xref: /openbmc/linux/fs/btrfs/inode.c (revision 750afb08)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <asm/unaligned.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "ordered-data.h"
38 #include "xattr.h"
39 #include "tree-log.h"
40 #include "volumes.h"
41 #include "compression.h"
42 #include "locking.h"
43 #include "free-space-cache.h"
44 #include "inode-map.h"
45 #include "backref.h"
46 #include "props.h"
47 #include "qgroup.h"
48 #include "dedupe.h"
49 
50 struct btrfs_iget_args {
51 	struct btrfs_key *location;
52 	struct btrfs_root *root;
53 };
54 
55 struct btrfs_dio_data {
56 	u64 reserve;
57 	u64 unsubmitted_oe_range_start;
58 	u64 unsubmitted_oe_range_end;
59 	int overwrite;
60 };
61 
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct file_operations btrfs_dir_file_operations;
69 static const struct extent_io_ops btrfs_extent_io_ops;
70 
71 static struct kmem_cache *btrfs_inode_cachep;
72 struct kmem_cache *btrfs_trans_handle_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75 
76 #define S_SHIFT 12
77 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
79 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
80 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
81 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
82 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
83 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
84 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
85 };
86 
87 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
88 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
90 static noinline int cow_file_range(struct inode *inode,
91 				   struct page *locked_page,
92 				   u64 start, u64 end, u64 delalloc_end,
93 				   int *page_started, unsigned long *nr_written,
94 				   int unlock, struct btrfs_dedupe_hash *hash);
95 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
96 				       u64 orig_start, u64 block_start,
97 				       u64 block_len, u64 orig_block_len,
98 				       u64 ram_bytes, int compress_type,
99 				       int type);
100 
101 static void __endio_write_update_ordered(struct inode *inode,
102 					 const u64 offset, const u64 bytes,
103 					 const bool uptodate);
104 
105 /*
106  * Cleanup all submitted ordered extents in specified range to handle errors
107  * from the btrfs_run_delalloc_range() callback.
108  *
109  * NOTE: caller must ensure that when an error happens, it can not call
110  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112  * to be released, which we want to happen only when finishing the ordered
113  * extent (btrfs_finish_ordered_io()).
114  */
115 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
116 						 struct page *locked_page,
117 						 u64 offset, u64 bytes)
118 {
119 	unsigned long index = offset >> PAGE_SHIFT;
120 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
121 	u64 page_start = page_offset(locked_page);
122 	u64 page_end = page_start + PAGE_SIZE - 1;
123 
124 	struct page *page;
125 
126 	while (index <= end_index) {
127 		page = find_get_page(inode->i_mapping, index);
128 		index++;
129 		if (!page)
130 			continue;
131 		ClearPagePrivate2(page);
132 		put_page(page);
133 	}
134 
135 	/*
136 	 * In case this page belongs to the delalloc range being instantiated
137 	 * then skip it, since the first page of a range is going to be
138 	 * properly cleaned up by the caller of run_delalloc_range
139 	 */
140 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
141 		offset += PAGE_SIZE;
142 		bytes -= PAGE_SIZE;
143 	}
144 
145 	return __endio_write_update_ordered(inode, offset, bytes, false);
146 }
147 
148 static int btrfs_dirty_inode(struct inode *inode);
149 
150 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
151 void btrfs_test_inode_set_ops(struct inode *inode)
152 {
153 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
154 }
155 #endif
156 
157 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
158 				     struct inode *inode,  struct inode *dir,
159 				     const struct qstr *qstr)
160 {
161 	int err;
162 
163 	err = btrfs_init_acl(trans, inode, dir);
164 	if (!err)
165 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
166 	return err;
167 }
168 
169 /*
170  * this does all the hard work for inserting an inline extent into
171  * the btree.  The caller should have done a btrfs_drop_extents so that
172  * no overlapping inline items exist in the btree
173  */
174 static int insert_inline_extent(struct btrfs_trans_handle *trans,
175 				struct btrfs_path *path, int extent_inserted,
176 				struct btrfs_root *root, struct inode *inode,
177 				u64 start, size_t size, size_t compressed_size,
178 				int compress_type,
179 				struct page **compressed_pages)
180 {
181 	struct extent_buffer *leaf;
182 	struct page *page = NULL;
183 	char *kaddr;
184 	unsigned long ptr;
185 	struct btrfs_file_extent_item *ei;
186 	int ret;
187 	size_t cur_size = size;
188 	unsigned long offset;
189 
190 	if (compressed_size && compressed_pages)
191 		cur_size = compressed_size;
192 
193 	inode_add_bytes(inode, size);
194 
195 	if (!extent_inserted) {
196 		struct btrfs_key key;
197 		size_t datasize;
198 
199 		key.objectid = btrfs_ino(BTRFS_I(inode));
200 		key.offset = start;
201 		key.type = BTRFS_EXTENT_DATA_KEY;
202 
203 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
204 		path->leave_spinning = 1;
205 		ret = btrfs_insert_empty_item(trans, root, path, &key,
206 					      datasize);
207 		if (ret)
208 			goto fail;
209 	}
210 	leaf = path->nodes[0];
211 	ei = btrfs_item_ptr(leaf, path->slots[0],
212 			    struct btrfs_file_extent_item);
213 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
214 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
215 	btrfs_set_file_extent_encryption(leaf, ei, 0);
216 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
217 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
218 	ptr = btrfs_file_extent_inline_start(ei);
219 
220 	if (compress_type != BTRFS_COMPRESS_NONE) {
221 		struct page *cpage;
222 		int i = 0;
223 		while (compressed_size > 0) {
224 			cpage = compressed_pages[i];
225 			cur_size = min_t(unsigned long, compressed_size,
226 				       PAGE_SIZE);
227 
228 			kaddr = kmap_atomic(cpage);
229 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
230 			kunmap_atomic(kaddr);
231 
232 			i++;
233 			ptr += cur_size;
234 			compressed_size -= cur_size;
235 		}
236 		btrfs_set_file_extent_compression(leaf, ei,
237 						  compress_type);
238 	} else {
239 		page = find_get_page(inode->i_mapping,
240 				     start >> PAGE_SHIFT);
241 		btrfs_set_file_extent_compression(leaf, ei, 0);
242 		kaddr = kmap_atomic(page);
243 		offset = offset_in_page(start);
244 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
245 		kunmap_atomic(kaddr);
246 		put_page(page);
247 	}
248 	btrfs_mark_buffer_dirty(leaf);
249 	btrfs_release_path(path);
250 
251 	/*
252 	 * we're an inline extent, so nobody can
253 	 * extend the file past i_size without locking
254 	 * a page we already have locked.
255 	 *
256 	 * We must do any isize and inode updates
257 	 * before we unlock the pages.  Otherwise we
258 	 * could end up racing with unlink.
259 	 */
260 	BTRFS_I(inode)->disk_i_size = inode->i_size;
261 	ret = btrfs_update_inode(trans, root, inode);
262 
263 fail:
264 	return ret;
265 }
266 
267 
268 /*
269  * conditionally insert an inline extent into the file.  This
270  * does the checks required to make sure the data is small enough
271  * to fit as an inline extent.
272  */
273 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
274 					  u64 end, size_t compressed_size,
275 					  int compress_type,
276 					  struct page **compressed_pages)
277 {
278 	struct btrfs_root *root = BTRFS_I(inode)->root;
279 	struct btrfs_fs_info *fs_info = root->fs_info;
280 	struct btrfs_trans_handle *trans;
281 	u64 isize = i_size_read(inode);
282 	u64 actual_end = min(end + 1, isize);
283 	u64 inline_len = actual_end - start;
284 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
285 	u64 data_len = inline_len;
286 	int ret;
287 	struct btrfs_path *path;
288 	int extent_inserted = 0;
289 	u32 extent_item_size;
290 
291 	if (compressed_size)
292 		data_len = compressed_size;
293 
294 	if (start > 0 ||
295 	    actual_end > fs_info->sectorsize ||
296 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
297 	    (!compressed_size &&
298 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
299 	    end + 1 < isize ||
300 	    data_len > fs_info->max_inline) {
301 		return 1;
302 	}
303 
304 	path = btrfs_alloc_path();
305 	if (!path)
306 		return -ENOMEM;
307 
308 	trans = btrfs_join_transaction(root);
309 	if (IS_ERR(trans)) {
310 		btrfs_free_path(path);
311 		return PTR_ERR(trans);
312 	}
313 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
314 
315 	if (compressed_size && compressed_pages)
316 		extent_item_size = btrfs_file_extent_calc_inline_size(
317 		   compressed_size);
318 	else
319 		extent_item_size = btrfs_file_extent_calc_inline_size(
320 		    inline_len);
321 
322 	ret = __btrfs_drop_extents(trans, root, inode, path,
323 				   start, aligned_end, NULL,
324 				   1, 1, extent_item_size, &extent_inserted);
325 	if (ret) {
326 		btrfs_abort_transaction(trans, ret);
327 		goto out;
328 	}
329 
330 	if (isize > actual_end)
331 		inline_len = min_t(u64, isize, actual_end);
332 	ret = insert_inline_extent(trans, path, extent_inserted,
333 				   root, inode, start,
334 				   inline_len, compressed_size,
335 				   compress_type, compressed_pages);
336 	if (ret && ret != -ENOSPC) {
337 		btrfs_abort_transaction(trans, ret);
338 		goto out;
339 	} else if (ret == -ENOSPC) {
340 		ret = 1;
341 		goto out;
342 	}
343 
344 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
345 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
346 out:
347 	/*
348 	 * Don't forget to free the reserved space, as for inlined extent
349 	 * it won't count as data extent, free them directly here.
350 	 * And at reserve time, it's always aligned to page size, so
351 	 * just free one page here.
352 	 */
353 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
354 	btrfs_free_path(path);
355 	btrfs_end_transaction(trans);
356 	return ret;
357 }
358 
359 struct async_extent {
360 	u64 start;
361 	u64 ram_size;
362 	u64 compressed_size;
363 	struct page **pages;
364 	unsigned long nr_pages;
365 	int compress_type;
366 	struct list_head list;
367 };
368 
369 struct async_cow {
370 	struct inode *inode;
371 	struct btrfs_fs_info *fs_info;
372 	struct page *locked_page;
373 	u64 start;
374 	u64 end;
375 	unsigned int write_flags;
376 	struct list_head extents;
377 	struct btrfs_work work;
378 };
379 
380 static noinline int add_async_extent(struct async_cow *cow,
381 				     u64 start, u64 ram_size,
382 				     u64 compressed_size,
383 				     struct page **pages,
384 				     unsigned long nr_pages,
385 				     int compress_type)
386 {
387 	struct async_extent *async_extent;
388 
389 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
390 	BUG_ON(!async_extent); /* -ENOMEM */
391 	async_extent->start = start;
392 	async_extent->ram_size = ram_size;
393 	async_extent->compressed_size = compressed_size;
394 	async_extent->pages = pages;
395 	async_extent->nr_pages = nr_pages;
396 	async_extent->compress_type = compress_type;
397 	list_add_tail(&async_extent->list, &cow->extents);
398 	return 0;
399 }
400 
401 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
402 {
403 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
404 
405 	/* force compress */
406 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
407 		return 1;
408 	/* defrag ioctl */
409 	if (BTRFS_I(inode)->defrag_compress)
410 		return 1;
411 	/* bad compression ratios */
412 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
413 		return 0;
414 	if (btrfs_test_opt(fs_info, COMPRESS) ||
415 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
416 	    BTRFS_I(inode)->prop_compress)
417 		return btrfs_compress_heuristic(inode, start, end);
418 	return 0;
419 }
420 
421 static inline void inode_should_defrag(struct btrfs_inode *inode,
422 		u64 start, u64 end, u64 num_bytes, u64 small_write)
423 {
424 	/* If this is a small write inside eof, kick off a defrag */
425 	if (num_bytes < small_write &&
426 	    (start > 0 || end + 1 < inode->disk_i_size))
427 		btrfs_add_inode_defrag(NULL, inode);
428 }
429 
430 /*
431  * we create compressed extents in two phases.  The first
432  * phase compresses a range of pages that have already been
433  * locked (both pages and state bits are locked).
434  *
435  * This is done inside an ordered work queue, and the compression
436  * is spread across many cpus.  The actual IO submission is step
437  * two, and the ordered work queue takes care of making sure that
438  * happens in the same order things were put onto the queue by
439  * writepages and friends.
440  *
441  * If this code finds it can't get good compression, it puts an
442  * entry onto the work queue to write the uncompressed bytes.  This
443  * makes sure that both compressed inodes and uncompressed inodes
444  * are written in the same order that the flusher thread sent them
445  * down.
446  */
447 static noinline void compress_file_range(struct inode *inode,
448 					struct page *locked_page,
449 					u64 start, u64 end,
450 					struct async_cow *async_cow,
451 					int *num_added)
452 {
453 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
454 	u64 blocksize = fs_info->sectorsize;
455 	u64 actual_end;
456 	u64 isize = i_size_read(inode);
457 	int ret = 0;
458 	struct page **pages = NULL;
459 	unsigned long nr_pages;
460 	unsigned long total_compressed = 0;
461 	unsigned long total_in = 0;
462 	int i;
463 	int will_compress;
464 	int compress_type = fs_info->compress_type;
465 	int redirty = 0;
466 
467 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
468 			SZ_16K);
469 
470 	actual_end = min_t(u64, isize, end + 1);
471 again:
472 	will_compress = 0;
473 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
474 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
475 	nr_pages = min_t(unsigned long, nr_pages,
476 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
477 
478 	/*
479 	 * we don't want to send crud past the end of i_size through
480 	 * compression, that's just a waste of CPU time.  So, if the
481 	 * end of the file is before the start of our current
482 	 * requested range of bytes, we bail out to the uncompressed
483 	 * cleanup code that can deal with all of this.
484 	 *
485 	 * It isn't really the fastest way to fix things, but this is a
486 	 * very uncommon corner.
487 	 */
488 	if (actual_end <= start)
489 		goto cleanup_and_bail_uncompressed;
490 
491 	total_compressed = actual_end - start;
492 
493 	/*
494 	 * skip compression for a small file range(<=blocksize) that
495 	 * isn't an inline extent, since it doesn't save disk space at all.
496 	 */
497 	if (total_compressed <= blocksize &&
498 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
499 		goto cleanup_and_bail_uncompressed;
500 
501 	total_compressed = min_t(unsigned long, total_compressed,
502 			BTRFS_MAX_UNCOMPRESSED);
503 	total_in = 0;
504 	ret = 0;
505 
506 	/*
507 	 * we do compression for mount -o compress and when the
508 	 * inode has not been flagged as nocompress.  This flag can
509 	 * change at any time if we discover bad compression ratios.
510 	 */
511 	if (inode_need_compress(inode, start, end)) {
512 		WARN_ON(pages);
513 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
514 		if (!pages) {
515 			/* just bail out to the uncompressed code */
516 			nr_pages = 0;
517 			goto cont;
518 		}
519 
520 		if (BTRFS_I(inode)->defrag_compress)
521 			compress_type = BTRFS_I(inode)->defrag_compress;
522 		else if (BTRFS_I(inode)->prop_compress)
523 			compress_type = BTRFS_I(inode)->prop_compress;
524 
525 		/*
526 		 * we need to call clear_page_dirty_for_io on each
527 		 * page in the range.  Otherwise applications with the file
528 		 * mmap'd can wander in and change the page contents while
529 		 * we are compressing them.
530 		 *
531 		 * If the compression fails for any reason, we set the pages
532 		 * dirty again later on.
533 		 *
534 		 * Note that the remaining part is redirtied, the start pointer
535 		 * has moved, the end is the original one.
536 		 */
537 		if (!redirty) {
538 			extent_range_clear_dirty_for_io(inode, start, end);
539 			redirty = 1;
540 		}
541 
542 		/* Compression level is applied here and only here */
543 		ret = btrfs_compress_pages(
544 			compress_type | (fs_info->compress_level << 4),
545 					   inode->i_mapping, start,
546 					   pages,
547 					   &nr_pages,
548 					   &total_in,
549 					   &total_compressed);
550 
551 		if (!ret) {
552 			unsigned long offset = offset_in_page(total_compressed);
553 			struct page *page = pages[nr_pages - 1];
554 			char *kaddr;
555 
556 			/* zero the tail end of the last page, we might be
557 			 * sending it down to disk
558 			 */
559 			if (offset) {
560 				kaddr = kmap_atomic(page);
561 				memset(kaddr + offset, 0,
562 				       PAGE_SIZE - offset);
563 				kunmap_atomic(kaddr);
564 			}
565 			will_compress = 1;
566 		}
567 	}
568 cont:
569 	if (start == 0) {
570 		/* lets try to make an inline extent */
571 		if (ret || total_in < actual_end) {
572 			/* we didn't compress the entire range, try
573 			 * to make an uncompressed inline extent.
574 			 */
575 			ret = cow_file_range_inline(inode, start, end, 0,
576 						    BTRFS_COMPRESS_NONE, NULL);
577 		} else {
578 			/* try making a compressed inline extent */
579 			ret = cow_file_range_inline(inode, start, end,
580 						    total_compressed,
581 						    compress_type, pages);
582 		}
583 		if (ret <= 0) {
584 			unsigned long clear_flags = EXTENT_DELALLOC |
585 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
586 				EXTENT_DO_ACCOUNTING;
587 			unsigned long page_error_op;
588 
589 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
590 
591 			/*
592 			 * inline extent creation worked or returned error,
593 			 * we don't need to create any more async work items.
594 			 * Unlock and free up our temp pages.
595 			 *
596 			 * We use DO_ACCOUNTING here because we need the
597 			 * delalloc_release_metadata to be done _after_ we drop
598 			 * our outstanding extent for clearing delalloc for this
599 			 * range.
600 			 */
601 			extent_clear_unlock_delalloc(inode, start, end, end,
602 						     NULL, clear_flags,
603 						     PAGE_UNLOCK |
604 						     PAGE_CLEAR_DIRTY |
605 						     PAGE_SET_WRITEBACK |
606 						     page_error_op |
607 						     PAGE_END_WRITEBACK);
608 			goto free_pages_out;
609 		}
610 	}
611 
612 	if (will_compress) {
613 		/*
614 		 * we aren't doing an inline extent round the compressed size
615 		 * up to a block size boundary so the allocator does sane
616 		 * things
617 		 */
618 		total_compressed = ALIGN(total_compressed, blocksize);
619 
620 		/*
621 		 * one last check to make sure the compression is really a
622 		 * win, compare the page count read with the blocks on disk,
623 		 * compression must free at least one sector size
624 		 */
625 		total_in = ALIGN(total_in, PAGE_SIZE);
626 		if (total_compressed + blocksize <= total_in) {
627 			*num_added += 1;
628 
629 			/*
630 			 * The async work queues will take care of doing actual
631 			 * allocation on disk for these compressed pages, and
632 			 * will submit them to the elevator.
633 			 */
634 			add_async_extent(async_cow, start, total_in,
635 					total_compressed, pages, nr_pages,
636 					compress_type);
637 
638 			if (start + total_in < end) {
639 				start += total_in;
640 				pages = NULL;
641 				cond_resched();
642 				goto again;
643 			}
644 			return;
645 		}
646 	}
647 	if (pages) {
648 		/*
649 		 * the compression code ran but failed to make things smaller,
650 		 * free any pages it allocated and our page pointer array
651 		 */
652 		for (i = 0; i < nr_pages; i++) {
653 			WARN_ON(pages[i]->mapping);
654 			put_page(pages[i]);
655 		}
656 		kfree(pages);
657 		pages = NULL;
658 		total_compressed = 0;
659 		nr_pages = 0;
660 
661 		/* flag the file so we don't compress in the future */
662 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
663 		    !(BTRFS_I(inode)->prop_compress)) {
664 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
665 		}
666 	}
667 cleanup_and_bail_uncompressed:
668 	/*
669 	 * No compression, but we still need to write the pages in the file
670 	 * we've been given so far.  redirty the locked page if it corresponds
671 	 * to our extent and set things up for the async work queue to run
672 	 * cow_file_range to do the normal delalloc dance.
673 	 */
674 	if (page_offset(locked_page) >= start &&
675 	    page_offset(locked_page) <= end)
676 		__set_page_dirty_nobuffers(locked_page);
677 		/* unlocked later on in the async handlers */
678 
679 	if (redirty)
680 		extent_range_redirty_for_io(inode, start, end);
681 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
682 			 BTRFS_COMPRESS_NONE);
683 	*num_added += 1;
684 
685 	return;
686 
687 free_pages_out:
688 	for (i = 0; i < nr_pages; i++) {
689 		WARN_ON(pages[i]->mapping);
690 		put_page(pages[i]);
691 	}
692 	kfree(pages);
693 }
694 
695 static void free_async_extent_pages(struct async_extent *async_extent)
696 {
697 	int i;
698 
699 	if (!async_extent->pages)
700 		return;
701 
702 	for (i = 0; i < async_extent->nr_pages; i++) {
703 		WARN_ON(async_extent->pages[i]->mapping);
704 		put_page(async_extent->pages[i]);
705 	}
706 	kfree(async_extent->pages);
707 	async_extent->nr_pages = 0;
708 	async_extent->pages = NULL;
709 }
710 
711 /*
712  * phase two of compressed writeback.  This is the ordered portion
713  * of the code, which only gets called in the order the work was
714  * queued.  We walk all the async extents created by compress_file_range
715  * and send them down to the disk.
716  */
717 static noinline void submit_compressed_extents(struct inode *inode,
718 					      struct async_cow *async_cow)
719 {
720 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
721 	struct async_extent *async_extent;
722 	u64 alloc_hint = 0;
723 	struct btrfs_key ins;
724 	struct extent_map *em;
725 	struct btrfs_root *root = BTRFS_I(inode)->root;
726 	struct extent_io_tree *io_tree;
727 	int ret = 0;
728 
729 again:
730 	while (!list_empty(&async_cow->extents)) {
731 		async_extent = list_entry(async_cow->extents.next,
732 					  struct async_extent, list);
733 		list_del(&async_extent->list);
734 
735 		io_tree = &BTRFS_I(inode)->io_tree;
736 
737 retry:
738 		/* did the compression code fall back to uncompressed IO? */
739 		if (!async_extent->pages) {
740 			int page_started = 0;
741 			unsigned long nr_written = 0;
742 
743 			lock_extent(io_tree, async_extent->start,
744 					 async_extent->start +
745 					 async_extent->ram_size - 1);
746 
747 			/* allocate blocks */
748 			ret = cow_file_range(inode, async_cow->locked_page,
749 					     async_extent->start,
750 					     async_extent->start +
751 					     async_extent->ram_size - 1,
752 					     async_extent->start +
753 					     async_extent->ram_size - 1,
754 					     &page_started, &nr_written, 0,
755 					     NULL);
756 
757 			/* JDM XXX */
758 
759 			/*
760 			 * if page_started, cow_file_range inserted an
761 			 * inline extent and took care of all the unlocking
762 			 * and IO for us.  Otherwise, we need to submit
763 			 * all those pages down to the drive.
764 			 */
765 			if (!page_started && !ret)
766 				extent_write_locked_range(inode,
767 						  async_extent->start,
768 						  async_extent->start +
769 						  async_extent->ram_size - 1,
770 						  WB_SYNC_ALL);
771 			else if (ret)
772 				unlock_page(async_cow->locked_page);
773 			kfree(async_extent);
774 			cond_resched();
775 			continue;
776 		}
777 
778 		lock_extent(io_tree, async_extent->start,
779 			    async_extent->start + async_extent->ram_size - 1);
780 
781 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
782 					   async_extent->compressed_size,
783 					   async_extent->compressed_size,
784 					   0, alloc_hint, &ins, 1, 1);
785 		if (ret) {
786 			free_async_extent_pages(async_extent);
787 
788 			if (ret == -ENOSPC) {
789 				unlock_extent(io_tree, async_extent->start,
790 					      async_extent->start +
791 					      async_extent->ram_size - 1);
792 
793 				/*
794 				 * we need to redirty the pages if we decide to
795 				 * fallback to uncompressed IO, otherwise we
796 				 * will not submit these pages down to lower
797 				 * layers.
798 				 */
799 				extent_range_redirty_for_io(inode,
800 						async_extent->start,
801 						async_extent->start +
802 						async_extent->ram_size - 1);
803 
804 				goto retry;
805 			}
806 			goto out_free;
807 		}
808 		/*
809 		 * here we're doing allocation and writeback of the
810 		 * compressed pages
811 		 */
812 		em = create_io_em(inode, async_extent->start,
813 				  async_extent->ram_size, /* len */
814 				  async_extent->start, /* orig_start */
815 				  ins.objectid, /* block_start */
816 				  ins.offset, /* block_len */
817 				  ins.offset, /* orig_block_len */
818 				  async_extent->ram_size, /* ram_bytes */
819 				  async_extent->compress_type,
820 				  BTRFS_ORDERED_COMPRESSED);
821 		if (IS_ERR(em))
822 			/* ret value is not necessary due to void function */
823 			goto out_free_reserve;
824 		free_extent_map(em);
825 
826 		ret = btrfs_add_ordered_extent_compress(inode,
827 						async_extent->start,
828 						ins.objectid,
829 						async_extent->ram_size,
830 						ins.offset,
831 						BTRFS_ORDERED_COMPRESSED,
832 						async_extent->compress_type);
833 		if (ret) {
834 			btrfs_drop_extent_cache(BTRFS_I(inode),
835 						async_extent->start,
836 						async_extent->start +
837 						async_extent->ram_size - 1, 0);
838 			goto out_free_reserve;
839 		}
840 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
841 
842 		/*
843 		 * clear dirty, set writeback and unlock the pages.
844 		 */
845 		extent_clear_unlock_delalloc(inode, async_extent->start,
846 				async_extent->start +
847 				async_extent->ram_size - 1,
848 				async_extent->start +
849 				async_extent->ram_size - 1,
850 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
851 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
852 				PAGE_SET_WRITEBACK);
853 		if (btrfs_submit_compressed_write(inode,
854 				    async_extent->start,
855 				    async_extent->ram_size,
856 				    ins.objectid,
857 				    ins.offset, async_extent->pages,
858 				    async_extent->nr_pages,
859 				    async_cow->write_flags)) {
860 			struct page *p = async_extent->pages[0];
861 			const u64 start = async_extent->start;
862 			const u64 end = start + async_extent->ram_size - 1;
863 
864 			p->mapping = inode->i_mapping;
865 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
866 
867 			p->mapping = NULL;
868 			extent_clear_unlock_delalloc(inode, start, end, end,
869 						     NULL, 0,
870 						     PAGE_END_WRITEBACK |
871 						     PAGE_SET_ERROR);
872 			free_async_extent_pages(async_extent);
873 		}
874 		alloc_hint = ins.objectid + ins.offset;
875 		kfree(async_extent);
876 		cond_resched();
877 	}
878 	return;
879 out_free_reserve:
880 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
881 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
882 out_free:
883 	extent_clear_unlock_delalloc(inode, async_extent->start,
884 				     async_extent->start +
885 				     async_extent->ram_size - 1,
886 				     async_extent->start +
887 				     async_extent->ram_size - 1,
888 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
889 				     EXTENT_DELALLOC_NEW |
890 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
891 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
892 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
893 				     PAGE_SET_ERROR);
894 	free_async_extent_pages(async_extent);
895 	kfree(async_extent);
896 	goto again;
897 }
898 
899 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
900 				      u64 num_bytes)
901 {
902 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
903 	struct extent_map *em;
904 	u64 alloc_hint = 0;
905 
906 	read_lock(&em_tree->lock);
907 	em = search_extent_mapping(em_tree, start, num_bytes);
908 	if (em) {
909 		/*
910 		 * if block start isn't an actual block number then find the
911 		 * first block in this inode and use that as a hint.  If that
912 		 * block is also bogus then just don't worry about it.
913 		 */
914 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
915 			free_extent_map(em);
916 			em = search_extent_mapping(em_tree, 0, 0);
917 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
918 				alloc_hint = em->block_start;
919 			if (em)
920 				free_extent_map(em);
921 		} else {
922 			alloc_hint = em->block_start;
923 			free_extent_map(em);
924 		}
925 	}
926 	read_unlock(&em_tree->lock);
927 
928 	return alloc_hint;
929 }
930 
931 /*
932  * when extent_io.c finds a delayed allocation range in the file,
933  * the call backs end up in this code.  The basic idea is to
934  * allocate extents on disk for the range, and create ordered data structs
935  * in ram to track those extents.
936  *
937  * locked_page is the page that writepage had locked already.  We use
938  * it to make sure we don't do extra locks or unlocks.
939  *
940  * *page_started is set to one if we unlock locked_page and do everything
941  * required to start IO on it.  It may be clean and already done with
942  * IO when we return.
943  */
944 static noinline int cow_file_range(struct inode *inode,
945 				   struct page *locked_page,
946 				   u64 start, u64 end, u64 delalloc_end,
947 				   int *page_started, unsigned long *nr_written,
948 				   int unlock, struct btrfs_dedupe_hash *hash)
949 {
950 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
951 	struct btrfs_root *root = BTRFS_I(inode)->root;
952 	u64 alloc_hint = 0;
953 	u64 num_bytes;
954 	unsigned long ram_size;
955 	u64 cur_alloc_size = 0;
956 	u64 blocksize = fs_info->sectorsize;
957 	struct btrfs_key ins;
958 	struct extent_map *em;
959 	unsigned clear_bits;
960 	unsigned long page_ops;
961 	bool extent_reserved = false;
962 	int ret = 0;
963 
964 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
965 		WARN_ON_ONCE(1);
966 		ret = -EINVAL;
967 		goto out_unlock;
968 	}
969 
970 	num_bytes = ALIGN(end - start + 1, blocksize);
971 	num_bytes = max(blocksize,  num_bytes);
972 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
973 
974 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
975 
976 	if (start == 0) {
977 		/* lets try to make an inline extent */
978 		ret = cow_file_range_inline(inode, start, end, 0,
979 					    BTRFS_COMPRESS_NONE, NULL);
980 		if (ret == 0) {
981 			/*
982 			 * We use DO_ACCOUNTING here because we need the
983 			 * delalloc_release_metadata to be run _after_ we drop
984 			 * our outstanding extent for clearing delalloc for this
985 			 * range.
986 			 */
987 			extent_clear_unlock_delalloc(inode, start, end,
988 				     delalloc_end, NULL,
989 				     EXTENT_LOCKED | EXTENT_DELALLOC |
990 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
991 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
992 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
993 				     PAGE_END_WRITEBACK);
994 			*nr_written = *nr_written +
995 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
996 			*page_started = 1;
997 			goto out;
998 		} else if (ret < 0) {
999 			goto out_unlock;
1000 		}
1001 	}
1002 
1003 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1004 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1005 			start + num_bytes - 1, 0);
1006 
1007 	while (num_bytes > 0) {
1008 		cur_alloc_size = num_bytes;
1009 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1010 					   fs_info->sectorsize, 0, alloc_hint,
1011 					   &ins, 1, 1);
1012 		if (ret < 0)
1013 			goto out_unlock;
1014 		cur_alloc_size = ins.offset;
1015 		extent_reserved = true;
1016 
1017 		ram_size = ins.offset;
1018 		em = create_io_em(inode, start, ins.offset, /* len */
1019 				  start, /* orig_start */
1020 				  ins.objectid, /* block_start */
1021 				  ins.offset, /* block_len */
1022 				  ins.offset, /* orig_block_len */
1023 				  ram_size, /* ram_bytes */
1024 				  BTRFS_COMPRESS_NONE, /* compress_type */
1025 				  BTRFS_ORDERED_REGULAR /* type */);
1026 		if (IS_ERR(em)) {
1027 			ret = PTR_ERR(em);
1028 			goto out_reserve;
1029 		}
1030 		free_extent_map(em);
1031 
1032 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1033 					       ram_size, cur_alloc_size, 0);
1034 		if (ret)
1035 			goto out_drop_extent_cache;
1036 
1037 		if (root->root_key.objectid ==
1038 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1039 			ret = btrfs_reloc_clone_csums(inode, start,
1040 						      cur_alloc_size);
1041 			/*
1042 			 * Only drop cache here, and process as normal.
1043 			 *
1044 			 * We must not allow extent_clear_unlock_delalloc()
1045 			 * at out_unlock label to free meta of this ordered
1046 			 * extent, as its meta should be freed by
1047 			 * btrfs_finish_ordered_io().
1048 			 *
1049 			 * So we must continue until @start is increased to
1050 			 * skip current ordered extent.
1051 			 */
1052 			if (ret)
1053 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1054 						start + ram_size - 1, 0);
1055 		}
1056 
1057 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1058 
1059 		/* we're not doing compressed IO, don't unlock the first
1060 		 * page (which the caller expects to stay locked), don't
1061 		 * clear any dirty bits and don't set any writeback bits
1062 		 *
1063 		 * Do set the Private2 bit so we know this page was properly
1064 		 * setup for writepage
1065 		 */
1066 		page_ops = unlock ? PAGE_UNLOCK : 0;
1067 		page_ops |= PAGE_SET_PRIVATE2;
1068 
1069 		extent_clear_unlock_delalloc(inode, start,
1070 					     start + ram_size - 1,
1071 					     delalloc_end, locked_page,
1072 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1073 					     page_ops);
1074 		if (num_bytes < cur_alloc_size)
1075 			num_bytes = 0;
1076 		else
1077 			num_bytes -= cur_alloc_size;
1078 		alloc_hint = ins.objectid + ins.offset;
1079 		start += cur_alloc_size;
1080 		extent_reserved = false;
1081 
1082 		/*
1083 		 * btrfs_reloc_clone_csums() error, since start is increased
1084 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1085 		 * free metadata of current ordered extent, we're OK to exit.
1086 		 */
1087 		if (ret)
1088 			goto out_unlock;
1089 	}
1090 out:
1091 	return ret;
1092 
1093 out_drop_extent_cache:
1094 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1095 out_reserve:
1096 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1097 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1098 out_unlock:
1099 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1100 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1101 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1102 		PAGE_END_WRITEBACK;
1103 	/*
1104 	 * If we reserved an extent for our delalloc range (or a subrange) and
1105 	 * failed to create the respective ordered extent, then it means that
1106 	 * when we reserved the extent we decremented the extent's size from
1107 	 * the data space_info's bytes_may_use counter and incremented the
1108 	 * space_info's bytes_reserved counter by the same amount. We must make
1109 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1110 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1111 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1112 	 */
1113 	if (extent_reserved) {
1114 		extent_clear_unlock_delalloc(inode, start,
1115 					     start + cur_alloc_size,
1116 					     start + cur_alloc_size,
1117 					     locked_page,
1118 					     clear_bits,
1119 					     page_ops);
1120 		start += cur_alloc_size;
1121 		if (start >= end)
1122 			goto out;
1123 	}
1124 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1125 				     locked_page,
1126 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1127 				     page_ops);
1128 	goto out;
1129 }
1130 
1131 /*
1132  * work queue call back to started compression on a file and pages
1133  */
1134 static noinline void async_cow_start(struct btrfs_work *work)
1135 {
1136 	struct async_cow *async_cow;
1137 	int num_added = 0;
1138 	async_cow = container_of(work, struct async_cow, work);
1139 
1140 	compress_file_range(async_cow->inode, async_cow->locked_page,
1141 			    async_cow->start, async_cow->end, async_cow,
1142 			    &num_added);
1143 	if (num_added == 0) {
1144 		btrfs_add_delayed_iput(async_cow->inode);
1145 		async_cow->inode = NULL;
1146 	}
1147 }
1148 
1149 /*
1150  * work queue call back to submit previously compressed pages
1151  */
1152 static noinline void async_cow_submit(struct btrfs_work *work)
1153 {
1154 	struct btrfs_fs_info *fs_info;
1155 	struct async_cow *async_cow;
1156 	unsigned long nr_pages;
1157 
1158 	async_cow = container_of(work, struct async_cow, work);
1159 
1160 	fs_info = async_cow->fs_info;
1161 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1162 		PAGE_SHIFT;
1163 
1164 	/* atomic_sub_return implies a barrier */
1165 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1166 	    5 * SZ_1M)
1167 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1168 
1169 	if (async_cow->inode)
1170 		submit_compressed_extents(async_cow->inode, async_cow);
1171 }
1172 
1173 static noinline void async_cow_free(struct btrfs_work *work)
1174 {
1175 	struct async_cow *async_cow;
1176 	async_cow = container_of(work, struct async_cow, work);
1177 	if (async_cow->inode)
1178 		btrfs_add_delayed_iput(async_cow->inode);
1179 	kfree(async_cow);
1180 }
1181 
1182 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1183 				u64 start, u64 end, int *page_started,
1184 				unsigned long *nr_written,
1185 				unsigned int write_flags)
1186 {
1187 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1188 	struct async_cow *async_cow;
1189 	unsigned long nr_pages;
1190 	u64 cur_end;
1191 
1192 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1193 			 1, 0, NULL);
1194 	while (start < end) {
1195 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1196 		BUG_ON(!async_cow); /* -ENOMEM */
1197 		async_cow->inode = igrab(inode);
1198 		async_cow->fs_info = fs_info;
1199 		async_cow->locked_page = locked_page;
1200 		async_cow->start = start;
1201 		async_cow->write_flags = write_flags;
1202 
1203 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1204 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1205 			cur_end = end;
1206 		else
1207 			cur_end = min(end, start + SZ_512K - 1);
1208 
1209 		async_cow->end = cur_end;
1210 		INIT_LIST_HEAD(&async_cow->extents);
1211 
1212 		btrfs_init_work(&async_cow->work,
1213 				btrfs_delalloc_helper,
1214 				async_cow_start, async_cow_submit,
1215 				async_cow_free);
1216 
1217 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1218 			PAGE_SHIFT;
1219 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1220 
1221 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1222 
1223 		*nr_written += nr_pages;
1224 		start = cur_end + 1;
1225 	}
1226 	*page_started = 1;
1227 	return 0;
1228 }
1229 
1230 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1231 					u64 bytenr, u64 num_bytes)
1232 {
1233 	int ret;
1234 	struct btrfs_ordered_sum *sums;
1235 	LIST_HEAD(list);
1236 
1237 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1238 				       bytenr + num_bytes - 1, &list, 0);
1239 	if (ret == 0 && list_empty(&list))
1240 		return 0;
1241 
1242 	while (!list_empty(&list)) {
1243 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1244 		list_del(&sums->list);
1245 		kfree(sums);
1246 	}
1247 	if (ret < 0)
1248 		return ret;
1249 	return 1;
1250 }
1251 
1252 /*
1253  * when nowcow writeback call back.  This checks for snapshots or COW copies
1254  * of the extents that exist in the file, and COWs the file as required.
1255  *
1256  * If no cow copies or snapshots exist, we write directly to the existing
1257  * blocks on disk
1258  */
1259 static noinline int run_delalloc_nocow(struct inode *inode,
1260 				       struct page *locked_page,
1261 			      u64 start, u64 end, int *page_started, int force,
1262 			      unsigned long *nr_written)
1263 {
1264 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1265 	struct btrfs_root *root = BTRFS_I(inode)->root;
1266 	struct extent_buffer *leaf;
1267 	struct btrfs_path *path;
1268 	struct btrfs_file_extent_item *fi;
1269 	struct btrfs_key found_key;
1270 	struct extent_map *em;
1271 	u64 cow_start;
1272 	u64 cur_offset;
1273 	u64 extent_end;
1274 	u64 extent_offset;
1275 	u64 disk_bytenr;
1276 	u64 num_bytes;
1277 	u64 disk_num_bytes;
1278 	u64 ram_bytes;
1279 	int extent_type;
1280 	int ret;
1281 	int type;
1282 	int nocow;
1283 	int check_prev = 1;
1284 	bool nolock;
1285 	u64 ino = btrfs_ino(BTRFS_I(inode));
1286 
1287 	path = btrfs_alloc_path();
1288 	if (!path) {
1289 		extent_clear_unlock_delalloc(inode, start, end, end,
1290 					     locked_page,
1291 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1292 					     EXTENT_DO_ACCOUNTING |
1293 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1294 					     PAGE_CLEAR_DIRTY |
1295 					     PAGE_SET_WRITEBACK |
1296 					     PAGE_END_WRITEBACK);
1297 		return -ENOMEM;
1298 	}
1299 
1300 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1301 
1302 	cow_start = (u64)-1;
1303 	cur_offset = start;
1304 	while (1) {
1305 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1306 					       cur_offset, 0);
1307 		if (ret < 0)
1308 			goto error;
1309 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1310 			leaf = path->nodes[0];
1311 			btrfs_item_key_to_cpu(leaf, &found_key,
1312 					      path->slots[0] - 1);
1313 			if (found_key.objectid == ino &&
1314 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1315 				path->slots[0]--;
1316 		}
1317 		check_prev = 0;
1318 next_slot:
1319 		leaf = path->nodes[0];
1320 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1321 			ret = btrfs_next_leaf(root, path);
1322 			if (ret < 0) {
1323 				if (cow_start != (u64)-1)
1324 					cur_offset = cow_start;
1325 				goto error;
1326 			}
1327 			if (ret > 0)
1328 				break;
1329 			leaf = path->nodes[0];
1330 		}
1331 
1332 		nocow = 0;
1333 		disk_bytenr = 0;
1334 		num_bytes = 0;
1335 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1336 
1337 		if (found_key.objectid > ino)
1338 			break;
1339 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1340 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1341 			path->slots[0]++;
1342 			goto next_slot;
1343 		}
1344 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1345 		    found_key.offset > end)
1346 			break;
1347 
1348 		if (found_key.offset > cur_offset) {
1349 			extent_end = found_key.offset;
1350 			extent_type = 0;
1351 			goto out_check;
1352 		}
1353 
1354 		fi = btrfs_item_ptr(leaf, path->slots[0],
1355 				    struct btrfs_file_extent_item);
1356 		extent_type = btrfs_file_extent_type(leaf, fi);
1357 
1358 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1359 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1360 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1361 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1362 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1363 			extent_end = found_key.offset +
1364 				btrfs_file_extent_num_bytes(leaf, fi);
1365 			disk_num_bytes =
1366 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1367 			if (extent_end <= start) {
1368 				path->slots[0]++;
1369 				goto next_slot;
1370 			}
1371 			if (disk_bytenr == 0)
1372 				goto out_check;
1373 			if (btrfs_file_extent_compression(leaf, fi) ||
1374 			    btrfs_file_extent_encryption(leaf, fi) ||
1375 			    btrfs_file_extent_other_encoding(leaf, fi))
1376 				goto out_check;
1377 			/*
1378 			 * Do the same check as in btrfs_cross_ref_exist but
1379 			 * without the unnecessary search.
