1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <linux/iomap.h> 34 #include <asm/unaligned.h> 35 #include "misc.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "print-tree.h" 41 #include "ordered-data.h" 42 #include "xattr.h" 43 #include "tree-log.h" 44 #include "volumes.h" 45 #include "compression.h" 46 #include "locking.h" 47 #include "free-space-cache.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 struct btrfs_dio_data { 61 u64 reserve; 62 loff_t length; 63 ssize_t submitted; 64 struct extent_changeset *data_reserved; 65 }; 66 67 static const struct inode_operations btrfs_dir_inode_operations; 68 static const struct inode_operations btrfs_symlink_inode_operations; 69 static const struct inode_operations btrfs_special_inode_operations; 70 static const struct inode_operations btrfs_file_inode_operations; 71 static const struct address_space_operations btrfs_aops; 72 static const struct file_operations btrfs_dir_file_operations; 73 74 static struct kmem_cache *btrfs_inode_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 struct kmem_cache *btrfs_free_space_bitmap_cachep; 79 80 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 81 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 83 static noinline int cow_file_range(struct btrfs_inode *inode, 84 struct page *locked_page, 85 u64 start, u64 end, int *page_started, 86 unsigned long *nr_written, int unlock); 87 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 88 u64 len, u64 orig_start, u64 block_start, 89 u64 block_len, u64 orig_block_len, 90 u64 ram_bytes, int compress_type, 91 int type); 92 93 static void __endio_write_update_ordered(struct btrfs_inode *inode, 94 const u64 offset, const u64 bytes, 95 const bool uptodate); 96 97 /* 98 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 99 * 100 * ilock_flags can have the following bit set: 101 * 102 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 103 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 104 * return -EAGAIN 105 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 106 */ 107 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 108 { 109 if (ilock_flags & BTRFS_ILOCK_SHARED) { 110 if (ilock_flags & BTRFS_ILOCK_TRY) { 111 if (!inode_trylock_shared(inode)) 112 return -EAGAIN; 113 else 114 return 0; 115 } 116 inode_lock_shared(inode); 117 } else { 118 if (ilock_flags & BTRFS_ILOCK_TRY) { 119 if (!inode_trylock(inode)) 120 return -EAGAIN; 121 else 122 return 0; 123 } 124 inode_lock(inode); 125 } 126 if (ilock_flags & BTRFS_ILOCK_MMAP) 127 down_write(&BTRFS_I(inode)->i_mmap_lock); 128 return 0; 129 } 130 131 /* 132 * btrfs_inode_unlock - unock inode i_rwsem 133 * 134 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 135 * to decide whether the lock acquired is shared or exclusive. 136 */ 137 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 138 { 139 if (ilock_flags & BTRFS_ILOCK_MMAP) 140 up_write(&BTRFS_I(inode)->i_mmap_lock); 141 if (ilock_flags & BTRFS_ILOCK_SHARED) 142 inode_unlock_shared(inode); 143 else 144 inode_unlock(inode); 145 } 146 147 /* 148 * Cleanup all submitted ordered extents in specified range to handle errors 149 * from the btrfs_run_delalloc_range() callback. 150 * 151 * NOTE: caller must ensure that when an error happens, it can not call 152 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 153 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 154 * to be released, which we want to happen only when finishing the ordered 155 * extent (btrfs_finish_ordered_io()). 156 */ 157 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 158 struct page *locked_page, 159 u64 offset, u64 bytes) 160 { 161 unsigned long index = offset >> PAGE_SHIFT; 162 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 163 u64 page_start = page_offset(locked_page); 164 u64 page_end = page_start + PAGE_SIZE - 1; 165 166 struct page *page; 167 168 while (index <= end_index) { 169 page = find_get_page(inode->vfs_inode.i_mapping, index); 170 index++; 171 if (!page) 172 continue; 173 ClearPagePrivate2(page); 174 put_page(page); 175 } 176 177 /* 178 * In case this page belongs to the delalloc range being instantiated 179 * then skip it, since the first page of a range is going to be 180 * properly cleaned up by the caller of run_delalloc_range 181 */ 182 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 183 offset += PAGE_SIZE; 184 bytes -= PAGE_SIZE; 185 } 186 187 return __endio_write_update_ordered(inode, offset, bytes, false); 188 } 189 190 static int btrfs_dirty_inode(struct inode *inode); 191 192 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 193 struct inode *inode, struct inode *dir, 194 const struct qstr *qstr) 195 { 196 int err; 197 198 err = btrfs_init_acl(trans, inode, dir); 199 if (!err) 200 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 201 return err; 202 } 203 204 /* 205 * this does all the hard work for inserting an inline extent into 206 * the btree. The caller should have done a btrfs_drop_extents so that 207 * no overlapping inline items exist in the btree 208 */ 209 static int insert_inline_extent(struct btrfs_trans_handle *trans, 210 struct btrfs_path *path, bool extent_inserted, 211 struct btrfs_root *root, struct inode *inode, 212 u64 start, size_t size, size_t compressed_size, 213 int compress_type, 214 struct page **compressed_pages) 215 { 216 struct extent_buffer *leaf; 217 struct page *page = NULL; 218 char *kaddr; 219 unsigned long ptr; 220 struct btrfs_file_extent_item *ei; 221 int ret; 222 size_t cur_size = size; 223 unsigned long offset; 224 225 ASSERT((compressed_size > 0 && compressed_pages) || 226 (compressed_size == 0 && !compressed_pages)); 227 228 if (compressed_size && compressed_pages) 229 cur_size = compressed_size; 230 231 if (!extent_inserted) { 232 struct btrfs_key key; 233 size_t datasize; 234 235 key.objectid = btrfs_ino(BTRFS_I(inode)); 236 key.offset = start; 237 key.type = BTRFS_EXTENT_DATA_KEY; 238 239 datasize = btrfs_file_extent_calc_inline_size(cur_size); 240 ret = btrfs_insert_empty_item(trans, root, path, &key, 241 datasize); 242 if (ret) 243 goto fail; 244 } 245 leaf = path->nodes[0]; 246 ei = btrfs_item_ptr(leaf, path->slots[0], 247 struct btrfs_file_extent_item); 248 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 249 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 250 btrfs_set_file_extent_encryption(leaf, ei, 0); 251 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 252 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 253 ptr = btrfs_file_extent_inline_start(ei); 254 255 if (compress_type != BTRFS_COMPRESS_NONE) { 256 struct page *cpage; 257 int i = 0; 258 while (compressed_size > 0) { 259 cpage = compressed_pages[i]; 260 cur_size = min_t(unsigned long, compressed_size, 261 PAGE_SIZE); 262 263 kaddr = kmap_atomic(cpage); 264 write_extent_buffer(leaf, kaddr, ptr, cur_size); 265 kunmap_atomic(kaddr); 266 267 i++; 268 ptr += cur_size; 269 compressed_size -= cur_size; 270 } 271 btrfs_set_file_extent_compression(leaf, ei, 272 compress_type); 273 } else { 274 page = find_get_page(inode->i_mapping, 275 start >> PAGE_SHIFT); 276 btrfs_set_file_extent_compression(leaf, ei, 0); 277 kaddr = kmap_atomic(page); 278 offset = offset_in_page(start); 279 write_extent_buffer(leaf, kaddr + offset, ptr, size); 280 kunmap_atomic(kaddr); 281 put_page(page); 282 } 283 btrfs_mark_buffer_dirty(leaf); 284 btrfs_release_path(path); 285 286 /* 287 * We align size to sectorsize for inline extents just for simplicity 288 * sake. 289 */ 290 size = ALIGN(size, root->fs_info->sectorsize); 291 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 292 if (ret) 293 goto fail; 294 295 /* 296 * we're an inline extent, so nobody can 297 * extend the file past i_size without locking 298 * a page we already have locked. 299 * 300 * We must do any isize and inode updates 301 * before we unlock the pages. Otherwise we 302 * could end up racing with unlink. 303 */ 304 BTRFS_I(inode)->disk_i_size = inode->i_size; 305 fail: 306 return ret; 307 } 308 309 310 /* 311 * conditionally insert an inline extent into the file. This 312 * does the checks required to make sure the data is small enough 313 * to fit as an inline extent. 314 */ 315 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, 316 u64 end, size_t compressed_size, 317 int compress_type, 318 struct page **compressed_pages) 319 { 320 struct btrfs_drop_extents_args drop_args = { 0 }; 321 struct btrfs_root *root = inode->root; 322 struct btrfs_fs_info *fs_info = root->fs_info; 323 struct btrfs_trans_handle *trans; 324 u64 isize = i_size_read(&inode->vfs_inode); 325 u64 actual_end = min(end + 1, isize); 326 u64 inline_len = actual_end - start; 327 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 328 u64 data_len = inline_len; 329 int ret; 330 struct btrfs_path *path; 331 332 if (compressed_size) 333 data_len = compressed_size; 334 335 if (start > 0 || 336 actual_end > fs_info->sectorsize || 337 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 338 (!compressed_size && 339 (actual_end & (fs_info->sectorsize - 1)) == 0) || 340 end + 1 < isize || 341 data_len > fs_info->max_inline) { 342 return 1; 343 } 344 345 path = btrfs_alloc_path(); 346 if (!path) 347 return -ENOMEM; 348 349 trans = btrfs_join_transaction(root); 350 if (IS_ERR(trans)) { 351 btrfs_free_path(path); 352 return PTR_ERR(trans); 353 } 354 trans->block_rsv = &inode->block_rsv; 355 356 drop_args.path = path; 357 drop_args.start = start; 358 drop_args.end = aligned_end; 359 drop_args.drop_cache = true; 360 drop_args.replace_extent = true; 361 362 if (compressed_size && compressed_pages) 363 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 364 compressed_size); 365 else 366 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 367 inline_len); 368 369 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 370 if (ret) { 371 btrfs_abort_transaction(trans, ret); 372 goto out; 373 } 374 375 if (isize > actual_end) 376 inline_len = min_t(u64, isize, actual_end); 377 ret = insert_inline_extent(trans, path, drop_args.extent_inserted, 378 root, &inode->vfs_inode, start, 379 inline_len, compressed_size, 380 compress_type, compressed_pages); 381 if (ret && ret != -ENOSPC) { 382 btrfs_abort_transaction(trans, ret); 383 goto out; 384 } else if (ret == -ENOSPC) { 385 ret = 1; 386 goto out; 387 } 388 389 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found); 390 ret = btrfs_update_inode(trans, root, inode); 391 if (ret && ret != -ENOSPC) { 392 btrfs_abort_transaction(trans, ret); 393 goto out; 394 } else if (ret == -ENOSPC) { 395 ret = 1; 396 goto out; 397 } 398 399 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 400 out: 401 /* 402 * Don't forget to free the reserved space, as for inlined extent 403 * it won't count as data extent, free them directly here. 404 * And at reserve time, it's always aligned to page size, so 405 * just free one page here. 406 */ 407 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 408 btrfs_free_path(path); 409 btrfs_end_transaction(trans); 410 return ret; 411 } 412 413 struct async_extent { 414 u64 start; 415 u64 ram_size; 416 u64 compressed_size; 417 struct page **pages; 418 unsigned long nr_pages; 419 int compress_type; 420 struct list_head list; 421 }; 422 423 struct async_chunk { 424 struct inode *inode; 425 struct page *locked_page; 426 u64 start; 427 u64 end; 428 unsigned int write_flags; 429 struct list_head extents; 430 struct cgroup_subsys_state *blkcg_css; 431 struct btrfs_work work; 432 atomic_t *pending; 433 }; 434 435 struct async_cow { 436 /* Number of chunks in flight; must be first in the structure */ 437 atomic_t num_chunks; 438 struct async_chunk chunks[]; 439 }; 440 441 static noinline int add_async_extent(struct async_chunk *cow, 442 u64 start, u64 ram_size, 443 u64 compressed_size, 444 struct page **pages, 445 unsigned long nr_pages, 446 int compress_type) 447 { 448 struct async_extent *async_extent; 449 450 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 451 BUG_ON(!async_extent); /* -ENOMEM */ 452 async_extent->start = start; 453 async_extent->ram_size = ram_size; 454 async_extent->compressed_size = compressed_size; 455 async_extent->pages = pages; 456 async_extent->nr_pages = nr_pages; 457 async_extent->compress_type = compress_type; 458 list_add_tail(&async_extent->list, &cow->extents); 459 return 0; 460 } 461 462 /* 463 * Check if the inode has flags compatible with compression 464 */ 465 static inline bool inode_can_compress(struct btrfs_inode *inode) 466 { 467 if (inode->flags & BTRFS_INODE_NODATACOW || 468 inode->flags & BTRFS_INODE_NODATASUM) 469 return false; 470 return true; 471 } 472 473 /* 474 * Check if the inode needs to be submitted to compression, based on mount 475 * options, defragmentation, properties or heuristics. 476 */ 477 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 478 u64 end) 479 { 480 struct btrfs_fs_info *fs_info = inode->root->fs_info; 481 482 if (!inode_can_compress(inode)) { 483 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 484 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 485 btrfs_ino(inode)); 486 return 0; 487 } 488 /* force compress */ 489 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 490 return 1; 491 /* defrag ioctl */ 492 if (inode->defrag_compress) 493 return 1; 494 /* bad compression ratios */ 495 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 496 return 0; 497 if (btrfs_test_opt(fs_info, COMPRESS) || 498 inode->flags & BTRFS_INODE_COMPRESS || 499 inode->prop_compress) 500 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 501 return 0; 502 } 503 504 static inline void inode_should_defrag(struct btrfs_inode *inode, 505 u64 start, u64 end, u64 num_bytes, u64 small_write) 506 { 507 /* If this is a small write inside eof, kick off a defrag */ 508 if (num_bytes < small_write && 509 (start > 0 || end + 1 < inode->disk_i_size)) 510 btrfs_add_inode_defrag(NULL, inode); 511 } 512 513 /* 514 * we create compressed extents in two phases. The first 515 * phase compresses a range of pages that have already been 516 * locked (both pages and state bits are locked). 517 * 518 * This is done inside an ordered work queue, and the compression 519 * is spread across many cpus. The actual IO submission is step 520 * two, and the ordered work queue takes care of making sure that 521 * happens in the same order things were put onto the queue by 522 * writepages and friends. 523 * 524 * If this code finds it can't get good compression, it puts an 525 * entry onto the work queue to write the uncompressed bytes. This 526 * makes sure that both compressed inodes and uncompressed inodes 527 * are written in the same order that the flusher thread sent them 528 * down. 529 */ 530 static noinline int compress_file_range(struct async_chunk *async_chunk) 531 { 532 struct inode *inode = async_chunk->inode; 533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 534 u64 blocksize = fs_info->sectorsize; 535 u64 start = async_chunk->start; 536 u64 end = async_chunk->end; 537 u64 actual_end; 538 u64 i_size; 539 int ret = 0; 540 struct page **pages = NULL; 541 unsigned long nr_pages; 542 unsigned long total_compressed = 0; 543 unsigned long total_in = 0; 544 int i; 545 int will_compress; 546 int compress_type = fs_info->compress_type; 547 int compressed_extents = 0; 548 int redirty = 0; 549 550 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 551 SZ_16K); 552 553 /* 554 * We need to save i_size before now because it could change in between 555 * us evaluating the size and assigning it. This is because we lock and 556 * unlock the page in truncate and fallocate, and then modify the i_size 557 * later on. 558 * 559 * The barriers are to emulate READ_ONCE, remove that once i_size_read 560 * does that for us. 561 */ 562 barrier(); 563 i_size = i_size_read(inode); 564 barrier(); 565 actual_end = min_t(u64, i_size, end + 1); 566 again: 567 will_compress = 0; 568 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 569 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 570 nr_pages = min_t(unsigned long, nr_pages, 571 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 572 573 /* 574 * we don't want to send crud past the end of i_size through 575 * compression, that's just a waste of CPU time. So, if the 576 * end of the file is before the start of our current 577 * requested range of bytes, we bail out to the uncompressed 578 * cleanup code that can deal with all of this. 579 * 580 * It isn't really the fastest way to fix things, but this is a 581 * very uncommon corner. 582 */ 583 if (actual_end <= start) 584 goto cleanup_and_bail_uncompressed; 585 586 total_compressed = actual_end - start; 587 588 /* 589 * skip compression for a small file range(<=blocksize) that 590 * isn't an inline extent, since it doesn't save disk space at all. 591 */ 592 if (total_compressed <= blocksize && 593 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 594 goto cleanup_and_bail_uncompressed; 595 596 total_compressed = min_t(unsigned long, total_compressed, 597 BTRFS_MAX_UNCOMPRESSED); 598 total_in = 0; 599 ret = 0; 600 601 /* 602 * we do compression for mount -o compress and when the 603 * inode has not been flagged as nocompress. This flag can 604 * change at any time if we discover bad compression ratios. 605 */ 606 if (inode_need_compress(BTRFS_I(inode), start, end)) { 607 WARN_ON(pages); 608 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 609 if (!pages) { 610 /* just bail out to the uncompressed code */ 611 nr_pages = 0; 612 goto cont; 613 } 614 615 if (BTRFS_I(inode)->defrag_compress) 616 compress_type = BTRFS_I(inode)->defrag_compress; 617 else if (BTRFS_I(inode)->prop_compress) 618 compress_type = BTRFS_I(inode)->prop_compress; 619 620 /* 621 * we need to call clear_page_dirty_for_io on each 622 * page in the range. Otherwise applications with the file 623 * mmap'd can wander in and change the page contents while 624 * we are compressing them. 625 * 626 * If the compression fails for any reason, we set the pages 627 * dirty again later on. 628 * 629 * Note that the remaining part is redirtied, the start pointer 630 * has moved, the end is the original one. 631 */ 632 if (!redirty) { 633 extent_range_clear_dirty_for_io(inode, start, end); 634 redirty = 1; 635 } 636 637 /* Compression level is applied here and only here */ 638 ret = btrfs_compress_pages( 639 compress_type | (fs_info->compress_level << 4), 640 inode->i_mapping, start, 641 pages, 642 &nr_pages, 643 &total_in, 644 &total_compressed); 645 646 if (!ret) { 647 unsigned long offset = offset_in_page(total_compressed); 648 struct page *page = pages[nr_pages - 1]; 649 650 /* zero the tail end of the last page, we might be 651 * sending it down to disk 652 */ 653 if (offset) 654 memzero_page(page, offset, PAGE_SIZE - offset); 655 will_compress = 1; 656 } 657 } 658 cont: 659 if (start == 0) { 660 /* lets try to make an inline extent */ 661 if (ret || total_in < actual_end) { 662 /* we didn't compress the entire range, try 663 * to make an uncompressed inline extent. 664 */ 665 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 666 0, BTRFS_COMPRESS_NONE, 667 NULL); 668 } else { 669 /* try making a compressed inline extent */ 670 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 671 total_compressed, 672 compress_type, pages); 673 } 674 if (ret <= 0) { 675 unsigned long clear_flags = EXTENT_DELALLOC | 676 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 677 EXTENT_DO_ACCOUNTING; 678 unsigned long page_error_op; 679 680 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 681 682 /* 683 * inline extent creation worked or returned error, 684 * we don't need to create any more async work items. 685 * Unlock and free up our temp pages. 686 * 687 * We use DO_ACCOUNTING here because we need the 688 * delalloc_release_metadata to be done _after_ we drop 689 * our outstanding extent for clearing delalloc for this 690 * range. 691 */ 692 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 693 NULL, 694 clear_flags, 695 PAGE_UNLOCK | 696 PAGE_START_WRITEBACK | 697 page_error_op | 698 PAGE_END_WRITEBACK); 699 700 /* 701 * Ensure we only free the compressed pages if we have 702 * them allocated, as we can still reach here with 703 * inode_need_compress() == false. 704 */ 705 if (pages) { 706 for (i = 0; i < nr_pages; i++) { 707 WARN_ON(pages[i]->mapping); 708 put_page(pages[i]); 709 } 710 kfree(pages); 711 } 712 return 0; 713 } 714 } 715 716 if (will_compress) { 717 /* 718 * we aren't doing an inline extent round the compressed size 719 * up to a block size boundary so the allocator does sane 720 * things 721 */ 722 total_compressed = ALIGN(total_compressed, blocksize); 723 724 /* 725 * one last check to make sure the compression is really a 726 * win, compare the page count read with the blocks on disk, 727 * compression must free at least one sector size 728 */ 729 total_in = ALIGN(total_in, PAGE_SIZE); 730 if (total_compressed + blocksize <= total_in) { 731 compressed_extents++; 732 733 /* 734 * The async work queues will take care of doing actual 735 * allocation on disk for these compressed pages, and 736 * will submit them to the elevator. 737 */ 738 add_async_extent(async_chunk, start, total_in, 739 total_compressed, pages, nr_pages, 740 compress_type); 741 742 if (start + total_in < end) { 743 start += total_in; 744 pages = NULL; 745 cond_resched(); 746 goto again; 747 } 748 return compressed_extents; 749 } 750 } 751 if (pages) { 752 /* 753 * the compression code ran but failed to make things smaller, 754 * free any pages it allocated and our page pointer array 755 */ 756 for (i = 0; i < nr_pages; i++) { 757 WARN_ON(pages[i]->mapping); 758 put_page(pages[i]); 759 } 760 kfree(pages); 761 pages = NULL; 762 total_compressed = 0; 763 nr_pages = 0; 764 765 /* flag the file so we don't compress in the future */ 766 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 767 !(BTRFS_I(inode)->prop_compress)) { 768 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 769 } 770 } 771 cleanup_and_bail_uncompressed: 772 /* 773 * No compression, but we still need to write the pages in the file 774 * we've been given so far. redirty the locked page if it corresponds 775 * to our extent and set things up for the async work queue to run 776 * cow_file_range to do the normal delalloc dance. 777 */ 778 if (async_chunk->locked_page && 779 (page_offset(async_chunk->locked_page) >= start && 780 page_offset(async_chunk->locked_page)) <= end) { 781 __set_page_dirty_nobuffers(async_chunk->locked_page); 782 /* unlocked later on in the async handlers */ 783 } 784 785 if (redirty) 786 extent_range_redirty_for_io(inode, start, end); 787 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 788 BTRFS_COMPRESS_NONE); 789 compressed_extents++; 790 791 return compressed_extents; 792 } 793 794 static void free_async_extent_pages(struct async_extent *async_extent) 795 { 796 int i; 797 798 if (!async_extent->pages) 799 return; 800 801 for (i = 0; i < async_extent->nr_pages; i++) { 802 WARN_ON(async_extent->pages[i]->mapping); 803 put_page(async_extent->pages[i]); 804 } 805 kfree(async_extent->pages); 806 async_extent->nr_pages = 0; 807 async_extent->pages = NULL; 808 } 809 810 /* 811 * phase two of compressed writeback. This is the ordered portion 812 * of the code, which only gets called in the order the work was 813 * queued. We walk all the async extents created by compress_file_range 814 * and send them down to the disk. 815 */ 816 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 817 { 818 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 819 struct btrfs_fs_info *fs_info = inode->root->fs_info; 820 struct async_extent *async_extent; 821 u64 alloc_hint = 0; 822 struct btrfs_key ins; 823 struct extent_map *em; 824 struct btrfs_root *root = inode->root; 825 struct extent_io_tree *io_tree = &inode->io_tree; 826 int ret = 0; 827 828 again: 829 while (!list_empty(&async_chunk->extents)) { 830 async_extent = list_entry(async_chunk->extents.next, 831 struct async_extent, list); 832 list_del(&async_extent->list); 833 834 retry: 835 lock_extent(io_tree, async_extent->start, 836 async_extent->start + async_extent->ram_size - 1); 837 /* did the compression code fall back to uncompressed IO? */ 838 if (!async_extent->pages) { 839 int page_started = 0; 840 unsigned long nr_written = 0; 841 842 /* allocate blocks */ 843 ret = cow_file_range(inode, async_chunk->locked_page, 844 async_extent->start, 845 async_extent->start + 846 async_extent->ram_size - 1, 847 &page_started, &nr_written, 0); 848 849 /* JDM XXX */ 850 851 /* 852 * if page_started, cow_file_range inserted an 853 * inline extent and took care of all the unlocking 854 * and IO for us. Otherwise, we need to submit 855 * all those pages down to the drive. 856 */ 857 if (!page_started && !ret) 858 extent_write_locked_range(&inode->vfs_inode, 859 async_extent->start, 860 async_extent->start + 861 async_extent->ram_size - 1, 862 WB_SYNC_ALL); 863 else if (ret && async_chunk->locked_page) 864 unlock_page(async_chunk->locked_page); 865 kfree(async_extent); 866 cond_resched(); 867 continue; 868 } 869 870 ret = btrfs_reserve_extent(root, async_extent->ram_size, 871 async_extent->compressed_size, 872 async_extent->compressed_size, 873 0, alloc_hint, &ins, 1, 1); 874 if (ret) { 875 free_async_extent_pages(async_extent); 876 877 if (ret == -ENOSPC) { 878 unlock_extent(io_tree, async_extent->start, 879 async_extent->start + 880 async_extent->ram_size - 1); 881 882 /* 883 * we need to redirty the pages if we decide to 884 * fallback to uncompressed IO, otherwise we 885 * will not submit these pages down to lower 886 * layers. 887 */ 888 extent_range_redirty_for_io(&inode->vfs_inode, 889 async_extent->start, 890 async_extent->start + 891 async_extent->ram_size - 1); 892 893 goto retry; 894 } 895 goto out_free; 896 } 897 /* 898 * here we're doing allocation and writeback of the 899 * compressed pages 900 */ 901 em = create_io_em(inode, async_extent->start, 902 async_extent->ram_size, /* len */ 903 async_extent->start, /* orig_start */ 904 ins.objectid, /* block_start */ 905 ins.offset, /* block_len */ 906 ins.offset, /* orig_block_len */ 907 async_extent->ram_size, /* ram_bytes */ 908 async_extent->compress_type, 909 BTRFS_ORDERED_COMPRESSED); 910 if (IS_ERR(em)) 911 /* ret value is not necessary due to void function */ 912 goto out_free_reserve; 913 free_extent_map(em); 914 915 ret = btrfs_add_ordered_extent_compress(inode, 916 async_extent->start, 917 ins.objectid, 918 async_extent->ram_size, 919 ins.offset, 920 async_extent->compress_type); 921 if (ret) { 922 btrfs_drop_extent_cache(inode, async_extent->start, 923 async_extent->start + 924 async_extent->ram_size - 1, 0); 925 goto out_free_reserve; 926 } 927 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 928 929 /* 930 * clear dirty, set writeback and unlock the pages. 931 */ 932 extent_clear_unlock_delalloc(inode, async_extent->start, 933 async_extent->start + 934 async_extent->ram_size - 1, 935 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 936 PAGE_UNLOCK | PAGE_START_WRITEBACK); 937 if (btrfs_submit_compressed_write(inode, async_extent->start, 938 async_extent->ram_size, 939 ins.objectid, 940 ins.offset, async_extent->pages, 941 async_extent->nr_pages, 942 async_chunk->write_flags, 943 async_chunk->blkcg_css)) { 944 struct page *p = async_extent->pages[0]; 945 const u64 start = async_extent->start; 946 const u64 end = start + async_extent->ram_size - 1; 947 948 p->mapping = inode->vfs_inode.i_mapping; 949 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 950 951 p->mapping = NULL; 952 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 953 PAGE_END_WRITEBACK | 954 PAGE_SET_ERROR); 955 free_async_extent_pages(async_extent); 956 } 957 alloc_hint = ins.objectid + ins.offset; 958 kfree(async_extent); 959 cond_resched(); 960 } 961 return; 962 out_free_reserve: 963 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 964 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 965 out_free: 966 extent_clear_unlock_delalloc(inode, async_extent->start, 967 async_extent->start + 968 async_extent->ram_size - 1, 969 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 970 EXTENT_DELALLOC_NEW | 971 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 972 PAGE_UNLOCK | PAGE_START_WRITEBACK | 973 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 974 free_async_extent_pages(async_extent); 975 kfree(async_extent); 976 goto again; 977 } 978 979 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 980 u64 num_bytes) 981 { 982 struct extent_map_tree *em_tree = &inode->extent_tree; 983 struct extent_map *em; 984 u64 alloc_hint = 0; 985 986 read_lock(&em_tree->lock); 987 em = search_extent_mapping(em_tree, start, num_bytes); 988 if (em) { 989 /* 990 * if block start isn't an actual block number then find the 991 * first block in this inode and use that as a hint. If that 992 * block is also bogus then just don't worry about it. 993 */ 994 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 995 free_extent_map(em); 996 em = search_extent_mapping(em_tree, 0, 0); 997 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 998 alloc_hint = em->block_start; 999 if (em) 1000 free_extent_map(em); 1001 } else { 1002 alloc_hint = em->block_start; 1003 free_extent_map(em); 1004 } 1005 } 1006 read_unlock(&em_tree->lock); 1007 1008 return alloc_hint; 1009 } 1010 1011 /* 1012 * when extent_io.c finds a delayed allocation range in the file, 1013 * the call backs end up in this code. The basic idea is to 1014 * allocate extents on disk for the range, and create ordered data structs 1015 * in ram to track those extents. 1016 * 1017 * locked_page is the page that writepage had locked already. We use 1018 * it to make sure we don't do extra locks or unlocks. 1019 * 1020 * *page_started is set to one if we unlock locked_page and do everything 1021 * required to start IO on it. It may be clean and already done with 1022 * IO when we return. 1023 */ 1024 static noinline int cow_file_range(struct btrfs_inode *inode, 1025 struct page *locked_page, 1026 u64 start, u64 end, int *page_started, 1027 unsigned long *nr_written, int unlock) 1028 { 1029 struct btrfs_root *root = inode->root; 1030 struct btrfs_fs_info *fs_info = root->fs_info; 1031 u64 alloc_hint = 0; 1032 u64 num_bytes; 1033 unsigned long ram_size; 1034 u64 cur_alloc_size = 0; 1035 u64 min_alloc_size; 1036 u64 blocksize = fs_info->sectorsize; 1037 struct btrfs_key ins; 1038 struct extent_map *em; 1039 unsigned clear_bits; 1040 unsigned long page_ops; 1041 bool extent_reserved = false; 1042 int ret = 0; 1043 1044 if (btrfs_is_free_space_inode(inode)) { 1045 WARN_ON_ONCE(1); 1046 ret = -EINVAL; 1047 goto out_unlock; 1048 } 1049 1050 num_bytes = ALIGN(end - start + 1, blocksize); 1051 num_bytes = max(blocksize, num_bytes); 1052 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1053 1054 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1055 1056 if (start == 0) { 1057 /* lets try to make an inline extent */ 1058 ret = cow_file_range_inline(inode, start, end, 0, 1059 BTRFS_COMPRESS_NONE, NULL); 1060 if (ret == 0) { 1061 /* 1062 * We use DO_ACCOUNTING here because we need the 1063 * delalloc_release_metadata to be run _after_ we drop 1064 * our outstanding extent for clearing delalloc for this 1065 * range. 1066 */ 1067 extent_clear_unlock_delalloc(inode, start, end, NULL, 1068 EXTENT_LOCKED | EXTENT_DELALLOC | 1069 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1070 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1071 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1072 *nr_written = *nr_written + 1073 (end - start + PAGE_SIZE) / PAGE_SIZE; 1074 *page_started = 1; 1075 goto out; 1076 } else if (ret < 0) { 1077 goto out_unlock; 1078 } 1079 } 1080 1081 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1082 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1083 1084 /* 1085 * Relocation relies on the relocated extents to have exactly the same 1086 * size as the original extents. Normally writeback for relocation data 1087 * extents follows a NOCOW path because relocation preallocates the 1088 * extents. However, due to an operation such as scrub turning a block 1089 * group to RO mode, it may fallback to COW mode, so we must make sure 1090 * an extent allocated during COW has exactly the requested size and can 1091 * not be split into smaller extents, otherwise relocation breaks and 1092 * fails during the stage where it updates the bytenr of file extent 1093 * items. 1094 */ 1095 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1096 min_alloc_size = num_bytes; 1097 else 1098 min_alloc_size = fs_info->sectorsize; 1099 1100 while (num_bytes > 0) { 1101 cur_alloc_size = num_bytes; 1102 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1103 min_alloc_size, 0, alloc_hint, 1104 &ins, 1, 1); 1105 if (ret < 0) 1106 goto out_unlock; 1107 cur_alloc_size = ins.offset; 1108 extent_reserved = true; 1109 1110 ram_size = ins.offset; 1111 em = create_io_em(inode, start, ins.offset, /* len */ 1112 start, /* orig_start */ 1113 ins.objectid, /* block_start */ 1114 ins.offset, /* block_len */ 1115 ins.offset, /* orig_block_len */ 1116 ram_size, /* ram_bytes */ 1117 BTRFS_COMPRESS_NONE, /* compress_type */ 1118 BTRFS_ORDERED_REGULAR /* type */); 1119 if (IS_ERR(em)) { 1120 ret = PTR_ERR(em); 1121 goto out_reserve; 1122 } 1123 free_extent_map(em); 1124 1125 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1126 ram_size, cur_alloc_size, 1127 BTRFS_ORDERED_REGULAR); 1128 if (ret) 1129 goto out_drop_extent_cache; 1130 1131 if (root->root_key.objectid == 1132 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1133 ret = btrfs_reloc_clone_csums(inode, start, 1134 cur_alloc_size); 1135 /* 1136 * Only drop cache here, and process as normal. 1137 * 1138 * We must not allow extent_clear_unlock_delalloc() 1139 * at out_unlock label to free meta of this ordered 1140 * extent, as its meta should be freed by 1141 * btrfs_finish_ordered_io(). 1142 * 1143 * So we must continue until @start is increased to 1144 * skip current ordered extent. 1145 */ 1146 if (ret) 1147 btrfs_drop_extent_cache(inode, start, 1148 start + ram_size - 1, 0); 1149 } 1150 1151 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1152 1153 /* we're not doing compressed IO, don't unlock the first 1154 * page (which the caller expects to stay locked), don't 1155 * clear any dirty bits and don't set any writeback bits 1156 * 1157 * Do set the Private2 bit so we know this page was properly 1158 * setup for writepage 1159 */ 1160 page_ops = unlock ? PAGE_UNLOCK : 0; 1161 page_ops |= PAGE_SET_PRIVATE2; 1162 1163 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1164 locked_page, 1165 EXTENT_LOCKED | EXTENT_DELALLOC, 1166 page_ops); 1167 if (num_bytes < cur_alloc_size) 1168 num_bytes = 0; 1169 else 1170 num_bytes -= cur_alloc_size; 1171 alloc_hint = ins.objectid + ins.offset; 1172 start += cur_alloc_size; 1173 extent_reserved = false; 1174 1175 /* 1176 * btrfs_reloc_clone_csums() error, since start is increased 1177 * extent_clear_unlock_delalloc() at out_unlock label won't 1178 * free metadata of current ordered extent, we're OK to exit. 1179 */ 1180 if (ret) 1181 goto out_unlock; 1182 } 1183 out: 1184 return ret; 1185 1186 out_drop_extent_cache: 1187 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1188 out_reserve: 1189 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1190 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1191 out_unlock: 1192 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1193 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1194 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1195 /* 1196 * If we reserved an extent for our delalloc range (or a subrange) and 1197 * failed to create the respective ordered extent, then it means that 1198 * when we reserved the extent we decremented the extent's size from 1199 * the data space_info's bytes_may_use counter and incremented the 1200 * space_info's bytes_reserved counter by the same amount. We must make 1201 * sure extent_clear_unlock_delalloc() does not try to decrement again 1202 * the data space_info's bytes_may_use counter, therefore we do not pass 1203 * it the flag EXTENT_CLEAR_DATA_RESV. 1204 */ 1205 if (extent_reserved) { 1206 extent_clear_unlock_delalloc(inode, start, 1207 start + cur_alloc_size - 1, 1208 locked_page, 1209 clear_bits, 1210 page_ops); 1211 start += cur_alloc_size; 1212 if (start >= end) 1213 goto out; 1214 } 1215 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1216 clear_bits | EXTENT_CLEAR_DATA_RESV, 1217 page_ops); 1218 goto out; 1219 } 1220 1221 /* 1222 * work queue call back to started compression on a file and pages 1223 */ 1224 static noinline void async_cow_start(struct btrfs_work *work) 1225 { 1226 struct async_chunk *async_chunk; 1227 int compressed_extents; 1228 1229 async_chunk = container_of(work, struct async_chunk, work); 1230 1231 compressed_extents = compress_file_range(async_chunk); 1232 if (compressed_extents == 0) { 1233 btrfs_add_delayed_iput(async_chunk->inode); 1234 async_chunk->inode = NULL; 1235 } 1236 } 1237 1238 /* 1239 * work queue call back to submit previously compressed pages 1240 */ 1241 static noinline void async_cow_submit(struct btrfs_work *work) 1242 { 1243 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1244 work); 1245 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1246 unsigned long nr_pages; 1247 1248 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1249 PAGE_SHIFT; 1250 1251 /* atomic_sub_return implies a barrier */ 1252 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1253 5 * SZ_1M) 1254 cond_wake_up_nomb(&fs_info->async_submit_wait); 1255 1256 /* 1257 * ->inode could be NULL if async_chunk_start has failed to compress, 1258 * in which case we don't have anything to submit, yet we need to 1259 * always adjust ->async_delalloc_pages as its paired with the init 1260 * happening in cow_file_range_async 1261 */ 1262 if (async_chunk->inode) 1263 submit_compressed_extents(async_chunk); 1264 } 1265 1266 static noinline void async_cow_free(struct btrfs_work *work) 1267 { 1268 struct async_chunk *async_chunk; 1269 1270 async_chunk = container_of(work, struct async_chunk, work); 1271 if (async_chunk->inode) 1272 btrfs_add_delayed_iput(async_chunk->inode); 1273 if (async_chunk->blkcg_css) 1274 css_put(async_chunk->blkcg_css); 1275 /* 1276 * Since the pointer to 'pending' is at the beginning of the array of 1277 * async_chunk's, freeing it ensures the whole array has been freed. 