1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 struct btrfs_dio_data { 70 u64 outstanding_extents; 71 u64 reserve; 72 u64 unsubmitted_oe_range_start; 73 u64 unsubmitted_oe_range_end; 74 }; 75 76 static const struct inode_operations btrfs_dir_inode_operations; 77 static const struct inode_operations btrfs_symlink_inode_operations; 78 static const struct inode_operations btrfs_dir_ro_inode_operations; 79 static const struct inode_operations btrfs_special_inode_operations; 80 static const struct inode_operations btrfs_file_inode_operations; 81 static const struct address_space_operations btrfs_aops; 82 static const struct address_space_operations btrfs_symlink_aops; 83 static const struct file_operations btrfs_dir_file_operations; 84 static const struct extent_io_ops btrfs_extent_io_ops; 85 86 static struct kmem_cache *btrfs_inode_cachep; 87 struct kmem_cache *btrfs_trans_handle_cachep; 88 struct kmem_cache *btrfs_transaction_cachep; 89 struct kmem_cache *btrfs_path_cachep; 90 struct kmem_cache *btrfs_free_space_cachep; 91 92 #define S_SHIFT 12 93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 101 }; 102 103 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 104 static int btrfs_truncate(struct inode *inode); 105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 106 static noinline int cow_file_range(struct inode *inode, 107 struct page *locked_page, 108 u64 start, u64 end, int *page_started, 109 unsigned long *nr_written, int unlock); 110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 111 u64 len, u64 orig_start, 112 u64 block_start, u64 block_len, 113 u64 orig_block_len, u64 ram_bytes, 114 int type); 115 116 static int btrfs_dirty_inode(struct inode *inode); 117 118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 119 void btrfs_test_inode_set_ops(struct inode *inode) 120 { 121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 122 } 123 #endif 124 125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 126 struct inode *inode, struct inode *dir, 127 const struct qstr *qstr) 128 { 129 int err; 130 131 err = btrfs_init_acl(trans, inode, dir); 132 if (!err) 133 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 134 return err; 135 } 136 137 /* 138 * this does all the hard work for inserting an inline extent into 139 * the btree. The caller should have done a btrfs_drop_extents so that 140 * no overlapping inline items exist in the btree 141 */ 142 static int insert_inline_extent(struct btrfs_trans_handle *trans, 143 struct btrfs_path *path, int extent_inserted, 144 struct btrfs_root *root, struct inode *inode, 145 u64 start, size_t size, size_t compressed_size, 146 int compress_type, 147 struct page **compressed_pages) 148 { 149 struct extent_buffer *leaf; 150 struct page *page = NULL; 151 char *kaddr; 152 unsigned long ptr; 153 struct btrfs_file_extent_item *ei; 154 int err = 0; 155 int ret; 156 size_t cur_size = size; 157 unsigned long offset; 158 159 if (compressed_size && compressed_pages) 160 cur_size = compressed_size; 161 162 inode_add_bytes(inode, size); 163 164 if (!extent_inserted) { 165 struct btrfs_key key; 166 size_t datasize; 167 168 key.objectid = btrfs_ino(inode); 169 key.offset = start; 170 key.type = BTRFS_EXTENT_DATA_KEY; 171 172 datasize = btrfs_file_extent_calc_inline_size(cur_size); 173 path->leave_spinning = 1; 174 ret = btrfs_insert_empty_item(trans, root, path, &key, 175 datasize); 176 if (ret) { 177 err = ret; 178 goto fail; 179 } 180 } 181 leaf = path->nodes[0]; 182 ei = btrfs_item_ptr(leaf, path->slots[0], 183 struct btrfs_file_extent_item); 184 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 186 btrfs_set_file_extent_encryption(leaf, ei, 0); 187 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 188 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 189 ptr = btrfs_file_extent_inline_start(ei); 190 191 if (compress_type != BTRFS_COMPRESS_NONE) { 192 struct page *cpage; 193 int i = 0; 194 while (compressed_size > 0) { 195 cpage = compressed_pages[i]; 196 cur_size = min_t(unsigned long, compressed_size, 197 PAGE_SIZE); 198 199 kaddr = kmap_atomic(cpage); 200 write_extent_buffer(leaf, kaddr, ptr, cur_size); 201 kunmap_atomic(kaddr); 202 203 i++; 204 ptr += cur_size; 205 compressed_size -= cur_size; 206 } 207 btrfs_set_file_extent_compression(leaf, ei, 208 compress_type); 209 } else { 210 page = find_get_page(inode->i_mapping, 211 start >> PAGE_SHIFT); 212 btrfs_set_file_extent_compression(leaf, ei, 0); 213 kaddr = kmap_atomic(page); 214 offset = start & (PAGE_SIZE - 1); 215 write_extent_buffer(leaf, kaddr + offset, ptr, size); 216 kunmap_atomic(kaddr); 217 put_page(page); 218 } 219 btrfs_mark_buffer_dirty(leaf); 220 btrfs_release_path(path); 221 222 /* 223 * we're an inline extent, so nobody can 224 * extend the file past i_size without locking 225 * a page we already have locked. 226 * 227 * We must do any isize and inode updates 228 * before we unlock the pages. Otherwise we 229 * could end up racing with unlink. 230 */ 231 BTRFS_I(inode)->disk_i_size = inode->i_size; 232 ret = btrfs_update_inode(trans, root, inode); 233 234 return ret; 235 fail: 236 return err; 237 } 238 239 240 /* 241 * conditionally insert an inline extent into the file. This 242 * does the checks required to make sure the data is small enough 243 * to fit as an inline extent. 244 */ 245 static noinline int cow_file_range_inline(struct btrfs_root *root, 246 struct inode *inode, u64 start, 247 u64 end, size_t compressed_size, 248 int compress_type, 249 struct page **compressed_pages) 250 { 251 struct btrfs_trans_handle *trans; 252 u64 isize = i_size_read(inode); 253 u64 actual_end = min(end + 1, isize); 254 u64 inline_len = actual_end - start; 255 u64 aligned_end = ALIGN(end, root->sectorsize); 256 u64 data_len = inline_len; 257 int ret; 258 struct btrfs_path *path; 259 int extent_inserted = 0; 260 u32 extent_item_size; 261 262 if (compressed_size) 263 data_len = compressed_size; 264 265 if (start > 0 || 266 actual_end > root->sectorsize || 267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 268 (!compressed_size && 269 (actual_end & (root->sectorsize - 1)) == 0) || 270 end + 1 < isize || 271 data_len > root->fs_info->max_inline) { 272 return 1; 273 } 274 275 path = btrfs_alloc_path(); 276 if (!path) 277 return -ENOMEM; 278 279 trans = btrfs_join_transaction(root); 280 if (IS_ERR(trans)) { 281 btrfs_free_path(path); 282 return PTR_ERR(trans); 283 } 284 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 285 286 if (compressed_size && compressed_pages) 287 extent_item_size = btrfs_file_extent_calc_inline_size( 288 compressed_size); 289 else 290 extent_item_size = btrfs_file_extent_calc_inline_size( 291 inline_len); 292 293 ret = __btrfs_drop_extents(trans, root, inode, path, 294 start, aligned_end, NULL, 295 1, 1, extent_item_size, &extent_inserted); 296 if (ret) { 297 btrfs_abort_transaction(trans, root, ret); 298 goto out; 299 } 300 301 if (isize > actual_end) 302 inline_len = min_t(u64, isize, actual_end); 303 ret = insert_inline_extent(trans, path, extent_inserted, 304 root, inode, start, 305 inline_len, compressed_size, 306 compress_type, compressed_pages); 307 if (ret && ret != -ENOSPC) { 308 btrfs_abort_transaction(trans, root, ret); 309 goto out; 310 } else if (ret == -ENOSPC) { 311 ret = 1; 312 goto out; 313 } 314 315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 316 btrfs_delalloc_release_metadata(inode, end + 1 - start); 317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 318 out: 319 /* 320 * Don't forget to free the reserved space, as for inlined extent 321 * it won't count as data extent, free them directly here. 322 * And at reserve time, it's always aligned to page size, so 323 * just free one page here. 324 */ 325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE); 326 btrfs_free_path(path); 327 btrfs_end_transaction(trans, root); 328 return ret; 329 } 330 331 struct async_extent { 332 u64 start; 333 u64 ram_size; 334 u64 compressed_size; 335 struct page **pages; 336 unsigned long nr_pages; 337 int compress_type; 338 struct list_head list; 339 }; 340 341 struct async_cow { 342 struct inode *inode; 343 struct btrfs_root *root; 344 struct page *locked_page; 345 u64 start; 346 u64 end; 347 struct list_head extents; 348 struct btrfs_work work; 349 }; 350 351 static noinline int add_async_extent(struct async_cow *cow, 352 u64 start, u64 ram_size, 353 u64 compressed_size, 354 struct page **pages, 355 unsigned long nr_pages, 356 int compress_type) 357 { 358 struct async_extent *async_extent; 359 360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 361 BUG_ON(!async_extent); /* -ENOMEM */ 362 async_extent->start = start; 363 async_extent->ram_size = ram_size; 364 async_extent->compressed_size = compressed_size; 365 async_extent->pages = pages; 366 async_extent->nr_pages = nr_pages; 367 async_extent->compress_type = compress_type; 368 list_add_tail(&async_extent->list, &cow->extents); 369 return 0; 370 } 371 372 static inline int inode_need_compress(struct inode *inode) 373 { 374 struct btrfs_root *root = BTRFS_I(inode)->root; 375 376 /* force compress */ 377 if (btrfs_test_opt(root, FORCE_COMPRESS)) 378 return 1; 379 /* bad compression ratios */ 380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 381 return 0; 382 if (btrfs_test_opt(root, COMPRESS) || 383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 384 BTRFS_I(inode)->force_compress) 385 return 1; 386 return 0; 387 } 388 389 /* 390 * we create compressed extents in two phases. The first 391 * phase compresses a range of pages that have already been 392 * locked (both pages and state bits are locked). 393 * 394 * This is done inside an ordered work queue, and the compression 395 * is spread across many cpus. The actual IO submission is step 396 * two, and the ordered work queue takes care of making sure that 397 * happens in the same order things were put onto the queue by 398 * writepages and friends. 399 * 400 * If this code finds it can't get good compression, it puts an 401 * entry onto the work queue to write the uncompressed bytes. This 402 * makes sure that both compressed inodes and uncompressed inodes 403 * are written in the same order that the flusher thread sent them 404 * down. 405 */ 406 static noinline void compress_file_range(struct inode *inode, 407 struct page *locked_page, 408 u64 start, u64 end, 409 struct async_cow *async_cow, 410 int *num_added) 411 { 412 struct btrfs_root *root = BTRFS_I(inode)->root; 413 u64 num_bytes; 414 u64 blocksize = root->sectorsize; 415 u64 actual_end; 416 u64 isize = i_size_read(inode); 417 int ret = 0; 418 struct page **pages = NULL; 419 unsigned long nr_pages; 420 unsigned long nr_pages_ret = 0; 421 unsigned long total_compressed = 0; 422 unsigned long total_in = 0; 423 unsigned long max_compressed = SZ_128K; 424 unsigned long max_uncompressed = SZ_128K; 425 int i; 426 int will_compress; 427 int compress_type = root->fs_info->compress_type; 428 int redirty = 0; 429 430 /* if this is a small write inside eof, kick off a defrag */ 431 if ((end - start + 1) < SZ_16K && 432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 433 btrfs_add_inode_defrag(NULL, inode); 434 435 actual_end = min_t(u64, isize, end + 1); 436 again: 437 will_compress = 0; 438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE); 440 441 /* 442 * we don't want to send crud past the end of i_size through 443 * compression, that's just a waste of CPU time. So, if the 444 * end of the file is before the start of our current 445 * requested range of bytes, we bail out to the uncompressed 446 * cleanup code that can deal with all of this. 447 * 448 * It isn't really the fastest way to fix things, but this is a 449 * very uncommon corner. 450 */ 451 if (actual_end <= start) 452 goto cleanup_and_bail_uncompressed; 453 454 total_compressed = actual_end - start; 455 456 /* 457 * skip compression for a small file range(<=blocksize) that 458 * isn't an inline extent, since it doesn't save disk space at all. 459 */ 460 if (total_compressed <= blocksize && 461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 462 goto cleanup_and_bail_uncompressed; 463 464 /* we want to make sure that amount of ram required to uncompress 465 * an extent is reasonable, so we limit the total size in ram 466 * of a compressed extent to 128k. This is a crucial number 467 * because it also controls how easily we can spread reads across 468 * cpus for decompression. 469 * 470 * We also want to make sure the amount of IO required to do 471 * a random read is reasonably small, so we limit the size of 472 * a compressed extent to 128k. 473 */ 474 total_compressed = min(total_compressed, max_uncompressed); 475 num_bytes = ALIGN(end - start + 1, blocksize); 476 num_bytes = max(blocksize, num_bytes); 477 total_in = 0; 478 ret = 0; 479 480 /* 481 * we do compression for mount -o compress and when the 482 * inode has not been flagged as nocompress. This flag can 483 * change at any time if we discover bad compression ratios. 484 */ 485 if (inode_need_compress(inode)) { 486 WARN_ON(pages); 487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 488 if (!pages) { 489 /* just bail out to the uncompressed code */ 490 goto cont; 491 } 492 493 if (BTRFS_I(inode)->force_compress) 494 compress_type = BTRFS_I(inode)->force_compress; 495 496 /* 497 * we need to call clear_page_dirty_for_io on each 498 * page in the range. Otherwise applications with the file 499 * mmap'd can wander in and change the page contents while 500 * we are compressing them. 501 * 502 * If the compression fails for any reason, we set the pages 503 * dirty again later on. 504 */ 505 extent_range_clear_dirty_for_io(inode, start, end); 506 redirty = 1; 507 ret = btrfs_compress_pages(compress_type, 508 inode->i_mapping, start, 509 total_compressed, pages, 510 nr_pages, &nr_pages_ret, 511 &total_in, 512 &total_compressed, 513 max_compressed); 514 515 if (!ret) { 516 unsigned long offset = total_compressed & 517 (PAGE_SIZE - 1); 518 struct page *page = pages[nr_pages_ret - 1]; 519 char *kaddr; 520 521 /* zero the tail end of the last page, we might be 522 * sending it down to disk 523 */ 524 if (offset) { 525 kaddr = kmap_atomic(page); 526 memset(kaddr + offset, 0, 527 PAGE_SIZE - offset); 528 kunmap_atomic(kaddr); 529 } 530 will_compress = 1; 531 } 532 } 533 cont: 534 if (start == 0) { 535 /* lets try to make an inline extent */ 536 if (ret || total_in < (actual_end - start)) { 537 /* we didn't compress the entire range, try 538 * to make an uncompressed inline extent. 539 */ 540 ret = cow_file_range_inline(root, inode, start, end, 541 0, 0, NULL); 542 } else { 543 /* try making a compressed inline extent */ 544 ret = cow_file_range_inline(root, inode, start, end, 545 total_compressed, 546 compress_type, pages); 547 } 548 if (ret <= 0) { 549 unsigned long clear_flags = EXTENT_DELALLOC | 550 EXTENT_DEFRAG; 551 unsigned long page_error_op; 552 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 555 556 /* 557 * inline extent creation worked or returned error, 558 * we don't need to create any more async work items. 559 * Unlock and free up our temp pages. 560 */ 561 extent_clear_unlock_delalloc(inode, start, end, NULL, 562 clear_flags, PAGE_UNLOCK | 563 PAGE_CLEAR_DIRTY | 564 PAGE_SET_WRITEBACK | 565 page_error_op | 566 PAGE_END_WRITEBACK); 567 goto free_pages_out; 568 } 569 } 570 571 if (will_compress) { 572 /* 573 * we aren't doing an inline extent round the compressed size 574 * up to a block size boundary so the allocator does sane 575 * things 576 */ 577 total_compressed = ALIGN(total_compressed, blocksize); 578 579 /* 580 * one last check to make sure the compression is really a 581 * win, compare the page count read with the blocks on disk 582 */ 583 total_in = ALIGN(total_in, PAGE_SIZE); 584 if (total_compressed >= total_in) { 585 will_compress = 0; 586 } else { 587 num_bytes = total_in; 588 } 589 } 590 if (!will_compress && pages) { 591 /* 592 * the compression code ran but failed to make things smaller, 593 * free any pages it allocated and our page pointer array 594 */ 595 for (i = 0; i < nr_pages_ret; i++) { 596 WARN_ON(pages[i]->mapping); 597 put_page(pages[i]); 598 } 599 kfree(pages); 600 pages = NULL; 601 total_compressed = 0; 602 nr_pages_ret = 0; 603 604 /* flag the file so we don't compress in the future */ 605 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 606 !(BTRFS_I(inode)->force_compress)) { 607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 608 } 609 } 610 if (will_compress) { 611 *num_added += 1; 612 613 /* the async work queues will take care of doing actual 614 * allocation on disk for these compressed pages, 615 * and will submit them to the elevator. 616 */ 617 add_async_extent(async_cow, start, num_bytes, 618 total_compressed, pages, nr_pages_ret, 619 compress_type); 620 621 if (start + num_bytes < end) { 622 start += num_bytes; 623 pages = NULL; 624 cond_resched(); 625 goto again; 626 } 627 } else { 628 cleanup_and_bail_uncompressed: 629 /* 630 * No compression, but we still need to write the pages in 631 * the file we've been given so far. redirty the locked 632 * page if it corresponds to our extent and set things up 633 * for the async work queue to run cow_file_range to do 634 * the normal delalloc dance 635 */ 636 if (page_offset(locked_page) >= start && 637 page_offset(locked_page) <= end) { 638 __set_page_dirty_nobuffers(locked_page); 639 /* unlocked later on in the async handlers */ 640 } 641 if (redirty) 642 extent_range_redirty_for_io(inode, start, end); 643 add_async_extent(async_cow, start, end - start + 1, 644 0, NULL, 0, BTRFS_COMPRESS_NONE); 645 *num_added += 1; 646 } 647 648 return; 649 650 free_pages_out: 651 for (i = 0; i < nr_pages_ret; i++) { 652 WARN_ON(pages[i]->mapping); 653 put_page(pages[i]); 654 } 655 kfree(pages); 656 } 657 658 static void free_async_extent_pages(struct async_extent *async_extent) 659 { 660 int i; 661 662 if (!async_extent->pages) 663 return; 664 665 for (i = 0; i < async_extent->nr_pages; i++) { 666 WARN_ON(async_extent->pages[i]->mapping); 667 put_page(async_extent->pages[i]); 668 } 669 kfree(async_extent->pages); 670 async_extent->nr_pages = 0; 671 async_extent->pages = NULL; 672 } 673 674 /* 675 * phase two of compressed writeback. This is the ordered portion 676 * of the code, which only gets called in the order the work was 677 * queued. We walk all the async extents created by compress_file_range 678 * and send them down to the disk. 679 */ 680 static noinline void submit_compressed_extents(struct inode *inode, 681 struct async_cow *async_cow) 682 { 683 struct async_extent *async_extent; 684 u64 alloc_hint = 0; 685 struct btrfs_key ins; 686 struct extent_map *em; 687 struct btrfs_root *root = BTRFS_I(inode)->root; 688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 689 struct extent_io_tree *io_tree; 690 int ret = 0; 691 692 again: 693 while (!list_empty(&async_cow->extents)) { 694 async_extent = list_entry(async_cow->extents.next, 695 struct async_extent, list); 696 list_del(&async_extent->list); 697 698 io_tree = &BTRFS_I(inode)->io_tree; 699 700 retry: 701 /* did the compression code fall back to uncompressed IO? */ 702 if (!async_extent->pages) { 703 int page_started = 0; 704 unsigned long nr_written = 0; 705 706 lock_extent(io_tree, async_extent->start, 707 async_extent->start + 708 async_extent->ram_size - 1); 709 710 /* allocate blocks */ 711 ret = cow_file_range(inode, async_cow->locked_page, 712 async_extent->start, 713 async_extent->start + 714 async_extent->ram_size - 1, 715 &page_started, &nr_written, 0); 716 717 /* JDM XXX */ 718 719 /* 720 * if page_started, cow_file_range inserted an 721 * inline extent and took care of all the unlocking 722 * and IO for us. Otherwise, we need to submit 723 * all those pages down to the drive. 724 */ 725 if (!page_started && !ret) 726 extent_write_locked_range(io_tree, 727 inode, async_extent->start, 728 async_extent->start + 729 async_extent->ram_size - 1, 730 btrfs_get_extent, 731 WB_SYNC_ALL); 732 else if (ret) 733 unlock_page(async_cow->locked_page); 734 kfree(async_extent); 735 cond_resched(); 736 continue; 737 } 738 739 lock_extent(io_tree, async_extent->start, 740 async_extent->start + async_extent->ram_size - 1); 741 742 ret = btrfs_reserve_extent(root, 743 async_extent->compressed_size, 744 async_extent->compressed_size, 745 0, alloc_hint, &ins, 1, 1); 746 if (ret) { 747 free_async_extent_pages(async_extent); 748 749 if (ret == -ENOSPC) { 750 unlock_extent(io_tree, async_extent->start, 751 async_extent->start + 752 async_extent->ram_size - 1); 753 754 /* 755 * we need to redirty the pages if we decide to 756 * fallback to uncompressed IO, otherwise we 757 * will not submit these pages down to lower 758 * layers. 759 */ 760 extent_range_redirty_for_io(inode, 761 async_extent->start, 762 async_extent->start + 763 async_extent->ram_size - 1); 764 765 goto retry; 766 } 767 goto out_free; 768 } 769 /* 770 * here we're doing allocation and writeback of the 771 * compressed pages 772 */ 773 btrfs_drop_extent_cache(inode, async_extent->start, 774 async_extent->start + 775 async_extent->ram_size - 1, 0); 776 777 em = alloc_extent_map(); 778 if (!em) { 779 ret = -ENOMEM; 780 goto out_free_reserve; 781 } 782 em->start = async_extent->start; 783 em->len = async_extent->ram_size; 784 em->orig_start = em->start; 785 em->mod_start = em->start; 786 em->mod_len = em->len; 787 788 em->block_start = ins.objectid; 789 em->block_len = ins.offset; 790 em->orig_block_len = ins.offset; 791 em->ram_bytes = async_extent->ram_size; 792 em->bdev = root->fs_info->fs_devices->latest_bdev; 793 em->compress_type = async_extent->compress_type; 794 set_bit(EXTENT_FLAG_PINNED, &em->flags); 795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 796 em->generation = -1; 797 798 while (1) { 799 write_lock(&em_tree->lock); 800 ret = add_extent_mapping(em_tree, em, 1); 801 write_unlock(&em_tree->lock); 802 if (ret != -EEXIST) { 803 free_extent_map(em); 804 break; 805 } 806 btrfs_drop_extent_cache(inode, async_extent->start, 807 async_extent->start + 808 async_extent->ram_size - 1, 0); 809 } 810 811 if (ret) 812 goto out_free_reserve; 813 814 ret = btrfs_add_ordered_extent_compress(inode, 815 async_extent->start, 816 ins.objectid, 817 async_extent->ram_size, 818 ins.offset, 819 BTRFS_ORDERED_COMPRESSED, 820 async_extent->compress_type); 821 if (ret) { 822 btrfs_drop_extent_cache(inode, async_extent->start, 823 async_extent->start + 824 async_extent->ram_size - 1, 0); 825 goto out_free_reserve; 826 } 827 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 828 829 /* 830 * clear dirty, set writeback and unlock the pages. 831 */ 832 extent_clear_unlock_delalloc(inode, async_extent->start, 833 async_extent->start + 834 async_extent->ram_size - 1, 835 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 836 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 837 PAGE_SET_WRITEBACK); 838 ret = btrfs_submit_compressed_write(inode, 839 async_extent->start, 840 async_extent->ram_size, 841 ins.objectid, 842 ins.offset, async_extent->pages, 843 async_extent->nr_pages); 844 if (ret) { 845 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 846 struct page *p = async_extent->pages[0]; 847 const u64 start = async_extent->start; 848 const u64 end = start + async_extent->ram_size - 1; 849 850 p->mapping = inode->i_mapping; 851 tree->ops->writepage_end_io_hook(p, start, end, 852 NULL, 0); 853 p->mapping = NULL; 854 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 855 PAGE_END_WRITEBACK | 856 PAGE_SET_ERROR); 857 free_async_extent_pages(async_extent); 858 } 859 alloc_hint = ins.objectid + ins.offset; 860 kfree(async_extent); 861 cond_resched(); 862 } 863 return; 864 out_free_reserve: 865 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 867 out_free: 868 extent_clear_unlock_delalloc(inode, async_extent->start, 869 async_extent->start + 870 async_extent->ram_size - 1, 871 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 872 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 874 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 875 PAGE_SET_ERROR); 876 free_async_extent_pages(async_extent); 877 kfree(async_extent); 878 goto again; 879 } 880 881 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 882 u64 num_bytes) 883 { 884 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 885 struct extent_map *em; 886 u64 alloc_hint = 0; 887 888 read_lock(&em_tree->lock); 889 em = search_extent_mapping(em_tree, start, num_bytes); 890 if (em) { 891 /* 892 * if block start isn't an actual block number then find the 893 * first block in this inode and use that as a hint. If that 894 * block is also bogus then just don't worry about it. 895 */ 896 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 897 free_extent_map(em); 898 em = search_extent_mapping(em_tree, 0, 0); 899 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 900 alloc_hint = em->block_start; 901 if (em) 902 free_extent_map(em); 903 } else { 904 alloc_hint = em->block_start; 905 free_extent_map(em); 906 } 907 } 908 read_unlock(&em_tree->lock); 909 910 return alloc_hint; 911 } 912 913 /* 914 * when extent_io.c finds a delayed allocation range in the file, 915 * the call backs end up in this code. The basic idea is to 916 * allocate extents on disk for the range, and create ordered data structs 917 * in ram to track those extents. 918 * 919 * locked_page is the page that writepage had locked already. We use 920 * it to make sure we don't do extra locks or unlocks. 921 * 922 * *page_started is set to one if we unlock locked_page and do everything 923 * required to start IO on it. It may be clean and already done with 924 * IO when we return. 925 */ 926 static noinline int cow_file_range(struct inode *inode, 927 struct page *locked_page, 928 u64 start, u64 end, int *page_started, 929 unsigned long *nr_written, 930 int unlock) 931 { 932 struct btrfs_root *root = BTRFS_I(inode)->root; 933 u64 alloc_hint = 0; 934 u64 num_bytes; 935 unsigned long ram_size; 936 u64 disk_num_bytes; 937 u64 cur_alloc_size; 938 u64 blocksize = root->sectorsize; 939 struct btrfs_key ins; 940 struct extent_map *em; 941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 942 int ret = 0; 943 944 if (btrfs_is_free_space_inode(inode)) { 945 WARN_ON_ONCE(1); 946 ret = -EINVAL; 947 goto out_unlock; 948 } 949 950 num_bytes = ALIGN(end - start + 1, blocksize); 951 num_bytes = max(blocksize, num_bytes); 952 disk_num_bytes = num_bytes; 953 954 /* if this is a small write inside eof, kick off defrag */ 955 if (num_bytes < SZ_64K && 956 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 957 btrfs_add_inode_defrag(NULL, inode); 958 959 if (start == 0) { 960 /* lets try to make an inline extent */ 961 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 962 NULL); 963 if (ret == 0) { 964 extent_clear_unlock_delalloc(inode, start, end, NULL, 965 EXTENT_LOCKED | EXTENT_DELALLOC | 966 EXTENT_DEFRAG, PAGE_UNLOCK | 967 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 968 PAGE_END_WRITEBACK); 969 970 *nr_written = *nr_written + 971 (end - start + PAGE_SIZE) / PAGE_SIZE; 972 *page_started = 1; 973 goto out; 974 } else if (ret < 0) { 975 goto out_unlock; 976 } 977 } 978 979 BUG_ON(disk_num_bytes > 980 btrfs_super_total_bytes(root->fs_info->super_copy)); 981 982 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 983 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 984 985 while (disk_num_bytes > 0) { 986 unsigned long op; 987 988 cur_alloc_size = disk_num_bytes; 989 ret = btrfs_reserve_extent(root, cur_alloc_size, 990 root->sectorsize, 0, alloc_hint, 991 &ins, 1, 1); 992 if (ret < 0) 993 goto out_unlock; 994 995 em = alloc_extent_map(); 996 if (!em) { 997 ret = -ENOMEM; 998 goto out_reserve; 999 } 1000 em->start = start; 1001 em->orig_start = em->start; 1002 ram_size = ins.offset; 1003 em->len = ins.offset; 1004 em->mod_start = em->start; 1005 em->mod_len = em->len; 1006 1007 em->block_start = ins.objectid; 1008 em->block_len = ins.offset; 1009 em->orig_block_len = ins.offset; 1010 em->ram_bytes = ram_size; 1011 em->bdev = root->fs_info->fs_devices->latest_bdev; 1012 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1013 em->generation = -1; 1014 1015 while (1) { 1016 write_lock(&em_tree->lock); 1017 ret = add_extent_mapping(em_tree, em, 1); 1018 write_unlock(&em_tree->lock); 1019 if (ret != -EEXIST) { 1020 free_extent_map(em); 1021 break; 1022 } 1023 btrfs_drop_extent_cache(inode, start, 1024 start + ram_size - 1, 0); 1025 } 1026 if (ret) 1027 goto out_reserve; 1028 1029 cur_alloc_size = ins.offset; 1030 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1031 ram_size, cur_alloc_size, 0); 1032 if (ret) 1033 goto out_drop_extent_cache; 1034 1035 if (root->root_key.objectid == 1036 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1037 ret = btrfs_reloc_clone_csums(inode, start, 1038 cur_alloc_size); 1039 if (ret) 1040 goto out_drop_extent_cache; 1041 } 1042 1043 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1044 1045 if (disk_num_bytes < cur_alloc_size) 1046 break; 1047 1048 /* we're not doing compressed IO, don't unlock the first 1049 * page (which the caller expects to stay locked), don't 1050 * clear any dirty bits and don't set any writeback bits 1051 * 1052 * Do set the Private2 bit so we know this page was properly 1053 * setup for writepage 1054 */ 1055 op = unlock ? PAGE_UNLOCK : 0; 1056 op |= PAGE_SET_PRIVATE2; 1057 1058 extent_clear_unlock_delalloc(inode, start, 1059 start + ram_size - 1, locked_page, 1060 EXTENT_LOCKED | EXTENT_DELALLOC, 1061 op); 1062 disk_num_bytes -= cur_alloc_size; 1063 num_bytes -= cur_alloc_size; 1064 alloc_hint = ins.objectid + ins.offset; 1065 start += cur_alloc_size; 1066 } 1067 out: 1068 return ret; 1069 1070 out_drop_extent_cache: 1071 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1072 out_reserve: 1073 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1074 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1075 out_unlock: 1076 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1077 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1078 EXTENT_DELALLOC | EXTENT_DEFRAG, 1079 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1080 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1081 goto out; 1082 } 1083 1084 /* 1085 * work queue call back to started compression on a file and pages 1086 */ 1087 static noinline void async_cow_start(struct btrfs_work *work) 1088 { 1089 struct async_cow *async_cow; 1090 int num_added = 0; 1091 async_cow = container_of(work, struct async_cow, work); 1092 1093 compress_file_range(async_cow->inode, async_cow->locked_page, 1094 async_cow->start, async_cow->end, async_cow, 1095 &num_added); 1096 if (num_added == 0) { 1097 btrfs_add_delayed_iput(async_cow->inode); 1098 async_cow->inode = NULL; 1099 } 1100 } 1101 1102 /* 1103 * work queue call back to submit previously compressed pages 1104 */ 1105 static noinline void async_cow_submit(struct btrfs_work *work) 1106 { 1107 struct async_cow *async_cow; 1108 struct btrfs_root *root; 1109 unsigned long nr_pages; 1110 1111 async_cow = container_of(work, struct async_cow, work); 1112 1113 root = async_cow->root; 1114 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1115 PAGE_SHIFT; 1116 1117 /* 1118 * atomic_sub_return implies a barrier for waitqueue_active 1119 */ 1120 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1121 5 * SZ_1M && 1122 waitqueue_active(&root->fs_info->async_submit_wait)) 1123 wake_up(&root->fs_info->async_submit_wait); 1124 1125 if (async_cow->inode) 1126 submit_compressed_extents(async_cow->inode, async_cow); 1127 } 1128 1129 static noinline void async_cow_free(struct btrfs_work *work) 1130 { 1131 struct async_cow *async_cow; 1132 async_cow = container_of(work, struct async_cow, work); 1133 if (async_cow->inode) 1134 btrfs_add_delayed_iput(async_cow->inode); 1135 kfree(async_cow); 1136 } 1137 1138 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1139 u64 start, u64 end, int *page_started, 1140 unsigned long *nr_written) 1141 { 1142 struct async_cow *async_cow; 1143 struct btrfs_root *root = BTRFS_I(inode)->root; 1144 unsigned long nr_pages; 1145 u64 cur_end; 1146 int limit = 10 * SZ_1M; 1147 1148 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1149 1, 0, NULL, GFP_NOFS); 1150 while (start < end) { 1151 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1152 BUG_ON(!async_cow); /* -ENOMEM */ 1153 async_cow->inode = igrab(inode); 1154 async_cow->root = root; 1155 async_cow->locked_page = locked_page; 1156 async_cow->start = start; 1157 1158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1159 !btrfs_test_opt(root, FORCE_COMPRESS)) 1160 cur_end = end; 1161 else 1162 cur_end = min(end, start + SZ_512K - 1); 1163 1164 async_cow->end = cur_end; 1165 INIT_LIST_HEAD(&async_cow->extents); 1166 1167 btrfs_init_work(&async_cow->work, 1168 btrfs_delalloc_helper, 1169 async_cow_start, async_cow_submit, 1170 async_cow_free); 1171 1172 nr_pages = (cur_end - start + PAGE_SIZE) >> 1173 PAGE_SHIFT; 1174 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1175 1176 btrfs_queue_work(root->fs_info->delalloc_workers, 1177 &async_cow->work); 1178 1179 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1180 wait_event(root->fs_info->async_submit_wait, 1181 (atomic_read(&root->fs_info->async_delalloc_pages) < 1182 limit)); 1183 } 1184 1185 while (atomic_read(&root->fs_info->async_submit_draining) && 1186 atomic_read(&root->fs_info->async_delalloc_pages)) { 1187 wait_event(root->fs_info->async_submit_wait, 1188 (atomic_read(&root->fs_info->async_delalloc_pages) == 1189 0)); 1190 } 1191 1192 *nr_written += nr_pages; 1193 start = cur_end + 1; 1194 } 1195 *page_started = 1; 1196 return 0; 1197 } 1198 1199 static noinline int csum_exist_in_range(struct btrfs_root *root, 1200 u64 bytenr, u64 num_bytes) 1201 { 1202 int ret; 1203 struct btrfs_ordered_sum *sums; 1204 LIST_HEAD(list); 1205 1206 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1207 bytenr + num_bytes - 1, &list, 0); 1208 if (ret == 0 && list_empty(&list)) 1209 return 0; 1210 1211 while (!list_empty(&list)) { 1212 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1213 list_del(&sums->list); 1214 kfree(sums); 1215 } 1216 return 1; 1217 } 1218 1219 /* 1220 * when nowcow writeback call back. This checks for snapshots or COW copies 1221 * of the extents that exist in the file, and COWs the file as required. 1222 * 1223 * If no cow copies or snapshots exist, we write directly to the existing 1224 * blocks on disk 1225 */ 1226 static noinline int run_delalloc_nocow(struct inode *inode, 1227 struct page *locked_page, 1228 u64 start, u64 end, int *page_started, int force, 1229 unsigned long *nr_written) 1230 { 1231 struct btrfs_root *root = BTRFS_I(inode)->root; 1232 struct btrfs_trans_handle *trans; 1233 struct extent_buffer *leaf; 1234 struct btrfs_path *path; 1235 struct btrfs_file_extent_item *fi; 1236 struct btrfs_key found_key; 1237 u64 cow_start; 1238 u64 cur_offset; 1239 u64 extent_end; 1240 u64 extent_offset; 1241 u64 disk_bytenr; 1242 u64 num_bytes; 1243 u64 disk_num_bytes; 1244 u64 ram_bytes; 1245 int extent_type; 1246 int ret, err; 1247 int type; 1248 int nocow; 1249 int check_prev = 1; 1250 bool nolock; 1251 u64 ino = btrfs_ino(inode); 1252 1253 path = btrfs_alloc_path(); 1254 if (!path) { 1255 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1256 EXTENT_LOCKED | EXTENT_DELALLOC | 1257 EXTENT_DO_ACCOUNTING | 1258 EXTENT_DEFRAG, PAGE_UNLOCK | 1259 PAGE_CLEAR_DIRTY | 1260 PAGE_SET_WRITEBACK | 1261 PAGE_END_WRITEBACK); 1262 return -ENOMEM; 1263 } 1264 1265 nolock = btrfs_is_free_space_inode(inode); 1266 1267 if (nolock) 1268 trans = btrfs_join_transaction_nolock(root); 1269 else 1270 trans = btrfs_join_transaction(root); 1271 1272 if (IS_ERR(trans)) { 1273 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1274 EXTENT_LOCKED | EXTENT_DELALLOC | 1275 EXTENT_DO_ACCOUNTING | 1276 EXTENT_DEFRAG, PAGE_UNLOCK | 1277 PAGE_CLEAR_DIRTY | 1278 PAGE_SET_WRITEBACK | 1279 PAGE_END_WRITEBACK); 1280 btrfs_free_path(path); 1281 return PTR_ERR(trans); 1282 } 1283 1284 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1285 1286 cow_start = (u64)-1; 1287 cur_offset = start; 1288 while (1) { 1289 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1290 cur_offset, 0); 1291 if (ret < 0) 1292 goto error; 1293 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1294 leaf = path->nodes[0]; 1295 btrfs_item_key_to_cpu(leaf, &found_key, 1296 path->slots[0] - 1); 1297 if (found_key.objectid == ino && 1298 found_key.type == BTRFS_EXTENT_DATA_KEY) 1299 path->slots[0]--; 1300 } 1301 check_prev = 0; 1302 next_slot: 1303 leaf = path->nodes[0]; 1304 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1305 ret = btrfs_next_leaf(root, path); 1306 if (ret < 0) 1307 goto error; 1308 if (ret > 0) 1309 break; 1310 leaf = path->nodes[0]; 1311 } 1312 1313 nocow = 0; 1314 disk_bytenr = 0; 1315 num_bytes = 0; 1316 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1317 1318 if (found_key.objectid > ino) 1319 break; 1320 if (WARN_ON_ONCE(found_key.objectid < ino) || 1321 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1322 path->slots[0]++; 1323 goto next_slot; 1324 } 1325 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1326 found_key.offset > end) 1327 break; 1328 1329 if (found_key.offset > cur_offset) { 1330 extent_end = found_key.offset; 1331 extent_type = 0; 1332 goto out_check; 1333 } 1334 1335 fi = btrfs_item_ptr(leaf, path->slots[0], 1336 struct btrfs_file_extent_item); 1337 extent_type = btrfs_file_extent_type(leaf, fi); 1338 1339 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1340 if (extent_type == BTRFS_FILE_EXTENT_REG || 1341 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1342 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1343 extent_offset = btrfs_file_extent_offset(leaf, fi); 1344 extent_end = found_key.offset + 1345 btrfs_file_extent_num_bytes(leaf, fi); 1346 disk_num_bytes = 1347 btrfs_file_extent_disk_num_bytes(leaf, fi); 1348 if (extent_end <= start) { 1349 path->slots[0]++; 1350 goto next_slot; 1351 } 1352 if (disk_bytenr == 0) 1353 goto out_check; 1354 if (btrfs_file_extent_compression(leaf, fi) || 1355 btrfs_file_extent_encryption(leaf, fi) || 1356 btrfs_file_extent_other_encoding(leaf, fi)) 1357 goto out_check; 1358 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1359 goto out_check; 1360 if (btrfs_extent_readonly(root, disk_bytenr)) 1361 goto out_check; 1362 if (btrfs_cross_ref_exist(trans, root, ino, 1363 found_key.offset - 1364 extent_offset, disk_bytenr)) 1365 goto out_check; 1366 disk_bytenr += extent_offset; 1367 disk_bytenr += cur_offset - found_key.offset; 1368 num_bytes = min(end + 1, extent_end) - cur_offset; 1369 /* 1370 * if there are pending snapshots for this root, 1371 * we fall into common COW way. 1372 */ 1373 if (!nolock) { 1374 err = btrfs_start_write_no_snapshoting(root); 1375 if (!err) 1376 goto out_check; 1377 } 1378 /* 1379 * force cow if csum exists in the range. 