xref: /openbmc/linux/fs/btrfs/inode.c (revision 80483c3a)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 #include "dedupe.h"
64 
65 struct btrfs_iget_args {
66 	struct btrfs_key *location;
67 	struct btrfs_root *root;
68 };
69 
70 struct btrfs_dio_data {
71 	u64 outstanding_extents;
72 	u64 reserve;
73 	u64 unsubmitted_oe_range_start;
74 	u64 unsubmitted_oe_range_end;
75 };
76 
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
86 
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_transaction_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
92 
93 #define S_SHIFT 12
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
96 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
97 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
98 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
99 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
100 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
101 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
102 };
103 
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 				   struct page *locked_page,
109 				   u64 start, u64 end, u64 delalloc_end,
110 				   int *page_started, unsigned long *nr_written,
111 				   int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
113 					   u64 len, u64 orig_start,
114 					   u64 block_start, u64 block_len,
115 					   u64 orig_block_len, u64 ram_bytes,
116 					   int type);
117 
118 static int btrfs_dirty_inode(struct inode *inode);
119 
120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121 void btrfs_test_inode_set_ops(struct inode *inode)
122 {
123 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124 }
125 #endif
126 
127 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
128 				     struct inode *inode,  struct inode *dir,
129 				     const struct qstr *qstr)
130 {
131 	int err;
132 
133 	err = btrfs_init_acl(trans, inode, dir);
134 	if (!err)
135 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
136 	return err;
137 }
138 
139 /*
140  * this does all the hard work for inserting an inline extent into
141  * the btree.  The caller should have done a btrfs_drop_extents so that
142  * no overlapping inline items exist in the btree
143  */
144 static int insert_inline_extent(struct btrfs_trans_handle *trans,
145 				struct btrfs_path *path, int extent_inserted,
146 				struct btrfs_root *root, struct inode *inode,
147 				u64 start, size_t size, size_t compressed_size,
148 				int compress_type,
149 				struct page **compressed_pages)
150 {
151 	struct extent_buffer *leaf;
152 	struct page *page = NULL;
153 	char *kaddr;
154 	unsigned long ptr;
155 	struct btrfs_file_extent_item *ei;
156 	int err = 0;
157 	int ret;
158 	size_t cur_size = size;
159 	unsigned long offset;
160 
161 	if (compressed_size && compressed_pages)
162 		cur_size = compressed_size;
163 
164 	inode_add_bytes(inode, size);
165 
166 	if (!extent_inserted) {
167 		struct btrfs_key key;
168 		size_t datasize;
169 
170 		key.objectid = btrfs_ino(inode);
171 		key.offset = start;
172 		key.type = BTRFS_EXTENT_DATA_KEY;
173 
174 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 		path->leave_spinning = 1;
176 		ret = btrfs_insert_empty_item(trans, root, path, &key,
177 					      datasize);
178 		if (ret) {
179 			err = ret;
180 			goto fail;
181 		}
182 	}
183 	leaf = path->nodes[0];
184 	ei = btrfs_item_ptr(leaf, path->slots[0],
185 			    struct btrfs_file_extent_item);
186 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 	btrfs_set_file_extent_encryption(leaf, ei, 0);
189 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 	ptr = btrfs_file_extent_inline_start(ei);
192 
193 	if (compress_type != BTRFS_COMPRESS_NONE) {
194 		struct page *cpage;
195 		int i = 0;
196 		while (compressed_size > 0) {
197 			cpage = compressed_pages[i];
198 			cur_size = min_t(unsigned long, compressed_size,
199 				       PAGE_SIZE);
200 
201 			kaddr = kmap_atomic(cpage);
202 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
203 			kunmap_atomic(kaddr);
204 
205 			i++;
206 			ptr += cur_size;
207 			compressed_size -= cur_size;
208 		}
209 		btrfs_set_file_extent_compression(leaf, ei,
210 						  compress_type);
211 	} else {
212 		page = find_get_page(inode->i_mapping,
213 				     start >> PAGE_SHIFT);
214 		btrfs_set_file_extent_compression(leaf, ei, 0);
215 		kaddr = kmap_atomic(page);
216 		offset = start & (PAGE_SIZE - 1);
217 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
218 		kunmap_atomic(kaddr);
219 		put_page(page);
220 	}
221 	btrfs_mark_buffer_dirty(leaf);
222 	btrfs_release_path(path);
223 
224 	/*
225 	 * we're an inline extent, so nobody can
226 	 * extend the file past i_size without locking
227 	 * a page we already have locked.
228 	 *
229 	 * We must do any isize and inode updates
230 	 * before we unlock the pages.  Otherwise we
231 	 * could end up racing with unlink.
232 	 */
233 	BTRFS_I(inode)->disk_i_size = inode->i_size;
234 	ret = btrfs_update_inode(trans, root, inode);
235 
236 	return ret;
237 fail:
238 	return err;
239 }
240 
241 
242 /*
243  * conditionally insert an inline extent into the file.  This
244  * does the checks required to make sure the data is small enough
245  * to fit as an inline extent.
246  */
247 static noinline int cow_file_range_inline(struct btrfs_root *root,
248 					  struct inode *inode, u64 start,
249 					  u64 end, size_t compressed_size,
250 					  int compress_type,
251 					  struct page **compressed_pages)
252 {
253 	struct btrfs_trans_handle *trans;
254 	u64 isize = i_size_read(inode);
255 	u64 actual_end = min(end + 1, isize);
256 	u64 inline_len = actual_end - start;
257 	u64 aligned_end = ALIGN(end, root->sectorsize);
258 	u64 data_len = inline_len;
259 	int ret;
260 	struct btrfs_path *path;
261 	int extent_inserted = 0;
262 	u32 extent_item_size;
263 
264 	if (compressed_size)
265 		data_len = compressed_size;
266 
267 	if (start > 0 ||
268 	    actual_end > root->sectorsize ||
269 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
270 	    (!compressed_size &&
271 	    (actual_end & (root->sectorsize - 1)) == 0) ||
272 	    end + 1 < isize ||
273 	    data_len > root->fs_info->max_inline) {
274 		return 1;
275 	}
276 
277 	path = btrfs_alloc_path();
278 	if (!path)
279 		return -ENOMEM;
280 
281 	trans = btrfs_join_transaction(root);
282 	if (IS_ERR(trans)) {
283 		btrfs_free_path(path);
284 		return PTR_ERR(trans);
285 	}
286 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
287 
288 	if (compressed_size && compressed_pages)
289 		extent_item_size = btrfs_file_extent_calc_inline_size(
290 		   compressed_size);
291 	else
292 		extent_item_size = btrfs_file_extent_calc_inline_size(
293 		    inline_len);
294 
295 	ret = __btrfs_drop_extents(trans, root, inode, path,
296 				   start, aligned_end, NULL,
297 				   1, 1, extent_item_size, &extent_inserted);
298 	if (ret) {
299 		btrfs_abort_transaction(trans, ret);
300 		goto out;
301 	}
302 
303 	if (isize > actual_end)
304 		inline_len = min_t(u64, isize, actual_end);
305 	ret = insert_inline_extent(trans, path, extent_inserted,
306 				   root, inode, start,
307 				   inline_len, compressed_size,
308 				   compress_type, compressed_pages);
309 	if (ret && ret != -ENOSPC) {
310 		btrfs_abort_transaction(trans, ret);
311 		goto out;
312 	} else if (ret == -ENOSPC) {
313 		ret = 1;
314 		goto out;
315 	}
316 
317 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
318 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
319 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
320 out:
321 	/*
322 	 * Don't forget to free the reserved space, as for inlined extent
323 	 * it won't count as data extent, free them directly here.
324 	 * And at reserve time, it's always aligned to page size, so
325 	 * just free one page here.
326 	 */
327 	btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
328 	btrfs_free_path(path);
329 	btrfs_end_transaction(trans, root);
330 	return ret;
331 }
332 
333 struct async_extent {
334 	u64 start;
335 	u64 ram_size;
336 	u64 compressed_size;
337 	struct page **pages;
338 	unsigned long nr_pages;
339 	int compress_type;
340 	struct list_head list;
341 };
342 
343 struct async_cow {
344 	struct inode *inode;
345 	struct btrfs_root *root;
346 	struct page *locked_page;
347 	u64 start;
348 	u64 end;
349 	struct list_head extents;
350 	struct btrfs_work work;
351 };
352 
353 static noinline int add_async_extent(struct async_cow *cow,
354 				     u64 start, u64 ram_size,
355 				     u64 compressed_size,
356 				     struct page **pages,
357 				     unsigned long nr_pages,
358 				     int compress_type)
359 {
360 	struct async_extent *async_extent;
361 
362 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
363 	BUG_ON(!async_extent); /* -ENOMEM */
364 	async_extent->start = start;
365 	async_extent->ram_size = ram_size;
366 	async_extent->compressed_size = compressed_size;
367 	async_extent->pages = pages;
368 	async_extent->nr_pages = nr_pages;
369 	async_extent->compress_type = compress_type;
370 	list_add_tail(&async_extent->list, &cow->extents);
371 	return 0;
372 }
373 
374 static inline int inode_need_compress(struct inode *inode)
375 {
376 	struct btrfs_root *root = BTRFS_I(inode)->root;
377 
378 	/* force compress */
379 	if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
380 		return 1;
381 	/* bad compression ratios */
382 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
383 		return 0;
384 	if (btrfs_test_opt(root->fs_info, COMPRESS) ||
385 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 	    BTRFS_I(inode)->force_compress)
387 		return 1;
388 	return 0;
389 }
390 
391 /*
392  * we create compressed extents in two phases.  The first
393  * phase compresses a range of pages that have already been
394  * locked (both pages and state bits are locked).
395  *
396  * This is done inside an ordered work queue, and the compression
397  * is spread across many cpus.  The actual IO submission is step
398  * two, and the ordered work queue takes care of making sure that
399  * happens in the same order things were put onto the queue by
400  * writepages and friends.
401  *
402  * If this code finds it can't get good compression, it puts an
403  * entry onto the work queue to write the uncompressed bytes.  This
404  * makes sure that both compressed inodes and uncompressed inodes
405  * are written in the same order that the flusher thread sent them
406  * down.
407  */
408 static noinline void compress_file_range(struct inode *inode,
409 					struct page *locked_page,
410 					u64 start, u64 end,
411 					struct async_cow *async_cow,
412 					int *num_added)
413 {
414 	struct btrfs_root *root = BTRFS_I(inode)->root;
415 	u64 num_bytes;
416 	u64 blocksize = root->sectorsize;
417 	u64 actual_end;
418 	u64 isize = i_size_read(inode);
419 	int ret = 0;
420 	struct page **pages = NULL;
421 	unsigned long nr_pages;
422 	unsigned long nr_pages_ret = 0;
423 	unsigned long total_compressed = 0;
424 	unsigned long total_in = 0;
425 	unsigned long max_compressed = SZ_128K;
426 	unsigned long max_uncompressed = SZ_128K;
427 	int i;
428 	int will_compress;
429 	int compress_type = root->fs_info->compress_type;
430 	int redirty = 0;
431 
432 	/* if this is a small write inside eof, kick off a defrag */
433 	if ((end - start + 1) < SZ_16K &&
434 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
435 		btrfs_add_inode_defrag(NULL, inode);
436 
437 	actual_end = min_t(u64, isize, end + 1);
438 again:
439 	will_compress = 0;
440 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
441 	nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
442 
443 	/*
444 	 * we don't want to send crud past the end of i_size through
445 	 * compression, that's just a waste of CPU time.  So, if the
446 	 * end of the file is before the start of our current
447 	 * requested range of bytes, we bail out to the uncompressed
448 	 * cleanup code that can deal with all of this.
449 	 *
450 	 * It isn't really the fastest way to fix things, but this is a
451 	 * very uncommon corner.
452 	 */
453 	if (actual_end <= start)
454 		goto cleanup_and_bail_uncompressed;
455 
456 	total_compressed = actual_end - start;
457 
458 	/*
459 	 * skip compression for a small file range(<=blocksize) that
460 	 * isn't an inline extent, since it doesn't save disk space at all.
461 	 */
462 	if (total_compressed <= blocksize &&
463 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
464 		goto cleanup_and_bail_uncompressed;
465 
466 	/* we want to make sure that amount of ram required to uncompress
467 	 * an extent is reasonable, so we limit the total size in ram
468 	 * of a compressed extent to 128k.  This is a crucial number
469 	 * because it also controls how easily we can spread reads across
470 	 * cpus for decompression.
471 	 *
472 	 * We also want to make sure the amount of IO required to do
473 	 * a random read is reasonably small, so we limit the size of
474 	 * a compressed extent to 128k.
475 	 */
476 	total_compressed = min(total_compressed, max_uncompressed);
477 	num_bytes = ALIGN(end - start + 1, blocksize);
478 	num_bytes = max(blocksize,  num_bytes);
479 	total_in = 0;
480 	ret = 0;
481 
482 	/*
483 	 * we do compression for mount -o compress and when the
484 	 * inode has not been flagged as nocompress.  This flag can
485 	 * change at any time if we discover bad compression ratios.
486 	 */
487 	if (inode_need_compress(inode)) {
488 		WARN_ON(pages);
489 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
490 		if (!pages) {
491 			/* just bail out to the uncompressed code */
492 			goto cont;
493 		}
494 
495 		if (BTRFS_I(inode)->force_compress)
496 			compress_type = BTRFS_I(inode)->force_compress;
497 
498 		/*
499 		 * we need to call clear_page_dirty_for_io on each
500 		 * page in the range.  Otherwise applications with the file
501 		 * mmap'd can wander in and change the page contents while
502 		 * we are compressing them.
503 		 *
504 		 * If the compression fails for any reason, we set the pages
505 		 * dirty again later on.
506 		 */
507 		extent_range_clear_dirty_for_io(inode, start, end);
508 		redirty = 1;
509 		ret = btrfs_compress_pages(compress_type,
510 					   inode->i_mapping, start,
511 					   total_compressed, pages,
512 					   nr_pages, &nr_pages_ret,
513 					   &total_in,
514 					   &total_compressed,
515 					   max_compressed);
516 
517 		if (!ret) {
518 			unsigned long offset = total_compressed &
519 				(PAGE_SIZE - 1);
520 			struct page *page = pages[nr_pages_ret - 1];
521 			char *kaddr;
522 
523 			/* zero the tail end of the last page, we might be
524 			 * sending it down to disk
525 			 */
526 			if (offset) {
527 				kaddr = kmap_atomic(page);
528 				memset(kaddr + offset, 0,
529 				       PAGE_SIZE - offset);
530 				kunmap_atomic(kaddr);
531 			}
532 			will_compress = 1;
533 		}
534 	}
535 cont:
536 	if (start == 0) {
537 		/* lets try to make an inline extent */
538 		if (ret || total_in < (actual_end - start)) {
539 			/* we didn't compress the entire range, try
540 			 * to make an uncompressed inline extent.
541 			 */
542 			ret = cow_file_range_inline(root, inode, start, end,
543 						    0, 0, NULL);
544 		} else {
545 			/* try making a compressed inline extent */
546 			ret = cow_file_range_inline(root, inode, start, end,
547 						    total_compressed,
548 						    compress_type, pages);
549 		}
550 		if (ret <= 0) {
551 			unsigned long clear_flags = EXTENT_DELALLOC |
552 				EXTENT_DEFRAG;
553 			unsigned long page_error_op;
554 
555 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
556 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
557 
558 			/*
559 			 * inline extent creation worked or returned error,
560 			 * we don't need to create any more async work items.
561 			 * Unlock and free up our temp pages.
562 			 */
563 			extent_clear_unlock_delalloc(inode, start, end, NULL,
564 						     clear_flags, PAGE_UNLOCK |
565 						     PAGE_CLEAR_DIRTY |
566 						     PAGE_SET_WRITEBACK |
567 						     page_error_op |
568 						     PAGE_END_WRITEBACK);
569 			goto free_pages_out;
570 		}
571 	}
572 
573 	if (will_compress) {
574 		/*
575 		 * we aren't doing an inline extent round the compressed size
576 		 * up to a block size boundary so the allocator does sane
577 		 * things
578 		 */
579 		total_compressed = ALIGN(total_compressed, blocksize);
580 
581 		/*
582 		 * one last check to make sure the compression is really a
583 		 * win, compare the page count read with the blocks on disk
584 		 */
585 		total_in = ALIGN(total_in, PAGE_SIZE);
586 		if (total_compressed >= total_in) {
587 			will_compress = 0;
588 		} else {
589 			num_bytes = total_in;
590 			*num_added += 1;
591 
592 			/*
593 			 * The async work queues will take care of doing actual
594 			 * allocation on disk for these compressed pages, and
595 			 * will submit them to the elevator.
596 			 */
597 			add_async_extent(async_cow, start, num_bytes,
598 					total_compressed, pages, nr_pages_ret,
599 					compress_type);
600 
601 			if (start + num_bytes < end) {
602 				start += num_bytes;
603 				pages = NULL;
604 				cond_resched();
605 				goto again;
606 			}
607 			return;
608 		}
609 	}
610 	if (pages) {
611 		/*
612 		 * the compression code ran but failed to make things smaller,
613 		 * free any pages it allocated and our page pointer array
614 		 */
615 		for (i = 0; i < nr_pages_ret; i++) {
616 			WARN_ON(pages[i]->mapping);
617 			put_page(pages[i]);
618 		}
619 		kfree(pages);
620 		pages = NULL;
621 		total_compressed = 0;
622 		nr_pages_ret = 0;
623 
624 		/* flag the file so we don't compress in the future */
625 		if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
626 		    !(BTRFS_I(inode)->force_compress)) {
627 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
628 		}
629 	}
630 cleanup_and_bail_uncompressed:
631 	/*
632 	 * No compression, but we still need to write the pages in the file
633 	 * we've been given so far.  redirty the locked page if it corresponds
634 	 * to our extent and set things up for the async work queue to run
635 	 * cow_file_range to do the normal delalloc dance.
636 	 */
637 	if (page_offset(locked_page) >= start &&
638 	    page_offset(locked_page) <= end)
639 		__set_page_dirty_nobuffers(locked_page);
640 		/* unlocked later on in the async handlers */
641 
642 	if (redirty)
643 		extent_range_redirty_for_io(inode, start, end);
644 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
645 			 BTRFS_COMPRESS_NONE);
646 	*num_added += 1;
647 
648 	return;
649 
650 free_pages_out:
651 	for (i = 0; i < nr_pages_ret; i++) {
652 		WARN_ON(pages[i]->mapping);
653 		put_page(pages[i]);
654 	}
655 	kfree(pages);
656 }
657 
658 static void free_async_extent_pages(struct async_extent *async_extent)
659 {
660 	int i;
661 
662 	if (!async_extent->pages)
663 		return;
664 
665 	for (i = 0; i < async_extent->nr_pages; i++) {
666 		WARN_ON(async_extent->pages[i]->mapping);
667 		put_page(async_extent->pages[i]);
668 	}
669 	kfree(async_extent->pages);
670 	async_extent->nr_pages = 0;
671 	async_extent->pages = NULL;
672 }
673 
674 /*
675  * phase two of compressed writeback.  This is the ordered portion
676  * of the code, which only gets called in the order the work was
677  * queued.  We walk all the async extents created by compress_file_range
678  * and send them down to the disk.
679  */
680 static noinline void submit_compressed_extents(struct inode *inode,
681 					      struct async_cow *async_cow)
682 {
683 	struct async_extent *async_extent;
684 	u64 alloc_hint = 0;
685 	struct btrfs_key ins;
686 	struct extent_map *em;
687 	struct btrfs_root *root = BTRFS_I(inode)->root;
688 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 	struct extent_io_tree *io_tree;
690 	int ret = 0;
691 
692 again:
693 	while (!list_empty(&async_cow->extents)) {
694 		async_extent = list_entry(async_cow->extents.next,
695 					  struct async_extent, list);
696 		list_del(&async_extent->list);
697 
698 		io_tree = &BTRFS_I(inode)->io_tree;
699 
700 retry:
701 		/* did the compression code fall back to uncompressed IO? */
702 		if (!async_extent->pages) {
703 			int page_started = 0;
704 			unsigned long nr_written = 0;
705 
706 			lock_extent(io_tree, async_extent->start,
707 					 async_extent->start +
708 					 async_extent->ram_size - 1);
709 
710 			/* allocate blocks */
711 			ret = cow_file_range(inode, async_cow->locked_page,
712 					     async_extent->start,
713 					     async_extent->start +
714 					     async_extent->ram_size - 1,
715 					     async_extent->start +
716 					     async_extent->ram_size - 1,
717 					     &page_started, &nr_written, 0,
718 					     NULL);
719 
720 			/* JDM XXX */
721 
722 			/*
723 			 * if page_started, cow_file_range inserted an
724 			 * inline extent and took care of all the unlocking
725 			 * and IO for us.  Otherwise, we need to submit
726 			 * all those pages down to the drive.
727 			 */
728 			if (!page_started && !ret)
729 				extent_write_locked_range(io_tree,
730 						  inode, async_extent->start,
731 						  async_extent->start +
732 						  async_extent->ram_size - 1,
733 						  btrfs_get_extent,
734 						  WB_SYNC_ALL);
735 			else if (ret)
736 				unlock_page(async_cow->locked_page);
737 			kfree(async_extent);
738 			cond_resched();
739 			continue;
740 		}
741 
742 		lock_extent(io_tree, async_extent->start,
743 			    async_extent->start + async_extent->ram_size - 1);
744 
745 		ret = btrfs_reserve_extent(root,
746 					   async_extent->compressed_size,
747 					   async_extent->compressed_size,
748 					   0, alloc_hint, &ins, 1, 1);
749 		if (ret) {
750 			free_async_extent_pages(async_extent);
751 
752 			if (ret == -ENOSPC) {
753 				unlock_extent(io_tree, async_extent->start,
754 					      async_extent->start +
755 					      async_extent->ram_size - 1);
756 
757 				/*
758 				 * we need to redirty the pages if we decide to
759 				 * fallback to uncompressed IO, otherwise we
760 				 * will not submit these pages down to lower
761 				 * layers.
762 				 */
763 				extent_range_redirty_for_io(inode,
764 						async_extent->start,
765 						async_extent->start +
766 						async_extent->ram_size - 1);
767 
768 				goto retry;
769 			}
770 			goto out_free;
771 		}
772 		/*
773 		 * here we're doing allocation and writeback of the
774 		 * compressed pages
775 		 */
776 		btrfs_drop_extent_cache(inode, async_extent->start,
777 					async_extent->start +
778 					async_extent->ram_size - 1, 0);
779 
780 		em = alloc_extent_map();
781 		if (!em) {
782 			ret = -ENOMEM;
783 			goto out_free_reserve;
784 		}
785 		em->start = async_extent->start;
786 		em->len = async_extent->ram_size;
787 		em->orig_start = em->start;
788 		em->mod_start = em->start;
789 		em->mod_len = em->len;
790 
791 		em->block_start = ins.objectid;
792 		em->block_len = ins.offset;
793 		em->orig_block_len = ins.offset;
794 		em->ram_bytes = async_extent->ram_size;
795 		em->bdev = root->fs_info->fs_devices->latest_bdev;
796 		em->compress_type = async_extent->compress_type;
797 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
798 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
799 		em->generation = -1;
800 
801 		while (1) {
802 			write_lock(&em_tree->lock);
803 			ret = add_extent_mapping(em_tree, em, 1);
804 			write_unlock(&em_tree->lock);
805 			if (ret != -EEXIST) {
806 				free_extent_map(em);
807 				break;
808 			}
809 			btrfs_drop_extent_cache(inode, async_extent->start,
810 						async_extent->start +
811 						async_extent->ram_size - 1, 0);
812 		}
813 
814 		if (ret)
815 			goto out_free_reserve;
816 
817 		ret = btrfs_add_ordered_extent_compress(inode,
818 						async_extent->start,
819 						ins.objectid,
820 						async_extent->ram_size,
821 						ins.offset,
822 						BTRFS_ORDERED_COMPRESSED,
823 						async_extent->compress_type);
824 		if (ret) {
825 			btrfs_drop_extent_cache(inode, async_extent->start,
826 						async_extent->start +
827 						async_extent->ram_size - 1, 0);
828 			goto out_free_reserve;
829 		}
830 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
831 
832 		/*
833 		 * clear dirty, set writeback and unlock the pages.
834 		 */
835 		extent_clear_unlock_delalloc(inode, async_extent->start,
836 				async_extent->start +
837 				async_extent->ram_size - 1,
838 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
839 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
840 				PAGE_SET_WRITEBACK);
841 		ret = btrfs_submit_compressed_write(inode,
842 				    async_extent->start,
843 				    async_extent->ram_size,
844 				    ins.objectid,
845 				    ins.offset, async_extent->pages,
846 				    async_extent->nr_pages);
847 		if (ret) {
848 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
849 			struct page *p = async_extent->pages[0];
850 			const u64 start = async_extent->start;
851 			const u64 end = start + async_extent->ram_size - 1;
852 
853 			p->mapping = inode->i_mapping;
854 			tree->ops->writepage_end_io_hook(p, start, end,
855 							 NULL, 0);
856 			p->mapping = NULL;
857 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
858 						     PAGE_END_WRITEBACK |
859 						     PAGE_SET_ERROR);
860 			free_async_extent_pages(async_extent);
861 		}
862 		alloc_hint = ins.objectid + ins.offset;
863 		kfree(async_extent);
864 		cond_resched();
865 	}
866 	return;
867 out_free_reserve:
868 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
869 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
870 out_free:
871 	extent_clear_unlock_delalloc(inode, async_extent->start,
872 				     async_extent->start +
873 				     async_extent->ram_size - 1,
874 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
875 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
876 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
877 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
878 				     PAGE_SET_ERROR);
879 	free_async_extent_pages(async_extent);
880 	kfree(async_extent);
881 	goto again;
882 }
883 
884 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
885 				      u64 num_bytes)
886 {
887 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
888 	struct extent_map *em;
889 	u64 alloc_hint = 0;
890 
891 	read_lock(&em_tree->lock);
892 	em = search_extent_mapping(em_tree, start, num_bytes);
893 	if (em) {
894 		/*
895 		 * if block start isn't an actual block number then find the
896 		 * first block in this inode and use that as a hint.  If that
897 		 * block is also bogus then just don't worry about it.
898 		 */
899 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
900 			free_extent_map(em);
901 			em = search_extent_mapping(em_tree, 0, 0);
902 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
903 				alloc_hint = em->block_start;
904 			if (em)
905 				free_extent_map(em);
906 		} else {
907 			alloc_hint = em->block_start;
908 			free_extent_map(em);
909 		}
910 	}
911 	read_unlock(&em_tree->lock);
912 
913 	return alloc_hint;
914 }
915 
916 /*
917  * when extent_io.c finds a delayed allocation range in the file,
918  * the call backs end up in this code.  The basic idea is to
919  * allocate extents on disk for the range, and create ordered data structs
920  * in ram to track those extents.
921  *
922  * locked_page is the page that writepage had locked already.  We use
923  * it to make sure we don't do extra locks or unlocks.
924  *
925  * *page_started is set to one if we unlock locked_page and do everything
926  * required to start IO on it.  It may be clean and already done with
927  * IO when we return.
928  */
929 static noinline int cow_file_range(struct inode *inode,
930 				   struct page *locked_page,
931 				   u64 start, u64 end, u64 delalloc_end,
932 				   int *page_started, unsigned long *nr_written,
933 				   int unlock, struct btrfs_dedupe_hash *hash)
934 {
935 	struct btrfs_root *root = BTRFS_I(inode)->root;
936 	u64 alloc_hint = 0;
937 	u64 num_bytes;
938 	unsigned long ram_size;
939 	u64 disk_num_bytes;
940 	u64 cur_alloc_size;
941 	u64 blocksize = root->sectorsize;
942 	struct btrfs_key ins;
943 	struct extent_map *em;
944 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
945 	int ret = 0;
946 
947 	if (btrfs_is_free_space_inode(inode)) {
948 		WARN_ON_ONCE(1);
949 		ret = -EINVAL;
950 		goto out_unlock;
951 	}
952 
953 	num_bytes = ALIGN(end - start + 1, blocksize);
954 	num_bytes = max(blocksize,  num_bytes);
955 	disk_num_bytes = num_bytes;
956 
957 	/* if this is a small write inside eof, kick off defrag */
958 	if (num_bytes < SZ_64K &&
959 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
960 		btrfs_add_inode_defrag(NULL, inode);
961 
962 	if (start == 0) {
963 		/* lets try to make an inline extent */
964 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
965 					    NULL);
966 		if (ret == 0) {
967 			extent_clear_unlock_delalloc(inode, start, end, NULL,
968 				     EXTENT_LOCKED | EXTENT_DELALLOC |
969 				     EXTENT_DEFRAG, PAGE_UNLOCK |
970 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
971 				     PAGE_END_WRITEBACK);
972 
973 			*nr_written = *nr_written +
974 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
975 			*page_started = 1;
976 			goto out;
977 		} else if (ret < 0) {
978 			goto out_unlock;
979 		}
980 	}
981 
982 	BUG_ON(disk_num_bytes >
983 	       btrfs_super_total_bytes(root->fs_info->super_copy));
984 
985 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
986 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
987 
988 	while (disk_num_bytes > 0) {
989 		unsigned long op;
990 
991 		cur_alloc_size = disk_num_bytes;
992 		ret = btrfs_reserve_extent(root, cur_alloc_size,
993 					   root->sectorsize, 0, alloc_hint,
994 					   &ins, 1, 1);
995 		if (ret < 0)
996 			goto out_unlock;
997 
998 		em = alloc_extent_map();
999 		if (!em) {
1000 			ret = -ENOMEM;
1001 			goto out_reserve;
1002 		}
1003 		em->start = start;
1004 		em->orig_start = em->start;
1005 		ram_size = ins.offset;
1006 		em->len = ins.offset;
1007 		em->mod_start = em->start;
1008 		em->mod_len = em->len;
1009 
1010 		em->block_start = ins.objectid;
1011 		em->block_len = ins.offset;
1012 		em->orig_block_len = ins.offset;
1013 		em->ram_bytes = ram_size;
1014 		em->bdev = root->fs_info->fs_devices->latest_bdev;
1015 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1016 		em->generation = -1;
1017 
1018 		while (1) {
1019 			write_lock(&em_tree->lock);
1020 			ret = add_extent_mapping(em_tree, em, 1);
1021 			write_unlock(&em_tree->lock);
1022 			if (ret != -EEXIST) {
1023 				free_extent_map(em);
1024 				break;
1025 			}
1026 			btrfs_drop_extent_cache(inode, start,
1027 						start + ram_size - 1, 0);
1028 		}
1029 		if (ret)
1030 			goto out_reserve;
1031 
1032 		cur_alloc_size = ins.offset;
1033 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1034 					       ram_size, cur_alloc_size, 0);
1035 		if (ret)
1036 			goto out_drop_extent_cache;
1037 
1038 		if (root->root_key.objectid ==
1039 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1040 			ret = btrfs_reloc_clone_csums(inode, start,
1041 						      cur_alloc_size);
1042 			if (ret)
1043 				goto out_drop_extent_cache;
1044 		}
1045 
1046 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1047 
1048 		if (disk_num_bytes < cur_alloc_size)
1049 			break;
1050 
1051 		/* we're not doing compressed IO, don't unlock the first
1052 		 * page (which the caller expects to stay locked), don't
1053 		 * clear any dirty bits and don't set any writeback bits
1054 		 *
1055 		 * Do set the Private2 bit so we know this page was properly
1056 		 * setup for writepage
1057 		 */
1058 		op = unlock ? PAGE_UNLOCK : 0;
1059 		op |= PAGE_SET_PRIVATE2;
1060 
1061 		extent_clear_unlock_delalloc(inode, start,
1062 					     start + ram_size - 1, locked_page,
1063 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1064 					     op);
1065 		disk_num_bytes -= cur_alloc_size;
1066 		num_bytes -= cur_alloc_size;
1067 		alloc_hint = ins.objectid + ins.offset;
1068 		start += cur_alloc_size;
1069 	}
1070 out:
1071 	return ret;
1072 
1073 out_drop_extent_cache:
1074 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1075 out_reserve:
1076 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1077 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1078 out_unlock:
1079 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1080 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1081 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1082 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1083 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1084 	goto out;
1085 }
1086 
1087 /*
1088  * work queue call back to started compression on a file and pages
1089  */
1090 static noinline void async_cow_start(struct btrfs_work *work)
1091 {
1092 	struct async_cow *async_cow;
1093 	int num_added = 0;
1094 	async_cow = container_of(work, struct async_cow, work);
1095 
1096 	compress_file_range(async_cow->inode, async_cow->locked_page,
1097 			    async_cow->start, async_cow->end, async_cow,
1098 			    &num_added);
1099 	if (num_added == 0) {
1100 		btrfs_add_delayed_iput(async_cow->inode);
1101 		async_cow->inode = NULL;
1102 	}
1103 }
1104 
1105 /*
1106  * work queue call back to submit previously compressed pages
1107  */
1108 static noinline void async_cow_submit(struct btrfs_work *work)
1109 {
1110 	struct async_cow *async_cow;
1111 	struct btrfs_root *root;
1112 	unsigned long nr_pages;
1113 
1114 	async_cow = container_of(work, struct async_cow, work);
1115 
1116 	root = async_cow->root;
1117 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1118 		PAGE_SHIFT;
1119 
1120 	/*
1121 	 * atomic_sub_return implies a barrier for waitqueue_active
1122 	 */
1123 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1124 	    5 * SZ_1M &&
1125 	    waitqueue_active(&root->fs_info->async_submit_wait))
1126 		wake_up(&root->fs_info->async_submit_wait);
1127 
1128 	if (async_cow->inode)
1129 		submit_compressed_extents(async_cow->inode, async_cow);
1130 }
1131 
1132 static noinline void async_cow_free(struct btrfs_work *work)
1133 {
1134 	struct async_cow *async_cow;
1135 	async_cow = container_of(work, struct async_cow, work);
1136 	if (async_cow->inode)
1137 		btrfs_add_delayed_iput(async_cow->inode);
1138 	kfree(async_cow);
1139 }
1140 
1141 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1142 				u64 start, u64 end, int *page_started,
1143 				unsigned long *nr_written)
1144 {
1145 	struct async_cow *async_cow;
1146 	struct btrfs_root *root = BTRFS_I(inode)->root;
1147 	unsigned long nr_pages;
1148 	u64 cur_end;
1149 	int limit = 10 * SZ_1M;
1150 
1151 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1152 			 1, 0, NULL, GFP_NOFS);
1153 	while (start < end) {
1154 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1155 		BUG_ON(!async_cow); /* -ENOMEM */
1156 		async_cow->inode = igrab(inode);
1157 		async_cow->root = root;
1158 		async_cow->locked_page = locked_page;
1159 		async_cow->start = start;
1160 
1161 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1162 		    !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
1163 			cur_end = end;
1164 		else
1165 			cur_end = min(end, start + SZ_512K - 1);
1166 
1167 		async_cow->end = cur_end;
1168 		INIT_LIST_HEAD(&async_cow->extents);
1169 
1170 		btrfs_init_work(&async_cow->work,
1171 				btrfs_delalloc_helper,
1172 				async_cow_start, async_cow_submit,
1173 				async_cow_free);
1174 
1175 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1176 			PAGE_SHIFT;
1177 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1178 
1179 		btrfs_queue_work(root->fs_info->delalloc_workers,
1180 				 &async_cow->work);
1181 
1182 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1183 			wait_event(root->fs_info->async_submit_wait,
1184 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1185 			    limit));
1186 		}
1187 
1188 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1189 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1190 			wait_event(root->fs_info->async_submit_wait,
1191 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1192 			   0));
1193 		}
1194 
1195 		*nr_written += nr_pages;
1196 		start = cur_end + 1;
1197 	}
1198 	*page_started = 1;
1199 	return 0;
1200 }
1201 
1202 static noinline int csum_exist_in_range(struct btrfs_root *root,
1203 					u64 bytenr, u64 num_bytes)
1204 {
1205 	int ret;
1206 	struct btrfs_ordered_sum *sums;
1207 	LIST_HEAD(list);
1208 
1209 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1210 				       bytenr + num_bytes - 1, &list, 0);
1211 	if (ret == 0 && list_empty(&list))
1212 		return 0;
1213 
1214 	while (!list_empty(&list)) {
1215 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1216 		list_del(&sums->list);
1217 		kfree(sums);
1218 	}
1219 	return 1;
1220 }
1221 
1222 /*
1223  * when nowcow writeback call back.  This checks for snapshots or COW copies
1224  * of the extents that exist in the file, and COWs the file as required.
1225  *
1226  * If no cow copies or snapshots exist, we write directly to the existing
1227  * blocks on disk
1228  */
1229 static noinline int run_delalloc_nocow(struct inode *inode,
1230 				       struct page *locked_page,
1231 			      u64 start, u64 end, int *page_started, int force,
1232 			      unsigned long *nr_written)
1233 {
1234 	struct btrfs_root *root = BTRFS_I(inode)->root;
1235 	struct btrfs_trans_handle *trans;
1236 	struct extent_buffer *leaf;
1237 	struct btrfs_path *path;
1238 	struct btrfs_file_extent_item *fi;
1239 	struct btrfs_key found_key;
1240 	u64 cow_start;
1241 	u64 cur_offset;
1242 	u64 extent_end;
1243 	u64 extent_offset;
1244 	u64 disk_bytenr;
1245 	u64 num_bytes;
1246 	u64 disk_num_bytes;
1247 	u64 ram_bytes;
1248 	int extent_type;
1249 	int ret, err;
1250 	int type;
1251 	int nocow;
1252 	int check_prev = 1;
1253 	bool nolock;
1254 	u64 ino = btrfs_ino(inode);
1255 
1256 	path = btrfs_alloc_path();
1257 	if (!path) {
1258 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1259 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1260 					     EXTENT_DO_ACCOUNTING |
1261 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1262 					     PAGE_CLEAR_DIRTY |
1263 					     PAGE_SET_WRITEBACK |
1264 					     PAGE_END_WRITEBACK);
1265 		return -ENOMEM;
1266 	}
1267 
1268 	nolock = btrfs_is_free_space_inode(inode);
1269 
1270 	if (nolock)
1271 		trans = btrfs_join_transaction_nolock(root);
1272 	else
1273 		trans = btrfs_join_transaction(root);
1274 
1275 	if (IS_ERR(trans)) {
1276 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1277 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1278 					     EXTENT_DO_ACCOUNTING |
1279 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1280 					     PAGE_CLEAR_DIRTY |
1281 					     PAGE_SET_WRITEBACK |
1282 					     PAGE_END_WRITEBACK);
1283 		btrfs_free_path(path);
1284 		return PTR_ERR(trans);
1285 	}
1286 
1287 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1288 
1289 	cow_start = (u64)-1;
1290 	cur_offset = start;
1291 	while (1) {
1292 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1293 					       cur_offset, 0);
1294 		if (ret < 0)
1295 			goto error;
1296 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1297 			leaf = path->nodes[0];
1298 			btrfs_item_key_to_cpu(leaf, &found_key,
1299 					      path->slots[0] - 1);
1300 			if (found_key.objectid == ino &&
1301 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1302 				path->slots[0]--;
1303 		}
1304 		check_prev = 0;
1305 next_slot:
1306 		leaf = path->nodes[0];
1307 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1308 			ret = btrfs_next_leaf(root, path);
1309 			if (ret < 0)
1310 				goto error;
1311 			if (ret > 0)
1312 				break;
1313 			leaf = path->nodes[0];
1314 		}
1315 
1316 		nocow = 0;
1317 		disk_bytenr = 0;
1318 		num_bytes = 0;
1319 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1320 
1321 		if (found_key.objectid > ino)
1322 			break;
1323 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1324 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1325 			path->slots[0]++;
1326 			goto next_slot;
1327 		}
1328 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1329 		    found_key.offset > end)
1330 			break;
1331 
1332 		if (found_key.offset > cur_offset) {
1333 			extent_end = found_key.offset;
1334 			extent_type = 0;
1335 			goto out_check;
1336 		}
1337 
1338 		fi = btrfs_item_ptr(leaf, path->slots[0],
1339 				    struct btrfs_file_extent_item);
1340 		extent_type = btrfs_file_extent_type(leaf, fi);
1341 
1342 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1343 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1344 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1345 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1346 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1347 			extent_end = found_key.offset +
1348 				btrfs_file_extent_num_bytes(leaf, fi);
1349 			disk_num_bytes =
1350 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1351 			if (extent_end <= start) {
1352 				path->slots[0]++;
1353 				goto next_slot;
1354 			}
1355 			if (disk_bytenr == 0)
1356 				goto out_check;
1357 			if (btrfs_file_extent_compression(leaf, fi) ||
1358 			    btrfs_file_extent_encryption(leaf, fi) ||
1359 			    btrfs_file_extent_other_encoding(leaf, fi))
1360 				goto out_check;
1361 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1362 				goto out_check;
1363 			if (btrfs_extent_readonly(root, disk_bytenr))
1364 				goto out_check;
1365 			if (btrfs_cross_ref_exist(trans, root, ino,
1366 						  found_key.offset -
1367 						  extent_offset, disk_bytenr))
1368 				goto out_check;
1369 			disk_bytenr += extent_offset;
1370 			disk_bytenr += cur_offset - found_key.offset;
1371 			num_bytes = min(end + 1, extent_end) - cur_offset;
1372 			/*
1373 			 * if there are pending snapshots for this root,
1374 			 * we fall into common COW way.
1375 			 */
1376 			if (!nolock) {
1377 				err = btrfs_start_write_no_snapshoting(root);
1378 				if (!err)
1379 					goto out_check;
1380 			}
1381 			/*
1382 			 * force cow if csum exists in the range.
1383 			 * this ensure that csum for a given extent are
1384 			 * either valid or do not exist.