1278 */ 1279 if (atomic_dec_and_test(async_chunk->pending)) 1280 kvfree(async_chunk->pending); 1281 } 1282 1283 static int cow_file_range_async(struct btrfs_inode *inode, 1284 struct writeback_control *wbc, 1285 struct page *locked_page, 1286 u64 start, u64 end, int *page_started, 1287 unsigned long *nr_written) 1288 { 1289 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1290 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1291 struct async_cow *ctx; 1292 struct async_chunk *async_chunk; 1293 unsigned long nr_pages; 1294 u64 cur_end; 1295 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1296 int i; 1297 bool should_compress; 1298 unsigned nofs_flag; 1299 const unsigned int write_flags = wbc_to_write_flags(wbc); 1300 1301 unlock_extent(&inode->io_tree, start, end); 1302 1303 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1304 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1305 num_chunks = 1; 1306 should_compress = false; 1307 } else { 1308 should_compress = true; 1309 } 1310 1311 nofs_flag = memalloc_nofs_save(); 1312 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1313 memalloc_nofs_restore(nofs_flag); 1314 1315 if (!ctx) { 1316 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1317 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1318 EXTENT_DO_ACCOUNTING; 1319 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1320 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1321 1322 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1323 clear_bits, page_ops); 1324 return -ENOMEM; 1325 } 1326 1327 async_chunk = ctx->chunks; 1328 atomic_set(&ctx->num_chunks, num_chunks); 1329 1330 for (i = 0; i < num_chunks; i++) { 1331 if (should_compress) 1332 cur_end = min(end, start + SZ_512K - 1); 1333 else 1334 cur_end = end; 1335 1336 /* 1337 * igrab is called higher up in the call chain, take only the 1338 * lightweight reference for the callback lifetime 1339 */ 1340 ihold(&inode->vfs_inode); 1341 async_chunk[i].pending = &ctx->num_chunks; 1342 async_chunk[i].inode = &inode->vfs_inode; 1343 async_chunk[i].start = start; 1344 async_chunk[i].end = cur_end; 1345 async_chunk[i].write_flags = write_flags; 1346 INIT_LIST_HEAD(&async_chunk[i].extents); 1347 1348 /* 1349 * The locked_page comes all the way from writepage and its 1350 * the original page we were actually given. As we spread 1351 * this large delalloc region across multiple async_chunk 1352 * structs, only the first struct needs a pointer to locked_page 1353 * 1354 * This way we don't need racey decisions about who is supposed 1355 * to unlock it. 1356 */ 1357 if (locked_page) { 1358 /* 1359 * Depending on the compressibility, the pages might or 1360 * might not go through async. We want all of them to 1361 * be accounted against wbc once. Let's do it here 1362 * before the paths diverge. wbc accounting is used 1363 * only for foreign writeback detection and doesn't 1364 * need full accuracy. Just account the whole thing 1365 * against the first page. 1366 */ 1367 wbc_account_cgroup_owner(wbc, locked_page, 1368 cur_end - start); 1369 async_chunk[i].locked_page = locked_page; 1370 locked_page = NULL; 1371 } else { 1372 async_chunk[i].locked_page = NULL; 1373 } 1374 1375 if (blkcg_css != blkcg_root_css) { 1376 css_get(blkcg_css); 1377 async_chunk[i].blkcg_css = blkcg_css; 1378 } else { 1379 async_chunk[i].blkcg_css = NULL; 1380 } 1381 1382 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1383 async_cow_submit, async_cow_free); 1384 1385 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1386 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1387 1388 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1389 1390 *nr_written += nr_pages; 1391 start = cur_end + 1; 1392 } 1393 *page_started = 1; 1394 return 0; 1395 } 1396 1397 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1398 struct page *locked_page, u64 start, 1399 u64 end, int *page_started, 1400 unsigned long *nr_written) 1401 { 1402 int ret; 1403 1404 ret = cow_file_range(inode, locked_page, start, end, page_started, 1405 nr_written, 0); 1406 if (ret) 1407 return ret; 1408 1409 if (*page_started) 1410 return 0; 1411 1412 __set_page_dirty_nobuffers(locked_page); 1413 account_page_redirty(locked_page); 1414 extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL); 1415 *page_started = 1; 1416 1417 return 0; 1418 } 1419 1420 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1421 u64 bytenr, u64 num_bytes) 1422 { 1423 int ret; 1424 struct btrfs_ordered_sum *sums; 1425 LIST_HEAD(list); 1426 1427 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1428 bytenr + num_bytes - 1, &list, 0); 1429 if (ret == 0 && list_empty(&list)) 1430 return 0; 1431 1432 while (!list_empty(&list)) { 1433 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1434 list_del(&sums->list); 1435 kfree(sums); 1436 } 1437 if (ret < 0) 1438 return ret; 1439 return 1; 1440 } 1441 1442 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1443 const u64 start, const u64 end, 1444 int *page_started, unsigned long *nr_written) 1445 { 1446 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1447 const bool is_reloc_ino = (inode->root->root_key.objectid == 1448 BTRFS_DATA_RELOC_TREE_OBJECTID); 1449 const u64 range_bytes = end + 1 - start; 1450 struct extent_io_tree *io_tree = &inode->io_tree; 1451 u64 range_start = start; 1452 u64 count; 1453 1454 /* 1455 * If EXTENT_NORESERVE is set it means that when the buffered write was 1456 * made we had not enough available data space and therefore we did not 1457 * reserve data space for it, since we though we could do NOCOW for the 1458 * respective file range (either there is prealloc extent or the inode 1459 * has the NOCOW bit set). 1460 * 1461 * However when we need to fallback to COW mode (because for example the 1462 * block group for the corresponding extent was turned to RO mode by a 1463 * scrub or relocation) we need to do the following: 1464 * 1465 * 1) We increment the bytes_may_use counter of the data space info. 1466 * If COW succeeds, it allocates a new data extent and after doing 1467 * that it decrements the space info's bytes_may_use counter and 1468 * increments its bytes_reserved counter by the same amount (we do 1469 * this at btrfs_add_reserved_bytes()). So we need to increment the 1470 * bytes_may_use counter to compensate (when space is reserved at 1471 * buffered write time, the bytes_may_use counter is incremented); 1472 * 1473 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1474 * that if the COW path fails for any reason, it decrements (through 1475 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1476 * data space info, which we incremented in the step above. 1477 * 1478 * If we need to fallback to cow and the inode corresponds to a free 1479 * space cache inode or an inode of the data relocation tree, we must 1480 * also increment bytes_may_use of the data space_info for the same 1481 * reason. Space caches and relocated data extents always get a prealloc 1482 * extent for them, however scrub or balance may have set the block 1483 * group that contains that extent to RO mode and therefore force COW 1484 * when starting writeback. 1485 */ 1486 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1487 EXTENT_NORESERVE, 0); 1488 if (count > 0 || is_space_ino || is_reloc_ino) { 1489 u64 bytes = count; 1490 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1491 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1492 1493 if (is_space_ino || is_reloc_ino) 1494 bytes = range_bytes; 1495 1496 spin_lock(&sinfo->lock); 1497 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1498 spin_unlock(&sinfo->lock); 1499 1500 if (count > 0) 1501 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1502 0, 0, NULL); 1503 } 1504 1505 return cow_file_range(inode, locked_page, start, end, page_started, 1506 nr_written, 1); 1507 } 1508 1509 /* 1510 * when nowcow writeback call back. This checks for snapshots or COW copies 1511 * of the extents that exist in the file, and COWs the file as required. 1512 * 1513 * If no cow copies or snapshots exist, we write directly to the existing 1514 * blocks on disk 1515 */ 1516 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1517 struct page *locked_page, 1518 const u64 start, const u64 end, 1519 int *page_started, 1520 unsigned long *nr_written) 1521 { 1522 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1523 struct btrfs_root *root = inode->root; 1524 struct btrfs_path *path; 1525 u64 cow_start = (u64)-1; 1526 u64 cur_offset = start; 1527 int ret; 1528 bool check_prev = true; 1529 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1530 u64 ino = btrfs_ino(inode); 1531 bool nocow = false; 1532 u64 disk_bytenr = 0; 1533 const bool force = inode->flags & BTRFS_INODE_NODATACOW; 1534 1535 path = btrfs_alloc_path(); 1536 if (!path) { 1537 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1538 EXTENT_LOCKED | EXTENT_DELALLOC | 1539 EXTENT_DO_ACCOUNTING | 1540 EXTENT_DEFRAG, PAGE_UNLOCK | 1541 PAGE_START_WRITEBACK | 1542 PAGE_END_WRITEBACK); 1543 return -ENOMEM; 1544 } 1545 1546 while (1) { 1547 struct btrfs_key found_key; 1548 struct btrfs_file_extent_item *fi; 1549 struct extent_buffer *leaf; 1550 u64 extent_end; 1551 u64 extent_offset; 1552 u64 num_bytes = 0; 1553 u64 disk_num_bytes; 1554 u64 ram_bytes; 1555 int extent_type; 1556 1557 nocow = false; 1558 1559 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1560 cur_offset, 0); 1561 if (ret < 0) 1562 goto error; 1563 1564 /* 1565 * If there is no extent for our range when doing the initial 1566 * search, then go back to the previous slot as it will be the 1567 * one containing the search offset 1568 */ 1569 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1570 leaf = path->nodes[0]; 1571 btrfs_item_key_to_cpu(leaf, &found_key, 1572 path->slots[0] - 1); 1573 if (found_key.objectid == ino && 1574 found_key.type == BTRFS_EXTENT_DATA_KEY) 1575 path->slots[0]--; 1576 } 1577 check_prev = false; 1578 next_slot: 1579 /* Go to next leaf if we have exhausted the current one */ 1580 leaf = path->nodes[0]; 1581 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1582 ret = btrfs_next_leaf(root, path); 1583 if (ret < 0) { 1584 if (cow_start != (u64)-1) 1585 cur_offset = cow_start; 1586 goto error; 1587 } 1588 if (ret > 0) 1589 break; 1590 leaf = path->nodes[0]; 1591 } 1592 1593 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1594 1595 /* Didn't find anything for our INO */ 1596 if (found_key.objectid > ino) 1597 break; 1598 /* 1599 * Keep searching until we find an EXTENT_ITEM or there are no 1600 * more extents for this inode 1601 */ 1602 if (WARN_ON_ONCE(found_key.objectid < ino) || 1603 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1604 path->slots[0]++; 1605 goto next_slot; 1606 } 1607 1608 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1609 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1610 found_key.offset > end) 1611 break; 1612 1613 /* 1614 * If the found extent starts after requested offset, then 1615 * adjust extent_end to be right before this extent begins 1616 */ 1617 if (found_key.offset > cur_offset) { 1618 extent_end = found_key.offset; 1619 extent_type = 0; 1620 goto out_check; 1621 } 1622 1623 /* 1624 * Found extent which begins before our range and potentially 1625 * intersect it 1626 */ 1627 fi = btrfs_item_ptr(leaf, path->slots[0], 1628 struct btrfs_file_extent_item); 1629 extent_type = btrfs_file_extent_type(leaf, fi); 1630 1631 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1632 if (extent_type == BTRFS_FILE_EXTENT_REG || 1633 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1634 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1635 extent_offset = btrfs_file_extent_offset(leaf, fi); 1636 extent_end = found_key.offset + 1637 btrfs_file_extent_num_bytes(leaf, fi); 1638 disk_num_bytes = 1639 btrfs_file_extent_disk_num_bytes(leaf, fi); 1640 /* 1641 * If the extent we got ends before our current offset, 1642 * skip to the next extent. 1643 */ 1644 if (extent_end <= cur_offset) { 1645 path->slots[0]++; 1646 goto next_slot; 1647 } 1648 /* Skip holes */ 1649 if (disk_bytenr == 0) 1650 goto out_check; 1651 /* Skip compressed/encrypted/encoded extents */ 1652 if (btrfs_file_extent_compression(leaf, fi) || 1653 btrfs_file_extent_encryption(leaf, fi) || 1654 btrfs_file_extent_other_encoding(leaf, fi)) 1655 goto out_check; 1656 /* 1657 * If extent is created before the last volume's snapshot 1658 * this implies the extent is shared, hence we can't do 1659 * nocow. This is the same check as in 1660 * btrfs_cross_ref_exist but without calling 1661 * btrfs_search_slot. 1662 */ 1663 if (!freespace_inode && 1664 btrfs_file_extent_generation(leaf, fi) <= 1665 btrfs_root_last_snapshot(&root->root_item)) 1666 goto out_check; 1667 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1668 goto out_check; 1669 1670 /* 1671 * The following checks can be expensive, as they need to 1672 * take other locks and do btree or rbtree searches, so 1673 * release the path to avoid blocking other tasks for too 1674 * long. 1675 */ 1676 btrfs_release_path(path); 1677 1678 ret = btrfs_cross_ref_exist(root, ino, 1679 found_key.offset - 1680 extent_offset, disk_bytenr, false); 1681 if (ret) { 1682 /* 1683 * ret could be -EIO if the above fails to read 1684 * metadata. 1685 */ 1686 if (ret < 0) { 1687 if (cow_start != (u64)-1) 1688 cur_offset = cow_start; 1689 goto error; 1690 } 1691 1692 WARN_ON_ONCE(freespace_inode); 1693 goto out_check; 1694 } 1695 disk_bytenr += extent_offset; 1696 disk_bytenr += cur_offset - found_key.offset; 1697 num_bytes = min(end + 1, extent_end) - cur_offset; 1698 /* 1699 * If there are pending snapshots for this root, we 1700 * fall into common COW way 1701 */ 1702 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1703 goto out_check; 1704 /* 1705 * force cow if csum exists in the range. 1706 * this ensure that csum for a given extent are 1707 * either valid or do not exist. 1708 */ 1709 ret = csum_exist_in_range(fs_info, disk_bytenr, 1710 num_bytes); 1711 if (ret) { 1712 /* 1713 * ret could be -EIO if the above fails to read 1714 * metadata. 1715 */ 1716 if (ret < 0) { 1717 if (cow_start != (u64)-1) 1718 cur_offset = cow_start; 1719 goto error; 1720 } 1721 WARN_ON_ONCE(freespace_inode); 1722 goto out_check; 1723 } 1724 /* If the extent's block group is RO, we must COW */ 1725 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1726 goto out_check; 1727 nocow = true; 1728 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1729 extent_end = found_key.offset + ram_bytes; 1730 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1731 /* Skip extents outside of our requested range */ 1732 if (extent_end <= start) { 1733 path->slots[0]++; 1734 goto next_slot; 1735 } 1736 } else { 1737 /* If this triggers then we have a memory corruption */ 1738 BUG(); 1739 } 1740 out_check: 1741 /* 1742 * If nocow is false then record the beginning of the range 1743 * that needs to be COWed 1744 */ 1745 if (!nocow) { 1746 if (cow_start == (u64)-1) 1747 cow_start = cur_offset; 1748 cur_offset = extent_end; 1749 if (cur_offset > end) 1750 break; 1751 if (!path->nodes[0]) 1752 continue; 1753 path->slots[0]++; 1754 goto next_slot; 1755 } 1756 1757 /* 1758 * COW range from cow_start to found_key.offset - 1. As the key 1759 * will contain the beginning of the first extent that can be 1760 * NOCOW, following one which needs to be COW'ed 1761 */ 1762 if (cow_start != (u64)-1) { 1763 ret = fallback_to_cow(inode, locked_page, 1764 cow_start, found_key.offset - 1, 1765 page_started, nr_written); 1766 if (ret) 1767 goto error; 1768 cow_start = (u64)-1; 1769 } 1770 1771 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1772 u64 orig_start = found_key.offset - extent_offset; 1773 struct extent_map *em; 1774 1775 em = create_io_em(inode, cur_offset, num_bytes, 1776 orig_start, 1777 disk_bytenr, /* block_start */ 1778 num_bytes, /* block_len */ 1779 disk_num_bytes, /* orig_block_len */ 1780 ram_bytes, BTRFS_COMPRESS_NONE, 1781 BTRFS_ORDERED_PREALLOC); 1782 if (IS_ERR(em)) { 1783 ret = PTR_ERR(em); 1784 goto error; 1785 } 1786 free_extent_map(em); 1787 ret = btrfs_add_ordered_extent(inode, cur_offset, 1788 disk_bytenr, num_bytes, 1789 num_bytes, 1790 BTRFS_ORDERED_PREALLOC); 1791 if (ret) { 1792 btrfs_drop_extent_cache(inode, cur_offset, 1793 cur_offset + num_bytes - 1, 1794 0); 1795 goto error; 1796 } 1797 } else { 1798 ret = btrfs_add_ordered_extent(inode, cur_offset, 1799 disk_bytenr, num_bytes, 1800 num_bytes, 1801 BTRFS_ORDERED_NOCOW); 1802 if (ret) 1803 goto error; 1804 } 1805 1806 if (nocow) 1807 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1808 nocow = false; 1809 1810 if (root->root_key.objectid == 1811 BTRFS_DATA_RELOC_TREE_OBJECTID) 1812 /* 1813 * Error handled later, as we must prevent 1814 * extent_clear_unlock_delalloc() in error handler 1815 * from freeing metadata of created ordered extent. 1816 */ 1817 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1818 num_bytes); 1819 1820 extent_clear_unlock_delalloc(inode, cur_offset, 1821 cur_offset + num_bytes - 1, 1822 locked_page, EXTENT_LOCKED | 1823 EXTENT_DELALLOC | 1824 EXTENT_CLEAR_DATA_RESV, 1825 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1826 1827 cur_offset = extent_end; 1828 1829 /* 1830 * btrfs_reloc_clone_csums() error, now we're OK to call error 1831 * handler, as metadata for created ordered extent will only 1832 * be freed by btrfs_finish_ordered_io(). 1833 */ 1834 if (ret) 1835 goto error; 1836 if (cur_offset > end) 1837 break; 1838 } 1839 btrfs_release_path(path); 1840 1841 if (cur_offset <= end && cow_start == (u64)-1) 1842 cow_start = cur_offset; 1843 1844 if (cow_start != (u64)-1) { 1845 cur_offset = end; 1846 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1847 page_started, nr_written); 1848 if (ret) 1849 goto error; 1850 } 1851 1852 error: 1853 if (nocow) 1854 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1855 1856 if (ret && cur_offset < end) 1857 extent_clear_unlock_delalloc(inode, cur_offset, end, 1858 locked_page, EXTENT_LOCKED | 1859 EXTENT_DELALLOC | EXTENT_DEFRAG | 1860 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1861 PAGE_START_WRITEBACK | 1862 PAGE_END_WRITEBACK); 1863 btrfs_free_path(path); 1864 return ret; 1865 } 1866 1867 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 1868 { 1869 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 1870 if (inode->defrag_bytes && 1871 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 1872 0, NULL)) 1873 return false; 1874 return true; 1875 } 1876 return false; 1877 } 1878 1879 /* 1880 * Function to process delayed allocation (create CoW) for ranges which are 1881 * being touched for the first time. 1882 */ 1883 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1884 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1885 struct writeback_control *wbc) 1886 { 1887 int ret; 1888 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 1889 1890 if (should_nocow(inode, start, end)) { 1891 ASSERT(!zoned); 1892 ret = run_delalloc_nocow(inode, locked_page, start, end, 1893 page_started, nr_written); 1894 } else if (!inode_can_compress(inode) || 1895 !inode_need_compress(inode, start, end)) { 1896 if (zoned) 1897 ret = run_delalloc_zoned(inode, locked_page, start, end, 1898 page_started, nr_written); 1899 else 1900 ret = cow_file_range(inode, locked_page, start, end, 1901 page_started, nr_written, 1); 1902 } else { 1903 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1904 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1905 page_started, nr_written); 1906 } 1907 if (ret) 1908 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1909 end - start + 1); 1910 return ret; 1911 } 1912 1913 void btrfs_split_delalloc_extent(struct inode *inode, 1914 struct extent_state *orig, u64 split) 1915 { 1916 u64 size; 1917 1918 /* not delalloc, ignore it */ 1919 if (!(orig->state & EXTENT_DELALLOC)) 1920 return; 1921 1922 size = orig->end - orig->start + 1; 1923 if (size > BTRFS_MAX_EXTENT_SIZE) { 1924 u32 num_extents; 1925 u64 new_size; 1926 1927 /* 1928 * See the explanation in btrfs_merge_delalloc_extent, the same 1929 * applies here, just in reverse. 1930 */ 1931 new_size = orig->end - split + 1; 1932 num_extents = count_max_extents(new_size); 1933 new_size = split - orig->start; 1934 num_extents += count_max_extents(new_size); 1935 if (count_max_extents(size) >= num_extents) 1936 return; 1937 } 1938 1939 spin_lock(&BTRFS_I(inode)->lock); 1940 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1941 spin_unlock(&BTRFS_I(inode)->lock); 1942 } 1943 1944 /* 1945 * Handle merged delayed allocation extents so we can keep track of new extents 1946 * that are just merged onto old extents, such as when we are doing sequential 1947 * writes, so we can properly account for the metadata space we'll need. 1948 */ 1949 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1950 struct extent_state *other) 1951 { 1952 u64 new_size, old_size; 1953 u32 num_extents; 1954 1955 /* not delalloc, ignore it */ 1956 if (!(other->state & EXTENT_DELALLOC)) 1957 return; 1958 1959 if (new->start > other->start) 1960 new_size = new->end - other->start + 1; 1961 else 1962 new_size = other->end - new->start + 1; 1963 1964 /* we're not bigger than the max, unreserve the space and go */ 1965 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1966 spin_lock(&BTRFS_I(inode)->lock); 1967 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1968 spin_unlock(&BTRFS_I(inode)->lock); 1969 return; 1970 } 1971 1972 /* 1973 * We have to add up either side to figure out how many extents were 1974 * accounted for before we merged into one big extent. If the number of 1975 * extents we accounted for is <= the amount we need for the new range 1976 * then we can return, otherwise drop. Think of it like this 1977 * 1978 * [ 4k][MAX_SIZE] 1979 * 1980 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1981 * need 2 outstanding extents, on one side we have 1 and the other side 1982 * we have 1 so they are == and we can return. But in this case 1983 * 1984 * [MAX_SIZE+4k][MAX_SIZE+4k] 1985 * 1986 * Each range on their own accounts for 2 extents, but merged together 1987 * they are only 3 extents worth of accounting, so we need to drop in 1988 * this case. 1989 */ 1990 old_size = other->end - other->start + 1; 1991 num_extents = count_max_extents(old_size); 1992 old_size = new->end - new->start + 1; 1993 num_extents += count_max_extents(old_size); 1994 if (count_max_extents(new_size) >= num_extents) 1995 return; 1996 1997 spin_lock(&BTRFS_I(inode)->lock); 1998 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1999 spin_unlock(&BTRFS_I(inode)->lock); 2000 } 2001 2002 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2003 struct inode *inode) 2004 { 2005 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2006 2007 spin_lock(&root->delalloc_lock); 2008 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2009 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2010 &root->delalloc_inodes); 2011 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2012 &BTRFS_I(inode)->runtime_flags); 2013 root->nr_delalloc_inodes++; 2014 if (root->nr_delalloc_inodes == 1) { 2015 spin_lock(&fs_info->delalloc_root_lock); 2016 BUG_ON(!list_empty(&root->delalloc_root)); 2017 list_add_tail(&root->delalloc_root, 2018 &fs_info->delalloc_roots); 2019 spin_unlock(&fs_info->delalloc_root_lock); 2020 } 2021 } 2022 spin_unlock(&root->delalloc_lock); 2023 } 2024 2025 2026 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2027 struct btrfs_inode *inode) 2028 { 2029 struct btrfs_fs_info *fs_info = root->fs_info; 2030 2031 if (!list_empty(&inode->delalloc_inodes)) { 2032 list_del_init(&inode->delalloc_inodes); 2033 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2034 &inode->runtime_flags); 2035 root->nr_delalloc_inodes--; 2036 if (!root->nr_delalloc_inodes) { 2037 ASSERT(list_empty(&root->delalloc_inodes)); 2038 spin_lock(&fs_info->delalloc_root_lock); 2039 BUG_ON(list_empty(&root->delalloc_root)); 2040 list_del_init(&root->delalloc_root); 2041 spin_unlock(&fs_info->delalloc_root_lock); 2042 } 2043 } 2044 } 2045 2046 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2047 struct btrfs_inode *inode) 2048 { 2049 spin_lock(&root->delalloc_lock); 2050 __btrfs_del_delalloc_inode(root, inode); 2051 spin_unlock(&root->delalloc_lock); 2052 } 2053 2054 /* 2055 * Properly track delayed allocation bytes in the inode and to maintain the 2056 * list of inodes that have pending delalloc work to be done. 2057 */ 2058 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2059 unsigned *bits) 2060 { 2061 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2062 2063 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2064 WARN_ON(1); 2065 /* 2066 * set_bit and clear bit hooks normally require _irqsave/restore 2067 * but in this case, we are only testing for the DELALLOC 2068 * bit, which is only set or cleared with irqs on 2069 */ 2070 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2071 struct btrfs_root *root = BTRFS_I(inode)->root; 2072 u64 len = state->end + 1 - state->start; 2073 u32 num_extents = count_max_extents(len); 2074 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2075 2076 spin_lock(&BTRFS_I(inode)->lock); 2077 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2078 spin_unlock(&BTRFS_I(inode)->lock); 2079 2080 /* For sanity tests */ 2081 if (btrfs_is_testing(fs_info)) 2082 return; 2083 2084 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2085 fs_info->delalloc_batch); 2086 spin_lock(&BTRFS_I(inode)->lock); 2087 BTRFS_I(inode)->delalloc_bytes += len; 2088 if (*bits & EXTENT_DEFRAG) 2089 BTRFS_I(inode)->defrag_bytes += len; 2090 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2091 &BTRFS_I(inode)->runtime_flags)) 2092 btrfs_add_delalloc_inodes(root, inode); 2093 spin_unlock(&BTRFS_I(inode)->lock); 2094 } 2095 2096 if (!(state->state & EXTENT_DELALLOC_NEW) && 2097 (*bits & EXTENT_DELALLOC_NEW)) { 2098 spin_lock(&BTRFS_I(inode)->lock); 2099 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2100 state->start; 2101 spin_unlock(&BTRFS_I(inode)->lock); 2102 } 2103 } 2104 2105 /* 2106 * Once a range is no longer delalloc this function ensures that proper 2107 * accounting happens. 2108 */ 2109 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2110 struct extent_state *state, unsigned *bits) 2111 { 2112 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2113 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2114 u64 len = state->end + 1 - state->start; 2115 u32 num_extents = count_max_extents(len); 2116 2117 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2118 spin_lock(&inode->lock); 2119 inode->defrag_bytes -= len; 2120 spin_unlock(&inode->lock); 2121 } 2122 2123 /* 2124 * set_bit and clear bit hooks normally require _irqsave/restore 2125 * but in this case, we are only testing for the DELALLOC 2126 * bit, which is only set or cleared with irqs on 2127 */ 2128 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2129 struct btrfs_root *root = inode->root; 2130 bool do_list = !btrfs_is_free_space_inode(inode); 2131 2132 spin_lock(&inode->lock); 2133 btrfs_mod_outstanding_extents(inode, -num_extents); 2134 spin_unlock(&inode->lock); 2135 2136 /* 2137 * We don't reserve metadata space for space cache inodes so we 2138 * don't need to call delalloc_release_metadata if there is an 2139 * error. 2140 */ 2141 if (*bits & EXTENT_CLEAR_META_RESV && 2142 root != fs_info->tree_root) 2143 btrfs_delalloc_release_metadata(inode, len, false); 2144 2145 /* For sanity tests. */ 2146 if (btrfs_is_testing(fs_info)) 2147 return; 2148 2149 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2150 do_list && !(state->state & EXTENT_NORESERVE) && 2151 (*bits & EXTENT_CLEAR_DATA_RESV)) 2152 btrfs_free_reserved_data_space_noquota(fs_info, len); 2153 2154 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2155 fs_info->delalloc_batch); 2156 spin_lock(&inode->lock); 2157 inode->delalloc_bytes -= len; 2158 if (do_list && inode->delalloc_bytes == 0 && 2159 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2160 &inode->runtime_flags)) 2161 btrfs_del_delalloc_inode(root, inode); 2162 spin_unlock(&inode->lock); 2163 } 2164 2165 if ((state->state & EXTENT_DELALLOC_NEW) && 2166 (*bits & EXTENT_DELALLOC_NEW)) { 2167 spin_lock(&inode->lock); 2168 ASSERT(inode->new_delalloc_bytes >= len); 2169 inode->new_delalloc_bytes -= len; 2170 if (*bits & EXTENT_ADD_INODE_BYTES) 2171 inode_add_bytes(&inode->vfs_inode, len); 2172 spin_unlock(&inode->lock); 2173 } 2174 } 2175 2176 /* 2177 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2178 * in a chunk's stripe. This function ensures that bios do not span a 2179 * stripe/chunk 2180 * 2181 * @page - The page we are about to add to the bio 2182 * @size - size we want to add to the bio 2183 * @bio - bio we want to ensure is smaller than a stripe 2184 * @bio_flags - flags of the bio 2185 * 2186 * return 1 if page cannot be added to the bio 2187 * return 0 if page can be added to the bio 2188 * return error otherwise 2189 */ 2190 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2191 unsigned long bio_flags) 2192 { 2193 struct inode *inode = page->mapping->host; 2194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2195 u64 logical = bio->bi_iter.bi_sector << 9; 2196 struct extent_map *em; 2197 u64 length = 0; 2198 u64 map_length; 2199 int ret = 0; 2200 struct btrfs_io_geometry geom; 2201 2202 if (bio_flags & EXTENT_BIO_COMPRESSED) 2203 return 0; 2204 2205 length = bio->bi_iter.bi_size; 2206 map_length = length; 2207 em = btrfs_get_chunk_map(fs_info, logical, map_length); 2208 if (IS_ERR(em)) 2209 return PTR_ERR(em); 2210 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical, 2211 map_length, &geom); 2212 if (ret < 0) 2213 goto out; 2214 2215 if (geom.len < length + size) 2216 ret = 1; 2217 out: 2218 free_extent_map(em); 2219 return ret; 2220 } 2221 2222 /* 2223 * in order to insert checksums into the metadata in large chunks, 2224 * we wait until bio submission time. All the pages in the bio are 2225 * checksummed and sums are attached onto the ordered extent record. 2226 * 2227 * At IO completion time the cums attached on the ordered extent record 2228 * are inserted into the btree 2229 */ 2230 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2231 u64 dio_file_offset) 2232 { 2233 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2234 } 2235 2236 bool btrfs_bio_fits_in_ordered_extent(struct page *page, struct bio *bio, 2237 unsigned int size) 2238 { 2239 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 2240 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2241 struct btrfs_ordered_extent *ordered; 2242 u64 len = bio->bi_iter.bi_size + size; 2243 bool ret = true; 2244 2245 ASSERT(btrfs_is_zoned(fs_info)); 2246 ASSERT(fs_info->max_zone_append_size > 0); 2247 ASSERT(bio_op(bio) == REQ_OP_ZONE_APPEND); 2248 2249 /* Ordered extent not yet created, so we're good */ 2250 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page)); 2251 if (!ordered) 2252 return ret; 2253 2254 if ((bio->bi_iter.bi_sector << SECTOR_SHIFT) + len > 2255 ordered->disk_bytenr + ordered->disk_num_bytes) 2256 ret = false; 2257 2258 btrfs_put_ordered_extent(ordered); 2259 2260 return ret; 2261 } 2262 2263 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2264 struct bio *bio, loff_t file_offset) 2265 { 2266 struct btrfs_ordered_extent *ordered; 2267 struct extent_map *em = NULL, *em_new = NULL; 2268 struct extent_map_tree *em_tree = &inode->extent_tree; 2269 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2270 u64 len = bio->bi_iter.bi_size; 2271 u64 end = start + len; 2272 u64 ordered_end; 2273 u64 pre, post; 2274 int ret = 0; 2275 2276 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2277 if (WARN_ON_ONCE(!ordered)) 2278 return BLK_STS_IOERR; 2279 2280 /* No need to split */ 2281 if (ordered->disk_num_bytes == len) 2282 goto out; 2283 2284 /* We cannot split once end_bio'd ordered extent */ 2285 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2286 ret = -EINVAL; 2287 goto out; 2288 } 2289 2290 /* We cannot split a compressed ordered extent */ 2291 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2292 ret = -EINVAL; 2293 goto out; 2294 } 2295 2296 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2297 /* bio must be in one ordered extent */ 2298 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2299 ret = -EINVAL; 2300 goto out; 2301 } 2302 2303 /* Checksum list should be empty */ 2304 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2305 ret = -EINVAL; 2306 goto out; 2307 } 2308 2309 pre = start - ordered->disk_bytenr; 2310 post = ordered_end - end; 2311 2312 ret = btrfs_split_ordered_extent(ordered, pre, post); 2313 if (ret) 2314 goto out; 2315 2316 read_lock(&em_tree->lock); 2317 em = lookup_extent_mapping(em_tree, ordered->file_offset, len); 2318 if (!em) { 2319 read_unlock(&em_tree->lock); 2320 ret = -EIO; 2321 goto out; 2322 } 2323 read_unlock(&em_tree->lock); 2324 2325 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2326 /* 2327 * We cannot reuse em_new here but have to create a new one, as 2328 * unpin_extent_cache() expects the start of the extent map to be the 2329 * logical offset of the file, which does not hold true anymore after 2330 * splitting. 2331 */ 2332 em_new = create_io_em(inode, em->start + pre, len, 2333 em->start + pre, em->block_start + pre, len, 2334 len, len, BTRFS_COMPRESS_NONE, 2335 BTRFS_ORDERED_REGULAR); 2336 if (IS_ERR(em_new)) { 2337 ret = PTR_ERR(em_new); 2338 goto out; 2339 } 2340 free_extent_map(em_new); 2341 2342 out: 2343 free_extent_map(em); 2344 btrfs_put_ordered_extent(ordered); 2345 2346 return errno_to_blk_status(ret); 2347 } 2348 2349 /* 2350 * extent_io.c submission hook. This does the right thing for csum calculation 2351 * on write, or reading the csums from the tree before a read. 2352 * 2353 * Rules about async/sync submit, 2354 * a) read: sync submit 2355 * 2356 * b) write without checksum: sync submit 2357 * 2358 * c) write with checksum: 2359 * c-1) if bio is issued by fsync: sync submit 2360 * (sync_writers != 0) 2361 * 2362 * c-2) if root is reloc root: sync submit 2363 * (only in case of buffered IO) 2364 * 2365 * c-3) otherwise: async submit 2366 */ 2367 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2368 int mirror_num, unsigned long bio_flags) 2369 2370 { 2371 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2372 struct btrfs_root *root = BTRFS_I(inode)->root; 2373 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2374 blk_status_t ret = 0; 2375 int skip_sum; 2376 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2377 2378 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 2379 !fs_info->csum_root; 2380 2381 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2382 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2383 2384 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2385 struct page *page = bio_first_bvec_all(bio)->bv_page; 2386 loff_t file_offset = page_offset(page); 2387 2388 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); 2389 if (ret) 2390 goto out; 2391 } 2392 2393 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 2394 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2395 if (ret) 2396 goto out; 2397 2398 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2399 ret = btrfs_submit_compressed_read(inode, bio, 2400 mirror_num, 2401 bio_flags); 2402 goto out; 2403 } else { 2404 /* 2405 * Lookup bio sums does extra checks around whether we 2406 * need to csum or not, which is why we ignore skip_sum 2407 * here. 2408 */ 2409 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2410 if (ret) 2411 goto out; 2412 } 2413 goto mapit; 2414 } else if (async && !skip_sum) { 2415 /* csum items have already been cloned */ 2416 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2417 goto mapit; 2418 /* we're doing a write, do the async checksumming */ 2419 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags, 2420 0, btrfs_submit_bio_start); 2421 goto out; 2422 } else if (!skip_sum) { 2423 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2424 if (ret) 2425 goto out; 2426 } 2427 2428 mapit: 2429 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2430 2431 out: 2432 if (ret) { 2433 bio->bi_status = ret; 2434 bio_endio(bio); 2435 } 2436 return ret; 2437 } 2438 2439 /* 2440 * given a list of ordered sums record them in the inode. This happens 2441 * at IO completion time based on sums calculated at bio submission time. 2442 */ 2443 static int add_pending_csums(struct btrfs_trans_handle *trans, 2444 struct list_head *list) 2445 { 2446 struct btrfs_ordered_sum *sum; 2447 int ret; 2448 2449 list_for_each_entry(sum, list, list) { 2450 trans->adding_csums = true; 2451 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum); 2452 trans->adding_csums = false; 2453 if (ret) 2454 return ret; 2455 } 2456 return 0; 2457 } 2458 2459 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2460 const u64 start, 2461 const u64 len, 2462 struct extent_state **cached_state) 2463 { 2464 u64 search_start = start; 2465 const u64 end = start + len - 1; 2466 2467 while (search_start < end) { 2468 const u64 search_len = end - search_start + 1; 2469 struct extent_map *em; 2470 u64 em_len; 2471 int ret = 0; 2472 2473 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2474 if (IS_ERR(em)) 2475 return PTR_ERR(em); 2476 2477 if (em->block_start != EXTENT_MAP_HOLE) 2478 goto next; 2479 2480 em_len = em->len; 2481 if (em->start < search_start) 2482 em_len -= search_start - em->start; 2483 if (em_len > search_len) 2484 em_len = search_len; 2485 2486 ret = set_extent_bit(&inode->io_tree, search_start, 2487 search_start + em_len - 1, 2488 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2489 GFP_NOFS, NULL); 2490 next: 2491 search_start = extent_map_end(em); 2492 free_extent_map(em); 2493 if (ret) 2494 return ret; 2495 } 2496 return 0; 2497 } 2498 2499 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2500 unsigned int extra_bits, 2501 struct extent_state **cached_state) 2502 { 2503 WARN_ON(PAGE_ALIGNED(end)); 2504 2505 if (start >= i_size_read(&inode->vfs_inode) && 2506 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2507 /* 2508 * There can't be any extents following eof in this case so just 2509 * set the delalloc new bit for the range directly. 2510 */ 2511 extra_bits |= EXTENT_DELALLOC_NEW; 2512 } else { 2513 int ret; 2514 2515 ret = btrfs_find_new_delalloc_bytes(inode, start, 2516 end + 1 - start, 2517 cached_state); 2518 if (ret) 2519 return ret; 2520 } 2521 2522 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2523 cached_state); 2524 } 2525 2526 /* see btrfs_writepage_start_hook for details on why this is required */ 2527 struct btrfs_writepage_fixup { 2528 struct page *page; 2529 struct inode *inode; 2530 struct btrfs_work work; 2531 }; 2532 2533 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2534 { 2535 struct btrfs_writepage_fixup *fixup; 2536 struct btrfs_ordered_extent *ordered; 2537 struct extent_state *cached_state = NULL; 2538 struct extent_changeset *data_reserved = NULL; 2539 struct page *page; 2540 struct btrfs_inode *inode; 2541 u64 page_start; 2542 u64 page_end; 2543 int ret = 0; 2544 bool free_delalloc_space = true; 2545 2546 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2547 page = fixup->page; 2548 inode = BTRFS_I(fixup->inode); 2549 page_start = page_offset(page); 2550 page_end = page_offset(page) + PAGE_SIZE - 1; 2551 2552 /* 2553 * This is similar to page_mkwrite, we need to reserve the space before 2554 * we take the page lock. 2555 */ 2556 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2557 PAGE_SIZE); 2558 again: 2559 lock_page(page); 2560 2561 /* 2562 * Before we queued this fixup, we took a reference on the page. 2563 * page->mapping may go NULL, but it shouldn't be moved to a different 2564 * address space. 2565 */ 2566 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2567 /* 2568 * Unfortunately this is a little tricky, either 2569 * 2570 * 1) We got here and our page had already been dealt with and 2571 * we reserved our space, thus ret == 0, so we need to just 2572 * drop our space reservation and bail. This can happen the 2573 * first time we come into the fixup worker, or could happen 2574 * while waiting for the ordered extent. 2575 * 2) Our page was already dealt with, but we happened to get an 2576 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2577 * this case we obviously don't have anything to release, but 2578 * because the page was already dealt with we don't want to 2579 * mark the page with an error, so make sure we're resetting 2580 * ret to 0. This is why we have this check _before_ the ret 2581 * check, because we do not want to have a surprise ENOSPC 2582 * when the page was already properly dealt with. 2583 */ 2584 if (!ret) { 2585 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2586 btrfs_delalloc_release_space(inode, data_reserved, 2587 page_start, PAGE_SIZE, 2588 true); 2589 } 2590 ret = 0; 2591 goto out_page; 2592 } 2593 2594 /* 2595 * We can't mess with the page state unless it is locked, so now that 2596 * it is locked bail if we failed to make our space reservation. 2597 */ 2598 if (ret) 2599 goto out_page; 2600 2601 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2602 2603 /* already ordered? We're done */ 2604 if (PagePrivate2(page)) 2605 goto out_reserved; 2606 2607 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2608 if (ordered) { 2609 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2610 &cached_state); 2611 unlock_page(page); 2612 btrfs_start_ordered_extent(ordered, 1); 2613 btrfs_put_ordered_extent(ordered); 2614 goto again; 2615 } 2616 2617 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2618 &cached_state); 2619 if (ret) 2620 goto out_reserved; 2621 2622 /* 2623 * Everything went as planned, we're now the owner of a dirty page with 2624 * delayed allocation bits set and space reserved for our COW 2625 * destination. 2626 * 2627 * The page was dirty when we started, nothing should have cleaned it. 2628 */ 2629 BUG_ON(!PageDirty(page)); 2630 free_delalloc_space = false; 2631 out_reserved: 2632 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2633 if (free_delalloc_space) 2634 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2635 PAGE_SIZE, true); 2636 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2637 &cached_state); 2638 out_page: 2639 if (ret) { 2640 /* 2641 * We hit ENOSPC or other errors. Update the mapping and page 2642 * to reflect the errors and clean the page. 2643 */ 2644 mapping_set_error(page->mapping, ret); 2645 end_extent_writepage(page, ret, page_start, page_end); 2646 clear_page_dirty_for_io(page); 2647 SetPageError(page); 2648 } 2649 ClearPageChecked(page); 2650 unlock_page(page); 2651 put_page(page); 2652 kfree(fixup); 2653 extent_changeset_free(data_reserved); 2654 /* 2655 * As a precaution, do a delayed iput in case it would be the last iput 2656 * that could need flushing space. Recursing back to fixup worker would 2657 * deadlock. 2658 */ 2659 btrfs_add_delayed_iput(&inode->vfs_inode); 2660 } 2661 2662 /* 2663 * There are a few paths in the higher layers of the kernel that directly 2664 * set the page dirty bit without asking the filesystem if it is a 2665 * good idea. This causes problems because we want to make sure COW 2666 * properly happens and the data=ordered rules are followed. 