1380 * this ensure that csum for a given extent are 1381 * either valid or do not exist. 1382 */ 1383 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1384 goto out_check; 1385 if (!btrfs_inc_nocow_writers(root->fs_info, 1386 disk_bytenr)) 1387 goto out_check; 1388 nocow = 1; 1389 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1390 extent_end = found_key.offset + 1391 btrfs_file_extent_inline_len(leaf, 1392 path->slots[0], fi); 1393 extent_end = ALIGN(extent_end, root->sectorsize); 1394 } else { 1395 BUG_ON(1); 1396 } 1397 out_check: 1398 if (extent_end <= start) { 1399 path->slots[0]++; 1400 if (!nolock && nocow) 1401 btrfs_end_write_no_snapshoting(root); 1402 if (nocow) 1403 btrfs_dec_nocow_writers(root->fs_info, 1404 disk_bytenr); 1405 goto next_slot; 1406 } 1407 if (!nocow) { 1408 if (cow_start == (u64)-1) 1409 cow_start = cur_offset; 1410 cur_offset = extent_end; 1411 if (cur_offset > end) 1412 break; 1413 path->slots[0]++; 1414 goto next_slot; 1415 } 1416 1417 btrfs_release_path(path); 1418 if (cow_start != (u64)-1) { 1419 ret = cow_file_range(inode, locked_page, 1420 cow_start, found_key.offset - 1, 1421 page_started, nr_written, 1); 1422 if (ret) { 1423 if (!nolock && nocow) 1424 btrfs_end_write_no_snapshoting(root); 1425 if (nocow) 1426 btrfs_dec_nocow_writers(root->fs_info, 1427 disk_bytenr); 1428 goto error; 1429 } 1430 cow_start = (u64)-1; 1431 } 1432 1433 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1434 struct extent_map *em; 1435 struct extent_map_tree *em_tree; 1436 em_tree = &BTRFS_I(inode)->extent_tree; 1437 em = alloc_extent_map(); 1438 BUG_ON(!em); /* -ENOMEM */ 1439 em->start = cur_offset; 1440 em->orig_start = found_key.offset - extent_offset; 1441 em->len = num_bytes; 1442 em->block_len = num_bytes; 1443 em->block_start = disk_bytenr; 1444 em->orig_block_len = disk_num_bytes; 1445 em->ram_bytes = ram_bytes; 1446 em->bdev = root->fs_info->fs_devices->latest_bdev; 1447 em->mod_start = em->start; 1448 em->mod_len = em->len; 1449 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1450 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1451 em->generation = -1; 1452 while (1) { 1453 write_lock(&em_tree->lock); 1454 ret = add_extent_mapping(em_tree, em, 1); 1455 write_unlock(&em_tree->lock); 1456 if (ret != -EEXIST) { 1457 free_extent_map(em); 1458 break; 1459 } 1460 btrfs_drop_extent_cache(inode, em->start, 1461 em->start + em->len - 1, 0); 1462 } 1463 type = BTRFS_ORDERED_PREALLOC; 1464 } else { 1465 type = BTRFS_ORDERED_NOCOW; 1466 } 1467 1468 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1469 num_bytes, num_bytes, type); 1470 if (nocow) 1471 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr); 1472 BUG_ON(ret); /* -ENOMEM */ 1473 1474 if (root->root_key.objectid == 1475 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1476 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1477 num_bytes); 1478 if (ret) { 1479 if (!nolock && nocow) 1480 btrfs_end_write_no_snapshoting(root); 1481 goto error; 1482 } 1483 } 1484 1485 extent_clear_unlock_delalloc(inode, cur_offset, 1486 cur_offset + num_bytes - 1, 1487 locked_page, EXTENT_LOCKED | 1488 EXTENT_DELALLOC, PAGE_UNLOCK | 1489 PAGE_SET_PRIVATE2); 1490 if (!nolock && nocow) 1491 btrfs_end_write_no_snapshoting(root); 1492 cur_offset = extent_end; 1493 if (cur_offset > end) 1494 break; 1495 } 1496 btrfs_release_path(path); 1497 1498 if (cur_offset <= end && cow_start == (u64)-1) { 1499 cow_start = cur_offset; 1500 cur_offset = end; 1501 } 1502 1503 if (cow_start != (u64)-1) { 1504 ret = cow_file_range(inode, locked_page, cow_start, end, 1505 page_started, nr_written, 1); 1506 if (ret) 1507 goto error; 1508 } 1509 1510 error: 1511 err = btrfs_end_transaction(trans, root); 1512 if (!ret) 1513 ret = err; 1514 1515 if (ret && cur_offset < end) 1516 extent_clear_unlock_delalloc(inode, cur_offset, end, 1517 locked_page, EXTENT_LOCKED | 1518 EXTENT_DELALLOC | EXTENT_DEFRAG | 1519 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1520 PAGE_CLEAR_DIRTY | 1521 PAGE_SET_WRITEBACK | 1522 PAGE_END_WRITEBACK); 1523 btrfs_free_path(path); 1524 return ret; 1525 } 1526 1527 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1528 { 1529 1530 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1531 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1532 return 0; 1533 1534 /* 1535 * @defrag_bytes is a hint value, no spinlock held here, 1536 * if is not zero, it means the file is defragging. 1537 * Force cow if given extent needs to be defragged. 1538 */ 1539 if (BTRFS_I(inode)->defrag_bytes && 1540 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1541 EXTENT_DEFRAG, 0, NULL)) 1542 return 1; 1543 1544 return 0; 1545 } 1546 1547 /* 1548 * extent_io.c call back to do delayed allocation processing 1549 */ 1550 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1551 u64 start, u64 end, int *page_started, 1552 unsigned long *nr_written) 1553 { 1554 int ret; 1555 int force_cow = need_force_cow(inode, start, end); 1556 1557 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1558 ret = run_delalloc_nocow(inode, locked_page, start, end, 1559 page_started, 1, nr_written); 1560 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1561 ret = run_delalloc_nocow(inode, locked_page, start, end, 1562 page_started, 0, nr_written); 1563 } else if (!inode_need_compress(inode)) { 1564 ret = cow_file_range(inode, locked_page, start, end, 1565 page_started, nr_written, 1); 1566 } else { 1567 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1568 &BTRFS_I(inode)->runtime_flags); 1569 ret = cow_file_range_async(inode, locked_page, start, end, 1570 page_started, nr_written); 1571 } 1572 return ret; 1573 } 1574 1575 static void btrfs_split_extent_hook(struct inode *inode, 1576 struct extent_state *orig, u64 split) 1577 { 1578 u64 size; 1579 1580 /* not delalloc, ignore it */ 1581 if (!(orig->state & EXTENT_DELALLOC)) 1582 return; 1583 1584 size = orig->end - orig->start + 1; 1585 if (size > BTRFS_MAX_EXTENT_SIZE) { 1586 u64 num_extents; 1587 u64 new_size; 1588 1589 /* 1590 * See the explanation in btrfs_merge_extent_hook, the same 1591 * applies here, just in reverse. 1592 */ 1593 new_size = orig->end - split + 1; 1594 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1595 BTRFS_MAX_EXTENT_SIZE); 1596 new_size = split - orig->start; 1597 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1598 BTRFS_MAX_EXTENT_SIZE); 1599 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1600 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1601 return; 1602 } 1603 1604 spin_lock(&BTRFS_I(inode)->lock); 1605 BTRFS_I(inode)->outstanding_extents++; 1606 spin_unlock(&BTRFS_I(inode)->lock); 1607 } 1608 1609 /* 1610 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1611 * extents so we can keep track of new extents that are just merged onto old 1612 * extents, such as when we are doing sequential writes, so we can properly 1613 * account for the metadata space we'll need. 1614 */ 1615 static void btrfs_merge_extent_hook(struct inode *inode, 1616 struct extent_state *new, 1617 struct extent_state *other) 1618 { 1619 u64 new_size, old_size; 1620 u64 num_extents; 1621 1622 /* not delalloc, ignore it */ 1623 if (!(other->state & EXTENT_DELALLOC)) 1624 return; 1625 1626 if (new->start > other->start) 1627 new_size = new->end - other->start + 1; 1628 else 1629 new_size = other->end - new->start + 1; 1630 1631 /* we're not bigger than the max, unreserve the space and go */ 1632 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1633 spin_lock(&BTRFS_I(inode)->lock); 1634 BTRFS_I(inode)->outstanding_extents--; 1635 spin_unlock(&BTRFS_I(inode)->lock); 1636 return; 1637 } 1638 1639 /* 1640 * We have to add up either side to figure out how many extents were 1641 * accounted for before we merged into one big extent. If the number of 1642 * extents we accounted for is <= the amount we need for the new range 1643 * then we can return, otherwise drop. Think of it like this 1644 * 1645 * [ 4k][MAX_SIZE] 1646 * 1647 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1648 * need 2 outstanding extents, on one side we have 1 and the other side 1649 * we have 1 so they are == and we can return. But in this case 1650 * 1651 * [MAX_SIZE+4k][MAX_SIZE+4k] 1652 * 1653 * Each range on their own accounts for 2 extents, but merged together 1654 * they are only 3 extents worth of accounting, so we need to drop in 1655 * this case. 1656 */ 1657 old_size = other->end - other->start + 1; 1658 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1659 BTRFS_MAX_EXTENT_SIZE); 1660 old_size = new->end - new->start + 1; 1661 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1662 BTRFS_MAX_EXTENT_SIZE); 1663 1664 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1665 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1666 return; 1667 1668 spin_lock(&BTRFS_I(inode)->lock); 1669 BTRFS_I(inode)->outstanding_extents--; 1670 spin_unlock(&BTRFS_I(inode)->lock); 1671 } 1672 1673 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1674 struct inode *inode) 1675 { 1676 spin_lock(&root->delalloc_lock); 1677 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1678 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1679 &root->delalloc_inodes); 1680 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1681 &BTRFS_I(inode)->runtime_flags); 1682 root->nr_delalloc_inodes++; 1683 if (root->nr_delalloc_inodes == 1) { 1684 spin_lock(&root->fs_info->delalloc_root_lock); 1685 BUG_ON(!list_empty(&root->delalloc_root)); 1686 list_add_tail(&root->delalloc_root, 1687 &root->fs_info->delalloc_roots); 1688 spin_unlock(&root->fs_info->delalloc_root_lock); 1689 } 1690 } 1691 spin_unlock(&root->delalloc_lock); 1692 } 1693 1694 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1695 struct inode *inode) 1696 { 1697 spin_lock(&root->delalloc_lock); 1698 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1699 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1700 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1701 &BTRFS_I(inode)->runtime_flags); 1702 root->nr_delalloc_inodes--; 1703 if (!root->nr_delalloc_inodes) { 1704 spin_lock(&root->fs_info->delalloc_root_lock); 1705 BUG_ON(list_empty(&root->delalloc_root)); 1706 list_del_init(&root->delalloc_root); 1707 spin_unlock(&root->fs_info->delalloc_root_lock); 1708 } 1709 } 1710 spin_unlock(&root->delalloc_lock); 1711 } 1712 1713 /* 1714 * extent_io.c set_bit_hook, used to track delayed allocation 1715 * bytes in this file, and to maintain the list of inodes that 1716 * have pending delalloc work to be done. 1717 */ 1718 static void btrfs_set_bit_hook(struct inode *inode, 1719 struct extent_state *state, unsigned *bits) 1720 { 1721 1722 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1723 WARN_ON(1); 1724 /* 1725 * set_bit and clear bit hooks normally require _irqsave/restore 1726 * but in this case, we are only testing for the DELALLOC 1727 * bit, which is only set or cleared with irqs on 1728 */ 1729 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1730 struct btrfs_root *root = BTRFS_I(inode)->root; 1731 u64 len = state->end + 1 - state->start; 1732 bool do_list = !btrfs_is_free_space_inode(inode); 1733 1734 if (*bits & EXTENT_FIRST_DELALLOC) { 1735 *bits &= ~EXTENT_FIRST_DELALLOC; 1736 } else { 1737 spin_lock(&BTRFS_I(inode)->lock); 1738 BTRFS_I(inode)->outstanding_extents++; 1739 spin_unlock(&BTRFS_I(inode)->lock); 1740 } 1741 1742 /* For sanity tests */ 1743 if (btrfs_test_is_dummy_root(root)) 1744 return; 1745 1746 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1747 root->fs_info->delalloc_batch); 1748 spin_lock(&BTRFS_I(inode)->lock); 1749 BTRFS_I(inode)->delalloc_bytes += len; 1750 if (*bits & EXTENT_DEFRAG) 1751 BTRFS_I(inode)->defrag_bytes += len; 1752 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1753 &BTRFS_I(inode)->runtime_flags)) 1754 btrfs_add_delalloc_inodes(root, inode); 1755 spin_unlock(&BTRFS_I(inode)->lock); 1756 } 1757 } 1758 1759 /* 1760 * extent_io.c clear_bit_hook, see set_bit_hook for why 1761 */ 1762 static void btrfs_clear_bit_hook(struct inode *inode, 1763 struct extent_state *state, 1764 unsigned *bits) 1765 { 1766 u64 len = state->end + 1 - state->start; 1767 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1768 BTRFS_MAX_EXTENT_SIZE); 1769 1770 spin_lock(&BTRFS_I(inode)->lock); 1771 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1772 BTRFS_I(inode)->defrag_bytes -= len; 1773 spin_unlock(&BTRFS_I(inode)->lock); 1774 1775 /* 1776 * set_bit and clear bit hooks normally require _irqsave/restore 1777 * but in this case, we are only testing for the DELALLOC 1778 * bit, which is only set or cleared with irqs on 1779 */ 1780 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1781 struct btrfs_root *root = BTRFS_I(inode)->root; 1782 bool do_list = !btrfs_is_free_space_inode(inode); 1783 1784 if (*bits & EXTENT_FIRST_DELALLOC) { 1785 *bits &= ~EXTENT_FIRST_DELALLOC; 1786 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1787 spin_lock(&BTRFS_I(inode)->lock); 1788 BTRFS_I(inode)->outstanding_extents -= num_extents; 1789 spin_unlock(&BTRFS_I(inode)->lock); 1790 } 1791 1792 /* 1793 * We don't reserve metadata space for space cache inodes so we 1794 * don't need to call dellalloc_release_metadata if there is an 1795 * error. 1796 */ 1797 if (*bits & EXTENT_DO_ACCOUNTING && 1798 root != root->fs_info->tree_root) 1799 btrfs_delalloc_release_metadata(inode, len); 1800 1801 /* For sanity tests. */ 1802 if (btrfs_test_is_dummy_root(root)) 1803 return; 1804 1805 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1806 && do_list && !(state->state & EXTENT_NORESERVE)) 1807 btrfs_free_reserved_data_space_noquota(inode, 1808 state->start, len); 1809 1810 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1811 root->fs_info->delalloc_batch); 1812 spin_lock(&BTRFS_I(inode)->lock); 1813 BTRFS_I(inode)->delalloc_bytes -= len; 1814 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1815 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1816 &BTRFS_I(inode)->runtime_flags)) 1817 btrfs_del_delalloc_inode(root, inode); 1818 spin_unlock(&BTRFS_I(inode)->lock); 1819 } 1820 } 1821 1822 /* 1823 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1824 * we don't create bios that span stripes or chunks 1825 */ 1826 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1827 size_t size, struct bio *bio, 1828 unsigned long bio_flags) 1829 { 1830 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1831 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1832 u64 length = 0; 1833 u64 map_length; 1834 int ret; 1835 1836 if (bio_flags & EXTENT_BIO_COMPRESSED) 1837 return 0; 1838 1839 length = bio->bi_iter.bi_size; 1840 map_length = length; 1841 ret = btrfs_map_block(root->fs_info, bio_op(bio), logical, 1842 &map_length, NULL, 0); 1843 /* Will always return 0 with map_multi == NULL */ 1844 BUG_ON(ret < 0); 1845 if (map_length < length + size) 1846 return 1; 1847 return 0; 1848 } 1849 1850 /* 1851 * in order to insert checksums into the metadata in large chunks, 1852 * we wait until bio submission time. All the pages in the bio are 1853 * checksummed and sums are attached onto the ordered extent record. 1854 * 1855 * At IO completion time the cums attached on the ordered extent record 1856 * are inserted into the btree 1857 */ 1858 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 1859 int mirror_num, unsigned long bio_flags, 1860 u64 bio_offset) 1861 { 1862 struct btrfs_root *root = BTRFS_I(inode)->root; 1863 int ret = 0; 1864 1865 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1866 BUG_ON(ret); /* -ENOMEM */ 1867 return 0; 1868 } 1869 1870 /* 1871 * in order to insert checksums into the metadata in large chunks, 1872 * we wait until bio submission time. All the pages in the bio are 1873 * checksummed and sums are attached onto the ordered extent record. 1874 * 1875 * At IO completion time the cums attached on the ordered extent record 1876 * are inserted into the btree 1877 */ 1878 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio, 1879 int mirror_num, unsigned long bio_flags, 1880 u64 bio_offset) 1881 { 1882 struct btrfs_root *root = BTRFS_I(inode)->root; 1883 int ret; 1884 1885 ret = btrfs_map_bio(root, bio, mirror_num, 1); 1886 if (ret) { 1887 bio->bi_error = ret; 1888 bio_endio(bio); 1889 } 1890 return ret; 1891 } 1892 1893 /* 1894 * extent_io.c submission hook. This does the right thing for csum calculation 1895 * on write, or reading the csums from the tree before a read 1896 */ 1897 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 1898 int mirror_num, unsigned long bio_flags, 1899 u64 bio_offset) 1900 { 1901 struct btrfs_root *root = BTRFS_I(inode)->root; 1902 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1903 int ret = 0; 1904 int skip_sum; 1905 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1906 1907 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1908 1909 if (btrfs_is_free_space_inode(inode)) 1910 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1911 1912 if (bio_op(bio) != REQ_OP_WRITE) { 1913 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1914 if (ret) 1915 goto out; 1916 1917 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1918 ret = btrfs_submit_compressed_read(inode, bio, 1919 mirror_num, 1920 bio_flags); 1921 goto out; 1922 } else if (!skip_sum) { 1923 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1924 if (ret) 1925 goto out; 1926 } 1927 goto mapit; 1928 } else if (async && !skip_sum) { 1929 /* csum items have already been cloned */ 1930 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1931 goto mapit; 1932 /* we're doing a write, do the async checksumming */ 1933 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1934 inode, bio, mirror_num, 1935 bio_flags, bio_offset, 1936 __btrfs_submit_bio_start, 1937 __btrfs_submit_bio_done); 1938 goto out; 1939 } else if (!skip_sum) { 1940 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1941 if (ret) 1942 goto out; 1943 } 1944 1945 mapit: 1946 ret = btrfs_map_bio(root, bio, mirror_num, 0); 1947 1948 out: 1949 if (ret < 0) { 1950 bio->bi_error = ret; 1951 bio_endio(bio); 1952 } 1953 return ret; 1954 } 1955 1956 /* 1957 * given a list of ordered sums record them in the inode. This happens 1958 * at IO completion time based on sums calculated at bio submission time. 1959 */ 1960 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1961 struct inode *inode, u64 file_offset, 1962 struct list_head *list) 1963 { 1964 struct btrfs_ordered_sum *sum; 1965 1966 list_for_each_entry(sum, list, list) { 1967 trans->adding_csums = 1; 1968 btrfs_csum_file_blocks(trans, 1969 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1970 trans->adding_csums = 0; 1971 } 1972 return 0; 1973 } 1974 1975 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1976 struct extent_state **cached_state) 1977 { 1978 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 1979 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1980 cached_state); 1981 } 1982 1983 /* see btrfs_writepage_start_hook for details on why this is required */ 1984 struct btrfs_writepage_fixup { 1985 struct page *page; 1986 struct btrfs_work work; 1987 }; 1988 1989 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1990 { 1991 struct btrfs_writepage_fixup *fixup; 1992 struct btrfs_ordered_extent *ordered; 1993 struct extent_state *cached_state = NULL; 1994 struct page *page; 1995 struct inode *inode; 1996 u64 page_start; 1997 u64 page_end; 1998 int ret; 1999 2000 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2001 page = fixup->page; 2002 again: 2003 lock_page(page); 2004 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2005 ClearPageChecked(page); 2006 goto out_page; 2007 } 2008 2009 inode = page->mapping->host; 2010 page_start = page_offset(page); 2011 page_end = page_offset(page) + PAGE_SIZE - 1; 2012 2013 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2014 &cached_state); 2015 2016 /* already ordered? We're done */ 2017 if (PagePrivate2(page)) 2018 goto out; 2019 2020 ordered = btrfs_lookup_ordered_range(inode, page_start, 2021 PAGE_SIZE); 2022 if (ordered) { 2023 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2024 page_end, &cached_state, GFP_NOFS); 2025 unlock_page(page); 2026 btrfs_start_ordered_extent(inode, ordered, 1); 2027 btrfs_put_ordered_extent(ordered); 2028 goto again; 2029 } 2030 2031 ret = btrfs_delalloc_reserve_space(inode, page_start, 2032 PAGE_SIZE); 2033 if (ret) { 2034 mapping_set_error(page->mapping, ret); 2035 end_extent_writepage(page, ret, page_start, page_end); 2036 ClearPageChecked(page); 2037 goto out; 2038 } 2039 2040 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 2041 ClearPageChecked(page); 2042 set_page_dirty(page); 2043 out: 2044 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2045 &cached_state, GFP_NOFS); 2046 out_page: 2047 unlock_page(page); 2048 put_page(page); 2049 kfree(fixup); 2050 } 2051 2052 /* 2053 * There are a few paths in the higher layers of the kernel that directly 2054 * set the page dirty bit without asking the filesystem if it is a 2055 * good idea. This causes problems because we want to make sure COW 2056 * properly happens and the data=ordered rules are followed. 2057 * 2058 * In our case any range that doesn't have the ORDERED bit set 2059 * hasn't been properly setup for IO. We kick off an async process 2060 * to fix it up. The async helper will wait for ordered extents, set 2061 * the delalloc bit and make it safe to write the page. 2062 */ 2063 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2064 { 2065 struct inode *inode = page->mapping->host; 2066 struct btrfs_writepage_fixup *fixup; 2067 struct btrfs_root *root = BTRFS_I(inode)->root; 2068 2069 /* this page is properly in the ordered list */ 2070 if (TestClearPagePrivate2(page)) 2071 return 0; 2072 2073 if (PageChecked(page)) 2074 return -EAGAIN; 2075 2076 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2077 if (!fixup) 2078 return -EAGAIN; 2079 2080 SetPageChecked(page); 2081 get_page(page); 2082 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2083 btrfs_writepage_fixup_worker, NULL, NULL); 2084 fixup->page = page; 2085 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2086 return -EBUSY; 2087 } 2088 2089 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2090 struct inode *inode, u64 file_pos, 2091 u64 disk_bytenr, u64 disk_num_bytes, 2092 u64 num_bytes, u64 ram_bytes, 2093 u8 compression, u8 encryption, 2094 u16 other_encoding, int extent_type) 2095 { 2096 struct btrfs_root *root = BTRFS_I(inode)->root; 2097 struct btrfs_file_extent_item *fi; 2098 struct btrfs_path *path; 2099 struct extent_buffer *leaf; 2100 struct btrfs_key ins; 2101 int extent_inserted = 0; 2102 int ret; 2103 2104 path = btrfs_alloc_path(); 2105 if (!path) 2106 return -ENOMEM; 2107 2108 /* 2109 * we may be replacing one extent in the tree with another. 2110 * The new extent is pinned in the extent map, and we don't want 2111 * to drop it from the cache until it is completely in the btree. 2112 * 2113 * So, tell btrfs_drop_extents to leave this extent in the cache. 2114 * the caller is expected to unpin it and allow it to be merged 2115 * with the others. 2116 */ 2117 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2118 file_pos + num_bytes, NULL, 0, 2119 1, sizeof(*fi), &extent_inserted); 2120 if (ret) 2121 goto out; 2122 2123 if (!extent_inserted) { 2124 ins.objectid = btrfs_ino(inode); 2125 ins.offset = file_pos; 2126 ins.type = BTRFS_EXTENT_DATA_KEY; 2127 2128 path->leave_spinning = 1; 2129 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2130 sizeof(*fi)); 2131 if (ret) 2132 goto out; 2133 } 2134 leaf = path->nodes[0]; 2135 fi = btrfs_item_ptr(leaf, path->slots[0], 2136 struct btrfs_file_extent_item); 2137 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2138 btrfs_set_file_extent_type(leaf, fi, extent_type); 2139 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2140 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2141 btrfs_set_file_extent_offset(leaf, fi, 0); 2142 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2143 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2144 btrfs_set_file_extent_compression(leaf, fi, compression); 2145 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2146 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2147 2148 btrfs_mark_buffer_dirty(leaf); 2149 btrfs_release_path(path); 2150 2151 inode_add_bytes(inode, num_bytes); 2152 2153 ins.objectid = disk_bytenr; 2154 ins.offset = disk_num_bytes; 2155 ins.type = BTRFS_EXTENT_ITEM_KEY; 2156 ret = btrfs_alloc_reserved_file_extent(trans, root, 2157 root->root_key.objectid, 2158 btrfs_ino(inode), file_pos, 2159 ram_bytes, &ins); 2160 /* 2161 * Release the reserved range from inode dirty range map, as it is 2162 * already moved into delayed_ref_head 2163 */ 2164 btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2165 out: 2166 btrfs_free_path(path); 2167 2168 return ret; 2169 } 2170 2171 /* snapshot-aware defrag */ 2172 struct sa_defrag_extent_backref { 2173 struct rb_node node; 2174 struct old_sa_defrag_extent *old; 2175 u64 root_id; 2176 u64 inum; 2177 u64 file_pos; 2178 u64 extent_offset; 2179 u64 num_bytes; 2180 u64 generation; 2181 }; 2182 2183 struct old_sa_defrag_extent { 2184 struct list_head list; 2185 struct new_sa_defrag_extent *new; 2186 2187 u64 extent_offset; 2188 u64 bytenr; 2189 u64 offset; 2190 u64 len; 2191 int count; 2192 }; 2193 2194 struct new_sa_defrag_extent { 2195 struct rb_root root; 2196 struct list_head head; 2197 struct btrfs_path *path; 2198 struct inode *inode; 2199 u64 file_pos; 2200 u64 len; 2201 u64 bytenr; 2202 u64 disk_len; 2203 u8 compress_type; 2204 }; 2205 2206 static int backref_comp(struct sa_defrag_extent_backref *b1, 2207 struct sa_defrag_extent_backref *b2) 2208 { 2209 if (b1->root_id < b2->root_id) 2210 return -1; 2211 else if (b1->root_id > b2->root_id) 2212 return 1; 2213 2214 if (b1->inum < b2->inum) 2215 return -1; 2216 else if (b1->inum > b2->inum) 2217 return 1; 2218 2219 if (b1->file_pos < b2->file_pos) 2220 return -1; 2221 else if (b1->file_pos > b2->file_pos) 2222 return 1; 2223 2224 /* 2225 * [------------------------------] ===> (a range of space) 2226 * |<--->| |<---->| =============> (fs/file tree A) 2227 * |<---------------------------->| ===> (fs/file tree B) 2228 * 2229 * A range of space can refer to two file extents in one tree while 2230 * refer to only one file extent in another tree. 2231 * 2232 * So we may process a disk offset more than one time(two extents in A) 2233 * and locate at the same extent(one extent in B), then insert two same 2234 * backrefs(both refer to the extent in B). 2235 */ 2236 return 0; 2237 } 2238 2239 static void backref_insert(struct rb_root *root, 2240 struct sa_defrag_extent_backref *backref) 2241 { 2242 struct rb_node **p = &root->rb_node; 2243 struct rb_node *parent = NULL; 2244 struct sa_defrag_extent_backref *entry; 2245 int ret; 2246 2247 while (*p) { 2248 parent = *p; 2249 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2250 2251 ret = backref_comp(backref, entry); 2252 if (ret < 0) 2253 p = &(*p)->rb_left; 2254 else 2255 p = &(*p)->rb_right; 2256 } 2257 2258 rb_link_node(&backref->node, parent, p); 2259 rb_insert_color(&backref->node, root); 2260 } 2261 2262 /* 2263 * Note the backref might has changed, and in this case we just return 0. 2264 */ 2265 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2266 void *ctx) 2267 { 2268 struct btrfs_file_extent_item *extent; 2269 struct btrfs_fs_info *fs_info; 2270 struct old_sa_defrag_extent *old = ctx; 2271 struct new_sa_defrag_extent *new = old->new; 2272 struct btrfs_path *path = new->path; 2273 struct btrfs_key key; 2274 struct btrfs_root *root; 2275 struct sa_defrag_extent_backref *backref; 2276 struct extent_buffer *leaf; 2277 struct inode *inode = new->inode; 2278 int slot; 2279 int ret; 2280 u64 extent_offset; 2281 u64 num_bytes; 2282 2283 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2284 inum == btrfs_ino(inode)) 2285 return 0; 2286 2287 key.objectid = root_id; 2288 key.type = BTRFS_ROOT_ITEM_KEY; 2289 key.offset = (u64)-1; 2290 2291 fs_info = BTRFS_I(inode)->root->fs_info; 2292 root = btrfs_read_fs_root_no_name(fs_info, &key); 2293 if (IS_ERR(root)) { 2294 if (PTR_ERR(root) == -ENOENT) 2295 return 0; 2296 WARN_ON(1); 2297 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2298 inum, offset, root_id); 2299 return PTR_ERR(root); 2300 } 2301 2302 key.objectid = inum; 2303 key.type = BTRFS_EXTENT_DATA_KEY; 2304 if (offset > (u64)-1 << 32) 2305 key.offset = 0; 2306 else 2307 key.offset = offset; 2308 2309 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2310 if (WARN_ON(ret < 0)) 2311 return ret; 2312 ret = 0; 2313 2314 while (1) { 2315 cond_resched(); 2316 2317 leaf = path->nodes[0]; 2318 slot = path->slots[0]; 2319 2320 if (slot >= btrfs_header_nritems(leaf)) { 2321 ret = btrfs_next_leaf(root, path); 2322 if (ret < 0) { 2323 goto out; 2324 } else if (ret > 0) { 2325 ret = 0; 2326 goto out; 2327 } 2328 continue; 2329 } 2330 2331 path->slots[0]++; 2332 2333 btrfs_item_key_to_cpu(leaf, &key, slot); 2334 2335 if (key.objectid > inum) 2336 goto out; 2337 2338 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2339 continue; 2340 2341 extent = btrfs_item_ptr(leaf, slot, 2342 struct btrfs_file_extent_item); 2343 2344 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2345 continue; 2346 2347 /* 2348 * 'offset' refers to the exact key.offset, 2349 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2350 * (key.offset - extent_offset). 2351 */ 2352 if (key.offset != offset) 2353 continue; 2354 2355 extent_offset = btrfs_file_extent_offset(leaf, extent); 2356 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2357 2358 if (extent_offset >= old->extent_offset + old->offset + 2359 old->len || extent_offset + num_bytes <= 2360 old->extent_offset + old->offset) 2361 continue; 2362 break; 2363 } 2364 2365 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2366 if (!backref) { 2367 ret = -ENOENT; 2368 goto out; 2369 } 2370 2371 backref->root_id = root_id; 2372 backref->inum = inum; 2373 backref->file_pos = offset; 2374 backref->num_bytes = num_bytes; 2375 backref->extent_offset = extent_offset; 2376 backref->generation = btrfs_file_extent_generation(leaf, extent); 2377 backref->old = old; 2378 backref_insert(&new->root, backref); 2379 old->count++; 2380 out: 2381 btrfs_release_path(path); 2382 WARN_ON(ret); 2383 return ret; 2384 } 2385 2386 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2387 struct new_sa_defrag_extent *new) 2388 { 2389 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2390 struct old_sa_defrag_extent *old, *tmp; 2391 int ret; 2392 2393 new->path = path; 2394 2395 list_for_each_entry_safe(old, tmp, &new->head, list) { 2396 ret = iterate_inodes_from_logical(old->bytenr + 2397 old->extent_offset, fs_info, 2398 path, record_one_backref, 2399 old); 2400 if (ret < 0 && ret != -ENOENT) 2401 return false; 2402 2403 /* no backref to be processed for this extent */ 2404 if (!old->count) { 2405 list_del(&old->list); 2406 kfree(old); 2407 } 2408 } 2409 2410 if (list_empty(&new->head)) 2411 return false; 2412 2413 return true; 2414 } 2415 2416 static int relink_is_mergable(struct extent_buffer *leaf, 2417 struct btrfs_file_extent_item *fi, 2418 struct new_sa_defrag_extent *new) 2419 { 2420 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2421 return 0; 2422 2423 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2424 return 0; 2425 2426 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2427 return 0; 2428 2429 if (btrfs_file_extent_encryption(leaf, fi) || 2430 btrfs_file_extent_other_encoding(leaf, fi)) 2431 return 0; 2432 2433 return 1; 2434 } 2435 2436 /* 2437 * Note the backref might has changed, and in this case we just return 0. 2438 */ 2439 static noinline int relink_extent_backref(struct btrfs_path *path, 2440 struct sa_defrag_extent_backref *prev, 2441 struct sa_defrag_extent_backref *backref) 2442 { 2443 struct btrfs_file_extent_item *extent; 2444 struct btrfs_file_extent_item *item; 2445 struct btrfs_ordered_extent *ordered; 2446 struct btrfs_trans_handle *trans; 2447 struct btrfs_fs_info *fs_info; 2448 struct btrfs_root *root; 2449 struct btrfs_key key; 2450 struct extent_buffer *leaf; 2451 struct old_sa_defrag_extent *old = backref->old; 2452 struct new_sa_defrag_extent *new = old->new; 2453 struct inode *src_inode = new->inode; 2454 struct inode *inode; 2455 struct extent_state *cached = NULL; 2456 int ret = 0; 2457 u64 start; 2458 u64 len; 2459 u64 lock_start; 2460 u64 lock_end; 2461 bool merge = false; 2462 int index; 2463 2464 if (prev && prev->root_id == backref->root_id && 2465 prev->inum == backref->inum && 2466 prev->file_pos + prev->num_bytes == backref->file_pos) 2467 merge = true; 2468 2469 /* step 1: get root */ 2470 key.objectid = backref->root_id; 2471 key.type = BTRFS_ROOT_ITEM_KEY; 2472 key.offset = (u64)-1; 2473 2474 fs_info = BTRFS_I(src_inode)->root->fs_info; 2475 index = srcu_read_lock(&fs_info->subvol_srcu); 2476 2477 root = btrfs_read_fs_root_no_name(fs_info, &key); 2478 if (IS_ERR(root)) { 2479 srcu_read_unlock(&fs_info->subvol_srcu, index); 2480 if (PTR_ERR(root) == -ENOENT) 2481 return 0; 2482 return PTR_ERR(root); 2483 } 2484 2485 if (btrfs_root_readonly(root)) { 2486 srcu_read_unlock(&fs_info->subvol_srcu, index); 2487 return 0; 2488 } 2489 2490 /* step 2: get inode */ 2491 key.objectid = backref->inum; 2492 key.type = BTRFS_INODE_ITEM_KEY; 2493 key.offset = 0; 2494 2495 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2496 if (IS_ERR(inode)) { 2497 srcu_read_unlock(&fs_info->subvol_srcu, index); 2498 return 0; 2499 } 2500 2501 srcu_read_unlock(&fs_info->subvol_srcu, index); 2502 2503 /* step 3: relink backref */ 2504 lock_start = backref->file_pos; 2505 lock_end = backref->file_pos + backref->num_bytes - 1; 2506 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2507 &cached); 2508 2509 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2510 if (ordered) { 2511 btrfs_put_ordered_extent(ordered); 2512 goto out_unlock; 2513 } 2514 2515 trans = btrfs_join_transaction(root); 2516 if (IS_ERR(trans)) { 2517 ret = PTR_ERR(trans); 2518 goto out_unlock; 2519 } 2520 2521 key.objectid = backref->inum; 2522 key.type = BTRFS_EXTENT_DATA_KEY; 2523 key.offset = backref->file_pos; 2524 2525 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2526 if (ret < 0) { 2527 goto out_free_path; 2528 } else if (ret > 0) { 2529 ret = 0; 2530 goto out_free_path; 2531 } 2532 2533 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2534 struct btrfs_file_extent_item); 2535 2536 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2537 backref->generation) 2538 goto out_free_path; 2539 2540 btrfs_release_path(path); 2541 2542 start = backref->file_pos; 2543 if (backref->extent_offset < old->extent_offset + old->offset) 2544 start += old->extent_offset + old->offset - 2545 backref->extent_offset; 2546 2547 len = min(backref->extent_offset + backref->num_bytes, 2548 old->extent_offset + old->offset + old->len); 2549 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2550 2551 ret = btrfs_drop_extents(trans, root, inode, start, 2552 start + len, 1); 2553 if (ret) 2554 goto out_free_path; 2555 again: 2556 key.objectid = btrfs_ino(inode); 2557 key.type = BTRFS_EXTENT_DATA_KEY; 2558 key.offset = start; 2559 2560 path->leave_spinning = 1; 2561 if (merge) { 2562 struct btrfs_file_extent_item *fi; 2563 u64 extent_len; 2564 struct btrfs_key found_key; 2565 2566 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2567 if (ret < 0) 2568 goto out_free_path; 2569 2570 path->slots[0]--; 2571 leaf = path->nodes[0]; 2572 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2573 2574 fi = btrfs_item_ptr(leaf, path->slots[0], 2575 struct btrfs_file_extent_item); 2576 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2577 2578 if (extent_len + found_key.offset == start && 2579 relink_is_mergable(leaf, fi, new)) { 2580 btrfs_set_file_extent_num_bytes(leaf, fi, 2581 extent_len + len); 2582 btrfs_mark_buffer_dirty(leaf); 2583 inode_add_bytes(inode, len); 2584 2585 ret = 1; 2586 goto out_free_path; 2587 } else { 2588 merge = false; 2589 btrfs_release_path(path); 2590 goto again; 2591 } 2592 } 2593 2594 ret = btrfs_insert_empty_item(trans, root, path, &key, 2595 sizeof(*extent)); 2596 if (ret) { 2597 btrfs_abort_transaction(trans, root, ret); 2598 goto out_free_path; 2599 } 2600 2601 leaf = path->nodes[0]; 2602 item = btrfs_item_ptr(leaf, path->slots[0], 2603 struct btrfs_file_extent_item); 2604 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2605 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2606 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2607 btrfs_set_file_extent_num_bytes(leaf, item, len); 2608 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2609 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2610 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2611 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2612 btrfs_set_file_extent_encryption(leaf, item, 0); 2613 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2614 2615 btrfs_mark_buffer_dirty(leaf); 2616 inode_add_bytes(inode, len); 2617 btrfs_release_path(path); 2618 2619 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2620 new->disk_len, 0, 2621 backref->root_id, backref->inum, 2622 new->file_pos); /* start - extent_offset */ 2623 if (ret) { 2624 btrfs_abort_transaction(trans, root, ret); 2625 goto out_free_path; 2626 } 2627 2628 ret = 1; 2629 out_free_path: 2630 btrfs_release_path(path); 2631 path->leave_spinning = 0; 2632 btrfs_end_transaction(trans, root); 2633 out_unlock: 2634 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2635 &cached, GFP_NOFS); 2636 iput(inode); 2637 return ret; 2638 } 2639 2640 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2641 { 2642 struct old_sa_defrag_extent *old, *tmp; 2643 2644 if (!new) 2645 return; 2646 2647 list_for_each_entry_safe(old, tmp, &new->head, list) { 2648 kfree(old); 2649 } 2650 kfree(new); 2651 } 2652 2653 static void relink_file_extents(struct new_sa_defrag_extent *new) 2654 { 2655 struct btrfs_path *path; 2656 struct sa_defrag_extent_backref *backref; 2657 struct sa_defrag_extent_backref *prev = NULL; 2658 struct inode *inode; 2659 struct btrfs_root *root; 2660 struct rb_node *node; 2661 int ret; 2662 2663 inode = new->inode; 2664 root = BTRFS_I(inode)->root; 2665 2666 path = btrfs_alloc_path(); 2667 if (!path) 2668 return; 2669 2670 if (!record_extent_backrefs(path, new)) { 2671 btrfs_free_path(path); 2672 goto out; 2673 } 2674 btrfs_release_path(path); 2675 2676 while (1) { 2677 node = rb_first(&new->root); 2678 if (!node) 2679 break; 2680 rb_erase(node, &new->root); 2681 2682 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2683 2684 ret = relink_extent_backref(path, prev, backref); 2685 WARN_ON(ret < 0); 2686 2687 kfree(prev); 2688 2689 if (ret == 1) 2690 prev = backref; 2691 else 2692 prev = NULL; 2693 cond_resched(); 2694 } 2695 kfree(prev); 2696 2697 btrfs_free_path(path); 2698 out: 2699 free_sa_defrag_extent(new); 2700 2701 atomic_dec(&root->fs_info->defrag_running); 2702 wake_up(&root->fs_info->transaction_wait); 2703 } 2704 2705 static struct new_sa_defrag_extent * 2706 record_old_file_extents(struct inode *inode, 2707 struct btrfs_ordered_extent *ordered) 2708 { 2709 struct btrfs_root *root = BTRFS_I(inode)->root; 2710 struct btrfs_path *path; 2711 struct btrfs_key key; 2712 struct old_sa_defrag_extent *old; 2713 struct new_sa_defrag_extent *new; 2714 int ret; 2715 2716 new = kmalloc(sizeof(*new), GFP_NOFS); 2717 if (!new) 2718 return NULL; 2719 2720 new->inode = inode; 2721 new->file_pos = ordered->file_offset; 2722 new->len = ordered->len; 2723 new->bytenr = ordered->start; 2724 new->disk_len = ordered->disk_len; 2725 new->compress_type = ordered->compress_type; 2726 new->root = RB_ROOT; 2727 INIT_LIST_HEAD(&new->head); 2728 2729 path = btrfs_alloc_path(); 2730 if (!path) 2731 goto out_kfree; 2732 2733 key.objectid = btrfs_ino(inode); 2734 key.type = BTRFS_EXTENT_DATA_KEY; 2735 key.offset = new->file_pos; 2736 2737 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2738 if (ret < 0) 2739 goto out_free_path; 2740 if (ret > 0 && path->slots[0] > 0) 2741 path->slots[0]--; 2742 2743 /* find out all the old extents for the file range */ 2744 while (1) { 2745 struct btrfs_file_extent_item *extent; 2746 struct extent_buffer *l; 2747 int slot; 2748 u64 num_bytes; 2749 u64 offset; 2750 u64 end; 2751 u64 disk_bytenr; 2752 u64 extent_offset; 2753 2754 l = path->nodes[0]; 2755 slot = path->slots[0]; 2756 2757 if (slot >= btrfs_header_nritems(l)) { 2758 ret = btrfs_next_leaf(root, path); 2759 if (ret < 0) 2760 goto out_free_path; 2761 else if (ret > 0) 2762 break; 2763 continue; 2764 } 2765 2766 btrfs_item_key_to_cpu(l, &key, slot); 2767 2768 if (key.objectid != btrfs_ino(inode)) 2769 break; 2770 if (key.type != BTRFS_EXTENT_DATA_KEY) 2771 break; 2772 if (key.offset >= new->file_pos + new->len) 2773 break; 2774 2775 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2776 2777 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2778 if (key.offset + num_bytes < new->file_pos) 2779 goto next; 2780 2781 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2782 if (!disk_bytenr) 2783 goto next; 2784 2785 extent_offset = btrfs_file_extent_offset(l, extent); 2786 2787 old = kmalloc(sizeof(*old), GFP_NOFS); 2788 if (!old) 2789 goto out_free_path; 2790 2791 offset = max(new->file_pos, key.offset); 2792 end = min(new->file_pos + new->len, key.offset + num_bytes); 2793 2794 old->bytenr = disk_bytenr; 2795 old->extent_offset = extent_offset; 2796 old->offset = offset - key.offset; 2797 old->len = end - offset; 2798 old->new = new; 2799 old->count = 0; 2800 list_add_tail(&old->list, &new->head); 2801 next: 2802 path->slots[0]++; 2803 cond_resched(); 2804 } 2805 2806 btrfs_free_path(path); 2807 atomic_inc(&root->fs_info->defrag_running); 2808 2809 return new; 2810 2811 out_free_path: 2812 btrfs_free_path(path); 2813 out_kfree: 2814 free_sa_defrag_extent(new); 2815 return NULL; 2816 } 2817 2818 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2819 u64 start, u64 len) 2820 { 2821 struct btrfs_block_group_cache *cache; 2822 2823 cache = btrfs_lookup_block_group(root->fs_info, start); 2824 ASSERT(cache); 2825 2826 spin_lock(&cache->lock); 2827 cache->delalloc_bytes -= len; 2828 spin_unlock(&cache->lock); 2829 2830 btrfs_put_block_group(cache); 2831 } 2832 2833 /* as ordered data IO finishes, this gets called so we can finish 2834 * an ordered extent if the range of bytes in the file it covers are 2835 * fully written. 