xref: /openbmc/linux/fs/btrfs/inode.c (revision 77a87824)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 struct btrfs_dio_data {
70 	u64 outstanding_extents;
71 	u64 reserve;
72 	u64 unsubmitted_oe_range_start;
73 	u64 unsubmitted_oe_range_end;
74 };
75 
76 static const struct inode_operations btrfs_dir_inode_operations;
77 static const struct inode_operations btrfs_symlink_inode_operations;
78 static const struct inode_operations btrfs_dir_ro_inode_operations;
79 static const struct inode_operations btrfs_special_inode_operations;
80 static const struct inode_operations btrfs_file_inode_operations;
81 static const struct address_space_operations btrfs_aops;
82 static const struct address_space_operations btrfs_symlink_aops;
83 static const struct file_operations btrfs_dir_file_operations;
84 static const struct extent_io_ops btrfs_extent_io_ops;
85 
86 static struct kmem_cache *btrfs_inode_cachep;
87 struct kmem_cache *btrfs_trans_handle_cachep;
88 struct kmem_cache *btrfs_transaction_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91 
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
95 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
96 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
97 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
98 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
99 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
100 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
101 };
102 
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 				   struct page *locked_page,
108 				   u64 start, u64 end, int *page_started,
109 				   unsigned long *nr_written, int unlock);
110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 					   u64 len, u64 orig_start,
112 					   u64 block_start, u64 block_len,
113 					   u64 orig_block_len, u64 ram_bytes,
114 					   int type);
115 
116 static int btrfs_dirty_inode(struct inode *inode);
117 
118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119 void btrfs_test_inode_set_ops(struct inode *inode)
120 {
121 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122 }
123 #endif
124 
125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
126 				     struct inode *inode,  struct inode *dir,
127 				     const struct qstr *qstr)
128 {
129 	int err;
130 
131 	err = btrfs_init_acl(trans, inode, dir);
132 	if (!err)
133 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
134 	return err;
135 }
136 
137 /*
138  * this does all the hard work for inserting an inline extent into
139  * the btree.  The caller should have done a btrfs_drop_extents so that
140  * no overlapping inline items exist in the btree
141  */
142 static int insert_inline_extent(struct btrfs_trans_handle *trans,
143 				struct btrfs_path *path, int extent_inserted,
144 				struct btrfs_root *root, struct inode *inode,
145 				u64 start, size_t size, size_t compressed_size,
146 				int compress_type,
147 				struct page **compressed_pages)
148 {
149 	struct extent_buffer *leaf;
150 	struct page *page = NULL;
151 	char *kaddr;
152 	unsigned long ptr;
153 	struct btrfs_file_extent_item *ei;
154 	int err = 0;
155 	int ret;
156 	size_t cur_size = size;
157 	unsigned long offset;
158 
159 	if (compressed_size && compressed_pages)
160 		cur_size = compressed_size;
161 
162 	inode_add_bytes(inode, size);
163 
164 	if (!extent_inserted) {
165 		struct btrfs_key key;
166 		size_t datasize;
167 
168 		key.objectid = btrfs_ino(inode);
169 		key.offset = start;
170 		key.type = BTRFS_EXTENT_DATA_KEY;
171 
172 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 		path->leave_spinning = 1;
174 		ret = btrfs_insert_empty_item(trans, root, path, &key,
175 					      datasize);
176 		if (ret) {
177 			err = ret;
178 			goto fail;
179 		}
180 	}
181 	leaf = path->nodes[0];
182 	ei = btrfs_item_ptr(leaf, path->slots[0],
183 			    struct btrfs_file_extent_item);
184 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 	btrfs_set_file_extent_encryption(leaf, ei, 0);
187 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 	ptr = btrfs_file_extent_inline_start(ei);
190 
191 	if (compress_type != BTRFS_COMPRESS_NONE) {
192 		struct page *cpage;
193 		int i = 0;
194 		while (compressed_size > 0) {
195 			cpage = compressed_pages[i];
196 			cur_size = min_t(unsigned long, compressed_size,
197 				       PAGE_SIZE);
198 
199 			kaddr = kmap_atomic(cpage);
200 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
201 			kunmap_atomic(kaddr);
202 
203 			i++;
204 			ptr += cur_size;
205 			compressed_size -= cur_size;
206 		}
207 		btrfs_set_file_extent_compression(leaf, ei,
208 						  compress_type);
209 	} else {
210 		page = find_get_page(inode->i_mapping,
211 				     start >> PAGE_SHIFT);
212 		btrfs_set_file_extent_compression(leaf, ei, 0);
213 		kaddr = kmap_atomic(page);
214 		offset = start & (PAGE_SIZE - 1);
215 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
216 		kunmap_atomic(kaddr);
217 		put_page(page);
218 	}
219 	btrfs_mark_buffer_dirty(leaf);
220 	btrfs_release_path(path);
221 
222 	/*
223 	 * we're an inline extent, so nobody can
224 	 * extend the file past i_size without locking
225 	 * a page we already have locked.
226 	 *
227 	 * We must do any isize and inode updates
228 	 * before we unlock the pages.  Otherwise we
229 	 * could end up racing with unlink.
230 	 */
231 	BTRFS_I(inode)->disk_i_size = inode->i_size;
232 	ret = btrfs_update_inode(trans, root, inode);
233 
234 	return ret;
235 fail:
236 	return err;
237 }
238 
239 
240 /*
241  * conditionally insert an inline extent into the file.  This
242  * does the checks required to make sure the data is small enough
243  * to fit as an inline extent.
244  */
245 static noinline int cow_file_range_inline(struct btrfs_root *root,
246 					  struct inode *inode, u64 start,
247 					  u64 end, size_t compressed_size,
248 					  int compress_type,
249 					  struct page **compressed_pages)
250 {
251 	struct btrfs_trans_handle *trans;
252 	u64 isize = i_size_read(inode);
253 	u64 actual_end = min(end + 1, isize);
254 	u64 inline_len = actual_end - start;
255 	u64 aligned_end = ALIGN(end, root->sectorsize);
256 	u64 data_len = inline_len;
257 	int ret;
258 	struct btrfs_path *path;
259 	int extent_inserted = 0;
260 	u32 extent_item_size;
261 
262 	if (compressed_size)
263 		data_len = compressed_size;
264 
265 	if (start > 0 ||
266 	    actual_end > root->sectorsize ||
267 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
268 	    (!compressed_size &&
269 	    (actual_end & (root->sectorsize - 1)) == 0) ||
270 	    end + 1 < isize ||
271 	    data_len > root->fs_info->max_inline) {
272 		return 1;
273 	}
274 
275 	path = btrfs_alloc_path();
276 	if (!path)
277 		return -ENOMEM;
278 
279 	trans = btrfs_join_transaction(root);
280 	if (IS_ERR(trans)) {
281 		btrfs_free_path(path);
282 		return PTR_ERR(trans);
283 	}
284 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285 
286 	if (compressed_size && compressed_pages)
287 		extent_item_size = btrfs_file_extent_calc_inline_size(
288 		   compressed_size);
289 	else
290 		extent_item_size = btrfs_file_extent_calc_inline_size(
291 		    inline_len);
292 
293 	ret = __btrfs_drop_extents(trans, root, inode, path,
294 				   start, aligned_end, NULL,
295 				   1, 1, extent_item_size, &extent_inserted);
296 	if (ret) {
297 		btrfs_abort_transaction(trans, root, ret);
298 		goto out;
299 	}
300 
301 	if (isize > actual_end)
302 		inline_len = min_t(u64, isize, actual_end);
303 	ret = insert_inline_extent(trans, path, extent_inserted,
304 				   root, inode, start,
305 				   inline_len, compressed_size,
306 				   compress_type, compressed_pages);
307 	if (ret && ret != -ENOSPC) {
308 		btrfs_abort_transaction(trans, root, ret);
309 		goto out;
310 	} else if (ret == -ENOSPC) {
311 		ret = 1;
312 		goto out;
313 	}
314 
315 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
316 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
317 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
318 out:
319 	/*
320 	 * Don't forget to free the reserved space, as for inlined extent
321 	 * it won't count as data extent, free them directly here.
322 	 * And at reserve time, it's always aligned to page size, so
323 	 * just free one page here.
324 	 */
325 	btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
326 	btrfs_free_path(path);
327 	btrfs_end_transaction(trans, root);
328 	return ret;
329 }
330 
331 struct async_extent {
332 	u64 start;
333 	u64 ram_size;
334 	u64 compressed_size;
335 	struct page **pages;
336 	unsigned long nr_pages;
337 	int compress_type;
338 	struct list_head list;
339 };
340 
341 struct async_cow {
342 	struct inode *inode;
343 	struct btrfs_root *root;
344 	struct page *locked_page;
345 	u64 start;
346 	u64 end;
347 	struct list_head extents;
348 	struct btrfs_work work;
349 };
350 
351 static noinline int add_async_extent(struct async_cow *cow,
352 				     u64 start, u64 ram_size,
353 				     u64 compressed_size,
354 				     struct page **pages,
355 				     unsigned long nr_pages,
356 				     int compress_type)
357 {
358 	struct async_extent *async_extent;
359 
360 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
361 	BUG_ON(!async_extent); /* -ENOMEM */
362 	async_extent->start = start;
363 	async_extent->ram_size = ram_size;
364 	async_extent->compressed_size = compressed_size;
365 	async_extent->pages = pages;
366 	async_extent->nr_pages = nr_pages;
367 	async_extent->compress_type = compress_type;
368 	list_add_tail(&async_extent->list, &cow->extents);
369 	return 0;
370 }
371 
372 static inline int inode_need_compress(struct inode *inode)
373 {
374 	struct btrfs_root *root = BTRFS_I(inode)->root;
375 
376 	/* force compress */
377 	if (btrfs_test_opt(root, FORCE_COMPRESS))
378 		return 1;
379 	/* bad compression ratios */
380 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 		return 0;
382 	if (btrfs_test_opt(root, COMPRESS) ||
383 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 	    BTRFS_I(inode)->force_compress)
385 		return 1;
386 	return 0;
387 }
388 
389 /*
390  * we create compressed extents in two phases.  The first
391  * phase compresses a range of pages that have already been
392  * locked (both pages and state bits are locked).
393  *
394  * This is done inside an ordered work queue, and the compression
395  * is spread across many cpus.  The actual IO submission is step
396  * two, and the ordered work queue takes care of making sure that
397  * happens in the same order things were put onto the queue by
398  * writepages and friends.
399  *
400  * If this code finds it can't get good compression, it puts an
401  * entry onto the work queue to write the uncompressed bytes.  This
402  * makes sure that both compressed inodes and uncompressed inodes
403  * are written in the same order that the flusher thread sent them
404  * down.
405  */
406 static noinline void compress_file_range(struct inode *inode,
407 					struct page *locked_page,
408 					u64 start, u64 end,
409 					struct async_cow *async_cow,
410 					int *num_added)
411 {
412 	struct btrfs_root *root = BTRFS_I(inode)->root;
413 	u64 num_bytes;
414 	u64 blocksize = root->sectorsize;
415 	u64 actual_end;
416 	u64 isize = i_size_read(inode);
417 	int ret = 0;
418 	struct page **pages = NULL;
419 	unsigned long nr_pages;
420 	unsigned long nr_pages_ret = 0;
421 	unsigned long total_compressed = 0;
422 	unsigned long total_in = 0;
423 	unsigned long max_compressed = SZ_128K;
424 	unsigned long max_uncompressed = SZ_128K;
425 	int i;
426 	int will_compress;
427 	int compress_type = root->fs_info->compress_type;
428 	int redirty = 0;
429 
430 	/* if this is a small write inside eof, kick off a defrag */
431 	if ((end - start + 1) < SZ_16K &&
432 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
433 		btrfs_add_inode_defrag(NULL, inode);
434 
435 	actual_end = min_t(u64, isize, end + 1);
436 again:
437 	will_compress = 0;
438 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439 	nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
440 
441 	/*
442 	 * we don't want to send crud past the end of i_size through
443 	 * compression, that's just a waste of CPU time.  So, if the
444 	 * end of the file is before the start of our current
445 	 * requested range of bytes, we bail out to the uncompressed
446 	 * cleanup code that can deal with all of this.
447 	 *
448 	 * It isn't really the fastest way to fix things, but this is a
449 	 * very uncommon corner.
450 	 */
451 	if (actual_end <= start)
452 		goto cleanup_and_bail_uncompressed;
453 
454 	total_compressed = actual_end - start;
455 
456 	/*
457 	 * skip compression for a small file range(<=blocksize) that
458 	 * isn't an inline extent, since it doesn't save disk space at all.
459 	 */
460 	if (total_compressed <= blocksize &&
461 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 		goto cleanup_and_bail_uncompressed;
463 
464 	/* we want to make sure that amount of ram required to uncompress
465 	 * an extent is reasonable, so we limit the total size in ram
466 	 * of a compressed extent to 128k.  This is a crucial number
467 	 * because it also controls how easily we can spread reads across
468 	 * cpus for decompression.
469 	 *
470 	 * We also want to make sure the amount of IO required to do
471 	 * a random read is reasonably small, so we limit the size of
472 	 * a compressed extent to 128k.
473 	 */
474 	total_compressed = min(total_compressed, max_uncompressed);
475 	num_bytes = ALIGN(end - start + 1, blocksize);
476 	num_bytes = max(blocksize,  num_bytes);
477 	total_in = 0;
478 	ret = 0;
479 
480 	/*
481 	 * we do compression for mount -o compress and when the
482 	 * inode has not been flagged as nocompress.  This flag can
483 	 * change at any time if we discover bad compression ratios.
484 	 */
485 	if (inode_need_compress(inode)) {
486 		WARN_ON(pages);
487 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
488 		if (!pages) {
489 			/* just bail out to the uncompressed code */
490 			goto cont;
491 		}
492 
493 		if (BTRFS_I(inode)->force_compress)
494 			compress_type = BTRFS_I(inode)->force_compress;
495 
496 		/*
497 		 * we need to call clear_page_dirty_for_io on each
498 		 * page in the range.  Otherwise applications with the file
499 		 * mmap'd can wander in and change the page contents while
500 		 * we are compressing them.
501 		 *
502 		 * If the compression fails for any reason, we set the pages
503 		 * dirty again later on.
504 		 */
505 		extent_range_clear_dirty_for_io(inode, start, end);
506 		redirty = 1;
507 		ret = btrfs_compress_pages(compress_type,
508 					   inode->i_mapping, start,
509 					   total_compressed, pages,
510 					   nr_pages, &nr_pages_ret,
511 					   &total_in,
512 					   &total_compressed,
513 					   max_compressed);
514 
515 		if (!ret) {
516 			unsigned long offset = total_compressed &
517 				(PAGE_SIZE - 1);
518 			struct page *page = pages[nr_pages_ret - 1];
519 			char *kaddr;
520 
521 			/* zero the tail end of the last page, we might be
522 			 * sending it down to disk
523 			 */
524 			if (offset) {
525 				kaddr = kmap_atomic(page);
526 				memset(kaddr + offset, 0,
527 				       PAGE_SIZE - offset);
528 				kunmap_atomic(kaddr);
529 			}
530 			will_compress = 1;
531 		}
532 	}
533 cont:
534 	if (start == 0) {
535 		/* lets try to make an inline extent */
536 		if (ret || total_in < (actual_end - start)) {
537 			/* we didn't compress the entire range, try
538 			 * to make an uncompressed inline extent.
539 			 */
540 			ret = cow_file_range_inline(root, inode, start, end,
541 						    0, 0, NULL);
542 		} else {
543 			/* try making a compressed inline extent */
544 			ret = cow_file_range_inline(root, inode, start, end,
545 						    total_compressed,
546 						    compress_type, pages);
547 		}
548 		if (ret <= 0) {
549 			unsigned long clear_flags = EXTENT_DELALLOC |
550 				EXTENT_DEFRAG;
551 			unsigned long page_error_op;
552 
553 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
554 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
555 
556 			/*
557 			 * inline extent creation worked or returned error,
558 			 * we don't need to create any more async work items.
559 			 * Unlock and free up our temp pages.
560 			 */
561 			extent_clear_unlock_delalloc(inode, start, end, NULL,
562 						     clear_flags, PAGE_UNLOCK |
563 						     PAGE_CLEAR_DIRTY |
564 						     PAGE_SET_WRITEBACK |
565 						     page_error_op |
566 						     PAGE_END_WRITEBACK);
567 			goto free_pages_out;
568 		}
569 	}
570 
571 	if (will_compress) {
572 		/*
573 		 * we aren't doing an inline extent round the compressed size
574 		 * up to a block size boundary so the allocator does sane
575 		 * things
576 		 */
577 		total_compressed = ALIGN(total_compressed, blocksize);
578 
579 		/*
580 		 * one last check to make sure the compression is really a
581 		 * win, compare the page count read with the blocks on disk
582 		 */
583 		total_in = ALIGN(total_in, PAGE_SIZE);
584 		if (total_compressed >= total_in) {
585 			will_compress = 0;
586 		} else {
587 			num_bytes = total_in;
588 		}
589 	}
590 	if (!will_compress && pages) {
591 		/*
592 		 * the compression code ran but failed to make things smaller,
593 		 * free any pages it allocated and our page pointer array
594 		 */
595 		for (i = 0; i < nr_pages_ret; i++) {
596 			WARN_ON(pages[i]->mapping);
597 			put_page(pages[i]);
598 		}
599 		kfree(pages);
600 		pages = NULL;
601 		total_compressed = 0;
602 		nr_pages_ret = 0;
603 
604 		/* flag the file so we don't compress in the future */
605 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 		    !(BTRFS_I(inode)->force_compress)) {
607 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
608 		}
609 	}
610 	if (will_compress) {
611 		*num_added += 1;
612 
613 		/* the async work queues will take care of doing actual
614 		 * allocation on disk for these compressed pages,
615 		 * and will submit them to the elevator.
616 		 */
617 		add_async_extent(async_cow, start, num_bytes,
618 				 total_compressed, pages, nr_pages_ret,
619 				 compress_type);
620 
621 		if (start + num_bytes < end) {
622 			start += num_bytes;
623 			pages = NULL;
624 			cond_resched();
625 			goto again;
626 		}
627 	} else {
628 cleanup_and_bail_uncompressed:
629 		/*
630 		 * No compression, but we still need to write the pages in
631 		 * the file we've been given so far.  redirty the locked
632 		 * page if it corresponds to our extent and set things up
633 		 * for the async work queue to run cow_file_range to do
634 		 * the normal delalloc dance
635 		 */
636 		if (page_offset(locked_page) >= start &&
637 		    page_offset(locked_page) <= end) {
638 			__set_page_dirty_nobuffers(locked_page);
639 			/* unlocked later on in the async handlers */
640 		}
641 		if (redirty)
642 			extent_range_redirty_for_io(inode, start, end);
643 		add_async_extent(async_cow, start, end - start + 1,
644 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
645 		*num_added += 1;
646 	}
647 
648 	return;
649 
650 free_pages_out:
651 	for (i = 0; i < nr_pages_ret; i++) {
652 		WARN_ON(pages[i]->mapping);
653 		put_page(pages[i]);
654 	}
655 	kfree(pages);
656 }
657 
658 static void free_async_extent_pages(struct async_extent *async_extent)
659 {
660 	int i;
661 
662 	if (!async_extent->pages)
663 		return;
664 
665 	for (i = 0; i < async_extent->nr_pages; i++) {
666 		WARN_ON(async_extent->pages[i]->mapping);
667 		put_page(async_extent->pages[i]);
668 	}
669 	kfree(async_extent->pages);
670 	async_extent->nr_pages = 0;
671 	async_extent->pages = NULL;
672 }
673 
674 /*
675  * phase two of compressed writeback.  This is the ordered portion
676  * of the code, which only gets called in the order the work was
677  * queued.  We walk all the async extents created by compress_file_range
678  * and send them down to the disk.
679  */
680 static noinline void submit_compressed_extents(struct inode *inode,
681 					      struct async_cow *async_cow)
682 {
683 	struct async_extent *async_extent;
684 	u64 alloc_hint = 0;
685 	struct btrfs_key ins;
686 	struct extent_map *em;
687 	struct btrfs_root *root = BTRFS_I(inode)->root;
688 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 	struct extent_io_tree *io_tree;
690 	int ret = 0;
691 
692 again:
693 	while (!list_empty(&async_cow->extents)) {
694 		async_extent = list_entry(async_cow->extents.next,
695 					  struct async_extent, list);
696 		list_del(&async_extent->list);
697 
698 		io_tree = &BTRFS_I(inode)->io_tree;
699 
700 retry:
701 		/* did the compression code fall back to uncompressed IO? */
702 		if (!async_extent->pages) {
703 			int page_started = 0;
704 			unsigned long nr_written = 0;
705 
706 			lock_extent(io_tree, async_extent->start,
707 					 async_extent->start +
708 					 async_extent->ram_size - 1);
709 
710 			/* allocate blocks */
711 			ret = cow_file_range(inode, async_cow->locked_page,
712 					     async_extent->start,
713 					     async_extent->start +
714 					     async_extent->ram_size - 1,
715 					     &page_started, &nr_written, 0);
716 
717 			/* JDM XXX */
718 
719 			/*
720 			 * if page_started, cow_file_range inserted an
721 			 * inline extent and took care of all the unlocking
722 			 * and IO for us.  Otherwise, we need to submit
723 			 * all those pages down to the drive.
724 			 */
725 			if (!page_started && !ret)
726 				extent_write_locked_range(io_tree,
727 						  inode, async_extent->start,
728 						  async_extent->start +
729 						  async_extent->ram_size - 1,
730 						  btrfs_get_extent,
731 						  WB_SYNC_ALL);
732 			else if (ret)
733 				unlock_page(async_cow->locked_page);
734 			kfree(async_extent);
735 			cond_resched();
736 			continue;
737 		}
738 
739 		lock_extent(io_tree, async_extent->start,
740 			    async_extent->start + async_extent->ram_size - 1);
741 
742 		ret = btrfs_reserve_extent(root,
743 					   async_extent->compressed_size,
744 					   async_extent->compressed_size,
745 					   0, alloc_hint, &ins, 1, 1);
746 		if (ret) {
747 			free_async_extent_pages(async_extent);
748 
749 			if (ret == -ENOSPC) {
750 				unlock_extent(io_tree, async_extent->start,
751 					      async_extent->start +
752 					      async_extent->ram_size - 1);
753 
754 				/*
755 				 * we need to redirty the pages if we decide to
756 				 * fallback to uncompressed IO, otherwise we
757 				 * will not submit these pages down to lower
758 				 * layers.
759 				 */
760 				extent_range_redirty_for_io(inode,
761 						async_extent->start,
762 						async_extent->start +
763 						async_extent->ram_size - 1);
764 
765 				goto retry;
766 			}
767 			goto out_free;
768 		}
769 		/*
770 		 * here we're doing allocation and writeback of the
771 		 * compressed pages
772 		 */
773 		btrfs_drop_extent_cache(inode, async_extent->start,
774 					async_extent->start +
775 					async_extent->ram_size - 1, 0);
776 
777 		em = alloc_extent_map();
778 		if (!em) {
779 			ret = -ENOMEM;
780 			goto out_free_reserve;
781 		}
782 		em->start = async_extent->start;
783 		em->len = async_extent->ram_size;
784 		em->orig_start = em->start;
785 		em->mod_start = em->start;
786 		em->mod_len = em->len;
787 
788 		em->block_start = ins.objectid;
789 		em->block_len = ins.offset;
790 		em->orig_block_len = ins.offset;
791 		em->ram_bytes = async_extent->ram_size;
792 		em->bdev = root->fs_info->fs_devices->latest_bdev;
793 		em->compress_type = async_extent->compress_type;
794 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
796 		em->generation = -1;
797 
798 		while (1) {
799 			write_lock(&em_tree->lock);
800 			ret = add_extent_mapping(em_tree, em, 1);
801 			write_unlock(&em_tree->lock);
802 			if (ret != -EEXIST) {
803 				free_extent_map(em);
804 				break;
805 			}
806 			btrfs_drop_extent_cache(inode, async_extent->start,
807 						async_extent->start +
808 						async_extent->ram_size - 1, 0);
809 		}
810 
811 		if (ret)
812 			goto out_free_reserve;
813 
814 		ret = btrfs_add_ordered_extent_compress(inode,
815 						async_extent->start,
816 						ins.objectid,
817 						async_extent->ram_size,
818 						ins.offset,
819 						BTRFS_ORDERED_COMPRESSED,
820 						async_extent->compress_type);
821 		if (ret) {
822 			btrfs_drop_extent_cache(inode, async_extent->start,
823 						async_extent->start +
824 						async_extent->ram_size - 1, 0);
825 			goto out_free_reserve;
826 		}
827 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
828 
829 		/*
830 		 * clear dirty, set writeback and unlock the pages.
831 		 */
832 		extent_clear_unlock_delalloc(inode, async_extent->start,
833 				async_extent->start +
834 				async_extent->ram_size - 1,
835 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
836 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
837 				PAGE_SET_WRITEBACK);
838 		ret = btrfs_submit_compressed_write(inode,
839 				    async_extent->start,
840 				    async_extent->ram_size,
841 				    ins.objectid,
842 				    ins.offset, async_extent->pages,
843 				    async_extent->nr_pages);
844 		if (ret) {
845 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
846 			struct page *p = async_extent->pages[0];
847 			const u64 start = async_extent->start;
848 			const u64 end = start + async_extent->ram_size - 1;
849 
850 			p->mapping = inode->i_mapping;
851 			tree->ops->writepage_end_io_hook(p, start, end,
852 							 NULL, 0);
853 			p->mapping = NULL;
854 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
855 						     PAGE_END_WRITEBACK |
856 						     PAGE_SET_ERROR);
857 			free_async_extent_pages(async_extent);
858 		}
859 		alloc_hint = ins.objectid + ins.offset;
860 		kfree(async_extent);
861 		cond_resched();
862 	}
863 	return;
864 out_free_reserve:
865 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
866 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
867 out_free:
868 	extent_clear_unlock_delalloc(inode, async_extent->start,
869 				     async_extent->start +
870 				     async_extent->ram_size - 1,
871 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
872 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
873 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
874 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
875 				     PAGE_SET_ERROR);
876 	free_async_extent_pages(async_extent);
877 	kfree(async_extent);
878 	goto again;
879 }
880 
881 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
882 				      u64 num_bytes)
883 {
884 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
885 	struct extent_map *em;
886 	u64 alloc_hint = 0;
887 
888 	read_lock(&em_tree->lock);
889 	em = search_extent_mapping(em_tree, start, num_bytes);
890 	if (em) {
891 		/*
892 		 * if block start isn't an actual block number then find the
893 		 * first block in this inode and use that as a hint.  If that
894 		 * block is also bogus then just don't worry about it.
895 		 */
896 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
897 			free_extent_map(em);
898 			em = search_extent_mapping(em_tree, 0, 0);
899 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
900 				alloc_hint = em->block_start;
901 			if (em)
902 				free_extent_map(em);
903 		} else {
904 			alloc_hint = em->block_start;
905 			free_extent_map(em);
906 		}
907 	}
908 	read_unlock(&em_tree->lock);
909 
910 	return alloc_hint;
911 }
912 
913 /*
914  * when extent_io.c finds a delayed allocation range in the file,
915  * the call backs end up in this code.  The basic idea is to
916  * allocate extents on disk for the range, and create ordered data structs
917  * in ram to track those extents.
918  *
919  * locked_page is the page that writepage had locked already.  We use
920  * it to make sure we don't do extra locks or unlocks.
921  *
922  * *page_started is set to one if we unlock locked_page and do everything
923  * required to start IO on it.  It may be clean and already done with
924  * IO when we return.
925  */
926 static noinline int cow_file_range(struct inode *inode,
927 				   struct page *locked_page,
928 				   u64 start, u64 end, int *page_started,
929 				   unsigned long *nr_written,
930 				   int unlock)
931 {
932 	struct btrfs_root *root = BTRFS_I(inode)->root;
933 	u64 alloc_hint = 0;
934 	u64 num_bytes;
935 	unsigned long ram_size;
936 	u64 disk_num_bytes;
937 	u64 cur_alloc_size;
938 	u64 blocksize = root->sectorsize;
939 	struct btrfs_key ins;
940 	struct extent_map *em;
941 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
942 	int ret = 0;
943 
944 	if (btrfs_is_free_space_inode(inode)) {
945 		WARN_ON_ONCE(1);
946 		ret = -EINVAL;
947 		goto out_unlock;
948 	}
949 
950 	num_bytes = ALIGN(end - start + 1, blocksize);
951 	num_bytes = max(blocksize,  num_bytes);
952 	disk_num_bytes = num_bytes;
953 
954 	/* if this is a small write inside eof, kick off defrag */
955 	if (num_bytes < SZ_64K &&
956 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
957 		btrfs_add_inode_defrag(NULL, inode);
958 
959 	if (start == 0) {
960 		/* lets try to make an inline extent */
961 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
962 					    NULL);
963 		if (ret == 0) {
964 			extent_clear_unlock_delalloc(inode, start, end, NULL,
965 				     EXTENT_LOCKED | EXTENT_DELALLOC |
966 				     EXTENT_DEFRAG, PAGE_UNLOCK |
967 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
968 				     PAGE_END_WRITEBACK);
969 
970 			*nr_written = *nr_written +
971 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
972 			*page_started = 1;
973 			goto out;
974 		} else if (ret < 0) {
975 			goto out_unlock;
976 		}
977 	}
978 
979 	BUG_ON(disk_num_bytes >
980 	       btrfs_super_total_bytes(root->fs_info->super_copy));
981 
982 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
983 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
984 
985 	while (disk_num_bytes > 0) {
986 		unsigned long op;
987 
988 		cur_alloc_size = disk_num_bytes;
989 		ret = btrfs_reserve_extent(root, cur_alloc_size,
990 					   root->sectorsize, 0, alloc_hint,
991 					   &ins, 1, 1);
992 		if (ret < 0)
993 			goto out_unlock;
994 
995 		em = alloc_extent_map();
996 		if (!em) {
997 			ret = -ENOMEM;
998 			goto out_reserve;
999 		}
1000 		em->start = start;
1001 		em->orig_start = em->start;
1002 		ram_size = ins.offset;
1003 		em->len = ins.offset;
1004 		em->mod_start = em->start;
1005 		em->mod_len = em->len;
1006 
1007 		em->block_start = ins.objectid;
1008 		em->block_len = ins.offset;
1009 		em->orig_block_len = ins.offset;
1010 		em->ram_bytes = ram_size;
1011 		em->bdev = root->fs_info->fs_devices->latest_bdev;
1012 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1013 		em->generation = -1;
1014 
1015 		while (1) {
1016 			write_lock(&em_tree->lock);
1017 			ret = add_extent_mapping(em_tree, em, 1);
1018 			write_unlock(&em_tree->lock);
1019 			if (ret != -EEXIST) {
1020 				free_extent_map(em);
1021 				break;
1022 			}
1023 			btrfs_drop_extent_cache(inode, start,
1024 						start + ram_size - 1, 0);
1025 		}
1026 		if (ret)
1027 			goto out_reserve;
1028 
1029 		cur_alloc_size = ins.offset;
1030 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1031 					       ram_size, cur_alloc_size, 0);
1032 		if (ret)
1033 			goto out_drop_extent_cache;
1034 
1035 		if (root->root_key.objectid ==
1036 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1037 			ret = btrfs_reloc_clone_csums(inode, start,
1038 						      cur_alloc_size);
1039 			if (ret)
1040 				goto out_drop_extent_cache;
1041 		}
1042 
1043 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1044 
1045 		if (disk_num_bytes < cur_alloc_size)
1046 			break;
1047 
1048 		/* we're not doing compressed IO, don't unlock the first
1049 		 * page (which the caller expects to stay locked), don't
1050 		 * clear any dirty bits and don't set any writeback bits
1051 		 *
1052 		 * Do set the Private2 bit so we know this page was properly
1053 		 * setup for writepage
1054 		 */
1055 		op = unlock ? PAGE_UNLOCK : 0;
1056 		op |= PAGE_SET_PRIVATE2;
1057 
1058 		extent_clear_unlock_delalloc(inode, start,
1059 					     start + ram_size - 1, locked_page,
1060 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1061 					     op);
1062 		disk_num_bytes -= cur_alloc_size;
1063 		num_bytes -= cur_alloc_size;
1064 		alloc_hint = ins.objectid + ins.offset;
1065 		start += cur_alloc_size;
1066 	}
1067 out:
1068 	return ret;
1069 
1070 out_drop_extent_cache:
1071 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1072 out_reserve:
1073 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1074 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1075 out_unlock:
1076 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1077 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1078 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1079 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1080 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1081 	goto out;
1082 }
1083 
1084 /*
1085  * work queue call back to started compression on a file and pages
1086  */
1087 static noinline void async_cow_start(struct btrfs_work *work)
1088 {
1089 	struct async_cow *async_cow;
1090 	int num_added = 0;
1091 	async_cow = container_of(work, struct async_cow, work);
1092 
1093 	compress_file_range(async_cow->inode, async_cow->locked_page,
1094 			    async_cow->start, async_cow->end, async_cow,
1095 			    &num_added);
1096 	if (num_added == 0) {
1097 		btrfs_add_delayed_iput(async_cow->inode);
1098 		async_cow->inode = NULL;
1099 	}
1100 }
1101 
1102 /*
1103  * work queue call back to submit previously compressed pages
1104  */
1105 static noinline void async_cow_submit(struct btrfs_work *work)
1106 {
1107 	struct async_cow *async_cow;
1108 	struct btrfs_root *root;
1109 	unsigned long nr_pages;
1110 
1111 	async_cow = container_of(work, struct async_cow, work);
1112 
1113 	root = async_cow->root;
1114 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1115 		PAGE_SHIFT;
1116 
1117 	/*
1118 	 * atomic_sub_return implies a barrier for waitqueue_active
1119 	 */
1120 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1121 	    5 * SZ_1M &&
1122 	    waitqueue_active(&root->fs_info->async_submit_wait))
1123 		wake_up(&root->fs_info->async_submit_wait);
1124 
1125 	if (async_cow->inode)
1126 		submit_compressed_extents(async_cow->inode, async_cow);
1127 }
1128 
1129 static noinline void async_cow_free(struct btrfs_work *work)
1130 {
1131 	struct async_cow *async_cow;
1132 	async_cow = container_of(work, struct async_cow, work);
1133 	if (async_cow->inode)
1134 		btrfs_add_delayed_iput(async_cow->inode);
1135 	kfree(async_cow);
1136 }
1137 
1138 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1139 				u64 start, u64 end, int *page_started,
1140 				unsigned long *nr_written)
1141 {
1142 	struct async_cow *async_cow;
1143 	struct btrfs_root *root = BTRFS_I(inode)->root;
1144 	unsigned long nr_pages;
1145 	u64 cur_end;
1146 	int limit = 10 * SZ_1M;
1147 
1148 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1149 			 1, 0, NULL, GFP_NOFS);
1150 	while (start < end) {
1151 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1152 		BUG_ON(!async_cow); /* -ENOMEM */
1153 		async_cow->inode = igrab(inode);
1154 		async_cow->root = root;
1155 		async_cow->locked_page = locked_page;
1156 		async_cow->start = start;
1157 
1158 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1159 		    !btrfs_test_opt(root, FORCE_COMPRESS))
1160 			cur_end = end;
1161 		else
1162 			cur_end = min(end, start + SZ_512K - 1);
1163 
1164 		async_cow->end = cur_end;
1165 		INIT_LIST_HEAD(&async_cow->extents);
1166 
1167 		btrfs_init_work(&async_cow->work,
1168 				btrfs_delalloc_helper,
1169 				async_cow_start, async_cow_submit,
1170 				async_cow_free);
1171 
1172 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1173 			PAGE_SHIFT;
1174 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1175 
1176 		btrfs_queue_work(root->fs_info->delalloc_workers,
1177 				 &async_cow->work);
1178 
1179 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1180 			wait_event(root->fs_info->async_submit_wait,
1181 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1182 			    limit));
1183 		}
1184 
1185 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1186 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1187 			wait_event(root->fs_info->async_submit_wait,
1188 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1189 			   0));
1190 		}
1191 
1192 		*nr_written += nr_pages;
1193 		start = cur_end + 1;
1194 	}
1195 	*page_started = 1;
1196 	return 0;
1197 }
1198 
1199 static noinline int csum_exist_in_range(struct btrfs_root *root,
1200 					u64 bytenr, u64 num_bytes)
1201 {
1202 	int ret;
1203 	struct btrfs_ordered_sum *sums;
1204 	LIST_HEAD(list);
1205 
1206 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1207 				       bytenr + num_bytes - 1, &list, 0);
1208 	if (ret == 0 && list_empty(&list))
1209 		return 0;
1210 
1211 	while (!list_empty(&list)) {
1212 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1213 		list_del(&sums->list);
1214 		kfree(sums);
1215 	}
1216 	return 1;
1217 }
1218 
1219 /*
1220  * when nowcow writeback call back.  This checks for snapshots or COW copies
1221  * of the extents that exist in the file, and COWs the file as required.
1222  *
1223  * If no cow copies or snapshots exist, we write directly to the existing
1224  * blocks on disk
1225  */
1226 static noinline int run_delalloc_nocow(struct inode *inode,
1227 				       struct page *locked_page,
1228 			      u64 start, u64 end, int *page_started, int force,
1229 			      unsigned long *nr_written)
1230 {
1231 	struct btrfs_root *root = BTRFS_I(inode)->root;
1232 	struct btrfs_trans_handle *trans;
1233 	struct extent_buffer *leaf;
1234 	struct btrfs_path *path;
1235 	struct btrfs_file_extent_item *fi;
1236 	struct btrfs_key found_key;
1237 	u64 cow_start;
1238 	u64 cur_offset;
1239 	u64 extent_end;
1240 	u64 extent_offset;
1241 	u64 disk_bytenr;
1242 	u64 num_bytes;
1243 	u64 disk_num_bytes;
1244 	u64 ram_bytes;
1245 	int extent_type;
1246 	int ret, err;
1247 	int type;
1248 	int nocow;
1249 	int check_prev = 1;
1250 	bool nolock;
1251 	u64 ino = btrfs_ino(inode);
1252 
1253 	path = btrfs_alloc_path();
1254 	if (!path) {
1255 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1256 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1257 					     EXTENT_DO_ACCOUNTING |
1258 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1259 					     PAGE_CLEAR_DIRTY |
1260 					     PAGE_SET_WRITEBACK |
1261 					     PAGE_END_WRITEBACK);
1262 		return -ENOMEM;
1263 	}
1264 
1265 	nolock = btrfs_is_free_space_inode(inode);
1266 
1267 	if (nolock)
1268 		trans = btrfs_join_transaction_nolock(root);
1269 	else
1270 		trans = btrfs_join_transaction(root);
1271 
1272 	if (IS_ERR(trans)) {
1273 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1274 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1275 					     EXTENT_DO_ACCOUNTING |
1276 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1277 					     PAGE_CLEAR_DIRTY |
1278 					     PAGE_SET_WRITEBACK |
1279 					     PAGE_END_WRITEBACK);
1280 		btrfs_free_path(path);
1281 		return PTR_ERR(trans);
1282 	}
1283 
1284 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1285 
1286 	cow_start = (u64)-1;
1287 	cur_offset = start;
1288 	while (1) {
1289 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1290 					       cur_offset, 0);
1291 		if (ret < 0)
1292 			goto error;
1293 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1294 			leaf = path->nodes[0];
1295 			btrfs_item_key_to_cpu(leaf, &found_key,
1296 					      path->slots[0] - 1);
1297 			if (found_key.objectid == ino &&
1298 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1299 				path->slots[0]--;
1300 		}
1301 		check_prev = 0;
1302 next_slot:
1303 		leaf = path->nodes[0];
1304 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1305 			ret = btrfs_next_leaf(root, path);
1306 			if (ret < 0)
1307 				goto error;
1308 			if (ret > 0)
1309 				break;
1310 			leaf = path->nodes[0];
1311 		}
1312 
1313 		nocow = 0;
1314 		disk_bytenr = 0;
1315 		num_bytes = 0;
1316 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1317 
1318 		if (found_key.objectid > ino)
1319 			break;
1320 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1321 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1322 			path->slots[0]++;
1323 			goto next_slot;
1324 		}
1325 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1326 		    found_key.offset > end)
1327 			break;
1328 
1329 		if (found_key.offset > cur_offset) {
1330 			extent_end = found_key.offset;
1331 			extent_type = 0;
1332 			goto out_check;
1333 		}
1334 
1335 		fi = btrfs_item_ptr(leaf, path->slots[0],
1336 				    struct btrfs_file_extent_item);
1337 		extent_type = btrfs_file_extent_type(leaf, fi);
1338 
1339 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1340 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1341 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1342 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1343 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1344 			extent_end = found_key.offset +
1345 				btrfs_file_extent_num_bytes(leaf, fi);
1346 			disk_num_bytes =
1347 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1348 			if (extent_end <= start) {
1349 				path->slots[0]++;
1350 				goto next_slot;
1351 			}
1352 			if (disk_bytenr == 0)
1353 				goto out_check;
1354 			if (btrfs_file_extent_compression(leaf, fi) ||
1355 			    btrfs_file_extent_encryption(leaf, fi) ||
1356 			    btrfs_file_extent_other_encoding(leaf, fi))
1357 				goto out_check;
1358 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1359 				goto out_check;
1360 			if (btrfs_extent_readonly(root, disk_bytenr))
1361 				goto out_check;
1362 			if (btrfs_cross_ref_exist(trans, root, ino,
1363 						  found_key.offset -
1364 						  extent_offset, disk_bytenr))
1365 				goto out_check;
1366 			disk_bytenr += extent_offset;
1367 			disk_bytenr += cur_offset - found_key.offset;
1368 			num_bytes = min(end + 1, extent_end) - cur_offset;
1369 			/*
1370 			 * if there are pending snapshots for this root,
1371 			 * we fall into common COW way.
1372 			 */
1373 			if (!nolock) {
1374 				err = btrfs_start_write_no_snapshoting(root);
1375 				if (!err)
1376 					goto out_check;
1377 			}
1378 			/*
1379 			 * force cow if csum exists in the range.
