1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 #include "dedupe.h" 64 65 struct btrfs_iget_args { 66 struct btrfs_key *location; 67 struct btrfs_root *root; 68 }; 69 70 struct btrfs_dio_data { 71 u64 outstanding_extents; 72 u64 reserve; 73 u64 unsubmitted_oe_range_start; 74 u64 unsubmitted_oe_range_end; 75 }; 76 77 static const struct inode_operations btrfs_dir_inode_operations; 78 static const struct inode_operations btrfs_symlink_inode_operations; 79 static const struct inode_operations btrfs_dir_ro_inode_operations; 80 static const struct inode_operations btrfs_special_inode_operations; 81 static const struct inode_operations btrfs_file_inode_operations; 82 static const struct address_space_operations btrfs_aops; 83 static const struct address_space_operations btrfs_symlink_aops; 84 static const struct file_operations btrfs_dir_file_operations; 85 static const struct extent_io_ops btrfs_extent_io_ops; 86 87 static struct kmem_cache *btrfs_inode_cachep; 88 struct kmem_cache *btrfs_trans_handle_cachep; 89 struct kmem_cache *btrfs_transaction_cachep; 90 struct kmem_cache *btrfs_path_cachep; 91 struct kmem_cache *btrfs_free_space_cachep; 92 93 #define S_SHIFT 12 94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 102 }; 103 104 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 105 static int btrfs_truncate(struct inode *inode); 106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 107 static noinline int cow_file_range(struct inode *inode, 108 struct page *locked_page, 109 u64 start, u64 end, u64 delalloc_end, 110 int *page_started, unsigned long *nr_written, 111 int unlock, struct btrfs_dedupe_hash *hash); 112 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 113 u64 len, u64 orig_start, 114 u64 block_start, u64 block_len, 115 u64 orig_block_len, u64 ram_bytes, 116 int type); 117 118 static int btrfs_dirty_inode(struct inode *inode); 119 120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 121 void btrfs_test_inode_set_ops(struct inode *inode) 122 { 123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 124 } 125 #endif 126 127 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 128 struct inode *inode, struct inode *dir, 129 const struct qstr *qstr) 130 { 131 int err; 132 133 err = btrfs_init_acl(trans, inode, dir); 134 if (!err) 135 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 136 return err; 137 } 138 139 /* 140 * this does all the hard work for inserting an inline extent into 141 * the btree. The caller should have done a btrfs_drop_extents so that 142 * no overlapping inline items exist in the btree 143 */ 144 static int insert_inline_extent(struct btrfs_trans_handle *trans, 145 struct btrfs_path *path, int extent_inserted, 146 struct btrfs_root *root, struct inode *inode, 147 u64 start, size_t size, size_t compressed_size, 148 int compress_type, 149 struct page **compressed_pages) 150 { 151 struct extent_buffer *leaf; 152 struct page *page = NULL; 153 char *kaddr; 154 unsigned long ptr; 155 struct btrfs_file_extent_item *ei; 156 int err = 0; 157 int ret; 158 size_t cur_size = size; 159 unsigned long offset; 160 161 if (compressed_size && compressed_pages) 162 cur_size = compressed_size; 163 164 inode_add_bytes(inode, size); 165 166 if (!extent_inserted) { 167 struct btrfs_key key; 168 size_t datasize; 169 170 key.objectid = btrfs_ino(inode); 171 key.offset = start; 172 key.type = BTRFS_EXTENT_DATA_KEY; 173 174 datasize = btrfs_file_extent_calc_inline_size(cur_size); 175 path->leave_spinning = 1; 176 ret = btrfs_insert_empty_item(trans, root, path, &key, 177 datasize); 178 if (ret) { 179 err = ret; 180 goto fail; 181 } 182 } 183 leaf = path->nodes[0]; 184 ei = btrfs_item_ptr(leaf, path->slots[0], 185 struct btrfs_file_extent_item); 186 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 188 btrfs_set_file_extent_encryption(leaf, ei, 0); 189 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 190 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 191 ptr = btrfs_file_extent_inline_start(ei); 192 193 if (compress_type != BTRFS_COMPRESS_NONE) { 194 struct page *cpage; 195 int i = 0; 196 while (compressed_size > 0) { 197 cpage = compressed_pages[i]; 198 cur_size = min_t(unsigned long, compressed_size, 199 PAGE_SIZE); 200 201 kaddr = kmap_atomic(cpage); 202 write_extent_buffer(leaf, kaddr, ptr, cur_size); 203 kunmap_atomic(kaddr); 204 205 i++; 206 ptr += cur_size; 207 compressed_size -= cur_size; 208 } 209 btrfs_set_file_extent_compression(leaf, ei, 210 compress_type); 211 } else { 212 page = find_get_page(inode->i_mapping, 213 start >> PAGE_SHIFT); 214 btrfs_set_file_extent_compression(leaf, ei, 0); 215 kaddr = kmap_atomic(page); 216 offset = start & (PAGE_SIZE - 1); 217 write_extent_buffer(leaf, kaddr + offset, ptr, size); 218 kunmap_atomic(kaddr); 219 put_page(page); 220 } 221 btrfs_mark_buffer_dirty(leaf); 222 btrfs_release_path(path); 223 224 /* 225 * we're an inline extent, so nobody can 226 * extend the file past i_size without locking 227 * a page we already have locked. 228 * 229 * We must do any isize and inode updates 230 * before we unlock the pages. Otherwise we 231 * could end up racing with unlink. 232 */ 233 BTRFS_I(inode)->disk_i_size = inode->i_size; 234 ret = btrfs_update_inode(trans, root, inode); 235 236 return ret; 237 fail: 238 return err; 239 } 240 241 242 /* 243 * conditionally insert an inline extent into the file. This 244 * does the checks required to make sure the data is small enough 245 * to fit as an inline extent. 246 */ 247 static noinline int cow_file_range_inline(struct btrfs_root *root, 248 struct inode *inode, u64 start, 249 u64 end, size_t compressed_size, 250 int compress_type, 251 struct page **compressed_pages) 252 { 253 struct btrfs_trans_handle *trans; 254 u64 isize = i_size_read(inode); 255 u64 actual_end = min(end + 1, isize); 256 u64 inline_len = actual_end - start; 257 u64 aligned_end = ALIGN(end, root->sectorsize); 258 u64 data_len = inline_len; 259 int ret; 260 struct btrfs_path *path; 261 int extent_inserted = 0; 262 u32 extent_item_size; 263 264 if (compressed_size) 265 data_len = compressed_size; 266 267 if (start > 0 || 268 actual_end > root->sectorsize || 269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 270 (!compressed_size && 271 (actual_end & (root->sectorsize - 1)) == 0) || 272 end + 1 < isize || 273 data_len > root->fs_info->max_inline) { 274 return 1; 275 } 276 277 path = btrfs_alloc_path(); 278 if (!path) 279 return -ENOMEM; 280 281 trans = btrfs_join_transaction(root); 282 if (IS_ERR(trans)) { 283 btrfs_free_path(path); 284 return PTR_ERR(trans); 285 } 286 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 287 288 if (compressed_size && compressed_pages) 289 extent_item_size = btrfs_file_extent_calc_inline_size( 290 compressed_size); 291 else 292 extent_item_size = btrfs_file_extent_calc_inline_size( 293 inline_len); 294 295 ret = __btrfs_drop_extents(trans, root, inode, path, 296 start, aligned_end, NULL, 297 1, 1, extent_item_size, &extent_inserted); 298 if (ret) { 299 btrfs_abort_transaction(trans, ret); 300 goto out; 301 } 302 303 if (isize > actual_end) 304 inline_len = min_t(u64, isize, actual_end); 305 ret = insert_inline_extent(trans, path, extent_inserted, 306 root, inode, start, 307 inline_len, compressed_size, 308 compress_type, compressed_pages); 309 if (ret && ret != -ENOSPC) { 310 btrfs_abort_transaction(trans, ret); 311 goto out; 312 } else if (ret == -ENOSPC) { 313 ret = 1; 314 goto out; 315 } 316 317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 318 btrfs_delalloc_release_metadata(inode, end + 1 - start); 319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 320 out: 321 /* 322 * Don't forget to free the reserved space, as for inlined extent 323 * it won't count as data extent, free them directly here. 324 * And at reserve time, it's always aligned to page size, so 325 * just free one page here. 326 */ 327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE); 328 btrfs_free_path(path); 329 btrfs_end_transaction(trans, root); 330 return ret; 331 } 332 333 struct async_extent { 334 u64 start; 335 u64 ram_size; 336 u64 compressed_size; 337 struct page **pages; 338 unsigned long nr_pages; 339 int compress_type; 340 struct list_head list; 341 }; 342 343 struct async_cow { 344 struct inode *inode; 345 struct btrfs_root *root; 346 struct page *locked_page; 347 u64 start; 348 u64 end; 349 struct list_head extents; 350 struct btrfs_work work; 351 }; 352 353 static noinline int add_async_extent(struct async_cow *cow, 354 u64 start, u64 ram_size, 355 u64 compressed_size, 356 struct page **pages, 357 unsigned long nr_pages, 358 int compress_type) 359 { 360 struct async_extent *async_extent; 361 362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 363 BUG_ON(!async_extent); /* -ENOMEM */ 364 async_extent->start = start; 365 async_extent->ram_size = ram_size; 366 async_extent->compressed_size = compressed_size; 367 async_extent->pages = pages; 368 async_extent->nr_pages = nr_pages; 369 async_extent->compress_type = compress_type; 370 list_add_tail(&async_extent->list, &cow->extents); 371 return 0; 372 } 373 374 static inline int inode_need_compress(struct inode *inode) 375 { 376 struct btrfs_root *root = BTRFS_I(inode)->root; 377 378 /* force compress */ 379 if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS)) 380 return 1; 381 /* bad compression ratios */ 382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 383 return 0; 384 if (btrfs_test_opt(root->fs_info, COMPRESS) || 385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 386 BTRFS_I(inode)->force_compress) 387 return 1; 388 return 0; 389 } 390 391 /* 392 * we create compressed extents in two phases. The first 393 * phase compresses a range of pages that have already been 394 * locked (both pages and state bits are locked). 395 * 396 * This is done inside an ordered work queue, and the compression 397 * is spread across many cpus. The actual IO submission is step 398 * two, and the ordered work queue takes care of making sure that 399 * happens in the same order things were put onto the queue by 400 * writepages and friends. 401 * 402 * If this code finds it can't get good compression, it puts an 403 * entry onto the work queue to write the uncompressed bytes. This 404 * makes sure that both compressed inodes and uncompressed inodes 405 * are written in the same order that the flusher thread sent them 406 * down. 407 */ 408 static noinline void compress_file_range(struct inode *inode, 409 struct page *locked_page, 410 u64 start, u64 end, 411 struct async_cow *async_cow, 412 int *num_added) 413 { 414 struct btrfs_root *root = BTRFS_I(inode)->root; 415 u64 num_bytes; 416 u64 blocksize = root->sectorsize; 417 u64 actual_end; 418 u64 isize = i_size_read(inode); 419 int ret = 0; 420 struct page **pages = NULL; 421 unsigned long nr_pages; 422 unsigned long nr_pages_ret = 0; 423 unsigned long total_compressed = 0; 424 unsigned long total_in = 0; 425 unsigned long max_compressed = SZ_128K; 426 unsigned long max_uncompressed = SZ_128K; 427 int i; 428 int will_compress; 429 int compress_type = root->fs_info->compress_type; 430 int redirty = 0; 431 432 /* if this is a small write inside eof, kick off a defrag */ 433 if ((end - start + 1) < SZ_16K && 434 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 435 btrfs_add_inode_defrag(NULL, inode); 436 437 actual_end = min_t(u64, isize, end + 1); 438 again: 439 will_compress = 0; 440 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 441 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE); 442 443 /* 444 * we don't want to send crud past the end of i_size through 445 * compression, that's just a waste of CPU time. So, if the 446 * end of the file is before the start of our current 447 * requested range of bytes, we bail out to the uncompressed 448 * cleanup code that can deal with all of this. 449 * 450 * It isn't really the fastest way to fix things, but this is a 451 * very uncommon corner. 452 */ 453 if (actual_end <= start) 454 goto cleanup_and_bail_uncompressed; 455 456 total_compressed = actual_end - start; 457 458 /* 459 * skip compression for a small file range(<=blocksize) that 460 * isn't an inline extent, since it doesn't save disk space at all. 461 */ 462 if (total_compressed <= blocksize && 463 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 464 goto cleanup_and_bail_uncompressed; 465 466 /* we want to make sure that amount of ram required to uncompress 467 * an extent is reasonable, so we limit the total size in ram 468 * of a compressed extent to 128k. This is a crucial number 469 * because it also controls how easily we can spread reads across 470 * cpus for decompression. 471 * 472 * We also want to make sure the amount of IO required to do 473 * a random read is reasonably small, so we limit the size of 474 * a compressed extent to 128k. 475 */ 476 total_compressed = min(total_compressed, max_uncompressed); 477 num_bytes = ALIGN(end - start + 1, blocksize); 478 num_bytes = max(blocksize, num_bytes); 479 total_in = 0; 480 ret = 0; 481 482 /* 483 * we do compression for mount -o compress and when the 484 * inode has not been flagged as nocompress. This flag can 485 * change at any time if we discover bad compression ratios. 486 */ 487 if (inode_need_compress(inode)) { 488 WARN_ON(pages); 489 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 490 if (!pages) { 491 /* just bail out to the uncompressed code */ 492 goto cont; 493 } 494 495 if (BTRFS_I(inode)->force_compress) 496 compress_type = BTRFS_I(inode)->force_compress; 497 498 /* 499 * we need to call clear_page_dirty_for_io on each 500 * page in the range. Otherwise applications with the file 501 * mmap'd can wander in and change the page contents while 502 * we are compressing them. 503 * 504 * If the compression fails for any reason, we set the pages 505 * dirty again later on. 506 */ 507 extent_range_clear_dirty_for_io(inode, start, end); 508 redirty = 1; 509 ret = btrfs_compress_pages(compress_type, 510 inode->i_mapping, start, 511 total_compressed, pages, 512 nr_pages, &nr_pages_ret, 513 &total_in, 514 &total_compressed, 515 max_compressed); 516 517 if (!ret) { 518 unsigned long offset = total_compressed & 519 (PAGE_SIZE - 1); 520 struct page *page = pages[nr_pages_ret - 1]; 521 char *kaddr; 522 523 /* zero the tail end of the last page, we might be 524 * sending it down to disk 525 */ 526 if (offset) { 527 kaddr = kmap_atomic(page); 528 memset(kaddr + offset, 0, 529 PAGE_SIZE - offset); 530 kunmap_atomic(kaddr); 531 } 532 will_compress = 1; 533 } 534 } 535 cont: 536 if (start == 0) { 537 /* lets try to make an inline extent */ 538 if (ret || total_in < (actual_end - start)) { 539 /* we didn't compress the entire range, try 540 * to make an uncompressed inline extent. 541 */ 542 ret = cow_file_range_inline(root, inode, start, end, 543 0, 0, NULL); 544 } else { 545 /* try making a compressed inline extent */ 546 ret = cow_file_range_inline(root, inode, start, end, 547 total_compressed, 548 compress_type, pages); 549 } 550 if (ret <= 0) { 551 unsigned long clear_flags = EXTENT_DELALLOC | 552 EXTENT_DEFRAG; 553 unsigned long page_error_op; 554 555 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 556 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 557 558 /* 559 * inline extent creation worked or returned error, 560 * we don't need to create any more async work items. 561 * Unlock and free up our temp pages. 562 */ 563 extent_clear_unlock_delalloc(inode, start, end, NULL, 564 clear_flags, PAGE_UNLOCK | 565 PAGE_CLEAR_DIRTY | 566 PAGE_SET_WRITEBACK | 567 page_error_op | 568 PAGE_END_WRITEBACK); 569 goto free_pages_out; 570 } 571 } 572 573 if (will_compress) { 574 /* 575 * we aren't doing an inline extent round the compressed size 576 * up to a block size boundary so the allocator does sane 577 * things 578 */ 579 total_compressed = ALIGN(total_compressed, blocksize); 580 581 /* 582 * one last check to make sure the compression is really a 583 * win, compare the page count read with the blocks on disk 584 */ 585 total_in = ALIGN(total_in, PAGE_SIZE); 586 if (total_compressed >= total_in) { 587 will_compress = 0; 588 } else { 589 num_bytes = total_in; 590 *num_added += 1; 591 592 /* 593 * The async work queues will take care of doing actual 594 * allocation on disk for these compressed pages, and 595 * will submit them to the elevator. 596 */ 597 add_async_extent(async_cow, start, num_bytes, 598 total_compressed, pages, nr_pages_ret, 599 compress_type); 600 601 if (start + num_bytes < end) { 602 start += num_bytes; 603 pages = NULL; 604 cond_resched(); 605 goto again; 606 } 607 return; 608 } 609 } 610 if (pages) { 611 /* 612 * the compression code ran but failed to make things smaller, 613 * free any pages it allocated and our page pointer array 614 */ 615 for (i = 0; i < nr_pages_ret; i++) { 616 WARN_ON(pages[i]->mapping); 617 put_page(pages[i]); 618 } 619 kfree(pages); 620 pages = NULL; 621 total_compressed = 0; 622 nr_pages_ret = 0; 623 624 /* flag the file so we don't compress in the future */ 625 if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) && 626 !(BTRFS_I(inode)->force_compress)) { 627 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 628 } 629 } 630 cleanup_and_bail_uncompressed: 631 /* 632 * No compression, but we still need to write the pages in the file 633 * we've been given so far. redirty the locked page if it corresponds 634 * to our extent and set things up for the async work queue to run 635 * cow_file_range to do the normal delalloc dance. 636 */ 637 if (page_offset(locked_page) >= start && 638 page_offset(locked_page) <= end) 639 __set_page_dirty_nobuffers(locked_page); 640 /* unlocked later on in the async handlers */ 641 642 if (redirty) 643 extent_range_redirty_for_io(inode, start, end); 644 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 645 BTRFS_COMPRESS_NONE); 646 *num_added += 1; 647 648 return; 649 650 free_pages_out: 651 for (i = 0; i < nr_pages_ret; i++) { 652 WARN_ON(pages[i]->mapping); 653 put_page(pages[i]); 654 } 655 kfree(pages); 656 } 657 658 static void free_async_extent_pages(struct async_extent *async_extent) 659 { 660 int i; 661 662 if (!async_extent->pages) 663 return; 664 665 for (i = 0; i < async_extent->nr_pages; i++) { 666 WARN_ON(async_extent->pages[i]->mapping); 667 put_page(async_extent->pages[i]); 668 } 669 kfree(async_extent->pages); 670 async_extent->nr_pages = 0; 671 async_extent->pages = NULL; 672 } 673 674 /* 675 * phase two of compressed writeback. This is the ordered portion 676 * of the code, which only gets called in the order the work was 677 * queued. We walk all the async extents created by compress_file_range 678 * and send them down to the disk. 679 */ 680 static noinline void submit_compressed_extents(struct inode *inode, 681 struct async_cow *async_cow) 682 { 683 struct async_extent *async_extent; 684 u64 alloc_hint = 0; 685 struct btrfs_key ins; 686 struct extent_map *em; 687 struct btrfs_root *root = BTRFS_I(inode)->root; 688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 689 struct extent_io_tree *io_tree; 690 int ret = 0; 691 692 again: 693 while (!list_empty(&async_cow->extents)) { 694 async_extent = list_entry(async_cow->extents.next, 695 struct async_extent, list); 696 list_del(&async_extent->list); 697 698 io_tree = &BTRFS_I(inode)->io_tree; 699 700 retry: 701 /* did the compression code fall back to uncompressed IO? */ 702 if (!async_extent->pages) { 703 int page_started = 0; 704 unsigned long nr_written = 0; 705 706 lock_extent(io_tree, async_extent->start, 707 async_extent->start + 708 async_extent->ram_size - 1); 709 710 /* allocate blocks */ 711 ret = cow_file_range(inode, async_cow->locked_page, 712 async_extent->start, 713 async_extent->start + 714 async_extent->ram_size - 1, 715 async_extent->start + 716 async_extent->ram_size - 1, 717 &page_started, &nr_written, 0, 718 NULL); 719 720 /* JDM XXX */ 721 722 /* 723 * if page_started, cow_file_range inserted an 724 * inline extent and took care of all the unlocking 725 * and IO for us. Otherwise, we need to submit 726 * all those pages down to the drive. 727 */ 728 if (!page_started && !ret) 729 extent_write_locked_range(io_tree, 730 inode, async_extent->start, 731 async_extent->start + 732 async_extent->ram_size - 1, 733 btrfs_get_extent, 734 WB_SYNC_ALL); 735 else if (ret) 736 unlock_page(async_cow->locked_page); 737 kfree(async_extent); 738 cond_resched(); 739 continue; 740 } 741 742 lock_extent(io_tree, async_extent->start, 743 async_extent->start + async_extent->ram_size - 1); 744 745 ret = btrfs_reserve_extent(root, 746 async_extent->compressed_size, 747 async_extent->compressed_size, 748 0, alloc_hint, &ins, 1, 1); 749 if (ret) { 750 free_async_extent_pages(async_extent); 751 752 if (ret == -ENOSPC) { 753 unlock_extent(io_tree, async_extent->start, 754 async_extent->start + 755 async_extent->ram_size - 1); 756 757 /* 758 * we need to redirty the pages if we decide to 759 * fallback to uncompressed IO, otherwise we 760 * will not submit these pages down to lower 761 * layers. 762 */ 763 extent_range_redirty_for_io(inode, 764 async_extent->start, 765 async_extent->start + 766 async_extent->ram_size - 1); 767 768 goto retry; 769 } 770 goto out_free; 771 } 772 /* 773 * here we're doing allocation and writeback of the 774 * compressed pages 775 */ 776 btrfs_drop_extent_cache(inode, async_extent->start, 777 async_extent->start + 778 async_extent->ram_size - 1, 0); 779 780 em = alloc_extent_map(); 781 if (!em) { 782 ret = -ENOMEM; 783 goto out_free_reserve; 784 } 785 em->start = async_extent->start; 786 em->len = async_extent->ram_size; 787 em->orig_start = em->start; 788 em->mod_start = em->start; 789 em->mod_len = em->len; 790 791 em->block_start = ins.objectid; 792 em->block_len = ins.offset; 793 em->orig_block_len = ins.offset; 794 em->ram_bytes = async_extent->ram_size; 795 em->bdev = root->fs_info->fs_devices->latest_bdev; 796 em->compress_type = async_extent->compress_type; 797 set_bit(EXTENT_FLAG_PINNED, &em->flags); 798 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 799 em->generation = -1; 800 801 while (1) { 802 write_lock(&em_tree->lock); 803 ret = add_extent_mapping(em_tree, em, 1); 804 write_unlock(&em_tree->lock); 805 if (ret != -EEXIST) { 806 free_extent_map(em); 807 break; 808 } 809 btrfs_drop_extent_cache(inode, async_extent->start, 810 async_extent->start + 811 async_extent->ram_size - 1, 0); 812 } 813 814 if (ret) 815 goto out_free_reserve; 816 817 ret = btrfs_add_ordered_extent_compress(inode, 818 async_extent->start, 819 ins.objectid, 820 async_extent->ram_size, 821 ins.offset, 822 BTRFS_ORDERED_COMPRESSED, 823 async_extent->compress_type); 824 if (ret) { 825 btrfs_drop_extent_cache(inode, async_extent->start, 826 async_extent->start + 827 async_extent->ram_size - 1, 0); 828 goto out_free_reserve; 829 } 830 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 831 832 /* 833 * clear dirty, set writeback and unlock the pages. 834 */ 835 extent_clear_unlock_delalloc(inode, async_extent->start, 836 async_extent->start + 837 async_extent->ram_size - 1, 838 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 839 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 840 PAGE_SET_WRITEBACK); 841 ret = btrfs_submit_compressed_write(inode, 842 async_extent->start, 843 async_extent->ram_size, 844 ins.objectid, 845 ins.offset, async_extent->pages, 846 async_extent->nr_pages); 847 if (ret) { 848 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 849 struct page *p = async_extent->pages[0]; 850 const u64 start = async_extent->start; 851 const u64 end = start + async_extent->ram_size - 1; 852 853 p->mapping = inode->i_mapping; 854 tree->ops->writepage_end_io_hook(p, start, end, 855 NULL, 0); 856 p->mapping = NULL; 857 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 858 PAGE_END_WRITEBACK | 859 PAGE_SET_ERROR); 860 free_async_extent_pages(async_extent); 861 } 862 alloc_hint = ins.objectid + ins.offset; 863 kfree(async_extent); 864 cond_resched(); 865 } 866 return; 867 out_free_reserve: 868 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 869 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 870 out_free: 871 extent_clear_unlock_delalloc(inode, async_extent->start, 872 async_extent->start + 873 async_extent->ram_size - 1, 874 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 875 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 876 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 877 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 878 PAGE_SET_ERROR); 879 free_async_extent_pages(async_extent); 880 kfree(async_extent); 881 goto again; 882 } 883 884 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 885 u64 num_bytes) 886 { 887 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 888 struct extent_map *em; 889 u64 alloc_hint = 0; 890 891 read_lock(&em_tree->lock); 892 em = search_extent_mapping(em_tree, start, num_bytes); 893 if (em) { 894 /* 895 * if block start isn't an actual block number then find the 896 * first block in this inode and use that as a hint. If that 897 * block is also bogus then just don't worry about it. 898 */ 899 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 900 free_extent_map(em); 901 em = search_extent_mapping(em_tree, 0, 0); 902 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 903 alloc_hint = em->block_start; 904 if (em) 905 free_extent_map(em); 906 } else { 907 alloc_hint = em->block_start; 908 free_extent_map(em); 909 } 910 } 911 read_unlock(&em_tree->lock); 912 913 return alloc_hint; 914 } 915 916 /* 917 * when extent_io.c finds a delayed allocation range in the file, 918 * the call backs end up in this code. The basic idea is to 919 * allocate extents on disk for the range, and create ordered data structs 920 * in ram to track those extents. 921 * 922 * locked_page is the page that writepage had locked already. We use 923 * it to make sure we don't do extra locks or unlocks. 924 * 925 * *page_started is set to one if we unlock locked_page and do everything 926 * required to start IO on it. It may be clean and already done with 927 * IO when we return. 928 */ 929 static noinline int cow_file_range(struct inode *inode, 930 struct page *locked_page, 931 u64 start, u64 end, u64 delalloc_end, 932 int *page_started, unsigned long *nr_written, 933 int unlock, struct btrfs_dedupe_hash *hash) 934 { 935 struct btrfs_root *root = BTRFS_I(inode)->root; 936 u64 alloc_hint = 0; 937 u64 num_bytes; 938 unsigned long ram_size; 939 u64 disk_num_bytes; 940 u64 cur_alloc_size; 941 u64 blocksize = root->sectorsize; 942 struct btrfs_key ins; 943 struct extent_map *em; 944 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 945 int ret = 0; 946 947 if (btrfs_is_free_space_inode(inode)) { 948 WARN_ON_ONCE(1); 949 ret = -EINVAL; 950 goto out_unlock; 951 } 952 953 num_bytes = ALIGN(end - start + 1, blocksize); 954 num_bytes = max(blocksize, num_bytes); 955 disk_num_bytes = num_bytes; 956 957 /* if this is a small write inside eof, kick off defrag */ 958 if (num_bytes < SZ_64K && 959 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 960 btrfs_add_inode_defrag(NULL, inode); 961 962 if (start == 0) { 963 /* lets try to make an inline extent */ 964 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 965 NULL); 966 if (ret == 0) { 967 extent_clear_unlock_delalloc(inode, start, end, NULL, 968 EXTENT_LOCKED | EXTENT_DELALLOC | 969 EXTENT_DEFRAG, PAGE_UNLOCK | 970 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 971 PAGE_END_WRITEBACK); 972 973 *nr_written = *nr_written + 974 (end - start + PAGE_SIZE) / PAGE_SIZE; 975 *page_started = 1; 976 goto out; 977 } else if (ret < 0) { 978 goto out_unlock; 979 } 980 } 981 982 BUG_ON(disk_num_bytes > 983 btrfs_super_total_bytes(root->fs_info->super_copy)); 984 985 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 986 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 987 988 while (disk_num_bytes > 0) { 989 unsigned long op; 990 991 cur_alloc_size = disk_num_bytes; 992 ret = btrfs_reserve_extent(root, cur_alloc_size, 993 root->sectorsize, 0, alloc_hint, 994 &ins, 1, 1); 995 if (ret < 0) 996 goto out_unlock; 997 998 em = alloc_extent_map(); 999 if (!em) { 1000 ret = -ENOMEM; 1001 goto out_reserve; 1002 } 1003 em->start = start; 1004 em->orig_start = em->start; 1005 ram_size = ins.offset; 1006 em->len = ins.offset; 1007 em->mod_start = em->start; 1008 em->mod_len = em->len; 1009 1010 em->block_start = ins.objectid; 1011 em->block_len = ins.offset; 1012 em->orig_block_len = ins.offset; 1013 em->ram_bytes = ram_size; 1014 em->bdev = root->fs_info->fs_devices->latest_bdev; 1015 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1016 em->generation = -1; 1017 1018 while (1) { 1019 write_lock(&em_tree->lock); 1020 ret = add_extent_mapping(em_tree, em, 1); 1021 write_unlock(&em_tree->lock); 1022 if (ret != -EEXIST) { 1023 free_extent_map(em); 1024 break; 1025 } 1026 btrfs_drop_extent_cache(inode, start, 1027 start + ram_size - 1, 0); 1028 } 1029 if (ret) 1030 goto out_reserve; 1031 1032 cur_alloc_size = ins.offset; 1033 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1034 ram_size, cur_alloc_size, 0); 1035 if (ret) 1036 goto out_drop_extent_cache; 1037 1038 if (root->root_key.objectid == 1039 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1040 ret = btrfs_reloc_clone_csums(inode, start, 1041 cur_alloc_size); 1042 if (ret) 1043 goto out_drop_extent_cache; 1044 } 1045 1046 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1047 1048 if (disk_num_bytes < cur_alloc_size) 1049 break; 1050 1051 /* we're not doing compressed IO, don't unlock the first 1052 * page (which the caller expects to stay locked), don't 1053 * clear any dirty bits and don't set any writeback bits 1054 * 1055 * Do set the Private2 bit so we know this page was properly 1056 * setup for writepage 1057 */ 1058 op = unlock ? PAGE_UNLOCK : 0; 1059 op |= PAGE_SET_PRIVATE2; 1060 1061 extent_clear_unlock_delalloc(inode, start, 1062 start + ram_size - 1, locked_page, 1063 EXTENT_LOCKED | EXTENT_DELALLOC, 1064 op); 1065 disk_num_bytes -= cur_alloc_size; 1066 num_bytes -= cur_alloc_size; 1067 alloc_hint = ins.objectid + ins.offset; 1068 start += cur_alloc_size; 1069 } 1070 out: 1071 return ret; 1072 1073 out_drop_extent_cache: 1074 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1075 out_reserve: 1076 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1077 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1078 out_unlock: 1079 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1080 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1081 EXTENT_DELALLOC | EXTENT_DEFRAG, 1082 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1083 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1084 goto out; 1085 } 1086 1087 /* 1088 * work queue call back to started compression on a file and pages 1089 */ 1090 static noinline void async_cow_start(struct btrfs_work *work) 1091 { 1092 struct async_cow *async_cow; 1093 int num_added = 0; 1094 async_cow = container_of(work, struct async_cow, work); 1095 1096 compress_file_range(async_cow->inode, async_cow->locked_page, 1097 async_cow->start, async_cow->end, async_cow, 1098 &num_added); 1099 if (num_added == 0) { 1100 btrfs_add_delayed_iput(async_cow->inode); 1101 async_cow->inode = NULL; 1102 } 1103 } 1104 1105 /* 1106 * work queue call back to submit previously compressed pages 1107 */ 1108 static noinline void async_cow_submit(struct btrfs_work *work) 1109 { 1110 struct async_cow *async_cow; 1111 struct btrfs_root *root; 1112 unsigned long nr_pages; 1113 1114 async_cow = container_of(work, struct async_cow, work); 1115 1116 root = async_cow->root; 1117 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1118 PAGE_SHIFT; 1119 1120 /* 1121 * atomic_sub_return implies a barrier for waitqueue_active 1122 */ 1123 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1124 5 * SZ_1M && 1125 waitqueue_active(&root->fs_info->async_submit_wait)) 1126 wake_up(&root->fs_info->async_submit_wait); 1127 1128 if (async_cow->inode) 1129 submit_compressed_extents(async_cow->inode, async_cow); 1130 } 1131 1132 static noinline void async_cow_free(struct btrfs_work *work) 1133 { 1134 struct async_cow *async_cow; 1135 async_cow = container_of(work, struct async_cow, work); 1136 if (async_cow->inode) 1137 btrfs_add_delayed_iput(async_cow->inode); 1138 kfree(async_cow); 1139 } 1140 1141 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1142 u64 start, u64 end, int *page_started, 1143 unsigned long *nr_written) 1144 { 1145 struct async_cow *async_cow; 1146 struct btrfs_root *root = BTRFS_I(inode)->root; 1147 unsigned long nr_pages; 1148 u64 cur_end; 1149 int limit = 10 * SZ_1M; 1150 1151 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1152 1, 0, NULL, GFP_NOFS); 1153 while (start < end) { 1154 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1155 BUG_ON(!async_cow); /* -ENOMEM */ 1156 async_cow->inode = igrab(inode); 1157 async_cow->root = root; 1158 async_cow->locked_page = locked_page; 1159 async_cow->start = start; 1160 1161 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1162 !btrfs_test_opt(root->fs_info, FORCE_COMPRESS)) 1163 cur_end = end; 1164 else 1165 cur_end = min(end, start + SZ_512K - 1); 1166 1167 async_cow->end = cur_end; 1168 INIT_LIST_HEAD(&async_cow->extents); 1169 1170 btrfs_init_work(&async_cow->work, 1171 btrfs_delalloc_helper, 1172 async_cow_start, async_cow_submit, 1173 async_cow_free); 1174 1175 nr_pages = (cur_end - start + PAGE_SIZE) >> 1176 PAGE_SHIFT; 1177 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1178 1179 btrfs_queue_work(root->fs_info->delalloc_workers, 1180 &async_cow->work); 1181 1182 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1183 wait_event(root->fs_info->async_submit_wait, 1184 (atomic_read(&root->fs_info->async_delalloc_pages) < 1185 limit)); 1186 } 1187 1188 while (atomic_read(&root->fs_info->async_submit_draining) && 1189 atomic_read(&root->fs_info->async_delalloc_pages)) { 1190 wait_event(root->fs_info->async_submit_wait, 1191 (atomic_read(&root->fs_info->async_delalloc_pages) == 1192 0)); 1193 } 1194 1195 *nr_written += nr_pages; 1196 start = cur_end + 1; 1197 } 1198 *page_started = 1; 1199 return 0; 1200 } 1201 1202 static noinline int csum_exist_in_range(struct btrfs_root *root, 1203 u64 bytenr, u64 num_bytes) 1204 { 1205 int ret; 1206 struct btrfs_ordered_sum *sums; 1207 LIST_HEAD(list); 1208 1209 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1210 bytenr + num_bytes - 1, &list, 0); 1211 if (ret == 0 && list_empty(&list)) 1212 return 0; 1213 1214 while (!list_empty(&list)) { 1215 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1216 list_del(&sums->list); 1217 kfree(sums); 1218 } 1219 return 1; 1220 } 1221 1222 /* 1223 * when nowcow writeback call back. This checks for snapshots or COW copies 1224 * of the extents that exist in the file, and COWs the file as required. 1225 * 1226 * If no cow copies or snapshots exist, we write directly to the existing 1227 * blocks on disk 1228 */ 1229 static noinline int run_delalloc_nocow(struct inode *inode, 1230 struct page *locked_page, 1231 u64 start, u64 end, int *page_started, int force, 1232 unsigned long *nr_written) 1233 { 1234 struct btrfs_root *root = BTRFS_I(inode)->root; 1235 struct btrfs_trans_handle *trans; 1236 struct extent_buffer *leaf; 1237 struct btrfs_path *path; 1238 struct btrfs_file_extent_item *fi; 1239 struct btrfs_key found_key; 1240 u64 cow_start; 1241 u64 cur_offset; 1242 u64 extent_end; 1243 u64 extent_offset; 1244 u64 disk_bytenr; 1245 u64 num_bytes; 1246 u64 disk_num_bytes; 1247 u64 ram_bytes; 1248 int extent_type; 1249 int ret, err; 1250 int type; 1251 int nocow; 1252 int check_prev = 1; 1253 bool nolock; 1254 u64 ino = btrfs_ino(inode); 1255 1256 path = btrfs_alloc_path(); 1257 if (!path) { 1258 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1259 EXTENT_LOCKED | EXTENT_DELALLOC | 1260 EXTENT_DO_ACCOUNTING | 1261 EXTENT_DEFRAG, PAGE_UNLOCK | 1262 PAGE_CLEAR_DIRTY | 1263 PAGE_SET_WRITEBACK | 1264 PAGE_END_WRITEBACK); 1265 return -ENOMEM; 1266 } 1267 1268 nolock = btrfs_is_free_space_inode(inode); 1269 1270 if (nolock) 1271 trans = btrfs_join_transaction_nolock(root); 1272 else 1273 trans = btrfs_join_transaction(root); 1274 1275 if (IS_ERR(trans)) { 1276 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1277 EXTENT_LOCKED | EXTENT_DELALLOC | 1278 EXTENT_DO_ACCOUNTING | 1279 EXTENT_DEFRAG, PAGE_UNLOCK | 1280 PAGE_CLEAR_DIRTY | 1281 PAGE_SET_WRITEBACK | 1282 PAGE_END_WRITEBACK); 1283 btrfs_free_path(path); 1284 return PTR_ERR(trans); 1285 } 1286 1287 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1288 1289 cow_start = (u64)-1; 1290 cur_offset = start; 1291 while (1) { 1292 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1293 cur_offset, 0); 1294 if (ret < 0) 1295 goto error; 1296 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1297 leaf = path->nodes[0]; 1298 btrfs_item_key_to_cpu(leaf, &found_key, 1299 path->slots[0] - 1); 1300 if (found_key.objectid == ino && 1301 found_key.type == BTRFS_EXTENT_DATA_KEY) 1302 path->slots[0]--; 1303 } 1304 check_prev = 0; 1305 next_slot: 1306 leaf = path->nodes[0]; 1307 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1308 ret = btrfs_next_leaf(root, path); 1309 if (ret < 0) 1310 goto error; 1311 if (ret > 0) 1312 break; 1313 leaf = path->nodes[0]; 1314 } 1315 1316 nocow = 0; 1317 disk_bytenr = 0; 1318 num_bytes = 0; 1319 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1320 1321 if (found_key.objectid > ino) 1322 break; 1323 if (WARN_ON_ONCE(found_key.objectid < ino) || 1324 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1325 path->slots[0]++; 1326 goto next_slot; 1327 } 1328 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1329 found_key.offset > end) 1330 break; 1331 1332 if (found_key.offset > cur_offset) { 1333 extent_end = found_key.offset; 1334 extent_type = 0; 1335 goto out_check; 1336 } 1337 1338 fi = btrfs_item_ptr(leaf, path->slots[0], 1339 struct btrfs_file_extent_item); 1340 extent_type = btrfs_file_extent_type(leaf, fi); 1341 1342 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1343 if (extent_type == BTRFS_FILE_EXTENT_REG || 1344 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1345 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1346 extent_offset = btrfs_file_extent_offset(leaf, fi); 1347 extent_end = found_key.offset + 1348 btrfs_file_extent_num_bytes(leaf, fi); 1349 disk_num_bytes = 1350 btrfs_file_extent_disk_num_bytes(leaf, fi); 1351 if (extent_end <= start) { 1352 path->slots[0]++; 1353 goto next_slot; 1354 } 1355 if (disk_bytenr == 0) 1356 goto out_check; 1357 if (btrfs_file_extent_compression(leaf, fi) || 1358 btrfs_file_extent_encryption(leaf, fi) || 1359 btrfs_file_extent_other_encoding(leaf, fi)) 1360 goto out_check; 1361 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1362 goto out_check; 1363 if (btrfs_extent_readonly(root, disk_bytenr)) 1364 goto out_check; 1365 if (btrfs_cross_ref_exist(trans, root, ino, 1366 found_key.offset - 1367 extent_offset, disk_bytenr)) 1368 goto out_check; 1369 disk_bytenr += extent_offset; 1370 disk_bytenr += cur_offset - found_key.offset; 1371 num_bytes = min(end + 1, extent_end) - cur_offset; 1372 /* 1373 * if there are pending snapshots for this root, 1374 * we fall into common COW way. 1375 */ 1376 if (!nolock) { 1377 err = btrfs_start_write_no_snapshoting(root); 1378 if (!err) 1379 goto out_check; 1380 } 1381 /* 1382 * force cow if csum exists in the range. 