int reserved = 0;
7497 	u64 page_start;
7498 	u64 page_end;
7499 
7500 	sb_start_pagefault(inode->i_sb);
7501 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7502 	if (!ret) {
7503 		ret = file_update_time(vma->vm_file);
7504 		reserved = 1;
7505 	}
7506 	if (ret) {
7507 		if (ret == -ENOMEM)
7508 			ret = VM_FAULT_OOM;
7509 		else /* -ENOSPC, -EIO, etc */
7510 			ret = VM_FAULT_SIGBUS;
7511 		if (reserved)
7512 			goto out;
7513 		goto out_noreserve;
7514 	}
7515 
7516 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7517 again:
7518 	lock_page(page);
7519 	size = i_size_read(inode);
7520 	page_start = page_offset(page);
7521 	page_end = page_start + PAGE_CACHE_SIZE - 1;
7522 
7523 	if ((page->mapping != inode->i_mapping) ||
7524 	    (page_start >= size)) {
7525 		/* page got truncated out from underneath us */
7526 		goto out_unlock;
7527 	}
7528 	wait_on_page_writeback(page);
7529 
7530 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7531 	set_page_extent_mapped(page);
7532 
7533 	/*
7534 	 * we can't set the delalloc bits if there are pending ordered
7535 	 * extents.  Drop our locks and wait for them to finish
7536 	 */
7537 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
7538 	if (ordered) {
7539 		unlock_extent_cached(io_tree, page_start, page_end,
7540 				     &cached_state, GFP_NOFS);
7541 		unlock_page(page);
7542 		btrfs_start_ordered_extent(inode, ordered, 1);
7543 		btrfs_put_ordered_extent(ordered);
7544 		goto again;
7545 	}
7546 
7547 	/*
7548 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
7549 	 * if it was already dirty, so for space accounting reasons we need to
7550 	 * clear any delalloc bits for the range we are fixing to save.  There
7551 	 * is probably a better way to do this, but for now keep consistent with
7552 	 * prepare_pages in the normal write path.
7553 	 */
7554 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7555 			  EXTENT_DIRTY | EXTENT_DELALLOC |
7556 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7557 			  0, 0, &cached_state, GFP_NOFS);
7558 
7559 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7560 					&cached_state);
7561 	if (ret) {
7562 		unlock_extent_cached(io_tree, page_start, page_end,
7563 				     &cached_state, GFP_NOFS);
7564 		ret = VM_FAULT_SIGBUS;
7565 		goto out_unlock;
7566 	}
7567 	ret = 0;
7568 
7569 	/* page is wholly or partially inside EOF */
7570 	if (page_start + PAGE_CACHE_SIZE > size)
7571 		zero_start = size & ~PAGE_CACHE_MASK;
7572 	else
7573 		zero_start = PAGE_CACHE_SIZE;
7574 
7575 	if (zero_start != PAGE_CACHE_SIZE) {
7576 		kaddr = kmap(page);
7577 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7578 		flush_dcache_page(page);
7579 		kunmap(page);
7580 	}
7581 	ClearPageChecked(page);
7582 	set_page_dirty(page);
7583 	SetPageUptodate(page);
7584 
7585 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
7586 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7587 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7588 
7589 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7590 
7591 out_unlock:
7592 	if (!ret) {
7593 		sb_end_pagefault(inode->i_sb);
7594 		return VM_FAULT_LOCKED;
7595 	}
7596 	unlock_page(page);
7597 out:
7598 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7599 out_noreserve:
7600 	sb_end_pagefault(inode->i_sb);
7601 	return ret;
7602 }
7603 
7604 static int btrfs_truncate(struct inode *inode)
7605 {
7606 	struct btrfs_root *root = BTRFS_I(inode)->root;
7607 	struct btrfs_block_rsv *rsv;
7608 	int ret = 0;
7609 	int err = 0;
7610 	struct btrfs_trans_handle *trans;
7611 	u64 mask = root->sectorsize - 1;
7612 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7613 
7614 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
7615 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
7616 
7617 	/*
7618 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
7619 	 * 3 things going on here
7620 	 *
7621 	 * 1) We need to reserve space for our orphan item and the space to
7622 	 * delete our orphan item.  Lord knows we don't want to have a dangling
7623 	 * orphan item because we didn't reserve space to remove it.
7624 	 *
7625 	 * 2) We need to reserve space to update our inode.
7626 	 *
7627 	 * 3) We need to have something to cache all the space that is going to
7628 	 * be free'd up by the truncate operation, but also have some slack
7629 	 * space reserved in case it uses space during the truncate (thank you
7630 	 * very much snapshotting).
7631 	 *
7632 	 * And we need these to all be seperate.  The fact is we can use alot of
7633 	 * space doing the truncate, and we have no earthly idea how much space
7634 	 * we will use, so we need the truncate reservation to be seperate so it
7635 	 * doesn't end up using space reserved for updating the inode or
7636 	 * removing the orphan item.  We also need to be able to stop the
7637 	 * transaction and start a new one, which means we need to be able to
7638 	 * update the inode several times, and we have no idea of knowing how
7639 	 * many times that will be, so we can't just reserve 1 item for the
7640 	 * entirety of the opration, so that has to be done seperately as well.
7641 	 * Then there is the orphan item, which does indeed need to be held on
7642 	 * to for the whole operation, and we need nobody to touch this reserved
7643 	 * space except the orphan code.
7644 	 *
7645 	 * So that leaves us with
7646 	 *
7647 	 * 1) root->orphan_block_rsv - for the orphan deletion.
7648 	 * 2) rsv - for the truncate reservation, which we will steal from the
7649 	 * transaction reservation.
7650 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7651 	 * updating the inode.
7652 	 */
7653 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7654 	if (!rsv)
7655 		return -ENOMEM;
7656 	rsv->size = min_size;
7657 	rsv->failfast = 1;
7658 
7659 	/*
7660 	 * 1 for the truncate slack space
7661 	 * 1 for updating the inode.