1380 			 * this ensure that csum for a given extent are
1381 			 * either valid or do not exist.
1382 			 */
1383 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1384 				goto out_check;
1385 			if (!btrfs_inc_nocow_writers(root->fs_info,
1386 						     disk_bytenr))
1387 				goto out_check;
1388 			nocow = 1;
1389 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1390 			extent_end = found_key.offset +
1391 				btrfs_file_extent_inline_len(leaf,
1392 						     path->slots[0], fi);
1393 			extent_end = ALIGN(extent_end, root->sectorsize);
1394 		} else {
1395 			BUG_ON(1);
1396 		}
1397 out_check:
1398 		if (extent_end <= start) {
1399 			path->slots[0]++;
1400 			if (!nolock && nocow)
1401 				btrfs_end_write_no_snapshoting(root);
1402 			if (nocow)
1403 				btrfs_dec_nocow_writers(root->fs_info,
1404 							disk_bytenr);
1405 			goto next_slot;
1406 		}
1407 		if (!nocow) {
1408 			if (cow_start == (u64)-1)
1409 				cow_start = cur_offset;
1410 			cur_offset = extent_end;
1411 			if (cur_offset > end)
1412 				break;
1413 			path->slots[0]++;
1414 			goto next_slot;
1415 		}
1416 
1417 		btrfs_release_path(path);
1418 		if (cow_start != (u64)-1) {
1419 			ret = cow_file_range(inode, locked_page,
1420 					     cow_start, found_key.offset - 1,
1421 					     page_started, nr_written, 1);
1422 			if (ret) {
1423 				if (!nolock && nocow)
1424 					btrfs_end_write_no_snapshoting(root);
1425 				if (nocow)
1426 					btrfs_dec_nocow_writers(root->fs_info,
1427 								disk_bytenr);
1428 				goto error;
1429 			}
1430 			cow_start = (u64)-1;
1431 		}
1432 
1433 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1434 			struct extent_map *em;
1435 			struct extent_map_tree *em_tree;
1436 			em_tree = &BTRFS_I(inode)->extent_tree;
1437 			em = alloc_extent_map();
1438 			BUG_ON(!em); /* -ENOMEM */
1439 			em->start = cur_offset;
1440 			em->orig_start = found_key.offset - extent_offset;
1441 			em->len = num_bytes;
1442 			em->block_len = num_bytes;
1443 			em->block_start = disk_bytenr;
1444 			em->orig_block_len = disk_num_bytes;
1445 			em->ram_bytes = ram_bytes;
1446 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1447 			em->mod_start = em->start;
1448 			em->mod_len = em->len;
1449 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1450 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1451 			em->generation = -1;
1452 			while (1) {
1453 				write_lock(&em_tree->lock);
1454 				ret = add_extent_mapping(em_tree, em, 1);
1455 				write_unlock(&em_tree->lock);
1456 				if (ret != -EEXIST) {
1457 					free_extent_map(em);
1458 					break;
1459 				}
1460 				btrfs_drop_extent_cache(inode, em->start,
1461 						em->start + em->len - 1, 0);
1462 			}
1463 			type = BTRFS_ORDERED_PREALLOC;
1464 		} else {
1465 			type = BTRFS_ORDERED_NOCOW;
1466 		}
1467 
1468 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1469 					       num_bytes, num_bytes, type);
1470 		if (nocow)
1471 			btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
1472 		BUG_ON(ret); /* -ENOMEM */
1473 
1474 		if (root->root_key.objectid ==
1475 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1476 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1477 						      num_bytes);
1478 			if (ret) {
1479 				if (!nolock && nocow)
1480 					btrfs_end_write_no_snapshoting(root);
1481 				goto error;
1482 			}
1483 		}
1484 
1485 		extent_clear_unlock_delalloc(inode, cur_offset,
1486 					     cur_offset + num_bytes - 1,
1487 					     locked_page, EXTENT_LOCKED |
1488 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1489 					     PAGE_SET_PRIVATE2);
1490 		if (!nolock && nocow)
1491 			btrfs_end_write_no_snapshoting(root);
1492 		cur_offset = extent_end;
1493 		if (cur_offset > end)
1494 			break;
1495 	}
1496 	btrfs_release_path(path);
1497 
1498 	if (cur_offset <= end && cow_start == (u64)-1) {
1499 		cow_start = cur_offset;
1500 		cur_offset = end;
1501 	}
1502 
1503 	if (cow_start != (u64)-1) {
1504 		ret = cow_file_range(inode, locked_page, cow_start, end,
1505 				     page_started, nr_written, 1);
1506 		if (ret)
1507 			goto error;
1508 	}
1509 
1510 error:
1511 	err = btrfs_end_transaction(trans, root);
1512 	if (!ret)
1513 		ret = err;
1514 
1515 	if (ret && cur_offset < end)
1516 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1517 					     locked_page, EXTENT_LOCKED |
1518 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1519 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1520 					     PAGE_CLEAR_DIRTY |
1521 					     PAGE_SET_WRITEBACK |
1522 					     PAGE_END_WRITEBACK);
1523 	btrfs_free_path(path);
1524 	return ret;
1525 }
1526 
1527 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1528 {
1529 
1530 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1531 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1532 		return 0;
1533 
1534 	/*
1535 	 * @defrag_bytes is a hint value, no spinlock held here,
1536 	 * if is not zero, it means the file is defragging.
1537 	 * Force cow if given extent needs to be defragged.
1538 	 */
1539 	if (BTRFS_I(inode)->defrag_bytes &&
1540 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1541 			   EXTENT_DEFRAG, 0, NULL))
1542 		return 1;
1543 
1544 	return 0;
1545 }
1546 
1547 /*
1548  * extent_io.c call back to do delayed allocation processing
1549  */
1550 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1551 			      u64 start, u64 end, int *page_started,
1552 			      unsigned long *nr_written)
1553 {
1554 	int ret;
1555 	int force_cow = need_force_cow(inode, start, end);
1556 
1557 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1558 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1559 					 page_started, 1, nr_written);
1560 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1561 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1562 					 page_started, 0, nr_written);
1563 	} else if (!inode_need_compress(inode)) {
1564 		ret = cow_file_range(inode, locked_page, start, end,
1565 				      page_started, nr_written, 1);
1566 	} else {
1567 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1568 			&BTRFS_I(inode)->runtime_flags);
1569 		ret = cow_file_range_async(inode, locked_page, start, end,
1570 					   page_started, nr_written);
1571 	}
1572 	return ret;
1573 }
1574 
1575 static void btrfs_split_extent_hook(struct inode *inode,
1576 				    struct extent_state *orig, u64 split)
1577 {
1578 	u64 size;
1579 
1580 	/* not delalloc, ignore it */
1581 	if (!(orig->state & EXTENT_DELALLOC))
1582 		return;
1583 
1584 	size = orig->end - orig->start + 1;
1585 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1586 		u64 num_extents;
1587 		u64 new_size;
1588 
1589 		/*
1590 		 * See the explanation in btrfs_merge_extent_hook, the same
1591 		 * applies here, just in reverse.
1592 		 */
1593 		new_size = orig->end - split + 1;
1594 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1595 					BTRFS_MAX_EXTENT_SIZE);
1596 		new_size = split - orig->start;
1597 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1598 					BTRFS_MAX_EXTENT_SIZE);
1599 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1600 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1601 			return;
1602 	}
1603 
1604 	spin_lock(&BTRFS_I(inode)->lock);
1605 	BTRFS_I(inode)->outstanding_extents++;
1606 	spin_unlock(&BTRFS_I(inode)->lock);
1607 }
1608 
1609 /*
1610  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1611  * extents so we can keep track of new extents that are just merged onto old
1612  * extents, such as when we are doing sequential writes, so we can properly
1613  * account for the metadata space we'll need.
1614  */
1615 static void btrfs_merge_extent_hook(struct inode *inode,
1616 				    struct extent_state *new,
1617 				    struct extent_state *other)
1618 {
1619 	u64 new_size, old_size;
1620 	u64 num_extents;
1621 
1622 	/* not delalloc, ignore it */
1623 	if (!(other->state & EXTENT_DELALLOC))
1624 		return;
1625 
1626 	if (new->start > other->start)
1627 		new_size = new->end - other->start + 1;
1628 	else
1629 		new_size = other->end - new->start + 1;
1630 
1631 	/* we're not bigger than the max, unreserve the space and go */
1632 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1633 		spin_lock(&BTRFS_I(inode)->lock);
1634 		BTRFS_I(inode)->outstanding_extents--;
1635 		spin_unlock(&BTRFS_I(inode)->lock);
1636 		return;
1637 	}
1638 
1639 	/*
1640 	 * We have to add up either side to figure out how many extents were
1641 	 * accounted for before we merged into one big extent.  If the number of
1642 	 * extents we accounted for is <= the amount we need for the new range
1643 	 * then we can return, otherwise drop.  Think of it like this
1644 	 *
1645 	 * [ 4k][MAX_SIZE]
1646 	 *
1647 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1648 	 * need 2 outstanding extents, on one side we have 1 and the other side
1649 	 * we have 1 so they are == and we can return.  But in this case
1650 	 *
1651 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1652 	 *
1653 	 * Each range on their own accounts for 2 extents, but merged together
1654 	 * they are only 3 extents worth of accounting, so we need to drop in
1655 	 * this case.
1656 	 */
1657 	old_size = other->end - other->start + 1;
1658 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1659 				BTRFS_MAX_EXTENT_SIZE);
1660 	old_size = new->end - new->start + 1;
1661 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1662 				 BTRFS_MAX_EXTENT_SIZE);
1663 
1664 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1665 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1666 		return;
1667 
1668 	spin_lock(&BTRFS_I(inode)->lock);
1669 	BTRFS_I(inode)->outstanding_extents--;
1670 	spin_unlock(&BTRFS_I(inode)->lock);
1671 }
1672 
1673 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1674 				      struct inode *inode)
1675 {
1676 	spin_lock(&root->delalloc_lock);
1677 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1678 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1679 			      &root->delalloc_inodes);
1680 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1681 			&BTRFS_I(inode)->runtime_flags);
1682 		root->nr_delalloc_inodes++;
1683 		if (root->nr_delalloc_inodes == 1) {
1684 			spin_lock(&root->fs_info->delalloc_root_lock);
1685 			BUG_ON(!list_empty(&root->delalloc_root));
1686 			list_add_tail(&root->delalloc_root,
1687 				      &root->fs_info->delalloc_roots);
1688 			spin_unlock(&root->fs_info->delalloc_root_lock);
1689 		}
1690 	}
1691 	spin_unlock(&root->delalloc_lock);
1692 }
1693 
1694 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1695 				     struct inode *inode)
1696 {
1697 	spin_lock(&root->delalloc_lock);
1698 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1699 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1700 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 			  &BTRFS_I(inode)->runtime_flags);
1702 		root->nr_delalloc_inodes--;
1703 		if (!root->nr_delalloc_inodes) {
1704 			spin_lock(&root->fs_info->delalloc_root_lock);
1705 			BUG_ON(list_empty(&root->delalloc_root));
1706 			list_del_init(&root->delalloc_root);
1707 			spin_unlock(&root->fs_info->delalloc_root_lock);
1708 		}
1709 	}
1710 	spin_unlock(&root->delalloc_lock);
1711 }
1712 
1713 /*
1714  * extent_io.c set_bit_hook, used to track delayed allocation
1715  * bytes in this file, and to maintain the list of inodes that
1716  * have pending delalloc work to be done.
1717  */
1718 static void btrfs_set_bit_hook(struct inode *inode,
1719 			       struct extent_state *state, unsigned *bits)
1720 {
1721 
1722 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1723 		WARN_ON(1);
1724 	/*
1725 	 * set_bit and clear bit hooks normally require _irqsave/restore
1726 	 * but in this case, we are only testing for the DELALLOC
1727 	 * bit, which is only set or cleared with irqs on
1728 	 */
1729 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1730 		struct btrfs_root *root = BTRFS_I(inode)->root;
1731 		u64 len = state->end + 1 - state->start;
1732 		bool do_list = !btrfs_is_free_space_inode(inode);
1733 
1734 		if (*bits & EXTENT_FIRST_DELALLOC) {
1735 			*bits &= ~EXTENT_FIRST_DELALLOC;
1736 		} else {
1737 			spin_lock(&BTRFS_I(inode)->lock);
1738 			BTRFS_I(inode)->outstanding_extents++;
1739 			spin_unlock(&BTRFS_I(inode)->lock);
1740 		}
1741 
1742 		/* For sanity tests */
1743 		if (btrfs_test_is_dummy_root(root))
1744 			return;
1745 
1746 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1747 				     root->fs_info->delalloc_batch);
1748 		spin_lock(&BTRFS_I(inode)->lock);
1749 		BTRFS_I(inode)->delalloc_bytes += len;
1750 		if (*bits & EXTENT_DEFRAG)
1751 			BTRFS_I(inode)->defrag_bytes += len;
1752 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1753 					 &BTRFS_I(inode)->runtime_flags))
1754 			btrfs_add_delalloc_inodes(root, inode);
1755 		spin_unlock(&BTRFS_I(inode)->lock);
1756 	}
1757 }
1758 
1759 /*
1760  * extent_io.c clear_bit_hook, see set_bit_hook for why
1761  */
1762 static void btrfs_clear_bit_hook(struct inode *inode,
1763 				 struct extent_state *state,
1764 				 unsigned *bits)
1765 {
1766 	u64 len = state->end + 1 - state->start;
1767 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1768 				    BTRFS_MAX_EXTENT_SIZE);
1769 
1770 	spin_lock(&BTRFS_I(inode)->lock);
1771 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1772 		BTRFS_I(inode)->defrag_bytes -= len;
1773 	spin_unlock(&BTRFS_I(inode)->lock);
1774 
1775 	/*
1776 	 * set_bit and clear bit hooks normally require _irqsave/restore
1777 	 * but in this case, we are only testing for the DELALLOC
1778 	 * bit, which is only set or cleared with irqs on
1779 	 */
1780 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1781 		struct btrfs_root *root = BTRFS_I(inode)->root;
1782 		bool do_list = !btrfs_is_free_space_inode(inode);
1783 
1784 		if (*bits & EXTENT_FIRST_DELALLOC) {
1785 			*bits &= ~EXTENT_FIRST_DELALLOC;
1786 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1787 			spin_lock(&BTRFS_I(inode)->lock);
1788 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1789 			spin_unlock(&BTRFS_I(inode)->lock);
1790 		}
1791 
1792 		/*
1793 		 * We don't reserve metadata space for space cache inodes so we
1794 		 * don't need to call dellalloc_release_metadata if there is an
1795 		 * error.
1796 		 */
1797 		if (*bits & EXTENT_DO_ACCOUNTING &&
1798 		    root != root->fs_info->tree_root)
1799 			btrfs_delalloc_release_metadata(inode, len);
1800 
1801 		/* For sanity tests. */
1802 		if (btrfs_test_is_dummy_root(root))
1803 			return;
1804 
1805 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1806 		    && do_list && !(state->state & EXTENT_NORESERVE))
1807 			btrfs_free_reserved_data_space_noquota(inode,
1808 					state->start, len);
1809 
1810 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1811 				     root->fs_info->delalloc_batch);
1812 		spin_lock(&BTRFS_I(inode)->lock);
1813 		BTRFS_I(inode)->delalloc_bytes -= len;
1814 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1815 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1816 			     &BTRFS_I(inode)->runtime_flags))
1817 			btrfs_del_delalloc_inode(root, inode);
1818 		spin_unlock(&BTRFS_I(inode)->lock);
1819 	}
1820 }
1821 
1822 /*
1823  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1824  * we don't create bios that span stripes or chunks
1825  */
1826 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1827 			 size_t size, struct bio *bio,
1828 			 unsigned long bio_flags)
1829 {
1830 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1831 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1832 	u64 length = 0;
1833 	u64 map_length;
1834 	int ret;
1835 
1836 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1837 		return 0;
1838 
1839 	length = bio->bi_iter.bi_size;
1840 	map_length = length;
1841 	ret = btrfs_map_block(root->fs_info, bio_op(bio), logical,
1842 			      &map_length, NULL, 0);
1843 	/* Will always return 0 with map_multi == NULL */
1844 	BUG_ON(ret < 0);
1845 	if (map_length < length + size)
1846 		return 1;
1847 	return 0;
1848 }
1849 
1850 /*
1851  * in order to insert checksums into the metadata in large chunks,
1852  * we wait until bio submission time.   All the pages in the bio are
1853  * checksummed and sums are attached onto the ordered extent record.
1854  *
1855  * At IO completion time the cums attached on the ordered extent record
1856  * are inserted into the btree
1857  */
1858 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1859 				    int mirror_num, unsigned long bio_flags,
1860 				    u64 bio_offset)
1861 {
1862 	struct btrfs_root *root = BTRFS_I(inode)->root;
1863 	int ret = 0;
1864 
1865 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1866 	BUG_ON(ret); /* -ENOMEM */
1867 	return 0;
1868 }
1869 
1870 /*
1871  * in order to insert checksums into the metadata in large chunks,
1872  * we wait until bio submission time.   All the pages in the bio are
1873  * checksummed and sums are attached onto the ordered extent record.
1874  *
1875  * At IO completion time the cums attached on the ordered extent record
1876  * are inserted into the btree
1877  */
1878 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
1879 			  int mirror_num, unsigned long bio_flags,
1880 			  u64 bio_offset)
1881 {
1882 	struct btrfs_root *root = BTRFS_I(inode)->root;
1883 	int ret;
1884 
1885 	ret = btrfs_map_bio(root, bio, mirror_num, 1);
1886 	if (ret) {
1887 		bio->bi_error = ret;
1888 		bio_endio(bio);
1889 	}
1890 	return ret;
1891 }
1892 
1893 /*
1894  * extent_io.c submission hook. This does the right thing for csum calculation
1895  * on write, or reading the csums from the tree before a read
1896  */
1897 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1898 			  int mirror_num, unsigned long bio_flags,
1899 			  u64 bio_offset)
1900 {
1901 	struct btrfs_root *root = BTRFS_I(inode)->root;
1902 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1903 	int ret = 0;
1904 	int skip_sum;
1905 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1906 
1907 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1908 
1909 	if (btrfs_is_free_space_inode(inode))
1910 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1911 
1912 	if (bio_op(bio) != REQ_OP_WRITE) {
1913 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1914 		if (ret)
1915 			goto out;
1916 
1917 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1918 			ret = btrfs_submit_compressed_read(inode, bio,
1919 							   mirror_num,
1920 							   bio_flags);
1921 			goto out;
1922 		} else if (!skip_sum) {
1923 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1924 			if (ret)
1925 				goto out;
1926 		}
1927 		goto mapit;
1928 	} else if (async && !skip_sum) {
1929 		/* csum items have already been cloned */
1930 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1931 			goto mapit;
1932 		/* we're doing a write, do the async checksumming */
1933 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1934 				   inode, bio, mirror_num,
1935 				   bio_flags, bio_offset,
1936 				   __btrfs_submit_bio_start,
1937 				   __btrfs_submit_bio_done);
1938 		goto out;
1939 	} else if (!skip_sum) {
1940 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1941 		if (ret)
1942 			goto out;
1943 	}
1944 
1945 mapit:
1946 	ret = btrfs_map_bio(root, bio, mirror_num, 0);
1947 
1948 out:
1949 	if (ret < 0) {
1950 		bio->bi_error = ret;
1951 		bio_endio(bio);
1952 	}
1953 	return ret;
1954 }
1955 
1956 /*
1957  * given a list of ordered sums record them in the inode.  This happens
1958  * at IO completion time based on sums calculated at bio submission time.
1959  */
1960 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1961 			     struct inode *inode, u64 file_offset,
1962 			     struct list_head *list)
1963 {
1964 	struct btrfs_ordered_sum *sum;
1965 
1966 	list_for_each_entry(sum, list, list) {
1967 		trans->adding_csums = 1;
1968 		btrfs_csum_file_blocks(trans,
1969 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1970 		trans->adding_csums = 0;
1971 	}
1972 	return 0;
1973 }
1974 
1975 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1976 			      struct extent_state **cached_state)
1977 {
1978 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
1979 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1980 				   cached_state);
1981 }
1982 
1983 /* see btrfs_writepage_start_hook for details on why this is required */
1984 struct btrfs_writepage_fixup {
1985 	struct page *page;
1986 	struct btrfs_work work;
1987 };
1988 
1989 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1990 {
1991 	struct btrfs_writepage_fixup *fixup;
1992 	struct btrfs_ordered_extent *ordered;
1993 	struct extent_state *cached_state = NULL;
1994 	struct page *page;
1995 	struct inode *inode;
1996 	u64 page_start;
1997 	u64 page_end;
1998 	int ret;
1999 
2000 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2001 	page = fixup->page;
2002 again:
2003 	lock_page(page);
2004 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2005 		ClearPageChecked(page);
2006 		goto out_page;
2007 	}
2008 
2009 	inode = page->mapping->host;
2010 	page_start = page_offset(page);
2011 	page_end = page_offset(page) + PAGE_SIZE - 1;
2012 
2013 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2014 			 &cached_state);
2015 
2016 	/* already ordered? We're done */
2017 	if (PagePrivate2(page))
2018 		goto out;
2019 
2020 	ordered = btrfs_lookup_ordered_range(inode, page_start,
2021 					PAGE_SIZE);
2022 	if (ordered) {
2023 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2024 				     page_end, &cached_state, GFP_NOFS);
2025 		unlock_page(page);
2026 		btrfs_start_ordered_extent(inode, ordered, 1);
2027 		btrfs_put_ordered_extent(ordered);
2028 		goto again;
2029 	}
2030 
2031 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2032 					   PAGE_SIZE);
2033 	if (ret) {
2034 		mapping_set_error(page->mapping, ret);
2035 		end_extent_writepage(page, ret, page_start, page_end);
2036 		ClearPageChecked(page);
2037 		goto out;
2038 	 }
2039 
2040 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2041 	ClearPageChecked(page);
2042 	set_page_dirty(page);
2043 out:
2044 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2045 			     &cached_state, GFP_NOFS);
2046 out_page:
2047 	unlock_page(page);
2048 	put_page(page);
2049 	kfree(fixup);
2050 }
2051 
2052 /*
2053  * There are a few paths in the higher layers of the kernel that directly
2054  * set the page dirty bit without asking the filesystem if it is a
2055  * good idea.  This causes problems because we want to make sure COW
2056  * properly happens and the data=ordered rules are followed.
2057  *
2058  * In our case any range that doesn't have the ORDERED bit set
2059  * hasn't been properly setup for IO.  We kick off an async process
2060  * to fix it up.  The async helper will wait for ordered extents, set
2061  * the delalloc bit and make it safe to write the page.
2062  */
2063 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2064 {
2065 	struct inode *inode = page->mapping->host;
2066 	struct btrfs_writepage_fixup *fixup;
2067 	struct btrfs_root *root = BTRFS_I(inode)->root;
2068 
2069 	/* this page is properly in the ordered list */
2070 	if (TestClearPagePrivate2(page))
2071 		return 0;
2072 
2073 	if (PageChecked(page))
2074 		return -EAGAIN;
2075 
2076 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2077 	if (!fixup)
2078 		return -EAGAIN;
2079 
2080 	SetPageChecked(page);
2081 	get_page(page);
2082 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2083 			btrfs_writepage_fixup_worker, NULL, NULL);
2084 	fixup->page = page;
2085 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2086 	return -EBUSY;
2087 }
2088 
2089 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2090 				       struct inode *inode, u64 file_pos,
2091 				       u64 disk_bytenr, u64 disk_num_bytes,
2092 				       u64 num_bytes, u64 ram_bytes,
2093 				       u8 compression, u8 encryption,
2094 				       u16 other_encoding, int extent_type)
2095 {
2096 	struct btrfs_root *root = BTRFS_I(inode)->root;
2097 	struct btrfs_file_extent_item *fi;
2098 	struct btrfs_path *path;
2099 	struct extent_buffer *leaf;
2100 	struct btrfs_key ins;
2101 	int extent_inserted = 0;
2102 	int ret;
2103 
2104 	path = btrfs_alloc_path();
2105 	if (!path)
2106 		return -ENOMEM;
2107 
2108 	/*
2109 	 * we may be replacing one extent in the tree with another.
2110 	 * The new extent is pinned in the extent map, and we don't want
2111 	 * to drop it from the cache until it is completely in the btree.
2112 	 *
2113 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2114 	 * the caller is expected to unpin it and allow it to be merged
2115 	 * with the others.
2116 	 */
2117 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2118 				   file_pos + num_bytes, NULL, 0,
2119 				   1, sizeof(*fi), &extent_inserted);
2120 	if (ret)
2121 		goto out;
2122 
2123 	if (!extent_inserted) {
2124 		ins.objectid = btrfs_ino(inode);
2125 		ins.offset = file_pos;
2126 		ins.type = BTRFS_EXTENT_DATA_KEY;
2127 
2128 		path->leave_spinning = 1;
2129 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2130 					      sizeof(*fi));
2131 		if (ret)
2132 			goto out;
2133 	}
2134 	leaf = path->nodes[0];
2135 	fi = btrfs_item_ptr(leaf, path->slots[0],
2136 			    struct btrfs_file_extent_item);
2137 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2138 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2139 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2140 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2141 	btrfs_set_file_extent_offset(leaf, fi, 0);
2142 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2143 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2144 	btrfs_set_file_extent_compression(leaf, fi, compression);
2145 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2146 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2147 
2148 	btrfs_mark_buffer_dirty(leaf);
2149 	btrfs_release_path(path);
2150 
2151 	inode_add_bytes(inode, num_bytes);
2152 
2153 	ins.objectid = disk_bytenr;
2154 	ins.offset = disk_num_bytes;
2155 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2156 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2157 					root->root_key.objectid,
2158 					btrfs_ino(inode), file_pos,
2159 					ram_bytes, &ins);
2160 	/*
2161 	 * Release the reserved range from inode dirty range map, as it is
2162 	 * already moved into delayed_ref_head
2163 	 */
2164 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2165 out:
2166 	btrfs_free_path(path);
2167 
2168 	return ret;
2169 }
2170 
2171 /* snapshot-aware defrag */
2172 struct sa_defrag_extent_backref {
2173 	struct rb_node node;
2174 	struct old_sa_defrag_extent *old;
2175 	u64 root_id;
2176 	u64 inum;
2177 	u64 file_pos;
2178 	u64 extent_offset;
2179 	u64 num_bytes;
2180 	u64 generation;
2181 };
2182 
2183 struct old_sa_defrag_extent {
2184 	struct list_head list;
2185 	struct new_sa_defrag_extent *new;
2186 
2187 	u64 extent_offset;
2188 	u64 bytenr;
2189 	u64 offset;
2190 	u64 len;
2191 	int count;
2192 };
2193 
2194 struct new_sa_defrag_extent {
2195 	struct rb_root root;
2196 	struct list_head head;
2197 	struct btrfs_path *path;
2198 	struct inode *inode;
2199 	u64 file_pos;
2200 	u64 len;
2201 	u64 bytenr;
2202 	u64 disk_len;
2203 	u8 compress_type;
2204 };
2205 
2206 static int backref_comp(struct sa_defrag_extent_backref *b1,
2207 			struct sa_defrag_extent_backref *b2)
2208 {
2209 	if (b1->root_id < b2->root_id)
2210 		return -1;
2211 	else if (b1->root_id > b2->root_id)
2212 		return 1;
2213 
2214 	if (b1->inum < b2->inum)
2215 		return -1;
2216 	else if (b1->inum > b2->inum)
2217 		return 1;
2218 
2219 	if (b1->file_pos < b2->file_pos)
2220 		return -1;
2221 	else if (b1->file_pos > b2->file_pos)
2222 		return 1;
2223 
2224 	/*
2225 	 * [------------------------------] ===> (a range of space)
2226 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2227 	 * |<---------------------------->| ===> (fs/file tree B)
2228 	 *
2229 	 * A range of space can refer to two file extents in one tree while
2230 	 * refer to only one file extent in another tree.
2231 	 *
2232 	 * So we may process a disk offset more than one time(two extents in A)
2233 	 * and locate at the same extent(one extent in B), then insert two same
2234 	 * backrefs(both refer to the extent in B).
2235 	 */
2236 	return 0;
2237 }
2238 
2239 static void backref_insert(struct rb_root *root,
2240 			   struct sa_defrag_extent_backref *backref)
2241 {
2242 	struct rb_node **p = &root->rb_node;
2243 	struct rb_node *parent = NULL;
2244 	struct sa_defrag_extent_backref *entry;
2245 	int ret;
2246 
2247 	while (*p) {
2248 		parent = *p;
2249 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2250 
2251 		ret = backref_comp(backref, entry);
2252 		if (ret < 0)
2253 			p = &(*p)->rb_left;
2254 		else
2255 			p = &(*p)->rb_right;
2256 	}
2257 
2258 	rb_link_node(&backref->node, parent, p);
2259 	rb_insert_color(&backref->node, root);
2260 }
2261 
2262 /*
2263  * Note the backref might has changed, and in this case we just return 0.
2264  */
2265 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2266 				       void *ctx)
2267 {
2268 	struct btrfs_file_extent_item *extent;
2269 	struct btrfs_fs_info *fs_info;
2270 	struct old_sa_defrag_extent *old = ctx;
2271 	struct new_sa_defrag_extent *new = old->new;
2272 	struct btrfs_path *path = new->path;
2273 	struct btrfs_key key;
2274 	struct btrfs_root *root;
2275 	struct sa_defrag_extent_backref *backref;
2276 	struct extent_buffer *leaf;
2277 	struct inode *inode = new->inode;
2278 	int slot;
2279 	int ret;
2280 	u64 extent_offset;
2281 	u64 num_bytes;
2282 
2283 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2284 	    inum == btrfs_ino(inode))
2285 		return 0;
2286 
2287 	key.objectid = root_id;
2288 	key.type = BTRFS_ROOT_ITEM_KEY;
2289 	key.offset = (u64)-1;
2290 
2291 	fs_info = BTRFS_I(inode)->root->fs_info;
2292 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2293 	if (IS_ERR(root)) {
2294 		if (PTR_ERR(root) == -ENOENT)
2295 			return 0;
2296 		WARN_ON(1);
2297 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2298 			 inum, offset, root_id);
2299 		return PTR_ERR(root);
2300 	}
2301 
2302 	key.objectid = inum;
2303 	key.type = BTRFS_EXTENT_DATA_KEY;
2304 	if (offset > (u64)-1 << 32)
2305 		key.offset = 0;
2306 	else
2307 		key.offset = offset;
2308 
2309 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2310 	if (WARN_ON(ret < 0))
2311 		return ret;
2312 	ret = 0;
2313 
2314 	while (1) {
2315 		cond_resched();
2316 
2317 		leaf = path->nodes[0];
2318 		slot = path->slots[0];
2319 
2320 		if (slot >= btrfs_header_nritems(leaf)) {
2321 			ret = btrfs_next_leaf(root, path);
2322 			if (ret < 0) {
2323 				goto out;
2324 			} else if (ret > 0) {
2325 				ret = 0;
2326 				goto out;
2327 			}
2328 			continue;
2329 		}
2330 
2331 		path->slots[0]++;
2332 
2333 		btrfs_item_key_to_cpu(leaf, &key, slot);
2334 
2335 		if (key.objectid > inum)
2336 			goto out;
2337 
2338 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2339 			continue;
2340 
2341 		extent = btrfs_item_ptr(leaf, slot,
2342 					struct btrfs_file_extent_item);
2343 
2344 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2345 			continue;
2346 
2347 		/*
2348 		 * 'offset' refers to the exact key.offset,
2349 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2350 		 * (key.offset - extent_offset).
2351 		 */
2352 		if (key.offset != offset)
2353 			continue;
2354 
2355 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2356 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2357 
2358 		if (extent_offset >= old->extent_offset + old->offset +
2359 		    old->len || extent_offset + num_bytes <=
2360 		    old->extent_offset + old->offset)
2361 			continue;
2362 		break;
2363 	}
2364 
2365 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2366 	if (!backref) {
2367 		ret = -ENOENT;
2368 		goto out;
2369 	}
2370 
2371 	backref->root_id = root_id;
2372 	backref->inum = inum;
2373 	backref->file_pos = offset;
2374 	backref->num_bytes = num_bytes;
2375 	backref->extent_offset = extent_offset;
2376 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2377 	backref->old = old;
2378 	backref_insert(&new->root, backref);
2379 	old->count++;
2380 out:
2381 	btrfs_release_path(path);
2382 	WARN_ON(ret);
2383 	return ret;
2384 }
2385 
2386 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2387 				   struct new_sa_defrag_extent *new)
2388 {
2389 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2390 	struct old_sa_defrag_extent *old, *tmp;
2391 	int ret;
2392 
2393 	new->path = path;
2394 
2395 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2396 		ret = iterate_inodes_from_logical(old->bytenr +
2397 						  old->extent_offset, fs_info,
2398 						  path, record_one_backref,
2399 						  old);
2400 		if (ret < 0 && ret != -ENOENT)
2401 			return false;
2402 
2403 		/* no backref to be processed for this extent */
2404 		if (!old->count) {
2405 			list_del(&old->list);
2406 			kfree(old);
2407 		}
2408 	}
2409 
2410 	if (list_empty(&new->head))
2411 		return false;
2412 
2413 	return true;
2414 }
2415 
2416 static int relink_is_mergable(struct extent_buffer *leaf,
2417 			      struct btrfs_file_extent_item *fi,
2418 			      struct new_sa_defrag_extent *new)
2419 {
2420 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2421 		return 0;
2422 
2423 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2424 		return 0;
2425 
2426 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2427 		return 0;
2428 
2429 	if (btrfs_file_extent_encryption(leaf, fi) ||
2430 	    btrfs_file_extent_other_encoding(leaf, fi))
2431 		return 0;
2432 
2433 	return 1;
2434 }
2435 
2436 /*
2437  * Note the backref might has changed, and in this case we just return 0.
2438  */
2439 static noinline int relink_extent_backref(struct btrfs_path *path,
2440 				 struct sa_defrag_extent_backref *prev,
2441 				 struct sa_defrag_extent_backref *backref)
2442 {
2443 	struct btrfs_file_extent_item *extent;
2444 	struct btrfs_file_extent_item *item;
2445 	struct btrfs_ordered_extent *ordered;
2446 	struct btrfs_trans_handle *trans;
2447 	struct btrfs_fs_info *fs_info;
2448 	struct btrfs_root *root;
2449 	struct btrfs_key key;
2450 	struct extent_buffer *leaf;
2451 	struct old_sa_defrag_extent *old = backref->old;
2452 	struct new_sa_defrag_extent *new = old->new;
2453 	struct inode *src_inode = new->inode;
2454 	struct inode *inode;
2455 	struct extent_state *cached = NULL;
2456 	int ret = 0;
2457 	u64 start;
2458 	u64 len;
2459 	u64 lock_start;
2460 	u64 lock_end;
2461 	bool merge = false;
2462 	int index;
2463 
2464 	if (prev && prev->root_id == backref->root_id &&
2465 	    prev->inum == backref->inum &&
2466 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2467 		merge = true;
2468 
2469 	/* step 1: get root */
2470 	key.objectid = backref->root_id;
2471 	key.type = BTRFS_ROOT_ITEM_KEY;
2472 	key.offset = (u64)-1;
2473 
2474 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2475 	index = srcu_read_lock(&fs_info->subvol_srcu);
2476 
2477 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2478 	if (IS_ERR(root)) {
2479 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2480 		if (PTR_ERR(root) == -ENOENT)
2481 			return 0;
2482 		return PTR_ERR(root);
2483 	}
2484 
2485 	if (btrfs_root_readonly(root)) {
2486 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2487 		return 0;
2488 	}
2489 
2490 	/* step 2: get inode */
2491 	key.objectid = backref->inum;
2492 	key.type = BTRFS_INODE_ITEM_KEY;
2493 	key.offset = 0;
2494 
2495 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2496 	if (IS_ERR(inode)) {
2497 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2498 		return 0;
2499 	}
2500 
2501 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2502 
2503 	/* step 3: relink backref */
2504 	lock_start = backref->file_pos;
2505 	lock_end = backref->file_pos + backref->num_bytes - 1;
2506 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2507 			 &cached);
2508 
2509 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2510 	if (ordered) {
2511 		btrfs_put_ordered_extent(ordered);
2512 		goto out_unlock;
2513 	}
2514 
2515 	trans = btrfs_join_transaction(root);
2516 	if (IS_ERR(trans)) {
2517 		ret = PTR_ERR(trans);
2518 		goto out_unlock;
2519 	}
2520 
2521 	key.objectid = backref->inum;
2522 	key.type = BTRFS_EXTENT_DATA_KEY;
2523 	key.offset = backref->file_pos;
2524 
2525 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2526 	if (ret < 0) {
2527 		goto out_free_path;
2528 	} else if (ret > 0) {
2529 		ret = 0;
2530 		goto out_free_path;
2531 	}
2532 
2533 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2534 				struct btrfs_file_extent_item);
2535 
2536 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2537 	    backref->generation)
2538 		goto out_free_path;
2539 
2540 	btrfs_release_path(path);
2541 
2542 	start = backref->file_pos;
2543 	if (backref->extent_offset < old->extent_offset + old->offset)
2544 		start += old->extent_offset + old->offset -
2545 			 backref->extent_offset;
2546 
2547 	len = min(backref->extent_offset + backref->num_bytes,
2548 		  old->extent_offset + old->offset + old->len);
2549 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2550 
2551 	ret = btrfs_drop_extents(trans, root, inode, start,
2552 				 start + len, 1);
2553 	if (ret)
2554 		goto out_free_path;
2555 again:
2556 	key.objectid = btrfs_ino(inode);
2557 	key.type = BTRFS_EXTENT_DATA_KEY;
2558 	key.offset = start;
2559 
2560 	path->leave_spinning = 1;
2561 	if (merge) {
2562 		struct btrfs_file_extent_item *fi;
2563 		u64 extent_len;
2564 		struct btrfs_key found_key;
2565 
2566 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2567 		if (ret < 0)
2568 			goto out_free_path;
2569 
2570 		path->slots[0]--;
2571 		leaf = path->nodes[0];
2572 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2573 
2574 		fi = btrfs_item_ptr(leaf, path->slots[0],
2575 				    struct btrfs_file_extent_item);
2576 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2577 
2578 		if (extent_len + found_key.offset == start &&
2579 		    relink_is_mergable(leaf, fi, new)) {
2580 			btrfs_set_file_extent_num_bytes(leaf, fi,
2581 							extent_len + len);
2582 			btrfs_mark_buffer_dirty(leaf);
2583 			inode_add_bytes(inode, len);
2584 
2585 			ret = 1;
2586 			goto out_free_path;
2587 		} else {
2588 			merge = false;
2589 			btrfs_release_path(path);
2590 			goto again;
2591 		}
2592 	}
2593 
2594 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2595 					sizeof(*extent));
2596 	if (ret) {
2597 		btrfs_abort_transaction(trans, root, ret);
2598 		goto out_free_path;
2599 	}
2600 
2601 	leaf = path->nodes[0];
2602 	item = btrfs_item_ptr(leaf, path->slots[0],
2603 				struct btrfs_file_extent_item);
2604 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2605 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2606 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2607 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2608 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2609 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2610 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2611 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2612 	btrfs_set_file_extent_encryption(leaf, item, 0);
2613 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2614 
2615 	btrfs_mark_buffer_dirty(leaf);
2616 	inode_add_bytes(inode, len);
2617 	btrfs_release_path(path);
2618 
2619 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2620 			new->disk_len, 0,
2621 			backref->root_id, backref->inum,
2622 			new->file_pos);	/* start - extent_offset */
2623 	if (ret) {
2624 		btrfs_abort_transaction(trans, root, ret);
2625 		goto out_free_path;
2626 	}
2627 
2628 	ret = 1;
2629 out_free_path:
2630 	btrfs_release_path(path);
2631 	path->leave_spinning = 0;
2632 	btrfs_end_transaction(trans, root);
2633 out_unlock:
2634 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2635 			     &cached, GFP_NOFS);
2636 	iput(inode);
2637 	return ret;
2638 }
2639 
2640 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2641 {
2642 	struct old_sa_defrag_extent *old, *tmp;
2643 
2644 	if (!new)
2645 		return;
2646 
2647 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2648 		kfree(old);
2649 	}
2650 	kfree(new);
2651 }
2652 
2653 static void relink_file_extents(struct new_sa_defrag_extent *new)
2654 {
2655 	struct btrfs_path *path;
2656 	struct sa_defrag_extent_backref *backref;
2657 	struct sa_defrag_extent_backref *prev = NULL;
2658 	struct inode *inode;
2659 	struct btrfs_root *root;
2660 	struct rb_node *node;
2661 	int ret;
2662 
2663 	inode = new->inode;
2664 	root = BTRFS_I(inode)->root;
2665 
2666 	path = btrfs_alloc_path();
2667 	if (!path)
2668 		return;
2669 
2670 	if (!record_extent_backrefs(path, new)) {
2671 		btrfs_free_path(path);
2672 		goto out;
2673 	}
2674 	btrfs_release_path(path);
2675 
2676 	while (1) {
2677 		node = rb_first(&new->root);
2678 		if (!node)
2679 			break;
2680 		rb_erase(node, &new->root);
2681 
2682 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2683 
2684 		ret = relink_extent_backref(path, prev, backref);
2685 		WARN_ON(ret < 0);
2686 
2687 		kfree(prev);
2688 
2689 		if (ret == 1)
2690 			prev = backref;
2691 		else
2692 			prev = NULL;
2693 		cond_resched();
2694 	}
2695 	kfree(prev);
2696 
2697 	btrfs_free_path(path);
2698 out:
2699 	free_sa_defrag_extent(new);
2700 
2701 	atomic_dec(&root->fs_info->defrag_running);
2702 	wake_up(&root->fs_info->transaction_wait);
2703 }
2704 
2705 static struct new_sa_defrag_extent *
2706 record_old_file_extents(struct inode *inode,
2707 			struct btrfs_ordered_extent *ordered)
2708 {
2709 	struct btrfs_root *root = BTRFS_I(inode)->root;
2710 	struct btrfs_path *path;
2711 	struct btrfs_key key;
2712 	struct old_sa_defrag_extent *old;
2713 	struct new_sa_defrag_extent *new;
2714 	int ret;
2715 
2716 	new = kmalloc(sizeof(*new), GFP_NOFS);
2717 	if (!new)
2718 		return NULL;
2719 
2720 	new->inode = inode;
2721 	new->file_pos = ordered->file_offset;
2722 	new->len = ordered->len;
2723 	new->bytenr = ordered->start;
2724 	new->disk_len = ordered->disk_len;
2725 	new->compress_type = ordered->compress_type;
2726 	new->root = RB_ROOT;
2727 	INIT_LIST_HEAD(&new->head);
2728 
2729 	path = btrfs_alloc_path();
2730 	if (!path)
2731 		goto out_kfree;
2732 
2733 	key.objectid = btrfs_ino(inode);
2734 	key.type = BTRFS_EXTENT_DATA_KEY;
2735 	key.offset = new->file_pos;
2736 
2737 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2738 	if (ret < 0)
2739 		goto out_free_path;
2740 	if (ret > 0 && path->slots[0] > 0)
2741 		path->slots[0]--;
2742 
2743 	/* find out all the old extents for the file range */
2744 	while (1) {
2745 		struct btrfs_file_extent_item *extent;
2746 		struct extent_buffer *l;
2747 		int slot;
2748 		u64 num_bytes;
2749 		u64 offset;
2750 		u64 end;
2751 		u64 disk_bytenr;
2752 		u64 extent_offset;
2753 
2754 		l = path->nodes[0];
2755 		slot = path->slots[0];
2756 
2757 		if (slot >= btrfs_header_nritems(l)) {
2758 			ret = btrfs_next_leaf(root, path);
2759 			if (ret < 0)
2760 				goto out_free_path;
2761 			else if (ret > 0)
2762 				break;
2763 			continue;
2764 		}
2765 
2766 		btrfs_item_key_to_cpu(l, &key, slot);
2767 
2768 		if (key.objectid != btrfs_ino(inode))
2769 			break;
2770 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2771 			break;
2772 		if (key.offset >= new->file_pos + new->len)
2773 			break;
2774 
2775 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2776 
2777 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2778 		if (key.offset + num_bytes < new->file_pos)
2779 			goto next;
2780 
2781 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2782 		if (!disk_bytenr)
2783 			goto next;
2784 
2785 		extent_offset = btrfs_file_extent_offset(l, extent);
2786 
2787 		old = kmalloc(sizeof(*old), GFP_NOFS);
2788 		if (!old)
2789 			goto out_free_path;
2790 
2791 		offset = max(new->file_pos, key.offset);
2792 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2793 
2794 		old->bytenr = disk_bytenr;
2795 		old->extent_offset = extent_offset;
2796 		old->offset = offset - key.offset;
2797 		old->len = end - offset;
2798 		old->new = new;
2799 		old->count = 0;
2800 		list_add_tail(&old->list, &new->head);
2801 next:
2802 		path->slots[0]++;
2803 		cond_resched();
2804 	}
2805 
2806 	btrfs_free_path(path);
2807 	atomic_inc(&root->fs_info->defrag_running);
2808 
2809 	return new;
2810 
2811 out_free_path:
2812 	btrfs_free_path(path);
2813 out_kfree:
2814 	free_sa_defrag_extent(new);
2815 	return NULL;
2816 }
2817 
2818 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2819 					 u64 start, u64 len)
2820 {
2821 	struct btrfs_block_group_cache *cache;
2822 
2823 	cache = btrfs_lookup_block_group(root->fs_info, start);
2824 	ASSERT(cache);
2825 
2826 	spin_lock(&cache->lock);
2827 	cache->delalloc_bytes -= len;
2828 	spin_unlock(&cache->lock);
2829 
2830 	btrfs_put_block_group(cache);
2831 }
2832 
2833 /* as ordered data IO finishes, this gets called so we can finish
2834  * an ordered extent if the range of bytes in the file it covers are
2835  * fully written.