1385 			 */
1386 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1387 				goto out_check;
1388 			if (!btrfs_inc_nocow_writers(root->fs_info,
1389 						     disk_bytenr))
1390 				goto out_check;
1391 			nocow = 1;
1392 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1393 			extent_end = found_key.offset +
1394 				btrfs_file_extent_inline_len(leaf,
1395 						     path->slots[0], fi);
1396 			extent_end = ALIGN(extent_end, root->sectorsize);
1397 		} else {
1398 			BUG_ON(1);
1399 		}
1400 out_check:
1401 		if (extent_end <= start) {
1402 			path->slots[0]++;
1403 			if (!nolock && nocow)
1404 				btrfs_end_write_no_snapshoting(root);
1405 			if (nocow)
1406 				btrfs_dec_nocow_writers(root->fs_info,
1407 							disk_bytenr);
1408 			goto next_slot;
1409 		}
1410 		if (!nocow) {
1411 			if (cow_start == (u64)-1)
1412 				cow_start = cur_offset;
1413 			cur_offset = extent_end;
1414 			if (cur_offset > end)
1415 				break;
1416 			path->slots[0]++;
1417 			goto next_slot;
1418 		}
1419 
1420 		btrfs_release_path(path);
1421 		if (cow_start != (u64)-1) {
1422 			ret = cow_file_range(inode, locked_page,
1423 					     cow_start, found_key.offset - 1,
1424 					     end, page_started, nr_written, 1,
1425 					     NULL);
1426 			if (ret) {
1427 				if (!nolock && nocow)
1428 					btrfs_end_write_no_snapshoting(root);
1429 				if (nocow)
1430 					btrfs_dec_nocow_writers(root->fs_info,
1431 								disk_bytenr);
1432 				goto error;
1433 			}
1434 			cow_start = (u64)-1;
1435 		}
1436 
1437 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1438 			struct extent_map *em;
1439 			struct extent_map_tree *em_tree;
1440 			em_tree = &BTRFS_I(inode)->extent_tree;
1441 			em = alloc_extent_map();
1442 			BUG_ON(!em); /* -ENOMEM */
1443 			em->start = cur_offset;
1444 			em->orig_start = found_key.offset - extent_offset;
1445 			em->len = num_bytes;
1446 			em->block_len = num_bytes;
1447 			em->block_start = disk_bytenr;
1448 			em->orig_block_len = disk_num_bytes;
1449 			em->ram_bytes = ram_bytes;
1450 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1451 			em->mod_start = em->start;
1452 			em->mod_len = em->len;
1453 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1454 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1455 			em->generation = -1;
1456 			while (1) {
1457 				write_lock(&em_tree->lock);
1458 				ret = add_extent_mapping(em_tree, em, 1);
1459 				write_unlock(&em_tree->lock);
1460 				if (ret != -EEXIST) {
1461 					free_extent_map(em);
1462 					break;
1463 				}
1464 				btrfs_drop_extent_cache(inode, em->start,
1465 						em->start + em->len - 1, 0);
1466 			}
1467 			type = BTRFS_ORDERED_PREALLOC;
1468 		} else {
1469 			type = BTRFS_ORDERED_NOCOW;
1470 		}
1471 
1472 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1473 					       num_bytes, num_bytes, type);
1474 		if (nocow)
1475 			btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
1476 		BUG_ON(ret); /* -ENOMEM */
1477 
1478 		if (root->root_key.objectid ==
1479 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1480 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1481 						      num_bytes);
1482 			if (ret) {
1483 				if (!nolock && nocow)
1484 					btrfs_end_write_no_snapshoting(root);
1485 				goto error;
1486 			}
1487 		}
1488 
1489 		extent_clear_unlock_delalloc(inode, cur_offset,
1490 					     cur_offset + num_bytes - 1,
1491 					     locked_page, EXTENT_LOCKED |
1492 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1493 					     PAGE_SET_PRIVATE2);
1494 		if (!nolock && nocow)
1495 			btrfs_end_write_no_snapshoting(root);
1496 		cur_offset = extent_end;
1497 		if (cur_offset > end)
1498 			break;
1499 	}
1500 	btrfs_release_path(path);
1501 
1502 	if (cur_offset <= end && cow_start == (u64)-1) {
1503 		cow_start = cur_offset;
1504 		cur_offset = end;
1505 	}
1506 
1507 	if (cow_start != (u64)-1) {
1508 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1509 				     page_started, nr_written, 1, NULL);
1510 		if (ret)
1511 			goto error;
1512 	}
1513 
1514 error:
1515 	err = btrfs_end_transaction(trans, root);
1516 	if (!ret)
1517 		ret = err;
1518 
1519 	if (ret && cur_offset < end)
1520 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1521 					     locked_page, EXTENT_LOCKED |
1522 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1523 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1524 					     PAGE_CLEAR_DIRTY |
1525 					     PAGE_SET_WRITEBACK |
1526 					     PAGE_END_WRITEBACK);
1527 	btrfs_free_path(path);
1528 	return ret;
1529 }
1530 
1531 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1532 {
1533 
1534 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1535 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1536 		return 0;
1537 
1538 	/*
1539 	 * @defrag_bytes is a hint value, no spinlock held here,
1540 	 * if is not zero, it means the file is defragging.
1541 	 * Force cow if given extent needs to be defragged.
1542 	 */
1543 	if (BTRFS_I(inode)->defrag_bytes &&
1544 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1545 			   EXTENT_DEFRAG, 0, NULL))
1546 		return 1;
1547 
1548 	return 0;
1549 }
1550 
1551 /*
1552  * extent_io.c call back to do delayed allocation processing
1553  */
1554 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1555 			      u64 start, u64 end, int *page_started,
1556 			      unsigned long *nr_written)
1557 {
1558 	int ret;
1559 	int force_cow = need_force_cow(inode, start, end);
1560 
1561 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1562 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1563 					 page_started, 1, nr_written);
1564 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1565 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1566 					 page_started, 0, nr_written);
1567 	} else if (!inode_need_compress(inode)) {
1568 		ret = cow_file_range(inode, locked_page, start, end, end,
1569 				      page_started, nr_written, 1, NULL);
1570 	} else {
1571 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1572 			&BTRFS_I(inode)->runtime_flags);
1573 		ret = cow_file_range_async(inode, locked_page, start, end,
1574 					   page_started, nr_written);
1575 	}
1576 	return ret;
1577 }
1578 
1579 static void btrfs_split_extent_hook(struct inode *inode,
1580 				    struct extent_state *orig, u64 split)
1581 {
1582 	u64 size;
1583 
1584 	/* not delalloc, ignore it */
1585 	if (!(orig->state & EXTENT_DELALLOC))
1586 		return;
1587 
1588 	size = orig->end - orig->start + 1;
1589 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1590 		u64 num_extents;
1591 		u64 new_size;
1592 
1593 		/*
1594 		 * See the explanation in btrfs_merge_extent_hook, the same
1595 		 * applies here, just in reverse.
1596 		 */
1597 		new_size = orig->end - split + 1;
1598 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1599 					BTRFS_MAX_EXTENT_SIZE);
1600 		new_size = split - orig->start;
1601 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1602 					BTRFS_MAX_EXTENT_SIZE);
1603 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1604 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1605 			return;
1606 	}
1607 
1608 	spin_lock(&BTRFS_I(inode)->lock);
1609 	BTRFS_I(inode)->outstanding_extents++;
1610 	spin_unlock(&BTRFS_I(inode)->lock);
1611 }
1612 
1613 /*
1614  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1615  * extents so we can keep track of new extents that are just merged onto old
1616  * extents, such as when we are doing sequential writes, so we can properly
1617  * account for the metadata space we'll need.
1618  */
1619 static void btrfs_merge_extent_hook(struct inode *inode,
1620 				    struct extent_state *new,
1621 				    struct extent_state *other)
1622 {
1623 	u64 new_size, old_size;
1624 	u64 num_extents;
1625 
1626 	/* not delalloc, ignore it */
1627 	if (!(other->state & EXTENT_DELALLOC))
1628 		return;
1629 
1630 	if (new->start > other->start)
1631 		new_size = new->end - other->start + 1;
1632 	else
1633 		new_size = other->end - new->start + 1;
1634 
1635 	/* we're not bigger than the max, unreserve the space and go */
1636 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1637 		spin_lock(&BTRFS_I(inode)->lock);
1638 		BTRFS_I(inode)->outstanding_extents--;
1639 		spin_unlock(&BTRFS_I(inode)->lock);
1640 		return;
1641 	}
1642 
1643 	/*
1644 	 * We have to add up either side to figure out how many extents were
1645 	 * accounted for before we merged into one big extent.  If the number of
1646 	 * extents we accounted for is <= the amount we need for the new range
1647 	 * then we can return, otherwise drop.  Think of it like this
1648 	 *
1649 	 * [ 4k][MAX_SIZE]
1650 	 *
1651 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1652 	 * need 2 outstanding extents, on one side we have 1 and the other side
1653 	 * we have 1 so they are == and we can return.  But in this case
1654 	 *
1655 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1656 	 *
1657 	 * Each range on their own accounts for 2 extents, but merged together
1658 	 * they are only 3 extents worth of accounting, so we need to drop in
1659 	 * this case.
1660 	 */
1661 	old_size = other->end - other->start + 1;
1662 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1663 				BTRFS_MAX_EXTENT_SIZE);
1664 	old_size = new->end - new->start + 1;
1665 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1666 				 BTRFS_MAX_EXTENT_SIZE);
1667 
1668 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1669 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1670 		return;
1671 
1672 	spin_lock(&BTRFS_I(inode)->lock);
1673 	BTRFS_I(inode)->outstanding_extents--;
1674 	spin_unlock(&BTRFS_I(inode)->lock);
1675 }
1676 
1677 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1678 				      struct inode *inode)
1679 {
1680 	spin_lock(&root->delalloc_lock);
1681 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1682 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1683 			      &root->delalloc_inodes);
1684 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1685 			&BTRFS_I(inode)->runtime_flags);
1686 		root->nr_delalloc_inodes++;
1687 		if (root->nr_delalloc_inodes == 1) {
1688 			spin_lock(&root->fs_info->delalloc_root_lock);
1689 			BUG_ON(!list_empty(&root->delalloc_root));
1690 			list_add_tail(&root->delalloc_root,
1691 				      &root->fs_info->delalloc_roots);
1692 			spin_unlock(&root->fs_info->delalloc_root_lock);
1693 		}
1694 	}
1695 	spin_unlock(&root->delalloc_lock);
1696 }
1697 
1698 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1699 				     struct inode *inode)
1700 {
1701 	spin_lock(&root->delalloc_lock);
1702 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1703 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1704 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1705 			  &BTRFS_I(inode)->runtime_flags);
1706 		root->nr_delalloc_inodes--;
1707 		if (!root->nr_delalloc_inodes) {
1708 			spin_lock(&root->fs_info->delalloc_root_lock);
1709 			BUG_ON(list_empty(&root->delalloc_root));
1710 			list_del_init(&root->delalloc_root);
1711 			spin_unlock(&root->fs_info->delalloc_root_lock);
1712 		}
1713 	}
1714 	spin_unlock(&root->delalloc_lock);
1715 }
1716 
1717 /*
1718  * extent_io.c set_bit_hook, used to track delayed allocation
1719  * bytes in this file, and to maintain the list of inodes that
1720  * have pending delalloc work to be done.
1721  */
1722 static void btrfs_set_bit_hook(struct inode *inode,
1723 			       struct extent_state *state, unsigned *bits)
1724 {
1725 
1726 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1727 		WARN_ON(1);
1728 	/*
1729 	 * set_bit and clear bit hooks normally require _irqsave/restore
1730 	 * but in this case, we are only testing for the DELALLOC
1731 	 * bit, which is only set or cleared with irqs on
1732 	 */
1733 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1734 		struct btrfs_root *root = BTRFS_I(inode)->root;
1735 		u64 len = state->end + 1 - state->start;
1736 		bool do_list = !btrfs_is_free_space_inode(inode);
1737 
1738 		if (*bits & EXTENT_FIRST_DELALLOC) {
1739 			*bits &= ~EXTENT_FIRST_DELALLOC;
1740 		} else {
1741 			spin_lock(&BTRFS_I(inode)->lock);
1742 			BTRFS_I(inode)->outstanding_extents++;
1743 			spin_unlock(&BTRFS_I(inode)->lock);
1744 		}
1745 
1746 		/* For sanity tests */
1747 		if (btrfs_is_testing(root->fs_info))
1748 			return;
1749 
1750 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1751 				     root->fs_info->delalloc_batch);
1752 		spin_lock(&BTRFS_I(inode)->lock);
1753 		BTRFS_I(inode)->delalloc_bytes += len;
1754 		if (*bits & EXTENT_DEFRAG)
1755 			BTRFS_I(inode)->defrag_bytes += len;
1756 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1757 					 &BTRFS_I(inode)->runtime_flags))
1758 			btrfs_add_delalloc_inodes(root, inode);
1759 		spin_unlock(&BTRFS_I(inode)->lock);
1760 	}
1761 }
1762 
1763 /*
1764  * extent_io.c clear_bit_hook, see set_bit_hook for why
1765  */
1766 static void btrfs_clear_bit_hook(struct inode *inode,
1767 				 struct extent_state *state,
1768 				 unsigned *bits)
1769 {
1770 	u64 len = state->end + 1 - state->start;
1771 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1772 				    BTRFS_MAX_EXTENT_SIZE);
1773 
1774 	spin_lock(&BTRFS_I(inode)->lock);
1775 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1776 		BTRFS_I(inode)->defrag_bytes -= len;
1777 	spin_unlock(&BTRFS_I(inode)->lock);
1778 
1779 	/*
1780 	 * set_bit and clear bit hooks normally require _irqsave/restore
1781 	 * but in this case, we are only testing for the DELALLOC
1782 	 * bit, which is only set or cleared with irqs on
1783 	 */
1784 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1785 		struct btrfs_root *root = BTRFS_I(inode)->root;
1786 		bool do_list = !btrfs_is_free_space_inode(inode);
1787 
1788 		if (*bits & EXTENT_FIRST_DELALLOC) {
1789 			*bits &= ~EXTENT_FIRST_DELALLOC;
1790 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1791 			spin_lock(&BTRFS_I(inode)->lock);
1792 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1793 			spin_unlock(&BTRFS_I(inode)->lock);
1794 		}
1795 
1796 		/*
1797 		 * We don't reserve metadata space for space cache inodes so we
1798 		 * don't need to call dellalloc_release_metadata if there is an
1799 		 * error.
1800 		 */
1801 		if (*bits & EXTENT_DO_ACCOUNTING &&
1802 		    root != root->fs_info->tree_root)
1803 			btrfs_delalloc_release_metadata(inode, len);
1804 
1805 		/* For sanity tests. */
1806 		if (btrfs_is_testing(root->fs_info))
1807 			return;
1808 
1809 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1810 		    && do_list && !(state->state & EXTENT_NORESERVE))
1811 			btrfs_free_reserved_data_space_noquota(inode,
1812 					state->start, len);
1813 
1814 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1815 				     root->fs_info->delalloc_batch);
1816 		spin_lock(&BTRFS_I(inode)->lock);
1817 		BTRFS_I(inode)->delalloc_bytes -= len;
1818 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1819 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1820 			     &BTRFS_I(inode)->runtime_flags))
1821 			btrfs_del_delalloc_inode(root, inode);
1822 		spin_unlock(&BTRFS_I(inode)->lock);
1823 	}
1824 }
1825 
1826 /*
1827  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1828  * we don't create bios that span stripes or chunks
1829  *
1830  * return 1 if page cannot be merged to bio
1831  * return 0 if page can be merged to bio
1832  * return error otherwise
1833  */
1834 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1835 			 size_t size, struct bio *bio,
1836 			 unsigned long bio_flags)
1837 {
1838 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1839 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1840 	u64 length = 0;
1841 	u64 map_length;
1842 	int ret;
1843 
1844 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1845 		return 0;
1846 
1847 	length = bio->bi_iter.bi_size;
1848 	map_length = length;
1849 	ret = btrfs_map_block(root->fs_info, bio_op(bio), logical,
1850 			      &map_length, NULL, 0);
1851 	if (ret < 0)
1852 		return ret;
1853 	if (map_length < length + size)
1854 		return 1;
1855 	return 0;
1856 }
1857 
1858 /*
1859  * in order to insert checksums into the metadata in large chunks,
1860  * we wait until bio submission time.   All the pages in the bio are
1861  * checksummed and sums are attached onto the ordered extent record.
1862  *
1863  * At IO completion time the cums attached on the ordered extent record
1864  * are inserted into the btree
1865  */
1866 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1867 				    int mirror_num, unsigned long bio_flags,
1868 				    u64 bio_offset)
1869 {
1870 	struct btrfs_root *root = BTRFS_I(inode)->root;
1871 	int ret = 0;
1872 
1873 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1874 	BUG_ON(ret); /* -ENOMEM */
1875 	return 0;
1876 }
1877 
1878 /*
1879  * in order to insert checksums into the metadata in large chunks,
1880  * we wait until bio submission time.   All the pages in the bio are
1881  * checksummed and sums are attached onto the ordered extent record.
1882  *
1883  * At IO completion time the cums attached on the ordered extent record
1884  * are inserted into the btree
1885  */
1886 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
1887 			  int mirror_num, unsigned long bio_flags,
1888 			  u64 bio_offset)
1889 {
1890 	struct btrfs_root *root = BTRFS_I(inode)->root;
1891 	int ret;
1892 
1893 	ret = btrfs_map_bio(root, bio, mirror_num, 1);
1894 	if (ret) {
1895 		bio->bi_error = ret;
1896 		bio_endio(bio);
1897 	}
1898 	return ret;
1899 }
1900 
1901 /*
1902  * extent_io.c submission hook. This does the right thing for csum calculation
1903  * on write, or reading the csums from the tree before a read
1904  */
1905 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1906 			  int mirror_num, unsigned long bio_flags,
1907 			  u64 bio_offset)
1908 {
1909 	struct btrfs_root *root = BTRFS_I(inode)->root;
1910 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1911 	int ret = 0;
1912 	int skip_sum;
1913 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1914 
1915 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1916 
1917 	if (btrfs_is_free_space_inode(inode))
1918 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1919 
1920 	if (bio_op(bio) != REQ_OP_WRITE) {
1921 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1922 		if (ret)
1923 			goto out;
1924 
1925 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1926 			ret = btrfs_submit_compressed_read(inode, bio,
1927 							   mirror_num,
1928 							   bio_flags);
1929 			goto out;
1930 		} else if (!skip_sum) {
1931 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1932 			if (ret)
1933 				goto out;
1934 		}
1935 		goto mapit;
1936 	} else if (async && !skip_sum) {
1937 		/* csum items have already been cloned */
1938 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1939 			goto mapit;
1940 		/* we're doing a write, do the async checksumming */
1941 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1942 				   inode, bio, mirror_num,
1943 				   bio_flags, bio_offset,
1944 				   __btrfs_submit_bio_start,
1945 				   __btrfs_submit_bio_done);
1946 		goto out;
1947 	} else if (!skip_sum) {
1948 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1949 		if (ret)
1950 			goto out;
1951 	}
1952 
1953 mapit:
1954 	ret = btrfs_map_bio(root, bio, mirror_num, 0);
1955 
1956 out:
1957 	if (ret < 0) {
1958 		bio->bi_error = ret;
1959 		bio_endio(bio);
1960 	}
1961 	return ret;
1962 }
1963 
1964 /*
1965  * given a list of ordered sums record them in the inode.  This happens
1966  * at IO completion time based on sums calculated at bio submission time.
1967  */
1968 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1969 			     struct inode *inode, u64 file_offset,
1970 			     struct list_head *list)
1971 {
1972 	struct btrfs_ordered_sum *sum;
1973 
1974 	list_for_each_entry(sum, list, list) {
1975 		trans->adding_csums = 1;
1976 		btrfs_csum_file_blocks(trans,
1977 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1978 		trans->adding_csums = 0;
1979 	}
1980 	return 0;
1981 }
1982 
1983 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1984 			      struct extent_state **cached_state)
1985 {
1986 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
1987 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1988 				   cached_state);
1989 }
1990 
1991 /* see btrfs_writepage_start_hook for details on why this is required */
1992 struct btrfs_writepage_fixup {
1993 	struct page *page;
1994 	struct btrfs_work work;
1995 };
1996 
1997 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1998 {
1999 	struct btrfs_writepage_fixup *fixup;
2000 	struct btrfs_ordered_extent *ordered;
2001 	struct extent_state *cached_state = NULL;
2002 	struct page *page;
2003 	struct inode *inode;
2004 	u64 page_start;
2005 	u64 page_end;
2006 	int ret;
2007 
2008 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2009 	page = fixup->page;
2010 again:
2011 	lock_page(page);
2012 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2013 		ClearPageChecked(page);
2014 		goto out_page;
2015 	}
2016 
2017 	inode = page->mapping->host;
2018 	page_start = page_offset(page);
2019 	page_end = page_offset(page) + PAGE_SIZE - 1;
2020 
2021 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2022 			 &cached_state);
2023 
2024 	/* already ordered? We're done */
2025 	if (PagePrivate2(page))
2026 		goto out;
2027 
2028 	ordered = btrfs_lookup_ordered_range(inode, page_start,
2029 					PAGE_SIZE);
2030 	if (ordered) {
2031 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2032 				     page_end, &cached_state, GFP_NOFS);
2033 		unlock_page(page);
2034 		btrfs_start_ordered_extent(inode, ordered, 1);
2035 		btrfs_put_ordered_extent(ordered);
2036 		goto again;
2037 	}
2038 
2039 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2040 					   PAGE_SIZE);
2041 	if (ret) {
2042 		mapping_set_error(page->mapping, ret);
2043 		end_extent_writepage(page, ret, page_start, page_end);
2044 		ClearPageChecked(page);
2045 		goto out;
2046 	 }
2047 
2048 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2049 	ClearPageChecked(page);
2050 	set_page_dirty(page);
2051 out:
2052 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2053 			     &cached_state, GFP_NOFS);
2054 out_page:
2055 	unlock_page(page);
2056 	put_page(page);
2057 	kfree(fixup);
2058 }
2059 
2060 /*
2061  * There are a few paths in the higher layers of the kernel that directly
2062  * set the page dirty bit without asking the filesystem if it is a
2063  * good idea.  This causes problems because we want to make sure COW
2064  * properly happens and the data=ordered rules are followed.
2065  *
2066  * In our case any range that doesn't have the ORDERED bit set
2067  * hasn't been properly setup for IO.  We kick off an async process
2068  * to fix it up.  The async helper will wait for ordered extents, set
2069  * the delalloc bit and make it safe to write the page.
2070  */
2071 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2072 {
2073 	struct inode *inode = page->mapping->host;
2074 	struct btrfs_writepage_fixup *fixup;
2075 	struct btrfs_root *root = BTRFS_I(inode)->root;
2076 
2077 	/* this page is properly in the ordered list */
2078 	if (TestClearPagePrivate2(page))
2079 		return 0;
2080 
2081 	if (PageChecked(page))
2082 		return -EAGAIN;
2083 
2084 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2085 	if (!fixup)
2086 		return -EAGAIN;
2087 
2088 	SetPageChecked(page);
2089 	get_page(page);
2090 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2091 			btrfs_writepage_fixup_worker, NULL, NULL);
2092 	fixup->page = page;
2093 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2094 	return -EBUSY;
2095 }
2096 
2097 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2098 				       struct inode *inode, u64 file_pos,
2099 				       u64 disk_bytenr, u64 disk_num_bytes,
2100 				       u64 num_bytes, u64 ram_bytes,
2101 				       u8 compression, u8 encryption,
2102 				       u16 other_encoding, int extent_type)
2103 {
2104 	struct btrfs_root *root = BTRFS_I(inode)->root;
2105 	struct btrfs_file_extent_item *fi;
2106 	struct btrfs_path *path;
2107 	struct extent_buffer *leaf;
2108 	struct btrfs_key ins;
2109 	int extent_inserted = 0;
2110 	int ret;
2111 
2112 	path = btrfs_alloc_path();
2113 	if (!path)
2114 		return -ENOMEM;
2115 
2116 	/*
2117 	 * we may be replacing one extent in the tree with another.
2118 	 * The new extent is pinned in the extent map, and we don't want
2119 	 * to drop it from the cache until it is completely in the btree.
2120 	 *
2121 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2122 	 * the caller is expected to unpin it and allow it to be merged
2123 	 * with the others.
2124 	 */
2125 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2126 				   file_pos + num_bytes, NULL, 0,
2127 				   1, sizeof(*fi), &extent_inserted);
2128 	if (ret)
2129 		goto out;
2130 
2131 	if (!extent_inserted) {
2132 		ins.objectid = btrfs_ino(inode);
2133 		ins.offset = file_pos;
2134 		ins.type = BTRFS_EXTENT_DATA_KEY;
2135 
2136 		path->leave_spinning = 1;
2137 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2138 					      sizeof(*fi));
2139 		if (ret)
2140 			goto out;
2141 	}
2142 	leaf = path->nodes[0];
2143 	fi = btrfs_item_ptr(leaf, path->slots[0],
2144 			    struct btrfs_file_extent_item);
2145 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2146 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2147 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2148 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2149 	btrfs_set_file_extent_offset(leaf, fi, 0);
2150 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2151 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2152 	btrfs_set_file_extent_compression(leaf, fi, compression);
2153 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2154 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2155 
2156 	btrfs_mark_buffer_dirty(leaf);
2157 	btrfs_release_path(path);
2158 
2159 	inode_add_bytes(inode, num_bytes);
2160 
2161 	ins.objectid = disk_bytenr;
2162 	ins.offset = disk_num_bytes;
2163 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2164 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2165 					root->root_key.objectid,
2166 					btrfs_ino(inode), file_pos,
2167 					ram_bytes, &ins);
2168 	/*
2169 	 * Release the reserved range from inode dirty range map, as it is
2170 	 * already moved into delayed_ref_head
2171 	 */
2172 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2173 out:
2174 	btrfs_free_path(path);
2175 
2176 	return ret;
2177 }
2178 
2179 /* snapshot-aware defrag */
2180 struct sa_defrag_extent_backref {
2181 	struct rb_node node;
2182 	struct old_sa_defrag_extent *old;
2183 	u64 root_id;
2184 	u64 inum;
2185 	u64 file_pos;
2186 	u64 extent_offset;
2187 	u64 num_bytes;
2188 	u64 generation;
2189 };
2190 
2191 struct old_sa_defrag_extent {
2192 	struct list_head list;
2193 	struct new_sa_defrag_extent *new;
2194 
2195 	u64 extent_offset;
2196 	u64 bytenr;
2197 	u64 offset;
2198 	u64 len;
2199 	int count;
2200 };
2201 
2202 struct new_sa_defrag_extent {
2203 	struct rb_root root;
2204 	struct list_head head;
2205 	struct btrfs_path *path;
2206 	struct inode *inode;
2207 	u64 file_pos;
2208 	u64 len;
2209 	u64 bytenr;
2210 	u64 disk_len;
2211 	u8 compress_type;
2212 };
2213 
2214 static int backref_comp(struct sa_defrag_extent_backref *b1,
2215 			struct sa_defrag_extent_backref *b2)
2216 {
2217 	if (b1->root_id < b2->root_id)
2218 		return -1;
2219 	else if (b1->root_id > b2->root_id)
2220 		return 1;
2221 
2222 	if (b1->inum < b2->inum)
2223 		return -1;
2224 	else if (b1->inum > b2->inum)
2225 		return 1;
2226 
2227 	if (b1->file_pos < b2->file_pos)
2228 		return -1;
2229 	else if (b1->file_pos > b2->file_pos)
2230 		return 1;
2231 
2232 	/*
2233 	 * [------------------------------] ===> (a range of space)
2234 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2235 	 * |<---------------------------->| ===> (fs/file tree B)
2236 	 *
2237 	 * A range of space can refer to two file extents in one tree while
2238 	 * refer to only one file extent in another tree.
2239 	 *
2240 	 * So we may process a disk offset more than one time(two extents in A)
2241 	 * and locate at the same extent(one extent in B), then insert two same
2242 	 * backrefs(both refer to the extent in B).
2243 	 */
2244 	return 0;
2245 }
2246 
2247 static void backref_insert(struct rb_root *root,
2248 			   struct sa_defrag_extent_backref *backref)
2249 {
2250 	struct rb_node **p = &root->rb_node;
2251 	struct rb_node *parent = NULL;
2252 	struct sa_defrag_extent_backref *entry;
2253 	int ret;
2254 
2255 	while (*p) {
2256 		parent = *p;
2257 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2258 
2259 		ret = backref_comp(backref, entry);
2260 		if (ret < 0)
2261 			p = &(*p)->rb_left;
2262 		else
2263 			p = &(*p)->rb_right;
2264 	}
2265 
2266 	rb_link_node(&backref->node, parent, p);
2267 	rb_insert_color(&backref->node, root);
2268 }
2269 
2270 /*
2271  * Note the backref might has changed, and in this case we just return 0.
2272  */
2273 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2274 				       void *ctx)
2275 {
2276 	struct btrfs_file_extent_item *extent;
2277 	struct btrfs_fs_info *fs_info;
2278 	struct old_sa_defrag_extent *old = ctx;
2279 	struct new_sa_defrag_extent *new = old->new;
2280 	struct btrfs_path *path = new->path;
2281 	struct btrfs_key key;
2282 	struct btrfs_root *root;
2283 	struct sa_defrag_extent_backref *backref;
2284 	struct extent_buffer *leaf;
2285 	struct inode *inode = new->inode;
2286 	int slot;
2287 	int ret;
2288 	u64 extent_offset;
2289 	u64 num_bytes;
2290 
2291 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2292 	    inum == btrfs_ino(inode))
2293 		return 0;
2294 
2295 	key.objectid = root_id;
2296 	key.type = BTRFS_ROOT_ITEM_KEY;
2297 	key.offset = (u64)-1;
2298 
2299 	fs_info = BTRFS_I(inode)->root->fs_info;
2300 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2301 	if (IS_ERR(root)) {
2302 		if (PTR_ERR(root) == -ENOENT)
2303 			return 0;
2304 		WARN_ON(1);
2305 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2306 			 inum, offset, root_id);
2307 		return PTR_ERR(root);
2308 	}
2309 
2310 	key.objectid = inum;
2311 	key.type = BTRFS_EXTENT_DATA_KEY;
2312 	if (offset > (u64)-1 << 32)
2313 		key.offset = 0;
2314 	else
2315 		key.offset = offset;
2316 
2317 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2318 	if (WARN_ON(ret < 0))
2319 		return ret;
2320 	ret = 0;
2321 
2322 	while (1) {
2323 		cond_resched();
2324 
2325 		leaf = path->nodes[0];
2326 		slot = path->slots[0];
2327 
2328 		if (slot >= btrfs_header_nritems(leaf)) {
2329 			ret = btrfs_next_leaf(root, path);
2330 			if (ret < 0) {
2331 				goto out;
2332 			} else if (ret > 0) {
2333 				ret = 0;
2334 				goto out;
2335 			}
2336 			continue;
2337 		}
2338 
2339 		path->slots[0]++;
2340 
2341 		btrfs_item_key_to_cpu(leaf, &key, slot);
2342 
2343 		if (key.objectid > inum)
2344 			goto out;
2345 
2346 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2347 			continue;
2348 
2349 		extent = btrfs_item_ptr(leaf, slot,
2350 					struct btrfs_file_extent_item);
2351 
2352 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2353 			continue;
2354 
2355 		/*
2356 		 * 'offset' refers to the exact key.offset,
2357 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2358 		 * (key.offset - extent_offset).
2359 		 */
2360 		if (key.offset != offset)
2361 			continue;
2362 
2363 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2364 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2365 
2366 		if (extent_offset >= old->extent_offset + old->offset +
2367 		    old->len || extent_offset + num_bytes <=
2368 		    old->extent_offset + old->offset)
2369 			continue;
2370 		break;
2371 	}
2372 
2373 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2374 	if (!backref) {
2375 		ret = -ENOENT;
2376 		goto out;
2377 	}
2378 
2379 	backref->root_id = root_id;
2380 	backref->inum = inum;
2381 	backref->file_pos = offset;
2382 	backref->num_bytes = num_bytes;
2383 	backref->extent_offset = extent_offset;
2384 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2385 	backref->old = old;
2386 	backref_insert(&new->root, backref);
2387 	old->count++;
2388 out:
2389 	btrfs_release_path(path);
2390 	WARN_ON(ret);
2391 	return ret;
2392 }
2393 
2394 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2395 				   struct new_sa_defrag_extent *new)
2396 {
2397 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2398 	struct old_sa_defrag_extent *old, *tmp;
2399 	int ret;
2400 
2401 	new->path = path;
2402 
2403 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2404 		ret = iterate_inodes_from_logical(old->bytenr +
2405 						  old->extent_offset, fs_info,
2406 						  path, record_one_backref,
2407 						  old);
2408 		if (ret < 0 && ret != -ENOENT)
2409 			return false;
2410 
2411 		/* no backref to be processed for this extent */
2412 		if (!old->count) {
2413 			list_del(&old->list);
2414 			kfree(old);
2415 		}
2416 	}
2417 
2418 	if (list_empty(&new->head))
2419 		return false;
2420 
2421 	return true;
2422 }
2423 
2424 static int relink_is_mergable(struct extent_buffer *leaf,
2425 			      struct btrfs_file_extent_item *fi,
2426 			      struct new_sa_defrag_extent *new)
2427 {
2428 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2429 		return 0;
2430 
2431 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2432 		return 0;
2433 
2434 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2435 		return 0;
2436 
2437 	if (btrfs_file_extent_encryption(leaf, fi) ||
2438 	    btrfs_file_extent_other_encoding(leaf, fi))
2439 		return 0;
2440 
2441 	return 1;
2442 }
2443 
2444 /*
2445  * Note the backref might has changed, and in this case we just return 0.
2446  */
2447 static noinline int relink_extent_backref(struct btrfs_path *path,
2448 				 struct sa_defrag_extent_backref *prev,
2449 				 struct sa_defrag_extent_backref *backref)
2450 {
2451 	struct btrfs_file_extent_item *extent;
2452 	struct btrfs_file_extent_item *item;
2453 	struct btrfs_ordered_extent *ordered;
2454 	struct btrfs_trans_handle *trans;
2455 	struct btrfs_fs_info *fs_info;
2456 	struct btrfs_root *root;
2457 	struct btrfs_key key;
2458 	struct extent_buffer *leaf;
2459 	struct old_sa_defrag_extent *old = backref->old;
2460 	struct new_sa_defrag_extent *new = old->new;
2461 	struct inode *src_inode = new->inode;
2462 	struct inode *inode;
2463 	struct extent_state *cached = NULL;
2464 	int ret = 0;
2465 	u64 start;
2466 	u64 len;
2467 	u64 lock_start;
2468 	u64 lock_end;
2469 	bool merge = false;
2470 	int index;
2471 
2472 	if (prev && prev->root_id == backref->root_id &&
2473 	    prev->inum == backref->inum &&
2474 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2475 		merge = true;
2476 
2477 	/* step 1: get root */
2478 	key.objectid = backref->root_id;
2479 	key.type = BTRFS_ROOT_ITEM_KEY;
2480 	key.offset = (u64)-1;
2481 
2482 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2483 	index = srcu_read_lock(&fs_info->subvol_srcu);
2484 
2485 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2486 	if (IS_ERR(root)) {
2487 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2488 		if (PTR_ERR(root) == -ENOENT)
2489 			return 0;
2490 		return PTR_ERR(root);
2491 	}
2492 
2493 	if (btrfs_root_readonly(root)) {
2494 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2495 		return 0;
2496 	}
2497 
2498 	/* step 2: get inode */
2499 	key.objectid = backref->inum;
2500 	key.type = BTRFS_INODE_ITEM_KEY;
2501 	key.offset = 0;
2502 
2503 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2504 	if (IS_ERR(inode)) {
2505 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2506 		return 0;
2507 	}
2508 
2509 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2510 
2511 	/* step 3: relink backref */
2512 	lock_start = backref->file_pos;
2513 	lock_end = backref->file_pos + backref->num_bytes - 1;
2514 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2515 			 &cached);
2516 
2517 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2518 	if (ordered) {
2519 		btrfs_put_ordered_extent(ordered);
2520 		goto out_unlock;
2521 	}
2522 
2523 	trans = btrfs_join_transaction(root);
2524 	if (IS_ERR(trans)) {
2525 		ret = PTR_ERR(trans);
2526 		goto out_unlock;
2527 	}
2528 
2529 	key.objectid = backref->inum;
2530 	key.type = BTRFS_EXTENT_DATA_KEY;
2531 	key.offset = backref->file_pos;
2532 
2533 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2534 	if (ret < 0) {
2535 		goto out_free_path;
2536 	} else if (ret > 0) {
2537 		ret = 0;
2538 		goto out_free_path;
2539 	}
2540 
2541 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2542 				struct btrfs_file_extent_item);
2543 
2544 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2545 	    backref->generation)
2546 		goto out_free_path;
2547 
2548 	btrfs_release_path(path);
2549 
2550 	start = backref->file_pos;
2551 	if (backref->extent_offset < old->extent_offset + old->offset)
2552 		start += old->extent_offset + old->offset -
2553 			 backref->extent_offset;
2554 
2555 	len = min(backref->extent_offset + backref->num_bytes,
2556 		  old->extent_offset + old->offset + old->len);
2557 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2558 
2559 	ret = btrfs_drop_extents(trans, root, inode, start,
2560 				 start + len, 1);
2561 	if (ret)
2562 		goto out_free_path;
2563 again:
2564 	key.objectid = btrfs_ino(inode);
2565 	key.type = BTRFS_EXTENT_DATA_KEY;
2566 	key.offset = start;
2567 
2568 	path->leave_spinning = 1;
2569 	if (merge) {
2570 		struct btrfs_file_extent_item *fi;
2571 		u64 extent_len;
2572 		struct btrfs_key found_key;
2573 
2574 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2575 		if (ret < 0)
2576 			goto out_free_path;
2577 
2578 		path->slots[0]--;
2579 		leaf = path->nodes[0];
2580 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2581 
2582 		fi = btrfs_item_ptr(leaf, path->slots[0],
2583 				    struct btrfs_file_extent_item);
2584 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2585 
2586 		if (extent_len + found_key.offset == start &&
2587 		    relink_is_mergable(leaf, fi, new)) {
2588 			btrfs_set_file_extent_num_bytes(leaf, fi,
2589 							extent_len + len);
2590 			btrfs_mark_buffer_dirty(leaf);
2591 			inode_add_bytes(inode, len);
2592 
2593 			ret = 1;
2594 			goto out_free_path;
2595 		} else {
2596 			merge = false;
2597 			btrfs_release_path(path);
2598 			goto again;
2599 		}
2600 	}
2601 
2602 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2603 					sizeof(*extent));
2604 	if (ret) {
2605 		btrfs_abort_transaction(trans, ret);
2606 		goto out_free_path;
2607 	}
2608 
2609 	leaf = path->nodes[0];
2610 	item = btrfs_item_ptr(leaf, path->slots[0],
2611 				struct btrfs_file_extent_item);
2612 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2613 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2614 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2615 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2616 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2617 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2618 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2619 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2620 	btrfs_set_file_extent_encryption(leaf, item, 0);
2621 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2622 
2623 	btrfs_mark_buffer_dirty(leaf);
2624 	inode_add_bytes(inode, len);
2625 	btrfs_release_path(path);
2626 
2627 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2628 			new->disk_len, 0,
2629 			backref->root_id, backref->inum,
2630 			new->file_pos);	/* start - extent_offset */
2631 	if (ret) {
2632 		btrfs_abort_transaction(trans, ret);
2633 		goto out_free_path;
2634 	}
2635 
2636 	ret = 1;
2637 out_free_path:
2638 	btrfs_release_path(path);
2639 	path->leave_spinning = 0;
2640 	btrfs_end_transaction(trans, root);
2641 out_unlock:
2642 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2643 			     &cached, GFP_NOFS);
2644 	iput(inode);
2645 	return ret;
2646 }
2647 
2648 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2649 {
2650 	struct old_sa_defrag_extent *old, *tmp;
2651 
2652 	if (!new)
2653 		return;
2654 
2655 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2656 		kfree(old);
2657 	}
2658 	kfree(new);
2659 }
2660 
2661 static void relink_file_extents(struct new_sa_defrag_extent *new)
2662 {
2663 	struct btrfs_path *path;
2664 	struct sa_defrag_extent_backref *backref;
2665 	struct sa_defrag_extent_backref *prev = NULL;
2666 	struct inode *inode;
2667 	struct btrfs_root *root;
2668 	struct rb_node *node;
2669 	int ret;
2670 
2671 	inode = new->inode;
2672 	root = BTRFS_I(inode)->root;
2673 
2674 	path = btrfs_alloc_path();
2675 	if (!path)
2676 		return;
2677 
2678 	if (!record_extent_backrefs(path, new)) {
2679 		btrfs_free_path(path);
2680 		goto out;
2681 	}
2682 	btrfs_release_path(path);
2683 
2684 	while (1) {
2685 		node = rb_first(&new->root);
2686 		if (!node)
2687 			break;
2688 		rb_erase(node, &new->root);
2689 
2690 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2691 
2692 		ret = relink_extent_backref(path, prev, backref);
2693 		WARN_ON(ret < 0);
2694 
2695 		kfree(prev);
2696 
2697 		if (ret == 1)
2698 			prev = backref;
2699 		else
2700 			prev = NULL;
2701 		cond_resched();
2702 	}
2703 	kfree(prev);
2704 
2705 	btrfs_free_path(path);
2706 out:
2707 	free_sa_defrag_extent(new);
2708 
2709 	atomic_dec(&root->fs_info->defrag_running);
2710 	wake_up(&root->fs_info->transaction_wait);
2711 }
2712 
2713 static struct new_sa_defrag_extent *
2714 record_old_file_extents(struct inode *inode,
2715 			struct btrfs_ordered_extent *ordered)
2716 {
2717 	struct btrfs_root *root = BTRFS_I(inode)->root;
2718 	struct btrfs_path *path;
2719 	struct btrfs_key key;
2720 	struct old_sa_defrag_extent *old;
2721 	struct new_sa_defrag_extent *new;
2722 	int ret;
2723 
2724 	new = kmalloc(sizeof(*new), GFP_NOFS);
2725 	if (!new)
2726 		return NULL;
2727 
2728 	new->inode = inode;
2729 	new->file_pos = ordered->file_offset;
2730 	new->len = ordered->len;
2731 	new->bytenr = ordered->start;
2732 	new->disk_len = ordered->disk_len;
2733 	new->compress_type = ordered->compress_type;
2734 	new->root = RB_ROOT;
2735 	INIT_LIST_HEAD(&new->head);
2736 
2737 	path = btrfs_alloc_path();
2738 	if (!path)
2739 		goto out_kfree;
2740 
2741 	key.objectid = btrfs_ino(inode);
2742 	key.type = BTRFS_EXTENT_DATA_KEY;
2743 	key.offset = new->file_pos;
2744 
2745 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2746 	if (ret < 0)
2747 		goto out_free_path;
2748 	if (ret > 0 && path->slots[0] > 0)
2749 		path->slots[0]--;
2750 
2751 	/* find out all the old extents for the file range */
2752 	while (1) {
2753 		struct btrfs_file_extent_item *extent;
2754 		struct extent_buffer *l;
2755 		int slot;
2756 		u64 num_bytes;
2757 		u64 offset;
2758 		u64 end;
2759 		u64 disk_bytenr;
2760 		u64 extent_offset;
2761 
2762 		l = path->nodes[0];
2763 		slot = path->slots[0];
2764 
2765 		if (slot >= btrfs_header_nritems(l)) {
2766 			ret = btrfs_next_leaf(root, path);
2767 			if (ret < 0)
2768 				goto out_free_path;
2769 			else if (ret > 0)
2770 				break;
2771 			continue;
2772 		}
2773 
2774 		btrfs_item_key_to_cpu(l, &key, slot);
2775 
2776 		if (key.objectid != btrfs_ino(inode))
2777 			break;
2778 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2779 			break;
2780 		if (key.offset >= new->file_pos + new->len)
2781 			break;
2782 
2783 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2784 
2785 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2786 		if (key.offset + num_bytes < new->file_pos)
2787 			goto next;
2788 
2789 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2790 		if (!disk_bytenr)
2791 			goto next;
2792 
2793 		extent_offset = btrfs_file_extent_offset(l, extent);
2794 
2795 		old = kmalloc(sizeof(*old), GFP_NOFS);
2796 		if (!old)
2797 			goto out_free_path;
2798 
2799 		offset = max(new->file_pos, key.offset);
2800 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2801 
2802 		old->bytenr = disk_bytenr;
2803 		old->extent_offset = extent_offset;
2804 		old->offset = offset - key.offset;
2805 		old->len = end - offset;
2806 		old->new = new;
2807 		old->count = 0;
2808 		list_add_tail(&old->list, &new->head);
2809 next:
2810 		path->slots[0]++;
2811 		cond_resched();
2812 	}
2813 
2814 	btrfs_free_path(path);
2815 	atomic_inc(&root->fs_info->defrag_running);
2816 
2817 	return new;
2818 
2819 out_free_path:
2820 	btrfs_free_path(path);
2821 out_kfree:
2822 	free_sa_defrag_extent(new);
2823 	return NULL;
2824 }
2825 
2826 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2827 					 u64 start, u64 len)
2828 {
2829 	struct btrfs_block_group_cache *cache;
2830 
2831 	cache = btrfs_lookup_block_group(root->fs_info, start);
2832 	ASSERT(cache);
2833 
2834 	spin_lock(&cache->lock);
2835 	cache->delalloc_bytes -= len;
2836 	spin_unlock(&cache->lock);
2837 
2838 	btrfs_put_block_group(cache);
2839 }
2840 
2841 /* as ordered data IO finishes, this gets called so we can finish
2842  * an ordered extent if the range of bytes in the file it covers are
2843  * fully written.