2836 */ 2837 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2838 { 2839 struct inode *inode = ordered_extent->inode; 2840 struct btrfs_root *root = BTRFS_I(inode)->root; 2841 struct btrfs_trans_handle *trans = NULL; 2842 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2843 struct extent_state *cached_state = NULL; 2844 struct new_sa_defrag_extent *new = NULL; 2845 int compress_type = 0; 2846 int ret = 0; 2847 u64 logical_len = ordered_extent->len; 2848 bool nolock; 2849 bool truncated = false; 2850 2851 nolock = btrfs_is_free_space_inode(inode); 2852 2853 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2854 ret = -EIO; 2855 goto out; 2856 } 2857 2858 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2859 ordered_extent->file_offset + 2860 ordered_extent->len - 1); 2861 2862 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2863 truncated = true; 2864 logical_len = ordered_extent->truncated_len; 2865 /* Truncated the entire extent, don't bother adding */ 2866 if (!logical_len) 2867 goto out; 2868 } 2869 2870 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2871 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2872 2873 /* 2874 * For mwrite(mmap + memset to write) case, we still reserve 2875 * space for NOCOW range. 2876 * As NOCOW won't cause a new delayed ref, just free the space 2877 */ 2878 btrfs_qgroup_free_data(inode, ordered_extent->file_offset, 2879 ordered_extent->len); 2880 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2881 if (nolock) 2882 trans = btrfs_join_transaction_nolock(root); 2883 else 2884 trans = btrfs_join_transaction(root); 2885 if (IS_ERR(trans)) { 2886 ret = PTR_ERR(trans); 2887 trans = NULL; 2888 goto out; 2889 } 2890 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2891 ret = btrfs_update_inode_fallback(trans, root, inode); 2892 if (ret) /* -ENOMEM or corruption */ 2893 btrfs_abort_transaction(trans, root, ret); 2894 goto out; 2895 } 2896 2897 lock_extent_bits(io_tree, ordered_extent->file_offset, 2898 ordered_extent->file_offset + ordered_extent->len - 1, 2899 &cached_state); 2900 2901 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2902 ordered_extent->file_offset + ordered_extent->len - 1, 2903 EXTENT_DEFRAG, 1, cached_state); 2904 if (ret) { 2905 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2906 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2907 /* the inode is shared */ 2908 new = record_old_file_extents(inode, ordered_extent); 2909 2910 clear_extent_bit(io_tree, ordered_extent->file_offset, 2911 ordered_extent->file_offset + ordered_extent->len - 1, 2912 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2913 } 2914 2915 if (nolock) 2916 trans = btrfs_join_transaction_nolock(root); 2917 else 2918 trans = btrfs_join_transaction(root); 2919 if (IS_ERR(trans)) { 2920 ret = PTR_ERR(trans); 2921 trans = NULL; 2922 goto out_unlock; 2923 } 2924 2925 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2926 2927 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2928 compress_type = ordered_extent->compress_type; 2929 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2930 BUG_ON(compress_type); 2931 ret = btrfs_mark_extent_written(trans, inode, 2932 ordered_extent->file_offset, 2933 ordered_extent->file_offset + 2934 logical_len); 2935 } else { 2936 BUG_ON(root == root->fs_info->tree_root); 2937 ret = insert_reserved_file_extent(trans, inode, 2938 ordered_extent->file_offset, 2939 ordered_extent->start, 2940 ordered_extent->disk_len, 2941 logical_len, logical_len, 2942 compress_type, 0, 0, 2943 BTRFS_FILE_EXTENT_REG); 2944 if (!ret) 2945 btrfs_release_delalloc_bytes(root, 2946 ordered_extent->start, 2947 ordered_extent->disk_len); 2948 } 2949 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2950 ordered_extent->file_offset, ordered_extent->len, 2951 trans->transid); 2952 if (ret < 0) { 2953 btrfs_abort_transaction(trans, root, ret); 2954 goto out_unlock; 2955 } 2956 2957 add_pending_csums(trans, inode, ordered_extent->file_offset, 2958 &ordered_extent->list); 2959 2960 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2961 ret = btrfs_update_inode_fallback(trans, root, inode); 2962 if (ret) { /* -ENOMEM or corruption */ 2963 btrfs_abort_transaction(trans, root, ret); 2964 goto out_unlock; 2965 } 2966 ret = 0; 2967 out_unlock: 2968 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2969 ordered_extent->file_offset + 2970 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2971 out: 2972 if (root != root->fs_info->tree_root) 2973 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2974 if (trans) 2975 btrfs_end_transaction(trans, root); 2976 2977 if (ret || truncated) { 2978 u64 start, end; 2979 2980 if (truncated) 2981 start = ordered_extent->file_offset + logical_len; 2982 else 2983 start = ordered_extent->file_offset; 2984 end = ordered_extent->file_offset + ordered_extent->len - 1; 2985 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2986 2987 /* Drop the cache for the part of the extent we didn't write. */ 2988 btrfs_drop_extent_cache(inode, start, end, 0); 2989 2990 /* 2991 * If the ordered extent had an IOERR or something else went 2992 * wrong we need to return the space for this ordered extent 2993 * back to the allocator. We only free the extent in the 2994 * truncated case if we didn't write out the extent at all. 2995 */ 2996 if ((ret || !logical_len) && 2997 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2998 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2999 btrfs_free_reserved_extent(root, ordered_extent->start, 3000 ordered_extent->disk_len, 1); 3001 } 3002 3003 3004 /* 3005 * This needs to be done to make sure anybody waiting knows we are done 3006 * updating everything for this ordered extent. 3007 */ 3008 btrfs_remove_ordered_extent(inode, ordered_extent); 3009 3010 /* for snapshot-aware defrag */ 3011 if (new) { 3012 if (ret) { 3013 free_sa_defrag_extent(new); 3014 atomic_dec(&root->fs_info->defrag_running); 3015 } else { 3016 relink_file_extents(new); 3017 } 3018 } 3019 3020 /* once for us */ 3021 btrfs_put_ordered_extent(ordered_extent); 3022 /* once for the tree */ 3023 btrfs_put_ordered_extent(ordered_extent); 3024 3025 return ret; 3026 } 3027 3028 static void finish_ordered_fn(struct btrfs_work *work) 3029 { 3030 struct btrfs_ordered_extent *ordered_extent; 3031 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3032 btrfs_finish_ordered_io(ordered_extent); 3033 } 3034 3035 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3036 struct extent_state *state, int uptodate) 3037 { 3038 struct inode *inode = page->mapping->host; 3039 struct btrfs_root *root = BTRFS_I(inode)->root; 3040 struct btrfs_ordered_extent *ordered_extent = NULL; 3041 struct btrfs_workqueue *wq; 3042 btrfs_work_func_t func; 3043 3044 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3045 3046 ClearPagePrivate2(page); 3047 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3048 end - start + 1, uptodate)) 3049 return 0; 3050 3051 if (btrfs_is_free_space_inode(inode)) { 3052 wq = root->fs_info->endio_freespace_worker; 3053 func = btrfs_freespace_write_helper; 3054 } else { 3055 wq = root->fs_info->endio_write_workers; 3056 func = btrfs_endio_write_helper; 3057 } 3058 3059 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3060 NULL); 3061 btrfs_queue_work(wq, &ordered_extent->work); 3062 3063 return 0; 3064 } 3065 3066 static int __readpage_endio_check(struct inode *inode, 3067 struct btrfs_io_bio *io_bio, 3068 int icsum, struct page *page, 3069 int pgoff, u64 start, size_t len) 3070 { 3071 char *kaddr; 3072 u32 csum_expected; 3073 u32 csum = ~(u32)0; 3074 3075 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3076 3077 kaddr = kmap_atomic(page); 3078 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3079 btrfs_csum_final(csum, (char *)&csum); 3080 if (csum != csum_expected) 3081 goto zeroit; 3082 3083 kunmap_atomic(kaddr); 3084 return 0; 3085 zeroit: 3086 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info, 3087 "csum failed ino %llu off %llu csum %u expected csum %u", 3088 btrfs_ino(inode), start, csum, csum_expected); 3089 memset(kaddr + pgoff, 1, len); 3090 flush_dcache_page(page); 3091 kunmap_atomic(kaddr); 3092 if (csum_expected == 0) 3093 return 0; 3094 return -EIO; 3095 } 3096 3097 /* 3098 * when reads are done, we need to check csums to verify the data is correct 3099 * if there's a match, we allow the bio to finish. If not, the code in 3100 * extent_io.c will try to find good copies for us. 3101 */ 3102 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3103 u64 phy_offset, struct page *page, 3104 u64 start, u64 end, int mirror) 3105 { 3106 size_t offset = start - page_offset(page); 3107 struct inode *inode = page->mapping->host; 3108 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3109 struct btrfs_root *root = BTRFS_I(inode)->root; 3110 3111 if (PageChecked(page)) { 3112 ClearPageChecked(page); 3113 return 0; 3114 } 3115 3116 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3117 return 0; 3118 3119 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3120 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3121 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3122 return 0; 3123 } 3124 3125 phy_offset >>= inode->i_sb->s_blocksize_bits; 3126 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3127 start, (size_t)(end - start + 1)); 3128 } 3129 3130 void btrfs_add_delayed_iput(struct inode *inode) 3131 { 3132 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3133 struct btrfs_inode *binode = BTRFS_I(inode); 3134 3135 if (atomic_add_unless(&inode->i_count, -1, 1)) 3136 return; 3137 3138 spin_lock(&fs_info->delayed_iput_lock); 3139 if (binode->delayed_iput_count == 0) { 3140 ASSERT(list_empty(&binode->delayed_iput)); 3141 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3142 } else { 3143 binode->delayed_iput_count++; 3144 } 3145 spin_unlock(&fs_info->delayed_iput_lock); 3146 } 3147 3148 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3149 { 3150 struct btrfs_fs_info *fs_info = root->fs_info; 3151 3152 spin_lock(&fs_info->delayed_iput_lock); 3153 while (!list_empty(&fs_info->delayed_iputs)) { 3154 struct btrfs_inode *inode; 3155 3156 inode = list_first_entry(&fs_info->delayed_iputs, 3157 struct btrfs_inode, delayed_iput); 3158 if (inode->delayed_iput_count) { 3159 inode->delayed_iput_count--; 3160 list_move_tail(&inode->delayed_iput, 3161 &fs_info->delayed_iputs); 3162 } else { 3163 list_del_init(&inode->delayed_iput); 3164 } 3165 spin_unlock(&fs_info->delayed_iput_lock); 3166 iput(&inode->vfs_inode); 3167 spin_lock(&fs_info->delayed_iput_lock); 3168 } 3169 spin_unlock(&fs_info->delayed_iput_lock); 3170 } 3171 3172 /* 3173 * This is called in transaction commit time. If there are no orphan 3174 * files in the subvolume, it removes orphan item and frees block_rsv 3175 * structure. 3176 */ 3177 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3178 struct btrfs_root *root) 3179 { 3180 struct btrfs_block_rsv *block_rsv; 3181 int ret; 3182 3183 if (atomic_read(&root->orphan_inodes) || 3184 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3185 return; 3186 3187 spin_lock(&root->orphan_lock); 3188 if (atomic_read(&root->orphan_inodes)) { 3189 spin_unlock(&root->orphan_lock); 3190 return; 3191 } 3192 3193 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3194 spin_unlock(&root->orphan_lock); 3195 return; 3196 } 3197 3198 block_rsv = root->orphan_block_rsv; 3199 root->orphan_block_rsv = NULL; 3200 spin_unlock(&root->orphan_lock); 3201 3202 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3203 btrfs_root_refs(&root->root_item) > 0) { 3204 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3205 root->root_key.objectid); 3206 if (ret) 3207 btrfs_abort_transaction(trans, root, ret); 3208 else 3209 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3210 &root->state); 3211 } 3212 3213 if (block_rsv) { 3214 WARN_ON(block_rsv->size > 0); 3215 btrfs_free_block_rsv(root, block_rsv); 3216 } 3217 } 3218 3219 /* 3220 * This creates an orphan entry for the given inode in case something goes 3221 * wrong in the middle of an unlink/truncate. 3222 * 3223 * NOTE: caller of this function should reserve 5 units of metadata for 3224 * this function. 3225 */ 3226 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3227 { 3228 struct btrfs_root *root = BTRFS_I(inode)->root; 3229 struct btrfs_block_rsv *block_rsv = NULL; 3230 int reserve = 0; 3231 int insert = 0; 3232 int ret; 3233 3234 if (!root->orphan_block_rsv) { 3235 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3236 if (!block_rsv) 3237 return -ENOMEM; 3238 } 3239 3240 spin_lock(&root->orphan_lock); 3241 if (!root->orphan_block_rsv) { 3242 root->orphan_block_rsv = block_rsv; 3243 } else if (block_rsv) { 3244 btrfs_free_block_rsv(root, block_rsv); 3245 block_rsv = NULL; 3246 } 3247 3248 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3249 &BTRFS_I(inode)->runtime_flags)) { 3250 #if 0 3251 /* 3252 * For proper ENOSPC handling, we should do orphan 3253 * cleanup when mounting. But this introduces backward 3254 * compatibility issue. 3255 */ 3256 if (!xchg(&root->orphan_item_inserted, 1)) 3257 insert = 2; 3258 else 3259 insert = 1; 3260 #endif 3261 insert = 1; 3262 atomic_inc(&root->orphan_inodes); 3263 } 3264 3265 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3266 &BTRFS_I(inode)->runtime_flags)) 3267 reserve = 1; 3268 spin_unlock(&root->orphan_lock); 3269 3270 /* grab metadata reservation from transaction handle */ 3271 if (reserve) { 3272 ret = btrfs_orphan_reserve_metadata(trans, inode); 3273 ASSERT(!ret); 3274 if (ret) { 3275 atomic_dec(&root->orphan_inodes); 3276 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3277 &BTRFS_I(inode)->runtime_flags); 3278 if (insert) 3279 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3280 &BTRFS_I(inode)->runtime_flags); 3281 return ret; 3282 } 3283 } 3284 3285 /* insert an orphan item to track this unlinked/truncated file */ 3286 if (insert >= 1) { 3287 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3288 if (ret) { 3289 atomic_dec(&root->orphan_inodes); 3290 if (reserve) { 3291 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3292 &BTRFS_I(inode)->runtime_flags); 3293 btrfs_orphan_release_metadata(inode); 3294 } 3295 if (ret != -EEXIST) { 3296 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3297 &BTRFS_I(inode)->runtime_flags); 3298 btrfs_abort_transaction(trans, root, ret); 3299 return ret; 3300 } 3301 } 3302 ret = 0; 3303 } 3304 3305 /* insert an orphan item to track subvolume contains orphan files */ 3306 if (insert >= 2) { 3307 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3308 root->root_key.objectid); 3309 if (ret && ret != -EEXIST) { 3310 btrfs_abort_transaction(trans, root, ret); 3311 return ret; 3312 } 3313 } 3314 return 0; 3315 } 3316 3317 /* 3318 * We have done the truncate/delete so we can go ahead and remove the orphan 3319 * item for this particular inode. 3320 */ 3321 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3322 struct inode *inode) 3323 { 3324 struct btrfs_root *root = BTRFS_I(inode)->root; 3325 int delete_item = 0; 3326 int release_rsv = 0; 3327 int ret = 0; 3328 3329 spin_lock(&root->orphan_lock); 3330 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3331 &BTRFS_I(inode)->runtime_flags)) 3332 delete_item = 1; 3333 3334 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3335 &BTRFS_I(inode)->runtime_flags)) 3336 release_rsv = 1; 3337 spin_unlock(&root->orphan_lock); 3338 3339 if (delete_item) { 3340 atomic_dec(&root->orphan_inodes); 3341 if (trans) 3342 ret = btrfs_del_orphan_item(trans, root, 3343 btrfs_ino(inode)); 3344 } 3345 3346 if (release_rsv) 3347 btrfs_orphan_release_metadata(inode); 3348 3349 return ret; 3350 } 3351 3352 /* 3353 * this cleans up any orphans that may be left on the list from the last use 3354 * of this root. 3355 */ 3356 int btrfs_orphan_cleanup(struct btrfs_root *root) 3357 { 3358 struct btrfs_path *path; 3359 struct extent_buffer *leaf; 3360 struct btrfs_key key, found_key; 3361 struct btrfs_trans_handle *trans; 3362 struct inode *inode; 3363 u64 last_objectid = 0; 3364 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3365 3366 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3367 return 0; 3368 3369 path = btrfs_alloc_path(); 3370 if (!path) { 3371 ret = -ENOMEM; 3372 goto out; 3373 } 3374 path->reada = READA_BACK; 3375 3376 key.objectid = BTRFS_ORPHAN_OBJECTID; 3377 key.type = BTRFS_ORPHAN_ITEM_KEY; 3378 key.offset = (u64)-1; 3379 3380 while (1) { 3381 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3382 if (ret < 0) 3383 goto out; 3384 3385 /* 3386 * if ret == 0 means we found what we were searching for, which 3387 * is weird, but possible, so only screw with path if we didn't 3388 * find the key and see if we have stuff that matches 3389 */ 3390 if (ret > 0) { 3391 ret = 0; 3392 if (path->slots[0] == 0) 3393 break; 3394 path->slots[0]--; 3395 } 3396 3397 /* pull out the item */ 3398 leaf = path->nodes[0]; 3399 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3400 3401 /* make sure the item matches what we want */ 3402 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3403 break; 3404 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3405 break; 3406 3407 /* release the path since we're done with it */ 3408 btrfs_release_path(path); 3409 3410 /* 3411 * this is where we are basically btrfs_lookup, without the 3412 * crossing root thing. we store the inode number in the 3413 * offset of the orphan item. 3414 */ 3415 3416 if (found_key.offset == last_objectid) { 3417 btrfs_err(root->fs_info, 3418 "Error removing orphan entry, stopping orphan cleanup"); 3419 ret = -EINVAL; 3420 goto out; 3421 } 3422 3423 last_objectid = found_key.offset; 3424 3425 found_key.objectid = found_key.offset; 3426 found_key.type = BTRFS_INODE_ITEM_KEY; 3427 found_key.offset = 0; 3428 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3429 ret = PTR_ERR_OR_ZERO(inode); 3430 if (ret && ret != -ESTALE) 3431 goto out; 3432 3433 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3434 struct btrfs_root *dead_root; 3435 struct btrfs_fs_info *fs_info = root->fs_info; 3436 int is_dead_root = 0; 3437 3438 /* 3439 * this is an orphan in the tree root. Currently these 3440 * could come from 2 sources: 3441 * a) a snapshot deletion in progress 3442 * b) a free space cache inode 3443 * We need to distinguish those two, as the snapshot 3444 * orphan must not get deleted. 3445 * find_dead_roots already ran before us, so if this 3446 * is a snapshot deletion, we should find the root 3447 * in the dead_roots list 3448 */ 3449 spin_lock(&fs_info->trans_lock); 3450 list_for_each_entry(dead_root, &fs_info->dead_roots, 3451 root_list) { 3452 if (dead_root->root_key.objectid == 3453 found_key.objectid) { 3454 is_dead_root = 1; 3455 break; 3456 } 3457 } 3458 spin_unlock(&fs_info->trans_lock); 3459 if (is_dead_root) { 3460 /* prevent this orphan from being found again */ 3461 key.offset = found_key.objectid - 1; 3462 continue; 3463 } 3464 } 3465 /* 3466 * Inode is already gone but the orphan item is still there, 3467 * kill the orphan item. 3468 */ 3469 if (ret == -ESTALE) { 3470 trans = btrfs_start_transaction(root, 1); 3471 if (IS_ERR(trans)) { 3472 ret = PTR_ERR(trans); 3473 goto out; 3474 } 3475 btrfs_debug(root->fs_info, "auto deleting %Lu", 3476 found_key.objectid); 3477 ret = btrfs_del_orphan_item(trans, root, 3478 found_key.objectid); 3479 btrfs_end_transaction(trans, root); 3480 if (ret) 3481 goto out; 3482 continue; 3483 } 3484 3485 /* 3486 * add this inode to the orphan list so btrfs_orphan_del does 3487 * the proper thing when we hit it 3488 */ 3489 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3490 &BTRFS_I(inode)->runtime_flags); 3491 atomic_inc(&root->orphan_inodes); 3492 3493 /* if we have links, this was a truncate, lets do that */ 3494 if (inode->i_nlink) { 3495 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3496 iput(inode); 3497 continue; 3498 } 3499 nr_truncate++; 3500 3501 /* 1 for the orphan item deletion. */ 3502 trans = btrfs_start_transaction(root, 1); 3503 if (IS_ERR(trans)) { 3504 iput(inode); 3505 ret = PTR_ERR(trans); 3506 goto out; 3507 } 3508 ret = btrfs_orphan_add(trans, inode); 3509 btrfs_end_transaction(trans, root); 3510 if (ret) { 3511 iput(inode); 3512 goto out; 3513 } 3514 3515 ret = btrfs_truncate(inode); 3516 if (ret) 3517 btrfs_orphan_del(NULL, inode); 3518 } else { 3519 nr_unlink++; 3520 } 3521 3522 /* this will do delete_inode and everything for us */ 3523 iput(inode); 3524 if (ret) 3525 goto out; 3526 } 3527 /* release the path since we're done with it */ 3528 btrfs_release_path(path); 3529 3530 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3531 3532 if (root->orphan_block_rsv) 3533 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3534 (u64)-1); 3535 3536 if (root->orphan_block_rsv || 3537 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3538 trans = btrfs_join_transaction(root); 3539 if (!IS_ERR(trans)) 3540 btrfs_end_transaction(trans, root); 3541 } 3542 3543 if (nr_unlink) 3544 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3545 if (nr_truncate) 3546 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3547 3548 out: 3549 if (ret) 3550 btrfs_err(root->fs_info, 3551 "could not do orphan cleanup %d", ret); 3552 btrfs_free_path(path); 3553 return ret; 3554 } 3555 3556 /* 3557 * very simple check to peek ahead in the leaf looking for xattrs. If we 3558 * don't find any xattrs, we know there can't be any acls. 3559 * 3560 * slot is the slot the inode is in, objectid is the objectid of the inode 3561 */ 3562 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3563 int slot, u64 objectid, 3564 int *first_xattr_slot) 3565 { 3566 u32 nritems = btrfs_header_nritems(leaf); 3567 struct btrfs_key found_key; 3568 static u64 xattr_access = 0; 3569 static u64 xattr_default = 0; 3570 int scanned = 0; 3571 3572 if (!xattr_access) { 3573 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3574 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3575 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3576 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3577 } 3578 3579 slot++; 3580 *first_xattr_slot = -1; 3581 while (slot < nritems) { 3582 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3583 3584 /* we found a different objectid, there must not be acls */ 3585 if (found_key.objectid != objectid) 3586 return 0; 3587 3588 /* we found an xattr, assume we've got an acl */ 3589 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3590 if (*first_xattr_slot == -1) 3591 *first_xattr_slot = slot; 3592 if (found_key.offset == xattr_access || 3593 found_key.offset == xattr_default) 3594 return 1; 3595 } 3596 3597 /* 3598 * we found a key greater than an xattr key, there can't 3599 * be any acls later on 3600 */ 3601 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3602 return 0; 3603 3604 slot++; 3605 scanned++; 3606 3607 /* 3608 * it goes inode, inode backrefs, xattrs, extents, 3609 * so if there are a ton of hard links to an inode there can 3610 * be a lot of backrefs. Don't waste time searching too hard, 3611 * this is just an optimization 3612 */ 3613 if (scanned >= 8) 3614 break; 3615 } 3616 /* we hit the end of the leaf before we found an xattr or 3617 * something larger than an xattr. We have to assume the inode 3618 * has acls 3619 */ 3620 if (*first_xattr_slot == -1) 3621 *first_xattr_slot = slot; 3622 return 1; 3623 } 3624 3625 /* 3626 * read an inode from the btree into the in-memory inode 3627 */ 3628 static void btrfs_read_locked_inode(struct inode *inode) 3629 { 3630 struct btrfs_path *path; 3631 struct extent_buffer *leaf; 3632 struct btrfs_inode_item *inode_item; 3633 struct btrfs_root *root = BTRFS_I(inode)->root; 3634 struct btrfs_key location; 3635 unsigned long ptr; 3636 int maybe_acls; 3637 u32 rdev; 3638 int ret; 3639 bool filled = false; 3640 int first_xattr_slot; 3641 3642 ret = btrfs_fill_inode(inode, &rdev); 3643 if (!ret) 3644 filled = true; 3645 3646 path = btrfs_alloc_path(); 3647 if (!path) 3648 goto make_bad; 3649 3650 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3651 3652 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3653 if (ret) 3654 goto make_bad; 3655 3656 leaf = path->nodes[0]; 3657 3658 if (filled) 3659 goto cache_index; 3660 3661 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3662 struct btrfs_inode_item); 3663 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3664 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3665 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3666 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3667 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3668 3669 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3670 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3671 3672 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3673 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3674 3675 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3676 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3677 3678 BTRFS_I(inode)->i_otime.tv_sec = 3679 btrfs_timespec_sec(leaf, &inode_item->otime); 3680 BTRFS_I(inode)->i_otime.tv_nsec = 3681 btrfs_timespec_nsec(leaf, &inode_item->otime); 3682 3683 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3684 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3685 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3686 3687 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3688 inode->i_generation = BTRFS_I(inode)->generation; 3689 inode->i_rdev = 0; 3690 rdev = btrfs_inode_rdev(leaf, inode_item); 3691 3692 BTRFS_I(inode)->index_cnt = (u64)-1; 3693 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3694 3695 cache_index: 3696 /* 3697 * If we were modified in the current generation and evicted from memory 3698 * and then re-read we need to do a full sync since we don't have any 3699 * idea about which extents were modified before we were evicted from 3700 * cache. 3701 * 3702 * This is required for both inode re-read from disk and delayed inode 3703 * in delayed_nodes_tree. 3704 */ 3705 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3706 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3707 &BTRFS_I(inode)->runtime_flags); 3708 3709 /* 3710 * We don't persist the id of the transaction where an unlink operation 3711 * against the inode was last made. So here we assume the inode might 3712 * have been evicted, and therefore the exact value of last_unlink_trans 3713 * lost, and set it to last_trans to avoid metadata inconsistencies 3714 * between the inode and its parent if the inode is fsync'ed and the log 3715 * replayed. For example, in the scenario: 3716 * 3717 * touch mydir/foo 3718 * ln mydir/foo mydir/bar 3719 * sync 3720 * unlink mydir/bar 3721 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3722 * xfs_io -c fsync mydir/foo 3723 * <power failure> 3724 * mount fs, triggers fsync log replay 3725 * 3726 * We must make sure that when we fsync our inode foo we also log its 3727 * parent inode, otherwise after log replay the parent still has the 3728 * dentry with the "bar" name but our inode foo has a link count of 1 3729 * and doesn't have an inode ref with the name "bar" anymore. 3730 * 3731 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3732 * but it guarantees correctness at the expense of occasional full 3733 * transaction commits on fsync if our inode is a directory, or if our 3734 * inode is not a directory, logging its parent unnecessarily. 3735 */ 3736 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3737 3738 path->slots[0]++; 3739 if (inode->i_nlink != 1 || 3740 path->slots[0] >= btrfs_header_nritems(leaf)) 3741 goto cache_acl; 3742 3743 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3744 if (location.objectid != btrfs_ino(inode)) 3745 goto cache_acl; 3746 3747 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3748 if (location.type == BTRFS_INODE_REF_KEY) { 3749 struct btrfs_inode_ref *ref; 3750 3751 ref = (struct btrfs_inode_ref *)ptr; 3752 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3753 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3754 struct btrfs_inode_extref *extref; 3755 3756 extref = (struct btrfs_inode_extref *)ptr; 3757 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3758 extref); 3759 } 3760 cache_acl: 3761 /* 3762 * try to precache a NULL acl entry for files that don't have 3763 * any xattrs or acls 3764 */ 3765 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3766 btrfs_ino(inode), &first_xattr_slot); 3767 if (first_xattr_slot != -1) { 3768 path->slots[0] = first_xattr_slot; 3769 ret = btrfs_load_inode_props(inode, path); 3770 if (ret) 3771 btrfs_err(root->fs_info, 3772 "error loading props for ino %llu (root %llu): %d", 3773 btrfs_ino(inode), 3774 root->root_key.objectid, ret); 3775 } 3776 btrfs_free_path(path); 3777 3778 if (!maybe_acls) 3779 cache_no_acl(inode); 3780 3781 switch (inode->i_mode & S_IFMT) { 3782 case S_IFREG: 3783 inode->i_mapping->a_ops = &btrfs_aops; 3784 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3785 inode->i_fop = &btrfs_file_operations; 3786 inode->i_op = &btrfs_file_inode_operations; 3787 break; 3788 case S_IFDIR: 3789 inode->i_fop = &btrfs_dir_file_operations; 3790 if (root == root->fs_info->tree_root) 3791 inode->i_op = &btrfs_dir_ro_inode_operations; 3792 else 3793 inode->i_op = &btrfs_dir_inode_operations; 3794 break; 3795 case S_IFLNK: 3796 inode->i_op = &btrfs_symlink_inode_operations; 3797 inode_nohighmem(inode); 3798 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3799 break; 3800 default: 3801 inode->i_op = &btrfs_special_inode_operations; 3802 init_special_inode(inode, inode->i_mode, rdev); 3803 break; 3804 } 3805 3806 btrfs_update_iflags(inode); 3807 return; 3808 3809 make_bad: 3810 btrfs_free_path(path); 3811 make_bad_inode(inode); 3812 } 3813 3814 /* 3815 * given a leaf and an inode, copy the inode fields into the leaf 3816 */ 3817 static void fill_inode_item(struct btrfs_trans_handle *trans, 3818 struct extent_buffer *leaf, 3819 struct btrfs_inode_item *item, 3820 struct inode *inode) 3821 { 3822 struct btrfs_map_token token; 3823 3824 btrfs_init_map_token(&token); 3825 3826 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3827 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3828 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3829 &token); 3830 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3831 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3832 3833 btrfs_set_token_timespec_sec(leaf, &item->atime, 3834 inode->i_atime.tv_sec, &token); 3835 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3836 inode->i_atime.tv_nsec, &token); 3837 3838 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3839 inode->i_mtime.tv_sec, &token); 3840 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3841 inode->i_mtime.tv_nsec, &token); 3842 3843 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3844 inode->i_ctime.tv_sec, &token); 3845 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3846 inode->i_ctime.tv_nsec, &token); 3847 3848 btrfs_set_token_timespec_sec(leaf, &item->otime, 3849 BTRFS_I(inode)->i_otime.tv_sec, &token); 3850 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3851 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3852 3853 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3854 &token); 3855 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3856 &token); 3857 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3858 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3859 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3860 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3861 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3862 } 3863 3864 /* 3865 * copy everything in the in-memory inode into the btree. 3866 */ 3867 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3868 struct btrfs_root *root, struct inode *inode) 3869 { 3870 struct btrfs_inode_item *inode_item; 3871 struct btrfs_path *path; 3872 struct extent_buffer *leaf; 3873 int ret; 3874 3875 path = btrfs_alloc_path(); 3876 if (!path) 3877 return -ENOMEM; 3878 3879 path->leave_spinning = 1; 3880 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3881 1); 3882 if (ret) { 3883 if (ret > 0) 3884 ret = -ENOENT; 3885 goto failed; 3886 } 3887 3888 leaf = path->nodes[0]; 3889 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3890 struct btrfs_inode_item); 3891 3892 fill_inode_item(trans, leaf, inode_item, inode); 3893 btrfs_mark_buffer_dirty(leaf); 3894 btrfs_set_inode_last_trans(trans, inode); 3895 ret = 0; 3896 failed: 3897 btrfs_free_path(path); 3898 return ret; 3899 } 3900 3901 /* 3902 * copy everything in the in-memory inode into the btree. 3903 */ 3904 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3905 struct btrfs_root *root, struct inode *inode) 3906 { 3907 int ret; 3908 3909 /* 3910 * If the inode is a free space inode, we can deadlock during commit 3911 * if we put it into the delayed code. 3912 * 3913 * The data relocation inode should also be directly updated 3914 * without delay 3915 */ 3916 if (!btrfs_is_free_space_inode(inode) 3917 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3918 && !root->fs_info->log_root_recovering) { 3919 btrfs_update_root_times(trans, root); 3920 3921 ret = btrfs_delayed_update_inode(trans, root, inode); 3922 if (!ret) 3923 btrfs_set_inode_last_trans(trans, inode); 3924 return ret; 3925 } 3926 3927 return btrfs_update_inode_item(trans, root, inode); 3928 } 3929 3930 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3931 struct btrfs_root *root, 3932 struct inode *inode) 3933 { 3934 int ret; 3935 3936 ret = btrfs_update_inode(trans, root, inode); 3937 if (ret == -ENOSPC) 3938 return btrfs_update_inode_item(trans, root, inode); 3939 return ret; 3940 } 3941 3942 /* 3943 * unlink helper that gets used here in inode.c and in the tree logging 3944 * recovery code. It remove a link in a directory with a given name, and 3945 * also drops the back refs in the inode to the directory 3946 */ 3947 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3948 struct btrfs_root *root, 3949 struct inode *dir, struct inode *inode, 3950 const char *name, int name_len) 3951 { 3952 struct btrfs_path *path; 3953 int ret = 0; 3954 struct extent_buffer *leaf; 3955 struct btrfs_dir_item *di; 3956 struct btrfs_key key; 3957 u64 index; 3958 u64 ino = btrfs_ino(inode); 3959 u64 dir_ino = btrfs_ino(dir); 3960 3961 path = btrfs_alloc_path(); 3962 if (!path) { 3963 ret = -ENOMEM; 3964 goto out; 3965 } 3966 3967 path->leave_spinning = 1; 3968 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3969 name, name_len, -1); 3970 if (IS_ERR(di)) { 3971 ret = PTR_ERR(di); 3972 goto err; 3973 } 3974 if (!di) { 3975 ret = -ENOENT; 3976 goto err; 3977 } 3978 leaf = path->nodes[0]; 3979 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3980 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3981 if (ret) 3982 goto err; 3983 btrfs_release_path(path); 3984 3985 /* 3986 * If we don't have dir index, we have to get it by looking up 3987 * the inode ref, since we get the inode ref, remove it directly, 3988 * it is unnecessary to do delayed deletion. 