1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <asm/unaligned.h> 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "ordered-data.h" 37 #include "xattr.h" 38 #include "tree-log.h" 39 #include "volumes.h" 40 #include "compression.h" 41 #include "locking.h" 42 #include "free-space-cache.h" 43 #include "inode-map.h" 44 #include "backref.h" 45 #include "props.h" 46 #include "qgroup.h" 47 #include "dedupe.h" 48 49 struct btrfs_iget_args { 50 struct btrfs_key *location; 51 struct btrfs_root *root; 52 }; 53 54 struct btrfs_dio_data { 55 u64 reserve; 56 u64 unsubmitted_oe_range_start; 57 u64 unsubmitted_oe_range_end; 58 int overwrite; 59 }; 60 61 static const struct inode_operations btrfs_dir_inode_operations; 62 static const struct inode_operations btrfs_symlink_inode_operations; 63 static const struct inode_operations btrfs_dir_ro_inode_operations; 64 static const struct inode_operations btrfs_special_inode_operations; 65 static const struct inode_operations btrfs_file_inode_operations; 66 static const struct address_space_operations btrfs_aops; 67 static const struct file_operations btrfs_dir_file_operations; 68 static const struct extent_io_ops btrfs_extent_io_ops; 69 70 static struct kmem_cache *btrfs_inode_cachep; 71 struct kmem_cache *btrfs_trans_handle_cachep; 72 struct kmem_cache *btrfs_path_cachep; 73 struct kmem_cache *btrfs_free_space_cachep; 74 75 #define S_SHIFT 12 76 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 77 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 78 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 79 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 80 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 81 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 82 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 83 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 84 }; 85 86 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 87 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 88 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 89 static noinline int cow_file_range(struct inode *inode, 90 struct page *locked_page, 91 u64 start, u64 end, u64 delalloc_end, 92 int *page_started, unsigned long *nr_written, 93 int unlock, struct btrfs_dedupe_hash *hash); 94 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 95 u64 orig_start, u64 block_start, 96 u64 block_len, u64 orig_block_len, 97 u64 ram_bytes, int compress_type, 98 int type); 99 100 static void __endio_write_update_ordered(struct inode *inode, 101 const u64 offset, const u64 bytes, 102 const bool uptodate); 103 104 /* 105 * Cleanup all submitted ordered extents in specified range to handle errors 106 * from the fill_dellaloc() callback. 107 * 108 * NOTE: caller must ensure that when an error happens, it can not call 109 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 110 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 111 * to be released, which we want to happen only when finishing the ordered 112 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 113 * fill_delalloc() callback already does proper cleanup for the first page of 114 * the range, that is, it invokes the callback writepage_end_io_hook() for the 115 * range of the first page. 116 */ 117 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 118 const u64 offset, 119 const u64 bytes) 120 { 121 unsigned long index = offset >> PAGE_SHIFT; 122 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 123 struct page *page; 124 125 while (index <= end_index) { 126 page = find_get_page(inode->i_mapping, index); 127 index++; 128 if (!page) 129 continue; 130 ClearPagePrivate2(page); 131 put_page(page); 132 } 133 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 134 bytes - PAGE_SIZE, false); 135 } 136 137 static int btrfs_dirty_inode(struct inode *inode); 138 139 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 140 void btrfs_test_inode_set_ops(struct inode *inode) 141 { 142 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 143 } 144 #endif 145 146 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 147 struct inode *inode, struct inode *dir, 148 const struct qstr *qstr) 149 { 150 int err; 151 152 err = btrfs_init_acl(trans, inode, dir); 153 if (!err) 154 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 155 return err; 156 } 157 158 /* 159 * this does all the hard work for inserting an inline extent into 160 * the btree. The caller should have done a btrfs_drop_extents so that 161 * no overlapping inline items exist in the btree 162 */ 163 static int insert_inline_extent(struct btrfs_trans_handle *trans, 164 struct btrfs_path *path, int extent_inserted, 165 struct btrfs_root *root, struct inode *inode, 166 u64 start, size_t size, size_t compressed_size, 167 int compress_type, 168 struct page **compressed_pages) 169 { 170 struct extent_buffer *leaf; 171 struct page *page = NULL; 172 char *kaddr; 173 unsigned long ptr; 174 struct btrfs_file_extent_item *ei; 175 int ret; 176 size_t cur_size = size; 177 unsigned long offset; 178 179 if (compressed_size && compressed_pages) 180 cur_size = compressed_size; 181 182 inode_add_bytes(inode, size); 183 184 if (!extent_inserted) { 185 struct btrfs_key key; 186 size_t datasize; 187 188 key.objectid = btrfs_ino(BTRFS_I(inode)); 189 key.offset = start; 190 key.type = BTRFS_EXTENT_DATA_KEY; 191 192 datasize = btrfs_file_extent_calc_inline_size(cur_size); 193 path->leave_spinning = 1; 194 ret = btrfs_insert_empty_item(trans, root, path, &key, 195 datasize); 196 if (ret) 197 goto fail; 198 } 199 leaf = path->nodes[0]; 200 ei = btrfs_item_ptr(leaf, path->slots[0], 201 struct btrfs_file_extent_item); 202 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 203 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 204 btrfs_set_file_extent_encryption(leaf, ei, 0); 205 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 206 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 207 ptr = btrfs_file_extent_inline_start(ei); 208 209 if (compress_type != BTRFS_COMPRESS_NONE) { 210 struct page *cpage; 211 int i = 0; 212 while (compressed_size > 0) { 213 cpage = compressed_pages[i]; 214 cur_size = min_t(unsigned long, compressed_size, 215 PAGE_SIZE); 216 217 kaddr = kmap_atomic(cpage); 218 write_extent_buffer(leaf, kaddr, ptr, cur_size); 219 kunmap_atomic(kaddr); 220 221 i++; 222 ptr += cur_size; 223 compressed_size -= cur_size; 224 } 225 btrfs_set_file_extent_compression(leaf, ei, 226 compress_type); 227 } else { 228 page = find_get_page(inode->i_mapping, 229 start >> PAGE_SHIFT); 230 btrfs_set_file_extent_compression(leaf, ei, 0); 231 kaddr = kmap_atomic(page); 232 offset = start & (PAGE_SIZE - 1); 233 write_extent_buffer(leaf, kaddr + offset, ptr, size); 234 kunmap_atomic(kaddr); 235 put_page(page); 236 } 237 btrfs_mark_buffer_dirty(leaf); 238 btrfs_release_path(path); 239 240 /* 241 * we're an inline extent, so nobody can 242 * extend the file past i_size without locking 243 * a page we already have locked. 244 * 245 * We must do any isize and inode updates 246 * before we unlock the pages. Otherwise we 247 * could end up racing with unlink. 248 */ 249 BTRFS_I(inode)->disk_i_size = inode->i_size; 250 ret = btrfs_update_inode(trans, root, inode); 251 252 fail: 253 return ret; 254 } 255 256 257 /* 258 * conditionally insert an inline extent into the file. This 259 * does the checks required to make sure the data is small enough 260 * to fit as an inline extent. 261 */ 262 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 263 u64 end, size_t compressed_size, 264 int compress_type, 265 struct page **compressed_pages) 266 { 267 struct btrfs_root *root = BTRFS_I(inode)->root; 268 struct btrfs_fs_info *fs_info = root->fs_info; 269 struct btrfs_trans_handle *trans; 270 u64 isize = i_size_read(inode); 271 u64 actual_end = min(end + 1, isize); 272 u64 inline_len = actual_end - start; 273 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 274 u64 data_len = inline_len; 275 int ret; 276 struct btrfs_path *path; 277 int extent_inserted = 0; 278 u32 extent_item_size; 279 280 if (compressed_size) 281 data_len = compressed_size; 282 283 if (start > 0 || 284 actual_end > fs_info->sectorsize || 285 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 286 (!compressed_size && 287 (actual_end & (fs_info->sectorsize - 1)) == 0) || 288 end + 1 < isize || 289 data_len > fs_info->max_inline) { 290 return 1; 291 } 292 293 path = btrfs_alloc_path(); 294 if (!path) 295 return -ENOMEM; 296 297 trans = btrfs_join_transaction(root); 298 if (IS_ERR(trans)) { 299 btrfs_free_path(path); 300 return PTR_ERR(trans); 301 } 302 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 303 304 if (compressed_size && compressed_pages) 305 extent_item_size = btrfs_file_extent_calc_inline_size( 306 compressed_size); 307 else 308 extent_item_size = btrfs_file_extent_calc_inline_size( 309 inline_len); 310 311 ret = __btrfs_drop_extents(trans, root, inode, path, 312 start, aligned_end, NULL, 313 1, 1, extent_item_size, &extent_inserted); 314 if (ret) { 315 btrfs_abort_transaction(trans, ret); 316 goto out; 317 } 318 319 if (isize > actual_end) 320 inline_len = min_t(u64, isize, actual_end); 321 ret = insert_inline_extent(trans, path, extent_inserted, 322 root, inode, start, 323 inline_len, compressed_size, 324 compress_type, compressed_pages); 325 if (ret && ret != -ENOSPC) { 326 btrfs_abort_transaction(trans, ret); 327 goto out; 328 } else if (ret == -ENOSPC) { 329 ret = 1; 330 goto out; 331 } 332 333 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 334 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 335 out: 336 /* 337 * Don't forget to free the reserved space, as for inlined extent 338 * it won't count as data extent, free them directly here. 339 * And at reserve time, it's always aligned to page size, so 340 * just free one page here. 341 */ 342 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 343 btrfs_free_path(path); 344 btrfs_end_transaction(trans); 345 return ret; 346 } 347 348 struct async_extent { 349 u64 start; 350 u64 ram_size; 351 u64 compressed_size; 352 struct page **pages; 353 unsigned long nr_pages; 354 int compress_type; 355 struct list_head list; 356 }; 357 358 struct async_cow { 359 struct inode *inode; 360 struct btrfs_root *root; 361 struct page *locked_page; 362 u64 start; 363 u64 end; 364 unsigned int write_flags; 365 struct list_head extents; 366 struct btrfs_work work; 367 }; 368 369 static noinline int add_async_extent(struct async_cow *cow, 370 u64 start, u64 ram_size, 371 u64 compressed_size, 372 struct page **pages, 373 unsigned long nr_pages, 374 int compress_type) 375 { 376 struct async_extent *async_extent; 377 378 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 379 BUG_ON(!async_extent); /* -ENOMEM */ 380 async_extent->start = start; 381 async_extent->ram_size = ram_size; 382 async_extent->compressed_size = compressed_size; 383 async_extent->pages = pages; 384 async_extent->nr_pages = nr_pages; 385 async_extent->compress_type = compress_type; 386 list_add_tail(&async_extent->list, &cow->extents); 387 return 0; 388 } 389 390 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 391 { 392 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 393 394 /* force compress */ 395 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 396 return 1; 397 /* defrag ioctl */ 398 if (BTRFS_I(inode)->defrag_compress) 399 return 1; 400 /* bad compression ratios */ 401 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 402 return 0; 403 if (btrfs_test_opt(fs_info, COMPRESS) || 404 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 405 BTRFS_I(inode)->prop_compress) 406 return btrfs_compress_heuristic(inode, start, end); 407 return 0; 408 } 409 410 static inline void inode_should_defrag(struct btrfs_inode *inode, 411 u64 start, u64 end, u64 num_bytes, u64 small_write) 412 { 413 /* If this is a small write inside eof, kick off a defrag */ 414 if (num_bytes < small_write && 415 (start > 0 || end + 1 < inode->disk_i_size)) 416 btrfs_add_inode_defrag(NULL, inode); 417 } 418 419 /* 420 * we create compressed extents in two phases. The first 421 * phase compresses a range of pages that have already been 422 * locked (both pages and state bits are locked). 423 * 424 * This is done inside an ordered work queue, and the compression 425 * is spread across many cpus. The actual IO submission is step 426 * two, and the ordered work queue takes care of making sure that 427 * happens in the same order things were put onto the queue by 428 * writepages and friends. 429 * 430 * If this code finds it can't get good compression, it puts an 431 * entry onto the work queue to write the uncompressed bytes. This 432 * makes sure that both compressed inodes and uncompressed inodes 433 * are written in the same order that the flusher thread sent them 434 * down. 435 */ 436 static noinline void compress_file_range(struct inode *inode, 437 struct page *locked_page, 438 u64 start, u64 end, 439 struct async_cow *async_cow, 440 int *num_added) 441 { 442 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 443 u64 blocksize = fs_info->sectorsize; 444 u64 actual_end; 445 u64 isize = i_size_read(inode); 446 int ret = 0; 447 struct page **pages = NULL; 448 unsigned long nr_pages; 449 unsigned long total_compressed = 0; 450 unsigned long total_in = 0; 451 int i; 452 int will_compress; 453 int compress_type = fs_info->compress_type; 454 int redirty = 0; 455 456 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 457 SZ_16K); 458 459 actual_end = min_t(u64, isize, end + 1); 460 again: 461 will_compress = 0; 462 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 463 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 464 nr_pages = min_t(unsigned long, nr_pages, 465 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 466 467 /* 468 * we don't want to send crud past the end of i_size through 469 * compression, that's just a waste of CPU time. So, if the 470 * end of the file is before the start of our current 471 * requested range of bytes, we bail out to the uncompressed 472 * cleanup code that can deal with all of this. 473 * 474 * It isn't really the fastest way to fix things, but this is a 475 * very uncommon corner. 476 */ 477 if (actual_end <= start) 478 goto cleanup_and_bail_uncompressed; 479 480 total_compressed = actual_end - start; 481 482 /* 483 * skip compression for a small file range(<=blocksize) that 484 * isn't an inline extent, since it doesn't save disk space at all. 485 */ 486 if (total_compressed <= blocksize && 487 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 488 goto cleanup_and_bail_uncompressed; 489 490 total_compressed = min_t(unsigned long, total_compressed, 491 BTRFS_MAX_UNCOMPRESSED); 492 total_in = 0; 493 ret = 0; 494 495 /* 496 * we do compression for mount -o compress and when the 497 * inode has not been flagged as nocompress. This flag can 498 * change at any time if we discover bad compression ratios. 499 */ 500 if (inode_need_compress(inode, start, end)) { 501 WARN_ON(pages); 502 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 503 if (!pages) { 504 /* just bail out to the uncompressed code */ 505 nr_pages = 0; 506 goto cont; 507 } 508 509 if (BTRFS_I(inode)->defrag_compress) 510 compress_type = BTRFS_I(inode)->defrag_compress; 511 else if (BTRFS_I(inode)->prop_compress) 512 compress_type = BTRFS_I(inode)->prop_compress; 513 514 /* 515 * we need to call clear_page_dirty_for_io on each 516 * page in the range. Otherwise applications with the file 517 * mmap'd can wander in and change the page contents while 518 * we are compressing them. 519 * 520 * If the compression fails for any reason, we set the pages 521 * dirty again later on. 522 * 523 * Note that the remaining part is redirtied, the start pointer 524 * has moved, the end is the original one. 525 */ 526 if (!redirty) { 527 extent_range_clear_dirty_for_io(inode, start, end); 528 redirty = 1; 529 } 530 531 /* Compression level is applied here and only here */ 532 ret = btrfs_compress_pages( 533 compress_type | (fs_info->compress_level << 4), 534 inode->i_mapping, start, 535 pages, 536 &nr_pages, 537 &total_in, 538 &total_compressed); 539 540 if (!ret) { 541 unsigned long offset = total_compressed & 542 (PAGE_SIZE - 1); 543 struct page *page = pages[nr_pages - 1]; 544 char *kaddr; 545 546 /* zero the tail end of the last page, we might be 547 * sending it down to disk 548 */ 549 if (offset) { 550 kaddr = kmap_atomic(page); 551 memset(kaddr + offset, 0, 552 PAGE_SIZE - offset); 553 kunmap_atomic(kaddr); 554 } 555 will_compress = 1; 556 } 557 } 558 cont: 559 if (start == 0) { 560 /* lets try to make an inline extent */ 561 if (ret || total_in < actual_end) { 562 /* we didn't compress the entire range, try 563 * to make an uncompressed inline extent. 564 */ 565 ret = cow_file_range_inline(inode, start, end, 0, 566 BTRFS_COMPRESS_NONE, NULL); 567 } else { 568 /* try making a compressed inline extent */ 569 ret = cow_file_range_inline(inode, start, end, 570 total_compressed, 571 compress_type, pages); 572 } 573 if (ret <= 0) { 574 unsigned long clear_flags = EXTENT_DELALLOC | 575 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 576 EXTENT_DO_ACCOUNTING; 577 unsigned long page_error_op; 578 579 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 580 581 /* 582 * inline extent creation worked or returned error, 583 * we don't need to create any more async work items. 584 * Unlock and free up our temp pages. 585 * 586 * We use DO_ACCOUNTING here because we need the 587 * delalloc_release_metadata to be done _after_ we drop 588 * our outstanding extent for clearing delalloc for this 589 * range. 590 */ 591 extent_clear_unlock_delalloc(inode, start, end, end, 592 NULL, clear_flags, 593 PAGE_UNLOCK | 594 PAGE_CLEAR_DIRTY | 595 PAGE_SET_WRITEBACK | 596 page_error_op | 597 PAGE_END_WRITEBACK); 598 goto free_pages_out; 599 } 600 } 601 602 if (will_compress) { 603 /* 604 * we aren't doing an inline extent round the compressed size 605 * up to a block size boundary so the allocator does sane 606 * things 607 */ 608 total_compressed = ALIGN(total_compressed, blocksize); 609 610 /* 611 * one last check to make sure the compression is really a 612 * win, compare the page count read with the blocks on disk, 613 * compression must free at least one sector size 614 */ 615 total_in = ALIGN(total_in, PAGE_SIZE); 616 if (total_compressed + blocksize <= total_in) { 617 *num_added += 1; 618 619 /* 620 * The async work queues will take care of doing actual 621 * allocation on disk for these compressed pages, and 622 * will submit them to the elevator. 623 */ 624 add_async_extent(async_cow, start, total_in, 625 total_compressed, pages, nr_pages, 626 compress_type); 627 628 if (start + total_in < end) { 629 start += total_in; 630 pages = NULL; 631 cond_resched(); 632 goto again; 633 } 634 return; 635 } 636 } 637 if (pages) { 638 /* 639 * the compression code ran but failed to make things smaller, 640 * free any pages it allocated and our page pointer array 641 */ 642 for (i = 0; i < nr_pages; i++) { 643 WARN_ON(pages[i]->mapping); 644 put_page(pages[i]); 645 } 646 kfree(pages); 647 pages = NULL; 648 total_compressed = 0; 649 nr_pages = 0; 650 651 /* flag the file so we don't compress in the future */ 652 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 653 !(BTRFS_I(inode)->prop_compress)) { 654 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 655 } 656 } 657 cleanup_and_bail_uncompressed: 658 /* 659 * No compression, but we still need to write the pages in the file 660 * we've been given so far. redirty the locked page if it corresponds 661 * to our extent and set things up for the async work queue to run 662 * cow_file_range to do the normal delalloc dance. 663 */ 664 if (page_offset(locked_page) >= start && 665 page_offset(locked_page) <= end) 666 __set_page_dirty_nobuffers(locked_page); 667 /* unlocked later on in the async handlers */ 668 669 if (redirty) 670 extent_range_redirty_for_io(inode, start, end); 671 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 672 BTRFS_COMPRESS_NONE); 673 *num_added += 1; 674 675 return; 676 677 free_pages_out: 678 for (i = 0; i < nr_pages; i++) { 679 WARN_ON(pages[i]->mapping); 680 put_page(pages[i]); 681 } 682 kfree(pages); 683 } 684 685 static void free_async_extent_pages(struct async_extent *async_extent) 686 { 687 int i; 688 689 if (!async_extent->pages) 690 return; 691 692 for (i = 0; i < async_extent->nr_pages; i++) { 693 WARN_ON(async_extent->pages[i]->mapping); 694 put_page(async_extent->pages[i]); 695 } 696 kfree(async_extent->pages); 697 async_extent->nr_pages = 0; 698 async_extent->pages = NULL; 699 } 700 701 /* 702 * phase two of compressed writeback. This is the ordered portion 703 * of the code, which only gets called in the order the work was 704 * queued. We walk all the async extents created by compress_file_range 705 * and send them down to the disk. 706 */ 707 static noinline void submit_compressed_extents(struct inode *inode, 708 struct async_cow *async_cow) 709 { 710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 711 struct async_extent *async_extent; 712 u64 alloc_hint = 0; 713 struct btrfs_key ins; 714 struct extent_map *em; 715 struct btrfs_root *root = BTRFS_I(inode)->root; 716 struct extent_io_tree *io_tree; 717 int ret = 0; 718 719 again: 720 while (!list_empty(&async_cow->extents)) { 721 async_extent = list_entry(async_cow->extents.next, 722 struct async_extent, list); 723 list_del(&async_extent->list); 724 725 io_tree = &BTRFS_I(inode)->io_tree; 726 727 retry: 728 /* did the compression code fall back to uncompressed IO? */ 729 if (!async_extent->pages) { 730 int page_started = 0; 731 unsigned long nr_written = 0; 732 733 lock_extent(io_tree, async_extent->start, 734 async_extent->start + 735 async_extent->ram_size - 1); 736 737 /* allocate blocks */ 738 ret = cow_file_range(inode, async_cow->locked_page, 739 async_extent->start, 740 async_extent->start + 741 async_extent->ram_size - 1, 742 async_extent->start + 743 async_extent->ram_size - 1, 744 &page_started, &nr_written, 0, 745 NULL); 746 747 /* JDM XXX */ 748 749 /* 750 * if page_started, cow_file_range inserted an 751 * inline extent and took care of all the unlocking 752 * and IO for us. Otherwise, we need to submit 753 * all those pages down to the drive. 754 */ 755 if (!page_started && !ret) 756 extent_write_locked_range(inode, 757 async_extent->start, 758 async_extent->start + 759 async_extent->ram_size - 1, 760 WB_SYNC_ALL); 761 else if (ret) 762 unlock_page(async_cow->locked_page); 763 kfree(async_extent); 764 cond_resched(); 765 continue; 766 } 767 768 lock_extent(io_tree, async_extent->start, 769 async_extent->start + async_extent->ram_size - 1); 770 771 ret = btrfs_reserve_extent(root, async_extent->ram_size, 772 async_extent->compressed_size, 773 async_extent->compressed_size, 774 0, alloc_hint, &ins, 1, 1); 775 if (ret) { 776 free_async_extent_pages(async_extent); 777 778 if (ret == -ENOSPC) { 779 unlock_extent(io_tree, async_extent->start, 780 async_extent->start + 781 async_extent->ram_size - 1); 782 783 /* 784 * we need to redirty the pages if we decide to 785 * fallback to uncompressed IO, otherwise we 786 * will not submit these pages down to lower 787 * layers. 788 */ 789 extent_range_redirty_for_io(inode, 790 async_extent->start, 791 async_extent->start + 792 async_extent->ram_size - 1); 793 794 goto retry; 795 } 796 goto out_free; 797 } 798 /* 799 * here we're doing allocation and writeback of the 800 * compressed pages 801 */ 802 em = create_io_em(inode, async_extent->start, 803 async_extent->ram_size, /* len */ 804 async_extent->start, /* orig_start */ 805 ins.objectid, /* block_start */ 806 ins.offset, /* block_len */ 807 ins.offset, /* orig_block_len */ 808 async_extent->ram_size, /* ram_bytes */ 809 async_extent->compress_type, 810 BTRFS_ORDERED_COMPRESSED); 811 if (IS_ERR(em)) 812 /* ret value is not necessary due to void function */ 813 goto out_free_reserve; 814 free_extent_map(em); 815 816 ret = btrfs_add_ordered_extent_compress(inode, 817 async_extent->start, 818 ins.objectid, 819 async_extent->ram_size, 820 ins.offset, 821 BTRFS_ORDERED_COMPRESSED, 822 async_extent->compress_type); 823 if (ret) { 824 btrfs_drop_extent_cache(BTRFS_I(inode), 825 async_extent->start, 826 async_extent->start + 827 async_extent->ram_size - 1, 0); 828 goto out_free_reserve; 829 } 830 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 831 832 /* 833 * clear dirty, set writeback and unlock the pages. 834 */ 835 extent_clear_unlock_delalloc(inode, async_extent->start, 836 async_extent->start + 837 async_extent->ram_size - 1, 838 async_extent->start + 839 async_extent->ram_size - 1, 840 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 841 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 842 PAGE_SET_WRITEBACK); 843 if (btrfs_submit_compressed_write(inode, 844 async_extent->start, 845 async_extent->ram_size, 846 ins.objectid, 847 ins.offset, async_extent->pages, 848 async_extent->nr_pages, 849 async_cow->write_flags)) { 850 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 851 struct page *p = async_extent->pages[0]; 852 const u64 start = async_extent->start; 853 const u64 end = start + async_extent->ram_size - 1; 854 855 p->mapping = inode->i_mapping; 856 tree->ops->writepage_end_io_hook(p, start, end, 857 NULL, 0); 858 p->mapping = NULL; 859 extent_clear_unlock_delalloc(inode, start, end, end, 860 NULL, 0, 861 PAGE_END_WRITEBACK | 862 PAGE_SET_ERROR); 863 free_async_extent_pages(async_extent); 864 } 865 alloc_hint = ins.objectid + ins.offset; 866 kfree(async_extent); 867 cond_resched(); 868 } 869 return; 870 out_free_reserve: 871 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 872 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 873 out_free: 874 extent_clear_unlock_delalloc(inode, async_extent->start, 875 async_extent->start + 876 async_extent->ram_size - 1, 877 async_extent->start + 878 async_extent->ram_size - 1, 879 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 880 EXTENT_DELALLOC_NEW | 881 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 882 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 883 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 884 PAGE_SET_ERROR); 885 free_async_extent_pages(async_extent); 886 kfree(async_extent); 887 goto again; 888 } 889 890 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 891 u64 num_bytes) 892 { 893 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 894 struct extent_map *em; 895 u64 alloc_hint = 0; 896 897 read_lock(&em_tree->lock); 898 em = search_extent_mapping(em_tree, start, num_bytes); 899 if (em) { 900 /* 901 * if block start isn't an actual block number then find the 902 * first block in this inode and use that as a hint. If that 903 * block is also bogus then just don't worry about it. 904 */ 905 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 906 free_extent_map(em); 907 em = search_extent_mapping(em_tree, 0, 0); 908 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 909 alloc_hint = em->block_start; 910 if (em) 911 free_extent_map(em); 912 } else { 913 alloc_hint = em->block_start; 914 free_extent_map(em); 915 } 916 } 917 read_unlock(&em_tree->lock); 918 919 return alloc_hint; 920 } 921 922 /* 923 * when extent_io.c finds a delayed allocation range in the file, 924 * the call backs end up in this code. The basic idea is to 925 * allocate extents on disk for the range, and create ordered data structs 926 * in ram to track those extents. 