2667 * 2668 * In our case any range that doesn't have the ORDERED bit set 2669 * hasn't been properly setup for IO. We kick off an async process 2670 * to fix it up. The async helper will wait for ordered extents, set 2671 * the delalloc bit and make it safe to write the page. 2672 */ 2673 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2674 { 2675 struct inode *inode = page->mapping->host; 2676 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2677 struct btrfs_writepage_fixup *fixup; 2678 2679 /* this page is properly in the ordered list */ 2680 if (TestClearPagePrivate2(page)) 2681 return 0; 2682 2683 /* 2684 * PageChecked is set below when we create a fixup worker for this page, 2685 * don't try to create another one if we're already PageChecked() 2686 * 2687 * The extent_io writepage code will redirty the page if we send back 2688 * EAGAIN. 2689 */ 2690 if (PageChecked(page)) 2691 return -EAGAIN; 2692 2693 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2694 if (!fixup) 2695 return -EAGAIN; 2696 2697 /* 2698 * We are already holding a reference to this inode from 2699 * write_cache_pages. We need to hold it because the space reservation 2700 * takes place outside of the page lock, and we can't trust 2701 * page->mapping outside of the page lock. 2702 */ 2703 ihold(inode); 2704 SetPageChecked(page); 2705 get_page(page); 2706 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2707 fixup->page = page; 2708 fixup->inode = inode; 2709 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2710 2711 return -EAGAIN; 2712 } 2713 2714 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2715 struct btrfs_inode *inode, u64 file_pos, 2716 struct btrfs_file_extent_item *stack_fi, 2717 const bool update_inode_bytes, 2718 u64 qgroup_reserved) 2719 { 2720 struct btrfs_root *root = inode->root; 2721 const u64 sectorsize = root->fs_info->sectorsize; 2722 struct btrfs_path *path; 2723 struct extent_buffer *leaf; 2724 struct btrfs_key ins; 2725 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2726 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2727 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2728 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2729 struct btrfs_drop_extents_args drop_args = { 0 }; 2730 int ret; 2731 2732 path = btrfs_alloc_path(); 2733 if (!path) 2734 return -ENOMEM; 2735 2736 /* 2737 * we may be replacing one extent in the tree with another. 2738 * The new extent is pinned in the extent map, and we don't want 2739 * to drop it from the cache until it is completely in the btree. 2740 * 2741 * So, tell btrfs_drop_extents to leave this extent in the cache. 2742 * the caller is expected to unpin it and allow it to be merged 2743 * with the others. 2744 */ 2745 drop_args.path = path; 2746 drop_args.start = file_pos; 2747 drop_args.end = file_pos + num_bytes; 2748 drop_args.replace_extent = true; 2749 drop_args.extent_item_size = sizeof(*stack_fi); 2750 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2751 if (ret) 2752 goto out; 2753 2754 if (!drop_args.extent_inserted) { 2755 ins.objectid = btrfs_ino(inode); 2756 ins.offset = file_pos; 2757 ins.type = BTRFS_EXTENT_DATA_KEY; 2758 2759 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2760 sizeof(*stack_fi)); 2761 if (ret) 2762 goto out; 2763 } 2764 leaf = path->nodes[0]; 2765 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2766 write_extent_buffer(leaf, stack_fi, 2767 btrfs_item_ptr_offset(leaf, path->slots[0]), 2768 sizeof(struct btrfs_file_extent_item)); 2769 2770 btrfs_mark_buffer_dirty(leaf); 2771 btrfs_release_path(path); 2772 2773 /* 2774 * If we dropped an inline extent here, we know the range where it is 2775 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2776 * number of bytes only for that range contaning the inline extent. 2777 * The remaining of the range will be processed when clearning the 2778 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2779 */ 2780 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2781 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2782 2783 inline_size = drop_args.bytes_found - inline_size; 2784 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2785 drop_args.bytes_found -= inline_size; 2786 num_bytes -= sectorsize; 2787 } 2788 2789 if (update_inode_bytes) 2790 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2791 2792 ins.objectid = disk_bytenr; 2793 ins.offset = disk_num_bytes; 2794 ins.type = BTRFS_EXTENT_ITEM_KEY; 2795 2796 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2797 if (ret) 2798 goto out; 2799 2800 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2801 file_pos, qgroup_reserved, &ins); 2802 out: 2803 btrfs_free_path(path); 2804 2805 return ret; 2806 } 2807 2808 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2809 u64 start, u64 len) 2810 { 2811 struct btrfs_block_group *cache; 2812 2813 cache = btrfs_lookup_block_group(fs_info, start); 2814 ASSERT(cache); 2815 2816 spin_lock(&cache->lock); 2817 cache->delalloc_bytes -= len; 2818 spin_unlock(&cache->lock); 2819 2820 btrfs_put_block_group(cache); 2821 } 2822 2823 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2824 struct btrfs_ordered_extent *oe) 2825 { 2826 struct btrfs_file_extent_item stack_fi; 2827 u64 logical_len; 2828 bool update_inode_bytes; 2829 2830 memset(&stack_fi, 0, sizeof(stack_fi)); 2831 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2832 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2833 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2834 oe->disk_num_bytes); 2835 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2836 logical_len = oe->truncated_len; 2837 else 2838 logical_len = oe->num_bytes; 2839 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); 2840 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); 2841 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2842 /* Encryption and other encoding is reserved and all 0 */ 2843 2844 /* 2845 * For delalloc, when completing an ordered extent we update the inode's 2846 * bytes when clearing the range in the inode's io tree, so pass false 2847 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2848 * except if the ordered extent was truncated. 2849 */ 2850 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 2851 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 2852 2853 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 2854 oe->file_offset, &stack_fi, 2855 update_inode_bytes, oe->qgroup_rsv); 2856 } 2857 2858 /* 2859 * As ordered data IO finishes, this gets called so we can finish 2860 * an ordered extent if the range of bytes in the file it covers are 2861 * fully written. 2862 */ 2863 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2864 { 2865 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 2866 struct btrfs_root *root = inode->root; 2867 struct btrfs_fs_info *fs_info = root->fs_info; 2868 struct btrfs_trans_handle *trans = NULL; 2869 struct extent_io_tree *io_tree = &inode->io_tree; 2870 struct extent_state *cached_state = NULL; 2871 u64 start, end; 2872 int compress_type = 0; 2873 int ret = 0; 2874 u64 logical_len = ordered_extent->num_bytes; 2875 bool freespace_inode; 2876 bool truncated = false; 2877 bool clear_reserved_extent = true; 2878 unsigned int clear_bits = EXTENT_DEFRAG; 2879 2880 start = ordered_extent->file_offset; 2881 end = start + ordered_extent->num_bytes - 1; 2882 2883 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2884 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2885 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2886 clear_bits |= EXTENT_DELALLOC_NEW; 2887 2888 freespace_inode = btrfs_is_free_space_inode(inode); 2889 2890 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2891 ret = -EIO; 2892 goto out; 2893 } 2894 2895 if (ordered_extent->disk) 2896 btrfs_rewrite_logical_zoned(ordered_extent); 2897 2898 btrfs_free_io_failure_record(inode, start, end); 2899 2900 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2901 truncated = true; 2902 logical_len = ordered_extent->truncated_len; 2903 /* Truncated the entire extent, don't bother adding */ 2904 if (!logical_len) 2905 goto out; 2906 } 2907 2908 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2909 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2910 2911 btrfs_inode_safe_disk_i_size_write(inode, 0); 2912 if (freespace_inode) 2913 trans = btrfs_join_transaction_spacecache(root); 2914 else 2915 trans = btrfs_join_transaction(root); 2916 if (IS_ERR(trans)) { 2917 ret = PTR_ERR(trans); 2918 trans = NULL; 2919 goto out; 2920 } 2921 trans->block_rsv = &inode->block_rsv; 2922 ret = btrfs_update_inode_fallback(trans, root, inode); 2923 if (ret) /* -ENOMEM or corruption */ 2924 btrfs_abort_transaction(trans, ret); 2925 goto out; 2926 } 2927 2928 clear_bits |= EXTENT_LOCKED; 2929 lock_extent_bits(io_tree, start, end, &cached_state); 2930 2931 if (freespace_inode) 2932 trans = btrfs_join_transaction_spacecache(root); 2933 else 2934 trans = btrfs_join_transaction(root); 2935 if (IS_ERR(trans)) { 2936 ret = PTR_ERR(trans); 2937 trans = NULL; 2938 goto out; 2939 } 2940 2941 trans->block_rsv = &inode->block_rsv; 2942 2943 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2944 compress_type = ordered_extent->compress_type; 2945 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2946 BUG_ON(compress_type); 2947 ret = btrfs_mark_extent_written(trans, inode, 2948 ordered_extent->file_offset, 2949 ordered_extent->file_offset + 2950 logical_len); 2951 } else { 2952 BUG_ON(root == fs_info->tree_root); 2953 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 2954 if (!ret) { 2955 clear_reserved_extent = false; 2956 btrfs_release_delalloc_bytes(fs_info, 2957 ordered_extent->disk_bytenr, 2958 ordered_extent->disk_num_bytes); 2959 } 2960 } 2961 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 2962 ordered_extent->num_bytes, trans->transid); 2963 if (ret < 0) { 2964 btrfs_abort_transaction(trans, ret); 2965 goto out; 2966 } 2967 2968 ret = add_pending_csums(trans, &ordered_extent->list); 2969 if (ret) { 2970 btrfs_abort_transaction(trans, ret); 2971 goto out; 2972 } 2973 2974 /* 2975 * If this is a new delalloc range, clear its new delalloc flag to 2976 * update the inode's number of bytes. This needs to be done first 2977 * before updating the inode item. 2978 */ 2979 if ((clear_bits & EXTENT_DELALLOC_NEW) && 2980 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 2981 clear_extent_bit(&inode->io_tree, start, end, 2982 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 2983 0, 0, &cached_state); 2984 2985 btrfs_inode_safe_disk_i_size_write(inode, 0); 2986 ret = btrfs_update_inode_fallback(trans, root, inode); 2987 if (ret) { /* -ENOMEM or corruption */ 2988 btrfs_abort_transaction(trans, ret); 2989 goto out; 2990 } 2991 ret = 0; 2992 out: 2993 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 2994 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2995 &cached_state); 2996 2997 if (trans) 2998 btrfs_end_transaction(trans); 2999 3000 if (ret || truncated) { 3001 u64 unwritten_start = start; 3002 3003 /* 3004 * If we failed to finish this ordered extent for any reason we 3005 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3006 * extent, and mark the inode with the error if it wasn't 3007 * already set. Any error during writeback would have already 3008 * set the mapping error, so we need to set it if we're the ones 3009 * marking this ordered extent as failed. 3010 */ 3011 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3012 &ordered_extent->flags)) 3013 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3014 3015 if (truncated) 3016 unwritten_start += logical_len; 3017 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3018 3019 /* Drop the cache for the part of the extent we didn't write. */ 3020 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 3021 3022 /* 3023 * If the ordered extent had an IOERR or something else went 3024 * wrong we need to return the space for this ordered extent 3025 * back to the allocator. We only free the extent in the 3026 * truncated case if we didn't write out the extent at all. 3027 * 3028 * If we made it past insert_reserved_file_extent before we 3029 * errored out then we don't need to do this as the accounting 3030 * has already been done. 3031 */ 3032 if ((ret || !logical_len) && 3033 clear_reserved_extent && 3034 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3035 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3036 /* 3037 * Discard the range before returning it back to the 3038 * free space pool 3039 */ 3040 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3041 btrfs_discard_extent(fs_info, 3042 ordered_extent->disk_bytenr, 3043 ordered_extent->disk_num_bytes, 3044 NULL); 3045 btrfs_free_reserved_extent(fs_info, 3046 ordered_extent->disk_bytenr, 3047 ordered_extent->disk_num_bytes, 1); 3048 } 3049 } 3050 3051 /* 3052 * This needs to be done to make sure anybody waiting knows we are done 3053 * updating everything for this ordered extent. 3054 */ 3055 btrfs_remove_ordered_extent(inode, ordered_extent); 3056 3057 /* once for us */ 3058 btrfs_put_ordered_extent(ordered_extent); 3059 /* once for the tree */ 3060 btrfs_put_ordered_extent(ordered_extent); 3061 3062 return ret; 3063 } 3064 3065 static void finish_ordered_fn(struct btrfs_work *work) 3066 { 3067 struct btrfs_ordered_extent *ordered_extent; 3068 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3069 btrfs_finish_ordered_io(ordered_extent); 3070 } 3071 3072 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3073 u64 end, int uptodate) 3074 { 3075 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3076 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3077 struct btrfs_ordered_extent *ordered_extent = NULL; 3078 struct btrfs_workqueue *wq; 3079 3080 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3081 3082 ClearPagePrivate2(page); 3083 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3084 end - start + 1, uptodate)) 3085 return; 3086 3087 if (btrfs_is_free_space_inode(inode)) 3088 wq = fs_info->endio_freespace_worker; 3089 else 3090 wq = fs_info->endio_write_workers; 3091 3092 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 3093 btrfs_queue_work(wq, &ordered_extent->work); 3094 } 3095 3096 /* 3097 * check_data_csum - verify checksum of one sector of uncompressed data 3098 * @inode: inode 3099 * @io_bio: btrfs_io_bio which contains the csum 3100 * @bio_offset: offset to the beginning of the bio (in bytes) 3101 * @page: page where is the data to be verified 3102 * @pgoff: offset inside the page 3103 * @start: logical offset in the file 3104 * 3105 * The length of such check is always one sector size. 3106 */ 3107 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 3108 u32 bio_offset, struct page *page, u32 pgoff, 3109 u64 start) 3110 { 3111 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3112 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3113 char *kaddr; 3114 u32 len = fs_info->sectorsize; 3115 const u32 csum_size = fs_info->csum_size; 3116 unsigned int offset_sectors; 3117 u8 *csum_expected; 3118 u8 csum[BTRFS_CSUM_SIZE]; 3119 3120 ASSERT(pgoff + len <= PAGE_SIZE); 3121 3122 offset_sectors = bio_offset >> fs_info->sectorsize_bits; 3123 csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size; 3124 3125 kaddr = kmap_atomic(page); 3126 shash->tfm = fs_info->csum_shash; 3127 3128 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 3129 3130 if (memcmp(csum, csum_expected, csum_size)) 3131 goto zeroit; 3132 3133 kunmap_atomic(kaddr); 3134 return 0; 3135 zeroit: 3136 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3137 io_bio->mirror_num); 3138 if (io_bio->device) 3139 btrfs_dev_stat_inc_and_print(io_bio->device, 3140 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3141 memset(kaddr + pgoff, 1, len); 3142 flush_dcache_page(page); 3143 kunmap_atomic(kaddr); 3144 return -EIO; 3145 } 3146 3147 /* 3148 * When reads are done, we need to check csums to verify the data is correct. 3149 * if there's a match, we allow the bio to finish. If not, the code in 3150 * extent_io.c will try to find good copies for us. 3151 * 3152 * @bio_offset: offset to the beginning of the bio (in bytes) 3153 * @start: file offset of the range start 3154 * @end: file offset of the range end (inclusive) 3155 */ 3156 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset, 3157 struct page *page, u64 start, u64 end) 3158 { 3159 struct inode *inode = page->mapping->host; 3160 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3161 struct btrfs_root *root = BTRFS_I(inode)->root; 3162 const u32 sectorsize = root->fs_info->sectorsize; 3163 u32 pg_off; 3164 3165 if (PageChecked(page)) { 3166 ClearPageChecked(page); 3167 return 0; 3168 } 3169 3170 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3171 return 0; 3172 3173 if (!root->fs_info->csum_root) 3174 return 0; 3175 3176 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3177 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3178 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3179 return 0; 3180 } 3181 3182 ASSERT(page_offset(page) <= start && 3183 end <= page_offset(page) + PAGE_SIZE - 1); 3184 for (pg_off = offset_in_page(start); 3185 pg_off < offset_in_page(end); 3186 pg_off += sectorsize, bio_offset += sectorsize) { 3187 int ret; 3188 3189 ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off, 3190 page_offset(page) + pg_off); 3191 if (ret < 0) 3192 return -EIO; 3193 } 3194 return 0; 3195 } 3196 3197 /* 3198 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3199 * 3200 * @inode: The inode we want to perform iput on 3201 * 3202 * This function uses the generic vfs_inode::i_count to track whether we should 3203 * just decrement it (in case it's > 1) or if this is the last iput then link 3204 * the inode to the delayed iput machinery. Delayed iputs are processed at 3205 * transaction commit time/superblock commit/cleaner kthread. 3206 */ 3207 void btrfs_add_delayed_iput(struct inode *inode) 3208 { 3209 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3210 struct btrfs_inode *binode = BTRFS_I(inode); 3211 3212 if (atomic_add_unless(&inode->i_count, -1, 1)) 3213 return; 3214 3215 atomic_inc(&fs_info->nr_delayed_iputs); 3216 spin_lock(&fs_info->delayed_iput_lock); 3217 ASSERT(list_empty(&binode->delayed_iput)); 3218 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3219 spin_unlock(&fs_info->delayed_iput_lock); 3220 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3221 wake_up_process(fs_info->cleaner_kthread); 3222 } 3223 3224 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3225 struct btrfs_inode *inode) 3226 { 3227 list_del_init(&inode->delayed_iput); 3228 spin_unlock(&fs_info->delayed_iput_lock); 3229 iput(&inode->vfs_inode); 3230 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3231 wake_up(&fs_info->delayed_iputs_wait); 3232 spin_lock(&fs_info->delayed_iput_lock); 3233 } 3234 3235 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3236 struct btrfs_inode *inode) 3237 { 3238 if (!list_empty(&inode->delayed_iput)) { 3239 spin_lock(&fs_info->delayed_iput_lock); 3240 if (!list_empty(&inode->delayed_iput)) 3241 run_delayed_iput_locked(fs_info, inode); 3242 spin_unlock(&fs_info->delayed_iput_lock); 3243 } 3244 } 3245 3246 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3247 { 3248 3249 spin_lock(&fs_info->delayed_iput_lock); 3250 while (!list_empty(&fs_info->delayed_iputs)) { 3251 struct btrfs_inode *inode; 3252 3253 inode = list_first_entry(&fs_info->delayed_iputs, 3254 struct btrfs_inode, delayed_iput); 3255 run_delayed_iput_locked(fs_info, inode); 3256 cond_resched_lock(&fs_info->delayed_iput_lock); 3257 } 3258 spin_unlock(&fs_info->delayed_iput_lock); 3259 } 3260 3261 /** 3262 * Wait for flushing all delayed iputs 3263 * 3264 * @fs_info: the filesystem 3265 * 3266 * This will wait on any delayed iputs that are currently running with KILLABLE 3267 * set. Once they are all done running we will return, unless we are killed in 3268 * which case we return EINTR. This helps in user operations like fallocate etc 3269 * that might get blocked on the iputs. 3270 * 3271 * Return EINTR if we were killed, 0 if nothing's pending 3272 */ 3273 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3274 { 3275 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3276 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3277 if (ret) 3278 return -EINTR; 3279 return 0; 3280 } 3281 3282 /* 3283 * This creates an orphan entry for the given inode in case something goes wrong 3284 * in the middle of an unlink. 3285 */ 3286 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3287 struct btrfs_inode *inode) 3288 { 3289 int ret; 3290 3291 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3292 if (ret && ret != -EEXIST) { 3293 btrfs_abort_transaction(trans, ret); 3294 return ret; 3295 } 3296 3297 return 0; 3298 } 3299 3300 /* 3301 * We have done the delete so we can go ahead and remove the orphan item for 3302 * this particular inode. 3303 */ 3304 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3305 struct btrfs_inode *inode) 3306 { 3307 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3308 } 3309 3310 /* 3311 * this cleans up any orphans that may be left on the list from the last use 3312 * of this root. 3313 */ 3314 int btrfs_orphan_cleanup(struct btrfs_root *root) 3315 { 3316 struct btrfs_fs_info *fs_info = root->fs_info; 3317 struct btrfs_path *path; 3318 struct extent_buffer *leaf; 3319 struct btrfs_key key, found_key; 3320 struct btrfs_trans_handle *trans; 3321 struct inode *inode; 3322 u64 last_objectid = 0; 3323 int ret = 0, nr_unlink = 0; 3324 3325 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3326 return 0; 3327 3328 path = btrfs_alloc_path(); 3329 if (!path) { 3330 ret = -ENOMEM; 3331 goto out; 3332 } 3333 path->reada = READA_BACK; 3334 3335 key.objectid = BTRFS_ORPHAN_OBJECTID; 3336 key.type = BTRFS_ORPHAN_ITEM_KEY; 3337 key.offset = (u64)-1; 3338 3339 while (1) { 3340 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3341 if (ret < 0) 3342 goto out; 3343 3344 /* 3345 * if ret == 0 means we found what we were searching for, which 3346 * is weird, but possible, so only screw with path if we didn't 3347 * find the key and see if we have stuff that matches 3348 */ 3349 if (ret > 0) { 3350 ret = 0; 3351 if (path->slots[0] == 0) 3352 break; 3353 path->slots[0]--; 3354 } 3355 3356 /* pull out the item */ 3357 leaf = path->nodes[0]; 3358 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3359 3360 /* make sure the item matches what we want */ 3361 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3362 break; 3363 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3364 break; 3365 3366 /* release the path since we're done with it */ 3367 btrfs_release_path(path); 3368 3369 /* 3370 * this is where we are basically btrfs_lookup, without the 3371 * crossing root thing. we store the inode number in the 3372 * offset of the orphan item. 3373 */ 3374 3375 if (found_key.offset == last_objectid) { 3376 btrfs_err(fs_info, 3377 "Error removing orphan entry, stopping orphan cleanup"); 3378 ret = -EINVAL; 3379 goto out; 3380 } 3381 3382 last_objectid = found_key.offset; 3383 3384 found_key.objectid = found_key.offset; 3385 found_key.type = BTRFS_INODE_ITEM_KEY; 3386 found_key.offset = 0; 3387 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3388 ret = PTR_ERR_OR_ZERO(inode); 3389 if (ret && ret != -ENOENT) 3390 goto out; 3391 3392 if (ret == -ENOENT && root == fs_info->tree_root) { 3393 struct btrfs_root *dead_root; 3394 int is_dead_root = 0; 3395 3396 /* 3397 * This is an orphan in the tree root. Currently these 3398 * could come from 2 sources: 3399 * a) a root (snapshot/subvolume) deletion in progress 3400 * b) a free space cache inode 3401 * We need to distinguish those two, as the orphan item 3402 * for a root must not get deleted before the deletion 3403 * of the snapshot/subvolume's tree completes. 3404 * 3405 * btrfs_find_orphan_roots() ran before us, which has 3406 * found all deleted roots and loaded them into 3407 * fs_info->fs_roots_radix. So here we can find if an 3408 * orphan item corresponds to a deleted root by looking 3409 * up the root from that radix tree. 3410 */ 3411 3412 spin_lock(&fs_info->fs_roots_radix_lock); 3413 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3414 (unsigned long)found_key.objectid); 3415 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3416 is_dead_root = 1; 3417 spin_unlock(&fs_info->fs_roots_radix_lock); 3418 3419 if (is_dead_root) { 3420 /* prevent this orphan from being found again */ 3421 key.offset = found_key.objectid - 1; 3422 continue; 3423 } 3424 3425 } 3426 3427 /* 3428 * If we have an inode with links, there are a couple of 3429 * possibilities. Old kernels (before v3.12) used to create an 3430 * orphan item for truncate indicating that there were possibly 3431 * extent items past i_size that needed to be deleted. In v3.12, 3432 * truncate was changed to update i_size in sync with the extent 3433 * items, but the (useless) orphan item was still created. Since 3434 * v4.18, we don't create the orphan item for truncate at all. 3435 * 3436 * So, this item could mean that we need to do a truncate, but 3437 * only if this filesystem was last used on a pre-v3.12 kernel 3438 * and was not cleanly unmounted. The odds of that are quite 3439 * slim, and it's a pain to do the truncate now, so just delete 3440 * the orphan item. 3441 * 3442 * It's also possible that this orphan item was supposed to be 3443 * deleted but wasn't. The inode number may have been reused, 3444 * but either way, we can delete the orphan item. 3445 */ 3446 if (ret == -ENOENT || inode->i_nlink) { 3447 if (!ret) 3448 iput(inode); 3449 trans = btrfs_start_transaction(root, 1); 3450 if (IS_ERR(trans)) { 3451 ret = PTR_ERR(trans); 3452 goto out; 3453 } 3454 btrfs_debug(fs_info, "auto deleting %Lu", 3455 found_key.objectid); 3456 ret = btrfs_del_orphan_item(trans, root, 3457 found_key.objectid); 3458 btrfs_end_transaction(trans); 3459 if (ret) 3460 goto out; 3461 continue; 3462 } 3463 3464 nr_unlink++; 3465 3466 /* this will do delete_inode and everything for us */ 3467 iput(inode); 3468 } 3469 /* release the path since we're done with it */ 3470 btrfs_release_path(path); 3471 3472 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3473 3474 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3475 trans = btrfs_join_transaction(root); 3476 if (!IS_ERR(trans)) 3477 btrfs_end_transaction(trans); 3478 } 3479 3480 if (nr_unlink) 3481 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3482 3483 out: 3484 if (ret) 3485 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3486 btrfs_free_path(path); 3487 return ret; 3488 } 3489 3490 /* 3491 * very simple check to peek ahead in the leaf looking for xattrs. If we 3492 * don't find any xattrs, we know there can't be any acls. 3493 * 3494 * slot is the slot the inode is in, objectid is the objectid of the inode 3495 */ 3496 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3497 int slot, u64 objectid, 3498 int *first_xattr_slot) 3499 { 3500 u32 nritems = btrfs_header_nritems(leaf); 3501 struct btrfs_key found_key; 3502 static u64 xattr_access = 0; 3503 static u64 xattr_default = 0; 3504 int scanned = 0; 3505 3506 if (!xattr_access) { 3507 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3508 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3509 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3510 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3511 } 3512 3513 slot++; 3514 *first_xattr_slot = -1; 3515 while (slot < nritems) { 3516 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3517 3518 /* we found a different objectid, there must not be acls */ 3519 if (found_key.objectid != objectid) 3520 return 0; 3521 3522 /* we found an xattr, assume we've got an acl */ 3523 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3524 if (*first_xattr_slot == -1) 3525 *first_xattr_slot = slot; 3526 if (found_key.offset == xattr_access || 3527 found_key.offset == xattr_default) 3528 return 1; 3529 } 3530 3531 /* 3532 * we found a key greater than an xattr key, there can't 3533 * be any acls later on 3534 */ 3535 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3536 return 0; 3537 3538 slot++; 3539 scanned++; 3540 3541 /* 3542 * it goes inode, inode backrefs, xattrs, extents, 3543 * so if there are a ton of hard links to an inode there can 3544 * be a lot of backrefs. Don't waste time searching too hard, 3545 * this is just an optimization 3546 */ 3547 if (scanned >= 8) 3548 break; 3549 } 3550 /* we hit the end of the leaf before we found an xattr or 3551 * something larger than an xattr. We have to assume the inode 3552 * has acls 3553 */ 3554 if (*first_xattr_slot == -1) 3555 *first_xattr_slot = slot; 3556 return 1; 3557 } 3558 3559 /* 3560 * read an inode from the btree into the in-memory inode 3561 */ 3562 static int btrfs_read_locked_inode(struct inode *inode, 3563 struct btrfs_path *in_path) 3564 { 3565 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3566 struct btrfs_path *path = in_path; 3567 struct extent_buffer *leaf; 3568 struct btrfs_inode_item *inode_item; 3569 struct btrfs_root *root = BTRFS_I(inode)->root; 3570 struct btrfs_key location; 3571 unsigned long ptr; 3572 int maybe_acls; 3573 u32 rdev; 3574 int ret; 3575 bool filled = false; 3576 int first_xattr_slot; 3577 3578 ret = btrfs_fill_inode(inode, &rdev); 3579 if (!ret) 3580 filled = true; 3581 3582 if (!path) { 3583 path = btrfs_alloc_path(); 3584 if (!path) 3585 return -ENOMEM; 3586 } 3587 3588 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3589 3590 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3591 if (ret) { 3592 if (path != in_path) 3593 btrfs_free_path(path); 3594 return ret; 3595 } 3596 3597 leaf = path->nodes[0]; 3598 3599 if (filled) 3600 goto cache_index; 3601 3602 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3603 struct btrfs_inode_item); 3604 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3605 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3606 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3607 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3608 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3609 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3610 round_up(i_size_read(inode), fs_info->sectorsize)); 3611 3612 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3613 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3614 3615 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3616 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3617 3618 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3619 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3620 3621 BTRFS_I(inode)->i_otime.tv_sec = 3622 btrfs_timespec_sec(leaf, &inode_item->otime); 3623 BTRFS_I(inode)->i_otime.tv_nsec = 3624 btrfs_timespec_nsec(leaf, &inode_item->otime); 3625 3626 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3627 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3628 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3629 3630 inode_set_iversion_queried(inode, 3631 btrfs_inode_sequence(leaf, inode_item)); 3632 inode->i_generation = BTRFS_I(inode)->generation; 3633 inode->i_rdev = 0; 3634 rdev = btrfs_inode_rdev(leaf, inode_item); 3635 3636 BTRFS_I(inode)->index_cnt = (u64)-1; 3637 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3638 3639 cache_index: 3640 /* 3641 * If we were modified in the current generation and evicted from memory 3642 * and then re-read we need to do a full sync since we don't have any 3643 * idea about which extents were modified before we were evicted from 3644 * cache. 3645 * 3646 * This is required for both inode re-read from disk and delayed inode 3647 * in delayed_nodes_tree. 3648 */ 3649 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3650 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3651 &BTRFS_I(inode)->runtime_flags); 3652 3653 /* 3654 * We don't persist the id of the transaction where an unlink operation 3655 * against the inode was last made. So here we assume the inode might 3656 * have been evicted, and therefore the exact value of last_unlink_trans 3657 * lost, and set it to last_trans to avoid metadata inconsistencies 3658 * between the inode and its parent if the inode is fsync'ed and the log 3659 * replayed. For example, in the scenario: 3660 * 3661 * touch mydir/foo 3662 * ln mydir/foo mydir/bar 3663 * sync 3664 * unlink mydir/bar 3665 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3666 * xfs_io -c fsync mydir/foo 3667 * <power failure> 3668 * mount fs, triggers fsync log replay 3669 * 3670 * We must make sure that when we fsync our inode foo we also log its 3671 * parent inode, otherwise after log replay the parent still has the 3672 * dentry with the "bar" name but our inode foo has a link count of 1 3673 * and doesn't have an inode ref with the name "bar" anymore. 3674 * 3675 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3676 * but it guarantees correctness at the expense of occasional full 3677 * transaction commits on fsync if our inode is a directory, or if our 3678 * inode is not a directory, logging its parent unnecessarily. 3679 */ 3680 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3681 3682 /* 3683 * Same logic as for last_unlink_trans. We don't persist the generation 3684 * of the last transaction where this inode was used for a reflink 3685 * operation, so after eviction and reloading the inode we must be 3686 * pessimistic and assume the last transaction that modified the inode. 3687 */ 3688 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3689 3690 path->slots[0]++; 3691 if (inode->i_nlink != 1 || 3692 path->slots[0] >= btrfs_header_nritems(leaf)) 3693 goto cache_acl; 3694 3695 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3696 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3697 goto cache_acl; 3698 3699 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3700 if (location.type == BTRFS_INODE_REF_KEY) { 3701 struct btrfs_inode_ref *ref; 3702 3703 ref = (struct btrfs_inode_ref *)ptr; 3704 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3705 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3706 struct btrfs_inode_extref *extref; 3707 3708 extref = (struct btrfs_inode_extref *)ptr; 3709 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3710 extref); 3711 } 3712 cache_acl: 3713 /* 3714 * try to precache a NULL acl entry for files that don't have 3715 * any xattrs or acls 3716 */ 3717 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3718 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3719 if (first_xattr_slot != -1) { 3720 path->slots[0] = first_xattr_slot; 3721 ret = btrfs_load_inode_props(inode, path); 3722 if (ret) 3723 btrfs_err(fs_info, 3724 "error loading props for ino %llu (root %llu): %d", 3725 btrfs_ino(BTRFS_I(inode)), 3726 root->root_key.objectid, ret); 3727 } 3728 if (path != in_path) 3729 btrfs_free_path(path); 3730 3731 if (!maybe_acls) 3732 cache_no_acl(inode); 3733 3734 switch (inode->i_mode & S_IFMT) { 3735 case S_IFREG: 3736 inode->i_mapping->a_ops = &btrfs_aops; 3737 inode->i_fop = &btrfs_file_operations; 3738 inode->i_op = &btrfs_file_inode_operations; 3739 break; 3740 case S_IFDIR: 3741 inode->i_fop = &btrfs_dir_file_operations; 3742 inode->i_op = &btrfs_dir_inode_operations; 3743 break; 3744 case S_IFLNK: 3745 inode->i_op = &btrfs_symlink_inode_operations; 3746 inode_nohighmem(inode); 3747 inode->i_mapping->a_ops = &btrfs_aops; 3748 break; 3749 default: 3750 inode->i_op = &btrfs_special_inode_operations; 3751 init_special_inode(inode, inode->i_mode, rdev); 3752 break; 3753 } 3754 3755 btrfs_sync_inode_flags_to_i_flags(inode); 3756 return 0; 3757 } 3758 3759 /* 3760 * given a leaf and an inode, copy the inode fields into the leaf 3761 */ 3762 static void fill_inode_item(struct btrfs_trans_handle *trans, 3763 struct extent_buffer *leaf, 3764 struct btrfs_inode_item *item, 3765 struct inode *inode) 3766 { 3767 struct btrfs_map_token token; 3768 3769 btrfs_init_map_token(&token, leaf); 3770 3771 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3772 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3773 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3774 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3775 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3776 3777 btrfs_set_token_timespec_sec(&token, &item->atime, 3778 inode->i_atime.tv_sec); 3779 btrfs_set_token_timespec_nsec(&token, &item->atime, 3780 inode->i_atime.tv_nsec); 3781 3782 btrfs_set_token_timespec_sec(&token, &item->mtime, 3783 inode->i_mtime.tv_sec); 3784 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3785 inode->i_mtime.tv_nsec); 3786 3787 btrfs_set_token_timespec_sec(&token, &item->ctime, 3788 inode->i_ctime.tv_sec); 3789 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3790 inode->i_ctime.tv_nsec); 3791 3792 btrfs_set_token_timespec_sec(&token, &item->otime, 3793 BTRFS_I(inode)->i_otime.tv_sec); 3794 btrfs_set_token_timespec_nsec(&token, &item->otime, 3795 BTRFS_I(inode)->i_otime.tv_nsec); 3796 3797 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3798 btrfs_set_token_inode_generation(&token, item, 3799 BTRFS_I(inode)->generation); 3800 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3801 btrfs_set_token_inode_transid(&token, item, trans->transid); 3802 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3803 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3804 btrfs_set_token_inode_block_group(&token, item, 0); 3805 } 3806 3807 /* 3808 * copy everything in the in-memory inode into the btree. 3809 */ 3810 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3811 struct btrfs_root *root, 3812 struct btrfs_inode *inode) 3813 { 3814 struct btrfs_inode_item *inode_item; 3815 struct btrfs_path *path; 3816 struct extent_buffer *leaf; 3817 int ret; 3818 3819 path = btrfs_alloc_path(); 3820 if (!path) 3821 return -ENOMEM; 3822 3823 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 3824 if (ret) { 3825 if (ret > 0) 3826 ret = -ENOENT; 3827 goto failed; 3828 } 3829 3830 leaf = path->nodes[0]; 3831 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3832 struct btrfs_inode_item); 3833 3834 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3835 btrfs_mark_buffer_dirty(leaf); 3836 btrfs_set_inode_last_trans(trans, inode); 3837 ret = 0; 3838 failed: 3839 btrfs_free_path(path); 3840 return ret; 3841 } 3842 3843 /* 3844 * copy everything in the in-memory inode into the btree. 3845 */ 3846 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3847 struct btrfs_root *root, 3848 struct btrfs_inode *inode) 3849 { 3850 struct btrfs_fs_info *fs_info = root->fs_info; 3851 int ret; 3852 3853 /* 3854 * If the inode is a free space inode, we can deadlock during commit 3855 * if we put it into the delayed code. 3856 * 3857 * The data relocation inode should also be directly updated 3858 * without delay 3859 */ 3860 if (!btrfs_is_free_space_inode(inode) 3861 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3862 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3863 btrfs_update_root_times(trans, root); 3864 3865 ret = btrfs_delayed_update_inode(trans, root, inode); 3866 if (!ret) 3867 btrfs_set_inode_last_trans(trans, inode); 3868 return ret; 3869 } 3870 3871 return btrfs_update_inode_item(trans, root, inode); 3872 } 3873 3874 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3875 struct btrfs_root *root, struct btrfs_inode *inode) 3876 { 3877 int ret; 3878 3879 ret = btrfs_update_inode(trans, root, inode); 3880 if (ret == -ENOSPC) 3881 return btrfs_update_inode_item(trans, root, inode); 3882 return ret; 3883 } 3884 3885 /* 3886 * unlink helper that gets used here in inode.c and in the tree logging 3887 * recovery code. It remove a link in a directory with a given name, and 3888 * also drops the back refs in the inode to the directory 3889 */ 3890 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3891 struct btrfs_root *root, 3892 struct btrfs_inode *dir, 3893 struct btrfs_inode *inode, 3894 const char *name, int name_len) 3895 { 3896 struct btrfs_fs_info *fs_info = root->fs_info; 3897 struct btrfs_path *path; 3898 int ret = 0; 3899 struct btrfs_dir_item *di; 3900 u64 index; 3901 u64 ino = btrfs_ino(inode); 3902 u64 dir_ino = btrfs_ino(dir); 3903 3904 path = btrfs_alloc_path(); 3905 if (!path) { 3906 ret = -ENOMEM; 3907 goto out; 3908 } 3909 3910 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3911 name, name_len, -1); 3912 if (IS_ERR_OR_NULL(di)) { 3913 ret = di ? PTR_ERR(di) : -ENOENT; 3914 goto err; 3915 } 3916 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3917 if (ret) 3918 goto err; 3919 btrfs_release_path(path); 3920 3921 /* 3922 * If we don't have dir index, we have to get it by looking up 3923 * the inode ref, since we get the inode ref, remove it directly, 3924 * it is unnecessary to do delayed deletion. 