3989 * 3990 * But if we have dir index, needn't search inode ref to get it. 3991 * Since the inode ref is close to the inode item, it is better 3992 * that we delay to delete it, and just do this deletion when 3993 * we update the inode item. 3994 */ 3995 if (BTRFS_I(inode)->dir_index) { 3996 ret = btrfs_delayed_delete_inode_ref(inode); 3997 if (!ret) { 3998 index = BTRFS_I(inode)->dir_index; 3999 goto skip_backref; 4000 } 4001 } 4002 4003 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4004 dir_ino, &index); 4005 if (ret) { 4006 btrfs_info(root->fs_info, 4007 "failed to delete reference to %.*s, inode %llu parent %llu", 4008 name_len, name, ino, dir_ino); 4009 btrfs_abort_transaction(trans, root, ret); 4010 goto err; 4011 } 4012 skip_backref: 4013 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4014 if (ret) { 4015 btrfs_abort_transaction(trans, root, ret); 4016 goto err; 4017 } 4018 4019 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 4020 inode, dir_ino); 4021 if (ret != 0 && ret != -ENOENT) { 4022 btrfs_abort_transaction(trans, root, ret); 4023 goto err; 4024 } 4025 4026 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 4027 dir, index); 4028 if (ret == -ENOENT) 4029 ret = 0; 4030 else if (ret) 4031 btrfs_abort_transaction(trans, root, ret); 4032 err: 4033 btrfs_free_path(path); 4034 if (ret) 4035 goto out; 4036 4037 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4038 inode_inc_iversion(inode); 4039 inode_inc_iversion(dir); 4040 inode->i_ctime = dir->i_mtime = 4041 dir->i_ctime = current_fs_time(inode->i_sb); 4042 ret = btrfs_update_inode(trans, root, dir); 4043 out: 4044 return ret; 4045 } 4046 4047 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4048 struct btrfs_root *root, 4049 struct inode *dir, struct inode *inode, 4050 const char *name, int name_len) 4051 { 4052 int ret; 4053 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4054 if (!ret) { 4055 drop_nlink(inode); 4056 ret = btrfs_update_inode(trans, root, inode); 4057 } 4058 return ret; 4059 } 4060 4061 /* 4062 * helper to start transaction for unlink and rmdir. 4063 * 4064 * unlink and rmdir are special in btrfs, they do not always free space, so 4065 * if we cannot make our reservations the normal way try and see if there is 4066 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4067 * allow the unlink to occur. 4068 */ 4069 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4070 { 4071 struct btrfs_root *root = BTRFS_I(dir)->root; 4072 4073 /* 4074 * 1 for the possible orphan item 4075 * 1 for the dir item 4076 * 1 for the dir index 4077 * 1 for the inode ref 4078 * 1 for the inode 4079 */ 4080 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4081 } 4082 4083 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4084 { 4085 struct btrfs_root *root = BTRFS_I(dir)->root; 4086 struct btrfs_trans_handle *trans; 4087 struct inode *inode = d_inode(dentry); 4088 int ret; 4089 4090 trans = __unlink_start_trans(dir); 4091 if (IS_ERR(trans)) 4092 return PTR_ERR(trans); 4093 4094 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4095 4096 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4097 dentry->d_name.name, dentry->d_name.len); 4098 if (ret) 4099 goto out; 4100 4101 if (inode->i_nlink == 0) { 4102 ret = btrfs_orphan_add(trans, inode); 4103 if (ret) 4104 goto out; 4105 } 4106 4107 out: 4108 btrfs_end_transaction(trans, root); 4109 btrfs_btree_balance_dirty(root); 4110 return ret; 4111 } 4112 4113 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4114 struct btrfs_root *root, 4115 struct inode *dir, u64 objectid, 4116 const char *name, int name_len) 4117 { 4118 struct btrfs_path *path; 4119 struct extent_buffer *leaf; 4120 struct btrfs_dir_item *di; 4121 struct btrfs_key key; 4122 u64 index; 4123 int ret; 4124 u64 dir_ino = btrfs_ino(dir); 4125 4126 path = btrfs_alloc_path(); 4127 if (!path) 4128 return -ENOMEM; 4129 4130 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4131 name, name_len, -1); 4132 if (IS_ERR_OR_NULL(di)) { 4133 if (!di) 4134 ret = -ENOENT; 4135 else 4136 ret = PTR_ERR(di); 4137 goto out; 4138 } 4139 4140 leaf = path->nodes[0]; 4141 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4142 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4143 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4144 if (ret) { 4145 btrfs_abort_transaction(trans, root, ret); 4146 goto out; 4147 } 4148 btrfs_release_path(path); 4149 4150 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4151 objectid, root->root_key.objectid, 4152 dir_ino, &index, name, name_len); 4153 if (ret < 0) { 4154 if (ret != -ENOENT) { 4155 btrfs_abort_transaction(trans, root, ret); 4156 goto out; 4157 } 4158 di = btrfs_search_dir_index_item(root, path, dir_ino, 4159 name, name_len); 4160 if (IS_ERR_OR_NULL(di)) { 4161 if (!di) 4162 ret = -ENOENT; 4163 else 4164 ret = PTR_ERR(di); 4165 btrfs_abort_transaction(trans, root, ret); 4166 goto out; 4167 } 4168 4169 leaf = path->nodes[0]; 4170 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4171 btrfs_release_path(path); 4172 index = key.offset; 4173 } 4174 btrfs_release_path(path); 4175 4176 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4177 if (ret) { 4178 btrfs_abort_transaction(trans, root, ret); 4179 goto out; 4180 } 4181 4182 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4183 inode_inc_iversion(dir); 4184 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb); 4185 ret = btrfs_update_inode_fallback(trans, root, dir); 4186 if (ret) 4187 btrfs_abort_transaction(trans, root, ret); 4188 out: 4189 btrfs_free_path(path); 4190 return ret; 4191 } 4192 4193 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4194 { 4195 struct inode *inode = d_inode(dentry); 4196 int err = 0; 4197 struct btrfs_root *root = BTRFS_I(dir)->root; 4198 struct btrfs_trans_handle *trans; 4199 4200 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4201 return -ENOTEMPTY; 4202 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4203 return -EPERM; 4204 4205 trans = __unlink_start_trans(dir); 4206 if (IS_ERR(trans)) 4207 return PTR_ERR(trans); 4208 4209 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4210 err = btrfs_unlink_subvol(trans, root, dir, 4211 BTRFS_I(inode)->location.objectid, 4212 dentry->d_name.name, 4213 dentry->d_name.len); 4214 goto out; 4215 } 4216 4217 err = btrfs_orphan_add(trans, inode); 4218 if (err) 4219 goto out; 4220 4221 /* now the directory is empty */ 4222 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4223 dentry->d_name.name, dentry->d_name.len); 4224 if (!err) 4225 btrfs_i_size_write(inode, 0); 4226 out: 4227 btrfs_end_transaction(trans, root); 4228 btrfs_btree_balance_dirty(root); 4229 4230 return err; 4231 } 4232 4233 static int truncate_space_check(struct btrfs_trans_handle *trans, 4234 struct btrfs_root *root, 4235 u64 bytes_deleted) 4236 { 4237 int ret; 4238 4239 /* 4240 * This is only used to apply pressure to the enospc system, we don't 4241 * intend to use this reservation at all. 4242 */ 4243 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4244 bytes_deleted *= root->nodesize; 4245 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4246 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4247 if (!ret) { 4248 trace_btrfs_space_reservation(root->fs_info, "transaction", 4249 trans->transid, 4250 bytes_deleted, 1); 4251 trans->bytes_reserved += bytes_deleted; 4252 } 4253 return ret; 4254 4255 } 4256 4257 static int truncate_inline_extent(struct inode *inode, 4258 struct btrfs_path *path, 4259 struct btrfs_key *found_key, 4260 const u64 item_end, 4261 const u64 new_size) 4262 { 4263 struct extent_buffer *leaf = path->nodes[0]; 4264 int slot = path->slots[0]; 4265 struct btrfs_file_extent_item *fi; 4266 u32 size = (u32)(new_size - found_key->offset); 4267 struct btrfs_root *root = BTRFS_I(inode)->root; 4268 4269 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4270 4271 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4272 loff_t offset = new_size; 4273 loff_t page_end = ALIGN(offset, PAGE_SIZE); 4274 4275 /* 4276 * Zero out the remaining of the last page of our inline extent, 4277 * instead of directly truncating our inline extent here - that 4278 * would be much more complex (decompressing all the data, then 4279 * compressing the truncated data, which might be bigger than 4280 * the size of the inline extent, resize the extent, etc). 4281 * We release the path because to get the page we might need to 4282 * read the extent item from disk (data not in the page cache). 4283 */ 4284 btrfs_release_path(path); 4285 return btrfs_truncate_block(inode, offset, page_end - offset, 4286 0); 4287 } 4288 4289 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4290 size = btrfs_file_extent_calc_inline_size(size); 4291 btrfs_truncate_item(root, path, size, 1); 4292 4293 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4294 inode_sub_bytes(inode, item_end + 1 - new_size); 4295 4296 return 0; 4297 } 4298 4299 /* 4300 * this can truncate away extent items, csum items and directory items. 4301 * It starts at a high offset and removes keys until it can't find 4302 * any higher than new_size 4303 * 4304 * csum items that cross the new i_size are truncated to the new size 4305 * as well. 4306 * 4307 * min_type is the minimum key type to truncate down to. If set to 0, this 4308 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4309 */ 4310 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4311 struct btrfs_root *root, 4312 struct inode *inode, 4313 u64 new_size, u32 min_type) 4314 { 4315 struct btrfs_path *path; 4316 struct extent_buffer *leaf; 4317 struct btrfs_file_extent_item *fi; 4318 struct btrfs_key key; 4319 struct btrfs_key found_key; 4320 u64 extent_start = 0; 4321 u64 extent_num_bytes = 0; 4322 u64 extent_offset = 0; 4323 u64 item_end = 0; 4324 u64 last_size = new_size; 4325 u32 found_type = (u8)-1; 4326 int found_extent; 4327 int del_item; 4328 int pending_del_nr = 0; 4329 int pending_del_slot = 0; 4330 int extent_type = -1; 4331 int ret; 4332 int err = 0; 4333 u64 ino = btrfs_ino(inode); 4334 u64 bytes_deleted = 0; 4335 bool be_nice = 0; 4336 bool should_throttle = 0; 4337 bool should_end = 0; 4338 4339 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4340 4341 /* 4342 * for non-free space inodes and ref cows, we want to back off from 4343 * time to time 4344 */ 4345 if (!btrfs_is_free_space_inode(inode) && 4346 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4347 be_nice = 1; 4348 4349 path = btrfs_alloc_path(); 4350 if (!path) 4351 return -ENOMEM; 4352 path->reada = READA_BACK; 4353 4354 /* 4355 * We want to drop from the next block forward in case this new size is 4356 * not block aligned since we will be keeping the last block of the 4357 * extent just the way it is. 4358 */ 4359 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4360 root == root->fs_info->tree_root) 4361 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4362 root->sectorsize), (u64)-1, 0); 4363 4364 /* 4365 * This function is also used to drop the items in the log tree before 4366 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4367 * it is used to drop the loged items. So we shouldn't kill the delayed 4368 * items. 4369 */ 4370 if (min_type == 0 && root == BTRFS_I(inode)->root) 4371 btrfs_kill_delayed_inode_items(inode); 4372 4373 key.objectid = ino; 4374 key.offset = (u64)-1; 4375 key.type = (u8)-1; 4376 4377 search_again: 4378 /* 4379 * with a 16K leaf size and 128MB extents, you can actually queue 4380 * up a huge file in a single leaf. Most of the time that 4381 * bytes_deleted is > 0, it will be huge by the time we get here 4382 */ 4383 if (be_nice && bytes_deleted > SZ_32M) { 4384 if (btrfs_should_end_transaction(trans, root)) { 4385 err = -EAGAIN; 4386 goto error; 4387 } 4388 } 4389 4390 4391 path->leave_spinning = 1; 4392 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4393 if (ret < 0) { 4394 err = ret; 4395 goto out; 4396 } 4397 4398 if (ret > 0) { 4399 /* there are no items in the tree for us to truncate, we're 4400 * done 4401 */ 4402 if (path->slots[0] == 0) 4403 goto out; 4404 path->slots[0]--; 4405 } 4406 4407 while (1) { 4408 fi = NULL; 4409 leaf = path->nodes[0]; 4410 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4411 found_type = found_key.type; 4412 4413 if (found_key.objectid != ino) 4414 break; 4415 4416 if (found_type < min_type) 4417 break; 4418 4419 item_end = found_key.offset; 4420 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4421 fi = btrfs_item_ptr(leaf, path->slots[0], 4422 struct btrfs_file_extent_item); 4423 extent_type = btrfs_file_extent_type(leaf, fi); 4424 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4425 item_end += 4426 btrfs_file_extent_num_bytes(leaf, fi); 4427 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4428 item_end += btrfs_file_extent_inline_len(leaf, 4429 path->slots[0], fi); 4430 } 4431 item_end--; 4432 } 4433 if (found_type > min_type) { 4434 del_item = 1; 4435 } else { 4436 if (item_end < new_size) 4437 break; 4438 if (found_key.offset >= new_size) 4439 del_item = 1; 4440 else 4441 del_item = 0; 4442 } 4443 found_extent = 0; 4444 /* FIXME, shrink the extent if the ref count is only 1 */ 4445 if (found_type != BTRFS_EXTENT_DATA_KEY) 4446 goto delete; 4447 4448 if (del_item) 4449 last_size = found_key.offset; 4450 else 4451 last_size = new_size; 4452 4453 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4454 u64 num_dec; 4455 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4456 if (!del_item) { 4457 u64 orig_num_bytes = 4458 btrfs_file_extent_num_bytes(leaf, fi); 4459 extent_num_bytes = ALIGN(new_size - 4460 found_key.offset, 4461 root->sectorsize); 4462 btrfs_set_file_extent_num_bytes(leaf, fi, 4463 extent_num_bytes); 4464 num_dec = (orig_num_bytes - 4465 extent_num_bytes); 4466 if (test_bit(BTRFS_ROOT_REF_COWS, 4467 &root->state) && 4468 extent_start != 0) 4469 inode_sub_bytes(inode, num_dec); 4470 btrfs_mark_buffer_dirty(leaf); 4471 } else { 4472 extent_num_bytes = 4473 btrfs_file_extent_disk_num_bytes(leaf, 4474 fi); 4475 extent_offset = found_key.offset - 4476 btrfs_file_extent_offset(leaf, fi); 4477 4478 /* FIXME blocksize != 4096 */ 4479 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4480 if (extent_start != 0) { 4481 found_extent = 1; 4482 if (test_bit(BTRFS_ROOT_REF_COWS, 4483 &root->state)) 4484 inode_sub_bytes(inode, num_dec); 4485 } 4486 } 4487 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4488 /* 4489 * we can't truncate inline items that have had 4490 * special encodings 4491 */ 4492 if (!del_item && 4493 btrfs_file_extent_encryption(leaf, fi) == 0 && 4494 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4495 4496 /* 4497 * Need to release path in order to truncate a 4498 * compressed extent. So delete any accumulated 4499 * extent items so far. 4500 */ 4501 if (btrfs_file_extent_compression(leaf, fi) != 4502 BTRFS_COMPRESS_NONE && pending_del_nr) { 4503 err = btrfs_del_items(trans, root, path, 4504 pending_del_slot, 4505 pending_del_nr); 4506 if (err) { 4507 btrfs_abort_transaction(trans, 4508 root, 4509 err); 4510 goto error; 4511 } 4512 pending_del_nr = 0; 4513 } 4514 4515 err = truncate_inline_extent(inode, path, 4516 &found_key, 4517 item_end, 4518 new_size); 4519 if (err) { 4520 btrfs_abort_transaction(trans, 4521 root, err); 4522 goto error; 4523 } 4524 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4525 &root->state)) { 4526 inode_sub_bytes(inode, item_end + 1 - new_size); 4527 } 4528 } 4529 delete: 4530 if (del_item) { 4531 if (!pending_del_nr) { 4532 /* no pending yet, add ourselves */ 4533 pending_del_slot = path->slots[0]; 4534 pending_del_nr = 1; 4535 } else if (pending_del_nr && 4536 path->slots[0] + 1 == pending_del_slot) { 4537 /* hop on the pending chunk */ 4538 pending_del_nr++; 4539 pending_del_slot = path->slots[0]; 4540 } else { 4541 BUG(); 4542 } 4543 } else { 4544 break; 4545 } 4546 should_throttle = 0; 4547 4548 if (found_extent && 4549 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4550 root == root->fs_info->tree_root)) { 4551 btrfs_set_path_blocking(path); 4552 bytes_deleted += extent_num_bytes; 4553 ret = btrfs_free_extent(trans, root, extent_start, 4554 extent_num_bytes, 0, 4555 btrfs_header_owner(leaf), 4556 ino, extent_offset); 4557 BUG_ON(ret); 4558 if (btrfs_should_throttle_delayed_refs(trans, root)) 4559 btrfs_async_run_delayed_refs(root, 4560 trans->transid, 4561 trans->delayed_ref_updates * 2, 0); 4562 if (be_nice) { 4563 if (truncate_space_check(trans, root, 4564 extent_num_bytes)) { 4565 should_end = 1; 4566 } 4567 if (btrfs_should_throttle_delayed_refs(trans, 4568 root)) { 4569 should_throttle = 1; 4570 } 4571 } 4572 } 4573 4574 if (found_type == BTRFS_INODE_ITEM_KEY) 4575 break; 4576 4577 if (path->slots[0] == 0 || 4578 path->slots[0] != pending_del_slot || 4579 should_throttle || should_end) { 4580 if (pending_del_nr) { 4581 ret = btrfs_del_items(trans, root, path, 4582 pending_del_slot, 4583 pending_del_nr); 4584 if (ret) { 4585 btrfs_abort_transaction(trans, 4586 root, ret); 4587 goto error; 4588 } 4589 pending_del_nr = 0; 4590 } 4591 btrfs_release_path(path); 4592 if (should_throttle) { 4593 unsigned long updates = trans->delayed_ref_updates; 4594 if (updates) { 4595 trans->delayed_ref_updates = 0; 4596 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4597 if (ret && !err) 4598 err = ret; 4599 } 4600 } 4601 /* 4602 * if we failed to refill our space rsv, bail out 4603 * and let the transaction restart 4604 */ 4605 if (should_end) { 4606 err = -EAGAIN; 4607 goto error; 4608 } 4609 goto search_again; 4610 } else { 4611 path->slots[0]--; 4612 } 4613 } 4614 out: 4615 if (pending_del_nr) { 4616 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4617 pending_del_nr); 4618 if (ret) 4619 btrfs_abort_transaction(trans, root, ret); 4620 } 4621 error: 4622 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4623 btrfs_ordered_update_i_size(inode, last_size, NULL); 4624 4625 btrfs_free_path(path); 4626 4627 if (be_nice && bytes_deleted > SZ_32M) { 4628 unsigned long updates = trans->delayed_ref_updates; 4629 if (updates) { 4630 trans->delayed_ref_updates = 0; 4631 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4632 if (ret && !err) 4633 err = ret; 4634 } 4635 } 4636 return err; 4637 } 4638 4639 /* 4640 * btrfs_truncate_block - read, zero a chunk and write a block 4641 * @inode - inode that we're zeroing 4642 * @from - the offset to start zeroing 4643 * @len - the length to zero, 0 to zero the entire range respective to the 4644 * offset 4645 * @front - zero up to the offset instead of from the offset on 4646 * 4647 * This will find the block for the "from" offset and cow the block and zero the 4648 * part we want to zero. This is used with truncate and hole punching. 4649 */ 4650 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4651 int front) 4652 { 4653 struct address_space *mapping = inode->i_mapping; 4654 struct btrfs_root *root = BTRFS_I(inode)->root; 4655 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4656 struct btrfs_ordered_extent *ordered; 4657 struct extent_state *cached_state = NULL; 4658 char *kaddr; 4659 u32 blocksize = root->sectorsize; 4660 pgoff_t index = from >> PAGE_SHIFT; 4661 unsigned offset = from & (blocksize - 1); 4662 struct page *page; 4663 gfp_t mask = btrfs_alloc_write_mask(mapping); 4664 int ret = 0; 4665 u64 block_start; 4666 u64 block_end; 4667 4668 if ((offset & (blocksize - 1)) == 0 && 4669 (!len || ((len & (blocksize - 1)) == 0))) 4670 goto out; 4671 4672 ret = btrfs_delalloc_reserve_space(inode, 4673 round_down(from, blocksize), blocksize); 4674 if (ret) 4675 goto out; 4676 4677 again: 4678 page = find_or_create_page(mapping, index, mask); 4679 if (!page) { 4680 btrfs_delalloc_release_space(inode, 4681 round_down(from, blocksize), 4682 blocksize); 4683 ret = -ENOMEM; 4684 goto out; 4685 } 4686 4687 block_start = round_down(from, blocksize); 4688 block_end = block_start + blocksize - 1; 4689 4690 if (!PageUptodate(page)) { 4691 ret = btrfs_readpage(NULL, page); 4692 lock_page(page); 4693 if (page->mapping != mapping) { 4694 unlock_page(page); 4695 put_page(page); 4696 goto again; 4697 } 4698 if (!PageUptodate(page)) { 4699 ret = -EIO; 4700 goto out_unlock; 4701 } 4702 } 4703 wait_on_page_writeback(page); 4704 4705 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4706 set_page_extent_mapped(page); 4707 4708 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4709 if (ordered) { 4710 unlock_extent_cached(io_tree, block_start, block_end, 4711 &cached_state, GFP_NOFS); 4712 unlock_page(page); 4713 put_page(page); 4714 btrfs_start_ordered_extent(inode, ordered, 1); 4715 btrfs_put_ordered_extent(ordered); 4716 goto again; 4717 } 4718 4719 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4720 EXTENT_DIRTY | EXTENT_DELALLOC | 4721 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4722 0, 0, &cached_state, GFP_NOFS); 4723 4724 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4725 &cached_state); 4726 if (ret) { 4727 unlock_extent_cached(io_tree, block_start, block_end, 4728 &cached_state, GFP_NOFS); 4729 goto out_unlock; 4730 } 4731 4732 if (offset != blocksize) { 4733 if (!len) 4734 len = blocksize - offset; 4735 kaddr = kmap(page); 4736 if (front) 4737 memset(kaddr + (block_start - page_offset(page)), 4738 0, offset); 4739 else 4740 memset(kaddr + (block_start - page_offset(page)) + offset, 4741 0, len); 4742 flush_dcache_page(page); 4743 kunmap(page); 4744 } 4745 ClearPageChecked(page); 4746 set_page_dirty(page); 4747 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4748 GFP_NOFS); 4749 4750 out_unlock: 4751 if (ret) 4752 btrfs_delalloc_release_space(inode, block_start, 4753 blocksize); 4754 unlock_page(page); 4755 put_page(page); 4756 out: 4757 return ret; 4758 } 4759 4760 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4761 u64 offset, u64 len) 4762 { 4763 struct btrfs_trans_handle *trans; 4764 int ret; 4765 4766 /* 4767 * Still need to make sure the inode looks like it's been updated so 4768 * that any holes get logged if we fsync. 4769 */ 4770 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4771 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4772 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4773 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4774 return 0; 4775 } 4776 4777 /* 4778 * 1 - for the one we're dropping 4779 * 1 - for the one we're adding 4780 * 1 - for updating the inode. 4781 */ 4782 trans = btrfs_start_transaction(root, 3); 4783 if (IS_ERR(trans)) 4784 return PTR_ERR(trans); 4785 4786 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4787 if (ret) { 4788 btrfs_abort_transaction(trans, root, ret); 4789 btrfs_end_transaction(trans, root); 4790 return ret; 4791 } 4792 4793 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4794 0, 0, len, 0, len, 0, 0, 0); 4795 if (ret) 4796 btrfs_abort_transaction(trans, root, ret); 4797 else 4798 btrfs_update_inode(trans, root, inode); 4799 btrfs_end_transaction(trans, root); 4800 return ret; 4801 } 4802 4803 /* 4804 * This function puts in dummy file extents for the area we're creating a hole 4805 * for. So if we are truncating this file to a larger size we need to insert 4806 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4807 * the range between oldsize and size 4808 */ 4809 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4810 { 4811 struct btrfs_root *root = BTRFS_I(inode)->root; 4812 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4813 struct extent_map *em = NULL; 4814 struct extent_state *cached_state = NULL; 4815 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4816 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4817 u64 block_end = ALIGN(size, root->sectorsize); 4818 u64 last_byte; 4819 u64 cur_offset; 4820 u64 hole_size; 4821 int err = 0; 4822 4823 /* 4824 * If our size started in the middle of a block we need to zero out the 4825 * rest of the block before we expand the i_size, otherwise we could 4826 * expose stale data. 4827 */ 4828 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4829 if (err) 4830 return err; 4831 4832 if (size <= hole_start) 4833 return 0; 4834 4835 while (1) { 4836 struct btrfs_ordered_extent *ordered; 4837 4838 lock_extent_bits(io_tree, hole_start, block_end - 1, 4839 &cached_state); 4840 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4841 block_end - hole_start); 4842 if (!ordered) 4843 break; 4844 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4845 &cached_state, GFP_NOFS); 4846 btrfs_start_ordered_extent(inode, ordered, 1); 4847 btrfs_put_ordered_extent(ordered); 4848 } 4849 4850 cur_offset = hole_start; 4851 while (1) { 4852 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4853 block_end - cur_offset, 0); 4854 if (IS_ERR(em)) { 4855 err = PTR_ERR(em); 4856 em = NULL; 4857 break; 4858 } 4859 last_byte = min(extent_map_end(em), block_end); 4860 last_byte = ALIGN(last_byte , root->sectorsize); 4861 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4862 struct extent_map *hole_em; 4863 hole_size = last_byte - cur_offset; 4864 4865 err = maybe_insert_hole(root, inode, cur_offset, 4866 hole_size); 4867 if (err) 4868 break; 4869 btrfs_drop_extent_cache(inode, cur_offset, 4870 cur_offset + hole_size - 1, 0); 4871 hole_em = alloc_extent_map(); 4872 if (!hole_em) { 4873 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4874 &BTRFS_I(inode)->runtime_flags); 4875 goto next; 4876 } 4877 hole_em->start = cur_offset; 4878 hole_em->len = hole_size; 4879 hole_em->orig_start = cur_offset; 4880 4881 hole_em->block_start = EXTENT_MAP_HOLE; 4882 hole_em->block_len = 0; 4883 hole_em->orig_block_len = 0; 4884 hole_em->ram_bytes = hole_size; 4885 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4886 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4887 hole_em->generation = root->fs_info->generation; 4888 4889 while (1) { 4890 write_lock(&em_tree->lock); 4891 err = add_extent_mapping(em_tree, hole_em, 1); 4892 write_unlock(&em_tree->lock); 4893 if (err != -EEXIST) 4894 break; 4895 btrfs_drop_extent_cache(inode, cur_offset, 4896 cur_offset + 4897 hole_size - 1, 0); 4898 } 4899 free_extent_map(hole_em); 4900 } 4901 next: 4902 free_extent_map(em); 4903 em = NULL; 4904 cur_offset = last_byte; 4905 if (cur_offset >= block_end) 4906 break; 4907 } 4908 free_extent_map(em); 4909 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4910 GFP_NOFS); 4911 return err; 4912 } 4913 4914 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4915 { 4916 struct btrfs_root *root = BTRFS_I(inode)->root; 4917 struct btrfs_trans_handle *trans; 4918 loff_t oldsize = i_size_read(inode); 4919 loff_t newsize = attr->ia_size; 4920 int mask = attr->ia_valid; 4921 int ret; 4922 4923 /* 4924 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4925 * special case where we need to update the times despite not having 4926 * these flags set. For all other operations the VFS set these flags 4927 * explicitly if it wants a timestamp update. 4928 */ 4929 if (newsize != oldsize) { 4930 inode_inc_iversion(inode); 4931 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4932 inode->i_ctime = inode->i_mtime = 4933 current_fs_time(inode->i_sb); 4934 } 4935 4936 if (newsize > oldsize) { 4937 /* 4938 * Don't do an expanding truncate while snapshoting is ongoing. 4939 * This is to ensure the snapshot captures a fully consistent 4940 * state of this file - if the snapshot captures this expanding 4941 * truncation, it must capture all writes that happened before 4942 * this truncation. 4943 */ 4944 btrfs_wait_for_snapshot_creation(root); 4945 ret = btrfs_cont_expand(inode, oldsize, newsize); 4946 if (ret) { 4947 btrfs_end_write_no_snapshoting(root); 4948 return ret; 4949 } 4950 4951 trans = btrfs_start_transaction(root, 1); 4952 if (IS_ERR(trans)) { 4953 btrfs_end_write_no_snapshoting(root); 4954 return PTR_ERR(trans); 4955 } 4956 4957 i_size_write(inode, newsize); 4958 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4959 pagecache_isize_extended(inode, oldsize, newsize); 4960 ret = btrfs_update_inode(trans, root, inode); 4961 btrfs_end_write_no_snapshoting(root); 4962 btrfs_end_transaction(trans, root); 4963 } else { 4964 4965 /* 4966 * We're truncating a file that used to have good data down to 4967 * zero. Make sure it gets into the ordered flush list so that 4968 * any new writes get down to disk quickly. 4969 */ 4970 if (newsize == 0) 4971 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4972 &BTRFS_I(inode)->runtime_flags); 4973 4974 /* 4975 * 1 for the orphan item we're going to add 4976 * 1 for the orphan item deletion. 4977 */ 4978 trans = btrfs_start_transaction(root, 2); 4979 if (IS_ERR(trans)) 4980 return PTR_ERR(trans); 4981 4982 /* 4983 * We need to do this in case we fail at _any_ point during the 4984 * actual truncate. Once we do the truncate_setsize we could 4985 * invalidate pages which forces any outstanding ordered io to 4986 * be instantly completed which will give us extents that need 4987 * to be truncated. If we fail to get an orphan inode down we 4988 * could have left over extents that were never meant to live, 4989 * so we need to guarantee from this point on that everything 4990 * will be consistent. 4991 */ 4992 ret = btrfs_orphan_add(trans, inode); 4993 btrfs_end_transaction(trans, root); 4994 if (ret) 4995 return ret; 4996 4997 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4998 truncate_setsize(inode, newsize); 4999 5000 /* Disable nonlocked read DIO to avoid the end less truncate */ 5001 btrfs_inode_block_unlocked_dio(inode); 5002 inode_dio_wait(inode); 5003 btrfs_inode_resume_unlocked_dio(inode); 5004 5005 ret = btrfs_truncate(inode); 5006 if (ret && inode->i_nlink) { 5007 int err; 5008 5009 /* 5010 * failed to truncate, disk_i_size is only adjusted down 5011 * as we remove extents, so it should represent the true 5012 * size of the inode, so reset the in memory size and 5013 * delete our orphan entry. 5014 */ 5015 trans = btrfs_join_transaction(root); 5016 if (IS_ERR(trans)) { 5017 btrfs_orphan_del(NULL, inode); 5018 return ret; 5019 } 5020 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5021 err = btrfs_orphan_del(trans, inode); 5022 if (err) 5023 btrfs_abort_transaction(trans, root, err); 5024 btrfs_end_transaction(trans, root); 5025 } 5026 } 5027 5028 return ret; 5029 } 5030 5031 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5032 { 5033 struct inode *inode = d_inode(dentry); 5034 struct btrfs_root *root = BTRFS_I(inode)->root; 5035 int err; 5036 5037 if (btrfs_root_readonly(root)) 5038 return -EROFS; 5039 5040 err = inode_change_ok(inode, attr); 5041 if (err) 5042 return err; 5043 5044 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5045 err = btrfs_setsize(inode, attr); 5046 if (err) 5047 return err; 5048 } 5049 5050 if (attr->ia_valid) { 5051 setattr_copy(inode, attr); 5052 inode_inc_iversion(inode); 5053 err = btrfs_dirty_inode(inode); 5054 5055 if (!err && attr->ia_valid & ATTR_MODE) 5056 err = posix_acl_chmod(inode, inode->i_mode); 5057 } 5058 5059 return err; 5060 } 5061 5062 /* 5063 * While truncating the inode pages during eviction, we get the VFS calling 5064 * btrfs_invalidatepage() against each page of the inode. This is slow because 5065 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5066 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5067 * extent_state structures over and over, wasting lots of time. 5068 * 5069 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5070 * those expensive operations on a per page basis and do only the ordered io 5071 * finishing, while we release here the extent_map and extent_state structures, 5072 * without the excessive merging and splitting. 5073 */ 5074 static void evict_inode_truncate_pages(struct inode *inode) 5075 { 5076 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5077 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5078 struct rb_node *node; 5079 5080 ASSERT(inode->i_state & I_FREEING); 5081 truncate_inode_pages_final(&inode->i_data); 5082 5083 write_lock(&map_tree->lock); 5084 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5085 struct extent_map *em; 5086 5087 node = rb_first(&map_tree->map); 5088 em = rb_entry(node, struct extent_map, rb_node); 5089 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5090 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5091 remove_extent_mapping(map_tree, em); 5092 free_extent_map(em); 5093 if (need_resched()) { 5094 write_unlock(&map_tree->lock); 5095 cond_resched(); 5096 write_lock(&map_tree->lock); 5097 } 5098 } 5099 write_unlock(&map_tree->lock); 5100 5101 /* 5102 * Keep looping until we have no more ranges in the io tree. 5103 * We can have ongoing bios started by readpages (called from readahead) 5104 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5105 * still in progress (unlocked the pages in the bio but did not yet 5106 * unlocked the ranges in the io tree). Therefore this means some 5107 * ranges can still be locked and eviction started because before 5108 * submitting those bios, which are executed by a separate task (work 5109 * queue kthread), inode references (inode->i_count) were not taken 5110 * (which would be dropped in the end io callback of each bio). 5111 * Therefore here we effectively end up waiting for those bios and 5112 * anyone else holding locked ranges without having bumped the inode's 5113 * reference count - if we don't do it, when they access the inode's 5114 * io_tree to unlock a range it may be too late, leading to an 5115 * use-after-free issue. 5116 */ 5117 spin_lock(&io_tree->lock); 5118 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5119 struct extent_state *state; 5120 struct extent_state *cached_state = NULL; 5121 u64 start; 5122 u64 end; 5123 5124 node = rb_first(&io_tree->state); 5125 state = rb_entry(node, struct extent_state, rb_node); 5126 start = state->start; 5127 end = state->end; 5128 spin_unlock(&io_tree->lock); 5129 5130 lock_extent_bits(io_tree, start, end, &cached_state); 5131 5132 /* 5133 * If still has DELALLOC flag, the extent didn't reach disk, 5134 * and its reserved space won't be freed by delayed_ref. 5135 * So we need to free its reserved space here. 5136 * (Refer to comment in btrfs_invalidatepage, case 2) 5137 * 5138 * Note, end is the bytenr of last byte, so we need + 1 here. 5139 */ 5140 if (state->state & EXTENT_DELALLOC) 5141 btrfs_qgroup_free_data(inode, start, end - start + 1); 5142 5143 clear_extent_bit(io_tree, start, end, 5144 EXTENT_LOCKED | EXTENT_DIRTY | 5145 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5146 EXTENT_DEFRAG, 1, 1, 5147 &cached_state, GFP_NOFS); 5148 5149 cond_resched(); 5150 spin_lock(&io_tree->lock); 5151 } 5152 spin_unlock(&io_tree->lock); 5153 } 5154 5155 void btrfs_evict_inode(struct inode *inode) 5156 { 5157 struct btrfs_trans_handle *trans; 5158 struct btrfs_root *root = BTRFS_I(inode)->root; 5159 struct btrfs_block_rsv *rsv, *global_rsv; 5160 int steal_from_global = 0; 5161 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5162 int ret; 5163 5164 trace_btrfs_inode_evict(inode); 5165 5166 evict_inode_truncate_pages(inode); 5167 5168 if (inode->i_nlink && 5169 ((btrfs_root_refs(&root->root_item) != 0 && 5170 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5171 btrfs_is_free_space_inode(inode))) 5172 goto no_delete; 5173 5174 if (is_bad_inode(inode)) { 5175 btrfs_orphan_del(NULL, inode); 5176 goto no_delete; 5177 } 5178 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5179 if (!special_file(inode->i_mode)) 5180 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5181 5182 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5183 5184 if (root->fs_info->log_root_recovering) { 5185 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5186 &BTRFS_I(inode)->runtime_flags)); 5187 goto no_delete; 5188 } 5189 5190 if (inode->i_nlink > 0) { 5191 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5192 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5193 goto no_delete; 5194 } 5195 5196 ret = btrfs_commit_inode_delayed_inode(inode); 5197 if (ret) { 5198 btrfs_orphan_del(NULL, inode); 5199 goto no_delete; 5200 } 5201 5202 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5203 if (!rsv) { 5204 btrfs_orphan_del(NULL, inode); 5205 goto no_delete; 5206 } 5207 rsv->size = min_size; 5208 rsv->failfast = 1; 5209 global_rsv = &root->fs_info->global_block_rsv; 5210 5211 btrfs_i_size_write(inode, 0); 5212 5213 /* 5214 * This is a bit simpler than btrfs_truncate since we've already 5215 * reserved our space for our orphan item in the unlink, so we just 5216 * need to reserve some slack space in case we add bytes and update 5217 * inode item when doing the truncate. 5218 */ 5219 while (1) { 5220 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5221 BTRFS_RESERVE_FLUSH_LIMIT); 5222 5223 /* 5224 * Try and steal from the global reserve since we will 5225 * likely not use this space anyway, we want to try as 5226 * hard as possible to get this to work. 5227 */ 5228 if (ret) 5229 steal_from_global++; 5230 else 5231 steal_from_global = 0; 5232 ret = 0; 5233 5234 /* 5235 * steal_from_global == 0: we reserved stuff, hooray! 5236 * steal_from_global == 1: we didn't reserve stuff, boo! 5237 * steal_from_global == 2: we've committed, still not a lot of 5238 * room but maybe we'll have room in the global reserve this 5239 * time. 5240 * steal_from_global == 3: abandon all hope! 5241 */ 5242 if (steal_from_global > 2) { 5243 btrfs_warn(root->fs_info, 5244 "Could not get space for a delete, will truncate on mount %d", 5245 ret); 5246 btrfs_orphan_del(NULL, inode); 5247 btrfs_free_block_rsv(root, rsv); 5248 goto no_delete; 5249 } 5250 5251 trans = btrfs_join_transaction(root); 5252 if (IS_ERR(trans)) { 5253 btrfs_orphan_del(NULL, inode); 5254 btrfs_free_block_rsv(root, rsv); 5255 goto no_delete; 5256 } 5257 5258 /* 5259 * We can't just steal from the global reserve, we need to make 5260 * sure there is room to do it, if not we need to commit and try 5261 * again. 5262 */ 5263 if (steal_from_global) { 5264 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5265 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5266 min_size, 0); 5267 else 5268 ret = -ENOSPC; 5269 } 5270 5271 /* 5272 * Couldn't steal from the global reserve, we have too much 5273 * pending stuff built up, commit the transaction and try it 5274 * again. 5275 */ 5276 if (ret) { 5277 ret = btrfs_commit_transaction(trans, root); 5278 if (ret) { 5279 btrfs_orphan_del(NULL, inode); 5280 btrfs_free_block_rsv(root, rsv); 5281 goto no_delete; 5282 } 5283 continue; 5284 } else { 5285 steal_from_global = 0; 5286 } 5287 5288 trans->block_rsv = rsv; 5289 5290 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5291 if (ret != -ENOSPC && ret != -EAGAIN) 5292 break; 5293 5294 trans->block_rsv = &root->fs_info->trans_block_rsv; 5295 btrfs_end_transaction(trans, root); 5296 trans = NULL; 5297 btrfs_btree_balance_dirty(root); 5298 } 5299 5300 btrfs_free_block_rsv(root, rsv); 5301 5302 /* 5303 * Errors here aren't a big deal, it just means we leave orphan items 5304 * in the tree. They will be cleaned up on the next mount. 