927 * 928 * locked_page is the page that writepage had locked already. We use 929 * it to make sure we don't do extra locks or unlocks. 930 * 931 * *page_started is set to one if we unlock locked_page and do everything 932 * required to start IO on it. It may be clean and already done with 933 * IO when we return. 934 */ 935 static noinline int cow_file_range(struct inode *inode, 936 struct page *locked_page, 937 u64 start, u64 end, u64 delalloc_end, 938 int *page_started, unsigned long *nr_written, 939 int unlock, struct btrfs_dedupe_hash *hash) 940 { 941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 942 struct btrfs_root *root = BTRFS_I(inode)->root; 943 u64 alloc_hint = 0; 944 u64 num_bytes; 945 unsigned long ram_size; 946 u64 cur_alloc_size = 0; 947 u64 blocksize = fs_info->sectorsize; 948 struct btrfs_key ins; 949 struct extent_map *em; 950 unsigned clear_bits; 951 unsigned long page_ops; 952 bool extent_reserved = false; 953 int ret = 0; 954 955 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 956 WARN_ON_ONCE(1); 957 ret = -EINVAL; 958 goto out_unlock; 959 } 960 961 num_bytes = ALIGN(end - start + 1, blocksize); 962 num_bytes = max(blocksize, num_bytes); 963 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 964 965 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 966 967 if (start == 0) { 968 /* lets try to make an inline extent */ 969 ret = cow_file_range_inline(inode, start, end, 0, 970 BTRFS_COMPRESS_NONE, NULL); 971 if (ret == 0) { 972 /* 973 * We use DO_ACCOUNTING here because we need the 974 * delalloc_release_metadata to be run _after_ we drop 975 * our outstanding extent for clearing delalloc for this 976 * range. 977 */ 978 extent_clear_unlock_delalloc(inode, start, end, 979 delalloc_end, NULL, 980 EXTENT_LOCKED | EXTENT_DELALLOC | 981 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 982 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 983 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 984 PAGE_END_WRITEBACK); 985 *nr_written = *nr_written + 986 (end - start + PAGE_SIZE) / PAGE_SIZE; 987 *page_started = 1; 988 goto out; 989 } else if (ret < 0) { 990 goto out_unlock; 991 } 992 } 993 994 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 995 btrfs_drop_extent_cache(BTRFS_I(inode), start, 996 start + num_bytes - 1, 0); 997 998 while (num_bytes > 0) { 999 cur_alloc_size = num_bytes; 1000 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1001 fs_info->sectorsize, 0, alloc_hint, 1002 &ins, 1, 1); 1003 if (ret < 0) 1004 goto out_unlock; 1005 cur_alloc_size = ins.offset; 1006 extent_reserved = true; 1007 1008 ram_size = ins.offset; 1009 em = create_io_em(inode, start, ins.offset, /* len */ 1010 start, /* orig_start */ 1011 ins.objectid, /* block_start */ 1012 ins.offset, /* block_len */ 1013 ins.offset, /* orig_block_len */ 1014 ram_size, /* ram_bytes */ 1015 BTRFS_COMPRESS_NONE, /* compress_type */ 1016 BTRFS_ORDERED_REGULAR /* type */); 1017 if (IS_ERR(em)) { 1018 ret = PTR_ERR(em); 1019 goto out_reserve; 1020 } 1021 free_extent_map(em); 1022 1023 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1024 ram_size, cur_alloc_size, 0); 1025 if (ret) 1026 goto out_drop_extent_cache; 1027 1028 if (root->root_key.objectid == 1029 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1030 ret = btrfs_reloc_clone_csums(inode, start, 1031 cur_alloc_size); 1032 /* 1033 * Only drop cache here, and process as normal. 1034 * 1035 * We must not allow extent_clear_unlock_delalloc() 1036 * at out_unlock label to free meta of this ordered 1037 * extent, as its meta should be freed by 1038 * btrfs_finish_ordered_io(). 1039 * 1040 * So we must continue until @start is increased to 1041 * skip current ordered extent. 1042 */ 1043 if (ret) 1044 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1045 start + ram_size - 1, 0); 1046 } 1047 1048 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1049 1050 /* we're not doing compressed IO, don't unlock the first 1051 * page (which the caller expects to stay locked), don't 1052 * clear any dirty bits and don't set any writeback bits 1053 * 1054 * Do set the Private2 bit so we know this page was properly 1055 * setup for writepage 1056 */ 1057 page_ops = unlock ? PAGE_UNLOCK : 0; 1058 page_ops |= PAGE_SET_PRIVATE2; 1059 1060 extent_clear_unlock_delalloc(inode, start, 1061 start + ram_size - 1, 1062 delalloc_end, locked_page, 1063 EXTENT_LOCKED | EXTENT_DELALLOC, 1064 page_ops); 1065 if (num_bytes < cur_alloc_size) 1066 num_bytes = 0; 1067 else 1068 num_bytes -= cur_alloc_size; 1069 alloc_hint = ins.objectid + ins.offset; 1070 start += cur_alloc_size; 1071 extent_reserved = false; 1072 1073 /* 1074 * btrfs_reloc_clone_csums() error, since start is increased 1075 * extent_clear_unlock_delalloc() at out_unlock label won't 1076 * free metadata of current ordered extent, we're OK to exit. 1077 */ 1078 if (ret) 1079 goto out_unlock; 1080 } 1081 out: 1082 return ret; 1083 1084 out_drop_extent_cache: 1085 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1086 out_reserve: 1087 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1088 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1089 out_unlock: 1090 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1091 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1092 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1093 PAGE_END_WRITEBACK; 1094 /* 1095 * If we reserved an extent for our delalloc range (or a subrange) and 1096 * failed to create the respective ordered extent, then it means that 1097 * when we reserved the extent we decremented the extent's size from 1098 * the data space_info's bytes_may_use counter and incremented the 1099 * space_info's bytes_reserved counter by the same amount. We must make 1100 * sure extent_clear_unlock_delalloc() does not try to decrement again 1101 * the data space_info's bytes_may_use counter, therefore we do not pass 1102 * it the flag EXTENT_CLEAR_DATA_RESV. 1103 */ 1104 if (extent_reserved) { 1105 extent_clear_unlock_delalloc(inode, start, 1106 start + cur_alloc_size, 1107 start + cur_alloc_size, 1108 locked_page, 1109 clear_bits, 1110 page_ops); 1111 start += cur_alloc_size; 1112 if (start >= end) 1113 goto out; 1114 } 1115 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1116 locked_page, 1117 clear_bits | EXTENT_CLEAR_DATA_RESV, 1118 page_ops); 1119 goto out; 1120 } 1121 1122 /* 1123 * work queue call back to started compression on a file and pages 1124 */ 1125 static noinline void async_cow_start(struct btrfs_work *work) 1126 { 1127 struct async_cow *async_cow; 1128 int num_added = 0; 1129 async_cow = container_of(work, struct async_cow, work); 1130 1131 compress_file_range(async_cow->inode, async_cow->locked_page, 1132 async_cow->start, async_cow->end, async_cow, 1133 &num_added); 1134 if (num_added == 0) { 1135 btrfs_add_delayed_iput(async_cow->inode); 1136 async_cow->inode = NULL; 1137 } 1138 } 1139 1140 /* 1141 * work queue call back to submit previously compressed pages 1142 */ 1143 static noinline void async_cow_submit(struct btrfs_work *work) 1144 { 1145 struct btrfs_fs_info *fs_info; 1146 struct async_cow *async_cow; 1147 struct btrfs_root *root; 1148 unsigned long nr_pages; 1149 1150 async_cow = container_of(work, struct async_cow, work); 1151 1152 root = async_cow->root; 1153 fs_info = root->fs_info; 1154 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1155 PAGE_SHIFT; 1156 1157 /* atomic_sub_return implies a barrier */ 1158 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1159 5 * SZ_1M) 1160 cond_wake_up_nomb(&fs_info->async_submit_wait); 1161 1162 if (async_cow->inode) 1163 submit_compressed_extents(async_cow->inode, async_cow); 1164 } 1165 1166 static noinline void async_cow_free(struct btrfs_work *work) 1167 { 1168 struct async_cow *async_cow; 1169 async_cow = container_of(work, struct async_cow, work); 1170 if (async_cow->inode) 1171 btrfs_add_delayed_iput(async_cow->inode); 1172 kfree(async_cow); 1173 } 1174 1175 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1176 u64 start, u64 end, int *page_started, 1177 unsigned long *nr_written, 1178 unsigned int write_flags) 1179 { 1180 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1181 struct async_cow *async_cow; 1182 struct btrfs_root *root = BTRFS_I(inode)->root; 1183 unsigned long nr_pages; 1184 u64 cur_end; 1185 1186 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1187 1, 0, NULL); 1188 while (start < end) { 1189 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1190 BUG_ON(!async_cow); /* -ENOMEM */ 1191 async_cow->inode = igrab(inode); 1192 async_cow->root = root; 1193 async_cow->locked_page = locked_page; 1194 async_cow->start = start; 1195 async_cow->write_flags = write_flags; 1196 1197 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1198 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1199 cur_end = end; 1200 else 1201 cur_end = min(end, start + SZ_512K - 1); 1202 1203 async_cow->end = cur_end; 1204 INIT_LIST_HEAD(&async_cow->extents); 1205 1206 btrfs_init_work(&async_cow->work, 1207 btrfs_delalloc_helper, 1208 async_cow_start, async_cow_submit, 1209 async_cow_free); 1210 1211 nr_pages = (cur_end - start + PAGE_SIZE) >> 1212 PAGE_SHIFT; 1213 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1214 1215 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1216 1217 *nr_written += nr_pages; 1218 start = cur_end + 1; 1219 } 1220 *page_started = 1; 1221 return 0; 1222 } 1223 1224 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1225 u64 bytenr, u64 num_bytes) 1226 { 1227 int ret; 1228 struct btrfs_ordered_sum *sums; 1229 LIST_HEAD(list); 1230 1231 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1232 bytenr + num_bytes - 1, &list, 0); 1233 if (ret == 0 && list_empty(&list)) 1234 return 0; 1235 1236 while (!list_empty(&list)) { 1237 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1238 list_del(&sums->list); 1239 kfree(sums); 1240 } 1241 if (ret < 0) 1242 return ret; 1243 return 1; 1244 } 1245 1246 /* 1247 * when nowcow writeback call back. This checks for snapshots or COW copies 1248 * of the extents that exist in the file, and COWs the file as required. 1249 * 1250 * If no cow copies or snapshots exist, we write directly to the existing 1251 * blocks on disk 1252 */ 1253 static noinline int run_delalloc_nocow(struct inode *inode, 1254 struct page *locked_page, 1255 u64 start, u64 end, int *page_started, int force, 1256 unsigned long *nr_written) 1257 { 1258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1259 struct btrfs_root *root = BTRFS_I(inode)->root; 1260 struct extent_buffer *leaf; 1261 struct btrfs_path *path; 1262 struct btrfs_file_extent_item *fi; 1263 struct btrfs_key found_key; 1264 struct extent_map *em; 1265 u64 cow_start; 1266 u64 cur_offset; 1267 u64 extent_end; 1268 u64 extent_offset; 1269 u64 disk_bytenr; 1270 u64 num_bytes; 1271 u64 disk_num_bytes; 1272 u64 ram_bytes; 1273 int extent_type; 1274 int ret; 1275 int type; 1276 int nocow; 1277 int check_prev = 1; 1278 bool nolock; 1279 u64 ino = btrfs_ino(BTRFS_I(inode)); 1280 1281 path = btrfs_alloc_path(); 1282 if (!path) { 1283 extent_clear_unlock_delalloc(inode, start, end, end, 1284 locked_page, 1285 EXTENT_LOCKED | EXTENT_DELALLOC | 1286 EXTENT_DO_ACCOUNTING | 1287 EXTENT_DEFRAG, PAGE_UNLOCK | 1288 PAGE_CLEAR_DIRTY | 1289 PAGE_SET_WRITEBACK | 1290 PAGE_END_WRITEBACK); 1291 return -ENOMEM; 1292 } 1293 1294 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1295 1296 cow_start = (u64)-1; 1297 cur_offset = start; 1298 while (1) { 1299 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1300 cur_offset, 0); 1301 if (ret < 0) 1302 goto error; 1303 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1304 leaf = path->nodes[0]; 1305 btrfs_item_key_to_cpu(leaf, &found_key, 1306 path->slots[0] - 1); 1307 if (found_key.objectid == ino && 1308 found_key.type == BTRFS_EXTENT_DATA_KEY) 1309 path->slots[0]--; 1310 } 1311 check_prev = 0; 1312 next_slot: 1313 leaf = path->nodes[0]; 1314 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1315 ret = btrfs_next_leaf(root, path); 1316 if (ret < 0) { 1317 if (cow_start != (u64)-1) 1318 cur_offset = cow_start; 1319 goto error; 1320 } 1321 if (ret > 0) 1322 break; 1323 leaf = path->nodes[0]; 1324 } 1325 1326 nocow = 0; 1327 disk_bytenr = 0; 1328 num_bytes = 0; 1329 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1330 1331 if (found_key.objectid > ino) 1332 break; 1333 if (WARN_ON_ONCE(found_key.objectid < ino) || 1334 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1335 path->slots[0]++; 1336 goto next_slot; 1337 } 1338 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1339 found_key.offset > end) 1340 break; 1341 1342 if (found_key.offset > cur_offset) { 1343 extent_end = found_key.offset; 1344 extent_type = 0; 1345 goto out_check; 1346 } 1347 1348 fi = btrfs_item_ptr(leaf, path->slots[0], 1349 struct btrfs_file_extent_item); 1350 extent_type = btrfs_file_extent_type(leaf, fi); 1351 1352 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1353 if (extent_type == BTRFS_FILE_EXTENT_REG || 1354 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1355 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1356 extent_offset = btrfs_file_extent_offset(leaf, fi); 1357 extent_end = found_key.offset + 1358 btrfs_file_extent_num_bytes(leaf, fi); 1359 disk_num_bytes = 1360 btrfs_file_extent_disk_num_bytes(leaf, fi); 1361 if (extent_end <= start) { 1362 path->slots[0]++; 1363 goto next_slot; 1364 } 1365 if (disk_bytenr == 0) 1366 goto out_check; 1367 if (btrfs_file_extent_compression(leaf, fi) || 1368 btrfs_file_extent_encryption(leaf, fi) || 1369 btrfs_file_extent_other_encoding(leaf, fi)) 1370 goto out_check; 1371 /* 1372 * Do the same check as in btrfs_cross_ref_exist but 1373 * without the unnecessary search. 1374 */ 1375 if (btrfs_file_extent_generation(leaf, fi) <= 1376 btrfs_root_last_snapshot(&root->root_item)) 1377 goto out_check; 1378 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1379 goto out_check; 1380 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1381 goto out_check; 1382 ret = btrfs_cross_ref_exist(root, ino, 1383 found_key.offset - 1384 extent_offset, disk_bytenr); 1385 if (ret) { 1386 /* 1387 * ret could be -EIO if the above fails to read 1388 * metadata. 1389 */ 1390 if (ret < 0) { 1391 if (cow_start != (u64)-1) 1392 cur_offset = cow_start; 1393 goto error; 1394 } 1395 1396 WARN_ON_ONCE(nolock); 1397 goto out_check; 1398 } 1399 disk_bytenr += extent_offset; 1400 disk_bytenr += cur_offset - found_key.offset; 1401 num_bytes = min(end + 1, extent_end) - cur_offset; 1402 /* 1403 * if there are pending snapshots for this root, 1404 * we fall into common COW way. 1405 */ 1406 if (!nolock && atomic_read(&root->snapshot_force_cow)) 1407 goto out_check; 1408 /* 1409 * force cow if csum exists in the range. 1410 * this ensure that csum for a given extent are 1411 * either valid or do not exist. 1412 */ 1413 ret = csum_exist_in_range(fs_info, disk_bytenr, 1414 num_bytes); 1415 if (ret) { 1416 /* 1417 * ret could be -EIO if the above fails to read 1418 * metadata. 1419 */ 1420 if (ret < 0) { 1421 if (cow_start != (u64)-1) 1422 cur_offset = cow_start; 1423 goto error; 1424 } 1425 WARN_ON_ONCE(nolock); 1426 goto out_check; 1427 } 1428 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1429 goto out_check; 1430 nocow = 1; 1431 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1432 extent_end = found_key.offset + 1433 btrfs_file_extent_ram_bytes(leaf, fi); 1434 extent_end = ALIGN(extent_end, 1435 fs_info->sectorsize); 1436 } else { 1437 BUG_ON(1); 1438 } 1439 out_check: 1440 if (extent_end <= start) { 1441 path->slots[0]++; 1442 if (nocow) 1443 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1444 goto next_slot; 1445 } 1446 if (!nocow) { 1447 if (cow_start == (u64)-1) 1448 cow_start = cur_offset; 1449 cur_offset = extent_end; 1450 if (cur_offset > end) 1451 break; 1452 path->slots[0]++; 1453 goto next_slot; 1454 } 1455 1456 btrfs_release_path(path); 1457 if (cow_start != (u64)-1) { 1458 ret = cow_file_range(inode, locked_page, 1459 cow_start, found_key.offset - 1, 1460 end, page_started, nr_written, 1, 1461 NULL); 1462 if (ret) { 1463 if (nocow) 1464 btrfs_dec_nocow_writers(fs_info, 1465 disk_bytenr); 1466 goto error; 1467 } 1468 cow_start = (u64)-1; 1469 } 1470 1471 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1472 u64 orig_start = found_key.offset - extent_offset; 1473 1474 em = create_io_em(inode, cur_offset, num_bytes, 1475 orig_start, 1476 disk_bytenr, /* block_start */ 1477 num_bytes, /* block_len */ 1478 disk_num_bytes, /* orig_block_len */ 1479 ram_bytes, BTRFS_COMPRESS_NONE, 1480 BTRFS_ORDERED_PREALLOC); 1481 if (IS_ERR(em)) { 1482 if (nocow) 1483 btrfs_dec_nocow_writers(fs_info, 1484 disk_bytenr); 1485 ret = PTR_ERR(em); 1486 goto error; 1487 } 1488 free_extent_map(em); 1489 } 1490 1491 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1492 type = BTRFS_ORDERED_PREALLOC; 1493 } else { 1494 type = BTRFS_ORDERED_NOCOW; 1495 } 1496 1497 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1498 num_bytes, num_bytes, type); 1499 if (nocow) 1500 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1501 BUG_ON(ret); /* -ENOMEM */ 1502 1503 if (root->root_key.objectid == 1504 BTRFS_DATA_RELOC_TREE_OBJECTID) 1505 /* 1506 * Error handled later, as we must prevent 1507 * extent_clear_unlock_delalloc() in error handler 1508 * from freeing metadata of created ordered extent. 1509 */ 1510 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1511 num_bytes); 1512 1513 extent_clear_unlock_delalloc(inode, cur_offset, 1514 cur_offset + num_bytes - 1, end, 1515 locked_page, EXTENT_LOCKED | 1516 EXTENT_DELALLOC | 1517 EXTENT_CLEAR_DATA_RESV, 1518 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1519 1520 cur_offset = extent_end; 1521 1522 /* 1523 * btrfs_reloc_clone_csums() error, now we're OK to call error 1524 * handler, as metadata for created ordered extent will only 1525 * be freed by btrfs_finish_ordered_io(). 1526 */ 1527 if (ret) 1528 goto error; 1529 if (cur_offset > end) 1530 break; 1531 } 1532 btrfs_release_path(path); 1533 1534 if (cur_offset <= end && cow_start == (u64)-1) 1535 cow_start = cur_offset; 1536 1537 if (cow_start != (u64)-1) { 1538 cur_offset = end; 1539 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1540 page_started, nr_written, 1, NULL); 1541 if (ret) 1542 goto error; 1543 } 1544 1545 error: 1546 if (ret && cur_offset < end) 1547 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1548 locked_page, EXTENT_LOCKED | 1549 EXTENT_DELALLOC | EXTENT_DEFRAG | 1550 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1551 PAGE_CLEAR_DIRTY | 1552 PAGE_SET_WRITEBACK | 1553 PAGE_END_WRITEBACK); 1554 btrfs_free_path(path); 1555 return ret; 1556 } 1557 1558 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1559 { 1560 1561 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1562 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1563 return 0; 1564 1565 /* 1566 * @defrag_bytes is a hint value, no spinlock held here, 1567 * if is not zero, it means the file is defragging. 1568 * Force cow if given extent needs to be defragged. 1569 */ 1570 if (BTRFS_I(inode)->defrag_bytes && 1571 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1572 EXTENT_DEFRAG, 0, NULL)) 1573 return 1; 1574 1575 return 0; 1576 } 1577 1578 /* 1579 * extent_io.c call back to do delayed allocation processing 1580 */ 1581 static int run_delalloc_range(void *private_data, struct page *locked_page, 1582 u64 start, u64 end, int *page_started, 1583 unsigned long *nr_written, 1584 struct writeback_control *wbc) 1585 { 1586 struct inode *inode = private_data; 1587 int ret; 1588 int force_cow = need_force_cow(inode, start, end); 1589 unsigned int write_flags = wbc_to_write_flags(wbc); 1590 1591 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1592 ret = run_delalloc_nocow(inode, locked_page, start, end, 1593 page_started, 1, nr_written); 1594 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1595 ret = run_delalloc_nocow(inode, locked_page, start, end, 1596 page_started, 0, nr_written); 1597 } else if (!inode_need_compress(inode, start, end)) { 1598 ret = cow_file_range(inode, locked_page, start, end, end, 1599 page_started, nr_written, 1, NULL); 1600 } else { 1601 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1602 &BTRFS_I(inode)->runtime_flags); 1603 ret = cow_file_range_async(inode, locked_page, start, end, 1604 page_started, nr_written, 1605 write_flags); 1606 } 1607 if (ret) 1608 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1609 return ret; 1610 } 1611 1612 static void btrfs_split_extent_hook(void *private_data, 1613 struct extent_state *orig, u64 split) 1614 { 1615 struct inode *inode = private_data; 1616 u64 size; 1617 1618 /* not delalloc, ignore it */ 1619 if (!(orig->state & EXTENT_DELALLOC)) 1620 return; 1621 1622 size = orig->end - orig->start + 1; 1623 if (size > BTRFS_MAX_EXTENT_SIZE) { 1624 u32 num_extents; 1625 u64 new_size; 1626 1627 /* 1628 * See the explanation in btrfs_merge_extent_hook, the same 1629 * applies here, just in reverse. 1630 */ 1631 new_size = orig->end - split + 1; 1632 num_extents = count_max_extents(new_size); 1633 new_size = split - orig->start; 1634 num_extents += count_max_extents(new_size); 1635 if (count_max_extents(size) >= num_extents) 1636 return; 1637 } 1638 1639 spin_lock(&BTRFS_I(inode)->lock); 1640 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1641 spin_unlock(&BTRFS_I(inode)->lock); 1642 } 1643 1644 /* 1645 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1646 * extents so we can keep track of new extents that are just merged onto old 1647 * extents, such as when we are doing sequential writes, so we can properly 1648 * account for the metadata space we'll need. 1649 */ 1650 static void btrfs_merge_extent_hook(void *private_data, 1651 struct extent_state *new, 1652 struct extent_state *other) 1653 { 1654 struct inode *inode = private_data; 1655 u64 new_size, old_size; 1656 u32 num_extents; 1657 1658 /* not delalloc, ignore it */ 1659 if (!(other->state & EXTENT_DELALLOC)) 1660 return; 1661 1662 if (new->start > other->start) 1663 new_size = new->end - other->start + 1; 1664 else 1665 new_size = other->end - new->start + 1; 1666 1667 /* we're not bigger than the max, unreserve the space and go */ 1668 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1669 spin_lock(&BTRFS_I(inode)->lock); 1670 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1671 spin_unlock(&BTRFS_I(inode)->lock); 1672 return; 1673 } 1674 1675 /* 1676 * We have to add up either side to figure out how many extents were 1677 * accounted for before we merged into one big extent. If the number of 1678 * extents we accounted for is <= the amount we need for the new range 1679 * then we can return, otherwise drop. Think of it like this 1680 * 1681 * [ 4k][MAX_SIZE] 1682 * 1683 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1684 * need 2 outstanding extents, on one side we have 1 and the other side 1685 * we have 1 so they are == and we can return. But in this case 1686 * 1687 * [MAX_SIZE+4k][MAX_SIZE+4k] 1688 * 1689 * Each range on their own accounts for 2 extents, but merged together 1690 * they are only 3 extents worth of accounting, so we need to drop in 1691 * this case. 1692 */ 1693 old_size = other->end - other->start + 1; 1694 num_extents = count_max_extents(old_size); 1695 old_size = new->end - new->start + 1; 1696 num_extents += count_max_extents(old_size); 1697 if (count_max_extents(new_size) >= num_extents) 1698 return; 1699 1700 spin_lock(&BTRFS_I(inode)->lock); 1701 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1702 spin_unlock(&BTRFS_I(inode)->lock); 1703 } 1704 1705 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1706 struct inode *inode) 1707 { 1708 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1709 1710 spin_lock(&root->delalloc_lock); 1711 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1712 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1713 &root->delalloc_inodes); 1714 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1715 &BTRFS_I(inode)->runtime_flags); 1716 root->nr_delalloc_inodes++; 1717 if (root->nr_delalloc_inodes == 1) { 1718 spin_lock(&fs_info->delalloc_root_lock); 1719 BUG_ON(!list_empty(&root->delalloc_root)); 1720 list_add_tail(&root->delalloc_root, 1721 &fs_info->delalloc_roots); 1722 spin_unlock(&fs_info->delalloc_root_lock); 1723 } 1724 } 1725 spin_unlock(&root->delalloc_lock); 1726 } 1727 1728 1729 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1730 struct btrfs_inode *inode) 1731 { 1732 struct btrfs_fs_info *fs_info = root->fs_info; 1733 1734 if (!list_empty(&inode->delalloc_inodes)) { 1735 list_del_init(&inode->delalloc_inodes); 1736 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1737 &inode->runtime_flags); 1738 root->nr_delalloc_inodes--; 1739 if (!root->nr_delalloc_inodes) { 1740 ASSERT(list_empty(&root->delalloc_inodes)); 1741 spin_lock(&fs_info->delalloc_root_lock); 1742 BUG_ON(list_empty(&root->delalloc_root)); 1743 list_del_init(&root->delalloc_root); 1744 spin_unlock(&fs_info->delalloc_root_lock); 1745 } 1746 } 1747 } 1748 1749 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1750 struct btrfs_inode *inode) 1751 { 1752 spin_lock(&root->delalloc_lock); 1753 __btrfs_del_delalloc_inode(root, inode); 1754 spin_unlock(&root->delalloc_lock); 1755 } 1756 1757 /* 1758 * extent_io.c set_bit_hook, used to track delayed allocation 1759 * bytes in this file, and to maintain the list of inodes that 1760 * have pending delalloc work to be done. 1761 */ 1762 static void btrfs_set_bit_hook(void *private_data, 1763 struct extent_state *state, unsigned *bits) 1764 { 1765 struct inode *inode = private_data; 1766 1767 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1768 1769 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1770 WARN_ON(1); 1771 /* 1772 * set_bit and clear bit hooks normally require _irqsave/restore 1773 * but in this case, we are only testing for the DELALLOC 1774 * bit, which is only set or cleared with irqs on 1775 */ 1776 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1777 struct btrfs_root *root = BTRFS_I(inode)->root; 1778 u64 len = state->end + 1 - state->start; 1779 u32 num_extents = count_max_extents(len); 1780 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1781 1782 spin_lock(&BTRFS_I(inode)->lock); 1783 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1784 spin_unlock(&BTRFS_I(inode)->lock); 1785 1786 /* For sanity tests */ 1787 if (btrfs_is_testing(fs_info)) 1788 return; 1789 1790 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1791 fs_info->delalloc_batch); 1792 spin_lock(&BTRFS_I(inode)->lock); 1793 BTRFS_I(inode)->delalloc_bytes += len; 1794 if (*bits & EXTENT_DEFRAG) 1795 BTRFS_I(inode)->defrag_bytes += len; 1796 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1797 &BTRFS_I(inode)->runtime_flags)) 1798 btrfs_add_delalloc_inodes(root, inode); 1799 spin_unlock(&BTRFS_I(inode)->lock); 1800 } 1801 1802 if (!