3925 * 3926 * But if we have dir index, needn't search inode ref to get it. 3927 * Since the inode ref is close to the inode item, it is better 3928 * that we delay to delete it, and just do this deletion when 3929 * we update the inode item. 3930 */ 3931 if (inode->dir_index) { 3932 ret = btrfs_delayed_delete_inode_ref(inode); 3933 if (!ret) { 3934 index = inode->dir_index; 3935 goto skip_backref; 3936 } 3937 } 3938 3939 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3940 dir_ino, &index); 3941 if (ret) { 3942 btrfs_info(fs_info, 3943 "failed to delete reference to %.*s, inode %llu parent %llu", 3944 name_len, name, ino, dir_ino); 3945 btrfs_abort_transaction(trans, ret); 3946 goto err; 3947 } 3948 skip_backref: 3949 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3950 if (ret) { 3951 btrfs_abort_transaction(trans, ret); 3952 goto err; 3953 } 3954 3955 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3956 dir_ino); 3957 if (ret != 0 && ret != -ENOENT) { 3958 btrfs_abort_transaction(trans, ret); 3959 goto err; 3960 } 3961 3962 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3963 index); 3964 if (ret == -ENOENT) 3965 ret = 0; 3966 else if (ret) 3967 btrfs_abort_transaction(trans, ret); 3968 3969 /* 3970 * If we have a pending delayed iput we could end up with the final iput 3971 * being run in btrfs-cleaner context. If we have enough of these built 3972 * up we can end up burning a lot of time in btrfs-cleaner without any 3973 * way to throttle the unlinks. Since we're currently holding a ref on 3974 * the inode we can run the delayed iput here without any issues as the 3975 * final iput won't be done until after we drop the ref we're currently 3976 * holding. 3977 */ 3978 btrfs_run_delayed_iput(fs_info, inode); 3979 err: 3980 btrfs_free_path(path); 3981 if (ret) 3982 goto out; 3983 3984 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3985 inode_inc_iversion(&inode->vfs_inode); 3986 inode_inc_iversion(&dir->vfs_inode); 3987 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3988 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3989 ret = btrfs_update_inode(trans, root, dir); 3990 out: 3991 return ret; 3992 } 3993 3994 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3995 struct btrfs_root *root, 3996 struct btrfs_inode *dir, struct btrfs_inode *inode, 3997 const char *name, int name_len) 3998 { 3999 int ret; 4000 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4001 if (!ret) { 4002 drop_nlink(&inode->vfs_inode); 4003 ret = btrfs_update_inode(trans, root, inode); 4004 } 4005 return ret; 4006 } 4007 4008 /* 4009 * helper to start transaction for unlink and rmdir. 4010 * 4011 * unlink and rmdir are special in btrfs, they do not always free space, so 4012 * if we cannot make our reservations the normal way try and see if there is 4013 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4014 * allow the unlink to occur. 4015 */ 4016 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4017 { 4018 struct btrfs_root *root = BTRFS_I(dir)->root; 4019 4020 /* 4021 * 1 for the possible orphan item 4022 * 1 for the dir item 4023 * 1 for the dir index 4024 * 1 for the inode ref 4025 * 1 for the inode 4026 */ 4027 return btrfs_start_transaction_fallback_global_rsv(root, 5); 4028 } 4029 4030 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4031 { 4032 struct btrfs_root *root = BTRFS_I(dir)->root; 4033 struct btrfs_trans_handle *trans; 4034 struct inode *inode = d_inode(dentry); 4035 int ret; 4036 4037 trans = __unlink_start_trans(dir); 4038 if (IS_ERR(trans)) 4039 return PTR_ERR(trans); 4040 4041 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4042 0); 4043 4044 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4045 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4046 dentry->d_name.len); 4047 if (ret) 4048 goto out; 4049 4050 if (inode->i_nlink == 0) { 4051 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4052 if (ret) 4053 goto out; 4054 } 4055 4056 out: 4057 btrfs_end_transaction(trans); 4058 btrfs_btree_balance_dirty(root->fs_info); 4059 return ret; 4060 } 4061 4062 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4063 struct inode *dir, struct dentry *dentry) 4064 { 4065 struct btrfs_root *root = BTRFS_I(dir)->root; 4066 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4067 struct btrfs_path *path; 4068 struct extent_buffer *leaf; 4069 struct btrfs_dir_item *di; 4070 struct btrfs_key key; 4071 const char *name = dentry->d_name.name; 4072 int name_len = dentry->d_name.len; 4073 u64 index; 4074 int ret; 4075 u64 objectid; 4076 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4077 4078 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4079 objectid = inode->root->root_key.objectid; 4080 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4081 objectid = inode->location.objectid; 4082 } else { 4083 WARN_ON(1); 4084 return -EINVAL; 4085 } 4086 4087 path = btrfs_alloc_path(); 4088 if (!path) 4089 return -ENOMEM; 4090 4091 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4092 name, name_len, -1); 4093 if (IS_ERR_OR_NULL(di)) { 4094 ret = di ? PTR_ERR(di) : -ENOENT; 4095 goto out; 4096 } 4097 4098 leaf = path->nodes[0]; 4099 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4100 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4101 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4102 if (ret) { 4103 btrfs_abort_transaction(trans, ret); 4104 goto out; 4105 } 4106 btrfs_release_path(path); 4107 4108 /* 4109 * This is a placeholder inode for a subvolume we didn't have a 4110 * reference to at the time of the snapshot creation. In the meantime 4111 * we could have renamed the real subvol link into our snapshot, so 4112 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 4113 * Instead simply lookup the dir_index_item for this entry so we can 4114 * remove it. Otherwise we know we have a ref to the root and we can 4115 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4116 */ 4117 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4118 di = btrfs_search_dir_index_item(root, path, dir_ino, 4119 name, name_len); 4120 if (IS_ERR_OR_NULL(di)) { 4121 if (!di) 4122 ret = -ENOENT; 4123 else 4124 ret = PTR_ERR(di); 4125 btrfs_abort_transaction(trans, ret); 4126 goto out; 4127 } 4128 4129 leaf = path->nodes[0]; 4130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4131 index = key.offset; 4132 btrfs_release_path(path); 4133 } else { 4134 ret = btrfs_del_root_ref(trans, objectid, 4135 root->root_key.objectid, dir_ino, 4136 &index, name, name_len); 4137 if (ret) { 4138 btrfs_abort_transaction(trans, ret); 4139 goto out; 4140 } 4141 } 4142 4143 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4144 if (ret) { 4145 btrfs_abort_transaction(trans, ret); 4146 goto out; 4147 } 4148 4149 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4150 inode_inc_iversion(dir); 4151 dir->i_mtime = dir->i_ctime = current_time(dir); 4152 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4153 if (ret) 4154 btrfs_abort_transaction(trans, ret); 4155 out: 4156 btrfs_free_path(path); 4157 return ret; 4158 } 4159 4160 /* 4161 * Helper to check if the subvolume references other subvolumes or if it's 4162 * default. 4163 */ 4164 static noinline int may_destroy_subvol(struct btrfs_root *root) 4165 { 4166 struct btrfs_fs_info *fs_info = root->fs_info; 4167 struct btrfs_path *path; 4168 struct btrfs_dir_item *di; 4169 struct btrfs_key key; 4170 u64 dir_id; 4171 int ret; 4172 4173 path = btrfs_alloc_path(); 4174 if (!path) 4175 return -ENOMEM; 4176 4177 /* Make sure this root isn't set as the default subvol */ 4178 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4179 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4180 dir_id, "default", 7, 0); 4181 if (di && !IS_ERR(di)) { 4182 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4183 if (key.objectid == root->root_key.objectid) { 4184 ret = -EPERM; 4185 btrfs_err(fs_info, 4186 "deleting default subvolume %llu is not allowed", 4187 key.objectid); 4188 goto out; 4189 } 4190 btrfs_release_path(path); 4191 } 4192 4193 key.objectid = root->root_key.objectid; 4194 key.type = BTRFS_ROOT_REF_KEY; 4195 key.offset = (u64)-1; 4196 4197 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4198 if (ret < 0) 4199 goto out; 4200 BUG_ON(ret == 0); 4201 4202 ret = 0; 4203 if (path->slots[0] > 0) { 4204 path->slots[0]--; 4205 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4206 if (key.objectid == root->root_key.objectid && 4207 key.type == BTRFS_ROOT_REF_KEY) 4208 ret = -ENOTEMPTY; 4209 } 4210 out: 4211 btrfs_free_path(path); 4212 return ret; 4213 } 4214 4215 /* Delete all dentries for inodes belonging to the root */ 4216 static void btrfs_prune_dentries(struct btrfs_root *root) 4217 { 4218 struct btrfs_fs_info *fs_info = root->fs_info; 4219 struct rb_node *node; 4220 struct rb_node *prev; 4221 struct btrfs_inode *entry; 4222 struct inode *inode; 4223 u64 objectid = 0; 4224 4225 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4226 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4227 4228 spin_lock(&root->inode_lock); 4229 again: 4230 node = root->inode_tree.rb_node; 4231 prev = NULL; 4232 while (node) { 4233 prev = node; 4234 entry = rb_entry(node, struct btrfs_inode, rb_node); 4235 4236 if (objectid < btrfs_ino(entry)) 4237 node = node->rb_left; 4238 else if (objectid > btrfs_ino(entry)) 4239 node = node->rb_right; 4240 else 4241 break; 4242 } 4243 if (!node) { 4244 while (prev) { 4245 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4246 if (objectid <= btrfs_ino(entry)) { 4247 node = prev; 4248 break; 4249 } 4250 prev = rb_next(prev); 4251 } 4252 } 4253 while (node) { 4254 entry = rb_entry(node, struct btrfs_inode, rb_node); 4255 objectid = btrfs_ino(entry) + 1; 4256 inode = igrab(&entry->vfs_inode); 4257 if (inode) { 4258 spin_unlock(&root->inode_lock); 4259 if (atomic_read(&inode->i_count) > 1) 4260 d_prune_aliases(inode); 4261 /* 4262 * btrfs_drop_inode will have it removed from the inode 4263 * cache when its usage count hits zero. 4264 */ 4265 iput(inode); 4266 cond_resched(); 4267 spin_lock(&root->inode_lock); 4268 goto again; 4269 } 4270 4271 if (cond_resched_lock(&root->inode_lock)) 4272 goto again; 4273 4274 node = rb_next(node); 4275 } 4276 spin_unlock(&root->inode_lock); 4277 } 4278 4279 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4280 { 4281 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4282 struct btrfs_root *root = BTRFS_I(dir)->root; 4283 struct inode *inode = d_inode(dentry); 4284 struct btrfs_root *dest = BTRFS_I(inode)->root; 4285 struct btrfs_trans_handle *trans; 4286 struct btrfs_block_rsv block_rsv; 4287 u64 root_flags; 4288 int ret; 4289 4290 /* 4291 * Don't allow to delete a subvolume with send in progress. This is 4292 * inside the inode lock so the error handling that has to drop the bit 4293 * again is not run concurrently. 4294 */ 4295 spin_lock(&dest->root_item_lock); 4296 if (dest->send_in_progress) { 4297 spin_unlock(&dest->root_item_lock); 4298 btrfs_warn(fs_info, 4299 "attempt to delete subvolume %llu during send", 4300 dest->root_key.objectid); 4301 return -EPERM; 4302 } 4303 root_flags = btrfs_root_flags(&dest->root_item); 4304 btrfs_set_root_flags(&dest->root_item, 4305 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4306 spin_unlock(&dest->root_item_lock); 4307 4308 down_write(&fs_info->subvol_sem); 4309 4310 ret = may_destroy_subvol(dest); 4311 if (ret) 4312 goto out_up_write; 4313 4314 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4315 /* 4316 * One for dir inode, 4317 * two for dir entries, 4318 * two for root ref/backref. 4319 */ 4320 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4321 if (ret) 4322 goto out_up_write; 4323 4324 trans = btrfs_start_transaction(root, 0); 4325 if (IS_ERR(trans)) { 4326 ret = PTR_ERR(trans); 4327 goto out_release; 4328 } 4329 trans->block_rsv = &block_rsv; 4330 trans->bytes_reserved = block_rsv.size; 4331 4332 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4333 4334 ret = btrfs_unlink_subvol(trans, dir, dentry); 4335 if (ret) { 4336 btrfs_abort_transaction(trans, ret); 4337 goto out_end_trans; 4338 } 4339 4340 ret = btrfs_record_root_in_trans(trans, dest); 4341 if (ret) { 4342 btrfs_abort_transaction(trans, ret); 4343 goto out_end_trans; 4344 } 4345 4346 memset(&dest->root_item.drop_progress, 0, 4347 sizeof(dest->root_item.drop_progress)); 4348 btrfs_set_root_drop_level(&dest->root_item, 0); 4349 btrfs_set_root_refs(&dest->root_item, 0); 4350 4351 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4352 ret = btrfs_insert_orphan_item(trans, 4353 fs_info->tree_root, 4354 dest->root_key.objectid); 4355 if (ret) { 4356 btrfs_abort_transaction(trans, ret); 4357 goto out_end_trans; 4358 } 4359 } 4360 4361 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4362 BTRFS_UUID_KEY_SUBVOL, 4363 dest->root_key.objectid); 4364 if (ret && ret != -ENOENT) { 4365 btrfs_abort_transaction(trans, ret); 4366 goto out_end_trans; 4367 } 4368 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4369 ret = btrfs_uuid_tree_remove(trans, 4370 dest->root_item.received_uuid, 4371 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4372 dest->root_key.objectid); 4373 if (ret && ret != -ENOENT) { 4374 btrfs_abort_transaction(trans, ret); 4375 goto out_end_trans; 4376 } 4377 } 4378 4379 free_anon_bdev(dest->anon_dev); 4380 dest->anon_dev = 0; 4381 out_end_trans: 4382 trans->block_rsv = NULL; 4383 trans->bytes_reserved = 0; 4384 ret = btrfs_end_transaction(trans); 4385 inode->i_flags |= S_DEAD; 4386 out_release: 4387 btrfs_subvolume_release_metadata(root, &block_rsv); 4388 out_up_write: 4389 up_write(&fs_info->subvol_sem); 4390 if (ret) { 4391 spin_lock(&dest->root_item_lock); 4392 root_flags = btrfs_root_flags(&dest->root_item); 4393 btrfs_set_root_flags(&dest->root_item, 4394 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4395 spin_unlock(&dest->root_item_lock); 4396 } else { 4397 d_invalidate(dentry); 4398 btrfs_prune_dentries(dest); 4399 ASSERT(dest->send_in_progress == 0); 4400 } 4401 4402 return ret; 4403 } 4404 4405 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4406 { 4407 struct inode *inode = d_inode(dentry); 4408 int err = 0; 4409 struct btrfs_root *root = BTRFS_I(dir)->root; 4410 struct btrfs_trans_handle *trans; 4411 u64 last_unlink_trans; 4412 4413 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4414 return -ENOTEMPTY; 4415 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4416 return btrfs_delete_subvolume(dir, dentry); 4417 4418 trans = __unlink_start_trans(dir); 4419 if (IS_ERR(trans)) 4420 return PTR_ERR(trans); 4421 4422 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4423 err = btrfs_unlink_subvol(trans, dir, dentry); 4424 goto out; 4425 } 4426 4427 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4428 if (err) 4429 goto out; 4430 4431 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4432 4433 /* now the directory is empty */ 4434 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4435 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4436 dentry->d_name.len); 4437 if (!err) { 4438 btrfs_i_size_write(BTRFS_I(inode), 0); 4439 /* 4440 * Propagate the last_unlink_trans value of the deleted dir to 4441 * its parent directory. This is to prevent an unrecoverable 4442 * log tree in the case we do something like this: 4443 * 1) create dir foo 4444 * 2) create snapshot under dir foo 4445 * 3) delete the snapshot 4446 * 4) rmdir foo 4447 * 5) mkdir foo 4448 * 6) fsync foo or some file inside foo 4449 */ 4450 if (last_unlink_trans >= trans->transid) 4451 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4452 } 4453 out: 4454 btrfs_end_transaction(trans); 4455 btrfs_btree_balance_dirty(root->fs_info); 4456 4457 return err; 4458 } 4459 4460 /* 4461 * Return this if we need to call truncate_block for the last bit of the 4462 * truncate. 4463 */ 4464 #define NEED_TRUNCATE_BLOCK 1 4465 4466 /* 4467 * this can truncate away extent items, csum items and directory items. 4468 * It starts at a high offset and removes keys until it can't find 4469 * any higher than new_size 4470 * 4471 * csum items that cross the new i_size are truncated to the new size 4472 * as well. 4473 * 4474 * min_type is the minimum key type to truncate down to. If set to 0, this 4475 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4476 */ 4477 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4478 struct btrfs_root *root, 4479 struct btrfs_inode *inode, 4480 u64 new_size, u32 min_type) 4481 { 4482 struct btrfs_fs_info *fs_info = root->fs_info; 4483 struct btrfs_path *path; 4484 struct extent_buffer *leaf; 4485 struct btrfs_file_extent_item *fi; 4486 struct btrfs_key key; 4487 struct btrfs_key found_key; 4488 u64 extent_start = 0; 4489 u64 extent_num_bytes = 0; 4490 u64 extent_offset = 0; 4491 u64 item_end = 0; 4492 u64 last_size = new_size; 4493 u32 found_type = (u8)-1; 4494 int found_extent; 4495 int del_item; 4496 int pending_del_nr = 0; 4497 int pending_del_slot = 0; 4498 int extent_type = -1; 4499 int ret; 4500 u64 ino = btrfs_ino(inode); 4501 u64 bytes_deleted = 0; 4502 bool be_nice = false; 4503 bool should_throttle = false; 4504 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4505 struct extent_state *cached_state = NULL; 4506 4507 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4508 4509 /* 4510 * For non-free space inodes and non-shareable roots, we want to back 4511 * off from time to time. This means all inodes in subvolume roots, 4512 * reloc roots, and data reloc roots. 4513 */ 4514 if (!btrfs_is_free_space_inode(inode) && 4515 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4516 be_nice = true; 4517 4518 path = btrfs_alloc_path(); 4519 if (!path) 4520 return -ENOMEM; 4521 path->reada = READA_BACK; 4522 4523 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4524 lock_extent_bits(&inode->io_tree, lock_start, (u64)-1, 4525 &cached_state); 4526 4527 /* 4528 * We want to drop from the next block forward in case this 4529 * new size is not block aligned since we will be keeping the 4530 * last block of the extent just the way it is. 4531 */ 4532 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4533 fs_info->sectorsize), 4534 (u64)-1, 0); 4535 } 4536 4537 /* 4538 * This function is also used to drop the items in the log tree before 4539 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4540 * it is used to drop the logged items. So we shouldn't kill the delayed 4541 * items. 4542 */ 4543 if (min_type == 0 && root == inode->root) 4544 btrfs_kill_delayed_inode_items(inode); 4545 4546 key.objectid = ino; 4547 key.offset = (u64)-1; 4548 key.type = (u8)-1; 4549 4550 search_again: 4551 /* 4552 * with a 16K leaf size and 128MB extents, you can actually queue 4553 * up a huge file in a single leaf. Most of the time that 4554 * bytes_deleted is > 0, it will be huge by the time we get here 4555 */ 4556 if (be_nice && bytes_deleted > SZ_32M && 4557 btrfs_should_end_transaction(trans)) { 4558 ret = -EAGAIN; 4559 goto out; 4560 } 4561 4562 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4563 if (ret < 0) 4564 goto out; 4565 4566 if (ret > 0) { 4567 ret = 0; 4568 /* there are no items in the tree for us to truncate, we're 4569 * done 4570 */ 4571 if (path->slots[0] == 0) 4572 goto out; 4573 path->slots[0]--; 4574 } 4575 4576 while (1) { 4577 u64 clear_start = 0, clear_len = 0; 4578 4579 fi = NULL; 4580 leaf = path->nodes[0]; 4581 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4582 found_type = found_key.type; 4583 4584 if (found_key.objectid != ino) 4585 break; 4586 4587 if (found_type < min_type) 4588 break; 4589 4590 item_end = found_key.offset; 4591 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4592 fi = btrfs_item_ptr(leaf, path->slots[0], 4593 struct btrfs_file_extent_item); 4594 extent_type = btrfs_file_extent_type(leaf, fi); 4595 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4596 item_end += 4597 btrfs_file_extent_num_bytes(leaf, fi); 4598 4599 trace_btrfs_truncate_show_fi_regular( 4600 inode, leaf, fi, found_key.offset); 4601 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4602 item_end += btrfs_file_extent_ram_bytes(leaf, 4603 fi); 4604 4605 trace_btrfs_truncate_show_fi_inline( 4606 inode, leaf, fi, path->slots[0], 4607 found_key.offset); 4608 } 4609 item_end--; 4610 } 4611 if (found_type > min_type) { 4612 del_item = 1; 4613 } else { 4614 if (item_end < new_size) 4615 break; 4616 if (found_key.offset >= new_size) 4617 del_item = 1; 4618 else 4619 del_item = 0; 4620 } 4621 found_extent = 0; 4622 /* FIXME, shrink the extent if the ref count is only 1 */ 4623 if (found_type != BTRFS_EXTENT_DATA_KEY) 4624 goto delete; 4625 4626 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4627 u64 num_dec; 4628 4629 clear_start = found_key.offset; 4630 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4631 if (!del_item) { 4632 u64 orig_num_bytes = 4633 btrfs_file_extent_num_bytes(leaf, fi); 4634 extent_num_bytes = ALIGN(new_size - 4635 found_key.offset, 4636 fs_info->sectorsize); 4637 clear_start = ALIGN(new_size, fs_info->sectorsize); 4638 btrfs_set_file_extent_num_bytes(leaf, fi, 4639 extent_num_bytes); 4640 num_dec = (orig_num_bytes - 4641 extent_num_bytes); 4642 if (test_bit(BTRFS_ROOT_SHAREABLE, 4643 &root->state) && 4644 extent_start != 0) 4645 inode_sub_bytes(&inode->vfs_inode, 4646 num_dec); 4647 btrfs_mark_buffer_dirty(leaf); 4648 } else { 4649 extent_num_bytes = 4650 btrfs_file_extent_disk_num_bytes(leaf, 4651 fi); 4652 extent_offset = found_key.offset - 4653 btrfs_file_extent_offset(leaf, fi); 4654 4655 /* FIXME blocksize != 4096 */ 4656 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4657 if (extent_start != 0) { 4658 found_extent = 1; 4659 if (test_bit(BTRFS_ROOT_SHAREABLE, 4660 &root->state)) 4661 inode_sub_bytes(&inode->vfs_inode, 4662 num_dec); 4663 } 4664 } 4665 clear_len = num_dec; 4666 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4667 /* 4668 * we can't truncate inline items that have had 4669 * special encodings 4670 */ 4671 if (!del_item && 4672 btrfs_file_extent_encryption(leaf, fi) == 0 && 4673 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4674 btrfs_file_extent_compression(leaf, fi) == 0) { 4675 u32 size = (u32)(new_size - found_key.offset); 4676 4677 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4678 size = btrfs_file_extent_calc_inline_size(size); 4679 btrfs_truncate_item(path, size, 1); 4680 } else if (!del_item) { 4681 /* 4682 * We have to bail so the last_size is set to 4683 * just before this extent. 4684 */ 4685 ret = NEED_TRUNCATE_BLOCK; 4686 break; 4687 } else { 4688 /* 4689 * Inline extents are special, we just treat 4690 * them as a full sector worth in the file 4691 * extent tree just for simplicity sake. 4692 */ 4693 clear_len = fs_info->sectorsize; 4694 } 4695 4696 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4697 inode_sub_bytes(&inode->vfs_inode, 4698 item_end + 1 - new_size); 4699 } 4700 delete: 4701 /* 4702 * We use btrfs_truncate_inode_items() to clean up log trees for 4703 * multiple fsyncs, and in this case we don't want to clear the 4704 * file extent range because it's just the log. 4705 */ 4706 if (root == inode->root) { 4707 ret = btrfs_inode_clear_file_extent_range(inode, 4708 clear_start, clear_len); 4709 if (ret) { 4710 btrfs_abort_transaction(trans, ret); 4711 break; 4712 } 4713 } 4714 4715 if (del_item) 4716 last_size = found_key.offset; 4717 else 4718 last_size = new_size; 4719 if (del_item) { 4720 if (!pending_del_nr) { 4721 /* no pending yet, add ourselves */ 4722 pending_del_slot = path->slots[0]; 4723 pending_del_nr = 1; 4724 } else if (pending_del_nr && 4725 path->slots[0] + 1 == pending_del_slot) { 4726 /* hop on the pending chunk */ 4727 pending_del_nr++; 4728 pending_del_slot = path->slots[0]; 4729 } else { 4730 BUG(); 4731 } 4732 } else { 4733 break; 4734 } 4735 should_throttle = false; 4736 4737 if (found_extent && 4738 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4739 struct btrfs_ref ref = { 0 }; 4740 4741 bytes_deleted += extent_num_bytes; 4742 4743 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4744 extent_start, extent_num_bytes, 0); 4745 ref.real_root = root->root_key.objectid; 4746 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4747 ino, extent_offset); 4748 ret = btrfs_free_extent(trans, &ref); 4749 if (ret) { 4750 btrfs_abort_transaction(trans, ret); 4751 break; 4752 } 4753 if (be_nice) { 4754 if (btrfs_should_throttle_delayed_refs(trans)) 4755 should_throttle = true; 4756 } 4757 } 4758 4759 if (found_type == BTRFS_INODE_ITEM_KEY) 4760 break; 4761 4762 if (path->slots[0] == 0 || 4763 path->slots[0] != pending_del_slot || 4764 should_throttle) { 4765 if (pending_del_nr) { 4766 ret = btrfs_del_items(trans, root, path, 4767 pending_del_slot, 4768 pending_del_nr); 4769 if (ret) { 4770 btrfs_abort_transaction(trans, ret); 4771 break; 4772 } 4773 pending_del_nr = 0; 4774 } 4775 btrfs_release_path(path); 4776 4777 /* 4778 * We can generate a lot of delayed refs, so we need to 4779 * throttle every once and a while and make sure we're 4780 * adding enough space to keep up with the work we are 4781 * generating. Since we hold a transaction here we 4782 * can't flush, and we don't want to FLUSH_LIMIT because 4783 * we could have generated too many delayed refs to 4784 * actually allocate, so just bail if we're short and 4785 * let the normal reservation dance happen higher up. 4786 */ 4787 if (should_throttle) { 4788 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4789 BTRFS_RESERVE_NO_FLUSH); 4790 if (ret) { 4791 ret = -EAGAIN; 4792 break; 4793 } 4794 } 4795 goto search_again; 4796 } else { 4797 path->slots[0]--; 4798 } 4799 } 4800 out: 4801 if (ret >= 0 && pending_del_nr) { 4802 int err; 4803 4804 err = btrfs_del_items(trans, root, path, pending_del_slot, 4805 pending_del_nr); 4806 if (err) { 4807 btrfs_abort_transaction(trans, err); 4808 ret = err; 4809 } 4810 } 4811 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4812 ASSERT(last_size >= new_size); 4813 if (!ret && last_size > new_size) 4814 last_size = new_size; 4815 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4816 unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1, 4817 &cached_state); 4818 } 4819 4820 btrfs_free_path(path); 4821 return ret; 4822 } 4823 4824 /* 4825 * btrfs_truncate_block - read, zero a chunk and write a block 4826 * @inode - inode that we're zeroing 4827 * @from - the offset to start zeroing 4828 * @len - the length to zero, 0 to zero the entire range respective to the 4829 * offset 4830 * @front - zero up to the offset instead of from the offset on 4831 * 4832 * This will find the block for the "from" offset and cow the block and zero the 4833 * part we want to zero. This is used with truncate and hole punching. 4834 */ 4835 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4836 int front) 4837 { 4838 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4839 struct address_space *mapping = inode->vfs_inode.i_mapping; 4840 struct extent_io_tree *io_tree = &inode->io_tree; 4841 struct btrfs_ordered_extent *ordered; 4842 struct extent_state *cached_state = NULL; 4843 struct extent_changeset *data_reserved = NULL; 4844 bool only_release_metadata = false; 4845 u32 blocksize = fs_info->sectorsize; 4846 pgoff_t index = from >> PAGE_SHIFT; 4847 unsigned offset = from & (blocksize - 1); 4848 struct page *page; 4849 gfp_t mask = btrfs_alloc_write_mask(mapping); 4850 size_t write_bytes = blocksize; 4851 int ret = 0; 4852 u64 block_start; 4853 u64 block_end; 4854 4855 if (IS_ALIGNED(offset, blocksize) && 4856 (!len || IS_ALIGNED(len, blocksize))) 4857 goto out; 4858 4859 block_start = round_down(from, blocksize); 4860 block_end = block_start + blocksize - 1; 4861 4862 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4863 blocksize); 4864 if (ret < 0) { 4865 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 4866 /* For nocow case, no need to reserve data space */ 4867 only_release_metadata = true; 4868 } else { 4869 goto out; 4870 } 4871 } 4872 ret = btrfs_delalloc_reserve_metadata(inode, blocksize); 4873 if (ret < 0) { 4874 if (!only_release_metadata) 4875 btrfs_free_reserved_data_space(inode, data_reserved, 4876 block_start, blocksize); 4877 goto out; 4878 } 4879 again: 4880 page = find_or_create_page(mapping, index, mask); 4881 if (!page) { 4882 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4883 blocksize, true); 4884 btrfs_delalloc_release_extents(inode, blocksize); 4885 ret = -ENOMEM; 4886 goto out; 4887 } 4888 ret = set_page_extent_mapped(page); 4889 if (ret < 0) 4890 goto out_unlock; 4891 4892 if (!PageUptodate(page)) { 4893 ret = btrfs_readpage(NULL, page); 4894 lock_page(page); 4895 if (page->mapping != mapping) { 4896 unlock_page(page); 4897 put_page(page); 4898 goto again; 4899 } 4900 if (!PageUptodate(page)) { 4901 ret = -EIO; 4902 goto out_unlock; 4903 } 4904 } 4905 wait_on_page_writeback(page); 4906 4907 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4908 4909 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4910 if (ordered) { 4911 unlock_extent_cached(io_tree, block_start, block_end, 4912 &cached_state); 4913 unlock_page(page); 4914 put_page(page); 4915 btrfs_start_ordered_extent(ordered, 1); 4916 btrfs_put_ordered_extent(ordered); 4917 goto again; 4918 } 4919 4920 clear_extent_bit(&inode->io_tree, block_start, block_end, 4921 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4922 0, 0, &cached_state); 4923 4924 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4925 &cached_state); 4926 if (ret) { 4927 unlock_extent_cached(io_tree, block_start, block_end, 4928 &cached_state); 4929 goto out_unlock; 4930 } 4931 4932 if (offset != blocksize) { 4933 if (!len) 4934 len = blocksize - offset; 4935 if (front) 4936 memzero_page(page, (block_start - page_offset(page)), 4937 offset); 4938 else 4939 memzero_page(page, (block_start - page_offset(page)) + offset, 4940 len); 4941 flush_dcache_page(page); 4942 } 4943 ClearPageChecked(page); 4944 set_page_dirty(page); 4945 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4946 4947 if (only_release_metadata) 4948 set_extent_bit(&inode->io_tree, block_start, block_end, 4949 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 4950 4951 out_unlock: 4952 if (ret) { 4953 if (only_release_metadata) 4954 btrfs_delalloc_release_metadata(inode, blocksize, true); 4955 else 4956 btrfs_delalloc_release_space(inode, data_reserved, 4957 block_start, blocksize, true); 4958 } 4959 btrfs_delalloc_release_extents(inode, blocksize); 4960 unlock_page(page); 4961 put_page(page); 4962 out: 4963 if (only_release_metadata) 4964 btrfs_check_nocow_unlock(inode); 4965 extent_changeset_free(data_reserved); 4966 return ret; 4967 } 4968 4969 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4970 u64 offset, u64 len) 4971 { 4972 struct btrfs_fs_info *fs_info = root->fs_info; 4973 struct btrfs_trans_handle *trans; 4974 struct btrfs_drop_extents_args drop_args = { 0 }; 4975 int ret; 4976 4977 /* 4978 * Still need to make sure the inode looks like it's been updated so 4979 * that any holes get logged if we fsync. 4980 */ 4981 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4982 inode->last_trans = fs_info->generation; 4983 inode->last_sub_trans = root->log_transid; 4984 inode->last_log_commit = root->last_log_commit; 4985 return 0; 4986 } 4987 4988 /* 4989 * 1 - for the one we're dropping 4990 * 1 - for the one we're adding 4991 * 1 - for updating the inode. 4992 */ 4993 trans = btrfs_start_transaction(root, 3); 4994 if (IS_ERR(trans)) 4995 return PTR_ERR(trans); 4996 4997 drop_args.start = offset; 4998 drop_args.end = offset + len; 4999 drop_args.drop_cache = true; 5000 5001 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5002 if (ret) { 5003 btrfs_abort_transaction(trans, ret); 5004 btrfs_end_transaction(trans); 5005 return ret; 5006 } 5007 5008 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 5009 offset, 0, 0, len, 0, len, 0, 0, 0); 5010 if (ret) { 5011 btrfs_abort_transaction(trans, ret); 5012 } else { 5013 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5014 btrfs_update_inode(trans, root, inode); 5015 } 5016 btrfs_end_transaction(trans); 5017 return ret; 5018 } 5019 5020 /* 5021 * This function puts in dummy file extents for the area we're creating a hole 5022 * for. So if we are truncating this file to a larger size we need to insert 5023 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5024 * the range between oldsize and size 5025 */ 5026 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5027 { 5028 struct btrfs_root *root = inode->root; 5029 struct btrfs_fs_info *fs_info = root->fs_info; 5030 struct extent_io_tree *io_tree = &inode->io_tree; 5031 struct extent_map *em = NULL; 5032 struct extent_state *cached_state = NULL; 5033 struct extent_map_tree *em_tree = &inode->extent_tree; 5034 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5035 u64 block_end = ALIGN(size, fs_info->sectorsize); 5036 u64 last_byte; 5037 u64 cur_offset; 5038 u64 hole_size; 5039 int err = 0; 5040 5041 /* 5042 * If our size started in the middle of a block we need to zero out the 5043 * rest of the block before we expand the i_size, otherwise we could 5044 * expose stale data. 5045 */ 5046 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5047 if (err) 5048 return err; 5049 5050 if (size <= hole_start) 5051 return 0; 5052 5053 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5054 &cached_state); 5055 cur_offset = hole_start; 5056 while (1) { 5057 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5058 block_end - cur_offset); 5059 if (IS_ERR(em)) { 5060 err = PTR_ERR(em); 5061 em = NULL; 5062 break; 5063 } 5064 last_byte = min(extent_map_end(em), block_end); 5065 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5066 hole_size = last_byte - cur_offset; 5067 5068 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5069 struct extent_map *hole_em; 5070 5071 err = maybe_insert_hole(root, inode, cur_offset, 5072 hole_size); 5073 if (err) 5074 break; 5075 5076 err = btrfs_inode_set_file_extent_range(inode, 5077 cur_offset, hole_size); 5078 if (err) 5079 break; 5080 5081 btrfs_drop_extent_cache(inode, cur_offset, 5082 cur_offset + hole_size - 1, 0); 5083 hole_em = alloc_extent_map(); 5084 if (!hole_em) { 5085 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5086 &inode->runtime_flags); 5087 goto next; 5088 } 5089 hole_em->start = cur_offset; 5090 hole_em->len = hole_size; 5091 hole_em->orig_start = cur_offset; 5092 5093 hole_em->block_start = EXTENT_MAP_HOLE; 5094 hole_em->block_len = 0; 5095 hole_em->orig_block_len = 0; 5096 hole_em->ram_bytes = hole_size; 5097 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5098 hole_em->generation = fs_info->generation; 5099 5100 while (1) { 5101 write_lock(&em_tree->lock); 5102 err = add_extent_mapping(em_tree, hole_em, 1); 5103 write_unlock(&em_tree->lock); 5104 if (err != -EEXIST) 5105 break; 5106 btrfs_drop_extent_cache(inode, cur_offset, 5107 cur_offset + 5108 hole_size - 1, 0); 5109 } 5110 free_extent_map(hole_em); 5111 } else { 5112 err = btrfs_inode_set_file_extent_range(inode, 5113 cur_offset, hole_size); 5114 if (err) 5115 break; 5116 } 5117 next: 5118 free_extent_map(em); 5119 em = NULL; 5120 cur_offset = last_byte; 5121 if (cur_offset >= block_end) 5122 break; 5123 } 5124 free_extent_map(em); 5125 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5126 return err; 5127 } 5128 5129 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5130 { 5131 struct btrfs_root *root = BTRFS_I(inode)->root; 5132 struct btrfs_trans_handle *trans; 5133 loff_t oldsize = i_size_read(inode); 5134 loff_t newsize = attr->ia_size; 5135 int mask = attr->ia_valid; 5136 int ret; 5137 5138 /* 5139 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5140 * special case where we need to update the times despite not having 5141 * these flags set. For all other operations the VFS set these flags 5142 * explicitly if it wants a timestamp update. 5143 */ 5144 if (newsize != oldsize) { 5145 inode_inc_iversion(inode); 5146 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5147 inode->i_ctime = inode->i_mtime = 5148 current_time(inode); 5149 } 5150 5151 if (newsize > oldsize) { 5152 /* 5153 * Don't do an expanding truncate while snapshotting is ongoing. 5154 * This is to ensure the snapshot captures a fully consistent 5155 * state of this file - if the snapshot captures this expanding 5156 * truncation, it must capture all writes that happened before 5157 * this truncation. 5158 */ 5159 btrfs_drew_write_lock(&root->snapshot_lock); 5160 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5161 if (ret) { 5162 btrfs_drew_write_unlock(&root->snapshot_lock); 5163 return ret; 5164 } 5165 5166 trans = btrfs_start_transaction(root, 1); 5167 if (IS_ERR(trans)) { 5168 btrfs_drew_write_unlock(&root->snapshot_lock); 5169 return PTR_ERR(trans); 5170 } 5171 5172 i_size_write(inode, newsize); 5173 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5174 pagecache_isize_extended(inode, oldsize, newsize); 5175 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5176 btrfs_drew_write_unlock(&root->snapshot_lock); 5177 btrfs_end_transaction(trans); 5178 } else { 5179 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5180 5181 if (btrfs_is_zoned(fs_info)) { 5182 ret = btrfs_wait_ordered_range(inode, 5183 ALIGN(newsize, fs_info->sectorsize), 5184 (u64)-1); 5185 if (ret) 5186 return ret; 5187 } 5188 5189 /* 5190 * We're truncating a file that used to have good data down to 5191 * zero. Make sure any new writes to the file get on disk 5192 * on close. 5193 */ 5194 if (newsize == 0) 5195 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5196 &BTRFS_I(inode)->runtime_flags); 5197 5198 truncate_setsize(inode, newsize); 5199 5200 inode_dio_wait(inode); 5201 5202 ret = btrfs_truncate(inode, newsize == oldsize); 5203 if (ret && inode->i_nlink) { 5204 int err; 5205 5206 /* 5207 * Truncate failed, so fix up the in-memory size. We 5208 * adjusted disk_i_size down as we removed extents, so 5209 * wait for disk_i_size to be stable and then update the 5210 * in-memory size to match. 5211 */ 5212 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5213 if (err) 5214 return err; 5215 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5216 } 5217 } 5218 5219 return ret; 5220 } 5221 5222 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5223 struct iattr *attr) 5224 { 5225 struct inode *inode = d_inode(dentry); 5226 struct btrfs_root *root = BTRFS_I(inode)->root; 5227 int err; 5228 5229 if (btrfs_root_readonly(root)) 5230 return -EROFS; 5231 5232 err = setattr_prepare(&init_user_ns, dentry, attr); 5233 if (err) 5234 return err; 5235 5236 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5237 err = btrfs_setsize(inode, attr); 5238 if (err) 5239 return err; 5240 } 5241 5242 if (attr->ia_valid) { 5243 setattr_copy(&init_user_ns, inode, attr); 5244 inode_inc_iversion(inode); 5245 err = btrfs_dirty_inode(inode); 5246 5247 if (!err && attr->ia_valid & ATTR_MODE) 5248 err = posix_acl_chmod(&init_user_ns, inode, 5249 inode->i_mode); 5250 } 5251 5252 return err; 5253 } 5254 5255 /* 5256 * While truncating the inode pages during eviction, we get the VFS calling 5257 * btrfs_invalidatepage() against each page of the inode. This is slow because 5258 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5259 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5260 * extent_state structures over and over, wasting lots of time. 5261 * 5262 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5263 * those expensive operations on a per page basis and do only the ordered io 5264 * finishing, while we release here the extent_map and extent_state structures, 5265 * without the excessive merging and splitting. 5266 */ 5267 static void evict_inode_truncate_pages(struct inode *inode) 5268 { 5269 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5270 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5271 struct rb_node *node; 5272 5273 ASSERT(inode->i_state & I_FREEING); 5274 truncate_inode_pages_final(&inode->i_data); 5275 5276 write_lock(&map_tree->lock); 5277 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5278 struct extent_map *em; 5279 5280 node = rb_first_cached(&map_tree->map); 5281 em = rb_entry(node, struct extent_map, rb_node); 5282 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5283 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5284 remove_extent_mapping(map_tree, em); 5285 free_extent_map(em); 5286 if (need_resched()) { 5287 write_unlock(&map_tree->lock); 5288 cond_resched(); 5289 write_lock(&map_tree->lock); 5290 } 5291 } 5292 write_unlock(&map_tree->lock); 5293 5294 /* 5295 * Keep looping until we have no more ranges in the io tree. 5296 * We can have ongoing bios started by readahead that have 5297 * their endio callback (extent_io.c:end_bio_extent_readpage) 5298 * still in progress (unlocked the pages in the bio but did not yet 5299 * unlocked the ranges in the io tree). Therefore this means some 5300 * ranges can still be locked and eviction started because before 5301 * submitting those bios, which are executed by a separate task (work 5302 * queue kthread), inode references (inode->i_count) were not taken 5303 * (which would be dropped in the end io callback of each bio). 