2844  */
2845 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2846 {
2847 	struct inode *inode = ordered_extent->inode;
2848 	struct btrfs_root *root = BTRFS_I(inode)->root;
2849 	struct btrfs_trans_handle *trans = NULL;
2850 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2851 	struct extent_state *cached_state = NULL;
2852 	struct new_sa_defrag_extent *new = NULL;
2853 	int compress_type = 0;
2854 	int ret = 0;
2855 	u64 logical_len = ordered_extent->len;
2856 	bool nolock;
2857 	bool truncated = false;
2858 
2859 	nolock = btrfs_is_free_space_inode(inode);
2860 
2861 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2862 		ret = -EIO;
2863 		goto out;
2864 	}
2865 
2866 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2867 				     ordered_extent->file_offset +
2868 				     ordered_extent->len - 1);
2869 
2870 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2871 		truncated = true;
2872 		logical_len = ordered_extent->truncated_len;
2873 		/* Truncated the entire extent, don't bother adding */
2874 		if (!logical_len)
2875 			goto out;
2876 	}
2877 
2878 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2879 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2880 
2881 		/*
2882 		 * For mwrite(mmap + memset to write) case, we still reserve
2883 		 * space for NOCOW range.
2884 		 * As NOCOW won't cause a new delayed ref, just free the space
2885 		 */
2886 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2887 				       ordered_extent->len);
2888 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2889 		if (nolock)
2890 			trans = btrfs_join_transaction_nolock(root);
2891 		else
2892 			trans = btrfs_join_transaction(root);
2893 		if (IS_ERR(trans)) {
2894 			ret = PTR_ERR(trans);
2895 			trans = NULL;
2896 			goto out;
2897 		}
2898 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2899 		ret = btrfs_update_inode_fallback(trans, root, inode);
2900 		if (ret) /* -ENOMEM or corruption */
2901 			btrfs_abort_transaction(trans, ret);
2902 		goto out;
2903 	}
2904 
2905 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2906 			 ordered_extent->file_offset + ordered_extent->len - 1,
2907 			 &cached_state);
2908 
2909 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2910 			ordered_extent->file_offset + ordered_extent->len - 1,
2911 			EXTENT_DEFRAG, 1, cached_state);
2912 	if (ret) {
2913 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2914 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2915 			/* the inode is shared */
2916 			new = record_old_file_extents(inode, ordered_extent);
2917 
2918 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2919 			ordered_extent->file_offset + ordered_extent->len - 1,
2920 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2921 	}
2922 
2923 	if (nolock)
2924 		trans = btrfs_join_transaction_nolock(root);
2925 	else
2926 		trans = btrfs_join_transaction(root);
2927 	if (IS_ERR(trans)) {
2928 		ret = PTR_ERR(trans);
2929 		trans = NULL;
2930 		goto out_unlock;
2931 	}
2932 
2933 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2934 
2935 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2936 		compress_type = ordered_extent->compress_type;
2937 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2938 		BUG_ON(compress_type);
2939 		ret = btrfs_mark_extent_written(trans, inode,
2940 						ordered_extent->file_offset,
2941 						ordered_extent->file_offset +
2942 						logical_len);
2943 	} else {
2944 		BUG_ON(root == root->fs_info->tree_root);
2945 		ret = insert_reserved_file_extent(trans, inode,
2946 						ordered_extent->file_offset,
2947 						ordered_extent->start,
2948 						ordered_extent->disk_len,
2949 						logical_len, logical_len,
2950 						compress_type, 0, 0,
2951 						BTRFS_FILE_EXTENT_REG);
2952 		if (!ret)
2953 			btrfs_release_delalloc_bytes(root,
2954 						     ordered_extent->start,
2955 						     ordered_extent->disk_len);
2956 	}
2957 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2958 			   ordered_extent->file_offset, ordered_extent->len,
2959 			   trans->transid);
2960 	if (ret < 0) {
2961 		btrfs_abort_transaction(trans, ret);
2962 		goto out_unlock;
2963 	}
2964 
2965 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2966 			  &ordered_extent->list);
2967 
2968 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2969 	ret = btrfs_update_inode_fallback(trans, root, inode);
2970 	if (ret) { /* -ENOMEM or corruption */
2971 		btrfs_abort_transaction(trans, ret);
2972 		goto out_unlock;
2973 	}
2974 	ret = 0;
2975 out_unlock:
2976 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2977 			     ordered_extent->file_offset +
2978 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2979 out:
2980 	if (root != root->fs_info->tree_root)
2981 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2982 	if (trans)
2983 		btrfs_end_transaction(trans, root);
2984 
2985 	if (ret || truncated) {
2986 		u64 start, end;
2987 
2988 		if (truncated)
2989 			start = ordered_extent->file_offset + logical_len;
2990 		else
2991 			start = ordered_extent->file_offset;
2992 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2993 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2994 
2995 		/* Drop the cache for the part of the extent we didn't write. */
2996 		btrfs_drop_extent_cache(inode, start, end, 0);
2997 
2998 		/*
2999 		 * If the ordered extent had an IOERR or something else went
3000 		 * wrong we need to return the space for this ordered extent
3001 		 * back to the allocator.  We only free the extent in the
3002 		 * truncated case if we didn't write out the extent at all.
3003 		 */
3004 		if ((ret || !logical_len) &&
3005 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3006 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3007 			btrfs_free_reserved_extent(root, ordered_extent->start,
3008 						   ordered_extent->disk_len, 1);
3009 	}
3010 
3011 
3012 	/*
3013 	 * This needs to be done to make sure anybody waiting knows we are done
3014 	 * updating everything for this ordered extent.
3015 	 */
3016 	btrfs_remove_ordered_extent(inode, ordered_extent);
3017 
3018 	/* for snapshot-aware defrag */
3019 	if (new) {
3020 		if (ret) {
3021 			free_sa_defrag_extent(new);
3022 			atomic_dec(&root->fs_info->defrag_running);
3023 		} else {
3024 			relink_file_extents(new);
3025 		}
3026 	}
3027 
3028 	/* once for us */
3029 	btrfs_put_ordered_extent(ordered_extent);
3030 	/* once for the tree */
3031 	btrfs_put_ordered_extent(ordered_extent);
3032 
3033 	return ret;
3034 }
3035 
3036 static void finish_ordered_fn(struct btrfs_work *work)
3037 {
3038 	struct btrfs_ordered_extent *ordered_extent;
3039 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3040 	btrfs_finish_ordered_io(ordered_extent);
3041 }
3042 
3043 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3044 				struct extent_state *state, int uptodate)
3045 {
3046 	struct inode *inode = page->mapping->host;
3047 	struct btrfs_root *root = BTRFS_I(inode)->root;
3048 	struct btrfs_ordered_extent *ordered_extent = NULL;
3049 	struct btrfs_workqueue *wq;
3050 	btrfs_work_func_t func;
3051 
3052 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3053 
3054 	ClearPagePrivate2(page);
3055 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3056 					    end - start + 1, uptodate))
3057 		return 0;
3058 
3059 	if (btrfs_is_free_space_inode(inode)) {
3060 		wq = root->fs_info->endio_freespace_worker;
3061 		func = btrfs_freespace_write_helper;
3062 	} else {
3063 		wq = root->fs_info->endio_write_workers;
3064 		func = btrfs_endio_write_helper;
3065 	}
3066 
3067 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3068 			NULL);
3069 	btrfs_queue_work(wq, &ordered_extent->work);
3070 
3071 	return 0;
3072 }
3073 
3074 static int __readpage_endio_check(struct inode *inode,
3075 				  struct btrfs_io_bio *io_bio,
3076 				  int icsum, struct page *page,
3077 				  int pgoff, u64 start, size_t len)
3078 {
3079 	char *kaddr;
3080 	u32 csum_expected;
3081 	u32 csum = ~(u32)0;
3082 
3083 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3084 
3085 	kaddr = kmap_atomic(page);
3086 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3087 	btrfs_csum_final(csum, (char *)&csum);
3088 	if (csum != csum_expected)
3089 		goto zeroit;
3090 
3091 	kunmap_atomic(kaddr);
3092 	return 0;
3093 zeroit:
3094 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3095 		"csum failed ino %llu off %llu csum %u expected csum %u",
3096 			   btrfs_ino(inode), start, csum, csum_expected);
3097 	memset(kaddr + pgoff, 1, len);
3098 	flush_dcache_page(page);
3099 	kunmap_atomic(kaddr);
3100 	if (csum_expected == 0)
3101 		return 0;
3102 	return -EIO;
3103 }
3104 
3105 /*
3106  * when reads are done, we need to check csums to verify the data is correct
3107  * if there's a match, we allow the bio to finish.  If not, the code in
3108  * extent_io.c will try to find good copies for us.
3109  */
3110 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3111 				      u64 phy_offset, struct page *page,
3112 				      u64 start, u64 end, int mirror)
3113 {
3114 	size_t offset = start - page_offset(page);
3115 	struct inode *inode = page->mapping->host;
3116 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3117 	struct btrfs_root *root = BTRFS_I(inode)->root;
3118 
3119 	if (PageChecked(page)) {
3120 		ClearPageChecked(page);
3121 		return 0;
3122 	}
3123 
3124 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3125 		return 0;
3126 
3127 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3128 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3129 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3130 		return 0;
3131 	}
3132 
3133 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3134 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3135 				      start, (size_t)(end - start + 1));
3136 }
3137 
3138 void btrfs_add_delayed_iput(struct inode *inode)
3139 {
3140 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3141 	struct btrfs_inode *binode = BTRFS_I(inode);
3142 
3143 	if (atomic_add_unless(&inode->i_count, -1, 1))
3144 		return;
3145 
3146 	spin_lock(&fs_info->delayed_iput_lock);
3147 	if (binode->delayed_iput_count == 0) {
3148 		ASSERT(list_empty(&binode->delayed_iput));
3149 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3150 	} else {
3151 		binode->delayed_iput_count++;
3152 	}
3153 	spin_unlock(&fs_info->delayed_iput_lock);
3154 }
3155 
3156 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3157 {
3158 	struct btrfs_fs_info *fs_info = root->fs_info;
3159 
3160 	spin_lock(&fs_info->delayed_iput_lock);
3161 	while (!list_empty(&fs_info->delayed_iputs)) {
3162 		struct btrfs_inode *inode;
3163 
3164 		inode = list_first_entry(&fs_info->delayed_iputs,
3165 				struct btrfs_inode, delayed_iput);
3166 		if (inode->delayed_iput_count) {
3167 			inode->delayed_iput_count--;
3168 			list_move_tail(&inode->delayed_iput,
3169 					&fs_info->delayed_iputs);
3170 		} else {
3171 			list_del_init(&inode->delayed_iput);
3172 		}
3173 		spin_unlock(&fs_info->delayed_iput_lock);
3174 		iput(&inode->vfs_inode);
3175 		spin_lock(&fs_info->delayed_iput_lock);
3176 	}
3177 	spin_unlock(&fs_info->delayed_iput_lock);
3178 }
3179 
3180 /*
3181  * This is called in transaction commit time. If there are no orphan
3182  * files in the subvolume, it removes orphan item and frees block_rsv
3183  * structure.
3184  */
3185 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3186 			      struct btrfs_root *root)
3187 {
3188 	struct btrfs_block_rsv *block_rsv;
3189 	int ret;
3190 
3191 	if (atomic_read(&root->orphan_inodes) ||
3192 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3193 		return;
3194 
3195 	spin_lock(&root->orphan_lock);
3196 	if (atomic_read(&root->orphan_inodes)) {
3197 		spin_unlock(&root->orphan_lock);
3198 		return;
3199 	}
3200 
3201 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3202 		spin_unlock(&root->orphan_lock);
3203 		return;
3204 	}
3205 
3206 	block_rsv = root->orphan_block_rsv;
3207 	root->orphan_block_rsv = NULL;
3208 	spin_unlock(&root->orphan_lock);
3209 
3210 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3211 	    btrfs_root_refs(&root->root_item) > 0) {
3212 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3213 					    root->root_key.objectid);
3214 		if (ret)
3215 			btrfs_abort_transaction(trans, ret);
3216 		else
3217 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3218 				  &root->state);
3219 	}
3220 
3221 	if (block_rsv) {
3222 		WARN_ON(block_rsv->size > 0);
3223 		btrfs_free_block_rsv(root, block_rsv);
3224 	}
3225 }
3226 
3227 /*
3228  * This creates an orphan entry for the given inode in case something goes
3229  * wrong in the middle of an unlink/truncate.
3230  *
3231  * NOTE: caller of this function should reserve 5 units of metadata for
3232  *	 this function.
3233  */
3234 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3235 {
3236 	struct btrfs_root *root = BTRFS_I(inode)->root;
3237 	struct btrfs_block_rsv *block_rsv = NULL;
3238 	int reserve = 0;
3239 	int insert = 0;
3240 	int ret;
3241 
3242 	if (!root->orphan_block_rsv) {
3243 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3244 		if (!block_rsv)
3245 			return -ENOMEM;
3246 	}
3247 
3248 	spin_lock(&root->orphan_lock);
3249 	if (!root->orphan_block_rsv) {
3250 		root->orphan_block_rsv = block_rsv;
3251 	} else if (block_rsv) {
3252 		btrfs_free_block_rsv(root, block_rsv);
3253 		block_rsv = NULL;
3254 	}
3255 
3256 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3257 			      &BTRFS_I(inode)->runtime_flags)) {
3258 #if 0
3259 		/*
3260 		 * For proper ENOSPC handling, we should do orphan
3261 		 * cleanup when mounting. But this introduces backward
3262 		 * compatibility issue.
3263 		 */
3264 		if (!xchg(&root->orphan_item_inserted, 1))
3265 			insert = 2;
3266 		else
3267 			insert = 1;
3268 #endif
3269 		insert = 1;
3270 		atomic_inc(&root->orphan_inodes);
3271 	}
3272 
3273 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3274 			      &BTRFS_I(inode)->runtime_flags))
3275 		reserve = 1;
3276 	spin_unlock(&root->orphan_lock);
3277 
3278 	/* grab metadata reservation from transaction handle */
3279 	if (reserve) {
3280 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3281 		ASSERT(!ret);
3282 		if (ret) {
3283 			atomic_dec(&root->orphan_inodes);
3284 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3285 				  &BTRFS_I(inode)->runtime_flags);
3286 			if (insert)
3287 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3288 					  &BTRFS_I(inode)->runtime_flags);
3289 			return ret;
3290 		}
3291 	}
3292 
3293 	/* insert an orphan item to track this unlinked/truncated file */
3294 	if (insert >= 1) {
3295 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3296 		if (ret) {
3297 			atomic_dec(&root->orphan_inodes);
3298 			if (reserve) {
3299 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3300 					  &BTRFS_I(inode)->runtime_flags);
3301 				btrfs_orphan_release_metadata(inode);
3302 			}
3303 			if (ret != -EEXIST) {
3304 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3305 					  &BTRFS_I(inode)->runtime_flags);
3306 				btrfs_abort_transaction(trans, ret);
3307 				return ret;
3308 			}
3309 		}
3310 		ret = 0;
3311 	}
3312 
3313 	/* insert an orphan item to track subvolume contains orphan files */
3314 	if (insert >= 2) {
3315 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3316 					       root->root_key.objectid);
3317 		if (ret && ret != -EEXIST) {
3318 			btrfs_abort_transaction(trans, ret);
3319 			return ret;
3320 		}
3321 	}
3322 	return 0;
3323 }
3324 
3325 /*
3326  * We have done the truncate/delete so we can go ahead and remove the orphan
3327  * item for this particular inode.
3328  */
3329 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3330 			    struct inode *inode)
3331 {
3332 	struct btrfs_root *root = BTRFS_I(inode)->root;
3333 	int delete_item = 0;
3334 	int release_rsv = 0;
3335 	int ret = 0;
3336 
3337 	spin_lock(&root->orphan_lock);
3338 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3339 			       &BTRFS_I(inode)->runtime_flags))
3340 		delete_item = 1;
3341 
3342 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3343 			       &BTRFS_I(inode)->runtime_flags))
3344 		release_rsv = 1;
3345 	spin_unlock(&root->orphan_lock);
3346 
3347 	if (delete_item) {
3348 		atomic_dec(&root->orphan_inodes);
3349 		if (trans)
3350 			ret = btrfs_del_orphan_item(trans, root,
3351 						    btrfs_ino(inode));
3352 	}
3353 
3354 	if (release_rsv)
3355 		btrfs_orphan_release_metadata(inode);
3356 
3357 	return ret;
3358 }
3359 
3360 /*
3361  * this cleans up any orphans that may be left on the list from the last use
3362  * of this root.
3363  */
3364 int btrfs_orphan_cleanup(struct btrfs_root *root)
3365 {
3366 	struct btrfs_path *path;
3367 	struct extent_buffer *leaf;
3368 	struct btrfs_key key, found_key;
3369 	struct btrfs_trans_handle *trans;
3370 	struct inode *inode;
3371 	u64 last_objectid = 0;
3372 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3373 
3374 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3375 		return 0;
3376 
3377 	path = btrfs_alloc_path();
3378 	if (!path) {
3379 		ret = -ENOMEM;
3380 		goto out;
3381 	}
3382 	path->reada = READA_BACK;
3383 
3384 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3385 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3386 	key.offset = (u64)-1;
3387 
3388 	while (1) {
3389 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3390 		if (ret < 0)
3391 			goto out;
3392 
3393 		/*
3394 		 * if ret == 0 means we found what we were searching for, which
3395 		 * is weird, but possible, so only screw with path if we didn't
3396 		 * find the key and see if we have stuff that matches
3397 		 */
3398 		if (ret > 0) {
3399 			ret = 0;
3400 			if (path->slots[0] == 0)
3401 				break;
3402 			path->slots[0]--;
3403 		}
3404 
3405 		/* pull out the item */
3406 		leaf = path->nodes[0];
3407 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3408 
3409 		/* make sure the item matches what we want */
3410 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3411 			break;
3412 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3413 			break;
3414 
3415 		/* release the path since we're done with it */
3416 		btrfs_release_path(path);
3417 
3418 		/*
3419 		 * this is where we are basically btrfs_lookup, without the
3420 		 * crossing root thing.  we store the inode number in the
3421 		 * offset of the orphan item.
3422 		 */
3423 
3424 		if (found_key.offset == last_objectid) {
3425 			btrfs_err(root->fs_info,
3426 				"Error removing orphan entry, stopping orphan cleanup");
3427 			ret = -EINVAL;
3428 			goto out;
3429 		}
3430 
3431 		last_objectid = found_key.offset;
3432 
3433 		found_key.objectid = found_key.offset;
3434 		found_key.type = BTRFS_INODE_ITEM_KEY;
3435 		found_key.offset = 0;
3436 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3437 		ret = PTR_ERR_OR_ZERO(inode);
3438 		if (ret && ret != -ESTALE)
3439 			goto out;
3440 
3441 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3442 			struct btrfs_root *dead_root;
3443 			struct btrfs_fs_info *fs_info = root->fs_info;
3444 			int is_dead_root = 0;
3445 
3446 			/*
3447 			 * this is an orphan in the tree root. Currently these
3448 			 * could come from 2 sources:
3449 			 *  a) a snapshot deletion in progress
3450 			 *  b) a free space cache inode
3451 			 * We need to distinguish those two, as the snapshot
3452 			 * orphan must not get deleted.
3453 			 * find_dead_roots already ran before us, so if this
3454 			 * is a snapshot deletion, we should find the root
3455 			 * in the dead_roots list
3456 			 */
3457 			spin_lock(&fs_info->trans_lock);
3458 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3459 					    root_list) {
3460 				if (dead_root->root_key.objectid ==
3461 				    found_key.objectid) {
3462 					is_dead_root = 1;
3463 					break;
3464 				}
3465 			}
3466 			spin_unlock(&fs_info->trans_lock);
3467 			if (is_dead_root) {
3468 				/* prevent this orphan from being found again */
3469 				key.offset = found_key.objectid - 1;
3470 				continue;
3471 			}
3472 		}
3473 		/*
3474 		 * Inode is already gone but the orphan item is still there,
3475 		 * kill the orphan item.
3476 		 */
3477 		if (ret == -ESTALE) {
3478 			trans = btrfs_start_transaction(root, 1);
3479 			if (IS_ERR(trans)) {
3480 				ret = PTR_ERR(trans);
3481 				goto out;
3482 			}
3483 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3484 				found_key.objectid);
3485 			ret = btrfs_del_orphan_item(trans, root,
3486 						    found_key.objectid);
3487 			btrfs_end_transaction(trans, root);
3488 			if (ret)
3489 				goto out;
3490 			continue;
3491 		}
3492 
3493 		/*
3494 		 * add this inode to the orphan list so btrfs_orphan_del does
3495 		 * the proper thing when we hit it
3496 		 */
3497 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3498 			&BTRFS_I(inode)->runtime_flags);
3499 		atomic_inc(&root->orphan_inodes);
3500 
3501 		/* if we have links, this was a truncate, lets do that */
3502 		if (inode->i_nlink) {
3503 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3504 				iput(inode);
3505 				continue;
3506 			}
3507 			nr_truncate++;
3508 
3509 			/* 1 for the orphan item deletion. */
3510 			trans = btrfs_start_transaction(root, 1);
3511 			if (IS_ERR(trans)) {
3512 				iput(inode);
3513 				ret = PTR_ERR(trans);
3514 				goto out;
3515 			}
3516 			ret = btrfs_orphan_add(trans, inode);
3517 			btrfs_end_transaction(trans, root);
3518 			if (ret) {
3519 				iput(inode);
3520 				goto out;
3521 			}
3522 
3523 			ret = btrfs_truncate(inode);
3524 			if (ret)
3525 				btrfs_orphan_del(NULL, inode);
3526 		} else {
3527 			nr_unlink++;
3528 		}
3529 
3530 		/* this will do delete_inode and everything for us */
3531 		iput(inode);
3532 		if (ret)
3533 			goto out;
3534 	}
3535 	/* release the path since we're done with it */
3536 	btrfs_release_path(path);
3537 
3538 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3539 
3540 	if (root->orphan_block_rsv)
3541 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3542 					(u64)-1);
3543 
3544 	if (root->orphan_block_rsv ||
3545 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3546 		trans = btrfs_join_transaction(root);
3547 		if (!IS_ERR(trans))
3548 			btrfs_end_transaction(trans, root);
3549 	}
3550 
3551 	if (nr_unlink)
3552 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3553 	if (nr_truncate)
3554 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3555 
3556 out:
3557 	if (ret)
3558 		btrfs_err(root->fs_info,
3559 			"could not do orphan cleanup %d", ret);
3560 	btrfs_free_path(path);
3561 	return ret;
3562 }
3563 
3564 /*
3565  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3566  * don't find any xattrs, we know there can't be any acls.
3567  *
3568  * slot is the slot the inode is in, objectid is the objectid of the inode
3569  */
3570 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3571 					  int slot, u64 objectid,
3572 					  int *first_xattr_slot)
3573 {
3574 	u32 nritems = btrfs_header_nritems(leaf);
3575 	struct btrfs_key found_key;
3576 	static u64 xattr_access = 0;
3577 	static u64 xattr_default = 0;
3578 	int scanned = 0;
3579 
3580 	if (!xattr_access) {
3581 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3582 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3583 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3584 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3585 	}
3586 
3587 	slot++;
3588 	*first_xattr_slot = -1;
3589 	while (slot < nritems) {
3590 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3591 
3592 		/* we found a different objectid, there must not be acls */
3593 		if (found_key.objectid != objectid)
3594 			return 0;
3595 
3596 		/* we found an xattr, assume we've got an acl */
3597 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3598 			if (*first_xattr_slot == -1)
3599 				*first_xattr_slot = slot;
3600 			if (found_key.offset == xattr_access ||
3601 			    found_key.offset == xattr_default)
3602 				return 1;
3603 		}
3604 
3605 		/*
3606 		 * we found a key greater than an xattr key, there can't
3607 		 * be any acls later on
3608 		 */
3609 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3610 			return 0;
3611 
3612 		slot++;
3613 		scanned++;
3614 
3615 		/*
3616 		 * it goes inode, inode backrefs, xattrs, extents,
3617 		 * so if there are a ton of hard links to an inode there can
3618 		 * be a lot of backrefs.  Don't waste time searching too hard,
3619 		 * this is just an optimization
3620 		 */
3621 		if (scanned >= 8)
3622 			break;
3623 	}
3624 	/* we hit the end of the leaf before we found an xattr or
3625 	 * something larger than an xattr.  We have to assume the inode
3626 	 * has acls
3627 	 */
3628 	if (*first_xattr_slot == -1)
3629 		*first_xattr_slot = slot;
3630 	return 1;
3631 }
3632 
3633 /*
3634  * read an inode from the btree into the in-memory inode
3635  */
3636 static void btrfs_read_locked_inode(struct inode *inode)
3637 {
3638 	struct btrfs_path *path;
3639 	struct extent_buffer *leaf;
3640 	struct btrfs_inode_item *inode_item;
3641 	struct btrfs_root *root = BTRFS_I(inode)->root;
3642 	struct btrfs_key location;
3643 	unsigned long ptr;
3644 	int maybe_acls;
3645 	u32 rdev;
3646 	int ret;
3647 	bool filled = false;
3648 	int first_xattr_slot;
3649 
3650 	ret = btrfs_fill_inode(inode, &rdev);
3651 	if (!ret)
3652 		filled = true;
3653 
3654 	path = btrfs_alloc_path();
3655 	if (!path)
3656 		goto make_bad;
3657 
3658 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3659 
3660 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3661 	if (ret)
3662 		goto make_bad;
3663 
3664 	leaf = path->nodes[0];
3665 
3666 	if (filled)
3667 		goto cache_index;
3668 
3669 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3670 				    struct btrfs_inode_item);
3671 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3672 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3673 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3674 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3675 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3676 
3677 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3678 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3679 
3680 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3681 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3682 
3683 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3684 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3685 
3686 	BTRFS_I(inode)->i_otime.tv_sec =
3687 		btrfs_timespec_sec(leaf, &inode_item->otime);
3688 	BTRFS_I(inode)->i_otime.tv_nsec =
3689 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3690 
3691 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3692 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3693 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3694 
3695 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3696 	inode->i_generation = BTRFS_I(inode)->generation;
3697 	inode->i_rdev = 0;
3698 	rdev = btrfs_inode_rdev(leaf, inode_item);
3699 
3700 	BTRFS_I(inode)->index_cnt = (u64)-1;
3701 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3702 
3703 cache_index:
3704 	/*
3705 	 * If we were modified in the current generation and evicted from memory
3706 	 * and then re-read we need to do a full sync since we don't have any
3707 	 * idea about which extents were modified before we were evicted from
3708 	 * cache.
3709 	 *
3710 	 * This is required for both inode re-read from disk and delayed inode
3711 	 * in delayed_nodes_tree.
3712 	 */
3713 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3714 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3715 			&BTRFS_I(inode)->runtime_flags);
3716 
3717 	/*
3718 	 * We don't persist the id of the transaction where an unlink operation
3719 	 * against the inode was last made. So here we assume the inode might
3720 	 * have been evicted, and therefore the exact value of last_unlink_trans
3721 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3722 	 * between the inode and its parent if the inode is fsync'ed and the log
3723 	 * replayed. For example, in the scenario:
3724 	 *
3725 	 * touch mydir/foo
3726 	 * ln mydir/foo mydir/bar
3727 	 * sync
3728 	 * unlink mydir/bar
3729 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3730 	 * xfs_io -c fsync mydir/foo
3731 	 * <power failure>
3732 	 * mount fs, triggers fsync log replay
3733 	 *
3734 	 * We must make sure that when we fsync our inode foo we also log its
3735 	 * parent inode, otherwise after log replay the parent still has the
3736 	 * dentry with the "bar" name but our inode foo has a link count of 1
3737 	 * and doesn't have an inode ref with the name "bar" anymore.
3738 	 *
3739 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3740 	 * but it guarantees correctness at the expense of occasional full
3741 	 * transaction commits on fsync if our inode is a directory, or if our
3742 	 * inode is not a directory, logging its parent unnecessarily.
3743 	 */
3744 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3745 
3746 	path->slots[0]++;
3747 	if (inode->i_nlink != 1 ||
3748 	    path->slots[0] >= btrfs_header_nritems(leaf))
3749 		goto cache_acl;
3750 
3751 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3752 	if (location.objectid != btrfs_ino(inode))
3753 		goto cache_acl;
3754 
3755 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3756 	if (location.type == BTRFS_INODE_REF_KEY) {
3757 		struct btrfs_inode_ref *ref;
3758 
3759 		ref = (struct btrfs_inode_ref *)ptr;
3760 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3761 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3762 		struct btrfs_inode_extref *extref;
3763 
3764 		extref = (struct btrfs_inode_extref *)ptr;
3765 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3766 								     extref);
3767 	}
3768 cache_acl:
3769 	/*
3770 	 * try to precache a NULL acl entry for files that don't have
3771 	 * any xattrs or acls
3772 	 */
3773 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3774 					   btrfs_ino(inode), &first_xattr_slot);
3775 	if (first_xattr_slot != -1) {
3776 		path->slots[0] = first_xattr_slot;
3777 		ret = btrfs_load_inode_props(inode, path);
3778 		if (ret)
3779 			btrfs_err(root->fs_info,
3780 				  "error loading props for ino %llu (root %llu): %d",
3781 				  btrfs_ino(inode),
3782 				  root->root_key.objectid, ret);
3783 	}
3784 	btrfs_free_path(path);
3785 
3786 	if (!maybe_acls)
3787 		cache_no_acl(inode);
3788 
3789 	switch (inode->i_mode & S_IFMT) {
3790 	case S_IFREG:
3791 		inode->i_mapping->a_ops = &btrfs_aops;
3792 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3793 		inode->i_fop = &btrfs_file_operations;
3794 		inode->i_op = &btrfs_file_inode_operations;
3795 		break;
3796 	case S_IFDIR:
3797 		inode->i_fop = &btrfs_dir_file_operations;
3798 		if (root == root->fs_info->tree_root)
3799 			inode->i_op = &btrfs_dir_ro_inode_operations;
3800 		else
3801 			inode->i_op = &btrfs_dir_inode_operations;
3802 		break;
3803 	case S_IFLNK:
3804 		inode->i_op = &btrfs_symlink_inode_operations;
3805 		inode_nohighmem(inode);
3806 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3807 		break;
3808 	default:
3809 		inode->i_op = &btrfs_special_inode_operations;
3810 		init_special_inode(inode, inode->i_mode, rdev);
3811 		break;
3812 	}
3813 
3814 	btrfs_update_iflags(inode);
3815 	return;
3816 
3817 make_bad:
3818 	btrfs_free_path(path);
3819 	make_bad_inode(inode);
3820 }
3821 
3822 /*
3823  * given a leaf and an inode, copy the inode fields into the leaf
3824  */
3825 static void fill_inode_item(struct btrfs_trans_handle *trans,
3826 			    struct extent_buffer *leaf,
3827 			    struct btrfs_inode_item *item,
3828 			    struct inode *inode)
3829 {
3830 	struct btrfs_map_token token;
3831 
3832 	btrfs_init_map_token(&token);
3833 
3834 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3835 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3836 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3837 				   &token);
3838 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3839 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3840 
3841 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3842 				     inode->i_atime.tv_sec, &token);
3843 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3844 				      inode->i_atime.tv_nsec, &token);
3845 
3846 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3847 				     inode->i_mtime.tv_sec, &token);
3848 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3849 				      inode->i_mtime.tv_nsec, &token);
3850 
3851 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3852 				     inode->i_ctime.tv_sec, &token);
3853 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3854 				      inode->i_ctime.tv_nsec, &token);
3855 
3856 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3857 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3858 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3859 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3860 
3861 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3862 				     &token);
3863 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3864 					 &token);
3865 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3866 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3867 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3868 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3869 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3870 }
3871 
3872 /*
3873  * copy everything in the in-memory inode into the btree.
3874  */
3875 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3876 				struct btrfs_root *root, struct inode *inode)
3877 {
3878 	struct btrfs_inode_item *inode_item;
3879 	struct btrfs_path *path;
3880 	struct extent_buffer *leaf;
3881 	int ret;
3882 
3883 	path = btrfs_alloc_path();
3884 	if (!path)
3885 		return -ENOMEM;
3886 
3887 	path->leave_spinning = 1;
3888 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3889 				 1);
3890 	if (ret) {
3891 		if (ret > 0)
3892 			ret = -ENOENT;
3893 		goto failed;
3894 	}
3895 
3896 	leaf = path->nodes[0];
3897 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3898 				    struct btrfs_inode_item);
3899 
3900 	fill_inode_item(trans, leaf, inode_item, inode);
3901 	btrfs_mark_buffer_dirty(leaf);
3902 	btrfs_set_inode_last_trans(trans, inode);
3903 	ret = 0;
3904 failed:
3905 	btrfs_free_path(path);
3906 	return ret;
3907 }
3908 
3909 /*
3910  * copy everything in the in-memory inode into the btree.
3911  */
3912 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3913 				struct btrfs_root *root, struct inode *inode)
3914 {
3915 	int ret;
3916 
3917 	/*
3918 	 * If the inode is a free space inode, we can deadlock during commit
3919 	 * if we put it into the delayed code.
3920 	 *
3921 	 * The data relocation inode should also be directly updated
3922 	 * without delay
3923 	 */
3924 	if (!btrfs_is_free_space_inode(inode)
3925 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3926 	    && !root->fs_info->log_root_recovering) {
3927 		btrfs_update_root_times(trans, root);
3928 
3929 		ret = btrfs_delayed_update_inode(trans, root, inode);
3930 		if (!ret)
3931 			btrfs_set_inode_last_trans(trans, inode);
3932 		return ret;
3933 	}
3934 
3935 	return btrfs_update_inode_item(trans, root, inode);
3936 }
3937 
3938 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3939 					 struct btrfs_root *root,
3940 					 struct inode *inode)
3941 {
3942 	int ret;
3943 
3944 	ret = btrfs_update_inode(trans, root, inode);
3945 	if (ret == -ENOSPC)
3946 		return btrfs_update_inode_item(trans, root, inode);
3947 	return ret;
3948 }
3949 
3950 /*
3951  * unlink helper that gets used here in inode.c and in the tree logging
3952  * recovery code.  It remove a link in a directory with a given name, and
3953  * also drops the back refs in the inode to the directory
3954  */
3955 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3956 				struct btrfs_root *root,
3957 				struct inode *dir, struct inode *inode,
3958 				const char *name, int name_len)
3959 {
3960 	struct btrfs_path *path;
3961 	int ret = 0;
3962 	struct extent_buffer *leaf;
3963 	struct btrfs_dir_item *di;
3964 	struct btrfs_key key;
3965 	u64 index;
3966 	u64 ino = btrfs_ino(inode);
3967 	u64 dir_ino = btrfs_ino(dir);
3968 
3969 	path = btrfs_alloc_path();
3970 	if (!path) {
3971 		ret = -ENOMEM;
3972 		goto out;
3973 	}
3974 
3975 	path->leave_spinning = 1;
3976 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3977 				    name, name_len, -1);
3978 	if (IS_ERR(di)) {
3979 		ret = PTR_ERR(di);
3980 		goto err;
3981 	}
3982 	if (!di) {
3983 		ret = -ENOENT;
3984 		goto err;
3985 	}
3986 	leaf = path->nodes[0];
3987 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3988 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3989 	if (ret)
3990 		goto err;
3991 	btrfs_release_path(path);
3992 
3993 	/*
3994 	 * If we don't have dir index, we have to get it by looking up
3995 	 * the inode ref, since we get the inode ref, remove it directly,
3996 	 * it is unnecessary to do delayed deletion.
3997 	 *
3998 	 * But if we have dir index, needn't search inode ref to get it.
3999 	 * Since the inode ref is close to the inode item, it is better
4000 	 * that we delay to delete it, and just do this deletion when
4001 	 * we update the inode item.
4002 	 */
4003 	if (BTRFS_I(inode)->dir_index) {
4004 		ret = btrfs_delayed_delete_inode_ref(inode);
4005 		if (!ret) {
4006 			index = BTRFS_I(inode)->dir_index;
4007 			goto skip_backref;
4008 		}
4009 	}
4010 
4011 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4012 				  dir_ino, &index);
4013 	if (ret) {
4014 		btrfs_info(root->fs_info,
4015 			"failed to delete reference to %.*s, inode %llu parent %llu",
4016 			name_len, name, ino, dir_ino);
4017 		btrfs_abort_transaction(trans, ret);
4018 		goto err;
4019 	}
4020 skip_backref:
4021 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4022 	if (ret) {
4023 		btrfs_abort_transaction(trans, ret);
4024 		goto err;
4025 	}
4026 
4027 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4028 					 inode, dir_ino);
4029 	if (ret != 0 && ret != -ENOENT) {
4030 		btrfs_abort_transaction(trans, ret);
4031 		goto err;
4032 	}
4033 
4034 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4035 					   dir, index);
4036 	if (ret == -ENOENT)
4037 		ret = 0;
4038 	else if (ret)
4039 		btrfs_abort_transaction(trans, ret);
4040 err:
4041 	btrfs_free_path(path);
4042 	if (ret)
4043 		goto out;
4044 
4045 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4046 	inode_inc_iversion(inode);
4047 	inode_inc_iversion(dir);
4048 	inode->i_ctime = dir->i_mtime =
4049 		dir->i_ctime = current_fs_time(inode->i_sb);
4050 	ret = btrfs_update_inode(trans, root, dir);
4051 out:
4052 	return ret;
4053 }
4054 
4055 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4056 		       struct btrfs_root *root,
4057 		       struct inode *dir, struct inode *inode,
4058 		       const char *name, int name_len)
4059 {
4060 	int ret;
4061 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4062 	if (!ret) {
4063 		drop_nlink(inode);
4064 		ret = btrfs_update_inode(trans, root, inode);
4065 	}
4066 	return ret;
4067 }
4068 
4069 /*
4070  * helper to start transaction for unlink and rmdir.
4071  *
4072  * unlink and rmdir are special in btrfs, they do not always free space, so
4073  * if we cannot make our reservations the normal way try and see if there is
4074  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4075  * allow the unlink to occur.