7662 	 */
7663 	trans = btrfs_start_transaction(root, 2);
7664 	if (IS_ERR(trans)) {
7665 		err = PTR_ERR(trans);
7666 		goto out;
7667 	}
7668 
7669 	/* Migrate the slack space for the truncate to our reserve */
7670 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7671 				      min_size);
7672 	BUG_ON(ret);
7673 
7674 	/*
7675 	 * setattr is responsible for setting the ordered_data_close flag,
7676 	 * but that is only tested during the last file release.  That
7677 	 * could happen well after the next commit, leaving a great big
7678 	 * window where new writes may get lost if someone chooses to write
7679 	 * to this file after truncating to zero
7680 	 *
7681 	 * The inode doesn't have any dirty data here, and so if we commit
7682 	 * this is a noop.  If someone immediately starts writing to the inode
7683 	 * it is very likely we'll catch some of their writes in this
7684 	 * transaction, and the commit will find this file on the ordered
7685 	 * data list with good things to send down.
7686 	 *
7687 	 * This is a best effort solution, there is still a window where
7688 	 * using truncate to replace the contents of the file will
7689 	 * end up with a zero length file after a crash.
7690 	 */
7691 	if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7692 					   &BTRFS_I(inode)->runtime_flags))
7693 		btrfs_add_ordered_operation(trans, root, inode);
7694 
7695 	/*
7696 	 * So if we truncate and then write and fsync we normally would just
7697 	 * write the extents that changed, which is a problem if we need to
7698 	 * first truncate that entire inode.  So set this flag so we write out
7699 	 * all of the extents in the inode to the sync log so we're completely
7700 	 * safe.
7701 	 */
7702 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7703 	trans->block_rsv = rsv;
7704 
7705 	while (1) {
7706 		ret = btrfs_truncate_inode_items(trans, root, inode,
7707 						 inode->i_size,
7708 						 BTRFS_EXTENT_DATA_KEY);
7709 		if (ret != -ENOSPC) {
7710 			err = ret;
7711 			break;
7712 		}
7713 
7714 		trans->block_rsv = &root->fs_info->trans_block_rsv;
7715 		ret = btrfs_update_inode(trans, root, inode);
7716 		if (ret) {
7717 			err = ret;
7718 			break;
7719 		}
7720 
7721 		btrfs_end_transaction(trans, root);
7722 		btrfs_btree_balance_dirty(root);
7723 
7724 		trans = btrfs_start_transaction(root, 2);
7725 		if (IS_ERR(trans)) {
7726 			ret = err = PTR_ERR(trans);
7727 			trans = NULL;
7728 			break;
7729 		}
7730 
7731 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7732 					      rsv, min_size);
7733 		BUG_ON(ret);	/* shouldn't happen */
7734 		trans->block_rsv = rsv;
7735 	}
7736 
7737 	if (ret == 0 && inode->i_nlink > 0) {
7738 		trans->block_rsv = root->orphan_block_rsv;
7739 		ret = btrfs_orphan_del(trans, inode);
7740 		if (ret)
7741 			err = ret;
7742 	}
7743 
7744 	if (trans) {
7745 		trans->block_rsv = &root->fs_info->trans_block_rsv;
7746 		ret = btrfs_update_inode(trans, root, inode);
7747 		if (ret && !err)
7748 			err = ret;
7749 
7750 		ret = btrfs_end_transaction(trans, root);
7751 		btrfs_btree_balance_dirty(root);
7752 	}
7753 
7754 out:
7755 	btrfs_free_block_rsv(root, rsv);
7756 
7757 	if (ret && !err)
7758 		err = ret;
7759 
7760 	return err;
7761 }
7762 
7763 /*
7764  * create a new subvolume directory/inode (helper for the ioctl).
7765  */
7766 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7767 			     struct btrfs_root *new_root, u64 new_dirid)
7768 {
7769 	struct inode *inode;
7770 	int err;
7771 	u64 index = 0;
7772 
7773 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7774 				new_dirid, new_dirid,
7775 				S_IFDIR | (~current_umask() & S_IRWXUGO),
7776 				&index);
7777 	if (IS_ERR(inode))
7778 		return PTR_ERR(inode);
7779 	inode->i_op = &btrfs_dir_inode_operations;
7780 	inode->i_fop = &btrfs_dir_file_operations;
7781 
7782 	set_nlink(inode, 1);
7783 	btrfs_i_size_write(inode, 0);
7784 
7785 	err = btrfs_update_inode(trans, new_root, inode);
7786 
7787 	iput(inode);
7788 	return err;
7789 }
7790 
7791 struct inode *btrfs_alloc_inode(struct super_block *sb)
7792 {
7793 	struct btrfs_inode *ei;
7794 	struct inode *inode;
7795 
7796 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7797 	if (!ei)
7798 		return NULL;
7799 
7800 	ei->root = NULL;
7801 	ei->generation = 0;
7802 	ei->last_trans = 0;
7803 	ei->last_sub_trans = 0;
7804 	ei->logged_trans = 0;
7805 	ei->delalloc_bytes = 0;
7806 	ei->disk_i_size = 0;
7807 	ei->flags = 0;
7808 	ei->csum_bytes = 0;
7809 	ei->index_cnt = (u64)-1;
7810 	ei->last_unlink_trans = 0;
7811 	ei->last_log_commit = 0;
7812 
7813 	spin_lock_init(&ei->lock);
7814 	ei->outstanding_extents = 0;
7815 	ei->reserved_extents = 0;
7816 
7817 	ei->runtime_flags = 0;
7818 	ei->force_compress = BTRFS_COMPRESS_NONE;
7819 
7820 	ei->delayed_node = NULL;
7821 
7822 	inode = &ei->vfs_inode;
7823 	extent_map_tree_init(&ei->extent_tree);
7824 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
7825 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7826 	ei->io_tree.track_uptodate = 1;
7827 	ei->io_failure_tree.track_uptodate = 1;
7828 	atomic_set(&ei->sync_writers, 0);
7829 	mutex_init(&ei->log_mutex);
7830 	mutex_init(&ei->delalloc_mutex);
7831 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7832 	INIT_LIST_HEAD(&ei->delalloc_inodes);
7833 	INIT_LIST_HEAD(&ei->ordered_operations);
7834 	RB_CLEAR_NODE(&ei->rb_node);
7835 
7836 	return inode;
7837 }
7838 
7839 static void btrfs_i_callback(struct rcu_head *head)
7840 {
7841 	struct inode *inode = container_of(head, struct inode, i_rcu);
7842 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7843 }
7844 
7845 void btrfs_destroy_inode(struct inode *inode)
7846 {
7847 	struct btrfs_ordered_extent *ordered;
7848 	struct btrfs_root *root = BTRFS_I(inode)->root;
7849 
7850 	WARN_ON(!hlist_empty(&inode->i_dentry));
7851 	WARN_ON(inode->i_data.nrpages);
7852 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
7853 	WARN_ON(BTRFS_I(inode)->reserved_extents);
7854 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7855 	WARN_ON(BTRFS_I(inode)->csum_bytes);
7856 
7857 	/*
7858 	 * This can happen where we create an inode, but somebody else also
7859 	 * created the same inode and we need to destroy the one we already
7860 	 * created.
