1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <asm/unaligned.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "print-tree.h" 37 #include "ordered-data.h" 38 #include "xattr.h" 39 #include "tree-log.h" 40 #include "volumes.h" 41 #include "compression.h" 42 #include "locking.h" 43 #include "free-space-cache.h" 44 #include "inode-map.h" 45 #include "backref.h" 46 #include "props.h" 47 #include "qgroup.h" 48 #include "dedupe.h" 49 50 struct btrfs_iget_args { 51 struct btrfs_key *location; 52 struct btrfs_root *root; 53 }; 54 55 struct btrfs_dio_data { 56 u64 reserve; 57 u64 unsubmitted_oe_range_start; 58 u64 unsubmitted_oe_range_end; 59 int overwrite; 60 }; 61 62 static const struct inode_operations btrfs_dir_inode_operations; 63 static const struct inode_operations btrfs_symlink_inode_operations; 64 static const struct inode_operations btrfs_dir_ro_inode_operations; 65 static const struct inode_operations btrfs_special_inode_operations; 66 static const struct inode_operations btrfs_file_inode_operations; 67 static const struct address_space_operations btrfs_aops; 68 static const struct file_operations btrfs_dir_file_operations; 69 static const struct extent_io_ops btrfs_extent_io_ops; 70 71 static struct kmem_cache *btrfs_inode_cachep; 72 struct kmem_cache *btrfs_trans_handle_cachep; 73 struct kmem_cache *btrfs_path_cachep; 74 struct kmem_cache *btrfs_free_space_cachep; 75 76 #define S_SHIFT 12 77 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 85 }; 86 87 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 88 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 90 static noinline int cow_file_range(struct inode *inode, 91 struct page *locked_page, 92 u64 start, u64 end, u64 delalloc_end, 93 int *page_started, unsigned long *nr_written, 94 int unlock, struct btrfs_dedupe_hash *hash); 95 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 96 u64 orig_start, u64 block_start, 97 u64 block_len, u64 orig_block_len, 98 u64 ram_bytes, int compress_type, 99 int type); 100 101 static void __endio_write_update_ordered(struct inode *inode, 102 const u64 offset, const u64 bytes, 103 const bool uptodate); 104 105 /* 106 * Cleanup all submitted ordered extents in specified range to handle errors 107 * from the btrfs_run_delalloc_range() callback. 108 * 109 * NOTE: caller must ensure that when an error happens, it can not call 110 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 111 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 112 * to be released, which we want to happen only when finishing the ordered 113 * extent (btrfs_finish_ordered_io()). 114 */ 115 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 116 struct page *locked_page, 117 u64 offset, u64 bytes) 118 { 119 unsigned long index = offset >> PAGE_SHIFT; 120 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 121 u64 page_start = page_offset(locked_page); 122 u64 page_end = page_start + PAGE_SIZE - 1; 123 124 struct page *page; 125 126 while (index <= end_index) { 127 page = find_get_page(inode->i_mapping, index); 128 index++; 129 if (!page) 130 continue; 131 ClearPagePrivate2(page); 132 put_page(page); 133 } 134 135 /* 136 * In case this page belongs to the delalloc range being instantiated 137 * then skip it, since the first page of a range is going to be 138 * properly cleaned up by the caller of run_delalloc_range 139 */ 140 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 141 offset += PAGE_SIZE; 142 bytes -= PAGE_SIZE; 143 } 144 145 return __endio_write_update_ordered(inode, offset, bytes, false); 146 } 147 148 static int btrfs_dirty_inode(struct inode *inode); 149 150 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 151 void btrfs_test_inode_set_ops(struct inode *inode) 152 { 153 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 154 } 155 #endif 156 157 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 158 struct inode *inode, struct inode *dir, 159 const struct qstr *qstr) 160 { 161 int err; 162 163 err = btrfs_init_acl(trans, inode, dir); 164 if (!err) 165 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 166 return err; 167 } 168 169 /* 170 * this does all the hard work for inserting an inline extent into 171 * the btree. The caller should have done a btrfs_drop_extents so that 172 * no overlapping inline items exist in the btree 173 */ 174 static int insert_inline_extent(struct btrfs_trans_handle *trans, 175 struct btrfs_path *path, int extent_inserted, 176 struct btrfs_root *root, struct inode *inode, 177 u64 start, size_t size, size_t compressed_size, 178 int compress_type, 179 struct page **compressed_pages) 180 { 181 struct extent_buffer *leaf; 182 struct page *page = NULL; 183 char *kaddr; 184 unsigned long ptr; 185 struct btrfs_file_extent_item *ei; 186 int ret; 187 size_t cur_size = size; 188 unsigned long offset; 189 190 if (compressed_size && compressed_pages) 191 cur_size = compressed_size; 192 193 inode_add_bytes(inode, size); 194 195 if (!extent_inserted) { 196 struct btrfs_key key; 197 size_t datasize; 198 199 key.objectid = btrfs_ino(BTRFS_I(inode)); 200 key.offset = start; 201 key.type = BTRFS_EXTENT_DATA_KEY; 202 203 datasize = btrfs_file_extent_calc_inline_size(cur_size); 204 path->leave_spinning = 1; 205 ret = btrfs_insert_empty_item(trans, root, path, &key, 206 datasize); 207 if (ret) 208 goto fail; 209 } 210 leaf = path->nodes[0]; 211 ei = btrfs_item_ptr(leaf, path->slots[0], 212 struct btrfs_file_extent_item); 213 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 214 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 215 btrfs_set_file_extent_encryption(leaf, ei, 0); 216 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 217 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 218 ptr = btrfs_file_extent_inline_start(ei); 219 220 if (compress_type != BTRFS_COMPRESS_NONE) { 221 struct page *cpage; 222 int i = 0; 223 while (compressed_size > 0) { 224 cpage = compressed_pages[i]; 225 cur_size = min_t(unsigned long, compressed_size, 226 PAGE_SIZE); 227 228 kaddr = kmap_atomic(cpage); 229 write_extent_buffer(leaf, kaddr, ptr, cur_size); 230 kunmap_atomic(kaddr); 231 232 i++; 233 ptr += cur_size; 234 compressed_size -= cur_size; 235 } 236 btrfs_set_file_extent_compression(leaf, ei, 237 compress_type); 238 } else { 239 page = find_get_page(inode->i_mapping, 240 start >> PAGE_SHIFT); 241 btrfs_set_file_extent_compression(leaf, ei, 0); 242 kaddr = kmap_atomic(page); 243 offset = offset_in_page(start); 244 write_extent_buffer(leaf, kaddr + offset, ptr, size); 245 kunmap_atomic(kaddr); 246 put_page(page); 247 } 248 btrfs_mark_buffer_dirty(leaf); 249 btrfs_release_path(path); 250 251 /* 252 * we're an inline extent, so nobody can 253 * extend the file past i_size without locking 254 * a page we already have locked. 255 * 256 * We must do any isize and inode updates 257 * before we unlock the pages. Otherwise we 258 * could end up racing with unlink. 259 */ 260 BTRFS_I(inode)->disk_i_size = inode->i_size; 261 ret = btrfs_update_inode(trans, root, inode); 262 263 fail: 264 return ret; 265 } 266 267 268 /* 269 * conditionally insert an inline extent into the file. This 270 * does the checks required to make sure the data is small enough 271 * to fit as an inline extent. 272 */ 273 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 274 u64 end, size_t compressed_size, 275 int compress_type, 276 struct page **compressed_pages) 277 { 278 struct btrfs_root *root = BTRFS_I(inode)->root; 279 struct btrfs_fs_info *fs_info = root->fs_info; 280 struct btrfs_trans_handle *trans; 281 u64 isize = i_size_read(inode); 282 u64 actual_end = min(end + 1, isize); 283 u64 inline_len = actual_end - start; 284 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 285 u64 data_len = inline_len; 286 int ret; 287 struct btrfs_path *path; 288 int extent_inserted = 0; 289 u32 extent_item_size; 290 291 if (compressed_size) 292 data_len = compressed_size; 293 294 if (start > 0 || 295 actual_end > fs_info->sectorsize || 296 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 297 (!compressed_size && 298 (actual_end & (fs_info->sectorsize - 1)) == 0) || 299 end + 1 < isize || 300 data_len > fs_info->max_inline) { 301 return 1; 302 } 303 304 path = btrfs_alloc_path(); 305 if (!path) 306 return -ENOMEM; 307 308 trans = btrfs_join_transaction(root); 309 if (IS_ERR(trans)) { 310 btrfs_free_path(path); 311 return PTR_ERR(trans); 312 } 313 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 314 315 if (compressed_size && compressed_pages) 316 extent_item_size = btrfs_file_extent_calc_inline_size( 317 compressed_size); 318 else 319 extent_item_size = btrfs_file_extent_calc_inline_size( 320 inline_len); 321 322 ret = __btrfs_drop_extents(trans, root, inode, path, 323 start, aligned_end, NULL, 324 1, 1, extent_item_size, &extent_inserted); 325 if (ret) { 326 btrfs_abort_transaction(trans, ret); 327 goto out; 328 } 329 330 if (isize > actual_end) 331 inline_len = min_t(u64, isize, actual_end); 332 ret = insert_inline_extent(trans, path, extent_inserted, 333 root, inode, start, 334 inline_len, compressed_size, 335 compress_type, compressed_pages); 336 if (ret && ret != -ENOSPC) { 337 btrfs_abort_transaction(trans, ret); 338 goto out; 339 } else if (ret == -ENOSPC) { 340 ret = 1; 341 goto out; 342 } 343 344 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 345 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 346 out: 347 /* 348 * Don't forget to free the reserved space, as for inlined extent 349 * it won't count as data extent, free them directly here. 350 * And at reserve time, it's always aligned to page size, so 351 * just free one page here. 352 */ 353 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 354 btrfs_free_path(path); 355 btrfs_end_transaction(trans); 356 return ret; 357 } 358 359 struct async_extent { 360 u64 start; 361 u64 ram_size; 362 u64 compressed_size; 363 struct page **pages; 364 unsigned long nr_pages; 365 int compress_type; 366 struct list_head list; 367 }; 368 369 struct async_cow { 370 struct inode *inode; 371 struct btrfs_fs_info *fs_info; 372 struct page *locked_page; 373 u64 start; 374 u64 end; 375 unsigned int write_flags; 376 struct list_head extents; 377 struct btrfs_work work; 378 }; 379 380 static noinline int add_async_extent(struct async_cow *cow, 381 u64 start, u64 ram_size, 382 u64 compressed_size, 383 struct page **pages, 384 unsigned long nr_pages, 385 int compress_type) 386 { 387 struct async_extent *async_extent; 388 389 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 390 BUG_ON(!async_extent); /* -ENOMEM */ 391 async_extent->start = start; 392 async_extent->ram_size = ram_size; 393 async_extent->compressed_size = compressed_size; 394 async_extent->pages = pages; 395 async_extent->nr_pages = nr_pages; 396 async_extent->compress_type = compress_type; 397 list_add_tail(&async_extent->list, &cow->extents); 398 return 0; 399 } 400 401 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 402 { 403 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 404 405 /* force compress */ 406 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 407 return 1; 408 /* defrag ioctl */ 409 if (BTRFS_I(inode)->defrag_compress) 410 return 1; 411 /* bad compression ratios */ 412 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 413 return 0; 414 if (btrfs_test_opt(fs_info, COMPRESS) || 415 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 416 BTRFS_I(inode)->prop_compress) 417 return btrfs_compress_heuristic(inode, start, end); 418 return 0; 419 } 420 421 static inline void inode_should_defrag(struct btrfs_inode *inode, 422 u64 start, u64 end, u64 num_bytes, u64 small_write) 423 { 424 /* If this is a small write inside eof, kick off a defrag */ 425 if (num_bytes < small_write && 426 (start > 0 || end + 1 < inode->disk_i_size)) 427 btrfs_add_inode_defrag(NULL, inode); 428 } 429 430 /* 431 * we create compressed extents in two phases. The first 432 * phase compresses a range of pages that have already been 433 * locked (both pages and state bits are locked). 434 * 435 * This is done inside an ordered work queue, and the compression 436 * is spread across many cpus. The actual IO submission is step 437 * two, and the ordered work queue takes care of making sure that 438 * happens in the same order things were put onto the queue by 439 * writepages and friends. 440 * 441 * If this code finds it can't get good compression, it puts an 442 * entry onto the work queue to write the uncompressed bytes. This 443 * makes sure that both compressed inodes and uncompressed inodes 444 * are written in the same order that the flusher thread sent them 445 * down. 446 */ 447 static noinline void compress_file_range(struct inode *inode, 448 struct page *locked_page, 449 u64 start, u64 end, 450 struct async_cow *async_cow, 451 int *num_added) 452 { 453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 454 u64 blocksize = fs_info->sectorsize; 455 u64 actual_end; 456 u64 isize = i_size_read(inode); 457 int ret = 0; 458 struct page **pages = NULL; 459 unsigned long nr_pages; 460 unsigned long total_compressed = 0; 461 unsigned long total_in = 0; 462 int i; 463 int will_compress; 464 int compress_type = fs_info->compress_type; 465 int redirty = 0; 466 467 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 468 SZ_16K); 469 470 actual_end = min_t(u64, isize, end + 1); 471 again: 472 will_compress = 0; 473 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 474 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 475 nr_pages = min_t(unsigned long, nr_pages, 476 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 477 478 /* 479 * we don't want to send crud past the end of i_size through 480 * compression, that's just a waste of CPU time. So, if the 481 * end of the file is before the start of our current 482 * requested range of bytes, we bail out to the uncompressed 483 * cleanup code that can deal with all of this. 484 * 485 * It isn't really the fastest way to fix things, but this is a 486 * very uncommon corner. 487 */ 488 if (actual_end <= start) 489 goto cleanup_and_bail_uncompressed; 490 491 total_compressed = actual_end - start; 492 493 /* 494 * skip compression for a small file range(<=blocksize) that 495 * isn't an inline extent, since it doesn't save disk space at all. 496 */ 497 if (total_compressed <= blocksize && 498 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 499 goto cleanup_and_bail_uncompressed; 500 501 total_compressed = min_t(unsigned long, total_compressed, 502 BTRFS_MAX_UNCOMPRESSED); 503 total_in = 0; 504 ret = 0; 505 506 /* 507 * we do compression for mount -o compress and when the 508 * inode has not been flagged as nocompress. This flag can 509 * change at any time if we discover bad compression ratios. 510 */ 511 if (inode_need_compress(inode, start, end)) { 512 WARN_ON(pages); 513 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 514 if (!pages) { 515 /* just bail out to the uncompressed code */ 516 nr_pages = 0; 517 goto cont; 518 } 519 520 if (BTRFS_I(inode)->defrag_compress) 521 compress_type = BTRFS_I(inode)->defrag_compress; 522 else if (BTRFS_I(inode)->prop_compress) 523 compress_type = BTRFS_I(inode)->prop_compress; 524 525 /* 526 * we need to call clear_page_dirty_for_io on each 527 * page in the range. Otherwise applications with the file 528 * mmap'd can wander in and change the page contents while 529 * we are compressing them. 530 * 531 * If the compression fails for any reason, we set the pages 532 * dirty again later on. 533 * 534 * Note that the remaining part is redirtied, the start pointer 535 * has moved, the end is the original one. 536 */ 537 if (!redirty) { 538 extent_range_clear_dirty_for_io(inode, start, end); 539 redirty = 1; 540 } 541 542 /* Compression level is applied here and only here */ 543 ret = btrfs_compress_pages( 544 compress_type | (fs_info->compress_level << 4), 545 inode->i_mapping, start, 546 pages, 547 &nr_pages, 548 &total_in, 549 &total_compressed); 550 551 if (!ret) { 552 unsigned long offset = offset_in_page(total_compressed); 553 struct page *page = pages[nr_pages - 1]; 554 char *kaddr; 555 556 /* zero the tail end of the last page, we might be 557 * sending it down to disk 558 */ 559 if (offset) { 560 kaddr = kmap_atomic(page); 561 memset(kaddr + offset, 0, 562 PAGE_SIZE - offset); 563 kunmap_atomic(kaddr); 564 } 565 will_compress = 1; 566 } 567 } 568 cont: 569 if (start == 0) { 570 /* lets try to make an inline extent */ 571 if (ret || total_in < actual_end) { 572 /* we didn't compress the entire range, try 573 * to make an uncompressed inline extent. 574 */ 575 ret = cow_file_range_inline(inode, start, end, 0, 576 BTRFS_COMPRESS_NONE, NULL); 577 } else { 578 /* try making a compressed inline extent */ 579 ret = cow_file_range_inline(inode, start, end, 580 total_compressed, 581 compress_type, pages); 582 } 583 if (ret <= 0) { 584 unsigned long clear_flags = EXTENT_DELALLOC | 585 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 586 EXTENT_DO_ACCOUNTING; 587 unsigned long page_error_op; 588 589 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 590 591 /* 592 * inline extent creation worked or returned error, 593 * we don't need to create any more async work items. 594 * Unlock and free up our temp pages. 595 * 596 * We use DO_ACCOUNTING here because we need the 597 * delalloc_release_metadata to be done _after_ we drop 598 * our outstanding extent for clearing delalloc for this 599 * range. 600 */ 601 extent_clear_unlock_delalloc(inode, start, end, end, 602 NULL, clear_flags, 603 PAGE_UNLOCK | 604 PAGE_CLEAR_DIRTY | 605 PAGE_SET_WRITEBACK | 606 page_error_op | 607 PAGE_END_WRITEBACK); 608 goto free_pages_out; 609 } 610 } 611 612 if (will_compress) { 613 /* 614 * we aren't doing an inline extent round the compressed size 615 * up to a block size boundary so the allocator does sane 616 * things 617 */ 618 total_compressed = ALIGN(total_compressed, blocksize); 619 620 /* 621 * one last check to make sure the compression is really a 622 * win, compare the page count read with the blocks on disk, 623 * compression must free at least one sector size 624 */ 625 total_in = ALIGN(total_in, PAGE_SIZE); 626 if (total_compressed + blocksize <= total_in) { 627 *num_added += 1; 628 629 /* 630 * The async work queues will take care of doing actual 631 * allocation on disk for these compressed pages, and 632 * will submit them to the elevator. 633 */ 634 add_async_extent(async_cow, start, total_in, 635 total_compressed, pages, nr_pages, 636 compress_type); 637 638 if (start + total_in < end) { 639 start += total_in; 640 pages = NULL; 641 cond_resched(); 642 goto again; 643 } 644 return; 645 } 646 } 647 if (pages) { 648 /* 649 * the compression code ran but failed to make things smaller, 650 * free any pages it allocated and our page pointer array 651 */ 652 for (i = 0; i < nr_pages; i++) { 653 WARN_ON(pages[i]->mapping); 654 put_page(pages[i]); 655 } 656 kfree(pages); 657 pages = NULL; 658 total_compressed = 0; 659 nr_pages = 0; 660 661 /* flag the file so we don't compress in the future */ 662 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 663 !(BTRFS_I(inode)->prop_compress)) { 664 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 665 } 666 } 667 cleanup_and_bail_uncompressed: 668 /* 669 * No compression, but we still need to write the pages in the file 670 * we've been given so far. redirty the locked page if it corresponds 671 * to our extent and set things up for the async work queue to run 672 * cow_file_range to do the normal delalloc dance. 673 */ 674 if (page_offset(locked_page) >= start && 675 page_offset(locked_page) <= end) 676 __set_page_dirty_nobuffers(locked_page); 677 /* unlocked later on in the async handlers */ 678 679 if (redirty) 680 extent_range_redirty_for_io(inode, start, end); 681 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 682 BTRFS_COMPRESS_NONE); 683 *num_added += 1; 684 685 return; 686 687 free_pages_out: 688 for (i = 0; i < nr_pages; i++) { 689 WARN_ON(pages[i]->mapping); 690 put_page(pages[i]); 691 } 692 kfree(pages); 693 } 694 695 static void free_async_extent_pages(struct async_extent *async_extent) 696 { 697 int i; 698 699 if (!async_extent->pages) 700 return; 701 702 for (i = 0; i < async_extent->nr_pages; i++) { 703 WARN_ON(async_extent->pages[i]->mapping); 704 put_page(async_extent->pages[i]); 705 } 706 kfree(async_extent->pages); 707 async_extent->nr_pages = 0; 708 async_extent->pages = NULL; 709 } 710 711 /* 712 * phase two of compressed writeback. This is the ordered portion 713 * of the code, which only gets called in the order the work was 714 * queued. We walk all the async extents created by compress_file_range 715 * and send them down to the disk. 716 */ 717 static noinline void submit_compressed_extents(struct inode *inode, 718 struct async_cow *async_cow) 719 { 720 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 721 struct async_extent *async_extent; 722 u64 alloc_hint = 0; 723 struct btrfs_key ins; 724 struct extent_map *em; 725 struct btrfs_root *root = BTRFS_I(inode)->root; 726 struct extent_io_tree *io_tree; 727 int ret = 0; 728 729 again: 730 while (!list_empty(&async_cow->extents)) { 731 async_extent = list_entry(async_cow->extents.next, 732 struct async_extent, list); 733 list_del(&async_extent->list); 734 735 io_tree = &BTRFS_I(inode)->io_tree; 736 737 retry: 738 /* did the compression code fall back to uncompressed IO? */ 739 if (!async_extent->pages) { 740 int page_started = 0; 741 unsigned long nr_written = 0; 742 743 lock_extent(io_tree, async_extent->start, 744 async_extent->start + 745 async_extent->ram_size - 1); 746 747 /* allocate blocks */ 748 ret = cow_file_range(inode, async_cow->locked_page, 749 async_extent->start, 750 async_extent->start + 751 async_extent->ram_size - 1, 752 async_extent->start + 753 async_extent->ram_size - 1, 754 &page_started, &nr_written, 0, 755 NULL); 756 757 /* JDM XXX */ 758 759 /* 760 * if page_started, cow_file_range inserted an 761 * inline extent and took care of all the unlocking 762 * and IO for us. Otherwise, we need to submit 763 * all those pages down to the drive. 764 */ 765 if (!page_started && !ret) 766 extent_write_locked_range(inode, 767 async_extent->start, 768 async_extent->start + 769 async_extent->ram_size - 1, 770 WB_SYNC_ALL); 771 else if (ret) 772 unlock_page(async_cow->locked_page); 773 kfree(async_extent); 774 cond_resched(); 775 continue; 776 } 777 778 lock_extent(io_tree, async_extent->start, 779 async_extent->start + async_extent->ram_size - 1); 780 781 ret = btrfs_reserve_extent(root, async_extent->ram_size, 782 async_extent->compressed_size, 783 async_extent->compressed_size, 784 0, alloc_hint, &ins, 1, 1); 785 if (ret) { 786 free_async_extent_pages(async_extent); 787 788 if (ret == -ENOSPC) { 789 unlock_extent(io_tree, async_extent->start, 790 async_extent->start + 791 async_extent->ram_size - 1); 792 793 /* 794 * we need to redirty the pages if we decide to 795 * fallback to uncompressed IO, otherwise we 796 * will not submit these pages down to lower 797 * layers. 798 */ 799 extent_range_redirty_for_io(inode, 800 async_extent->start, 801 async_extent->start + 802 async_extent->ram_size - 1); 803 804 goto retry; 805 } 806 goto out_free; 807 } 808 /* 809 * here we're doing allocation and writeback of the 810 * compressed pages 811 */ 812 em = create_io_em(inode, async_extent->start, 813 async_extent->ram_size, /* len */ 814 async_extent->start, /* orig_start */ 815 ins.objectid, /* block_start */ 816 ins.offset, /* block_len */ 817 ins.offset, /* orig_block_len */ 818 async_extent->ram_size, /* ram_bytes */ 819 async_extent->compress_type, 820 BTRFS_ORDERED_COMPRESSED); 821 if (IS_ERR(em)) 822 /* ret value is not necessary due to void function */ 823 goto out_free_reserve; 824 free_extent_map(em); 825 826 ret = btrfs_add_ordered_extent_compress(inode, 827 async_extent->start, 828 ins.objectid, 829 async_extent->ram_size, 830 ins.offset, 831 BTRFS_ORDERED_COMPRESSED, 832 async_extent->compress_type); 833 if (ret) { 834 btrfs_drop_extent_cache(BTRFS_I(inode), 835 async_extent->start, 836 async_extent->start + 837 async_extent->ram_size - 1, 0); 838 goto out_free_reserve; 839 } 840 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 841 842 /* 843 * clear dirty, set writeback and unlock the pages. 844 */ 845 extent_clear_unlock_delalloc(inode, async_extent->start, 846 async_extent->start + 847 async_extent->ram_size - 1, 848 async_extent->start + 849 async_extent->ram_size - 1, 850 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 851 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 852 PAGE_SET_WRITEBACK); 853 if (btrfs_submit_compressed_write(inode, 854 async_extent->start, 855 async_extent->ram_size, 856 ins.objectid, 857 ins.offset, async_extent->pages, 858 async_extent->nr_pages, 859 async_cow->write_flags)) { 860 struct page *p = async_extent->pages[0]; 861 const u64 start = async_extent->start; 862 const u64 end = start + async_extent->ram_size - 1; 863 864 p->mapping = inode->i_mapping; 865 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 866 867 p->mapping = NULL; 868 extent_clear_unlock_delalloc(inode, start, end, end, 869 NULL, 0, 870 PAGE_END_WRITEBACK | 871 PAGE_SET_ERROR); 872 free_async_extent_pages(async_extent); 873 } 874 alloc_hint = ins.objectid + ins.offset; 875 kfree(async_extent); 876 cond_resched(); 877 } 878 return; 879 out_free_reserve: 880 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 881 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 882 out_free: 883 extent_clear_unlock_delalloc(inode, async_extent->start, 884 async_extent->start + 885 async_extent->ram_size - 1, 886 async_extent->start + 887 async_extent->ram_size - 1, 888 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 889 EXTENT_DELALLOC_NEW | 890 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 891 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 892 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 893 PAGE_SET_ERROR); 894 free_async_extent_pages(async_extent); 895 kfree(async_extent); 896 goto again; 897 } 898 899 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 900 u64 num_bytes) 901 { 902 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 903 struct extent_map *em; 904 u64 alloc_hint = 0; 905 906 read_lock(&em_tree->lock); 907 em = search_extent_mapping(em_tree, start, num_bytes); 908 if (em) { 909 /* 910 * if block start isn't an actual block number then find the 911 * first block in this inode and use that as a hint. If that 912 * block is also bogus then just don't worry about it. 913 */ 914 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 915 free_extent_map(em); 916 em = search_extent_mapping(em_tree, 0, 0); 917 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 918 alloc_hint = em->block_start; 919 if (em) 920 free_extent_map(em); 921 } else { 922 alloc_hint = em->block_start; 923 free_extent_map(em); 924 } 925 } 926 read_unlock(&em_tree->lock); 927 928 return alloc_hint; 929 } 930 931 /* 932 * when extent_io.c finds a delayed allocation range in the file, 933 * the call backs end up in this code. The basic idea is to 934 * allocate extents on disk for the range, and create ordered data structs 935 * in ram to track those extents. 936 * 937 * locked_page is the page that writepage had locked already. We use 938 * it to make sure we don't do extra locks or unlocks. 939 * 940 * *page_started is set to one if we unlock locked_page and do everything 941 * required to start IO on it. It may be clean and already done with 942 * IO when we return. 943 */ 944 static noinline int cow_file_range(struct inode *inode, 945 struct page *locked_page, 946 u64 start, u64 end, u64 delalloc_end, 947 int *page_started, unsigned long *nr_written, 948 int unlock, struct btrfs_dedupe_hash *hash) 949 { 950 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 951 struct btrfs_root *root = BTRFS_I(inode)->root; 952 u64 alloc_hint = 0; 953 u64 num_bytes; 954 unsigned long ram_size; 955 u64 cur_alloc_size = 0; 956 u64 blocksize = fs_info->sectorsize; 957 struct btrfs_key ins; 958 struct extent_map *em; 959 unsigned clear_bits; 960 unsigned long page_ops; 961 bool extent_reserved = false; 962 int ret = 0; 963 964 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 965 WARN_ON_ONCE(1); 966 ret = -EINVAL; 967 goto out_unlock; 968 } 969 970 num_bytes = ALIGN(end - start + 1, blocksize); 971 num_bytes = max(blocksize, num_bytes); 972 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 973 974 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 975 976 if (start == 0) { 977 /* lets try to make an inline extent */ 978 ret = cow_file_range_inline(inode, start, end, 0, 979 BTRFS_COMPRESS_NONE, NULL); 980 if (ret == 0) { 981 /* 982 * We use DO_ACCOUNTING here because we need the 983 * delalloc_release_metadata to be run _after_ we drop 984 * our outstanding extent for clearing delalloc for this 985 * range. 986 */ 987 extent_clear_unlock_delalloc(inode, start, end, 988 delalloc_end, NULL, 989 EXTENT_LOCKED | EXTENT_DELALLOC | 990 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 991 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 992 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 993 PAGE_END_WRITEBACK); 994 *nr_written = *nr_written + 995 (end - start + PAGE_SIZE) / PAGE_SIZE; 996 *page_started = 1; 997 goto out; 998 } else if (ret < 0) { 999 goto out_unlock; 1000 } 1001 } 1002 1003 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1004 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1005 start + num_bytes - 1, 0); 1006 1007 while (num_bytes > 0) { 1008 cur_alloc_size = num_bytes; 1009 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1010 fs_info->sectorsize, 0, alloc_hint, 1011 &ins, 1, 1); 1012 if (ret < 0) 1013 goto out_unlock; 1014 cur_alloc_size = ins.offset; 1015 extent_reserved = true; 1016 1017 ram_size = ins.offset; 1018 em = create_io_em(inode, start, ins.offset, /* len */ 1019 start, /* orig_start */ 1020 ins.objectid, /* block_start */ 1021 ins.offset, /* block_len */ 1022 ins.offset, /* orig_block_len */ 1023 ram_size, /* ram_bytes */ 1024 BTRFS_COMPRESS_NONE, /* compress_type */ 1025 BTRFS_ORDERED_REGULAR /* type */); 1026 if (IS_ERR(em)) { 1027 ret = PTR_ERR(em); 1028 goto out_reserve; 1029 } 1030 free_extent_map(em); 1031 1032 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1033 ram_size, cur_alloc_size, 0); 1034 if (ret) 1035 goto out_drop_extent_cache; 1036 1037 if (root->root_key.objectid == 1038 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1039 ret = btrfs_reloc_clone_csums(inode, start, 1040 cur_alloc_size); 1041 /* 1042 * Only drop cache here, and process as normal. 1043 * 1044 * We must not allow extent_clear_unlock_delalloc() 1045 * at out_unlock label to free meta of this ordered 1046 * extent, as its meta should be freed by 1047 * btrfs_finish_ordered_io(). 1048 * 1049 * So we must continue until @start is increased to 1050 * skip current ordered extent. 1051 */ 1052 if (ret) 1053 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1054 start + ram_size - 1, 0); 1055 } 1056 1057 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1058 1059 /* we're not doing compressed IO, don't unlock the first 1060 * page (which the caller expects to stay locked), don't 1061 * clear any dirty bits and don't set any writeback bits 1062 * 1063 * Do set the Private2 bit so we know this page was properly 1064 * setup for writepage 1065 */ 1066 page_ops = unlock ? PAGE_UNLOCK : 0; 1067 page_ops |= PAGE_SET_PRIVATE2; 1068 1069 extent_clear_unlock_delalloc(inode, start, 1070 start + ram_size - 1, 1071 delalloc_end, locked_page, 1072 EXTENT_LOCKED | EXTENT_DELALLOC, 1073 page_ops); 1074 if (num_bytes < cur_alloc_size) 1075 num_bytes = 0; 1076 else 1077 num_bytes -= cur_alloc_size; 1078 alloc_hint = ins.objectid + ins.offset; 1079 start += cur_alloc_size; 1080 extent_reserved = false; 1081 1082 /* 1083 * btrfs_reloc_clone_csums() error, since start is increased 1084 * extent_clear_unlock_delalloc() at out_unlock label won't 1085 * free metadata of current ordered extent, we're OK to exit. 1086 */ 1087 if (ret) 1088 goto out_unlock; 1089 } 1090 out: 1091 return ret; 1092 1093 out_drop_extent_cache: 1094 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1095 out_reserve: 1096 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1097 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1098 out_unlock: 1099 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1100 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1101 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1102 PAGE_END_WRITEBACK; 1103 /* 1104 * If we reserved an extent for our delalloc range (or a subrange) and 1105 * failed to create the respective ordered extent, then it means that 1106 * when we reserved the extent we decremented the extent's size from 1107 * the data space_info's bytes_may_use counter and incremented the 1108 * space_info's bytes_reserved counter by the same amount. We must make 1109 * sure extent_clear_unlock_delalloc() does not try to decrement again 1110 * the data space_info's bytes_may_use counter, therefore we do not pass 1111 * it the flag EXTENT_CLEAR_DATA_RESV. 1112 */ 1113 if (extent_reserved) { 1114 extent_clear_unlock_delalloc(inode, start, 1115 start + cur_alloc_size, 1116 start + cur_alloc_size, 1117 locked_page, 1118 clear_bits, 1119 page_ops); 1120 start += cur_alloc_size; 1121 if (start >= end) 1122 goto out; 1123 } 1124 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1125 locked_page, 1126 clear_bits | EXTENT_CLEAR_DATA_RESV, 1127 page_ops); 1128 goto out; 1129 } 1130 1131 /* 1132 * work queue call back to started compression on a file and pages 1133 */ 1134 static noinline void async_cow_start(struct btrfs_work *work) 1135 { 1136 struct async_cow *async_cow; 1137 int num_added = 0; 1138 async_cow = container_of(work, struct async_cow, work); 1139 1140 compress_file_range(async_cow->inode, async_cow->locked_page, 1141 async_cow->start, async_cow->end, async_cow, 1142 &num_added); 1143 if (num_added == 0) { 1144 btrfs_add_delayed_iput(async_cow->inode); 1145 async_cow->inode = NULL; 1146 } 1147 } 1148 1149 /* 1150 * work queue call back to submit previously compressed pages 1151 */ 1152 static noinline void async_cow_submit(struct btrfs_work *work) 1153 { 1154 struct btrfs_fs_info *fs_info; 1155 struct async_cow *async_cow; 1156 unsigned long nr_pages; 1157 1158 async_cow = container_of(work, struct async_cow, work); 1159 1160 fs_info = async_cow->fs_info; 1161 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1162 PAGE_SHIFT; 1163 1164 /* atomic_sub_return implies a barrier */ 1165 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1166 5 * SZ_1M) 1167 cond_wake_up_nomb(&fs_info->async_submit_wait); 1168 1169 if (async_cow->inode) 1170 submit_compressed_extents(async_cow->inode, async_cow); 1171 } 1172 1173 static noinline void async_cow_free(struct btrfs_work *work) 1174 { 1175 struct async_cow *async_cow; 1176 async_cow = container_of(work, struct async_cow, work); 1177 if (async_cow->inode) 1178 btrfs_add_delayed_iput(async_cow->inode); 1179 kfree(async_cow); 1180 } 1181 1182 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1183 u64 start, u64 end, int *page_started, 1184 unsigned long *nr_written, 1185 unsigned int write_flags) 1186 { 1187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1188 struct async_cow *async_cow; 1189 unsigned long nr_pages; 1190 u64 cur_end; 1191 1192 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1193 1, 0, NULL); 1194 while (start < end) { 1195 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1196 BUG_ON(!async_cow); /* -ENOMEM */ 1197 async_cow->inode = igrab(inode); 1198 async_cow->fs_info = fs_info; 1199 async_cow->locked_page = locked_page; 1200 async_cow->start = start; 1201 async_cow->write_flags = write_flags; 1202 1203 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1204 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1205 cur_end = end; 1206 else 1207 cur_end = min(end, start + SZ_512K - 1); 1208 1209 async_cow->end = cur_end; 1210 INIT_LIST_HEAD(&async_cow->extents); 1211 1212 btrfs_init_work(&async_cow->work, 1213 btrfs_delalloc_helper, 1214 async_cow_start, async_cow_submit, 1215 async_cow_free); 1216 1217 nr_pages = (cur_end - start + PAGE_SIZE) >> 1218 PAGE_SHIFT; 1219 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1220 1221 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1222 1223 *nr_written += nr_pages; 1224 start = cur_end + 1; 1225 } 1226 *page_started = 1; 1227 return 0; 1228 } 1229 1230 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1231 u64 bytenr, u64 num_bytes) 1232 { 1233 int ret; 1234 struct btrfs_ordered_sum *sums; 1235 LIST_HEAD(list); 1236 1237 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1238 bytenr + num_bytes - 1, &list, 0); 1239 if (ret == 0 && list_empty(&list)) 1240 return 0; 1241 1242 while (!list_empty(&list)) { 1243 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1244 list_del(&sums->list); 1245 kfree(sums); 1246 } 1247 if (ret < 0) 1248 return ret; 1249 return 1; 1250 } 1251 1252 /* 1253 * when nowcow writeback call back. This checks for snapshots or COW copies 1254 * of the extents that exist in the file, and COWs the file as required. 1255 * 1256 * If no cow copies or snapshots exist, we write directly to the existing 1257 * blocks on disk 1258 */ 1259 static noinline int run_delalloc_nocow(struct inode *inode, 1260 struct page *locked_page, 1261 u64 start, u64 end, int *page_started, int force, 1262 unsigned long *nr_written) 1263 { 1264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1265 struct btrfs_root *root = BTRFS_I(inode)->root; 1266 struct extent_buffer *leaf; 1267 struct btrfs_path *path; 1268 struct btrfs_file_extent_item *fi; 1269 struct btrfs_key found_key; 1270 struct extent_map *em; 1271 u64 cow_start; 1272 u64 cur_offset; 1273 u64 extent_end; 1274 u64 extent_offset; 1275 u64 disk_bytenr; 1276 u64 num_bytes; 1277 u64 disk_num_bytes; 1278 u64 ram_bytes; 1279 int extent_type; 1280 int ret; 1281 int type; 1282 int nocow; 1283 int check_prev = 1; 1284 bool nolock; 1285 u64 ino = btrfs_ino(BTRFS_I(inode)); 1286 1287 path = btrfs_alloc_path(); 1288 if (!path) { 1289 extent_clear_unlock_delalloc(inode, start, end, end, 1290 locked_page, 1291 EXTENT_LOCKED | EXTENT_DELALLOC | 1292 EXTENT_DO_ACCOUNTING | 1293 EXTENT_DEFRAG, PAGE_UNLOCK | 1294 PAGE_CLEAR_DIRTY | 1295 PAGE_SET_WRITEBACK | 1296 PAGE_END_WRITEBACK); 1297 return -ENOMEM; 1298 } 1299 1300 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1301 1302 cow_start = (u64)-1; 1303 cur_offset = start; 1304 while (1) { 1305 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1306 cur_offset, 0); 1307 if (ret < 0) 1308 goto error; 1309 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1310 leaf = path->nodes[0]; 1311 btrfs_item_key_to_cpu(leaf, &found_key, 1312 path->slots[0] - 1); 1313 if (found_key.objectid == ino && 1314 found_key.type == BTRFS_EXTENT_DATA_KEY) 1315 path->slots[0]--; 1316 } 1317 check_prev = 0; 1318 next_slot: 1319 leaf = path->nodes[0]; 1320 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1321 ret = btrfs_next_leaf(root, path); 1322 if (ret < 0) { 1323 if (cow_start != (u64)-1) 1324 cur_offset = cow_start; 1325 goto error; 1326 } 1327 if (ret > 0) 1328 break; 1329 leaf = path->nodes[0]; 1330 } 1331 1332 nocow = 0; 1333 disk_bytenr = 0; 1334 num_bytes = 0; 1335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1336 1337 if (found_key.objectid > ino) 1338 break; 1339 if (WARN_ON_ONCE(found_key.objectid < ino) || 1340 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1341 path->slots[0]++; 1342 goto next_slot; 1343 } 1344 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1345 found_key.offset > end) 1346 break; 1347 1348 if (found_key.offset > cur_offset) { 1349 extent_end = found_key.offset; 1350 extent_type = 0; 1351 goto out_check; 1352 } 1353 1354 fi = btrfs_item_ptr(leaf, path->slots[0], 1355 struct btrfs_file_extent_item); 1356 extent_type = btrfs_file_extent_type(leaf, fi); 1357 1358 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1359 if (extent_type == BTRFS_FILE_EXTENT_REG || 1360 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1361 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1362 extent_offset = btrfs_file_extent_offset(leaf, fi); 1363 extent_end = found_key.offset + 1364 btrfs_file_extent_num_bytes(leaf, fi); 1365 disk_num_bytes = 1366 btrfs_file_extent_disk_num_bytes(leaf, fi); 1367 if (extent_end <= start) { 1368 path->slots[0]++; 1369 goto next_slot; 1370 } 1371 if (disk_bytenr == 0) 1372 goto out_check; 1373 if (btrfs_file_extent_compression(leaf, fi) || 1374 btrfs_file_extent_encryption(leaf, fi) || 1375 btrfs_file_extent_other_encoding(leaf, fi)) 1376 goto out_check; 1377 /* 1378 * Do the same check as in btrfs_cross_ref_exist but 1379 * without the unnecessary search. 