2836  */
2837 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2838 {
2839 	struct inode *inode = ordered_extent->inode;
2840 	struct btrfs_root *root = BTRFS_I(inode)->root;
2841 	struct btrfs_trans_handle *trans = NULL;
2842 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2843 	struct extent_state *cached_state = NULL;
2844 	struct new_sa_defrag_extent *new = NULL;
2845 	int compress_type = 0;
2846 	int ret = 0;
2847 	u64 logical_len = ordered_extent->len;
2848 	bool nolock;
2849 	bool truncated = false;
2850 
2851 	nolock = btrfs_is_free_space_inode(inode);
2852 
2853 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2854 		ret = -EIO;
2855 		goto out;
2856 	}
2857 
2858 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2859 				     ordered_extent->file_offset +
2860 				     ordered_extent->len - 1);
2861 
2862 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2863 		truncated = true;
2864 		logical_len = ordered_extent->truncated_len;
2865 		/* Truncated the entire extent, don't bother adding */
2866 		if (!logical_len)
2867 			goto out;
2868 	}
2869 
2870 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2871 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2872 
2873 		/*
2874 		 * For mwrite(mmap + memset to write) case, we still reserve
2875 		 * space for NOCOW range.
2876 		 * As NOCOW won't cause a new delayed ref, just free the space
2877 		 */
2878 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2879 				       ordered_extent->len);
2880 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2881 		if (nolock)
2882 			trans = btrfs_join_transaction_nolock(root);
2883 		else
2884 			trans = btrfs_join_transaction(root);
2885 		if (IS_ERR(trans)) {
2886 			ret = PTR_ERR(trans);
2887 			trans = NULL;
2888 			goto out;
2889 		}
2890 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2891 		ret = btrfs_update_inode_fallback(trans, root, inode);
2892 		if (ret) /* -ENOMEM or corruption */
2893 			btrfs_abort_transaction(trans, root, ret);
2894 		goto out;
2895 	}
2896 
2897 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2898 			 ordered_extent->file_offset + ordered_extent->len - 1,
2899 			 &cached_state);
2900 
2901 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2902 			ordered_extent->file_offset + ordered_extent->len - 1,
2903 			EXTENT_DEFRAG, 1, cached_state);
2904 	if (ret) {
2905 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2906 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2907 			/* the inode is shared */
2908 			new = record_old_file_extents(inode, ordered_extent);
2909 
2910 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2911 			ordered_extent->file_offset + ordered_extent->len - 1,
2912 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2913 	}
2914 
2915 	if (nolock)
2916 		trans = btrfs_join_transaction_nolock(root);
2917 	else
2918 		trans = btrfs_join_transaction(root);
2919 	if (IS_ERR(trans)) {
2920 		ret = PTR_ERR(trans);
2921 		trans = NULL;
2922 		goto out_unlock;
2923 	}
2924 
2925 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2926 
2927 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2928 		compress_type = ordered_extent->compress_type;
2929 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2930 		BUG_ON(compress_type);
2931 		ret = btrfs_mark_extent_written(trans, inode,
2932 						ordered_extent->file_offset,
2933 						ordered_extent->file_offset +
2934 						logical_len);
2935 	} else {
2936 		BUG_ON(root == root->fs_info->tree_root);
2937 		ret = insert_reserved_file_extent(trans, inode,
2938 						ordered_extent->file_offset,
2939 						ordered_extent->start,
2940 						ordered_extent->disk_len,
2941 						logical_len, logical_len,
2942 						compress_type, 0, 0,
2943 						BTRFS_FILE_EXTENT_REG);
2944 		if (!ret)
2945 			btrfs_release_delalloc_bytes(root,
2946 						     ordered_extent->start,
2947 						     ordered_extent->disk_len);
2948 	}
2949 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2950 			   ordered_extent->file_offset, ordered_extent->len,
2951 			   trans->transid);
2952 	if (ret < 0) {
2953 		btrfs_abort_transaction(trans, root, ret);
2954 		goto out_unlock;
2955 	}
2956 
2957 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2958 			  &ordered_extent->list);
2959 
2960 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2961 	ret = btrfs_update_inode_fallback(trans, root, inode);
2962 	if (ret) { /* -ENOMEM or corruption */
2963 		btrfs_abort_transaction(trans, root, ret);
2964 		goto out_unlock;
2965 	}
2966 	ret = 0;
2967 out_unlock:
2968 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2969 			     ordered_extent->file_offset +
2970 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2971 out:
2972 	if (root != root->fs_info->tree_root)
2973 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2974 	if (trans)
2975 		btrfs_end_transaction(trans, root);
2976 
2977 	if (ret || truncated) {
2978 		u64 start, end;
2979 
2980 		if (truncated)
2981 			start = ordered_extent->file_offset + logical_len;
2982 		else
2983 			start = ordered_extent->file_offset;
2984 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2985 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2986 
2987 		/* Drop the cache for the part of the extent we didn't write. */
2988 		btrfs_drop_extent_cache(inode, start, end, 0);
2989 
2990 		/*
2991 		 * If the ordered extent had an IOERR or something else went
2992 		 * wrong we need to return the space for this ordered extent
2993 		 * back to the allocator.  We only free the extent in the
2994 		 * truncated case if we didn't write out the extent at all.
2995 		 */
2996 		if ((ret || !logical_len) &&
2997 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2998 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2999 			btrfs_free_reserved_extent(root, ordered_extent->start,
3000 						   ordered_extent->disk_len, 1);
3001 	}
3002 
3003 
3004 	/*
3005 	 * This needs to be done to make sure anybody waiting knows we are done
3006 	 * updating everything for this ordered extent.
3007 	 */
3008 	btrfs_remove_ordered_extent(inode, ordered_extent);
3009 
3010 	/* for snapshot-aware defrag */
3011 	if (new) {
3012 		if (ret) {
3013 			free_sa_defrag_extent(new);
3014 			atomic_dec(&root->fs_info->defrag_running);
3015 		} else {
3016 			relink_file_extents(new);
3017 		}
3018 	}
3019 
3020 	/* once for us */
3021 	btrfs_put_ordered_extent(ordered_extent);
3022 	/* once for the tree */
3023 	btrfs_put_ordered_extent(ordered_extent);
3024 
3025 	return ret;
3026 }
3027 
3028 static void finish_ordered_fn(struct btrfs_work *work)
3029 {
3030 	struct btrfs_ordered_extent *ordered_extent;
3031 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3032 	btrfs_finish_ordered_io(ordered_extent);
3033 }
3034 
3035 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3036 				struct extent_state *state, int uptodate)
3037 {
3038 	struct inode *inode = page->mapping->host;
3039 	struct btrfs_root *root = BTRFS_I(inode)->root;
3040 	struct btrfs_ordered_extent *ordered_extent = NULL;
3041 	struct btrfs_workqueue *wq;
3042 	btrfs_work_func_t func;
3043 
3044 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3045 
3046 	ClearPagePrivate2(page);
3047 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3048 					    end - start + 1, uptodate))
3049 		return 0;
3050 
3051 	if (btrfs_is_free_space_inode(inode)) {
3052 		wq = root->fs_info->endio_freespace_worker;
3053 		func = btrfs_freespace_write_helper;
3054 	} else {
3055 		wq = root->fs_info->endio_write_workers;
3056 		func = btrfs_endio_write_helper;
3057 	}
3058 
3059 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3060 			NULL);
3061 	btrfs_queue_work(wq, &ordered_extent->work);
3062 
3063 	return 0;
3064 }
3065 
3066 static int __readpage_endio_check(struct inode *inode,
3067 				  struct btrfs_io_bio *io_bio,
3068 				  int icsum, struct page *page,
3069 				  int pgoff, u64 start, size_t len)
3070 {
3071 	char *kaddr;
3072 	u32 csum_expected;
3073 	u32 csum = ~(u32)0;
3074 
3075 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3076 
3077 	kaddr = kmap_atomic(page);
3078 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3079 	btrfs_csum_final(csum, (char *)&csum);
3080 	if (csum != csum_expected)
3081 		goto zeroit;
3082 
3083 	kunmap_atomic(kaddr);
3084 	return 0;
3085 zeroit:
3086 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3087 		"csum failed ino %llu off %llu csum %u expected csum %u",
3088 			   btrfs_ino(inode), start, csum, csum_expected);
3089 	memset(kaddr + pgoff, 1, len);
3090 	flush_dcache_page(page);
3091 	kunmap_atomic(kaddr);
3092 	if (csum_expected == 0)
3093 		return 0;
3094 	return -EIO;
3095 }
3096 
3097 /*
3098  * when reads are done, we need to check csums to verify the data is correct
3099  * if there's a match, we allow the bio to finish.  If not, the code in
3100  * extent_io.c will try to find good copies for us.
3101  */
3102 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3103 				      u64 phy_offset, struct page *page,
3104 				      u64 start, u64 end, int mirror)
3105 {
3106 	size_t offset = start - page_offset(page);
3107 	struct inode *inode = page->mapping->host;
3108 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3109 	struct btrfs_root *root = BTRFS_I(inode)->root;
3110 
3111 	if (PageChecked(page)) {
3112 		ClearPageChecked(page);
3113 		return 0;
3114 	}
3115 
3116 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3117 		return 0;
3118 
3119 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3120 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3121 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3122 		return 0;
3123 	}
3124 
3125 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3126 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3127 				      start, (size_t)(end - start + 1));
3128 }
3129 
3130 void btrfs_add_delayed_iput(struct inode *inode)
3131 {
3132 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3133 	struct btrfs_inode *binode = BTRFS_I(inode);
3134 
3135 	if (atomic_add_unless(&inode->i_count, -1, 1))
3136 		return;
3137 
3138 	spin_lock(&fs_info->delayed_iput_lock);
3139 	if (binode->delayed_iput_count == 0) {
3140 		ASSERT(list_empty(&binode->delayed_iput));
3141 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3142 	} else {
3143 		binode->delayed_iput_count++;
3144 	}
3145 	spin_unlock(&fs_info->delayed_iput_lock);
3146 }
3147 
3148 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3149 {
3150 	struct btrfs_fs_info *fs_info = root->fs_info;
3151 
3152 	spin_lock(&fs_info->delayed_iput_lock);
3153 	while (!list_empty(&fs_info->delayed_iputs)) {
3154 		struct btrfs_inode *inode;
3155 
3156 		inode = list_first_entry(&fs_info->delayed_iputs,
3157 				struct btrfs_inode, delayed_iput);
3158 		if (inode->delayed_iput_count) {
3159 			inode->delayed_iput_count--;
3160 			list_move_tail(&inode->delayed_iput,
3161 					&fs_info->delayed_iputs);
3162 		} else {
3163 			list_del_init(&inode->delayed_iput);
3164 		}
3165 		spin_unlock(&fs_info->delayed_iput_lock);
3166 		iput(&inode->vfs_inode);
3167 		spin_lock(&fs_info->delayed_iput_lock);
3168 	}
3169 	spin_unlock(&fs_info->delayed_iput_lock);
3170 }
3171 
3172 /*
3173  * This is called in transaction commit time. If there are no orphan
3174  * files in the subvolume, it removes orphan item and frees block_rsv
3175  * structure.
3176  */
3177 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3178 			      struct btrfs_root *root)
3179 {
3180 	struct btrfs_block_rsv *block_rsv;
3181 	int ret;
3182 
3183 	if (atomic_read(&root->orphan_inodes) ||
3184 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3185 		return;
3186 
3187 	spin_lock(&root->orphan_lock);
3188 	if (atomic_read(&root->orphan_inodes)) {
3189 		spin_unlock(&root->orphan_lock);
3190 		return;
3191 	}
3192 
3193 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3194 		spin_unlock(&root->orphan_lock);
3195 		return;
3196 	}
3197 
3198 	block_rsv = root->orphan_block_rsv;
3199 	root->orphan_block_rsv = NULL;
3200 	spin_unlock(&root->orphan_lock);
3201 
3202 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3203 	    btrfs_root_refs(&root->root_item) > 0) {
3204 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3205 					    root->root_key.objectid);
3206 		if (ret)
3207 			btrfs_abort_transaction(trans, root, ret);
3208 		else
3209 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3210 				  &root->state);
3211 	}
3212 
3213 	if (block_rsv) {
3214 		WARN_ON(block_rsv->size > 0);
3215 		btrfs_free_block_rsv(root, block_rsv);
3216 	}
3217 }
3218 
3219 /*
3220  * This creates an orphan entry for the given inode in case something goes
3221  * wrong in the middle of an unlink/truncate.
3222  *
3223  * NOTE: caller of this function should reserve 5 units of metadata for
3224  *	 this function.
3225  */
3226 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3227 {
3228 	struct btrfs_root *root = BTRFS_I(inode)->root;
3229 	struct btrfs_block_rsv *block_rsv = NULL;
3230 	int reserve = 0;
3231 	int insert = 0;
3232 	int ret;
3233 
3234 	if (!root->orphan_block_rsv) {
3235 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3236 		if (!block_rsv)
3237 			return -ENOMEM;
3238 	}
3239 
3240 	spin_lock(&root->orphan_lock);
3241 	if (!root->orphan_block_rsv) {
3242 		root->orphan_block_rsv = block_rsv;
3243 	} else if (block_rsv) {
3244 		btrfs_free_block_rsv(root, block_rsv);
3245 		block_rsv = NULL;
3246 	}
3247 
3248 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3249 			      &BTRFS_I(inode)->runtime_flags)) {
3250 #if 0
3251 		/*
3252 		 * For proper ENOSPC handling, we should do orphan
3253 		 * cleanup when mounting. But this introduces backward
3254 		 * compatibility issue.
3255 		 */
3256 		if (!xchg(&root->orphan_item_inserted, 1))
3257 			insert = 2;
3258 		else
3259 			insert = 1;
3260 #endif
3261 		insert = 1;
3262 		atomic_inc(&root->orphan_inodes);
3263 	}
3264 
3265 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3266 			      &BTRFS_I(inode)->runtime_flags))
3267 		reserve = 1;
3268 	spin_unlock(&root->orphan_lock);
3269 
3270 	/* grab metadata reservation from transaction handle */
3271 	if (reserve) {
3272 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3273 		ASSERT(!ret);
3274 		if (ret) {
3275 			atomic_dec(&root->orphan_inodes);
3276 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3277 				  &BTRFS_I(inode)->runtime_flags);
3278 			if (insert)
3279 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3280 					  &BTRFS_I(inode)->runtime_flags);
3281 			return ret;
3282 		}
3283 	}
3284 
3285 	/* insert an orphan item to track this unlinked/truncated file */
3286 	if (insert >= 1) {
3287 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3288 		if (ret) {
3289 			atomic_dec(&root->orphan_inodes);
3290 			if (reserve) {
3291 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3292 					  &BTRFS_I(inode)->runtime_flags);
3293 				btrfs_orphan_release_metadata(inode);
3294 			}
3295 			if (ret != -EEXIST) {
3296 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3297 					  &BTRFS_I(inode)->runtime_flags);
3298 				btrfs_abort_transaction(trans, root, ret);
3299 				return ret;
3300 			}
3301 		}
3302 		ret = 0;
3303 	}
3304 
3305 	/* insert an orphan item to track subvolume contains orphan files */
3306 	if (insert >= 2) {
3307 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3308 					       root->root_key.objectid);
3309 		if (ret && ret != -EEXIST) {
3310 			btrfs_abort_transaction(trans, root, ret);
3311 			return ret;
3312 		}
3313 	}
3314 	return 0;
3315 }
3316 
3317 /*
3318  * We have done the truncate/delete so we can go ahead and remove the orphan
3319  * item for this particular inode.
3320  */
3321 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3322 			    struct inode *inode)
3323 {
3324 	struct btrfs_root *root = BTRFS_I(inode)->root;
3325 	int delete_item = 0;
3326 	int release_rsv = 0;
3327 	int ret = 0;
3328 
3329 	spin_lock(&root->orphan_lock);
3330 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3331 			       &BTRFS_I(inode)->runtime_flags))
3332 		delete_item = 1;
3333 
3334 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3335 			       &BTRFS_I(inode)->runtime_flags))
3336 		release_rsv = 1;
3337 	spin_unlock(&root->orphan_lock);
3338 
3339 	if (delete_item) {
3340 		atomic_dec(&root->orphan_inodes);
3341 		if (trans)
3342 			ret = btrfs_del_orphan_item(trans, root,
3343 						    btrfs_ino(inode));
3344 	}
3345 
3346 	if (release_rsv)
3347 		btrfs_orphan_release_metadata(inode);
3348 
3349 	return ret;
3350 }
3351 
3352 /*
3353  * this cleans up any orphans that may be left on the list from the last use
3354  * of this root.
3355  */
3356 int btrfs_orphan_cleanup(struct btrfs_root *root)
3357 {
3358 	struct btrfs_path *path;
3359 	struct extent_buffer *leaf;
3360 	struct btrfs_key key, found_key;
3361 	struct btrfs_trans_handle *trans;
3362 	struct inode *inode;
3363 	u64 last_objectid = 0;
3364 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3365 
3366 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3367 		return 0;
3368 
3369 	path = btrfs_alloc_path();
3370 	if (!path) {
3371 		ret = -ENOMEM;
3372 		goto out;
3373 	}
3374 	path->reada = READA_BACK;
3375 
3376 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3377 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3378 	key.offset = (u64)-1;
3379 
3380 	while (1) {
3381 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3382 		if (ret < 0)
3383 			goto out;
3384 
3385 		/*
3386 		 * if ret == 0 means we found what we were searching for, which
3387 		 * is weird, but possible, so only screw with path if we didn't
3388 		 * find the key and see if we have stuff that matches
3389 		 */
3390 		if (ret > 0) {
3391 			ret = 0;
3392 			if (path->slots[0] == 0)
3393 				break;
3394 			path->slots[0]--;
3395 		}
3396 
3397 		/* pull out the item */
3398 		leaf = path->nodes[0];
3399 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3400 
3401 		/* make sure the item matches what we want */
3402 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3403 			break;
3404 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3405 			break;
3406 
3407 		/* release the path since we're done with it */
3408 		btrfs_release_path(path);
3409 
3410 		/*
3411 		 * this is where we are basically btrfs_lookup, without the
3412 		 * crossing root thing.  we store the inode number in the
3413 		 * offset of the orphan item.
3414 		 */
3415 
3416 		if (found_key.offset == last_objectid) {
3417 			btrfs_err(root->fs_info,
3418 				"Error removing orphan entry, stopping orphan cleanup");
3419 			ret = -EINVAL;
3420 			goto out;
3421 		}
3422 
3423 		last_objectid = found_key.offset;
3424 
3425 		found_key.objectid = found_key.offset;
3426 		found_key.type = BTRFS_INODE_ITEM_KEY;
3427 		found_key.offset = 0;
3428 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3429 		ret = PTR_ERR_OR_ZERO(inode);
3430 		if (ret && ret != -ESTALE)
3431 			goto out;
3432 
3433 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3434 			struct btrfs_root *dead_root;
3435 			struct btrfs_fs_info *fs_info = root->fs_info;
3436 			int is_dead_root = 0;
3437 
3438 			/*
3439 			 * this is an orphan in the tree root. Currently these
3440 			 * could come from 2 sources:
3441 			 *  a) a snapshot deletion in progress
3442 			 *  b) a free space cache inode
3443 			 * We need to distinguish those two, as the snapshot
3444 			 * orphan must not get deleted.
3445 			 * find_dead_roots already ran before us, so if this
3446 			 * is a snapshot deletion, we should find the root
3447 			 * in the dead_roots list
3448 			 */
3449 			spin_lock(&fs_info->trans_lock);
3450 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3451 					    root_list) {
3452 				if (dead_root->root_key.objectid ==
3453 				    found_key.objectid) {
3454 					is_dead_root = 1;
3455 					break;
3456 				}
3457 			}
3458 			spin_unlock(&fs_info->trans_lock);
3459 			if (is_dead_root) {
3460 				/* prevent this orphan from being found again */
3461 				key.offset = found_key.objectid - 1;
3462 				continue;
3463 			}
3464 		}
3465 		/*
3466 		 * Inode is already gone but the orphan item is still there,
3467 		 * kill the orphan item.
3468 		 */
3469 		if (ret == -ESTALE) {
3470 			trans = btrfs_start_transaction(root, 1);
3471 			if (IS_ERR(trans)) {
3472 				ret = PTR_ERR(trans);
3473 				goto out;
3474 			}
3475 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3476 				found_key.objectid);
3477 			ret = btrfs_del_orphan_item(trans, root,
3478 						    found_key.objectid);
3479 			btrfs_end_transaction(trans, root);
3480 			if (ret)
3481 				goto out;
3482 			continue;
3483 		}
3484 
3485 		/*
3486 		 * add this inode to the orphan list so btrfs_orphan_del does
3487 		 * the proper thing when we hit it
3488 		 */
3489 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3490 			&BTRFS_I(inode)->runtime_flags);
3491 		atomic_inc(&root->orphan_inodes);
3492 
3493 		/* if we have links, this was a truncate, lets do that */
3494 		if (inode->i_nlink) {
3495 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3496 				iput(inode);
3497 				continue;
3498 			}
3499 			nr_truncate++;
3500 
3501 			/* 1 for the orphan item deletion. */
3502 			trans = btrfs_start_transaction(root, 1);
3503 			if (IS_ERR(trans)) {
3504 				iput(inode);
3505 				ret = PTR_ERR(trans);
3506 				goto out;
3507 			}
3508 			ret = btrfs_orphan_add(trans, inode);
3509 			btrfs_end_transaction(trans, root);
3510 			if (ret) {
3511 				iput(inode);
3512 				goto out;
3513 			}
3514 
3515 			ret = btrfs_truncate(inode);
3516 			if (ret)
3517 				btrfs_orphan_del(NULL, inode);
3518 		} else {
3519 			nr_unlink++;
3520 		}
3521 
3522 		/* this will do delete_inode and everything for us */
3523 		iput(inode);
3524 		if (ret)
3525 			goto out;
3526 	}
3527 	/* release the path since we're done with it */
3528 	btrfs_release_path(path);
3529 
3530 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3531 
3532 	if (root->orphan_block_rsv)
3533 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3534 					(u64)-1);
3535 
3536 	if (root->orphan_block_rsv ||
3537 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3538 		trans = btrfs_join_transaction(root);
3539 		if (!IS_ERR(trans))
3540 			btrfs_end_transaction(trans, root);
3541 	}
3542 
3543 	if (nr_unlink)
3544 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3545 	if (nr_truncate)
3546 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3547 
3548 out:
3549 	if (ret)
3550 		btrfs_err(root->fs_info,
3551 			"could not do orphan cleanup %d", ret);
3552 	btrfs_free_path(path);
3553 	return ret;
3554 }
3555 
3556 /*
3557  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3558  * don't find any xattrs, we know there can't be any acls.
3559  *
3560  * slot is the slot the inode is in, objectid is the objectid of the inode
3561  */
3562 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3563 					  int slot, u64 objectid,
3564 					  int *first_xattr_slot)
3565 {
3566 	u32 nritems = btrfs_header_nritems(leaf);
3567 	struct btrfs_key found_key;
3568 	static u64 xattr_access = 0;
3569 	static u64 xattr_default = 0;
3570 	int scanned = 0;
3571 
3572 	if (!xattr_access) {
3573 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3574 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3575 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3576 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3577 	}
3578 
3579 	slot++;
3580 	*first_xattr_slot = -1;
3581 	while (slot < nritems) {
3582 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3583 
3584 		/* we found a different objectid, there must not be acls */
3585 		if (found_key.objectid != objectid)
3586 			return 0;
3587 
3588 		/* we found an xattr, assume we've got an acl */
3589 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3590 			if (*first_xattr_slot == -1)
3591 				*first_xattr_slot = slot;
3592 			if (found_key.offset == xattr_access ||
3593 			    found_key.offset == xattr_default)
3594 				return 1;
3595 		}
3596 
3597 		/*
3598 		 * we found a key greater than an xattr key, there can't
3599 		 * be any acls later on
3600 		 */
3601 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3602 			return 0;
3603 
3604 		slot++;
3605 		scanned++;
3606 
3607 		/*
3608 		 * it goes inode, inode backrefs, xattrs, extents,
3609 		 * so if there are a ton of hard links to an inode there can
3610 		 * be a lot of backrefs.  Don't waste time searching too hard,
3611 		 * this is just an optimization
3612 		 */
3613 		if (scanned >= 8)
3614 			break;
3615 	}
3616 	/* we hit the end of the leaf before we found an xattr or
3617 	 * something larger than an xattr.  We have to assume the inode
3618 	 * has acls
3619 	 */
3620 	if (*first_xattr_slot == -1)
3621 		*first_xattr_slot = slot;
3622 	return 1;
3623 }
3624 
3625 /*
3626  * read an inode from the btree into the in-memory inode
3627  */
3628 static void btrfs_read_locked_inode(struct inode *inode)
3629 {
3630 	struct btrfs_path *path;
3631 	struct extent_buffer *leaf;
3632 	struct btrfs_inode_item *inode_item;
3633 	struct btrfs_root *root = BTRFS_I(inode)->root;
3634 	struct btrfs_key location;
3635 	unsigned long ptr;
3636 	int maybe_acls;
3637 	u32 rdev;
3638 	int ret;
3639 	bool filled = false;
3640 	int first_xattr_slot;
3641 
3642 	ret = btrfs_fill_inode(inode, &rdev);
3643 	if (!ret)
3644 		filled = true;
3645 
3646 	path = btrfs_alloc_path();
3647 	if (!path)
3648 		goto make_bad;
3649 
3650 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3651 
3652 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3653 	if (ret)
3654 		goto make_bad;
3655 
3656 	leaf = path->nodes[0];
3657 
3658 	if (filled)
3659 		goto cache_index;
3660 
3661 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3662 				    struct btrfs_inode_item);
3663 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3664 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3665 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3666 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3667 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3668 
3669 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3670 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3671 
3672 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3673 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3674 
3675 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3676 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3677 
3678 	BTRFS_I(inode)->i_otime.tv_sec =
3679 		btrfs_timespec_sec(leaf, &inode_item->otime);
3680 	BTRFS_I(inode)->i_otime.tv_nsec =
3681 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3682 
3683 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3684 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3685 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3686 
3687 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3688 	inode->i_generation = BTRFS_I(inode)->generation;
3689 	inode->i_rdev = 0;
3690 	rdev = btrfs_inode_rdev(leaf, inode_item);
3691 
3692 	BTRFS_I(inode)->index_cnt = (u64)-1;
3693 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3694 
3695 cache_index:
3696 	/*
3697 	 * If we were modified in the current generation and evicted from memory
3698 	 * and then re-read we need to do a full sync since we don't have any
3699 	 * idea about which extents were modified before we were evicted from
3700 	 * cache.
3701 	 *
3702 	 * This is required for both inode re-read from disk and delayed inode
3703 	 * in delayed_nodes_tree.
3704 	 */
3705 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3706 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3707 			&BTRFS_I(inode)->runtime_flags);
3708 
3709 	/*
3710 	 * We don't persist the id of the transaction where an unlink operation
3711 	 * against the inode was last made. So here we assume the inode might
3712 	 * have been evicted, and therefore the exact value of last_unlink_trans
3713 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3714 	 * between the inode and its parent if the inode is fsync'ed and the log
3715 	 * replayed. For example, in the scenario:
3716 	 *
3717 	 * touch mydir/foo
3718 	 * ln mydir/foo mydir/bar
3719 	 * sync
3720 	 * unlink mydir/bar
3721 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3722 	 * xfs_io -c fsync mydir/foo
3723 	 * <power failure>
3724 	 * mount fs, triggers fsync log replay
3725 	 *
3726 	 * We must make sure that when we fsync our inode foo we also log its
3727 	 * parent inode, otherwise after log replay the parent still has the
3728 	 * dentry with the "bar" name but our inode foo has a link count of 1
3729 	 * and doesn't have an inode ref with the name "bar" anymore.
3730 	 *
3731 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3732 	 * but it guarantees correctness at the expense of occasional full
3733 	 * transaction commits on fsync if our inode is a directory, or if our
3734 	 * inode is not a directory, logging its parent unnecessarily.
3735 	 */
3736 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3737 
3738 	path->slots[0]++;
3739 	if (inode->i_nlink != 1 ||
3740 	    path->slots[0] >= btrfs_header_nritems(leaf))
3741 		goto cache_acl;
3742 
3743 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3744 	if (location.objectid != btrfs_ino(inode))
3745 		goto cache_acl;
3746 
3747 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3748 	if (location.type == BTRFS_INODE_REF_KEY) {
3749 		struct btrfs_inode_ref *ref;
3750 
3751 		ref = (struct btrfs_inode_ref *)ptr;
3752 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3753 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3754 		struct btrfs_inode_extref *extref;
3755 
3756 		extref = (struct btrfs_inode_extref *)ptr;
3757 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3758 								     extref);
3759 	}
3760 cache_acl:
3761 	/*
3762 	 * try to precache a NULL acl entry for files that don't have
3763 	 * any xattrs or acls
3764 	 */
3765 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3766 					   btrfs_ino(inode), &first_xattr_slot);
3767 	if (first_xattr_slot != -1) {
3768 		path->slots[0] = first_xattr_slot;
3769 		ret = btrfs_load_inode_props(inode, path);
3770 		if (ret)
3771 			btrfs_err(root->fs_info,
3772 				  "error loading props for ino %llu (root %llu): %d",
3773 				  btrfs_ino(inode),
3774 				  root->root_key.objectid, ret);
3775 	}
3776 	btrfs_free_path(path);
3777 
3778 	if (!maybe_acls)
3779 		cache_no_acl(inode);
3780 
3781 	switch (inode->i_mode & S_IFMT) {
3782 	case S_IFREG:
3783 		inode->i_mapping->a_ops = &btrfs_aops;
3784 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3785 		inode->i_fop = &btrfs_file_operations;
3786 		inode->i_op = &btrfs_file_inode_operations;
3787 		break;
3788 	case S_IFDIR:
3789 		inode->i_fop = &btrfs_dir_file_operations;
3790 		if (root == root->fs_info->tree_root)
3791 			inode->i_op = &btrfs_dir_ro_inode_operations;
3792 		else
3793 			inode->i_op = &btrfs_dir_inode_operations;
3794 		break;
3795 	case S_IFLNK:
3796 		inode->i_op = &btrfs_symlink_inode_operations;
3797 		inode_nohighmem(inode);
3798 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3799 		break;
3800 	default:
3801 		inode->i_op = &btrfs_special_inode_operations;
3802 		init_special_inode(inode, inode->i_mode, rdev);
3803 		break;
3804 	}
3805 
3806 	btrfs_update_iflags(inode);
3807 	return;
3808 
3809 make_bad:
3810 	btrfs_free_path(path);
3811 	make_bad_inode(inode);
3812 }
3813 
3814 /*
3815  * given a leaf and an inode, copy the inode fields into the leaf
3816  */
3817 static void fill_inode_item(struct btrfs_trans_handle *trans,
3818 			    struct extent_buffer *leaf,
3819 			    struct btrfs_inode_item *item,
3820 			    struct inode *inode)
3821 {
3822 	struct btrfs_map_token token;
3823 
3824 	btrfs_init_map_token(&token);
3825 
3826 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3827 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3828 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3829 				   &token);
3830 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3831 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3832 
3833 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3834 				     inode->i_atime.tv_sec, &token);
3835 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3836 				      inode->i_atime.tv_nsec, &token);
3837 
3838 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3839 				     inode->i_mtime.tv_sec, &token);
3840 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3841 				      inode->i_mtime.tv_nsec, &token);
3842 
3843 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3844 				     inode->i_ctime.tv_sec, &token);
3845 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3846 				      inode->i_ctime.tv_nsec, &token);
3847 
3848 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3849 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3850 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3851 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3852 
3853 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3854 				     &token);
3855 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3856 					 &token);
3857 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3858 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3859 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3860 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3861 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3862 }
3863 
3864 /*
3865  * copy everything in the in-memory inode into the btree.
3866  */
3867 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3868 				struct btrfs_root *root, struct inode *inode)
3869 {
3870 	struct btrfs_inode_item *inode_item;
3871 	struct btrfs_path *path;
3872 	struct extent_buffer *leaf;
3873 	int ret;
3874 
3875 	path = btrfs_alloc_path();
3876 	if (!path)
3877 		return -ENOMEM;
3878 
3879 	path->leave_spinning = 1;
3880 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3881 				 1);
3882 	if (ret) {
3883 		if (ret > 0)
3884 			ret = -ENOENT;
3885 		goto failed;
3886 	}
3887 
3888 	leaf = path->nodes[0];
3889 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3890 				    struct btrfs_inode_item);
3891 
3892 	fill_inode_item(trans, leaf, inode_item, inode);
3893 	btrfs_mark_buffer_dirty(leaf);
3894 	btrfs_set_inode_last_trans(trans, inode);
3895 	ret = 0;
3896 failed:
3897 	btrfs_free_path(path);
3898 	return ret;
3899 }
3900 
3901 /*
3902  * copy everything in the in-memory inode into the btree.
3903  */
3904 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3905 				struct btrfs_root *root, struct inode *inode)
3906 {
3907 	int ret;
3908 
3909 	/*
3910 	 * If the inode is a free space inode, we can deadlock during commit
3911 	 * if we put it into the delayed code.
3912 	 *
3913 	 * The data relocation inode should also be directly updated
3914 	 * without delay
3915 	 */
3916 	if (!btrfs_is_free_space_inode(inode)
3917 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3918 	    && !root->fs_info->log_root_recovering) {
3919 		btrfs_update_root_times(trans, root);
3920 
3921 		ret = btrfs_delayed_update_inode(trans, root, inode);
3922 		if (!ret)
3923 			btrfs_set_inode_last_trans(trans, inode);
3924 		return ret;
3925 	}
3926 
3927 	return btrfs_update_inode_item(trans, root, inode);
3928 }
3929 
3930 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3931 					 struct btrfs_root *root,
3932 					 struct inode *inode)
3933 {
3934 	int ret;
3935 
3936 	ret = btrfs_update_inode(trans, root, inode);
3937 	if (ret == -ENOSPC)
3938 		return btrfs_update_inode_item(trans, root, inode);
3939 	return ret;
3940 }
3941 
3942 /*
3943  * unlink helper that gets used here in inode.c and in the tree logging
3944  * recovery code.  It remove a link in a directory with a given name, and
3945  * also drops the back refs in the inode to the directory
3946  */
3947 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3948 				struct btrfs_root *root,
3949 				struct inode *dir, struct inode *inode,
3950 				const char *name, int name_len)
3951 {
3952 	struct btrfs_path *path;
3953 	int ret = 0;
3954 	struct extent_buffer *leaf;
3955 	struct btrfs_dir_item *di;
3956 	struct btrfs_key key;
3957 	u64 index;
3958 	u64 ino = btrfs_ino(inode);
3959 	u64 dir_ino = btrfs_ino(dir);
3960 
3961 	path = btrfs_alloc_path();
3962 	if (!path) {
3963 		ret = -ENOMEM;
3964 		goto out;
3965 	}
3966 
3967 	path->leave_spinning = 1;
3968 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3969 				    name, name_len, -1);
3970 	if (IS_ERR(di)) {
3971 		ret = PTR_ERR(di);
3972 		goto err;
3973 	}
3974 	if (!di) {
3975 		ret = -ENOENT;
3976 		goto err;
3977 	}
3978 	leaf = path->nodes[0];
3979 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3980 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3981 	if (ret)
3982 		goto err;
3983 	btrfs_release_path(path);
3984 
3985 	/*
3986 	 * If we don't have dir index, we have to get it by looking up
3987 	 * the inode ref, since we get the inode ref, remove it directly,
3988 	 * it is unnecessary to do delayed deletion.
3989 	 *
3990 	 * But if we have dir index, needn't search inode ref to get it.
3991 	 * Since the inode ref is close to the inode item, it is better
3992 	 * that we delay to delete it, and just do this deletion when
3993 	 * we update the inode item.
3994 	 */
3995 	if (BTRFS_I(inode)->dir_index) {
3996 		ret = btrfs_delayed_delete_inode_ref(inode);
3997 		if (!ret) {
3998 			index = BTRFS_I(inode)->dir_index;
3999 			goto skip_backref;
4000 		}
4001 	}
4002 
4003 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4004 				  dir_ino, &index);
4005 	if (ret) {
4006 		btrfs_info(root->fs_info,
4007 			"failed to delete reference to %.*s, inode %llu parent %llu",
4008 			name_len, name, ino, dir_ino);
4009 		btrfs_abort_transaction(trans, root, ret);
4010 		goto err;
4011 	}
4012 skip_backref:
4013 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4014 	if (ret) {
4015 		btrfs_abort_transaction(trans, root, ret);
4016 		goto err;
4017 	}
4018 
4019 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4020 					 inode, dir_ino);
4021 	if (ret != 0 && ret != -ENOENT) {
4022 		btrfs_abort_transaction(trans, root, ret);
4023 		goto err;
4024 	}
4025 
4026 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4027 					   dir, index);
4028 	if (ret == -ENOENT)
4029 		ret = 0;
4030 	else if (ret)
4031 		btrfs_abort_transaction(trans, root, ret);
4032 err:
4033 	btrfs_free_path(path);
4034 	if (ret)
4035 		goto out;
4036 
4037 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4038 	inode_inc_iversion(inode);
4039 	inode_inc_iversion(dir);
4040 	inode->i_ctime = dir->i_mtime =
4041 		dir->i_ctime = current_fs_time(inode->i_sb);
4042 	ret = btrfs_update_inode(trans, root, dir);
4043 out:
4044 	return ret;
4045 }
4046 
4047 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4048 		       struct btrfs_root *root,
4049 		       struct inode *dir, struct inode *inode,
4050 		       const char *name, int name_len)
4051 {
4052 	int ret;
4053 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4054 	if (!ret) {
4055 		drop_nlink(inode);
4056 		ret = btrfs_update_inode(trans, root, inode);
4057 	}
4058 	return ret;
4059 }
4060 
4061 /*
4062  * helper to start transaction for unlink and rmdir.
4063  *
4064  * unlink and rmdir are special in btrfs, they do not always free space, so
4065  * if we cannot make our reservations the normal way try and see if there is
4066  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4067  * allow the unlink to occur.