7861 	 */
7862 	if (!root)
7863 		goto free;
7864 
7865 	/*
7866 	 * Make sure we're properly removed from the ordered operation
7867 	 * lists.
7868 	 */
7869 	smp_mb();
7870 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7871 		spin_lock(&root->fs_info->ordered_root_lock);
7872 		list_del_init(&BTRFS_I(inode)->ordered_operations);
7873 		spin_unlock(&root->fs_info->ordered_root_lock);
7874 	}
7875 
7876 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7877 		     &BTRFS_I(inode)->runtime_flags)) {
7878 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7879 			(unsigned long long)btrfs_ino(inode));
7880 		atomic_dec(&root->orphan_inodes);
7881 	}
7882 
7883 	while (1) {
7884 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7885 		if (!ordered)
7886 			break;
7887 		else {
7888 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7889 				(unsigned long long)ordered->file_offset,
7890 				(unsigned long long)ordered->len);
7891 			btrfs_remove_ordered_extent(inode, ordered);
7892 			btrfs_put_ordered_extent(ordered);
7893 			btrfs_put_ordered_extent(ordered);
7894 		}
7895 	}
7896 	inode_tree_del(inode);
7897 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7898 free:
7899 	call_rcu(&inode->i_rcu, btrfs_i_callback);
7900 }
7901 
7902 int btrfs_drop_inode(struct inode *inode)
7903 {
7904 	struct btrfs_root *root = BTRFS_I(inode)->root;
7905 
7906 	if (root == NULL)
7907 		return 1;
7908 
7909 	/* the snap/subvol tree is on deleting */
7910 	if (btrfs_root_refs(&root->root_item) == 0 &&
7911 	    root != root->fs_info->tree_root)
7912 		return 1;
7913 	else
7914 		return generic_drop_inode(inode);
7915 }
7916 
7917 static void init_once(void *foo)
7918 {
7919 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7920 
7921 	inode_init_once(&ei->vfs_inode);
7922 }
7923 
7924 void btrfs_destroy_cachep(void)
7925 {
7926 	/*
7927 	 * Make sure all delayed rcu free inodes are flushed before we
7928 	 * destroy cache.
7929 	 */
7930 	rcu_barrier();
7931 	if (btrfs_inode_cachep)
7932 		kmem_cache_destroy(btrfs_inode_cachep);
7933 	if (btrfs_trans_handle_cachep)
7934 		kmem_cache_destroy(btrfs_trans_handle_cachep);
7935 	if (btrfs_transaction_cachep)
7936 		kmem_cache_destroy(btrfs_transaction_cachep);
7937 	if (btrfs_path_cachep)
7938 		kmem_cache_destroy(btrfs_path_cachep);
7939 	if (btrfs_free_space_cachep)
7940 		kmem_cache_destroy(btrfs_free_space_cachep);
7941 	if (btrfs_delalloc_work_cachep)
7942 		kmem_cache_destroy(btrfs_delalloc_work_cachep);
7943 }
7944 
7945 int btrfs_init_cachep(void)
7946 {
7947 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7948 			sizeof(struct btrfs_inode), 0,
7949 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7950 	if (!btrfs_inode_cachep)
7951 		goto fail;
7952 
7953 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7954 			sizeof(struct btrfs_trans_handle), 0,
7955 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7956 	if (!btrfs_trans_handle_cachep)
7957 		goto fail;
7958 
7959 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7960 			sizeof(struct btrfs_transaction), 0,
7961 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7962 	if (!btrfs_transaction_cachep)
7963 		goto fail;
7964 
7965 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
7966 			sizeof(struct btrfs_path), 0,
7967 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7968 	if (!btrfs_path_cachep)
7969 		goto fail;
7970 
7971 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7972 			sizeof(struct btrfs_free_space), 0,
7973 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7974 	if (!btrfs_free_space_cachep)
7975 		goto fail;
7976 
7977 	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7978 			sizeof(struct btrfs_delalloc_work), 0,
7979 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7980 			NULL);
7981 	if (!btrfs_delalloc_work_cachep)
7982 		goto fail;
7983 
7984 	return 0;
7985 fail:
7986 	btrfs_destroy_cachep();
7987 	return -ENOMEM;
7988 }
7989 
7990 static int btrfs_getattr(struct vfsmount *mnt,
7991 			 struct dentry *dentry, struct kstat *stat)
7992 {
7993 	u64 delalloc_bytes;
7994 	struct inode *inode = dentry->d_inode;
7995 	u32 blocksize = inode->i_sb->s_blocksize;
7996 
7997 	generic_fillattr(inode, stat);
