1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <asm/unaligned.h> 34 #include "misc.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "ordered-data.h" 41 #include "xattr.h" 42 #include "tree-log.h" 43 #include "volumes.h" 44 #include "compression.h" 45 #include "locking.h" 46 #include "free-space-cache.h" 47 #include "inode-map.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 54 struct btrfs_iget_args { 55 u64 ino; 56 struct btrfs_root *root; 57 }; 58 59 struct btrfs_dio_data { 60 u64 reserve; 61 u64 unsubmitted_oe_range_start; 62 u64 unsubmitted_oe_range_end; 63 int overwrite; 64 }; 65 66 static const struct inode_operations btrfs_dir_inode_operations; 67 static const struct inode_operations btrfs_symlink_inode_operations; 68 static const struct inode_operations btrfs_special_inode_operations; 69 static const struct inode_operations btrfs_file_inode_operations; 70 static const struct address_space_operations btrfs_aops; 71 static const struct file_operations btrfs_dir_file_operations; 72 static const struct extent_io_ops btrfs_extent_io_ops; 73 74 static struct kmem_cache *btrfs_inode_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 struct kmem_cache *btrfs_free_space_bitmap_cachep; 79 80 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 81 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 83 static noinline int cow_file_range(struct inode *inode, 84 struct page *locked_page, 85 u64 start, u64 end, int *page_started, 86 unsigned long *nr_written, int unlock); 87 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 88 u64 orig_start, u64 block_start, 89 u64 block_len, u64 orig_block_len, 90 u64 ram_bytes, int compress_type, 91 int type); 92 93 static void __endio_write_update_ordered(struct inode *inode, 94 const u64 offset, const u64 bytes, 95 const bool uptodate); 96 97 /* 98 * Cleanup all submitted ordered extents in specified range to handle errors 99 * from the btrfs_run_delalloc_range() callback. 100 * 101 * NOTE: caller must ensure that when an error happens, it can not call 102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 104 * to be released, which we want to happen only when finishing the ordered 105 * extent (btrfs_finish_ordered_io()). 106 */ 107 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 108 struct page *locked_page, 109 u64 offset, u64 bytes) 110 { 111 unsigned long index = offset >> PAGE_SHIFT; 112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 113 u64 page_start = page_offset(locked_page); 114 u64 page_end = page_start + PAGE_SIZE - 1; 115 116 struct page *page; 117 118 while (index <= end_index) { 119 page = find_get_page(inode->i_mapping, index); 120 index++; 121 if (!page) 122 continue; 123 ClearPagePrivate2(page); 124 put_page(page); 125 } 126 127 /* 128 * In case this page belongs to the delalloc range being instantiated 129 * then skip it, since the first page of a range is going to be 130 * properly cleaned up by the caller of run_delalloc_range 131 */ 132 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 133 offset += PAGE_SIZE; 134 bytes -= PAGE_SIZE; 135 } 136 137 return __endio_write_update_ordered(inode, offset, bytes, false); 138 } 139 140 static int btrfs_dirty_inode(struct inode *inode); 141 142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 143 void btrfs_test_inode_set_ops(struct inode *inode) 144 { 145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 146 } 147 #endif 148 149 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 150 struct inode *inode, struct inode *dir, 151 const struct qstr *qstr) 152 { 153 int err; 154 155 err = btrfs_init_acl(trans, inode, dir); 156 if (!err) 157 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 158 return err; 159 } 160 161 /* 162 * this does all the hard work for inserting an inline extent into 163 * the btree. The caller should have done a btrfs_drop_extents so that 164 * no overlapping inline items exist in the btree 165 */ 166 static int insert_inline_extent(struct btrfs_trans_handle *trans, 167 struct btrfs_path *path, int extent_inserted, 168 struct btrfs_root *root, struct inode *inode, 169 u64 start, size_t size, size_t compressed_size, 170 int compress_type, 171 struct page **compressed_pages) 172 { 173 struct extent_buffer *leaf; 174 struct page *page = NULL; 175 char *kaddr; 176 unsigned long ptr; 177 struct btrfs_file_extent_item *ei; 178 int ret; 179 size_t cur_size = size; 180 unsigned long offset; 181 182 ASSERT((compressed_size > 0 && compressed_pages) || 183 (compressed_size == 0 && !compressed_pages)); 184 185 if (compressed_size && compressed_pages) 186 cur_size = compressed_size; 187 188 inode_add_bytes(inode, size); 189 190 if (!extent_inserted) { 191 struct btrfs_key key; 192 size_t datasize; 193 194 key.objectid = btrfs_ino(BTRFS_I(inode)); 195 key.offset = start; 196 key.type = BTRFS_EXTENT_DATA_KEY; 197 198 datasize = btrfs_file_extent_calc_inline_size(cur_size); 199 path->leave_spinning = 1; 200 ret = btrfs_insert_empty_item(trans, root, path, &key, 201 datasize); 202 if (ret) 203 goto fail; 204 } 205 leaf = path->nodes[0]; 206 ei = btrfs_item_ptr(leaf, path->slots[0], 207 struct btrfs_file_extent_item); 208 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 210 btrfs_set_file_extent_encryption(leaf, ei, 0); 211 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 212 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 213 ptr = btrfs_file_extent_inline_start(ei); 214 215 if (compress_type != BTRFS_COMPRESS_NONE) { 216 struct page *cpage; 217 int i = 0; 218 while (compressed_size > 0) { 219 cpage = compressed_pages[i]; 220 cur_size = min_t(unsigned long, compressed_size, 221 PAGE_SIZE); 222 223 kaddr = kmap_atomic(cpage); 224 write_extent_buffer(leaf, kaddr, ptr, cur_size); 225 kunmap_atomic(kaddr); 226 227 i++; 228 ptr += cur_size; 229 compressed_size -= cur_size; 230 } 231 btrfs_set_file_extent_compression(leaf, ei, 232 compress_type); 233 } else { 234 page = find_get_page(inode->i_mapping, 235 start >> PAGE_SHIFT); 236 btrfs_set_file_extent_compression(leaf, ei, 0); 237 kaddr = kmap_atomic(page); 238 offset = offset_in_page(start); 239 write_extent_buffer(leaf, kaddr + offset, ptr, size); 240 kunmap_atomic(kaddr); 241 put_page(page); 242 } 243 btrfs_mark_buffer_dirty(leaf); 244 btrfs_release_path(path); 245 246 /* 247 * We align size to sectorsize for inline extents just for simplicity 248 * sake. 249 */ 250 size = ALIGN(size, root->fs_info->sectorsize); 251 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 252 if (ret) 253 goto fail; 254 255 /* 256 * we're an inline extent, so nobody can 257 * extend the file past i_size without locking 258 * a page we already have locked. 259 * 260 * We must do any isize and inode updates 261 * before we unlock the pages. Otherwise we 262 * could end up racing with unlink. 263 */ 264 BTRFS_I(inode)->disk_i_size = inode->i_size; 265 ret = btrfs_update_inode(trans, root, inode); 266 267 fail: 268 return ret; 269 } 270 271 272 /* 273 * conditionally insert an inline extent into the file. This 274 * does the checks required to make sure the data is small enough 275 * to fit as an inline extent. 276 */ 277 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 278 u64 end, size_t compressed_size, 279 int compress_type, 280 struct page **compressed_pages) 281 { 282 struct btrfs_root *root = BTRFS_I(inode)->root; 283 struct btrfs_fs_info *fs_info = root->fs_info; 284 struct btrfs_trans_handle *trans; 285 u64 isize = i_size_read(inode); 286 u64 actual_end = min(end + 1, isize); 287 u64 inline_len = actual_end - start; 288 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 289 u64 data_len = inline_len; 290 int ret; 291 struct btrfs_path *path; 292 int extent_inserted = 0; 293 u32 extent_item_size; 294 295 if (compressed_size) 296 data_len = compressed_size; 297 298 if (start > 0 || 299 actual_end > fs_info->sectorsize || 300 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 301 (!compressed_size && 302 (actual_end & (fs_info->sectorsize - 1)) == 0) || 303 end + 1 < isize || 304 data_len > fs_info->max_inline) { 305 return 1; 306 } 307 308 path = btrfs_alloc_path(); 309 if (!path) 310 return -ENOMEM; 311 312 trans = btrfs_join_transaction(root); 313 if (IS_ERR(trans)) { 314 btrfs_free_path(path); 315 return PTR_ERR(trans); 316 } 317 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 318 319 if (compressed_size && compressed_pages) 320 extent_item_size = btrfs_file_extent_calc_inline_size( 321 compressed_size); 322 else 323 extent_item_size = btrfs_file_extent_calc_inline_size( 324 inline_len); 325 326 ret = __btrfs_drop_extents(trans, root, inode, path, 327 start, aligned_end, NULL, 328 1, 1, extent_item_size, &extent_inserted); 329 if (ret) { 330 btrfs_abort_transaction(trans, ret); 331 goto out; 332 } 333 334 if (isize > actual_end) 335 inline_len = min_t(u64, isize, actual_end); 336 ret = insert_inline_extent(trans, path, extent_inserted, 337 root, inode, start, 338 inline_len, compressed_size, 339 compress_type, compressed_pages); 340 if (ret && ret != -ENOSPC) { 341 btrfs_abort_transaction(trans, ret); 342 goto out; 343 } else if (ret == -ENOSPC) { 344 ret = 1; 345 goto out; 346 } 347 348 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 349 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 350 out: 351 /* 352 * Don't forget to free the reserved space, as for inlined extent 353 * it won't count as data extent, free them directly here. 354 * And at reserve time, it's always aligned to page size, so 355 * just free one page here. 356 */ 357 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 358 btrfs_free_path(path); 359 btrfs_end_transaction(trans); 360 return ret; 361 } 362 363 struct async_extent { 364 u64 start; 365 u64 ram_size; 366 u64 compressed_size; 367 struct page **pages; 368 unsigned long nr_pages; 369 int compress_type; 370 struct list_head list; 371 }; 372 373 struct async_chunk { 374 struct inode *inode; 375 struct page *locked_page; 376 u64 start; 377 u64 end; 378 unsigned int write_flags; 379 struct list_head extents; 380 struct cgroup_subsys_state *blkcg_css; 381 struct btrfs_work work; 382 atomic_t *pending; 383 }; 384 385 struct async_cow { 386 /* Number of chunks in flight; must be first in the structure */ 387 atomic_t num_chunks; 388 struct async_chunk chunks[]; 389 }; 390 391 static noinline int add_async_extent(struct async_chunk *cow, 392 u64 start, u64 ram_size, 393 u64 compressed_size, 394 struct page **pages, 395 unsigned long nr_pages, 396 int compress_type) 397 { 398 struct async_extent *async_extent; 399 400 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 401 BUG_ON(!async_extent); /* -ENOMEM */ 402 async_extent->start = start; 403 async_extent->ram_size = ram_size; 404 async_extent->compressed_size = compressed_size; 405 async_extent->pages = pages; 406 async_extent->nr_pages = nr_pages; 407 async_extent->compress_type = compress_type; 408 list_add_tail(&async_extent->list, &cow->extents); 409 return 0; 410 } 411 412 /* 413 * Check if the inode has flags compatible with compression 414 */ 415 static inline bool inode_can_compress(struct inode *inode) 416 { 417 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW || 418 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 419 return false; 420 return true; 421 } 422 423 /* 424 * Check if the inode needs to be submitted to compression, based on mount 425 * options, defragmentation, properties or heuristics. 426 */ 427 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 428 { 429 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 430 431 if (!inode_can_compress(inode)) { 432 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 433 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 434 btrfs_ino(BTRFS_I(inode))); 435 return 0; 436 } 437 /* force compress */ 438 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 439 return 1; 440 /* defrag ioctl */ 441 if (BTRFS_I(inode)->defrag_compress) 442 return 1; 443 /* bad compression ratios */ 444 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 445 return 0; 446 if (btrfs_test_opt(fs_info, COMPRESS) || 447 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 448 BTRFS_I(inode)->prop_compress) 449 return btrfs_compress_heuristic(inode, start, end); 450 return 0; 451 } 452 453 static inline void inode_should_defrag(struct btrfs_inode *inode, 454 u64 start, u64 end, u64 num_bytes, u64 small_write) 455 { 456 /* If this is a small write inside eof, kick off a defrag */ 457 if (num_bytes < small_write && 458 (start > 0 || end + 1 < inode->disk_i_size)) 459 btrfs_add_inode_defrag(NULL, inode); 460 } 461 462 /* 463 * we create compressed extents in two phases. The first 464 * phase compresses a range of pages that have already been 465 * locked (both pages and state bits are locked). 466 * 467 * This is done inside an ordered work queue, and the compression 468 * is spread across many cpus. The actual IO submission is step 469 * two, and the ordered work queue takes care of making sure that 470 * happens in the same order things were put onto the queue by 471 * writepages and friends. 472 * 473 * If this code finds it can't get good compression, it puts an 474 * entry onto the work queue to write the uncompressed bytes. This 475 * makes sure that both compressed inodes and uncompressed inodes 476 * are written in the same order that the flusher thread sent them 477 * down. 478 */ 479 static noinline int compress_file_range(struct async_chunk *async_chunk) 480 { 481 struct inode *inode = async_chunk->inode; 482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 483 u64 blocksize = fs_info->sectorsize; 484 u64 start = async_chunk->start; 485 u64 end = async_chunk->end; 486 u64 actual_end; 487 u64 i_size; 488 int ret = 0; 489 struct page **pages = NULL; 490 unsigned long nr_pages; 491 unsigned long total_compressed = 0; 492 unsigned long total_in = 0; 493 int i; 494 int will_compress; 495 int compress_type = fs_info->compress_type; 496 int compressed_extents = 0; 497 int redirty = 0; 498 499 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 500 SZ_16K); 501 502 /* 503 * We need to save i_size before now because it could change in between 504 * us evaluating the size and assigning it. This is because we lock and 505 * unlock the page in truncate and fallocate, and then modify the i_size 506 * later on. 507 * 508 * The barriers are to emulate READ_ONCE, remove that once i_size_read 509 * does that for us. 510 */ 511 barrier(); 512 i_size = i_size_read(inode); 513 barrier(); 514 actual_end = min_t(u64, i_size, end + 1); 515 again: 516 will_compress = 0; 517 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 518 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 519 nr_pages = min_t(unsigned long, nr_pages, 520 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 521 522 /* 523 * we don't want to send crud past the end of i_size through 524 * compression, that's just a waste of CPU time. So, if the 525 * end of the file is before the start of our current 526 * requested range of bytes, we bail out to the uncompressed 527 * cleanup code that can deal with all of this. 528 * 529 * It isn't really the fastest way to fix things, but this is a 530 * very uncommon corner. 531 */ 532 if (actual_end <= start) 533 goto cleanup_and_bail_uncompressed; 534 535 total_compressed = actual_end - start; 536 537 /* 538 * skip compression for a small file range(<=blocksize) that 539 * isn't an inline extent, since it doesn't save disk space at all. 540 */ 541 if (total_compressed <= blocksize && 542 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 543 goto cleanup_and_bail_uncompressed; 544 545 total_compressed = min_t(unsigned long, total_compressed, 546 BTRFS_MAX_UNCOMPRESSED); 547 total_in = 0; 548 ret = 0; 549 550 /* 551 * we do compression for mount -o compress and when the 552 * inode has not been flagged as nocompress. This flag can 553 * change at any time if we discover bad compression ratios. 554 */ 555 if (inode_need_compress(inode, start, end)) { 556 WARN_ON(pages); 557 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 558 if (!pages) { 559 /* just bail out to the uncompressed code */ 560 nr_pages = 0; 561 goto cont; 562 } 563 564 if (BTRFS_I(inode)->defrag_compress) 565 compress_type = BTRFS_I(inode)->defrag_compress; 566 else if (BTRFS_I(inode)->prop_compress) 567 compress_type = BTRFS_I(inode)->prop_compress; 568 569 /* 570 * we need to call clear_page_dirty_for_io on each 571 * page in the range. Otherwise applications with the file 572 * mmap'd can wander in and change the page contents while 573 * we are compressing them. 574 * 575 * If the compression fails for any reason, we set the pages 576 * dirty again later on. 577 * 578 * Note that the remaining part is redirtied, the start pointer 579 * has moved, the end is the original one. 580 */ 581 if (!redirty) { 582 extent_range_clear_dirty_for_io(inode, start, end); 583 redirty = 1; 584 } 585 586 /* Compression level is applied here and only here */ 587 ret = btrfs_compress_pages( 588 compress_type | (fs_info->compress_level << 4), 589 inode->i_mapping, start, 590 pages, 591 &nr_pages, 592 &total_in, 593 &total_compressed); 594 595 if (!ret) { 596 unsigned long offset = offset_in_page(total_compressed); 597 struct page *page = pages[nr_pages - 1]; 598 char *kaddr; 599 600 /* zero the tail end of the last page, we might be 601 * sending it down to disk 602 */ 603 if (offset) { 604 kaddr = kmap_atomic(page); 605 memset(kaddr + offset, 0, 606 PAGE_SIZE - offset); 607 kunmap_atomic(kaddr); 608 } 609 will_compress = 1; 610 } 611 } 612 cont: 613 if (start == 0) { 614 /* lets try to make an inline extent */ 615 if (ret || total_in < actual_end) { 616 /* we didn't compress the entire range, try 617 * to make an uncompressed inline extent. 618 */ 619 ret = cow_file_range_inline(inode, start, end, 0, 620 BTRFS_COMPRESS_NONE, NULL); 621 } else { 622 /* try making a compressed inline extent */ 623 ret = cow_file_range_inline(inode, start, end, 624 total_compressed, 625 compress_type, pages); 626 } 627 if (ret <= 0) { 628 unsigned long clear_flags = EXTENT_DELALLOC | 629 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 630 EXTENT_DO_ACCOUNTING; 631 unsigned long page_error_op; 632 633 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 634 635 /* 636 * inline extent creation worked or returned error, 637 * we don't need to create any more async work items. 638 * Unlock and free up our temp pages. 639 * 640 * We use DO_ACCOUNTING here because we need the 641 * delalloc_release_metadata to be done _after_ we drop 642 * our outstanding extent for clearing delalloc for this 643 * range. 644 */ 645 extent_clear_unlock_delalloc(inode, start, end, NULL, 646 clear_flags, 647 PAGE_UNLOCK | 648 PAGE_CLEAR_DIRTY | 649 PAGE_SET_WRITEBACK | 650 page_error_op | 651 PAGE_END_WRITEBACK); 652 653 for (i = 0; i < nr_pages; i++) { 654 WARN_ON(pages[i]->mapping); 655 put_page(pages[i]); 656 } 657 kfree(pages); 658 659 return 0; 660 } 661 } 662 663 if (will_compress) { 664 /* 665 * we aren't doing an inline extent round the compressed size 666 * up to a block size boundary so the allocator does sane 667 * things 668 */ 669 total_compressed = ALIGN(total_compressed, blocksize); 670 671 /* 672 * one last check to make sure the compression is really a 673 * win, compare the page count read with the blocks on disk, 674 * compression must free at least one sector size 675 */ 676 total_in = ALIGN(total_in, PAGE_SIZE); 677 if (total_compressed + blocksize <= total_in) { 678 compressed_extents++; 679 680 /* 681 * The async work queues will take care of doing actual 682 * allocation on disk for these compressed pages, and 683 * will submit them to the elevator. 684 */ 685 add_async_extent(async_chunk, start, total_in, 686 total_compressed, pages, nr_pages, 687 compress_type); 688 689 if (start + total_in < end) { 690 start += total_in; 691 pages = NULL; 692 cond_resched(); 693 goto again; 694 } 695 return compressed_extents; 696 } 697 } 698 if (pages) { 699 /* 700 * the compression code ran but failed to make things smaller, 701 * free any pages it allocated and our page pointer array 702 */ 703 for (i = 0; i < nr_pages; i++) { 704 WARN_ON(pages[i]->mapping); 705 put_page(pages[i]); 706 } 707 kfree(pages); 708 pages = NULL; 709 total_compressed = 0; 710 nr_pages = 0; 711 712 /* flag the file so we don't compress in the future */ 713 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 714 !(BTRFS_I(inode)->prop_compress)) { 715 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 716 } 717 } 718 cleanup_and_bail_uncompressed: 719 /* 720 * No compression, but we still need to write the pages in the file 721 * we've been given so far. redirty the locked page if it corresponds 722 * to our extent and set things up for the async work queue to run 723 * cow_file_range to do the normal delalloc dance. 724 */ 725 if (async_chunk->locked_page && 726 (page_offset(async_chunk->locked_page) >= start && 727 page_offset(async_chunk->locked_page)) <= end) { 728 __set_page_dirty_nobuffers(async_chunk->locked_page); 729 /* unlocked later on in the async handlers */ 730 } 731 732 if (redirty) 733 extent_range_redirty_for_io(inode, start, end); 734 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 735 BTRFS_COMPRESS_NONE); 736 compressed_extents++; 737 738 return compressed_extents; 739 } 740 741 static void free_async_extent_pages(struct async_extent *async_extent) 742 { 743 int i; 744 745 if (!async_extent->pages) 746 return; 747 748 for (i = 0; i < async_extent->nr_pages; i++) { 749 WARN_ON(async_extent->pages[i]->mapping); 750 put_page(async_extent->pages[i]); 751 } 752 kfree(async_extent->pages); 753 async_extent->nr_pages = 0; 754 async_extent->pages = NULL; 755 } 756 757 /* 758 * phase two of compressed writeback. This is the ordered portion 759 * of the code, which only gets called in the order the work was 760 * queued. We walk all the async extents created by compress_file_range 761 * and send them down to the disk. 762 */ 763 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 764 { 765 struct inode *inode = async_chunk->inode; 766 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 767 struct async_extent *async_extent; 768 u64 alloc_hint = 0; 769 struct btrfs_key ins; 770 struct extent_map *em; 771 struct btrfs_root *root = BTRFS_I(inode)->root; 772 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 773 int ret = 0; 774 775 again: 776 while (!list_empty(&async_chunk->extents)) { 777 async_extent = list_entry(async_chunk->extents.next, 778 struct async_extent, list); 779 list_del(&async_extent->list); 780 781 retry: 782 lock_extent(io_tree, async_extent->start, 783 async_extent->start + async_extent->ram_size - 1); 784 /* did the compression code fall back to uncompressed IO? */ 785 if (!async_extent->pages) { 786 int page_started = 0; 787 unsigned long nr_written = 0; 788 789 /* allocate blocks */ 790 ret = cow_file_range(inode, async_chunk->locked_page, 791 async_extent->start, 792 async_extent->start + 793 async_extent->ram_size - 1, 794 &page_started, &nr_written, 0); 795 796 /* JDM XXX */ 797 798 /* 799 * if page_started, cow_file_range inserted an 800 * inline extent and took care of all the unlocking 801 * and IO for us. Otherwise, we need to submit 802 * all those pages down to the drive. 803 */ 804 if (!page_started && !ret) 805 extent_write_locked_range(inode, 806 async_extent->start, 807 async_extent->start + 808 async_extent->ram_size - 1, 809 WB_SYNC_ALL); 810 else if (ret && async_chunk->locked_page) 811 unlock_page(async_chunk->locked_page); 812 kfree(async_extent); 813 cond_resched(); 814 continue; 815 } 816 817 ret = btrfs_reserve_extent(root, async_extent->ram_size, 818 async_extent->compressed_size, 819 async_extent->compressed_size, 820 0, alloc_hint, &ins, 1, 1); 821 if (ret) { 822 free_async_extent_pages(async_extent); 823 824 if (ret == -ENOSPC) { 825 unlock_extent(io_tree, async_extent->start, 826 async_extent->start + 827 async_extent->ram_size - 1); 828 829 /* 830 * we need to redirty the pages if we decide to 831 * fallback to uncompressed IO, otherwise we 832 * will not submit these pages down to lower 833 * layers. 834 */ 835 extent_range_redirty_for_io(inode, 836 async_extent->start, 837 async_extent->start + 838 async_extent->ram_size - 1); 839 840 goto retry; 841 } 842 goto out_free; 843 } 844 /* 845 * here we're doing allocation and writeback of the 846 * compressed pages 847 */ 848 em = create_io_em(inode, async_extent->start, 849 async_extent->ram_size, /* len */ 850 async_extent->start, /* orig_start */ 851 ins.objectid, /* block_start */ 852 ins.offset, /* block_len */ 853 ins.offset, /* orig_block_len */ 854 async_extent->ram_size, /* ram_bytes */ 855 async_extent->compress_type, 856 BTRFS_ORDERED_COMPRESSED); 857 if (IS_ERR(em)) 858 /* ret value is not necessary due to void function */ 859 goto out_free_reserve; 860 free_extent_map(em); 861 862 ret = btrfs_add_ordered_extent_compress(inode, 863 async_extent->start, 864 ins.objectid, 865 async_extent->ram_size, 866 ins.offset, 867 BTRFS_ORDERED_COMPRESSED, 868 async_extent->compress_type); 869 if (ret) { 870 btrfs_drop_extent_cache(BTRFS_I(inode), 871 async_extent->start, 872 async_extent->start + 873 async_extent->ram_size - 1, 0); 874 goto out_free_reserve; 875 } 876 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 877 878 /* 879 * clear dirty, set writeback and unlock the pages. 880 */ 881 extent_clear_unlock_delalloc(inode, async_extent->start, 882 async_extent->start + 883 async_extent->ram_size - 1, 884 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 885 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 886 PAGE_SET_WRITEBACK); 887 if (btrfs_submit_compressed_write(inode, 888 async_extent->start, 889 async_extent->ram_size, 890 ins.objectid, 891 ins.offset, async_extent->pages, 892 async_extent->nr_pages, 893 async_chunk->write_flags, 894 async_chunk->blkcg_css)) { 895 struct page *p = async_extent->pages[0]; 896 const u64 start = async_extent->start; 897 const u64 end = start + async_extent->ram_size - 1; 898 899 p->mapping = inode->i_mapping; 900 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 901 902 p->mapping = NULL; 903 extent_clear_unlock_delalloc(inode, start, end, 904 NULL, 0, 905 PAGE_END_WRITEBACK | 906 PAGE_SET_ERROR); 907 free_async_extent_pages(async_extent); 908 } 909 alloc_hint = ins.objectid + ins.offset; 910 kfree(async_extent); 911 cond_resched(); 912 } 913 return; 914 out_free_reserve: 915 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 916 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 917 out_free: 918 extent_clear_unlock_delalloc(inode, async_extent->start, 919 async_extent->start + 920 async_extent->ram_size - 1, 921 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 922 EXTENT_DELALLOC_NEW | 923 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 924 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 925 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 926 PAGE_SET_ERROR); 927 free_async_extent_pages(async_extent); 928 kfree(async_extent); 929 goto again; 930 } 931 932 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 933 u64 num_bytes) 934 { 935 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 936 struct extent_map *em; 937 u64 alloc_hint = 0; 938 939 read_lock(&em_tree->lock); 940 em = search_extent_mapping(em_tree, start, num_bytes); 941 if (em) { 942 /* 943 * if block start isn't an actual block number then find the 944 * first block in this inode and use that as a hint. If that 945 * block is also bogus then just don't worry about it. 946 */ 947 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 948 free_extent_map(em); 949 em = search_extent_mapping(em_tree, 0, 0); 950 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 951 alloc_hint = em->block_start; 952 if (em) 953 free_extent_map(em); 954 } else { 955 alloc_hint = em->block_start; 956 free_extent_map(em); 957 } 958 } 959 read_unlock(&em_tree->lock); 960 961 return alloc_hint; 962 } 963 964 /* 965 * when extent_io.c finds a delayed allocation range in the file, 966 * the call backs end up in this code. The basic idea is to 967 * allocate extents on disk for the range, and create ordered data structs 968 * in ram to track those extents. 969 * 970 * locked_page is the page that writepage had locked already. We use 971 * it to make sure we don't do extra locks or unlocks. 972 * 973 * *page_started is set to one if we unlock locked_page and do everything 974 * required to start IO on it. It may be clean and already done with 975 * IO when we return. 976 */ 977 static noinline int cow_file_range(struct inode *inode, 978 struct page *locked_page, 979 u64 start, u64 end, int *page_started, 980 unsigned long *nr_written, int unlock) 981 { 982 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 983 struct btrfs_root *root = BTRFS_I(inode)->root; 984 u64 alloc_hint = 0; 985 u64 num_bytes; 986 unsigned long ram_size; 987 u64 cur_alloc_size = 0; 988 u64 blocksize = fs_info->sectorsize; 989 struct btrfs_key ins; 990 struct extent_map *em; 991 unsigned clear_bits; 992 unsigned long page_ops; 993 bool extent_reserved = false; 994 int ret = 0; 995 996 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 997 WARN_ON_ONCE(1); 998 ret = -EINVAL; 999 goto out_unlock; 1000 } 1001 1002 num_bytes = ALIGN(end - start + 1, blocksize); 1003 num_bytes = max(blocksize, num_bytes); 1004 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1005 1006 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 1007 1008 if (start == 0) { 1009 /* lets try to make an inline extent */ 1010 ret = cow_file_range_inline(inode, start, end, 0, 1011 BTRFS_COMPRESS_NONE, NULL); 1012 if (ret == 0) { 1013 /* 1014 * We use DO_ACCOUNTING here because we need the 1015 * delalloc_release_metadata to be run _after_ we drop 1016 * our outstanding extent for clearing delalloc for this 1017 * range. 1018 */ 1019 extent_clear_unlock_delalloc(inode, start, end, NULL, 1020 EXTENT_LOCKED | EXTENT_DELALLOC | 1021 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1022 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1023 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1024 PAGE_END_WRITEBACK); 1025 *nr_written = *nr_written + 1026 (end - start + PAGE_SIZE) / PAGE_SIZE; 1027 *page_started = 1; 1028 goto out; 1029 } else if (ret < 0) { 1030 goto out_unlock; 1031 } 1032 } 1033 1034 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1035 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1036 start + num_bytes - 1, 0); 1037 1038 while (num_bytes > 0) { 1039 cur_alloc_size = num_bytes; 1040 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1041 fs_info->sectorsize, 0, alloc_hint, 1042 &ins, 1, 1); 1043 if (ret < 0) 1044 goto out_unlock; 1045 cur_alloc_size = ins.offset; 1046 extent_reserved = true; 1047 1048 ram_size = ins.offset; 1049 em = create_io_em(inode, start, ins.offset, /* len */ 1050 start, /* orig_start */ 1051 ins.objectid, /* block_start */ 1052 ins.offset, /* block_len */ 1053 ins.offset, /* orig_block_len */ 1054 ram_size, /* ram_bytes */ 1055 BTRFS_COMPRESS_NONE, /* compress_type */ 1056 BTRFS_ORDERED_REGULAR /* type */); 1057 if (IS_ERR(em)) { 1058 ret = PTR_ERR(em); 1059 goto out_reserve; 1060 } 1061 free_extent_map(em); 1062 1063 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1064 ram_size, cur_alloc_size, 0); 1065 if (ret) 1066 goto out_drop_extent_cache; 1067 1068 if (root->root_key.objectid == 1069 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1070 ret = btrfs_reloc_clone_csums(inode, start, 1071 cur_alloc_size); 1072 /* 1073 * Only drop cache here, and process as normal. 1074 * 1075 * We must not allow extent_clear_unlock_delalloc() 1076 * at out_unlock label to free meta of this ordered 1077 * extent, as its meta should be freed by 1078 * btrfs_finish_ordered_io(). 1079 * 1080 * So we must continue until @start is increased to 1081 * skip current ordered extent. 1082 */ 1083 if (ret) 1084 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1085 start + ram_size - 1, 0); 1086 } 1087 1088 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1089 1090 /* we're not doing compressed IO, don't unlock the first 1091 * page (which the caller expects to stay locked), don't 1092 * clear any dirty bits and don't set any writeback bits 1093 * 1094 * Do set the Private2 bit so we know this page was properly 1095 * setup for writepage 1096 */ 1097 page_ops = unlock ? PAGE_UNLOCK : 0; 1098 page_ops |= PAGE_SET_PRIVATE2; 1099 1100 extent_clear_unlock_delalloc(inode, start, 1101 start + ram_size - 1, 1102 locked_page, 1103 EXTENT_LOCKED | EXTENT_DELALLOC, 1104 page_ops); 1105 if (num_bytes < cur_alloc_size) 1106 num_bytes = 0; 1107 else 1108 num_bytes -= cur_alloc_size; 1109 alloc_hint = ins.objectid + ins.offset; 1110 start += cur_alloc_size; 1111 extent_reserved = false; 1112 1113 /* 1114 * btrfs_reloc_clone_csums() error, since start is increased 1115 * extent_clear_unlock_delalloc() at out_unlock label won't 1116 * free metadata of current ordered extent, we're OK to exit. 1117 */ 1118 if (ret) 1119 goto out_unlock; 1120 } 1121 out: 1122 return ret; 1123 1124 out_drop_extent_cache: 1125 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1126 out_reserve: 1127 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1128 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1129 out_unlock: 1130 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1131 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1132 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1133 PAGE_END_WRITEBACK; 1134 /* 1135 * If we reserved an extent for our delalloc range (or a subrange) and 1136 * failed to create the respective ordered extent, then it means that 1137 * when we reserved the extent we decremented the extent's size from 1138 * the data space_info's bytes_may_use counter and incremented the 1139 * space_info's bytes_reserved counter by the same amount. We must make 1140 * sure extent_clear_unlock_delalloc() does not try to decrement again 1141 * the data space_info's bytes_may_use counter, therefore we do not pass 1142 * it the flag EXTENT_CLEAR_DATA_RESV. 1143 */ 1144 if (extent_reserved) { 1145 extent_clear_unlock_delalloc(inode, start, 1146 start + cur_alloc_size - 1, 1147 locked_page, 1148 clear_bits, 1149 page_ops); 1150 start += cur_alloc_size; 1151 if (start >= end) 1152 goto out; 1153 } 1154 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1155 clear_bits | EXTENT_CLEAR_DATA_RESV, 1156 page_ops); 1157 goto out; 1158 } 1159 1160 /* 1161 * work queue call back to started compression on a file and pages 1162 */ 1163 static noinline void async_cow_start(struct btrfs_work *work) 1164 { 1165 struct async_chunk *async_chunk; 1166 int compressed_extents; 1167 1168 async_chunk = container_of(work, struct async_chunk, work); 1169 1170 compressed_extents = compress_file_range(async_chunk); 1171 if (compressed_extents == 0) { 1172 btrfs_add_delayed_iput(async_chunk->inode); 1173 async_chunk->inode = NULL; 1174 } 1175 } 1176 1177 /* 1178 * work queue call back to submit previously compressed pages 1179 */ 1180 static noinline void async_cow_submit(struct btrfs_work *work) 1181 { 1182 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1183 work); 1184 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1185 unsigned long nr_pages; 1186 1187 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1188 PAGE_SHIFT; 1189 1190 /* atomic_sub_return implies a barrier */ 1191 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1192 5 * SZ_1M) 1193 cond_wake_up_nomb(&fs_info->async_submit_wait); 1194 1195 /* 1196 * ->inode could be NULL if async_chunk_start has failed to compress, 1197 * in which case we don't have anything to submit, yet we need to 1198 * always adjust ->async_delalloc_pages as its paired with the init 1199 * happening in cow_file_range_async 1200 */ 1201 if (async_chunk->inode) 1202 submit_compressed_extents(async_chunk); 1203 } 1204 1205 static noinline void async_cow_free(struct btrfs_work *work) 1206 { 1207 struct async_chunk *async_chunk; 1208 1209 async_chunk = container_of(work, struct async_chunk, work); 1210 if (async_chunk->inode) 1211 btrfs_add_delayed_iput(async_chunk->inode); 1212 if (async_chunk->blkcg_css) 1213 css_put(async_chunk->blkcg_css); 1214 /* 1215 * Since the pointer to 'pending' is at the beginning of the array of 1216 * async_chunk's, freeing it ensures the whole array has been freed. 1217 */ 1218 if (atomic_dec_and_test(async_chunk->pending)) 1219 kvfree(async_chunk->pending); 1220 } 1221 1222 static int cow_file_range_async(struct inode *inode, 1223 struct writeback_control *wbc, 1224 struct page *locked_page, 1225 u64 start, u64 end, int *page_started, 1226 unsigned long *nr_written) 1227 { 1228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1229 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1230 struct async_cow *ctx; 1231 struct async_chunk *async_chunk; 1232 unsigned long nr_pages; 1233 u64 cur_end; 1234 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1235 int i; 1236 bool should_compress; 1237 unsigned nofs_flag; 1238 const unsigned int write_flags = wbc_to_write_flags(wbc); 1239 1240 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1241 1242 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1243 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1244 num_chunks = 1; 1245 should_compress = false; 1246 } else { 1247 should_compress = true; 1248 } 1249 1250 nofs_flag = memalloc_nofs_save(); 1251 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1252 memalloc_nofs_restore(nofs_flag); 1253 1254 if (!ctx) { 1255 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1256 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1257 EXTENT_DO_ACCOUNTING; 1258 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1259 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1260 PAGE_SET_ERROR; 1261 1262 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1263 clear_bits, page_ops); 1264 return -ENOMEM; 1265 } 1266 1267 async_chunk = ctx->chunks; 1268 atomic_set(&ctx->num_chunks, num_chunks); 1269 1270 for (i = 0; i < num_chunks; i++) { 1271 if (should_compress) 1272 cur_end = min(end, start + SZ_512K - 1); 1273 else 1274 cur_end = end; 1275 1276 /* 1277 * igrab is called higher up in the call chain, take only the 1278 * lightweight reference for the callback lifetime 1279 */ 1280 ihold(inode); 1281 async_chunk[i].pending = &ctx->num_chunks; 1282 async_chunk[i].inode = inode; 1283 async_chunk[i].start = start; 1284 async_chunk[i].end = cur_end; 1285 async_chunk[i].write_flags = write_flags; 1286 INIT_LIST_HEAD(&async_chunk[i].extents); 1287 1288 /* 1289 * The locked_page comes all the way from writepage and its 1290 * the original page we were actually given. As we spread 1291 * this large delalloc region across multiple async_chunk 1292 * structs, only the first struct needs a pointer to locked_page 1293 * 1294 * This way we don't need racey decisions about who is supposed 1295 * to unlock it. 1296 */ 1297 if (locked_page) { 1298 /* 1299 * Depending on the compressibility, the pages might or 1300 * might not go through async. We want all of them to 1301 * be accounted against wbc once. Let's do it here 1302 * before the paths diverge. wbc accounting is used 1303 * only for foreign writeback detection and doesn't 1304 * need full accuracy. Just account the whole thing 1305 * against the first page. 1306 */ 1307 wbc_account_cgroup_owner(wbc, locked_page, 1308 cur_end - start); 1309 async_chunk[i].locked_page = locked_page; 1310 locked_page = NULL; 1311 } else { 1312 async_chunk[i].locked_page = NULL; 1313 } 1314 1315 if (blkcg_css != blkcg_root_css) { 1316 css_get(blkcg_css); 1317 async_chunk[i].blkcg_css = blkcg_css; 1318 } else { 1319 async_chunk[i].blkcg_css = NULL; 1320 } 1321 1322 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1323 async_cow_submit, async_cow_free); 1324 1325 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1326 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1327 1328 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1329 1330 *nr_written += nr_pages; 1331 start = cur_end + 1; 1332 } 1333 *page_started = 1; 1334 return 0; 1335 } 1336 1337 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1338 u64 bytenr, u64 num_bytes) 1339 { 1340 int ret; 1341 struct btrfs_ordered_sum *sums; 1342 LIST_HEAD(list); 1343 1344 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1345 bytenr + num_bytes - 1, &list, 0); 1346 if (ret == 0 && list_empty(&list)) 1347 return 0; 1348 1349 while (!list_empty(&list)) { 1350 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1351 list_del(&sums->list); 1352 kfree(sums); 1353 } 1354 if (ret < 0) 1355 return ret; 1356 return 1; 1357 } 1358 1359 static int fallback_to_cow(struct inode *inode, struct page *locked_page, 1360 const u64 start, const u64 end, 1361 int *page_started, unsigned long *nr_written) 1362 { 1363 const bool is_space_ino = btrfs_is_free_space_inode(BTRFS_I(inode)); 1364 const u64 range_bytes = end + 1 - start; 1365 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1366 u64 range_start = start; 1367 u64 count; 1368 1369 /* 1370 * If EXTENT_NORESERVE is set it means that when the buffered write was 1371 * made we had not enough available data space and therefore we did not 1372 * reserve data space for it, since we though we could do NOCOW for the 1373 * respective file range (either there is prealloc extent or the inode 1374 * has the NOCOW bit set). 