1383 * this ensure that csum for a given extent are 1384 * either valid or do not exist. 1385 */ 1386 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1387 goto out_check; 1388 if (!btrfs_inc_nocow_writers(root->fs_info, 1389 disk_bytenr)) 1390 goto out_check; 1391 nocow = 1; 1392 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1393 extent_end = found_key.offset + 1394 btrfs_file_extent_inline_len(leaf, 1395 path->slots[0], fi); 1396 extent_end = ALIGN(extent_end, root->sectorsize); 1397 } else { 1398 BUG_ON(1); 1399 } 1400 out_check: 1401 if (extent_end <= start) { 1402 path->slots[0]++; 1403 if (!nolock && nocow) 1404 btrfs_end_write_no_snapshoting(root); 1405 if (nocow) 1406 btrfs_dec_nocow_writers(root->fs_info, 1407 disk_bytenr); 1408 goto next_slot; 1409 } 1410 if (!nocow) { 1411 if (cow_start == (u64)-1) 1412 cow_start = cur_offset; 1413 cur_offset = extent_end; 1414 if (cur_offset > end) 1415 break; 1416 path->slots[0]++; 1417 goto next_slot; 1418 } 1419 1420 btrfs_release_path(path); 1421 if (cow_start != (u64)-1) { 1422 ret = cow_file_range(inode, locked_page, 1423 cow_start, found_key.offset - 1, 1424 end, page_started, nr_written, 1, 1425 NULL); 1426 if (ret) { 1427 if (!nolock && nocow) 1428 btrfs_end_write_no_snapshoting(root); 1429 if (nocow) 1430 btrfs_dec_nocow_writers(root->fs_info, 1431 disk_bytenr); 1432 goto error; 1433 } 1434 cow_start = (u64)-1; 1435 } 1436 1437 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1438 struct extent_map *em; 1439 struct extent_map_tree *em_tree; 1440 em_tree = &BTRFS_I(inode)->extent_tree; 1441 em = alloc_extent_map(); 1442 BUG_ON(!em); /* -ENOMEM */ 1443 em->start = cur_offset; 1444 em->orig_start = found_key.offset - extent_offset; 1445 em->len = num_bytes; 1446 em->block_len = num_bytes; 1447 em->block_start = disk_bytenr; 1448 em->orig_block_len = disk_num_bytes; 1449 em->ram_bytes = ram_bytes; 1450 em->bdev = root->fs_info->fs_devices->latest_bdev; 1451 em->mod_start = em->start; 1452 em->mod_len = em->len; 1453 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1454 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1455 em->generation = -1; 1456 while (1) { 1457 write_lock(&em_tree->lock); 1458 ret = add_extent_mapping(em_tree, em, 1); 1459 write_unlock(&em_tree->lock); 1460 if (ret != -EEXIST) { 1461 free_extent_map(em); 1462 break; 1463 } 1464 btrfs_drop_extent_cache(inode, em->start, 1465 em->start + em->len - 1, 0); 1466 } 1467 type = BTRFS_ORDERED_PREALLOC; 1468 } else { 1469 type = BTRFS_ORDERED_NOCOW; 1470 } 1471 1472 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1473 num_bytes, num_bytes, type); 1474 if (nocow) 1475 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr); 1476 BUG_ON(ret); /* -ENOMEM */ 1477 1478 if (root->root_key.objectid == 1479 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1480 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1481 num_bytes); 1482 if (ret) { 1483 if (!nolock && nocow) 1484 btrfs_end_write_no_snapshoting(root); 1485 goto error; 1486 } 1487 } 1488 1489 extent_clear_unlock_delalloc(inode, cur_offset, 1490 cur_offset + num_bytes - 1, 1491 locked_page, EXTENT_LOCKED | 1492 EXTENT_DELALLOC, PAGE_UNLOCK | 1493 PAGE_SET_PRIVATE2); 1494 if (!nolock && nocow) 1495 btrfs_end_write_no_snapshoting(root); 1496 cur_offset = extent_end; 1497 if (cur_offset > end) 1498 break; 1499 } 1500 btrfs_release_path(path); 1501 1502 if (cur_offset <= end && cow_start == (u64)-1) { 1503 cow_start = cur_offset; 1504 cur_offset = end; 1505 } 1506 1507 if (cow_start != (u64)-1) { 1508 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1509 page_started, nr_written, 1, NULL); 1510 if (ret) 1511 goto error; 1512 } 1513 1514 error: 1515 err = btrfs_end_transaction(trans, root); 1516 if (!ret) 1517 ret = err; 1518 1519 if (ret && cur_offset < end) 1520 extent_clear_unlock_delalloc(inode, cur_offset, end, 1521 locked_page, EXTENT_LOCKED | 1522 EXTENT_DELALLOC | EXTENT_DEFRAG | 1523 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1524 PAGE_CLEAR_DIRTY | 1525 PAGE_SET_WRITEBACK | 1526 PAGE_END_WRITEBACK); 1527 btrfs_free_path(path); 1528 return ret; 1529 } 1530 1531 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1532 { 1533 1534 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1535 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1536 return 0; 1537 1538 /* 1539 * @defrag_bytes is a hint value, no spinlock held here, 1540 * if is not zero, it means the file is defragging. 1541 * Force cow if given extent needs to be defragged. 1542 */ 1543 if (BTRFS_I(inode)->defrag_bytes && 1544 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1545 EXTENT_DEFRAG, 0, NULL)) 1546 return 1; 1547 1548 return 0; 1549 } 1550 1551 /* 1552 * extent_io.c call back to do delayed allocation processing 1553 */ 1554 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1555 u64 start, u64 end, int *page_started, 1556 unsigned long *nr_written) 1557 { 1558 int ret; 1559 int force_cow = need_force_cow(inode, start, end); 1560 1561 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1562 ret = run_delalloc_nocow(inode, locked_page, start, end, 1563 page_started, 1, nr_written); 1564 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1565 ret = run_delalloc_nocow(inode, locked_page, start, end, 1566 page_started, 0, nr_written); 1567 } else if (!inode_need_compress(inode)) { 1568 ret = cow_file_range(inode, locked_page, start, end, end, 1569 page_started, nr_written, 1, NULL); 1570 } else { 1571 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1572 &BTRFS_I(inode)->runtime_flags); 1573 ret = cow_file_range_async(inode, locked_page, start, end, 1574 page_started, nr_written); 1575 } 1576 return ret; 1577 } 1578 1579 static void btrfs_split_extent_hook(struct inode *inode, 1580 struct extent_state *orig, u64 split) 1581 { 1582 u64 size; 1583 1584 /* not delalloc, ignore it */ 1585 if (!(orig->state & EXTENT_DELALLOC)) 1586 return; 1587 1588 size = orig->end - orig->start + 1; 1589 if (size > BTRFS_MAX_EXTENT_SIZE) { 1590 u64 num_extents; 1591 u64 new_size; 1592 1593 /* 1594 * See the explanation in btrfs_merge_extent_hook, the same 1595 * applies here, just in reverse. 1596 */ 1597 new_size = orig->end - split + 1; 1598 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1599 BTRFS_MAX_EXTENT_SIZE); 1600 new_size = split - orig->start; 1601 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1602 BTRFS_MAX_EXTENT_SIZE); 1603 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1604 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1605 return; 1606 } 1607 1608 spin_lock(&BTRFS_I(inode)->lock); 1609 BTRFS_I(inode)->outstanding_extents++; 1610 spin_unlock(&BTRFS_I(inode)->lock); 1611 } 1612 1613 /* 1614 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1615 * extents so we can keep track of new extents that are just merged onto old 1616 * extents, such as when we are doing sequential writes, so we can properly 1617 * account for the metadata space we'll need. 1618 */ 1619 static void btrfs_merge_extent_hook(struct inode *inode, 1620 struct extent_state *new, 1621 struct extent_state *other) 1622 { 1623 u64 new_size, old_size; 1624 u64 num_extents; 1625 1626 /* not delalloc, ignore it */ 1627 if (!(other->state & EXTENT_DELALLOC)) 1628 return; 1629 1630 if (new->start > other->start) 1631 new_size = new->end - other->start + 1; 1632 else 1633 new_size = other->end - new->start + 1; 1634 1635 /* we're not bigger than the max, unreserve the space and go */ 1636 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1637 spin_lock(&BTRFS_I(inode)->lock); 1638 BTRFS_I(inode)->outstanding_extents--; 1639 spin_unlock(&BTRFS_I(inode)->lock); 1640 return; 1641 } 1642 1643 /* 1644 * We have to add up either side to figure out how many extents were 1645 * accounted for before we merged into one big extent. If the number of 1646 * extents we accounted for is <= the amount we need for the new range 1647 * then we can return, otherwise drop. Think of it like this 1648 * 1649 * [ 4k][MAX_SIZE] 1650 * 1651 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1652 * need 2 outstanding extents, on one side we have 1 and the other side 1653 * we have 1 so they are == and we can return. But in this case 1654 * 1655 * [MAX_SIZE+4k][MAX_SIZE+4k] 1656 * 1657 * Each range on their own accounts for 2 extents, but merged together 1658 * they are only 3 extents worth of accounting, so we need to drop in 1659 * this case. 1660 */ 1661 old_size = other->end - other->start + 1; 1662 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1663 BTRFS_MAX_EXTENT_SIZE); 1664 old_size = new->end - new->start + 1; 1665 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1666 BTRFS_MAX_EXTENT_SIZE); 1667 1668 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1669 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1670 return; 1671 1672 spin_lock(&BTRFS_I(inode)->lock); 1673 BTRFS_I(inode)->outstanding_extents--; 1674 spin_unlock(&BTRFS_I(inode)->lock); 1675 } 1676 1677 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1678 struct inode *inode) 1679 { 1680 spin_lock(&root->delalloc_lock); 1681 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1682 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1683 &root->delalloc_inodes); 1684 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1685 &BTRFS_I(inode)->runtime_flags); 1686 root->nr_delalloc_inodes++; 1687 if (root->nr_delalloc_inodes == 1) { 1688 spin_lock(&root->fs_info->delalloc_root_lock); 1689 BUG_ON(!list_empty(&root->delalloc_root)); 1690 list_add_tail(&root->delalloc_root, 1691 &root->fs_info->delalloc_roots); 1692 spin_unlock(&root->fs_info->delalloc_root_lock); 1693 } 1694 } 1695 spin_unlock(&root->delalloc_lock); 1696 } 1697 1698 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1699 struct inode *inode) 1700 { 1701 spin_lock(&root->delalloc_lock); 1702 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1703 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1704 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1705 &BTRFS_I(inode)->runtime_flags); 1706 root->nr_delalloc_inodes--; 1707 if (!root->nr_delalloc_inodes) { 1708 spin_lock(&root->fs_info->delalloc_root_lock); 1709 BUG_ON(list_empty(&root->delalloc_root)); 1710 list_del_init(&root->delalloc_root); 1711 spin_unlock(&root->fs_info->delalloc_root_lock); 1712 } 1713 } 1714 spin_unlock(&root->delalloc_lock); 1715 } 1716 1717 /* 1718 * extent_io.c set_bit_hook, used to track delayed allocation 1719 * bytes in this file, and to maintain the list of inodes that 1720 * have pending delalloc work to be done. 1721 */ 1722 static void btrfs_set_bit_hook(struct inode *inode, 1723 struct extent_state *state, unsigned *bits) 1724 { 1725 1726 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1727 WARN_ON(1); 1728 /* 1729 * set_bit and clear bit hooks normally require _irqsave/restore 1730 * but in this case, we are only testing for the DELALLOC 1731 * bit, which is only set or cleared with irqs on 1732 */ 1733 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1734 struct btrfs_root *root = BTRFS_I(inode)->root; 1735 u64 len = state->end + 1 - state->start; 1736 bool do_list = !btrfs_is_free_space_inode(inode); 1737 1738 if (*bits & EXTENT_FIRST_DELALLOC) { 1739 *bits &= ~EXTENT_FIRST_DELALLOC; 1740 } else { 1741 spin_lock(&BTRFS_I(inode)->lock); 1742 BTRFS_I(inode)->outstanding_extents++; 1743 spin_unlock(&BTRFS_I(inode)->lock); 1744 } 1745 1746 /* For sanity tests */ 1747 if (btrfs_is_testing(root->fs_info)) 1748 return; 1749 1750 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1751 root->fs_info->delalloc_batch); 1752 spin_lock(&BTRFS_I(inode)->lock); 1753 BTRFS_I(inode)->delalloc_bytes += len; 1754 if (*bits & EXTENT_DEFRAG) 1755 BTRFS_I(inode)->defrag_bytes += len; 1756 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1757 &BTRFS_I(inode)->runtime_flags)) 1758 btrfs_add_delalloc_inodes(root, inode); 1759 spin_unlock(&BTRFS_I(inode)->lock); 1760 } 1761 } 1762 1763 /* 1764 * extent_io.c clear_bit_hook, see set_bit_hook for why 1765 */ 1766 static void btrfs_clear_bit_hook(struct inode *inode, 1767 struct extent_state *state, 1768 unsigned *bits) 1769 { 1770 u64 len = state->end + 1 - state->start; 1771 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1772 BTRFS_MAX_EXTENT_SIZE); 1773 1774 spin_lock(&BTRFS_I(inode)->lock); 1775 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1776 BTRFS_I(inode)->defrag_bytes -= len; 1777 spin_unlock(&BTRFS_I(inode)->lock); 1778 1779 /* 1780 * set_bit and clear bit hooks normally require _irqsave/restore 1781 * but in this case, we are only testing for the DELALLOC 1782 * bit, which is only set or cleared with irqs on 1783 */ 1784 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1785 struct btrfs_root *root = BTRFS_I(inode)->root; 1786 bool do_list = !btrfs_is_free_space_inode(inode); 1787 1788 if (*bits & EXTENT_FIRST_DELALLOC) { 1789 *bits &= ~EXTENT_FIRST_DELALLOC; 1790 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1791 spin_lock(&BTRFS_I(inode)->lock); 1792 BTRFS_I(inode)->outstanding_extents -= num_extents; 1793 spin_unlock(&BTRFS_I(inode)->lock); 1794 } 1795 1796 /* 1797 * We don't reserve metadata space for space cache inodes so we 1798 * don't need to call dellalloc_release_metadata if there is an 1799 * error. 1800 */ 1801 if (*bits & EXTENT_DO_ACCOUNTING && 1802 root != root->fs_info->tree_root) 1803 btrfs_delalloc_release_metadata(inode, len); 1804 1805 /* For sanity tests. */ 1806 if (btrfs_is_testing(root->fs_info)) 1807 return; 1808 1809 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1810 && do_list && !(state->state & EXTENT_NORESERVE)) 1811 btrfs_free_reserved_data_space_noquota(inode, 1812 state->start, len); 1813 1814 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1815 root->fs_info->delalloc_batch); 1816 spin_lock(&BTRFS_I(inode)->lock); 1817 BTRFS_I(inode)->delalloc_bytes -= len; 1818 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1819 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1820 &BTRFS_I(inode)->runtime_flags)) 1821 btrfs_del_delalloc_inode(root, inode); 1822 spin_unlock(&BTRFS_I(inode)->lock); 1823 } 1824 } 1825 1826 /* 1827 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1828 * we don't create bios that span stripes or chunks 1829 * 1830 * return 1 if page cannot be merged to bio 1831 * return 0 if page can be merged to bio 1832 * return error otherwise 1833 */ 1834 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1835 size_t size, struct bio *bio, 1836 unsigned long bio_flags) 1837 { 1838 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1839 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1840 u64 length = 0; 1841 u64 map_length; 1842 int ret; 1843 1844 if (bio_flags & EXTENT_BIO_COMPRESSED) 1845 return 0; 1846 1847 length = bio->bi_iter.bi_size; 1848 map_length = length; 1849 ret = btrfs_map_block(root->fs_info, bio_op(bio), logical, 1850 &map_length, NULL, 0); 1851 if (ret < 0) 1852 return ret; 1853 if (map_length < length + size) 1854 return 1; 1855 return 0; 1856 } 1857 1858 /* 1859 * in order to insert checksums into the metadata in large chunks, 1860 * we wait until bio submission time. All the pages in the bio are 1861 * checksummed and sums are attached onto the ordered extent record. 1862 * 1863 * At IO completion time the cums attached on the ordered extent record 1864 * are inserted into the btree 1865 */ 1866 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 1867 int mirror_num, unsigned long bio_flags, 1868 u64 bio_offset) 1869 { 1870 struct btrfs_root *root = BTRFS_I(inode)->root; 1871 int ret = 0; 1872 1873 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1874 BUG_ON(ret); /* -ENOMEM */ 1875 return 0; 1876 } 1877 1878 /* 1879 * in order to insert checksums into the metadata in large chunks, 1880 * we wait until bio submission time. All the pages in the bio are 1881 * checksummed and sums are attached onto the ordered extent record. 1882 * 1883 * At IO completion time the cums attached on the ordered extent record 1884 * are inserted into the btree 1885 */ 1886 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio, 1887 int mirror_num, unsigned long bio_flags, 1888 u64 bio_offset) 1889 { 1890 struct btrfs_root *root = BTRFS_I(inode)->root; 1891 int ret; 1892 1893 ret = btrfs_map_bio(root, bio, mirror_num, 1); 1894 if (ret) { 1895 bio->bi_error = ret; 1896 bio_endio(bio); 1897 } 1898 return ret; 1899 } 1900 1901 /* 1902 * extent_io.c submission hook. This does the right thing for csum calculation 1903 * on write, or reading the csums from the tree before a read 1904 */ 1905 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 1906 int mirror_num, unsigned long bio_flags, 1907 u64 bio_offset) 1908 { 1909 struct btrfs_root *root = BTRFS_I(inode)->root; 1910 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1911 int ret = 0; 1912 int skip_sum; 1913 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1914 1915 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1916 1917 if (btrfs_is_free_space_inode(inode)) 1918 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1919 1920 if (bio_op(bio) != REQ_OP_WRITE) { 1921 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1922 if (ret) 1923 goto out; 1924 1925 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1926 ret = btrfs_submit_compressed_read(inode, bio, 1927 mirror_num, 1928 bio_flags); 1929 goto out; 1930 } else if (!skip_sum) { 1931 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1932 if (ret) 1933 goto out; 1934 } 1935 goto mapit; 1936 } else if (async && !skip_sum) { 1937 /* csum items have already been cloned */ 1938 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1939 goto mapit; 1940 /* we're doing a write, do the async checksumming */ 1941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1942 inode, bio, mirror_num, 1943 bio_flags, bio_offset, 1944 __btrfs_submit_bio_start, 1945 __btrfs_submit_bio_done); 1946 goto out; 1947 } else if (!skip_sum) { 1948 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1949 if (ret) 1950 goto out; 1951 } 1952 1953 mapit: 1954 ret = btrfs_map_bio(root, bio, mirror_num, 0); 1955 1956 out: 1957 if (ret < 0) { 1958 bio->bi_error = ret; 1959 bio_endio(bio); 1960 } 1961 return ret; 1962 } 1963 1964 /* 1965 * given a list of ordered sums record them in the inode. This happens 1966 * at IO completion time based on sums calculated at bio submission time. 1967 */ 1968 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1969 struct inode *inode, u64 file_offset, 1970 struct list_head *list) 1971 { 1972 struct btrfs_ordered_sum *sum; 1973 1974 list_for_each_entry(sum, list, list) { 1975 trans->adding_csums = 1; 1976 btrfs_csum_file_blocks(trans, 1977 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1978 trans->adding_csums = 0; 1979 } 1980 return 0; 1981 } 1982 1983 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1984 struct extent_state **cached_state) 1985 { 1986 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 1987 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1988 cached_state); 1989 } 1990 1991 /* see btrfs_writepage_start_hook for details on why this is required */ 1992 struct btrfs_writepage_fixup { 1993 struct page *page; 1994 struct btrfs_work work; 1995 }; 1996 1997 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1998 { 1999 struct btrfs_writepage_fixup *fixup; 2000 struct btrfs_ordered_extent *ordered; 2001 struct extent_state *cached_state = NULL; 2002 struct page *page; 2003 struct inode *inode; 2004 u64 page_start; 2005 u64 page_end; 2006 int ret; 2007 2008 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2009 page = fixup->page; 2010 again: 2011 lock_page(page); 2012 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2013 ClearPageChecked(page); 2014 goto out_page; 2015 } 2016 2017 inode = page->mapping->host; 2018 page_start = page_offset(page); 2019 page_end = page_offset(page) + PAGE_SIZE - 1; 2020 2021 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2022 &cached_state); 2023 2024 /* already ordered? We're done */ 2025 if (PagePrivate2(page)) 2026 goto out; 2027 2028 ordered = btrfs_lookup_ordered_range(inode, page_start, 2029 PAGE_SIZE); 2030 if (ordered) { 2031 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2032 page_end, &cached_state, GFP_NOFS); 2033 unlock_page(page); 2034 btrfs_start_ordered_extent(inode, ordered, 1); 2035 btrfs_put_ordered_extent(ordered); 2036 goto again; 2037 } 2038 2039 ret = btrfs_delalloc_reserve_space(inode, page_start, 2040 PAGE_SIZE); 2041 if (ret) { 2042 mapping_set_error(page->mapping, ret); 2043 end_extent_writepage(page, ret, page_start, page_end); 2044 ClearPageChecked(page); 2045 goto out; 2046 } 2047 2048 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 2049 ClearPageChecked(page); 2050 set_page_dirty(page); 2051 out: 2052 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2053 &cached_state, GFP_NOFS); 2054 out_page: 2055 unlock_page(page); 2056 put_page(page); 2057 kfree(fixup); 2058 } 2059 2060 /* 2061 * There are a few paths in the higher layers of the kernel that directly 2062 * set the page dirty bit without asking the filesystem if it is a 2063 * good idea. This causes problems because we want to make sure COW 2064 * properly happens and the data=ordered rules are followed. 2065 * 2066 * In our case any range that doesn't have the ORDERED bit set 2067 * hasn't been properly setup for IO. We kick off an async process 2068 * to fix it up. The async helper will wait for ordered extents, set 2069 * the delalloc bit and make it safe to write the page. 2070 */ 2071 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2072 { 2073 struct inode *inode = page->mapping->host; 2074 struct btrfs_writepage_fixup *fixup; 2075 struct btrfs_root *root = BTRFS_I(inode)->root; 2076 2077 /* this page is properly in the ordered list */ 2078 if (TestClearPagePrivate2(page)) 2079 return 0; 2080 2081 if (PageChecked(page)) 2082 return -EAGAIN; 2083 2084 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2085 if (!fixup) 2086 return -EAGAIN; 2087 2088 SetPageChecked(page); 2089 get_page(page); 2090 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2091 btrfs_writepage_fixup_worker, NULL, NULL); 2092 fixup->page = page; 2093 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2094 return -EBUSY; 2095 } 2096 2097 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2098 struct inode *inode, u64 file_pos, 2099 u64 disk_bytenr, u64 disk_num_bytes, 2100 u64 num_bytes, u64 ram_bytes, 2101 u8 compression, u8 encryption, 2102 u16 other_encoding, int extent_type) 2103 { 2104 struct btrfs_root *root = BTRFS_I(inode)->root; 2105 struct btrfs_file_extent_item *fi; 2106 struct btrfs_path *path; 2107 struct extent_buffer *leaf; 2108 struct btrfs_key ins; 2109 int extent_inserted = 0; 2110 int ret; 2111 2112 path = btrfs_alloc_path(); 2113 if (!path) 2114 return -ENOMEM; 2115 2116 /* 2117 * we may be replacing one extent in the tree with another. 2118 * The new extent is pinned in the extent map, and we don't want 2119 * to drop it from the cache until it is completely in the btree. 2120 * 2121 * So, tell btrfs_drop_extents to leave this extent in the cache. 2122 * the caller is expected to unpin it and allow it to be merged 2123 * with the others. 2124 */ 2125 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2126 file_pos + num_bytes, NULL, 0, 2127 1, sizeof(*fi), &extent_inserted); 2128 if (ret) 2129 goto out; 2130 2131 if (!extent_inserted) { 2132 ins.objectid = btrfs_ino(inode); 2133 ins.offset = file_pos; 2134 ins.type = BTRFS_EXTENT_DATA_KEY; 2135 2136 path->leave_spinning = 1; 2137 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2138 sizeof(*fi)); 2139 if (ret) 2140 goto out; 2141 } 2142 leaf = path->nodes[0]; 2143 fi = btrfs_item_ptr(leaf, path->slots[0], 2144 struct btrfs_file_extent_item); 2145 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2146 btrfs_set_file_extent_type(leaf, fi, extent_type); 2147 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2148 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2149 btrfs_set_file_extent_offset(leaf, fi, 0); 2150 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2151 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2152 btrfs_set_file_extent_compression(leaf, fi, compression); 2153 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2154 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2155 2156 btrfs_mark_buffer_dirty(leaf); 2157 btrfs_release_path(path); 2158 2159 inode_add_bytes(inode, num_bytes); 2160 2161 ins.objectid = disk_bytenr; 2162 ins.offset = disk_num_bytes; 2163 ins.type = BTRFS_EXTENT_ITEM_KEY; 2164 ret = btrfs_alloc_reserved_file_extent(trans, root, 2165 root->root_key.objectid, 2166 btrfs_ino(inode), file_pos, 2167 ram_bytes, &ins); 2168 /* 2169 * Release the reserved range from inode dirty range map, as it is 2170 * already moved into delayed_ref_head 2171 */ 2172 btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2173 out: 2174 btrfs_free_path(path); 2175 2176 return ret; 2177 } 2178 2179 /* snapshot-aware defrag */ 2180 struct sa_defrag_extent_backref { 2181 struct rb_node node; 2182 struct old_sa_defrag_extent *old; 2183 u64 root_id; 2184 u64 inum; 2185 u64 file_pos; 2186 u64 extent_offset; 2187 u64 num_bytes; 2188 u64 generation; 2189 }; 2190 2191 struct old_sa_defrag_extent { 2192 struct list_head list; 2193 struct new_sa_defrag_extent *new; 2194 2195 u64 extent_offset; 2196 u64 bytenr; 2197 u64 offset; 2198 u64 len; 2199 int count; 2200 }; 2201 2202 struct new_sa_defrag_extent { 2203 struct rb_root root; 2204 struct list_head head; 2205 struct btrfs_path *path; 2206 struct inode *inode; 2207 u64 file_pos; 2208 u64 len; 2209 u64 bytenr; 2210 u64 disk_len; 2211 u8 compress_type; 2212 }; 2213 2214 static int backref_comp(struct sa_defrag_extent_backref *b1, 2215 struct sa_defrag_extent_backref *b2) 2216 { 2217 if (b1->root_id < b2->root_id) 2218 return -1; 2219 else if (b1->root_id > b2->root_id) 2220 return 1; 2221 2222 if (b1->inum < b2->inum) 2223 return -1; 2224 else if (b1->inum > b2->inum) 2225 return 1; 2226 2227 if (b1->file_pos < b2->file_pos) 2228 return -1; 2229 else if (b1->file_pos > b2->file_pos) 2230 return 1; 2231 2232 /* 2233 * [------------------------------] ===> (a range of space) 2234 * |<--->| |<---->| =============> (fs/file tree A) 2235 * |<---------------------------->| ===> (fs/file tree B) 2236 * 2237 * A range of space can refer to two file extents in one tree while 2238 * refer to only one file extent in another tree. 2239 * 2240 * So we may process a disk offset more than one time(two extents in A) 2241 * and locate at the same extent(one extent in B), then insert two same 2242 * backrefs(both refer to the extent in B). 2243 */ 2244 return 0; 2245 } 2246 2247 static void backref_insert(struct rb_root *root, 2248 struct sa_defrag_extent_backref *backref) 2249 { 2250 struct rb_node **p = &root->rb_node; 2251 struct rb_node *parent = NULL; 2252 struct sa_defrag_extent_backref *entry; 2253 int ret; 2254 2255 while (*p) { 2256 parent = *p; 2257 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2258 2259 ret = backref_comp(backref, entry); 2260 if (ret < 0) 2261 p = &(*p)->rb_left; 2262 else 2263 p = &(*p)->rb_right; 2264 } 2265 2266 rb_link_node(&backref->node, parent, p); 2267 rb_insert_color(&backref->node, root); 2268 } 2269 2270 /* 2271 * Note the backref might has changed, and in this case we just return 0. 2272 */ 2273 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2274 void *ctx) 2275 { 2276 struct btrfs_file_extent_item *extent; 2277 struct btrfs_fs_info *fs_info; 2278 struct old_sa_defrag_extent *old = ctx; 2279 struct new_sa_defrag_extent *new = old->new; 2280 struct btrfs_path *path = new->path; 2281 struct btrfs_key key; 2282 struct btrfs_root *root; 2283 struct sa_defrag_extent_backref *backref; 2284 struct extent_buffer *leaf; 2285 struct inode *inode = new->inode; 2286 int slot; 2287 int ret; 2288 u64 extent_offset; 2289 u64 num_bytes; 2290 2291 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2292 inum == btrfs_ino(inode)) 2293 return 0; 2294 2295 key.objectid = root_id; 2296 key.type = BTRFS_ROOT_ITEM_KEY; 2297 key.offset = (u64)-1; 2298 2299 fs_info = BTRFS_I(inode)->root->fs_info; 2300 root = btrfs_read_fs_root_no_name(fs_info, &key); 2301 if (IS_ERR(root)) { 2302 if (PTR_ERR(root) == -ENOENT) 2303 return 0; 2304 WARN_ON(1); 2305 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2306 inum, offset, root_id); 2307 return PTR_ERR(root); 2308 } 2309 2310 key.objectid = inum; 2311 key.type = BTRFS_EXTENT_DATA_KEY; 2312 if (offset > (u64)-1 << 32) 2313 key.offset = 0; 2314 else 2315 key.offset = offset; 2316 2317 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2318 if (WARN_ON(ret < 0)) 2319 return ret; 2320 ret = 0; 2321 2322 while (1) { 2323 cond_resched(); 2324 2325 leaf = path->nodes[0]; 2326 slot = path->slots[0]; 2327 2328 if (slot >= btrfs_header_nritems(leaf)) { 2329 ret = btrfs_next_leaf(root, path); 2330 if (ret < 0) { 2331 goto out; 2332 } else if (ret > 0) { 2333 ret = 0; 2334 goto out; 2335 } 2336 continue; 2337 } 2338 2339 path->slots[0]++; 2340 2341 btrfs_item_key_to_cpu(leaf, &key, slot); 2342 2343 if (key.objectid > inum) 2344 goto out; 2345 2346 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2347 continue; 2348 2349 extent = btrfs_item_ptr(leaf, slot, 2350 struct btrfs_file_extent_item); 2351 2352 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2353 continue; 2354 2355 /* 2356 * 'offset' refers to the exact key.offset, 2357 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2358 * (key.offset - extent_offset). 2359 */ 2360 if (key.offset != offset) 2361 continue; 2362 2363 extent_offset = btrfs_file_extent_offset(leaf, extent); 2364 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2365 2366 if (extent_offset >= old->extent_offset + old->offset + 2367 old->len || extent_offset + num_bytes <= 2368 old->extent_offset + old->offset) 2369 continue; 2370 break; 2371 } 2372 2373 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2374 if (!backref) { 2375 ret = -ENOENT; 2376 goto out; 2377 } 2378 2379 backref->root_id = root_id; 2380 backref->inum = inum; 2381 backref->file_pos = offset; 2382 backref->num_bytes = num_bytes; 2383 backref->extent_offset = extent_offset; 2384 backref->generation = btrfs_file_extent_generation(leaf, extent); 2385 backref->old = old; 2386 backref_insert(&new->root, backref); 2387 old->count++; 2388 out: 2389 btrfs_release_path(path); 2390 WARN_ON(ret); 2391 return ret; 2392 } 2393 2394 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2395 struct new_sa_defrag_extent *new) 2396 { 2397 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2398 struct old_sa_defrag_extent *old, *tmp; 2399 int ret; 2400 2401 new->path = path; 2402 2403 list_for_each_entry_safe(old, tmp, &new->head, list) { 2404 ret = iterate_inodes_from_logical(old->bytenr + 2405 old->extent_offset, fs_info, 2406 path, record_one_backref, 2407 old); 2408 if (ret < 0 && ret != -ENOENT) 2409 return false; 2410 2411 /* no backref to be processed for this extent */ 2412 if (!old->count) { 2413 list_del(&old->list); 2414 kfree(old); 2415 } 2416 } 2417 2418 if (list_empty(&new->head)) 2419 return false; 2420 2421 return true; 2422 } 2423 2424 static int relink_is_mergable(struct extent_buffer *leaf, 2425 struct btrfs_file_extent_item *fi, 2426 struct new_sa_defrag_extent *new) 2427 { 2428 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2429 return 0; 2430 2431 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2432 return 0; 2433 2434 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2435 return 0; 2436 2437 if (btrfs_file_extent_encryption(leaf, fi) || 2438 btrfs_file_extent_other_encoding(leaf, fi)) 2439 return 0; 2440 2441 return 1; 2442 } 2443 2444 /* 2445 * Note the backref might has changed, and in this case we just return 0. 2446 */ 2447 static noinline int relink_extent_backref(struct btrfs_path *path, 2448 struct sa_defrag_extent_backref *prev, 2449 struct sa_defrag_extent_backref *backref) 2450 { 2451 struct btrfs_file_extent_item *extent; 2452 struct btrfs_file_extent_item *item; 2453 struct btrfs_ordered_extent *ordered; 2454 struct btrfs_trans_handle *trans; 2455 struct btrfs_fs_info *fs_info; 2456 struct btrfs_root *root; 2457 struct btrfs_key key; 2458 struct extent_buffer *leaf; 2459 struct old_sa_defrag_extent *old = backref->old; 2460 struct new_sa_defrag_extent *new = old->new; 2461 struct inode *src_inode = new->inode; 2462 struct inode *inode; 2463 struct extent_state *cached = NULL; 2464 int ret = 0; 2465 u64 start; 2466 u64 len; 2467 u64 lock_start; 2468 u64 lock_end; 2469 bool merge = false; 2470 int index; 2471 2472 if (prev && prev->root_id == backref->root_id && 2473 prev->inum == backref->inum && 2474 prev->file_pos + prev->num_bytes == backref->file_pos) 2475 merge = true; 2476 2477 /* step 1: get root */ 2478 key.objectid = backref->root_id; 2479 key.type = BTRFS_ROOT_ITEM_KEY; 2480 key.offset = (u64)-1; 2481 2482 fs_info = BTRFS_I(src_inode)->root->fs_info; 2483 index = srcu_read_lock(&fs_info->subvol_srcu); 2484 2485 root = btrfs_read_fs_root_no_name(fs_info, &key); 2486 if (IS_ERR(root)) { 2487 srcu_read_unlock(&fs_info->subvol_srcu, index); 2488 if (PTR_ERR(root) == -ENOENT) 2489 return 0; 2490 return PTR_ERR(root); 2491 } 2492 2493 if (btrfs_root_readonly(root)) { 2494 srcu_read_unlock(&fs_info->subvol_srcu, index); 2495 return 0; 2496 } 2497 2498 /* step 2: get inode */ 2499 key.objectid = backref->inum; 2500 key.type = BTRFS_INODE_ITEM_KEY; 2501 key.offset = 0; 2502 2503 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2504 if (IS_ERR(inode)) { 2505 srcu_read_unlock(&fs_info->subvol_srcu, index); 2506 return 0; 2507 } 2508 2509 srcu_read_unlock(&fs_info->subvol_srcu, index); 2510 2511 /* step 3: relink backref */ 2512 lock_start = backref->file_pos; 2513 lock_end = backref->file_pos + backref->num_bytes - 1; 2514 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2515 &cached); 2516 2517 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2518 if (ordered) { 2519 btrfs_put_ordered_extent(ordered); 2520 goto out_unlock; 2521 } 2522 2523 trans = btrfs_join_transaction(root); 2524 if (IS_ERR(trans)) { 2525 ret = PTR_ERR(trans); 2526 goto out_unlock; 2527 } 2528 2529 key.objectid = backref->inum; 2530 key.type = BTRFS_EXTENT_DATA_KEY; 2531 key.offset = backref->file_pos; 2532 2533 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2534 if (ret < 0) { 2535 goto out_free_path; 2536 } else if (ret > 0) { 2537 ret = 0; 2538 goto out_free_path; 2539 } 2540 2541 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2542 struct btrfs_file_extent_item); 2543 2544 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2545 backref->generation) 2546 goto out_free_path; 2547 2548 btrfs_release_path(path); 2549 2550 start = backref->file_pos; 2551 if (backref->extent_offset < old->extent_offset + old->offset) 2552 start += old->extent_offset + old->offset - 2553 backref->extent_offset; 2554 2555 len = min(backref->extent_offset + backref->num_bytes, 2556 old->extent_offset + old->offset + old->len); 2557 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2558 2559 ret = btrfs_drop_extents(trans, root, inode, start, 2560 start + len, 1); 2561 if (ret) 2562 goto out_free_path; 2563 again: 2564 key.objectid = btrfs_ino(inode); 2565 key.type = BTRFS_EXTENT_DATA_KEY; 2566 key.offset = start; 2567 2568 path->leave_spinning = 1; 2569 if (merge) { 2570 struct btrfs_file_extent_item *fi; 2571 u64 extent_len; 2572 struct btrfs_key found_key; 2573 2574 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2575 if (ret < 0) 2576 goto out_free_path; 2577 2578 path->slots[0]--; 2579 leaf = path->nodes[0]; 2580 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2581 2582 fi = btrfs_item_ptr(leaf, path->slots[0], 2583 struct btrfs_file_extent_item); 2584 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2585 2586 if (extent_len + found_key.offset == start && 2587 relink_is_mergable(leaf, fi, new)) { 2588 btrfs_set_file_extent_num_bytes(leaf, fi, 2589 extent_len + len); 2590 btrfs_mark_buffer_dirty(leaf); 2591 inode_add_bytes(inode, len); 2592 2593 ret = 1; 2594 goto out_free_path; 2595 } else { 2596 merge = false; 2597 btrfs_release_path(path); 2598 goto again; 2599 } 2600 } 2601 2602 ret = btrfs_insert_empty_item(trans, root, path, &key, 2603 sizeof(*extent)); 2604 if (ret) { 2605 btrfs_abort_transaction(trans, ret); 2606 goto out_free_path; 2607 } 2608 2609 leaf = path->nodes[0]; 2610 item = btrfs_item_ptr(leaf, path->slots[0], 2611 struct btrfs_file_extent_item); 2612 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2613 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2614 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2615 btrfs_set_file_extent_num_bytes(leaf, item, len); 2616 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2617 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2618 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2619 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2620 btrfs_set_file_extent_encryption(leaf, item, 0); 2621 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2622 2623 btrfs_mark_buffer_dirty(leaf); 2624 inode_add_bytes(inode, len); 2625 btrfs_release_path(path); 2626 2627 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2628 new->disk_len, 0, 2629 backref->root_id, backref->inum, 2630 new->file_pos); /* start - extent_offset */ 2631 if (ret) { 2632 btrfs_abort_transaction(trans, ret); 2633 goto out_free_path; 2634 } 2635 2636 ret = 1; 2637 out_free_path: 2638 btrfs_release_path(path); 2639 path->leave_spinning = 0; 2640 btrfs_end_transaction(trans, root); 2641 out_unlock: 2642 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2643 &cached, GFP_NOFS); 2644 iput(inode); 2645 return ret; 2646 } 2647 2648 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2649 { 2650 struct old_sa_defrag_extent *old, *tmp; 2651 2652 if (!new) 2653 return; 2654 2655 list_for_each_entry_safe(old, tmp, &new->head, list) { 2656 kfree(old); 2657 } 2658 kfree(new); 2659 } 2660 2661 static void relink_file_extents(struct new_sa_defrag_extent *new) 2662 { 2663 struct btrfs_path *path; 2664 struct sa_defrag_extent_backref *backref; 2665 struct sa_defrag_extent_backref *prev = NULL; 2666 struct inode *inode; 2667 struct btrfs_root *root; 2668 struct rb_node *node; 2669 int ret; 2670 2671 inode = new->inode; 2672 root = BTRFS_I(inode)->root; 2673 2674 path = btrfs_alloc_path(); 2675 if (!path) 2676 return; 2677 2678 if (!record_extent_backrefs(path, new)) { 2679 btrfs_free_path(path); 2680 goto out; 2681 } 2682 btrfs_release_path(path); 2683 2684 while (1) { 2685 node = rb_first(&new->root); 2686 if (!node) 2687 break; 2688 rb_erase(node, &new->root); 2689 2690 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2691 2692 ret = relink_extent_backref(path, prev, backref); 2693 WARN_ON(ret < 0); 2694 2695 kfree(prev); 2696 2697 if (ret == 1) 2698 prev = backref; 2699 else 2700 prev = NULL; 2701 cond_resched(); 2702 } 2703 kfree(prev); 2704 2705 btrfs_free_path(path); 2706 out: 2707 free_sa_defrag_extent(new); 2708 2709 atomic_dec(&root->fs_info->defrag_running); 2710 wake_up(&root->fs_info->transaction_wait); 2711 } 2712 2713 static struct new_sa_defrag_extent * 2714 record_old_file_extents(struct inode *inode, 2715 struct btrfs_ordered_extent *ordered) 2716 { 2717 struct btrfs_root *root = BTRFS_I(inode)->root; 2718 struct btrfs_path *path; 2719 struct btrfs_key key; 2720 struct old_sa_defrag_extent *old; 2721 struct new_sa_defrag_extent *new; 2722 int ret; 2723 2724 new = kmalloc(sizeof(*new), GFP_NOFS); 2725 if (!new) 2726 return NULL; 2727 2728 new->inode = inode; 2729 new->file_pos = ordered->file_offset; 2730 new->len = ordered->len; 2731 new->bytenr = ordered->start; 2732 new->disk_len = ordered->disk_len; 2733 new->compress_type = ordered->compress_type; 2734 new->root = RB_ROOT; 2735 INIT_LIST_HEAD(&new->head); 2736 2737 path = btrfs_alloc_path(); 2738 if (!path) 2739 goto out_kfree; 2740 2741 key.objectid = btrfs_ino(inode); 2742 key.type = BTRFS_EXTENT_DATA_KEY; 2743 key.offset = new->file_pos; 2744 2745 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2746 if (ret < 0) 2747 goto out_free_path; 2748 if (ret > 0 && path->slots[0] > 0) 2749 path->slots[0]--; 2750 2751 /* find out all the old extents for the file range */ 2752 while (1) { 2753 struct btrfs_file_extent_item *extent; 2754 struct extent_buffer *l; 2755 int slot; 2756 u64 num_bytes; 2757 u64 offset; 2758 u64 end; 2759 u64 disk_bytenr; 2760 u64 extent_offset; 2761 2762 l = path->nodes[0]; 2763 slot = path->slots[0]; 2764 2765 if (slot >= btrfs_header_nritems(l)) { 2766 ret = btrfs_next_leaf(root, path); 2767 if (ret < 0) 2768 goto out_free_path; 2769 else if (ret > 0) 2770 break; 2771 continue; 2772 } 2773 2774 btrfs_item_key_to_cpu(l, &key, slot); 2775 2776 if (key.objectid != btrfs_ino(inode)) 2777 break; 2778 if (key.type != BTRFS_EXTENT_DATA_KEY) 2779 break; 2780 if (key.offset >= new->file_pos + new->len) 2781 break; 2782 2783 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2784 2785 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2786 if (key.offset + num_bytes < new->file_pos) 2787 goto next; 2788 2789 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2790 if (!disk_bytenr) 2791 goto next; 2792 2793 extent_offset = btrfs_file_extent_offset(l, extent); 2794 2795 old = kmalloc(sizeof(*old), GFP_NOFS); 2796 if (!old) 2797 goto out_free_path; 2798 2799 offset = max(new->file_pos, key.offset); 2800 end = min(new->file_pos + new->len, key.offset + num_bytes); 2801 2802 old->bytenr = disk_bytenr; 2803 old->extent_offset = extent_offset; 2804 old->offset = offset - key.offset; 2805 old->len = end - offset; 2806 old->new = new; 2807 old->count = 0; 2808 list_add_tail(&old->list, &new->head); 2809 next: 2810 path->slots[0]++; 2811 cond_resched(); 2812 } 2813 2814 btrfs_free_path(path); 2815 atomic_inc(&root->fs_info->defrag_running); 2816 2817 return new; 2818 2819 out_free_path: 2820 btrfs_free_path(path); 2821 out_kfree: 2822 free_sa_defrag_extent(new); 2823 return NULL; 2824 } 2825 2826 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2827 u64 start, u64 len) 2828 { 2829 struct btrfs_block_group_cache *cache; 2830 2831 cache = btrfs_lookup_block_group(root->fs_info, start); 2832 ASSERT(cache); 2833 2834 spin_lock(&cache->lock); 2835 cache->delalloc_bytes -= len; 2836 spin_unlock(&cache->lock); 2837 2838 btrfs_put_block_group(cache); 2839 } 2840 2841 /* as ordered data IO finishes, this gets called so we can finish 2842 * an ordered extent if the range of bytes in the file it covers are 2843 * fully written. 