1380 			 */
1381 			if (!nolock &&
1382 			    btrfs_file_extent_generation(leaf, fi) <=
1383 			    btrfs_root_last_snapshot(&root->root_item))
1384 				goto out_check;
1385 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1386 				goto out_check;
1387 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1388 				goto out_check;
1389 			ret = btrfs_cross_ref_exist(root, ino,
1390 						    found_key.offset -
1391 						    extent_offset, disk_bytenr);
1392 			if (ret) {
1393 				/*
1394 				 * ret could be -EIO if the above fails to read
1395 				 * metadata.
1396 				 */
1397 				if (ret < 0) {
1398 					if (cow_start != (u64)-1)
1399 						cur_offset = cow_start;
1400 					goto error;
1401 				}
1402 
1403 				WARN_ON_ONCE(nolock);
1404 				goto out_check;
1405 			}
1406 			disk_bytenr += extent_offset;
1407 			disk_bytenr += cur_offset - found_key.offset;
1408 			num_bytes = min(end + 1, extent_end) - cur_offset;
1409 			/*
1410 			 * if there are pending snapshots for this root,
1411 			 * we fall into common COW way.
1412 			 */
1413 			if (!nolock && atomic_read(&root->snapshot_force_cow))
1414 				goto out_check;
1415 			/*
1416 			 * force cow if csum exists in the range.
1417 			 * this ensure that csum for a given extent are
1418 			 * either valid or do not exist.
1419 			 */
1420 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1421 						  num_bytes);
1422 			if (ret) {
1423 				/*
1424 				 * ret could be -EIO if the above fails to read
1425 				 * metadata.
1426 				 */
1427 				if (ret < 0) {
1428 					if (cow_start != (u64)-1)
1429 						cur_offset = cow_start;
1430 					goto error;
1431 				}
1432 				WARN_ON_ONCE(nolock);
1433 				goto out_check;
1434 			}
1435 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1436 				goto out_check;
1437 			nocow = 1;
1438 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1439 			extent_end = found_key.offset +
1440 				btrfs_file_extent_ram_bytes(leaf, fi);
1441 			extent_end = ALIGN(extent_end,
1442 					   fs_info->sectorsize);
1443 		} else {
1444 			BUG_ON(1);
1445 		}
1446 out_check:
1447 		if (extent_end <= start) {
1448 			path->slots[0]++;
1449 			if (nocow)
1450 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1451 			goto next_slot;
1452 		}
1453 		if (!nocow) {
1454 			if (cow_start == (u64)-1)
1455 				cow_start = cur_offset;
1456 			cur_offset = extent_end;
1457 			if (cur_offset > end)
1458 				break;
1459 			path->slots[0]++;
1460 			goto next_slot;
1461 		}
1462 
1463 		btrfs_release_path(path);
1464 		if (cow_start != (u64)-1) {
1465 			ret = cow_file_range(inode, locked_page,
1466 					     cow_start, found_key.offset - 1,
1467 					     end, page_started, nr_written, 1,
1468 					     NULL);
1469 			if (ret) {
1470 				if (nocow)
1471 					btrfs_dec_nocow_writers(fs_info,
1472 								disk_bytenr);
1473 				goto error;
1474 			}
1475 			cow_start = (u64)-1;
1476 		}
1477 
1478 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1479 			u64 orig_start = found_key.offset - extent_offset;
1480 
1481 			em = create_io_em(inode, cur_offset, num_bytes,
1482 					  orig_start,
1483 					  disk_bytenr, /* block_start */
1484 					  num_bytes, /* block_len */
1485 					  disk_num_bytes, /* orig_block_len */
1486 					  ram_bytes, BTRFS_COMPRESS_NONE,
1487 					  BTRFS_ORDERED_PREALLOC);
1488 			if (IS_ERR(em)) {
1489 				if (nocow)
1490 					btrfs_dec_nocow_writers(fs_info,
1491 								disk_bytenr);
1492 				ret = PTR_ERR(em);
1493 				goto error;
1494 			}
1495 			free_extent_map(em);
1496 		}
1497 
1498 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1499 			type = BTRFS_ORDERED_PREALLOC;
1500 		} else {
1501 			type = BTRFS_ORDERED_NOCOW;
1502 		}
1503 
1504 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1505 					       num_bytes, num_bytes, type);
1506 		if (nocow)
1507 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1508 		BUG_ON(ret); /* -ENOMEM */
1509 
1510 		if (root->root_key.objectid ==
1511 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1512 			/*
1513 			 * Error handled later, as we must prevent
1514 			 * extent_clear_unlock_delalloc() in error handler
1515 			 * from freeing metadata of created ordered extent.
1516 			 */
1517 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1518 						      num_bytes);
1519 
1520 		extent_clear_unlock_delalloc(inode, cur_offset,
1521 					     cur_offset + num_bytes - 1, end,
1522 					     locked_page, EXTENT_LOCKED |
1523 					     EXTENT_DELALLOC |
1524 					     EXTENT_CLEAR_DATA_RESV,
1525 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1526 
1527 		cur_offset = extent_end;
1528 
1529 		/*
1530 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1531 		 * handler, as metadata for created ordered extent will only
1532 		 * be freed by btrfs_finish_ordered_io().
1533 		 */
1534 		if (ret)
1535 			goto error;
1536 		if (cur_offset > end)
1537 			break;
1538 	}
1539 	btrfs_release_path(path);
1540 
1541 	if (cur_offset <= end && cow_start == (u64)-1)
1542 		cow_start = cur_offset;
1543 
1544 	if (cow_start != (u64)-1) {
1545 		cur_offset = end;
1546 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1547 				     page_started, nr_written, 1, NULL);
1548 		if (ret)
1549 			goto error;
1550 	}
1551 
1552 error:
1553 	if (ret && cur_offset < end)
1554 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1555 					     locked_page, EXTENT_LOCKED |
1556 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1557 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1558 					     PAGE_CLEAR_DIRTY |
1559 					     PAGE_SET_WRITEBACK |
1560 					     PAGE_END_WRITEBACK);
1561 	btrfs_free_path(path);
1562 	return ret;
1563 }
1564 
1565 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1566 {
1567 
1568 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1569 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1570 		return 0;
1571 
1572 	/*
1573 	 * @defrag_bytes is a hint value, no spinlock held here,
1574 	 * if is not zero, it means the file is defragging.
1575 	 * Force cow if given extent needs to be defragged.
1576 	 */
1577 	if (BTRFS_I(inode)->defrag_bytes &&
1578 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1579 			   EXTENT_DEFRAG, 0, NULL))
1580 		return 1;
1581 
1582 	return 0;
1583 }
1584 
1585 /*
1586  * Function to process delayed allocation (create CoW) for ranges which are
1587  * being touched for the first time.
1588  */
1589 int btrfs_run_delalloc_range(void *private_data, struct page *locked_page,
1590 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1591 		struct writeback_control *wbc)
1592 {
1593 	struct inode *inode = private_data;
1594 	int ret;
1595 	int force_cow = need_force_cow(inode, start, end);
1596 	unsigned int write_flags = wbc_to_write_flags(wbc);
1597 
1598 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1599 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1600 					 page_started, 1, nr_written);
1601 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1602 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1603 					 page_started, 0, nr_written);
1604 	} else if (!inode_need_compress(inode, start, end)) {
1605 		ret = cow_file_range(inode, locked_page, start, end, end,
1606 				      page_started, nr_written, 1, NULL);
1607 	} else {
1608 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1609 			&BTRFS_I(inode)->runtime_flags);
1610 		ret = cow_file_range_async(inode, locked_page, start, end,
1611 					   page_started, nr_written,
1612 					   write_flags);
1613 	}
1614 	if (ret)
1615 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1616 					      end - start + 1);
1617 	return ret;
1618 }
1619 
1620 void btrfs_split_delalloc_extent(struct inode *inode,
1621 				 struct extent_state *orig, u64 split)
1622 {
1623 	u64 size;
1624 
1625 	/* not delalloc, ignore it */
1626 	if (!(orig->state & EXTENT_DELALLOC))
1627 		return;
1628 
1629 	size = orig->end - orig->start + 1;
1630 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1631 		u32 num_extents;
1632 		u64 new_size;
1633 
1634 		/*
1635 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1636 		 * applies here, just in reverse.
1637 		 */
1638 		new_size = orig->end - split + 1;
1639 		num_extents = count_max_extents(new_size);
1640 		new_size = split - orig->start;
1641 		num_extents += count_max_extents(new_size);
1642 		if (count_max_extents(size) >= num_extents)
1643 			return;
1644 	}
1645 
1646 	spin_lock(&BTRFS_I(inode)->lock);
1647 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1648 	spin_unlock(&BTRFS_I(inode)->lock);
1649 }
1650 
1651 /*
1652  * Handle merged delayed allocation extents so we can keep track of new extents
1653  * that are just merged onto old extents, such as when we are doing sequential
1654  * writes, so we can properly account for the metadata space we'll need.
1655  */
1656 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1657 				 struct extent_state *other)
1658 {
1659 	u64 new_size, old_size;
1660 	u32 num_extents;
1661 
1662 	/* not delalloc, ignore it */
1663 	if (!(other->state & EXTENT_DELALLOC))
1664 		return;
1665 
1666 	if (new->start > other->start)
1667 		new_size = new->end - other->start + 1;
1668 	else
1669 		new_size = other->end - new->start + 1;
1670 
1671 	/* we're not bigger than the max, unreserve the space and go */
1672 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1673 		spin_lock(&BTRFS_I(inode)->lock);
1674 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1675 		spin_unlock(&BTRFS_I(inode)->lock);
1676 		return;
1677 	}
1678 
1679 	/*
1680 	 * We have to add up either side to figure out how many extents were
1681 	 * accounted for before we merged into one big extent.  If the number of
1682 	 * extents we accounted for is <= the amount we need for the new range
1683 	 * then we can return, otherwise drop.  Think of it like this
1684 	 *
1685 	 * [ 4k][MAX_SIZE]
1686 	 *
1687 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1688 	 * need 2 outstanding extents, on one side we have 1 and the other side
1689 	 * we have 1 so they are == and we can return.  But in this case
1690 	 *
1691 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1692 	 *
1693 	 * Each range on their own accounts for 2 extents, but merged together
1694 	 * they are only 3 extents worth of accounting, so we need to drop in
1695 	 * this case.
1696 	 */
1697 	old_size = other->end - other->start + 1;
1698 	num_extents = count_max_extents(old_size);
1699 	old_size = new->end - new->start + 1;
1700 	num_extents += count_max_extents(old_size);
1701 	if (count_max_extents(new_size) >= num_extents)
1702 		return;
1703 
1704 	spin_lock(&BTRFS_I(inode)->lock);
1705 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1706 	spin_unlock(&BTRFS_I(inode)->lock);
1707 }
1708 
1709 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1710 				      struct inode *inode)
1711 {
1712 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1713 
1714 	spin_lock(&root->delalloc_lock);
1715 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1716 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1717 			      &root->delalloc_inodes);
1718 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1719 			&BTRFS_I(inode)->runtime_flags);
1720 		root->nr_delalloc_inodes++;
1721 		if (root->nr_delalloc_inodes == 1) {
1722 			spin_lock(&fs_info->delalloc_root_lock);
1723 			BUG_ON(!list_empty(&root->delalloc_root));
1724 			list_add_tail(&root->delalloc_root,
1725 				      &fs_info->delalloc_roots);
1726 			spin_unlock(&fs_info->delalloc_root_lock);
1727 		}
1728 	}
1729 	spin_unlock(&root->delalloc_lock);
1730 }
1731 
1732 
1733 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1734 				struct btrfs_inode *inode)
1735 {
1736 	struct btrfs_fs_info *fs_info = root->fs_info;
1737 
1738 	if (!list_empty(&inode->delalloc_inodes)) {
1739 		list_del_init(&inode->delalloc_inodes);
1740 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1741 			  &inode->runtime_flags);
1742 		root->nr_delalloc_inodes--;
1743 		if (!root->nr_delalloc_inodes) {
1744 			ASSERT(list_empty(&root->delalloc_inodes));
1745 			spin_lock(&fs_info->delalloc_root_lock);
1746 			BUG_ON(list_empty(&root->delalloc_root));
1747 			list_del_init(&root->delalloc_root);
1748 			spin_unlock(&fs_info->delalloc_root_lock);
1749 		}
1750 	}
1751 }
1752 
1753 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1754 				     struct btrfs_inode *inode)
1755 {
1756 	spin_lock(&root->delalloc_lock);
1757 	__btrfs_del_delalloc_inode(root, inode);
1758 	spin_unlock(&root->delalloc_lock);
1759 }
1760 
1761 /*
1762  * Properly track delayed allocation bytes in the inode and to maintain the
1763  * list of inodes that have pending delalloc work to be done.
1764  */
1765 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1766 			       unsigned *bits)
1767 {
1768 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1769 
1770 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1771 		WARN_ON(1);
1772 	/*
1773 	 * set_bit and clear bit hooks normally require _irqsave/restore
1774 	 * but in this case, we are only testing for the DELALLOC
1775 	 * bit, which is only set or cleared with irqs on
1776 	 */
1777 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1778 		struct btrfs_root *root = BTRFS_I(inode)->root;
1779 		u64 len = state->end + 1 - state->start;
1780 		u32 num_extents = count_max_extents(len);
1781 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1782 
1783 		spin_lock(&BTRFS_I(inode)->lock);
1784 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1785 		spin_unlock(&BTRFS_I(inode)->lock);
1786 
1787 		/* For sanity tests */
1788 		if (btrfs_is_testing(fs_info))
1789 			return;
1790 
1791 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1792 					 fs_info->delalloc_batch);
1793 		spin_lock(&BTRFS_I(inode)->lock);
1794 		BTRFS_I(inode)->delalloc_bytes += len;
1795 		if (*bits & EXTENT_DEFRAG)
1796 			BTRFS_I(inode)->defrag_bytes += len;
1797 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1798 					 &BTRFS_I(inode)->runtime_flags))
1799 			btrfs_add_delalloc_inodes(root, inode);
1800 		spin_unlock(&BTRFS_I(inode)->lock);
1801 	}
1802 
1803 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1804 	    (*bits & EXTENT_DELALLOC_NEW)) {
1805 		spin_lock(&BTRFS_I(inode)->lock);
1806 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1807 			state->start;
1808 		spin_unlock(&BTRFS_I(inode)->lock);
1809 	}
1810 }
1811 
1812 /*
1813  * Once a range is no longer delalloc this function ensures that proper
1814  * accounting happens.
1815  */
1816 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1817 				 struct extent_state *state, unsigned *bits)
1818 {
1819 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1820 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1821 	u64 len = state->end + 1 - state->start;
1822 	u32 num_extents = count_max_extents(len);
1823 
1824 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1825 		spin_lock(&inode->lock);
1826 		inode->defrag_bytes -= len;
1827 		spin_unlock(&inode->lock);
1828 	}
1829 
1830 	/*
1831 	 * set_bit and clear bit hooks normally require _irqsave/restore
1832 	 * but in this case, we are only testing for the DELALLOC
1833 	 * bit, which is only set or cleared with irqs on
1834 	 */
1835 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1836 		struct btrfs_root *root = inode->root;
1837 		bool do_list = !btrfs_is_free_space_inode(inode);
1838 
1839 		spin_lock(&inode->lock);
1840 		btrfs_mod_outstanding_extents(inode, -num_extents);
1841 		spin_unlock(&inode->lock);
1842 
1843 		/*
1844 		 * We don't reserve metadata space for space cache inodes so we
1845 		 * don't need to call delalloc_release_metadata if there is an
1846 		 * error.
1847 		 */
1848 		if (*bits & EXTENT_CLEAR_META_RESV &&
1849 		    root != fs_info->tree_root)
1850 			btrfs_delalloc_release_metadata(inode, len, false);
1851 
1852 		/* For sanity tests. */
1853 		if (btrfs_is_testing(fs_info))
1854 			return;
1855 
1856 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1857 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1858 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1859 			btrfs_free_reserved_data_space_noquota(
1860 					&inode->vfs_inode,
1861 					state->start, len);
1862 
1863 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1864 					 fs_info->delalloc_batch);
1865 		spin_lock(&inode->lock);
1866 		inode->delalloc_bytes -= len;
1867 		if (do_list && inode->delalloc_bytes == 0 &&
1868 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1869 					&inode->runtime_flags))
1870 			btrfs_del_delalloc_inode(root, inode);
1871 		spin_unlock(&inode->lock);
1872 	}
1873 
1874 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1875 	    (*bits & EXTENT_DELALLOC_NEW)) {
1876 		spin_lock(&inode->lock);
1877 		ASSERT(inode->new_delalloc_bytes >= len);
1878 		inode->new_delalloc_bytes -= len;
1879 		spin_unlock(&inode->lock);
1880 	}
1881 }
1882 
1883 /*
1884  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1885  * in a chunk's stripe. This function ensures that bios do not span a
1886  * stripe/chunk
1887  *
1888  * @page - The page we are about to add to the bio
1889  * @size - size we want to add to the bio
1890  * @bio - bio we want to ensure is smaller than a stripe
1891  * @bio_flags - flags of the bio
1892  *
1893  * return 1 if page cannot be added to the bio
1894  * return 0 if page can be added to the bio
1895  * return error otherwise
1896  */
1897 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1898 			     unsigned long bio_flags)
1899 {
1900 	struct inode *inode = page->mapping->host;
1901 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1902 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1903 	u64 length = 0;
1904 	u64 map_length;
1905 	int ret;
1906 
1907 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1908 		return 0;
1909 
1910 	length = bio->bi_iter.bi_size;
1911 	map_length = length;
1912 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1913 			      NULL, 0);
1914 	if (ret < 0)
1915 		return ret;
1916 	if (map_length < length + size)
1917 		return 1;
1918 	return 0;
1919 }
1920 
1921 /*
1922  * in order to insert checksums into the metadata in large chunks,
1923  * we wait until bio submission time.   All the pages in the bio are
1924  * checksummed and sums are attached onto the ordered extent record.
1925  *
1926  * At IO completion time the cums attached on the ordered extent record
1927  * are inserted into the btree
1928  */
1929 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1930 				    u64 bio_offset)
1931 {
1932 	struct inode *inode = private_data;
1933 	blk_status_t ret = 0;
1934 
1935 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1936 	BUG_ON(ret); /* -ENOMEM */
1937 	return 0;
1938 }
1939 
1940 /*
1941  * extent_io.c submission hook. This does the right thing for csum calculation
1942  * on write, or reading the csums from the tree before a read.
1943  *
1944  * Rules about async/sync submit,
1945  * a) read:				sync submit
1946  *
1947  * b) write without checksum:		sync submit
1948  *
1949  * c) write with checksum:
1950  *    c-1) if bio is issued by fsync:	sync submit
1951  *         (sync_writers != 0)
1952  *
1953  *    c-2) if root is reloc root:	sync submit
1954  *         (only in case of buffered IO)
1955  *
1956  *    c-3) otherwise:			async submit
1957  */
1958 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1959 				 int mirror_num, unsigned long bio_flags,
1960 				 u64 bio_offset)
1961 {
1962 	struct inode *inode = private_data;
1963 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1964 	struct btrfs_root *root = BTRFS_I(inode)->root;
1965 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1966 	blk_status_t ret = 0;
1967 	int skip_sum;
1968 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1969 
1970 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1971 
1972 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1973 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1974 
1975 	if (bio_op(bio) != REQ_OP_WRITE) {
1976 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1977 		if (ret)
1978 			goto out;
1979 
1980 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1981 			ret = btrfs_submit_compressed_read(inode, bio,
1982 							   mirror_num,
1983 							   bio_flags);
1984 			goto out;
1985 		} else if (!skip_sum) {
1986 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1987 			if (ret)
1988 				goto out;
1989 		}
1990 		goto mapit;
1991 	} else if (async && !skip_sum) {
1992 		/* csum items have already been cloned */
1993 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1994 			goto mapit;
1995 		/* we're doing a write, do the async checksumming */
1996 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1997 					  bio_offset, inode,
1998 					  btrfs_submit_bio_start);
1999 		goto out;
2000 	} else if (!skip_sum) {
2001 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2002 		if (ret)
2003 			goto out;
2004 	}
2005 
2006 mapit:
2007 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2008 
2009 out:
2010 	if (ret) {
2011 		bio->bi_status = ret;
2012 		bio_endio(bio);
2013 	}
2014 	return ret;
2015 }
2016 
2017 /*
2018  * given a list of ordered sums record them in the inode.  This happens
2019  * at IO completion time based on sums calculated at bio submission time.
2020  */
2021 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2022 			     struct inode *inode, struct list_head *list)
2023 {
2024 	struct btrfs_ordered_sum *sum;
2025 	int ret;
2026 
2027 	list_for_each_entry(sum, list, list) {
2028 		trans->adding_csums = true;
2029 		ret = btrfs_csum_file_blocks(trans,
2030 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2031 		trans->adding_csums = false;
2032 		if (ret)
2033 			return ret;
2034 	}
2035 	return 0;
2036 }
2037 
2038 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2039 			      unsigned int extra_bits,
2040 			      struct extent_state **cached_state, int dedupe)
2041 {
2042 	WARN_ON(PAGE_ALIGNED(end));
2043 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2044 				   extra_bits, cached_state);
2045 }
2046 
2047 /* see btrfs_writepage_start_hook for details on why this is required */
2048 struct btrfs_writepage_fixup {
2049 	struct page *page;
2050 	struct btrfs_work work;
2051 };
2052 
2053 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2054 {
2055 	struct btrfs_writepage_fixup *fixup;
2056 	struct btrfs_ordered_extent *ordered;
2057 	struct extent_state *cached_state = NULL;
2058 	struct extent_changeset *data_reserved = NULL;
2059 	struct page *page;
2060 	struct inode *inode;
2061 	u64 page_start;
2062 	u64 page_end;
2063 	int ret;
2064 
2065 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2066 	page = fixup->page;
2067 again:
2068 	lock_page(page);
2069 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2070 		ClearPageChecked(page);
2071 		goto out_page;
2072 	}
2073 
2074 	inode = page->mapping->host;
2075 	page_start = page_offset(page);
2076 	page_end = page_offset(page) + PAGE_SIZE - 1;
2077 
2078 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2079 			 &cached_state);
2080 
2081 	/* already ordered? We're done */
2082 	if (PagePrivate2(page))
2083 		goto out;
2084 
2085 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2086 					PAGE_SIZE);
2087 	if (ordered) {
2088 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2089 				     page_end, &cached_state);
2090 		unlock_page(page);
2091 		btrfs_start_ordered_extent(inode, ordered, 1);
2092 		btrfs_put_ordered_extent(ordered);
2093 		goto again;
2094 	}
2095 
2096 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2097 					   PAGE_SIZE);
2098 	if (ret) {
2099 		mapping_set_error(page->mapping, ret);
2100 		end_extent_writepage(page, ret, page_start, page_end);
2101 		ClearPageChecked(page);
2102 		goto out;
2103 	 }
2104 
2105 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2106 					&cached_state, 0);
2107 	if (ret) {
2108 		mapping_set_error(page->mapping, ret);
2109 		end_extent_writepage(page, ret, page_start, page_end);
2110 		ClearPageChecked(page);
2111 		goto out;
2112 	}
2113 
2114 	ClearPageChecked(page);
2115 	set_page_dirty(page);
2116 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2117 out:
2118 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2119 			     &cached_state);
2120 out_page:
2121 	unlock_page(page);
2122 	put_page(page);
2123 	kfree(fixup);
2124 	extent_changeset_free(data_reserved);
2125 }
2126 
2127 /*
2128  * There are a few paths in the higher layers of the kernel that directly
2129  * set the page dirty bit without asking the filesystem if it is a
2130  * good idea.  This causes problems because we want to make sure COW
2131  * properly happens and the data=ordered rules are followed.
2132  *
2133  * In our case any range that doesn't have the ORDERED bit set
2134  * hasn't been properly setup for IO.  We kick off an async process
2135  * to fix it up.  The async helper will wait for ordered extents, set
2136  * the delalloc bit and make it safe to write the page.
2137  */
2138 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2139 {
2140 	struct inode *inode = page->mapping->host;
2141 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2142 	struct btrfs_writepage_fixup *fixup;
2143 
2144 	/* this page is properly in the ordered list */
2145 	if (TestClearPagePrivate2(page))
2146 		return 0;
2147 
2148 	if (PageChecked(page))
2149 		return -EAGAIN;
2150 
2151 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2152 	if (!fixup)
2153 		return -EAGAIN;
2154 
2155 	SetPageChecked(page);
2156 	get_page(page);
2157 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2158 			btrfs_writepage_fixup_worker, NULL, NULL);
2159 	fixup->page = page;
2160 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2161 	return -EBUSY;
2162 }
2163 
2164 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2165 				       struct inode *inode, u64 file_pos,
2166 				       u64 disk_bytenr, u64 disk_num_bytes,
2167 				       u64 num_bytes, u64 ram_bytes,
2168 				       u8 compression, u8 encryption,
2169 				       u16 other_encoding, int extent_type)
2170 {
2171 	struct btrfs_root *root = BTRFS_I(inode)->root;
2172 	struct btrfs_file_extent_item *fi;
2173 	struct btrfs_path *path;
2174 	struct extent_buffer *leaf;
2175 	struct btrfs_key ins;
2176 	u64 qg_released;
2177 	int extent_inserted = 0;
2178 	int ret;
2179 
2180 	path = btrfs_alloc_path();
2181 	if (!path)
2182 		return -ENOMEM;
2183 
2184 	/*
2185 	 * we may be replacing one extent in the tree with another.
2186 	 * The new extent is pinned in the extent map, and we don't want
2187 	 * to drop it from the cache until it is completely in the btree.
2188 	 *
2189 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2190 	 * the caller is expected to unpin it and allow it to be merged
2191 	 * with the others.
2192 	 */
2193 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2194 				   file_pos + num_bytes, NULL, 0,
2195 				   1, sizeof(*fi), &extent_inserted);
2196 	if (ret)
2197 		goto out;
2198 
2199 	if (!extent_inserted) {
2200 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2201 		ins.offset = file_pos;
2202 		ins.type = BTRFS_EXTENT_DATA_KEY;
2203 
2204 		path->leave_spinning = 1;
2205 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2206 					      sizeof(*fi));
2207 		if (ret)
2208 			goto out;
2209 	}
2210 	leaf = path->nodes[0];
2211 	fi = btrfs_item_ptr(leaf, path->slots[0],
2212 			    struct btrfs_file_extent_item);
2213 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2214 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2215 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2216 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2217 	btrfs_set_file_extent_offset(leaf, fi, 0);
2218 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2219 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2220 	btrfs_set_file_extent_compression(leaf, fi, compression);
2221 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2222 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2223 
2224 	btrfs_mark_buffer_dirty(leaf);
2225 	btrfs_release_path(path);
2226 
2227 	inode_add_bytes(inode, num_bytes);
2228 
2229 	ins.objectid = disk_bytenr;
2230 	ins.offset = disk_num_bytes;
2231 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2232 
2233 	/*
2234 	 * Release the reserved range from inode dirty range map, as it is
2235 	 * already moved into delayed_ref_head
2236 	 */
2237 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2238 	if (ret < 0)
2239 		goto out;
2240 	qg_released = ret;
2241 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2242 					       btrfs_ino(BTRFS_I(inode)),
2243 					       file_pos, qg_released, &ins);
2244 out:
2245 	btrfs_free_path(path);
2246 
2247 	return ret;
2248 }
2249 
2250 /* snapshot-aware defrag */
2251 struct sa_defrag_extent_backref {
2252 	struct rb_node node;
2253 	struct old_sa_defrag_extent *old;
2254 	u64 root_id;
2255 	u64 inum;
2256 	u64 file_pos;
2257 	u64 extent_offset;
2258 	u64 num_bytes;
2259 	u64 generation;
2260 };
2261 
2262 struct old_sa_defrag_extent {
2263 	struct list_head list;
2264 	struct new_sa_defrag_extent *new;
2265 
2266 	u64 extent_offset;
2267 	u64 bytenr;
2268 	u64 offset;
2269 	u64 len;
2270 	int count;
2271 };
2272 
2273 struct new_sa_defrag_extent {
2274 	struct rb_root root;
2275 	struct list_head head;
2276 	struct btrfs_path *path;
2277 	struct inode *inode;
2278 	u64 file_pos;
2279 	u64 len;
2280 	u64 bytenr;
2281 	u64 disk_len;
2282 	u8 compress_type;
2283 };
2284 
2285 static int backref_comp(struct sa_defrag_extent_backref *b1,
2286 			struct sa_defrag_extent_backref *b2)
2287 {
2288 	if (b1->root_id < b2->root_id)
2289 		return -1;
2290 	else if (b1->root_id > b2->root_id)
2291 		return 1;
2292 
2293 	if (b1->inum < b2->inum)
2294 		return -1;
2295 	else if (b1->inum > b2->inum)
2296 		return 1;
2297 
2298 	if (b1->file_pos < b2->file_pos)
2299 		return -1;
2300 	else if (b1->file_pos > b2->file_pos)
2301 		return 1;
2302 
2303 	/*
2304 	 * [------------------------------] ===> (a range of space)
2305 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2306 	 * |<---------------------------->| ===> (fs/file tree B)
2307 	 *
2308 	 * A range of space can refer to two file extents in one tree while
2309 	 * refer to only one file extent in another tree.
2310 	 *
2311 	 * So we may process a disk offset more than one time(two extents in A)
2312 	 * and locate at the same extent(one extent in B), then insert two same
2313 	 * backrefs(both refer to the extent in B).
2314 	 */
2315 	return 0;
2316 }
2317 
2318 static void backref_insert(struct rb_root *root,
2319 			   struct sa_defrag_extent_backref *backref)
2320 {
2321 	struct rb_node **p = &root->rb_node;
2322 	struct rb_node *parent = NULL;
2323 	struct sa_defrag_extent_backref *entry;
2324 	int ret;
2325 
2326 	while (*p) {
2327 		parent = *p;
2328 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2329 
2330 		ret = backref_comp(backref, entry);
2331 		if (ret < 0)
2332 			p = &(*p)->rb_left;
2333 		else
2334 			p = &(*p)->rb_right;
2335 	}
2336 
2337 	rb_link_node(&backref->node, parent, p);
2338 	rb_insert_color(&backref->node, root);
2339 }
2340 
2341 /*
2342  * Note the backref might has changed, and in this case we just return 0.
2343  */
2344 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2345 				       void *ctx)
2346 {
2347 	struct btrfs_file_extent_item *extent;
2348 	struct old_sa_defrag_extent *old = ctx;
2349 	struct new_sa_defrag_extent *new = old->new;
2350 	struct btrfs_path *path = new->path;
2351 	struct btrfs_key key;
2352 	struct btrfs_root *root;
2353 	struct sa_defrag_extent_backref *backref;
2354 	struct extent_buffer *leaf;
2355 	struct inode *inode = new->inode;
2356 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2357 	int slot;
2358 	int ret;
2359 	u64 extent_offset;
2360 	u64 num_bytes;
2361 
2362 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2363 	    inum == btrfs_ino(BTRFS_I(inode)))
2364 		return 0;
2365 
2366 	key.objectid = root_id;
2367 	key.type = BTRFS_ROOT_ITEM_KEY;
2368 	key.offset = (u64)-1;
2369 
2370 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2371 	if (IS_ERR(root)) {
2372 		if (PTR_ERR(root) == -ENOENT)
2373 			return 0;
2374 		WARN_ON(1);
2375 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2376 			 inum, offset, root_id);
2377 		return PTR_ERR(root);
2378 	}
2379 
2380 	key.objectid = inum;
2381 	key.type = BTRFS_EXTENT_DATA_KEY;
2382 	if (offset > (u64)-1 << 32)
2383 		key.offset = 0;
2384 	else
2385 		key.offset = offset;
2386 
2387 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2388 	if (WARN_ON(ret < 0))
2389 		return ret;
2390 	ret = 0;
2391 
2392 	while (1) {
2393 		cond_resched();
2394 
2395 		leaf = path->nodes[0];
2396 		slot = path->slots[0];
2397 
2398 		if (slot >= btrfs_header_nritems(leaf)) {
2399 			ret = btrfs_next_leaf(root, path);
2400 			if (ret < 0) {
2401 				goto out;
2402 			} else if (ret > 0) {
2403 				ret = 0;
2404 				goto out;
2405 			}
2406 			continue;
2407 		}
2408 
2409 		path->slots[0]++;
2410 
2411 		btrfs_item_key_to_cpu(leaf, &key, slot);
2412 
2413 		if (key.objectid > inum)
2414 			goto out;
2415 
2416 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2417 			continue;
2418 
2419 		extent = btrfs_item_ptr(leaf, slot,
2420 					struct btrfs_file_extent_item);
2421 
2422 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2423 			continue;
2424 
2425 		/*
2426 		 * 'offset' refers to the exact key.offset,
2427 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2428 		 * (key.offset - extent_offset).
2429 		 */
2430 		if (key.offset != offset)
2431 			continue;
2432 
2433 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2434 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2435 
2436 		if (extent_offset >= old->extent_offset + old->offset +
2437 		    old->len || extent_offset + num_bytes <=
2438 		    old->extent_offset + old->offset)
2439 			continue;
2440 		break;
2441 	}
2442 
2443 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2444 	if (!backref) {
2445 		ret = -ENOENT;
2446 		goto out;
2447 	}
2448 
2449 	backref->root_id = root_id;
2450 	backref->inum = inum;
2451 	backref->file_pos = offset;
2452 	backref->num_bytes = num_bytes;
2453 	backref->extent_offset = extent_offset;
2454 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2455 	backref->old = old;
2456 	backref_insert(&new->root, backref);
2457 	old->count++;
2458 out:
2459 	btrfs_release_path(path);
2460 	WARN_ON(ret);
2461 	return ret;
2462 }
2463 
2464 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2465 				   struct new_sa_defrag_extent *new)
2466 {
2467 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2468 	struct old_sa_defrag_extent *old, *tmp;
2469 	int ret;
2470 
2471 	new->path = path;
2472 
2473 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2474 		ret = iterate_inodes_from_logical(old->bytenr +
2475 						  old->extent_offset, fs_info,
2476 						  path, record_one_backref,
2477 						  old, false);
2478 		if (ret < 0 && ret != -ENOENT)
2479 			return false;
2480 
2481 		/* no backref to be processed for this extent */
2482 		if (!old->count) {
2483 			list_del(&old->list);
2484 			kfree(old);
2485 		}
2486 	}
2487 
2488 	if (list_empty(&new->head))
2489 		return false;
2490 
2491 	return true;
2492 }
2493 
2494 static int relink_is_mergable(struct extent_buffer *leaf,
2495 			      struct btrfs_file_extent_item *fi,
2496 			      struct new_sa_defrag_extent *new)
2497 {
2498 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2499 		return 0;
2500 
2501 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2502 		return 0;
2503 
2504 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2505 		return 0;
2506 
2507 	if (btrfs_file_extent_encryption(leaf, fi) ||
2508 	    btrfs_file_extent_other_encoding(leaf, fi))
2509 		return 0;
2510 
2511 	return 1;
2512 }
2513 
2514 /*
2515  * Note the backref might has changed, and in this case we just return 0.
2516  */
2517 static noinline int relink_extent_backref(struct btrfs_path *path,
2518 				 struct sa_defrag_extent_backref *prev,
2519 				 struct sa_defrag_extent_backref *backref)
2520 {
2521 	struct btrfs_file_extent_item *extent;
2522 	struct btrfs_file_extent_item *item;
2523 	struct btrfs_ordered_extent *ordered;
2524 	struct btrfs_trans_handle *trans;
2525 	struct btrfs_root *root;
2526 	struct btrfs_key key;
2527 	struct extent_buffer *leaf;
2528 	struct old_sa_defrag_extent *old = backref->old;
2529 	struct new_sa_defrag_extent *new = old->new;
2530 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2531 	struct inode *inode;
2532 	struct extent_state *cached = NULL;
2533 	int ret = 0;
2534 	u64 start;
2535 	u64 len;
2536 	u64 lock_start;
2537 	u64 lock_end;
2538 	bool merge = false;
2539 	int index;
2540 
2541 	if (prev && prev->root_id == backref->root_id &&
2542 	    prev->inum == backref->inum &&
2543 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2544 		merge = true;
2545 
2546 	/* step 1: get root */
2547 	key.objectid = backref->root_id;
2548 	key.type = BTRFS_ROOT_ITEM_KEY;
2549 	key.offset = (u64)-1;
2550 
2551 	index = srcu_read_lock(&fs_info->subvol_srcu);
2552 
2553 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2554 	if (IS_ERR(root)) {
2555 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2556 		if (PTR_ERR(root) == -ENOENT)
2557 			return 0;
2558 		return PTR_ERR(root);
2559 	}
2560 
2561 	if (btrfs_root_readonly(root)) {
2562 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2563 		return 0;
2564 	}
2565 
2566 	/* step 2: get inode */
2567 	key.objectid = backref->inum;
2568 	key.type = BTRFS_INODE_ITEM_KEY;
2569 	key.offset = 0;
2570 
2571 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2572 	if (IS_ERR(inode)) {
2573 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2574 		return 0;
2575 	}
2576 
2577 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2578 
2579 	/* step 3: relink backref */
2580 	lock_start = backref->file_pos;
2581 	lock_end = backref->file_pos + backref->num_bytes - 1;
2582 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2583 			 &cached);
2584 
2585 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2586 	if (ordered) {
2587 		btrfs_put_ordered_extent(ordered);
2588 		goto out_unlock;
2589 	}
2590 
2591 	trans = btrfs_join_transaction(root);
2592 	if (IS_ERR(trans)) {
2593 		ret = PTR_ERR(trans);
2594 		goto out_unlock;
2595 	}
2596 
2597 	key.objectid = backref->inum;
2598 	key.type = BTRFS_EXTENT_DATA_KEY;
2599 	key.offset = backref->file_pos;
2600 
2601 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2602 	if (ret < 0) {
2603 		goto out_free_path;
2604 	} else if (ret > 0) {
2605 		ret = 0;
2606 		goto out_free_path;
2607 	}
2608 
2609 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2610 				struct btrfs_file_extent_item);
2611 
2612 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2613 	    backref->generation)
2614 		goto out_free_path;
2615 
2616 	btrfs_release_path(path);
2617 
2618 	start = backref->file_pos;
2619 	if (backref->extent_offset < old->extent_offset + old->offset)
2620 		start += old->extent_offset + old->offset -
2621 			 backref->extent_offset;
2622 
2623 	len = min(backref->extent_offset + backref->num_bytes,
2624 		  old->extent_offset + old->offset + old->len);
2625 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2626 
2627 	ret = btrfs_drop_extents(trans, root, inode, start,
2628 				 start + len, 1);
2629 	if (ret)
2630 		goto out_free_path;
2631 again:
2632 	key.objectid = btrfs_ino(BTRFS_I(inode));
2633 	key.type = BTRFS_EXTENT_DATA_KEY;
2634 	key.offset = start;
2635 
2636 	path->leave_spinning = 1;
2637 	if (merge) {
2638 		struct btrfs_file_extent_item *fi;
2639 		u64 extent_len;
2640 		struct btrfs_key found_key;
2641 
2642 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2643 		if (ret < 0)
2644 			goto out_free_path;
2645 
2646 		path->slots[0]--;
2647 		leaf = path->nodes[0];
2648 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2649 
2650 		fi = btrfs_item_ptr(leaf, path->slots[0],
2651 				    struct btrfs_file_extent_item);
2652 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2653 
2654 		if (extent_len + found_key.offset == start &&
2655 		    relink_is_mergable(leaf, fi, new)) {
2656 			btrfs_set_file_extent_num_bytes(leaf, fi,
2657 							extent_len + len);
2658 			btrfs_mark_buffer_dirty(leaf);
2659 			inode_add_bytes(inode, len);
2660 
2661 			ret = 1;
2662 			goto out_free_path;
2663 		} else {
2664 			merge = false;
2665 			btrfs_release_path(path);
2666 			goto again;
2667 		}
2668 	}
2669 
2670 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2671 					sizeof(*extent));
2672 	if (ret) {
2673 		btrfs_abort_transaction(trans, ret);
2674 		goto out_free_path;
2675 	}
2676 
2677 	leaf = path->nodes[0];
2678 	item = btrfs_item_ptr(leaf, path->slots[0],
2679 				struct btrfs_file_extent_item);
2680 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2681 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2682 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2683 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2684 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2685 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2686 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2687 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2688 	btrfs_set_file_extent_encryption(leaf, item, 0);
2689 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2690 
2691 	btrfs_mark_buffer_dirty(leaf);
2692 	inode_add_bytes(inode, len);
2693 	btrfs_release_path(path);
2694 
2695 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2696 			new->disk_len, 0,
2697 			backref->root_id, backref->inum,
2698 			new->file_pos);	/* start - extent_offset */
2699 	if (ret) {
2700 		btrfs_abort_transaction(trans, ret);
2701 		goto out_free_path;
2702 	}
2703 
2704 	ret = 1;
2705 out_free_path:
2706 	btrfs_release_path(path);
2707 	path->leave_spinning = 0;
2708 	btrfs_end_transaction(trans);
2709 out_unlock:
2710 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2711 			     &cached);
2712 	iput(inode);
2713 	return ret;
2714 }
2715 
2716 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2717 {
2718 	struct old_sa_defrag_extent *old, *tmp;
2719 
2720 	if (!new)
2721 		return;
2722 
2723 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2724 		kfree(old);
2725 	}
2726 	kfree(new);
2727 }
2728 
2729 static void relink_file_extents(struct new_sa_defrag_extent *new)
2730 {
2731 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2732 	struct btrfs_path *path;
2733 	struct sa_defrag_extent_backref *backref;
2734 	struct sa_defrag_extent_backref *prev = NULL;
2735 	struct rb_node *node;
2736 	int ret;
2737 
2738 	path = btrfs_alloc_path();
2739 	if (!path)
2740 		return;
2741 
2742 	if (!record_extent_backrefs(path, new)) {
2743 		btrfs_free_path(path);
2744 		goto out;
2745 	}
2746 	btrfs_release_path(path);
2747 
2748 	while (1) {
2749 		node = rb_first(&new->root);
2750 		if (!node)
2751 			break;
2752 		rb_erase(node, &new->root);
2753 
2754 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2755 
2756 		ret = relink_extent_backref(path, prev, backref);
2757 		WARN_ON(ret < 0);
2758 
2759 		kfree(prev);
2760 
2761 		if (ret == 1)
2762 			prev = backref;
2763 		else
2764 			prev = NULL;
2765 		cond_resched();
2766 	}
2767 	kfree(prev);
2768 
2769 	btrfs_free_path(path);
2770 out:
2771 	free_sa_defrag_extent(new);
2772 
2773 	atomic_dec(&fs_info->defrag_running);
2774 	wake_up(&fs_info->transaction_wait);
2775 }
2776 
2777 static struct new_sa_defrag_extent *
2778 record_old_file_extents(struct inode *inode,
2779 			struct btrfs_ordered_extent *ordered)
2780 {
2781 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2782 	struct btrfs_root *root = BTRFS_I(inode)->root;
2783 	struct btrfs_path *path;
2784 	struct btrfs_key key;
2785 	struct old_sa_defrag_extent *old;
2786 	struct new_sa_defrag_extent *new;
2787 	int ret;
2788 
2789 	new = kmalloc(sizeof(*new), GFP_NOFS);
2790 	if (!new)
2791 		return NULL;
2792 
2793 	new->inode = inode;
2794 	new->file_pos = ordered->file_offset;
2795 	new->len = ordered->len;
2796 	new->bytenr = ordered->start;
2797 	new->disk_len = ordered->disk_len;
2798 	new->compress_type = ordered->compress_type;
2799 	new->root = RB_ROOT;
2800 	INIT_LIST_HEAD(&new->head);
2801 
2802 	path = btrfs_alloc_path();
2803 	if (!path)
2804 		goto out_kfree;
2805 
2806 	key.objectid = btrfs_ino(BTRFS_I(inode));
2807 	key.type = BTRFS_EXTENT_DATA_KEY;
2808 	key.offset = new->file_pos;
2809 
2810 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2811 	if (ret < 0)
2812 		goto out_free_path;
2813 	if (ret > 0 && path->slots[0] > 0)
2814 		path->slots[0]--;
2815 
2816 	/* find out all the old extents for the file range */
2817 	while (1) {
2818 		struct btrfs_file_extent_item *extent;
2819 		struct extent_buffer *l;
2820 		int slot;
2821 		u64 num_bytes;
2822 		u64 offset;
2823 		u64 end;
2824 		u64 disk_bytenr;
2825 		u64 extent_offset;
2826 
2827 		l = path->nodes[0];
2828 		slot = path->slots[0];
2829 
2830 		if (slot >= btrfs_header_nritems(l)) {
2831 			ret = btrfs_next_leaf(root, path);
2832 			if (ret < 0)
2833 				goto out_free_path;
2834 			else if (ret > 0)
2835 				break;
2836 			continue;
2837 		}
2838 
2839 		btrfs_item_key_to_cpu(l, &key, slot);
2840 
2841 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2842 			break;
2843 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2844 			break;
2845 		if (key.offset >= new->file_pos + new->len)
2846 			break;
2847 
2848 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2849 
2850 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2851 		if (key.offset + num_bytes < new->file_pos)
2852 			goto next;
2853 
2854 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2855 		if (!disk_bytenr)
2856 			goto next;
2857 
2858 		extent_offset = btrfs_file_extent_offset(l, extent);
2859 
2860 		old = kmalloc(sizeof(*old), GFP_NOFS);
2861 		if (!old)
2862 			goto out_free_path;
2863 
2864 		offset = max(new->file_pos, key.offset);
2865 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2866 
2867 		old->bytenr = disk_bytenr;
2868 		old->extent_offset = extent_offset;
2869 		old->offset = offset - key.offset;
2870 		old->len = end - offset;
2871 		old->new = new;
2872 		old->count = 0;
2873 		list_add_tail(&old->list, &new->head);
2874 next:
2875 		path->slots[0]++;
2876 		cond_resched();
2877 	}
2878 
2879 	btrfs_free_path(path);
2880 	atomic_inc(&fs_info->defrag_running);
2881 
2882 	return new;
2883 
2884 out_free_path:
2885 	btrfs_free_path(path);
2886 out_kfree:
2887 	free_sa_defrag_extent(new);
2888 	return NULL;
2889 }
2890 
2891 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2892 					 u64 start, u64 len)
2893 {
2894 	struct btrfs_block_group_cache *cache;
2895 
2896 	cache = btrfs_lookup_block_group(fs_info, start);
2897 	ASSERT(cache);
2898 
2899 	spin_lock(&cache->lock);
2900 	cache->delalloc_bytes -= len;
2901 	spin_unlock(&cache->lock);
2902 
2903 	btrfs_put_block_group(cache);
2904 }
2905 
2906 /* as ordered data IO finishes, this gets called so we can finish
2907  * an ordered extent if the range of bytes in the file it covers are
2908  * fully written.