1375 * 1376 * However when we need to fallback to COW mode (because for example the 1377 * block group for the corresponding extent was turned to RO mode by a 1378 * scrub or relocation) we need to do the following: 1379 * 1380 * 1) We increment the bytes_may_use counter of the data space info. 1381 * If COW succeeds, it allocates a new data extent and after doing 1382 * that it decrements the space info's bytes_may_use counter and 1383 * increments its bytes_reserved counter by the same amount (we do 1384 * this at btrfs_add_reserved_bytes()). So we need to increment the 1385 * bytes_may_use counter to compensate (when space is reserved at 1386 * buffered write time, the bytes_may_use counter is incremented); 1387 * 1388 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1389 * that if the COW path fails for any reason, it decrements (through 1390 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1391 * data space info, which we incremented in the step above. 1392 * 1393 * If we need to fallback to cow and the inode corresponds to a free 1394 * space cache inode, we must also increment bytes_may_use of the data 1395 * space_info for the same reason. Space caches always get a prealloc 1396 * extent for them, however scrub or balance may have set the block 1397 * group that contains that extent to RO mode. 1398 */ 1399 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1400 EXTENT_NORESERVE, 0); 1401 if (count > 0 || is_space_ino) { 1402 const u64 bytes = is_space_ino ? range_bytes : count; 1403 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1404 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1405 1406 spin_lock(&sinfo->lock); 1407 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1408 spin_unlock(&sinfo->lock); 1409 1410 if (count > 0) 1411 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1412 0, 0, NULL); 1413 } 1414 1415 return cow_file_range(inode, locked_page, start, end, page_started, 1416 nr_written, 1); 1417 } 1418 1419 /* 1420 * when nowcow writeback call back. This checks for snapshots or COW copies 1421 * of the extents that exist in the file, and COWs the file as required. 1422 * 1423 * If no cow copies or snapshots exist, we write directly to the existing 1424 * blocks on disk 1425 */ 1426 static noinline int run_delalloc_nocow(struct inode *inode, 1427 struct page *locked_page, 1428 const u64 start, const u64 end, 1429 int *page_started, int force, 1430 unsigned long *nr_written) 1431 { 1432 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1433 struct btrfs_root *root = BTRFS_I(inode)->root; 1434 struct btrfs_path *path; 1435 u64 cow_start = (u64)-1; 1436 u64 cur_offset = start; 1437 int ret; 1438 bool check_prev = true; 1439 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 1440 u64 ino = btrfs_ino(BTRFS_I(inode)); 1441 bool nocow = false; 1442 u64 disk_bytenr = 0; 1443 1444 path = btrfs_alloc_path(); 1445 if (!path) { 1446 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1447 EXTENT_LOCKED | EXTENT_DELALLOC | 1448 EXTENT_DO_ACCOUNTING | 1449 EXTENT_DEFRAG, PAGE_UNLOCK | 1450 PAGE_CLEAR_DIRTY | 1451 PAGE_SET_WRITEBACK | 1452 PAGE_END_WRITEBACK); 1453 return -ENOMEM; 1454 } 1455 1456 while (1) { 1457 struct btrfs_key found_key; 1458 struct btrfs_file_extent_item *fi; 1459 struct extent_buffer *leaf; 1460 u64 extent_end; 1461 u64 extent_offset; 1462 u64 num_bytes = 0; 1463 u64 disk_num_bytes; 1464 u64 ram_bytes; 1465 int extent_type; 1466 1467 nocow = false; 1468 1469 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1470 cur_offset, 0); 1471 if (ret < 0) 1472 goto error; 1473 1474 /* 1475 * If there is no extent for our range when doing the initial 1476 * search, then go back to the previous slot as it will be the 1477 * one containing the search offset 1478 */ 1479 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1480 leaf = path->nodes[0]; 1481 btrfs_item_key_to_cpu(leaf, &found_key, 1482 path->slots[0] - 1); 1483 if (found_key.objectid == ino && 1484 found_key.type == BTRFS_EXTENT_DATA_KEY) 1485 path->slots[0]--; 1486 } 1487 check_prev = false; 1488 next_slot: 1489 /* Go to next leaf if we have exhausted the current one */ 1490 leaf = path->nodes[0]; 1491 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1492 ret = btrfs_next_leaf(root, path); 1493 if (ret < 0) { 1494 if (cow_start != (u64)-1) 1495 cur_offset = cow_start; 1496 goto error; 1497 } 1498 if (ret > 0) 1499 break; 1500 leaf = path->nodes[0]; 1501 } 1502 1503 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1504 1505 /* Didn't find anything for our INO */ 1506 if (found_key.objectid > ino) 1507 break; 1508 /* 1509 * Keep searching until we find an EXTENT_ITEM or there are no 1510 * more extents for this inode 1511 */ 1512 if (WARN_ON_ONCE(found_key.objectid < ino) || 1513 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1514 path->slots[0]++; 1515 goto next_slot; 1516 } 1517 1518 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1519 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1520 found_key.offset > end) 1521 break; 1522 1523 /* 1524 * If the found extent starts after requested offset, then 1525 * adjust extent_end to be right before this extent begins 1526 */ 1527 if (found_key.offset > cur_offset) { 1528 extent_end = found_key.offset; 1529 extent_type = 0; 1530 goto out_check; 1531 } 1532 1533 /* 1534 * Found extent which begins before our range and potentially 1535 * intersect it 1536 */ 1537 fi = btrfs_item_ptr(leaf, path->slots[0], 1538 struct btrfs_file_extent_item); 1539 extent_type = btrfs_file_extent_type(leaf, fi); 1540 1541 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1542 if (extent_type == BTRFS_FILE_EXTENT_REG || 1543 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1544 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1545 extent_offset = btrfs_file_extent_offset(leaf, fi); 1546 extent_end = found_key.offset + 1547 btrfs_file_extent_num_bytes(leaf, fi); 1548 disk_num_bytes = 1549 btrfs_file_extent_disk_num_bytes(leaf, fi); 1550 /* 1551 * If the extent we got ends before our current offset, 1552 * skip to the next extent. 1553 */ 1554 if (extent_end <= cur_offset) { 1555 path->slots[0]++; 1556 goto next_slot; 1557 } 1558 /* Skip holes */ 1559 if (disk_bytenr == 0) 1560 goto out_check; 1561 /* Skip compressed/encrypted/encoded extents */ 1562 if (btrfs_file_extent_compression(leaf, fi) || 1563 btrfs_file_extent_encryption(leaf, fi) || 1564 btrfs_file_extent_other_encoding(leaf, fi)) 1565 goto out_check; 1566 /* 1567 * If extent is created before the last volume's snapshot 1568 * this implies the extent is shared, hence we can't do 1569 * nocow. This is the same check as in 1570 * btrfs_cross_ref_exist but without calling 1571 * btrfs_search_slot. 1572 */ 1573 if (!freespace_inode && 1574 btrfs_file_extent_generation(leaf, fi) <= 1575 btrfs_root_last_snapshot(&root->root_item)) 1576 goto out_check; 1577 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1578 goto out_check; 1579 /* If extent is RO, we must COW it */ 1580 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1581 goto out_check; 1582 ret = btrfs_cross_ref_exist(root, ino, 1583 found_key.offset - 1584 extent_offset, disk_bytenr); 1585 if (ret) { 1586 /* 1587 * ret could be -EIO if the above fails to read 1588 * metadata. 1589 */ 1590 if (ret < 0) { 1591 if (cow_start != (u64)-1) 1592 cur_offset = cow_start; 1593 goto error; 1594 } 1595 1596 WARN_ON_ONCE(freespace_inode); 1597 goto out_check; 1598 } 1599 disk_bytenr += extent_offset; 1600 disk_bytenr += cur_offset - found_key.offset; 1601 num_bytes = min(end + 1, extent_end) - cur_offset; 1602 /* 1603 * If there are pending snapshots for this root, we 1604 * fall into common COW way 1605 */ 1606 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1607 goto out_check; 1608 /* 1609 * force cow if csum exists in the range. 1610 * this ensure that csum for a given extent are 1611 * either valid or do not exist. 1612 */ 1613 ret = csum_exist_in_range(fs_info, disk_bytenr, 1614 num_bytes); 1615 if (ret) { 1616 /* 1617 * ret could be -EIO if the above fails to read 1618 * metadata. 1619 */ 1620 if (ret < 0) { 1621 if (cow_start != (u64)-1) 1622 cur_offset = cow_start; 1623 goto error; 1624 } 1625 WARN_ON_ONCE(freespace_inode); 1626 goto out_check; 1627 } 1628 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1629 goto out_check; 1630 nocow = true; 1631 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1632 extent_end = found_key.offset + ram_bytes; 1633 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1634 /* Skip extents outside of our requested range */ 1635 if (extent_end <= start) { 1636 path->slots[0]++; 1637 goto next_slot; 1638 } 1639 } else { 1640 /* If this triggers then we have a memory corruption */ 1641 BUG(); 1642 } 1643 out_check: 1644 /* 1645 * If nocow is false then record the beginning of the range 1646 * that needs to be COWed 1647 */ 1648 if (!nocow) { 1649 if (cow_start == (u64)-1) 1650 cow_start = cur_offset; 1651 cur_offset = extent_end; 1652 if (cur_offset > end) 1653 break; 1654 path->slots[0]++; 1655 goto next_slot; 1656 } 1657 1658 btrfs_release_path(path); 1659 1660 /* 1661 * COW range from cow_start to found_key.offset - 1. As the key 1662 * will contain the beginning of the first extent that can be 1663 * NOCOW, following one which needs to be COW'ed 1664 */ 1665 if (cow_start != (u64)-1) { 1666 ret = fallback_to_cow(inode, locked_page, cow_start, 1667 found_key.offset - 1, 1668 page_started, nr_written); 1669 if (ret) { 1670 if (nocow) 1671 btrfs_dec_nocow_writers(fs_info, 1672 disk_bytenr); 1673 goto error; 1674 } 1675 cow_start = (u64)-1; 1676 } 1677 1678 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1679 u64 orig_start = found_key.offset - extent_offset; 1680 struct extent_map *em; 1681 1682 em = create_io_em(inode, cur_offset, num_bytes, 1683 orig_start, 1684 disk_bytenr, /* block_start */ 1685 num_bytes, /* block_len */ 1686 disk_num_bytes, /* orig_block_len */ 1687 ram_bytes, BTRFS_COMPRESS_NONE, 1688 BTRFS_ORDERED_PREALLOC); 1689 if (IS_ERR(em)) { 1690 if (nocow) 1691 btrfs_dec_nocow_writers(fs_info, 1692 disk_bytenr); 1693 ret = PTR_ERR(em); 1694 goto error; 1695 } 1696 free_extent_map(em); 1697 ret = btrfs_add_ordered_extent(inode, cur_offset, 1698 disk_bytenr, num_bytes, 1699 num_bytes, 1700 BTRFS_ORDERED_PREALLOC); 1701 if (ret) { 1702 btrfs_drop_extent_cache(BTRFS_I(inode), 1703 cur_offset, 1704 cur_offset + num_bytes - 1, 1705 0); 1706 goto error; 1707 } 1708 } else { 1709 ret = btrfs_add_ordered_extent(inode, cur_offset, 1710 disk_bytenr, num_bytes, 1711 num_bytes, 1712 BTRFS_ORDERED_NOCOW); 1713 if (ret) 1714 goto error; 1715 } 1716 1717 if (nocow) 1718 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1719 nocow = false; 1720 1721 if (root->root_key.objectid == 1722 BTRFS_DATA_RELOC_TREE_OBJECTID) 1723 /* 1724 * Error handled later, as we must prevent 1725 * extent_clear_unlock_delalloc() in error handler 1726 * from freeing metadata of created ordered extent. 1727 */ 1728 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1729 num_bytes); 1730 1731 extent_clear_unlock_delalloc(inode, cur_offset, 1732 cur_offset + num_bytes - 1, 1733 locked_page, EXTENT_LOCKED | 1734 EXTENT_DELALLOC | 1735 EXTENT_CLEAR_DATA_RESV, 1736 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1737 1738 cur_offset = extent_end; 1739 1740 /* 1741 * btrfs_reloc_clone_csums() error, now we're OK to call error 1742 * handler, as metadata for created ordered extent will only 1743 * be freed by btrfs_finish_ordered_io(). 1744 */ 1745 if (ret) 1746 goto error; 1747 if (cur_offset > end) 1748 break; 1749 } 1750 btrfs_release_path(path); 1751 1752 if (cur_offset <= end && cow_start == (u64)-1) 1753 cow_start = cur_offset; 1754 1755 if (cow_start != (u64)-1) { 1756 cur_offset = end; 1757 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1758 page_started, nr_written); 1759 if (ret) 1760 goto error; 1761 } 1762 1763 error: 1764 if (nocow) 1765 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1766 1767 if (ret && cur_offset < end) 1768 extent_clear_unlock_delalloc(inode, cur_offset, end, 1769 locked_page, EXTENT_LOCKED | 1770 EXTENT_DELALLOC | EXTENT_DEFRAG | 1771 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1772 PAGE_CLEAR_DIRTY | 1773 PAGE_SET_WRITEBACK | 1774 PAGE_END_WRITEBACK); 1775 btrfs_free_path(path); 1776 return ret; 1777 } 1778 1779 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1780 { 1781 1782 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1783 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1784 return 0; 1785 1786 /* 1787 * @defrag_bytes is a hint value, no spinlock held here, 1788 * if is not zero, it means the file is defragging. 1789 * Force cow if given extent needs to be defragged. 1790 */ 1791 if (BTRFS_I(inode)->defrag_bytes && 1792 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1793 EXTENT_DEFRAG, 0, NULL)) 1794 return 1; 1795 1796 return 0; 1797 } 1798 1799 /* 1800 * Function to process delayed allocation (create CoW) for ranges which are 1801 * being touched for the first time. 1802 */ 1803 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1804 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1805 struct writeback_control *wbc) 1806 { 1807 int ret; 1808 int force_cow = need_force_cow(inode, start, end); 1809 1810 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1811 ret = run_delalloc_nocow(inode, locked_page, start, end, 1812 page_started, 1, nr_written); 1813 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1814 ret = run_delalloc_nocow(inode, locked_page, start, end, 1815 page_started, 0, nr_written); 1816 } else if (!inode_can_compress(inode) || 1817 !inode_need_compress(inode, start, end)) { 1818 ret = cow_file_range(inode, locked_page, start, end, 1819 page_started, nr_written, 1); 1820 } else { 1821 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1822 &BTRFS_I(inode)->runtime_flags); 1823 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1824 page_started, nr_written); 1825 } 1826 if (ret) 1827 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1828 end - start + 1); 1829 return ret; 1830 } 1831 1832 void btrfs_split_delalloc_extent(struct inode *inode, 1833 struct extent_state *orig, u64 split) 1834 { 1835 u64 size; 1836 1837 /* not delalloc, ignore it */ 1838 if (!(orig->state & EXTENT_DELALLOC)) 1839 return; 1840 1841 size = orig->end - orig->start + 1; 1842 if (size > BTRFS_MAX_EXTENT_SIZE) { 1843 u32 num_extents; 1844 u64 new_size; 1845 1846 /* 1847 * See the explanation in btrfs_merge_delalloc_extent, the same 1848 * applies here, just in reverse. 1849 */ 1850 new_size = orig->end - split + 1; 1851 num_extents = count_max_extents(new_size); 1852 new_size = split - orig->start; 1853 num_extents += count_max_extents(new_size); 1854 if (count_max_extents(size) >= num_extents) 1855 return; 1856 } 1857 1858 spin_lock(&BTRFS_I(inode)->lock); 1859 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1860 spin_unlock(&BTRFS_I(inode)->lock); 1861 } 1862 1863 /* 1864 * Handle merged delayed allocation extents so we can keep track of new extents 1865 * that are just merged onto old extents, such as when we are doing sequential 1866 * writes, so we can properly account for the metadata space we'll need. 1867 */ 1868 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1869 struct extent_state *other) 1870 { 1871 u64 new_size, old_size; 1872 u32 num_extents; 1873 1874 /* not delalloc, ignore it */ 1875 if (!(other->state & EXTENT_DELALLOC)) 1876 return; 1877 1878 if (new->start > other->start) 1879 new_size = new->end - other->start + 1; 1880 else 1881 new_size = other->end - new->start + 1; 1882 1883 /* we're not bigger than the max, unreserve the space and go */ 1884 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1885 spin_lock(&BTRFS_I(inode)->lock); 1886 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1887 spin_unlock(&BTRFS_I(inode)->lock); 1888 return; 1889 } 1890 1891 /* 1892 * We have to add up either side to figure out how many extents were 1893 * accounted for before we merged into one big extent. If the number of 1894 * extents we accounted for is <= the amount we need for the new range 1895 * then we can return, otherwise drop. Think of it like this 1896 * 1897 * [ 4k][MAX_SIZE] 1898 * 1899 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1900 * need 2 outstanding extents, on one side we have 1 and the other side 1901 * we have 1 so they are == and we can return. But in this case 1902 * 1903 * [MAX_SIZE+4k][MAX_SIZE+4k] 1904 * 1905 * Each range on their own accounts for 2 extents, but merged together 1906 * they are only 3 extents worth of accounting, so we need to drop in 1907 * this case. 1908 */ 1909 old_size = other->end - other->start + 1; 1910 num_extents = count_max_extents(old_size); 1911 old_size = new->end - new->start + 1; 1912 num_extents += count_max_extents(old_size); 1913 if (count_max_extents(new_size) >= num_extents) 1914 return; 1915 1916 spin_lock(&BTRFS_I(inode)->lock); 1917 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1918 spin_unlock(&BTRFS_I(inode)->lock); 1919 } 1920 1921 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1922 struct inode *inode) 1923 { 1924 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1925 1926 spin_lock(&root->delalloc_lock); 1927 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1928 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1929 &root->delalloc_inodes); 1930 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1931 &BTRFS_I(inode)->runtime_flags); 1932 root->nr_delalloc_inodes++; 1933 if (root->nr_delalloc_inodes == 1) { 1934 spin_lock(&fs_info->delalloc_root_lock); 1935 BUG_ON(!list_empty(&root->delalloc_root)); 1936 list_add_tail(&root->delalloc_root, 1937 &fs_info->delalloc_roots); 1938 spin_unlock(&fs_info->delalloc_root_lock); 1939 } 1940 } 1941 spin_unlock(&root->delalloc_lock); 1942 } 1943 1944 1945 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1946 struct btrfs_inode *inode) 1947 { 1948 struct btrfs_fs_info *fs_info = root->fs_info; 1949 1950 if (!list_empty(&inode->delalloc_inodes)) { 1951 list_del_init(&inode->delalloc_inodes); 1952 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1953 &inode->runtime_flags); 1954 root->nr_delalloc_inodes--; 1955 if (!root->nr_delalloc_inodes) { 1956 ASSERT(list_empty(&root->delalloc_inodes)); 1957 spin_lock(&fs_info->delalloc_root_lock); 1958 BUG_ON(list_empty(&root->delalloc_root)); 1959 list_del_init(&root->delalloc_root); 1960 spin_unlock(&fs_info->delalloc_root_lock); 1961 } 1962 } 1963 } 1964 1965 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1966 struct btrfs_inode *inode) 1967 { 1968 spin_lock(&root->delalloc_lock); 1969 __btrfs_del_delalloc_inode(root, inode); 1970 spin_unlock(&root->delalloc_lock); 1971 } 1972 1973 /* 1974 * Properly track delayed allocation bytes in the inode and to maintain the 1975 * list of inodes that have pending delalloc work to be done. 1976 */ 1977 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1978 unsigned *bits) 1979 { 1980 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1981 1982 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1983 WARN_ON(1); 1984 /* 1985 * set_bit and clear bit hooks normally require _irqsave/restore 1986 * but in this case, we are only testing for the DELALLOC 1987 * bit, which is only set or cleared with irqs on 1988 */ 1989 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1990 struct btrfs_root *root = BTRFS_I(inode)->root; 1991 u64 len = state->end + 1 - state->start; 1992 u32 num_extents = count_max_extents(len); 1993 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1994 1995 spin_lock(&BTRFS_I(inode)->lock); 1996 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1997 spin_unlock(&BTRFS_I(inode)->lock); 1998 1999 /* For sanity tests */ 2000 if (btrfs_is_testing(fs_info)) 2001 return; 2002 2003 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2004 fs_info->delalloc_batch); 2005 spin_lock(&BTRFS_I(inode)->lock); 2006 BTRFS_I(inode)->delalloc_bytes += len; 2007 if (*bits & EXTENT_DEFRAG) 2008 BTRFS_I(inode)->defrag_bytes += len; 2009 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2010 &BTRFS_I(inode)->runtime_flags)) 2011 btrfs_add_delalloc_inodes(root, inode); 2012 spin_unlock(&BTRFS_I(inode)->lock); 2013 } 2014 2015 if (!(state->state & EXTENT_DELALLOC_NEW) && 2016 (*bits & EXTENT_DELALLOC_NEW)) { 2017 spin_lock(&BTRFS_I(inode)->lock); 2018 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2019 state->start; 2020 spin_unlock(&BTRFS_I(inode)->lock); 2021 } 2022 } 2023 2024 /* 2025 * Once a range is no longer delalloc this function ensures that proper 2026 * accounting happens. 2027 */ 2028 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2029 struct extent_state *state, unsigned *bits) 2030 { 2031 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2032 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2033 u64 len = state->end + 1 - state->start; 2034 u32 num_extents = count_max_extents(len); 2035 2036 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2037 spin_lock(&inode->lock); 2038 inode->defrag_bytes -= len; 2039 spin_unlock(&inode->lock); 2040 } 2041 2042 /* 2043 * set_bit and clear bit hooks normally require _irqsave/restore 2044 * but in this case, we are only testing for the DELALLOC 2045 * bit, which is only set or cleared with irqs on 2046 */ 2047 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2048 struct btrfs_root *root = inode->root; 2049 bool do_list = !btrfs_is_free_space_inode(inode); 2050 2051 spin_lock(&inode->lock); 2052 btrfs_mod_outstanding_extents(inode, -num_extents); 2053 spin_unlock(&inode->lock); 2054 2055 /* 2056 * We don't reserve metadata space for space cache inodes so we 2057 * don't need to call delalloc_release_metadata if there is an 2058 * error. 2059 */ 2060 if (*bits & EXTENT_CLEAR_META_RESV && 2061 root != fs_info->tree_root) 2062 btrfs_delalloc_release_metadata(inode, len, false); 2063 2064 /* For sanity tests. */ 2065 if (btrfs_is_testing(fs_info)) 2066 return; 2067 2068 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2069 do_list && !(state->state & EXTENT_NORESERVE) && 2070 (*bits & EXTENT_CLEAR_DATA_RESV)) 2071 btrfs_free_reserved_data_space_noquota( 2072 &inode->vfs_inode, 2073 state->start, len); 2074 2075 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2076 fs_info->delalloc_batch); 2077 spin_lock(&inode->lock); 2078 inode->delalloc_bytes -= len; 2079 if (do_list && inode->delalloc_bytes == 0 && 2080 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2081 &inode->runtime_flags)) 2082 btrfs_del_delalloc_inode(root, inode); 2083 spin_unlock(&inode->lock); 2084 } 2085 2086 if ((state->state & EXTENT_DELALLOC_NEW) && 2087 (*bits & EXTENT_DELALLOC_NEW)) { 2088 spin_lock(&inode->lock); 2089 ASSERT(inode->new_delalloc_bytes >= len); 2090 inode->new_delalloc_bytes -= len; 2091 spin_unlock(&inode->lock); 2092 } 2093 } 2094 2095 /* 2096 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2097 * in a chunk's stripe. This function ensures that bios do not span a 2098 * stripe/chunk 2099 * 2100 * @page - The page we are about to add to the bio 2101 * @size - size we want to add to the bio 2102 * @bio - bio we want to ensure is smaller than a stripe 2103 * @bio_flags - flags of the bio 2104 * 2105 * return 1 if page cannot be added to the bio 2106 * return 0 if page can be added to the bio 2107 * return error otherwise 2108 */ 2109 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2110 unsigned long bio_flags) 2111 { 2112 struct inode *inode = page->mapping->host; 2113 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2114 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2115 u64 length = 0; 2116 u64 map_length; 2117 int ret; 2118 struct btrfs_io_geometry geom; 2119 2120 if (bio_flags & EXTENT_BIO_COMPRESSED) 2121 return 0; 2122 2123 length = bio->bi_iter.bi_size; 2124 map_length = length; 2125 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2126 &geom); 2127 if (ret < 0) 2128 return ret; 2129 2130 if (geom.len < length + size) 2131 return 1; 2132 return 0; 2133 } 2134 2135 /* 2136 * in order to insert checksums into the metadata in large chunks, 2137 * we wait until bio submission time. All the pages in the bio are 2138 * checksummed and sums are attached onto the ordered extent record. 2139 * 2140 * At IO completion time the cums attached on the ordered extent record 2141 * are inserted into the btree 2142 */ 2143 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2144 u64 bio_offset) 2145 { 2146 struct inode *inode = private_data; 2147 blk_status_t ret = 0; 2148 2149 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2150 BUG_ON(ret); /* -ENOMEM */ 2151 return 0; 2152 } 2153 2154 /* 2155 * extent_io.c submission hook. This does the right thing for csum calculation 2156 * on write, or reading the csums from the tree before a read. 2157 * 2158 * Rules about async/sync submit, 2159 * a) read: sync submit 2160 * 2161 * b) write without checksum: sync submit 2162 * 2163 * c) write with checksum: 2164 * c-1) if bio is issued by fsync: sync submit 2165 * (sync_writers != 0) 2166 * 2167 * c-2) if root is reloc root: sync submit 2168 * (only in case of buffered IO) 2169 * 2170 * c-3) otherwise: async submit 2171 */ 2172 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 2173 int mirror_num, 2174 unsigned long bio_flags) 2175 2176 { 2177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2178 struct btrfs_root *root = BTRFS_I(inode)->root; 2179 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2180 blk_status_t ret = 0; 2181 int skip_sum; 2182 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2183 2184 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2185 2186 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2187 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2188 2189 if (bio_op(bio) != REQ_OP_WRITE) { 2190 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2191 if (ret) 2192 goto out; 2193 2194 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2195 ret = btrfs_submit_compressed_read(inode, bio, 2196 mirror_num, 2197 bio_flags); 2198 goto out; 2199 } else if (!skip_sum) { 2200 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL); 2201 if (ret) 2202 goto out; 2203 } 2204 goto mapit; 2205 } else if (async && !skip_sum) { 2206 /* csum items have already been cloned */ 2207 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2208 goto mapit; 2209 /* we're doing a write, do the async checksumming */ 2210 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2211 0, inode, btrfs_submit_bio_start); 2212 goto out; 2213 } else if (!skip_sum) { 2214 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2215 if (ret) 2216 goto out; 2217 } 2218 2219 mapit: 2220 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2221 2222 out: 2223 if (ret) { 2224 bio->bi_status = ret; 2225 bio_endio(bio); 2226 } 2227 return ret; 2228 } 2229 2230 /* 2231 * given a list of ordered sums record them in the inode. This happens 2232 * at IO completion time based on sums calculated at bio submission time. 2233 */ 2234 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2235 struct inode *inode, struct list_head *list) 2236 { 2237 struct btrfs_ordered_sum *sum; 2238 int ret; 2239 2240 list_for_each_entry(sum, list, list) { 2241 trans->adding_csums = true; 2242 ret = btrfs_csum_file_blocks(trans, 2243 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2244 trans->adding_csums = false; 2245 if (ret) 2246 return ret; 2247 } 2248 return 0; 2249 } 2250 2251 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2252 unsigned int extra_bits, 2253 struct extent_state **cached_state) 2254 { 2255 WARN_ON(PAGE_ALIGNED(end)); 2256 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2257 extra_bits, cached_state); 2258 } 2259 2260 /* see btrfs_writepage_start_hook for details on why this is required */ 2261 struct btrfs_writepage_fixup { 2262 struct page *page; 2263 struct inode *inode; 2264 struct btrfs_work work; 2265 }; 2266 2267 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2268 { 2269 struct btrfs_writepage_fixup *fixup; 2270 struct btrfs_ordered_extent *ordered; 2271 struct extent_state *cached_state = NULL; 2272 struct extent_changeset *data_reserved = NULL; 2273 struct page *page; 2274 struct inode *inode; 2275 u64 page_start; 2276 u64 page_end; 2277 int ret = 0; 2278 bool free_delalloc_space = true; 2279 2280 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2281 page = fixup->page; 2282 inode = fixup->inode; 2283 page_start = page_offset(page); 2284 page_end = page_offset(page) + PAGE_SIZE - 1; 2285 2286 /* 2287 * This is similar to page_mkwrite, we need to reserve the space before 2288 * we take the page lock. 2289 */ 2290 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2291 PAGE_SIZE); 2292 again: 2293 lock_page(page); 2294 2295 /* 2296 * Before we queued this fixup, we took a reference on the page. 2297 * page->mapping may go NULL, but it shouldn't be moved to a different 2298 * address space. 2299 */ 2300 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2301 /* 2302 * Unfortunately this is a little tricky, either 2303 * 2304 * 1) We got here and our page had already been dealt with and 2305 * we reserved our space, thus ret == 0, so we need to just 2306 * drop our space reservation and bail. This can happen the 2307 * first time we come into the fixup worker, or could happen 2308 * while waiting for the ordered extent. 2309 * 2) Our page was already dealt with, but we happened to get an 2310 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2311 * this case we obviously don't have anything to release, but 2312 * because the page was already dealt with we don't want to 2313 * mark the page with an error, so make sure we're resetting 2314 * ret to 0. This is why we have this check _before_ the ret 2315 * check, because we do not want to have a surprise ENOSPC 2316 * when the page was already properly dealt with. 2317 */ 2318 if (!ret) { 2319 btrfs_delalloc_release_extents(BTRFS_I(inode), 2320 PAGE_SIZE); 2321 btrfs_delalloc_release_space(inode, data_reserved, 2322 page_start, PAGE_SIZE, 2323 true); 2324 } 2325 ret = 0; 2326 goto out_page; 2327 } 2328 2329 /* 2330 * We can't mess with the page state unless it is locked, so now that 2331 * it is locked bail if we failed to make our space reservation. 2332 */ 2333 if (ret) 2334 goto out_page; 2335 2336 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2337 &cached_state); 2338 2339 /* already ordered? We're done */ 2340 if (PagePrivate2(page)) 2341 goto out_reserved; 2342 2343 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2344 PAGE_SIZE); 2345 if (ordered) { 2346 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2347 page_end, &cached_state); 2348 unlock_page(page); 2349 btrfs_start_ordered_extent(inode, ordered, 1); 2350 btrfs_put_ordered_extent(ordered); 2351 goto again; 2352 } 2353 2354 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2355 &cached_state); 2356 if (ret) 2357 goto out_reserved; 2358 2359 /* 2360 * Everything went as planned, we're now the owner of a dirty page with 2361 * delayed allocation bits set and space reserved for our COW 2362 * destination. 2363 * 2364 * The page was dirty when we started, nothing should have cleaned it. 2365 */ 2366 BUG_ON(!PageDirty(page)); 2367 free_delalloc_space = false; 2368 out_reserved: 2369 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2370 if (free_delalloc_space) 2371 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2372 PAGE_SIZE, true); 2373 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2374 &cached_state); 2375 out_page: 2376 if (ret) { 2377 /* 2378 * We hit ENOSPC or other errors. Update the mapping and page 2379 * to reflect the errors and clean the page. 2380 */ 2381 mapping_set_error(page->mapping, ret); 2382 end_extent_writepage(page, ret, page_start, page_end); 2383 clear_page_dirty_for_io(page); 2384 SetPageError(page); 2385 } 2386 ClearPageChecked(page); 2387 unlock_page(page); 2388 put_page(page); 2389 kfree(fixup); 2390 extent_changeset_free(data_reserved); 2391 /* 2392 * As a precaution, do a delayed iput in case it would be the last iput 2393 * that could need flushing space. Recursing back to fixup worker would 2394 * deadlock. 2395 */ 2396 btrfs_add_delayed_iput(inode); 2397 } 2398 2399 /* 2400 * There are a few paths in the higher layers of the kernel that directly 2401 * set the page dirty bit without asking the filesystem if it is a 2402 * good idea. This causes problems because we want to make sure COW 2403 * properly happens and the data=ordered rules are followed. 2404 * 2405 * In our case any range that doesn't have the ORDERED bit set 2406 * hasn't been properly setup for IO. We kick off an async process 2407 * to fix it up. The async helper will wait for ordered extents, set 2408 * the delalloc bit and make it safe to write the page. 2409 */ 2410 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2411 { 2412 struct inode *inode = page->mapping->host; 2413 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2414 struct btrfs_writepage_fixup *fixup; 2415 2416 /* this page is properly in the ordered list */ 2417 if (TestClearPagePrivate2(page)) 2418 return 0; 2419 2420 /* 2421 * PageChecked is set below when we create a fixup worker for this page, 2422 * don't try to create another one if we're already PageChecked() 2423 * 2424 * The extent_io writepage code will redirty the page if we send back 2425 * EAGAIN. 2426 */ 2427 if (PageChecked(page)) 2428 return -EAGAIN; 2429 2430 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2431 if (!fixup) 2432 return -EAGAIN; 2433 2434 /* 2435 * We are already holding a reference to this inode from 2436 * write_cache_pages. We need to hold it because the space reservation 2437 * takes place outside of the page lock, and we can't trust 2438 * page->mapping outside of the page lock. 2439 */ 2440 ihold(inode); 2441 SetPageChecked(page); 2442 get_page(page); 2443 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2444 fixup->page = page; 2445 fixup->inode = inode; 2446 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2447 2448 return -EAGAIN; 2449 } 2450 2451 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2452 struct inode *inode, u64 file_pos, 2453 u64 disk_bytenr, u64 disk_num_bytes, 2454 u64 num_bytes, u64 ram_bytes, 2455 u8 compression, u8 encryption, 2456 u16 other_encoding, int extent_type) 2457 { 2458 struct btrfs_root *root = BTRFS_I(inode)->root; 2459 struct btrfs_file_extent_item *fi; 2460 struct btrfs_path *path; 2461 struct extent_buffer *leaf; 2462 struct btrfs_key ins; 2463 u64 qg_released; 2464 int extent_inserted = 0; 2465 int ret; 2466 2467 path = btrfs_alloc_path(); 2468 if (!path) 2469 return -ENOMEM; 2470 2471 /* 2472 * we may be replacing one extent in the tree with another. 2473 * The new extent is pinned in the extent map, and we don't want 2474 * to drop it from the cache until it is completely in the btree. 2475 * 2476 * So, tell btrfs_drop_extents to leave this extent in the cache. 2477 * the caller is expected to unpin it and allow it to be merged 2478 * with the others. 2479 */ 2480 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2481 file_pos + num_bytes, NULL, 0, 2482 1, sizeof(*fi), &extent_inserted); 2483 if (ret) 2484 goto out; 2485 2486 if (!extent_inserted) { 2487 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2488 ins.offset = file_pos; 2489 ins.type = BTRFS_EXTENT_DATA_KEY; 2490 2491 path->leave_spinning = 1; 2492 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2493 sizeof(*fi)); 2494 if (ret) 2495 goto out; 2496 } 2497 leaf = path->nodes[0]; 2498 fi = btrfs_item_ptr(leaf, path->slots[0], 2499 struct btrfs_file_extent_item); 2500 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2501 btrfs_set_file_extent_type(leaf, fi, extent_type); 2502 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2503 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2504 btrfs_set_file_extent_offset(leaf, fi, 0); 2505 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2506 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2507 btrfs_set_file_extent_compression(leaf, fi, compression); 2508 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2509 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2510 2511 btrfs_mark_buffer_dirty(leaf); 2512 btrfs_release_path(path); 2513 2514 inode_add_bytes(inode, num_bytes); 2515 2516 ins.objectid = disk_bytenr; 2517 ins.offset = disk_num_bytes; 2518 ins.type = BTRFS_EXTENT_ITEM_KEY; 2519 2520 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), file_pos, 2521 ram_bytes); 2522 if (ret) 2523 goto out; 2524 2525 /* 2526 * Release the reserved range from inode dirty range map, as it is 2527 * already moved into delayed_ref_head 2528 */ 2529 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2530 if (ret < 0) 2531 goto out; 2532 qg_released = ret; 2533 ret = btrfs_alloc_reserved_file_extent(trans, root, 2534 btrfs_ino(BTRFS_I(inode)), 2535 file_pos, qg_released, &ins); 2536 out: 2537 btrfs_free_path(path); 2538 2539 return ret; 2540 } 2541 2542 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2543 u64 start, u64 len) 2544 { 2545 struct btrfs_block_group *cache; 2546 2547 cache = btrfs_lookup_block_group(fs_info, start); 2548 ASSERT(cache); 2549 2550 spin_lock(&cache->lock); 2551 cache->delalloc_bytes -= len; 2552 spin_unlock(&cache->lock); 2553 2554 btrfs_put_block_group(cache); 2555 } 2556 2557 /* as ordered data IO finishes, this gets called so we can finish 2558 * an ordered extent if the range of bytes in the file it covers are 2559 * fully written. 