5305 */ 5306 if (ret == 0) { 5307 trans->block_rsv = root->orphan_block_rsv; 5308 btrfs_orphan_del(trans, inode); 5309 } else { 5310 btrfs_orphan_del(NULL, inode); 5311 } 5312 5313 trans->block_rsv = &root->fs_info->trans_block_rsv; 5314 if (!(root == root->fs_info->tree_root || 5315 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5316 btrfs_return_ino(root, btrfs_ino(inode)); 5317 5318 btrfs_end_transaction(trans, root); 5319 btrfs_btree_balance_dirty(root); 5320 no_delete: 5321 btrfs_remove_delayed_node(inode); 5322 clear_inode(inode); 5323 } 5324 5325 /* 5326 * this returns the key found in the dir entry in the location pointer. 5327 * If no dir entries were found, location->objectid is 0. 5328 */ 5329 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5330 struct btrfs_key *location) 5331 { 5332 const char *name = dentry->d_name.name; 5333 int namelen = dentry->d_name.len; 5334 struct btrfs_dir_item *di; 5335 struct btrfs_path *path; 5336 struct btrfs_root *root = BTRFS_I(dir)->root; 5337 int ret = 0; 5338 5339 path = btrfs_alloc_path(); 5340 if (!path) 5341 return -ENOMEM; 5342 5343 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5344 namelen, 0); 5345 if (IS_ERR(di)) 5346 ret = PTR_ERR(di); 5347 5348 if (IS_ERR_OR_NULL(di)) 5349 goto out_err; 5350 5351 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5352 out: 5353 btrfs_free_path(path); 5354 return ret; 5355 out_err: 5356 location->objectid = 0; 5357 goto out; 5358 } 5359 5360 /* 5361 * when we hit a tree root in a directory, the btrfs part of the inode 5362 * needs to be changed to reflect the root directory of the tree root. This 5363 * is kind of like crossing a mount point. 5364 */ 5365 static int fixup_tree_root_location(struct btrfs_root *root, 5366 struct inode *dir, 5367 struct dentry *dentry, 5368 struct btrfs_key *location, 5369 struct btrfs_root **sub_root) 5370 { 5371 struct btrfs_path *path; 5372 struct btrfs_root *new_root; 5373 struct btrfs_root_ref *ref; 5374 struct extent_buffer *leaf; 5375 struct btrfs_key key; 5376 int ret; 5377 int err = 0; 5378 5379 path = btrfs_alloc_path(); 5380 if (!path) { 5381 err = -ENOMEM; 5382 goto out; 5383 } 5384 5385 err = -ENOENT; 5386 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5387 key.type = BTRFS_ROOT_REF_KEY; 5388 key.offset = location->objectid; 5389 5390 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5391 0, 0); 5392 if (ret) { 5393 if (ret < 0) 5394 err = ret; 5395 goto out; 5396 } 5397 5398 leaf = path->nodes[0]; 5399 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5400 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5401 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5402 goto out; 5403 5404 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5405 (unsigned long)(ref + 1), 5406 dentry->d_name.len); 5407 if (ret) 5408 goto out; 5409 5410 btrfs_release_path(path); 5411 5412 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5413 if (IS_ERR(new_root)) { 5414 err = PTR_ERR(new_root); 5415 goto out; 5416 } 5417 5418 *sub_root = new_root; 5419 location->objectid = btrfs_root_dirid(&new_root->root_item); 5420 location->type = BTRFS_INODE_ITEM_KEY; 5421 location->offset = 0; 5422 err = 0; 5423 out: 5424 btrfs_free_path(path); 5425 return err; 5426 } 5427 5428 static void inode_tree_add(struct inode *inode) 5429 { 5430 struct btrfs_root *root = BTRFS_I(inode)->root; 5431 struct btrfs_inode *entry; 5432 struct rb_node **p; 5433 struct rb_node *parent; 5434 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5435 u64 ino = btrfs_ino(inode); 5436 5437 if (inode_unhashed(inode)) 5438 return; 5439 parent = NULL; 5440 spin_lock(&root->inode_lock); 5441 p = &root->inode_tree.rb_node; 5442 while (*p) { 5443 parent = *p; 5444 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5445 5446 if (ino < btrfs_ino(&entry->vfs_inode)) 5447 p = &parent->rb_left; 5448 else if (ino > btrfs_ino(&entry->vfs_inode)) 5449 p = &parent->rb_right; 5450 else { 5451 WARN_ON(!(entry->vfs_inode.i_state & 5452 (I_WILL_FREE | I_FREEING))); 5453 rb_replace_node(parent, new, &root->inode_tree); 5454 RB_CLEAR_NODE(parent); 5455 spin_unlock(&root->inode_lock); 5456 return; 5457 } 5458 } 5459 rb_link_node(new, parent, p); 5460 rb_insert_color(new, &root->inode_tree); 5461 spin_unlock(&root->inode_lock); 5462 } 5463 5464 static void inode_tree_del(struct inode *inode) 5465 { 5466 struct btrfs_root *root = BTRFS_I(inode)->root; 5467 int empty = 0; 5468 5469 spin_lock(&root->inode_lock); 5470 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5471 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5472 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5473 empty = RB_EMPTY_ROOT(&root->inode_tree); 5474 } 5475 spin_unlock(&root->inode_lock); 5476 5477 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5478 synchronize_srcu(&root->fs_info->subvol_srcu); 5479 spin_lock(&root->inode_lock); 5480 empty = RB_EMPTY_ROOT(&root->inode_tree); 5481 spin_unlock(&root->inode_lock); 5482 if (empty) 5483 btrfs_add_dead_root(root); 5484 } 5485 } 5486 5487 void btrfs_invalidate_inodes(struct btrfs_root *root) 5488 { 5489 struct rb_node *node; 5490 struct rb_node *prev; 5491 struct btrfs_inode *entry; 5492 struct inode *inode; 5493 u64 objectid = 0; 5494 5495 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5496 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5497 5498 spin_lock(&root->inode_lock); 5499 again: 5500 node = root->inode_tree.rb_node; 5501 prev = NULL; 5502 while (node) { 5503 prev = node; 5504 entry = rb_entry(node, struct btrfs_inode, rb_node); 5505 5506 if (objectid < btrfs_ino(&entry->vfs_inode)) 5507 node = node->rb_left; 5508 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5509 node = node->rb_right; 5510 else 5511 break; 5512 } 5513 if (!node) { 5514 while (prev) { 5515 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5516 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5517 node = prev; 5518 break; 5519 } 5520 prev = rb_next(prev); 5521 } 5522 } 5523 while (node) { 5524 entry = rb_entry(node, struct btrfs_inode, rb_node); 5525 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5526 inode = igrab(&entry->vfs_inode); 5527 if (inode) { 5528 spin_unlock(&root->inode_lock); 5529 if (atomic_read(&inode->i_count) > 1) 5530 d_prune_aliases(inode); 5531 /* 5532 * btrfs_drop_inode will have it removed from 5533 * the inode cache when its usage count 5534 * hits zero. 5535 */ 5536 iput(inode); 5537 cond_resched(); 5538 spin_lock(&root->inode_lock); 5539 goto again; 5540 } 5541 5542 if (cond_resched_lock(&root->inode_lock)) 5543 goto again; 5544 5545 node = rb_next(node); 5546 } 5547 spin_unlock(&root->inode_lock); 5548 } 5549 5550 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5551 { 5552 struct btrfs_iget_args *args = p; 5553 inode->i_ino = args->location->objectid; 5554 memcpy(&BTRFS_I(inode)->location, args->location, 5555 sizeof(*args->location)); 5556 BTRFS_I(inode)->root = args->root; 5557 return 0; 5558 } 5559 5560 static int btrfs_find_actor(struct inode *inode, void *opaque) 5561 { 5562 struct btrfs_iget_args *args = opaque; 5563 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5564 args->root == BTRFS_I(inode)->root; 5565 } 5566 5567 static struct inode *btrfs_iget_locked(struct super_block *s, 5568 struct btrfs_key *location, 5569 struct btrfs_root *root) 5570 { 5571 struct inode *inode; 5572 struct btrfs_iget_args args; 5573 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5574 5575 args.location = location; 5576 args.root = root; 5577 5578 inode = iget5_locked(s, hashval, btrfs_find_actor, 5579 btrfs_init_locked_inode, 5580 (void *)&args); 5581 return inode; 5582 } 5583 5584 /* Get an inode object given its location and corresponding root. 5585 * Returns in *is_new if the inode was read from disk 5586 */ 5587 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5588 struct btrfs_root *root, int *new) 5589 { 5590 struct inode *inode; 5591 5592 inode = btrfs_iget_locked(s, location, root); 5593 if (!inode) 5594 return ERR_PTR(-ENOMEM); 5595 5596 if (inode->i_state & I_NEW) { 5597 btrfs_read_locked_inode(inode); 5598 if (!is_bad_inode(inode)) { 5599 inode_tree_add(inode); 5600 unlock_new_inode(inode); 5601 if (new) 5602 *new = 1; 5603 } else { 5604 unlock_new_inode(inode); 5605 iput(inode); 5606 inode = ERR_PTR(-ESTALE); 5607 } 5608 } 5609 5610 return inode; 5611 } 5612 5613 static struct inode *new_simple_dir(struct super_block *s, 5614 struct btrfs_key *key, 5615 struct btrfs_root *root) 5616 { 5617 struct inode *inode = new_inode(s); 5618 5619 if (!inode) 5620 return ERR_PTR(-ENOMEM); 5621 5622 BTRFS_I(inode)->root = root; 5623 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5624 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5625 5626 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5627 inode->i_op = &btrfs_dir_ro_inode_operations; 5628 inode->i_fop = &simple_dir_operations; 5629 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5630 inode->i_mtime = current_fs_time(inode->i_sb); 5631 inode->i_atime = inode->i_mtime; 5632 inode->i_ctime = inode->i_mtime; 5633 BTRFS_I(inode)->i_otime = inode->i_mtime; 5634 5635 return inode; 5636 } 5637 5638 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5639 { 5640 struct inode *inode; 5641 struct btrfs_root *root = BTRFS_I(dir)->root; 5642 struct btrfs_root *sub_root = root; 5643 struct btrfs_key location; 5644 int index; 5645 int ret = 0; 5646 5647 if (dentry->d_name.len > BTRFS_NAME_LEN) 5648 return ERR_PTR(-ENAMETOOLONG); 5649 5650 ret = btrfs_inode_by_name(dir, dentry, &location); 5651 if (ret < 0) 5652 return ERR_PTR(ret); 5653 5654 if (location.objectid == 0) 5655 return ERR_PTR(-ENOENT); 5656 5657 if (location.type == BTRFS_INODE_ITEM_KEY) { 5658 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5659 return inode; 5660 } 5661 5662 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5663 5664 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5665 ret = fixup_tree_root_location(root, dir, dentry, 5666 &location, &sub_root); 5667 if (ret < 0) { 5668 if (ret != -ENOENT) 5669 inode = ERR_PTR(ret); 5670 else 5671 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5672 } else { 5673 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5674 } 5675 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5676 5677 if (!IS_ERR(inode) && root != sub_root) { 5678 down_read(&root->fs_info->cleanup_work_sem); 5679 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5680 ret = btrfs_orphan_cleanup(sub_root); 5681 up_read(&root->fs_info->cleanup_work_sem); 5682 if (ret) { 5683 iput(inode); 5684 inode = ERR_PTR(ret); 5685 } 5686 } 5687 5688 return inode; 5689 } 5690 5691 static int btrfs_dentry_delete(const struct dentry *dentry) 5692 { 5693 struct btrfs_root *root; 5694 struct inode *inode = d_inode(dentry); 5695 5696 if (!inode && !IS_ROOT(dentry)) 5697 inode = d_inode(dentry->d_parent); 5698 5699 if (inode) { 5700 root = BTRFS_I(inode)->root; 5701 if (btrfs_root_refs(&root->root_item) == 0) 5702 return 1; 5703 5704 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5705 return 1; 5706 } 5707 return 0; 5708 } 5709 5710 static void btrfs_dentry_release(struct dentry *dentry) 5711 { 5712 kfree(dentry->d_fsdata); 5713 } 5714 5715 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5716 unsigned int flags) 5717 { 5718 struct inode *inode; 5719 5720 inode = btrfs_lookup_dentry(dir, dentry); 5721 if (IS_ERR(inode)) { 5722 if (PTR_ERR(inode) == -ENOENT) 5723 inode = NULL; 5724 else 5725 return ERR_CAST(inode); 5726 } 5727 5728 return d_splice_alias(inode, dentry); 5729 } 5730 5731 unsigned char btrfs_filetype_table[] = { 5732 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5733 }; 5734 5735 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5736 { 5737 struct inode *inode = file_inode(file); 5738 struct btrfs_root *root = BTRFS_I(inode)->root; 5739 struct btrfs_item *item; 5740 struct btrfs_dir_item *di; 5741 struct btrfs_key key; 5742 struct btrfs_key found_key; 5743 struct btrfs_path *path; 5744 struct list_head ins_list; 5745 struct list_head del_list; 5746 int ret; 5747 struct extent_buffer *leaf; 5748 int slot; 5749 unsigned char d_type; 5750 int over = 0; 5751 u32 di_cur; 5752 u32 di_total; 5753 u32 di_len; 5754 int key_type = BTRFS_DIR_INDEX_KEY; 5755 char tmp_name[32]; 5756 char *name_ptr; 5757 int name_len; 5758 int is_curr = 0; /* ctx->pos points to the current index? */ 5759 bool emitted; 5760 bool put = false; 5761 5762 /* FIXME, use a real flag for deciding about the key type */ 5763 if (root->fs_info->tree_root == root) 5764 key_type = BTRFS_DIR_ITEM_KEY; 5765 5766 if (!dir_emit_dots(file, ctx)) 5767 return 0; 5768 5769 path = btrfs_alloc_path(); 5770 if (!path) 5771 return -ENOMEM; 5772 5773 path->reada = READA_FORWARD; 5774 5775 if (key_type == BTRFS_DIR_INDEX_KEY) { 5776 INIT_LIST_HEAD(&ins_list); 5777 INIT_LIST_HEAD(&del_list); 5778 put = btrfs_readdir_get_delayed_items(inode, &ins_list, 5779 &del_list); 5780 } 5781 5782 key.type = key_type; 5783 key.offset = ctx->pos; 5784 key.objectid = btrfs_ino(inode); 5785 5786 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5787 if (ret < 0) 5788 goto err; 5789 5790 emitted = false; 5791 while (1) { 5792 leaf = path->nodes[0]; 5793 slot = path->slots[0]; 5794 if (slot >= btrfs_header_nritems(leaf)) { 5795 ret = btrfs_next_leaf(root, path); 5796 if (ret < 0) 5797 goto err; 5798 else if (ret > 0) 5799 break; 5800 continue; 5801 } 5802 5803 item = btrfs_item_nr(slot); 5804 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5805 5806 if (found_key.objectid != key.objectid) 5807 break; 5808 if (found_key.type != key_type) 5809 break; 5810 if (found_key.offset < ctx->pos) 5811 goto next; 5812 if (key_type == BTRFS_DIR_INDEX_KEY && 5813 btrfs_should_delete_dir_index(&del_list, 5814 found_key.offset)) 5815 goto next; 5816 5817 ctx->pos = found_key.offset; 5818 is_curr = 1; 5819 5820 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5821 di_cur = 0; 5822 di_total = btrfs_item_size(leaf, item); 5823 5824 while (di_cur < di_total) { 5825 struct btrfs_key location; 5826 5827 if (verify_dir_item(root, leaf, di)) 5828 break; 5829 5830 name_len = btrfs_dir_name_len(leaf, di); 5831 if (name_len <= sizeof(tmp_name)) { 5832 name_ptr = tmp_name; 5833 } else { 5834 name_ptr = kmalloc(name_len, GFP_KERNEL); 5835 if (!name_ptr) { 5836 ret = -ENOMEM; 5837 goto err; 5838 } 5839 } 5840 read_extent_buffer(leaf, name_ptr, 5841 (unsigned long)(di + 1), name_len); 5842 5843 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5844 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5845 5846 5847 /* is this a reference to our own snapshot? If so 5848 * skip it. 5849 * 5850 * In contrast to old kernels, we insert the snapshot's 5851 * dir item and dir index after it has been created, so 5852 * we won't find a reference to our own snapshot. We 5853 * still keep the following code for backward 5854 * compatibility. 5855 */ 5856 if (location.type == BTRFS_ROOT_ITEM_KEY && 5857 location.objectid == root->root_key.objectid) { 5858 over = 0; 5859 goto skip; 5860 } 5861 over = !dir_emit(ctx, name_ptr, name_len, 5862 location.objectid, d_type); 5863 5864 skip: 5865 if (name_ptr != tmp_name) 5866 kfree(name_ptr); 5867 5868 if (over) 5869 goto nopos; 5870 emitted = true; 5871 di_len = btrfs_dir_name_len(leaf, di) + 5872 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5873 di_cur += di_len; 5874 di = (struct btrfs_dir_item *)((char *)di + di_len); 5875 } 5876 next: 5877 path->slots[0]++; 5878 } 5879 5880 if (key_type == BTRFS_DIR_INDEX_KEY) { 5881 if (is_curr) 5882 ctx->pos++; 5883 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted); 5884 if (ret) 5885 goto nopos; 5886 } 5887 5888 /* 5889 * If we haven't emitted any dir entry, we must not touch ctx->pos as 5890 * it was was set to the termination value in previous call. We assume 5891 * that "." and ".." were emitted if we reach this point and set the 5892 * termination value as well for an empty directory. 5893 */ 5894 if (ctx->pos > 2 && !emitted) 5895 goto nopos; 5896 5897 /* Reached end of directory/root. Bump pos past the last item. */ 5898 ctx->pos++; 5899 5900 /* 5901 * Stop new entries from being returned after we return the last 5902 * entry. 5903 * 5904 * New directory entries are assigned a strictly increasing 5905 * offset. This means that new entries created during readdir 5906 * are *guaranteed* to be seen in the future by that readdir. 5907 * This has broken buggy programs which operate on names as 5908 * they're returned by readdir. Until we re-use freed offsets 5909 * we have this hack to stop new entries from being returned 5910 * under the assumption that they'll never reach this huge 5911 * offset. 5912 * 5913 * This is being careful not to overflow 32bit loff_t unless the 5914 * last entry requires it because doing so has broken 32bit apps 5915 * in the past. 5916 */ 5917 if (key_type == BTRFS_DIR_INDEX_KEY) { 5918 if (ctx->pos >= INT_MAX) 5919 ctx->pos = LLONG_MAX; 5920 else 5921 ctx->pos = INT_MAX; 5922 } 5923 nopos: 5924 ret = 0; 5925 err: 5926 if (put) 5927 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5928 btrfs_free_path(path); 5929 return ret; 5930 } 5931 5932 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5933 { 5934 struct btrfs_root *root = BTRFS_I(inode)->root; 5935 struct btrfs_trans_handle *trans; 5936 int ret = 0; 5937 bool nolock = false; 5938 5939 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5940 return 0; 5941 5942 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5943 nolock = true; 5944 5945 if (wbc->sync_mode == WB_SYNC_ALL) { 5946 if (nolock) 5947 trans = btrfs_join_transaction_nolock(root); 5948 else 5949 trans = btrfs_join_transaction(root); 5950 if (IS_ERR(trans)) 5951 return PTR_ERR(trans); 5952 ret = btrfs_commit_transaction(trans, root); 5953 } 5954 return ret; 5955 } 5956 5957 /* 5958 * This is somewhat expensive, updating the tree every time the 5959 * inode changes. But, it is most likely to find the inode in cache. 5960 * FIXME, needs more benchmarking...there are no reasons other than performance 5961 * to keep or drop this code. 5962 */ 5963 static int btrfs_dirty_inode(struct inode *inode) 5964 { 5965 struct btrfs_root *root = BTRFS_I(inode)->root; 5966 struct btrfs_trans_handle *trans; 5967 int ret; 5968 5969 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5970 return 0; 5971 5972 trans = btrfs_join_transaction(root); 5973 if (IS_ERR(trans)) 5974 return PTR_ERR(trans); 5975 5976 ret = btrfs_update_inode(trans, root, inode); 5977 if (ret && ret == -ENOSPC) { 5978 /* whoops, lets try again with the full transaction */ 5979 btrfs_end_transaction(trans, root); 5980 trans = btrfs_start_transaction(root, 1); 5981 if (IS_ERR(trans)) 5982 return PTR_ERR(trans); 5983 5984 ret = btrfs_update_inode(trans, root, inode); 5985 } 5986 btrfs_end_transaction(trans, root); 5987 if (BTRFS_I(inode)->delayed_node) 5988 btrfs_balance_delayed_items(root); 5989 5990 return ret; 5991 } 5992 5993 /* 5994 * This is a copy of file_update_time. We need this so we can return error on 5995 * ENOSPC for updating the inode in the case of file write and mmap writes. 5996 */ 5997 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5998 int flags) 5999 { 6000 struct btrfs_root *root = BTRFS_I(inode)->root; 6001 6002 if (btrfs_root_readonly(root)) 6003 return -EROFS; 6004 6005 if (flags & S_VERSION) 6006 inode_inc_iversion(inode); 6007 if (flags & S_CTIME) 6008 inode->i_ctime = *now; 6009 if (flags & S_MTIME) 6010 inode->i_mtime = *now; 6011 if (flags & S_ATIME) 6012 inode->i_atime = *now; 6013 return btrfs_dirty_inode(inode); 6014 } 6015 6016 /* 6017 * find the highest existing sequence number in a directory 6018 * and then set the in-memory index_cnt variable to reflect 6019 * free sequence numbers 6020 */ 6021 static int btrfs_set_inode_index_count(struct inode *inode) 6022 { 6023 struct btrfs_root *root = BTRFS_I(inode)->root; 6024 struct btrfs_key key, found_key; 6025 struct btrfs_path *path; 6026 struct extent_buffer *leaf; 6027 int ret; 6028 6029 key.objectid = btrfs_ino(inode); 6030 key.type = BTRFS_DIR_INDEX_KEY; 6031 key.offset = (u64)-1; 6032 6033 path = btrfs_alloc_path(); 6034 if (!path) 6035 return -ENOMEM; 6036 6037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6038 if (ret < 0) 6039 goto out; 6040 /* FIXME: we should be able to handle this */ 6041 if (ret == 0) 6042 goto out; 6043 ret = 0; 6044 6045 /* 6046 * MAGIC NUMBER EXPLANATION: 6047 * since we search a directory based on f_pos we have to start at 2 6048 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6049 * else has to start at 2 6050 */ 6051 if (path->slots[0] == 0) { 6052 BTRFS_I(inode)->index_cnt = 2; 6053 goto out; 6054 } 6055 6056 path->slots[0]--; 6057 6058 leaf = path->nodes[0]; 6059 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6060 6061 if (found_key.objectid != btrfs_ino(inode) || 6062 found_key.type != BTRFS_DIR_INDEX_KEY) { 6063 BTRFS_I(inode)->index_cnt = 2; 6064 goto out; 6065 } 6066 6067 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 6068 out: 6069 btrfs_free_path(path); 6070 return ret; 6071 } 6072 6073 /* 6074 * helper to find a free sequence number in a given directory. This current 6075 * code is very simple, later versions will do smarter things in the btree 6076 */ 6077 int btrfs_set_inode_index(struct inode *dir, u64 *index) 6078 { 6079 int ret = 0; 6080 6081 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 6082 ret = btrfs_inode_delayed_dir_index_count(dir); 6083 if (ret) { 6084 ret = btrfs_set_inode_index_count(dir); 6085 if (ret) 6086 return ret; 6087 } 6088 } 6089 6090 *index = BTRFS_I(dir)->index_cnt; 6091 BTRFS_I(dir)->index_cnt++; 6092 6093 return ret; 6094 } 6095 6096 static int btrfs_insert_inode_locked(struct inode *inode) 6097 { 6098 struct btrfs_iget_args args; 6099 args.location = &BTRFS_I(inode)->location; 6100 args.root = BTRFS_I(inode)->root; 6101 6102 return insert_inode_locked4(inode, 6103 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6104 btrfs_find_actor, &args); 6105 } 6106 6107 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6108 struct btrfs_root *root, 6109 struct inode *dir, 6110 const char *name, int name_len, 6111 u64 ref_objectid, u64 objectid, 6112 umode_t mode, u64 *index) 6113 { 6114 struct inode *inode; 6115 struct btrfs_inode_item *inode_item; 6116 struct btrfs_key *location; 6117 struct btrfs_path *path; 6118 struct btrfs_inode_ref *ref; 6119 struct btrfs_key key[2]; 6120 u32 sizes[2]; 6121 int nitems = name ? 2 : 1; 6122 unsigned long ptr; 6123 int ret; 6124 6125 path = btrfs_alloc_path(); 6126 if (!path) 6127 return ERR_PTR(-ENOMEM); 6128 6129 inode = new_inode(root->fs_info->sb); 6130 if (!inode) { 6131 btrfs_free_path(path); 6132 return ERR_PTR(-ENOMEM); 6133 } 6134 6135 /* 6136 * O_TMPFILE, set link count to 0, so that after this point, 6137 * we fill in an inode item with the correct link count. 6138 */ 6139 if (!name) 6140 set_nlink(inode, 0); 6141 6142 /* 6143 * we have to initialize this early, so we can reclaim the inode 6144 * number if we fail afterwards in this function. 6145 */ 6146 inode->i_ino = objectid; 6147 6148 if (dir && name) { 6149 trace_btrfs_inode_request(dir); 6150 6151 ret = btrfs_set_inode_index(dir, index); 6152 if (ret) { 6153 btrfs_free_path(path); 6154 iput(inode); 6155 return ERR_PTR(ret); 6156 } 6157 } else if (dir) { 6158 *index = 0; 6159 } 6160 /* 6161 * index_cnt is ignored for everything but a dir, 6162 * btrfs_get_inode_index_count has an explanation for the magic 6163 * number 6164 */ 6165 BTRFS_I(inode)->index_cnt = 2; 6166 BTRFS_I(inode)->dir_index = *index; 6167 BTRFS_I(inode)->root = root; 6168 BTRFS_I(inode)->generation = trans->transid; 6169 inode->i_generation = BTRFS_I(inode)->generation; 6170 6171 /* 6172 * We could have gotten an inode number from somebody who was fsynced 6173 * and then removed in this same transaction, so let's just set full 6174 * sync since it will be a full sync anyway and this will blow away the 6175 * old info in the log. 6176 */ 6177 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6178 6179 key[0].objectid = objectid; 6180 key[0].type = BTRFS_INODE_ITEM_KEY; 6181 key[0].offset = 0; 6182 6183 sizes[0] = sizeof(struct btrfs_inode_item); 6184 6185 if (name) { 6186 /* 6187 * Start new inodes with an inode_ref. This is slightly more 6188 * efficient for small numbers of hard links since they will 6189 * be packed into one item. Extended refs will kick in if we 6190 * add more hard links than can fit in the ref item. 6191 */ 6192 key[1].objectid = objectid; 6193 key[1].type = BTRFS_INODE_REF_KEY; 6194 key[1].offset = ref_objectid; 6195 6196 sizes[1] = name_len + sizeof(*ref); 6197 } 6198 6199 location = &BTRFS_I(inode)->location; 6200 location->objectid = objectid; 6201 location->offset = 0; 6202 location->type = BTRFS_INODE_ITEM_KEY; 6203 6204 ret = btrfs_insert_inode_locked(inode); 6205 if (ret < 0) 6206 goto fail; 6207 6208 path->leave_spinning = 1; 6209 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6210 if (ret != 0) 6211 goto fail_unlock; 6212 6213 inode_init_owner(inode, dir, mode); 6214 inode_set_bytes(inode, 0); 6215 6216 inode->i_mtime = current_fs_time(inode->i_sb); 6217 inode->i_atime = inode->i_mtime; 6218 inode->i_ctime = inode->i_mtime; 6219 BTRFS_I(inode)->i_otime = inode->i_mtime; 6220 6221 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6222 struct btrfs_inode_item); 6223 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6224 sizeof(*inode_item)); 6225 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6226 6227 if (name) { 6228 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6229 struct btrfs_inode_ref); 6230 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6231 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6232 ptr = (unsigned long)(ref + 1); 6233 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6234 } 6235 6236 btrfs_mark_buffer_dirty(path->nodes[0]); 6237 btrfs_free_path(path); 6238 6239 btrfs_inherit_iflags(inode, dir); 6240 6241 if (S_ISREG(mode)) { 6242 if (btrfs_test_opt(root, NODATASUM)) 6243 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6244 if (btrfs_test_opt(root, NODATACOW)) 6245 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6246 BTRFS_INODE_NODATASUM; 6247 } 6248 6249 inode_tree_add(inode); 6250 6251 trace_btrfs_inode_new(inode); 6252 btrfs_set_inode_last_trans(trans, inode); 6253 6254 btrfs_update_root_times(trans, root); 6255 6256 ret = btrfs_inode_inherit_props(trans, inode, dir); 6257 if (ret) 6258 btrfs_err(root->fs_info, 6259 "error inheriting props for ino %llu (root %llu): %d", 6260 btrfs_ino(inode), root->root_key.objectid, ret); 6261 6262 return inode; 6263 6264 fail_unlock: 6265 unlock_new_inode(inode); 6266 fail: 6267 if (dir && name) 6268 BTRFS_I(dir)->index_cnt--; 6269 btrfs_free_path(path); 6270 iput(inode); 6271 return ERR_PTR(ret); 6272 } 6273 6274 static inline u8 btrfs_inode_type(struct inode *inode) 6275 { 6276 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6277 } 6278 6279 /* 6280 * utility function to add 'inode' into 'parent_inode' with 6281 * a give name and a given sequence number. 6282 * if 'add_backref' is true, also insert a backref from the 6283 * inode to the parent directory. 6284 */ 6285 int btrfs_add_link(struct btrfs_trans_handle *trans, 6286 struct inode *parent_inode, struct inode *inode, 6287 const char *name, int name_len, int add_backref, u64 index) 6288 { 6289 int ret = 0; 6290 struct btrfs_key key; 6291 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6292 u64 ino = btrfs_ino(inode); 6293 u64 parent_ino = btrfs_ino(parent_inode); 6294 6295 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6296 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6297 } else { 6298 key.objectid = ino; 6299 key.type = BTRFS_INODE_ITEM_KEY; 6300 key.offset = 0; 6301 } 6302 6303 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6304 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6305 key.objectid, root->root_key.objectid, 6306 parent_ino, index, name, name_len); 6307 } else if (add_backref) { 6308 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6309 parent_ino, index); 6310 } 6311 6312 /* Nothing to clean up yet */ 6313 if (ret) 6314 return ret; 6315 6316 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6317 parent_inode, &key, 6318 btrfs_inode_type(inode), index); 6319 if (ret == -EEXIST || ret == -EOVERFLOW) 6320 goto fail_dir_item; 6321 else if (ret) { 6322 btrfs_abort_transaction(trans, root, ret); 6323 return ret; 6324 } 6325 6326 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6327 name_len * 2); 6328 inode_inc_iversion(parent_inode); 6329 parent_inode->i_mtime = parent_inode->i_ctime = 6330 current_fs_time(parent_inode->i_sb); 6331 ret = btrfs_update_inode(trans, root, parent_inode); 6332 if (ret) 6333 btrfs_abort_transaction(trans, root, ret); 6334 return ret; 6335 6336 fail_dir_item: 6337 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6338 u64 local_index; 6339 int err; 6340 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6341 key.objectid, root->root_key.objectid, 6342 parent_ino, &local_index, name, name_len); 6343 6344 } else if (add_backref) { 6345 u64 local_index; 6346 int err; 6347 6348 err = btrfs_del_inode_ref(trans, root, name, name_len, 6349 ino, parent_ino, &local_index); 6350 } 6351 return ret; 6352 } 6353 6354 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6355 struct inode *dir, struct dentry *dentry, 6356 struct inode *inode, int backref, u64 index) 6357 { 6358 int err = btrfs_add_link(trans, dir, inode, 6359 dentry->d_name.name, dentry->d_name.len, 6360 backref, index); 6361 if (err > 0) 6362 err = -EEXIST; 6363 return err; 6364 } 6365 6366 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6367 umode_t mode, dev_t rdev) 6368 { 6369 struct btrfs_trans_handle *trans; 6370 struct btrfs_root *root = BTRFS_I(dir)->root; 6371 struct inode *inode = NULL; 6372 int err; 6373 int drop_inode = 0; 6374 u64 objectid; 6375 u64 index = 0; 6376 6377 /* 6378 * 2 for inode item and ref 6379 * 2 for dir items 6380 * 1 for xattr if selinux is on 6381 */ 6382 trans = btrfs_start_transaction(root, 5); 6383 if (IS_ERR(trans)) 6384 return PTR_ERR(trans); 6385 6386 err = btrfs_find_free_ino(root, &objectid); 6387 if (err) 6388 goto out_unlock; 6389 6390 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6391 dentry->d_name.len, btrfs_ino(dir), objectid, 6392 mode, &index); 6393 if (IS_ERR(inode)) { 6394 err = PTR_ERR(inode); 6395 goto out_unlock; 6396 } 6397 6398 /* 6399 * If the active LSM wants to access the inode during 6400 * d_instantiate it needs these. Smack checks to see 6401 * if the filesystem supports xattrs by looking at the 6402 * ops vector. 6403 */ 6404 inode->i_op = &btrfs_special_inode_operations; 6405 init_special_inode(inode, inode->i_mode, rdev); 6406 6407 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6408 if (err) 6409 goto out_unlock_inode; 6410 6411 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6412 if (err) { 6413 goto out_unlock_inode; 6414 } else { 6415 btrfs_update_inode(trans, root, inode); 6416 unlock_new_inode(inode); 6417 d_instantiate(dentry, inode); 6418 } 6419 6420 out_unlock: 6421 btrfs_end_transaction(trans, root); 6422 btrfs_balance_delayed_items(root); 6423 btrfs_btree_balance_dirty(root); 6424 if (drop_inode) { 6425 inode_dec_link_count(inode); 6426 iput(inode); 6427 } 6428 return err; 6429 6430 out_unlock_inode: 6431 drop_inode = 1; 6432 unlock_new_inode(inode); 6433 goto out_unlock; 6434 6435 } 6436 6437 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6438 umode_t mode, bool excl) 6439 { 6440 struct btrfs_trans_handle *trans; 6441 struct btrfs_root *root = BTRFS_I(dir)->root; 6442 struct inode *inode = NULL; 6443 int drop_inode_on_err = 0; 6444 int err; 6445 u64 objectid; 6446 u64 index = 0; 6447 6448 /* 6449 * 2 for inode item and ref 6450 * 2 for dir items 6451 * 1 for xattr if selinux is on 6452 */ 6453 trans = btrfs_start_transaction(root, 5); 6454 if (IS_ERR(trans)) 6455 return PTR_ERR(trans); 6456 6457 err = btrfs_find_free_ino(root, &objectid); 6458 if (err) 6459 goto out_unlock; 6460 6461 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6462 dentry->d_name.len, btrfs_ino(dir), objectid, 6463 mode, &index); 6464 if (IS_ERR(inode)) { 6465 err = PTR_ERR(inode); 6466 goto out_unlock; 6467 } 6468 drop_inode_on_err = 1; 6469 /* 6470 * If the active LSM wants to access the inode during 6471 * d_instantiate it needs these. Smack checks to see 6472 * if the filesystem supports xattrs by looking at the 6473 * ops vector. 6474 */ 6475 inode->i_fop = &btrfs_file_operations; 6476 inode->i_op = &btrfs_file_inode_operations; 6477 inode->i_mapping->a_ops = &btrfs_aops; 6478 6479 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6480 if (err) 6481 goto out_unlock_inode; 6482 6483 err = btrfs_update_inode(trans, root, inode); 6484 if (err) 6485 goto out_unlock_inode; 6486 6487 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6488 if (err) 6489 goto out_unlock_inode; 6490 6491 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6492 unlock_new_inode(inode); 6493 d_instantiate(dentry, inode); 6494 6495 out_unlock: 6496 btrfs_end_transaction(trans, root); 6497 if (err && drop_inode_on_err) { 6498 inode_dec_link_count(inode); 6499 iput(inode); 6500 } 6501 btrfs_balance_delayed_items(root); 6502 btrfs_btree_balance_dirty(root); 6503 return err; 6504 6505 out_unlock_inode: 6506 unlock_new_inode(inode); 6507 goto out_unlock; 6508 6509 } 6510 6511 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6512 struct dentry *dentry) 6513 { 6514 struct btrfs_trans_handle *trans = NULL; 6515 struct btrfs_root *root = BTRFS_I(dir)->root; 6516 struct inode *inode = d_inode(old_dentry); 6517 u64 index; 6518 int err; 6519 int drop_inode = 0; 6520 6521 /* do not allow sys_link's with other subvols of the same device */ 6522 if (root->objectid != BTRFS_I(inode)->root->objectid) 6523 return -EXDEV; 6524 6525 if (inode->i_nlink >= BTRFS_LINK_MAX) 6526 return -EMLINK; 6527 6528 err = btrfs_set_inode_index(dir, &index); 6529 if (err) 6530 goto fail; 6531 6532 /* 6533 * 2 items for inode and inode ref 6534 * 2 items for dir items 6535 * 1 item for parent inode 6536 */ 6537 trans = btrfs_start_transaction(root, 5); 6538 if (IS_ERR(trans)) { 6539 err = PTR_ERR(trans); 6540 trans = NULL; 6541 goto fail; 6542 } 6543 6544 /* There are several dir indexes for this inode, clear the cache. */ 6545 BTRFS_I(inode)->dir_index = 0ULL; 6546 inc_nlink(inode); 6547 inode_inc_iversion(inode); 6548 inode->i_ctime = current_fs_time(inode->i_sb); 6549 ihold(inode); 6550 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6551 6552 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6553 6554 if (err) { 6555 drop_inode = 1; 6556 } else { 6557 struct dentry *parent = dentry->d_parent; 6558 err = btrfs_update_inode(trans, root, inode); 6559 if (err) 6560 goto fail; 6561 if (inode->i_nlink == 1) { 6562 /* 6563 * If new hard link count is 1, it's a file created 6564 * with open(2) O_TMPFILE flag. 6565 */ 6566 err = btrfs_orphan_del(trans, inode); 6567 if (err) 6568 goto fail; 6569 } 6570 d_instantiate(dentry, inode); 6571 btrfs_log_new_name(trans, inode, NULL, parent); 6572 } 6573 6574 btrfs_balance_delayed_items(root); 6575 fail: 6576 if (trans) 6577 btrfs_end_transaction(trans, root); 6578 if (drop_inode) { 6579 inode_dec_link_count(inode); 6580 iput(inode); 6581 } 6582 btrfs_btree_balance_dirty(root); 6583 return err; 6584 } 6585 6586 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6587 { 6588 struct inode *inode = NULL; 6589 struct btrfs_trans_handle *trans; 6590 struct btrfs_root *root = BTRFS_I(dir)->root; 6591 int err = 0; 6592 int drop_on_err = 0; 6593 u64 objectid = 0; 6594 u64 index = 0; 6595 6596 /* 6597 * 2 items for inode and ref 6598 * 2 items for dir items 6599 * 1 for xattr if selinux is on 6600 */ 6601 trans = btrfs_start_transaction(root, 5); 6602 if (IS_ERR(trans)) 6603 return PTR_ERR(trans); 6604 6605 err = btrfs_find_free_ino(root, &objectid); 6606 if (err) 6607 goto out_fail; 6608 6609 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6610 dentry->d_name.len, btrfs_ino(dir), objectid, 6611 S_IFDIR | mode, &index); 6612 if (IS_ERR(inode)) { 6613 err = PTR_ERR(inode); 6614 goto out_fail; 6615 } 6616 6617 drop_on_err = 1; 6618 /* these must be set before we unlock the inode */ 6619 inode->i_op = &btrfs_dir_inode_operations; 6620 inode->i_fop = &btrfs_dir_file_operations; 6621 6622 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6623 if (err) 6624 goto out_fail_inode; 6625 6626 btrfs_i_size_write(inode, 0); 6627 err = btrfs_update_inode(trans, root, inode); 6628 if (err) 6629 goto out_fail_inode; 6630 6631 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6632 dentry->d_name.len, 0, index); 6633 if (err) 6634 goto out_fail_inode; 6635 6636 d_instantiate(dentry, inode); 6637 /* 6638 * mkdir is special. We're unlocking after we call d_instantiate 6639 * to avoid a race with nfsd calling d_instantiate. 6640 */ 6641 unlock_new_inode(inode); 6642 drop_on_err = 0; 6643 6644 out_fail: 6645 btrfs_end_transaction(trans, root); 6646 if (drop_on_err) { 6647 inode_dec_link_count(inode); 6648 iput(inode); 6649 } 6650 btrfs_balance_delayed_items(root); 6651 btrfs_btree_balance_dirty(root); 6652 return err; 6653 6654 out_fail_inode: 6655 unlock_new_inode(inode); 6656 goto out_fail; 6657 } 6658 6659 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6660 static struct extent_map *next_extent_map(struct extent_map *em) 6661 { 6662 struct rb_node *next; 6663 6664 next = rb_next(&em->rb_node); 6665 if (!next) 6666 return NULL; 6667 return container_of(next, struct extent_map, rb_node); 6668 } 6669 6670 static struct extent_map *prev_extent_map(struct extent_map *em) 6671 { 6672 struct rb_node *prev; 6673 6674 prev = rb_prev(&em->rb_node); 6675 if (!prev) 6676 return NULL; 6677 return container_of(prev, struct extent_map, rb_node); 6678 } 6679 6680 /* helper for btfs_get_extent. Given an existing extent in the tree, 6681 * the existing extent is the nearest extent to map_start, 6682 * and an extent that you want to insert, deal with overlap and insert 6683 * the best fitted new extent into the tree. 6684 */ 6685 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6686 struct extent_map *existing, 6687 struct extent_map *em, 6688 u64 map_start) 6689 { 6690 struct extent_map *prev; 6691 struct extent_map *next; 6692 u64 start; 6693 u64 end; 6694 u64 start_diff; 6695 6696 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6697 6698 if (existing->start > map_start) { 6699 next = existing; 6700 prev = prev_extent_map(next); 6701 } else { 6702 prev = existing; 6703 next = next_extent_map(prev); 6704 } 6705 6706 start = prev ? extent_map_end(prev) : em->start; 6707 start = max_t(u64, start, em->start); 6708 end = next ? next->start : extent_map_end(em); 6709 end = min_t(u64, end, extent_map_end(em)); 6710 start_diff = start - em->start; 6711 em->start = start; 6712 em->len = end - start; 6713 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6714 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6715 em->block_start += start_diff; 6716 em->block_len -= start_diff; 6717 } 6718 return add_extent_mapping(em_tree, em, 0); 6719 } 6720 6721 static noinline int uncompress_inline(struct btrfs_path *path, 6722 struct page *page, 6723 size_t pg_offset, u64 extent_offset, 6724 struct btrfs_file_extent_item *item) 6725 { 6726 int ret; 6727 struct extent_buffer *leaf = path->nodes[0]; 6728 char *tmp; 6729 size_t max_size; 6730 unsigned long inline_size; 6731 unsigned long ptr; 6732 int compress_type; 6733 6734 WARN_ON(pg_offset != 0); 6735 compress_type = btrfs_file_extent_compression(leaf, item); 6736 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6737 inline_size = btrfs_file_extent_inline_item_len(leaf, 6738 btrfs_item_nr(path->slots[0])); 6739 tmp = kmalloc(inline_size, GFP_NOFS); 6740 if (!tmp) 6741 return -ENOMEM; 6742 ptr = btrfs_file_extent_inline_start(item); 6743 6744 read_extent_buffer(leaf, tmp, ptr, inline_size); 6745 6746 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6747 ret = btrfs_decompress(compress_type, tmp, page, 6748 extent_offset, inline_size, max_size); 6749 kfree(tmp); 6750 return ret; 6751 } 6752 6753 /* 6754 * a bit scary, this does extent mapping from logical file offset to the disk. 6755 * the ugly parts come from merging extents from the disk with the in-ram 6756 * representation. This gets more complex because of the data=ordered code, 6757 * where the in-ram extents might be locked pending data=ordered completion. 