2844 */ 2845 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2846 { 2847 struct inode *inode = ordered_extent->inode; 2848 struct btrfs_root *root = BTRFS_I(inode)->root; 2849 struct btrfs_trans_handle *trans = NULL; 2850 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2851 struct extent_state *cached_state = NULL; 2852 struct new_sa_defrag_extent *new = NULL; 2853 int compress_type = 0; 2854 int ret = 0; 2855 u64 logical_len = ordered_extent->len; 2856 bool nolock; 2857 bool truncated = false; 2858 2859 nolock = btrfs_is_free_space_inode(inode); 2860 2861 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2862 ret = -EIO; 2863 goto out; 2864 } 2865 2866 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2867 ordered_extent->file_offset + 2868 ordered_extent->len - 1); 2869 2870 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2871 truncated = true; 2872 logical_len = ordered_extent->truncated_len; 2873 /* Truncated the entire extent, don't bother adding */ 2874 if (!logical_len) 2875 goto out; 2876 } 2877 2878 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2879 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2880 2881 /* 2882 * For mwrite(mmap + memset to write) case, we still reserve 2883 * space for NOCOW range. 2884 * As NOCOW won't cause a new delayed ref, just free the space 2885 */ 2886 btrfs_qgroup_free_data(inode, ordered_extent->file_offset, 2887 ordered_extent->len); 2888 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2889 if (nolock) 2890 trans = btrfs_join_transaction_nolock(root); 2891 else 2892 trans = btrfs_join_transaction(root); 2893 if (IS_ERR(trans)) { 2894 ret = PTR_ERR(trans); 2895 trans = NULL; 2896 goto out; 2897 } 2898 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2899 ret = btrfs_update_inode_fallback(trans, root, inode); 2900 if (ret) /* -ENOMEM or corruption */ 2901 btrfs_abort_transaction(trans, ret); 2902 goto out; 2903 } 2904 2905 lock_extent_bits(io_tree, ordered_extent->file_offset, 2906 ordered_extent->file_offset + ordered_extent->len - 1, 2907 &cached_state); 2908 2909 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2910 ordered_extent->file_offset + ordered_extent->len - 1, 2911 EXTENT_DEFRAG, 1, cached_state); 2912 if (ret) { 2913 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2914 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2915 /* the inode is shared */ 2916 new = record_old_file_extents(inode, ordered_extent); 2917 2918 clear_extent_bit(io_tree, ordered_extent->file_offset, 2919 ordered_extent->file_offset + ordered_extent->len - 1, 2920 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2921 } 2922 2923 if (nolock) 2924 trans = btrfs_join_transaction_nolock(root); 2925 else 2926 trans = btrfs_join_transaction(root); 2927 if (IS_ERR(trans)) { 2928 ret = PTR_ERR(trans); 2929 trans = NULL; 2930 goto out_unlock; 2931 } 2932 2933 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2934 2935 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2936 compress_type = ordered_extent->compress_type; 2937 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2938 BUG_ON(compress_type); 2939 ret = btrfs_mark_extent_written(trans, inode, 2940 ordered_extent->file_offset, 2941 ordered_extent->file_offset + 2942 logical_len); 2943 } else { 2944 BUG_ON(root == root->fs_info->tree_root); 2945 ret = insert_reserved_file_extent(trans, inode, 2946 ordered_extent->file_offset, 2947 ordered_extent->start, 2948 ordered_extent->disk_len, 2949 logical_len, logical_len, 2950 compress_type, 0, 0, 2951 BTRFS_FILE_EXTENT_REG); 2952 if (!ret) 2953 btrfs_release_delalloc_bytes(root, 2954 ordered_extent->start, 2955 ordered_extent->disk_len); 2956 } 2957 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2958 ordered_extent->file_offset, ordered_extent->len, 2959 trans->transid); 2960 if (ret < 0) { 2961 btrfs_abort_transaction(trans, ret); 2962 goto out_unlock; 2963 } 2964 2965 add_pending_csums(trans, inode, ordered_extent->file_offset, 2966 &ordered_extent->list); 2967 2968 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2969 ret = btrfs_update_inode_fallback(trans, root, inode); 2970 if (ret) { /* -ENOMEM or corruption */ 2971 btrfs_abort_transaction(trans, ret); 2972 goto out_unlock; 2973 } 2974 ret = 0; 2975 out_unlock: 2976 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2977 ordered_extent->file_offset + 2978 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2979 out: 2980 if (root != root->fs_info->tree_root) 2981 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2982 if (trans) 2983 btrfs_end_transaction(trans, root); 2984 2985 if (ret || truncated) { 2986 u64 start, end; 2987 2988 if (truncated) 2989 start = ordered_extent->file_offset + logical_len; 2990 else 2991 start = ordered_extent->file_offset; 2992 end = ordered_extent->file_offset + ordered_extent->len - 1; 2993 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2994 2995 /* Drop the cache for the part of the extent we didn't write. */ 2996 btrfs_drop_extent_cache(inode, start, end, 0); 2997 2998 /* 2999 * If the ordered extent had an IOERR or something else went 3000 * wrong we need to return the space for this ordered extent 3001 * back to the allocator. We only free the extent in the 3002 * truncated case if we didn't write out the extent at all. 3003 */ 3004 if ((ret || !logical_len) && 3005 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3006 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3007 btrfs_free_reserved_extent(root, ordered_extent->start, 3008 ordered_extent->disk_len, 1); 3009 } 3010 3011 3012 /* 3013 * This needs to be done to make sure anybody waiting knows we are done 3014 * updating everything for this ordered extent. 3015 */ 3016 btrfs_remove_ordered_extent(inode, ordered_extent); 3017 3018 /* for snapshot-aware defrag */ 3019 if (new) { 3020 if (ret) { 3021 free_sa_defrag_extent(new); 3022 atomic_dec(&root->fs_info->defrag_running); 3023 } else { 3024 relink_file_extents(new); 3025 } 3026 } 3027 3028 /* once for us */ 3029 btrfs_put_ordered_extent(ordered_extent); 3030 /* once for the tree */ 3031 btrfs_put_ordered_extent(ordered_extent); 3032 3033 return ret; 3034 } 3035 3036 static void finish_ordered_fn(struct btrfs_work *work) 3037 { 3038 struct btrfs_ordered_extent *ordered_extent; 3039 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3040 btrfs_finish_ordered_io(ordered_extent); 3041 } 3042 3043 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3044 struct extent_state *state, int uptodate) 3045 { 3046 struct inode *inode = page->mapping->host; 3047 struct btrfs_root *root = BTRFS_I(inode)->root; 3048 struct btrfs_ordered_extent *ordered_extent = NULL; 3049 struct btrfs_workqueue *wq; 3050 btrfs_work_func_t func; 3051 3052 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3053 3054 ClearPagePrivate2(page); 3055 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3056 end - start + 1, uptodate)) 3057 return 0; 3058 3059 if (btrfs_is_free_space_inode(inode)) { 3060 wq = root->fs_info->endio_freespace_worker; 3061 func = btrfs_freespace_write_helper; 3062 } else { 3063 wq = root->fs_info->endio_write_workers; 3064 func = btrfs_endio_write_helper; 3065 } 3066 3067 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3068 NULL); 3069 btrfs_queue_work(wq, &ordered_extent->work); 3070 3071 return 0; 3072 } 3073 3074 static int __readpage_endio_check(struct inode *inode, 3075 struct btrfs_io_bio *io_bio, 3076 int icsum, struct page *page, 3077 int pgoff, u64 start, size_t len) 3078 { 3079 char *kaddr; 3080 u32 csum_expected; 3081 u32 csum = ~(u32)0; 3082 3083 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3084 3085 kaddr = kmap_atomic(page); 3086 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3087 btrfs_csum_final(csum, (char *)&csum); 3088 if (csum != csum_expected) 3089 goto zeroit; 3090 3091 kunmap_atomic(kaddr); 3092 return 0; 3093 zeroit: 3094 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info, 3095 "csum failed ino %llu off %llu csum %u expected csum %u", 3096 btrfs_ino(inode), start, csum, csum_expected); 3097 memset(kaddr + pgoff, 1, len); 3098 flush_dcache_page(page); 3099 kunmap_atomic(kaddr); 3100 if (csum_expected == 0) 3101 return 0; 3102 return -EIO; 3103 } 3104 3105 /* 3106 * when reads are done, we need to check csums to verify the data is correct 3107 * if there's a match, we allow the bio to finish. If not, the code in 3108 * extent_io.c will try to find good copies for us. 3109 */ 3110 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3111 u64 phy_offset, struct page *page, 3112 u64 start, u64 end, int mirror) 3113 { 3114 size_t offset = start - page_offset(page); 3115 struct inode *inode = page->mapping->host; 3116 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3117 struct btrfs_root *root = BTRFS_I(inode)->root; 3118 3119 if (PageChecked(page)) { 3120 ClearPageChecked(page); 3121 return 0; 3122 } 3123 3124 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3125 return 0; 3126 3127 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3128 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3129 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3130 return 0; 3131 } 3132 3133 phy_offset >>= inode->i_sb->s_blocksize_bits; 3134 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3135 start, (size_t)(end - start + 1)); 3136 } 3137 3138 void btrfs_add_delayed_iput(struct inode *inode) 3139 { 3140 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3141 struct btrfs_inode *binode = BTRFS_I(inode); 3142 3143 if (atomic_add_unless(&inode->i_count, -1, 1)) 3144 return; 3145 3146 spin_lock(&fs_info->delayed_iput_lock); 3147 if (binode->delayed_iput_count == 0) { 3148 ASSERT(list_empty(&binode->delayed_iput)); 3149 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3150 } else { 3151 binode->delayed_iput_count++; 3152 } 3153 spin_unlock(&fs_info->delayed_iput_lock); 3154 } 3155 3156 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3157 { 3158 struct btrfs_fs_info *fs_info = root->fs_info; 3159 3160 spin_lock(&fs_info->delayed_iput_lock); 3161 while (!list_empty(&fs_info->delayed_iputs)) { 3162 struct btrfs_inode *inode; 3163 3164 inode = list_first_entry(&fs_info->delayed_iputs, 3165 struct btrfs_inode, delayed_iput); 3166 if (inode->delayed_iput_count) { 3167 inode->delayed_iput_count--; 3168 list_move_tail(&inode->delayed_iput, 3169 &fs_info->delayed_iputs); 3170 } else { 3171 list_del_init(&inode->delayed_iput); 3172 } 3173 spin_unlock(&fs_info->delayed_iput_lock); 3174 iput(&inode->vfs_inode); 3175 spin_lock(&fs_info->delayed_iput_lock); 3176 } 3177 spin_unlock(&fs_info->delayed_iput_lock); 3178 } 3179 3180 /* 3181 * This is called in transaction commit time. If there are no orphan 3182 * files in the subvolume, it removes orphan item and frees block_rsv 3183 * structure. 3184 */ 3185 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3186 struct btrfs_root *root) 3187 { 3188 struct btrfs_block_rsv *block_rsv; 3189 int ret; 3190 3191 if (atomic_read(&root->orphan_inodes) || 3192 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3193 return; 3194 3195 spin_lock(&root->orphan_lock); 3196 if (atomic_read(&root->orphan_inodes)) { 3197 spin_unlock(&root->orphan_lock); 3198 return; 3199 } 3200 3201 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3202 spin_unlock(&root->orphan_lock); 3203 return; 3204 } 3205 3206 block_rsv = root->orphan_block_rsv; 3207 root->orphan_block_rsv = NULL; 3208 spin_unlock(&root->orphan_lock); 3209 3210 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3211 btrfs_root_refs(&root->root_item) > 0) { 3212 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3213 root->root_key.objectid); 3214 if (ret) 3215 btrfs_abort_transaction(trans, ret); 3216 else 3217 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3218 &root->state); 3219 } 3220 3221 if (block_rsv) { 3222 WARN_ON(block_rsv->size > 0); 3223 btrfs_free_block_rsv(root, block_rsv); 3224 } 3225 } 3226 3227 /* 3228 * This creates an orphan entry for the given inode in case something goes 3229 * wrong in the middle of an unlink/truncate. 3230 * 3231 * NOTE: caller of this function should reserve 5 units of metadata for 3232 * this function. 3233 */ 3234 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3235 { 3236 struct btrfs_root *root = BTRFS_I(inode)->root; 3237 struct btrfs_block_rsv *block_rsv = NULL; 3238 int reserve = 0; 3239 int insert = 0; 3240 int ret; 3241 3242 if (!root->orphan_block_rsv) { 3243 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3244 if (!block_rsv) 3245 return -ENOMEM; 3246 } 3247 3248 spin_lock(&root->orphan_lock); 3249 if (!root->orphan_block_rsv) { 3250 root->orphan_block_rsv = block_rsv; 3251 } else if (block_rsv) { 3252 btrfs_free_block_rsv(root, block_rsv); 3253 block_rsv = NULL; 3254 } 3255 3256 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3257 &BTRFS_I(inode)->runtime_flags)) { 3258 #if 0 3259 /* 3260 * For proper ENOSPC handling, we should do orphan 3261 * cleanup when mounting. But this introduces backward 3262 * compatibility issue. 3263 */ 3264 if (!xchg(&root->orphan_item_inserted, 1)) 3265 insert = 2; 3266 else 3267 insert = 1; 3268 #endif 3269 insert = 1; 3270 atomic_inc(&root->orphan_inodes); 3271 } 3272 3273 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3274 &BTRFS_I(inode)->runtime_flags)) 3275 reserve = 1; 3276 spin_unlock(&root->orphan_lock); 3277 3278 /* grab metadata reservation from transaction handle */ 3279 if (reserve) { 3280 ret = btrfs_orphan_reserve_metadata(trans, inode); 3281 ASSERT(!ret); 3282 if (ret) { 3283 atomic_dec(&root->orphan_inodes); 3284 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3285 &BTRFS_I(inode)->runtime_flags); 3286 if (insert) 3287 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3288 &BTRFS_I(inode)->runtime_flags); 3289 return ret; 3290 } 3291 } 3292 3293 /* insert an orphan item to track this unlinked/truncated file */ 3294 if (insert >= 1) { 3295 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3296 if (ret) { 3297 atomic_dec(&root->orphan_inodes); 3298 if (reserve) { 3299 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3300 &BTRFS_I(inode)->runtime_flags); 3301 btrfs_orphan_release_metadata(inode); 3302 } 3303 if (ret != -EEXIST) { 3304 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3305 &BTRFS_I(inode)->runtime_flags); 3306 btrfs_abort_transaction(trans, ret); 3307 return ret; 3308 } 3309 } 3310 ret = 0; 3311 } 3312 3313 /* insert an orphan item to track subvolume contains orphan files */ 3314 if (insert >= 2) { 3315 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3316 root->root_key.objectid); 3317 if (ret && ret != -EEXIST) { 3318 btrfs_abort_transaction(trans, ret); 3319 return ret; 3320 } 3321 } 3322 return 0; 3323 } 3324 3325 /* 3326 * We have done the truncate/delete so we can go ahead and remove the orphan 3327 * item for this particular inode. 3328 */ 3329 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3330 struct inode *inode) 3331 { 3332 struct btrfs_root *root = BTRFS_I(inode)->root; 3333 int delete_item = 0; 3334 int release_rsv = 0; 3335 int ret = 0; 3336 3337 spin_lock(&root->orphan_lock); 3338 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3339 &BTRFS_I(inode)->runtime_flags)) 3340 delete_item = 1; 3341 3342 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3343 &BTRFS_I(inode)->runtime_flags)) 3344 release_rsv = 1; 3345 spin_unlock(&root->orphan_lock); 3346 3347 if (delete_item) { 3348 atomic_dec(&root->orphan_inodes); 3349 if (trans) 3350 ret = btrfs_del_orphan_item(trans, root, 3351 btrfs_ino(inode)); 3352 } 3353 3354 if (release_rsv) 3355 btrfs_orphan_release_metadata(inode); 3356 3357 return ret; 3358 } 3359 3360 /* 3361 * this cleans up any orphans that may be left on the list from the last use 3362 * of this root. 3363 */ 3364 int btrfs_orphan_cleanup(struct btrfs_root *root) 3365 { 3366 struct btrfs_path *path; 3367 struct extent_buffer *leaf; 3368 struct btrfs_key key, found_key; 3369 struct btrfs_trans_handle *trans; 3370 struct inode *inode; 3371 u64 last_objectid = 0; 3372 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3373 3374 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3375 return 0; 3376 3377 path = btrfs_alloc_path(); 3378 if (!path) { 3379 ret = -ENOMEM; 3380 goto out; 3381 } 3382 path->reada = READA_BACK; 3383 3384 key.objectid = BTRFS_ORPHAN_OBJECTID; 3385 key.type = BTRFS_ORPHAN_ITEM_KEY; 3386 key.offset = (u64)-1; 3387 3388 while (1) { 3389 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3390 if (ret < 0) 3391 goto out; 3392 3393 /* 3394 * if ret == 0 means we found what we were searching for, which 3395 * is weird, but possible, so only screw with path if we didn't 3396 * find the key and see if we have stuff that matches 3397 */ 3398 if (ret > 0) { 3399 ret = 0; 3400 if (path->slots[0] == 0) 3401 break; 3402 path->slots[0]--; 3403 } 3404 3405 /* pull out the item */ 3406 leaf = path->nodes[0]; 3407 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3408 3409 /* make sure the item matches what we want */ 3410 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3411 break; 3412 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3413 break; 3414 3415 /* release the path since we're done with it */ 3416 btrfs_release_path(path); 3417 3418 /* 3419 * this is where we are basically btrfs_lookup, without the 3420 * crossing root thing. we store the inode number in the 3421 * offset of the orphan item. 3422 */ 3423 3424 if (found_key.offset == last_objectid) { 3425 btrfs_err(root->fs_info, 3426 "Error removing orphan entry, stopping orphan cleanup"); 3427 ret = -EINVAL; 3428 goto out; 3429 } 3430 3431 last_objectid = found_key.offset; 3432 3433 found_key.objectid = found_key.offset; 3434 found_key.type = BTRFS_INODE_ITEM_KEY; 3435 found_key.offset = 0; 3436 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3437 ret = PTR_ERR_OR_ZERO(inode); 3438 if (ret && ret != -ESTALE) 3439 goto out; 3440 3441 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3442 struct btrfs_root *dead_root; 3443 struct btrfs_fs_info *fs_info = root->fs_info; 3444 int is_dead_root = 0; 3445 3446 /* 3447 * this is an orphan in the tree root. Currently these 3448 * could come from 2 sources: 3449 * a) a snapshot deletion in progress 3450 * b) a free space cache inode 3451 * We need to distinguish those two, as the snapshot 3452 * orphan must not get deleted. 3453 * find_dead_roots already ran before us, so if this 3454 * is a snapshot deletion, we should find the root 3455 * in the dead_roots list 3456 */ 3457 spin_lock(&fs_info->trans_lock); 3458 list_for_each_entry(dead_root, &fs_info->dead_roots, 3459 root_list) { 3460 if (dead_root->root_key.objectid == 3461 found_key.objectid) { 3462 is_dead_root = 1; 3463 break; 3464 } 3465 } 3466 spin_unlock(&fs_info->trans_lock); 3467 if (is_dead_root) { 3468 /* prevent this orphan from being found again */ 3469 key.offset = found_key.objectid - 1; 3470 continue; 3471 } 3472 } 3473 /* 3474 * Inode is already gone but the orphan item is still there, 3475 * kill the orphan item. 3476 */ 3477 if (ret == -ESTALE) { 3478 trans = btrfs_start_transaction(root, 1); 3479 if (IS_ERR(trans)) { 3480 ret = PTR_ERR(trans); 3481 goto out; 3482 } 3483 btrfs_debug(root->fs_info, "auto deleting %Lu", 3484 found_key.objectid); 3485 ret = btrfs_del_orphan_item(trans, root, 3486 found_key.objectid); 3487 btrfs_end_transaction(trans, root); 3488 if (ret) 3489 goto out; 3490 continue; 3491 } 3492 3493 /* 3494 * add this inode to the orphan list so btrfs_orphan_del does 3495 * the proper thing when we hit it 3496 */ 3497 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3498 &BTRFS_I(inode)->runtime_flags); 3499 atomic_inc(&root->orphan_inodes); 3500 3501 /* if we have links, this was a truncate, lets do that */ 3502 if (inode->i_nlink) { 3503 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3504 iput(inode); 3505 continue; 3506 } 3507 nr_truncate++; 3508 3509 /* 1 for the orphan item deletion. */ 3510 trans = btrfs_start_transaction(root, 1); 3511 if (IS_ERR(trans)) { 3512 iput(inode); 3513 ret = PTR_ERR(trans); 3514 goto out; 3515 } 3516 ret = btrfs_orphan_add(trans, inode); 3517 btrfs_end_transaction(trans, root); 3518 if (ret) { 3519 iput(inode); 3520 goto out; 3521 } 3522 3523 ret = btrfs_truncate(inode); 3524 if (ret) 3525 btrfs_orphan_del(NULL, inode); 3526 } else { 3527 nr_unlink++; 3528 } 3529 3530 /* this will do delete_inode and everything for us */ 3531 iput(inode); 3532 if (ret) 3533 goto out; 3534 } 3535 /* release the path since we're done with it */ 3536 btrfs_release_path(path); 3537 3538 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3539 3540 if (root->orphan_block_rsv) 3541 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3542 (u64)-1); 3543 3544 if (root->orphan_block_rsv || 3545 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3546 trans = btrfs_join_transaction(root); 3547 if (!IS_ERR(trans)) 3548 btrfs_end_transaction(trans, root); 3549 } 3550 3551 if (nr_unlink) 3552 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3553 if (nr_truncate) 3554 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3555 3556 out: 3557 if (ret) 3558 btrfs_err(root->fs_info, 3559 "could not do orphan cleanup %d", ret); 3560 btrfs_free_path(path); 3561 return ret; 3562 } 3563 3564 /* 3565 * very simple check to peek ahead in the leaf looking for xattrs. If we 3566 * don't find any xattrs, we know there can't be any acls. 3567 * 3568 * slot is the slot the inode is in, objectid is the objectid of the inode 3569 */ 3570 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3571 int slot, u64 objectid, 3572 int *first_xattr_slot) 3573 { 3574 u32 nritems = btrfs_header_nritems(leaf); 3575 struct btrfs_key found_key; 3576 static u64 xattr_access = 0; 3577 static u64 xattr_default = 0; 3578 int scanned = 0; 3579 3580 if (!xattr_access) { 3581 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3582 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3583 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3584 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3585 } 3586 3587 slot++; 3588 *first_xattr_slot = -1; 3589 while (slot < nritems) { 3590 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3591 3592 /* we found a different objectid, there must not be acls */ 3593 if (found_key.objectid != objectid) 3594 return 0; 3595 3596 /* we found an xattr, assume we've got an acl */ 3597 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3598 if (*first_xattr_slot == -1) 3599 *first_xattr_slot = slot; 3600 if (found_key.offset == xattr_access || 3601 found_key.offset == xattr_default) 3602 return 1; 3603 } 3604 3605 /* 3606 * we found a key greater than an xattr key, there can't 3607 * be any acls later on 3608 */ 3609 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3610 return 0; 3611 3612 slot++; 3613 scanned++; 3614 3615 /* 3616 * it goes inode, inode backrefs, xattrs, extents, 3617 * so if there are a ton of hard links to an inode there can 3618 * be a lot of backrefs. Don't waste time searching too hard, 3619 * this is just an optimization 3620 */ 3621 if (scanned >= 8) 3622 break; 3623 } 3624 /* we hit the end of the leaf before we found an xattr or 3625 * something larger than an xattr. We have to assume the inode 3626 * has acls 3627 */ 3628 if (*first_xattr_slot == -1) 3629 *first_xattr_slot = slot; 3630 return 1; 3631 } 3632 3633 /* 3634 * read an inode from the btree into the in-memory inode 3635 */ 3636 static void btrfs_read_locked_inode(struct inode *inode) 3637 { 3638 struct btrfs_path *path; 3639 struct extent_buffer *leaf; 3640 struct btrfs_inode_item *inode_item; 3641 struct btrfs_root *root = BTRFS_I(inode)->root; 3642 struct btrfs_key location; 3643 unsigned long ptr; 3644 int maybe_acls; 3645 u32 rdev; 3646 int ret; 3647 bool filled = false; 3648 int first_xattr_slot; 3649 3650 ret = btrfs_fill_inode(inode, &rdev); 3651 if (!ret) 3652 filled = true; 3653 3654 path = btrfs_alloc_path(); 3655 if (!path) 3656 goto make_bad; 3657 3658 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3659 3660 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3661 if (ret) 3662 goto make_bad; 3663 3664 leaf = path->nodes[0]; 3665 3666 if (filled) 3667 goto cache_index; 3668 3669 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3670 struct btrfs_inode_item); 3671 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3672 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3673 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3674 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3675 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3676 3677 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3678 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3679 3680 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3681 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3682 3683 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3684 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3685 3686 BTRFS_I(inode)->i_otime.tv_sec = 3687 btrfs_timespec_sec(leaf, &inode_item->otime); 3688 BTRFS_I(inode)->i_otime.tv_nsec = 3689 btrfs_timespec_nsec(leaf, &inode_item->otime); 3690 3691 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3692 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3693 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3694 3695 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3696 inode->i_generation = BTRFS_I(inode)->generation; 3697 inode->i_rdev = 0; 3698 rdev = btrfs_inode_rdev(leaf, inode_item); 3699 3700 BTRFS_I(inode)->index_cnt = (u64)-1; 3701 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3702 3703 cache_index: 3704 /* 3705 * If we were modified in the current generation and evicted from memory 3706 * and then re-read we need to do a full sync since we don't have any 3707 * idea about which extents were modified before we were evicted from 3708 * cache. 3709 * 3710 * This is required for both inode re-read from disk and delayed inode 3711 * in delayed_nodes_tree. 3712 */ 3713 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3714 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3715 &BTRFS_I(inode)->runtime_flags); 3716 3717 /* 3718 * We don't persist the id of the transaction where an unlink operation 3719 * against the inode was last made. So here we assume the inode might 3720 * have been evicted, and therefore the exact value of last_unlink_trans 3721 * lost, and set it to last_trans to avoid metadata inconsistencies 3722 * between the inode and its parent if the inode is fsync'ed and the log 3723 * replayed. For example, in the scenario: 3724 * 3725 * touch mydir/foo 3726 * ln mydir/foo mydir/bar 3727 * sync 3728 * unlink mydir/bar 3729 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3730 * xfs_io -c fsync mydir/foo 3731 * <power failure> 3732 * mount fs, triggers fsync log replay 3733 * 3734 * We must make sure that when we fsync our inode foo we also log its 3735 * parent inode, otherwise after log replay the parent still has the 3736 * dentry with the "bar" name but our inode foo has a link count of 1 3737 * and doesn't have an inode ref with the name "bar" anymore. 3738 * 3739 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3740 * but it guarantees correctness at the expense of occasional full 3741 * transaction commits on fsync if our inode is a directory, or if our 3742 * inode is not a directory, logging its parent unnecessarily. 3743 */ 3744 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3745 3746 path->slots[0]++; 3747 if (inode->i_nlink != 1 || 3748 path->slots[0] >= btrfs_header_nritems(leaf)) 3749 goto cache_acl; 3750 3751 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3752 if (location.objectid != btrfs_ino(inode)) 3753 goto cache_acl; 3754 3755 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3756 if (location.type == BTRFS_INODE_REF_KEY) { 3757 struct btrfs_inode_ref *ref; 3758 3759 ref = (struct btrfs_inode_ref *)ptr; 3760 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3761 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3762 struct btrfs_inode_extref *extref; 3763 3764 extref = (struct btrfs_inode_extref *)ptr; 3765 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3766 extref); 3767 } 3768 cache_acl: 3769 /* 3770 * try to precache a NULL acl entry for files that don't have 3771 * any xattrs or acls 3772 */ 3773 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3774 btrfs_ino(inode), &first_xattr_slot); 3775 if (first_xattr_slot != -1) { 3776 path->slots[0] = first_xattr_slot; 3777 ret = btrfs_load_inode_props(inode, path); 3778 if (ret) 3779 btrfs_err(root->fs_info, 3780 "error loading props for ino %llu (root %llu): %d", 3781 btrfs_ino(inode), 3782 root->root_key.objectid, ret); 3783 } 3784 btrfs_free_path(path); 3785 3786 if (!maybe_acls) 3787 cache_no_acl(inode); 3788 3789 switch (inode->i_mode & S_IFMT) { 3790 case S_IFREG: 3791 inode->i_mapping->a_ops = &btrfs_aops; 3792 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3793 inode->i_fop = &btrfs_file_operations; 3794 inode->i_op = &btrfs_file_inode_operations; 3795 break; 3796 case S_IFDIR: 3797 inode->i_fop = &btrfs_dir_file_operations; 3798 if (root == root->fs_info->tree_root) 3799 inode->i_op = &btrfs_dir_ro_inode_operations; 3800 else 3801 inode->i_op = &btrfs_dir_inode_operations; 3802 break; 3803 case S_IFLNK: 3804 inode->i_op = &btrfs_symlink_inode_operations; 3805 inode_nohighmem(inode); 3806 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3807 break; 3808 default: 3809 inode->i_op = &btrfs_special_inode_operations; 3810 init_special_inode(inode, inode->i_mode, rdev); 3811 break; 3812 } 3813 3814 btrfs_update_iflags(inode); 3815 return; 3816 3817 make_bad: 3818 btrfs_free_path(path); 3819 make_bad_inode(inode); 3820 } 3821 3822 /* 3823 * given a leaf and an inode, copy the inode fields into the leaf 3824 */ 3825 static void fill_inode_item(struct btrfs_trans_handle *trans, 3826 struct extent_buffer *leaf, 3827 struct btrfs_inode_item *item, 3828 struct inode *inode) 3829 { 3830 struct btrfs_map_token token; 3831 3832 btrfs_init_map_token(&token); 3833 3834 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3835 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3836 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3837 &token); 3838 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3839 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3840 3841 btrfs_set_token_timespec_sec(leaf, &item->atime, 3842 inode->i_atime.tv_sec, &token); 3843 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3844 inode->i_atime.tv_nsec, &token); 3845 3846 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3847 inode->i_mtime.tv_sec, &token); 3848 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3849 inode->i_mtime.tv_nsec, &token); 3850 3851 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3852 inode->i_ctime.tv_sec, &token); 3853 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3854 inode->i_ctime.tv_nsec, &token); 3855 3856 btrfs_set_token_timespec_sec(leaf, &item->otime, 3857 BTRFS_I(inode)->i_otime.tv_sec, &token); 3858 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3859 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3860 3861 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3862 &token); 3863 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3864 &token); 3865 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3866 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3867 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3868 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3869 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3870 } 3871 3872 /* 3873 * copy everything in the in-memory inode into the btree. 3874 */ 3875 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3876 struct btrfs_root *root, struct inode *inode) 3877 { 3878 struct btrfs_inode_item *inode_item; 3879 struct btrfs_path *path; 3880 struct extent_buffer *leaf; 3881 int ret; 3882 3883 path = btrfs_alloc_path(); 3884 if (!path) 3885 return -ENOMEM; 3886 3887 path->leave_spinning = 1; 3888 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3889 1); 3890 if (ret) { 3891 if (ret > 0) 3892 ret = -ENOENT; 3893 goto failed; 3894 } 3895 3896 leaf = path->nodes[0]; 3897 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3898 struct btrfs_inode_item); 3899 3900 fill_inode_item(trans, leaf, inode_item, inode); 3901 btrfs_mark_buffer_dirty(leaf); 3902 btrfs_set_inode_last_trans(trans, inode); 3903 ret = 0; 3904 failed: 3905 btrfs_free_path(path); 3906 return ret; 3907 } 3908 3909 /* 3910 * copy everything in the in-memory inode into the btree. 3911 */ 3912 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3913 struct btrfs_root *root, struct inode *inode) 3914 { 3915 int ret; 3916 3917 /* 3918 * If the inode is a free space inode, we can deadlock during commit 3919 * if we put it into the delayed code. 3920 * 3921 * The data relocation inode should also be directly updated 3922 * without delay 3923 */ 3924 if (!btrfs_is_free_space_inode(inode) 3925 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3926 && !root->fs_info->log_root_recovering) { 3927 btrfs_update_root_times(trans, root); 3928 3929 ret = btrfs_delayed_update_inode(trans, root, inode); 3930 if (!ret) 3931 btrfs_set_inode_last_trans(trans, inode); 3932 return ret; 3933 } 3934 3935 return btrfs_update_inode_item(trans, root, inode); 3936 } 3937 3938 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3939 struct btrfs_root *root, 3940 struct inode *inode) 3941 { 3942 int ret; 3943 3944 ret = btrfs_update_inode(trans, root, inode); 3945 if (ret == -ENOSPC) 3946 return btrfs_update_inode_item(trans, root, inode); 3947 return ret; 3948 } 3949 3950 /* 3951 * unlink helper that gets used here in inode.c and in the tree logging 3952 * recovery code. It remove a link in a directory with a given name, and 3953 * also drops the back refs in the inode to the directory 3954 */ 3955 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3956 struct btrfs_root *root, 3957 struct inode *dir, struct inode *inode, 3958 const char *name, int name_len) 3959 { 3960 struct btrfs_path *path; 3961 int ret = 0; 3962 struct extent_buffer *leaf; 3963 struct btrfs_dir_item *di; 3964 struct btrfs_key key; 3965 u64 index; 3966 u64 ino = btrfs_ino(inode); 3967 u64 dir_ino = btrfs_ino(dir); 3968 3969 path = btrfs_alloc_path(); 3970 if (!path) { 3971 ret = -ENOMEM; 3972 goto out; 3973 } 3974 3975 path->leave_spinning = 1; 3976 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3977 name, name_len, -1); 3978 if (IS_ERR(di)) { 3979 ret = PTR_ERR(di); 3980 goto err; 3981 } 3982 if (!di) { 3983 ret = -ENOENT; 3984 goto err; 3985 } 3986 leaf = path->nodes[0]; 3987 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3988 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3989 if (ret) 3990 goto err; 3991 btrfs_release_path(path); 3992 3993 /* 3994 * If we don't have dir index, we have to get it by looking up 3995 * the inode ref, since we get the inode ref, remove it directly, 3996 * it is unnecessary to do delayed deletion. 