2560 */ 2561 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2562 { 2563 struct inode *inode = ordered_extent->inode; 2564 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2565 struct btrfs_root *root = BTRFS_I(inode)->root; 2566 struct btrfs_trans_handle *trans = NULL; 2567 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2568 struct extent_state *cached_state = NULL; 2569 u64 start, end; 2570 int compress_type = 0; 2571 int ret = 0; 2572 u64 logical_len = ordered_extent->num_bytes; 2573 bool freespace_inode; 2574 bool truncated = false; 2575 bool range_locked = false; 2576 bool clear_new_delalloc_bytes = false; 2577 bool clear_reserved_extent = true; 2578 unsigned int clear_bits; 2579 2580 start = ordered_extent->file_offset; 2581 end = start + ordered_extent->num_bytes - 1; 2582 2583 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2584 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2585 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2586 clear_new_delalloc_bytes = true; 2587 2588 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 2589 2590 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2591 ret = -EIO; 2592 goto out; 2593 } 2594 2595 btrfs_free_io_failure_record(BTRFS_I(inode), start, end); 2596 2597 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2598 truncated = true; 2599 logical_len = ordered_extent->truncated_len; 2600 /* Truncated the entire extent, don't bother adding */ 2601 if (!logical_len) 2602 goto out; 2603 } 2604 2605 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2606 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2607 2608 /* 2609 * For mwrite(mmap + memset to write) case, we still reserve 2610 * space for NOCOW range. 2611 * As NOCOW won't cause a new delayed ref, just free the space 2612 */ 2613 btrfs_qgroup_free_data(inode, NULL, start, 2614 ordered_extent->num_bytes); 2615 btrfs_inode_safe_disk_i_size_write(inode, 0); 2616 if (freespace_inode) 2617 trans = btrfs_join_transaction_spacecache(root); 2618 else 2619 trans = btrfs_join_transaction(root); 2620 if (IS_ERR(trans)) { 2621 ret = PTR_ERR(trans); 2622 trans = NULL; 2623 goto out; 2624 } 2625 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2626 ret = btrfs_update_inode_fallback(trans, root, inode); 2627 if (ret) /* -ENOMEM or corruption */ 2628 btrfs_abort_transaction(trans, ret); 2629 goto out; 2630 } 2631 2632 range_locked = true; 2633 lock_extent_bits(io_tree, start, end, &cached_state); 2634 2635 if (freespace_inode) 2636 trans = btrfs_join_transaction_spacecache(root); 2637 else 2638 trans = btrfs_join_transaction(root); 2639 if (IS_ERR(trans)) { 2640 ret = PTR_ERR(trans); 2641 trans = NULL; 2642 goto out; 2643 } 2644 2645 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2646 2647 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2648 compress_type = ordered_extent->compress_type; 2649 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2650 BUG_ON(compress_type); 2651 btrfs_qgroup_free_data(inode, NULL, start, 2652 ordered_extent->num_bytes); 2653 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 2654 ordered_extent->file_offset, 2655 ordered_extent->file_offset + 2656 logical_len); 2657 } else { 2658 BUG_ON(root == fs_info->tree_root); 2659 ret = insert_reserved_file_extent(trans, inode, start, 2660 ordered_extent->disk_bytenr, 2661 ordered_extent->disk_num_bytes, 2662 logical_len, logical_len, 2663 compress_type, 0, 0, 2664 BTRFS_FILE_EXTENT_REG); 2665 if (!ret) { 2666 clear_reserved_extent = false; 2667 btrfs_release_delalloc_bytes(fs_info, 2668 ordered_extent->disk_bytenr, 2669 ordered_extent->disk_num_bytes); 2670 } 2671 } 2672 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2673 ordered_extent->file_offset, 2674 ordered_extent->num_bytes, trans->transid); 2675 if (ret < 0) { 2676 btrfs_abort_transaction(trans, ret); 2677 goto out; 2678 } 2679 2680 ret = add_pending_csums(trans, inode, &ordered_extent->list); 2681 if (ret) { 2682 btrfs_abort_transaction(trans, ret); 2683 goto out; 2684 } 2685 2686 btrfs_inode_safe_disk_i_size_write(inode, 0); 2687 ret = btrfs_update_inode_fallback(trans, root, inode); 2688 if (ret) { /* -ENOMEM or corruption */ 2689 btrfs_abort_transaction(trans, ret); 2690 goto out; 2691 } 2692 ret = 0; 2693 out: 2694 clear_bits = EXTENT_DEFRAG; 2695 if (range_locked) 2696 clear_bits |= EXTENT_LOCKED; 2697 if (clear_new_delalloc_bytes) 2698 clear_bits |= EXTENT_DELALLOC_NEW; 2699 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 2700 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2701 &cached_state); 2702 2703 if (trans) 2704 btrfs_end_transaction(trans); 2705 2706 if (ret || truncated) { 2707 u64 unwritten_start = start; 2708 2709 if (truncated) 2710 unwritten_start += logical_len; 2711 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 2712 2713 /* Drop the cache for the part of the extent we didn't write. */ 2714 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0); 2715 2716 /* 2717 * If the ordered extent had an IOERR or something else went 2718 * wrong we need to return the space for this ordered extent 2719 * back to the allocator. We only free the extent in the 2720 * truncated case if we didn't write out the extent at all. 2721 * 2722 * If we made it past insert_reserved_file_extent before we 2723 * errored out then we don't need to do this as the accounting 2724 * has already been done. 2725 */ 2726 if ((ret || !logical_len) && 2727 clear_reserved_extent && 2728 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2729 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2730 /* 2731 * Discard the range before returning it back to the 2732 * free space pool 2733 */ 2734 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 2735 btrfs_discard_extent(fs_info, 2736 ordered_extent->disk_bytenr, 2737 ordered_extent->disk_num_bytes, 2738 NULL); 2739 btrfs_free_reserved_extent(fs_info, 2740 ordered_extent->disk_bytenr, 2741 ordered_extent->disk_num_bytes, 1); 2742 } 2743 } 2744 2745 /* 2746 * This needs to be done to make sure anybody waiting knows we are done 2747 * updating everything for this ordered extent. 2748 */ 2749 btrfs_remove_ordered_extent(inode, ordered_extent); 2750 2751 /* once for us */ 2752 btrfs_put_ordered_extent(ordered_extent); 2753 /* once for the tree */ 2754 btrfs_put_ordered_extent(ordered_extent); 2755 2756 return ret; 2757 } 2758 2759 static void finish_ordered_fn(struct btrfs_work *work) 2760 { 2761 struct btrfs_ordered_extent *ordered_extent; 2762 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2763 btrfs_finish_ordered_io(ordered_extent); 2764 } 2765 2766 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 2767 u64 end, int uptodate) 2768 { 2769 struct inode *inode = page->mapping->host; 2770 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2771 struct btrfs_ordered_extent *ordered_extent = NULL; 2772 struct btrfs_workqueue *wq; 2773 2774 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2775 2776 ClearPagePrivate2(page); 2777 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2778 end - start + 1, uptodate)) 2779 return; 2780 2781 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2782 wq = fs_info->endio_freespace_worker; 2783 else 2784 wq = fs_info->endio_write_workers; 2785 2786 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2787 btrfs_queue_work(wq, &ordered_extent->work); 2788 } 2789 2790 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 2791 int icsum, struct page *page, int pgoff, u64 start, 2792 size_t len) 2793 { 2794 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2795 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2796 char *kaddr; 2797 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2798 u8 *csum_expected; 2799 u8 csum[BTRFS_CSUM_SIZE]; 2800 2801 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 2802 2803 kaddr = kmap_atomic(page); 2804 shash->tfm = fs_info->csum_shash; 2805 2806 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 2807 2808 if (memcmp(csum, csum_expected, csum_size)) 2809 goto zeroit; 2810 2811 kunmap_atomic(kaddr); 2812 return 0; 2813 zeroit: 2814 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 2815 io_bio->mirror_num); 2816 memset(kaddr + pgoff, 1, len); 2817 flush_dcache_page(page); 2818 kunmap_atomic(kaddr); 2819 return -EIO; 2820 } 2821 2822 /* 2823 * when reads are done, we need to check csums to verify the data is correct 2824 * if there's a match, we allow the bio to finish. If not, the code in 2825 * extent_io.c will try to find good copies for us. 2826 */ 2827 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2828 u64 phy_offset, struct page *page, 2829 u64 start, u64 end, int mirror) 2830 { 2831 size_t offset = start - page_offset(page); 2832 struct inode *inode = page->mapping->host; 2833 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2834 struct btrfs_root *root = BTRFS_I(inode)->root; 2835 2836 if (PageChecked(page)) { 2837 ClearPageChecked(page); 2838 return 0; 2839 } 2840 2841 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2842 return 0; 2843 2844 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2845 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2846 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 2847 return 0; 2848 } 2849 2850 phy_offset >>= inode->i_sb->s_blocksize_bits; 2851 return check_data_csum(inode, io_bio, phy_offset, page, offset, start, 2852 (size_t)(end - start + 1)); 2853 } 2854 2855 /* 2856 * btrfs_add_delayed_iput - perform a delayed iput on @inode 2857 * 2858 * @inode: The inode we want to perform iput on 2859 * 2860 * This function uses the generic vfs_inode::i_count to track whether we should 2861 * just decrement it (in case it's > 1) or if this is the last iput then link 2862 * the inode to the delayed iput machinery. Delayed iputs are processed at 2863 * transaction commit time/superblock commit/cleaner kthread. 2864 */ 2865 void btrfs_add_delayed_iput(struct inode *inode) 2866 { 2867 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2868 struct btrfs_inode *binode = BTRFS_I(inode); 2869 2870 if (atomic_add_unless(&inode->i_count, -1, 1)) 2871 return; 2872 2873 atomic_inc(&fs_info->nr_delayed_iputs); 2874 spin_lock(&fs_info->delayed_iput_lock); 2875 ASSERT(list_empty(&binode->delayed_iput)); 2876 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 2877 spin_unlock(&fs_info->delayed_iput_lock); 2878 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 2879 wake_up_process(fs_info->cleaner_kthread); 2880 } 2881 2882 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 2883 struct btrfs_inode *inode) 2884 { 2885 list_del_init(&inode->delayed_iput); 2886 spin_unlock(&fs_info->delayed_iput_lock); 2887 iput(&inode->vfs_inode); 2888 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 2889 wake_up(&fs_info->delayed_iputs_wait); 2890 spin_lock(&fs_info->delayed_iput_lock); 2891 } 2892 2893 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 2894 struct btrfs_inode *inode) 2895 { 2896 if (!list_empty(&inode->delayed_iput)) { 2897 spin_lock(&fs_info->delayed_iput_lock); 2898 if (!list_empty(&inode->delayed_iput)) 2899 run_delayed_iput_locked(fs_info, inode); 2900 spin_unlock(&fs_info->delayed_iput_lock); 2901 } 2902 } 2903 2904 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 2905 { 2906 2907 spin_lock(&fs_info->delayed_iput_lock); 2908 while (!list_empty(&fs_info->delayed_iputs)) { 2909 struct btrfs_inode *inode; 2910 2911 inode = list_first_entry(&fs_info->delayed_iputs, 2912 struct btrfs_inode, delayed_iput); 2913 run_delayed_iput_locked(fs_info, inode); 2914 } 2915 spin_unlock(&fs_info->delayed_iput_lock); 2916 } 2917 2918 /** 2919 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 2920 * @fs_info - the fs_info for this fs 2921 * @return - EINTR if we were killed, 0 if nothing's pending 2922 * 2923 * This will wait on any delayed iputs that are currently running with KILLABLE 2924 * set. Once they are all done running we will return, unless we are killed in 2925 * which case we return EINTR. This helps in user operations like fallocate etc 2926 * that might get blocked on the iputs. 2927 */ 2928 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 2929 { 2930 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 2931 atomic_read(&fs_info->nr_delayed_iputs) == 0); 2932 if (ret) 2933 return -EINTR; 2934 return 0; 2935 } 2936 2937 /* 2938 * This creates an orphan entry for the given inode in case something goes wrong 2939 * in the middle of an unlink. 2940 */ 2941 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 2942 struct btrfs_inode *inode) 2943 { 2944 int ret; 2945 2946 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 2947 if (ret && ret != -EEXIST) { 2948 btrfs_abort_transaction(trans, ret); 2949 return ret; 2950 } 2951 2952 return 0; 2953 } 2954 2955 /* 2956 * We have done the delete so we can go ahead and remove the orphan item for 2957 * this particular inode. 2958 */ 2959 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 2960 struct btrfs_inode *inode) 2961 { 2962 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 2963 } 2964 2965 /* 2966 * this cleans up any orphans that may be left on the list from the last use 2967 * of this root. 2968 */ 2969 int btrfs_orphan_cleanup(struct btrfs_root *root) 2970 { 2971 struct btrfs_fs_info *fs_info = root->fs_info; 2972 struct btrfs_path *path; 2973 struct extent_buffer *leaf; 2974 struct btrfs_key key, found_key; 2975 struct btrfs_trans_handle *trans; 2976 struct inode *inode; 2977 u64 last_objectid = 0; 2978 int ret = 0, nr_unlink = 0; 2979 2980 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2981 return 0; 2982 2983 path = btrfs_alloc_path(); 2984 if (!path) { 2985 ret = -ENOMEM; 2986 goto out; 2987 } 2988 path->reada = READA_BACK; 2989 2990 key.objectid = BTRFS_ORPHAN_OBJECTID; 2991 key.type = BTRFS_ORPHAN_ITEM_KEY; 2992 key.offset = (u64)-1; 2993 2994 while (1) { 2995 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2996 if (ret < 0) 2997 goto out; 2998 2999 /* 3000 * if ret == 0 means we found what we were searching for, which 3001 * is weird, but possible, so only screw with path if we didn't 3002 * find the key and see if we have stuff that matches 3003 */ 3004 if (ret > 0) { 3005 ret = 0; 3006 if (path->slots[0] == 0) 3007 break; 3008 path->slots[0]--; 3009 } 3010 3011 /* pull out the item */ 3012 leaf = path->nodes[0]; 3013 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3014 3015 /* make sure the item matches what we want */ 3016 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3017 break; 3018 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3019 break; 3020 3021 /* release the path since we're done with it */ 3022 btrfs_release_path(path); 3023 3024 /* 3025 * this is where we are basically btrfs_lookup, without the 3026 * crossing root thing. we store the inode number in the 3027 * offset of the orphan item. 3028 */ 3029 3030 if (found_key.offset == last_objectid) { 3031 btrfs_err(fs_info, 3032 "Error removing orphan entry, stopping orphan cleanup"); 3033 ret = -EINVAL; 3034 goto out; 3035 } 3036 3037 last_objectid = found_key.offset; 3038 3039 found_key.objectid = found_key.offset; 3040 found_key.type = BTRFS_INODE_ITEM_KEY; 3041 found_key.offset = 0; 3042 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3043 ret = PTR_ERR_OR_ZERO(inode); 3044 if (ret && ret != -ENOENT) 3045 goto out; 3046 3047 if (ret == -ENOENT && root == fs_info->tree_root) { 3048 struct btrfs_root *dead_root; 3049 struct btrfs_fs_info *fs_info = root->fs_info; 3050 int is_dead_root = 0; 3051 3052 /* 3053 * this is an orphan in the tree root. Currently these 3054 * could come from 2 sources: 3055 * a) a snapshot deletion in progress 3056 * b) a free space cache inode 3057 * We need to distinguish those two, as the snapshot 3058 * orphan must not get deleted. 3059 * find_dead_roots already ran before us, so if this 3060 * is a snapshot deletion, we should find the root 3061 * in the fs_roots radix tree. 3062 */ 3063 3064 spin_lock(&fs_info->fs_roots_radix_lock); 3065 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3066 (unsigned long)found_key.objectid); 3067 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3068 is_dead_root = 1; 3069 spin_unlock(&fs_info->fs_roots_radix_lock); 3070 3071 if (is_dead_root) { 3072 /* prevent this orphan from being found again */ 3073 key.offset = found_key.objectid - 1; 3074 continue; 3075 } 3076 3077 } 3078 3079 /* 3080 * If we have an inode with links, there are a couple of 3081 * possibilities. Old kernels (before v3.12) used to create an 3082 * orphan item for truncate indicating that there were possibly 3083 * extent items past i_size that needed to be deleted. In v3.12, 3084 * truncate was changed to update i_size in sync with the extent 3085 * items, but the (useless) orphan item was still created. Since 3086 * v4.18, we don't create the orphan item for truncate at all. 3087 * 3088 * So, this item could mean that we need to do a truncate, but 3089 * only if this filesystem was last used on a pre-v3.12 kernel 3090 * and was not cleanly unmounted. The odds of that are quite 3091 * slim, and it's a pain to do the truncate now, so just delete 3092 * the orphan item. 3093 * 3094 * It's also possible that this orphan item was supposed to be 3095 * deleted but wasn't. The inode number may have been reused, 3096 * but either way, we can delete the orphan item. 3097 */ 3098 if (ret == -ENOENT || inode->i_nlink) { 3099 if (!ret) 3100 iput(inode); 3101 trans = btrfs_start_transaction(root, 1); 3102 if (IS_ERR(trans)) { 3103 ret = PTR_ERR(trans); 3104 goto out; 3105 } 3106 btrfs_debug(fs_info, "auto deleting %Lu", 3107 found_key.objectid); 3108 ret = btrfs_del_orphan_item(trans, root, 3109 found_key.objectid); 3110 btrfs_end_transaction(trans); 3111 if (ret) 3112 goto out; 3113 continue; 3114 } 3115 3116 nr_unlink++; 3117 3118 /* this will do delete_inode and everything for us */ 3119 iput(inode); 3120 } 3121 /* release the path since we're done with it */ 3122 btrfs_release_path(path); 3123 3124 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3125 3126 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3127 trans = btrfs_join_transaction(root); 3128 if (!IS_ERR(trans)) 3129 btrfs_end_transaction(trans); 3130 } 3131 3132 if (nr_unlink) 3133 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3134 3135 out: 3136 if (ret) 3137 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3138 btrfs_free_path(path); 3139 return ret; 3140 } 3141 3142 /* 3143 * very simple check to peek ahead in the leaf looking for xattrs. If we 3144 * don't find any xattrs, we know there can't be any acls. 3145 * 3146 * slot is the slot the inode is in, objectid is the objectid of the inode 3147 */ 3148 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3149 int slot, u64 objectid, 3150 int *first_xattr_slot) 3151 { 3152 u32 nritems = btrfs_header_nritems(leaf); 3153 struct btrfs_key found_key; 3154 static u64 xattr_access = 0; 3155 static u64 xattr_default = 0; 3156 int scanned = 0; 3157 3158 if (!xattr_access) { 3159 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3160 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3161 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3162 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3163 } 3164 3165 slot++; 3166 *first_xattr_slot = -1; 3167 while (slot < nritems) { 3168 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3169 3170 /* we found a different objectid, there must not be acls */ 3171 if (found_key.objectid != objectid) 3172 return 0; 3173 3174 /* we found an xattr, assume we've got an acl */ 3175 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3176 if (*first_xattr_slot == -1) 3177 *first_xattr_slot = slot; 3178 if (found_key.offset == xattr_access || 3179 found_key.offset == xattr_default) 3180 return 1; 3181 } 3182 3183 /* 3184 * we found a key greater than an xattr key, there can't 3185 * be any acls later on 3186 */ 3187 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3188 return 0; 3189 3190 slot++; 3191 scanned++; 3192 3193 /* 3194 * it goes inode, inode backrefs, xattrs, extents, 3195 * so if there are a ton of hard links to an inode there can 3196 * be a lot of backrefs. Don't waste time searching too hard, 3197 * this is just an optimization 3198 */ 3199 if (scanned >= 8) 3200 break; 3201 } 3202 /* we hit the end of the leaf before we found an xattr or 3203 * something larger than an xattr. We have to assume the inode 3204 * has acls 3205 */ 3206 if (*first_xattr_slot == -1) 3207 *first_xattr_slot = slot; 3208 return 1; 3209 } 3210 3211 /* 3212 * read an inode from the btree into the in-memory inode 3213 */ 3214 static int btrfs_read_locked_inode(struct inode *inode, 3215 struct btrfs_path *in_path) 3216 { 3217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3218 struct btrfs_path *path = in_path; 3219 struct extent_buffer *leaf; 3220 struct btrfs_inode_item *inode_item; 3221 struct btrfs_root *root = BTRFS_I(inode)->root; 3222 struct btrfs_key location; 3223 unsigned long ptr; 3224 int maybe_acls; 3225 u32 rdev; 3226 int ret; 3227 bool filled = false; 3228 int first_xattr_slot; 3229 3230 ret = btrfs_fill_inode(inode, &rdev); 3231 if (!ret) 3232 filled = true; 3233 3234 if (!path) { 3235 path = btrfs_alloc_path(); 3236 if (!path) 3237 return -ENOMEM; 3238 } 3239 3240 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3241 3242 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3243 if (ret) { 3244 if (path != in_path) 3245 btrfs_free_path(path); 3246 return ret; 3247 } 3248 3249 leaf = path->nodes[0]; 3250 3251 if (filled) 3252 goto cache_index; 3253 3254 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3255 struct btrfs_inode_item); 3256 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3257 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3258 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3259 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3260 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3261 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3262 round_up(i_size_read(inode), fs_info->sectorsize)); 3263 3264 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3265 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3266 3267 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3268 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3269 3270 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3271 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3272 3273 BTRFS_I(inode)->i_otime.tv_sec = 3274 btrfs_timespec_sec(leaf, &inode_item->otime); 3275 BTRFS_I(inode)->i_otime.tv_nsec = 3276 btrfs_timespec_nsec(leaf, &inode_item->otime); 3277 3278 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3279 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3280 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3281 3282 inode_set_iversion_queried(inode, 3283 btrfs_inode_sequence(leaf, inode_item)); 3284 inode->i_generation = BTRFS_I(inode)->generation; 3285 inode->i_rdev = 0; 3286 rdev = btrfs_inode_rdev(leaf, inode_item); 3287 3288 BTRFS_I(inode)->index_cnt = (u64)-1; 3289 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3290 3291 cache_index: 3292 /* 3293 * If we were modified in the current generation and evicted from memory 3294 * and then re-read we need to do a full sync since we don't have any 3295 * idea about which extents were modified before we were evicted from 3296 * cache. 3297 * 3298 * This is required for both inode re-read from disk and delayed inode 3299 * in delayed_nodes_tree. 3300 */ 3301 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3302 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3303 &BTRFS_I(inode)->runtime_flags); 3304 3305 /* 3306 * We don't persist the id of the transaction where an unlink operation 3307 * against the inode was last made. So here we assume the inode might 3308 * have been evicted, and therefore the exact value of last_unlink_trans 3309 * lost, and set it to last_trans to avoid metadata inconsistencies 3310 * between the inode and its parent if the inode is fsync'ed and the log 3311 * replayed. For example, in the scenario: 3312 * 3313 * touch mydir/foo 3314 * ln mydir/foo mydir/bar 3315 * sync 3316 * unlink mydir/bar 3317 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3318 * xfs_io -c fsync mydir/foo 3319 * <power failure> 3320 * mount fs, triggers fsync log replay 3321 * 3322 * We must make sure that when we fsync our inode foo we also log its 3323 * parent inode, otherwise after log replay the parent still has the 3324 * dentry with the "bar" name but our inode foo has a link count of 1 3325 * and doesn't have an inode ref with the name "bar" anymore. 3326 * 3327 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3328 * but it guarantees correctness at the expense of occasional full 3329 * transaction commits on fsync if our inode is a directory, or if our 3330 * inode is not a directory, logging its parent unnecessarily. 3331 */ 3332 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3333 3334 path->slots[0]++; 3335 if (inode->i_nlink != 1 || 3336 path->slots[0] >= btrfs_header_nritems(leaf)) 3337 goto cache_acl; 3338 3339 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3340 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3341 goto cache_acl; 3342 3343 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3344 if (location.type == BTRFS_INODE_REF_KEY) { 3345 struct btrfs_inode_ref *ref; 3346 3347 ref = (struct btrfs_inode_ref *)ptr; 3348 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3349 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3350 struct btrfs_inode_extref *extref; 3351 3352 extref = (struct btrfs_inode_extref *)ptr; 3353 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3354 extref); 3355 } 3356 cache_acl: 3357 /* 3358 * try to precache a NULL acl entry for files that don't have 3359 * any xattrs or acls 3360 */ 3361 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3362 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3363 if (first_xattr_slot != -1) { 3364 path->slots[0] = first_xattr_slot; 3365 ret = btrfs_load_inode_props(inode, path); 3366 if (ret) 3367 btrfs_err(fs_info, 3368 "error loading props for ino %llu (root %llu): %d", 3369 btrfs_ino(BTRFS_I(inode)), 3370 root->root_key.objectid, ret); 3371 } 3372 if (path != in_path) 3373 btrfs_free_path(path); 3374 3375 if (!maybe_acls) 3376 cache_no_acl(inode); 3377 3378 switch (inode->i_mode & S_IFMT) { 3379 case S_IFREG: 3380 inode->i_mapping->a_ops = &btrfs_aops; 3381 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3382 inode->i_fop = &btrfs_file_operations; 3383 inode->i_op = &btrfs_file_inode_operations; 3384 break; 3385 case S_IFDIR: 3386 inode->i_fop = &btrfs_dir_file_operations; 3387 inode->i_op = &btrfs_dir_inode_operations; 3388 break; 3389 case S_IFLNK: 3390 inode->i_op = &btrfs_symlink_inode_operations; 3391 inode_nohighmem(inode); 3392 inode->i_mapping->a_ops = &btrfs_aops; 3393 break; 3394 default: 3395 inode->i_op = &btrfs_special_inode_operations; 3396 init_special_inode(inode, inode->i_mode, rdev); 3397 break; 3398 } 3399 3400 btrfs_sync_inode_flags_to_i_flags(inode); 3401 return 0; 3402 } 3403 3404 /* 3405 * given a leaf and an inode, copy the inode fields into the leaf 3406 */ 3407 static void fill_inode_item(struct btrfs_trans_handle *trans, 3408 struct extent_buffer *leaf, 3409 struct btrfs_inode_item *item, 3410 struct inode *inode) 3411 { 3412 struct btrfs_map_token token; 3413 3414 btrfs_init_map_token(&token, leaf); 3415 3416 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3417 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3418 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3419 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3420 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3421 3422 btrfs_set_token_timespec_sec(&token, &item->atime, 3423 inode->i_atime.tv_sec); 3424 btrfs_set_token_timespec_nsec(&token, &item->atime, 3425 inode->i_atime.tv_nsec); 3426 3427 btrfs_set_token_timespec_sec(&token, &item->mtime, 3428 inode->i_mtime.tv_sec); 3429 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3430 inode->i_mtime.tv_nsec); 3431 3432 btrfs_set_token_timespec_sec(&token, &item->ctime, 3433 inode->i_ctime.tv_sec); 3434 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3435 inode->i_ctime.tv_nsec); 3436 3437 btrfs_set_token_timespec_sec(&token, &item->otime, 3438 BTRFS_I(inode)->i_otime.tv_sec); 3439 btrfs_set_token_timespec_nsec(&token, &item->otime, 3440 BTRFS_I(inode)->i_otime.tv_nsec); 3441 3442 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3443 btrfs_set_token_inode_generation(&token, item, 3444 BTRFS_I(inode)->generation); 3445 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3446 btrfs_set_token_inode_transid(&token, item, trans->transid); 3447 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3448 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3449 btrfs_set_token_inode_block_group(&token, item, 0); 3450 } 3451 3452 /* 3453 * copy everything in the in-memory inode into the btree. 3454 */ 3455 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3456 struct btrfs_root *root, struct inode *inode) 3457 { 3458 struct btrfs_inode_item *inode_item; 3459 struct btrfs_path *path; 3460 struct extent_buffer *leaf; 3461 int ret; 3462 3463 path = btrfs_alloc_path(); 3464 if (!path) 3465 return -ENOMEM; 3466 3467 path->leave_spinning = 1; 3468 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3469 1); 3470 if (ret) { 3471 if (ret > 0) 3472 ret = -ENOENT; 3473 goto failed; 3474 } 3475 3476 leaf = path->nodes[0]; 3477 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3478 struct btrfs_inode_item); 3479 3480 fill_inode_item(trans, leaf, inode_item, inode); 3481 btrfs_mark_buffer_dirty(leaf); 3482 btrfs_set_inode_last_trans(trans, inode); 3483 ret = 0; 3484 failed: 3485 btrfs_free_path(path); 3486 return ret; 3487 } 3488 3489 /* 3490 * copy everything in the in-memory inode into the btree. 3491 */ 3492 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3493 struct btrfs_root *root, struct inode *inode) 3494 { 3495 struct btrfs_fs_info *fs_info = root->fs_info; 3496 int ret; 3497 3498 /* 3499 * If the inode is a free space inode, we can deadlock during commit 3500 * if we put it into the delayed code. 3501 * 3502 * The data relocation inode should also be directly updated 3503 * without delay 3504 */ 3505 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3506 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3507 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3508 btrfs_update_root_times(trans, root); 3509 3510 ret = btrfs_delayed_update_inode(trans, root, inode); 3511 if (!ret) 3512 btrfs_set_inode_last_trans(trans, inode); 3513 return ret; 3514 } 3515 3516 return btrfs_update_inode_item(trans, root, inode); 3517 } 3518 3519 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3520 struct btrfs_root *root, 3521 struct inode *inode) 3522 { 3523 int ret; 3524 3525 ret = btrfs_update_inode(trans, root, inode); 3526 if (ret == -ENOSPC) 3527 return btrfs_update_inode_item(trans, root, inode); 3528 return ret; 3529 } 3530 3531 /* 3532 * unlink helper that gets used here in inode.c and in the tree logging 3533 * recovery code. It remove a link in a directory with a given name, and 3534 * also drops the back refs in the inode to the directory 3535 */ 3536 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3537 struct btrfs_root *root, 3538 struct btrfs_inode *dir, 3539 struct btrfs_inode *inode, 3540 const char *name, int name_len) 3541 { 3542 struct btrfs_fs_info *fs_info = root->fs_info; 3543 struct btrfs_path *path; 3544 int ret = 0; 3545 struct btrfs_dir_item *di; 3546 u64 index; 3547 u64 ino = btrfs_ino(inode); 3548 u64 dir_ino = btrfs_ino(dir); 3549 3550 path = btrfs_alloc_path(); 3551 if (!path) { 3552 ret = -ENOMEM; 3553 goto out; 3554 } 3555 3556 path->leave_spinning = 1; 3557 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3558 name, name_len, -1); 3559 if (IS_ERR_OR_NULL(di)) { 3560 ret = di ? PTR_ERR(di) : -ENOENT; 3561 goto err; 3562 } 3563 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3564 if (ret) 3565 goto err; 3566 btrfs_release_path(path); 3567 3568 /* 3569 * If we don't have dir index, we have to get it by looking up 3570 * the inode ref, since we get the inode ref, remove it directly, 3571 * it is unnecessary to do delayed deletion. 3572 * 3573 * But if we have dir index, needn't search inode ref to get it. 3574 * Since the inode ref is close to the inode item, it is better 3575 * that we delay to delete it, and just do this deletion when 3576 * we update the inode item. 3577 */ 3578 if (inode->dir_index) { 3579 ret = btrfs_delayed_delete_inode_ref(inode); 3580 if (!ret) { 3581 index = inode->dir_index; 3582 goto skip_backref; 3583 } 3584 } 3585 3586 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3587 dir_ino, &index); 3588 if (ret) { 3589 btrfs_info(fs_info, 3590 "failed to delete reference to %.*s, inode %llu parent %llu", 3591 name_len, name, ino, dir_ino); 3592 btrfs_abort_transaction(trans, ret); 3593 goto err; 3594 } 3595 skip_backref: 3596 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3597 if (ret) { 3598 btrfs_abort_transaction(trans, ret); 3599 goto err; 3600 } 3601 3602 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3603 dir_ino); 3604 if (ret != 0 && ret != -ENOENT) { 3605 btrfs_abort_transaction(trans, ret); 3606 goto err; 3607 } 3608 3609 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3610 index); 3611 if (ret == -ENOENT) 3612 ret = 0; 3613 else if (ret) 3614 btrfs_abort_transaction(trans, ret); 3615 3616 /* 3617 * If we have a pending delayed iput we could end up with the final iput 3618 * being run in btrfs-cleaner context. If we have enough of these built 3619 * up we can end up burning a lot of time in btrfs-cleaner without any 3620 * way to throttle the unlinks. Since we're currently holding a ref on 3621 * the inode we can run the delayed iput here without any issues as the 3622 * final iput won't be done until after we drop the ref we're currently 3623 * holding. 3624 */ 3625 btrfs_run_delayed_iput(fs_info, inode); 3626 err: 3627 btrfs_free_path(path); 3628 if (ret) 3629 goto out; 3630 3631 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3632 inode_inc_iversion(&inode->vfs_inode); 3633 inode_inc_iversion(&dir->vfs_inode); 3634 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3635 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3636 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3637 out: 3638 return ret; 3639 } 3640 3641 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3642 struct btrfs_root *root, 3643 struct btrfs_inode *dir, struct btrfs_inode *inode, 3644 const char *name, int name_len) 3645 { 3646 int ret; 3647 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3648 if (!ret) { 3649 drop_nlink(&inode->vfs_inode); 3650 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 3651 } 3652 return ret; 3653 } 3654 3655 /* 3656 * helper to start transaction for unlink and rmdir. 3657 * 3658 * unlink and rmdir are special in btrfs, they do not always free space, so 3659 * if we cannot make our reservations the normal way try and see if there is 3660 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3661 * allow the unlink to occur. 3662 */ 3663 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3664 { 3665 struct btrfs_root *root = BTRFS_I(dir)->root; 3666 3667 /* 3668 * 1 for the possible orphan item 3669 * 1 for the dir item 3670 * 1 for the dir index 3671 * 1 for the inode ref 3672 * 1 for the inode 3673 */ 3674 return btrfs_start_transaction_fallback_global_rsv(root, 5); 3675 } 3676 3677 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3678 { 3679 struct btrfs_root *root = BTRFS_I(dir)->root; 3680 struct btrfs_trans_handle *trans; 3681 struct inode *inode = d_inode(dentry); 3682 int ret; 3683 3684 trans = __unlink_start_trans(dir); 3685 if (IS_ERR(trans)) 3686 return PTR_ERR(trans); 3687 3688 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 3689 0); 3690 3691 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 3692 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 3693 dentry->d_name.len); 3694 if (ret) 3695 goto out; 3696 3697 if (inode->i_nlink == 0) { 3698 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3699 if (ret) 3700 goto out; 3701 } 3702 3703 out: 3704 btrfs_end_transaction(trans); 3705 btrfs_btree_balance_dirty(root->fs_info); 3706 return ret; 3707 } 3708 3709 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3710 struct inode *dir, struct dentry *dentry) 3711 { 3712 struct btrfs_root *root = BTRFS_I(dir)->root; 3713 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 3714 struct btrfs_path *path; 3715 struct extent_buffer *leaf; 3716 struct btrfs_dir_item *di; 3717 struct btrfs_key key; 3718 const char *name = dentry->d_name.name; 3719 int name_len = dentry->d_name.len; 3720 u64 index; 3721 int ret; 3722 u64 objectid; 3723 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 3724 3725 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 3726 objectid = inode->root->root_key.objectid; 3727 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3728 objectid = inode->location.objectid; 3729 } else { 3730 WARN_ON(1); 3731 return -EINVAL; 3732 } 3733 3734 path = btrfs_alloc_path(); 3735 if (!path) 3736 return -ENOMEM; 3737 3738 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3739 name, name_len, -1); 3740 if (IS_ERR_OR_NULL(di)) { 3741 ret = di ? PTR_ERR(di) : -ENOENT; 3742 goto out; 3743 } 3744 3745 leaf = path->nodes[0]; 3746 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3747 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3748 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3749 if (ret) { 3750 btrfs_abort_transaction(trans, ret); 3751 goto out; 3752 } 3753 btrfs_release_path(path); 3754 3755 /* 3756 * This is a placeholder inode for a subvolume we didn't have a 3757 * reference to at the time of the snapshot creation. In the meantime 3758 * we could have renamed the real subvol link into our snapshot, so 3759 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 3760 * Instead simply lookup the dir_index_item for this entry so we can 3761 * remove it. Otherwise we know we have a ref to the root and we can 3762 * call btrfs_del_root_ref, and it _shouldn't_ fail. 3763 */ 3764 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3765 di = btrfs_search_dir_index_item(root, path, dir_ino, 3766 name, name_len); 3767 if (IS_ERR_OR_NULL(di)) { 3768 if (!di) 3769 ret = -ENOENT; 3770 else 3771 ret = PTR_ERR(di); 3772 btrfs_abort_transaction(trans, ret); 3773 goto out; 3774 } 3775 3776 leaf = path->nodes[0]; 3777 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3778 index = key.offset; 3779 btrfs_release_path(path); 3780 } else { 3781 ret = btrfs_del_root_ref(trans, objectid, 3782 root->root_key.objectid, dir_ino, 3783 &index, name, name_len); 3784 if (ret) { 3785 btrfs_abort_transaction(trans, ret); 3786 goto out; 3787 } 3788 } 3789 3790 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 3791 if (ret) { 3792 btrfs_abort_transaction(trans, ret); 3793 goto out; 3794 } 3795 3796 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 3797 inode_inc_iversion(dir); 3798 dir->i_mtime = dir->i_ctime = current_time(dir); 3799 ret = btrfs_update_inode_fallback(trans, root, dir); 3800 if (ret) 3801 btrfs_abort_transaction(trans, ret); 3802 out: 3803 btrfs_free_path(path); 3804 return ret; 3805 } 3806 3807 /* 3808 * Helper to check if the subvolume references other subvolumes or if it's 3809 * default. 