6758 * 6759 * This also copies inline extents directly into the page. 6760 */ 6761 6762 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6763 size_t pg_offset, u64 start, u64 len, 6764 int create) 6765 { 6766 int ret; 6767 int err = 0; 6768 u64 extent_start = 0; 6769 u64 extent_end = 0; 6770 u64 objectid = btrfs_ino(inode); 6771 u32 found_type; 6772 struct btrfs_path *path = NULL; 6773 struct btrfs_root *root = BTRFS_I(inode)->root; 6774 struct btrfs_file_extent_item *item; 6775 struct extent_buffer *leaf; 6776 struct btrfs_key found_key; 6777 struct extent_map *em = NULL; 6778 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6779 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6780 struct btrfs_trans_handle *trans = NULL; 6781 const bool new_inline = !page || create; 6782 6783 again: 6784 read_lock(&em_tree->lock); 6785 em = lookup_extent_mapping(em_tree, start, len); 6786 if (em) 6787 em->bdev = root->fs_info->fs_devices->latest_bdev; 6788 read_unlock(&em_tree->lock); 6789 6790 if (em) { 6791 if (em->start > start || em->start + em->len <= start) 6792 free_extent_map(em); 6793 else if (em->block_start == EXTENT_MAP_INLINE && page) 6794 free_extent_map(em); 6795 else 6796 goto out; 6797 } 6798 em = alloc_extent_map(); 6799 if (!em) { 6800 err = -ENOMEM; 6801 goto out; 6802 } 6803 em->bdev = root->fs_info->fs_devices->latest_bdev; 6804 em->start = EXTENT_MAP_HOLE; 6805 em->orig_start = EXTENT_MAP_HOLE; 6806 em->len = (u64)-1; 6807 em->block_len = (u64)-1; 6808 6809 if (!path) { 6810 path = btrfs_alloc_path(); 6811 if (!path) { 6812 err = -ENOMEM; 6813 goto out; 6814 } 6815 /* 6816 * Chances are we'll be called again, so go ahead and do 6817 * readahead 6818 */ 6819 path->reada = READA_FORWARD; 6820 } 6821 6822 ret = btrfs_lookup_file_extent(trans, root, path, 6823 objectid, start, trans != NULL); 6824 if (ret < 0) { 6825 err = ret; 6826 goto out; 6827 } 6828 6829 if (ret != 0) { 6830 if (path->slots[0] == 0) 6831 goto not_found; 6832 path->slots[0]--; 6833 } 6834 6835 leaf = path->nodes[0]; 6836 item = btrfs_item_ptr(leaf, path->slots[0], 6837 struct btrfs_file_extent_item); 6838 /* are we inside the extent that was found? */ 6839 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6840 found_type = found_key.type; 6841 if (found_key.objectid != objectid || 6842 found_type != BTRFS_EXTENT_DATA_KEY) { 6843 /* 6844 * If we backup past the first extent we want to move forward 6845 * and see if there is an extent in front of us, otherwise we'll 6846 * say there is a hole for our whole search range which can 6847 * cause problems. 6848 */ 6849 extent_end = start; 6850 goto next; 6851 } 6852 6853 found_type = btrfs_file_extent_type(leaf, item); 6854 extent_start = found_key.offset; 6855 if (found_type == BTRFS_FILE_EXTENT_REG || 6856 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6857 extent_end = extent_start + 6858 btrfs_file_extent_num_bytes(leaf, item); 6859 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6860 size_t size; 6861 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6862 extent_end = ALIGN(extent_start + size, root->sectorsize); 6863 } 6864 next: 6865 if (start >= extent_end) { 6866 path->slots[0]++; 6867 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6868 ret = btrfs_next_leaf(root, path); 6869 if (ret < 0) { 6870 err = ret; 6871 goto out; 6872 } 6873 if (ret > 0) 6874 goto not_found; 6875 leaf = path->nodes[0]; 6876 } 6877 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6878 if (found_key.objectid != objectid || 6879 found_key.type != BTRFS_EXTENT_DATA_KEY) 6880 goto not_found; 6881 if (start + len <= found_key.offset) 6882 goto not_found; 6883 if (start > found_key.offset) 6884 goto next; 6885 em->start = start; 6886 em->orig_start = start; 6887 em->len = found_key.offset - start; 6888 goto not_found_em; 6889 } 6890 6891 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6892 6893 if (found_type == BTRFS_FILE_EXTENT_REG || 6894 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6895 goto insert; 6896 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6897 unsigned long ptr; 6898 char *map; 6899 size_t size; 6900 size_t extent_offset; 6901 size_t copy_size; 6902 6903 if (new_inline) 6904 goto out; 6905 6906 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6907 extent_offset = page_offset(page) + pg_offset - extent_start; 6908 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6909 size - extent_offset); 6910 em->start = extent_start + extent_offset; 6911 em->len = ALIGN(copy_size, root->sectorsize); 6912 em->orig_block_len = em->len; 6913 em->orig_start = em->start; 6914 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6915 if (create == 0 && !PageUptodate(page)) { 6916 if (btrfs_file_extent_compression(leaf, item) != 6917 BTRFS_COMPRESS_NONE) { 6918 ret = uncompress_inline(path, page, pg_offset, 6919 extent_offset, item); 6920 if (ret) { 6921 err = ret; 6922 goto out; 6923 } 6924 } else { 6925 map = kmap(page); 6926 read_extent_buffer(leaf, map + pg_offset, ptr, 6927 copy_size); 6928 if (pg_offset + copy_size < PAGE_SIZE) { 6929 memset(map + pg_offset + copy_size, 0, 6930 PAGE_SIZE - pg_offset - 6931 copy_size); 6932 } 6933 kunmap(page); 6934 } 6935 flush_dcache_page(page); 6936 } else if (create && PageUptodate(page)) { 6937 BUG(); 6938 if (!trans) { 6939 kunmap(page); 6940 free_extent_map(em); 6941 em = NULL; 6942 6943 btrfs_release_path(path); 6944 trans = btrfs_join_transaction(root); 6945 6946 if (IS_ERR(trans)) 6947 return ERR_CAST(trans); 6948 goto again; 6949 } 6950 map = kmap(page); 6951 write_extent_buffer(leaf, map + pg_offset, ptr, 6952 copy_size); 6953 kunmap(page); 6954 btrfs_mark_buffer_dirty(leaf); 6955 } 6956 set_extent_uptodate(io_tree, em->start, 6957 extent_map_end(em) - 1, NULL, GFP_NOFS); 6958 goto insert; 6959 } 6960 not_found: 6961 em->start = start; 6962 em->orig_start = start; 6963 em->len = len; 6964 not_found_em: 6965 em->block_start = EXTENT_MAP_HOLE; 6966 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6967 insert: 6968 btrfs_release_path(path); 6969 if (em->start > start || extent_map_end(em) <= start) { 6970 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6971 em->start, em->len, start, len); 6972 err = -EIO; 6973 goto out; 6974 } 6975 6976 err = 0; 6977 write_lock(&em_tree->lock); 6978 ret = add_extent_mapping(em_tree, em, 0); 6979 /* it is possible that someone inserted the extent into the tree 6980 * while we had the lock dropped. It is also possible that 6981 * an overlapping map exists in the tree 6982 */ 6983 if (ret == -EEXIST) { 6984 struct extent_map *existing; 6985 6986 ret = 0; 6987 6988 existing = search_extent_mapping(em_tree, start, len); 6989 /* 6990 * existing will always be non-NULL, since there must be 6991 * extent causing the -EEXIST. 6992 */ 6993 if (existing->start == em->start && 6994 extent_map_end(existing) == extent_map_end(em) && 6995 em->block_start == existing->block_start) { 6996 /* 6997 * these two extents are the same, it happens 6998 * with inlines especially 6999 */ 7000 free_extent_map(em); 7001 em = existing; 7002 err = 0; 7003 7004 } else if (start >= extent_map_end(existing) || 7005 start <= existing->start) { 7006 /* 7007 * The existing extent map is the one nearest to 7008 * the [start, start + len) range which overlaps 7009 */ 7010 err = merge_extent_mapping(em_tree, existing, 7011 em, start); 7012 free_extent_map(existing); 7013 if (err) { 7014 free_extent_map(em); 7015 em = NULL; 7016 } 7017 } else { 7018 free_extent_map(em); 7019 em = existing; 7020 err = 0; 7021 } 7022 } 7023 write_unlock(&em_tree->lock); 7024 out: 7025 7026 trace_btrfs_get_extent(root, em); 7027 7028 btrfs_free_path(path); 7029 if (trans) { 7030 ret = btrfs_end_transaction(trans, root); 7031 if (!err) 7032 err = ret; 7033 } 7034 if (err) { 7035 free_extent_map(em); 7036 return ERR_PTR(err); 7037 } 7038 BUG_ON(!em); /* Error is always set */ 7039 return em; 7040 } 7041 7042 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 7043 size_t pg_offset, u64 start, u64 len, 7044 int create) 7045 { 7046 struct extent_map *em; 7047 struct extent_map *hole_em = NULL; 7048 u64 range_start = start; 7049 u64 end; 7050 u64 found; 7051 u64 found_end; 7052 int err = 0; 7053 7054 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7055 if (IS_ERR(em)) 7056 return em; 7057 if (em) { 7058 /* 7059 * if our em maps to 7060 * - a hole or 7061 * - a pre-alloc extent, 7062 * there might actually be delalloc bytes behind it. 7063 */ 7064 if (em->block_start != EXTENT_MAP_HOLE && 7065 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7066 return em; 7067 else 7068 hole_em = em; 7069 } 7070 7071 /* check to see if we've wrapped (len == -1 or similar) */ 7072 end = start + len; 7073 if (end < start) 7074 end = (u64)-1; 7075 else 7076 end -= 1; 7077 7078 em = NULL; 7079 7080 /* ok, we didn't find anything, lets look for delalloc */ 7081 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 7082 end, len, EXTENT_DELALLOC, 1); 7083 found_end = range_start + found; 7084 if (found_end < range_start) 7085 found_end = (u64)-1; 7086 7087 /* 7088 * we didn't find anything useful, return 7089 * the original results from get_extent() 7090 */ 7091 if (range_start > end || found_end <= start) { 7092 em = hole_em; 7093 hole_em = NULL; 7094 goto out; 7095 } 7096 7097 /* adjust the range_start to make sure it doesn't 7098 * go backwards from the start they passed in 7099 */ 7100 range_start = max(start, range_start); 7101 found = found_end - range_start; 7102 7103 if (found > 0) { 7104 u64 hole_start = start; 7105 u64 hole_len = len; 7106 7107 em = alloc_extent_map(); 7108 if (!em) { 7109 err = -ENOMEM; 7110 goto out; 7111 } 7112 /* 7113 * when btrfs_get_extent can't find anything it 7114 * returns one huge hole 7115 * 7116 * make sure what it found really fits our range, and 7117 * adjust to make sure it is based on the start from 7118 * the caller 7119 */ 7120 if (hole_em) { 7121 u64 calc_end = extent_map_end(hole_em); 7122 7123 if (calc_end <= start || (hole_em->start > end)) { 7124 free_extent_map(hole_em); 7125 hole_em = NULL; 7126 } else { 7127 hole_start = max(hole_em->start, start); 7128 hole_len = calc_end - hole_start; 7129 } 7130 } 7131 em->bdev = NULL; 7132 if (hole_em && range_start > hole_start) { 7133 /* our hole starts before our delalloc, so we 7134 * have to return just the parts of the hole 7135 * that go until the delalloc starts 7136 */ 7137 em->len = min(hole_len, 7138 range_start - hole_start); 7139 em->start = hole_start; 7140 em->orig_start = hole_start; 7141 /* 7142 * don't adjust block start at all, 7143 * it is fixed at EXTENT_MAP_HOLE 7144 */ 7145 em->block_start = hole_em->block_start; 7146 em->block_len = hole_len; 7147 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7148 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7149 } else { 7150 em->start = range_start; 7151 em->len = found; 7152 em->orig_start = range_start; 7153 em->block_start = EXTENT_MAP_DELALLOC; 7154 em->block_len = found; 7155 } 7156 } else if (hole_em) { 7157 return hole_em; 7158 } 7159 out: 7160 7161 free_extent_map(hole_em); 7162 if (err) { 7163 free_extent_map(em); 7164 return ERR_PTR(err); 7165 } 7166 return em; 7167 } 7168 7169 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7170 const u64 start, 7171 const u64 len, 7172 const u64 orig_start, 7173 const u64 block_start, 7174 const u64 block_len, 7175 const u64 orig_block_len, 7176 const u64 ram_bytes, 7177 const int type) 7178 { 7179 struct extent_map *em = NULL; 7180 int ret; 7181 7182 down_read(&BTRFS_I(inode)->dio_sem); 7183 if (type != BTRFS_ORDERED_NOCOW) { 7184 em = create_pinned_em(inode, start, len, orig_start, 7185 block_start, block_len, orig_block_len, 7186 ram_bytes, type); 7187 if (IS_ERR(em)) 7188 goto out; 7189 } 7190 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7191 len, block_len, type); 7192 if (ret) { 7193 if (em) { 7194 free_extent_map(em); 7195 btrfs_drop_extent_cache(inode, start, 7196 start + len - 1, 0); 7197 } 7198 em = ERR_PTR(ret); 7199 } 7200 out: 7201 up_read(&BTRFS_I(inode)->dio_sem); 7202 7203 return em; 7204 } 7205 7206 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7207 u64 start, u64 len) 7208 { 7209 struct btrfs_root *root = BTRFS_I(inode)->root; 7210 struct extent_map *em; 7211 struct btrfs_key ins; 7212 u64 alloc_hint; 7213 int ret; 7214 7215 alloc_hint = get_extent_allocation_hint(inode, start, len); 7216 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 7217 alloc_hint, &ins, 1, 1); 7218 if (ret) 7219 return ERR_PTR(ret); 7220 7221 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7222 ins.objectid, ins.offset, ins.offset, 7223 ins.offset, 0); 7224 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 7225 if (IS_ERR(em)) 7226 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7227 7228 return em; 7229 } 7230 7231 /* 7232 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7233 * block must be cow'd 7234 */ 7235 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7236 u64 *orig_start, u64 *orig_block_len, 7237 u64 *ram_bytes) 7238 { 7239 struct btrfs_trans_handle *trans; 7240 struct btrfs_path *path; 7241 int ret; 7242 struct extent_buffer *leaf; 7243 struct btrfs_root *root = BTRFS_I(inode)->root; 7244 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7245 struct btrfs_file_extent_item *fi; 7246 struct btrfs_key key; 7247 u64 disk_bytenr; 7248 u64 backref_offset; 7249 u64 extent_end; 7250 u64 num_bytes; 7251 int slot; 7252 int found_type; 7253 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7254 7255 path = btrfs_alloc_path(); 7256 if (!path) 7257 return -ENOMEM; 7258 7259 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7260 offset, 0); 7261 if (ret < 0) 7262 goto out; 7263 7264 slot = path->slots[0]; 7265 if (ret == 1) { 7266 if (slot == 0) { 7267 /* can't find the item, must cow */ 7268 ret = 0; 7269 goto out; 7270 } 7271 slot--; 7272 } 7273 ret = 0; 7274 leaf = path->nodes[0]; 7275 btrfs_item_key_to_cpu(leaf, &key, slot); 7276 if (key.objectid != btrfs_ino(inode) || 7277 key.type != BTRFS_EXTENT_DATA_KEY) { 7278 /* not our file or wrong item type, must cow */ 7279 goto out; 7280 } 7281 7282 if (key.offset > offset) { 7283 /* Wrong offset, must cow */ 7284 goto out; 7285 } 7286 7287 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7288 found_type = btrfs_file_extent_type(leaf, fi); 7289 if (found_type != BTRFS_FILE_EXTENT_REG && 7290 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7291 /* not a regular extent, must cow */ 7292 goto out; 7293 } 7294 7295 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7296 goto out; 7297 7298 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7299 if (extent_end <= offset) 7300 goto out; 7301 7302 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7303 if (disk_bytenr == 0) 7304 goto out; 7305 7306 if (btrfs_file_extent_compression(leaf, fi) || 7307 btrfs_file_extent_encryption(leaf, fi) || 7308 btrfs_file_extent_other_encoding(leaf, fi)) 7309 goto out; 7310 7311 backref_offset = btrfs_file_extent_offset(leaf, fi); 7312 7313 if (orig_start) { 7314 *orig_start = key.offset - backref_offset; 7315 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7316 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7317 } 7318 7319 if (btrfs_extent_readonly(root, disk_bytenr)) 7320 goto out; 7321 7322 num_bytes = min(offset + *len, extent_end) - offset; 7323 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7324 u64 range_end; 7325 7326 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7327 ret = test_range_bit(io_tree, offset, range_end, 7328 EXTENT_DELALLOC, 0, NULL); 7329 if (ret) { 7330 ret = -EAGAIN; 7331 goto out; 7332 } 7333 } 7334 7335 btrfs_release_path(path); 7336 7337 /* 7338 * look for other files referencing this extent, if we 7339 * find any we must cow 7340 */ 7341 trans = btrfs_join_transaction(root); 7342 if (IS_ERR(trans)) { 7343 ret = 0; 7344 goto out; 7345 } 7346 7347 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7348 key.offset - backref_offset, disk_bytenr); 7349 btrfs_end_transaction(trans, root); 7350 if (ret) { 7351 ret = 0; 7352 goto out; 7353 } 7354 7355 /* 7356 * adjust disk_bytenr and num_bytes to cover just the bytes 7357 * in this extent we are about to write. If there 7358 * are any csums in that range we have to cow in order 7359 * to keep the csums correct 7360 */ 7361 disk_bytenr += backref_offset; 7362 disk_bytenr += offset - key.offset; 7363 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7364 goto out; 7365 /* 7366 * all of the above have passed, it is safe to overwrite this extent 7367 * without cow 7368 */ 7369 *len = num_bytes; 7370 ret = 1; 7371 out: 7372 btrfs_free_path(path); 7373 return ret; 7374 } 7375 7376 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7377 { 7378 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7379 int found = false; 7380 void **pagep = NULL; 7381 struct page *page = NULL; 7382 int start_idx; 7383 int end_idx; 7384 7385 start_idx = start >> PAGE_SHIFT; 7386 7387 /* 7388 * end is the last byte in the last page. end == start is legal 7389 */ 7390 end_idx = end >> PAGE_SHIFT; 7391 7392 rcu_read_lock(); 7393 7394 /* Most of the code in this while loop is lifted from 7395 * find_get_page. It's been modified to begin searching from a 7396 * page and return just the first page found in that range. If the 7397 * found idx is less than or equal to the end idx then we know that 7398 * a page exists. If no pages are found or if those pages are 7399 * outside of the range then we're fine (yay!) */ 7400 while (page == NULL && 7401 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7402 page = radix_tree_deref_slot(pagep); 7403 if (unlikely(!page)) 7404 break; 7405 7406 if (radix_tree_exception(page)) { 7407 if (radix_tree_deref_retry(page)) { 7408 page = NULL; 7409 continue; 7410 } 7411 /* 7412 * Otherwise, shmem/tmpfs must be storing a swap entry 7413 * here as an exceptional entry: so return it without 7414 * attempting to raise page count. 7415 */ 7416 page = NULL; 7417 break; /* TODO: Is this relevant for this use case? */ 7418 } 7419 7420 if (!page_cache_get_speculative(page)) { 7421 page = NULL; 7422 continue; 7423 } 7424 7425 /* 7426 * Has the page moved? 7427 * This is part of the lockless pagecache protocol. See 7428 * include/linux/pagemap.h for details. 7429 */ 7430 if (unlikely(page != *pagep)) { 7431 put_page(page); 7432 page = NULL; 7433 } 7434 } 7435 7436 if (page) { 7437 if (page->index <= end_idx) 7438 found = true; 7439 put_page(page); 7440 } 7441 7442 rcu_read_unlock(); 7443 return found; 7444 } 7445 7446 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7447 struct extent_state **cached_state, int writing) 7448 { 7449 struct btrfs_ordered_extent *ordered; 7450 int ret = 0; 7451 7452 while (1) { 7453 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7454 cached_state); 7455 /* 7456 * We're concerned with the entire range that we're going to be 7457 * doing DIO to, so we need to make sure there's no ordered 7458 * extents in this range. 7459 */ 7460 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7461 lockend - lockstart + 1); 7462 7463 /* 7464 * We need to make sure there are no buffered pages in this 7465 * range either, we could have raced between the invalidate in 7466 * generic_file_direct_write and locking the extent. The 7467 * invalidate needs to happen so that reads after a write do not 7468 * get stale data. 7469 */ 7470 if (!ordered && 7471 (!writing || 7472 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7473 break; 7474 7475 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7476 cached_state, GFP_NOFS); 7477 7478 if (ordered) { 7479 /* 7480 * If we are doing a DIO read and the ordered extent we 7481 * found is for a buffered write, we can not wait for it 7482 * to complete and retry, because if we do so we can 7483 * deadlock with concurrent buffered writes on page 7484 * locks. This happens only if our DIO read covers more 7485 * than one extent map, if at this point has already 7486 * created an ordered extent for a previous extent map 7487 * and locked its range in the inode's io tree, and a 7488 * concurrent write against that previous extent map's 7489 * range and this range started (we unlock the ranges 7490 * in the io tree only when the bios complete and 7491 * buffered writes always lock pages before attempting 7492 * to lock range in the io tree). 7493 */ 7494 if (writing || 7495 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7496 btrfs_start_ordered_extent(inode, ordered, 1); 7497 else 7498 ret = -ENOTBLK; 7499 btrfs_put_ordered_extent(ordered); 7500 } else { 7501 /* 7502 * We could trigger writeback for this range (and wait 7503 * for it to complete) and then invalidate the pages for 7504 * this range (through invalidate_inode_pages2_range()), 7505 * but that can lead us to a deadlock with a concurrent 7506 * call to readpages() (a buffered read or a defrag call 7507 * triggered a readahead) on a page lock due to an 7508 * ordered dio extent we created before but did not have 7509 * yet a corresponding bio submitted (whence it can not 7510 * complete), which makes readpages() wait for that 7511 * ordered extent to complete while holding a lock on 7512 * that page. 7513 */ 7514 ret = -ENOTBLK; 7515 } 7516 7517 if (ret) 7518 break; 7519 7520 cond_resched(); 7521 } 7522 7523 return ret; 7524 } 7525 7526 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7527 u64 len, u64 orig_start, 7528 u64 block_start, u64 block_len, 7529 u64 orig_block_len, u64 ram_bytes, 7530 int type) 7531 { 7532 struct extent_map_tree *em_tree; 7533 struct extent_map *em; 7534 struct btrfs_root *root = BTRFS_I(inode)->root; 7535 int ret; 7536 7537 em_tree = &BTRFS_I(inode)->extent_tree; 7538 em = alloc_extent_map(); 7539 if (!em) 7540 return ERR_PTR(-ENOMEM); 7541 7542 em->start = start; 7543 em->orig_start = orig_start; 7544 em->mod_start = start; 7545 em->mod_len = len; 7546 em->len = len; 7547 em->block_len = block_len; 7548 em->block_start = block_start; 7549 em->bdev = root->fs_info->fs_devices->latest_bdev; 7550 em->orig_block_len = orig_block_len; 7551 em->ram_bytes = ram_bytes; 7552 em->generation = -1; 7553 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7554 if (type == BTRFS_ORDERED_PREALLOC) 7555 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7556 7557 do { 7558 btrfs_drop_extent_cache(inode, em->start, 7559 em->start + em->len - 1, 0); 7560 write_lock(&em_tree->lock); 7561 ret = add_extent_mapping(em_tree, em, 1); 7562 write_unlock(&em_tree->lock); 7563 } while (ret == -EEXIST); 7564 7565 if (ret) { 7566 free_extent_map(em); 7567 return ERR_PTR(ret); 7568 } 7569 7570 return em; 7571 } 7572 7573 static void adjust_dio_outstanding_extents(struct inode *inode, 7574 struct btrfs_dio_data *dio_data, 7575 const u64 len) 7576 { 7577 unsigned num_extents; 7578 7579 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1, 7580 BTRFS_MAX_EXTENT_SIZE); 7581 /* 7582 * If we have an outstanding_extents count still set then we're 7583 * within our reservation, otherwise we need to adjust our inode 7584 * counter appropriately. 7585 */ 7586 if (dio_data->outstanding_extents) { 7587 dio_data->outstanding_extents -= num_extents; 7588 } else { 7589 spin_lock(&BTRFS_I(inode)->lock); 7590 BTRFS_I(inode)->outstanding_extents += num_extents; 7591 spin_unlock(&BTRFS_I(inode)->lock); 7592 } 7593 } 7594 7595 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7596 struct buffer_head *bh_result, int create) 7597 { 7598 struct extent_map *em; 7599 struct btrfs_root *root = BTRFS_I(inode)->root; 7600 struct extent_state *cached_state = NULL; 7601 struct btrfs_dio_data *dio_data = NULL; 7602 u64 start = iblock << inode->i_blkbits; 7603 u64 lockstart, lockend; 7604 u64 len = bh_result->b_size; 7605 int unlock_bits = EXTENT_LOCKED; 7606 int ret = 0; 7607 7608 if (create) 7609 unlock_bits |= EXTENT_DIRTY; 7610 else 7611 len = min_t(u64, len, root->sectorsize); 7612 7613 lockstart = start; 7614 lockend = start + len - 1; 7615 7616 if (current->journal_info) { 7617 /* 7618 * Need to pull our outstanding extents and set journal_info to NULL so 7619 * that anything that needs to check if there's a transaction doesn't get 7620 * confused. 7621 */ 7622 dio_data = current->journal_info; 7623 current->journal_info = NULL; 7624 } 7625 7626 /* 7627 * If this errors out it's because we couldn't invalidate pagecache for 7628 * this range and we need to fallback to buffered. 7629 */ 7630 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7631 create)) { 7632 ret = -ENOTBLK; 7633 goto err; 7634 } 7635 7636 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7637 if (IS_ERR(em)) { 7638 ret = PTR_ERR(em); 7639 goto unlock_err; 7640 } 7641 7642 /* 7643 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7644 * io. INLINE is special, and we could probably kludge it in here, but 7645 * it's still buffered so for safety lets just fall back to the generic 7646 * buffered path. 7647 * 7648 * For COMPRESSED we _have_ to read the entire extent in so we can 7649 * decompress it, so there will be buffering required no matter what we 7650 * do, so go ahead and fallback to buffered. 7651 * 7652 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7653 * to buffered IO. Don't blame me, this is the price we pay for using 7654 * the generic code. 7655 */ 7656 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7657 em->block_start == EXTENT_MAP_INLINE) { 7658 free_extent_map(em); 7659 ret = -ENOTBLK; 7660 goto unlock_err; 7661 } 7662 7663 /* Just a good old fashioned hole, return */ 7664 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7665 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7666 free_extent_map(em); 7667 goto unlock_err; 7668 } 7669 7670 /* 7671 * We don't allocate a new extent in the following cases 7672 * 7673 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7674 * existing extent. 7675 * 2) The extent is marked as PREALLOC. We're good to go here and can 7676 * just use the extent. 7677 * 7678 */ 7679 if (!create) { 7680 len = min(len, em->len - (start - em->start)); 7681 lockstart = start + len; 7682 goto unlock; 7683 } 7684 7685 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7686 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7687 em->block_start != EXTENT_MAP_HOLE)) { 7688 int type; 7689 u64 block_start, orig_start, orig_block_len, ram_bytes; 7690 7691 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7692 type = BTRFS_ORDERED_PREALLOC; 7693 else 7694 type = BTRFS_ORDERED_NOCOW; 7695 len = min(len, em->len - (start - em->start)); 7696 block_start = em->block_start + (start - em->start); 7697 7698 if (can_nocow_extent(inode, start, &len, &orig_start, 7699 &orig_block_len, &ram_bytes) == 1 && 7700 btrfs_inc_nocow_writers(root->fs_info, block_start)) { 7701 struct extent_map *em2; 7702 7703 em2 = btrfs_create_dio_extent(inode, start, len, 7704 orig_start, block_start, 7705 len, orig_block_len, 7706 ram_bytes, type); 7707 btrfs_dec_nocow_writers(root->fs_info, block_start); 7708 if (type == BTRFS_ORDERED_PREALLOC) { 7709 free_extent_map(em); 7710 em = em2; 7711 } 7712 if (em2 && IS_ERR(em2)) { 7713 ret = PTR_ERR(em2); 7714 goto unlock_err; 7715 } 7716 goto unlock; 7717 } 7718 } 7719 7720 /* 7721 * this will cow the extent, reset the len in case we changed 7722 * it above 7723 */ 7724 len = bh_result->b_size; 7725 free_extent_map(em); 7726 em = btrfs_new_extent_direct(inode, start, len); 7727 if (IS_ERR(em)) { 7728 ret = PTR_ERR(em); 7729 goto unlock_err; 7730 } 7731 len = min(len, em->len - (start - em->start)); 7732 unlock: 7733 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7734 inode->i_blkbits; 7735 bh_result->b_size = len; 7736 bh_result->b_bdev = em->bdev; 7737 set_buffer_mapped(bh_result); 7738 if (create) { 7739 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7740 set_buffer_new(bh_result); 7741 7742 /* 7743 * Need to update the i_size under the extent lock so buffered 7744 * readers will get the updated i_size when we unlock. 7745 */ 7746 if (start + len > i_size_read(inode)) 7747 i_size_write(inode, start + len); 7748 7749 adjust_dio_outstanding_extents(inode, dio_data, len); 7750 btrfs_free_reserved_data_space(inode, start, len); 7751 WARN_ON(dio_data->reserve < len); 7752 dio_data->reserve -= len; 7753 dio_data->unsubmitted_oe_range_end = start + len; 7754 current->journal_info = dio_data; 7755 } 7756 7757 /* 7758 * In the case of write we need to clear and unlock the entire range, 7759 * in the case of read we need to unlock only the end area that we 7760 * aren't using if there is any left over space. 7761 */ 7762 if (lockstart < lockend) { 7763 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7764 lockend, unlock_bits, 1, 0, 7765 &cached_state, GFP_NOFS); 7766 } else { 7767 free_extent_state(cached_state); 7768 } 7769 7770 free_extent_map(em); 7771 7772 return 0; 7773 7774 unlock_err: 7775 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7776 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7777 err: 7778 if (dio_data) 7779 current->journal_info = dio_data; 7780 /* 7781 * Compensate the delalloc release we do in btrfs_direct_IO() when we 7782 * write less data then expected, so that we don't underflow our inode's 7783 * outstanding extents counter. 7784 */ 7785 if (create && dio_data) 7786 adjust_dio_outstanding_extents(inode, dio_data, len); 7787 7788 return ret; 7789 } 7790 7791 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7792 int mirror_num) 7793 { 7794 struct btrfs_root *root = BTRFS_I(inode)->root; 7795 int ret; 7796 7797 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7798 7799 bio_get(bio); 7800 7801 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7802 BTRFS_WQ_ENDIO_DIO_REPAIR); 7803 if (ret) 7804 goto err; 7805 7806 ret = btrfs_map_bio(root, bio, mirror_num, 0); 7807 err: 7808 bio_put(bio); 7809 return ret; 7810 } 7811 7812 static int btrfs_check_dio_repairable(struct inode *inode, 7813 struct bio *failed_bio, 7814 struct io_failure_record *failrec, 7815 int failed_mirror) 7816 { 7817 int num_copies; 7818 7819 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7820 failrec->logical, failrec->len); 7821 if (num_copies == 1) { 7822 /* 7823 * we only have a single copy of the data, so don't bother with 7824 * all the retry and error correction code that follows. no 7825 * matter what the error is, it is very likely to persist. 7826 */ 7827 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7828 num_copies, failrec->this_mirror, failed_mirror); 7829 return 0; 7830 } 7831 7832 failrec->failed_mirror = failed_mirror; 7833 failrec->this_mirror++; 7834 if (failrec->this_mirror == failed_mirror) 7835 failrec->this_mirror++; 7836 7837 if (failrec->this_mirror > num_copies) { 7838 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7839 num_copies, failrec->this_mirror, failed_mirror); 7840 return 0; 7841 } 7842 7843 return 1; 7844 } 7845 7846 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7847 struct page *page, unsigned int pgoff, 7848 u64 start, u64 end, int failed_mirror, 7849 bio_end_io_t *repair_endio, void *repair_arg) 7850 { 7851 struct io_failure_record *failrec; 7852 struct bio *bio; 7853 int isector; 7854 int read_mode; 7855 int ret; 7856 7857 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7858 7859 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7860 if (ret) 7861 return ret; 7862 7863 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7864 failed_mirror); 7865 if (!ret) { 7866 free_io_failure(inode, failrec); 7867 return -EIO; 7868 } 7869 7870 if ((failed_bio->bi_vcnt > 1) 7871 || (failed_bio->bi_io_vec->bv_len 7872 > BTRFS_I(inode)->root->sectorsize)) 7873 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7874 else 7875 read_mode = READ_SYNC; 7876 7877 isector = start - btrfs_io_bio(failed_bio)->logical; 7878 isector >>= inode->i_sb->s_blocksize_bits; 7879 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7880 pgoff, isector, repair_endio, repair_arg); 7881 if (!bio) { 7882 free_io_failure(inode, failrec); 7883 return -EIO; 7884 } 7885 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 7886 7887 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7888 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7889 read_mode, failrec->this_mirror, failrec->in_validation); 7890 7891 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7892 if (ret) { 7893 free_io_failure(inode, failrec); 7894 bio_put(bio); 7895 } 7896 7897 return ret; 7898 } 7899 7900 struct btrfs_retry_complete { 7901 struct completion done; 7902 struct inode *inode; 7903 u64 start; 7904 int uptodate; 7905 }; 7906 7907 static void btrfs_retry_endio_nocsum(struct bio *bio) 7908 { 7909 struct btrfs_retry_complete *done = bio->bi_private; 7910 struct inode *inode; 7911 struct bio_vec *bvec; 7912 int i; 7913 7914 if (bio->bi_error) 7915 goto end; 7916 7917 ASSERT(bio->bi_vcnt == 1); 7918 inode = bio->bi_io_vec->bv_page->mapping->host; 7919 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 7920 7921 done->uptodate = 1; 7922 bio_for_each_segment_all(bvec, bio, i) 7923 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7924 end: 7925 complete(&done->done); 7926 bio_put(bio); 7927 } 7928 7929 static int __btrfs_correct_data_nocsum(struct inode *inode, 7930 struct btrfs_io_bio *io_bio) 7931 { 7932 struct btrfs_fs_info *fs_info; 7933 struct bio_vec *bvec; 7934 struct btrfs_retry_complete done; 7935 u64 start; 7936 unsigned int pgoff; 7937 u32 sectorsize; 7938 int nr_sectors; 7939 int i; 7940 int ret; 7941 7942 fs_info = BTRFS_I(inode)->root->fs_info; 7943 sectorsize = BTRFS_I(inode)->root->sectorsize; 7944 7945 start = io_bio->logical; 7946 done.inode = inode; 7947 7948 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7949 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 7950 pgoff = bvec->bv_offset; 7951 7952 next_block_or_try_again: 7953 done.uptodate = 0; 7954 done.start = start; 7955 init_completion(&done.done); 7956 7957 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 7958 pgoff, start, start + sectorsize - 1, 7959 io_bio->mirror_num, 7960 btrfs_retry_endio_nocsum, &done); 7961 if (ret) 7962 return ret; 7963 7964 wait_for_completion(&done.done); 7965 7966 if (!done.uptodate) { 7967 /* We might have another mirror, so try again */ 7968 goto next_block_or_try_again; 7969 } 7970 7971 start += sectorsize; 7972 7973 if (nr_sectors--) { 7974 pgoff += sectorsize; 7975 goto next_block_or_try_again; 7976 } 7977 } 7978 7979 return 0; 7980 } 7981 7982 static void btrfs_retry_endio(struct bio *bio) 7983 { 7984 struct btrfs_retry_complete *done = bio->bi_private; 7985 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7986 struct inode *inode; 7987 struct bio_vec *bvec; 7988 u64 start; 7989 int uptodate; 7990 int ret; 7991 int i; 7992 7993 if (bio->bi_error) 7994 goto end; 7995 7996 uptodate = 1; 7997 7998 start = done->start; 7999 8000 ASSERT(bio->bi_vcnt == 1); 8001 inode = bio->bi_io_vec->bv_page->mapping->host; 8002 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 8003 8004 bio_for_each_segment_all(bvec, bio, i) { 8005 ret = __readpage_endio_check(done->inode, io_bio, i, 8006 bvec->bv_page, bvec->bv_offset, 8007 done->start, bvec->bv_len); 8008 if (!ret) 8009 clean_io_failure(done->inode, done->start, 8010 bvec->bv_page, bvec->bv_offset); 8011 else 8012 uptodate = 0; 8013 } 8014 8015 done->uptodate = uptodate; 8016 end: 8017 complete(&done->done); 8018 bio_put(bio); 8019 } 8020 8021 static int __btrfs_subio_endio_read(struct inode *inode, 8022 struct btrfs_io_bio *io_bio, int err) 8023 { 8024 struct btrfs_fs_info *fs_info; 8025 struct bio_vec *bvec; 8026 struct btrfs_retry_complete done; 8027 u64 start; 8028 u64 offset = 0; 8029 u32 sectorsize; 8030 int nr_sectors; 8031 unsigned int pgoff; 8032 int csum_pos; 8033 int i; 8034 int ret; 8035 8036 fs_info = BTRFS_I(inode)->root->fs_info; 8037 sectorsize = BTRFS_I(inode)->root->sectorsize; 8038 8039 err = 0; 8040 start = io_bio->logical; 8041 done.inode = inode; 8042 8043 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8044 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8045 8046 pgoff = bvec->bv_offset; 8047 next_block: 8048 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8049 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8050 bvec->bv_page, pgoff, start, 8051 sectorsize); 8052 if (likely(!ret)) 8053 goto next; 8054 try_again: 8055 done.uptodate = 0; 8056 done.start = start; 8057 init_completion(&done.done); 8058 8059 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8060 pgoff, start, start + sectorsize - 1, 8061 io_bio->mirror_num, 8062 btrfs_retry_endio, &done); 8063 if (ret) { 8064 err = ret; 8065 goto next; 8066 } 8067 8068 wait_for_completion(&done.done); 8069 8070 if (!done.uptodate) { 8071 /* We might have another mirror, so try again */ 8072 goto try_again; 8073 } 8074 next: 8075 offset += sectorsize; 8076 start += sectorsize; 8077 8078 ASSERT(nr_sectors); 8079 8080 if (--nr_sectors) { 8081 pgoff += sectorsize; 8082 goto next_block; 8083 } 8084 } 8085 8086 return err; 8087 } 8088 8089 static int btrfs_subio_endio_read(struct inode *inode, 8090 struct btrfs_io_bio *io_bio, int err) 8091 { 8092 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8093 8094 if (skip_csum) { 8095 if (unlikely(err)) 8096 return __btrfs_correct_data_nocsum(inode, io_bio); 8097 else 8098 return 0; 8099 } else { 8100 return __btrfs_subio_endio_read(inode, io_bio, err); 8101 } 8102 } 8103 8104 static void btrfs_endio_direct_read(struct bio *bio) 8105 { 8106 struct btrfs_dio_private *dip = bio->bi_private; 8107 struct inode *inode = dip->inode; 8108 struct bio *dio_bio; 8109 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8110 int err = bio->bi_error; 8111 8112 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8113 err = btrfs_subio_endio_read(inode, io_bio, err); 8114 8115 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8116 dip->logical_offset + dip->bytes - 1); 8117 dio_bio = dip->dio_bio; 8118 8119 kfree(dip); 8120 8121 dio_bio->bi_error = bio->bi_error; 8122 dio_end_io(dio_bio, bio->bi_error); 8123 8124 if (io_bio->end_io) 8125 io_bio->end_io(io_bio, err); 8126 bio_put(bio); 8127 } 8128 8129 static void btrfs_endio_direct_write_update_ordered(struct inode *inode, 8130 const u64 offset, 8131 const u64 bytes, 8132 const int uptodate) 8133 { 8134 struct btrfs_root *root = BTRFS_I(inode)->root; 8135 struct btrfs_ordered_extent *ordered = NULL; 8136 u64 ordered_offset = offset; 8137 u64 ordered_bytes = bytes; 8138 int ret; 8139 8140 again: 8141 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8142 &ordered_offset, 8143 ordered_bytes, 8144 uptodate); 8145 if (!ret) 8146 goto out_test; 8147 8148 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 8149 finish_ordered_fn, NULL, NULL); 8150 btrfs_queue_work(root->fs_info->endio_write_workers, 8151 &ordered->work); 8152 out_test: 8153 /* 8154 * our bio might span multiple ordered extents. If we haven't 8155 * completed the accounting for the whole dio, go back and try again 8156 */ 8157 if (ordered_offset < offset + bytes) { 8158 ordered_bytes = offset + bytes - ordered_offset; 8159 ordered = NULL; 8160 goto again; 8161 } 8162 } 8163 8164 static void btrfs_endio_direct_write(struct bio *bio) 8165 { 8166 struct btrfs_dio_private *dip = bio->bi_private; 8167 struct bio *dio_bio = dip->dio_bio; 8168 8169 btrfs_endio_direct_write_update_ordered(dip->inode, 8170 dip->logical_offset, 8171 dip->bytes, 8172 !bio->bi_error); 8173 8174 kfree(dip); 8175 8176 dio_bio->bi_error = bio->bi_error; 8177 dio_end_io(dio_bio, bio->bi_error); 8178 bio_put(bio); 8179 } 8180 8181 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, 8182 struct bio *bio, int mirror_num, 8183 unsigned long bio_flags, u64 offset) 8184 { 8185 int ret; 8186 struct btrfs_root *root = BTRFS_I(inode)->root; 8187 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 8188 BUG_ON(ret); /* -ENOMEM */ 8189 return 0; 8190 } 8191 8192 static void btrfs_end_dio_bio(struct bio *bio) 8193 { 8194 struct btrfs_dio_private *dip = bio->bi_private; 8195 int err = bio->bi_error; 8196 8197 if (err) 8198 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8199 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8200 btrfs_ino(dip->inode), bio_op(bio), bio->bi_rw, 8201 (unsigned long long)bio->bi_iter.bi_sector, 8202 bio->bi_iter.bi_size, err); 8203 8204 if (dip->subio_endio) 8205 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8206 8207 if (err) { 8208 dip->errors = 1; 8209 8210 /* 8211 * before atomic variable goto zero, we must make sure 8212 * dip->errors is perceived to be set. 8213 */ 8214 smp_mb__before_atomic(); 8215 } 8216 8217 /* if there are more bios still pending for this dio, just exit */ 8218 if (!atomic_dec_and_test(&dip->pending_bios)) 8219 goto out; 8220 8221 if (dip->errors) { 8222 bio_io_error(dip->orig_bio); 8223 } else { 8224 dip->dio_bio->bi_error = 0; 8225 bio_endio(dip->orig_bio); 8226 } 8227 out: 8228 bio_put(bio); 8229 } 8230 8231 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 8232 u64 first_sector, gfp_t gfp_flags) 8233 { 8234 struct bio *bio; 8235 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 8236 if (bio) 8237 bio_associate_current(bio); 8238 return bio; 8239 } 8240 8241 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 8242 struct inode *inode, 8243 struct btrfs_dio_private *dip, 8244 struct bio *bio, 8245 u64 file_offset) 8246 { 8247 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8248 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8249 int ret; 8250 8251 /* 8252 * We load all the csum data we need when we submit 8253 * the first bio to reduce the csum tree search and 8254 * contention. 