1380 */ 1381 if (!nolock && 1382 btrfs_file_extent_generation(leaf, fi) <= 1383 btrfs_root_last_snapshot(&root->root_item)) 1384 goto out_check; 1385 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1386 goto out_check; 1387 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1388 goto out_check; 1389 ret = btrfs_cross_ref_exist(root, ino, 1390 found_key.offset - 1391 extent_offset, disk_bytenr); 1392 if (ret) { 1393 /* 1394 * ret could be -EIO if the above fails to read 1395 * metadata. 1396 */ 1397 if (ret < 0) { 1398 if (cow_start != (u64)-1) 1399 cur_offset = cow_start; 1400 goto error; 1401 } 1402 1403 WARN_ON_ONCE(nolock); 1404 goto out_check; 1405 } 1406 disk_bytenr += extent_offset; 1407 disk_bytenr += cur_offset - found_key.offset; 1408 num_bytes = min(end + 1, extent_end) - cur_offset; 1409 /* 1410 * if there are pending snapshots for this root, 1411 * we fall into common COW way. 1412 */ 1413 if (!nolock && atomic_read(&root->snapshot_force_cow)) 1414 goto out_check; 1415 /* 1416 * force cow if csum exists in the range. 1417 * this ensure that csum for a given extent are 1418 * either valid or do not exist. 1419 */ 1420 ret = csum_exist_in_range(fs_info, disk_bytenr, 1421 num_bytes); 1422 if (ret) { 1423 /* 1424 * ret could be -EIO if the above fails to read 1425 * metadata. 1426 */ 1427 if (ret < 0) { 1428 if (cow_start != (u64)-1) 1429 cur_offset = cow_start; 1430 goto error; 1431 } 1432 WARN_ON_ONCE(nolock); 1433 goto out_check; 1434 } 1435 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1436 goto out_check; 1437 nocow = 1; 1438 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1439 extent_end = found_key.offset + 1440 btrfs_file_extent_ram_bytes(leaf, fi); 1441 extent_end = ALIGN(extent_end, 1442 fs_info->sectorsize); 1443 } else { 1444 BUG_ON(1); 1445 } 1446 out_check: 1447 if (extent_end <= start) { 1448 path->slots[0]++; 1449 if (nocow) 1450 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1451 goto next_slot; 1452 } 1453 if (!nocow) { 1454 if (cow_start == (u64)-1) 1455 cow_start = cur_offset; 1456 cur_offset = extent_end; 1457 if (cur_offset > end) 1458 break; 1459 path->slots[0]++; 1460 goto next_slot; 1461 } 1462 1463 btrfs_release_path(path); 1464 if (cow_start != (u64)-1) { 1465 ret = cow_file_range(inode, locked_page, 1466 cow_start, found_key.offset - 1, 1467 end, page_started, nr_written, 1, 1468 NULL); 1469 if (ret) { 1470 if (nocow) 1471 btrfs_dec_nocow_writers(fs_info, 1472 disk_bytenr); 1473 goto error; 1474 } 1475 cow_start = (u64)-1; 1476 } 1477 1478 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1479 u64 orig_start = found_key.offset - extent_offset; 1480 1481 em = create_io_em(inode, cur_offset, num_bytes, 1482 orig_start, 1483 disk_bytenr, /* block_start */ 1484 num_bytes, /* block_len */ 1485 disk_num_bytes, /* orig_block_len */ 1486 ram_bytes, BTRFS_COMPRESS_NONE, 1487 BTRFS_ORDERED_PREALLOC); 1488 if (IS_ERR(em)) { 1489 if (nocow) 1490 btrfs_dec_nocow_writers(fs_info, 1491 disk_bytenr); 1492 ret = PTR_ERR(em); 1493 goto error; 1494 } 1495 free_extent_map(em); 1496 } 1497 1498 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1499 type = BTRFS_ORDERED_PREALLOC; 1500 } else { 1501 type = BTRFS_ORDERED_NOCOW; 1502 } 1503 1504 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1505 num_bytes, num_bytes, type); 1506 if (nocow) 1507 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1508 BUG_ON(ret); /* -ENOMEM */ 1509 1510 if (root->root_key.objectid == 1511 BTRFS_DATA_RELOC_TREE_OBJECTID) 1512 /* 1513 * Error handled later, as we must prevent 1514 * extent_clear_unlock_delalloc() in error handler 1515 * from freeing metadata of created ordered extent. 1516 */ 1517 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1518 num_bytes); 1519 1520 extent_clear_unlock_delalloc(inode, cur_offset, 1521 cur_offset + num_bytes - 1, end, 1522 locked_page, EXTENT_LOCKED | 1523 EXTENT_DELALLOC | 1524 EXTENT_CLEAR_DATA_RESV, 1525 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1526 1527 cur_offset = extent_end; 1528 1529 /* 1530 * btrfs_reloc_clone_csums() error, now we're OK to call error 1531 * handler, as metadata for created ordered extent will only 1532 * be freed by btrfs_finish_ordered_io(). 1533 */ 1534 if (ret) 1535 goto error; 1536 if (cur_offset > end) 1537 break; 1538 } 1539 btrfs_release_path(path); 1540 1541 if (cur_offset <= end && cow_start == (u64)-1) 1542 cow_start = cur_offset; 1543 1544 if (cow_start != (u64)-1) { 1545 cur_offset = end; 1546 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1547 page_started, nr_written, 1, NULL); 1548 if (ret) 1549 goto error; 1550 } 1551 1552 error: 1553 if (ret && cur_offset < end) 1554 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1555 locked_page, EXTENT_LOCKED | 1556 EXTENT_DELALLOC | EXTENT_DEFRAG | 1557 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1558 PAGE_CLEAR_DIRTY | 1559 PAGE_SET_WRITEBACK | 1560 PAGE_END_WRITEBACK); 1561 btrfs_free_path(path); 1562 return ret; 1563 } 1564 1565 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1566 { 1567 1568 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1569 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1570 return 0; 1571 1572 /* 1573 * @defrag_bytes is a hint value, no spinlock held here, 1574 * if is not zero, it means the file is defragging. 1575 * Force cow if given extent needs to be defragged. 1576 */ 1577 if (BTRFS_I(inode)->defrag_bytes && 1578 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1579 EXTENT_DEFRAG, 0, NULL)) 1580 return 1; 1581 1582 return 0; 1583 } 1584 1585 /* 1586 * Function to process delayed allocation (create CoW) for ranges which are 1587 * being touched for the first time. 1588 */ 1589 int btrfs_run_delalloc_range(void *private_data, struct page *locked_page, 1590 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1591 struct writeback_control *wbc) 1592 { 1593 struct inode *inode = private_data; 1594 int ret; 1595 int force_cow = need_force_cow(inode, start, end); 1596 unsigned int write_flags = wbc_to_write_flags(wbc); 1597 1598 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1599 ret = run_delalloc_nocow(inode, locked_page, start, end, 1600 page_started, 1, nr_written); 1601 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1602 ret = run_delalloc_nocow(inode, locked_page, start, end, 1603 page_started, 0, nr_written); 1604 } else if (!inode_need_compress(inode, start, end)) { 1605 ret = cow_file_range(inode, locked_page, start, end, end, 1606 page_started, nr_written, 1, NULL); 1607 } else { 1608 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1609 &BTRFS_I(inode)->runtime_flags); 1610 ret = cow_file_range_async(inode, locked_page, start, end, 1611 page_started, nr_written, 1612 write_flags); 1613 } 1614 if (ret) 1615 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1616 end - start + 1); 1617 return ret; 1618 } 1619 1620 void btrfs_split_delalloc_extent(struct inode *inode, 1621 struct extent_state *orig, u64 split) 1622 { 1623 u64 size; 1624 1625 /* not delalloc, ignore it */ 1626 if (!(orig->state & EXTENT_DELALLOC)) 1627 return; 1628 1629 size = orig->end - orig->start + 1; 1630 if (size > BTRFS_MAX_EXTENT_SIZE) { 1631 u32 num_extents; 1632 u64 new_size; 1633 1634 /* 1635 * See the explanation in btrfs_merge_delalloc_extent, the same 1636 * applies here, just in reverse. 1637 */ 1638 new_size = orig->end - split + 1; 1639 num_extents = count_max_extents(new_size); 1640 new_size = split - orig->start; 1641 num_extents += count_max_extents(new_size); 1642 if (count_max_extents(size) >= num_extents) 1643 return; 1644 } 1645 1646 spin_lock(&BTRFS_I(inode)->lock); 1647 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1648 spin_unlock(&BTRFS_I(inode)->lock); 1649 } 1650 1651 /* 1652 * Handle merged delayed allocation extents so we can keep track of new extents 1653 * that are just merged onto old extents, such as when we are doing sequential 1654 * writes, so we can properly account for the metadata space we'll need. 1655 */ 1656 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1657 struct extent_state *other) 1658 { 1659 u64 new_size, old_size; 1660 u32 num_extents; 1661 1662 /* not delalloc, ignore it */ 1663 if (!(other->state & EXTENT_DELALLOC)) 1664 return; 1665 1666 if (new->start > other->start) 1667 new_size = new->end - other->start + 1; 1668 else 1669 new_size = other->end - new->start + 1; 1670 1671 /* we're not bigger than the max, unreserve the space and go */ 1672 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1673 spin_lock(&BTRFS_I(inode)->lock); 1674 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1675 spin_unlock(&BTRFS_I(inode)->lock); 1676 return; 1677 } 1678 1679 /* 1680 * We have to add up either side to figure out how many extents were 1681 * accounted for before we merged into one big extent. If the number of 1682 * extents we accounted for is <= the amount we need for the new range 1683 * then we can return, otherwise drop. Think of it like this 1684 * 1685 * [ 4k][MAX_SIZE] 1686 * 1687 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1688 * need 2 outstanding extents, on one side we have 1 and the other side 1689 * we have 1 so they are == and we can return. But in this case 1690 * 1691 * [MAX_SIZE+4k][MAX_SIZE+4k] 1692 * 1693 * Each range on their own accounts for 2 extents, but merged together 1694 * they are only 3 extents worth of accounting, so we need to drop in 1695 * this case. 1696 */ 1697 old_size = other->end - other->start + 1; 1698 num_extents = count_max_extents(old_size); 1699 old_size = new->end - new->start + 1; 1700 num_extents += count_max_extents(old_size); 1701 if (count_max_extents(new_size) >= num_extents) 1702 return; 1703 1704 spin_lock(&BTRFS_I(inode)->lock); 1705 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1706 spin_unlock(&BTRFS_I(inode)->lock); 1707 } 1708 1709 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1710 struct inode *inode) 1711 { 1712 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1713 1714 spin_lock(&root->delalloc_lock); 1715 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1716 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1717 &root->delalloc_inodes); 1718 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1719 &BTRFS_I(inode)->runtime_flags); 1720 root->nr_delalloc_inodes++; 1721 if (root->nr_delalloc_inodes == 1) { 1722 spin_lock(&fs_info->delalloc_root_lock); 1723 BUG_ON(!list_empty(&root->delalloc_root)); 1724 list_add_tail(&root->delalloc_root, 1725 &fs_info->delalloc_roots); 1726 spin_unlock(&fs_info->delalloc_root_lock); 1727 } 1728 } 1729 spin_unlock(&root->delalloc_lock); 1730 } 1731 1732 1733 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1734 struct btrfs_inode *inode) 1735 { 1736 struct btrfs_fs_info *fs_info = root->fs_info; 1737 1738 if (!list_empty(&inode->delalloc_inodes)) { 1739 list_del_init(&inode->delalloc_inodes); 1740 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1741 &inode->runtime_flags); 1742 root->nr_delalloc_inodes--; 1743 if (!root->nr_delalloc_inodes) { 1744 ASSERT(list_empty(&root->delalloc_inodes)); 1745 spin_lock(&fs_info->delalloc_root_lock); 1746 BUG_ON(list_empty(&root->delalloc_root)); 1747 list_del_init(&root->delalloc_root); 1748 spin_unlock(&fs_info->delalloc_root_lock); 1749 } 1750 } 1751 } 1752 1753 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1754 struct btrfs_inode *inode) 1755 { 1756 spin_lock(&root->delalloc_lock); 1757 __btrfs_del_delalloc_inode(root, inode); 1758 spin_unlock(&root->delalloc_lock); 1759 } 1760 1761 /* 1762 * Properly track delayed allocation bytes in the inode and to maintain the 1763 * list of inodes that have pending delalloc work to be done. 1764 */ 1765 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1766 unsigned *bits) 1767 { 1768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1769 1770 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1771 WARN_ON(1); 1772 /* 1773 * set_bit and clear bit hooks normally require _irqsave/restore 1774 * but in this case, we are only testing for the DELALLOC 1775 * bit, which is only set or cleared with irqs on 1776 */ 1777 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1778 struct btrfs_root *root = BTRFS_I(inode)->root; 1779 u64 len = state->end + 1 - state->start; 1780 u32 num_extents = count_max_extents(len); 1781 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1782 1783 spin_lock(&BTRFS_I(inode)->lock); 1784 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1785 spin_unlock(&BTRFS_I(inode)->lock); 1786 1787 /* For sanity tests */ 1788 if (btrfs_is_testing(fs_info)) 1789 return; 1790 1791 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1792 fs_info->delalloc_batch); 1793 spin_lock(&BTRFS_I(inode)->lock); 1794 BTRFS_I(inode)->delalloc_bytes += len; 1795 if (*bits & EXTENT_DEFRAG) 1796 BTRFS_I(inode)->defrag_bytes += len; 1797 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1798 &BTRFS_I(inode)->runtime_flags)) 1799 btrfs_add_delalloc_inodes(root, inode); 1800 spin_unlock(&BTRFS_I(inode)->lock); 1801 } 1802 1803 if (!(state->state & EXTENT_DELALLOC_NEW) && 1804 (*bits & EXTENT_DELALLOC_NEW)) { 1805 spin_lock(&BTRFS_I(inode)->lock); 1806 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1807 state->start; 1808 spin_unlock(&BTRFS_I(inode)->lock); 1809 } 1810 } 1811 1812 /* 1813 * Once a range is no longer delalloc this function ensures that proper 1814 * accounting happens. 1815 */ 1816 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 1817 struct extent_state *state, unsigned *bits) 1818 { 1819 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1820 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 1821 u64 len = state->end + 1 - state->start; 1822 u32 num_extents = count_max_extents(len); 1823 1824 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1825 spin_lock(&inode->lock); 1826 inode->defrag_bytes -= len; 1827 spin_unlock(&inode->lock); 1828 } 1829 1830 /* 1831 * set_bit and clear bit hooks normally require _irqsave/restore 1832 * but in this case, we are only testing for the DELALLOC 1833 * bit, which is only set or cleared with irqs on 1834 */ 1835 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1836 struct btrfs_root *root = inode->root; 1837 bool do_list = !btrfs_is_free_space_inode(inode); 1838 1839 spin_lock(&inode->lock); 1840 btrfs_mod_outstanding_extents(inode, -num_extents); 1841 spin_unlock(&inode->lock); 1842 1843 /* 1844 * We don't reserve metadata space for space cache inodes so we 1845 * don't need to call delalloc_release_metadata if there is an 1846 * error. 1847 */ 1848 if (*bits & EXTENT_CLEAR_META_RESV && 1849 root != fs_info->tree_root) 1850 btrfs_delalloc_release_metadata(inode, len, false); 1851 1852 /* For sanity tests. */ 1853 if (btrfs_is_testing(fs_info)) 1854 return; 1855 1856 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1857 do_list && !(state->state & EXTENT_NORESERVE) && 1858 (*bits & EXTENT_CLEAR_DATA_RESV)) 1859 btrfs_free_reserved_data_space_noquota( 1860 &inode->vfs_inode, 1861 state->start, len); 1862 1863 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1864 fs_info->delalloc_batch); 1865 spin_lock(&inode->lock); 1866 inode->delalloc_bytes -= len; 1867 if (do_list && inode->delalloc_bytes == 0 && 1868 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1869 &inode->runtime_flags)) 1870 btrfs_del_delalloc_inode(root, inode); 1871 spin_unlock(&inode->lock); 1872 } 1873 1874 if ((state->state & EXTENT_DELALLOC_NEW) && 1875 (*bits & EXTENT_DELALLOC_NEW)) { 1876 spin_lock(&inode->lock); 1877 ASSERT(inode->new_delalloc_bytes >= len); 1878 inode->new_delalloc_bytes -= len; 1879 spin_unlock(&inode->lock); 1880 } 1881 } 1882 1883 /* 1884 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 1885 * in a chunk's stripe. This function ensures that bios do not span a 1886 * stripe/chunk 1887 * 1888 * @page - The page we are about to add to the bio 1889 * @size - size we want to add to the bio 1890 * @bio - bio we want to ensure is smaller than a stripe 1891 * @bio_flags - flags of the bio 1892 * 1893 * return 1 if page cannot be added to the bio 1894 * return 0 if page can be added to the bio 1895 * return error otherwise 1896 */ 1897 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 1898 unsigned long bio_flags) 1899 { 1900 struct inode *inode = page->mapping->host; 1901 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1902 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1903 u64 length = 0; 1904 u64 map_length; 1905 int ret; 1906 1907 if (bio_flags & EXTENT_BIO_COMPRESSED) 1908 return 0; 1909 1910 length = bio->bi_iter.bi_size; 1911 map_length = length; 1912 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1913 NULL, 0); 1914 if (ret < 0) 1915 return ret; 1916 if (map_length < length + size) 1917 return 1; 1918 return 0; 1919 } 1920 1921 /* 1922 * in order to insert checksums into the metadata in large chunks, 1923 * we wait until bio submission time. All the pages in the bio are 1924 * checksummed and sums are attached onto the ordered extent record. 1925 * 1926 * At IO completion time the cums attached on the ordered extent record 1927 * are inserted into the btree 1928 */ 1929 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 1930 u64 bio_offset) 1931 { 1932 struct inode *inode = private_data; 1933 blk_status_t ret = 0; 1934 1935 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1936 BUG_ON(ret); /* -ENOMEM */ 1937 return 0; 1938 } 1939 1940 /* 1941 * extent_io.c submission hook. This does the right thing for csum calculation 1942 * on write, or reading the csums from the tree before a read. 1943 * 1944 * Rules about async/sync submit, 1945 * a) read: sync submit 1946 * 1947 * b) write without checksum: sync submit 1948 * 1949 * c) write with checksum: 1950 * c-1) if bio is issued by fsync: sync submit 1951 * (sync_writers != 0) 1952 * 1953 * c-2) if root is reloc root: sync submit 1954 * (only in case of buffered IO) 1955 * 1956 * c-3) otherwise: async submit 1957 */ 1958 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1959 int mirror_num, unsigned long bio_flags, 1960 u64 bio_offset) 1961 { 1962 struct inode *inode = private_data; 1963 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1964 struct btrfs_root *root = BTRFS_I(inode)->root; 1965 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1966 blk_status_t ret = 0; 1967 int skip_sum; 1968 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1969 1970 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1971 1972 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1973 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1974 1975 if (bio_op(bio) != REQ_OP_WRITE) { 1976 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1977 if (ret) 1978 goto out; 1979 1980 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1981 ret = btrfs_submit_compressed_read(inode, bio, 1982 mirror_num, 1983 bio_flags); 1984 goto out; 1985 } else if (!skip_sum) { 1986 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 1987 if (ret) 1988 goto out; 1989 } 1990 goto mapit; 1991 } else if (async && !skip_sum) { 1992 /* csum items have already been cloned */ 1993 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1994 goto mapit; 1995 /* we're doing a write, do the async checksumming */ 1996 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 1997 bio_offset, inode, 1998 btrfs_submit_bio_start); 1999 goto out; 2000 } else if (!skip_sum) { 2001 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2002 if (ret) 2003 goto out; 2004 } 2005 2006 mapit: 2007 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2008 2009 out: 2010 if (ret) { 2011 bio->bi_status = ret; 2012 bio_endio(bio); 2013 } 2014 return ret; 2015 } 2016 2017 /* 2018 * given a list of ordered sums record them in the inode. This happens 2019 * at IO completion time based on sums calculated at bio submission time. 2020 */ 2021 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2022 struct inode *inode, struct list_head *list) 2023 { 2024 struct btrfs_ordered_sum *sum; 2025 int ret; 2026 2027 list_for_each_entry(sum, list, list) { 2028 trans->adding_csums = true; 2029 ret = btrfs_csum_file_blocks(trans, 2030 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2031 trans->adding_csums = false; 2032 if (ret) 2033 return ret; 2034 } 2035 return 0; 2036 } 2037 2038 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2039 unsigned int extra_bits, 2040 struct extent_state **cached_state, int dedupe) 2041 { 2042 WARN_ON(PAGE_ALIGNED(end)); 2043 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2044 extra_bits, cached_state); 2045 } 2046 2047 /* see btrfs_writepage_start_hook for details on why this is required */ 2048 struct btrfs_writepage_fixup { 2049 struct page *page; 2050 struct btrfs_work work; 2051 }; 2052 2053 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2054 { 2055 struct btrfs_writepage_fixup *fixup; 2056 struct btrfs_ordered_extent *ordered; 2057 struct extent_state *cached_state = NULL; 2058 struct extent_changeset *data_reserved = NULL; 2059 struct page *page; 2060 struct inode *inode; 2061 u64 page_start; 2062 u64 page_end; 2063 int ret; 2064 2065 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2066 page = fixup->page; 2067 again: 2068 lock_page(page); 2069 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2070 ClearPageChecked(page); 2071 goto out_page; 2072 } 2073 2074 inode = page->mapping->host; 2075 page_start = page_offset(page); 2076 page_end = page_offset(page) + PAGE_SIZE - 1; 2077 2078 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2079 &cached_state); 2080 2081 /* already ordered? We're done */ 2082 if (PagePrivate2(page)) 2083 goto out; 2084 2085 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2086 PAGE_SIZE); 2087 if (ordered) { 2088 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2089 page_end, &cached_state); 2090 unlock_page(page); 2091 btrfs_start_ordered_extent(inode, ordered, 1); 2092 btrfs_put_ordered_extent(ordered); 2093 goto again; 2094 } 2095 2096 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2097 PAGE_SIZE); 2098 if (ret) { 2099 mapping_set_error(page->mapping, ret); 2100 end_extent_writepage(page, ret, page_start, page_end); 2101 ClearPageChecked(page); 2102 goto out; 2103 } 2104 2105 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2106 &cached_state, 0); 2107 if (ret) { 2108 mapping_set_error(page->mapping, ret); 2109 end_extent_writepage(page, ret, page_start, page_end); 2110 ClearPageChecked(page); 2111 goto out; 2112 } 2113 2114 ClearPageChecked(page); 2115 set_page_dirty(page); 2116 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false); 2117 out: 2118 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2119 &cached_state); 2120 out_page: 2121 unlock_page(page); 2122 put_page(page); 2123 kfree(fixup); 2124 extent_changeset_free(data_reserved); 2125 } 2126 2127 /* 2128 * There are a few paths in the higher layers of the kernel that directly 2129 * set the page dirty bit without asking the filesystem if it is a 2130 * good idea. This causes problems because we want to make sure COW 2131 * properly happens and the data=ordered rules are followed. 2132 * 2133 * In our case any range that doesn't have the ORDERED bit set 2134 * hasn't been properly setup for IO. We kick off an async process 2135 * to fix it up. The async helper will wait for ordered extents, set 2136 * the delalloc bit and make it safe to write the page. 2137 */ 2138 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2139 { 2140 struct inode *inode = page->mapping->host; 2141 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2142 struct btrfs_writepage_fixup *fixup; 2143 2144 /* this page is properly in the ordered list */ 2145 if (TestClearPagePrivate2(page)) 2146 return 0; 2147 2148 if (PageChecked(page)) 2149 return -EAGAIN; 2150 2151 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2152 if (!fixup) 2153 return -EAGAIN; 2154 2155 SetPageChecked(page); 2156 get_page(page); 2157 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2158 btrfs_writepage_fixup_worker, NULL, NULL); 2159 fixup->page = page; 2160 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2161 return -EBUSY; 2162 } 2163 2164 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2165 struct inode *inode, u64 file_pos, 2166 u64 disk_bytenr, u64 disk_num_bytes, 2167 u64 num_bytes, u64 ram_bytes, 2168 u8 compression, u8 encryption, 2169 u16 other_encoding, int extent_type) 2170 { 2171 struct btrfs_root *root = BTRFS_I(inode)->root; 2172 struct btrfs_file_extent_item *fi; 2173 struct btrfs_path *path; 2174 struct extent_buffer *leaf; 2175 struct btrfs_key ins; 2176 u64 qg_released; 2177 int extent_inserted = 0; 2178 int ret; 2179 2180 path = btrfs_alloc_path(); 2181 if (!path) 2182 return -ENOMEM; 2183 2184 /* 2185 * we may be replacing one extent in the tree with another. 2186 * The new extent is pinned in the extent map, and we don't want 2187 * to drop it from the cache until it is completely in the btree. 2188 * 2189 * So, tell btrfs_drop_extents to leave this extent in the cache. 2190 * the caller is expected to unpin it and allow it to be merged 2191 * with the others. 2192 */ 2193 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2194 file_pos + num_bytes, NULL, 0, 2195 1, sizeof(*fi), &extent_inserted); 2196 if (ret) 2197 goto out; 2198 2199 if (!extent_inserted) { 2200 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2201 ins.offset = file_pos; 2202 ins.type = BTRFS_EXTENT_DATA_KEY; 2203 2204 path->leave_spinning = 1; 2205 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2206 sizeof(*fi)); 2207 if (ret) 2208 goto out; 2209 } 2210 leaf = path->nodes[0]; 2211 fi = btrfs_item_ptr(leaf, path->slots[0], 2212 struct btrfs_file_extent_item); 2213 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2214 btrfs_set_file_extent_type(leaf, fi, extent_type); 2215 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2216 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2217 btrfs_set_file_extent_offset(leaf, fi, 0); 2218 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2219 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2220 btrfs_set_file_extent_compression(leaf, fi, compression); 2221 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2222 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2223 2224 btrfs_mark_buffer_dirty(leaf); 2225 btrfs_release_path(path); 2226 2227 inode_add_bytes(inode, num_bytes); 2228 2229 ins.objectid = disk_bytenr; 2230 ins.offset = disk_num_bytes; 2231 ins.type = BTRFS_EXTENT_ITEM_KEY; 2232 2233 /* 2234 * Release the reserved range from inode dirty range map, as it is 2235 * already moved into delayed_ref_head 2236 */ 2237 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2238 if (ret < 0) 2239 goto out; 2240 qg_released = ret; 2241 ret = btrfs_alloc_reserved_file_extent(trans, root, 2242 btrfs_ino(BTRFS_I(inode)), 2243 file_pos, qg_released, &ins); 2244 out: 2245 btrfs_free_path(path); 2246 2247 return ret; 2248 } 2249 2250 /* snapshot-aware defrag */ 2251 struct sa_defrag_extent_backref { 2252 struct rb_node node; 2253 struct old_sa_defrag_extent *old; 2254 u64 root_id; 2255 u64 inum; 2256 u64 file_pos; 2257 u64 extent_offset; 2258 u64 num_bytes; 2259 u64 generation; 2260 }; 2261 2262 struct old_sa_defrag_extent { 2263 struct list_head list; 2264 struct new_sa_defrag_extent *new; 2265 2266 u64 extent_offset; 2267 u64 bytenr; 2268 u64 offset; 2269 u64 len; 2270 int count; 2271 }; 2272 2273 struct new_sa_defrag_extent { 2274 struct rb_root root; 2275 struct list_head head; 2276 struct btrfs_path *path; 2277 struct inode *inode; 2278 u64 file_pos; 2279 u64 len; 2280 u64 bytenr; 2281 u64 disk_len; 2282 u8 compress_type; 2283 }; 2284 2285 static int backref_comp(struct sa_defrag_extent_backref *b1, 2286 struct sa_defrag_extent_backref *b2) 2287 { 2288 if (b1->root_id < b2->root_id) 2289 return -1; 2290 else if (b1->root_id > b2->root_id) 2291 return 1; 2292 2293 if (b1->inum < b2->inum) 2294 return -1; 2295 else if (b1->inum > b2->inum) 2296 return 1; 2297 2298 if (b1->file_pos < b2->file_pos) 2299 return -1; 2300 else if (b1->file_pos > b2->file_pos) 2301 return 1; 2302 2303 /* 2304 * [------------------------------] ===> (a range of space) 2305 * |<--->| |<---->| =============> (fs/file tree A) 2306 * |<---------------------------->| ===> (fs/file tree B) 2307 * 2308 * A range of space can refer to two file extents in one tree while 2309 * refer to only one file extent in another tree. 2310 * 2311 * So we may process a disk offset more than one time(two extents in A) 2312 * and locate at the same extent(one extent in B), then insert two same 2313 * backrefs(both refer to the extent in B). 2314 */ 2315 return 0; 2316 } 2317 2318 static void backref_insert(struct rb_root *root, 2319 struct sa_defrag_extent_backref *backref) 2320 { 2321 struct rb_node **p = &root->rb_node; 2322 struct rb_node *parent = NULL; 2323 struct sa_defrag_extent_backref *entry; 2324 int ret; 2325 2326 while (*p) { 2327 parent = *p; 2328 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2329 2330 ret = backref_comp(backref, entry); 2331 if (ret < 0) 2332 p = &(*p)->rb_left; 2333 else 2334 p = &(*p)->rb_right; 2335 } 2336 2337 rb_link_node(&backref->node, parent, p); 2338 rb_insert_color(&backref->node, root); 2339 } 2340 2341 /* 2342 * Note the backref might has changed, and in this case we just return 0. 2343 */ 2344 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2345 void *ctx) 2346 { 2347 struct btrfs_file_extent_item *extent; 2348 struct old_sa_defrag_extent *old = ctx; 2349 struct new_sa_defrag_extent *new = old->new; 2350 struct btrfs_path *path = new->path; 2351 struct btrfs_key key; 2352 struct btrfs_root *root; 2353 struct sa_defrag_extent_backref *backref; 2354 struct extent_buffer *leaf; 2355 struct inode *inode = new->inode; 2356 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2357 int slot; 2358 int ret; 2359 u64 extent_offset; 2360 u64 num_bytes; 2361 2362 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2363 inum == btrfs_ino(BTRFS_I(inode))) 2364 return 0; 2365 2366 key.objectid = root_id; 2367 key.type = BTRFS_ROOT_ITEM_KEY; 2368 key.offset = (u64)-1; 2369 2370 root = btrfs_read_fs_root_no_name(fs_info, &key); 2371 if (IS_ERR(root)) { 2372 if (PTR_ERR(root) == -ENOENT) 2373 return 0; 2374 WARN_ON(1); 2375 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2376 inum, offset, root_id); 2377 return PTR_ERR(root); 2378 } 2379 2380 key.objectid = inum; 2381 key.type = BTRFS_EXTENT_DATA_KEY; 2382 if (offset > (u64)-1 << 32) 2383 key.offset = 0; 2384 else 2385 key.offset = offset; 2386 2387 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2388 if (WARN_ON(ret < 0)) 2389 return ret; 2390 ret = 0; 2391 2392 while (1) { 2393 cond_resched(); 2394 2395 leaf = path->nodes[0]; 2396 slot = path->slots[0]; 2397 2398 if (slot >= btrfs_header_nritems(leaf)) { 2399 ret = btrfs_next_leaf(root, path); 2400 if (ret < 0) { 2401 goto out; 2402 } else if (ret > 0) { 2403 ret = 0; 2404 goto out; 2405 } 2406 continue; 2407 } 2408 2409 path->slots[0]++; 2410 2411 btrfs_item_key_to_cpu(leaf, &key, slot); 2412 2413 if (key.objectid > inum) 2414 goto out; 2415 2416 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2417 continue; 2418 2419 extent = btrfs_item_ptr(leaf, slot, 2420 struct btrfs_file_extent_item); 2421 2422 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2423 continue; 2424 2425 /* 2426 * 'offset' refers to the exact key.offset, 2427 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2428 * (key.offset - extent_offset). 2429 */ 2430 if (key.offset != offset) 2431 continue; 2432 2433 extent_offset = btrfs_file_extent_offset(leaf, extent); 2434 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2435 2436 if (extent_offset >= old->extent_offset + old->offset + 2437 old->len || extent_offset + num_bytes <= 2438 old->extent_offset + old->offset) 2439 continue; 2440 break; 2441 } 2442 2443 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2444 if (!backref) { 2445 ret = -ENOENT; 2446 goto out; 2447 } 2448 2449 backref->root_id = root_id; 2450 backref->inum = inum; 2451 backref->file_pos = offset; 2452 backref->num_bytes = num_bytes; 2453 backref->extent_offset = extent_offset; 2454 backref->generation = btrfs_file_extent_generation(leaf, extent); 2455 backref->old = old; 2456 backref_insert(&new->root, backref); 2457 old->count++; 2458 out: 2459 btrfs_release_path(path); 2460 WARN_ON(ret); 2461 return ret; 2462 } 2463 2464 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2465 struct new_sa_defrag_extent *new) 2466 { 2467 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2468 struct old_sa_defrag_extent *old, *tmp; 2469 int ret; 2470 2471 new->path = path; 2472 2473 list_for_each_entry_safe(old, tmp, &new->head, list) { 2474 ret = iterate_inodes_from_logical(old->bytenr + 2475 old->extent_offset, fs_info, 2476 path, record_one_backref, 2477 old, false); 2478 if (ret < 0 && ret != -ENOENT) 2479 return false; 2480 2481 /* no backref to be processed for this extent */ 2482 if (!old->count) { 2483 list_del(&old->list); 2484 kfree(old); 2485 } 2486 } 2487 2488 if (list_empty(&new->head)) 2489 return false; 2490 2491 return true; 2492 } 2493 2494 static int relink_is_mergable(struct extent_buffer *leaf, 2495 struct btrfs_file_extent_item *fi, 2496 struct new_sa_defrag_extent *new) 2497 { 2498 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2499 return 0; 2500 2501 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2502 return 0; 2503 2504 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2505 return 0; 2506 2507 if (btrfs_file_extent_encryption(leaf, fi) || 2508 btrfs_file_extent_other_encoding(leaf, fi)) 2509 return 0; 2510 2511 return 1; 2512 } 2513 2514 /* 2515 * Note the backref might has changed, and in this case we just return 0. 2516 */ 2517 static noinline int relink_extent_backref(struct btrfs_path *path, 2518 struct sa_defrag_extent_backref *prev, 2519 struct sa_defrag_extent_backref *backref) 2520 { 2521 struct btrfs_file_extent_item *extent; 2522 struct btrfs_file_extent_item *item; 2523 struct btrfs_ordered_extent *ordered; 2524 struct btrfs_trans_handle *trans; 2525 struct btrfs_root *root; 2526 struct btrfs_key key; 2527 struct extent_buffer *leaf; 2528 struct old_sa_defrag_extent *old = backref->old; 2529 struct new_sa_defrag_extent *new = old->new; 2530 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2531 struct inode *inode; 2532 struct extent_state *cached = NULL; 2533 int ret = 0; 2534 u64 start; 2535 u64 len; 2536 u64 lock_start; 2537 u64 lock_end; 2538 bool merge = false; 2539 int index; 2540 2541 if (prev && prev->root_id == backref->root_id && 2542 prev->inum == backref->inum && 2543 prev->file_pos + prev->num_bytes == backref->file_pos) 2544 merge = true; 2545 2546 /* step 1: get root */ 2547 key.objectid = backref->root_id; 2548 key.type = BTRFS_ROOT_ITEM_KEY; 2549 key.offset = (u64)-1; 2550 2551 index = srcu_read_lock(&fs_info->subvol_srcu); 2552 2553 root = btrfs_read_fs_root_no_name(fs_info, &key); 2554 if (IS_ERR(root)) { 2555 srcu_read_unlock(&fs_info->subvol_srcu, index); 2556 if (PTR_ERR(root) == -ENOENT) 2557 return 0; 2558 return PTR_ERR(root); 2559 } 2560 2561 if (btrfs_root_readonly(root)) { 2562 srcu_read_unlock(&fs_info->subvol_srcu, index); 2563 return 0; 2564 } 2565 2566 /* step 2: get inode */ 2567 key.objectid = backref->inum; 2568 key.type = BTRFS_INODE_ITEM_KEY; 2569 key.offset = 0; 2570 2571 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2572 if (IS_ERR(inode)) { 2573 srcu_read_unlock(&fs_info->subvol_srcu, index); 2574 return 0; 2575 } 2576 2577 srcu_read_unlock(&fs_info->subvol_srcu, index); 2578 2579 /* step 3: relink backref */ 2580 lock_start = backref->file_pos; 2581 lock_end = backref->file_pos + backref->num_bytes - 1; 2582 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2583 &cached); 2584 2585 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2586 if (ordered) { 2587 btrfs_put_ordered_extent(ordered); 2588 goto out_unlock; 2589 } 2590 2591 trans = btrfs_join_transaction(root); 2592 if (IS_ERR(trans)) { 2593 ret = PTR_ERR(trans); 2594 goto out_unlock; 2595 } 2596 2597 key.objectid = backref->inum; 2598 key.type = BTRFS_EXTENT_DATA_KEY; 2599 key.offset = backref->file_pos; 2600 2601 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2602 if (ret < 0) { 2603 goto out_free_path; 2604 } else if (ret > 0) { 2605 ret = 0; 2606 goto out_free_path; 2607 } 2608 2609 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2610 struct btrfs_file_extent_item); 2611 2612 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2613 backref->generation) 2614 goto out_free_path; 2615 2616 btrfs_release_path(path); 2617 2618 start = backref->file_pos; 2619 if (backref->extent_offset < old->extent_offset + old->offset) 2620 start += old->extent_offset + old->offset - 2621 backref->extent_offset; 2622 2623 len = min(backref->extent_offset + backref->num_bytes, 2624 old->extent_offset + old->offset + old->len); 2625 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2626 2627 ret = btrfs_drop_extents(trans, root, inode, start, 2628 start + len, 1); 2629 if (ret) 2630 goto out_free_path; 2631 again: 2632 key.objectid = btrfs_ino(BTRFS_I(inode)); 2633 key.type = BTRFS_EXTENT_DATA_KEY; 2634 key.offset = start; 2635 2636 path->leave_spinning = 1; 2637 if (merge) { 2638 struct btrfs_file_extent_item *fi; 2639 u64 extent_len; 2640 struct btrfs_key found_key; 2641 2642 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2643 if (ret < 0) 2644 goto out_free_path; 2645 2646 path->slots[0]--; 2647 leaf = path->nodes[0]; 2648 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2649 2650 fi = btrfs_item_ptr(leaf, path->slots[0], 2651 struct btrfs_file_extent_item); 2652 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2653 2654 if (extent_len + found_key.offset == start && 2655 relink_is_mergable(leaf, fi, new)) { 2656 btrfs_set_file_extent_num_bytes(leaf, fi, 2657 extent_len + len); 2658 btrfs_mark_buffer_dirty(leaf); 2659 inode_add_bytes(inode, len); 2660 2661 ret = 1; 2662 goto out_free_path; 2663 } else { 2664 merge = false; 2665 btrfs_release_path(path); 2666 goto again; 2667 } 2668 } 2669 2670 ret = btrfs_insert_empty_item(trans, root, path, &key, 2671 sizeof(*extent)); 2672 if (ret) { 2673 btrfs_abort_transaction(trans, ret); 2674 goto out_free_path; 2675 } 2676 2677 leaf = path->nodes[0]; 2678 item = btrfs_item_ptr(leaf, path->slots[0], 2679 struct btrfs_file_extent_item); 2680 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2681 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2682 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2683 btrfs_set_file_extent_num_bytes(leaf, item, len); 2684 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2685 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2686 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2687 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2688 btrfs_set_file_extent_encryption(leaf, item, 0); 2689 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2690 2691 btrfs_mark_buffer_dirty(leaf); 2692 inode_add_bytes(inode, len); 2693 btrfs_release_path(path); 2694 2695 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2696 new->disk_len, 0, 2697 backref->root_id, backref->inum, 2698 new->file_pos); /* start - extent_offset */ 2699 if (ret) { 2700 btrfs_abort_transaction(trans, ret); 2701 goto out_free_path; 2702 } 2703 2704 ret = 1; 2705 out_free_path: 2706 btrfs_release_path(path); 2707 path->leave_spinning = 0; 2708 btrfs_end_transaction(trans); 2709 out_unlock: 2710 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2711 &cached); 2712 iput(inode); 2713 return ret; 2714 } 2715 2716 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2717 { 2718 struct old_sa_defrag_extent *old, *tmp; 2719 2720 if (!new) 2721 return; 2722 2723 list_for_each_entry_safe(old, tmp, &new->head, list) { 2724 kfree(old); 2725 } 2726 kfree(new); 2727 } 2728 2729 static void relink_file_extents(struct new_sa_defrag_extent *new) 2730 { 2731 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2732 struct btrfs_path *path; 2733 struct sa_defrag_extent_backref *backref; 2734 struct sa_defrag_extent_backref *prev = NULL; 2735 struct rb_node *node; 2736 int ret; 2737 2738 path = btrfs_alloc_path(); 2739 if (!path) 2740 return; 2741 2742 if (!record_extent_backrefs(path, new)) { 2743 btrfs_free_path(path); 2744 goto out; 2745 } 2746 btrfs_release_path(path); 2747 2748 while (1) { 2749 node = rb_first(&new->root); 2750 if (!node) 2751 break; 2752 rb_erase(node, &new->root); 2753 2754 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2755 2756 ret = relink_extent_backref(path, prev, backref); 2757 WARN_ON(ret < 0); 2758 2759 kfree(prev); 2760 2761 if (ret == 1) 2762 prev = backref; 2763 else 2764 prev = NULL; 2765 cond_resched(); 2766 } 2767 kfree(prev); 2768 2769 btrfs_free_path(path); 2770 out: 2771 free_sa_defrag_extent(new); 2772 2773 atomic_dec(&fs_info->defrag_running); 2774 wake_up(&fs_info->transaction_wait); 2775 } 2776 2777 static struct new_sa_defrag_extent * 2778 record_old_file_extents(struct inode *inode, 2779 struct btrfs_ordered_extent *ordered) 2780 { 2781 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2782 struct btrfs_root *root = BTRFS_I(inode)->root; 2783 struct btrfs_path *path; 2784 struct btrfs_key key; 2785 struct old_sa_defrag_extent *old; 2786 struct new_sa_defrag_extent *new; 2787 int ret; 2788 2789 new = kmalloc(sizeof(*new), GFP_NOFS); 2790 if (!new) 2791 return NULL; 2792 2793 new->inode = inode; 2794 new->file_pos = ordered->file_offset; 2795 new->len = ordered->len; 2796 new->bytenr = ordered->start; 2797 new->disk_len = ordered->disk_len; 2798 new->compress_type = ordered->compress_type; 2799 new->root = RB_ROOT; 2800 INIT_LIST_HEAD(&new->head); 2801 2802 path = btrfs_alloc_path(); 2803 if (!path) 2804 goto out_kfree; 2805 2806 key.objectid = btrfs_ino(BTRFS_I(inode)); 2807 key.type = BTRFS_EXTENT_DATA_KEY; 2808 key.offset = new->file_pos; 2809 2810 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2811 if (ret < 0) 2812 goto out_free_path; 2813 if (ret > 0 && path->slots[0] > 0) 2814 path->slots[0]--; 2815 2816 /* find out all the old extents for the file range */ 2817 while (1) { 2818 struct btrfs_file_extent_item *extent; 2819 struct extent_buffer *l; 2820 int slot; 2821 u64 num_bytes; 2822 u64 offset; 2823 u64 end; 2824 u64 disk_bytenr; 2825 u64 extent_offset; 2826 2827 l = path->nodes[0]; 2828 slot = path->slots[0]; 2829 2830 if (slot >= btrfs_header_nritems(l)) { 2831 ret = btrfs_next_leaf(root, path); 2832 if (ret < 0) 2833 goto out_free_path; 2834 else if (ret > 0) 2835 break; 2836 continue; 2837 } 2838 2839 btrfs_item_key_to_cpu(l, &key, slot); 2840 2841 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2842 break; 2843 if (key.type != BTRFS_EXTENT_DATA_KEY) 2844 break; 2845 if (key.offset >= new->file_pos + new->len) 2846 break; 2847 2848 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2849 2850 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2851 if (key.offset + num_bytes < new->file_pos) 2852 goto next; 2853 2854 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2855 if (!disk_bytenr) 2856 goto next; 2857 2858 extent_offset = btrfs_file_extent_offset(l, extent); 2859 2860 old = kmalloc(sizeof(*old), GFP_NOFS); 2861 if (!old) 2862 goto out_free_path; 2863 2864 offset = max(new->file_pos, key.offset); 2865 end = min(new->file_pos + new->len, key.offset + num_bytes); 2866 2867 old->bytenr = disk_bytenr; 2868 old->extent_offset = extent_offset; 2869 old->offset = offset - key.offset; 2870 old->len = end - offset; 2871 old->new = new; 2872 old->count = 0; 2873 list_add_tail(&old->list, &new->head); 2874 next: 2875 path->slots[0]++; 2876 cond_resched(); 2877 } 2878 2879 btrfs_free_path(path); 2880 atomic_inc(&fs_info->defrag_running); 2881 2882 return new; 2883 2884 out_free_path: 2885 btrfs_free_path(path); 2886 out_kfree: 2887 free_sa_defrag_extent(new); 2888 return NULL; 2889 } 2890 2891 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2892 u64 start, u64 len) 2893 { 2894 struct btrfs_block_group_cache *cache; 2895 2896 cache = btrfs_lookup_block_group(fs_info, start); 2897 ASSERT(cache); 2898 2899 spin_lock(&cache->lock); 2900 cache->delalloc_bytes -= len; 2901 spin_unlock(&cache->lock); 2902 2903 btrfs_put_block_group(cache); 2904 } 2905 2906 /* as ordered data IO finishes, this gets called so we can finish 2907 * an ordered extent if the range of bytes in the file it covers are 2908 * fully written. 