4076  */
4077 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4078 {
4079 	struct btrfs_root *root = BTRFS_I(dir)->root;
4080 
4081 	/*
4082 	 * 1 for the possible orphan item
4083 	 * 1 for the dir item
4084 	 * 1 for the dir index
4085 	 * 1 for the inode ref
4086 	 * 1 for the inode
4087 	 */
4088 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4089 }
4090 
4091 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4092 {
4093 	struct btrfs_root *root = BTRFS_I(dir)->root;
4094 	struct btrfs_trans_handle *trans;
4095 	struct inode *inode = d_inode(dentry);
4096 	int ret;
4097 
4098 	trans = __unlink_start_trans(dir);
4099 	if (IS_ERR(trans))
4100 		return PTR_ERR(trans);
4101 
4102 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4103 
4104 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4105 				 dentry->d_name.name, dentry->d_name.len);
4106 	if (ret)
4107 		goto out;
4108 
4109 	if (inode->i_nlink == 0) {
4110 		ret = btrfs_orphan_add(trans, inode);
4111 		if (ret)
4112 			goto out;
4113 	}
4114 
4115 out:
4116 	btrfs_end_transaction(trans, root);
4117 	btrfs_btree_balance_dirty(root);
4118 	return ret;
4119 }
4120 
4121 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4122 			struct btrfs_root *root,
4123 			struct inode *dir, u64 objectid,
4124 			const char *name, int name_len)
4125 {
4126 	struct btrfs_path *path;
4127 	struct extent_buffer *leaf;
4128 	struct btrfs_dir_item *di;
4129 	struct btrfs_key key;
4130 	u64 index;
4131 	int ret;
4132 	u64 dir_ino = btrfs_ino(dir);
4133 
4134 	path = btrfs_alloc_path();
4135 	if (!path)
4136 		return -ENOMEM;
4137 
4138 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4139 				   name, name_len, -1);
4140 	if (IS_ERR_OR_NULL(di)) {
4141 		if (!di)
4142 			ret = -ENOENT;
4143 		else
4144 			ret = PTR_ERR(di);
4145 		goto out;
4146 	}
4147 
4148 	leaf = path->nodes[0];
4149 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4150 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4151 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4152 	if (ret) {
4153 		btrfs_abort_transaction(trans, ret);
4154 		goto out;
4155 	}
4156 	btrfs_release_path(path);
4157 
4158 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4159 				 objectid, root->root_key.objectid,
4160 				 dir_ino, &index, name, name_len);
4161 	if (ret < 0) {
4162 		if (ret != -ENOENT) {
4163 			btrfs_abort_transaction(trans, ret);
4164 			goto out;
4165 		}
4166 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4167 						 name, name_len);
4168 		if (IS_ERR_OR_NULL(di)) {
4169 			if (!di)
4170 				ret = -ENOENT;
4171 			else
4172 				ret = PTR_ERR(di);
4173 			btrfs_abort_transaction(trans, ret);
4174 			goto out;
4175 		}
4176 
4177 		leaf = path->nodes[0];
4178 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4179 		btrfs_release_path(path);
4180 		index = key.offset;
4181 	}
4182 	btrfs_release_path(path);
4183 
4184 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4185 	if (ret) {
4186 		btrfs_abort_transaction(trans, ret);
4187 		goto out;
4188 	}
4189 
4190 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4191 	inode_inc_iversion(dir);
4192 	dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
4193 	ret = btrfs_update_inode_fallback(trans, root, dir);
4194 	if (ret)
4195 		btrfs_abort_transaction(trans, ret);
4196 out:
4197 	btrfs_free_path(path);
4198 	return ret;
4199 }
4200 
4201 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4202 {
4203 	struct inode *inode = d_inode(dentry);
4204 	int err = 0;
4205 	struct btrfs_root *root = BTRFS_I(dir)->root;
4206 	struct btrfs_trans_handle *trans;
4207 
4208 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4209 		return -ENOTEMPTY;
4210 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4211 		return -EPERM;
4212 
4213 	trans = __unlink_start_trans(dir);
4214 	if (IS_ERR(trans))
4215 		return PTR_ERR(trans);
4216 
4217 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4218 		err = btrfs_unlink_subvol(trans, root, dir,
4219 					  BTRFS_I(inode)->location.objectid,
4220 					  dentry->d_name.name,
4221 					  dentry->d_name.len);
4222 		goto out;
4223 	}
4224 
4225 	err = btrfs_orphan_add(trans, inode);
4226 	if (err)
4227 		goto out;
4228 
4229 	/* now the directory is empty */
4230 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4231 				 dentry->d_name.name, dentry->d_name.len);
4232 	if (!err)
4233 		btrfs_i_size_write(inode, 0);
4234 out:
4235 	btrfs_end_transaction(trans, root);
4236 	btrfs_btree_balance_dirty(root);
4237 
4238 	return err;
4239 }
4240 
4241 static int truncate_space_check(struct btrfs_trans_handle *trans,
4242 				struct btrfs_root *root,
4243 				u64 bytes_deleted)
4244 {
4245 	int ret;
4246 
4247 	/*
4248 	 * This is only used to apply pressure to the enospc system, we don't
4249 	 * intend to use this reservation at all.
4250 	 */
4251 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4252 	bytes_deleted *= root->nodesize;
4253 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4254 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4255 	if (!ret) {
4256 		trace_btrfs_space_reservation(root->fs_info, "transaction",
4257 					      trans->transid,
4258 					      bytes_deleted, 1);
4259 		trans->bytes_reserved += bytes_deleted;
4260 	}
4261 	return ret;
4262 
4263 }
4264 
4265 static int truncate_inline_extent(struct inode *inode,
4266 				  struct btrfs_path *path,
4267 				  struct btrfs_key *found_key,
4268 				  const u64 item_end,
4269 				  const u64 new_size)
4270 {
4271 	struct extent_buffer *leaf = path->nodes[0];
4272 	int slot = path->slots[0];
4273 	struct btrfs_file_extent_item *fi;
4274 	u32 size = (u32)(new_size - found_key->offset);
4275 	struct btrfs_root *root = BTRFS_I(inode)->root;
4276 
4277 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4278 
4279 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4280 		loff_t offset = new_size;
4281 		loff_t page_end = ALIGN(offset, PAGE_SIZE);
4282 
4283 		/*
4284 		 * Zero out the remaining of the last page of our inline extent,
4285 		 * instead of directly truncating our inline extent here - that
4286 		 * would be much more complex (decompressing all the data, then
4287 		 * compressing the truncated data, which might be bigger than
4288 		 * the size of the inline extent, resize the extent, etc).
4289 		 * We release the path because to get the page we might need to
4290 		 * read the extent item from disk (data not in the page cache).
4291 		 */
4292 		btrfs_release_path(path);
4293 		return btrfs_truncate_block(inode, offset, page_end - offset,
4294 					0);
4295 	}
4296 
4297 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4298 	size = btrfs_file_extent_calc_inline_size(size);
4299 	btrfs_truncate_item(root, path, size, 1);
4300 
4301 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4302 		inode_sub_bytes(inode, item_end + 1 - new_size);
4303 
4304 	return 0;
4305 }
4306 
4307 /*
4308  * this can truncate away extent items, csum items and directory items.
4309  * It starts at a high offset and removes keys until it can't find
4310  * any higher than new_size
4311  *
4312  * csum items that cross the new i_size are truncated to the new size
4313  * as well.
4314  *
4315  * min_type is the minimum key type to truncate down to.  If set to 0, this
4316  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4317  */
4318 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4319 			       struct btrfs_root *root,
4320 			       struct inode *inode,
4321 			       u64 new_size, u32 min_type)
4322 {
4323 	struct btrfs_path *path;
4324 	struct extent_buffer *leaf;
4325 	struct btrfs_file_extent_item *fi;
4326 	struct btrfs_key key;
4327 	struct btrfs_key found_key;
4328 	u64 extent_start = 0;
4329 	u64 extent_num_bytes = 0;
4330 	u64 extent_offset = 0;
4331 	u64 item_end = 0;
4332 	u64 last_size = new_size;
4333 	u32 found_type = (u8)-1;
4334 	int found_extent;
4335 	int del_item;
4336 	int pending_del_nr = 0;
4337 	int pending_del_slot = 0;
4338 	int extent_type = -1;
4339 	int ret;
4340 	int err = 0;
4341 	u64 ino = btrfs_ino(inode);
4342 	u64 bytes_deleted = 0;
4343 	bool be_nice = 0;
4344 	bool should_throttle = 0;
4345 	bool should_end = 0;
4346 
4347 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4348 
4349 	/*
4350 	 * for non-free space inodes and ref cows, we want to back off from
4351 	 * time to time
4352 	 */
4353 	if (!btrfs_is_free_space_inode(inode) &&
4354 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4355 		be_nice = 1;
4356 
4357 	path = btrfs_alloc_path();
4358 	if (!path)
4359 		return -ENOMEM;
4360 	path->reada = READA_BACK;
4361 
4362 	/*
4363 	 * We want to drop from the next block forward in case this new size is
4364 	 * not block aligned since we will be keeping the last block of the
4365 	 * extent just the way it is.
4366 	 */
4367 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4368 	    root == root->fs_info->tree_root)
4369 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4370 					root->sectorsize), (u64)-1, 0);
4371 
4372 	/*
4373 	 * This function is also used to drop the items in the log tree before
4374 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4375 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4376 	 * items.
4377 	 */
4378 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4379 		btrfs_kill_delayed_inode_items(inode);
4380 
4381 	key.objectid = ino;
4382 	key.offset = (u64)-1;
4383 	key.type = (u8)-1;
4384 
4385 search_again:
4386 	/*
4387 	 * with a 16K leaf size and 128MB extents, you can actually queue
4388 	 * up a huge file in a single leaf.  Most of the time that
4389 	 * bytes_deleted is > 0, it will be huge by the time we get here
4390 	 */
4391 	if (be_nice && bytes_deleted > SZ_32M) {
4392 		if (btrfs_should_end_transaction(trans, root)) {
4393 			err = -EAGAIN;
4394 			goto error;
4395 		}
4396 	}
4397 
4398 
4399 	path->leave_spinning = 1;
4400 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4401 	if (ret < 0) {
4402 		err = ret;
4403 		goto out;
4404 	}
4405 
4406 	if (ret > 0) {
4407 		/* there are no items in the tree for us to truncate, we're
4408 		 * done
4409 		 */
4410 		if (path->slots[0] == 0)
4411 			goto out;
4412 		path->slots[0]--;
4413 	}
4414 
4415 	while (1) {
4416 		fi = NULL;
4417 		leaf = path->nodes[0];
4418 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4419 		found_type = found_key.type;
4420 
4421 		if (found_key.objectid != ino)
4422 			break;
4423 
4424 		if (found_type < min_type)
4425 			break;
4426 
4427 		item_end = found_key.offset;
4428 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4429 			fi = btrfs_item_ptr(leaf, path->slots[0],
4430 					    struct btrfs_file_extent_item);
4431 			extent_type = btrfs_file_extent_type(leaf, fi);
4432 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4433 				item_end +=
4434 				    btrfs_file_extent_num_bytes(leaf, fi);
4435 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4436 				item_end += btrfs_file_extent_inline_len(leaf,
4437 							 path->slots[0], fi);
4438 			}
4439 			item_end--;
4440 		}
4441 		if (found_type > min_type) {
4442 			del_item = 1;
4443 		} else {
4444 			if (item_end < new_size)
4445 				break;
4446 			if (found_key.offset >= new_size)
4447 				del_item = 1;
4448 			else
4449 				del_item = 0;
4450 		}
4451 		found_extent = 0;
4452 		/* FIXME, shrink the extent if the ref count is only 1 */
4453 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4454 			goto delete;
4455 
4456 		if (del_item)
4457 			last_size = found_key.offset;
4458 		else
4459 			last_size = new_size;
4460 
4461 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4462 			u64 num_dec;
4463 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4464 			if (!del_item) {
4465 				u64 orig_num_bytes =
4466 					btrfs_file_extent_num_bytes(leaf, fi);
4467 				extent_num_bytes = ALIGN(new_size -
4468 						found_key.offset,
4469 						root->sectorsize);
4470 				btrfs_set_file_extent_num_bytes(leaf, fi,
4471 							 extent_num_bytes);
4472 				num_dec = (orig_num_bytes -
4473 					   extent_num_bytes);
4474 				if (test_bit(BTRFS_ROOT_REF_COWS,
4475 					     &root->state) &&
4476 				    extent_start != 0)
4477 					inode_sub_bytes(inode, num_dec);
4478 				btrfs_mark_buffer_dirty(leaf);
4479 			} else {
4480 				extent_num_bytes =
4481 					btrfs_file_extent_disk_num_bytes(leaf,
4482 									 fi);
4483 				extent_offset = found_key.offset -
4484 					btrfs_file_extent_offset(leaf, fi);
4485 
4486 				/* FIXME blocksize != 4096 */
4487 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4488 				if (extent_start != 0) {
4489 					found_extent = 1;
4490 					if (test_bit(BTRFS_ROOT_REF_COWS,
4491 						     &root->state))
4492 						inode_sub_bytes(inode, num_dec);
4493 				}
4494 			}
4495 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4496 			/*
4497 			 * we can't truncate inline items that have had
4498 			 * special encodings
4499 			 */
4500 			if (!del_item &&
4501 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4502 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4503 
4504 				/*
4505 				 * Need to release path in order to truncate a
4506 				 * compressed extent. So delete any accumulated
4507 				 * extent items so far.
4508 				 */
4509 				if (btrfs_file_extent_compression(leaf, fi) !=
4510 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4511 					err = btrfs_del_items(trans, root, path,
4512 							      pending_del_slot,
4513 							      pending_del_nr);
4514 					if (err) {
4515 						btrfs_abort_transaction(trans,
4516 									err);
4517 						goto error;
4518 					}
4519 					pending_del_nr = 0;
4520 				}
4521 
4522 				err = truncate_inline_extent(inode, path,
4523 							     &found_key,
4524 							     item_end,
4525 							     new_size);
4526 				if (err) {
4527 					btrfs_abort_transaction(trans, err);
4528 					goto error;
4529 				}
4530 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4531 					    &root->state)) {
4532 				inode_sub_bytes(inode, item_end + 1 - new_size);
4533 			}
4534 		}
4535 delete:
4536 		if (del_item) {
4537 			if (!pending_del_nr) {
4538 				/* no pending yet, add ourselves */
4539 				pending_del_slot = path->slots[0];
4540 				pending_del_nr = 1;
4541 			} else if (pending_del_nr &&
4542 				   path->slots[0] + 1 == pending_del_slot) {
4543 				/* hop on the pending chunk */
4544 				pending_del_nr++;
4545 				pending_del_slot = path->slots[0];
4546 			} else {
4547 				BUG();
4548 			}
4549 		} else {
4550 			break;
4551 		}
4552 		should_throttle = 0;
4553 
4554 		if (found_extent &&
4555 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4556 		     root == root->fs_info->tree_root)) {
4557 			btrfs_set_path_blocking(path);
4558 			bytes_deleted += extent_num_bytes;
4559 			ret = btrfs_free_extent(trans, root, extent_start,
4560 						extent_num_bytes, 0,
4561 						btrfs_header_owner(leaf),
4562 						ino, extent_offset);
4563 			BUG_ON(ret);
4564 			if (btrfs_should_throttle_delayed_refs(trans, root))
4565 				btrfs_async_run_delayed_refs(root,
4566 							     trans->transid,
4567 					trans->delayed_ref_updates * 2, 0);
4568 			if (be_nice) {
4569 				if (truncate_space_check(trans, root,
4570 							 extent_num_bytes)) {
4571 					should_end = 1;
4572 				}
4573 				if (btrfs_should_throttle_delayed_refs(trans,
4574 								       root)) {
4575 					should_throttle = 1;
4576 				}
4577 			}
4578 		}
4579 
4580 		if (found_type == BTRFS_INODE_ITEM_KEY)
4581 			break;
4582 
4583 		if (path->slots[0] == 0 ||
4584 		    path->slots[0] != pending_del_slot ||
4585 		    should_throttle || should_end) {
4586 			if (pending_del_nr) {
4587 				ret = btrfs_del_items(trans, root, path,
4588 						pending_del_slot,
4589 						pending_del_nr);
4590 				if (ret) {
4591 					btrfs_abort_transaction(trans, ret);
4592 					goto error;
4593 				}
4594 				pending_del_nr = 0;
4595 			}
4596 			btrfs_release_path(path);
4597 			if (should_throttle) {
4598 				unsigned long updates = trans->delayed_ref_updates;
4599 				if (updates) {
4600 					trans->delayed_ref_updates = 0;
4601 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4602 					if (ret && !err)
4603 						err = ret;
4604 				}
4605 			}
4606 			/*
4607 			 * if we failed to refill our space rsv, bail out
4608 			 * and let the transaction restart
4609 			 */
4610 			if (should_end) {
4611 				err = -EAGAIN;
4612 				goto error;
4613 			}
4614 			goto search_again;
4615 		} else {
4616 			path->slots[0]--;
4617 		}
4618 	}
4619 out:
4620 	if (pending_del_nr) {
4621 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4622 				      pending_del_nr);
4623 		if (ret)
4624 			btrfs_abort_transaction(trans, ret);
4625 	}
4626 error:
4627 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4628 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4629 
4630 	btrfs_free_path(path);
4631 
4632 	if (be_nice && bytes_deleted > SZ_32M) {
4633 		unsigned long updates = trans->delayed_ref_updates;
4634 		if (updates) {
4635 			trans->delayed_ref_updates = 0;
4636 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4637 			if (ret && !err)
4638 				err = ret;
4639 		}
4640 	}
4641 	return err;
4642 }
4643 
4644 /*
4645  * btrfs_truncate_block - read, zero a chunk and write a block
4646  * @inode - inode that we're zeroing
4647  * @from - the offset to start zeroing
4648  * @len - the length to zero, 0 to zero the entire range respective to the
4649  *	offset
4650  * @front - zero up to the offset instead of from the offset on
4651  *
4652  * This will find the block for the "from" offset and cow the block and zero the
4653  * part we want to zero.  This is used with truncate and hole punching.
4654  */
4655 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4656 			int front)
4657 {
4658 	struct address_space *mapping = inode->i_mapping;
4659 	struct btrfs_root *root = BTRFS_I(inode)->root;
4660 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4661 	struct btrfs_ordered_extent *ordered;
4662 	struct extent_state *cached_state = NULL;
4663 	char *kaddr;
4664 	u32 blocksize = root->sectorsize;
4665 	pgoff_t index = from >> PAGE_SHIFT;
4666 	unsigned offset = from & (blocksize - 1);
4667 	struct page *page;
4668 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4669 	int ret = 0;
4670 	u64 block_start;
4671 	u64 block_end;
4672 
4673 	if ((offset & (blocksize - 1)) == 0 &&
4674 	    (!len || ((len & (blocksize - 1)) == 0)))
4675 		goto out;
4676 
4677 	ret = btrfs_delalloc_reserve_space(inode,
4678 			round_down(from, blocksize), blocksize);
4679 	if (ret)
4680 		goto out;
4681 
4682 again:
4683 	page = find_or_create_page(mapping, index, mask);
4684 	if (!page) {
4685 		btrfs_delalloc_release_space(inode,
4686 				round_down(from, blocksize),
4687 				blocksize);
4688 		ret = -ENOMEM;
4689 		goto out;
4690 	}
4691 
4692 	block_start = round_down(from, blocksize);
4693 	block_end = block_start + blocksize - 1;
4694 
4695 	if (!PageUptodate(page)) {
4696 		ret = btrfs_readpage(NULL, page);
4697 		lock_page(page);
4698 		if (page->mapping != mapping) {
4699 			unlock_page(page);
4700 			put_page(page);
4701 			goto again;
4702 		}
4703 		if (!PageUptodate(page)) {
4704 			ret = -EIO;
4705 			goto out_unlock;
4706 		}
4707 	}
4708 	wait_on_page_writeback(page);
4709 
4710 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4711 	set_page_extent_mapped(page);
4712 
4713 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4714 	if (ordered) {
4715 		unlock_extent_cached(io_tree, block_start, block_end,
4716 				     &cached_state, GFP_NOFS);
4717 		unlock_page(page);
4718 		put_page(page);
4719 		btrfs_start_ordered_extent(inode, ordered, 1);
4720 		btrfs_put_ordered_extent(ordered);
4721 		goto again;
4722 	}
4723 
4724 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4725 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4726 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4727 			  0, 0, &cached_state, GFP_NOFS);
4728 
4729 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4730 					&cached_state);
4731 	if (ret) {
4732 		unlock_extent_cached(io_tree, block_start, block_end,
4733 				     &cached_state, GFP_NOFS);
4734 		goto out_unlock;
4735 	}
4736 
4737 	if (offset != blocksize) {
4738 		if (!len)
4739 			len = blocksize - offset;
4740 		kaddr = kmap(page);
4741 		if (front)
4742 			memset(kaddr + (block_start - page_offset(page)),
4743 				0, offset);
4744 		else
4745 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4746 				0, len);
4747 		flush_dcache_page(page);
4748 		kunmap(page);
4749 	}
4750 	ClearPageChecked(page);
4751 	set_page_dirty(page);
4752 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4753 			     GFP_NOFS);
4754 
4755 out_unlock:
4756 	if (ret)
4757 		btrfs_delalloc_release_space(inode, block_start,
4758 					     blocksize);
4759 	unlock_page(page);
4760 	put_page(page);
4761 out:
4762 	return ret;
4763 }
4764 
4765 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4766 			     u64 offset, u64 len)
4767 {
4768 	struct btrfs_trans_handle *trans;
4769 	int ret;
4770 
4771 	/*
4772 	 * Still need to make sure the inode looks like it's been updated so
4773 	 * that any holes get logged if we fsync.
4774 	 */
4775 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4776 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4777 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4778 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4779 		return 0;
4780 	}
4781 
4782 	/*
4783 	 * 1 - for the one we're dropping
4784 	 * 1 - for the one we're adding
4785 	 * 1 - for updating the inode.
4786 	 */
4787 	trans = btrfs_start_transaction(root, 3);
4788 	if (IS_ERR(trans))
4789 		return PTR_ERR(trans);
4790 
4791 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4792 	if (ret) {
4793 		btrfs_abort_transaction(trans, ret);
4794 		btrfs_end_transaction(trans, root);
4795 		return ret;
4796 	}
4797 
4798 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4799 				       0, 0, len, 0, len, 0, 0, 0);
4800 	if (ret)
4801 		btrfs_abort_transaction(trans, ret);
4802 	else
4803 		btrfs_update_inode(trans, root, inode);
4804 	btrfs_end_transaction(trans, root);
4805 	return ret;
4806 }
4807 
4808 /*
4809  * This function puts in dummy file extents for the area we're creating a hole
4810  * for.  So if we are truncating this file to a larger size we need to insert
4811  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4812  * the range between oldsize and size
4813  */
4814 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4815 {
4816 	struct btrfs_root *root = BTRFS_I(inode)->root;
4817 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4818 	struct extent_map *em = NULL;
4819 	struct extent_state *cached_state = NULL;
4820 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4821 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4822 	u64 block_end = ALIGN(size, root->sectorsize);
4823 	u64 last_byte;
4824 	u64 cur_offset;
4825 	u64 hole_size;
4826 	int err = 0;
4827 
4828 	/*
4829 	 * If our size started in the middle of a block we need to zero out the
4830 	 * rest of the block before we expand the i_size, otherwise we could
4831 	 * expose stale data.
4832 	 */
4833 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4834 	if (err)
4835 		return err;
4836 
4837 	if (size <= hole_start)
4838 		return 0;
4839 
4840 	while (1) {
4841 		struct btrfs_ordered_extent *ordered;
4842 
4843 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4844 				 &cached_state);
4845 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4846 						     block_end - hole_start);
4847 		if (!ordered)
4848 			break;
4849 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4850 				     &cached_state, GFP_NOFS);
4851 		btrfs_start_ordered_extent(inode, ordered, 1);
4852 		btrfs_put_ordered_extent(ordered);
4853 	}
4854 
4855 	cur_offset = hole_start;
4856 	while (1) {
4857 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4858 				block_end - cur_offset, 0);
4859 		if (IS_ERR(em)) {
4860 			err = PTR_ERR(em);
4861 			em = NULL;
4862 			break;
4863 		}
4864 		last_byte = min(extent_map_end(em), block_end);
4865 		last_byte = ALIGN(last_byte , root->sectorsize);
4866 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4867 			struct extent_map *hole_em;
4868 			hole_size = last_byte - cur_offset;
4869 
4870 			err = maybe_insert_hole(root, inode, cur_offset,
4871 						hole_size);
4872 			if (err)
4873 				break;
4874 			btrfs_drop_extent_cache(inode, cur_offset,
4875 						cur_offset + hole_size - 1, 0);
4876 			hole_em = alloc_extent_map();
4877 			if (!hole_em) {
4878 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4879 					&BTRFS_I(inode)->runtime_flags);
4880 				goto next;
4881 			}
4882 			hole_em->start = cur_offset;
4883 			hole_em->len = hole_size;
4884 			hole_em->orig_start = cur_offset;
4885 
4886 			hole_em->block_start = EXTENT_MAP_HOLE;
4887 			hole_em->block_len = 0;
4888 			hole_em->orig_block_len = 0;
4889 			hole_em->ram_bytes = hole_size;
4890 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4891 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4892 			hole_em->generation = root->fs_info->generation;
4893 
4894 			while (1) {
4895 				write_lock(&em_tree->lock);
4896 				err = add_extent_mapping(em_tree, hole_em, 1);
4897 				write_unlock(&em_tree->lock);
4898 				if (err != -EEXIST)
4899 					break;
4900 				btrfs_drop_extent_cache(inode, cur_offset,
4901 							cur_offset +
4902 							hole_size - 1, 0);
4903 			}
4904 			free_extent_map(hole_em);
4905 		}
4906 next:
4907 		free_extent_map(em);
4908 		em = NULL;
4909 		cur_offset = last_byte;
4910 		if (cur_offset >= block_end)
4911 			break;
4912 	}
4913 	free_extent_map(em);
4914 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4915 			     GFP_NOFS);
4916 	return err;
4917 }
4918 
4919 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4920 {
4921 	struct btrfs_root *root = BTRFS_I(inode)->root;
4922 	struct btrfs_trans_handle *trans;
4923 	loff_t oldsize = i_size_read(inode);
4924 	loff_t newsize = attr->ia_size;
4925 	int mask = attr->ia_valid;
4926 	int ret;
4927 
4928 	/*
4929 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4930 	 * special case where we need to update the times despite not having
4931 	 * these flags set.  For all other operations the VFS set these flags
4932 	 * explicitly if it wants a timestamp update.
4933 	 */
4934 	if (newsize != oldsize) {
4935 		inode_inc_iversion(inode);
4936 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4937 			inode->i_ctime = inode->i_mtime =
4938 				current_fs_time(inode->i_sb);
4939 	}
4940 
4941 	if (newsize > oldsize) {
4942 		/*
4943 		 * Don't do an expanding truncate while snapshoting is ongoing.
4944 		 * This is to ensure the snapshot captures a fully consistent
4945 		 * state of this file - if the snapshot captures this expanding
4946 		 * truncation, it must capture all writes that happened before
4947 		 * this truncation.
4948 		 */
4949 		btrfs_wait_for_snapshot_creation(root);
4950 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4951 		if (ret) {
4952 			btrfs_end_write_no_snapshoting(root);
4953 			return ret;
4954 		}
4955 
4956 		trans = btrfs_start_transaction(root, 1);
4957 		if (IS_ERR(trans)) {
4958 			btrfs_end_write_no_snapshoting(root);
4959 			return PTR_ERR(trans);
4960 		}
4961 
4962 		i_size_write(inode, newsize);
4963 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4964 		pagecache_isize_extended(inode, oldsize, newsize);
4965 		ret = btrfs_update_inode(trans, root, inode);
4966 		btrfs_end_write_no_snapshoting(root);
4967 		btrfs_end_transaction(trans, root);
4968 	} else {
4969 
4970 		/*
4971 		 * We're truncating a file that used to have good data down to
4972 		 * zero. Make sure it gets into the ordered flush list so that
4973 		 * any new writes get down to disk quickly.
4974 		 */
4975 		if (newsize == 0)
4976 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4977 				&BTRFS_I(inode)->runtime_flags);
4978 
4979 		/*
4980 		 * 1 for the orphan item we're going to add
4981 		 * 1 for the orphan item deletion.
4982 		 */
4983 		trans = btrfs_start_transaction(root, 2);
4984 		if (IS_ERR(trans))
4985 			return PTR_ERR(trans);
4986 
4987 		/*
4988 		 * We need to do this in case we fail at _any_ point during the
4989 		 * actual truncate.  Once we do the truncate_setsize we could
4990 		 * invalidate pages which forces any outstanding ordered io to
4991 		 * be instantly completed which will give us extents that need
4992 		 * to be truncated.  If we fail to get an orphan inode down we
4993 		 * could have left over extents that were never meant to live,
4994 		 * so we need to guarantee from this point on that everything
4995 		 * will be consistent.
4996 		 */
4997 		ret = btrfs_orphan_add(trans, inode);
4998 		btrfs_end_transaction(trans, root);
4999 		if (ret)
5000 			return ret;
5001 
5002 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5003 		truncate_setsize(inode, newsize);
5004 
5005 		/* Disable nonlocked read DIO to avoid the end less truncate */
5006 		btrfs_inode_block_unlocked_dio(inode);
5007 		inode_dio_wait(inode);
5008 		btrfs_inode_resume_unlocked_dio(inode);
5009 
5010 		ret = btrfs_truncate(inode);
5011 		if (ret && inode->i_nlink) {
5012 			int err;
5013 
5014 			/*
5015 			 * failed to truncate, disk_i_size is only adjusted down
5016 			 * as we remove extents, so it should represent the true
5017 			 * size of the inode, so reset the in memory size and
5018 			 * delete our orphan entry.
5019 			 */
5020 			trans = btrfs_join_transaction(root);
5021 			if (IS_ERR(trans)) {
5022 				btrfs_orphan_del(NULL, inode);
5023 				return ret;
5024 			}
5025 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5026 			err = btrfs_orphan_del(trans, inode);
5027 			if (err)
5028 				btrfs_abort_transaction(trans, err);
5029 			btrfs_end_transaction(trans, root);
5030 		}
5031 	}
5032 
5033 	return ret;
5034 }
5035 
5036 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5037 {
5038 	struct inode *inode = d_inode(dentry);
5039 	struct btrfs_root *root = BTRFS_I(inode)->root;
5040 	int err;
5041 
5042 	if (btrfs_root_readonly(root))
5043 		return -EROFS;
5044 
5045 	err = inode_change_ok(inode, attr);
5046 	if (err)
5047 		return err;
5048 
5049 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5050 		err = btrfs_setsize(inode, attr);
5051 		if (err)
5052 			return err;
5053 	}
5054 
5055 	if (attr->ia_valid) {
5056 		setattr_copy(inode, attr);
5057 		inode_inc_iversion(inode);
5058 		err = btrfs_dirty_inode(inode);
5059 
5060 		if (!err && attr->ia_valid & ATTR_MODE)
5061 			err = posix_acl_chmod(inode, inode->i_mode);
5062 	}
5063 
5064 	return err;
5065 }
5066 
5067 /*
5068  * While truncating the inode pages during eviction, we get the VFS calling
5069  * btrfs_invalidatepage() against each page of the inode. This is slow because
5070  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5071  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5072  * extent_state structures over and over, wasting lots of time.
5073  *
5074  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5075  * those expensive operations on a per page basis and do only the ordered io
5076  * finishing, while we release here the extent_map and extent_state structures,
5077  * without the excessive merging and splitting.
5078  */
5079 static void evict_inode_truncate_pages(struct inode *inode)
5080 {
5081 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5082 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5083 	struct rb_node *node;
5084 
5085 	ASSERT(inode->i_state & I_FREEING);
5086 	truncate_inode_pages_final(&inode->i_data);
5087 
5088 	write_lock(&map_tree->lock);
5089 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5090 		struct extent_map *em;
5091 
5092 		node = rb_first(&map_tree->map);
5093 		em = rb_entry(node, struct extent_map, rb_node);
5094 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5095 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5096 		remove_extent_mapping(map_tree, em);
5097 		free_extent_map(em);
5098 		if (need_resched()) {
5099 			write_unlock(&map_tree->lock);
5100 			cond_resched();
5101 			write_lock(&map_tree->lock);
5102 		}
5103 	}
5104 	write_unlock(&map_tree->lock);
5105 
5106 	/*
5107 	 * Keep looping until we have no more ranges in the io tree.
5108 	 * We can have ongoing bios started by readpages (called from readahead)
5109 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5110 	 * still in progress (unlocked the pages in the bio but did not yet
5111 	 * unlocked the ranges in the io tree). Therefore this means some
5112 	 * ranges can still be locked and eviction started because before
5113 	 * submitting those bios, which are executed by a separate task (work
5114 	 * queue kthread), inode references (inode->i_count) were not taken
5115 	 * (which would be dropped in the end io callback of each bio).
5116 	 * Therefore here we effectively end up waiting for those bios and
5117 	 * anyone else holding locked ranges without having bumped the inode's
5118 	 * reference count - if we don't do it, when they access the inode's
5119 	 * io_tree to unlock a range it may be too late, leading to an
5120 	 * use-after-free issue.
5121 	 */
5122 	spin_lock(&io_tree->lock);
5123 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5124 		struct extent_state *state;
5125 		struct extent_state *cached_state = NULL;
5126 		u64 start;
5127 		u64 end;
5128 
5129 		node = rb_first(&io_tree->state);
5130 		state = rb_entry(node, struct extent_state, rb_node);
5131 		start = state->start;
5132 		end = state->end;
5133 		spin_unlock(&io_tree->lock);
5134 
5135 		lock_extent_bits(io_tree, start, end, &cached_state);
5136 
5137 		/*
5138 		 * If still has DELALLOC flag, the extent didn't reach disk,
5139 		 * and its reserved space won't be freed by delayed_ref.
5140 		 * So we need to free its reserved space here.
5141 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5142 		 *
5143 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5144 		 */
5145 		if (state->state & EXTENT_DELALLOC)
5146 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5147 
5148 		clear_extent_bit(io_tree, start, end,
5149 				 EXTENT_LOCKED | EXTENT_DIRTY |
5150 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5151 				 EXTENT_DEFRAG, 1, 1,
5152 				 &cached_state, GFP_NOFS);
5153 
5154 		cond_resched();
5155 		spin_lock(&io_tree->lock);
5156 	}
5157 	spin_unlock(&io_tree->lock);
5158 }
5159 
5160 void btrfs_evict_inode(struct inode *inode)
5161 {
5162 	struct btrfs_trans_handle *trans;
5163 	struct btrfs_root *root = BTRFS_I(inode)->root;
5164 	struct btrfs_block_rsv *rsv, *global_rsv;
5165 	int steal_from_global = 0;
5166 	u64 min_size;
5167 	int ret;
5168 
5169 	trace_btrfs_inode_evict(inode);
5170 
5171 	if (!root) {
5172 		kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5173 		return;
5174 	}
5175 
5176 	min_size = btrfs_calc_trunc_metadata_size(root, 1);
5177 
5178 	evict_inode_truncate_pages(inode);
5179 
5180 	if (inode->i_nlink &&
5181 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5182 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5183 	     btrfs_is_free_space_inode(inode)))
5184 		goto no_delete;
5185 
5186 	if (is_bad_inode(inode)) {
5187 		btrfs_orphan_del(NULL, inode);
5188 		goto no_delete;
5189 	}
5190 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5191 	if (!special_file(inode->i_mode))
5192 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5193 
5194 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5195 
5196 	if (root->fs_info->log_root_recovering) {
5197 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5198 				 &BTRFS_I(inode)->runtime_flags));
5199 		goto no_delete;
5200 	}
5201 
5202 	if (inode->i_nlink > 0) {
5203 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5204 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5205 		goto no_delete;
5206 	}
5207 
5208 	ret = btrfs_commit_inode_delayed_inode(inode);
5209 	if (ret) {
5210 		btrfs_orphan_del(NULL, inode);
5211 		goto no_delete;
5212 	}
5213 
5214 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5215 	if (!rsv) {
5216 		btrfs_orphan_del(NULL, inode);
5217 		goto no_delete;
5218 	}
5219 	rsv->size = min_size;
5220 	rsv->failfast = 1;
5221 	global_rsv = &root->fs_info->global_block_rsv;
5222 
5223 	btrfs_i_size_write(inode, 0);
5224 
5225 	/*
5226 	 * This is a bit simpler than btrfs_truncate since we've already
5227 	 * reserved our space for our orphan item in the unlink, so we just
5228 	 * need to reserve some slack space in case we add bytes and update
5229 	 * inode item when doing the truncate.
5230 	 */
5231 	while (1) {
5232 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5233 					     BTRFS_RESERVE_FLUSH_LIMIT);
5234 
5235 		/*
5236 		 * Try and steal from the global reserve since we will
5237 		 * likely not use this space anyway, we want to try as
5238 		 * hard as possible to get this to work.
5239 		 */
5240 		if (ret)
5241 			steal_from_global++;
5242 		else
5243 			steal_from_global = 0;
5244 		ret = 0;
5245 
5246 		/*
5247 		 * steal_from_global == 0: we reserved stuff, hooray!
5248 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5249 		 * steal_from_global == 2: we've committed, still not a lot of
5250 		 * room but maybe we'll have room in the global reserve this
5251 		 * time.
5252 		 * steal_from_global == 3: abandon all hope!
5253 		 */
5254 		if (steal_from_global > 2) {
5255 			btrfs_warn(root->fs_info,
5256 				"Could not get space for a delete, will truncate on mount %d",
5257 				ret);
5258 			btrfs_orphan_del(NULL, inode);
5259 			btrfs_free_block_rsv(root, rsv);
5260 			goto no_delete;
5261 		}
5262 
5263 		trans = btrfs_join_transaction(root);
5264 		if (IS_ERR(trans)) {
5265 			btrfs_orphan_del(NULL, inode);
5266 			btrfs_free_block_rsv(root, rsv);
5267 			goto no_delete;
5268 		}
5269 
5270 		/*
5271 		 * We can't just steal from the global reserve, we need to make
5272 		 * sure there is room to do it, if not we need to commit and try
5273 		 * again.
5274 		 */
5275 		if (steal_from_global) {
5276 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5277 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5278 							      min_size, 0);
5279 			else
5280 				ret = -ENOSPC;
5281 		}
5282 
5283 		/*
5284 		 * Couldn't steal from the global reserve, we have too much
5285 		 * pending stuff built up, commit the transaction and try it
5286 		 * again.
5287 		 */
5288 		if (ret) {
5289 			ret = btrfs_commit_transaction(trans, root);
5290 			if (ret) {
5291 				btrfs_orphan_del(NULL, inode);
5292 				btrfs_free_block_rsv(root, rsv);
5293 				goto no_delete;
5294 			}
5295 			continue;
5296 		} else {
5297 			steal_from_global = 0;
5298 		}
5299 
5300 		trans->block_rsv = rsv;
5301 
5302 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5303 		if (ret != -ENOSPC && ret != -EAGAIN)
5304 			break;
5305 
5306 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5307 		btrfs_end_transaction(trans, root);
5308 		trans = NULL;
5309 		btrfs_btree_balance_dirty(root);
5310 	}
5311 
5312 	btrfs_free_block_rsv(root, rsv);
5313 
5314 	/*
5315 	 * Errors here aren't a big deal, it just means we leave orphan items
5316 	 * in the tree.  They will be cleaned up on the next mount.
5317 	 */
5318 	if (ret == 0) {
5319 		trans->block_rsv = root->orphan_block_rsv;
5320 		btrfs_orphan_del(trans, inode);
5321 	} else {
5322 		btrfs_orphan_del(NULL, inode);
5323 	}
5324 
5325 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5326 	if (!(root == root->fs_info->tree_root ||
5327 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5328 		btrfs_return_ino(root, btrfs_ino(inode));
5329 
5330 	btrfs_end_transaction(trans, root);
5331 	btrfs_btree_balance_dirty(root);
5332 no_delete:
5333 	btrfs_remove_delayed_node(inode);
5334 	clear_inode(inode);
5335 }
5336 
5337 /*
5338  * this returns the key found in the dir entry in the location pointer.
5339  * If no dir entries were found, location->objectid is 0.
5340  */
5341 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5342 			       struct btrfs_key *location)
5343 {
5344 	const char *name = dentry->d_name.name;
5345 	int namelen = dentry->d_name.len;
5346 	struct btrfs_dir_item *di;
5347 	struct btrfs_path *path;
5348 	struct btrfs_root *root = BTRFS_I(dir)->root;
5349 	int ret = 0;
5350 
5351 	path = btrfs_alloc_path();
5352 	if (!path)
5353 		return -ENOMEM;
5354 
5355 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5356 				    namelen, 0);
5357 	if (IS_ERR(di))
5358 		ret = PTR_ERR(di);
5359 
5360 	if (IS_ERR_OR_NULL(di))
5361 		goto out_err;
5362 
5363 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5364 out:
5365 	btrfs_free_path(path);
5366 	return ret;
5367 out_err:
5368 	location->objectid = 0;
5369 	goto out;
5370 }
5371 
5372 /*
5373  * when we hit a tree root in a directory, the btrfs part of the inode
5374  * needs to be changed to reflect the root directory of the tree root.  This
5375  * is kind of like crossing a mount point.