2909  */
2910 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2911 {
2912 	struct inode *inode = ordered_extent->inode;
2913 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2914 	struct btrfs_root *root = BTRFS_I(inode)->root;
2915 	struct btrfs_trans_handle *trans = NULL;
2916 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2917 	struct extent_state *cached_state = NULL;
2918 	struct new_sa_defrag_extent *new = NULL;
2919 	int compress_type = 0;
2920 	int ret = 0;
2921 	u64 logical_len = ordered_extent->len;
2922 	bool nolock;
2923 	bool truncated = false;
2924 	bool range_locked = false;
2925 	bool clear_new_delalloc_bytes = false;
2926 	bool clear_reserved_extent = true;
2927 
2928 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2929 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2930 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2931 		clear_new_delalloc_bytes = true;
2932 
2933 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2934 
2935 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2936 		ret = -EIO;
2937 		goto out;
2938 	}
2939 
2940 	btrfs_free_io_failure_record(BTRFS_I(inode),
2941 			ordered_extent->file_offset,
2942 			ordered_extent->file_offset +
2943 			ordered_extent->len - 1);
2944 
2945 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2946 		truncated = true;
2947 		logical_len = ordered_extent->truncated_len;
2948 		/* Truncated the entire extent, don't bother adding */
2949 		if (!logical_len)
2950 			goto out;
2951 	}
2952 
2953 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2954 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2955 
2956 		/*
2957 		 * For mwrite(mmap + memset to write) case, we still reserve
2958 		 * space for NOCOW range.
2959 		 * As NOCOW won't cause a new delayed ref, just free the space
2960 		 */
2961 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2962 				       ordered_extent->len);
2963 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2964 		if (nolock)
2965 			trans = btrfs_join_transaction_nolock(root);
2966 		else
2967 			trans = btrfs_join_transaction(root);
2968 		if (IS_ERR(trans)) {
2969 			ret = PTR_ERR(trans);
2970 			trans = NULL;
2971 			goto out;
2972 		}
2973 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2974 		ret = btrfs_update_inode_fallback(trans, root, inode);
2975 		if (ret) /* -ENOMEM or corruption */
2976 			btrfs_abort_transaction(trans, ret);
2977 		goto out;
2978 	}
2979 
2980 	range_locked = true;
2981 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2982 			 ordered_extent->file_offset + ordered_extent->len - 1,
2983 			 &cached_state);
2984 
2985 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2986 			ordered_extent->file_offset + ordered_extent->len - 1,
2987 			EXTENT_DEFRAG, 0, cached_state);
2988 	if (ret) {
2989 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2990 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2991 			/* the inode is shared */
2992 			new = record_old_file_extents(inode, ordered_extent);
2993 
2994 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2995 			ordered_extent->file_offset + ordered_extent->len - 1,
2996 			EXTENT_DEFRAG, 0, 0, &cached_state);
2997 	}
2998 
2999 	if (nolock)
3000 		trans = btrfs_join_transaction_nolock(root);
3001 	else
3002 		trans = btrfs_join_transaction(root);
3003 	if (IS_ERR(trans)) {
3004 		ret = PTR_ERR(trans);
3005 		trans = NULL;
3006 		goto out;
3007 	}
3008 
3009 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3010 
3011 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3012 		compress_type = ordered_extent->compress_type;
3013 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3014 		BUG_ON(compress_type);
3015 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3016 				       ordered_extent->len);
3017 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3018 						ordered_extent->file_offset,
3019 						ordered_extent->file_offset +
3020 						logical_len);
3021 	} else {
3022 		BUG_ON(root == fs_info->tree_root);
3023 		ret = insert_reserved_file_extent(trans, inode,
3024 						ordered_extent->file_offset,
3025 						ordered_extent->start,
3026 						ordered_extent->disk_len,
3027 						logical_len, logical_len,
3028 						compress_type, 0, 0,
3029 						BTRFS_FILE_EXTENT_REG);
3030 		if (!ret) {
3031 			clear_reserved_extent = false;
3032 			btrfs_release_delalloc_bytes(fs_info,
3033 						     ordered_extent->start,
3034 						     ordered_extent->disk_len);
3035 		}
3036 	}
3037 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3038 			   ordered_extent->file_offset, ordered_extent->len,
3039 			   trans->transid);
3040 	if (ret < 0) {
3041 		btrfs_abort_transaction(trans, ret);
3042 		goto out;
3043 	}
3044 
3045 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3046 	if (ret) {
3047 		btrfs_abort_transaction(trans, ret);
3048 		goto out;
3049 	}
3050 
3051 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3052 	ret = btrfs_update_inode_fallback(trans, root, inode);
3053 	if (ret) { /* -ENOMEM or corruption */
3054 		btrfs_abort_transaction(trans, ret);
3055 		goto out;
3056 	}
3057 	ret = 0;
3058 out:
3059 	if (range_locked || clear_new_delalloc_bytes) {
3060 		unsigned int clear_bits = 0;
3061 
3062 		if (range_locked)
3063 			clear_bits |= EXTENT_LOCKED;
3064 		if (clear_new_delalloc_bytes)
3065 			clear_bits |= EXTENT_DELALLOC_NEW;
3066 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3067 				 ordered_extent->file_offset,
3068 				 ordered_extent->file_offset +
3069 				 ordered_extent->len - 1,
3070 				 clear_bits,
3071 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3072 				 0, &cached_state);
3073 	}
3074 
3075 	if (trans)
3076 		btrfs_end_transaction(trans);
3077 
3078 	if (ret || truncated) {
3079 		u64 start, end;
3080 
3081 		if (truncated)
3082 			start = ordered_extent->file_offset + logical_len;
3083 		else
3084 			start = ordered_extent->file_offset;
3085 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3086 		clear_extent_uptodate(io_tree, start, end, NULL);
3087 
3088 		/* Drop the cache for the part of the extent we didn't write. */
3089 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3090 
3091 		/*
3092 		 * If the ordered extent had an IOERR or something else went
3093 		 * wrong we need to return the space for this ordered extent
3094 		 * back to the allocator.  We only free the extent in the
3095 		 * truncated case if we didn't write out the extent at all.
3096 		 *
3097 		 * If we made it past insert_reserved_file_extent before we
3098 		 * errored out then we don't need to do this as the accounting
3099 		 * has already been done.
3100 		 */
3101 		if ((ret || !logical_len) &&
3102 		    clear_reserved_extent &&
3103 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3104 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3105 			btrfs_free_reserved_extent(fs_info,
3106 						   ordered_extent->start,
3107 						   ordered_extent->disk_len, 1);
3108 	}
3109 
3110 
3111 	/*
3112 	 * This needs to be done to make sure anybody waiting knows we are done
3113 	 * updating everything for this ordered extent.
3114 	 */
3115 	btrfs_remove_ordered_extent(inode, ordered_extent);
3116 
3117 	/* for snapshot-aware defrag */
3118 	if (new) {
3119 		if (ret) {
3120 			free_sa_defrag_extent(new);
3121 			atomic_dec(&fs_info->defrag_running);
3122 		} else {
3123 			relink_file_extents(new);
3124 		}
3125 	}
3126 
3127 	/* once for us */
3128 	btrfs_put_ordered_extent(ordered_extent);
3129 	/* once for the tree */
3130 	btrfs_put_ordered_extent(ordered_extent);
3131 
3132 	/* Try to release some metadata so we don't get an OOM but don't wait */
3133 	btrfs_btree_balance_dirty_nodelay(fs_info);
3134 
3135 	return ret;
3136 }
3137 
3138 static void finish_ordered_fn(struct btrfs_work *work)
3139 {
3140 	struct btrfs_ordered_extent *ordered_extent;
3141 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3142 	btrfs_finish_ordered_io(ordered_extent);
3143 }
3144 
3145 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3146 					  u64 end, int uptodate)
3147 {
3148 	struct inode *inode = page->mapping->host;
3149 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3150 	struct btrfs_ordered_extent *ordered_extent = NULL;
3151 	struct btrfs_workqueue *wq;
3152 	btrfs_work_func_t func;
3153 
3154 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3155 
3156 	ClearPagePrivate2(page);
3157 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3158 					    end - start + 1, uptodate))
3159 		return;
3160 
3161 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3162 		wq = fs_info->endio_freespace_worker;
3163 		func = btrfs_freespace_write_helper;
3164 	} else {
3165 		wq = fs_info->endio_write_workers;
3166 		func = btrfs_endio_write_helper;
3167 	}
3168 
3169 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3170 			NULL);
3171 	btrfs_queue_work(wq, &ordered_extent->work);
3172 }
3173 
3174 static int __readpage_endio_check(struct inode *inode,
3175 				  struct btrfs_io_bio *io_bio,
3176 				  int icsum, struct page *page,
3177 				  int pgoff, u64 start, size_t len)
3178 {
3179 	char *kaddr;
3180 	u32 csum_expected;
3181 	u32 csum = ~(u32)0;
3182 
3183 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3184 
3185 	kaddr = kmap_atomic(page);
3186 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3187 	btrfs_csum_final(csum, (u8 *)&csum);
3188 	if (csum != csum_expected)
3189 		goto zeroit;
3190 
3191 	kunmap_atomic(kaddr);
3192 	return 0;
3193 zeroit:
3194 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3195 				    io_bio->mirror_num);
3196 	memset(kaddr + pgoff, 1, len);
3197 	flush_dcache_page(page);
3198 	kunmap_atomic(kaddr);
3199 	return -EIO;
3200 }
3201 
3202 /*
3203  * when reads are done, we need to check csums to verify the data is correct
3204  * if there's a match, we allow the bio to finish.  If not, the code in
3205  * extent_io.c will try to find good copies for us.
3206  */
3207 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3208 				      u64 phy_offset, struct page *page,
3209 				      u64 start, u64 end, int mirror)
3210 {
3211 	size_t offset = start - page_offset(page);
3212 	struct inode *inode = page->mapping->host;
3213 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3214 	struct btrfs_root *root = BTRFS_I(inode)->root;
3215 
3216 	if (PageChecked(page)) {
3217 		ClearPageChecked(page);
3218 		return 0;
3219 	}
3220 
3221 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3222 		return 0;
3223 
3224 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3225 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3226 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3227 		return 0;
3228 	}
3229 
3230 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3231 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3232 				      start, (size_t)(end - start + 1));
3233 }
3234 
3235 /*
3236  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3237  *
3238  * @inode: The inode we want to perform iput on
3239  *
3240  * This function uses the generic vfs_inode::i_count to track whether we should
3241  * just decrement it (in case it's > 1) or if this is the last iput then link
3242  * the inode to the delayed iput machinery. Delayed iputs are processed at
3243  * transaction commit time/superblock commit/cleaner kthread.
3244  */
3245 void btrfs_add_delayed_iput(struct inode *inode)
3246 {
3247 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3248 	struct btrfs_inode *binode = BTRFS_I(inode);
3249 
3250 	if (atomic_add_unless(&inode->i_count, -1, 1))
3251 		return;
3252 
3253 	spin_lock(&fs_info->delayed_iput_lock);
3254 	ASSERT(list_empty(&binode->delayed_iput));
3255 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3256 	spin_unlock(&fs_info->delayed_iput_lock);
3257 }
3258 
3259 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3260 {
3261 
3262 	spin_lock(&fs_info->delayed_iput_lock);
3263 	while (!list_empty(&fs_info->delayed_iputs)) {
3264 		struct btrfs_inode *inode;
3265 
3266 		inode = list_first_entry(&fs_info->delayed_iputs,
3267 				struct btrfs_inode, delayed_iput);
3268 		list_del_init(&inode->delayed_iput);
3269 		spin_unlock(&fs_info->delayed_iput_lock);
3270 		iput(&inode->vfs_inode);
3271 		spin_lock(&fs_info->delayed_iput_lock);
3272 	}
3273 	spin_unlock(&fs_info->delayed_iput_lock);
3274 }
3275 
3276 /*
3277  * This creates an orphan entry for the given inode in case something goes wrong
3278  * in the middle of an unlink.
3279  */
3280 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3281 		     struct btrfs_inode *inode)
3282 {
3283 	int ret;
3284 
3285 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3286 	if (ret && ret != -EEXIST) {
3287 		btrfs_abort_transaction(trans, ret);
3288 		return ret;
3289 	}
3290 
3291 	return 0;
3292 }
3293 
3294 /*
3295  * We have done the delete so we can go ahead and remove the orphan item for
3296  * this particular inode.
3297  */
3298 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3299 			    struct btrfs_inode *inode)
3300 {
3301 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3302 }
3303 
3304 /*
3305  * this cleans up any orphans that may be left on the list from the last use
3306  * of this root.
3307  */
3308 int btrfs_orphan_cleanup(struct btrfs_root *root)
3309 {
3310 	struct btrfs_fs_info *fs_info = root->fs_info;
3311 	struct btrfs_path *path;
3312 	struct extent_buffer *leaf;
3313 	struct btrfs_key key, found_key;
3314 	struct btrfs_trans_handle *trans;
3315 	struct inode *inode;
3316 	u64 last_objectid = 0;
3317 	int ret = 0, nr_unlink = 0;
3318 
3319 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3320 		return 0;
3321 
3322 	path = btrfs_alloc_path();
3323 	if (!path) {
3324 		ret = -ENOMEM;
3325 		goto out;
3326 	}
3327 	path->reada = READA_BACK;
3328 
3329 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3330 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3331 	key.offset = (u64)-1;
3332 
3333 	while (1) {
3334 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3335 		if (ret < 0)
3336 			goto out;
3337 
3338 		/*
3339 		 * if ret == 0 means we found what we were searching for, which
3340 		 * is weird, but possible, so only screw with path if we didn't
3341 		 * find the key and see if we have stuff that matches
3342 		 */
3343 		if (ret > 0) {
3344 			ret = 0;
3345 			if (path->slots[0] == 0)
3346 				break;
3347 			path->slots[0]--;
3348 		}
3349 
3350 		/* pull out the item */
3351 		leaf = path->nodes[0];
3352 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3353 
3354 		/* make sure the item matches what we want */
3355 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3356 			break;
3357 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3358 			break;
3359 
3360 		/* release the path since we're done with it */
3361 		btrfs_release_path(path);
3362 
3363 		/*
3364 		 * this is where we are basically btrfs_lookup, without the
3365 		 * crossing root thing.  we store the inode number in the
3366 		 * offset of the orphan item.
3367 		 */
3368 
3369 		if (found_key.offset == last_objectid) {
3370 			btrfs_err(fs_info,
3371 				  "Error removing orphan entry, stopping orphan cleanup");
3372 			ret = -EINVAL;
3373 			goto out;
3374 		}
3375 
3376 		last_objectid = found_key.offset;
3377 
3378 		found_key.objectid = found_key.offset;
3379 		found_key.type = BTRFS_INODE_ITEM_KEY;
3380 		found_key.offset = 0;
3381 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3382 		ret = PTR_ERR_OR_ZERO(inode);
3383 		if (ret && ret != -ENOENT)
3384 			goto out;
3385 
3386 		if (ret == -ENOENT && root == fs_info->tree_root) {
3387 			struct btrfs_root *dead_root;
3388 			struct btrfs_fs_info *fs_info = root->fs_info;
3389 			int is_dead_root = 0;
3390 
3391 			/*
3392 			 * this is an orphan in the tree root. Currently these
3393 			 * could come from 2 sources:
3394 			 *  a) a snapshot deletion in progress
3395 			 *  b) a free space cache inode
3396 			 * We need to distinguish those two, as the snapshot
3397 			 * orphan must not get deleted.
3398 			 * find_dead_roots already ran before us, so if this
3399 			 * is a snapshot deletion, we should find the root
3400 			 * in the dead_roots list
3401 			 */
3402 			spin_lock(&fs_info->trans_lock);
3403 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3404 					    root_list) {
3405 				if (dead_root->root_key.objectid ==
3406 				    found_key.objectid) {
3407 					is_dead_root = 1;
3408 					break;
3409 				}
3410 			}
3411 			spin_unlock(&fs_info->trans_lock);
3412 			if (is_dead_root) {
3413 				/* prevent this orphan from being found again */
3414 				key.offset = found_key.objectid - 1;
3415 				continue;
3416 			}
3417 
3418 		}
3419 
3420 		/*
3421 		 * If we have an inode with links, there are a couple of
3422 		 * possibilities. Old kernels (before v3.12) used to create an
3423 		 * orphan item for truncate indicating that there were possibly
3424 		 * extent items past i_size that needed to be deleted. In v3.12,
3425 		 * truncate was changed to update i_size in sync with the extent
3426 		 * items, but the (useless) orphan item was still created. Since
3427 		 * v4.18, we don't create the orphan item for truncate at all.
3428 		 *
3429 		 * So, this item could mean that we need to do a truncate, but
3430 		 * only if this filesystem was last used on a pre-v3.12 kernel
3431 		 * and was not cleanly unmounted. The odds of that are quite
3432 		 * slim, and it's a pain to do the truncate now, so just delete
3433 		 * the orphan item.
3434 		 *
3435 		 * It's also possible that this orphan item was supposed to be
3436 		 * deleted but wasn't. The inode number may have been reused,
3437 		 * but either way, we can delete the orphan item.
3438 		 */
3439 		if (ret == -ENOENT || inode->i_nlink) {
3440 			if (!ret)
3441 				iput(inode);
3442 			trans = btrfs_start_transaction(root, 1);
3443 			if (IS_ERR(trans)) {
3444 				ret = PTR_ERR(trans);
3445 				goto out;
3446 			}
3447 			btrfs_debug(fs_info, "auto deleting %Lu",
3448 				    found_key.objectid);
3449 			ret = btrfs_del_orphan_item(trans, root,
3450 						    found_key.objectid);
3451 			btrfs_end_transaction(trans);
3452 			if (ret)
3453 				goto out;
3454 			continue;
3455 		}
3456 
3457 		nr_unlink++;
3458 
3459 		/* this will do delete_inode and everything for us */
3460 		iput(inode);
3461 	}
3462 	/* release the path since we're done with it */
3463 	btrfs_release_path(path);
3464 
3465 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3466 
3467 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3468 		trans = btrfs_join_transaction(root);
3469 		if (!IS_ERR(trans))
3470 			btrfs_end_transaction(trans);
3471 	}
3472 
3473 	if (nr_unlink)
3474 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3475 
3476 out:
3477 	if (ret)
3478 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3479 	btrfs_free_path(path);
3480 	return ret;
3481 }
3482 
3483 /*
3484  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3485  * don't find any xattrs, we know there can't be any acls.
3486  *
3487  * slot is the slot the inode is in, objectid is the objectid of the inode
3488  */
3489 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3490 					  int slot, u64 objectid,
3491 					  int *first_xattr_slot)
3492 {
3493 	u32 nritems = btrfs_header_nritems(leaf);
3494 	struct btrfs_key found_key;
3495 	static u64 xattr_access = 0;
3496 	static u64 xattr_default = 0;
3497 	int scanned = 0;
3498 
3499 	if (!xattr_access) {
3500 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3501 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3502 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3503 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3504 	}
3505 
3506 	slot++;
3507 	*first_xattr_slot = -1;
3508 	while (slot < nritems) {
3509 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3510 
3511 		/* we found a different objectid, there must not be acls */
3512 		if (found_key.objectid != objectid)
3513 			return 0;
3514 
3515 		/* we found an xattr, assume we've got an acl */
3516 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3517 			if (*first_xattr_slot == -1)
3518 				*first_xattr_slot = slot;
3519 			if (found_key.offset == xattr_access ||
3520 			    found_key.offset == xattr_default)
3521 				return 1;
3522 		}
3523 
3524 		/*
3525 		 * we found a key greater than an xattr key, there can't
3526 		 * be any acls later on
3527 		 */
3528 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3529 			return 0;
3530 
3531 		slot++;
3532 		scanned++;
3533 
3534 		/*
3535 		 * it goes inode, inode backrefs, xattrs, extents,
3536 		 * so if there are a ton of hard links to an inode there can
3537 		 * be a lot of backrefs.  Don't waste time searching too hard,
3538 		 * this is just an optimization
3539 		 */
3540 		if (scanned >= 8)
3541 			break;
3542 	}
3543 	/* we hit the end of the leaf before we found an xattr or
3544 	 * something larger than an xattr.  We have to assume the inode
3545 	 * has acls
3546 	 */
3547 	if (*first_xattr_slot == -1)
3548 		*first_xattr_slot = slot;
3549 	return 1;
3550 }
3551 
3552 /*
3553  * read an inode from the btree into the in-memory inode
3554  */
3555 static int btrfs_read_locked_inode(struct inode *inode,
3556 				   struct btrfs_path *in_path)
3557 {
3558 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3559 	struct btrfs_path *path = in_path;
3560 	struct extent_buffer *leaf;
3561 	struct btrfs_inode_item *inode_item;
3562 	struct btrfs_root *root = BTRFS_I(inode)->root;
3563 	struct btrfs_key location;
3564 	unsigned long ptr;
3565 	int maybe_acls;
3566 	u32 rdev;
3567 	int ret;
3568 	bool filled = false;
3569 	int first_xattr_slot;
3570 
3571 	ret = btrfs_fill_inode(inode, &rdev);
3572 	if (!ret)
3573 		filled = true;
3574 
3575 	if (!path) {
3576 		path = btrfs_alloc_path();
3577 		if (!path)
3578 			return -ENOMEM;
3579 	}
3580 
3581 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3582 
3583 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3584 	if (ret) {
3585 		if (path != in_path)
3586 			btrfs_free_path(path);
3587 		return ret;
3588 	}
3589 
3590 	leaf = path->nodes[0];
3591 
3592 	if (filled)
3593 		goto cache_index;
3594 
3595 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3596 				    struct btrfs_inode_item);
3597 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3598 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3599 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3600 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3601 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3602 
3603 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3604 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3605 
3606 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3607 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3608 
3609 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3610 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3611 
3612 	BTRFS_I(inode)->i_otime.tv_sec =
3613 		btrfs_timespec_sec(leaf, &inode_item->otime);
3614 	BTRFS_I(inode)->i_otime.tv_nsec =
3615 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3616 
3617 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3618 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3619 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3620 
3621 	inode_set_iversion_queried(inode,
3622 				   btrfs_inode_sequence(leaf, inode_item));
3623 	inode->i_generation = BTRFS_I(inode)->generation;
3624 	inode->i_rdev = 0;
3625 	rdev = btrfs_inode_rdev(leaf, inode_item);
3626 
3627 	BTRFS_I(inode)->index_cnt = (u64)-1;
3628 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3629 
3630 cache_index:
3631 	/*
3632 	 * If we were modified in the current generation and evicted from memory
3633 	 * and then re-read we need to do a full sync since we don't have any
3634 	 * idea about which extents were modified before we were evicted from
3635 	 * cache.
3636 	 *
3637 	 * This is required for both inode re-read from disk and delayed inode
3638 	 * in delayed_nodes_tree.
3639 	 */
3640 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3641 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3642 			&BTRFS_I(inode)->runtime_flags);
3643 
3644 	/*
3645 	 * We don't persist the id of the transaction where an unlink operation
3646 	 * against the inode was last made. So here we assume the inode might
3647 	 * have been evicted, and therefore the exact value of last_unlink_trans
3648 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3649 	 * between the inode and its parent if the inode is fsync'ed and the log
3650 	 * replayed. For example, in the scenario:
3651 	 *
3652 	 * touch mydir/foo
3653 	 * ln mydir/foo mydir/bar
3654 	 * sync
3655 	 * unlink mydir/bar
3656 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3657 	 * xfs_io -c fsync mydir/foo
3658 	 * <power failure>
3659 	 * mount fs, triggers fsync log replay
3660 	 *
3661 	 * We must make sure that when we fsync our inode foo we also log its
3662 	 * parent inode, otherwise after log replay the parent still has the
3663 	 * dentry with the "bar" name but our inode foo has a link count of 1
3664 	 * and doesn't have an inode ref with the name "bar" anymore.
3665 	 *
3666 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3667 	 * but it guarantees correctness at the expense of occasional full
3668 	 * transaction commits on fsync if our inode is a directory, or if our
3669 	 * inode is not a directory, logging its parent unnecessarily.
3670 	 */
3671 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3672 	/*
3673 	 * Similar reasoning for last_link_trans, needs to be set otherwise
3674 	 * for a case like the following:
3675 	 *
3676 	 * mkdir A
3677 	 * touch foo
3678 	 * ln foo A/bar
3679 	 * echo 2 > /proc/sys/vm/drop_caches
3680 	 * fsync foo
3681 	 * <power failure>
3682 	 *
3683 	 * Would result in link bar and directory A not existing after the power
3684 	 * failure.
3685 	 */
3686 	BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans;
3687 
3688 	path->slots[0]++;
3689 	if (inode->i_nlink != 1 ||
3690 	    path->slots[0] >= btrfs_header_nritems(leaf))
3691 		goto cache_acl;
3692 
3693 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3694 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3695 		goto cache_acl;
3696 
3697 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3698 	if (location.type == BTRFS_INODE_REF_KEY) {
3699 		struct btrfs_inode_ref *ref;
3700 
3701 		ref = (struct btrfs_inode_ref *)ptr;
3702 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3703 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3704 		struct btrfs_inode_extref *extref;
3705 
3706 		extref = (struct btrfs_inode_extref *)ptr;
3707 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3708 								     extref);
3709 	}
3710 cache_acl:
3711 	/*
3712 	 * try to precache a NULL acl entry for files that don't have
3713 	 * any xattrs or acls
3714 	 */
3715 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3716 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3717 	if (first_xattr_slot != -1) {
3718 		path->slots[0] = first_xattr_slot;
3719 		ret = btrfs_load_inode_props(inode, path);
3720 		if (ret)
3721 			btrfs_err(fs_info,
3722 				  "error loading props for ino %llu (root %llu): %d",
3723 				  btrfs_ino(BTRFS_I(inode)),
3724 				  root->root_key.objectid, ret);
3725 	}
3726 	if (path != in_path)
3727 		btrfs_free_path(path);
3728 
3729 	if (!maybe_acls)
3730 		cache_no_acl(inode);
3731 
3732 	switch (inode->i_mode & S_IFMT) {
3733 	case S_IFREG:
3734 		inode->i_mapping->a_ops = &btrfs_aops;
3735 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3736 		inode->i_fop = &btrfs_file_operations;
3737 		inode->i_op = &btrfs_file_inode_operations;
3738 		break;
3739 	case S_IFDIR:
3740 		inode->i_fop = &btrfs_dir_file_operations;
3741 		inode->i_op = &btrfs_dir_inode_operations;
3742 		break;
3743 	case S_IFLNK:
3744 		inode->i_op = &btrfs_symlink_inode_operations;
3745 		inode_nohighmem(inode);
3746 		inode->i_mapping->a_ops = &btrfs_aops;
3747 		break;
3748 	default:
3749 		inode->i_op = &btrfs_special_inode_operations;
3750 		init_special_inode(inode, inode->i_mode, rdev);
3751 		break;
3752 	}
3753 
3754 	btrfs_sync_inode_flags_to_i_flags(inode);
3755 	return 0;
3756 }
3757 
3758 /*
3759  * given a leaf and an inode, copy the inode fields into the leaf
3760  */
3761 static void fill_inode_item(struct btrfs_trans_handle *trans,
3762 			    struct extent_buffer *leaf,
3763 			    struct btrfs_inode_item *item,
3764 			    struct inode *inode)
3765 {
3766 	struct btrfs_map_token token;
3767 
3768 	btrfs_init_map_token(&token);
3769 
3770 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3771 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3772 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3773 				   &token);
3774 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3775 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3776 
3777 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3778 				     inode->i_atime.tv_sec, &token);
3779 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3780 				      inode->i_atime.tv_nsec, &token);
3781 
3782 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3783 				     inode->i_mtime.tv_sec, &token);
3784 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3785 				      inode->i_mtime.tv_nsec, &token);
3786 
3787 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3788 				     inode->i_ctime.tv_sec, &token);
3789 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3790 				      inode->i_ctime.tv_nsec, &token);
3791 
3792 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3793 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3794 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3795 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3796 
3797 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3798 				     &token);
3799 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3800 					 &token);
3801 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3802 				       &token);
3803 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3804 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3805 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3806 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3807 }
3808 
3809 /*
3810  * copy everything in the in-memory inode into the btree.
3811  */
3812 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3813 				struct btrfs_root *root, struct inode *inode)
3814 {
3815 	struct btrfs_inode_item *inode_item;
3816 	struct btrfs_path *path;
3817 	struct extent_buffer *leaf;
3818 	int ret;
3819 
3820 	path = btrfs_alloc_path();
3821 	if (!path)
3822 		return -ENOMEM;
3823 
3824 	path->leave_spinning = 1;
3825 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3826 				 1);
3827 	if (ret) {
3828 		if (ret > 0)
3829 			ret = -ENOENT;
3830 		goto failed;
3831 	}
3832 
3833 	leaf = path->nodes[0];
3834 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3835 				    struct btrfs_inode_item);
3836 
3837 	fill_inode_item(trans, leaf, inode_item, inode);
3838 	btrfs_mark_buffer_dirty(leaf);
3839 	btrfs_set_inode_last_trans(trans, inode);
3840 	ret = 0;
3841 failed:
3842 	btrfs_free_path(path);
3843 	return ret;
3844 }
3845 
3846 /*
3847  * copy everything in the in-memory inode into the btree.
3848  */
3849 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3850 				struct btrfs_root *root, struct inode *inode)
3851 {
3852 	struct btrfs_fs_info *fs_info = root->fs_info;
3853 	int ret;
3854 
3855 	/*
3856 	 * If the inode is a free space inode, we can deadlock during commit
3857 	 * if we put it into the delayed code.
3858 	 *
3859 	 * The data relocation inode should also be directly updated
3860 	 * without delay
3861 	 */
3862 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3863 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3864 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3865 		btrfs_update_root_times(trans, root);
3866 
3867 		ret = btrfs_delayed_update_inode(trans, root, inode);
3868 		if (!ret)
3869 			btrfs_set_inode_last_trans(trans, inode);
3870 		return ret;
3871 	}
3872 
3873 	return btrfs_update_inode_item(trans, root, inode);
3874 }
3875 
3876 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3877 					 struct btrfs_root *root,
3878 					 struct inode *inode)
3879 {
3880 	int ret;
3881 
3882 	ret = btrfs_update_inode(trans, root, inode);
3883 	if (ret == -ENOSPC)
3884 		return btrfs_update_inode_item(trans, root, inode);
3885 	return ret;
3886 }
3887 
3888 /*
3889  * unlink helper that gets used here in inode.c and in the tree logging
3890  * recovery code.  It remove a link in a directory with a given name, and
3891  * also drops the back refs in the inode to the directory
3892  */
3893 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3894 				struct btrfs_root *root,
3895 				struct btrfs_inode *dir,
3896 				struct btrfs_inode *inode,
3897 				const char *name, int name_len)
3898 {
3899 	struct btrfs_fs_info *fs_info = root->fs_info;
3900 	struct btrfs_path *path;
3901 	int ret = 0;
3902 	struct extent_buffer *leaf;
3903 	struct btrfs_dir_item *di;
3904 	struct btrfs_key key;
3905 	u64 index;
3906 	u64 ino = btrfs_ino(inode);
3907 	u64 dir_ino = btrfs_ino(dir);
3908 
3909 	path = btrfs_alloc_path();
3910 	if (!path) {
3911 		ret = -ENOMEM;
3912 		goto out;
3913 	}
3914 
3915 	path->leave_spinning = 1;
3916 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3917 				    name, name_len, -1);
3918 	if (IS_ERR_OR_NULL(di)) {
3919 		ret = di ? PTR_ERR(di) : -ENOENT;
3920 		goto err;
3921 	}
3922 	leaf = path->nodes[0];
3923 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3924 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3925 	if (ret)
3926 		goto err;
3927 	btrfs_release_path(path);
3928 
3929 	/*
3930 	 * If we don't have dir index, we have to get it by looking up
3931 	 * the inode ref, since we get the inode ref, remove it directly,
3932 	 * it is unnecessary to do delayed deletion.
3933 	 *
3934 	 * But if we have dir index, needn't search inode ref to get it.
3935 	 * Since the inode ref is close to the inode item, it is better
3936 	 * that we delay to delete it, and just do this deletion when
3937 	 * we update the inode item.
3938 	 */
3939 	if (inode->dir_index) {
3940 		ret = btrfs_delayed_delete_inode_ref(inode);
3941 		if (!ret) {
3942 			index = inode->dir_index;
3943 			goto skip_backref;
3944 		}
3945 	}
3946 
3947 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3948 				  dir_ino, &index);
3949 	if (ret) {
3950 		btrfs_info(fs_info,
3951 			"failed to delete reference to %.*s, inode %llu parent %llu",
3952 			name_len, name, ino, dir_ino);
3953 		btrfs_abort_transaction(trans, ret);
3954 		goto err;
3955 	}
3956 skip_backref:
3957 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3958 	if (ret) {
3959 		btrfs_abort_transaction(trans, ret);
3960 		goto err;
3961 	}
3962 
3963 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3964 			dir_ino);
3965 	if (ret != 0 && ret != -ENOENT) {
3966 		btrfs_abort_transaction(trans, ret);
3967 		goto err;
3968 	}
3969 
3970 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3971 			index);
3972 	if (ret == -ENOENT)
3973 		ret = 0;
3974 	else if (ret)
3975 		btrfs_abort_transaction(trans, ret);
3976 err:
3977 	btrfs_free_path(path);
3978 	if (ret)
3979 		goto out;
3980 
3981 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3982 	inode_inc_iversion(&inode->vfs_inode);
3983 	inode_inc_iversion(&dir->vfs_inode);
3984 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3985 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3986 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3987 out:
3988 	return ret;
3989 }
3990 
3991 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3992 		       struct btrfs_root *root,
3993 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3994 		       const char *name, int name_len)
3995 {
3996 	int ret;
3997 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3998 	if (!ret) {
3999 		drop_nlink(&inode->vfs_inode);
4000 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4001 	}
4002 	return ret;
4003 }
4004 
4005 /*
4006  * helper to start transaction for unlink and rmdir.
4007  *
4008  * unlink and rmdir are special in btrfs, they do not always free space, so
4009  * if we cannot make our reservations the normal way try and see if there is
4010  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4011  * allow the unlink to occur.
4012  */
4013 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4014 {
4015 	struct btrfs_root *root = BTRFS_I(dir)->root;
4016 
4017 	/*
4018 	 * 1 for the possible orphan item
4019 	 * 1 for the dir item
4020 	 * 1 for the dir index
4021 	 * 1 for the inode ref
4022 	 * 1 for the inode
4023 	 */
4024 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4025 }
4026 
4027 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4028 {
4029 	struct btrfs_root *root = BTRFS_I(dir)->root;
4030 	struct btrfs_trans_handle *trans;
4031 	struct inode *inode = d_inode(dentry);
4032 	int ret;
4033 
4034 	trans = __unlink_start_trans(dir);
4035 	if (IS_ERR(trans))
4036 		return PTR_ERR(trans);
4037 
4038 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4039 			0);
4040 
4041 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4042 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4043 			dentry->d_name.len);
4044 	if (ret)
4045 		goto out;
4046 
4047 	if (inode->i_nlink == 0) {
4048 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4049 		if (ret)
4050 			goto out;
4051 	}
4052 
4053 out:
4054 	btrfs_end_transaction(trans);
4055 	btrfs_btree_balance_dirty(root->fs_info);
4056 	return ret;
4057 }
4058 
4059 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4060 			       struct inode *dir, u64 objectid,
4061 			       const char *name, int name_len)
4062 {
4063 	struct btrfs_root *root = BTRFS_I(dir)->root;
4064 	struct btrfs_path *path;
4065 	struct extent_buffer *leaf;
4066 	struct btrfs_dir_item *di;
4067 	struct btrfs_key key;
4068 	u64 index;
4069 	int ret;
4070 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4071 
4072 	path = btrfs_alloc_path();
4073 	if (!path)
4074 		return -ENOMEM;
4075 
4076 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4077 				   name, name_len, -1);
4078 	if (IS_ERR_OR_NULL(di)) {
4079 		ret = di ? PTR_ERR(di) : -ENOENT;
4080 		goto out;
4081 	}
4082 
4083 	leaf = path->nodes[0];
4084 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4085 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4086 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4087 	if (ret) {
4088 		btrfs_abort_transaction(trans, ret);
4089 		goto out;
4090 	}
4091 	btrfs_release_path(path);
4092 
4093 	ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4094 				 dir_ino, &index, name, name_len);
4095 	if (ret < 0) {
4096 		if (ret != -ENOENT) {
4097 			btrfs_abort_transaction(trans, ret);
4098 			goto out;
4099 		}
4100 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4101 						 name, name_len);
4102 		if (IS_ERR_OR_NULL(di)) {
4103 			if (!di)
4104 				ret = -ENOENT;
4105 			else
4106 				ret = PTR_ERR(di);
4107 			btrfs_abort_transaction(trans, ret);
4108 			goto out;
4109 		}
4110 
4111 		leaf = path->nodes[0];
4112 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4113 		index = key.offset;
4114 	}
4115 	btrfs_release_path(path);
4116 
4117 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4118 	if (ret) {
4119 		btrfs_abort_transaction(trans, ret);
4120 		goto out;
4121 	}
4122 
4123 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4124 	inode_inc_iversion(dir);
4125 	dir->i_mtime = dir->i_ctime = current_time(dir);
4126 	ret = btrfs_update_inode_fallback(trans, root, dir);
4127 	if (ret)
4128 		btrfs_abort_transaction(trans, ret);
4129 out:
4130 	btrfs_free_path(path);
4131 	return ret;
4132 }
4133 
4134 /*
4135  * Helper to check if the subvolume references other subvolumes or if it's
4136  * default.