(state->state & EXTENT_DELALLOC_NEW) && 1803 (*bits & EXTENT_DELALLOC_NEW)) { 1804 spin_lock(&BTRFS_I(inode)->lock); 1805 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1806 state->start; 1807 spin_unlock(&BTRFS_I(inode)->lock); 1808 } 1809 } 1810 1811 /* 1812 * extent_io.c clear_bit_hook, see set_bit_hook for why 1813 */ 1814 static void btrfs_clear_bit_hook(void *private_data, 1815 struct extent_state *state, 1816 unsigned *bits) 1817 { 1818 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); 1819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1820 u64 len = state->end + 1 - state->start; 1821 u32 num_extents = count_max_extents(len); 1822 1823 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1824 spin_lock(&inode->lock); 1825 inode->defrag_bytes -= len; 1826 spin_unlock(&inode->lock); 1827 } 1828 1829 /* 1830 * set_bit and clear bit hooks normally require _irqsave/restore 1831 * but in this case, we are only testing for the DELALLOC 1832 * bit, which is only set or cleared with irqs on 1833 */ 1834 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1835 struct btrfs_root *root = inode->root; 1836 bool do_list = !btrfs_is_free_space_inode(inode); 1837 1838 spin_lock(&inode->lock); 1839 btrfs_mod_outstanding_extents(inode, -num_extents); 1840 spin_unlock(&inode->lock); 1841 1842 /* 1843 * We don't reserve metadata space for space cache inodes so we 1844 * don't need to call dellalloc_release_metadata if there is an 1845 * error. 1846 */ 1847 if (*bits & EXTENT_CLEAR_META_RESV && 1848 root != fs_info->tree_root) 1849 btrfs_delalloc_release_metadata(inode, len, false); 1850 1851 /* For sanity tests. */ 1852 if (btrfs_is_testing(fs_info)) 1853 return; 1854 1855 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1856 do_list && !(state->state & EXTENT_NORESERVE) && 1857 (*bits & EXTENT_CLEAR_DATA_RESV)) 1858 btrfs_free_reserved_data_space_noquota( 1859 &inode->vfs_inode, 1860 state->start, len); 1861 1862 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1863 fs_info->delalloc_batch); 1864 spin_lock(&inode->lock); 1865 inode->delalloc_bytes -= len; 1866 if (do_list && inode->delalloc_bytes == 0 && 1867 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1868 &inode->runtime_flags)) 1869 btrfs_del_delalloc_inode(root, inode); 1870 spin_unlock(&inode->lock); 1871 } 1872 1873 if ((state->state & EXTENT_DELALLOC_NEW) && 1874 (*bits & EXTENT_DELALLOC_NEW)) { 1875 spin_lock(&inode->lock); 1876 ASSERT(inode->new_delalloc_bytes >= len); 1877 inode->new_delalloc_bytes -= len; 1878 spin_unlock(&inode->lock); 1879 } 1880 } 1881 1882 /* 1883 * Merge bio hook, this must check the chunk tree to make sure we don't create 1884 * bios that span stripes or chunks 1885 * 1886 * return 1 if page cannot be merged to bio 1887 * return 0 if page can be merged to bio 1888 * return error otherwise 1889 */ 1890 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1891 size_t size, struct bio *bio, 1892 unsigned long bio_flags) 1893 { 1894 struct inode *inode = page->mapping->host; 1895 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1896 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1897 u64 length = 0; 1898 u64 map_length; 1899 int ret; 1900 1901 if (bio_flags & EXTENT_BIO_COMPRESSED) 1902 return 0; 1903 1904 length = bio->bi_iter.bi_size; 1905 map_length = length; 1906 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1907 NULL, 0); 1908 if (ret < 0) 1909 return ret; 1910 if (map_length < length + size) 1911 return 1; 1912 return 0; 1913 } 1914 1915 /* 1916 * in order to insert checksums into the metadata in large chunks, 1917 * we wait until bio submission time. All the pages in the bio are 1918 * checksummed and sums are attached onto the ordered extent record. 1919 * 1920 * At IO completion time the cums attached on the ordered extent record 1921 * are inserted into the btree 1922 */ 1923 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 1924 u64 bio_offset) 1925 { 1926 struct inode *inode = private_data; 1927 blk_status_t ret = 0; 1928 1929 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1930 BUG_ON(ret); /* -ENOMEM */ 1931 return 0; 1932 } 1933 1934 /* 1935 * in order to insert checksums into the metadata in large chunks, 1936 * we wait until bio submission time. All the pages in the bio are 1937 * checksummed and sums are attached onto the ordered extent record. 1938 * 1939 * At IO completion time the cums attached on the ordered extent record 1940 * are inserted into the btree 1941 */ 1942 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio, 1943 int mirror_num) 1944 { 1945 struct inode *inode = private_data; 1946 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1947 blk_status_t ret; 1948 1949 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1950 if (ret) { 1951 bio->bi_status = ret; 1952 bio_endio(bio); 1953 } 1954 return ret; 1955 } 1956 1957 /* 1958 * extent_io.c submission hook. This does the right thing for csum calculation 1959 * on write, or reading the csums from the tree before a read. 1960 * 1961 * Rules about async/sync submit, 1962 * a) read: sync submit 1963 * 1964 * b) write without checksum: sync submit 1965 * 1966 * c) write with checksum: 1967 * c-1) if bio is issued by fsync: sync submit 1968 * (sync_writers != 0) 1969 * 1970 * c-2) if root is reloc root: sync submit 1971 * (only in case of buffered IO) 1972 * 1973 * c-3) otherwise: async submit 1974 */ 1975 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1976 int mirror_num, unsigned long bio_flags, 1977 u64 bio_offset) 1978 { 1979 struct inode *inode = private_data; 1980 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1981 struct btrfs_root *root = BTRFS_I(inode)->root; 1982 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1983 blk_status_t ret = 0; 1984 int skip_sum; 1985 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1986 1987 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1988 1989 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1990 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1991 1992 if (bio_op(bio) != REQ_OP_WRITE) { 1993 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1994 if (ret) 1995 goto out; 1996 1997 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1998 ret = btrfs_submit_compressed_read(inode, bio, 1999 mirror_num, 2000 bio_flags); 2001 goto out; 2002 } else if (!skip_sum) { 2003 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2004 if (ret) 2005 goto out; 2006 } 2007 goto mapit; 2008 } else if (async && !skip_sum) { 2009 /* csum items have already been cloned */ 2010 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2011 goto mapit; 2012 /* we're doing a write, do the async checksumming */ 2013 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2014 bio_offset, inode, 2015 btrfs_submit_bio_start); 2016 goto out; 2017 } else if (!skip_sum) { 2018 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2019 if (ret) 2020 goto out; 2021 } 2022 2023 mapit: 2024 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2025 2026 out: 2027 if (ret) { 2028 bio->bi_status = ret; 2029 bio_endio(bio); 2030 } 2031 return ret; 2032 } 2033 2034 /* 2035 * given a list of ordered sums record them in the inode. This happens 2036 * at IO completion time based on sums calculated at bio submission time. 2037 */ 2038 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2039 struct inode *inode, struct list_head *list) 2040 { 2041 struct btrfs_ordered_sum *sum; 2042 int ret; 2043 2044 list_for_each_entry(sum, list, list) { 2045 trans->adding_csums = true; 2046 ret = btrfs_csum_file_blocks(trans, 2047 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2048 trans->adding_csums = false; 2049 if (ret) 2050 return ret; 2051 } 2052 return 0; 2053 } 2054 2055 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2056 unsigned int extra_bits, 2057 struct extent_state **cached_state, int dedupe) 2058 { 2059 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2060 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2061 extra_bits, cached_state); 2062 } 2063 2064 /* see btrfs_writepage_start_hook for details on why this is required */ 2065 struct btrfs_writepage_fixup { 2066 struct page *page; 2067 struct btrfs_work work; 2068 }; 2069 2070 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2071 { 2072 struct btrfs_writepage_fixup *fixup; 2073 struct btrfs_ordered_extent *ordered; 2074 struct extent_state *cached_state = NULL; 2075 struct extent_changeset *data_reserved = NULL; 2076 struct page *page; 2077 struct inode *inode; 2078 u64 page_start; 2079 u64 page_end; 2080 int ret; 2081 2082 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2083 page = fixup->page; 2084 again: 2085 lock_page(page); 2086 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2087 ClearPageChecked(page); 2088 goto out_page; 2089 } 2090 2091 inode = page->mapping->host; 2092 page_start = page_offset(page); 2093 page_end = page_offset(page) + PAGE_SIZE - 1; 2094 2095 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2096 &cached_state); 2097 2098 /* already ordered? We're done */ 2099 if (PagePrivate2(page)) 2100 goto out; 2101 2102 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2103 PAGE_SIZE); 2104 if (ordered) { 2105 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2106 page_end, &cached_state); 2107 unlock_page(page); 2108 btrfs_start_ordered_extent(inode, ordered, 1); 2109 btrfs_put_ordered_extent(ordered); 2110 goto again; 2111 } 2112 2113 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2114 PAGE_SIZE); 2115 if (ret) { 2116 mapping_set_error(page->mapping, ret); 2117 end_extent_writepage(page, ret, page_start, page_end); 2118 ClearPageChecked(page); 2119 goto out; 2120 } 2121 2122 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2123 &cached_state, 0); 2124 if (ret) { 2125 mapping_set_error(page->mapping, ret); 2126 end_extent_writepage(page, ret, page_start, page_end); 2127 ClearPageChecked(page); 2128 goto out; 2129 } 2130 2131 ClearPageChecked(page); 2132 set_page_dirty(page); 2133 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false); 2134 out: 2135 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2136 &cached_state); 2137 out_page: 2138 unlock_page(page); 2139 put_page(page); 2140 kfree(fixup); 2141 extent_changeset_free(data_reserved); 2142 } 2143 2144 /* 2145 * There are a few paths in the higher layers of the kernel that directly 2146 * set the page dirty bit without asking the filesystem if it is a 2147 * good idea. This causes problems because we want to make sure COW 2148 * properly happens and the data=ordered rules are followed. 2149 * 2150 * In our case any range that doesn't have the ORDERED bit set 2151 * hasn't been properly setup for IO. We kick off an async process 2152 * to fix it up. The async helper will wait for ordered extents, set 2153 * the delalloc bit and make it safe to write the page. 2154 */ 2155 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2156 { 2157 struct inode *inode = page->mapping->host; 2158 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2159 struct btrfs_writepage_fixup *fixup; 2160 2161 /* this page is properly in the ordered list */ 2162 if (TestClearPagePrivate2(page)) 2163 return 0; 2164 2165 if (PageChecked(page)) 2166 return -EAGAIN; 2167 2168 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2169 if (!fixup) 2170 return -EAGAIN; 2171 2172 SetPageChecked(page); 2173 get_page(page); 2174 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2175 btrfs_writepage_fixup_worker, NULL, NULL); 2176 fixup->page = page; 2177 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2178 return -EBUSY; 2179 } 2180 2181 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2182 struct inode *inode, u64 file_pos, 2183 u64 disk_bytenr, u64 disk_num_bytes, 2184 u64 num_bytes, u64 ram_bytes, 2185 u8 compression, u8 encryption, 2186 u16 other_encoding, int extent_type) 2187 { 2188 struct btrfs_root *root = BTRFS_I(inode)->root; 2189 struct btrfs_file_extent_item *fi; 2190 struct btrfs_path *path; 2191 struct extent_buffer *leaf; 2192 struct btrfs_key ins; 2193 u64 qg_released; 2194 int extent_inserted = 0; 2195 int ret; 2196 2197 path = btrfs_alloc_path(); 2198 if (!path) 2199 return -ENOMEM; 2200 2201 /* 2202 * we may be replacing one extent in the tree with another. 2203 * The new extent is pinned in the extent map, and we don't want 2204 * to drop it from the cache until it is completely in the btree. 2205 * 2206 * So, tell btrfs_drop_extents to leave this extent in the cache. 2207 * the caller is expected to unpin it and allow it to be merged 2208 * with the others. 2209 */ 2210 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2211 file_pos + num_bytes, NULL, 0, 2212 1, sizeof(*fi), &extent_inserted); 2213 if (ret) 2214 goto out; 2215 2216 if (!extent_inserted) { 2217 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2218 ins.offset = file_pos; 2219 ins.type = BTRFS_EXTENT_DATA_KEY; 2220 2221 path->leave_spinning = 1; 2222 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2223 sizeof(*fi)); 2224 if (ret) 2225 goto out; 2226 } 2227 leaf = path->nodes[0]; 2228 fi = btrfs_item_ptr(leaf, path->slots[0], 2229 struct btrfs_file_extent_item); 2230 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2231 btrfs_set_file_extent_type(leaf, fi, extent_type); 2232 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2233 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2234 btrfs_set_file_extent_offset(leaf, fi, 0); 2235 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2236 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2237 btrfs_set_file_extent_compression(leaf, fi, compression); 2238 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2239 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2240 2241 btrfs_mark_buffer_dirty(leaf); 2242 btrfs_release_path(path); 2243 2244 inode_add_bytes(inode, num_bytes); 2245 2246 ins.objectid = disk_bytenr; 2247 ins.offset = disk_num_bytes; 2248 ins.type = BTRFS_EXTENT_ITEM_KEY; 2249 2250 /* 2251 * Release the reserved range from inode dirty range map, as it is 2252 * already moved into delayed_ref_head 2253 */ 2254 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2255 if (ret < 0) 2256 goto out; 2257 qg_released = ret; 2258 ret = btrfs_alloc_reserved_file_extent(trans, root, 2259 btrfs_ino(BTRFS_I(inode)), 2260 file_pos, qg_released, &ins); 2261 out: 2262 btrfs_free_path(path); 2263 2264 return ret; 2265 } 2266 2267 /* snapshot-aware defrag */ 2268 struct sa_defrag_extent_backref { 2269 struct rb_node node; 2270 struct old_sa_defrag_extent *old; 2271 u64 root_id; 2272 u64 inum; 2273 u64 file_pos; 2274 u64 extent_offset; 2275 u64 num_bytes; 2276 u64 generation; 2277 }; 2278 2279 struct old_sa_defrag_extent { 2280 struct list_head list; 2281 struct new_sa_defrag_extent *new; 2282 2283 u64 extent_offset; 2284 u64 bytenr; 2285 u64 offset; 2286 u64 len; 2287 int count; 2288 }; 2289 2290 struct new_sa_defrag_extent { 2291 struct rb_root root; 2292 struct list_head head; 2293 struct btrfs_path *path; 2294 struct inode *inode; 2295 u64 file_pos; 2296 u64 len; 2297 u64 bytenr; 2298 u64 disk_len; 2299 u8 compress_type; 2300 }; 2301 2302 static int backref_comp(struct sa_defrag_extent_backref *b1, 2303 struct sa_defrag_extent_backref *b2) 2304 { 2305 if (b1->root_id < b2->root_id) 2306 return -1; 2307 else if (b1->root_id > b2->root_id) 2308 return 1; 2309 2310 if (b1->inum < b2->inum) 2311 return -1; 2312 else if (b1->inum > b2->inum) 2313 return 1; 2314 2315 if (b1->file_pos < b2->file_pos) 2316 return -1; 2317 else if (b1->file_pos > b2->file_pos) 2318 return 1; 2319 2320 /* 2321 * [------------------------------] ===> (a range of space) 2322 * |<--->| |<---->| =============> (fs/file tree A) 2323 * |<---------------------------->| ===> (fs/file tree B) 2324 * 2325 * A range of space can refer to two file extents in one tree while 2326 * refer to only one file extent in another tree. 2327 * 2328 * So we may process a disk offset more than one time(two extents in A) 2329 * and locate at the same extent(one extent in B), then insert two same 2330 * backrefs(both refer to the extent in B). 2331 */ 2332 return 0; 2333 } 2334 2335 static void backref_insert(struct rb_root *root, 2336 struct sa_defrag_extent_backref *backref) 2337 { 2338 struct rb_node **p = &root->rb_node; 2339 struct rb_node *parent = NULL; 2340 struct sa_defrag_extent_backref *entry; 2341 int ret; 2342 2343 while (*p) { 2344 parent = *p; 2345 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2346 2347 ret = backref_comp(backref, entry); 2348 if (ret < 0) 2349 p = &(*p)->rb_left; 2350 else 2351 p = &(*p)->rb_right; 2352 } 2353 2354 rb_link_node(&backref->node, parent, p); 2355 rb_insert_color(&backref->node, root); 2356 } 2357 2358 /* 2359 * Note the backref might has changed, and in this case we just return 0. 2360 */ 2361 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2362 void *ctx) 2363 { 2364 struct btrfs_file_extent_item *extent; 2365 struct old_sa_defrag_extent *old = ctx; 2366 struct new_sa_defrag_extent *new = old->new; 2367 struct btrfs_path *path = new->path; 2368 struct btrfs_key key; 2369 struct btrfs_root *root; 2370 struct sa_defrag_extent_backref *backref; 2371 struct extent_buffer *leaf; 2372 struct inode *inode = new->inode; 2373 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2374 int slot; 2375 int ret; 2376 u64 extent_offset; 2377 u64 num_bytes; 2378 2379 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2380 inum == btrfs_ino(BTRFS_I(inode))) 2381 return 0; 2382 2383 key.objectid = root_id; 2384 key.type = BTRFS_ROOT_ITEM_KEY; 2385 key.offset = (u64)-1; 2386 2387 root = btrfs_read_fs_root_no_name(fs_info, &key); 2388 if (IS_ERR(root)) { 2389 if (PTR_ERR(root) == -ENOENT) 2390 return 0; 2391 WARN_ON(1); 2392 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2393 inum, offset, root_id); 2394 return PTR_ERR(root); 2395 } 2396 2397 key.objectid = inum; 2398 key.type = BTRFS_EXTENT_DATA_KEY; 2399 if (offset > (u64)-1 << 32) 2400 key.offset = 0; 2401 else 2402 key.offset = offset; 2403 2404 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2405 if (WARN_ON(ret < 0)) 2406 return ret; 2407 ret = 0; 2408 2409 while (1) { 2410 cond_resched(); 2411 2412 leaf = path->nodes[0]; 2413 slot = path->slots[0]; 2414 2415 if (slot >= btrfs_header_nritems(leaf)) { 2416 ret = btrfs_next_leaf(root, path); 2417 if (ret < 0) { 2418 goto out; 2419 } else if (ret > 0) { 2420 ret = 0; 2421 goto out; 2422 } 2423 continue; 2424 } 2425 2426 path->slots[0]++; 2427 2428 btrfs_item_key_to_cpu(leaf, &key, slot); 2429 2430 if (key.objectid > inum) 2431 goto out; 2432 2433 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2434 continue; 2435 2436 extent = btrfs_item_ptr(leaf, slot, 2437 struct btrfs_file_extent_item); 2438 2439 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2440 continue; 2441 2442 /* 2443 * 'offset' refers to the exact key.offset, 2444 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2445 * (key.offset - extent_offset). 2446 */ 2447 if (key.offset != offset) 2448 continue; 2449 2450 extent_offset = btrfs_file_extent_offset(leaf, extent); 2451 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2452 2453 if (extent_offset >= old->extent_offset + old->offset + 2454 old->len || extent_offset + num_bytes <= 2455 old->extent_offset + old->offset) 2456 continue; 2457 break; 2458 } 2459 2460 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2461 if (!backref) { 2462 ret = -ENOENT; 2463 goto out; 2464 } 2465 2466 backref->root_id = root_id; 2467 backref->inum = inum; 2468 backref->file_pos = offset; 2469 backref->num_bytes = num_bytes; 2470 backref->extent_offset = extent_offset; 2471 backref->generation = btrfs_file_extent_generation(leaf, extent); 2472 backref->old = old; 2473 backref_insert(&new->root, backref); 2474 old->count++; 2475 out: 2476 btrfs_release_path(path); 2477 WARN_ON(ret); 2478 return ret; 2479 } 2480 2481 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2482 struct new_sa_defrag_extent *new) 2483 { 2484 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2485 struct old_sa_defrag_extent *old, *tmp; 2486 int ret; 2487 2488 new->path = path; 2489 2490 list_for_each_entry_safe(old, tmp, &new->head, list) { 2491 ret = iterate_inodes_from_logical(old->bytenr + 2492 old->extent_offset, fs_info, 2493 path, record_one_backref, 2494 old, false); 2495 if (ret < 0 && ret != -ENOENT) 2496 return false; 2497 2498 /* no backref to be processed for this extent */ 2499 if (!old->count) { 2500 list_del(&old->list); 2501 kfree(old); 2502 } 2503 } 2504 2505 if (list_empty(&new->head)) 2506 return false; 2507 2508 return true; 2509 } 2510 2511 static int relink_is_mergable(struct extent_buffer *leaf, 2512 struct btrfs_file_extent_item *fi, 2513 struct new_sa_defrag_extent *new) 2514 { 2515 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2516 return 0; 2517 2518 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2519 return 0; 2520 2521 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2522 return 0; 2523 2524 if (btrfs_file_extent_encryption(leaf, fi) || 2525 btrfs_file_extent_other_encoding(leaf, fi)) 2526 return 0; 2527 2528 return 1; 2529 } 2530 2531 /* 2532 * Note the backref might has changed, and in this case we just return 0. 2533 */ 2534 static noinline int relink_extent_backref(struct btrfs_path *path, 2535 struct sa_defrag_extent_backref *prev, 2536 struct sa_defrag_extent_backref *backref) 2537 { 2538 struct btrfs_file_extent_item *extent; 2539 struct btrfs_file_extent_item *item; 2540 struct btrfs_ordered_extent *ordered; 2541 struct btrfs_trans_handle *trans; 2542 struct btrfs_root *root; 2543 struct btrfs_key key; 2544 struct extent_buffer *leaf; 2545 struct old_sa_defrag_extent *old = backref->old; 2546 struct new_sa_defrag_extent *new = old->new; 2547 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2548 struct inode *inode; 2549 struct extent_state *cached = NULL; 2550 int ret = 0; 2551 u64 start; 2552 u64 len; 2553 u64 lock_start; 2554 u64 lock_end; 2555 bool merge = false; 2556 int index; 2557 2558 if (prev && prev->root_id == backref->root_id && 2559 prev->inum == backref->inum && 2560 prev->file_pos + prev->num_bytes == backref->file_pos) 2561 merge = true; 2562 2563 /* step 1: get root */ 2564 key.objectid = backref->root_id; 2565 key.type = BTRFS_ROOT_ITEM_KEY; 2566 key.offset = (u64)-1; 2567 2568 index = srcu_read_lock(&fs_info->subvol_srcu); 2569 2570 root = btrfs_read_fs_root_no_name(fs_info, &key); 2571 if (IS_ERR(root)) { 2572 srcu_read_unlock(&fs_info->subvol_srcu, index); 2573 if (PTR_ERR(root) == -ENOENT) 2574 return 0; 2575 return PTR_ERR(root); 2576 } 2577 2578 if (btrfs_root_readonly(root)) { 2579 srcu_read_unlock(&fs_info->subvol_srcu, index); 2580 return 0; 2581 } 2582 2583 /* step 2: get inode */ 2584 key.objectid = backref->inum; 2585 key.type = BTRFS_INODE_ITEM_KEY; 2586 key.offset = 0; 2587 2588 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2589 if (IS_ERR(inode)) { 2590 srcu_read_unlock(&fs_info->subvol_srcu, index); 2591 return 0; 2592 } 2593 2594 srcu_read_unlock(&fs_info->subvol_srcu, index); 2595 2596 /* step 3: relink backref */ 2597 lock_start = backref->file_pos; 2598 lock_end = backref->file_pos + backref->num_bytes - 1; 2599 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2600 &cached); 2601 2602 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2603 if (ordered) { 2604 btrfs_put_ordered_extent(ordered); 2605 goto out_unlock; 2606 } 2607 2608 trans = btrfs_join_transaction(root); 2609 if (IS_ERR(trans)) { 2610 ret = PTR_ERR(trans); 2611 goto out_unlock; 2612 } 2613 2614 key.objectid = backref->inum; 2615 key.type = BTRFS_EXTENT_DATA_KEY; 2616 key.offset = backref->file_pos; 2617 2618 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2619 if (ret < 0) { 2620 goto out_free_path; 2621 } else if (ret > 0) { 2622 ret = 0; 2623 goto out_free_path; 2624 } 2625 2626 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2627 struct btrfs_file_extent_item); 2628 2629 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2630 backref->generation) 2631 goto out_free_path; 2632 2633 btrfs_release_path(path); 2634 2635 start = backref->file_pos; 2636 if (backref->extent_offset < old->extent_offset + old->offset) 2637 start += old->extent_offset + old->offset - 2638 backref->extent_offset; 2639 2640 len = min(backref->extent_offset + backref->num_bytes, 2641 old->extent_offset + old->offset + old->len); 2642 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2643 2644 ret = btrfs_drop_extents(trans, root, inode, start, 2645 start + len, 1); 2646 if (ret) 2647 goto out_free_path; 2648 again: 2649 key.objectid = btrfs_ino(BTRFS_I(inode)); 2650 key.type = BTRFS_EXTENT_DATA_KEY; 2651 key.offset = start; 2652 2653 path->leave_spinning = 1; 2654 if (merge) { 2655 struct btrfs_file_extent_item *fi; 2656 u64 extent_len; 2657 struct btrfs_key found_key; 2658 2659 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2660 if (ret < 0) 2661 goto out_free_path; 2662 2663 path->slots[0]--; 2664 leaf = path->nodes[0]; 2665 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2666 2667 fi = btrfs_item_ptr(leaf, path->slots[0], 2668 struct btrfs_file_extent_item); 2669 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2670 2671 if (extent_len + found_key.offset == start && 2672 relink_is_mergable(leaf, fi, new)) { 2673 btrfs_set_file_extent_num_bytes(leaf, fi, 2674 extent_len + len); 2675 btrfs_mark_buffer_dirty(leaf); 2676 inode_add_bytes(inode, len); 2677 2678 ret = 1; 2679 goto out_free_path; 2680 } else { 2681 merge = false; 2682 btrfs_release_path(path); 2683 goto again; 2684 } 2685 } 2686 2687 ret = btrfs_insert_empty_item(trans, root, path, &key, 2688 sizeof(*extent)); 2689 if (ret) { 2690 