5376  */
5377 static int fixup_tree_root_location(struct btrfs_root *root,
5378 				    struct inode *dir,
5379 				    struct dentry *dentry,
5380 				    struct btrfs_key *location,
5381 				    struct btrfs_root **sub_root)
5382 {
5383 	struct btrfs_path *path;
5384 	struct btrfs_root *new_root;
5385 	struct btrfs_root_ref *ref;
5386 	struct extent_buffer *leaf;
5387 	struct btrfs_key key;
5388 	int ret;
5389 	int err = 0;
5390 
5391 	path = btrfs_alloc_path();
5392 	if (!path) {
5393 		err = -ENOMEM;
5394 		goto out;
5395 	}
5396 
5397 	err = -ENOENT;
5398 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5399 	key.type = BTRFS_ROOT_REF_KEY;
5400 	key.offset = location->objectid;
5401 
5402 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5403 				0, 0);
5404 	if (ret) {
5405 		if (ret < 0)
5406 			err = ret;
5407 		goto out;
5408 	}
5409 
5410 	leaf = path->nodes[0];
5411 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5412 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5413 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5414 		goto out;
5415 
5416 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5417 				   (unsigned long)(ref + 1),
5418 				   dentry->d_name.len);
5419 	if (ret)
5420 		goto out;
5421 
5422 	btrfs_release_path(path);
5423 
5424 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5425 	if (IS_ERR(new_root)) {
5426 		err = PTR_ERR(new_root);
5427 		goto out;
5428 	}
5429 
5430 	*sub_root = new_root;
5431 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5432 	location->type = BTRFS_INODE_ITEM_KEY;
5433 	location->offset = 0;
5434 	err = 0;
5435 out:
5436 	btrfs_free_path(path);
5437 	return err;
5438 }
5439 
5440 static void inode_tree_add(struct inode *inode)
5441 {
5442 	struct btrfs_root *root = BTRFS_I(inode)->root;
5443 	struct btrfs_inode *entry;
5444 	struct rb_node **p;
5445 	struct rb_node *parent;
5446 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5447 	u64 ino = btrfs_ino(inode);
5448 
5449 	if (inode_unhashed(inode))
5450 		return;
5451 	parent = NULL;
5452 	spin_lock(&root->inode_lock);
5453 	p = &root->inode_tree.rb_node;
5454 	while (*p) {
5455 		parent = *p;
5456 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5457 
5458 		if (ino < btrfs_ino(&entry->vfs_inode))
5459 			p = &parent->rb_left;
5460 		else if (ino > btrfs_ino(&entry->vfs_inode))
5461 			p = &parent->rb_right;
5462 		else {
5463 			WARN_ON(!(entry->vfs_inode.i_state &
5464 				  (I_WILL_FREE | I_FREEING)));
5465 			rb_replace_node(parent, new, &root->inode_tree);
5466 			RB_CLEAR_NODE(parent);
5467 			spin_unlock(&root->inode_lock);
5468 			return;
5469 		}
5470 	}
5471 	rb_link_node(new, parent, p);
5472 	rb_insert_color(new, &root->inode_tree);
5473 	spin_unlock(&root->inode_lock);
5474 }
5475 
5476 static void inode_tree_del(struct inode *inode)
5477 {
5478 	struct btrfs_root *root = BTRFS_I(inode)->root;
5479 	int empty = 0;
5480 
5481 	spin_lock(&root->inode_lock);
5482 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5483 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5484 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5485 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5486 	}
5487 	spin_unlock(&root->inode_lock);
5488 
5489 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5490 		synchronize_srcu(&root->fs_info->subvol_srcu);
5491 		spin_lock(&root->inode_lock);
5492 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5493 		spin_unlock(&root->inode_lock);
5494 		if (empty)
5495 			btrfs_add_dead_root(root);
5496 	}
5497 }
5498 
5499 void btrfs_invalidate_inodes(struct btrfs_root *root)
5500 {
5501 	struct rb_node *node;
5502 	struct rb_node *prev;
5503 	struct btrfs_inode *entry;
5504 	struct inode *inode;
5505 	u64 objectid = 0;
5506 
5507 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5508 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5509 
5510 	spin_lock(&root->inode_lock);
5511 again:
5512 	node = root->inode_tree.rb_node;
5513 	prev = NULL;
5514 	while (node) {
5515 		prev = node;
5516 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5517 
5518 		if (objectid < btrfs_ino(&entry->vfs_inode))
5519 			node = node->rb_left;
5520 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5521 			node = node->rb_right;
5522 		else
5523 			break;
5524 	}
5525 	if (!node) {
5526 		while (prev) {
5527 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5528 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5529 				node = prev;
5530 				break;
5531 			}
5532 			prev = rb_next(prev);
5533 		}
5534 	}
5535 	while (node) {
5536 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5537 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5538 		inode = igrab(&entry->vfs_inode);
5539 		if (inode) {
5540 			spin_unlock(&root->inode_lock);
5541 			if (atomic_read(&inode->i_count) > 1)
5542 				d_prune_aliases(inode);
5543 			/*
5544 			 * btrfs_drop_inode will have it removed from
5545 			 * the inode cache when its usage count
5546 			 * hits zero.
5547 			 */
5548 			iput(inode);
5549 			cond_resched();
5550 			spin_lock(&root->inode_lock);
5551 			goto again;
5552 		}
5553 
5554 		if (cond_resched_lock(&root->inode_lock))
5555 			goto again;
5556 
5557 		node = rb_next(node);
5558 	}
5559 	spin_unlock(&root->inode_lock);
5560 }
5561 
5562 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5563 {
5564 	struct btrfs_iget_args *args = p;
5565 	inode->i_ino = args->location->objectid;
5566 	memcpy(&BTRFS_I(inode)->location, args->location,
5567 	       sizeof(*args->location));
5568 	BTRFS_I(inode)->root = args->root;
5569 	return 0;
5570 }
5571 
5572 static int btrfs_find_actor(struct inode *inode, void *opaque)
5573 {
5574 	struct btrfs_iget_args *args = opaque;
5575 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5576 		args->root == BTRFS_I(inode)->root;
5577 }
5578 
5579 static struct inode *btrfs_iget_locked(struct super_block *s,
5580 				       struct btrfs_key *location,
5581 				       struct btrfs_root *root)
5582 {
5583 	struct inode *inode;
5584 	struct btrfs_iget_args args;
5585 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5586 
5587 	args.location = location;
5588 	args.root = root;
5589 
5590 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5591 			     btrfs_init_locked_inode,
5592 			     (void *)&args);
5593 	return inode;
5594 }
5595 
5596 /* Get an inode object given its location and corresponding root.
5597  * Returns in *is_new if the inode was read from disk
5598  */
5599 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5600 			 struct btrfs_root *root, int *new)
5601 {
5602 	struct inode *inode;
5603 
5604 	inode = btrfs_iget_locked(s, location, root);
5605 	if (!inode)
5606 		return ERR_PTR(-ENOMEM);
5607 
5608 	if (inode->i_state & I_NEW) {
5609 		btrfs_read_locked_inode(inode);
5610 		if (!is_bad_inode(inode)) {
5611 			inode_tree_add(inode);
5612 			unlock_new_inode(inode);
5613 			if (new)
5614 				*new = 1;
5615 		} else {
5616 			unlock_new_inode(inode);
5617 			iput(inode);
5618 			inode = ERR_PTR(-ESTALE);
5619 		}
5620 	}
5621 
5622 	return inode;
5623 }
5624 
5625 static struct inode *new_simple_dir(struct super_block *s,
5626 				    struct btrfs_key *key,
5627 				    struct btrfs_root *root)
5628 {
5629 	struct inode *inode = new_inode(s);
5630 
5631 	if (!inode)
5632 		return ERR_PTR(-ENOMEM);
5633 
5634 	BTRFS_I(inode)->root = root;
5635 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5636 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5637 
5638 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5639 	inode->i_op = &btrfs_dir_ro_inode_operations;
5640 	inode->i_fop = &simple_dir_operations;
5641 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5642 	inode->i_mtime = current_fs_time(inode->i_sb);
5643 	inode->i_atime = inode->i_mtime;
5644 	inode->i_ctime = inode->i_mtime;
5645 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5646 
5647 	return inode;
5648 }
5649 
5650 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5651 {
5652 	struct inode *inode;
5653 	struct btrfs_root *root = BTRFS_I(dir)->root;
5654 	struct btrfs_root *sub_root = root;
5655 	struct btrfs_key location;
5656 	int index;
5657 	int ret = 0;
5658 
5659 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5660 		return ERR_PTR(-ENAMETOOLONG);
5661 
5662 	ret = btrfs_inode_by_name(dir, dentry, &location);
5663 	if (ret < 0)
5664 		return ERR_PTR(ret);
5665 
5666 	if (location.objectid == 0)
5667 		return ERR_PTR(-ENOENT);
5668 
5669 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5670 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5671 		return inode;
5672 	}
5673 
5674 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5675 
5676 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5677 	ret = fixup_tree_root_location(root, dir, dentry,
5678 				       &location, &sub_root);
5679 	if (ret < 0) {
5680 		if (ret != -ENOENT)
5681 			inode = ERR_PTR(ret);
5682 		else
5683 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5684 	} else {
5685 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5686 	}
5687 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5688 
5689 	if (!IS_ERR(inode) && root != sub_root) {
5690 		down_read(&root->fs_info->cleanup_work_sem);
5691 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5692 			ret = btrfs_orphan_cleanup(sub_root);
5693 		up_read(&root->fs_info->cleanup_work_sem);
5694 		if (ret) {
5695 			iput(inode);
5696 			inode = ERR_PTR(ret);
5697 		}
5698 	}
5699 
5700 	return inode;
5701 }
5702 
5703 static int btrfs_dentry_delete(const struct dentry *dentry)
5704 {
5705 	struct btrfs_root *root;
5706 	struct inode *inode = d_inode(dentry);
5707 
5708 	if (!inode && !IS_ROOT(dentry))
5709 		inode = d_inode(dentry->d_parent);
5710 
5711 	if (inode) {
5712 		root = BTRFS_I(inode)->root;
5713 		if (btrfs_root_refs(&root->root_item) == 0)
5714 			return 1;
5715 
5716 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5717 			return 1;
5718 	}
5719 	return 0;
5720 }
5721 
5722 static void btrfs_dentry_release(struct dentry *dentry)
5723 {
5724 	kfree(dentry->d_fsdata);
5725 }
5726 
5727 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5728 				   unsigned int flags)
5729 {
5730 	struct inode *inode;
5731 
5732 	inode = btrfs_lookup_dentry(dir, dentry);
5733 	if (IS_ERR(inode)) {
5734 		if (PTR_ERR(inode) == -ENOENT)
5735 			inode = NULL;
5736 		else
5737 			return ERR_CAST(inode);
5738 	}
5739 
5740 	return d_splice_alias(inode, dentry);
5741 }
5742 
5743 unsigned char btrfs_filetype_table[] = {
5744 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5745 };
5746 
5747 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5748 {
5749 	struct inode *inode = file_inode(file);
5750 	struct btrfs_root *root = BTRFS_I(inode)->root;
5751 	struct btrfs_item *item;
5752 	struct btrfs_dir_item *di;
5753 	struct btrfs_key key;
5754 	struct btrfs_key found_key;
5755 	struct btrfs_path *path;
5756 	struct list_head ins_list;
5757 	struct list_head del_list;
5758 	int ret;
5759 	struct extent_buffer *leaf;
5760 	int slot;
5761 	unsigned char d_type;
5762 	int over = 0;
5763 	u32 di_cur;
5764 	u32 di_total;
5765 	u32 di_len;
5766 	int key_type = BTRFS_DIR_INDEX_KEY;
5767 	char tmp_name[32];
5768 	char *name_ptr;
5769 	int name_len;
5770 	int is_curr = 0;	/* ctx->pos points to the current index? */
5771 	bool emitted;
5772 	bool put = false;
5773 
5774 	/* FIXME, use a real flag for deciding about the key type */
5775 	if (root->fs_info->tree_root == root)
5776 		key_type = BTRFS_DIR_ITEM_KEY;
5777 
5778 	if (!dir_emit_dots(file, ctx))
5779 		return 0;
5780 
5781 	path = btrfs_alloc_path();
5782 	if (!path)
5783 		return -ENOMEM;
5784 
5785 	path->reada = READA_FORWARD;
5786 
5787 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5788 		INIT_LIST_HEAD(&ins_list);
5789 		INIT_LIST_HEAD(&del_list);
5790 		put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5791 						      &del_list);
5792 	}
5793 
5794 	key.type = key_type;
5795 	key.offset = ctx->pos;
5796 	key.objectid = btrfs_ino(inode);
5797 
5798 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5799 	if (ret < 0)
5800 		goto err;
5801 
5802 	emitted = false;
5803 	while (1) {
5804 		leaf = path->nodes[0];
5805 		slot = path->slots[0];
5806 		if (slot >= btrfs_header_nritems(leaf)) {
5807 			ret = btrfs_next_leaf(root, path);
5808 			if (ret < 0)
5809 				goto err;
5810 			else if (ret > 0)
5811 				break;
5812 			continue;
5813 		}
5814 
5815 		item = btrfs_item_nr(slot);
5816 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5817 
5818 		if (found_key.objectid != key.objectid)
5819 			break;
5820 		if (found_key.type != key_type)
5821 			break;
5822 		if (found_key.offset < ctx->pos)
5823 			goto next;
5824 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5825 		    btrfs_should_delete_dir_index(&del_list,
5826 						  found_key.offset))
5827 			goto next;
5828 
5829 		ctx->pos = found_key.offset;
5830 		is_curr = 1;
5831 
5832 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5833 		di_cur = 0;
5834 		di_total = btrfs_item_size(leaf, item);
5835 
5836 		while (di_cur < di_total) {
5837 			struct btrfs_key location;
5838 
5839 			if (verify_dir_item(root, leaf, di))
5840 				break;
5841 
5842 			name_len = btrfs_dir_name_len(leaf, di);
5843 			if (name_len <= sizeof(tmp_name)) {
5844 				name_ptr = tmp_name;
5845 			} else {
5846 				name_ptr = kmalloc(name_len, GFP_KERNEL);
5847 				if (!name_ptr) {
5848 					ret = -ENOMEM;
5849 					goto err;
5850 				}
5851 			}
5852 			read_extent_buffer(leaf, name_ptr,
5853 					   (unsigned long)(di + 1), name_len);
5854 
5855 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5856 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5857 
5858 
5859 			/* is this a reference to our own snapshot? If so
5860 			 * skip it.
5861 			 *
5862 			 * In contrast to old kernels, we insert the snapshot's
5863 			 * dir item and dir index after it has been created, so
5864 			 * we won't find a reference to our own snapshot. We
5865 			 * still keep the following code for backward
5866 			 * compatibility.
5867 			 */
5868 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5869 			    location.objectid == root->root_key.objectid) {
5870 				over = 0;
5871 				goto skip;
5872 			}
5873 			over = !dir_emit(ctx, name_ptr, name_len,
5874 				       location.objectid, d_type);
5875 
5876 skip:
5877 			if (name_ptr != tmp_name)
5878 				kfree(name_ptr);
5879 
5880 			if (over)
5881 				goto nopos;
5882 			emitted = true;
5883 			di_len = btrfs_dir_name_len(leaf, di) +
5884 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5885 			di_cur += di_len;
5886 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5887 		}
5888 next:
5889 		path->slots[0]++;
5890 	}
5891 
5892 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5893 		if (is_curr)
5894 			ctx->pos++;
5895 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5896 		if (ret)
5897 			goto nopos;
5898 	}
5899 
5900 	/*
5901 	 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5902 	 * it was was set to the termination value in previous call. We assume
5903 	 * that "." and ".." were emitted if we reach this point and set the
5904 	 * termination value as well for an empty directory.
5905 	 */
5906 	if (ctx->pos > 2 && !emitted)
5907 		goto nopos;
5908 
5909 	/* Reached end of directory/root. Bump pos past the last item. */
5910 	ctx->pos++;
5911 
5912 	/*
5913 	 * Stop new entries from being returned after we return the last
5914 	 * entry.
5915 	 *
5916 	 * New directory entries are assigned a strictly increasing
5917 	 * offset.  This means that new entries created during readdir
5918 	 * are *guaranteed* to be seen in the future by that readdir.
5919 	 * This has broken buggy programs which operate on names as
5920 	 * they're returned by readdir.  Until we re-use freed offsets
5921 	 * we have this hack to stop new entries from being returned
5922 	 * under the assumption that they'll never reach this huge
5923 	 * offset.
5924 	 *
5925 	 * This is being careful not to overflow 32bit loff_t unless the
5926 	 * last entry requires it because doing so has broken 32bit apps
5927 	 * in the past.
5928 	 */
5929 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5930 		if (ctx->pos >= INT_MAX)
5931 			ctx->pos = LLONG_MAX;
5932 		else
5933 			ctx->pos = INT_MAX;
5934 	}
5935 nopos:
5936 	ret = 0;
5937 err:
5938 	if (put)
5939 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5940 	btrfs_free_path(path);
5941 	return ret;
5942 }
5943 
5944 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5945 {
5946 	struct btrfs_root *root = BTRFS_I(inode)->root;
5947 	struct btrfs_trans_handle *trans;
5948 	int ret = 0;
5949 	bool nolock = false;
5950 
5951 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5952 		return 0;
5953 
5954 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5955 		nolock = true;
5956 
5957 	if (wbc->sync_mode == WB_SYNC_ALL) {
5958 		if (nolock)
5959 			trans = btrfs_join_transaction_nolock(root);
5960 		else
5961 			trans = btrfs_join_transaction(root);
5962 		if (IS_ERR(trans))
5963 			return PTR_ERR(trans);
5964 		ret = btrfs_commit_transaction(trans, root);
5965 	}
5966 	return ret;
5967 }
5968 
5969 /*
5970  * This is somewhat expensive, updating the tree every time the
5971  * inode changes.  But, it is most likely to find the inode in cache.
5972  * FIXME, needs more benchmarking...there are no reasons other than performance
5973  * to keep or drop this code.
5974  */
5975 static int btrfs_dirty_inode(struct inode *inode)
5976 {
5977 	struct btrfs_root *root = BTRFS_I(inode)->root;
5978 	struct btrfs_trans_handle *trans;
5979 	int ret;
5980 
5981 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5982 		return 0;
5983 
5984 	trans = btrfs_join_transaction(root);
5985 	if (IS_ERR(trans))
5986 		return PTR_ERR(trans);
5987 
5988 	ret = btrfs_update_inode(trans, root, inode);
5989 	if (ret && ret == -ENOSPC) {
5990 		/* whoops, lets try again with the full transaction */
5991 		btrfs_end_transaction(trans, root);
5992 		trans = btrfs_start_transaction(root, 1);
5993 		if (IS_ERR(trans))
5994 			return PTR_ERR(trans);
5995 
5996 		ret = btrfs_update_inode(trans, root, inode);
5997 	}
5998 	btrfs_end_transaction(trans, root);
5999 	if (BTRFS_I(inode)->delayed_node)
6000 		btrfs_balance_delayed_items(root);
6001 
6002 	return ret;
6003 }
6004 
6005 /*
6006  * This is a copy of file_update_time.  We need this so we can return error on
6007  * ENOSPC for updating the inode in the case of file write and mmap writes.
6008  */
6009 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6010 			     int flags)
6011 {
6012 	struct btrfs_root *root = BTRFS_I(inode)->root;
6013 
6014 	if (btrfs_root_readonly(root))
6015 		return -EROFS;
6016 
6017 	if (flags & S_VERSION)
6018 		inode_inc_iversion(inode);
6019 	if (flags & S_CTIME)
6020 		inode->i_ctime = *now;
6021 	if (flags & S_MTIME)
6022 		inode->i_mtime = *now;
6023 	if (flags & S_ATIME)
6024 		inode->i_atime = *now;
6025 	return btrfs_dirty_inode(inode);
6026 }
6027 
6028 /*
6029  * find the highest existing sequence number in a directory
6030  * and then set the in-memory index_cnt variable to reflect
6031  * free sequence numbers
6032  */
6033 static int btrfs_set_inode_index_count(struct inode *inode)
6034 {
6035 	struct btrfs_root *root = BTRFS_I(inode)->root;
6036 	struct btrfs_key key, found_key;
6037 	struct btrfs_path *path;
6038 	struct extent_buffer *leaf;
6039 	int ret;
6040 
6041 	key.objectid = btrfs_ino(inode);
6042 	key.type = BTRFS_DIR_INDEX_KEY;
6043 	key.offset = (u64)-1;
6044 
6045 	path = btrfs_alloc_path();
6046 	if (!path)
6047 		return -ENOMEM;
6048 
6049 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6050 	if (ret < 0)
6051 		goto out;
6052 	/* FIXME: we should be able to handle this */
6053 	if (ret == 0)
6054 		goto out;
6055 	ret = 0;
6056 
6057 	/*
6058 	 * MAGIC NUMBER EXPLANATION:
6059 	 * since we search a directory based on f_pos we have to start at 2
6060 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6061 	 * else has to start at 2
6062 	 */
6063 	if (path->slots[0] == 0) {
6064 		BTRFS_I(inode)->index_cnt = 2;
6065 		goto out;
6066 	}
6067 
6068 	path->slots[0]--;
6069 
6070 	leaf = path->nodes[0];
6071 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6072 
6073 	if (found_key.objectid != btrfs_ino(inode) ||
6074 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6075 		BTRFS_I(inode)->index_cnt = 2;
6076 		goto out;
6077 	}
6078 
6079 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6080 out:
6081 	btrfs_free_path(path);
6082 	return ret;
6083 }
6084 
6085 /*
6086  * helper to find a free sequence number in a given directory.  This current
6087  * code is very simple, later versions will do smarter things in the btree
6088  */
6089 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6090 {
6091 	int ret = 0;
6092 
6093 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6094 		ret = btrfs_inode_delayed_dir_index_count(dir);
6095 		if (ret) {
6096 			ret = btrfs_set_inode_index_count(dir);
6097 			if (ret)
6098 				return ret;
6099 		}
6100 	}
6101 
6102 	*index = BTRFS_I(dir)->index_cnt;
6103 	BTRFS_I(dir)->index_cnt++;
6104 
6105 	return ret;
6106 }
6107 
6108 static int btrfs_insert_inode_locked(struct inode *inode)
6109 {
6110 	struct btrfs_iget_args args;
6111 	args.location = &BTRFS_I(inode)->location;
6112 	args.root = BTRFS_I(inode)->root;
6113 
6114 	return insert_inode_locked4(inode,
6115 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6116 		   btrfs_find_actor, &args);
6117 }
6118 
6119 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6120 				     struct btrfs_root *root,
6121 				     struct inode *dir,
6122 				     const char *name, int name_len,
6123 				     u64 ref_objectid, u64 objectid,
6124 				     umode_t mode, u64 *index)
6125 {
6126 	struct inode *inode;
6127 	struct btrfs_inode_item *inode_item;
6128 	struct btrfs_key *location;
6129 	struct btrfs_path *path;
6130 	struct btrfs_inode_ref *ref;
6131 	struct btrfs_key key[2];
6132 	u32 sizes[2];
6133 	int nitems = name ? 2 : 1;
6134 	unsigned long ptr;
6135 	int ret;
6136 
6137 	path = btrfs_alloc_path();
6138 	if (!path)
6139 		return ERR_PTR(-ENOMEM);
6140 
6141 	inode = new_inode(root->fs_info->sb);
6142 	if (!inode) {
6143 		btrfs_free_path(path);
6144 		return ERR_PTR(-ENOMEM);
6145 	}
6146 
6147 	/*
6148 	 * O_TMPFILE, set link count to 0, so that after this point,
6149 	 * we fill in an inode item with the correct link count.
6150 	 */
6151 	if (!name)
6152 		set_nlink(inode, 0);
6153 
6154 	/*
6155 	 * we have to initialize this early, so we can reclaim the inode
6156 	 * number if we fail afterwards in this function.
6157 	 */
6158 	inode->i_ino = objectid;
6159 
6160 	if (dir && name) {
6161 		trace_btrfs_inode_request(dir);
6162 
6163 		ret = btrfs_set_inode_index(dir, index);
6164 		if (ret) {
6165 			btrfs_free_path(path);
6166 			iput(inode);
6167 			return ERR_PTR(ret);
6168 		}
6169 	} else if (dir) {
6170 		*index = 0;
6171 	}
6172 	/*
6173 	 * index_cnt is ignored for everything but a dir,
6174 	 * btrfs_get_inode_index_count has an explanation for the magic
6175 	 * number
6176 	 */
6177 	BTRFS_I(inode)->index_cnt = 2;
6178 	BTRFS_I(inode)->dir_index = *index;
6179 	BTRFS_I(inode)->root = root;
6180 	BTRFS_I(inode)->generation = trans->transid;
6181 	inode->i_generation = BTRFS_I(inode)->generation;
6182 
6183 	/*
6184 	 * We could have gotten an inode number from somebody who was fsynced
6185 	 * and then removed in this same transaction, so let's just set full
6186 	 * sync since it will be a full sync anyway and this will blow away the
6187 	 * old info in the log.
6188 	 */
6189 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6190 
6191 	key[0].objectid = objectid;
6192 	key[0].type = BTRFS_INODE_ITEM_KEY;
6193 	key[0].offset = 0;
6194 
6195 	sizes[0] = sizeof(struct btrfs_inode_item);
6196 
6197 	if (name) {
6198 		/*
6199 		 * Start new inodes with an inode_ref. This is slightly more
6200 		 * efficient for small numbers of hard links since they will
6201 		 * be packed into one item. Extended refs will kick in if we
6202 		 * add more hard links than can fit in the ref item.
6203 		 */
6204 		key[1].objectid = objectid;
6205 		key[1].type = BTRFS_INODE_REF_KEY;
6206 		key[1].offset = ref_objectid;
6207 
6208 		sizes[1] = name_len + sizeof(*ref);
6209 	}
6210 
6211 	location = &BTRFS_I(inode)->location;
6212 	location->objectid = objectid;
6213 	location->offset = 0;
6214 	location->type = BTRFS_INODE_ITEM_KEY;
6215 
6216 	ret = btrfs_insert_inode_locked(inode);
6217 	if (ret < 0)
6218 		goto fail;
6219 
6220 	path->leave_spinning = 1;
6221 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6222 	if (ret != 0)
6223 		goto fail_unlock;
6224 
6225 	inode_init_owner(inode, dir, mode);
6226 	inode_set_bytes(inode, 0);
6227 
6228 	inode->i_mtime = current_fs_time(inode->i_sb);
6229 	inode->i_atime = inode->i_mtime;
6230 	inode->i_ctime = inode->i_mtime;
6231 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6232 
6233 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6234 				  struct btrfs_inode_item);
6235 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6236 			     sizeof(*inode_item));
6237 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6238 
6239 	if (name) {
6240 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6241 				     struct btrfs_inode_ref);
6242 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6243 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6244 		ptr = (unsigned long)(ref + 1);
6245 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6246 	}
6247 
6248 	btrfs_mark_buffer_dirty(path->nodes[0]);
6249 	btrfs_free_path(path);
6250 
6251 	btrfs_inherit_iflags(inode, dir);
6252 
6253 	if (S_ISREG(mode)) {
6254 		if (btrfs_test_opt(root->fs_info, NODATASUM))
6255 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6256 		if (btrfs_test_opt(root->fs_info, NODATACOW))
6257 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6258 				BTRFS_INODE_NODATASUM;
6259 	}
6260 
6261 	inode_tree_add(inode);
6262 
6263 	trace_btrfs_inode_new(inode);
6264 	btrfs_set_inode_last_trans(trans, inode);
6265 
6266 	btrfs_update_root_times(trans, root);
6267 
6268 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6269 	if (ret)
6270 		btrfs_err(root->fs_info,
6271 			  "error inheriting props for ino %llu (root %llu): %d",
6272 			  btrfs_ino(inode), root->root_key.objectid, ret);
6273 
6274 	return inode;
6275 
6276 fail_unlock:
6277 	unlock_new_inode(inode);
6278 fail:
6279 	if (dir && name)
6280 		BTRFS_I(dir)->index_cnt--;
6281 	btrfs_free_path(path);
6282 	iput(inode);
6283 	return ERR_PTR(ret);
6284 }
6285 
6286 static inline u8 btrfs_inode_type(struct inode *inode)
6287 {
6288 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6289 }
6290 
6291 /*
6292  * utility function to add 'inode' into 'parent_inode' with
6293  * a give name and a given sequence number.
6294  * if 'add_backref' is true, also insert a backref from the
6295  * inode to the parent directory.
6296  */
6297 int btrfs_add_link(struct btrfs_trans_handle *trans,
6298 		   struct inode *parent_inode, struct inode *inode,
6299 		   const char *name, int name_len, int add_backref, u64 index)
6300 {
6301 	int ret = 0;
6302 	struct btrfs_key key;
6303 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6304 	u64 ino = btrfs_ino(inode);
6305 	u64 parent_ino = btrfs_ino(parent_inode);
6306 
6307 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6308 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6309 	} else {
6310 		key.objectid = ino;
6311 		key.type = BTRFS_INODE_ITEM_KEY;
6312 		key.offset = 0;
6313 	}
6314 
6315 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6316 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6317 					 key.objectid, root->root_key.objectid,
6318 					 parent_ino, index, name, name_len);
6319 	} else if (add_backref) {
6320 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6321 					     parent_ino, index);
6322 	}
6323 
6324 	/* Nothing to clean up yet */
6325 	if (ret)
6326 		return ret;
6327 
6328 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6329 				    parent_inode, &key,
6330 				    btrfs_inode_type(inode), index);
6331 	if (ret == -EEXIST || ret == -EOVERFLOW)
6332 		goto fail_dir_item;
6333 	else if (ret) {
6334 		btrfs_abort_transaction(trans, ret);
6335 		return ret;
6336 	}
6337 
6338 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6339 			   name_len * 2);
6340 	inode_inc_iversion(parent_inode);
6341 	parent_inode->i_mtime = parent_inode->i_ctime =
6342 		current_fs_time(parent_inode->i_sb);
6343 	ret = btrfs_update_inode(trans, root, parent_inode);
6344 	if (ret)
6345 		btrfs_abort_transaction(trans, ret);
6346 	return ret;
6347 
6348 fail_dir_item:
6349 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6350 		u64 local_index;
6351 		int err;
6352 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6353 				 key.objectid, root->root_key.objectid,
6354 				 parent_ino, &local_index, name, name_len);
6355 
6356 	} else if (add_backref) {
6357 		u64 local_index;
6358 		int err;
6359 
6360 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6361 					  ino, parent_ino, &local_index);
6362 	}
6363 	return ret;
6364 }
6365 
6366 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6367 			    struct inode *dir, struct dentry *dentry,
6368 			    struct inode *inode, int backref, u64 index)
6369 {
6370 	int err = btrfs_add_link(trans, dir, inode,
6371 				 dentry->d_name.name, dentry->d_name.len,
6372 				 backref, index);
6373 	if (err > 0)
6374 		err = -EEXIST;
6375 	return err;
6376 }
6377 
6378 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6379 			umode_t mode, dev_t rdev)
6380 {
6381 	struct btrfs_trans_handle *trans;
6382 	struct btrfs_root *root = BTRFS_I(dir)->root;
6383 	struct inode *inode = NULL;
6384 	int err;
6385 	int drop_inode = 0;
6386 	u64 objectid;
6387 	u64 index = 0;
6388 
6389 	/*
6390 	 * 2 for inode item and ref
6391 	 * 2 for dir items
6392 	 * 1 for xattr if selinux is on
6393 	 */
6394 	trans = btrfs_start_transaction(root, 5);
6395 	if (IS_ERR(trans))
6396 		return PTR_ERR(trans);
6397 
6398 	err = btrfs_find_free_ino(root, &objectid);
6399 	if (err)
6400 		goto out_unlock;
6401 
6402 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6403 				dentry->d_name.len, btrfs_ino(dir), objectid,
6404 				mode, &index);
6405 	if (IS_ERR(inode)) {
6406 		err = PTR_ERR(inode);
6407 		goto out_unlock;
6408 	}
6409 
6410 	/*
6411 	* If the active LSM wants to access the inode during
6412 	* d_instantiate it needs these. Smack checks to see
6413 	* if the filesystem supports xattrs by looking at the
6414 	* ops vector.
6415 	*/
6416 	inode->i_op = &btrfs_special_inode_operations;
6417 	init_special_inode(inode, inode->i_mode, rdev);
6418 
6419 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6420 	if (err)
6421 		goto out_unlock_inode;
6422 
6423 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6424 	if (err) {
6425 		goto out_unlock_inode;
6426 	} else {
6427 		btrfs_update_inode(trans, root, inode);
6428 		unlock_new_inode(inode);
6429 		d_instantiate(dentry, inode);
6430 	}
6431 
6432 out_unlock:
6433 	btrfs_end_transaction(trans, root);
6434 	btrfs_balance_delayed_items(root);
6435 	btrfs_btree_balance_dirty(root);
6436 	if (drop_inode) {
6437 		inode_dec_link_count(inode);
6438 		iput(inode);
6439 	}
6440 	return err;
6441 
6442 out_unlock_inode:
6443 	drop_inode = 1;
6444 	unlock_new_inode(inode);
6445 	goto out_unlock;
6446 
6447 }
6448 
6449 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6450 			umode_t mode, bool excl)
6451 {
6452 	struct btrfs_trans_handle *trans;
6453 	struct btrfs_root *root = BTRFS_I(dir)->root;
6454 	struct inode *inode = NULL;
6455 	int drop_inode_on_err = 0;
6456 	int err;
6457 	u64 objectid;
6458 	u64 index = 0;
6459 
6460 	/*
6461 	 * 2 for inode item and ref
6462 	 * 2 for dir items
6463 	 * 1 for xattr if selinux is on
6464 	 */
6465 	trans = btrfs_start_transaction(root, 5);
6466 	if (IS_ERR(trans))
6467 		return PTR_ERR(trans);
6468 
6469 	err = btrfs_find_free_ino(root, &objectid);
6470 	if (err)
6471 		goto out_unlock;
6472 
6473 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6474 				dentry->d_name.len, btrfs_ino(dir), objectid,
6475 				mode, &index);
6476 	if (IS_ERR(inode)) {
6477 		err = PTR_ERR(inode);
6478 		goto out_unlock;
6479 	}
6480 	drop_inode_on_err = 1;
6481 	/*
6482 	* If the active LSM wants to access the inode during
6483 	* d_instantiate it needs these. Smack checks to see
6484 	* if the filesystem supports xattrs by looking at the
6485 	* ops vector.
6486 	*/
6487 	inode->i_fop = &btrfs_file_operations;
6488 	inode->i_op = &btrfs_file_inode_operations;
6489 	inode->i_mapping->a_ops = &btrfs_aops;
6490 
6491 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6492 	if (err)
6493 		goto out_unlock_inode;
6494 
6495 	err = btrfs_update_inode(trans, root, inode);
6496 	if (err)
6497 		goto out_unlock_inode;
6498 
6499 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6500 	if (err)
6501 		goto out_unlock_inode;
6502 
6503 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6504 	unlock_new_inode(inode);
6505 	d_instantiate(dentry, inode);
6506 
6507 out_unlock:
6508 	btrfs_end_transaction(trans, root);
6509 	if (err && drop_inode_on_err) {
6510 		inode_dec_link_count(inode);
6511 		iput(inode);
6512 	}
6513 	btrfs_balance_delayed_items(root);
6514 	btrfs_btree_balance_dirty(root);
6515 	return err;
6516 
6517 out_unlock_inode:
6518 	unlock_new_inode(inode);
6519 	goto out_unlock;
6520 
6521 }
6522 
6523 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6524 		      struct dentry *dentry)
6525 {
6526 	struct btrfs_trans_handle *trans = NULL;
6527 	struct btrfs_root *root = BTRFS_I(dir)->root;
6528 	struct inode *inode = d_inode(old_dentry);
6529 	u64 index;
6530 	int err;
6531 	int drop_inode = 0;
6532 
6533 	/* do not allow sys_link's with other subvols of the same device */
6534 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6535 		return -EXDEV;
6536 
6537 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6538 		return -EMLINK;
6539 
6540 	err = btrfs_set_inode_index(dir, &index);
6541 	if (err)
6542 		goto fail;
6543 
6544 	/*
6545 	 * 2 items for inode and inode ref
6546 	 * 2 items for dir items
6547 	 * 1 item for parent inode
6548 	 */
6549 	trans = btrfs_start_transaction(root, 5);
6550 	if (IS_ERR(trans)) {
6551 		err = PTR_ERR(trans);
6552 		trans = NULL;
6553 		goto fail;
6554 	}
6555 
6556 	/* There are several dir indexes for this inode, clear the cache. */
6557 	BTRFS_I(inode)->dir_index = 0ULL;
6558 	inc_nlink(inode);
6559 	inode_inc_iversion(inode);
6560 	inode->i_ctime = current_fs_time(inode->i_sb);
6561 	ihold(inode);
6562 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6563 
6564 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6565 
6566 	if (err) {
6567 		drop_inode = 1;
6568 	} else {
6569 		struct dentry *parent = dentry->d_parent;
6570 		err = btrfs_update_inode(trans, root, inode);
6571 		if (err)
6572 			goto fail;
6573 		if (inode->i_nlink == 1) {
6574 			/*
6575 			 * If new hard link count is 1, it's a file created
6576 			 * with open(2) O_TMPFILE flag.
6577 			 */
6578 			err = btrfs_orphan_del(trans, inode);
6579 			if (err)
6580 				goto fail;
6581 		}
6582 		d_instantiate(dentry, inode);
6583 		btrfs_log_new_name(trans, inode, NULL, parent);
6584 	}
6585 
6586 	btrfs_balance_delayed_items(root);
6587 fail:
6588 	if (trans)
6589 		btrfs_end_transaction(trans, root);
6590 	if (drop_inode) {
6591 		inode_dec_link_count(inode);
6592 		iput(inode);
6593 	}
6594 	btrfs_btree_balance_dirty(root);
6595 	return err;
6596 }
6597 
6598 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6599 {
6600 	struct inode *inode = NULL;
6601 	struct btrfs_trans_handle *trans;
6602 	struct btrfs_root *root = BTRFS_I(dir)->root;
6603 	int err = 0;
6604 	int drop_on_err = 0;
6605 	u64 objectid = 0;
6606 	u64 index = 0;
6607 
6608 	/*
6609 	 * 2 items for inode and ref
6610 	 * 2 items for dir items
6611 	 * 1 for xattr if selinux is on
6612 	 */
6613 	trans = btrfs_start_transaction(root, 5);
6614 	if (IS_ERR(trans))
6615 		return PTR_ERR(trans);
6616 
6617 	err = btrfs_find_free_ino(root, &objectid);
6618 	if (err)
6619 		goto out_fail;
6620 
6621 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6622 				dentry->d_name.len, btrfs_ino(dir), objectid,
6623 				S_IFDIR | mode, &index);
6624 	if (IS_ERR(inode)) {
6625 		err = PTR_ERR(inode);
6626 		goto out_fail;
6627 	}
6628 
6629 	drop_on_err = 1;
6630 	/* these must be set before we unlock the inode */
6631 	inode->i_op = &btrfs_dir_inode_operations;
6632 	inode->i_fop = &btrfs_dir_file_operations;
6633 
6634 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6635 	if (err)
6636 		goto out_fail_inode;
6637 
6638 	btrfs_i_size_write(inode, 0);
6639 	err = btrfs_update_inode(trans, root, inode);
6640 	if (err)
6641 		goto out_fail_inode;
6642 
6643 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6644 			     dentry->d_name.len, 0, index);
6645 	if (err)
6646 		goto out_fail_inode;
6647 
6648 	d_instantiate(dentry, inode);
6649 	/*
6650 	 * mkdir is special.  We're unlocking after we call d_instantiate
6651 	 * to avoid a race with nfsd calling d_instantiate.
6652 	 */
6653 	unlock_new_inode(inode);
6654 	drop_on_err = 0;
6655 
6656 out_fail:
6657 	btrfs_end_transaction(trans, root);
6658 	if (drop_on_err) {
6659 		inode_dec_link_count(inode);
6660 		iput(inode);
6661 	}
6662 	btrfs_balance_delayed_items(root);
6663 	btrfs_btree_balance_dirty(root);
6664 	return err;
6665 
6666 out_fail_inode:
6667 	unlock_new_inode(inode);
6668 	goto out_fail;
6669 }
6670 
6671 /* Find next extent map of a given extent map, caller needs to ensure locks */
6672 static struct extent_map *next_extent_map(struct extent_map *em)
6673 {
6674 	struct rb_node *next;
6675 
6676 	next = rb_next(&em->rb_node);
6677 	if (!next)
6678 		return NULL;
6679 	return container_of(next, struct extent_map, rb_node);
6680 }
6681 
6682 static struct extent_map *prev_extent_map(struct extent_map *em)
6683 {
6684 	struct rb_node *prev;
6685 
6686 	prev = rb_prev(&em->rb_node);
6687 	if (!prev)
6688 		return NULL;
6689 	return container_of(prev, struct extent_map, rb_node);
6690 }
6691 
6692 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6693  * the existing extent is the nearest extent to map_start,
6694  * and an extent that you want to insert, deal with overlap and insert
6695  * the best fitted new extent into the tree.
6696  */
6697 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6698 				struct extent_map *existing,
6699 				struct extent_map *em,
6700 				u64 map_start)
6701 {
6702 	struct extent_map *prev;
6703 	struct extent_map *next;
6704 	u64 start;
6705 	u64 end;
6706 	u64 start_diff;
6707 
6708 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6709 
6710 	if (existing->start > map_start) {
6711 		next = existing;
6712 		prev = prev_extent_map(next);
6713 	} else {
6714 		prev = existing;
6715 		next = next_extent_map(prev);
6716 	}
6717 
6718 	start = prev ? extent_map_end(prev) : em->start;
6719 	start = max_t(u64, start, em->start);
6720 	end = next ? next->start : extent_map_end(em);
6721 	end = min_t(u64, end, extent_map_end(em));
6722 	start_diff = start - em->start;
6723 	em->start = start;
6724 	em->len = end - start;
6725 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6726 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6727 		em->block_start += start_diff;
6728 		em->block_len -= start_diff;
6729 	}
6730 	return add_extent_mapping(em_tree, em, 0);
6731 }
6732 
6733 static noinline int uncompress_inline(struct btrfs_path *path,
6734 				      struct page *page,
6735 				      size_t pg_offset, u64 extent_offset,
6736 				      struct btrfs_file_extent_item *item)
6737 {
6738 	int ret;
6739 	struct extent_buffer *leaf = path->nodes[0];
6740 	char *tmp;
6741 	size_t max_size;
6742 	unsigned long inline_size;
6743 	unsigned long ptr;
6744 	int compress_type;
6745 
6746 	WARN_ON(pg_offset != 0);
6747 	compress_type = btrfs_file_extent_compression(leaf, item);
6748 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6749 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6750 					btrfs_item_nr(path->slots[0]));
6751 	tmp = kmalloc(inline_size, GFP_NOFS);
6752 	if (!tmp)
6753 		return -ENOMEM;
6754 	ptr = btrfs_file_extent_inline_start(item);
6755 
6756 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6757 
6758 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6759 	ret = btrfs_decompress(compress_type, tmp, page,
6760 			       extent_offset, inline_size, max_size);
6761 	kfree(tmp);
6762 	return ret;
6763 }
6764 
6765 /*
6766  * a bit scary, this does extent mapping from logical file offset to the disk.