8255 */ 8256 if (dip->logical_offset == file_offset) { 8257 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 8258 file_offset); 8259 if (ret) 8260 return ret; 8261 } 8262 8263 if (bio == dip->orig_bio) 8264 return 0; 8265 8266 file_offset -= dip->logical_offset; 8267 file_offset >>= inode->i_sb->s_blocksize_bits; 8268 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8269 8270 return 0; 8271 } 8272 8273 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8274 u64 file_offset, int skip_sum, 8275 int async_submit) 8276 { 8277 struct btrfs_dio_private *dip = bio->bi_private; 8278 bool write = bio_op(bio) == REQ_OP_WRITE; 8279 struct btrfs_root *root = BTRFS_I(inode)->root; 8280 int ret; 8281 8282 if (async_submit) 8283 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8284 8285 bio_get(bio); 8286 8287 if (!write) { 8288 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8289 BTRFS_WQ_ENDIO_DATA); 8290 if (ret) 8291 goto err; 8292 } 8293 8294 if (skip_sum) 8295 goto map; 8296 8297 if (write && async_submit) { 8298 ret = btrfs_wq_submit_bio(root->fs_info, 8299 inode, bio, 0, 0, file_offset, 8300 __btrfs_submit_bio_start_direct_io, 8301 __btrfs_submit_bio_done); 8302 goto err; 8303 } else if (write) { 8304 /* 8305 * If we aren't doing async submit, calculate the csum of the 8306 * bio now. 8307 */ 8308 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8309 if (ret) 8310 goto err; 8311 } else { 8312 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8313 file_offset); 8314 if (ret) 8315 goto err; 8316 } 8317 map: 8318 ret = btrfs_map_bio(root, bio, 0, async_submit); 8319 err: 8320 bio_put(bio); 8321 return ret; 8322 } 8323 8324 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip, 8325 int skip_sum) 8326 { 8327 struct inode *inode = dip->inode; 8328 struct btrfs_root *root = BTRFS_I(inode)->root; 8329 struct bio *bio; 8330 struct bio *orig_bio = dip->orig_bio; 8331 struct bio_vec *bvec = orig_bio->bi_io_vec; 8332 u64 start_sector = orig_bio->bi_iter.bi_sector; 8333 u64 file_offset = dip->logical_offset; 8334 u64 submit_len = 0; 8335 u64 map_length; 8336 u32 blocksize = root->sectorsize; 8337 int async_submit = 0; 8338 int nr_sectors; 8339 int ret; 8340 int i; 8341 8342 map_length = orig_bio->bi_iter.bi_size; 8343 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio), 8344 start_sector << 9, &map_length, NULL, 0); 8345 if (ret) 8346 return -EIO; 8347 8348 if (map_length >= orig_bio->bi_iter.bi_size) { 8349 bio = orig_bio; 8350 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8351 goto submit; 8352 } 8353 8354 /* async crcs make it difficult to collect full stripe writes. */ 8355 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8356 async_submit = 0; 8357 else 8358 async_submit = 1; 8359 8360 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8361 if (!bio) 8362 return -ENOMEM; 8363 8364 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_rw); 8365 bio->bi_private = dip; 8366 bio->bi_end_io = btrfs_end_dio_bio; 8367 btrfs_io_bio(bio)->logical = file_offset; 8368 atomic_inc(&dip->pending_bios); 8369 8370 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8371 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len); 8372 i = 0; 8373 next_block: 8374 if (unlikely(map_length < submit_len + blocksize || 8375 bio_add_page(bio, bvec->bv_page, blocksize, 8376 bvec->bv_offset + (i * blocksize)) < blocksize)) { 8377 /* 8378 * inc the count before we submit the bio so 8379 * we know the end IO handler won't happen before 8380 * we inc the count. Otherwise, the dip might get freed 8381 * before we're done setting it up 8382 */ 8383 atomic_inc(&dip->pending_bios); 8384 ret = __btrfs_submit_dio_bio(bio, inode, 8385 file_offset, skip_sum, 8386 async_submit); 8387 if (ret) { 8388 bio_put(bio); 8389 atomic_dec(&dip->pending_bios); 8390 goto out_err; 8391 } 8392 8393 start_sector += submit_len >> 9; 8394 file_offset += submit_len; 8395 8396 submit_len = 0; 8397 8398 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8399 start_sector, GFP_NOFS); 8400 if (!bio) 8401 goto out_err; 8402 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_rw); 8403 bio->bi_private = dip; 8404 bio->bi_end_io = btrfs_end_dio_bio; 8405 btrfs_io_bio(bio)->logical = file_offset; 8406 8407 map_length = orig_bio->bi_iter.bi_size; 8408 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio), 8409 start_sector << 9, 8410 &map_length, NULL, 0); 8411 if (ret) { 8412 bio_put(bio); 8413 goto out_err; 8414 } 8415 8416 goto next_block; 8417 } else { 8418 submit_len += blocksize; 8419 if (--nr_sectors) { 8420 i++; 8421 goto next_block; 8422 } 8423 bvec++; 8424 } 8425 } 8426 8427 submit: 8428 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum, 8429 async_submit); 8430 if (!ret) 8431 return 0; 8432 8433 bio_put(bio); 8434 out_err: 8435 dip->errors = 1; 8436 /* 8437 * before atomic variable goto zero, we must 8438 * make sure dip->errors is perceived to be set. 8439 */ 8440 smp_mb__before_atomic(); 8441 if (atomic_dec_and_test(&dip->pending_bios)) 8442 bio_io_error(dip->orig_bio); 8443 8444 /* bio_end_io() will handle error, so we needn't return it */ 8445 return 0; 8446 } 8447 8448 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8449 loff_t file_offset) 8450 { 8451 struct btrfs_dio_private *dip = NULL; 8452 struct bio *io_bio = NULL; 8453 struct btrfs_io_bio *btrfs_bio; 8454 int skip_sum; 8455 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8456 int ret = 0; 8457 8458 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8459 8460 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8461 if (!io_bio) { 8462 ret = -ENOMEM; 8463 goto free_ordered; 8464 } 8465 8466 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8467 if (!dip) { 8468 ret = -ENOMEM; 8469 goto free_ordered; 8470 } 8471 8472 dip->private = dio_bio->bi_private; 8473 dip->inode = inode; 8474 dip->logical_offset = file_offset; 8475 dip->bytes = dio_bio->bi_iter.bi_size; 8476 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8477 io_bio->bi_private = dip; 8478 dip->orig_bio = io_bio; 8479 dip->dio_bio = dio_bio; 8480 atomic_set(&dip->pending_bios, 0); 8481 btrfs_bio = btrfs_io_bio(io_bio); 8482 btrfs_bio->logical = file_offset; 8483 8484 if (write) { 8485 io_bio->bi_end_io = btrfs_endio_direct_write; 8486 } else { 8487 io_bio->bi_end_io = btrfs_endio_direct_read; 8488 dip->subio_endio = btrfs_subio_endio_read; 8489 } 8490 8491 /* 8492 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8493 * even if we fail to submit a bio, because in such case we do the 8494 * corresponding error handling below and it must not be done a second 8495 * time by btrfs_direct_IO(). 8496 */ 8497 if (write) { 8498 struct btrfs_dio_data *dio_data = current->journal_info; 8499 8500 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8501 dip->bytes; 8502 dio_data->unsubmitted_oe_range_start = 8503 dio_data->unsubmitted_oe_range_end; 8504 } 8505 8506 ret = btrfs_submit_direct_hook(dip, skip_sum); 8507 if (!ret) 8508 return; 8509 8510 if (btrfs_bio->end_io) 8511 btrfs_bio->end_io(btrfs_bio, ret); 8512 8513 free_ordered: 8514 /* 8515 * If we arrived here it means either we failed to submit the dip 8516 * or we either failed to clone the dio_bio or failed to allocate the 8517 * dip. If we cloned the dio_bio and allocated the dip, we can just 8518 * call bio_endio against our io_bio so that we get proper resource 8519 * cleanup if we fail to submit the dip, otherwise, we must do the 8520 * same as btrfs_endio_direct_[write|read] because we can't call these 8521 * callbacks - they require an allocated dip and a clone of dio_bio. 8522 */ 8523 if (io_bio && dip) { 8524 io_bio->bi_error = -EIO; 8525 bio_endio(io_bio); 8526 /* 8527 * The end io callbacks free our dip, do the final put on io_bio 8528 * and all the cleanup and final put for dio_bio (through 8529 * dio_end_io()). 8530 */ 8531 dip = NULL; 8532 io_bio = NULL; 8533 } else { 8534 if (write) 8535 btrfs_endio_direct_write_update_ordered(inode, 8536 file_offset, 8537 dio_bio->bi_iter.bi_size, 8538 0); 8539 else 8540 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8541 file_offset + dio_bio->bi_iter.bi_size - 1); 8542 8543 dio_bio->bi_error = -EIO; 8544 /* 8545 * Releases and cleans up our dio_bio, no need to bio_put() 8546 * nor bio_endio()/bio_io_error() against dio_bio. 8547 */ 8548 dio_end_io(dio_bio, ret); 8549 } 8550 if (io_bio) 8551 bio_put(io_bio); 8552 kfree(dip); 8553 } 8554 8555 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8556 const struct iov_iter *iter, loff_t offset) 8557 { 8558 int seg; 8559 int i; 8560 unsigned blocksize_mask = root->sectorsize - 1; 8561 ssize_t retval = -EINVAL; 8562 8563 if (offset & blocksize_mask) 8564 goto out; 8565 8566 if (iov_iter_alignment(iter) & blocksize_mask) 8567 goto out; 8568 8569 /* If this is a write we don't need to check anymore */ 8570 if (iov_iter_rw(iter) == WRITE) 8571 return 0; 8572 /* 8573 * Check to make sure we don't have duplicate iov_base's in this 8574 * iovec, if so return EINVAL, otherwise we'll get csum errors 8575 * when reading back. 8576 */ 8577 for (seg = 0; seg < iter->nr_segs; seg++) { 8578 for (i = seg + 1; i < iter->nr_segs; i++) { 8579 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8580 goto out; 8581 } 8582 } 8583 retval = 0; 8584 out: 8585 return retval; 8586 } 8587 8588 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8589 { 8590 struct file *file = iocb->ki_filp; 8591 struct inode *inode = file->f_mapping->host; 8592 struct btrfs_root *root = BTRFS_I(inode)->root; 8593 struct btrfs_dio_data dio_data = { 0 }; 8594 loff_t offset = iocb->ki_pos; 8595 size_t count = 0; 8596 int flags = 0; 8597 bool wakeup = true; 8598 bool relock = false; 8599 ssize_t ret; 8600 8601 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8602 return 0; 8603 8604 inode_dio_begin(inode); 8605 smp_mb__after_atomic(); 8606 8607 /* 8608 * The generic stuff only does filemap_write_and_wait_range, which 8609 * isn't enough if we've written compressed pages to this area, so 8610 * we need to flush the dirty pages again to make absolutely sure 8611 * that any outstanding dirty pages are on disk. 8612 */ 8613 count = iov_iter_count(iter); 8614 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8615 &BTRFS_I(inode)->runtime_flags)) 8616 filemap_fdatawrite_range(inode->i_mapping, offset, 8617 offset + count - 1); 8618 8619 if (iov_iter_rw(iter) == WRITE) { 8620 /* 8621 * If the write DIO is beyond the EOF, we need update 8622 * the isize, but it is protected by i_mutex. So we can 8623 * not unlock the i_mutex at this case. 8624 */ 8625 if (offset + count <= inode->i_size) { 8626 inode_unlock(inode); 8627 relock = true; 8628 } 8629 ret = btrfs_delalloc_reserve_space(inode, offset, count); 8630 if (ret) 8631 goto out; 8632 dio_data.outstanding_extents = div64_u64(count + 8633 BTRFS_MAX_EXTENT_SIZE - 1, 8634 BTRFS_MAX_EXTENT_SIZE); 8635 8636 /* 8637 * We need to know how many extents we reserved so that we can 8638 * do the accounting properly if we go over the number we 8639 * originally calculated. Abuse current->journal_info for this. 8640 */ 8641 dio_data.reserve = round_up(count, root->sectorsize); 8642 dio_data.unsubmitted_oe_range_start = (u64)offset; 8643 dio_data.unsubmitted_oe_range_end = (u64)offset; 8644 current->journal_info = &dio_data; 8645 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8646 &BTRFS_I(inode)->runtime_flags)) { 8647 inode_dio_end(inode); 8648 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8649 wakeup = false; 8650 } 8651 8652 ret = __blockdev_direct_IO(iocb, inode, 8653 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8654 iter, btrfs_get_blocks_direct, NULL, 8655 btrfs_submit_direct, flags); 8656 if (iov_iter_rw(iter) == WRITE) { 8657 current->journal_info = NULL; 8658 if (ret < 0 && ret != -EIOCBQUEUED) { 8659 if (dio_data.reserve) 8660 btrfs_delalloc_release_space(inode, offset, 8661 dio_data.reserve); 8662 /* 8663 * On error we might have left some ordered extents 8664 * without submitting corresponding bios for them, so 8665 * cleanup them up to avoid other tasks getting them 8666 * and waiting for them to complete forever. 8667 */ 8668 if (dio_data.unsubmitted_oe_range_start < 8669 dio_data.unsubmitted_oe_range_end) 8670 btrfs_endio_direct_write_update_ordered(inode, 8671 dio_data.unsubmitted_oe_range_start, 8672 dio_data.unsubmitted_oe_range_end - 8673 dio_data.unsubmitted_oe_range_start, 8674 0); 8675 } else if (ret >= 0 && (size_t)ret < count) 8676 btrfs_delalloc_release_space(inode, offset, 8677 count - (size_t)ret); 8678 } 8679 out: 8680 if (wakeup) 8681 inode_dio_end(inode); 8682 if (relock) 8683 inode_lock(inode); 8684 8685 return ret; 8686 } 8687 8688 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8689 8690 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8691 __u64 start, __u64 len) 8692 { 8693 int ret; 8694 8695 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8696 if (ret) 8697 return ret; 8698 8699 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8700 } 8701 8702 int btrfs_readpage(struct file *file, struct page *page) 8703 { 8704 struct extent_io_tree *tree; 8705 tree = &BTRFS_I(page->mapping->host)->io_tree; 8706 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8707 } 8708 8709 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8710 { 8711 struct extent_io_tree *tree; 8712 struct inode *inode = page->mapping->host; 8713 int ret; 8714 8715 if (current->flags & PF_MEMALLOC) { 8716 redirty_page_for_writepage(wbc, page); 8717 unlock_page(page); 8718 return 0; 8719 } 8720 8721 /* 8722 * If we are under memory pressure we will call this directly from the 8723 * VM, we need to make sure we have the inode referenced for the ordered 8724 * extent. If not just return like we didn't do anything. 8725 */ 8726 if (!igrab(inode)) { 8727 redirty_page_for_writepage(wbc, page); 8728 return AOP_WRITEPAGE_ACTIVATE; 8729 } 8730 tree = &BTRFS_I(page->mapping->host)->io_tree; 8731 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8732 btrfs_add_delayed_iput(inode); 8733 return ret; 8734 } 8735 8736 static int btrfs_writepages(struct address_space *mapping, 8737 struct writeback_control *wbc) 8738 { 8739 struct extent_io_tree *tree; 8740 8741 tree = &BTRFS_I(mapping->host)->io_tree; 8742 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8743 } 8744 8745 static int 8746 btrfs_readpages(struct file *file, struct address_space *mapping, 8747 struct list_head *pages, unsigned nr_pages) 8748 { 8749 struct extent_io_tree *tree; 8750 tree = &BTRFS_I(mapping->host)->io_tree; 8751 return extent_readpages(tree, mapping, pages, nr_pages, 8752 btrfs_get_extent); 8753 } 8754 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8755 { 8756 struct extent_io_tree *tree; 8757 struct extent_map_tree *map; 8758 int ret; 8759 8760 tree = &BTRFS_I(page->mapping->host)->io_tree; 8761 map = &BTRFS_I(page->mapping->host)->extent_tree; 8762 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8763 if (ret == 1) { 8764 ClearPagePrivate(page); 8765 set_page_private(page, 0); 8766 put_page(page); 8767 } 8768 return ret; 8769 } 8770 8771 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8772 { 8773 if (PageWriteback(page) || PageDirty(page)) 8774 return 0; 8775 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8776 } 8777 8778 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8779 unsigned int length) 8780 { 8781 struct inode *inode = page->mapping->host; 8782 struct extent_io_tree *tree; 8783 struct btrfs_ordered_extent *ordered; 8784 struct extent_state *cached_state = NULL; 8785 u64 page_start = page_offset(page); 8786 u64 page_end = page_start + PAGE_SIZE - 1; 8787 u64 start; 8788 u64 end; 8789 int inode_evicting = inode->i_state & I_FREEING; 8790 8791 /* 8792 * we have the page locked, so new writeback can't start, 8793 * and the dirty bit won't be cleared while we are here. 8794 * 8795 * Wait for IO on this page so that we can safely clear 8796 * the PagePrivate2 bit and do ordered accounting 8797 */ 8798 wait_on_page_writeback(page); 8799 8800 tree = &BTRFS_I(inode)->io_tree; 8801 if (offset) { 8802 btrfs_releasepage(page, GFP_NOFS); 8803 return; 8804 } 8805 8806 if (!inode_evicting) 8807 lock_extent_bits(tree, page_start, page_end, &cached_state); 8808 again: 8809 start = page_start; 8810 ordered = btrfs_lookup_ordered_range(inode, start, 8811 page_end - start + 1); 8812 if (ordered) { 8813 end = min(page_end, ordered->file_offset + ordered->len - 1); 8814 /* 8815 * IO on this page will never be started, so we need 8816 * to account for any ordered extents now 8817 */ 8818 if (!inode_evicting) 8819 clear_extent_bit(tree, start, end, 8820 EXTENT_DIRTY | EXTENT_DELALLOC | 8821 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8822 EXTENT_DEFRAG, 1, 0, &cached_state, 8823 GFP_NOFS); 8824 /* 8825 * whoever cleared the private bit is responsible 8826 * for the finish_ordered_io 8827 */ 8828 if (TestClearPagePrivate2(page)) { 8829 struct btrfs_ordered_inode_tree *tree; 8830 u64 new_len; 8831 8832 tree = &BTRFS_I(inode)->ordered_tree; 8833 8834 spin_lock_irq(&tree->lock); 8835 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8836 new_len = start - ordered->file_offset; 8837 if (new_len < ordered->truncated_len) 8838 ordered->truncated_len = new_len; 8839 spin_unlock_irq(&tree->lock); 8840 8841 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8842 start, 8843 end - start + 1, 1)) 8844 btrfs_finish_ordered_io(ordered); 8845 } 8846 btrfs_put_ordered_extent(ordered); 8847 if (!inode_evicting) { 8848 cached_state = NULL; 8849 lock_extent_bits(tree, start, end, 8850 &cached_state); 8851 } 8852 8853 start = end + 1; 8854 if (start < page_end) 8855 goto again; 8856 } 8857 8858 /* 8859 * Qgroup reserved space handler 8860 * Page here will be either 8861 * 1) Already written to disk 8862 * In this case, its reserved space is released from data rsv map 8863 * and will be freed by delayed_ref handler finally. 8864 * So even we call qgroup_free_data(), it won't decrease reserved 8865 * space. 8866 * 2) Not written to disk 8867 * This means the reserved space should be freed here. 8868 */ 8869 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE); 8870 if (!inode_evicting) { 8871 clear_extent_bit(tree, page_start, page_end, 8872 EXTENT_LOCKED | EXTENT_DIRTY | 8873 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8874 EXTENT_DEFRAG, 1, 1, 8875 &cached_state, GFP_NOFS); 8876 8877 __btrfs_releasepage(page, GFP_NOFS); 8878 } 8879 8880 ClearPageChecked(page); 8881 if (PagePrivate(page)) { 8882 ClearPagePrivate(page); 8883 set_page_private(page, 0); 8884 put_page(page); 8885 } 8886 } 8887 8888 /* 8889 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8890 * called from a page fault handler when a page is first dirtied. Hence we must 8891 * be careful to check for EOF conditions here. We set the page up correctly 8892 * for a written page which means we get ENOSPC checking when writing into 8893 * holes and correct delalloc and unwritten extent mapping on filesystems that 8894 * support these features. 8895 * 8896 * We are not allowed to take the i_mutex here so we have to play games to 8897 * protect against truncate races as the page could now be beyond EOF. Because 8898 * vmtruncate() writes the inode size before removing pages, once we have the 8899 * page lock we can determine safely if the page is beyond EOF. If it is not 8900 * beyond EOF, then the page is guaranteed safe against truncation until we 8901 * unlock the page. 8902 */ 8903 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8904 { 8905 struct page *page = vmf->page; 8906 struct inode *inode = file_inode(vma->vm_file); 8907 struct btrfs_root *root = BTRFS_I(inode)->root; 8908 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8909 struct btrfs_ordered_extent *ordered; 8910 struct extent_state *cached_state = NULL; 8911 char *kaddr; 8912 unsigned long zero_start; 8913 loff_t size; 8914 int ret; 8915 int reserved = 0; 8916 u64 reserved_space; 8917 u64 page_start; 8918 u64 page_end; 8919 u64 end; 8920 8921 reserved_space = PAGE_SIZE; 8922 8923 sb_start_pagefault(inode->i_sb); 8924 page_start = page_offset(page); 8925 page_end = page_start + PAGE_SIZE - 1; 8926 end = page_end; 8927 8928 /* 8929 * Reserving delalloc space after obtaining the page lock can lead to 8930 * deadlock. For example, if a dirty page is locked by this function 8931 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8932 * dirty page write out, then the btrfs_writepage() function could 8933 * end up waiting indefinitely to get a lock on the page currently 8934 * being processed by btrfs_page_mkwrite() function. 8935 */ 8936 ret = btrfs_delalloc_reserve_space(inode, page_start, 8937 reserved_space); 8938 if (!ret) { 8939 ret = file_update_time(vma->vm_file); 8940 reserved = 1; 8941 } 8942 if (ret) { 8943 if (ret == -ENOMEM) 8944 ret = VM_FAULT_OOM; 8945 else /* -ENOSPC, -EIO, etc */ 8946 ret = VM_FAULT_SIGBUS; 8947 if (reserved) 8948 goto out; 8949 goto out_noreserve; 8950 } 8951 8952 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8953 again: 8954 lock_page(page); 8955 size = i_size_read(inode); 8956 8957 if ((page->mapping != inode->i_mapping) || 8958 (page_start >= size)) { 8959 /* page got truncated out from underneath us */ 8960 goto out_unlock; 8961 } 8962 wait_on_page_writeback(page); 8963 8964 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8965 set_page_extent_mapped(page); 8966 8967 /* 8968 * we can't set the delalloc bits if there are pending ordered 8969 * extents. Drop our locks and wait for them to finish 8970 */ 8971 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end); 8972 if (ordered) { 8973 unlock_extent_cached(io_tree, page_start, page_end, 8974 &cached_state, GFP_NOFS); 8975 unlock_page(page); 8976 btrfs_start_ordered_extent(inode, ordered, 1); 8977 btrfs_put_ordered_extent(ordered); 8978 goto again; 8979 } 8980 8981 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8982 reserved_space = round_up(size - page_start, root->sectorsize); 8983 if (reserved_space < PAGE_SIZE) { 8984 end = page_start + reserved_space - 1; 8985 spin_lock(&BTRFS_I(inode)->lock); 8986 BTRFS_I(inode)->outstanding_extents++; 8987 spin_unlock(&BTRFS_I(inode)->lock); 8988 btrfs_delalloc_release_space(inode, page_start, 8989 PAGE_SIZE - reserved_space); 8990 } 8991 } 8992 8993 /* 8994 * XXX - page_mkwrite gets called every time the page is dirtied, even 8995 * if it was already dirty, so for space accounting reasons we need to 8996 * clear any delalloc bits for the range we are fixing to save. There 8997 * is probably a better way to do this, but for now keep consistent with 8998 * prepare_pages in the normal write path. 8999 */ 9000 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9001 EXTENT_DIRTY | EXTENT_DELALLOC | 9002 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9003 0, 0, &cached_state, GFP_NOFS); 9004 9005 ret = btrfs_set_extent_delalloc(inode, page_start, end, 9006 &cached_state); 9007 if (ret) { 9008 unlock_extent_cached(io_tree, page_start, page_end, 9009 &cached_state, GFP_NOFS); 9010 ret = VM_FAULT_SIGBUS; 9011 goto out_unlock; 9012 } 9013 ret = 0; 9014 9015 /* page is wholly or partially inside EOF */ 9016 if (page_start + PAGE_SIZE > size) 9017 zero_start = size & ~PAGE_MASK; 9018 else 9019 zero_start = PAGE_SIZE; 9020 9021 if (zero_start != PAGE_SIZE) { 9022 kaddr = kmap(page); 9023 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9024 flush_dcache_page(page); 9025 kunmap(page); 9026 } 9027 ClearPageChecked(page); 9028 set_page_dirty(page); 9029 SetPageUptodate(page); 9030 9031 BTRFS_I(inode)->last_trans = root->fs_info->generation; 9032 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9033 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9034 9035 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9036 9037 out_unlock: 9038 if (!ret) { 9039 sb_end_pagefault(inode->i_sb); 9040 return VM_FAULT_LOCKED; 9041 } 9042 unlock_page(page); 9043 out: 9044 btrfs_delalloc_release_space(inode, page_start, reserved_space); 9045 out_noreserve: 9046 sb_end_pagefault(inode->i_sb); 9047 return ret; 9048 } 9049 9050 static int btrfs_truncate(struct inode *inode) 9051 { 9052 struct btrfs_root *root = BTRFS_I(inode)->root; 9053 struct btrfs_block_rsv *rsv; 9054 int ret = 0; 9055 int err = 0; 9056 struct btrfs_trans_handle *trans; 9057 u64 mask = root->sectorsize - 1; 9058 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 9059 9060 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9061 (u64)-1); 9062 if (ret) 9063 return ret; 9064 9065 /* 9066 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9067 * 3 things going on here 9068 * 9069 * 1) We need to reserve space for our orphan item and the space to 9070 * delete our orphan item. Lord knows we don't want to have a dangling 9071 * orphan item because we didn't reserve space to remove it. 9072 * 9073 * 2) We need to reserve space to update our inode. 9074 * 9075 * 3) We need to have something to cache all the space that is going to 9076 * be free'd up by the truncate operation, but also have some slack 9077 * space reserved in case it uses space during the truncate (thank you 9078 * very much snapshotting). 9079 * 9080 * And we need these to all be separate. The fact is we can use a lot of 9081 * space doing the truncate, and we have no earthly idea how much space 9082 * we will use, so we need the truncate reservation to be separate so it 9083 * doesn't end up using space reserved for updating the inode or 9084 * removing the orphan item. We also need to be able to stop the 9085 * transaction and start a new one, which means we need to be able to 9086 * update the inode several times, and we have no idea of knowing how 9087 * many times that will be, so we can't just reserve 1 item for the 9088 * entirety of the operation, so that has to be done separately as well. 9089 * Then there is the orphan item, which does indeed need to be held on 9090 * to for the whole operation, and we need nobody to touch this reserved 9091 * space except the orphan code. 9092 * 9093 * So that leaves us with 9094 * 9095 * 1) root->orphan_block_rsv - for the orphan deletion. 9096 * 2) rsv - for the truncate reservation, which we will steal from the 9097 * transaction reservation. 9098 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9099 * updating the inode. 9100 */ 9101 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 9102 if (!rsv) 9103 return -ENOMEM; 9104 rsv->size = min_size; 9105 rsv->failfast = 1; 9106 9107 /* 9108 * 1 for the truncate slack space 9109 * 1 for updating the inode. 9110 */ 9111 trans = btrfs_start_transaction(root, 2); 9112 if (IS_ERR(trans)) { 9113 err = PTR_ERR(trans); 9114 goto out; 9115 } 9116 9117 /* Migrate the slack space for the truncate to our reserve */ 9118 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 9119 min_size, 0); 9120 BUG_ON(ret); 9121 9122 /* 9123 * So if we truncate and then write and fsync we normally would just 9124 * write the extents that changed, which is a problem if we need to 9125 * first truncate that entire inode. So set this flag so we write out 9126 * all of the extents in the inode to the sync log so we're completely 9127 * safe. 9128 */ 9129 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9130 trans->block_rsv = rsv; 9131 9132 while (1) { 9133 ret = btrfs_truncate_inode_items(trans, root, inode, 9134 inode->i_size, 9135 BTRFS_EXTENT_DATA_KEY); 9136 if (ret != -ENOSPC && ret != -EAGAIN) { 9137 err = ret; 9138 break; 9139 } 9140 9141 trans->block_rsv = &root->fs_info->trans_block_rsv; 9142 ret = btrfs_update_inode(trans, root, inode); 9143 if (ret) { 9144 err = ret; 9145 break; 9146 } 9147 9148 btrfs_end_transaction(trans, root); 9149 btrfs_btree_balance_dirty(root); 9150 9151 trans = btrfs_start_transaction(root, 2); 9152 if (IS_ERR(trans)) { 9153 ret = err = PTR_ERR(trans); 9154 trans = NULL; 9155 break; 9156 } 9157 9158 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 9159 rsv, min_size, 0); 9160 BUG_ON(ret); /* shouldn't happen */ 9161 trans->block_rsv = rsv; 9162 } 9163 9164 if (ret == 0 && inode->i_nlink > 0) { 9165 trans->block_rsv = root->orphan_block_rsv; 9166 ret = btrfs_orphan_del(trans, inode); 9167 if (ret) 9168 err = ret; 9169 } 9170 9171 if (trans) { 9172 trans->block_rsv = &root->fs_info->trans_block_rsv; 9173 ret = btrfs_update_inode(trans, root, inode); 9174 if (ret && !err) 9175 err = ret; 9176 9177 ret = btrfs_end_transaction(trans, root); 9178 btrfs_btree_balance_dirty(root); 9179 } 9180 out: 9181 btrfs_free_block_rsv(root, rsv); 9182 9183 if (ret && !err) 9184 err = ret; 9185 9186 return err; 9187 } 9188 9189 /* 9190 * create a new subvolume directory/inode (helper for the ioctl). 9191 */ 9192 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9193 struct btrfs_root *new_root, 9194 struct btrfs_root *parent_root, 9195 u64 new_dirid) 9196 { 9197 struct inode *inode; 9198 int err; 9199 u64 index = 0; 9200 9201 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9202 new_dirid, new_dirid, 9203 S_IFDIR | (~current_umask() & S_IRWXUGO), 9204 &index); 9205 if (IS_ERR(inode)) 9206 return PTR_ERR(inode); 9207 inode->i_op = &btrfs_dir_inode_operations; 9208 inode->i_fop = &btrfs_dir_file_operations; 9209 9210 set_nlink(inode, 1); 9211 btrfs_i_size_write(inode, 0); 9212 unlock_new_inode(inode); 9213 9214 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9215 if (err) 9216 btrfs_err(new_root->fs_info, 9217 "error inheriting subvolume %llu properties: %d", 9218 new_root->root_key.objectid, err); 9219 9220 err = btrfs_update_inode(trans, new_root, inode); 9221 9222 iput(inode); 9223 return err; 9224 } 9225 9226 struct inode *btrfs_alloc_inode(struct super_block *sb) 9227 { 9228 struct btrfs_inode *ei; 9229 struct inode *inode; 9230 9231 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9232 if (!ei) 9233 return NULL; 9234 9235 ei->root = NULL; 9236 ei->generation = 0; 9237 ei->last_trans = 0; 9238 ei->last_sub_trans = 0; 9239 ei->logged_trans = 0; 9240 ei->delalloc_bytes = 0; 9241 ei->defrag_bytes = 0; 9242 ei->disk_i_size = 0; 9243 ei->flags = 0; 9244 ei->csum_bytes = 0; 9245 ei->index_cnt = (u64)-1; 9246 ei->dir_index = 0; 9247 ei->last_unlink_trans = 0; 9248 ei->last_log_commit = 0; 9249 ei->delayed_iput_count = 0; 9250 9251 spin_lock_init(&ei->lock); 9252 ei->outstanding_extents = 0; 9253 ei->reserved_extents = 0; 9254 9255 ei->runtime_flags = 0; 9256 ei->force_compress = BTRFS_COMPRESS_NONE; 9257 9258 ei->delayed_node = NULL; 9259 9260 ei->i_otime.tv_sec = 0; 9261 ei->i_otime.tv_nsec = 0; 9262 9263 inode = &ei->vfs_inode; 9264 extent_map_tree_init(&ei->extent_tree); 9265 extent_io_tree_init(&ei->io_tree, &inode->i_data); 9266 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 9267 ei->io_tree.track_uptodate = 1; 9268 ei->io_failure_tree.track_uptodate = 1; 9269 atomic_set(&ei->sync_writers, 0); 9270 mutex_init(&ei->log_mutex); 9271 mutex_init(&ei->delalloc_mutex); 9272 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9273 INIT_LIST_HEAD(&ei->delalloc_inodes); 9274 INIT_LIST_HEAD(&ei->delayed_iput); 9275 RB_CLEAR_NODE(&ei->rb_node); 9276 init_rwsem(&ei->dio_sem); 9277 9278 return inode; 9279 } 9280 9281 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9282 void btrfs_test_destroy_inode(struct inode *inode) 9283 { 9284 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9285 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9286 } 9287 #endif 9288 9289 static void btrfs_i_callback(struct rcu_head *head) 9290 { 9291 struct inode *inode = container_of(head, struct inode, i_rcu); 9292 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9293 } 9294 9295 void btrfs_destroy_inode(struct inode *inode) 9296 { 9297 struct btrfs_ordered_extent *ordered; 9298 struct btrfs_root *root = BTRFS_I(inode)->root; 9299 9300 WARN_ON(!hlist_empty(&inode->i_dentry)); 9301 WARN_ON(inode->i_data.nrpages); 9302 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9303 WARN_ON(BTRFS_I(inode)->reserved_extents); 9304 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9305 WARN_ON(BTRFS_I(inode)->csum_bytes); 9306 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9307 9308 /* 9309 * This can happen where we create an inode, but somebody else also 9310 * created the same inode and we need to destroy the one we already 9311 * created. 9312 */ 9313 if (!root) 9314 goto free; 9315 9316 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9317 &BTRFS_I(inode)->runtime_flags)) { 9318 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 9319 btrfs_ino(inode)); 9320 atomic_dec(&root->orphan_inodes); 9321 } 9322 9323 while (1) { 9324 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9325 if (!ordered) 9326 break; 9327 else { 9328 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 9329 ordered->file_offset, ordered->len); 9330 btrfs_remove_ordered_extent(inode, ordered); 9331 btrfs_put_ordered_extent(ordered); 9332 btrfs_put_ordered_extent(ordered); 9333 } 9334 } 9335 btrfs_qgroup_check_reserved_leak(inode); 9336 inode_tree_del(inode); 9337 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9338 free: 9339 call_rcu(&inode->i_rcu, btrfs_i_callback); 9340 } 9341 9342 int btrfs_drop_inode(struct inode *inode) 9343 { 9344 struct btrfs_root *root = BTRFS_I(inode)->root; 9345 9346 if (root == NULL) 9347 return 1; 9348 9349 /* the snap/subvol tree is on deleting */ 9350 if (btrfs_root_refs(&root->root_item) == 0) 9351 return 1; 9352 else 9353 return generic_drop_inode(inode); 9354 } 9355 9356 static void init_once(void *foo) 9357 { 9358 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9359 9360 inode_init_once(&ei->vfs_inode); 9361 } 9362 9363 void btrfs_destroy_cachep(void) 9364 { 9365 /* 9366 * Make sure all delayed rcu free inodes are flushed before we 9367 * destroy cache. 