5304 * Therefore here we effectively end up waiting for those bios and 5305 * anyone else holding locked ranges without having bumped the inode's 5306 * reference count - if we don't do it, when they access the inode's 5307 * io_tree to unlock a range it may be too late, leading to an 5308 * use-after-free issue. 5309 */ 5310 spin_lock(&io_tree->lock); 5311 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5312 struct extent_state *state; 5313 struct extent_state *cached_state = NULL; 5314 u64 start; 5315 u64 end; 5316 unsigned state_flags; 5317 5318 node = rb_first(&io_tree->state); 5319 state = rb_entry(node, struct extent_state, rb_node); 5320 start = state->start; 5321 end = state->end; 5322 state_flags = state->state; 5323 spin_unlock(&io_tree->lock); 5324 5325 lock_extent_bits(io_tree, start, end, &cached_state); 5326 5327 /* 5328 * If still has DELALLOC flag, the extent didn't reach disk, 5329 * and its reserved space won't be freed by delayed_ref. 5330 * So we need to free its reserved space here. 5331 * (Refer to comment in btrfs_invalidatepage, case 2) 5332 * 5333 * Note, end is the bytenr of last byte, so we need + 1 here. 5334 */ 5335 if (state_flags & EXTENT_DELALLOC) 5336 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5337 end - start + 1); 5338 5339 clear_extent_bit(io_tree, start, end, 5340 EXTENT_LOCKED | EXTENT_DELALLOC | 5341 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5342 &cached_state); 5343 5344 cond_resched(); 5345 spin_lock(&io_tree->lock); 5346 } 5347 spin_unlock(&io_tree->lock); 5348 } 5349 5350 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5351 struct btrfs_block_rsv *rsv) 5352 { 5353 struct btrfs_fs_info *fs_info = root->fs_info; 5354 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5355 struct btrfs_trans_handle *trans; 5356 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5357 int ret; 5358 5359 /* 5360 * Eviction should be taking place at some place safe because of our 5361 * delayed iputs. However the normal flushing code will run delayed 5362 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5363 * 5364 * We reserve the delayed_refs_extra here again because we can't use 5365 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5366 * above. We reserve our extra bit here because we generate a ton of 5367 * delayed refs activity by truncating. 5368 * 5369 * If we cannot make our reservation we'll attempt to steal from the 5370 * global reserve, because we really want to be able to free up space. 5371 */ 5372 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5373 BTRFS_RESERVE_FLUSH_EVICT); 5374 if (ret) { 5375 /* 5376 * Try to steal from the global reserve if there is space for 5377 * it. 5378 */ 5379 if (btrfs_check_space_for_delayed_refs(fs_info) || 5380 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5381 btrfs_warn(fs_info, 5382 "could not allocate space for delete; will truncate on mount"); 5383 return ERR_PTR(-ENOSPC); 5384 } 5385 delayed_refs_extra = 0; 5386 } 5387 5388 trans = btrfs_join_transaction(root); 5389 if (IS_ERR(trans)) 5390 return trans; 5391 5392 if (delayed_refs_extra) { 5393 trans->block_rsv = &fs_info->trans_block_rsv; 5394 trans->bytes_reserved = delayed_refs_extra; 5395 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5396 delayed_refs_extra, 1); 5397 } 5398 return trans; 5399 } 5400 5401 void btrfs_evict_inode(struct inode *inode) 5402 { 5403 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5404 struct btrfs_trans_handle *trans; 5405 struct btrfs_root *root = BTRFS_I(inode)->root; 5406 struct btrfs_block_rsv *rsv; 5407 int ret; 5408 5409 trace_btrfs_inode_evict(inode); 5410 5411 if (!root) { 5412 clear_inode(inode); 5413 return; 5414 } 5415 5416 evict_inode_truncate_pages(inode); 5417 5418 if (inode->i_nlink && 5419 ((btrfs_root_refs(&root->root_item) != 0 && 5420 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5421 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5422 goto no_delete; 5423 5424 if (is_bad_inode(inode)) 5425 goto no_delete; 5426 5427 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5428 5429 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5430 goto no_delete; 5431 5432 if (inode->i_nlink > 0) { 5433 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5434 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5435 goto no_delete; 5436 } 5437 5438 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5439 if (ret) 5440 goto no_delete; 5441 5442 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5443 if (!rsv) 5444 goto no_delete; 5445 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5446 rsv->failfast = 1; 5447 5448 btrfs_i_size_write(BTRFS_I(inode), 0); 5449 5450 while (1) { 5451 trans = evict_refill_and_join(root, rsv); 5452 if (IS_ERR(trans)) 5453 goto free_rsv; 5454 5455 trans->block_rsv = rsv; 5456 5457 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 5458 0, 0); 5459 trans->block_rsv = &fs_info->trans_block_rsv; 5460 btrfs_end_transaction(trans); 5461 btrfs_btree_balance_dirty(fs_info); 5462 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5463 goto free_rsv; 5464 else if (!ret) 5465 break; 5466 } 5467 5468 /* 5469 * Errors here aren't a big deal, it just means we leave orphan items in 5470 * the tree. They will be cleaned up on the next mount. If the inode 5471 * number gets reused, cleanup deletes the orphan item without doing 5472 * anything, and unlink reuses the existing orphan item. 5473 * 5474 * If it turns out that we are dropping too many of these, we might want 5475 * to add a mechanism for retrying these after a commit. 5476 */ 5477 trans = evict_refill_and_join(root, rsv); 5478 if (!IS_ERR(trans)) { 5479 trans->block_rsv = rsv; 5480 btrfs_orphan_del(trans, BTRFS_I(inode)); 5481 trans->block_rsv = &fs_info->trans_block_rsv; 5482 btrfs_end_transaction(trans); 5483 } 5484 5485 free_rsv: 5486 btrfs_free_block_rsv(fs_info, rsv); 5487 no_delete: 5488 /* 5489 * If we didn't successfully delete, the orphan item will still be in 5490 * the tree and we'll retry on the next mount. Again, we might also want 5491 * to retry these periodically in the future. 5492 */ 5493 btrfs_remove_delayed_node(BTRFS_I(inode)); 5494 clear_inode(inode); 5495 } 5496 5497 /* 5498 * Return the key found in the dir entry in the location pointer, fill @type 5499 * with BTRFS_FT_*, and return 0. 5500 * 5501 * If no dir entries were found, returns -ENOENT. 5502 * If found a corrupted location in dir entry, returns -EUCLEAN. 5503 */ 5504 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5505 struct btrfs_key *location, u8 *type) 5506 { 5507 const char *name = dentry->d_name.name; 5508 int namelen = dentry->d_name.len; 5509 struct btrfs_dir_item *di; 5510 struct btrfs_path *path; 5511 struct btrfs_root *root = BTRFS_I(dir)->root; 5512 int ret = 0; 5513 5514 path = btrfs_alloc_path(); 5515 if (!path) 5516 return -ENOMEM; 5517 5518 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5519 name, namelen, 0); 5520 if (IS_ERR_OR_NULL(di)) { 5521 ret = di ? PTR_ERR(di) : -ENOENT; 5522 goto out; 5523 } 5524 5525 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5526 if (location->type != BTRFS_INODE_ITEM_KEY && 5527 location->type != BTRFS_ROOT_ITEM_KEY) { 5528 ret = -EUCLEAN; 5529 btrfs_warn(root->fs_info, 5530 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5531 __func__, name, btrfs_ino(BTRFS_I(dir)), 5532 location->objectid, location->type, location->offset); 5533 } 5534 if (!ret) 5535 *type = btrfs_dir_type(path->nodes[0], di); 5536 out: 5537 btrfs_free_path(path); 5538 return ret; 5539 } 5540 5541 /* 5542 * when we hit a tree root in a directory, the btrfs part of the inode 5543 * needs to be changed to reflect the root directory of the tree root. This 5544 * is kind of like crossing a mount point. 5545 */ 5546 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5547 struct inode *dir, 5548 struct dentry *dentry, 5549 struct btrfs_key *location, 5550 struct btrfs_root **sub_root) 5551 { 5552 struct btrfs_path *path; 5553 struct btrfs_root *new_root; 5554 struct btrfs_root_ref *ref; 5555 struct extent_buffer *leaf; 5556 struct btrfs_key key; 5557 int ret; 5558 int err = 0; 5559 5560 path = btrfs_alloc_path(); 5561 if (!path) { 5562 err = -ENOMEM; 5563 goto out; 5564 } 5565 5566 err = -ENOENT; 5567 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5568 key.type = BTRFS_ROOT_REF_KEY; 5569 key.offset = location->objectid; 5570 5571 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5572 if (ret) { 5573 if (ret < 0) 5574 err = ret; 5575 goto out; 5576 } 5577 5578 leaf = path->nodes[0]; 5579 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5580 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5581 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5582 goto out; 5583 5584 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5585 (unsigned long)(ref + 1), 5586 dentry->d_name.len); 5587 if (ret) 5588 goto out; 5589 5590 btrfs_release_path(path); 5591 5592 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5593 if (IS_ERR(new_root)) { 5594 err = PTR_ERR(new_root); 5595 goto out; 5596 } 5597 5598 *sub_root = new_root; 5599 location->objectid = btrfs_root_dirid(&new_root->root_item); 5600 location->type = BTRFS_INODE_ITEM_KEY; 5601 location->offset = 0; 5602 err = 0; 5603 out: 5604 btrfs_free_path(path); 5605 return err; 5606 } 5607 5608 static void inode_tree_add(struct inode *inode) 5609 { 5610 struct btrfs_root *root = BTRFS_I(inode)->root; 5611 struct btrfs_inode *entry; 5612 struct rb_node **p; 5613 struct rb_node *parent; 5614 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5615 u64 ino = btrfs_ino(BTRFS_I(inode)); 5616 5617 if (inode_unhashed(inode)) 5618 return; 5619 parent = NULL; 5620 spin_lock(&root->inode_lock); 5621 p = &root->inode_tree.rb_node; 5622 while (*p) { 5623 parent = *p; 5624 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5625 5626 if (ino < btrfs_ino(entry)) 5627 p = &parent->rb_left; 5628 else if (ino > btrfs_ino(entry)) 5629 p = &parent->rb_right; 5630 else { 5631 WARN_ON(!(entry->vfs_inode.i_state & 5632 (I_WILL_FREE | I_FREEING))); 5633 rb_replace_node(parent, new, &root->inode_tree); 5634 RB_CLEAR_NODE(parent); 5635 spin_unlock(&root->inode_lock); 5636 return; 5637 } 5638 } 5639 rb_link_node(new, parent, p); 5640 rb_insert_color(new, &root->inode_tree); 5641 spin_unlock(&root->inode_lock); 5642 } 5643 5644 static void inode_tree_del(struct btrfs_inode *inode) 5645 { 5646 struct btrfs_root *root = inode->root; 5647 int empty = 0; 5648 5649 spin_lock(&root->inode_lock); 5650 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5651 rb_erase(&inode->rb_node, &root->inode_tree); 5652 RB_CLEAR_NODE(&inode->rb_node); 5653 empty = RB_EMPTY_ROOT(&root->inode_tree); 5654 } 5655 spin_unlock(&root->inode_lock); 5656 5657 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5658 spin_lock(&root->inode_lock); 5659 empty = RB_EMPTY_ROOT(&root->inode_tree); 5660 spin_unlock(&root->inode_lock); 5661 if (empty) 5662 btrfs_add_dead_root(root); 5663 } 5664 } 5665 5666 5667 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5668 { 5669 struct btrfs_iget_args *args = p; 5670 5671 inode->i_ino = args->ino; 5672 BTRFS_I(inode)->location.objectid = args->ino; 5673 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5674 BTRFS_I(inode)->location.offset = 0; 5675 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5676 BUG_ON(args->root && !BTRFS_I(inode)->root); 5677 return 0; 5678 } 5679 5680 static int btrfs_find_actor(struct inode *inode, void *opaque) 5681 { 5682 struct btrfs_iget_args *args = opaque; 5683 5684 return args->ino == BTRFS_I(inode)->location.objectid && 5685 args->root == BTRFS_I(inode)->root; 5686 } 5687 5688 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5689 struct btrfs_root *root) 5690 { 5691 struct inode *inode; 5692 struct btrfs_iget_args args; 5693 unsigned long hashval = btrfs_inode_hash(ino, root); 5694 5695 args.ino = ino; 5696 args.root = root; 5697 5698 inode = iget5_locked(s, hashval, btrfs_find_actor, 5699 btrfs_init_locked_inode, 5700 (void *)&args); 5701 return inode; 5702 } 5703 5704 /* 5705 * Get an inode object given its inode number and corresponding root. 5706 * Path can be preallocated to prevent recursing back to iget through 5707 * allocator. NULL is also valid but may require an additional allocation 5708 * later. 5709 */ 5710 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5711 struct btrfs_root *root, struct btrfs_path *path) 5712 { 5713 struct inode *inode; 5714 5715 inode = btrfs_iget_locked(s, ino, root); 5716 if (!inode) 5717 return ERR_PTR(-ENOMEM); 5718 5719 if (inode->i_state & I_NEW) { 5720 int ret; 5721 5722 ret = btrfs_read_locked_inode(inode, path); 5723 if (!ret) { 5724 inode_tree_add(inode); 5725 unlock_new_inode(inode); 5726 } else { 5727 iget_failed(inode); 5728 /* 5729 * ret > 0 can come from btrfs_search_slot called by 5730 * btrfs_read_locked_inode, this means the inode item 5731 * was not found. 5732 */ 5733 if (ret > 0) 5734 ret = -ENOENT; 5735 inode = ERR_PTR(ret); 5736 } 5737 } 5738 5739 return inode; 5740 } 5741 5742 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5743 { 5744 return btrfs_iget_path(s, ino, root, NULL); 5745 } 5746 5747 static struct inode *new_simple_dir(struct super_block *s, 5748 struct btrfs_key *key, 5749 struct btrfs_root *root) 5750 { 5751 struct inode *inode = new_inode(s); 5752 5753 if (!inode) 5754 return ERR_PTR(-ENOMEM); 5755 5756 BTRFS_I(inode)->root = btrfs_grab_root(root); 5757 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5758 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5759 5760 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5761 /* 5762 * We only need lookup, the rest is read-only and there's no inode 5763 * associated with the dentry 5764 */ 5765 inode->i_op = &simple_dir_inode_operations; 5766 inode->i_opflags &= ~IOP_XATTR; 5767 inode->i_fop = &simple_dir_operations; 5768 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5769 inode->i_mtime = current_time(inode); 5770 inode->i_atime = inode->i_mtime; 5771 inode->i_ctime = inode->i_mtime; 5772 BTRFS_I(inode)->i_otime = inode->i_mtime; 5773 5774 return inode; 5775 } 5776 5777 static inline u8 btrfs_inode_type(struct inode *inode) 5778 { 5779 /* 5780 * Compile-time asserts that generic FT_* types still match 5781 * BTRFS_FT_* types 5782 */ 5783 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5784 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5785 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5786 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5787 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5788 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5789 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5790 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5791 5792 return fs_umode_to_ftype(inode->i_mode); 5793 } 5794 5795 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5796 { 5797 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5798 struct inode *inode; 5799 struct btrfs_root *root = BTRFS_I(dir)->root; 5800 struct btrfs_root *sub_root = root; 5801 struct btrfs_key location; 5802 u8 di_type = 0; 5803 int ret = 0; 5804 5805 if (dentry->d_name.len > BTRFS_NAME_LEN) 5806 return ERR_PTR(-ENAMETOOLONG); 5807 5808 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5809 if (ret < 0) 5810 return ERR_PTR(ret); 5811 5812 if (location.type == BTRFS_INODE_ITEM_KEY) { 5813 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5814 if (IS_ERR(inode)) 5815 return inode; 5816 5817 /* Do extra check against inode mode with di_type */ 5818 if (btrfs_inode_type(inode) != di_type) { 5819 btrfs_crit(fs_info, 5820 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5821 inode->i_mode, btrfs_inode_type(inode), 5822 di_type); 5823 iput(inode); 5824 return ERR_PTR(-EUCLEAN); 5825 } 5826 return inode; 5827 } 5828 5829 ret = fixup_tree_root_location(fs_info, dir, dentry, 5830 &location, &sub_root); 5831 if (ret < 0) { 5832 if (ret != -ENOENT) 5833 inode = ERR_PTR(ret); 5834 else 5835 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5836 } else { 5837 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5838 } 5839 if (root != sub_root) 5840 btrfs_put_root(sub_root); 5841 5842 if (!IS_ERR(inode) && root != sub_root) { 5843 down_read(&fs_info->cleanup_work_sem); 5844 if (!sb_rdonly(inode->i_sb)) 5845 ret = btrfs_orphan_cleanup(sub_root); 5846 up_read(&fs_info->cleanup_work_sem); 5847 if (ret) { 5848 iput(inode); 5849 inode = ERR_PTR(ret); 5850 } 5851 } 5852 5853 return inode; 5854 } 5855 5856 static int btrfs_dentry_delete(const struct dentry *dentry) 5857 { 5858 struct btrfs_root *root; 5859 struct inode *inode = d_inode(dentry); 5860 5861 if (!inode && !IS_ROOT(dentry)) 5862 inode = d_inode(dentry->d_parent); 5863 5864 if (inode) { 5865 root = BTRFS_I(inode)->root; 5866 if (btrfs_root_refs(&root->root_item) == 0) 5867 return 1; 5868 5869 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5870 return 1; 5871 } 5872 return 0; 5873 } 5874 5875 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5876 unsigned int flags) 5877 { 5878 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5879 5880 if (inode == ERR_PTR(-ENOENT)) 5881 inode = NULL; 5882 return d_splice_alias(inode, dentry); 5883 } 5884 5885 /* 5886 * All this infrastructure exists because dir_emit can fault, and we are holding 5887 * the tree lock when doing readdir. For now just allocate a buffer and copy 5888 * our information into that, and then dir_emit from the buffer. This is 5889 * similar to what NFS does, only we don't keep the buffer around in pagecache 5890 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5891 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5892 * tree lock. 5893 */ 5894 static int btrfs_opendir(struct inode *inode, struct file *file) 5895 { 5896 struct btrfs_file_private *private; 5897 5898 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5899 if (!private) 5900 return -ENOMEM; 5901 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5902 if (!private->filldir_buf) { 5903 kfree(private); 5904 return -ENOMEM; 5905 } 5906 file->private_data = private; 5907 return 0; 5908 } 5909 5910 struct dir_entry { 5911 u64 ino; 5912 u64 offset; 5913 unsigned type; 5914 int name_len; 5915 }; 5916 5917 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5918 { 5919 while (entries--) { 5920 struct dir_entry *entry = addr; 5921 char *name = (char *)(entry + 1); 5922 5923 ctx->pos = get_unaligned(&entry->offset); 5924 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5925 get_unaligned(&entry->ino), 5926 get_unaligned(&entry->type))) 5927 return 1; 5928 addr += sizeof(struct dir_entry) + 5929 get_unaligned(&entry->name_len); 5930 ctx->pos++; 5931 } 5932 return 0; 5933 } 5934 5935 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5936 { 5937 struct inode *inode = file_inode(file); 5938 struct btrfs_root *root = BTRFS_I(inode)->root; 5939 struct btrfs_file_private *private = file->private_data; 5940 struct btrfs_dir_item *di; 5941 struct btrfs_key key; 5942 struct btrfs_key found_key; 5943 struct btrfs_path *path; 5944 void *addr; 5945 struct list_head ins_list; 5946 struct list_head del_list; 5947 int ret; 5948 struct extent_buffer *leaf; 5949 int slot; 5950 char *name_ptr; 5951 int name_len; 5952 int entries = 0; 5953 int total_len = 0; 5954 bool put = false; 5955 struct btrfs_key location; 5956 5957 if (!dir_emit_dots(file, ctx)) 5958 return 0; 5959 5960 path = btrfs_alloc_path(); 5961 if (!path) 5962 return -ENOMEM; 5963 5964 addr = private->filldir_buf; 5965 path->reada = READA_FORWARD; 5966 5967 INIT_LIST_HEAD(&ins_list); 5968 INIT_LIST_HEAD(&del_list); 5969 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5970 5971 again: 5972 key.type = BTRFS_DIR_INDEX_KEY; 5973 key.offset = ctx->pos; 5974 key.objectid = btrfs_ino(BTRFS_I(inode)); 5975 5976 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5977 if (ret < 0) 5978 goto err; 5979 5980 while (1) { 5981 struct dir_entry *entry; 5982 5983 leaf = path->nodes[0]; 5984 slot = path->slots[0]; 5985 if (slot >= btrfs_header_nritems(leaf)) { 5986 ret = btrfs_next_leaf(root, path); 5987 if (ret < 0) 5988 goto err; 5989 else if (ret > 0) 5990 break; 5991 continue; 5992 } 5993 5994 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5995 5996 if (found_key.objectid != key.objectid) 5997 break; 5998 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5999 break; 6000 if (found_key.offset < ctx->pos) 6001 goto next; 6002 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6003 goto next; 6004 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 6005 name_len = btrfs_dir_name_len(leaf, di); 6006 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6007 PAGE_SIZE) { 6008 btrfs_release_path(path); 6009 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6010 if (ret) 6011 goto nopos; 6012 addr = private->filldir_buf; 6013 entries = 0; 6014 total_len = 0; 6015 goto again; 6016 } 6017 6018 entry = addr; 6019 put_unaligned(name_len, &entry->name_len); 6020 name_ptr = (char *)(entry + 1); 6021 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6022 name_len); 6023 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6024 &entry->type); 6025 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6026 put_unaligned(location.objectid, &entry->ino); 6027 put_unaligned(found_key.offset, &entry->offset); 6028 entries++; 6029 addr += sizeof(struct dir_entry) + name_len; 6030 total_len += sizeof(struct dir_entry) + name_len; 6031 next: 6032 path->slots[0]++; 6033 } 6034 btrfs_release_path(path); 6035 6036 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6037 if (ret) 6038 goto nopos; 6039 6040 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6041 if (ret) 6042 goto nopos; 6043 6044 /* 6045 * Stop new entries from being returned after we return the last 6046 * entry. 6047 * 6048 * New directory entries are assigned a strictly increasing 6049 * offset. This means that new entries created during readdir 6050 * are *guaranteed* to be seen in the future by that readdir. 6051 * This has broken buggy programs which operate on names as 6052 * they're returned by readdir. Until we re-use freed offsets 6053 * we have this hack to stop new entries from being returned 6054 * under the assumption that they'll never reach this huge 6055 * offset. 6056 * 6057 * This is being careful not to overflow 32bit loff_t unless the 6058 * last entry requires it because doing so has broken 32bit apps 6059 * in the past. 6060 */ 6061 if (ctx->pos >= INT_MAX) 6062 ctx->pos = LLONG_MAX; 6063 else 6064 ctx->pos = INT_MAX; 6065 nopos: 6066 ret = 0; 6067 err: 6068 if (put) 6069 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6070 btrfs_free_path(path); 6071 return ret; 6072 } 6073 6074 /* 6075 * This is somewhat expensive, updating the tree every time the 6076 * inode changes. But, it is most likely to find the inode in cache. 6077 * FIXME, needs more benchmarking...there are no reasons other than performance 6078 * to keep or drop this code. 6079 */ 6080 static int btrfs_dirty_inode(struct inode *inode) 6081 { 6082 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6083 struct btrfs_root *root = BTRFS_I(inode)->root; 6084 struct btrfs_trans_handle *trans; 6085 int ret; 6086 6087 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6088 return 0; 6089 6090 trans = btrfs_join_transaction(root); 6091 if (IS_ERR(trans)) 6092 return PTR_ERR(trans); 6093 6094 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6095 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6096 /* whoops, lets try again with the full transaction */ 6097 btrfs_end_transaction(trans); 6098 trans = btrfs_start_transaction(root, 1); 6099 if (IS_ERR(trans)) 6100 return PTR_ERR(trans); 6101 6102 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6103 } 6104 btrfs_end_transaction(trans); 6105 if (BTRFS_I(inode)->delayed_node) 6106 btrfs_balance_delayed_items(fs_info); 6107 6108 return ret; 6109 } 6110 6111 /* 6112 * This is a copy of file_update_time. We need this so we can return error on 6113 * ENOSPC for updating the inode in the case of file write and mmap writes. 6114 */ 6115 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6116 int flags) 6117 { 6118 struct btrfs_root *root = BTRFS_I(inode)->root; 6119 bool dirty = flags & ~S_VERSION; 6120 6121 if (btrfs_root_readonly(root)) 6122 return -EROFS; 6123 6124 if (flags & S_VERSION) 6125 dirty |= inode_maybe_inc_iversion(inode, dirty); 6126 if (flags & S_CTIME) 6127 inode->i_ctime = *now; 6128 if (flags & S_MTIME) 6129 inode->i_mtime = *now; 6130 if (flags & S_ATIME) 6131 inode->i_atime = *now; 6132 return dirty ? btrfs_dirty_inode(inode) : 0; 6133 } 6134 6135 /* 6136 * find the highest existing sequence number in a directory 6137 * and then set the in-memory index_cnt variable to reflect 6138 * free sequence numbers 6139 */ 6140 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6141 { 6142 struct btrfs_root *root = inode->root; 6143 struct btrfs_key key, found_key; 6144 struct btrfs_path *path; 6145 struct extent_buffer *leaf; 6146 int ret; 6147 6148 key.objectid = btrfs_ino(inode); 6149 key.type = BTRFS_DIR_INDEX_KEY; 6150 key.offset = (u64)-1; 6151 6152 path = btrfs_alloc_path(); 6153 if (!path) 6154 return -ENOMEM; 6155 6156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6157 if (ret < 0) 6158 goto out; 6159 /* FIXME: we should be able to handle this */ 6160 if (ret == 0) 6161 goto out; 6162 ret = 0; 6163 6164 /* 6165 * MAGIC NUMBER EXPLANATION: 6166 * since we search a directory based on f_pos we have to start at 2 6167 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6168 * else has to start at 2 6169 */ 6170 if (path->slots[0] == 0) { 6171 inode->index_cnt = 2; 6172 goto out; 6173 } 6174 6175 path->slots[0]--; 6176 6177 leaf = path->nodes[0]; 6178 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6179 6180 if (found_key.objectid != btrfs_ino(inode) || 6181 found_key.type != BTRFS_DIR_INDEX_KEY) { 6182 inode->index_cnt = 2; 6183 goto out; 6184 } 6185 6186 inode->index_cnt = found_key.offset + 1; 6187 out: 6188 btrfs_free_path(path); 6189 return ret; 6190 } 6191 6192 /* 6193 * helper to find a free sequence number in a given directory. This current 6194 * code is very simple, later versions will do smarter things in the btree 6195 */ 6196 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6197 { 6198 int ret = 0; 6199 6200 if (dir->index_cnt == (u64)-1) { 6201 ret = btrfs_inode_delayed_dir_index_count(dir); 6202 if (ret) { 6203 ret = btrfs_set_inode_index_count(dir); 6204 if (ret) 6205 return ret; 6206 } 6207 } 6208 6209 *index = dir->index_cnt; 6210 dir->index_cnt++; 6211 6212 return ret; 6213 } 6214 6215 static int btrfs_insert_inode_locked(struct inode *inode) 6216 { 6217 struct btrfs_iget_args args; 6218 6219 args.ino = BTRFS_I(inode)->location.objectid; 6220 args.root = BTRFS_I(inode)->root; 6221 6222 return insert_inode_locked4(inode, 6223 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6224 btrfs_find_actor, &args); 6225 } 6226 6227 /* 6228 * Inherit flags from the parent inode. 6229 * 6230 * Currently only the compression flags and the cow flags are inherited. 6231 */ 6232 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6233 { 6234 unsigned int flags; 6235 6236 if (!dir) 6237 return; 6238 6239 flags = BTRFS_I(dir)->flags; 6240 6241 if (flags & BTRFS_INODE_NOCOMPRESS) { 6242 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6243 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6244 } else if (flags & BTRFS_INODE_COMPRESS) { 6245 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6246 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6247 } 6248 6249 if (flags & BTRFS_INODE_NODATACOW) { 6250 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6251 if (S_ISREG(inode->i_mode)) 6252 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6253 } 6254 6255 btrfs_sync_inode_flags_to_i_flags(inode); 6256 } 6257 6258 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6259 struct btrfs_root *root, 6260 struct inode *dir, 6261 const char *name, int name_len, 6262 u64 ref_objectid, u64 objectid, 6263 umode_t mode, u64 *index) 6264 { 6265 struct btrfs_fs_info *fs_info = root->fs_info; 6266 struct inode *inode; 6267 struct btrfs_inode_item *inode_item; 6268 struct btrfs_key *location; 6269 struct btrfs_path *path; 6270 struct btrfs_inode_ref *ref; 6271 struct btrfs_key key[2]; 6272 u32 sizes[2]; 6273 int nitems = name ? 2 : 1; 6274 unsigned long ptr; 6275 unsigned int nofs_flag; 6276 int ret; 6277 6278 path = btrfs_alloc_path(); 6279 if (!path) 6280 return ERR_PTR(-ENOMEM); 6281 6282 nofs_flag = memalloc_nofs_save(); 6283 inode = new_inode(fs_info->sb); 6284 memalloc_nofs_restore(nofs_flag); 6285 if (!inode) { 6286 btrfs_free_path(path); 6287 return ERR_PTR(-ENOMEM); 6288 } 6289 6290 /* 6291 * O_TMPFILE, set link count to 0, so that after this point, 6292 * we fill in an inode item with the correct link count. 6293 */ 6294 if (!name) 6295 set_nlink(inode, 0); 6296 6297 /* 6298 * we have to initialize this early, so we can reclaim the inode 6299 * number if we fail afterwards in this function. 6300 */ 6301 inode->i_ino = objectid; 6302 6303 if (dir && name) { 6304 trace_btrfs_inode_request(dir); 6305 6306 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6307 if (ret) { 6308 btrfs_free_path(path); 6309 iput(inode); 6310 return ERR_PTR(ret); 6311 } 6312 } else if (dir) { 6313 *index = 0; 6314 } 6315 /* 6316 * index_cnt is ignored for everything but a dir, 6317 * btrfs_set_inode_index_count has an explanation for the magic 6318 * number 6319 */ 6320 BTRFS_I(inode)->index_cnt = 2; 6321 BTRFS_I(inode)->dir_index = *index; 6322 BTRFS_I(inode)->root = btrfs_grab_root(root); 6323 BTRFS_I(inode)->generation = trans->transid; 6324 inode->i_generation = BTRFS_I(inode)->generation; 6325 6326 /* 6327 * We could have gotten an inode number from somebody who was fsynced 6328 * and then removed in this same transaction, so let's just set full 6329 * sync since it will be a full sync anyway and this will blow away the 6330 * old info in the log. 6331 */ 6332 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6333 6334 key[0].objectid = objectid; 6335 key[0].type = BTRFS_INODE_ITEM_KEY; 6336 key[0].offset = 0; 6337 6338 sizes[0] = sizeof(struct btrfs_inode_item); 6339 6340 if (name) { 6341 /* 6342 * Start new inodes with an inode_ref. This is slightly more 6343 * efficient for small numbers of hard links since they will 6344 * be packed into one item. Extended refs will kick in if we 6345 * add more hard links than can fit in the ref item. 6346 */ 6347 key[1].objectid = objectid; 6348 key[1].type = BTRFS_INODE_REF_KEY; 6349 key[1].offset = ref_objectid; 6350 6351 sizes[1] = name_len + sizeof(*ref); 6352 } 6353 6354 location = &BTRFS_I(inode)->location; 6355 location->objectid = objectid; 6356 location->offset = 0; 6357 location->type = BTRFS_INODE_ITEM_KEY; 6358 6359 ret = btrfs_insert_inode_locked(inode); 6360 if (ret < 0) { 6361 iput(inode); 6362 goto fail; 6363 } 6364 6365 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6366 if (ret != 0) 6367 goto fail_unlock; 6368 6369 inode_init_owner(&init_user_ns, inode, dir, mode); 6370 inode_set_bytes(inode, 0); 6371 6372 inode->i_mtime = current_time(inode); 6373 inode->i_atime = inode->i_mtime; 6374 inode->i_ctime = inode->i_mtime; 6375 BTRFS_I(inode)->i_otime = inode->i_mtime; 6376 6377 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6378 struct btrfs_inode_item); 6379 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6380 sizeof(*inode_item)); 6381 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6382 6383 if (name) { 6384 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6385 struct btrfs_inode_ref); 6386 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6387 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6388 ptr = (unsigned long)(ref + 1); 6389 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6390 } 6391 6392 btrfs_mark_buffer_dirty(path->nodes[0]); 6393 btrfs_free_path(path); 6394 6395 btrfs_inherit_iflags(inode, dir); 6396 6397 if (S_ISREG(mode)) { 6398 if (btrfs_test_opt(fs_info, NODATASUM)) 6399 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6400 if (btrfs_test_opt(fs_info, NODATACOW)) 6401 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6402 BTRFS_INODE_NODATASUM; 6403 } 6404 6405 inode_tree_add(inode); 6406 6407 trace_btrfs_inode_new(inode); 6408 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6409 6410 btrfs_update_root_times(trans, root); 6411 6412 ret = btrfs_inode_inherit_props(trans, inode, dir); 6413 if (ret) 6414 btrfs_err(fs_info, 6415 "error inheriting props for ino %llu (root %llu): %d", 6416 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6417 6418 return inode; 6419 6420 fail_unlock: 6421 discard_new_inode(inode); 6422 fail: 6423 if (dir && name) 6424 BTRFS_I(dir)->index_cnt--; 6425 btrfs_free_path(path); 6426 return ERR_PTR(ret); 6427 } 6428 6429 /* 6430 * utility function to add 'inode' into 'parent_inode' with 6431 * a give name and a given sequence number. 6432 * if 'add_backref' is true, also insert a backref from the 6433 * inode to the parent directory. 6434 */ 6435 int btrfs_add_link(struct btrfs_trans_handle *trans, 6436 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6437 const char *name, int name_len, int add_backref, u64 index) 6438 { 6439 int ret = 0; 6440 struct btrfs_key key; 6441 struct btrfs_root *root = parent_inode->root; 6442 u64 ino = btrfs_ino(inode); 6443 u64 parent_ino = btrfs_ino(parent_inode); 6444 6445 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6446 memcpy(&key, &inode->root->root_key, sizeof(key)); 6447 } else { 6448 key.objectid = ino; 6449 key.type = BTRFS_INODE_ITEM_KEY; 6450 key.offset = 0; 6451 } 6452 6453 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6454 ret = btrfs_add_root_ref(trans, key.objectid, 6455 root->root_key.objectid, parent_ino, 6456 index, name, name_len); 6457 } else if (add_backref) { 6458 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6459 parent_ino, index); 6460 } 6461 6462 /* Nothing to clean up yet */ 6463 if (ret) 6464 return ret; 6465 6466 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6467 btrfs_inode_type(&inode->vfs_inode), index); 6468 if (ret == -EEXIST || ret == -EOVERFLOW) 6469 goto fail_dir_item; 6470 else if (ret) { 6471 btrfs_abort_transaction(trans, ret); 6472 return ret; 6473 } 6474 6475 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6476 name_len * 2); 6477 inode_inc_iversion(&parent_inode->vfs_inode); 6478 /* 6479 * If we are replaying a log tree, we do not want to update the mtime 6480 * and ctime of the parent directory with the current time, since the 6481 * log replay procedure is responsible for setting them to their correct 6482 * values (the ones it had when the fsync was done). 6483 */ 6484 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6485 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6486 6487 parent_inode->vfs_inode.i_mtime = now; 6488 parent_inode->vfs_inode.i_ctime = now; 6489 } 6490 ret = btrfs_update_inode(trans, root, parent_inode); 6491 if (ret) 6492 btrfs_abort_transaction(trans, ret); 6493 return ret; 6494 6495 fail_dir_item: 6496 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6497 u64 local_index; 6498 int err; 6499 err = btrfs_del_root_ref(trans, key.objectid, 6500 root->root_key.objectid, parent_ino, 6501 &local_index, name, name_len); 6502 if (err) 6503 btrfs_abort_transaction(trans, err); 6504 } else if (add_backref) { 6505 u64 local_index; 6506 int err; 6507 6508 err = btrfs_del_inode_ref(trans, root, name, name_len, 6509 ino, parent_ino, &local_index); 6510 if (err) 6511 btrfs_abort_transaction(trans, err); 6512 } 6513 6514 /* Return the original error code */ 6515 return ret; 6516 } 6517 6518 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6519 struct btrfs_inode *dir, struct dentry *dentry, 6520 struct btrfs_inode *inode, int backref, u64 index) 6521 { 6522 int err = btrfs_add_link(trans, dir, inode, 6523 dentry->d_name.name, dentry->d_name.len, 6524 backref, index); 6525 if (err > 0) 6526 err = -EEXIST; 6527 return err; 6528 } 6529 6530 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6531 struct dentry *dentry, umode_t mode, dev_t rdev) 6532 { 6533 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6534 struct btrfs_trans_handle *trans; 6535 struct btrfs_root *root = BTRFS_I(dir)->root; 6536 struct inode *inode = NULL; 6537 int err; 6538 u64 objectid; 6539 u64 index = 0; 6540 6541 /* 6542 * 2 for inode item and ref 6543 * 2 for dir items 6544 * 1 for xattr if selinux is on 6545 */ 6546 trans = btrfs_start_transaction(root, 5); 6547 if (IS_ERR(trans)) 6548 return PTR_ERR(trans); 6549 6550 err = btrfs_get_free_objectid(root, &objectid); 6551 if (err) 6552 goto out_unlock; 6553 6554 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6555 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6556 mode, &index); 6557 if (IS_ERR(inode)) { 6558 err = PTR_ERR(inode); 6559 inode = NULL; 6560 goto out_unlock; 6561 } 6562 6563 /* 6564 * If the active LSM wants to access the inode during 6565 * d_instantiate it needs these. Smack checks to see 6566 * if the filesystem supports xattrs by looking at the 6567 * ops vector. 6568 */ 6569 inode->i_op = &btrfs_special_inode_operations; 6570 init_special_inode(inode, inode->i_mode, rdev); 6571 6572 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6573 if (err) 6574 goto out_unlock; 6575 6576 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6577 0, index); 6578 if (err) 6579 goto out_unlock; 6580 6581 btrfs_update_inode(trans, root, BTRFS_I(inode)); 6582 d_instantiate_new(dentry, inode); 6583 6584 out_unlock: 6585 btrfs_end_transaction(trans); 6586 btrfs_btree_balance_dirty(fs_info); 6587 if (err && inode) { 6588 inode_dec_link_count(inode); 6589 discard_new_inode(inode); 6590 } 6591 return err; 6592 } 6593 6594 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6595 struct dentry *dentry, umode_t mode, bool excl) 6596 { 6597 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6598 struct btrfs_trans_handle *trans; 6599 struct btrfs_root *root = BTRFS_I(dir)->root; 6600 struct inode *inode = NULL; 6601 int err; 6602 u64 objectid; 6603 u64 index = 0; 6604 6605 /* 6606 * 2 for inode item and ref 6607 * 2 for dir items 6608 * 1 for xattr if selinux is on 6609 */ 6610 trans = btrfs_start_transaction(root, 5); 6611 if (IS_ERR(trans)) 6612 return PTR_ERR(trans); 6613 6614 err = btrfs_get_free_objectid(root, &objectid); 6615 if (err) 6616 goto out_unlock; 6617 6618 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6619 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6620 mode, &index); 6621 if (IS_ERR(inode)) { 6622 err = PTR_ERR(inode); 6623 inode = NULL; 6624 goto out_unlock; 6625 } 6626 /* 6627 * If the active LSM wants to access the inode during 6628 * d_instantiate it needs these. Smack checks to see 6629 * if the filesystem supports xattrs by looking at the 6630 * ops vector. 