6767  * the ugly parts come from merging extents from the disk with the in-ram
6768  * representation.  This gets more complex because of the data=ordered code,
6769  * where the in-ram extents might be locked pending data=ordered completion.
6770  *
6771  * This also copies inline extents directly into the page.
6772  */
6773 
6774 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6775 				    size_t pg_offset, u64 start, u64 len,
6776 				    int create)
6777 {
6778 	int ret;
6779 	int err = 0;
6780 	u64 extent_start = 0;
6781 	u64 extent_end = 0;
6782 	u64 objectid = btrfs_ino(inode);
6783 	u32 found_type;
6784 	struct btrfs_path *path = NULL;
6785 	struct btrfs_root *root = BTRFS_I(inode)->root;
6786 	struct btrfs_file_extent_item *item;
6787 	struct extent_buffer *leaf;
6788 	struct btrfs_key found_key;
6789 	struct extent_map *em = NULL;
6790 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6791 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6792 	struct btrfs_trans_handle *trans = NULL;
6793 	const bool new_inline = !page || create;
6794 
6795 again:
6796 	read_lock(&em_tree->lock);
6797 	em = lookup_extent_mapping(em_tree, start, len);
6798 	if (em)
6799 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6800 	read_unlock(&em_tree->lock);
6801 
6802 	if (em) {
6803 		if (em->start > start || em->start + em->len <= start)
6804 			free_extent_map(em);
6805 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6806 			free_extent_map(em);
6807 		else
6808 			goto out;
6809 	}
6810 	em = alloc_extent_map();
6811 	if (!em) {
6812 		err = -ENOMEM;
6813 		goto out;
6814 	}
6815 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6816 	em->start = EXTENT_MAP_HOLE;
6817 	em->orig_start = EXTENT_MAP_HOLE;
6818 	em->len = (u64)-1;
6819 	em->block_len = (u64)-1;
6820 
6821 	if (!path) {
6822 		path = btrfs_alloc_path();
6823 		if (!path) {
6824 			err = -ENOMEM;
6825 			goto out;
6826 		}
6827 		/*
6828 		 * Chances are we'll be called again, so go ahead and do
6829 		 * readahead
6830 		 */
6831 		path->reada = READA_FORWARD;
6832 	}
6833 
6834 	ret = btrfs_lookup_file_extent(trans, root, path,
6835 				       objectid, start, trans != NULL);
6836 	if (ret < 0) {
6837 		err = ret;
6838 		goto out;
6839 	}
6840 
6841 	if (ret != 0) {
6842 		if (path->slots[0] == 0)
6843 			goto not_found;
6844 		path->slots[0]--;
6845 	}
6846 
6847 	leaf = path->nodes[0];
6848 	item = btrfs_item_ptr(leaf, path->slots[0],
6849 			      struct btrfs_file_extent_item);
6850 	/* are we inside the extent that was found? */
6851 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6852 	found_type = found_key.type;
6853 	if (found_key.objectid != objectid ||
6854 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6855 		/*
6856 		 * If we backup past the first extent we want to move forward
6857 		 * and see if there is an extent in front of us, otherwise we'll
6858 		 * say there is a hole for our whole search range which can
6859 		 * cause problems.
6860 		 */
6861 		extent_end = start;
6862 		goto next;
6863 	}
6864 
6865 	found_type = btrfs_file_extent_type(leaf, item);
6866 	extent_start = found_key.offset;
6867 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6868 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6869 		extent_end = extent_start +
6870 		       btrfs_file_extent_num_bytes(leaf, item);
6871 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6872 		size_t size;
6873 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6874 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6875 	}
6876 next:
6877 	if (start >= extent_end) {
6878 		path->slots[0]++;
6879 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6880 			ret = btrfs_next_leaf(root, path);
6881 			if (ret < 0) {
6882 				err = ret;
6883 				goto out;
6884 			}
6885 			if (ret > 0)
6886 				goto not_found;
6887 			leaf = path->nodes[0];
6888 		}
6889 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6890 		if (found_key.objectid != objectid ||
6891 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6892 			goto not_found;
6893 		if (start + len <= found_key.offset)
6894 			goto not_found;
6895 		if (start > found_key.offset)
6896 			goto next;
6897 		em->start = start;
6898 		em->orig_start = start;
6899 		em->len = found_key.offset - start;
6900 		goto not_found_em;
6901 	}
6902 
6903 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6904 
6905 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6906 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6907 		goto insert;
6908 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6909 		unsigned long ptr;
6910 		char *map;
6911 		size_t size;
6912 		size_t extent_offset;
6913 		size_t copy_size;
6914 
6915 		if (new_inline)
6916 			goto out;
6917 
6918 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6919 		extent_offset = page_offset(page) + pg_offset - extent_start;
6920 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6921 				  size - extent_offset);
6922 		em->start = extent_start + extent_offset;
6923 		em->len = ALIGN(copy_size, root->sectorsize);
6924 		em->orig_block_len = em->len;
6925 		em->orig_start = em->start;
6926 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6927 		if (create == 0 && !PageUptodate(page)) {
6928 			if (btrfs_file_extent_compression(leaf, item) !=
6929 			    BTRFS_COMPRESS_NONE) {
6930 				ret = uncompress_inline(path, page, pg_offset,
6931 							extent_offset, item);
6932 				if (ret) {
6933 					err = ret;
6934 					goto out;
6935 				}
6936 			} else {
6937 				map = kmap(page);
6938 				read_extent_buffer(leaf, map + pg_offset, ptr,
6939 						   copy_size);
6940 				if (pg_offset + copy_size < PAGE_SIZE) {
6941 					memset(map + pg_offset + copy_size, 0,
6942 					       PAGE_SIZE - pg_offset -
6943 					       copy_size);
6944 				}
6945 				kunmap(page);
6946 			}
6947 			flush_dcache_page(page);
6948 		} else if (create && PageUptodate(page)) {
6949 			BUG();
6950 			if (!trans) {
6951 				kunmap(page);
6952 				free_extent_map(em);
6953 				em = NULL;
6954 
6955 				btrfs_release_path(path);
6956 				trans = btrfs_join_transaction(root);
6957 
6958 				if (IS_ERR(trans))
6959 					return ERR_CAST(trans);
6960 				goto again;
6961 			}
6962 			map = kmap(page);
6963 			write_extent_buffer(leaf, map + pg_offset, ptr,
6964 					    copy_size);
6965 			kunmap(page);
6966 			btrfs_mark_buffer_dirty(leaf);
6967 		}
6968 		set_extent_uptodate(io_tree, em->start,
6969 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6970 		goto insert;
6971 	}
6972 not_found:
6973 	em->start = start;
6974 	em->orig_start = start;
6975 	em->len = len;
6976 not_found_em:
6977 	em->block_start = EXTENT_MAP_HOLE;
6978 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6979 insert:
6980 	btrfs_release_path(path);
6981 	if (em->start > start || extent_map_end(em) <= start) {
6982 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6983 			em->start, em->len, start, len);
6984 		err = -EIO;
6985 		goto out;
6986 	}
6987 
6988 	err = 0;
6989 	write_lock(&em_tree->lock);
6990 	ret = add_extent_mapping(em_tree, em, 0);
6991 	/* it is possible that someone inserted the extent into the tree
6992 	 * while we had the lock dropped.  It is also possible that
6993 	 * an overlapping map exists in the tree
6994 	 */
6995 	if (ret == -EEXIST) {
6996 		struct extent_map *existing;
6997 
6998 		ret = 0;
6999 
7000 		existing = search_extent_mapping(em_tree, start, len);
7001 		/*
7002 		 * existing will always be non-NULL, since there must be
7003 		 * extent causing the -EEXIST.
7004 		 */
7005 		if (existing->start == em->start &&
7006 		    extent_map_end(existing) == extent_map_end(em) &&
7007 		    em->block_start == existing->block_start) {
7008 			/*
7009 			 * these two extents are the same, it happens
7010 			 * with inlines especially
7011 			 */
7012 			free_extent_map(em);
7013 			em = existing;
7014 			err = 0;
7015 
7016 		} else if (start >= extent_map_end(existing) ||
7017 		    start <= existing->start) {
7018 			/*
7019 			 * The existing extent map is the one nearest to
7020 			 * the [start, start + len) range which overlaps
7021 			 */
7022 			err = merge_extent_mapping(em_tree, existing,
7023 						   em, start);
7024 			free_extent_map(existing);
7025 			if (err) {
7026 				free_extent_map(em);
7027 				em = NULL;
7028 			}
7029 		} else {
7030 			free_extent_map(em);
7031 			em = existing;
7032 			err = 0;
7033 		}
7034 	}
7035 	write_unlock(&em_tree->lock);
7036 out:
7037 
7038 	trace_btrfs_get_extent(root, em);
7039 
7040 	btrfs_free_path(path);
7041 	if (trans) {
7042 		ret = btrfs_end_transaction(trans, root);
7043 		if (!err)
7044 			err = ret;
7045 	}
7046 	if (err) {
7047 		free_extent_map(em);
7048 		return ERR_PTR(err);
7049 	}
7050 	BUG_ON(!em); /* Error is always set */
7051 	return em;
7052 }
7053 
7054 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7055 					   size_t pg_offset, u64 start, u64 len,
7056 					   int create)
7057 {
7058 	struct extent_map *em;
7059 	struct extent_map *hole_em = NULL;
7060 	u64 range_start = start;
7061 	u64 end;
7062 	u64 found;
7063 	u64 found_end;
7064 	int err = 0;
7065 
7066 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7067 	if (IS_ERR(em))
7068 		return em;
7069 	if (em) {
7070 		/*
7071 		 * if our em maps to
7072 		 * -  a hole or
7073 		 * -  a pre-alloc extent,
7074 		 * there might actually be delalloc bytes behind it.
7075 		 */
7076 		if (em->block_start != EXTENT_MAP_HOLE &&
7077 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7078 			return em;
7079 		else
7080 			hole_em = em;
7081 	}
7082 
7083 	/* check to see if we've wrapped (len == -1 or similar) */
7084 	end = start + len;
7085 	if (end < start)
7086 		end = (u64)-1;
7087 	else
7088 		end -= 1;
7089 
7090 	em = NULL;
7091 
7092 	/* ok, we didn't find anything, lets look for delalloc */
7093 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7094 				 end, len, EXTENT_DELALLOC, 1);
7095 	found_end = range_start + found;
7096 	if (found_end < range_start)
7097 		found_end = (u64)-1;
7098 
7099 	/*
7100 	 * we didn't find anything useful, return
7101 	 * the original results from get_extent()
7102 	 */
7103 	if (range_start > end || found_end <= start) {
7104 		em = hole_em;
7105 		hole_em = NULL;
7106 		goto out;
7107 	}
7108 
7109 	/* adjust the range_start to make sure it doesn't
7110 	 * go backwards from the start they passed in
7111 	 */
7112 	range_start = max(start, range_start);
7113 	found = found_end - range_start;
7114 
7115 	if (found > 0) {
7116 		u64 hole_start = start;
7117 		u64 hole_len = len;
7118 
7119 		em = alloc_extent_map();
7120 		if (!em) {
7121 			err = -ENOMEM;
7122 			goto out;
7123 		}
7124 		/*
7125 		 * when btrfs_get_extent can't find anything it
7126 		 * returns one huge hole
7127 		 *
7128 		 * make sure what it found really fits our range, and
7129 		 * adjust to make sure it is based on the start from
7130 		 * the caller
7131 		 */
7132 		if (hole_em) {
7133 			u64 calc_end = extent_map_end(hole_em);
7134 
7135 			if (calc_end <= start || (hole_em->start > end)) {
7136 				free_extent_map(hole_em);
7137 				hole_em = NULL;
7138 			} else {
7139 				hole_start = max(hole_em->start, start);
7140 				hole_len = calc_end - hole_start;
7141 			}
7142 		}
7143 		em->bdev = NULL;
7144 		if (hole_em && range_start > hole_start) {
7145 			/* our hole starts before our delalloc, so we
7146 			 * have to return just the parts of the hole
7147 			 * that go until  the delalloc starts
7148 			 */
7149 			em->len = min(hole_len,
7150 				      range_start - hole_start);
7151 			em->start = hole_start;
7152 			em->orig_start = hole_start;
7153 			/*
7154 			 * don't adjust block start at all,
7155 			 * it is fixed at EXTENT_MAP_HOLE
7156 			 */
7157 			em->block_start = hole_em->block_start;
7158 			em->block_len = hole_len;
7159 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7160 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7161 		} else {
7162 			em->start = range_start;
7163 			em->len = found;
7164 			em->orig_start = range_start;
7165 			em->block_start = EXTENT_MAP_DELALLOC;
7166 			em->block_len = found;
7167 		}
7168 	} else if (hole_em) {
7169 		return hole_em;
7170 	}
7171 out:
7172 
7173 	free_extent_map(hole_em);
7174 	if (err) {
7175 		free_extent_map(em);
7176 		return ERR_PTR(err);
7177 	}
7178 	return em;
7179 }
7180 
7181 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7182 						  const u64 start,
7183 						  const u64 len,
7184 						  const u64 orig_start,
7185 						  const u64 block_start,
7186 						  const u64 block_len,
7187 						  const u64 orig_block_len,
7188 						  const u64 ram_bytes,
7189 						  const int type)
7190 {
7191 	struct extent_map *em = NULL;
7192 	int ret;
7193 
7194 	down_read(&BTRFS_I(inode)->dio_sem);
7195 	if (type != BTRFS_ORDERED_NOCOW) {
7196 		em = create_pinned_em(inode, start, len, orig_start,
7197 				      block_start, block_len, orig_block_len,
7198 				      ram_bytes, type);
7199 		if (IS_ERR(em))
7200 			goto out;
7201 	}
7202 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7203 					   len, block_len, type);
7204 	if (ret) {
7205 		if (em) {
7206 			free_extent_map(em);
7207 			btrfs_drop_extent_cache(inode, start,
7208 						start + len - 1, 0);
7209 		}
7210 		em = ERR_PTR(ret);
7211 	}
7212  out:
7213 	up_read(&BTRFS_I(inode)->dio_sem);
7214 
7215 	return em;
7216 }
7217 
7218 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7219 						  u64 start, u64 len)
7220 {
7221 	struct btrfs_root *root = BTRFS_I(inode)->root;
7222 	struct extent_map *em;
7223 	struct btrfs_key ins;
7224 	u64 alloc_hint;
7225 	int ret;
7226 
7227 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7228 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7229 				   alloc_hint, &ins, 1, 1);
7230 	if (ret)
7231 		return ERR_PTR(ret);
7232 
7233 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7234 				     ins.objectid, ins.offset, ins.offset,
7235 				     ins.offset, 0);
7236 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7237 	if (IS_ERR(em))
7238 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7239 
7240 	return em;
7241 }
7242 
7243 /*
7244  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7245  * block must be cow'd
7246  */
7247 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7248 			      u64 *orig_start, u64 *orig_block_len,
7249 			      u64 *ram_bytes)
7250 {
7251 	struct btrfs_trans_handle *trans;
7252 	struct btrfs_path *path;
7253 	int ret;
7254 	struct extent_buffer *leaf;
7255 	struct btrfs_root *root = BTRFS_I(inode)->root;
7256 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7257 	struct btrfs_file_extent_item *fi;
7258 	struct btrfs_key key;
7259 	u64 disk_bytenr;
7260 	u64 backref_offset;
7261 	u64 extent_end;
7262 	u64 num_bytes;
7263 	int slot;
7264 	int found_type;
7265 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7266 
7267 	path = btrfs_alloc_path();
7268 	if (!path)
7269 		return -ENOMEM;
7270 
7271 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7272 				       offset, 0);
7273 	if (ret < 0)
7274 		goto out;
7275 
7276 	slot = path->slots[0];
7277 	if (ret == 1) {
7278 		if (slot == 0) {
7279 			/* can't find the item, must cow */
7280 			ret = 0;
7281 			goto out;
7282 		}
7283 		slot--;
7284 	}
7285 	ret = 0;
7286 	leaf = path->nodes[0];
7287 	btrfs_item_key_to_cpu(leaf, &key, slot);
7288 	if (key.objectid != btrfs_ino(inode) ||
7289 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7290 		/* not our file or wrong item type, must cow */
7291 		goto out;
7292 	}
7293 
7294 	if (key.offset > offset) {
7295 		/* Wrong offset, must cow */
7296 		goto out;
7297 	}
7298 
7299 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7300 	found_type = btrfs_file_extent_type(leaf, fi);
7301 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7302 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7303 		/* not a regular extent, must cow */
7304 		goto out;
7305 	}
7306 
7307 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7308 		goto out;
7309 
7310 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7311 	if (extent_end <= offset)
7312 		goto out;
7313 
7314 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7315 	if (disk_bytenr == 0)
7316 		goto out;
7317 
7318 	if (btrfs_file_extent_compression(leaf, fi) ||
7319 	    btrfs_file_extent_encryption(leaf, fi) ||
7320 	    btrfs_file_extent_other_encoding(leaf, fi))
7321 		goto out;
7322 
7323 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7324 
7325 	if (orig_start) {
7326 		*orig_start = key.offset - backref_offset;
7327 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7328 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7329 	}
7330 
7331 	if (btrfs_extent_readonly(root, disk_bytenr))
7332 		goto out;
7333 
7334 	num_bytes = min(offset + *len, extent_end) - offset;
7335 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7336 		u64 range_end;
7337 
7338 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7339 		ret = test_range_bit(io_tree, offset, range_end,
7340 				     EXTENT_DELALLOC, 0, NULL);
7341 		if (ret) {
7342 			ret = -EAGAIN;
7343 			goto out;
7344 		}
7345 	}
7346 
7347 	btrfs_release_path(path);
7348 
7349 	/*
7350 	 * look for other files referencing this extent, if we
7351 	 * find any we must cow
7352 	 */
7353 	trans = btrfs_join_transaction(root);
7354 	if (IS_ERR(trans)) {
7355 		ret = 0;
7356 		goto out;
7357 	}
7358 
7359 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7360 				    key.offset - backref_offset, disk_bytenr);
7361 	btrfs_end_transaction(trans, root);
7362 	if (ret) {
7363 		ret = 0;
7364 		goto out;
7365 	}
7366 
7367 	/*
7368 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7369 	 * in this extent we are about to write.  If there
7370 	 * are any csums in that range we have to cow in order
7371 	 * to keep the csums correct
7372 	 */
7373 	disk_bytenr += backref_offset;
7374 	disk_bytenr += offset - key.offset;
7375 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7376 				goto out;
7377 	/*
7378 	 * all of the above have passed, it is safe to overwrite this extent
7379 	 * without cow
7380 	 */
7381 	*len = num_bytes;
7382 	ret = 1;
7383 out:
7384 	btrfs_free_path(path);
7385 	return ret;
7386 }
7387 
7388 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7389 {
7390 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7391 	int found = false;
7392 	void **pagep = NULL;
7393 	struct page *page = NULL;
7394 	int start_idx;
7395 	int end_idx;
7396 
7397 	start_idx = start >> PAGE_SHIFT;
7398 
7399 	/*
7400 	 * end is the last byte in the last page.  end == start is legal
7401 	 */
7402 	end_idx = end >> PAGE_SHIFT;
7403 
7404 	rcu_read_lock();
7405 
7406 	/* Most of the code in this while loop is lifted from
7407 	 * find_get_page.  It's been modified to begin searching from a
7408 	 * page and return just the first page found in that range.  If the
7409 	 * found idx is less than or equal to the end idx then we know that
7410 	 * a page exists.  If no pages are found or if those pages are
7411 	 * outside of the range then we're fine (yay!) */
7412 	while (page == NULL &&
7413 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7414 		page = radix_tree_deref_slot(pagep);
7415 		if (unlikely(!page))
7416 			break;
7417 
7418 		if (radix_tree_exception(page)) {
7419 			if (radix_tree_deref_retry(page)) {
7420 				page = NULL;
7421 				continue;
7422 			}
7423 			/*
7424 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7425 			 * here as an exceptional entry: so return it without
7426 			 * attempting to raise page count.
7427 			 */
7428 			page = NULL;
7429 			break; /* TODO: Is this relevant for this use case? */
7430 		}
7431 
7432 		if (!page_cache_get_speculative(page)) {
7433 			page = NULL;
7434 			continue;
7435 		}
7436 
7437 		/*
7438 		 * Has the page moved?
7439 		 * This is part of the lockless pagecache protocol. See
7440 		 * include/linux/pagemap.h for details.
7441 		 */
7442 		if (unlikely(page != *pagep)) {
7443 			put_page(page);
7444 			page = NULL;
7445 		}
7446 	}
7447 
7448 	if (page) {
7449 		if (page->index <= end_idx)
7450 			found = true;
7451 		put_page(page);
7452 	}
7453 
7454 	rcu_read_unlock();
7455 	return found;
7456 }
7457 
7458 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7459 			      struct extent_state **cached_state, int writing)
7460 {
7461 	struct btrfs_ordered_extent *ordered;
7462 	int ret = 0;
7463 
7464 	while (1) {
7465 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7466 				 cached_state);
7467 		/*
7468 		 * We're concerned with the entire range that we're going to be
7469 		 * doing DIO to, so we need to make sure there's no ordered
7470 		 * extents in this range.
7471 		 */
7472 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7473 						     lockend - lockstart + 1);
7474 
7475 		/*
7476 		 * We need to make sure there are no buffered pages in this
7477 		 * range either, we could have raced between the invalidate in
7478 		 * generic_file_direct_write and locking the extent.  The
7479 		 * invalidate needs to happen so that reads after a write do not
7480 		 * get stale data.
7481 		 */
7482 		if (!ordered &&
7483 		    (!writing ||
7484 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7485 			break;
7486 
7487 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7488 				     cached_state, GFP_NOFS);
7489 
7490 		if (ordered) {
7491 			/*
7492 			 * If we are doing a DIO read and the ordered extent we
7493 			 * found is for a buffered write, we can not wait for it
7494 			 * to complete and retry, because if we do so we can
7495 			 * deadlock with concurrent buffered writes on page
7496 			 * locks. This happens only if our DIO read covers more
7497 			 * than one extent map, if at this point has already
7498 			 * created an ordered extent for a previous extent map
7499 			 * and locked its range in the inode's io tree, and a
7500 			 * concurrent write against that previous extent map's
7501 			 * range and this range started (we unlock the ranges
7502 			 * in the io tree only when the bios complete and
7503 			 * buffered writes always lock pages before attempting
7504 			 * to lock range in the io tree).
7505 			 */
7506 			if (writing ||
7507 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7508 				btrfs_start_ordered_extent(inode, ordered, 1);
7509 			else
7510 				ret = -ENOTBLK;
7511 			btrfs_put_ordered_extent(ordered);
7512 		} else {
7513 			/*
7514 			 * We could trigger writeback for this range (and wait
7515 			 * for it to complete) and then invalidate the pages for
7516 			 * this range (through invalidate_inode_pages2_range()),
7517 			 * but that can lead us to a deadlock with a concurrent
7518 			 * call to readpages() (a buffered read or a defrag call
7519 			 * triggered a readahead) on a page lock due to an
7520 			 * ordered dio extent we created before but did not have
7521 			 * yet a corresponding bio submitted (whence it can not
7522 			 * complete), which makes readpages() wait for that
7523 			 * ordered extent to complete while holding a lock on
7524 			 * that page.
7525 			 */
7526 			ret = -ENOTBLK;
7527 		}
7528 
7529 		if (ret)
7530 			break;
7531 
7532 		cond_resched();
7533 	}
7534 
7535 	return ret;
7536 }
7537 
7538 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7539 					   u64 len, u64 orig_start,
7540 					   u64 block_start, u64 block_len,
7541 					   u64 orig_block_len, u64 ram_bytes,
7542 					   int type)
7543 {
7544 	struct extent_map_tree *em_tree;
7545 	struct extent_map *em;
7546 	struct btrfs_root *root = BTRFS_I(inode)->root;
7547 	int ret;
7548 
7549 	em_tree = &BTRFS_I(inode)->extent_tree;
7550 	em = alloc_extent_map();
7551 	if (!em)
7552 		return ERR_PTR(-ENOMEM);
7553 
7554 	em->start = start;
7555 	em->orig_start = orig_start;
7556 	em->mod_start = start;
7557 	em->mod_len = len;
7558 	em->len = len;
7559 	em->block_len = block_len;
7560 	em->block_start = block_start;
7561 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7562 	em->orig_block_len = orig_block_len;
7563 	em->ram_bytes = ram_bytes;
7564 	em->generation = -1;
7565 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7566 	if (type == BTRFS_ORDERED_PREALLOC)
7567 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7568 
7569 	do {
7570 		btrfs_drop_extent_cache(inode, em->start,
7571 				em->start + em->len - 1, 0);
7572 		write_lock(&em_tree->lock);
7573 		ret = add_extent_mapping(em_tree, em, 1);
7574 		write_unlock(&em_tree->lock);
7575 	} while (ret == -EEXIST);
7576 
7577 	if (ret) {
7578 		free_extent_map(em);
7579 		return ERR_PTR(ret);
7580 	}
7581 
7582 	return em;
7583 }
7584 
7585 static void adjust_dio_outstanding_extents(struct inode *inode,
7586 					   struct btrfs_dio_data *dio_data,
7587 					   const u64 len)
7588 {
7589 	unsigned num_extents;
7590 
7591 	num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7592 					   BTRFS_MAX_EXTENT_SIZE);
7593 	/*
7594 	 * If we have an outstanding_extents count still set then we're
7595 	 * within our reservation, otherwise we need to adjust our inode
7596 	 * counter appropriately.
7597 	 */
7598 	if (dio_data->outstanding_extents) {
7599 		dio_data->outstanding_extents -= num_extents;
7600 	} else {
7601 		spin_lock(&BTRFS_I(inode)->lock);
7602 		BTRFS_I(inode)->outstanding_extents += num_extents;
7603 		spin_unlock(&BTRFS_I(inode)->lock);
7604 	}
7605 }
7606 
7607 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7608 				   struct buffer_head *bh_result, int create)
7609 {
7610 	struct extent_map *em;
7611 	struct btrfs_root *root = BTRFS_I(inode)->root;
7612 	struct extent_state *cached_state = NULL;
7613 	struct btrfs_dio_data *dio_data = NULL;
7614 	u64 start = iblock << inode->i_blkbits;
7615 	u64 lockstart, lockend;
7616 	u64 len = bh_result->b_size;
7617 	int unlock_bits = EXTENT_LOCKED;
7618 	int ret = 0;
7619 
7620 	if (create)
7621 		unlock_bits |= EXTENT_DIRTY;
7622 	else
7623 		len = min_t(u64, len, root->sectorsize);
7624 
7625 	lockstart = start;
7626 	lockend = start + len - 1;
7627 
7628 	if (current->journal_info) {
7629 		/*
7630 		 * Need to pull our outstanding extents and set journal_info to NULL so
7631 		 * that anything that needs to check if there's a transaction doesn't get
7632 		 * confused.
7633 		 */
7634 		dio_data = current->journal_info;
7635 		current->journal_info = NULL;
7636 	}
7637 
7638 	/*
7639 	 * If this errors out it's because we couldn't invalidate pagecache for
7640 	 * this range and we need to fallback to buffered.
7641 	 */
7642 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7643 			       create)) {
7644 		ret = -ENOTBLK;
7645 		goto err;
7646 	}
7647 
7648 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7649 	if (IS_ERR(em)) {
7650 		ret = PTR_ERR(em);
7651 		goto unlock_err;
7652 	}
7653 
7654 	/*
7655 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7656 	 * io.  INLINE is special, and we could probably kludge it in here, but
7657 	 * it's still buffered so for safety lets just fall back to the generic
7658 	 * buffered path.
7659 	 *
7660 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7661 	 * decompress it, so there will be buffering required no matter what we
7662 	 * do, so go ahead and fallback to buffered.
7663 	 *
7664 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7665 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7666 	 * the generic code.
7667 	 */
7668 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7669 	    em->block_start == EXTENT_MAP_INLINE) {
7670 		free_extent_map(em);
7671 		ret = -ENOTBLK;
7672 		goto unlock_err;
7673 	}
7674 
7675 	/* Just a good old fashioned hole, return */
7676 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7677 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7678 		free_extent_map(em);
7679 		goto unlock_err;
7680 	}
7681 
7682 	/*
7683 	 * We don't allocate a new extent in the following cases
7684 	 *
7685 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7686 	 * existing extent.
7687 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7688 	 * just use the extent.
7689 	 *
7690 	 */
7691 	if (!create) {
7692 		len = min(len, em->len - (start - em->start));
7693 		lockstart = start + len;
7694 		goto unlock;
7695 	}
7696 
7697 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7698 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7699 	     em->block_start != EXTENT_MAP_HOLE)) {
7700 		int type;
7701 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7702 
7703 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7704 			type = BTRFS_ORDERED_PREALLOC;
7705 		else
7706 			type = BTRFS_ORDERED_NOCOW;
7707 		len = min(len, em->len - (start - em->start));
7708 		block_start = em->block_start + (start - em->start);
7709 
7710 		if (can_nocow_extent(inode, start, &len, &orig_start,
7711 				     &orig_block_len, &ram_bytes) == 1 &&
7712 		    btrfs_inc_nocow_writers(root->fs_info, block_start)) {
7713 			struct extent_map *em2;
7714 
7715 			em2 = btrfs_create_dio_extent(inode, start, len,
7716 						      orig_start, block_start,
7717 						      len, orig_block_len,
7718 						      ram_bytes, type);
7719 			btrfs_dec_nocow_writers(root->fs_info, block_start);
7720 			if (type == BTRFS_ORDERED_PREALLOC) {
7721 				free_extent_map(em);
7722 				em = em2;
7723 			}
7724 			if (em2 && IS_ERR(em2)) {
7725 				ret = PTR_ERR(em2);
7726 				goto unlock_err;
7727 			}
7728 			goto unlock;
7729 		}
7730 	}
7731 
7732 	/*
7733 	 * this will cow the extent, reset the len in case we changed
7734 	 * it above
7735 	 */
7736 	len = bh_result->b_size;
7737 	free_extent_map(em);
7738 	em = btrfs_new_extent_direct(inode, start, len);
7739 	if (IS_ERR(em)) {
7740 		ret = PTR_ERR(em);
7741 		goto unlock_err;
7742 	}
7743 	len = min(len, em->len - (start - em->start));
7744 unlock:
7745 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7746 		inode->i_blkbits;
7747 	bh_result->b_size = len;
7748 	bh_result->b_bdev = em->bdev;
7749 	set_buffer_mapped(bh_result);
7750 	if (create) {
7751 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7752 			set_buffer_new(bh_result);
7753 
7754 		/*
7755 		 * Need to update the i_size under the extent lock so buffered
7756 		 * readers will get the updated i_size when we unlock.
7757 		 */
7758 		if (start + len > i_size_read(inode))
7759 			i_size_write(inode, start + len);
7760 
7761 		adjust_dio_outstanding_extents(inode, dio_data, len);
7762 		btrfs_free_reserved_data_space(inode, start, len);
7763 		WARN_ON(dio_data->reserve < len);
7764 		dio_data->reserve -= len;
7765 		dio_data->unsubmitted_oe_range_end = start + len;
7766 		current->journal_info = dio_data;
7767 	}
7768 
7769 	/*
7770 	 * In the case of write we need to clear and unlock the entire range,
7771 	 * in the case of read we need to unlock only the end area that we
7772 	 * aren't using if there is any left over space.
7773 	 */
7774 	if (lockstart < lockend) {
7775 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7776 				 lockend, unlock_bits, 1, 0,
7777 				 &cached_state, GFP_NOFS);
7778 	} else {
7779 		free_extent_state(cached_state);
7780 	}
7781 
7782 	free_extent_map(em);
7783 
7784 	return 0;
7785 
7786 unlock_err:
7787 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7788 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7789 err:
7790 	if (dio_data)
7791 		current->journal_info = dio_data;
7792 	/*
7793 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7794 	 * write less data then expected, so that we don't underflow our inode's
7795 	 * outstanding extents counter.
7796 	 */
7797 	if (create && dio_data)
7798 		adjust_dio_outstanding_extents(inode, dio_data, len);
7799 
7800 	return ret;
7801 }
7802 
7803 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7804 					int mirror_num)
7805 {
7806 	struct btrfs_root *root = BTRFS_I(inode)->root;
7807 	int ret;
7808 
7809 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7810 
7811 	bio_get(bio);
7812 
7813 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7814 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7815 	if (ret)
7816 		goto err;
7817 
7818 	ret = btrfs_map_bio(root, bio, mirror_num, 0);
7819 err:
7820 	bio_put(bio);
7821 	return ret;
7822 }
7823 
7824 static int btrfs_check_dio_repairable(struct inode *inode,
7825 				      struct bio *failed_bio,
7826 				      struct io_failure_record *failrec,
7827 				      int failed_mirror)
7828 {
7829 	int num_copies;
7830 
7831 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7832 				      failrec->logical, failrec->len);
7833 	if (num_copies == 1) {
7834 		/*
7835 		 * we only have a single copy of the data, so don't bother with
7836 		 * all the retry and error correction code that follows. no
7837 		 * matter what the error is, it is very likely to persist.
7838 		 */
7839 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7840 			 num_copies, failrec->this_mirror, failed_mirror);
7841 		return 0;
7842 	}
7843 
7844 	failrec->failed_mirror = failed_mirror;
7845 	failrec->this_mirror++;
7846 	if (failrec->this_mirror == failed_mirror)
7847 		failrec->this_mirror++;
7848 
7849 	if (failrec->this_mirror > num_copies) {
7850 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7851 			 num_copies, failrec->this_mirror, failed_mirror);
7852 		return 0;
7853 	}
7854 
7855 	return 1;
7856 }
7857 
7858 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7859 			struct page *page, unsigned int pgoff,
7860 			u64 start, u64 end, int failed_mirror,
7861 			bio_end_io_t *repair_endio, void *repair_arg)
7862 {
7863 	struct io_failure_record *failrec;
7864 	struct bio *bio;
7865 	int isector;
7866 	int read_mode;
7867 	int ret;
7868 
7869 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7870 
7871 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7872 	if (ret)
7873 		return ret;
7874 
7875 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7876 					 failed_mirror);
7877 	if (!ret) {
7878 		free_io_failure(inode, failrec);
7879 		return -EIO;
7880 	}
7881 
7882 	if ((failed_bio->bi_vcnt > 1)
7883 		|| (failed_bio->bi_io_vec->bv_len
7884 			> BTRFS_I(inode)->root->sectorsize))
7885 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7886 	else
7887 		read_mode = READ_SYNC;
7888 
7889 	isector = start - btrfs_io_bio(failed_bio)->logical;
7890 	isector >>= inode->i_sb->s_blocksize_bits;
7891 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7892 				pgoff, isector, repair_endio, repair_arg);
7893 	if (!bio) {
7894 		free_io_failure(inode, failrec);
7895 		return -EIO;
7896 	}
7897 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7898 
7899 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7900 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7901 		    read_mode, failrec->this_mirror, failrec->in_validation);
7902 
7903 	ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7904 	if (ret) {
7905 		free_io_failure(inode, failrec);
7906 		bio_put(bio);
7907 	}
7908 
7909 	return ret;
7910 }
7911 
7912 struct btrfs_retry_complete {
7913 	struct completion done;
7914 	struct inode *inode;
7915 	u64 start;
7916 	int uptodate;
7917 };
7918 
7919 static void btrfs_retry_endio_nocsum(struct bio *bio)
7920 {
7921 	struct btrfs_retry_complete *done = bio->bi_private;
7922 	struct inode *inode;
7923 	struct bio_vec *bvec;
7924 	int i;
7925 
7926 	if (bio->bi_error)
7927 		goto end;
7928 
7929 	ASSERT(bio->bi_vcnt == 1);
7930 	inode = bio->bi_io_vec->bv_page->mapping->host;
7931 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7932 
7933 	done->uptodate = 1;
7934 	bio_for_each_segment_all(bvec, bio, i)
7935 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7936 end:
7937 	complete(&done->done);
7938 	bio_put(bio);
7939 }
7940 
7941 static int __btrfs_correct_data_nocsum(struct inode *inode,
7942 				       struct btrfs_io_bio *io_bio)
7943 {
7944 	struct btrfs_fs_info *fs_info;
7945 	struct bio_vec *bvec;
7946 	struct btrfs_retry_complete done;
7947 	u64 start;
7948 	unsigned int pgoff;
7949 	u32 sectorsize;
7950 	int nr_sectors;
7951 	int i;
7952 	int ret;
7953 
7954 	fs_info = BTRFS_I(inode)->root->fs_info;
7955 	sectorsize = BTRFS_I(inode)->root->sectorsize;
7956 
7957 	start = io_bio->logical;
7958 	done.inode = inode;
7959 
7960 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7961 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7962 		pgoff = bvec->bv_offset;
7963 
7964 next_block_or_try_again:
7965 		done.uptodate = 0;
7966 		done.start = start;
7967 		init_completion(&done.done);
7968 
7969 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7970 				pgoff, start, start + sectorsize - 1,
7971 				io_bio->mirror_num,
7972 				btrfs_retry_endio_nocsum, &done);
7973 		if (ret)
7974 			return ret;
7975 
7976 		wait_for_completion(&done.done);
7977 
7978 		if (!done.uptodate) {
7979 			/* We might have another mirror, so try again */
7980 			goto next_block_or_try_again;
7981 		}
7982 
7983 		start += sectorsize;
7984 
7985 		if (nr_sectors--) {
7986 			pgoff += sectorsize;
7987 			goto next_block_or_try_again;
7988 		}
7989 	}
7990 
7991 	return 0;
7992 }
7993 
7994 static void btrfs_retry_endio(struct bio *bio)
7995 {
7996 	struct btrfs_retry_complete *done = bio->bi_private;
7997 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7998 	struct inode *inode;
7999 	struct bio_vec *bvec;
8000 	u64 start;
8001 	int uptodate;
8002 	int ret;
8003 	int i;
8004 
8005 	if (bio->bi_error)
8006 		goto end;
8007 
8008 	uptodate = 1;
8009 
8010 	start = done->start;
8011 
8012 	ASSERT(bio->bi_vcnt == 1);
8013 	inode = bio->bi_io_vec->bv_page->mapping->host;
8014 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8015 
8016 	bio_for_each_segment_all(bvec, bio, i) {
8017 		ret = __readpage_endio_check(done->inode, io_bio, i,
8018 					bvec->bv_page, bvec->bv_offset,
8019 					done->start, bvec->bv_len);
8020 		if (!ret)
8021 			clean_io_failure(done->inode, done->start,
8022 					bvec->bv_page, bvec->bv_offset);
8023 		else
8024 			uptodate = 0;
8025 	}
8026 
8027 	done->uptodate = uptodate;
8028 end:
8029 	complete(&done->done);
8030 	bio_put(bio);
8031 }
8032 
8033 static int __btrfs_subio_endio_read(struct inode *inode,
8034 				    struct btrfs_io_bio *io_bio, int err)
8035 {
8036 	struct btrfs_fs_info *fs_info;
8037 	struct bio_vec *bvec;
8038 	struct btrfs_retry_complete done;
8039 	u64 start;
8040 	u64 offset = 0;
8041 	u32 sectorsize;
8042 	int nr_sectors;
8043 	unsigned int pgoff;
8044 	int csum_pos;
8045 	int i;
8046 	int ret;
8047 
8048 	fs_info = BTRFS_I(inode)->root->fs_info;
8049 	sectorsize = BTRFS_I(inode)->root->sectorsize;
8050 
8051 	err = 0;
8052 	start = io_bio->logical;
8053 	done.inode = inode;
8054 
8055 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8056 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8057 
8058 		pgoff = bvec->bv_offset;
8059 next_block:
8060 		csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8061 		ret = __readpage_endio_check(inode, io_bio, csum_pos,
8062 					bvec->bv_page, pgoff, start,
8063 					sectorsize);
8064 		if (likely(!ret))
8065 			goto next;
8066 try_again:
8067 		done.uptodate = 0;
8068 		done.start = start;
8069 		init_completion(&done.done);
8070 
8071 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8072 				pgoff, start, start + sectorsize - 1,
8073 				io_bio->mirror_num,
8074 				btrfs_retry_endio, &done);
8075 		if (ret) {
8076 			err = ret;
8077 			goto next;
8078 		}
8079 
8080 		wait_for_completion(&done.done);
8081 
8082 		if (!done.uptodate) {
8083 			/* We might have another mirror, so try again */
8084 			goto try_again;
8085 		}
8086 next:
8087 		offset += sectorsize;
8088 		start += sectorsize;
8089 
8090 		ASSERT(nr_sectors);
8091 
8092 		if (--nr_sectors) {
8093 			pgoff += sectorsize;
8094 			goto next_block;
8095 		}
8096 	}
8097 
8098 	return err;
8099 }
8100 
8101 static int btrfs_subio_endio_read(struct inode *inode,
8102 				  struct btrfs_io_bio *io_bio, int err)
8103 {
8104 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8105 
8106 	if (skip_csum) {
8107 		if (unlikely(err))
8108 			return __btrfs_correct_data_nocsum(inode, io_bio);
8109 		else
8110 			return 0;
8111 	} else {
8112 		return __btrfs_subio_endio_read(inode, io_bio, err);
8113 	}
8114 }
8115 
8116 static void btrfs_endio_direct_read(struct bio *bio)
8117 {
8118 	struct btrfs_dio_private *dip = bio->bi_private;
8119 	struct inode *inode = dip->inode;
8120 	struct bio *dio_bio;
8121 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8122 	int err = bio->bi_error;
8123 
8124 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8125 		err = btrfs_subio_endio_read(inode, io_bio, err);
8126 
8127 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8128 		      dip->logical_offset + dip->bytes - 1);
8129 	dio_bio = dip->dio_bio;
8130 
8131 	kfree(dip);
8132 
8133 	dio_bio->bi_error = bio->bi_error;
8134 	dio_end_io(dio_bio, bio->bi_error);
8135 
8136 	if (io_bio->end_io)
8137 		io_bio->end_io(io_bio, err);
8138 	bio_put(bio);
8139 }
8140 
8141 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8142 						    const u64 offset,
8143 						    const u64 bytes,
8144 						    const int uptodate)
8145 {
8146 	struct btrfs_root *root = BTRFS_I(inode)->root;
8147 	struct btrfs_ordered_extent *ordered = NULL;
8148 	u64 ordered_offset = offset;
8149 	u64 ordered_bytes = bytes;
8150 	int ret;
8151 
8152 again:
8153 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8154 						   &ordered_offset,
8155 						   ordered_bytes,
8156 						   uptodate);
8157 	if (!ret)
8158 		goto out_test;
8159 
8160 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8161 			finish_ordered_fn, NULL, NULL);
8162 	btrfs_queue_work(root->fs_info->endio_write_workers,
8163 			 &ordered->work);
8164 out_test:
8165 	/*
8166 	 * our bio might span multiple ordered extents.  If we haven't
8167 	 * completed the accounting for the whole dio, go back and try again
8168 	 */
8169 	if (ordered_offset < offset + bytes) {
8170 		ordered_bytes = offset + bytes - ordered_offset;
8171 		ordered = NULL;
8172 		goto again;
8173 	}
8174 }
8175 
8176 static void btrfs_endio_direct_write(struct bio *bio)
8177 {
8178 	struct btrfs_dio_private *dip = bio->bi_private;
8179 	struct bio *dio_bio = dip->dio_bio;
8180 
8181 	btrfs_endio_direct_write_update_ordered(dip->inode,
8182 						dip->logical_offset,
8183 						dip->bytes,
8184 						!bio->bi_error);
8185 
8186 	kfree(dip);
8187 
8188 	dio_bio->bi_error = bio->bi_error;
8189 	dio_end_io(dio_bio, bio->bi_error);
8190 	bio_put(bio);
8191 }
8192 
8193 static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
8194 				    struct bio *bio, int mirror_num,
8195 				    unsigned long bio_flags, u64 offset)
8196 {
8197 	int ret;
8198 	struct btrfs_root *root = BTRFS_I(inode)->root;
8199 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8200 	BUG_ON(ret); /* -ENOMEM */
8201 	return 0;
8202 }
8203 
8204 static void btrfs_end_dio_bio(struct bio *bio)
8205 {
8206 	struct btrfs_dio_private *dip = bio->bi_private;
8207 	int err = bio->bi_error;
8208 
8209 	if (err)
8210 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8211 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8212 			   btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf,
8213 			   (unsigned long long)bio->bi_iter.bi_sector,
8214 			   bio->bi_iter.bi_size, err);
8215 
8216 	if (dip->subio_endio)
8217 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8218 
8219 	if (err) {
8220 		dip->errors = 1;
8221 
8222 		/*
8223 		 * before atomic variable goto zero, we must make sure
8224 		 * dip->errors is perceived to be set.