4068  */
4069 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4070 {
4071 	struct btrfs_root *root = BTRFS_I(dir)->root;
4072 
4073 	/*
4074 	 * 1 for the possible orphan item
4075 	 * 1 for the dir item
4076 	 * 1 for the dir index
4077 	 * 1 for the inode ref
4078 	 * 1 for the inode
4079 	 */
4080 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4081 }
4082 
4083 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4084 {
4085 	struct btrfs_root *root = BTRFS_I(dir)->root;
4086 	struct btrfs_trans_handle *trans;
4087 	struct inode *inode = d_inode(dentry);
4088 	int ret;
4089 
4090 	trans = __unlink_start_trans(dir);
4091 	if (IS_ERR(trans))
4092 		return PTR_ERR(trans);
4093 
4094 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4095 
4096 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4097 				 dentry->d_name.name, dentry->d_name.len);
4098 	if (ret)
4099 		goto out;
4100 
4101 	if (inode->i_nlink == 0) {
4102 		ret = btrfs_orphan_add(trans, inode);
4103 		if (ret)
4104 			goto out;
4105 	}
4106 
4107 out:
4108 	btrfs_end_transaction(trans, root);
4109 	btrfs_btree_balance_dirty(root);
4110 	return ret;
4111 }
4112 
4113 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4114 			struct btrfs_root *root,
4115 			struct inode *dir, u64 objectid,
4116 			const char *name, int name_len)
4117 {
4118 	struct btrfs_path *path;
4119 	struct extent_buffer *leaf;
4120 	struct btrfs_dir_item *di;
4121 	struct btrfs_key key;
4122 	u64 index;
4123 	int ret;
4124 	u64 dir_ino = btrfs_ino(dir);
4125 
4126 	path = btrfs_alloc_path();
4127 	if (!path)
4128 		return -ENOMEM;
4129 
4130 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4131 				   name, name_len, -1);
4132 	if (IS_ERR_OR_NULL(di)) {
4133 		if (!di)
4134 			ret = -ENOENT;
4135 		else
4136 			ret = PTR_ERR(di);
4137 		goto out;
4138 	}
4139 
4140 	leaf = path->nodes[0];
4141 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4142 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4143 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4144 	if (ret) {
4145 		btrfs_abort_transaction(trans, root, ret);
4146 		goto out;
4147 	}
4148 	btrfs_release_path(path);
4149 
4150 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4151 				 objectid, root->root_key.objectid,
4152 				 dir_ino, &index, name, name_len);
4153 	if (ret < 0) {
4154 		if (ret != -ENOENT) {
4155 			btrfs_abort_transaction(trans, root, ret);
4156 			goto out;
4157 		}
4158 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4159 						 name, name_len);
4160 		if (IS_ERR_OR_NULL(di)) {
4161 			if (!di)
4162 				ret = -ENOENT;
4163 			else
4164 				ret = PTR_ERR(di);
4165 			btrfs_abort_transaction(trans, root, ret);
4166 			goto out;
4167 		}
4168 
4169 		leaf = path->nodes[0];
4170 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4171 		btrfs_release_path(path);
4172 		index = key.offset;
4173 	}
4174 	btrfs_release_path(path);
4175 
4176 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4177 	if (ret) {
4178 		btrfs_abort_transaction(trans, root, ret);
4179 		goto out;
4180 	}
4181 
4182 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4183 	inode_inc_iversion(dir);
4184 	dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
4185 	ret = btrfs_update_inode_fallback(trans, root, dir);
4186 	if (ret)
4187 		btrfs_abort_transaction(trans, root, ret);
4188 out:
4189 	btrfs_free_path(path);
4190 	return ret;
4191 }
4192 
4193 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4194 {
4195 	struct inode *inode = d_inode(dentry);
4196 	int err = 0;
4197 	struct btrfs_root *root = BTRFS_I(dir)->root;
4198 	struct btrfs_trans_handle *trans;
4199 
4200 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4201 		return -ENOTEMPTY;
4202 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4203 		return -EPERM;
4204 
4205 	trans = __unlink_start_trans(dir);
4206 	if (IS_ERR(trans))
4207 		return PTR_ERR(trans);
4208 
4209 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4210 		err = btrfs_unlink_subvol(trans, root, dir,
4211 					  BTRFS_I(inode)->location.objectid,
4212 					  dentry->d_name.name,
4213 					  dentry->d_name.len);
4214 		goto out;
4215 	}
4216 
4217 	err = btrfs_orphan_add(trans, inode);
4218 	if (err)
4219 		goto out;
4220 
4221 	/* now the directory is empty */
4222 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4223 				 dentry->d_name.name, dentry->d_name.len);
4224 	if (!err)
4225 		btrfs_i_size_write(inode, 0);
4226 out:
4227 	btrfs_end_transaction(trans, root);
4228 	btrfs_btree_balance_dirty(root);
4229 
4230 	return err;
4231 }
4232 
4233 static int truncate_space_check(struct btrfs_trans_handle *trans,
4234 				struct btrfs_root *root,
4235 				u64 bytes_deleted)
4236 {
4237 	int ret;
4238 
4239 	/*
4240 	 * This is only used to apply pressure to the enospc system, we don't
4241 	 * intend to use this reservation at all.
4242 	 */
4243 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4244 	bytes_deleted *= root->nodesize;
4245 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4246 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4247 	if (!ret) {
4248 		trace_btrfs_space_reservation(root->fs_info, "transaction",
4249 					      trans->transid,
4250 					      bytes_deleted, 1);
4251 		trans->bytes_reserved += bytes_deleted;
4252 	}
4253 	return ret;
4254 
4255 }
4256 
4257 static int truncate_inline_extent(struct inode *inode,
4258 				  struct btrfs_path *path,
4259 				  struct btrfs_key *found_key,
4260 				  const u64 item_end,
4261 				  const u64 new_size)
4262 {
4263 	struct extent_buffer *leaf = path->nodes[0];
4264 	int slot = path->slots[0];
4265 	struct btrfs_file_extent_item *fi;
4266 	u32 size = (u32)(new_size - found_key->offset);
4267 	struct btrfs_root *root = BTRFS_I(inode)->root;
4268 
4269 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4270 
4271 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4272 		loff_t offset = new_size;
4273 		loff_t page_end = ALIGN(offset, PAGE_SIZE);
4274 
4275 		/*
4276 		 * Zero out the remaining of the last page of our inline extent,
4277 		 * instead of directly truncating our inline extent here - that
4278 		 * would be much more complex (decompressing all the data, then
4279 		 * compressing the truncated data, which might be bigger than
4280 		 * the size of the inline extent, resize the extent, etc).
4281 		 * We release the path because to get the page we might need to
4282 		 * read the extent item from disk (data not in the page cache).
4283 		 */
4284 		btrfs_release_path(path);
4285 		return btrfs_truncate_block(inode, offset, page_end - offset,
4286 					0);
4287 	}
4288 
4289 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4290 	size = btrfs_file_extent_calc_inline_size(size);
4291 	btrfs_truncate_item(root, path, size, 1);
4292 
4293 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4294 		inode_sub_bytes(inode, item_end + 1 - new_size);
4295 
4296 	return 0;
4297 }
4298 
4299 /*
4300  * this can truncate away extent items, csum items and directory items.
4301  * It starts at a high offset and removes keys until it can't find
4302  * any higher than new_size
4303  *
4304  * csum items that cross the new i_size are truncated to the new size
4305  * as well.
4306  *
4307  * min_type is the minimum key type to truncate down to.  If set to 0, this
4308  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4309  */
4310 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4311 			       struct btrfs_root *root,
4312 			       struct inode *inode,
4313 			       u64 new_size, u32 min_type)
4314 {
4315 	struct btrfs_path *path;
4316 	struct extent_buffer *leaf;
4317 	struct btrfs_file_extent_item *fi;
4318 	struct btrfs_key key;
4319 	struct btrfs_key found_key;
4320 	u64 extent_start = 0;
4321 	u64 extent_num_bytes = 0;
4322 	u64 extent_offset = 0;
4323 	u64 item_end = 0;
4324 	u64 last_size = new_size;
4325 	u32 found_type = (u8)-1;
4326 	int found_extent;
4327 	int del_item;
4328 	int pending_del_nr = 0;
4329 	int pending_del_slot = 0;
4330 	int extent_type = -1;
4331 	int ret;
4332 	int err = 0;
4333 	u64 ino = btrfs_ino(inode);
4334 	u64 bytes_deleted = 0;
4335 	bool be_nice = 0;
4336 	bool should_throttle = 0;
4337 	bool should_end = 0;
4338 
4339 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4340 
4341 	/*
4342 	 * for non-free space inodes and ref cows, we want to back off from
4343 	 * time to time
4344 	 */
4345 	if (!btrfs_is_free_space_inode(inode) &&
4346 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4347 		be_nice = 1;
4348 
4349 	path = btrfs_alloc_path();
4350 	if (!path)
4351 		return -ENOMEM;
4352 	path->reada = READA_BACK;
4353 
4354 	/*
4355 	 * We want to drop from the next block forward in case this new size is
4356 	 * not block aligned since we will be keeping the last block of the
4357 	 * extent just the way it is.
4358 	 */
4359 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4360 	    root == root->fs_info->tree_root)
4361 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4362 					root->sectorsize), (u64)-1, 0);
4363 
4364 	/*
4365 	 * This function is also used to drop the items in the log tree before
4366 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4367 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4368 	 * items.
4369 	 */
4370 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4371 		btrfs_kill_delayed_inode_items(inode);
4372 
4373 	key.objectid = ino;
4374 	key.offset = (u64)-1;
4375 	key.type = (u8)-1;
4376 
4377 search_again:
4378 	/*
4379 	 * with a 16K leaf size and 128MB extents, you can actually queue
4380 	 * up a huge file in a single leaf.  Most of the time that
4381 	 * bytes_deleted is > 0, it will be huge by the time we get here
4382 	 */
4383 	if (be_nice && bytes_deleted > SZ_32M) {
4384 		if (btrfs_should_end_transaction(trans, root)) {
4385 			err = -EAGAIN;
4386 			goto error;
4387 		}
4388 	}
4389 
4390 
4391 	path->leave_spinning = 1;
4392 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4393 	if (ret < 0) {
4394 		err = ret;
4395 		goto out;
4396 	}
4397 
4398 	if (ret > 0) {
4399 		/* there are no items in the tree for us to truncate, we're
4400 		 * done
4401 		 */
4402 		if (path->slots[0] == 0)
4403 			goto out;
4404 		path->slots[0]--;
4405 	}
4406 
4407 	while (1) {
4408 		fi = NULL;
4409 		leaf = path->nodes[0];
4410 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4411 		found_type = found_key.type;
4412 
4413 		if (found_key.objectid != ino)
4414 			break;
4415 
4416 		if (found_type < min_type)
4417 			break;
4418 
4419 		item_end = found_key.offset;
4420 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4421 			fi = btrfs_item_ptr(leaf, path->slots[0],
4422 					    struct btrfs_file_extent_item);
4423 			extent_type = btrfs_file_extent_type(leaf, fi);
4424 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4425 				item_end +=
4426 				    btrfs_file_extent_num_bytes(leaf, fi);
4427 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4428 				item_end += btrfs_file_extent_inline_len(leaf,
4429 							 path->slots[0], fi);
4430 			}
4431 			item_end--;
4432 		}
4433 		if (found_type > min_type) {
4434 			del_item = 1;
4435 		} else {
4436 			if (item_end < new_size)
4437 				break;
4438 			if (found_key.offset >= new_size)
4439 				del_item = 1;
4440 			else
4441 				del_item = 0;
4442 		}
4443 		found_extent = 0;
4444 		/* FIXME, shrink the extent if the ref count is only 1 */
4445 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4446 			goto delete;
4447 
4448 		if (del_item)
4449 			last_size = found_key.offset;
4450 		else
4451 			last_size = new_size;
4452 
4453 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4454 			u64 num_dec;
4455 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4456 			if (!del_item) {
4457 				u64 orig_num_bytes =
4458 					btrfs_file_extent_num_bytes(leaf, fi);
4459 				extent_num_bytes = ALIGN(new_size -
4460 						found_key.offset,
4461 						root->sectorsize);
4462 				btrfs_set_file_extent_num_bytes(leaf, fi,
4463 							 extent_num_bytes);
4464 				num_dec = (orig_num_bytes -
4465 					   extent_num_bytes);
4466 				if (test_bit(BTRFS_ROOT_REF_COWS,
4467 					     &root->state) &&
4468 				    extent_start != 0)
4469 					inode_sub_bytes(inode, num_dec);
4470 				btrfs_mark_buffer_dirty(leaf);
4471 			} else {
4472 				extent_num_bytes =
4473 					btrfs_file_extent_disk_num_bytes(leaf,
4474 									 fi);
4475 				extent_offset = found_key.offset -
4476 					btrfs_file_extent_offset(leaf, fi);
4477 
4478 				/* FIXME blocksize != 4096 */
4479 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4480 				if (extent_start != 0) {
4481 					found_extent = 1;
4482 					if (test_bit(BTRFS_ROOT_REF_COWS,
4483 						     &root->state))
4484 						inode_sub_bytes(inode, num_dec);
4485 				}
4486 			}
4487 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4488 			/*
4489 			 * we can't truncate inline items that have had
4490 			 * special encodings
4491 			 */
4492 			if (!del_item &&
4493 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4494 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4495 
4496 				/*
4497 				 * Need to release path in order to truncate a
4498 				 * compressed extent. So delete any accumulated
4499 				 * extent items so far.
4500 				 */
4501 				if (btrfs_file_extent_compression(leaf, fi) !=
4502 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4503 					err = btrfs_del_items(trans, root, path,
4504 							      pending_del_slot,
4505 							      pending_del_nr);
4506 					if (err) {
4507 						btrfs_abort_transaction(trans,
4508 									root,
4509 									err);
4510 						goto error;
4511 					}
4512 					pending_del_nr = 0;
4513 				}
4514 
4515 				err = truncate_inline_extent(inode, path,
4516 							     &found_key,
4517 							     item_end,
4518 							     new_size);
4519 				if (err) {
4520 					btrfs_abort_transaction(trans,
4521 								root, err);
4522 					goto error;
4523 				}
4524 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4525 					    &root->state)) {
4526 				inode_sub_bytes(inode, item_end + 1 - new_size);
4527 			}
4528 		}
4529 delete:
4530 		if (del_item) {
4531 			if (!pending_del_nr) {
4532 				/* no pending yet, add ourselves */
4533 				pending_del_slot = path->slots[0];
4534 				pending_del_nr = 1;
4535 			} else if (pending_del_nr &&
4536 				   path->slots[0] + 1 == pending_del_slot) {
4537 				/* hop on the pending chunk */
4538 				pending_del_nr++;
4539 				pending_del_slot = path->slots[0];
4540 			} else {
4541 				BUG();
4542 			}
4543 		} else {
4544 			break;
4545 		}
4546 		should_throttle = 0;
4547 
4548 		if (found_extent &&
4549 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4550 		     root == root->fs_info->tree_root)) {
4551 			btrfs_set_path_blocking(path);
4552 			bytes_deleted += extent_num_bytes;
4553 			ret = btrfs_free_extent(trans, root, extent_start,
4554 						extent_num_bytes, 0,
4555 						btrfs_header_owner(leaf),
4556 						ino, extent_offset);
4557 			BUG_ON(ret);
4558 			if (btrfs_should_throttle_delayed_refs(trans, root))
4559 				btrfs_async_run_delayed_refs(root,
4560 							     trans->transid,
4561 					trans->delayed_ref_updates * 2, 0);
4562 			if (be_nice) {
4563 				if (truncate_space_check(trans, root,
4564 							 extent_num_bytes)) {
4565 					should_end = 1;
4566 				}
4567 				if (btrfs_should_throttle_delayed_refs(trans,
4568 								       root)) {
4569 					should_throttle = 1;
4570 				}
4571 			}
4572 		}
4573 
4574 		if (found_type == BTRFS_INODE_ITEM_KEY)
4575 			break;
4576 
4577 		if (path->slots[0] == 0 ||
4578 		    path->slots[0] != pending_del_slot ||
4579 		    should_throttle || should_end) {
4580 			if (pending_del_nr) {
4581 				ret = btrfs_del_items(trans, root, path,
4582 						pending_del_slot,
4583 						pending_del_nr);
4584 				if (ret) {
4585 					btrfs_abort_transaction(trans,
4586 								root, ret);
4587 					goto error;
4588 				}
4589 				pending_del_nr = 0;
4590 			}
4591 			btrfs_release_path(path);
4592 			if (should_throttle) {
4593 				unsigned long updates = trans->delayed_ref_updates;
4594 				if (updates) {
4595 					trans->delayed_ref_updates = 0;
4596 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4597 					if (ret && !err)
4598 						err = ret;
4599 				}
4600 			}
4601 			/*
4602 			 * if we failed to refill our space rsv, bail out
4603 			 * and let the transaction restart
4604 			 */
4605 			if (should_end) {
4606 				err = -EAGAIN;
4607 				goto error;
4608 			}
4609 			goto search_again;
4610 		} else {
4611 			path->slots[0]--;
4612 		}
4613 	}
4614 out:
4615 	if (pending_del_nr) {
4616 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4617 				      pending_del_nr);
4618 		if (ret)
4619 			btrfs_abort_transaction(trans, root, ret);
4620 	}
4621 error:
4622 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4623 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4624 
4625 	btrfs_free_path(path);
4626 
4627 	if (be_nice && bytes_deleted > SZ_32M) {
4628 		unsigned long updates = trans->delayed_ref_updates;
4629 		if (updates) {
4630 			trans->delayed_ref_updates = 0;
4631 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4632 			if (ret && !err)
4633 				err = ret;
4634 		}
4635 	}
4636 	return err;
4637 }
4638 
4639 /*
4640  * btrfs_truncate_block - read, zero a chunk and write a block
4641  * @inode - inode that we're zeroing
4642  * @from - the offset to start zeroing
4643  * @len - the length to zero, 0 to zero the entire range respective to the
4644  *	offset
4645  * @front - zero up to the offset instead of from the offset on
4646  *
4647  * This will find the block for the "from" offset and cow the block and zero the
4648  * part we want to zero.  This is used with truncate and hole punching.
4649  */
4650 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4651 			int front)
4652 {
4653 	struct address_space *mapping = inode->i_mapping;
4654 	struct btrfs_root *root = BTRFS_I(inode)->root;
4655 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4656 	struct btrfs_ordered_extent *ordered;
4657 	struct extent_state *cached_state = NULL;
4658 	char *kaddr;
4659 	u32 blocksize = root->sectorsize;
4660 	pgoff_t index = from >> PAGE_SHIFT;
4661 	unsigned offset = from & (blocksize - 1);
4662 	struct page *page;
4663 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4664 	int ret = 0;
4665 	u64 block_start;
4666 	u64 block_end;
4667 
4668 	if ((offset & (blocksize - 1)) == 0 &&
4669 	    (!len || ((len & (blocksize - 1)) == 0)))
4670 		goto out;
4671 
4672 	ret = btrfs_delalloc_reserve_space(inode,
4673 			round_down(from, blocksize), blocksize);
4674 	if (ret)
4675 		goto out;
4676 
4677 again:
4678 	page = find_or_create_page(mapping, index, mask);
4679 	if (!page) {
4680 		btrfs_delalloc_release_space(inode,
4681 				round_down(from, blocksize),
4682 				blocksize);
4683 		ret = -ENOMEM;
4684 		goto out;
4685 	}
4686 
4687 	block_start = round_down(from, blocksize);
4688 	block_end = block_start + blocksize - 1;
4689 
4690 	if (!PageUptodate(page)) {
4691 		ret = btrfs_readpage(NULL, page);
4692 		lock_page(page);
4693 		if (page->mapping != mapping) {
4694 			unlock_page(page);
4695 			put_page(page);
4696 			goto again;
4697 		}
4698 		if (!PageUptodate(page)) {
4699 			ret = -EIO;
4700 			goto out_unlock;
4701 		}
4702 	}
4703 	wait_on_page_writeback(page);
4704 
4705 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4706 	set_page_extent_mapped(page);
4707 
4708 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4709 	if (ordered) {
4710 		unlock_extent_cached(io_tree, block_start, block_end,
4711 				     &cached_state, GFP_NOFS);
4712 		unlock_page(page);
4713 		put_page(page);
4714 		btrfs_start_ordered_extent(inode, ordered, 1);
4715 		btrfs_put_ordered_extent(ordered);
4716 		goto again;
4717 	}
4718 
4719 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4720 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4721 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4722 			  0, 0, &cached_state, GFP_NOFS);
4723 
4724 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4725 					&cached_state);
4726 	if (ret) {
4727 		unlock_extent_cached(io_tree, block_start, block_end,
4728 				     &cached_state, GFP_NOFS);
4729 		goto out_unlock;
4730 	}
4731 
4732 	if (offset != blocksize) {
4733 		if (!len)
4734 			len = blocksize - offset;
4735 		kaddr = kmap(page);
4736 		if (front)
4737 			memset(kaddr + (block_start - page_offset(page)),
4738 				0, offset);
4739 		else
4740 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4741 				0, len);
4742 		flush_dcache_page(page);
4743 		kunmap(page);
4744 	}
4745 	ClearPageChecked(page);
4746 	set_page_dirty(page);
4747 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4748 			     GFP_NOFS);
4749 
4750 out_unlock:
4751 	if (ret)
4752 		btrfs_delalloc_release_space(inode, block_start,
4753 					     blocksize);
4754 	unlock_page(page);
4755 	put_page(page);
4756 out:
4757 	return ret;
4758 }
4759 
4760 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4761 			     u64 offset, u64 len)
4762 {
4763 	struct btrfs_trans_handle *trans;
4764 	int ret;
4765 
4766 	/*
4767 	 * Still need to make sure the inode looks like it's been updated so
4768 	 * that any holes get logged if we fsync.
4769 	 */
4770 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4771 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4772 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4773 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4774 		return 0;
4775 	}
4776 
4777 	/*
4778 	 * 1 - for the one we're dropping
4779 	 * 1 - for the one we're adding
4780 	 * 1 - for updating the inode.
4781 	 */
4782 	trans = btrfs_start_transaction(root, 3);
4783 	if (IS_ERR(trans))
4784 		return PTR_ERR(trans);
4785 
4786 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4787 	if (ret) {
4788 		btrfs_abort_transaction(trans, root, ret);
4789 		btrfs_end_transaction(trans, root);
4790 		return ret;
4791 	}
4792 
4793 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4794 				       0, 0, len, 0, len, 0, 0, 0);
4795 	if (ret)
4796 		btrfs_abort_transaction(trans, root, ret);
4797 	else
4798 		btrfs_update_inode(trans, root, inode);
4799 	btrfs_end_transaction(trans, root);
4800 	return ret;
4801 }
4802 
4803 /*
4804  * This function puts in dummy file extents for the area we're creating a hole
4805  * for.  So if we are truncating this file to a larger size we need to insert
4806  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4807  * the range between oldsize and size
4808  */
4809 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4810 {
4811 	struct btrfs_root *root = BTRFS_I(inode)->root;
4812 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4813 	struct extent_map *em = NULL;
4814 	struct extent_state *cached_state = NULL;
4815 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4816 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4817 	u64 block_end = ALIGN(size, root->sectorsize);
4818 	u64 last_byte;
4819 	u64 cur_offset;
4820 	u64 hole_size;
4821 	int err = 0;
4822 
4823 	/*
4824 	 * If our size started in the middle of a block we need to zero out the
4825 	 * rest of the block before we expand the i_size, otherwise we could
4826 	 * expose stale data.
4827 	 */
4828 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4829 	if (err)
4830 		return err;
4831 
4832 	if (size <= hole_start)
4833 		return 0;
4834 
4835 	while (1) {
4836 		struct btrfs_ordered_extent *ordered;
4837 
4838 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4839 				 &cached_state);
4840 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4841 						     block_end - hole_start);
4842 		if (!ordered)
4843 			break;
4844 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4845 				     &cached_state, GFP_NOFS);
4846 		btrfs_start_ordered_extent(inode, ordered, 1);
4847 		btrfs_put_ordered_extent(ordered);
4848 	}
4849 
4850 	cur_offset = hole_start;
4851 	while (1) {
4852 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4853 				block_end - cur_offset, 0);
4854 		if (IS_ERR(em)) {
4855 			err = PTR_ERR(em);
4856 			em = NULL;
4857 			break;
4858 		}
4859 		last_byte = min(extent_map_end(em), block_end);
4860 		last_byte = ALIGN(last_byte , root->sectorsize);
4861 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4862 			struct extent_map *hole_em;
4863 			hole_size = last_byte - cur_offset;
4864 
4865 			err = maybe_insert_hole(root, inode, cur_offset,
4866 						hole_size);
4867 			if (err)
4868 				break;
4869 			btrfs_drop_extent_cache(inode, cur_offset,
4870 						cur_offset + hole_size - 1, 0);
4871 			hole_em = alloc_extent_map();
4872 			if (!hole_em) {
4873 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4874 					&BTRFS_I(inode)->runtime_flags);
4875 				goto next;
4876 			}
4877 			hole_em->start = cur_offset;
4878 			hole_em->len = hole_size;
4879 			hole_em->orig_start = cur_offset;
4880 
4881 			hole_em->block_start = EXTENT_MAP_HOLE;
4882 			hole_em->block_len = 0;
4883 			hole_em->orig_block_len = 0;
4884 			hole_em->ram_bytes = hole_size;
4885 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4886 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4887 			hole_em->generation = root->fs_info->generation;
4888 
4889 			while (1) {
4890 				write_lock(&em_tree->lock);
4891 				err = add_extent_mapping(em_tree, hole_em, 1);
4892 				write_unlock(&em_tree->lock);
4893 				if (err != -EEXIST)
4894 					break;
4895 				btrfs_drop_extent_cache(inode, cur_offset,
4896 							cur_offset +
4897 							hole_size - 1, 0);
4898 			}
4899 			free_extent_map(hole_em);
4900 		}
4901 next:
4902 		free_extent_map(em);
4903 		em = NULL;
4904 		cur_offset = last_byte;
4905 		if (cur_offset >= block_end)
4906 			break;
4907 	}
4908 	free_extent_map(em);
4909 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4910 			     GFP_NOFS);
4911 	return err;
4912 }
4913 
4914 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4915 {
4916 	struct btrfs_root *root = BTRFS_I(inode)->root;
4917 	struct btrfs_trans_handle *trans;
4918 	loff_t oldsize = i_size_read(inode);
4919 	loff_t newsize = attr->ia_size;
4920 	int mask = attr->ia_valid;
4921 	int ret;
4922 
4923 	/*
4924 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4925 	 * special case where we need to update the times despite not having
4926 	 * these flags set.  For all other operations the VFS set these flags
4927 	 * explicitly if it wants a timestamp update.
4928 	 */
4929 	if (newsize != oldsize) {
4930 		inode_inc_iversion(inode);
4931 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4932 			inode->i_ctime = inode->i_mtime =
4933 				current_fs_time(inode->i_sb);
4934 	}
4935 
4936 	if (newsize > oldsize) {
4937 		/*
4938 		 * Don't do an expanding truncate while snapshoting is ongoing.
4939 		 * This is to ensure the snapshot captures a fully consistent
4940 		 * state of this file - if the snapshot captures this expanding
4941 		 * truncation, it must capture all writes that happened before
4942 		 * this truncation.
4943 		 */
4944 		btrfs_wait_for_snapshot_creation(root);
4945 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4946 		if (ret) {
4947 			btrfs_end_write_no_snapshoting(root);
4948 			return ret;
4949 		}
4950 
4951 		trans = btrfs_start_transaction(root, 1);
4952 		if (IS_ERR(trans)) {
4953 			btrfs_end_write_no_snapshoting(root);
4954 			return PTR_ERR(trans);
4955 		}
4956 
4957 		i_size_write(inode, newsize);
4958 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4959 		pagecache_isize_extended(inode, oldsize, newsize);
4960 		ret = btrfs_update_inode(trans, root, inode);
4961 		btrfs_end_write_no_snapshoting(root);
4962 		btrfs_end_transaction(trans, root);
4963 	} else {
4964 
4965 		/*
4966 		 * We're truncating a file that used to have good data down to
4967 		 * zero. Make sure it gets into the ordered flush list so that
4968 		 * any new writes get down to disk quickly.
4969 		 */
4970 		if (newsize == 0)
4971 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4972 				&BTRFS_I(inode)->runtime_flags);
4973 
4974 		/*
4975 		 * 1 for the orphan item we're going to add
4976 		 * 1 for the orphan item deletion.
4977 		 */
4978 		trans = btrfs_start_transaction(root, 2);
4979 		if (IS_ERR(trans))
4980 			return PTR_ERR(trans);
4981 
4982 		/*
4983 		 * We need to do this in case we fail at _any_ point during the
4984 		 * actual truncate.  Once we do the truncate_setsize we could
4985 		 * invalidate pages which forces any outstanding ordered io to
4986 		 * be instantly completed which will give us extents that need
4987 		 * to be truncated.  If we fail to get an orphan inode down we
4988 		 * could have left over extents that were never meant to live,
4989 		 * so we need to guarantee from this point on that everything
4990 		 * will be consistent.
4991 		 */
4992 		ret = btrfs_orphan_add(trans, inode);
4993 		btrfs_end_transaction(trans, root);
4994 		if (ret)
4995 			return ret;
4996 
4997 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4998 		truncate_setsize(inode, newsize);
4999 
5000 		/* Disable nonlocked read DIO to avoid the end less truncate */
5001 		btrfs_inode_block_unlocked_dio(inode);
5002 		inode_dio_wait(inode);
5003 		btrfs_inode_resume_unlocked_dio(inode);
5004 
5005 		ret = btrfs_truncate(inode);
5006 		if (ret && inode->i_nlink) {
5007 			int err;
5008 
5009 			/*
5010 			 * failed to truncate, disk_i_size is only adjusted down
5011 			 * as we remove extents, so it should represent the true
5012 			 * size of the inode, so reset the in memory size and
5013 			 * delete our orphan entry.
5014 			 */
5015 			trans = btrfs_join_transaction(root);
5016 			if (IS_ERR(trans)) {
5017 				btrfs_orphan_del(NULL, inode);
5018 				return ret;
5019 			}
5020 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5021 			err = btrfs_orphan_del(trans, inode);
5022 			if (err)
5023 				btrfs_abort_transaction(trans, root, err);
5024 			btrfs_end_transaction(trans, root);
5025 		}
5026 	}
5027 
5028 	return ret;
5029 }
5030 
5031 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5032 {
5033 	struct inode *inode = d_inode(dentry);
5034 	struct btrfs_root *root = BTRFS_I(inode)->root;
5035 	int err;
5036 
5037 	if (btrfs_root_readonly(root))
5038 		return -EROFS;
5039 
5040 	err = inode_change_ok(inode, attr);
5041 	if (err)
5042 		return err;
5043 
5044 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5045 		err = btrfs_setsize(inode, attr);
5046 		if (err)
5047 			return err;
5048 	}
5049 
5050 	if (attr->ia_valid) {
5051 		setattr_copy(inode, attr);
5052 		inode_inc_iversion(inode);
5053 		err = btrfs_dirty_inode(inode);
5054 
5055 		if (!err && attr->ia_valid & ATTR_MODE)
5056 			err = posix_acl_chmod(inode, inode->i_mode);
5057 	}
5058 
5059 	return err;
5060 }
5061 
5062 /*
5063  * While truncating the inode pages during eviction, we get the VFS calling
5064  * btrfs_invalidatepage() against each page of the inode. This is slow because
5065  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5066  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5067  * extent_state structures over and over, wasting lots of time.
5068  *
5069  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5070  * those expensive operations on a per page basis and do only the ordered io
5071  * finishing, while we release here the extent_map and extent_state structures,
5072  * without the excessive merging and splitting.
5073  */
5074 static void evict_inode_truncate_pages(struct inode *inode)
5075 {
5076 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5077 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5078 	struct rb_node *node;
5079 
5080 	ASSERT(inode->i_state & I_FREEING);
5081 	truncate_inode_pages_final(&inode->i_data);
5082 
5083 	write_lock(&map_tree->lock);
5084 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5085 		struct extent_map *em;
5086 
5087 		node = rb_first(&map_tree->map);
5088 		em = rb_entry(node, struct extent_map, rb_node);
5089 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5090 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5091 		remove_extent_mapping(map_tree, em);
5092 		free_extent_map(em);
5093 		if (need_resched()) {
5094 			write_unlock(&map_tree->lock);
5095 			cond_resched();
5096 			write_lock(&map_tree->lock);
5097 		}
5098 	}
5099 	write_unlock(&map_tree->lock);
5100 
5101 	/*
5102 	 * Keep looping until we have no more ranges in the io tree.
5103 	 * We can have ongoing bios started by readpages (called from readahead)
5104 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5105 	 * still in progress (unlocked the pages in the bio but did not yet
5106 	 * unlocked the ranges in the io tree). Therefore this means some
5107 	 * ranges can still be locked and eviction started because before
5108 	 * submitting those bios, which are executed by a separate task (work
5109 	 * queue kthread), inode references (inode->i_count) were not taken
5110 	 * (which would be dropped in the end io callback of each bio).
5111 	 * Therefore here we effectively end up waiting for those bios and
5112 	 * anyone else holding locked ranges without having bumped the inode's
5113 	 * reference count - if we don't do it, when they access the inode's
5114 	 * io_tree to unlock a range it may be too late, leading to an
5115 	 * use-after-free issue.
5116 	 */
5117 	spin_lock(&io_tree->lock);
5118 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5119 		struct extent_state *state;
5120 		struct extent_state *cached_state = NULL;
5121 		u64 start;
5122 		u64 end;
5123 
5124 		node = rb_first(&io_tree->state);
5125 		state = rb_entry(node, struct extent_state, rb_node);
5126 		start = state->start;
5127 		end = state->end;
5128 		spin_unlock(&io_tree->lock);
5129 
5130 		lock_extent_bits(io_tree, start, end, &cached_state);
5131 
5132 		/*
5133 		 * If still has DELALLOC flag, the extent didn't reach disk,
5134 		 * and its reserved space won't be freed by delayed_ref.
5135 		 * So we need to free its reserved space here.
5136 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5137 		 *
5138 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5139 		 */
5140 		if (state->state & EXTENT_DELALLOC)
5141 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5142 
5143 		clear_extent_bit(io_tree, start, end,
5144 				 EXTENT_LOCKED | EXTENT_DIRTY |
5145 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5146 				 EXTENT_DEFRAG, 1, 1,
5147 				 &cached_state, GFP_NOFS);
5148 
5149 		cond_resched();
5150 		spin_lock(&io_tree->lock);
5151 	}
5152 	spin_unlock(&io_tree->lock);
5153 }
5154 
5155 void btrfs_evict_inode(struct inode *inode)
5156 {
5157 	struct btrfs_trans_handle *trans;
5158 	struct btrfs_root *root = BTRFS_I(inode)->root;
5159 	struct btrfs_block_rsv *rsv, *global_rsv;
5160 	int steal_from_global = 0;
5161 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5162 	int ret;
5163 
5164 	trace_btrfs_inode_evict(inode);
5165 
5166 	evict_inode_truncate_pages(inode);
5167 
5168 	if (inode->i_nlink &&
5169 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5170 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5171 	     btrfs_is_free_space_inode(inode)))
5172 		goto no_delete;
5173 
5174 	if (is_bad_inode(inode)) {
5175 		btrfs_orphan_del(NULL, inode);
5176 		goto no_delete;
5177 	}
5178 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5179 	if (!special_file(inode->i_mode))
5180 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5181 
5182 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5183 
5184 	if (root->fs_info->log_root_recovering) {
5185 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5186 				 &BTRFS_I(inode)->runtime_flags));
5187 		goto no_delete;
5188 	}
5189 
5190 	if (inode->i_nlink > 0) {
5191 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5192 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5193 		goto no_delete;
5194 	}
5195 
5196 	ret = btrfs_commit_inode_delayed_inode(inode);
5197 	if (ret) {
5198 		btrfs_orphan_del(NULL, inode);
5199 		goto no_delete;
5200 	}
5201 
5202 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5203 	if (!rsv) {
5204 		btrfs_orphan_del(NULL, inode);
5205 		goto no_delete;
5206 	}
5207 	rsv->size = min_size;
5208 	rsv->failfast = 1;
5209 	global_rsv = &root->fs_info->global_block_rsv;
5210 
5211 	btrfs_i_size_write(inode, 0);
5212 
5213 	/*
5214 	 * This is a bit simpler than btrfs_truncate since we've already
5215 	 * reserved our space for our orphan item in the unlink, so we just
5216 	 * need to reserve some slack space in case we add bytes and update
5217 	 * inode item when doing the truncate.
5218 	 */
5219 	while (1) {
5220 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5221 					     BTRFS_RESERVE_FLUSH_LIMIT);
5222 
5223 		/*
5224 		 * Try and steal from the global reserve since we will
5225 		 * likely not use this space anyway, we want to try as
5226 		 * hard as possible to get this to work.
5227 		 */
5228 		if (ret)
5229 			steal_from_global++;
5230 		else
5231 			steal_from_global = 0;
5232 		ret = 0;
5233 
5234 		/*
5235 		 * steal_from_global == 0: we reserved stuff, hooray!
5236 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5237 		 * steal_from_global == 2: we've committed, still not a lot of
5238 		 * room but maybe we'll have room in the global reserve this
5239 		 * time.
5240 		 * steal_from_global == 3: abandon all hope!
5241 		 */
5242 		if (steal_from_global > 2) {
5243 			btrfs_warn(root->fs_info,
5244 				"Could not get space for a delete, will truncate on mount %d",
5245 				ret);
5246 			btrfs_orphan_del(NULL, inode);
5247 			btrfs_free_block_rsv(root, rsv);
5248 			goto no_delete;
5249 		}
5250 
5251 		trans = btrfs_join_transaction(root);
5252 		if (IS_ERR(trans)) {
5253 			btrfs_orphan_del(NULL, inode);
5254 			btrfs_free_block_rsv(root, rsv);
5255 			goto no_delete;
5256 		}
5257 
5258 		/*
5259 		 * We can't just steal from the global reserve, we need to make
5260 		 * sure there is room to do it, if not we need to commit and try
5261 		 * again.
5262 		 */
5263 		if (steal_from_global) {
5264 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5265 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5266 							      min_size, 0);
5267 			else
5268 				ret = -ENOSPC;
5269 		}
5270 
5271 		/*
5272 		 * Couldn't steal from the global reserve, we have too much
5273 		 * pending stuff built up, commit the transaction and try it
5274 		 * again.
5275 		 */
5276 		if (ret) {
5277 			ret = btrfs_commit_transaction(trans, root);
5278 			if (ret) {
5279 				btrfs_orphan_del(NULL, inode);
5280 				btrfs_free_block_rsv(root, rsv);
5281 				goto no_delete;
5282 			}
5283 			continue;
5284 		} else {
5285 			steal_from_global = 0;
5286 		}
5287 
5288 		trans->block_rsv = rsv;
5289 
5290 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5291 		if (ret != -ENOSPC && ret != -EAGAIN)
5292 			break;
5293 
5294 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5295 		btrfs_end_transaction(trans, root);
5296 		trans = NULL;
5297 		btrfs_btree_balance_dirty(root);
5298 	}
5299 
5300 	btrfs_free_block_rsv(root, rsv);
5301 
5302 	/*
5303 	 * Errors here aren't a big deal, it just means we leave orphan items
5304 	 * in the tree.  They will be cleaned up on the next mount.
5305 	 */
5306 	if (ret == 0) {
5307 		trans->block_rsv = root->orphan_block_rsv;
5308 		btrfs_orphan_del(trans, inode);
5309 	} else {
5310 		btrfs_orphan_del(NULL, inode);
5311 	}
5312 
5313 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5314 	if (!(root == root->fs_info->tree_root ||
5315 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5316 		btrfs_return_ino(root, btrfs_ino(inode));
5317 
5318 	btrfs_end_transaction(trans, root);
5319 	btrfs_btree_balance_dirty(root);
5320 no_delete:
5321 	btrfs_remove_delayed_node(inode);
5322 	clear_inode(inode);
5323 }
5324 
5325 /*
5326  * this returns the key found in the dir entry in the location pointer.
5327  * If no dir entries were found, location->objectid is 0.
5328  */
5329 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5330 			       struct btrfs_key *location)
5331 {
5332 	const char *name = dentry->d_name.name;
5333 	int namelen = dentry->d_name.len;
5334 	struct btrfs_dir_item *di;
5335 	struct btrfs_path *path;
5336 	struct btrfs_root *root = BTRFS_I(dir)->root;
5337 	int ret = 0;
5338 
5339 	path = btrfs_alloc_path();
5340 	if (!path)
5341 		return -ENOMEM;
5342 
5343 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5344 				    namelen, 0);
5345 	if (IS_ERR(di))
5346 		ret = PTR_ERR(di);
5347 
5348 	if (IS_ERR_OR_NULL(di))
5349 		goto out_err;
5350 
5351 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5352 out:
5353 	btrfs_free_path(path);
5354 	return ret;
5355 out_err:
5356 	location->objectid = 0;
5357 	goto out;
5358 }
5359 
5360 /*
5361  * when we hit a tree root in a directory, the btrfs part of the inode
5362  * needs to be changed to reflect the root directory of the tree root.  This
5363  * is kind of like crossing a mount point.