3997 * 3998 * But if we have dir index, needn't search inode ref to get it. 3999 * Since the inode ref is close to the inode item, it is better 4000 * that we delay to delete it, and just do this deletion when 4001 * we update the inode item. 4002 */ 4003 if (BTRFS_I(inode)->dir_index) { 4004 ret = btrfs_delayed_delete_inode_ref(inode); 4005 if (!ret) { 4006 index = BTRFS_I(inode)->dir_index; 4007 goto skip_backref; 4008 } 4009 } 4010 4011 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4012 dir_ino, &index); 4013 if (ret) { 4014 btrfs_info(root->fs_info, 4015 "failed to delete reference to %.*s, inode %llu parent %llu", 4016 name_len, name, ino, dir_ino); 4017 btrfs_abort_transaction(trans, ret); 4018 goto err; 4019 } 4020 skip_backref: 4021 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4022 if (ret) { 4023 btrfs_abort_transaction(trans, ret); 4024 goto err; 4025 } 4026 4027 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 4028 inode, dir_ino); 4029 if (ret != 0 && ret != -ENOENT) { 4030 btrfs_abort_transaction(trans, ret); 4031 goto err; 4032 } 4033 4034 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 4035 dir, index); 4036 if (ret == -ENOENT) 4037 ret = 0; 4038 else if (ret) 4039 btrfs_abort_transaction(trans, ret); 4040 err: 4041 btrfs_free_path(path); 4042 if (ret) 4043 goto out; 4044 4045 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4046 inode_inc_iversion(inode); 4047 inode_inc_iversion(dir); 4048 inode->i_ctime = dir->i_mtime = 4049 dir->i_ctime = current_fs_time(inode->i_sb); 4050 ret = btrfs_update_inode(trans, root, dir); 4051 out: 4052 return ret; 4053 } 4054 4055 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4056 struct btrfs_root *root, 4057 struct inode *dir, struct inode *inode, 4058 const char *name, int name_len) 4059 { 4060 int ret; 4061 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4062 if (!ret) { 4063 drop_nlink(inode); 4064 ret = btrfs_update_inode(trans, root, inode); 4065 } 4066 return ret; 4067 } 4068 4069 /* 4070 * helper to start transaction for unlink and rmdir. 4071 * 4072 * unlink and rmdir are special in btrfs, they do not always free space, so 4073 * if we cannot make our reservations the normal way try and see if there is 4074 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4075 * allow the unlink to occur. 4076 */ 4077 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4078 { 4079 struct btrfs_root *root = BTRFS_I(dir)->root; 4080 4081 /* 4082 * 1 for the possible orphan item 4083 * 1 for the dir item 4084 * 1 for the dir index 4085 * 1 for the inode ref 4086 * 1 for the inode 4087 */ 4088 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4089 } 4090 4091 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4092 { 4093 struct btrfs_root *root = BTRFS_I(dir)->root; 4094 struct btrfs_trans_handle *trans; 4095 struct inode *inode = d_inode(dentry); 4096 int ret; 4097 4098 trans = __unlink_start_trans(dir); 4099 if (IS_ERR(trans)) 4100 return PTR_ERR(trans); 4101 4102 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4103 4104 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4105 dentry->d_name.name, dentry->d_name.len); 4106 if (ret) 4107 goto out; 4108 4109 if (inode->i_nlink == 0) { 4110 ret = btrfs_orphan_add(trans, inode); 4111 if (ret) 4112 goto out; 4113 } 4114 4115 out: 4116 btrfs_end_transaction(trans, root); 4117 btrfs_btree_balance_dirty(root); 4118 return ret; 4119 } 4120 4121 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4122 struct btrfs_root *root, 4123 struct inode *dir, u64 objectid, 4124 const char *name, int name_len) 4125 { 4126 struct btrfs_path *path; 4127 struct extent_buffer *leaf; 4128 struct btrfs_dir_item *di; 4129 struct btrfs_key key; 4130 u64 index; 4131 int ret; 4132 u64 dir_ino = btrfs_ino(dir); 4133 4134 path = btrfs_alloc_path(); 4135 if (!path) 4136 return -ENOMEM; 4137 4138 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4139 name, name_len, -1); 4140 if (IS_ERR_OR_NULL(di)) { 4141 if (!di) 4142 ret = -ENOENT; 4143 else 4144 ret = PTR_ERR(di); 4145 goto out; 4146 } 4147 4148 leaf = path->nodes[0]; 4149 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4150 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4151 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4152 if (ret) { 4153 btrfs_abort_transaction(trans, ret); 4154 goto out; 4155 } 4156 btrfs_release_path(path); 4157 4158 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4159 objectid, root->root_key.objectid, 4160 dir_ino, &index, name, name_len); 4161 if (ret < 0) { 4162 if (ret != -ENOENT) { 4163 btrfs_abort_transaction(trans, ret); 4164 goto out; 4165 } 4166 di = btrfs_search_dir_index_item(root, path, dir_ino, 4167 name, name_len); 4168 if (IS_ERR_OR_NULL(di)) { 4169 if (!di) 4170 ret = -ENOENT; 4171 else 4172 ret = PTR_ERR(di); 4173 btrfs_abort_transaction(trans, ret); 4174 goto out; 4175 } 4176 4177 leaf = path->nodes[0]; 4178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4179 btrfs_release_path(path); 4180 index = key.offset; 4181 } 4182 btrfs_release_path(path); 4183 4184 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4185 if (ret) { 4186 btrfs_abort_transaction(trans, ret); 4187 goto out; 4188 } 4189 4190 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4191 inode_inc_iversion(dir); 4192 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb); 4193 ret = btrfs_update_inode_fallback(trans, root, dir); 4194 if (ret) 4195 btrfs_abort_transaction(trans, ret); 4196 out: 4197 btrfs_free_path(path); 4198 return ret; 4199 } 4200 4201 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4202 { 4203 struct inode *inode = d_inode(dentry); 4204 int err = 0; 4205 struct btrfs_root *root = BTRFS_I(dir)->root; 4206 struct btrfs_trans_handle *trans; 4207 4208 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4209 return -ENOTEMPTY; 4210 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4211 return -EPERM; 4212 4213 trans = __unlink_start_trans(dir); 4214 if (IS_ERR(trans)) 4215 return PTR_ERR(trans); 4216 4217 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4218 err = btrfs_unlink_subvol(trans, root, dir, 4219 BTRFS_I(inode)->location.objectid, 4220 dentry->d_name.name, 4221 dentry->d_name.len); 4222 goto out; 4223 } 4224 4225 err = btrfs_orphan_add(trans, inode); 4226 if (err) 4227 goto out; 4228 4229 /* now the directory is empty */ 4230 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4231 dentry->d_name.name, dentry->d_name.len); 4232 if (!err) 4233 btrfs_i_size_write(inode, 0); 4234 out: 4235 btrfs_end_transaction(trans, root); 4236 btrfs_btree_balance_dirty(root); 4237 4238 return err; 4239 } 4240 4241 static int truncate_space_check(struct btrfs_trans_handle *trans, 4242 struct btrfs_root *root, 4243 u64 bytes_deleted) 4244 { 4245 int ret; 4246 4247 /* 4248 * This is only used to apply pressure to the enospc system, we don't 4249 * intend to use this reservation at all. 4250 */ 4251 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4252 bytes_deleted *= root->nodesize; 4253 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4254 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4255 if (!ret) { 4256 trace_btrfs_space_reservation(root->fs_info, "transaction", 4257 trans->transid, 4258 bytes_deleted, 1); 4259 trans->bytes_reserved += bytes_deleted; 4260 } 4261 return ret; 4262 4263 } 4264 4265 static int truncate_inline_extent(struct inode *inode, 4266 struct btrfs_path *path, 4267 struct btrfs_key *found_key, 4268 const u64 item_end, 4269 const u64 new_size) 4270 { 4271 struct extent_buffer *leaf = path->nodes[0]; 4272 int slot = path->slots[0]; 4273 struct btrfs_file_extent_item *fi; 4274 u32 size = (u32)(new_size - found_key->offset); 4275 struct btrfs_root *root = BTRFS_I(inode)->root; 4276 4277 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4278 4279 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4280 loff_t offset = new_size; 4281 loff_t page_end = ALIGN(offset, PAGE_SIZE); 4282 4283 /* 4284 * Zero out the remaining of the last page of our inline extent, 4285 * instead of directly truncating our inline extent here - that 4286 * would be much more complex (decompressing all the data, then 4287 * compressing the truncated data, which might be bigger than 4288 * the size of the inline extent, resize the extent, etc). 4289 * We release the path because to get the page we might need to 4290 * read the extent item from disk (data not in the page cache). 4291 */ 4292 btrfs_release_path(path); 4293 return btrfs_truncate_block(inode, offset, page_end - offset, 4294 0); 4295 } 4296 4297 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4298 size = btrfs_file_extent_calc_inline_size(size); 4299 btrfs_truncate_item(root, path, size, 1); 4300 4301 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4302 inode_sub_bytes(inode, item_end + 1 - new_size); 4303 4304 return 0; 4305 } 4306 4307 /* 4308 * this can truncate away extent items, csum items and directory items. 4309 * It starts at a high offset and removes keys until it can't find 4310 * any higher than new_size 4311 * 4312 * csum items that cross the new i_size are truncated to the new size 4313 * as well. 4314 * 4315 * min_type is the minimum key type to truncate down to. If set to 0, this 4316 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4317 */ 4318 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4319 struct btrfs_root *root, 4320 struct inode *inode, 4321 u64 new_size, u32 min_type) 4322 { 4323 struct btrfs_path *path; 4324 struct extent_buffer *leaf; 4325 struct btrfs_file_extent_item *fi; 4326 struct btrfs_key key; 4327 struct btrfs_key found_key; 4328 u64 extent_start = 0; 4329 u64 extent_num_bytes = 0; 4330 u64 extent_offset = 0; 4331 u64 item_end = 0; 4332 u64 last_size = new_size; 4333 u32 found_type = (u8)-1; 4334 int found_extent; 4335 int del_item; 4336 int pending_del_nr = 0; 4337 int pending_del_slot = 0; 4338 int extent_type = -1; 4339 int ret; 4340 int err = 0; 4341 u64 ino = btrfs_ino(inode); 4342 u64 bytes_deleted = 0; 4343 bool be_nice = 0; 4344 bool should_throttle = 0; 4345 bool should_end = 0; 4346 4347 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4348 4349 /* 4350 * for non-free space inodes and ref cows, we want to back off from 4351 * time to time 4352 */ 4353 if (!btrfs_is_free_space_inode(inode) && 4354 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4355 be_nice = 1; 4356 4357 path = btrfs_alloc_path(); 4358 if (!path) 4359 return -ENOMEM; 4360 path->reada = READA_BACK; 4361 4362 /* 4363 * We want to drop from the next block forward in case this new size is 4364 * not block aligned since we will be keeping the last block of the 4365 * extent just the way it is. 4366 */ 4367 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4368 root == root->fs_info->tree_root) 4369 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4370 root->sectorsize), (u64)-1, 0); 4371 4372 /* 4373 * This function is also used to drop the items in the log tree before 4374 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4375 * it is used to drop the loged items. So we shouldn't kill the delayed 4376 * items. 4377 */ 4378 if (min_type == 0 && root == BTRFS_I(inode)->root) 4379 btrfs_kill_delayed_inode_items(inode); 4380 4381 key.objectid = ino; 4382 key.offset = (u64)-1; 4383 key.type = (u8)-1; 4384 4385 search_again: 4386 /* 4387 * with a 16K leaf size and 128MB extents, you can actually queue 4388 * up a huge file in a single leaf. Most of the time that 4389 * bytes_deleted is > 0, it will be huge by the time we get here 4390 */ 4391 if (be_nice && bytes_deleted > SZ_32M) { 4392 if (btrfs_should_end_transaction(trans, root)) { 4393 err = -EAGAIN; 4394 goto error; 4395 } 4396 } 4397 4398 4399 path->leave_spinning = 1; 4400 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4401 if (ret < 0) { 4402 err = ret; 4403 goto out; 4404 } 4405 4406 if (ret > 0) { 4407 /* there are no items in the tree for us to truncate, we're 4408 * done 4409 */ 4410 if (path->slots[0] == 0) 4411 goto out; 4412 path->slots[0]--; 4413 } 4414 4415 while (1) { 4416 fi = NULL; 4417 leaf = path->nodes[0]; 4418 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4419 found_type = found_key.type; 4420 4421 if (found_key.objectid != ino) 4422 break; 4423 4424 if (found_type < min_type) 4425 break; 4426 4427 item_end = found_key.offset; 4428 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4429 fi = btrfs_item_ptr(leaf, path->slots[0], 4430 struct btrfs_file_extent_item); 4431 extent_type = btrfs_file_extent_type(leaf, fi); 4432 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4433 item_end += 4434 btrfs_file_extent_num_bytes(leaf, fi); 4435 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4436 item_end += btrfs_file_extent_inline_len(leaf, 4437 path->slots[0], fi); 4438 } 4439 item_end--; 4440 } 4441 if (found_type > min_type) { 4442 del_item = 1; 4443 } else { 4444 if (item_end < new_size) 4445 break; 4446 if (found_key.offset >= new_size) 4447 del_item = 1; 4448 else 4449 del_item = 0; 4450 } 4451 found_extent = 0; 4452 /* FIXME, shrink the extent if the ref count is only 1 */ 4453 if (found_type != BTRFS_EXTENT_DATA_KEY) 4454 goto delete; 4455 4456 if (del_item) 4457 last_size = found_key.offset; 4458 else 4459 last_size = new_size; 4460 4461 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4462 u64 num_dec; 4463 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4464 if (!del_item) { 4465 u64 orig_num_bytes = 4466 btrfs_file_extent_num_bytes(leaf, fi); 4467 extent_num_bytes = ALIGN(new_size - 4468 found_key.offset, 4469 root->sectorsize); 4470 btrfs_set_file_extent_num_bytes(leaf, fi, 4471 extent_num_bytes); 4472 num_dec = (orig_num_bytes - 4473 extent_num_bytes); 4474 if (test_bit(BTRFS_ROOT_REF_COWS, 4475 &root->state) && 4476 extent_start != 0) 4477 inode_sub_bytes(inode, num_dec); 4478 btrfs_mark_buffer_dirty(leaf); 4479 } else { 4480 extent_num_bytes = 4481 btrfs_file_extent_disk_num_bytes(leaf, 4482 fi); 4483 extent_offset = found_key.offset - 4484 btrfs_file_extent_offset(leaf, fi); 4485 4486 /* FIXME blocksize != 4096 */ 4487 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4488 if (extent_start != 0) { 4489 found_extent = 1; 4490 if (test_bit(BTRFS_ROOT_REF_COWS, 4491 &root->state)) 4492 inode_sub_bytes(inode, num_dec); 4493 } 4494 } 4495 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4496 /* 4497 * we can't truncate inline items that have had 4498 * special encodings 4499 */ 4500 if (!del_item && 4501 btrfs_file_extent_encryption(leaf, fi) == 0 && 4502 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4503 4504 /* 4505 * Need to release path in order to truncate a 4506 * compressed extent. So delete any accumulated 4507 * extent items so far. 4508 */ 4509 if (btrfs_file_extent_compression(leaf, fi) != 4510 BTRFS_COMPRESS_NONE && pending_del_nr) { 4511 err = btrfs_del_items(trans, root, path, 4512 pending_del_slot, 4513 pending_del_nr); 4514 if (err) { 4515 btrfs_abort_transaction(trans, 4516 err); 4517 goto error; 4518 } 4519 pending_del_nr = 0; 4520 } 4521 4522 err = truncate_inline_extent(inode, path, 4523 &found_key, 4524 item_end, 4525 new_size); 4526 if (err) { 4527 btrfs_abort_transaction(trans, err); 4528 goto error; 4529 } 4530 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4531 &root->state)) { 4532 inode_sub_bytes(inode, item_end + 1 - new_size); 4533 } 4534 } 4535 delete: 4536 if (del_item) { 4537 if (!pending_del_nr) { 4538 /* no pending yet, add ourselves */ 4539 pending_del_slot = path->slots[0]; 4540 pending_del_nr = 1; 4541 } else if (pending_del_nr && 4542 path->slots[0] + 1 == pending_del_slot) { 4543 /* hop on the pending chunk */ 4544 pending_del_nr++; 4545 pending_del_slot = path->slots[0]; 4546 } else { 4547 BUG(); 4548 } 4549 } else { 4550 break; 4551 } 4552 should_throttle = 0; 4553 4554 if (found_extent && 4555 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4556 root == root->fs_info->tree_root)) { 4557 btrfs_set_path_blocking(path); 4558 bytes_deleted += extent_num_bytes; 4559 ret = btrfs_free_extent(trans, root, extent_start, 4560 extent_num_bytes, 0, 4561 btrfs_header_owner(leaf), 4562 ino, extent_offset); 4563 BUG_ON(ret); 4564 if (btrfs_should_throttle_delayed_refs(trans, root)) 4565 btrfs_async_run_delayed_refs(root, 4566 trans->transid, 4567 trans->delayed_ref_updates * 2, 0); 4568 if (be_nice) { 4569 if (truncate_space_check(trans, root, 4570 extent_num_bytes)) { 4571 should_end = 1; 4572 } 4573 if (btrfs_should_throttle_delayed_refs(trans, 4574 root)) { 4575 should_throttle = 1; 4576 } 4577 } 4578 } 4579 4580 if (found_type == BTRFS_INODE_ITEM_KEY) 4581 break; 4582 4583 if (path->slots[0] == 0 || 4584 path->slots[0] != pending_del_slot || 4585 should_throttle || should_end) { 4586 if (pending_del_nr) { 4587 ret = btrfs_del_items(trans, root, path, 4588 pending_del_slot, 4589 pending_del_nr); 4590 if (ret) { 4591 btrfs_abort_transaction(trans, ret); 4592 goto error; 4593 } 4594 pending_del_nr = 0; 4595 } 4596 btrfs_release_path(path); 4597 if (should_throttle) { 4598 unsigned long updates = trans->delayed_ref_updates; 4599 if (updates) { 4600 trans->delayed_ref_updates = 0; 4601 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4602 if (ret && !err) 4603 err = ret; 4604 } 4605 } 4606 /* 4607 * if we failed to refill our space rsv, bail out 4608 * and let the transaction restart 4609 */ 4610 if (should_end) { 4611 err = -EAGAIN; 4612 goto error; 4613 } 4614 goto search_again; 4615 } else { 4616 path->slots[0]--; 4617 } 4618 } 4619 out: 4620 if (pending_del_nr) { 4621 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4622 pending_del_nr); 4623 if (ret) 4624 btrfs_abort_transaction(trans, ret); 4625 } 4626 error: 4627 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4628 btrfs_ordered_update_i_size(inode, last_size, NULL); 4629 4630 btrfs_free_path(path); 4631 4632 if (be_nice && bytes_deleted > SZ_32M) { 4633 unsigned long updates = trans->delayed_ref_updates; 4634 if (updates) { 4635 trans->delayed_ref_updates = 0; 4636 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4637 if (ret && !err) 4638 err = ret; 4639 } 4640 } 4641 return err; 4642 } 4643 4644 /* 4645 * btrfs_truncate_block - read, zero a chunk and write a block 4646 * @inode - inode that we're zeroing 4647 * @from - the offset to start zeroing 4648 * @len - the length to zero, 0 to zero the entire range respective to the 4649 * offset 4650 * @front - zero up to the offset instead of from the offset on 4651 * 4652 * This will find the block for the "from" offset and cow the block and zero the 4653 * part we want to zero. This is used with truncate and hole punching. 4654 */ 4655 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4656 int front) 4657 { 4658 struct address_space *mapping = inode->i_mapping; 4659 struct btrfs_root *root = BTRFS_I(inode)->root; 4660 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4661 struct btrfs_ordered_extent *ordered; 4662 struct extent_state *cached_state = NULL; 4663 char *kaddr; 4664 u32 blocksize = root->sectorsize; 4665 pgoff_t index = from >> PAGE_SHIFT; 4666 unsigned offset = from & (blocksize - 1); 4667 struct page *page; 4668 gfp_t mask = btrfs_alloc_write_mask(mapping); 4669 int ret = 0; 4670 u64 block_start; 4671 u64 block_end; 4672 4673 if ((offset & (blocksize - 1)) == 0 && 4674 (!len || ((len & (blocksize - 1)) == 0))) 4675 goto out; 4676 4677 ret = btrfs_delalloc_reserve_space(inode, 4678 round_down(from, blocksize), blocksize); 4679 if (ret) 4680 goto out; 4681 4682 again: 4683 page = find_or_create_page(mapping, index, mask); 4684 if (!page) { 4685 btrfs_delalloc_release_space(inode, 4686 round_down(from, blocksize), 4687 blocksize); 4688 ret = -ENOMEM; 4689 goto out; 4690 } 4691 4692 block_start = round_down(from, blocksize); 4693 block_end = block_start + blocksize - 1; 4694 4695 if (!PageUptodate(page)) { 4696 ret = btrfs_readpage(NULL, page); 4697 lock_page(page); 4698 if (page->mapping != mapping) { 4699 unlock_page(page); 4700 put_page(page); 4701 goto again; 4702 } 4703 if (!PageUptodate(page)) { 4704 ret = -EIO; 4705 goto out_unlock; 4706 } 4707 } 4708 wait_on_page_writeback(page); 4709 4710 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4711 set_page_extent_mapped(page); 4712 4713 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4714 if (ordered) { 4715 unlock_extent_cached(io_tree, block_start, block_end, 4716 &cached_state, GFP_NOFS); 4717 unlock_page(page); 4718 put_page(page); 4719 btrfs_start_ordered_extent(inode, ordered, 1); 4720 btrfs_put_ordered_extent(ordered); 4721 goto again; 4722 } 4723 4724 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4725 EXTENT_DIRTY | EXTENT_DELALLOC | 4726 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4727 0, 0, &cached_state, GFP_NOFS); 4728 4729 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4730 &cached_state); 4731 if (ret) { 4732 unlock_extent_cached(io_tree, block_start, block_end, 4733 &cached_state, GFP_NOFS); 4734 goto out_unlock; 4735 } 4736 4737 if (offset != blocksize) { 4738 if (!len) 4739 len = blocksize - offset; 4740 kaddr = kmap(page); 4741 if (front) 4742 memset(kaddr + (block_start - page_offset(page)), 4743 0, offset); 4744 else 4745 memset(kaddr + (block_start - page_offset(page)) + offset, 4746 0, len); 4747 flush_dcache_page(page); 4748 kunmap(page); 4749 } 4750 ClearPageChecked(page); 4751 set_page_dirty(page); 4752 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4753 GFP_NOFS); 4754 4755 out_unlock: 4756 if (ret) 4757 btrfs_delalloc_release_space(inode, block_start, 4758 blocksize); 4759 unlock_page(page); 4760 put_page(page); 4761 out: 4762 return ret; 4763 } 4764 4765 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4766 u64 offset, u64 len) 4767 { 4768 struct btrfs_trans_handle *trans; 4769 int ret; 4770 4771 /* 4772 * Still need to make sure the inode looks like it's been updated so 4773 * that any holes get logged if we fsync. 4774 */ 4775 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4776 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4777 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4778 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4779 return 0; 4780 } 4781 4782 /* 4783 * 1 - for the one we're dropping 4784 * 1 - for the one we're adding 4785 * 1 - for updating the inode. 4786 */ 4787 trans = btrfs_start_transaction(root, 3); 4788 if (IS_ERR(trans)) 4789 return PTR_ERR(trans); 4790 4791 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4792 if (ret) { 4793 btrfs_abort_transaction(trans, ret); 4794 btrfs_end_transaction(trans, root); 4795 return ret; 4796 } 4797 4798 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4799 0, 0, len, 0, len, 0, 0, 0); 4800 if (ret) 4801 btrfs_abort_transaction(trans, ret); 4802 else 4803 btrfs_update_inode(trans, root, inode); 4804 btrfs_end_transaction(trans, root); 4805 return ret; 4806 } 4807 4808 /* 4809 * This function puts in dummy file extents for the area we're creating a hole 4810 * for. So if we are truncating this file to a larger size we need to insert 4811 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4812 * the range between oldsize and size 4813 */ 4814 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4815 { 4816 struct btrfs_root *root = BTRFS_I(inode)->root; 4817 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4818 struct extent_map *em = NULL; 4819 struct extent_state *cached_state = NULL; 4820 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4821 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4822 u64 block_end = ALIGN(size, root->sectorsize); 4823 u64 last_byte; 4824 u64 cur_offset; 4825 u64 hole_size; 4826 int err = 0; 4827 4828 /* 4829 * If our size started in the middle of a block we need to zero out the 4830 * rest of the block before we expand the i_size, otherwise we could 4831 * expose stale data. 4832 */ 4833 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4834 if (err) 4835 return err; 4836 4837 if (size <= hole_start) 4838 return 0; 4839 4840 while (1) { 4841 struct btrfs_ordered_extent *ordered; 4842 4843 lock_extent_bits(io_tree, hole_start, block_end - 1, 4844 &cached_state); 4845 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4846 block_end - hole_start); 4847 if (!ordered) 4848 break; 4849 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4850 &cached_state, GFP_NOFS); 4851 btrfs_start_ordered_extent(inode, ordered, 1); 4852 btrfs_put_ordered_extent(ordered); 4853 } 4854 4855 cur_offset = hole_start; 4856 while (1) { 4857 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4858 block_end - cur_offset, 0); 4859 if (IS_ERR(em)) { 4860 err = PTR_ERR(em); 4861 em = NULL; 4862 break; 4863 } 4864 last_byte = min(extent_map_end(em), block_end); 4865 last_byte = ALIGN(last_byte , root->sectorsize); 4866 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4867 struct extent_map *hole_em; 4868 hole_size = last_byte - cur_offset; 4869 4870 err = maybe_insert_hole(root, inode, cur_offset, 4871 hole_size); 4872 if (err) 4873 break; 4874 btrfs_drop_extent_cache(inode, cur_offset, 4875 cur_offset + hole_size - 1, 0); 4876 hole_em = alloc_extent_map(); 4877 if (!hole_em) { 4878 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4879 &BTRFS_I(inode)->runtime_flags); 4880 goto next; 4881 } 4882 hole_em->start = cur_offset; 4883 hole_em->len = hole_size; 4884 hole_em->orig_start = cur_offset; 4885 4886 hole_em->block_start = EXTENT_MAP_HOLE; 4887 hole_em->block_len = 0; 4888 hole_em->orig_block_len = 0; 4889 hole_em->ram_bytes = hole_size; 4890 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4891 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4892 hole_em->generation = root->fs_info->generation; 4893 4894 while (1) { 4895 write_lock(&em_tree->lock); 4896 err = add_extent_mapping(em_tree, hole_em, 1); 4897 write_unlock(&em_tree->lock); 4898 if (err != -EEXIST) 4899 break; 4900 btrfs_drop_extent_cache(inode, cur_offset, 4901 cur_offset + 4902 hole_size - 1, 0); 4903 } 4904 free_extent_map(hole_em); 4905 } 4906 next: 4907 free_extent_map(em); 4908 em = NULL; 4909 cur_offset = last_byte; 4910 if (cur_offset >= block_end) 4911 break; 4912 } 4913 free_extent_map(em); 4914 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4915 GFP_NOFS); 4916 return err; 4917 } 4918 4919 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4920 { 4921 struct btrfs_root *root = BTRFS_I(inode)->root; 4922 struct btrfs_trans_handle *trans; 4923 loff_t oldsize = i_size_read(inode); 4924 loff_t newsize = attr->ia_size; 4925 int mask = attr->ia_valid; 4926 int ret; 4927 4928 /* 4929 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4930 * special case where we need to update the times despite not having 4931 * these flags set. For all other operations the VFS set these flags 4932 * explicitly if it wants a timestamp update. 4933 */ 4934 if (newsize != oldsize) { 4935 inode_inc_iversion(inode); 4936 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4937 inode->i_ctime = inode->i_mtime = 4938 current_fs_time(inode->i_sb); 4939 } 4940 4941 if (newsize > oldsize) { 4942 /* 4943 * Don't do an expanding truncate while snapshoting is ongoing. 4944 * This is to ensure the snapshot captures a fully consistent 4945 * state of this file - if the snapshot captures this expanding 4946 * truncation, it must capture all writes that happened before 4947 * this truncation. 4948 */ 4949 btrfs_wait_for_snapshot_creation(root); 4950 ret = btrfs_cont_expand(inode, oldsize, newsize); 4951 if (ret) { 4952 btrfs_end_write_no_snapshoting(root); 4953 return ret; 4954 } 4955 4956 trans = btrfs_start_transaction(root, 1); 4957 if (IS_ERR(trans)) { 4958 btrfs_end_write_no_snapshoting(root); 4959 return PTR_ERR(trans); 4960 } 4961 4962 i_size_write(inode, newsize); 4963 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4964 pagecache_isize_extended(inode, oldsize, newsize); 4965 ret = btrfs_update_inode(trans, root, inode); 4966 btrfs_end_write_no_snapshoting(root); 4967 btrfs_end_transaction(trans, root); 4968 } else { 4969 4970 /* 4971 * We're truncating a file that used to have good data down to 4972 * zero. Make sure it gets into the ordered flush list so that 4973 * any new writes get down to disk quickly. 4974 */ 4975 if (newsize == 0) 4976 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4977 &BTRFS_I(inode)->runtime_flags); 4978 4979 /* 4980 * 1 for the orphan item we're going to add 4981 * 1 for the orphan item deletion. 4982 */ 4983 trans = btrfs_start_transaction(root, 2); 4984 if (IS_ERR(trans)) 4985 return PTR_ERR(trans); 4986 4987 /* 4988 * We need to do this in case we fail at _any_ point during the 4989 * actual truncate. Once we do the truncate_setsize we could 4990 * invalidate pages which forces any outstanding ordered io to 4991 * be instantly completed which will give us extents that need 4992 * to be truncated. If we fail to get an orphan inode down we 4993 * could have left over extents that were never meant to live, 4994 * so we need to guarantee from this point on that everything 4995 * will be consistent. 4996 */ 4997 ret = btrfs_orphan_add(trans, inode); 4998 btrfs_end_transaction(trans, root); 4999 if (ret) 5000 return ret; 5001 5002 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5003 truncate_setsize(inode, newsize); 5004 5005 /* Disable nonlocked read DIO to avoid the end less truncate */ 5006 btrfs_inode_block_unlocked_dio(inode); 5007 inode_dio_wait(inode); 5008 btrfs_inode_resume_unlocked_dio(inode); 5009 5010 ret = btrfs_truncate(inode); 5011 if (ret && inode->i_nlink) { 5012 int err; 5013 5014 /* 5015 * failed to truncate, disk_i_size is only adjusted down 5016 * as we remove extents, so it should represent the true 5017 * size of the inode, so reset the in memory size and 5018 * delete our orphan entry. 5019 */ 5020 trans = btrfs_join_transaction(root); 5021 if (IS_ERR(trans)) { 5022 btrfs_orphan_del(NULL, inode); 5023 return ret; 5024 } 5025 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5026 err = btrfs_orphan_del(trans, inode); 5027 if (err) 5028 btrfs_abort_transaction(trans, err); 5029 btrfs_end_transaction(trans, root); 5030 } 5031 } 5032 5033 return ret; 5034 } 5035 5036 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5037 { 5038 struct inode *inode = d_inode(dentry); 5039 struct btrfs_root *root = BTRFS_I(inode)->root; 5040 int err; 5041 5042 if (btrfs_root_readonly(root)) 5043 return -EROFS; 5044 5045 err = inode_change_ok(inode, attr); 5046 if (err) 5047 return err; 5048 5049 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5050 err = btrfs_setsize(inode, attr); 5051 if (err) 5052 return err; 5053 } 5054 5055 if (attr->ia_valid) { 5056 setattr_copy(inode, attr); 5057 inode_inc_iversion(inode); 5058 err = btrfs_dirty_inode(inode); 5059 5060 if (!err && attr->ia_valid & ATTR_MODE) 5061 err = posix_acl_chmod(inode, inode->i_mode); 5062 } 5063 5064 return err; 5065 } 5066 5067 /* 5068 * While truncating the inode pages during eviction, we get the VFS calling 5069 * btrfs_invalidatepage() against each page of the inode. This is slow because 5070 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5071 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5072 * extent_state structures over and over, wasting lots of time. 5073 * 5074 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5075 * those expensive operations on a per page basis and do only the ordered io 5076 * finishing, while we release here the extent_map and extent_state structures, 5077 * without the excessive merging and splitting. 5078 */ 5079 static void evict_inode_truncate_pages(struct inode *inode) 5080 { 5081 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5082 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5083 struct rb_node *node; 5084 5085 ASSERT(inode->i_state & I_FREEING); 5086 truncate_inode_pages_final(&inode->i_data); 5087 5088 write_lock(&map_tree->lock); 5089 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5090 struct extent_map *em; 5091 5092 node = rb_first(&map_tree->map); 5093 em = rb_entry(node, struct extent_map, rb_node); 5094 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5095 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5096 remove_extent_mapping(map_tree, em); 5097 free_extent_map(em); 5098 if (need_resched()) { 5099 write_unlock(&map_tree->lock); 5100 cond_resched(); 5101 write_lock(&map_tree->lock); 5102 } 5103 } 5104 write_unlock(&map_tree->lock); 5105 5106 /* 5107 * Keep looping until we have no more ranges in the io tree. 5108 * We can have ongoing bios started by readpages (called from readahead) 5109 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5110 * still in progress (unlocked the pages in the bio but did not yet 5111 * unlocked the ranges in the io tree). Therefore this means some 5112 * ranges can still be locked and eviction started because before 5113 * submitting those bios, which are executed by a separate task (work 5114 * queue kthread), inode references (inode->i_count) were not taken 5115 * (which would be dropped in the end io callback of each bio). 5116 * Therefore here we effectively end up waiting for those bios and 5117 * anyone else holding locked ranges without having bumped the inode's 5118 * reference count - if we don't do it, when they access the inode's 5119 * io_tree to unlock a range it may be too late, leading to an 5120 * use-after-free issue. 5121 */ 5122 spin_lock(&io_tree->lock); 5123 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5124 struct extent_state *state; 5125 struct extent_state *cached_state = NULL; 5126 u64 start; 5127 u64 end; 5128 5129 node = rb_first(&io_tree->state); 5130 state = rb_entry(node, struct extent_state, rb_node); 5131 start = state->start; 5132 end = state->end; 5133 spin_unlock(&io_tree->lock); 5134 5135 lock_extent_bits(io_tree, start, end, &cached_state); 5136 5137 /* 5138 * If still has DELALLOC flag, the extent didn't reach disk, 5139 * and its reserved space won't be freed by delayed_ref. 5140 * So we need to free its reserved space here. 5141 * (Refer to comment in btrfs_invalidatepage, case 2) 5142 * 5143 * Note, end is the bytenr of last byte, so we need + 1 here. 5144 */ 5145 if (state->state & EXTENT_DELALLOC) 5146 btrfs_qgroup_free_data(inode, start, end - start + 1); 5147 5148 clear_extent_bit(io_tree, start, end, 5149 EXTENT_LOCKED | EXTENT_DIRTY | 5150 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5151 EXTENT_DEFRAG, 1, 1, 5152 &cached_state, GFP_NOFS); 5153 5154 cond_resched(); 5155 spin_lock(&io_tree->lock); 5156 } 5157 spin_unlock(&io_tree->lock); 5158 } 5159 5160 void btrfs_evict_inode(struct inode *inode) 5161 { 5162 struct btrfs_trans_handle *trans; 5163 struct btrfs_root *root = BTRFS_I(inode)->root; 5164 struct btrfs_block_rsv *rsv, *global_rsv; 5165 int steal_from_global = 0; 5166 u64 min_size; 5167 int ret; 5168 5169 trace_btrfs_inode_evict(inode); 5170 5171 if (!root) { 5172 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 5173 return; 5174 } 5175 5176 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5177 5178 evict_inode_truncate_pages(inode); 5179 5180 if (inode->i_nlink && 5181 ((btrfs_root_refs(&root->root_item) != 0 && 5182 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5183 btrfs_is_free_space_inode(inode))) 5184 goto no_delete; 5185 5186 if (is_bad_inode(inode)) { 5187 btrfs_orphan_del(NULL, inode); 5188 goto no_delete; 5189 } 5190 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5191 if (!special_file(inode->i_mode)) 5192 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5193 5194 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5195 5196 if (root->fs_info->log_root_recovering) { 5197 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5198 &BTRFS_I(inode)->runtime_flags)); 5199 goto no_delete; 5200 } 5201 5202 if (inode->i_nlink > 0) { 5203 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5204 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5205 goto no_delete; 5206 } 5207 5208 ret = btrfs_commit_inode_delayed_inode(inode); 5209 if (ret) { 5210 btrfs_orphan_del(NULL, inode); 5211 goto no_delete; 5212 } 5213 5214 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5215 if (!rsv) { 5216 btrfs_orphan_del(NULL, inode); 5217 goto no_delete; 5218 } 5219 rsv->size = min_size; 5220 rsv->failfast = 1; 5221 global_rsv = &root->fs_info->global_block_rsv; 5222 5223 btrfs_i_size_write(inode, 0); 5224 5225 /* 5226 * This is a bit simpler than btrfs_truncate since we've already 5227 * reserved our space for our orphan item in the unlink, so we just 5228 * need to reserve some slack space in case we add bytes and update 5229 * inode item when doing the truncate. 5230 */ 5231 while (1) { 5232 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5233 BTRFS_RESERVE_FLUSH_LIMIT); 5234 5235 /* 5236 * Try and steal from the global reserve since we will 5237 * likely not use this space anyway, we want to try as 5238 * hard as possible to get this to work. 5239 */ 5240 if (ret) 5241 steal_from_global++; 5242 else 5243 steal_from_global = 0; 5244 ret = 0; 5245 5246 /* 5247 * steal_from_global == 0: we reserved stuff, hooray! 5248 * steal_from_global == 1: we didn't reserve stuff, boo! 5249 * steal_from_global == 2: we've committed, still not a lot of 5250 * room but maybe we'll have room in the global reserve this 5251 * time. 5252 * steal_from_global == 3: abandon all hope! 5253 */ 5254 if (steal_from_global > 2) { 5255 btrfs_warn(root->fs_info, 5256 "Could not get space for a delete, will truncate on mount %d", 5257 ret); 5258 btrfs_orphan_del(NULL, inode); 5259 btrfs_free_block_rsv(root, rsv); 5260 goto no_delete; 5261 } 5262 5263 trans = btrfs_join_transaction(root); 5264 if (IS_ERR(trans)) { 5265 btrfs_orphan_del(NULL, inode); 5266 btrfs_free_block_rsv(root, rsv); 5267 goto no_delete; 5268 } 5269 5270 /* 5271 * We can't just steal from the global reserve, we need to make 5272 * sure there is room to do it, if not we need to commit and try 5273 * again. 5274 */ 5275 if (steal_from_global) { 5276 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5277 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5278 min_size, 0); 5279 else 5280 ret = -ENOSPC; 5281 } 5282 5283 /* 5284 * Couldn't steal from the global reserve, we have too much 5285 * pending stuff built up, commit the transaction and try it 5286 * again. 5287 */ 5288 if (ret) { 5289 ret = btrfs_commit_transaction(trans, root); 5290 if (ret) { 5291 btrfs_orphan_del(NULL, inode); 5292 btrfs_free_block_rsv(root, rsv); 5293 goto no_delete; 5294 } 5295 continue; 5296 } else { 5297 steal_from_global = 0; 5298 } 5299 5300 trans->block_rsv = rsv; 5301 5302 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5303 if (ret != -ENOSPC && ret != -EAGAIN) 5304 break; 5305 5306 trans->block_rsv = &root->fs_info->trans_block_rsv; 5307 btrfs_end_transaction(trans, root); 5308 trans = NULL; 5309 btrfs_btree_balance_dirty(root); 5310 } 5311 5312 btrfs_free_block_rsv(root, rsv); 5313 5314 /* 5315 * Errors here aren't a big deal, it just means we leave orphan items 5316 * in the tree. They will be cleaned up on the next mount. 