3810 */ 3811 static noinline int may_destroy_subvol(struct btrfs_root *root) 3812 { 3813 struct btrfs_fs_info *fs_info = root->fs_info; 3814 struct btrfs_path *path; 3815 struct btrfs_dir_item *di; 3816 struct btrfs_key key; 3817 u64 dir_id; 3818 int ret; 3819 3820 path = btrfs_alloc_path(); 3821 if (!path) 3822 return -ENOMEM; 3823 3824 /* Make sure this root isn't set as the default subvol */ 3825 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3826 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 3827 dir_id, "default", 7, 0); 3828 if (di && !IS_ERR(di)) { 3829 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 3830 if (key.objectid == root->root_key.objectid) { 3831 ret = -EPERM; 3832 btrfs_err(fs_info, 3833 "deleting default subvolume %llu is not allowed", 3834 key.objectid); 3835 goto out; 3836 } 3837 btrfs_release_path(path); 3838 } 3839 3840 key.objectid = root->root_key.objectid; 3841 key.type = BTRFS_ROOT_REF_KEY; 3842 key.offset = (u64)-1; 3843 3844 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3845 if (ret < 0) 3846 goto out; 3847 BUG_ON(ret == 0); 3848 3849 ret = 0; 3850 if (path->slots[0] > 0) { 3851 path->slots[0]--; 3852 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3853 if (key.objectid == root->root_key.objectid && 3854 key.type == BTRFS_ROOT_REF_KEY) 3855 ret = -ENOTEMPTY; 3856 } 3857 out: 3858 btrfs_free_path(path); 3859 return ret; 3860 } 3861 3862 /* Delete all dentries for inodes belonging to the root */ 3863 static void btrfs_prune_dentries(struct btrfs_root *root) 3864 { 3865 struct btrfs_fs_info *fs_info = root->fs_info; 3866 struct rb_node *node; 3867 struct rb_node *prev; 3868 struct btrfs_inode *entry; 3869 struct inode *inode; 3870 u64 objectid = 0; 3871 3872 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3873 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3874 3875 spin_lock(&root->inode_lock); 3876 again: 3877 node = root->inode_tree.rb_node; 3878 prev = NULL; 3879 while (node) { 3880 prev = node; 3881 entry = rb_entry(node, struct btrfs_inode, rb_node); 3882 3883 if (objectid < btrfs_ino(entry)) 3884 node = node->rb_left; 3885 else if (objectid > btrfs_ino(entry)) 3886 node = node->rb_right; 3887 else 3888 break; 3889 } 3890 if (!node) { 3891 while (prev) { 3892 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3893 if (objectid <= btrfs_ino(entry)) { 3894 node = prev; 3895 break; 3896 } 3897 prev = rb_next(prev); 3898 } 3899 } 3900 while (node) { 3901 entry = rb_entry(node, struct btrfs_inode, rb_node); 3902 objectid = btrfs_ino(entry) + 1; 3903 inode = igrab(&entry->vfs_inode); 3904 if (inode) { 3905 spin_unlock(&root->inode_lock); 3906 if (atomic_read(&inode->i_count) > 1) 3907 d_prune_aliases(inode); 3908 /* 3909 * btrfs_drop_inode will have it removed from the inode 3910 * cache when its usage count hits zero. 3911 */ 3912 iput(inode); 3913 cond_resched(); 3914 spin_lock(&root->inode_lock); 3915 goto again; 3916 } 3917 3918 if (cond_resched_lock(&root->inode_lock)) 3919 goto again; 3920 3921 node = rb_next(node); 3922 } 3923 spin_unlock(&root->inode_lock); 3924 } 3925 3926 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 3927 { 3928 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 3929 struct btrfs_root *root = BTRFS_I(dir)->root; 3930 struct inode *inode = d_inode(dentry); 3931 struct btrfs_root *dest = BTRFS_I(inode)->root; 3932 struct btrfs_trans_handle *trans; 3933 struct btrfs_block_rsv block_rsv; 3934 u64 root_flags; 3935 int ret; 3936 int err; 3937 3938 /* 3939 * Don't allow to delete a subvolume with send in progress. This is 3940 * inside the inode lock so the error handling that has to drop the bit 3941 * again is not run concurrently. 3942 */ 3943 spin_lock(&dest->root_item_lock); 3944 if (dest->send_in_progress) { 3945 spin_unlock(&dest->root_item_lock); 3946 btrfs_warn(fs_info, 3947 "attempt to delete subvolume %llu during send", 3948 dest->root_key.objectid); 3949 return -EPERM; 3950 } 3951 root_flags = btrfs_root_flags(&dest->root_item); 3952 btrfs_set_root_flags(&dest->root_item, 3953 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 3954 spin_unlock(&dest->root_item_lock); 3955 3956 down_write(&fs_info->subvol_sem); 3957 3958 err = may_destroy_subvol(dest); 3959 if (err) 3960 goto out_up_write; 3961 3962 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 3963 /* 3964 * One for dir inode, 3965 * two for dir entries, 3966 * two for root ref/backref. 3967 */ 3968 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 3969 if (err) 3970 goto out_up_write; 3971 3972 trans = btrfs_start_transaction(root, 0); 3973 if (IS_ERR(trans)) { 3974 err = PTR_ERR(trans); 3975 goto out_release; 3976 } 3977 trans->block_rsv = &block_rsv; 3978 trans->bytes_reserved = block_rsv.size; 3979 3980 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 3981 3982 ret = btrfs_unlink_subvol(trans, dir, dentry); 3983 if (ret) { 3984 err = ret; 3985 btrfs_abort_transaction(trans, ret); 3986 goto out_end_trans; 3987 } 3988 3989 btrfs_record_root_in_trans(trans, dest); 3990 3991 memset(&dest->root_item.drop_progress, 0, 3992 sizeof(dest->root_item.drop_progress)); 3993 dest->root_item.drop_level = 0; 3994 btrfs_set_root_refs(&dest->root_item, 0); 3995 3996 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 3997 ret = btrfs_insert_orphan_item(trans, 3998 fs_info->tree_root, 3999 dest->root_key.objectid); 4000 if (ret) { 4001 btrfs_abort_transaction(trans, ret); 4002 err = ret; 4003 goto out_end_trans; 4004 } 4005 } 4006 4007 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4008 BTRFS_UUID_KEY_SUBVOL, 4009 dest->root_key.objectid); 4010 if (ret && ret != -ENOENT) { 4011 btrfs_abort_transaction(trans, ret); 4012 err = ret; 4013 goto out_end_trans; 4014 } 4015 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4016 ret = btrfs_uuid_tree_remove(trans, 4017 dest->root_item.received_uuid, 4018 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4019 dest->root_key.objectid); 4020 if (ret && ret != -ENOENT) { 4021 btrfs_abort_transaction(trans, ret); 4022 err = ret; 4023 goto out_end_trans; 4024 } 4025 } 4026 4027 out_end_trans: 4028 trans->block_rsv = NULL; 4029 trans->bytes_reserved = 0; 4030 ret = btrfs_end_transaction(trans); 4031 if (ret && !err) 4032 err = ret; 4033 inode->i_flags |= S_DEAD; 4034 out_release: 4035 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4036 out_up_write: 4037 up_write(&fs_info->subvol_sem); 4038 if (err) { 4039 spin_lock(&dest->root_item_lock); 4040 root_flags = btrfs_root_flags(&dest->root_item); 4041 btrfs_set_root_flags(&dest->root_item, 4042 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4043 spin_unlock(&dest->root_item_lock); 4044 } else { 4045 d_invalidate(dentry); 4046 btrfs_prune_dentries(dest); 4047 ASSERT(dest->send_in_progress == 0); 4048 4049 /* the last ref */ 4050 if (dest->ino_cache_inode) { 4051 iput(dest->ino_cache_inode); 4052 dest->ino_cache_inode = NULL; 4053 } 4054 } 4055 4056 return err; 4057 } 4058 4059 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4060 { 4061 struct inode *inode = d_inode(dentry); 4062 int err = 0; 4063 struct btrfs_root *root = BTRFS_I(dir)->root; 4064 struct btrfs_trans_handle *trans; 4065 u64 last_unlink_trans; 4066 4067 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4068 return -ENOTEMPTY; 4069 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4070 return btrfs_delete_subvolume(dir, dentry); 4071 4072 trans = __unlink_start_trans(dir); 4073 if (IS_ERR(trans)) 4074 return PTR_ERR(trans); 4075 4076 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4077 err = btrfs_unlink_subvol(trans, dir, dentry); 4078 goto out; 4079 } 4080 4081 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4082 if (err) 4083 goto out; 4084 4085 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4086 4087 /* now the directory is empty */ 4088 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4089 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4090 dentry->d_name.len); 4091 if (!err) { 4092 btrfs_i_size_write(BTRFS_I(inode), 0); 4093 /* 4094 * Propagate the last_unlink_trans value of the deleted dir to 4095 * its parent directory. This is to prevent an unrecoverable 4096 * log tree in the case we do something like this: 4097 * 1) create dir foo 4098 * 2) create snapshot under dir foo 4099 * 3) delete the snapshot 4100 * 4) rmdir foo 4101 * 5) mkdir foo 4102 * 6) fsync foo or some file inside foo 4103 */ 4104 if (last_unlink_trans >= trans->transid) 4105 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4106 } 4107 out: 4108 btrfs_end_transaction(trans); 4109 btrfs_btree_balance_dirty(root->fs_info); 4110 4111 return err; 4112 } 4113 4114 /* 4115 * Return this if we need to call truncate_block for the last bit of the 4116 * truncate. 4117 */ 4118 #define NEED_TRUNCATE_BLOCK 1 4119 4120 /* 4121 * this can truncate away extent items, csum items and directory items. 4122 * It starts at a high offset and removes keys until it can't find 4123 * any higher than new_size 4124 * 4125 * csum items that cross the new i_size are truncated to the new size 4126 * as well. 4127 * 4128 * min_type is the minimum key type to truncate down to. If set to 0, this 4129 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4130 */ 4131 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4132 struct btrfs_root *root, 4133 struct inode *inode, 4134 u64 new_size, u32 min_type) 4135 { 4136 struct btrfs_fs_info *fs_info = root->fs_info; 4137 struct btrfs_path *path; 4138 struct extent_buffer *leaf; 4139 struct btrfs_file_extent_item *fi; 4140 struct btrfs_key key; 4141 struct btrfs_key found_key; 4142 u64 extent_start = 0; 4143 u64 extent_num_bytes = 0; 4144 u64 extent_offset = 0; 4145 u64 item_end = 0; 4146 u64 last_size = new_size; 4147 u32 found_type = (u8)-1; 4148 int found_extent; 4149 int del_item; 4150 int pending_del_nr = 0; 4151 int pending_del_slot = 0; 4152 int extent_type = -1; 4153 int ret; 4154 u64 ino = btrfs_ino(BTRFS_I(inode)); 4155 u64 bytes_deleted = 0; 4156 bool be_nice = false; 4157 bool should_throttle = false; 4158 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4159 struct extent_state *cached_state = NULL; 4160 4161 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4162 4163 /* 4164 * For non-free space inodes and non-shareable roots, we want to back 4165 * off from time to time. This means all inodes in subvolume roots, 4166 * reloc roots, and data reloc roots. 4167 */ 4168 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4169 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4170 be_nice = true; 4171 4172 path = btrfs_alloc_path(); 4173 if (!path) 4174 return -ENOMEM; 4175 path->reada = READA_BACK; 4176 4177 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4178 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 4179 &cached_state); 4180 4181 /* 4182 * We want to drop from the next block forward in case this 4183 * new size is not block aligned since we will be keeping the 4184 * last block of the extent just the way it is. 4185 */ 4186 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4187 fs_info->sectorsize), 4188 (u64)-1, 0); 4189 } 4190 4191 /* 4192 * This function is also used to drop the items in the log tree before 4193 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4194 * it is used to drop the logged items. So we shouldn't kill the delayed 4195 * items. 4196 */ 4197 if (min_type == 0 && root == BTRFS_I(inode)->root) 4198 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4199 4200 key.objectid = ino; 4201 key.offset = (u64)-1; 4202 key.type = (u8)-1; 4203 4204 search_again: 4205 /* 4206 * with a 16K leaf size and 128MB extents, you can actually queue 4207 * up a huge file in a single leaf. Most of the time that 4208 * bytes_deleted is > 0, it will be huge by the time we get here 4209 */ 4210 if (be_nice && bytes_deleted > SZ_32M && 4211 btrfs_should_end_transaction(trans)) { 4212 ret = -EAGAIN; 4213 goto out; 4214 } 4215 4216 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4217 if (ret < 0) 4218 goto out; 4219 4220 if (ret > 0) { 4221 ret = 0; 4222 /* there are no items in the tree for us to truncate, we're 4223 * done 4224 */ 4225 if (path->slots[0] == 0) 4226 goto out; 4227 path->slots[0]--; 4228 } 4229 4230 while (1) { 4231 u64 clear_start = 0, clear_len = 0; 4232 4233 fi = NULL; 4234 leaf = path->nodes[0]; 4235 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4236 found_type = found_key.type; 4237 4238 if (found_key.objectid != ino) 4239 break; 4240 4241 if (found_type < min_type) 4242 break; 4243 4244 item_end = found_key.offset; 4245 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4246 fi = btrfs_item_ptr(leaf, path->slots[0], 4247 struct btrfs_file_extent_item); 4248 extent_type = btrfs_file_extent_type(leaf, fi); 4249 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4250 item_end += 4251 btrfs_file_extent_num_bytes(leaf, fi); 4252 4253 trace_btrfs_truncate_show_fi_regular( 4254 BTRFS_I(inode), leaf, fi, 4255 found_key.offset); 4256 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4257 item_end += btrfs_file_extent_ram_bytes(leaf, 4258 fi); 4259 4260 trace_btrfs_truncate_show_fi_inline( 4261 BTRFS_I(inode), leaf, fi, path->slots[0], 4262 found_key.offset); 4263 } 4264 item_end--; 4265 } 4266 if (found_type > min_type) { 4267 del_item = 1; 4268 } else { 4269 if (item_end < new_size) 4270 break; 4271 if (found_key.offset >= new_size) 4272 del_item = 1; 4273 else 4274 del_item = 0; 4275 } 4276 found_extent = 0; 4277 /* FIXME, shrink the extent if the ref count is only 1 */ 4278 if (found_type != BTRFS_EXTENT_DATA_KEY) 4279 goto delete; 4280 4281 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4282 u64 num_dec; 4283 4284 clear_start = found_key.offset; 4285 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4286 if (!del_item) { 4287 u64 orig_num_bytes = 4288 btrfs_file_extent_num_bytes(leaf, fi); 4289 extent_num_bytes = ALIGN(new_size - 4290 found_key.offset, 4291 fs_info->sectorsize); 4292 clear_start = ALIGN(new_size, fs_info->sectorsize); 4293 btrfs_set_file_extent_num_bytes(leaf, fi, 4294 extent_num_bytes); 4295 num_dec = (orig_num_bytes - 4296 extent_num_bytes); 4297 if (test_bit(BTRFS_ROOT_SHAREABLE, 4298 &root->state) && 4299 extent_start != 0) 4300 inode_sub_bytes(inode, num_dec); 4301 btrfs_mark_buffer_dirty(leaf); 4302 } else { 4303 extent_num_bytes = 4304 btrfs_file_extent_disk_num_bytes(leaf, 4305 fi); 4306 extent_offset = found_key.offset - 4307 btrfs_file_extent_offset(leaf, fi); 4308 4309 /* FIXME blocksize != 4096 */ 4310 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4311 if (extent_start != 0) { 4312 found_extent = 1; 4313 if (test_bit(BTRFS_ROOT_SHAREABLE, 4314 &root->state)) 4315 inode_sub_bytes(inode, num_dec); 4316 } 4317 } 4318 clear_len = num_dec; 4319 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4320 /* 4321 * we can't truncate inline items that have had 4322 * special encodings 4323 */ 4324 if (!del_item && 4325 btrfs_file_extent_encryption(leaf, fi) == 0 && 4326 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4327 btrfs_file_extent_compression(leaf, fi) == 0) { 4328 u32 size = (u32)(new_size - found_key.offset); 4329 4330 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4331 size = btrfs_file_extent_calc_inline_size(size); 4332 btrfs_truncate_item(path, size, 1); 4333 } else if (!del_item) { 4334 /* 4335 * We have to bail so the last_size is set to 4336 * just before this extent. 4337 */ 4338 ret = NEED_TRUNCATE_BLOCK; 4339 break; 4340 } else { 4341 /* 4342 * Inline extents are special, we just treat 4343 * them as a full sector worth in the file 4344 * extent tree just for simplicity sake. 4345 */ 4346 clear_len = fs_info->sectorsize; 4347 } 4348 4349 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4350 inode_sub_bytes(inode, item_end + 1 - new_size); 4351 } 4352 delete: 4353 /* 4354 * We use btrfs_truncate_inode_items() to clean up log trees for 4355 * multiple fsyncs, and in this case we don't want to clear the 4356 * file extent range because it's just the log. 4357 */ 4358 if (root == BTRFS_I(inode)->root) { 4359 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 4360 clear_start, clear_len); 4361 if (ret) { 4362 btrfs_abort_transaction(trans, ret); 4363 break; 4364 } 4365 } 4366 4367 if (del_item) 4368 last_size = found_key.offset; 4369 else 4370 last_size = new_size; 4371 if (del_item) { 4372 if (!pending_del_nr) { 4373 /* no pending yet, add ourselves */ 4374 pending_del_slot = path->slots[0]; 4375 pending_del_nr = 1; 4376 } else if (pending_del_nr && 4377 path->slots[0] + 1 == pending_del_slot) { 4378 /* hop on the pending chunk */ 4379 pending_del_nr++; 4380 pending_del_slot = path->slots[0]; 4381 } else { 4382 BUG(); 4383 } 4384 } else { 4385 break; 4386 } 4387 should_throttle = false; 4388 4389 if (found_extent && 4390 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4391 struct btrfs_ref ref = { 0 }; 4392 4393 bytes_deleted += extent_num_bytes; 4394 4395 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4396 extent_start, extent_num_bytes, 0); 4397 ref.real_root = root->root_key.objectid; 4398 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4399 ino, extent_offset); 4400 ret = btrfs_free_extent(trans, &ref); 4401 if (ret) { 4402 btrfs_abort_transaction(trans, ret); 4403 break; 4404 } 4405 if (be_nice) { 4406 if (btrfs_should_throttle_delayed_refs(trans)) 4407 should_throttle = true; 4408 } 4409 } 4410 4411 if (found_type == BTRFS_INODE_ITEM_KEY) 4412 break; 4413 4414 if (path->slots[0] == 0 || 4415 path->slots[0] != pending_del_slot || 4416 should_throttle) { 4417 if (pending_del_nr) { 4418 ret = btrfs_del_items(trans, root, path, 4419 pending_del_slot, 4420 pending_del_nr); 4421 if (ret) { 4422 btrfs_abort_transaction(trans, ret); 4423 break; 4424 } 4425 pending_del_nr = 0; 4426 } 4427 btrfs_release_path(path); 4428 4429 /* 4430 * We can generate a lot of delayed refs, so we need to 4431 * throttle every once and a while and make sure we're 4432 * adding enough space to keep up with the work we are 4433 * generating. Since we hold a transaction here we 4434 * can't flush, and we don't want to FLUSH_LIMIT because 4435 * we could have generated too many delayed refs to 4436 * actually allocate, so just bail if we're short and 4437 * let the normal reservation dance happen higher up. 4438 */ 4439 if (should_throttle) { 4440 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4441 BTRFS_RESERVE_NO_FLUSH); 4442 if (ret) { 4443 ret = -EAGAIN; 4444 break; 4445 } 4446 } 4447 goto search_again; 4448 } else { 4449 path->slots[0]--; 4450 } 4451 } 4452 out: 4453 if (ret >= 0 && pending_del_nr) { 4454 int err; 4455 4456 err = btrfs_del_items(trans, root, path, pending_del_slot, 4457 pending_del_nr); 4458 if (err) { 4459 btrfs_abort_transaction(trans, err); 4460 ret = err; 4461 } 4462 } 4463 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4464 ASSERT(last_size >= new_size); 4465 if (!ret && last_size > new_size) 4466 last_size = new_size; 4467 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4468 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 4469 (u64)-1, &cached_state); 4470 } 4471 4472 btrfs_free_path(path); 4473 return ret; 4474 } 4475 4476 /* 4477 * btrfs_truncate_block - read, zero a chunk and write a block 4478 * @inode - inode that we're zeroing 4479 * @from - the offset to start zeroing 4480 * @len - the length to zero, 0 to zero the entire range respective to the 4481 * offset 4482 * @front - zero up to the offset instead of from the offset on 4483 * 4484 * This will find the block for the "from" offset and cow the block and zero the 4485 * part we want to zero. This is used with truncate and hole punching. 4486 */ 4487 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4488 int front) 4489 { 4490 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4491 struct address_space *mapping = inode->i_mapping; 4492 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4493 struct btrfs_ordered_extent *ordered; 4494 struct extent_state *cached_state = NULL; 4495 struct extent_changeset *data_reserved = NULL; 4496 char *kaddr; 4497 u32 blocksize = fs_info->sectorsize; 4498 pgoff_t index = from >> PAGE_SHIFT; 4499 unsigned offset = from & (blocksize - 1); 4500 struct page *page; 4501 gfp_t mask = btrfs_alloc_write_mask(mapping); 4502 int ret = 0; 4503 u64 block_start; 4504 u64 block_end; 4505 4506 if (IS_ALIGNED(offset, blocksize) && 4507 (!len || IS_ALIGNED(len, blocksize))) 4508 goto out; 4509 4510 block_start = round_down(from, blocksize); 4511 block_end = block_start + blocksize - 1; 4512 4513 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4514 block_start, blocksize); 4515 if (ret) 4516 goto out; 4517 4518 again: 4519 page = find_or_create_page(mapping, index, mask); 4520 if (!page) { 4521 btrfs_delalloc_release_space(inode, data_reserved, 4522 block_start, blocksize, true); 4523 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4524 ret = -ENOMEM; 4525 goto out; 4526 } 4527 4528 if (!PageUptodate(page)) { 4529 ret = btrfs_readpage(NULL, page); 4530 lock_page(page); 4531 if (page->mapping != mapping) { 4532 unlock_page(page); 4533 put_page(page); 4534 goto again; 4535 } 4536 if (!PageUptodate(page)) { 4537 ret = -EIO; 4538 goto out_unlock; 4539 } 4540 } 4541 wait_on_page_writeback(page); 4542 4543 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4544 set_page_extent_mapped(page); 4545 4546 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4547 if (ordered) { 4548 unlock_extent_cached(io_tree, block_start, block_end, 4549 &cached_state); 4550 unlock_page(page); 4551 put_page(page); 4552 btrfs_start_ordered_extent(inode, ordered, 1); 4553 btrfs_put_ordered_extent(ordered); 4554 goto again; 4555 } 4556 4557 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4558 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4559 0, 0, &cached_state); 4560 4561 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4562 &cached_state); 4563 if (ret) { 4564 unlock_extent_cached(io_tree, block_start, block_end, 4565 &cached_state); 4566 goto out_unlock; 4567 } 4568 4569 if (offset != blocksize) { 4570 if (!len) 4571 len = blocksize - offset; 4572 kaddr = kmap(page); 4573 if (front) 4574 memset(kaddr + (block_start - page_offset(page)), 4575 0, offset); 4576 else 4577 memset(kaddr + (block_start - page_offset(page)) + offset, 4578 0, len); 4579 flush_dcache_page(page); 4580 kunmap(page); 4581 } 4582 ClearPageChecked(page); 4583 set_page_dirty(page); 4584 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4585 4586 out_unlock: 4587 if (ret) 4588 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4589 blocksize, true); 4590 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4591 unlock_page(page); 4592 put_page(page); 4593 out: 4594 extent_changeset_free(data_reserved); 4595 return ret; 4596 } 4597 4598 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4599 u64 offset, u64 len) 4600 { 4601 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4602 struct btrfs_trans_handle *trans; 4603 int ret; 4604 4605 /* 4606 * Still need to make sure the inode looks like it's been updated so 4607 * that any holes get logged if we fsync. 4608 */ 4609 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4610 BTRFS_I(inode)->last_trans = fs_info->generation; 4611 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4612 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4613 return 0; 4614 } 4615 4616 /* 4617 * 1 - for the one we're dropping 4618 * 1 - for the one we're adding 4619 * 1 - for updating the inode. 4620 */ 4621 trans = btrfs_start_transaction(root, 3); 4622 if (IS_ERR(trans)) 4623 return PTR_ERR(trans); 4624 4625 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4626 if (ret) { 4627 btrfs_abort_transaction(trans, ret); 4628 btrfs_end_transaction(trans); 4629 return ret; 4630 } 4631 4632 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4633 offset, 0, 0, len, 0, len, 0, 0, 0); 4634 if (ret) 4635 btrfs_abort_transaction(trans, ret); 4636 else 4637 btrfs_update_inode(trans, root, inode); 4638 btrfs_end_transaction(trans); 4639 return ret; 4640 } 4641 4642 /* 4643 * This function puts in dummy file extents for the area we're creating a hole 4644 * for. So if we are truncating this file to a larger size we need to insert 4645 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4646 * the range between oldsize and size 4647 */ 4648 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4649 { 4650 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4651 struct btrfs_root *root = BTRFS_I(inode)->root; 4652 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4653 struct extent_map *em = NULL; 4654 struct extent_state *cached_state = NULL; 4655 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4656 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4657 u64 block_end = ALIGN(size, fs_info->sectorsize); 4658 u64 last_byte; 4659 u64 cur_offset; 4660 u64 hole_size; 4661 int err = 0; 4662 4663 /* 4664 * If our size started in the middle of a block we need to zero out the 4665 * rest of the block before we expand the i_size, otherwise we could 4666 * expose stale data. 4667 */ 4668 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4669 if (err) 4670 return err; 4671 4672 if (size <= hole_start) 4673 return 0; 4674 4675 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start, 4676 block_end - 1, &cached_state); 4677 cur_offset = hole_start; 4678 while (1) { 4679 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4680 block_end - cur_offset); 4681 if (IS_ERR(em)) { 4682 err = PTR_ERR(em); 4683 em = NULL; 4684 break; 4685 } 4686 last_byte = min(extent_map_end(em), block_end); 4687 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4688 hole_size = last_byte - cur_offset; 4689 4690 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4691 struct extent_map *hole_em; 4692 4693 err = maybe_insert_hole(root, inode, cur_offset, 4694 hole_size); 4695 if (err) 4696 break; 4697 4698 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4699 cur_offset, hole_size); 4700 if (err) 4701 break; 4702 4703 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4704 cur_offset + hole_size - 1, 0); 4705 hole_em = alloc_extent_map(); 4706 if (!hole_em) { 4707 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4708 &BTRFS_I(inode)->runtime_flags); 4709 goto next; 4710 } 4711 hole_em->start = cur_offset; 4712 hole_em->len = hole_size; 4713 hole_em->orig_start = cur_offset; 4714 4715 hole_em->block_start = EXTENT_MAP_HOLE; 4716 hole_em->block_len = 0; 4717 hole_em->orig_block_len = 0; 4718 hole_em->ram_bytes = hole_size; 4719 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4720 hole_em->generation = fs_info->generation; 4721 4722 while (1) { 4723 write_lock(&em_tree->lock); 4724 err = add_extent_mapping(em_tree, hole_em, 1); 4725 write_unlock(&em_tree->lock); 4726 if (err != -EEXIST) 4727 break; 4728 btrfs_drop_extent_cache(BTRFS_I(inode), 4729 cur_offset, 4730 cur_offset + 4731 hole_size - 1, 0); 4732 } 4733 free_extent_map(hole_em); 4734 } else { 4735 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4736 cur_offset, hole_size); 4737 if (err) 4738 break; 4739 } 4740 next: 4741 free_extent_map(em); 4742 em = NULL; 4743 cur_offset = last_byte; 4744 if (cur_offset >= block_end) 4745 break; 4746 } 4747 free_extent_map(em); 4748 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4749 return err; 4750 } 4751 4752 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4753 { 4754 struct btrfs_root *root = BTRFS_I(inode)->root; 4755 struct btrfs_trans_handle *trans; 4756 loff_t oldsize = i_size_read(inode); 4757 loff_t newsize = attr->ia_size; 4758 int mask = attr->ia_valid; 4759 int ret; 4760 4761 /* 4762 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4763 * special case where we need to update the times despite not having 4764 * these flags set. For all other operations the VFS set these flags 4765 * explicitly if it wants a timestamp update. 4766 */ 4767 if (newsize != oldsize) { 4768 inode_inc_iversion(inode); 4769 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4770 inode->i_ctime = inode->i_mtime = 4771 current_time(inode); 4772 } 4773 4774 if (newsize > oldsize) { 4775 /* 4776 * Don't do an expanding truncate while snapshotting is ongoing. 4777 * This is to ensure the snapshot captures a fully consistent 4778 * state of this file - if the snapshot captures this expanding 4779 * truncation, it must capture all writes that happened before 4780 * this truncation. 4781 */ 4782 btrfs_drew_write_lock(&root->snapshot_lock); 4783 ret = btrfs_cont_expand(inode, oldsize, newsize); 4784 if (ret) { 4785 btrfs_drew_write_unlock(&root->snapshot_lock); 4786 return ret; 4787 } 4788 4789 trans = btrfs_start_transaction(root, 1); 4790 if (IS_ERR(trans)) { 4791 btrfs_drew_write_unlock(&root->snapshot_lock); 4792 return PTR_ERR(trans); 4793 } 4794 4795 i_size_write(inode, newsize); 4796 btrfs_inode_safe_disk_i_size_write(inode, 0); 4797 pagecache_isize_extended(inode, oldsize, newsize); 4798 ret = btrfs_update_inode(trans, root, inode); 4799 btrfs_drew_write_unlock(&root->snapshot_lock); 4800 btrfs_end_transaction(trans); 4801 } else { 4802 4803 /* 4804 * We're truncating a file that used to have good data down to 4805 * zero. Make sure it gets into the ordered flush list so that 4806 * any new writes get down to disk quickly. 4807 */ 4808 if (newsize == 0) 4809 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4810 &BTRFS_I(inode)->runtime_flags); 4811 4812 truncate_setsize(inode, newsize); 4813 4814 /* Disable nonlocked read DIO to avoid the endless truncate */ 4815 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 4816 inode_dio_wait(inode); 4817 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 4818 4819 ret = btrfs_truncate(inode, newsize == oldsize); 4820 if (ret && inode->i_nlink) { 4821 int err; 4822 4823 /* 4824 * Truncate failed, so fix up the in-memory size. We 4825 * adjusted disk_i_size down as we removed extents, so 4826 * wait for disk_i_size to be stable and then update the 4827 * in-memory size to match. 4828 */ 4829 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 4830 if (err) 4831 return err; 4832 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4833 } 4834 } 4835 4836 return ret; 4837 } 4838 4839 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4840 { 4841 struct inode *inode = d_inode(dentry); 4842 struct btrfs_root *root = BTRFS_I(inode)->root; 4843 int err; 4844 4845 if (btrfs_root_readonly(root)) 4846 return -EROFS; 4847 4848 err = setattr_prepare(dentry, attr); 4849 if (err) 4850 return err; 4851 4852 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4853 err = btrfs_setsize(inode, attr); 4854 if (err) 4855 return err; 4856 } 4857 4858 if (attr->ia_valid) { 4859 setattr_copy(inode, attr); 4860 inode_inc_iversion(inode); 4861 err = btrfs_dirty_inode(inode); 4862 4863 if (!err && attr->ia_valid & ATTR_MODE) 4864 err = posix_acl_chmod(inode, inode->i_mode); 4865 } 4866 4867 return err; 4868 } 4869 4870 /* 4871 * While truncating the inode pages during eviction, we get the VFS calling 4872 * btrfs_invalidatepage() against each page of the inode. This is slow because 4873 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4874 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4875 * extent_state structures over and over, wasting lots of time. 4876 * 4877 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4878 * those expensive operations on a per page basis and do only the ordered io 4879 * finishing, while we release here the extent_map and extent_state structures, 4880 * without the excessive merging and splitting. 4881 */ 4882 static void evict_inode_truncate_pages(struct inode *inode) 4883 { 4884 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4885 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4886 struct rb_node *node; 4887 4888 ASSERT(inode->i_state & I_FREEING); 4889 truncate_inode_pages_final(&inode->i_data); 4890 4891 write_lock(&map_tree->lock); 4892 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 4893 struct extent_map *em; 4894 4895 node = rb_first_cached(&map_tree->map); 4896 em = rb_entry(node, struct extent_map, rb_node); 4897 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4898 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4899 remove_extent_mapping(map_tree, em); 4900 free_extent_map(em); 4901 if (need_resched()) { 4902 write_unlock(&map_tree->lock); 4903 cond_resched(); 4904 write_lock(&map_tree->lock); 4905 } 4906 } 4907 write_unlock(&map_tree->lock); 4908 4909 /* 4910 * Keep looping until we have no more ranges in the io tree. 4911 * We can have ongoing bios started by readahead that have 4912 * their endio callback (extent_io.c:end_bio_extent_readpage) 4913 * still in progress (unlocked the pages in the bio but did not yet 4914 * unlocked the ranges in the io tree). Therefore this means some 4915 * ranges can still be locked and eviction started because before 4916 * submitting those bios, which are executed by a separate task (work 4917 * queue kthread), inode references (inode->i_count) were not taken 4918 * (which would be dropped in the end io callback of each bio). 4919 * Therefore here we effectively end up waiting for those bios and 4920 * anyone else holding locked ranges without having bumped the inode's 4921 * reference count - if we don't do it, when they access the inode's 4922 * io_tree to unlock a range it may be too late, leading to an 4923 * use-after-free issue. 4924 */ 4925 spin_lock(&io_tree->lock); 4926 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4927 struct extent_state *state; 4928 struct extent_state *cached_state = NULL; 4929 u64 start; 4930 u64 end; 4931 unsigned state_flags; 4932 4933 node = rb_first(&io_tree->state); 4934 state = rb_entry(node, struct extent_state, rb_node); 4935 start = state->start; 4936 end = state->end; 4937 state_flags = state->state; 4938 spin_unlock(&io_tree->lock); 4939 4940 lock_extent_bits(io_tree, start, end, &cached_state); 4941 4942 /* 4943 * If still has DELALLOC flag, the extent didn't reach disk, 4944 * and its reserved space won't be freed by delayed_ref. 4945 * So we need to free its reserved space here. 4946 * (Refer to comment in btrfs_invalidatepage, case 2) 4947 * 4948 * Note, end is the bytenr of last byte, so we need + 1 here. 4949 */ 4950 if (state_flags & EXTENT_DELALLOC) 4951 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 4952 4953 clear_extent_bit(io_tree, start, end, 4954 EXTENT_LOCKED | EXTENT_DELALLOC | 4955 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 4956 &cached_state); 4957 4958 cond_resched(); 4959 spin_lock(&io_tree->lock); 4960 } 4961 spin_unlock(&io_tree->lock); 4962 } 4963 4964 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 4965 struct btrfs_block_rsv *rsv) 4966 { 4967 struct btrfs_fs_info *fs_info = root->fs_info; 4968 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4969 struct btrfs_trans_handle *trans; 4970 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 4971 int ret; 4972 4973 /* 4974 * Eviction should be taking place at some place safe because of our 4975 * delayed iputs. However the normal flushing code will run delayed 4976 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 4977 * 4978 * We reserve the delayed_refs_extra here again because we can't use 4979 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 4980 * above. We reserve our extra bit here because we generate a ton of 4981 * delayed refs activity by truncating. 4982 * 4983 * If we cannot make our reservation we'll attempt to steal from the 4984 * global reserve, because we really want to be able to free up space. 4985 */ 4986 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 4987 BTRFS_RESERVE_FLUSH_EVICT); 4988 if (ret) { 4989 /* 4990 * Try to steal from the global reserve if there is space for 4991 * it. 4992 */ 4993 if (btrfs_check_space_for_delayed_refs(fs_info) || 4994 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 4995 btrfs_warn(fs_info, 4996 "could not allocate space for delete; will truncate on mount"); 4997 return ERR_PTR(-ENOSPC); 4998 } 4999 delayed_refs_extra = 0; 5000 } 5001 5002 trans = btrfs_join_transaction(root); 5003 if (IS_ERR(trans)) 5004 return trans; 5005 5006 if (delayed_refs_extra) { 5007 trans->block_rsv = &fs_info->trans_block_rsv; 5008 trans->bytes_reserved = delayed_refs_extra; 5009 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5010 delayed_refs_extra, 1); 5011 } 5012 return trans; 5013 } 5014 5015 void btrfs_evict_inode(struct inode *inode) 5016 { 5017 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5018 struct btrfs_trans_handle *trans; 5019 struct btrfs_root *root = BTRFS_I(inode)->root; 5020 struct btrfs_block_rsv *rsv; 5021 int ret; 5022 5023 trace_btrfs_inode_evict(inode); 5024 5025 if (!root) { 5026 clear_inode(inode); 5027 return; 5028 } 5029 5030 evict_inode_truncate_pages(inode); 5031 5032 if (inode->i_nlink && 5033 ((btrfs_root_refs(&root->root_item) != 0 && 5034 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5035 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5036 goto no_delete; 5037 5038 if (is_bad_inode(inode)) 5039 goto no_delete; 5040 5041 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5042 5043 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5044 goto no_delete; 5045 5046 if (inode->i_nlink > 0) { 5047 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5048 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5049 goto no_delete; 5050 } 5051 5052 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5053 if (ret) 5054 goto no_delete; 5055 5056 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5057 if (!rsv) 5058 goto no_delete; 5059 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5060 rsv->failfast = 1; 5061 5062 btrfs_i_size_write(BTRFS_I(inode), 0); 5063 5064 while (1) { 5065 trans = evict_refill_and_join(root, rsv); 5066 if (IS_ERR(trans)) 5067 goto free_rsv; 5068 5069 trans->block_rsv = rsv; 5070 5071 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5072 trans->block_rsv = &fs_info->trans_block_rsv; 5073 btrfs_end_transaction(trans); 5074 btrfs_btree_balance_dirty(fs_info); 5075 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5076 goto free_rsv; 5077 else if (!ret) 5078 break; 5079 } 5080 5081 /* 5082 * Errors here aren't a big deal, it just means we leave orphan items in 5083 * the tree. They will be cleaned up on the next mount. If the inode 5084 * number gets reused, cleanup deletes the orphan item without doing 5085 * anything, and unlink reuses the existing orphan item. 5086 * 5087 * If it turns out that we are dropping too many of these, we might want 5088 * to add a mechanism for retrying these after a commit. 