5364  */
5365 static int fixup_tree_root_location(struct btrfs_root *root,
5366 				    struct inode *dir,
5367 				    struct dentry *dentry,
5368 				    struct btrfs_key *location,
5369 				    struct btrfs_root **sub_root)
5370 {
5371 	struct btrfs_path *path;
5372 	struct btrfs_root *new_root;
5373 	struct btrfs_root_ref *ref;
5374 	struct extent_buffer *leaf;
5375 	struct btrfs_key key;
5376 	int ret;
5377 	int err = 0;
5378 
5379 	path = btrfs_alloc_path();
5380 	if (!path) {
5381 		err = -ENOMEM;
5382 		goto out;
5383 	}
5384 
5385 	err = -ENOENT;
5386 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5387 	key.type = BTRFS_ROOT_REF_KEY;
5388 	key.offset = location->objectid;
5389 
5390 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5391 				0, 0);
5392 	if (ret) {
5393 		if (ret < 0)
5394 			err = ret;
5395 		goto out;
5396 	}
5397 
5398 	leaf = path->nodes[0];
5399 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5400 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5401 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5402 		goto out;
5403 
5404 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5405 				   (unsigned long)(ref + 1),
5406 				   dentry->d_name.len);
5407 	if (ret)
5408 		goto out;
5409 
5410 	btrfs_release_path(path);
5411 
5412 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5413 	if (IS_ERR(new_root)) {
5414 		err = PTR_ERR(new_root);
5415 		goto out;
5416 	}
5417 
5418 	*sub_root = new_root;
5419 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5420 	location->type = BTRFS_INODE_ITEM_KEY;
5421 	location->offset = 0;
5422 	err = 0;
5423 out:
5424 	btrfs_free_path(path);
5425 	return err;
5426 }
5427 
5428 static void inode_tree_add(struct inode *inode)
5429 {
5430 	struct btrfs_root *root = BTRFS_I(inode)->root;
5431 	struct btrfs_inode *entry;
5432 	struct rb_node **p;
5433 	struct rb_node *parent;
5434 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5435 	u64 ino = btrfs_ino(inode);
5436 
5437 	if (inode_unhashed(inode))
5438 		return;
5439 	parent = NULL;
5440 	spin_lock(&root->inode_lock);
5441 	p = &root->inode_tree.rb_node;
5442 	while (*p) {
5443 		parent = *p;
5444 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5445 
5446 		if (ino < btrfs_ino(&entry->vfs_inode))
5447 			p = &parent->rb_left;
5448 		else if (ino > btrfs_ino(&entry->vfs_inode))
5449 			p = &parent->rb_right;
5450 		else {
5451 			WARN_ON(!(entry->vfs_inode.i_state &
5452 				  (I_WILL_FREE | I_FREEING)));
5453 			rb_replace_node(parent, new, &root->inode_tree);
5454 			RB_CLEAR_NODE(parent);
5455 			spin_unlock(&root->inode_lock);
5456 			return;
5457 		}
5458 	}
5459 	rb_link_node(new, parent, p);
5460 	rb_insert_color(new, &root->inode_tree);
5461 	spin_unlock(&root->inode_lock);
5462 }
5463 
5464 static void inode_tree_del(struct inode *inode)
5465 {
5466 	struct btrfs_root *root = BTRFS_I(inode)->root;
5467 	int empty = 0;
5468 
5469 	spin_lock(&root->inode_lock);
5470 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5471 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5472 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5473 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5474 	}
5475 	spin_unlock(&root->inode_lock);
5476 
5477 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5478 		synchronize_srcu(&root->fs_info->subvol_srcu);
5479 		spin_lock(&root->inode_lock);
5480 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5481 		spin_unlock(&root->inode_lock);
5482 		if (empty)
5483 			btrfs_add_dead_root(root);
5484 	}
5485 }
5486 
5487 void btrfs_invalidate_inodes(struct btrfs_root *root)
5488 {
5489 	struct rb_node *node;
5490 	struct rb_node *prev;
5491 	struct btrfs_inode *entry;
5492 	struct inode *inode;
5493 	u64 objectid = 0;
5494 
5495 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5496 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5497 
5498 	spin_lock(&root->inode_lock);
5499 again:
5500 	node = root->inode_tree.rb_node;
5501 	prev = NULL;
5502 	while (node) {
5503 		prev = node;
5504 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5505 
5506 		if (objectid < btrfs_ino(&entry->vfs_inode))
5507 			node = node->rb_left;
5508 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5509 			node = node->rb_right;
5510 		else
5511 			break;
5512 	}
5513 	if (!node) {
5514 		while (prev) {
5515 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5516 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5517 				node = prev;
5518 				break;
5519 			}
5520 			prev = rb_next(prev);
5521 		}
5522 	}
5523 	while (node) {
5524 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5525 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5526 		inode = igrab(&entry->vfs_inode);
5527 		if (inode) {
5528 			spin_unlock(&root->inode_lock);
5529 			if (atomic_read(&inode->i_count) > 1)
5530 				d_prune_aliases(inode);
5531 			/*
5532 			 * btrfs_drop_inode will have it removed from
5533 			 * the inode cache when its usage count
5534 			 * hits zero.
5535 			 */
5536 			iput(inode);
5537 			cond_resched();
5538 			spin_lock(&root->inode_lock);
5539 			goto again;
5540 		}
5541 
5542 		if (cond_resched_lock(&root->inode_lock))
5543 			goto again;
5544 
5545 		node = rb_next(node);
5546 	}
5547 	spin_unlock(&root->inode_lock);
5548 }
5549 
5550 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5551 {
5552 	struct btrfs_iget_args *args = p;
5553 	inode->i_ino = args->location->objectid;
5554 	memcpy(&BTRFS_I(inode)->location, args->location,
5555 	       sizeof(*args->location));
5556 	BTRFS_I(inode)->root = args->root;
5557 	return 0;
5558 }
5559 
5560 static int btrfs_find_actor(struct inode *inode, void *opaque)
5561 {
5562 	struct btrfs_iget_args *args = opaque;
5563 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5564 		args->root == BTRFS_I(inode)->root;
5565 }
5566 
5567 static struct inode *btrfs_iget_locked(struct super_block *s,
5568 				       struct btrfs_key *location,
5569 				       struct btrfs_root *root)
5570 {
5571 	struct inode *inode;
5572 	struct btrfs_iget_args args;
5573 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5574 
5575 	args.location = location;
5576 	args.root = root;
5577 
5578 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5579 			     btrfs_init_locked_inode,
5580 			     (void *)&args);
5581 	return inode;
5582 }
5583 
5584 /* Get an inode object given its location and corresponding root.
5585  * Returns in *is_new if the inode was read from disk
5586  */
5587 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5588 			 struct btrfs_root *root, int *new)
5589 {
5590 	struct inode *inode;
5591 
5592 	inode = btrfs_iget_locked(s, location, root);
5593 	if (!inode)
5594 		return ERR_PTR(-ENOMEM);
5595 
5596 	if (inode->i_state & I_NEW) {
5597 		btrfs_read_locked_inode(inode);
5598 		if (!is_bad_inode(inode)) {
5599 			inode_tree_add(inode);
5600 			unlock_new_inode(inode);
5601 			if (new)
5602 				*new = 1;
5603 		} else {
5604 			unlock_new_inode(inode);
5605 			iput(inode);
5606 			inode = ERR_PTR(-ESTALE);
5607 		}
5608 	}
5609 
5610 	return inode;
5611 }
5612 
5613 static struct inode *new_simple_dir(struct super_block *s,
5614 				    struct btrfs_key *key,
5615 				    struct btrfs_root *root)
5616 {
5617 	struct inode *inode = new_inode(s);
5618 
5619 	if (!inode)
5620 		return ERR_PTR(-ENOMEM);
5621 
5622 	BTRFS_I(inode)->root = root;
5623 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5624 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5625 
5626 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5627 	inode->i_op = &btrfs_dir_ro_inode_operations;
5628 	inode->i_fop = &simple_dir_operations;
5629 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5630 	inode->i_mtime = current_fs_time(inode->i_sb);
5631 	inode->i_atime = inode->i_mtime;
5632 	inode->i_ctime = inode->i_mtime;
5633 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5634 
5635 	return inode;
5636 }
5637 
5638 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5639 {
5640 	struct inode *inode;
5641 	struct btrfs_root *root = BTRFS_I(dir)->root;
5642 	struct btrfs_root *sub_root = root;
5643 	struct btrfs_key location;
5644 	int index;
5645 	int ret = 0;
5646 
5647 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5648 		return ERR_PTR(-ENAMETOOLONG);
5649 
5650 	ret = btrfs_inode_by_name(dir, dentry, &location);
5651 	if (ret < 0)
5652 		return ERR_PTR(ret);
5653 
5654 	if (location.objectid == 0)
5655 		return ERR_PTR(-ENOENT);
5656 
5657 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5658 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5659 		return inode;
5660 	}
5661 
5662 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5663 
5664 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5665 	ret = fixup_tree_root_location(root, dir, dentry,
5666 				       &location, &sub_root);
5667 	if (ret < 0) {
5668 		if (ret != -ENOENT)
5669 			inode = ERR_PTR(ret);
5670 		else
5671 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5672 	} else {
5673 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5674 	}
5675 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5676 
5677 	if (!IS_ERR(inode) && root != sub_root) {
5678 		down_read(&root->fs_info->cleanup_work_sem);
5679 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5680 			ret = btrfs_orphan_cleanup(sub_root);
5681 		up_read(&root->fs_info->cleanup_work_sem);
5682 		if (ret) {
5683 			iput(inode);
5684 			inode = ERR_PTR(ret);
5685 		}
5686 	}
5687 
5688 	return inode;
5689 }
5690 
5691 static int btrfs_dentry_delete(const struct dentry *dentry)
5692 {
5693 	struct btrfs_root *root;
5694 	struct inode *inode = d_inode(dentry);
5695 
5696 	if (!inode && !IS_ROOT(dentry))
5697 		inode = d_inode(dentry->d_parent);
5698 
5699 	if (inode) {
5700 		root = BTRFS_I(inode)->root;
5701 		if (btrfs_root_refs(&root->root_item) == 0)
5702 			return 1;
5703 
5704 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5705 			return 1;
5706 	}
5707 	return 0;
5708 }
5709 
5710 static void btrfs_dentry_release(struct dentry *dentry)
5711 {
5712 	kfree(dentry->d_fsdata);
5713 }
5714 
5715 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5716 				   unsigned int flags)
5717 {
5718 	struct inode *inode;
5719 
5720 	inode = btrfs_lookup_dentry(dir, dentry);
5721 	if (IS_ERR(inode)) {
5722 		if (PTR_ERR(inode) == -ENOENT)
5723 			inode = NULL;
5724 		else
5725 			return ERR_CAST(inode);
5726 	}
5727 
5728 	return d_splice_alias(inode, dentry);
5729 }
5730 
5731 unsigned char btrfs_filetype_table[] = {
5732 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5733 };
5734 
5735 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5736 {
5737 	struct inode *inode = file_inode(file);
5738 	struct btrfs_root *root = BTRFS_I(inode)->root;
5739 	struct btrfs_item *item;
5740 	struct btrfs_dir_item *di;
5741 	struct btrfs_key key;
5742 	struct btrfs_key found_key;
5743 	struct btrfs_path *path;
5744 	struct list_head ins_list;
5745 	struct list_head del_list;
5746 	int ret;
5747 	struct extent_buffer *leaf;
5748 	int slot;
5749 	unsigned char d_type;
5750 	int over = 0;
5751 	u32 di_cur;
5752 	u32 di_total;
5753 	u32 di_len;
5754 	int key_type = BTRFS_DIR_INDEX_KEY;
5755 	char tmp_name[32];
5756 	char *name_ptr;
5757 	int name_len;
5758 	int is_curr = 0;	/* ctx->pos points to the current index? */
5759 	bool emitted;
5760 	bool put = false;
5761 
5762 	/* FIXME, use a real flag for deciding about the key type */
5763 	if (root->fs_info->tree_root == root)
5764 		key_type = BTRFS_DIR_ITEM_KEY;
5765 
5766 	if (!dir_emit_dots(file, ctx))
5767 		return 0;
5768 
5769 	path = btrfs_alloc_path();
5770 	if (!path)
5771 		return -ENOMEM;
5772 
5773 	path->reada = READA_FORWARD;
5774 
5775 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5776 		INIT_LIST_HEAD(&ins_list);
5777 		INIT_LIST_HEAD(&del_list);
5778 		put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5779 						      &del_list);
5780 	}
5781 
5782 	key.type = key_type;
5783 	key.offset = ctx->pos;
5784 	key.objectid = btrfs_ino(inode);
5785 
5786 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5787 	if (ret < 0)
5788 		goto err;
5789 
5790 	emitted = false;
5791 	while (1) {
5792 		leaf = path->nodes[0];
5793 		slot = path->slots[0];
5794 		if (slot >= btrfs_header_nritems(leaf)) {
5795 			ret = btrfs_next_leaf(root, path);
5796 			if (ret < 0)
5797 				goto err;
5798 			else if (ret > 0)
5799 				break;
5800 			continue;
5801 		}
5802 
5803 		item = btrfs_item_nr(slot);
5804 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5805 
5806 		if (found_key.objectid != key.objectid)
5807 			break;
5808 		if (found_key.type != key_type)
5809 			break;
5810 		if (found_key.offset < ctx->pos)
5811 			goto next;
5812 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5813 		    btrfs_should_delete_dir_index(&del_list,
5814 						  found_key.offset))
5815 			goto next;
5816 
5817 		ctx->pos = found_key.offset;
5818 		is_curr = 1;
5819 
5820 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5821 		di_cur = 0;
5822 		di_total = btrfs_item_size(leaf, item);
5823 
5824 		while (di_cur < di_total) {
5825 			struct btrfs_key location;
5826 
5827 			if (verify_dir_item(root, leaf, di))
5828 				break;
5829 
5830 			name_len = btrfs_dir_name_len(leaf, di);
5831 			if (name_len <= sizeof(tmp_name)) {
5832 				name_ptr = tmp_name;
5833 			} else {
5834 				name_ptr = kmalloc(name_len, GFP_KERNEL);
5835 				if (!name_ptr) {
5836 					ret = -ENOMEM;
5837 					goto err;
5838 				}
5839 			}
5840 			read_extent_buffer(leaf, name_ptr,
5841 					   (unsigned long)(di + 1), name_len);
5842 
5843 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5844 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5845 
5846 
5847 			/* is this a reference to our own snapshot? If so
5848 			 * skip it.
5849 			 *
5850 			 * In contrast to old kernels, we insert the snapshot's
5851 			 * dir item and dir index after it has been created, so
5852 			 * we won't find a reference to our own snapshot. We
5853 			 * still keep the following code for backward
5854 			 * compatibility.
5855 			 */
5856 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5857 			    location.objectid == root->root_key.objectid) {
5858 				over = 0;
5859 				goto skip;
5860 			}
5861 			over = !dir_emit(ctx, name_ptr, name_len,
5862 				       location.objectid, d_type);
5863 
5864 skip:
5865 			if (name_ptr != tmp_name)
5866 				kfree(name_ptr);
5867 
5868 			if (over)
5869 				goto nopos;
5870 			emitted = true;
5871 			di_len = btrfs_dir_name_len(leaf, di) +
5872 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5873 			di_cur += di_len;
5874 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5875 		}
5876 next:
5877 		path->slots[0]++;
5878 	}
5879 
5880 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5881 		if (is_curr)
5882 			ctx->pos++;
5883 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5884 		if (ret)
5885 			goto nopos;
5886 	}
5887 
5888 	/*
5889 	 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5890 	 * it was was set to the termination value in previous call. We assume
5891 	 * that "." and ".." were emitted if we reach this point and set the
5892 	 * termination value as well for an empty directory.
5893 	 */
5894 	if (ctx->pos > 2 && !emitted)
5895 		goto nopos;
5896 
5897 	/* Reached end of directory/root. Bump pos past the last item. */
5898 	ctx->pos++;
5899 
5900 	/*
5901 	 * Stop new entries from being returned after we return the last
5902 	 * entry.
5903 	 *
5904 	 * New directory entries are assigned a strictly increasing
5905 	 * offset.  This means that new entries created during readdir
5906 	 * are *guaranteed* to be seen in the future by that readdir.
5907 	 * This has broken buggy programs which operate on names as
5908 	 * they're returned by readdir.  Until we re-use freed offsets
5909 	 * we have this hack to stop new entries from being returned
5910 	 * under the assumption that they'll never reach this huge
5911 	 * offset.
5912 	 *
5913 	 * This is being careful not to overflow 32bit loff_t unless the
5914 	 * last entry requires it because doing so has broken 32bit apps
5915 	 * in the past.
5916 	 */
5917 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5918 		if (ctx->pos >= INT_MAX)
5919 			ctx->pos = LLONG_MAX;
5920 		else
5921 			ctx->pos = INT_MAX;
5922 	}
5923 nopos:
5924 	ret = 0;
5925 err:
5926 	if (put)
5927 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5928 	btrfs_free_path(path);
5929 	return ret;
5930 }
5931 
5932 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5933 {
5934 	struct btrfs_root *root = BTRFS_I(inode)->root;
5935 	struct btrfs_trans_handle *trans;
5936 	int ret = 0;
5937 	bool nolock = false;
5938 
5939 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5940 		return 0;
5941 
5942 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5943 		nolock = true;
5944 
5945 	if (wbc->sync_mode == WB_SYNC_ALL) {
5946 		if (nolock)
5947 			trans = btrfs_join_transaction_nolock(root);
5948 		else
5949 			trans = btrfs_join_transaction(root);
5950 		if (IS_ERR(trans))
5951 			return PTR_ERR(trans);
5952 		ret = btrfs_commit_transaction(trans, root);
5953 	}
5954 	return ret;
5955 }
5956 
5957 /*
5958  * This is somewhat expensive, updating the tree every time the
5959  * inode changes.  But, it is most likely to find the inode in cache.
5960  * FIXME, needs more benchmarking...there are no reasons other than performance
5961  * to keep or drop this code.
5962  */
5963 static int btrfs_dirty_inode(struct inode *inode)
5964 {
5965 	struct btrfs_root *root = BTRFS_I(inode)->root;
5966 	struct btrfs_trans_handle *trans;
5967 	int ret;
5968 
5969 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5970 		return 0;
5971 
5972 	trans = btrfs_join_transaction(root);
5973 	if (IS_ERR(trans))
5974 		return PTR_ERR(trans);
5975 
5976 	ret = btrfs_update_inode(trans, root, inode);
5977 	if (ret && ret == -ENOSPC) {
5978 		/* whoops, lets try again with the full transaction */
5979 		btrfs_end_transaction(trans, root);
5980 		trans = btrfs_start_transaction(root, 1);
5981 		if (IS_ERR(trans))
5982 			return PTR_ERR(trans);
5983 
5984 		ret = btrfs_update_inode(trans, root, inode);
5985 	}
5986 	btrfs_end_transaction(trans, root);
5987 	if (BTRFS_I(inode)->delayed_node)
5988 		btrfs_balance_delayed_items(root);
5989 
5990 	return ret;
5991 }
5992 
5993 /*
5994  * This is a copy of file_update_time.  We need this so we can return error on
5995  * ENOSPC for updating the inode in the case of file write and mmap writes.
5996  */
5997 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5998 			     int flags)
5999 {
6000 	struct btrfs_root *root = BTRFS_I(inode)->root;
6001 
6002 	if (btrfs_root_readonly(root))
6003 		return -EROFS;
6004 
6005 	if (flags & S_VERSION)
6006 		inode_inc_iversion(inode);
6007 	if (flags & S_CTIME)
6008 		inode->i_ctime = *now;
6009 	if (flags & S_MTIME)
6010 		inode->i_mtime = *now;
6011 	if (flags & S_ATIME)
6012 		inode->i_atime = *now;
6013 	return btrfs_dirty_inode(inode);
6014 }
6015 
6016 /*
6017  * find the highest existing sequence number in a directory
6018  * and then set the in-memory index_cnt variable to reflect
6019  * free sequence numbers
6020  */
6021 static int btrfs_set_inode_index_count(struct inode *inode)
6022 {
6023 	struct btrfs_root *root = BTRFS_I(inode)->root;
6024 	struct btrfs_key key, found_key;
6025 	struct btrfs_path *path;
6026 	struct extent_buffer *leaf;
6027 	int ret;
6028 
6029 	key.objectid = btrfs_ino(inode);
6030 	key.type = BTRFS_DIR_INDEX_KEY;
6031 	key.offset = (u64)-1;
6032 
6033 	path = btrfs_alloc_path();
6034 	if (!path)
6035 		return -ENOMEM;
6036 
6037 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6038 	if (ret < 0)
6039 		goto out;
6040 	/* FIXME: we should be able to handle this */
6041 	if (ret == 0)
6042 		goto out;
6043 	ret = 0;
6044 
6045 	/*
6046 	 * MAGIC NUMBER EXPLANATION:
6047 	 * since we search a directory based on f_pos we have to start at 2
6048 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6049 	 * else has to start at 2
6050 	 */
6051 	if (path->slots[0] == 0) {
6052 		BTRFS_I(inode)->index_cnt = 2;
6053 		goto out;
6054 	}
6055 
6056 	path->slots[0]--;
6057 
6058 	leaf = path->nodes[0];
6059 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6060 
6061 	if (found_key.objectid != btrfs_ino(inode) ||
6062 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6063 		BTRFS_I(inode)->index_cnt = 2;
6064 		goto out;
6065 	}
6066 
6067 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6068 out:
6069 	btrfs_free_path(path);
6070 	return ret;
6071 }
6072 
6073 /*
6074  * helper to find a free sequence number in a given directory.  This current
6075  * code is very simple, later versions will do smarter things in the btree
6076  */
6077 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6078 {
6079 	int ret = 0;
6080 
6081 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6082 		ret = btrfs_inode_delayed_dir_index_count(dir);
6083 		if (ret) {
6084 			ret = btrfs_set_inode_index_count(dir);
6085 			if (ret)
6086 				return ret;
6087 		}
6088 	}
6089 
6090 	*index = BTRFS_I(dir)->index_cnt;
6091 	BTRFS_I(dir)->index_cnt++;
6092 
6093 	return ret;
6094 }
6095 
6096 static int btrfs_insert_inode_locked(struct inode *inode)
6097 {
6098 	struct btrfs_iget_args args;
6099 	args.location = &BTRFS_I(inode)->location;
6100 	args.root = BTRFS_I(inode)->root;
6101 
6102 	return insert_inode_locked4(inode,
6103 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6104 		   btrfs_find_actor, &args);
6105 }
6106 
6107 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6108 				     struct btrfs_root *root,
6109 				     struct inode *dir,
6110 				     const char *name, int name_len,
6111 				     u64 ref_objectid, u64 objectid,
6112 				     umode_t mode, u64 *index)
6113 {
6114 	struct inode *inode;
6115 	struct btrfs_inode_item *inode_item;
6116 	struct btrfs_key *location;
6117 	struct btrfs_path *path;
6118 	struct btrfs_inode_ref *ref;
6119 	struct btrfs_key key[2];
6120 	u32 sizes[2];
6121 	int nitems = name ? 2 : 1;
6122 	unsigned long ptr;
6123 	int ret;
6124 
6125 	path = btrfs_alloc_path();
6126 	if (!path)
6127 		return ERR_PTR(-ENOMEM);
6128 
6129 	inode = new_inode(root->fs_info->sb);
6130 	if (!inode) {
6131 		btrfs_free_path(path);
6132 		return ERR_PTR(-ENOMEM);
6133 	}
6134 
6135 	/*
6136 	 * O_TMPFILE, set link count to 0, so that after this point,
6137 	 * we fill in an inode item with the correct link count.
6138 	 */
6139 	if (!name)
6140 		set_nlink(inode, 0);
6141 
6142 	/*
6143 	 * we have to initialize this early, so we can reclaim the inode
6144 	 * number if we fail afterwards in this function.
6145 	 */
6146 	inode->i_ino = objectid;
6147 
6148 	if (dir && name) {
6149 		trace_btrfs_inode_request(dir);
6150 
6151 		ret = btrfs_set_inode_index(dir, index);
6152 		if (ret) {
6153 			btrfs_free_path(path);
6154 			iput(inode);
6155 			return ERR_PTR(ret);
6156 		}
6157 	} else if (dir) {
6158 		*index = 0;
6159 	}
6160 	/*
6161 	 * index_cnt is ignored for everything but a dir,
6162 	 * btrfs_get_inode_index_count has an explanation for the magic
6163 	 * number
6164 	 */
6165 	BTRFS_I(inode)->index_cnt = 2;
6166 	BTRFS_I(inode)->dir_index = *index;
6167 	BTRFS_I(inode)->root = root;
6168 	BTRFS_I(inode)->generation = trans->transid;
6169 	inode->i_generation = BTRFS_I(inode)->generation;
6170 
6171 	/*
6172 	 * We could have gotten an inode number from somebody who was fsynced
6173 	 * and then removed in this same transaction, so let's just set full
6174 	 * sync since it will be a full sync anyway and this will blow away the
6175 	 * old info in the log.
6176 	 */
6177 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6178 
6179 	key[0].objectid = objectid;
6180 	key[0].type = BTRFS_INODE_ITEM_KEY;
6181 	key[0].offset = 0;
6182 
6183 	sizes[0] = sizeof(struct btrfs_inode_item);
6184 
6185 	if (name) {
6186 		/*
6187 		 * Start new inodes with an inode_ref. This is slightly more
6188 		 * efficient for small numbers of hard links since they will
6189 		 * be packed into one item. Extended refs will kick in if we
6190 		 * add more hard links than can fit in the ref item.
6191 		 */
6192 		key[1].objectid = objectid;
6193 		key[1].type = BTRFS_INODE_REF_KEY;
6194 		key[1].offset = ref_objectid;
6195 
6196 		sizes[1] = name_len + sizeof(*ref);
6197 	}
6198 
6199 	location = &BTRFS_I(inode)->location;
6200 	location->objectid = objectid;
6201 	location->offset = 0;
6202 	location->type = BTRFS_INODE_ITEM_KEY;
6203 
6204 	ret = btrfs_insert_inode_locked(inode);
6205 	if (ret < 0)
6206 		goto fail;
6207 
6208 	path->leave_spinning = 1;
6209 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6210 	if (ret != 0)
6211 		goto fail_unlock;
6212 
6213 	inode_init_owner(inode, dir, mode);
6214 	inode_set_bytes(inode, 0);
6215 
6216 	inode->i_mtime = current_fs_time(inode->i_sb);
6217 	inode->i_atime = inode->i_mtime;
6218 	inode->i_ctime = inode->i_mtime;
6219 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6220 
6221 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6222 				  struct btrfs_inode_item);
6223 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6224 			     sizeof(*inode_item));
6225 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6226 
6227 	if (name) {
6228 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6229 				     struct btrfs_inode_ref);
6230 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6231 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6232 		ptr = (unsigned long)(ref + 1);
6233 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6234 	}
6235 
6236 	btrfs_mark_buffer_dirty(path->nodes[0]);
6237 	btrfs_free_path(path);
6238 
6239 	btrfs_inherit_iflags(inode, dir);
6240 
6241 	if (S_ISREG(mode)) {
6242 		if (btrfs_test_opt(root, NODATASUM))
6243 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6244 		if (btrfs_test_opt(root, NODATACOW))
6245 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6246 				BTRFS_INODE_NODATASUM;
6247 	}
6248 
6249 	inode_tree_add(inode);
6250 
6251 	trace_btrfs_inode_new(inode);
6252 	btrfs_set_inode_last_trans(trans, inode);
6253 
6254 	btrfs_update_root_times(trans, root);
6255 
6256 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6257 	if (ret)
6258 		btrfs_err(root->fs_info,
6259 			  "error inheriting props for ino %llu (root %llu): %d",
6260 			  btrfs_ino(inode), root->root_key.objectid, ret);
6261 
6262 	return inode;
6263 
6264 fail_unlock:
6265 	unlock_new_inode(inode);
6266 fail:
6267 	if (dir && name)
6268 		BTRFS_I(dir)->index_cnt--;
6269 	btrfs_free_path(path);
6270 	iput(inode);
6271 	return ERR_PTR(ret);
6272 }
6273 
6274 static inline u8 btrfs_inode_type(struct inode *inode)
6275 {
6276 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6277 }
6278 
6279 /*
6280  * utility function to add 'inode' into 'parent_inode' with
6281  * a give name and a given sequence number.
6282  * if 'add_backref' is true, also insert a backref from the
6283  * inode to the parent directory.
6284  */
6285 int btrfs_add_link(struct btrfs_trans_handle *trans,
6286 		   struct inode *parent_inode, struct inode *inode,
6287 		   const char *name, int name_len, int add_backref, u64 index)
6288 {
6289 	int ret = 0;
6290 	struct btrfs_key key;
6291 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6292 	u64 ino = btrfs_ino(inode);
6293 	u64 parent_ino = btrfs_ino(parent_inode);
6294 
6295 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6296 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6297 	} else {
6298 		key.objectid = ino;
6299 		key.type = BTRFS_INODE_ITEM_KEY;
6300 		key.offset = 0;
6301 	}
6302 
6303 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6304 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6305 					 key.objectid, root->root_key.objectid,
6306 					 parent_ino, index, name, name_len);
6307 	} else if (add_backref) {
6308 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6309 					     parent_ino, index);
6310 	}
6311 
6312 	/* Nothing to clean up yet */
6313 	if (ret)
6314 		return ret;
6315 
6316 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6317 				    parent_inode, &key,
6318 				    btrfs_inode_type(inode), index);
6319 	if (ret == -EEXIST || ret == -EOVERFLOW)
6320 		goto fail_dir_item;
6321 	else if (ret) {
6322 		btrfs_abort_transaction(trans, root, ret);
6323 		return ret;
6324 	}
6325 
6326 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6327 			   name_len * 2);
6328 	inode_inc_iversion(parent_inode);
6329 	parent_inode->i_mtime = parent_inode->i_ctime =
6330 		current_fs_time(parent_inode->i_sb);
6331 	ret = btrfs_update_inode(trans, root, parent_inode);
6332 	if (ret)
6333 		btrfs_abort_transaction(trans, root, ret);
6334 	return ret;
6335 
6336 fail_dir_item:
6337 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6338 		u64 local_index;
6339 		int err;
6340 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6341 				 key.objectid, root->root_key.objectid,
6342 				 parent_ino, &local_index, name, name_len);
6343 
6344 	} else if (add_backref) {
6345 		u64 local_index;
6346 		int err;
6347 
6348 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6349 					  ino, parent_ino, &local_index);
6350 	}
6351 	return ret;
6352 }
6353 
6354 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6355 			    struct inode *dir, struct dentry *dentry,
6356 			    struct inode *inode, int backref, u64 index)
6357 {
6358 	int err = btrfs_add_link(trans, dir, inode,
6359 				 dentry->d_name.name, dentry->d_name.len,
6360 				 backref, index);
6361 	if (err > 0)
6362 		err = -EEXIST;
6363 	return err;
6364 }
6365 
6366 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6367 			umode_t mode, dev_t rdev)
6368 {
6369 	struct btrfs_trans_handle *trans;
6370 	struct btrfs_root *root = BTRFS_I(dir)->root;
6371 	struct inode *inode = NULL;
6372 	int err;
6373 	int drop_inode = 0;
6374 	u64 objectid;
6375 	u64 index = 0;
6376 
6377 	/*
6378 	 * 2 for inode item and ref
6379 	 * 2 for dir items
6380 	 * 1 for xattr if selinux is on
6381 	 */
6382 	trans = btrfs_start_transaction(root, 5);
6383 	if (IS_ERR(trans))
6384 		return PTR_ERR(trans);
6385 
6386 	err = btrfs_find_free_ino(root, &objectid);
6387 	if (err)
6388 		goto out_unlock;
6389 
6390 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6391 				dentry->d_name.len, btrfs_ino(dir), objectid,
6392 				mode, &index);
6393 	if (IS_ERR(inode)) {
6394 		err = PTR_ERR(inode);
6395 		goto out_unlock;
6396 	}
6397 
6398 	/*
6399 	* If the active LSM wants to access the inode during
6400 	* d_instantiate it needs these. Smack checks to see
6401 	* if the filesystem supports xattrs by looking at the
6402 	* ops vector.
6403 	*/
6404 	inode->i_op = &btrfs_special_inode_operations;
6405 	init_special_inode(inode, inode->i_mode, rdev);
6406 
6407 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6408 	if (err)
6409 		goto out_unlock_inode;
6410 
6411 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6412 	if (err) {
6413 		goto out_unlock_inode;
6414 	} else {
6415 		btrfs_update_inode(trans, root, inode);
6416 		unlock_new_inode(inode);
6417 		d_instantiate(dentry, inode);
6418 	}
6419 
6420 out_unlock:
6421 	btrfs_end_transaction(trans, root);
6422 	btrfs_balance_delayed_items(root);
6423 	btrfs_btree_balance_dirty(root);
6424 	if (drop_inode) {
6425 		inode_dec_link_count(inode);
6426 		iput(inode);
6427 	}
6428 	return err;
6429 
6430 out_unlock_inode:
6431 	drop_inode = 1;
6432 	unlock_new_inode(inode);
6433 	goto out_unlock;
6434 
6435 }
6436 
6437 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6438 			umode_t mode, bool excl)
6439 {
6440 	struct btrfs_trans_handle *trans;
6441 	struct btrfs_root *root = BTRFS_I(dir)->root;
6442 	struct inode *inode = NULL;
6443 	int drop_inode_on_err = 0;
6444 	int err;
6445 	u64 objectid;
6446 	u64 index = 0;
6447 
6448 	/*
6449 	 * 2 for inode item and ref
6450 	 * 2 for dir items
6451 	 * 1 for xattr if selinux is on
6452 	 */
6453 	trans = btrfs_start_transaction(root, 5);
6454 	if (IS_ERR(trans))
6455 		return PTR_ERR(trans);
6456 
6457 	err = btrfs_find_free_ino(root, &objectid);
6458 	if (err)
6459 		goto out_unlock;
6460 
6461 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6462 				dentry->d_name.len, btrfs_ino(dir), objectid,
6463 				mode, &index);
6464 	if (IS_ERR(inode)) {
6465 		err = PTR_ERR(inode);
6466 		goto out_unlock;
6467 	}
6468 	drop_inode_on_err = 1;
6469 	/*
6470 	* If the active LSM wants to access the inode during
6471 	* d_instantiate it needs these. Smack checks to see
6472 	* if the filesystem supports xattrs by looking at the
6473 	* ops vector.
6474 	*/
6475 	inode->i_fop = &btrfs_file_operations;
6476 	inode->i_op = &btrfs_file_inode_operations;
6477 	inode->i_mapping->a_ops = &btrfs_aops;
6478 
6479 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6480 	if (err)
6481 		goto out_unlock_inode;
6482 
6483 	err = btrfs_update_inode(trans, root, inode);
6484 	if (err)
6485 		goto out_unlock_inode;
6486 
6487 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6488 	if (err)
6489 		goto out_unlock_inode;
6490 
6491 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6492 	unlock_new_inode(inode);
6493 	d_instantiate(dentry, inode);
6494 
6495 out_unlock:
6496 	btrfs_end_transaction(trans, root);
6497 	if (err && drop_inode_on_err) {
6498 		inode_dec_link_count(inode);
6499 		iput(inode);
6500 	}
6501 	btrfs_balance_delayed_items(root);
6502 	btrfs_btree_balance_dirty(root);
6503 	return err;
6504 
6505 out_unlock_inode:
6506 	unlock_new_inode(inode);
6507 	goto out_unlock;
6508 
6509 }
6510 
6511 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6512 		      struct dentry *dentry)
6513 {
6514 	struct btrfs_trans_handle *trans = NULL;
6515 	struct btrfs_root *root = BTRFS_I(dir)->root;
6516 	struct inode *inode = d_inode(old_dentry);
6517 	u64 index;
6518 	int err;
6519 	int drop_inode = 0;
6520 
6521 	/* do not allow sys_link's with other subvols of the same device */
6522 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6523 		return -EXDEV;
6524 
6525 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6526 		return -EMLINK;
6527 
6528 	err = btrfs_set_inode_index(dir, &index);
6529 	if (err)
6530 		goto fail;
6531 
6532 	/*
6533 	 * 2 items for inode and inode ref
6534 	 * 2 items for dir items
6535 	 * 1 item for parent inode
6536 	 */
6537 	trans = btrfs_start_transaction(root, 5);
6538 	if (IS_ERR(trans)) {
6539 		err = PTR_ERR(trans);
6540 		trans = NULL;
6541 		goto fail;
6542 	}
6543 
6544 	/* There are several dir indexes for this inode, clear the cache. */
6545 	BTRFS_I(inode)->dir_index = 0ULL;
6546 	inc_nlink(inode);
6547 	inode_inc_iversion(inode);
6548 	inode->i_ctime = current_fs_time(inode->i_sb);
6549 	ihold(inode);
6550 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6551 
6552 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6553 
6554 	if (err) {
6555 		drop_inode = 1;
6556 	} else {
6557 		struct dentry *parent = dentry->d_parent;
6558 		err = btrfs_update_inode(trans, root, inode);
6559 		if (err)
6560 			goto fail;
6561 		if (inode->i_nlink == 1) {
6562 			/*
6563 			 * If new hard link count is 1, it's a file created
6564 			 * with open(2) O_TMPFILE flag.
6565 			 */
6566 			err = btrfs_orphan_del(trans, inode);
6567 			if (err)
6568 				goto fail;
6569 		}
6570 		d_instantiate(dentry, inode);
6571 		btrfs_log_new_name(trans, inode, NULL, parent);
6572 	}
6573 
6574 	btrfs_balance_delayed_items(root);
6575 fail:
6576 	if (trans)
6577 		btrfs_end_transaction(trans, root);
6578 	if (drop_inode) {
6579 		inode_dec_link_count(inode);
6580 		iput(inode);
6581 	}
6582 	btrfs_btree_balance_dirty(root);
6583 	return err;
6584 }
6585 
6586 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6587 {
6588 	struct inode *inode = NULL;
6589 	struct btrfs_trans_handle *trans;
6590 	struct btrfs_root *root = BTRFS_I(dir)->root;
6591 	int err = 0;
6592 	int drop_on_err = 0;
6593 	u64 objectid = 0;
6594 	u64 index = 0;
6595 
6596 	/*
6597 	 * 2 items for inode and ref
6598 	 * 2 items for dir items
6599 	 * 1 for xattr if selinux is on
6600 	 */
6601 	trans = btrfs_start_transaction(root, 5);
6602 	if (IS_ERR(trans))
6603 		return PTR_ERR(trans);
6604 
6605 	err = btrfs_find_free_ino(root, &objectid);
6606 	if (err)
6607 		goto out_fail;
6608 
6609 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6610 				dentry->d_name.len, btrfs_ino(dir), objectid,
6611 				S_IFDIR | mode, &index);
6612 	if (IS_ERR(inode)) {
6613 		err = PTR_ERR(inode);
6614 		goto out_fail;
6615 	}
6616 
6617 	drop_on_err = 1;
6618 	/* these must be set before we unlock the inode */
6619 	inode->i_op = &btrfs_dir_inode_operations;
6620 	inode->i_fop = &btrfs_dir_file_operations;
6621 
6622 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6623 	if (err)
6624 		goto out_fail_inode;
6625 
6626 	btrfs_i_size_write(inode, 0);
6627 	err = btrfs_update_inode(trans, root, inode);
6628 	if (err)
6629 		goto out_fail_inode;
6630 
6631 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6632 			     dentry->d_name.len, 0, index);
6633 	if (err)
6634 		goto out_fail_inode;
6635 
6636 	d_instantiate(dentry, inode);
6637 	/*
6638 	 * mkdir is special.  We're unlocking after we call d_instantiate
6639 	 * to avoid a race with nfsd calling d_instantiate.
6640 	 */
6641 	unlock_new_inode(inode);
6642 	drop_on_err = 0;
6643 
6644 out_fail:
6645 	btrfs_end_transaction(trans, root);
6646 	if (drop_on_err) {
6647 		inode_dec_link_count(inode);
6648 		iput(inode);
6649 	}
6650 	btrfs_balance_delayed_items(root);
6651 	btrfs_btree_balance_dirty(root);
6652 	return err;
6653 
6654 out_fail_inode:
6655 	unlock_new_inode(inode);
6656 	goto out_fail;
6657 }
6658 
6659 /* Find next extent map of a given extent map, caller needs to ensure locks */
6660 static struct extent_map *next_extent_map(struct extent_map *em)
6661 {
6662 	struct rb_node *next;
6663 
6664 	next = rb_next(&em->rb_node);
6665 	if (!next)
6666 		return NULL;
6667 	return container_of(next, struct extent_map, rb_node);
6668 }
6669 
6670 static struct extent_map *prev_extent_map(struct extent_map *em)
6671 {
6672 	struct rb_node *prev;
6673 
6674 	prev = rb_prev(&em->rb_node);
6675 	if (!prev)
6676 		return NULL;
6677 	return container_of(prev, struct extent_map, rb_node);
6678 }
6679 
6680 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6681  * the existing extent is the nearest extent to map_start,
6682  * and an extent that you want to insert, deal with overlap and insert
6683  * the best fitted new extent into the tree.
6684  */
6685 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6686 				struct extent_map *existing,
6687 				struct extent_map *em,
6688 				u64 map_start)
6689 {
6690 	struct extent_map *prev;
6691 	struct extent_map *next;
6692 	u64 start;
6693 	u64 end;
6694 	u64 start_diff;
6695 
6696 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6697 
6698 	if (existing->start > map_start) {
6699 		next = existing;
6700 		prev = prev_extent_map(next);
6701 	} else {
6702 		prev = existing;
6703 		next = next_extent_map(prev);
6704 	}
6705 
6706 	start = prev ? extent_map_end(prev) : em->start;
6707 	start = max_t(u64, start, em->start);
6708 	end = next ? next->start : extent_map_end(em);
6709 	end = min_t(u64, end, extent_map_end(em));
6710 	start_diff = start - em->start;
6711 	em->start = start;
6712 	em->len = end - start;
6713 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6714 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6715 		em->block_start += start_diff;
6716 		em->block_len -= start_diff;
6717 	}
6718 	return add_extent_mapping(em_tree, em, 0);
6719 }
6720 
6721 static noinline int uncompress_inline(struct btrfs_path *path,
6722 				      struct page *page,
6723 				      size_t pg_offset, u64 extent_offset,
6724 				      struct btrfs_file_extent_item *item)
6725 {
6726 	int ret;
6727 	struct extent_buffer *leaf = path->nodes[0];
6728 	char *tmp;
6729 	size_t max_size;
6730 	unsigned long inline_size;
6731 	unsigned long ptr;
6732 	int compress_type;
6733 
6734 	WARN_ON(pg_offset != 0);
6735 	compress_type = btrfs_file_extent_compression(leaf, item);
6736 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6737 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6738 					btrfs_item_nr(path->slots[0]));
6739 	tmp = kmalloc(inline_size, GFP_NOFS);
6740 	if (!tmp)
6741 		return -ENOMEM;
6742 	ptr = btrfs_file_extent_inline_start(item);
6743 
6744 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6745 
6746 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6747 	ret = btrfs_decompress(compress_type, tmp, page,
6748 			       extent_offset, inline_size, max_size);
6749 	kfree(tmp);
6750 	return ret;
6751 }
6752 
6753 /*
6754  * a bit scary, this does extent mapping from logical file offset to the disk.