6631 */ 6632 inode->i_fop = &btrfs_file_operations; 6633 inode->i_op = &btrfs_file_inode_operations; 6634 inode->i_mapping->a_ops = &btrfs_aops; 6635 6636 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6637 if (err) 6638 goto out_unlock; 6639 6640 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6641 if (err) 6642 goto out_unlock; 6643 6644 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6645 0, index); 6646 if (err) 6647 goto out_unlock; 6648 6649 d_instantiate_new(dentry, inode); 6650 6651 out_unlock: 6652 btrfs_end_transaction(trans); 6653 if (err && inode) { 6654 inode_dec_link_count(inode); 6655 discard_new_inode(inode); 6656 } 6657 btrfs_btree_balance_dirty(fs_info); 6658 return err; 6659 } 6660 6661 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6662 struct dentry *dentry) 6663 { 6664 struct btrfs_trans_handle *trans = NULL; 6665 struct btrfs_root *root = BTRFS_I(dir)->root; 6666 struct inode *inode = d_inode(old_dentry); 6667 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6668 u64 index; 6669 int err; 6670 int drop_inode = 0; 6671 6672 /* do not allow sys_link's with other subvols of the same device */ 6673 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6674 return -EXDEV; 6675 6676 if (inode->i_nlink >= BTRFS_LINK_MAX) 6677 return -EMLINK; 6678 6679 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6680 if (err) 6681 goto fail; 6682 6683 /* 6684 * 2 items for inode and inode ref 6685 * 2 items for dir items 6686 * 1 item for parent inode 6687 * 1 item for orphan item deletion if O_TMPFILE 6688 */ 6689 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6690 if (IS_ERR(trans)) { 6691 err = PTR_ERR(trans); 6692 trans = NULL; 6693 goto fail; 6694 } 6695 6696 /* There are several dir indexes for this inode, clear the cache. */ 6697 BTRFS_I(inode)->dir_index = 0ULL; 6698 inc_nlink(inode); 6699 inode_inc_iversion(inode); 6700 inode->i_ctime = current_time(inode); 6701 ihold(inode); 6702 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6703 6704 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6705 1, index); 6706 6707 if (err) { 6708 drop_inode = 1; 6709 } else { 6710 struct dentry *parent = dentry->d_parent; 6711 6712 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6713 if (err) 6714 goto fail; 6715 if (inode->i_nlink == 1) { 6716 /* 6717 * If new hard link count is 1, it's a file created 6718 * with open(2) O_TMPFILE flag. 6719 */ 6720 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6721 if (err) 6722 goto fail; 6723 } 6724 d_instantiate(dentry, inode); 6725 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6726 } 6727 6728 fail: 6729 if (trans) 6730 btrfs_end_transaction(trans); 6731 if (drop_inode) { 6732 inode_dec_link_count(inode); 6733 iput(inode); 6734 } 6735 btrfs_btree_balance_dirty(fs_info); 6736 return err; 6737 } 6738 6739 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6740 struct dentry *dentry, umode_t mode) 6741 { 6742 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6743 struct inode *inode = NULL; 6744 struct btrfs_trans_handle *trans; 6745 struct btrfs_root *root = BTRFS_I(dir)->root; 6746 int err = 0; 6747 u64 objectid = 0; 6748 u64 index = 0; 6749 6750 /* 6751 * 2 items for inode and ref 6752 * 2 items for dir items 6753 * 1 for xattr if selinux is on 6754 */ 6755 trans = btrfs_start_transaction(root, 5); 6756 if (IS_ERR(trans)) 6757 return PTR_ERR(trans); 6758 6759 err = btrfs_get_free_objectid(root, &objectid); 6760 if (err) 6761 goto out_fail; 6762 6763 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6764 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6765 S_IFDIR | mode, &index); 6766 if (IS_ERR(inode)) { 6767 err = PTR_ERR(inode); 6768 inode = NULL; 6769 goto out_fail; 6770 } 6771 6772 /* these must be set before we unlock the inode */ 6773 inode->i_op = &btrfs_dir_inode_operations; 6774 inode->i_fop = &btrfs_dir_file_operations; 6775 6776 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6777 if (err) 6778 goto out_fail; 6779 6780 btrfs_i_size_write(BTRFS_I(inode), 0); 6781 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6782 if (err) 6783 goto out_fail; 6784 6785 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6786 dentry->d_name.name, 6787 dentry->d_name.len, 0, index); 6788 if (err) 6789 goto out_fail; 6790 6791 d_instantiate_new(dentry, inode); 6792 6793 out_fail: 6794 btrfs_end_transaction(trans); 6795 if (err && inode) { 6796 inode_dec_link_count(inode); 6797 discard_new_inode(inode); 6798 } 6799 btrfs_btree_balance_dirty(fs_info); 6800 return err; 6801 } 6802 6803 static noinline int uncompress_inline(struct btrfs_path *path, 6804 struct page *page, 6805 size_t pg_offset, u64 extent_offset, 6806 struct btrfs_file_extent_item *item) 6807 { 6808 int ret; 6809 struct extent_buffer *leaf = path->nodes[0]; 6810 char *tmp; 6811 size_t max_size; 6812 unsigned long inline_size; 6813 unsigned long ptr; 6814 int compress_type; 6815 6816 WARN_ON(pg_offset != 0); 6817 compress_type = btrfs_file_extent_compression(leaf, item); 6818 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6819 inline_size = btrfs_file_extent_inline_item_len(leaf, 6820 btrfs_item_nr(path->slots[0])); 6821 tmp = kmalloc(inline_size, GFP_NOFS); 6822 if (!tmp) 6823 return -ENOMEM; 6824 ptr = btrfs_file_extent_inline_start(item); 6825 6826 read_extent_buffer(leaf, tmp, ptr, inline_size); 6827 6828 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6829 ret = btrfs_decompress(compress_type, tmp, page, 6830 extent_offset, inline_size, max_size); 6831 6832 /* 6833 * decompression code contains a memset to fill in any space between the end 6834 * of the uncompressed data and the end of max_size in case the decompressed 6835 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6836 * the end of an inline extent and the beginning of the next block, so we 6837 * cover that region here. 6838 */ 6839 6840 if (max_size + pg_offset < PAGE_SIZE) 6841 memzero_page(page, pg_offset + max_size, 6842 PAGE_SIZE - max_size - pg_offset); 6843 kfree(tmp); 6844 return ret; 6845 } 6846 6847 /** 6848 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6849 * @inode: file to search in 6850 * @page: page to read extent data into if the extent is inline 6851 * @pg_offset: offset into @page to copy to 6852 * @start: file offset 6853 * @len: length of range starting at @start 6854 * 6855 * This returns the first &struct extent_map which overlaps with the given 6856 * range, reading it from the B-tree and caching it if necessary. Note that 6857 * there may be more extents which overlap the given range after the returned 6858 * extent_map. 6859 * 6860 * If @page is not NULL and the extent is inline, this also reads the extent 6861 * data directly into the page and marks the extent up to date in the io_tree. 6862 * 6863 * Return: ERR_PTR on error, non-NULL extent_map on success. 6864 */ 6865 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6866 struct page *page, size_t pg_offset, 6867 u64 start, u64 len) 6868 { 6869 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6870 int ret = 0; 6871 u64 extent_start = 0; 6872 u64 extent_end = 0; 6873 u64 objectid = btrfs_ino(inode); 6874 int extent_type = -1; 6875 struct btrfs_path *path = NULL; 6876 struct btrfs_root *root = inode->root; 6877 struct btrfs_file_extent_item *item; 6878 struct extent_buffer *leaf; 6879 struct btrfs_key found_key; 6880 struct extent_map *em = NULL; 6881 struct extent_map_tree *em_tree = &inode->extent_tree; 6882 struct extent_io_tree *io_tree = &inode->io_tree; 6883 6884 read_lock(&em_tree->lock); 6885 em = lookup_extent_mapping(em_tree, start, len); 6886 read_unlock(&em_tree->lock); 6887 6888 if (em) { 6889 if (em->start > start || em->start + em->len <= start) 6890 free_extent_map(em); 6891 else if (em->block_start == EXTENT_MAP_INLINE && page) 6892 free_extent_map(em); 6893 else 6894 goto out; 6895 } 6896 em = alloc_extent_map(); 6897 if (!em) { 6898 ret = -ENOMEM; 6899 goto out; 6900 } 6901 em->start = EXTENT_MAP_HOLE; 6902 em->orig_start = EXTENT_MAP_HOLE; 6903 em->len = (u64)-1; 6904 em->block_len = (u64)-1; 6905 6906 path = btrfs_alloc_path(); 6907 if (!path) { 6908 ret = -ENOMEM; 6909 goto out; 6910 } 6911 6912 /* Chances are we'll be called again, so go ahead and do readahead */ 6913 path->reada = READA_FORWARD; 6914 6915 /* 6916 * The same explanation in load_free_space_cache applies here as well, 6917 * we only read when we're loading the free space cache, and at that 6918 * point the commit_root has everything we need. 6919 */ 6920 if (btrfs_is_free_space_inode(inode)) { 6921 path->search_commit_root = 1; 6922 path->skip_locking = 1; 6923 } 6924 6925 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6926 if (ret < 0) { 6927 goto out; 6928 } else if (ret > 0) { 6929 if (path->slots[0] == 0) 6930 goto not_found; 6931 path->slots[0]--; 6932 ret = 0; 6933 } 6934 6935 leaf = path->nodes[0]; 6936 item = btrfs_item_ptr(leaf, path->slots[0], 6937 struct btrfs_file_extent_item); 6938 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6939 if (found_key.objectid != objectid || 6940 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6941 /* 6942 * If we backup past the first extent we want to move forward 6943 * and see if there is an extent in front of us, otherwise we'll 6944 * say there is a hole for our whole search range which can 6945 * cause problems. 6946 */ 6947 extent_end = start; 6948 goto next; 6949 } 6950 6951 extent_type = btrfs_file_extent_type(leaf, item); 6952 extent_start = found_key.offset; 6953 extent_end = btrfs_file_extent_end(path); 6954 if (extent_type == BTRFS_FILE_EXTENT_REG || 6955 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6956 /* Only regular file could have regular/prealloc extent */ 6957 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6958 ret = -EUCLEAN; 6959 btrfs_crit(fs_info, 6960 "regular/prealloc extent found for non-regular inode %llu", 6961 btrfs_ino(inode)); 6962 goto out; 6963 } 6964 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6965 extent_start); 6966 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6967 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6968 path->slots[0], 6969 extent_start); 6970 } 6971 next: 6972 if (start >= extent_end) { 6973 path->slots[0]++; 6974 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6975 ret = btrfs_next_leaf(root, path); 6976 if (ret < 0) 6977 goto out; 6978 else if (ret > 0) 6979 goto not_found; 6980 6981 leaf = path->nodes[0]; 6982 } 6983 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6984 if (found_key.objectid != objectid || 6985 found_key.type != BTRFS_EXTENT_DATA_KEY) 6986 goto not_found; 6987 if (start + len <= found_key.offset) 6988 goto not_found; 6989 if (start > found_key.offset) 6990 goto next; 6991 6992 /* New extent overlaps with existing one */ 6993 em->start = start; 6994 em->orig_start = start; 6995 em->len = found_key.offset - start; 6996 em->block_start = EXTENT_MAP_HOLE; 6997 goto insert; 6998 } 6999 7000 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 7001 7002 if (extent_type == BTRFS_FILE_EXTENT_REG || 7003 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7004 goto insert; 7005 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7006 unsigned long ptr; 7007 char *map; 7008 size_t size; 7009 size_t extent_offset; 7010 size_t copy_size; 7011 7012 if (!page) 7013 goto out; 7014 7015 size = btrfs_file_extent_ram_bytes(leaf, item); 7016 extent_offset = page_offset(page) + pg_offset - extent_start; 7017 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7018 size - extent_offset); 7019 em->start = extent_start + extent_offset; 7020 em->len = ALIGN(copy_size, fs_info->sectorsize); 7021 em->orig_block_len = em->len; 7022 em->orig_start = em->start; 7023 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7024 7025 if (!PageUptodate(page)) { 7026 if (btrfs_file_extent_compression(leaf, item) != 7027 BTRFS_COMPRESS_NONE) { 7028 ret = uncompress_inline(path, page, pg_offset, 7029 extent_offset, item); 7030 if (ret) 7031 goto out; 7032 } else { 7033 map = kmap_local_page(page); 7034 read_extent_buffer(leaf, map + pg_offset, ptr, 7035 copy_size); 7036 if (pg_offset + copy_size < PAGE_SIZE) { 7037 memset(map + pg_offset + copy_size, 0, 7038 PAGE_SIZE - pg_offset - 7039 copy_size); 7040 } 7041 kunmap_local(map); 7042 } 7043 flush_dcache_page(page); 7044 } 7045 set_extent_uptodate(io_tree, em->start, 7046 extent_map_end(em) - 1, NULL, GFP_NOFS); 7047 goto insert; 7048 } 7049 not_found: 7050 em->start = start; 7051 em->orig_start = start; 7052 em->len = len; 7053 em->block_start = EXTENT_MAP_HOLE; 7054 insert: 7055 ret = 0; 7056 btrfs_release_path(path); 7057 if (em->start > start || extent_map_end(em) <= start) { 7058 btrfs_err(fs_info, 7059 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7060 em->start, em->len, start, len); 7061 ret = -EIO; 7062 goto out; 7063 } 7064 7065 write_lock(&em_tree->lock); 7066 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7067 write_unlock(&em_tree->lock); 7068 out: 7069 btrfs_free_path(path); 7070 7071 trace_btrfs_get_extent(root, inode, em); 7072 7073 if (ret) { 7074 free_extent_map(em); 7075 return ERR_PTR(ret); 7076 } 7077 return em; 7078 } 7079 7080 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7081 u64 start, u64 len) 7082 { 7083 struct extent_map *em; 7084 struct extent_map *hole_em = NULL; 7085 u64 delalloc_start = start; 7086 u64 end; 7087 u64 delalloc_len; 7088 u64 delalloc_end; 7089 int err = 0; 7090 7091 em = btrfs_get_extent(inode, NULL, 0, start, len); 7092 if (IS_ERR(em)) 7093 return em; 7094 /* 7095 * If our em maps to: 7096 * - a hole or 7097 * - a pre-alloc extent, 7098 * there might actually be delalloc bytes behind it. 7099 */ 7100 if (em->block_start != EXTENT_MAP_HOLE && 7101 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7102 return em; 7103 else 7104 hole_em = em; 7105 7106 /* check to see if we've wrapped (len == -1 or similar) */ 7107 end = start + len; 7108 if (end < start) 7109 end = (u64)-1; 7110 else 7111 end -= 1; 7112 7113 em = NULL; 7114 7115 /* ok, we didn't find anything, lets look for delalloc */ 7116 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7117 end, len, EXTENT_DELALLOC, 1); 7118 delalloc_end = delalloc_start + delalloc_len; 7119 if (delalloc_end < delalloc_start) 7120 delalloc_end = (u64)-1; 7121 7122 /* 7123 * We didn't find anything useful, return the original results from 7124 * get_extent() 7125 */ 7126 if (delalloc_start > end || delalloc_end <= start) { 7127 em = hole_em; 7128 hole_em = NULL; 7129 goto out; 7130 } 7131 7132 /* 7133 * Adjust the delalloc_start to make sure it doesn't go backwards from 7134 * the start they passed in 7135 */ 7136 delalloc_start = max(start, delalloc_start); 7137 delalloc_len = delalloc_end - delalloc_start; 7138 7139 if (delalloc_len > 0) { 7140 u64 hole_start; 7141 u64 hole_len; 7142 const u64 hole_end = extent_map_end(hole_em); 7143 7144 em = alloc_extent_map(); 7145 if (!em) { 7146 err = -ENOMEM; 7147 goto out; 7148 } 7149 7150 ASSERT(hole_em); 7151 /* 7152 * When btrfs_get_extent can't find anything it returns one 7153 * huge hole 7154 * 7155 * Make sure what it found really fits our range, and adjust to 7156 * make sure it is based on the start from the caller 7157 */ 7158 if (hole_end <= start || hole_em->start > end) { 7159 free_extent_map(hole_em); 7160 hole_em = NULL; 7161 } else { 7162 hole_start = max(hole_em->start, start); 7163 hole_len = hole_end - hole_start; 7164 } 7165 7166 if (hole_em && delalloc_start > hole_start) { 7167 /* 7168 * Our hole starts before our delalloc, so we have to 7169 * return just the parts of the hole that go until the 7170 * delalloc starts 7171 */ 7172 em->len = min(hole_len, delalloc_start - hole_start); 7173 em->start = hole_start; 7174 em->orig_start = hole_start; 7175 /* 7176 * Don't adjust block start at all, it is fixed at 7177 * EXTENT_MAP_HOLE 7178 */ 7179 em->block_start = hole_em->block_start; 7180 em->block_len = hole_len; 7181 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7182 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7183 } else { 7184 /* 7185 * Hole is out of passed range or it starts after 7186 * delalloc range 7187 */ 7188 em->start = delalloc_start; 7189 em->len = delalloc_len; 7190 em->orig_start = delalloc_start; 7191 em->block_start = EXTENT_MAP_DELALLOC; 7192 em->block_len = delalloc_len; 7193 } 7194 } else { 7195 return hole_em; 7196 } 7197 out: 7198 7199 free_extent_map(hole_em); 7200 if (err) { 7201 free_extent_map(em); 7202 return ERR_PTR(err); 7203 } 7204 return em; 7205 } 7206 7207 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7208 const u64 start, 7209 const u64 len, 7210 const u64 orig_start, 7211 const u64 block_start, 7212 const u64 block_len, 7213 const u64 orig_block_len, 7214 const u64 ram_bytes, 7215 const int type) 7216 { 7217 struct extent_map *em = NULL; 7218 int ret; 7219 7220 if (type != BTRFS_ORDERED_NOCOW) { 7221 em = create_io_em(inode, start, len, orig_start, block_start, 7222 block_len, orig_block_len, ram_bytes, 7223 BTRFS_COMPRESS_NONE, /* compress_type */ 7224 type); 7225 if (IS_ERR(em)) 7226 goto out; 7227 } 7228 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, 7229 block_len, type); 7230 if (ret) { 7231 if (em) { 7232 free_extent_map(em); 7233 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7234 } 7235 em = ERR_PTR(ret); 7236 } 7237 out: 7238 7239 return em; 7240 } 7241 7242 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7243 u64 start, u64 len) 7244 { 7245 struct btrfs_root *root = inode->root; 7246 struct btrfs_fs_info *fs_info = root->fs_info; 7247 struct extent_map *em; 7248 struct btrfs_key ins; 7249 u64 alloc_hint; 7250 int ret; 7251 7252 alloc_hint = get_extent_allocation_hint(inode, start, len); 7253 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7254 0, alloc_hint, &ins, 1, 1); 7255 if (ret) 7256 return ERR_PTR(ret); 7257 7258 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7259 ins.objectid, ins.offset, ins.offset, 7260 ins.offset, BTRFS_ORDERED_REGULAR); 7261 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7262 if (IS_ERR(em)) 7263 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7264 1); 7265 7266 return em; 7267 } 7268 7269 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7270 { 7271 struct btrfs_block_group *block_group; 7272 bool readonly = false; 7273 7274 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7275 if (!block_group || block_group->ro) 7276 readonly = true; 7277 if (block_group) 7278 btrfs_put_block_group(block_group); 7279 return readonly; 7280 } 7281 7282 /* 7283 * Check if we can do nocow write into the range [@offset, @offset + @len) 7284 * 7285 * @offset: File offset 7286 * @len: The length to write, will be updated to the nocow writeable 7287 * range 7288 * @orig_start: (optional) Return the original file offset of the file extent 7289 * @orig_len: (optional) Return the original on-disk length of the file extent 7290 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7291 * @strict: if true, omit optimizations that might force us into unnecessary 7292 * cow. e.g., don't trust generation number. 7293 * 7294 * Return: 7295 * >0 and update @len if we can do nocow write 7296 * 0 if we can't do nocow write 7297 * <0 if error happened 7298 * 7299 * NOTE: This only checks the file extents, caller is responsible to wait for 7300 * any ordered extents. 7301 */ 7302 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7303 u64 *orig_start, u64 *orig_block_len, 7304 u64 *ram_bytes, bool strict) 7305 { 7306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7307 struct btrfs_path *path; 7308 int ret; 7309 struct extent_buffer *leaf; 7310 struct btrfs_root *root = BTRFS_I(inode)->root; 7311 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7312 struct btrfs_file_extent_item *fi; 7313 struct btrfs_key key; 7314 u64 disk_bytenr; 7315 u64 backref_offset; 7316 u64 extent_end; 7317 u64 num_bytes; 7318 int slot; 7319 int found_type; 7320 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7321 7322 path = btrfs_alloc_path(); 7323 if (!path) 7324 return -ENOMEM; 7325 7326 ret = btrfs_lookup_file_extent(NULL, root, path, 7327 btrfs_ino(BTRFS_I(inode)), offset, 0); 7328 if (ret < 0) 7329 goto out; 7330 7331 slot = path->slots[0]; 7332 if (ret == 1) { 7333 if (slot == 0) { 7334 /* can't find the item, must cow */ 7335 ret = 0; 7336 goto out; 7337 } 7338 slot--; 7339 } 7340 ret = 0; 7341 leaf = path->nodes[0]; 7342 btrfs_item_key_to_cpu(leaf, &key, slot); 7343 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7344 key.type != BTRFS_EXTENT_DATA_KEY) { 7345 /* not our file or wrong item type, must cow */ 7346 goto out; 7347 } 7348 7349 if (key.offset > offset) { 7350 /* Wrong offset, must cow */ 7351 goto out; 7352 } 7353 7354 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7355 found_type = btrfs_file_extent_type(leaf, fi); 7356 if (found_type != BTRFS_FILE_EXTENT_REG && 7357 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7358 /* not a regular extent, must cow */ 7359 goto out; 7360 } 7361 7362 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7363 goto out; 7364 7365 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7366 if (extent_end <= offset) 7367 goto out; 7368 7369 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7370 if (disk_bytenr == 0) 7371 goto out; 7372 7373 if (btrfs_file_extent_compression(leaf, fi) || 7374 btrfs_file_extent_encryption(leaf, fi) || 7375 btrfs_file_extent_other_encoding(leaf, fi)) 7376 goto out; 7377 7378 /* 7379 * Do the same check as in btrfs_cross_ref_exist but without the 7380 * unnecessary search. 7381 */ 7382 if (!strict && 7383 (btrfs_file_extent_generation(leaf, fi) <= 7384 btrfs_root_last_snapshot(&root->root_item))) 7385 goto out; 7386 7387 backref_offset = btrfs_file_extent_offset(leaf, fi); 7388 7389 if (orig_start) { 7390 *orig_start = key.offset - backref_offset; 7391 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7392 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7393 } 7394 7395 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7396 goto out; 7397 7398 num_bytes = min(offset + *len, extent_end) - offset; 7399 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7400 u64 range_end; 7401 7402 range_end = round_up(offset + num_bytes, 7403 root->fs_info->sectorsize) - 1; 7404 ret = test_range_bit(io_tree, offset, range_end, 7405 EXTENT_DELALLOC, 0, NULL); 7406 if (ret) { 7407 ret = -EAGAIN; 7408 goto out; 7409 } 7410 } 7411 7412 btrfs_release_path(path); 7413 7414 /* 7415 * look for other files referencing this extent, if we 7416 * find any we must cow 7417 */ 7418 7419 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7420 key.offset - backref_offset, disk_bytenr, 7421 strict); 7422 if (ret) { 7423 ret = 0; 7424 goto out; 7425 } 7426 7427 /* 7428 * adjust disk_bytenr and num_bytes to cover just the bytes 7429 * in this extent we are about to write. If there 7430 * are any csums in that range we have to cow in order 7431 * to keep the csums correct 7432 */ 7433 disk_bytenr += backref_offset; 7434 disk_bytenr += offset - key.offset; 7435 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7436 goto out; 7437 /* 7438 * all of the above have passed, it is safe to overwrite this extent 7439 * without cow 7440 */ 7441 *len = num_bytes; 7442 ret = 1; 7443 out: 7444 btrfs_free_path(path); 7445 return ret; 7446 } 7447 7448 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7449 struct extent_state **cached_state, bool writing) 7450 { 7451 struct btrfs_ordered_extent *ordered; 7452 int ret = 0; 7453 7454 while (1) { 7455 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7456 cached_state); 7457 /* 7458 * We're concerned with the entire range that we're going to be 7459 * doing DIO to, so we need to make sure there's no ordered 7460 * extents in this range. 7461 */ 7462 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7463 lockend - lockstart + 1); 7464 7465 /* 7466 * We need to make sure there are no buffered pages in this 7467 * range either, we could have raced between the invalidate in 7468 * generic_file_direct_write and locking the extent. The 7469 * invalidate needs to happen so that reads after a write do not 7470 * get stale data. 7471 */ 7472 if (!ordered && 7473 (!writing || !filemap_range_has_page(inode->i_mapping, 7474 lockstart, lockend))) 7475 break; 7476 7477 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7478 cached_state); 7479 7480 if (ordered) { 7481 /* 7482 * If we are doing a DIO read and the ordered extent we 7483 * found is for a buffered write, we can not wait for it 7484 * to complete and retry, because if we do so we can 7485 * deadlock with concurrent buffered writes on page 7486 * locks. This happens only if our DIO read covers more 7487 * than one extent map, if at this point has already 7488 * created an ordered extent for a previous extent map 7489 * and locked its range in the inode's io tree, and a 7490 * concurrent write against that previous extent map's 7491 * range and this range started (we unlock the ranges 7492 * in the io tree only when the bios complete and 7493 * buffered writes always lock pages before attempting 7494 * to lock range in the io tree). 7495 */ 7496 if (writing || 7497 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7498 btrfs_start_ordered_extent(ordered, 1); 7499 else 7500 ret = -ENOTBLK; 7501 btrfs_put_ordered_extent(ordered); 7502 } else { 7503 /* 7504 * We could trigger writeback for this range (and wait 7505 * for it to complete) and then invalidate the pages for 7506 * this range (through invalidate_inode_pages2_range()), 7507 * but that can lead us to a deadlock with a concurrent 7508 * call to readahead (a buffered read or a defrag call 7509 * triggered a readahead) on a page lock due to an 7510 * ordered dio extent we created before but did not have 7511 * yet a corresponding bio submitted (whence it can not 7512 * complete), which makes readahead wait for that 7513 * ordered extent to complete while holding a lock on 7514 * that page. 7515 */ 7516 ret = -ENOTBLK; 7517 } 7518 7519 if (ret) 7520 break; 7521 7522 cond_resched(); 7523 } 7524 7525 return ret; 7526 } 7527 7528 /* The callers of this must take lock_extent() */ 7529 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7530 u64 len, u64 orig_start, u64 block_start, 7531 u64 block_len, u64 orig_block_len, 7532 u64 ram_bytes, int compress_type, 7533 int type) 7534 { 7535 struct extent_map_tree *em_tree; 7536 struct extent_map *em; 7537 int ret; 7538 7539 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7540 type == BTRFS_ORDERED_COMPRESSED || 7541 type == BTRFS_ORDERED_NOCOW || 7542 type == BTRFS_ORDERED_REGULAR); 7543 7544 em_tree = &inode->extent_tree; 7545 em = alloc_extent_map(); 7546 if (!em) 7547 return ERR_PTR(-ENOMEM); 7548 7549 em->start = start; 7550 em->orig_start = orig_start; 7551 em->len = len; 7552 em->block_len = block_len; 7553 em->block_start = block_start; 7554 em->orig_block_len = orig_block_len; 7555 em->ram_bytes = ram_bytes; 7556 em->generation = -1; 7557 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7558 if (type == BTRFS_ORDERED_PREALLOC) { 7559 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7560 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7561 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7562 em->compress_type = compress_type; 7563 } 7564 7565 do { 7566 btrfs_drop_extent_cache(inode, em->start, 7567 em->start + em->len - 1, 0); 7568 write_lock(&em_tree->lock); 7569 ret = add_extent_mapping(em_tree, em, 1); 7570 write_unlock(&em_tree->lock); 7571 /* 7572 * The caller has taken lock_extent(), who could race with us 7573 * to add em? 7574 */ 7575 } while (ret == -EEXIST); 7576 7577 if (ret) { 7578 free_extent_map(em); 7579 return ERR_PTR(ret); 7580 } 7581 7582 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7583 return em; 7584 } 7585 7586 7587 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7588 struct inode *inode, 7589 struct btrfs_dio_data *dio_data, 7590 u64 start, u64 len) 7591 { 7592 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7593 struct extent_map *em = *map; 7594 int ret = 0; 7595 7596 /* 7597 * We don't allocate a new extent in the following cases 7598 * 7599 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7600 * existing extent. 7601 * 2) The extent is marked as PREALLOC. We're good to go here and can 7602 * just use the extent. 7603 * 7604 */ 7605 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7606 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7607 em->block_start != EXTENT_MAP_HOLE)) { 7608 int type; 7609 u64 block_start, orig_start, orig_block_len, ram_bytes; 7610 7611 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7612 type = BTRFS_ORDERED_PREALLOC; 7613 else 7614 type = BTRFS_ORDERED_NOCOW; 7615 len = min(len, em->len - (start - em->start)); 7616 block_start = em->block_start + (start - em->start); 7617 7618 if (can_nocow_extent(inode, start, &len, &orig_start, 7619 &orig_block_len, &ram_bytes, false) == 1 && 7620 btrfs_inc_nocow_writers(fs_info, block_start)) { 7621 struct extent_map *em2; 7622 7623 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7624 orig_start, block_start, 7625 len, orig_block_len, 7626 ram_bytes, type); 7627 btrfs_dec_nocow_writers(fs_info, block_start); 7628 if (type == BTRFS_ORDERED_PREALLOC) { 7629 free_extent_map(em); 7630 *map = em = em2; 7631 } 7632 7633 if (em2 && IS_ERR(em2)) { 7634 ret = PTR_ERR(em2); 7635 goto out; 7636 } 7637 /* 7638 * For inode marked NODATACOW or extent marked PREALLOC, 7639 * use the existing or preallocated extent, so does not 7640 * need to adjust btrfs_space_info's bytes_may_use. 7641 */ 7642 btrfs_free_reserved_data_space_noquota(fs_info, len); 7643 goto skip_cow; 7644 } 7645 } 7646 7647 /* this will cow the extent */ 7648 free_extent_map(em); 7649 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7650 if (IS_ERR(em)) { 7651 ret = PTR_ERR(em); 7652 goto out; 7653 } 7654 7655 len = min(len, em->len - (start - em->start)); 7656 7657 skip_cow: 7658 /* 7659 * Need to update the i_size under the extent lock so buffered 7660 * readers will get the updated i_size when we unlock. 7661 */ 7662 if (start + len > i_size_read(inode)) 7663 i_size_write(inode, start + len); 7664 7665 dio_data->reserve -= len; 7666 out: 7667 return ret; 7668 } 7669 7670 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7671 loff_t length, unsigned int flags, struct iomap *iomap, 7672 struct iomap *srcmap) 7673 { 7674 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7675 struct extent_map *em; 7676 struct extent_state *cached_state = NULL; 7677 struct btrfs_dio_data *dio_data = NULL; 7678 u64 lockstart, lockend; 7679 const bool write = !!(flags & IOMAP_WRITE); 7680 int ret = 0; 7681 u64 len = length; 7682 bool unlock_extents = false; 7683 7684 if (!write) 7685 len = min_t(u64, len, fs_info->sectorsize); 7686 7687 lockstart = start; 7688 lockend = start + len - 1; 7689 7690 /* 7691 * The generic stuff only does filemap_write_and_wait_range, which 7692 * isn't enough if we've written compressed pages to this area, so we 7693 * need to flush the dirty pages again to make absolutely sure that any 7694 * outstanding dirty pages are on disk. 7695 */ 7696 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7697 &BTRFS_I(inode)->runtime_flags)) { 7698 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7699 start + length - 1); 7700 if (ret) 7701 return ret; 7702 } 7703 7704 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7705 if (!dio_data) 7706 return -ENOMEM; 7707 7708 dio_data->length = length; 7709 if (write) { 7710 dio_data->reserve = round_up(length, fs_info->sectorsize); 7711 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7712 &dio_data->data_reserved, 7713 start, dio_data->reserve); 7714 if (ret) { 7715 extent_changeset_free(dio_data->data_reserved); 7716 kfree(dio_data); 7717 return ret; 7718 } 7719 } 7720 iomap->private = dio_data; 7721 7722 7723 /* 7724 * If this errors out it's because we couldn't invalidate pagecache for 7725 * this range and we need to fallback to buffered. 7726 */ 7727 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7728 ret = -ENOTBLK; 7729 goto err; 7730 } 7731 7732 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7733 if (IS_ERR(em)) { 7734 ret = PTR_ERR(em); 7735 goto unlock_err; 7736 } 7737 7738 /* 7739 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7740 * io. INLINE is special, and we could probably kludge it in here, but 7741 * it's still buffered so for safety lets just fall back to the generic 7742 * buffered path. 7743 * 7744 * For COMPRESSED we _have_ to read the entire extent in so we can 7745 * decompress it, so there will be buffering required no matter what we 7746 * do, so go ahead and fallback to buffered. 7747 * 7748 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7749 * to buffered IO. Don't blame me, this is the price we pay for using 7750 * the generic code. 7751 */ 7752 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7753 em->block_start == EXTENT_MAP_INLINE) { 7754 free_extent_map(em); 7755 ret = -ENOTBLK; 7756 goto unlock_err; 7757 } 7758 7759 len = min(len, em->len - (start - em->start)); 7760 if (write) { 7761 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7762 start, len); 7763 if (ret < 0) 7764 goto unlock_err; 7765 unlock_extents = true; 7766 /* Recalc len in case the new em is smaller than requested */ 7767 len = min(len, em->len - (start - em->start)); 7768 } else { 7769 /* 7770 * We need to unlock only the end area that we aren't using. 7771 * The rest is going to be unlocked by the endio routine. 7772 */ 7773 lockstart = start + len; 7774 if (lockstart < lockend) 7775 unlock_extents = true; 7776 } 7777 7778 if (unlock_extents) 7779 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7780 lockstart, lockend, &cached_state); 7781 else 7782 free_extent_state(cached_state); 7783 7784 /* 7785 * Translate extent map information to iomap. 7786 * We trim the extents (and move the addr) even though iomap code does 7787 * that, since we have locked only the parts we are performing I/O in. 7788 */ 7789 if ((em->block_start == EXTENT_MAP_HOLE) || 7790 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7791 iomap->addr = IOMAP_NULL_ADDR; 7792 iomap->type = IOMAP_HOLE; 7793 } else { 7794 iomap->addr = em->block_start + (start - em->start); 7795 iomap->type = IOMAP_MAPPED; 7796 } 7797 iomap->offset = start; 7798 iomap->bdev = fs_info->fs_devices->latest_bdev; 7799 iomap->length = len; 7800 7801 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start)) 7802 iomap->flags |= IOMAP_F_ZONE_APPEND; 7803 7804 free_extent_map(em); 7805 7806 return 0; 7807 7808 unlock_err: 7809 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7810 &cached_state); 7811 err: 7812 if (dio_data) { 7813 btrfs_delalloc_release_space(BTRFS_I(inode), 7814 dio_data->data_reserved, start, 7815 dio_data->reserve, true); 7816 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve); 7817 extent_changeset_free(dio_data->data_reserved); 7818 kfree(dio_data); 7819 } 7820 return ret; 7821 } 7822 7823 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7824 ssize_t written, unsigned int flags, struct iomap *iomap) 7825 { 7826 int ret = 0; 7827 struct btrfs_dio_data *dio_data = iomap->private; 7828 size_t submitted = dio_data->submitted; 7829 const bool write = !!(flags & IOMAP_WRITE); 7830 7831 if (!write && (iomap->type == IOMAP_HOLE)) { 7832 /* If reading from a hole, unlock and return */ 7833 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7834 goto out; 7835 } 7836 7837 if (submitted < length) { 7838 pos += submitted; 7839 length -= submitted; 7840 if (write) 7841 __endio_write_update_ordered(BTRFS_I(inode), pos, 7842 length, false); 7843 else 7844 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7845 pos + length - 1); 7846 ret = -ENOTBLK; 7847 } 7848 7849 if (write) { 7850 if (dio_data->reserve) 7851 btrfs_delalloc_release_space(BTRFS_I(inode), 7852 dio_data->data_reserved, pos, 7853 dio_data->reserve, true); 7854 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length); 7855 extent_changeset_free(dio_data->data_reserved); 7856 } 7857 out: 7858 kfree(dio_data); 7859 iomap->private = NULL; 7860 7861 return ret; 7862 } 7863 7864 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7865 { 7866 /* 7867 * This implies a barrier so that stores to dio_bio->bi_status before 7868 * this and loads of dio_bio->bi_status after this are fully ordered. 7869 */ 7870 if (!refcount_dec_and_test(&dip->refs)) 7871 return; 7872 7873 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) { 7874 __endio_write_update_ordered(BTRFS_I(dip->inode), 7875 dip->logical_offset, 7876 dip->bytes, 7877 !dip->dio_bio->bi_status); 7878 } else { 7879 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7880 dip->logical_offset, 7881 dip->logical_offset + dip->bytes - 1); 7882 } 7883 7884 bio_endio(dip->dio_bio); 7885 kfree(dip); 7886 } 7887 7888 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7889 int mirror_num, 7890 unsigned long bio_flags) 7891 { 7892 struct btrfs_dio_private *dip = bio->bi_private; 7893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7894 blk_status_t ret; 7895 7896 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7897 7898 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7899 if (ret) 7900 return ret; 7901 7902 refcount_inc(&dip->refs); 7903 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7904 if (ret) 7905 refcount_dec(&dip->refs); 7906 return ret; 7907 } 7908 7909 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7910 struct btrfs_io_bio *io_bio, 7911 const bool uptodate) 7912 { 7913 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7914 const u32 sectorsize = fs_info->sectorsize; 7915 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7916 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7917 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7918 struct bio_vec bvec; 7919 struct bvec_iter iter; 7920 u64 start = io_bio->logical; 7921 u32 bio_offset = 0; 7922 blk_status_t err = BLK_STS_OK; 7923 7924 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7925 unsigned int i, nr_sectors, pgoff; 7926 7927 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7928 pgoff = bvec.bv_offset; 7929 for (i = 0; i < nr_sectors; i++) { 7930 ASSERT(pgoff < PAGE_SIZE); 7931 if (uptodate && 7932 (!csum || !check_data_csum(inode, io_bio, 7933 bio_offset, bvec.bv_page, 7934 pgoff, start))) { 7935 clean_io_failure(fs_info, failure_tree, io_tree, 7936 start, bvec.bv_page, 7937 btrfs_ino(BTRFS_I(inode)), 7938 pgoff); 7939 } else { 7940 blk_status_t status; 7941 7942 ASSERT((start - io_bio->logical) < UINT_MAX); 7943 status = btrfs_submit_read_repair(inode, 7944 &io_bio->bio, 7945 start - io_bio->logical, 7946 bvec.bv_page, pgoff, 7947 start, 7948 start + sectorsize - 1, 7949 io_bio->mirror_num, 7950 submit_dio_repair_bio); 7951 if (status) 7952 err = status; 7953 } 7954 start += sectorsize; 7955 ASSERT(bio_offset + sectorsize > bio_offset); 7956 bio_offset += sectorsize; 7957 pgoff += sectorsize; 7958 } 7959 } 7960 return err; 7961 } 7962 7963 static void __endio_write_update_ordered(struct btrfs_inode *inode, 7964 const u64 offset, const u64 bytes, 7965 const bool uptodate) 7966 { 7967 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7968 struct btrfs_ordered_extent *ordered = NULL; 7969 struct btrfs_workqueue *wq; 7970 u64 ordered_offset = offset; 7971 u64 ordered_bytes = bytes; 7972 u64 last_offset; 7973 7974 if (btrfs_is_free_space_inode(inode)) 7975 wq = fs_info->endio_freespace_worker; 7976 else 7977 wq = fs_info->endio_write_workers; 7978 7979 while (ordered_offset < offset + bytes) { 7980 last_offset = ordered_offset; 7981 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7982 &ordered_offset, 7983 ordered_bytes, 7984 uptodate)) { 7985 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7986 NULL); 7987 btrfs_queue_work(wq, &ordered->work); 7988 } 7989 7990 /* No ordered extent found in the range, exit */ 7991 if (ordered_offset == last_offset) 7992 return; 7993 /* 7994 * Our bio might span multiple ordered extents. In this case 7995 * we keep going until we have accounted the whole dio. 7996 */ 7997 if (ordered_offset < offset + bytes) { 7998 ordered_bytes = offset + bytes - ordered_offset; 7999 ordered = NULL; 8000 } 8001 } 8002 } 8003 8004 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 8005 struct bio *bio, 8006 u64 dio_file_offset) 8007 { 8008 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1); 8009 } 8010 8011 static void btrfs_end_dio_bio(struct bio *bio) 8012 { 8013 struct btrfs_dio_private *dip = bio->bi_private; 8014 blk_status_t err = bio->bi_status; 8015 8016 if (err) 8017 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8018 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8019 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8020 bio->bi_opf, bio->bi_iter.bi_sector, 8021 bio->bi_iter.bi_size, err); 8022 8023 if (bio_op(bio) == REQ_OP_READ) { 8024 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 8025 !err); 8026 } 8027 8028 if (err) 8029 dip->dio_bio->bi_status = err; 8030 8031 btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio); 8032 8033 bio_put(bio); 8034 btrfs_dio_private_put(dip); 8035 } 8036 8037 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8038 struct inode *inode, u64 file_offset, int async_submit) 8039 { 8040 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8041 struct btrfs_dio_private *dip = bio->bi_private; 8042 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE; 8043 blk_status_t ret; 8044 8045 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8046 if (async_submit) 8047 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8048 8049 if (!write) { 8050 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8051 if (ret) 8052 goto err; 8053 } 8054 8055 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8056 goto map; 8057 8058 if (write && async_submit) { 8059 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset, 8060 btrfs_submit_bio_start_direct_io); 8061 goto err; 8062 } else if (write) { 8063 /* 8064 * If we aren't doing async submit, calculate the csum of the 8065 * bio now. 8066 */ 8067 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); 8068 if (ret) 8069 goto err; 8070 } else { 8071 u64 csum_offset; 8072 8073 csum_offset = file_offset - dip->logical_offset; 8074 csum_offset >>= fs_info->sectorsize_bits; 8075 csum_offset *= fs_info->csum_size; 8076 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 8077 } 8078 map: 8079 ret = btrfs_map_bio(fs_info, bio, 0); 8080 err: 8081 return ret; 8082 } 8083 8084 /* 8085 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 8086 * or ordered extents whether or not we submit any bios. 8087 */ 8088 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 8089 struct inode *inode, 8090 loff_t file_offset) 8091 { 8092 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8093 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 8094 size_t dip_size; 8095 struct btrfs_dio_private *dip; 8096 8097 dip_size = sizeof(*dip); 8098 if (!write && csum) { 8099 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8100 size_t nblocks; 8101 8102 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits; 8103 dip_size += fs_info->csum_size * nblocks; 8104 } 8105 8106 dip = kzalloc(dip_size, GFP_NOFS); 8107 if (!dip) 8108 return NULL; 8109 8110 dip->inode = inode; 8111 dip->logical_offset = file_offset; 8112 dip->bytes = dio_bio->bi_iter.bi_size; 8113 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9; 8114 dip->dio_bio = dio_bio; 8115 refcount_set(&dip->refs, 1); 8116 return dip; 8117 } 8118 8119 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap, 8120 struct bio *dio_bio, loff_t file_offset) 8121 { 8122 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8123 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8124 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 8125 BTRFS_BLOCK_GROUP_RAID56_MASK); 8126 struct btrfs_dio_private *dip; 8127 struct bio *bio; 8128 u64 start_sector; 8129 int async_submit = 0; 8130 u64 submit_len; 8131 int clone_offset = 0; 8132 int clone_len; 8133 u64 logical; 8134 int ret; 8135 blk_status_t status; 8136 struct btrfs_io_geometry geom; 8137 struct btrfs_dio_data *dio_data = iomap->private; 8138 struct extent_map *em = NULL; 8139 8140 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 8141 if (!dip) { 8142 if (!write) { 8143 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8144 file_offset + dio_bio->bi_iter.bi_size - 1); 8145 } 8146 dio_bio->bi_status = BLK_STS_RESOURCE; 8147 bio_endio(dio_bio); 8148 return BLK_QC_T_NONE; 8149 } 8150 8151 if (!write) { 8152 /* 8153 * Load the csums up front to reduce csum tree searches and 8154 * contention when submitting bios. 8155 * 8156 * If we have csums disabled this will do nothing. 