7998 	stat->dev = BTRFS_I(inode)->root->anon_dev;
7999 	stat->blksize = PAGE_CACHE_SIZE;
8000 
8001 	spin_lock(&BTRFS_I(inode)->lock);
8002 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8003 	spin_unlock(&BTRFS_I(inode)->lock);
8004 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8005 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8006 	return 0;
8007 }
8008 
8009 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8010 			   struct inode *new_dir, struct dentry *new_dentry)
8011 {
8012 	struct btrfs_trans_handle *trans;
8013 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8014 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8015 	struct inode *new_inode = new_dentry->d_inode;
8016 	struct inode *old_inode = old_dentry->d_inode;
8017 	struct timespec ctime = CURRENT_TIME;
8018 	u64 index = 0;
8019 	u64 root_objectid;
8020 	int ret;
8021 	u64 old_ino = btrfs_ino(old_inode);
8022 
8023 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8024 		return -EPERM;
8025 
8026 	/* we only allow rename subvolume link between subvolumes */
8027 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8028 		return -EXDEV;
8029 
8030 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8031 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8032 		return -ENOTEMPTY;
8033 
8034 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8035 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8036 		return -ENOTEMPTY;
8037 
8038 
8039 	/* check for collisions, even if the  name isn't there */
8040 	ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
8041 			     new_dentry->d_name.name,
8042 			     new_dentry->d_name.len);
8043 
8044 	if (ret) {
8045 		if (ret == -EEXIST) {
8046 			/* we shouldn't get
8047 			 * eexist without a new_inode */
8048 			if (!new_inode) {
8049 				WARN_ON(1);
8050 				return ret;
8051 			}
8052 		} else {
8053 			/* maybe -EOVERFLOW */
8054 			return ret;
8055 		}
8056 	}
8057 	ret = 0;
8058 
8059 	/*
8060 	 * we're using rename to replace one file with another.
8061 	 * and the replacement file is large.  Start IO on it now so
8062 	 * we don't add too much work to the end of the transaction
8063 	 */
8064 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8065 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8066 		filemap_flush(old_inode->i_mapping);
8067 
8068 	/* close the racy window with snapshot create/destroy ioctl */
8069 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8070 		down_read(&root->fs_info->subvol_sem);
8071 	/*
8072 	 * We want to reserve the absolute worst case amount of items.  So if
8073 	 * both inodes are subvols and we need to unlink them then that would
8074 	 * require 4 item modifications, but if they are both normal inodes it
8075 	 * would require 5 item modifications, so we'll assume their normal
8076 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8077 	 * should cover the worst case number of items we'll modify.
8078 	 */
8079 	trans = btrfs_start_transaction(root, 11);
8080 	if (IS_ERR(trans)) {
8081                 ret = PTR_ERR(trans);
8082                 goto out_notrans;
8083         }
8084 
8085 	if (dest != root)
8086 		btrfs_record_root_in_trans(trans, dest);
8087 
8088 	ret = btrfs_set_inode_index(new_dir, &index);
8089 	if (ret)
8090 		goto out_fail;
8091 
8092 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8093 		/* force full log commit if subvolume involved. */
8094 		root->fs_info->last_trans_log_full_commit = trans->transid;
8095 	} else {
8096 		ret = btrfs_insert_inode_ref(trans, dest,
8097 					     new_dentry->d_name.name,
8098 					     new_dentry->d_name.len,
8099 					     old_ino,
8100 					     btrfs_ino(new_dir), index);
8101 		if (ret)
8102 			goto out_fail;
8103 		/*
8104 		 * this is an ugly little race, but the rename is required
8105 		 * to make sure that if we crash, the inode is either at the
8106 		 * old name or the new one.  pinning the log transaction lets
8107 		 * us make sure we don't allow a log commit to come in after
8108 		 * we unlink the name but before we add the new name back in.
8109 		 */
8110 		btrfs_pin_log_trans(root);
8111 	}
8112 	/*
8113 	 * make sure the inode gets flushed if it is replacing
8114 	 * something.