5089 */ 5090 trans = evict_refill_and_join(root, rsv); 5091 if (!IS_ERR(trans)) { 5092 trans->block_rsv = rsv; 5093 btrfs_orphan_del(trans, BTRFS_I(inode)); 5094 trans->block_rsv = &fs_info->trans_block_rsv; 5095 btrfs_end_transaction(trans); 5096 } 5097 5098 if (!(root == fs_info->tree_root || 5099 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5100 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5101 5102 free_rsv: 5103 btrfs_free_block_rsv(fs_info, rsv); 5104 no_delete: 5105 /* 5106 * If we didn't successfully delete, the orphan item will still be in 5107 * the tree and we'll retry on the next mount. Again, we might also want 5108 * to retry these periodically in the future. 5109 */ 5110 btrfs_remove_delayed_node(BTRFS_I(inode)); 5111 clear_inode(inode); 5112 } 5113 5114 /* 5115 * Return the key found in the dir entry in the location pointer, fill @type 5116 * with BTRFS_FT_*, and return 0. 5117 * 5118 * If no dir entries were found, returns -ENOENT. 5119 * If found a corrupted location in dir entry, returns -EUCLEAN. 5120 */ 5121 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5122 struct btrfs_key *location, u8 *type) 5123 { 5124 const char *name = dentry->d_name.name; 5125 int namelen = dentry->d_name.len; 5126 struct btrfs_dir_item *di; 5127 struct btrfs_path *path; 5128 struct btrfs_root *root = BTRFS_I(dir)->root; 5129 int ret = 0; 5130 5131 path = btrfs_alloc_path(); 5132 if (!path) 5133 return -ENOMEM; 5134 5135 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5136 name, namelen, 0); 5137 if (IS_ERR_OR_NULL(di)) { 5138 ret = di ? PTR_ERR(di) : -ENOENT; 5139 goto out; 5140 } 5141 5142 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5143 if (location->type != BTRFS_INODE_ITEM_KEY && 5144 location->type != BTRFS_ROOT_ITEM_KEY) { 5145 ret = -EUCLEAN; 5146 btrfs_warn(root->fs_info, 5147 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5148 __func__, name, btrfs_ino(BTRFS_I(dir)), 5149 location->objectid, location->type, location->offset); 5150 } 5151 if (!ret) 5152 *type = btrfs_dir_type(path->nodes[0], di); 5153 out: 5154 btrfs_free_path(path); 5155 return ret; 5156 } 5157 5158 /* 5159 * when we hit a tree root in a directory, the btrfs part of the inode 5160 * needs to be changed to reflect the root directory of the tree root. This 5161 * is kind of like crossing a mount point. 5162 */ 5163 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5164 struct inode *dir, 5165 struct dentry *dentry, 5166 struct btrfs_key *location, 5167 struct btrfs_root **sub_root) 5168 { 5169 struct btrfs_path *path; 5170 struct btrfs_root *new_root; 5171 struct btrfs_root_ref *ref; 5172 struct extent_buffer *leaf; 5173 struct btrfs_key key; 5174 int ret; 5175 int err = 0; 5176 5177 path = btrfs_alloc_path(); 5178 if (!path) { 5179 err = -ENOMEM; 5180 goto out; 5181 } 5182 5183 err = -ENOENT; 5184 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5185 key.type = BTRFS_ROOT_REF_KEY; 5186 key.offset = location->objectid; 5187 5188 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5189 if (ret) { 5190 if (ret < 0) 5191 err = ret; 5192 goto out; 5193 } 5194 5195 leaf = path->nodes[0]; 5196 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5197 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5198 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5199 goto out; 5200 5201 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5202 (unsigned long)(ref + 1), 5203 dentry->d_name.len); 5204 if (ret) 5205 goto out; 5206 5207 btrfs_release_path(path); 5208 5209 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5210 if (IS_ERR(new_root)) { 5211 err = PTR_ERR(new_root); 5212 goto out; 5213 } 5214 5215 *sub_root = new_root; 5216 location->objectid = btrfs_root_dirid(&new_root->root_item); 5217 location->type = BTRFS_INODE_ITEM_KEY; 5218 location->offset = 0; 5219 err = 0; 5220 out: 5221 btrfs_free_path(path); 5222 return err; 5223 } 5224 5225 static void inode_tree_add(struct inode *inode) 5226 { 5227 struct btrfs_root *root = BTRFS_I(inode)->root; 5228 struct btrfs_inode *entry; 5229 struct rb_node **p; 5230 struct rb_node *parent; 5231 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5232 u64 ino = btrfs_ino(BTRFS_I(inode)); 5233 5234 if (inode_unhashed(inode)) 5235 return; 5236 parent = NULL; 5237 spin_lock(&root->inode_lock); 5238 p = &root->inode_tree.rb_node; 5239 while (*p) { 5240 parent = *p; 5241 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5242 5243 if (ino < btrfs_ino(entry)) 5244 p = &parent->rb_left; 5245 else if (ino > btrfs_ino(entry)) 5246 p = &parent->rb_right; 5247 else { 5248 WARN_ON(!(entry->vfs_inode.i_state & 5249 (I_WILL_FREE | I_FREEING))); 5250 rb_replace_node(parent, new, &root->inode_tree); 5251 RB_CLEAR_NODE(parent); 5252 spin_unlock(&root->inode_lock); 5253 return; 5254 } 5255 } 5256 rb_link_node(new, parent, p); 5257 rb_insert_color(new, &root->inode_tree); 5258 spin_unlock(&root->inode_lock); 5259 } 5260 5261 static void inode_tree_del(struct inode *inode) 5262 { 5263 struct btrfs_root *root = BTRFS_I(inode)->root; 5264 int empty = 0; 5265 5266 spin_lock(&root->inode_lock); 5267 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5268 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5269 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5270 empty = RB_EMPTY_ROOT(&root->inode_tree); 5271 } 5272 spin_unlock(&root->inode_lock); 5273 5274 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5275 spin_lock(&root->inode_lock); 5276 empty = RB_EMPTY_ROOT(&root->inode_tree); 5277 spin_unlock(&root->inode_lock); 5278 if (empty) 5279 btrfs_add_dead_root(root); 5280 } 5281 } 5282 5283 5284 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5285 { 5286 struct btrfs_iget_args *args = p; 5287 5288 inode->i_ino = args->ino; 5289 BTRFS_I(inode)->location.objectid = args->ino; 5290 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5291 BTRFS_I(inode)->location.offset = 0; 5292 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5293 BUG_ON(args->root && !BTRFS_I(inode)->root); 5294 return 0; 5295 } 5296 5297 static int btrfs_find_actor(struct inode *inode, void *opaque) 5298 { 5299 struct btrfs_iget_args *args = opaque; 5300 5301 return args->ino == BTRFS_I(inode)->location.objectid && 5302 args->root == BTRFS_I(inode)->root; 5303 } 5304 5305 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5306 struct btrfs_root *root) 5307 { 5308 struct inode *inode; 5309 struct btrfs_iget_args args; 5310 unsigned long hashval = btrfs_inode_hash(ino, root); 5311 5312 args.ino = ino; 5313 args.root = root; 5314 5315 inode = iget5_locked(s, hashval, btrfs_find_actor, 5316 btrfs_init_locked_inode, 5317 (void *)&args); 5318 return inode; 5319 } 5320 5321 /* 5322 * Get an inode object given its inode number and corresponding root. 5323 * Path can be preallocated to prevent recursing back to iget through 5324 * allocator. NULL is also valid but may require an additional allocation 5325 * later. 5326 */ 5327 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5328 struct btrfs_root *root, struct btrfs_path *path) 5329 { 5330 struct inode *inode; 5331 5332 inode = btrfs_iget_locked(s, ino, root); 5333 if (!inode) 5334 return ERR_PTR(-ENOMEM); 5335 5336 if (inode->i_state & I_NEW) { 5337 int ret; 5338 5339 ret = btrfs_read_locked_inode(inode, path); 5340 if (!ret) { 5341 inode_tree_add(inode); 5342 unlock_new_inode(inode); 5343 } else { 5344 iget_failed(inode); 5345 /* 5346 * ret > 0 can come from btrfs_search_slot called by 5347 * btrfs_read_locked_inode, this means the inode item 5348 * was not found. 5349 */ 5350 if (ret > 0) 5351 ret = -ENOENT; 5352 inode = ERR_PTR(ret); 5353 } 5354 } 5355 5356 return inode; 5357 } 5358 5359 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5360 { 5361 return btrfs_iget_path(s, ino, root, NULL); 5362 } 5363 5364 static struct inode *new_simple_dir(struct super_block *s, 5365 struct btrfs_key *key, 5366 struct btrfs_root *root) 5367 { 5368 struct inode *inode = new_inode(s); 5369 5370 if (!inode) 5371 return ERR_PTR(-ENOMEM); 5372 5373 BTRFS_I(inode)->root = btrfs_grab_root(root); 5374 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5375 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5376 5377 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5378 /* 5379 * We only need lookup, the rest is read-only and there's no inode 5380 * associated with the dentry 5381 */ 5382 inode->i_op = &simple_dir_inode_operations; 5383 inode->i_opflags &= ~IOP_XATTR; 5384 inode->i_fop = &simple_dir_operations; 5385 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5386 inode->i_mtime = current_time(inode); 5387 inode->i_atime = inode->i_mtime; 5388 inode->i_ctime = inode->i_mtime; 5389 BTRFS_I(inode)->i_otime = inode->i_mtime; 5390 5391 return inode; 5392 } 5393 5394 static inline u8 btrfs_inode_type(struct inode *inode) 5395 { 5396 /* 5397 * Compile-time asserts that generic FT_* types still match 5398 * BTRFS_FT_* types 5399 */ 5400 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5401 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5402 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5403 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5404 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5405 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5406 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5407 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5408 5409 return fs_umode_to_ftype(inode->i_mode); 5410 } 5411 5412 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5413 { 5414 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5415 struct inode *inode; 5416 struct btrfs_root *root = BTRFS_I(dir)->root; 5417 struct btrfs_root *sub_root = root; 5418 struct btrfs_key location; 5419 u8 di_type = 0; 5420 int ret = 0; 5421 5422 if (dentry->d_name.len > BTRFS_NAME_LEN) 5423 return ERR_PTR(-ENAMETOOLONG); 5424 5425 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5426 if (ret < 0) 5427 return ERR_PTR(ret); 5428 5429 if (location.type == BTRFS_INODE_ITEM_KEY) { 5430 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5431 if (IS_ERR(inode)) 5432 return inode; 5433 5434 /* Do extra check against inode mode with di_type */ 5435 if (btrfs_inode_type(inode) != di_type) { 5436 btrfs_crit(fs_info, 5437 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5438 inode->i_mode, btrfs_inode_type(inode), 5439 di_type); 5440 iput(inode); 5441 return ERR_PTR(-EUCLEAN); 5442 } 5443 return inode; 5444 } 5445 5446 ret = fixup_tree_root_location(fs_info, dir, dentry, 5447 &location, &sub_root); 5448 if (ret < 0) { 5449 if (ret != -ENOENT) 5450 inode = ERR_PTR(ret); 5451 else 5452 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5453 } else { 5454 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5455 } 5456 if (root != sub_root) 5457 btrfs_put_root(sub_root); 5458 5459 if (!IS_ERR(inode) && root != sub_root) { 5460 down_read(&fs_info->cleanup_work_sem); 5461 if (!sb_rdonly(inode->i_sb)) 5462 ret = btrfs_orphan_cleanup(sub_root); 5463 up_read(&fs_info->cleanup_work_sem); 5464 if (ret) { 5465 iput(inode); 5466 inode = ERR_PTR(ret); 5467 } 5468 } 5469 5470 return inode; 5471 } 5472 5473 static int btrfs_dentry_delete(const struct dentry *dentry) 5474 { 5475 struct btrfs_root *root; 5476 struct inode *inode = d_inode(dentry); 5477 5478 if (!inode && !IS_ROOT(dentry)) 5479 inode = d_inode(dentry->d_parent); 5480 5481 if (inode) { 5482 root = BTRFS_I(inode)->root; 5483 if (btrfs_root_refs(&root->root_item) == 0) 5484 return 1; 5485 5486 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5487 return 1; 5488 } 5489 return 0; 5490 } 5491 5492 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5493 unsigned int flags) 5494 { 5495 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5496 5497 if (inode == ERR_PTR(-ENOENT)) 5498 inode = NULL; 5499 return d_splice_alias(inode, dentry); 5500 } 5501 5502 /* 5503 * All this infrastructure exists because dir_emit can fault, and we are holding 5504 * the tree lock when doing readdir. For now just allocate a buffer and copy 5505 * our information into that, and then dir_emit from the buffer. This is 5506 * similar to what NFS does, only we don't keep the buffer around in pagecache 5507 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5508 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5509 * tree lock. 5510 */ 5511 static int btrfs_opendir(struct inode *inode, struct file *file) 5512 { 5513 struct btrfs_file_private *private; 5514 5515 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5516 if (!private) 5517 return -ENOMEM; 5518 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5519 if (!private->filldir_buf) { 5520 kfree(private); 5521 return -ENOMEM; 5522 } 5523 file->private_data = private; 5524 return 0; 5525 } 5526 5527 struct dir_entry { 5528 u64 ino; 5529 u64 offset; 5530 unsigned type; 5531 int name_len; 5532 }; 5533 5534 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5535 { 5536 while (entries--) { 5537 struct dir_entry *entry = addr; 5538 char *name = (char *)(entry + 1); 5539 5540 ctx->pos = get_unaligned(&entry->offset); 5541 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5542 get_unaligned(&entry->ino), 5543 get_unaligned(&entry->type))) 5544 return 1; 5545 addr += sizeof(struct dir_entry) + 5546 get_unaligned(&entry->name_len); 5547 ctx->pos++; 5548 } 5549 return 0; 5550 } 5551 5552 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5553 { 5554 struct inode *inode = file_inode(file); 5555 struct btrfs_root *root = BTRFS_I(inode)->root; 5556 struct btrfs_file_private *private = file->private_data; 5557 struct btrfs_dir_item *di; 5558 struct btrfs_key key; 5559 struct btrfs_key found_key; 5560 struct btrfs_path *path; 5561 void *addr; 5562 struct list_head ins_list; 5563 struct list_head del_list; 5564 int ret; 5565 struct extent_buffer *leaf; 5566 int slot; 5567 char *name_ptr; 5568 int name_len; 5569 int entries = 0; 5570 int total_len = 0; 5571 bool put = false; 5572 struct btrfs_key location; 5573 5574 if (!dir_emit_dots(file, ctx)) 5575 return 0; 5576 5577 path = btrfs_alloc_path(); 5578 if (!path) 5579 return -ENOMEM; 5580 5581 addr = private->filldir_buf; 5582 path->reada = READA_FORWARD; 5583 5584 INIT_LIST_HEAD(&ins_list); 5585 INIT_LIST_HEAD(&del_list); 5586 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5587 5588 again: 5589 key.type = BTRFS_DIR_INDEX_KEY; 5590 key.offset = ctx->pos; 5591 key.objectid = btrfs_ino(BTRFS_I(inode)); 5592 5593 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5594 if (ret < 0) 5595 goto err; 5596 5597 while (1) { 5598 struct dir_entry *entry; 5599 5600 leaf = path->nodes[0]; 5601 slot = path->slots[0]; 5602 if (slot >= btrfs_header_nritems(leaf)) { 5603 ret = btrfs_next_leaf(root, path); 5604 if (ret < 0) 5605 goto err; 5606 else if (ret > 0) 5607 break; 5608 continue; 5609 } 5610 5611 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5612 5613 if (found_key.objectid != key.objectid) 5614 break; 5615 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5616 break; 5617 if (found_key.offset < ctx->pos) 5618 goto next; 5619 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5620 goto next; 5621 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5622 name_len = btrfs_dir_name_len(leaf, di); 5623 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5624 PAGE_SIZE) { 5625 btrfs_release_path(path); 5626 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5627 if (ret) 5628 goto nopos; 5629 addr = private->filldir_buf; 5630 entries = 0; 5631 total_len = 0; 5632 goto again; 5633 } 5634 5635 entry = addr; 5636 put_unaligned(name_len, &entry->name_len); 5637 name_ptr = (char *)(entry + 1); 5638 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5639 name_len); 5640 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5641 &entry->type); 5642 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5643 put_unaligned(location.objectid, &entry->ino); 5644 put_unaligned(found_key.offset, &entry->offset); 5645 entries++; 5646 addr += sizeof(struct dir_entry) + name_len; 5647 total_len += sizeof(struct dir_entry) + name_len; 5648 next: 5649 path->slots[0]++; 5650 } 5651 btrfs_release_path(path); 5652 5653 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5654 if (ret) 5655 goto nopos; 5656 5657 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5658 if (ret) 5659 goto nopos; 5660 5661 /* 5662 * Stop new entries from being returned after we return the last 5663 * entry. 5664 * 5665 * New directory entries are assigned a strictly increasing 5666 * offset. This means that new entries created during readdir 5667 * are *guaranteed* to be seen in the future by that readdir. 5668 * This has broken buggy programs which operate on names as 5669 * they're returned by readdir. Until we re-use freed offsets 5670 * we have this hack to stop new entries from being returned 5671 * under the assumption that they'll never reach this huge 5672 * offset. 5673 * 5674 * This is being careful not to overflow 32bit loff_t unless the 5675 * last entry requires it because doing so has broken 32bit apps 5676 * in the past. 5677 */ 5678 if (ctx->pos >= INT_MAX) 5679 ctx->pos = LLONG_MAX; 5680 else 5681 ctx->pos = INT_MAX; 5682 nopos: 5683 ret = 0; 5684 err: 5685 if (put) 5686 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5687 btrfs_free_path(path); 5688 return ret; 5689 } 5690 5691 /* 5692 * This is somewhat expensive, updating the tree every time the 5693 * inode changes. But, it is most likely to find the inode in cache. 5694 * FIXME, needs more benchmarking...there are no reasons other than performance 5695 * to keep or drop this code. 5696 */ 5697 static int btrfs_dirty_inode(struct inode *inode) 5698 { 5699 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5700 struct btrfs_root *root = BTRFS_I(inode)->root; 5701 struct btrfs_trans_handle *trans; 5702 int ret; 5703 5704 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5705 return 0; 5706 5707 trans = btrfs_join_transaction(root); 5708 if (IS_ERR(trans)) 5709 return PTR_ERR(trans); 5710 5711 ret = btrfs_update_inode(trans, root, inode); 5712 if (ret && ret == -ENOSPC) { 5713 /* whoops, lets try again with the full transaction */ 5714 btrfs_end_transaction(trans); 5715 trans = btrfs_start_transaction(root, 1); 5716 if (IS_ERR(trans)) 5717 return PTR_ERR(trans); 5718 5719 ret = btrfs_update_inode(trans, root, inode); 5720 } 5721 btrfs_end_transaction(trans); 5722 if (BTRFS_I(inode)->delayed_node) 5723 btrfs_balance_delayed_items(fs_info); 5724 5725 return ret; 5726 } 5727 5728 /* 5729 * This is a copy of file_update_time. We need this so we can return error on 5730 * ENOSPC for updating the inode in the case of file write and mmap writes. 5731 */ 5732 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5733 int flags) 5734 { 5735 struct btrfs_root *root = BTRFS_I(inode)->root; 5736 bool dirty = flags & ~S_VERSION; 5737 5738 if (btrfs_root_readonly(root)) 5739 return -EROFS; 5740 5741 if (flags & S_VERSION) 5742 dirty |= inode_maybe_inc_iversion(inode, dirty); 5743 if (flags & S_CTIME) 5744 inode->i_ctime = *now; 5745 if (flags & S_MTIME) 5746 inode->i_mtime = *now; 5747 if (flags & S_ATIME) 5748 inode->i_atime = *now; 5749 return dirty ? btrfs_dirty_inode(inode) : 0; 5750 } 5751 5752 /* 5753 * find the highest existing sequence number in a directory 5754 * and then set the in-memory index_cnt variable to reflect 5755 * free sequence numbers 5756 */ 5757 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5758 { 5759 struct btrfs_root *root = inode->root; 5760 struct btrfs_key key, found_key; 5761 struct btrfs_path *path; 5762 struct extent_buffer *leaf; 5763 int ret; 5764 5765 key.objectid = btrfs_ino(inode); 5766 key.type = BTRFS_DIR_INDEX_KEY; 5767 key.offset = (u64)-1; 5768 5769 path = btrfs_alloc_path(); 5770 if (!path) 5771 return -ENOMEM; 5772 5773 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5774 if (ret < 0) 5775 goto out; 5776 /* FIXME: we should be able to handle this */ 5777 if (ret == 0) 5778 goto out; 5779 ret = 0; 5780 5781 /* 5782 * MAGIC NUMBER EXPLANATION: 5783 * since we search a directory based on f_pos we have to start at 2 5784 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5785 * else has to start at 2 5786 */ 5787 if (path->slots[0] == 0) { 5788 inode->index_cnt = 2; 5789 goto out; 5790 } 5791 5792 path->slots[0]--; 5793 5794 leaf = path->nodes[0]; 5795 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5796 5797 if (found_key.objectid != btrfs_ino(inode) || 5798 found_key.type != BTRFS_DIR_INDEX_KEY) { 5799 inode->index_cnt = 2; 5800 goto out; 5801 } 5802 5803 inode->index_cnt = found_key.offset + 1; 5804 out: 5805 btrfs_free_path(path); 5806 return ret; 5807 } 5808 5809 /* 5810 * helper to find a free sequence number in a given directory. This current 5811 * code is very simple, later versions will do smarter things in the btree 5812 */ 5813 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 5814 { 5815 int ret = 0; 5816 5817 if (dir->index_cnt == (u64)-1) { 5818 ret = btrfs_inode_delayed_dir_index_count(dir); 5819 if (ret) { 5820 ret = btrfs_set_inode_index_count(dir); 5821 if (ret) 5822 return ret; 5823 } 5824 } 5825 5826 *index = dir->index_cnt; 5827 dir->index_cnt++; 5828 5829 return ret; 5830 } 5831 5832 static int btrfs_insert_inode_locked(struct inode *inode) 5833 { 5834 struct btrfs_iget_args args; 5835 5836 args.ino = BTRFS_I(inode)->location.objectid; 5837 args.root = BTRFS_I(inode)->root; 5838 5839 return insert_inode_locked4(inode, 5840 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5841 btrfs_find_actor, &args); 5842 } 5843 5844 /* 5845 * Inherit flags from the parent inode. 5846 * 5847 * Currently only the compression flags and the cow flags are inherited. 5848 */ 5849 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 5850 { 5851 unsigned int flags; 5852 5853 if (!dir) 5854 return; 5855 5856 flags = BTRFS_I(dir)->flags; 5857 5858 if (flags & BTRFS_INODE_NOCOMPRESS) { 5859 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 5860 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 5861 } else if (flags & BTRFS_INODE_COMPRESS) { 5862 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 5863 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 5864 } 5865 5866 if (flags & BTRFS_INODE_NODATACOW) { 5867 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 5868 if (S_ISREG(inode->i_mode)) 5869 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5870 } 5871 5872 btrfs_sync_inode_flags_to_i_flags(inode); 5873 } 5874 5875 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5876 struct btrfs_root *root, 5877 struct inode *dir, 5878 const char *name, int name_len, 5879 u64 ref_objectid, u64 objectid, 5880 umode_t mode, u64 *index) 5881 { 5882 struct btrfs_fs_info *fs_info = root->fs_info; 5883 struct inode *inode; 5884 struct btrfs_inode_item *inode_item; 5885 struct btrfs_key *location; 5886 struct btrfs_path *path; 5887 struct btrfs_inode_ref *ref; 5888 struct btrfs_key key[2]; 5889 u32 sizes[2]; 5890 int nitems = name ? 2 : 1; 5891 unsigned long ptr; 5892 unsigned int nofs_flag; 5893 int ret; 5894 5895 path = btrfs_alloc_path(); 5896 if (!path) 5897 return ERR_PTR(-ENOMEM); 5898 5899 nofs_flag = memalloc_nofs_save(); 5900 inode = new_inode(fs_info->sb); 5901 memalloc_nofs_restore(nofs_flag); 5902 if (!inode) { 5903 btrfs_free_path(path); 5904 return ERR_PTR(-ENOMEM); 5905 } 5906 5907 /* 5908 * O_TMPFILE, set link count to 0, so that after this point, 5909 * we fill in an inode item with the correct link count. 5910 */ 5911 if (!name) 5912 set_nlink(inode, 0); 5913 5914 /* 5915 * we have to initialize this early, so we can reclaim the inode 5916 * number if we fail afterwards in this function. 5917 */ 5918 inode->i_ino = objectid; 5919 5920 if (dir && name) { 5921 trace_btrfs_inode_request(dir); 5922 5923 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 5924 if (ret) { 5925 btrfs_free_path(path); 5926 iput(inode); 5927 return ERR_PTR(ret); 5928 } 5929 } else if (dir) { 5930 *index = 0; 5931 } 5932 /* 5933 * index_cnt is ignored for everything but a dir, 5934 * btrfs_set_inode_index_count has an explanation for the magic 5935 * number 5936 */ 5937 BTRFS_I(inode)->index_cnt = 2; 5938 BTRFS_I(inode)->dir_index = *index; 5939 BTRFS_I(inode)->root = btrfs_grab_root(root); 5940 BTRFS_I(inode)->generation = trans->transid; 5941 inode->i_generation = BTRFS_I(inode)->generation; 5942 5943 /* 5944 * We could have gotten an inode number from somebody who was fsynced 5945 * and then removed in this same transaction, so let's just set full 5946 * sync since it will be a full sync anyway and this will blow away the 5947 * old info in the log. 5948 */ 5949 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5950 5951 key[0].objectid = objectid; 5952 key[0].type = BTRFS_INODE_ITEM_KEY; 5953 key[0].offset = 0; 5954 5955 sizes[0] = sizeof(struct btrfs_inode_item); 5956 5957 if (name) { 5958 /* 5959 * Start new inodes with an inode_ref. This is slightly more 5960 * efficient for small numbers of hard links since they will 5961 * be packed into one item. Extended refs will kick in if we 5962 * add more hard links than can fit in the ref item. 5963 */ 5964 key[1].objectid = objectid; 5965 key[1].type = BTRFS_INODE_REF_KEY; 5966 key[1].offset = ref_objectid; 5967 5968 sizes[1] = name_len + sizeof(*ref); 5969 } 5970 5971 location = &BTRFS_I(inode)->location; 5972 location->objectid = objectid; 5973 location->offset = 0; 5974 location->type = BTRFS_INODE_ITEM_KEY; 5975 5976 ret = btrfs_insert_inode_locked(inode); 5977 if (ret < 0) { 5978 iput(inode); 5979 goto fail; 5980 } 5981 5982 path->leave_spinning = 1; 5983 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 5984 if (ret != 0) 5985 goto fail_unlock; 5986 5987 inode_init_owner(inode, dir, mode); 5988 inode_set_bytes(inode, 0); 5989 5990 inode->i_mtime = current_time(inode); 5991 inode->i_atime = inode->i_mtime; 5992 inode->i_ctime = inode->i_mtime; 5993 BTRFS_I(inode)->i_otime = inode->i_mtime; 5994 5995 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5996 struct btrfs_inode_item); 5997 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 5998 sizeof(*inode_item)); 5999 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6000 6001 if (name) { 6002 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6003 struct btrfs_inode_ref); 6004 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6005 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6006 ptr = (unsigned long)(ref + 1); 6007 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6008 } 6009 6010 btrfs_mark_buffer_dirty(path->nodes[0]); 6011 btrfs_free_path(path); 6012 6013 btrfs_inherit_iflags(inode, dir); 6014 6015 if (S_ISREG(mode)) { 6016 if (btrfs_test_opt(fs_info, NODATASUM)) 6017 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6018 if (btrfs_test_opt(fs_info, NODATACOW)) 6019 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6020 BTRFS_INODE_NODATASUM; 6021 } 6022 6023 inode_tree_add(inode); 6024 6025 trace_btrfs_inode_new(inode); 6026 btrfs_set_inode_last_trans(trans, inode); 6027 6028 btrfs_update_root_times(trans, root); 6029 6030 ret = btrfs_inode_inherit_props(trans, inode, dir); 6031 if (ret) 6032 btrfs_err(fs_info, 6033 "error inheriting props for ino %llu (root %llu): %d", 6034 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6035 6036 return inode; 6037 6038 fail_unlock: 6039 discard_new_inode(inode); 6040 fail: 6041 if (dir && name) 6042 BTRFS_I(dir)->index_cnt--; 6043 btrfs_free_path(path); 6044 return ERR_PTR(ret); 6045 } 6046 6047 /* 6048 * utility function to add 'inode' into 'parent_inode' with 6049 * a give name and a given sequence number. 6050 * if 'add_backref' is true, also insert a backref from the 6051 * inode to the parent directory. 6052 */ 6053 int btrfs_add_link(struct btrfs_trans_handle *trans, 6054 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6055 const char *name, int name_len, int add_backref, u64 index) 6056 { 6057 int ret = 0; 6058 struct btrfs_key key; 6059 struct btrfs_root *root = parent_inode->root; 6060 u64 ino = btrfs_ino(inode); 6061 u64 parent_ino = btrfs_ino(parent_inode); 6062 6063 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6064 memcpy(&key, &inode->root->root_key, sizeof(key)); 6065 } else { 6066 key.objectid = ino; 6067 key.type = BTRFS_INODE_ITEM_KEY; 6068 key.offset = 0; 6069 } 6070 6071 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6072 ret = btrfs_add_root_ref(trans, key.objectid, 6073 root->root_key.objectid, parent_ino, 6074 index, name, name_len); 6075 } else if (add_backref) { 6076 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6077 parent_ino, index); 6078 } 6079 6080 /* Nothing to clean up yet */ 6081 if (ret) 6082 return ret; 6083 6084 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6085 btrfs_inode_type(&inode->vfs_inode), index); 6086 if (ret == -EEXIST || ret == -EOVERFLOW) 6087 goto fail_dir_item; 6088 else if (ret) { 6089 btrfs_abort_transaction(trans, ret); 6090 return ret; 6091 } 6092 6093 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6094 name_len * 2); 6095 inode_inc_iversion(&parent_inode->vfs_inode); 6096 /* 6097 * If we are replaying a log tree, we do not want to update the mtime 6098 * and ctime of the parent directory with the current time, since the 6099 * log replay procedure is responsible for setting them to their correct 6100 * values (the ones it had when the fsync was done). 6101 */ 6102 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6103 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6104 6105 parent_inode->vfs_inode.i_mtime = now; 6106 parent_inode->vfs_inode.i_ctime = now; 6107 } 6108 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6109 if (ret) 6110 btrfs_abort_transaction(trans, ret); 6111 return ret; 6112 6113 fail_dir_item: 6114 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6115 u64 local_index; 6116 int err; 6117 err = btrfs_del_root_ref(trans, key.objectid, 6118 root->root_key.objectid, parent_ino, 6119 &local_index, name, name_len); 6120 if (err) 6121 btrfs_abort_transaction(trans, err); 6122 } else if (add_backref) { 6123 u64 local_index; 6124 int err; 6125 6126 err = btrfs_del_inode_ref(trans, root, name, name_len, 6127 ino, parent_ino, &local_index); 6128 if (err) 6129 btrfs_abort_transaction(trans, err); 6130 } 6131 6132 /* Return the original error code */ 6133 return ret; 6134 } 6135 6136 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6137 struct btrfs_inode *dir, struct dentry *dentry, 6138 struct btrfs_inode *inode, int backref, u64 index) 6139 { 6140 int err = btrfs_add_link(trans, dir, inode, 6141 dentry->d_name.name, dentry->d_name.len, 6142 backref, index); 6143 if (err > 0) 6144 err = -EEXIST; 6145 return err; 6146 } 6147 6148 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6149 umode_t mode, dev_t rdev) 6150 { 6151 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6152 struct btrfs_trans_handle *trans; 6153 struct btrfs_root *root = BTRFS_I(dir)->root; 6154 struct inode *inode = NULL; 6155 int err; 6156 u64 objectid; 6157 u64 index = 0; 6158 6159 /* 6160 * 2 for inode item and ref 6161 * 2 for dir items 6162 * 1 for xattr if selinux is on 6163 */ 6164 trans = btrfs_start_transaction(root, 5); 6165 if (IS_ERR(trans)) 6166 return PTR_ERR(trans); 6167 6168 err = btrfs_find_free_ino(root, &objectid); 6169 if (err) 6170 goto out_unlock; 6171 6172 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6173 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6174 mode, &index); 6175 if (IS_ERR(inode)) { 6176 err = PTR_ERR(inode); 6177 inode = NULL; 6178 goto out_unlock; 6179 } 6180 6181 /* 6182 * If the active LSM wants to access the inode during 6183 * d_instantiate it needs these. Smack checks to see 6184 * if the filesystem supports xattrs by looking at the 6185 * ops vector. 6186 */ 6187 inode->i_op = &btrfs_special_inode_operations; 6188 init_special_inode(inode, inode->i_mode, rdev); 6189 6190 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6191 if (err) 6192 goto out_unlock; 6193 6194 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6195 0, index); 6196 if (err) 6197 goto out_unlock; 6198 6199 btrfs_update_inode(trans, root, inode); 6200 d_instantiate_new(dentry, inode); 6201 6202 out_unlock: 6203 btrfs_end_transaction(trans); 6204 btrfs_btree_balance_dirty(fs_info); 6205 if (err && inode) { 6206 inode_dec_link_count(inode); 6207 discard_new_inode(inode); 6208 } 6209 return err; 6210 } 6211 6212 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6213 umode_t mode, bool excl) 6214 { 6215 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6216 struct btrfs_trans_handle *trans; 6217 struct btrfs_root *root = BTRFS_I(dir)->root; 6218 struct inode *inode = NULL; 6219 int err; 6220 u64 objectid; 6221 u64 index = 0; 6222 6223 /* 6224 * 2 for inode item and ref 6225 * 2 for dir items 6226 * 1 for xattr if selinux is on 6227 */ 6228 trans = btrfs_start_transaction(root, 5); 6229 if (IS_ERR(trans)) 6230 return PTR_ERR(trans); 6231 6232 err = btrfs_find_free_ino(root, &objectid); 6233 if (err) 6234 goto out_unlock; 6235 6236 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6237 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6238 mode, &index); 6239 if (IS_ERR(inode)) { 6240 err = PTR_ERR(inode); 6241 inode = NULL; 6242 goto out_unlock; 6243 } 6244 /* 6245 * If the active LSM wants to access the inode during 6246 * d_instantiate it needs these. Smack checks to see 6247 * if the filesystem supports xattrs by looking at the 6248 * ops vector. 6249 */ 6250 inode->i_fop = &btrfs_file_operations; 6251 inode->i_op = &btrfs_file_inode_operations; 6252 inode->i_mapping->a_ops = &btrfs_aops; 6253 6254 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6255 if (err) 6256 goto out_unlock; 6257 6258 err = btrfs_update_inode(trans, root, inode); 6259 if (err) 6260 goto out_unlock; 6261 6262 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6263 0, index); 6264 if (err) 6265 goto out_unlock; 6266 6267 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6268 d_instantiate_new(dentry, inode); 6269 6270 out_unlock: 6271 btrfs_end_transaction(trans); 6272 if (err && inode) { 6273 inode_dec_link_count(inode); 6274 discard_new_inode(inode); 6275 } 6276 btrfs_btree_balance_dirty(fs_info); 6277 return err; 6278 } 6279 6280 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6281 struct dentry *dentry) 6282 { 6283 struct btrfs_trans_handle *trans = NULL; 6284 struct btrfs_root *root = BTRFS_I(dir)->root; 6285 struct inode *inode = d_inode(old_dentry); 6286 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6287 u64 index; 6288 int err; 6289 int drop_inode = 0; 6290 6291 /* do not allow sys_link's with other subvols of the same device */ 6292 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6293 return -EXDEV; 6294 6295 if (inode->i_nlink >= BTRFS_LINK_MAX) 6296 return -EMLINK; 6297 6298 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6299 if (err) 6300 goto fail; 6301 6302 /* 6303 * 2 items for inode and inode ref 6304 * 2 items for dir items 6305 * 1 item for parent inode 6306 * 1 item for orphan item deletion if O_TMPFILE 6307 */ 6308 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6309 if (IS_ERR(trans)) { 6310 err = PTR_ERR(trans); 6311 trans = NULL; 6312 goto fail; 6313 } 6314 6315 /* There are several dir indexes for this inode, clear the cache. */ 6316 BTRFS_I(inode)->dir_index = 0ULL; 6317 inc_nlink(inode); 6318 inode_inc_iversion(inode); 6319 inode->i_ctime = current_time(inode); 6320 ihold(inode); 6321 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6322 6323 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6324 1, index); 6325 6326 if (err) { 6327 drop_inode = 1; 6328 } else { 6329 struct dentry *parent = dentry->d_parent; 6330 int ret; 6331 6332 err = btrfs_update_inode(trans, root, inode); 6333 if (err) 6334 goto fail; 6335 if (inode->i_nlink == 1) { 6336 /* 6337 * If new hard link count is 1, it's a file created 6338 * with open(2) O_TMPFILE flag. 6339 */ 6340 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6341 if (err) 6342 goto fail; 6343 } 6344 d_instantiate(dentry, inode); 6345 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6346 true, NULL); 6347 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6348 err = btrfs_commit_transaction(trans); 6349 trans = NULL; 6350 } 6351 } 6352 6353 fail: 6354 if (trans) 6355 btrfs_end_transaction(trans); 6356 if (drop_inode) { 6357 inode_dec_link_count(inode); 6358 iput(inode); 6359 } 6360 btrfs_btree_balance_dirty(fs_info); 6361 return err; 6362 } 6363 6364 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6365 { 6366 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6367 struct inode *inode = NULL; 6368 struct btrfs_trans_handle *trans; 6369 struct btrfs_root *root = BTRFS_I(dir)->root; 6370 int err = 0; 6371 u64 objectid = 0; 6372 u64 index = 0; 6373 6374 /* 6375 * 2 items for inode and ref 6376 * 2 items for dir items 6377 * 1 for xattr if selinux is on 6378 */ 6379 trans = btrfs_start_transaction(root, 5); 6380 if (IS_ERR(trans)) 6381 return PTR_ERR(trans); 6382 6383 err = btrfs_find_free_ino(root, &objectid); 6384 if (err) 6385 goto out_fail; 6386 6387 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6388 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6389 S_IFDIR | mode, &index); 6390 if (IS_ERR(inode)) { 6391 err = PTR_ERR(inode); 6392 inode = NULL; 6393 goto out_fail; 6394 } 6395 6396 /* these must be set before we unlock the inode */ 6397 inode->i_op = &btrfs_dir_inode_operations; 6398 inode->i_fop = &btrfs_dir_file_operations; 6399 6400 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6401 if (err) 6402 goto out_fail; 6403 6404 btrfs_i_size_write(BTRFS_I(inode), 0); 6405 err = btrfs_update_inode(trans, root, inode); 6406 if (err) 6407 goto out_fail; 6408 6409 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6410 dentry->d_name.name, 6411 dentry->d_name.len, 0, index); 6412 if (err) 6413 goto out_fail; 6414 6415 d_instantiate_new(dentry, inode); 6416 6417 out_fail: 6418 btrfs_end_transaction(trans); 6419 if (err && inode) { 6420 inode_dec_link_count(inode); 6421 discard_new_inode(inode); 6422 } 6423 btrfs_btree_balance_dirty(fs_info); 6424 return err; 6425 } 6426 6427 static noinline int uncompress_inline(struct btrfs_path *path, 6428 struct page *page, 6429 size_t pg_offset, u64 extent_offset, 6430 struct btrfs_file_extent_item *item) 6431 { 6432 int ret; 6433 struct extent_buffer *leaf = path->nodes[0]; 6434 char *tmp; 6435 size_t max_size; 6436 unsigned long inline_size; 6437 unsigned long ptr; 6438 int compress_type; 6439 6440 WARN_ON(pg_offset != 0); 6441 compress_type = btrfs_file_extent_compression(leaf, item); 6442 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6443 inline_size = btrfs_file_extent_inline_item_len(leaf, 6444 btrfs_item_nr(path->slots[0])); 6445 tmp = kmalloc(inline_size, GFP_NOFS); 6446 if (!tmp) 6447 return -ENOMEM; 6448 ptr = btrfs_file_extent_inline_start(item); 6449 6450 read_extent_buffer(leaf, tmp, ptr, inline_size); 6451 6452 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6453 ret = btrfs_decompress(compress_type, tmp, page, 6454 extent_offset, inline_size, max_size); 6455 6456 /* 6457 * decompression code contains a memset to fill in any space between the end 6458 * of the uncompressed data and the end of max_size in case the decompressed 6459 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6460 * the end of an inline extent and the beginning of the next block, so we 6461 * cover that region here. 6462 */ 6463 6464 if (max_size + pg_offset < PAGE_SIZE) { 6465 char *map = kmap(page); 6466 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6467 kunmap(page); 6468 } 6469 kfree(tmp); 6470 return ret; 6471 } 6472 6473 /** 6474 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6475 * @inode: file to search in 6476 * @page: page to read extent data into if the extent is inline 6477 * @pg_offset: offset into @page to copy to 6478 * @start: file offset 6479 * @len: length of range starting at @start 6480 * 6481 * This returns the first &struct extent_map which overlaps with the given 6482 * range, reading it from the B-tree and caching it if necessary. Note that 6483 * there may be more extents which overlap the given range after the returned 6484 * extent_map. 6485 * 6486 * If @page is not NULL and the extent is inline, this also reads the extent 6487 * data directly into the page and marks the extent up to date in the io_tree. 6488 * 6489 * Return: ERR_PTR on error, non-NULL extent_map on success. 