btrfs_abort_transaction(trans, ret); 2691 goto out_free_path; 2692 } 2693 2694 leaf = path->nodes[0]; 2695 item = btrfs_item_ptr(leaf, path->slots[0], 2696 struct btrfs_file_extent_item); 2697 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2698 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2699 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2700 btrfs_set_file_extent_num_bytes(leaf, item, len); 2701 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2702 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2703 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2704 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2705 btrfs_set_file_extent_encryption(leaf, item, 0); 2706 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2707 2708 btrfs_mark_buffer_dirty(leaf); 2709 inode_add_bytes(inode, len); 2710 btrfs_release_path(path); 2711 2712 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2713 new->disk_len, 0, 2714 backref->root_id, backref->inum, 2715 new->file_pos); /* start - extent_offset */ 2716 if (ret) { 2717 btrfs_abort_transaction(trans, ret); 2718 goto out_free_path; 2719 } 2720 2721 ret = 1; 2722 out_free_path: 2723 btrfs_release_path(path); 2724 path->leave_spinning = 0; 2725 btrfs_end_transaction(trans); 2726 out_unlock: 2727 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2728 &cached); 2729 iput(inode); 2730 return ret; 2731 } 2732 2733 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2734 { 2735 struct old_sa_defrag_extent *old, *tmp; 2736 2737 if (!new) 2738 return; 2739 2740 list_for_each_entry_safe(old, tmp, &new->head, list) { 2741 kfree(old); 2742 } 2743 kfree(new); 2744 } 2745 2746 static void relink_file_extents(struct new_sa_defrag_extent *new) 2747 { 2748 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2749 struct btrfs_path *path; 2750 struct sa_defrag_extent_backref *backref; 2751 struct sa_defrag_extent_backref *prev = NULL; 2752 struct rb_node *node; 2753 int ret; 2754 2755 path = btrfs_alloc_path(); 2756 if (!path) 2757 return; 2758 2759 if (!record_extent_backrefs(path, new)) { 2760 btrfs_free_path(path); 2761 goto out; 2762 } 2763 btrfs_release_path(path); 2764 2765 while (1) { 2766 node = rb_first(&new->root); 2767 if (!node) 2768 break; 2769 rb_erase(node, &new->root); 2770 2771 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2772 2773 ret = relink_extent_backref(path, prev, backref); 2774 WARN_ON(ret < 0); 2775 2776 kfree(prev); 2777 2778 if (ret == 1) 2779 prev = backref; 2780 else 2781 prev = NULL; 2782 cond_resched(); 2783 } 2784 kfree(prev); 2785 2786 btrfs_free_path(path); 2787 out: 2788 free_sa_defrag_extent(new); 2789 2790 atomic_dec(&fs_info->defrag_running); 2791 wake_up(&fs_info->transaction_wait); 2792 } 2793 2794 static struct new_sa_defrag_extent * 2795 record_old_file_extents(struct inode *inode, 2796 struct btrfs_ordered_extent *ordered) 2797 { 2798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2799 struct btrfs_root *root = BTRFS_I(inode)->root; 2800 struct btrfs_path *path; 2801 struct btrfs_key key; 2802 struct old_sa_defrag_extent *old; 2803 struct new_sa_defrag_extent *new; 2804 int ret; 2805 2806 new = kmalloc(sizeof(*new), GFP_NOFS); 2807 if (!new) 2808 return NULL; 2809 2810 new->inode = inode; 2811 new->file_pos = ordered->file_offset; 2812 new->len = ordered->len; 2813 new->bytenr = ordered->start; 2814 new->disk_len = ordered->disk_len; 2815 new->compress_type = ordered->compress_type; 2816 new->root = RB_ROOT; 2817 INIT_LIST_HEAD(&new->head); 2818 2819 path = btrfs_alloc_path(); 2820 if (!path) 2821 goto out_kfree; 2822 2823 key.objectid = btrfs_ino(BTRFS_I(inode)); 2824 key.type = BTRFS_EXTENT_DATA_KEY; 2825 key.offset = new->file_pos; 2826 2827 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2828 if (ret < 0) 2829 goto out_free_path; 2830 if (ret > 0 && path->slots[0] > 0) 2831 path->slots[0]--; 2832 2833 /* find out all the old extents for the file range */ 2834 while (1) { 2835 struct btrfs_file_extent_item *extent; 2836 struct extent_buffer *l; 2837 int slot; 2838 u64 num_bytes; 2839 u64 offset; 2840 u64 end; 2841 u64 disk_bytenr; 2842 u64 extent_offset; 2843 2844 l = path->nodes[0]; 2845 slot = path->slots[0]; 2846 2847 if (slot >= btrfs_header_nritems(l)) { 2848 ret = btrfs_next_leaf(root, path); 2849 if (ret < 0) 2850 goto out_free_path; 2851 else if (ret > 0) 2852 break; 2853 continue; 2854 } 2855 2856 btrfs_item_key_to_cpu(l, &key, slot); 2857 2858 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2859 break; 2860 if (key.type != BTRFS_EXTENT_DATA_KEY) 2861 break; 2862 if (key.offset >= new->file_pos + new->len) 2863 break; 2864 2865 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2866 2867 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2868 if (key.offset + num_bytes < new->file_pos) 2869 goto next; 2870 2871 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2872 if (!disk_bytenr) 2873 goto next; 2874 2875 extent_offset = btrfs_file_extent_offset(l, extent); 2876 2877 old = kmalloc(sizeof(*old), GFP_NOFS); 2878 if (!old) 2879 goto out_free_path; 2880 2881 offset = max(new->file_pos, key.offset); 2882 end = min(new->file_pos + new->len, key.offset + num_bytes); 2883 2884 old->bytenr = disk_bytenr; 2885 old->extent_offset = extent_offset; 2886 old->offset = offset - key.offset; 2887 old->len = end - offset; 2888 old->new = new; 2889 old->count = 0; 2890 list_add_tail(&old->list, &new->head); 2891 next: 2892 path->slots[0]++; 2893 cond_resched(); 2894 } 2895 2896 btrfs_free_path(path); 2897 atomic_inc(&fs_info->defrag_running); 2898 2899 return new; 2900 2901 out_free_path: 2902 btrfs_free_path(path); 2903 out_kfree: 2904 free_sa_defrag_extent(new); 2905 return NULL; 2906 } 2907 2908 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2909 u64 start, u64 len) 2910 { 2911 struct btrfs_block_group_cache *cache; 2912 2913 cache = btrfs_lookup_block_group(fs_info, start); 2914 ASSERT(cache); 2915 2916 spin_lock(&cache->lock); 2917 cache->delalloc_bytes -= len; 2918 spin_unlock(&cache->lock); 2919 2920 btrfs_put_block_group(cache); 2921 } 2922 2923 /* as ordered data IO finishes, this gets called so we can finish 2924 * an ordered extent if the range of bytes in the file it covers are 2925 * fully written. 2926 */ 2927 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2928 { 2929 struct inode *inode = ordered_extent->inode; 2930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2931 struct btrfs_root *root = BTRFS_I(inode)->root; 2932 struct btrfs_trans_handle *trans = NULL; 2933 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2934 struct extent_state *cached_state = NULL; 2935 struct new_sa_defrag_extent *new = NULL; 2936 int compress_type = 0; 2937 int ret = 0; 2938 u64 logical_len = ordered_extent->len; 2939 bool nolock; 2940 bool truncated = false; 2941 bool range_locked = false; 2942 bool clear_new_delalloc_bytes = false; 2943 bool clear_reserved_extent = true; 2944 2945 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2946 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2947 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2948 clear_new_delalloc_bytes = true; 2949 2950 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2951 2952 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2953 ret = -EIO; 2954 goto out; 2955 } 2956 2957 btrfs_free_io_failure_record(BTRFS_I(inode), 2958 ordered_extent->file_offset, 2959 ordered_extent->file_offset + 2960 ordered_extent->len - 1); 2961 2962 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2963 truncated = true; 2964 logical_len = ordered_extent->truncated_len; 2965 /* Truncated the entire extent, don't bother adding */ 2966 if (!logical_len) 2967 goto out; 2968 } 2969 2970 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2971 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2972 2973 /* 2974 * For mwrite(mmap + memset to write) case, we still reserve 2975 * space for NOCOW range. 2976 * As NOCOW won't cause a new delayed ref, just free the space 2977 */ 2978 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2979 ordered_extent->len); 2980 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2981 if (nolock) 2982 trans = btrfs_join_transaction_nolock(root); 2983 else 2984 trans = btrfs_join_transaction(root); 2985 if (IS_ERR(trans)) { 2986 ret = PTR_ERR(trans); 2987 trans = NULL; 2988 goto out; 2989 } 2990 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2991 ret = btrfs_update_inode_fallback(trans, root, inode); 2992 if (ret) /* -ENOMEM or corruption */ 2993 btrfs_abort_transaction(trans, ret); 2994 goto out; 2995 } 2996 2997 range_locked = true; 2998 lock_extent_bits(io_tree, ordered_extent->file_offset, 2999 ordered_extent->file_offset + ordered_extent->len - 1, 3000 &cached_state); 3001 3002 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3003 ordered_extent->file_offset + ordered_extent->len - 1, 3004 EXTENT_DEFRAG, 0, cached_state); 3005 if (ret) { 3006 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3007 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3008 /* the inode is shared */ 3009 new = record_old_file_extents(inode, ordered_extent); 3010 3011 clear_extent_bit(io_tree, ordered_extent->file_offset, 3012 ordered_extent->file_offset + ordered_extent->len - 1, 3013 EXTENT_DEFRAG, 0, 0, &cached_state); 3014 } 3015 3016 if (nolock) 3017 trans = btrfs_join_transaction_nolock(root); 3018 else 3019 trans = btrfs_join_transaction(root); 3020 if (IS_ERR(trans)) { 3021 ret = PTR_ERR(trans); 3022 trans = NULL; 3023 goto out; 3024 } 3025 3026 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3027 3028 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3029 compress_type = ordered_extent->compress_type; 3030 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3031 BUG_ON(compress_type); 3032 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3033 ordered_extent->len); 3034 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3035 ordered_extent->file_offset, 3036 ordered_extent->file_offset + 3037 logical_len); 3038 } else { 3039 BUG_ON(root == fs_info->tree_root); 3040 ret = insert_reserved_file_extent(trans, inode, 3041 ordered_extent->file_offset, 3042 ordered_extent->start, 3043 ordered_extent->disk_len, 3044 logical_len, logical_len, 3045 compress_type, 0, 0, 3046 BTRFS_FILE_EXTENT_REG); 3047 if (!ret) { 3048 clear_reserved_extent = false; 3049 btrfs_release_delalloc_bytes(fs_info, 3050 ordered_extent->start, 3051 ordered_extent->disk_len); 3052 } 3053 } 3054 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3055 ordered_extent->file_offset, ordered_extent->len, 3056 trans->transid); 3057 if (ret < 0) { 3058 btrfs_abort_transaction(trans, ret); 3059 goto out; 3060 } 3061 3062 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3063 if (ret) { 3064 btrfs_abort_transaction(trans, ret); 3065 goto out; 3066 } 3067 3068 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3069 ret = btrfs_update_inode_fallback(trans, root, inode); 3070 if (ret) { /* -ENOMEM or corruption */ 3071 btrfs_abort_transaction(trans, ret); 3072 goto out; 3073 } 3074 ret = 0; 3075 out: 3076 if (range_locked || clear_new_delalloc_bytes) { 3077 unsigned int clear_bits = 0; 3078 3079 if (range_locked) 3080 clear_bits |= EXTENT_LOCKED; 3081 if (clear_new_delalloc_bytes) 3082 clear_bits |= EXTENT_DELALLOC_NEW; 3083 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3084 ordered_extent->file_offset, 3085 ordered_extent->file_offset + 3086 ordered_extent->len - 1, 3087 clear_bits, 3088 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3089 0, &cached_state); 3090 } 3091 3092 if (trans) 3093 btrfs_end_transaction(trans); 3094 3095 if (ret || truncated) { 3096 u64 start, end; 3097 3098 if (truncated) 3099 start = ordered_extent->file_offset + logical_len; 3100 else 3101 start = ordered_extent->file_offset; 3102 end = ordered_extent->file_offset + ordered_extent->len - 1; 3103 clear_extent_uptodate(io_tree, start, end, NULL); 3104 3105 /* Drop the cache for the part of the extent we didn't write. */ 3106 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3107 3108 /* 3109 * If the ordered extent had an IOERR or something else went 3110 * wrong we need to return the space for this ordered extent 3111 * back to the allocator. We only free the extent in the 3112 * truncated case if we didn't write out the extent at all. 3113 * 3114 * If we made it past insert_reserved_file_extent before we 3115 * errored out then we don't need to do this as the accounting 3116 * has already been done. 3117 */ 3118 if ((ret || !logical_len) && 3119 clear_reserved_extent && 3120 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3121 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3122 btrfs_free_reserved_extent(fs_info, 3123 ordered_extent->start, 3124 ordered_extent->disk_len, 1); 3125 } 3126 3127 3128 /* 3129 * This needs to be done to make sure anybody waiting knows we are done 3130 * updating everything for this ordered extent. 3131 */ 3132 btrfs_remove_ordered_extent(inode, ordered_extent); 3133 3134 /* for snapshot-aware defrag */ 3135 if (new) { 3136 if (ret) { 3137 free_sa_defrag_extent(new); 3138 atomic_dec(&fs_info->defrag_running); 3139 } else { 3140 relink_file_extents(new); 3141 } 3142 } 3143 3144 /* once for us */ 3145 btrfs_put_ordered_extent(ordered_extent); 3146 /* once for the tree */ 3147 btrfs_put_ordered_extent(ordered_extent); 3148 3149 /* Try to release some metadata so we don't get an OOM but don't wait */ 3150 btrfs_btree_balance_dirty_nodelay(fs_info); 3151 3152 return ret; 3153 } 3154 3155 static void finish_ordered_fn(struct btrfs_work *work) 3156 { 3157 struct btrfs_ordered_extent *ordered_extent; 3158 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3159 btrfs_finish_ordered_io(ordered_extent); 3160 } 3161 3162 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3163 struct extent_state *state, int uptodate) 3164 { 3165 struct inode *inode = page->mapping->host; 3166 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3167 struct btrfs_ordered_extent *ordered_extent = NULL; 3168 struct btrfs_workqueue *wq; 3169 btrfs_work_func_t func; 3170 3171 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3172 3173 ClearPagePrivate2(page); 3174 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3175 end - start + 1, uptodate)) 3176 return; 3177 3178 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3179 wq = fs_info->endio_freespace_worker; 3180 func = btrfs_freespace_write_helper; 3181 } else { 3182 wq = fs_info->endio_write_workers; 3183 func = btrfs_endio_write_helper; 3184 } 3185 3186 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3187 NULL); 3188 btrfs_queue_work(wq, &ordered_extent->work); 3189 } 3190 3191 static int __readpage_endio_check(struct inode *inode, 3192 struct btrfs_io_bio *io_bio, 3193 int icsum, struct page *page, 3194 int pgoff, u64 start, size_t len) 3195 { 3196 char *kaddr; 3197 u32 csum_expected; 3198 u32 csum = ~(u32)0; 3199 3200 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3201 3202 kaddr = kmap_atomic(page); 3203 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3204 btrfs_csum_final(csum, (u8 *)&csum); 3205 if (csum != csum_expected) 3206 goto zeroit; 3207 3208 kunmap_atomic(kaddr); 3209 return 0; 3210 zeroit: 3211 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3212 io_bio->mirror_num); 3213 memset(kaddr + pgoff, 1, len); 3214 flush_dcache_page(page); 3215 kunmap_atomic(kaddr); 3216 return -EIO; 3217 } 3218 3219 /* 3220 * when reads are done, we need to check csums to verify the data is correct 3221 * if there's a match, we allow the bio to finish. If not, the code in 3222 * extent_io.c will try to find good copies for us. 3223 */ 3224 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3225 u64 phy_offset, struct page *page, 3226 u64 start, u64 end, int mirror) 3227 { 3228 size_t offset = start - page_offset(page); 3229 struct inode *inode = page->mapping->host; 3230 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3231 struct btrfs_root *root = BTRFS_I(inode)->root; 3232 3233 if (PageChecked(page)) { 3234 ClearPageChecked(page); 3235 return 0; 3236 } 3237 3238 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3239 return 0; 3240 3241 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3242 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3243 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3244 return 0; 3245 } 3246 3247 phy_offset >>= inode->i_sb->s_blocksize_bits; 3248 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3249 start, (size_t)(end - start + 1)); 3250 } 3251 3252 /* 3253 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3254 * 3255 * @inode: The inode we want to perform iput on 3256 * 3257 * This function uses the generic vfs_inode::i_count to track whether we should 3258 * just decrement it (in case it's > 1) or if this is the last iput then link 3259 * the inode to the delayed iput machinery. Delayed iputs are processed at 3260 * transaction commit time/superblock commit/cleaner kthread. 3261 */ 3262 void btrfs_add_delayed_iput(struct inode *inode) 3263 { 3264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3265 struct btrfs_inode *binode = BTRFS_I(inode); 3266 3267 if (atomic_add_unless(&inode->i_count, -1, 1)) 3268 return; 3269 3270 spin_lock(&fs_info->delayed_iput_lock); 3271 ASSERT(list_empty(&binode->delayed_iput)); 3272 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3273 spin_unlock(&fs_info->delayed_iput_lock); 3274 } 3275 3276 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3277 { 3278 3279 spin_lock(&fs_info->delayed_iput_lock); 3280 while (!list_empty(&fs_info->delayed_iputs)) { 3281 struct btrfs_inode *inode; 3282 3283 inode = list_first_entry(&fs_info->delayed_iputs, 3284 struct btrfs_inode, delayed_iput); 3285 list_del_init(&inode->delayed_iput); 3286 spin_unlock(&fs_info->delayed_iput_lock); 3287 iput(&inode->vfs_inode); 3288 spin_lock(&fs_info->delayed_iput_lock); 3289 } 3290 spin_unlock(&fs_info->delayed_iput_lock); 3291 } 3292 3293 /* 3294 * This creates an orphan entry for the given inode in case something goes wrong 3295 * in the middle of an unlink. 3296 */ 3297 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3298 struct btrfs_inode *inode) 3299 { 3300 int ret; 3301 3302 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3303 if (ret && ret != -EEXIST) { 3304 btrfs_abort_transaction(trans, ret); 3305 return ret; 3306 } 3307 3308 return 0; 3309 } 3310 3311 /* 3312 * We have done the delete so we can go ahead and remove the orphan item for 3313 * this particular inode. 3314 */ 3315 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3316 struct btrfs_inode *inode) 3317 { 3318 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3319 } 3320 3321 /* 3322 * this cleans up any orphans that may be left on the list from the last use 3323 * of this root. 3324 */ 3325 int btrfs_orphan_cleanup(struct btrfs_root *root) 3326 { 3327 struct btrfs_fs_info *fs_info = root->fs_info; 3328 struct btrfs_path *path; 3329 struct extent_buffer *leaf; 3330 struct btrfs_key key, found_key; 3331 struct btrfs_trans_handle *trans; 3332 struct inode *inode; 3333 u64 last_objectid = 0; 3334 int ret = 0, nr_unlink = 0; 3335 3336 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3337 return 0; 3338 3339 path = btrfs_alloc_path(); 3340 if (!path) { 3341 ret = -ENOMEM; 3342 goto out; 3343 } 3344 path->reada = READA_BACK; 3345 3346 key.objectid = BTRFS_ORPHAN_OBJECTID; 3347 key.type = BTRFS_ORPHAN_ITEM_KEY; 3348 key.offset = (u64)-1; 3349 3350 while (1) { 3351 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3352 if (ret < 0) 3353 goto out; 3354 3355 /* 3356 * if ret == 0 means we found what we were searching for, which 3357 * is weird, but possible, so only screw with path if we didn't 3358 * find the key and see if we have stuff that matches 3359 */ 3360 if (ret > 0) { 3361 ret = 0; 3362 if (path->slots[0] == 0) 3363 break; 3364 path->slots[0]--; 3365 } 3366 3367 /* pull out the item */ 3368 leaf = path->nodes[0]; 3369 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3370 3371 /* make sure the item matches what we want */ 3372 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3373 break; 3374 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3375 break; 3376 3377 /* release the path since we're done with it */ 3378 btrfs_release_path(path); 3379 3380 /* 3381 * this is where we are basically btrfs_lookup, without the 3382 * crossing root thing. we store the inode number in the 3383 * offset of the orphan item. 3384 */ 3385 3386 if (found_key.offset == last_objectid) { 3387 btrfs_err(fs_info, 3388 "Error removing orphan entry, stopping orphan cleanup"); 3389 ret = -EINVAL; 3390 goto out; 3391 } 3392 3393 last_objectid = found_key.offset; 3394 3395 found_key.objectid = found_key.offset; 3396 found_key.type = BTRFS_INODE_ITEM_KEY; 3397 found_key.offset = 0; 3398 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3399 ret = PTR_ERR_OR_ZERO(inode); 3400 if (ret && ret != -ENOENT) 3401 goto out; 3402 3403 if (ret == -ENOENT && root == fs_info->tree_root) { 3404 struct btrfs_root *dead_root; 3405 struct btrfs_fs_info *fs_info = root->fs_info; 3406 int is_dead_root = 0; 3407 3408 /* 3409 * this is an orphan in the tree root. Currently these 3410 * could come from 2 sources: 3411 * a) a snapshot deletion in progress 3412 * b) a free space cache inode 3413 * We need to distinguish those two, as the snapshot 3414 * orphan must not get deleted. 3415 * find_dead_roots already ran before us, so if this 3416 * is a snapshot deletion, we should find the root 3417 * in the dead_roots list 3418 */ 3419 spin_lock(&fs_info->trans_lock); 3420 list_for_each_entry(dead_root, &fs_info->dead_roots, 3421 root_list) { 3422 if (dead_root->root_key.objectid == 3423 found_key.objectid) { 3424 is_dead_root = 1; 3425 break; 3426 } 3427 } 3428 spin_unlock(&fs_info->trans_lock); 3429 if (is_dead_root) { 3430 /* prevent this orphan from being found again */ 3431 key.offset = found_key.objectid - 1; 3432 continue; 3433 } 3434 3435 } 3436 3437 /* 3438 * If we have an inode with links, there are a couple of 3439 * possibilities. Old kernels (before v3.12) used to create an 3440 * orphan item for truncate indicating that there were possibly 3441 * extent items past i_size that needed to be deleted. In v3.12, 3442 * truncate was changed to update i_size in sync with the extent 3443 * items, but the (useless) orphan item was still created. Since 3444 * v4.18, we don't create the orphan item for truncate at all. 3445 * 3446 * So, this item could mean that we need to do a truncate, but 3447 * only if this filesystem was last used on a pre-v3.12 kernel 3448 * and was not cleanly unmounted. The odds of that are quite 3449 * slim, and it's a pain to do the truncate now, so just delete 3450 * the orphan item. 3451 * 3452 * It's also possible that this orphan item was supposed to be 3453 * deleted but wasn't. The inode number may have been reused, 3454 * but either way, we can delete the orphan item. 3455 */ 3456 if (ret == -ENOENT || inode->i_nlink) { 3457 if (!ret) 3458 iput(inode); 3459 trans = btrfs_start_transaction(root, 1); 3460 if (IS_ERR(trans)) { 3461 ret = PTR_ERR(trans); 3462 goto out; 3463 } 3464 btrfs_debug(fs_info, "auto deleting %Lu", 3465 found_key.objectid); 3466 ret = btrfs_del_orphan_item(trans, root, 3467 found_key.objectid); 3468 btrfs_end_transaction(trans); 3469 if (ret) 3470 goto out; 3471 continue; 3472 } 3473 3474 nr_unlink++; 3475 3476 /* this will do delete_inode and everything for us */ 3477 iput(inode); 3478 } 3479 /* release the path since we're done with it */ 3480 btrfs_release_path(path); 3481 3482 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3483 3484 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3485 trans = btrfs_join_transaction(root); 3486 if (!IS_ERR(trans)) 3487 btrfs_end_transaction(trans); 3488 } 3489 3490 if (nr_unlink) 3491 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3492 3493 out: 3494 if (ret) 3495 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3496 btrfs_free_path(path); 3497 return ret; 3498 } 3499 3500 /* 3501 * very simple check to peek ahead in the leaf looking for xattrs. If we 3502 * don't find any xattrs, we know there can't be any acls. 3503 * 3504 * slot is the slot the inode is in, objectid is the objectid of the inode 3505 */ 3506 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3507 int slot, u64 objectid, 3508 int *first_xattr_slot) 3509 { 3510 u32 nritems = btrfs_header_nritems(leaf); 3511 struct btrfs_key found_key; 3512 static u64 xattr_access = 0; 3513 static u64 xattr_default = 0; 3514 int scanned = 0; 3515 3516 if (!xattr_access) { 3517 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3518 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3519 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3520 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3521 } 3522 3523 slot++; 3524 *first_xattr_slot = -1; 3525 while (slot < nritems) { 3526 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3527 3528 /* we found a different objectid, there must not be acls */ 3529 if (found_key.objectid != objectid) 3530 return 0; 3531 3532 /* we found an xattr, assume we've got an acl */ 3533 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3534 if (*first_xattr_slot == -1) 3535 *first_xattr_slot = slot; 3536 if (found_key.offset == xattr_access || 3537 found_key.offset == xattr_default) 3538 return 1; 3539 } 3540 3541 /* 3542 * we found a key greater than an xattr key, there can't 3543 * be any acls later on 3544 */ 3545 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3546 return 0; 3547 3548 slot++; 3549 scanned++; 3550 3551 /* 3552 * it goes inode, inode backrefs, xattrs, extents, 3553 * so if there are a ton of hard links to an inode there can 3554 * be a lot of backrefs. Don't waste time searching too hard, 3555 * this is just an optimization 3556 */ 3557 if (scanned >= 8) 3558 break; 3559 } 3560 /* we hit the end of the leaf before we found an xattr or 3561 * something larger than an xattr. We have to assume the inode 3562 * has acls 3563 */ 3564 if (*first_xattr_slot == -1) 3565 *first_xattr_slot = slot; 3566 return 1; 3567 } 3568 3569 /* 3570 * read an inode from the btree into the in-memory inode 3571 */ 3572 static int btrfs_read_locked_inode(struct inode *inode, 3573 struct btrfs_path *in_path) 3574 { 3575 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3576 struct btrfs_path *path = in_path; 3577 struct extent_buffer *leaf; 3578 struct btrfs_inode_item *inode_item; 3579 struct btrfs_root *root = BTRFS_I(inode)->root; 3580 struct btrfs_key location; 3581 unsigned long ptr; 3582 int maybe_acls; 3583 u32 rdev; 3584 int ret; 3585 bool filled = false; 3586 int first_xattr_slot; 3587 3588 ret = btrfs_fill_inode(inode, &rdev); 3589 if (!ret) 3590 filled = true; 3591 3592 if (!path) { 3593 path = btrfs_alloc_path(); 3594 if (!path) 3595 return -ENOMEM; 3596 } 3597 3598 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3599 3600 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3601 if (ret) { 3602 if (path != in_path) 3603 btrfs_free_path(path); 3604 return ret; 3605 } 3606 3607 leaf = path->nodes[0]; 3608 3609 if (filled) 3610 goto cache_index; 3611 3612 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3613 struct btrfs_inode_item); 3614 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3615 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3616 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3617 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3618 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3619 3620 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3621 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3622 3623 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3624 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3625 3626 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3627 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3628 3629 BTRFS_I(inode)->i_otime.tv_sec = 3630 btrfs_timespec_sec(leaf, &inode_item->otime); 3631 BTRFS_I(inode)->i_otime.tv_nsec = 3632 btrfs_timespec_nsec(leaf, &inode_item->otime); 3633 3634 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3635 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3636 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3637 3638 inode_set_iversion_queried(inode, 3639 btrfs_inode_sequence(leaf, inode_item)); 3640 inode->i_generation = BTRFS_I(inode)->generation; 3641 inode->i_rdev = 0; 3642 rdev = btrfs_inode_rdev(leaf, inode_item); 3643 3644 BTRFS_I(inode)->index_cnt = (u64)-1; 3645 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3646 3647 cache_index: 3648 /* 3649 * If we were modified in the current generation and evicted from memory 3650 * and then re-read we need to do a full sync since we don't have any 3651 * idea about which extents were modified before we were evicted from 3652 * cache. 