8115 	 */
8116 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8117 		btrfs_add_ordered_operation(trans, root, old_inode);
8118 
8119 	inode_inc_iversion(old_dir);
8120 	inode_inc_iversion(new_dir);
8121 	inode_inc_iversion(old_inode);
8122 	old_dir->i_ctime = old_dir->i_mtime = ctime;
8123 	new_dir->i_ctime = new_dir->i_mtime = ctime;
8124 	old_inode->i_ctime = ctime;
8125 
8126 	if (old_dentry->d_parent != new_dentry->d_parent)
8127 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8128 
8129 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8130 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8131 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8132 					old_dentry->d_name.name,
8133 					old_dentry->d_name.len);
8134 	} else {
8135 		ret = __btrfs_unlink_inode(trans, root, old_dir,
8136 					old_dentry->d_inode,
8137 					old_dentry->d_name.name,
8138 					old_dentry->d_name.len);
8139 		if (!ret)
8140 			ret = btrfs_update_inode(trans, root, old_inode);
8141 	}
8142 	if (ret) {
8143 		btrfs_abort_transaction(trans, root, ret);
8144 		goto out_fail;
8145 	}
8146 
8147 	if (new_inode) {
8148 		inode_inc_iversion(new_inode);
8149 		new_inode->i_ctime = CURRENT_TIME;
8150 		if (unlikely(btrfs_ino(new_inode) ==
8151 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8152 			root_objectid = BTRFS_I(new_inode)->location.objectid;
8153 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
8154 						root_objectid,
8155 						new_dentry->d_name.name,
8156 						new_dentry->d_name.len);
8157 			BUG_ON(new_inode->i_nlink == 0);
8158 		} else {
8159 			ret = btrfs_unlink_inode(trans, dest, new_dir,
8160 						 new_dentry->d_inode,
8161 						 new_dentry->d_name.name,
8162 						 new_dentry->d_name.len);
8163 		}
8164 		if (!ret && new_inode->i_nlink == 0) {
8165 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8166 			BUG_ON(ret);
8167 		}
8168 		if (ret) {
8169 			btrfs_abort_transaction(trans, root, ret);
8170 			goto out_fail;
8171 		}
8172 	}
8173 
8174 	ret = btrfs_add_link(trans, new_dir, old_inode,
8175 			     new_dentry->d_name.name,
8176 			     new_dentry->d_name.len, 0, index);
8177 	if (ret) {
8178 		btrfs_abort_transaction(trans, root, ret);
8179 		goto out_fail;
8180 	}
8181 
8182 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8183 		struct dentry *parent = new_dentry->d_parent;
8184 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
8185 		btrfs_end_log_trans(root);
8186 	}
8187 out_fail:
8188 	btrfs_end_transaction(trans, root);
8189 out_notrans:
8190 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8191 		up_read(&root->fs_info->subvol_sem);
8192 
8193 	return ret;
8194 }
8195 
8196 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8197 {
8198 	struct btrfs_delalloc_work *delalloc_work;
8199 
8200 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
8201 				     work);
8202 	if (delalloc_work->wait)
8203 		btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8204 	else
8205 		filemap_flush(delalloc_work->inode->i_mapping);
8206 
8207 	if (delalloc_work->delay_iput)
8208 		btrfs_add_delayed_iput(delalloc_work->inode);
8209 	else
8210 		iput(delalloc_work->inode);
8211 	complete(&delalloc_work->completion);
8212 }
8213 
8214 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8215 						    int wait, int delay_iput)
8216 {
8217 	struct btrfs_delalloc_work *work;
8218 
8219 	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8220 	if (!work)
8221 		return NULL;
8222 
8223 	init_completion(&work->completion);
8224 	INIT_LIST_HEAD(&work->list);
8225 	work->inode = inode;
8226 	work->wait = wait;
8227 	work->delay_iput = delay_iput;
8228 	work->work.func = btrfs_run_delalloc_work;
8229 
8230 	return work;
8231 }
8232 
8233 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8234 {
8235 	wait_for_completion(&work->completion);
8236 	kmem_cache_free(btrfs_delalloc_work_cachep, work);
8237 }
8238 
8239 /*
8240  * some fairly slow code that needs optimization. This walks the list
8241  * of all the inodes with pending delalloc and forces them to disk.
8242  */
8243 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8244 {
8245 	struct btrfs_inode *binode;
8246 	struct inode *inode;
8247 	struct btrfs_delalloc_work *work, *next;
8248 	struct list_head works;
8249 	struct list_head splice;
8250 	int ret = 0;
8251 
8252 	INIT_LIST_HEAD(&works);
8253 	INIT_LIST_HEAD(&splice);
8254 
8255 	spin_lock(&root->delalloc_lock);
8256 	list_splice_init(&root->delalloc_inodes, &splice);
8257 	while (!list_empty(&splice)) {
8258 		binode = list_entry(splice.next, struct btrfs_inode,
8259 				    delalloc_inodes);
8260 
8261 		list_move_tail(&binode->delalloc_inodes,
8262 			       &root->delalloc_inodes);
8263 		inode = igrab(&binode->vfs_inode);
8264 		if (!inode) {
8265 			cond_resched_lock(&root->delalloc_lock);
8266 			continue;
8267 		}
8268 		spin_unlock(&root->delalloc_lock);
8269 
8270 		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8271 		if (unlikely(!work)) {
8272 			ret = -ENOMEM;
8273 			goto out;
8274 		}
8275 		list_add_tail(&work->list, &works);
8276 		btrfs_queue_worker(&root->fs_info->flush_workers,
8277 				   &work->work);
8278 
8279 		cond_resched();
8280 		spin_lock(&root->delalloc_lock);
8281 	}
8282 	spin_unlock(&root->delalloc_lock);
8283 
8284 	list_for_each_entry_safe(work, next, &works, list) {