6755  * the ugly parts come from merging extents from the disk with the in-ram
6756  * representation.  This gets more complex because of the data=ordered code,
6757  * where the in-ram extents might be locked pending data=ordered completion.
6758  *
6759  * This also copies inline extents directly into the page.
6760  */
6761 
6762 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6763 				    size_t pg_offset, u64 start, u64 len,
6764 				    int create)
6765 {
6766 	int ret;
6767 	int err = 0;
6768 	u64 extent_start = 0;
6769 	u64 extent_end = 0;
6770 	u64 objectid = btrfs_ino(inode);
6771 	u32 found_type;
6772 	struct btrfs_path *path = NULL;
6773 	struct btrfs_root *root = BTRFS_I(inode)->root;
6774 	struct btrfs_file_extent_item *item;
6775 	struct extent_buffer *leaf;
6776 	struct btrfs_key found_key;
6777 	struct extent_map *em = NULL;
6778 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6779 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6780 	struct btrfs_trans_handle *trans = NULL;
6781 	const bool new_inline = !page || create;
6782 
6783 again:
6784 	read_lock(&em_tree->lock);
6785 	em = lookup_extent_mapping(em_tree, start, len);
6786 	if (em)
6787 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6788 	read_unlock(&em_tree->lock);
6789 
6790 	if (em) {
6791 		if (em->start > start || em->start + em->len <= start)
6792 			free_extent_map(em);
6793 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6794 			free_extent_map(em);
6795 		else
6796 			goto out;
6797 	}
6798 	em = alloc_extent_map();
6799 	if (!em) {
6800 		err = -ENOMEM;
6801 		goto out;
6802 	}
6803 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6804 	em->start = EXTENT_MAP_HOLE;
6805 	em->orig_start = EXTENT_MAP_HOLE;
6806 	em->len = (u64)-1;
6807 	em->block_len = (u64)-1;
6808 
6809 	if (!path) {
6810 		path = btrfs_alloc_path();
6811 		if (!path) {
6812 			err = -ENOMEM;
6813 			goto out;
6814 		}
6815 		/*
6816 		 * Chances are we'll be called again, so go ahead and do
6817 		 * readahead
6818 		 */
6819 		path->reada = READA_FORWARD;
6820 	}
6821 
6822 	ret = btrfs_lookup_file_extent(trans, root, path,
6823 				       objectid, start, trans != NULL);
6824 	if (ret < 0) {
6825 		err = ret;
6826 		goto out;
6827 	}
6828 
6829 	if (ret != 0) {
6830 		if (path->slots[0] == 0)
6831 			goto not_found;
6832 		path->slots[0]--;
6833 	}
6834 
6835 	leaf = path->nodes[0];
6836 	item = btrfs_item_ptr(leaf, path->slots[0],
6837 			      struct btrfs_file_extent_item);
6838 	/* are we inside the extent that was found? */
6839 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6840 	found_type = found_key.type;
6841 	if (found_key.objectid != objectid ||
6842 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6843 		/*
6844 		 * If we backup past the first extent we want to move forward
6845 		 * and see if there is an extent in front of us, otherwise we'll
6846 		 * say there is a hole for our whole search range which can
6847 		 * cause problems.
6848 		 */
6849 		extent_end = start;
6850 		goto next;
6851 	}
6852 
6853 	found_type = btrfs_file_extent_type(leaf, item);
6854 	extent_start = found_key.offset;
6855 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6856 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6857 		extent_end = extent_start +
6858 		       btrfs_file_extent_num_bytes(leaf, item);
6859 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6860 		size_t size;
6861 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6862 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6863 	}
6864 next:
6865 	if (start >= extent_end) {
6866 		path->slots[0]++;
6867 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6868 			ret = btrfs_next_leaf(root, path);
6869 			if (ret < 0) {
6870 				err = ret;
6871 				goto out;
6872 			}
6873 			if (ret > 0)
6874 				goto not_found;
6875 			leaf = path->nodes[0];
6876 		}
6877 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6878 		if (found_key.objectid != objectid ||
6879 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6880 			goto not_found;
6881 		if (start + len <= found_key.offset)
6882 			goto not_found;
6883 		if (start > found_key.offset)
6884 			goto next;
6885 		em->start = start;
6886 		em->orig_start = start;
6887 		em->len = found_key.offset - start;
6888 		goto not_found_em;
6889 	}
6890 
6891 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6892 
6893 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6894 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6895 		goto insert;
6896 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6897 		unsigned long ptr;
6898 		char *map;
6899 		size_t size;
6900 		size_t extent_offset;
6901 		size_t copy_size;
6902 
6903 		if (new_inline)
6904 			goto out;
6905 
6906 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6907 		extent_offset = page_offset(page) + pg_offset - extent_start;
6908 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6909 				  size - extent_offset);
6910 		em->start = extent_start + extent_offset;
6911 		em->len = ALIGN(copy_size, root->sectorsize);
6912 		em->orig_block_len = em->len;
6913 		em->orig_start = em->start;
6914 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6915 		if (create == 0 && !PageUptodate(page)) {
6916 			if (btrfs_file_extent_compression(leaf, item) !=
6917 			    BTRFS_COMPRESS_NONE) {
6918 				ret = uncompress_inline(path, page, pg_offset,
6919 							extent_offset, item);
6920 				if (ret) {
6921 					err = ret;
6922 					goto out;
6923 				}
6924 			} else {
6925 				map = kmap(page);
6926 				read_extent_buffer(leaf, map + pg_offset, ptr,
6927 						   copy_size);
6928 				if (pg_offset + copy_size < PAGE_SIZE) {
6929 					memset(map + pg_offset + copy_size, 0,
6930 					       PAGE_SIZE - pg_offset -
6931 					       copy_size);
6932 				}
6933 				kunmap(page);
6934 			}
6935 			flush_dcache_page(page);
6936 		} else if (create && PageUptodate(page)) {
6937 			BUG();
6938 			if (!trans) {
6939 				kunmap(page);
6940 				free_extent_map(em);
6941 				em = NULL;
6942 
6943 				btrfs_release_path(path);
6944 				trans = btrfs_join_transaction(root);
6945 
6946 				if (IS_ERR(trans))
6947 					return ERR_CAST(trans);
6948 				goto again;
6949 			}
6950 			map = kmap(page);
6951 			write_extent_buffer(leaf, map + pg_offset, ptr,
6952 					    copy_size);
6953 			kunmap(page);
6954 			btrfs_mark_buffer_dirty(leaf);
6955 		}
6956 		set_extent_uptodate(io_tree, em->start,
6957 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6958 		goto insert;
6959 	}
6960 not_found:
6961 	em->start = start;
6962 	em->orig_start = start;
6963 	em->len = len;
6964 not_found_em:
6965 	em->block_start = EXTENT_MAP_HOLE;
6966 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6967 insert:
6968 	btrfs_release_path(path);
6969 	if (em->start > start || extent_map_end(em) <= start) {
6970 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6971 			em->start, em->len, start, len);
6972 		err = -EIO;
6973 		goto out;
6974 	}
6975 
6976 	err = 0;
6977 	write_lock(&em_tree->lock);
6978 	ret = add_extent_mapping(em_tree, em, 0);
6979 	/* it is possible that someone inserted the extent into the tree
6980 	 * while we had the lock dropped.  It is also possible that
6981 	 * an overlapping map exists in the tree
6982 	 */
6983 	if (ret == -EEXIST) {
6984 		struct extent_map *existing;
6985 
6986 		ret = 0;
6987 
6988 		existing = search_extent_mapping(em_tree, start, len);
6989 		/*
6990 		 * existing will always be non-NULL, since there must be
6991 		 * extent causing the -EEXIST.
6992 		 */
6993 		if (existing->start == em->start &&
6994 		    extent_map_end(existing) == extent_map_end(em) &&
6995 		    em->block_start == existing->block_start) {
6996 			/*
6997 			 * these two extents are the same, it happens
6998 			 * with inlines especially
6999 			 */
7000 			free_extent_map(em);
7001 			em = existing;
7002 			err = 0;
7003 
7004 		} else if (start >= extent_map_end(existing) ||
7005 		    start <= existing->start) {
7006 			/*
7007 			 * The existing extent map is the one nearest to
7008 			 * the [start, start + len) range which overlaps
7009 			 */
7010 			err = merge_extent_mapping(em_tree, existing,
7011 						   em, start);
7012 			free_extent_map(existing);
7013 			if (err) {
7014 				free_extent_map(em);
7015 				em = NULL;
7016 			}
7017 		} else {
7018 			free_extent_map(em);
7019 			em = existing;
7020 			err = 0;
7021 		}
7022 	}
7023 	write_unlock(&em_tree->lock);
7024 out:
7025 
7026 	trace_btrfs_get_extent(root, em);
7027 
7028 	btrfs_free_path(path);
7029 	if (trans) {
7030 		ret = btrfs_end_transaction(trans, root);
7031 		if (!err)
7032 			err = ret;
7033 	}
7034 	if (err) {
7035 		free_extent_map(em);
7036 		return ERR_PTR(err);
7037 	}
7038 	BUG_ON(!em); /* Error is always set */
7039 	return em;
7040 }
7041 
7042 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7043 					   size_t pg_offset, u64 start, u64 len,
7044 					   int create)
7045 {
7046 	struct extent_map *em;
7047 	struct extent_map *hole_em = NULL;
7048 	u64 range_start = start;
7049 	u64 end;
7050 	u64 found;
7051 	u64 found_end;
7052 	int err = 0;
7053 
7054 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7055 	if (IS_ERR(em))
7056 		return em;
7057 	if (em) {
7058 		/*
7059 		 * if our em maps to
7060 		 * -  a hole or
7061 		 * -  a pre-alloc extent,
7062 		 * there might actually be delalloc bytes behind it.
7063 		 */
7064 		if (em->block_start != EXTENT_MAP_HOLE &&
7065 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7066 			return em;
7067 		else
7068 			hole_em = em;
7069 	}
7070 
7071 	/* check to see if we've wrapped (len == -1 or similar) */
7072 	end = start + len;
7073 	if (end < start)
7074 		end = (u64)-1;
7075 	else
7076 		end -= 1;
7077 
7078 	em = NULL;
7079 
7080 	/* ok, we didn't find anything, lets look for delalloc */
7081 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7082 				 end, len, EXTENT_DELALLOC, 1);
7083 	found_end = range_start + found;
7084 	if (found_end < range_start)
7085 		found_end = (u64)-1;
7086 
7087 	/*
7088 	 * we didn't find anything useful, return
7089 	 * the original results from get_extent()
7090 	 */
7091 	if (range_start > end || found_end <= start) {
7092 		em = hole_em;
7093 		hole_em = NULL;
7094 		goto out;
7095 	}
7096 
7097 	/* adjust the range_start to make sure it doesn't
7098 	 * go backwards from the start they passed in
7099 	 */
7100 	range_start = max(start, range_start);
7101 	found = found_end - range_start;
7102 
7103 	if (found > 0) {
7104 		u64 hole_start = start;
7105 		u64 hole_len = len;
7106 
7107 		em = alloc_extent_map();
7108 		if (!em) {
7109 			err = -ENOMEM;
7110 			goto out;
7111 		}
7112 		/*
7113 		 * when btrfs_get_extent can't find anything it
7114 		 * returns one huge hole
7115 		 *
7116 		 * make sure what it found really fits our range, and
7117 		 * adjust to make sure it is based on the start from
7118 		 * the caller
7119 		 */
7120 		if (hole_em) {
7121 			u64 calc_end = extent_map_end(hole_em);
7122 
7123 			if (calc_end <= start || (hole_em->start > end)) {
7124 				free_extent_map(hole_em);
7125 				hole_em = NULL;
7126 			} else {
7127 				hole_start = max(hole_em->start, start);
7128 				hole_len = calc_end - hole_start;
7129 			}
7130 		}
7131 		em->bdev = NULL;
7132 		if (hole_em && range_start > hole_start) {
7133 			/* our hole starts before our delalloc, so we
7134 			 * have to return just the parts of the hole
7135 			 * that go until  the delalloc starts
7136 			 */
7137 			em->len = min(hole_len,
7138 				      range_start - hole_start);
7139 			em->start = hole_start;
7140 			em->orig_start = hole_start;
7141 			/*
7142 			 * don't adjust block start at all,
7143 			 * it is fixed at EXTENT_MAP_HOLE
7144 			 */
7145 			em->block_start = hole_em->block_start;
7146 			em->block_len = hole_len;
7147 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7148 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7149 		} else {
7150 			em->start = range_start;
7151 			em->len = found;
7152 			em->orig_start = range_start;
7153 			em->block_start = EXTENT_MAP_DELALLOC;
7154 			em->block_len = found;
7155 		}
7156 	} else if (hole_em) {
7157 		return hole_em;
7158 	}
7159 out:
7160 
7161 	free_extent_map(hole_em);
7162 	if (err) {
7163 		free_extent_map(em);
7164 		return ERR_PTR(err);
7165 	}
7166 	return em;
7167 }
7168 
7169 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7170 						  const u64 start,
7171 						  const u64 len,
7172 						  const u64 orig_start,
7173 						  const u64 block_start,
7174 						  const u64 block_len,
7175 						  const u64 orig_block_len,
7176 						  const u64 ram_bytes,
7177 						  const int type)
7178 {
7179 	struct extent_map *em = NULL;
7180 	int ret;
7181 
7182 	down_read(&BTRFS_I(inode)->dio_sem);
7183 	if (type != BTRFS_ORDERED_NOCOW) {
7184 		em = create_pinned_em(inode, start, len, orig_start,
7185 				      block_start, block_len, orig_block_len,
7186 				      ram_bytes, type);
7187 		if (IS_ERR(em))
7188 			goto out;
7189 	}
7190 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7191 					   len, block_len, type);
7192 	if (ret) {
7193 		if (em) {
7194 			free_extent_map(em);
7195 			btrfs_drop_extent_cache(inode, start,
7196 						start + len - 1, 0);
7197 		}
7198 		em = ERR_PTR(ret);
7199 	}
7200  out:
7201 	up_read(&BTRFS_I(inode)->dio_sem);
7202 
7203 	return em;
7204 }
7205 
7206 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7207 						  u64 start, u64 len)
7208 {
7209 	struct btrfs_root *root = BTRFS_I(inode)->root;
7210 	struct extent_map *em;
7211 	struct btrfs_key ins;
7212 	u64 alloc_hint;
7213 	int ret;
7214 
7215 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7216 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7217 				   alloc_hint, &ins, 1, 1);
7218 	if (ret)
7219 		return ERR_PTR(ret);
7220 
7221 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7222 				     ins.objectid, ins.offset, ins.offset,
7223 				     ins.offset, 0);
7224 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7225 	if (IS_ERR(em))
7226 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7227 
7228 	return em;
7229 }
7230 
7231 /*
7232  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7233  * block must be cow'd
7234  */
7235 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7236 			      u64 *orig_start, u64 *orig_block_len,
7237 			      u64 *ram_bytes)
7238 {
7239 	struct btrfs_trans_handle *trans;
7240 	struct btrfs_path *path;
7241 	int ret;
7242 	struct extent_buffer *leaf;
7243 	struct btrfs_root *root = BTRFS_I(inode)->root;
7244 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7245 	struct btrfs_file_extent_item *fi;
7246 	struct btrfs_key key;
7247 	u64 disk_bytenr;
7248 	u64 backref_offset;
7249 	u64 extent_end;
7250 	u64 num_bytes;
7251 	int slot;
7252 	int found_type;
7253 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7254 
7255 	path = btrfs_alloc_path();
7256 	if (!path)
7257 		return -ENOMEM;
7258 
7259 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7260 				       offset, 0);
7261 	if (ret < 0)
7262 		goto out;
7263 
7264 	slot = path->slots[0];
7265 	if (ret == 1) {
7266 		if (slot == 0) {
7267 			/* can't find the item, must cow */
7268 			ret = 0;
7269 			goto out;
7270 		}
7271 		slot--;
7272 	}
7273 	ret = 0;
7274 	leaf = path->nodes[0];
7275 	btrfs_item_key_to_cpu(leaf, &key, slot);
7276 	if (key.objectid != btrfs_ino(inode) ||
7277 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7278 		/* not our file or wrong item type, must cow */
7279 		goto out;
7280 	}
7281 
7282 	if (key.offset > offset) {
7283 		/* Wrong offset, must cow */
7284 		goto out;
7285 	}
7286 
7287 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7288 	found_type = btrfs_file_extent_type(leaf, fi);
7289 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7290 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7291 		/* not a regular extent, must cow */
7292 		goto out;
7293 	}
7294 
7295 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7296 		goto out;
7297 
7298 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7299 	if (extent_end <= offset)
7300 		goto out;
7301 
7302 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7303 	if (disk_bytenr == 0)
7304 		goto out;
7305 
7306 	if (btrfs_file_extent_compression(leaf, fi) ||
7307 	    btrfs_file_extent_encryption(leaf, fi) ||
7308 	    btrfs_file_extent_other_encoding(leaf, fi))
7309 		goto out;
7310 
7311 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7312 
7313 	if (orig_start) {
7314 		*orig_start = key.offset - backref_offset;
7315 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7316 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7317 	}
7318 
7319 	if (btrfs_extent_readonly(root, disk_bytenr))
7320 		goto out;
7321 
7322 	num_bytes = min(offset + *len, extent_end) - offset;
7323 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7324 		u64 range_end;
7325 
7326 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7327 		ret = test_range_bit(io_tree, offset, range_end,
7328 				     EXTENT_DELALLOC, 0, NULL);
7329 		if (ret) {
7330 			ret = -EAGAIN;
7331 			goto out;
7332 		}
7333 	}
7334 
7335 	btrfs_release_path(path);
7336 
7337 	/*
7338 	 * look for other files referencing this extent, if we
7339 	 * find any we must cow
7340 	 */
7341 	trans = btrfs_join_transaction(root);
7342 	if (IS_ERR(trans)) {
7343 		ret = 0;
7344 		goto out;
7345 	}
7346 
7347 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7348 				    key.offset - backref_offset, disk_bytenr);
7349 	btrfs_end_transaction(trans, root);
7350 	if (ret) {
7351 		ret = 0;
7352 		goto out;
7353 	}
7354 
7355 	/*
7356 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7357 	 * in this extent we are about to write.  If there
7358 	 * are any csums in that range we have to cow in order
7359 	 * to keep the csums correct
7360 	 */
7361 	disk_bytenr += backref_offset;
7362 	disk_bytenr += offset - key.offset;
7363 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7364 				goto out;
7365 	/*
7366 	 * all of the above have passed, it is safe to overwrite this extent
7367 	 * without cow
7368 	 */
7369 	*len = num_bytes;
7370 	ret = 1;
7371 out:
7372 	btrfs_free_path(path);
7373 	return ret;
7374 }
7375 
7376 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7377 {
7378 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7379 	int found = false;
7380 	void **pagep = NULL;
7381 	struct page *page = NULL;
7382 	int start_idx;
7383 	int end_idx;
7384 
7385 	start_idx = start >> PAGE_SHIFT;
7386 
7387 	/*
7388 	 * end is the last byte in the last page.  end == start is legal
7389 	 */
7390 	end_idx = end >> PAGE_SHIFT;
7391 
7392 	rcu_read_lock();
7393 
7394 	/* Most of the code in this while loop is lifted from
7395 	 * find_get_page.  It's been modified to begin searching from a
7396 	 * page and return just the first page found in that range.  If the
7397 	 * found idx is less than or equal to the end idx then we know that
7398 	 * a page exists.  If no pages are found or if those pages are
7399 	 * outside of the range then we're fine (yay!) */
7400 	while (page == NULL &&
7401 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7402 		page = radix_tree_deref_slot(pagep);
7403 		if (unlikely(!page))
7404 			break;
7405 
7406 		if (radix_tree_exception(page)) {
7407 			if (radix_tree_deref_retry(page)) {
7408 				page = NULL;
7409 				continue;
7410 			}
7411 			/*
7412 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7413 			 * here as an exceptional entry: so return it without
7414 			 * attempting to raise page count.
7415 			 */
7416 			page = NULL;
7417 			break; /* TODO: Is this relevant for this use case? */
7418 		}
7419 
7420 		if (!page_cache_get_speculative(page)) {
7421 			page = NULL;
7422 			continue;
7423 		}
7424 
7425 		/*
7426 		 * Has the page moved?
7427 		 * This is part of the lockless pagecache protocol. See
7428 		 * include/linux/pagemap.h for details.
7429 		 */
7430 		if (unlikely(page != *pagep)) {
7431 			put_page(page);
7432 			page = NULL;
7433 		}
7434 	}
7435 
7436 	if (page) {
7437 		if (page->index <= end_idx)
7438 			found = true;
7439 		put_page(page);
7440 	}
7441 
7442 	rcu_read_unlock();
7443 	return found;
7444 }
7445 
7446 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7447 			      struct extent_state **cached_state, int writing)
7448 {
7449 	struct btrfs_ordered_extent *ordered;
7450 	int ret = 0;
7451 
7452 	while (1) {
7453 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7454 				 cached_state);
7455 		/*
7456 		 * We're concerned with the entire range that we're going to be
7457 		 * doing DIO to, so we need to make sure there's no ordered
7458 		 * extents in this range.
7459 		 */
7460 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7461 						     lockend - lockstart + 1);
7462 
7463 		/*
7464 		 * We need to make sure there are no buffered pages in this
7465 		 * range either, we could have raced between the invalidate in
7466 		 * generic_file_direct_write and locking the extent.  The
7467 		 * invalidate needs to happen so that reads after a write do not
7468 		 * get stale data.
7469 		 */
7470 		if (!ordered &&
7471 		    (!writing ||
7472 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7473 			break;
7474 
7475 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7476 				     cached_state, GFP_NOFS);
7477 
7478 		if (ordered) {
7479 			/*
7480 			 * If we are doing a DIO read and the ordered extent we
7481 			 * found is for a buffered write, we can not wait for it
7482 			 * to complete and retry, because if we do so we can
7483 			 * deadlock with concurrent buffered writes on page
7484 			 * locks. This happens only if our DIO read covers more
7485 			 * than one extent map, if at this point has already
7486 			 * created an ordered extent for a previous extent map
7487 			 * and locked its range in the inode's io tree, and a
7488 			 * concurrent write against that previous extent map's
7489 			 * range and this range started (we unlock the ranges
7490 			 * in the io tree only when the bios complete and
7491 			 * buffered writes always lock pages before attempting
7492 			 * to lock range in the io tree).
7493 			 */
7494 			if (writing ||
7495 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7496 				btrfs_start_ordered_extent(inode, ordered, 1);
7497 			else
7498 				ret = -ENOTBLK;
7499 			btrfs_put_ordered_extent(ordered);
7500 		} else {
7501 			/*
7502 			 * We could trigger writeback for this range (and wait
7503 			 * for it to complete) and then invalidate the pages for
7504 			 * this range (through invalidate_inode_pages2_range()),
7505 			 * but that can lead us to a deadlock with a concurrent
7506 			 * call to readpages() (a buffered read or a defrag call
7507 			 * triggered a readahead) on a page lock due to an
7508 			 * ordered dio extent we created before but did not have
7509 			 * yet a corresponding bio submitted (whence it can not
7510 			 * complete), which makes readpages() wait for that
7511 			 * ordered extent to complete while holding a lock on
7512 			 * that page.
7513 			 */
7514 			ret = -ENOTBLK;
7515 		}
7516 
7517 		if (ret)
7518 			break;
7519 
7520 		cond_resched();
7521 	}
7522 
7523 	return ret;
7524 }
7525 
7526 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7527 					   u64 len, u64 orig_start,
7528 					   u64 block_start, u64 block_len,
7529 					   u64 orig_block_len, u64 ram_bytes,
7530 					   int type)
7531 {
7532 	struct extent_map_tree *em_tree;
7533 	struct extent_map *em;
7534 	struct btrfs_root *root = BTRFS_I(inode)->root;
7535 	int ret;
7536 
7537 	em_tree = &BTRFS_I(inode)->extent_tree;
7538 	em = alloc_extent_map();
7539 	if (!em)
7540 		return ERR_PTR(-ENOMEM);
7541 
7542 	em->start = start;
7543 	em->orig_start = orig_start;
7544 	em->mod_start = start;
7545 	em->mod_len = len;
7546 	em->len = len;
7547 	em->block_len = block_len;
7548 	em->block_start = block_start;
7549 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7550 	em->orig_block_len = orig_block_len;
7551 	em->ram_bytes = ram_bytes;
7552 	em->generation = -1;
7553 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7554 	if (type == BTRFS_ORDERED_PREALLOC)
7555 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7556 
7557 	do {
7558 		btrfs_drop_extent_cache(inode, em->start,
7559 				em->start + em->len - 1, 0);
7560 		write_lock(&em_tree->lock);
7561 		ret = add_extent_mapping(em_tree, em, 1);
7562 		write_unlock(&em_tree->lock);
7563 	} while (ret == -EEXIST);
7564 
7565 	if (ret) {
7566 		free_extent_map(em);
7567 		return ERR_PTR(ret);
7568 	}
7569 
7570 	return em;
7571 }
7572 
7573 static void adjust_dio_outstanding_extents(struct inode *inode,
7574 					   struct btrfs_dio_data *dio_data,
7575 					   const u64 len)
7576 {
7577 	unsigned num_extents;
7578 
7579 	num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7580 					   BTRFS_MAX_EXTENT_SIZE);
7581 	/*
7582 	 * If we have an outstanding_extents count still set then we're
7583 	 * within our reservation, otherwise we need to adjust our inode
7584 	 * counter appropriately.
7585 	 */
7586 	if (dio_data->outstanding_extents) {
7587 		dio_data->outstanding_extents -= num_extents;
7588 	} else {
7589 		spin_lock(&BTRFS_I(inode)->lock);
7590 		BTRFS_I(inode)->outstanding_extents += num_extents;
7591 		spin_unlock(&BTRFS_I(inode)->lock);
7592 	}
7593 }
7594 
7595 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7596 				   struct buffer_head *bh_result, int create)
7597 {
7598 	struct extent_map *em;
7599 	struct btrfs_root *root = BTRFS_I(inode)->root;
7600 	struct extent_state *cached_state = NULL;
7601 	struct btrfs_dio_data *dio_data = NULL;
7602 	u64 start = iblock << inode->i_blkbits;
7603 	u64 lockstart, lockend;
7604 	u64 len = bh_result->b_size;
7605 	int unlock_bits = EXTENT_LOCKED;
7606 	int ret = 0;
7607 
7608 	if (create)
7609 		unlock_bits |= EXTENT_DIRTY;
7610 	else
7611 		len = min_t(u64, len, root->sectorsize);
7612 
7613 	lockstart = start;
7614 	lockend = start + len - 1;
7615 
7616 	if (current->journal_info) {
7617 		/*
7618 		 * Need to pull our outstanding extents and set journal_info to NULL so
7619 		 * that anything that needs to check if there's a transaction doesn't get
7620 		 * confused.
7621 		 */
7622 		dio_data = current->journal_info;
7623 		current->journal_info = NULL;
7624 	}
7625 
7626 	/*
7627 	 * If this errors out it's because we couldn't invalidate pagecache for
7628 	 * this range and we need to fallback to buffered.
7629 	 */
7630 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7631 			       create)) {
7632 		ret = -ENOTBLK;
7633 		goto err;
7634 	}
7635 
7636 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7637 	if (IS_ERR(em)) {
7638 		ret = PTR_ERR(em);
7639 		goto unlock_err;
7640 	}
7641 
7642 	/*
7643 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7644 	 * io.  INLINE is special, and we could probably kludge it in here, but
7645 	 * it's still buffered so for safety lets just fall back to the generic
7646 	 * buffered path.
7647 	 *
7648 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7649 	 * decompress it, so there will be buffering required no matter what we
7650 	 * do, so go ahead and fallback to buffered.
7651 	 *
7652 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7653 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7654 	 * the generic code.
7655 	 */
7656 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7657 	    em->block_start == EXTENT_MAP_INLINE) {
7658 		free_extent_map(em);
7659 		ret = -ENOTBLK;
7660 		goto unlock_err;
7661 	}
7662 
7663 	/* Just a good old fashioned hole, return */
7664 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7665 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7666 		free_extent_map(em);
7667 		goto unlock_err;
7668 	}
7669 
7670 	/*
7671 	 * We don't allocate a new extent in the following cases
7672 	 *
7673 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7674 	 * existing extent.
7675 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7676 	 * just use the extent.
7677 	 *
7678 	 */
7679 	if (!create) {
7680 		len = min(len, em->len - (start - em->start));
7681 		lockstart = start + len;
7682 		goto unlock;
7683 	}
7684 
7685 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7686 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7687 	     em->block_start != EXTENT_MAP_HOLE)) {
7688 		int type;
7689 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7690 
7691 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7692 			type = BTRFS_ORDERED_PREALLOC;
7693 		else
7694 			type = BTRFS_ORDERED_NOCOW;
7695 		len = min(len, em->len - (start - em->start));
7696 		block_start = em->block_start + (start - em->start);
7697 
7698 		if (can_nocow_extent(inode, start, &len, &orig_start,
7699 				     &orig_block_len, &ram_bytes) == 1 &&
7700 		    btrfs_inc_nocow_writers(root->fs_info, block_start)) {
7701 			struct extent_map *em2;
7702 
7703 			em2 = btrfs_create_dio_extent(inode, start, len,
7704 						      orig_start, block_start,
7705 						      len, orig_block_len,
7706 						      ram_bytes, type);
7707 			btrfs_dec_nocow_writers(root->fs_info, block_start);
7708 			if (type == BTRFS_ORDERED_PREALLOC) {
7709 				free_extent_map(em);
7710 				em = em2;
7711 			}
7712 			if (em2 && IS_ERR(em2)) {
7713 				ret = PTR_ERR(em2);
7714 				goto unlock_err;
7715 			}
7716 			goto unlock;
7717 		}
7718 	}
7719 
7720 	/*
7721 	 * this will cow the extent, reset the len in case we changed
7722 	 * it above
7723 	 */
7724 	len = bh_result->b_size;
7725 	free_extent_map(em);
7726 	em = btrfs_new_extent_direct(inode, start, len);
7727 	if (IS_ERR(em)) {
7728 		ret = PTR_ERR(em);
7729 		goto unlock_err;
7730 	}
7731 	len = min(len, em->len - (start - em->start));
7732 unlock:
7733 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7734 		inode->i_blkbits;
7735 	bh_result->b_size = len;
7736 	bh_result->b_bdev = em->bdev;
7737 	set_buffer_mapped(bh_result);
7738 	if (create) {
7739 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7740 			set_buffer_new(bh_result);
7741 
7742 		/*
7743 		 * Need to update the i_size under the extent lock so buffered
7744 		 * readers will get the updated i_size when we unlock.
7745 		 */
7746 		if (start + len > i_size_read(inode))
7747 			i_size_write(inode, start + len);
7748 
7749 		adjust_dio_outstanding_extents(inode, dio_data, len);
7750 		btrfs_free_reserved_data_space(inode, start, len);
7751 		WARN_ON(dio_data->reserve < len);
7752 		dio_data->reserve -= len;
7753 		dio_data->unsubmitted_oe_range_end = start + len;
7754 		current->journal_info = dio_data;
7755 	}
7756 
7757 	/*
7758 	 * In the case of write we need to clear and unlock the entire range,
7759 	 * in the case of read we need to unlock only the end area that we
7760 	 * aren't using if there is any left over space.
7761 	 */
7762 	if (lockstart < lockend) {
7763 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7764 				 lockend, unlock_bits, 1, 0,
7765 				 &cached_state, GFP_NOFS);
7766 	} else {
7767 		free_extent_state(cached_state);
7768 	}
7769 
7770 	free_extent_map(em);
7771 
7772 	return 0;
7773 
7774 unlock_err:
7775 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7776 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7777 err:
7778 	if (dio_data)
7779 		current->journal_info = dio_data;
7780 	/*
7781 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7782 	 * write less data then expected, so that we don't underflow our inode's
7783 	 * outstanding extents counter.
7784 	 */
7785 	if (create && dio_data)
7786 		adjust_dio_outstanding_extents(inode, dio_data, len);
7787 
7788 	return ret;
7789 }
7790 
7791 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7792 					int mirror_num)
7793 {
7794 	struct btrfs_root *root = BTRFS_I(inode)->root;
7795 	int ret;
7796 
7797 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7798 
7799 	bio_get(bio);
7800 
7801 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7802 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7803 	if (ret)
7804 		goto err;
7805 
7806 	ret = btrfs_map_bio(root, bio, mirror_num, 0);
7807 err:
7808 	bio_put(bio);
7809 	return ret;
7810 }
7811 
7812 static int btrfs_check_dio_repairable(struct inode *inode,
7813 				      struct bio *failed_bio,
7814 				      struct io_failure_record *failrec,
7815 				      int failed_mirror)
7816 {
7817 	int num_copies;
7818 
7819 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7820 				      failrec->logical, failrec->len);
7821 	if (num_copies == 1) {
7822 		/*
7823 		 * we only have a single copy of the data, so don't bother with
7824 		 * all the retry and error correction code that follows. no
7825 		 * matter what the error is, it is very likely to persist.
7826 		 */
7827 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7828 			 num_copies, failrec->this_mirror, failed_mirror);
7829 		return 0;
7830 	}
7831 
7832 	failrec->failed_mirror = failed_mirror;
7833 	failrec->this_mirror++;
7834 	if (failrec->this_mirror == failed_mirror)
7835 		failrec->this_mirror++;
7836 
7837 	if (failrec->this_mirror > num_copies) {
7838 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7839 			 num_copies, failrec->this_mirror, failed_mirror);
7840 		return 0;
7841 	}
7842 
7843 	return 1;
7844 }
7845 
7846 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7847 			struct page *page, unsigned int pgoff,
7848 			u64 start, u64 end, int failed_mirror,
7849 			bio_end_io_t *repair_endio, void *repair_arg)
7850 {
7851 	struct io_failure_record *failrec;
7852 	struct bio *bio;
7853 	int isector;
7854 	int read_mode;
7855 	int ret;
7856 
7857 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7858 
7859 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7860 	if (ret)
7861 		return ret;
7862 
7863 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7864 					 failed_mirror);
7865 	if (!ret) {
7866 		free_io_failure(inode, failrec);
7867 		return -EIO;
7868 	}
7869 
7870 	if ((failed_bio->bi_vcnt > 1)
7871 		|| (failed_bio->bi_io_vec->bv_len
7872 			> BTRFS_I(inode)->root->sectorsize))
7873 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7874 	else
7875 		read_mode = READ_SYNC;
7876 
7877 	isector = start - btrfs_io_bio(failed_bio)->logical;
7878 	isector >>= inode->i_sb->s_blocksize_bits;
7879 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7880 				pgoff, isector, repair_endio, repair_arg);
7881 	if (!bio) {
7882 		free_io_failure(inode, failrec);
7883 		return -EIO;
7884 	}
7885 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7886 
7887 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7888 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7889 		    read_mode, failrec->this_mirror, failrec->in_validation);
7890 
7891 	ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7892 	if (ret) {
7893 		free_io_failure(inode, failrec);
7894 		bio_put(bio);
7895 	}
7896 
7897 	return ret;
7898 }
7899 
7900 struct btrfs_retry_complete {
7901 	struct completion done;
7902 	struct inode *inode;
7903 	u64 start;
7904 	int uptodate;
7905 };
7906 
7907 static void btrfs_retry_endio_nocsum(struct bio *bio)
7908 {
7909 	struct btrfs_retry_complete *done = bio->bi_private;
7910 	struct inode *inode;
7911 	struct bio_vec *bvec;
7912 	int i;
7913 
7914 	if (bio->bi_error)
7915 		goto end;
7916 
7917 	ASSERT(bio->bi_vcnt == 1);
7918 	inode = bio->bi_io_vec->bv_page->mapping->host;
7919 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7920 
7921 	done->uptodate = 1;
7922 	bio_for_each_segment_all(bvec, bio, i)
7923 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7924 end:
7925 	complete(&done->done);
7926 	bio_put(bio);
7927 }
7928 
7929 static int __btrfs_correct_data_nocsum(struct inode *inode,
7930 				       struct btrfs_io_bio *io_bio)
7931 {
7932 	struct btrfs_fs_info *fs_info;
7933 	struct bio_vec *bvec;
7934 	struct btrfs_retry_complete done;
7935 	u64 start;
7936 	unsigned int pgoff;
7937 	u32 sectorsize;
7938 	int nr_sectors;
7939 	int i;
7940 	int ret;
7941 
7942 	fs_info = BTRFS_I(inode)->root->fs_info;
7943 	sectorsize = BTRFS_I(inode)->root->sectorsize;
7944 
7945 	start = io_bio->logical;
7946 	done.inode = inode;
7947 
7948 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7949 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7950 		pgoff = bvec->bv_offset;
7951 
7952 next_block_or_try_again:
7953 		done.uptodate = 0;
7954 		done.start = start;
7955 		init_completion(&done.done);
7956 
7957 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7958 				pgoff, start, start + sectorsize - 1,
7959 				io_bio->mirror_num,
7960 				btrfs_retry_endio_nocsum, &done);
7961 		if (ret)
7962 			return ret;
7963 
7964 		wait_for_completion(&done.done);
7965 
7966 		if (!done.uptodate) {
7967 			/* We might have another mirror, so try again */
7968 			goto next_block_or_try_again;
7969 		}
7970 
7971 		start += sectorsize;
7972 
7973 		if (nr_sectors--) {
7974 			pgoff += sectorsize;
7975 			goto next_block_or_try_again;
7976 		}
7977 	}
7978 
7979 	return 0;
7980 }
7981 
7982 static void btrfs_retry_endio(struct bio *bio)
7983 {
7984 	struct btrfs_retry_complete *done = bio->bi_private;
7985 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7986 	struct inode *inode;
7987 	struct bio_vec *bvec;
7988 	u64 start;
7989 	int uptodate;
7990 	int ret;
7991 	int i;
7992 
7993 	if (bio->bi_error)
7994 		goto end;
7995 
7996 	uptodate = 1;
7997 
7998 	start = done->start;
7999 
8000 	ASSERT(bio->bi_vcnt == 1);
8001 	inode = bio->bi_io_vec->bv_page->mapping->host;
8002 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8003 
8004 	bio_for_each_segment_all(bvec, bio, i) {
8005 		ret = __readpage_endio_check(done->inode, io_bio, i,
8006 					bvec->bv_page, bvec->bv_offset,
8007 					done->start, bvec->bv_len);
8008 		if (!ret)
8009 			clean_io_failure(done->inode, done->start,
8010 					bvec->bv_page, bvec->bv_offset);
8011 		else
8012 			uptodate = 0;
8013 	}
8014 
8015 	done->uptodate = uptodate;
8016 end:
8017 	complete(&done->done);
8018 	bio_put(bio);
8019 }
8020 
8021 static int __btrfs_subio_endio_read(struct inode *inode,
8022 				    struct btrfs_io_bio *io_bio, int err)
8023 {
8024 	struct btrfs_fs_info *fs_info;
8025 	struct bio_vec *bvec;
8026 	struct btrfs_retry_complete done;
8027 	u64 start;
8028 	u64 offset = 0;
8029 	u32 sectorsize;
8030 	int nr_sectors;
8031 	unsigned int pgoff;
8032 	int csum_pos;
8033 	int i;
8034 	int ret;
8035 
8036 	fs_info = BTRFS_I(inode)->root->fs_info;
8037 	sectorsize = BTRFS_I(inode)->root->sectorsize;
8038 
8039 	err = 0;
8040 	start = io_bio->logical;
8041 	done.inode = inode;
8042 
8043 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8044 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8045 
8046 		pgoff = bvec->bv_offset;
8047 next_block:
8048 		csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8049 		ret = __readpage_endio_check(inode, io_bio, csum_pos,
8050 					bvec->bv_page, pgoff, start,
8051 					sectorsize);
8052 		if (likely(!ret))
8053 			goto next;
8054 try_again:
8055 		done.uptodate = 0;
8056 		done.start = start;
8057 		init_completion(&done.done);
8058 
8059 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8060 				pgoff, start, start + sectorsize - 1,
8061 				io_bio->mirror_num,
8062 				btrfs_retry_endio, &done);
8063 		if (ret) {
8064 			err = ret;
8065 			goto next;
8066 		}
8067 
8068 		wait_for_completion(&done.done);
8069 
8070 		if (!done.uptodate) {
8071 			/* We might have another mirror, so try again */
8072 			goto try_again;
8073 		}
8074 next:
8075 		offset += sectorsize;
8076 		start += sectorsize;
8077 
8078 		ASSERT(nr_sectors);
8079 
8080 		if (--nr_sectors) {
8081 			pgoff += sectorsize;
8082 			goto next_block;
8083 		}
8084 	}
8085 
8086 	return err;
8087 }
8088 
8089 static int btrfs_subio_endio_read(struct inode *inode,
8090 				  struct btrfs_io_bio *io_bio, int err)
8091 {
8092 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8093 
8094 	if (skip_csum) {
8095 		if (unlikely(err))
8096 			return __btrfs_correct_data_nocsum(inode, io_bio);
8097 		else
8098 			return 0;
8099 	} else {
8100 		return __btrfs_subio_endio_read(inode, io_bio, err);
8101 	}
8102 }
8103 
8104 static void btrfs_endio_direct_read(struct bio *bio)
8105 {
8106 	struct btrfs_dio_private *dip = bio->bi_private;
8107 	struct inode *inode = dip->inode;
8108 	struct bio *dio_bio;
8109 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8110 	int err = bio->bi_error;
8111 
8112 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8113 		err = btrfs_subio_endio_read(inode, io_bio, err);
8114 
8115 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8116 		      dip->logical_offset + dip->bytes - 1);
8117 	dio_bio = dip->dio_bio;
8118 
8119 	kfree(dip);
8120 
8121 	dio_bio->bi_error = bio->bi_error;
8122 	dio_end_io(dio_bio, bio->bi_error);
8123 
8124 	if (io_bio->end_io)
8125 		io_bio->end_io(io_bio, err);
8126 	bio_put(bio);
8127 }
8128 
8129 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8130 						    const u64 offset,
8131 						    const u64 bytes,
8132 						    const int uptodate)
8133 {
8134 	struct btrfs_root *root = BTRFS_I(inode)->root;
8135 	struct btrfs_ordered_extent *ordered = NULL;
8136 	u64 ordered_offset = offset;
8137 	u64 ordered_bytes = bytes;
8138 	int ret;
8139 
8140 again:
8141 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8142 						   &ordered_offset,
8143 						   ordered_bytes,
8144 						   uptodate);
8145 	if (!ret)
8146 		goto out_test;
8147 
8148 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8149 			finish_ordered_fn, NULL, NULL);
8150 	btrfs_queue_work(root->fs_info->endio_write_workers,
8151 			 &ordered->work);
8152 out_test:
8153 	/*
8154 	 * our bio might span multiple ordered extents.  If we haven't
8155 	 * completed the accounting for the whole dio, go back and try again
8156 	 */
8157 	if (ordered_offset < offset + bytes) {
8158 		ordered_bytes = offset + bytes - ordered_offset;
8159 		ordered = NULL;
8160 		goto again;
8161 	}
8162 }
8163 
8164 static void btrfs_endio_direct_write(struct bio *bio)
8165 {
8166 	struct btrfs_dio_private *dip = bio->bi_private;
8167 	struct bio *dio_bio = dip->dio_bio;
8168 
8169 	btrfs_endio_direct_write_update_ordered(dip->inode,
8170 						dip->logical_offset,
8171 						dip->bytes,
8172 						!bio->bi_error);
8173 
8174 	kfree(dip);
8175 
8176 	dio_bio->bi_error = bio->bi_error;
8177 	dio_end_io(dio_bio, bio->bi_error);
8178 	bio_put(bio);
8179 }
8180 
8181 static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
8182 				    struct bio *bio, int mirror_num,
8183 				    unsigned long bio_flags, u64 offset)
8184 {
8185 	int ret;
8186 	struct btrfs_root *root = BTRFS_I(inode)->root;
8187 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8188 	BUG_ON(ret); /* -ENOMEM */
8189 	return 0;
8190 }
8191 
8192 static void btrfs_end_dio_bio(struct bio *bio)
8193 {
8194 	struct btrfs_dio_private *dip = bio->bi_private;
8195 	int err = bio->bi_error;
8196 
8197 	if (err)
8198 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8199 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8200 			   btrfs_ino(dip->inode), bio_op(bio), bio->bi_rw,
8201 			   (unsigned long long)bio->bi_iter.bi_sector,
8202 			   bio->bi_iter.bi_size, err);
8203 
8204 	if (dip->subio_endio)
8205 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8206 
8207 	if (err) {
8208 		dip->errors = 1;
8209 
8210 		/*
8211 		 * before atomic variable goto zero, we must make sure
8212 		 * dip->errors is perceived to be set.