4137  */
4138 static noinline int may_destroy_subvol(struct btrfs_root *root)
4139 {
4140 	struct btrfs_fs_info *fs_info = root->fs_info;
4141 	struct btrfs_path *path;
4142 	struct btrfs_dir_item *di;
4143 	struct btrfs_key key;
4144 	u64 dir_id;
4145 	int ret;
4146 
4147 	path = btrfs_alloc_path();
4148 	if (!path)
4149 		return -ENOMEM;
4150 
4151 	/* Make sure this root isn't set as the default subvol */
4152 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4153 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4154 				   dir_id, "default", 7, 0);
4155 	if (di && !IS_ERR(di)) {
4156 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4157 		if (key.objectid == root->root_key.objectid) {
4158 			ret = -EPERM;
4159 			btrfs_err(fs_info,
4160 				  "deleting default subvolume %llu is not allowed",
4161 				  key.objectid);
4162 			goto out;
4163 		}
4164 		btrfs_release_path(path);
4165 	}
4166 
4167 	key.objectid = root->root_key.objectid;
4168 	key.type = BTRFS_ROOT_REF_KEY;
4169 	key.offset = (u64)-1;
4170 
4171 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4172 	if (ret < 0)
4173 		goto out;
4174 	BUG_ON(ret == 0);
4175 
4176 	ret = 0;
4177 	if (path->slots[0] > 0) {
4178 		path->slots[0]--;
4179 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4180 		if (key.objectid == root->root_key.objectid &&
4181 		    key.type == BTRFS_ROOT_REF_KEY)
4182 			ret = -ENOTEMPTY;
4183 	}
4184 out:
4185 	btrfs_free_path(path);
4186 	return ret;
4187 }
4188 
4189 /* Delete all dentries for inodes belonging to the root */
4190 static void btrfs_prune_dentries(struct btrfs_root *root)
4191 {
4192 	struct btrfs_fs_info *fs_info = root->fs_info;
4193 	struct rb_node *node;
4194 	struct rb_node *prev;
4195 	struct btrfs_inode *entry;
4196 	struct inode *inode;
4197 	u64 objectid = 0;
4198 
4199 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4200 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4201 
4202 	spin_lock(&root->inode_lock);
4203 again:
4204 	node = root->inode_tree.rb_node;
4205 	prev = NULL;
4206 	while (node) {
4207 		prev = node;
4208 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4209 
4210 		if (objectid < btrfs_ino(entry))
4211 			node = node->rb_left;
4212 		else if (objectid > btrfs_ino(entry))
4213 			node = node->rb_right;
4214 		else
4215 			break;
4216 	}
4217 	if (!node) {
4218 		while (prev) {
4219 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4220 			if (objectid <= btrfs_ino(entry)) {
4221 				node = prev;
4222 				break;
4223 			}
4224 			prev = rb_next(prev);
4225 		}
4226 	}
4227 	while (node) {
4228 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4229 		objectid = btrfs_ino(entry) + 1;
4230 		inode = igrab(&entry->vfs_inode);
4231 		if (inode) {
4232 			spin_unlock(&root->inode_lock);
4233 			if (atomic_read(&inode->i_count) > 1)
4234 				d_prune_aliases(inode);
4235 			/*
4236 			 * btrfs_drop_inode will have it removed from the inode
4237 			 * cache when its usage count hits zero.
4238 			 */
4239 			iput(inode);
4240 			cond_resched();
4241 			spin_lock(&root->inode_lock);
4242 			goto again;
4243 		}
4244 
4245 		if (cond_resched_lock(&root->inode_lock))
4246 			goto again;
4247 
4248 		node = rb_next(node);
4249 	}
4250 	spin_unlock(&root->inode_lock);
4251 }
4252 
4253 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4254 {
4255 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4256 	struct btrfs_root *root = BTRFS_I(dir)->root;
4257 	struct inode *inode = d_inode(dentry);
4258 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4259 	struct btrfs_trans_handle *trans;
4260 	struct btrfs_block_rsv block_rsv;
4261 	u64 root_flags;
4262 	int ret;
4263 	int err;
4264 
4265 	/*
4266 	 * Don't allow to delete a subvolume with send in progress. This is
4267 	 * inside the inode lock so the error handling that has to drop the bit
4268 	 * again is not run concurrently.
4269 	 */
4270 	spin_lock(&dest->root_item_lock);
4271 	if (dest->send_in_progress) {
4272 		spin_unlock(&dest->root_item_lock);
4273 		btrfs_warn(fs_info,
4274 			   "attempt to delete subvolume %llu during send",
4275 			   dest->root_key.objectid);
4276 		return -EPERM;
4277 	}
4278 	root_flags = btrfs_root_flags(&dest->root_item);
4279 	btrfs_set_root_flags(&dest->root_item,
4280 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4281 	spin_unlock(&dest->root_item_lock);
4282 
4283 	down_write(&fs_info->subvol_sem);
4284 
4285 	err = may_destroy_subvol(dest);
4286 	if (err)
4287 		goto out_up_write;
4288 
4289 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4290 	/*
4291 	 * One for dir inode,
4292 	 * two for dir entries,
4293 	 * two for root ref/backref.
4294 	 */
4295 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4296 	if (err)
4297 		goto out_up_write;
4298 
4299 	trans = btrfs_start_transaction(root, 0);
4300 	if (IS_ERR(trans)) {
4301 		err = PTR_ERR(trans);
4302 		goto out_release;
4303 	}
4304 	trans->block_rsv = &block_rsv;
4305 	trans->bytes_reserved = block_rsv.size;
4306 
4307 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4308 
4309 	ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4310 				  dentry->d_name.name, dentry->d_name.len);
4311 	if (ret) {
4312 		err = ret;
4313 		btrfs_abort_transaction(trans, ret);
4314 		goto out_end_trans;
4315 	}
4316 
4317 	btrfs_record_root_in_trans(trans, dest);
4318 
4319 	memset(&dest->root_item.drop_progress, 0,
4320 		sizeof(dest->root_item.drop_progress));
4321 	dest->root_item.drop_level = 0;
4322 	btrfs_set_root_refs(&dest->root_item, 0);
4323 
4324 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4325 		ret = btrfs_insert_orphan_item(trans,
4326 					fs_info->tree_root,
4327 					dest->root_key.objectid);
4328 		if (ret) {
4329 			btrfs_abort_transaction(trans, ret);
4330 			err = ret;
4331 			goto out_end_trans;
4332 		}
4333 	}
4334 
4335 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4336 				  BTRFS_UUID_KEY_SUBVOL,
4337 				  dest->root_key.objectid);
4338 	if (ret && ret != -ENOENT) {
4339 		btrfs_abort_transaction(trans, ret);
4340 		err = ret;
4341 		goto out_end_trans;
4342 	}
4343 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4344 		ret = btrfs_uuid_tree_remove(trans,
4345 					  dest->root_item.received_uuid,
4346 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4347 					  dest->root_key.objectid);
4348 		if (ret && ret != -ENOENT) {
4349 			btrfs_abort_transaction(trans, ret);
4350 			err = ret;
4351 			goto out_end_trans;
4352 		}
4353 	}
4354 
4355 out_end_trans:
4356 	trans->block_rsv = NULL;
4357 	trans->bytes_reserved = 0;
4358 	ret = btrfs_end_transaction(trans);
4359 	if (ret && !err)
4360 		err = ret;
4361 	inode->i_flags |= S_DEAD;
4362 out_release:
4363 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4364 out_up_write:
4365 	up_write(&fs_info->subvol_sem);
4366 	if (err) {
4367 		spin_lock(&dest->root_item_lock);
4368 		root_flags = btrfs_root_flags(&dest->root_item);
4369 		btrfs_set_root_flags(&dest->root_item,
4370 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4371 		spin_unlock(&dest->root_item_lock);
4372 	} else {
4373 		d_invalidate(dentry);
4374 		btrfs_prune_dentries(dest);
4375 		ASSERT(dest->send_in_progress == 0);
4376 
4377 		/* the last ref */
4378 		if (dest->ino_cache_inode) {
4379 			iput(dest->ino_cache_inode);
4380 			dest->ino_cache_inode = NULL;
4381 		}
4382 	}
4383 
4384 	return err;
4385 }
4386 
4387 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4388 {
4389 	struct inode *inode = d_inode(dentry);
4390 	int err = 0;
4391 	struct btrfs_root *root = BTRFS_I(dir)->root;
4392 	struct btrfs_trans_handle *trans;
4393 	u64 last_unlink_trans;
4394 
4395 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4396 		return -ENOTEMPTY;
4397 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4398 		return btrfs_delete_subvolume(dir, dentry);
4399 
4400 	trans = __unlink_start_trans(dir);
4401 	if (IS_ERR(trans))
4402 		return PTR_ERR(trans);
4403 
4404 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4405 		err = btrfs_unlink_subvol(trans, dir,
4406 					  BTRFS_I(inode)->location.objectid,
4407 					  dentry->d_name.name,
4408 					  dentry->d_name.len);
4409 		goto out;
4410 	}
4411 
4412 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4413 	if (err)
4414 		goto out;
4415 
4416 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4417 
4418 	/* now the directory is empty */
4419 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4420 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4421 			dentry->d_name.len);
4422 	if (!err) {
4423 		btrfs_i_size_write(BTRFS_I(inode), 0);
4424 		/*
4425 		 * Propagate the last_unlink_trans value of the deleted dir to
4426 		 * its parent directory. This is to prevent an unrecoverable
4427 		 * log tree in the case we do something like this:
4428 		 * 1) create dir foo
4429 		 * 2) create snapshot under dir foo
4430 		 * 3) delete the snapshot
4431 		 * 4) rmdir foo
4432 		 * 5) mkdir foo
4433 		 * 6) fsync foo or some file inside foo
4434 		 */
4435 		if (last_unlink_trans >= trans->transid)
4436 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4437 	}
4438 out:
4439 	btrfs_end_transaction(trans);
4440 	btrfs_btree_balance_dirty(root->fs_info);
4441 
4442 	return err;
4443 }
4444 
4445 /*
4446  * Return this if we need to call truncate_block for the last bit of the
4447  * truncate.
4448  */
4449 #define NEED_TRUNCATE_BLOCK 1
4450 
4451 /*
4452  * this can truncate away extent items, csum items and directory items.
4453  * It starts at a high offset and removes keys until it can't find
4454  * any higher than new_size
4455  *
4456  * csum items that cross the new i_size are truncated to the new size
4457  * as well.
4458  *
4459  * min_type is the minimum key type to truncate down to.  If set to 0, this
4460  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4461  */
4462 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4463 			       struct btrfs_root *root,
4464 			       struct inode *inode,
4465 			       u64 new_size, u32 min_type)
4466 {
4467 	struct btrfs_fs_info *fs_info = root->fs_info;
4468 	struct btrfs_path *path;
4469 	struct extent_buffer *leaf;
4470 	struct btrfs_file_extent_item *fi;
4471 	struct btrfs_key key;
4472 	struct btrfs_key found_key;
4473 	u64 extent_start = 0;
4474 	u64 extent_num_bytes = 0;
4475 	u64 extent_offset = 0;
4476 	u64 item_end = 0;
4477 	u64 last_size = new_size;
4478 	u32 found_type = (u8)-1;
4479 	int found_extent;
4480 	int del_item;
4481 	int pending_del_nr = 0;
4482 	int pending_del_slot = 0;
4483 	int extent_type = -1;
4484 	int ret;
4485 	u64 ino = btrfs_ino(BTRFS_I(inode));
4486 	u64 bytes_deleted = 0;
4487 	bool be_nice = false;
4488 	bool should_throttle = false;
4489 
4490 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4491 
4492 	/*
4493 	 * for non-free space inodes and ref cows, we want to back off from
4494 	 * time to time
4495 	 */
4496 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4497 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4498 		be_nice = true;
4499 
4500 	path = btrfs_alloc_path();
4501 	if (!path)
4502 		return -ENOMEM;
4503 	path->reada = READA_BACK;
4504 
4505 	/*
4506 	 * We want to drop from the next block forward in case this new size is
4507 	 * not block aligned since we will be keeping the last block of the
4508 	 * extent just the way it is.
4509 	 */
4510 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4511 	    root == fs_info->tree_root)
4512 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4513 					fs_info->sectorsize),
4514 					(u64)-1, 0);
4515 
4516 	/*
4517 	 * This function is also used to drop the items in the log tree before
4518 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4519 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4520 	 * items.
4521 	 */
4522 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4523 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4524 
4525 	key.objectid = ino;
4526 	key.offset = (u64)-1;
4527 	key.type = (u8)-1;
4528 
4529 search_again:
4530 	/*
4531 	 * with a 16K leaf size and 128MB extents, you can actually queue
4532 	 * up a huge file in a single leaf.  Most of the time that
4533 	 * bytes_deleted is > 0, it will be huge by the time we get here
4534 	 */
4535 	if (be_nice && bytes_deleted > SZ_32M &&
4536 	    btrfs_should_end_transaction(trans)) {
4537 		ret = -EAGAIN;
4538 		goto out;
4539 	}
4540 
4541 	path->leave_spinning = 1;
4542 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4543 	if (ret < 0)
4544 		goto out;
4545 
4546 	if (ret > 0) {
4547 		ret = 0;
4548 		/* there are no items in the tree for us to truncate, we're
4549 		 * done
4550 		 */
4551 		if (path->slots[0] == 0)
4552 			goto out;
4553 		path->slots[0]--;
4554 	}
4555 
4556 	while (1) {
4557 		fi = NULL;
4558 		leaf = path->nodes[0];
4559 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4560 		found_type = found_key.type;
4561 
4562 		if (found_key.objectid != ino)
4563 			break;
4564 
4565 		if (found_type < min_type)
4566 			break;
4567 
4568 		item_end = found_key.offset;
4569 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4570 			fi = btrfs_item_ptr(leaf, path->slots[0],
4571 					    struct btrfs_file_extent_item);
4572 			extent_type = btrfs_file_extent_type(leaf, fi);
4573 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4574 				item_end +=
4575 				    btrfs_file_extent_num_bytes(leaf, fi);
4576 
4577 				trace_btrfs_truncate_show_fi_regular(
4578 					BTRFS_I(inode), leaf, fi,
4579 					found_key.offset);
4580 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4581 				item_end += btrfs_file_extent_ram_bytes(leaf,
4582 									fi);
4583 
4584 				trace_btrfs_truncate_show_fi_inline(
4585 					BTRFS_I(inode), leaf, fi, path->slots[0],
4586 					found_key.offset);
4587 			}
4588 			item_end--;
4589 		}
4590 		if (found_type > min_type) {
4591 			del_item = 1;
4592 		} else {
4593 			if (item_end < new_size)
4594 				break;
4595 			if (found_key.offset >= new_size)
4596 				del_item = 1;
4597 			else
4598 				del_item = 0;
4599 		}
4600 		found_extent = 0;
4601 		/* FIXME, shrink the extent if the ref count is only 1 */
4602 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4603 			goto delete;
4604 
4605 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4606 			u64 num_dec;
4607 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4608 			if (!del_item) {
4609 				u64 orig_num_bytes =
4610 					btrfs_file_extent_num_bytes(leaf, fi);
4611 				extent_num_bytes = ALIGN(new_size -
4612 						found_key.offset,
4613 						fs_info->sectorsize);
4614 				btrfs_set_file_extent_num_bytes(leaf, fi,
4615 							 extent_num_bytes);
4616 				num_dec = (orig_num_bytes -
4617 					   extent_num_bytes);
4618 				if (test_bit(BTRFS_ROOT_REF_COWS,
4619 					     &root->state) &&
4620 				    extent_start != 0)
4621 					inode_sub_bytes(inode, num_dec);
4622 				btrfs_mark_buffer_dirty(leaf);
4623 			} else {
4624 				extent_num_bytes =
4625 					btrfs_file_extent_disk_num_bytes(leaf,
4626 									 fi);
4627 				extent_offset = found_key.offset -
4628 					btrfs_file_extent_offset(leaf, fi);
4629 
4630 				/* FIXME blocksize != 4096 */
4631 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4632 				if (extent_start != 0) {
4633 					found_extent = 1;
4634 					if (test_bit(BTRFS_ROOT_REF_COWS,
4635 						     &root->state))
4636 						inode_sub_bytes(inode, num_dec);
4637 				}
4638 			}
4639 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4640 			/*
4641 			 * we can't truncate inline items that have had
4642 			 * special encodings
4643 			 */
4644 			if (!del_item &&
4645 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4646 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4647 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4648 				u32 size = (u32)(new_size - found_key.offset);
4649 
4650 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4651 				size = btrfs_file_extent_calc_inline_size(size);
4652 				btrfs_truncate_item(root->fs_info, path, size, 1);
4653 			} else if (!del_item) {
4654 				/*
4655 				 * We have to bail so the last_size is set to
4656 				 * just before this extent.
4657 				 */
4658 				ret = NEED_TRUNCATE_BLOCK;
4659 				break;
4660 			}
4661 
4662 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4663 				inode_sub_bytes(inode, item_end + 1 - new_size);
4664 		}
4665 delete:
4666 		if (del_item)
4667 			last_size = found_key.offset;
4668 		else
4669 			last_size = new_size;
4670 		if (del_item) {
4671 			if (!pending_del_nr) {
4672 				/* no pending yet, add ourselves */
4673 				pending_del_slot = path->slots[0];
4674 				pending_del_nr = 1;
4675 			} else if (pending_del_nr &&
4676 				   path->slots[0] + 1 == pending_del_slot) {
4677 				/* hop on the pending chunk */
4678 				pending_del_nr++;
4679 				pending_del_slot = path->slots[0];
4680 			} else {
4681 				BUG();
4682 			}
4683 		} else {
4684 			break;
4685 		}
4686 		should_throttle = false;
4687 
4688 		if (found_extent &&
4689 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4690 		     root == fs_info->tree_root)) {
4691 			btrfs_set_path_blocking(path);
4692 			bytes_deleted += extent_num_bytes;
4693 			ret = btrfs_free_extent(trans, root, extent_start,
4694 						extent_num_bytes, 0,
4695 						btrfs_header_owner(leaf),
4696 						ino, extent_offset);
4697 			if (ret) {
4698 				btrfs_abort_transaction(trans, ret);
4699 				break;
4700 			}
4701 			if (be_nice) {
4702 				if (btrfs_should_throttle_delayed_refs(trans))
4703 					should_throttle = true;
4704 			}
4705 		}
4706 
4707 		if (found_type == BTRFS_INODE_ITEM_KEY)
4708 			break;
4709 
4710 		if (path->slots[0] == 0 ||
4711 		    path->slots[0] != pending_del_slot ||
4712 		    should_throttle) {
4713 			if (pending_del_nr) {
4714 				ret = btrfs_del_items(trans, root, path,
4715 						pending_del_slot,
4716 						pending_del_nr);
4717 				if (ret) {
4718 					btrfs_abort_transaction(trans, ret);
4719 					break;
4720 				}
4721 				pending_del_nr = 0;
4722 			}
4723 			btrfs_release_path(path);
4724 
4725 			/*
4726 			 * We can generate a lot of delayed refs, so we need to
4727 			 * throttle every once and a while and make sure we're
4728 			 * adding enough space to keep up with the work we are
4729 			 * generating.  Since we hold a transaction here we
4730 			 * can't flush, and we don't want to FLUSH_LIMIT because
4731 			 * we could have generated too many delayed refs to
4732 			 * actually allocate, so just bail if we're short and
4733 			 * let the normal reservation dance happen higher up.
4734 			 */
4735 			if (should_throttle) {
4736 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4737 							BTRFS_RESERVE_NO_FLUSH);
4738 				if (ret) {
4739 					ret = -EAGAIN;
4740 					break;
4741 				}
4742 			}
4743 			goto search_again;
4744 		} else {
4745 			path->slots[0]--;
4746 		}
4747 	}
4748 out:
4749 	if (ret >= 0 && pending_del_nr) {
4750 		int err;
4751 
4752 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4753 				      pending_del_nr);
4754 		if (err) {
4755 			btrfs_abort_transaction(trans, err);
4756 			ret = err;
4757 		}
4758 	}
4759 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4760 		ASSERT(last_size >= new_size);
4761 		if (!ret && last_size > new_size)
4762 			last_size = new_size;
4763 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4764 	}
4765 
4766 	btrfs_free_path(path);
4767 	return ret;
4768 }
4769 
4770 /*
4771  * btrfs_truncate_block - read, zero a chunk and write a block
4772  * @inode - inode that we're zeroing
4773  * @from - the offset to start zeroing
4774  * @len - the length to zero, 0 to zero the entire range respective to the
4775  *	offset
4776  * @front - zero up to the offset instead of from the offset on
4777  *
4778  * This will find the block for the "from" offset and cow the block and zero the
4779  * part we want to zero.  This is used with truncate and hole punching.
4780  */
4781 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4782 			int front)
4783 {
4784 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4785 	struct address_space *mapping = inode->i_mapping;
4786 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4787 	struct btrfs_ordered_extent *ordered;
4788 	struct extent_state *cached_state = NULL;
4789 	struct extent_changeset *data_reserved = NULL;
4790 	char *kaddr;
4791 	u32 blocksize = fs_info->sectorsize;
4792 	pgoff_t index = from >> PAGE_SHIFT;
4793 	unsigned offset = from & (blocksize - 1);
4794 	struct page *page;
4795 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4796 	int ret = 0;
4797 	u64 block_start;
4798 	u64 block_end;
4799 
4800 	if (IS_ALIGNED(offset, blocksize) &&
4801 	    (!len || IS_ALIGNED(len, blocksize)))
4802 		goto out;
4803 
4804 	block_start = round_down(from, blocksize);
4805 	block_end = block_start + blocksize - 1;
4806 
4807 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4808 					   block_start, blocksize);
4809 	if (ret)
4810 		goto out;
4811 
4812 again:
4813 	page = find_or_create_page(mapping, index, mask);
4814 	if (!page) {
4815 		btrfs_delalloc_release_space(inode, data_reserved,
4816 					     block_start, blocksize, true);
4817 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4818 		ret = -ENOMEM;
4819 		goto out;
4820 	}
4821 
4822 	if (!PageUptodate(page)) {
4823 		ret = btrfs_readpage(NULL, page);
4824 		lock_page(page);
4825 		if (page->mapping != mapping) {
4826 			unlock_page(page);
4827 			put_page(page);
4828 			goto again;
4829 		}
4830 		if (!PageUptodate(page)) {
4831 			ret = -EIO;
4832 			goto out_unlock;
4833 		}
4834 	}
4835 	wait_on_page_writeback(page);
4836 
4837 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4838 	set_page_extent_mapped(page);
4839 
4840 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4841 	if (ordered) {
4842 		unlock_extent_cached(io_tree, block_start, block_end,
4843 				     &cached_state);
4844 		unlock_page(page);
4845 		put_page(page);
4846 		btrfs_start_ordered_extent(inode, ordered, 1);
4847 		btrfs_put_ordered_extent(ordered);
4848 		goto again;
4849 	}
4850 
4851 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4852 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4853 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4854 			  0, 0, &cached_state);
4855 
4856 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4857 					&cached_state, 0);
4858 	if (ret) {
4859 		unlock_extent_cached(io_tree, block_start, block_end,
4860 				     &cached_state);
4861 		goto out_unlock;
4862 	}
4863 
4864 	if (offset != blocksize) {
4865 		if (!len)
4866 			len = blocksize - offset;
4867 		kaddr = kmap(page);
4868 		if (front)
4869 			memset(kaddr + (block_start - page_offset(page)),
4870 				0, offset);
4871 		else
4872 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4873 				0, len);
4874 		flush_dcache_page(page);
4875 		kunmap(page);
4876 	}
4877 	ClearPageChecked(page);
4878 	set_page_dirty(page);
4879 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4880 
4881 out_unlock:
4882 	if (ret)
4883 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4884 					     blocksize, true);
4885 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4886 	unlock_page(page);
4887 	put_page(page);
4888 out:
4889 	extent_changeset_free(data_reserved);
4890 	return ret;
4891 }
4892 
4893 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4894 			     u64 offset, u64 len)
4895 {
4896 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4897 	struct btrfs_trans_handle *trans;
4898 	int ret;
4899 
4900 	/*
4901 	 * Still need to make sure the inode looks like it's been updated so
4902 	 * that any holes get logged if we fsync.
4903 	 */
4904 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4905 		BTRFS_I(inode)->last_trans = fs_info->generation;
4906 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4907 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4908 		return 0;
4909 	}
4910 
4911 	/*
4912 	 * 1 - for the one we're dropping
4913 	 * 1 - for the one we're adding
4914 	 * 1 - for updating the inode.
4915 	 */
4916 	trans = btrfs_start_transaction(root, 3);
4917 	if (IS_ERR(trans))
4918 		return PTR_ERR(trans);
4919 
4920 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4921 	if (ret) {
4922 		btrfs_abort_transaction(trans, ret);
4923 		btrfs_end_transaction(trans);
4924 		return ret;
4925 	}
4926 
4927 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4928 			offset, 0, 0, len, 0, len, 0, 0, 0);
4929 	if (ret)
4930 		btrfs_abort_transaction(trans, ret);
4931 	else
4932 		btrfs_update_inode(trans, root, inode);
4933 	btrfs_end_transaction(trans);
4934 	return ret;
4935 }
4936 
4937 /*
4938  * This function puts in dummy file extents for the area we're creating a hole
4939  * for.  So if we are truncating this file to a larger size we need to insert
4940  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4941  * the range between oldsize and size
4942  */
4943 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4944 {
4945 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4946 	struct btrfs_root *root = BTRFS_I(inode)->root;
4947 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4948 	struct extent_map *em = NULL;
4949 	struct extent_state *cached_state = NULL;
4950 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4951 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4952 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4953 	u64 last_byte;
4954 	u64 cur_offset;
4955 	u64 hole_size;
4956 	int err = 0;
4957 
4958 	/*
4959 	 * If our size started in the middle of a block we need to zero out the
4960 	 * rest of the block before we expand the i_size, otherwise we could
4961 	 * expose stale data.
4962 	 */
4963 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4964 	if (err)
4965 		return err;
4966 
4967 	if (size <= hole_start)
4968 		return 0;
4969 
4970 	while (1) {
4971 		struct btrfs_ordered_extent *ordered;
4972 
4973 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4974 				 &cached_state);
4975 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4976 						     block_end - hole_start);
4977 		if (!ordered)
4978 			break;
4979 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4980 				     &cached_state);
4981 		btrfs_start_ordered_extent(inode, ordered, 1);
4982 		btrfs_put_ordered_extent(ordered);
4983 	}
4984 
4985 	cur_offset = hole_start;
4986 	while (1) {
4987 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4988 				block_end - cur_offset, 0);
4989 		if (IS_ERR(em)) {
4990 			err = PTR_ERR(em);
4991 			em = NULL;
4992 			break;
4993 		}
4994 		last_byte = min(extent_map_end(em), block_end);
4995 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4996 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4997 			struct extent_map *hole_em;
4998 			hole_size = last_byte - cur_offset;
4999 
5000 			err = maybe_insert_hole(root, inode, cur_offset,
5001 						hole_size);
5002 			if (err)
5003 				break;
5004 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5005 						cur_offset + hole_size - 1, 0);
5006 			hole_em = alloc_extent_map();
5007 			if (!hole_em) {
5008 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5009 					&BTRFS_I(inode)->runtime_flags);
5010 				goto next;
5011 			}
5012 			hole_em->start = cur_offset;
5013 			hole_em->len = hole_size;
5014 			hole_em->orig_start = cur_offset;
5015 
5016 			hole_em->block_start = EXTENT_MAP_HOLE;
5017 			hole_em->block_len = 0;
5018 			hole_em->orig_block_len = 0;
5019 			hole_em->ram_bytes = hole_size;
5020 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5021 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5022 			hole_em->generation = fs_info->generation;
5023 
5024 			while (1) {
5025 				write_lock(&em_tree->lock);
5026 				err = add_extent_mapping(em_tree, hole_em, 1);
5027 				write_unlock(&em_tree->lock);
5028 				if (err != -EEXIST)
5029 					break;
5030 				btrfs_drop_extent_cache(BTRFS_I(inode),
5031 							cur_offset,
5032 							cur_offset +
5033 							hole_size - 1, 0);
5034 			}
5035 			free_extent_map(hole_em);
5036 		}
5037 next:
5038 		free_extent_map(em);
5039 		em = NULL;
5040 		cur_offset = last_byte;
5041 		if (cur_offset >= block_end)
5042 			break;
5043 	}
5044 	free_extent_map(em);
5045 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5046 	return err;
5047 }
5048 
5049 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5050 {
5051 	struct btrfs_root *root = BTRFS_I(inode)->root;
5052 	struct btrfs_trans_handle *trans;
5053 	loff_t oldsize = i_size_read(inode);
5054 	loff_t newsize = attr->ia_size;
5055 	int mask = attr->ia_valid;
5056 	int ret;
5057 
5058 	/*
5059 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5060 	 * special case where we need to update the times despite not having
5061 	 * these flags set.  For all other operations the VFS set these flags
5062 	 * explicitly if it wants a timestamp update.
5063 	 */
5064 	if (newsize != oldsize) {
5065 		inode_inc_iversion(inode);
5066 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5067 			inode->i_ctime = inode->i_mtime =
5068 				current_time(inode);
5069 	}
5070 
5071 	if (newsize > oldsize) {
5072 		/*
5073 		 * Don't do an expanding truncate while snapshotting is ongoing.
5074 		 * This is to ensure the snapshot captures a fully consistent
5075 		 * state of this file - if the snapshot captures this expanding
5076 		 * truncation, it must capture all writes that happened before
5077 		 * this truncation.
5078 		 */
5079 		btrfs_wait_for_snapshot_creation(root);
5080 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5081 		if (ret) {
5082 			btrfs_end_write_no_snapshotting(root);
5083 			return ret;
5084 		}
5085 
5086 		trans = btrfs_start_transaction(root, 1);
5087 		if (IS_ERR(trans)) {
5088 			btrfs_end_write_no_snapshotting(root);
5089 			return PTR_ERR(trans);
5090 		}
5091 
5092 		i_size_write(inode, newsize);
5093 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5094 		pagecache_isize_extended(inode, oldsize, newsize);
5095 		ret = btrfs_update_inode(trans, root, inode);
5096 		btrfs_end_write_no_snapshotting(root);
5097 		btrfs_end_transaction(trans);
5098 	} else {
5099 
5100 		/*
5101 		 * We're truncating a file that used to have good data down to
5102 		 * zero. Make sure it gets into the ordered flush list so that
5103 		 * any new writes get down to disk quickly.
5104 		 */
5105 		if (newsize == 0)
5106 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5107 				&BTRFS_I(inode)->runtime_flags);
5108 
5109 		truncate_setsize(inode, newsize);
5110 
5111 		/* Disable nonlocked read DIO to avoid the endless truncate */
5112 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5113 		inode_dio_wait(inode);
5114 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5115 
5116 		ret = btrfs_truncate(inode, newsize == oldsize);
5117 		if (ret && inode->i_nlink) {
5118 			int err;
5119 
5120 			/*
5121 			 * Truncate failed, so fix up the in-memory size. We
5122 			 * adjusted disk_i_size down as we removed extents, so
5123 			 * wait for disk_i_size to be stable and then update the
5124 			 * in-memory size to match.
5125 			 */
5126 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5127 			if (err)
5128 				return err;
5129 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5130 		}
5131 	}
5132 
5133 	return ret;
5134 }
5135 
5136 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5137 {
5138 	struct inode *inode = d_inode(dentry);
5139 	struct btrfs_root *root = BTRFS_I(inode)->root;
5140 	int err;
5141 
5142 	if (btrfs_root_readonly(root))
5143 		return -EROFS;
5144 
5145 	err = setattr_prepare(dentry, attr);
5146 	if (err)
5147 		return err;
5148 
5149 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5150 		err = btrfs_setsize(inode, attr);
5151 		if (err)
5152 			return err;
5153 	}
5154 
5155 	if (attr->ia_valid) {
5156 		setattr_copy(inode, attr);
5157 		inode_inc_iversion(inode);
5158 		err = btrfs_dirty_inode(inode);
5159 
5160 		if (!err && attr->ia_valid & ATTR_MODE)
5161 			err = posix_acl_chmod(inode, inode->i_mode);
5162 	}
5163 
5164 	return err;
5165 }
5166 
5167 /*
5168  * While truncating the inode pages during eviction, we get the VFS calling
5169  * btrfs_invalidatepage() against each page of the inode. This is slow because
5170  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5171  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5172  * extent_state structures over and over, wasting lots of time.
5173  *
5174  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5175  * those expensive operations on a per page basis and do only the ordered io
5176  * finishing, while we release here the extent_map and extent_state structures,
5177  * without the excessive merging and splitting.
5178  */
5179 static void evict_inode_truncate_pages(struct inode *inode)
5180 {
5181 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5182 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5183 	struct rb_node *node;
5184 
5185 	ASSERT(inode->i_state & I_FREEING);
5186 	truncate_inode_pages_final(&inode->i_data);
5187 
5188 	write_lock(&map_tree->lock);
5189 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5190 		struct extent_map *em;
5191 
5192 		node = rb_first_cached(&map_tree->map);
5193 		em = rb_entry(node, struct extent_map, rb_node);
5194 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5195 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5196 		remove_extent_mapping(map_tree, em);
5197 		free_extent_map(em);
5198 		if (need_resched()) {
5199 			write_unlock(&map_tree->lock);
5200 			cond_resched();
5201 			write_lock(&map_tree->lock);
5202 		}
5203 	}
5204 	write_unlock(&map_tree->lock);
5205 
5206 	/*
5207 	 * Keep looping until we have no more ranges in the io tree.
5208 	 * We can have ongoing bios started by readpages (called from readahead)
5209 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5210 	 * still in progress (unlocked the pages in the bio but did not yet
5211 	 * unlocked the ranges in the io tree). Therefore this means some
5212 	 * ranges can still be locked and eviction started because before
5213 	 * submitting those bios, which are executed by a separate task (work
5214 	 * queue kthread), inode references (inode->i_count) were not taken
5215 	 * (which would be dropped in the end io callback of each bio).
5216 	 * Therefore here we effectively end up waiting for those bios and
5217 	 * anyone else holding locked ranges without having bumped the inode's
5218 	 * reference count - if we don't do it, when they access the inode's
5219 	 * io_tree to unlock a range it may be too late, leading to an
5220 	 * use-after-free issue.
5221 	 */
5222 	spin_lock(&io_tree->lock);
5223 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5224 		struct extent_state *state;
5225 		struct extent_state *cached_state = NULL;
5226 		u64 start;
5227 		u64 end;
5228 		unsigned state_flags;
5229 
5230 		node = rb_first(&io_tree->state);
5231 		state = rb_entry(node, struct extent_state, rb_node);
5232 		start = state->start;
5233 		end = state->end;
5234 		state_flags = state->state;
5235 		spin_unlock(&io_tree->lock);
5236 
5237 		lock_extent_bits(io_tree, start, end, &cached_state);
5238 
5239 		/*
5240 		 * If still has DELALLOC flag, the extent didn't reach disk,
5241 		 * and its reserved space won't be freed by delayed_ref.
5242 		 * So we need to free its reserved space here.
5243 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5244 		 *
5245 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5246 		 */
5247 		if (state_flags & EXTENT_DELALLOC)
5248 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5249 
5250 		clear_extent_bit(io_tree, start, end,
5251 				 EXTENT_LOCKED | EXTENT_DIRTY |
5252 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5253 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5254 
5255 		cond_resched();
5256 		spin_lock(&io_tree->lock);
5257 	}
5258 	spin_unlock(&io_tree->lock);
5259 }
5260 
5261 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5262 							struct btrfs_block_rsv *rsv)
5263 {
5264 	struct btrfs_fs_info *fs_info = root->fs_info;
5265 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5266 	int failures = 0;
5267 
5268 	for (;;) {
5269 		struct btrfs_trans_handle *trans;
5270 		int ret;
5271 
5272 		ret = btrfs_block_rsv_refill(root, rsv, rsv->size,
5273 					     BTRFS_RESERVE_FLUSH_LIMIT);
5274 
5275 		if (ret && ++failures > 2) {
5276 			btrfs_warn(fs_info,
5277 				   "could not allocate space for a delete; will truncate on mount");
5278 			return ERR_PTR(-ENOSPC);
5279 		}
5280 
5281 		trans = btrfs_join_transaction(root);
5282 		if (IS_ERR(trans) || !ret)
5283 			return trans;
5284 
5285 		/*
5286 		 * Try to steal from the global reserve if there is space for
5287 		 * it.
5288 		 */
5289 		if (!btrfs_check_space_for_delayed_refs(fs_info) &&
5290 		    !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0))
5291 			return trans;
5292 
5293 		/* If not, commit and try again. */
5294 		ret = btrfs_commit_transaction(trans);
5295 		if (ret)
5296 			return ERR_PTR(ret);
5297 	}
5298 }
5299 
5300 void btrfs_evict_inode(struct inode *inode)
5301 {
5302 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5303 	struct btrfs_trans_handle *trans;
5304 	struct btrfs_root *root = BTRFS_I(inode)->root;
5305 	struct btrfs_block_rsv *rsv;
5306 	int ret;
5307 
5308 	trace_btrfs_inode_evict(inode);
5309 
5310 	if (!root) {
5311 		clear_inode(inode);
5312 		return;
5313 	}
5314 
5315 	evict_inode_truncate_pages(inode);
5316 
5317 	if (inode->i_nlink &&
5318 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5319 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5320 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5321 		goto no_delete;
5322 
5323 	if (is_bad_inode(inode))
5324 		goto no_delete;
5325 
5326 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5327 
5328 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5329 		goto no_delete;
5330 
5331 	if (inode->i_nlink > 0) {
5332 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5333 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5334 		goto no_delete;
5335 	}
5336 
5337 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5338 	if (ret)
5339 		goto no_delete;
5340 
5341 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5342 	if (!rsv)
5343 		goto no_delete;
5344 	rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5345 	rsv->failfast = 1;
5346 
5347 	btrfs_i_size_write(BTRFS_I(inode), 0);
5348 
5349 	while (1) {
5350 		trans = evict_refill_and_join(root, rsv);
5351 		if (IS_ERR(trans))
5352 			goto free_rsv;
5353 
5354 		trans->block_rsv = rsv;
5355 
5356 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5357 		trans->block_rsv = &fs_info->trans_block_rsv;
5358 		btrfs_end_transaction(trans);
5359 		btrfs_btree_balance_dirty(fs_info);
5360 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5361 			goto free_rsv;
5362 		else if (!ret)
5363 			break;
5364 	}
5365 
5366 	/*
5367 	 * Errors here aren't a big deal, it just means we leave orphan items in
5368 	 * the tree. They will be cleaned up on the next mount. If the inode
5369 	 * number gets reused, cleanup deletes the orphan item without doing
5370 	 * anything, and unlink reuses the existing orphan item.
5371 	 *
5372 	 * If it turns out that we are dropping too many of these, we might want
5373 	 * to add a mechanism for retrying these after a commit.
5374 	 */
5375 	trans = evict_refill_and_join(root, rsv);
5376 	if (!IS_ERR(trans)) {
5377 		trans->block_rsv = rsv;
5378 		btrfs_orphan_del(trans, BTRFS_I(inode));
5379 		trans->block_rsv = &fs_info->trans_block_rsv;
5380 		btrfs_end_transaction(trans);
5381 	}
5382 
5383 	if (!(root == fs_info->tree_root ||
5384 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5385 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5386 
5387 free_rsv:
5388 	btrfs_free_block_rsv(fs_info, rsv);
5389 no_delete:
5390 	/*
5391 	 * If we didn't successfully delete, the orphan item will still be in
5392 	 * the tree and we'll retry on the next mount. Again, we might also want
5393 	 * to retry these periodically in the future.
5394 	 */
5395 	btrfs_remove_delayed_node(BTRFS_I(inode));
5396 	clear_inode(inode);
5397 }
5398 
5399 /*
5400  * this returns the key found in the dir entry in the location pointer.
5401  * If no dir entries were found, returns -ENOENT.
5402  * If found a corrupted location in dir entry, returns -EUCLEAN.
5403  */
5404 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5405 			       struct btrfs_key *location)
5406 {
5407 	const char *name = dentry->d_name.name;
5408 	int namelen = dentry->d_name.len;
5409 	struct btrfs_dir_item *di;
5410 	struct btrfs_path *path;
5411 	struct btrfs_root *root = BTRFS_I(dir)->root;
5412 	int ret = 0;
5413 
5414 	path = btrfs_alloc_path();
5415 	if (!path)
5416 		return -ENOMEM;
5417 
5418 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5419 			name, namelen, 0);
5420 	if (IS_ERR_OR_NULL(di)) {
5421 		ret = di ? PTR_ERR(di) : -ENOENT;
5422 		goto out;
5423 	}
5424 
5425 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5426 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5427 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5428 		ret = -EUCLEAN;
5429 		btrfs_warn(root->fs_info,
5430 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5431 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5432 			   location->objectid, location->type, location->offset);
5433 	}
5434 out:
5435 	btrfs_free_path(path);
5436 	return ret;
5437 }
5438 
5439 /*
5440  * when we hit a tree root in a directory, the btrfs part of the inode
5441  * needs to be changed to reflect the root directory of the tree root.  This
5442  * is kind of like crossing a mount point.