8285 		list_del_init(&work->list);
8286 		btrfs_wait_and_free_delalloc_work(work);
8287 	}
8288 	return 0;
8289 out:
8290 	list_for_each_entry_safe(work, next, &works, list) {
8291 		list_del_init(&work->list);
8292 		btrfs_wait_and_free_delalloc_work(work);
8293 	}
8294 
8295 	if (!list_empty_careful(&splice)) {
8296 		spin_lock(&root->delalloc_lock);
8297 		list_splice_tail(&splice, &root->delalloc_inodes);
8298 		spin_unlock(&root->delalloc_lock);
8299 	}
8300 	return ret;
8301 }
8302 
8303 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8304 {
8305 	int ret;
8306 
8307 	if (root->fs_info->sb->s_flags & MS_RDONLY)
8308 		return -EROFS;
8309 
8310 	ret = __start_delalloc_inodes(root, delay_iput);
8311 	/*
8312 	 * the filemap_flush will queue IO into the worker threads, but
8313 	 * we have to make sure the IO is actually started and that
8314 	 * ordered extents get created before we return
8315 	 */
8316 	atomic_inc(&root->fs_info->async_submit_draining);
8317 	while (atomic_read(&root->fs_info->nr_async_submits) ||
8318 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
8319 		wait_event(root->fs_info->async_submit_wait,
8320 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8321 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8322 	}
8323 	atomic_dec(&root->fs_info->async_submit_draining);
8324 	return ret;
8325 }
8326 
8327 int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8328 				    int delay_iput)
8329 {
8330 	struct btrfs_root *root;
8331 	struct list_head splice;
8332 	int ret;
8333 
8334 	if (fs_info->sb->s_flags & MS_RDONLY)
8335 		return -EROFS;
8336 
8337 	INIT_LIST_HEAD(&splice);
8338 
8339 	spin_lock(&fs_info->delalloc_root_lock);
8340 	list_splice_init(&fs_info->delalloc_roots, &splice);
8341 	while (!list_empty(&splice)) {
8342 		root = list_first_entry(&splice, struct btrfs_root,
8343 					delalloc_root);
8344 		root = btrfs_grab_fs_root(root);
8345 		BUG_ON(!root);
8346 		list_move_tail(&root->delalloc_root,
8347 			       &fs_info->delalloc_roots);
8348 		spin_unlock(&fs_info->delalloc_root_lock);
8349 
8350 		ret = __start_delalloc_inodes(root, delay_iput);
8351 		btrfs_put_fs_root(root);
8352 		if (ret)
8353 			goto out;
8354 
8355 		spin_lock(&fs_info->delalloc_root_lock);
8356 	}
8357 	spin_unlock(&fs_info->delalloc_root_lock);
8358 
8359 	atomic_inc(&fs_info->async_submit_draining);
8360 	while (atomic_read(&fs_info->nr_async_submits) ||
8361 	      atomic_read(&fs_info->async_delalloc_pages)) {
8362 		wait_event(fs_info->async_submit_wait,
8363 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
8364 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
8365 	}
8366 	atomic_dec(&fs_info->async_submit_draining);
8367 	return 0;
8368 out:
8369 	if (!list_empty_careful(&splice)) {
8370 		spin_lock(&fs_info->delalloc_root_lock);
8371 		list_splice_tail(&splice, &fs_info->delalloc_roots);
8372 		spin_unlock(&fs_info->delalloc_root_lock);
8373 	}
8374 	return ret;
8375 }
8376 
8377 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8378 			 const char *symname)
8379 {
8380 	struct btrfs_trans_handle *trans;
8381 	struct btrfs_root *root = BTRFS_I(dir)->root;
8382 	struct btrfs_path *path;
8383 	struct btrfs_key key;
8384 	struct inode *inode = NULL;
8385 	int err;
8386 	int drop_inode = 0;
8387 	u64 objectid;
8388 	u64 index = 0 ;
8389 	int name_len;
8390 	int datasize;
8391 	unsigned long ptr;
8392 	struct btrfs_file_extent_item *ei;
8393 	struct extent_buffer *leaf;
8394 
8395 	name_len = strlen(symname) + 1;
8396 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8397 		return -ENAMETOOLONG;
8398 
8399 	/*
8400 	 * 2 items for inode item and ref
8401 	 * 2 items for dir items
8402 	 * 1 item for xattr if selinux is on
8403 	 */
8404 	trans = btrfs_start_transaction(root, 5);
8405 	if (IS_ERR(trans))
8406 		return PTR_ERR(trans);
8407 
8408 	err = btrfs_find_free_ino(root, &objectid);
8409 	if (err)
8410 		goto out_unlock;
8411 
8412 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8413 				dentry->d_name.len, btrfs_ino(dir), objectid,
8414 				S_IFLNK|S_IRWXUGO, &index);
8415 	if (IS_ERR(inode)) {
8416 		err = PTR_ERR(inode);
8417 		goto out_unlock;
8418 	}
8419 
8420 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8421 	if (err) {
8422 		drop_inode = 1;
8423 		goto out_unlock;
8424 	}
8425 
8426 	/*
8427 	* If the active LSM wants to access the inode during
8428 	* d_instantiate it needs these. Smack checks to see
8429 	* if the filesystem supports xattrs by looking at the
8430 	* ops vector.
8431 	*/
8432 	inode->i_fop = &btrfs_file_operations;
8433 	inode->i_op = &btrfs_file_inode_operations;
8434 
8435 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8436 	if (err)
8437 		drop_inode = 1;
8438 	else {
8439 		inode->i_mapping->a_ops = &btrfs_aops;
8440 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8441 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8442 	}
8443 	if (drop_inode)
8444 		goto out_unlock;
8445 
8446 	path = btrfs_alloc_path();
8447 	if (!path) {
8448 		err = -ENOMEM;
8449 		drop_inode = 1;
8450 		goto out_unlock;
8451 	}
8452 	key.objectid = btrfs_ino(inode);
8453 	key.offset = 0;
8454 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8455 	datasize = btrfs_file_extent_calc_inline_size(name_len);