2909 */ 2910 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2911 { 2912 struct inode *inode = ordered_extent->inode; 2913 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2914 struct btrfs_root *root = BTRFS_I(inode)->root; 2915 struct btrfs_trans_handle *trans = NULL; 2916 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2917 struct extent_state *cached_state = NULL; 2918 struct new_sa_defrag_extent *new = NULL; 2919 int compress_type = 0; 2920 int ret = 0; 2921 u64 logical_len = ordered_extent->len; 2922 bool nolock; 2923 bool truncated = false; 2924 bool range_locked = false; 2925 bool clear_new_delalloc_bytes = false; 2926 bool clear_reserved_extent = true; 2927 2928 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2929 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2930 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2931 clear_new_delalloc_bytes = true; 2932 2933 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2934 2935 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2936 ret = -EIO; 2937 goto out; 2938 } 2939 2940 btrfs_free_io_failure_record(BTRFS_I(inode), 2941 ordered_extent->file_offset, 2942 ordered_extent->file_offset + 2943 ordered_extent->len - 1); 2944 2945 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2946 truncated = true; 2947 logical_len = ordered_extent->truncated_len; 2948 /* Truncated the entire extent, don't bother adding */ 2949 if (!logical_len) 2950 goto out; 2951 } 2952 2953 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2954 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2955 2956 /* 2957 * For mwrite(mmap + memset to write) case, we still reserve 2958 * space for NOCOW range. 2959 * As NOCOW won't cause a new delayed ref, just free the space 2960 */ 2961 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2962 ordered_extent->len); 2963 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2964 if (nolock) 2965 trans = btrfs_join_transaction_nolock(root); 2966 else 2967 trans = btrfs_join_transaction(root); 2968 if (IS_ERR(trans)) { 2969 ret = PTR_ERR(trans); 2970 trans = NULL; 2971 goto out; 2972 } 2973 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2974 ret = btrfs_update_inode_fallback(trans, root, inode); 2975 if (ret) /* -ENOMEM or corruption */ 2976 btrfs_abort_transaction(trans, ret); 2977 goto out; 2978 } 2979 2980 range_locked = true; 2981 lock_extent_bits(io_tree, ordered_extent->file_offset, 2982 ordered_extent->file_offset + ordered_extent->len - 1, 2983 &cached_state); 2984 2985 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2986 ordered_extent->file_offset + ordered_extent->len - 1, 2987 EXTENT_DEFRAG, 0, cached_state); 2988 if (ret) { 2989 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2990 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2991 /* the inode is shared */ 2992 new = record_old_file_extents(inode, ordered_extent); 2993 2994 clear_extent_bit(io_tree, ordered_extent->file_offset, 2995 ordered_extent->file_offset + ordered_extent->len - 1, 2996 EXTENT_DEFRAG, 0, 0, &cached_state); 2997 } 2998 2999 if (nolock) 3000 trans = btrfs_join_transaction_nolock(root); 3001 else 3002 trans = btrfs_join_transaction(root); 3003 if (IS_ERR(trans)) { 3004 ret = PTR_ERR(trans); 3005 trans = NULL; 3006 goto out; 3007 } 3008 3009 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3010 3011 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3012 compress_type = ordered_extent->compress_type; 3013 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3014 BUG_ON(compress_type); 3015 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3016 ordered_extent->len); 3017 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3018 ordered_extent->file_offset, 3019 ordered_extent->file_offset + 3020 logical_len); 3021 } else { 3022 BUG_ON(root == fs_info->tree_root); 3023 ret = insert_reserved_file_extent(trans, inode, 3024 ordered_extent->file_offset, 3025 ordered_extent->start, 3026 ordered_extent->disk_len, 3027 logical_len, logical_len, 3028 compress_type, 0, 0, 3029 BTRFS_FILE_EXTENT_REG); 3030 if (!ret) { 3031 clear_reserved_extent = false; 3032 btrfs_release_delalloc_bytes(fs_info, 3033 ordered_extent->start, 3034 ordered_extent->disk_len); 3035 } 3036 } 3037 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3038 ordered_extent->file_offset, ordered_extent->len, 3039 trans->transid); 3040 if (ret < 0) { 3041 btrfs_abort_transaction(trans, ret); 3042 goto out; 3043 } 3044 3045 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3046 if (ret) { 3047 btrfs_abort_transaction(trans, ret); 3048 goto out; 3049 } 3050 3051 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3052 ret = btrfs_update_inode_fallback(trans, root, inode); 3053 if (ret) { /* -ENOMEM or corruption */ 3054 btrfs_abort_transaction(trans, ret); 3055 goto out; 3056 } 3057 ret = 0; 3058 out: 3059 if (range_locked || clear_new_delalloc_bytes) { 3060 unsigned int clear_bits = 0; 3061 3062 if (range_locked) 3063 clear_bits |= EXTENT_LOCKED; 3064 if (clear_new_delalloc_bytes) 3065 clear_bits |= EXTENT_DELALLOC_NEW; 3066 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3067 ordered_extent->file_offset, 3068 ordered_extent->file_offset + 3069 ordered_extent->len - 1, 3070 clear_bits, 3071 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3072 0, &cached_state); 3073 } 3074 3075 if (trans) 3076 btrfs_end_transaction(trans); 3077 3078 if (ret || truncated) { 3079 u64 start, end; 3080 3081 if (truncated) 3082 start = ordered_extent->file_offset + logical_len; 3083 else 3084 start = ordered_extent->file_offset; 3085 end = ordered_extent->file_offset + ordered_extent->len - 1; 3086 clear_extent_uptodate(io_tree, start, end, NULL); 3087 3088 /* Drop the cache for the part of the extent we didn't write. */ 3089 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3090 3091 /* 3092 * If the ordered extent had an IOERR or something else went 3093 * wrong we need to return the space for this ordered extent 3094 * back to the allocator. We only free the extent in the 3095 * truncated case if we didn't write out the extent at all. 3096 * 3097 * If we made it past insert_reserved_file_extent before we 3098 * errored out then we don't need to do this as the accounting 3099 * has already been done. 3100 */ 3101 if ((ret || !logical_len) && 3102 clear_reserved_extent && 3103 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3104 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3105 btrfs_free_reserved_extent(fs_info, 3106 ordered_extent->start, 3107 ordered_extent->disk_len, 1); 3108 } 3109 3110 3111 /* 3112 * This needs to be done to make sure anybody waiting knows we are done 3113 * updating everything for this ordered extent. 3114 */ 3115 btrfs_remove_ordered_extent(inode, ordered_extent); 3116 3117 /* for snapshot-aware defrag */ 3118 if (new) { 3119 if (ret) { 3120 free_sa_defrag_extent(new); 3121 atomic_dec(&fs_info->defrag_running); 3122 } else { 3123 relink_file_extents(new); 3124 } 3125 } 3126 3127 /* once for us */ 3128 btrfs_put_ordered_extent(ordered_extent); 3129 /* once for the tree */ 3130 btrfs_put_ordered_extent(ordered_extent); 3131 3132 return ret; 3133 } 3134 3135 static void finish_ordered_fn(struct btrfs_work *work) 3136 { 3137 struct btrfs_ordered_extent *ordered_extent; 3138 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3139 btrfs_finish_ordered_io(ordered_extent); 3140 } 3141 3142 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3143 u64 end, int uptodate) 3144 { 3145 struct inode *inode = page->mapping->host; 3146 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3147 struct btrfs_ordered_extent *ordered_extent = NULL; 3148 struct btrfs_workqueue *wq; 3149 btrfs_work_func_t func; 3150 3151 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3152 3153 ClearPagePrivate2(page); 3154 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3155 end - start + 1, uptodate)) 3156 return; 3157 3158 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3159 wq = fs_info->endio_freespace_worker; 3160 func = btrfs_freespace_write_helper; 3161 } else { 3162 wq = fs_info->endio_write_workers; 3163 func = btrfs_endio_write_helper; 3164 } 3165 3166 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3167 NULL); 3168 btrfs_queue_work(wq, &ordered_extent->work); 3169 } 3170 3171 static int __readpage_endio_check(struct inode *inode, 3172 struct btrfs_io_bio *io_bio, 3173 int icsum, struct page *page, 3174 int pgoff, u64 start, size_t len) 3175 { 3176 char *kaddr; 3177 u32 csum_expected; 3178 u32 csum = ~(u32)0; 3179 3180 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3181 3182 kaddr = kmap_atomic(page); 3183 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3184 btrfs_csum_final(csum, (u8 *)&csum); 3185 if (csum != csum_expected) 3186 goto zeroit; 3187 3188 kunmap_atomic(kaddr); 3189 return 0; 3190 zeroit: 3191 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3192 io_bio->mirror_num); 3193 memset(kaddr + pgoff, 1, len); 3194 flush_dcache_page(page); 3195 kunmap_atomic(kaddr); 3196 return -EIO; 3197 } 3198 3199 /* 3200 * when reads are done, we need to check csums to verify the data is correct 3201 * if there's a match, we allow the bio to finish. If not, the code in 3202 * extent_io.c will try to find good copies for us. 3203 */ 3204 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3205 u64 phy_offset, struct page *page, 3206 u64 start, u64 end, int mirror) 3207 { 3208 size_t offset = start - page_offset(page); 3209 struct inode *inode = page->mapping->host; 3210 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3211 struct btrfs_root *root = BTRFS_I(inode)->root; 3212 3213 if (PageChecked(page)) { 3214 ClearPageChecked(page); 3215 return 0; 3216 } 3217 3218 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3219 return 0; 3220 3221 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3222 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3223 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3224 return 0; 3225 } 3226 3227 phy_offset >>= inode->i_sb->s_blocksize_bits; 3228 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3229 start, (size_t)(end - start + 1)); 3230 } 3231 3232 /* 3233 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3234 * 3235 * @inode: The inode we want to perform iput on 3236 * 3237 * This function uses the generic vfs_inode::i_count to track whether we should 3238 * just decrement it (in case it's > 1) or if this is the last iput then link 3239 * the inode to the delayed iput machinery. Delayed iputs are processed at 3240 * transaction commit time/superblock commit/cleaner kthread. 3241 */ 3242 void btrfs_add_delayed_iput(struct inode *inode) 3243 { 3244 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3245 struct btrfs_inode *binode = BTRFS_I(inode); 3246 3247 if (atomic_add_unless(&inode->i_count, -1, 1)) 3248 return; 3249 3250 spin_lock(&fs_info->delayed_iput_lock); 3251 ASSERT(list_empty(&binode->delayed_iput)); 3252 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3253 spin_unlock(&fs_info->delayed_iput_lock); 3254 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3255 wake_up_process(fs_info->cleaner_kthread); 3256 } 3257 3258 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3259 { 3260 3261 spin_lock(&fs_info->delayed_iput_lock); 3262 while (!list_empty(&fs_info->delayed_iputs)) { 3263 struct btrfs_inode *inode; 3264 3265 inode = list_first_entry(&fs_info->delayed_iputs, 3266 struct btrfs_inode, delayed_iput); 3267 list_del_init(&inode->delayed_iput); 3268 spin_unlock(&fs_info->delayed_iput_lock); 3269 iput(&inode->vfs_inode); 3270 spin_lock(&fs_info->delayed_iput_lock); 3271 } 3272 spin_unlock(&fs_info->delayed_iput_lock); 3273 } 3274 3275 /* 3276 * This creates an orphan entry for the given inode in case something goes wrong 3277 * in the middle of an unlink. 3278 */ 3279 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3280 struct btrfs_inode *inode) 3281 { 3282 int ret; 3283 3284 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3285 if (ret && ret != -EEXIST) { 3286 btrfs_abort_transaction(trans, ret); 3287 return ret; 3288 } 3289 3290 return 0; 3291 } 3292 3293 /* 3294 * We have done the delete so we can go ahead and remove the orphan item for 3295 * this particular inode. 3296 */ 3297 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3298 struct btrfs_inode *inode) 3299 { 3300 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3301 } 3302 3303 /* 3304 * this cleans up any orphans that may be left on the list from the last use 3305 * of this root. 3306 */ 3307 int btrfs_orphan_cleanup(struct btrfs_root *root) 3308 { 3309 struct btrfs_fs_info *fs_info = root->fs_info; 3310 struct btrfs_path *path; 3311 struct extent_buffer *leaf; 3312 struct btrfs_key key, found_key; 3313 struct btrfs_trans_handle *trans; 3314 struct inode *inode; 3315 u64 last_objectid = 0; 3316 int ret = 0, nr_unlink = 0; 3317 3318 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3319 return 0; 3320 3321 path = btrfs_alloc_path(); 3322 if (!path) { 3323 ret = -ENOMEM; 3324 goto out; 3325 } 3326 path->reada = READA_BACK; 3327 3328 key.objectid = BTRFS_ORPHAN_OBJECTID; 3329 key.type = BTRFS_ORPHAN_ITEM_KEY; 3330 key.offset = (u64)-1; 3331 3332 while (1) { 3333 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3334 if (ret < 0) 3335 goto out; 3336 3337 /* 3338 * if ret == 0 means we found what we were searching for, which 3339 * is weird, but possible, so only screw with path if we didn't 3340 * find the key and see if we have stuff that matches 3341 */ 3342 if (ret > 0) { 3343 ret = 0; 3344 if (path->slots[0] == 0) 3345 break; 3346 path->slots[0]--; 3347 } 3348 3349 /* pull out the item */ 3350 leaf = path->nodes[0]; 3351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3352 3353 /* make sure the item matches what we want */ 3354 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3355 break; 3356 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3357 break; 3358 3359 /* release the path since we're done with it */ 3360 btrfs_release_path(path); 3361 3362 /* 3363 * this is where we are basically btrfs_lookup, without the 3364 * crossing root thing. we store the inode number in the 3365 * offset of the orphan item. 3366 */ 3367 3368 if (found_key.offset == last_objectid) { 3369 btrfs_err(fs_info, 3370 "Error removing orphan entry, stopping orphan cleanup"); 3371 ret = -EINVAL; 3372 goto out; 3373 } 3374 3375 last_objectid = found_key.offset; 3376 3377 found_key.objectid = found_key.offset; 3378 found_key.type = BTRFS_INODE_ITEM_KEY; 3379 found_key.offset = 0; 3380 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3381 ret = PTR_ERR_OR_ZERO(inode); 3382 if (ret && ret != -ENOENT) 3383 goto out; 3384 3385 if (ret == -ENOENT && root == fs_info->tree_root) { 3386 struct btrfs_root *dead_root; 3387 struct btrfs_fs_info *fs_info = root->fs_info; 3388 int is_dead_root = 0; 3389 3390 /* 3391 * this is an orphan in the tree root. Currently these 3392 * could come from 2 sources: 3393 * a) a snapshot deletion in progress 3394 * b) a free space cache inode 3395 * We need to distinguish those two, as the snapshot 3396 * orphan must not get deleted. 3397 * find_dead_roots already ran before us, so if this 3398 * is a snapshot deletion, we should find the root 3399 * in the dead_roots list 3400 */ 3401 spin_lock(&fs_info->trans_lock); 3402 list_for_each_entry(dead_root, &fs_info->dead_roots, 3403 root_list) { 3404 if (dead_root->root_key.objectid == 3405 found_key.objectid) { 3406 is_dead_root = 1; 3407 break; 3408 } 3409 } 3410 spin_unlock(&fs_info->trans_lock); 3411 if (is_dead_root) { 3412 /* prevent this orphan from being found again */ 3413 key.offset = found_key.objectid - 1; 3414 continue; 3415 } 3416 3417 } 3418 3419 /* 3420 * If we have an inode with links, there are a couple of 3421 * possibilities. Old kernels (before v3.12) used to create an 3422 * orphan item for truncate indicating that there were possibly 3423 * extent items past i_size that needed to be deleted. In v3.12, 3424 * truncate was changed to update i_size in sync with the extent 3425 * items, but the (useless) orphan item was still created. Since 3426 * v4.18, we don't create the orphan item for truncate at all. 3427 * 3428 * So, this item could mean that we need to do a truncate, but 3429 * only if this filesystem was last used on a pre-v3.12 kernel 3430 * and was not cleanly unmounted. The odds of that are quite 3431 * slim, and it's a pain to do the truncate now, so just delete 3432 * the orphan item. 3433 * 3434 * It's also possible that this orphan item was supposed to be 3435 * deleted but wasn't. The inode number may have been reused, 3436 * but either way, we can delete the orphan item. 3437 */ 3438 if (ret == -ENOENT || inode->i_nlink) { 3439 if (!ret) 3440 iput(inode); 3441 trans = btrfs_start_transaction(root, 1); 3442 if (IS_ERR(trans)) { 3443 ret = PTR_ERR(trans); 3444 goto out; 3445 } 3446 btrfs_debug(fs_info, "auto deleting %Lu", 3447 found_key.objectid); 3448 ret = btrfs_del_orphan_item(trans, root, 3449 found_key.objectid); 3450 btrfs_end_transaction(trans); 3451 if (ret) 3452 goto out; 3453 continue; 3454 } 3455 3456 nr_unlink++; 3457 3458 /* this will do delete_inode and everything for us */ 3459 iput(inode); 3460 } 3461 /* release the path since we're done with it */ 3462 btrfs_release_path(path); 3463 3464 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3465 3466 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3467 trans = btrfs_join_transaction(root); 3468 if (!IS_ERR(trans)) 3469 btrfs_end_transaction(trans); 3470 } 3471 3472 if (nr_unlink) 3473 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3474 3475 out: 3476 if (ret) 3477 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3478 btrfs_free_path(path); 3479 return ret; 3480 } 3481 3482 /* 3483 * very simple check to peek ahead in the leaf looking for xattrs. If we 3484 * don't find any xattrs, we know there can't be any acls. 3485 * 3486 * slot is the slot the inode is in, objectid is the objectid of the inode 3487 */ 3488 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3489 int slot, u64 objectid, 3490 int *first_xattr_slot) 3491 { 3492 u32 nritems = btrfs_header_nritems(leaf); 3493 struct btrfs_key found_key; 3494 static u64 xattr_access = 0; 3495 static u64 xattr_default = 0; 3496 int scanned = 0; 3497 3498 if (!xattr_access) { 3499 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3500 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3501 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3502 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3503 } 3504 3505 slot++; 3506 *first_xattr_slot = -1; 3507 while (slot < nritems) { 3508 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3509 3510 /* we found a different objectid, there must not be acls */ 3511 if (found_key.objectid != objectid) 3512 return 0; 3513 3514 /* we found an xattr, assume we've got an acl */ 3515 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3516 if (*first_xattr_slot == -1) 3517 *first_xattr_slot = slot; 3518 if (found_key.offset == xattr_access || 3519 found_key.offset == xattr_default) 3520 return 1; 3521 } 3522 3523 /* 3524 * we found a key greater than an xattr key, there can't 3525 * be any acls later on 3526 */ 3527 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3528 return 0; 3529 3530 slot++; 3531 scanned++; 3532 3533 /* 3534 * it goes inode, inode backrefs, xattrs, extents, 3535 * so if there are a ton of hard links to an inode there can 3536 * be a lot of backrefs. Don't waste time searching too hard, 3537 * this is just an optimization 3538 */ 3539 if (scanned >= 8) 3540 break; 3541 } 3542 /* we hit the end of the leaf before we found an xattr or 3543 * something larger than an xattr. We have to assume the inode 3544 * has acls 3545 */ 3546 if (*first_xattr_slot == -1) 3547 *first_xattr_slot = slot; 3548 return 1; 3549 } 3550 3551 /* 3552 * read an inode from the btree into the in-memory inode 3553 */ 3554 static int btrfs_read_locked_inode(struct inode *inode, 3555 struct btrfs_path *in_path) 3556 { 3557 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3558 struct btrfs_path *path = in_path; 3559 struct extent_buffer *leaf; 3560 struct btrfs_inode_item *inode_item; 3561 struct btrfs_root *root = BTRFS_I(inode)->root; 3562 struct btrfs_key location; 3563 unsigned long ptr; 3564 int maybe_acls; 3565 u32 rdev; 3566 int ret; 3567 bool filled = false; 3568 int first_xattr_slot; 3569 3570 ret = btrfs_fill_inode(inode, &rdev); 3571 if (!ret) 3572 filled = true; 3573 3574 if (!path) { 3575 path = btrfs_alloc_path(); 3576 if (!path) 3577 return -ENOMEM; 3578 } 3579 3580 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3581 3582 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3583 if (ret) { 3584 if (path != in_path) 3585 btrfs_free_path(path); 3586 return ret; 3587 } 3588 3589 leaf = path->nodes[0]; 3590 3591 if (filled) 3592 goto cache_index; 3593 3594 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3595 struct btrfs_inode_item); 3596 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3597 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3598 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3599 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3600 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3601 3602 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3603 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3604 3605 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3606 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3607 3608 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3609 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3610 3611 BTRFS_I(inode)->i_otime.tv_sec = 3612 btrfs_timespec_sec(leaf, &inode_item->otime); 3613 BTRFS_I(inode)->i_otime.tv_nsec = 3614 btrfs_timespec_nsec(leaf, &inode_item->otime); 3615 3616 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3617 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3618 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3619 3620 inode_set_iversion_queried(inode, 3621 btrfs_inode_sequence(leaf, inode_item)); 3622 inode->i_generation = BTRFS_I(inode)->generation; 3623 inode->i_rdev = 0; 3624 rdev = btrfs_inode_rdev(leaf, inode_item); 3625 3626 BTRFS_I(inode)->index_cnt = (u64)-1; 3627 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3628 3629 cache_index: 3630 /* 3631 * If we were modified in the current generation and evicted from memory 3632 * and then re-read we need to do a full sync since we don't have any 3633 * idea about which extents were modified before we were evicted from 3634 * cache. 3635 * 3636 * This is required for both inode re-read from disk and delayed inode 3637 * in delayed_nodes_tree. 3638 */ 3639 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3640 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3641 &BTRFS_I(inode)->runtime_flags); 3642 3643 /* 3644 * We don't persist the id of the transaction where an unlink operation 3645 * against the inode was last made. So here we assume the inode might 3646 * have been evicted, and therefore the exact value of last_unlink_trans 3647 * lost, and set it to last_trans to avoid metadata inconsistencies 3648 * between the inode and its parent if the inode is fsync'ed and the log 3649 * replayed. For example, in the scenario: 3650 * 3651 * touch mydir/foo 3652 * ln mydir/foo mydir/bar 3653 * sync 3654 * unlink mydir/bar 3655 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3656 * xfs_io -c fsync mydir/foo 3657 * <power failure> 3658 * mount fs, triggers fsync log replay 3659 * 3660 * We must make sure that when we fsync our inode foo we also log its 3661 * parent inode, otherwise after log replay the parent still has the 3662 * dentry with the "bar" name but our inode foo has a link count of 1 3663 * and doesn't have an inode ref with the name "bar" anymore. 3664 * 3665 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3666 * but it guarantees correctness at the expense of occasional full 3667 * transaction commits on fsync if our inode is a directory, or if our 3668 * inode is not a directory, logging its parent unnecessarily. 3669 */ 3670 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3671 /* 3672 * Similar reasoning for last_link_trans, needs to be set otherwise 3673 * for a case like the following: 3674 * 3675 * mkdir A 3676 * touch foo 3677 * ln foo A/bar 3678 * echo 2 > /proc/sys/vm/drop_caches 3679 * fsync foo 3680 * <power failure> 3681 * 3682 * Would result in link bar and directory A not existing after the power 3683 * failure. 3684 */ 3685 BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans; 3686 3687 path->slots[0]++; 3688 if (inode->i_nlink != 1 || 3689 path->slots[0] >= btrfs_header_nritems(leaf)) 3690 goto cache_acl; 3691 3692 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3693 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3694 goto cache_acl; 3695 3696 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3697 if (location.type == BTRFS_INODE_REF_KEY) { 3698 struct btrfs_inode_ref *ref; 3699 3700 ref = (struct btrfs_inode_ref *)ptr; 3701 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3702 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3703 struct btrfs_inode_extref *extref; 3704 3705 extref = (struct btrfs_inode_extref *)ptr; 3706 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3707 extref); 3708 } 3709 cache_acl: 3710 /* 3711 * try to precache a NULL acl entry for files that don't have 3712 * any xattrs or acls 3713 */ 3714 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3715 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3716 if (first_xattr_slot != -1) { 3717 path->slots[0] = first_xattr_slot; 3718 ret = btrfs_load_inode_props(inode, path); 3719 if (ret) 3720 btrfs_err(fs_info, 3721 "error loading props for ino %llu (root %llu): %d", 3722 btrfs_ino(BTRFS_I(inode)), 3723 root->root_key.objectid, ret); 3724 } 3725 if (path != in_path) 3726 btrfs_free_path(path); 3727 3728 if (!maybe_acls) 3729 cache_no_acl(inode); 3730 3731 switch (inode->i_mode & S_IFMT) { 3732 case S_IFREG: 3733 inode->i_mapping->a_ops = &btrfs_aops; 3734 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3735 inode->i_fop = &btrfs_file_operations; 3736 inode->i_op = &btrfs_file_inode_operations; 3737 break; 3738 case S_IFDIR: 3739 inode->i_fop = &btrfs_dir_file_operations; 3740 inode->i_op = &btrfs_dir_inode_operations; 3741 break; 3742 case S_IFLNK: 3743 inode->i_op = &btrfs_symlink_inode_operations; 3744 inode_nohighmem(inode); 3745 inode->i_mapping->a_ops = &btrfs_aops; 3746 break; 3747 default: 3748 inode->i_op = &btrfs_special_inode_operations; 3749 init_special_inode(inode, inode->i_mode, rdev); 3750 break; 3751 } 3752 3753 btrfs_sync_inode_flags_to_i_flags(inode); 3754 return 0; 3755 } 3756 3757 /* 3758 * given a leaf and an inode, copy the inode fields into the leaf 3759 */ 3760 static void fill_inode_item(struct btrfs_trans_handle *trans, 3761 struct extent_buffer *leaf, 3762 struct btrfs_inode_item *item, 3763 struct inode *inode) 3764 { 3765 struct btrfs_map_token token; 3766 3767 btrfs_init_map_token(&token); 3768 3769 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3770 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3771 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3772 &token); 3773 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3774 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3775 3776 btrfs_set_token_timespec_sec(leaf, &item->atime, 3777 inode->i_atime.tv_sec, &token); 3778 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3779 inode->i_atime.tv_nsec, &token); 3780 3781 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3782 inode->i_mtime.tv_sec, &token); 3783 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3784 inode->i_mtime.tv_nsec, &token); 3785 3786 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3787 inode->i_ctime.tv_sec, &token); 3788 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3789 inode->i_ctime.tv_nsec, &token); 3790 3791 btrfs_set_token_timespec_sec(leaf, &item->otime, 3792 BTRFS_I(inode)->i_otime.tv_sec, &token); 3793 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3794 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3795 3796 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3797 &token); 3798 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3799 &token); 3800 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3801 &token); 3802 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3803 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3804 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3805 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3806 } 3807 3808 /* 3809 * copy everything in the in-memory inode into the btree. 3810 */ 3811 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3812 struct btrfs_root *root, struct inode *inode) 3813 { 3814 struct btrfs_inode_item *inode_item; 3815 struct btrfs_path *path; 3816 struct extent_buffer *leaf; 3817 int ret; 3818 3819 path = btrfs_alloc_path(); 3820 if (!path) 3821 return -ENOMEM; 3822 3823 path->leave_spinning = 1; 3824 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3825 1); 3826 if (ret) { 3827 if (ret > 0) 3828 ret = -ENOENT; 3829 goto failed; 3830 } 3831 3832 leaf = path->nodes[0]; 3833 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3834 struct btrfs_inode_item); 3835 3836 fill_inode_item(trans, leaf, inode_item, inode); 3837 btrfs_mark_buffer_dirty(leaf); 3838 btrfs_set_inode_last_trans(trans, inode); 3839 ret = 0; 3840 failed: 3841 btrfs_free_path(path); 3842 return ret; 3843 } 3844 3845 /* 3846 * copy everything in the in-memory inode into the btree. 3847 */ 3848 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3849 struct btrfs_root *root, struct inode *inode) 3850 { 3851 struct btrfs_fs_info *fs_info = root->fs_info; 3852 int ret; 3853 3854 /* 3855 * If the inode is a free space inode, we can deadlock during commit 3856 * if we put it into the delayed code. 3857 * 3858 * The data relocation inode should also be directly updated 3859 * without delay 3860 */ 3861 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3862 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3863 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3864 btrfs_update_root_times(trans, root); 3865 3866 ret = btrfs_delayed_update_inode(trans, root, inode); 3867 if (!ret) 3868 btrfs_set_inode_last_trans(trans, inode); 3869 return ret; 3870 } 3871 3872 return btrfs_update_inode_item(trans, root, inode); 3873 } 3874 3875 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3876 struct btrfs_root *root, 3877 struct inode *inode) 3878 { 3879 int ret; 3880 3881 ret = btrfs_update_inode(trans, root, inode); 3882 if (ret == -ENOSPC) 3883 return btrfs_update_inode_item(trans, root, inode); 3884 return ret; 3885 } 3886 3887 /* 3888 * unlink helper that gets used here in inode.c and in the tree logging 3889 * recovery code. It remove a link in a directory with a given name, and 3890 * also drops the back refs in the inode to the directory 3891 */ 3892 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3893 struct btrfs_root *root, 3894 struct btrfs_inode *dir, 3895 struct btrfs_inode *inode, 3896 const char *name, int name_len) 3897 { 3898 struct btrfs_fs_info *fs_info = root->fs_info; 3899 struct btrfs_path *path; 3900 int ret = 0; 3901 struct extent_buffer *leaf; 3902 struct btrfs_dir_item *di; 3903 struct btrfs_key key; 3904 u64 index; 3905 u64 ino = btrfs_ino(inode); 3906 u64 dir_ino = btrfs_ino(dir); 3907 3908 path = btrfs_alloc_path(); 3909 if (!path) { 3910 ret = -ENOMEM; 3911 goto out; 3912 } 3913 3914 path->leave_spinning = 1; 3915 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3916 name, name_len, -1); 3917 if (IS_ERR_OR_NULL(di)) { 3918 ret = di ? PTR_ERR(di) : -ENOENT; 3919 goto err; 3920 } 3921 leaf = path->nodes[0]; 3922 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3923 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3924 if (ret) 3925 goto err; 3926 btrfs_release_path(path); 3927 3928 /* 3929 * If we don't have dir index, we have to get it by looking up 3930 * the inode ref, since we get the inode ref, remove it directly, 3931 * it is unnecessary to do delayed deletion. 3932 * 3933 * But if we have dir index, needn't search inode ref to get it. 3934 * Since the inode ref is close to the inode item, it is better 3935 * that we delay to delete it, and just do this deletion when 3936 * we update the inode item. 3937 */ 3938 if (inode->dir_index) { 3939 ret = btrfs_delayed_delete_inode_ref(inode); 3940 if (!ret) { 3941 index = inode->dir_index; 3942 goto skip_backref; 3943 } 3944 } 3945 3946 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3947 dir_ino, &index); 3948 if (ret) { 3949 btrfs_info(fs_info, 3950 "failed to delete reference to %.*s, inode %llu parent %llu", 3951 name_len, name, ino, dir_ino); 3952 btrfs_abort_transaction(trans, ret); 3953 goto err; 3954 } 3955 skip_backref: 3956 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3957 if (ret) { 3958 btrfs_abort_transaction(trans, ret); 3959 goto err; 3960 } 3961 3962 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3963 dir_ino); 3964 if (ret != 0 && ret != -ENOENT) { 3965 btrfs_abort_transaction(trans, ret); 3966 goto err; 3967 } 3968 3969 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3970 index); 3971 if (ret == -ENOENT) 3972 ret = 0; 3973 else if (ret) 3974 btrfs_abort_transaction(trans, ret); 3975 err: 3976 btrfs_free_path(path); 3977 if (ret) 3978 goto out; 3979 3980 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3981 inode_inc_iversion(&inode->vfs_inode); 3982 inode_inc_iversion(&dir->vfs_inode); 3983 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3984 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3985 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3986 out: 3987 return ret; 3988 } 3989 3990 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3991 struct btrfs_root *root, 3992 struct btrfs_inode *dir, struct btrfs_inode *inode, 3993 const char *name, int name_len) 3994 { 3995 int ret; 3996 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3997 if (!ret) { 3998 drop_nlink(&inode->vfs_inode); 3999 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4000 } 4001 return ret; 4002 } 4003 4004 /* 4005 * helper to start transaction for unlink and rmdir. 4006 * 4007 * unlink and rmdir are special in btrfs, they do not always free space, so 4008 * if we cannot make our reservations the normal way try and see if there is 4009 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4010 * allow the unlink to occur. 