8157 */ 8158 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 8159 if (status != BLK_STS_OK) 8160 goto out_err; 8161 } 8162 8163 start_sector = dio_bio->bi_iter.bi_sector; 8164 submit_len = dio_bio->bi_iter.bi_size; 8165 8166 do { 8167 logical = start_sector << 9; 8168 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 8169 if (IS_ERR(em)) { 8170 status = errno_to_blk_status(PTR_ERR(em)); 8171 em = NULL; 8172 goto out_err_em; 8173 } 8174 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8175 logical, submit_len, &geom); 8176 if (ret) { 8177 status = errno_to_blk_status(ret); 8178 goto out_err_em; 8179 } 8180 ASSERT(geom.len <= INT_MAX); 8181 8182 clone_len = min_t(int, submit_len, geom.len); 8183 8184 /* 8185 * This will never fail as it's passing GPF_NOFS and 8186 * the allocation is backed by btrfs_bioset. 8187 */ 8188 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 8189 bio->bi_private = dip; 8190 bio->bi_end_io = btrfs_end_dio_bio; 8191 btrfs_io_bio(bio)->logical = file_offset; 8192 8193 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8194 status = extract_ordered_extent(BTRFS_I(inode), bio, 8195 file_offset); 8196 if (status) { 8197 bio_put(bio); 8198 goto out_err; 8199 } 8200 } 8201 8202 ASSERT(submit_len >= clone_len); 8203 submit_len -= clone_len; 8204 8205 /* 8206 * Increase the count before we submit the bio so we know 8207 * the end IO handler won't happen before we increase the 8208 * count. Otherwise, the dip might get freed before we're 8209 * done setting it up. 8210 * 8211 * We transfer the initial reference to the last bio, so we 8212 * don't need to increment the reference count for the last one. 8213 */ 8214 if (submit_len > 0) { 8215 refcount_inc(&dip->refs); 8216 /* 8217 * If we are submitting more than one bio, submit them 8218 * all asynchronously. The exception is RAID 5 or 6, as 8219 * asynchronous checksums make it difficult to collect 8220 * full stripe writes. 8221 */ 8222 if (!raid56) 8223 async_submit = 1; 8224 } 8225 8226 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8227 async_submit); 8228 if (status) { 8229 bio_put(bio); 8230 if (submit_len > 0) 8231 refcount_dec(&dip->refs); 8232 goto out_err_em; 8233 } 8234 8235 dio_data->submitted += clone_len; 8236 clone_offset += clone_len; 8237 start_sector += clone_len >> 9; 8238 file_offset += clone_len; 8239 8240 free_extent_map(em); 8241 } while (submit_len > 0); 8242 return BLK_QC_T_NONE; 8243 8244 out_err_em: 8245 free_extent_map(em); 8246 out_err: 8247 dip->dio_bio->bi_status = status; 8248 btrfs_dio_private_put(dip); 8249 8250 return BLK_QC_T_NONE; 8251 } 8252 8253 const struct iomap_ops btrfs_dio_iomap_ops = { 8254 .iomap_begin = btrfs_dio_iomap_begin, 8255 .iomap_end = btrfs_dio_iomap_end, 8256 }; 8257 8258 const struct iomap_dio_ops btrfs_dio_ops = { 8259 .submit_io = btrfs_submit_direct, 8260 }; 8261 8262 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8263 u64 start, u64 len) 8264 { 8265 int ret; 8266 8267 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8268 if (ret) 8269 return ret; 8270 8271 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8272 } 8273 8274 int btrfs_readpage(struct file *file, struct page *page) 8275 { 8276 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8277 u64 start = page_offset(page); 8278 u64 end = start + PAGE_SIZE - 1; 8279 unsigned long bio_flags = 0; 8280 struct bio *bio = NULL; 8281 int ret; 8282 8283 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8284 8285 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL); 8286 if (bio) 8287 ret = submit_one_bio(bio, 0, bio_flags); 8288 return ret; 8289 } 8290 8291 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8292 { 8293 struct inode *inode = page->mapping->host; 8294 int ret; 8295 8296 if (current->flags & PF_MEMALLOC) { 8297 redirty_page_for_writepage(wbc, page); 8298 unlock_page(page); 8299 return 0; 8300 } 8301 8302 /* 8303 * If we are under memory pressure we will call this directly from the 8304 * VM, we need to make sure we have the inode referenced for the ordered 8305 * extent. If not just return like we didn't do anything. 8306 */ 8307 if (!igrab(inode)) { 8308 redirty_page_for_writepage(wbc, page); 8309 return AOP_WRITEPAGE_ACTIVATE; 8310 } 8311 ret = extent_write_full_page(page, wbc); 8312 btrfs_add_delayed_iput(inode); 8313 return ret; 8314 } 8315 8316 static int btrfs_writepages(struct address_space *mapping, 8317 struct writeback_control *wbc) 8318 { 8319 return extent_writepages(mapping, wbc); 8320 } 8321 8322 static void btrfs_readahead(struct readahead_control *rac) 8323 { 8324 extent_readahead(rac); 8325 } 8326 8327 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8328 { 8329 int ret = try_release_extent_mapping(page, gfp_flags); 8330 if (ret == 1) 8331 clear_page_extent_mapped(page); 8332 return ret; 8333 } 8334 8335 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8336 { 8337 if (PageWriteback(page) || PageDirty(page)) 8338 return 0; 8339 return __btrfs_releasepage(page, gfp_flags); 8340 } 8341 8342 #ifdef CONFIG_MIGRATION 8343 static int btrfs_migratepage(struct address_space *mapping, 8344 struct page *newpage, struct page *page, 8345 enum migrate_mode mode) 8346 { 8347 int ret; 8348 8349 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8350 if (ret != MIGRATEPAGE_SUCCESS) 8351 return ret; 8352 8353 if (page_has_private(page)) 8354 attach_page_private(newpage, detach_page_private(page)); 8355 8356 if (PagePrivate2(page)) { 8357 ClearPagePrivate2(page); 8358 SetPagePrivate2(newpage); 8359 } 8360 8361 if (mode != MIGRATE_SYNC_NO_COPY) 8362 migrate_page_copy(newpage, page); 8363 else 8364 migrate_page_states(newpage, page); 8365 return MIGRATEPAGE_SUCCESS; 8366 } 8367 #endif 8368 8369 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8370 unsigned int length) 8371 { 8372 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8373 struct extent_io_tree *tree = &inode->io_tree; 8374 struct btrfs_ordered_extent *ordered; 8375 struct extent_state *cached_state = NULL; 8376 u64 page_start = page_offset(page); 8377 u64 page_end = page_start + PAGE_SIZE - 1; 8378 u64 start; 8379 u64 end; 8380 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8381 bool found_ordered = false; 8382 bool completed_ordered = false; 8383 8384 /* 8385 * we have the page locked, so new writeback can't start, 8386 * and the dirty bit won't be cleared while we are here. 8387 * 8388 * Wait for IO on this page so that we can safely clear 8389 * the PagePrivate2 bit and do ordered accounting 8390 */ 8391 wait_on_page_writeback(page); 8392 8393 if (offset) { 8394 btrfs_releasepage(page, GFP_NOFS); 8395 return; 8396 } 8397 8398 if (!inode_evicting) 8399 lock_extent_bits(tree, page_start, page_end, &cached_state); 8400 8401 start = page_start; 8402 again: 8403 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1); 8404 if (ordered) { 8405 found_ordered = true; 8406 end = min(page_end, 8407 ordered->file_offset + ordered->num_bytes - 1); 8408 /* 8409 * IO on this page will never be started, so we need to account 8410 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8411 * here, must leave that up for the ordered extent completion. 8412 */ 8413 if (!inode_evicting) 8414 clear_extent_bit(tree, start, end, 8415 EXTENT_DELALLOC | 8416 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8417 EXTENT_DEFRAG, 1, 0, &cached_state); 8418 /* 8419 * whoever cleared the private bit is responsible 8420 * for the finish_ordered_io 8421 */ 8422 if (TestClearPagePrivate2(page)) { 8423 spin_lock_irq(&inode->ordered_tree.lock); 8424 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8425 ordered->truncated_len = min(ordered->truncated_len, 8426 start - ordered->file_offset); 8427 spin_unlock_irq(&inode->ordered_tree.lock); 8428 8429 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8430 start, 8431 end - start + 1, 1)) { 8432 btrfs_finish_ordered_io(ordered); 8433 completed_ordered = true; 8434 } 8435 } 8436 btrfs_put_ordered_extent(ordered); 8437 if (!inode_evicting) { 8438 cached_state = NULL; 8439 lock_extent_bits(tree, start, end, 8440 &cached_state); 8441 } 8442 8443 start = end + 1; 8444 if (start < page_end) 8445 goto again; 8446 } 8447 8448 /* 8449 * Qgroup reserved space handler 8450 * Page here will be either 8451 * 1) Already written to disk or ordered extent already submitted 8452 * Then its QGROUP_RESERVED bit in io_tree is already cleaned. 8453 * Qgroup will be handled by its qgroup_record then. 8454 * btrfs_qgroup_free_data() call will do nothing here. 8455 * 8456 * 2) Not written to disk yet 8457 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED 8458 * bit of its io_tree, and free the qgroup reserved data space. 8459 * Since the IO will never happen for this page. 8460 */ 8461 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8462 if (!inode_evicting) { 8463 bool delete = true; 8464 8465 /* 8466 * If there's an ordered extent for this range and we have not 8467 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set 8468 * in the range for the ordered extent completion. We must also 8469 * not delete the range, otherwise we would lose that bit (and 8470 * any other bits set in the range). Make sure EXTENT_UPTODATE 8471 * is cleared if we don't delete, otherwise it can lead to 8472 * corruptions if the i_size is extented later. 8473 */ 8474 if (found_ordered && !completed_ordered) 8475 delete = false; 8476 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8477 EXTENT_DELALLOC | EXTENT_UPTODATE | 8478 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8479 delete, &cached_state); 8480 8481 __btrfs_releasepage(page, GFP_NOFS); 8482 } 8483 8484 ClearPageChecked(page); 8485 clear_page_extent_mapped(page); 8486 } 8487 8488 /* 8489 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8490 * called from a page fault handler when a page is first dirtied. Hence we must 8491 * be careful to check for EOF conditions here. We set the page up correctly 8492 * for a written page which means we get ENOSPC checking when writing into 8493 * holes and correct delalloc and unwritten extent mapping on filesystems that 8494 * support these features. 8495 * 8496 * We are not allowed to take the i_mutex here so we have to play games to 8497 * protect against truncate races as the page could now be beyond EOF. Because 8498 * truncate_setsize() writes the inode size before removing pages, once we have 8499 * the page lock we can determine safely if the page is beyond EOF. If it is not 8500 * beyond EOF, then the page is guaranteed safe against truncation until we 8501 * unlock the page. 8502 */ 8503 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8504 { 8505 struct page *page = vmf->page; 8506 struct inode *inode = file_inode(vmf->vma->vm_file); 8507 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8508 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8509 struct btrfs_ordered_extent *ordered; 8510 struct extent_state *cached_state = NULL; 8511 struct extent_changeset *data_reserved = NULL; 8512 unsigned long zero_start; 8513 loff_t size; 8514 vm_fault_t ret; 8515 int ret2; 8516 int reserved = 0; 8517 u64 reserved_space; 8518 u64 page_start; 8519 u64 page_end; 8520 u64 end; 8521 8522 reserved_space = PAGE_SIZE; 8523 8524 sb_start_pagefault(inode->i_sb); 8525 page_start = page_offset(page); 8526 page_end = page_start + PAGE_SIZE - 1; 8527 end = page_end; 8528 8529 /* 8530 * Reserving delalloc space after obtaining the page lock can lead to 8531 * deadlock. For example, if a dirty page is locked by this function 8532 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8533 * dirty page write out, then the btrfs_writepage() function could 8534 * end up waiting indefinitely to get a lock on the page currently 8535 * being processed by btrfs_page_mkwrite() function. 8536 */ 8537 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8538 page_start, reserved_space); 8539 if (!ret2) { 8540 ret2 = file_update_time(vmf->vma->vm_file); 8541 reserved = 1; 8542 } 8543 if (ret2) { 8544 ret = vmf_error(ret2); 8545 if (reserved) 8546 goto out; 8547 goto out_noreserve; 8548 } 8549 8550 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8551 again: 8552 down_read(&BTRFS_I(inode)->i_mmap_lock); 8553 lock_page(page); 8554 size = i_size_read(inode); 8555 8556 if ((page->mapping != inode->i_mapping) || 8557 (page_start >= size)) { 8558 /* page got truncated out from underneath us */ 8559 goto out_unlock; 8560 } 8561 wait_on_page_writeback(page); 8562 8563 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8564 ret2 = set_page_extent_mapped(page); 8565 if (ret2 < 0) { 8566 ret = vmf_error(ret2); 8567 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8568 goto out_unlock; 8569 } 8570 8571 /* 8572 * we can't set the delalloc bits if there are pending ordered 8573 * extents. Drop our locks and wait for them to finish 8574 */ 8575 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8576 PAGE_SIZE); 8577 if (ordered) { 8578 unlock_extent_cached(io_tree, page_start, page_end, 8579 &cached_state); 8580 unlock_page(page); 8581 up_read(&BTRFS_I(inode)->i_mmap_lock); 8582 btrfs_start_ordered_extent(ordered, 1); 8583 btrfs_put_ordered_extent(ordered); 8584 goto again; 8585 } 8586 8587 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8588 reserved_space = round_up(size - page_start, 8589 fs_info->sectorsize); 8590 if (reserved_space < PAGE_SIZE) { 8591 end = page_start + reserved_space - 1; 8592 btrfs_delalloc_release_space(BTRFS_I(inode), 8593 data_reserved, page_start, 8594 PAGE_SIZE - reserved_space, true); 8595 } 8596 } 8597 8598 /* 8599 * page_mkwrite gets called when the page is firstly dirtied after it's 8600 * faulted in, but write(2) could also dirty a page and set delalloc 8601 * bits, thus in this case for space account reason, we still need to 8602 * clear any delalloc bits within this page range since we have to 8603 * reserve data&meta space before lock_page() (see above comments). 8604 */ 8605 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8606 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8607 EXTENT_DEFRAG, 0, 0, &cached_state); 8608 8609 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8610 &cached_state); 8611 if (ret2) { 8612 unlock_extent_cached(io_tree, page_start, page_end, 8613 &cached_state); 8614 ret = VM_FAULT_SIGBUS; 8615 goto out_unlock; 8616 } 8617 8618 /* page is wholly or partially inside EOF */ 8619 if (page_start + PAGE_SIZE > size) 8620 zero_start = offset_in_page(size); 8621 else 8622 zero_start = PAGE_SIZE; 8623 8624 if (zero_start != PAGE_SIZE) { 8625 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8626 flush_dcache_page(page); 8627 } 8628 ClearPageChecked(page); 8629 set_page_dirty(page); 8630 SetPageUptodate(page); 8631 8632 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8633 8634 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8635 up_read(&BTRFS_I(inode)->i_mmap_lock); 8636 8637 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8638 sb_end_pagefault(inode->i_sb); 8639 extent_changeset_free(data_reserved); 8640 return VM_FAULT_LOCKED; 8641 8642 out_unlock: 8643 unlock_page(page); 8644 up_read(&BTRFS_I(inode)->i_mmap_lock); 8645 out: 8646 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8647 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8648 reserved_space, (ret != 0)); 8649 out_noreserve: 8650 sb_end_pagefault(inode->i_sb); 8651 extent_changeset_free(data_reserved); 8652 return ret; 8653 } 8654 8655 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8656 { 8657 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8658 struct btrfs_root *root = BTRFS_I(inode)->root; 8659 struct btrfs_block_rsv *rsv; 8660 int ret; 8661 struct btrfs_trans_handle *trans; 8662 u64 mask = fs_info->sectorsize - 1; 8663 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8664 8665 if (!skip_writeback) { 8666 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8667 (u64)-1); 8668 if (ret) 8669 return ret; 8670 } 8671 8672 /* 8673 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8674 * things going on here: 8675 * 8676 * 1) We need to reserve space to update our inode. 8677 * 8678 * 2) We need to have something to cache all the space that is going to 8679 * be free'd up by the truncate operation, but also have some slack 8680 * space reserved in case it uses space during the truncate (thank you 8681 * very much snapshotting). 8682 * 8683 * And we need these to be separate. The fact is we can use a lot of 8684 * space doing the truncate, and we have no earthly idea how much space 8685 * we will use, so we need the truncate reservation to be separate so it 8686 * doesn't end up using space reserved for updating the inode. We also 8687 * need to be able to stop the transaction and start a new one, which 8688 * means we need to be able to update the inode several times, and we 8689 * have no idea of knowing how many times that will be, so we can't just 8690 * reserve 1 item for the entirety of the operation, so that has to be 8691 * done separately as well. 8692 * 8693 * So that leaves us with 8694 * 8695 * 1) rsv - for the truncate reservation, which we will steal from the 8696 * transaction reservation. 8697 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8698 * updating the inode. 8699 */ 8700 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8701 if (!rsv) 8702 return -ENOMEM; 8703 rsv->size = min_size; 8704 rsv->failfast = 1; 8705 8706 /* 8707 * 1 for the truncate slack space 8708 * 1 for updating the inode. 8709 */ 8710 trans = btrfs_start_transaction(root, 2); 8711 if (IS_ERR(trans)) { 8712 ret = PTR_ERR(trans); 8713 goto out; 8714 } 8715 8716 /* Migrate the slack space for the truncate to our reserve */ 8717 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8718 min_size, false); 8719 BUG_ON(ret); 8720 8721 /* 8722 * So if we truncate and then write and fsync we normally would just 8723 * write the extents that changed, which is a problem if we need to 8724 * first truncate that entire inode. So set this flag so we write out 8725 * all of the extents in the inode to the sync log so we're completely 8726 * safe. 8727 */ 8728 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8729 trans->block_rsv = rsv; 8730 8731 while (1) { 8732 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 8733 inode->i_size, 8734 BTRFS_EXTENT_DATA_KEY); 8735 trans->block_rsv = &fs_info->trans_block_rsv; 8736 if (ret != -ENOSPC && ret != -EAGAIN) 8737 break; 8738 8739 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8740 if (ret) 8741 break; 8742 8743 btrfs_end_transaction(trans); 8744 btrfs_btree_balance_dirty(fs_info); 8745 8746 trans = btrfs_start_transaction(root, 2); 8747 if (IS_ERR(trans)) { 8748 ret = PTR_ERR(trans); 8749 trans = NULL; 8750 break; 8751 } 8752 8753 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8754 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8755 rsv, min_size, false); 8756 BUG_ON(ret); /* shouldn't happen */ 8757 trans->block_rsv = rsv; 8758 } 8759 8760 /* 8761 * We can't call btrfs_truncate_block inside a trans handle as we could 8762 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8763 * we've truncated everything except the last little bit, and can do 8764 * btrfs_truncate_block and then update the disk_i_size. 8765 */ 8766 if (ret == NEED_TRUNCATE_BLOCK) { 8767 btrfs_end_transaction(trans); 8768 btrfs_btree_balance_dirty(fs_info); 8769 8770 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8771 if (ret) 8772 goto out; 8773 trans = btrfs_start_transaction(root, 1); 8774 if (IS_ERR(trans)) { 8775 ret = PTR_ERR(trans); 8776 goto out; 8777 } 8778 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8779 } 8780 8781 if (trans) { 8782 int ret2; 8783 8784 trans->block_rsv = &fs_info->trans_block_rsv; 8785 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8786 if (ret2 && !ret) 8787 ret = ret2; 8788 8789 ret2 = btrfs_end_transaction(trans); 8790 if (ret2 && !ret) 8791 ret = ret2; 8792 btrfs_btree_balance_dirty(fs_info); 8793 } 8794 out: 8795 btrfs_free_block_rsv(fs_info, rsv); 8796 8797 return ret; 8798 } 8799 8800 /* 8801 * create a new subvolume directory/inode (helper for the ioctl). 8802 */ 8803 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8804 struct btrfs_root *new_root, 8805 struct btrfs_root *parent_root) 8806 { 8807 struct inode *inode; 8808 int err; 8809 u64 index = 0; 8810 u64 ino; 8811 8812 err = btrfs_get_free_objectid(new_root, &ino); 8813 if (err < 0) 8814 return err; 8815 8816 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino, 8817 S_IFDIR | (~current_umask() & S_IRWXUGO), 8818 &index); 8819 if (IS_ERR(inode)) 8820 return PTR_ERR(inode); 8821 inode->i_op = &btrfs_dir_inode_operations; 8822 inode->i_fop = &btrfs_dir_file_operations; 8823 8824 set_nlink(inode, 1); 8825 btrfs_i_size_write(BTRFS_I(inode), 0); 8826 unlock_new_inode(inode); 8827 8828 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8829 if (err) 8830 btrfs_err(new_root->fs_info, 8831 "error inheriting subvolume %llu properties: %d", 8832 new_root->root_key.objectid, err); 8833 8834 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode)); 8835 8836 iput(inode); 8837 return err; 8838 } 8839 8840 struct inode *btrfs_alloc_inode(struct super_block *sb) 8841 { 8842 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8843 struct btrfs_inode *ei; 8844 struct inode *inode; 8845 8846 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8847 if (!ei) 8848 return NULL; 8849 8850 ei->root = NULL; 8851 ei->generation = 0; 8852 ei->last_trans = 0; 8853 ei->last_sub_trans = 0; 8854 ei->logged_trans = 0; 8855 ei->delalloc_bytes = 0; 8856 ei->new_delalloc_bytes = 0; 8857 ei->defrag_bytes = 0; 8858 ei->disk_i_size = 0; 8859 ei->flags = 0; 8860 ei->csum_bytes = 0; 8861 ei->index_cnt = (u64)-1; 8862 ei->dir_index = 0; 8863 ei->last_unlink_trans = 0; 8864 ei->last_reflink_trans = 0; 8865 ei->last_log_commit = 0; 8866 8867 spin_lock_init(&ei->lock); 8868 ei->outstanding_extents = 0; 8869 if (sb->s_magic != BTRFS_TEST_MAGIC) 8870 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8871 BTRFS_BLOCK_RSV_DELALLOC); 8872 ei->runtime_flags = 0; 8873 ei->prop_compress = BTRFS_COMPRESS_NONE; 8874 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8875 8876 ei->delayed_node = NULL; 8877 8878 ei->i_otime.tv_sec = 0; 8879 ei->i_otime.tv_nsec = 0; 8880 8881 inode = &ei->vfs_inode; 8882 extent_map_tree_init(&ei->extent_tree); 8883 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8884 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8885 IO_TREE_INODE_IO_FAILURE, inode); 8886 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8887 IO_TREE_INODE_FILE_EXTENT, inode); 8888 ei->io_tree.track_uptodate = true; 8889 ei->io_failure_tree.track_uptodate = true; 8890 atomic_set(&ei->sync_writers, 0); 8891 mutex_init(&ei->log_mutex); 8892 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8893 INIT_LIST_HEAD(&ei->delalloc_inodes); 8894 INIT_LIST_HEAD(&ei->delayed_iput); 8895 RB_CLEAR_NODE(&ei->rb_node); 8896 init_rwsem(&ei->i_mmap_lock); 8897 8898 return inode; 8899 } 8900 8901 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8902 void btrfs_test_destroy_inode(struct inode *inode) 8903 { 8904 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8905 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8906 } 8907 #endif 8908 8909 void btrfs_free_inode(struct inode *inode) 8910 { 8911 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8912 } 8913 8914 void btrfs_destroy_inode(struct inode *vfs_inode) 8915 { 8916 struct btrfs_ordered_extent *ordered; 8917 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8918 struct btrfs_root *root = inode->root; 8919 8920 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8921 WARN_ON(vfs_inode->i_data.nrpages); 8922 WARN_ON(inode->block_rsv.reserved); 8923 WARN_ON(inode->block_rsv.size); 8924 WARN_ON(inode->outstanding_extents); 8925 WARN_ON(inode->delalloc_bytes); 8926 WARN_ON(inode->new_delalloc_bytes); 8927 WARN_ON(inode->csum_bytes); 8928 WARN_ON(inode->defrag_bytes); 8929 8930 /* 8931 * This can happen where we create an inode, but somebody else also 8932 * created the same inode and we need to destroy the one we already 8933 * created. 8934 */ 8935 if (!root) 8936 return; 8937 8938 while (1) { 8939 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8940 if (!ordered) 8941 break; 8942 else { 8943 btrfs_err(root->fs_info, 8944 "found ordered extent %llu %llu on inode cleanup", 8945 ordered->file_offset, ordered->num_bytes); 8946 btrfs_remove_ordered_extent(inode, ordered); 8947 btrfs_put_ordered_extent(ordered); 8948 btrfs_put_ordered_extent(ordered); 8949 } 8950 } 8951 btrfs_qgroup_check_reserved_leak(inode); 8952 inode_tree_del(inode); 8953 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8954 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8955 btrfs_put_root(inode->root); 8956 } 8957 8958 int btrfs_drop_inode(struct inode *inode) 8959 { 8960 struct btrfs_root *root = BTRFS_I(inode)->root; 8961 8962 if (root == NULL) 8963 return 1; 8964 8965 /* the snap/subvol tree is on deleting */ 8966 if (btrfs_root_refs(&root->root_item) == 0) 8967 return 1; 8968 else 8969 return generic_drop_inode(inode); 8970 } 8971 8972 static void init_once(void *foo) 8973 { 8974 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8975 8976 inode_init_once(&ei->vfs_inode); 8977 } 8978 8979 void __cold btrfs_destroy_cachep(void) 8980 { 8981 /* 8982 * Make sure all delayed rcu free inodes are flushed before we 8983 * destroy cache. 8984 */ 8985 rcu_barrier(); 8986 kmem_cache_destroy(btrfs_inode_cachep); 8987 kmem_cache_destroy(btrfs_trans_handle_cachep); 8988 kmem_cache_destroy(btrfs_path_cachep); 8989 kmem_cache_destroy(btrfs_free_space_cachep); 8990 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8991 } 8992 8993 int __init btrfs_init_cachep(void) 8994 { 8995 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8996 sizeof(struct btrfs_inode), 0, 8997 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8998 init_once); 8999 if (!btrfs_inode_cachep) 9000 goto fail; 9001 9002 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9003 sizeof(struct btrfs_trans_handle), 0, 9004 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9005 if (!btrfs_trans_handle_cachep) 9006 goto fail; 9007 9008 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9009 sizeof(struct btrfs_path), 0, 9010 SLAB_MEM_SPREAD, NULL); 9011 if (!btrfs_path_cachep) 9012 goto fail; 9013 9014 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9015 sizeof(struct btrfs_free_space), 0, 9016 SLAB_MEM_SPREAD, NULL); 9017 if (!btrfs_free_space_cachep) 9018 goto fail; 9019 9020 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9021 PAGE_SIZE, PAGE_SIZE, 9022 SLAB_MEM_SPREAD, NULL); 9023 if (!btrfs_free_space_bitmap_cachep) 9024 goto fail; 9025 9026 return 0; 9027 fail: 9028 btrfs_destroy_cachep(); 9029 return -ENOMEM; 9030 } 9031 9032 static int btrfs_getattr(struct user_namespace *mnt_userns, 9033 const struct path *path, struct kstat *stat, 9034 u32 request_mask, unsigned int flags) 9035 { 9036 u64 delalloc_bytes; 9037 u64 inode_bytes; 9038 struct inode *inode = d_inode(path->dentry); 9039 u32 blocksize = inode->i_sb->s_blocksize; 9040 u32 bi_flags = BTRFS_I(inode)->flags; 9041 9042 stat->result_mask |= STATX_BTIME; 9043 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9044 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9045 if (bi_flags & BTRFS_INODE_APPEND) 9046 stat->attributes |= STATX_ATTR_APPEND; 9047 if (bi_flags & BTRFS_INODE_COMPRESS) 9048 stat->attributes |= STATX_ATTR_COMPRESSED; 9049 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9050 stat->attributes |= STATX_ATTR_IMMUTABLE; 9051 if (bi_flags & BTRFS_INODE_NODUMP) 9052 stat->attributes |= STATX_ATTR_NODUMP; 9053 9054 stat->attributes_mask |= (STATX_ATTR_APPEND | 9055 STATX_ATTR_COMPRESSED | 9056 STATX_ATTR_IMMUTABLE | 9057 STATX_ATTR_NODUMP); 9058 9059 generic_fillattr(&init_user_ns, inode, stat); 9060 stat->dev = BTRFS_I(inode)->root->anon_dev; 9061 9062 spin_lock(&BTRFS_I(inode)->lock); 9063 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9064 inode_bytes = inode_get_bytes(inode); 9065 spin_unlock(&BTRFS_I(inode)->lock); 9066 stat->blocks = (ALIGN(inode_bytes, blocksize) + 9067 ALIGN(delalloc_bytes, blocksize)) >> 9; 9068 return 0; 9069 } 9070 9071 static int btrfs_rename_exchange(struct inode *old_dir, 9072 struct dentry *old_dentry, 9073 struct inode *new_dir, 9074 struct dentry *new_dentry) 9075 { 9076 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9077 struct btrfs_trans_handle *trans; 9078 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9079 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9080 struct inode *new_inode = new_dentry->d_inode; 9081 struct inode *old_inode = old_dentry->d_inode; 9082 struct timespec64 ctime = current_time(old_inode); 9083 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9084 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9085 u64 old_idx = 0; 9086 u64 new_idx = 0; 9087 int ret; 9088 int ret2; 9089 bool root_log_pinned = false; 9090 bool dest_log_pinned = false; 9091 bool need_abort = false; 9092 9093 /* we only allow rename subvolume link between subvolumes */ 9094 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9095 return -EXDEV; 9096 9097 /* close the race window with snapshot create/destroy ioctl */ 9098 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9099 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9100 down_read(&fs_info->subvol_sem); 9101 9102 /* 9103 * We want to reserve the absolute worst case amount of items. So if 9104 * both inodes are subvols and we need to unlink them then that would 9105 * require 4 item modifications, but if they are both normal inodes it 9106 * would require 5 item modifications, so we'll assume their normal 9107 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9108 * should cover the worst case number of items we'll modify. 9109 */ 9110 trans = btrfs_start_transaction(root, 12); 9111 if (IS_ERR(trans)) { 9112 ret = PTR_ERR(trans); 9113 goto out_notrans; 9114 } 9115 9116 if (dest != root) { 9117 ret = btrfs_record_root_in_trans(trans, dest); 9118 if (ret) 9119 goto out_fail; 9120 } 9121 9122 /* 9123 * We need to find a free sequence number both in the source and 9124 * in the destination directory for the exchange. 9125 */ 9126 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9127 if (ret) 9128 goto out_fail; 9129 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9130 if (ret) 9131 goto out_fail; 9132 9133 BTRFS_I(old_inode)->dir_index = 0ULL; 9134 BTRFS_I(new_inode)->dir_index = 0ULL; 9135 9136 /* Reference for the source. */ 9137 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9138 /* force full log commit if subvolume involved. */ 9139 btrfs_set_log_full_commit(trans); 9140 } else { 9141 btrfs_pin_log_trans(root); 9142 root_log_pinned = true; 9143 ret = btrfs_insert_inode_ref(trans, dest, 9144 new_dentry->d_name.name, 9145 new_dentry->d_name.len, 9146 old_ino, 9147 btrfs_ino(BTRFS_I(new_dir)), 9148 old_idx); 9149 if (ret) 9150 goto out_fail; 9151 need_abort = true; 9152 } 9153 9154 /* And now for the dest. */ 9155 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9156 /* force full log commit if subvolume involved. */ 9157 btrfs_set_log_full_commit(trans); 9158 } else { 9159 btrfs_pin_log_trans(dest); 9160 dest_log_pinned = true; 9161 ret = btrfs_insert_inode_ref(trans, root, 9162 old_dentry->d_name.name, 9163 old_dentry->d_name.len, 9164 new_ino, 9165 btrfs_ino(BTRFS_I(old_dir)), 9166 new_idx); 9167 if (ret) { 9168 if (need_abort) 9169 btrfs_abort_transaction(trans, ret); 9170 goto out_fail; 9171 } 9172 } 9173 9174 /* Update inode version and ctime/mtime. */ 9175 inode_inc_iversion(old_dir); 9176 inode_inc_iversion(new_dir); 9177 inode_inc_iversion(old_inode); 9178 inode_inc_iversion(new_inode); 9179 old_dir->i_ctime = old_dir->i_mtime = ctime; 9180 new_dir->i_ctime = new_dir->i_mtime = ctime; 9181 old_inode->i_ctime = ctime; 9182 new_inode->i_ctime = ctime; 9183 9184 if (old_dentry->d_parent != new_dentry->d_parent) { 9185 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9186 BTRFS_I(old_inode), 1); 9187 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9188 BTRFS_I(new_inode), 1); 9189 } 9190 9191 /* src is a subvolume */ 9192 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9193 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9194 } else { /* src is an inode */ 9195 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9196 BTRFS_I(old_dentry->d_inode), 9197 old_dentry->d_name.name, 9198 old_dentry->d_name.len); 9199 if (!ret) 9200 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9201 } 9202 if (ret) { 9203 btrfs_abort_transaction(trans, ret); 9204 goto out_fail; 9205 } 9206 9207 /* dest is a subvolume */ 9208 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9209 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9210 } else { /* dest is an inode */ 9211 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9212 BTRFS_I(new_dentry->d_inode), 9213 new_dentry->d_name.name, 9214 new_dentry->d_name.len); 9215 if (!ret) 9216 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9217 } 9218 if (ret) { 9219 btrfs_abort_transaction(trans, ret); 9220 goto out_fail; 9221 } 9222 9223 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9224 new_dentry->d_name.name, 9225 new_dentry->d_name.len, 0, old_idx); 9226 if (ret) { 9227 btrfs_abort_transaction(trans, ret); 9228 goto out_fail; 9229 } 9230 9231 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9232 old_dentry->d_name.name, 9233 old_dentry->d_name.len, 0, new_idx); 9234 if (ret) { 9235 btrfs_abort_transaction(trans, ret); 9236 goto out_fail; 9237 } 9238 9239 if (old_inode->i_nlink == 1) 9240 BTRFS_I(old_inode)->dir_index = old_idx; 9241 if (new_inode->i_nlink == 1) 9242 BTRFS_I(new_inode)->dir_index = new_idx; 9243 9244 if (root_log_pinned) { 9245 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9246 new_dentry->d_parent); 9247 btrfs_end_log_trans(root); 9248 root_log_pinned = false; 9249 } 9250 if (dest_log_pinned) { 9251 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9252 old_dentry->d_parent); 9253 btrfs_end_log_trans(dest); 9254 dest_log_pinned = false; 9255 } 9256 out_fail: 9257 /* 9258 * If we have pinned a log and an error happened, we unpin tasks 9259 * trying to sync the log and force them to fallback to a transaction 9260 * commit if the log currently contains any of the inodes involved in 9261 * this rename operation (to ensure we do not persist a log with an 9262 * inconsistent state for any of these inodes or leading to any 9263 * inconsistencies when replayed). If the transaction was aborted, the 9264 * abortion reason is propagated to userspace when attempting to commit 9265 * the transaction. If the log does not contain any of these inodes, we 9266 * allow the tasks to sync it. 9267 */ 9268 if (ret && (root_log_pinned || dest_log_pinned)) { 9269 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9270 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9271 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9272 (new_inode && 9273 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9274 btrfs_set_log_full_commit(trans); 9275 9276 if (root_log_pinned) { 9277 btrfs_end_log_trans(root); 9278 root_log_pinned = false; 9279 } 9280 if (dest_log_pinned) { 9281 btrfs_end_log_trans(dest); 9282 dest_log_pinned = false; 9283 } 9284 } 9285 ret2 = btrfs_end_transaction(trans); 9286 ret = ret ? ret : ret2; 9287 out_notrans: 9288 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9289 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9290 up_read(&fs_info->subvol_sem); 9291 9292 return ret; 9293 } 9294 9295 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9296 struct btrfs_root *root, 9297 struct inode *dir, 9298 struct dentry *dentry) 9299 { 9300 int ret; 9301 struct inode *inode; 9302 u64 objectid; 9303 u64 index; 9304 9305 ret = btrfs_get_free_objectid(root, &objectid); 9306 if (ret) 9307 return ret; 9308 9309 inode = btrfs_new_inode(trans, root, dir, 9310 dentry->d_name.name, 9311 dentry->d_name.len, 9312 btrfs_ino(BTRFS_I(dir)), 9313 objectid, 9314 S_IFCHR | WHITEOUT_MODE, 9315 &index); 9316 9317 if (IS_ERR(inode)) { 9318 ret = PTR_ERR(inode); 9319 return ret; 9320 } 9321 9322 inode->i_op = &btrfs_special_inode_operations; 9323 init_special_inode(inode, inode->i_mode, 9324 WHITEOUT_DEV); 9325 9326 ret = btrfs_init_inode_security(trans, inode, dir, 9327 &dentry->d_name); 9328 if (ret) 9329 goto out; 9330 9331 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9332 BTRFS_I(inode), 0, index); 9333 if (ret) 9334 goto out; 9335 9336 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9337 out: 9338 unlock_new_inode(inode); 9339 if (ret) 9340 inode_dec_link_count(inode); 9341 iput(inode); 9342 9343 return ret; 9344 } 9345 9346 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9347 struct inode *new_dir, struct dentry *new_dentry, 9348 unsigned int flags) 9349 { 9350 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9351 struct btrfs_trans_handle *trans; 9352 unsigned int trans_num_items; 9353 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9354 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9355 struct inode *new_inode = d_inode(new_dentry); 9356 struct inode *old_inode = d_inode(old_dentry); 9357 u64 index = 0; 9358 int ret; 9359 int ret2; 9360 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9361 bool log_pinned = false; 9362 9363 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9364 return -EPERM; 9365 9366 /* we only allow rename subvolume link between subvolumes */ 9367 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9368 return -EXDEV; 9369 9370 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9371 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9372 return -ENOTEMPTY; 9373 9374 if (S_ISDIR(old_inode->i_mode) && new_inode && 9375 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9376 return -ENOTEMPTY; 9377 9378 9379 /* check for collisions, even if the name isn't there */ 9380 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9381 new_dentry->d_name.name, 9382 new_dentry->d_name.len); 9383 9384 if (ret) { 9385 if (ret == -EEXIST) { 9386 /* we shouldn't get 9387 * eexist without a new_inode */ 9388 if (WARN_ON(!new_inode)) { 9389 return ret; 9390 } 9391 } else { 9392 /* maybe -EOVERFLOW */ 9393 return ret; 9394 } 9395 } 9396 ret = 0; 9397 9398 /* 9399 * we're using rename to replace one file with another. Start IO on it 9400 * now so we don't add too much work to the end of the transaction 9401 */ 9402 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9403 filemap_flush(old_inode->i_mapping); 9404 9405 /* close the racy window with snapshot create/destroy ioctl */ 9406 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9407 down_read(&fs_info->subvol_sem); 9408 /* 9409 * We want to reserve the absolute worst case amount of items. So if 9410 * both inodes are subvols and we need to unlink them then that would 9411 * require 4 item modifications, but if they are both normal inodes it 9412 * would require 5 item modifications, so we'll assume they are normal 9413 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9414 * should cover the worst case number of items we'll modify. 