5317 */ 5318 if (ret == 0) { 5319 trans->block_rsv = root->orphan_block_rsv; 5320 btrfs_orphan_del(trans, inode); 5321 } else { 5322 btrfs_orphan_del(NULL, inode); 5323 } 5324 5325 trans->block_rsv = &root->fs_info->trans_block_rsv; 5326 if (!(root == root->fs_info->tree_root || 5327 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5328 btrfs_return_ino(root, btrfs_ino(inode)); 5329 5330 btrfs_end_transaction(trans, root); 5331 btrfs_btree_balance_dirty(root); 5332 no_delete: 5333 btrfs_remove_delayed_node(inode); 5334 clear_inode(inode); 5335 } 5336 5337 /* 5338 * this returns the key found in the dir entry in the location pointer. 5339 * If no dir entries were found, location->objectid is 0. 5340 */ 5341 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5342 struct btrfs_key *location) 5343 { 5344 const char *name = dentry->d_name.name; 5345 int namelen = dentry->d_name.len; 5346 struct btrfs_dir_item *di; 5347 struct btrfs_path *path; 5348 struct btrfs_root *root = BTRFS_I(dir)->root; 5349 int ret = 0; 5350 5351 path = btrfs_alloc_path(); 5352 if (!path) 5353 return -ENOMEM; 5354 5355 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5356 namelen, 0); 5357 if (IS_ERR(di)) 5358 ret = PTR_ERR(di); 5359 5360 if (IS_ERR_OR_NULL(di)) 5361 goto out_err; 5362 5363 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5364 out: 5365 btrfs_free_path(path); 5366 return ret; 5367 out_err: 5368 location->objectid = 0; 5369 goto out; 5370 } 5371 5372 /* 5373 * when we hit a tree root in a directory, the btrfs part of the inode 5374 * needs to be changed to reflect the root directory of the tree root. This 5375 * is kind of like crossing a mount point. 5376 */ 5377 static int fixup_tree_root_location(struct btrfs_root *root, 5378 struct inode *dir, 5379 struct dentry *dentry, 5380 struct btrfs_key *location, 5381 struct btrfs_root **sub_root) 5382 { 5383 struct btrfs_path *path; 5384 struct btrfs_root *new_root; 5385 struct btrfs_root_ref *ref; 5386 struct extent_buffer *leaf; 5387 struct btrfs_key key; 5388 int ret; 5389 int err = 0; 5390 5391 path = btrfs_alloc_path(); 5392 if (!path) { 5393 err = -ENOMEM; 5394 goto out; 5395 } 5396 5397 err = -ENOENT; 5398 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5399 key.type = BTRFS_ROOT_REF_KEY; 5400 key.offset = location->objectid; 5401 5402 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5403 0, 0); 5404 if (ret) { 5405 if (ret < 0) 5406 err = ret; 5407 goto out; 5408 } 5409 5410 leaf = path->nodes[0]; 5411 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5412 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5413 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5414 goto out; 5415 5416 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5417 (unsigned long)(ref + 1), 5418 dentry->d_name.len); 5419 if (ret) 5420 goto out; 5421 5422 btrfs_release_path(path); 5423 5424 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5425 if (IS_ERR(new_root)) { 5426 err = PTR_ERR(new_root); 5427 goto out; 5428 } 5429 5430 *sub_root = new_root; 5431 location->objectid = btrfs_root_dirid(&new_root->root_item); 5432 location->type = BTRFS_INODE_ITEM_KEY; 5433 location->offset = 0; 5434 err = 0; 5435 out: 5436 btrfs_free_path(path); 5437 return err; 5438 } 5439 5440 static void inode_tree_add(struct inode *inode) 5441 { 5442 struct btrfs_root *root = BTRFS_I(inode)->root; 5443 struct btrfs_inode *entry; 5444 struct rb_node **p; 5445 struct rb_node *parent; 5446 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5447 u64 ino = btrfs_ino(inode); 5448 5449 if (inode_unhashed(inode)) 5450 return; 5451 parent = NULL; 5452 spin_lock(&root->inode_lock); 5453 p = &root->inode_tree.rb_node; 5454 while (*p) { 5455 parent = *p; 5456 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5457 5458 if (ino < btrfs_ino(&entry->vfs_inode)) 5459 p = &parent->rb_left; 5460 else if (ino > btrfs_ino(&entry->vfs_inode)) 5461 p = &parent->rb_right; 5462 else { 5463 WARN_ON(!(entry->vfs_inode.i_state & 5464 (I_WILL_FREE | I_FREEING))); 5465 rb_replace_node(parent, new, &root->inode_tree); 5466 RB_CLEAR_NODE(parent); 5467 spin_unlock(&root->inode_lock); 5468 return; 5469 } 5470 } 5471 rb_link_node(new, parent, p); 5472 rb_insert_color(new, &root->inode_tree); 5473 spin_unlock(&root->inode_lock); 5474 } 5475 5476 static void inode_tree_del(struct inode *inode) 5477 { 5478 struct btrfs_root *root = BTRFS_I(inode)->root; 5479 int empty = 0; 5480 5481 spin_lock(&root->inode_lock); 5482 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5483 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5484 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5485 empty = RB_EMPTY_ROOT(&root->inode_tree); 5486 } 5487 spin_unlock(&root->inode_lock); 5488 5489 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5490 synchronize_srcu(&root->fs_info->subvol_srcu); 5491 spin_lock(&root->inode_lock); 5492 empty = RB_EMPTY_ROOT(&root->inode_tree); 5493 spin_unlock(&root->inode_lock); 5494 if (empty) 5495 btrfs_add_dead_root(root); 5496 } 5497 } 5498 5499 void btrfs_invalidate_inodes(struct btrfs_root *root) 5500 { 5501 struct rb_node *node; 5502 struct rb_node *prev; 5503 struct btrfs_inode *entry; 5504 struct inode *inode; 5505 u64 objectid = 0; 5506 5507 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5508 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5509 5510 spin_lock(&root->inode_lock); 5511 again: 5512 node = root->inode_tree.rb_node; 5513 prev = NULL; 5514 while (node) { 5515 prev = node; 5516 entry = rb_entry(node, struct btrfs_inode, rb_node); 5517 5518 if (objectid < btrfs_ino(&entry->vfs_inode)) 5519 node = node->rb_left; 5520 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5521 node = node->rb_right; 5522 else 5523 break; 5524 } 5525 if (!node) { 5526 while (prev) { 5527 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5528 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5529 node = prev; 5530 break; 5531 } 5532 prev = rb_next(prev); 5533 } 5534 } 5535 while (node) { 5536 entry = rb_entry(node, struct btrfs_inode, rb_node); 5537 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5538 inode = igrab(&entry->vfs_inode); 5539 if (inode) { 5540 spin_unlock(&root->inode_lock); 5541 if (atomic_read(&inode->i_count) > 1) 5542 d_prune_aliases(inode); 5543 /* 5544 * btrfs_drop_inode will have it removed from 5545 * the inode cache when its usage count 5546 * hits zero. 5547 */ 5548 iput(inode); 5549 cond_resched(); 5550 spin_lock(&root->inode_lock); 5551 goto again; 5552 } 5553 5554 if (cond_resched_lock(&root->inode_lock)) 5555 goto again; 5556 5557 node = rb_next(node); 5558 } 5559 spin_unlock(&root->inode_lock); 5560 } 5561 5562 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5563 { 5564 struct btrfs_iget_args *args = p; 5565 inode->i_ino = args->location->objectid; 5566 memcpy(&BTRFS_I(inode)->location, args->location, 5567 sizeof(*args->location)); 5568 BTRFS_I(inode)->root = args->root; 5569 return 0; 5570 } 5571 5572 static int btrfs_find_actor(struct inode *inode, void *opaque) 5573 { 5574 struct btrfs_iget_args *args = opaque; 5575 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5576 args->root == BTRFS_I(inode)->root; 5577 } 5578 5579 static struct inode *btrfs_iget_locked(struct super_block *s, 5580 struct btrfs_key *location, 5581 struct btrfs_root *root) 5582 { 5583 struct inode *inode; 5584 struct btrfs_iget_args args; 5585 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5586 5587 args.location = location; 5588 args.root = root; 5589 5590 inode = iget5_locked(s, hashval, btrfs_find_actor, 5591 btrfs_init_locked_inode, 5592 (void *)&args); 5593 return inode; 5594 } 5595 5596 /* Get an inode object given its location and corresponding root. 5597 * Returns in *is_new if the inode was read from disk 5598 */ 5599 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5600 struct btrfs_root *root, int *new) 5601 { 5602 struct inode *inode; 5603 5604 inode = btrfs_iget_locked(s, location, root); 5605 if (!inode) 5606 return ERR_PTR(-ENOMEM); 5607 5608 if (inode->i_state & I_NEW) { 5609 btrfs_read_locked_inode(inode); 5610 if (!is_bad_inode(inode)) { 5611 inode_tree_add(inode); 5612 unlock_new_inode(inode); 5613 if (new) 5614 *new = 1; 5615 } else { 5616 unlock_new_inode(inode); 5617 iput(inode); 5618 inode = ERR_PTR(-ESTALE); 5619 } 5620 } 5621 5622 return inode; 5623 } 5624 5625 static struct inode *new_simple_dir(struct super_block *s, 5626 struct btrfs_key *key, 5627 struct btrfs_root *root) 5628 { 5629 struct inode *inode = new_inode(s); 5630 5631 if (!inode) 5632 return ERR_PTR(-ENOMEM); 5633 5634 BTRFS_I(inode)->root = root; 5635 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5636 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5637 5638 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5639 inode->i_op = &btrfs_dir_ro_inode_operations; 5640 inode->i_fop = &simple_dir_operations; 5641 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5642 inode->i_mtime = current_fs_time(inode->i_sb); 5643 inode->i_atime = inode->i_mtime; 5644 inode->i_ctime = inode->i_mtime; 5645 BTRFS_I(inode)->i_otime = inode->i_mtime; 5646 5647 return inode; 5648 } 5649 5650 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5651 { 5652 struct inode *inode; 5653 struct btrfs_root *root = BTRFS_I(dir)->root; 5654 struct btrfs_root *sub_root = root; 5655 struct btrfs_key location; 5656 int index; 5657 int ret = 0; 5658 5659 if (dentry->d_name.len > BTRFS_NAME_LEN) 5660 return ERR_PTR(-ENAMETOOLONG); 5661 5662 ret = btrfs_inode_by_name(dir, dentry, &location); 5663 if (ret < 0) 5664 return ERR_PTR(ret); 5665 5666 if (location.objectid == 0) 5667 return ERR_PTR(-ENOENT); 5668 5669 if (location.type == BTRFS_INODE_ITEM_KEY) { 5670 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5671 return inode; 5672 } 5673 5674 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5675 5676 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5677 ret = fixup_tree_root_location(root, dir, dentry, 5678 &location, &sub_root); 5679 if (ret < 0) { 5680 if (ret != -ENOENT) 5681 inode = ERR_PTR(ret); 5682 else 5683 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5684 } else { 5685 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5686 } 5687 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5688 5689 if (!IS_ERR(inode) && root != sub_root) { 5690 down_read(&root->fs_info->cleanup_work_sem); 5691 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5692 ret = btrfs_orphan_cleanup(sub_root); 5693 up_read(&root->fs_info->cleanup_work_sem); 5694 if (ret) { 5695 iput(inode); 5696 inode = ERR_PTR(ret); 5697 } 5698 } 5699 5700 return inode; 5701 } 5702 5703 static int btrfs_dentry_delete(const struct dentry *dentry) 5704 { 5705 struct btrfs_root *root; 5706 struct inode *inode = d_inode(dentry); 5707 5708 if (!inode && !IS_ROOT(dentry)) 5709 inode = d_inode(dentry->d_parent); 5710 5711 if (inode) { 5712 root = BTRFS_I(inode)->root; 5713 if (btrfs_root_refs(&root->root_item) == 0) 5714 return 1; 5715 5716 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5717 return 1; 5718 } 5719 return 0; 5720 } 5721 5722 static void btrfs_dentry_release(struct dentry *dentry) 5723 { 5724 kfree(dentry->d_fsdata); 5725 } 5726 5727 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5728 unsigned int flags) 5729 { 5730 struct inode *inode; 5731 5732 inode = btrfs_lookup_dentry(dir, dentry); 5733 if (IS_ERR(inode)) { 5734 if (PTR_ERR(inode) == -ENOENT) 5735 inode = NULL; 5736 else 5737 return ERR_CAST(inode); 5738 } 5739 5740 return d_splice_alias(inode, dentry); 5741 } 5742 5743 unsigned char btrfs_filetype_table[] = { 5744 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5745 }; 5746 5747 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5748 { 5749 struct inode *inode = file_inode(file); 5750 struct btrfs_root *root = BTRFS_I(inode)->root; 5751 struct btrfs_item *item; 5752 struct btrfs_dir_item *di; 5753 struct btrfs_key key; 5754 struct btrfs_key found_key; 5755 struct btrfs_path *path; 5756 struct list_head ins_list; 5757 struct list_head del_list; 5758 int ret; 5759 struct extent_buffer *leaf; 5760 int slot; 5761 unsigned char d_type; 5762 int over = 0; 5763 u32 di_cur; 5764 u32 di_total; 5765 u32 di_len; 5766 int key_type = BTRFS_DIR_INDEX_KEY; 5767 char tmp_name[32]; 5768 char *name_ptr; 5769 int name_len; 5770 int is_curr = 0; /* ctx->pos points to the current index? */ 5771 bool emitted; 5772 bool put = false; 5773 5774 /* FIXME, use a real flag for deciding about the key type */ 5775 if (root->fs_info->tree_root == root) 5776 key_type = BTRFS_DIR_ITEM_KEY; 5777 5778 if (!dir_emit_dots(file, ctx)) 5779 return 0; 5780 5781 path = btrfs_alloc_path(); 5782 if (!path) 5783 return -ENOMEM; 5784 5785 path->reada = READA_FORWARD; 5786 5787 if (key_type == BTRFS_DIR_INDEX_KEY) { 5788 INIT_LIST_HEAD(&ins_list); 5789 INIT_LIST_HEAD(&del_list); 5790 put = btrfs_readdir_get_delayed_items(inode, &ins_list, 5791 &del_list); 5792 } 5793 5794 key.type = key_type; 5795 key.offset = ctx->pos; 5796 key.objectid = btrfs_ino(inode); 5797 5798 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5799 if (ret < 0) 5800 goto err; 5801 5802 emitted = false; 5803 while (1) { 5804 leaf = path->nodes[0]; 5805 slot = path->slots[0]; 5806 if (slot >= btrfs_header_nritems(leaf)) { 5807 ret = btrfs_next_leaf(root, path); 5808 if (ret < 0) 5809 goto err; 5810 else if (ret > 0) 5811 break; 5812 continue; 5813 } 5814 5815 item = btrfs_item_nr(slot); 5816 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5817 5818 if (found_key.objectid != key.objectid) 5819 break; 5820 if (found_key.type != key_type) 5821 break; 5822 if (found_key.offset < ctx->pos) 5823 goto next; 5824 if (key_type == BTRFS_DIR_INDEX_KEY && 5825 btrfs_should_delete_dir_index(&del_list, 5826 found_key.offset)) 5827 goto next; 5828 5829 ctx->pos = found_key.offset; 5830 is_curr = 1; 5831 5832 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5833 di_cur = 0; 5834 di_total = btrfs_item_size(leaf, item); 5835 5836 while (di_cur < di_total) { 5837 struct btrfs_key location; 5838 5839 if (verify_dir_item(root, leaf, di)) 5840 break; 5841 5842 name_len = btrfs_dir_name_len(leaf, di); 5843 if (name_len <= sizeof(tmp_name)) { 5844 name_ptr = tmp_name; 5845 } else { 5846 name_ptr = kmalloc(name_len, GFP_KERNEL); 5847 if (!name_ptr) { 5848 ret = -ENOMEM; 5849 goto err; 5850 } 5851 } 5852 read_extent_buffer(leaf, name_ptr, 5853 (unsigned long)(di + 1), name_len); 5854 5855 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5856 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5857 5858 5859 /* is this a reference to our own snapshot? If so 5860 * skip it. 5861 * 5862 * In contrast to old kernels, we insert the snapshot's 5863 * dir item and dir index after it has been created, so 5864 * we won't find a reference to our own snapshot. We 5865 * still keep the following code for backward 5866 * compatibility. 5867 */ 5868 if (location.type == BTRFS_ROOT_ITEM_KEY && 5869 location.objectid == root->root_key.objectid) { 5870 over = 0; 5871 goto skip; 5872 } 5873 over = !dir_emit(ctx, name_ptr, name_len, 5874 location.objectid, d_type); 5875 5876 skip: 5877 if (name_ptr != tmp_name) 5878 kfree(name_ptr); 5879 5880 if (over) 5881 goto nopos; 5882 emitted = true; 5883 di_len = btrfs_dir_name_len(leaf, di) + 5884 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5885 di_cur += di_len; 5886 di = (struct btrfs_dir_item *)((char *)di + di_len); 5887 } 5888 next: 5889 path->slots[0]++; 5890 } 5891 5892 if (key_type == BTRFS_DIR_INDEX_KEY) { 5893 if (is_curr) 5894 ctx->pos++; 5895 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted); 5896 if (ret) 5897 goto nopos; 5898 } 5899 5900 /* 5901 * If we haven't emitted any dir entry, we must not touch ctx->pos as 5902 * it was was set to the termination value in previous call. We assume 5903 * that "." and ".." were emitted if we reach this point and set the 5904 * termination value as well for an empty directory. 5905 */ 5906 if (ctx->pos > 2 && !emitted) 5907 goto nopos; 5908 5909 /* Reached end of directory/root. Bump pos past the last item. */ 5910 ctx->pos++; 5911 5912 /* 5913 * Stop new entries from being returned after we return the last 5914 * entry. 5915 * 5916 * New directory entries are assigned a strictly increasing 5917 * offset. This means that new entries created during readdir 5918 * are *guaranteed* to be seen in the future by that readdir. 5919 * This has broken buggy programs which operate on names as 5920 * they're returned by readdir. Until we re-use freed offsets 5921 * we have this hack to stop new entries from being returned 5922 * under the assumption that they'll never reach this huge 5923 * offset. 5924 * 5925 * This is being careful not to overflow 32bit loff_t unless the 5926 * last entry requires it because doing so has broken 32bit apps 5927 * in the past. 5928 */ 5929 if (key_type == BTRFS_DIR_INDEX_KEY) { 5930 if (ctx->pos >= INT_MAX) 5931 ctx->pos = LLONG_MAX; 5932 else 5933 ctx->pos = INT_MAX; 5934 } 5935 nopos: 5936 ret = 0; 5937 err: 5938 if (put) 5939 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5940 btrfs_free_path(path); 5941 return ret; 5942 } 5943 5944 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5945 { 5946 struct btrfs_root *root = BTRFS_I(inode)->root; 5947 struct btrfs_trans_handle *trans; 5948 int ret = 0; 5949 bool nolock = false; 5950 5951 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5952 return 0; 5953 5954 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5955 nolock = true; 5956 5957 if (wbc->sync_mode == WB_SYNC_ALL) { 5958 if (nolock) 5959 trans = btrfs_join_transaction_nolock(root); 5960 else 5961 trans = btrfs_join_transaction(root); 5962 if (IS_ERR(trans)) 5963 return PTR_ERR(trans); 5964 ret = btrfs_commit_transaction(trans, root); 5965 } 5966 return ret; 5967 } 5968 5969 /* 5970 * This is somewhat expensive, updating the tree every time the 5971 * inode changes. But, it is most likely to find the inode in cache. 5972 * FIXME, needs more benchmarking...there are no reasons other than performance 5973 * to keep or drop this code. 5974 */ 5975 static int btrfs_dirty_inode(struct inode *inode) 5976 { 5977 struct btrfs_root *root = BTRFS_I(inode)->root; 5978 struct btrfs_trans_handle *trans; 5979 int ret; 5980 5981 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5982 return 0; 5983 5984 trans = btrfs_join_transaction(root); 5985 if (IS_ERR(trans)) 5986 return PTR_ERR(trans); 5987 5988 ret = btrfs_update_inode(trans, root, inode); 5989 if (ret && ret == -ENOSPC) { 5990 /* whoops, lets try again with the full transaction */ 5991 btrfs_end_transaction(trans, root); 5992 trans = btrfs_start_transaction(root, 1); 5993 if (IS_ERR(trans)) 5994 return PTR_ERR(trans); 5995 5996 ret = btrfs_update_inode(trans, root, inode); 5997 } 5998 btrfs_end_transaction(trans, root); 5999 if (BTRFS_I(inode)->delayed_node) 6000 btrfs_balance_delayed_items(root); 6001 6002 return ret; 6003 } 6004 6005 /* 6006 * This is a copy of file_update_time. We need this so we can return error on 6007 * ENOSPC for updating the inode in the case of file write and mmap writes. 6008 */ 6009 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6010 int flags) 6011 { 6012 struct btrfs_root *root = BTRFS_I(inode)->root; 6013 6014 if (btrfs_root_readonly(root)) 6015 return -EROFS; 6016 6017 if (flags & S_VERSION) 6018 inode_inc_iversion(inode); 6019 if (flags & S_CTIME) 6020 inode->i_ctime = *now; 6021 if (flags & S_MTIME) 6022 inode->i_mtime = *now; 6023 if (flags & S_ATIME) 6024 inode->i_atime = *now; 6025 return btrfs_dirty_inode(inode); 6026 } 6027 6028 /* 6029 * find the highest existing sequence number in a directory 6030 * and then set the in-memory index_cnt variable to reflect 6031 * free sequence numbers 6032 */ 6033 static int btrfs_set_inode_index_count(struct inode *inode) 6034 { 6035 struct btrfs_root *root = BTRFS_I(inode)->root; 6036 struct btrfs_key key, found_key; 6037 struct btrfs_path *path; 6038 struct extent_buffer *leaf; 6039 int ret; 6040 6041 key.objectid = btrfs_ino(inode); 6042 key.type = BTRFS_DIR_INDEX_KEY; 6043 key.offset = (u64)-1; 6044 6045 path = btrfs_alloc_path(); 6046 if (!path) 6047 return -ENOMEM; 6048 6049 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6050 if (ret < 0) 6051 goto out; 6052 /* FIXME: we should be able to handle this */ 6053 if (ret == 0) 6054 goto out; 6055 ret = 0; 6056 6057 /* 6058 * MAGIC NUMBER EXPLANATION: 6059 * since we search a directory based on f_pos we have to start at 2 6060 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6061 * else has to start at 2 6062 */ 6063 if (path->slots[0] == 0) { 6064 BTRFS_I(inode)->index_cnt = 2; 6065 goto out; 6066 } 6067 6068 path->slots[0]--; 6069 6070 leaf = path->nodes[0]; 6071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6072 6073 if (found_key.objectid != btrfs_ino(inode) || 6074 found_key.type != BTRFS_DIR_INDEX_KEY) { 6075 BTRFS_I(inode)->index_cnt = 2; 6076 goto out; 6077 } 6078 6079 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 6080 out: 6081 btrfs_free_path(path); 6082 return ret; 6083 } 6084 6085 /* 6086 * helper to find a free sequence number in a given directory. This current 6087 * code is very simple, later versions will do smarter things in the btree 6088 */ 6089 int btrfs_set_inode_index(struct inode *dir, u64 *index) 6090 { 6091 int ret = 0; 6092 6093 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 6094 ret = btrfs_inode_delayed_dir_index_count(dir); 6095 if (ret) { 6096 ret = btrfs_set_inode_index_count(dir); 6097 if (ret) 6098 return ret; 6099 } 6100 } 6101 6102 *index = BTRFS_I(dir)->index_cnt; 6103 BTRFS_I(dir)->index_cnt++; 6104 6105 return ret; 6106 } 6107 6108 static int btrfs_insert_inode_locked(struct inode *inode) 6109 { 6110 struct btrfs_iget_args args; 6111 args.location = &BTRFS_I(inode)->location; 6112 args.root = BTRFS_I(inode)->root; 6113 6114 return insert_inode_locked4(inode, 6115 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6116 btrfs_find_actor, &args); 6117 } 6118 6119 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6120 struct btrfs_root *root, 6121 struct inode *dir, 6122 const char *name, int name_len, 6123 u64 ref_objectid, u64 objectid, 6124 umode_t mode, u64 *index) 6125 { 6126 struct inode *inode; 6127 struct btrfs_inode_item *inode_item; 6128 struct btrfs_key *location; 6129 struct btrfs_path *path; 6130 struct btrfs_inode_ref *ref; 6131 struct btrfs_key key[2]; 6132 u32 sizes[2]; 6133 int nitems = name ? 2 : 1; 6134 unsigned long ptr; 6135 int ret; 6136 6137 path = btrfs_alloc_path(); 6138 if (!path) 6139 return ERR_PTR(-ENOMEM); 6140 6141 inode = new_inode(root->fs_info->sb); 6142 if (!inode) { 6143 btrfs_free_path(path); 6144 return ERR_PTR(-ENOMEM); 6145 } 6146 6147 /* 6148 * O_TMPFILE, set link count to 0, so that after this point, 6149 * we fill in an inode item with the correct link count. 6150 */ 6151 if (!name) 6152 set_nlink(inode, 0); 6153 6154 /* 6155 * we have to initialize this early, so we can reclaim the inode 6156 * number if we fail afterwards in this function. 6157 */ 6158 inode->i_ino = objectid; 6159 6160 if (dir && name) { 6161 trace_btrfs_inode_request(dir); 6162 6163 ret = btrfs_set_inode_index(dir, index); 6164 if (ret) { 6165 btrfs_free_path(path); 6166 iput(inode); 6167 return ERR_PTR(ret); 6168 } 6169 } else if (dir) { 6170 *index = 0; 6171 } 6172 /* 6173 * index_cnt is ignored for everything but a dir, 6174 * btrfs_get_inode_index_count has an explanation for the magic 6175 * number 6176 */ 6177 BTRFS_I(inode)->index_cnt = 2; 6178 BTRFS_I(inode)->dir_index = *index; 6179 BTRFS_I(inode)->root = root; 6180 BTRFS_I(inode)->generation = trans->transid; 6181 inode->i_generation = BTRFS_I(inode)->generation; 6182 6183 /* 6184 * We could have gotten an inode number from somebody who was fsynced 6185 * and then removed in this same transaction, so let's just set full 6186 * sync since it will be a full sync anyway and this will blow away the 6187 * old info in the log. 6188 */ 6189 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6190 6191 key[0].objectid = objectid; 6192 key[0].type = BTRFS_INODE_ITEM_KEY; 6193 key[0].offset = 0; 6194 6195 sizes[0] = sizeof(struct btrfs_inode_item); 6196 6197 if (name) { 6198 /* 6199 * Start new inodes with an inode_ref. This is slightly more 6200 * efficient for small numbers of hard links since they will 6201 * be packed into one item. Extended refs will kick in if we 6202 * add more hard links than can fit in the ref item. 6203 */ 6204 key[1].objectid = objectid; 6205 key[1].type = BTRFS_INODE_REF_KEY; 6206 key[1].offset = ref_objectid; 6207 6208 sizes[1] = name_len + sizeof(*ref); 6209 } 6210 6211 location = &BTRFS_I(inode)->location; 6212 location->objectid = objectid; 6213 location->offset = 0; 6214 location->type = BTRFS_INODE_ITEM_KEY; 6215 6216 ret = btrfs_insert_inode_locked(inode); 6217 if (ret < 0) 6218 goto fail; 6219 6220 path->leave_spinning = 1; 6221 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6222 if (ret != 0) 6223 goto fail_unlock; 6224 6225 inode_init_owner(inode, dir, mode); 6226 inode_set_bytes(inode, 0); 6227 6228 inode->i_mtime = current_fs_time(inode->i_sb); 6229 inode->i_atime = inode->i_mtime; 6230 inode->i_ctime = inode->i_mtime; 6231 BTRFS_I(inode)->i_otime = inode->i_mtime; 6232 6233 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6234 struct btrfs_inode_item); 6235 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6236 sizeof(*inode_item)); 6237 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6238 6239 if (name) { 6240 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6241 struct btrfs_inode_ref); 6242 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6243 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6244 ptr = (unsigned long)(ref + 1); 6245 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6246 } 6247 6248 btrfs_mark_buffer_dirty(path->nodes[0]); 6249 btrfs_free_path(path); 6250 6251 btrfs_inherit_iflags(inode, dir); 6252 6253 if (S_ISREG(mode)) { 6254 if (btrfs_test_opt(root->fs_info, NODATASUM)) 6255 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6256 if (btrfs_test_opt(root->fs_info, NODATACOW)) 6257 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6258 BTRFS_INODE_NODATASUM; 6259 } 6260 6261 inode_tree_add(inode); 6262 6263 trace_btrfs_inode_new(inode); 6264 btrfs_set_inode_last_trans(trans, inode); 6265 6266 btrfs_update_root_times(trans, root); 6267 6268 ret = btrfs_inode_inherit_props(trans, inode, dir); 6269 if (ret) 6270 btrfs_err(root->fs_info, 6271 "error inheriting props for ino %llu (root %llu): %d", 6272 btrfs_ino(inode), root->root_key.objectid, ret); 6273 6274 return inode; 6275 6276 fail_unlock: 6277 unlock_new_inode(inode); 6278 fail: 6279 if (dir && name) 6280 BTRFS_I(dir)->index_cnt--; 6281 btrfs_free_path(path); 6282 iput(inode); 6283 return ERR_PTR(ret); 6284 } 6285 6286 static inline u8 btrfs_inode_type(struct inode *inode) 6287 { 6288 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6289 } 6290 6291 /* 6292 * utility function to add 'inode' into 'parent_inode' with 6293 * a give name and a given sequence number. 6294 * if 'add_backref' is true, also insert a backref from the 6295 * inode to the parent directory. 6296 */ 6297 int btrfs_add_link(struct btrfs_trans_handle *trans, 6298 struct inode *parent_inode, struct inode *inode, 6299 const char *name, int name_len, int add_backref, u64 index) 6300 { 6301 int ret = 0; 6302 struct btrfs_key key; 6303 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6304 u64 ino = btrfs_ino(inode); 6305 u64 parent_ino = btrfs_ino(parent_inode); 6306 6307 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6308 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6309 } else { 6310 key.objectid = ino; 6311 key.type = BTRFS_INODE_ITEM_KEY; 6312 key.offset = 0; 6313 } 6314 6315 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6316 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6317 key.objectid, root->root_key.objectid, 6318 parent_ino, index, name, name_len); 6319 } else if (add_backref) { 6320 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6321 parent_ino, index); 6322 } 6323 6324 /* Nothing to clean up yet */ 6325 if (ret) 6326 return ret; 6327 6328 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6329 parent_inode, &key, 6330 btrfs_inode_type(inode), index); 6331 if (ret == -EEXIST || ret == -EOVERFLOW) 6332 goto fail_dir_item; 6333 else if (ret) { 6334 btrfs_abort_transaction(trans, ret); 6335 return ret; 6336 } 6337 6338 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6339 name_len * 2); 6340 inode_inc_iversion(parent_inode); 6341 parent_inode->i_mtime = parent_inode->i_ctime = 6342 current_fs_time(parent_inode->i_sb); 6343 ret = btrfs_update_inode(trans, root, parent_inode); 6344 if (ret) 6345 btrfs_abort_transaction(trans, ret); 6346 return ret; 6347 6348 fail_dir_item: 6349 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6350 u64 local_index; 6351 int err; 6352 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6353 key.objectid, root->root_key.objectid, 6354 parent_ino, &local_index, name, name_len); 6355 6356 } else if (add_backref) { 6357 u64 local_index; 6358 int err; 6359 6360 err = btrfs_del_inode_ref(trans, root, name, name_len, 6361 ino, parent_ino, &local_index); 6362 } 6363 return ret; 6364 } 6365 6366 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6367 struct inode *dir, struct dentry *dentry, 6368 struct inode *inode, int backref, u64 index) 6369 { 6370 int err = btrfs_add_link(trans, dir, inode, 6371 dentry->d_name.name, dentry->d_name.len, 6372 backref, index); 6373 if (err > 0) 6374 err = -EEXIST; 6375 return err; 6376 } 6377 6378 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6379 umode_t mode, dev_t rdev) 6380 { 6381 struct btrfs_trans_handle *trans; 6382 struct btrfs_root *root = BTRFS_I(dir)->root; 6383 struct inode *inode = NULL; 6384 int err; 6385 int drop_inode = 0; 6386 u64 objectid; 6387 u64 index = 0; 6388 6389 /* 6390 * 2 for inode item and ref 6391 * 2 for dir items 6392 * 1 for xattr if selinux is on 6393 */ 6394 trans = btrfs_start_transaction(root, 5); 6395 if (IS_ERR(trans)) 6396 return PTR_ERR(trans); 6397 6398 err = btrfs_find_free_ino(root, &objectid); 6399 if (err) 6400 goto out_unlock; 6401 6402 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6403 dentry->d_name.len, btrfs_ino(dir), objectid, 6404 mode, &index); 6405 if (IS_ERR(inode)) { 6406 err = PTR_ERR(inode); 6407 goto out_unlock; 6408 } 6409 6410 /* 6411 * If the active LSM wants to access the inode during 6412 * d_instantiate it needs these. Smack checks to see 6413 * if the filesystem supports xattrs by looking at the 6414 * ops vector. 6415 */ 6416 inode->i_op = &btrfs_special_inode_operations; 6417 init_special_inode(inode, inode->i_mode, rdev); 6418 6419 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6420 if (err) 6421 goto out_unlock_inode; 6422 6423 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6424 if (err) { 6425 goto out_unlock_inode; 6426 } else { 6427 btrfs_update_inode(trans, root, inode); 6428 unlock_new_inode(inode); 6429 d_instantiate(dentry, inode); 6430 } 6431 6432 out_unlock: 6433 btrfs_end_transaction(trans, root); 6434 btrfs_balance_delayed_items(root); 6435 btrfs_btree_balance_dirty(root); 6436 if (drop_inode) { 6437 inode_dec_link_count(inode); 6438 iput(inode); 6439 } 6440 return err; 6441 6442 out_unlock_inode: 6443 drop_inode = 1; 6444 unlock_new_inode(inode); 6445 goto out_unlock; 6446 6447 } 6448 6449 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6450 umode_t mode, bool excl) 6451 { 6452 struct btrfs_trans_handle *trans; 6453 struct btrfs_root *root = BTRFS_I(dir)->root; 6454 struct inode *inode = NULL; 6455 int drop_inode_on_err = 0; 6456 int err; 6457 u64 objectid; 6458 u64 index = 0; 6459 6460 /* 6461 * 2 for inode item and ref 6462 * 2 for dir items 6463 * 1 for xattr if selinux is on 6464 */ 6465 trans = btrfs_start_transaction(root, 5); 6466 if (IS_ERR(trans)) 6467 return PTR_ERR(trans); 6468 6469 err = btrfs_find_free_ino(root, &objectid); 6470 if (err) 6471 goto out_unlock; 6472 6473 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6474 dentry->d_name.len, btrfs_ino(dir), objectid, 6475 mode, &index); 6476 if (IS_ERR(inode)) { 6477 err = PTR_ERR(inode); 6478 goto out_unlock; 6479 } 6480 drop_inode_on_err = 1; 6481 /* 6482 * If the active LSM wants to access the inode during 6483 * d_instantiate it needs these. Smack checks to see 6484 * if the filesystem supports xattrs by looking at the 6485 * ops vector. 6486 */ 6487 inode->i_fop = &btrfs_file_operations; 6488 inode->i_op = &btrfs_file_inode_operations; 6489 inode->i_mapping->a_ops = &btrfs_aops; 6490 6491 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6492 if (err) 6493 goto out_unlock_inode; 6494 6495 err = btrfs_update_inode(trans, root, inode); 6496 if (err) 6497 goto out_unlock_inode; 6498 6499 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6500 if (err) 6501 goto out_unlock_inode; 6502 6503 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6504 unlock_new_inode(inode); 6505 d_instantiate(dentry, inode); 6506 6507 out_unlock: 6508 btrfs_end_transaction(trans, root); 6509 if (err && drop_inode_on_err) { 6510 inode_dec_link_count(inode); 6511 iput(inode); 6512 } 6513 btrfs_balance_delayed_items(root); 6514 btrfs_btree_balance_dirty(root); 6515 return err; 6516 6517 out_unlock_inode: 6518 unlock_new_inode(inode); 6519 goto out_unlock; 6520 6521 } 6522 6523 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6524 struct dentry *dentry) 6525 { 6526 struct btrfs_trans_handle *trans = NULL; 6527 struct btrfs_root *root = BTRFS_I(dir)->root; 6528 struct inode *inode = d_inode(old_dentry); 6529 u64 index; 6530 int err; 6531 int drop_inode = 0; 6532 6533 /* do not allow sys_link's with other subvols of the same device */ 6534 if (root->objectid != BTRFS_I(inode)->root->objectid) 6535 return -EXDEV; 6536 6537 if (inode->i_nlink >= BTRFS_LINK_MAX) 6538 return -EMLINK; 6539 6540 err = btrfs_set_inode_index(dir, &index); 6541 if (err) 6542 goto fail; 6543 6544 /* 6545 * 2 items for inode and inode ref 6546 * 2 items for dir items 6547 * 1 item for parent inode 6548 */ 6549 trans = btrfs_start_transaction(root, 5); 6550 if (IS_ERR(trans)) { 6551 err = PTR_ERR(trans); 6552 trans = NULL; 6553 goto fail; 6554 } 6555 6556 /* There are several dir indexes for this inode, clear the cache. */ 6557 BTRFS_I(inode)->dir_index = 0ULL; 6558 inc_nlink(inode); 6559 inode_inc_iversion(inode); 6560 inode->i_ctime = current_fs_time(inode->i_sb); 6561 ihold(inode); 6562 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6563 6564 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6565 6566 if (err) { 6567 drop_inode = 1; 6568 } else { 6569 struct dentry *parent = dentry->d_parent; 6570 err = btrfs_update_inode(trans, root, inode); 6571 if (err) 6572 goto fail; 6573 if (inode->i_nlink == 1) { 6574 /* 6575 * If new hard link count is 1, it's a file created 6576 * with open(2) O_TMPFILE flag. 6577 */ 6578 err = btrfs_orphan_del(trans, inode); 6579 if (err) 6580 goto fail; 6581 } 6582 d_instantiate(dentry, inode); 6583 btrfs_log_new_name(trans, inode, NULL, parent); 6584 } 6585 6586 btrfs_balance_delayed_items(root); 6587 fail: 6588 if (trans) 6589 btrfs_end_transaction(trans, root); 6590 if (drop_inode) { 6591 inode_dec_link_count(inode); 6592 iput(inode); 6593 } 6594 btrfs_btree_balance_dirty(root); 6595 return err; 6596 } 6597 6598 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6599 { 6600 struct inode *inode = NULL; 6601 struct btrfs_trans_handle *trans; 6602 struct btrfs_root *root = BTRFS_I(dir)->root; 6603 int err = 0; 6604 int drop_on_err = 0; 6605 u64 objectid = 0; 6606 u64 index = 0; 6607 6608 /* 6609 * 2 items for inode and ref 6610 * 2 items for dir items 6611 * 1 for xattr if selinux is on 6612 */ 6613 trans = btrfs_start_transaction(root, 5); 6614 if (IS_ERR(trans)) 6615 return PTR_ERR(trans); 6616 6617 err = btrfs_find_free_ino(root, &objectid); 6618 if (err) 6619 goto out_fail; 6620 6621 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6622 dentry->d_name.len, btrfs_ino(dir), objectid, 6623 S_IFDIR | mode, &index); 6624 if (IS_ERR(inode)) { 6625 err = PTR_ERR(inode); 6626 goto out_fail; 6627 } 6628 6629 drop_on_err = 1; 6630 /* these must be set before we unlock the inode */ 6631 inode->i_op = &btrfs_dir_inode_operations; 6632 inode->i_fop = &btrfs_dir_file_operations; 6633 6634 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6635 if (err) 6636 goto out_fail_inode; 6637 6638 btrfs_i_size_write(inode, 0); 6639 err = btrfs_update_inode(trans, root, inode); 6640 if (err) 6641 goto out_fail_inode; 6642 6643 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6644 dentry->d_name.len, 0, index); 6645 if (err) 6646 goto out_fail_inode; 6647 6648 d_instantiate(dentry, inode); 6649 /* 6650 * mkdir is special. We're unlocking after we call d_instantiate 6651 * to avoid a race with nfsd calling d_instantiate. 