5443  */
5444 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5445 				    struct inode *dir,
5446 				    struct dentry *dentry,
5447 				    struct btrfs_key *location,
5448 				    struct btrfs_root **sub_root)
5449 {
5450 	struct btrfs_path *path;
5451 	struct btrfs_root *new_root;
5452 	struct btrfs_root_ref *ref;
5453 	struct extent_buffer *leaf;
5454 	struct btrfs_key key;
5455 	int ret;
5456 	int err = 0;
5457 
5458 	path = btrfs_alloc_path();
5459 	if (!path) {
5460 		err = -ENOMEM;
5461 		goto out;
5462 	}
5463 
5464 	err = -ENOENT;
5465 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5466 	key.type = BTRFS_ROOT_REF_KEY;
5467 	key.offset = location->objectid;
5468 
5469 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5470 	if (ret) {
5471 		if (ret < 0)
5472 			err = ret;
5473 		goto out;
5474 	}
5475 
5476 	leaf = path->nodes[0];
5477 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5478 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5479 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5480 		goto out;
5481 
5482 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5483 				   (unsigned long)(ref + 1),
5484 				   dentry->d_name.len);
5485 	if (ret)
5486 		goto out;
5487 
5488 	btrfs_release_path(path);
5489 
5490 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5491 	if (IS_ERR(new_root)) {
5492 		err = PTR_ERR(new_root);
5493 		goto out;
5494 	}
5495 
5496 	*sub_root = new_root;
5497 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5498 	location->type = BTRFS_INODE_ITEM_KEY;
5499 	location->offset = 0;
5500 	err = 0;
5501 out:
5502 	btrfs_free_path(path);
5503 	return err;
5504 }
5505 
5506 static void inode_tree_add(struct inode *inode)
5507 {
5508 	struct btrfs_root *root = BTRFS_I(inode)->root;
5509 	struct btrfs_inode *entry;
5510 	struct rb_node **p;
5511 	struct rb_node *parent;
5512 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5513 	u64 ino = btrfs_ino(BTRFS_I(inode));
5514 
5515 	if (inode_unhashed(inode))
5516 		return;
5517 	parent = NULL;
5518 	spin_lock(&root->inode_lock);
5519 	p = &root->inode_tree.rb_node;
5520 	while (*p) {
5521 		parent = *p;
5522 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5523 
5524 		if (ino < btrfs_ino(entry))
5525 			p = &parent->rb_left;
5526 		else if (ino > btrfs_ino(entry))
5527 			p = &parent->rb_right;
5528 		else {
5529 			WARN_ON(!(entry->vfs_inode.i_state &
5530 				  (I_WILL_FREE | I_FREEING)));
5531 			rb_replace_node(parent, new, &root->inode_tree);
5532 			RB_CLEAR_NODE(parent);
5533 			spin_unlock(&root->inode_lock);
5534 			return;
5535 		}
5536 	}
5537 	rb_link_node(new, parent, p);
5538 	rb_insert_color(new, &root->inode_tree);
5539 	spin_unlock(&root->inode_lock);
5540 }
5541 
5542 static void inode_tree_del(struct inode *inode)
5543 {
5544 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5545 	struct btrfs_root *root = BTRFS_I(inode)->root;
5546 	int empty = 0;
5547 
5548 	spin_lock(&root->inode_lock);
5549 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5550 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5551 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5552 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5553 	}
5554 	spin_unlock(&root->inode_lock);
5555 
5556 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5557 		synchronize_srcu(&fs_info->subvol_srcu);
5558 		spin_lock(&root->inode_lock);
5559 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5560 		spin_unlock(&root->inode_lock);
5561 		if (empty)
5562 			btrfs_add_dead_root(root);
5563 	}
5564 }
5565 
5566 
5567 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5568 {
5569 	struct btrfs_iget_args *args = p;
5570 	inode->i_ino = args->location->objectid;
5571 	memcpy(&BTRFS_I(inode)->location, args->location,
5572 	       sizeof(*args->location));
5573 	BTRFS_I(inode)->root = args->root;
5574 	return 0;
5575 }
5576 
5577 static int btrfs_find_actor(struct inode *inode, void *opaque)
5578 {
5579 	struct btrfs_iget_args *args = opaque;
5580 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5581 		args->root == BTRFS_I(inode)->root;
5582 }
5583 
5584 static struct inode *btrfs_iget_locked(struct super_block *s,
5585 				       struct btrfs_key *location,
5586 				       struct btrfs_root *root)
5587 {
5588 	struct inode *inode;
5589 	struct btrfs_iget_args args;
5590 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5591 
5592 	args.location = location;
5593 	args.root = root;
5594 
5595 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5596 			     btrfs_init_locked_inode,
5597 			     (void *)&args);
5598 	return inode;
5599 }
5600 
5601 /* Get an inode object given its location and corresponding root.
5602  * Returns in *is_new if the inode was read from disk
5603  */
5604 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5605 			      struct btrfs_root *root, int *new,
5606 			      struct btrfs_path *path)
5607 {
5608 	struct inode *inode;
5609 
5610 	inode = btrfs_iget_locked(s, location, root);
5611 	if (!inode)
5612 		return ERR_PTR(-ENOMEM);
5613 
5614 	if (inode->i_state & I_NEW) {
5615 		int ret;
5616 
5617 		ret = btrfs_read_locked_inode(inode, path);
5618 		if (!ret) {
5619 			inode_tree_add(inode);
5620 			unlock_new_inode(inode);
5621 			if (new)
5622 				*new = 1;
5623 		} else {
5624 			iget_failed(inode);
5625 			/*
5626 			 * ret > 0 can come from btrfs_search_slot called by
5627 			 * btrfs_read_locked_inode, this means the inode item
5628 			 * was not found.
5629 			 */
5630 			if (ret > 0)
5631 				ret = -ENOENT;
5632 			inode = ERR_PTR(ret);
5633 		}
5634 	}
5635 
5636 	return inode;
5637 }
5638 
5639 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5640 			 struct btrfs_root *root, int *new)
5641 {
5642 	return btrfs_iget_path(s, location, root, new, NULL);
5643 }
5644 
5645 static struct inode *new_simple_dir(struct super_block *s,
5646 				    struct btrfs_key *key,
5647 				    struct btrfs_root *root)
5648 {
5649 	struct inode *inode = new_inode(s);
5650 
5651 	if (!inode)
5652 		return ERR_PTR(-ENOMEM);
5653 
5654 	BTRFS_I(inode)->root = root;
5655 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5656 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5657 
5658 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5659 	inode->i_op = &btrfs_dir_ro_inode_operations;
5660 	inode->i_opflags &= ~IOP_XATTR;
5661 	inode->i_fop = &simple_dir_operations;
5662 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5663 	inode->i_mtime = current_time(inode);
5664 	inode->i_atime = inode->i_mtime;
5665 	inode->i_ctime = inode->i_mtime;
5666 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5667 
5668 	return inode;
5669 }
5670 
5671 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5672 {
5673 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5674 	struct inode *inode;
5675 	struct btrfs_root *root = BTRFS_I(dir)->root;
5676 	struct btrfs_root *sub_root = root;
5677 	struct btrfs_key location;
5678 	int index;
5679 	int ret = 0;
5680 
5681 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5682 		return ERR_PTR(-ENAMETOOLONG);
5683 
5684 	ret = btrfs_inode_by_name(dir, dentry, &location);
5685 	if (ret < 0)
5686 		return ERR_PTR(ret);
5687 
5688 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5689 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5690 		return inode;
5691 	}
5692 
5693 	index = srcu_read_lock(&fs_info->subvol_srcu);
5694 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5695 				       &location, &sub_root);
5696 	if (ret < 0) {
5697 		if (ret != -ENOENT)
5698 			inode = ERR_PTR(ret);
5699 		else
5700 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5701 	} else {
5702 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5703 	}
5704 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5705 
5706 	if (!IS_ERR(inode) && root != sub_root) {
5707 		down_read(&fs_info->cleanup_work_sem);
5708 		if (!sb_rdonly(inode->i_sb))
5709 			ret = btrfs_orphan_cleanup(sub_root);
5710 		up_read(&fs_info->cleanup_work_sem);
5711 		if (ret) {
5712 			iput(inode);
5713 			inode = ERR_PTR(ret);
5714 		}
5715 	}
5716 
5717 	return inode;
5718 }
5719 
5720 static int btrfs_dentry_delete(const struct dentry *dentry)
5721 {
5722 	struct btrfs_root *root;
5723 	struct inode *inode = d_inode(dentry);
5724 
5725 	if (!inode && !IS_ROOT(dentry))
5726 		inode = d_inode(dentry->d_parent);
5727 
5728 	if (inode) {
5729 		root = BTRFS_I(inode)->root;
5730 		if (btrfs_root_refs(&root->root_item) == 0)
5731 			return 1;
5732 
5733 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5734 			return 1;
5735 	}
5736 	return 0;
5737 }
5738 
5739 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5740 				   unsigned int flags)
5741 {
5742 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5743 
5744 	if (inode == ERR_PTR(-ENOENT))
5745 		inode = NULL;
5746 	return d_splice_alias(inode, dentry);
5747 }
5748 
5749 unsigned char btrfs_filetype_table[] = {
5750 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5751 };
5752 
5753 /*
5754  * All this infrastructure exists because dir_emit can fault, and we are holding
5755  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5756  * our information into that, and then dir_emit from the buffer.  This is
5757  * similar to what NFS does, only we don't keep the buffer around in pagecache
5758  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5759  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5760  * tree lock.
5761  */
5762 static int btrfs_opendir(struct inode *inode, struct file *file)
5763 {
5764 	struct btrfs_file_private *private;
5765 
5766 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5767 	if (!private)
5768 		return -ENOMEM;
5769 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5770 	if (!private->filldir_buf) {
5771 		kfree(private);
5772 		return -ENOMEM;
5773 	}
5774 	file->private_data = private;
5775 	return 0;
5776 }
5777 
5778 struct dir_entry {
5779 	u64 ino;
5780 	u64 offset;
5781 	unsigned type;
5782 	int name_len;
5783 };
5784 
5785 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5786 {
5787 	while (entries--) {
5788 		struct dir_entry *entry = addr;
5789 		char *name = (char *)(entry + 1);
5790 
5791 		ctx->pos = get_unaligned(&entry->offset);
5792 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5793 					 get_unaligned(&entry->ino),
5794 					 get_unaligned(&entry->type)))
5795 			return 1;
5796 		addr += sizeof(struct dir_entry) +
5797 			get_unaligned(&entry->name_len);
5798 		ctx->pos++;
5799 	}
5800 	return 0;
5801 }
5802 
5803 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5804 {
5805 	struct inode *inode = file_inode(file);
5806 	struct btrfs_root *root = BTRFS_I(inode)->root;
5807 	struct btrfs_file_private *private = file->private_data;
5808 	struct btrfs_dir_item *di;
5809 	struct btrfs_key key;
5810 	struct btrfs_key found_key;
5811 	struct btrfs_path *path;
5812 	void *addr;
5813 	struct list_head ins_list;
5814 	struct list_head del_list;
5815 	int ret;
5816 	struct extent_buffer *leaf;
5817 	int slot;
5818 	char *name_ptr;
5819 	int name_len;
5820 	int entries = 0;
5821 	int total_len = 0;
5822 	bool put = false;
5823 	struct btrfs_key location;
5824 
5825 	if (!dir_emit_dots(file, ctx))
5826 		return 0;
5827 
5828 	path = btrfs_alloc_path();
5829 	if (!path)
5830 		return -ENOMEM;
5831 
5832 	addr = private->filldir_buf;
5833 	path->reada = READA_FORWARD;
5834 
5835 	INIT_LIST_HEAD(&ins_list);
5836 	INIT_LIST_HEAD(&del_list);
5837 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5838 
5839 again:
5840 	key.type = BTRFS_DIR_INDEX_KEY;
5841 	key.offset = ctx->pos;
5842 	key.objectid = btrfs_ino(BTRFS_I(inode));
5843 
5844 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5845 	if (ret < 0)
5846 		goto err;
5847 
5848 	while (1) {
5849 		struct dir_entry *entry;
5850 
5851 		leaf = path->nodes[0];
5852 		slot = path->slots[0];
5853 		if (slot >= btrfs_header_nritems(leaf)) {
5854 			ret = btrfs_next_leaf(root, path);
5855 			if (ret < 0)
5856 				goto err;
5857 			else if (ret > 0)
5858 				break;
5859 			continue;
5860 		}
5861 
5862 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5863 
5864 		if (found_key.objectid != key.objectid)
5865 			break;
5866 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5867 			break;
5868 		if (found_key.offset < ctx->pos)
5869 			goto next;
5870 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5871 			goto next;
5872 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5873 		name_len = btrfs_dir_name_len(leaf, di);
5874 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5875 		    PAGE_SIZE) {
5876 			btrfs_release_path(path);
5877 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5878 			if (ret)
5879 				goto nopos;
5880 			addr = private->filldir_buf;
5881 			entries = 0;
5882 			total_len = 0;
5883 			goto again;
5884 		}
5885 
5886 		entry = addr;
5887 		put_unaligned(name_len, &entry->name_len);
5888 		name_ptr = (char *)(entry + 1);
5889 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5890 				   name_len);
5891 		put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5892 				&entry->type);
5893 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5894 		put_unaligned(location.objectid, &entry->ino);
5895 		put_unaligned(found_key.offset, &entry->offset);
5896 		entries++;
5897 		addr += sizeof(struct dir_entry) + name_len;
5898 		total_len += sizeof(struct dir_entry) + name_len;
5899 next:
5900 		path->slots[0]++;
5901 	}
5902 	btrfs_release_path(path);
5903 
5904 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5905 	if (ret)
5906 		goto nopos;
5907 
5908 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5909 	if (ret)
5910 		goto nopos;
5911 
5912 	/*
5913 	 * Stop new entries from being returned after we return the last
5914 	 * entry.
5915 	 *
5916 	 * New directory entries are assigned a strictly increasing
5917 	 * offset.  This means that new entries created during readdir
5918 	 * are *guaranteed* to be seen in the future by that readdir.
5919 	 * This has broken buggy programs which operate on names as
5920 	 * they're returned by readdir.  Until we re-use freed offsets
5921 	 * we have this hack to stop new entries from being returned
5922 	 * under the assumption that they'll never reach this huge
5923 	 * offset.
5924 	 *
5925 	 * This is being careful not to overflow 32bit loff_t unless the
5926 	 * last entry requires it because doing so has broken 32bit apps
5927 	 * in the past.
5928 	 */
5929 	if (ctx->pos >= INT_MAX)
5930 		ctx->pos = LLONG_MAX;
5931 	else
5932 		ctx->pos = INT_MAX;
5933 nopos:
5934 	ret = 0;
5935 err:
5936 	if (put)
5937 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5938 	btrfs_free_path(path);
5939 	return ret;
5940 }
5941 
5942 /*
5943  * This is somewhat expensive, updating the tree every time the
5944  * inode changes.  But, it is most likely to find the inode in cache.
5945  * FIXME, needs more benchmarking...there are no reasons other than performance
5946  * to keep or drop this code.
5947  */
5948 static int btrfs_dirty_inode(struct inode *inode)
5949 {
5950 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5951 	struct btrfs_root *root = BTRFS_I(inode)->root;
5952 	struct btrfs_trans_handle *trans;
5953 	int ret;
5954 
5955 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5956 		return 0;
5957 
5958 	trans = btrfs_join_transaction(root);
5959 	if (IS_ERR(trans))
5960 		return PTR_ERR(trans);
5961 
5962 	ret = btrfs_update_inode(trans, root, inode);
5963 	if (ret && ret == -ENOSPC) {
5964 		/* whoops, lets try again with the full transaction */
5965 		btrfs_end_transaction(trans);
5966 		trans = btrfs_start_transaction(root, 1);
5967 		if (IS_ERR(trans))
5968 			return PTR_ERR(trans);
5969 
5970 		ret = btrfs_update_inode(trans, root, inode);
5971 	}
5972 	btrfs_end_transaction(trans);
5973 	if (BTRFS_I(inode)->delayed_node)
5974 		btrfs_balance_delayed_items(fs_info);
5975 
5976 	return ret;
5977 }
5978 
5979 /*
5980  * This is a copy of file_update_time.  We need this so we can return error on
5981  * ENOSPC for updating the inode in the case of file write and mmap writes.
5982  */
5983 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5984 			     int flags)
5985 {
5986 	struct btrfs_root *root = BTRFS_I(inode)->root;
5987 	bool dirty = flags & ~S_VERSION;
5988 
5989 	if (btrfs_root_readonly(root))
5990 		return -EROFS;
5991 
5992 	if (flags & S_VERSION)
5993 		dirty |= inode_maybe_inc_iversion(inode, dirty);
5994 	if (flags & S_CTIME)
5995 		inode->i_ctime = *now;
5996 	if (flags & S_MTIME)
5997 		inode->i_mtime = *now;
5998 	if (flags & S_ATIME)
5999 		inode->i_atime = *now;
6000 	return dirty ? btrfs_dirty_inode(inode) : 0;
6001 }
6002 
6003 /*
6004  * find the highest existing sequence number in a directory
6005  * and then set the in-memory index_cnt variable to reflect
6006  * free sequence numbers
6007  */
6008 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6009 {
6010 	struct btrfs_root *root = inode->root;
6011 	struct btrfs_key key, found_key;
6012 	struct btrfs_path *path;
6013 	struct extent_buffer *leaf;
6014 	int ret;
6015 
6016 	key.objectid = btrfs_ino(inode);
6017 	key.type = BTRFS_DIR_INDEX_KEY;
6018 	key.offset = (u64)-1;
6019 
6020 	path = btrfs_alloc_path();
6021 	if (!path)
6022 		return -ENOMEM;
6023 
6024 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6025 	if (ret < 0)
6026 		goto out;
6027 	/* FIXME: we should be able to handle this */
6028 	if (ret == 0)
6029 		goto out;
6030 	ret = 0;
6031 
6032 	/*
6033 	 * MAGIC NUMBER EXPLANATION:
6034 	 * since we search a directory based on f_pos we have to start at 2
6035 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6036 	 * else has to start at 2
6037 	 */
6038 	if (path->slots[0] == 0) {
6039 		inode->index_cnt = 2;
6040 		goto out;
6041 	}
6042 
6043 	path->slots[0]--;
6044 
6045 	leaf = path->nodes[0];
6046 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6047 
6048 	if (found_key.objectid != btrfs_ino(inode) ||
6049 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6050 		inode->index_cnt = 2;
6051 		goto out;
6052 	}
6053 
6054 	inode->index_cnt = found_key.offset + 1;
6055 out:
6056 	btrfs_free_path(path);
6057 	return ret;
6058 }
6059 
6060 /*
6061  * helper to find a free sequence number in a given directory.  This current
6062  * code is very simple, later versions will do smarter things in the btree
6063  */
6064 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6065 {
6066 	int ret = 0;
6067 
6068 	if (dir->index_cnt == (u64)-1) {
6069 		ret = btrfs_inode_delayed_dir_index_count(dir);
6070 		if (ret) {
6071 			ret = btrfs_set_inode_index_count(dir);
6072 			if (ret)
6073 				return ret;
6074 		}
6075 	}
6076 
6077 	*index = dir->index_cnt;
6078 	dir->index_cnt++;
6079 
6080 	return ret;
6081 }
6082 
6083 static int btrfs_insert_inode_locked(struct inode *inode)
6084 {
6085 	struct btrfs_iget_args args;
6086 	args.location = &BTRFS_I(inode)->location;
6087 	args.root = BTRFS_I(inode)->root;
6088 
6089 	return insert_inode_locked4(inode,
6090 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6091 		   btrfs_find_actor, &args);
6092 }
6093 
6094 /*
6095  * Inherit flags from the parent inode.
6096  *
6097  * Currently only the compression flags and the cow flags are inherited.
6098  */
6099 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6100 {
6101 	unsigned int flags;
6102 
6103 	if (!dir)
6104 		return;
6105 
6106 	flags = BTRFS_I(dir)->flags;
6107 
6108 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6109 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6110 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6111 	} else if (flags & BTRFS_INODE_COMPRESS) {
6112 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6113 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6114 	}
6115 
6116 	if (flags & BTRFS_INODE_NODATACOW) {
6117 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6118 		if (S_ISREG(inode->i_mode))
6119 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6120 	}
6121 
6122 	btrfs_sync_inode_flags_to_i_flags(inode);
6123 }
6124 
6125 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6126 				     struct btrfs_root *root,
6127 				     struct inode *dir,
6128 				     const char *name, int name_len,
6129 				     u64 ref_objectid, u64 objectid,
6130 				     umode_t mode, u64 *index)
6131 {
6132 	struct btrfs_fs_info *fs_info = root->fs_info;
6133 	struct inode *inode;
6134 	struct btrfs_inode_item *inode_item;
6135 	struct btrfs_key *location;
6136 	struct btrfs_path *path;
6137 	struct btrfs_inode_ref *ref;
6138 	struct btrfs_key key[2];
6139 	u32 sizes[2];
6140 	int nitems = name ? 2 : 1;
6141 	unsigned long ptr;
6142 	int ret;
6143 
6144 	path = btrfs_alloc_path();
6145 	if (!path)
6146 		return ERR_PTR(-ENOMEM);
6147 
6148 	inode = new_inode(fs_info->sb);
6149 	if (!inode) {
6150 		btrfs_free_path(path);
6151 		return ERR_PTR(-ENOMEM);
6152 	}
6153 
6154 	/*
6155 	 * O_TMPFILE, set link count to 0, so that after this point,
6156 	 * we fill in an inode item with the correct link count.
6157 	 */
6158 	if (!name)
6159 		set_nlink(inode, 0);
6160 
6161 	/*
6162 	 * we have to initialize this early, so we can reclaim the inode
6163 	 * number if we fail afterwards in this function.
6164 	 */
6165 	inode->i_ino = objectid;
6166 
6167 	if (dir && name) {
6168 		trace_btrfs_inode_request(dir);
6169 
6170 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6171 		if (ret) {
6172 			btrfs_free_path(path);
6173 			iput(inode);
6174 			return ERR_PTR(ret);
6175 		}
6176 	} else if (dir) {
6177 		*index = 0;
6178 	}
6179 	/*
6180 	 * index_cnt is ignored for everything but a dir,
6181 	 * btrfs_set_inode_index_count has an explanation for the magic
6182 	 * number
6183 	 */
6184 	BTRFS_I(inode)->index_cnt = 2;
6185 	BTRFS_I(inode)->dir_index = *index;
6186 	BTRFS_I(inode)->root = root;
6187 	BTRFS_I(inode)->generation = trans->transid;
6188 	inode->i_generation = BTRFS_I(inode)->generation;
6189 
6190 	/*
6191 	 * We could have gotten an inode number from somebody who was fsynced
6192 	 * and then removed in this same transaction, so let's just set full
6193 	 * sync since it will be a full sync anyway and this will blow away the
6194 	 * old info in the log.
6195 	 */
6196 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6197 
6198 	key[0].objectid = objectid;
6199 	key[0].type = BTRFS_INODE_ITEM_KEY;
6200 	key[0].offset = 0;
6201 
6202 	sizes[0] = sizeof(struct btrfs_inode_item);
6203 
6204 	if (name) {
6205 		/*
6206 		 * Start new inodes with an inode_ref. This is slightly more
6207 		 * efficient for small numbers of hard links since they will
6208 		 * be packed into one item. Extended refs will kick in if we
6209 		 * add more hard links than can fit in the ref item.
6210 		 */
6211 		key[1].objectid = objectid;
6212 		key[1].type = BTRFS_INODE_REF_KEY;
6213 		key[1].offset = ref_objectid;
6214 
6215 		sizes[1] = name_len + sizeof(*ref);
6216 	}
6217 
6218 	location = &BTRFS_I(inode)->location;
6219 	location->objectid = objectid;
6220 	location->offset = 0;
6221 	location->type = BTRFS_INODE_ITEM_KEY;
6222 
6223 	ret = btrfs_insert_inode_locked(inode);
6224 	if (ret < 0) {
6225 		iput(inode);
6226 		goto fail;
6227 	}
6228 
6229 	path->leave_spinning = 1;
6230 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6231 	if (ret != 0)
6232 		goto fail_unlock;
6233 
6234 	inode_init_owner(inode, dir, mode);
6235 	inode_set_bytes(inode, 0);
6236 
6237 	inode->i_mtime = current_time(inode);
6238 	inode->i_atime = inode->i_mtime;
6239 	inode->i_ctime = inode->i_mtime;
6240 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6241 
6242 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6243 				  struct btrfs_inode_item);
6244 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6245 			     sizeof(*inode_item));
6246 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6247 
6248 	if (name) {
6249 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6250 				     struct btrfs_inode_ref);
6251 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6252 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6253 		ptr = (unsigned long)(ref + 1);
6254 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6255 	}
6256 
6257 	btrfs_mark_buffer_dirty(path->nodes[0]);
6258 	btrfs_free_path(path);
6259 
6260 	btrfs_inherit_iflags(inode, dir);
6261 
6262 	if (S_ISREG(mode)) {
6263 		if (btrfs_test_opt(fs_info, NODATASUM))
6264 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6265 		if (btrfs_test_opt(fs_info, NODATACOW))
6266 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6267 				BTRFS_INODE_NODATASUM;
6268 	}
6269 
6270 	inode_tree_add(inode);
6271 
6272 	trace_btrfs_inode_new(inode);
6273 	btrfs_set_inode_last_trans(trans, inode);
6274 
6275 	btrfs_update_root_times(trans, root);
6276 
6277 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6278 	if (ret)
6279 		btrfs_err(fs_info,
6280 			  "error inheriting props for ino %llu (root %llu): %d",
6281 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6282 
6283 	return inode;
6284 
6285 fail_unlock:
6286 	discard_new_inode(inode);
6287 fail:
6288 	if (dir && name)
6289 		BTRFS_I(dir)->index_cnt--;
6290 	btrfs_free_path(path);
6291 	return ERR_PTR(ret);
6292 }
6293 
6294 static inline u8 btrfs_inode_type(struct inode *inode)
6295 {
6296 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6297 }
6298 
6299 /*
6300  * utility function to add 'inode' into 'parent_inode' with
6301  * a give name and a given sequence number.
6302  * if 'add_backref' is true, also insert a backref from the
6303  * inode to the parent directory.
6304  */
6305 int btrfs_add_link(struct btrfs_trans_handle *trans,
6306 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6307 		   const char *name, int name_len, int add_backref, u64 index)
6308 {
6309 	int ret = 0;
6310 	struct btrfs_key key;
6311 	struct btrfs_root *root = parent_inode->root;
6312 	u64 ino = btrfs_ino(inode);
6313 	u64 parent_ino = btrfs_ino(parent_inode);
6314 
6315 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6316 		memcpy(&key, &inode->root->root_key, sizeof(key));
6317 	} else {
6318 		key.objectid = ino;
6319 		key.type = BTRFS_INODE_ITEM_KEY;
6320 		key.offset = 0;
6321 	}
6322 
6323 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6324 		ret = btrfs_add_root_ref(trans, key.objectid,
6325 					 root->root_key.objectid, parent_ino,
6326 					 index, name, name_len);
6327 	} else if (add_backref) {
6328 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6329 					     parent_ino, index);
6330 	}
6331 
6332 	/* Nothing to clean up yet */
6333 	if (ret)
6334 		return ret;
6335 
6336 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6337 				    btrfs_inode_type(&inode->vfs_inode), index);
6338 	if (ret == -EEXIST || ret == -EOVERFLOW)
6339 		goto fail_dir_item;
6340 	else if (ret) {
6341 		btrfs_abort_transaction(trans, ret);
6342 		return ret;
6343 	}
6344 
6345 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6346 			   name_len * 2);
6347 	inode_inc_iversion(&parent_inode->vfs_inode);
6348 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6349 		current_time(&parent_inode->vfs_inode);
6350 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6351 	if (ret)
6352 		btrfs_abort_transaction(trans, ret);
6353 	return ret;
6354 
6355 fail_dir_item:
6356 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6357 		u64 local_index;
6358 		int err;
6359 		err = btrfs_del_root_ref(trans, key.objectid,
6360 					 root->root_key.objectid, parent_ino,
6361 					 &local_index, name, name_len);
6362 		if (err)
6363 			btrfs_abort_transaction(trans, err);
6364 	} else if (add_backref) {
6365 		u64 local_index;
6366 		int err;
6367 
6368 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6369 					  ino, parent_ino, &local_index);
6370 		if (err)
6371 			btrfs_abort_transaction(trans, err);
6372 	}
6373 
6374 	/* Return the original error code */
6375 	return ret;
6376 }
6377 
6378 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6379 			    struct btrfs_inode *dir, struct dentry *dentry,
6380 			    struct btrfs_inode *inode, int backref, u64 index)
6381 {
6382 	int err = btrfs_add_link(trans, dir, inode,
6383 				 dentry->d_name.name, dentry->d_name.len,
6384 				 backref, index);
6385 	if (err > 0)
6386 		err = -EEXIST;
6387 	return err;
6388 }
6389 
6390 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6391 			umode_t mode, dev_t rdev)
6392 {
6393 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6394 	struct btrfs_trans_handle *trans;
6395 	struct btrfs_root *root = BTRFS_I(dir)->root;
6396 	struct inode *inode = NULL;
6397 	int err;
6398 	u64 objectid;
6399 	u64 index = 0;
6400 
6401 	/*
6402 	 * 2 for inode item and ref
6403 	 * 2 for dir items
6404 	 * 1 for xattr if selinux is on
6405 	 */
6406 	trans = btrfs_start_transaction(root, 5);
6407 	if (IS_ERR(trans))
6408 		return PTR_ERR(trans);
6409 
6410 	err = btrfs_find_free_ino(root, &objectid);
6411 	if (err)
6412 		goto out_unlock;
6413 
6414 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6415 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6416 			mode, &index);
6417 	if (IS_ERR(inode)) {
6418 		err = PTR_ERR(inode);
6419 		inode = NULL;
6420 		goto out_unlock;
6421 	}
6422 
6423 	/*
6424 	* If the active LSM wants to access the inode during
6425 	* d_instantiate it needs these. Smack checks to see
6426 	* if the filesystem supports xattrs by looking at the
6427 	* ops vector.
6428 	*/
6429 	inode->i_op = &btrfs_special_inode_operations;
6430 	init_special_inode(inode, inode->i_mode, rdev);
6431 
6432 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6433 	if (err)
6434 		goto out_unlock;
6435 
6436 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6437 			0, index);
6438 	if (err)
6439 		goto out_unlock;
6440 
6441 	btrfs_update_inode(trans, root, inode);
6442 	d_instantiate_new(dentry, inode);
6443 
6444 out_unlock:
6445 	btrfs_end_transaction(trans);
6446 	btrfs_btree_balance_dirty(fs_info);
6447 	if (err && inode) {
6448 		inode_dec_link_count(inode);
6449 		discard_new_inode(inode);
6450 	}
6451 	return err;
6452 }
6453 
6454 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6455 			umode_t mode, bool excl)
6456 {
6457 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6458 	struct btrfs_trans_handle *trans;
6459 	struct btrfs_root *root = BTRFS_I(dir)->root;
6460 	struct inode *inode = NULL;
6461 	int err;
6462 	u64 objectid;
6463 	u64 index = 0;
6464 
6465 	/*
6466 	 * 2 for inode item and ref
6467 	 * 2 for dir items
6468 	 * 1 for xattr if selinux is on
6469 	 */
6470 	trans = btrfs_start_transaction(root, 5);
6471 	if (IS_ERR(trans))
6472 		return PTR_ERR(trans);
6473 
6474 	err = btrfs_find_free_ino(root, &objectid);
6475 	if (err)
6476 		goto out_unlock;
6477 
6478 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6479 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6480 			mode, &index);
6481 	if (IS_ERR(inode)) {
6482 		err = PTR_ERR(inode);
6483 		inode = NULL;
6484 		goto out_unlock;
6485 	}
6486 	/*
6487 	* If the active LSM wants to access the inode during
6488 	* d_instantiate it needs these. Smack checks to see
6489 	* if the filesystem supports xattrs by looking at the
6490 	* ops vector.
6491 	*/
6492 	inode->i_fop = &btrfs_file_operations;
6493 	inode->i_op = &btrfs_file_inode_operations;
6494 	inode->i_mapping->a_ops = &btrfs_aops;
6495 
6496 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6497 	if (err)
6498 		goto out_unlock;
6499 
6500 	err = btrfs_update_inode(trans, root, inode);
6501 	if (err)
6502 		goto out_unlock;
6503 
6504 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6505 			0, index);
6506 	if (err)
6507 		goto out_unlock;
6508 
6509 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6510 	d_instantiate_new(dentry, inode);
6511 
6512 out_unlock:
6513 	btrfs_end_transaction(trans);
6514 	if (err && inode) {
6515 		inode_dec_link_count(inode);
6516 		discard_new_inode(inode);
6517 	}
6518 	btrfs_btree_balance_dirty(fs_info);
6519 	return err;
6520 }
6521 
6522 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6523 		      struct dentry *dentry)
6524 {
6525 	struct btrfs_trans_handle *trans = NULL;
6526 	struct btrfs_root *root = BTRFS_I(dir)->root;
6527 	struct inode *inode = d_inode(old_dentry);
6528 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6529 	u64 index;
6530 	int err;
6531 	int drop_inode = 0;
6532 
6533 	/* do not allow sys_link's with other subvols of the same device */
6534 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6535 		return -EXDEV;
6536 
6537 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6538 		return -EMLINK;
6539 
6540 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6541 	if (err)
6542 		goto fail;
6543 
6544 	/*
6545 	 * 2 items for inode and inode ref
6546 	 * 2 items for dir items
6547 	 * 1 item for parent inode
6548 	 * 1 item for orphan item deletion if O_TMPFILE
6549 	 */
6550 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6551 	if (IS_ERR(trans)) {
6552 		err = PTR_ERR(trans);
6553 		trans = NULL;
6554 		goto fail;
6555 	}
6556 
6557 	/* There are several dir indexes for this inode, clear the cache. */
6558 	BTRFS_I(inode)->dir_index = 0ULL;
6559 	inc_nlink(inode);
6560 	inode_inc_iversion(inode);
6561 	inode->i_ctime = current_time(inode);
6562 	ihold(inode);
6563 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6564 
6565 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6566 			1, index);
6567 
6568 	if (err) {
6569 		drop_inode = 1;
6570 	} else {
6571 		struct dentry *parent = dentry->d_parent;
6572 		int ret;
6573 
6574 		err = btrfs_update_inode(trans, root, inode);
6575 		if (err)
6576 			goto fail;
6577 		if (inode->i_nlink == 1) {
6578 			/*
6579 			 * If new hard link count is 1, it's a file created
6580 			 * with open(2) O_TMPFILE flag.
6581 			 */
6582 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6583 			if (err)
6584 				goto fail;
6585 		}
6586 		BTRFS_I(inode)->last_link_trans = trans->transid;
6587 		d_instantiate(dentry, inode);
6588 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6589 					 true, NULL);
6590 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6591 			err = btrfs_commit_transaction(trans);
6592 			trans = NULL;
6593 		}
6594 	}
6595 
6596 fail:
6597 	if (trans)
6598 		btrfs_end_transaction(trans);
6599 	if (drop_inode) {
6600 		inode_dec_link_count(inode);
6601 		iput(inode);
6602 	}
6603 	btrfs_btree_balance_dirty(fs_info);
6604 	return err;
6605 }
6606 
6607 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6608 {
6609 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6610 	struct inode *inode = NULL;
6611 	struct btrfs_trans_handle *trans;
6612 	struct btrfs_root *root = BTRFS_I(dir)->root;
6613 	int err = 0;
6614 	u64 objectid = 0;
6615 	u64 index = 0;
6616 
6617 	/*
6618 	 * 2 items for inode and ref
6619 	 * 2 items for dir items
6620 	 * 1 for xattr if selinux is on
6621 	 */
6622 	trans = btrfs_start_transaction(root, 5);
6623 	if (IS_ERR(trans))
6624 		return PTR_ERR(trans);
6625 
6626 	err = btrfs_find_free_ino(root, &objectid);
6627 	if (err)
6628 		goto out_fail;
6629 
6630 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6631 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6632 			S_IFDIR | mode, &index);
6633 	if (IS_ERR(inode)) {
6634 		err = PTR_ERR(inode);
6635 		inode = NULL;
6636 		goto out_fail;
6637 	}
6638 
6639 	/* these must be set before we unlock the inode */
6640 	inode->i_op = &btrfs_dir_inode_operations;
6641 	inode->i_fop = &btrfs_dir_file_operations;
6642 
6643 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6644 	if (err)
6645 		goto out_fail;
6646 
6647 	btrfs_i_size_write(BTRFS_I(inode), 0);
6648 	err = btrfs_update_inode(trans, root, inode);
6649 	if (err)
6650 		goto out_fail;
6651 
6652 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6653 			dentry->d_name.name,
6654 			dentry->d_name.len, 0, index);
6655 	if (err)
6656 		goto out_fail;
6657 
6658 	d_instantiate_new(dentry, inode);
6659 
6660 out_fail:
6661 	btrfs_end_transaction(trans);
6662 	if (err && inode) {
6663 		inode_dec_link_count(inode);
6664 		discard_new_inode(inode);
6665 	}
6666 	btrfs_btree_balance_dirty(fs_info);
6667 	return err;
6668 }
6669 
6670 static noinline int uncompress_inline(struct btrfs_path *path,
6671 				      struct page *page,
6672 				      size_t pg_offset, u64 extent_offset,
6673 				      struct btrfs_file_extent_item *item)
6674 {
6675 	int ret;
6676 	struct extent_buffer *leaf = path->nodes[0];
6677 	char *tmp;
6678 	size_t max_size;
6679 	unsigned long inline_size;
6680 	unsigned long ptr;
6681 	int compress_type;
6682 
6683 	WARN_ON(pg_offset != 0);
6684 	compress_type = btrfs_file_extent_compression(leaf, item);
6685 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6686 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6687 					btrfs_item_nr(path->slots[0]));
6688 	tmp = kmalloc(inline_size, GFP_NOFS);
6689 	if (!tmp)
6690 		return -ENOMEM;
6691 	ptr = btrfs_file_extent_inline_start(item);
6692 
6693 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6694 
6695 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6696 	ret = btrfs_decompress(compress_type, tmp, page,
6697 			       extent_offset, inline_size, max_size);
6698 
6699 	/*
6700 	 * decompression code contains a memset to fill in any space between the end
6701 	 * of the uncompressed data and the end of max_size in case the decompressed
6702 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6703 	 * the end of an inline extent and the beginning of the next block, so we
6704 	 * cover that region here.
6705 	 */
6706 
6707 	if (max_size + pg_offset < PAGE_SIZE) {
6708 		char *map = kmap(page);
6709 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6710 		kunmap(page);
6711 	}
6712 	kfree(tmp);
6713 	return ret;
6714 }
6715 
6716 /*
6717  * a bit scary, this does extent mapping from logical file offset to the disk.
6718  * the ugly parts come from merging extents from the disk with the in-ram
6719  * representation.  This gets more complex because of the data=ordered code,
6720  * where the in-ram extents might be locked pending data=ordered completion.
6721  *
6722  * This also copies inline extents directly into the page.
6723  */
6724 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6725 				    struct page *page,
6726 				    size_t pg_offset, u64 start, u64 len,
6727 				    int create)
6728 {
6729 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6730 	int ret;
6731 	int err = 0;
6732 	u64 extent_start = 0;
6733 	u64 extent_end = 0;
6734 	u64 objectid = btrfs_ino(inode);
6735 	u32 found_type;
6736 	struct btrfs_path *path = NULL;
6737 	struct btrfs_root *root = inode->root;
6738 	struct btrfs_file_extent_item *item;
6739 	struct extent_buffer *leaf;
6740 	struct btrfs_key found_key;
6741 	struct extent_map *em = NULL;
6742 	struct extent_map_tree *em_tree = &inode->extent_tree;
6743 	struct extent_io_tree *io_tree = &inode->io_tree;
6744 	const bool new_inline = !page || create;
6745 
6746 	read_lock(&em_tree->lock);
6747 	em = lookup_extent_mapping(em_tree, start, len);
6748 	if (em)
6749 		em->bdev = fs_info->fs_devices->latest_bdev;
6750 	read_unlock(&em_tree->lock);
6751 
6752 	if (em) {
6753 		if (em->start > start || em->start + em->len <= start)
6754 			free_extent_map(em);
6755 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6756 			free_extent_map(em);
6757 		else
6758 			goto out;
6759 	}
6760 	em = alloc_extent_map();
6761 	if (!em) {
6762 		err = -ENOMEM;
6763 		goto out;
6764 	}
6765 	em->bdev = fs_info->fs_devices->latest_bdev;
6766 	em->start = EXTENT_MAP_HOLE;
6767 	em->orig_start = EXTENT_MAP_HOLE;
6768 	em->len = (u64)-1;
6769 	em->block_len = (u64)-1;
6770 
6771 	path = btrfs_alloc_path();
6772 	if (!path) {
6773 		err = -ENOMEM;
6774 		goto out;
6775 	}
6776 
6777 	/* Chances are we'll be called again, so go ahead and do readahead */
6778 	path->reada = READA_FORWARD;
6779 
6780 	/*
6781 	 * Unless we're going to uncompress the inline extent, no sleep would
6782 	 * happen.
6783 	 */
6784 	path->leave_spinning = 1;
6785 
6786 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6787 	if (ret < 0) {
6788 		err = ret;
6789 		goto out;
6790 	}
6791 
6792 	if (ret != 0) {
6793 		if (path->slots[0] == 0)
6794 			goto not_found;
6795 		path->slots[0]--;
6796 	}
6797 
6798 	leaf = path->nodes[0];
6799 	item = btrfs_item_ptr(leaf, path->slots[0],
6800 			      struct btrfs_file_extent_item);
6801 	/* are we inside the extent that was found? */
6802 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6803 	found_type = found_key.type;
6804 	if (found_key.objectid != objectid ||
6805 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6806 		/*
6807 		 * If we backup past the first extent we want to move forward
6808 		 * and see if there is an extent in front of us, otherwise we'll
6809 		 * say there is a hole for our whole search range which can
6810 		 * cause problems.