8456 	err = btrfs_insert_empty_item(trans, root, path, &key,
8457 				      datasize);
8458 	if (err) {
8459 		drop_inode = 1;
8460 		btrfs_free_path(path);
8461 		goto out_unlock;
8462 	}
8463 	leaf = path->nodes[0];
8464 	ei = btrfs_item_ptr(leaf, path->slots[0],
8465 			    struct btrfs_file_extent_item);
8466 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8467 	btrfs_set_file_extent_type(leaf, ei,
8468 				   BTRFS_FILE_EXTENT_INLINE);
8469 	btrfs_set_file_extent_encryption(leaf, ei, 0);
8470 	btrfs_set_file_extent_compression(leaf, ei, 0);
8471 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8472 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8473 
8474 	ptr = btrfs_file_extent_inline_start(ei);
8475 	write_extent_buffer(leaf, symname, ptr, name_len);
8476 	btrfs_mark_buffer_dirty(leaf);
8477 	btrfs_free_path(path);
8478 
8479 	inode->i_op = &btrfs_symlink_inode_operations;
8480 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
8481 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8482 	inode_set_bytes(inode, name_len);
8483 	btrfs_i_size_write(inode, name_len - 1);
8484 	err = btrfs_update_inode(trans, root, inode);
8485 	if (err)
8486 		drop_inode = 1;
8487 
8488 out_unlock:
8489 	if (!err)
8490 		d_instantiate(dentry, inode);
8491 	btrfs_end_transaction(trans, root);
8492 	if (drop_inode) {
8493 		inode_dec_link_count(inode);
8494 		iput(inode);
8495 	}
8496 	btrfs_btree_balance_dirty(root);
8497 	return err;
8498 }
8499 
8500 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8501 				       u64 start, u64 num_bytes, u64 min_size,
8502 				       loff_t actual_len, u64 *alloc_hint,
8503 				       struct btrfs_trans_handle *trans)
8504 {
8505 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8506 	struct extent_map *em;
8507 	struct btrfs_root *root = BTRFS_I(inode)->root;
8508 	struct btrfs_key ins;
8509 	u64 cur_offset = start;
8510 	u64 i_size;
8511 	u64 cur_bytes;
8512 	int ret = 0;
8513 	bool own_trans = true;
8514 
8515 	if (trans)
8516 		own_trans = false;
8517 	while (num_bytes > 0) {
8518 		if (own_trans) {
8519 			trans = btrfs_start_transaction(root, 3);
8520 			if (IS_ERR(trans)) {
8521 				ret = PTR_ERR(trans);
8522 				break;
8523 			}
8524 		}
8525 
8526 		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8527 		cur_bytes = max(cur_bytes, min_size);
8528 		ret = btrfs_reserve_extent(trans, root, cur_bytes,
8529 					   min_size, 0, *alloc_hint, &ins, 1);
8530 		if (ret) {
8531 			if (own_trans)
8532 				btrfs_end_transaction(trans, root);
8533 			break;
8534 		}
8535 
8536 		ret = insert_reserved_file_extent(trans, inode,
8537 						  cur_offset, ins.objectid,
8538 						  ins.offset, ins.offset,
8539 						  ins.offset, 0, 0, 0,
8540 						  BTRFS_FILE_EXTENT_PREALLOC);
8541 		if (ret) {
8542 			btrfs_abort_transaction(trans, root, ret);
8543 			if (own_trans)
8544 				btrfs_end_transaction(trans, root);
8545 			break;
8546 		}
8547 		btrfs_drop_extent_cache(inode, cur_offset,
8548 					cur_offset + ins.offset -1, 0);
8549 
8550 		em = alloc_extent_map();
8551 		if (!em) {
8552 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8553 				&BTRFS_I(inode)->runtime_flags);
8554 			goto next;
8555 		}
8556 
8557 		em->start = cur_offset;
8558 		em->orig_start = cur_offset;
8559 		em->len = ins.offset;
8560 		em->block_start = ins.objectid;
8561 		em->block_len = ins.offset;
8562 		em->orig_block_len = ins.offset;
8563 		em->ram_bytes = ins.offset;
8564 		em->bdev = root->fs_info->fs_devices->latest_bdev;
8565 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8566 		em->generation = trans->transid;
8567 
8568 		while (1) {
8569 			write_lock(&em_tree->lock);
8570 			ret = add_extent_mapping(em_tree, em, 1);
8571 			write_unlock(&em_tree->lock);
8572 			if (ret != -EEXIST)
8573 				break;
8574 			btrfs_drop_extent_cache(inode, cur_offset,
8575 						cur_offset + ins.offset - 1,
8576 						0);
8577 		}
8578 		free_extent_map(em);
8579 next:
8580 		num_bytes -= ins.offset;
8581 		cur_offset += ins.offset;
8582 		*alloc_hint = ins.objectid + ins.offset;
8583 
8584 		inode_inc_iversion(inode);
8585 		inode->i_ctime = CURRENT_TIME;
8586 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8587 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8588 		    (actual_len > inode->i_size) &&
8589 		    (cur_offset > inode->i_size)) {
8590 			if (cur_offset > actual_len)
8591 				i_size = actual_len;
8592 			else
8593 				i_size = cur_offset;
8594 			i_size_write(inode, i_size);
8595 			btrfs_ordered_update_i_size(inode, i_size, NULL);
8596 		}
8597 
8598 		ret = btrfs_update_inode(trans, root, inode);
8599 
8600 		if (ret) {
8601 			btrfs_abort_transaction(trans, root, ret);
8602 			if (own_trans)
8603 				btrfs_end_transaction(trans, root);
8604 			break;
8605 		}
8606 
8607 		if (own_trans)
8608 			btrfs_end_transaction(trans, root);
8609 	}
8610 	return ret;
8611 }
8612 
8613 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8614 			      u64 start, u64 num_bytes, u64 min_size,
8615 			      loff_t actual_len, u64 *alloc_hint)
8616 {
8617 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8618 					   min_size, actual_len, alloc_hint,
8619 					   NULL);
8620 }
8621 
8622 int btrfs_prealloc_file_range_trans(struct inode *inode,
8623 				    struct btrfs_trans_handle *trans, int mode,