8213 		 */
8214 		smp_mb__before_atomic();
8215 	}
8216 
8217 	/* if there are more bios still pending for this dio, just exit */
8218 	if (!atomic_dec_and_test(&dip->pending_bios))
8219 		goto out;
8220 
8221 	if (dip->errors) {
8222 		bio_io_error(dip->orig_bio);
8223 	} else {
8224 		dip->dio_bio->bi_error = 0;
8225 		bio_endio(dip->orig_bio);
8226 	}
8227 out:
8228 	bio_put(bio);
8229 }
8230 
8231 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8232 				       u64 first_sector, gfp_t gfp_flags)
8233 {
8234 	struct bio *bio;
8235 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8236 	if (bio)
8237 		bio_associate_current(bio);
8238 	return bio;
8239 }
8240 
8241 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8242 						 struct inode *inode,
8243 						 struct btrfs_dio_private *dip,
8244 						 struct bio *bio,
8245 						 u64 file_offset)
8246 {
8247 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8248 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8249 	int ret;
8250 
8251 	/*
8252 	 * We load all the csum data we need when we submit
8253 	 * the first bio to reduce the csum tree search and
8254 	 * contention.
8255 	 */
8256 	if (dip->logical_offset == file_offset) {
8257 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8258 						file_offset);
8259 		if (ret)
8260 			return ret;
8261 	}
8262 
8263 	if (bio == dip->orig_bio)
8264 		return 0;
8265 
8266 	file_offset -= dip->logical_offset;
8267 	file_offset >>= inode->i_sb->s_blocksize_bits;
8268 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8269 
8270 	return 0;
8271 }
8272 
8273 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8274 					 u64 file_offset, int skip_sum,
8275 					 int async_submit)
8276 {
8277 	struct btrfs_dio_private *dip = bio->bi_private;
8278 	bool write = bio_op(bio) == REQ_OP_WRITE;
8279 	struct btrfs_root *root = BTRFS_I(inode)->root;
8280 	int ret;
8281 
8282 	if (async_submit)
8283 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8284 
8285 	bio_get(bio);
8286 
8287 	if (!write) {
8288 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8289 				BTRFS_WQ_ENDIO_DATA);
8290 		if (ret)
8291 			goto err;
8292 	}
8293 
8294 	if (skip_sum)
8295 		goto map;
8296 
8297 	if (write && async_submit) {
8298 		ret = btrfs_wq_submit_bio(root->fs_info,
8299 				   inode, bio, 0, 0, file_offset,
8300 				   __btrfs_submit_bio_start_direct_io,
8301 				   __btrfs_submit_bio_done);
8302 		goto err;
8303 	} else if (write) {
8304 		/*
8305 		 * If we aren't doing async submit, calculate the csum of the
8306 		 * bio now.
8307 		 */
8308 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8309 		if (ret)
8310 			goto err;
8311 	} else {
8312 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8313 						     file_offset);
8314 		if (ret)
8315 			goto err;
8316 	}
8317 map:
8318 	ret = btrfs_map_bio(root, bio, 0, async_submit);
8319 err:
8320 	bio_put(bio);
8321 	return ret;
8322 }
8323 
8324 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8325 				    int skip_sum)
8326 {
8327 	struct inode *inode = dip->inode;
8328 	struct btrfs_root *root = BTRFS_I(inode)->root;
8329 	struct bio *bio;
8330 	struct bio *orig_bio = dip->orig_bio;
8331 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8332 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8333 	u64 file_offset = dip->logical_offset;
8334 	u64 submit_len = 0;
8335 	u64 map_length;
8336 	u32 blocksize = root->sectorsize;
8337 	int async_submit = 0;
8338 	int nr_sectors;
8339 	int ret;
8340 	int i;
8341 
8342 	map_length = orig_bio->bi_iter.bi_size;
8343 	ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8344 			      start_sector << 9, &map_length, NULL, 0);
8345 	if (ret)
8346 		return -EIO;
8347 
8348 	if (map_length >= orig_bio->bi_iter.bi_size) {
8349 		bio = orig_bio;
8350 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8351 		goto submit;
8352 	}
8353 
8354 	/* async crcs make it difficult to collect full stripe writes. */
8355 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8356 		async_submit = 0;
8357 	else
8358 		async_submit = 1;
8359 
8360 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8361 	if (!bio)
8362 		return -ENOMEM;
8363 
8364 	bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_rw);
8365 	bio->bi_private = dip;
8366 	bio->bi_end_io = btrfs_end_dio_bio;
8367 	btrfs_io_bio(bio)->logical = file_offset;
8368 	atomic_inc(&dip->pending_bios);
8369 
8370 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8371 		nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8372 		i = 0;
8373 next_block:
8374 		if (unlikely(map_length < submit_len + blocksize ||
8375 		    bio_add_page(bio, bvec->bv_page, blocksize,
8376 			    bvec->bv_offset + (i * blocksize)) < blocksize)) {
8377 			/*
8378 			 * inc the count before we submit the bio so
8379 			 * we know the end IO handler won't happen before
8380 			 * we inc the count. Otherwise, the dip might get freed
8381 			 * before we're done setting it up
8382 			 */
8383 			atomic_inc(&dip->pending_bios);
8384 			ret = __btrfs_submit_dio_bio(bio, inode,
8385 						     file_offset, skip_sum,
8386 						     async_submit);
8387 			if (ret) {
8388 				bio_put(bio);
8389 				atomic_dec(&dip->pending_bios);
8390 				goto out_err;
8391 			}
8392 
8393 			start_sector += submit_len >> 9;
8394 			file_offset += submit_len;
8395 
8396 			submit_len = 0;
8397 
8398 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8399 						  start_sector, GFP_NOFS);
8400 			if (!bio)
8401 				goto out_err;
8402 			bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_rw);
8403 			bio->bi_private = dip;
8404 			bio->bi_end_io = btrfs_end_dio_bio;
8405 			btrfs_io_bio(bio)->logical = file_offset;
8406 
8407 			map_length = orig_bio->bi_iter.bi_size;
8408 			ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8409 					      start_sector << 9,
8410 					      &map_length, NULL, 0);
8411 			if (ret) {
8412 				bio_put(bio);
8413 				goto out_err;
8414 			}
8415 
8416 			goto next_block;
8417 		} else {
8418 			submit_len += blocksize;
8419 			if (--nr_sectors) {
8420 				i++;
8421 				goto next_block;
8422 			}
8423 			bvec++;
8424 		}
8425 	}
8426 
8427 submit:
8428 	ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8429 				     async_submit);
8430 	if (!ret)
8431 		return 0;
8432 
8433 	bio_put(bio);
8434 out_err:
8435 	dip->errors = 1;
8436 	/*
8437 	 * before atomic variable goto zero, we must
8438 	 * make sure dip->errors is perceived to be set.
8439 	 */
8440 	smp_mb__before_atomic();
8441 	if (atomic_dec_and_test(&dip->pending_bios))
8442 		bio_io_error(dip->orig_bio);
8443 
8444 	/* bio_end_io() will handle error, so we needn't return it */
8445 	return 0;
8446 }
8447 
8448 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8449 				loff_t file_offset)
8450 {
8451 	struct btrfs_dio_private *dip = NULL;
8452 	struct bio *io_bio = NULL;
8453 	struct btrfs_io_bio *btrfs_bio;
8454 	int skip_sum;
8455 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8456 	int ret = 0;
8457 
8458 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8459 
8460 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8461 	if (!io_bio) {
8462 		ret = -ENOMEM;
8463 		goto free_ordered;
8464 	}
8465 
8466 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8467 	if (!dip) {
8468 		ret = -ENOMEM;
8469 		goto free_ordered;
8470 	}
8471 
8472 	dip->private = dio_bio->bi_private;
8473 	dip->inode = inode;
8474 	dip->logical_offset = file_offset;
8475 	dip->bytes = dio_bio->bi_iter.bi_size;
8476 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8477 	io_bio->bi_private = dip;
8478 	dip->orig_bio = io_bio;
8479 	dip->dio_bio = dio_bio;
8480 	atomic_set(&dip->pending_bios, 0);
8481 	btrfs_bio = btrfs_io_bio(io_bio);
8482 	btrfs_bio->logical = file_offset;
8483 
8484 	if (write) {
8485 		io_bio->bi_end_io = btrfs_endio_direct_write;
8486 	} else {
8487 		io_bio->bi_end_io = btrfs_endio_direct_read;
8488 		dip->subio_endio = btrfs_subio_endio_read;
8489 	}
8490 
8491 	/*
8492 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8493 	 * even if we fail to submit a bio, because in such case we do the
8494 	 * corresponding error handling below and it must not be done a second
8495 	 * time by btrfs_direct_IO().
8496 	 */
8497 	if (write) {
8498 		struct btrfs_dio_data *dio_data = current->journal_info;
8499 
8500 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8501 			dip->bytes;
8502 		dio_data->unsubmitted_oe_range_start =
8503 			dio_data->unsubmitted_oe_range_end;
8504 	}
8505 
8506 	ret = btrfs_submit_direct_hook(dip, skip_sum);
8507 	if (!ret)
8508 		return;
8509 
8510 	if (btrfs_bio->end_io)
8511 		btrfs_bio->end_io(btrfs_bio, ret);
8512 
8513 free_ordered:
8514 	/*
8515 	 * If we arrived here it means either we failed to submit the dip
8516 	 * or we either failed to clone the dio_bio or failed to allocate the
8517 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8518 	 * call bio_endio against our io_bio so that we get proper resource
8519 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8520 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8521 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8522 	 */
8523 	if (io_bio && dip) {
8524 		io_bio->bi_error = -EIO;
8525 		bio_endio(io_bio);
8526 		/*
8527 		 * The end io callbacks free our dip, do the final put on io_bio
8528 		 * and all the cleanup and final put for dio_bio (through
8529 		 * dio_end_io()).
8530 		 */
8531 		dip = NULL;
8532 		io_bio = NULL;
8533 	} else {
8534 		if (write)
8535 			btrfs_endio_direct_write_update_ordered(inode,
8536 						file_offset,
8537 						dio_bio->bi_iter.bi_size,
8538 						0);
8539 		else
8540 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8541 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8542 
8543 		dio_bio->bi_error = -EIO;
8544 		/*
8545 		 * Releases and cleans up our dio_bio, no need to bio_put()
8546 		 * nor bio_endio()/bio_io_error() against dio_bio.
8547 		 */
8548 		dio_end_io(dio_bio, ret);
8549 	}
8550 	if (io_bio)
8551 		bio_put(io_bio);
8552 	kfree(dip);
8553 }
8554 
8555 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8556 			const struct iov_iter *iter, loff_t offset)
8557 {
8558 	int seg;
8559 	int i;
8560 	unsigned blocksize_mask = root->sectorsize - 1;
8561 	ssize_t retval = -EINVAL;
8562 
8563 	if (offset & blocksize_mask)
8564 		goto out;
8565 
8566 	if (iov_iter_alignment(iter) & blocksize_mask)
8567 		goto out;
8568 
8569 	/* If this is a write we don't need to check anymore */
8570 	if (iov_iter_rw(iter) == WRITE)
8571 		return 0;
8572 	/*
8573 	 * Check to make sure we don't have duplicate iov_base's in this
8574 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8575 	 * when reading back.
8576 	 */
8577 	for (seg = 0; seg < iter->nr_segs; seg++) {
8578 		for (i = seg + 1; i < iter->nr_segs; i++) {
8579 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8580 				goto out;
8581 		}
8582 	}
8583 	retval = 0;
8584 out:
8585 	return retval;
8586 }
8587 
8588 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8589 {
8590 	struct file *file = iocb->ki_filp;
8591 	struct inode *inode = file->f_mapping->host;
8592 	struct btrfs_root *root = BTRFS_I(inode)->root;
8593 	struct btrfs_dio_data dio_data = { 0 };
8594 	loff_t offset = iocb->ki_pos;
8595 	size_t count = 0;
8596 	int flags = 0;
8597 	bool wakeup = true;
8598 	bool relock = false;
8599 	ssize_t ret;
8600 
8601 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8602 		return 0;
8603 
8604 	inode_dio_begin(inode);
8605 	smp_mb__after_atomic();
8606 
8607 	/*
8608 	 * The generic stuff only does filemap_write_and_wait_range, which
8609 	 * isn't enough if we've written compressed pages to this area, so
8610 	 * we need to flush the dirty pages again to make absolutely sure
8611 	 * that any outstanding dirty pages are on disk.
8612 	 */
8613 	count = iov_iter_count(iter);
8614 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8615 		     &BTRFS_I(inode)->runtime_flags))
8616 		filemap_fdatawrite_range(inode->i_mapping, offset,
8617 					 offset + count - 1);
8618 
8619 	if (iov_iter_rw(iter) == WRITE) {
8620 		/*
8621 		 * If the write DIO is beyond the EOF, we need update
8622 		 * the isize, but it is protected by i_mutex. So we can
8623 		 * not unlock the i_mutex at this case.
8624 		 */
8625 		if (offset + count <= inode->i_size) {
8626 			inode_unlock(inode);
8627 			relock = true;
8628 		}
8629 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8630 		if (ret)
8631 			goto out;
8632 		dio_data.outstanding_extents = div64_u64(count +
8633 						BTRFS_MAX_EXTENT_SIZE - 1,
8634 						BTRFS_MAX_EXTENT_SIZE);
8635 
8636 		/*
8637 		 * We need to know how many extents we reserved so that we can
8638 		 * do the accounting properly if we go over the number we
8639 		 * originally calculated.  Abuse current->journal_info for this.
8640 		 */
8641 		dio_data.reserve = round_up(count, root->sectorsize);
8642 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8643 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8644 		current->journal_info = &dio_data;
8645 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8646 				     &BTRFS_I(inode)->runtime_flags)) {
8647 		inode_dio_end(inode);
8648 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8649 		wakeup = false;
8650 	}
8651 
8652 	ret = __blockdev_direct_IO(iocb, inode,
8653 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8654 				   iter, btrfs_get_blocks_direct, NULL,
8655 				   btrfs_submit_direct, flags);
8656 	if (iov_iter_rw(iter) == WRITE) {
8657 		current->journal_info = NULL;
8658 		if (ret < 0 && ret != -EIOCBQUEUED) {
8659 			if (dio_data.reserve)
8660 				btrfs_delalloc_release_space(inode, offset,
8661 							     dio_data.reserve);
8662 			/*
8663 			 * On error we might have left some ordered extents
8664 			 * without submitting corresponding bios for them, so
8665 			 * cleanup them up to avoid other tasks getting them
8666 			 * and waiting for them to complete forever.
8667 			 */
8668 			if (dio_data.unsubmitted_oe_range_start <
8669 			    dio_data.unsubmitted_oe_range_end)
8670 				btrfs_endio_direct_write_update_ordered(inode,
8671 					dio_data.unsubmitted_oe_range_start,
8672 					dio_data.unsubmitted_oe_range_end -
8673 					dio_data.unsubmitted_oe_range_start,
8674 					0);
8675 		} else if (ret >= 0 && (size_t)ret < count)
8676 			btrfs_delalloc_release_space(inode, offset,
8677 						     count - (size_t)ret);
8678 	}
8679 out:
8680 	if (wakeup)
8681 		inode_dio_end(inode);
8682 	if (relock)
8683 		inode_lock(inode);
8684 
8685 	return ret;
8686 }
8687 
8688 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8689 
8690 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8691 		__u64 start, __u64 len)
8692 {
8693 	int	ret;
8694 
8695 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8696 	if (ret)
8697 		return ret;
8698 
8699 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8700 }
8701 
8702 int btrfs_readpage(struct file *file, struct page *page)
8703 {
8704 	struct extent_io_tree *tree;
8705 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8706 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8707 }
8708 
8709 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8710 {
8711 	struct extent_io_tree *tree;
8712 	struct inode *inode = page->mapping->host;
8713 	int ret;
8714 
8715 	if (current->flags & PF_MEMALLOC) {
8716 		redirty_page_for_writepage(wbc, page);
8717 		unlock_page(page);
8718 		return 0;
8719 	}
8720 
8721 	/*
8722 	 * If we are under memory pressure we will call this directly from the
8723 	 * VM, we need to make sure we have the inode referenced for the ordered
8724 	 * extent.  If not just return like we didn't do anything.
8725 	 */
8726 	if (!igrab(inode)) {
8727 		redirty_page_for_writepage(wbc, page);
8728 		return AOP_WRITEPAGE_ACTIVATE;
8729 	}
8730 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8731 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8732 	btrfs_add_delayed_iput(inode);
8733 	return ret;
8734 }
8735 
8736 static int btrfs_writepages(struct address_space *mapping,
8737 			    struct writeback_control *wbc)
8738 {
8739 	struct extent_io_tree *tree;
8740 
8741 	tree = &BTRFS_I(mapping->host)->io_tree;
8742 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8743 }
8744 
8745 static int
8746 btrfs_readpages(struct file *file, struct address_space *mapping,
8747 		struct list_head *pages, unsigned nr_pages)
8748 {
8749 	struct extent_io_tree *tree;
8750 	tree = &BTRFS_I(mapping->host)->io_tree;
8751 	return extent_readpages(tree, mapping, pages, nr_pages,
8752 				btrfs_get_extent);
8753 }
8754 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8755 {
8756 	struct extent_io_tree *tree;
8757 	struct extent_map_tree *map;
8758 	int ret;
8759 
8760 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8761 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8762 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8763 	if (ret == 1) {
8764 		ClearPagePrivate(page);
8765 		set_page_private(page, 0);
8766 		put_page(page);
8767 	}
8768 	return ret;
8769 }
8770 
8771 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8772 {
8773 	if (PageWriteback(page) || PageDirty(page))
8774 		return 0;
8775 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8776 }
8777 
8778 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8779 				 unsigned int length)
8780 {
8781 	struct inode *inode = page->mapping->host;
8782 	struct extent_io_tree *tree;
8783 	struct btrfs_ordered_extent *ordered;
8784 	struct extent_state *cached_state = NULL;
8785 	u64 page_start = page_offset(page);
8786 	u64 page_end = page_start + PAGE_SIZE - 1;
8787 	u64 start;
8788 	u64 end;
8789 	int inode_evicting = inode->i_state & I_FREEING;
8790 
8791 	/*
8792 	 * we have the page locked, so new writeback can't start,
8793 	 * and the dirty bit won't be cleared while we are here.
8794 	 *
8795 	 * Wait for IO on this page so that we can safely clear
8796 	 * the PagePrivate2 bit and do ordered accounting
8797 	 */
8798 	wait_on_page_writeback(page);
8799 
8800 	tree = &BTRFS_I(inode)->io_tree;
8801 	if (offset) {
8802 		btrfs_releasepage(page, GFP_NOFS);
8803 		return;
8804 	}
8805 
8806 	if (!inode_evicting)
8807 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8808 again:
8809 	start = page_start;
8810 	ordered = btrfs_lookup_ordered_range(inode, start,
8811 					page_end - start + 1);
8812 	if (ordered) {
8813 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8814 		/*
8815 		 * IO on this page will never be started, so we need
8816 		 * to account for any ordered extents now
8817 		 */
8818 		if (!inode_evicting)
8819 			clear_extent_bit(tree, start, end,
8820 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8821 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8822 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8823 					 GFP_NOFS);
8824 		/*
8825 		 * whoever cleared the private bit is responsible
8826 		 * for the finish_ordered_io
8827 		 */
8828 		if (TestClearPagePrivate2(page)) {
8829 			struct btrfs_ordered_inode_tree *tree;
8830 			u64 new_len;
8831 
8832 			tree = &BTRFS_I(inode)->ordered_tree;
8833 
8834 			spin_lock_irq(&tree->lock);
8835 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8836 			new_len = start - ordered->file_offset;
8837 			if (new_len < ordered->truncated_len)
8838 				ordered->truncated_len = new_len;
8839 			spin_unlock_irq(&tree->lock);
8840 
8841 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8842 							   start,
8843 							   end - start + 1, 1))
8844 				btrfs_finish_ordered_io(ordered);
8845 		}
8846 		btrfs_put_ordered_extent(ordered);
8847 		if (!inode_evicting) {
8848 			cached_state = NULL;
8849 			lock_extent_bits(tree, start, end,
8850 					 &cached_state);
8851 		}
8852 
8853 		start = end + 1;
8854 		if (start < page_end)
8855 			goto again;
8856 	}
8857 
8858 	/*
8859 	 * Qgroup reserved space handler
8860 	 * Page here will be either
8861 	 * 1) Already written to disk
8862 	 *    In this case, its reserved space is released from data rsv map
8863 	 *    and will be freed by delayed_ref handler finally.
8864 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8865 	 *    space.
8866 	 * 2) Not written to disk
8867 	 *    This means the reserved space should be freed here.
8868 	 */
8869 	btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8870 	if (!inode_evicting) {
8871 		clear_extent_bit(tree, page_start, page_end,
8872 				 EXTENT_LOCKED | EXTENT_DIRTY |
8873 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8874 				 EXTENT_DEFRAG, 1, 1,
8875 				 &cached_state, GFP_NOFS);
8876 
8877 		__btrfs_releasepage(page, GFP_NOFS);
8878 	}
8879 
8880 	ClearPageChecked(page);
8881 	if (PagePrivate(page)) {
8882 		ClearPagePrivate(page);
8883 		set_page_private(page, 0);
8884 		put_page(page);
8885 	}
8886 }
8887 
8888 /*
8889  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8890  * called from a page fault handler when a page is first dirtied. Hence we must
8891  * be careful to check for EOF conditions here. We set the page up correctly
8892  * for a written page which means we get ENOSPC checking when writing into
8893  * holes and correct delalloc and unwritten extent mapping on filesystems that
8894  * support these features.
8895  *
8896  * We are not allowed to take the i_mutex here so we have to play games to
8897  * protect against truncate races as the page could now be beyond EOF.  Because
8898  * vmtruncate() writes the inode size before removing pages, once we have the
8899  * page lock we can determine safely if the page is beyond EOF. If it is not
8900  * beyond EOF, then the page is guaranteed safe against truncation until we
8901  * unlock the page.
8902  */
8903 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8904 {
8905 	struct page *page = vmf->page;
8906 	struct inode *inode = file_inode(vma->vm_file);
8907 	struct btrfs_root *root = BTRFS_I(inode)->root;
8908 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8909 	struct btrfs_ordered_extent *ordered;
8910 	struct extent_state *cached_state = NULL;
8911 	char *kaddr;
8912 	unsigned long zero_start;
8913 	loff_t size;
8914 	int ret;
8915 	int reserved = 0;
8916 	u64 reserved_space;
8917 	u64 page_start;
8918 	u64 page_end;
8919 	u64 end;
8920 
8921 	reserved_space = PAGE_SIZE;
8922 
8923 	sb_start_pagefault(inode->i_sb);
8924 	page_start = page_offset(page);
8925 	page_end = page_start + PAGE_SIZE - 1;
8926 	end = page_end;
8927 
8928 	/*
8929 	 * Reserving delalloc space after obtaining the page lock can lead to
8930 	 * deadlock. For example, if a dirty page is locked by this function
8931 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8932 	 * dirty page write out, then the btrfs_writepage() function could
8933 	 * end up waiting indefinitely to get a lock on the page currently
8934 	 * being processed by btrfs_page_mkwrite() function.
8935 	 */
8936 	ret = btrfs_delalloc_reserve_space(inode, page_start,
8937 					   reserved_space);
8938 	if (!ret) {
8939 		ret = file_update_time(vma->vm_file);
8940 		reserved = 1;
8941 	}
8942 	if (ret) {
8943 		if (ret == -ENOMEM)
8944 			ret = VM_FAULT_OOM;
8945 		else /* -ENOSPC, -EIO, etc */
8946 			ret = VM_FAULT_SIGBUS;
8947 		if (reserved)
8948 			goto out;
8949 		goto out_noreserve;
8950 	}
8951 
8952 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8953 again:
8954 	lock_page(page);
8955 	size = i_size_read(inode);
8956 
8957 	if ((page->mapping != inode->i_mapping) ||
8958 	    (page_start >= size)) {
8959 		/* page got truncated out from underneath us */
8960 		goto out_unlock;
8961 	}
8962 	wait_on_page_writeback(page);
8963 
8964 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8965 	set_page_extent_mapped(page);
8966 
8967 	/*
8968 	 * we can't set the delalloc bits if there are pending ordered
8969 	 * extents.  Drop our locks and wait for them to finish
8970 	 */
8971 	ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
8972 	if (ordered) {
8973 		unlock_extent_cached(io_tree, page_start, page_end,
8974 				     &cached_state, GFP_NOFS);
8975 		unlock_page(page);
8976 		btrfs_start_ordered_extent(inode, ordered, 1);
8977 		btrfs_put_ordered_extent(ordered);
8978 		goto again;
8979 	}
8980 
8981 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8982 		reserved_space = round_up(size - page_start, root->sectorsize);
8983 		if (reserved_space < PAGE_SIZE) {
8984 			end = page_start + reserved_space - 1;
8985 			spin_lock(&BTRFS_I(inode)->lock);
8986 			BTRFS_I(inode)->outstanding_extents++;
8987 			spin_unlock(&BTRFS_I(inode)->lock);
8988 			btrfs_delalloc_release_space(inode, page_start,
8989 						PAGE_SIZE - reserved_space);
8990 		}
8991 	}
8992 
8993 	/*
8994 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
8995 	 * if it was already dirty, so for space accounting reasons we need to
8996 	 * clear any delalloc bits for the range we are fixing to save.  There
8997 	 * is probably a better way to do this, but for now keep consistent with
8998 	 * prepare_pages in the normal write path.
8999 	 */
9000 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9001 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9002 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9003 			  0, 0, &cached_state, GFP_NOFS);
9004 
9005 	ret = btrfs_set_extent_delalloc(inode, page_start, end,
9006 					&cached_state);
9007 	if (ret) {
9008 		unlock_extent_cached(io_tree, page_start, page_end,
9009 				     &cached_state, GFP_NOFS);
9010 		ret = VM_FAULT_SIGBUS;
9011 		goto out_unlock;
9012 	}
9013 	ret = 0;
9014 
9015 	/* page is wholly or partially inside EOF */
9016 	if (page_start + PAGE_SIZE > size)
9017 		zero_start = size & ~PAGE_MASK;
9018 	else
9019 		zero_start = PAGE_SIZE;
9020 
9021 	if (zero_start != PAGE_SIZE) {
9022 		kaddr = kmap(page);
9023 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9024 		flush_dcache_page(page);
9025 		kunmap(page);
9026 	}
9027 	ClearPageChecked(page);
9028 	set_page_dirty(page);
9029 	SetPageUptodate(page);
9030 
9031 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
9032 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9033 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9034 
9035 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9036 
9037 out_unlock:
9038 	if (!ret) {
9039 		sb_end_pagefault(inode->i_sb);
9040 		return VM_FAULT_LOCKED;
9041 	}
9042 	unlock_page(page);
9043 out:
9044 	btrfs_delalloc_release_space(inode, page_start, reserved_space);
9045 out_noreserve:
9046 	sb_end_pagefault(inode->i_sb);
9047 	return ret;
9048 }
9049 
9050 static int btrfs_truncate(struct inode *inode)
9051 {
9052 	struct btrfs_root *root = BTRFS_I(inode)->root;
9053 	struct btrfs_block_rsv *rsv;
9054 	int ret = 0;
9055 	int err = 0;
9056 	struct btrfs_trans_handle *trans;
9057 	u64 mask = root->sectorsize - 1;
9058 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9059 
9060 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9061 				       (u64)-1);
9062 	if (ret)
9063 		return ret;
9064 
9065 	/*
9066 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9067 	 * 3 things going on here
9068 	 *
9069 	 * 1) We need to reserve space for our orphan item and the space to
9070 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9071 	 * orphan item because we didn't reserve space to remove it.
9072 	 *
9073 	 * 2) We need to reserve space to update our inode.
9074 	 *
9075 	 * 3) We need to have something to cache all the space that is going to
9076 	 * be free'd up by the truncate operation, but also have some slack
9077 	 * space reserved in case it uses space during the truncate (thank you
9078 	 * very much snapshotting).
9079 	 *
9080 	 * And we need these to all be separate.  The fact is we can use a lot of
9081 	 * space doing the truncate, and we have no earthly idea how much space
9082 	 * we will use, so we need the truncate reservation to be separate so it
9083 	 * doesn't end up using space reserved for updating the inode or
9084 	 * removing the orphan item.  We also need to be able to stop the
9085 	 * transaction and start a new one, which means we need to be able to
9086 	 * update the inode several times, and we have no idea of knowing how
9087 	 * many times that will be, so we can't just reserve 1 item for the
9088 	 * entirety of the operation, so that has to be done separately as well.
9089 	 * Then there is the orphan item, which does indeed need to be held on
9090 	 * to for the whole operation, and we need nobody to touch this reserved
9091 	 * space except the orphan code.
9092 	 *
9093 	 * So that leaves us with
9094 	 *
9095 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9096 	 * 2) rsv - for the truncate reservation, which we will steal from the
9097 	 * transaction reservation.
9098 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9099 	 * updating the inode.
9100 	 */
9101 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9102 	if (!rsv)
9103 		return -ENOMEM;
9104 	rsv->size = min_size;
9105 	rsv->failfast = 1;
9106 
9107 	/*
9108 	 * 1 for the truncate slack space
9109 	 * 1 for updating the inode.
9110 	 */
9111 	trans = btrfs_start_transaction(root, 2);
9112 	if (IS_ERR(trans)) {
9113 		err = PTR_ERR(trans);
9114 		goto out;
9115 	}
9116 
9117 	/* Migrate the slack space for the truncate to our reserve */
9118 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9119 				      min_size, 0);
9120 	BUG_ON(ret);
9121 
9122 	/*
9123 	 * So if we truncate and then write and fsync we normally would just
9124 	 * write the extents that changed, which is a problem if we need to
9125 	 * first truncate that entire inode.  So set this flag so we write out
9126 	 * all of the extents in the inode to the sync log so we're completely
9127 	 * safe.
9128 	 */
9129 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9130 	trans->block_rsv = rsv;
9131 
9132 	while (1) {
9133 		ret = btrfs_truncate_inode_items(trans, root, inode,
9134 						 inode->i_size,
9135 						 BTRFS_EXTENT_DATA_KEY);
9136 		if (ret != -ENOSPC && ret != -EAGAIN) {
9137 			err = ret;
9138 			break;
9139 		}
9140 
9141 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9142 		ret = btrfs_update_inode(trans, root, inode);
9143 		if (ret) {
9144 			err = ret;
9145 			break;
9146 		}
9147 
9148 		btrfs_end_transaction(trans, root);
9149 		btrfs_btree_balance_dirty(root);
9150 
9151 		trans = btrfs_start_transaction(root, 2);
9152 		if (IS_ERR(trans)) {
9153 			ret = err = PTR_ERR(trans);
9154 			trans = NULL;
9155 			break;
9156 		}
9157 
9158 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9159 					      rsv, min_size, 0);
9160 		BUG_ON(ret);	/* shouldn't happen */
9161 		trans->block_rsv = rsv;
9162 	}
9163 
9164 	if (ret == 0 && inode->i_nlink > 0) {
9165 		trans->block_rsv = root->orphan_block_rsv;
9166 		ret = btrfs_orphan_del(trans, inode);
9167 		if (ret)
9168 			err = ret;
9169 	}
9170 
9171 	if (trans) {
9172 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9173 		ret = btrfs_update_inode(trans, root, inode);
9174 		if (ret && !err)
9175 			err = ret;
9176 
9177 		ret = btrfs_end_transaction(trans, root);
9178 		btrfs_btree_balance_dirty(root);
9179 	}
9180 out:
9181 	btrfs_free_block_rsv(root, rsv);
9182 
9183 	if (ret && !err)
9184 		err = ret;
9185 
9186 	return err;
9187 }
9188 
9189 /*
9190  * create a new subvolume directory/inode (helper for the ioctl).
9191  */
9192 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9193 			     struct btrfs_root *new_root,
9194 			     struct btrfs_root *parent_root,
9195 			     u64 new_dirid)
9196 {
9197 	struct inode *inode;
9198 	int err;
9199 	u64 index = 0;
9200 
9201 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9202 				new_dirid, new_dirid,
9203 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9204 				&index);
9205 	if (IS_ERR(inode))
9206 		return PTR_ERR(inode);
9207 	inode->i_op = &btrfs_dir_inode_operations;
9208 	inode->i_fop = &btrfs_dir_file_operations;
9209 
9210 	set_nlink(inode, 1);
9211 	btrfs_i_size_write(inode, 0);
9212 	unlock_new_inode(inode);
9213 
9214 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9215 	if (err)
9216 		btrfs_err(new_root->fs_info,
9217 			  "error inheriting subvolume %llu properties: %d",
9218 			  new_root->root_key.objectid, err);
9219 
9220 	err = btrfs_update_inode(trans, new_root, inode);
9221 
9222 	iput(inode);
9223 	return err;
9224 }
9225 
9226 struct inode *btrfs_alloc_inode(struct super_block *sb)
9227 {
9228 	struct btrfs_inode *ei;
9229 	struct inode *inode;
9230 
9231 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9232 	if (!ei)
9233 		return NULL;
9234 
9235 	ei->root = NULL;
9236 	ei->generation = 0;
9237 	ei->last_trans = 0;
9238 	ei->last_sub_trans = 0;
9239 	ei->logged_trans = 0;
9240 	ei->delalloc_bytes = 0;
9241 	ei->defrag_bytes = 0;
9242 	ei->disk_i_size = 0;
9243 	ei->flags = 0;
9244 	ei->csum_bytes = 0;
9245 	ei->index_cnt = (u64)-1;
9246 	ei->dir_index = 0;
9247 	ei->last_unlink_trans = 0;
9248 	ei->last_log_commit = 0;
9249 	ei->delayed_iput_count = 0;
9250 
9251 	spin_lock_init(&ei->lock);
9252 	ei->outstanding_extents = 0;
9253 	ei->reserved_extents = 0;
9254 
9255 	ei->runtime_flags = 0;
9256 	ei->force_compress = BTRFS_COMPRESS_NONE;
9257 
9258 	ei->delayed_node = NULL;
9259 
9260 	ei->i_otime.tv_sec = 0;
9261 	ei->i_otime.tv_nsec = 0;
9262 
9263 	inode = &ei->vfs_inode;
9264 	extent_map_tree_init(&ei->extent_tree);
9265 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9266 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9267 	ei->io_tree.track_uptodate = 1;
9268 	ei->io_failure_tree.track_uptodate = 1;
9269 	atomic_set(&ei->sync_writers, 0);
9270 	mutex_init(&ei->log_mutex);
9271 	mutex_init(&ei->delalloc_mutex);
9272 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9273 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9274 	INIT_LIST_HEAD(&ei->delayed_iput);
9275 	RB_CLEAR_NODE(&ei->rb_node);
9276 	init_rwsem(&ei->dio_sem);
9277 
9278 	return inode;
9279 }
9280 
9281 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9282 void btrfs_test_destroy_inode(struct inode *inode)
9283 {
9284 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9285 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9286 }
9287 #endif
9288 
9289 static void btrfs_i_callback(struct rcu_head *head)
9290 {
9291 	struct inode *inode = container_of(head, struct inode, i_rcu);
9292 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9293 }
9294 
9295 void btrfs_destroy_inode(struct inode *inode)
9296 {
9297 	struct btrfs_ordered_extent *ordered;
9298 	struct btrfs_root *root = BTRFS_I(inode)->root;
9299 
9300 	WARN_ON(!hlist_empty(&inode->i_dentry));
9301 	WARN_ON(inode->i_data.nrpages);
9302 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9303 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9304 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9305 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9306 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9307 
9308 	/*
9309 	 * This can happen where we create an inode, but somebody else also
9310 	 * created the same inode and we need to destroy the one we already
9311 	 * created.
9312 	 */
9313 	if (!root)
9314 		goto free;
9315 
9316 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9317 		     &BTRFS_I(inode)->runtime_flags)) {
9318 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9319 			btrfs_ino(inode));
9320 		atomic_dec(&root->orphan_inodes);
9321 	}
9322 
9323 	while (1) {
9324 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9325 		if (!ordered)
9326 			break;
9327 		else {
9328 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9329 				ordered->file_offset, ordered->len);
9330 			btrfs_remove_ordered_extent(inode, ordered);
9331 			btrfs_put_ordered_extent(ordered);
9332 			btrfs_put_ordered_extent(ordered);
9333 		}
9334 	}
9335 	btrfs_qgroup_check_reserved_leak(inode);
9336 	inode_tree_del(inode);
9337 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9338 free:
9339 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9340 }
9341 
9342 int btrfs_drop_inode(struct inode *inode)
9343 {
9344 	struct btrfs_root *root = BTRFS_I(inode)->root;
9345 
9346 	if (root == NULL)
9347 		return 1;
9348 
9349 	/* the snap/subvol tree is on deleting */
9350 	if (btrfs_root_refs(&root->root_item) == 0)
9351 		return 1;
9352 	else
9353 		return generic_drop_inode(inode);
9354 }
9355 
9356 static void init_once(void *foo)
9357 {
9358 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9359 
9360 	inode_init_once(&ei->vfs_inode);
9361 }
9362 
9363 void btrfs_destroy_cachep(void)
9364 {
9365 	/*
9366 	 * Make sure all delayed rcu free inodes are flushed before we
9367 	 * destroy cache.