3653 * 3654 * This is required for both inode re-read from disk and delayed inode 3655 * in delayed_nodes_tree. 3656 */ 3657 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3658 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3659 &BTRFS_I(inode)->runtime_flags); 3660 3661 /* 3662 * We don't persist the id of the transaction where an unlink operation 3663 * against the inode was last made. So here we assume the inode might 3664 * have been evicted, and therefore the exact value of last_unlink_trans 3665 * lost, and set it to last_trans to avoid metadata inconsistencies 3666 * between the inode and its parent if the inode is fsync'ed and the log 3667 * replayed. For example, in the scenario: 3668 * 3669 * touch mydir/foo 3670 * ln mydir/foo mydir/bar 3671 * sync 3672 * unlink mydir/bar 3673 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3674 * xfs_io -c fsync mydir/foo 3675 * <power failure> 3676 * mount fs, triggers fsync log replay 3677 * 3678 * We must make sure that when we fsync our inode foo we also log its 3679 * parent inode, otherwise after log replay the parent still has the 3680 * dentry with the "bar" name but our inode foo has a link count of 1 3681 * and doesn't have an inode ref with the name "bar" anymore. 3682 * 3683 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3684 * but it guarantees correctness at the expense of occasional full 3685 * transaction commits on fsync if our inode is a directory, or if our 3686 * inode is not a directory, logging its parent unnecessarily. 3687 */ 3688 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3689 3690 path->slots[0]++; 3691 if (inode->i_nlink != 1 || 3692 path->slots[0] >= btrfs_header_nritems(leaf)) 3693 goto cache_acl; 3694 3695 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3696 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3697 goto cache_acl; 3698 3699 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3700 if (location.type == BTRFS_INODE_REF_KEY) { 3701 struct btrfs_inode_ref *ref; 3702 3703 ref = (struct btrfs_inode_ref *)ptr; 3704 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3705 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3706 struct btrfs_inode_extref *extref; 3707 3708 extref = (struct btrfs_inode_extref *)ptr; 3709 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3710 extref); 3711 } 3712 cache_acl: 3713 /* 3714 * try to precache a NULL acl entry for files that don't have 3715 * any xattrs or acls 3716 */ 3717 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3718 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3719 if (first_xattr_slot != -1) { 3720 path->slots[0] = first_xattr_slot; 3721 ret = btrfs_load_inode_props(inode, path); 3722 if (ret) 3723 btrfs_err(fs_info, 3724 "error loading props for ino %llu (root %llu): %d", 3725 btrfs_ino(BTRFS_I(inode)), 3726 root->root_key.objectid, ret); 3727 } 3728 if (path != in_path) 3729 btrfs_free_path(path); 3730 3731 if (!maybe_acls) 3732 cache_no_acl(inode); 3733 3734 switch (inode->i_mode & S_IFMT) { 3735 case S_IFREG: 3736 inode->i_mapping->a_ops = &btrfs_aops; 3737 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3738 inode->i_fop = &btrfs_file_operations; 3739 inode->i_op = &btrfs_file_inode_operations; 3740 break; 3741 case S_IFDIR: 3742 inode->i_fop = &btrfs_dir_file_operations; 3743 inode->i_op = &btrfs_dir_inode_operations; 3744 break; 3745 case S_IFLNK: 3746 inode->i_op = &btrfs_symlink_inode_operations; 3747 inode_nohighmem(inode); 3748 inode->i_mapping->a_ops = &btrfs_aops; 3749 break; 3750 default: 3751 inode->i_op = &btrfs_special_inode_operations; 3752 init_special_inode(inode, inode->i_mode, rdev); 3753 break; 3754 } 3755 3756 btrfs_sync_inode_flags_to_i_flags(inode); 3757 return 0; 3758 } 3759 3760 /* 3761 * given a leaf and an inode, copy the inode fields into the leaf 3762 */ 3763 static void fill_inode_item(struct btrfs_trans_handle *trans, 3764 struct extent_buffer *leaf, 3765 struct btrfs_inode_item *item, 3766 struct inode *inode) 3767 { 3768 struct btrfs_map_token token; 3769 3770 btrfs_init_map_token(&token); 3771 3772 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3773 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3774 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3775 &token); 3776 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3777 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3778 3779 btrfs_set_token_timespec_sec(leaf, &item->atime, 3780 inode->i_atime.tv_sec, &token); 3781 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3782 inode->i_atime.tv_nsec, &token); 3783 3784 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3785 inode->i_mtime.tv_sec, &token); 3786 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3787 inode->i_mtime.tv_nsec, &token); 3788 3789 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3790 inode->i_ctime.tv_sec, &token); 3791 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3792 inode->i_ctime.tv_nsec, &token); 3793 3794 btrfs_set_token_timespec_sec(leaf, &item->otime, 3795 BTRFS_I(inode)->i_otime.tv_sec, &token); 3796 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3797 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3798 3799 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3800 &token); 3801 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3802 &token); 3803 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3804 &token); 3805 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3806 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3807 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3808 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3809 } 3810 3811 /* 3812 * copy everything in the in-memory inode into the btree. 3813 */ 3814 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3815 struct btrfs_root *root, struct inode *inode) 3816 { 3817 struct btrfs_inode_item *inode_item; 3818 struct btrfs_path *path; 3819 struct extent_buffer *leaf; 3820 int ret; 3821 3822 path = btrfs_alloc_path(); 3823 if (!path) 3824 return -ENOMEM; 3825 3826 path->leave_spinning = 1; 3827 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3828 1); 3829 if (ret) { 3830 if (ret > 0) 3831 ret = -ENOENT; 3832 goto failed; 3833 } 3834 3835 leaf = path->nodes[0]; 3836 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3837 struct btrfs_inode_item); 3838 3839 fill_inode_item(trans, leaf, inode_item, inode); 3840 btrfs_mark_buffer_dirty(leaf); 3841 btrfs_set_inode_last_trans(trans, inode); 3842 ret = 0; 3843 failed: 3844 btrfs_free_path(path); 3845 return ret; 3846 } 3847 3848 /* 3849 * copy everything in the in-memory inode into the btree. 3850 */ 3851 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3852 struct btrfs_root *root, struct inode *inode) 3853 { 3854 struct btrfs_fs_info *fs_info = root->fs_info; 3855 int ret; 3856 3857 /* 3858 * If the inode is a free space inode, we can deadlock during commit 3859 * if we put it into the delayed code. 3860 * 3861 * The data relocation inode should also be directly updated 3862 * without delay 3863 */ 3864 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3865 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3866 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3867 btrfs_update_root_times(trans, root); 3868 3869 ret = btrfs_delayed_update_inode(trans, root, inode); 3870 if (!ret) 3871 btrfs_set_inode_last_trans(trans, inode); 3872 return ret; 3873 } 3874 3875 return btrfs_update_inode_item(trans, root, inode); 3876 } 3877 3878 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3879 struct btrfs_root *root, 3880 struct inode *inode) 3881 { 3882 int ret; 3883 3884 ret = btrfs_update_inode(trans, root, inode); 3885 if (ret == -ENOSPC) 3886 return btrfs_update_inode_item(trans, root, inode); 3887 return ret; 3888 } 3889 3890 /* 3891 * unlink helper that gets used here in inode.c and in the tree logging 3892 * recovery code. It remove a link in a directory with a given name, and 3893 * also drops the back refs in the inode to the directory 3894 */ 3895 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3896 struct btrfs_root *root, 3897 struct btrfs_inode *dir, 3898 struct btrfs_inode *inode, 3899 const char *name, int name_len) 3900 { 3901 struct btrfs_fs_info *fs_info = root->fs_info; 3902 struct btrfs_path *path; 3903 int ret = 0; 3904 struct extent_buffer *leaf; 3905 struct btrfs_dir_item *di; 3906 struct btrfs_key key; 3907 u64 index; 3908 u64 ino = btrfs_ino(inode); 3909 u64 dir_ino = btrfs_ino(dir); 3910 3911 path = btrfs_alloc_path(); 3912 if (!path) { 3913 ret = -ENOMEM; 3914 goto out; 3915 } 3916 3917 path->leave_spinning = 1; 3918 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3919 name, name_len, -1); 3920 if (IS_ERR_OR_NULL(di)) { 3921 ret = di ? PTR_ERR(di) : -ENOENT; 3922 goto err; 3923 } 3924 leaf = path->nodes[0]; 3925 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3926 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3927 if (ret) 3928 goto err; 3929 btrfs_release_path(path); 3930 3931 /* 3932 * If we don't have dir index, we have to get it by looking up 3933 * the inode ref, since we get the inode ref, remove it directly, 3934 * it is unnecessary to do delayed deletion. 3935 * 3936 * But if we have dir index, needn't search inode ref to get it. 3937 * Since the inode ref is close to the inode item, it is better 3938 * that we delay to delete it, and just do this deletion when 3939 * we update the inode item. 3940 */ 3941 if (inode->dir_index) { 3942 ret = btrfs_delayed_delete_inode_ref(inode); 3943 if (!ret) { 3944 index = inode->dir_index; 3945 goto skip_backref; 3946 } 3947 } 3948 3949 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3950 dir_ino, &index); 3951 if (ret) { 3952 btrfs_info(fs_info, 3953 "failed to delete reference to %.*s, inode %llu parent %llu", 3954 name_len, name, ino, dir_ino); 3955 btrfs_abort_transaction(trans, ret); 3956 goto err; 3957 } 3958 skip_backref: 3959 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3960 if (ret) { 3961 btrfs_abort_transaction(trans, ret); 3962 goto err; 3963 } 3964 3965 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3966 dir_ino); 3967 if (ret != 0 && ret != -ENOENT) { 3968 btrfs_abort_transaction(trans, ret); 3969 goto err; 3970 } 3971 3972 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3973 index); 3974 if (ret == -ENOENT) 3975 ret = 0; 3976 else if (ret) 3977 btrfs_abort_transaction(trans, ret); 3978 err: 3979 btrfs_free_path(path); 3980 if (ret) 3981 goto out; 3982 3983 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3984 inode_inc_iversion(&inode->vfs_inode); 3985 inode_inc_iversion(&dir->vfs_inode); 3986 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3987 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3988 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3989 out: 3990 return ret; 3991 } 3992 3993 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3994 struct btrfs_root *root, 3995 struct btrfs_inode *dir, struct btrfs_inode *inode, 3996 const char *name, int name_len) 3997 { 3998 int ret; 3999 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4000 if (!ret) { 4001 drop_nlink(&inode->vfs_inode); 4002 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4003 } 4004 return ret; 4005 } 4006 4007 /* 4008 * helper to start transaction for unlink and rmdir. 4009 * 4010 * unlink and rmdir are special in btrfs, they do not always free space, so 4011 * if we cannot make our reservations the normal way try and see if there is 4012 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4013 * allow the unlink to occur. 4014 */ 4015 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4016 { 4017 struct btrfs_root *root = BTRFS_I(dir)->root; 4018 4019 /* 4020 * 1 for the possible orphan item 4021 * 1 for the dir item 4022 * 1 for the dir index 4023 * 1 for the inode ref 4024 * 1 for the inode 4025 */ 4026 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4027 } 4028 4029 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4030 { 4031 struct btrfs_root *root = BTRFS_I(dir)->root; 4032 struct btrfs_trans_handle *trans; 4033 struct inode *inode = d_inode(dentry); 4034 int ret; 4035 4036 trans = __unlink_start_trans(dir); 4037 if (IS_ERR(trans)) 4038 return PTR_ERR(trans); 4039 4040 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4041 0); 4042 4043 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4044 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4045 dentry->d_name.len); 4046 if (ret) 4047 goto out; 4048 4049 if (inode->i_nlink == 0) { 4050 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4051 if (ret) 4052 goto out; 4053 } 4054 4055 out: 4056 btrfs_end_transaction(trans); 4057 btrfs_btree_balance_dirty(root->fs_info); 4058 return ret; 4059 } 4060 4061 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4062 struct inode *dir, u64 objectid, 4063 const char *name, int name_len) 4064 { 4065 struct btrfs_root *root = BTRFS_I(dir)->root; 4066 struct btrfs_path *path; 4067 struct extent_buffer *leaf; 4068 struct btrfs_dir_item *di; 4069 struct btrfs_key key; 4070 u64 index; 4071 int ret; 4072 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4073 4074 path = btrfs_alloc_path(); 4075 if (!path) 4076 return -ENOMEM; 4077 4078 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4079 name, name_len, -1); 4080 if (IS_ERR_OR_NULL(di)) { 4081 ret = di ? PTR_ERR(di) : -ENOENT; 4082 goto out; 4083 } 4084 4085 leaf = path->nodes[0]; 4086 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4087 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4088 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4089 if (ret) { 4090 btrfs_abort_transaction(trans, ret); 4091 goto out; 4092 } 4093 btrfs_release_path(path); 4094 4095 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid, 4096 dir_ino, &index, name, name_len); 4097 if (ret < 0) { 4098 if (ret != -ENOENT) { 4099 btrfs_abort_transaction(trans, ret); 4100 goto out; 4101 } 4102 di = btrfs_search_dir_index_item(root, path, dir_ino, 4103 name, name_len); 4104 if (IS_ERR_OR_NULL(di)) { 4105 if (!di) 4106 ret = -ENOENT; 4107 else 4108 ret = PTR_ERR(di); 4109 btrfs_abort_transaction(trans, ret); 4110 goto out; 4111 } 4112 4113 leaf = path->nodes[0]; 4114 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4115 index = key.offset; 4116 } 4117 btrfs_release_path(path); 4118 4119 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4120 if (ret) { 4121 btrfs_abort_transaction(trans, ret); 4122 goto out; 4123 } 4124 4125 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4126 inode_inc_iversion(dir); 4127 dir->i_mtime = dir->i_ctime = current_time(dir); 4128 ret = btrfs_update_inode_fallback(trans, root, dir); 4129 if (ret) 4130 btrfs_abort_transaction(trans, ret); 4131 out: 4132 btrfs_free_path(path); 4133 return ret; 4134 } 4135 4136 /* 4137 * Helper to check if the subvolume references other subvolumes or if it's 4138 * default. 4139 */ 4140 static noinline int may_destroy_subvol(struct btrfs_root *root) 4141 { 4142 struct btrfs_fs_info *fs_info = root->fs_info; 4143 struct btrfs_path *path; 4144 struct btrfs_dir_item *di; 4145 struct btrfs_key key; 4146 u64 dir_id; 4147 int ret; 4148 4149 path = btrfs_alloc_path(); 4150 if (!path) 4151 return -ENOMEM; 4152 4153 /* Make sure this root isn't set as the default subvol */ 4154 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4155 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4156 dir_id, "default", 7, 0); 4157 if (di && !IS_ERR(di)) { 4158 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4159 if (key.objectid == root->root_key.objectid) { 4160 ret = -EPERM; 4161 btrfs_err(fs_info, 4162 "deleting default subvolume %llu is not allowed", 4163 key.objectid); 4164 goto out; 4165 } 4166 btrfs_release_path(path); 4167 } 4168 4169 key.objectid = root->root_key.objectid; 4170 key.type = BTRFS_ROOT_REF_KEY; 4171 key.offset = (u64)-1; 4172 4173 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4174 if (ret < 0) 4175 goto out; 4176 BUG_ON(ret == 0); 4177 4178 ret = 0; 4179 if (path->slots[0] > 0) { 4180 path->slots[0]--; 4181 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4182 if (key.objectid == root->root_key.objectid && 4183 key.type == BTRFS_ROOT_REF_KEY) 4184 ret = -ENOTEMPTY; 4185 } 4186 out: 4187 btrfs_free_path(path); 4188 return ret; 4189 } 4190 4191 /* Delete all dentries for inodes belonging to the root */ 4192 static void btrfs_prune_dentries(struct btrfs_root *root) 4193 { 4194 struct btrfs_fs_info *fs_info = root->fs_info; 4195 struct rb_node *node; 4196 struct rb_node *prev; 4197 struct btrfs_inode *entry; 4198 struct inode *inode; 4199 u64 objectid = 0; 4200 4201 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4202 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4203 4204 spin_lock(&root->inode_lock); 4205 again: 4206 node = root->inode_tree.rb_node; 4207 prev = NULL; 4208 while (node) { 4209 prev = node; 4210 entry = rb_entry(node, struct btrfs_inode, rb_node); 4211 4212 if (objectid < btrfs_ino(entry)) 4213 node = node->rb_left; 4214 else if (objectid > btrfs_ino(entry)) 4215 node = node->rb_right; 4216 else 4217 break; 4218 } 4219 if (!node) { 4220 while (prev) { 4221 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4222 if (objectid <= btrfs_ino(entry)) { 4223 node = prev; 4224 break; 4225 } 4226 prev = rb_next(prev); 4227 } 4228 } 4229 while (node) { 4230 entry = rb_entry(node, struct btrfs_inode, rb_node); 4231 objectid = btrfs_ino(entry) + 1; 4232 inode = igrab(&entry->vfs_inode); 4233 if (inode) { 4234 spin_unlock(&root->inode_lock); 4235 if (atomic_read(&inode->i_count) > 1) 4236 d_prune_aliases(inode); 4237 /* 4238 * btrfs_drop_inode will have it removed from the inode 4239 * cache when its usage count hits zero. 4240 */ 4241 iput(inode); 4242 cond_resched(); 4243 spin_lock(&root->inode_lock); 4244 goto again; 4245 } 4246 4247 if (cond_resched_lock(&root->inode_lock)) 4248 goto again; 4249 4250 node = rb_next(node); 4251 } 4252 spin_unlock(&root->inode_lock); 4253 } 4254 4255 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4256 { 4257 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4258 struct btrfs_root *root = BTRFS_I(dir)->root; 4259 struct inode *inode = d_inode(dentry); 4260 struct btrfs_root *dest = BTRFS_I(inode)->root; 4261 struct btrfs_trans_handle *trans; 4262 struct btrfs_block_rsv block_rsv; 4263 u64 root_flags; 4264 int ret; 4265 int err; 4266 4267 /* 4268 * Don't allow to delete a subvolume with send in progress. This is 4269 * inside the inode lock so the error handling that has to drop the bit 4270 * again is not run concurrently. 4271 */ 4272 spin_lock(&dest->root_item_lock); 4273 if (dest->send_in_progress) { 4274 spin_unlock(&dest->root_item_lock); 4275 btrfs_warn(fs_info, 4276 "attempt to delete subvolume %llu during send", 4277 dest->root_key.objectid); 4278 return -EPERM; 4279 } 4280 root_flags = btrfs_root_flags(&dest->root_item); 4281 btrfs_set_root_flags(&dest->root_item, 4282 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4283 spin_unlock(&dest->root_item_lock); 4284 4285 down_write(&fs_info->subvol_sem); 4286 4287 err = may_destroy_subvol(dest); 4288 if (err) 4289 goto out_up_write; 4290 4291 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4292 /* 4293 * One for dir inode, 4294 * two for dir entries, 4295 * two for root ref/backref. 4296 */ 4297 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4298 if (err) 4299 goto out_up_write; 4300 4301 trans = btrfs_start_transaction(root, 0); 4302 if (IS_ERR(trans)) { 4303 err = PTR_ERR(trans); 4304 goto out_release; 4305 } 4306 trans->block_rsv = &block_rsv; 4307 trans->bytes_reserved = block_rsv.size; 4308 4309 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4310 4311 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid, 4312 dentry->d_name.name, dentry->d_name.len); 4313 if (ret) { 4314 err = ret; 4315 btrfs_abort_transaction(trans, ret); 4316 goto out_end_trans; 4317 } 4318 4319 btrfs_record_root_in_trans(trans, dest); 4320 4321 memset(&dest->root_item.drop_progress, 0, 4322 sizeof(dest->root_item.drop_progress)); 4323 dest->root_item.drop_level = 0; 4324 btrfs_set_root_refs(&dest->root_item, 0); 4325 4326 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4327 ret = btrfs_insert_orphan_item(trans, 4328 fs_info->tree_root, 4329 dest->root_key.objectid); 4330 if (ret) { 4331 btrfs_abort_transaction(trans, ret); 4332 err = ret; 4333 goto out_end_trans; 4334 } 4335 } 4336 4337 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4338 BTRFS_UUID_KEY_SUBVOL, 4339 dest->root_key.objectid); 4340 if (ret && ret != -ENOENT) { 4341 btrfs_abort_transaction(trans, ret); 4342 err = ret; 4343 goto out_end_trans; 4344 } 4345 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4346 ret = btrfs_uuid_tree_remove(trans, 4347 dest->root_item.received_uuid, 4348 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4349 dest->root_key.objectid); 4350 if (ret && ret != -ENOENT) { 4351 btrfs_abort_transaction(trans, ret); 4352 err = ret; 4353 goto out_end_trans; 4354 } 4355 } 4356 4357 out_end_trans: 4358 trans->block_rsv = NULL; 4359 trans->bytes_reserved = 0; 4360 ret = btrfs_end_transaction(trans); 4361 if (ret && !err) 4362 err = ret; 4363 inode->i_flags |= S_DEAD; 4364 out_release: 4365 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4366 out_up_write: 4367 up_write(&fs_info->subvol_sem); 4368 if (err) { 4369 spin_lock(&dest->root_item_lock); 4370 root_flags = btrfs_root_flags(&dest->root_item); 4371 btrfs_set_root_flags(&dest->root_item, 4372 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4373 spin_unlock(&dest->root_item_lock); 4374 } else { 4375 d_invalidate(dentry); 4376 btrfs_prune_dentries(dest); 4377 ASSERT(dest->send_in_progress == 0); 4378 4379 /* the last ref */ 4380 if (dest->ino_cache_inode) { 4381 iput(dest->ino_cache_inode); 4382 dest->ino_cache_inode = NULL; 4383 } 4384 } 4385 4386 return err; 4387 } 4388 4389 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4390 { 4391 struct inode *inode = d_inode(dentry); 4392 int err = 0; 4393 struct btrfs_root *root = BTRFS_I(dir)->root; 4394 struct btrfs_trans_handle *trans; 4395 u64 last_unlink_trans; 4396 4397 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4398 return -ENOTEMPTY; 4399 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4400 return btrfs_delete_subvolume(dir, dentry); 4401 4402 trans = __unlink_start_trans(dir); 4403 if (IS_ERR(trans)) 4404 return PTR_ERR(trans); 4405 4406 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4407 err = btrfs_unlink_subvol(trans, dir, 4408 BTRFS_I(inode)->location.objectid, 4409 dentry->d_name.name, 4410 dentry->d_name.len); 4411 goto out; 4412 } 4413 4414 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4415 if (err) 4416 goto out; 4417 4418 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4419 4420 /* now the directory is empty */ 4421 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4422 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4423 dentry->d_name.len); 4424 if (!err) { 4425 btrfs_i_size_write(BTRFS_I(inode), 0); 4426 /* 4427 * Propagate the last_unlink_trans value of the deleted dir to 4428 * its parent directory. This is to prevent an unrecoverable 4429 * log tree in the case we do something like this: 4430 * 1) create dir foo 4431 * 2) create snapshot under dir foo 4432 * 3) delete the snapshot 4433 * 4) rmdir foo 4434 * 5) mkdir foo 4435 * 6) fsync foo or some file inside foo 4436 */ 4437 if (last_unlink_trans >= trans->transid) 4438 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4439 } 4440 out: 4441 btrfs_end_transaction(trans); 4442 btrfs_btree_balance_dirty(root->fs_info); 4443 4444 return err; 4445 } 4446 4447 static int truncate_space_check(struct btrfs_trans_handle *trans, 4448 struct btrfs_root *root, 4449 u64 bytes_deleted) 4450 { 4451 struct btrfs_fs_info *fs_info = root->fs_info; 4452 int ret; 4453 4454 /* 4455 * This is only used to apply pressure to the enospc system, we don't 4456 * intend to use this reservation at all. 4457 */ 4458 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4459 bytes_deleted *= fs_info->nodesize; 4460 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4461 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4462 if (!ret) { 4463 trace_btrfs_space_reservation(fs_info, "transaction", 4464 trans->transid, 4465 bytes_deleted, 1); 4466 trans->bytes_reserved += bytes_deleted; 4467 } 4468 return ret; 4469 4470 } 4471 4472 /* 4473 * Return this if we need to call truncate_block for the last bit of the 4474 * truncate. 