6490 */ 6491 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6492 struct page *page, size_t pg_offset, 6493 u64 start, u64 len) 6494 { 6495 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6496 int ret; 6497 int err = 0; 6498 u64 extent_start = 0; 6499 u64 extent_end = 0; 6500 u64 objectid = btrfs_ino(inode); 6501 int extent_type = -1; 6502 struct btrfs_path *path = NULL; 6503 struct btrfs_root *root = inode->root; 6504 struct btrfs_file_extent_item *item; 6505 struct extent_buffer *leaf; 6506 struct btrfs_key found_key; 6507 struct extent_map *em = NULL; 6508 struct extent_map_tree *em_tree = &inode->extent_tree; 6509 struct extent_io_tree *io_tree = &inode->io_tree; 6510 6511 read_lock(&em_tree->lock); 6512 em = lookup_extent_mapping(em_tree, start, len); 6513 read_unlock(&em_tree->lock); 6514 6515 if (em) { 6516 if (em->start > start || em->start + em->len <= start) 6517 free_extent_map(em); 6518 else if (em->block_start == EXTENT_MAP_INLINE && page) 6519 free_extent_map(em); 6520 else 6521 goto out; 6522 } 6523 em = alloc_extent_map(); 6524 if (!em) { 6525 err = -ENOMEM; 6526 goto out; 6527 } 6528 em->start = EXTENT_MAP_HOLE; 6529 em->orig_start = EXTENT_MAP_HOLE; 6530 em->len = (u64)-1; 6531 em->block_len = (u64)-1; 6532 6533 path = btrfs_alloc_path(); 6534 if (!path) { 6535 err = -ENOMEM; 6536 goto out; 6537 } 6538 6539 /* Chances are we'll be called again, so go ahead and do readahead */ 6540 path->reada = READA_FORWARD; 6541 6542 /* 6543 * Unless we're going to uncompress the inline extent, no sleep would 6544 * happen. 6545 */ 6546 path->leave_spinning = 1; 6547 6548 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6549 if (ret < 0) { 6550 err = ret; 6551 goto out; 6552 } else if (ret > 0) { 6553 if (path->slots[0] == 0) 6554 goto not_found; 6555 path->slots[0]--; 6556 } 6557 6558 leaf = path->nodes[0]; 6559 item = btrfs_item_ptr(leaf, path->slots[0], 6560 struct btrfs_file_extent_item); 6561 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6562 if (found_key.objectid != objectid || 6563 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6564 /* 6565 * If we backup past the first extent we want to move forward 6566 * and see if there is an extent in front of us, otherwise we'll 6567 * say there is a hole for our whole search range which can 6568 * cause problems. 6569 */ 6570 extent_end = start; 6571 goto next; 6572 } 6573 6574 extent_type = btrfs_file_extent_type(leaf, item); 6575 extent_start = found_key.offset; 6576 extent_end = btrfs_file_extent_end(path); 6577 if (extent_type == BTRFS_FILE_EXTENT_REG || 6578 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6579 /* Only regular file could have regular/prealloc extent */ 6580 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6581 ret = -EUCLEAN; 6582 btrfs_crit(fs_info, 6583 "regular/prealloc extent found for non-regular inode %llu", 6584 btrfs_ino(inode)); 6585 goto out; 6586 } 6587 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6588 extent_start); 6589 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6590 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6591 path->slots[0], 6592 extent_start); 6593 } 6594 next: 6595 if (start >= extent_end) { 6596 path->slots[0]++; 6597 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6598 ret = btrfs_next_leaf(root, path); 6599 if (ret < 0) { 6600 err = ret; 6601 goto out; 6602 } else if (ret > 0) { 6603 goto not_found; 6604 } 6605 leaf = path->nodes[0]; 6606 } 6607 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6608 if (found_key.objectid != objectid || 6609 found_key.type != BTRFS_EXTENT_DATA_KEY) 6610 goto not_found; 6611 if (start + len <= found_key.offset) 6612 goto not_found; 6613 if (start > found_key.offset) 6614 goto next; 6615 6616 /* New extent overlaps with existing one */ 6617 em->start = start; 6618 em->orig_start = start; 6619 em->len = found_key.offset - start; 6620 em->block_start = EXTENT_MAP_HOLE; 6621 goto insert; 6622 } 6623 6624 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6625 6626 if (extent_type == BTRFS_FILE_EXTENT_REG || 6627 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6628 goto insert; 6629 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6630 unsigned long ptr; 6631 char *map; 6632 size_t size; 6633 size_t extent_offset; 6634 size_t copy_size; 6635 6636 if (!page) 6637 goto out; 6638 6639 size = btrfs_file_extent_ram_bytes(leaf, item); 6640 extent_offset = page_offset(page) + pg_offset - extent_start; 6641 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6642 size - extent_offset); 6643 em->start = extent_start + extent_offset; 6644 em->len = ALIGN(copy_size, fs_info->sectorsize); 6645 em->orig_block_len = em->len; 6646 em->orig_start = em->start; 6647 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6648 6649 btrfs_set_path_blocking(path); 6650 if (!PageUptodate(page)) { 6651 if (btrfs_file_extent_compression(leaf, item) != 6652 BTRFS_COMPRESS_NONE) { 6653 ret = uncompress_inline(path, page, pg_offset, 6654 extent_offset, item); 6655 if (ret) { 6656 err = ret; 6657 goto out; 6658 } 6659 } else { 6660 map = kmap(page); 6661 read_extent_buffer(leaf, map + pg_offset, ptr, 6662 copy_size); 6663 if (pg_offset + copy_size < PAGE_SIZE) { 6664 memset(map + pg_offset + copy_size, 0, 6665 PAGE_SIZE - pg_offset - 6666 copy_size); 6667 } 6668 kunmap(page); 6669 } 6670 flush_dcache_page(page); 6671 } 6672 set_extent_uptodate(io_tree, em->start, 6673 extent_map_end(em) - 1, NULL, GFP_NOFS); 6674 goto insert; 6675 } 6676 not_found: 6677 em->start = start; 6678 em->orig_start = start; 6679 em->len = len; 6680 em->block_start = EXTENT_MAP_HOLE; 6681 insert: 6682 btrfs_release_path(path); 6683 if (em->start > start || extent_map_end(em) <= start) { 6684 btrfs_err(fs_info, 6685 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6686 em->start, em->len, start, len); 6687 err = -EIO; 6688 goto out; 6689 } 6690 6691 err = 0; 6692 write_lock(&em_tree->lock); 6693 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6694 write_unlock(&em_tree->lock); 6695 out: 6696 btrfs_free_path(path); 6697 6698 trace_btrfs_get_extent(root, inode, em); 6699 6700 if (err) { 6701 free_extent_map(em); 6702 return ERR_PTR(err); 6703 } 6704 BUG_ON(!em); /* Error is always set */ 6705 return em; 6706 } 6707 6708 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6709 u64 start, u64 len) 6710 { 6711 struct extent_map *em; 6712 struct extent_map *hole_em = NULL; 6713 u64 delalloc_start = start; 6714 u64 end; 6715 u64 delalloc_len; 6716 u64 delalloc_end; 6717 int err = 0; 6718 6719 em = btrfs_get_extent(inode, NULL, 0, start, len); 6720 if (IS_ERR(em)) 6721 return em; 6722 /* 6723 * If our em maps to: 6724 * - a hole or 6725 * - a pre-alloc extent, 6726 * there might actually be delalloc bytes behind it. 6727 */ 6728 if (em->block_start != EXTENT_MAP_HOLE && 6729 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6730 return em; 6731 else 6732 hole_em = em; 6733 6734 /* check to see if we've wrapped (len == -1 or similar) */ 6735 end = start + len; 6736 if (end < start) 6737 end = (u64)-1; 6738 else 6739 end -= 1; 6740 6741 em = NULL; 6742 6743 /* ok, we didn't find anything, lets look for delalloc */ 6744 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6745 end, len, EXTENT_DELALLOC, 1); 6746 delalloc_end = delalloc_start + delalloc_len; 6747 if (delalloc_end < delalloc_start) 6748 delalloc_end = (u64)-1; 6749 6750 /* 6751 * We didn't find anything useful, return the original results from 6752 * get_extent() 6753 */ 6754 if (delalloc_start > end || delalloc_end <= start) { 6755 em = hole_em; 6756 hole_em = NULL; 6757 goto out; 6758 } 6759 6760 /* 6761 * Adjust the delalloc_start to make sure it doesn't go backwards from 6762 * the start they passed in 6763 */ 6764 delalloc_start = max(start, delalloc_start); 6765 delalloc_len = delalloc_end - delalloc_start; 6766 6767 if (delalloc_len > 0) { 6768 u64 hole_start; 6769 u64 hole_len; 6770 const u64 hole_end = extent_map_end(hole_em); 6771 6772 em = alloc_extent_map(); 6773 if (!em) { 6774 err = -ENOMEM; 6775 goto out; 6776 } 6777 6778 ASSERT(hole_em); 6779 /* 6780 * When btrfs_get_extent can't find anything it returns one 6781 * huge hole 6782 * 6783 * Make sure what it found really fits our range, and adjust to 6784 * make sure it is based on the start from the caller 6785 */ 6786 if (hole_end <= start || hole_em->start > end) { 6787 free_extent_map(hole_em); 6788 hole_em = NULL; 6789 } else { 6790 hole_start = max(hole_em->start, start); 6791 hole_len = hole_end - hole_start; 6792 } 6793 6794 if (hole_em && delalloc_start > hole_start) { 6795 /* 6796 * Our hole starts before our delalloc, so we have to 6797 * return just the parts of the hole that go until the 6798 * delalloc starts 6799 */ 6800 em->len = min(hole_len, delalloc_start - hole_start); 6801 em->start = hole_start; 6802 em->orig_start = hole_start; 6803 /* 6804 * Don't adjust block start at all, it is fixed at 6805 * EXTENT_MAP_HOLE 6806 */ 6807 em->block_start = hole_em->block_start; 6808 em->block_len = hole_len; 6809 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6810 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6811 } else { 6812 /* 6813 * Hole is out of passed range or it starts after 6814 * delalloc range 6815 */ 6816 em->start = delalloc_start; 6817 em->len = delalloc_len; 6818 em->orig_start = delalloc_start; 6819 em->block_start = EXTENT_MAP_DELALLOC; 6820 em->block_len = delalloc_len; 6821 } 6822 } else { 6823 return hole_em; 6824 } 6825 out: 6826 6827 free_extent_map(hole_em); 6828 if (err) { 6829 free_extent_map(em); 6830 return ERR_PTR(err); 6831 } 6832 return em; 6833 } 6834 6835 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 6836 const u64 start, 6837 const u64 len, 6838 const u64 orig_start, 6839 const u64 block_start, 6840 const u64 block_len, 6841 const u64 orig_block_len, 6842 const u64 ram_bytes, 6843 const int type) 6844 { 6845 struct extent_map *em = NULL; 6846 int ret; 6847 6848 if (type != BTRFS_ORDERED_NOCOW) { 6849 em = create_io_em(inode, start, len, orig_start, 6850 block_start, block_len, orig_block_len, 6851 ram_bytes, 6852 BTRFS_COMPRESS_NONE, /* compress_type */ 6853 type); 6854 if (IS_ERR(em)) 6855 goto out; 6856 } 6857 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 6858 len, block_len, type); 6859 if (ret) { 6860 if (em) { 6861 free_extent_map(em); 6862 btrfs_drop_extent_cache(BTRFS_I(inode), start, 6863 start + len - 1, 0); 6864 } 6865 em = ERR_PTR(ret); 6866 } 6867 out: 6868 6869 return em; 6870 } 6871 6872 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6873 u64 start, u64 len) 6874 { 6875 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6876 struct btrfs_root *root = BTRFS_I(inode)->root; 6877 struct extent_map *em; 6878 struct btrfs_key ins; 6879 u64 alloc_hint; 6880 int ret; 6881 6882 alloc_hint = get_extent_allocation_hint(inode, start, len); 6883 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6884 0, alloc_hint, &ins, 1, 1); 6885 if (ret) 6886 return ERR_PTR(ret); 6887 6888 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 6889 ins.objectid, ins.offset, ins.offset, 6890 ins.offset, BTRFS_ORDERED_REGULAR); 6891 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 6892 if (IS_ERR(em)) 6893 btrfs_free_reserved_extent(fs_info, ins.objectid, 6894 ins.offset, 1); 6895 6896 return em; 6897 } 6898 6899 /* 6900 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6901 * block must be cow'd 6902 */ 6903 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6904 u64 *orig_start, u64 *orig_block_len, 6905 u64 *ram_bytes) 6906 { 6907 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6908 struct btrfs_path *path; 6909 int ret; 6910 struct extent_buffer *leaf; 6911 struct btrfs_root *root = BTRFS_I(inode)->root; 6912 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6913 struct btrfs_file_extent_item *fi; 6914 struct btrfs_key key; 6915 u64 disk_bytenr; 6916 u64 backref_offset; 6917 u64 extent_end; 6918 u64 num_bytes; 6919 int slot; 6920 int found_type; 6921 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6922 6923 path = btrfs_alloc_path(); 6924 if (!path) 6925 return -ENOMEM; 6926 6927 ret = btrfs_lookup_file_extent(NULL, root, path, 6928 btrfs_ino(BTRFS_I(inode)), offset, 0); 6929 if (ret < 0) 6930 goto out; 6931 6932 slot = path->slots[0]; 6933 if (ret == 1) { 6934 if (slot == 0) { 6935 /* can't find the item, must cow */ 6936 ret = 0; 6937 goto out; 6938 } 6939 slot--; 6940 } 6941 ret = 0; 6942 leaf = path->nodes[0]; 6943 btrfs_item_key_to_cpu(leaf, &key, slot); 6944 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 6945 key.type != BTRFS_EXTENT_DATA_KEY) { 6946 /* not our file or wrong item type, must cow */ 6947 goto out; 6948 } 6949 6950 if (key.offset > offset) { 6951 /* Wrong offset, must cow */ 6952 goto out; 6953 } 6954 6955 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6956 found_type = btrfs_file_extent_type(leaf, fi); 6957 if (found_type != BTRFS_FILE_EXTENT_REG && 6958 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6959 /* not a regular extent, must cow */ 6960 goto out; 6961 } 6962 6963 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6964 goto out; 6965 6966 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6967 if (extent_end <= offset) 6968 goto out; 6969 6970 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6971 if (disk_bytenr == 0) 6972 goto out; 6973 6974 if (btrfs_file_extent_compression(leaf, fi) || 6975 btrfs_file_extent_encryption(leaf, fi) || 6976 btrfs_file_extent_other_encoding(leaf, fi)) 6977 goto out; 6978 6979 /* 6980 * Do the same check as in btrfs_cross_ref_exist but without the 6981 * unnecessary search. 6982 */ 6983 if (btrfs_file_extent_generation(leaf, fi) <= 6984 btrfs_root_last_snapshot(&root->root_item)) 6985 goto out; 6986 6987 backref_offset = btrfs_file_extent_offset(leaf, fi); 6988 6989 if (orig_start) { 6990 *orig_start = key.offset - backref_offset; 6991 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6992 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6993 } 6994 6995 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 6996 goto out; 6997 6998 num_bytes = min(offset + *len, extent_end) - offset; 6999 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7000 u64 range_end; 7001 7002 range_end = round_up(offset + num_bytes, 7003 root->fs_info->sectorsize) - 1; 7004 ret = test_range_bit(io_tree, offset, range_end, 7005 EXTENT_DELALLOC, 0, NULL); 7006 if (ret) { 7007 ret = -EAGAIN; 7008 goto out; 7009 } 7010 } 7011 7012 btrfs_release_path(path); 7013 7014 /* 7015 * look for other files referencing this extent, if we 7016 * find any we must cow 7017 */ 7018 7019 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7020 key.offset - backref_offset, disk_bytenr); 7021 if (ret) { 7022 ret = 0; 7023 goto out; 7024 } 7025 7026 /* 7027 * adjust disk_bytenr and num_bytes to cover just the bytes 7028 * in this extent we are about to write. If there 7029 * are any csums in that range we have to cow in order 7030 * to keep the csums correct 7031 */ 7032 disk_bytenr += backref_offset; 7033 disk_bytenr += offset - key.offset; 7034 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7035 goto out; 7036 /* 7037 * all of the above have passed, it is safe to overwrite this extent 7038 * without cow 7039 */ 7040 *len = num_bytes; 7041 ret = 1; 7042 out: 7043 btrfs_free_path(path); 7044 return ret; 7045 } 7046 7047 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7048 struct extent_state **cached_state, int writing) 7049 { 7050 struct btrfs_ordered_extent *ordered; 7051 int ret = 0; 7052 7053 while (1) { 7054 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7055 cached_state); 7056 /* 7057 * We're concerned with the entire range that we're going to be 7058 * doing DIO to, so we need to make sure there's no ordered 7059 * extents in this range. 7060 */ 7061 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7062 lockend - lockstart + 1); 7063 7064 /* 7065 * We need to make sure there are no buffered pages in this 7066 * range either, we could have raced between the invalidate in 7067 * generic_file_direct_write and locking the extent. The 7068 * invalidate needs to happen so that reads after a write do not 7069 * get stale data. 7070 */ 7071 if (!ordered && 7072 (!writing || !filemap_range_has_page(inode->i_mapping, 7073 lockstart, lockend))) 7074 break; 7075 7076 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7077 cached_state); 7078 7079 if (ordered) { 7080 /* 7081 * If we are doing a DIO read and the ordered extent we 7082 * found is for a buffered write, we can not wait for it 7083 * to complete and retry, because if we do so we can 7084 * deadlock with concurrent buffered writes on page 7085 * locks. This happens only if our DIO read covers more 7086 * than one extent map, if at this point has already 7087 * created an ordered extent for a previous extent map 7088 * and locked its range in the inode's io tree, and a 7089 * concurrent write against that previous extent map's 7090 * range and this range started (we unlock the ranges 7091 * in the io tree only when the bios complete and 7092 * buffered writes always lock pages before attempting 7093 * to lock range in the io tree). 7094 */ 7095 if (writing || 7096 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7097 btrfs_start_ordered_extent(inode, ordered, 1); 7098 else 7099 ret = -ENOTBLK; 7100 btrfs_put_ordered_extent(ordered); 7101 } else { 7102 /* 7103 * We could trigger writeback for this range (and wait 7104 * for it to complete) and then invalidate the pages for 7105 * this range (through invalidate_inode_pages2_range()), 7106 * but that can lead us to a deadlock with a concurrent 7107 * call to readahead (a buffered read or a defrag call 7108 * triggered a readahead) on a page lock due to an 7109 * ordered dio extent we created before but did not have 7110 * yet a corresponding bio submitted (whence it can not 7111 * complete), which makes readahead wait for that 7112 * ordered extent to complete while holding a lock on 7113 * that page. 7114 */ 7115 ret = -ENOTBLK; 7116 } 7117 7118 if (ret) 7119 break; 7120 7121 cond_resched(); 7122 } 7123 7124 return ret; 7125 } 7126 7127 /* The callers of this must take lock_extent() */ 7128 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7129 u64 orig_start, u64 block_start, 7130 u64 block_len, u64 orig_block_len, 7131 u64 ram_bytes, int compress_type, 7132 int type) 7133 { 7134 struct extent_map_tree *em_tree; 7135 struct extent_map *em; 7136 int ret; 7137 7138 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7139 type == BTRFS_ORDERED_COMPRESSED || 7140 type == BTRFS_ORDERED_NOCOW || 7141 type == BTRFS_ORDERED_REGULAR); 7142 7143 em_tree = &BTRFS_I(inode)->extent_tree; 7144 em = alloc_extent_map(); 7145 if (!em) 7146 return ERR_PTR(-ENOMEM); 7147 7148 em->start = start; 7149 em->orig_start = orig_start; 7150 em->len = len; 7151 em->block_len = block_len; 7152 em->block_start = block_start; 7153 em->orig_block_len = orig_block_len; 7154 em->ram_bytes = ram_bytes; 7155 em->generation = -1; 7156 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7157 if (type == BTRFS_ORDERED_PREALLOC) { 7158 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7159 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7160 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7161 em->compress_type = compress_type; 7162 } 7163 7164 do { 7165 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7166 em->start + em->len - 1, 0); 7167 write_lock(&em_tree->lock); 7168 ret = add_extent_mapping(em_tree, em, 1); 7169 write_unlock(&em_tree->lock); 7170 /* 7171 * The caller has taken lock_extent(), who could race with us 7172 * to add em? 7173 */ 7174 } while (ret == -EEXIST); 7175 7176 if (ret) { 7177 free_extent_map(em); 7178 return ERR_PTR(ret); 7179 } 7180 7181 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7182 return em; 7183 } 7184 7185 7186 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7187 struct buffer_head *bh_result, 7188 struct inode *inode, 7189 u64 start, u64 len) 7190 { 7191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7192 7193 if (em->block_start == EXTENT_MAP_HOLE || 7194 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7195 return -ENOENT; 7196 7197 len = min(len, em->len - (start - em->start)); 7198 7199 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7200 inode->i_blkbits; 7201 bh_result->b_size = len; 7202 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7203 set_buffer_mapped(bh_result); 7204 7205 return 0; 7206 } 7207 7208 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7209 struct buffer_head *bh_result, 7210 struct inode *inode, 7211 struct btrfs_dio_data *dio_data, 7212 u64 start, u64 len) 7213 { 7214 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7215 struct extent_map *em = *map; 7216 int ret = 0; 7217 7218 /* 7219 * We don't allocate a new extent in the following cases 7220 * 7221 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7222 * existing extent. 7223 * 2) The extent is marked as PREALLOC. We're good to go here and can 7224 * just use the extent. 7225 * 7226 */ 7227 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7228 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7229 em->block_start != EXTENT_MAP_HOLE)) { 7230 int type; 7231 u64 block_start, orig_start, orig_block_len, ram_bytes; 7232 7233 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7234 type = BTRFS_ORDERED_PREALLOC; 7235 else 7236 type = BTRFS_ORDERED_NOCOW; 7237 len = min(len, em->len - (start - em->start)); 7238 block_start = em->block_start + (start - em->start); 7239 7240 if (can_nocow_extent(inode, start, &len, &orig_start, 7241 &orig_block_len, &ram_bytes) == 1 && 7242 btrfs_inc_nocow_writers(fs_info, block_start)) { 7243 struct extent_map *em2; 7244 7245 em2 = btrfs_create_dio_extent(inode, start, len, 7246 orig_start, block_start, 7247 len, orig_block_len, 7248 ram_bytes, type); 7249 btrfs_dec_nocow_writers(fs_info, block_start); 7250 if (type == BTRFS_ORDERED_PREALLOC) { 7251 free_extent_map(em); 7252 *map = em = em2; 7253 } 7254 7255 if (em2 && IS_ERR(em2)) { 7256 ret = PTR_ERR(em2); 7257 goto out; 7258 } 7259 /* 7260 * For inode marked NODATACOW or extent marked PREALLOC, 7261 * use the existing or preallocated extent, so does not 7262 * need to adjust btrfs_space_info's bytes_may_use. 7263 */ 7264 btrfs_free_reserved_data_space_noquota(inode, start, 7265 len); 7266 goto skip_cow; 7267 } 7268 } 7269 7270 /* this will cow the extent */ 7271 len = bh_result->b_size; 7272 free_extent_map(em); 7273 *map = em = btrfs_new_extent_direct(inode, start, len); 7274 if (IS_ERR(em)) { 7275 ret = PTR_ERR(em); 7276 goto out; 7277 } 7278 7279 len = min(len, em->len - (start - em->start)); 7280 7281 skip_cow: 7282 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7283 inode->i_blkbits; 7284 bh_result->b_size = len; 7285 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7286 set_buffer_mapped(bh_result); 7287 7288 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7289 set_buffer_new(bh_result); 7290 7291 /* 7292 * Need to update the i_size under the extent lock so buffered 7293 * readers will get the updated i_size when we unlock. 7294 */ 7295 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7296 i_size_write(inode, start + len); 7297 7298 WARN_ON(dio_data->reserve < len); 7299 dio_data->reserve -= len; 7300 dio_data->unsubmitted_oe_range_end = start + len; 7301 current->journal_info = dio_data; 7302 out: 7303 return ret; 7304 } 7305 7306 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7307 struct buffer_head *bh_result, int create) 7308 { 7309 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7310 struct extent_map *em; 7311 struct extent_state *cached_state = NULL; 7312 struct btrfs_dio_data *dio_data = NULL; 7313 u64 start = iblock << inode->i_blkbits; 7314 u64 lockstart, lockend; 7315 u64 len = bh_result->b_size; 7316 int ret = 0; 7317 7318 if (!create) 7319 len = min_t(u64, len, fs_info->sectorsize); 7320 7321 lockstart = start; 7322 lockend = start + len - 1; 7323 7324 if (current->journal_info) { 7325 /* 7326 * Need to pull our outstanding extents and set journal_info to NULL so 7327 * that anything that needs to check if there's a transaction doesn't get 7328 * confused. 7329 */ 7330 dio_data = current->journal_info; 7331 current->journal_info = NULL; 7332 } 7333 7334 /* 7335 * If this errors out it's because we couldn't invalidate pagecache for 7336 * this range and we need to fallback to buffered. 7337 */ 7338 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7339 create)) { 7340 ret = -ENOTBLK; 7341 goto err; 7342 } 7343 7344 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7345 if (IS_ERR(em)) { 7346 ret = PTR_ERR(em); 7347 goto unlock_err; 7348 } 7349 7350 /* 7351 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7352 * io. INLINE is special, and we could probably kludge it in here, but 7353 * it's still buffered so for safety lets just fall back to the generic 7354 * buffered path. 7355 * 7356 * For COMPRESSED we _have_ to read the entire extent in so we can 7357 * decompress it, so there will be buffering required no matter what we 7358 * do, so go ahead and fallback to buffered. 7359 * 7360 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7361 * to buffered IO. Don't blame me, this is the price we pay for using 7362 * the generic code. 7363 */ 7364 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7365 em->block_start == EXTENT_MAP_INLINE) { 7366 free_extent_map(em); 7367 ret = -ENOTBLK; 7368 goto unlock_err; 7369 } 7370 7371 if (create) { 7372 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7373 dio_data, start, len); 7374 if (ret < 0) 7375 goto unlock_err; 7376 7377 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 7378 lockend, &cached_state); 7379 } else { 7380 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7381 start, len); 7382 /* Can be negative only if we read from a hole */ 7383 if (ret < 0) { 7384 ret = 0; 7385 free_extent_map(em); 7386 goto unlock_err; 7387 } 7388 /* 7389 * We need to unlock only the end area that we aren't using. 7390 * The rest is going to be unlocked by the endio routine. 7391 */ 7392 lockstart = start + bh_result->b_size; 7393 if (lockstart < lockend) { 7394 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7395 lockstart, lockend, &cached_state); 7396 } else { 7397 free_extent_state(cached_state); 7398 } 7399 } 7400 7401 free_extent_map(em); 7402 7403 return 0; 7404 7405 unlock_err: 7406 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7407 &cached_state); 7408 err: 7409 if (dio_data) 7410 current->journal_info = dio_data; 7411 return ret; 7412 } 7413 7414 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7415 { 7416 /* 7417 * This implies a barrier so that stores to dio_bio->bi_status before 7418 * this and loads of dio_bio->bi_status after this are fully ordered. 7419 */ 7420 if (!refcount_dec_and_test(&dip->refs)) 7421 return; 7422 7423 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) { 7424 __endio_write_update_ordered(dip->inode, dip->logical_offset, 7425 dip->bytes, 7426 !dip->dio_bio->bi_status); 7427 } else { 7428 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7429 dip->logical_offset, 7430 dip->logical_offset + dip->bytes - 1); 7431 } 7432 7433 dio_end_io(dip->dio_bio); 7434 kfree(dip); 7435 } 7436 7437 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7438 int mirror_num, 7439 unsigned long bio_flags) 7440 { 7441 struct btrfs_dio_private *dip = bio->bi_private; 7442 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7443 blk_status_t ret; 7444 7445 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7446 7447 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7448 if (ret) 7449 return ret; 7450 7451 refcount_inc(&dip->refs); 7452 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7453 if (ret) 7454 refcount_dec(&dip->refs); 7455 return ret; 7456 } 7457 7458 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7459 struct btrfs_io_bio *io_bio, 7460 const bool uptodate) 7461 { 7462 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7463 const u32 sectorsize = fs_info->sectorsize; 7464 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7465 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7466 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7467 struct bio_vec bvec; 7468 struct bvec_iter iter; 7469 u64 start = io_bio->logical; 7470 int icsum = 0; 7471 blk_status_t err = BLK_STS_OK; 7472 7473 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7474 unsigned int i, nr_sectors, pgoff; 7475 7476 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7477 pgoff = bvec.bv_offset; 7478 for (i = 0; i < nr_sectors; i++) { 7479 ASSERT(pgoff < PAGE_SIZE); 7480 if (uptodate && 7481 (!csum || !check_data_csum(inode, io_bio, icsum, 7482 bvec.bv_page, pgoff, 7483 start, sectorsize))) { 7484 clean_io_failure(fs_info, failure_tree, io_tree, 7485 start, bvec.bv_page, 7486 btrfs_ino(BTRFS_I(inode)), 7487 pgoff); 7488 } else { 7489 blk_status_t status; 7490 7491 status = btrfs_submit_read_repair(inode, 7492 &io_bio->bio, 7493 start - io_bio->logical, 7494 bvec.bv_page, pgoff, 7495 start, 7496 start + sectorsize - 1, 7497 io_bio->mirror_num, 7498 submit_dio_repair_bio); 7499 if (status) 7500 err = status; 7501 } 7502 start += sectorsize; 7503 icsum++; 7504 pgoff += sectorsize; 7505 } 7506 } 7507 return err; 7508 } 7509 7510 static void __endio_write_update_ordered(struct inode *inode, 7511 const u64 offset, const u64 bytes, 7512 const bool uptodate) 7513 { 7514 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7515 struct btrfs_ordered_extent *ordered = NULL; 7516 struct btrfs_workqueue *wq; 7517 u64 ordered_offset = offset; 7518 u64 ordered_bytes = bytes; 7519 u64 last_offset; 7520 7521 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 7522 wq = fs_info->endio_freespace_worker; 7523 else 7524 wq = fs_info->endio_write_workers; 7525 7526 while (ordered_offset < offset + bytes) { 7527 last_offset = ordered_offset; 7528 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7529 &ordered_offset, 7530 ordered_bytes, 7531 uptodate)) { 7532 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7533 NULL); 7534 btrfs_queue_work(wq, &ordered->work); 7535 } 7536 /* 7537 * If btrfs_dec_test_ordered_pending does not find any ordered 7538 * extent in the range, we can exit. 7539 */ 7540 if (ordered_offset == last_offset) 7541 return; 7542 /* 7543 * Our bio might span multiple ordered extents. In this case 7544 * we keep going until we have accounted the whole dio. 7545 */ 7546 if (ordered_offset < offset + bytes) { 7547 ordered_bytes = offset + bytes - ordered_offset; 7548 ordered = NULL; 7549 } 7550 } 7551 } 7552 7553 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 7554 struct bio *bio, u64 offset) 7555 { 7556 struct inode *inode = private_data; 7557 blk_status_t ret; 7558 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 7559 BUG_ON(ret); /* -ENOMEM */ 7560 return 0; 7561 } 7562 7563 static void btrfs_end_dio_bio(struct bio *bio) 7564 { 7565 struct btrfs_dio_private *dip = bio->bi_private; 7566 blk_status_t err = bio->bi_status; 7567 7568 if (err) 7569 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7570 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7571 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7572 bio->bi_opf, 7573 (unsigned long long)bio->bi_iter.bi_sector, 7574 bio->bi_iter.bi_size, err); 7575 7576 if (bio_op(bio) == REQ_OP_READ) { 7577 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 7578 !err); 7579 } 7580 7581 if (err) 7582 dip->dio_bio->bi_status = err; 7583 7584 bio_put(bio); 7585 btrfs_dio_private_put(dip); 7586 } 7587 7588 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7589 struct inode *inode, u64 file_offset, int async_submit) 7590 { 7591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7592 struct btrfs_dio_private *dip = bio->bi_private; 7593 bool write = bio_op(bio) == REQ_OP_WRITE; 7594 blk_status_t ret; 7595 7596 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7597 if (async_submit) 7598 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7599 7600 if (!write) { 7601 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7602 if (ret) 7603 goto err; 7604 } 7605 7606 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7607 goto map; 7608 7609 if (write && async_submit) { 7610 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 7611 file_offset, inode, 7612 btrfs_submit_bio_start_direct_io); 7613 goto err; 7614 } else if (write) { 7615 /* 7616 * If we aren't doing async submit, calculate the csum of the 7617 * bio now. 7618 */ 7619 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 7620 if (ret) 7621 goto err; 7622 } else { 7623 u64 csum_offset; 7624 7625 csum_offset = file_offset - dip->logical_offset; 7626 csum_offset >>= inode->i_sb->s_blocksize_bits; 7627 csum_offset *= btrfs_super_csum_size(fs_info->super_copy); 7628 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 7629 } 7630 map: 7631 ret = btrfs_map_bio(fs_info, bio, 0); 7632 err: 7633 return ret; 7634 } 7635 7636 /* 7637 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 7638 * or ordered extents whether or not we submit any bios. 7639 */ 7640 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 7641 struct inode *inode, 7642 loff_t file_offset) 7643 { 7644 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7645 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7646 size_t dip_size; 7647 struct btrfs_dio_private *dip; 7648 7649 dip_size = sizeof(*dip); 7650 if (!write && csum) { 7651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7652 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 7653 size_t nblocks; 7654 7655 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits; 7656 dip_size += csum_size * nblocks; 7657 } 7658 7659 dip = kzalloc(dip_size, GFP_NOFS); 7660 if (!dip) 7661 return NULL; 7662 7663 dip->inode = inode; 7664 dip->logical_offset = file_offset; 7665 dip->bytes = dio_bio->bi_iter.bi_size; 7666 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 7667 dip->dio_bio = dio_bio; 7668 refcount_set(&dip->refs, 1); 7669 7670 if (write) { 7671 struct btrfs_dio_data *dio_data = current->journal_info; 7672 7673 /* 7674 * Setting range start and end to the same value means that 7675 * no cleanup will happen in btrfs_direct_IO 7676 */ 7677 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 7678 dip->bytes; 7679 dio_data->unsubmitted_oe_range_start = 7680 dio_data->unsubmitted_oe_range_end; 7681 } 7682 return dip; 7683 } 7684 7685 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 7686 loff_t file_offset) 7687 { 7688 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7689 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7690 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7691 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 7692 BTRFS_BLOCK_GROUP_RAID56_MASK); 7693 struct btrfs_dio_private *dip; 7694 struct bio *bio; 7695 u64 start_sector; 7696 int async_submit = 0; 7697 u64 submit_len; 7698 int clone_offset = 0; 7699 int clone_len; 7700 int ret; 7701 blk_status_t status; 7702 struct btrfs_io_geometry geom; 7703 7704 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 7705 if (!dip) { 7706 if (!write) { 7707 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 7708 file_offset + dio_bio->bi_iter.bi_size - 1); 7709 } 7710 dio_bio->bi_status = BLK_STS_RESOURCE; 7711 dio_end_io(dio_bio); 7712 return; 7713 } 7714 7715 if (!write && csum) { 7716 /* 7717 * Load the csums up front to reduce csum tree searches and 7718 * contention when submitting bios. 7719 */ 7720 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset, 7721 dip->csums); 7722 if (status != BLK_STS_OK) 7723 goto out_err; 7724 } 7725 7726 start_sector = dio_bio->bi_iter.bi_sector; 7727 submit_len = dio_bio->bi_iter.bi_size; 7728 7729 do { 7730 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio), 7731 start_sector << 9, submit_len, 7732 &geom); 7733 if (ret) { 7734 status = errno_to_blk_status(ret); 7735 goto out_err; 7736 } 7737 ASSERT(geom.len <= INT_MAX); 7738 7739 clone_len = min_t(int, submit_len, geom.len); 7740 7741 /* 7742 * This will never fail as it's passing GPF_NOFS and 7743 * the allocation is backed by btrfs_bioset. 