9368 	 */
9369 	rcu_barrier();
9370 	kmem_cache_destroy(btrfs_inode_cachep);
9371 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9372 	kmem_cache_destroy(btrfs_transaction_cachep);
9373 	kmem_cache_destroy(btrfs_path_cachep);
9374 	kmem_cache_destroy(btrfs_free_space_cachep);
9375 }
9376 
9377 int btrfs_init_cachep(void)
9378 {
9379 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9380 			sizeof(struct btrfs_inode), 0,
9381 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9382 			init_once);
9383 	if (!btrfs_inode_cachep)
9384 		goto fail;
9385 
9386 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9387 			sizeof(struct btrfs_trans_handle), 0,
9388 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9389 	if (!btrfs_trans_handle_cachep)
9390 		goto fail;
9391 
9392 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9393 			sizeof(struct btrfs_transaction), 0,
9394 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9395 	if (!btrfs_transaction_cachep)
9396 		goto fail;
9397 
9398 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9399 			sizeof(struct btrfs_path), 0,
9400 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9401 	if (!btrfs_path_cachep)
9402 		goto fail;
9403 
9404 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9405 			sizeof(struct btrfs_free_space), 0,
9406 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9407 	if (!btrfs_free_space_cachep)
9408 		goto fail;
9409 
9410 	return 0;
9411 fail:
9412 	btrfs_destroy_cachep();
9413 	return -ENOMEM;
9414 }
9415 
9416 static int btrfs_getattr(struct vfsmount *mnt,
9417 			 struct dentry *dentry, struct kstat *stat)
9418 {
9419 	u64 delalloc_bytes;
9420 	struct inode *inode = d_inode(dentry);
9421 	u32 blocksize = inode->i_sb->s_blocksize;
9422 
9423 	generic_fillattr(inode, stat);
9424 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9425 
9426 	spin_lock(&BTRFS_I(inode)->lock);
9427 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9428 	spin_unlock(&BTRFS_I(inode)->lock);
9429 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9430 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9431 	return 0;
9432 }
9433 
9434 static int btrfs_rename_exchange(struct inode *old_dir,
9435 			      struct dentry *old_dentry,
9436 			      struct inode *new_dir,
9437 			      struct dentry *new_dentry)
9438 {
9439 	struct btrfs_trans_handle *trans;
9440 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9441 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9442 	struct inode *new_inode = new_dentry->d_inode;
9443 	struct inode *old_inode = old_dentry->d_inode;
9444 	struct timespec ctime = CURRENT_TIME;
9445 	struct dentry *parent;
9446 	u64 old_ino = btrfs_ino(old_inode);
9447 	u64 new_ino = btrfs_ino(new_inode);
9448 	u64 old_idx = 0;
9449 	u64 new_idx = 0;
9450 	u64 root_objectid;
9451 	int ret;
9452 	bool root_log_pinned = false;
9453 	bool dest_log_pinned = false;
9454 
9455 	/* we only allow rename subvolume link between subvolumes */
9456 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9457 		return -EXDEV;
9458 
9459 	/* close the race window with snapshot create/destroy ioctl */
9460 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9461 		down_read(&root->fs_info->subvol_sem);
9462 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9463 		down_read(&dest->fs_info->subvol_sem);
9464 
9465 	/*
9466 	 * We want to reserve the absolute worst case amount of items.  So if
9467 	 * both inodes are subvols and we need to unlink them then that would
9468 	 * require 4 item modifications, but if they are both normal inodes it
9469 	 * would require 5 item modifications, so we'll assume their normal
9470 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9471 	 * should cover the worst case number of items we'll modify.
9472 	 */
9473 	trans = btrfs_start_transaction(root, 12);
9474 	if (IS_ERR(trans)) {
9475 		ret = PTR_ERR(trans);
9476 		goto out_notrans;
9477 	}
9478 
9479 	/*
9480 	 * We need to find a free sequence number both in the source and
9481 	 * in the destination directory for the exchange.
9482 	 */
9483 	ret = btrfs_set_inode_index(new_dir, &old_idx);
9484 	if (ret)
9485 		goto out_fail;
9486 	ret = btrfs_set_inode_index(old_dir, &new_idx);
9487 	if (ret)
9488 		goto out_fail;
9489 
9490 	BTRFS_I(old_inode)->dir_index = 0ULL;
9491 	BTRFS_I(new_inode)->dir_index = 0ULL;
9492 
9493 	/* Reference for the source. */
9494 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9495 		/* force full log commit if subvolume involved. */
9496 		btrfs_set_log_full_commit(root->fs_info, trans);
9497 	} else {
9498 		btrfs_pin_log_trans(root);
9499 		root_log_pinned = true;
9500 		ret = btrfs_insert_inode_ref(trans, dest,
9501 					     new_dentry->d_name.name,
9502 					     new_dentry->d_name.len,
9503 					     old_ino,
9504 					     btrfs_ino(new_dir), old_idx);
9505 		if (ret)
9506 			goto out_fail;
9507 	}
9508 
9509 	/* And now for the dest. */
9510 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9511 		/* force full log commit if subvolume involved. */
9512 		btrfs_set_log_full_commit(dest->fs_info, trans);
9513 	} else {
9514 		btrfs_pin_log_trans(dest);
9515 		dest_log_pinned = true;
9516 		ret = btrfs_insert_inode_ref(trans, root,
9517 					     old_dentry->d_name.name,
9518 					     old_dentry->d_name.len,
9519 					     new_ino,
9520 					     btrfs_ino(old_dir), new_idx);
9521 		if (ret)
9522 			goto out_fail;
9523 	}
9524 
9525 	/* Update inode version and ctime/mtime. */
9526 	inode_inc_iversion(old_dir);
9527 	inode_inc_iversion(new_dir);
9528 	inode_inc_iversion(old_inode);
9529 	inode_inc_iversion(new_inode);
9530 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9531 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9532 	old_inode->i_ctime = ctime;
9533 	new_inode->i_ctime = ctime;
9534 
9535 	if (old_dentry->d_parent != new_dentry->d_parent) {
9536 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9537 		btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9538 	}
9539 
9540 	/* src is a subvolume */
9541 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9542 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9543 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9544 					  root_objectid,
9545 					  old_dentry->d_name.name,
9546 					  old_dentry->d_name.len);
9547 	} else { /* src is an inode */
9548 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9549 					   old_dentry->d_inode,
9550 					   old_dentry->d_name.name,
9551 					   old_dentry->d_name.len);
9552 		if (!ret)
9553 			ret = btrfs_update_inode(trans, root, old_inode);
9554 	}
9555 	if (ret) {
9556 		btrfs_abort_transaction(trans, root, ret);
9557 		goto out_fail;
9558 	}
9559 
9560 	/* dest is a subvolume */
9561 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9562 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9563 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9564 					  root_objectid,
9565 					  new_dentry->d_name.name,
9566 					  new_dentry->d_name.len);
9567 	} else { /* dest is an inode */
9568 		ret = __btrfs_unlink_inode(trans, dest, new_dir,
9569 					   new_dentry->d_inode,
9570 					   new_dentry->d_name.name,
9571 					   new_dentry->d_name.len);
9572 		if (!ret)
9573 			ret = btrfs_update_inode(trans, dest, new_inode);
9574 	}
9575 	if (ret) {
9576 		btrfs_abort_transaction(trans, root, ret);
9577 		goto out_fail;
9578 	}
9579 
9580 	ret = btrfs_add_link(trans, new_dir, old_inode,
9581 			     new_dentry->d_name.name,
9582 			     new_dentry->d_name.len, 0, old_idx);
9583 	if (ret) {
9584 		btrfs_abort_transaction(trans, root, ret);
9585 		goto out_fail;
9586 	}
9587 
9588 	ret = btrfs_add_link(trans, old_dir, new_inode,
9589 			     old_dentry->d_name.name,
9590 			     old_dentry->d_name.len, 0, new_idx);
9591 	if (ret) {
9592 		btrfs_abort_transaction(trans, root, ret);
9593 		goto out_fail;
9594 	}
9595 
9596 	if (old_inode->i_nlink == 1)
9597 		BTRFS_I(old_inode)->dir_index = old_idx;
9598 	if (new_inode->i_nlink == 1)
9599 		BTRFS_I(new_inode)->dir_index = new_idx;
9600 
9601 	if (root_log_pinned) {
9602 		parent = new_dentry->d_parent;
9603 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9604 		btrfs_end_log_trans(root);
9605 		root_log_pinned = false;
9606 	}
9607 	if (dest_log_pinned) {
9608 		parent = old_dentry->d_parent;
9609 		btrfs_log_new_name(trans, new_inode, new_dir, parent);
9610 		btrfs_end_log_trans(dest);
9611 		dest_log_pinned = false;
9612 	}
9613 out_fail:
9614 	/*
9615 	 * If we have pinned a log and an error happened, we unpin tasks
9616 	 * trying to sync the log and force them to fallback to a transaction
9617 	 * commit if the log currently contains any of the inodes involved in
9618 	 * this rename operation (to ensure we do not persist a log with an
9619 	 * inconsistent state for any of these inodes or leading to any
9620 	 * inconsistencies when replayed). If the transaction was aborted, the
9621 	 * abortion reason is propagated to userspace when attempting to commit
9622 	 * the transaction. If the log does not contain any of these inodes, we
9623 	 * allow the tasks to sync it.
9624 	 */
9625 	if (ret && (root_log_pinned || dest_log_pinned)) {
9626 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9627 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9628 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9629 		    (new_inode &&
9630 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9631 		    btrfs_set_log_full_commit(root->fs_info, trans);
9632 
9633 		if (root_log_pinned) {
9634 			btrfs_end_log_trans(root);
9635 			root_log_pinned = false;
9636 		}
9637 		if (dest_log_pinned) {
9638 			btrfs_end_log_trans(dest);
9639 			dest_log_pinned = false;
9640 		}
9641 	}
9642 	ret = btrfs_end_transaction(trans, root);
9643 out_notrans:
9644 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9645 		up_read(&dest->fs_info->subvol_sem);
9646 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9647 		up_read(&root->fs_info->subvol_sem);
9648 
9649 	return ret;
9650 }
9651 
9652 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9653 				     struct btrfs_root *root,
9654 				     struct inode *dir,
9655 				     struct dentry *dentry)
9656 {
9657 	int ret;
9658 	struct inode *inode;
9659 	u64 objectid;
9660 	u64 index;
9661 
9662 	ret = btrfs_find_free_ino(root, &objectid);
9663 	if (ret)
9664 		return ret;
9665 
9666 	inode = btrfs_new_inode(trans, root, dir,
9667 				dentry->d_name.name,
9668 				dentry->d_name.len,
9669 				btrfs_ino(dir),
9670 				objectid,
9671 				S_IFCHR | WHITEOUT_MODE,
9672 				&index);
9673 
9674 	if (IS_ERR(inode)) {
9675 		ret = PTR_ERR(inode);
9676 		return ret;
9677 	}
9678 
9679 	inode->i_op = &btrfs_special_inode_operations;
9680 	init_special_inode(inode, inode->i_mode,
9681 		WHITEOUT_DEV);
9682 
9683 	ret = btrfs_init_inode_security(trans, inode, dir,
9684 				&dentry->d_name);
9685 	if (ret)
9686 		goto out;
9687 
9688 	ret = btrfs_add_nondir(trans, dir, dentry,
9689 				inode, 0, index);
9690 	if (ret)
9691 		goto out;
9692 
9693 	ret = btrfs_update_inode(trans, root, inode);
9694 out:
9695 	unlock_new_inode(inode);
9696 	if (ret)
9697 		inode_dec_link_count(inode);
9698 	iput(inode);
9699 
9700 	return ret;
9701 }
9702 
9703 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9704 			   struct inode *new_dir, struct dentry *new_dentry,
9705 			   unsigned int flags)
9706 {
9707 	struct btrfs_trans_handle *trans;
9708 	unsigned int trans_num_items;
9709 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9710 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9711 	struct inode *new_inode = d_inode(new_dentry);
9712 	struct inode *old_inode = d_inode(old_dentry);
9713 	u64 index = 0;
9714 	u64 root_objectid;
9715 	int ret;
9716 	u64 old_ino = btrfs_ino(old_inode);
9717 	bool log_pinned = false;
9718 
9719 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9720 		return -EPERM;
9721 
9722 	/* we only allow rename subvolume link between subvolumes */
9723 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9724 		return -EXDEV;
9725 
9726 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9727 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9728 		return -ENOTEMPTY;
9729 
9730 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9731 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9732 		return -ENOTEMPTY;
9733 
9734 
9735 	/* check for collisions, even if the  name isn't there */
9736 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9737 			     new_dentry->d_name.name,
9738 			     new_dentry->d_name.len);
9739 
9740 	if (ret) {
9741 		if (ret == -EEXIST) {
9742 			/* we shouldn't get
9743 			 * eexist without a new_inode */
9744 			if (WARN_ON(!new_inode)) {
9745 				return ret;
9746 			}
9747 		} else {
9748 			/* maybe -EOVERFLOW */
9749 			return ret;
9750 		}
9751 	}
9752 	ret = 0;
9753 
9754 	/*
9755 	 * we're using rename to replace one file with another.  Start IO on it
9756 	 * now so  we don't add too much work to the end of the transaction
9757 	 */
9758 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9759 		filemap_flush(old_inode->i_mapping);
9760 
9761 	/* close the racy window with snapshot create/destroy ioctl */
9762 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9763 		down_read(&root->fs_info->subvol_sem);
9764 	/*
9765 	 * We want to reserve the absolute worst case amount of items.  So if
9766 	 * both inodes are subvols and we need to unlink them then that would
9767 	 * require 4 item modifications, but if they are both normal inodes it
9768 	 * would require 5 item modifications, so we'll assume they are normal
9769 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9770 	 * should cover the worst case number of items we'll modify.
9771 	 * If our rename has the whiteout flag, we need more 5 units for the
9772 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9773 	 * when selinux is enabled).
9774 	 */
9775 	trans_num_items = 11;
9776 	if (flags & RENAME_WHITEOUT)
9777 		trans_num_items += 5;
9778 	trans = btrfs_start_transaction(root, trans_num_items);
9779 	if (IS_ERR(trans)) {
9780 		ret = PTR_ERR(trans);
9781 		goto out_notrans;
9782 	}
9783 
9784 	if (dest != root)
9785 		btrfs_record_root_in_trans(trans, dest);
9786 
9787 	ret = btrfs_set_inode_index(new_dir, &index);
9788 	if (ret)
9789 		goto out_fail;
9790 
9791 	BTRFS_I(old_inode)->dir_index = 0ULL;
9792 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9793 		/* force full log commit if subvolume involved. */
9794 		btrfs_set_log_full_commit(root->fs_info, trans);
9795 	} else {
9796 		btrfs_pin_log_trans(root);
9797 		log_pinned = true;
9798 		ret = btrfs_insert_inode_ref(trans, dest,
9799 					     new_dentry->d_name.name,
9800 					     new_dentry->d_name.len,
9801 					     old_ino,
9802 					     btrfs_ino(new_dir), index);
9803 		if (ret)
9804 			goto out_fail;
9805 	}
9806 
9807 	inode_inc_iversion(old_dir);
9808 	inode_inc_iversion(new_dir);
9809 	inode_inc_iversion(old_inode);
9810 	old_dir->i_ctime = old_dir->i_mtime =
9811 	new_dir->i_ctime = new_dir->i_mtime =
9812 	old_inode->i_ctime = current_fs_time(old_dir->i_sb);
9813 
9814 	if (old_dentry->d_parent != new_dentry->d_parent)
9815 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9816 
9817 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9818 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9819 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9820 					old_dentry->d_name.name,
9821 					old_dentry->d_name.len);
9822 	} else {
9823 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9824 					d_inode(old_dentry),
9825 					old_dentry->d_name.name,
9826 					old_dentry->d_name.len);
9827 		if (!ret)
9828 			ret = btrfs_update_inode(trans, root, old_inode);
9829 	}
9830 	if (ret) {
9831 		btrfs_abort_transaction(trans, root, ret);
9832 		goto out_fail;
9833 	}
9834 
9835 	if (new_inode) {
9836 		inode_inc_iversion(new_inode);
9837 		new_inode->i_ctime = current_fs_time(new_inode->i_sb);
9838 		if (unlikely(btrfs_ino(new_inode) ==
9839 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9840 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9841 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9842 						root_objectid,
9843 						new_dentry->d_name.name,
9844 						new_dentry->d_name.len);
9845 			BUG_ON(new_inode->i_nlink == 0);
9846 		} else {
9847 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9848 						 d_inode(new_dentry),
9849 						 new_dentry->d_name.name,
9850 						 new_dentry->d_name.len);
9851 		}
9852 		if (!ret && new_inode->i_nlink == 0)
9853 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9854 		if (ret) {
9855 			btrfs_abort_transaction(trans, root, ret);
9856 			goto out_fail;
9857 		}
9858 	}
9859 
9860 	ret = btrfs_add_link(trans, new_dir, old_inode,
9861 			     new_dentry->d_name.name,
9862 			     new_dentry->d_name.len, 0, index);
9863 	if (ret) {
9864 		btrfs_abort_transaction(trans, root, ret);
9865 		goto out_fail;
9866 	}
9867 
9868 	if (old_inode->i_nlink == 1)
9869 		BTRFS_I(old_inode)->dir_index = index;
9870 
9871 	if (log_pinned) {
9872 		struct dentry *parent = new_dentry->d_parent;
9873 
9874 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9875 		btrfs_end_log_trans(root);
9876 		log_pinned = false;
9877 	}
9878 
9879 	if (flags & RENAME_WHITEOUT) {
9880 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9881 						old_dentry);
9882 
9883 		if (ret) {
9884 			btrfs_abort_transaction(trans, root, ret);
9885 			goto out_fail;
9886 		}
9887 	}
9888 out_fail:
9889 	/*
9890 	 * If we have pinned the log and an error happened, we unpin tasks
9891 	 * trying to sync the log and force them to fallback to a transaction
9892 	 * commit if the log currently contains any of the inodes involved in
9893 	 * this rename operation (to ensure we do not persist a log with an
9894 	 * inconsistent state for any of these inodes or leading to any
9895 	 * inconsistencies when replayed). If the transaction was aborted, the
9896 	 * abortion reason is propagated to userspace when attempting to commit
9897 	 * the transaction. If the log does not contain any of these inodes, we
9898 	 * allow the tasks to sync it.
9899 	 */
9900 	if (ret && log_pinned) {
9901 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9902 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9903 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9904 		    (new_inode &&
9905 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9906 		    btrfs_set_log_full_commit(root->fs_info, trans);
9907 
9908 		btrfs_end_log_trans(root);
9909 		log_pinned = false;
9910 	}
9911 	btrfs_end_transaction(trans, root);
9912 out_notrans:
9913 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9914 		up_read(&root->fs_info->subvol_sem);
9915 
9916 	return ret;
9917 }
9918 
9919 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9920 			 struct inode *new_dir, struct dentry *new_dentry,
9921 			 unsigned int flags)
9922 {
9923 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9924 		return -EINVAL;
9925 
9926 	if (flags & RENAME_EXCHANGE)
9927 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9928 					  new_dentry);
9929 
9930 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9931 }
9932 
9933 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9934 {
9935 	struct btrfs_delalloc_work *delalloc_work;
9936 	struct inode *inode;
9937 
9938 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9939 				     work);
9940 	inode = delalloc_work->inode;
9941 	filemap_flush(inode->i_mapping);
9942 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9943 				&BTRFS_I(inode)->runtime_flags))
9944 		filemap_flush(inode->i_mapping);
9945 
9946 	if (delalloc_work->delay_iput)
9947 		btrfs_add_delayed_iput(inode);
9948 	else
9949 		iput(inode);
9950 	complete(&delalloc_work->completion);
9951 }
9952 
9953 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9954 						    int delay_iput)
9955 {
9956 	struct btrfs_delalloc_work *work;
9957 
9958 	work = kmalloc(sizeof(*work), GFP_NOFS);
9959 	if (!work)
9960 		return NULL;
9961 
9962 	init_completion(&work->completion);
9963 	INIT_LIST_HEAD(&work->list);
9964 	work->inode = inode;
9965 	work->delay_iput = delay_iput;
9966 	WARN_ON_ONCE(!inode);
9967 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9968 			btrfs_run_delalloc_work, NULL, NULL);
9969 
9970 	return work;
9971 }
9972 
9973 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9974 {
9975 	wait_for_completion(&work->completion);
9976 	kfree(work);
9977 }
9978 
9979 /*
9980  * some fairly slow code that needs optimization. This walks the list
9981  * of all the inodes with pending delalloc and forces them to disk.
9982  */
9983 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9984 				   int nr)
9985 {
9986 	struct btrfs_inode *binode;
9987 	struct inode *inode;
9988 	struct btrfs_delalloc_work *work, *next;
9989 	struct list_head works;
9990 	struct list_head splice;
9991 	int ret = 0;
9992 
9993 	INIT_LIST_HEAD(&works);
9994 	INIT_LIST_HEAD(&splice);
9995 
9996 	mutex_lock(&root->delalloc_mutex);
9997 	spin_lock(&root->delalloc_lock);
9998 	list_splice_init(&root->delalloc_inodes, &splice);
9999 	while (!list_empty(&splice)) {
10000 		binode = list_entry(splice.next, struct btrfs_inode,
10001 				    delalloc_inodes);
10002 
10003 		list_move_tail(&binode->delalloc_inodes,
10004 			       &root->delalloc_inodes);
10005 		inode = igrab(&binode->vfs_inode);
10006 		if (!inode) {
10007 			cond_resched_lock(&root->delalloc_lock);
10008 			continue;
10009 		}
10010 		spin_unlock(&root->delalloc_lock);
10011 
10012 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10013 		if (!work) {
10014 			if (delay_iput)
10015 				btrfs_add_delayed_iput(inode);
10016 			else
10017 				iput(inode);
10018 			ret = -ENOMEM;
10019 			goto out;
10020 		}
10021 		list_add_tail(&work->list, &works);
10022 		btrfs_queue_work(root->fs_info->flush_workers,
10023 				 &work->work);
10024 		ret++;
10025 		if (nr != -1 && ret >= nr)
10026 			goto out;
10027 		cond_resched();
10028 		spin_lock(&root->delalloc_lock);
10029 	}
10030 	spin_unlock(&root->delalloc_lock);
10031 
10032 out:
10033 	list_for_each_entry_safe(work, next, &works, list) {
10034 		list_del_init(&work->list);
10035 		btrfs_wait_and_free_delalloc_work(work);
10036 	}
10037 
10038 	if (!list_empty_careful(&splice)) {
10039 		spin_lock(&root->delalloc_lock);
10040 		list_splice_tail(&splice, &root->delalloc_inodes);
10041 		spin_unlock(&root->delalloc_lock);
10042 	}
10043 	mutex_unlock(&root->delalloc_mutex);
10044 	return ret;
10045 }
10046 
10047 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10048 {
10049 	int ret;
10050 
10051 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10052 		return -EROFS;
10053 
10054 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10055 	if (ret > 0)
10056 		ret = 0;
10057 	/*
10058 	 * the filemap_flush will queue IO into the worker threads, but
10059 	 * we have to make sure the IO is actually started and that
10060 	 * ordered extents get created before we return
10061 	 */
10062 	atomic_inc(&root->fs_info->async_submit_draining);
10063 	while (atomic_read(&root->fs_info->nr_async_submits) ||
10064 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
10065 		wait_event(root->fs_info->async_submit_wait,
10066 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10067 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10068 	}
10069 	atomic_dec(&root->fs_info->async_submit_draining);
10070 	return ret;
10071 }
10072 
10073 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10074 			       int nr)
10075 {
10076 	struct btrfs_root *root;
10077 	struct list_head splice;
10078 	int ret;
10079 
10080 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10081 		return -EROFS;
10082 
10083 	INIT_LIST_HEAD(&splice);
10084 
10085 	mutex_lock(&fs_info->delalloc_root_mutex);
10086 	spin_lock(&fs_info->delalloc_root_lock);
10087 	list_splice_init(&fs_info->delalloc_roots, &splice);
10088 	while (!list_empty(&splice) && nr) {
10089 		root = list_first_entry(&splice, struct btrfs_root,
10090 					delalloc_root);
10091 		root = btrfs_grab_fs_root(root);
10092 		BUG_ON(!root);
10093 		list_move_tail(&root->delalloc_root,
10094 			       &fs_info->delalloc_roots);
10095 		spin_unlock(&fs_info->delalloc_root_lock);
10096 
10097 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10098 		btrfs_put_fs_root(root);
10099 		if (ret < 0)
10100 			goto out;
10101 
10102 		if (nr != -1) {
10103 			nr -= ret;
10104 			WARN_ON(nr < 0);
10105 		}
10106 		spin_lock(&fs_info->delalloc_root_lock);
10107 	}
10108 	spin_unlock(&fs_info->delalloc_root_lock);
10109 
10110 	ret = 0;
10111 	atomic_inc(&fs_info->async_submit_draining);
10112 	while (atomic_read(&fs_info->nr_async_submits) ||
10113 	      atomic_read(&fs_info->async_delalloc_pages)) {
10114 		wait_event(fs_info->async_submit_wait,
10115 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10116 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
10117 	}
10118 	atomic_dec(&fs_info->async_submit_draining);
10119 out:
10120 	if (!list_empty_careful(&splice)) {
10121 		spin_lock(&fs_info->delalloc_root_lock);
10122 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10123 		spin_unlock(&fs_info->delalloc_root_lock);
10124 	}
10125 	mutex_unlock(&fs_info->delalloc_root_mutex);
10126 	return ret;
10127 }
10128 
10129 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10130 			 const char *symname)
10131 {
10132 	struct btrfs_trans_handle *trans;
10133 	struct btrfs_root *root = BTRFS_I(dir)->root;
10134 	struct btrfs_path *path;
10135 	struct btrfs_key key;
10136 	struct inode *inode = NULL;
10137 	int err;
10138 	int drop_inode = 0;
10139 	u64 objectid;
10140 	u64 index = 0;
10141 	int name_len;
10142 	int datasize;
10143 	unsigned long ptr;
10144 	struct btrfs_file_extent_item *ei;
10145 	struct extent_buffer *leaf;
10146 
10147 	name_len = strlen(symname);
10148 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10149 		return -ENAMETOOLONG;
10150 
10151 	/*
10152 	 * 2 items for inode item and ref
10153 	 * 2 items for dir items
10154 	 * 1 item for updating parent inode item
10155 	 * 1 item for the inline extent item
10156 	 * 1 item for xattr if selinux is on
10157 	 */
10158 	trans = btrfs_start_transaction(root, 7);
10159 	if (IS_ERR(trans))
10160 		return PTR_ERR(trans);
10161 
10162 	err = btrfs_find_free_ino(root, &objectid);
10163 	if (err)
10164 		goto out_unlock;
10165 
10166 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10167 				dentry->d_name.len, btrfs_ino(dir), objectid,
10168 				S_IFLNK|S_IRWXUGO, &index);
10169 	if (IS_ERR(inode)) {
10170 		err = PTR_ERR(inode);
10171 		goto out_unlock;
10172 	}
10173 
10174 	/*
10175 	* If the active LSM wants to access the inode during
10176 	* d_instantiate it needs these. Smack checks to see
10177 	* if the filesystem supports xattrs by looking at the
10178 	* ops vector.
10179 	*/
10180 	inode->i_fop = &btrfs_file_operations;
10181 	inode->i_op = &btrfs_file_inode_operations;
10182 	inode->i_mapping->a_ops = &btrfs_aops;
10183 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10184 
10185 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10186 	if (err)
10187 		goto out_unlock_inode;
10188 
10189 	path = btrfs_alloc_path();
10190 	if (!path) {
10191 		err = -ENOMEM;
10192 		goto out_unlock_inode;
10193 	}
10194 	key.objectid = btrfs_ino(inode);
10195 	key.offset = 0;
10196 	key.type = BTRFS_EXTENT_DATA_KEY;
10197 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10198 	err = btrfs_insert_empty_item(trans, root, path, &key,
10199 				      datasize);
10200 	if (err) {
10201 		btrfs_free_path(path);
10202 		goto out_unlock_inode;
10203 	}
10204 	leaf = path->nodes[0];
10205 	ei = btrfs_item_ptr(leaf, path->slots[0],
10206 			    struct btrfs_file_extent_item);
10207 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10208 	btrfs_set_file_extent_type(leaf, ei,
10209 				   BTRFS_FILE_EXTENT_INLINE);
10210 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10211 	btrfs_set_file_extent_compression(leaf, ei, 0);
10212 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10213 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10214 
10215 	ptr = btrfs_file_extent_inline_start(ei);
10216 	write_extent_buffer(leaf, symname, ptr, name_len);
10217 	btrfs_mark_buffer_dirty(leaf);
10218 	btrfs_free_path(path);
10219 
10220 	inode->i_op = &btrfs_symlink_inode_operations;
10221 	inode_nohighmem(inode);
10222 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10223 	inode_set_bytes(inode, name_len);
10224 	btrfs_i_size_write(inode, name_len);
10225 	err = btrfs_update_inode(trans, root, inode);
10226 	/*
10227 	 * Last step, add directory indexes for our symlink inode. This is the
10228 	 * last step to avoid extra cleanup of these indexes if an error happens
10229 	 * elsewhere above.
10230 	 */
10231 	if (!err)
10232 		err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10233 	if (err) {
10234 		drop_inode = 1;
10235 		goto out_unlock_inode;
10236 	}
10237 
10238 	unlock_new_inode(inode);
10239 	d_instantiate(dentry, inode);
10240 
10241 out_unlock:
10242 	btrfs_end_transaction(trans, root);
10243 	if (drop_inode) {
10244 		inode_dec_link_count(inode);
10245 		iput(inode);
10246 	}
10247 	btrfs_btree_balance_dirty(root);
10248 	return err;
10249 
10250 out_unlock_inode:
10251 	drop_inode = 1;
10252 	unlock_new_inode(inode);
10253 	goto out_unlock;
10254 }
10255 
10256 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10257 				       u64 start, u64 num_bytes, u64 min_size,
10258 				       loff_t actual_len, u64 *alloc_hint,
10259 				       struct btrfs_trans_handle *trans)
10260 {
10261 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10262 	struct extent_map *em;
10263 	struct btrfs_root *root = BTRFS_I(inode)->root;
10264 	struct btrfs_key ins;
10265 	u64 cur_offset = start;
10266 	u64 i_size;
10267 	u64 cur_bytes;
10268 	u64 last_alloc = (u64)-1;
10269 	int ret = 0;
10270 	bool own_trans = true;
10271 
10272 	if (trans)
10273 		own_trans = false;
10274 	while (num_bytes > 0) {
10275 		if (own_trans) {
10276 			trans = btrfs_start_transaction(root, 3);
10277 			if (IS_ERR(trans)) {
10278 				ret = PTR_ERR(trans);
10279 				break;
10280 			}
10281 		}
10282 
10283 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10284 		cur_bytes = max(cur_bytes, min_size);
10285 		/*
10286 		 * If we are severely fragmented we could end up with really
10287 		 * small allocations, so if the allocator is returning small
10288 		 * chunks lets make its job easier by only searching for those
10289 		 * sized chunks.
10290 		 */
10291 		cur_bytes = min(cur_bytes, last_alloc);
10292 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
10293 					   *alloc_hint, &ins, 1, 0);
10294 		if (ret) {
10295 			if (own_trans)
10296 				btrfs_end_transaction(trans, root);
10297 			break;
10298 		}
10299 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10300 
10301 		last_alloc = ins.offset;
10302 		ret = insert_reserved_file_extent(trans, inode,
10303 						  cur_offset, ins.objectid,
10304 						  ins.offset, ins.offset,
10305 						  ins.offset, 0, 0, 0,
10306 						  BTRFS_FILE_EXTENT_PREALLOC);
10307 		if (ret) {
10308 			btrfs_free_reserved_extent(root, ins.objectid,
10309 						   ins.offset, 0);
10310 			btrfs_abort_transaction(trans, root, ret);
10311 			if (own_trans)
10312 				btrfs_end_transaction(trans, root);
10313 			break;
10314 		}
10315 
10316 		btrfs_drop_extent_cache(inode, cur_offset,
10317 					cur_offset + ins.offset -1, 0);
10318 
10319 		em = alloc_extent_map();
10320 		if (!em) {
10321 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10322 				&BTRFS_I(inode)->runtime_flags);
10323 			goto next;
10324 		}
10325 
10326 		em->start = cur_offset;
10327 		em->orig_start = cur_offset;
10328 		em->len = ins.offset;
10329 		em->block_start = ins.objectid;
10330 		em->block_len = ins.offset;
10331 		em->orig_block_len = ins.offset;
10332 		em->ram_bytes = ins.offset;
10333 		em->bdev = root->fs_info->fs_devices->latest_bdev;
10334 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10335 		em->generation = trans->transid;
10336 
10337 		while (1) {
10338 			write_lock(&em_tree->lock);
10339 			ret = add_extent_mapping(em_tree, em, 1);
10340 			write_unlock(&em_tree->lock);
10341 			if (ret != -EEXIST)
10342 				break;
10343 			btrfs_drop_extent_cache(inode, cur_offset,
10344 						cur_offset + ins.offset - 1,
10345 						0);
10346 		}
10347 		free_extent_map(em);
10348 next:
10349 		num_bytes -= ins.offset;
10350 		cur_offset += ins.offset;
10351 		*alloc_hint = ins.objectid + ins.offset;
10352 
10353 		inode_inc_iversion(inode);
10354 		inode->i_ctime = current_fs_time(inode->i_sb);
10355 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10356 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10357 		    (actual_len > inode->i_size) &&
10358 		    (cur_offset > inode->i_size)) {
10359 			if (cur_offset > actual_len)
10360 				i_size = actual_len;
10361 			else
10362 				i_size = cur_offset;
10363 			i_size_write(inode, i_size);
10364 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10365 		}
10366 
10367 		ret = btrfs_update_inode(trans, root, inode);
10368 
10369 		if (ret) {
10370 			btrfs_abort_transaction(trans, root, ret);
10371 			if (own_trans)
10372 				btrfs_end_transaction(trans, root);
10373 			break;
10374 		}
10375 
10376 		if (own_trans)
10377 			btrfs_end_transaction(trans, root);
10378 	}
10379 	return ret;
10380 }
10381 
10382 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10383 			      u64 start, u64 num_bytes, u64 min_size,
10384 			      loff_t actual_len, u64 *alloc_hint)
10385 {
10386 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10387 					   min_size, actual_len, alloc_hint,
10388 					   NULL);
10389 }
10390 
10391 int btrfs_prealloc_file_range_trans(struct inode *inode,
10392 				    struct btrfs_trans_handle *trans, int mode,
10393 				    u64 start, u64 num_bytes, u64 min_size,
10394 				    loff_t actual_len, u64 *alloc_hint)
10395 {
10396 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10397 					   min_size, actual_len, alloc_hint, trans);
10398 }
10399 
10400 static int btrfs_set_page_dirty(struct page *page)
10401 {
10402 	return __set_page_dirty_nobuffers(page);
10403 }
10404 
10405 static int btrfs_permission(struct inode *inode, int mask)
10406 {
10407 	struct btrfs_root *root = BTRFS_I(inode)->root;
10408 	umode_t mode = inode->i_mode;
10409 
10410 	if (mask & MAY_WRITE &&
10411 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10412 		if (btrfs_root_readonly(root))
10413 			return -EROFS;
10414 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10415 			return -EACCES;
10416 	}
10417 	return generic_permission(inode, mask);
10418 }
10419 
10420 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10421 {
10422 	struct btrfs_trans_handle *trans;
10423 	struct btrfs_root *root = BTRFS_I(dir)->root;
10424 	struct inode *inode = NULL;
10425 	u64 objectid;
10426 	u64 index;
10427 	int ret = 0;
10428 
10429 	/*
10430 	 * 5 units required for adding orphan entry
10431 	 */
10432 	trans = btrfs_start_transaction(root, 5);
10433 	if (IS_ERR(trans))
10434 		return PTR_ERR(trans);
10435 
10436 	ret = btrfs_find_free_ino(root, &objectid);
10437 	if (ret)
10438 		goto out;
10439 
10440 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10441 				btrfs_ino(dir), objectid, mode, &index);
10442 	if (IS_ERR(inode)) {
10443 		ret = PTR_ERR(inode);
10444 		inode = NULL;
10445 		goto out;
10446 	}
10447 
10448 	inode->i_fop = &btrfs_file_operations;
10449 	inode->i_op = &btrfs_file_inode_operations;
10450 
10451 	inode->i_mapping->a_ops = &btrfs_aops;
10452 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10453 
10454 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10455 	if (ret)
10456 		goto out_inode;
10457 
10458 	ret = btrfs_update_inode(trans, root, inode);
10459 	if (ret)
10460 		goto out_inode;
10461 	ret = btrfs_orphan_add(trans, inode);
10462 	if (ret)
10463 		goto out_inode;
10464 
10465 	/*
10466 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10467 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10468 	 * through:
10469 	 *
10470 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10471 	 */
10472 	set_nlink(inode, 1);
10473 	unlock_new_inode(inode);
10474 	d_tmpfile(dentry, inode);
10475 	mark_inode_dirty(inode);
10476 
10477 out:
10478 	btrfs_end_transaction(trans, root);
10479 	if (ret)
10480 		iput(inode);
10481 	btrfs_balance_delayed_items(root);
10482 	btrfs_btree_balance_dirty(root);
10483 	return ret;
10484 
10485 out_inode:
10486 	unlock_new_inode(inode);
10487 	goto out;
10488 
10489 }
10490 
10491 /* Inspired by filemap_check_errors() */
10492 int btrfs_inode_check_errors(struct inode *inode)
10493 {
10494 	int ret = 0;
10495 
10496 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10497 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10498 		ret = -ENOSPC;
10499 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10500 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10501 		ret = -EIO;
10502 
10503 	return ret;
10504 }
10505 
10506 static const struct inode_operations btrfs_dir_inode_operations = {
10507 	.getattr	= btrfs_getattr,
10508 	.lookup		= btrfs_lookup,
10509 	.create		= btrfs_create,
10510 	.unlink		= btrfs_unlink,
10511 	.link		= btrfs_link,
10512 	.mkdir		= btrfs_mkdir,
10513 	.rmdir		= btrfs_rmdir,
10514 	.rename2	= btrfs_rename2,
10515 	.symlink	= btrfs_symlink,
10516 	.setattr	= btrfs_setattr,
10517 	.mknod		= btrfs_mknod,
10518 	.setxattr	= generic_setxattr,
10519 	.getxattr	= generic_getxattr,
10520 	.listxattr	= btrfs_listxattr,
10521 	.removexattr	= generic_removexattr,
10522 	.permission	= btrfs_permission,
10523 	.get_acl	= btrfs_get_acl,
10524 	.set_acl	= btrfs_set_acl,
10525 	.update_time	= btrfs_update_time,
10526 	.tmpfile        = btrfs_tmpfile,
10527 };
10528 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10529 	.lookup		= btrfs_lookup,
10530 	.permission	= btrfs_permission,
10531 	.get_acl	= btrfs_get_acl,
10532 	.set_acl	= btrfs_set_acl,
10533 	.update_time	= btrfs_update_time,
10534 };
10535 
10536 static const struct file_operations btrfs_dir_file_operations = {
10537 	.llseek		= generic_file_llseek,
10538 	.read		= generic_read_dir,
10539 	.iterate_shared	= btrfs_real_readdir,
10540 	.unlocked_ioctl	= btrfs_ioctl,
10541 #ifdef CONFIG_COMPAT
10542 	.compat_ioctl	= btrfs_compat_ioctl,
10543 #endif
10544 	.release        = btrfs_release_file,
10545 	.fsync		= btrfs_sync_file,
10546 };
10547 
10548 static const struct extent_io_ops btrfs_extent_io_ops = {
10549 	.fill_delalloc = run_delalloc_range,
10550 	.submit_bio_hook = btrfs_submit_bio_hook,
10551 	.merge_bio_hook = btrfs_merge_bio_hook,
10552 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10553 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10554 	.writepage_start_hook = btrfs_writepage_start_hook,
10555 	.set_bit_hook = btrfs_set_bit_hook,
10556 	.clear_bit_hook = btrfs_clear_bit_hook,
10557 	.merge_extent_hook = btrfs_merge_extent_hook,
10558 	.split_extent_hook = btrfs_split_extent_hook,
10559 };
10560 
10561 /*
10562  * btrfs doesn't support the bmap operation because swapfiles
10563  * use bmap to make a mapping of extents in the file.  They assume
10564  * these extents won't change over the life of the file and they
10565  * use the bmap result to do IO directly to the drive.
10566  *
10567  * the btrfs bmap call would return logical addresses that aren't
10568  * suitable for IO and they also will change frequently as COW
10569  * operations happen.  So, swapfile + btrfs == corruption.
10570  *
10571  * For now we're avoiding this by dropping bmap.
10572  */
10573 static const struct address_space_operations btrfs_aops = {
10574 	.readpage	= btrfs_readpage,
10575 	.writepage	= btrfs_writepage,
10576 	.writepages	= btrfs_writepages,
10577 	.readpages	= btrfs_readpages,
10578 	.direct_IO	= btrfs_direct_IO,
10579 	.invalidatepage = btrfs_invalidatepage,
10580 	.releasepage	= btrfs_releasepage,
10581 	.set_page_dirty	= btrfs_set_page_dirty,
10582 	.error_remove_page = generic_error_remove_page,
10583 };
10584 
10585 static const struct address_space_operations btrfs_symlink_aops = {
10586 	.readpage	= btrfs_readpage,
10587 	.writepage	= btrfs_writepage,
10588 	.invalidatepage = btrfs_invalidatepage,
10589 	.releasepage	= btrfs_releasepage,
10590 };
10591 
10592 static const struct inode_operations btrfs_file_inode_operations = {
10593 	.getattr	= btrfs_getattr,
10594 	.setattr	= btrfs_setattr,
10595 	.setxattr	= generic_setxattr,
10596 	.getxattr	= generic_getxattr,
10597 	.listxattr      = btrfs_listxattr,
10598 	.removexattr	= generic_removexattr,
10599 	.permission	= btrfs_permission,
10600 	.fiemap		= btrfs_fiemap,
10601 	.get_acl	= btrfs_get_acl,
10602 	.set_acl	= btrfs_set_acl,
10603 	.update_time	= btrfs_update_time,
10604 };
10605 static const struct inode_operations btrfs_special_inode_operations = {
10606 	.getattr	= btrfs_getattr,
10607 	.setattr	= btrfs_setattr,
10608 	.permission	= btrfs_permission,
10609 	.setxattr	= generic_setxattr,
10610 	.getxattr	= generic_getxattr,
10611 	.listxattr	= btrfs_listxattr,
10612 	.removexattr	= generic_removexattr,
10613 	.get_acl	= btrfs_get_acl,
10614 	.set_acl	= btrfs_set_acl,
10615 	.update_time	= btrfs_update_time,
10616 };
10617 static const struct inode_operations btrfs_symlink_inode_operations = {
10618 	.readlink	= generic_readlink,
10619 	.get_link	= page_get_link,
10620 	.getattr	= btrfs_getattr,
10621 	.setattr	= btrfs_setattr,
10622 	.permission	= btrfs_permission,
10623 	.setxattr	= generic_setxattr,
10624 	.getxattr	= generic_getxattr,
10625 	.listxattr	= btrfs_listxattr,
10626 	.removexattr	= generic_removexattr,
10627 	.update_time	= btrfs_update_time,
10628 };
10629 
10630 const struct dentry_operations btrfs_dentry_operations = {
10631 	.d_delete	= btrfs_dentry_delete,
10632 	.d_release	= btrfs_dentry_release,
10633 };
10634