8225 		 */
8226 		smp_mb__before_atomic();
8227 	}
8228 
8229 	/* if there are more bios still pending for this dio, just exit */
8230 	if (!atomic_dec_and_test(&dip->pending_bios))
8231 		goto out;
8232 
8233 	if (dip->errors) {
8234 		bio_io_error(dip->orig_bio);
8235 	} else {
8236 		dip->dio_bio->bi_error = 0;
8237 		bio_endio(dip->orig_bio);
8238 	}
8239 out:
8240 	bio_put(bio);
8241 }
8242 
8243 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8244 				       u64 first_sector, gfp_t gfp_flags)
8245 {
8246 	struct bio *bio;
8247 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8248 	if (bio)
8249 		bio_associate_current(bio);
8250 	return bio;
8251 }
8252 
8253 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8254 						 struct inode *inode,
8255 						 struct btrfs_dio_private *dip,
8256 						 struct bio *bio,
8257 						 u64 file_offset)
8258 {
8259 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8260 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8261 	int ret;
8262 
8263 	/*
8264 	 * We load all the csum data we need when we submit
8265 	 * the first bio to reduce the csum tree search and
8266 	 * contention.
8267 	 */
8268 	if (dip->logical_offset == file_offset) {
8269 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8270 						file_offset);
8271 		if (ret)
8272 			return ret;
8273 	}
8274 
8275 	if (bio == dip->orig_bio)
8276 		return 0;
8277 
8278 	file_offset -= dip->logical_offset;
8279 	file_offset >>= inode->i_sb->s_blocksize_bits;
8280 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8281 
8282 	return 0;
8283 }
8284 
8285 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8286 					 u64 file_offset, int skip_sum,
8287 					 int async_submit)
8288 {
8289 	struct btrfs_dio_private *dip = bio->bi_private;
8290 	bool write = bio_op(bio) == REQ_OP_WRITE;
8291 	struct btrfs_root *root = BTRFS_I(inode)->root;
8292 	int ret;
8293 
8294 	if (async_submit)
8295 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8296 
8297 	bio_get(bio);
8298 
8299 	if (!write) {
8300 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8301 				BTRFS_WQ_ENDIO_DATA);
8302 		if (ret)
8303 			goto err;
8304 	}
8305 
8306 	if (skip_sum)
8307 		goto map;
8308 
8309 	if (write && async_submit) {
8310 		ret = btrfs_wq_submit_bio(root->fs_info,
8311 				   inode, bio, 0, 0, file_offset,
8312 				   __btrfs_submit_bio_start_direct_io,
8313 				   __btrfs_submit_bio_done);
8314 		goto err;
8315 	} else if (write) {
8316 		/*
8317 		 * If we aren't doing async submit, calculate the csum of the
8318 		 * bio now.
8319 		 */
8320 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8321 		if (ret)
8322 			goto err;
8323 	} else {
8324 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8325 						     file_offset);
8326 		if (ret)
8327 			goto err;
8328 	}
8329 map:
8330 	ret = btrfs_map_bio(root, bio, 0, async_submit);
8331 err:
8332 	bio_put(bio);
8333 	return ret;
8334 }
8335 
8336 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8337 				    int skip_sum)
8338 {
8339 	struct inode *inode = dip->inode;
8340 	struct btrfs_root *root = BTRFS_I(inode)->root;
8341 	struct bio *bio;
8342 	struct bio *orig_bio = dip->orig_bio;
8343 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8344 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8345 	u64 file_offset = dip->logical_offset;
8346 	u64 submit_len = 0;
8347 	u64 map_length;
8348 	u32 blocksize = root->sectorsize;
8349 	int async_submit = 0;
8350 	int nr_sectors;
8351 	int ret;
8352 	int i;
8353 
8354 	map_length = orig_bio->bi_iter.bi_size;
8355 	ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8356 			      start_sector << 9, &map_length, NULL, 0);
8357 	if (ret)
8358 		return -EIO;
8359 
8360 	if (map_length >= orig_bio->bi_iter.bi_size) {
8361 		bio = orig_bio;
8362 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8363 		goto submit;
8364 	}
8365 
8366 	/* async crcs make it difficult to collect full stripe writes. */
8367 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8368 		async_submit = 0;
8369 	else
8370 		async_submit = 1;
8371 
8372 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8373 	if (!bio)
8374 		return -ENOMEM;
8375 
8376 	bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf);
8377 	bio->bi_private = dip;
8378 	bio->bi_end_io = btrfs_end_dio_bio;
8379 	btrfs_io_bio(bio)->logical = file_offset;
8380 	atomic_inc(&dip->pending_bios);
8381 
8382 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8383 		nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8384 		i = 0;
8385 next_block:
8386 		if (unlikely(map_length < submit_len + blocksize ||
8387 		    bio_add_page(bio, bvec->bv_page, blocksize,
8388 			    bvec->bv_offset + (i * blocksize)) < blocksize)) {
8389 			/*
8390 			 * inc the count before we submit the bio so
8391 			 * we know the end IO handler won't happen before
8392 			 * we inc the count. Otherwise, the dip might get freed
8393 			 * before we're done setting it up
8394 			 */
8395 			atomic_inc(&dip->pending_bios);
8396 			ret = __btrfs_submit_dio_bio(bio, inode,
8397 						     file_offset, skip_sum,
8398 						     async_submit);
8399 			if (ret) {
8400 				bio_put(bio);
8401 				atomic_dec(&dip->pending_bios);
8402 				goto out_err;
8403 			}
8404 
8405 			start_sector += submit_len >> 9;
8406 			file_offset += submit_len;
8407 
8408 			submit_len = 0;
8409 
8410 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8411 						  start_sector, GFP_NOFS);
8412 			if (!bio)
8413 				goto out_err;
8414 			bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf);
8415 			bio->bi_private = dip;
8416 			bio->bi_end_io = btrfs_end_dio_bio;
8417 			btrfs_io_bio(bio)->logical = file_offset;
8418 
8419 			map_length = orig_bio->bi_iter.bi_size;
8420 			ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8421 					      start_sector << 9,
8422 					      &map_length, NULL, 0);
8423 			if (ret) {
8424 				bio_put(bio);
8425 				goto out_err;
8426 			}
8427 
8428 			goto next_block;
8429 		} else {
8430 			submit_len += blocksize;
8431 			if (--nr_sectors) {
8432 				i++;
8433 				goto next_block;
8434 			}
8435 			bvec++;
8436 		}
8437 	}
8438 
8439 submit:
8440 	ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8441 				     async_submit);
8442 	if (!ret)
8443 		return 0;
8444 
8445 	bio_put(bio);
8446 out_err:
8447 	dip->errors = 1;
8448 	/*
8449 	 * before atomic variable goto zero, we must
8450 	 * make sure dip->errors is perceived to be set.
8451 	 */
8452 	smp_mb__before_atomic();
8453 	if (atomic_dec_and_test(&dip->pending_bios))
8454 		bio_io_error(dip->orig_bio);
8455 
8456 	/* bio_end_io() will handle error, so we needn't return it */
8457 	return 0;
8458 }
8459 
8460 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8461 				loff_t file_offset)
8462 {
8463 	struct btrfs_dio_private *dip = NULL;
8464 	struct bio *io_bio = NULL;
8465 	struct btrfs_io_bio *btrfs_bio;
8466 	int skip_sum;
8467 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8468 	int ret = 0;
8469 
8470 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8471 
8472 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8473 	if (!io_bio) {
8474 		ret = -ENOMEM;
8475 		goto free_ordered;
8476 	}
8477 
8478 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8479 	if (!dip) {
8480 		ret = -ENOMEM;
8481 		goto free_ordered;
8482 	}
8483 
8484 	dip->private = dio_bio->bi_private;
8485 	dip->inode = inode;
8486 	dip->logical_offset = file_offset;
8487 	dip->bytes = dio_bio->bi_iter.bi_size;
8488 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8489 	io_bio->bi_private = dip;
8490 	dip->orig_bio = io_bio;
8491 	dip->dio_bio = dio_bio;
8492 	atomic_set(&dip->pending_bios, 0);
8493 	btrfs_bio = btrfs_io_bio(io_bio);
8494 	btrfs_bio->logical = file_offset;
8495 
8496 	if (write) {
8497 		io_bio->bi_end_io = btrfs_endio_direct_write;
8498 	} else {
8499 		io_bio->bi_end_io = btrfs_endio_direct_read;
8500 		dip->subio_endio = btrfs_subio_endio_read;
8501 	}
8502 
8503 	/*
8504 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8505 	 * even if we fail to submit a bio, because in such case we do the
8506 	 * corresponding error handling below and it must not be done a second
8507 	 * time by btrfs_direct_IO().
8508 	 */
8509 	if (write) {
8510 		struct btrfs_dio_data *dio_data = current->journal_info;
8511 
8512 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8513 			dip->bytes;
8514 		dio_data->unsubmitted_oe_range_start =
8515 			dio_data->unsubmitted_oe_range_end;
8516 	}
8517 
8518 	ret = btrfs_submit_direct_hook(dip, skip_sum);
8519 	if (!ret)
8520 		return;
8521 
8522 	if (btrfs_bio->end_io)
8523 		btrfs_bio->end_io(btrfs_bio, ret);
8524 
8525 free_ordered:
8526 	/*
8527 	 * If we arrived here it means either we failed to submit the dip
8528 	 * or we either failed to clone the dio_bio or failed to allocate the
8529 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8530 	 * call bio_endio against our io_bio so that we get proper resource
8531 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8532 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8533 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8534 	 */
8535 	if (io_bio && dip) {
8536 		io_bio->bi_error = -EIO;
8537 		bio_endio(io_bio);
8538 		/*
8539 		 * The end io callbacks free our dip, do the final put on io_bio
8540 		 * and all the cleanup and final put for dio_bio (through
8541 		 * dio_end_io()).
8542 		 */
8543 		dip = NULL;
8544 		io_bio = NULL;
8545 	} else {
8546 		if (write)
8547 			btrfs_endio_direct_write_update_ordered(inode,
8548 						file_offset,
8549 						dio_bio->bi_iter.bi_size,
8550 						0);
8551 		else
8552 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8553 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8554 
8555 		dio_bio->bi_error = -EIO;
8556 		/*
8557 		 * Releases and cleans up our dio_bio, no need to bio_put()
8558 		 * nor bio_endio()/bio_io_error() against dio_bio.
8559 		 */
8560 		dio_end_io(dio_bio, ret);
8561 	}
8562 	if (io_bio)
8563 		bio_put(io_bio);
8564 	kfree(dip);
8565 }
8566 
8567 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8568 			const struct iov_iter *iter, loff_t offset)
8569 {
8570 	int seg;
8571 	int i;
8572 	unsigned blocksize_mask = root->sectorsize - 1;
8573 	ssize_t retval = -EINVAL;
8574 
8575 	if (offset & blocksize_mask)
8576 		goto out;
8577 
8578 	if (iov_iter_alignment(iter) & blocksize_mask)
8579 		goto out;
8580 
8581 	/* If this is a write we don't need to check anymore */
8582 	if (iov_iter_rw(iter) == WRITE)
8583 		return 0;
8584 	/*
8585 	 * Check to make sure we don't have duplicate iov_base's in this
8586 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8587 	 * when reading back.
8588 	 */
8589 	for (seg = 0; seg < iter->nr_segs; seg++) {
8590 		for (i = seg + 1; i < iter->nr_segs; i++) {
8591 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8592 				goto out;
8593 		}
8594 	}
8595 	retval = 0;
8596 out:
8597 	return retval;
8598 }
8599 
8600 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8601 {
8602 	struct file *file = iocb->ki_filp;
8603 	struct inode *inode = file->f_mapping->host;
8604 	struct btrfs_root *root = BTRFS_I(inode)->root;
8605 	struct btrfs_dio_data dio_data = { 0 };
8606 	loff_t offset = iocb->ki_pos;
8607 	size_t count = 0;
8608 	int flags = 0;
8609 	bool wakeup = true;
8610 	bool relock = false;
8611 	ssize_t ret;
8612 
8613 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8614 		return 0;
8615 
8616 	inode_dio_begin(inode);
8617 	smp_mb__after_atomic();
8618 
8619 	/*
8620 	 * The generic stuff only does filemap_write_and_wait_range, which
8621 	 * isn't enough if we've written compressed pages to this area, so
8622 	 * we need to flush the dirty pages again to make absolutely sure
8623 	 * that any outstanding dirty pages are on disk.
8624 	 */
8625 	count = iov_iter_count(iter);
8626 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8627 		     &BTRFS_I(inode)->runtime_flags))
8628 		filemap_fdatawrite_range(inode->i_mapping, offset,
8629 					 offset + count - 1);
8630 
8631 	if (iov_iter_rw(iter) == WRITE) {
8632 		/*
8633 		 * If the write DIO is beyond the EOF, we need update
8634 		 * the isize, but it is protected by i_mutex. So we can
8635 		 * not unlock the i_mutex at this case.
8636 		 */
8637 		if (offset + count <= inode->i_size) {
8638 			inode_unlock(inode);
8639 			relock = true;
8640 		}
8641 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8642 		if (ret)
8643 			goto out;
8644 		dio_data.outstanding_extents = div64_u64(count +
8645 						BTRFS_MAX_EXTENT_SIZE - 1,
8646 						BTRFS_MAX_EXTENT_SIZE);
8647 
8648 		/*
8649 		 * We need to know how many extents we reserved so that we can
8650 		 * do the accounting properly if we go over the number we
8651 		 * originally calculated.  Abuse current->journal_info for this.
8652 		 */
8653 		dio_data.reserve = round_up(count, root->sectorsize);
8654 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8655 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8656 		current->journal_info = &dio_data;
8657 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8658 				     &BTRFS_I(inode)->runtime_flags)) {
8659 		inode_dio_end(inode);
8660 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8661 		wakeup = false;
8662 	}
8663 
8664 	ret = __blockdev_direct_IO(iocb, inode,
8665 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8666 				   iter, btrfs_get_blocks_direct, NULL,
8667 				   btrfs_submit_direct, flags);
8668 	if (iov_iter_rw(iter) == WRITE) {
8669 		current->journal_info = NULL;
8670 		if (ret < 0 && ret != -EIOCBQUEUED) {
8671 			if (dio_data.reserve)
8672 				btrfs_delalloc_release_space(inode, offset,
8673 							     dio_data.reserve);
8674 			/*
8675 			 * On error we might have left some ordered extents
8676 			 * without submitting corresponding bios for them, so
8677 			 * cleanup them up to avoid other tasks getting them
8678 			 * and waiting for them to complete forever.
8679 			 */
8680 			if (dio_data.unsubmitted_oe_range_start <
8681 			    dio_data.unsubmitted_oe_range_end)
8682 				btrfs_endio_direct_write_update_ordered(inode,
8683 					dio_data.unsubmitted_oe_range_start,
8684 					dio_data.unsubmitted_oe_range_end -
8685 					dio_data.unsubmitted_oe_range_start,
8686 					0);
8687 		} else if (ret >= 0 && (size_t)ret < count)
8688 			btrfs_delalloc_release_space(inode, offset,
8689 						     count - (size_t)ret);
8690 	}
8691 out:
8692 	if (wakeup)
8693 		inode_dio_end(inode);
8694 	if (relock)
8695 		inode_lock(inode);
8696 
8697 	return ret;
8698 }
8699 
8700 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8701 
8702 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8703 		__u64 start, __u64 len)
8704 {
8705 	int	ret;
8706 
8707 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8708 	if (ret)
8709 		return ret;
8710 
8711 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8712 }
8713 
8714 int btrfs_readpage(struct file *file, struct page *page)
8715 {
8716 	struct extent_io_tree *tree;
8717 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8718 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8719 }
8720 
8721 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8722 {
8723 	struct extent_io_tree *tree;
8724 	struct inode *inode = page->mapping->host;
8725 	int ret;
8726 
8727 	if (current->flags & PF_MEMALLOC) {
8728 		redirty_page_for_writepage(wbc, page);
8729 		unlock_page(page);
8730 		return 0;
8731 	}
8732 
8733 	/*
8734 	 * If we are under memory pressure we will call this directly from the
8735 	 * VM, we need to make sure we have the inode referenced for the ordered
8736 	 * extent.  If not just return like we didn't do anything.
8737 	 */
8738 	if (!igrab(inode)) {
8739 		redirty_page_for_writepage(wbc, page);
8740 		return AOP_WRITEPAGE_ACTIVATE;
8741 	}
8742 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8743 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8744 	btrfs_add_delayed_iput(inode);
8745 	return ret;
8746 }
8747 
8748 static int btrfs_writepages(struct address_space *mapping,
8749 			    struct writeback_control *wbc)
8750 {
8751 	struct extent_io_tree *tree;
8752 
8753 	tree = &BTRFS_I(mapping->host)->io_tree;
8754 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8755 }
8756 
8757 static int
8758 btrfs_readpages(struct file *file, struct address_space *mapping,
8759 		struct list_head *pages, unsigned nr_pages)
8760 {
8761 	struct extent_io_tree *tree;
8762 	tree = &BTRFS_I(mapping->host)->io_tree;
8763 	return extent_readpages(tree, mapping, pages, nr_pages,
8764 				btrfs_get_extent);
8765 }
8766 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8767 {
8768 	struct extent_io_tree *tree;
8769 	struct extent_map_tree *map;
8770 	int ret;
8771 
8772 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8773 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8774 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8775 	if (ret == 1) {
8776 		ClearPagePrivate(page);
8777 		set_page_private(page, 0);
8778 		put_page(page);
8779 	}
8780 	return ret;
8781 }
8782 
8783 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8784 {
8785 	if (PageWriteback(page) || PageDirty(page))
8786 		return 0;
8787 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8788 }
8789 
8790 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8791 				 unsigned int length)
8792 {
8793 	struct inode *inode = page->mapping->host;
8794 	struct extent_io_tree *tree;
8795 	struct btrfs_ordered_extent *ordered;
8796 	struct extent_state *cached_state = NULL;
8797 	u64 page_start = page_offset(page);
8798 	u64 page_end = page_start + PAGE_SIZE - 1;
8799 	u64 start;
8800 	u64 end;
8801 	int inode_evicting = inode->i_state & I_FREEING;
8802 
8803 	/*
8804 	 * we have the page locked, so new writeback can't start,
8805 	 * and the dirty bit won't be cleared while we are here.
8806 	 *
8807 	 * Wait for IO on this page so that we can safely clear
8808 	 * the PagePrivate2 bit and do ordered accounting
8809 	 */
8810 	wait_on_page_writeback(page);
8811 
8812 	tree = &BTRFS_I(inode)->io_tree;
8813 	if (offset) {
8814 		btrfs_releasepage(page, GFP_NOFS);
8815 		return;
8816 	}
8817 
8818 	if (!inode_evicting)
8819 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8820 again:
8821 	start = page_start;
8822 	ordered = btrfs_lookup_ordered_range(inode, start,
8823 					page_end - start + 1);
8824 	if (ordered) {
8825 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8826 		/*
8827 		 * IO on this page will never be started, so we need
8828 		 * to account for any ordered extents now
8829 		 */
8830 		if (!inode_evicting)
8831 			clear_extent_bit(tree, start, end,
8832 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8833 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8834 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8835 					 GFP_NOFS);
8836 		/*
8837 		 * whoever cleared the private bit is responsible
8838 		 * for the finish_ordered_io
8839 		 */
8840 		if (TestClearPagePrivate2(page)) {
8841 			struct btrfs_ordered_inode_tree *tree;
8842 			u64 new_len;
8843 
8844 			tree = &BTRFS_I(inode)->ordered_tree;
8845 
8846 			spin_lock_irq(&tree->lock);
8847 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8848 			new_len = start - ordered->file_offset;
8849 			if (new_len < ordered->truncated_len)
8850 				ordered->truncated_len = new_len;
8851 			spin_unlock_irq(&tree->lock);
8852 
8853 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8854 							   start,
8855 							   end - start + 1, 1))
8856 				btrfs_finish_ordered_io(ordered);
8857 		}
8858 		btrfs_put_ordered_extent(ordered);
8859 		if (!inode_evicting) {
8860 			cached_state = NULL;
8861 			lock_extent_bits(tree, start, end,
8862 					 &cached_state);
8863 		}
8864 
8865 		start = end + 1;
8866 		if (start < page_end)
8867 			goto again;
8868 	}
8869 
8870 	/*
8871 	 * Qgroup reserved space handler
8872 	 * Page here will be either
8873 	 * 1) Already written to disk
8874 	 *    In this case, its reserved space is released from data rsv map
8875 	 *    and will be freed by delayed_ref handler finally.
8876 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8877 	 *    space.
8878 	 * 2) Not written to disk
8879 	 *    This means the reserved space should be freed here.
8880 	 */
8881 	btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8882 	if (!inode_evicting) {
8883 		clear_extent_bit(tree, page_start, page_end,
8884 				 EXTENT_LOCKED | EXTENT_DIRTY |
8885 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8886 				 EXTENT_DEFRAG, 1, 1,
8887 				 &cached_state, GFP_NOFS);
8888 
8889 		__btrfs_releasepage(page, GFP_NOFS);
8890 	}
8891 
8892 	ClearPageChecked(page);
8893 	if (PagePrivate(page)) {
8894 		ClearPagePrivate(page);
8895 		set_page_private(page, 0);
8896 		put_page(page);
8897 	}
8898 }
8899 
8900 /*
8901  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8902  * called from a page fault handler when a page is first dirtied. Hence we must
8903  * be careful to check for EOF conditions here. We set the page up correctly
8904  * for a written page which means we get ENOSPC checking when writing into
8905  * holes and correct delalloc and unwritten extent mapping on filesystems that
8906  * support these features.
8907  *
8908  * We are not allowed to take the i_mutex here so we have to play games to
8909  * protect against truncate races as the page could now be beyond EOF.  Because
8910  * vmtruncate() writes the inode size before removing pages, once we have the
8911  * page lock we can determine safely if the page is beyond EOF. If it is not
8912  * beyond EOF, then the page is guaranteed safe against truncation until we
8913  * unlock the page.
8914  */
8915 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8916 {
8917 	struct page *page = vmf->page;
8918 	struct inode *inode = file_inode(vma->vm_file);
8919 	struct btrfs_root *root = BTRFS_I(inode)->root;
8920 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8921 	struct btrfs_ordered_extent *ordered;
8922 	struct extent_state *cached_state = NULL;
8923 	char *kaddr;
8924 	unsigned long zero_start;
8925 	loff_t size;
8926 	int ret;
8927 	int reserved = 0;
8928 	u64 reserved_space;
8929 	u64 page_start;
8930 	u64 page_end;
8931 	u64 end;
8932 
8933 	reserved_space = PAGE_SIZE;
8934 
8935 	sb_start_pagefault(inode->i_sb);
8936 	page_start = page_offset(page);
8937 	page_end = page_start + PAGE_SIZE - 1;
8938 	end = page_end;
8939 
8940 	/*
8941 	 * Reserving delalloc space after obtaining the page lock can lead to
8942 	 * deadlock. For example, if a dirty page is locked by this function
8943 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8944 	 * dirty page write out, then the btrfs_writepage() function could
8945 	 * end up waiting indefinitely to get a lock on the page currently
8946 	 * being processed by btrfs_page_mkwrite() function.
8947 	 */
8948 	ret = btrfs_delalloc_reserve_space(inode, page_start,
8949 					   reserved_space);
8950 	if (!ret) {
8951 		ret = file_update_time(vma->vm_file);
8952 		reserved = 1;
8953 	}
8954 	if (ret) {
8955 		if (ret == -ENOMEM)
8956 			ret = VM_FAULT_OOM;
8957 		else /* -ENOSPC, -EIO, etc */
8958 			ret = VM_FAULT_SIGBUS;
8959 		if (reserved)
8960 			goto out;
8961 		goto out_noreserve;
8962 	}
8963 
8964 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8965 again:
8966 	lock_page(page);
8967 	size = i_size_read(inode);
8968 
8969 	if ((page->mapping != inode->i_mapping) ||
8970 	    (page_start >= size)) {
8971 		/* page got truncated out from underneath us */
8972 		goto out_unlock;
8973 	}
8974 	wait_on_page_writeback(page);
8975 
8976 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8977 	set_page_extent_mapped(page);
8978 
8979 	/*
8980 	 * we can't set the delalloc bits if there are pending ordered
8981 	 * extents.  Drop our locks and wait for them to finish
8982 	 */
8983 	ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
8984 	if (ordered) {
8985 		unlock_extent_cached(io_tree, page_start, page_end,
8986 				     &cached_state, GFP_NOFS);
8987 		unlock_page(page);
8988 		btrfs_start_ordered_extent(inode, ordered, 1);
8989 		btrfs_put_ordered_extent(ordered);
8990 		goto again;
8991 	}
8992 
8993 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8994 		reserved_space = round_up(size - page_start, root->sectorsize);
8995 		if (reserved_space < PAGE_SIZE) {
8996 			end = page_start + reserved_space - 1;
8997 			spin_lock(&BTRFS_I(inode)->lock);
8998 			BTRFS_I(inode)->outstanding_extents++;
8999 			spin_unlock(&BTRFS_I(inode)->lock);
9000 			btrfs_delalloc_release_space(inode, page_start,
9001 						PAGE_SIZE - reserved_space);
9002 		}
9003 	}
9004 
9005 	/*
9006 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
9007 	 * if it was already dirty, so for space accounting reasons we need to
9008 	 * clear any delalloc bits for the range we are fixing to save.  There
9009 	 * is probably a better way to do this, but for now keep consistent with
9010 	 * prepare_pages in the normal write path.
9011 	 */
9012 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9013 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9014 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9015 			  0, 0, &cached_state, GFP_NOFS);
9016 
9017 	ret = btrfs_set_extent_delalloc(inode, page_start, end,
9018 					&cached_state);
9019 	if (ret) {
9020 		unlock_extent_cached(io_tree, page_start, page_end,
9021 				     &cached_state, GFP_NOFS);
9022 		ret = VM_FAULT_SIGBUS;
9023 		goto out_unlock;
9024 	}
9025 	ret = 0;
9026 
9027 	/* page is wholly or partially inside EOF */
9028 	if (page_start + PAGE_SIZE > size)
9029 		zero_start = size & ~PAGE_MASK;
9030 	else
9031 		zero_start = PAGE_SIZE;
9032 
9033 	if (zero_start != PAGE_SIZE) {
9034 		kaddr = kmap(page);
9035 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9036 		flush_dcache_page(page);
9037 		kunmap(page);
9038 	}
9039 	ClearPageChecked(page);
9040 	set_page_dirty(page);
9041 	SetPageUptodate(page);
9042 
9043 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
9044 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9045 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9046 
9047 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9048 
9049 out_unlock:
9050 	if (!ret) {
9051 		sb_end_pagefault(inode->i_sb);
9052 		return VM_FAULT_LOCKED;
9053 	}
9054 	unlock_page(page);
9055 out:
9056 	btrfs_delalloc_release_space(inode, page_start, reserved_space);
9057 out_noreserve:
9058 	sb_end_pagefault(inode->i_sb);
9059 	return ret;
9060 }
9061 
9062 static int btrfs_truncate(struct inode *inode)
9063 {
9064 	struct btrfs_root *root = BTRFS_I(inode)->root;
9065 	struct btrfs_block_rsv *rsv;
9066 	int ret = 0;
9067 	int err = 0;
9068 	struct btrfs_trans_handle *trans;
9069 	u64 mask = root->sectorsize - 1;
9070 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9071 
9072 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9073 				       (u64)-1);
9074 	if (ret)
9075 		return ret;
9076 
9077 	/*
9078 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9079 	 * 3 things going on here
9080 	 *
9081 	 * 1) We need to reserve space for our orphan item and the space to
9082 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9083 	 * orphan item because we didn't reserve space to remove it.
9084 	 *
9085 	 * 2) We need to reserve space to update our inode.
9086 	 *
9087 	 * 3) We need to have something to cache all the space that is going to
9088 	 * be free'd up by the truncate operation, but also have some slack
9089 	 * space reserved in case it uses space during the truncate (thank you
9090 	 * very much snapshotting).
9091 	 *
9092 	 * And we need these to all be separate.  The fact is we can use a lot of
9093 	 * space doing the truncate, and we have no earthly idea how much space
9094 	 * we will use, so we need the truncate reservation to be separate so it
9095 	 * doesn't end up using space reserved for updating the inode or
9096 	 * removing the orphan item.  We also need to be able to stop the
9097 	 * transaction and start a new one, which means we need to be able to
9098 	 * update the inode several times, and we have no idea of knowing how
9099 	 * many times that will be, so we can't just reserve 1 item for the
9100 	 * entirety of the operation, so that has to be done separately as well.
9101 	 * Then there is the orphan item, which does indeed need to be held on
9102 	 * to for the whole operation, and we need nobody to touch this reserved
9103 	 * space except the orphan code.
9104 	 *
9105 	 * So that leaves us with
9106 	 *
9107 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9108 	 * 2) rsv - for the truncate reservation, which we will steal from the
9109 	 * transaction reservation.
9110 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9111 	 * updating the inode.
9112 	 */
9113 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9114 	if (!rsv)
9115 		return -ENOMEM;
9116 	rsv->size = min_size;
9117 	rsv->failfast = 1;
9118 
9119 	/*
9120 	 * 1 for the truncate slack space
9121 	 * 1 for updating the inode.
9122 	 */
9123 	trans = btrfs_start_transaction(root, 2);
9124 	if (IS_ERR(trans)) {
9125 		err = PTR_ERR(trans);
9126 		goto out;
9127 	}
9128 
9129 	/* Migrate the slack space for the truncate to our reserve */
9130 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9131 				      min_size, 0);
9132 	BUG_ON(ret);
9133 
9134 	/*
9135 	 * So if we truncate and then write and fsync we normally would just
9136 	 * write the extents that changed, which is a problem if we need to
9137 	 * first truncate that entire inode.  So set this flag so we write out
9138 	 * all of the extents in the inode to the sync log so we're completely
9139 	 * safe.
9140 	 */
9141 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9142 	trans->block_rsv = rsv;
9143 
9144 	while (1) {
9145 		ret = btrfs_truncate_inode_items(trans, root, inode,
9146 						 inode->i_size,
9147 						 BTRFS_EXTENT_DATA_KEY);
9148 		if (ret != -ENOSPC && ret != -EAGAIN) {
9149 			err = ret;
9150 			break;
9151 		}
9152 
9153 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9154 		ret = btrfs_update_inode(trans, root, inode);
9155 		if (ret) {
9156 			err = ret;
9157 			break;
9158 		}
9159 
9160 		btrfs_end_transaction(trans, root);
9161 		btrfs_btree_balance_dirty(root);
9162 
9163 		trans = btrfs_start_transaction(root, 2);
9164 		if (IS_ERR(trans)) {
9165 			ret = err = PTR_ERR(trans);
9166 			trans = NULL;
9167 			break;
9168 		}
9169 
9170 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9171 					      rsv, min_size, 0);
9172 		BUG_ON(ret);	/* shouldn't happen */
9173 		trans->block_rsv = rsv;
9174 	}
9175 
9176 	if (ret == 0 && inode->i_nlink > 0) {
9177 		trans->block_rsv = root->orphan_block_rsv;
9178 		ret = btrfs_orphan_del(trans, inode);
9179 		if (ret)
9180 			err = ret;
9181 	}
9182 
9183 	if (trans) {
9184 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9185 		ret = btrfs_update_inode(trans, root, inode);
9186 		if (ret && !err)
9187 			err = ret;
9188 
9189 		ret = btrfs_end_transaction(trans, root);
9190 		btrfs_btree_balance_dirty(root);
9191 	}
9192 out:
9193 	btrfs_free_block_rsv(root, rsv);
9194 
9195 	if (ret && !err)
9196 		err = ret;
9197 
9198 	return err;
9199 }
9200 
9201 /*
9202  * create a new subvolume directory/inode (helper for the ioctl).
9203  */
9204 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9205 			     struct btrfs_root *new_root,
9206 			     struct btrfs_root *parent_root,
9207 			     u64 new_dirid)
9208 {
9209 	struct inode *inode;
9210 	int err;
9211 	u64 index = 0;
9212 
9213 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9214 				new_dirid, new_dirid,
9215 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9216 				&index);
9217 	if (IS_ERR(inode))
9218 		return PTR_ERR(inode);
9219 	inode->i_op = &btrfs_dir_inode_operations;
9220 	inode->i_fop = &btrfs_dir_file_operations;
9221 
9222 	set_nlink(inode, 1);
9223 	btrfs_i_size_write(inode, 0);
9224 	unlock_new_inode(inode);
9225 
9226 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9227 	if (err)
9228 		btrfs_err(new_root->fs_info,
9229 			  "error inheriting subvolume %llu properties: %d",
9230 			  new_root->root_key.objectid, err);
9231 
9232 	err = btrfs_update_inode(trans, new_root, inode);
9233 
9234 	iput(inode);
9235 	return err;
9236 }
9237 
9238 struct inode *btrfs_alloc_inode(struct super_block *sb)
9239 {
9240 	struct btrfs_inode *ei;
9241 	struct inode *inode;
9242 
9243 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9244 	if (!ei)
9245 		return NULL;
9246 
9247 	ei->root = NULL;
9248 	ei->generation = 0;
9249 	ei->last_trans = 0;
9250 	ei->last_sub_trans = 0;
9251 	ei->logged_trans = 0;
9252 	ei->delalloc_bytes = 0;
9253 	ei->defrag_bytes = 0;
9254 	ei->disk_i_size = 0;
9255 	ei->flags = 0;
9256 	ei->csum_bytes = 0;
9257 	ei->index_cnt = (u64)-1;
9258 	ei->dir_index = 0;
9259 	ei->last_unlink_trans = 0;
9260 	ei->last_log_commit = 0;
9261 	ei->delayed_iput_count = 0;
9262 
9263 	spin_lock_init(&ei->lock);
9264 	ei->outstanding_extents = 0;
9265 	ei->reserved_extents = 0;
9266 
9267 	ei->runtime_flags = 0;
9268 	ei->force_compress = BTRFS_COMPRESS_NONE;
9269 
9270 	ei->delayed_node = NULL;
9271 
9272 	ei->i_otime.tv_sec = 0;
9273 	ei->i_otime.tv_nsec = 0;
9274 
9275 	inode = &ei->vfs_inode;
9276 	extent_map_tree_init(&ei->extent_tree);
9277 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9278 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9279 	ei->io_tree.track_uptodate = 1;
9280 	ei->io_failure_tree.track_uptodate = 1;
9281 	atomic_set(&ei->sync_writers, 0);
9282 	mutex_init(&ei->log_mutex);
9283 	mutex_init(&ei->delalloc_mutex);
9284 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9285 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9286 	INIT_LIST_HEAD(&ei->delayed_iput);
9287 	RB_CLEAR_NODE(&ei->rb_node);
9288 	init_rwsem(&ei->dio_sem);
9289 
9290 	return inode;
9291 }
9292 
9293 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9294 void btrfs_test_destroy_inode(struct inode *inode)
9295 {
9296 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9297 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9298 }
9299 #endif
9300 
9301 static void btrfs_i_callback(struct rcu_head *head)
9302 {
9303 	struct inode *inode = container_of(head, struct inode, i_rcu);
9304 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9305 }
9306 
9307 void btrfs_destroy_inode(struct inode *inode)
9308 {
9309 	struct btrfs_ordered_extent *ordered;
9310 	struct btrfs_root *root = BTRFS_I(inode)->root;
9311 
9312 	WARN_ON(!hlist_empty(&inode->i_dentry));
9313 	WARN_ON(inode->i_data.nrpages);
9314 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9315 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9316 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9317 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9318 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9319 
9320 	/*
9321 	 * This can happen where we create an inode, but somebody else also
9322 	 * created the same inode and we need to destroy the one we already
9323 	 * created.
9324 	 */
9325 	if (!root)
9326 		goto free;
9327 
9328 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9329 		     &BTRFS_I(inode)->runtime_flags)) {
9330 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9331 			btrfs_ino(inode));
9332 		atomic_dec(&root->orphan_inodes);
9333 	}
9334 
9335 	while (1) {
9336 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9337 		if (!ordered)
9338 			break;
9339 		else {
9340 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9341 				ordered->file_offset, ordered->len);
9342 			btrfs_remove_ordered_extent(inode, ordered);
9343 			btrfs_put_ordered_extent(ordered);
9344 			btrfs_put_ordered_extent(ordered);
9345 		}
9346 	}
9347 	btrfs_qgroup_check_reserved_leak(inode);
9348 	inode_tree_del(inode);
9349 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9350 free:
9351 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9352 }
9353 
9354 int btrfs_drop_inode(struct inode *inode)
9355 {
9356 	struct btrfs_root *root = BTRFS_I(inode)->root;
9357 
9358 	if (root == NULL)
9359 		return 1;
9360 
9361 	/* the snap/subvol tree is on deleting */
9362 	if (btrfs_root_refs(&root->root_item) == 0)
9363 		return 1;
9364 	else
9365 		return generic_drop_inode(inode);
9366 }
9367 
9368 static void init_once(void *foo)
9369 {
9370 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9371 
9372 	inode_init_once(&ei->vfs_inode);
9373 }
9374 
9375 void btrfs_destroy_cachep(void)
9376 {
9377 	/*
9378 	 * Make sure all delayed rcu free inodes are flushed before we
9379 	 * destroy cache.