4011 */ 4012 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4013 { 4014 struct btrfs_root *root = BTRFS_I(dir)->root; 4015 4016 /* 4017 * 1 for the possible orphan item 4018 * 1 for the dir item 4019 * 1 for the dir index 4020 * 1 for the inode ref 4021 * 1 for the inode 4022 */ 4023 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4024 } 4025 4026 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4027 { 4028 struct btrfs_root *root = BTRFS_I(dir)->root; 4029 struct btrfs_trans_handle *trans; 4030 struct inode *inode = d_inode(dentry); 4031 int ret; 4032 4033 trans = __unlink_start_trans(dir); 4034 if (IS_ERR(trans)) 4035 return PTR_ERR(trans); 4036 4037 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4038 0); 4039 4040 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4041 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4042 dentry->d_name.len); 4043 if (ret) 4044 goto out; 4045 4046 if (inode->i_nlink == 0) { 4047 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4048 if (ret) 4049 goto out; 4050 } 4051 4052 out: 4053 btrfs_end_transaction(trans); 4054 btrfs_btree_balance_dirty(root->fs_info); 4055 return ret; 4056 } 4057 4058 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4059 struct inode *dir, u64 objectid, 4060 const char *name, int name_len) 4061 { 4062 struct btrfs_root *root = BTRFS_I(dir)->root; 4063 struct btrfs_path *path; 4064 struct extent_buffer *leaf; 4065 struct btrfs_dir_item *di; 4066 struct btrfs_key key; 4067 u64 index; 4068 int ret; 4069 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4070 4071 path = btrfs_alloc_path(); 4072 if (!path) 4073 return -ENOMEM; 4074 4075 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4076 name, name_len, -1); 4077 if (IS_ERR_OR_NULL(di)) { 4078 ret = di ? PTR_ERR(di) : -ENOENT; 4079 goto out; 4080 } 4081 4082 leaf = path->nodes[0]; 4083 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4084 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4085 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4086 if (ret) { 4087 btrfs_abort_transaction(trans, ret); 4088 goto out; 4089 } 4090 btrfs_release_path(path); 4091 4092 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid, 4093 dir_ino, &index, name, name_len); 4094 if (ret < 0) { 4095 if (ret != -ENOENT) { 4096 btrfs_abort_transaction(trans, ret); 4097 goto out; 4098 } 4099 di = btrfs_search_dir_index_item(root, path, dir_ino, 4100 name, name_len); 4101 if (IS_ERR_OR_NULL(di)) { 4102 if (!di) 4103 ret = -ENOENT; 4104 else 4105 ret = PTR_ERR(di); 4106 btrfs_abort_transaction(trans, ret); 4107 goto out; 4108 } 4109 4110 leaf = path->nodes[0]; 4111 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4112 index = key.offset; 4113 } 4114 btrfs_release_path(path); 4115 4116 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4117 if (ret) { 4118 btrfs_abort_transaction(trans, ret); 4119 goto out; 4120 } 4121 4122 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4123 inode_inc_iversion(dir); 4124 dir->i_mtime = dir->i_ctime = current_time(dir); 4125 ret = btrfs_update_inode_fallback(trans, root, dir); 4126 if (ret) 4127 btrfs_abort_transaction(trans, ret); 4128 out: 4129 btrfs_free_path(path); 4130 return ret; 4131 } 4132 4133 /* 4134 * Helper to check if the subvolume references other subvolumes or if it's 4135 * default. 4136 */ 4137 static noinline int may_destroy_subvol(struct btrfs_root *root) 4138 { 4139 struct btrfs_fs_info *fs_info = root->fs_info; 4140 struct btrfs_path *path; 4141 struct btrfs_dir_item *di; 4142 struct btrfs_key key; 4143 u64 dir_id; 4144 int ret; 4145 4146 path = btrfs_alloc_path(); 4147 if (!path) 4148 return -ENOMEM; 4149 4150 /* Make sure this root isn't set as the default subvol */ 4151 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4152 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4153 dir_id, "default", 7, 0); 4154 if (di && !IS_ERR(di)) { 4155 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4156 if (key.objectid == root->root_key.objectid) { 4157 ret = -EPERM; 4158 btrfs_err(fs_info, 4159 "deleting default subvolume %llu is not allowed", 4160 key.objectid); 4161 goto out; 4162 } 4163 btrfs_release_path(path); 4164 } 4165 4166 key.objectid = root->root_key.objectid; 4167 key.type = BTRFS_ROOT_REF_KEY; 4168 key.offset = (u64)-1; 4169 4170 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4171 if (ret < 0) 4172 goto out; 4173 BUG_ON(ret == 0); 4174 4175 ret = 0; 4176 if (path->slots[0] > 0) { 4177 path->slots[0]--; 4178 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4179 if (key.objectid == root->root_key.objectid && 4180 key.type == BTRFS_ROOT_REF_KEY) 4181 ret = -ENOTEMPTY; 4182 } 4183 out: 4184 btrfs_free_path(path); 4185 return ret; 4186 } 4187 4188 /* Delete all dentries for inodes belonging to the root */ 4189 static void btrfs_prune_dentries(struct btrfs_root *root) 4190 { 4191 struct btrfs_fs_info *fs_info = root->fs_info; 4192 struct rb_node *node; 4193 struct rb_node *prev; 4194 struct btrfs_inode *entry; 4195 struct inode *inode; 4196 u64 objectid = 0; 4197 4198 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4199 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4200 4201 spin_lock(&root->inode_lock); 4202 again: 4203 node = root->inode_tree.rb_node; 4204 prev = NULL; 4205 while (node) { 4206 prev = node; 4207 entry = rb_entry(node, struct btrfs_inode, rb_node); 4208 4209 if (objectid < btrfs_ino(entry)) 4210 node = node->rb_left; 4211 else if (objectid > btrfs_ino(entry)) 4212 node = node->rb_right; 4213 else 4214 break; 4215 } 4216 if (!node) { 4217 while (prev) { 4218 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4219 if (objectid <= btrfs_ino(entry)) { 4220 node = prev; 4221 break; 4222 } 4223 prev = rb_next(prev); 4224 } 4225 } 4226 while (node) { 4227 entry = rb_entry(node, struct btrfs_inode, rb_node); 4228 objectid = btrfs_ino(entry) + 1; 4229 inode = igrab(&entry->vfs_inode); 4230 if (inode) { 4231 spin_unlock(&root->inode_lock); 4232 if (atomic_read(&inode->i_count) > 1) 4233 d_prune_aliases(inode); 4234 /* 4235 * btrfs_drop_inode will have it removed from the inode 4236 * cache when its usage count hits zero. 4237 */ 4238 iput(inode); 4239 cond_resched(); 4240 spin_lock(&root->inode_lock); 4241 goto again; 4242 } 4243 4244 if (cond_resched_lock(&root->inode_lock)) 4245 goto again; 4246 4247 node = rb_next(node); 4248 } 4249 spin_unlock(&root->inode_lock); 4250 } 4251 4252 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4253 { 4254 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4255 struct btrfs_root *root = BTRFS_I(dir)->root; 4256 struct inode *inode = d_inode(dentry); 4257 struct btrfs_root *dest = BTRFS_I(inode)->root; 4258 struct btrfs_trans_handle *trans; 4259 struct btrfs_block_rsv block_rsv; 4260 u64 root_flags; 4261 int ret; 4262 int err; 4263 4264 /* 4265 * Don't allow to delete a subvolume with send in progress. This is 4266 * inside the inode lock so the error handling that has to drop the bit 4267 * again is not run concurrently. 4268 */ 4269 spin_lock(&dest->root_item_lock); 4270 if (dest->send_in_progress) { 4271 spin_unlock(&dest->root_item_lock); 4272 btrfs_warn(fs_info, 4273 "attempt to delete subvolume %llu during send", 4274 dest->root_key.objectid); 4275 return -EPERM; 4276 } 4277 root_flags = btrfs_root_flags(&dest->root_item); 4278 btrfs_set_root_flags(&dest->root_item, 4279 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4280 spin_unlock(&dest->root_item_lock); 4281 4282 down_write(&fs_info->subvol_sem); 4283 4284 err = may_destroy_subvol(dest); 4285 if (err) 4286 goto out_up_write; 4287 4288 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4289 /* 4290 * One for dir inode, 4291 * two for dir entries, 4292 * two for root ref/backref. 4293 */ 4294 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4295 if (err) 4296 goto out_up_write; 4297 4298 trans = btrfs_start_transaction(root, 0); 4299 if (IS_ERR(trans)) { 4300 err = PTR_ERR(trans); 4301 goto out_release; 4302 } 4303 trans->block_rsv = &block_rsv; 4304 trans->bytes_reserved = block_rsv.size; 4305 4306 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4307 4308 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid, 4309 dentry->d_name.name, dentry->d_name.len); 4310 if (ret) { 4311 err = ret; 4312 btrfs_abort_transaction(trans, ret); 4313 goto out_end_trans; 4314 } 4315 4316 btrfs_record_root_in_trans(trans, dest); 4317 4318 memset(&dest->root_item.drop_progress, 0, 4319 sizeof(dest->root_item.drop_progress)); 4320 dest->root_item.drop_level = 0; 4321 btrfs_set_root_refs(&dest->root_item, 0); 4322 4323 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4324 ret = btrfs_insert_orphan_item(trans, 4325 fs_info->tree_root, 4326 dest->root_key.objectid); 4327 if (ret) { 4328 btrfs_abort_transaction(trans, ret); 4329 err = ret; 4330 goto out_end_trans; 4331 } 4332 } 4333 4334 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4335 BTRFS_UUID_KEY_SUBVOL, 4336 dest->root_key.objectid); 4337 if (ret && ret != -ENOENT) { 4338 btrfs_abort_transaction(trans, ret); 4339 err = ret; 4340 goto out_end_trans; 4341 } 4342 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4343 ret = btrfs_uuid_tree_remove(trans, 4344 dest->root_item.received_uuid, 4345 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4346 dest->root_key.objectid); 4347 if (ret && ret != -ENOENT) { 4348 btrfs_abort_transaction(trans, ret); 4349 err = ret; 4350 goto out_end_trans; 4351 } 4352 } 4353 4354 out_end_trans: 4355 trans->block_rsv = NULL; 4356 trans->bytes_reserved = 0; 4357 ret = btrfs_end_transaction(trans); 4358 if (ret && !err) 4359 err = ret; 4360 inode->i_flags |= S_DEAD; 4361 out_release: 4362 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4363 out_up_write: 4364 up_write(&fs_info->subvol_sem); 4365 if (err) { 4366 spin_lock(&dest->root_item_lock); 4367 root_flags = btrfs_root_flags(&dest->root_item); 4368 btrfs_set_root_flags(&dest->root_item, 4369 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4370 spin_unlock(&dest->root_item_lock); 4371 } else { 4372 d_invalidate(dentry); 4373 btrfs_prune_dentries(dest); 4374 ASSERT(dest->send_in_progress == 0); 4375 4376 /* the last ref */ 4377 if (dest->ino_cache_inode) { 4378 iput(dest->ino_cache_inode); 4379 dest->ino_cache_inode = NULL; 4380 } 4381 } 4382 4383 return err; 4384 } 4385 4386 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4387 { 4388 struct inode *inode = d_inode(dentry); 4389 int err = 0; 4390 struct btrfs_root *root = BTRFS_I(dir)->root; 4391 struct btrfs_trans_handle *trans; 4392 u64 last_unlink_trans; 4393 4394 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4395 return -ENOTEMPTY; 4396 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4397 return btrfs_delete_subvolume(dir, dentry); 4398 4399 trans = __unlink_start_trans(dir); 4400 if (IS_ERR(trans)) 4401 return PTR_ERR(trans); 4402 4403 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4404 err = btrfs_unlink_subvol(trans, dir, 4405 BTRFS_I(inode)->location.objectid, 4406 dentry->d_name.name, 4407 dentry->d_name.len); 4408 goto out; 4409 } 4410 4411 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4412 if (err) 4413 goto out; 4414 4415 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4416 4417 /* now the directory is empty */ 4418 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4419 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4420 dentry->d_name.len); 4421 if (!err) { 4422 btrfs_i_size_write(BTRFS_I(inode), 0); 4423 /* 4424 * Propagate the last_unlink_trans value of the deleted dir to 4425 * its parent directory. This is to prevent an unrecoverable 4426 * log tree in the case we do something like this: 4427 * 1) create dir foo 4428 * 2) create snapshot under dir foo 4429 * 3) delete the snapshot 4430 * 4) rmdir foo 4431 * 5) mkdir foo 4432 * 6) fsync foo or some file inside foo 4433 */ 4434 if (last_unlink_trans >= trans->transid) 4435 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4436 } 4437 out: 4438 btrfs_end_transaction(trans); 4439 btrfs_btree_balance_dirty(root->fs_info); 4440 4441 return err; 4442 } 4443 4444 /* 4445 * Return this if we need to call truncate_block for the last bit of the 4446 * truncate. 4447 */ 4448 #define NEED_TRUNCATE_BLOCK 1 4449 4450 /* 4451 * this can truncate away extent items, csum items and directory items. 4452 * It starts at a high offset and removes keys until it can't find 4453 * any higher than new_size 4454 * 4455 * csum items that cross the new i_size are truncated to the new size 4456 * as well. 4457 * 4458 * min_type is the minimum key type to truncate down to. If set to 0, this 4459 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4460 */ 4461 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4462 struct btrfs_root *root, 4463 struct inode *inode, 4464 u64 new_size, u32 min_type) 4465 { 4466 struct btrfs_fs_info *fs_info = root->fs_info; 4467 struct btrfs_path *path; 4468 struct extent_buffer *leaf; 4469 struct btrfs_file_extent_item *fi; 4470 struct btrfs_key key; 4471 struct btrfs_key found_key; 4472 u64 extent_start = 0; 4473 u64 extent_num_bytes = 0; 4474 u64 extent_offset = 0; 4475 u64 item_end = 0; 4476 u64 last_size = new_size; 4477 u32 found_type = (u8)-1; 4478 int found_extent; 4479 int del_item; 4480 int pending_del_nr = 0; 4481 int pending_del_slot = 0; 4482 int extent_type = -1; 4483 int ret; 4484 u64 ino = btrfs_ino(BTRFS_I(inode)); 4485 u64 bytes_deleted = 0; 4486 bool be_nice = false; 4487 bool should_throttle = false; 4488 4489 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4490 4491 /* 4492 * for non-free space inodes and ref cows, we want to back off from 4493 * time to time 4494 */ 4495 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4496 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4497 be_nice = true; 4498 4499 path = btrfs_alloc_path(); 4500 if (!path) 4501 return -ENOMEM; 4502 path->reada = READA_BACK; 4503 4504 /* 4505 * We want to drop from the next block forward in case this new size is 4506 * not block aligned since we will be keeping the last block of the 4507 * extent just the way it is. 4508 */ 4509 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4510 root == fs_info->tree_root) 4511 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4512 fs_info->sectorsize), 4513 (u64)-1, 0); 4514 4515 /* 4516 * This function is also used to drop the items in the log tree before 4517 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4518 * it is used to drop the logged items. So we shouldn't kill the delayed 4519 * items. 4520 */ 4521 if (min_type == 0 && root == BTRFS_I(inode)->root) 4522 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4523 4524 key.objectid = ino; 4525 key.offset = (u64)-1; 4526 key.type = (u8)-1; 4527 4528 search_again: 4529 /* 4530 * with a 16K leaf size and 128MB extents, you can actually queue 4531 * up a huge file in a single leaf. Most of the time that 4532 * bytes_deleted is > 0, it will be huge by the time we get here 4533 */ 4534 if (be_nice && bytes_deleted > SZ_32M && 4535 btrfs_should_end_transaction(trans)) { 4536 ret = -EAGAIN; 4537 goto out; 4538 } 4539 4540 path->leave_spinning = 1; 4541 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4542 if (ret < 0) 4543 goto out; 4544 4545 if (ret > 0) { 4546 ret = 0; 4547 /* there are no items in the tree for us to truncate, we're 4548 * done 4549 */ 4550 if (path->slots[0] == 0) 4551 goto out; 4552 path->slots[0]--; 4553 } 4554 4555 while (1) { 4556 fi = NULL; 4557 leaf = path->nodes[0]; 4558 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4559 found_type = found_key.type; 4560 4561 if (found_key.objectid != ino) 4562 break; 4563 4564 if (found_type < min_type) 4565 break; 4566 4567 item_end = found_key.offset; 4568 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4569 fi = btrfs_item_ptr(leaf, path->slots[0], 4570 struct btrfs_file_extent_item); 4571 extent_type = btrfs_file_extent_type(leaf, fi); 4572 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4573 item_end += 4574 btrfs_file_extent_num_bytes(leaf, fi); 4575 4576 trace_btrfs_truncate_show_fi_regular( 4577 BTRFS_I(inode), leaf, fi, 4578 found_key.offset); 4579 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4580 item_end += btrfs_file_extent_ram_bytes(leaf, 4581 fi); 4582 4583 trace_btrfs_truncate_show_fi_inline( 4584 BTRFS_I(inode), leaf, fi, path->slots[0], 4585 found_key.offset); 4586 } 4587 item_end--; 4588 } 4589 if (found_type > min_type) { 4590 del_item = 1; 4591 } else { 4592 if (item_end < new_size) 4593 break; 4594 if (found_key.offset >= new_size) 4595 del_item = 1; 4596 else 4597 del_item = 0; 4598 } 4599 found_extent = 0; 4600 /* FIXME, shrink the extent if the ref count is only 1 */ 4601 if (found_type != BTRFS_EXTENT_DATA_KEY) 4602 goto delete; 4603 4604 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4605 u64 num_dec; 4606 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4607 if (!del_item) { 4608 u64 orig_num_bytes = 4609 btrfs_file_extent_num_bytes(leaf, fi); 4610 extent_num_bytes = ALIGN(new_size - 4611 found_key.offset, 4612 fs_info->sectorsize); 4613 btrfs_set_file_extent_num_bytes(leaf, fi, 4614 extent_num_bytes); 4615 num_dec = (orig_num_bytes - 4616 extent_num_bytes); 4617 if (test_bit(BTRFS_ROOT_REF_COWS, 4618 &root->state) && 4619 extent_start != 0) 4620 inode_sub_bytes(inode, num_dec); 4621 btrfs_mark_buffer_dirty(leaf); 4622 } else { 4623 extent_num_bytes = 4624 btrfs_file_extent_disk_num_bytes(leaf, 4625 fi); 4626 extent_offset = found_key.offset - 4627 btrfs_file_extent_offset(leaf, fi); 4628 4629 /* FIXME blocksize != 4096 */ 4630 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4631 if (extent_start != 0) { 4632 found_extent = 1; 4633 if (test_bit(BTRFS_ROOT_REF_COWS, 4634 &root->state)) 4635 inode_sub_bytes(inode, num_dec); 4636 } 4637 } 4638 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4639 /* 4640 * we can't truncate inline items that have had 4641 * special encodings 4642 */ 4643 if (!del_item && 4644 btrfs_file_extent_encryption(leaf, fi) == 0 && 4645 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4646 btrfs_file_extent_compression(leaf, fi) == 0) { 4647 u32 size = (u32)(new_size - found_key.offset); 4648 4649 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4650 size = btrfs_file_extent_calc_inline_size(size); 4651 btrfs_truncate_item(root->fs_info, path, size, 1); 4652 } else if (!del_item) { 4653 /* 4654 * We have to bail so the last_size is set to 4655 * just before this extent. 4656 */ 4657 ret = NEED_TRUNCATE_BLOCK; 4658 break; 4659 } 4660 4661 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4662 inode_sub_bytes(inode, item_end + 1 - new_size); 4663 } 4664 delete: 4665 if (del_item) 4666 last_size = found_key.offset; 4667 else 4668 last_size = new_size; 4669 if (del_item) { 4670 if (!pending_del_nr) { 4671 /* no pending yet, add ourselves */ 4672 pending_del_slot = path->slots[0]; 4673 pending_del_nr = 1; 4674 } else if (pending_del_nr && 4675 path->slots[0] + 1 == pending_del_slot) { 4676 /* hop on the pending chunk */ 4677 pending_del_nr++; 4678 pending_del_slot = path->slots[0]; 4679 } else { 4680 BUG(); 4681 } 4682 } else { 4683 break; 4684 } 4685 should_throttle = false; 4686 4687 if (found_extent && 4688 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4689 root == fs_info->tree_root)) { 4690 btrfs_set_path_blocking(path); 4691 bytes_deleted += extent_num_bytes; 4692 ret = btrfs_free_extent(trans, root, extent_start, 4693 extent_num_bytes, 0, 4694 btrfs_header_owner(leaf), 4695 ino, extent_offset); 4696 if (ret) { 4697 btrfs_abort_transaction(trans, ret); 4698 break; 4699 } 4700 if (be_nice) { 4701 if (btrfs_should_throttle_delayed_refs(trans)) 4702 should_throttle = true; 4703 } 4704 } 4705 4706 if (found_type == BTRFS_INODE_ITEM_KEY) 4707 break; 4708 4709 if (path->slots[0] == 0 || 4710 path->slots[0] != pending_del_slot || 4711 should_throttle) { 4712 if (pending_del_nr) { 4713 ret = btrfs_del_items(trans, root, path, 4714 pending_del_slot, 4715 pending_del_nr); 4716 if (ret) { 4717 btrfs_abort_transaction(trans, ret); 4718 break; 4719 } 4720 pending_del_nr = 0; 4721 } 4722 btrfs_release_path(path); 4723 4724 /* 4725 * We can generate a lot of delayed refs, so we need to 4726 * throttle every once and a while and make sure we're 4727 * adding enough space to keep up with the work we are 4728 * generating. Since we hold a transaction here we 4729 * can't flush, and we don't want to FLUSH_LIMIT because 4730 * we could have generated too many delayed refs to 4731 * actually allocate, so just bail if we're short and 4732 * let the normal reservation dance happen higher up. 4733 */ 4734 if (should_throttle) { 4735 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4736 BTRFS_RESERVE_NO_FLUSH); 4737 if (ret) { 4738 ret = -EAGAIN; 4739 break; 4740 } 4741 } 4742 goto search_again; 4743 } else { 4744 path->slots[0]--; 4745 } 4746 } 4747 out: 4748 if (ret >= 0 && pending_del_nr) { 4749 int err; 4750 4751 err = btrfs_del_items(trans, root, path, pending_del_slot, 4752 pending_del_nr); 4753 if (err) { 4754 btrfs_abort_transaction(trans, err); 4755 ret = err; 4756 } 4757 } 4758 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4759 ASSERT(last_size >= new_size); 4760 if (!ret && last_size > new_size) 4761 last_size = new_size; 4762 btrfs_ordered_update_i_size(inode, last_size, NULL); 4763 } 4764 4765 btrfs_free_path(path); 4766 return ret; 4767 } 4768 4769 /* 4770 * btrfs_truncate_block - read, zero a chunk and write a block 4771 * @inode - inode that we're zeroing 4772 * @from - the offset to start zeroing 4773 * @len - the length to zero, 0 to zero the entire range respective to the 4774 * offset 4775 * @front - zero up to the offset instead of from the offset on 4776 * 4777 * This will find the block for the "from" offset and cow the block and zero the 4778 * part we want to zero. This is used with truncate and hole punching. 4779 */ 4780 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4781 int front) 4782 { 4783 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4784 struct address_space *mapping = inode->i_mapping; 4785 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4786 struct btrfs_ordered_extent *ordered; 4787 struct extent_state *cached_state = NULL; 4788 struct extent_changeset *data_reserved = NULL; 4789 char *kaddr; 4790 u32 blocksize = fs_info->sectorsize; 4791 pgoff_t index = from >> PAGE_SHIFT; 4792 unsigned offset = from & (blocksize - 1); 4793 struct page *page; 4794 gfp_t mask = btrfs_alloc_write_mask(mapping); 4795 int ret = 0; 4796 u64 block_start; 4797 u64 block_end; 4798 4799 if (IS_ALIGNED(offset, blocksize) && 4800 (!len || IS_ALIGNED(len, blocksize))) 4801 goto out; 4802 4803 block_start = round_down(from, blocksize); 4804 block_end = block_start + blocksize - 1; 4805 4806 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4807 block_start, blocksize); 4808 if (ret) 4809 goto out; 4810 4811 again: 4812 page = find_or_create_page(mapping, index, mask); 4813 if (!page) { 4814 btrfs_delalloc_release_space(inode, data_reserved, 4815 block_start, blocksize, true); 4816 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true); 4817 ret = -ENOMEM; 4818 goto out; 4819 } 4820 4821 if (!PageUptodate(page)) { 4822 ret = btrfs_readpage(NULL, page); 4823 lock_page(page); 4824 if (page->mapping != mapping) { 4825 unlock_page(page); 4826 put_page(page); 4827 goto again; 4828 } 4829 if (!PageUptodate(page)) { 4830 ret = -EIO; 4831 goto out_unlock; 4832 } 4833 } 4834 wait_on_page_writeback(page); 4835 4836 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4837 set_page_extent_mapped(page); 4838 4839 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4840 if (ordered) { 4841 unlock_extent_cached(io_tree, block_start, block_end, 4842 &cached_state); 4843 unlock_page(page); 4844 put_page(page); 4845 btrfs_start_ordered_extent(inode, ordered, 1); 4846 btrfs_put_ordered_extent(ordered); 4847 goto again; 4848 } 4849 4850 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4851 EXTENT_DIRTY | EXTENT_DELALLOC | 4852 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4853 0, 0, &cached_state); 4854 4855 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4856 &cached_state, 0); 4857 if (ret) { 4858 unlock_extent_cached(io_tree, block_start, block_end, 4859 &cached_state); 4860 goto out_unlock; 4861 } 4862 4863 if (offset != blocksize) { 4864 if (!len) 4865 len = blocksize - offset; 4866 kaddr = kmap(page); 4867 if (front) 4868 memset(kaddr + (block_start - page_offset(page)), 4869 0, offset); 4870 else 4871 memset(kaddr + (block_start - page_offset(page)) + offset, 4872 0, len); 4873 flush_dcache_page(page); 4874 kunmap(page); 4875 } 4876 ClearPageChecked(page); 4877 set_page_dirty(page); 4878 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4879 4880 out_unlock: 4881 if (ret) 4882 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4883 blocksize, true); 4884 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0)); 4885 unlock_page(page); 4886 put_page(page); 4887 out: 4888 extent_changeset_free(data_reserved); 4889 return ret; 4890 } 4891 4892 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4893 u64 offset, u64 len) 4894 { 4895 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4896 struct btrfs_trans_handle *trans; 4897 int ret; 4898 4899 /* 4900 * Still need to make sure the inode looks like it's been updated so 4901 * that any holes get logged if we fsync. 4902 */ 4903 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4904 BTRFS_I(inode)->last_trans = fs_info->generation; 4905 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4906 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4907 return 0; 4908 } 4909 4910 /* 4911 * 1 - for the one we're dropping 4912 * 1 - for the one we're adding 4913 * 1 - for updating the inode. 4914 */ 4915 trans = btrfs_start_transaction(root, 3); 4916 if (IS_ERR(trans)) 4917 return PTR_ERR(trans); 4918 4919 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4920 if (ret) { 4921 btrfs_abort_transaction(trans, ret); 4922 btrfs_end_transaction(trans); 4923 return ret; 4924 } 4925 4926 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4927 offset, 0, 0, len, 0, len, 0, 0, 0); 4928 if (ret) 4929 btrfs_abort_transaction(trans, ret); 4930 else 4931 btrfs_update_inode(trans, root, inode); 4932 btrfs_end_transaction(trans); 4933 return ret; 4934 } 4935 4936 /* 4937 * This function puts in dummy file extents for the area we're creating a hole 4938 * for. So if we are truncating this file to a larger size we need to insert 4939 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4940 * the range between oldsize and size 4941 */ 4942 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4943 { 4944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4945 struct btrfs_root *root = BTRFS_I(inode)->root; 4946 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4947 struct extent_map *em = NULL; 4948 struct extent_state *cached_state = NULL; 4949 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4950 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4951 u64 block_end = ALIGN(size, fs_info->sectorsize); 4952 u64 last_byte; 4953 u64 cur_offset; 4954 u64 hole_size; 4955 int err = 0; 4956 4957 /* 4958 * If our size started in the middle of a block we need to zero out the 4959 * rest of the block before we expand the i_size, otherwise we could 4960 * expose stale data. 4961 */ 4962 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4963 if (err) 4964 return err; 4965 4966 if (size <= hole_start) 4967 return 0; 4968 4969 while (1) { 4970 struct btrfs_ordered_extent *ordered; 4971 4972 lock_extent_bits(io_tree, hole_start, block_end - 1, 4973 &cached_state); 4974 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 4975 block_end - hole_start); 4976 if (!ordered) 4977 break; 4978 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4979 &cached_state); 4980 btrfs_start_ordered_extent(inode, ordered, 1); 4981 btrfs_put_ordered_extent(ordered); 4982 } 4983 4984 cur_offset = hole_start; 4985 while (1) { 4986 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4987 block_end - cur_offset, 0); 4988 if (IS_ERR(em)) { 4989 err = PTR_ERR(em); 4990 em = NULL; 4991 break; 4992 } 4993 last_byte = min(extent_map_end(em), block_end); 4994 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4995 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4996 struct extent_map *hole_em; 4997 hole_size = last_byte - cur_offset; 4998 4999 err = maybe_insert_hole(root, inode, cur_offset, 5000 hole_size); 5001 if (err) 5002 break; 5003 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5004 cur_offset + hole_size - 1, 0); 5005 hole_em = alloc_extent_map(); 5006 if (!hole_em) { 5007 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5008 &BTRFS_I(inode)->runtime_flags); 5009 goto next; 5010 } 5011 hole_em->start = cur_offset; 5012 hole_em->len = hole_size; 5013 hole_em->orig_start = cur_offset; 5014 5015 hole_em->block_start = EXTENT_MAP_HOLE; 5016 hole_em->block_len = 0; 5017 hole_em->orig_block_len = 0; 5018 hole_em->ram_bytes = hole_size; 5019 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5020 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5021 hole_em->generation = fs_info->generation; 5022 5023 while (1) { 5024 write_lock(&em_tree->lock); 5025 err = add_extent_mapping(em_tree, hole_em, 1); 5026 write_unlock(&em_tree->lock); 5027 if (err != -EEXIST) 5028 break; 5029 btrfs_drop_extent_cache(BTRFS_I(inode), 5030 cur_offset, 5031 cur_offset + 5032 hole_size - 1, 0); 5033 } 5034 free_extent_map(hole_em); 5035 } 5036 next: 5037 free_extent_map(em); 5038 em = NULL; 5039 cur_offset = last_byte; 5040 if (cur_offset >= block_end) 5041 break; 5042 } 5043 free_extent_map(em); 5044 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5045 return err; 5046 } 5047 5048 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5049 { 5050 struct btrfs_root *root = BTRFS_I(inode)->root; 5051 struct btrfs_trans_handle *trans; 5052 loff_t oldsize = i_size_read(inode); 5053 loff_t newsize = attr->ia_size; 5054 int mask = attr->ia_valid; 5055 int ret; 5056 5057 /* 5058 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5059 * special case where we need to update the times despite not having 5060 * these flags set. For all other operations the VFS set these flags 5061 * explicitly if it wants a timestamp update. 5062 */ 5063 if (newsize != oldsize) { 5064 inode_inc_iversion(inode); 5065 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5066 inode->i_ctime = inode->i_mtime = 5067 current_time(inode); 5068 } 5069 5070 if (newsize > oldsize) { 5071 /* 5072 * Don't do an expanding truncate while snapshotting is ongoing. 5073 * This is to ensure the snapshot captures a fully consistent 5074 * state of this file - if the snapshot captures this expanding 5075 * truncation, it must capture all writes that happened before 5076 * this truncation. 5077 */ 5078 btrfs_wait_for_snapshot_creation(root); 5079 ret = btrfs_cont_expand(inode, oldsize, newsize); 5080 if (ret) { 5081 btrfs_end_write_no_snapshotting(root); 5082 return ret; 5083 } 5084 5085 trans = btrfs_start_transaction(root, 1); 5086 if (IS_ERR(trans)) { 5087 btrfs_end_write_no_snapshotting(root); 5088 return PTR_ERR(trans); 5089 } 5090 5091 i_size_write(inode, newsize); 5092 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5093 pagecache_isize_extended(inode, oldsize, newsize); 5094 ret = btrfs_update_inode(trans, root, inode); 5095 btrfs_end_write_no_snapshotting(root); 5096 btrfs_end_transaction(trans); 5097 } else { 5098 5099 /* 5100 * We're truncating a file that used to have good data down to 5101 * zero. Make sure it gets into the ordered flush list so that 5102 * any new writes get down to disk quickly. 5103 */ 5104 if (newsize == 0) 5105 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5106 &BTRFS_I(inode)->runtime_flags); 5107 5108 truncate_setsize(inode, newsize); 5109 5110 /* Disable nonlocked read DIO to avoid the endless truncate */ 5111 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5112 inode_dio_wait(inode); 5113 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5114 5115 ret = btrfs_truncate(inode, newsize == oldsize); 5116 if (ret && inode->i_nlink) { 5117 int err; 5118 5119 /* 5120 * Truncate failed, so fix up the in-memory size. We 5121 * adjusted disk_i_size down as we removed extents, so 5122 * wait for disk_i_size to be stable and then update the 5123 * in-memory size to match. 5124 */ 5125 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5126 if (err) 5127 return err; 5128 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5129 } 5130 } 5131 5132 return ret; 5133 } 5134 5135 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5136 { 5137 struct inode *inode = d_inode(dentry); 5138 struct btrfs_root *root = BTRFS_I(inode)->root; 5139 int err; 5140 5141 if (btrfs_root_readonly(root)) 5142 return -EROFS; 5143 5144 err = setattr_prepare(dentry, attr); 5145 if (err) 5146 return err; 5147 5148 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5149 err = btrfs_setsize(inode, attr); 5150 if (err) 5151 return err; 5152 } 5153 5154 if (attr->ia_valid) { 5155 setattr_copy(inode, attr); 5156 inode_inc_iversion(inode); 5157 err = btrfs_dirty_inode(inode); 5158 5159 if (!err && attr->ia_valid & ATTR_MODE) 5160 err = posix_acl_chmod(inode, inode->i_mode); 5161 } 5162 5163 return err; 5164 } 5165 5166 /* 5167 * While truncating the inode pages during eviction, we get the VFS calling 5168 * btrfs_invalidatepage() against each page of the inode. This is slow because 5169 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5170 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5171 * extent_state structures over and over, wasting lots of time. 5172 * 5173 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5174 * those expensive operations on a per page basis and do only the ordered io 5175 * finishing, while we release here the extent_map and extent_state structures, 5176 * without the excessive merging and splitting. 5177 */ 5178 static void evict_inode_truncate_pages(struct inode *inode) 5179 { 5180 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5181 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5182 struct rb_node *node; 5183 5184 ASSERT(inode->i_state & I_FREEING); 5185 truncate_inode_pages_final(&inode->i_data); 5186 5187 write_lock(&map_tree->lock); 5188 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5189 struct extent_map *em; 5190 5191 node = rb_first_cached(&map_tree->map); 5192 em = rb_entry(node, struct extent_map, rb_node); 5193 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5194 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5195 remove_extent_mapping(map_tree, em); 5196 free_extent_map(em); 5197 if (need_resched()) { 5198 write_unlock(&map_tree->lock); 5199 cond_resched(); 5200 write_lock(&map_tree->lock); 5201 } 5202 } 5203 write_unlock(&map_tree->lock); 5204 5205 /* 5206 * Keep looping until we have no more ranges in the io tree. 5207 * We can have ongoing bios started by readpages (called from readahead) 5208 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5209 * still in progress (unlocked the pages in the bio but did not yet 5210 * unlocked the ranges in the io tree). Therefore this means some 5211 * ranges can still be locked and eviction started because before 5212 * submitting those bios, which are executed by a separate task (work 5213 * queue kthread), inode references (inode->i_count) were not taken 5214 * (which would be dropped in the end io callback of each bio). 5215 * Therefore here we effectively end up waiting for those bios and 5216 * anyone else holding locked ranges without having bumped the inode's 5217 * reference count - if we don't do it, when they access the inode's 5218 * io_tree to unlock a range it may be too late, leading to an 5219 * use-after-free issue. 5220 */ 5221 spin_lock(&io_tree->lock); 5222 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5223 struct extent_state *state; 5224 struct extent_state *cached_state = NULL; 5225 u64 start; 5226 u64 end; 5227 unsigned state_flags; 5228 5229 node = rb_first(&io_tree->state); 5230 state = rb_entry(node, struct extent_state, rb_node); 5231 start = state->start; 5232 end = state->end; 5233 state_flags = state->state; 5234 spin_unlock(&io_tree->lock); 5235 5236 lock_extent_bits(io_tree, start, end, &cached_state); 5237 5238 /* 5239 * If still has DELALLOC flag, the extent didn't reach disk, 5240 * and its reserved space won't be freed by delayed_ref. 5241 * So we need to free its reserved space here. 5242 * (Refer to comment in btrfs_invalidatepage, case 2) 5243 * 5244 * Note, end is the bytenr of last byte, so we need + 1 here. 5245 */ 5246 if (state_flags & EXTENT_DELALLOC) 5247 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5248 5249 clear_extent_bit(io_tree, start, end, 5250 EXTENT_LOCKED | EXTENT_DIRTY | 5251 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5252 EXTENT_DEFRAG, 1, 1, &cached_state); 5253 5254 cond_resched(); 5255 spin_lock(&io_tree->lock); 5256 } 5257 spin_unlock(&io_tree->lock); 5258 } 5259 5260 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5261 struct btrfs_block_rsv *rsv) 5262 { 5263 struct btrfs_fs_info *fs_info = root->fs_info; 5264 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5265 int failures = 0; 5266 5267 for (;;) { 5268 struct btrfs_trans_handle *trans; 5269 int ret; 5270 5271 ret = btrfs_block_rsv_refill(root, rsv, rsv->size, 5272 BTRFS_RESERVE_FLUSH_LIMIT); 5273 5274 if (ret && ++failures > 2) { 5275 btrfs_warn(fs_info, 5276 "could not allocate space for a delete; will truncate on mount"); 5277 return ERR_PTR(-ENOSPC); 5278 } 5279 5280 trans = btrfs_join_transaction(root); 5281 if (IS_ERR(trans) || !ret) 5282 return trans; 5283 5284 /* 5285 * Try to steal from the global reserve if there is space for 5286 * it. 5287 */ 5288 if (!btrfs_check_space_for_delayed_refs(fs_info) && 5289 !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) 5290 return trans; 5291 5292 /* If not, commit and try again. */ 5293 ret = btrfs_commit_transaction(trans); 5294 if (ret) 5295 return ERR_PTR(ret); 5296 } 5297 } 5298 5299 void btrfs_evict_inode(struct inode *inode) 5300 { 5301 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5302 struct btrfs_trans_handle *trans; 5303 struct btrfs_root *root = BTRFS_I(inode)->root; 5304 struct btrfs_block_rsv *rsv; 5305 int ret; 5306 5307 trace_btrfs_inode_evict(inode); 5308 5309 if (!root) { 5310 clear_inode(inode); 5311 return; 5312 } 5313 5314 evict_inode_truncate_pages(inode); 5315 5316 if (inode->i_nlink && 5317 ((btrfs_root_refs(&root->root_item) != 0 && 5318 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5319 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5320 goto no_delete; 5321 5322 if (is_bad_inode(inode)) 5323 goto no_delete; 5324 5325 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5326 5327 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5328 goto no_delete; 5329 5330 if (inode->i_nlink > 0) { 5331 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5332 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5333 goto no_delete; 5334 } 5335 5336 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5337 if (ret) 5338 goto no_delete; 5339 5340 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5341 if (!rsv) 5342 goto no_delete; 5343 rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5344 rsv->failfast = 1; 5345 5346 btrfs_i_size_write(BTRFS_I(inode), 0); 5347 5348 while (1) { 5349 trans = evict_refill_and_join(root, rsv); 5350 if (IS_ERR(trans)) 5351 goto free_rsv; 5352 5353 trans->block_rsv = rsv; 5354 5355 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5356 trans->block_rsv = &fs_info->trans_block_rsv; 5357 btrfs_end_transaction(trans); 5358 btrfs_btree_balance_dirty(fs_info); 5359 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5360 goto free_rsv; 5361 else if (!ret) 5362 break; 5363 } 5364 5365 /* 5366 * Errors here aren't a big deal, it just means we leave orphan items in 5367 * the tree. They will be cleaned up on the next mount. If the inode 5368 * number gets reused, cleanup deletes the orphan item without doing 5369 * anything, and unlink reuses the existing orphan item. 5370 * 5371 * If it turns out that we are dropping too many of these, we might want 5372 * to add a mechanism for retrying these after a commit. 5373 */ 5374 trans = evict_refill_and_join(root, rsv); 5375 if (!IS_ERR(trans)) { 5376 trans->block_rsv = rsv; 5377 btrfs_orphan_del(trans, BTRFS_I(inode)); 5378 trans->block_rsv = &fs_info->trans_block_rsv; 5379 btrfs_end_transaction(trans); 5380 } 5381 5382 if (!(root == fs_info->tree_root || 5383 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5384 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5385 5386 free_rsv: 5387 btrfs_free_block_rsv(fs_info, rsv); 5388 no_delete: 5389 /* 5390 * If we didn't successfully delete, the orphan item will still be in 5391 * the tree and we'll retry on the next mount. Again, we might also want 5392 * to retry these periodically in the future. 5393 */ 5394 btrfs_remove_delayed_node(BTRFS_I(inode)); 5395 clear_inode(inode); 5396 } 5397 5398 /* 5399 * this returns the key found in the dir entry in the location pointer. 5400 * If no dir entries were found, returns -ENOENT. 5401 * If found a corrupted location in dir entry, returns -EUCLEAN. 