8624 				    u64 start, u64 num_bytes, u64 min_size,
8625 				    loff_t actual_len, u64 *alloc_hint)
8626 {
8627 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8628 					   min_size, actual_len, alloc_hint, trans);
8629 }
8630 
8631 static int btrfs_set_page_dirty(struct page *page)
8632 {
8633 	return __set_page_dirty_nobuffers(page);
8634 }
8635 
8636 static int btrfs_permission(struct inode *inode, int mask)
8637 {
8638 	struct btrfs_root *root = BTRFS_I(inode)->root;
8639 	umode_t mode = inode->i_mode;
8640 
8641 	if (mask & MAY_WRITE &&
8642 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8643 		if (btrfs_root_readonly(root))
8644 			return -EROFS;
8645 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8646 			return -EACCES;
8647 	}
8648 	return generic_permission(inode, mask);
8649 }
8650 
8651 static const struct inode_operations btrfs_dir_inode_operations = {
8652 	.getattr	= btrfs_getattr,
8653 	.lookup		= btrfs_lookup,
8654 	.create		= btrfs_create,
8655 	.unlink		= btrfs_unlink,
8656 	.link		= btrfs_link,
8657 	.mkdir		= btrfs_mkdir,
8658 	.rmdir		= btrfs_rmdir,
8659 	.rename		= btrfs_rename,
8660 	.symlink	= btrfs_symlink,
8661 	.setattr	= btrfs_setattr,
8662 	.mknod		= btrfs_mknod,
8663 	.setxattr	= btrfs_setxattr,
8664 	.getxattr	= btrfs_getxattr,
8665 	.listxattr	= btrfs_listxattr,
8666 	.removexattr	= btrfs_removexattr,
8667 	.permission	= btrfs_permission,
8668 	.get_acl	= btrfs_get_acl,
8669 };
8670 static const struct inode_operations btrfs_dir_ro_inode_operations = {
8671 	.lookup		= btrfs_lookup,
8672 	.permission	= btrfs_permission,
8673 	.get_acl	= btrfs_get_acl,
8674 };
8675 
8676 static const struct file_operations btrfs_dir_file_operations = {
8677 	.llseek		= generic_file_llseek,
8678 	.read		= generic_read_dir,
8679 	.iterate	= btrfs_real_readdir,
8680 	.unlocked_ioctl	= btrfs_ioctl,
8681 #ifdef CONFIG_COMPAT
8682 	.compat_ioctl	= btrfs_ioctl,
8683 #endif
8684 	.release        = btrfs_release_file,
8685 	.fsync		= btrfs_sync_file,
8686 };
8687 
8688 static struct extent_io_ops btrfs_extent_io_ops = {
8689 	.fill_delalloc = run_delalloc_range,
8690 	.submit_bio_hook = btrfs_submit_bio_hook,
8691 	.merge_bio_hook = btrfs_merge_bio_hook,
8692 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
8693 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
8694 	.writepage_start_hook = btrfs_writepage_start_hook,
8695 	.set_bit_hook = btrfs_set_bit_hook,
8696 	.clear_bit_hook = btrfs_clear_bit_hook,
8697 	.merge_extent_hook = btrfs_merge_extent_hook,
8698 	.split_extent_hook = btrfs_split_extent_hook,
8699 };
8700 
8701 /*
8702  * btrfs doesn't support the bmap operation because swapfiles
8703  * use bmap to make a mapping of extents in the file.  They assume
8704  * these extents won't change over the life of the file and they
8705  * use the bmap result to do IO directly to the drive.
8706  *
8707  * the btrfs bmap call would return logical addresses that aren't
8708  * suitable for IO and they also will change frequently as COW
8709  * operations happen.  So, swapfile + btrfs == corruption.
8710  *
8711  * For now we're avoiding this by dropping bmap.
8712  */
8713 static const struct address_space_operations btrfs_aops = {
8714 	.readpage	= btrfs_readpage,
8715 	.writepage	= btrfs_writepage,
8716 	.writepages	= btrfs_writepages,
8717 	.readpages	= btrfs_readpages,
8718 	.direct_IO	= btrfs_direct_IO,
8719 	.invalidatepage = btrfs_invalidatepage,
8720 	.releasepage	= btrfs_releasepage,
8721 	.set_page_dirty	= btrfs_set_page_dirty,
8722 	.error_remove_page = generic_error_remove_page,
8723 };
8724 
8725 static const struct address_space_operations btrfs_symlink_aops = {
8726 	.readpage	= btrfs_readpage,
8727 	.writepage	= btrfs_writepage,
8728 	.invalidatepage = btrfs_invalidatepage,
8729 	.releasepage	= btrfs_releasepage,
8730 };
8731 
8732 static const struct inode_operations btrfs_file_inode_operations = {
8733 	.getattr	= btrfs_getattr,
8734 	.setattr	= btrfs_setattr,
8735 	.setxattr	= btrfs_setxattr,
8736 	.getxattr	= btrfs_getxattr,
8737 	.listxattr      = btrfs_listxattr,
8738 	.removexattr	= btrfs_removexattr,
8739 	.permission	= btrfs_permission,
8740 	.fiemap		= btrfs_fiemap,
8741 	.get_acl	= btrfs_get_acl,
8742 	.update_time	= btrfs_update_time,
8743 };
8744 static const struct inode_operations btrfs_special_inode_operations = {
8745 	.getattr	= btrfs_getattr,
8746 	.setattr	= btrfs_setattr,
8747 	.permission	= btrfs_permission,
8748 	.setxattr	= btrfs_setxattr,
8749 	.getxattr	= btrfs_getxattr,
8750 	.listxattr	= btrfs_listxattr,
8751 	.removexattr	= btrfs_removexattr,
8752 	.get_acl	= btrfs_get_acl,
8753 	.update_time	= btrfs_update_time,
8754 };
8755 static const struct inode_operations btrfs_symlink_inode_operations = {
8756 	.readlink	= generic_readlink,
8757 	.follow_link	= page_follow_link_light,
8758 	.put_link	= page_put_link,
8759 	.getattr	= btrfs_getattr,
8760 	.setattr	= btrfs_setattr,
8761 	.permission	= btrfs_permission,
8762 	.setxattr	= btrfs_setxattr,
8763 	.getxattr	= btrfs_getxattr,
8764 	.listxattr	= btrfs_listxattr,
8765 	.removexattr	= btrfs_removexattr,
8766 	.get_acl	= btrfs_get_acl,
8767 	.update_time	= btrfs_update_time,
8768 };
8769 
8770 const struct dentry_operations btrfs_dentry_operations = {
8771 	.d_delete	= btrfs_dentry_delete,
8772 	.d_release	= btrfs_dentry_release,
8773 };
8774