9380 	 */
9381 	rcu_barrier();
9382 	kmem_cache_destroy(btrfs_inode_cachep);
9383 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9384 	kmem_cache_destroy(btrfs_transaction_cachep);
9385 	kmem_cache_destroy(btrfs_path_cachep);
9386 	kmem_cache_destroy(btrfs_free_space_cachep);
9387 }
9388 
9389 int btrfs_init_cachep(void)
9390 {
9391 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9392 			sizeof(struct btrfs_inode), 0,
9393 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9394 			init_once);
9395 	if (!btrfs_inode_cachep)
9396 		goto fail;
9397 
9398 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9399 			sizeof(struct btrfs_trans_handle), 0,
9400 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9401 	if (!btrfs_trans_handle_cachep)
9402 		goto fail;
9403 
9404 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9405 			sizeof(struct btrfs_transaction), 0,
9406 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9407 	if (!btrfs_transaction_cachep)
9408 		goto fail;
9409 
9410 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9411 			sizeof(struct btrfs_path), 0,
9412 			SLAB_MEM_SPREAD, NULL);
9413 	if (!btrfs_path_cachep)
9414 		goto fail;
9415 
9416 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9417 			sizeof(struct btrfs_free_space), 0,
9418 			SLAB_MEM_SPREAD, NULL);
9419 	if (!btrfs_free_space_cachep)
9420 		goto fail;
9421 
9422 	return 0;
9423 fail:
9424 	btrfs_destroy_cachep();
9425 	return -ENOMEM;
9426 }
9427 
9428 static int btrfs_getattr(struct vfsmount *mnt,
9429 			 struct dentry *dentry, struct kstat *stat)
9430 {
9431 	u64 delalloc_bytes;
9432 	struct inode *inode = d_inode(dentry);
9433 	u32 blocksize = inode->i_sb->s_blocksize;
9434 
9435 	generic_fillattr(inode, stat);
9436 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9437 
9438 	spin_lock(&BTRFS_I(inode)->lock);
9439 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9440 	spin_unlock(&BTRFS_I(inode)->lock);
9441 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9442 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9443 	return 0;
9444 }
9445 
9446 static int btrfs_rename_exchange(struct inode *old_dir,
9447 			      struct dentry *old_dentry,
9448 			      struct inode *new_dir,
9449 			      struct dentry *new_dentry)
9450 {
9451 	struct btrfs_trans_handle *trans;
9452 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9453 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9454 	struct inode *new_inode = new_dentry->d_inode;
9455 	struct inode *old_inode = old_dentry->d_inode;
9456 	struct timespec ctime = CURRENT_TIME;
9457 	struct dentry *parent;
9458 	u64 old_ino = btrfs_ino(old_inode);
9459 	u64 new_ino = btrfs_ino(new_inode);
9460 	u64 old_idx = 0;
9461 	u64 new_idx = 0;
9462 	u64 root_objectid;
9463 	int ret;
9464 	bool root_log_pinned = false;
9465 	bool dest_log_pinned = false;
9466 
9467 	/* we only allow rename subvolume link between subvolumes */
9468 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9469 		return -EXDEV;
9470 
9471 	/* close the race window with snapshot create/destroy ioctl */
9472 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9473 		down_read(&root->fs_info->subvol_sem);
9474 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9475 		down_read(&dest->fs_info->subvol_sem);
9476 
9477 	/*
9478 	 * We want to reserve the absolute worst case amount of items.  So if
9479 	 * both inodes are subvols and we need to unlink them then that would
9480 	 * require 4 item modifications, but if they are both normal inodes it
9481 	 * would require 5 item modifications, so we'll assume their normal
9482 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9483 	 * should cover the worst case number of items we'll modify.
9484 	 */
9485 	trans = btrfs_start_transaction(root, 12);
9486 	if (IS_ERR(trans)) {
9487 		ret = PTR_ERR(trans);
9488 		goto out_notrans;
9489 	}
9490 
9491 	/*
9492 	 * We need to find a free sequence number both in the source and
9493 	 * in the destination directory for the exchange.
9494 	 */
9495 	ret = btrfs_set_inode_index(new_dir, &old_idx);
9496 	if (ret)
9497 		goto out_fail;
9498 	ret = btrfs_set_inode_index(old_dir, &new_idx);
9499 	if (ret)
9500 		goto out_fail;
9501 
9502 	BTRFS_I(old_inode)->dir_index = 0ULL;
9503 	BTRFS_I(new_inode)->dir_index = 0ULL;
9504 
9505 	/* Reference for the source. */
9506 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9507 		/* force full log commit if subvolume involved. */
9508 		btrfs_set_log_full_commit(root->fs_info, trans);
9509 	} else {
9510 		btrfs_pin_log_trans(root);
9511 		root_log_pinned = true;
9512 		ret = btrfs_insert_inode_ref(trans, dest,
9513 					     new_dentry->d_name.name,
9514 					     new_dentry->d_name.len,
9515 					     old_ino,
9516 					     btrfs_ino(new_dir), old_idx);
9517 		if (ret)
9518 			goto out_fail;
9519 	}
9520 
9521 	/* And now for the dest. */
9522 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9523 		/* force full log commit if subvolume involved. */
9524 		btrfs_set_log_full_commit(dest->fs_info, trans);
9525 	} else {
9526 		btrfs_pin_log_trans(dest);
9527 		dest_log_pinned = true;
9528 		ret = btrfs_insert_inode_ref(trans, root,
9529 					     old_dentry->d_name.name,
9530 					     old_dentry->d_name.len,
9531 					     new_ino,
9532 					     btrfs_ino(old_dir), new_idx);
9533 		if (ret)
9534 			goto out_fail;
9535 	}
9536 
9537 	/* Update inode version and ctime/mtime. */
9538 	inode_inc_iversion(old_dir);
9539 	inode_inc_iversion(new_dir);
9540 	inode_inc_iversion(old_inode);
9541 	inode_inc_iversion(new_inode);
9542 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9543 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9544 	old_inode->i_ctime = ctime;
9545 	new_inode->i_ctime = ctime;
9546 
9547 	if (old_dentry->d_parent != new_dentry->d_parent) {
9548 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9549 		btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9550 	}
9551 
9552 	/* src is a subvolume */
9553 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9554 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9555 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9556 					  root_objectid,
9557 					  old_dentry->d_name.name,
9558 					  old_dentry->d_name.len);
9559 	} else { /* src is an inode */
9560 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9561 					   old_dentry->d_inode,
9562 					   old_dentry->d_name.name,
9563 					   old_dentry->d_name.len);
9564 		if (!ret)
9565 			ret = btrfs_update_inode(trans, root, old_inode);
9566 	}
9567 	if (ret) {
9568 		btrfs_abort_transaction(trans, ret);
9569 		goto out_fail;
9570 	}
9571 
9572 	/* dest is a subvolume */
9573 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9574 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9575 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9576 					  root_objectid,
9577 					  new_dentry->d_name.name,
9578 					  new_dentry->d_name.len);
9579 	} else { /* dest is an inode */
9580 		ret = __btrfs_unlink_inode(trans, dest, new_dir,
9581 					   new_dentry->d_inode,
9582 					   new_dentry->d_name.name,
9583 					   new_dentry->d_name.len);
9584 		if (!ret)
9585 			ret = btrfs_update_inode(trans, dest, new_inode);
9586 	}
9587 	if (ret) {
9588 		btrfs_abort_transaction(trans, ret);
9589 		goto out_fail;
9590 	}
9591 
9592 	ret = btrfs_add_link(trans, new_dir, old_inode,
9593 			     new_dentry->d_name.name,
9594 			     new_dentry->d_name.len, 0, old_idx);
9595 	if (ret) {
9596 		btrfs_abort_transaction(trans, ret);
9597 		goto out_fail;
9598 	}
9599 
9600 	ret = btrfs_add_link(trans, old_dir, new_inode,
9601 			     old_dentry->d_name.name,
9602 			     old_dentry->d_name.len, 0, new_idx);
9603 	if (ret) {
9604 		btrfs_abort_transaction(trans, ret);
9605 		goto out_fail;
9606 	}
9607 
9608 	if (old_inode->i_nlink == 1)
9609 		BTRFS_I(old_inode)->dir_index = old_idx;
9610 	if (new_inode->i_nlink == 1)
9611 		BTRFS_I(new_inode)->dir_index = new_idx;
9612 
9613 	if (root_log_pinned) {
9614 		parent = new_dentry->d_parent;
9615 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9616 		btrfs_end_log_trans(root);
9617 		root_log_pinned = false;
9618 	}
9619 	if (dest_log_pinned) {
9620 		parent = old_dentry->d_parent;
9621 		btrfs_log_new_name(trans, new_inode, new_dir, parent);
9622 		btrfs_end_log_trans(dest);
9623 		dest_log_pinned = false;
9624 	}
9625 out_fail:
9626 	/*
9627 	 * If we have pinned a log and an error happened, we unpin tasks
9628 	 * trying to sync the log and force them to fallback to a transaction
9629 	 * commit if the log currently contains any of the inodes involved in
9630 	 * this rename operation (to ensure we do not persist a log with an
9631 	 * inconsistent state for any of these inodes or leading to any
9632 	 * inconsistencies when replayed). If the transaction was aborted, the
9633 	 * abortion reason is propagated to userspace when attempting to commit
9634 	 * the transaction. If the log does not contain any of these inodes, we
9635 	 * allow the tasks to sync it.
9636 	 */
9637 	if (ret && (root_log_pinned || dest_log_pinned)) {
9638 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9639 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9640 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9641 		    (new_inode &&
9642 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9643 		    btrfs_set_log_full_commit(root->fs_info, trans);
9644 
9645 		if (root_log_pinned) {
9646 			btrfs_end_log_trans(root);
9647 			root_log_pinned = false;
9648 		}
9649 		if (dest_log_pinned) {
9650 			btrfs_end_log_trans(dest);
9651 			dest_log_pinned = false;
9652 		}
9653 	}
9654 	ret = btrfs_end_transaction(trans, root);
9655 out_notrans:
9656 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9657 		up_read(&dest->fs_info->subvol_sem);
9658 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9659 		up_read(&root->fs_info->subvol_sem);
9660 
9661 	return ret;
9662 }
9663 
9664 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9665 				     struct btrfs_root *root,
9666 				     struct inode *dir,
9667 				     struct dentry *dentry)
9668 {
9669 	int ret;
9670 	struct inode *inode;
9671 	u64 objectid;
9672 	u64 index;
9673 
9674 	ret = btrfs_find_free_ino(root, &objectid);
9675 	if (ret)
9676 		return ret;
9677 
9678 	inode = btrfs_new_inode(trans, root, dir,
9679 				dentry->d_name.name,
9680 				dentry->d_name.len,
9681 				btrfs_ino(dir),
9682 				objectid,
9683 				S_IFCHR | WHITEOUT_MODE,
9684 				&index);
9685 
9686 	if (IS_ERR(inode)) {
9687 		ret = PTR_ERR(inode);
9688 		return ret;
9689 	}
9690 
9691 	inode->i_op = &btrfs_special_inode_operations;
9692 	init_special_inode(inode, inode->i_mode,
9693 		WHITEOUT_DEV);
9694 
9695 	ret = btrfs_init_inode_security(trans, inode, dir,
9696 				&dentry->d_name);
9697 	if (ret)
9698 		goto out;
9699 
9700 	ret = btrfs_add_nondir(trans, dir, dentry,
9701 				inode, 0, index);
9702 	if (ret)
9703 		goto out;
9704 
9705 	ret = btrfs_update_inode(trans, root, inode);
9706 out:
9707 	unlock_new_inode(inode);
9708 	if (ret)
9709 		inode_dec_link_count(inode);
9710 	iput(inode);
9711 
9712 	return ret;
9713 }
9714 
9715 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9716 			   struct inode *new_dir, struct dentry *new_dentry,
9717 			   unsigned int flags)
9718 {
9719 	struct btrfs_trans_handle *trans;
9720 	unsigned int trans_num_items;
9721 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9722 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9723 	struct inode *new_inode = d_inode(new_dentry);
9724 	struct inode *old_inode = d_inode(old_dentry);
9725 	u64 index = 0;
9726 	u64 root_objectid;
9727 	int ret;
9728 	u64 old_ino = btrfs_ino(old_inode);
9729 	bool log_pinned = false;
9730 
9731 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9732 		return -EPERM;
9733 
9734 	/* we only allow rename subvolume link between subvolumes */
9735 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9736 		return -EXDEV;
9737 
9738 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9739 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9740 		return -ENOTEMPTY;
9741 
9742 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9743 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9744 		return -ENOTEMPTY;
9745 
9746 
9747 	/* check for collisions, even if the  name isn't there */
9748 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9749 			     new_dentry->d_name.name,
9750 			     new_dentry->d_name.len);
9751 
9752 	if (ret) {
9753 		if (ret == -EEXIST) {
9754 			/* we shouldn't get
9755 			 * eexist without a new_inode */
9756 			if (WARN_ON(!new_inode)) {
9757 				return ret;
9758 			}
9759 		} else {
9760 			/* maybe -EOVERFLOW */
9761 			return ret;
9762 		}
9763 	}
9764 	ret = 0;
9765 
9766 	/*
9767 	 * we're using rename to replace one file with another.  Start IO on it
9768 	 * now so  we don't add too much work to the end of the transaction
9769 	 */
9770 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9771 		filemap_flush(old_inode->i_mapping);
9772 
9773 	/* close the racy window with snapshot create/destroy ioctl */
9774 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9775 		down_read(&root->fs_info->subvol_sem);
9776 	/*
9777 	 * We want to reserve the absolute worst case amount of items.  So if
9778 	 * both inodes are subvols and we need to unlink them then that would
9779 	 * require 4 item modifications, but if they are both normal inodes it
9780 	 * would require 5 item modifications, so we'll assume they are normal
9781 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9782 	 * should cover the worst case number of items we'll modify.
9783 	 * If our rename has the whiteout flag, we need more 5 units for the
9784 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9785 	 * when selinux is enabled).
9786 	 */
9787 	trans_num_items = 11;
9788 	if (flags & RENAME_WHITEOUT)
9789 		trans_num_items += 5;
9790 	trans = btrfs_start_transaction(root, trans_num_items);
9791 	if (IS_ERR(trans)) {
9792 		ret = PTR_ERR(trans);
9793 		goto out_notrans;
9794 	}
9795 
9796 	if (dest != root)
9797 		btrfs_record_root_in_trans(trans, dest);
9798 
9799 	ret = btrfs_set_inode_index(new_dir, &index);
9800 	if (ret)
9801 		goto out_fail;
9802 
9803 	BTRFS_I(old_inode)->dir_index = 0ULL;
9804 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9805 		/* force full log commit if subvolume involved. */
9806 		btrfs_set_log_full_commit(root->fs_info, trans);
9807 	} else {
9808 		btrfs_pin_log_trans(root);
9809 		log_pinned = true;
9810 		ret = btrfs_insert_inode_ref(trans, dest,
9811 					     new_dentry->d_name.name,
9812 					     new_dentry->d_name.len,
9813 					     old_ino,
9814 					     btrfs_ino(new_dir), index);
9815 		if (ret)
9816 			goto out_fail;
9817 	}
9818 
9819 	inode_inc_iversion(old_dir);
9820 	inode_inc_iversion(new_dir);
9821 	inode_inc_iversion(old_inode);
9822 	old_dir->i_ctime = old_dir->i_mtime =
9823 	new_dir->i_ctime = new_dir->i_mtime =
9824 	old_inode->i_ctime = current_fs_time(old_dir->i_sb);
9825 
9826 	if (old_dentry->d_parent != new_dentry->d_parent)
9827 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9828 
9829 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9830 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9831 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9832 					old_dentry->d_name.name,
9833 					old_dentry->d_name.len);
9834 	} else {
9835 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9836 					d_inode(old_dentry),
9837 					old_dentry->d_name.name,
9838 					old_dentry->d_name.len);
9839 		if (!ret)
9840 			ret = btrfs_update_inode(trans, root, old_inode);
9841 	}
9842 	if (ret) {
9843 		btrfs_abort_transaction(trans, ret);
9844 		goto out_fail;
9845 	}
9846 
9847 	if (new_inode) {
9848 		inode_inc_iversion(new_inode);
9849 		new_inode->i_ctime = current_fs_time(new_inode->i_sb);
9850 		if (unlikely(btrfs_ino(new_inode) ==
9851 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9852 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9853 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9854 						root_objectid,
9855 						new_dentry->d_name.name,
9856 						new_dentry->d_name.len);
9857 			BUG_ON(new_inode->i_nlink == 0);
9858 		} else {
9859 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9860 						 d_inode(new_dentry),
9861 						 new_dentry->d_name.name,
9862 						 new_dentry->d_name.len);
9863 		}
9864 		if (!ret && new_inode->i_nlink == 0)
9865 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9866 		if (ret) {
9867 			btrfs_abort_transaction(trans, ret);
9868 			goto out_fail;
9869 		}
9870 	}
9871 
9872 	ret = btrfs_add_link(trans, new_dir, old_inode,
9873 			     new_dentry->d_name.name,
9874 			     new_dentry->d_name.len, 0, index);
9875 	if (ret) {
9876 		btrfs_abort_transaction(trans, ret);
9877 		goto out_fail;
9878 	}
9879 
9880 	if (old_inode->i_nlink == 1)
9881 		BTRFS_I(old_inode)->dir_index = index;
9882 
9883 	if (log_pinned) {
9884 		struct dentry *parent = new_dentry->d_parent;
9885 
9886 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9887 		btrfs_end_log_trans(root);
9888 		log_pinned = false;
9889 	}
9890 
9891 	if (flags & RENAME_WHITEOUT) {
9892 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9893 						old_dentry);
9894 
9895 		if (ret) {
9896 			btrfs_abort_transaction(trans, ret);
9897 			goto out_fail;
9898 		}
9899 	}
9900 out_fail:
9901 	/*
9902 	 * If we have pinned the log and an error happened, we unpin tasks
9903 	 * trying to sync the log and force them to fallback to a transaction
9904 	 * commit if the log currently contains any of the inodes involved in
9905 	 * this rename operation (to ensure we do not persist a log with an
9906 	 * inconsistent state for any of these inodes or leading to any
9907 	 * inconsistencies when replayed). If the transaction was aborted, the
9908 	 * abortion reason is propagated to userspace when attempting to commit
9909 	 * the transaction. If the log does not contain any of these inodes, we
9910 	 * allow the tasks to sync it.
9911 	 */
9912 	if (ret && log_pinned) {
9913 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9914 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9915 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9916 		    (new_inode &&
9917 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9918 		    btrfs_set_log_full_commit(root->fs_info, trans);
9919 
9920 		btrfs_end_log_trans(root);
9921 		log_pinned = false;
9922 	}
9923 	btrfs_end_transaction(trans, root);
9924 out_notrans:
9925 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9926 		up_read(&root->fs_info->subvol_sem);
9927 
9928 	return ret;
9929 }
9930 
9931 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9932 			 struct inode *new_dir, struct dentry *new_dentry,
9933 			 unsigned int flags)
9934 {
9935 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9936 		return -EINVAL;
9937 
9938 	if (flags & RENAME_EXCHANGE)
9939 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9940 					  new_dentry);
9941 
9942 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9943 }
9944 
9945 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9946 {
9947 	struct btrfs_delalloc_work *delalloc_work;
9948 	struct inode *inode;
9949 
9950 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9951 				     work);
9952 	inode = delalloc_work->inode;
9953 	filemap_flush(inode->i_mapping);
9954 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9955 				&BTRFS_I(inode)->runtime_flags))
9956 		filemap_flush(inode->i_mapping);
9957 
9958 	if (delalloc_work->delay_iput)
9959 		btrfs_add_delayed_iput(inode);
9960 	else
9961 		iput(inode);
9962 	complete(&delalloc_work->completion);
9963 }
9964 
9965 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9966 						    int delay_iput)
9967 {
9968 	struct btrfs_delalloc_work *work;
9969 
9970 	work = kmalloc(sizeof(*work), GFP_NOFS);
9971 	if (!work)
9972 		return NULL;
9973 
9974 	init_completion(&work->completion);
9975 	INIT_LIST_HEAD(&work->list);
9976 	work->inode = inode;
9977 	work->delay_iput = delay_iput;
9978 	WARN_ON_ONCE(!inode);
9979 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9980 			btrfs_run_delalloc_work, NULL, NULL);
9981 
9982 	return work;
9983 }
9984 
9985 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9986 {
9987 	wait_for_completion(&work->completion);
9988 	kfree(work);
9989 }
9990 
9991 /*
9992  * some fairly slow code that needs optimization. This walks the list
9993  * of all the inodes with pending delalloc and forces them to disk.
9994  */
9995 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9996 				   int nr)
9997 {
9998 	struct btrfs_inode *binode;
9999 	struct inode *inode;
10000 	struct btrfs_delalloc_work *work, *next;
10001 	struct list_head works;
10002 	struct list_head splice;
10003 	int ret = 0;
10004 
10005 	INIT_LIST_HEAD(&works);
10006 	INIT_LIST_HEAD(&splice);
10007 
10008 	mutex_lock(&root->delalloc_mutex);
10009 	spin_lock(&root->delalloc_lock);
10010 	list_splice_init(&root->delalloc_inodes, &splice);
10011 	while (!list_empty(&splice)) {
10012 		binode = list_entry(splice.next, struct btrfs_inode,
10013 				    delalloc_inodes);
10014 
10015 		list_move_tail(&binode->delalloc_inodes,
10016 			       &root->delalloc_inodes);
10017 		inode = igrab(&binode->vfs_inode);
10018 		if (!inode) {
10019 			cond_resched_lock(&root->delalloc_lock);
10020 			continue;
10021 		}
10022 		spin_unlock(&root->delalloc_lock);
10023 
10024 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10025 		if (!work) {
10026 			if (delay_iput)
10027 				btrfs_add_delayed_iput(inode);
10028 			else
10029 				iput(inode);
10030 			ret = -ENOMEM;
10031 			goto out;
10032 		}
10033 		list_add_tail(&work->list, &works);
10034 		btrfs_queue_work(root->fs_info->flush_workers,
10035 				 &work->work);
10036 		ret++;
10037 		if (nr != -1 && ret >= nr)
10038 			goto out;
10039 		cond_resched();
10040 		spin_lock(&root->delalloc_lock);
10041 	}
10042 	spin_unlock(&root->delalloc_lock);
10043 
10044 out:
10045 	list_for_each_entry_safe(work, next, &works, list) {
10046 		list_del_init(&work->list);
10047 		btrfs_wait_and_free_delalloc_work(work);
10048 	}
10049 
10050 	if (!list_empty_careful(&splice)) {
10051 		spin_lock(&root->delalloc_lock);
10052 		list_splice_tail(&splice, &root->delalloc_inodes);
10053 		spin_unlock(&root->delalloc_lock);
10054 	}
10055 	mutex_unlock(&root->delalloc_mutex);
10056 	return ret;
10057 }
10058 
10059 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10060 {
10061 	int ret;
10062 
10063 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10064 		return -EROFS;
10065 
10066 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10067 	if (ret > 0)
10068 		ret = 0;
10069 	/*
10070 	 * the filemap_flush will queue IO into the worker threads, but
10071 	 * we have to make sure the IO is actually started and that
10072 	 * ordered extents get created before we return
10073 	 */
10074 	atomic_inc(&root->fs_info->async_submit_draining);
10075 	while (atomic_read(&root->fs_info->nr_async_submits) ||
10076 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
10077 		wait_event(root->fs_info->async_submit_wait,
10078 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10079 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10080 	}
10081 	atomic_dec(&root->fs_info->async_submit_draining);
10082 	return ret;
10083 }
10084 
10085 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10086 			       int nr)
10087 {
10088 	struct btrfs_root *root;
10089 	struct list_head splice;
10090 	int ret;
10091 
10092 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10093 		return -EROFS;
10094 
10095 	INIT_LIST_HEAD(&splice);
10096 
10097 	mutex_lock(&fs_info->delalloc_root_mutex);
10098 	spin_lock(&fs_info->delalloc_root_lock);
10099 	list_splice_init(&fs_info->delalloc_roots, &splice);
10100 	while (!list_empty(&splice) && nr) {
10101 		root = list_first_entry(&splice, struct btrfs_root,
10102 					delalloc_root);
10103 		root = btrfs_grab_fs_root(root);
10104 		BUG_ON(!root);
10105 		list_move_tail(&root->delalloc_root,
10106 			       &fs_info->delalloc_roots);
10107 		spin_unlock(&fs_info->delalloc_root_lock);
10108 
10109 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10110 		btrfs_put_fs_root(root);
10111 		if (ret < 0)
10112 			goto out;
10113 
10114 		if (nr != -1) {
10115 			nr -= ret;
10116 			WARN_ON(nr < 0);
10117 		}
10118 		spin_lock(&fs_info->delalloc_root_lock);
10119 	}
10120 	spin_unlock(&fs_info->delalloc_root_lock);
10121 
10122 	ret = 0;
10123 	atomic_inc(&fs_info->async_submit_draining);
10124 	while (atomic_read(&fs_info->nr_async_submits) ||
10125 	      atomic_read(&fs_info->async_delalloc_pages)) {
10126 		wait_event(fs_info->async_submit_wait,
10127 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10128 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
10129 	}
10130 	atomic_dec(&fs_info->async_submit_draining);
10131 out:
10132 	if (!list_empty_careful(&splice)) {
10133 		spin_lock(&fs_info->delalloc_root_lock);
10134 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10135 		spin_unlock(&fs_info->delalloc_root_lock);
10136 	}
10137 	mutex_unlock(&fs_info->delalloc_root_mutex);
10138 	return ret;
10139 }
10140 
10141 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10142 			 const char *symname)
10143 {
10144 	struct btrfs_trans_handle *trans;
10145 	struct btrfs_root *root = BTRFS_I(dir)->root;
10146 	struct btrfs_path *path;
10147 	struct btrfs_key key;
10148 	struct inode *inode = NULL;
10149 	int err;
10150 	int drop_inode = 0;
10151 	u64 objectid;
10152 	u64 index = 0;
10153 	int name_len;
10154 	int datasize;
10155 	unsigned long ptr;
10156 	struct btrfs_file_extent_item *ei;
10157 	struct extent_buffer *leaf;
10158 
10159 	name_len = strlen(symname);
10160 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10161 		return -ENAMETOOLONG;
10162 
10163 	/*
10164 	 * 2 items for inode item and ref
10165 	 * 2 items for dir items
10166 	 * 1 item for updating parent inode item
10167 	 * 1 item for the inline extent item
10168 	 * 1 item for xattr if selinux is on
10169 	 */
10170 	trans = btrfs_start_transaction(root, 7);
10171 	if (IS_ERR(trans))
10172 		return PTR_ERR(trans);
10173 
10174 	err = btrfs_find_free_ino(root, &objectid);
10175 	if (err)
10176 		goto out_unlock;
10177 
10178 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10179 				dentry->d_name.len, btrfs_ino(dir), objectid,
10180 				S_IFLNK|S_IRWXUGO, &index);
10181 	if (IS_ERR(inode)) {
10182 		err = PTR_ERR(inode);
10183 		goto out_unlock;
10184 	}
10185 
10186 	/*
10187 	* If the active LSM wants to access the inode during
10188 	* d_instantiate it needs these. Smack checks to see
10189 	* if the filesystem supports xattrs by looking at the
10190 	* ops vector.
10191 	*/
10192 	inode->i_fop = &btrfs_file_operations;
10193 	inode->i_op = &btrfs_file_inode_operations;
10194 	inode->i_mapping->a_ops = &btrfs_aops;
10195 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10196 
10197 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10198 	if (err)
10199 		goto out_unlock_inode;
10200 
10201 	path = btrfs_alloc_path();
10202 	if (!path) {
10203 		err = -ENOMEM;
10204 		goto out_unlock_inode;
10205 	}
10206 	key.objectid = btrfs_ino(inode);
10207 	key.offset = 0;
10208 	key.type = BTRFS_EXTENT_DATA_KEY;
10209 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10210 	err = btrfs_insert_empty_item(trans, root, path, &key,
10211 				      datasize);
10212 	if (err) {
10213 		btrfs_free_path(path);
10214 		goto out_unlock_inode;
10215 	}
10216 	leaf = path->nodes[0];
10217 	ei = btrfs_item_ptr(leaf, path->slots[0],
10218 			    struct btrfs_file_extent_item);
10219 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10220 	btrfs_set_file_extent_type(leaf, ei,
10221 				   BTRFS_FILE_EXTENT_INLINE);
10222 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10223 	btrfs_set_file_extent_compression(leaf, ei, 0);
10224 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10225 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10226 
10227 	ptr = btrfs_file_extent_inline_start(ei);
10228 	write_extent_buffer(leaf, symname, ptr, name_len);
10229 	btrfs_mark_buffer_dirty(leaf);
10230 	btrfs_free_path(path);
10231 
10232 	inode->i_op = &btrfs_symlink_inode_operations;
10233 	inode_nohighmem(inode);
10234 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10235 	inode_set_bytes(inode, name_len);
10236 	btrfs_i_size_write(inode, name_len);
10237 	err = btrfs_update_inode(trans, root, inode);
10238 	/*
10239 	 * Last step, add directory indexes for our symlink inode. This is the
10240 	 * last step to avoid extra cleanup of these indexes if an error happens
10241 	 * elsewhere above.
10242 	 */
10243 	if (!err)
10244 		err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10245 	if (err) {
10246 		drop_inode = 1;
10247 		goto out_unlock_inode;
10248 	}
10249 
10250 	unlock_new_inode(inode);
10251 	d_instantiate(dentry, inode);
10252 
10253 out_unlock:
10254 	btrfs_end_transaction(trans, root);
10255 	if (drop_inode) {
10256 		inode_dec_link_count(inode);
10257 		iput(inode);
10258 	}
10259 	btrfs_btree_balance_dirty(root);
10260 	return err;
10261 
10262 out_unlock_inode:
10263 	drop_inode = 1;
10264 	unlock_new_inode(inode);
10265 	goto out_unlock;
10266 }
10267 
10268 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10269 				       u64 start, u64 num_bytes, u64 min_size,
10270 				       loff_t actual_len, u64 *alloc_hint,
10271 				       struct btrfs_trans_handle *trans)
10272 {
10273 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10274 	struct extent_map *em;
10275 	struct btrfs_root *root = BTRFS_I(inode)->root;
10276 	struct btrfs_key ins;
10277 	u64 cur_offset = start;
10278 	u64 i_size;
10279 	u64 cur_bytes;
10280 	u64 last_alloc = (u64)-1;
10281 	int ret = 0;
10282 	bool own_trans = true;
10283 
10284 	if (trans)
10285 		own_trans = false;
10286 	while (num_bytes > 0) {
10287 		if (own_trans) {
10288 			trans = btrfs_start_transaction(root, 3);
10289 			if (IS_ERR(trans)) {
10290 				ret = PTR_ERR(trans);
10291 				break;
10292 			}
10293 		}
10294 
10295 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10296 		cur_bytes = max(cur_bytes, min_size);
10297 		/*
10298 		 * If we are severely fragmented we could end up with really
10299 		 * small allocations, so if the allocator is returning small
10300 		 * chunks lets make its job easier by only searching for those
10301 		 * sized chunks.
10302 		 */
10303 		cur_bytes = min(cur_bytes, last_alloc);
10304 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
10305 					   *alloc_hint, &ins, 1, 0);
10306 		if (ret) {
10307 			if (own_trans)
10308 				btrfs_end_transaction(trans, root);
10309 			break;
10310 		}
10311 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10312 
10313 		last_alloc = ins.offset;
10314 		ret = insert_reserved_file_extent(trans, inode,
10315 						  cur_offset, ins.objectid,
10316 						  ins.offset, ins.offset,
10317 						  ins.offset, 0, 0, 0,
10318 						  BTRFS_FILE_EXTENT_PREALLOC);
10319 		if (ret) {
10320 			btrfs_free_reserved_extent(root, ins.objectid,
10321 						   ins.offset, 0);
10322 			btrfs_abort_transaction(trans, ret);
10323 			if (own_trans)
10324 				btrfs_end_transaction(trans, root);
10325 			break;
10326 		}
10327 
10328 		btrfs_drop_extent_cache(inode, cur_offset,
10329 					cur_offset + ins.offset -1, 0);
10330 
10331 		em = alloc_extent_map();
10332 		if (!em) {
10333 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10334 				&BTRFS_I(inode)->runtime_flags);
10335 			goto next;
10336 		}
10337 
10338 		em->start = cur_offset;
10339 		em->orig_start = cur_offset;
10340 		em->len = ins.offset;
10341 		em->block_start = ins.objectid;
10342 		em->block_len = ins.offset;
10343 		em->orig_block_len = ins.offset;
10344 		em->ram_bytes = ins.offset;
10345 		em->bdev = root->fs_info->fs_devices->latest_bdev;
10346 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10347 		em->generation = trans->transid;
10348 
10349 		while (1) {
10350 			write_lock(&em_tree->lock);
10351 			ret = add_extent_mapping(em_tree, em, 1);
10352 			write_unlock(&em_tree->lock);
10353 			if (ret != -EEXIST)
10354 				break;
10355 			btrfs_drop_extent_cache(inode, cur_offset,
10356 						cur_offset + ins.offset - 1,
10357 						0);
10358 		}
10359 		free_extent_map(em);
10360 next:
10361 		num_bytes -= ins.offset;
10362 		cur_offset += ins.offset;
10363 		*alloc_hint = ins.objectid + ins.offset;
10364 
10365 		inode_inc_iversion(inode);
10366 		inode->i_ctime = current_fs_time(inode->i_sb);
10367 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10368 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10369 		    (actual_len > inode->i_size) &&
10370 		    (cur_offset > inode->i_size)) {
10371 			if (cur_offset > actual_len)
10372 				i_size = actual_len;
10373 			else
10374 				i_size = cur_offset;
10375 			i_size_write(inode, i_size);
10376 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10377 		}
10378 
10379 		ret = btrfs_update_inode(trans, root, inode);
10380 
10381 		if (ret) {
10382 			btrfs_abort_transaction(trans, ret);
10383 			if (own_trans)
10384 				btrfs_end_transaction(trans, root);
10385 			break;
10386 		}
10387 
10388 		if (own_trans)
10389 			btrfs_end_transaction(trans, root);
10390 	}
10391 	return ret;
10392 }
10393 
10394 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10395 			      u64 start, u64 num_bytes, u64 min_size,
10396 			      loff_t actual_len, u64 *alloc_hint)
10397 {
10398 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10399 					   min_size, actual_len, alloc_hint,
10400 					   NULL);
10401 }
10402 
10403 int btrfs_prealloc_file_range_trans(struct inode *inode,
10404 				    struct btrfs_trans_handle *trans, int mode,
10405 				    u64 start, u64 num_bytes, u64 min_size,
10406 				    loff_t actual_len, u64 *alloc_hint)
10407 {
10408 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10409 					   min_size, actual_len, alloc_hint, trans);
10410 }
10411 
10412 static int btrfs_set_page_dirty(struct page *page)
10413 {
10414 	return __set_page_dirty_nobuffers(page);
10415 }
10416 
10417 static int btrfs_permission(struct inode *inode, int mask)
10418 {
10419 	struct btrfs_root *root = BTRFS_I(inode)->root;
10420 	umode_t mode = inode->i_mode;
10421 
10422 	if (mask & MAY_WRITE &&
10423 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10424 		if (btrfs_root_readonly(root))
10425 			return -EROFS;
10426 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10427 			return -EACCES;
10428 	}
10429 	return generic_permission(inode, mask);
10430 }
10431 
10432 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10433 {
10434 	struct btrfs_trans_handle *trans;
10435 	struct btrfs_root *root = BTRFS_I(dir)->root;
10436 	struct inode *inode = NULL;
10437 	u64 objectid;
10438 	u64 index;
10439 	int ret = 0;
10440 
10441 	/*
10442 	 * 5 units required for adding orphan entry
10443 	 */
10444 	trans = btrfs_start_transaction(root, 5);
10445 	if (IS_ERR(trans))
10446 		return PTR_ERR(trans);
10447 
10448 	ret = btrfs_find_free_ino(root, &objectid);
10449 	if (ret)
10450 		goto out;
10451 
10452 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10453 				btrfs_ino(dir), objectid, mode, &index);
10454 	if (IS_ERR(inode)) {
10455 		ret = PTR_ERR(inode);
10456 		inode = NULL;
10457 		goto out;
10458 	}
10459 
10460 	inode->i_fop = &btrfs_file_operations;
10461 	inode->i_op = &btrfs_file_inode_operations;
10462 
10463 	inode->i_mapping->a_ops = &btrfs_aops;
10464 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10465 
10466 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10467 	if (ret)
10468 		goto out_inode;
10469 
10470 	ret = btrfs_update_inode(trans, root, inode);
10471 	if (ret)
10472 		goto out_inode;
10473 	ret = btrfs_orphan_add(trans, inode);
10474 	if (ret)
10475 		goto out_inode;
10476 
10477 	/*
10478 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10479 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10480 	 * through:
10481 	 *
10482 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10483 	 */
10484 	set_nlink(inode, 1);
10485 	unlock_new_inode(inode);
10486 	d_tmpfile(dentry, inode);
10487 	mark_inode_dirty(inode);
10488 
10489 out:
10490 	btrfs_end_transaction(trans, root);
10491 	if (ret)
10492 		iput(inode);
10493 	btrfs_balance_delayed_items(root);
10494 	btrfs_btree_balance_dirty(root);
10495 	return ret;
10496 
10497 out_inode:
10498 	unlock_new_inode(inode);
10499 	goto out;
10500 
10501 }
10502 
10503 /* Inspired by filemap_check_errors() */
10504 int btrfs_inode_check_errors(struct inode *inode)
10505 {
10506 	int ret = 0;
10507 
10508 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10509 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10510 		ret = -ENOSPC;
10511 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10512 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10513 		ret = -EIO;
10514 
10515 	return ret;
10516 }
10517 
10518 static const struct inode_operations btrfs_dir_inode_operations = {
10519 	.getattr	= btrfs_getattr,
10520 	.lookup		= btrfs_lookup,
10521 	.create		= btrfs_create,
10522 	.unlink		= btrfs_unlink,
10523 	.link		= btrfs_link,
10524 	.mkdir		= btrfs_mkdir,
10525 	.rmdir		= btrfs_rmdir,
10526 	.rename2	= btrfs_rename2,
10527 	.symlink	= btrfs_symlink,
10528 	.setattr	= btrfs_setattr,
10529 	.mknod		= btrfs_mknod,
10530 	.setxattr	= generic_setxattr,
10531 	.getxattr	= generic_getxattr,
10532 	.listxattr	= btrfs_listxattr,
10533 	.removexattr	= generic_removexattr,
10534 	.permission	= btrfs_permission,
10535 	.get_acl	= btrfs_get_acl,
10536 	.set_acl	= btrfs_set_acl,
10537 	.update_time	= btrfs_update_time,
10538 	.tmpfile        = btrfs_tmpfile,
10539 };
10540 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10541 	.lookup		= btrfs_lookup,
10542 	.permission	= btrfs_permission,
10543 	.get_acl	= btrfs_get_acl,
10544 	.set_acl	= btrfs_set_acl,
10545 	.update_time	= btrfs_update_time,
10546 };
10547 
10548 static const struct file_operations btrfs_dir_file_operations = {
10549 	.llseek		= generic_file_llseek,
10550 	.read		= generic_read_dir,
10551 	.iterate_shared	= btrfs_real_readdir,
10552 	.unlocked_ioctl	= btrfs_ioctl,
10553 #ifdef CONFIG_COMPAT
10554 	.compat_ioctl	= btrfs_compat_ioctl,
10555 #endif
10556 	.release        = btrfs_release_file,
10557 	.fsync		= btrfs_sync_file,
10558 };
10559 
10560 static const struct extent_io_ops btrfs_extent_io_ops = {
10561 	.fill_delalloc = run_delalloc_range,
10562 	.submit_bio_hook = btrfs_submit_bio_hook,
10563 	.merge_bio_hook = btrfs_merge_bio_hook,
10564 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10565 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10566 	.writepage_start_hook = btrfs_writepage_start_hook,
10567 	.set_bit_hook = btrfs_set_bit_hook,
10568 	.clear_bit_hook = btrfs_clear_bit_hook,
10569 	.merge_extent_hook = btrfs_merge_extent_hook,
10570 	.split_extent_hook = btrfs_split_extent_hook,
10571 };
10572 
10573 /*
10574  * btrfs doesn't support the bmap operation because swapfiles
10575  * use bmap to make a mapping of extents in the file.  They assume
10576  * these extents won't change over the life of the file and they
10577  * use the bmap result to do IO directly to the drive.
10578  *
10579  * the btrfs bmap call would return logical addresses that aren't
10580  * suitable for IO and they also will change frequently as COW
10581  * operations happen.  So, swapfile + btrfs == corruption.
10582  *
10583  * For now we're avoiding this by dropping bmap.
10584  */
10585 static const struct address_space_operations btrfs_aops = {
10586 	.readpage	= btrfs_readpage,
10587 	.writepage	= btrfs_writepage,
10588 	.writepages	= btrfs_writepages,
10589 	.readpages	= btrfs_readpages,
10590 	.direct_IO	= btrfs_direct_IO,
10591 	.invalidatepage = btrfs_invalidatepage,
10592 	.releasepage	= btrfs_releasepage,
10593 	.set_page_dirty	= btrfs_set_page_dirty,
10594 	.error_remove_page = generic_error_remove_page,
10595 };
10596 
10597 static const struct address_space_operations btrfs_symlink_aops = {
10598 	.readpage	= btrfs_readpage,
10599 	.writepage	= btrfs_writepage,
10600 	.invalidatepage = btrfs_invalidatepage,
10601 	.releasepage	= btrfs_releasepage,
10602 };
10603 
10604 static const struct inode_operations btrfs_file_inode_operations = {
10605 	.getattr	= btrfs_getattr,
10606 	.setattr	= btrfs_setattr,
10607 	.setxattr	= generic_setxattr,
10608 	.getxattr	= generic_getxattr,
10609 	.listxattr      = btrfs_listxattr,
10610 	.removexattr	= generic_removexattr,
10611 	.permission	= btrfs_permission,
10612 	.fiemap		= btrfs_fiemap,
10613 	.get_acl	= btrfs_get_acl,
10614 	.set_acl	= btrfs_set_acl,
10615 	.update_time	= btrfs_update_time,
10616 };
10617 static const struct inode_operations btrfs_special_inode_operations = {
10618 	.getattr	= btrfs_getattr,
10619 	.setattr	= btrfs_setattr,
10620 	.permission	= btrfs_permission,
10621 	.setxattr	= generic_setxattr,
10622 	.getxattr	= generic_getxattr,
10623 	.listxattr	= btrfs_listxattr,
10624 	.removexattr	= generic_removexattr,
10625 	.get_acl	= btrfs_get_acl,
10626 	.set_acl	= btrfs_set_acl,
10627 	.update_time	= btrfs_update_time,
10628 };
10629 static const struct inode_operations btrfs_symlink_inode_operations = {
10630 	.readlink	= generic_readlink,
10631 	.get_link	= page_get_link,
10632 	.getattr	= btrfs_getattr,
10633 	.setattr	= btrfs_setattr,
10634 	.permission	= btrfs_permission,
10635 	.setxattr	= generic_setxattr,
10636 	.getxattr	= generic_getxattr,
10637 	.listxattr	= btrfs_listxattr,
10638 	.removexattr	= generic_removexattr,
10639 	.update_time	= btrfs_update_time,
10640 };
10641 
10642 const struct dentry_operations btrfs_dentry_operations = {
10643 	.d_delete	= btrfs_dentry_delete,
10644 	.d_release	= btrfs_dentry_release,
10645 };
10646