5402 */ 5403 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5404 struct btrfs_key *location) 5405 { 5406 const char *name = dentry->d_name.name; 5407 int namelen = dentry->d_name.len; 5408 struct btrfs_dir_item *di; 5409 struct btrfs_path *path; 5410 struct btrfs_root *root = BTRFS_I(dir)->root; 5411 int ret = 0; 5412 5413 path = btrfs_alloc_path(); 5414 if (!path) 5415 return -ENOMEM; 5416 5417 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5418 name, namelen, 0); 5419 if (IS_ERR_OR_NULL(di)) { 5420 ret = di ? PTR_ERR(di) : -ENOENT; 5421 goto out; 5422 } 5423 5424 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5425 if (location->type != BTRFS_INODE_ITEM_KEY && 5426 location->type != BTRFS_ROOT_ITEM_KEY) { 5427 ret = -EUCLEAN; 5428 btrfs_warn(root->fs_info, 5429 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5430 __func__, name, btrfs_ino(BTRFS_I(dir)), 5431 location->objectid, location->type, location->offset); 5432 } 5433 out: 5434 btrfs_free_path(path); 5435 return ret; 5436 } 5437 5438 /* 5439 * when we hit a tree root in a directory, the btrfs part of the inode 5440 * needs to be changed to reflect the root directory of the tree root. This 5441 * is kind of like crossing a mount point. 5442 */ 5443 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5444 struct inode *dir, 5445 struct dentry *dentry, 5446 struct btrfs_key *location, 5447 struct btrfs_root **sub_root) 5448 { 5449 struct btrfs_path *path; 5450 struct btrfs_root *new_root; 5451 struct btrfs_root_ref *ref; 5452 struct extent_buffer *leaf; 5453 struct btrfs_key key; 5454 int ret; 5455 int err = 0; 5456 5457 path = btrfs_alloc_path(); 5458 if (!path) { 5459 err = -ENOMEM; 5460 goto out; 5461 } 5462 5463 err = -ENOENT; 5464 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5465 key.type = BTRFS_ROOT_REF_KEY; 5466 key.offset = location->objectid; 5467 5468 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5469 if (ret) { 5470 if (ret < 0) 5471 err = ret; 5472 goto out; 5473 } 5474 5475 leaf = path->nodes[0]; 5476 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5477 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5478 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5479 goto out; 5480 5481 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5482 (unsigned long)(ref + 1), 5483 dentry->d_name.len); 5484 if (ret) 5485 goto out; 5486 5487 btrfs_release_path(path); 5488 5489 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5490 if (IS_ERR(new_root)) { 5491 err = PTR_ERR(new_root); 5492 goto out; 5493 } 5494 5495 *sub_root = new_root; 5496 location->objectid = btrfs_root_dirid(&new_root->root_item); 5497 location->type = BTRFS_INODE_ITEM_KEY; 5498 location->offset = 0; 5499 err = 0; 5500 out: 5501 btrfs_free_path(path); 5502 return err; 5503 } 5504 5505 static void inode_tree_add(struct inode *inode) 5506 { 5507 struct btrfs_root *root = BTRFS_I(inode)->root; 5508 struct btrfs_inode *entry; 5509 struct rb_node **p; 5510 struct rb_node *parent; 5511 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5512 u64 ino = btrfs_ino(BTRFS_I(inode)); 5513 5514 if (inode_unhashed(inode)) 5515 return; 5516 parent = NULL; 5517 spin_lock(&root->inode_lock); 5518 p = &root->inode_tree.rb_node; 5519 while (*p) { 5520 parent = *p; 5521 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5522 5523 if (ino < btrfs_ino(entry)) 5524 p = &parent->rb_left; 5525 else if (ino > btrfs_ino(entry)) 5526 p = &parent->rb_right; 5527 else { 5528 WARN_ON(!(entry->vfs_inode.i_state & 5529 (I_WILL_FREE | I_FREEING))); 5530 rb_replace_node(parent, new, &root->inode_tree); 5531 RB_CLEAR_NODE(parent); 5532 spin_unlock(&root->inode_lock); 5533 return; 5534 } 5535 } 5536 rb_link_node(new, parent, p); 5537 rb_insert_color(new, &root->inode_tree); 5538 spin_unlock(&root->inode_lock); 5539 } 5540 5541 static void inode_tree_del(struct inode *inode) 5542 { 5543 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5544 struct btrfs_root *root = BTRFS_I(inode)->root; 5545 int empty = 0; 5546 5547 spin_lock(&root->inode_lock); 5548 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5549 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5550 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5551 empty = RB_EMPTY_ROOT(&root->inode_tree); 5552 } 5553 spin_unlock(&root->inode_lock); 5554 5555 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5556 synchronize_srcu(&fs_info->subvol_srcu); 5557 spin_lock(&root->inode_lock); 5558 empty = RB_EMPTY_ROOT(&root->inode_tree); 5559 spin_unlock(&root->inode_lock); 5560 if (empty) 5561 btrfs_add_dead_root(root); 5562 } 5563 } 5564 5565 5566 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5567 { 5568 struct btrfs_iget_args *args = p; 5569 inode->i_ino = args->location->objectid; 5570 memcpy(&BTRFS_I(inode)->location, args->location, 5571 sizeof(*args->location)); 5572 BTRFS_I(inode)->root = args->root; 5573 return 0; 5574 } 5575 5576 static int btrfs_find_actor(struct inode *inode, void *opaque) 5577 { 5578 struct btrfs_iget_args *args = opaque; 5579 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5580 args->root == BTRFS_I(inode)->root; 5581 } 5582 5583 static struct inode *btrfs_iget_locked(struct super_block *s, 5584 struct btrfs_key *location, 5585 struct btrfs_root *root) 5586 { 5587 struct inode *inode; 5588 struct btrfs_iget_args args; 5589 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5590 5591 args.location = location; 5592 args.root = root; 5593 5594 inode = iget5_locked(s, hashval, btrfs_find_actor, 5595 btrfs_init_locked_inode, 5596 (void *)&args); 5597 return inode; 5598 } 5599 5600 /* Get an inode object given its location and corresponding root. 5601 * Returns in *is_new if the inode was read from disk 5602 */ 5603 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5604 struct btrfs_root *root, int *new, 5605 struct btrfs_path *path) 5606 { 5607 struct inode *inode; 5608 5609 inode = btrfs_iget_locked(s, location, root); 5610 if (!inode) 5611 return ERR_PTR(-ENOMEM); 5612 5613 if (inode->i_state & I_NEW) { 5614 int ret; 5615 5616 ret = btrfs_read_locked_inode(inode, path); 5617 if (!ret) { 5618 inode_tree_add(inode); 5619 unlock_new_inode(inode); 5620 if (new) 5621 *new = 1; 5622 } else { 5623 iget_failed(inode); 5624 /* 5625 * ret > 0 can come from btrfs_search_slot called by 5626 * btrfs_read_locked_inode, this means the inode item 5627 * was not found. 5628 */ 5629 if (ret > 0) 5630 ret = -ENOENT; 5631 inode = ERR_PTR(ret); 5632 } 5633 } 5634 5635 return inode; 5636 } 5637 5638 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5639 struct btrfs_root *root, int *new) 5640 { 5641 return btrfs_iget_path(s, location, root, new, NULL); 5642 } 5643 5644 static struct inode *new_simple_dir(struct super_block *s, 5645 struct btrfs_key *key, 5646 struct btrfs_root *root) 5647 { 5648 struct inode *inode = new_inode(s); 5649 5650 if (!inode) 5651 return ERR_PTR(-ENOMEM); 5652 5653 BTRFS_I(inode)->root = root; 5654 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5655 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5656 5657 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5658 inode->i_op = &btrfs_dir_ro_inode_operations; 5659 inode->i_opflags &= ~IOP_XATTR; 5660 inode->i_fop = &simple_dir_operations; 5661 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5662 inode->i_mtime = current_time(inode); 5663 inode->i_atime = inode->i_mtime; 5664 inode->i_ctime = inode->i_mtime; 5665 BTRFS_I(inode)->i_otime = inode->i_mtime; 5666 5667 return inode; 5668 } 5669 5670 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5671 { 5672 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5673 struct inode *inode; 5674 struct btrfs_root *root = BTRFS_I(dir)->root; 5675 struct btrfs_root *sub_root = root; 5676 struct btrfs_key location; 5677 int index; 5678 int ret = 0; 5679 5680 if (dentry->d_name.len > BTRFS_NAME_LEN) 5681 return ERR_PTR(-ENAMETOOLONG); 5682 5683 ret = btrfs_inode_by_name(dir, dentry, &location); 5684 if (ret < 0) 5685 return ERR_PTR(ret); 5686 5687 if (location.type == BTRFS_INODE_ITEM_KEY) { 5688 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5689 return inode; 5690 } 5691 5692 index = srcu_read_lock(&fs_info->subvol_srcu); 5693 ret = fixup_tree_root_location(fs_info, dir, dentry, 5694 &location, &sub_root); 5695 if (ret < 0) { 5696 if (ret != -ENOENT) 5697 inode = ERR_PTR(ret); 5698 else 5699 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5700 } else { 5701 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5702 } 5703 srcu_read_unlock(&fs_info->subvol_srcu, index); 5704 5705 if (!IS_ERR(inode) && root != sub_root) { 5706 down_read(&fs_info->cleanup_work_sem); 5707 if (!sb_rdonly(inode->i_sb)) 5708 ret = btrfs_orphan_cleanup(sub_root); 5709 up_read(&fs_info->cleanup_work_sem); 5710 if (ret) { 5711 iput(inode); 5712 inode = ERR_PTR(ret); 5713 } 5714 } 5715 5716 return inode; 5717 } 5718 5719 static int btrfs_dentry_delete(const struct dentry *dentry) 5720 { 5721 struct btrfs_root *root; 5722 struct inode *inode = d_inode(dentry); 5723 5724 if (!inode && !IS_ROOT(dentry)) 5725 inode = d_inode(dentry->d_parent); 5726 5727 if (inode) { 5728 root = BTRFS_I(inode)->root; 5729 if (btrfs_root_refs(&root->root_item) == 0) 5730 return 1; 5731 5732 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5733 return 1; 5734 } 5735 return 0; 5736 } 5737 5738 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5739 unsigned int flags) 5740 { 5741 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5742 5743 if (inode == ERR_PTR(-ENOENT)) 5744 inode = NULL; 5745 return d_splice_alias(inode, dentry); 5746 } 5747 5748 unsigned char btrfs_filetype_table[] = { 5749 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5750 }; 5751 5752 /* 5753 * All this infrastructure exists because dir_emit can fault, and we are holding 5754 * the tree lock when doing readdir. For now just allocate a buffer and copy 5755 * our information into that, and then dir_emit from the buffer. This is 5756 * similar to what NFS does, only we don't keep the buffer around in pagecache 5757 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5758 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5759 * tree lock. 5760 */ 5761 static int btrfs_opendir(struct inode *inode, struct file *file) 5762 { 5763 struct btrfs_file_private *private; 5764 5765 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5766 if (!private) 5767 return -ENOMEM; 5768 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5769 if (!private->filldir_buf) { 5770 kfree(private); 5771 return -ENOMEM; 5772 } 5773 file->private_data = private; 5774 return 0; 5775 } 5776 5777 struct dir_entry { 5778 u64 ino; 5779 u64 offset; 5780 unsigned type; 5781 int name_len; 5782 }; 5783 5784 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5785 { 5786 while (entries--) { 5787 struct dir_entry *entry = addr; 5788 char *name = (char *)(entry + 1); 5789 5790 ctx->pos = get_unaligned(&entry->offset); 5791 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5792 get_unaligned(&entry->ino), 5793 get_unaligned(&entry->type))) 5794 return 1; 5795 addr += sizeof(struct dir_entry) + 5796 get_unaligned(&entry->name_len); 5797 ctx->pos++; 5798 } 5799 return 0; 5800 } 5801 5802 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5803 { 5804 struct inode *inode = file_inode(file); 5805 struct btrfs_root *root = BTRFS_I(inode)->root; 5806 struct btrfs_file_private *private = file->private_data; 5807 struct btrfs_dir_item *di; 5808 struct btrfs_key key; 5809 struct btrfs_key found_key; 5810 struct btrfs_path *path; 5811 void *addr; 5812 struct list_head ins_list; 5813 struct list_head del_list; 5814 int ret; 5815 struct extent_buffer *leaf; 5816 int slot; 5817 char *name_ptr; 5818 int name_len; 5819 int entries = 0; 5820 int total_len = 0; 5821 bool put = false; 5822 struct btrfs_key location; 5823 5824 if (!dir_emit_dots(file, ctx)) 5825 return 0; 5826 5827 path = btrfs_alloc_path(); 5828 if (!path) 5829 return -ENOMEM; 5830 5831 addr = private->filldir_buf; 5832 path->reada = READA_FORWARD; 5833 5834 INIT_LIST_HEAD(&ins_list); 5835 INIT_LIST_HEAD(&del_list); 5836 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5837 5838 again: 5839 key.type = BTRFS_DIR_INDEX_KEY; 5840 key.offset = ctx->pos; 5841 key.objectid = btrfs_ino(BTRFS_I(inode)); 5842 5843 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5844 if (ret < 0) 5845 goto err; 5846 5847 while (1) { 5848 struct dir_entry *entry; 5849 5850 leaf = path->nodes[0]; 5851 slot = path->slots[0]; 5852 if (slot >= btrfs_header_nritems(leaf)) { 5853 ret = btrfs_next_leaf(root, path); 5854 if (ret < 0) 5855 goto err; 5856 else if (ret > 0) 5857 break; 5858 continue; 5859 } 5860 5861 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5862 5863 if (found_key.objectid != key.objectid) 5864 break; 5865 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5866 break; 5867 if (found_key.offset < ctx->pos) 5868 goto next; 5869 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5870 goto next; 5871 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5872 name_len = btrfs_dir_name_len(leaf, di); 5873 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5874 PAGE_SIZE) { 5875 btrfs_release_path(path); 5876 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5877 if (ret) 5878 goto nopos; 5879 addr = private->filldir_buf; 5880 entries = 0; 5881 total_len = 0; 5882 goto again; 5883 } 5884 5885 entry = addr; 5886 put_unaligned(name_len, &entry->name_len); 5887 name_ptr = (char *)(entry + 1); 5888 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5889 name_len); 5890 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)], 5891 &entry->type); 5892 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5893 put_unaligned(location.objectid, &entry->ino); 5894 put_unaligned(found_key.offset, &entry->offset); 5895 entries++; 5896 addr += sizeof(struct dir_entry) + name_len; 5897 total_len += sizeof(struct dir_entry) + name_len; 5898 next: 5899 path->slots[0]++; 5900 } 5901 btrfs_release_path(path); 5902 5903 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5904 if (ret) 5905 goto nopos; 5906 5907 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5908 if (ret) 5909 goto nopos; 5910 5911 /* 5912 * Stop new entries from being returned after we return the last 5913 * entry. 5914 * 5915 * New directory entries are assigned a strictly increasing 5916 * offset. This means that new entries created during readdir 5917 * are *guaranteed* to be seen in the future by that readdir. 5918 * This has broken buggy programs which operate on names as 5919 * they're returned by readdir. Until we re-use freed offsets 5920 * we have this hack to stop new entries from being returned 5921 * under the assumption that they'll never reach this huge 5922 * offset. 5923 * 5924 * This is being careful not to overflow 32bit loff_t unless the 5925 * last entry requires it because doing so has broken 32bit apps 5926 * in the past. 5927 */ 5928 if (ctx->pos >= INT_MAX) 5929 ctx->pos = LLONG_MAX; 5930 else 5931 ctx->pos = INT_MAX; 5932 nopos: 5933 ret = 0; 5934 err: 5935 if (put) 5936 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5937 btrfs_free_path(path); 5938 return ret; 5939 } 5940 5941 /* 5942 * This is somewhat expensive, updating the tree every time the 5943 * inode changes. But, it is most likely to find the inode in cache. 5944 * FIXME, needs more benchmarking...there are no reasons other than performance 5945 * to keep or drop this code. 5946 */ 5947 static int btrfs_dirty_inode(struct inode *inode) 5948 { 5949 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5950 struct btrfs_root *root = BTRFS_I(inode)->root; 5951 struct btrfs_trans_handle *trans; 5952 int ret; 5953 5954 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5955 return 0; 5956 5957 trans = btrfs_join_transaction(root); 5958 if (IS_ERR(trans)) 5959 return PTR_ERR(trans); 5960 5961 ret = btrfs_update_inode(trans, root, inode); 5962 if (ret && ret == -ENOSPC) { 5963 /* whoops, lets try again with the full transaction */ 5964 btrfs_end_transaction(trans); 5965 trans = btrfs_start_transaction(root, 1); 5966 if (IS_ERR(trans)) 5967 return PTR_ERR(trans); 5968 5969 ret = btrfs_update_inode(trans, root, inode); 5970 } 5971 btrfs_end_transaction(trans); 5972 if (BTRFS_I(inode)->delayed_node) 5973 btrfs_balance_delayed_items(fs_info); 5974 5975 return ret; 5976 } 5977 5978 /* 5979 * This is a copy of file_update_time. We need this so we can return error on 5980 * ENOSPC for updating the inode in the case of file write and mmap writes. 5981 */ 5982 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5983 int flags) 5984 { 5985 struct btrfs_root *root = BTRFS_I(inode)->root; 5986 bool dirty = flags & ~S_VERSION; 5987 5988 if (btrfs_root_readonly(root)) 5989 return -EROFS; 5990 5991 if (flags & S_VERSION) 5992 dirty |= inode_maybe_inc_iversion(inode, dirty); 5993 if (flags & S_CTIME) 5994 inode->i_ctime = *now; 5995 if (flags & S_MTIME) 5996 inode->i_mtime = *now; 5997 if (flags & S_ATIME) 5998 inode->i_atime = *now; 5999 return dirty ? btrfs_dirty_inode(inode) : 0; 6000 } 6001 6002 /* 6003 * find the highest existing sequence number in a directory 6004 * and then set the in-memory index_cnt variable to reflect 6005 * free sequence numbers 6006 */ 6007 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6008 { 6009 struct btrfs_root *root = inode->root; 6010 struct btrfs_key key, found_key; 6011 struct btrfs_path *path; 6012 struct extent_buffer *leaf; 6013 int ret; 6014 6015 key.objectid = btrfs_ino(inode); 6016 key.type = BTRFS_DIR_INDEX_KEY; 6017 key.offset = (u64)-1; 6018 6019 path = btrfs_alloc_path(); 6020 if (!path) 6021 return -ENOMEM; 6022 6023 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6024 if (ret < 0) 6025 goto out; 6026 /* FIXME: we should be able to handle this */ 6027 if (ret == 0) 6028 goto out; 6029 ret = 0; 6030 6031 /* 6032 * MAGIC NUMBER EXPLANATION: 6033 * since we search a directory based on f_pos we have to start at 2 6034 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6035 * else has to start at 2 6036 */ 6037 if (path->slots[0] == 0) { 6038 inode->index_cnt = 2; 6039 goto out; 6040 } 6041 6042 path->slots[0]--; 6043 6044 leaf = path->nodes[0]; 6045 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6046 6047 if (found_key.objectid != btrfs_ino(inode) || 6048 found_key.type != BTRFS_DIR_INDEX_KEY) { 6049 inode->index_cnt = 2; 6050 goto out; 6051 } 6052 6053 inode->index_cnt = found_key.offset + 1; 6054 out: 6055 btrfs_free_path(path); 6056 return ret; 6057 } 6058 6059 /* 6060 * helper to find a free sequence number in a given directory. This current 6061 * code is very simple, later versions will do smarter things in the btree 6062 */ 6063 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6064 { 6065 int ret = 0; 6066 6067 if (dir->index_cnt == (u64)-1) { 6068 ret = btrfs_inode_delayed_dir_index_count(dir); 6069 if (ret) { 6070 ret = btrfs_set_inode_index_count(dir); 6071 if (ret) 6072 return ret; 6073 } 6074 } 6075 6076 *index = dir->index_cnt; 6077 dir->index_cnt++; 6078 6079 return ret; 6080 } 6081 6082 static int btrfs_insert_inode_locked(struct inode *inode) 6083 { 6084 struct btrfs_iget_args args; 6085 args.location = &BTRFS_I(inode)->location; 6086 args.root = BTRFS_I(inode)->root; 6087 6088 return insert_inode_locked4(inode, 6089 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6090 btrfs_find_actor, &args); 6091 } 6092 6093 /* 6094 * Inherit flags from the parent inode. 6095 * 6096 * Currently only the compression flags and the cow flags are inherited. 6097 */ 6098 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6099 { 6100 unsigned int flags; 6101 6102 if (!dir) 6103 return; 6104 6105 flags = BTRFS_I(dir)->flags; 6106 6107 if (flags & BTRFS_INODE_NOCOMPRESS) { 6108 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6109 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6110 } else if (flags & BTRFS_INODE_COMPRESS) { 6111 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6112 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6113 } 6114 6115 if (flags & BTRFS_INODE_NODATACOW) { 6116 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6117 if (S_ISREG(inode->i_mode)) 6118 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6119 } 6120 6121 btrfs_sync_inode_flags_to_i_flags(inode); 6122 } 6123 6124 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6125 struct btrfs_root *root, 6126 struct inode *dir, 6127 const char *name, int name_len, 6128 u64 ref_objectid, u64 objectid, 6129 umode_t mode, u64 *index) 6130 { 6131 struct btrfs_fs_info *fs_info = root->fs_info; 6132 struct inode *inode; 6133 struct btrfs_inode_item *inode_item; 6134 struct btrfs_key *location; 6135 struct btrfs_path *path; 6136 struct btrfs_inode_ref *ref; 6137 struct btrfs_key key[2]; 6138 u32 sizes[2]; 6139 int nitems = name ? 2 : 1; 6140 unsigned long ptr; 6141 int ret; 6142 6143 path = btrfs_alloc_path(); 6144 if (!path) 6145 return ERR_PTR(-ENOMEM); 6146 6147 inode = new_inode(fs_info->sb); 6148 if (!inode) { 6149 btrfs_free_path(path); 6150 return ERR_PTR(-ENOMEM); 6151 } 6152 6153 /* 6154 * O_TMPFILE, set link count to 0, so that after this point, 6155 * we fill in an inode item with the correct link count. 6156 */ 6157 if (!name) 6158 set_nlink(inode, 0); 6159 6160 /* 6161 * we have to initialize this early, so we can reclaim the inode 6162 * number if we fail afterwards in this function. 6163 */ 6164 inode->i_ino = objectid; 6165 6166 if (dir && name) { 6167 trace_btrfs_inode_request(dir); 6168 6169 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6170 if (ret) { 6171 btrfs_free_path(path); 6172 iput(inode); 6173 return ERR_PTR(ret); 6174 } 6175 } else if (dir) { 6176 *index = 0; 6177 } 6178 /* 6179 * index_cnt is ignored for everything but a dir, 6180 * btrfs_set_inode_index_count has an explanation for the magic 6181 * number 6182 */ 6183 BTRFS_I(inode)->index_cnt = 2; 6184 BTRFS_I(inode)->dir_index = *index; 6185 BTRFS_I(inode)->root = root; 6186 BTRFS_I(inode)->generation = trans->transid; 6187 inode->i_generation = BTRFS_I(inode)->generation; 6188 6189 /* 6190 * We could have gotten an inode number from somebody who was fsynced 6191 * and then removed in this same transaction, so let's just set full 6192 * sync since it will be a full sync anyway and this will blow away the 6193 * old info in the log. 6194 */ 6195 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6196 6197 key[0].objectid = objectid; 6198 key[0].type = BTRFS_INODE_ITEM_KEY; 6199 key[0].offset = 0; 6200 6201 sizes[0] = sizeof(struct btrfs_inode_item); 6202 6203 if (name) { 6204 /* 6205 * Start new inodes with an inode_ref. This is slightly more 6206 * efficient for small numbers of hard links since they will 6207 * be packed into one item. Extended refs will kick in if we 6208 * add more hard links than can fit in the ref item. 6209 */ 6210 key[1].objectid = objectid; 6211 key[1].type = BTRFS_INODE_REF_KEY; 6212 key[1].offset = ref_objectid; 6213 6214 sizes[1] = name_len + sizeof(*ref); 6215 } 6216 6217 location = &BTRFS_I(inode)->location; 6218 location->objectid = objectid; 6219 location->offset = 0; 6220 location->type = BTRFS_INODE_ITEM_KEY; 6221 6222 ret = btrfs_insert_inode_locked(inode); 6223 if (ret < 0) { 6224 iput(inode); 6225 goto fail; 6226 } 6227 6228 path->leave_spinning = 1; 6229 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6230 if (ret != 0) 6231 goto fail_unlock; 6232 6233 inode_init_owner(inode, dir, mode); 6234 inode_set_bytes(inode, 0); 6235 6236 inode->i_mtime = current_time(inode); 6237 inode->i_atime = inode->i_mtime; 6238 inode->i_ctime = inode->i_mtime; 6239 BTRFS_I(inode)->i_otime = inode->i_mtime; 6240 6241 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6242 struct btrfs_inode_item); 6243 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6244 sizeof(*inode_item)); 6245 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6246 6247 if (name) { 6248 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6249 struct btrfs_inode_ref); 6250 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6251 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6252 ptr = (unsigned long)(ref + 1); 6253 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6254 } 6255 6256 btrfs_mark_buffer_dirty(path->nodes[0]); 6257 btrfs_free_path(path); 6258 6259 btrfs_inherit_iflags(inode, dir); 6260 6261 if (S_ISREG(mode)) { 6262 if (btrfs_test_opt(fs_info, NODATASUM)) 6263 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6264 if (btrfs_test_opt(fs_info, NODATACOW)) 6265 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6266 BTRFS_INODE_NODATASUM; 6267 } 6268 6269 inode_tree_add(inode); 6270 6271 trace_btrfs_inode_new(inode); 6272 btrfs_set_inode_last_trans(trans, inode); 6273 6274 btrfs_update_root_times(trans, root); 6275 6276 ret = btrfs_inode_inherit_props(trans, inode, dir); 6277 if (ret) 6278 btrfs_err(fs_info, 6279 "error inheriting props for ino %llu (root %llu): %d", 6280 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6281 6282 return inode; 6283 6284 fail_unlock: 6285 discard_new_inode(inode); 6286 fail: 6287 if (dir && name) 6288 BTRFS_I(dir)->index_cnt--; 6289 btrfs_free_path(path); 6290 return ERR_PTR(ret); 6291 } 6292 6293 static inline u8 btrfs_inode_type(struct inode *inode) 6294 { 6295 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6296 } 6297 6298 /* 6299 * utility function to add 'inode' into 'parent_inode' with 6300 * a give name and a given sequence number. 6301 * if 'add_backref' is true, also insert a backref from the 6302 * inode to the parent directory. 6303 */ 6304 int btrfs_add_link(struct btrfs_trans_handle *trans, 6305 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6306 const char *name, int name_len, int add_backref, u64 index) 6307 { 6308 int ret = 0; 6309 struct btrfs_key key; 6310 struct btrfs_root *root = parent_inode->root; 6311 u64 ino = btrfs_ino(inode); 6312 u64 parent_ino = btrfs_ino(parent_inode); 6313 6314 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6315 memcpy(&key, &inode->root->root_key, sizeof(key)); 6316 } else { 6317 key.objectid = ino; 6318 key.type = BTRFS_INODE_ITEM_KEY; 6319 key.offset = 0; 6320 } 6321 6322 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6323 ret = btrfs_add_root_ref(trans, key.objectid, 6324 root->root_key.objectid, parent_ino, 6325 index, name, name_len); 6326 } else if (add_backref) { 6327 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6328 parent_ino, index); 6329 } 6330 6331 /* Nothing to clean up yet */ 6332 if (ret) 6333 return ret; 6334 6335 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6336 btrfs_inode_type(&inode->vfs_inode), index); 6337 if (ret == -EEXIST || ret == -EOVERFLOW) 6338 goto fail_dir_item; 6339 else if (ret) { 6340 btrfs_abort_transaction(trans, ret); 6341 return ret; 6342 } 6343 6344 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6345 name_len * 2); 6346 inode_inc_iversion(&parent_inode->vfs_inode); 6347 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6348 current_time(&parent_inode->vfs_inode); 6349 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6350 if (ret) 6351 btrfs_abort_transaction(trans, ret); 6352 return ret; 6353 6354 fail_dir_item: 6355 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6356 u64 local_index; 6357 int err; 6358 err = btrfs_del_root_ref(trans, key.objectid, 6359 root->root_key.objectid, parent_ino, 6360 &local_index, name, name_len); 6361 if (err) 6362 btrfs_abort_transaction(trans, err); 6363 } else if (add_backref) { 6364 u64 local_index; 6365 int err; 6366 6367 err = btrfs_del_inode_ref(trans, root, name, name_len, 6368 ino, parent_ino, &local_index); 6369 if (err) 6370 btrfs_abort_transaction(trans, err); 6371 } 6372 6373 /* Return the original error code */ 6374 return ret; 6375 } 6376 6377 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6378 struct btrfs_inode *dir, struct dentry *dentry, 6379 struct btrfs_inode *inode, int backref, u64 index) 6380 { 6381 int err = btrfs_add_link(trans, dir, inode, 6382 dentry->d_name.name, dentry->d_name.len, 6383 backref, index); 6384 if (err > 0) 6385 err = -EEXIST; 6386 return err; 6387 } 6388 6389 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6390 umode_t mode, dev_t rdev) 6391 { 6392 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6393 struct btrfs_trans_handle *trans; 6394 struct btrfs_root *root = BTRFS_I(dir)->root; 6395 struct inode *inode = NULL; 6396 int err; 6397 u64 objectid; 6398 u64 index = 0; 6399 6400 /* 6401 * 2 for inode item and ref 6402 * 2 for dir items 6403 * 1 for xattr if selinux is on 6404 */ 6405 trans = btrfs_start_transaction(root, 5); 6406 if (IS_ERR(trans)) 6407 return PTR_ERR(trans); 6408 6409 err = btrfs_find_free_ino(root, &objectid); 6410 if (err) 6411 goto out_unlock; 6412 6413 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6414 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6415 mode, &index); 6416 if (IS_ERR(inode)) { 6417 err = PTR_ERR(inode); 6418 inode = NULL; 6419 goto out_unlock; 6420 } 6421 6422 /* 6423 * If the active LSM wants to access the inode during 6424 * d_instantiate it needs these. Smack checks to see 6425 * if the filesystem supports xattrs by looking at the 6426 * ops vector. 6427 */ 6428 inode->i_op = &btrfs_special_inode_operations; 6429 init_special_inode(inode, inode->i_mode, rdev); 6430 6431 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6432 if (err) 6433 goto out_unlock; 6434 6435 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6436 0, index); 6437 if (err) 6438 goto out_unlock; 6439 6440 btrfs_update_inode(trans, root, inode); 6441 d_instantiate_new(dentry, inode); 6442 6443 out_unlock: 6444 btrfs_end_transaction(trans); 6445 btrfs_btree_balance_dirty(fs_info); 6446 if (err && inode) { 6447 inode_dec_link_count(inode); 6448 discard_new_inode(inode); 6449 } 6450 return err; 6451 } 6452 6453 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6454 umode_t mode, bool excl) 6455 { 6456 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6457 struct btrfs_trans_handle *trans; 6458 struct btrfs_root *root = BTRFS_I(dir)->root; 6459 struct inode *inode = NULL; 6460 int err; 6461 u64 objectid; 6462 u64 index = 0; 6463 6464 /* 6465 * 2 for inode item and ref 6466 * 2 for dir items 6467 * 1 for xattr if selinux is on 6468 */ 6469 trans = btrfs_start_transaction(root, 5); 6470 if (IS_ERR(trans)) 6471 return PTR_ERR(trans); 6472 6473 err = btrfs_find_free_ino(root, &objectid); 6474 if (err) 6475 goto out_unlock; 6476 6477 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6478 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6479 mode, &index); 6480 if (IS_ERR(inode)) { 6481 err = PTR_ERR(inode); 6482 inode = NULL; 6483 goto out_unlock; 6484 } 6485 /* 6486 * If the active LSM wants to access the inode during 6487 * d_instantiate it needs these. Smack checks to see 6488 * if the filesystem supports xattrs by looking at the 6489 * ops vector. 6490 */ 6491 inode->i_fop = &btrfs_file_operations; 6492 inode->i_op = &btrfs_file_inode_operations; 6493 inode->i_mapping->a_ops = &btrfs_aops; 6494 6495 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6496 if (err) 6497 goto out_unlock; 6498 6499 err = btrfs_update_inode(trans, root, inode); 6500 if (err) 6501 goto out_unlock; 6502 6503 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6504 0, index); 6505 if (err) 6506 goto out_unlock; 6507 6508 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6509 d_instantiate_new(dentry, inode); 6510 6511 out_unlock: 6512 btrfs_end_transaction(trans); 6513 if (err && inode) { 6514 inode_dec_link_count(inode); 6515 discard_new_inode(inode); 6516 } 6517 btrfs_btree_balance_dirty(fs_info); 6518 return err; 6519 } 6520 6521 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6522 struct dentry *dentry) 6523 { 6524 struct btrfs_trans_handle *trans = NULL; 6525 struct btrfs_root *root = BTRFS_I(dir)->root; 6526 struct inode *inode = d_inode(old_dentry); 6527 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6528 u64 index; 6529 int err; 6530 int drop_inode = 0; 6531 6532 /* do not allow sys_link's with other subvols of the same device */ 6533 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6534 return -EXDEV; 6535 6536 if (inode->i_nlink >= BTRFS_LINK_MAX) 6537 return -EMLINK; 6538 6539 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6540 if (err) 6541 goto fail; 6542 6543 /* 6544 * 2 items for inode and inode ref 6545 * 2 items for dir items 6546 * 1 item for parent inode 6547 * 1 item for orphan item deletion if O_TMPFILE 6548 */ 6549 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6550 if (IS_ERR(trans)) { 6551 err = PTR_ERR(trans); 6552 trans = NULL; 6553 goto fail; 6554 } 6555 6556 /* There are several dir indexes for this inode, clear the cache. */ 6557 BTRFS_I(inode)->dir_index = 0ULL; 6558 inc_nlink(inode); 6559 inode_inc_iversion(inode); 6560 inode->i_ctime = current_time(inode); 6561 ihold(inode); 6562 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6563 6564 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6565 1, index); 6566 6567 if (err) { 6568 drop_inode = 1; 6569 } else { 6570 struct dentry *parent = dentry->d_parent; 6571 int ret; 6572 6573 err = btrfs_update_inode(trans, root, inode); 6574 if (err) 6575 goto fail; 6576 if (inode->i_nlink == 1) { 6577 /* 6578 * If new hard link count is 1, it's a file created 6579 * with open(2) O_TMPFILE flag. 6580 */ 6581 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6582 if (err) 6583 goto fail; 6584 } 6585 BTRFS_I(inode)->last_link_trans = trans->transid; 6586 d_instantiate(dentry, inode); 6587 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6588 true, NULL); 6589 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6590 err = btrfs_commit_transaction(trans); 6591 trans = NULL; 6592 } 6593 } 6594 6595 fail: 6596 if (trans) 6597 btrfs_end_transaction(trans); 6598 if (drop_inode) { 6599 inode_dec_link_count(inode); 6600 iput(inode); 6601 } 6602 btrfs_btree_balance_dirty(fs_info); 6603 return err; 6604 } 6605 6606 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6607 { 6608 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6609 struct inode *inode = NULL; 6610 struct btrfs_trans_handle *trans; 6611 struct btrfs_root *root = BTRFS_I(dir)->root; 6612 int err = 0; 6613 u64 objectid = 0; 6614 u64 index = 0; 6615 6616 /* 6617 * 2 items for inode and ref 6618 * 2 items for dir items 6619 * 1 for xattr if selinux is on 6620 */ 6621 trans = btrfs_start_transaction(root, 5); 6622 if (IS_ERR(trans)) 6623 return PTR_ERR(trans); 6624 6625 err = btrfs_find_free_ino(root, &objectid); 6626 if (err) 6627 goto out_fail; 6628 6629 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6630 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6631 S_IFDIR | mode, &index); 6632 if (IS_ERR(inode)) { 6633 err = PTR_ERR(inode); 6634 inode = NULL; 6635 goto out_fail; 6636 } 6637 6638 /* these must be set before we unlock the inode */ 6639 inode->i_op = &btrfs_dir_inode_operations; 6640 inode->i_fop = &btrfs_dir_file_operations; 6641 6642 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6643 if (err) 6644 goto out_fail; 6645 6646 btrfs_i_size_write(BTRFS_I(inode), 0); 6647 err = btrfs_update_inode(trans, root, inode); 6648 if (err) 6649 goto out_fail; 6650 6651 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6652 dentry->d_name.name, 6653 dentry->d_name.len, 0, index); 6654 if (err) 6655 goto out_fail; 6656 6657 d_instantiate_new(dentry, inode); 6658 6659 out_fail: 6660 btrfs_end_transaction(trans); 6661 if (err && inode) { 6662 inode_dec_link_count(inode); 6663 discard_new_inode(inode); 6664 } 6665 btrfs_btree_balance_dirty(fs_info); 6666 return err; 6667 } 6668 6669 static noinline int uncompress_inline(struct btrfs_path *path, 6670 struct page *page, 6671 size_t pg_offset, u64 extent_offset, 6672 struct btrfs_file_extent_item *item) 6673 { 6674 int ret; 6675 struct extent_buffer *leaf = path->nodes[0]; 6676 char *tmp; 6677 size_t max_size; 6678 unsigned long inline_size; 6679 unsigned long ptr; 6680 int compress_type; 6681 6682 WARN_ON(pg_offset != 0); 6683 compress_type = btrfs_file_extent_compression(leaf, item); 6684 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6685 inline_size = btrfs_file_extent_inline_item_len(leaf, 6686 btrfs_item_nr(path->slots[0])); 6687 tmp = kmalloc(inline_size, GFP_NOFS); 6688 if (!tmp) 6689 return -ENOMEM; 6690 ptr = btrfs_file_extent_inline_start(item); 6691 6692 read_extent_buffer(leaf, tmp, ptr, inline_size); 6693 6694 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6695 ret = btrfs_decompress(compress_type, tmp, page, 6696 extent_offset, inline_size, max_size); 6697 6698 /* 6699 * decompression code contains a memset to fill in any space between the end 6700 * of the uncompressed data and the end of max_size in case the decompressed 6701 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6702 * the end of an inline extent and the beginning of the next block, so we 6703 * cover that region here. 6704 */ 6705 6706 if (max_size + pg_offset < PAGE_SIZE) { 6707 char *map = kmap(page); 6708 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6709 kunmap(page); 6710 } 6711 kfree(tmp); 6712 return ret; 6713 } 6714 6715 /* 6716 * a bit scary, this does extent mapping from logical file offset to the disk. 6717 * the ugly parts come from merging extents from the disk with the in-ram 6718 * representation. This gets more complex because of the data=ordered code, 6719 * where the in-ram extents might be locked pending data=ordered completion. 6720 * 6721 * This also copies inline extents directly into the page. 6722 */ 6723 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6724 struct page *page, 6725 size_t pg_offset, u64 start, u64 len, 6726 int create) 6727 { 6728 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6729 int ret; 6730 int err = 0; 6731 u64 extent_start = 0; 6732 u64 extent_end = 0; 6733 u64 objectid = btrfs_ino(inode); 6734 u32 found_type; 6735 struct btrfs_path *path = NULL; 6736 struct btrfs_root *root = inode->root; 6737 struct btrfs_file_extent_item *item; 6738 struct extent_buffer *leaf; 6739 struct btrfs_key found_key; 6740 struct extent_map *em = NULL; 6741 struct extent_map_tree *em_tree = &inode->extent_tree; 6742 struct extent_io_tree *io_tree = &inode->io_tree; 6743 const bool new_inline = !page || create; 6744 6745 read_lock(&em_tree->lock); 6746 em = lookup_extent_mapping(em_tree, start, len); 6747 if (em) 6748 em->bdev = fs_info->fs_devices->latest_bdev; 6749 read_unlock(&em_tree->lock); 6750 6751 if (em) { 6752 if (em->start > start || em->start + em->len <= start) 6753 free_extent_map(em); 6754 else if (em->block_start == EXTENT_MAP_INLINE && page) 6755 free_extent_map(em); 6756 else 6757 goto out; 6758 } 6759 em = alloc_extent_map(); 6760 if (!em) { 6761 err = -ENOMEM; 6762 goto out; 6763 } 6764 em->bdev = fs_info->fs_devices->latest_bdev; 6765 em->start = EXTENT_MAP_HOLE; 6766 em->orig_start = EXTENT_MAP_HOLE; 6767 em->len = (u64)-1; 6768 em->block_len = (u64)-1; 6769 6770 path = btrfs_alloc_path(); 6771 if (!path) { 6772 err = -ENOMEM; 6773 goto out; 6774 } 6775 6776 /* Chances are we'll be called again, so go ahead and do readahead */ 6777 path->reada = READA_FORWARD; 6778 6779 /* 6780 * Unless we're going to uncompress the inline extent, no sleep would 6781 * happen. 6782 */ 6783 path->leave_spinning = 1; 6784 6785 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6786 if (ret < 0) { 6787 err = ret; 6788 goto out; 6789 } 6790 6791 if (ret != 0) { 6792 if (path->slots[0] == 0) 6793 goto not_found; 6794 path->slots[0]--; 6795 } 6796 6797 leaf = path->nodes[0]; 6798 item = btrfs_item_ptr(leaf, path->slots[0], 6799 struct btrfs_file_extent_item); 6800 /* are we inside the extent that was found? */ 6801 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6802 found_type = found_key.type; 6803 if (found_key.objectid != objectid || 6804 found_type != BTRFS_EXTENT_DATA_KEY) { 6805 /* 6806 * If we backup past the first extent we want to move forward 6807 * and see if there is an extent in front of us, otherwise we'll 6808 * say there is a hole for our whole search range which can 6809 * cause problems. 