7744 */ 7745 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 7746 bio->bi_private = dip; 7747 bio->bi_end_io = btrfs_end_dio_bio; 7748 btrfs_io_bio(bio)->logical = file_offset; 7749 7750 ASSERT(submit_len >= clone_len); 7751 submit_len -= clone_len; 7752 7753 /* 7754 * Increase the count before we submit the bio so we know 7755 * the end IO handler won't happen before we increase the 7756 * count. Otherwise, the dip might get freed before we're 7757 * done setting it up. 7758 * 7759 * We transfer the initial reference to the last bio, so we 7760 * don't need to increment the reference count for the last one. 7761 */ 7762 if (submit_len > 0) { 7763 refcount_inc(&dip->refs); 7764 /* 7765 * If we are submitting more than one bio, submit them 7766 * all asynchronously. The exception is RAID 5 or 6, as 7767 * asynchronous checksums make it difficult to collect 7768 * full stripe writes. 7769 */ 7770 if (!raid56) 7771 async_submit = 1; 7772 } 7773 7774 status = btrfs_submit_dio_bio(bio, inode, file_offset, 7775 async_submit); 7776 if (status) { 7777 bio_put(bio); 7778 if (submit_len > 0) 7779 refcount_dec(&dip->refs); 7780 goto out_err; 7781 } 7782 7783 clone_offset += clone_len; 7784 start_sector += clone_len >> 9; 7785 file_offset += clone_len; 7786 } while (submit_len > 0); 7787 return; 7788 7789 out_err: 7790 dip->dio_bio->bi_status = status; 7791 btrfs_dio_private_put(dip); 7792 } 7793 7794 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 7795 const struct iov_iter *iter, loff_t offset) 7796 { 7797 int seg; 7798 int i; 7799 unsigned int blocksize_mask = fs_info->sectorsize - 1; 7800 ssize_t retval = -EINVAL; 7801 7802 if (offset & blocksize_mask) 7803 goto out; 7804 7805 if (iov_iter_alignment(iter) & blocksize_mask) 7806 goto out; 7807 7808 /* If this is a write we don't need to check anymore */ 7809 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 7810 return 0; 7811 /* 7812 * Check to make sure we don't have duplicate iov_base's in this 7813 * iovec, if so return EINVAL, otherwise we'll get csum errors 7814 * when reading back. 7815 */ 7816 for (seg = 0; seg < iter->nr_segs; seg++) { 7817 for (i = seg + 1; i < iter->nr_segs; i++) { 7818 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 7819 goto out; 7820 } 7821 } 7822 retval = 0; 7823 out: 7824 return retval; 7825 } 7826 7827 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 7828 { 7829 struct file *file = iocb->ki_filp; 7830 struct inode *inode = file->f_mapping->host; 7831 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7832 struct btrfs_dio_data dio_data = { 0 }; 7833 struct extent_changeset *data_reserved = NULL; 7834 loff_t offset = iocb->ki_pos; 7835 size_t count = 0; 7836 int flags = 0; 7837 bool wakeup = true; 7838 bool relock = false; 7839 ssize_t ret; 7840 7841 if (check_direct_IO(fs_info, iter, offset)) 7842 return 0; 7843 7844 inode_dio_begin(inode); 7845 7846 /* 7847 * The generic stuff only does filemap_write_and_wait_range, which 7848 * isn't enough if we've written compressed pages to this area, so 7849 * we need to flush the dirty pages again to make absolutely sure 7850 * that any outstanding dirty pages are on disk. 7851 */ 7852 count = iov_iter_count(iter); 7853 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7854 &BTRFS_I(inode)->runtime_flags)) 7855 filemap_fdatawrite_range(inode->i_mapping, offset, 7856 offset + count - 1); 7857 7858 if (iov_iter_rw(iter) == WRITE) { 7859 /* 7860 * If the write DIO is beyond the EOF, we need update 7861 * the isize, but it is protected by i_mutex. So we can 7862 * not unlock the i_mutex at this case. 7863 */ 7864 if (offset + count <= inode->i_size) { 7865 dio_data.overwrite = 1; 7866 inode_unlock(inode); 7867 relock = true; 7868 } else if (iocb->ki_flags & IOCB_NOWAIT) { 7869 ret = -EAGAIN; 7870 goto out; 7871 } 7872 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 7873 offset, count); 7874 if (ret) 7875 goto out; 7876 7877 /* 7878 * We need to know how many extents we reserved so that we can 7879 * do the accounting properly if we go over the number we 7880 * originally calculated. Abuse current->journal_info for this. 7881 */ 7882 dio_data.reserve = round_up(count, 7883 fs_info->sectorsize); 7884 dio_data.unsubmitted_oe_range_start = (u64)offset; 7885 dio_data.unsubmitted_oe_range_end = (u64)offset; 7886 current->journal_info = &dio_data; 7887 down_read(&BTRFS_I(inode)->dio_sem); 7888 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7889 &BTRFS_I(inode)->runtime_flags)) { 7890 inode_dio_end(inode); 7891 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7892 wakeup = false; 7893 } 7894 7895 ret = __blockdev_direct_IO(iocb, inode, 7896 fs_info->fs_devices->latest_bdev, 7897 iter, btrfs_get_blocks_direct, NULL, 7898 btrfs_submit_direct, flags); 7899 if (iov_iter_rw(iter) == WRITE) { 7900 up_read(&BTRFS_I(inode)->dio_sem); 7901 current->journal_info = NULL; 7902 if (ret < 0 && ret != -EIOCBQUEUED) { 7903 if (dio_data.reserve) 7904 btrfs_delalloc_release_space(inode, data_reserved, 7905 offset, dio_data.reserve, true); 7906 /* 7907 * On error we might have left some ordered extents 7908 * without submitting corresponding bios for them, so 7909 * cleanup them up to avoid other tasks getting them 7910 * and waiting for them to complete forever. 7911 */ 7912 if (dio_data.unsubmitted_oe_range_start < 7913 dio_data.unsubmitted_oe_range_end) 7914 __endio_write_update_ordered(inode, 7915 dio_data.unsubmitted_oe_range_start, 7916 dio_data.unsubmitted_oe_range_end - 7917 dio_data.unsubmitted_oe_range_start, 7918 false); 7919 } else if (ret >= 0 && (size_t)ret < count) 7920 btrfs_delalloc_release_space(inode, data_reserved, 7921 offset, count - (size_t)ret, true); 7922 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 7923 } 7924 out: 7925 if (wakeup) 7926 inode_dio_end(inode); 7927 if (relock) 7928 inode_lock(inode); 7929 7930 extent_changeset_free(data_reserved); 7931 return ret; 7932 } 7933 7934 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7935 __u64 start, __u64 len) 7936 { 7937 int ret; 7938 7939 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7940 if (ret) 7941 return ret; 7942 7943 return extent_fiemap(inode, fieinfo, start, len); 7944 } 7945 7946 int btrfs_readpage(struct file *file, struct page *page) 7947 { 7948 return extent_read_full_page(page, btrfs_get_extent, 0); 7949 } 7950 7951 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7952 { 7953 struct inode *inode = page->mapping->host; 7954 int ret; 7955 7956 if (current->flags & PF_MEMALLOC) { 7957 redirty_page_for_writepage(wbc, page); 7958 unlock_page(page); 7959 return 0; 7960 } 7961 7962 /* 7963 * If we are under memory pressure we will call this directly from the 7964 * VM, we need to make sure we have the inode referenced for the ordered 7965 * extent. If not just return like we didn't do anything. 7966 */ 7967 if (!igrab(inode)) { 7968 redirty_page_for_writepage(wbc, page); 7969 return AOP_WRITEPAGE_ACTIVATE; 7970 } 7971 ret = extent_write_full_page(page, wbc); 7972 btrfs_add_delayed_iput(inode); 7973 return ret; 7974 } 7975 7976 static int btrfs_writepages(struct address_space *mapping, 7977 struct writeback_control *wbc) 7978 { 7979 return extent_writepages(mapping, wbc); 7980 } 7981 7982 static void btrfs_readahead(struct readahead_control *rac) 7983 { 7984 extent_readahead(rac); 7985 } 7986 7987 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7988 { 7989 int ret = try_release_extent_mapping(page, gfp_flags); 7990 if (ret == 1) 7991 detach_page_private(page); 7992 return ret; 7993 } 7994 7995 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7996 { 7997 if (PageWriteback(page) || PageDirty(page)) 7998 return 0; 7999 return __btrfs_releasepage(page, gfp_flags); 8000 } 8001 8002 #ifdef CONFIG_MIGRATION 8003 static int btrfs_migratepage(struct address_space *mapping, 8004 struct page *newpage, struct page *page, 8005 enum migrate_mode mode) 8006 { 8007 int ret; 8008 8009 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8010 if (ret != MIGRATEPAGE_SUCCESS) 8011 return ret; 8012 8013 if (page_has_private(page)) 8014 attach_page_private(newpage, detach_page_private(page)); 8015 8016 if (PagePrivate2(page)) { 8017 ClearPagePrivate2(page); 8018 SetPagePrivate2(newpage); 8019 } 8020 8021 if (mode != MIGRATE_SYNC_NO_COPY) 8022 migrate_page_copy(newpage, page); 8023 else 8024 migrate_page_states(newpage, page); 8025 return MIGRATEPAGE_SUCCESS; 8026 } 8027 #endif 8028 8029 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8030 unsigned int length) 8031 { 8032 struct inode *inode = page->mapping->host; 8033 struct extent_io_tree *tree; 8034 struct btrfs_ordered_extent *ordered; 8035 struct extent_state *cached_state = NULL; 8036 u64 page_start = page_offset(page); 8037 u64 page_end = page_start + PAGE_SIZE - 1; 8038 u64 start; 8039 u64 end; 8040 int inode_evicting = inode->i_state & I_FREEING; 8041 8042 /* 8043 * we have the page locked, so new writeback can't start, 8044 * and the dirty bit won't be cleared while we are here. 8045 * 8046 * Wait for IO on this page so that we can safely clear 8047 * the PagePrivate2 bit and do ordered accounting 8048 */ 8049 wait_on_page_writeback(page); 8050 8051 tree = &BTRFS_I(inode)->io_tree; 8052 if (offset) { 8053 btrfs_releasepage(page, GFP_NOFS); 8054 return; 8055 } 8056 8057 if (!inode_evicting) 8058 lock_extent_bits(tree, page_start, page_end, &cached_state); 8059 again: 8060 start = page_start; 8061 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8062 page_end - start + 1); 8063 if (ordered) { 8064 end = min(page_end, 8065 ordered->file_offset + ordered->num_bytes - 1); 8066 /* 8067 * IO on this page will never be started, so we need 8068 * to account for any ordered extents now 8069 */ 8070 if (!inode_evicting) 8071 clear_extent_bit(tree, start, end, 8072 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8073 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8074 EXTENT_DEFRAG, 1, 0, &cached_state); 8075 /* 8076 * whoever cleared the private bit is responsible 8077 * for the finish_ordered_io 8078 */ 8079 if (TestClearPagePrivate2(page)) { 8080 struct btrfs_ordered_inode_tree *tree; 8081 u64 new_len; 8082 8083 tree = &BTRFS_I(inode)->ordered_tree; 8084 8085 spin_lock_irq(&tree->lock); 8086 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8087 new_len = start - ordered->file_offset; 8088 if (new_len < ordered->truncated_len) 8089 ordered->truncated_len = new_len; 8090 spin_unlock_irq(&tree->lock); 8091 8092 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8093 start, 8094 end - start + 1, 1)) 8095 btrfs_finish_ordered_io(ordered); 8096 } 8097 btrfs_put_ordered_extent(ordered); 8098 if (!inode_evicting) { 8099 cached_state = NULL; 8100 lock_extent_bits(tree, start, end, 8101 &cached_state); 8102 } 8103 8104 start = end + 1; 8105 if (start < page_end) 8106 goto again; 8107 } 8108 8109 /* 8110 * Qgroup reserved space handler 8111 * Page here will be either 8112 * 1) Already written to disk 8113 * In this case, its reserved space is released from data rsv map 8114 * and will be freed by delayed_ref handler finally. 8115 * So even we call qgroup_free_data(), it won't decrease reserved 8116 * space. 8117 * 2) Not written to disk 8118 * This means the reserved space should be freed here. However, 8119 * if a truncate invalidates the page (by clearing PageDirty) 8120 * and the page is accounted for while allocating extent 8121 * in btrfs_check_data_free_space() we let delayed_ref to 8122 * free the entire extent. 8123 */ 8124 if (PageDirty(page)) 8125 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8126 if (!inode_evicting) { 8127 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8128 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8129 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8130 &cached_state); 8131 8132 __btrfs_releasepage(page, GFP_NOFS); 8133 } 8134 8135 ClearPageChecked(page); 8136 detach_page_private(page); 8137 } 8138 8139 /* 8140 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8141 * called from a page fault handler when a page is first dirtied. Hence we must 8142 * be careful to check for EOF conditions here. We set the page up correctly 8143 * for a written page which means we get ENOSPC checking when writing into 8144 * holes and correct delalloc and unwritten extent mapping on filesystems that 8145 * support these features. 8146 * 8147 * We are not allowed to take the i_mutex here so we have to play games to 8148 * protect against truncate races as the page could now be beyond EOF. Because 8149 * truncate_setsize() writes the inode size before removing pages, once we have 8150 * the page lock we can determine safely if the page is beyond EOF. If it is not 8151 * beyond EOF, then the page is guaranteed safe against truncation until we 8152 * unlock the page. 8153 */ 8154 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8155 { 8156 struct page *page = vmf->page; 8157 struct inode *inode = file_inode(vmf->vma->vm_file); 8158 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8159 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8160 struct btrfs_ordered_extent *ordered; 8161 struct extent_state *cached_state = NULL; 8162 struct extent_changeset *data_reserved = NULL; 8163 char *kaddr; 8164 unsigned long zero_start; 8165 loff_t size; 8166 vm_fault_t ret; 8167 int ret2; 8168 int reserved = 0; 8169 u64 reserved_space; 8170 u64 page_start; 8171 u64 page_end; 8172 u64 end; 8173 8174 reserved_space = PAGE_SIZE; 8175 8176 sb_start_pagefault(inode->i_sb); 8177 page_start = page_offset(page); 8178 page_end = page_start + PAGE_SIZE - 1; 8179 end = page_end; 8180 8181 /* 8182 * Reserving delalloc space after obtaining the page lock can lead to 8183 * deadlock. For example, if a dirty page is locked by this function 8184 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8185 * dirty page write out, then the btrfs_writepage() function could 8186 * end up waiting indefinitely to get a lock on the page currently 8187 * being processed by btrfs_page_mkwrite() function. 8188 */ 8189 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8190 reserved_space); 8191 if (!ret2) { 8192 ret2 = file_update_time(vmf->vma->vm_file); 8193 reserved = 1; 8194 } 8195 if (ret2) { 8196 ret = vmf_error(ret2); 8197 if (reserved) 8198 goto out; 8199 goto out_noreserve; 8200 } 8201 8202 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8203 again: 8204 lock_page(page); 8205 size = i_size_read(inode); 8206 8207 if ((page->mapping != inode->i_mapping) || 8208 (page_start >= size)) { 8209 /* page got truncated out from underneath us */ 8210 goto out_unlock; 8211 } 8212 wait_on_page_writeback(page); 8213 8214 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8215 set_page_extent_mapped(page); 8216 8217 /* 8218 * we can't set the delalloc bits if there are pending ordered 8219 * extents. Drop our locks and wait for them to finish 8220 */ 8221 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8222 PAGE_SIZE); 8223 if (ordered) { 8224 unlock_extent_cached(io_tree, page_start, page_end, 8225 &cached_state); 8226 unlock_page(page); 8227 btrfs_start_ordered_extent(inode, ordered, 1); 8228 btrfs_put_ordered_extent(ordered); 8229 goto again; 8230 } 8231 8232 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8233 reserved_space = round_up(size - page_start, 8234 fs_info->sectorsize); 8235 if (reserved_space < PAGE_SIZE) { 8236 end = page_start + reserved_space - 1; 8237 btrfs_delalloc_release_space(inode, data_reserved, 8238 page_start, PAGE_SIZE - reserved_space, 8239 true); 8240 } 8241 } 8242 8243 /* 8244 * page_mkwrite gets called when the page is firstly dirtied after it's 8245 * faulted in, but write(2) could also dirty a page and set delalloc 8246 * bits, thus in this case for space account reason, we still need to 8247 * clear any delalloc bits within this page range since we have to 8248 * reserve data&meta space before lock_page() (see above comments). 8249 */ 8250 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8251 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8252 EXTENT_DEFRAG, 0, 0, &cached_state); 8253 8254 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8255 &cached_state); 8256 if (ret2) { 8257 unlock_extent_cached(io_tree, page_start, page_end, 8258 &cached_state); 8259 ret = VM_FAULT_SIGBUS; 8260 goto out_unlock; 8261 } 8262 8263 /* page is wholly or partially inside EOF */ 8264 if (page_start + PAGE_SIZE > size) 8265 zero_start = offset_in_page(size); 8266 else 8267 zero_start = PAGE_SIZE; 8268 8269 if (zero_start != PAGE_SIZE) { 8270 kaddr = kmap(page); 8271 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8272 flush_dcache_page(page); 8273 kunmap(page); 8274 } 8275 ClearPageChecked(page); 8276 set_page_dirty(page); 8277 SetPageUptodate(page); 8278 8279 BTRFS_I(inode)->last_trans = fs_info->generation; 8280 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8281 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8282 8283 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8284 8285 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8286 sb_end_pagefault(inode->i_sb); 8287 extent_changeset_free(data_reserved); 8288 return VM_FAULT_LOCKED; 8289 8290 out_unlock: 8291 unlock_page(page); 8292 out: 8293 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8294 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8295 reserved_space, (ret != 0)); 8296 out_noreserve: 8297 sb_end_pagefault(inode->i_sb); 8298 extent_changeset_free(data_reserved); 8299 return ret; 8300 } 8301 8302 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8303 { 8304 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8305 struct btrfs_root *root = BTRFS_I(inode)->root; 8306 struct btrfs_block_rsv *rsv; 8307 int ret; 8308 struct btrfs_trans_handle *trans; 8309 u64 mask = fs_info->sectorsize - 1; 8310 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8311 8312 if (!skip_writeback) { 8313 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8314 (u64)-1); 8315 if (ret) 8316 return ret; 8317 } 8318 8319 /* 8320 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8321 * things going on here: 8322 * 8323 * 1) We need to reserve space to update our inode. 8324 * 8325 * 2) We need to have something to cache all the space that is going to 8326 * be free'd up by the truncate operation, but also have some slack 8327 * space reserved in case it uses space during the truncate (thank you 8328 * very much snapshotting). 8329 * 8330 * And we need these to be separate. The fact is we can use a lot of 8331 * space doing the truncate, and we have no earthly idea how much space 8332 * we will use, so we need the truncate reservation to be separate so it 8333 * doesn't end up using space reserved for updating the inode. We also 8334 * need to be able to stop the transaction and start a new one, which 8335 * means we need to be able to update the inode several times, and we 8336 * have no idea of knowing how many times that will be, so we can't just 8337 * reserve 1 item for the entirety of the operation, so that has to be 8338 * done separately as well. 8339 * 8340 * So that leaves us with 8341 * 8342 * 1) rsv - for the truncate reservation, which we will steal from the 8343 * transaction reservation. 8344 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8345 * updating the inode. 8346 */ 8347 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8348 if (!rsv) 8349 return -ENOMEM; 8350 rsv->size = min_size; 8351 rsv->failfast = 1; 8352 8353 /* 8354 * 1 for the truncate slack space 8355 * 1 for updating the inode. 8356 */ 8357 trans = btrfs_start_transaction(root, 2); 8358 if (IS_ERR(trans)) { 8359 ret = PTR_ERR(trans); 8360 goto out; 8361 } 8362 8363 /* Migrate the slack space for the truncate to our reserve */ 8364 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8365 min_size, false); 8366 BUG_ON(ret); 8367 8368 /* 8369 * So if we truncate and then write and fsync we normally would just 8370 * write the extents that changed, which is a problem if we need to 8371 * first truncate that entire inode. So set this flag so we write out 8372 * all of the extents in the inode to the sync log so we're completely 8373 * safe. 8374 */ 8375 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8376 trans->block_rsv = rsv; 8377 8378 while (1) { 8379 ret = btrfs_truncate_inode_items(trans, root, inode, 8380 inode->i_size, 8381 BTRFS_EXTENT_DATA_KEY); 8382 trans->block_rsv = &fs_info->trans_block_rsv; 8383 if (ret != -ENOSPC && ret != -EAGAIN) 8384 break; 8385 8386 ret = btrfs_update_inode(trans, root, inode); 8387 if (ret) 8388 break; 8389 8390 btrfs_end_transaction(trans); 8391 btrfs_btree_balance_dirty(fs_info); 8392 8393 trans = btrfs_start_transaction(root, 2); 8394 if (IS_ERR(trans)) { 8395 ret = PTR_ERR(trans); 8396 trans = NULL; 8397 break; 8398 } 8399 8400 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8401 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8402 rsv, min_size, false); 8403 BUG_ON(ret); /* shouldn't happen */ 8404 trans->block_rsv = rsv; 8405 } 8406 8407 /* 8408 * We can't call btrfs_truncate_block inside a trans handle as we could 8409 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8410 * we've truncated everything except the last little bit, and can do 8411 * btrfs_truncate_block and then update the disk_i_size. 8412 */ 8413 if (ret == NEED_TRUNCATE_BLOCK) { 8414 btrfs_end_transaction(trans); 8415 btrfs_btree_balance_dirty(fs_info); 8416 8417 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 8418 if (ret) 8419 goto out; 8420 trans = btrfs_start_transaction(root, 1); 8421 if (IS_ERR(trans)) { 8422 ret = PTR_ERR(trans); 8423 goto out; 8424 } 8425 btrfs_inode_safe_disk_i_size_write(inode, 0); 8426 } 8427 8428 if (trans) { 8429 int ret2; 8430 8431 trans->block_rsv = &fs_info->trans_block_rsv; 8432 ret2 = btrfs_update_inode(trans, root, inode); 8433 if (ret2 && !ret) 8434 ret = ret2; 8435 8436 ret2 = btrfs_end_transaction(trans); 8437 if (ret2 && !ret) 8438 ret = ret2; 8439 btrfs_btree_balance_dirty(fs_info); 8440 } 8441 out: 8442 btrfs_free_block_rsv(fs_info, rsv); 8443 8444 return ret; 8445 } 8446 8447 /* 8448 * create a new subvolume directory/inode (helper for the ioctl). 8449 */ 8450 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8451 struct btrfs_root *new_root, 8452 struct btrfs_root *parent_root, 8453 u64 new_dirid) 8454 { 8455 struct inode *inode; 8456 int err; 8457 u64 index = 0; 8458 8459 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8460 new_dirid, new_dirid, 8461 S_IFDIR | (~current_umask() & S_IRWXUGO), 8462 &index); 8463 if (IS_ERR(inode)) 8464 return PTR_ERR(inode); 8465 inode->i_op = &btrfs_dir_inode_operations; 8466 inode->i_fop = &btrfs_dir_file_operations; 8467 8468 set_nlink(inode, 1); 8469 btrfs_i_size_write(BTRFS_I(inode), 0); 8470 unlock_new_inode(inode); 8471 8472 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8473 if (err) 8474 btrfs_err(new_root->fs_info, 8475 "error inheriting subvolume %llu properties: %d", 8476 new_root->root_key.objectid, err); 8477 8478 err = btrfs_update_inode(trans, new_root, inode); 8479 8480 iput(inode); 8481 return err; 8482 } 8483 8484 struct inode *btrfs_alloc_inode(struct super_block *sb) 8485 { 8486 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8487 struct btrfs_inode *ei; 8488 struct inode *inode; 8489 8490 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8491 if (!ei) 8492 return NULL; 8493 8494 ei->root = NULL; 8495 ei->generation = 0; 8496 ei->last_trans = 0; 8497 ei->last_sub_trans = 0; 8498 ei->logged_trans = 0; 8499 ei->delalloc_bytes = 0; 8500 ei->new_delalloc_bytes = 0; 8501 ei->defrag_bytes = 0; 8502 ei->disk_i_size = 0; 8503 ei->flags = 0; 8504 ei->csum_bytes = 0; 8505 ei->index_cnt = (u64)-1; 8506 ei->dir_index = 0; 8507 ei->last_unlink_trans = 0; 8508 ei->last_log_commit = 0; 8509 8510 spin_lock_init(&ei->lock); 8511 ei->outstanding_extents = 0; 8512 if (sb->s_magic != BTRFS_TEST_MAGIC) 8513 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8514 BTRFS_BLOCK_RSV_DELALLOC); 8515 ei->runtime_flags = 0; 8516 ei->prop_compress = BTRFS_COMPRESS_NONE; 8517 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8518 8519 ei->delayed_node = NULL; 8520 8521 ei->i_otime.tv_sec = 0; 8522 ei->i_otime.tv_nsec = 0; 8523 8524 inode = &ei->vfs_inode; 8525 extent_map_tree_init(&ei->extent_tree); 8526 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8527 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8528 IO_TREE_INODE_IO_FAILURE, inode); 8529 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8530 IO_TREE_INODE_FILE_EXTENT, inode); 8531 ei->io_tree.track_uptodate = true; 8532 ei->io_failure_tree.track_uptodate = true; 8533 atomic_set(&ei->sync_writers, 0); 8534 mutex_init(&ei->log_mutex); 8535 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8536 INIT_LIST_HEAD(&ei->delalloc_inodes); 8537 INIT_LIST_HEAD(&ei->delayed_iput); 8538 RB_CLEAR_NODE(&ei->rb_node); 8539 init_rwsem(&ei->dio_sem); 8540 8541 return inode; 8542 } 8543 8544 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8545 void btrfs_test_destroy_inode(struct inode *inode) 8546 { 8547 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8548 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8549 } 8550 #endif 8551 8552 void btrfs_free_inode(struct inode *inode) 8553 { 8554 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8555 } 8556 8557 void btrfs_destroy_inode(struct inode *inode) 8558 { 8559 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8560 struct btrfs_ordered_extent *ordered; 8561 struct btrfs_root *root = BTRFS_I(inode)->root; 8562 8563 WARN_ON(!hlist_empty(&inode->i_dentry)); 8564 WARN_ON(inode->i_data.nrpages); 8565 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 8566 WARN_ON(BTRFS_I(inode)->block_rsv.size); 8567 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8568 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8569 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 8570 WARN_ON(BTRFS_I(inode)->csum_bytes); 8571 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8572 8573 /* 8574 * This can happen where we create an inode, but somebody else also 8575 * created the same inode and we need to destroy the one we already 8576 * created. 8577 */ 8578 if (!root) 8579 return; 8580 8581 while (1) { 8582 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8583 if (!ordered) 8584 break; 8585 else { 8586 btrfs_err(fs_info, 8587 "found ordered extent %llu %llu on inode cleanup", 8588 ordered->file_offset, ordered->num_bytes); 8589 btrfs_remove_ordered_extent(inode, ordered); 8590 btrfs_put_ordered_extent(ordered); 8591 btrfs_put_ordered_extent(ordered); 8592 } 8593 } 8594 btrfs_qgroup_check_reserved_leak(inode); 8595 inode_tree_del(inode); 8596 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8597 btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1); 8598 btrfs_put_root(BTRFS_I(inode)->root); 8599 } 8600 8601 int btrfs_drop_inode(struct inode *inode) 8602 { 8603 struct btrfs_root *root = BTRFS_I(inode)->root; 8604 8605 if (root == NULL) 8606 return 1; 8607 8608 /* the snap/subvol tree is on deleting */ 8609 if (btrfs_root_refs(&root->root_item) == 0) 8610 return 1; 8611 else 8612 return generic_drop_inode(inode); 8613 } 8614 8615 static void init_once(void *foo) 8616 { 8617 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8618 8619 inode_init_once(&ei->vfs_inode); 8620 } 8621 8622 void __cold btrfs_destroy_cachep(void) 8623 { 8624 /* 8625 * Make sure all delayed rcu free inodes are flushed before we 8626 * destroy cache. 8627 */ 8628 rcu_barrier(); 8629 kmem_cache_destroy(btrfs_inode_cachep); 8630 kmem_cache_destroy(btrfs_trans_handle_cachep); 8631 kmem_cache_destroy(btrfs_path_cachep); 8632 kmem_cache_destroy(btrfs_free_space_cachep); 8633 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8634 } 8635 8636 int __init btrfs_init_cachep(void) 8637 { 8638 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8639 sizeof(struct btrfs_inode), 0, 8640 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8641 init_once); 8642 if (!btrfs_inode_cachep) 8643 goto fail; 8644 8645 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8646 sizeof(struct btrfs_trans_handle), 0, 8647 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8648 if (!btrfs_trans_handle_cachep) 8649 goto fail; 8650 8651 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8652 sizeof(struct btrfs_path), 0, 8653 SLAB_MEM_SPREAD, NULL); 8654 if (!btrfs_path_cachep) 8655 goto fail; 8656 8657 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8658 sizeof(struct btrfs_free_space), 0, 8659 SLAB_MEM_SPREAD, NULL); 8660 if (!btrfs_free_space_cachep) 8661 goto fail; 8662 8663 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8664 PAGE_SIZE, PAGE_SIZE, 8665 SLAB_RED_ZONE, NULL); 8666 if (!btrfs_free_space_bitmap_cachep) 8667 goto fail; 8668 8669 return 0; 8670 fail: 8671 btrfs_destroy_cachep(); 8672 return -ENOMEM; 8673 } 8674 8675 static int btrfs_getattr(const struct path *path, struct kstat *stat, 8676 u32 request_mask, unsigned int flags) 8677 { 8678 u64 delalloc_bytes; 8679 struct inode *inode = d_inode(path->dentry); 8680 u32 blocksize = inode->i_sb->s_blocksize; 8681 u32 bi_flags = BTRFS_I(inode)->flags; 8682 8683 stat->result_mask |= STATX_BTIME; 8684 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8685 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8686 if (bi_flags & BTRFS_INODE_APPEND) 8687 stat->attributes |= STATX_ATTR_APPEND; 8688 if (bi_flags & BTRFS_INODE_COMPRESS) 8689 stat->attributes |= STATX_ATTR_COMPRESSED; 8690 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8691 stat->attributes |= STATX_ATTR_IMMUTABLE; 8692 if (bi_flags & BTRFS_INODE_NODUMP) 8693 stat->attributes |= STATX_ATTR_NODUMP; 8694 8695 stat->attributes_mask |= (STATX_ATTR_APPEND | 8696 STATX_ATTR_COMPRESSED | 8697 STATX_ATTR_IMMUTABLE | 8698 STATX_ATTR_NODUMP); 8699 8700 generic_fillattr(inode, stat); 8701 stat->dev = BTRFS_I(inode)->root->anon_dev; 8702 8703 spin_lock(&BTRFS_I(inode)->lock); 8704 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8705 spin_unlock(&BTRFS_I(inode)->lock); 8706 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8707 ALIGN(delalloc_bytes, blocksize)) >> 9; 8708 return 0; 8709 } 8710 8711 static int btrfs_rename_exchange(struct inode *old_dir, 8712 struct dentry *old_dentry, 8713 struct inode *new_dir, 8714 struct dentry *new_dentry) 8715 { 8716 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8717 struct btrfs_trans_handle *trans; 8718 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8719 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8720 struct inode *new_inode = new_dentry->d_inode; 8721 struct inode *old_inode = old_dentry->d_inode; 8722 struct timespec64 ctime = current_time(old_inode); 8723 struct dentry *parent; 8724 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8725 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8726 u64 old_idx = 0; 8727 u64 new_idx = 0; 8728 int ret; 8729 bool root_log_pinned = false; 8730 bool dest_log_pinned = false; 8731 struct btrfs_log_ctx ctx_root; 8732 struct btrfs_log_ctx ctx_dest; 8733 bool sync_log_root = false; 8734 bool sync_log_dest = false; 8735 bool commit_transaction = false; 8736 8737 /* we only allow rename subvolume link between subvolumes */ 8738 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8739 return -EXDEV; 8740 8741 btrfs_init_log_ctx(&ctx_root, old_inode); 8742 btrfs_init_log_ctx(&ctx_dest, new_inode); 8743 8744 /* close the race window with snapshot create/destroy ioctl */ 8745 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8746 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8747 down_read(&fs_info->subvol_sem); 8748 8749 /* 8750 * We want to reserve the absolute worst case amount of items. So if 8751 * both inodes are subvols and we need to unlink them then that would 8752 * require 4 item modifications, but if they are both normal inodes it 8753 * would require 5 item modifications, so we'll assume their normal 8754 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 8755 * should cover the worst case number of items we'll modify. 8756 */ 8757 trans = btrfs_start_transaction(root, 12); 8758 if (IS_ERR(trans)) { 8759 ret = PTR_ERR(trans); 8760 goto out_notrans; 8761 } 8762 8763 if (dest != root) 8764 btrfs_record_root_in_trans(trans, dest); 8765 8766 /* 8767 * We need to find a free sequence number both in the source and 8768 * in the destination directory for the exchange. 8769 */ 8770 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8771 if (ret) 8772 goto out_fail; 8773 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8774 if (ret) 8775 goto out_fail; 8776 8777 BTRFS_I(old_inode)->dir_index = 0ULL; 8778 BTRFS_I(new_inode)->dir_index = 0ULL; 8779 8780 /* Reference for the source. */ 8781 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8782 /* force full log commit if subvolume involved. */ 8783 btrfs_set_log_full_commit(trans); 8784 } else { 8785 btrfs_pin_log_trans(root); 8786 root_log_pinned = true; 8787 ret = btrfs_insert_inode_ref(trans, dest, 8788 new_dentry->d_name.name, 8789 new_dentry->d_name.len, 8790 old_ino, 8791 btrfs_ino(BTRFS_I(new_dir)), 8792 old_idx); 8793 if (ret) 8794 goto out_fail; 8795 } 8796 8797 /* And now for the dest. */ 8798 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8799 /* force full log commit if subvolume involved. */ 8800 btrfs_set_log_full_commit(trans); 8801 } else { 8802 btrfs_pin_log_trans(dest); 8803 dest_log_pinned = true; 8804 ret = btrfs_insert_inode_ref(trans, root, 8805 old_dentry->d_name.name, 8806 old_dentry->d_name.len, 8807 new_ino, 8808 btrfs_ino(BTRFS_I(old_dir)), 8809 new_idx); 8810 if (ret) 8811 goto out_fail; 8812 } 8813 8814 /* Update inode version and ctime/mtime. */ 8815 inode_inc_iversion(old_dir); 8816 inode_inc_iversion(new_dir); 8817 inode_inc_iversion(old_inode); 8818 inode_inc_iversion(new_inode); 8819 old_dir->i_ctime = old_dir->i_mtime = ctime; 8820 new_dir->i_ctime = new_dir->i_mtime = ctime; 8821 old_inode->i_ctime = ctime; 8822 new_inode->i_ctime = ctime; 8823 8824 if (old_dentry->d_parent != new_dentry->d_parent) { 8825 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8826 BTRFS_I(old_inode), 1); 8827 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8828 BTRFS_I(new_inode), 1); 8829 } 8830 8831 /* src is a subvolume */ 8832 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8833 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 8834 } else { /* src is an inode */ 8835 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 8836 BTRFS_I(old_dentry->d_inode), 8837 old_dentry->d_name.name, 8838 old_dentry->d_name.len); 8839 if (!ret) 8840 ret = btrfs_update_inode(trans, root, old_inode); 8841 } 8842 if (ret) { 8843 btrfs_abort_transaction(trans, ret); 8844 goto out_fail; 8845 } 8846 8847 /* dest is a subvolume */ 8848 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8849 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 8850 } else { /* dest is an inode */ 8851 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 8852 BTRFS_I(new_dentry->d_inode), 8853 new_dentry->d_name.name, 8854 new_dentry->d_name.len); 8855 if (!ret) 8856 ret = btrfs_update_inode(trans, dest, new_inode); 8857 } 8858 if (ret) { 8859 btrfs_abort_transaction(trans, ret); 8860 goto out_fail; 8861 } 8862 8863 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8864 new_dentry->d_name.name, 8865 new_dentry->d_name.len, 0, old_idx); 8866 if (ret) { 8867 btrfs_abort_transaction(trans, ret); 8868 goto out_fail; 8869 } 8870 8871 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8872 old_dentry->d_name.name, 8873 old_dentry->d_name.len, 0, new_idx); 8874 if (ret) { 8875 btrfs_abort_transaction(trans, ret); 8876 goto out_fail; 8877 } 8878 8879 if (old_inode->i_nlink == 1) 8880 BTRFS_I(old_inode)->dir_index = old_idx; 8881 if (new_inode->i_nlink == 1) 8882 BTRFS_I(new_inode)->dir_index = new_idx; 8883 8884 if (root_log_pinned) { 8885 parent = new_dentry->d_parent; 8886 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 8887 BTRFS_I(old_dir), parent, 8888 false, &ctx_root); 8889 if (ret == BTRFS_NEED_LOG_SYNC) 8890 sync_log_root = true; 8891 else if (ret == BTRFS_NEED_TRANS_COMMIT) 8892 commit_transaction = true; 8893 ret = 0; 8894 btrfs_end_log_trans(root); 8895 root_log_pinned = false; 8896 } 8897 if (dest_log_pinned) { 8898 if (!commit_transaction) { 8899 parent = old_dentry->d_parent; 8900 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 8901 BTRFS_I(new_dir), parent, 8902 false, &ctx_dest); 8903 if (ret == BTRFS_NEED_LOG_SYNC) 8904 sync_log_dest = true; 8905 else if (ret == BTRFS_NEED_TRANS_COMMIT) 8906 commit_transaction = true; 8907 ret = 0; 8908 } 8909 btrfs_end_log_trans(dest); 8910 dest_log_pinned = false; 8911 } 8912 out_fail: 8913 /* 8914 * If we have pinned a log and an error happened, we unpin tasks 8915 * trying to sync the log and force them to fallback to a transaction 8916 * commit if the log currently contains any of the inodes involved in 8917 * this rename operation (to ensure we do not persist a log with an 8918 * inconsistent state for any of these inodes or leading to any 8919 * inconsistencies when replayed). If the transaction was aborted, the 8920 * abortion reason is propagated to userspace when attempting to commit 8921 * the transaction. If the log does not contain any of these inodes, we 8922 * allow the tasks to sync it. 8923 */ 8924 if (ret && (root_log_pinned || dest_log_pinned)) { 8925 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 8926 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 8927 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 8928 (new_inode && 8929 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 8930 btrfs_set_log_full_commit(trans); 8931 8932 if (root_log_pinned) { 8933 btrfs_end_log_trans(root); 8934 root_log_pinned = false; 8935 } 8936 if (dest_log_pinned) { 8937 btrfs_end_log_trans(dest); 8938 dest_log_pinned = false; 8939 } 8940 } 8941 if (!ret && sync_log_root && !commit_transaction) { 8942 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 8943 &ctx_root); 8944 if (ret) 8945 commit_transaction = true; 8946 } 8947 if (!ret && sync_log_dest && !commit_transaction) { 8948 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 8949 &ctx_dest); 8950 if (ret) 8951 commit_transaction = true; 8952 } 8953 if (commit_transaction) { 8954 /* 8955 * We may have set commit_transaction when logging the new name 8956 * in the destination root, in which case we left the source 8957 * root context in the list of log contextes. So make sure we 8958 * remove it to avoid invalid memory accesses, since the context 8959 * was allocated in our stack frame. 