6811 		 */
6812 		extent_end = start;
6813 		goto next;
6814 	}
6815 
6816 	found_type = btrfs_file_extent_type(leaf, item);
6817 	extent_start = found_key.offset;
6818 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6819 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6820 		extent_end = extent_start +
6821 		       btrfs_file_extent_num_bytes(leaf, item);
6822 
6823 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6824 						       extent_start);
6825 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6826 		size_t size;
6827 
6828 		size = btrfs_file_extent_ram_bytes(leaf, item);
6829 		extent_end = ALIGN(extent_start + size,
6830 				   fs_info->sectorsize);
6831 
6832 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6833 						      path->slots[0],
6834 						      extent_start);
6835 	}
6836 next:
6837 	if (start >= extent_end) {
6838 		path->slots[0]++;
6839 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6840 			ret = btrfs_next_leaf(root, path);
6841 			if (ret < 0) {
6842 				err = ret;
6843 				goto out;
6844 			}
6845 			if (ret > 0)
6846 				goto not_found;
6847 			leaf = path->nodes[0];
6848 		}
6849 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6850 		if (found_key.objectid != objectid ||
6851 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6852 			goto not_found;
6853 		if (start + len <= found_key.offset)
6854 			goto not_found;
6855 		if (start > found_key.offset)
6856 			goto next;
6857 		em->start = start;
6858 		em->orig_start = start;
6859 		em->len = found_key.offset - start;
6860 		goto not_found_em;
6861 	}
6862 
6863 	btrfs_extent_item_to_extent_map(inode, path, item,
6864 			new_inline, em);
6865 
6866 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6867 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6868 		goto insert;
6869 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6870 		unsigned long ptr;
6871 		char *map;
6872 		size_t size;
6873 		size_t extent_offset;
6874 		size_t copy_size;
6875 
6876 		if (new_inline)
6877 			goto out;
6878 
6879 		size = btrfs_file_extent_ram_bytes(leaf, item);
6880 		extent_offset = page_offset(page) + pg_offset - extent_start;
6881 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6882 				  size - extent_offset);
6883 		em->start = extent_start + extent_offset;
6884 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6885 		em->orig_block_len = em->len;
6886 		em->orig_start = em->start;
6887 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6888 
6889 		btrfs_set_path_blocking(path);
6890 		if (!PageUptodate(page)) {
6891 			if (btrfs_file_extent_compression(leaf, item) !=
6892 			    BTRFS_COMPRESS_NONE) {
6893 				ret = uncompress_inline(path, page, pg_offset,
6894 							extent_offset, item);
6895 				if (ret) {
6896 					err = ret;
6897 					goto out;
6898 				}
6899 			} else {
6900 				map = kmap(page);
6901 				read_extent_buffer(leaf, map + pg_offset, ptr,
6902 						   copy_size);
6903 				if (pg_offset + copy_size < PAGE_SIZE) {
6904 					memset(map + pg_offset + copy_size, 0,
6905 					       PAGE_SIZE - pg_offset -
6906 					       copy_size);
6907 				}
6908 				kunmap(page);
6909 			}
6910 			flush_dcache_page(page);
6911 		}
6912 		set_extent_uptodate(io_tree, em->start,
6913 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6914 		goto insert;
6915 	}
6916 not_found:
6917 	em->start = start;
6918 	em->orig_start = start;
6919 	em->len = len;
6920 not_found_em:
6921 	em->block_start = EXTENT_MAP_HOLE;
6922 insert:
6923 	btrfs_release_path(path);
6924 	if (em->start > start || extent_map_end(em) <= start) {
6925 		btrfs_err(fs_info,
6926 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6927 			  em->start, em->len, start, len);
6928 		err = -EIO;
6929 		goto out;
6930 	}
6931 
6932 	err = 0;
6933 	write_lock(&em_tree->lock);
6934 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6935 	write_unlock(&em_tree->lock);
6936 out:
6937 	btrfs_free_path(path);
6938 
6939 	trace_btrfs_get_extent(root, inode, em);
6940 
6941 	if (err) {
6942 		free_extent_map(em);
6943 		return ERR_PTR(err);
6944 	}
6945 	BUG_ON(!em); /* Error is always set */
6946 	return em;
6947 }
6948 
6949 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6950 		struct page *page,
6951 		size_t pg_offset, u64 start, u64 len,
6952 		int create)
6953 {
6954 	struct extent_map *em;
6955 	struct extent_map *hole_em = NULL;
6956 	u64 range_start = start;
6957 	u64 end;
6958 	u64 found;
6959 	u64 found_end;
6960 	int err = 0;
6961 
6962 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6963 	if (IS_ERR(em))
6964 		return em;
6965 	/*
6966 	 * If our em maps to:
6967 	 * - a hole or
6968 	 * - a pre-alloc extent,
6969 	 * there might actually be delalloc bytes behind it.
6970 	 */
6971 	if (em->block_start != EXTENT_MAP_HOLE &&
6972 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6973 		return em;
6974 	else
6975 		hole_em = em;
6976 
6977 	/* check to see if we've wrapped (len == -1 or similar) */
6978 	end = start + len;
6979 	if (end < start)
6980 		end = (u64)-1;
6981 	else
6982 		end -= 1;
6983 
6984 	em = NULL;
6985 
6986 	/* ok, we didn't find anything, lets look for delalloc */
6987 	found = count_range_bits(&inode->io_tree, &range_start,
6988 				 end, len, EXTENT_DELALLOC, 1);
6989 	found_end = range_start + found;
6990 	if (found_end < range_start)
6991 		found_end = (u64)-1;
6992 
6993 	/*
6994 	 * we didn't find anything useful, return
6995 	 * the original results from get_extent()
6996 	 */
6997 	if (range_start > end || found_end <= start) {
6998 		em = hole_em;
6999 		hole_em = NULL;
7000 		goto out;
7001 	}
7002 
7003 	/* adjust the range_start to make sure it doesn't
7004 	 * go backwards from the start they passed in
7005 	 */
7006 	range_start = max(start, range_start);
7007 	found = found_end - range_start;
7008 
7009 	if (found > 0) {
7010 		u64 hole_start = start;
7011 		u64 hole_len = len;
7012 
7013 		em = alloc_extent_map();
7014 		if (!em) {
7015 			err = -ENOMEM;
7016 			goto out;
7017 		}
7018 		/*
7019 		 * when btrfs_get_extent can't find anything it
7020 		 * returns one huge hole
7021 		 *
7022 		 * make sure what it found really fits our range, and
7023 		 * adjust to make sure it is based on the start from
7024 		 * the caller
7025 		 */
7026 		if (hole_em) {
7027 			u64 calc_end = extent_map_end(hole_em);
7028 
7029 			if (calc_end <= start || (hole_em->start > end)) {
7030 				free_extent_map(hole_em);
7031 				hole_em = NULL;
7032 			} else {
7033 				hole_start = max(hole_em->start, start);
7034 				hole_len = calc_end - hole_start;
7035 			}
7036 		}
7037 		em->bdev = NULL;
7038 		if (hole_em && range_start > hole_start) {
7039 			/* our hole starts before our delalloc, so we
7040 			 * have to return just the parts of the hole
7041 			 * that go until  the delalloc starts
7042 			 */
7043 			em->len = min(hole_len,
7044 				      range_start - hole_start);
7045 			em->start = hole_start;
7046 			em->orig_start = hole_start;
7047 			/*
7048 			 * don't adjust block start at all,
7049 			 * it is fixed at EXTENT_MAP_HOLE
7050 			 */
7051 			em->block_start = hole_em->block_start;
7052 			em->block_len = hole_len;
7053 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7054 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7055 		} else {
7056 			em->start = range_start;
7057 			em->len = found;
7058 			em->orig_start = range_start;
7059 			em->block_start = EXTENT_MAP_DELALLOC;
7060 			em->block_len = found;
7061 		}
7062 	} else {
7063 		return hole_em;
7064 	}
7065 out:
7066 
7067 	free_extent_map(hole_em);
7068 	if (err) {
7069 		free_extent_map(em);
7070 		return ERR_PTR(err);
7071 	}
7072 	return em;
7073 }
7074 
7075 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7076 						  const u64 start,
7077 						  const u64 len,
7078 						  const u64 orig_start,
7079 						  const u64 block_start,
7080 						  const u64 block_len,
7081 						  const u64 orig_block_len,
7082 						  const u64 ram_bytes,
7083 						  const int type)
7084 {
7085 	struct extent_map *em = NULL;
7086 	int ret;
7087 
7088 	if (type != BTRFS_ORDERED_NOCOW) {
7089 		em = create_io_em(inode, start, len, orig_start,
7090 				  block_start, block_len, orig_block_len,
7091 				  ram_bytes,
7092 				  BTRFS_COMPRESS_NONE, /* compress_type */
7093 				  type);
7094 		if (IS_ERR(em))
7095 			goto out;
7096 	}
7097 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7098 					   len, block_len, type);
7099 	if (ret) {
7100 		if (em) {
7101 			free_extent_map(em);
7102 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7103 						start + len - 1, 0);
7104 		}
7105 		em = ERR_PTR(ret);
7106 	}
7107  out:
7108 
7109 	return em;
7110 }
7111 
7112 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7113 						  u64 start, u64 len)
7114 {
7115 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7116 	struct btrfs_root *root = BTRFS_I(inode)->root;
7117 	struct extent_map *em;
7118 	struct btrfs_key ins;
7119 	u64 alloc_hint;
7120 	int ret;
7121 
7122 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7123 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7124 				   0, alloc_hint, &ins, 1, 1);
7125 	if (ret)
7126 		return ERR_PTR(ret);
7127 
7128 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7129 				     ins.objectid, ins.offset, ins.offset,
7130 				     ins.offset, BTRFS_ORDERED_REGULAR);
7131 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7132 	if (IS_ERR(em))
7133 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7134 					   ins.offset, 1);
7135 
7136 	return em;
7137 }
7138 
7139 /*
7140  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7141  * block must be cow'd
7142  */
7143 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7144 			      u64 *orig_start, u64 *orig_block_len,
7145 			      u64 *ram_bytes)
7146 {
7147 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7148 	struct btrfs_path *path;
7149 	int ret;
7150 	struct extent_buffer *leaf;
7151 	struct btrfs_root *root = BTRFS_I(inode)->root;
7152 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7153 	struct btrfs_file_extent_item *fi;
7154 	struct btrfs_key key;
7155 	u64 disk_bytenr;
7156 	u64 backref_offset;
7157 	u64 extent_end;
7158 	u64 num_bytes;
7159 	int slot;
7160 	int found_type;
7161 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7162 
7163 	path = btrfs_alloc_path();
7164 	if (!path)
7165 		return -ENOMEM;
7166 
7167 	ret = btrfs_lookup_file_extent(NULL, root, path,
7168 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7169 	if (ret < 0)
7170 		goto out;
7171 
7172 	slot = path->slots[0];
7173 	if (ret == 1) {
7174 		if (slot == 0) {
7175 			/* can't find the item, must cow */
7176 			ret = 0;
7177 			goto out;
7178 		}
7179 		slot--;
7180 	}
7181 	ret = 0;
7182 	leaf = path->nodes[0];
7183 	btrfs_item_key_to_cpu(leaf, &key, slot);
7184 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7185 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7186 		/* not our file or wrong item type, must cow */
7187 		goto out;
7188 	}
7189 
7190 	if (key.offset > offset) {
7191 		/* Wrong offset, must cow */
7192 		goto out;
7193 	}
7194 
7195 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7196 	found_type = btrfs_file_extent_type(leaf, fi);
7197 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7198 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7199 		/* not a regular extent, must cow */
7200 		goto out;
7201 	}
7202 
7203 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7204 		goto out;
7205 
7206 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7207 	if (extent_end <= offset)
7208 		goto out;
7209 
7210 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7211 	if (disk_bytenr == 0)
7212 		goto out;
7213 
7214 	if (btrfs_file_extent_compression(leaf, fi) ||
7215 	    btrfs_file_extent_encryption(leaf, fi) ||
7216 	    btrfs_file_extent_other_encoding(leaf, fi))
7217 		goto out;
7218 
7219 	/*
7220 	 * Do the same check as in btrfs_cross_ref_exist but without the
7221 	 * unnecessary search.
7222 	 */
7223 	if (btrfs_file_extent_generation(leaf, fi) <=
7224 	    btrfs_root_last_snapshot(&root->root_item))
7225 		goto out;
7226 
7227 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7228 
7229 	if (orig_start) {
7230 		*orig_start = key.offset - backref_offset;
7231 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7232 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7233 	}
7234 
7235 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7236 		goto out;
7237 
7238 	num_bytes = min(offset + *len, extent_end) - offset;
7239 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7240 		u64 range_end;
7241 
7242 		range_end = round_up(offset + num_bytes,
7243 				     root->fs_info->sectorsize) - 1;
7244 		ret = test_range_bit(io_tree, offset, range_end,
7245 				     EXTENT_DELALLOC, 0, NULL);
7246 		if (ret) {
7247 			ret = -EAGAIN;
7248 			goto out;
7249 		}
7250 	}
7251 
7252 	btrfs_release_path(path);
7253 
7254 	/*
7255 	 * look for other files referencing this extent, if we
7256 	 * find any we must cow
7257 	 */
7258 
7259 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7260 				    key.offset - backref_offset, disk_bytenr);
7261 	if (ret) {
7262 		ret = 0;
7263 		goto out;
7264 	}
7265 
7266 	/*
7267 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7268 	 * in this extent we are about to write.  If there
7269 	 * are any csums in that range we have to cow in order
7270 	 * to keep the csums correct
7271 	 */
7272 	disk_bytenr += backref_offset;
7273 	disk_bytenr += offset - key.offset;
7274 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7275 		goto out;
7276 	/*
7277 	 * all of the above have passed, it is safe to overwrite this extent
7278 	 * without cow
7279 	 */
7280 	*len = num_bytes;
7281 	ret = 1;
7282 out:
7283 	btrfs_free_path(path);
7284 	return ret;
7285 }
7286 
7287 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7288 			      struct extent_state **cached_state, int writing)
7289 {
7290 	struct btrfs_ordered_extent *ordered;
7291 	int ret = 0;
7292 
7293 	while (1) {
7294 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7295 				 cached_state);
7296 		/*
7297 		 * We're concerned with the entire range that we're going to be
7298 		 * doing DIO to, so we need to make sure there's no ordered
7299 		 * extents in this range.
7300 		 */
7301 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7302 						     lockend - lockstart + 1);
7303 
7304 		/*
7305 		 * We need to make sure there are no buffered pages in this
7306 		 * range either, we could have raced between the invalidate in
7307 		 * generic_file_direct_write and locking the extent.  The
7308 		 * invalidate needs to happen so that reads after a write do not
7309 		 * get stale data.
7310 		 */
7311 		if (!ordered &&
7312 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7313 							 lockstart, lockend)))
7314 			break;
7315 
7316 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7317 				     cached_state);
7318 
7319 		if (ordered) {
7320 			/*
7321 			 * If we are doing a DIO read and the ordered extent we
7322 			 * found is for a buffered write, we can not wait for it
7323 			 * to complete and retry, because if we do so we can
7324 			 * deadlock with concurrent buffered writes on page
7325 			 * locks. This happens only if our DIO read covers more
7326 			 * than one extent map, if at this point has already
7327 			 * created an ordered extent for a previous extent map
7328 			 * and locked its range in the inode's io tree, and a
7329 			 * concurrent write against that previous extent map's
7330 			 * range and this range started (we unlock the ranges
7331 			 * in the io tree only when the bios complete and
7332 			 * buffered writes always lock pages before attempting
7333 			 * to lock range in the io tree).
7334 			 */
7335 			if (writing ||
7336 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7337 				btrfs_start_ordered_extent(inode, ordered, 1);
7338 			else
7339 				ret = -ENOTBLK;
7340 			btrfs_put_ordered_extent(ordered);
7341 		} else {
7342 			/*
7343 			 * We could trigger writeback for this range (and wait
7344 			 * for it to complete) and then invalidate the pages for
7345 			 * this range (through invalidate_inode_pages2_range()),
7346 			 * but that can lead us to a deadlock with a concurrent
7347 			 * call to readpages() (a buffered read or a defrag call
7348 			 * triggered a readahead) on a page lock due to an
7349 			 * ordered dio extent we created before but did not have
7350 			 * yet a corresponding bio submitted (whence it can not
7351 			 * complete), which makes readpages() wait for that
7352 			 * ordered extent to complete while holding a lock on
7353 			 * that page.
7354 			 */
7355 			ret = -ENOTBLK;
7356 		}
7357 
7358 		if (ret)
7359 			break;
7360 
7361 		cond_resched();
7362 	}
7363 
7364 	return ret;
7365 }
7366 
7367 /* The callers of this must take lock_extent() */
7368 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7369 				       u64 orig_start, u64 block_start,
7370 				       u64 block_len, u64 orig_block_len,
7371 				       u64 ram_bytes, int compress_type,
7372 				       int type)
7373 {
7374 	struct extent_map_tree *em_tree;
7375 	struct extent_map *em;
7376 	struct btrfs_root *root = BTRFS_I(inode)->root;
7377 	int ret;
7378 
7379 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7380 	       type == BTRFS_ORDERED_COMPRESSED ||
7381 	       type == BTRFS_ORDERED_NOCOW ||
7382 	       type == BTRFS_ORDERED_REGULAR);
7383 
7384 	em_tree = &BTRFS_I(inode)->extent_tree;
7385 	em = alloc_extent_map();
7386 	if (!em)
7387 		return ERR_PTR(-ENOMEM);
7388 
7389 	em->start = start;
7390 	em->orig_start = orig_start;
7391 	em->len = len;
7392 	em->block_len = block_len;
7393 	em->block_start = block_start;
7394 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7395 	em->orig_block_len = orig_block_len;
7396 	em->ram_bytes = ram_bytes;
7397 	em->generation = -1;
7398 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7399 	if (type == BTRFS_ORDERED_PREALLOC) {
7400 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7401 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7402 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7403 		em->compress_type = compress_type;
7404 	}
7405 
7406 	do {
7407 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7408 				em->start + em->len - 1, 0);
7409 		write_lock(&em_tree->lock);
7410 		ret = add_extent_mapping(em_tree, em, 1);
7411 		write_unlock(&em_tree->lock);
7412 		/*
7413 		 * The caller has taken lock_extent(), who could race with us
7414 		 * to add em?
7415 		 */
7416 	} while (ret == -EEXIST);
7417 
7418 	if (ret) {
7419 		free_extent_map(em);
7420 		return ERR_PTR(ret);
7421 	}
7422 
7423 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7424 	return em;
7425 }
7426 
7427 
7428 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7429 					struct buffer_head *bh_result,
7430 					struct inode *inode,
7431 					u64 start, u64 len)
7432 {
7433 	if (em->block_start == EXTENT_MAP_HOLE ||
7434 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7435 		return -ENOENT;
7436 
7437 	len = min(len, em->len - (start - em->start));
7438 
7439 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7440 		inode->i_blkbits;
7441 	bh_result->b_size = len;
7442 	bh_result->b_bdev = em->bdev;
7443 	set_buffer_mapped(bh_result);
7444 
7445 	return 0;
7446 }
7447 
7448 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7449 					 struct buffer_head *bh_result,
7450 					 struct inode *inode,
7451 					 struct btrfs_dio_data *dio_data,
7452 					 u64 start, u64 len)
7453 {
7454 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7455 	struct extent_map *em = *map;
7456 	int ret = 0;
7457 
7458 	/*
7459 	 * We don't allocate a new extent in the following cases
7460 	 *
7461 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7462 	 * existing extent.
7463 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7464 	 * just use the extent.
7465 	 *
7466 	 */
7467 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7468 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7469 	     em->block_start != EXTENT_MAP_HOLE)) {
7470 		int type;
7471 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7472 
7473 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7474 			type = BTRFS_ORDERED_PREALLOC;
7475 		else
7476 			type = BTRFS_ORDERED_NOCOW;
7477 		len = min(len, em->len - (start - em->start));
7478 		block_start = em->block_start + (start - em->start);
7479 
7480 		if (can_nocow_extent(inode, start, &len, &orig_start,
7481 				     &orig_block_len, &ram_bytes) == 1 &&
7482 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7483 			struct extent_map *em2;
7484 
7485 			em2 = btrfs_create_dio_extent(inode, start, len,
7486 						      orig_start, block_start,
7487 						      len, orig_block_len,
7488 						      ram_bytes, type);
7489 			btrfs_dec_nocow_writers(fs_info, block_start);
7490 			if (type == BTRFS_ORDERED_PREALLOC) {
7491 				free_extent_map(em);
7492 				*map = em = em2;
7493 			}
7494 
7495 			if (em2 && IS_ERR(em2)) {
7496 				ret = PTR_ERR(em2);
7497 				goto out;
7498 			}
7499 			/*
7500 			 * For inode marked NODATACOW or extent marked PREALLOC,
7501 			 * use the existing or preallocated extent, so does not
7502 			 * need to adjust btrfs_space_info's bytes_may_use.
7503 			 */
7504 			btrfs_free_reserved_data_space_noquota(inode, start,
7505 							       len);
7506 			goto skip_cow;
7507 		}
7508 	}
7509 
7510 	/* this will cow the extent */
7511 	len = bh_result->b_size;
7512 	free_extent_map(em);
7513 	*map = em = btrfs_new_extent_direct(inode, start, len);
7514 	if (IS_ERR(em)) {
7515 		ret = PTR_ERR(em);
7516 		goto out;
7517 	}
7518 
7519 	len = min(len, em->len - (start - em->start));
7520 
7521 skip_cow:
7522 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7523 		inode->i_blkbits;
7524 	bh_result->b_size = len;
7525 	bh_result->b_bdev = em->bdev;
7526 	set_buffer_mapped(bh_result);
7527 
7528 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7529 		set_buffer_new(bh_result);
7530 
7531 	/*
7532 	 * Need to update the i_size under the extent lock so buffered
7533 	 * readers will get the updated i_size when we unlock.
7534 	 */
7535 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7536 		i_size_write(inode, start + len);
7537 
7538 	WARN_ON(dio_data->reserve < len);
7539 	dio_data->reserve -= len;
7540 	dio_data->unsubmitted_oe_range_end = start + len;
7541 	current->journal_info = dio_data;
7542 out:
7543 	return ret;
7544 }
7545 
7546 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7547 				   struct buffer_head *bh_result, int create)
7548 {
7549 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7550 	struct extent_map *em;
7551 	struct extent_state *cached_state = NULL;
7552 	struct btrfs_dio_data *dio_data = NULL;
7553 	u64 start = iblock << inode->i_blkbits;
7554 	u64 lockstart, lockend;
7555 	u64 len = bh_result->b_size;
7556 	int unlock_bits = EXTENT_LOCKED;
7557 	int ret = 0;
7558 
7559 	if (create)
7560 		unlock_bits |= EXTENT_DIRTY;
7561 	else
7562 		len = min_t(u64, len, fs_info->sectorsize);
7563 
7564 	lockstart = start;
7565 	lockend = start + len - 1;
7566 
7567 	if (current->journal_info) {
7568 		/*
7569 		 * Need to pull our outstanding extents and set journal_info to NULL so
7570 		 * that anything that needs to check if there's a transaction doesn't get
7571 		 * confused.
7572 		 */
7573 		dio_data = current->journal_info;
7574 		current->journal_info = NULL;
7575 	}
7576 
7577 	/*
7578 	 * If this errors out it's because we couldn't invalidate pagecache for
7579 	 * this range and we need to fallback to buffered.
7580 	 */
7581 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7582 			       create)) {
7583 		ret = -ENOTBLK;
7584 		goto err;
7585 	}
7586 
7587 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7588 	if (IS_ERR(em)) {
7589 		ret = PTR_ERR(em);
7590 		goto unlock_err;
7591 	}
7592 
7593 	/*
7594 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7595 	 * io.  INLINE is special, and we could probably kludge it in here, but
7596 	 * it's still buffered so for safety lets just fall back to the generic
7597 	 * buffered path.
7598 	 *
7599 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7600 	 * decompress it, so there will be buffering required no matter what we
7601 	 * do, so go ahead and fallback to buffered.
7602 	 *
7603 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7604 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7605 	 * the generic code.
7606 	 */
7607 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7608 	    em->block_start == EXTENT_MAP_INLINE) {
7609 		free_extent_map(em);
7610 		ret = -ENOTBLK;
7611 		goto unlock_err;
7612 	}
7613 
7614 	if (create) {
7615 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7616 						    dio_data, start, len);
7617 		if (ret < 0)
7618 			goto unlock_err;
7619 
7620 		/* clear and unlock the entire range */
7621 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7622 				 unlock_bits, 1, 0, &cached_state);
7623 	} else {
7624 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7625 						   start, len);
7626 		/* Can be negative only if we read from a hole */
7627 		if (ret < 0) {
7628 			ret = 0;
7629 			free_extent_map(em);
7630 			goto unlock_err;
7631 		}
7632 		/*
7633 		 * We need to unlock only the end area that we aren't using.
7634 		 * The rest is going to be unlocked by the endio routine.
7635 		 */
7636 		lockstart = start + bh_result->b_size;
7637 		if (lockstart < lockend) {
7638 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7639 					 lockend, unlock_bits, 1, 0,
7640 					 &cached_state);
7641 		} else {
7642 			free_extent_state(cached_state);
7643 		}
7644 	}
7645 
7646 	free_extent_map(em);
7647 
7648 	return 0;
7649 
7650 unlock_err:
7651 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7652 			 unlock_bits, 1, 0, &cached_state);
7653 err:
7654 	if (dio_data)
7655 		current->journal_info = dio_data;
7656 	return ret;
7657 }
7658 
7659 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7660 						 struct bio *bio,
7661 						 int mirror_num)
7662 {
7663 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7664 	blk_status_t ret;
7665 
7666 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7667 
7668 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7669 	if (ret)
7670 		return ret;
7671 
7672 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7673 
7674 	return ret;
7675 }
7676 
7677 static int btrfs_check_dio_repairable(struct inode *inode,
7678 				      struct bio *failed_bio,
7679 				      struct io_failure_record *failrec,
7680 				      int failed_mirror)
7681 {
7682 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7683 	int num_copies;
7684 
7685 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7686 	if (num_copies == 1) {
7687 		/*
7688 		 * we only have a single copy of the data, so don't bother with
7689 		 * all the retry and error correction code that follows. no
7690 		 * matter what the error is, it is very likely to persist.
7691 		 */
7692 		btrfs_debug(fs_info,
7693 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7694 			num_copies, failrec->this_mirror, failed_mirror);
7695 		return 0;
7696 	}
7697 
7698 	failrec->failed_mirror = failed_mirror;
7699 	failrec->this_mirror++;
7700 	if (failrec->this_mirror == failed_mirror)
7701 		failrec->this_mirror++;
7702 
7703 	if (failrec->this_mirror > num_copies) {
7704 		btrfs_debug(fs_info,
7705 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7706 			num_copies, failrec->this_mirror, failed_mirror);
7707 		return 0;
7708 	}
7709 
7710 	return 1;
7711 }
7712 
7713 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7714 				   struct page *page, unsigned int pgoff,
7715 				   u64 start, u64 end, int failed_mirror,
7716 				   bio_end_io_t *repair_endio, void *repair_arg)
7717 {
7718 	struct io_failure_record *failrec;
7719 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7720 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7721 	struct bio *bio;
7722 	int isector;
7723 	unsigned int read_mode = 0;
7724 	int segs;
7725 	int ret;
7726 	blk_status_t status;
7727 	struct bio_vec bvec;
7728 
7729 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7730 
7731 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7732 	if (ret)
7733 		return errno_to_blk_status(ret);
7734 
7735 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7736 					 failed_mirror);
7737 	if (!ret) {
7738 		free_io_failure(failure_tree, io_tree, failrec);
7739 		return BLK_STS_IOERR;
7740 	}
7741 
7742 	segs = bio_segments(failed_bio);
7743 	bio_get_first_bvec(failed_bio, &bvec);
7744 	if (segs > 1 ||
7745 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7746 		read_mode |= REQ_FAILFAST_DEV;
7747 
7748 	isector = start - btrfs_io_bio(failed_bio)->logical;
7749 	isector >>= inode->i_sb->s_blocksize_bits;
7750 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7751 				pgoff, isector, repair_endio, repair_arg);
7752 	bio->bi_opf = REQ_OP_READ | read_mode;
7753 
7754 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7755 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7756 		    read_mode, failrec->this_mirror, failrec->in_validation);
7757 
7758 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7759 	if (status) {
7760 		free_io_failure(failure_tree, io_tree, failrec);
7761 		bio_put(bio);
7762 	}
7763 
7764 	return status;
7765 }
7766 
7767 struct btrfs_retry_complete {
7768 	struct completion done;
7769 	struct inode *inode;
7770 	u64 start;
7771 	int uptodate;
7772 };
7773 
7774 static void btrfs_retry_endio_nocsum(struct bio *bio)
7775 {
7776 	struct btrfs_retry_complete *done = bio->bi_private;
7777 	struct inode *inode = done->inode;
7778 	struct bio_vec *bvec;
7779 	struct extent_io_tree *io_tree, *failure_tree;
7780 	int i;
7781 
7782 	if (bio->bi_status)
7783 		goto end;
7784 
7785 	ASSERT(bio->bi_vcnt == 1);
7786 	io_tree = &BTRFS_I(inode)->io_tree;
7787 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7788 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7789 
7790 	done->uptodate = 1;
7791 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7792 	bio_for_each_segment_all(bvec, bio, i)
7793 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7794 				 io_tree, done->start, bvec->bv_page,
7795 				 btrfs_ino(BTRFS_I(inode)), 0);
7796 end:
7797 	complete(&done->done);
7798 	bio_put(bio);
7799 }
7800 
7801 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7802 						struct btrfs_io_bio *io_bio)
7803 {
7804 	struct btrfs_fs_info *fs_info;
7805 	struct bio_vec bvec;
7806 	struct bvec_iter iter;
7807 	struct btrfs_retry_complete done;
7808 	u64 start;
7809 	unsigned int pgoff;
7810 	u32 sectorsize;
7811 	int nr_sectors;
7812 	blk_status_t ret;
7813 	blk_status_t err = BLK_STS_OK;
7814 
7815 	fs_info = BTRFS_I(inode)->root->fs_info;
7816 	sectorsize = fs_info->sectorsize;
7817 
7818 	start = io_bio->logical;
7819 	done.inode = inode;
7820 	io_bio->bio.bi_iter = io_bio->iter;
7821 
7822 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7823 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7824 		pgoff = bvec.bv_offset;
7825 
7826 next_block_or_try_again:
7827 		done.uptodate = 0;
7828 		done.start = start;
7829 		init_completion(&done.done);
7830 
7831 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7832 				pgoff, start, start + sectorsize - 1,
7833 				io_bio->mirror_num,
7834 				btrfs_retry_endio_nocsum, &done);
7835 		if (ret) {
7836 			err = ret;
7837 			goto next;
7838 		}
7839 
7840 		wait_for_completion_io(&done.done);
7841 
7842 		if (!done.uptodate) {
7843 			/* We might have another mirror, so try again */
7844 			goto next_block_or_try_again;
7845 		}
7846 
7847 next:
7848 		start += sectorsize;
7849 
7850 		nr_sectors--;
7851 		if (nr_sectors) {
7852 			pgoff += sectorsize;
7853 			ASSERT(pgoff < PAGE_SIZE);
7854 			goto next_block_or_try_again;
7855 		}
7856 	}
7857 
7858 	return err;
7859 }
7860 
7861 static void btrfs_retry_endio(struct bio *bio)
7862 {
7863 	struct btrfs_retry_complete *done = bio->bi_private;
7864 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7865 	struct extent_io_tree *io_tree, *failure_tree;
7866 	struct inode *inode = done->inode;
7867 	struct bio_vec *bvec;
7868 	int uptodate;
7869 	int ret;
7870 	int i;
7871 
7872 	if (bio->bi_status)
7873 		goto end;
7874 
7875 	uptodate = 1;
7876 
7877 	ASSERT(bio->bi_vcnt == 1);
7878 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7879 
7880 	io_tree = &BTRFS_I(inode)->io_tree;
7881 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7882 
7883 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7884 	bio_for_each_segment_all(bvec, bio, i) {
7885 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7886 					     bvec->bv_offset, done->start,
7887 					     bvec->bv_len);
7888 		if (!ret)
7889 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
7890 					 failure_tree, io_tree, done->start,
7891 					 bvec->bv_page,
7892 					 btrfs_ino(BTRFS_I(inode)),
7893 					 bvec->bv_offset);
7894 		else
7895 			uptodate = 0;
7896 	}
7897 
7898 	done->uptodate = uptodate;
7899 end:
7900 	complete(&done->done);
7901 	bio_put(bio);
7902 }
7903 
7904 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7905 		struct btrfs_io_bio *io_bio, blk_status_t err)
7906 {
7907 	struct btrfs_fs_info *fs_info;
7908 	struct bio_vec bvec;
7909 	struct bvec_iter iter;
7910 	struct btrfs_retry_complete done;
7911 	u64 start;
7912 	u64 offset = 0;
7913 	u32 sectorsize;
7914 	int nr_sectors;
7915 	unsigned int pgoff;
7916 	int csum_pos;
7917 	bool uptodate = (err == 0);
7918 	int ret;
7919 	blk_status_t status;
7920 
7921 	fs_info = BTRFS_I(inode)->root->fs_info;
7922 	sectorsize = fs_info->sectorsize;
7923 
7924 	err = BLK_STS_OK;
7925 	start = io_bio->logical;
7926 	done.inode = inode;
7927 	io_bio->bio.bi_iter = io_bio->iter;
7928 
7929 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7930 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7931 
7932 		pgoff = bvec.bv_offset;
7933 next_block:
7934 		if (uptodate) {
7935 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7936 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
7937 					bvec.bv_page, pgoff, start, sectorsize);
7938 			if (likely(!ret))
7939 				goto next;
7940 		}
7941 try_again:
7942 		done.uptodate = 0;
7943 		done.start = start;
7944 		init_completion(&done.done);
7945 
7946 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7947 					pgoff, start, start + sectorsize - 1,
7948 					io_bio->mirror_num, btrfs_retry_endio,
7949 					&done);
7950 		if (status) {
7951 			err = status;
7952 			goto next;
7953 		}
7954 
7955 		wait_for_completion_io(&done.done);
7956 
7957 		if (!done.uptodate) {
7958 			/* We might have another mirror, so try again */
7959 			goto try_again;
7960 		}
7961 next:
7962 		offset += sectorsize;
7963 		start += sectorsize;
7964 
7965 		ASSERT(nr_sectors);
7966 
7967 		nr_sectors--;
7968 		if (nr_sectors) {
7969 			pgoff += sectorsize;
7970 			ASSERT(pgoff < PAGE_SIZE);
7971 			goto next_block;
7972 		}
7973 	}
7974 
7975 	return err;
7976 }
7977 
7978 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
7979 		struct btrfs_io_bio *io_bio, blk_status_t err)
7980 {
7981 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7982 
7983 	if (skip_csum) {
7984 		if (unlikely(err))
7985 			return __btrfs_correct_data_nocsum(inode, io_bio);
7986 		else
7987 			return BLK_STS_OK;
7988 	} else {
7989 		return __btrfs_subio_endio_read(inode, io_bio, err);
7990 	}
7991 }
7992 
7993 static void btrfs_endio_direct_read(struct bio *bio)
7994 {
7995 	struct btrfs_dio_private *dip = bio->bi_private;
7996 	struct inode *inode = dip->inode;
7997 	struct bio *dio_bio;
7998 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7999 	blk_status_t err = bio->bi_status;
8000 
8001 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8002 		err = btrfs_subio_endio_read(inode, io_bio, err);
8003 
8004 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8005 		      dip->logical_offset + dip->bytes - 1);
8006 	dio_bio = dip->dio_bio;
8007 
8008 	kfree(dip);
8009 
8010 	dio_bio->bi_status = err;
8011 	dio_end_io(dio_bio);
8012 	btrfs_io_bio_free_csum(io_bio);
8013 	bio_put(bio);
8014 }
8015 
8016 static void __endio_write_update_ordered(struct inode *inode,
8017 					 const u64 offset, const u64 bytes,
8018 					 const bool uptodate)
8019 {
8020 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8021 	struct btrfs_ordered_extent *ordered = NULL;
8022 	struct btrfs_workqueue *wq;
8023 	btrfs_work_func_t func;
8024 	u64 ordered_offset = offset;
8025 	u64 ordered_bytes = bytes;
8026 	u64 last_offset;
8027 
8028 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8029 		wq = fs_info->endio_freespace_worker;
8030 		func = btrfs_freespace_write_helper;
8031 	} else {
8032 		wq = fs_info->endio_write_workers;
8033 		func = btrfs_endio_write_helper;
8034 	}
8035 
8036 	while (ordered_offset < offset + bytes) {
8037 		last_offset = ordered_offset;
8038 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8039 							   &ordered_offset,
8040 							   ordered_bytes,
8041 							   uptodate)) {
8042 			btrfs_init_work(&ordered->work, func,
8043 					finish_ordered_fn,
8044 					NULL, NULL);
8045 			btrfs_queue_work(wq, &ordered->work);
8046 		}
8047 		/*
8048 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8049 		 * extent in the range, we can exit.
8050 		 */
8051 		if (ordered_offset == last_offset)
8052 			return;
8053 		/*
8054 		 * Our bio might span multiple ordered extents. In this case
8055 		 * we keep going until we have accounted the whole dio.
8056 		 */
8057 		if (ordered_offset < offset + bytes) {
8058 			ordered_bytes = offset + bytes - ordered_offset;
8059 			ordered = NULL;
8060 		}
8061 	}
8062 }
8063 
8064 static void btrfs_endio_direct_write(struct bio *bio)
8065 {
8066 	struct btrfs_dio_private *dip = bio->bi_private;
8067 	struct bio *dio_bio = dip->dio_bio;
8068 
8069 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8070 				     dip->bytes, !bio->bi_status);
8071 
8072 	kfree(dip);
8073 
8074 	dio_bio->bi_status = bio->bi_status;
8075 	dio_end_io(dio_bio);
8076 	bio_put(bio);
8077 }
8078 
8079 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8080 				    struct bio *bio, u64 offset)
8081 {
8082 	struct inode *inode = private_data;
8083 	blk_status_t ret;
8084 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8085 	BUG_ON(ret); /* -ENOMEM */
8086 	return 0;
8087 }
8088 
8089 static void btrfs_end_dio_bio(struct bio *bio)
8090 {
8091 	struct btrfs_dio_private *dip = bio->bi_private;
8092 	blk_status_t err = bio->bi_status;
8093 
8094 	if (err)
8095 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8096 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8097 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8098 			   bio->bi_opf,
8099 			   (unsigned long long)bio->bi_iter.bi_sector,
8100 			   bio->bi_iter.bi_size, err);
8101 
8102 	if (dip->subio_endio)
8103 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8104 
8105 	if (err) {
8106 		/*
8107 		 * We want to perceive the errors flag being set before
8108 		 * decrementing the reference count. We don't need a barrier
8109 		 * since atomic operations with a return value are fully
8110 		 * ordered as per atomic_t.txt
8111 		 */
8112 		dip->errors = 1;
8113 	}
8114 
8115 	/* if there are more bios still pending for this dio, just exit */
8116 	if (!atomic_dec_and_test(&dip->pending_bios))
8117 		goto out;
8118 
8119 	if (dip->errors) {
8120 		bio_io_error(dip->orig_bio);
8121 	} else {
8122 		dip->dio_bio->bi_status = BLK_STS_OK;
8123 		bio_endio(dip->orig_bio);
8124 	}
8125 out:
8126 	bio_put(bio);
8127 }
8128 
8129 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8130 						 struct btrfs_dio_private *dip,
8131 						 struct bio *bio,
8132 						 u64 file_offset)
8133 {
8134 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8135 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8136 	blk_status_t ret;
8137 
8138 	/*
8139 	 * We load all the csum data we need when we submit
8140 	 * the first bio to reduce the csum tree search and
8141 	 * contention.
8142 	 */
8143 	if (dip->logical_offset == file_offset) {
8144 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8145 						file_offset);
8146 		if (ret)
8147 			return ret;
8148 	}
8149 
8150 	if (bio == dip->orig_bio)
8151 		return 0;
8152 
8153 	file_offset -= dip->logical_offset;
8154 	file_offset >>= inode->i_sb->s_blocksize_bits;
8155 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8156 
8157 	return 0;
8158 }
8159 
8160 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8161 		struct inode *inode, u64 file_offset, int async_submit)
8162 {
8163 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8164 	struct btrfs_dio_private *dip = bio->bi_private;
8165 	bool write = bio_op(bio) == REQ_OP_WRITE;
8166 	blk_status_t ret;
8167 
8168 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8169 	if (async_submit)
8170 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8171 
8172 	if (!write) {
8173 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8174 		if (ret)
8175 			goto err;
8176 	}
8177 
8178 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8179 		goto map;
8180 
8181 	if (write && async_submit) {
8182 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8183 					  file_offset, inode,
8184 					  btrfs_submit_bio_start_direct_io);
8185 		goto err;
8186 	} else if (write) {
8187 		/*
8188 		 * If we aren't doing async submit, calculate the csum of the
8189 		 * bio now.
8190 		 */
8191 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8192 		if (ret)
8193 			goto err;
8194 	} else {
8195 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8196 						     file_offset);
8197 		if (ret)
8198 			goto err;
8199 	}
8200 map:
8201 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8202 err:
8203 	return ret;
8204 }
8205 
8206 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8207 {
8208 	struct inode *inode = dip->inode;
8209 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8210 	struct bio *bio;
8211 	struct bio *orig_bio = dip->orig_bio;
8212 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8213 	u64 file_offset = dip->logical_offset;
8214 	u64 map_length;
8215 	int async_submit = 0;
8216 	u64 submit_len;
8217 	int clone_offset = 0;
8218 	int clone_len;
8219 	int ret;
8220 	blk_status_t status;
8221 
8222 	map_length = orig_bio->bi_iter.bi_size;
8223 	submit_len = map_length;
8224 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8225 			      &map_length, NULL, 0);
8226 	if (ret)
8227 		return -EIO;
8228 
8229 	if (map_length >= submit_len) {
8230 		bio = orig_bio;
8231 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8232 		goto submit;
8233 	}
8234 
8235 	/* async crcs make it difficult to collect full stripe writes. */
8236 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8237 		async_submit = 0;
8238 	else
8239 		async_submit = 1;
8240 
8241 	/* bio split */
8242 	ASSERT(map_length <= INT_MAX);
8243 	atomic_inc(&dip->pending_bios);
8244 	do {
8245 		clone_len = min_t(int, submit_len, map_length);
8246 
8247 		/*
8248 		 * This will never fail as it's passing GPF_NOFS and
8249 		 * the allocation is backed by btrfs_bioset.
8250 		 */
8251 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8252 					      clone_len);
8253 		bio->bi_private = dip;
8254 		bio->bi_end_io = btrfs_end_dio_bio;
8255 		btrfs_io_bio(bio)->logical = file_offset;
8256 
8257 		ASSERT(submit_len >= clone_len);
8258 		submit_len -= clone_len;
8259 		if (submit_len == 0)
8260 			break;
8261 
8262 		/*
8263 		 * Increase the count before we submit the bio so we know
8264 		 * the end IO handler won't happen before we increase the
8265 		 * count. Otherwise, the dip might get freed before we're
8266 		 * done setting it up.