4475 */ 4476 #define NEED_TRUNCATE_BLOCK 1 4477 4478 /* 4479 * this can truncate away extent items, csum items and directory items. 4480 * It starts at a high offset and removes keys until it can't find 4481 * any higher than new_size 4482 * 4483 * csum items that cross the new i_size are truncated to the new size 4484 * as well. 4485 * 4486 * min_type is the minimum key type to truncate down to. If set to 0, this 4487 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4488 */ 4489 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4490 struct btrfs_root *root, 4491 struct inode *inode, 4492 u64 new_size, u32 min_type) 4493 { 4494 struct btrfs_fs_info *fs_info = root->fs_info; 4495 struct btrfs_path *path; 4496 struct extent_buffer *leaf; 4497 struct btrfs_file_extent_item *fi; 4498 struct btrfs_key key; 4499 struct btrfs_key found_key; 4500 u64 extent_start = 0; 4501 u64 extent_num_bytes = 0; 4502 u64 extent_offset = 0; 4503 u64 item_end = 0; 4504 u64 last_size = new_size; 4505 u32 found_type = (u8)-1; 4506 int found_extent; 4507 int del_item; 4508 int pending_del_nr = 0; 4509 int pending_del_slot = 0; 4510 int extent_type = -1; 4511 int ret; 4512 u64 ino = btrfs_ino(BTRFS_I(inode)); 4513 u64 bytes_deleted = 0; 4514 bool be_nice = false; 4515 bool should_throttle = false; 4516 bool should_end = false; 4517 4518 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4519 4520 /* 4521 * for non-free space inodes and ref cows, we want to back off from 4522 * time to time 4523 */ 4524 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4525 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4526 be_nice = true; 4527 4528 path = btrfs_alloc_path(); 4529 if (!path) 4530 return -ENOMEM; 4531 path->reada = READA_BACK; 4532 4533 /* 4534 * We want to drop from the next block forward in case this new size is 4535 * not block aligned since we will be keeping the last block of the 4536 * extent just the way it is. 4537 */ 4538 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4539 root == fs_info->tree_root) 4540 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4541 fs_info->sectorsize), 4542 (u64)-1, 0); 4543 4544 /* 4545 * This function is also used to drop the items in the log tree before 4546 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4547 * it is used to drop the loged items. So we shouldn't kill the delayed 4548 * items. 4549 */ 4550 if (min_type == 0 && root == BTRFS_I(inode)->root) 4551 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4552 4553 key.objectid = ino; 4554 key.offset = (u64)-1; 4555 key.type = (u8)-1; 4556 4557 search_again: 4558 /* 4559 * with a 16K leaf size and 128MB extents, you can actually queue 4560 * up a huge file in a single leaf. Most of the time that 4561 * bytes_deleted is > 0, it will be huge by the time we get here 4562 */ 4563 if (be_nice && bytes_deleted > SZ_32M && 4564 btrfs_should_end_transaction(trans)) { 4565 ret = -EAGAIN; 4566 goto out; 4567 } 4568 4569 path->leave_spinning = 1; 4570 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4571 if (ret < 0) 4572 goto out; 4573 4574 if (ret > 0) { 4575 ret = 0; 4576 /* there are no items in the tree for us to truncate, we're 4577 * done 4578 */ 4579 if (path->slots[0] == 0) 4580 goto out; 4581 path->slots[0]--; 4582 } 4583 4584 while (1) { 4585 fi = NULL; 4586 leaf = path->nodes[0]; 4587 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4588 found_type = found_key.type; 4589 4590 if (found_key.objectid != ino) 4591 break; 4592 4593 if (found_type < min_type) 4594 break; 4595 4596 item_end = found_key.offset; 4597 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4598 fi = btrfs_item_ptr(leaf, path->slots[0], 4599 struct btrfs_file_extent_item); 4600 extent_type = btrfs_file_extent_type(leaf, fi); 4601 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4602 item_end += 4603 btrfs_file_extent_num_bytes(leaf, fi); 4604 4605 trace_btrfs_truncate_show_fi_regular( 4606 BTRFS_I(inode), leaf, fi, 4607 found_key.offset); 4608 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4609 item_end += btrfs_file_extent_ram_bytes(leaf, 4610 fi); 4611 4612 trace_btrfs_truncate_show_fi_inline( 4613 BTRFS_I(inode), leaf, fi, path->slots[0], 4614 found_key.offset); 4615 } 4616 item_end--; 4617 } 4618 if (found_type > min_type) { 4619 del_item = 1; 4620 } else { 4621 if (item_end < new_size) 4622 break; 4623 if (found_key.offset >= new_size) 4624 del_item = 1; 4625 else 4626 del_item = 0; 4627 } 4628 found_extent = 0; 4629 /* FIXME, shrink the extent if the ref count is only 1 */ 4630 if (found_type != BTRFS_EXTENT_DATA_KEY) 4631 goto delete; 4632 4633 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4634 u64 num_dec; 4635 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4636 if (!del_item) { 4637 u64 orig_num_bytes = 4638 btrfs_file_extent_num_bytes(leaf, fi); 4639 extent_num_bytes = ALIGN(new_size - 4640 found_key.offset, 4641 fs_info->sectorsize); 4642 btrfs_set_file_extent_num_bytes(leaf, fi, 4643 extent_num_bytes); 4644 num_dec = (orig_num_bytes - 4645 extent_num_bytes); 4646 if (test_bit(BTRFS_ROOT_REF_COWS, 4647 &root->state) && 4648 extent_start != 0) 4649 inode_sub_bytes(inode, num_dec); 4650 btrfs_mark_buffer_dirty(leaf); 4651 } else { 4652 extent_num_bytes = 4653 btrfs_file_extent_disk_num_bytes(leaf, 4654 fi); 4655 extent_offset = found_key.offset - 4656 btrfs_file_extent_offset(leaf, fi); 4657 4658 /* FIXME blocksize != 4096 */ 4659 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4660 if (extent_start != 0) { 4661 found_extent = 1; 4662 if (test_bit(BTRFS_ROOT_REF_COWS, 4663 &root->state)) 4664 inode_sub_bytes(inode, num_dec); 4665 } 4666 } 4667 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4668 /* 4669 * we can't truncate inline items that have had 4670 * special encodings 4671 */ 4672 if (!del_item && 4673 btrfs_file_extent_encryption(leaf, fi) == 0 && 4674 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4675 btrfs_file_extent_compression(leaf, fi) == 0) { 4676 u32 size = (u32)(new_size - found_key.offset); 4677 4678 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4679 size = btrfs_file_extent_calc_inline_size(size); 4680 btrfs_truncate_item(root->fs_info, path, size, 1); 4681 } else if (!del_item) { 4682 /* 4683 * We have to bail so the last_size is set to 4684 * just before this extent. 4685 */ 4686 ret = NEED_TRUNCATE_BLOCK; 4687 break; 4688 } 4689 4690 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4691 inode_sub_bytes(inode, item_end + 1 - new_size); 4692 } 4693 delete: 4694 if (del_item) 4695 last_size = found_key.offset; 4696 else 4697 last_size = new_size; 4698 if (del_item) { 4699 if (!pending_del_nr) { 4700 /* no pending yet, add ourselves */ 4701 pending_del_slot = path->slots[0]; 4702 pending_del_nr = 1; 4703 } else if (pending_del_nr && 4704 path->slots[0] + 1 == pending_del_slot) { 4705 /* hop on the pending chunk */ 4706 pending_del_nr++; 4707 pending_del_slot = path->slots[0]; 4708 } else { 4709 BUG(); 4710 } 4711 } else { 4712 break; 4713 } 4714 should_throttle = false; 4715 4716 if (found_extent && 4717 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4718 root == fs_info->tree_root)) { 4719 btrfs_set_path_blocking(path); 4720 bytes_deleted += extent_num_bytes; 4721 ret = btrfs_free_extent(trans, root, extent_start, 4722 extent_num_bytes, 0, 4723 btrfs_header_owner(leaf), 4724 ino, extent_offset); 4725 if (ret) { 4726 btrfs_abort_transaction(trans, ret); 4727 break; 4728 } 4729 if (btrfs_should_throttle_delayed_refs(trans)) 4730 btrfs_async_run_delayed_refs(fs_info, 4731 trans->delayed_ref_updates * 2, 4732 trans->transid, 0); 4733 if (be_nice) { 4734 if (truncate_space_check(trans, root, 4735 extent_num_bytes)) { 4736 should_end = true; 4737 } 4738 if (btrfs_should_throttle_delayed_refs(trans)) 4739 should_throttle = true; 4740 } 4741 } 4742 4743 if (found_type == BTRFS_INODE_ITEM_KEY) 4744 break; 4745 4746 if (path->slots[0] == 0 || 4747 path->slots[0] != pending_del_slot || 4748 should_throttle || should_end) { 4749 if (pending_del_nr) { 4750 ret = btrfs_del_items(trans, root, path, 4751 pending_del_slot, 4752 pending_del_nr); 4753 if (ret) { 4754 btrfs_abort_transaction(trans, ret); 4755 break; 4756 } 4757 pending_del_nr = 0; 4758 } 4759 btrfs_release_path(path); 4760 if (should_throttle) { 4761 unsigned long updates = trans->delayed_ref_updates; 4762 if (updates) { 4763 trans->delayed_ref_updates = 0; 4764 ret = btrfs_run_delayed_refs(trans, 4765 updates * 2); 4766 if (ret) 4767 break; 4768 } 4769 } 4770 /* 4771 * if we failed to refill our space rsv, bail out 4772 * and let the transaction restart 4773 */ 4774 if (should_end) { 4775 ret = -EAGAIN; 4776 break; 4777 } 4778 goto search_again; 4779 } else { 4780 path->slots[0]--; 4781 } 4782 } 4783 out: 4784 if (ret >= 0 && pending_del_nr) { 4785 int err; 4786 4787 err = btrfs_del_items(trans, root, path, pending_del_slot, 4788 pending_del_nr); 4789 if (err) { 4790 btrfs_abort_transaction(trans, err); 4791 ret = err; 4792 } 4793 } 4794 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4795 ASSERT(last_size >= new_size); 4796 if (!ret && last_size > new_size) 4797 last_size = new_size; 4798 btrfs_ordered_update_i_size(inode, last_size, NULL); 4799 } 4800 4801 btrfs_free_path(path); 4802 4803 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) { 4804 unsigned long updates = trans->delayed_ref_updates; 4805 int err; 4806 4807 if (updates) { 4808 trans->delayed_ref_updates = 0; 4809 err = btrfs_run_delayed_refs(trans, updates * 2); 4810 if (err) 4811 ret = err; 4812 } 4813 } 4814 return ret; 4815 } 4816 4817 /* 4818 * btrfs_truncate_block - read, zero a chunk and write a block 4819 * @inode - inode that we're zeroing 4820 * @from - the offset to start zeroing 4821 * @len - the length to zero, 0 to zero the entire range respective to the 4822 * offset 4823 * @front - zero up to the offset instead of from the offset on 4824 * 4825 * This will find the block for the "from" offset and cow the block and zero the 4826 * part we want to zero. This is used with truncate and hole punching. 4827 */ 4828 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4829 int front) 4830 { 4831 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4832 struct address_space *mapping = inode->i_mapping; 4833 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4834 struct btrfs_ordered_extent *ordered; 4835 struct extent_state *cached_state = NULL; 4836 struct extent_changeset *data_reserved = NULL; 4837 char *kaddr; 4838 u32 blocksize = fs_info->sectorsize; 4839 pgoff_t index = from >> PAGE_SHIFT; 4840 unsigned offset = from & (blocksize - 1); 4841 struct page *page; 4842 gfp_t mask = btrfs_alloc_write_mask(mapping); 4843 int ret = 0; 4844 u64 block_start; 4845 u64 block_end; 4846 4847 if (IS_ALIGNED(offset, blocksize) && 4848 (!len || IS_ALIGNED(len, blocksize))) 4849 goto out; 4850 4851 block_start = round_down(from, blocksize); 4852 block_end = block_start + blocksize - 1; 4853 4854 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4855 block_start, blocksize); 4856 if (ret) 4857 goto out; 4858 4859 again: 4860 page = find_or_create_page(mapping, index, mask); 4861 if (!page) { 4862 btrfs_delalloc_release_space(inode, data_reserved, 4863 block_start, blocksize, true); 4864 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true); 4865 ret = -ENOMEM; 4866 goto out; 4867 } 4868 4869 if (!PageUptodate(page)) { 4870 ret = btrfs_readpage(NULL, page); 4871 lock_page(page); 4872 if (page->mapping != mapping) { 4873 unlock_page(page); 4874 put_page(page); 4875 goto again; 4876 } 4877 if (!PageUptodate(page)) { 4878 ret = -EIO; 4879 goto out_unlock; 4880 } 4881 } 4882 wait_on_page_writeback(page); 4883 4884 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4885 set_page_extent_mapped(page); 4886 4887 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4888 if (ordered) { 4889 unlock_extent_cached(io_tree, block_start, block_end, 4890 &cached_state); 4891 unlock_page(page); 4892 put_page(page); 4893 btrfs_start_ordered_extent(inode, ordered, 1); 4894 btrfs_put_ordered_extent(ordered); 4895 goto again; 4896 } 4897 4898 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4899 EXTENT_DIRTY | EXTENT_DELALLOC | 4900 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4901 0, 0, &cached_state); 4902 4903 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4904 &cached_state, 0); 4905 if (ret) { 4906 unlock_extent_cached(io_tree, block_start, block_end, 4907 &cached_state); 4908 goto out_unlock; 4909 } 4910 4911 if (offset != blocksize) { 4912 if (!len) 4913 len = blocksize - offset; 4914 kaddr = kmap(page); 4915 if (front) 4916 memset(kaddr + (block_start - page_offset(page)), 4917 0, offset); 4918 else 4919 memset(kaddr + (block_start - page_offset(page)) + offset, 4920 0, len); 4921 flush_dcache_page(page); 4922 kunmap(page); 4923 } 4924 ClearPageChecked(page); 4925 set_page_dirty(page); 4926 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4927 4928 out_unlock: 4929 if (ret) 4930 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4931 blocksize, true); 4932 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0)); 4933 unlock_page(page); 4934 put_page(page); 4935 out: 4936 extent_changeset_free(data_reserved); 4937 return ret; 4938 } 4939 4940 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4941 u64 offset, u64 len) 4942 { 4943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4944 struct btrfs_trans_handle *trans; 4945 int ret; 4946 4947 /* 4948 * Still need to make sure the inode looks like it's been updated so 4949 * that any holes get logged if we fsync. 4950 */ 4951 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4952 BTRFS_I(inode)->last_trans = fs_info->generation; 4953 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4954 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4955 return 0; 4956 } 4957 4958 /* 4959 * 1 - for the one we're dropping 4960 * 1 - for the one we're adding 4961 * 1 - for updating the inode. 4962 */ 4963 trans = btrfs_start_transaction(root, 3); 4964 if (IS_ERR(trans)) 4965 return PTR_ERR(trans); 4966 4967 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4968 if (ret) { 4969 btrfs_abort_transaction(trans, ret); 4970 btrfs_end_transaction(trans); 4971 return ret; 4972 } 4973 4974 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4975 offset, 0, 0, len, 0, len, 0, 0, 0); 4976 if (ret) 4977 btrfs_abort_transaction(trans, ret); 4978 else 4979 btrfs_update_inode(trans, root, inode); 4980 btrfs_end_transaction(trans); 4981 return ret; 4982 } 4983 4984 /* 4985 * This function puts in dummy file extents for the area we're creating a hole 4986 * for. So if we are truncating this file to a larger size we need to insert 4987 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4988 * the range between oldsize and size 4989 */ 4990 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4991 { 4992 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4993 struct btrfs_root *root = BTRFS_I(inode)->root; 4994 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4995 struct extent_map *em = NULL; 4996 struct extent_state *cached_state = NULL; 4997 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4998 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4999 u64 block_end = ALIGN(size, fs_info->sectorsize); 5000 u64 last_byte; 5001 u64 cur_offset; 5002 u64 hole_size; 5003 int err = 0; 5004 5005 /* 5006 * If our size started in the middle of a block we need to zero out the 5007 * rest of the block before we expand the i_size, otherwise we could 5008 * expose stale data. 5009 */ 5010 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5011 if (err) 5012 return err; 5013 5014 if (size <= hole_start) 5015 return 0; 5016 5017 while (1) { 5018 struct btrfs_ordered_extent *ordered; 5019 5020 lock_extent_bits(io_tree, hole_start, block_end - 1, 5021 &cached_state); 5022 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 5023 block_end - hole_start); 5024 if (!ordered) 5025 break; 5026 unlock_extent_cached(io_tree, hole_start, block_end - 1, 5027 &cached_state); 5028 btrfs_start_ordered_extent(inode, ordered, 1); 5029 btrfs_put_ordered_extent(ordered); 5030 } 5031 5032 cur_offset = hole_start; 5033 while (1) { 5034 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 5035 block_end - cur_offset, 0); 5036 if (IS_ERR(em)) { 5037 err = PTR_ERR(em); 5038 em = NULL; 5039 break; 5040 } 5041 last_byte = min(extent_map_end(em), block_end); 5042 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5043 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5044 struct extent_map *hole_em; 5045 hole_size = last_byte - cur_offset; 5046 5047 err = maybe_insert_hole(root, inode, cur_offset, 5048 hole_size); 5049 if (err) 5050 break; 5051 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5052 cur_offset + hole_size - 1, 0); 5053 hole_em = alloc_extent_map(); 5054 if (!hole_em) { 5055 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5056 &BTRFS_I(inode)->runtime_flags); 5057 goto next; 5058 } 5059 hole_em->start = cur_offset; 5060 hole_em->len = hole_size; 5061 hole_em->orig_start = cur_offset; 5062 5063 hole_em->block_start = EXTENT_MAP_HOLE; 5064 hole_em->block_len = 0; 5065 hole_em->orig_block_len = 0; 5066 hole_em->ram_bytes = hole_size; 5067 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5068 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5069 hole_em->generation = fs_info->generation; 5070 5071 while (1) { 5072 write_lock(&em_tree->lock); 5073 err = add_extent_mapping(em_tree, hole_em, 1); 5074 write_unlock(&em_tree->lock); 5075 if (err != -EEXIST) 5076 break; 5077 btrfs_drop_extent_cache(BTRFS_I(inode), 5078 cur_offset, 5079 cur_offset + 5080 hole_size - 1, 0); 5081 } 5082 free_extent_map(hole_em); 5083 } 5084 next: 5085 free_extent_map(em); 5086 em = NULL; 5087 cur_offset = last_byte; 5088 if (cur_offset >= block_end) 5089 break; 5090 } 5091 free_extent_map(em); 5092 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5093 return err; 5094 } 5095 5096 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5097 { 5098 struct btrfs_root *root = BTRFS_I(inode)->root; 5099 struct btrfs_trans_handle *trans; 5100 loff_t oldsize = i_size_read(inode); 5101 loff_t newsize = attr->ia_size; 5102 int mask = attr->ia_valid; 5103 int ret; 5104 5105 /* 5106 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5107 * special case where we need to update the times despite not having 5108 * these flags set. For all other operations the VFS set these flags 5109 * explicitly if it wants a timestamp update. 5110 */ 5111 if (newsize != oldsize) { 5112 inode_inc_iversion(inode); 5113 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5114 inode->i_ctime = inode->i_mtime = 5115 current_time(inode); 5116 } 5117 5118 if (newsize > oldsize) { 5119 /* 5120 * Don't do an expanding truncate while snapshotting is ongoing. 5121 * This is to ensure the snapshot captures a fully consistent 5122 * state of this file - if the snapshot captures this expanding 5123 * truncation, it must capture all writes that happened before 5124 * this truncation. 5125 */ 5126 btrfs_wait_for_snapshot_creation(root); 5127 ret = btrfs_cont_expand(inode, oldsize, newsize); 5128 if (ret) { 5129 btrfs_end_write_no_snapshotting(root); 5130 return ret; 5131 } 5132 5133 trans = btrfs_start_transaction(root, 1); 5134 if (IS_ERR(trans)) { 5135 btrfs_end_write_no_snapshotting(root); 5136 return PTR_ERR(trans); 5137 } 5138 5139 i_size_write(inode, newsize); 5140 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5141 pagecache_isize_extended(inode, oldsize, newsize); 5142 ret = btrfs_update_inode(trans, root, inode); 5143 btrfs_end_write_no_snapshotting(root); 5144 btrfs_end_transaction(trans); 5145 } else { 5146 5147 /* 5148 * We're truncating a file that used to have good data down to 5149 * zero. Make sure it gets into the ordered flush list so that 5150 * any new writes get down to disk quickly. 5151 */ 5152 if (newsize == 0) 5153 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5154 &BTRFS_I(inode)->runtime_flags); 5155 5156 truncate_setsize(inode, newsize); 5157 5158 /* Disable nonlocked read DIO to avoid the end less truncate */ 5159 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5160 inode_dio_wait(inode); 5161 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5162 5163 ret = btrfs_truncate(inode, newsize == oldsize); 5164 if (ret && inode->i_nlink) { 5165 int err; 5166 5167 /* 5168 * Truncate failed, so fix up the in-memory size. We 5169 * adjusted disk_i_size down as we removed extents, so 5170 * wait for disk_i_size to be stable and then update the 5171 * in-memory size to match. 5172 */ 5173 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5174 if (err) 5175 return err; 5176 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5177 } 5178 } 5179 5180 return ret; 5181 } 5182 5183 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5184 { 5185 struct inode *inode = d_inode(dentry); 5186 struct btrfs_root *root = BTRFS_I(inode)->root; 5187 int err; 5188 5189 if (btrfs_root_readonly(root)) 5190 return -EROFS; 5191 5192 err = setattr_prepare(dentry, attr); 5193 if (err) 5194 return err; 5195 5196 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5197 err = btrfs_setsize(inode, attr); 5198 if (err) 5199 return err; 5200 } 5201 5202 if (attr->ia_valid) { 5203 setattr_copy(inode, attr); 5204 inode_inc_iversion(inode); 5205 err = btrfs_dirty_inode(inode); 5206 5207 if (!err && attr->ia_valid & ATTR_MODE) 5208 err = posix_acl_chmod(inode, inode->i_mode); 5209 } 5210 5211 return err; 5212 } 5213 5214 /* 5215 * While truncating the inode pages during eviction, we get the VFS calling 5216 * btrfs_invalidatepage() against each page of the inode. This is slow because 5217 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5218 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5219 * extent_state structures over and over, wasting lots of time. 5220 * 5221 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5222 * those expensive operations on a per page basis and do only the ordered io 5223 * finishing, while we release here the extent_map and extent_state structures, 5224 * without the excessive merging and splitting. 5225 */ 5226 static void evict_inode_truncate_pages(struct inode *inode) 5227 { 5228 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5229 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5230 struct rb_node *node; 5231 5232 ASSERT(inode->i_state & I_FREEING); 5233 truncate_inode_pages_final(&inode->i_data); 5234 5235 write_lock(&map_tree->lock); 5236 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5237 struct extent_map *em; 5238 5239 node = rb_first_cached(&map_tree->map); 5240 em = rb_entry(node, struct extent_map, rb_node); 5241 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5242 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5243 remove_extent_mapping(map_tree, em); 5244 free_extent_map(em); 5245 if (need_resched()) { 5246 write_unlock(&map_tree->lock); 5247 cond_resched(); 5248 write_lock(&map_tree->lock); 5249 } 5250 } 5251 write_unlock(&map_tree->lock); 5252 5253 /* 5254 * Keep looping until we have no more ranges in the io tree. 5255 * We can have ongoing bios started by readpages (called from readahead) 5256 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5257 * still in progress (unlocked the pages in the bio but did not yet 5258 * unlocked the ranges in the io tree). Therefore this means some 5259 * ranges can still be locked and eviction started because before 5260 * submitting those bios, which are executed by a separate task (work 5261 * queue kthread), inode references (inode->i_count) were not taken 5262 * (which would be dropped in the end io callback of each bio). 5263 * Therefore here we effectively end up waiting for those bios and 5264 * anyone else holding locked ranges without having bumped the inode's 5265 * reference count - if we don't do it, when they access the inode's 5266 * io_tree to unlock a range it may be too late, leading to an 5267 * use-after-free issue. 5268 */ 5269 spin_lock(&io_tree->lock); 5270 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5271 struct extent_state *state; 5272 struct extent_state *cached_state = NULL; 5273 u64 start; 5274 u64 end; 5275 unsigned state_flags; 5276 5277 node = rb_first(&io_tree->state); 5278 state = rb_entry(node, struct extent_state, rb_node); 5279 start = state->start; 5280 end = state->end; 5281 state_flags = state->state; 5282 spin_unlock(&io_tree->lock); 5283 5284 lock_extent_bits(io_tree, start, end, &cached_state); 5285 5286 /* 5287 * If still has DELALLOC flag, the extent didn't reach disk, 5288 * and its reserved space won't be freed by delayed_ref. 5289 * So we need to free its reserved space here. 5290 * (Refer to comment in btrfs_invalidatepage, case 2) 5291 * 5292 * Note, end is the bytenr of last byte, so we need + 1 here. 5293 */ 5294 if (state_flags & EXTENT_DELALLOC) 5295 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5296 5297 clear_extent_bit(io_tree, start, end, 5298 EXTENT_LOCKED | EXTENT_DIRTY | 5299 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5300 EXTENT_DEFRAG, 1, 1, &cached_state); 5301 5302 cond_resched(); 5303 spin_lock(&io_tree->lock); 5304 } 5305 spin_unlock(&io_tree->lock); 5306 } 5307 5308 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5309 struct btrfs_block_rsv *rsv) 5310 { 5311 struct btrfs_fs_info *fs_info = root->fs_info; 5312 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5313 int failures = 0; 5314 5315 for (;;) { 5316 struct btrfs_trans_handle *trans; 5317 int ret; 5318 5319 ret = btrfs_block_rsv_refill(root, rsv, rsv->size, 5320 BTRFS_RESERVE_FLUSH_LIMIT); 5321 5322 if (ret && ++failures > 2) { 5323 btrfs_warn(fs_info, 5324 "could not allocate space for a delete; will truncate on mount"); 5325 return ERR_PTR(-ENOSPC); 5326 } 5327 5328 trans = btrfs_join_transaction(root); 5329 if (IS_ERR(trans) || !ret) 5330 return trans; 5331 5332 /* 5333 * Try to steal from the global reserve if there is space for 5334 * it. 5335 */ 5336 if (!btrfs_check_space_for_delayed_refs(trans) && 5337 !