6652 */ 6653 unlock_new_inode(inode); 6654 drop_on_err = 0; 6655 6656 out_fail: 6657 btrfs_end_transaction(trans, root); 6658 if (drop_on_err) { 6659 inode_dec_link_count(inode); 6660 iput(inode); 6661 } 6662 btrfs_balance_delayed_items(root); 6663 btrfs_btree_balance_dirty(root); 6664 return err; 6665 6666 out_fail_inode: 6667 unlock_new_inode(inode); 6668 goto out_fail; 6669 } 6670 6671 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6672 static struct extent_map *next_extent_map(struct extent_map *em) 6673 { 6674 struct rb_node *next; 6675 6676 next = rb_next(&em->rb_node); 6677 if (!next) 6678 return NULL; 6679 return container_of(next, struct extent_map, rb_node); 6680 } 6681 6682 static struct extent_map *prev_extent_map(struct extent_map *em) 6683 { 6684 struct rb_node *prev; 6685 6686 prev = rb_prev(&em->rb_node); 6687 if (!prev) 6688 return NULL; 6689 return container_of(prev, struct extent_map, rb_node); 6690 } 6691 6692 /* helper for btfs_get_extent. Given an existing extent in the tree, 6693 * the existing extent is the nearest extent to map_start, 6694 * and an extent that you want to insert, deal with overlap and insert 6695 * the best fitted new extent into the tree. 6696 */ 6697 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6698 struct extent_map *existing, 6699 struct extent_map *em, 6700 u64 map_start) 6701 { 6702 struct extent_map *prev; 6703 struct extent_map *next; 6704 u64 start; 6705 u64 end; 6706 u64 start_diff; 6707 6708 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6709 6710 if (existing->start > map_start) { 6711 next = existing; 6712 prev = prev_extent_map(next); 6713 } else { 6714 prev = existing; 6715 next = next_extent_map(prev); 6716 } 6717 6718 start = prev ? extent_map_end(prev) : em->start; 6719 start = max_t(u64, start, em->start); 6720 end = next ? next->start : extent_map_end(em); 6721 end = min_t(u64, end, extent_map_end(em)); 6722 start_diff = start - em->start; 6723 em->start = start; 6724 em->len = end - start; 6725 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6726 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6727 em->block_start += start_diff; 6728 em->block_len -= start_diff; 6729 } 6730 return add_extent_mapping(em_tree, em, 0); 6731 } 6732 6733 static noinline int uncompress_inline(struct btrfs_path *path, 6734 struct page *page, 6735 size_t pg_offset, u64 extent_offset, 6736 struct btrfs_file_extent_item *item) 6737 { 6738 int ret; 6739 struct extent_buffer *leaf = path->nodes[0]; 6740 char *tmp; 6741 size_t max_size; 6742 unsigned long inline_size; 6743 unsigned long ptr; 6744 int compress_type; 6745 6746 WARN_ON(pg_offset != 0); 6747 compress_type = btrfs_file_extent_compression(leaf, item); 6748 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6749 inline_size = btrfs_file_extent_inline_item_len(leaf, 6750 btrfs_item_nr(path->slots[0])); 6751 tmp = kmalloc(inline_size, GFP_NOFS); 6752 if (!tmp) 6753 return -ENOMEM; 6754 ptr = btrfs_file_extent_inline_start(item); 6755 6756 read_extent_buffer(leaf, tmp, ptr, inline_size); 6757 6758 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6759 ret = btrfs_decompress(compress_type, tmp, page, 6760 extent_offset, inline_size, max_size); 6761 kfree(tmp); 6762 return ret; 6763 } 6764 6765 /* 6766 * a bit scary, this does extent mapping from logical file offset to the disk. 6767 * the ugly parts come from merging extents from the disk with the in-ram 6768 * representation. This gets more complex because of the data=ordered code, 6769 * where the in-ram extents might be locked pending data=ordered completion. 6770 * 6771 * This also copies inline extents directly into the page. 6772 */ 6773 6774 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6775 size_t pg_offset, u64 start, u64 len, 6776 int create) 6777 { 6778 int ret; 6779 int err = 0; 6780 u64 extent_start = 0; 6781 u64 extent_end = 0; 6782 u64 objectid = btrfs_ino(inode); 6783 u32 found_type; 6784 struct btrfs_path *path = NULL; 6785 struct btrfs_root *root = BTRFS_I(inode)->root; 6786 struct btrfs_file_extent_item *item; 6787 struct extent_buffer *leaf; 6788 struct btrfs_key found_key; 6789 struct extent_map *em = NULL; 6790 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6791 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6792 struct btrfs_trans_handle *trans = NULL; 6793 const bool new_inline = !page || create; 6794 6795 again: 6796 read_lock(&em_tree->lock); 6797 em = lookup_extent_mapping(em_tree, start, len); 6798 if (em) 6799 em->bdev = root->fs_info->fs_devices->latest_bdev; 6800 read_unlock(&em_tree->lock); 6801 6802 if (em) { 6803 if (em->start > start || em->start + em->len <= start) 6804 free_extent_map(em); 6805 else if (em->block_start == EXTENT_MAP_INLINE && page) 6806 free_extent_map(em); 6807 else 6808 goto out; 6809 } 6810 em = alloc_extent_map(); 6811 if (!em) { 6812 err = -ENOMEM; 6813 goto out; 6814 } 6815 em->bdev = root->fs_info->fs_devices->latest_bdev; 6816 em->start = EXTENT_MAP_HOLE; 6817 em->orig_start = EXTENT_MAP_HOLE; 6818 em->len = (u64)-1; 6819 em->block_len = (u64)-1; 6820 6821 if (!path) { 6822 path = btrfs_alloc_path(); 6823 if (!path) { 6824 err = -ENOMEM; 6825 goto out; 6826 } 6827 /* 6828 * Chances are we'll be called again, so go ahead and do 6829 * readahead 6830 */ 6831 path->reada = READA_FORWARD; 6832 } 6833 6834 ret = btrfs_lookup_file_extent(trans, root, path, 6835 objectid, start, trans != NULL); 6836 if (ret < 0) { 6837 err = ret; 6838 goto out; 6839 } 6840 6841 if (ret != 0) { 6842 if (path->slots[0] == 0) 6843 goto not_found; 6844 path->slots[0]--; 6845 } 6846 6847 leaf = path->nodes[0]; 6848 item = btrfs_item_ptr(leaf, path->slots[0], 6849 struct btrfs_file_extent_item); 6850 /* are we inside the extent that was found? */ 6851 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6852 found_type = found_key.type; 6853 if (found_key.objectid != objectid || 6854 found_type != BTRFS_EXTENT_DATA_KEY) { 6855 /* 6856 * If we backup past the first extent we want to move forward 6857 * and see if there is an extent in front of us, otherwise we'll 6858 * say there is a hole for our whole search range which can 6859 * cause problems. 6860 */ 6861 extent_end = start; 6862 goto next; 6863 } 6864 6865 found_type = btrfs_file_extent_type(leaf, item); 6866 extent_start = found_key.offset; 6867 if (found_type == BTRFS_FILE_EXTENT_REG || 6868 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6869 extent_end = extent_start + 6870 btrfs_file_extent_num_bytes(leaf, item); 6871 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6872 size_t size; 6873 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6874 extent_end = ALIGN(extent_start + size, root->sectorsize); 6875 } 6876 next: 6877 if (start >= extent_end) { 6878 path->slots[0]++; 6879 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6880 ret = btrfs_next_leaf(root, path); 6881 if (ret < 0) { 6882 err = ret; 6883 goto out; 6884 } 6885 if (ret > 0) 6886 goto not_found; 6887 leaf = path->nodes[0]; 6888 } 6889 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6890 if (found_key.objectid != objectid || 6891 found_key.type != BTRFS_EXTENT_DATA_KEY) 6892 goto not_found; 6893 if (start + len <= found_key.offset) 6894 goto not_found; 6895 if (start > found_key.offset) 6896 goto next; 6897 em->start = start; 6898 em->orig_start = start; 6899 em->len = found_key.offset - start; 6900 goto not_found_em; 6901 } 6902 6903 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6904 6905 if (found_type == BTRFS_FILE_EXTENT_REG || 6906 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6907 goto insert; 6908 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6909 unsigned long ptr; 6910 char *map; 6911 size_t size; 6912 size_t extent_offset; 6913 size_t copy_size; 6914 6915 if (new_inline) 6916 goto out; 6917 6918 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6919 extent_offset = page_offset(page) + pg_offset - extent_start; 6920 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6921 size - extent_offset); 6922 em->start = extent_start + extent_offset; 6923 em->len = ALIGN(copy_size, root->sectorsize); 6924 em->orig_block_len = em->len; 6925 em->orig_start = em->start; 6926 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6927 if (create == 0 && !PageUptodate(page)) { 6928 if (btrfs_file_extent_compression(leaf, item) != 6929 BTRFS_COMPRESS_NONE) { 6930 ret = uncompress_inline(path, page, pg_offset, 6931 extent_offset, item); 6932 if (ret) { 6933 err = ret; 6934 goto out; 6935 } 6936 } else { 6937 map = kmap(page); 6938 read_extent_buffer(leaf, map + pg_offset, ptr, 6939 copy_size); 6940 if (pg_offset + copy_size < PAGE_SIZE) { 6941 memset(map + pg_offset + copy_size, 0, 6942 PAGE_SIZE - pg_offset - 6943 copy_size); 6944 } 6945 kunmap(page); 6946 } 6947 flush_dcache_page(page); 6948 } else if (create && PageUptodate(page)) { 6949 BUG(); 6950 if (!trans) { 6951 kunmap(page); 6952 free_extent_map(em); 6953 em = NULL; 6954 6955 btrfs_release_path(path); 6956 trans = btrfs_join_transaction(root); 6957 6958 if (IS_ERR(trans)) 6959 return ERR_CAST(trans); 6960 goto again; 6961 } 6962 map = kmap(page); 6963 write_extent_buffer(leaf, map + pg_offset, ptr, 6964 copy_size); 6965 kunmap(page); 6966 btrfs_mark_buffer_dirty(leaf); 6967 } 6968 set_extent_uptodate(io_tree, em->start, 6969 extent_map_end(em) - 1, NULL, GFP_NOFS); 6970 goto insert; 6971 } 6972 not_found: 6973 em->start = start; 6974 em->orig_start = start; 6975 em->len = len; 6976 not_found_em: 6977 em->block_start = EXTENT_MAP_HOLE; 6978 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6979 insert: 6980 btrfs_release_path(path); 6981 if (em->start > start || extent_map_end(em) <= start) { 6982 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6983 em->start, em->len, start, len); 6984 err = -EIO; 6985 goto out; 6986 } 6987 6988 err = 0; 6989 write_lock(&em_tree->lock); 6990 ret = add_extent_mapping(em_tree, em, 0); 6991 /* it is possible that someone inserted the extent into the tree 6992 * while we had the lock dropped. It is also possible that 6993 * an overlapping map exists in the tree 6994 */ 6995 if (ret == -EEXIST) { 6996 struct extent_map *existing; 6997 6998 ret = 0; 6999 7000 existing = search_extent_mapping(em_tree, start, len); 7001 /* 7002 * existing will always be non-NULL, since there must be 7003 * extent causing the -EEXIST. 7004 */ 7005 if (existing->start == em->start && 7006 extent_map_end(existing) == extent_map_end(em) && 7007 em->block_start == existing->block_start) { 7008 /* 7009 * these two extents are the same, it happens 7010 * with inlines especially 7011 */ 7012 free_extent_map(em); 7013 em = existing; 7014 err = 0; 7015 7016 } else if (start >= extent_map_end(existing) || 7017 start <= existing->start) { 7018 /* 7019 * The existing extent map is the one nearest to 7020 * the [start, start + len) range which overlaps 7021 */ 7022 err = merge_extent_mapping(em_tree, existing, 7023 em, start); 7024 free_extent_map(existing); 7025 if (err) { 7026 free_extent_map(em); 7027 em = NULL; 7028 } 7029 } else { 7030 free_extent_map(em); 7031 em = existing; 7032 err = 0; 7033 } 7034 } 7035 write_unlock(&em_tree->lock); 7036 out: 7037 7038 trace_btrfs_get_extent(root, em); 7039 7040 btrfs_free_path(path); 7041 if (trans) { 7042 ret = btrfs_end_transaction(trans, root); 7043 if (!err) 7044 err = ret; 7045 } 7046 if (err) { 7047 free_extent_map(em); 7048 return ERR_PTR(err); 7049 } 7050 BUG_ON(!em); /* Error is always set */ 7051 return em; 7052 } 7053 7054 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 7055 size_t pg_offset, u64 start, u64 len, 7056 int create) 7057 { 7058 struct extent_map *em; 7059 struct extent_map *hole_em = NULL; 7060 u64 range_start = start; 7061 u64 end; 7062 u64 found; 7063 u64 found_end; 7064 int err = 0; 7065 7066 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7067 if (IS_ERR(em)) 7068 return em; 7069 if (em) { 7070 /* 7071 * if our em maps to 7072 * - a hole or 7073 * - a pre-alloc extent, 7074 * there might actually be delalloc bytes behind it. 7075 */ 7076 if (em->block_start != EXTENT_MAP_HOLE && 7077 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7078 return em; 7079 else 7080 hole_em = em; 7081 } 7082 7083 /* check to see if we've wrapped (len == -1 or similar) */ 7084 end = start + len; 7085 if (end < start) 7086 end = (u64)-1; 7087 else 7088 end -= 1; 7089 7090 em = NULL; 7091 7092 /* ok, we didn't find anything, lets look for delalloc */ 7093 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 7094 end, len, EXTENT_DELALLOC, 1); 7095 found_end = range_start + found; 7096 if (found_end < range_start) 7097 found_end = (u64)-1; 7098 7099 /* 7100 * we didn't find anything useful, return 7101 * the original results from get_extent() 7102 */ 7103 if (range_start > end || found_end <= start) { 7104 em = hole_em; 7105 hole_em = NULL; 7106 goto out; 7107 } 7108 7109 /* adjust the range_start to make sure it doesn't 7110 * go backwards from the start they passed in 7111 */ 7112 range_start = max(start, range_start); 7113 found = found_end - range_start; 7114 7115 if (found > 0) { 7116 u64 hole_start = start; 7117 u64 hole_len = len; 7118 7119 em = alloc_extent_map(); 7120 if (!em) { 7121 err = -ENOMEM; 7122 goto out; 7123 } 7124 /* 7125 * when btrfs_get_extent can't find anything it 7126 * returns one huge hole 7127 * 7128 * make sure what it found really fits our range, and 7129 * adjust to make sure it is based on the start from 7130 * the caller 7131 */ 7132 if (hole_em) { 7133 u64 calc_end = extent_map_end(hole_em); 7134 7135 if (calc_end <= start || (hole_em->start > end)) { 7136 free_extent_map(hole_em); 7137 hole_em = NULL; 7138 } else { 7139 hole_start = max(hole_em->start, start); 7140 hole_len = calc_end - hole_start; 7141 } 7142 } 7143 em->bdev = NULL; 7144 if (hole_em && range_start > hole_start) { 7145 /* our hole starts before our delalloc, so we 7146 * have to return just the parts of the hole 7147 * that go until the delalloc starts 7148 */ 7149 em->len = min(hole_len, 7150 range_start - hole_start); 7151 em->start = hole_start; 7152 em->orig_start = hole_start; 7153 /* 7154 * don't adjust block start at all, 7155 * it is fixed at EXTENT_MAP_HOLE 7156 */ 7157 em->block_start = hole_em->block_start; 7158 em->block_len = hole_len; 7159 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7160 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7161 } else { 7162 em->start = range_start; 7163 em->len = found; 7164 em->orig_start = range_start; 7165 em->block_start = EXTENT_MAP_DELALLOC; 7166 em->block_len = found; 7167 } 7168 } else if (hole_em) { 7169 return hole_em; 7170 } 7171 out: 7172 7173 free_extent_map(hole_em); 7174 if (err) { 7175 free_extent_map(em); 7176 return ERR_PTR(err); 7177 } 7178 return em; 7179 } 7180 7181 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7182 const u64 start, 7183 const u64 len, 7184 const u64 orig_start, 7185 const u64 block_start, 7186 const u64 block_len, 7187 const u64 orig_block_len, 7188 const u64 ram_bytes, 7189 const int type) 7190 { 7191 struct extent_map *em = NULL; 7192 int ret; 7193 7194 down_read(&BTRFS_I(inode)->dio_sem); 7195 if (type != BTRFS_ORDERED_NOCOW) { 7196 em = create_pinned_em(inode, start, len, orig_start, 7197 block_start, block_len, orig_block_len, 7198 ram_bytes, type); 7199 if (IS_ERR(em)) 7200 goto out; 7201 } 7202 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7203 len, block_len, type); 7204 if (ret) { 7205 if (em) { 7206 free_extent_map(em); 7207 btrfs_drop_extent_cache(inode, start, 7208 start + len - 1, 0); 7209 } 7210 em = ERR_PTR(ret); 7211 } 7212 out: 7213 up_read(&BTRFS_I(inode)->dio_sem); 7214 7215 return em; 7216 } 7217 7218 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7219 u64 start, u64 len) 7220 { 7221 struct btrfs_root *root = BTRFS_I(inode)->root; 7222 struct extent_map *em; 7223 struct btrfs_key ins; 7224 u64 alloc_hint; 7225 int ret; 7226 7227 alloc_hint = get_extent_allocation_hint(inode, start, len); 7228 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 7229 alloc_hint, &ins, 1, 1); 7230 if (ret) 7231 return ERR_PTR(ret); 7232 7233 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7234 ins.objectid, ins.offset, ins.offset, 7235 ins.offset, 0); 7236 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 7237 if (IS_ERR(em)) 7238 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7239 7240 return em; 7241 } 7242 7243 /* 7244 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7245 * block must be cow'd 7246 */ 7247 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7248 u64 *orig_start, u64 *orig_block_len, 7249 u64 *ram_bytes) 7250 { 7251 struct btrfs_trans_handle *trans; 7252 struct btrfs_path *path; 7253 int ret; 7254 struct extent_buffer *leaf; 7255 struct btrfs_root *root = BTRFS_I(inode)->root; 7256 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7257 struct btrfs_file_extent_item *fi; 7258 struct btrfs_key key; 7259 u64 disk_bytenr; 7260 u64 backref_offset; 7261 u64 extent_end; 7262 u64 num_bytes; 7263 int slot; 7264 int found_type; 7265 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7266 7267 path = btrfs_alloc_path(); 7268 if (!path) 7269 return -ENOMEM; 7270 7271 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7272 offset, 0); 7273 if (ret < 0) 7274 goto out; 7275 7276 slot = path->slots[0]; 7277 if (ret == 1) { 7278 if (slot == 0) { 7279 /* can't find the item, must cow */ 7280 ret = 0; 7281 goto out; 7282 } 7283 slot--; 7284 } 7285 ret = 0; 7286 leaf = path->nodes[0]; 7287 btrfs_item_key_to_cpu(leaf, &key, slot); 7288 if (key.objectid != btrfs_ino(inode) || 7289 key.type != BTRFS_EXTENT_DATA_KEY) { 7290 /* not our file or wrong item type, must cow */ 7291 goto out; 7292 } 7293 7294 if (key.offset > offset) { 7295 /* Wrong offset, must cow */ 7296 goto out; 7297 } 7298 7299 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7300 found_type = btrfs_file_extent_type(leaf, fi); 7301 if (found_type != BTRFS_FILE_EXTENT_REG && 7302 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7303 /* not a regular extent, must cow */ 7304 goto out; 7305 } 7306 7307 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7308 goto out; 7309 7310 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7311 if (extent_end <= offset) 7312 goto out; 7313 7314 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7315 if (disk_bytenr == 0) 7316 goto out; 7317 7318 if (btrfs_file_extent_compression(leaf, fi) || 7319 btrfs_file_extent_encryption(leaf, fi) || 7320 btrfs_file_extent_other_encoding(leaf, fi)) 7321 goto out; 7322 7323 backref_offset = btrfs_file_extent_offset(leaf, fi); 7324 7325 if (orig_start) { 7326 *orig_start = key.offset - backref_offset; 7327 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7328 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7329 } 7330 7331 if (btrfs_extent_readonly(root, disk_bytenr)) 7332 goto out; 7333 7334 num_bytes = min(offset + *len, extent_end) - offset; 7335 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7336 u64 range_end; 7337 7338 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7339 ret = test_range_bit(io_tree, offset, range_end, 7340 EXTENT_DELALLOC, 0, NULL); 7341 if (ret) { 7342 ret = -EAGAIN; 7343 goto out; 7344 } 7345 } 7346 7347 btrfs_release_path(path); 7348 7349 /* 7350 * look for other files referencing this extent, if we 7351 * find any we must cow 7352 */ 7353 trans = btrfs_join_transaction(root); 7354 if (IS_ERR(trans)) { 7355 ret = 0; 7356 goto out; 7357 } 7358 7359 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7360 key.offset - backref_offset, disk_bytenr); 7361 btrfs_end_transaction(trans, root); 7362 if (ret) { 7363 ret = 0; 7364 goto out; 7365 } 7366 7367 /* 7368 * adjust disk_bytenr and num_bytes to cover just the bytes 7369 * in this extent we are about to write. If there 7370 * are any csums in that range we have to cow in order 7371 * to keep the csums correct 7372 */ 7373 disk_bytenr += backref_offset; 7374 disk_bytenr += offset - key.offset; 7375 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7376 goto out; 7377 /* 7378 * all of the above have passed, it is safe to overwrite this extent 7379 * without cow 7380 */ 7381 *len = num_bytes; 7382 ret = 1; 7383 out: 7384 btrfs_free_path(path); 7385 return ret; 7386 } 7387 7388 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7389 { 7390 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7391 int found = false; 7392 void **pagep = NULL; 7393 struct page *page = NULL; 7394 int start_idx; 7395 int end_idx; 7396 7397 start_idx = start >> PAGE_SHIFT; 7398 7399 /* 7400 * end is the last byte in the last page. end == start is legal 7401 */ 7402 end_idx = end >> PAGE_SHIFT; 7403 7404 rcu_read_lock(); 7405 7406 /* Most of the code in this while loop is lifted from 7407 * find_get_page. It's been modified to begin searching from a 7408 * page and return just the first page found in that range. If the 7409 * found idx is less than or equal to the end idx then we know that 7410 * a page exists. If no pages are found or if those pages are 7411 * outside of the range then we're fine (yay!) */ 7412 while (page == NULL && 7413 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7414 page = radix_tree_deref_slot(pagep); 7415 if (unlikely(!page)) 7416 break; 7417 7418 if (radix_tree_exception(page)) { 7419 if (radix_tree_deref_retry(page)) { 7420 page = NULL; 7421 continue; 7422 } 7423 /* 7424 * Otherwise, shmem/tmpfs must be storing a swap entry 7425 * here as an exceptional entry: so return it without 7426 * attempting to raise page count. 7427 */ 7428 page = NULL; 7429 break; /* TODO: Is this relevant for this use case? */ 7430 } 7431 7432 if (!page_cache_get_speculative(page)) { 7433 page = NULL; 7434 continue; 7435 } 7436 7437 /* 7438 * Has the page moved? 7439 * This is part of the lockless pagecache protocol. See 7440 * include/linux/pagemap.h for details. 7441 */ 7442 if (unlikely(page != *pagep)) { 7443 put_page(page); 7444 page = NULL; 7445 } 7446 } 7447 7448 if (page) { 7449 if (page->index <= end_idx) 7450 found = true; 7451 put_page(page); 7452 } 7453 7454 rcu_read_unlock(); 7455 return found; 7456 } 7457 7458 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7459 struct extent_state **cached_state, int writing) 7460 { 7461 struct btrfs_ordered_extent *ordered; 7462 int ret = 0; 7463 7464 while (1) { 7465 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7466 cached_state); 7467 /* 7468 * We're concerned with the entire range that we're going to be 7469 * doing DIO to, so we need to make sure there's no ordered 7470 * extents in this range. 7471 */ 7472 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7473 lockend - lockstart + 1); 7474 7475 /* 7476 * We need to make sure there are no buffered pages in this 7477 * range either, we could have raced between the invalidate in 7478 * generic_file_direct_write and locking the extent. The 7479 * invalidate needs to happen so that reads after a write do not 7480 * get stale data. 7481 */ 7482 if (!ordered && 7483 (!writing || 7484 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7485 break; 7486 7487 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7488 cached_state, GFP_NOFS); 7489 7490 if (ordered) { 7491 /* 7492 * If we are doing a DIO read and the ordered extent we 7493 * found is for a buffered write, we can not wait for it 7494 * to complete and retry, because if we do so we can 7495 * deadlock with concurrent buffered writes on page 7496 * locks. This happens only if our DIO read covers more 7497 * than one extent map, if at this point has already 7498 * created an ordered extent for a previous extent map 7499 * and locked its range in the inode's io tree, and a 7500 * concurrent write against that previous extent map's 7501 * range and this range started (we unlock the ranges 7502 * in the io tree only when the bios complete and 7503 * buffered writes always lock pages before attempting 7504 * to lock range in the io tree). 7505 */ 7506 if (writing || 7507 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7508 btrfs_start_ordered_extent(inode, ordered, 1); 7509 else 7510 ret = -ENOTBLK; 7511 btrfs_put_ordered_extent(ordered); 7512 } else { 7513 /* 7514 * We could trigger writeback for this range (and wait 7515 * for it to complete) and then invalidate the pages for 7516 * this range (through invalidate_inode_pages2_range()), 7517 * but that can lead us to a deadlock with a concurrent 7518 * call to readpages() (a buffered read or a defrag call 7519 * triggered a readahead) on a page lock due to an 7520 * ordered dio extent we created before but did not have 7521 * yet a corresponding bio submitted (whence it can not 7522 * complete), which makes readpages() wait for that 7523 * ordered extent to complete while holding a lock on 7524 * that page. 7525 */ 7526 ret = -ENOTBLK; 7527 } 7528 7529 if (ret) 7530 break; 7531 7532 cond_resched(); 7533 } 7534 7535 return ret; 7536 } 7537 7538 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7539 u64 len, u64 orig_start, 7540 u64 block_start, u64 block_len, 7541 u64 orig_block_len, u64 ram_bytes, 7542 int type) 7543 { 7544 struct extent_map_tree *em_tree; 7545 struct extent_map *em; 7546 struct btrfs_root *root = BTRFS_I(inode)->root; 7547 int ret; 7548 7549 em_tree = &BTRFS_I(inode)->extent_tree; 7550 em = alloc_extent_map(); 7551 if (!em) 7552 return ERR_PTR(-ENOMEM); 7553 7554 em->start = start; 7555 em->orig_start = orig_start; 7556 em->mod_start = start; 7557 em->mod_len = len; 7558 em->len = len; 7559 em->block_len = block_len; 7560 em->block_start = block_start; 7561 em->bdev = root->fs_info->fs_devices->latest_bdev; 7562 em->orig_block_len = orig_block_len; 7563 em->ram_bytes = ram_bytes; 7564 em->generation = -1; 7565 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7566 if (type == BTRFS_ORDERED_PREALLOC) 7567 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7568 7569 do { 7570 btrfs_drop_extent_cache(inode, em->start, 7571 em->start + em->len - 1, 0); 7572 write_lock(&em_tree->lock); 7573 ret = add_extent_mapping(em_tree, em, 1); 7574 write_unlock(&em_tree->lock); 7575 } while (ret == -EEXIST); 7576 7577 if (ret) { 7578 free_extent_map(em); 7579 return ERR_PTR(ret); 7580 } 7581 7582 return em; 7583 } 7584 7585 static void adjust_dio_outstanding_extents(struct inode *inode, 7586 struct btrfs_dio_data *dio_data, 7587 const u64 len) 7588 { 7589 unsigned num_extents; 7590 7591 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1, 7592 BTRFS_MAX_EXTENT_SIZE); 7593 /* 7594 * If we have an outstanding_extents count still set then we're 7595 * within our reservation, otherwise we need to adjust our inode 7596 * counter appropriately. 7597 */ 7598 if (dio_data->outstanding_extents) { 7599 dio_data->outstanding_extents -= num_extents; 7600 } else { 7601 spin_lock(&BTRFS_I(inode)->lock); 7602 BTRFS_I(inode)->outstanding_extents += num_extents; 7603 spin_unlock(&BTRFS_I(inode)->lock); 7604 } 7605 } 7606 7607 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7608 struct buffer_head *bh_result, int create) 7609 { 7610 struct extent_map *em; 7611 struct btrfs_root *root = BTRFS_I(inode)->root; 7612 struct extent_state *cached_state = NULL; 7613 struct btrfs_dio_data *dio_data = NULL; 7614 u64 start = iblock << inode->i_blkbits; 7615 u64 lockstart, lockend; 7616 u64 len = bh_result->b_size; 7617 int unlock_bits = EXTENT_LOCKED; 7618 int ret = 0; 7619 7620 if (create) 7621 unlock_bits |= EXTENT_DIRTY; 7622 else 7623 len = min_t(u64, len, root->sectorsize); 7624 7625 lockstart = start; 7626 lockend = start + len - 1; 7627 7628 if (current->journal_info) { 7629 /* 7630 * Need to pull our outstanding extents and set journal_info to NULL so 7631 * that anything that needs to check if there's a transaction doesn't get 7632 * confused. 7633 */ 7634 dio_data = current->journal_info; 7635 current->journal_info = NULL; 7636 } 7637 7638 /* 7639 * If this errors out it's because we couldn't invalidate pagecache for 7640 * this range and we need to fallback to buffered. 7641 */ 7642 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7643 create)) { 7644 ret = -ENOTBLK; 7645 goto err; 7646 } 7647 7648 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7649 if (IS_ERR(em)) { 7650 ret = PTR_ERR(em); 7651 goto unlock_err; 7652 } 7653 7654 /* 7655 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7656 * io. INLINE is special, and we could probably kludge it in here, but 7657 * it's still buffered so for safety lets just fall back to the generic 7658 * buffered path. 7659 * 7660 * For COMPRESSED we _have_ to read the entire extent in so we can 7661 * decompress it, so there will be buffering required no matter what we 7662 * do, so go ahead and fallback to buffered. 7663 * 7664 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7665 * to buffered IO. Don't blame me, this is the price we pay for using 7666 * the generic code. 7667 */ 7668 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7669 em->block_start == EXTENT_MAP_INLINE) { 7670 free_extent_map(em); 7671 ret = -ENOTBLK; 7672 goto unlock_err; 7673 } 7674 7675 /* Just a good old fashioned hole, return */ 7676 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7677 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7678 free_extent_map(em); 7679 goto unlock_err; 7680 } 7681 7682 /* 7683 * We don't allocate a new extent in the following cases 7684 * 7685 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7686 * existing extent. 7687 * 2) The extent is marked as PREALLOC. We're good to go here and can 7688 * just use the extent. 7689 * 7690 */ 7691 if (!create) { 7692 len = min(len, em->len - (start - em->start)); 7693 lockstart = start + len; 7694 goto unlock; 7695 } 7696 7697 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7698 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7699 em->block_start != EXTENT_MAP_HOLE)) { 7700 int type; 7701 u64 block_start, orig_start, orig_block_len, ram_bytes; 7702 7703 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7704 type = BTRFS_ORDERED_PREALLOC; 7705 else 7706 type = BTRFS_ORDERED_NOCOW; 7707 len = min(len, em->len - (start - em->start)); 7708 block_start = em->block_start + (start - em->start); 7709 7710 if (can_nocow_extent(inode, start, &len, &orig_start, 7711 &orig_block_len, &ram_bytes) == 1 && 7712 btrfs_inc_nocow_writers(root->fs_info, block_start)) { 7713 struct extent_map *em2; 7714 7715 em2 = btrfs_create_dio_extent(inode, start, len, 7716 orig_start, block_start, 7717 len, orig_block_len, 7718 ram_bytes, type); 7719 btrfs_dec_nocow_writers(root->fs_info, block_start); 7720 if (type == BTRFS_ORDERED_PREALLOC) { 7721 free_extent_map(em); 7722 em = em2; 7723 } 7724 if (em2 && IS_ERR(em2)) { 7725 ret = PTR_ERR(em2); 7726 goto unlock_err; 7727 } 7728 goto unlock; 7729 } 7730 } 7731 7732 /* 7733 * this will cow the extent, reset the len in case we changed 7734 * it above 7735 */ 7736 len = bh_result->b_size; 7737 free_extent_map(em); 7738 em = btrfs_new_extent_direct(inode, start, len); 7739 if (IS_ERR(em)) { 7740 ret = PTR_ERR(em); 7741 goto unlock_err; 7742 } 7743 len = min(len, em->len - (start - em->start)); 7744 unlock: 7745 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7746 inode->i_blkbits; 7747 bh_result->b_size = len; 7748 bh_result->b_bdev = em->bdev; 7749 set_buffer_mapped(bh_result); 7750 if (create) { 7751 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7752 set_buffer_new(bh_result); 7753 7754 /* 7755 * Need to update the i_size under the extent lock so buffered 7756 * readers will get the updated i_size when we unlock. 7757 */ 7758 if (start + len > i_size_read(inode)) 7759 i_size_write(inode, start + len); 7760 7761 adjust_dio_outstanding_extents(inode, dio_data, len); 7762 btrfs_free_reserved_data_space(inode, start, len); 7763 WARN_ON(dio_data->reserve < len); 7764 dio_data->reserve -= len; 7765 dio_data->unsubmitted_oe_range_end = start + len; 7766 current->journal_info = dio_data; 7767 } 7768 7769 /* 7770 * In the case of write we need to clear and unlock the entire range, 7771 * in the case of read we need to unlock only the end area that we 7772 * aren't using if there is any left over space. 7773 */ 7774 if (lockstart < lockend) { 7775 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7776 lockend, unlock_bits, 1, 0, 7777 &cached_state, GFP_NOFS); 7778 } else { 7779 free_extent_state(cached_state); 7780 } 7781 7782 free_extent_map(em); 7783 7784 return 0; 7785 7786 unlock_err: 7787 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7788 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7789 err: 7790 if (dio_data) 7791 current->journal_info = dio_data; 7792 /* 7793 * Compensate the delalloc release we do in btrfs_direct_IO() when we 7794 * write less data then expected, so that we don't underflow our inode's 7795 * outstanding extents counter. 7796 */ 7797 if (create && dio_data) 7798 adjust_dio_outstanding_extents(inode, dio_data, len); 7799 7800 return ret; 7801 } 7802 7803 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7804 int mirror_num) 7805 { 7806 struct btrfs_root *root = BTRFS_I(inode)->root; 7807 int ret; 7808 7809 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7810 7811 bio_get(bio); 7812 7813 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7814 BTRFS_WQ_ENDIO_DIO_REPAIR); 7815 if (ret) 7816 goto err; 7817 7818 ret = btrfs_map_bio(root, bio, mirror_num, 0); 7819 err: 7820 bio_put(bio); 7821 return ret; 7822 } 7823 7824 static int btrfs_check_dio_repairable(struct inode *inode, 7825 struct bio *failed_bio, 7826 struct io_failure_record *failrec, 7827 int failed_mirror) 7828 { 7829 int num_copies; 7830 7831 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7832 failrec->logical, failrec->len); 7833 if (num_copies == 1) { 7834 /* 7835 * we only have a single copy of the data, so don't bother with 7836 * all the retry and error correction code that follows. no 7837 * matter what the error is, it is very likely to persist. 7838 */ 7839 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7840 num_copies, failrec->this_mirror, failed_mirror); 7841 return 0; 7842 } 7843 7844 failrec->failed_mirror = failed_mirror; 7845 failrec->this_mirror++; 7846 if (failrec->this_mirror == failed_mirror) 7847 failrec->this_mirror++; 7848 7849 if (failrec->this_mirror > num_copies) { 7850 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7851 num_copies, failrec->this_mirror, failed_mirror); 7852 return 0; 7853 } 7854 7855 return 1; 7856 } 7857 7858 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7859 struct page *page, unsigned int pgoff, 7860 u64 start, u64 end, int failed_mirror, 7861 bio_end_io_t *repair_endio, void *repair_arg) 7862 { 7863 struct io_failure_record *failrec; 7864 struct bio *bio; 7865 int isector; 7866 int read_mode; 7867 int ret; 7868 7869 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7870 7871 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7872 if (ret) 7873 return ret; 7874 7875 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7876 failed_mirror); 7877 if (!ret) { 7878 free_io_failure(inode, failrec); 7879 return -EIO; 7880 } 7881 7882 if ((failed_bio->bi_vcnt > 1) 7883 || (failed_bio->bi_io_vec->bv_len 7884 > BTRFS_I(inode)->root->sectorsize)) 7885 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7886 else 7887 read_mode = READ_SYNC; 7888 7889 isector = start - btrfs_io_bio(failed_bio)->logical; 7890 isector >>= inode->i_sb->s_blocksize_bits; 7891 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7892 pgoff, isector, repair_endio, repair_arg); 7893 if (!bio) { 7894 free_io_failure(inode, failrec); 7895 return -EIO; 7896 } 7897 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 7898 7899 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7900 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7901 read_mode, failrec->this_mirror, failrec->in_validation); 7902 7903 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7904 if (ret) { 7905 free_io_failure(inode, failrec); 7906 bio_put(bio); 7907 } 7908 7909 return ret; 7910 } 7911 7912 struct btrfs_retry_complete { 7913 struct completion done; 7914 struct inode *inode; 7915 u64 start; 7916 int uptodate; 7917 }; 7918 7919 static void btrfs_retry_endio_nocsum(struct bio *bio) 7920 { 7921 struct btrfs_retry_complete *done = bio->bi_private; 7922 struct inode *inode; 7923 struct bio_vec *bvec; 7924 int i; 7925 7926 if (bio->bi_error) 7927 goto end; 7928 7929 ASSERT(bio->bi_vcnt == 1); 7930 inode = bio->bi_io_vec->bv_page->mapping->host; 7931 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 7932 7933 done->uptodate = 1; 7934 bio_for_each_segment_all(bvec, bio, i) 7935 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7936 end: 7937 complete(&done->done); 7938 bio_put(bio); 7939 } 7940 7941 static int __btrfs_correct_data_nocsum(struct inode *inode, 7942 struct btrfs_io_bio *io_bio) 7943 { 7944 struct btrfs_fs_info *fs_info; 7945 struct bio_vec *bvec; 7946 struct btrfs_retry_complete done; 7947 u64 start; 7948 unsigned int pgoff; 7949 u32 sectorsize; 7950 int nr_sectors; 7951 int i; 7952 int ret; 7953 7954 fs_info = BTRFS_I(inode)->root->fs_info; 7955 sectorsize = BTRFS_I(inode)->root->sectorsize; 7956 7957 start = io_bio->logical; 7958 done.inode = inode; 7959 7960 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7961 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 7962 pgoff = bvec->bv_offset; 7963 7964 next_block_or_try_again: 7965 done.uptodate = 0; 7966 done.start = start; 7967 init_completion(&done.done); 7968 7969 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 7970 pgoff, start, start + sectorsize - 1, 7971 io_bio->mirror_num, 7972 btrfs_retry_endio_nocsum, &done); 7973 if (ret) 7974 return ret; 7975 7976 wait_for_completion(&done.done); 7977 7978 if (!done.uptodate) { 7979 /* We might have another mirror, so try again */ 7980 goto next_block_or_try_again; 7981 } 7982 7983 start += sectorsize; 7984 7985 if (nr_sectors--) { 7986 pgoff += sectorsize; 7987 goto next_block_or_try_again; 7988 } 7989 } 7990 7991 return 0; 7992 } 7993 7994 static void btrfs_retry_endio(struct bio *bio) 7995 { 7996 struct btrfs_retry_complete *done = bio->bi_private; 7997 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7998 struct inode *inode; 7999 struct bio_vec *bvec; 8000 u64 start; 8001 int uptodate; 8002 int ret; 8003 int i; 8004 8005 if (bio->bi_error) 8006 goto end; 8007 8008 uptodate = 1; 8009 8010 start = done->start; 8011 8012 ASSERT(bio->bi_vcnt == 1); 8013 inode = bio->bi_io_vec->bv_page->mapping->host; 8014 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 8015 8016 bio_for_each_segment_all(bvec, bio, i) { 8017 ret = __readpage_endio_check(done->inode, io_bio, i, 8018 bvec->bv_page, bvec->bv_offset, 8019 done->start, bvec->bv_len); 8020 if (!ret) 8021 clean_io_failure(done->inode, done->start, 8022 bvec->bv_page, bvec->bv_offset); 8023 else 8024 uptodate = 0; 8025 } 8026 8027 done->uptodate = uptodate; 8028 end: 8029 complete(&done->done); 8030 bio_put(bio); 8031 } 8032 8033 static int __btrfs_subio_endio_read(struct inode *inode, 8034 struct btrfs_io_bio *io_bio, int err) 8035 { 8036 struct btrfs_fs_info *fs_info; 8037 struct bio_vec *bvec; 8038 struct btrfs_retry_complete done; 8039 u64 start; 8040 u64 offset = 0; 8041 u32 sectorsize; 8042 int nr_sectors; 8043 unsigned int pgoff; 8044 int csum_pos; 8045 int i; 8046 int ret; 8047 8048 fs_info = BTRFS_I(inode)->root->fs_info; 8049 sectorsize = BTRFS_I(inode)->root->sectorsize; 8050 8051 err = 0; 8052 start = io_bio->logical; 8053 done.inode = inode; 8054 8055 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8056 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8057 8058 pgoff = bvec->bv_offset; 8059 next_block: 8060 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8061 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8062 bvec->bv_page, pgoff, start, 8063 sectorsize); 8064 if (likely(!ret)) 8065 goto next; 8066 try_again: 8067 done.uptodate = 0; 8068 done.start = start; 8069 init_completion(&done.done); 8070 8071 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8072 pgoff, start, start + sectorsize - 1, 8073 io_bio->mirror_num, 8074 btrfs_retry_endio, &done); 8075 if (ret) { 8076 err = ret; 8077 goto next; 8078 } 8079 8080 wait_for_completion(&done.done); 8081 8082 if (!done.uptodate) { 8083 /* We might have another mirror, so try again */ 8084 goto try_again; 8085 } 8086 next: 8087 offset += sectorsize; 8088 start += sectorsize; 8089 8090 ASSERT(nr_sectors); 8091 8092 if (--nr_sectors) { 8093 pgoff += sectorsize; 8094 goto next_block; 8095 } 8096 } 8097 8098 return err; 8099 } 8100 8101 static int btrfs_subio_endio_read(struct inode *inode, 8102 struct btrfs_io_bio *io_bio, int err) 8103 { 8104 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8105 8106 if (skip_csum) { 8107 if (unlikely(err)) 8108 return __btrfs_correct_data_nocsum(inode, io_bio); 8109 else 8110 return 0; 8111 } else { 8112 return __btrfs_subio_endio_read(inode, io_bio, err); 8113 } 8114 } 8115 8116 static void btrfs_endio_direct_read(struct bio *bio) 8117 { 8118 struct btrfs_dio_private *dip = bio->bi_private; 8119 struct inode *inode = dip->inode; 8120 struct bio *dio_bio; 8121 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8122 int err = bio->bi_error; 8123 8124 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8125 err = btrfs_subio_endio_read(inode, io_bio, err); 8126 8127 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8128 dip->logical_offset + dip->bytes - 1); 8129 dio_bio = dip->dio_bio; 8130 8131 kfree(dip); 8132 8133 dio_bio->bi_error = bio->bi_error; 8134 dio_end_io(dio_bio, bio->bi_error); 8135 8136 if (io_bio->end_io) 8137 io_bio->end_io(io_bio, err); 8138 bio_put(bio); 8139 } 8140 8141 static void btrfs_endio_direct_write_update_ordered(struct inode *inode, 8142 const u64 offset, 8143 const u64 bytes, 8144 const int uptodate) 8145 { 8146 struct btrfs_root *root = BTRFS_I(inode)->root; 8147 struct btrfs_ordered_extent *ordered = NULL; 8148 u64 ordered_offset = offset; 8149 u64 ordered_bytes = bytes; 8150 int ret; 8151 8152 again: 8153 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8154 &ordered_offset, 8155 ordered_bytes, 8156 uptodate); 8157 if (!ret) 8158 goto out_test; 8159 8160 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 8161 finish_ordered_fn, NULL, NULL); 8162 btrfs_queue_work(root->fs_info->endio_write_workers, 8163 &ordered->work); 8164 out_test: 8165 /* 8166 * our bio might span multiple ordered extents. If we haven't 8167 * completed the accounting for the whole dio, go back and try again 8168 */ 8169 if (ordered_offset < offset + bytes) { 8170 ordered_bytes = offset + bytes - ordered_offset; 8171 ordered = NULL; 8172 goto again; 8173 } 8174 } 8175 8176 static void btrfs_endio_direct_write(struct bio *bio) 8177 { 8178 struct btrfs_dio_private *dip = bio->bi_private; 8179 struct bio *dio_bio = dip->dio_bio; 8180 8181 btrfs_endio_direct_write_update_ordered(dip->inode, 8182 dip->logical_offset, 8183 dip->bytes, 8184 !bio->bi_error); 8185 8186 kfree(dip); 8187 8188 dio_bio->bi_error = bio->bi_error; 8189 dio_end_io(dio_bio, bio->bi_error); 8190 bio_put(bio); 8191 } 8192 8193 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, 8194 struct bio *bio, int mirror_num, 8195 unsigned long bio_flags, u64 offset) 8196 { 8197 int ret; 8198 struct btrfs_root *root = BTRFS_I(inode)->root; 8199 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 8200 BUG_ON(ret); /* -ENOMEM */ 8201 return 0; 8202 } 8203 8204 static void btrfs_end_dio_bio(struct bio *bio) 8205 { 8206 struct btrfs_dio_private *dip = bio->bi_private; 8207 int err = bio->bi_error; 8208 8209 if (err) 8210 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8211 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8212 btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf, 8213 (unsigned long long)bio->bi_iter.bi_sector, 8214 bio->bi_iter.bi_size, err); 8215 8216 if (dip->subio_endio) 8217 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8218 8219 if (err) { 8220 dip->errors = 1; 8221 8222 /* 8223 * before atomic variable goto zero, we must make sure 8224 * dip->errors is perceived to be set. 8225 */ 8226 smp_mb__before_atomic(); 8227 } 8228 8229 /* if there are more bios still pending for this dio, just exit */ 8230 if (!atomic_dec_and_test(&dip->pending_bios)) 8231 goto out; 8232 8233 if (dip->errors) { 8234 bio_io_error(dip->orig_bio); 8235 } else { 8236 dip->dio_bio->bi_error = 0; 8237 bio_endio(dip->orig_bio); 8238 } 8239 out: 8240 bio_put(bio); 8241 } 8242 8243 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 8244 u64 first_sector, gfp_t gfp_flags) 8245 { 8246 struct bio *bio; 8247 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 8248 if (bio) 8249 bio_associate_current(bio); 8250 return bio; 8251 } 8252 8253 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 8254 struct inode *inode, 8255 struct btrfs_dio_private *dip, 8256 struct bio *bio, 8257 u64 file_offset) 8258 { 8259 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8260 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8261 int ret; 8262 8263 /* 8264 * We load all the csum data we need when we submit 8265 * the first bio to reduce the csum tree search and 8266 * contention. 