8267 		 */
8268 		atomic_inc(&dip->pending_bios);
8269 
8270 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8271 						async_submit);
8272 		if (status) {
8273 			bio_put(bio);
8274 			atomic_dec(&dip->pending_bios);
8275 			goto out_err;
8276 		}
8277 
8278 		clone_offset += clone_len;
8279 		start_sector += clone_len >> 9;
8280 		file_offset += clone_len;
8281 
8282 		map_length = submit_len;
8283 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8284 				      start_sector << 9, &map_length, NULL, 0);
8285 		if (ret)
8286 			goto out_err;
8287 	} while (submit_len > 0);
8288 
8289 submit:
8290 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8291 	if (!status)
8292 		return 0;
8293 
8294 	bio_put(bio);
8295 out_err:
8296 	dip->errors = 1;
8297 	/*
8298 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8299 	 * perceived to be set. This ordering is ensured by the fact that an
8300 	 * atomic operations with a return value are fully ordered as per
8301 	 * atomic_t.txt
8302 	 */
8303 	if (atomic_dec_and_test(&dip->pending_bios))
8304 		bio_io_error(dip->orig_bio);
8305 
8306 	/* bio_end_io() will handle error, so we needn't return it */
8307 	return 0;
8308 }
8309 
8310 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8311 				loff_t file_offset)
8312 {
8313 	struct btrfs_dio_private *dip = NULL;
8314 	struct bio *bio = NULL;
8315 	struct btrfs_io_bio *io_bio;
8316 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8317 	int ret = 0;
8318 
8319 	bio = btrfs_bio_clone(dio_bio);
8320 
8321 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8322 	if (!dip) {
8323 		ret = -ENOMEM;
8324 		goto free_ordered;
8325 	}
8326 
8327 	dip->private = dio_bio->bi_private;
8328 	dip->inode = inode;
8329 	dip->logical_offset = file_offset;
8330 	dip->bytes = dio_bio->bi_iter.bi_size;
8331 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8332 	bio->bi_private = dip;
8333 	dip->orig_bio = bio;
8334 	dip->dio_bio = dio_bio;
8335 	atomic_set(&dip->pending_bios, 0);
8336 	io_bio = btrfs_io_bio(bio);
8337 	io_bio->logical = file_offset;
8338 
8339 	if (write) {
8340 		bio->bi_end_io = btrfs_endio_direct_write;
8341 	} else {
8342 		bio->bi_end_io = btrfs_endio_direct_read;
8343 		dip->subio_endio = btrfs_subio_endio_read;
8344 	}
8345 
8346 	/*
8347 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8348 	 * even if we fail to submit a bio, because in such case we do the
8349 	 * corresponding error handling below and it must not be done a second
8350 	 * time by btrfs_direct_IO().
8351 	 */
8352 	if (write) {
8353 		struct btrfs_dio_data *dio_data = current->journal_info;
8354 
8355 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8356 			dip->bytes;
8357 		dio_data->unsubmitted_oe_range_start =
8358 			dio_data->unsubmitted_oe_range_end;
8359 	}
8360 
8361 	ret = btrfs_submit_direct_hook(dip);
8362 	if (!ret)
8363 		return;
8364 
8365 	btrfs_io_bio_free_csum(io_bio);
8366 
8367 free_ordered:
8368 	/*
8369 	 * If we arrived here it means either we failed to submit the dip
8370 	 * or we either failed to clone the dio_bio or failed to allocate the
8371 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8372 	 * call bio_endio against our io_bio so that we get proper resource
8373 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8374 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8375 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8376 	 */
8377 	if (bio && dip) {
8378 		bio_io_error(bio);
8379 		/*
8380 		 * The end io callbacks free our dip, do the final put on bio
8381 		 * and all the cleanup and final put for dio_bio (through
8382 		 * dio_end_io()).
8383 		 */
8384 		dip = NULL;
8385 		bio = NULL;
8386 	} else {
8387 		if (write)
8388 			__endio_write_update_ordered(inode,
8389 						file_offset,
8390 						dio_bio->bi_iter.bi_size,
8391 						false);
8392 		else
8393 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8394 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8395 
8396 		dio_bio->bi_status = BLK_STS_IOERR;
8397 		/*
8398 		 * Releases and cleans up our dio_bio, no need to bio_put()
8399 		 * nor bio_endio()/bio_io_error() against dio_bio.
8400 		 */
8401 		dio_end_io(dio_bio);
8402 	}
8403 	if (bio)
8404 		bio_put(bio);
8405 	kfree(dip);
8406 }
8407 
8408 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8409 			       const struct iov_iter *iter, loff_t offset)
8410 {
8411 	int seg;
8412 	int i;
8413 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8414 	ssize_t retval = -EINVAL;
8415 
8416 	if (offset & blocksize_mask)
8417 		goto out;
8418 
8419 	if (iov_iter_alignment(iter) & blocksize_mask)
8420 		goto out;
8421 
8422 	/* If this is a write we don't need to check anymore */
8423 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8424 		return 0;
8425 	/*
8426 	 * Check to make sure we don't have duplicate iov_base's in this
8427 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8428 	 * when reading back.
8429 	 */
8430 	for (seg = 0; seg < iter->nr_segs; seg++) {
8431 		for (i = seg + 1; i < iter->nr_segs; i++) {
8432 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8433 				goto out;
8434 		}
8435 	}
8436 	retval = 0;
8437 out:
8438 	return retval;
8439 }
8440 
8441 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8442 {
8443 	struct file *file = iocb->ki_filp;
8444 	struct inode *inode = file->f_mapping->host;
8445 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8446 	struct btrfs_dio_data dio_data = { 0 };
8447 	struct extent_changeset *data_reserved = NULL;
8448 	loff_t offset = iocb->ki_pos;
8449 	size_t count = 0;
8450 	int flags = 0;
8451 	bool wakeup = true;
8452 	bool relock = false;
8453 	ssize_t ret;
8454 
8455 	if (check_direct_IO(fs_info, iter, offset))
8456 		return 0;
8457 
8458 	inode_dio_begin(inode);
8459 
8460 	/*
8461 	 * The generic stuff only does filemap_write_and_wait_range, which
8462 	 * isn't enough if we've written compressed pages to this area, so
8463 	 * we need to flush the dirty pages again to make absolutely sure
8464 	 * that any outstanding dirty pages are on disk.
8465 	 */
8466 	count = iov_iter_count(iter);
8467 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8468 		     &BTRFS_I(inode)->runtime_flags))
8469 		filemap_fdatawrite_range(inode->i_mapping, offset,
8470 					 offset + count - 1);
8471 
8472 	if (iov_iter_rw(iter) == WRITE) {
8473 		/*
8474 		 * If the write DIO is beyond the EOF, we need update
8475 		 * the isize, but it is protected by i_mutex. So we can
8476 		 * not unlock the i_mutex at this case.
8477 		 */
8478 		if (offset + count <= inode->i_size) {
8479 			dio_data.overwrite = 1;
8480 			inode_unlock(inode);
8481 			relock = true;
8482 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8483 			ret = -EAGAIN;
8484 			goto out;
8485 		}
8486 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8487 						   offset, count);
8488 		if (ret)
8489 			goto out;
8490 
8491 		/*
8492 		 * We need to know how many extents we reserved so that we can
8493 		 * do the accounting properly if we go over the number we
8494 		 * originally calculated.  Abuse current->journal_info for this.
8495 		 */
8496 		dio_data.reserve = round_up(count,
8497 					    fs_info->sectorsize);
8498 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8499 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8500 		current->journal_info = &dio_data;
8501 		down_read(&BTRFS_I(inode)->dio_sem);
8502 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8503 				     &BTRFS_I(inode)->runtime_flags)) {
8504 		inode_dio_end(inode);
8505 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8506 		wakeup = false;
8507 	}
8508 
8509 	ret = __blockdev_direct_IO(iocb, inode,
8510 				   fs_info->fs_devices->latest_bdev,
8511 				   iter, btrfs_get_blocks_direct, NULL,
8512 				   btrfs_submit_direct, flags);
8513 	if (iov_iter_rw(iter) == WRITE) {
8514 		up_read(&BTRFS_I(inode)->dio_sem);
8515 		current->journal_info = NULL;
8516 		if (ret < 0 && ret != -EIOCBQUEUED) {
8517 			if (dio_data.reserve)
8518 				btrfs_delalloc_release_space(inode, data_reserved,
8519 					offset, dio_data.reserve, true);
8520 			/*
8521 			 * On error we might have left some ordered extents
8522 			 * without submitting corresponding bios for them, so
8523 			 * cleanup them up to avoid other tasks getting them
8524 			 * and waiting for them to complete forever.
8525 			 */
8526 			if (dio_data.unsubmitted_oe_range_start <
8527 			    dio_data.unsubmitted_oe_range_end)
8528 				__endio_write_update_ordered(inode,
8529 					dio_data.unsubmitted_oe_range_start,
8530 					dio_data.unsubmitted_oe_range_end -
8531 					dio_data.unsubmitted_oe_range_start,
8532 					false);
8533 		} else if (ret >= 0 && (size_t)ret < count)
8534 			btrfs_delalloc_release_space(inode, data_reserved,
8535 					offset, count - (size_t)ret, true);
8536 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8537 	}
8538 out:
8539 	if (wakeup)
8540 		inode_dio_end(inode);
8541 	if (relock)
8542 		inode_lock(inode);
8543 
8544 	extent_changeset_free(data_reserved);
8545 	return ret;
8546 }
8547 
8548 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8549 
8550 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8551 		__u64 start, __u64 len)
8552 {
8553 	int	ret;
8554 
8555 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8556 	if (ret)
8557 		return ret;
8558 
8559 	return extent_fiemap(inode, fieinfo, start, len);
8560 }
8561 
8562 int btrfs_readpage(struct file *file, struct page *page)
8563 {
8564 	struct extent_io_tree *tree;
8565 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8566 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8567 }
8568 
8569 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8570 {
8571 	struct inode *inode = page->mapping->host;
8572 	int ret;
8573 
8574 	if (current->flags & PF_MEMALLOC) {
8575 		redirty_page_for_writepage(wbc, page);
8576 		unlock_page(page);
8577 		return 0;
8578 	}
8579 
8580 	/*
8581 	 * If we are under memory pressure we will call this directly from the
8582 	 * VM, we need to make sure we have the inode referenced for the ordered
8583 	 * extent.  If not just return like we didn't do anything.
8584 	 */
8585 	if (!igrab(inode)) {
8586 		redirty_page_for_writepage(wbc, page);
8587 		return AOP_WRITEPAGE_ACTIVATE;
8588 	}
8589 	ret = extent_write_full_page(page, wbc);
8590 	btrfs_add_delayed_iput(inode);
8591 	return ret;
8592 }
8593 
8594 static int btrfs_writepages(struct address_space *mapping,
8595 			    struct writeback_control *wbc)
8596 {
8597 	return extent_writepages(mapping, wbc);
8598 }
8599 
8600 static int
8601 btrfs_readpages(struct file *file, struct address_space *mapping,
8602 		struct list_head *pages, unsigned nr_pages)
8603 {
8604 	return extent_readpages(mapping, pages, nr_pages);
8605 }
8606 
8607 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8608 {
8609 	int ret = try_release_extent_mapping(page, gfp_flags);
8610 	if (ret == 1) {
8611 		ClearPagePrivate(page);
8612 		set_page_private(page, 0);
8613 		put_page(page);
8614 	}
8615 	return ret;
8616 }
8617 
8618 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8619 {
8620 	if (PageWriteback(page) || PageDirty(page))
8621 		return 0;
8622 	return __btrfs_releasepage(page, gfp_flags);
8623 }
8624 
8625 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8626 				 unsigned int length)
8627 {
8628 	struct inode *inode = page->mapping->host;
8629 	struct extent_io_tree *tree;
8630 	struct btrfs_ordered_extent *ordered;
8631 	struct extent_state *cached_state = NULL;
8632 	u64 page_start = page_offset(page);
8633 	u64 page_end = page_start + PAGE_SIZE - 1;
8634 	u64 start;
8635 	u64 end;
8636 	int inode_evicting = inode->i_state & I_FREEING;
8637 
8638 	/*
8639 	 * we have the page locked, so new writeback can't start,
8640 	 * and the dirty bit won't be cleared while we are here.
8641 	 *
8642 	 * Wait for IO on this page so that we can safely clear
8643 	 * the PagePrivate2 bit and do ordered accounting
8644 	 */
8645 	wait_on_page_writeback(page);
8646 
8647 	tree = &BTRFS_I(inode)->io_tree;
8648 	if (offset) {
8649 		btrfs_releasepage(page, GFP_NOFS);
8650 		return;
8651 	}
8652 
8653 	if (!inode_evicting)
8654 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8655 again:
8656 	start = page_start;
8657 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8658 					page_end - start + 1);
8659 	if (ordered) {
8660 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8661 		/*
8662 		 * IO on this page will never be started, so we need
8663 		 * to account for any ordered extents now
8664 		 */
8665 		if (!inode_evicting)
8666 			clear_extent_bit(tree, start, end,
8667 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8668 					 EXTENT_DELALLOC_NEW |
8669 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8670 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8671 		/*
8672 		 * whoever cleared the private bit is responsible
8673 		 * for the finish_ordered_io
8674 		 */
8675 		if (TestClearPagePrivate2(page)) {
8676 			struct btrfs_ordered_inode_tree *tree;
8677 			u64 new_len;
8678 
8679 			tree = &BTRFS_I(inode)->ordered_tree;
8680 
8681 			spin_lock_irq(&tree->lock);
8682 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8683 			new_len = start - ordered->file_offset;
8684 			if (new_len < ordered->truncated_len)
8685 				ordered->truncated_len = new_len;
8686 			spin_unlock_irq(&tree->lock);
8687 
8688 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8689 							   start,
8690 							   end - start + 1, 1))
8691 				btrfs_finish_ordered_io(ordered);
8692 		}
8693 		btrfs_put_ordered_extent(ordered);
8694 		if (!inode_evicting) {
8695 			cached_state = NULL;
8696 			lock_extent_bits(tree, start, end,
8697 					 &cached_state);
8698 		}
8699 
8700 		start = end + 1;
8701 		if (start < page_end)
8702 			goto again;
8703 	}
8704 
8705 	/*
8706 	 * Qgroup reserved space handler
8707 	 * Page here will be either
8708 	 * 1) Already written to disk
8709 	 *    In this case, its reserved space is released from data rsv map
8710 	 *    and will be freed by delayed_ref handler finally.
8711 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8712 	 *    space.
8713 	 * 2) Not written to disk
8714 	 *    This means the reserved space should be freed here. However,
8715 	 *    if a truncate invalidates the page (by clearing PageDirty)
8716 	 *    and the page is accounted for while allocating extent
8717 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8718 	 *    free the entire extent.
8719 	 */
8720 	if (PageDirty(page))
8721 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8722 	if (!inode_evicting) {
8723 		clear_extent_bit(tree, page_start, page_end,
8724 				 EXTENT_LOCKED | EXTENT_DIRTY |
8725 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8726 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8727 				 &cached_state);
8728 
8729 		__btrfs_releasepage(page, GFP_NOFS);
8730 	}
8731 
8732 	ClearPageChecked(page);
8733 	if (PagePrivate(page)) {
8734 		ClearPagePrivate(page);
8735 		set_page_private(page, 0);
8736 		put_page(page);
8737 	}
8738 }
8739 
8740 /*
8741  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8742  * called from a page fault handler when a page is first dirtied. Hence we must
8743  * be careful to check for EOF conditions here. We set the page up correctly
8744  * for a written page which means we get ENOSPC checking when writing into
8745  * holes and correct delalloc and unwritten extent mapping on filesystems that
8746  * support these features.
8747  *
8748  * We are not allowed to take the i_mutex here so we have to play games to
8749  * protect against truncate races as the page could now be beyond EOF.  Because
8750  * truncate_setsize() writes the inode size before removing pages, once we have
8751  * the page lock we can determine safely if the page is beyond EOF. If it is not
8752  * beyond EOF, then the page is guaranteed safe against truncation until we
8753  * unlock the page.
8754  */
8755 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8756 {
8757 	struct page *page = vmf->page;
8758 	struct inode *inode = file_inode(vmf->vma->vm_file);
8759 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8760 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8761 	struct btrfs_ordered_extent *ordered;
8762 	struct extent_state *cached_state = NULL;
8763 	struct extent_changeset *data_reserved = NULL;
8764 	char *kaddr;
8765 	unsigned long zero_start;
8766 	loff_t size;
8767 	vm_fault_t ret;
8768 	int ret2;
8769 	int reserved = 0;
8770 	u64 reserved_space;
8771 	u64 page_start;
8772 	u64 page_end;
8773 	u64 end;
8774 
8775 	reserved_space = PAGE_SIZE;
8776 
8777 	sb_start_pagefault(inode->i_sb);
8778 	page_start = page_offset(page);
8779 	page_end = page_start + PAGE_SIZE - 1;
8780 	end = page_end;
8781 
8782 	/*
8783 	 * Reserving delalloc space after obtaining the page lock can lead to
8784 	 * deadlock. For example, if a dirty page is locked by this function
8785 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8786 	 * dirty page write out, then the btrfs_writepage() function could
8787 	 * end up waiting indefinitely to get a lock on the page currently
8788 	 * being processed by btrfs_page_mkwrite() function.
8789 	 */
8790 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8791 					   reserved_space);
8792 	if (!ret2) {
8793 		ret2 = file_update_time(vmf->vma->vm_file);
8794 		reserved = 1;
8795 	}
8796 	if (ret2) {
8797 		ret = vmf_error(ret2);
8798 		if (reserved)
8799 			goto out;
8800 		goto out_noreserve;
8801 	}
8802 
8803 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8804 again:
8805 	lock_page(page);
8806 	size = i_size_read(inode);
8807 
8808 	if ((page->mapping != inode->i_mapping) ||
8809 	    (page_start >= size)) {
8810 		/* page got truncated out from underneath us */
8811 		goto out_unlock;
8812 	}
8813 	wait_on_page_writeback(page);
8814 
8815 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8816 	set_page_extent_mapped(page);
8817 
8818 	/*
8819 	 * we can't set the delalloc bits if there are pending ordered
8820 	 * extents.  Drop our locks and wait for them to finish
8821 	 */
8822 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8823 			PAGE_SIZE);
8824 	if (ordered) {
8825 		unlock_extent_cached(io_tree, page_start, page_end,
8826 				     &cached_state);
8827 		unlock_page(page);
8828 		btrfs_start_ordered_extent(inode, ordered, 1);
8829 		btrfs_put_ordered_extent(ordered);
8830 		goto again;
8831 	}
8832 
8833 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8834 		reserved_space = round_up(size - page_start,
8835 					  fs_info->sectorsize);
8836 		if (reserved_space < PAGE_SIZE) {
8837 			end = page_start + reserved_space - 1;
8838 			btrfs_delalloc_release_space(inode, data_reserved,
8839 					page_start, PAGE_SIZE - reserved_space,
8840 					true);
8841 		}
8842 	}
8843 
8844 	/*
8845 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8846 	 * faulted in, but write(2) could also dirty a page and set delalloc
8847 	 * bits, thus in this case for space account reason, we still need to
8848 	 * clear any delalloc bits within this page range since we have to
8849 	 * reserve data&meta space before lock_page() (see above comments).
8850 	 */
8851 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8852 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8853 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8854 			  0, 0, &cached_state);
8855 
8856 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8857 					&cached_state, 0);
8858 	if (ret2) {
8859 		unlock_extent_cached(io_tree, page_start, page_end,
8860 				     &cached_state);
8861 		ret = VM_FAULT_SIGBUS;
8862 		goto out_unlock;
8863 	}
8864 	ret2 = 0;
8865 
8866 	/* page is wholly or partially inside EOF */
8867 	if (page_start + PAGE_SIZE > size)
8868 		zero_start = offset_in_page(size);
8869 	else
8870 		zero_start = PAGE_SIZE;
8871 
8872 	if (zero_start != PAGE_SIZE) {
8873 		kaddr = kmap(page);
8874 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8875 		flush_dcache_page(page);
8876 		kunmap(page);
8877 	}
8878 	ClearPageChecked(page);
8879 	set_page_dirty(page);
8880 	SetPageUptodate(page);
8881 
8882 	BTRFS_I(inode)->last_trans = fs_info->generation;
8883 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8884 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8885 
8886 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8887 
8888 	if (!ret2) {
8889 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8890 		sb_end_pagefault(inode->i_sb);
8891 		extent_changeset_free(data_reserved);
8892 		return VM_FAULT_LOCKED;
8893 	}
8894 
8895 out_unlock:
8896 	unlock_page(page);
8897 out:
8898 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8899 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
8900 				     reserved_space, (ret != 0));
8901 out_noreserve:
8902 	sb_end_pagefault(inode->i_sb);
8903 	extent_changeset_free(data_reserved);
8904 	return ret;
8905 }
8906 
8907 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8908 {
8909 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8910 	struct btrfs_root *root = BTRFS_I(inode)->root;
8911 	struct btrfs_block_rsv *rsv;
8912 	int ret;
8913 	struct btrfs_trans_handle *trans;
8914 	u64 mask = fs_info->sectorsize - 1;
8915 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
8916 
8917 	if (!skip_writeback) {
8918 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8919 					       (u64)-1);
8920 		if (ret)
8921 			return ret;
8922 	}
8923 
8924 	/*
8925 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8926 	 * things going on here:
8927 	 *
8928 	 * 1) We need to reserve space to update our inode.
8929 	 *
8930 	 * 2) We need to have something to cache all the space that is going to
8931 	 * be free'd up by the truncate operation, but also have some slack
8932 	 * space reserved in case it uses space during the truncate (thank you
8933 	 * very much snapshotting).
8934 	 *
8935 	 * And we need these to be separate.  The fact is we can use a lot of
8936 	 * space doing the truncate, and we have no earthly idea how much space
8937 	 * we will use, so we need the truncate reservation to be separate so it
8938 	 * doesn't end up using space reserved for updating the inode.  We also
8939 	 * need to be able to stop the transaction and start a new one, which
8940 	 * means we need to be able to update the inode several times, and we
8941 	 * have no idea of knowing how many times that will be, so we can't just
8942 	 * reserve 1 item for the entirety of the operation, so that has to be
8943 	 * done separately as well.
8944 	 *
8945 	 * So that leaves us with
8946 	 *
8947 	 * 1) rsv - for the truncate reservation, which we will steal from the
8948 	 * transaction reservation.
8949 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8950 	 * updating the inode.
8951 	 */
8952 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8953 	if (!rsv)
8954 		return -ENOMEM;
8955 	rsv->size = min_size;
8956 	rsv->failfast = 1;
8957 
8958 	/*
8959 	 * 1 for the truncate slack space
8960 	 * 1 for updating the inode.
8961 	 */
8962 	trans = btrfs_start_transaction(root, 2);
8963 	if (IS_ERR(trans)) {
8964 		ret = PTR_ERR(trans);
8965 		goto out;
8966 	}
8967 
8968 	/* Migrate the slack space for the truncate to our reserve */
8969 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8970 				      min_size, false);
8971 	BUG_ON(ret);
8972 
8973 	/*
8974 	 * So if we truncate and then write and fsync we normally would just
8975 	 * write the extents that changed, which is a problem if we need to
8976 	 * first truncate that entire inode.  So set this flag so we write out
8977 	 * all of the extents in the inode to the sync log so we're completely
8978 	 * safe.
8979 	 */
8980 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8981 	trans->block_rsv = rsv;
8982 
8983 	while (1) {
8984 		ret = btrfs_truncate_inode_items(trans, root, inode,
8985 						 inode->i_size,
8986 						 BTRFS_EXTENT_DATA_KEY);
8987 		trans->block_rsv = &fs_info->trans_block_rsv;
8988 		if (ret != -ENOSPC && ret != -EAGAIN)
8989 			break;
8990 
8991 		ret = btrfs_update_inode(trans, root, inode);
8992 		if (ret)
8993 			break;
8994 
8995 		btrfs_end_transaction(trans);
8996 		btrfs_btree_balance_dirty(fs_info);
8997 
8998 		trans = btrfs_start_transaction(root, 2);
8999 		if (IS_ERR(trans)) {
9000 			ret = PTR_ERR(trans);
9001 			trans = NULL;
9002 			break;
9003 		}
9004 
9005 		btrfs_block_rsv_release(fs_info, rsv, -1);
9006 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9007 					      rsv, min_size, false);
9008 		BUG_ON(ret);	/* shouldn't happen */
9009 		trans->block_rsv = rsv;
9010 	}
9011 
9012 	/*
9013 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9014 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9015 	 * we've truncated everything except the last little bit, and can do
9016 	 * btrfs_truncate_block and then update the disk_i_size.
9017 	 */
9018 	if (ret == NEED_TRUNCATE_BLOCK) {
9019 		btrfs_end_transaction(trans);
9020 		btrfs_btree_balance_dirty(fs_info);
9021 
9022 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9023 		if (ret)
9024 			goto out;
9025 		trans = btrfs_start_transaction(root, 1);
9026 		if (IS_ERR(trans)) {
9027 			ret = PTR_ERR(trans);
9028 			goto out;
9029 		}
9030 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9031 	}
9032 
9033 	if (trans) {
9034 		int ret2;
9035 
9036 		trans->block_rsv = &fs_info->trans_block_rsv;
9037 		ret2 = btrfs_update_inode(trans, root, inode);
9038 		if (ret2 && !ret)
9039 			ret = ret2;
9040 
9041 		ret2 = btrfs_end_transaction(trans);
9042 		if (ret2 && !ret)
9043 			ret = ret2;
9044 		btrfs_btree_balance_dirty(fs_info);
9045 	}
9046 out:
9047 	btrfs_free_block_rsv(fs_info, rsv);
9048 
9049 	return ret;
9050 }
9051 
9052 /*
9053  * create a new subvolume directory/inode (helper for the ioctl).
9054  */
9055 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9056 			     struct btrfs_root *new_root,
9057 			     struct btrfs_root *parent_root,
9058 			     u64 new_dirid)
9059 {
9060 	struct inode *inode;
9061 	int err;
9062 	u64 index = 0;
9063 
9064 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9065 				new_dirid, new_dirid,
9066 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9067 				&index);
9068 	if (IS_ERR(inode))
9069 		return PTR_ERR(inode);
9070 	inode->i_op = &btrfs_dir_inode_operations;
9071 	inode->i_fop = &btrfs_dir_file_operations;
9072 
9073 	set_nlink(inode, 1);
9074 	btrfs_i_size_write(BTRFS_I(inode), 0);
9075 	unlock_new_inode(inode);
9076 
9077 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9078 	if (err)
9079 		btrfs_err(new_root->fs_info,
9080 			  "error inheriting subvolume %llu properties: %d",
9081 			  new_root->root_key.objectid, err);
9082 
9083 	err = btrfs_update_inode(trans, new_root, inode);
9084 
9085 	iput(inode);
9086 	return err;
9087 }
9088 
9089 struct inode *btrfs_alloc_inode(struct super_block *sb)
9090 {
9091 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9092 	struct btrfs_inode *ei;
9093 	struct inode *inode;
9094 
9095 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9096 	if (!ei)
9097 		return NULL;
9098 
9099 	ei->root = NULL;
9100 	ei->generation = 0;
9101 	ei->last_trans = 0;
9102 	ei->last_sub_trans = 0;
9103 	ei->logged_trans = 0;
9104 	ei->delalloc_bytes = 0;
9105 	ei->new_delalloc_bytes = 0;
9106 	ei->defrag_bytes = 0;
9107 	ei->disk_i_size = 0;
9108 	ei->flags = 0;
9109 	ei->csum_bytes = 0;
9110 	ei->index_cnt = (u64)-1;
9111 	ei->dir_index = 0;
9112 	ei->last_unlink_trans = 0;
9113 	ei->last_link_trans = 0;
9114 	ei->last_log_commit = 0;
9115 
9116 	spin_lock_init(&ei->lock);
9117 	ei->outstanding_extents = 0;
9118 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9119 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9120 					      BTRFS_BLOCK_RSV_DELALLOC);
9121 	ei->runtime_flags = 0;
9122 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9123 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9124 
9125 	ei->delayed_node = NULL;
9126 
9127 	ei->i_otime.tv_sec = 0;
9128 	ei->i_otime.tv_nsec = 0;
9129 
9130 	inode = &ei->vfs_inode;
9131 	extent_map_tree_init(&ei->extent_tree);
9132 	extent_io_tree_init(&ei->io_tree, inode);
9133 	extent_io_tree_init(&ei->io_failure_tree, inode);
9134 	ei->io_tree.track_uptodate = 1;
9135 	ei->io_failure_tree.track_uptodate = 1;
9136 	atomic_set(&ei->sync_writers, 0);
9137 	mutex_init(&ei->log_mutex);
9138 	mutex_init(&ei->delalloc_mutex);
9139 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9140 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9141 	INIT_LIST_HEAD(&ei->delayed_iput);
9142 	RB_CLEAR_NODE(&ei->rb_node);
9143 	init_rwsem(&ei->dio_sem);
9144 
9145 	return inode;
9146 }
9147 
9148 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9149 void btrfs_test_destroy_inode(struct inode *inode)
9150 {
9151 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9152 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9153 }
9154 #endif
9155 
9156 static void btrfs_i_callback(struct rcu_head *head)
9157 {
9158 	struct inode *inode = container_of(head, struct inode, i_rcu);
9159 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9160 }
9161 
9162 void btrfs_destroy_inode(struct inode *inode)
9163 {
9164 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9165 	struct btrfs_ordered_extent *ordered;
9166 	struct btrfs_root *root = BTRFS_I(inode)->root;
9167 
9168 	WARN_ON(!hlist_empty(&inode->i_dentry));
9169 	WARN_ON(inode->i_data.nrpages);
9170 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9171 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9172 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9173 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9174 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9175 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9176 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9177 
9178 	/*
9179 	 * This can happen where we create an inode, but somebody else also
9180 	 * created the same inode and we need to destroy the one we already
9181 	 * created.
9182 	 */
9183 	if (!root)
9184 		goto free;
9185 
9186 	while (1) {
9187 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9188 		if (!ordered)
9189 			break;
9190 		else {
9191 			btrfs_err(fs_info,
9192 				  "found ordered extent %llu %llu on inode cleanup",
9193 				  ordered->file_offset, ordered->len);
9194 			btrfs_remove_ordered_extent(inode, ordered);
9195 			btrfs_put_ordered_extent(ordered);
9196 			btrfs_put_ordered_extent(ordered);
9197 		}
9198 	}
9199 	btrfs_qgroup_check_reserved_leak(inode);
9200 	inode_tree_del(inode);
9201 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9202 free:
9203 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9204 }
9205 
9206 int btrfs_drop_inode(struct inode *inode)
9207 {
9208 	struct btrfs_root *root = BTRFS_I(inode)->root;
9209 
9210 	if (root == NULL)
9211 		return 1;
9212 
9213 	/* the snap/subvol tree is on deleting */
9214 	if (btrfs_root_refs(&root->root_item) == 0)
9215 		return 1;
9216 	else
9217 		return generic_drop_inode(inode);
9218 }
9219 
9220 static void init_once(void *foo)
9221 {
9222 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9223 
9224 	inode_init_once(&ei->vfs_inode);
9225 }
9226 
9227 void __cold btrfs_destroy_cachep(void)
9228 {
9229 	/*
9230 	 * Make sure all delayed rcu free inodes are flushed before we
9231 	 * destroy cache.
9232 	 */
9233 	rcu_barrier();
9234 	kmem_cache_destroy(btrfs_inode_cachep);
9235 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9236 	kmem_cache_destroy(btrfs_path_cachep);
9237 	kmem_cache_destroy(btrfs_free_space_cachep);
9238 }
9239 
9240 int __init btrfs_init_cachep(void)
9241 {
9242 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9243 			sizeof(struct btrfs_inode), 0,
9244 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9245 			init_once);
9246 	if (!btrfs_inode_cachep)
9247 		goto fail;
9248 
9249 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9250 			sizeof(struct btrfs_trans_handle), 0,
9251 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9252 	if (!btrfs_trans_handle_cachep)
9253 		goto fail;
9254 
9255 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9256 			sizeof(struct btrfs_path), 0,
9257 			SLAB_MEM_SPREAD, NULL);
9258 	if (!btrfs_path_cachep)
9259 		goto fail;
9260 
9261 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9262 			sizeof(struct btrfs_free_space), 0,
9263 			SLAB_MEM_SPREAD, NULL);
9264 	if (!btrfs_free_space_cachep)
9265 		goto fail;
9266 
9267 	return 0;
9268 fail:
9269 	btrfs_destroy_cachep();
9270 	return -ENOMEM;
9271 }
9272 
9273 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9274 			 u32 request_mask, unsigned int flags)
9275 {
9276 	u64 delalloc_bytes;
9277 	struct inode *inode = d_inode(path->dentry);
9278 	u32 blocksize = inode->i_sb->s_blocksize;
9279 	u32 bi_flags = BTRFS_I(inode)->flags;
9280 
9281 	stat->result_mask |= STATX_BTIME;
9282 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9283 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9284 	if (bi_flags & BTRFS_INODE_APPEND)
9285 		stat->attributes |= STATX_ATTR_APPEND;
9286 	if (bi_flags & BTRFS_INODE_COMPRESS)
9287 		stat->attributes |= STATX_ATTR_COMPRESSED;
9288 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9289 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9290 	if (bi_flags & BTRFS_INODE_NODUMP)
9291 		stat->attributes |= STATX_ATTR_NODUMP;
9292 
9293 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9294 				  STATX_ATTR_COMPRESSED |
9295 				  STATX_ATTR_IMMUTABLE |
9296 				  STATX_ATTR_NODUMP);
9297 
9298 	generic_fillattr(inode, stat);
9299 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9300 
9301 	spin_lock(&BTRFS_I(inode)->lock);
9302 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9303 	spin_unlock(&BTRFS_I(inode)->lock);
9304 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9305 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9306 	return 0;
9307 }
9308 
9309 static int btrfs_rename_exchange(struct inode *old_dir,
9310 			      struct dentry *old_dentry,
9311 			      struct inode *new_dir,
9312 			      struct dentry *new_dentry)
9313 {
9314 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9315 	struct btrfs_trans_handle *trans;
9316 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9317 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9318 	struct inode *new_inode = new_dentry->d_inode;
9319 	struct inode *old_inode = old_dentry->d_inode;
9320 	struct timespec64 ctime = current_time(old_inode);
9321 	struct dentry *parent;
9322 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9323 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9324 	u64 old_idx = 0;
9325 	u64 new_idx = 0;
9326 	u64 root_objectid;
9327 	int ret;
9328 	bool root_log_pinned = false;
9329 	bool dest_log_pinned = false;
9330 	struct btrfs_log_ctx ctx_root;
9331 	struct btrfs_log_ctx ctx_dest;
9332 	bool sync_log_root = false;
9333 	bool sync_log_dest = false;
9334 	bool commit_transaction = false;
9335 
9336 	/* we only allow rename subvolume link between subvolumes */
9337 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9338 		return -EXDEV;
9339 
9340 	btrfs_init_log_ctx(&ctx_root, old_inode);
9341 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9342 
9343 	/* close the race window with snapshot create/destroy ioctl */
9344 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9345 		down_read(&fs_info->subvol_sem);
9346 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9347 		down_read(&fs_info->subvol_sem);
9348 
9349 	/*
9350 	 * We want to reserve the absolute worst case amount of items.  So if
9351 	 * both inodes are subvols and we need to unlink them then that would
9352 	 * require 4 item modifications, but if they are both normal inodes it
9353 	 * would require 5 item modifications, so we'll assume their normal
9354 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9355 	 * should cover the worst case number of items we'll modify.
9356 	 */
9357 	trans = btrfs_start_transaction(root, 12);
9358 	if (IS_ERR(trans)) {
9359 		ret = PTR_ERR(trans);
9360 		goto out_notrans;
9361 	}
9362 
9363 	/*
9364 	 * We need to find a free sequence number both in the source and
9365 	 * in the destination directory for the exchange.
9366 	 */
9367 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9368 	if (ret)
9369 		goto out_fail;
9370 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9371 	if (ret)
9372 		goto out_fail;
9373 
9374 	BTRFS_I(old_inode)->dir_index = 0ULL;
9375 	BTRFS_I(new_inode)->dir_index = 0ULL;
9376 
9377 	/* Reference for the source. */
9378 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9379 		/* force full log commit if subvolume involved. */
9380 		btrfs_set_log_full_commit(fs_info, trans);
9381 	} else {
9382 		btrfs_pin_log_trans(root);
9383 		root_log_pinned = true;
9384 		ret = btrfs_insert_inode_ref(trans, dest,
9385 					     new_dentry->d_name.name,
9386 					     new_dentry->d_name.len,
9387 					     old_ino,
9388 					     btrfs_ino(BTRFS_I(new_dir)),
9389 					     old_idx);
9390 		if (ret)
9391 			goto out_fail;
9392 	}
9393 
9394 	/* And now for the dest. */
9395 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9396 		/* force full log commit if subvolume involved. */
9397 		btrfs_set_log_full_commit(fs_info, trans);
9398 	} else {
9399 		btrfs_pin_log_trans(dest);
9400 		dest_log_pinned = true;
9401 		ret = btrfs_insert_inode_ref(trans, root,
9402 					     old_dentry->d_name.name,
9403 					     old_dentry->d_name.len,
9404 					     new_ino,
9405 					     btrfs_ino(BTRFS_I(old_dir)),
9406 					     new_idx);
9407 		if (ret)
9408 			goto out_fail;
9409 	}
9410 
9411 	/* Update inode version and ctime/mtime. */
9412 	inode_inc_iversion(old_dir);
9413 	inode_inc_iversion(new_dir);
9414 	inode_inc_iversion(old_inode);
9415 	inode_inc_iversion(new_inode);
9416 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9417 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9418 	old_inode->i_ctime = ctime;
9419 	new_inode->i_ctime = ctime;
9420 
9421 	if (old_dentry->d_parent != new_dentry->d_parent) {
9422 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9423 				BTRFS_I(old_inode), 1);
9424 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9425 				BTRFS_I(new_inode), 1);
9426 	}
9427 
9428 	/* src is a subvolume */
9429 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9430 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9431 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9432 					  old_dentry->d_name.name,
9433 					  old_dentry->d_name.len);
9434 	} else { /* src is an inode */
9435 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9436 					   BTRFS_I(old_dentry->d_inode),
9437 					   old_dentry->d_name.name,
9438 					   old_dentry->d_name.len);
9439 		if (!ret)
9440 			ret = btrfs_update_inode(trans, root, old_inode);
9441 	}
9442 	if (ret) {
9443 		btrfs_abort_transaction(trans, ret);
9444 		goto out_fail;
9445 	}
9446 
9447 	/* dest is a subvolume */
9448 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9449 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9450 		ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9451 					  new_dentry->d_name.name,
9452 					  new_dentry->d_name.len);
9453 	} else { /* dest is an inode */
9454 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9455 					   BTRFS_I(new_dentry->d_inode),
9456 					   new_dentry->d_name.name,
9457 					   new_dentry->d_name.len);
9458 		if (!ret)
9459 			ret = btrfs_update_inode(trans, dest, new_inode);
9460 	}
9461 	if (ret) {
9462 		btrfs_abort_transaction(trans, ret);
9463 		goto out_fail;
9464 	}
9465 
9466 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9467 			     new_dentry->d_name.name,
9468 			     new_dentry->d_name.len, 0, old_idx);
9469 	if (ret) {
9470 		btrfs_abort_transaction(trans, ret);
9471 		goto out_fail;
9472 	}
9473 
9474 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9475 			     old_dentry->d_name.name,
9476 			     old_dentry->d_name.len, 0, new_idx);
9477 	if (ret) {
9478 		btrfs_abort_transaction(trans, ret);
9479 		goto out_fail;
9480 	}
9481 
9482 	if (old_inode->i_nlink == 1)
9483 		BTRFS_I(old_inode)->dir_index = old_idx;
9484 	if (new_inode->i_nlink == 1)
9485 		BTRFS_I(new_inode)->dir_index = new_idx;
9486 
9487 	if (root_log_pinned) {
9488 		parent = new_dentry->d_parent;
9489 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9490 					 BTRFS_I(old_dir), parent,
9491 					 false, &ctx_root);
9492 		if (ret == BTRFS_NEED_LOG_SYNC)
9493 			sync_log_root = true;
9494 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9495 			commit_transaction = true;
9496 		ret = 0;
9497 		btrfs_end_log_trans(root);
9498 		root_log_pinned = false;
9499 	}
9500 	if (dest_log_pinned) {
9501 		if (!commit_transaction) {
9502 			parent = old_dentry->d_parent;
9503 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9504 						 BTRFS_I(new_dir), parent,
9505 						 false, &ctx_dest);
9506 			if (ret == BTRFS_NEED_LOG_SYNC)
9507 				sync_log_dest = true;
9508 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9509 				commit_transaction = true;
9510 			ret = 0;
9511 		}
9512 		btrfs_end_log_trans(dest);
9513 		dest_log_pinned = false;
9514 	}
9515 out_fail:
9516 	/*
9517 	 * If we have pinned a log and an error happened, we unpin tasks
9518 	 * trying to sync the log and force them to fallback to a transaction
9519 	 * commit if the log currently contains any of the inodes involved in
9520 	 * this rename operation (to ensure we do not persist a log with an
9521 	 * inconsistent state for any of these inodes or leading to any
9522 	 * inconsistencies when replayed). If the transaction was aborted, the
9523 	 * abortion reason is propagated to userspace when attempting to commit
9524 	 * the transaction. If the log does not contain any of these inodes, we
9525 	 * allow the tasks to sync it.