8960 */ 8961 if (sync_log_root) { 8962 mutex_lock(&root->log_mutex); 8963 list_del_init(&ctx_root.list); 8964 mutex_unlock(&root->log_mutex); 8965 } 8966 ret = btrfs_commit_transaction(trans); 8967 } else { 8968 int ret2; 8969 8970 ret2 = btrfs_end_transaction(trans); 8971 ret = ret ? ret : ret2; 8972 } 8973 out_notrans: 8974 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8975 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8976 up_read(&fs_info->subvol_sem); 8977 8978 ASSERT(list_empty(&ctx_root.list)); 8979 ASSERT(list_empty(&ctx_dest.list)); 8980 8981 return ret; 8982 } 8983 8984 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 8985 struct btrfs_root *root, 8986 struct inode *dir, 8987 struct dentry *dentry) 8988 { 8989 int ret; 8990 struct inode *inode; 8991 u64 objectid; 8992 u64 index; 8993 8994 ret = btrfs_find_free_ino(root, &objectid); 8995 if (ret) 8996 return ret; 8997 8998 inode = btrfs_new_inode(trans, root, dir, 8999 dentry->d_name.name, 9000 dentry->d_name.len, 9001 btrfs_ino(BTRFS_I(dir)), 9002 objectid, 9003 S_IFCHR | WHITEOUT_MODE, 9004 &index); 9005 9006 if (IS_ERR(inode)) { 9007 ret = PTR_ERR(inode); 9008 return ret; 9009 } 9010 9011 inode->i_op = &btrfs_special_inode_operations; 9012 init_special_inode(inode, inode->i_mode, 9013 WHITEOUT_DEV); 9014 9015 ret = btrfs_init_inode_security(trans, inode, dir, 9016 &dentry->d_name); 9017 if (ret) 9018 goto out; 9019 9020 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9021 BTRFS_I(inode), 0, index); 9022 if (ret) 9023 goto out; 9024 9025 ret = btrfs_update_inode(trans, root, inode); 9026 out: 9027 unlock_new_inode(inode); 9028 if (ret) 9029 inode_dec_link_count(inode); 9030 iput(inode); 9031 9032 return ret; 9033 } 9034 9035 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9036 struct inode *new_dir, struct dentry *new_dentry, 9037 unsigned int flags) 9038 { 9039 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9040 struct btrfs_trans_handle *trans; 9041 unsigned int trans_num_items; 9042 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9043 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9044 struct inode *new_inode = d_inode(new_dentry); 9045 struct inode *old_inode = d_inode(old_dentry); 9046 u64 index = 0; 9047 int ret; 9048 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9049 bool log_pinned = false; 9050 struct btrfs_log_ctx ctx; 9051 bool sync_log = false; 9052 bool commit_transaction = false; 9053 9054 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9055 return -EPERM; 9056 9057 /* we only allow rename subvolume link between subvolumes */ 9058 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9059 return -EXDEV; 9060 9061 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9062 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9063 return -ENOTEMPTY; 9064 9065 if (S_ISDIR(old_inode->i_mode) && new_inode && 9066 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9067 return -ENOTEMPTY; 9068 9069 9070 /* check for collisions, even if the name isn't there */ 9071 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9072 new_dentry->d_name.name, 9073 new_dentry->d_name.len); 9074 9075 if (ret) { 9076 if (ret == -EEXIST) { 9077 /* we shouldn't get 9078 * eexist without a new_inode */ 9079 if (WARN_ON(!new_inode)) { 9080 return ret; 9081 } 9082 } else { 9083 /* maybe -EOVERFLOW */ 9084 return ret; 9085 } 9086 } 9087 ret = 0; 9088 9089 /* 9090 * we're using rename to replace one file with another. Start IO on it 9091 * now so we don't add too much work to the end of the transaction 9092 */ 9093 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9094 filemap_flush(old_inode->i_mapping); 9095 9096 /* close the racy window with snapshot create/destroy ioctl */ 9097 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9098 down_read(&fs_info->subvol_sem); 9099 /* 9100 * We want to reserve the absolute worst case amount of items. So if 9101 * both inodes are subvols and we need to unlink them then that would 9102 * require 4 item modifications, but if they are both normal inodes it 9103 * would require 5 item modifications, so we'll assume they are normal 9104 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9105 * should cover the worst case number of items we'll modify. 9106 * If our rename has the whiteout flag, we need more 5 units for the 9107 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9108 * when selinux is enabled). 9109 */ 9110 trans_num_items = 11; 9111 if (flags & RENAME_WHITEOUT) 9112 trans_num_items += 5; 9113 trans = btrfs_start_transaction(root, trans_num_items); 9114 if (IS_ERR(trans)) { 9115 ret = PTR_ERR(trans); 9116 goto out_notrans; 9117 } 9118 9119 if (dest != root) 9120 btrfs_record_root_in_trans(trans, dest); 9121 9122 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9123 if (ret) 9124 goto out_fail; 9125 9126 BTRFS_I(old_inode)->dir_index = 0ULL; 9127 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9128 /* force full log commit if subvolume involved. */ 9129 btrfs_set_log_full_commit(trans); 9130 } else { 9131 btrfs_pin_log_trans(root); 9132 log_pinned = true; 9133 ret = btrfs_insert_inode_ref(trans, dest, 9134 new_dentry->d_name.name, 9135 new_dentry->d_name.len, 9136 old_ino, 9137 btrfs_ino(BTRFS_I(new_dir)), index); 9138 if (ret) 9139 goto out_fail; 9140 } 9141 9142 inode_inc_iversion(old_dir); 9143 inode_inc_iversion(new_dir); 9144 inode_inc_iversion(old_inode); 9145 old_dir->i_ctime = old_dir->i_mtime = 9146 new_dir->i_ctime = new_dir->i_mtime = 9147 old_inode->i_ctime = current_time(old_dir); 9148 9149 if (old_dentry->d_parent != new_dentry->d_parent) 9150 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9151 BTRFS_I(old_inode), 1); 9152 9153 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9154 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9155 } else { 9156 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9157 BTRFS_I(d_inode(old_dentry)), 9158 old_dentry->d_name.name, 9159 old_dentry->d_name.len); 9160 if (!ret) 9161 ret = btrfs_update_inode(trans, root, old_inode); 9162 } 9163 if (ret) { 9164 btrfs_abort_transaction(trans, ret); 9165 goto out_fail; 9166 } 9167 9168 if (new_inode) { 9169 inode_inc_iversion(new_inode); 9170 new_inode->i_ctime = current_time(new_inode); 9171 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9172 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9173 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9174 BUG_ON(new_inode->i_nlink == 0); 9175 } else { 9176 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9177 BTRFS_I(d_inode(new_dentry)), 9178 new_dentry->d_name.name, 9179 new_dentry->d_name.len); 9180 } 9181 if (!ret && new_inode->i_nlink == 0) 9182 ret = btrfs_orphan_add(trans, 9183 BTRFS_I(d_inode(new_dentry))); 9184 if (ret) { 9185 btrfs_abort_transaction(trans, ret); 9186 goto out_fail; 9187 } 9188 } 9189 9190 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9191 new_dentry->d_name.name, 9192 new_dentry->d_name.len, 0, index); 9193 if (ret) { 9194 btrfs_abort_transaction(trans, ret); 9195 goto out_fail; 9196 } 9197 9198 if (old_inode->i_nlink == 1) 9199 BTRFS_I(old_inode)->dir_index = index; 9200 9201 if (log_pinned) { 9202 struct dentry *parent = new_dentry->d_parent; 9203 9204 btrfs_init_log_ctx(&ctx, old_inode); 9205 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9206 BTRFS_I(old_dir), parent, 9207 false, &ctx); 9208 if (ret == BTRFS_NEED_LOG_SYNC) 9209 sync_log = true; 9210 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9211 commit_transaction = true; 9212 ret = 0; 9213 btrfs_end_log_trans(root); 9214 log_pinned = false; 9215 } 9216 9217 if (flags & RENAME_WHITEOUT) { 9218 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9219 old_dentry); 9220 9221 if (ret) { 9222 btrfs_abort_transaction(trans, ret); 9223 goto out_fail; 9224 } 9225 } 9226 out_fail: 9227 /* 9228 * If we have pinned the log and an error happened, we unpin tasks 9229 * trying to sync the log and force them to fallback to a transaction 9230 * commit if the log currently contains any of the inodes involved in 9231 * this rename operation (to ensure we do not persist a log with an 9232 * inconsistent state for any of these inodes or leading to any 9233 * inconsistencies when replayed). If the transaction was aborted, the 9234 * abortion reason is propagated to userspace when attempting to commit 9235 * the transaction. If the log does not contain any of these inodes, we 9236 * allow the tasks to sync it. 9237 */ 9238 if (ret && log_pinned) { 9239 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9240 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9241 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9242 (new_inode && 9243 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9244 btrfs_set_log_full_commit(trans); 9245 9246 btrfs_end_log_trans(root); 9247 log_pinned = false; 9248 } 9249 if (!ret && sync_log) { 9250 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9251 if (ret) 9252 commit_transaction = true; 9253 } else if (sync_log) { 9254 mutex_lock(&root->log_mutex); 9255 list_del(&ctx.list); 9256 mutex_unlock(&root->log_mutex); 9257 } 9258 if (commit_transaction) { 9259 ret = btrfs_commit_transaction(trans); 9260 } else { 9261 int ret2; 9262 9263 ret2 = btrfs_end_transaction(trans); 9264 ret = ret ? ret : ret2; 9265 } 9266 out_notrans: 9267 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9268 up_read(&fs_info->subvol_sem); 9269 9270 return ret; 9271 } 9272 9273 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9274 struct inode *new_dir, struct dentry *new_dentry, 9275 unsigned int flags) 9276 { 9277 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9278 return -EINVAL; 9279 9280 if (flags & RENAME_EXCHANGE) 9281 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9282 new_dentry); 9283 9284 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9285 } 9286 9287 struct btrfs_delalloc_work { 9288 struct inode *inode; 9289 struct completion completion; 9290 struct list_head list; 9291 struct btrfs_work work; 9292 }; 9293 9294 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9295 { 9296 struct btrfs_delalloc_work *delalloc_work; 9297 struct inode *inode; 9298 9299 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9300 work); 9301 inode = delalloc_work->inode; 9302 filemap_flush(inode->i_mapping); 9303 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9304 &BTRFS_I(inode)->runtime_flags)) 9305 filemap_flush(inode->i_mapping); 9306 9307 iput(inode); 9308 complete(&delalloc_work->completion); 9309 } 9310 9311 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9312 { 9313 struct btrfs_delalloc_work *work; 9314 9315 work = kmalloc(sizeof(*work), GFP_NOFS); 9316 if (!work) 9317 return NULL; 9318 9319 init_completion(&work->completion); 9320 INIT_LIST_HEAD(&work->list); 9321 work->inode = inode; 9322 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9323 9324 return work; 9325 } 9326 9327 /* 9328 * some fairly slow code that needs optimization. This walks the list 9329 * of all the inodes with pending delalloc and forces them to disk. 9330 */ 9331 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 9332 { 9333 struct btrfs_inode *binode; 9334 struct inode *inode; 9335 struct btrfs_delalloc_work *work, *next; 9336 struct list_head works; 9337 struct list_head splice; 9338 int ret = 0; 9339 9340 INIT_LIST_HEAD(&works); 9341 INIT_LIST_HEAD(&splice); 9342 9343 mutex_lock(&root->delalloc_mutex); 9344 spin_lock(&root->delalloc_lock); 9345 list_splice_init(&root->delalloc_inodes, &splice); 9346 while (!list_empty(&splice)) { 9347 binode = list_entry(splice.next, struct btrfs_inode, 9348 delalloc_inodes); 9349 9350 list_move_tail(&binode->delalloc_inodes, 9351 &root->delalloc_inodes); 9352 inode = igrab(&binode->vfs_inode); 9353 if (!inode) { 9354 cond_resched_lock(&root->delalloc_lock); 9355 continue; 9356 } 9357 spin_unlock(&root->delalloc_lock); 9358 9359 if (snapshot) 9360 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9361 &binode->runtime_flags); 9362 work = btrfs_alloc_delalloc_work(inode); 9363 if (!work) { 9364 iput(inode); 9365 ret = -ENOMEM; 9366 goto out; 9367 } 9368 list_add_tail(&work->list, &works); 9369 btrfs_queue_work(root->fs_info->flush_workers, 9370 &work->work); 9371 ret++; 9372 if (nr != -1 && ret >= nr) 9373 goto out; 9374 cond_resched(); 9375 spin_lock(&root->delalloc_lock); 9376 } 9377 spin_unlock(&root->delalloc_lock); 9378 9379 out: 9380 list_for_each_entry_safe(work, next, &works, list) { 9381 list_del_init(&work->list); 9382 wait_for_completion(&work->completion); 9383 kfree(work); 9384 } 9385 9386 if (!list_empty(&splice)) { 9387 spin_lock(&root->delalloc_lock); 9388 list_splice_tail(&splice, &root->delalloc_inodes); 9389 spin_unlock(&root->delalloc_lock); 9390 } 9391 mutex_unlock(&root->delalloc_mutex); 9392 return ret; 9393 } 9394 9395 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9396 { 9397 struct btrfs_fs_info *fs_info = root->fs_info; 9398 int ret; 9399 9400 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9401 return -EROFS; 9402 9403 ret = start_delalloc_inodes(root, -1, true); 9404 if (ret > 0) 9405 ret = 0; 9406 return ret; 9407 } 9408 9409 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 9410 { 9411 struct btrfs_root *root; 9412 struct list_head splice; 9413 int ret; 9414 9415 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9416 return -EROFS; 9417 9418 INIT_LIST_HEAD(&splice); 9419 9420 mutex_lock(&fs_info->delalloc_root_mutex); 9421 spin_lock(&fs_info->delalloc_root_lock); 9422 list_splice_init(&fs_info->delalloc_roots, &splice); 9423 while (!list_empty(&splice) && nr) { 9424 root = list_first_entry(&splice, struct btrfs_root, 9425 delalloc_root); 9426 root = btrfs_grab_root(root); 9427 BUG_ON(!root); 9428 list_move_tail(&root->delalloc_root, 9429 &fs_info->delalloc_roots); 9430 spin_unlock(&fs_info->delalloc_root_lock); 9431 9432 ret = start_delalloc_inodes(root, nr, false); 9433 btrfs_put_root(root); 9434 if (ret < 0) 9435 goto out; 9436 9437 if (nr != -1) { 9438 nr -= ret; 9439 WARN_ON(nr < 0); 9440 } 9441 spin_lock(&fs_info->delalloc_root_lock); 9442 } 9443 spin_unlock(&fs_info->delalloc_root_lock); 9444 9445 ret = 0; 9446 out: 9447 if (!list_empty(&splice)) { 9448 spin_lock(&fs_info->delalloc_root_lock); 9449 list_splice_tail(&splice, &fs_info->delalloc_roots); 9450 spin_unlock(&fs_info->delalloc_root_lock); 9451 } 9452 mutex_unlock(&fs_info->delalloc_root_mutex); 9453 return ret; 9454 } 9455 9456 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9457 const char *symname) 9458 { 9459 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9460 struct btrfs_trans_handle *trans; 9461 struct btrfs_root *root = BTRFS_I(dir)->root; 9462 struct btrfs_path *path; 9463 struct btrfs_key key; 9464 struct inode *inode = NULL; 9465 int err; 9466 u64 objectid; 9467 u64 index = 0; 9468 int name_len; 9469 int datasize; 9470 unsigned long ptr; 9471 struct btrfs_file_extent_item *ei; 9472 struct extent_buffer *leaf; 9473 9474 name_len = strlen(symname); 9475 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9476 return -ENAMETOOLONG; 9477 9478 /* 9479 * 2 items for inode item and ref 9480 * 2 items for dir items 9481 * 1 item for updating parent inode item 9482 * 1 item for the inline extent item 9483 * 1 item for xattr if selinux is on 9484 */ 9485 trans = btrfs_start_transaction(root, 7); 9486 if (IS_ERR(trans)) 9487 return PTR_ERR(trans); 9488 9489 err = btrfs_find_free_ino(root, &objectid); 9490 if (err) 9491 goto out_unlock; 9492 9493 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9494 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9495 objectid, S_IFLNK|S_IRWXUGO, &index); 9496 if (IS_ERR(inode)) { 9497 err = PTR_ERR(inode); 9498 inode = NULL; 9499 goto out_unlock; 9500 } 9501 9502 /* 9503 * If the active LSM wants to access the inode during 9504 * d_instantiate it needs these. Smack checks to see 9505 * if the filesystem supports xattrs by looking at the 9506 * ops vector. 9507 */ 9508 inode->i_fop = &btrfs_file_operations; 9509 inode->i_op = &btrfs_file_inode_operations; 9510 inode->i_mapping->a_ops = &btrfs_aops; 9511 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9512 9513 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9514 if (err) 9515 goto out_unlock; 9516 9517 path = btrfs_alloc_path(); 9518 if (!path) { 9519 err = -ENOMEM; 9520 goto out_unlock; 9521 } 9522 key.objectid = btrfs_ino(BTRFS_I(inode)); 9523 key.offset = 0; 9524 key.type = BTRFS_EXTENT_DATA_KEY; 9525 datasize = btrfs_file_extent_calc_inline_size(name_len); 9526 err = btrfs_insert_empty_item(trans, root, path, &key, 9527 datasize); 9528 if (err) { 9529 btrfs_free_path(path); 9530 goto out_unlock; 9531 } 9532 leaf = path->nodes[0]; 9533 ei = btrfs_item_ptr(leaf, path->slots[0], 9534 struct btrfs_file_extent_item); 9535 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9536 btrfs_set_file_extent_type(leaf, ei, 9537 BTRFS_FILE_EXTENT_INLINE); 9538 btrfs_set_file_extent_encryption(leaf, ei, 0); 9539 btrfs_set_file_extent_compression(leaf, ei, 0); 9540 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9541 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9542 9543 ptr = btrfs_file_extent_inline_start(ei); 9544 write_extent_buffer(leaf, symname, ptr, name_len); 9545 btrfs_mark_buffer_dirty(leaf); 9546 btrfs_free_path(path); 9547 9548 inode->i_op = &btrfs_symlink_inode_operations; 9549 inode_nohighmem(inode); 9550 inode_set_bytes(inode, name_len); 9551 btrfs_i_size_write(BTRFS_I(inode), name_len); 9552 err = btrfs_update_inode(trans, root, inode); 9553 /* 9554 * Last step, add directory indexes for our symlink inode. This is the 9555 * last step to avoid extra cleanup of these indexes if an error happens 9556 * elsewhere above. 9557 */ 9558 if (!err) 9559 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9560 BTRFS_I(inode), 0, index); 9561 if (err) 9562 goto out_unlock; 9563 9564 d_instantiate_new(dentry, inode); 9565 9566 out_unlock: 9567 btrfs_end_transaction(trans); 9568 if (err && inode) { 9569 inode_dec_link_count(inode); 9570 discard_new_inode(inode); 9571 } 9572 btrfs_btree_balance_dirty(fs_info); 9573 return err; 9574 } 9575 9576 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9577 u64 start, u64 num_bytes, u64 min_size, 9578 loff_t actual_len, u64 *alloc_hint, 9579 struct btrfs_trans_handle *trans) 9580 { 9581 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9582 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9583 struct extent_map *em; 9584 struct btrfs_root *root = BTRFS_I(inode)->root; 9585 struct btrfs_key ins; 9586 u64 cur_offset = start; 9587 u64 clear_offset = start; 9588 u64 i_size; 9589 u64 cur_bytes; 9590 u64 last_alloc = (u64)-1; 9591 int ret = 0; 9592 bool own_trans = true; 9593 u64 end = start + num_bytes - 1; 9594 9595 if (trans) 9596 own_trans = false; 9597 while (num_bytes > 0) { 9598 if (own_trans) { 9599 trans = btrfs_start_transaction(root, 3); 9600 if (IS_ERR(trans)) { 9601 ret = PTR_ERR(trans); 9602 break; 9603 } 9604 } 9605 9606 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9607 cur_bytes = max(cur_bytes, min_size); 9608 /* 9609 * If we are severely fragmented we could end up with really 9610 * small allocations, so if the allocator is returning small 9611 * chunks lets make its job easier by only searching for those 9612 * sized chunks. 9613 */ 9614 cur_bytes = min(cur_bytes, last_alloc); 9615 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9616 min_size, 0, *alloc_hint, &ins, 1, 0); 9617 if (ret) { 9618 if (own_trans) 9619 btrfs_end_transaction(trans); 9620 break; 9621 } 9622 9623 /* 9624 * We've reserved this space, and thus converted it from 9625 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9626 * from here on out we will only need to clear our reservation 9627 * for the remaining unreserved area, so advance our 9628 * clear_offset by our extent size. 9629 */ 9630 clear_offset += ins.offset; 9631 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9632 9633 last_alloc = ins.offset; 9634 ret = insert_reserved_file_extent(trans, inode, 9635 cur_offset, ins.objectid, 9636 ins.offset, ins.offset, 9637 ins.offset, 0, 0, 0, 9638 BTRFS_FILE_EXTENT_PREALLOC); 9639 if (ret) { 9640 btrfs_free_reserved_extent(fs_info, ins.objectid, 9641 ins.offset, 0); 9642 btrfs_abort_transaction(trans, ret); 9643 if (own_trans) 9644 btrfs_end_transaction(trans); 9645 break; 9646 } 9647 9648 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9649 cur_offset + ins.offset -1, 0); 9650 9651 em = alloc_extent_map(); 9652 if (!em) { 9653 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9654 &BTRFS_I(inode)->runtime_flags); 9655 goto next; 9656 } 9657 9658 em->start = cur_offset; 9659 em->orig_start = cur_offset; 9660 em->len = ins.offset; 9661 em->block_start = ins.objectid; 9662 em->block_len = ins.offset; 9663 em->orig_block_len = ins.offset; 9664 em->ram_bytes = ins.offset; 9665 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9666 em->generation = trans->transid; 9667 9668 while (1) { 9669 write_lock(&em_tree->lock); 9670 ret = add_extent_mapping(em_tree, em, 1); 9671 write_unlock(&em_tree->lock); 9672 if (ret != -EEXIST) 9673 break; 9674 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9675 cur_offset + ins.offset - 1, 9676 0); 9677 } 9678 free_extent_map(em); 9679 next: 9680 num_bytes -= ins.offset; 9681 cur_offset += ins.offset; 9682 *alloc_hint = ins.objectid + ins.offset; 9683 9684 inode_inc_iversion(inode); 9685 inode->i_ctime = current_time(inode); 9686 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9687 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9688 (actual_len > inode->i_size) && 9689 (cur_offset > inode->i_size)) { 9690 if (cur_offset > actual_len) 9691 i_size = actual_len; 9692 else 9693 i_size = cur_offset; 9694 i_size_write(inode, i_size); 9695 btrfs_inode_safe_disk_i_size_write(inode, 0); 9696 } 9697 9698 ret = btrfs_update_inode(trans, root, inode); 9699 9700 if (ret) { 9701 btrfs_abort_transaction(trans, ret); 9702 if (own_trans) 9703 btrfs_end_transaction(trans); 9704 break; 9705 } 9706 9707 if (own_trans) 9708 btrfs_end_transaction(trans); 9709 } 9710 if (clear_offset < end) 9711 btrfs_free_reserved_data_space(inode, NULL, clear_offset, 9712 end - clear_offset + 1); 9713 return ret; 9714 } 9715 9716 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9717 u64 start, u64 num_bytes, u64 min_size, 9718 loff_t actual_len, u64 *alloc_hint) 9719 { 9720 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9721 min_size, actual_len, alloc_hint, 9722 NULL); 9723 } 9724 9725 int btrfs_prealloc_file_range_trans(struct inode *inode, 9726 struct btrfs_trans_handle *trans, int mode, 9727 u64 start, u64 num_bytes, u64 min_size, 9728 loff_t actual_len, u64 *alloc_hint) 9729 { 9730 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9731 min_size, actual_len, alloc_hint, trans); 9732 } 9733 9734 static int btrfs_set_page_dirty(struct page *page) 9735 { 9736 return __set_page_dirty_nobuffers(page); 9737 } 9738 9739 static int btrfs_permission(struct inode *inode, int mask) 9740 { 9741 struct btrfs_root *root = BTRFS_I(inode)->root; 9742 umode_t mode = inode->i_mode; 9743 9744 if (mask & MAY_WRITE && 9745 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9746 if (btrfs_root_readonly(root)) 9747 return -EROFS; 9748 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9749 return -EACCES; 9750 } 9751 return generic_permission(inode, mask); 9752 } 9753 9754 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9755 { 9756 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9757 struct btrfs_trans_handle *trans; 9758 struct btrfs_root *root = BTRFS_I(dir)->root; 9759 struct inode *inode = NULL; 9760 u64 objectid; 9761 u64 index; 9762 int ret = 0; 9763 9764 /* 9765 * 5 units required for adding orphan entry 9766 */ 9767 trans = btrfs_start_transaction(root, 5); 9768 if (IS_ERR(trans)) 9769 return PTR_ERR(trans); 9770 9771 ret = btrfs_find_free_ino(root, &objectid); 9772 if (ret) 9773 goto out; 9774 9775 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9776 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 9777 if (IS_ERR(inode)) { 9778 ret = PTR_ERR(inode); 9779 inode = NULL; 9780 goto out; 9781 } 9782 9783 inode->i_fop = &btrfs_file_operations; 9784 inode->i_op = &btrfs_file_inode_operations; 9785 9786 inode->i_mapping->a_ops = &btrfs_aops; 9787 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9788 9789 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9790 if (ret) 9791 goto out; 9792 9793 ret = btrfs_update_inode(trans, root, inode); 9794 if (ret) 9795 goto out; 9796 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 9797 if (ret) 9798 goto out; 9799 9800 /* 9801 * We set number of links to 0 in btrfs_new_inode(), and here we set 9802 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9803 * through: 9804 * 9805 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9806 */ 9807 set_nlink(inode, 1); 9808 d_tmpfile(dentry, inode); 9809 unlock_new_inode(inode); 9810 mark_inode_dirty(inode); 9811 out: 9812 btrfs_end_transaction(trans); 9813 if (ret && inode) 9814 discard_new_inode(inode); 9815 btrfs_btree_balance_dirty(fs_info); 9816 return ret; 9817 } 9818 9819 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 9820 { 9821 struct inode *inode = tree->private_data; 9822 unsigned long index = start >> PAGE_SHIFT; 9823 unsigned long end_index = end >> PAGE_SHIFT; 9824 struct page *page; 9825 9826 while (index <= end_index) { 9827 page = find_get_page(inode->i_mapping, index); 9828 ASSERT(page); /* Pages should be in the extent_io_tree */ 9829 set_page_writeback(page); 9830 put_page(page); 9831 index++; 9832 } 9833 } 9834 9835 #ifdef CONFIG_SWAP 9836 /* 9837 * Add an entry indicating a block group or device which is pinned by a 9838 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9839 * negative errno on failure. 9840 */ 9841 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9842 bool is_block_group) 9843 { 9844 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9845 struct btrfs_swapfile_pin *sp, *entry; 9846 struct rb_node **p; 9847 struct rb_node *parent = NULL; 9848 9849 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9850 if (!sp) 9851 return -ENOMEM; 9852 sp->ptr = ptr; 9853 sp->inode = inode; 9854 sp->is_block_group = is_block_group; 9855 9856 spin_lock(&fs_info->swapfile_pins_lock); 9857 p = &fs_info->swapfile_pins.rb_node; 9858 while (*p) { 9859 parent = *p; 9860 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9861 if (sp->ptr < entry->ptr || 9862 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9863 p = &(*p)->rb_left; 9864 } else if (sp->ptr > entry->ptr || 9865 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9866 p = &(*p)->rb_right; 9867 } else { 9868 spin_unlock(&fs_info->swapfile_pins_lock); 9869 kfree(sp); 9870 return 1; 9871 } 9872 } 9873 rb_link_node(&sp->node, parent, p); 9874 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9875 spin_unlock(&fs_info->swapfile_pins_lock); 9876 return 0; 9877 } 9878 9879 /* Free all of the entries pinned by this swapfile. */ 9880 static void btrfs_free_swapfile_pins(struct inode *inode) 9881 { 9882 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9883 struct btrfs_swapfile_pin *sp; 9884 struct rb_node *node, *next; 9885 9886 spin_lock(&fs_info->swapfile_pins_lock); 9887 node = rb_first(&fs_info->swapfile_pins); 9888 while (node) { 9889 next = rb_next(node); 9890 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9891 if (sp->inode == inode) { 9892 rb_erase(&sp->node, &fs_info->swapfile_pins); 9893 if (sp->is_block_group) 9894 btrfs_put_block_group(sp->ptr); 9895 kfree(sp); 9896 } 9897 node = next; 9898 } 9899 spin_unlock(&fs_info->swapfile_pins_lock); 9900 } 9901 9902 struct btrfs_swap_info { 9903 u64 start; 9904 u64 block_start; 9905 u64 block_len; 9906 u64 lowest_ppage; 9907 u64 highest_ppage; 9908 unsigned long nr_pages; 9909 int nr_extents; 9910 }; 9911 9912 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9913 struct btrfs_swap_info *bsi) 9914 { 9915 unsigned long nr_pages; 9916 u64 first_ppage, first_ppage_reported, next_ppage; 9917 int ret; 9918 9919 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 9920 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 9921 PAGE_SIZE) >> PAGE_SHIFT; 9922 9923 if (first_ppage >= next_ppage) 9924 return 0; 9925 nr_pages = next_ppage - first_ppage; 9926 9927 first_ppage_reported = first_ppage; 9928 if (bsi->start == 0) 9929 first_ppage_reported++; 9930 if (bsi->lowest_ppage > first_ppage_reported) 9931 bsi->lowest_ppage = first_ppage_reported; 9932 if (bsi->highest_ppage < (next_ppage - 1)) 9933 bsi->highest_ppage = next_ppage - 1; 9934 9935 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9936 if (ret < 0) 9937 return ret; 9938 bsi->nr_extents += ret; 9939 bsi->nr_pages += nr_pages; 9940 return 0; 9941 } 9942 9943 static void btrfs_swap_deactivate(struct file *file) 9944 { 9945 struct inode *inode = file_inode(file); 9946 9947 btrfs_free_swapfile_pins(inode); 9948 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9949 } 9950 9951 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9952 sector_t *span) 9953 { 9954 struct inode *inode = file_inode(file); 9955 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9956 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9957 struct extent_state *cached_state = NULL; 9958 struct extent_map *em = NULL; 9959 struct btrfs_device *device = NULL; 9960 struct btrfs_swap_info bsi = { 9961 .lowest_ppage = (sector_t)-1ULL, 9962 }; 9963 int ret = 0; 9964 u64 isize; 9965 u64 start; 9966 9967 /* 9968 * If the swap file was just created, make sure delalloc is done. If the 9969 * file changes again after this, the user is doing something stupid and 9970 * we don't really care. 9971 */ 9972 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 9973 if (ret) 9974 return ret; 9975 9976 /* 9977 * The inode is locked, so these flags won't change after we check them. 9978 */ 9979 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 9980 btrfs_warn(fs_info, "swapfile must not be compressed"); 9981 return -EINVAL; 9982 } 9983 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 9984 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 9985 return -EINVAL; 9986 } 9987 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 9988 btrfs_warn(fs_info, "swapfile must not be checksummed"); 9989 return -EINVAL; 9990 } 9991 9992 /* 9993 * Balance or device remove/replace/resize can move stuff around from 9994 * under us. The EXCL_OP flag makes sure they aren't running/won't run 9995 * concurrently while we are mapping the swap extents, and 9996 * fs_info->swapfile_pins prevents them from running while the swap file 9997 * is active and moving the extents. Note that this also prevents a 9998 * concurrent device add which isn't actually necessary, but it's not 9999 * really worth the trouble to allow it. 10000 */ 10001 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10002 btrfs_warn(fs_info, 10003 "cannot activate swapfile while exclusive operation is running"); 10004 return -EBUSY; 10005 } 10006 /* 10007 * Snapshots can create extents which require COW even if NODATACOW is 10008 * set. We use this counter to prevent snapshots. We must increment it 10009 * before walking the extents because we don't want a concurrent 10010 * snapshot to run after we've already checked the extents. 10011 */ 10012 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10013 10014 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10015 10016 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10017 start = 0; 10018 while (start < isize) { 10019 u64 logical_block_start, physical_block_start; 10020 struct btrfs_block_group *bg; 10021 u64 len = isize - start; 10022 10023 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10024 if (IS_ERR(em)) { 10025 ret = PTR_ERR(em); 10026 goto out; 10027 } 10028 10029 if (em->block_start == EXTENT_MAP_HOLE) { 10030 btrfs_warn(fs_info, "swapfile must not have holes"); 10031 ret = -EINVAL; 10032 goto out; 10033 } 10034 if (em->block_start == EXTENT_MAP_INLINE) { 10035 /* 10036 * It's unlikely we'll ever actually find ourselves 10037 * here, as a file small enough to fit inline won't be 10038 * big enough to store more than the swap header, but in 10039 * case something changes in the future, let's catch it 10040 * here rather than later. 10041 */ 10042 btrfs_warn(fs_info, "swapfile must not be inline"); 10043 ret = -EINVAL; 10044 goto out; 10045 } 10046 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10047 btrfs_warn(fs_info, "swapfile must not be compressed"); 10048 ret = -EINVAL; 10049 goto out; 10050 } 10051 10052 logical_block_start = em->block_start + (start - em->start); 10053 len = min(len, em->len - (start - em->start)); 10054 free_extent_map(em); 10055 em = NULL; 10056 10057 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10058 if (ret < 0) { 10059 goto out; 10060 } else if (ret) { 10061 ret = 0; 10062 } else { 10063 btrfs_warn(fs_info, 10064 "swapfile must not be copy-on-write"); 10065 ret = -EINVAL; 10066 goto out; 10067 } 10068 10069 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10070 if (IS_ERR(em)) { 10071 ret = PTR_ERR(em); 10072 goto out; 10073 } 10074 10075 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10076 btrfs_warn(fs_info, 10077 "swapfile must have single data profile"); 10078 ret = -EINVAL; 10079 goto out; 10080 } 10081 10082 if (device == NULL) { 10083 device = em->map_lookup->stripes[0].dev; 10084 ret = btrfs_add_swapfile_pin(inode, device, false); 10085 if (ret == 1) 10086 ret = 0; 10087 else if (ret) 10088 goto out; 10089 } else if (device != em->map_lookup->stripes[0].dev) { 10090 btrfs_warn(fs_info, "swapfile must be on one device"); 10091 ret = -EINVAL; 10092 goto out; 10093 } 10094 10095 physical_block_start = (em->map_lookup->stripes[0].physical + 10096 (logical_block_start - em->start)); 10097 len = min(len, em->len - (logical_block_start - em->start)); 10098 free_extent_map(em); 10099 em = NULL; 10100 10101 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10102 if (!bg) { 10103 btrfs_warn(fs_info, 10104 "could not find block group containing swapfile"); 10105 ret = -EINVAL; 10106 goto out; 10107 } 10108 10109 ret = btrfs_add_swapfile_pin(inode, bg, true); 10110 if (ret) { 10111 btrfs_put_block_group(bg); 10112 if (ret == 1) 10113 ret = 0; 10114 else 10115 goto out; 10116 } 10117 10118 if (bsi.block_len && 10119 bsi.block_start + bsi.block_len == physical_block_start) { 10120 bsi.block_len += len; 10121 } else { 10122 if (bsi.block_len) { 10123 ret = btrfs_add_swap_extent(sis, &bsi); 10124 if (ret) 10125 goto out; 10126 } 10127 bsi.start = start; 10128 bsi.block_start = physical_block_start; 10129 bsi.block_len = len; 10130 } 10131 10132 start += len; 10133 } 10134 10135 if (bsi.block_len) 10136 ret = btrfs_add_swap_extent(sis, &bsi); 10137 10138 out: 10139 if (!IS_ERR_OR_NULL(em)) 10140 free_extent_map(em); 10141 10142 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10143 10144 if (ret) 10145 btrfs_swap_deactivate(file); 10146 10147 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10148 10149 if (ret) 10150 return ret; 10151 10152 if (device) 10153 sis->bdev = device->bdev; 10154 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10155 sis->max = bsi.nr_pages; 10156 sis->pages = bsi.nr_pages - 1; 10157 sis->highest_bit = bsi.nr_pages - 1; 10158 return bsi.nr_extents; 10159 } 10160 #else 10161 static void btrfs_swap_deactivate(struct file *file) 10162 { 10163 } 10164 10165 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10166 sector_t *span) 10167 { 10168 return -EOPNOTSUPP; 10169 } 10170 #endif 10171 10172 static const struct inode_operations btrfs_dir_inode_operations = { 10173 .getattr = btrfs_getattr, 10174 .lookup = btrfs_lookup, 10175 .create = btrfs_create, 10176 .unlink = btrfs_unlink, 10177 .link = btrfs_link, 10178 .mkdir = btrfs_mkdir, 10179 .rmdir = btrfs_rmdir, 10180 .rename = btrfs_rename2, 10181 .symlink = btrfs_symlink, 10182 .setattr = btrfs_setattr, 10183 .mknod = btrfs_mknod, 10184 .listxattr = btrfs_listxattr, 10185 .permission = btrfs_permission, 10186 .get_acl = btrfs_get_acl, 10187 .set_acl = btrfs_set_acl, 10188 .update_time = btrfs_update_time, 10189 .tmpfile = btrfs_tmpfile, 10190 }; 10191 10192 static const struct file_operations btrfs_dir_file_operations = { 10193 .llseek = generic_file_llseek, 10194 .read = generic_read_dir, 10195 .iterate_shared = btrfs_real_readdir, 10196 .open = btrfs_opendir, 10197 .unlocked_ioctl = btrfs_ioctl, 10198 #ifdef CONFIG_COMPAT 10199 .compat_ioctl = btrfs_compat_ioctl, 10200 #endif 10201 .release = btrfs_release_file, 10202 .fsync = btrfs_sync_file, 10203 }; 10204 10205 static const struct extent_io_ops btrfs_extent_io_ops = { 10206 /* mandatory callbacks */ 10207 .submit_bio_hook = btrfs_submit_bio_hook, 10208 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10209 }; 10210 10211 /* 10212 * btrfs doesn't support the bmap operation because swapfiles 10213 * use bmap to make a mapping of extents in the file. They assume 10214 * these extents won't change over the life of the file and they 10215 * use the bmap result to do IO directly to the drive. 10216 * 10217 * the btrfs bmap call would return logical addresses that aren't 10218 * suitable for IO and they also will change frequently as COW 10219 * operations happen. So, swapfile + btrfs == corruption. 10220 * 10221 * For now we're avoiding this by dropping bmap. 10222 */ 10223 static const struct address_space_operations btrfs_aops = { 10224 .readpage = btrfs_readpage, 10225 .writepage = btrfs_writepage, 10226 .writepages = btrfs_writepages, 10227 .readahead = btrfs_readahead, 10228 .direct_IO = btrfs_direct_IO, 10229 .invalidatepage = btrfs_invalidatepage, 10230 .releasepage = btrfs_releasepage, 10231 #ifdef CONFIG_MIGRATION 10232 .migratepage = btrfs_migratepage, 10233 #endif 10234 .set_page_dirty = btrfs_set_page_dirty, 10235 .error_remove_page = generic_error_remove_page, 10236 .swap_activate = btrfs_swap_activate, 10237 .swap_deactivate = btrfs_swap_deactivate, 10238 }; 10239 10240 static const struct inode_operations btrfs_file_inode_operations = { 10241 .getattr = btrfs_getattr, 10242 .setattr = btrfs_setattr, 10243 .listxattr = btrfs_listxattr, 10244 .permission = btrfs_permission, 10245 .fiemap = btrfs_fiemap, 10246 .get_acl = btrfs_get_acl, 10247 .set_acl = btrfs_set_acl, 10248 .update_time = btrfs_update_time, 10249 }; 10250 static const struct inode_operations btrfs_special_inode_operations = { 10251 .getattr = btrfs_getattr, 10252 .setattr = btrfs_setattr, 10253 .permission = btrfs_permission, 10254 .listxattr = btrfs_listxattr, 10255 .get_acl = btrfs_get_acl, 10256 .set_acl = btrfs_set_acl, 10257 .update_time = btrfs_update_time, 10258 }; 10259 static const struct inode_operations btrfs_symlink_inode_operations = { 10260 .get_link = page_get_link, 10261 .getattr = btrfs_getattr, 10262 .setattr = btrfs_setattr, 10263 .permission = btrfs_permission, 10264 .listxattr = btrfs_listxattr, 10265 .update_time = btrfs_update_time, 10266 }; 10267 10268 const struct dentry_operations btrfs_dentry_operations = { 10269 .d_delete = btrfs_dentry_delete, 10270 }; 10271