6810 */ 6811 extent_end = start; 6812 goto next; 6813 } 6814 6815 found_type = btrfs_file_extent_type(leaf, item); 6816 extent_start = found_key.offset; 6817 if (found_type == BTRFS_FILE_EXTENT_REG || 6818 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6819 extent_end = extent_start + 6820 btrfs_file_extent_num_bytes(leaf, item); 6821 6822 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6823 extent_start); 6824 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6825 size_t size; 6826 6827 size = btrfs_file_extent_ram_bytes(leaf, item); 6828 extent_end = ALIGN(extent_start + size, 6829 fs_info->sectorsize); 6830 6831 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6832 path->slots[0], 6833 extent_start); 6834 } 6835 next: 6836 if (start >= extent_end) { 6837 path->slots[0]++; 6838 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6839 ret = btrfs_next_leaf(root, path); 6840 if (ret < 0) { 6841 err = ret; 6842 goto out; 6843 } 6844 if (ret > 0) 6845 goto not_found; 6846 leaf = path->nodes[0]; 6847 } 6848 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6849 if (found_key.objectid != objectid || 6850 found_key.type != BTRFS_EXTENT_DATA_KEY) 6851 goto not_found; 6852 if (start + len <= found_key.offset) 6853 goto not_found; 6854 if (start > found_key.offset) 6855 goto next; 6856 em->start = start; 6857 em->orig_start = start; 6858 em->len = found_key.offset - start; 6859 goto not_found_em; 6860 } 6861 6862 btrfs_extent_item_to_extent_map(inode, path, item, 6863 new_inline, em); 6864 6865 if (found_type == BTRFS_FILE_EXTENT_REG || 6866 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6867 goto insert; 6868 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6869 unsigned long ptr; 6870 char *map; 6871 size_t size; 6872 size_t extent_offset; 6873 size_t copy_size; 6874 6875 if (new_inline) 6876 goto out; 6877 6878 size = btrfs_file_extent_ram_bytes(leaf, item); 6879 extent_offset = page_offset(page) + pg_offset - extent_start; 6880 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6881 size - extent_offset); 6882 em->start = extent_start + extent_offset; 6883 em->len = ALIGN(copy_size, fs_info->sectorsize); 6884 em->orig_block_len = em->len; 6885 em->orig_start = em->start; 6886 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6887 6888 btrfs_set_path_blocking(path); 6889 if (!PageUptodate(page)) { 6890 if (btrfs_file_extent_compression(leaf, item) != 6891 BTRFS_COMPRESS_NONE) { 6892 ret = uncompress_inline(path, page, pg_offset, 6893 extent_offset, item); 6894 if (ret) { 6895 err = ret; 6896 goto out; 6897 } 6898 } else { 6899 map = kmap(page); 6900 read_extent_buffer(leaf, map + pg_offset, ptr, 6901 copy_size); 6902 if (pg_offset + copy_size < PAGE_SIZE) { 6903 memset(map + pg_offset + copy_size, 0, 6904 PAGE_SIZE - pg_offset - 6905 copy_size); 6906 } 6907 kunmap(page); 6908 } 6909 flush_dcache_page(page); 6910 } 6911 set_extent_uptodate(io_tree, em->start, 6912 extent_map_end(em) - 1, NULL, GFP_NOFS); 6913 goto insert; 6914 } 6915 not_found: 6916 em->start = start; 6917 em->orig_start = start; 6918 em->len = len; 6919 not_found_em: 6920 em->block_start = EXTENT_MAP_HOLE; 6921 insert: 6922 btrfs_release_path(path); 6923 if (em->start > start || extent_map_end(em) <= start) { 6924 btrfs_err(fs_info, 6925 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6926 em->start, em->len, start, len); 6927 err = -EIO; 6928 goto out; 6929 } 6930 6931 err = 0; 6932 write_lock(&em_tree->lock); 6933 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6934 write_unlock(&em_tree->lock); 6935 out: 6936 btrfs_free_path(path); 6937 6938 trace_btrfs_get_extent(root, inode, em); 6939 6940 if (err) { 6941 free_extent_map(em); 6942 return ERR_PTR(err); 6943 } 6944 BUG_ON(!em); /* Error is always set */ 6945 return em; 6946 } 6947 6948 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6949 struct page *page, 6950 size_t pg_offset, u64 start, u64 len, 6951 int create) 6952 { 6953 struct extent_map *em; 6954 struct extent_map *hole_em = NULL; 6955 u64 range_start = start; 6956 u64 end; 6957 u64 found; 6958 u64 found_end; 6959 int err = 0; 6960 6961 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6962 if (IS_ERR(em)) 6963 return em; 6964 /* 6965 * If our em maps to: 6966 * - a hole or 6967 * - a pre-alloc extent, 6968 * there might actually be delalloc bytes behind it. 6969 */ 6970 if (em->block_start != EXTENT_MAP_HOLE && 6971 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6972 return em; 6973 else 6974 hole_em = em; 6975 6976 /* check to see if we've wrapped (len == -1 or similar) */ 6977 end = start + len; 6978 if (end < start) 6979 end = (u64)-1; 6980 else 6981 end -= 1; 6982 6983 em = NULL; 6984 6985 /* ok, we didn't find anything, lets look for delalloc */ 6986 found = count_range_bits(&inode->io_tree, &range_start, 6987 end, len, EXTENT_DELALLOC, 1); 6988 found_end = range_start + found; 6989 if (found_end < range_start) 6990 found_end = (u64)-1; 6991 6992 /* 6993 * we didn't find anything useful, return 6994 * the original results from get_extent() 6995 */ 6996 if (range_start > end || found_end <= start) { 6997 em = hole_em; 6998 hole_em = NULL; 6999 goto out; 7000 } 7001 7002 /* adjust the range_start to make sure it doesn't 7003 * go backwards from the start they passed in 7004 */ 7005 range_start = max(start, range_start); 7006 found = found_end - range_start; 7007 7008 if (found > 0) { 7009 u64 hole_start = start; 7010 u64 hole_len = len; 7011 7012 em = alloc_extent_map(); 7013 if (!em) { 7014 err = -ENOMEM; 7015 goto out; 7016 } 7017 /* 7018 * when btrfs_get_extent can't find anything it 7019 * returns one huge hole 7020 * 7021 * make sure what it found really fits our range, and 7022 * adjust to make sure it is based on the start from 7023 * the caller 7024 */ 7025 if (hole_em) { 7026 u64 calc_end = extent_map_end(hole_em); 7027 7028 if (calc_end <= start || (hole_em->start > end)) { 7029 free_extent_map(hole_em); 7030 hole_em = NULL; 7031 } else { 7032 hole_start = max(hole_em->start, start); 7033 hole_len = calc_end - hole_start; 7034 } 7035 } 7036 em->bdev = NULL; 7037 if (hole_em && range_start > hole_start) { 7038 /* our hole starts before our delalloc, so we 7039 * have to return just the parts of the hole 7040 * that go until the delalloc starts 7041 */ 7042 em->len = min(hole_len, 7043 range_start - hole_start); 7044 em->start = hole_start; 7045 em->orig_start = hole_start; 7046 /* 7047 * don't adjust block start at all, 7048 * it is fixed at EXTENT_MAP_HOLE 7049 */ 7050 em->block_start = hole_em->block_start; 7051 em->block_len = hole_len; 7052 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7053 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7054 } else { 7055 em->start = range_start; 7056 em->len = found; 7057 em->orig_start = range_start; 7058 em->block_start = EXTENT_MAP_DELALLOC; 7059 em->block_len = found; 7060 } 7061 } else { 7062 return hole_em; 7063 } 7064 out: 7065 7066 free_extent_map(hole_em); 7067 if (err) { 7068 free_extent_map(em); 7069 return ERR_PTR(err); 7070 } 7071 return em; 7072 } 7073 7074 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7075 const u64 start, 7076 const u64 len, 7077 const u64 orig_start, 7078 const u64 block_start, 7079 const u64 block_len, 7080 const u64 orig_block_len, 7081 const u64 ram_bytes, 7082 const int type) 7083 { 7084 struct extent_map *em = NULL; 7085 int ret; 7086 7087 if (type != BTRFS_ORDERED_NOCOW) { 7088 em = create_io_em(inode, start, len, orig_start, 7089 block_start, block_len, orig_block_len, 7090 ram_bytes, 7091 BTRFS_COMPRESS_NONE, /* compress_type */ 7092 type); 7093 if (IS_ERR(em)) 7094 goto out; 7095 } 7096 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7097 len, block_len, type); 7098 if (ret) { 7099 if (em) { 7100 free_extent_map(em); 7101 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7102 start + len - 1, 0); 7103 } 7104 em = ERR_PTR(ret); 7105 } 7106 out: 7107 7108 return em; 7109 } 7110 7111 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7112 u64 start, u64 len) 7113 { 7114 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7115 struct btrfs_root *root = BTRFS_I(inode)->root; 7116 struct extent_map *em; 7117 struct btrfs_key ins; 7118 u64 alloc_hint; 7119 int ret; 7120 7121 alloc_hint = get_extent_allocation_hint(inode, start, len); 7122 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7123 0, alloc_hint, &ins, 1, 1); 7124 if (ret) 7125 return ERR_PTR(ret); 7126 7127 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7128 ins.objectid, ins.offset, ins.offset, 7129 ins.offset, BTRFS_ORDERED_REGULAR); 7130 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7131 if (IS_ERR(em)) 7132 btrfs_free_reserved_extent(fs_info, ins.objectid, 7133 ins.offset, 1); 7134 7135 return em; 7136 } 7137 7138 /* 7139 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7140 * block must be cow'd 7141 */ 7142 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7143 u64 *orig_start, u64 *orig_block_len, 7144 u64 *ram_bytes) 7145 { 7146 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7147 struct btrfs_path *path; 7148 int ret; 7149 struct extent_buffer *leaf; 7150 struct btrfs_root *root = BTRFS_I(inode)->root; 7151 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7152 struct btrfs_file_extent_item *fi; 7153 struct btrfs_key key; 7154 u64 disk_bytenr; 7155 u64 backref_offset; 7156 u64 extent_end; 7157 u64 num_bytes; 7158 int slot; 7159 int found_type; 7160 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7161 7162 path = btrfs_alloc_path(); 7163 if (!path) 7164 return -ENOMEM; 7165 7166 ret = btrfs_lookup_file_extent(NULL, root, path, 7167 btrfs_ino(BTRFS_I(inode)), offset, 0); 7168 if (ret < 0) 7169 goto out; 7170 7171 slot = path->slots[0]; 7172 if (ret == 1) { 7173 if (slot == 0) { 7174 /* can't find the item, must cow */ 7175 ret = 0; 7176 goto out; 7177 } 7178 slot--; 7179 } 7180 ret = 0; 7181 leaf = path->nodes[0]; 7182 btrfs_item_key_to_cpu(leaf, &key, slot); 7183 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7184 key.type != BTRFS_EXTENT_DATA_KEY) { 7185 /* not our file or wrong item type, must cow */ 7186 goto out; 7187 } 7188 7189 if (key.offset > offset) { 7190 /* Wrong offset, must cow */ 7191 goto out; 7192 } 7193 7194 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7195 found_type = btrfs_file_extent_type(leaf, fi); 7196 if (found_type != BTRFS_FILE_EXTENT_REG && 7197 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7198 /* not a regular extent, must cow */ 7199 goto out; 7200 } 7201 7202 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7203 goto out; 7204 7205 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7206 if (extent_end <= offset) 7207 goto out; 7208 7209 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7210 if (disk_bytenr == 0) 7211 goto out; 7212 7213 if (btrfs_file_extent_compression(leaf, fi) || 7214 btrfs_file_extent_encryption(leaf, fi) || 7215 btrfs_file_extent_other_encoding(leaf, fi)) 7216 goto out; 7217 7218 /* 7219 * Do the same check as in btrfs_cross_ref_exist but without the 7220 * unnecessary search. 7221 */ 7222 if (btrfs_file_extent_generation(leaf, fi) <= 7223 btrfs_root_last_snapshot(&root->root_item)) 7224 goto out; 7225 7226 backref_offset = btrfs_file_extent_offset(leaf, fi); 7227 7228 if (orig_start) { 7229 *orig_start = key.offset - backref_offset; 7230 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7231 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7232 } 7233 7234 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7235 goto out; 7236 7237 num_bytes = min(offset + *len, extent_end) - offset; 7238 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7239 u64 range_end; 7240 7241 range_end = round_up(offset + num_bytes, 7242 root->fs_info->sectorsize) - 1; 7243 ret = test_range_bit(io_tree, offset, range_end, 7244 EXTENT_DELALLOC, 0, NULL); 7245 if (ret) { 7246 ret = -EAGAIN; 7247 goto out; 7248 } 7249 } 7250 7251 btrfs_release_path(path); 7252 7253 /* 7254 * look for other files referencing this extent, if we 7255 * find any we must cow 7256 */ 7257 7258 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7259 key.offset - backref_offset, disk_bytenr); 7260 if (ret) { 7261 ret = 0; 7262 goto out; 7263 } 7264 7265 /* 7266 * adjust disk_bytenr and num_bytes to cover just the bytes 7267 * in this extent we are about to write. If there 7268 * are any csums in that range we have to cow in order 7269 * to keep the csums correct 7270 */ 7271 disk_bytenr += backref_offset; 7272 disk_bytenr += offset - key.offset; 7273 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7274 goto out; 7275 /* 7276 * all of the above have passed, it is safe to overwrite this extent 7277 * without cow 7278 */ 7279 *len = num_bytes; 7280 ret = 1; 7281 out: 7282 btrfs_free_path(path); 7283 return ret; 7284 } 7285 7286 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7287 struct extent_state **cached_state, int writing) 7288 { 7289 struct btrfs_ordered_extent *ordered; 7290 int ret = 0; 7291 7292 while (1) { 7293 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7294 cached_state); 7295 /* 7296 * We're concerned with the entire range that we're going to be 7297 * doing DIO to, so we need to make sure there's no ordered 7298 * extents in this range. 7299 */ 7300 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7301 lockend - lockstart + 1); 7302 7303 /* 7304 * We need to make sure there are no buffered pages in this 7305 * range either, we could have raced between the invalidate in 7306 * generic_file_direct_write and locking the extent. The 7307 * invalidate needs to happen so that reads after a write do not 7308 * get stale data. 7309 */ 7310 if (!ordered && 7311 (!writing || !filemap_range_has_page(inode->i_mapping, 7312 lockstart, lockend))) 7313 break; 7314 7315 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7316 cached_state); 7317 7318 if (ordered) { 7319 /* 7320 * If we are doing a DIO read and the ordered extent we 7321 * found is for a buffered write, we can not wait for it 7322 * to complete and retry, because if we do so we can 7323 * deadlock with concurrent buffered writes on page 7324 * locks. This happens only if our DIO read covers more 7325 * than one extent map, if at this point has already 7326 * created an ordered extent for a previous extent map 7327 * and locked its range in the inode's io tree, and a 7328 * concurrent write against that previous extent map's 7329 * range and this range started (we unlock the ranges 7330 * in the io tree only when the bios complete and 7331 * buffered writes always lock pages before attempting 7332 * to lock range in the io tree). 7333 */ 7334 if (writing || 7335 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7336 btrfs_start_ordered_extent(inode, ordered, 1); 7337 else 7338 ret = -ENOTBLK; 7339 btrfs_put_ordered_extent(ordered); 7340 } else { 7341 /* 7342 * We could trigger writeback for this range (and wait 7343 * for it to complete) and then invalidate the pages for 7344 * this range (through invalidate_inode_pages2_range()), 7345 * but that can lead us to a deadlock with a concurrent 7346 * call to readpages() (a buffered read or a defrag call 7347 * triggered a readahead) on a page lock due to an 7348 * ordered dio extent we created before but did not have 7349 * yet a corresponding bio submitted (whence it can not 7350 * complete), which makes readpages() wait for that 7351 * ordered extent to complete while holding a lock on 7352 * that page. 7353 */ 7354 ret = -ENOTBLK; 7355 } 7356 7357 if (ret) 7358 break; 7359 7360 cond_resched(); 7361 } 7362 7363 return ret; 7364 } 7365 7366 /* The callers of this must take lock_extent() */ 7367 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7368 u64 orig_start, u64 block_start, 7369 u64 block_len, u64 orig_block_len, 7370 u64 ram_bytes, int compress_type, 7371 int type) 7372 { 7373 struct extent_map_tree *em_tree; 7374 struct extent_map *em; 7375 struct btrfs_root *root = BTRFS_I(inode)->root; 7376 int ret; 7377 7378 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7379 type == BTRFS_ORDERED_COMPRESSED || 7380 type == BTRFS_ORDERED_NOCOW || 7381 type == BTRFS_ORDERED_REGULAR); 7382 7383 em_tree = &BTRFS_I(inode)->extent_tree; 7384 em = alloc_extent_map(); 7385 if (!em) 7386 return ERR_PTR(-ENOMEM); 7387 7388 em->start = start; 7389 em->orig_start = orig_start; 7390 em->len = len; 7391 em->block_len = block_len; 7392 em->block_start = block_start; 7393 em->bdev = root->fs_info->fs_devices->latest_bdev; 7394 em->orig_block_len = orig_block_len; 7395 em->ram_bytes = ram_bytes; 7396 em->generation = -1; 7397 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7398 if (type == BTRFS_ORDERED_PREALLOC) { 7399 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7400 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7401 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7402 em->compress_type = compress_type; 7403 } 7404 7405 do { 7406 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7407 em->start + em->len - 1, 0); 7408 write_lock(&em_tree->lock); 7409 ret = add_extent_mapping(em_tree, em, 1); 7410 write_unlock(&em_tree->lock); 7411 /* 7412 * The caller has taken lock_extent(), who could race with us 7413 * to add em? 7414 */ 7415 } while (ret == -EEXIST); 7416 7417 if (ret) { 7418 free_extent_map(em); 7419 return ERR_PTR(ret); 7420 } 7421 7422 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7423 return em; 7424 } 7425 7426 7427 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7428 struct buffer_head *bh_result, 7429 struct inode *inode, 7430 u64 start, u64 len) 7431 { 7432 if (em->block_start == EXTENT_MAP_HOLE || 7433 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7434 return -ENOENT; 7435 7436 len = min(len, em->len - (start - em->start)); 7437 7438 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7439 inode->i_blkbits; 7440 bh_result->b_size = len; 7441 bh_result->b_bdev = em->bdev; 7442 set_buffer_mapped(bh_result); 7443 7444 return 0; 7445 } 7446 7447 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7448 struct buffer_head *bh_result, 7449 struct inode *inode, 7450 struct btrfs_dio_data *dio_data, 7451 u64 start, u64 len) 7452 { 7453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7454 struct extent_map *em = *map; 7455 int ret = 0; 7456 7457 /* 7458 * We don't allocate a new extent in the following cases 7459 * 7460 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7461 * existing extent. 7462 * 2) The extent is marked as PREALLOC. We're good to go here and can 7463 * just use the extent. 7464 * 7465 */ 7466 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7467 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7468 em->block_start != EXTENT_MAP_HOLE)) { 7469 int type; 7470 u64 block_start, orig_start, orig_block_len, ram_bytes; 7471 7472 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7473 type = BTRFS_ORDERED_PREALLOC; 7474 else 7475 type = BTRFS_ORDERED_NOCOW; 7476 len = min(len, em->len - (start - em->start)); 7477 block_start = em->block_start + (start - em->start); 7478 7479 if (can_nocow_extent(inode, start, &len, &orig_start, 7480 &orig_block_len, &ram_bytes) == 1 && 7481 btrfs_inc_nocow_writers(fs_info, block_start)) { 7482 struct extent_map *em2; 7483 7484 em2 = btrfs_create_dio_extent(inode, start, len, 7485 orig_start, block_start, 7486 len, orig_block_len, 7487 ram_bytes, type); 7488 btrfs_dec_nocow_writers(fs_info, block_start); 7489 if (type == BTRFS_ORDERED_PREALLOC) { 7490 free_extent_map(em); 7491 *map = em = em2; 7492 } 7493 7494 if (em2 && IS_ERR(em2)) { 7495 ret = PTR_ERR(em2); 7496 goto out; 7497 } 7498 /* 7499 * For inode marked NODATACOW or extent marked PREALLOC, 7500 * use the existing or preallocated extent, so does not 7501 * need to adjust btrfs_space_info's bytes_may_use. 7502 */ 7503 btrfs_free_reserved_data_space_noquota(inode, start, 7504 len); 7505 goto skip_cow; 7506 } 7507 } 7508 7509 /* this will cow the extent */ 7510 len = bh_result->b_size; 7511 free_extent_map(em); 7512 *map = em = btrfs_new_extent_direct(inode, start, len); 7513 if (IS_ERR(em)) { 7514 ret = PTR_ERR(em); 7515 goto out; 7516 } 7517 7518 len = min(len, em->len - (start - em->start)); 7519 7520 skip_cow: 7521 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7522 inode->i_blkbits; 7523 bh_result->b_size = len; 7524 bh_result->b_bdev = em->bdev; 7525 set_buffer_mapped(bh_result); 7526 7527 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7528 set_buffer_new(bh_result); 7529 7530 /* 7531 * Need to update the i_size under the extent lock so buffered 7532 * readers will get the updated i_size when we unlock. 7533 */ 7534 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7535 i_size_write(inode, start + len); 7536 7537 WARN_ON(dio_data->reserve < len); 7538 dio_data->reserve -= len; 7539 dio_data->unsubmitted_oe_range_end = start + len; 7540 current->journal_info = dio_data; 7541 out: 7542 return ret; 7543 } 7544 7545 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7546 struct buffer_head *bh_result, int create) 7547 { 7548 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7549 struct extent_map *em; 7550 struct extent_state *cached_state = NULL; 7551 struct btrfs_dio_data *dio_data = NULL; 7552 u64 start = iblock << inode->i_blkbits; 7553 u64 lockstart, lockend; 7554 u64 len = bh_result->b_size; 7555 int unlock_bits = EXTENT_LOCKED; 7556 int ret = 0; 7557 7558 if (create) 7559 unlock_bits |= EXTENT_DIRTY; 7560 else 7561 len = min_t(u64, len, fs_info->sectorsize); 7562 7563 lockstart = start; 7564 lockend = start + len - 1; 7565 7566 if (current->journal_info) { 7567 /* 7568 * Need to pull our outstanding extents and set journal_info to NULL so 7569 * that anything that needs to check if there's a transaction doesn't get 7570 * confused. 7571 */ 7572 dio_data = current->journal_info; 7573 current->journal_info = NULL; 7574 } 7575 7576 /* 7577 * If this errors out it's because we couldn't invalidate pagecache for 7578 * this range and we need to fallback to buffered. 7579 */ 7580 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7581 create)) { 7582 ret = -ENOTBLK; 7583 goto err; 7584 } 7585 7586 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7587 if (IS_ERR(em)) { 7588 ret = PTR_ERR(em); 7589 goto unlock_err; 7590 } 7591 7592 /* 7593 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7594 * io. INLINE is special, and we could probably kludge it in here, but 7595 * it's still buffered so for safety lets just fall back to the generic 7596 * buffered path. 7597 * 7598 * For COMPRESSED we _have_ to read the entire extent in so we can 7599 * decompress it, so there will be buffering required no matter what we 7600 * do, so go ahead and fallback to buffered. 7601 * 7602 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7603 * to buffered IO. Don't blame me, this is the price we pay for using 7604 * the generic code. 7605 */ 7606 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7607 em->block_start == EXTENT_MAP_INLINE) { 7608 free_extent_map(em); 7609 ret = -ENOTBLK; 7610 goto unlock_err; 7611 } 7612 7613 if (create) { 7614 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7615 dio_data, start, len); 7616 if (ret < 0) 7617 goto unlock_err; 7618 7619 /* clear and unlock the entire range */ 7620 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7621 unlock_bits, 1, 0, &cached_state); 7622 } else { 7623 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7624 start, len); 7625 /* Can be negative only if we read from a hole */ 7626 if (ret < 0) { 7627 ret = 0; 7628 free_extent_map(em); 7629 goto unlock_err; 7630 } 7631 /* 7632 * We need to unlock only the end area that we aren't using. 7633 * The rest is going to be unlocked by the endio routine. 7634 */ 7635 lockstart = start + bh_result->b_size; 7636 if (lockstart < lockend) { 7637 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7638 lockend, unlock_bits, 1, 0, 7639 &cached_state); 7640 } else { 7641 free_extent_state(cached_state); 7642 } 7643 } 7644 7645 free_extent_map(em); 7646 7647 return 0; 7648 7649 unlock_err: 7650 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7651 unlock_bits, 1, 0, &cached_state); 7652 err: 7653 if (dio_data) 7654 current->journal_info = dio_data; 7655 return ret; 7656 } 7657 7658 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7659 struct bio *bio, 7660 int mirror_num) 7661 { 7662 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7663 blk_status_t ret; 7664 7665 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7666 7667 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7668 if (ret) 7669 return ret; 7670 7671 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7672 7673 return ret; 7674 } 7675 7676 static int btrfs_check_dio_repairable(struct inode *inode, 7677 struct bio *failed_bio, 7678 struct io_failure_record *failrec, 7679 int failed_mirror) 7680 { 7681 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7682 int num_copies; 7683 7684 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7685 if (num_copies == 1) { 7686 /* 7687 * we only have a single copy of the data, so don't bother with 7688 * all the retry and error correction code that follows. no 7689 * matter what the error is, it is very likely to persist. 7690 */ 7691 btrfs_debug(fs_info, 7692 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7693 num_copies, failrec->this_mirror, failed_mirror); 7694 return 0; 7695 } 7696 7697 failrec->failed_mirror = failed_mirror; 7698 failrec->this_mirror++; 7699 if (failrec->this_mirror == failed_mirror) 7700 failrec->this_mirror++; 7701 7702 if (failrec->this_mirror > num_copies) { 7703 btrfs_debug(fs_info, 7704 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7705 num_copies, failrec->this_mirror, failed_mirror); 7706 return 0; 7707 } 7708 7709 return 1; 7710 } 7711 7712 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7713 struct page *page, unsigned int pgoff, 7714 u64 start, u64 end, int failed_mirror, 7715 bio_end_io_t *repair_endio, void *repair_arg) 7716 { 7717 struct io_failure_record *failrec; 7718 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7719 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7720 struct bio *bio; 7721 int isector; 7722 unsigned int read_mode = 0; 7723 int segs; 7724 int ret; 7725 blk_status_t status; 7726 struct bio_vec bvec; 7727 7728 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7729 7730 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7731 if (ret) 7732 return errno_to_blk_status(ret); 7733 7734 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7735 failed_mirror); 7736 if (!ret) { 7737 free_io_failure(failure_tree, io_tree, failrec); 7738 return BLK_STS_IOERR; 7739 } 7740 7741 segs = bio_segments(failed_bio); 7742 bio_get_first_bvec(failed_bio, &bvec); 7743 if (segs > 1 || 7744 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7745 read_mode |= REQ_FAILFAST_DEV; 7746 7747 isector = start - btrfs_io_bio(failed_bio)->logical; 7748 isector >>= inode->i_sb->s_blocksize_bits; 7749 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7750 pgoff, isector, repair_endio, repair_arg); 7751 bio->bi_opf = REQ_OP_READ | read_mode; 7752 7753 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7754 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7755 read_mode, failrec->this_mirror, failrec->in_validation); 7756 7757 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7758 if (status) { 7759 free_io_failure(failure_tree, io_tree, failrec); 7760 bio_put(bio); 7761 } 7762 7763 return status; 7764 } 7765 7766 struct btrfs_retry_complete { 7767 struct completion done; 7768 struct inode *inode; 7769 u64 start; 7770 int uptodate; 7771 }; 7772 7773 static void btrfs_retry_endio_nocsum(struct bio *bio) 7774 { 7775 struct btrfs_retry_complete *done = bio->bi_private; 7776 struct inode *inode = done->inode; 7777 struct bio_vec *bvec; 7778 struct extent_io_tree *io_tree, *failure_tree; 7779 int i; 7780 7781 if (bio->bi_status) 7782 goto end; 7783 7784 ASSERT(bio->bi_vcnt == 1); 7785 io_tree = &BTRFS_I(inode)->io_tree; 7786 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7787 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7788 7789 done->uptodate = 1; 7790 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7791 bio_for_each_segment_all(bvec, bio, i) 7792 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7793 io_tree, done->start, bvec->bv_page, 7794 btrfs_ino(BTRFS_I(inode)), 0); 7795 end: 7796 complete(&done->done); 7797 bio_put(bio); 7798 } 7799 7800 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7801 struct btrfs_io_bio *io_bio) 7802 { 7803 struct btrfs_fs_info *fs_info; 7804 struct bio_vec bvec; 7805 struct bvec_iter iter; 7806 struct btrfs_retry_complete done; 7807 u64 start; 7808 unsigned int pgoff; 7809 u32 sectorsize; 7810 int nr_sectors; 7811 blk_status_t ret; 7812 blk_status_t err = BLK_STS_OK; 7813 7814 fs_info = BTRFS_I(inode)->root->fs_info; 7815 sectorsize = fs_info->sectorsize; 7816 7817 start = io_bio->logical; 7818 done.inode = inode; 7819 io_bio->bio.bi_iter = io_bio->iter; 7820 7821 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7822 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7823 pgoff = bvec.bv_offset; 7824 7825 next_block_or_try_again: 7826 done.uptodate = 0; 7827 done.start = start; 7828 init_completion(&done.done); 7829 7830 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7831 pgoff, start, start + sectorsize - 1, 7832 io_bio->mirror_num, 7833 btrfs_retry_endio_nocsum, &done); 7834 if (ret) { 7835 err = ret; 7836 goto next; 7837 } 7838 7839 wait_for_completion_io(&done.done); 7840 7841 if (!done.uptodate) { 7842 /* We might have another mirror, so try again */ 7843 goto next_block_or_try_again; 7844 } 7845 7846 next: 7847 start += sectorsize; 7848 7849 nr_sectors--; 7850 if (nr_sectors) { 7851 pgoff += sectorsize; 7852 ASSERT(pgoff < PAGE_SIZE); 7853 goto next_block_or_try_again; 7854 } 7855 } 7856 7857 return err; 7858 } 7859 7860 static void btrfs_retry_endio(struct bio *bio) 7861 { 7862 struct btrfs_retry_complete *done = bio->bi_private; 7863 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7864 struct extent_io_tree *io_tree, *failure_tree; 7865 struct inode *inode = done->inode; 7866 struct bio_vec *bvec; 7867 int uptodate; 7868 int ret; 7869 int i; 7870 7871 if (bio->bi_status) 7872 goto end; 7873 7874 uptodate = 1; 7875 7876 ASSERT(bio->bi_vcnt == 1); 7877 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 7878 7879 io_tree = &BTRFS_I(inode)->io_tree; 7880 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7881 7882 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7883 bio_for_each_segment_all(bvec, bio, i) { 7884 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7885 bvec->bv_offset, done->start, 7886 bvec->bv_len); 7887 if (!ret) 7888 clean_io_failure(BTRFS_I(inode)->root->fs_info, 7889 failure_tree, io_tree, done->start, 7890 bvec->bv_page, 7891 btrfs_ino(BTRFS_I(inode)), 7892 bvec->bv_offset); 7893 else 7894 uptodate = 0; 7895 } 7896 7897 done->uptodate = uptodate; 7898 end: 7899 complete(&done->done); 7900 bio_put(bio); 7901 } 7902 7903 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 7904 struct btrfs_io_bio *io_bio, blk_status_t err) 7905 { 7906 struct btrfs_fs_info *fs_info; 7907 struct bio_vec bvec; 7908 struct bvec_iter iter; 7909 struct btrfs_retry_complete done; 7910 u64 start; 7911 u64 offset = 0; 7912 u32 sectorsize; 7913 int nr_sectors; 7914 unsigned int pgoff; 7915 int csum_pos; 7916 bool uptodate = (err == 0); 7917 int ret; 7918 blk_status_t status; 7919 7920 fs_info = BTRFS_I(inode)->root->fs_info; 7921 sectorsize = fs_info->sectorsize; 7922 7923 err = BLK_STS_OK; 7924 start = io_bio->logical; 7925 done.inode = inode; 7926 io_bio->bio.bi_iter = io_bio->iter; 7927 7928 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7929 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7930 7931 pgoff = bvec.bv_offset; 7932 next_block: 7933 if (uptodate) { 7934 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 7935 ret = __readpage_endio_check(inode, io_bio, csum_pos, 7936 bvec.bv_page, pgoff, start, sectorsize); 7937 if (likely(!ret)) 7938 goto next; 7939 } 7940 try_again: 7941 done.uptodate = 0; 7942 done.start = start; 7943 init_completion(&done.done); 7944 7945 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7946 pgoff, start, start + sectorsize - 1, 7947 io_bio->mirror_num, btrfs_retry_endio, 7948 &done); 7949 if (status) { 7950 err = status; 7951 goto next; 7952 } 7953 7954 wait_for_completion_io(&done.done); 7955 7956 if (!done.uptodate) { 7957 /* We might have another mirror, so try again */ 7958 goto try_again; 7959 } 7960 next: 7961 offset += sectorsize; 7962 start += sectorsize; 7963 7964 ASSERT(nr_sectors); 7965 7966 nr_sectors--; 7967 if (nr_sectors) { 7968 pgoff += sectorsize; 7969 ASSERT(pgoff < PAGE_SIZE); 7970 goto next_block; 7971 } 7972 } 7973 7974 return err; 7975 } 7976 7977 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 7978 struct btrfs_io_bio *io_bio, blk_status_t err) 7979 { 7980 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7981 7982 if (skip_csum) { 7983 if (unlikely(err)) 7984 return __btrfs_correct_data_nocsum(inode, io_bio); 7985 else 7986 return BLK_STS_OK; 7987 } else { 7988 return __btrfs_subio_endio_read(inode, io_bio, err); 7989 } 7990 } 7991 7992 static void btrfs_endio_direct_read(struct bio *bio) 7993 { 7994 struct btrfs_dio_private *dip = bio->bi_private; 7995 struct inode *inode = dip->inode; 7996 struct bio *dio_bio; 7997 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7998 blk_status_t err = bio->bi_status; 7999 8000 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8001 err = btrfs_subio_endio_read(inode, io_bio, err); 8002 8003 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8004 dip->logical_offset + dip->bytes - 1); 8005 dio_bio = dip->dio_bio; 8006 8007 kfree(dip); 8008 8009 dio_bio->bi_status = err; 8010 dio_end_io(dio_bio); 8011 btrfs_io_bio_free_csum(io_bio); 8012 bio_put(bio); 8013 } 8014 8015 static void __endio_write_update_ordered(struct inode *inode, 8016 const u64 offset, const u64 bytes, 8017 const bool uptodate) 8018 { 8019 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8020 struct btrfs_ordered_extent *ordered = NULL; 8021 struct btrfs_workqueue *wq; 8022 btrfs_work_func_t func; 8023 u64 ordered_offset = offset; 8024 u64 ordered_bytes = bytes; 8025 u64 last_offset; 8026 8027 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8028 wq = fs_info->endio_freespace_worker; 8029 func = btrfs_freespace_write_helper; 8030 } else { 8031 wq = fs_info->endio_write_workers; 8032 func = btrfs_endio_write_helper; 8033 } 8034 8035 while (ordered_offset < offset + bytes) { 8036 last_offset = ordered_offset; 8037 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 8038 &ordered_offset, 8039 ordered_bytes, 8040 uptodate)) { 8041 btrfs_init_work(&ordered->work, func, 8042 finish_ordered_fn, 8043 NULL, NULL); 8044 btrfs_queue_work(wq, &ordered->work); 8045 } 8046 /* 8047 * If btrfs_dec_test_ordered_pending does not find any ordered 8048 * extent in the range, we can exit. 8049 */ 8050 if (ordered_offset == last_offset) 8051 return; 8052 /* 8053 * Our bio might span multiple ordered extents. In this case 8054 * we keep going until we have accounted the whole dio. 8055 */ 8056 if (ordered_offset < offset + bytes) { 8057 ordered_bytes = offset + bytes - ordered_offset; 8058 ordered = NULL; 8059 } 8060 } 8061 } 8062 8063 static void btrfs_endio_direct_write(struct bio *bio) 8064 { 8065 struct btrfs_dio_private *dip = bio->bi_private; 8066 struct bio *dio_bio = dip->dio_bio; 8067 8068 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8069 dip->bytes, !bio->bi_status); 8070 8071 kfree(dip); 8072 8073 dio_bio->bi_status = bio->bi_status; 8074 dio_end_io(dio_bio); 8075 bio_put(bio); 8076 } 8077 8078 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8079 struct bio *bio, u64 offset) 8080 { 8081 struct inode *inode = private_data; 8082 blk_status_t ret; 8083 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8084 BUG_ON(ret); /* -ENOMEM */ 8085 return 0; 8086 } 8087 8088 static void btrfs_end_dio_bio(struct bio *bio) 8089 { 8090 struct btrfs_dio_private *dip = bio->bi_private; 8091 blk_status_t err = bio->bi_status; 8092 8093 if (err) 8094 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8095 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8096 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8097 bio->bi_opf, 8098 (unsigned long long)bio->bi_iter.bi_sector, 8099 bio->bi_iter.bi_size, err); 8100 8101 if (dip->subio_endio) 8102 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8103 8104 if (err) { 8105 /* 8106 * We want to perceive the errors flag being set before 8107 * decrementing the reference count. We don't need a barrier 8108 * since atomic operations with a return value are fully 8109 * ordered as per atomic_t.txt 8110 */ 8111 dip->errors = 1; 8112 } 8113 8114 /* if there are more bios still pending for this dio, just exit */ 8115 if (!atomic_dec_and_test(&dip->pending_bios)) 8116 goto out; 8117 8118 if (dip->errors) { 8119 bio_io_error(dip->orig_bio); 8120 } else { 8121 dip->dio_bio->bi_status = BLK_STS_OK; 8122 bio_endio(dip->orig_bio); 8123 } 8124 out: 8125 bio_put(bio); 8126 } 8127 8128 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8129 struct btrfs_dio_private *dip, 8130 struct bio *bio, 8131 u64 file_offset) 8132 { 8133 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8134 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8135 blk_status_t ret; 8136 8137 /* 8138 * We load all the csum data we need when we submit 8139 * the first bio to reduce the csum tree search and 8140 * contention. 8141 */ 8142 if (dip->logical_offset == file_offset) { 8143 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8144 file_offset); 8145 if (ret) 8146 return ret; 8147 } 8148 8149 if (bio == dip->orig_bio) 8150 return 0; 8151 8152 file_offset -= dip->logical_offset; 8153 file_offset >>= inode->i_sb->s_blocksize_bits; 8154 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8155 8156 return 0; 8157 } 8158 8159 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8160 struct inode *inode, u64 file_offset, int async_submit) 8161 { 8162 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8163 struct btrfs_dio_private *dip = bio->bi_private; 8164 bool write = bio_op(bio) == REQ_OP_WRITE; 8165 blk_status_t ret; 8166 8167 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8168 if (async_submit) 8169 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8170 8171 if (!write) { 8172 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8173 if (ret) 8174 goto err; 8175 } 8176 8177 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8178 goto map; 8179 8180 if (write && async_submit) { 8181 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8182 file_offset, inode, 8183 btrfs_submit_bio_start_direct_io); 8184 goto err; 8185 } else if (write) { 8186 /* 8187 * If we aren't doing async submit, calculate the csum of the 8188 * bio now. 8189 */ 8190 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8191 if (ret) 8192 goto err; 8193 } else { 8194 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8195 file_offset); 8196 if (ret) 8197 goto err; 8198 } 8199 map: 8200 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8201 err: 8202 return ret; 8203 } 8204 8205 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8206 { 8207 struct inode *inode = dip->inode; 8208 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8209 struct bio *bio; 8210 struct bio *orig_bio = dip->orig_bio; 8211 u64 start_sector = orig_bio->bi_iter.bi_sector; 8212 u64 file_offset = dip->logical_offset; 8213 u64 map_length; 8214 int async_submit = 0; 8215 u64 submit_len; 8216 int clone_offset = 0; 8217 int clone_len; 8218 int ret; 8219 blk_status_t status; 8220 8221 map_length = orig_bio->bi_iter.bi_size; 8222 submit_len = map_length; 8223 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8224 &map_length, NULL, 0); 8225 if (ret) 8226 return -EIO; 8227 8228 if (map_length >= submit_len) { 8229 bio = orig_bio; 8230 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8231 goto submit; 8232 } 8233 8234 /* async crcs make it difficult to collect full stripe writes. */ 8235 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8236 async_submit = 0; 8237 else 8238 async_submit = 1; 8239 8240 /* bio split */ 8241 ASSERT(map_length <= INT_MAX); 8242 atomic_inc(&dip->pending_bios); 8243 do { 8244 clone_len = min_t(int, submit_len, map_length); 8245 8246 /* 8247 * This will never fail as it's passing GPF_NOFS and 8248 * the allocation is backed by btrfs_bioset. 