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, false)) 5338 return trans; 5339 5340 /* If not, commit and try again. */ 5341 ret = btrfs_commit_transaction(trans); 5342 if (ret) 5343 return ERR_PTR(ret); 5344 } 5345 } 5346 5347 void btrfs_evict_inode(struct inode *inode) 5348 { 5349 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5350 struct btrfs_trans_handle *trans; 5351 struct btrfs_root *root = BTRFS_I(inode)->root; 5352 struct btrfs_block_rsv *rsv; 5353 int ret; 5354 5355 trace_btrfs_inode_evict(inode); 5356 5357 if (!root) { 5358 clear_inode(inode); 5359 return; 5360 } 5361 5362 evict_inode_truncate_pages(inode); 5363 5364 if (inode->i_nlink && 5365 ((btrfs_root_refs(&root->root_item) != 0 && 5366 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5367 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5368 goto no_delete; 5369 5370 if (is_bad_inode(inode)) 5371 goto no_delete; 5372 5373 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5374 5375 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5376 goto no_delete; 5377 5378 if (inode->i_nlink > 0) { 5379 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5380 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5381 goto no_delete; 5382 } 5383 5384 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5385 if (ret) 5386 goto no_delete; 5387 5388 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5389 if (!rsv) 5390 goto no_delete; 5391 rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5392 rsv->failfast = 1; 5393 5394 btrfs_i_size_write(BTRFS_I(inode), 0); 5395 5396 while (1) { 5397 trans = evict_refill_and_join(root, rsv); 5398 if (IS_ERR(trans)) 5399 goto free_rsv; 5400 5401 trans->block_rsv = rsv; 5402 5403 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5404 trans->block_rsv = &fs_info->trans_block_rsv; 5405 btrfs_end_transaction(trans); 5406 btrfs_btree_balance_dirty(fs_info); 5407 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5408 goto free_rsv; 5409 else if (!ret) 5410 break; 5411 } 5412 5413 /* 5414 * Errors here aren't a big deal, it just means we leave orphan items in 5415 * the tree. They will be cleaned up on the next mount. If the inode 5416 * number gets reused, cleanup deletes the orphan item without doing 5417 * anything, and unlink reuses the existing orphan item. 5418 * 5419 * If it turns out that we are dropping too many of these, we might want 5420 * to add a mechanism for retrying these after a commit. 5421 */ 5422 trans = evict_refill_and_join(root, rsv); 5423 if (!IS_ERR(trans)) { 5424 trans->block_rsv = rsv; 5425 btrfs_orphan_del(trans, BTRFS_I(inode)); 5426 trans->block_rsv = &fs_info->trans_block_rsv; 5427 btrfs_end_transaction(trans); 5428 } 5429 5430 if (!(root == fs_info->tree_root || 5431 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5432 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5433 5434 free_rsv: 5435 btrfs_free_block_rsv(fs_info, rsv); 5436 no_delete: 5437 /* 5438 * If we didn't successfully delete, the orphan item will still be in 5439 * the tree and we'll retry on the next mount. Again, we might also want 5440 * to retry these periodically in the future. 5441 */ 5442 btrfs_remove_delayed_node(BTRFS_I(inode)); 5443 clear_inode(inode); 5444 } 5445 5446 /* 5447 * this returns the key found in the dir entry in the location pointer. 5448 * If no dir entries were found, returns -ENOENT. 5449 * If found a corrupted location in dir entry, returns -EUCLEAN. 5450 */ 5451 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5452 struct btrfs_key *location) 5453 { 5454 const char *name = dentry->d_name.name; 5455 int namelen = dentry->d_name.len; 5456 struct btrfs_dir_item *di; 5457 struct btrfs_path *path; 5458 struct btrfs_root *root = BTRFS_I(dir)->root; 5459 int ret = 0; 5460 5461 path = btrfs_alloc_path(); 5462 if (!path) 5463 return -ENOMEM; 5464 5465 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5466 name, namelen, 0); 5467 if (IS_ERR_OR_NULL(di)) { 5468 ret = di ? PTR_ERR(di) : -ENOENT; 5469 goto out; 5470 } 5471 5472 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5473 if (location->type != BTRFS_INODE_ITEM_KEY && 5474 location->type != BTRFS_ROOT_ITEM_KEY) { 5475 ret = -EUCLEAN; 5476 btrfs_warn(root->fs_info, 5477 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5478 __func__, name, btrfs_ino(BTRFS_I(dir)), 5479 location->objectid, location->type, location->offset); 5480 } 5481 out: 5482 btrfs_free_path(path); 5483 return ret; 5484 } 5485 5486 /* 5487 * when we hit a tree root in a directory, the btrfs part of the inode 5488 * needs to be changed to reflect the root directory of the tree root. This 5489 * is kind of like crossing a mount point. 5490 */ 5491 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5492 struct inode *dir, 5493 struct dentry *dentry, 5494 struct btrfs_key *location, 5495 struct btrfs_root **sub_root) 5496 { 5497 struct btrfs_path *path; 5498 struct btrfs_root *new_root; 5499 struct btrfs_root_ref *ref; 5500 struct extent_buffer *leaf; 5501 struct btrfs_key key; 5502 int ret; 5503 int err = 0; 5504 5505 path = btrfs_alloc_path(); 5506 if (!path) { 5507 err = -ENOMEM; 5508 goto out; 5509 } 5510 5511 err = -ENOENT; 5512 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5513 key.type = BTRFS_ROOT_REF_KEY; 5514 key.offset = location->objectid; 5515 5516 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5517 if (ret) { 5518 if (ret < 0) 5519 err = ret; 5520 goto out; 5521 } 5522 5523 leaf = path->nodes[0]; 5524 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5525 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5526 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5527 goto out; 5528 5529 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5530 (unsigned long)(ref + 1), 5531 dentry->d_name.len); 5532 if (ret) 5533 goto out; 5534 5535 btrfs_release_path(path); 5536 5537 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5538 if (IS_ERR(new_root)) { 5539 err = PTR_ERR(new_root); 5540 goto out; 5541 } 5542 5543 *sub_root = new_root; 5544 location->objectid = btrfs_root_dirid(&new_root->root_item); 5545 location->type = BTRFS_INODE_ITEM_KEY; 5546 location->offset = 0; 5547 err = 0; 5548 out: 5549 btrfs_free_path(path); 5550 return err; 5551 } 5552 5553 static void inode_tree_add(struct inode *inode) 5554 { 5555 struct btrfs_root *root = BTRFS_I(inode)->root; 5556 struct btrfs_inode *entry; 5557 struct rb_node **p; 5558 struct rb_node *parent; 5559 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5560 u64 ino = btrfs_ino(BTRFS_I(inode)); 5561 5562 if (inode_unhashed(inode)) 5563 return; 5564 parent = NULL; 5565 spin_lock(&root->inode_lock); 5566 p = &root->inode_tree.rb_node; 5567 while (*p) { 5568 parent = *p; 5569 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5570 5571 if (ino < btrfs_ino(entry)) 5572 p = &parent->rb_left; 5573 else if (ino > btrfs_ino(entry)) 5574 p = &parent->rb_right; 5575 else { 5576 WARN_ON(!(entry->vfs_inode.i_state & 5577 (I_WILL_FREE | I_FREEING))); 5578 rb_replace_node(parent, new, &root->inode_tree); 5579 RB_CLEAR_NODE(parent); 5580 spin_unlock(&root->inode_lock); 5581 return; 5582 } 5583 } 5584 rb_link_node(new, parent, p); 5585 rb_insert_color(new, &root->inode_tree); 5586 spin_unlock(&root->inode_lock); 5587 } 5588 5589 static void inode_tree_del(struct inode *inode) 5590 { 5591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5592 struct btrfs_root *root = BTRFS_I(inode)->root; 5593 int empty = 0; 5594 5595 spin_lock(&root->inode_lock); 5596 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5597 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5598 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5599 empty = RB_EMPTY_ROOT(&root->inode_tree); 5600 } 5601 spin_unlock(&root->inode_lock); 5602 5603 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5604 synchronize_srcu(&fs_info->subvol_srcu); 5605 spin_lock(&root->inode_lock); 5606 empty = RB_EMPTY_ROOT(&root->inode_tree); 5607 spin_unlock(&root->inode_lock); 5608 if (empty) 5609 btrfs_add_dead_root(root); 5610 } 5611 } 5612 5613 5614 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5615 { 5616 struct btrfs_iget_args *args = p; 5617 inode->i_ino = args->location->objectid; 5618 memcpy(&BTRFS_I(inode)->location, args->location, 5619 sizeof(*args->location)); 5620 BTRFS_I(inode)->root = args->root; 5621 return 0; 5622 } 5623 5624 static int btrfs_find_actor(struct inode *inode, void *opaque) 5625 { 5626 struct btrfs_iget_args *args = opaque; 5627 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5628 args->root == BTRFS_I(inode)->root; 5629 } 5630 5631 static struct inode *btrfs_iget_locked(struct super_block *s, 5632 struct btrfs_key *location, 5633 struct btrfs_root *root) 5634 { 5635 struct inode *inode; 5636 struct btrfs_iget_args args; 5637 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5638 5639 args.location = location; 5640 args.root = root; 5641 5642 inode = iget5_locked(s, hashval, btrfs_find_actor, 5643 btrfs_init_locked_inode, 5644 (void *)&args); 5645 return inode; 5646 } 5647 5648 /* Get an inode object given its location and corresponding root. 5649 * Returns in *is_new if the inode was read from disk 5650 */ 5651 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5652 struct btrfs_root *root, int *new, 5653 struct btrfs_path *path) 5654 { 5655 struct inode *inode; 5656 5657 inode = btrfs_iget_locked(s, location, root); 5658 if (!inode) 5659 return ERR_PTR(-ENOMEM); 5660 5661 if (inode->i_state & I_NEW) { 5662 int ret; 5663 5664 ret = btrfs_read_locked_inode(inode, path); 5665 if (!ret) { 5666 inode_tree_add(inode); 5667 unlock_new_inode(inode); 5668 if (new) 5669 *new = 1; 5670 } else { 5671 iget_failed(inode); 5672 /* 5673 * ret > 0 can come from btrfs_search_slot called by 5674 * btrfs_read_locked_inode, this means the inode item 5675 * was not found. 5676 */ 5677 if (ret > 0) 5678 ret = -ENOENT; 5679 inode = ERR_PTR(ret); 5680 } 5681 } 5682 5683 return inode; 5684 } 5685 5686 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5687 struct btrfs_root *root, int *new) 5688 { 5689 return btrfs_iget_path(s, location, root, new, NULL); 5690 } 5691 5692 static struct inode *new_simple_dir(struct super_block *s, 5693 struct btrfs_key *key, 5694 struct btrfs_root *root) 5695 { 5696 struct inode *inode = new_inode(s); 5697 5698 if (!inode) 5699 return ERR_PTR(-ENOMEM); 5700 5701 BTRFS_I(inode)->root = root; 5702 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5703 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5704 5705 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5706 inode->i_op = &btrfs_dir_ro_inode_operations; 5707 inode->i_opflags &= ~IOP_XATTR; 5708 inode->i_fop = &simple_dir_operations; 5709 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5710 inode->i_mtime = current_time(inode); 5711 inode->i_atime = inode->i_mtime; 5712 inode->i_ctime = inode->i_mtime; 5713 BTRFS_I(inode)->i_otime = inode->i_mtime; 5714 5715 return inode; 5716 } 5717 5718 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5719 { 5720 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5721 struct inode *inode; 5722 struct btrfs_root *root = BTRFS_I(dir)->root; 5723 struct btrfs_root *sub_root = root; 5724 struct btrfs_key location; 5725 int index; 5726 int ret = 0; 5727 5728 if (dentry->d_name.len > BTRFS_NAME_LEN) 5729 return ERR_PTR(-ENAMETOOLONG); 5730 5731 ret = btrfs_inode_by_name(dir, dentry, &location); 5732 if (ret < 0) 5733 return ERR_PTR(ret); 5734 5735 if (location.type == BTRFS_INODE_ITEM_KEY) { 5736 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5737 return inode; 5738 } 5739 5740 index = srcu_read_lock(&fs_info->subvol_srcu); 5741 ret = fixup_tree_root_location(fs_info, dir, dentry, 5742 &location, &sub_root); 5743 if (ret < 0) { 5744 if (ret != -ENOENT) 5745 inode = ERR_PTR(ret); 5746 else 5747 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5748 } else { 5749 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5750 } 5751 srcu_read_unlock(&fs_info->subvol_srcu, index); 5752 5753 if (!IS_ERR(inode) && root != sub_root) { 5754 down_read(&fs_info->cleanup_work_sem); 5755 if (!sb_rdonly(inode->i_sb)) 5756 ret = btrfs_orphan_cleanup(sub_root); 5757 up_read(&fs_info->cleanup_work_sem); 5758 if (ret) { 5759 iput(inode); 5760 inode = ERR_PTR(ret); 5761 } 5762 } 5763 5764 return inode; 5765 } 5766 5767 static int btrfs_dentry_delete(const struct dentry *dentry) 5768 { 5769 struct btrfs_root *root; 5770 struct inode *inode = d_inode(dentry); 5771 5772 if (!inode && !IS_ROOT(dentry)) 5773 inode = d_inode(dentry->d_parent); 5774 5775 if (inode) { 5776 root = BTRFS_I(inode)->root; 5777 if (btrfs_root_refs(&root->root_item) == 0) 5778 return 1; 5779 5780 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5781 return 1; 5782 } 5783 return 0; 5784 } 5785 5786 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5787 unsigned int flags) 5788 { 5789 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5790 5791 if (inode == ERR_PTR(-ENOENT)) 5792 inode = NULL; 5793 return d_splice_alias(inode, dentry); 5794 } 5795 5796 unsigned char btrfs_filetype_table[] = { 5797 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5798 }; 5799 5800 /* 5801 * All this infrastructure exists because dir_emit can fault, and we are holding 5802 * the tree lock when doing readdir. For now just allocate a buffer and copy 5803 * our information into that, and then dir_emit from the buffer. This is 5804 * similar to what NFS does, only we don't keep the buffer around in pagecache 5805 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5806 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5807 * tree lock. 5808 */ 5809 static int btrfs_opendir(struct inode *inode, struct file *file) 5810 { 5811 struct btrfs_file_private *private; 5812 5813 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5814 if (!private) 5815 return -ENOMEM; 5816 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5817 if (!private->filldir_buf) { 5818 kfree(private); 5819 return -ENOMEM; 5820 } 5821 file->private_data = private; 5822 return 0; 5823 } 5824 5825 struct dir_entry { 5826 u64 ino; 5827 u64 offset; 5828 unsigned type; 5829 int name_len; 5830 }; 5831 5832 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5833 { 5834 while (entries--) { 5835 struct dir_entry *entry = addr; 5836 char *name = (char *)(entry + 1); 5837 5838 ctx->pos = get_unaligned(&entry->offset); 5839 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5840 get_unaligned(&entry->ino), 5841 get_unaligned(&entry->type))) 5842 return 1; 5843 addr += sizeof(struct dir_entry) + 5844 get_unaligned(&entry->name_len); 5845 ctx->pos++; 5846 } 5847 return 0; 5848 } 5849 5850 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5851 { 5852 struct inode *inode = file_inode(file); 5853 struct btrfs_root *root = BTRFS_I(inode)->root; 5854 struct btrfs_file_private *private = file->private_data; 5855 struct btrfs_dir_item *di; 5856 struct btrfs_key key; 5857 struct btrfs_key found_key; 5858 struct btrfs_path *path; 5859 void *addr; 5860 struct list_head ins_list; 5861 struct list_head del_list; 5862 int ret; 5863 struct extent_buffer *leaf; 5864 int slot; 5865 char *name_ptr; 5866 int name_len; 5867 int entries = 0; 5868 int total_len = 0; 5869 bool put = false; 5870 struct btrfs_key location; 5871 5872 if (!dir_emit_dots(file, ctx)) 5873 return 0; 5874 5875 path = btrfs_alloc_path(); 5876 if (!path) 5877 return -ENOMEM; 5878 5879 addr = private->filldir_buf; 5880 path->reada = READA_FORWARD; 5881 5882 INIT_LIST_HEAD(&ins_list); 5883 INIT_LIST_HEAD(&del_list); 5884 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5885 5886 again: 5887 key.type = BTRFS_DIR_INDEX_KEY; 5888 key.offset = ctx->pos; 5889 key.objectid = btrfs_ino(BTRFS_I(inode)); 5890 5891 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5892 if (ret < 0) 5893 goto err; 5894 5895 while (1) { 5896 struct dir_entry *entry; 5897 5898 leaf = path->nodes[0]; 5899 slot = path->slots[0]; 5900 if (slot >= btrfs_header_nritems(leaf)) { 5901 ret = btrfs_next_leaf(root, path); 5902 if (ret < 0) 5903 goto err; 5904 else if (ret > 0) 5905 break; 5906 continue; 5907 } 5908 5909 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5910 5911 if (found_key.objectid != key.objectid) 5912 break; 5913 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5914 break; 5915 if (found_key.offset < ctx->pos) 5916 goto next; 5917 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5918 goto next; 5919 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5920 name_len = btrfs_dir_name_len(leaf, di); 5921 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5922 PAGE_SIZE) { 5923 btrfs_release_path(path); 5924 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5925 if (ret) 5926 goto nopos; 5927 addr = private->filldir_buf; 5928 entries = 0; 5929 total_len = 0; 5930 goto again; 5931 } 5932 5933 entry = addr; 5934 put_unaligned(name_len, &entry->name_len); 5935 name_ptr = (char *)(entry + 1); 5936 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5937 name_len); 5938 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)], 5939 &entry->type); 5940 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5941 put_unaligned(location.objectid, &entry->ino); 5942 put_unaligned(found_key.offset, &entry->offset); 5943 entries++; 5944 addr += sizeof(struct dir_entry) + name_len; 5945 total_len += sizeof(struct dir_entry) + name_len; 5946 next: 5947 path->slots[0]++; 5948 } 5949 btrfs_release_path(path); 5950 5951 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5952 if (ret) 5953 goto nopos; 5954 5955 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5956 if (ret) 5957 goto nopos; 5958 5959 /* 5960 * Stop new entries from being returned after we return the last 5961 * entry. 5962 * 5963 * New directory entries are assigned a strictly increasing 5964 * offset. This means that new entries created during readdir 5965 * are *guaranteed* to be seen in the future by that readdir. 5966 * This has broken buggy programs which operate on names as 5967 * they're returned by readdir. Until we re-use freed offsets 5968 * we have this hack to stop new entries from being returned 5969 * under the assumption that they'll never reach this huge 5970 * offset. 5971 * 5972 * This is being careful not to overflow 32bit loff_t unless the 5973 * last entry requires it because doing so has broken 32bit apps 5974 * in the past. 5975 */ 5976 if (ctx->pos >= INT_MAX) 5977 ctx->pos = LLONG_MAX; 5978 else 5979 ctx->pos = INT_MAX; 5980 nopos: 5981 ret = 0; 5982 err: 5983 if (put) 5984 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5985 btrfs_free_path(path); 5986 return ret; 5987 } 5988 5989 /* 5990 * This is somewhat expensive, updating the tree every time the 5991 * inode changes. But, it is most likely to find the inode in cache. 5992 * FIXME, needs more benchmarking...there are no reasons other than performance 5993 * to keep or drop this code. 5994 */ 5995 static int btrfs_dirty_inode(struct inode *inode) 5996 { 5997 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5998 struct btrfs_root *root = BTRFS_I(inode)->root; 5999 struct btrfs_trans_handle *trans; 6000 int ret; 6001 6002 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6003 return 0; 6004 6005 trans = btrfs_join_transaction(root); 6006 if (IS_ERR(trans)) 6007 return PTR_ERR(trans); 6008 6009 ret = btrfs_update_inode(trans, root, inode); 6010 if (ret && ret == -ENOSPC) { 6011 /* whoops, lets try again with the full transaction */ 6012 btrfs_end_transaction(trans); 6013 trans = btrfs_start_transaction(root, 1); 6014 if (IS_ERR(trans)) 6015 return PTR_ERR(trans); 6016 6017 ret = btrfs_update_inode(trans, root, inode); 6018 } 6019 btrfs_end_transaction(trans); 6020 if (BTRFS_I(inode)->delayed_node) 6021 btrfs_balance_delayed_items(fs_info); 6022 6023 return ret; 6024 } 6025 6026 /* 6027 * This is a copy of file_update_time. We need this so we can return error on 6028 * ENOSPC for updating the inode in the case of file write and mmap writes. 6029 */ 6030 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6031 int flags) 6032 { 6033 struct btrfs_root *root = BTRFS_I(inode)->root; 6034 bool dirty = flags & ~S_VERSION; 6035 6036 if (btrfs_root_readonly(root)) 6037 return -EROFS; 6038 6039 if (flags & S_VERSION) 6040 dirty |= inode_maybe_inc_iversion(inode, dirty); 6041 if (flags & S_CTIME) 6042 inode->i_ctime = *now; 6043 if (flags & S_MTIME) 6044 inode->i_mtime = *now; 6045 if (flags & S_ATIME) 6046 inode->i_atime = *now; 6047 return dirty ? btrfs_dirty_inode(inode) : 0; 6048 } 6049 6050 /* 6051 * find the highest existing sequence number in a directory 6052 * and then set the in-memory index_cnt variable to reflect 6053 * free sequence numbers 6054 */ 6055 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6056 { 6057 struct btrfs_root *root = inode->root; 6058 struct btrfs_key key, found_key; 6059 struct btrfs_path *path; 6060 struct extent_buffer *leaf; 6061 int ret; 6062 6063 key.objectid = btrfs_ino(inode); 6064 key.type = BTRFS_DIR_INDEX_KEY; 6065 key.offset = (u64)-1; 6066 6067 path = btrfs_alloc_path(); 6068 if (!path) 6069 return -ENOMEM; 6070 6071 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6072 if (ret < 0) 6073 goto out; 6074 /* FIXME: we should be able to handle this */ 6075 if (ret == 0) 6076 goto out; 6077 ret = 0; 6078 6079 /* 6080 * MAGIC NUMBER EXPLANATION: 6081 * since we search a directory based on f_pos we have to start at 2 6082 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6083 * else has to start at 2 6084 */ 6085 if (path->slots[0] == 0) { 6086 inode->index_cnt = 2; 6087 goto out; 6088 } 6089 6090 path->slots[0]--; 6091 6092 leaf = path->nodes[0]; 6093 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6094 6095 if (found_key.objectid != btrfs_ino(inode) || 6096 found_key.type != BTRFS_DIR_INDEX_KEY) { 6097 inode->index_cnt = 2; 6098 goto out; 6099 } 6100 6101 inode->index_cnt = found_key.offset + 1; 6102 out: 6103 btrfs_free_path(path); 6104 return ret; 6105 } 6106 6107 /* 6108 * helper to find a free sequence number in a given directory. This current 6109 * code is very simple, later versions will do smarter things in the btree 6110 */ 6111 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6112 { 6113 int ret = 0; 6114 6115 if (dir->index_cnt == (u64)-1) { 6116 ret = btrfs_inode_delayed_dir_index_count(dir); 6117 if (ret) { 6118 ret = btrfs_set_inode_index_count(dir); 6119 if (ret) 6120 return ret; 6121 } 6122 } 6123 6124 *index = dir->index_cnt; 6125 dir->index_cnt++; 6126 6127 return ret; 6128 } 6129 6130 static int btrfs_insert_inode_locked(struct inode *inode) 6131 { 6132 struct btrfs_iget_args args; 6133 args.location = &BTRFS_I(inode)->location; 6134 args.root = BTRFS_I(inode)->root; 6135 6136 return insert_inode_locked4(inode, 6137 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6138 btrfs_find_actor, &args); 6139 } 6140 6141 /* 6142 * Inherit flags from the parent inode. 6143 * 6144 * Currently only the compression flags and the cow flags are inherited. 6145 */ 6146 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6147 { 6148 unsigned int flags; 6149 6150 if (!dir) 6151 return; 6152 6153 flags = BTRFS_I(dir)->flags; 6154 6155 if (flags & BTRFS_INODE_NOCOMPRESS) { 6156 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6157 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6158 } else if (flags & BTRFS_INODE_COMPRESS) { 6159 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6160 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6161 } 6162 6163 if (flags & BTRFS_INODE_NODATACOW) { 6164 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6165 if (S_ISREG(inode->i_mode)) 6166 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6167 } 6168 6169 btrfs_sync_inode_flags_to_i_flags(inode); 6170 } 6171 6172 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6173 struct btrfs_root *root, 6174 struct inode *dir, 6175 const char *name, int name_len, 6176 u64 ref_objectid, u64 objectid, 6177 umode_t mode, u64 *index) 6178 { 6179 struct btrfs_fs_info *fs_info = root->fs_info; 6180 struct inode *inode; 6181 struct btrfs_inode_item *inode_item; 6182 struct btrfs_key *location; 6183 struct btrfs_path *path; 6184 struct btrfs_inode_ref *ref; 6185 struct btrfs_key key[2]; 6186 u32 sizes[2]; 6187 int nitems = name ? 2 : 1; 6188 unsigned long ptr; 6189 int ret; 6190 6191 path = btrfs_alloc_path(); 6192 if (!path) 6193 return ERR_PTR(-ENOMEM); 6194 6195 inode = new_inode(fs_info->sb); 6196 if (!inode) { 6197 btrfs_free_path(path); 6198 return ERR_PTR(-ENOMEM); 6199 } 6200 6201 /* 6202 * O_TMPFILE, set link count to 0, so that after this point, 6203 * we fill in an inode item with the correct link count. 6204 */ 6205 if (!name) 6206 set_nlink(inode, 0); 6207 6208 /* 6209 * we have to initialize this early, so we can reclaim the inode 6210 * number if we fail afterwards in this function. 6211 */ 6212 inode->i_ino = objectid; 6213 6214 if (dir && name) { 6215 trace_btrfs_inode_request(dir); 6216 6217 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6218 if (ret) { 6219 btrfs_free_path(path); 6220 iput(inode); 6221 return ERR_PTR(ret); 6222 } 6223 } else if (dir) { 6224 *index = 0; 6225 } 6226 /* 6227 * index_cnt is ignored for everything but a dir, 6228 * btrfs_set_inode_index_count has an explanation for the magic 6229 * number 6230 */ 6231 BTRFS_I(inode)->index_cnt = 2; 6232 BTRFS_I(inode)->dir_index = *index; 6233 BTRFS_I(inode)->root = root; 6234 BTRFS_I(inode)->generation = trans->transid; 6235 inode->i_generation = BTRFS_I(inode)->generation; 6236 6237 /* 6238 * We could have gotten an inode number from somebody who was fsynced 6239 * and then removed in this same transaction, so let's just set full 6240 * sync since it will be a full sync anyway and this will blow away the 6241 * old info in the log. 6242 */ 6243 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6244 6245 key[0].objectid = objectid; 6246 key[0].type = BTRFS_INODE_ITEM_KEY; 6247 key[0].offset = 0; 6248 6249 sizes[0] = sizeof(struct btrfs_inode_item); 6250 6251 if (name) { 6252 /* 6253 * Start new inodes with an inode_ref. This is slightly more 6254 * efficient for small numbers of hard links since they will 6255 * be packed into one item. Extended refs will kick in if we 6256 * add more hard links than can fit in the ref item. 6257 */ 6258 key[1].objectid = objectid; 6259 key[1].type = BTRFS_INODE_REF_KEY; 6260 key[1].offset = ref_objectid; 6261 6262 sizes[1] = name_len + sizeof(*ref); 6263 } 6264 6265 location = &BTRFS_I(inode)->location; 6266 location->objectid = objectid; 6267 location->offset = 0; 6268 location->type = BTRFS_INODE_ITEM_KEY; 6269 6270 ret = btrfs_insert_inode_locked(inode); 6271 if (ret < 0) { 6272 iput(inode); 6273 goto fail; 6274 } 6275 6276 path->leave_spinning = 1; 6277 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6278 if (ret != 0) 6279 goto fail_unlock; 6280 6281 inode_init_owner(inode, dir, mode); 6282 inode_set_bytes(inode, 0); 6283 6284 inode->i_mtime = current_time(inode); 6285 inode->i_atime = inode->i_mtime; 6286 inode->i_ctime = inode->i_mtime; 6287 BTRFS_I(inode)->i_otime = inode->i_mtime; 6288 6289 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6290 struct btrfs_inode_item); 6291 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6292 sizeof(*inode_item)); 6293 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6294 6295 if (name) { 6296 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6297 struct btrfs_inode_ref); 6298 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6299 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6300 ptr = (unsigned long)(ref + 1); 6301 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6302 } 6303 6304 btrfs_mark_buffer_dirty(path->nodes[0]); 6305 btrfs_free_path(path); 6306 6307 btrfs_inherit_iflags(inode, dir); 6308 6309 if (S_ISREG(mode)) { 6310 if (btrfs_test_opt(fs_info, NODATASUM)) 6311 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6312 if (btrfs_test_opt(fs_info, NODATACOW)) 6313 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6314 BTRFS_INODE_NODATASUM; 6315 } 6316 6317 inode_tree_add(inode); 6318 6319 trace_btrfs_inode_new(inode); 6320 btrfs_set_inode_last_trans(trans, inode); 6321 6322 btrfs_update_root_times(trans, root); 6323 6324 ret = btrfs_inode_inherit_props(trans, inode, dir); 6325 if (ret) 6326 btrfs_err(fs_info, 6327 "error inheriting props for ino %llu (root %llu): %d", 6328 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6329 6330 return inode; 6331 6332 fail_unlock: 6333 discard_new_inode(inode); 6334 fail: 6335 if (dir && name) 6336 BTRFS_I(dir)->index_cnt--; 6337 btrfs_free_path(path); 6338 return ERR_PTR(ret); 6339 } 6340 6341 static inline u8 btrfs_inode_type(struct inode *inode) 6342 { 6343 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6344 } 6345 6346 /* 6347 * utility function to add 'inode' into 'parent_inode' with 6348 * a give name and a given sequence number. 