8267 */ 8268 if (dip->logical_offset == file_offset) { 8269 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 8270 file_offset); 8271 if (ret) 8272 return ret; 8273 } 8274 8275 if (bio == dip->orig_bio) 8276 return 0; 8277 8278 file_offset -= dip->logical_offset; 8279 file_offset >>= inode->i_sb->s_blocksize_bits; 8280 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8281 8282 return 0; 8283 } 8284 8285 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8286 u64 file_offset, int skip_sum, 8287 int async_submit) 8288 { 8289 struct btrfs_dio_private *dip = bio->bi_private; 8290 bool write = bio_op(bio) == REQ_OP_WRITE; 8291 struct btrfs_root *root = BTRFS_I(inode)->root; 8292 int ret; 8293 8294 if (async_submit) 8295 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8296 8297 bio_get(bio); 8298 8299 if (!write) { 8300 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8301 BTRFS_WQ_ENDIO_DATA); 8302 if (ret) 8303 goto err; 8304 } 8305 8306 if (skip_sum) 8307 goto map; 8308 8309 if (write && async_submit) { 8310 ret = btrfs_wq_submit_bio(root->fs_info, 8311 inode, bio, 0, 0, file_offset, 8312 __btrfs_submit_bio_start_direct_io, 8313 __btrfs_submit_bio_done); 8314 goto err; 8315 } else if (write) { 8316 /* 8317 * If we aren't doing async submit, calculate the csum of the 8318 * bio now. 8319 */ 8320 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8321 if (ret) 8322 goto err; 8323 } else { 8324 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8325 file_offset); 8326 if (ret) 8327 goto err; 8328 } 8329 map: 8330 ret = btrfs_map_bio(root, bio, 0, async_submit); 8331 err: 8332 bio_put(bio); 8333 return ret; 8334 } 8335 8336 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip, 8337 int skip_sum) 8338 { 8339 struct inode *inode = dip->inode; 8340 struct btrfs_root *root = BTRFS_I(inode)->root; 8341 struct bio *bio; 8342 struct bio *orig_bio = dip->orig_bio; 8343 struct bio_vec *bvec = orig_bio->bi_io_vec; 8344 u64 start_sector = orig_bio->bi_iter.bi_sector; 8345 u64 file_offset = dip->logical_offset; 8346 u64 submit_len = 0; 8347 u64 map_length; 8348 u32 blocksize = root->sectorsize; 8349 int async_submit = 0; 8350 int nr_sectors; 8351 int ret; 8352 int i; 8353 8354 map_length = orig_bio->bi_iter.bi_size; 8355 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio), 8356 start_sector << 9, &map_length, NULL, 0); 8357 if (ret) 8358 return -EIO; 8359 8360 if (map_length >= orig_bio->bi_iter.bi_size) { 8361 bio = orig_bio; 8362 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8363 goto submit; 8364 } 8365 8366 /* async crcs make it difficult to collect full stripe writes. */ 8367 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8368 async_submit = 0; 8369 else 8370 async_submit = 1; 8371 8372 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8373 if (!bio) 8374 return -ENOMEM; 8375 8376 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf); 8377 bio->bi_private = dip; 8378 bio->bi_end_io = btrfs_end_dio_bio; 8379 btrfs_io_bio(bio)->logical = file_offset; 8380 atomic_inc(&dip->pending_bios); 8381 8382 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8383 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len); 8384 i = 0; 8385 next_block: 8386 if (unlikely(map_length < submit_len + blocksize || 8387 bio_add_page(bio, bvec->bv_page, blocksize, 8388 bvec->bv_offset + (i * blocksize)) < blocksize)) { 8389 /* 8390 * inc the count before we submit the bio so 8391 * we know the end IO handler won't happen before 8392 * we inc the count. Otherwise, the dip might get freed 8393 * before we're done setting it up 8394 */ 8395 atomic_inc(&dip->pending_bios); 8396 ret = __btrfs_submit_dio_bio(bio, inode, 8397 file_offset, skip_sum, 8398 async_submit); 8399 if (ret) { 8400 bio_put(bio); 8401 atomic_dec(&dip->pending_bios); 8402 goto out_err; 8403 } 8404 8405 start_sector += submit_len >> 9; 8406 file_offset += submit_len; 8407 8408 submit_len = 0; 8409 8410 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8411 start_sector, GFP_NOFS); 8412 if (!bio) 8413 goto out_err; 8414 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf); 8415 bio->bi_private = dip; 8416 bio->bi_end_io = btrfs_end_dio_bio; 8417 btrfs_io_bio(bio)->logical = file_offset; 8418 8419 map_length = orig_bio->bi_iter.bi_size; 8420 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio), 8421 start_sector << 9, 8422 &map_length, NULL, 0); 8423 if (ret) { 8424 bio_put(bio); 8425 goto out_err; 8426 } 8427 8428 goto next_block; 8429 } else { 8430 submit_len += blocksize; 8431 if (--nr_sectors) { 8432 i++; 8433 goto next_block; 8434 } 8435 bvec++; 8436 } 8437 } 8438 8439 submit: 8440 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum, 8441 async_submit); 8442 if (!ret) 8443 return 0; 8444 8445 bio_put(bio); 8446 out_err: 8447 dip->errors = 1; 8448 /* 8449 * before atomic variable goto zero, we must 8450 * make sure dip->errors is perceived to be set. 8451 */ 8452 smp_mb__before_atomic(); 8453 if (atomic_dec_and_test(&dip->pending_bios)) 8454 bio_io_error(dip->orig_bio); 8455 8456 /* bio_end_io() will handle error, so we needn't return it */ 8457 return 0; 8458 } 8459 8460 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8461 loff_t file_offset) 8462 { 8463 struct btrfs_dio_private *dip = NULL; 8464 struct bio *io_bio = NULL; 8465 struct btrfs_io_bio *btrfs_bio; 8466 int skip_sum; 8467 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8468 int ret = 0; 8469 8470 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8471 8472 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8473 if (!io_bio) { 8474 ret = -ENOMEM; 8475 goto free_ordered; 8476 } 8477 8478 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8479 if (!dip) { 8480 ret = -ENOMEM; 8481 goto free_ordered; 8482 } 8483 8484 dip->private = dio_bio->bi_private; 8485 dip->inode = inode; 8486 dip->logical_offset = file_offset; 8487 dip->bytes = dio_bio->bi_iter.bi_size; 8488 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8489 io_bio->bi_private = dip; 8490 dip->orig_bio = io_bio; 8491 dip->dio_bio = dio_bio; 8492 atomic_set(&dip->pending_bios, 0); 8493 btrfs_bio = btrfs_io_bio(io_bio); 8494 btrfs_bio->logical = file_offset; 8495 8496 if (write) { 8497 io_bio->bi_end_io = btrfs_endio_direct_write; 8498 } else { 8499 io_bio->bi_end_io = btrfs_endio_direct_read; 8500 dip->subio_endio = btrfs_subio_endio_read; 8501 } 8502 8503 /* 8504 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8505 * even if we fail to submit a bio, because in such case we do the 8506 * corresponding error handling below and it must not be done a second 8507 * time by btrfs_direct_IO(). 8508 */ 8509 if (write) { 8510 struct btrfs_dio_data *dio_data = current->journal_info; 8511 8512 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8513 dip->bytes; 8514 dio_data->unsubmitted_oe_range_start = 8515 dio_data->unsubmitted_oe_range_end; 8516 } 8517 8518 ret = btrfs_submit_direct_hook(dip, skip_sum); 8519 if (!ret) 8520 return; 8521 8522 if (btrfs_bio->end_io) 8523 btrfs_bio->end_io(btrfs_bio, ret); 8524 8525 free_ordered: 8526 /* 8527 * If we arrived here it means either we failed to submit the dip 8528 * or we either failed to clone the dio_bio or failed to allocate the 8529 * dip. If we cloned the dio_bio and allocated the dip, we can just 8530 * call bio_endio against our io_bio so that we get proper resource 8531 * cleanup if we fail to submit the dip, otherwise, we must do the 8532 * same as btrfs_endio_direct_[write|read] because we can't call these 8533 * callbacks - they require an allocated dip and a clone of dio_bio. 8534 */ 8535 if (io_bio && dip) { 8536 io_bio->bi_error = -EIO; 8537 bio_endio(io_bio); 8538 /* 8539 * The end io callbacks free our dip, do the final put on io_bio 8540 * and all the cleanup and final put for dio_bio (through 8541 * dio_end_io()). 8542 */ 8543 dip = NULL; 8544 io_bio = NULL; 8545 } else { 8546 if (write) 8547 btrfs_endio_direct_write_update_ordered(inode, 8548 file_offset, 8549 dio_bio->bi_iter.bi_size, 8550 0); 8551 else 8552 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8553 file_offset + dio_bio->bi_iter.bi_size - 1); 8554 8555 dio_bio->bi_error = -EIO; 8556 /* 8557 * Releases and cleans up our dio_bio, no need to bio_put() 8558 * nor bio_endio()/bio_io_error() against dio_bio. 8559 */ 8560 dio_end_io(dio_bio, ret); 8561 } 8562 if (io_bio) 8563 bio_put(io_bio); 8564 kfree(dip); 8565 } 8566 8567 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8568 const struct iov_iter *iter, loff_t offset) 8569 { 8570 int seg; 8571 int i; 8572 unsigned blocksize_mask = root->sectorsize - 1; 8573 ssize_t retval = -EINVAL; 8574 8575 if (offset & blocksize_mask) 8576 goto out; 8577 8578 if (iov_iter_alignment(iter) & blocksize_mask) 8579 goto out; 8580 8581 /* If this is a write we don't need to check anymore */ 8582 if (iov_iter_rw(iter) == WRITE) 8583 return 0; 8584 /* 8585 * Check to make sure we don't have duplicate iov_base's in this 8586 * iovec, if so return EINVAL, otherwise we'll get csum errors 8587 * when reading back. 8588 */ 8589 for (seg = 0; seg < iter->nr_segs; seg++) { 8590 for (i = seg + 1; i < iter->nr_segs; i++) { 8591 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8592 goto out; 8593 } 8594 } 8595 retval = 0; 8596 out: 8597 return retval; 8598 } 8599 8600 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8601 { 8602 struct file *file = iocb->ki_filp; 8603 struct inode *inode = file->f_mapping->host; 8604 struct btrfs_root *root = BTRFS_I(inode)->root; 8605 struct btrfs_dio_data dio_data = { 0 }; 8606 loff_t offset = iocb->ki_pos; 8607 size_t count = 0; 8608 int flags = 0; 8609 bool wakeup = true; 8610 bool relock = false; 8611 ssize_t ret; 8612 8613 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8614 return 0; 8615 8616 inode_dio_begin(inode); 8617 smp_mb__after_atomic(); 8618 8619 /* 8620 * The generic stuff only does filemap_write_and_wait_range, which 8621 * isn't enough if we've written compressed pages to this area, so 8622 * we need to flush the dirty pages again to make absolutely sure 8623 * that any outstanding dirty pages are on disk. 8624 */ 8625 count = iov_iter_count(iter); 8626 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8627 &BTRFS_I(inode)->runtime_flags)) 8628 filemap_fdatawrite_range(inode->i_mapping, offset, 8629 offset + count - 1); 8630 8631 if (iov_iter_rw(iter) == WRITE) { 8632 /* 8633 * If the write DIO is beyond the EOF, we need update 8634 * the isize, but it is protected by i_mutex. So we can 8635 * not unlock the i_mutex at this case. 8636 */ 8637 if (offset + count <= inode->i_size) { 8638 inode_unlock(inode); 8639 relock = true; 8640 } 8641 ret = btrfs_delalloc_reserve_space(inode, offset, count); 8642 if (ret) 8643 goto out; 8644 dio_data.outstanding_extents = div64_u64(count + 8645 BTRFS_MAX_EXTENT_SIZE - 1, 8646 BTRFS_MAX_EXTENT_SIZE); 8647 8648 /* 8649 * We need to know how many extents we reserved so that we can 8650 * do the accounting properly if we go over the number we 8651 * originally calculated. Abuse current->journal_info for this. 8652 */ 8653 dio_data.reserve = round_up(count, root->sectorsize); 8654 dio_data.unsubmitted_oe_range_start = (u64)offset; 8655 dio_data.unsubmitted_oe_range_end = (u64)offset; 8656 current->journal_info = &dio_data; 8657 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8658 &BTRFS_I(inode)->runtime_flags)) { 8659 inode_dio_end(inode); 8660 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8661 wakeup = false; 8662 } 8663 8664 ret = __blockdev_direct_IO(iocb, inode, 8665 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8666 iter, btrfs_get_blocks_direct, NULL, 8667 btrfs_submit_direct, flags); 8668 if (iov_iter_rw(iter) == WRITE) { 8669 current->journal_info = NULL; 8670 if (ret < 0 && ret != -EIOCBQUEUED) { 8671 if (dio_data.reserve) 8672 btrfs_delalloc_release_space(inode, offset, 8673 dio_data.reserve); 8674 /* 8675 * On error we might have left some ordered extents 8676 * without submitting corresponding bios for them, so 8677 * cleanup them up to avoid other tasks getting them 8678 * and waiting for them to complete forever. 8679 */ 8680 if (dio_data.unsubmitted_oe_range_start < 8681 dio_data.unsubmitted_oe_range_end) 8682 btrfs_endio_direct_write_update_ordered(inode, 8683 dio_data.unsubmitted_oe_range_start, 8684 dio_data.unsubmitted_oe_range_end - 8685 dio_data.unsubmitted_oe_range_start, 8686 0); 8687 } else if (ret >= 0 && (size_t)ret < count) 8688 btrfs_delalloc_release_space(inode, offset, 8689 count - (size_t)ret); 8690 } 8691 out: 8692 if (wakeup) 8693 inode_dio_end(inode); 8694 if (relock) 8695 inode_lock(inode); 8696 8697 return ret; 8698 } 8699 8700 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8701 8702 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8703 __u64 start, __u64 len) 8704 { 8705 int ret; 8706 8707 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8708 if (ret) 8709 return ret; 8710 8711 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8712 } 8713 8714 int btrfs_readpage(struct file *file, struct page *page) 8715 { 8716 struct extent_io_tree *tree; 8717 tree = &BTRFS_I(page->mapping->host)->io_tree; 8718 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8719 } 8720 8721 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8722 { 8723 struct extent_io_tree *tree; 8724 struct inode *inode = page->mapping->host; 8725 int ret; 8726 8727 if (current->flags & PF_MEMALLOC) { 8728 redirty_page_for_writepage(wbc, page); 8729 unlock_page(page); 8730 return 0; 8731 } 8732 8733 /* 8734 * If we are under memory pressure we will call this directly from the 8735 * VM, we need to make sure we have the inode referenced for the ordered 8736 * extent. If not just return like we didn't do anything. 8737 */ 8738 if (!igrab(inode)) { 8739 redirty_page_for_writepage(wbc, page); 8740 return AOP_WRITEPAGE_ACTIVATE; 8741 } 8742 tree = &BTRFS_I(page->mapping->host)->io_tree; 8743 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8744 btrfs_add_delayed_iput(inode); 8745 return ret; 8746 } 8747 8748 static int btrfs_writepages(struct address_space *mapping, 8749 struct writeback_control *wbc) 8750 { 8751 struct extent_io_tree *tree; 8752 8753 tree = &BTRFS_I(mapping->host)->io_tree; 8754 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8755 } 8756 8757 static int 8758 btrfs_readpages(struct file *file, struct address_space *mapping, 8759 struct list_head *pages, unsigned nr_pages) 8760 { 8761 struct extent_io_tree *tree; 8762 tree = &BTRFS_I(mapping->host)->io_tree; 8763 return extent_readpages(tree, mapping, pages, nr_pages, 8764 btrfs_get_extent); 8765 } 8766 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8767 { 8768 struct extent_io_tree *tree; 8769 struct extent_map_tree *map; 8770 int ret; 8771 8772 tree = &BTRFS_I(page->mapping->host)->io_tree; 8773 map = &BTRFS_I(page->mapping->host)->extent_tree; 8774 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8775 if (ret == 1) { 8776 ClearPagePrivate(page); 8777 set_page_private(page, 0); 8778 put_page(page); 8779 } 8780 return ret; 8781 } 8782 8783 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8784 { 8785 if (PageWriteback(page) || PageDirty(page)) 8786 return 0; 8787 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8788 } 8789 8790 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8791 unsigned int length) 8792 { 8793 struct inode *inode = page->mapping->host; 8794 struct extent_io_tree *tree; 8795 struct btrfs_ordered_extent *ordered; 8796 struct extent_state *cached_state = NULL; 8797 u64 page_start = page_offset(page); 8798 u64 page_end = page_start + PAGE_SIZE - 1; 8799 u64 start; 8800 u64 end; 8801 int inode_evicting = inode->i_state & I_FREEING; 8802 8803 /* 8804 * we have the page locked, so new writeback can't start, 8805 * and the dirty bit won't be cleared while we are here. 8806 * 8807 * Wait for IO on this page so that we can safely clear 8808 * the PagePrivate2 bit and do ordered accounting 8809 */ 8810 wait_on_page_writeback(page); 8811 8812 tree = &BTRFS_I(inode)->io_tree; 8813 if (offset) { 8814 btrfs_releasepage(page, GFP_NOFS); 8815 return; 8816 } 8817 8818 if (!inode_evicting) 8819 lock_extent_bits(tree, page_start, page_end, &cached_state); 8820 again: 8821 start = page_start; 8822 ordered = btrfs_lookup_ordered_range(inode, start, 8823 page_end - start + 1); 8824 if (ordered) { 8825 end = min(page_end, ordered->file_offset + ordered->len - 1); 8826 /* 8827 * IO on this page will never be started, so we need 8828 * to account for any ordered extents now 8829 */ 8830 if (!inode_evicting) 8831 clear_extent_bit(tree, start, end, 8832 EXTENT_DIRTY | EXTENT_DELALLOC | 8833 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8834 EXTENT_DEFRAG, 1, 0, &cached_state, 8835 GFP_NOFS); 8836 /* 8837 * whoever cleared the private bit is responsible 8838 * for the finish_ordered_io 8839 */ 8840 if (TestClearPagePrivate2(page)) { 8841 struct btrfs_ordered_inode_tree *tree; 8842 u64 new_len; 8843 8844 tree = &BTRFS_I(inode)->ordered_tree; 8845 8846 spin_lock_irq(&tree->lock); 8847 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8848 new_len = start - ordered->file_offset; 8849 if (new_len < ordered->truncated_len) 8850 ordered->truncated_len = new_len; 8851 spin_unlock_irq(&tree->lock); 8852 8853 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8854 start, 8855 end - start + 1, 1)) 8856 btrfs_finish_ordered_io(ordered); 8857 } 8858 btrfs_put_ordered_extent(ordered); 8859 if (!inode_evicting) { 8860 cached_state = NULL; 8861 lock_extent_bits(tree, start, end, 8862 &cached_state); 8863 } 8864 8865 start = end + 1; 8866 if (start < page_end) 8867 goto again; 8868 } 8869 8870 /* 8871 * Qgroup reserved space handler 8872 * Page here will be either 8873 * 1) Already written to disk 8874 * In this case, its reserved space is released from data rsv map 8875 * and will be freed by delayed_ref handler finally. 8876 * So even we call qgroup_free_data(), it won't decrease reserved 8877 * space. 8878 * 2) Not written to disk 8879 * This means the reserved space should be freed here. 8880 */ 8881 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE); 8882 if (!inode_evicting) { 8883 clear_extent_bit(tree, page_start, page_end, 8884 EXTENT_LOCKED | EXTENT_DIRTY | 8885 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8886 EXTENT_DEFRAG, 1, 1, 8887 &cached_state, GFP_NOFS); 8888 8889 __btrfs_releasepage(page, GFP_NOFS); 8890 } 8891 8892 ClearPageChecked(page); 8893 if (PagePrivate(page)) { 8894 ClearPagePrivate(page); 8895 set_page_private(page, 0); 8896 put_page(page); 8897 } 8898 } 8899 8900 /* 8901 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8902 * called from a page fault handler when a page is first dirtied. Hence we must 8903 * be careful to check for EOF conditions here. We set the page up correctly 8904 * for a written page which means we get ENOSPC checking when writing into 8905 * holes and correct delalloc and unwritten extent mapping on filesystems that 8906 * support these features. 8907 * 8908 * We are not allowed to take the i_mutex here so we have to play games to 8909 * protect against truncate races as the page could now be beyond EOF. Because 8910 * vmtruncate() writes the inode size before removing pages, once we have the 8911 * page lock we can determine safely if the page is beyond EOF. If it is not 8912 * beyond EOF, then the page is guaranteed safe against truncation until we 8913 * unlock the page. 8914 */ 8915 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8916 { 8917 struct page *page = vmf->page; 8918 struct inode *inode = file_inode(vma->vm_file); 8919 struct btrfs_root *root = BTRFS_I(inode)->root; 8920 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8921 struct btrfs_ordered_extent *ordered; 8922 struct extent_state *cached_state = NULL; 8923 char *kaddr; 8924 unsigned long zero_start; 8925 loff_t size; 8926 int ret; 8927 int reserved = 0; 8928 u64 reserved_space; 8929 u64 page_start; 8930 u64 page_end; 8931 u64 end; 8932 8933 reserved_space = PAGE_SIZE; 8934 8935 sb_start_pagefault(inode->i_sb); 8936 page_start = page_offset(page); 8937 page_end = page_start + PAGE_SIZE - 1; 8938 end = page_end; 8939 8940 /* 8941 * Reserving delalloc space after obtaining the page lock can lead to 8942 * deadlock. For example, if a dirty page is locked by this function 8943 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8944 * dirty page write out, then the btrfs_writepage() function could 8945 * end up waiting indefinitely to get a lock on the page currently 8946 * being processed by btrfs_page_mkwrite() function. 8947 */ 8948 ret = btrfs_delalloc_reserve_space(inode, page_start, 8949 reserved_space); 8950 if (!ret) { 8951 ret = file_update_time(vma->vm_file); 8952 reserved = 1; 8953 } 8954 if (ret) { 8955 if (ret == -ENOMEM) 8956 ret = VM_FAULT_OOM; 8957 else /* -ENOSPC, -EIO, etc */ 8958 ret = VM_FAULT_SIGBUS; 8959 if (reserved) 8960 goto out; 8961 goto out_noreserve; 8962 } 8963 8964 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8965 again: 8966 lock_page(page); 8967 size = i_size_read(inode); 8968 8969 if ((page->mapping != inode->i_mapping) || 8970 (page_start >= size)) { 8971 /* page got truncated out from underneath us */ 8972 goto out_unlock; 8973 } 8974 wait_on_page_writeback(page); 8975 8976 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8977 set_page_extent_mapped(page); 8978 8979 /* 8980 * we can't set the delalloc bits if there are pending ordered 8981 * extents. Drop our locks and wait for them to finish 8982 */ 8983 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end); 8984 if (ordered) { 8985 unlock_extent_cached(io_tree, page_start, page_end, 8986 &cached_state, GFP_NOFS); 8987 unlock_page(page); 8988 btrfs_start_ordered_extent(inode, ordered, 1); 8989 btrfs_put_ordered_extent(ordered); 8990 goto again; 8991 } 8992 8993 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8994 reserved_space = round_up(size - page_start, root->sectorsize); 8995 if (reserved_space < PAGE_SIZE) { 8996 end = page_start + reserved_space - 1; 8997 spin_lock(&BTRFS_I(inode)->lock); 8998 BTRFS_I(inode)->outstanding_extents++; 8999 spin_unlock(&BTRFS_I(inode)->lock); 9000 btrfs_delalloc_release_space(inode, page_start, 9001 PAGE_SIZE - reserved_space); 9002 } 9003 } 9004 9005 /* 9006 * XXX - page_mkwrite gets called every time the page is dirtied, even 9007 * if it was already dirty, so for space accounting reasons we need to 9008 * clear any delalloc bits for the range we are fixing to save. There 9009 * is probably a better way to do this, but for now keep consistent with 9010 * prepare_pages in the normal write path. 9011 */ 9012 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9013 EXTENT_DIRTY | EXTENT_DELALLOC | 9014 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9015 0, 0, &cached_state, GFP_NOFS); 9016 9017 ret = btrfs_set_extent_delalloc(inode, page_start, end, 9018 &cached_state); 9019 if (ret) { 9020 unlock_extent_cached(io_tree, page_start, page_end, 9021 &cached_state, GFP_NOFS); 9022 ret = VM_FAULT_SIGBUS; 9023 goto out_unlock; 9024 } 9025 ret = 0; 9026 9027 /* page is wholly or partially inside EOF */ 9028 if (page_start + PAGE_SIZE > size) 9029 zero_start = size & ~PAGE_MASK; 9030 else 9031 zero_start = PAGE_SIZE; 9032 9033 if (zero_start != PAGE_SIZE) { 9034 kaddr = kmap(page); 9035 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9036 flush_dcache_page(page); 9037 kunmap(page); 9038 } 9039 ClearPageChecked(page); 9040 set_page_dirty(page); 9041 SetPageUptodate(page); 9042 9043 BTRFS_I(inode)->last_trans = root->fs_info->generation; 9044 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9045 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9046 9047 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9048 9049 out_unlock: 9050 if (!ret) { 9051 sb_end_pagefault(inode->i_sb); 9052 return VM_FAULT_LOCKED; 9053 } 9054 unlock_page(page); 9055 out: 9056 btrfs_delalloc_release_space(inode, page_start, reserved_space); 9057 out_noreserve: 9058 sb_end_pagefault(inode->i_sb); 9059 return ret; 9060 } 9061 9062 static int btrfs_truncate(struct inode *inode) 9063 { 9064 struct btrfs_root *root = BTRFS_I(inode)->root; 9065 struct btrfs_block_rsv *rsv; 9066 int ret = 0; 9067 int err = 0; 9068 struct btrfs_trans_handle *trans; 9069 u64 mask = root->sectorsize - 1; 9070 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 9071 9072 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9073 (u64)-1); 9074 if (ret) 9075 return ret; 9076 9077 /* 9078 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9079 * 3 things going on here 9080 * 9081 * 1) We need to reserve space for our orphan item and the space to 9082 * delete our orphan item. Lord knows we don't want to have a dangling 9083 * orphan item because we didn't reserve space to remove it. 9084 * 9085 * 2) We need to reserve space to update our inode. 9086 * 9087 * 3) We need to have something to cache all the space that is going to 9088 * be free'd up by the truncate operation, but also have some slack 9089 * space reserved in case it uses space during the truncate (thank you 9090 * very much snapshotting). 9091 * 9092 * And we need these to all be separate. The fact is we can use a lot of 9093 * space doing the truncate, and we have no earthly idea how much space 9094 * we will use, so we need the truncate reservation to be separate so it 9095 * doesn't end up using space reserved for updating the inode or 9096 * removing the orphan item. We also need to be able to stop the 9097 * transaction and start a new one, which means we need to be able to 9098 * update the inode several times, and we have no idea of knowing how 9099 * many times that will be, so we can't just reserve 1 item for the 9100 * entirety of the operation, so that has to be done separately as well. 9101 * Then there is the orphan item, which does indeed need to be held on 9102 * to for the whole operation, and we need nobody to touch this reserved 9103 * space except the orphan code. 9104 * 9105 * So that leaves us with 9106 * 9107 * 1) root->orphan_block_rsv - for the orphan deletion. 9108 * 2) rsv - for the truncate reservation, which we will steal from the 9109 * transaction reservation. 9110 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9111 * updating the inode. 9112 */ 9113 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 9114 if (!rsv) 9115 return -ENOMEM; 9116 rsv->size = min_size; 9117 rsv->failfast = 1; 9118 9119 /* 9120 * 1 for the truncate slack space 9121 * 1 for updating the inode. 9122 */ 9123 trans = btrfs_start_transaction(root, 2); 9124 if (IS_ERR(trans)) { 9125 err = PTR_ERR(trans); 9126 goto out; 9127 } 9128 9129 /* Migrate the slack space for the truncate to our reserve */ 9130 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 9131 min_size, 0); 9132 BUG_ON(ret); 9133 9134 /* 9135 * So if we truncate and then write and fsync we normally would just 9136 * write the extents that changed, which is a problem if we need to 9137 * first truncate that entire inode. So set this flag so we write out 9138 * all of the extents in the inode to the sync log so we're completely 9139 * safe. 9140 */ 9141 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9142 trans->block_rsv = rsv; 9143 9144 while (1) { 9145 ret = btrfs_truncate_inode_items(trans, root, inode, 9146 inode->i_size, 9147 BTRFS_EXTENT_DATA_KEY); 9148 if (ret != -ENOSPC && ret != -EAGAIN) { 9149 err = ret; 9150 break; 9151 } 9152 9153 trans->block_rsv = &root->fs_info->trans_block_rsv; 9154 ret = btrfs_update_inode(trans, root, inode); 9155 if (ret) { 9156 err = ret; 9157 break; 9158 } 9159 9160 btrfs_end_transaction(trans, root); 9161 btrfs_btree_balance_dirty(root); 9162 9163 trans = btrfs_start_transaction(root, 2); 9164 if (IS_ERR(trans)) { 9165 ret = err = PTR_ERR(trans); 9166 trans = NULL; 9167 break; 9168 } 9169 9170 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 9171 rsv, min_size, 0); 9172 BUG_ON(ret); /* shouldn't happen */ 9173 trans->block_rsv = rsv; 9174 } 9175 9176 if (ret == 0 && inode->i_nlink > 0) { 9177 trans->block_rsv = root->orphan_block_rsv; 9178 ret = btrfs_orphan_del(trans, inode); 9179 if (ret) 9180 err = ret; 9181 } 9182 9183 if (trans) { 9184 trans->block_rsv = &root->fs_info->trans_block_rsv; 9185 ret = btrfs_update_inode(trans, root, inode); 9186 if (ret && !err) 9187 err = ret; 9188 9189 ret = btrfs_end_transaction(trans, root); 9190 btrfs_btree_balance_dirty(root); 9191 } 9192 out: 9193 btrfs_free_block_rsv(root, rsv); 9194 9195 if (ret && !err) 9196 err = ret; 9197 9198 return err; 9199 } 9200 9201 /* 9202 * create a new subvolume directory/inode (helper for the ioctl). 9203 */ 9204 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9205 struct btrfs_root *new_root, 9206 struct btrfs_root *parent_root, 9207 u64 new_dirid) 9208 { 9209 struct inode *inode; 9210 int err; 9211 u64 index = 0; 9212 9213 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9214 new_dirid, new_dirid, 9215 S_IFDIR | (~current_umask() & S_IRWXUGO), 9216 &index); 9217 if (IS_ERR(inode)) 9218 return PTR_ERR(inode); 9219 inode->i_op = &btrfs_dir_inode_operations; 9220 inode->i_fop = &btrfs_dir_file_operations; 9221 9222 set_nlink(inode, 1); 9223 btrfs_i_size_write(inode, 0); 9224 unlock_new_inode(inode); 9225 9226 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9227 if (err) 9228 btrfs_err(new_root->fs_info, 9229 "error inheriting subvolume %llu properties: %d", 9230 new_root->root_key.objectid, err); 9231 9232 err = btrfs_update_inode(trans, new_root, inode); 9233 9234 iput(inode); 9235 return err; 9236 } 9237 9238 struct inode *btrfs_alloc_inode(struct super_block *sb) 9239 { 9240 struct btrfs_inode *ei; 9241 struct inode *inode; 9242 9243 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9244 if (!ei) 9245 return NULL; 9246 9247 ei->root = NULL; 9248 ei->generation = 0; 9249 ei->last_trans = 0; 9250 ei->last_sub_trans = 0; 9251 ei->logged_trans = 0; 9252 ei->delalloc_bytes = 0; 9253 ei->defrag_bytes = 0; 9254 ei->disk_i_size = 0; 9255 ei->flags = 0; 9256 ei->csum_bytes = 0; 9257 ei->index_cnt = (u64)-1; 9258 ei->dir_index = 0; 9259 ei->last_unlink_trans = 0; 9260 ei->last_log_commit = 0; 9261 ei->delayed_iput_count = 0; 9262 9263 spin_lock_init(&ei->lock); 9264 ei->outstanding_extents = 0; 9265 ei->reserved_extents = 0; 9266 9267 ei->runtime_flags = 0; 9268 ei->force_compress = BTRFS_COMPRESS_NONE; 9269 9270 ei->delayed_node = NULL; 9271 9272 ei->i_otime.tv_sec = 0; 9273 ei->i_otime.tv_nsec = 0; 9274 9275 inode = &ei->vfs_inode; 9276 extent_map_tree_init(&ei->extent_tree); 9277 extent_io_tree_init(&ei->io_tree, &inode->i_data); 9278 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 9279 ei->io_tree.track_uptodate = 1; 9280 ei->io_failure_tree.track_uptodate = 1; 9281 atomic_set(&ei->sync_writers, 0); 9282 mutex_init(&ei->log_mutex); 9283 mutex_init(&ei->delalloc_mutex); 9284 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9285 INIT_LIST_HEAD(&ei->delalloc_inodes); 9286 INIT_LIST_HEAD(&ei->delayed_iput); 9287 RB_CLEAR_NODE(&ei->rb_node); 9288 init_rwsem(&ei->dio_sem); 9289 9290 return inode; 9291 } 9292 9293 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9294 void btrfs_test_destroy_inode(struct inode *inode) 9295 { 9296 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9297 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9298 } 9299 #endif 9300 9301 static void btrfs_i_callback(struct rcu_head *head) 9302 { 9303 struct inode *inode = container_of(head, struct inode, i_rcu); 9304 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9305 } 9306 9307 void btrfs_destroy_inode(struct inode *inode) 9308 { 9309 struct btrfs_ordered_extent *ordered; 9310 struct btrfs_root *root = BTRFS_I(inode)->root; 9311 9312 WARN_ON(!hlist_empty(&inode->i_dentry)); 9313 WARN_ON(inode->i_data.nrpages); 9314 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9315 WARN_ON(BTRFS_I(inode)->reserved_extents); 9316 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9317 WARN_ON(BTRFS_I(inode)->csum_bytes); 9318 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9319 9320 /* 9321 * This can happen where we create an inode, but somebody else also 9322 * created the same inode and we need to destroy the one we already 9323 * created. 9324 */ 9325 if (!root) 9326 goto free; 9327 9328 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9329 &BTRFS_I(inode)->runtime_flags)) { 9330 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 9331 btrfs_ino(inode)); 9332 atomic_dec(&root->orphan_inodes); 9333 } 9334 9335 while (1) { 9336 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9337 if (!ordered) 9338 break; 9339 else { 9340 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 9341 ordered->file_offset, ordered->len); 9342 btrfs_remove_ordered_extent(inode, ordered); 9343 btrfs_put_ordered_extent(ordered); 9344 btrfs_put_ordered_extent(ordered); 9345 } 9346 } 9347 btrfs_qgroup_check_reserved_leak(inode); 9348 inode_tree_del(inode); 9349 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9350 free: 9351 call_rcu(&inode->i_rcu, btrfs_i_callback); 9352 } 9353 9354 int btrfs_drop_inode(struct inode *inode) 9355 { 9356 struct btrfs_root *root = BTRFS_I(inode)->root; 9357 9358 if (root == NULL) 9359 return 1; 9360 9361 /* the snap/subvol tree is on deleting */ 9362 if (btrfs_root_refs(&root->root_item) == 0) 9363 return 1; 9364 else 9365 return generic_drop_inode(inode); 9366 } 9367 9368 static void init_once(void *foo) 9369 { 9370 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9371 9372 inode_init_once(&ei->vfs_inode); 9373 } 9374 9375 void btrfs_destroy_cachep(void) 9376 { 9377 /* 9378 * Make sure all delayed rcu free inodes are flushed before we 9379 * destroy cache. 