9415 * If our rename has the whiteout flag, we need more 5 units for the 9416 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9417 * when selinux is enabled). 9418 */ 9419 trans_num_items = 11; 9420 if (flags & RENAME_WHITEOUT) 9421 trans_num_items += 5; 9422 trans = btrfs_start_transaction(root, trans_num_items); 9423 if (IS_ERR(trans)) { 9424 ret = PTR_ERR(trans); 9425 goto out_notrans; 9426 } 9427 9428 if (dest != root) { 9429 ret = btrfs_record_root_in_trans(trans, dest); 9430 if (ret) 9431 goto out_fail; 9432 } 9433 9434 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9435 if (ret) 9436 goto out_fail; 9437 9438 BTRFS_I(old_inode)->dir_index = 0ULL; 9439 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9440 /* force full log commit if subvolume involved. */ 9441 btrfs_set_log_full_commit(trans); 9442 } else { 9443 btrfs_pin_log_trans(root); 9444 log_pinned = true; 9445 ret = btrfs_insert_inode_ref(trans, dest, 9446 new_dentry->d_name.name, 9447 new_dentry->d_name.len, 9448 old_ino, 9449 btrfs_ino(BTRFS_I(new_dir)), index); 9450 if (ret) 9451 goto out_fail; 9452 } 9453 9454 inode_inc_iversion(old_dir); 9455 inode_inc_iversion(new_dir); 9456 inode_inc_iversion(old_inode); 9457 old_dir->i_ctime = old_dir->i_mtime = 9458 new_dir->i_ctime = new_dir->i_mtime = 9459 old_inode->i_ctime = current_time(old_dir); 9460 9461 if (old_dentry->d_parent != new_dentry->d_parent) 9462 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9463 BTRFS_I(old_inode), 1); 9464 9465 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9466 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9467 } else { 9468 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9469 BTRFS_I(d_inode(old_dentry)), 9470 old_dentry->d_name.name, 9471 old_dentry->d_name.len); 9472 if (!ret) 9473 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9474 } 9475 if (ret) { 9476 btrfs_abort_transaction(trans, ret); 9477 goto out_fail; 9478 } 9479 9480 if (new_inode) { 9481 inode_inc_iversion(new_inode); 9482 new_inode->i_ctime = current_time(new_inode); 9483 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9484 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9485 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9486 BUG_ON(new_inode->i_nlink == 0); 9487 } else { 9488 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9489 BTRFS_I(d_inode(new_dentry)), 9490 new_dentry->d_name.name, 9491 new_dentry->d_name.len); 9492 } 9493 if (!ret && new_inode->i_nlink == 0) 9494 ret = btrfs_orphan_add(trans, 9495 BTRFS_I(d_inode(new_dentry))); 9496 if (ret) { 9497 btrfs_abort_transaction(trans, ret); 9498 goto out_fail; 9499 } 9500 } 9501 9502 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9503 new_dentry->d_name.name, 9504 new_dentry->d_name.len, 0, index); 9505 if (ret) { 9506 btrfs_abort_transaction(trans, ret); 9507 goto out_fail; 9508 } 9509 9510 if (old_inode->i_nlink == 1) 9511 BTRFS_I(old_inode)->dir_index = index; 9512 9513 if (log_pinned) { 9514 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9515 new_dentry->d_parent); 9516 btrfs_end_log_trans(root); 9517 log_pinned = false; 9518 } 9519 9520 if (flags & RENAME_WHITEOUT) { 9521 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9522 old_dentry); 9523 9524 if (ret) { 9525 btrfs_abort_transaction(trans, ret); 9526 goto out_fail; 9527 } 9528 } 9529 out_fail: 9530 /* 9531 * If we have pinned the log and an error happened, we unpin tasks 9532 * trying to sync the log and force them to fallback to a transaction 9533 * commit if the log currently contains any of the inodes involved in 9534 * this rename operation (to ensure we do not persist a log with an 9535 * inconsistent state for any of these inodes or leading to any 9536 * inconsistencies when replayed). If the transaction was aborted, the 9537 * abortion reason is propagated to userspace when attempting to commit 9538 * the transaction. If the log does not contain any of these inodes, we 9539 * allow the tasks to sync it. 9540 */ 9541 if (ret && log_pinned) { 9542 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9543 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9544 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9545 (new_inode && 9546 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9547 btrfs_set_log_full_commit(trans); 9548 9549 btrfs_end_log_trans(root); 9550 log_pinned = false; 9551 } 9552 ret2 = btrfs_end_transaction(trans); 9553 ret = ret ? ret : ret2; 9554 out_notrans: 9555 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9556 up_read(&fs_info->subvol_sem); 9557 9558 return ret; 9559 } 9560 9561 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9562 struct dentry *old_dentry, struct inode *new_dir, 9563 struct dentry *new_dentry, unsigned int flags) 9564 { 9565 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9566 return -EINVAL; 9567 9568 if (flags & RENAME_EXCHANGE) 9569 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9570 new_dentry); 9571 9572 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9573 } 9574 9575 struct btrfs_delalloc_work { 9576 struct inode *inode; 9577 struct completion completion; 9578 struct list_head list; 9579 struct btrfs_work work; 9580 }; 9581 9582 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9583 { 9584 struct btrfs_delalloc_work *delalloc_work; 9585 struct inode *inode; 9586 9587 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9588 work); 9589 inode = delalloc_work->inode; 9590 filemap_flush(inode->i_mapping); 9591 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9592 &BTRFS_I(inode)->runtime_flags)) 9593 filemap_flush(inode->i_mapping); 9594 9595 iput(inode); 9596 complete(&delalloc_work->completion); 9597 } 9598 9599 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9600 { 9601 struct btrfs_delalloc_work *work; 9602 9603 work = kmalloc(sizeof(*work), GFP_NOFS); 9604 if (!work) 9605 return NULL; 9606 9607 init_completion(&work->completion); 9608 INIT_LIST_HEAD(&work->list); 9609 work->inode = inode; 9610 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9611 9612 return work; 9613 } 9614 9615 /* 9616 * some fairly slow code that needs optimization. This walks the list 9617 * of all the inodes with pending delalloc and forces them to disk. 9618 */ 9619 static int start_delalloc_inodes(struct btrfs_root *root, 9620 struct writeback_control *wbc, bool snapshot, 9621 bool in_reclaim_context) 9622 { 9623 struct btrfs_inode *binode; 9624 struct inode *inode; 9625 struct btrfs_delalloc_work *work, *next; 9626 struct list_head works; 9627 struct list_head splice; 9628 int ret = 0; 9629 bool full_flush = wbc->nr_to_write == LONG_MAX; 9630 9631 INIT_LIST_HEAD(&works); 9632 INIT_LIST_HEAD(&splice); 9633 9634 mutex_lock(&root->delalloc_mutex); 9635 spin_lock(&root->delalloc_lock); 9636 list_splice_init(&root->delalloc_inodes, &splice); 9637 while (!list_empty(&splice)) { 9638 binode = list_entry(splice.next, struct btrfs_inode, 9639 delalloc_inodes); 9640 9641 list_move_tail(&binode->delalloc_inodes, 9642 &root->delalloc_inodes); 9643 9644 if (in_reclaim_context && 9645 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9646 continue; 9647 9648 inode = igrab(&binode->vfs_inode); 9649 if (!inode) { 9650 cond_resched_lock(&root->delalloc_lock); 9651 continue; 9652 } 9653 spin_unlock(&root->delalloc_lock); 9654 9655 if (snapshot) 9656 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9657 &binode->runtime_flags); 9658 if (full_flush) { 9659 work = btrfs_alloc_delalloc_work(inode); 9660 if (!work) { 9661 iput(inode); 9662 ret = -ENOMEM; 9663 goto out; 9664 } 9665 list_add_tail(&work->list, &works); 9666 btrfs_queue_work(root->fs_info->flush_workers, 9667 &work->work); 9668 } else { 9669 ret = sync_inode(inode, wbc); 9670 if (!ret && 9671 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9672 &BTRFS_I(inode)->runtime_flags)) 9673 ret = sync_inode(inode, wbc); 9674 btrfs_add_delayed_iput(inode); 9675 if (ret || wbc->nr_to_write <= 0) 9676 goto out; 9677 } 9678 cond_resched(); 9679 spin_lock(&root->delalloc_lock); 9680 } 9681 spin_unlock(&root->delalloc_lock); 9682 9683 out: 9684 list_for_each_entry_safe(work, next, &works, list) { 9685 list_del_init(&work->list); 9686 wait_for_completion(&work->completion); 9687 kfree(work); 9688 } 9689 9690 if (!list_empty(&splice)) { 9691 spin_lock(&root->delalloc_lock); 9692 list_splice_tail(&splice, &root->delalloc_inodes); 9693 spin_unlock(&root->delalloc_lock); 9694 } 9695 mutex_unlock(&root->delalloc_mutex); 9696 return ret; 9697 } 9698 9699 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9700 { 9701 struct writeback_control wbc = { 9702 .nr_to_write = LONG_MAX, 9703 .sync_mode = WB_SYNC_NONE, 9704 .range_start = 0, 9705 .range_end = LLONG_MAX, 9706 }; 9707 struct btrfs_fs_info *fs_info = root->fs_info; 9708 9709 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9710 return -EROFS; 9711 9712 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9713 } 9714 9715 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9716 bool in_reclaim_context) 9717 { 9718 struct writeback_control wbc = { 9719 .nr_to_write = nr, 9720 .sync_mode = WB_SYNC_NONE, 9721 .range_start = 0, 9722 .range_end = LLONG_MAX, 9723 }; 9724 struct btrfs_root *root; 9725 struct list_head splice; 9726 int ret; 9727 9728 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9729 return -EROFS; 9730 9731 INIT_LIST_HEAD(&splice); 9732 9733 mutex_lock(&fs_info->delalloc_root_mutex); 9734 spin_lock(&fs_info->delalloc_root_lock); 9735 list_splice_init(&fs_info->delalloc_roots, &splice); 9736 while (!list_empty(&splice)) { 9737 /* 9738 * Reset nr_to_write here so we know that we're doing a full 9739 * flush. 9740 */ 9741 if (nr == LONG_MAX) 9742 wbc.nr_to_write = LONG_MAX; 9743 9744 root = list_first_entry(&splice, struct btrfs_root, 9745 delalloc_root); 9746 root = btrfs_grab_root(root); 9747 BUG_ON(!root); 9748 list_move_tail(&root->delalloc_root, 9749 &fs_info->delalloc_roots); 9750 spin_unlock(&fs_info->delalloc_root_lock); 9751 9752 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9753 btrfs_put_root(root); 9754 if (ret < 0 || wbc.nr_to_write <= 0) 9755 goto out; 9756 spin_lock(&fs_info->delalloc_root_lock); 9757 } 9758 spin_unlock(&fs_info->delalloc_root_lock); 9759 9760 ret = 0; 9761 out: 9762 if (!list_empty(&splice)) { 9763 spin_lock(&fs_info->delalloc_root_lock); 9764 list_splice_tail(&splice, &fs_info->delalloc_roots); 9765 spin_unlock(&fs_info->delalloc_root_lock); 9766 } 9767 mutex_unlock(&fs_info->delalloc_root_mutex); 9768 return ret; 9769 } 9770 9771 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 9772 struct dentry *dentry, const char *symname) 9773 { 9774 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9775 struct btrfs_trans_handle *trans; 9776 struct btrfs_root *root = BTRFS_I(dir)->root; 9777 struct btrfs_path *path; 9778 struct btrfs_key key; 9779 struct inode *inode = NULL; 9780 int err; 9781 u64 objectid; 9782 u64 index = 0; 9783 int name_len; 9784 int datasize; 9785 unsigned long ptr; 9786 struct btrfs_file_extent_item *ei; 9787 struct extent_buffer *leaf; 9788 9789 name_len = strlen(symname); 9790 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9791 return -ENAMETOOLONG; 9792 9793 /* 9794 * 2 items for inode item and ref 9795 * 2 items for dir items 9796 * 1 item for updating parent inode item 9797 * 1 item for the inline extent item 9798 * 1 item for xattr if selinux is on 9799 */ 9800 trans = btrfs_start_transaction(root, 7); 9801 if (IS_ERR(trans)) 9802 return PTR_ERR(trans); 9803 9804 err = btrfs_get_free_objectid(root, &objectid); 9805 if (err) 9806 goto out_unlock; 9807 9808 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9809 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9810 objectid, S_IFLNK|S_IRWXUGO, &index); 9811 if (IS_ERR(inode)) { 9812 err = PTR_ERR(inode); 9813 inode = NULL; 9814 goto out_unlock; 9815 } 9816 9817 /* 9818 * If the active LSM wants to access the inode during 9819 * d_instantiate it needs these. Smack checks to see 9820 * if the filesystem supports xattrs by looking at the 9821 * ops vector. 9822 */ 9823 inode->i_fop = &btrfs_file_operations; 9824 inode->i_op = &btrfs_file_inode_operations; 9825 inode->i_mapping->a_ops = &btrfs_aops; 9826 9827 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9828 if (err) 9829 goto out_unlock; 9830 9831 path = btrfs_alloc_path(); 9832 if (!path) { 9833 err = -ENOMEM; 9834 goto out_unlock; 9835 } 9836 key.objectid = btrfs_ino(BTRFS_I(inode)); 9837 key.offset = 0; 9838 key.type = BTRFS_EXTENT_DATA_KEY; 9839 datasize = btrfs_file_extent_calc_inline_size(name_len); 9840 err = btrfs_insert_empty_item(trans, root, path, &key, 9841 datasize); 9842 if (err) { 9843 btrfs_free_path(path); 9844 goto out_unlock; 9845 } 9846 leaf = path->nodes[0]; 9847 ei = btrfs_item_ptr(leaf, path->slots[0], 9848 struct btrfs_file_extent_item); 9849 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9850 btrfs_set_file_extent_type(leaf, ei, 9851 BTRFS_FILE_EXTENT_INLINE); 9852 btrfs_set_file_extent_encryption(leaf, ei, 0); 9853 btrfs_set_file_extent_compression(leaf, ei, 0); 9854 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9855 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9856 9857 ptr = btrfs_file_extent_inline_start(ei); 9858 write_extent_buffer(leaf, symname, ptr, name_len); 9859 btrfs_mark_buffer_dirty(leaf); 9860 btrfs_free_path(path); 9861 9862 inode->i_op = &btrfs_symlink_inode_operations; 9863 inode_nohighmem(inode); 9864 inode_set_bytes(inode, name_len); 9865 btrfs_i_size_write(BTRFS_I(inode), name_len); 9866 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9867 /* 9868 * Last step, add directory indexes for our symlink inode. This is the 9869 * last step to avoid extra cleanup of these indexes if an error happens 9870 * elsewhere above. 9871 */ 9872 if (!err) 9873 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9874 BTRFS_I(inode), 0, index); 9875 if (err) 9876 goto out_unlock; 9877 9878 d_instantiate_new(dentry, inode); 9879 9880 out_unlock: 9881 btrfs_end_transaction(trans); 9882 if (err && inode) { 9883 inode_dec_link_count(inode); 9884 discard_new_inode(inode); 9885 } 9886 btrfs_btree_balance_dirty(fs_info); 9887 return err; 9888 } 9889 9890 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9891 struct btrfs_trans_handle *trans_in, 9892 struct btrfs_inode *inode, 9893 struct btrfs_key *ins, 9894 u64 file_offset) 9895 { 9896 struct btrfs_file_extent_item stack_fi; 9897 struct btrfs_replace_extent_info extent_info; 9898 struct btrfs_trans_handle *trans = trans_in; 9899 struct btrfs_path *path; 9900 u64 start = ins->objectid; 9901 u64 len = ins->offset; 9902 int qgroup_released; 9903 int ret; 9904 9905 memset(&stack_fi, 0, sizeof(stack_fi)); 9906 9907 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9908 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9909 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9910 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9911 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9912 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9913 /* Encryption and other encoding is reserved and all 0 */ 9914 9915 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9916 if (qgroup_released < 0) 9917 return ERR_PTR(qgroup_released); 9918 9919 if (trans) { 9920 ret = insert_reserved_file_extent(trans, inode, 9921 file_offset, &stack_fi, 9922 true, qgroup_released); 9923 if (ret) 9924 goto free_qgroup; 9925 return trans; 9926 } 9927 9928 extent_info.disk_offset = start; 9929 extent_info.disk_len = len; 9930 extent_info.data_offset = 0; 9931 extent_info.data_len = len; 9932 extent_info.file_offset = file_offset; 9933 extent_info.extent_buf = (char *)&stack_fi; 9934 extent_info.is_new_extent = true; 9935 extent_info.qgroup_reserved = qgroup_released; 9936 extent_info.insertions = 0; 9937 9938 path = btrfs_alloc_path(); 9939 if (!path) { 9940 ret = -ENOMEM; 9941 goto free_qgroup; 9942 } 9943 9944 ret = btrfs_replace_file_extents(inode, path, file_offset, 9945 file_offset + len - 1, &extent_info, 9946 &trans); 9947 btrfs_free_path(path); 9948 if (ret) 9949 goto free_qgroup; 9950 return trans; 9951 9952 free_qgroup: 9953 /* 9954 * We have released qgroup data range at the beginning of the function, 9955 * and normally qgroup_released bytes will be freed when committing 9956 * transaction. 9957 * But if we error out early, we have to free what we have released 9958 * or we leak qgroup data reservation. 9959 */ 9960 btrfs_qgroup_free_refroot(inode->root->fs_info, 9961 inode->root->root_key.objectid, qgroup_released, 9962 BTRFS_QGROUP_RSV_DATA); 9963 return ERR_PTR(ret); 9964 } 9965 9966 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9967 u64 start, u64 num_bytes, u64 min_size, 9968 loff_t actual_len, u64 *alloc_hint, 9969 struct btrfs_trans_handle *trans) 9970 { 9971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9972 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9973 struct extent_map *em; 9974 struct btrfs_root *root = BTRFS_I(inode)->root; 9975 struct btrfs_key ins; 9976 u64 cur_offset = start; 9977 u64 clear_offset = start; 9978 u64 i_size; 9979 u64 cur_bytes; 9980 u64 last_alloc = (u64)-1; 9981 int ret = 0; 9982 bool own_trans = true; 9983 u64 end = start + num_bytes - 1; 9984 9985 if (trans) 9986 own_trans = false; 9987 while (num_bytes > 0) { 9988 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9989 cur_bytes = max(cur_bytes, min_size); 9990 /* 9991 * If we are severely fragmented we could end up with really 9992 * small allocations, so if the allocator is returning small 9993 * chunks lets make its job easier by only searching for those 9994 * sized chunks. 9995 */ 9996 cur_bytes = min(cur_bytes, last_alloc); 9997 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9998 min_size, 0, *alloc_hint, &ins, 1, 0); 9999 if (ret) 10000 break; 10001 10002 /* 10003 * We've reserved this space, and thus converted it from 10004 * ->bytes_may_use to ->bytes_reserved. Any error that happens 10005 * from here on out we will only need to clear our reservation 10006 * for the remaining unreserved area, so advance our 10007 * clear_offset by our extent size. 10008 */ 10009 clear_offset += ins.offset; 10010 10011 last_alloc = ins.offset; 10012 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 10013 &ins, cur_offset); 10014 /* 10015 * Now that we inserted the prealloc extent we can finally 10016 * decrement the number of reservations in the block group. 10017 * If we did it before, we could race with relocation and have 10018 * relocation miss the reserved extent, making it fail later. 10019 */ 10020 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10021 if (IS_ERR(trans)) { 10022 ret = PTR_ERR(trans); 10023 btrfs_free_reserved_extent(fs_info, ins.objectid, 10024 ins.offset, 0); 10025 break; 10026 } 10027 10028 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10029 cur_offset + ins.offset -1, 0); 10030 10031 em = alloc_extent_map(); 10032 if (!em) { 10033 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10034 &BTRFS_I(inode)->runtime_flags); 10035 goto next; 10036 } 10037 10038 em->start = cur_offset; 10039 em->orig_start = cur_offset; 10040 em->len = ins.offset; 10041 em->block_start = ins.objectid; 10042 em->block_len = ins.offset; 10043 em->orig_block_len = ins.offset; 10044 em->ram_bytes = ins.offset; 10045 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10046 em->generation = trans->transid; 10047 10048 while (1) { 10049 write_lock(&em_tree->lock); 10050 ret = add_extent_mapping(em_tree, em, 1); 10051 write_unlock(&em_tree->lock); 10052 if (ret != -EEXIST) 10053 break; 10054 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10055 cur_offset + ins.offset - 1, 10056 0); 10057 } 10058 free_extent_map(em); 10059 next: 10060 num_bytes -= ins.offset; 10061 cur_offset += ins.offset; 10062 *alloc_hint = ins.objectid + ins.offset; 10063 10064 inode_inc_iversion(inode); 10065 inode->i_ctime = current_time(inode); 10066 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10067 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10068 (actual_len > inode->i_size) && 10069 (cur_offset > inode->i_size)) { 10070 if (cur_offset > actual_len) 10071 i_size = actual_len; 10072 else 10073 i_size = cur_offset; 10074 i_size_write(inode, i_size); 10075 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 10076 } 10077 10078 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10079 10080 if (ret) { 10081 btrfs_abort_transaction(trans, ret); 10082 if (own_trans) 10083 btrfs_end_transaction(trans); 10084 break; 10085 } 10086 10087 if (own_trans) { 10088 btrfs_end_transaction(trans); 10089 trans = NULL; 10090 } 10091 } 10092 if (clear_offset < end) 10093 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 10094 end - clear_offset + 1); 10095 return ret; 10096 } 10097 10098 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10099 u64 start, u64 num_bytes, u64 min_size, 10100 loff_t actual_len, u64 *alloc_hint) 10101 { 10102 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10103 min_size, actual_len, alloc_hint, 10104 NULL); 10105 } 10106 10107 int btrfs_prealloc_file_range_trans(struct inode *inode, 10108 struct btrfs_trans_handle *trans, int mode, 10109 u64 start, u64 num_bytes, u64 min_size, 10110 loff_t actual_len, u64 *alloc_hint) 10111 { 10112 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10113 min_size, actual_len, alloc_hint, trans); 10114 } 10115 10116 static int btrfs_set_page_dirty(struct page *page) 10117 { 10118 return __set_page_dirty_nobuffers(page); 10119 } 10120 10121 static int btrfs_permission(struct user_namespace *mnt_userns, 10122 struct inode *inode, int mask) 10123 { 10124 struct btrfs_root *root = BTRFS_I(inode)->root; 10125 umode_t mode = inode->i_mode; 10126 10127 if (mask & MAY_WRITE && 10128 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10129 if (btrfs_root_readonly(root)) 10130 return -EROFS; 10131 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10132 return -EACCES; 10133 } 10134 return generic_permission(&init_user_ns, inode, mask); 10135 } 10136 10137 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10138 struct dentry *dentry, umode_t mode) 10139 { 10140 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10141 struct btrfs_trans_handle *trans; 10142 struct btrfs_root *root = BTRFS_I(dir)->root; 10143 struct inode *inode = NULL; 10144 u64 objectid; 10145 u64 index; 10146 int ret = 0; 10147 10148 /* 10149 * 5 units required for adding orphan entry 10150 */ 10151 trans = btrfs_start_transaction(root, 5); 10152 if (IS_ERR(trans)) 10153 return PTR_ERR(trans); 10154 10155 ret = btrfs_get_free_objectid(root, &objectid); 10156 if (ret) 10157 goto out; 10158 10159 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10160 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10161 if (IS_ERR(inode)) { 10162 ret = PTR_ERR(inode); 10163 inode = NULL; 10164 goto out; 10165 } 10166 10167 inode->i_fop = &btrfs_file_operations; 10168 inode->i_op = &btrfs_file_inode_operations; 10169 10170 inode->i_mapping->a_ops = &btrfs_aops; 10171 10172 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10173 if (ret) 10174 goto out; 10175 10176 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10177 if (ret) 10178 goto out; 10179 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10180 if (ret) 10181 goto out; 10182 10183 /* 10184 * We set number of links to 0 in btrfs_new_inode(), and here we set 10185 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10186 * through: 10187 * 10188 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10189 */ 10190 set_nlink(inode, 1); 10191 d_tmpfile(dentry, inode); 10192 unlock_new_inode(inode); 10193 mark_inode_dirty(inode); 10194 out: 10195 btrfs_end_transaction(trans); 10196 if (ret && inode) 10197 discard_new_inode(inode); 10198 btrfs_btree_balance_dirty(fs_info); 10199 return ret; 10200 } 10201 10202 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10203 { 10204 struct inode *inode = tree->private_data; 10205 unsigned long index = start >> PAGE_SHIFT; 10206 unsigned long end_index = end >> PAGE_SHIFT; 10207 struct page *page; 10208 10209 while (index <= end_index) { 10210 page = find_get_page(inode->i_mapping, index); 10211 ASSERT(page); /* Pages should be in the extent_io_tree */ 10212 set_page_writeback(page); 10213 put_page(page); 10214 index++; 10215 } 10216 } 10217 10218 #ifdef CONFIG_SWAP 10219 /* 10220 * Add an entry indicating a block group or device which is pinned by a 10221 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10222 * negative errno on failure. 10223 */ 10224 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10225 bool is_block_group) 10226 { 10227 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10228 struct btrfs_swapfile_pin *sp, *entry; 10229 struct rb_node **p; 10230 struct rb_node *parent = NULL; 10231 10232 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10233 if (!sp) 10234 return -ENOMEM; 10235 sp->ptr = ptr; 10236 sp->inode = inode; 10237 sp->is_block_group = is_block_group; 10238 sp->bg_extent_count = 1; 10239 10240 spin_lock(&fs_info->swapfile_pins_lock); 10241 p = &fs_info->swapfile_pins.rb_node; 10242 while (*p) { 10243 parent = *p; 10244 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10245 if (sp->ptr < entry->ptr || 10246 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10247 p = &(*p)->rb_left; 10248 } else if (sp->ptr > entry->ptr || 10249 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10250 p = &(*p)->rb_right; 10251 } else { 10252 if (is_block_group) 10253 entry->bg_extent_count++; 10254 spin_unlock(&fs_info->swapfile_pins_lock); 10255 kfree(sp); 10256 return 1; 10257 } 10258 } 10259 rb_link_node(&sp->node, parent, p); 10260 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10261 spin_unlock(&fs_info->swapfile_pins_lock); 10262 return 0; 10263 } 10264 10265 /* Free all of the entries pinned by this swapfile. */ 10266 static void btrfs_free_swapfile_pins(struct inode *inode) 10267 { 10268 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10269 struct btrfs_swapfile_pin *sp; 10270 struct rb_node *node, *next; 10271 10272 spin_lock(&fs_info->swapfile_pins_lock); 10273 node = rb_first(&fs_info->swapfile_pins); 10274 while (node) { 10275 next = rb_next(node); 10276 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10277 if (sp->inode == inode) { 10278 rb_erase(&sp->node, &fs_info->swapfile_pins); 10279 if (sp->is_block_group) { 10280 btrfs_dec_block_group_swap_extents(sp->ptr, 10281 sp->bg_extent_count); 10282 btrfs_put_block_group(sp->ptr); 10283 } 10284 kfree(sp); 10285 } 10286 node = next; 10287 } 10288 spin_unlock(&fs_info->swapfile_pins_lock); 10289 } 10290 10291 struct btrfs_swap_info { 10292 u64 start; 10293 u64 block_start; 10294 u64 block_len; 10295 u64 lowest_ppage; 10296 u64 highest_ppage; 10297 unsigned long nr_pages; 10298 int nr_extents; 10299 }; 10300 10301 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10302 struct btrfs_swap_info *bsi) 10303 { 10304 unsigned long nr_pages; 10305 u64 first_ppage, first_ppage_reported, next_ppage; 10306 int ret; 10307 10308 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10309 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10310 PAGE_SIZE) >> PAGE_SHIFT; 10311 10312 if (first_ppage >= next_ppage) 10313 return 0; 10314 nr_pages = next_ppage - first_ppage; 10315 10316 first_ppage_reported = first_ppage; 10317 if (bsi->start == 0) 10318 first_ppage_reported++; 10319 if (bsi->lowest_ppage > first_ppage_reported) 10320 bsi->lowest_ppage = first_ppage_reported; 10321 if (bsi->highest_ppage < (next_ppage - 1)) 10322 bsi->highest_ppage = next_ppage - 1; 10323 10324 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10325 if (ret < 0) 10326 return ret; 10327 bsi->nr_extents += ret; 10328 bsi->nr_pages += nr_pages; 10329 return 0; 10330 } 10331 10332 static void btrfs_swap_deactivate(struct file *file) 10333 { 10334 struct inode *inode = file_inode(file); 10335 10336 btrfs_free_swapfile_pins(inode); 10337 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10338 } 10339 10340 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10341 sector_t *span) 10342 { 10343 struct inode *inode = file_inode(file); 10344 struct btrfs_root *root = BTRFS_I(inode)->root; 10345 struct btrfs_fs_info *fs_info = root->fs_info; 10346 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10347 struct extent_state *cached_state = NULL; 10348 struct extent_map *em = NULL; 10349 struct btrfs_device *device = NULL; 10350 struct btrfs_swap_info bsi = { 10351 .lowest_ppage = (sector_t)-1ULL, 10352 }; 10353 int ret = 0; 10354 u64 isize; 10355 u64 start; 10356 10357 /* 10358 * If the swap file was just created, make sure delalloc is done. If the 10359 * file changes again after this, the user is doing something stupid and 10360 * we don't really care. 10361 */ 10362 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10363 if (ret) 10364 return ret; 10365 10366 /* 10367 * The inode is locked, so these flags won't change after we check them. 10368 */ 10369 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10370 btrfs_warn(fs_info, "swapfile must not be compressed"); 10371 return -EINVAL; 10372 } 10373 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10374 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10375 return -EINVAL; 10376 } 10377 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10378 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10379 return -EINVAL; 10380 } 10381 10382 /* 10383 * Balance or device remove/replace/resize can move stuff around from 10384 * under us. The exclop protection makes sure they aren't running/won't 10385 * run concurrently while we are mapping the swap extents, and 10386 * fs_info->swapfile_pins prevents them from running while the swap 10387 * file is active and moving the extents. Note that this also prevents 10388 * a concurrent device add which isn't actually necessary, but it's not 10389 * really worth the trouble to allow it. 10390 */ 10391 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10392 btrfs_warn(fs_info, 10393 "cannot activate swapfile while exclusive operation is running"); 10394 return -EBUSY; 10395 } 10396 10397 /* 10398 * Prevent snapshot creation while we are activating the swap file. 10399 * We do not want to race with snapshot creation. If snapshot creation 10400 * already started before we bumped nr_swapfiles from 0 to 1 and 10401 * completes before the first write into the swap file after it is 10402 * activated, than that write would fallback to COW. 10403 */ 10404 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10405 btrfs_exclop_finish(fs_info); 10406 btrfs_warn(fs_info, 10407 "cannot activate swapfile because snapshot creation is in progress"); 10408 return -EINVAL; 10409 } 10410 /* 10411 * Snapshots can create extents which require COW even if NODATACOW is 10412 * set. We use this counter to prevent snapshots. We must increment it 10413 * before walking the extents because we don't want a concurrent 10414 * snapshot to run after we've already checked the extents. 10415 */ 10416 atomic_inc(&root->nr_swapfiles); 10417 10418 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10419 10420 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10421 start = 0; 10422 while (start < isize) { 10423 u64 logical_block_start, physical_block_start; 10424 struct btrfs_block_group *bg; 10425 u64 len = isize - start; 10426 10427 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10428 if (IS_ERR(em)) { 10429 ret = PTR_ERR(em); 10430 goto out; 10431 } 10432 10433 if (em->block_start == EXTENT_MAP_HOLE) { 10434 btrfs_warn(fs_info, "swapfile must not have holes"); 10435 ret = -EINVAL; 10436 goto out; 10437 } 10438 if (em->block_start == EXTENT_MAP_INLINE) { 10439 /* 10440 * It's unlikely we'll ever actually find ourselves 10441 * here, as a file small enough to fit inline won't be 10442 * big enough to store more than the swap header, but in 10443 * case something changes in the future, let's catch it 10444 * here rather than later. 10445 */ 10446 btrfs_warn(fs_info, "swapfile must not be inline"); 10447 ret = -EINVAL; 10448 goto out; 10449 } 10450 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10451 btrfs_warn(fs_info, "swapfile must not be compressed"); 10452 ret = -EINVAL; 10453 goto out; 10454 } 10455 10456 logical_block_start = em->block_start + (start - em->start); 10457 len = min(len, em->len - (start - em->start)); 10458 free_extent_map(em); 10459 em = NULL; 10460 10461 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 10462 if (ret < 0) { 10463 goto out; 10464 } else if (ret) { 10465 ret = 0; 10466 } else { 10467 btrfs_warn(fs_info, 10468 "swapfile must not be copy-on-write"); 10469 ret = -EINVAL; 10470 goto out; 10471 } 10472 10473 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10474 if (IS_ERR(em)) { 10475 ret = PTR_ERR(em); 10476 goto out; 10477 } 10478 10479 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10480 btrfs_warn(fs_info, 10481 "swapfile must have single data profile"); 10482 ret = -EINVAL; 10483 goto out; 10484 } 10485 10486 if (device == NULL) { 10487 device = em->map_lookup->stripes[0].dev; 10488 ret = btrfs_add_swapfile_pin(inode, device, false); 10489 if (ret == 1) 10490 ret = 0; 10491 else if (ret) 10492 goto out; 10493 } else if (device != em->map_lookup->stripes[0].dev) { 10494 btrfs_warn(fs_info, "swapfile must be on one device"); 10495 ret = -EINVAL; 10496 goto out; 10497 } 10498 10499 physical_block_start = (em->map_lookup->stripes[0].physical + 10500 (logical_block_start - em->start)); 10501 len = min(len, em->len - (logical_block_start - em->start)); 10502 free_extent_map(em); 10503 em = NULL; 10504 10505 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10506 if (!bg) { 10507 btrfs_warn(fs_info, 10508 "could not find block group containing swapfile"); 10509 ret = -EINVAL; 10510 goto out; 10511 } 10512 10513 if (!btrfs_inc_block_group_swap_extents(bg)) { 10514 btrfs_warn(fs_info, 10515 "block group for swapfile at %llu is read-only%s", 10516 bg->start, 10517 atomic_read(&fs_info->scrubs_running) ? 10518 " (scrub running)" : ""); 10519 btrfs_put_block_group(bg); 10520 ret = -EINVAL; 10521 goto out; 10522 } 10523 10524 ret = btrfs_add_swapfile_pin(inode, bg, true); 10525 if (ret) { 10526 btrfs_put_block_group(bg); 10527 if (ret == 1) 10528 ret = 0; 10529 else 10530 goto out; 10531 } 10532 10533 if (bsi.block_len && 10534 bsi.block_start + bsi.block_len == physical_block_start) { 10535 bsi.block_len += len; 10536 } else { 10537 if (bsi.block_len) { 10538 ret = btrfs_add_swap_extent(sis, &bsi); 10539 if (ret) 10540 goto out; 10541 } 10542 bsi.start = start; 10543 bsi.block_start = physical_block_start; 10544 bsi.block_len = len; 10545 } 10546 10547 start += len; 10548 } 10549 10550 if (bsi.block_len) 10551 ret = btrfs_add_swap_extent(sis, &bsi); 10552 10553 out: 10554 if (!IS_ERR_OR_NULL(em)) 10555 free_extent_map(em); 10556 10557 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10558 10559 if (ret) 10560 btrfs_swap_deactivate(file); 10561 10562 btrfs_drew_write_unlock(&root->snapshot_lock); 10563 10564 btrfs_exclop_finish(fs_info); 10565 10566 if (ret) 10567 return ret; 10568 10569 if (device) 10570 sis->bdev = device->bdev; 10571 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10572 sis->max = bsi.nr_pages; 10573 sis->pages = bsi.nr_pages - 1; 10574 sis->highest_bit = bsi.nr_pages - 1; 10575 return bsi.nr_extents; 10576 } 10577 #else 10578 static void btrfs_swap_deactivate(struct file *file) 10579 { 10580 } 10581 10582 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10583 sector_t *span) 10584 { 10585 return -EOPNOTSUPP; 10586 } 10587 #endif 10588 10589 /* 10590 * Update the number of bytes used in the VFS' inode. When we replace extents in 10591 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10592 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10593 * always get a correct value. 10594 */ 10595 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10596 const u64 add_bytes, 10597 const u64 del_bytes) 10598 { 10599 if (add_bytes == del_bytes) 10600 return; 10601 10602 spin_lock(&inode->lock); 10603 if (del_bytes > 0) 10604 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10605 if (add_bytes > 0) 10606 inode_add_bytes(&inode->vfs_inode, add_bytes); 10607 spin_unlock(&inode->lock); 10608 } 10609 10610 static const struct inode_operations btrfs_dir_inode_operations = { 10611 .getattr = btrfs_getattr, 10612 .lookup = btrfs_lookup, 10613 .create = btrfs_create, 10614 .unlink = btrfs_unlink, 10615 .link = btrfs_link, 10616 .mkdir = btrfs_mkdir, 10617 .rmdir = btrfs_rmdir, 10618 .rename = btrfs_rename2, 10619 .symlink = btrfs_symlink, 10620 .setattr = btrfs_setattr, 10621 .mknod = btrfs_mknod, 10622 .listxattr = btrfs_listxattr, 10623 .permission = btrfs_permission, 10624 .get_acl = btrfs_get_acl, 10625 .set_acl = btrfs_set_acl, 10626 .update_time = btrfs_update_time, 10627 .tmpfile = btrfs_tmpfile, 10628 .fileattr_get = btrfs_fileattr_get, 10629 .fileattr_set = btrfs_fileattr_set, 10630 }; 10631 10632 static const struct file_operations btrfs_dir_file_operations = { 10633 .llseek = generic_file_llseek, 10634 .read = generic_read_dir, 10635 .iterate_shared = btrfs_real_readdir, 10636 .open = btrfs_opendir, 10637 .unlocked_ioctl = btrfs_ioctl, 10638 #ifdef CONFIG_COMPAT 10639 .compat_ioctl = btrfs_compat_ioctl, 10640 #endif 10641 .release = btrfs_release_file, 10642 .fsync = btrfs_sync_file, 10643 }; 10644 10645 /* 10646 * btrfs doesn't support the bmap operation because swapfiles 10647 * use bmap to make a mapping of extents in the file. They assume 10648 * these extents won't change over the life of the file and they 10649 * use the bmap result to do IO directly to the drive. 10650 * 10651 * the btrfs bmap call would return logical addresses that aren't 10652 * suitable for IO and they also will change frequently as COW 10653 * operations happen. So, swapfile + btrfs == corruption. 10654 * 10655 * For now we're avoiding this by dropping bmap. 10656 */ 10657 static const struct address_space_operations btrfs_aops = { 10658 .readpage = btrfs_readpage, 10659 .writepage = btrfs_writepage, 10660 .writepages = btrfs_writepages, 10661 .readahead = btrfs_readahead, 10662 .direct_IO = noop_direct_IO, 10663 .invalidatepage = btrfs_invalidatepage, 10664 .releasepage = btrfs_releasepage, 10665 #ifdef CONFIG_MIGRATION 10666 .migratepage = btrfs_migratepage, 10667 #endif 10668 .set_page_dirty = btrfs_set_page_dirty, 10669 .error_remove_page = generic_error_remove_page, 10670 .swap_activate = btrfs_swap_activate, 10671 .swap_deactivate = btrfs_swap_deactivate, 10672 }; 10673 10674 static const struct inode_operations btrfs_file_inode_operations = { 10675 .getattr = btrfs_getattr, 10676 .setattr = btrfs_setattr, 10677 .listxattr = btrfs_listxattr, 10678 .permission = btrfs_permission, 10679 .fiemap = btrfs_fiemap, 10680 .get_acl = btrfs_get_acl, 10681 .set_acl = btrfs_set_acl, 10682 .update_time = btrfs_update_time, 10683 .fileattr_get = btrfs_fileattr_get, 10684 .fileattr_set = btrfs_fileattr_set, 10685 }; 10686 static const struct inode_operations btrfs_special_inode_operations = { 10687 .getattr = btrfs_getattr, 10688 .setattr = btrfs_setattr, 10689 .permission = btrfs_permission, 10690 .listxattr = btrfs_listxattr, 10691 .get_acl = btrfs_get_acl, 10692 .set_acl = btrfs_set_acl, 10693 .update_time = btrfs_update_time, 10694 }; 10695 static const struct inode_operations btrfs_symlink_inode_operations = { 10696 .get_link = page_get_link, 10697 .getattr = btrfs_getattr, 10698 .setattr = btrfs_setattr, 10699 .permission = btrfs_permission, 10700 .listxattr = btrfs_listxattr, 10701 .update_time = btrfs_update_time, 10702 }; 10703 10704 const struct dentry_operations btrfs_dentry_operations = { 10705 .d_delete = btrfs_dentry_delete, 10706 }; 10707