9526 	 */
9527 	if (ret && (root_log_pinned || dest_log_pinned)) {
9528 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9529 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9530 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9531 		    (new_inode &&
9532 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9533 			btrfs_set_log_full_commit(fs_info, trans);
9534 
9535 		if (root_log_pinned) {
9536 			btrfs_end_log_trans(root);
9537 			root_log_pinned = false;
9538 		}
9539 		if (dest_log_pinned) {
9540 			btrfs_end_log_trans(dest);
9541 			dest_log_pinned = false;
9542 		}
9543 	}
9544 	if (!ret && sync_log_root && !commit_transaction) {
9545 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9546 				     &ctx_root);
9547 		if (ret)
9548 			commit_transaction = true;
9549 	}
9550 	if (!ret && sync_log_dest && !commit_transaction) {
9551 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9552 				     &ctx_dest);
9553 		if (ret)
9554 			commit_transaction = true;
9555 	}
9556 	if (commit_transaction) {
9557 		ret = btrfs_commit_transaction(trans);
9558 	} else {
9559 		int ret2;
9560 
9561 		ret2 = btrfs_end_transaction(trans);
9562 		ret = ret ? ret : ret2;
9563 	}
9564 out_notrans:
9565 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9566 		up_read(&fs_info->subvol_sem);
9567 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9568 		up_read(&fs_info->subvol_sem);
9569 
9570 	return ret;
9571 }
9572 
9573 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9574 				     struct btrfs_root *root,
9575 				     struct inode *dir,
9576 				     struct dentry *dentry)
9577 {
9578 	int ret;
9579 	struct inode *inode;
9580 	u64 objectid;
9581 	u64 index;
9582 
9583 	ret = btrfs_find_free_ino(root, &objectid);
9584 	if (ret)
9585 		return ret;
9586 
9587 	inode = btrfs_new_inode(trans, root, dir,
9588 				dentry->d_name.name,
9589 				dentry->d_name.len,
9590 				btrfs_ino(BTRFS_I(dir)),
9591 				objectid,
9592 				S_IFCHR | WHITEOUT_MODE,
9593 				&index);
9594 
9595 	if (IS_ERR(inode)) {
9596 		ret = PTR_ERR(inode);
9597 		return ret;
9598 	}
9599 
9600 	inode->i_op = &btrfs_special_inode_operations;
9601 	init_special_inode(inode, inode->i_mode,
9602 		WHITEOUT_DEV);
9603 
9604 	ret = btrfs_init_inode_security(trans, inode, dir,
9605 				&dentry->d_name);
9606 	if (ret)
9607 		goto out;
9608 
9609 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9610 				BTRFS_I(inode), 0, index);
9611 	if (ret)
9612 		goto out;
9613 
9614 	ret = btrfs_update_inode(trans, root, inode);
9615 out:
9616 	unlock_new_inode(inode);
9617 	if (ret)
9618 		inode_dec_link_count(inode);
9619 	iput(inode);
9620 
9621 	return ret;
9622 }
9623 
9624 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9625 			   struct inode *new_dir, struct dentry *new_dentry,
9626 			   unsigned int flags)
9627 {
9628 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9629 	struct btrfs_trans_handle *trans;
9630 	unsigned int trans_num_items;
9631 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9632 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9633 	struct inode *new_inode = d_inode(new_dentry);
9634 	struct inode *old_inode = d_inode(old_dentry);
9635 	u64 index = 0;
9636 	u64 root_objectid;
9637 	int ret;
9638 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9639 	bool log_pinned = false;
9640 	struct btrfs_log_ctx ctx;
9641 	bool sync_log = false;
9642 	bool commit_transaction = false;
9643 
9644 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9645 		return -EPERM;
9646 
9647 	/* we only allow rename subvolume link between subvolumes */
9648 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9649 		return -EXDEV;
9650 
9651 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9652 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9653 		return -ENOTEMPTY;
9654 
9655 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9656 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9657 		return -ENOTEMPTY;
9658 
9659 
9660 	/* check for collisions, even if the  name isn't there */
9661 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9662 			     new_dentry->d_name.name,
9663 			     new_dentry->d_name.len);
9664 
9665 	if (ret) {
9666 		if (ret == -EEXIST) {
9667 			/* we shouldn't get
9668 			 * eexist without a new_inode */
9669 			if (WARN_ON(!new_inode)) {
9670 				return ret;
9671 			}
9672 		} else {
9673 			/* maybe -EOVERFLOW */
9674 			return ret;
9675 		}
9676 	}
9677 	ret = 0;
9678 
9679 	/*
9680 	 * we're using rename to replace one file with another.  Start IO on it
9681 	 * now so  we don't add too much work to the end of the transaction
9682 	 */
9683 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9684 		filemap_flush(old_inode->i_mapping);
9685 
9686 	/* close the racy window with snapshot create/destroy ioctl */
9687 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9688 		down_read(&fs_info->subvol_sem);
9689 	/*
9690 	 * We want to reserve the absolute worst case amount of items.  So if
9691 	 * both inodes are subvols and we need to unlink them then that would
9692 	 * require 4 item modifications, but if they are both normal inodes it
9693 	 * would require 5 item modifications, so we'll assume they are normal
9694 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9695 	 * should cover the worst case number of items we'll modify.
9696 	 * If our rename has the whiteout flag, we need more 5 units for the
9697 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9698 	 * when selinux is enabled).
9699 	 */
9700 	trans_num_items = 11;
9701 	if (flags & RENAME_WHITEOUT)
9702 		trans_num_items += 5;
9703 	trans = btrfs_start_transaction(root, trans_num_items);
9704 	if (IS_ERR(trans)) {
9705 		ret = PTR_ERR(trans);
9706 		goto out_notrans;
9707 	}
9708 
9709 	if (dest != root)
9710 		btrfs_record_root_in_trans(trans, dest);
9711 
9712 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9713 	if (ret)
9714 		goto out_fail;
9715 
9716 	BTRFS_I(old_inode)->dir_index = 0ULL;
9717 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9718 		/* force full log commit if subvolume involved. */
9719 		btrfs_set_log_full_commit(fs_info, trans);
9720 	} else {
9721 		btrfs_pin_log_trans(root);
9722 		log_pinned = true;
9723 		ret = btrfs_insert_inode_ref(trans, dest,
9724 					     new_dentry->d_name.name,
9725 					     new_dentry->d_name.len,
9726 					     old_ino,
9727 					     btrfs_ino(BTRFS_I(new_dir)), index);
9728 		if (ret)
9729 			goto out_fail;
9730 	}
9731 
9732 	inode_inc_iversion(old_dir);
9733 	inode_inc_iversion(new_dir);
9734 	inode_inc_iversion(old_inode);
9735 	old_dir->i_ctime = old_dir->i_mtime =
9736 	new_dir->i_ctime = new_dir->i_mtime =
9737 	old_inode->i_ctime = current_time(old_dir);
9738 
9739 	if (old_dentry->d_parent != new_dentry->d_parent)
9740 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9741 				BTRFS_I(old_inode), 1);
9742 
9743 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9744 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9745 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9746 					old_dentry->d_name.name,
9747 					old_dentry->d_name.len);
9748 	} else {
9749 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9750 					BTRFS_I(d_inode(old_dentry)),
9751 					old_dentry->d_name.name,
9752 					old_dentry->d_name.len);
9753 		if (!ret)
9754 			ret = btrfs_update_inode(trans, root, old_inode);
9755 	}
9756 	if (ret) {
9757 		btrfs_abort_transaction(trans, ret);
9758 		goto out_fail;
9759 	}
9760 
9761 	if (new_inode) {
9762 		inode_inc_iversion(new_inode);
9763 		new_inode->i_ctime = current_time(new_inode);
9764 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9765 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9766 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9767 			ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9768 						new_dentry->d_name.name,
9769 						new_dentry->d_name.len);
9770 			BUG_ON(new_inode->i_nlink == 0);
9771 		} else {
9772 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9773 						 BTRFS_I(d_inode(new_dentry)),
9774 						 new_dentry->d_name.name,
9775 						 new_dentry->d_name.len);
9776 		}
9777 		if (!ret && new_inode->i_nlink == 0)
9778 			ret = btrfs_orphan_add(trans,
9779 					BTRFS_I(d_inode(new_dentry)));
9780 		if (ret) {
9781 			btrfs_abort_transaction(trans, ret);
9782 			goto out_fail;
9783 		}
9784 	}
9785 
9786 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9787 			     new_dentry->d_name.name,
9788 			     new_dentry->d_name.len, 0, index);
9789 	if (ret) {
9790 		btrfs_abort_transaction(trans, ret);
9791 		goto out_fail;
9792 	}
9793 
9794 	if (old_inode->i_nlink == 1)
9795 		BTRFS_I(old_inode)->dir_index = index;
9796 
9797 	if (log_pinned) {
9798 		struct dentry *parent = new_dentry->d_parent;
9799 
9800 		btrfs_init_log_ctx(&ctx, old_inode);
9801 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9802 					 BTRFS_I(old_dir), parent,
9803 					 false, &ctx);
9804 		if (ret == BTRFS_NEED_LOG_SYNC)
9805 			sync_log = true;
9806 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9807 			commit_transaction = true;
9808 		ret = 0;
9809 		btrfs_end_log_trans(root);
9810 		log_pinned = false;
9811 	}
9812 
9813 	if (flags & RENAME_WHITEOUT) {
9814 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9815 						old_dentry);
9816 
9817 		if (ret) {
9818 			btrfs_abort_transaction(trans, ret);
9819 			goto out_fail;
9820 		}
9821 	}
9822 out_fail:
9823 	/*
9824 	 * If we have pinned the log and an error happened, we unpin tasks
9825 	 * trying to sync the log and force them to fallback to a transaction
9826 	 * commit if the log currently contains any of the inodes involved in
9827 	 * this rename operation (to ensure we do not persist a log with an
9828 	 * inconsistent state for any of these inodes or leading to any
9829 	 * inconsistencies when replayed). If the transaction was aborted, the
9830 	 * abortion reason is propagated to userspace when attempting to commit
9831 	 * the transaction. If the log does not contain any of these inodes, we
9832 	 * allow the tasks to sync it.
9833 	 */
9834 	if (ret && log_pinned) {
9835 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9836 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9837 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9838 		    (new_inode &&
9839 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9840 			btrfs_set_log_full_commit(fs_info, trans);
9841 
9842 		btrfs_end_log_trans(root);
9843 		log_pinned = false;
9844 	}
9845 	if (!ret && sync_log) {
9846 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9847 		if (ret)
9848 			commit_transaction = true;
9849 	}
9850 	if (commit_transaction) {
9851 		ret = btrfs_commit_transaction(trans);
9852 	} else {
9853 		int ret2;
9854 
9855 		ret2 = btrfs_end_transaction(trans);
9856 		ret = ret ? ret : ret2;
9857 	}
9858 out_notrans:
9859 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9860 		up_read(&fs_info->subvol_sem);
9861 
9862 	return ret;
9863 }
9864 
9865 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9866 			 struct inode *new_dir, struct dentry *new_dentry,
9867 			 unsigned int flags)
9868 {
9869 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9870 		return -EINVAL;
9871 
9872 	if (flags & RENAME_EXCHANGE)
9873 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9874 					  new_dentry);
9875 
9876 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9877 }
9878 
9879 struct btrfs_delalloc_work {
9880 	struct inode *inode;
9881 	struct completion completion;
9882 	struct list_head list;
9883 	struct btrfs_work work;
9884 };
9885 
9886 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9887 {
9888 	struct btrfs_delalloc_work *delalloc_work;
9889 	struct inode *inode;
9890 
9891 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9892 				     work);
9893 	inode = delalloc_work->inode;
9894 	filemap_flush(inode->i_mapping);
9895 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9896 				&BTRFS_I(inode)->runtime_flags))
9897 		filemap_flush(inode->i_mapping);
9898 
9899 	iput(inode);
9900 	complete(&delalloc_work->completion);
9901 }
9902 
9903 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9904 {
9905 	struct btrfs_delalloc_work *work;
9906 
9907 	work = kmalloc(sizeof(*work), GFP_NOFS);
9908 	if (!work)
9909 		return NULL;
9910 
9911 	init_completion(&work->completion);
9912 	INIT_LIST_HEAD(&work->list);
9913 	work->inode = inode;
9914 	WARN_ON_ONCE(!inode);
9915 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9916 			btrfs_run_delalloc_work, NULL, NULL);
9917 
9918 	return work;
9919 }
9920 
9921 /*
9922  * some fairly slow code that needs optimization. This walks the list
9923  * of all the inodes with pending delalloc and forces them to disk.
9924  */
9925 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
9926 {
9927 	struct btrfs_inode *binode;
9928 	struct inode *inode;
9929 	struct btrfs_delalloc_work *work, *next;
9930 	struct list_head works;
9931 	struct list_head splice;
9932 	int ret = 0;
9933 
9934 	INIT_LIST_HEAD(&works);
9935 	INIT_LIST_HEAD(&splice);
9936 
9937 	mutex_lock(&root->delalloc_mutex);
9938 	spin_lock(&root->delalloc_lock);
9939 	list_splice_init(&root->delalloc_inodes, &splice);
9940 	while (!list_empty(&splice)) {
9941 		binode = list_entry(splice.next, struct btrfs_inode,
9942 				    delalloc_inodes);
9943 
9944 		list_move_tail(&binode->delalloc_inodes,
9945 			       &root->delalloc_inodes);
9946 		inode = igrab(&binode->vfs_inode);
9947 		if (!inode) {
9948 			cond_resched_lock(&root->delalloc_lock);
9949 			continue;
9950 		}
9951 		spin_unlock(&root->delalloc_lock);
9952 
9953 		if (snapshot)
9954 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9955 				&binode->runtime_flags);
9956 		work = btrfs_alloc_delalloc_work(inode);
9957 		if (!work) {
9958 			iput(inode);
9959 			ret = -ENOMEM;
9960 			goto out;
9961 		}
9962 		list_add_tail(&work->list, &works);
9963 		btrfs_queue_work(root->fs_info->flush_workers,
9964 				 &work->work);
9965 		ret++;
9966 		if (nr != -1 && ret >= nr)
9967 			goto out;
9968 		cond_resched();
9969 		spin_lock(&root->delalloc_lock);
9970 	}
9971 	spin_unlock(&root->delalloc_lock);
9972 
9973 out:
9974 	list_for_each_entry_safe(work, next, &works, list) {
9975 		list_del_init(&work->list);
9976 		wait_for_completion(&work->completion);
9977 		kfree(work);
9978 	}
9979 
9980 	if (!list_empty(&splice)) {
9981 		spin_lock(&root->delalloc_lock);
9982 		list_splice_tail(&splice, &root->delalloc_inodes);
9983 		spin_unlock(&root->delalloc_lock);
9984 	}
9985 	mutex_unlock(&root->delalloc_mutex);
9986 	return ret;
9987 }
9988 
9989 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9990 {
9991 	struct btrfs_fs_info *fs_info = root->fs_info;
9992 	int ret;
9993 
9994 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9995 		return -EROFS;
9996 
9997 	ret = start_delalloc_inodes(root, -1, true);
9998 	if (ret > 0)
9999 		ret = 0;
10000 	return ret;
10001 }
10002 
10003 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10004 {
10005 	struct btrfs_root *root;
10006 	struct list_head splice;
10007 	int ret;
10008 
10009 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10010 		return -EROFS;
10011 
10012 	INIT_LIST_HEAD(&splice);
10013 
10014 	mutex_lock(&fs_info->delalloc_root_mutex);
10015 	spin_lock(&fs_info->delalloc_root_lock);
10016 	list_splice_init(&fs_info->delalloc_roots, &splice);
10017 	while (!list_empty(&splice) && nr) {
10018 		root = list_first_entry(&splice, struct btrfs_root,
10019 					delalloc_root);
10020 		root = btrfs_grab_fs_root(root);
10021 		BUG_ON(!root);
10022 		list_move_tail(&root->delalloc_root,
10023 			       &fs_info->delalloc_roots);
10024 		spin_unlock(&fs_info->delalloc_root_lock);
10025 
10026 		ret = start_delalloc_inodes(root, nr, false);
10027 		btrfs_put_fs_root(root);
10028 		if (ret < 0)
10029 			goto out;
10030 
10031 		if (nr != -1) {
10032 			nr -= ret;
10033 			WARN_ON(nr < 0);
10034 		}
10035 		spin_lock(&fs_info->delalloc_root_lock);
10036 	}
10037 	spin_unlock(&fs_info->delalloc_root_lock);
10038 
10039 	ret = 0;
10040 out:
10041 	if (!list_empty(&splice)) {
10042 		spin_lock(&fs_info->delalloc_root_lock);
10043 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10044 		spin_unlock(&fs_info->delalloc_root_lock);
10045 	}
10046 	mutex_unlock(&fs_info->delalloc_root_mutex);
10047 	return ret;
10048 }
10049 
10050 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10051 			 const char *symname)
10052 {
10053 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10054 	struct btrfs_trans_handle *trans;
10055 	struct btrfs_root *root = BTRFS_I(dir)->root;
10056 	struct btrfs_path *path;
10057 	struct btrfs_key key;
10058 	struct inode *inode = NULL;
10059 	int err;
10060 	u64 objectid;
10061 	u64 index = 0;
10062 	int name_len;
10063 	int datasize;
10064 	unsigned long ptr;
10065 	struct btrfs_file_extent_item *ei;
10066 	struct extent_buffer *leaf;
10067 
10068 	name_len = strlen(symname);
10069 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10070 		return -ENAMETOOLONG;
10071 
10072 	/*
10073 	 * 2 items for inode item and ref
10074 	 * 2 items for dir items
10075 	 * 1 item for updating parent inode item
10076 	 * 1 item for the inline extent item
10077 	 * 1 item for xattr if selinux is on
10078 	 */
10079 	trans = btrfs_start_transaction(root, 7);
10080 	if (IS_ERR(trans))
10081 		return PTR_ERR(trans);
10082 
10083 	err = btrfs_find_free_ino(root, &objectid);
10084 	if (err)
10085 		goto out_unlock;
10086 
10087 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10088 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10089 				objectid, S_IFLNK|S_IRWXUGO, &index);
10090 	if (IS_ERR(inode)) {
10091 		err = PTR_ERR(inode);
10092 		inode = NULL;
10093 		goto out_unlock;
10094 	}
10095 
10096 	/*
10097 	* If the active LSM wants to access the inode during
10098 	* d_instantiate it needs these. Smack checks to see
10099 	* if the filesystem supports xattrs by looking at the
10100 	* ops vector.
10101 	*/
10102 	inode->i_fop = &btrfs_file_operations;
10103 	inode->i_op = &btrfs_file_inode_operations;
10104 	inode->i_mapping->a_ops = &btrfs_aops;
10105 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10106 
10107 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10108 	if (err)
10109 		goto out_unlock;
10110 
10111 	path = btrfs_alloc_path();
10112 	if (!path) {
10113 		err = -ENOMEM;
10114 		goto out_unlock;
10115 	}
10116 	key.objectid = btrfs_ino(BTRFS_I(inode));
10117 	key.offset = 0;
10118 	key.type = BTRFS_EXTENT_DATA_KEY;
10119 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10120 	err = btrfs_insert_empty_item(trans, root, path, &key,
10121 				      datasize);
10122 	if (err) {
10123 		btrfs_free_path(path);
10124 		goto out_unlock;
10125 	}
10126 	leaf = path->nodes[0];
10127 	ei = btrfs_item_ptr(leaf, path->slots[0],
10128 			    struct btrfs_file_extent_item);
10129 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10130 	btrfs_set_file_extent_type(leaf, ei,
10131 				   BTRFS_FILE_EXTENT_INLINE);
10132 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10133 	btrfs_set_file_extent_compression(leaf, ei, 0);
10134 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10135 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10136 
10137 	ptr = btrfs_file_extent_inline_start(ei);
10138 	write_extent_buffer(leaf, symname, ptr, name_len);
10139 	btrfs_mark_buffer_dirty(leaf);
10140 	btrfs_free_path(path);
10141 
10142 	inode->i_op = &btrfs_symlink_inode_operations;
10143 	inode_nohighmem(inode);
10144 	inode->i_mapping->a_ops = &btrfs_aops;
10145 	inode_set_bytes(inode, name_len);
10146 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10147 	err = btrfs_update_inode(trans, root, inode);
10148 	/*
10149 	 * Last step, add directory indexes for our symlink inode. This is the
10150 	 * last step to avoid extra cleanup of these indexes if an error happens
10151 	 * elsewhere above.
10152 	 */
10153 	if (!err)
10154 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10155 				BTRFS_I(inode), 0, index);
10156 	if (err)
10157 		goto out_unlock;
10158 
10159 	d_instantiate_new(dentry, inode);
10160 
10161 out_unlock:
10162 	btrfs_end_transaction(trans);
10163 	if (err && inode) {
10164 		inode_dec_link_count(inode);
10165 		discard_new_inode(inode);
10166 	}
10167 	btrfs_btree_balance_dirty(fs_info);
10168 	return err;
10169 }
10170 
10171 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10172 				       u64 start, u64 num_bytes, u64 min_size,
10173 				       loff_t actual_len, u64 *alloc_hint,
10174 				       struct btrfs_trans_handle *trans)
10175 {
10176 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10177 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10178 	struct extent_map *em;
10179 	struct btrfs_root *root = BTRFS_I(inode)->root;
10180 	struct btrfs_key ins;
10181 	u64 cur_offset = start;
10182 	u64 i_size;
10183 	u64 cur_bytes;
10184 	u64 last_alloc = (u64)-1;
10185 	int ret = 0;
10186 	bool own_trans = true;
10187 	u64 end = start + num_bytes - 1;
10188 
10189 	if (trans)
10190 		own_trans = false;
10191 	while (num_bytes > 0) {
10192 		if (own_trans) {
10193 			trans = btrfs_start_transaction(root, 3);
10194 			if (IS_ERR(trans)) {
10195 				ret = PTR_ERR(trans);
10196 				break;
10197 			}
10198 		}
10199 
10200 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10201 		cur_bytes = max(cur_bytes, min_size);
10202 		/*
10203 		 * If we are severely fragmented we could end up with really
10204 		 * small allocations, so if the allocator is returning small
10205 		 * chunks lets make its job easier by only searching for those
10206 		 * sized chunks.
10207 		 */
10208 		cur_bytes = min(cur_bytes, last_alloc);
10209 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10210 				min_size, 0, *alloc_hint, &ins, 1, 0);
10211 		if (ret) {
10212 			if (own_trans)
10213 				btrfs_end_transaction(trans);
10214 			break;
10215 		}
10216 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10217 
10218 		last_alloc = ins.offset;
10219 		ret = insert_reserved_file_extent(trans, inode,
10220 						  cur_offset, ins.objectid,
10221 						  ins.offset, ins.offset,
10222 						  ins.offset, 0, 0, 0,
10223 						  BTRFS_FILE_EXTENT_PREALLOC);
10224 		if (ret) {
10225 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10226 						   ins.offset, 0);
10227 			btrfs_abort_transaction(trans, ret);
10228 			if (own_trans)
10229 				btrfs_end_transaction(trans);
10230 			break;
10231 		}
10232 
10233 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10234 					cur_offset + ins.offset -1, 0);
10235 
10236 		em = alloc_extent_map();
10237 		if (!em) {
10238 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10239 				&BTRFS_I(inode)->runtime_flags);
10240 			goto next;
10241 		}
10242 
10243 		em->start = cur_offset;
10244 		em->orig_start = cur_offset;
10245 		em->len = ins.offset;
10246 		em->block_start = ins.objectid;
10247 		em->block_len = ins.offset;
10248 		em->orig_block_len = ins.offset;
10249 		em->ram_bytes = ins.offset;
10250 		em->bdev = fs_info->fs_devices->latest_bdev;
10251 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10252 		em->generation = trans->transid;
10253 
10254 		while (1) {
10255 			write_lock(&em_tree->lock);
10256 			ret = add_extent_mapping(em_tree, em, 1);
10257 			write_unlock(&em_tree->lock);
10258 			if (ret != -EEXIST)
10259 				break;
10260 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10261 						cur_offset + ins.offset - 1,
10262 						0);
10263 		}
10264 		free_extent_map(em);
10265 next:
10266 		num_bytes -= ins.offset;
10267 		cur_offset += ins.offset;
10268 		*alloc_hint = ins.objectid + ins.offset;
10269 
10270 		inode_inc_iversion(inode);
10271 		inode->i_ctime = current_time(inode);
10272 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10273 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10274 		    (actual_len > inode->i_size) &&
10275 		    (cur_offset > inode->i_size)) {
10276 			if (cur_offset > actual_len)
10277 				i_size = actual_len;
10278 			else
10279 				i_size = cur_offset;
10280 			i_size_write(inode, i_size);
10281 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10282 		}
10283 
10284 		ret = btrfs_update_inode(trans, root, inode);
10285 
10286 		if (ret) {
10287 			btrfs_abort_transaction(trans, ret);
10288 			if (own_trans)
10289 				btrfs_end_transaction(trans);
10290 			break;
10291 		}
10292 
10293 		if (own_trans)
10294 			btrfs_end_transaction(trans);
10295 	}
10296 	if (cur_offset < end)
10297 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10298 			end - cur_offset + 1);
10299 	return ret;
10300 }
10301 
10302 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10303 			      u64 start, u64 num_bytes, u64 min_size,
10304 			      loff_t actual_len, u64 *alloc_hint)
10305 {
10306 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10307 					   min_size, actual_len, alloc_hint,
10308 					   NULL);
10309 }
10310 
10311 int btrfs_prealloc_file_range_trans(struct inode *inode,
10312 				    struct btrfs_trans_handle *trans, int mode,
10313 				    u64 start, u64 num_bytes, u64 min_size,
10314 				    loff_t actual_len, u64 *alloc_hint)
10315 {
10316 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10317 					   min_size, actual_len, alloc_hint, trans);
10318 }
10319 
10320 static int btrfs_set_page_dirty(struct page *page)
10321 {
10322 	return __set_page_dirty_nobuffers(page);
10323 }
10324 
10325 static int btrfs_permission(struct inode *inode, int mask)
10326 {
10327 	struct btrfs_root *root = BTRFS_I(inode)->root;
10328 	umode_t mode = inode->i_mode;
10329 
10330 	if (mask & MAY_WRITE &&
10331 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10332 		if (btrfs_root_readonly(root))
10333 			return -EROFS;
10334 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10335 			return -EACCES;
10336 	}
10337 	return generic_permission(inode, mask);
10338 }
10339 
10340 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10341 {
10342 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10343 	struct btrfs_trans_handle *trans;
10344 	struct btrfs_root *root = BTRFS_I(dir)->root;
10345 	struct inode *inode = NULL;
10346 	u64 objectid;
10347 	u64 index;
10348 	int ret = 0;
10349 
10350 	/*
10351 	 * 5 units required for adding orphan entry
10352 	 */
10353 	trans = btrfs_start_transaction(root, 5);
10354 	if (IS_ERR(trans))
10355 		return PTR_ERR(trans);
10356 
10357 	ret = btrfs_find_free_ino(root, &objectid);
10358 	if (ret)
10359 		goto out;
10360 
10361 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10362 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10363 	if (IS_ERR(inode)) {
10364 		ret = PTR_ERR(inode);
10365 		inode = NULL;
10366 		goto out;
10367 	}
10368 
10369 	inode->i_fop = &btrfs_file_operations;
10370 	inode->i_op = &btrfs_file_inode_operations;
10371 
10372 	inode->i_mapping->a_ops = &btrfs_aops;
10373 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10374 
10375 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10376 	if (ret)
10377 		goto out;
10378 
10379 	ret = btrfs_update_inode(trans, root, inode);
10380 	if (ret)
10381 		goto out;
10382 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10383 	if (ret)
10384 		goto out;
10385 
10386 	/*
10387 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10388 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10389 	 * through:
10390 	 *
10391 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10392 	 */
10393 	set_nlink(inode, 1);
10394 	d_tmpfile(dentry, inode);
10395 	unlock_new_inode(inode);
10396 	mark_inode_dirty(inode);
10397 out:
10398 	btrfs_end_transaction(trans);
10399 	if (ret && inode)
10400 		discard_new_inode(inode);
10401 	btrfs_btree_balance_dirty(fs_info);
10402 	return ret;
10403 }
10404 
10405 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10406 {
10407 	struct inode *inode = tree->private_data;
10408 	unsigned long index = start >> PAGE_SHIFT;
10409 	unsigned long end_index = end >> PAGE_SHIFT;
10410 	struct page *page;
10411 
10412 	while (index <= end_index) {
10413 		page = find_get_page(inode->i_mapping, index);
10414 		ASSERT(page); /* Pages should be in the extent_io_tree */
10415 		set_page_writeback(page);
10416 		put_page(page);
10417 		index++;
10418 	}
10419 }
10420 
10421 #ifdef CONFIG_SWAP
10422 /*
10423  * Add an entry indicating a block group or device which is pinned by a
10424  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10425  * negative errno on failure.
10426  */
10427 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10428 				  bool is_block_group)
10429 {
10430 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10431 	struct btrfs_swapfile_pin *sp, *entry;
10432 	struct rb_node **p;
10433 	struct rb_node *parent = NULL;
10434 
10435 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10436 	if (!sp)
10437 		return -ENOMEM;
10438 	sp->ptr = ptr;
10439 	sp->inode = inode;
10440 	sp->is_block_group = is_block_group;
10441 
10442 	spin_lock(&fs_info->swapfile_pins_lock);
10443 	p = &fs_info->swapfile_pins.rb_node;
10444 	while (*p) {
10445 		parent = *p;
10446 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10447 		if (sp->ptr < entry->ptr ||
10448 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10449 			p = &(*p)->rb_left;
10450 		} else if (sp->ptr > entry->ptr ||
10451 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10452 			p = &(*p)->rb_right;
10453 		} else {
10454 			spin_unlock(&fs_info->swapfile_pins_lock);
10455 			kfree(sp);
10456 			return 1;
10457 		}
10458 	}
10459 	rb_link_node(&sp->node, parent, p);
10460 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10461 	spin_unlock(&fs_info->swapfile_pins_lock);
10462 	return 0;
10463 }
10464 
10465 /* Free all of the entries pinned by this swapfile. */
10466 static void btrfs_free_swapfile_pins(struct inode *inode)
10467 {
10468 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10469 	struct btrfs_swapfile_pin *sp;
10470 	struct rb_node *node, *next;
10471 
10472 	spin_lock(&fs_info->swapfile_pins_lock);
10473 	node = rb_first(&fs_info->swapfile_pins);
10474 	while (node) {
10475 		next = rb_next(node);
10476 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10477 		if (sp->inode == inode) {
10478 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10479 			if (sp->is_block_group)
10480 				btrfs_put_block_group(sp->ptr);
10481 			kfree(sp);
10482 		}
10483 		node = next;
10484 	}
10485 	spin_unlock(&fs_info->swapfile_pins_lock);
10486 }
10487 
10488 struct btrfs_swap_info {
10489 	u64 start;
10490 	u64 block_start;
10491 	u64 block_len;
10492 	u64 lowest_ppage;
10493 	u64 highest_ppage;
10494 	unsigned long nr_pages;
10495 	int nr_extents;
10496 };
10497 
10498 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10499 				 struct btrfs_swap_info *bsi)
10500 {
10501 	unsigned long nr_pages;
10502 	u64 first_ppage, first_ppage_reported, next_ppage;
10503 	int ret;
10504 
10505 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10506 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10507 				PAGE_SIZE) >> PAGE_SHIFT;
10508 
10509 	if (first_ppage >= next_ppage)
10510 		return 0;
10511 	nr_pages = next_ppage - first_ppage;
10512 
10513 	first_ppage_reported = first_ppage;
10514 	if (bsi->start == 0)
10515 		first_ppage_reported++;
10516 	if (bsi->lowest_ppage > first_ppage_reported)
10517 		bsi->lowest_ppage = first_ppage_reported;
10518 	if (bsi->highest_ppage < (next_ppage - 1))
10519 		bsi->highest_ppage = next_ppage - 1;
10520 
10521 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10522 	if (ret < 0)
10523 		return ret;
10524 	bsi->nr_extents += ret;
10525 	bsi->nr_pages += nr_pages;
10526 	return 0;
10527 }
10528 
10529 static void btrfs_swap_deactivate(struct file *file)
10530 {
10531 	struct inode *inode = file_inode(file);
10532 
10533 	btrfs_free_swapfile_pins(inode);
10534 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10535 }
10536 
10537 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10538 			       sector_t *span)
10539 {
10540 	struct inode *inode = file_inode(file);
10541 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10542 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10543 	struct extent_state *cached_state = NULL;
10544 	struct extent_map *em = NULL;
10545 	struct btrfs_device *device = NULL;
10546 	struct btrfs_swap_info bsi = {
10547 		.lowest_ppage = (sector_t)-1ULL,
10548 	};
10549 	int ret = 0;
10550 	u64 isize;
10551 	u64 start;
10552 
10553 	/*
10554 	 * If the swap file was just created, make sure delalloc is done. If the
10555 	 * file changes again after this, the user is doing something stupid and
10556 	 * we don't really care.
10557 	 */
10558 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10559 	if (ret)
10560 		return ret;
10561 
10562 	/*
10563 	 * The inode is locked, so these flags won't change after we check them.
10564 	 */
10565 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10566 		btrfs_warn(fs_info, "swapfile must not be compressed");
10567 		return -EINVAL;
10568 	}
10569 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10570 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10571 		return -EINVAL;
10572 	}
10573 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10574 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10575 		return -EINVAL;
10576 	}
10577 
10578 	/*
10579 	 * Balance or device remove/replace/resize can move stuff around from
10580 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10581 	 * concurrently while we are mapping the swap extents, and
10582 	 * fs_info->swapfile_pins prevents them from running while the swap file
10583 	 * is active and moving the extents. Note that this also prevents a
10584 	 * concurrent device add which isn't actually necessary, but it's not
10585 	 * really worth the trouble to allow it.
10586 	 */
10587 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10588 		btrfs_warn(fs_info,
10589 	   "cannot activate swapfile while exclusive operation is running");
10590 		return -EBUSY;
10591 	}
10592 	/*
10593 	 * Snapshots can create extents which require COW even if NODATACOW is
10594 	 * set. We use this counter to prevent snapshots. We must increment it
10595 	 * before walking the extents because we don't want a concurrent
10596 	 * snapshot to run after we've already checked the extents.
10597 	 */
10598 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10599 
10600 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10601 
10602 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10603 	start = 0;
10604 	while (start < isize) {
10605 		u64 logical_block_start, physical_block_start;
10606 		struct btrfs_block_group_cache *bg;
10607 		u64 len = isize - start;
10608 
10609 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10610 		if (IS_ERR(em)) {
10611 			ret = PTR_ERR(em);
10612 			goto out;
10613 		}
10614 
10615 		if (em->block_start == EXTENT_MAP_HOLE) {
10616 			btrfs_warn(fs_info, "swapfile must not have holes");
10617 			ret = -EINVAL;
10618 			goto out;
10619 		}
10620 		if (em->block_start == EXTENT_MAP_INLINE) {
10621 			/*
10622 			 * It's unlikely we'll ever actually find ourselves
10623 			 * here, as a file small enough to fit inline won't be
10624 			 * big enough to store more than the swap header, but in
10625 			 * case something changes in the future, let's catch it
10626 			 * here rather than later.
10627 			 */
10628 			btrfs_warn(fs_info, "swapfile must not be inline");
10629 			ret = -EINVAL;
10630 			goto out;
10631 		}
10632 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10633 			btrfs_warn(fs_info, "swapfile must not be compressed");
10634 			ret = -EINVAL;
10635 			goto out;
10636 		}
10637 
10638 		logical_block_start = em->block_start + (start - em->start);
10639 		len = min(len, em->len - (start - em->start));
10640 		free_extent_map(em);
10641 		em = NULL;
10642 
10643 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10644 		if (ret < 0) {
10645 			goto out;
10646 		} else if (ret) {
10647 			ret = 0;
10648 		} else {
10649 			btrfs_warn(fs_info,
10650 				   "swapfile must not be copy-on-write");
10651 			ret = -EINVAL;
10652 			goto out;
10653 		}
10654 
10655 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10656 		if (IS_ERR(em)) {
10657 			ret = PTR_ERR(em);
10658 			goto out;
10659 		}
10660 
10661 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10662 			btrfs_warn(fs_info,
10663 				   "swapfile must have single data profile");
10664 			ret = -EINVAL;
10665 			goto out;
10666 		}
10667 
10668 		if (device == NULL) {
10669 			device = em->map_lookup->stripes[0].dev;
10670 			ret = btrfs_add_swapfile_pin(inode, device, false);
10671 			if (ret == 1)
10672 				ret = 0;
10673 			else if (ret)
10674 				goto out;
10675 		} else if (device != em->map_lookup->stripes[0].dev) {
10676 			btrfs_warn(fs_info, "swapfile must be on one device");
10677 			ret = -EINVAL;
10678 			goto out;
10679 		}
10680 
10681 		physical_block_start = (em->map_lookup->stripes[0].physical +
10682 					(logical_block_start - em->start));
10683 		len = min(len, em->len - (logical_block_start - em->start));
10684 		free_extent_map(em);
10685 		em = NULL;
10686 
10687 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10688 		if (!bg) {
10689 			btrfs_warn(fs_info,
10690 			   "could not find block group containing swapfile");
10691 			ret = -EINVAL;
10692 			goto out;
10693 		}
10694 
10695 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10696 		if (ret) {
10697 			btrfs_put_block_group(bg);
10698 			if (ret == 1)
10699 				ret = 0;
10700 			else
10701 				goto out;
10702 		}
10703 
10704 		if (bsi.block_len &&
10705 		    bsi.block_start + bsi.block_len == physical_block_start) {
10706 			bsi.block_len += len;
10707 		} else {
10708 			if (bsi.block_len) {
10709 				ret = btrfs_add_swap_extent(sis, &bsi);
10710 				if (ret)
10711 					goto out;
10712 			}
10713 			bsi.start = start;
10714 			bsi.block_start = physical_block_start;
10715 			bsi.block_len = len;
10716 		}
10717 
10718 		start += len;
10719 	}
10720 
10721 	if (bsi.block_len)
10722 		ret = btrfs_add_swap_extent(sis, &bsi);
10723 
10724 out:
10725 	if (!IS_ERR_OR_NULL(em))
10726 		free_extent_map(em);
10727 
10728 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10729 
10730 	if (ret)
10731 		btrfs_swap_deactivate(file);
10732 
10733 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10734 
10735 	if (ret)
10736 		return ret;
10737 
10738 	if (device)
10739 		sis->bdev = device->bdev;
10740 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10741 	sis->max = bsi.nr_pages;
10742 	sis->pages = bsi.nr_pages - 1;
10743 	sis->highest_bit = bsi.nr_pages - 1;
10744 	return bsi.nr_extents;
10745 }
10746 #else
10747 static void btrfs_swap_deactivate(struct file *file)
10748 {
10749 }
10750 
10751 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10752 			       sector_t *span)
10753 {
10754 	return -EOPNOTSUPP;
10755 }
10756 #endif
10757 
10758 static const struct inode_operations btrfs_dir_inode_operations = {
10759 	.getattr	= btrfs_getattr,
10760 	.lookup		= btrfs_lookup,
10761 	.create		= btrfs_create,
10762 	.unlink		= btrfs_unlink,
10763 	.link		= btrfs_link,
10764 	.mkdir		= btrfs_mkdir,
10765 	.rmdir		= btrfs_rmdir,
10766 	.rename		= btrfs_rename2,
10767 	.symlink	= btrfs_symlink,
10768 	.setattr	= btrfs_setattr,
10769 	.mknod		= btrfs_mknod,
10770 	.listxattr	= btrfs_listxattr,
10771 	.permission	= btrfs_permission,
10772 	.get_acl	= btrfs_get_acl,
10773 	.set_acl	= btrfs_set_acl,
10774 	.update_time	= btrfs_update_time,
10775 	.tmpfile        = btrfs_tmpfile,
10776 };
10777 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10778 	.lookup		= btrfs_lookup,
10779 	.permission	= btrfs_permission,
10780 	.update_time	= btrfs_update_time,
10781 };
10782 
10783 static const struct file_operations btrfs_dir_file_operations = {
10784 	.llseek		= generic_file_llseek,
10785 	.read		= generic_read_dir,
10786 	.iterate_shared	= btrfs_real_readdir,
10787 	.open		= btrfs_opendir,
10788 	.unlocked_ioctl	= btrfs_ioctl,
10789 #ifdef CONFIG_COMPAT
10790 	.compat_ioctl	= btrfs_compat_ioctl,
10791 #endif
10792 	.release        = btrfs_release_file,
10793 	.fsync		= btrfs_sync_file,
10794 };
10795 
10796 static const struct extent_io_ops btrfs_extent_io_ops = {
10797 	/* mandatory callbacks */
10798 	.submit_bio_hook = btrfs_submit_bio_hook,
10799 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10800 };
10801 
10802 /*
10803  * btrfs doesn't support the bmap operation because swapfiles
10804  * use bmap to make a mapping of extents in the file.  They assume
10805  * these extents won't change over the life of the file and they
10806  * use the bmap result to do IO directly to the drive.
10807  *
10808  * the btrfs bmap call would return logical addresses that aren't
10809  * suitable for IO and they also will change frequently as COW
10810  * operations happen.  So, swapfile + btrfs == corruption.
10811  *
10812  * For now we're avoiding this by dropping bmap.
10813  */
10814 static const struct address_space_operations btrfs_aops = {
10815 	.readpage	= btrfs_readpage,
10816 	.writepage	= btrfs_writepage,
10817 	.writepages	= btrfs_writepages,
10818 	.readpages	= btrfs_readpages,
10819 	.direct_IO	= btrfs_direct_IO,
10820 	.invalidatepage = btrfs_invalidatepage,
10821 	.releasepage	= btrfs_releasepage,
10822 	.set_page_dirty	= btrfs_set_page_dirty,
10823 	.error_remove_page = generic_error_remove_page,
10824 	.swap_activate	= btrfs_swap_activate,
10825 	.swap_deactivate = btrfs_swap_deactivate,
10826 };
10827 
10828 static const struct inode_operations btrfs_file_inode_operations = {
10829 	.getattr	= btrfs_getattr,
10830 	.setattr	= btrfs_setattr,
10831 	.listxattr      = btrfs_listxattr,
10832 	.permission	= btrfs_permission,
10833 	.fiemap		= btrfs_fiemap,
10834 	.get_acl	= btrfs_get_acl,
10835 	.set_acl	= btrfs_set_acl,
10836 	.update_time	= btrfs_update_time,
10837 };
10838 static const struct inode_operations btrfs_special_inode_operations = {
10839 	.getattr	= btrfs_getattr,
10840 	.setattr	= btrfs_setattr,
10841 	.permission	= btrfs_permission,
10842 	.listxattr	= btrfs_listxattr,
10843 	.get_acl	= btrfs_get_acl,
10844 	.set_acl	= btrfs_set_acl,
10845 	.update_time	= btrfs_update_time,
10846 };
10847 static const struct inode_operations btrfs_symlink_inode_operations = {
10848 	.get_link	= page_get_link,
10849 	.getattr	= btrfs_getattr,
10850 	.setattr	= btrfs_setattr,
10851 	.permission	= btrfs_permission,
10852 	.listxattr	= btrfs_listxattr,
10853 	.update_time	= btrfs_update_time,
10854 };
10855 
10856 const struct dentry_operations btrfs_dentry_operations = {
10857 	.d_delete	= btrfs_dentry_delete,
10858 };
10859