8249 */ 8250 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8251 clone_len); 8252 bio->bi_private = dip; 8253 bio->bi_end_io = btrfs_end_dio_bio; 8254 btrfs_io_bio(bio)->logical = file_offset; 8255 8256 ASSERT(submit_len >= clone_len); 8257 submit_len -= clone_len; 8258 if (submit_len == 0) 8259 break; 8260 8261 /* 8262 * Increase the count before we submit the bio so we know 8263 * the end IO handler won't happen before we increase the 8264 * count. Otherwise, the dip might get freed before we're 8265 * done setting it up. 8266 */ 8267 atomic_inc(&dip->pending_bios); 8268 8269 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8270 async_submit); 8271 if (status) { 8272 bio_put(bio); 8273 atomic_dec(&dip->pending_bios); 8274 goto out_err; 8275 } 8276 8277 clone_offset += clone_len; 8278 start_sector += clone_len >> 9; 8279 file_offset += clone_len; 8280 8281 map_length = submit_len; 8282 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8283 start_sector << 9, &map_length, NULL, 0); 8284 if (ret) 8285 goto out_err; 8286 } while (submit_len > 0); 8287 8288 submit: 8289 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8290 if (!status) 8291 return 0; 8292 8293 bio_put(bio); 8294 out_err: 8295 dip->errors = 1; 8296 /* 8297 * Before atomic variable goto zero, we must make sure dip->errors is 8298 * perceived to be set. This ordering is ensured by the fact that an 8299 * atomic operations with a return value are fully ordered as per 8300 * atomic_t.txt 8301 */ 8302 if (atomic_dec_and_test(&dip->pending_bios)) 8303 bio_io_error(dip->orig_bio); 8304 8305 /* bio_end_io() will handle error, so we needn't return it */ 8306 return 0; 8307 } 8308 8309 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8310 loff_t file_offset) 8311 { 8312 struct btrfs_dio_private *dip = NULL; 8313 struct bio *bio = NULL; 8314 struct btrfs_io_bio *io_bio; 8315 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8316 int ret = 0; 8317 8318 bio = btrfs_bio_clone(dio_bio); 8319 8320 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8321 if (!dip) { 8322 ret = -ENOMEM; 8323 goto free_ordered; 8324 } 8325 8326 dip->private = dio_bio->bi_private; 8327 dip->inode = inode; 8328 dip->logical_offset = file_offset; 8329 dip->bytes = dio_bio->bi_iter.bi_size; 8330 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8331 bio->bi_private = dip; 8332 dip->orig_bio = bio; 8333 dip->dio_bio = dio_bio; 8334 atomic_set(&dip->pending_bios, 0); 8335 io_bio = btrfs_io_bio(bio); 8336 io_bio->logical = file_offset; 8337 8338 if (write) { 8339 bio->bi_end_io = btrfs_endio_direct_write; 8340 } else { 8341 bio->bi_end_io = btrfs_endio_direct_read; 8342 dip->subio_endio = btrfs_subio_endio_read; 8343 } 8344 8345 /* 8346 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8347 * even if we fail to submit a bio, because in such case we do the 8348 * corresponding error handling below and it must not be done a second 8349 * time by btrfs_direct_IO(). 8350 */ 8351 if (write) { 8352 struct btrfs_dio_data *dio_data = current->journal_info; 8353 8354 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8355 dip->bytes; 8356 dio_data->unsubmitted_oe_range_start = 8357 dio_data->unsubmitted_oe_range_end; 8358 } 8359 8360 ret = btrfs_submit_direct_hook(dip); 8361 if (!ret) 8362 return; 8363 8364 btrfs_io_bio_free_csum(io_bio); 8365 8366 free_ordered: 8367 /* 8368 * If we arrived here it means either we failed to submit the dip 8369 * or we either failed to clone the dio_bio or failed to allocate the 8370 * dip. If we cloned the dio_bio and allocated the dip, we can just 8371 * call bio_endio against our io_bio so that we get proper resource 8372 * cleanup if we fail to submit the dip, otherwise, we must do the 8373 * same as btrfs_endio_direct_[write|read] because we can't call these 8374 * callbacks - they require an allocated dip and a clone of dio_bio. 8375 */ 8376 if (bio && dip) { 8377 bio_io_error(bio); 8378 /* 8379 * The end io callbacks free our dip, do the final put on bio 8380 * and all the cleanup and final put for dio_bio (through 8381 * dio_end_io()). 8382 */ 8383 dip = NULL; 8384 bio = NULL; 8385 } else { 8386 if (write) 8387 __endio_write_update_ordered(inode, 8388 file_offset, 8389 dio_bio->bi_iter.bi_size, 8390 false); 8391 else 8392 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8393 file_offset + dio_bio->bi_iter.bi_size - 1); 8394 8395 dio_bio->bi_status = BLK_STS_IOERR; 8396 /* 8397 * Releases and cleans up our dio_bio, no need to bio_put() 8398 * nor bio_endio()/bio_io_error() against dio_bio. 8399 */ 8400 dio_end_io(dio_bio); 8401 } 8402 if (bio) 8403 bio_put(bio); 8404 kfree(dip); 8405 } 8406 8407 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8408 const struct iov_iter *iter, loff_t offset) 8409 { 8410 int seg; 8411 int i; 8412 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8413 ssize_t retval = -EINVAL; 8414 8415 if (offset & blocksize_mask) 8416 goto out; 8417 8418 if (iov_iter_alignment(iter) & blocksize_mask) 8419 goto out; 8420 8421 /* If this is a write we don't need to check anymore */ 8422 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8423 return 0; 8424 /* 8425 * Check to make sure we don't have duplicate iov_base's in this 8426 * iovec, if so return EINVAL, otherwise we'll get csum errors 8427 * when reading back. 8428 */ 8429 for (seg = 0; seg < iter->nr_segs; seg++) { 8430 for (i = seg + 1; i < iter->nr_segs; i++) { 8431 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8432 goto out; 8433 } 8434 } 8435 retval = 0; 8436 out: 8437 return retval; 8438 } 8439 8440 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8441 { 8442 struct file *file = iocb->ki_filp; 8443 struct inode *inode = file->f_mapping->host; 8444 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8445 struct btrfs_dio_data dio_data = { 0 }; 8446 struct extent_changeset *data_reserved = NULL; 8447 loff_t offset = iocb->ki_pos; 8448 size_t count = 0; 8449 int flags = 0; 8450 bool wakeup = true; 8451 bool relock = false; 8452 ssize_t ret; 8453 8454 if (check_direct_IO(fs_info, iter, offset)) 8455 return 0; 8456 8457 inode_dio_begin(inode); 8458 8459 /* 8460 * The generic stuff only does filemap_write_and_wait_range, which 8461 * isn't enough if we've written compressed pages to this area, so 8462 * we need to flush the dirty pages again to make absolutely sure 8463 * that any outstanding dirty pages are on disk. 8464 */ 8465 count = iov_iter_count(iter); 8466 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8467 &BTRFS_I(inode)->runtime_flags)) 8468 filemap_fdatawrite_range(inode->i_mapping, offset, 8469 offset + count - 1); 8470 8471 if (iov_iter_rw(iter) == WRITE) { 8472 /* 8473 * If the write DIO is beyond the EOF, we need update 8474 * the isize, but it is protected by i_mutex. So we can 8475 * not unlock the i_mutex at this case. 8476 */ 8477 if (offset + count <= inode->i_size) { 8478 dio_data.overwrite = 1; 8479 inode_unlock(inode); 8480 relock = true; 8481 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8482 ret = -EAGAIN; 8483 goto out; 8484 } 8485 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8486 offset, count); 8487 if (ret) 8488 goto out; 8489 8490 /* 8491 * We need to know how many extents we reserved so that we can 8492 * do the accounting properly if we go over the number we 8493 * originally calculated. Abuse current->journal_info for this. 8494 */ 8495 dio_data.reserve = round_up(count, 8496 fs_info->sectorsize); 8497 dio_data.unsubmitted_oe_range_start = (u64)offset; 8498 dio_data.unsubmitted_oe_range_end = (u64)offset; 8499 current->journal_info = &dio_data; 8500 down_read(&BTRFS_I(inode)->dio_sem); 8501 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8502 &BTRFS_I(inode)->runtime_flags)) { 8503 inode_dio_end(inode); 8504 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8505 wakeup = false; 8506 } 8507 8508 ret = __blockdev_direct_IO(iocb, inode, 8509 fs_info->fs_devices->latest_bdev, 8510 iter, btrfs_get_blocks_direct, NULL, 8511 btrfs_submit_direct, flags); 8512 if (iov_iter_rw(iter) == WRITE) { 8513 up_read(&BTRFS_I(inode)->dio_sem); 8514 current->journal_info = NULL; 8515 if (ret < 0 && ret != -EIOCBQUEUED) { 8516 if (dio_data.reserve) 8517 btrfs_delalloc_release_space(inode, data_reserved, 8518 offset, dio_data.reserve, true); 8519 /* 8520 * On error we might have left some ordered extents 8521 * without submitting corresponding bios for them, so 8522 * cleanup them up to avoid other tasks getting them 8523 * and waiting for them to complete forever. 8524 */ 8525 if (dio_data.unsubmitted_oe_range_start < 8526 dio_data.unsubmitted_oe_range_end) 8527 __endio_write_update_ordered(inode, 8528 dio_data.unsubmitted_oe_range_start, 8529 dio_data.unsubmitted_oe_range_end - 8530 dio_data.unsubmitted_oe_range_start, 8531 false); 8532 } else if (ret >= 0 && (size_t)ret < count) 8533 btrfs_delalloc_release_space(inode, data_reserved, 8534 offset, count - (size_t)ret, true); 8535 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false); 8536 } 8537 out: 8538 if (wakeup) 8539 inode_dio_end(inode); 8540 if (relock) 8541 inode_lock(inode); 8542 8543 extent_changeset_free(data_reserved); 8544 return ret; 8545 } 8546 8547 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8548 8549 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8550 __u64 start, __u64 len) 8551 { 8552 int ret; 8553 8554 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8555 if (ret) 8556 return ret; 8557 8558 return extent_fiemap(inode, fieinfo, start, len); 8559 } 8560 8561 int btrfs_readpage(struct file *file, struct page *page) 8562 { 8563 struct extent_io_tree *tree; 8564 tree = &BTRFS_I(page->mapping->host)->io_tree; 8565 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8566 } 8567 8568 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8569 { 8570 struct inode *inode = page->mapping->host; 8571 int ret; 8572 8573 if (current->flags & PF_MEMALLOC) { 8574 redirty_page_for_writepage(wbc, page); 8575 unlock_page(page); 8576 return 0; 8577 } 8578 8579 /* 8580 * If we are under memory pressure we will call this directly from the 8581 * VM, we need to make sure we have the inode referenced for the ordered 8582 * extent. If not just return like we didn't do anything. 8583 */ 8584 if (!igrab(inode)) { 8585 redirty_page_for_writepage(wbc, page); 8586 return AOP_WRITEPAGE_ACTIVATE; 8587 } 8588 ret = extent_write_full_page(page, wbc); 8589 btrfs_add_delayed_iput(inode); 8590 return ret; 8591 } 8592 8593 static int btrfs_writepages(struct address_space *mapping, 8594 struct writeback_control *wbc) 8595 { 8596 return extent_writepages(mapping, wbc); 8597 } 8598 8599 static int 8600 btrfs_readpages(struct file *file, struct address_space *mapping, 8601 struct list_head *pages, unsigned nr_pages) 8602 { 8603 return extent_readpages(mapping, pages, nr_pages); 8604 } 8605 8606 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8607 { 8608 int ret = try_release_extent_mapping(page, gfp_flags); 8609 if (ret == 1) { 8610 ClearPagePrivate(page); 8611 set_page_private(page, 0); 8612 put_page(page); 8613 } 8614 return ret; 8615 } 8616 8617 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8618 { 8619 if (PageWriteback(page) || PageDirty(page)) 8620 return 0; 8621 return __btrfs_releasepage(page, gfp_flags); 8622 } 8623 8624 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8625 unsigned int length) 8626 { 8627 struct inode *inode = page->mapping->host; 8628 struct extent_io_tree *tree; 8629 struct btrfs_ordered_extent *ordered; 8630 struct extent_state *cached_state = NULL; 8631 u64 page_start = page_offset(page); 8632 u64 page_end = page_start + PAGE_SIZE - 1; 8633 u64 start; 8634 u64 end; 8635 int inode_evicting = inode->i_state & I_FREEING; 8636 8637 /* 8638 * we have the page locked, so new writeback can't start, 8639 * and the dirty bit won't be cleared while we are here. 8640 * 8641 * Wait for IO on this page so that we can safely clear 8642 * the PagePrivate2 bit and do ordered accounting 8643 */ 8644 wait_on_page_writeback(page); 8645 8646 tree = &BTRFS_I(inode)->io_tree; 8647 if (offset) { 8648 btrfs_releasepage(page, GFP_NOFS); 8649 return; 8650 } 8651 8652 if (!inode_evicting) 8653 lock_extent_bits(tree, page_start, page_end, &cached_state); 8654 again: 8655 start = page_start; 8656 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8657 page_end - start + 1); 8658 if (ordered) { 8659 end = min(page_end, ordered->file_offset + ordered->len - 1); 8660 /* 8661 * IO on this page will never be started, so we need 8662 * to account for any ordered extents now 8663 */ 8664 if (!inode_evicting) 8665 clear_extent_bit(tree, start, end, 8666 EXTENT_DIRTY | EXTENT_DELALLOC | 8667 EXTENT_DELALLOC_NEW | 8668 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8669 EXTENT_DEFRAG, 1, 0, &cached_state); 8670 /* 8671 * whoever cleared the private bit is responsible 8672 * for the finish_ordered_io 8673 */ 8674 if (TestClearPagePrivate2(page)) { 8675 struct btrfs_ordered_inode_tree *tree; 8676 u64 new_len; 8677 8678 tree = &BTRFS_I(inode)->ordered_tree; 8679 8680 spin_lock_irq(&tree->lock); 8681 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8682 new_len = start - ordered->file_offset; 8683 if (new_len < ordered->truncated_len) 8684 ordered->truncated_len = new_len; 8685 spin_unlock_irq(&tree->lock); 8686 8687 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8688 start, 8689 end - start + 1, 1)) 8690 btrfs_finish_ordered_io(ordered); 8691 } 8692 btrfs_put_ordered_extent(ordered); 8693 if (!inode_evicting) { 8694 cached_state = NULL; 8695 lock_extent_bits(tree, start, end, 8696 &cached_state); 8697 } 8698 8699 start = end + 1; 8700 if (start < page_end) 8701 goto again; 8702 } 8703 8704 /* 8705 * Qgroup reserved space handler 8706 * Page here will be either 8707 * 1) Already written to disk 8708 * In this case, its reserved space is released from data rsv map 8709 * and will be freed by delayed_ref handler finally. 8710 * So even we call qgroup_free_data(), it won't decrease reserved 8711 * space. 8712 * 2) Not written to disk 8713 * This means the reserved space should be freed here. However, 8714 * if a truncate invalidates the page (by clearing PageDirty) 8715 * and the page is accounted for while allocating extent 8716 * in btrfs_check_data_free_space() we let delayed_ref to 8717 * free the entire extent. 8718 */ 8719 if (PageDirty(page)) 8720 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8721 if (!inode_evicting) { 8722 clear_extent_bit(tree, page_start, page_end, 8723 EXTENT_LOCKED | EXTENT_DIRTY | 8724 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8725 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8726 &cached_state); 8727 8728 __btrfs_releasepage(page, GFP_NOFS); 8729 } 8730 8731 ClearPageChecked(page); 8732 if (PagePrivate(page)) { 8733 ClearPagePrivate(page); 8734 set_page_private(page, 0); 8735 put_page(page); 8736 } 8737 } 8738 8739 /* 8740 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8741 * called from a page fault handler when a page is first dirtied. Hence we must 8742 * be careful to check for EOF conditions here. We set the page up correctly 8743 * for a written page which means we get ENOSPC checking when writing into 8744 * holes and correct delalloc and unwritten extent mapping on filesystems that 8745 * support these features. 8746 * 8747 * We are not allowed to take the i_mutex here so we have to play games to 8748 * protect against truncate races as the page could now be beyond EOF. Because 8749 * truncate_setsize() writes the inode size before removing pages, once we have 8750 * the page lock we can determine safely if the page is beyond EOF. If it is not 8751 * beyond EOF, then the page is guaranteed safe against truncation until we 8752 * unlock the page. 8753 */ 8754 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8755 { 8756 struct page *page = vmf->page; 8757 struct inode *inode = file_inode(vmf->vma->vm_file); 8758 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8759 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8760 struct btrfs_ordered_extent *ordered; 8761 struct extent_state *cached_state = NULL; 8762 struct extent_changeset *data_reserved = NULL; 8763 char *kaddr; 8764 unsigned long zero_start; 8765 loff_t size; 8766 vm_fault_t ret; 8767 int ret2; 8768 int reserved = 0; 8769 u64 reserved_space; 8770 u64 page_start; 8771 u64 page_end; 8772 u64 end; 8773 8774 reserved_space = PAGE_SIZE; 8775 8776 sb_start_pagefault(inode->i_sb); 8777 page_start = page_offset(page); 8778 page_end = page_start + PAGE_SIZE - 1; 8779 end = page_end; 8780 8781 /* 8782 * Reserving delalloc space after obtaining the page lock can lead to 8783 * deadlock. For example, if a dirty page is locked by this function 8784 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8785 * dirty page write out, then the btrfs_writepage() function could 8786 * end up waiting indefinitely to get a lock on the page currently 8787 * being processed by btrfs_page_mkwrite() function. 8788 */ 8789 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8790 reserved_space); 8791 if (!ret2) { 8792 ret2 = file_update_time(vmf->vma->vm_file); 8793 reserved = 1; 8794 } 8795 if (ret2) { 8796 ret = vmf_error(ret2); 8797 if (reserved) 8798 goto out; 8799 goto out_noreserve; 8800 } 8801 8802 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8803 again: 8804 lock_page(page); 8805 size = i_size_read(inode); 8806 8807 if ((page->mapping != inode->i_mapping) || 8808 (page_start >= size)) { 8809 /* page got truncated out from underneath us */ 8810 goto out_unlock; 8811 } 8812 wait_on_page_writeback(page); 8813 8814 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8815 set_page_extent_mapped(page); 8816 8817 /* 8818 * we can't set the delalloc bits if there are pending ordered 8819 * extents. Drop our locks and wait for them to finish 8820 */ 8821 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8822 PAGE_SIZE); 8823 if (ordered) { 8824 unlock_extent_cached(io_tree, page_start, page_end, 8825 &cached_state); 8826 unlock_page(page); 8827 btrfs_start_ordered_extent(inode, ordered, 1); 8828 btrfs_put_ordered_extent(ordered); 8829 goto again; 8830 } 8831 8832 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8833 reserved_space = round_up(size - page_start, 8834 fs_info->sectorsize); 8835 if (reserved_space < PAGE_SIZE) { 8836 end = page_start + reserved_space - 1; 8837 btrfs_delalloc_release_space(inode, data_reserved, 8838 page_start, PAGE_SIZE - reserved_space, 8839 true); 8840 } 8841 } 8842 8843 /* 8844 * page_mkwrite gets called when the page is firstly dirtied after it's 8845 * faulted in, but write(2) could also dirty a page and set delalloc 8846 * bits, thus in this case for space account reason, we still need to 8847 * clear any delalloc bits within this page range since we have to 8848 * reserve data&meta space before lock_page() (see above comments). 8849 */ 8850 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8851 EXTENT_DIRTY | EXTENT_DELALLOC | 8852 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8853 0, 0, &cached_state); 8854 8855 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8856 &cached_state, 0); 8857 if (ret2) { 8858 unlock_extent_cached(io_tree, page_start, page_end, 8859 &cached_state); 8860 ret = VM_FAULT_SIGBUS; 8861 goto out_unlock; 8862 } 8863 ret2 = 0; 8864 8865 /* page is wholly or partially inside EOF */ 8866 if (page_start + PAGE_SIZE > size) 8867 zero_start = offset_in_page(size); 8868 else 8869 zero_start = PAGE_SIZE; 8870 8871 if (zero_start != PAGE_SIZE) { 8872 kaddr = kmap(page); 8873 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8874 flush_dcache_page(page); 8875 kunmap(page); 8876 } 8877 ClearPageChecked(page); 8878 set_page_dirty(page); 8879 SetPageUptodate(page); 8880 8881 BTRFS_I(inode)->last_trans = fs_info->generation; 8882 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8883 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8884 8885 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8886 8887 if (!ret2) { 8888 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true); 8889 sb_end_pagefault(inode->i_sb); 8890 extent_changeset_free(data_reserved); 8891 return VM_FAULT_LOCKED; 8892 } 8893 8894 out_unlock: 8895 unlock_page(page); 8896 out: 8897 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0)); 8898 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8899 reserved_space, (ret != 0)); 8900 out_noreserve: 8901 sb_end_pagefault(inode->i_sb); 8902 extent_changeset_free(data_reserved); 8903 return ret; 8904 } 8905 8906 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8907 { 8908 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8909 struct btrfs_root *root = BTRFS_I(inode)->root; 8910 struct btrfs_block_rsv *rsv; 8911 int ret; 8912 struct btrfs_trans_handle *trans; 8913 u64 mask = fs_info->sectorsize - 1; 8914 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 8915 8916 if (!skip_writeback) { 8917 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8918 (u64)-1); 8919 if (ret) 8920 return ret; 8921 } 8922 8923 /* 8924 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8925 * things going on here: 8926 * 8927 * 1) We need to reserve space to update our inode. 8928 * 8929 * 2) We need to have something to cache all the space that is going to 8930 * be free'd up by the truncate operation, but also have some slack 8931 * space reserved in case it uses space during the truncate (thank you 8932 * very much snapshotting). 8933 * 8934 * And we need these to be separate. The fact is we can use a lot of 8935 * space doing the truncate, and we have no earthly idea how much space 8936 * we will use, so we need the truncate reservation to be separate so it 8937 * doesn't end up using space reserved for updating the inode. We also 8938 * need to be able to stop the transaction and start a new one, which 8939 * means we need to be able to update the inode several times, and we 8940 * have no idea of knowing how many times that will be, so we can't just 8941 * reserve 1 item for the entirety of the operation, so that has to be 8942 * done separately as well. 8943 * 8944 * So that leaves us with 8945 * 8946 * 1) rsv - for the truncate reservation, which we will steal from the 8947 * transaction reservation. 8948 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8949 * updating the inode. 8950 */ 8951 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8952 if (!rsv) 8953 return -ENOMEM; 8954 rsv->size = min_size; 8955 rsv->failfast = 1; 8956 8957 /* 8958 * 1 for the truncate slack space 8959 * 1 for updating the inode. 8960 */ 8961 trans = btrfs_start_transaction(root, 2); 8962 if (IS_ERR(trans)) { 8963 ret = PTR_ERR(trans); 8964 goto out; 8965 } 8966 8967 /* Migrate the slack space for the truncate to our reserve */ 8968 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8969 min_size, false); 8970 BUG_ON(ret); 8971 8972 /* 8973 * So if we truncate and then write and fsync we normally would just 8974 * write the extents that changed, which is a problem if we need to 8975 * first truncate that entire inode. So set this flag so we write out 8976 * all of the extents in the inode to the sync log so we're completely 8977 * safe. 8978 */ 8979 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8980 trans->block_rsv = rsv; 8981 8982 while (1) { 8983 ret = btrfs_truncate_inode_items(trans, root, inode, 8984 inode->i_size, 8985 BTRFS_EXTENT_DATA_KEY); 8986 trans->block_rsv = &fs_info->trans_block_rsv; 8987 if (ret != -ENOSPC && ret != -EAGAIN) 8988 break; 8989 8990 ret = btrfs_update_inode(trans, root, inode); 8991 if (ret) 8992 break; 8993 8994 btrfs_end_transaction(trans); 8995 btrfs_btree_balance_dirty(fs_info); 8996 8997 trans = btrfs_start_transaction(root, 2); 8998 if (IS_ERR(trans)) { 8999 ret = PTR_ERR(trans); 9000 trans = NULL; 9001 break; 9002 } 9003 9004 btrfs_block_rsv_release(fs_info, rsv, -1); 9005 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9006 rsv, min_size, false); 9007 BUG_ON(ret); /* shouldn't happen */ 9008 trans->block_rsv = rsv; 9009 } 9010 9011 /* 9012 * We can't call btrfs_truncate_block inside a trans handle as we could 9013 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9014 * we've truncated everything except the last little bit, and can do 9015 * btrfs_truncate_block and then update the disk_i_size. 9016 */ 9017 if (ret == NEED_TRUNCATE_BLOCK) { 9018 btrfs_end_transaction(trans); 9019 btrfs_btree_balance_dirty(fs_info); 9020 9021 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9022 if (ret) 9023 goto out; 9024 trans = btrfs_start_transaction(root, 1); 9025 if (IS_ERR(trans)) { 9026 ret = PTR_ERR(trans); 9027 goto out; 9028 } 9029 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9030 } 9031 9032 if (trans) { 9033 int ret2; 9034 9035 trans->block_rsv = &fs_info->trans_block_rsv; 9036 ret2 = btrfs_update_inode(trans, root, inode); 9037 if (ret2 && !ret) 9038 ret = ret2; 9039 9040 ret2 = btrfs_end_transaction(trans); 9041 if (ret2 && !ret) 9042 ret = ret2; 9043 btrfs_btree_balance_dirty(fs_info); 9044 } 9045 out: 9046 btrfs_free_block_rsv(fs_info, rsv); 9047 9048 return ret; 9049 } 9050 9051 /* 9052 * create a new subvolume directory/inode (helper for the ioctl). 9053 */ 9054 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9055 struct btrfs_root *new_root, 9056 struct btrfs_root *parent_root, 9057 u64 new_dirid) 9058 { 9059 struct inode *inode; 9060 int err; 9061 u64 index = 0; 9062 9063 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9064 new_dirid, new_dirid, 9065 S_IFDIR | (~current_umask() & S_IRWXUGO), 9066 &index); 9067 if (IS_ERR(inode)) 9068 return PTR_ERR(inode); 9069 inode->i_op = &btrfs_dir_inode_operations; 9070 inode->i_fop = &btrfs_dir_file_operations; 9071 9072 set_nlink(inode, 1); 9073 btrfs_i_size_write(BTRFS_I(inode), 0); 9074 unlock_new_inode(inode); 9075 9076 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9077 if (err) 9078 btrfs_err(new_root->fs_info, 9079 "error inheriting subvolume %llu properties: %d", 9080 new_root->root_key.objectid, err); 9081 9082 err = btrfs_update_inode(trans, new_root, inode); 9083 9084 iput(inode); 9085 return err; 9086 } 9087 9088 struct inode *btrfs_alloc_inode(struct super_block *sb) 9089 { 9090 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9091 struct btrfs_inode *ei; 9092 struct inode *inode; 9093 9094 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9095 if (!ei) 9096 return NULL; 9097 9098 ei->root = NULL; 9099 ei->generation = 0; 9100 ei->last_trans = 0; 9101 ei->last_sub_trans = 0; 9102 ei->logged_trans = 0; 9103 ei->delalloc_bytes = 0; 9104 ei->new_delalloc_bytes = 0; 9105 ei->defrag_bytes = 0; 9106 ei->disk_i_size = 0; 9107 ei->flags = 0; 9108 ei->csum_bytes = 0; 9109 ei->index_cnt = (u64)-1; 9110 ei->dir_index = 0; 9111 ei->last_unlink_trans = 0; 9112 ei->last_link_trans = 0; 9113 ei->last_log_commit = 0; 9114 9115 spin_lock_init(&ei->lock); 9116 ei->outstanding_extents = 0; 9117 if (sb->s_magic != BTRFS_TEST_MAGIC) 9118 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9119 BTRFS_BLOCK_RSV_DELALLOC); 9120 ei->runtime_flags = 0; 9121 ei->prop_compress = BTRFS_COMPRESS_NONE; 9122 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9123 9124 ei->delayed_node = NULL; 9125 9126 ei->i_otime.tv_sec = 0; 9127 ei->i_otime.tv_nsec = 0; 9128 9129 inode = &ei->vfs_inode; 9130 extent_map_tree_init(&ei->extent_tree); 9131 extent_io_tree_init(&ei->io_tree, inode); 9132 extent_io_tree_init(&ei->io_failure_tree, inode); 9133 ei->io_tree.track_uptodate = 1; 9134 ei->io_failure_tree.track_uptodate = 1; 9135 atomic_set(&ei->sync_writers, 0); 9136 mutex_init(&ei->log_mutex); 9137 mutex_init(&ei->delalloc_mutex); 9138 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9139 INIT_LIST_HEAD(&ei->delalloc_inodes); 9140 INIT_LIST_HEAD(&ei->delayed_iput); 9141 RB_CLEAR_NODE(&ei->rb_node); 9142 init_rwsem(&ei->dio_sem); 9143 9144 return inode; 9145 } 9146 9147 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9148 void btrfs_test_destroy_inode(struct inode *inode) 9149 { 9150 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9151 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9152 } 9153 #endif 9154 9155 static void btrfs_i_callback(struct rcu_head *head) 9156 { 9157 struct inode *inode = container_of(head, struct inode, i_rcu); 9158 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9159 } 9160 9161 void btrfs_destroy_inode(struct inode *inode) 9162 { 9163 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9164 struct btrfs_ordered_extent *ordered; 9165 struct btrfs_root *root = BTRFS_I(inode)->root; 9166 9167 WARN_ON(!hlist_empty(&inode->i_dentry)); 9168 WARN_ON(inode->i_data.nrpages); 9169 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9170 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9171 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9172 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9173 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9174 WARN_ON(BTRFS_I(inode)->csum_bytes); 9175 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9176 9177 /* 9178 * This can happen where we create an inode, but somebody else also 9179 * created the same inode and we need to destroy the one we already 9180 * created. 9181 */ 9182 if (!root) 9183 goto free; 9184 9185 while (1) { 9186 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9187 if (!ordered) 9188 break; 9189 else { 9190 btrfs_err(fs_info, 9191 "found ordered extent %llu %llu on inode cleanup", 9192 ordered->file_offset, ordered->len); 9193 btrfs_remove_ordered_extent(inode, ordered); 9194 btrfs_put_ordered_extent(ordered); 9195 btrfs_put_ordered_extent(ordered); 9196 } 9197 } 9198 btrfs_qgroup_check_reserved_leak(inode); 9199 inode_tree_del(inode); 9200 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9201 free: 9202 call_rcu(&inode->i_rcu, btrfs_i_callback); 9203 } 9204 9205 int btrfs_drop_inode(struct inode *inode) 9206 { 9207 struct btrfs_root *root = BTRFS_I(inode)->root; 9208 9209 if (root == NULL) 9210 return 1; 9211 9212 /* the snap/subvol tree is on deleting */ 9213 if (btrfs_root_refs(&root->root_item) == 0) 9214 return 1; 9215 else 9216 return generic_drop_inode(inode); 9217 } 9218 9219 static void init_once(void *foo) 9220 { 9221 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9222 9223 inode_init_once(&ei->vfs_inode); 9224 } 9225 9226 void __cold btrfs_destroy_cachep(void) 9227 { 9228 /* 9229 * Make sure all delayed rcu free inodes are flushed before we 9230 * destroy cache. 9231 */ 9232 rcu_barrier(); 9233 kmem_cache_destroy(btrfs_inode_cachep); 9234 kmem_cache_destroy(btrfs_trans_handle_cachep); 9235 kmem_cache_destroy(btrfs_path_cachep); 9236 kmem_cache_destroy(btrfs_free_space_cachep); 9237 } 9238 9239 int __init btrfs_init_cachep(void) 9240 { 9241 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9242 sizeof(struct btrfs_inode), 0, 9243 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9244 init_once); 9245 if (!btrfs_inode_cachep) 9246 goto fail; 9247 9248 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9249 sizeof(struct btrfs_trans_handle), 0, 9250 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9251 if (!btrfs_trans_handle_cachep) 9252 goto fail; 9253 9254 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9255 sizeof(struct btrfs_path), 0, 9256 SLAB_MEM_SPREAD, NULL); 9257 if (!btrfs_path_cachep) 9258 goto fail; 9259 9260 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9261 sizeof(struct btrfs_free_space), 0, 9262 SLAB_MEM_SPREAD, NULL); 9263 if (!btrfs_free_space_cachep) 9264 goto fail; 9265 9266 return 0; 9267 fail: 9268 btrfs_destroy_cachep(); 9269 return -ENOMEM; 9270 } 9271 9272 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9273 u32 request_mask, unsigned int flags) 9274 { 9275 u64 delalloc_bytes; 9276 struct inode *inode = d_inode(path->dentry); 9277 u32 blocksize = inode->i_sb->s_blocksize; 9278 u32 bi_flags = BTRFS_I(inode)->flags; 9279 9280 stat->result_mask |= STATX_BTIME; 9281 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9282 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9283 if (bi_flags & BTRFS_INODE_APPEND) 9284 stat->attributes |= STATX_ATTR_APPEND; 9285 if (bi_flags & BTRFS_INODE_COMPRESS) 9286 stat->attributes |= STATX_ATTR_COMPRESSED; 9287 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9288 stat->attributes |= STATX_ATTR_IMMUTABLE; 9289 if (bi_flags & BTRFS_INODE_NODUMP) 9290 stat->attributes |= STATX_ATTR_NODUMP; 9291 9292 stat->attributes_mask |= (STATX_ATTR_APPEND | 9293 STATX_ATTR_COMPRESSED | 9294 STATX_ATTR_IMMUTABLE | 9295 STATX_ATTR_NODUMP); 9296 9297 generic_fillattr(inode, stat); 9298 stat->dev = BTRFS_I(inode)->root->anon_dev; 9299 9300 spin_lock(&BTRFS_I(inode)->lock); 9301 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9302 spin_unlock(&BTRFS_I(inode)->lock); 9303 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9304 ALIGN(delalloc_bytes, blocksize)) >> 9; 9305 return 0; 9306 } 9307 9308 static int btrfs_rename_exchange(struct inode *old_dir, 9309 struct dentry *old_dentry, 9310 struct inode *new_dir, 9311 struct dentry *new_dentry) 9312 { 9313 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9314 struct btrfs_trans_handle *trans; 9315 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9316 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9317 struct inode *new_inode = new_dentry->d_inode; 9318 struct inode *old_inode = old_dentry->d_inode; 9319 struct timespec64 ctime = current_time(old_inode); 9320 struct dentry *parent; 9321 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9322 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9323 u64 old_idx = 0; 9324 u64 new_idx = 0; 9325 u64 root_objectid; 9326 int ret; 9327 bool root_log_pinned = false; 9328 bool dest_log_pinned = false; 9329 struct btrfs_log_ctx ctx_root; 9330 struct btrfs_log_ctx ctx_dest; 9331 bool sync_log_root = false; 9332 bool sync_log_dest = false; 9333 bool commit_transaction = false; 9334 9335 /* we only allow rename subvolume link between subvolumes */ 9336 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9337 return -EXDEV; 9338 9339 btrfs_init_log_ctx(&ctx_root, old_inode); 9340 btrfs_init_log_ctx(&ctx_dest, new_inode); 9341 9342 /* close the race window with snapshot create/destroy ioctl */ 9343 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9344 down_read(&fs_info->subvol_sem); 9345 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9346 down_read(&fs_info->subvol_sem); 9347 9348 /* 9349 * We want to reserve the absolute worst case amount of items. So if 9350 * both inodes are subvols and we need to unlink them then that would 9351 * require 4 item modifications, but if they are both normal inodes it 9352 * would require 5 item modifications, so we'll assume their normal 9353 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9354 * should cover the worst case number of items we'll modify. 9355 */ 9356 trans = btrfs_start_transaction(root, 12); 9357 if (IS_ERR(trans)) { 9358 ret = PTR_ERR(trans); 9359 goto out_notrans; 9360 } 9361 9362 /* 9363 * We need to find a free sequence number both in the source and 9364 * in the destination directory for the exchange. 9365 */ 9366 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9367 if (ret) 9368 goto out_fail; 9369 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9370 if (ret) 9371 goto out_fail; 9372 9373 BTRFS_I(old_inode)->dir_index = 0ULL; 9374 BTRFS_I(new_inode)->dir_index = 0ULL; 9375 9376 /* Reference for the source. */ 9377 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9378 /* force full log commit if subvolume involved. */ 9379 btrfs_set_log_full_commit(fs_info, trans); 9380 } else { 9381 btrfs_pin_log_trans(root); 9382 root_log_pinned = true; 9383 ret = btrfs_insert_inode_ref(trans, dest, 9384 new_dentry->d_name.name, 9385 new_dentry->d_name.len, 9386 old_ino, 9387 btrfs_ino(BTRFS_I(new_dir)), 9388 old_idx); 9389 if (ret) 9390 goto out_fail; 9391 } 9392 9393 /* And now for the dest. */ 9394 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9395 /* force full log commit if subvolume involved. */ 9396 btrfs_set_log_full_commit(fs_info, trans); 9397 } else { 9398 btrfs_pin_log_trans(dest); 9399 dest_log_pinned = true; 9400 ret = btrfs_insert_inode_ref(trans, root, 9401 old_dentry->d_name.name, 9402 old_dentry->d_name.len, 9403 new_ino, 9404 btrfs_ino(BTRFS_I(old_dir)), 9405 new_idx); 9406 if (ret) 9407 goto out_fail; 9408 } 9409 9410 /* Update inode version and ctime/mtime. */ 9411 inode_inc_iversion(old_dir); 9412 inode_inc_iversion(new_dir); 9413 inode_inc_iversion(old_inode); 9414 inode_inc_iversion(new_inode); 9415 old_dir->i_ctime = old_dir->i_mtime = ctime; 9416 new_dir->i_ctime = new_dir->i_mtime = ctime; 9417 old_inode->i_ctime = ctime; 9418 new_inode->i_ctime = ctime; 9419 9420 if (old_dentry->d_parent != new_dentry->d_parent) { 9421 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9422 BTRFS_I(old_inode), 1); 9423 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9424 BTRFS_I(new_inode), 1); 9425 } 9426 9427 /* src is a subvolume */ 9428 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9429 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9430 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9431 old_dentry->d_name.name, 9432 old_dentry->d_name.len); 9433 } else { /* src is an inode */ 9434 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9435 BTRFS_I(old_dentry->d_inode), 9436 old_dentry->d_name.name, 9437 old_dentry->d_name.len); 9438 if (!ret) 9439 ret = btrfs_update_inode(trans, root, old_inode); 9440 } 9441 if (ret) { 9442 btrfs_abort_transaction(trans, ret); 9443 goto out_fail; 9444 } 9445 9446 /* dest is a subvolume */ 9447 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9448 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9449 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9450 new_dentry->d_name.name, 9451 new_dentry->d_name.len); 9452 } else { /* dest is an inode */ 9453 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9454 BTRFS_I(new_dentry->d_inode), 9455 new_dentry->d_name.name, 9456 new_dentry->d_name.len); 9457 if (!ret) 9458 ret = btrfs_update_inode(trans, dest, new_inode); 9459 } 9460 if (ret) { 9461 btrfs_abort_transaction(trans, ret); 9462 goto out_fail; 9463 } 9464 9465 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9466 new_dentry->d_name.name, 9467 new_dentry->d_name.len, 0, old_idx); 9468 if (ret) { 9469 btrfs_abort_transaction(trans, ret); 9470 goto out_fail; 9471 } 9472 9473 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9474 old_dentry->d_name.name, 9475 old_dentry->d_name.len, 0, new_idx); 9476 if (ret) { 9477 btrfs_abort_transaction(trans, ret); 9478 goto out_fail; 9479 } 9480 9481 if (old_inode->i_nlink == 1) 9482 BTRFS_I(old_inode)->dir_index = old_idx; 9483 if (new_inode->i_nlink == 1) 9484 BTRFS_I(new_inode)->dir_index = new_idx; 9485 9486 if (root_log_pinned) { 9487 parent = new_dentry->d_parent; 9488 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9489 BTRFS_I(old_dir), parent, 9490 false, &ctx_root); 9491 if (ret == BTRFS_NEED_LOG_SYNC) 9492 sync_log_root = true; 9493 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9494 commit_transaction = true; 9495 ret = 0; 9496 btrfs_end_log_trans(root); 9497 root_log_pinned = false; 9498 } 9499 if (dest_log_pinned) { 9500 if (!commit_transaction) { 9501 parent = old_dentry->d_parent; 9502 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9503 BTRFS_I(new_dir), parent, 9504 false, &ctx_dest); 9505 if (ret == BTRFS_NEED_LOG_SYNC) 9506 sync_log_dest = true; 9507 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9508 commit_transaction = true; 9509 ret = 0; 9510 } 9511 btrfs_end_log_trans(dest); 9512 dest_log_pinned = false; 9513 } 9514 out_fail: 9515 /* 9516 * If we have pinned a log and an error happened, we unpin tasks 9517 * trying to sync the log and force them to fallback to a transaction 9518 * commit if the log currently contains any of the inodes involved in 9519 * this rename operation (to ensure we do not persist a log with an 9520 * inconsistent state for any of these inodes or leading to any 9521 * inconsistencies when replayed). If the transaction was aborted, the 9522 * abortion reason is propagated to userspace when attempting to commit 9523 * the transaction. If the log does not contain any of these inodes, we 9524 * allow the tasks to sync it. 9525 */ 9526 if (ret && (root_log_pinned || dest_log_pinned)) { 9527 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9528 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9529 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9530 (new_inode && 9531 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9532 btrfs_set_log_full_commit(fs_info, trans); 9533 9534 if (root_log_pinned) { 9535 btrfs_end_log_trans(root); 9536 root_log_pinned = false; 9537 } 9538 if (dest_log_pinned) { 9539 btrfs_end_log_trans(dest); 9540 dest_log_pinned = false; 9541 } 9542 } 9543 if (!ret && sync_log_root && !commit_transaction) { 9544 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9545 &ctx_root); 9546 if (ret) 9547 commit_transaction = true; 9548 } 9549 if (!ret && sync_log_dest && !commit_transaction) { 9550 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9551 &ctx_dest); 9552 if (ret) 9553 commit_transaction = true; 9554 } 9555 if (commit_transaction) { 9556 ret = btrfs_commit_transaction(trans); 9557 } else { 9558 int ret2; 9559 9560 ret2 = btrfs_end_transaction(trans); 9561 ret = ret ? ret : ret2; 9562 } 9563 out_notrans: 9564 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9565 up_read(&fs_info->subvol_sem); 9566 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9567 up_read(&fs_info->subvol_sem); 9568 9569 return ret; 9570 } 9571 9572 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9573 struct btrfs_root *root, 9574 struct inode *dir, 9575 struct dentry *dentry) 9576 { 9577 int ret; 9578 struct inode *inode; 9579 u64 objectid; 9580 u64 index; 9581 9582 ret = btrfs_find_free_ino(root, &objectid); 9583 if (ret) 9584 return ret; 9585 9586 inode = btrfs_new_inode(trans, root, dir, 9587 dentry->d_name.name, 9588 dentry->d_name.len, 9589 btrfs_ino(BTRFS_I(dir)), 9590 objectid, 9591 S_IFCHR | WHITEOUT_MODE, 9592 &index); 9593 9594 if (IS_ERR(inode)) { 9595 ret = PTR_ERR(inode); 9596 return ret; 9597 } 9598 9599 inode->i_op = &btrfs_special_inode_operations; 9600 init_special_inode(inode, inode->i_mode, 9601 WHITEOUT_DEV); 9602 9603 ret = btrfs_init_inode_security(trans, inode, dir, 9604 &dentry->d_name); 9605 if (ret) 9606 goto out; 9607 9608 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9609 BTRFS_I(inode), 0, index); 9610 if (ret) 9611 goto out; 9612 9613 ret = btrfs_update_inode(trans, root, inode); 9614 out: 9615 unlock_new_inode(inode); 9616 if (ret) 9617 inode_dec_link_count(inode); 9618 iput(inode); 9619 9620 return ret; 9621 } 9622 9623 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9624 struct inode *new_dir, struct dentry *new_dentry, 9625 unsigned int flags) 9626 { 9627 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9628 struct btrfs_trans_handle *trans; 9629 unsigned int trans_num_items; 9630 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9631 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9632 struct inode *new_inode = d_inode(new_dentry); 9633 struct inode *old_inode = d_inode(old_dentry); 9634 u64 index = 0; 9635 u64 root_objectid; 9636 int ret; 9637 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9638 bool log_pinned = false; 9639 struct btrfs_log_ctx ctx; 9640 bool sync_log = false; 9641 bool commit_transaction = false; 9642 9643 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9644 return -EPERM; 9645 9646 /* we only allow rename subvolume link between subvolumes */ 9647 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9648 return -EXDEV; 9649 9650 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9651 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9652 return -ENOTEMPTY; 9653 9654 if (S_ISDIR(old_inode->i_mode) && new_inode && 9655 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9656 return -ENOTEMPTY; 9657 9658 9659 /* check for collisions, even if the name isn't there */ 9660 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9661 new_dentry->d_name.name, 9662 new_dentry->d_name.len); 9663 9664 if (ret) { 9665 if (ret == -EEXIST) { 9666 /* we shouldn't get 9667 * eexist without a new_inode */ 9668 if (WARN_ON(!new_inode)) { 9669 return ret; 9670 } 9671 } else { 9672 /* maybe -EOVERFLOW */ 9673 return ret; 9674 } 9675 } 9676 ret = 0; 9677 9678 /* 9679 * we're using rename to replace one file with another. Start IO on it 9680 * now so we don't add too much work to the end of the transaction 9681 */ 9682 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9683 filemap_flush(old_inode->i_mapping); 9684 9685 /* close the racy window with snapshot create/destroy ioctl */ 9686 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9687 down_read(&fs_info->subvol_sem); 9688 /* 9689 * We want to reserve the absolute worst case amount of items. So if 9690 * both inodes are subvols and we need to unlink them then that would 9691 * require 4 item modifications, but if they are both normal inodes it 9692 * would require 5 item modifications, so we'll assume they are normal 9693 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9694 * should cover the worst case number of items we'll modify. 