9380 */ 9381 rcu_barrier(); 9382 kmem_cache_destroy(btrfs_inode_cachep); 9383 kmem_cache_destroy(btrfs_trans_handle_cachep); 9384 kmem_cache_destroy(btrfs_transaction_cachep); 9385 kmem_cache_destroy(btrfs_path_cachep); 9386 kmem_cache_destroy(btrfs_free_space_cachep); 9387 } 9388 9389 int btrfs_init_cachep(void) 9390 { 9391 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9392 sizeof(struct btrfs_inode), 0, 9393 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9394 init_once); 9395 if (!btrfs_inode_cachep) 9396 goto fail; 9397 9398 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9399 sizeof(struct btrfs_trans_handle), 0, 9400 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9401 if (!btrfs_trans_handle_cachep) 9402 goto fail; 9403 9404 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9405 sizeof(struct btrfs_transaction), 0, 9406 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9407 if (!btrfs_transaction_cachep) 9408 goto fail; 9409 9410 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9411 sizeof(struct btrfs_path), 0, 9412 SLAB_MEM_SPREAD, NULL); 9413 if (!btrfs_path_cachep) 9414 goto fail; 9415 9416 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9417 sizeof(struct btrfs_free_space), 0, 9418 SLAB_MEM_SPREAD, NULL); 9419 if (!btrfs_free_space_cachep) 9420 goto fail; 9421 9422 return 0; 9423 fail: 9424 btrfs_destroy_cachep(); 9425 return -ENOMEM; 9426 } 9427 9428 static int btrfs_getattr(struct vfsmount *mnt, 9429 struct dentry *dentry, struct kstat *stat) 9430 { 9431 u64 delalloc_bytes; 9432 struct inode *inode = d_inode(dentry); 9433 u32 blocksize = inode->i_sb->s_blocksize; 9434 9435 generic_fillattr(inode, stat); 9436 stat->dev = BTRFS_I(inode)->root->anon_dev; 9437 9438 spin_lock(&BTRFS_I(inode)->lock); 9439 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9440 spin_unlock(&BTRFS_I(inode)->lock); 9441 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9442 ALIGN(delalloc_bytes, blocksize)) >> 9; 9443 return 0; 9444 } 9445 9446 static int btrfs_rename_exchange(struct inode *old_dir, 9447 struct dentry *old_dentry, 9448 struct inode *new_dir, 9449 struct dentry *new_dentry) 9450 { 9451 struct btrfs_trans_handle *trans; 9452 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9453 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9454 struct inode *new_inode = new_dentry->d_inode; 9455 struct inode *old_inode = old_dentry->d_inode; 9456 struct timespec ctime = CURRENT_TIME; 9457 struct dentry *parent; 9458 u64 old_ino = btrfs_ino(old_inode); 9459 u64 new_ino = btrfs_ino(new_inode); 9460 u64 old_idx = 0; 9461 u64 new_idx = 0; 9462 u64 root_objectid; 9463 int ret; 9464 bool root_log_pinned = false; 9465 bool dest_log_pinned = false; 9466 9467 /* we only allow rename subvolume link between subvolumes */ 9468 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9469 return -EXDEV; 9470 9471 /* close the race window with snapshot create/destroy ioctl */ 9472 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9473 down_read(&root->fs_info->subvol_sem); 9474 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9475 down_read(&dest->fs_info->subvol_sem); 9476 9477 /* 9478 * We want to reserve the absolute worst case amount of items. So if 9479 * both inodes are subvols and we need to unlink them then that would 9480 * require 4 item modifications, but if they are both normal inodes it 9481 * would require 5 item modifications, so we'll assume their normal 9482 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9483 * should cover the worst case number of items we'll modify. 9484 */ 9485 trans = btrfs_start_transaction(root, 12); 9486 if (IS_ERR(trans)) { 9487 ret = PTR_ERR(trans); 9488 goto out_notrans; 9489 } 9490 9491 /* 9492 * We need to find a free sequence number both in the source and 9493 * in the destination directory for the exchange. 9494 */ 9495 ret = btrfs_set_inode_index(new_dir, &old_idx); 9496 if (ret) 9497 goto out_fail; 9498 ret = btrfs_set_inode_index(old_dir, &new_idx); 9499 if (ret) 9500 goto out_fail; 9501 9502 BTRFS_I(old_inode)->dir_index = 0ULL; 9503 BTRFS_I(new_inode)->dir_index = 0ULL; 9504 9505 /* Reference for the source. */ 9506 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9507 /* force full log commit if subvolume involved. */ 9508 btrfs_set_log_full_commit(root->fs_info, trans); 9509 } else { 9510 btrfs_pin_log_trans(root); 9511 root_log_pinned = true; 9512 ret = btrfs_insert_inode_ref(trans, dest, 9513 new_dentry->d_name.name, 9514 new_dentry->d_name.len, 9515 old_ino, 9516 btrfs_ino(new_dir), old_idx); 9517 if (ret) 9518 goto out_fail; 9519 } 9520 9521 /* And now for the dest. */ 9522 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9523 /* force full log commit if subvolume involved. */ 9524 btrfs_set_log_full_commit(dest->fs_info, trans); 9525 } else { 9526 btrfs_pin_log_trans(dest); 9527 dest_log_pinned = true; 9528 ret = btrfs_insert_inode_ref(trans, root, 9529 old_dentry->d_name.name, 9530 old_dentry->d_name.len, 9531 new_ino, 9532 btrfs_ino(old_dir), new_idx); 9533 if (ret) 9534 goto out_fail; 9535 } 9536 9537 /* Update inode version and ctime/mtime. */ 9538 inode_inc_iversion(old_dir); 9539 inode_inc_iversion(new_dir); 9540 inode_inc_iversion(old_inode); 9541 inode_inc_iversion(new_inode); 9542 old_dir->i_ctime = old_dir->i_mtime = ctime; 9543 new_dir->i_ctime = new_dir->i_mtime = ctime; 9544 old_inode->i_ctime = ctime; 9545 new_inode->i_ctime = ctime; 9546 9547 if (old_dentry->d_parent != new_dentry->d_parent) { 9548 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9549 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1); 9550 } 9551 9552 /* src is a subvolume */ 9553 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9554 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9555 ret = btrfs_unlink_subvol(trans, root, old_dir, 9556 root_objectid, 9557 old_dentry->d_name.name, 9558 old_dentry->d_name.len); 9559 } else { /* src is an inode */ 9560 ret = __btrfs_unlink_inode(trans, root, old_dir, 9561 old_dentry->d_inode, 9562 old_dentry->d_name.name, 9563 old_dentry->d_name.len); 9564 if (!ret) 9565 ret = btrfs_update_inode(trans, root, old_inode); 9566 } 9567 if (ret) { 9568 btrfs_abort_transaction(trans, ret); 9569 goto out_fail; 9570 } 9571 9572 /* dest is a subvolume */ 9573 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9574 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9575 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9576 root_objectid, 9577 new_dentry->d_name.name, 9578 new_dentry->d_name.len); 9579 } else { /* dest is an inode */ 9580 ret = __btrfs_unlink_inode(trans, dest, new_dir, 9581 new_dentry->d_inode, 9582 new_dentry->d_name.name, 9583 new_dentry->d_name.len); 9584 if (!ret) 9585 ret = btrfs_update_inode(trans, dest, new_inode); 9586 } 9587 if (ret) { 9588 btrfs_abort_transaction(trans, ret); 9589 goto out_fail; 9590 } 9591 9592 ret = btrfs_add_link(trans, new_dir, old_inode, 9593 new_dentry->d_name.name, 9594 new_dentry->d_name.len, 0, old_idx); 9595 if (ret) { 9596 btrfs_abort_transaction(trans, ret); 9597 goto out_fail; 9598 } 9599 9600 ret = btrfs_add_link(trans, old_dir, new_inode, 9601 old_dentry->d_name.name, 9602 old_dentry->d_name.len, 0, new_idx); 9603 if (ret) { 9604 btrfs_abort_transaction(trans, ret); 9605 goto out_fail; 9606 } 9607 9608 if (old_inode->i_nlink == 1) 9609 BTRFS_I(old_inode)->dir_index = old_idx; 9610 if (new_inode->i_nlink == 1) 9611 BTRFS_I(new_inode)->dir_index = new_idx; 9612 9613 if (root_log_pinned) { 9614 parent = new_dentry->d_parent; 9615 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9616 btrfs_end_log_trans(root); 9617 root_log_pinned = false; 9618 } 9619 if (dest_log_pinned) { 9620 parent = old_dentry->d_parent; 9621 btrfs_log_new_name(trans, new_inode, new_dir, parent); 9622 btrfs_end_log_trans(dest); 9623 dest_log_pinned = false; 9624 } 9625 out_fail: 9626 /* 9627 * If we have pinned a log and an error happened, we unpin tasks 9628 * trying to sync the log and force them to fallback to a transaction 9629 * commit if the log currently contains any of the inodes involved in 9630 * this rename operation (to ensure we do not persist a log with an 9631 * inconsistent state for any of these inodes or leading to any 9632 * inconsistencies when replayed). If the transaction was aborted, the 9633 * abortion reason is propagated to userspace when attempting to commit 9634 * the transaction. If the log does not contain any of these inodes, we 9635 * allow the tasks to sync it. 9636 */ 9637 if (ret && (root_log_pinned || dest_log_pinned)) { 9638 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9639 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9640 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9641 (new_inode && 9642 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9643 btrfs_set_log_full_commit(root->fs_info, trans); 9644 9645 if (root_log_pinned) { 9646 btrfs_end_log_trans(root); 9647 root_log_pinned = false; 9648 } 9649 if (dest_log_pinned) { 9650 btrfs_end_log_trans(dest); 9651 dest_log_pinned = false; 9652 } 9653 } 9654 ret = btrfs_end_transaction(trans, root); 9655 out_notrans: 9656 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9657 up_read(&dest->fs_info->subvol_sem); 9658 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9659 up_read(&root->fs_info->subvol_sem); 9660 9661 return ret; 9662 } 9663 9664 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9665 struct btrfs_root *root, 9666 struct inode *dir, 9667 struct dentry *dentry) 9668 { 9669 int ret; 9670 struct inode *inode; 9671 u64 objectid; 9672 u64 index; 9673 9674 ret = btrfs_find_free_ino(root, &objectid); 9675 if (ret) 9676 return ret; 9677 9678 inode = btrfs_new_inode(trans, root, dir, 9679 dentry->d_name.name, 9680 dentry->d_name.len, 9681 btrfs_ino(dir), 9682 objectid, 9683 S_IFCHR | WHITEOUT_MODE, 9684 &index); 9685 9686 if (IS_ERR(inode)) { 9687 ret = PTR_ERR(inode); 9688 return ret; 9689 } 9690 9691 inode->i_op = &btrfs_special_inode_operations; 9692 init_special_inode(inode, inode->i_mode, 9693 WHITEOUT_DEV); 9694 9695 ret = btrfs_init_inode_security(trans, inode, dir, 9696 &dentry->d_name); 9697 if (ret) 9698 goto out; 9699 9700 ret = btrfs_add_nondir(trans, dir, dentry, 9701 inode, 0, index); 9702 if (ret) 9703 goto out; 9704 9705 ret = btrfs_update_inode(trans, root, inode); 9706 out: 9707 unlock_new_inode(inode); 9708 if (ret) 9709 inode_dec_link_count(inode); 9710 iput(inode); 9711 9712 return ret; 9713 } 9714 9715 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9716 struct inode *new_dir, struct dentry *new_dentry, 9717 unsigned int flags) 9718 { 9719 struct btrfs_trans_handle *trans; 9720 unsigned int trans_num_items; 9721 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9722 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9723 struct inode *new_inode = d_inode(new_dentry); 9724 struct inode *old_inode = d_inode(old_dentry); 9725 u64 index = 0; 9726 u64 root_objectid; 9727 int ret; 9728 u64 old_ino = btrfs_ino(old_inode); 9729 bool log_pinned = false; 9730 9731 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9732 return -EPERM; 9733 9734 /* we only allow rename subvolume link between subvolumes */ 9735 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9736 return -EXDEV; 9737 9738 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9739 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9740 return -ENOTEMPTY; 9741 9742 if (S_ISDIR(old_inode->i_mode) && new_inode && 9743 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9744 return -ENOTEMPTY; 9745 9746 9747 /* check for collisions, even if the name isn't there */ 9748 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9749 new_dentry->d_name.name, 9750 new_dentry->d_name.len); 9751 9752 if (ret) { 9753 if (ret == -EEXIST) { 9754 /* we shouldn't get 9755 * eexist without a new_inode */ 9756 if (WARN_ON(!new_inode)) { 9757 return ret; 9758 } 9759 } else { 9760 /* maybe -EOVERFLOW */ 9761 return ret; 9762 } 9763 } 9764 ret = 0; 9765 9766 /* 9767 * we're using rename to replace one file with another. Start IO on it 9768 * now so we don't add too much work to the end of the transaction 9769 */ 9770 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9771 filemap_flush(old_inode->i_mapping); 9772 9773 /* close the racy window with snapshot create/destroy ioctl */ 9774 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9775 down_read(&root->fs_info->subvol_sem); 9776 /* 9777 * We want to reserve the absolute worst case amount of items. So if 9778 * both inodes are subvols and we need to unlink them then that would 9779 * require 4 item modifications, but if they are both normal inodes it 9780 * would require 5 item modifications, so we'll assume they are normal 9781 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9782 * should cover the worst case number of items we'll modify. 9783 * If our rename has the whiteout flag, we need more 5 units for the 9784 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9785 * when selinux is enabled). 9786 */ 9787 trans_num_items = 11; 9788 if (flags & RENAME_WHITEOUT) 9789 trans_num_items += 5; 9790 trans = btrfs_start_transaction(root, trans_num_items); 9791 if (IS_ERR(trans)) { 9792 ret = PTR_ERR(trans); 9793 goto out_notrans; 9794 } 9795 9796 if (dest != root) 9797 btrfs_record_root_in_trans(trans, dest); 9798 9799 ret = btrfs_set_inode_index(new_dir, &index); 9800 if (ret) 9801 goto out_fail; 9802 9803 BTRFS_I(old_inode)->dir_index = 0ULL; 9804 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9805 /* force full log commit if subvolume involved. */ 9806 btrfs_set_log_full_commit(root->fs_info, trans); 9807 } else { 9808 btrfs_pin_log_trans(root); 9809 log_pinned = true; 9810 ret = btrfs_insert_inode_ref(trans, dest, 9811 new_dentry->d_name.name, 9812 new_dentry->d_name.len, 9813 old_ino, 9814 btrfs_ino(new_dir), index); 9815 if (ret) 9816 goto out_fail; 9817 } 9818 9819 inode_inc_iversion(old_dir); 9820 inode_inc_iversion(new_dir); 9821 inode_inc_iversion(old_inode); 9822 old_dir->i_ctime = old_dir->i_mtime = 9823 new_dir->i_ctime = new_dir->i_mtime = 9824 old_inode->i_ctime = current_fs_time(old_dir->i_sb); 9825 9826 if (old_dentry->d_parent != new_dentry->d_parent) 9827 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9828 9829 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9830 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9831 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9832 old_dentry->d_name.name, 9833 old_dentry->d_name.len); 9834 } else { 9835 ret = __btrfs_unlink_inode(trans, root, old_dir, 9836 d_inode(old_dentry), 9837 old_dentry->d_name.name, 9838 old_dentry->d_name.len); 9839 if (!ret) 9840 ret = btrfs_update_inode(trans, root, old_inode); 9841 } 9842 if (ret) { 9843 btrfs_abort_transaction(trans, ret); 9844 goto out_fail; 9845 } 9846 9847 if (new_inode) { 9848 inode_inc_iversion(new_inode); 9849 new_inode->i_ctime = current_fs_time(new_inode->i_sb); 9850 if (unlikely(btrfs_ino(new_inode) == 9851 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9852 root_objectid = BTRFS_I(new_inode)->location.objectid; 9853 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9854 root_objectid, 9855 new_dentry->d_name.name, 9856 new_dentry->d_name.len); 9857 BUG_ON(new_inode->i_nlink == 0); 9858 } else { 9859 ret = btrfs_unlink_inode(trans, dest, new_dir, 9860 d_inode(new_dentry), 9861 new_dentry->d_name.name, 9862 new_dentry->d_name.len); 9863 } 9864 if (!ret && new_inode->i_nlink == 0) 9865 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9866 if (ret) { 9867 btrfs_abort_transaction(trans, ret); 9868 goto out_fail; 9869 } 9870 } 9871 9872 ret = btrfs_add_link(trans, new_dir, old_inode, 9873 new_dentry->d_name.name, 9874 new_dentry->d_name.len, 0, index); 9875 if (ret) { 9876 btrfs_abort_transaction(trans, ret); 9877 goto out_fail; 9878 } 9879 9880 if (old_inode->i_nlink == 1) 9881 BTRFS_I(old_inode)->dir_index = index; 9882 9883 if (log_pinned) { 9884 struct dentry *parent = new_dentry->d_parent; 9885 9886 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9887 btrfs_end_log_trans(root); 9888 log_pinned = false; 9889 } 9890 9891 if (flags & RENAME_WHITEOUT) { 9892 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9893 old_dentry); 9894 9895 if (ret) { 9896 btrfs_abort_transaction(trans, ret); 9897 goto out_fail; 9898 } 9899 } 9900 out_fail: 9901 /* 9902 * If we have pinned the log and an error happened, we unpin tasks 9903 * trying to sync the log and force them to fallback to a transaction 9904 * commit if the log currently contains any of the inodes involved in 9905 * this rename operation (to ensure we do not persist a log with an 9906 * inconsistent state for any of these inodes or leading to any 9907 * inconsistencies when replayed). If the transaction was aborted, the 9908 * abortion reason is propagated to userspace when attempting to commit 9909 * the transaction. If the log does not contain any of these inodes, we 9910 * allow the tasks to sync it. 9911 */ 9912 if (ret && log_pinned) { 9913 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9914 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9915 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9916 (new_inode && 9917 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9918 btrfs_set_log_full_commit(root->fs_info, trans); 9919 9920 btrfs_end_log_trans(root); 9921 log_pinned = false; 9922 } 9923 btrfs_end_transaction(trans, root); 9924 out_notrans: 9925 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9926 up_read(&root->fs_info->subvol_sem); 9927 9928 return ret; 9929 } 9930 9931 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9932 struct inode *new_dir, struct dentry *new_dentry, 9933 unsigned int flags) 9934 { 9935 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9936 return -EINVAL; 9937 9938 if (flags & RENAME_EXCHANGE) 9939 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9940 new_dentry); 9941 9942 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9943 } 9944 9945 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9946 { 9947 struct btrfs_delalloc_work *delalloc_work; 9948 struct inode *inode; 9949 9950 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9951 work); 9952 inode = delalloc_work->inode; 9953 filemap_flush(inode->i_mapping); 9954 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9955 &BTRFS_I(inode)->runtime_flags)) 9956 filemap_flush(inode->i_mapping); 9957 9958 if (delalloc_work->delay_iput) 9959 btrfs_add_delayed_iput(inode); 9960 else 9961 iput(inode); 9962 complete(&delalloc_work->completion); 9963 } 9964 9965 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9966 int delay_iput) 9967 { 9968 struct btrfs_delalloc_work *work; 9969 9970 work = kmalloc(sizeof(*work), GFP_NOFS); 9971 if (!work) 9972 return NULL; 9973 9974 init_completion(&work->completion); 9975 INIT_LIST_HEAD(&work->list); 9976 work->inode = inode; 9977 work->delay_iput = delay_iput; 9978 WARN_ON_ONCE(!inode); 9979 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9980 btrfs_run_delalloc_work, NULL, NULL); 9981 9982 return work; 9983 } 9984 9985 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9986 { 9987 wait_for_completion(&work->completion); 9988 kfree(work); 9989 } 9990 9991 /* 9992 * some fairly slow code that needs optimization. This walks the list 9993 * of all the inodes with pending delalloc and forces them to disk. 9994 */ 9995 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9996 int nr) 9997 { 9998 struct btrfs_inode *binode; 9999 struct inode *inode; 10000 struct btrfs_delalloc_work *work, *next; 10001 struct list_head works; 10002 struct list_head splice; 10003 int ret = 0; 10004 10005 INIT_LIST_HEAD(&works); 10006 INIT_LIST_HEAD(&splice); 10007 10008 mutex_lock(&root->delalloc_mutex); 10009 spin_lock(&root->delalloc_lock); 10010 list_splice_init(&root->delalloc_inodes, &splice); 10011 while (!list_empty(&splice)) { 10012 binode = list_entry(splice.next, struct btrfs_inode, 10013 delalloc_inodes); 10014 10015 list_move_tail(&binode->delalloc_inodes, 10016 &root->delalloc_inodes); 10017 inode = igrab(&binode->vfs_inode); 10018 if (!inode) { 10019 cond_resched_lock(&root->delalloc_lock); 10020 continue; 10021 } 10022 spin_unlock(&root->delalloc_lock); 10023 10024 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10025 if (!work) { 10026 if (delay_iput) 10027 btrfs_add_delayed_iput(inode); 10028 else 10029 iput(inode); 10030 ret = -ENOMEM; 10031 goto out; 10032 } 10033 list_add_tail(&work->list, &works); 10034 btrfs_queue_work(root->fs_info->flush_workers, 10035 &work->work); 10036 ret++; 10037 if (nr != -1 && ret >= nr) 10038 goto out; 10039 cond_resched(); 10040 spin_lock(&root->delalloc_lock); 10041 } 10042 spin_unlock(&root->delalloc_lock); 10043 10044 out: 10045 list_for_each_entry_safe(work, next, &works, list) { 10046 list_del_init(&work->list); 10047 btrfs_wait_and_free_delalloc_work(work); 10048 } 10049 10050 if (!list_empty_careful(&splice)) { 10051 spin_lock(&root->delalloc_lock); 10052 list_splice_tail(&splice, &root->delalloc_inodes); 10053 spin_unlock(&root->delalloc_lock); 10054 } 10055 mutex_unlock(&root->delalloc_mutex); 10056 return ret; 10057 } 10058 10059 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10060 { 10061 int ret; 10062 10063 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 10064 return -EROFS; 10065 10066 ret = __start_delalloc_inodes(root, delay_iput, -1); 10067 if (ret > 0) 10068 ret = 0; 10069 /* 10070 * the filemap_flush will queue IO into the worker threads, but 10071 * we have to make sure the IO is actually started and that 10072 * ordered extents get created before we return 10073 */ 10074 atomic_inc(&root->fs_info->async_submit_draining); 10075 while (atomic_read(&root->fs_info->nr_async_submits) || 10076 atomic_read(&root->fs_info->async_delalloc_pages)) { 10077 wait_event(root->fs_info->async_submit_wait, 10078 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 10079 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 10080 } 10081 atomic_dec(&root->fs_info->async_submit_draining); 10082 return ret; 10083 } 10084 10085 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10086 int nr) 10087 { 10088 struct btrfs_root *root; 10089 struct list_head splice; 10090 int ret; 10091 10092 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10093 return -EROFS; 10094 10095 INIT_LIST_HEAD(&splice); 10096 10097 mutex_lock(&fs_info->delalloc_root_mutex); 10098 spin_lock(&fs_info->delalloc_root_lock); 10099 list_splice_init(&fs_info->delalloc_roots, &splice); 10100 while (!list_empty(&splice) && nr) { 10101 root = list_first_entry(&splice, struct btrfs_root, 10102 delalloc_root); 10103 root = btrfs_grab_fs_root(root); 10104 BUG_ON(!root); 10105 list_move_tail(&root->delalloc_root, 10106 &fs_info->delalloc_roots); 10107 spin_unlock(&fs_info->delalloc_root_lock); 10108 10109 ret = __start_delalloc_inodes(root, delay_iput, nr); 10110 btrfs_put_fs_root(root); 10111 if (ret < 0) 10112 goto out; 10113 10114 if (nr != -1) { 10115 nr -= ret; 10116 WARN_ON(nr < 0); 10117 } 10118 spin_lock(&fs_info->delalloc_root_lock); 10119 } 10120 spin_unlock(&fs_info->delalloc_root_lock); 10121 10122 ret = 0; 10123 atomic_inc(&fs_info->async_submit_draining); 10124 while (atomic_read(&fs_info->nr_async_submits) || 10125 atomic_read(&fs_info->async_delalloc_pages)) { 10126 wait_event(fs_info->async_submit_wait, 10127 (atomic_read(&fs_info->nr_async_submits) == 0 && 10128 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10129 } 10130 atomic_dec(&fs_info->async_submit_draining); 10131 out: 10132 if (!list_empty_careful(&splice)) { 10133 spin_lock(&fs_info->delalloc_root_lock); 10134 list_splice_tail(&splice, &fs_info->delalloc_roots); 10135 spin_unlock(&fs_info->delalloc_root_lock); 10136 } 10137 mutex_unlock(&fs_info->delalloc_root_mutex); 10138 return ret; 10139 } 10140 10141 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10142 const char *symname) 10143 { 10144 struct btrfs_trans_handle *trans; 10145 struct btrfs_root *root = BTRFS_I(dir)->root; 10146 struct btrfs_path *path; 10147 struct btrfs_key key; 10148 struct inode *inode = NULL; 10149 int err; 10150 int drop_inode = 0; 10151 u64 objectid; 10152 u64 index = 0; 10153 int name_len; 10154 int datasize; 10155 unsigned long ptr; 10156 struct btrfs_file_extent_item *ei; 10157 struct extent_buffer *leaf; 10158 10159 name_len = strlen(symname); 10160 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 10161 return -ENAMETOOLONG; 10162 10163 /* 10164 * 2 items for inode item and ref 10165 * 2 items for dir items 10166 * 1 item for updating parent inode item 10167 * 1 item for the inline extent item 10168 * 1 item for xattr if selinux is on 10169 */ 10170 trans = btrfs_start_transaction(root, 7); 10171 if (IS_ERR(trans)) 10172 return PTR_ERR(trans); 10173 10174 err = btrfs_find_free_ino(root, &objectid); 10175 if (err) 10176 goto out_unlock; 10177 10178 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10179 dentry->d_name.len, btrfs_ino(dir), objectid, 10180 S_IFLNK|S_IRWXUGO, &index); 10181 if (IS_ERR(inode)) { 10182 err = PTR_ERR(inode); 10183 goto out_unlock; 10184 } 10185 10186 /* 10187 * If the active LSM wants to access the inode during 10188 * d_instantiate it needs these. Smack checks to see 10189 * if the filesystem supports xattrs by looking at the 10190 * ops vector. 10191 */ 10192 inode->i_fop = &btrfs_file_operations; 10193 inode->i_op = &btrfs_file_inode_operations; 10194 inode->i_mapping->a_ops = &btrfs_aops; 10195 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10196 10197 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10198 if (err) 10199 goto out_unlock_inode; 10200 10201 path = btrfs_alloc_path(); 10202 if (!path) { 10203 err = -ENOMEM; 10204 goto out_unlock_inode; 10205 } 10206 key.objectid = btrfs_ino(inode); 10207 key.offset = 0; 10208 key.type = BTRFS_EXTENT_DATA_KEY; 10209 datasize = btrfs_file_extent_calc_inline_size(name_len); 10210 err = btrfs_insert_empty_item(trans, root, path, &key, 10211 datasize); 10212 if (err) { 10213 btrfs_free_path(path); 10214 goto out_unlock_inode; 10215 } 10216 leaf = path->nodes[0]; 10217 ei = btrfs_item_ptr(leaf, path->slots[0], 10218 struct btrfs_file_extent_item); 10219 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10220 btrfs_set_file_extent_type(leaf, ei, 10221 BTRFS_FILE_EXTENT_INLINE); 10222 btrfs_set_file_extent_encryption(leaf, ei, 0); 10223 btrfs_set_file_extent_compression(leaf, ei, 0); 10224 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10225 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10226 10227 ptr = btrfs_file_extent_inline_start(ei); 10228 write_extent_buffer(leaf, symname, ptr, name_len); 10229 btrfs_mark_buffer_dirty(leaf); 10230 btrfs_free_path(path); 10231 10232 inode->i_op = &btrfs_symlink_inode_operations; 10233 inode_nohighmem(inode); 10234 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10235 inode_set_bytes(inode, name_len); 10236 btrfs_i_size_write(inode, name_len); 10237 err = btrfs_update_inode(trans, root, inode); 10238 /* 10239 * Last step, add directory indexes for our symlink inode. This is the 10240 * last step to avoid extra cleanup of these indexes if an error happens 10241 * elsewhere above. 10242 */ 10243 if (!err) 10244 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 10245 if (err) { 10246 drop_inode = 1; 10247 goto out_unlock_inode; 10248 } 10249 10250 unlock_new_inode(inode); 10251 d_instantiate(dentry, inode); 10252 10253 out_unlock: 10254 btrfs_end_transaction(trans, root); 10255 if (drop_inode) { 10256 inode_dec_link_count(inode); 10257 iput(inode); 10258 } 10259 btrfs_btree_balance_dirty(root); 10260 return err; 10261 10262 out_unlock_inode: 10263 drop_inode = 1; 10264 unlock_new_inode(inode); 10265 goto out_unlock; 10266 } 10267 10268 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10269 u64 start, u64 num_bytes, u64 min_size, 10270 loff_t actual_len, u64 *alloc_hint, 10271 struct btrfs_trans_handle *trans) 10272 { 10273 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10274 struct extent_map *em; 10275 struct btrfs_root *root = BTRFS_I(inode)->root; 10276 struct btrfs_key ins; 10277 u64 cur_offset = start; 10278 u64 i_size; 10279 u64 cur_bytes; 10280 u64 last_alloc = (u64)-1; 10281 int ret = 0; 10282 bool own_trans = true; 10283 10284 if (trans) 10285 own_trans = false; 10286 while (num_bytes > 0) { 10287 if (own_trans) { 10288 trans = btrfs_start_transaction(root, 3); 10289 if (IS_ERR(trans)) { 10290 ret = PTR_ERR(trans); 10291 break; 10292 } 10293 } 10294 10295 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10296 cur_bytes = max(cur_bytes, min_size); 10297 /* 10298 * If we are severely fragmented we could end up with really 10299 * small allocations, so if the allocator is returning small 10300 * chunks lets make its job easier by only searching for those 10301 * sized chunks. 10302 */ 10303 cur_bytes = min(cur_bytes, last_alloc); 10304 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 10305 *alloc_hint, &ins, 1, 0); 10306 if (ret) { 10307 if (own_trans) 10308 btrfs_end_transaction(trans, root); 10309 break; 10310 } 10311 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 10312 10313 last_alloc = ins.offset; 10314 ret = insert_reserved_file_extent(trans, inode, 10315 cur_offset, ins.objectid, 10316 ins.offset, ins.offset, 10317 ins.offset, 0, 0, 0, 10318 BTRFS_FILE_EXTENT_PREALLOC); 10319 if (ret) { 10320 btrfs_free_reserved_extent(root, ins.objectid, 10321 ins.offset, 0); 10322 btrfs_abort_transaction(trans, ret); 10323 if (own_trans) 10324 btrfs_end_transaction(trans, root); 10325 break; 10326 } 10327 10328 btrfs_drop_extent_cache(inode, cur_offset, 10329 cur_offset + ins.offset -1, 0); 10330 10331 em = alloc_extent_map(); 10332 if (!em) { 10333 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10334 &BTRFS_I(inode)->runtime_flags); 10335 goto next; 10336 } 10337 10338 em->start = cur_offset; 10339 em->orig_start = cur_offset; 10340 em->len = ins.offset; 10341 em->block_start = ins.objectid; 10342 em->block_len = ins.offset; 10343 em->orig_block_len = ins.offset; 10344 em->ram_bytes = ins.offset; 10345 em->bdev = root->fs_info->fs_devices->latest_bdev; 10346 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10347 em->generation = trans->transid; 10348 10349 while (1) { 10350 write_lock(&em_tree->lock); 10351 ret = add_extent_mapping(em_tree, em, 1); 10352 write_unlock(&em_tree->lock); 10353 if (ret != -EEXIST) 10354 break; 10355 btrfs_drop_extent_cache(inode, cur_offset, 10356 cur_offset + ins.offset - 1, 10357 0); 10358 } 10359 free_extent_map(em); 10360 next: 10361 num_bytes -= ins.offset; 10362 cur_offset += ins.offset; 10363 *alloc_hint = ins.objectid + ins.offset; 10364 10365 inode_inc_iversion(inode); 10366 inode->i_ctime = current_fs_time(inode->i_sb); 10367 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10368 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10369 (actual_len > inode->i_size) && 10370 (cur_offset > inode->i_size)) { 10371 if (cur_offset > actual_len) 10372 i_size = actual_len; 10373 else 10374 i_size = cur_offset; 10375 i_size_write(inode, i_size); 10376 btrfs_ordered_update_i_size(inode, i_size, NULL); 10377 } 10378 10379 ret = btrfs_update_inode(trans, root, inode); 10380 10381 if (ret) { 10382 btrfs_abort_transaction(trans, ret); 10383 if (own_trans) 10384 btrfs_end_transaction(trans, root); 10385 break; 10386 } 10387 10388 if (own_trans) 10389 btrfs_end_transaction(trans, root); 10390 } 10391 return ret; 10392 } 10393 10394 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10395 u64 start, u64 num_bytes, u64 min_size, 10396 loff_t actual_len, u64 *alloc_hint) 10397 { 10398 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10399 min_size, actual_len, alloc_hint, 10400 NULL); 10401 } 10402 10403 int btrfs_prealloc_file_range_trans(struct inode *inode, 10404 struct btrfs_trans_handle *trans, int mode, 10405 u64 start, u64 num_bytes, u64 min_size, 10406 loff_t actual_len, u64 *alloc_hint) 10407 { 10408 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10409 min_size, actual_len, alloc_hint, trans); 10410 } 10411 10412 static int btrfs_set_page_dirty(struct page *page) 10413 { 10414 return __set_page_dirty_nobuffers(page); 10415 } 10416 10417 static int btrfs_permission(struct inode *inode, int mask) 10418 { 10419 struct btrfs_root *root = BTRFS_I(inode)->root; 10420 umode_t mode = inode->i_mode; 10421 10422 if (mask & MAY_WRITE && 10423 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10424 if (btrfs_root_readonly(root)) 10425 return -EROFS; 10426 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10427 return -EACCES; 10428 } 10429 return generic_permission(inode, mask); 10430 } 10431 10432 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10433 { 10434 struct btrfs_trans_handle *trans; 10435 struct btrfs_root *root = BTRFS_I(dir)->root; 10436 struct inode *inode = NULL; 10437 u64 objectid; 10438 u64 index; 10439 int ret = 0; 10440 10441 /* 10442 * 5 units required for adding orphan entry 10443 */ 10444 trans = btrfs_start_transaction(root, 5); 10445 if (IS_ERR(trans)) 10446 return PTR_ERR(trans); 10447 10448 ret = btrfs_find_free_ino(root, &objectid); 10449 if (ret) 10450 goto out; 10451 10452 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10453 btrfs_ino(dir), objectid, mode, &index); 10454 if (IS_ERR(inode)) { 10455 ret = PTR_ERR(inode); 10456 inode = NULL; 10457 goto out; 10458 } 10459 10460 inode->i_fop = &btrfs_file_operations; 10461 inode->i_op = &btrfs_file_inode_operations; 10462 10463 inode->i_mapping->a_ops = &btrfs_aops; 10464 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10465 10466 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10467 if (ret) 10468 goto out_inode; 10469 10470 ret = btrfs_update_inode(trans, root, inode); 10471 if (ret) 10472 goto out_inode; 10473 ret = btrfs_orphan_add(trans, inode); 10474 if (ret) 10475 goto out_inode; 10476 10477 /* 10478 * We set number of links to 0 in btrfs_new_inode(), and here we set 10479 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10480 * through: 10481 * 10482 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10483 */ 10484 set_nlink(inode, 1); 10485 unlock_new_inode(inode); 10486 d_tmpfile(dentry, inode); 10487 mark_inode_dirty(inode); 10488 10489 out: 10490 btrfs_end_transaction(trans, root); 10491 if (ret) 10492 iput(inode); 10493 btrfs_balance_delayed_items(root); 10494 btrfs_btree_balance_dirty(root); 10495 return ret; 10496 10497 out_inode: 10498 unlock_new_inode(inode); 10499 goto out; 10500 10501 } 10502 10503 /* Inspired by filemap_check_errors() */ 10504 int btrfs_inode_check_errors(struct inode *inode) 10505 { 10506 int ret = 0; 10507 10508 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 10509 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 10510 ret = -ENOSPC; 10511 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 10512 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 10513 ret = -EIO; 10514 10515 return ret; 10516 } 10517 10518 static const struct inode_operations btrfs_dir_inode_operations = { 10519 .getattr = btrfs_getattr, 10520 .lookup = btrfs_lookup, 10521 .create = btrfs_create, 10522 .unlink = btrfs_unlink, 10523 .link = btrfs_link, 10524 .mkdir = btrfs_mkdir, 10525 .rmdir = btrfs_rmdir, 10526 .rename2 = btrfs_rename2, 10527 .symlink = btrfs_symlink, 10528 .setattr = btrfs_setattr, 10529 .mknod = btrfs_mknod, 10530 .setxattr = generic_setxattr, 10531 .getxattr = generic_getxattr, 10532 .listxattr = btrfs_listxattr, 10533 .removexattr = generic_removexattr, 10534 .permission = btrfs_permission, 10535 .get_acl = btrfs_get_acl, 10536 .set_acl = btrfs_set_acl, 10537 .update_time = btrfs_update_time, 10538 .tmpfile = btrfs_tmpfile, 10539 }; 10540 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10541 .lookup = btrfs_lookup, 10542 .permission = btrfs_permission, 10543 .get_acl = btrfs_get_acl, 10544 .set_acl = btrfs_set_acl, 10545 .update_time = btrfs_update_time, 10546 }; 10547 10548 static const struct file_operations btrfs_dir_file_operations = { 10549 .llseek = generic_file_llseek, 10550 .read = generic_read_dir, 10551 .iterate_shared = btrfs_real_readdir, 10552 .unlocked_ioctl = btrfs_ioctl, 10553 #ifdef CONFIG_COMPAT 10554 .compat_ioctl = btrfs_compat_ioctl, 10555 #endif 10556 .release = btrfs_release_file, 10557 .fsync = btrfs_sync_file, 10558 }; 10559 10560 static const struct extent_io_ops btrfs_extent_io_ops = { 10561 .fill_delalloc = run_delalloc_range, 10562 .submit_bio_hook = btrfs_submit_bio_hook, 10563 .merge_bio_hook = btrfs_merge_bio_hook, 10564 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10565 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10566 .writepage_start_hook = btrfs_writepage_start_hook, 10567 .set_bit_hook = btrfs_set_bit_hook, 10568 .clear_bit_hook = btrfs_clear_bit_hook, 10569 .merge_extent_hook = btrfs_merge_extent_hook, 10570 .split_extent_hook = btrfs_split_extent_hook, 10571 }; 10572 10573 /* 10574 * btrfs doesn't support the bmap operation because swapfiles 10575 * use bmap to make a mapping of extents in the file. They assume 10576 * these extents won't change over the life of the file and they 10577 * use the bmap result to do IO directly to the drive. 10578 * 10579 * the btrfs bmap call would return logical addresses that aren't 10580 * suitable for IO and they also will change frequently as COW 10581 * operations happen. So, swapfile + btrfs == corruption. 10582 * 10583 * For now we're avoiding this by dropping bmap. 10584 */ 10585 static const struct address_space_operations btrfs_aops = { 10586 .readpage = btrfs_readpage, 10587 .writepage = btrfs_writepage, 10588 .writepages = btrfs_writepages, 10589 .readpages = btrfs_readpages, 10590 .direct_IO = btrfs_direct_IO, 10591 .invalidatepage = btrfs_invalidatepage, 10592 .releasepage = btrfs_releasepage, 10593 .set_page_dirty = btrfs_set_page_dirty, 10594 .error_remove_page = generic_error_remove_page, 10595 }; 10596 10597 static const struct address_space_operations btrfs_symlink_aops = { 10598 .readpage = btrfs_readpage, 10599 .writepage = btrfs_writepage, 10600 .invalidatepage = btrfs_invalidatepage, 10601 .releasepage = btrfs_releasepage, 10602 }; 10603 10604 static const struct inode_operations btrfs_file_inode_operations = { 10605 .getattr = btrfs_getattr, 10606 .setattr = btrfs_setattr, 10607 .setxattr = generic_setxattr, 10608 .getxattr = generic_getxattr, 10609 .listxattr = btrfs_listxattr, 10610 .removexattr = generic_removexattr, 10611 .permission = btrfs_permission, 10612 .fiemap = btrfs_fiemap, 10613 .get_acl = btrfs_get_acl, 10614 .set_acl = btrfs_set_acl, 10615 .update_time = btrfs_update_time, 10616 }; 10617 static const struct inode_operations btrfs_special_inode_operations = { 10618 .getattr = btrfs_getattr, 10619 .setattr = btrfs_setattr, 10620 .permission = btrfs_permission, 10621 .setxattr = generic_setxattr, 10622 .getxattr = generic_getxattr, 10623 .listxattr = btrfs_listxattr, 10624 .removexattr = generic_removexattr, 10625 .get_acl = btrfs_get_acl, 10626 .set_acl = btrfs_set_acl, 10627 .update_time = btrfs_update_time, 10628 }; 10629 static const struct inode_operations btrfs_symlink_inode_operations = { 10630 .readlink = generic_readlink, 10631 .get_link = page_get_link, 10632 .getattr = btrfs_getattr, 10633 .setattr = btrfs_setattr, 10634 .permission = btrfs_permission, 10635 .setxattr = generic_setxattr, 10636 .getxattr = generic_getxattr, 10637 .listxattr = btrfs_listxattr, 10638 .removexattr = generic_removexattr, 10639 .update_time = btrfs_update_time, 10640 }; 10641 10642 const struct dentry_operations btrfs_dentry_operations = { 10643 .d_delete = btrfs_dentry_delete, 10644 .d_release = btrfs_dentry_release, 10645 }; 10646