9368 */ 9369 rcu_barrier(); 9370 kmem_cache_destroy(btrfs_inode_cachep); 9371 kmem_cache_destroy(btrfs_trans_handle_cachep); 9372 kmem_cache_destroy(btrfs_transaction_cachep); 9373 kmem_cache_destroy(btrfs_path_cachep); 9374 kmem_cache_destroy(btrfs_free_space_cachep); 9375 } 9376 9377 int btrfs_init_cachep(void) 9378 { 9379 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9380 sizeof(struct btrfs_inode), 0, 9381 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9382 init_once); 9383 if (!btrfs_inode_cachep) 9384 goto fail; 9385 9386 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9387 sizeof(struct btrfs_trans_handle), 0, 9388 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9389 if (!btrfs_trans_handle_cachep) 9390 goto fail; 9391 9392 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9393 sizeof(struct btrfs_transaction), 0, 9394 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9395 if (!btrfs_transaction_cachep) 9396 goto fail; 9397 9398 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9399 sizeof(struct btrfs_path), 0, 9400 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9401 if (!btrfs_path_cachep) 9402 goto fail; 9403 9404 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9405 sizeof(struct btrfs_free_space), 0, 9406 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9407 if (!btrfs_free_space_cachep) 9408 goto fail; 9409 9410 return 0; 9411 fail: 9412 btrfs_destroy_cachep(); 9413 return -ENOMEM; 9414 } 9415 9416 static int btrfs_getattr(struct vfsmount *mnt, 9417 struct dentry *dentry, struct kstat *stat) 9418 { 9419 u64 delalloc_bytes; 9420 struct inode *inode = d_inode(dentry); 9421 u32 blocksize = inode->i_sb->s_blocksize; 9422 9423 generic_fillattr(inode, stat); 9424 stat->dev = BTRFS_I(inode)->root->anon_dev; 9425 9426 spin_lock(&BTRFS_I(inode)->lock); 9427 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9428 spin_unlock(&BTRFS_I(inode)->lock); 9429 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9430 ALIGN(delalloc_bytes, blocksize)) >> 9; 9431 return 0; 9432 } 9433 9434 static int btrfs_rename_exchange(struct inode *old_dir, 9435 struct dentry *old_dentry, 9436 struct inode *new_dir, 9437 struct dentry *new_dentry) 9438 { 9439 struct btrfs_trans_handle *trans; 9440 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9441 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9442 struct inode *new_inode = new_dentry->d_inode; 9443 struct inode *old_inode = old_dentry->d_inode; 9444 struct timespec ctime = CURRENT_TIME; 9445 struct dentry *parent; 9446 u64 old_ino = btrfs_ino(old_inode); 9447 u64 new_ino = btrfs_ino(new_inode); 9448 u64 old_idx = 0; 9449 u64 new_idx = 0; 9450 u64 root_objectid; 9451 int ret; 9452 bool root_log_pinned = false; 9453 bool dest_log_pinned = false; 9454 9455 /* we only allow rename subvolume link between subvolumes */ 9456 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9457 return -EXDEV; 9458 9459 /* close the race window with snapshot create/destroy ioctl */ 9460 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9461 down_read(&root->fs_info->subvol_sem); 9462 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9463 down_read(&dest->fs_info->subvol_sem); 9464 9465 /* 9466 * We want to reserve the absolute worst case amount of items. So if 9467 * both inodes are subvols and we need to unlink them then that would 9468 * require 4 item modifications, but if they are both normal inodes it 9469 * would require 5 item modifications, so we'll assume their normal 9470 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9471 * should cover the worst case number of items we'll modify. 9472 */ 9473 trans = btrfs_start_transaction(root, 12); 9474 if (IS_ERR(trans)) { 9475 ret = PTR_ERR(trans); 9476 goto out_notrans; 9477 } 9478 9479 /* 9480 * We need to find a free sequence number both in the source and 9481 * in the destination directory for the exchange. 9482 */ 9483 ret = btrfs_set_inode_index(new_dir, &old_idx); 9484 if (ret) 9485 goto out_fail; 9486 ret = btrfs_set_inode_index(old_dir, &new_idx); 9487 if (ret) 9488 goto out_fail; 9489 9490 BTRFS_I(old_inode)->dir_index = 0ULL; 9491 BTRFS_I(new_inode)->dir_index = 0ULL; 9492 9493 /* Reference for the source. */ 9494 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9495 /* force full log commit if subvolume involved. */ 9496 btrfs_set_log_full_commit(root->fs_info, trans); 9497 } else { 9498 btrfs_pin_log_trans(root); 9499 root_log_pinned = true; 9500 ret = btrfs_insert_inode_ref(trans, dest, 9501 new_dentry->d_name.name, 9502 new_dentry->d_name.len, 9503 old_ino, 9504 btrfs_ino(new_dir), old_idx); 9505 if (ret) 9506 goto out_fail; 9507 } 9508 9509 /* And now for the dest. */ 9510 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9511 /* force full log commit if subvolume involved. */ 9512 btrfs_set_log_full_commit(dest->fs_info, trans); 9513 } else { 9514 btrfs_pin_log_trans(dest); 9515 dest_log_pinned = true; 9516 ret = btrfs_insert_inode_ref(trans, root, 9517 old_dentry->d_name.name, 9518 old_dentry->d_name.len, 9519 new_ino, 9520 btrfs_ino(old_dir), new_idx); 9521 if (ret) 9522 goto out_fail; 9523 } 9524 9525 /* Update inode version and ctime/mtime. */ 9526 inode_inc_iversion(old_dir); 9527 inode_inc_iversion(new_dir); 9528 inode_inc_iversion(old_inode); 9529 inode_inc_iversion(new_inode); 9530 old_dir->i_ctime = old_dir->i_mtime = ctime; 9531 new_dir->i_ctime = new_dir->i_mtime = ctime; 9532 old_inode->i_ctime = ctime; 9533 new_inode->i_ctime = ctime; 9534 9535 if (old_dentry->d_parent != new_dentry->d_parent) { 9536 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9537 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1); 9538 } 9539 9540 /* src is a subvolume */ 9541 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9542 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9543 ret = btrfs_unlink_subvol(trans, root, old_dir, 9544 root_objectid, 9545 old_dentry->d_name.name, 9546 old_dentry->d_name.len); 9547 } else { /* src is an inode */ 9548 ret = __btrfs_unlink_inode(trans, root, old_dir, 9549 old_dentry->d_inode, 9550 old_dentry->d_name.name, 9551 old_dentry->d_name.len); 9552 if (!ret) 9553 ret = btrfs_update_inode(trans, root, old_inode); 9554 } 9555 if (ret) { 9556 btrfs_abort_transaction(trans, root, ret); 9557 goto out_fail; 9558 } 9559 9560 /* dest is a subvolume */ 9561 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9562 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9563 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9564 root_objectid, 9565 new_dentry->d_name.name, 9566 new_dentry->d_name.len); 9567 } else { /* dest is an inode */ 9568 ret = __btrfs_unlink_inode(trans, dest, new_dir, 9569 new_dentry->d_inode, 9570 new_dentry->d_name.name, 9571 new_dentry->d_name.len); 9572 if (!ret) 9573 ret = btrfs_update_inode(trans, dest, new_inode); 9574 } 9575 if (ret) { 9576 btrfs_abort_transaction(trans, root, ret); 9577 goto out_fail; 9578 } 9579 9580 ret = btrfs_add_link(trans, new_dir, old_inode, 9581 new_dentry->d_name.name, 9582 new_dentry->d_name.len, 0, old_idx); 9583 if (ret) { 9584 btrfs_abort_transaction(trans, root, ret); 9585 goto out_fail; 9586 } 9587 9588 ret = btrfs_add_link(trans, old_dir, new_inode, 9589 old_dentry->d_name.name, 9590 old_dentry->d_name.len, 0, new_idx); 9591 if (ret) { 9592 btrfs_abort_transaction(trans, root, ret); 9593 goto out_fail; 9594 } 9595 9596 if (old_inode->i_nlink == 1) 9597 BTRFS_I(old_inode)->dir_index = old_idx; 9598 if (new_inode->i_nlink == 1) 9599 BTRFS_I(new_inode)->dir_index = new_idx; 9600 9601 if (root_log_pinned) { 9602 parent = new_dentry->d_parent; 9603 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9604 btrfs_end_log_trans(root); 9605 root_log_pinned = false; 9606 } 9607 if (dest_log_pinned) { 9608 parent = old_dentry->d_parent; 9609 btrfs_log_new_name(trans, new_inode, new_dir, parent); 9610 btrfs_end_log_trans(dest); 9611 dest_log_pinned = false; 9612 } 9613 out_fail: 9614 /* 9615 * If we have pinned a log and an error happened, we unpin tasks 9616 * trying to sync the log and force them to fallback to a transaction 9617 * commit if the log currently contains any of the inodes involved in 9618 * this rename operation (to ensure we do not persist a log with an 9619 * inconsistent state for any of these inodes or leading to any 9620 * inconsistencies when replayed). If the transaction was aborted, the 9621 * abortion reason is propagated to userspace when attempting to commit 9622 * the transaction. If the log does not contain any of these inodes, we 9623 * allow the tasks to sync it. 9624 */ 9625 if (ret && (root_log_pinned || dest_log_pinned)) { 9626 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9627 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9628 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9629 (new_inode && 9630 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9631 btrfs_set_log_full_commit(root->fs_info, trans); 9632 9633 if (root_log_pinned) { 9634 btrfs_end_log_trans(root); 9635 root_log_pinned = false; 9636 } 9637 if (dest_log_pinned) { 9638 btrfs_end_log_trans(dest); 9639 dest_log_pinned = false; 9640 } 9641 } 9642 ret = btrfs_end_transaction(trans, root); 9643 out_notrans: 9644 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9645 up_read(&dest->fs_info->subvol_sem); 9646 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9647 up_read(&root->fs_info->subvol_sem); 9648 9649 return ret; 9650 } 9651 9652 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9653 struct btrfs_root *root, 9654 struct inode *dir, 9655 struct dentry *dentry) 9656 { 9657 int ret; 9658 struct inode *inode; 9659 u64 objectid; 9660 u64 index; 9661 9662 ret = btrfs_find_free_ino(root, &objectid); 9663 if (ret) 9664 return ret; 9665 9666 inode = btrfs_new_inode(trans, root, dir, 9667 dentry->d_name.name, 9668 dentry->d_name.len, 9669 btrfs_ino(dir), 9670 objectid, 9671 S_IFCHR | WHITEOUT_MODE, 9672 &index); 9673 9674 if (IS_ERR(inode)) { 9675 ret = PTR_ERR(inode); 9676 return ret; 9677 } 9678 9679 inode->i_op = &btrfs_special_inode_operations; 9680 init_special_inode(inode, inode->i_mode, 9681 WHITEOUT_DEV); 9682 9683 ret = btrfs_init_inode_security(trans, inode, dir, 9684 &dentry->d_name); 9685 if (ret) 9686 goto out; 9687 9688 ret = btrfs_add_nondir(trans, dir, dentry, 9689 inode, 0, index); 9690 if (ret) 9691 goto out; 9692 9693 ret = btrfs_update_inode(trans, root, inode); 9694 out: 9695 unlock_new_inode(inode); 9696 if (ret) 9697 inode_dec_link_count(inode); 9698 iput(inode); 9699 9700 return ret; 9701 } 9702 9703 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9704 struct inode *new_dir, struct dentry *new_dentry, 9705 unsigned int flags) 9706 { 9707 struct btrfs_trans_handle *trans; 9708 unsigned int trans_num_items; 9709 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9710 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9711 struct inode *new_inode = d_inode(new_dentry); 9712 struct inode *old_inode = d_inode(old_dentry); 9713 u64 index = 0; 9714 u64 root_objectid; 9715 int ret; 9716 u64 old_ino = btrfs_ino(old_inode); 9717 bool log_pinned = false; 9718 9719 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9720 return -EPERM; 9721 9722 /* we only allow rename subvolume link between subvolumes */ 9723 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9724 return -EXDEV; 9725 9726 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9727 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9728 return -ENOTEMPTY; 9729 9730 if (S_ISDIR(old_inode->i_mode) && new_inode && 9731 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9732 return -ENOTEMPTY; 9733 9734 9735 /* check for collisions, even if the name isn't there */ 9736 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9737 new_dentry->d_name.name, 9738 new_dentry->d_name.len); 9739 9740 if (ret) { 9741 if (ret == -EEXIST) { 9742 /* we shouldn't get 9743 * eexist without a new_inode */ 9744 if (WARN_ON(!new_inode)) { 9745 return ret; 9746 } 9747 } else { 9748 /* maybe -EOVERFLOW */ 9749 return ret; 9750 } 9751 } 9752 ret = 0; 9753 9754 /* 9755 * we're using rename to replace one file with another. Start IO on it 9756 * now so we don't add too much work to the end of the transaction 9757 */ 9758 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9759 filemap_flush(old_inode->i_mapping); 9760 9761 /* close the racy window with snapshot create/destroy ioctl */ 9762 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9763 down_read(&root->fs_info->subvol_sem); 9764 /* 9765 * We want to reserve the absolute worst case amount of items. So if 9766 * both inodes are subvols and we need to unlink them then that would 9767 * require 4 item modifications, but if they are both normal inodes it 9768 * would require 5 item modifications, so we'll assume they are normal 9769 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9770 * should cover the worst case number of items we'll modify. 9771 * If our rename has the whiteout flag, we need more 5 units for the 9772 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9773 * when selinux is enabled). 9774 */ 9775 trans_num_items = 11; 9776 if (flags & RENAME_WHITEOUT) 9777 trans_num_items += 5; 9778 trans = btrfs_start_transaction(root, trans_num_items); 9779 if (IS_ERR(trans)) { 9780 ret = PTR_ERR(trans); 9781 goto out_notrans; 9782 } 9783 9784 if (dest != root) 9785 btrfs_record_root_in_trans(trans, dest); 9786 9787 ret = btrfs_set_inode_index(new_dir, &index); 9788 if (ret) 9789 goto out_fail; 9790 9791 BTRFS_I(old_inode)->dir_index = 0ULL; 9792 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9793 /* force full log commit if subvolume involved. */ 9794 btrfs_set_log_full_commit(root->fs_info, trans); 9795 } else { 9796 btrfs_pin_log_trans(root); 9797 log_pinned = true; 9798 ret = btrfs_insert_inode_ref(trans, dest, 9799 new_dentry->d_name.name, 9800 new_dentry->d_name.len, 9801 old_ino, 9802 btrfs_ino(new_dir), index); 9803 if (ret) 9804 goto out_fail; 9805 } 9806 9807 inode_inc_iversion(old_dir); 9808 inode_inc_iversion(new_dir); 9809 inode_inc_iversion(old_inode); 9810 old_dir->i_ctime = old_dir->i_mtime = 9811 new_dir->i_ctime = new_dir->i_mtime = 9812 old_inode->i_ctime = current_fs_time(old_dir->i_sb); 9813 9814 if (old_dentry->d_parent != new_dentry->d_parent) 9815 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9816 9817 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9818 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9819 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9820 old_dentry->d_name.name, 9821 old_dentry->d_name.len); 9822 } else { 9823 ret = __btrfs_unlink_inode(trans, root, old_dir, 9824 d_inode(old_dentry), 9825 old_dentry->d_name.name, 9826 old_dentry->d_name.len); 9827 if (!ret) 9828 ret = btrfs_update_inode(trans, root, old_inode); 9829 } 9830 if (ret) { 9831 btrfs_abort_transaction(trans, root, ret); 9832 goto out_fail; 9833 } 9834 9835 if (new_inode) { 9836 inode_inc_iversion(new_inode); 9837 new_inode->i_ctime = current_fs_time(new_inode->i_sb); 9838 if (unlikely(btrfs_ino(new_inode) == 9839 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9840 root_objectid = BTRFS_I(new_inode)->location.objectid; 9841 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9842 root_objectid, 9843 new_dentry->d_name.name, 9844 new_dentry->d_name.len); 9845 BUG_ON(new_inode->i_nlink == 0); 9846 } else { 9847 ret = btrfs_unlink_inode(trans, dest, new_dir, 9848 d_inode(new_dentry), 9849 new_dentry->d_name.name, 9850 new_dentry->d_name.len); 9851 } 9852 if (!ret && new_inode->i_nlink == 0) 9853 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9854 if (ret) { 9855 btrfs_abort_transaction(trans, root, ret); 9856 goto out_fail; 9857 } 9858 } 9859 9860 ret = btrfs_add_link(trans, new_dir, old_inode, 9861 new_dentry->d_name.name, 9862 new_dentry->d_name.len, 0, index); 9863 if (ret) { 9864 btrfs_abort_transaction(trans, root, ret); 9865 goto out_fail; 9866 } 9867 9868 if (old_inode->i_nlink == 1) 9869 BTRFS_I(old_inode)->dir_index = index; 9870 9871 if (log_pinned) { 9872 struct dentry *parent = new_dentry->d_parent; 9873 9874 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9875 btrfs_end_log_trans(root); 9876 log_pinned = false; 9877 } 9878 9879 if (flags & RENAME_WHITEOUT) { 9880 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9881 old_dentry); 9882 9883 if (ret) { 9884 btrfs_abort_transaction(trans, root, ret); 9885 goto out_fail; 9886 } 9887 } 9888 out_fail: 9889 /* 9890 * If we have pinned the log and an error happened, we unpin tasks 9891 * trying to sync the log and force them to fallback to a transaction 9892 * commit if the log currently contains any of the inodes involved in 9893 * this rename operation (to ensure we do not persist a log with an 9894 * inconsistent state for any of these inodes or leading to any 9895 * inconsistencies when replayed). If the transaction was aborted, the 9896 * abortion reason is propagated to userspace when attempting to commit 9897 * the transaction. If the log does not contain any of these inodes, we 9898 * allow the tasks to sync it. 9899 */ 9900 if (ret && log_pinned) { 9901 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9902 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9903 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9904 (new_inode && 9905 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9906 btrfs_set_log_full_commit(root->fs_info, trans); 9907 9908 btrfs_end_log_trans(root); 9909 log_pinned = false; 9910 } 9911 btrfs_end_transaction(trans, root); 9912 out_notrans: 9913 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9914 up_read(&root->fs_info->subvol_sem); 9915 9916 return ret; 9917 } 9918 9919 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9920 struct inode *new_dir, struct dentry *new_dentry, 9921 unsigned int flags) 9922 { 9923 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9924 return -EINVAL; 9925 9926 if (flags & RENAME_EXCHANGE) 9927 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9928 new_dentry); 9929 9930 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9931 } 9932 9933 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9934 { 9935 struct btrfs_delalloc_work *delalloc_work; 9936 struct inode *inode; 9937 9938 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9939 work); 9940 inode = delalloc_work->inode; 9941 filemap_flush(inode->i_mapping); 9942 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9943 &BTRFS_I(inode)->runtime_flags)) 9944 filemap_flush(inode->i_mapping); 9945 9946 if (delalloc_work->delay_iput) 9947 btrfs_add_delayed_iput(inode); 9948 else 9949 iput(inode); 9950 complete(&delalloc_work->completion); 9951 } 9952 9953 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9954 int delay_iput) 9955 { 9956 struct btrfs_delalloc_work *work; 9957 9958 work = kmalloc(sizeof(*work), GFP_NOFS); 9959 if (!work) 9960 return NULL; 9961 9962 init_completion(&work->completion); 9963 INIT_LIST_HEAD(&work->list); 9964 work->inode = inode; 9965 work->delay_iput = delay_iput; 9966 WARN_ON_ONCE(!inode); 9967 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9968 btrfs_run_delalloc_work, NULL, NULL); 9969 9970 return work; 9971 } 9972 9973 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9974 { 9975 wait_for_completion(&work->completion); 9976 kfree(work); 9977 } 9978 9979 /* 9980 * some fairly slow code that needs optimization. This walks the list 9981 * of all the inodes with pending delalloc and forces them to disk. 9982 */ 9983 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9984 int nr) 9985 { 9986 struct btrfs_inode *binode; 9987 struct inode *inode; 9988 struct btrfs_delalloc_work *work, *next; 9989 struct list_head works; 9990 struct list_head splice; 9991 int ret = 0; 9992 9993 INIT_LIST_HEAD(&works); 9994 INIT_LIST_HEAD(&splice); 9995 9996 mutex_lock(&root->delalloc_mutex); 9997 spin_lock(&root->delalloc_lock); 9998 list_splice_init(&root->delalloc_inodes, &splice); 9999 while (!list_empty(&splice)) { 10000 binode = list_entry(splice.next, struct btrfs_inode, 10001 delalloc_inodes); 10002 10003 list_move_tail(&binode->delalloc_inodes, 10004 &root->delalloc_inodes); 10005 inode = igrab(&binode->vfs_inode); 10006 if (!inode) { 10007 cond_resched_lock(&root->delalloc_lock); 10008 continue; 10009 } 10010 spin_unlock(&root->delalloc_lock); 10011 10012 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10013 if (!work) { 10014 if (delay_iput) 10015 btrfs_add_delayed_iput(inode); 10016 else 10017 iput(inode); 10018 ret = -ENOMEM; 10019 goto out; 10020 } 10021 list_add_tail(&work->list, &works); 10022 btrfs_queue_work(root->fs_info->flush_workers, 10023 &work->work); 10024 ret++; 10025 if (nr != -1 && ret >= nr) 10026 goto out; 10027 cond_resched(); 10028 spin_lock(&root->delalloc_lock); 10029 } 10030 spin_unlock(&root->delalloc_lock); 10031 10032 out: 10033 list_for_each_entry_safe(work, next, &works, list) { 10034 list_del_init(&work->list); 10035 btrfs_wait_and_free_delalloc_work(work); 10036 } 10037 10038 if (!list_empty_careful(&splice)) { 10039 spin_lock(&root->delalloc_lock); 10040 list_splice_tail(&splice, &root->delalloc_inodes); 10041 spin_unlock(&root->delalloc_lock); 10042 } 10043 mutex_unlock(&root->delalloc_mutex); 10044 return ret; 10045 } 10046 10047 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10048 { 10049 int ret; 10050 10051 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 10052 return -EROFS; 10053 10054 ret = __start_delalloc_inodes(root, delay_iput, -1); 10055 if (ret > 0) 10056 ret = 0; 10057 /* 10058 * the filemap_flush will queue IO into the worker threads, but 10059 * we have to make sure the IO is actually started and that 10060 * ordered extents get created before we return 10061 */ 10062 atomic_inc(&root->fs_info->async_submit_draining); 10063 while (atomic_read(&root->fs_info->nr_async_submits) || 10064 atomic_read(&root->fs_info->async_delalloc_pages)) { 10065 wait_event(root->fs_info->async_submit_wait, 10066 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 10067 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 10068 } 10069 atomic_dec(&root->fs_info->async_submit_draining); 10070 return ret; 10071 } 10072 10073 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10074 int nr) 10075 { 10076 struct btrfs_root *root; 10077 struct list_head splice; 10078 int ret; 10079 10080 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10081 return -EROFS; 10082 10083 INIT_LIST_HEAD(&splice); 10084 10085 mutex_lock(&fs_info->delalloc_root_mutex); 10086 spin_lock(&fs_info->delalloc_root_lock); 10087 list_splice_init(&fs_info->delalloc_roots, &splice); 10088 while (!list_empty(&splice) && nr) { 10089 root = list_first_entry(&splice, struct btrfs_root, 10090 delalloc_root); 10091 root = btrfs_grab_fs_root(root); 10092 BUG_ON(!root); 10093 list_move_tail(&root->delalloc_root, 10094 &fs_info->delalloc_roots); 10095 spin_unlock(&fs_info->delalloc_root_lock); 10096 10097 ret = __start_delalloc_inodes(root, delay_iput, nr); 10098 btrfs_put_fs_root(root); 10099 if (ret < 0) 10100 goto out; 10101 10102 if (nr != -1) { 10103 nr -= ret; 10104 WARN_ON(nr < 0); 10105 } 10106 spin_lock(&fs_info->delalloc_root_lock); 10107 } 10108 spin_unlock(&fs_info->delalloc_root_lock); 10109 10110 ret = 0; 10111 atomic_inc(&fs_info->async_submit_draining); 10112 while (atomic_read(&fs_info->nr_async_submits) || 10113 atomic_read(&fs_info->async_delalloc_pages)) { 10114 wait_event(fs_info->async_submit_wait, 10115 (atomic_read(&fs_info->nr_async_submits) == 0 && 10116 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10117 } 10118 atomic_dec(&fs_info->async_submit_draining); 10119 out: 10120 if (!list_empty_careful(&splice)) { 10121 spin_lock(&fs_info->delalloc_root_lock); 10122 list_splice_tail(&splice, &fs_info->delalloc_roots); 10123 spin_unlock(&fs_info->delalloc_root_lock); 10124 } 10125 mutex_unlock(&fs_info->delalloc_root_mutex); 10126 return ret; 10127 } 10128 10129 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10130 const char *symname) 10131 { 10132 struct btrfs_trans_handle *trans; 10133 struct btrfs_root *root = BTRFS_I(dir)->root; 10134 struct btrfs_path *path; 10135 struct btrfs_key key; 10136 struct inode *inode = NULL; 10137 int err; 10138 int drop_inode = 0; 10139 u64 objectid; 10140 u64 index = 0; 10141 int name_len; 10142 int datasize; 10143 unsigned long ptr; 10144 struct btrfs_file_extent_item *ei; 10145 struct extent_buffer *leaf; 10146 10147 name_len = strlen(symname); 10148 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 10149 return -ENAMETOOLONG; 10150 10151 /* 10152 * 2 items for inode item and ref 10153 * 2 items for dir items 10154 * 1 item for updating parent inode item 10155 * 1 item for the inline extent item 10156 * 1 item for xattr if selinux is on 10157 */ 10158 trans = btrfs_start_transaction(root, 7); 10159 if (IS_ERR(trans)) 10160 return PTR_ERR(trans); 10161 10162 err = btrfs_find_free_ino(root, &objectid); 10163 if (err) 10164 goto out_unlock; 10165 10166 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10167 dentry->d_name.len, btrfs_ino(dir), objectid, 10168 S_IFLNK|S_IRWXUGO, &index); 10169 if (IS_ERR(inode)) { 10170 err = PTR_ERR(inode); 10171 goto out_unlock; 10172 } 10173 10174 /* 10175 * If the active LSM wants to access the inode during 10176 * d_instantiate it needs these. Smack checks to see 10177 * if the filesystem supports xattrs by looking at the 10178 * ops vector. 10179 */ 10180 inode->i_fop = &btrfs_file_operations; 10181 inode->i_op = &btrfs_file_inode_operations; 10182 inode->i_mapping->a_ops = &btrfs_aops; 10183 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10184 10185 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10186 if (err) 10187 goto out_unlock_inode; 10188 10189 path = btrfs_alloc_path(); 10190 if (!path) { 10191 err = -ENOMEM; 10192 goto out_unlock_inode; 10193 } 10194 key.objectid = btrfs_ino(inode); 10195 key.offset = 0; 10196 key.type = BTRFS_EXTENT_DATA_KEY; 10197 datasize = btrfs_file_extent_calc_inline_size(name_len); 10198 err = btrfs_insert_empty_item(trans, root, path, &key, 10199 datasize); 10200 if (err) { 10201 btrfs_free_path(path); 10202 goto out_unlock_inode; 10203 } 10204 leaf = path->nodes[0]; 10205 ei = btrfs_item_ptr(leaf, path->slots[0], 10206 struct btrfs_file_extent_item); 10207 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10208 btrfs_set_file_extent_type(leaf, ei, 10209 BTRFS_FILE_EXTENT_INLINE); 10210 btrfs_set_file_extent_encryption(leaf, ei, 0); 10211 btrfs_set_file_extent_compression(leaf, ei, 0); 10212 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10213 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10214 10215 ptr = btrfs_file_extent_inline_start(ei); 10216 write_extent_buffer(leaf, symname, ptr, name_len); 10217 btrfs_mark_buffer_dirty(leaf); 10218 btrfs_free_path(path); 10219 10220 inode->i_op = &btrfs_symlink_inode_operations; 10221 inode_nohighmem(inode); 10222 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10223 inode_set_bytes(inode, name_len); 10224 btrfs_i_size_write(inode, name_len); 10225 err = btrfs_update_inode(trans, root, inode); 10226 /* 10227 * Last step, add directory indexes for our symlink inode. This is the 10228 * last step to avoid extra cleanup of these indexes if an error happens 10229 * elsewhere above. 10230 */ 10231 if (!err) 10232 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 10233 if (err) { 10234 drop_inode = 1; 10235 goto out_unlock_inode; 10236 } 10237 10238 unlock_new_inode(inode); 10239 d_instantiate(dentry, inode); 10240 10241 out_unlock: 10242 btrfs_end_transaction(trans, root); 10243 if (drop_inode) { 10244 inode_dec_link_count(inode); 10245 iput(inode); 10246 } 10247 btrfs_btree_balance_dirty(root); 10248 return err; 10249 10250 out_unlock_inode: 10251 drop_inode = 1; 10252 unlock_new_inode(inode); 10253 goto out_unlock; 10254 } 10255 10256 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10257 u64 start, u64 num_bytes, u64 min_size, 10258 loff_t actual_len, u64 *alloc_hint, 10259 struct btrfs_trans_handle *trans) 10260 { 10261 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10262 struct extent_map *em; 10263 struct btrfs_root *root = BTRFS_I(inode)->root; 10264 struct btrfs_key ins; 10265 u64 cur_offset = start; 10266 u64 i_size; 10267 u64 cur_bytes; 10268 u64 last_alloc = (u64)-1; 10269 int ret = 0; 10270 bool own_trans = true; 10271 10272 if (trans) 10273 own_trans = false; 10274 while (num_bytes > 0) { 10275 if (own_trans) { 10276 trans = btrfs_start_transaction(root, 3); 10277 if (IS_ERR(trans)) { 10278 ret = PTR_ERR(trans); 10279 break; 10280 } 10281 } 10282 10283 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10284 cur_bytes = max(cur_bytes, min_size); 10285 /* 10286 * If we are severely fragmented we could end up with really 10287 * small allocations, so if the allocator is returning small 10288 * chunks lets make its job easier by only searching for those 10289 * sized chunks. 10290 */ 10291 cur_bytes = min(cur_bytes, last_alloc); 10292 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 10293 *alloc_hint, &ins, 1, 0); 10294 if (ret) { 10295 if (own_trans) 10296 btrfs_end_transaction(trans, root); 10297 break; 10298 } 10299 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 10300 10301 last_alloc = ins.offset; 10302 ret = insert_reserved_file_extent(trans, inode, 10303 cur_offset, ins.objectid, 10304 ins.offset, ins.offset, 10305 ins.offset, 0, 0, 0, 10306 BTRFS_FILE_EXTENT_PREALLOC); 10307 if (ret) { 10308 btrfs_free_reserved_extent(root, ins.objectid, 10309 ins.offset, 0); 10310 btrfs_abort_transaction(trans, root, ret); 10311 if (own_trans) 10312 btrfs_end_transaction(trans, root); 10313 break; 10314 } 10315 10316 btrfs_drop_extent_cache(inode, cur_offset, 10317 cur_offset + ins.offset -1, 0); 10318 10319 em = alloc_extent_map(); 10320 if (!em) { 10321 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10322 &BTRFS_I(inode)->runtime_flags); 10323 goto next; 10324 } 10325 10326 em->start = cur_offset; 10327 em->orig_start = cur_offset; 10328 em->len = ins.offset; 10329 em->block_start = ins.objectid; 10330 em->block_len = ins.offset; 10331 em->orig_block_len = ins.offset; 10332 em->ram_bytes = ins.offset; 10333 em->bdev = root->fs_info->fs_devices->latest_bdev; 10334 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10335 em->generation = trans->transid; 10336 10337 while (1) { 10338 write_lock(&em_tree->lock); 10339 ret = add_extent_mapping(em_tree, em, 1); 10340 write_unlock(&em_tree->lock); 10341 if (ret != -EEXIST) 10342 break; 10343 btrfs_drop_extent_cache(inode, cur_offset, 10344 cur_offset + ins.offset - 1, 10345 0); 10346 } 10347 free_extent_map(em); 10348 next: 10349 num_bytes -= ins.offset; 10350 cur_offset += ins.offset; 10351 *alloc_hint = ins.objectid + ins.offset; 10352 10353 inode_inc_iversion(inode); 10354 inode->i_ctime = current_fs_time(inode->i_sb); 10355 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10356 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10357 (actual_len > inode->i_size) && 10358 (cur_offset > inode->i_size)) { 10359 if (cur_offset > actual_len) 10360 i_size = actual_len; 10361 else 10362 i_size = cur_offset; 10363 i_size_write(inode, i_size); 10364 btrfs_ordered_update_i_size(inode, i_size, NULL); 10365 } 10366 10367 ret = btrfs_update_inode(trans, root, inode); 10368 10369 if (ret) { 10370 btrfs_abort_transaction(trans, root, ret); 10371 if (own_trans) 10372 btrfs_end_transaction(trans, root); 10373 break; 10374 } 10375 10376 if (own_trans) 10377 btrfs_end_transaction(trans, root); 10378 } 10379 return ret; 10380 } 10381 10382 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10383 u64 start, u64 num_bytes, u64 min_size, 10384 loff_t actual_len, u64 *alloc_hint) 10385 { 10386 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10387 min_size, actual_len, alloc_hint, 10388 NULL); 10389 } 10390 10391 int btrfs_prealloc_file_range_trans(struct inode *inode, 10392 struct btrfs_trans_handle *trans, int mode, 10393 u64 start, u64 num_bytes, u64 min_size, 10394 loff_t actual_len, u64 *alloc_hint) 10395 { 10396 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10397 min_size, actual_len, alloc_hint, trans); 10398 } 10399 10400 static int btrfs_set_page_dirty(struct page *page) 10401 { 10402 return __set_page_dirty_nobuffers(page); 10403 } 10404 10405 static int btrfs_permission(struct inode *inode, int mask) 10406 { 10407 struct btrfs_root *root = BTRFS_I(inode)->root; 10408 umode_t mode = inode->i_mode; 10409 10410 if (mask & MAY_WRITE && 10411 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10412 if (btrfs_root_readonly(root)) 10413 return -EROFS; 10414 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10415 return -EACCES; 10416 } 10417 return generic_permission(inode, mask); 10418 } 10419 10420 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10421 { 10422 struct btrfs_trans_handle *trans; 10423 struct btrfs_root *root = BTRFS_I(dir)->root; 10424 struct inode *inode = NULL; 10425 u64 objectid; 10426 u64 index; 10427 int ret = 0; 10428 10429 /* 10430 * 5 units required for adding orphan entry 10431 */ 10432 trans = btrfs_start_transaction(root, 5); 10433 if (IS_ERR(trans)) 10434 return PTR_ERR(trans); 10435 10436 ret = btrfs_find_free_ino(root, &objectid); 10437 if (ret) 10438 goto out; 10439 10440 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10441 btrfs_ino(dir), objectid, mode, &index); 10442 if (IS_ERR(inode)) { 10443 ret = PTR_ERR(inode); 10444 inode = NULL; 10445 goto out; 10446 } 10447 10448 inode->i_fop = &btrfs_file_operations; 10449 inode->i_op = &btrfs_file_inode_operations; 10450 10451 inode->i_mapping->a_ops = &btrfs_aops; 10452 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10453 10454 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10455 if (ret) 10456 goto out_inode; 10457 10458 ret = btrfs_update_inode(trans, root, inode); 10459 if (ret) 10460 goto out_inode; 10461 ret = btrfs_orphan_add(trans, inode); 10462 if (ret) 10463 goto out_inode; 10464 10465 /* 10466 * We set number of links to 0 in btrfs_new_inode(), and here we set 10467 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10468 * through: 10469 * 10470 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10471 */ 10472 set_nlink(inode, 1); 10473 unlock_new_inode(inode); 10474 d_tmpfile(dentry, inode); 10475 mark_inode_dirty(inode); 10476 10477 out: 10478 btrfs_end_transaction(trans, root); 10479 if (ret) 10480 iput(inode); 10481 btrfs_balance_delayed_items(root); 10482 btrfs_btree_balance_dirty(root); 10483 return ret; 10484 10485 out_inode: 10486 unlock_new_inode(inode); 10487 goto out; 10488 10489 } 10490 10491 /* Inspired by filemap_check_errors() */ 10492 int btrfs_inode_check_errors(struct inode *inode) 10493 { 10494 int ret = 0; 10495 10496 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 10497 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 10498 ret = -ENOSPC; 10499 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 10500 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 10501 ret = -EIO; 10502 10503 return ret; 10504 } 10505 10506 static const struct inode_operations btrfs_dir_inode_operations = { 10507 .getattr = btrfs_getattr, 10508 .lookup = btrfs_lookup, 10509 .create = btrfs_create, 10510 .unlink = btrfs_unlink, 10511 .link = btrfs_link, 10512 .mkdir = btrfs_mkdir, 10513 .rmdir = btrfs_rmdir, 10514 .rename2 = btrfs_rename2, 10515 .symlink = btrfs_symlink, 10516 .setattr = btrfs_setattr, 10517 .mknod = btrfs_mknod, 10518 .setxattr = generic_setxattr, 10519 .getxattr = generic_getxattr, 10520 .listxattr = btrfs_listxattr, 10521 .removexattr = generic_removexattr, 10522 .permission = btrfs_permission, 10523 .get_acl = btrfs_get_acl, 10524 .set_acl = btrfs_set_acl, 10525 .update_time = btrfs_update_time, 10526 .tmpfile = btrfs_tmpfile, 10527 }; 10528 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10529 .lookup = btrfs_lookup, 10530 .permission = btrfs_permission, 10531 .get_acl = btrfs_get_acl, 10532 .set_acl = btrfs_set_acl, 10533 .update_time = btrfs_update_time, 10534 }; 10535 10536 static const struct file_operations btrfs_dir_file_operations = { 10537 .llseek = generic_file_llseek, 10538 .read = generic_read_dir, 10539 .iterate_shared = btrfs_real_readdir, 10540 .unlocked_ioctl = btrfs_ioctl, 10541 #ifdef CONFIG_COMPAT 10542 .compat_ioctl = btrfs_compat_ioctl, 10543 #endif 10544 .release = btrfs_release_file, 10545 .fsync = btrfs_sync_file, 10546 }; 10547 10548 static const struct extent_io_ops btrfs_extent_io_ops = { 10549 .fill_delalloc = run_delalloc_range, 10550 .submit_bio_hook = btrfs_submit_bio_hook, 10551 .merge_bio_hook = btrfs_merge_bio_hook, 10552 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10553 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10554 .writepage_start_hook = btrfs_writepage_start_hook, 10555 .set_bit_hook = btrfs_set_bit_hook, 10556 .clear_bit_hook = btrfs_clear_bit_hook, 10557 .merge_extent_hook = btrfs_merge_extent_hook, 10558 .split_extent_hook = btrfs_split_extent_hook, 10559 }; 10560 10561 /* 10562 * btrfs doesn't support the bmap operation because swapfiles 10563 * use bmap to make a mapping of extents in the file. They assume 10564 * these extents won't change over the life of the file and they 10565 * use the bmap result to do IO directly to the drive. 10566 * 10567 * the btrfs bmap call would return logical addresses that aren't 10568 * suitable for IO and they also will change frequently as COW 10569 * operations happen. So, swapfile + btrfs == corruption. 10570 * 10571 * For now we're avoiding this by dropping bmap. 10572 */ 10573 static const struct address_space_operations btrfs_aops = { 10574 .readpage = btrfs_readpage, 10575 .writepage = btrfs_writepage, 10576 .writepages = btrfs_writepages, 10577 .readpages = btrfs_readpages, 10578 .direct_IO = btrfs_direct_IO, 10579 .invalidatepage = btrfs_invalidatepage, 10580 .releasepage = btrfs_releasepage, 10581 .set_page_dirty = btrfs_set_page_dirty, 10582 .error_remove_page = generic_error_remove_page, 10583 }; 10584 10585 static const struct address_space_operations btrfs_symlink_aops = { 10586 .readpage = btrfs_readpage, 10587 .writepage = btrfs_writepage, 10588 .invalidatepage = btrfs_invalidatepage, 10589 .releasepage = btrfs_releasepage, 10590 }; 10591 10592 static const struct inode_operations btrfs_file_inode_operations = { 10593 .getattr = btrfs_getattr, 10594 .setattr = btrfs_setattr, 10595 .setxattr = generic_setxattr, 10596 .getxattr = generic_getxattr, 10597 .listxattr = btrfs_listxattr, 10598 .removexattr = generic_removexattr, 10599 .permission = btrfs_permission, 10600 .fiemap = btrfs_fiemap, 10601 .get_acl = btrfs_get_acl, 10602 .set_acl = btrfs_set_acl, 10603 .update_time = btrfs_update_time, 10604 }; 10605 static const struct inode_operations btrfs_special_inode_operations = { 10606 .getattr = btrfs_getattr, 10607 .setattr = btrfs_setattr, 10608 .permission = btrfs_permission, 10609 .setxattr = generic_setxattr, 10610 .getxattr = generic_getxattr, 10611 .listxattr = btrfs_listxattr, 10612 .removexattr = generic_removexattr, 10613 .get_acl = btrfs_get_acl, 10614 .set_acl = btrfs_set_acl, 10615 .update_time = btrfs_update_time, 10616 }; 10617 static const struct inode_operations btrfs_symlink_inode_operations = { 10618 .readlink = generic_readlink, 10619 .get_link = page_get_link, 10620 .getattr = btrfs_getattr, 10621 .setattr = btrfs_setattr, 10622 .permission = btrfs_permission, 10623 .setxattr = generic_setxattr, 10624 .getxattr = generic_getxattr, 10625 .listxattr = btrfs_listxattr, 10626 .removexattr = generic_removexattr, 10627 .update_time = btrfs_update_time, 10628 }; 10629 10630 const struct dentry_operations btrfs_dentry_operations = { 10631 .d_delete = btrfs_dentry_delete, 10632 .d_release = btrfs_dentry_release, 10633 }; 10634