9695 * If our rename has the whiteout flag, we need more 5 units for the 9696 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9697 * when selinux is enabled). 9698 */ 9699 trans_num_items = 11; 9700 if (flags & RENAME_WHITEOUT) 9701 trans_num_items += 5; 9702 trans = btrfs_start_transaction(root, trans_num_items); 9703 if (IS_ERR(trans)) { 9704 ret = PTR_ERR(trans); 9705 goto out_notrans; 9706 } 9707 9708 if (dest != root) 9709 btrfs_record_root_in_trans(trans, dest); 9710 9711 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9712 if (ret) 9713 goto out_fail; 9714 9715 BTRFS_I(old_inode)->dir_index = 0ULL; 9716 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9717 /* force full log commit if subvolume involved. */ 9718 btrfs_set_log_full_commit(fs_info, trans); 9719 } else { 9720 btrfs_pin_log_trans(root); 9721 log_pinned = true; 9722 ret = btrfs_insert_inode_ref(trans, dest, 9723 new_dentry->d_name.name, 9724 new_dentry->d_name.len, 9725 old_ino, 9726 btrfs_ino(BTRFS_I(new_dir)), index); 9727 if (ret) 9728 goto out_fail; 9729 } 9730 9731 inode_inc_iversion(old_dir); 9732 inode_inc_iversion(new_dir); 9733 inode_inc_iversion(old_inode); 9734 old_dir->i_ctime = old_dir->i_mtime = 9735 new_dir->i_ctime = new_dir->i_mtime = 9736 old_inode->i_ctime = current_time(old_dir); 9737 9738 if (old_dentry->d_parent != new_dentry->d_parent) 9739 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9740 BTRFS_I(old_inode), 1); 9741 9742 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9743 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9744 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9745 old_dentry->d_name.name, 9746 old_dentry->d_name.len); 9747 } else { 9748 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9749 BTRFS_I(d_inode(old_dentry)), 9750 old_dentry->d_name.name, 9751 old_dentry->d_name.len); 9752 if (!ret) 9753 ret = btrfs_update_inode(trans, root, old_inode); 9754 } 9755 if (ret) { 9756 btrfs_abort_transaction(trans, ret); 9757 goto out_fail; 9758 } 9759 9760 if (new_inode) { 9761 inode_inc_iversion(new_inode); 9762 new_inode->i_ctime = current_time(new_inode); 9763 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9764 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9765 root_objectid = BTRFS_I(new_inode)->location.objectid; 9766 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9767 new_dentry->d_name.name, 9768 new_dentry->d_name.len); 9769 BUG_ON(new_inode->i_nlink == 0); 9770 } else { 9771 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9772 BTRFS_I(d_inode(new_dentry)), 9773 new_dentry->d_name.name, 9774 new_dentry->d_name.len); 9775 } 9776 if (!ret && new_inode->i_nlink == 0) 9777 ret = btrfs_orphan_add(trans, 9778 BTRFS_I(d_inode(new_dentry))); 9779 if (ret) { 9780 btrfs_abort_transaction(trans, ret); 9781 goto out_fail; 9782 } 9783 } 9784 9785 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9786 new_dentry->d_name.name, 9787 new_dentry->d_name.len, 0, index); 9788 if (ret) { 9789 btrfs_abort_transaction(trans, ret); 9790 goto out_fail; 9791 } 9792 9793 if (old_inode->i_nlink == 1) 9794 BTRFS_I(old_inode)->dir_index = index; 9795 9796 if (log_pinned) { 9797 struct dentry *parent = new_dentry->d_parent; 9798 9799 btrfs_init_log_ctx(&ctx, old_inode); 9800 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9801 BTRFS_I(old_dir), parent, 9802 false, &ctx); 9803 if (ret == BTRFS_NEED_LOG_SYNC) 9804 sync_log = true; 9805 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9806 commit_transaction = true; 9807 ret = 0; 9808 btrfs_end_log_trans(root); 9809 log_pinned = false; 9810 } 9811 9812 if (flags & RENAME_WHITEOUT) { 9813 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9814 old_dentry); 9815 9816 if (ret) { 9817 btrfs_abort_transaction(trans, ret); 9818 goto out_fail; 9819 } 9820 } 9821 out_fail: 9822 /* 9823 * If we have pinned the log and an error happened, we unpin tasks 9824 * trying to sync the log and force them to fallback to a transaction 9825 * commit if the log currently contains any of the inodes involved in 9826 * this rename operation (to ensure we do not persist a log with an 9827 * inconsistent state for any of these inodes or leading to any 9828 * inconsistencies when replayed). If the transaction was aborted, the 9829 * abortion reason is propagated to userspace when attempting to commit 9830 * the transaction. If the log does not contain any of these inodes, we 9831 * allow the tasks to sync it. 9832 */ 9833 if (ret && log_pinned) { 9834 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9835 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9836 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9837 (new_inode && 9838 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9839 btrfs_set_log_full_commit(fs_info, trans); 9840 9841 btrfs_end_log_trans(root); 9842 log_pinned = false; 9843 } 9844 if (!ret && sync_log) { 9845 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9846 if (ret) 9847 commit_transaction = true; 9848 } 9849 if (commit_transaction) { 9850 ret = btrfs_commit_transaction(trans); 9851 } else { 9852 int ret2; 9853 9854 ret2 = btrfs_end_transaction(trans); 9855 ret = ret ? ret : ret2; 9856 } 9857 out_notrans: 9858 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9859 up_read(&fs_info->subvol_sem); 9860 9861 return ret; 9862 } 9863 9864 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9865 struct inode *new_dir, struct dentry *new_dentry, 9866 unsigned int flags) 9867 { 9868 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9869 return -EINVAL; 9870 9871 if (flags & RENAME_EXCHANGE) 9872 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9873 new_dentry); 9874 9875 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9876 } 9877 9878 struct btrfs_delalloc_work { 9879 struct inode *inode; 9880 struct completion completion; 9881 struct list_head list; 9882 struct btrfs_work work; 9883 }; 9884 9885 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9886 { 9887 struct btrfs_delalloc_work *delalloc_work; 9888 struct inode *inode; 9889 9890 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9891 work); 9892 inode = delalloc_work->inode; 9893 filemap_flush(inode->i_mapping); 9894 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9895 &BTRFS_I(inode)->runtime_flags)) 9896 filemap_flush(inode->i_mapping); 9897 9898 iput(inode); 9899 complete(&delalloc_work->completion); 9900 } 9901 9902 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9903 { 9904 struct btrfs_delalloc_work *work; 9905 9906 work = kmalloc(sizeof(*work), GFP_NOFS); 9907 if (!work) 9908 return NULL; 9909 9910 init_completion(&work->completion); 9911 INIT_LIST_HEAD(&work->list); 9912 work->inode = inode; 9913 WARN_ON_ONCE(!inode); 9914 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9915 btrfs_run_delalloc_work, NULL, NULL); 9916 9917 return work; 9918 } 9919 9920 /* 9921 * some fairly slow code that needs optimization. This walks the list 9922 * of all the inodes with pending delalloc and forces them to disk. 9923 */ 9924 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 9925 { 9926 struct btrfs_inode *binode; 9927 struct inode *inode; 9928 struct btrfs_delalloc_work *work, *next; 9929 struct list_head works; 9930 struct list_head splice; 9931 int ret = 0; 9932 9933 INIT_LIST_HEAD(&works); 9934 INIT_LIST_HEAD(&splice); 9935 9936 mutex_lock(&root->delalloc_mutex); 9937 spin_lock(&root->delalloc_lock); 9938 list_splice_init(&root->delalloc_inodes, &splice); 9939 while (!list_empty(&splice)) { 9940 binode = list_entry(splice.next, struct btrfs_inode, 9941 delalloc_inodes); 9942 9943 list_move_tail(&binode->delalloc_inodes, 9944 &root->delalloc_inodes); 9945 inode = igrab(&binode->vfs_inode); 9946 if (!inode) { 9947 cond_resched_lock(&root->delalloc_lock); 9948 continue; 9949 } 9950 spin_unlock(&root->delalloc_lock); 9951 9952 if (snapshot) 9953 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9954 &binode->runtime_flags); 9955 work = btrfs_alloc_delalloc_work(inode); 9956 if (!work) { 9957 iput(inode); 9958 ret = -ENOMEM; 9959 goto out; 9960 } 9961 list_add_tail(&work->list, &works); 9962 btrfs_queue_work(root->fs_info->flush_workers, 9963 &work->work); 9964 ret++; 9965 if (nr != -1 && ret >= nr) 9966 goto out; 9967 cond_resched(); 9968 spin_lock(&root->delalloc_lock); 9969 } 9970 spin_unlock(&root->delalloc_lock); 9971 9972 out: 9973 list_for_each_entry_safe(work, next, &works, list) { 9974 list_del_init(&work->list); 9975 wait_for_completion(&work->completion); 9976 kfree(work); 9977 } 9978 9979 if (!list_empty(&splice)) { 9980 spin_lock(&root->delalloc_lock); 9981 list_splice_tail(&splice, &root->delalloc_inodes); 9982 spin_unlock(&root->delalloc_lock); 9983 } 9984 mutex_unlock(&root->delalloc_mutex); 9985 return ret; 9986 } 9987 9988 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9989 { 9990 struct btrfs_fs_info *fs_info = root->fs_info; 9991 int ret; 9992 9993 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9994 return -EROFS; 9995 9996 ret = start_delalloc_inodes(root, -1, true); 9997 if (ret > 0) 9998 ret = 0; 9999 return ret; 10000 } 10001 10002 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 10003 { 10004 struct btrfs_root *root; 10005 struct list_head splice; 10006 int ret; 10007 10008 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10009 return -EROFS; 10010 10011 INIT_LIST_HEAD(&splice); 10012 10013 mutex_lock(&fs_info->delalloc_root_mutex); 10014 spin_lock(&fs_info->delalloc_root_lock); 10015 list_splice_init(&fs_info->delalloc_roots, &splice); 10016 while (!list_empty(&splice) && nr) { 10017 root = list_first_entry(&splice, struct btrfs_root, 10018 delalloc_root); 10019 root = btrfs_grab_fs_root(root); 10020 BUG_ON(!root); 10021 list_move_tail(&root->delalloc_root, 10022 &fs_info->delalloc_roots); 10023 spin_unlock(&fs_info->delalloc_root_lock); 10024 10025 ret = start_delalloc_inodes(root, nr, false); 10026 btrfs_put_fs_root(root); 10027 if (ret < 0) 10028 goto out; 10029 10030 if (nr != -1) { 10031 nr -= ret; 10032 WARN_ON(nr < 0); 10033 } 10034 spin_lock(&fs_info->delalloc_root_lock); 10035 } 10036 spin_unlock(&fs_info->delalloc_root_lock); 10037 10038 ret = 0; 10039 out: 10040 if (!list_empty(&splice)) { 10041 spin_lock(&fs_info->delalloc_root_lock); 10042 list_splice_tail(&splice, &fs_info->delalloc_roots); 10043 spin_unlock(&fs_info->delalloc_root_lock); 10044 } 10045 mutex_unlock(&fs_info->delalloc_root_mutex); 10046 return ret; 10047 } 10048 10049 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10050 const char *symname) 10051 { 10052 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10053 struct btrfs_trans_handle *trans; 10054 struct btrfs_root *root = BTRFS_I(dir)->root; 10055 struct btrfs_path *path; 10056 struct btrfs_key key; 10057 struct inode *inode = NULL; 10058 int err; 10059 u64 objectid; 10060 u64 index = 0; 10061 int name_len; 10062 int datasize; 10063 unsigned long ptr; 10064 struct btrfs_file_extent_item *ei; 10065 struct extent_buffer *leaf; 10066 10067 name_len = strlen(symname); 10068 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10069 return -ENAMETOOLONG; 10070 10071 /* 10072 * 2 items for inode item and ref 10073 * 2 items for dir items 10074 * 1 item for updating parent inode item 10075 * 1 item for the inline extent item 10076 * 1 item for xattr if selinux is on 10077 */ 10078 trans = btrfs_start_transaction(root, 7); 10079 if (IS_ERR(trans)) 10080 return PTR_ERR(trans); 10081 10082 err = btrfs_find_free_ino(root, &objectid); 10083 if (err) 10084 goto out_unlock; 10085 10086 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10087 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10088 objectid, S_IFLNK|S_IRWXUGO, &index); 10089 if (IS_ERR(inode)) { 10090 err = PTR_ERR(inode); 10091 inode = NULL; 10092 goto out_unlock; 10093 } 10094 10095 /* 10096 * If the active LSM wants to access the inode during 10097 * d_instantiate it needs these. Smack checks to see 10098 * if the filesystem supports xattrs by looking at the 10099 * ops vector. 10100 */ 10101 inode->i_fop = &btrfs_file_operations; 10102 inode->i_op = &btrfs_file_inode_operations; 10103 inode->i_mapping->a_ops = &btrfs_aops; 10104 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10105 10106 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10107 if (err) 10108 goto out_unlock; 10109 10110 path = btrfs_alloc_path(); 10111 if (!path) { 10112 err = -ENOMEM; 10113 goto out_unlock; 10114 } 10115 key.objectid = btrfs_ino(BTRFS_I(inode)); 10116 key.offset = 0; 10117 key.type = BTRFS_EXTENT_DATA_KEY; 10118 datasize = btrfs_file_extent_calc_inline_size(name_len); 10119 err = btrfs_insert_empty_item(trans, root, path, &key, 10120 datasize); 10121 if (err) { 10122 btrfs_free_path(path); 10123 goto out_unlock; 10124 } 10125 leaf = path->nodes[0]; 10126 ei = btrfs_item_ptr(leaf, path->slots[0], 10127 struct btrfs_file_extent_item); 10128 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10129 btrfs_set_file_extent_type(leaf, ei, 10130 BTRFS_FILE_EXTENT_INLINE); 10131 btrfs_set_file_extent_encryption(leaf, ei, 0); 10132 btrfs_set_file_extent_compression(leaf, ei, 0); 10133 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10134 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10135 10136 ptr = btrfs_file_extent_inline_start(ei); 10137 write_extent_buffer(leaf, symname, ptr, name_len); 10138 btrfs_mark_buffer_dirty(leaf); 10139 btrfs_free_path(path); 10140 10141 inode->i_op = &btrfs_symlink_inode_operations; 10142 inode_nohighmem(inode); 10143 inode->i_mapping->a_ops = &btrfs_aops; 10144 inode_set_bytes(inode, name_len); 10145 btrfs_i_size_write(BTRFS_I(inode), name_len); 10146 err = btrfs_update_inode(trans, root, inode); 10147 /* 10148 * Last step, add directory indexes for our symlink inode. This is the 10149 * last step to avoid extra cleanup of these indexes if an error happens 10150 * elsewhere above. 10151 */ 10152 if (!err) 10153 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10154 BTRFS_I(inode), 0, index); 10155 if (err) 10156 goto out_unlock; 10157 10158 d_instantiate_new(dentry, inode); 10159 10160 out_unlock: 10161 btrfs_end_transaction(trans); 10162 if (err && inode) { 10163 inode_dec_link_count(inode); 10164 discard_new_inode(inode); 10165 } 10166 btrfs_btree_balance_dirty(fs_info); 10167 return err; 10168 } 10169 10170 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10171 u64 start, u64 num_bytes, u64 min_size, 10172 loff_t actual_len, u64 *alloc_hint, 10173 struct btrfs_trans_handle *trans) 10174 { 10175 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10176 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10177 struct extent_map *em; 10178 struct btrfs_root *root = BTRFS_I(inode)->root; 10179 struct btrfs_key ins; 10180 u64 cur_offset = start; 10181 u64 i_size; 10182 u64 cur_bytes; 10183 u64 last_alloc = (u64)-1; 10184 int ret = 0; 10185 bool own_trans = true; 10186 u64 end = start + num_bytes - 1; 10187 10188 if (trans) 10189 own_trans = false; 10190 while (num_bytes > 0) { 10191 if (own_trans) { 10192 trans = btrfs_start_transaction(root, 3); 10193 if (IS_ERR(trans)) { 10194 ret = PTR_ERR(trans); 10195 break; 10196 } 10197 } 10198 10199 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10200 cur_bytes = max(cur_bytes, min_size); 10201 /* 10202 * If we are severely fragmented we could end up with really 10203 * small allocations, so if the allocator is returning small 10204 * chunks lets make its job easier by only searching for those 10205 * sized chunks. 10206 */ 10207 cur_bytes = min(cur_bytes, last_alloc); 10208 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10209 min_size, 0, *alloc_hint, &ins, 1, 0); 10210 if (ret) { 10211 if (own_trans) 10212 btrfs_end_transaction(trans); 10213 break; 10214 } 10215 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10216 10217 last_alloc = ins.offset; 10218 ret = insert_reserved_file_extent(trans, inode, 10219 cur_offset, ins.objectid, 10220 ins.offset, ins.offset, 10221 ins.offset, 0, 0, 0, 10222 BTRFS_FILE_EXTENT_PREALLOC); 10223 if (ret) { 10224 btrfs_free_reserved_extent(fs_info, ins.objectid, 10225 ins.offset, 0); 10226 btrfs_abort_transaction(trans, ret); 10227 if (own_trans) 10228 btrfs_end_transaction(trans); 10229 break; 10230 } 10231 10232 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10233 cur_offset + ins.offset -1, 0); 10234 10235 em = alloc_extent_map(); 10236 if (!em) { 10237 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10238 &BTRFS_I(inode)->runtime_flags); 10239 goto next; 10240 } 10241 10242 em->start = cur_offset; 10243 em->orig_start = cur_offset; 10244 em->len = ins.offset; 10245 em->block_start = ins.objectid; 10246 em->block_len = ins.offset; 10247 em->orig_block_len = ins.offset; 10248 em->ram_bytes = ins.offset; 10249 em->bdev = fs_info->fs_devices->latest_bdev; 10250 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10251 em->generation = trans->transid; 10252 10253 while (1) { 10254 write_lock(&em_tree->lock); 10255 ret = add_extent_mapping(em_tree, em, 1); 10256 write_unlock(&em_tree->lock); 10257 if (ret != -EEXIST) 10258 break; 10259 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10260 cur_offset + ins.offset - 1, 10261 0); 10262 } 10263 free_extent_map(em); 10264 next: 10265 num_bytes -= ins.offset; 10266 cur_offset += ins.offset; 10267 *alloc_hint = ins.objectid + ins.offset; 10268 10269 inode_inc_iversion(inode); 10270 inode->i_ctime = current_time(inode); 10271 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10272 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10273 (actual_len > inode->i_size) && 10274 (cur_offset > inode->i_size)) { 10275 if (cur_offset > actual_len) 10276 i_size = actual_len; 10277 else 10278 i_size = cur_offset; 10279 i_size_write(inode, i_size); 10280 btrfs_ordered_update_i_size(inode, i_size, NULL); 10281 } 10282 10283 ret = btrfs_update_inode(trans, root, inode); 10284 10285 if (ret) { 10286 btrfs_abort_transaction(trans, ret); 10287 if (own_trans) 10288 btrfs_end_transaction(trans); 10289 break; 10290 } 10291 10292 if (own_trans) 10293 btrfs_end_transaction(trans); 10294 } 10295 if (cur_offset < end) 10296 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10297 end - cur_offset + 1); 10298 return ret; 10299 } 10300 10301 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10302 u64 start, u64 num_bytes, u64 min_size, 10303 loff_t actual_len, u64 *alloc_hint) 10304 { 10305 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10306 min_size, actual_len, alloc_hint, 10307 NULL); 10308 } 10309 10310 int btrfs_prealloc_file_range_trans(struct inode *inode, 10311 struct btrfs_trans_handle *trans, int mode, 10312 u64 start, u64 num_bytes, u64 min_size, 10313 loff_t actual_len, u64 *alloc_hint) 10314 { 10315 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10316 min_size, actual_len, alloc_hint, trans); 10317 } 10318 10319 static int btrfs_set_page_dirty(struct page *page) 10320 { 10321 return __set_page_dirty_nobuffers(page); 10322 } 10323 10324 static int btrfs_permission(struct inode *inode, int mask) 10325 { 10326 struct btrfs_root *root = BTRFS_I(inode)->root; 10327 umode_t mode = inode->i_mode; 10328 10329 if (mask & MAY_WRITE && 10330 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10331 if (btrfs_root_readonly(root)) 10332 return -EROFS; 10333 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10334 return -EACCES; 10335 } 10336 return generic_permission(inode, mask); 10337 } 10338 10339 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10340 { 10341 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10342 struct btrfs_trans_handle *trans; 10343 struct btrfs_root *root = BTRFS_I(dir)->root; 10344 struct inode *inode = NULL; 10345 u64 objectid; 10346 u64 index; 10347 int ret = 0; 10348 10349 /* 10350 * 5 units required for adding orphan entry 10351 */ 10352 trans = btrfs_start_transaction(root, 5); 10353 if (IS_ERR(trans)) 10354 return PTR_ERR(trans); 10355 10356 ret = btrfs_find_free_ino(root, &objectid); 10357 if (ret) 10358 goto out; 10359 10360 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10361 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10362 if (IS_ERR(inode)) { 10363 ret = PTR_ERR(inode); 10364 inode = NULL; 10365 goto out; 10366 } 10367 10368 inode->i_fop = &btrfs_file_operations; 10369 inode->i_op = &btrfs_file_inode_operations; 10370 10371 inode->i_mapping->a_ops = &btrfs_aops; 10372 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10373 10374 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10375 if (ret) 10376 goto out; 10377 10378 ret = btrfs_update_inode(trans, root, inode); 10379 if (ret) 10380 goto out; 10381 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10382 if (ret) 10383 goto out; 10384 10385 /* 10386 * We set number of links to 0 in btrfs_new_inode(), and here we set 10387 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10388 * through: 10389 * 10390 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10391 */ 10392 set_nlink(inode, 1); 10393 d_tmpfile(dentry, inode); 10394 unlock_new_inode(inode); 10395 mark_inode_dirty(inode); 10396 out: 10397 btrfs_end_transaction(trans); 10398 if (ret && inode) 10399 discard_new_inode(inode); 10400 btrfs_btree_balance_dirty(fs_info); 10401 return ret; 10402 } 10403 10404 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10405 { 10406 struct inode *inode = tree->private_data; 10407 unsigned long index = start >> PAGE_SHIFT; 10408 unsigned long end_index = end >> PAGE_SHIFT; 10409 struct page *page; 10410 10411 while (index <= end_index) { 10412 page = find_get_page(inode->i_mapping, index); 10413 ASSERT(page); /* Pages should be in the extent_io_tree */ 10414 set_page_writeback(page); 10415 put_page(page); 10416 index++; 10417 } 10418 } 10419 10420 #ifdef CONFIG_SWAP 10421 /* 10422 * Add an entry indicating a block group or device which is pinned by a 10423 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10424 * negative errno on failure. 10425 */ 10426 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10427 bool is_block_group) 10428 { 10429 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10430 struct btrfs_swapfile_pin *sp, *entry; 10431 struct rb_node **p; 10432 struct rb_node *parent = NULL; 10433 10434 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10435 if (!sp) 10436 return -ENOMEM; 10437 sp->ptr = ptr; 10438 sp->inode = inode; 10439 sp->is_block_group = is_block_group; 10440 10441 spin_lock(&fs_info->swapfile_pins_lock); 10442 p = &fs_info->swapfile_pins.rb_node; 10443 while (*p) { 10444 parent = *p; 10445 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10446 if (sp->ptr < entry->ptr || 10447 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10448 p = &(*p)->rb_left; 10449 } else if (sp->ptr > entry->ptr || 10450 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10451 p = &(*p)->rb_right; 10452 } else { 10453 spin_unlock(&fs_info->swapfile_pins_lock); 10454 kfree(sp); 10455 return 1; 10456 } 10457 } 10458 rb_link_node(&sp->node, parent, p); 10459 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10460 spin_unlock(&fs_info->swapfile_pins_lock); 10461 return 0; 10462 } 10463 10464 /* Free all of the entries pinned by this swapfile. */ 10465 static void btrfs_free_swapfile_pins(struct inode *inode) 10466 { 10467 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10468 struct btrfs_swapfile_pin *sp; 10469 struct rb_node *node, *next; 10470 10471 spin_lock(&fs_info->swapfile_pins_lock); 10472 node = rb_first(&fs_info->swapfile_pins); 10473 while (node) { 10474 next = rb_next(node); 10475 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10476 if (sp->inode == inode) { 10477 rb_erase(&sp->node, &fs_info->swapfile_pins); 10478 if (sp->is_block_group) 10479 btrfs_put_block_group(sp->ptr); 10480 kfree(sp); 10481 } 10482 node = next; 10483 } 10484 spin_unlock(&fs_info->swapfile_pins_lock); 10485 } 10486 10487 struct btrfs_swap_info { 10488 u64 start; 10489 u64 block_start; 10490 u64 block_len; 10491 u64 lowest_ppage; 10492 u64 highest_ppage; 10493 unsigned long nr_pages; 10494 int nr_extents; 10495 }; 10496 10497 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10498 struct btrfs_swap_info *bsi) 10499 { 10500 unsigned long nr_pages; 10501 u64 first_ppage, first_ppage_reported, next_ppage; 10502 int ret; 10503 10504 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10505 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10506 PAGE_SIZE) >> PAGE_SHIFT; 10507 10508 if (first_ppage >= next_ppage) 10509 return 0; 10510 nr_pages = next_ppage - first_ppage; 10511 10512 first_ppage_reported = first_ppage; 10513 if (bsi->start == 0) 10514 first_ppage_reported++; 10515 if (bsi->lowest_ppage > first_ppage_reported) 10516 bsi->lowest_ppage = first_ppage_reported; 10517 if (bsi->highest_ppage < (next_ppage - 1)) 10518 bsi->highest_ppage = next_ppage - 1; 10519 10520 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10521 if (ret < 0) 10522 return ret; 10523 bsi->nr_extents += ret; 10524 bsi->nr_pages += nr_pages; 10525 return 0; 10526 } 10527 10528 static void btrfs_swap_deactivate(struct file *file) 10529 { 10530 struct inode *inode = file_inode(file); 10531 10532 btrfs_free_swapfile_pins(inode); 10533 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10534 } 10535 10536 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10537 sector_t *span) 10538 { 10539 struct inode *inode = file_inode(file); 10540 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10541 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10542 struct extent_state *cached_state = NULL; 10543 struct extent_map *em = NULL; 10544 struct btrfs_device *device = NULL; 10545 struct btrfs_swap_info bsi = { 10546 .lowest_ppage = (sector_t)-1ULL, 10547 }; 10548 int ret = 0; 10549 u64 isize; 10550 u64 start; 10551 10552 /* 10553 * If the swap file was just created, make sure delalloc is done. If the 10554 * file changes again after this, the user is doing something stupid and 10555 * we don't really care. 10556 */ 10557 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10558 if (ret) 10559 return ret; 10560 10561 /* 10562 * The inode is locked, so these flags won't change after we check them. 10563 */ 10564 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10565 btrfs_warn(fs_info, "swapfile must not be compressed"); 10566 return -EINVAL; 10567 } 10568 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10569 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10570 return -EINVAL; 10571 } 10572 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10573 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10574 return -EINVAL; 10575 } 10576 10577 /* 10578 * Balance or device remove/replace/resize can move stuff around from 10579 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10580 * concurrently while we are mapping the swap extents, and 10581 * fs_info->swapfile_pins prevents them from running while the swap file 10582 * is active and moving the extents. Note that this also prevents a 10583 * concurrent device add which isn't actually necessary, but it's not 10584 * really worth the trouble to allow it. 10585 */ 10586 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10587 btrfs_warn(fs_info, 10588 "cannot activate swapfile while exclusive operation is running"); 10589 return -EBUSY; 10590 } 10591 /* 10592 * Snapshots can create extents which require COW even if NODATACOW is 10593 * set. We use this counter to prevent snapshots. We must increment it 10594 * before walking the extents because we don't want a concurrent 10595 * snapshot to run after we've already checked the extents. 10596 */ 10597 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10598 10599 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10600 10601 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10602 start = 0; 10603 while (start < isize) { 10604 u64 logical_block_start, physical_block_start; 10605 struct btrfs_block_group_cache *bg; 10606 u64 len = isize - start; 10607 10608 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 10609 if (IS_ERR(em)) { 10610 ret = PTR_ERR(em); 10611 goto out; 10612 } 10613 10614 if (em->block_start == EXTENT_MAP_HOLE) { 10615 btrfs_warn(fs_info, "swapfile must not have holes"); 10616 ret = -EINVAL; 10617 goto out; 10618 } 10619 if (em->block_start == EXTENT_MAP_INLINE) { 10620 /* 10621 * It's unlikely we'll ever actually find ourselves 10622 * here, as a file small enough to fit inline won't be 10623 * big enough to store more than the swap header, but in 10624 * case something changes in the future, let's catch it 10625 * here rather than later. 10626 */ 10627 btrfs_warn(fs_info, "swapfile must not be inline"); 10628 ret = -EINVAL; 10629 goto out; 10630 } 10631 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10632 btrfs_warn(fs_info, "swapfile must not be compressed"); 10633 ret = -EINVAL; 10634 goto out; 10635 } 10636 10637 logical_block_start = em->block_start + (start - em->start); 10638 len = min(len, em->len - (start - em->start)); 10639 free_extent_map(em); 10640 em = NULL; 10641 10642 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10643 if (ret < 0) { 10644 goto out; 10645 } else if (ret) { 10646 ret = 0; 10647 } else { 10648 btrfs_warn(fs_info, 10649 "swapfile must not be copy-on-write"); 10650 ret = -EINVAL; 10651 goto out; 10652 } 10653 10654 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10655 if (IS_ERR(em)) { 10656 ret = PTR_ERR(em); 10657 goto out; 10658 } 10659 10660 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10661 btrfs_warn(fs_info, 10662 "swapfile must have single data profile"); 10663 ret = -EINVAL; 10664 goto out; 10665 } 10666 10667 if (device == NULL) { 10668 device = em->map_lookup->stripes[0].dev; 10669 ret = btrfs_add_swapfile_pin(inode, device, false); 10670 if (ret == 1) 10671 ret = 0; 10672 else if (ret) 10673 goto out; 10674 } else if (device != em->map_lookup->stripes[0].dev) { 10675 btrfs_warn(fs_info, "swapfile must be on one device"); 10676 ret = -EINVAL; 10677 goto out; 10678 } 10679 10680 physical_block_start = (em->map_lookup->stripes[0].physical + 10681 (logical_block_start - em->start)); 10682 len = min(len, em->len - (logical_block_start - em->start)); 10683 free_extent_map(em); 10684 em = NULL; 10685 10686 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10687 if (!bg) { 10688 btrfs_warn(fs_info, 10689 "could not find block group containing swapfile"); 10690 ret = -EINVAL; 10691 goto out; 10692 } 10693 10694 ret = btrfs_add_swapfile_pin(inode, bg, true); 10695 if (ret) { 10696 btrfs_put_block_group(bg); 10697 if (ret == 1) 10698 ret = 0; 10699 else 10700 goto out; 10701 } 10702 10703 if (bsi.block_len && 10704 bsi.block_start + bsi.block_len == physical_block_start) { 10705 bsi.block_len += len; 10706 } else { 10707 if (bsi.block_len) { 10708 ret = btrfs_add_swap_extent(sis, &bsi); 10709 if (ret) 10710 goto out; 10711 } 10712 bsi.start = start; 10713 bsi.block_start = physical_block_start; 10714 bsi.block_len = len; 10715 } 10716 10717 start += len; 10718 } 10719 10720 if (bsi.block_len) 10721 ret = btrfs_add_swap_extent(sis, &bsi); 10722 10723 out: 10724 if (!IS_ERR_OR_NULL(em)) 10725 free_extent_map(em); 10726 10727 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10728 10729 if (ret) 10730 btrfs_swap_deactivate(file); 10731 10732 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10733 10734 if (ret) 10735 return ret; 10736 10737 if (device) 10738 sis->bdev = device->bdev; 10739 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10740 sis->max = bsi.nr_pages; 10741 sis->pages = bsi.nr_pages - 1; 10742 sis->highest_bit = bsi.nr_pages - 1; 10743 return bsi.nr_extents; 10744 } 10745 #else 10746 static void btrfs_swap_deactivate(struct file *file) 10747 { 10748 } 10749 10750 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10751 sector_t *span) 10752 { 10753 return -EOPNOTSUPP; 10754 } 10755 #endif 10756 10757 static const struct inode_operations btrfs_dir_inode_operations = { 10758 .getattr = btrfs_getattr, 10759 .lookup = btrfs_lookup, 10760 .create = btrfs_create, 10761 .unlink = btrfs_unlink, 10762 .link = btrfs_link, 10763 .mkdir = btrfs_mkdir, 10764 .rmdir = btrfs_rmdir, 10765 .rename = btrfs_rename2, 10766 .symlink = btrfs_symlink, 10767 .setattr = btrfs_setattr, 10768 .mknod = btrfs_mknod, 10769 .listxattr = btrfs_listxattr, 10770 .permission = btrfs_permission, 10771 .get_acl = btrfs_get_acl, 10772 .set_acl = btrfs_set_acl, 10773 .update_time = btrfs_update_time, 10774 .tmpfile = btrfs_tmpfile, 10775 }; 10776 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10777 .lookup = btrfs_lookup, 10778 .permission = btrfs_permission, 10779 .update_time = btrfs_update_time, 10780 }; 10781 10782 static const struct file_operations btrfs_dir_file_operations = { 10783 .llseek = generic_file_llseek, 10784 .read = generic_read_dir, 10785 .iterate_shared = btrfs_real_readdir, 10786 .open = btrfs_opendir, 10787 .unlocked_ioctl = btrfs_ioctl, 10788 #ifdef CONFIG_COMPAT 10789 .compat_ioctl = btrfs_compat_ioctl, 10790 #endif 10791 .release = btrfs_release_file, 10792 .fsync = btrfs_sync_file, 10793 }; 10794 10795 static const struct extent_io_ops btrfs_extent_io_ops = { 10796 /* mandatory callbacks */ 10797 .submit_bio_hook = btrfs_submit_bio_hook, 10798 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10799 }; 10800 10801 /* 10802 * btrfs doesn't support the bmap operation because swapfiles 10803 * use bmap to make a mapping of extents in the file. They assume 10804 * these extents won't change over the life of the file and they 10805 * use the bmap result to do IO directly to the drive. 10806 * 10807 * the btrfs bmap call would return logical addresses that aren't 10808 * suitable for IO and they also will change frequently as COW 10809 * operations happen. So, swapfile + btrfs == corruption. 10810 * 10811 * For now we're avoiding this by dropping bmap. 10812 */ 10813 static const struct address_space_operations btrfs_aops = { 10814 .readpage = btrfs_readpage, 10815 .writepage = btrfs_writepage, 10816 .writepages = btrfs_writepages, 10817 .readpages = btrfs_readpages, 10818 .direct_IO = btrfs_direct_IO, 10819 .invalidatepage = btrfs_invalidatepage, 10820 .releasepage = btrfs_releasepage, 10821 .set_page_dirty = btrfs_set_page_dirty, 10822 .error_remove_page = generic_error_remove_page, 10823 .swap_activate = btrfs_swap_activate, 10824 .swap_deactivate = btrfs_swap_deactivate, 10825 }; 10826 10827 static const struct inode_operations btrfs_file_inode_operations = { 10828 .getattr = btrfs_getattr, 10829 .setattr = btrfs_setattr, 10830 .listxattr = btrfs_listxattr, 10831 .permission = btrfs_permission, 10832 .fiemap = btrfs_fiemap, 10833 .get_acl = btrfs_get_acl, 10834 .set_acl = btrfs_set_acl, 10835 .update_time = btrfs_update_time, 10836 }; 10837 static const struct inode_operations btrfs_special_inode_operations = { 10838 .getattr = btrfs_getattr, 10839 .setattr = btrfs_setattr, 10840 .permission = btrfs_permission, 10841 .listxattr = btrfs_listxattr, 10842 .get_acl = btrfs_get_acl, 10843 .set_acl = btrfs_set_acl, 10844 .update_time = btrfs_update_time, 10845 }; 10846 static const struct inode_operations btrfs_symlink_inode_operations = { 10847 .get_link = page_get_link, 10848 .getattr = btrfs_getattr, 10849 .setattr = btrfs_setattr, 10850 .permission = btrfs_permission, 10851 .listxattr = btrfs_listxattr, 10852 .update_time = btrfs_update_time, 10853 }; 10854 10855 const struct dentry_operations btrfs_dentry_operations = { 10856 .d_delete = btrfs_dentry_delete, 10857 }; 10858