6349 * if 'add_backref' is true, also insert a backref from the 6350 * inode to the parent directory. 6351 */ 6352 int btrfs_add_link(struct btrfs_trans_handle *trans, 6353 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6354 const char *name, int name_len, int add_backref, u64 index) 6355 { 6356 int ret = 0; 6357 struct btrfs_key key; 6358 struct btrfs_root *root = parent_inode->root; 6359 u64 ino = btrfs_ino(inode); 6360 u64 parent_ino = btrfs_ino(parent_inode); 6361 6362 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6363 memcpy(&key, &inode->root->root_key, sizeof(key)); 6364 } else { 6365 key.objectid = ino; 6366 key.type = BTRFS_INODE_ITEM_KEY; 6367 key.offset = 0; 6368 } 6369 6370 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6371 ret = btrfs_add_root_ref(trans, key.objectid, 6372 root->root_key.objectid, parent_ino, 6373 index, name, name_len); 6374 } else if (add_backref) { 6375 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6376 parent_ino, index); 6377 } 6378 6379 /* Nothing to clean up yet */ 6380 if (ret) 6381 return ret; 6382 6383 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6384 btrfs_inode_type(&inode->vfs_inode), index); 6385 if (ret == -EEXIST || ret == -EOVERFLOW) 6386 goto fail_dir_item; 6387 else if (ret) { 6388 btrfs_abort_transaction(trans, ret); 6389 return ret; 6390 } 6391 6392 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6393 name_len * 2); 6394 inode_inc_iversion(&parent_inode->vfs_inode); 6395 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6396 current_time(&parent_inode->vfs_inode); 6397 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6398 if (ret) 6399 btrfs_abort_transaction(trans, ret); 6400 return ret; 6401 6402 fail_dir_item: 6403 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6404 u64 local_index; 6405 int err; 6406 err = btrfs_del_root_ref(trans, key.objectid, 6407 root->root_key.objectid, parent_ino, 6408 &local_index, name, name_len); 6409 6410 } else if (add_backref) { 6411 u64 local_index; 6412 int err; 6413 6414 err = btrfs_del_inode_ref(trans, root, name, name_len, 6415 ino, parent_ino, &local_index); 6416 } 6417 return ret; 6418 } 6419 6420 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6421 struct btrfs_inode *dir, struct dentry *dentry, 6422 struct btrfs_inode *inode, int backref, u64 index) 6423 { 6424 int err = btrfs_add_link(trans, dir, inode, 6425 dentry->d_name.name, dentry->d_name.len, 6426 backref, index); 6427 if (err > 0) 6428 err = -EEXIST; 6429 return err; 6430 } 6431 6432 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6433 umode_t mode, dev_t rdev) 6434 { 6435 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6436 struct btrfs_trans_handle *trans; 6437 struct btrfs_root *root = BTRFS_I(dir)->root; 6438 struct inode *inode = NULL; 6439 int err; 6440 u64 objectid; 6441 u64 index = 0; 6442 6443 /* 6444 * 2 for inode item and ref 6445 * 2 for dir items 6446 * 1 for xattr if selinux is on 6447 */ 6448 trans = btrfs_start_transaction(root, 5); 6449 if (IS_ERR(trans)) 6450 return PTR_ERR(trans); 6451 6452 err = btrfs_find_free_ino(root, &objectid); 6453 if (err) 6454 goto out_unlock; 6455 6456 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6457 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6458 mode, &index); 6459 if (IS_ERR(inode)) { 6460 err = PTR_ERR(inode); 6461 inode = NULL; 6462 goto out_unlock; 6463 } 6464 6465 /* 6466 * If the active LSM wants to access the inode during 6467 * d_instantiate it needs these. Smack checks to see 6468 * if the filesystem supports xattrs by looking at the 6469 * ops vector. 6470 */ 6471 inode->i_op = &btrfs_special_inode_operations; 6472 init_special_inode(inode, inode->i_mode, rdev); 6473 6474 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6475 if (err) 6476 goto out_unlock; 6477 6478 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6479 0, index); 6480 if (err) 6481 goto out_unlock; 6482 6483 btrfs_update_inode(trans, root, inode); 6484 d_instantiate_new(dentry, inode); 6485 6486 out_unlock: 6487 btrfs_end_transaction(trans); 6488 btrfs_btree_balance_dirty(fs_info); 6489 if (err && inode) { 6490 inode_dec_link_count(inode); 6491 discard_new_inode(inode); 6492 } 6493 return err; 6494 } 6495 6496 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6497 umode_t mode, bool excl) 6498 { 6499 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6500 struct btrfs_trans_handle *trans; 6501 struct btrfs_root *root = BTRFS_I(dir)->root; 6502 struct inode *inode = NULL; 6503 int err; 6504 u64 objectid; 6505 u64 index = 0; 6506 6507 /* 6508 * 2 for inode item and ref 6509 * 2 for dir items 6510 * 1 for xattr if selinux is on 6511 */ 6512 trans = btrfs_start_transaction(root, 5); 6513 if (IS_ERR(trans)) 6514 return PTR_ERR(trans); 6515 6516 err = btrfs_find_free_ino(root, &objectid); 6517 if (err) 6518 goto out_unlock; 6519 6520 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6521 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6522 mode, &index); 6523 if (IS_ERR(inode)) { 6524 err = PTR_ERR(inode); 6525 inode = NULL; 6526 goto out_unlock; 6527 } 6528 /* 6529 * If the active LSM wants to access the inode during 6530 * d_instantiate it needs these. Smack checks to see 6531 * if the filesystem supports xattrs by looking at the 6532 * ops vector. 6533 */ 6534 inode->i_fop = &btrfs_file_operations; 6535 inode->i_op = &btrfs_file_inode_operations; 6536 inode->i_mapping->a_ops = &btrfs_aops; 6537 6538 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6539 if (err) 6540 goto out_unlock; 6541 6542 err = btrfs_update_inode(trans, root, inode); 6543 if (err) 6544 goto out_unlock; 6545 6546 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6547 0, index); 6548 if (err) 6549 goto out_unlock; 6550 6551 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6552 d_instantiate_new(dentry, inode); 6553 6554 out_unlock: 6555 btrfs_end_transaction(trans); 6556 if (err && inode) { 6557 inode_dec_link_count(inode); 6558 discard_new_inode(inode); 6559 } 6560 btrfs_btree_balance_dirty(fs_info); 6561 return err; 6562 } 6563 6564 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6565 struct dentry *dentry) 6566 { 6567 struct btrfs_trans_handle *trans = NULL; 6568 struct btrfs_root *root = BTRFS_I(dir)->root; 6569 struct inode *inode = d_inode(old_dentry); 6570 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6571 u64 index; 6572 int err; 6573 int drop_inode = 0; 6574 6575 /* do not allow sys_link's with other subvols of the same device */ 6576 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6577 return -EXDEV; 6578 6579 if (inode->i_nlink >= BTRFS_LINK_MAX) 6580 return -EMLINK; 6581 6582 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6583 if (err) 6584 goto fail; 6585 6586 /* 6587 * 2 items for inode and inode ref 6588 * 2 items for dir items 6589 * 1 item for parent inode 6590 * 1 item for orphan item deletion if O_TMPFILE 6591 */ 6592 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6593 if (IS_ERR(trans)) { 6594 err = PTR_ERR(trans); 6595 trans = NULL; 6596 goto fail; 6597 } 6598 6599 /* There are several dir indexes for this inode, clear the cache. */ 6600 BTRFS_I(inode)->dir_index = 0ULL; 6601 inc_nlink(inode); 6602 inode_inc_iversion(inode); 6603 inode->i_ctime = current_time(inode); 6604 ihold(inode); 6605 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6606 6607 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6608 1, index); 6609 6610 if (err) { 6611 drop_inode = 1; 6612 } else { 6613 struct dentry *parent = dentry->d_parent; 6614 int ret; 6615 6616 err = btrfs_update_inode(trans, root, inode); 6617 if (err) 6618 goto fail; 6619 if (inode->i_nlink == 1) { 6620 /* 6621 * If new hard link count is 1, it's a file created 6622 * with open(2) O_TMPFILE flag. 6623 */ 6624 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6625 if (err) 6626 goto fail; 6627 } 6628 d_instantiate(dentry, inode); 6629 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6630 true, NULL); 6631 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6632 err = btrfs_commit_transaction(trans); 6633 trans = NULL; 6634 } 6635 } 6636 6637 fail: 6638 if (trans) 6639 btrfs_end_transaction(trans); 6640 if (drop_inode) { 6641 inode_dec_link_count(inode); 6642 iput(inode); 6643 } 6644 btrfs_btree_balance_dirty(fs_info); 6645 return err; 6646 } 6647 6648 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6649 { 6650 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6651 struct inode *inode = NULL; 6652 struct btrfs_trans_handle *trans; 6653 struct btrfs_root *root = BTRFS_I(dir)->root; 6654 int err = 0; 6655 int drop_on_err = 0; 6656 u64 objectid = 0; 6657 u64 index = 0; 6658 6659 /* 6660 * 2 items for inode and ref 6661 * 2 items for dir items 6662 * 1 for xattr if selinux is on 6663 */ 6664 trans = btrfs_start_transaction(root, 5); 6665 if (IS_ERR(trans)) 6666 return PTR_ERR(trans); 6667 6668 err = btrfs_find_free_ino(root, &objectid); 6669 if (err) 6670 goto out_fail; 6671 6672 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6673 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6674 S_IFDIR | mode, &index); 6675 if (IS_ERR(inode)) { 6676 err = PTR_ERR(inode); 6677 inode = NULL; 6678 goto out_fail; 6679 } 6680 6681 drop_on_err = 1; 6682 /* these must be set before we unlock the inode */ 6683 inode->i_op = &btrfs_dir_inode_operations; 6684 inode->i_fop = &btrfs_dir_file_operations; 6685 6686 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6687 if (err) 6688 goto out_fail; 6689 6690 btrfs_i_size_write(BTRFS_I(inode), 0); 6691 err = btrfs_update_inode(trans, root, inode); 6692 if (err) 6693 goto out_fail; 6694 6695 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6696 dentry->d_name.name, 6697 dentry->d_name.len, 0, index); 6698 if (err) 6699 goto out_fail; 6700 6701 d_instantiate_new(dentry, inode); 6702 drop_on_err = 0; 6703 6704 out_fail: 6705 btrfs_end_transaction(trans); 6706 if (err && inode) { 6707 inode_dec_link_count(inode); 6708 discard_new_inode(inode); 6709 } 6710 btrfs_btree_balance_dirty(fs_info); 6711 return err; 6712 } 6713 6714 static noinline int uncompress_inline(struct btrfs_path *path, 6715 struct page *page, 6716 size_t pg_offset, u64 extent_offset, 6717 struct btrfs_file_extent_item *item) 6718 { 6719 int ret; 6720 struct extent_buffer *leaf = path->nodes[0]; 6721 char *tmp; 6722 size_t max_size; 6723 unsigned long inline_size; 6724 unsigned long ptr; 6725 int compress_type; 6726 6727 WARN_ON(pg_offset != 0); 6728 compress_type = btrfs_file_extent_compression(leaf, item); 6729 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6730 inline_size = btrfs_file_extent_inline_item_len(leaf, 6731 btrfs_item_nr(path->slots[0])); 6732 tmp = kmalloc(inline_size, GFP_NOFS); 6733 if (!tmp) 6734 return -ENOMEM; 6735 ptr = btrfs_file_extent_inline_start(item); 6736 6737 read_extent_buffer(leaf, tmp, ptr, inline_size); 6738 6739 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6740 ret = btrfs_decompress(compress_type, tmp, page, 6741 extent_offset, inline_size, max_size); 6742 6743 /* 6744 * decompression code contains a memset to fill in any space between the end 6745 * of the uncompressed data and the end of max_size in case the decompressed 6746 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6747 * the end of an inline extent and the beginning of the next block, so we 6748 * cover that region here. 6749 */ 6750 6751 if (max_size + pg_offset < PAGE_SIZE) { 6752 char *map = kmap(page); 6753 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6754 kunmap(page); 6755 } 6756 kfree(tmp); 6757 return ret; 6758 } 6759 6760 /* 6761 * a bit scary, this does extent mapping from logical file offset to the disk. 6762 * the ugly parts come from merging extents from the disk with the in-ram 6763 * representation. This gets more complex because of the data=ordered code, 6764 * where the in-ram extents might be locked pending data=ordered completion. 6765 * 6766 * This also copies inline extents directly into the page. 6767 */ 6768 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6769 struct page *page, 6770 size_t pg_offset, u64 start, u64 len, 6771 int create) 6772 { 6773 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6774 int ret; 6775 int err = 0; 6776 u64 extent_start = 0; 6777 u64 extent_end = 0; 6778 u64 objectid = btrfs_ino(inode); 6779 u32 found_type; 6780 struct btrfs_path *path = NULL; 6781 struct btrfs_root *root = inode->root; 6782 struct btrfs_file_extent_item *item; 6783 struct extent_buffer *leaf; 6784 struct btrfs_key found_key; 6785 struct extent_map *em = NULL; 6786 struct extent_map_tree *em_tree = &inode->extent_tree; 6787 struct extent_io_tree *io_tree = &inode->io_tree; 6788 const bool new_inline = !page || create; 6789 6790 read_lock(&em_tree->lock); 6791 em = lookup_extent_mapping(em_tree, start, len); 6792 if (em) 6793 em->bdev = fs_info->fs_devices->latest_bdev; 6794 read_unlock(&em_tree->lock); 6795 6796 if (em) { 6797 if (em->start > start || em->start + em->len <= start) 6798 free_extent_map(em); 6799 else if (em->block_start == EXTENT_MAP_INLINE && page) 6800 free_extent_map(em); 6801 else 6802 goto out; 6803 } 6804 em = alloc_extent_map(); 6805 if (!em) { 6806 err = -ENOMEM; 6807 goto out; 6808 } 6809 em->bdev = fs_info->fs_devices->latest_bdev; 6810 em->start = EXTENT_MAP_HOLE; 6811 em->orig_start = EXTENT_MAP_HOLE; 6812 em->len = (u64)-1; 6813 em->block_len = (u64)-1; 6814 6815 path = btrfs_alloc_path(); 6816 if (!path) { 6817 err = -ENOMEM; 6818 goto out; 6819 } 6820 6821 /* Chances are we'll be called again, so go ahead and do readahead */ 6822 path->reada = READA_FORWARD; 6823 6824 /* 6825 * Unless we're going to uncompress the inline extent, no sleep would 6826 * happen. 6827 */ 6828 path->leave_spinning = 1; 6829 6830 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6831 if (ret < 0) { 6832 err = ret; 6833 goto out; 6834 } 6835 6836 if (ret != 0) { 6837 if (path->slots[0] == 0) 6838 goto not_found; 6839 path->slots[0]--; 6840 } 6841 6842 leaf = path->nodes[0]; 6843 item = btrfs_item_ptr(leaf, path->slots[0], 6844 struct btrfs_file_extent_item); 6845 /* are we inside the extent that was found? */ 6846 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6847 found_type = found_key.type; 6848 if (found_key.objectid != objectid || 6849 found_type != BTRFS_EXTENT_DATA_KEY) { 6850 /* 6851 * If we backup past the first extent we want to move forward 6852 * and see if there is an extent in front of us, otherwise we'll 6853 * say there is a hole for our whole search range which can 6854 * cause problems. 6855 */ 6856 extent_end = start; 6857 goto next; 6858 } 6859 6860 found_type = btrfs_file_extent_type(leaf, item); 6861 extent_start = found_key.offset; 6862 if (found_type == BTRFS_FILE_EXTENT_REG || 6863 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6864 extent_end = extent_start + 6865 btrfs_file_extent_num_bytes(leaf, item); 6866 6867 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6868 extent_start); 6869 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6870 size_t size; 6871 6872 size = btrfs_file_extent_ram_bytes(leaf, item); 6873 extent_end = ALIGN(extent_start + size, 6874 fs_info->sectorsize); 6875 6876 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6877 path->slots[0], 6878 extent_start); 6879 } 6880 next: 6881 if (start >= extent_end) { 6882 path->slots[0]++; 6883 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6884 ret = btrfs_next_leaf(root, path); 6885 if (ret < 0) { 6886 err = ret; 6887 goto out; 6888 } 6889 if (ret > 0) 6890 goto not_found; 6891 leaf = path->nodes[0]; 6892 } 6893 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6894 if (found_key.objectid != objectid || 6895 found_key.type != BTRFS_EXTENT_DATA_KEY) 6896 goto not_found; 6897 if (start + len <= found_key.offset) 6898 goto not_found; 6899 if (start > found_key.offset) 6900 goto next; 6901 em->start = start; 6902 em->orig_start = start; 6903 em->len = found_key.offset - start; 6904 goto not_found_em; 6905 } 6906 6907 btrfs_extent_item_to_extent_map(inode, path, item, 6908 new_inline, em); 6909 6910 if (found_type == BTRFS_FILE_EXTENT_REG || 6911 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6912 goto insert; 6913 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6914 unsigned long ptr; 6915 char *map; 6916 size_t size; 6917 size_t extent_offset; 6918 size_t copy_size; 6919 6920 if (new_inline) 6921 goto out; 6922 6923 size = btrfs_file_extent_ram_bytes(leaf, item); 6924 extent_offset = page_offset(page) + pg_offset - extent_start; 6925 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6926 size - extent_offset); 6927 em->start = extent_start + extent_offset; 6928 em->len = ALIGN(copy_size, fs_info->sectorsize); 6929 em->orig_block_len = em->len; 6930 em->orig_start = em->start; 6931 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6932 6933 btrfs_set_path_blocking(path); 6934 if (!PageUptodate(page)) { 6935 if (btrfs_file_extent_compression(leaf, item) != 6936 BTRFS_COMPRESS_NONE) { 6937 ret = uncompress_inline(path, page, pg_offset, 6938 extent_offset, item); 6939 if (ret) { 6940 err = ret; 6941 goto out; 6942 } 6943 } else { 6944 map = kmap(page); 6945 read_extent_buffer(leaf, map + pg_offset, ptr, 6946 copy_size); 6947 if (pg_offset + copy_size < PAGE_SIZE) { 6948 memset(map + pg_offset + copy_size, 0, 6949 PAGE_SIZE - pg_offset - 6950 copy_size); 6951 } 6952 kunmap(page); 6953 } 6954 flush_dcache_page(page); 6955 } 6956 set_extent_uptodate(io_tree, em->start, 6957 extent_map_end(em) - 1, NULL, GFP_NOFS); 6958 goto insert; 6959 } 6960 not_found: 6961 em->start = start; 6962 em->orig_start = start; 6963 em->len = len; 6964 not_found_em: 6965 em->block_start = EXTENT_MAP_HOLE; 6966 insert: 6967 btrfs_release_path(path); 6968 if (em->start > start || extent_map_end(em) <= start) { 6969 btrfs_err(fs_info, 6970 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6971 em->start, em->len, start, len); 6972 err = -EIO; 6973 goto out; 6974 } 6975 6976 err = 0; 6977 write_lock(&em_tree->lock); 6978 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6979 write_unlock(&em_tree->lock); 6980 out: 6981 btrfs_free_path(path); 6982 6983 trace_btrfs_get_extent(root, inode, em); 6984 6985 if (err) { 6986 free_extent_map(em); 6987 return ERR_PTR(err); 6988 } 6989 BUG_ON(!em); /* Error is always set */ 6990 return em; 6991 } 6992 6993 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6994 struct page *page, 6995 size_t pg_offset, u64 start, u64 len, 6996 int create) 6997 { 6998 struct extent_map *em; 6999 struct extent_map *hole_em = NULL; 7000 u64 range_start = start; 7001 u64 end; 7002 u64 found; 7003 u64 found_end; 7004 int err = 0; 7005 7006 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7007 if (IS_ERR(em)) 7008 return em; 7009 /* 7010 * If our em maps to: 7011 * - a hole or 7012 * - a pre-alloc extent, 7013 * there might actually be delalloc bytes behind it. 7014 */ 7015 if (em->block_start != EXTENT_MAP_HOLE && 7016 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7017 return em; 7018 else 7019 hole_em = em; 7020 7021 /* check to see if we've wrapped (len == -1 or similar) */ 7022 end = start + len; 7023 if (end < start) 7024 end = (u64)-1; 7025 else 7026 end -= 1; 7027 7028 em = NULL; 7029 7030 /* ok, we didn't find anything, lets look for delalloc */ 7031 found = count_range_bits(&inode->io_tree, &range_start, 7032 end, len, EXTENT_DELALLOC, 1); 7033 found_end = range_start + found; 7034 if (found_end < range_start) 7035 found_end = (u64)-1; 7036 7037 /* 7038 * we didn't find anything useful, return 7039 * the original results from get_extent() 7040 */ 7041 if (range_start > end || found_end <= start) { 7042 em = hole_em; 7043 hole_em = NULL; 7044 goto out; 7045 } 7046 7047 /* adjust the range_start to make sure it doesn't 7048 * go backwards from the start they passed in 7049 */ 7050 range_start = max(start, range_start); 7051 found = found_end - range_start; 7052 7053 if (found > 0) { 7054 u64 hole_start = start; 7055 u64 hole_len = len; 7056 7057 em = alloc_extent_map(); 7058 if (!em) { 7059 err = -ENOMEM; 7060 goto out; 7061 } 7062 /* 7063 * when btrfs_get_extent can't find anything it 7064 * returns one huge hole 7065 * 7066 * make sure what it found really fits our range, and 7067 * adjust to make sure it is based on the start from 7068 * the caller 7069 */ 7070 if (hole_em) { 7071 u64 calc_end = extent_map_end(hole_em); 7072 7073 if (calc_end <= start || (hole_em->start > end)) { 7074 free_extent_map(hole_em); 7075 hole_em = NULL; 7076 } else { 7077 hole_start = max(hole_em->start, start); 7078 hole_len = calc_end - hole_start; 7079 } 7080 } 7081 em->bdev = NULL; 7082 if (hole_em && range_start > hole_start) { 7083 /* our hole starts before our delalloc, so we 7084 * have to return just the parts of the hole 7085 * that go until the delalloc starts 7086 */ 7087 em->len = min(hole_len, 7088 range_start - hole_start); 7089 em->start = hole_start; 7090 em->orig_start = hole_start; 7091 /* 7092 * don't adjust block start at all, 7093 * it is fixed at EXTENT_MAP_HOLE 7094 */ 7095 em->block_start = hole_em->block_start; 7096 em->block_len = hole_len; 7097 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7098 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7099 } else { 7100 em->start = range_start; 7101 em->len = found; 7102 em->orig_start = range_start; 7103 em->block_start = EXTENT_MAP_DELALLOC; 7104 em->block_len = found; 7105 } 7106 } else { 7107 return hole_em; 7108 } 7109 out: 7110 7111 free_extent_map(hole_em); 7112 if (err) { 7113 free_extent_map(em); 7114 return ERR_PTR(err); 7115 } 7116 return em; 7117 } 7118 7119 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7120 const u64 start, 7121 const u64 len, 7122 const u64 orig_start, 7123 const u64 block_start, 7124 const u64 block_len, 7125 const u64 orig_block_len, 7126 const u64 ram_bytes, 7127 const int type) 7128 { 7129 struct extent_map *em = NULL; 7130 int ret; 7131 7132 if (type != BTRFS_ORDERED_NOCOW) { 7133 em = create_io_em(inode, start, len, orig_start, 7134 block_start, block_len, orig_block_len, 7135 ram_bytes, 7136 BTRFS_COMPRESS_NONE, /* compress_type */ 7137 type); 7138 if (IS_ERR(em)) 7139 goto out; 7140 } 7141 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7142 len, block_len, type); 7143 if (ret) { 7144 if (em) { 7145 free_extent_map(em); 7146 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7147 start + len - 1, 0); 7148 } 7149 em = ERR_PTR(ret); 7150 } 7151 out: 7152 7153 return em; 7154 } 7155 7156 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7157 u64 start, u64 len) 7158 { 7159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7160 struct btrfs_root *root = BTRFS_I(inode)->root; 7161 struct extent_map *em; 7162 struct btrfs_key ins; 7163 u64 alloc_hint; 7164 int ret; 7165 7166 alloc_hint = get_extent_allocation_hint(inode, start, len); 7167 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7168 0, alloc_hint, &ins, 1, 1); 7169 if (ret) 7170 return ERR_PTR(ret); 7171 7172 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7173 ins.objectid, ins.offset, ins.offset, 7174 ins.offset, BTRFS_ORDERED_REGULAR); 7175 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7176 if (IS_ERR(em)) 7177 btrfs_free_reserved_extent(fs_info, ins.objectid, 7178 ins.offset, 1); 7179 7180 return em; 7181 } 7182 7183 /* 7184 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7185 * block must be cow'd 7186 */ 7187 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7188 u64 *orig_start, u64 *orig_block_len, 7189 u64 *ram_bytes) 7190 { 7191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7192 struct btrfs_path *path; 7193 int ret; 7194 struct extent_buffer *leaf; 7195 struct btrfs_root *root = BTRFS_I(inode)->root; 7196 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7197 struct btrfs_file_extent_item *fi; 7198 struct btrfs_key key; 7199 u64 disk_bytenr; 7200 u64 backref_offset; 7201 u64 extent_end; 7202 u64 num_bytes; 7203 int slot; 7204 int found_type; 7205 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7206 7207 path = btrfs_alloc_path(); 7208 if (!path) 7209 return -ENOMEM; 7210 7211 ret = btrfs_lookup_file_extent(NULL, root, path, 7212 btrfs_ino(BTRFS_I(inode)), offset, 0); 7213 if (ret < 0) 7214 goto out; 7215 7216 slot = path->slots[0]; 7217 if (ret == 1) { 7218 if (slot == 0) { 7219 /* can't find the item, must cow */ 7220 ret = 0; 7221 goto out; 7222 } 7223 slot--; 7224 } 7225 ret = 0; 7226 leaf = path->nodes[0]; 7227 btrfs_item_key_to_cpu(leaf, &key, slot); 7228 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7229 key.type != BTRFS_EXTENT_DATA_KEY) { 7230 /* not our file or wrong item type, must cow */ 7231 goto out; 7232 } 7233 7234 if (key.offset > offset) { 7235 /* Wrong offset, must cow */ 7236 goto out; 7237 } 7238 7239 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7240 found_type = btrfs_file_extent_type(leaf, fi); 7241 if (found_type != BTRFS_FILE_EXTENT_REG && 7242 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7243 /* not a regular extent, must cow */ 7244 goto out; 7245 } 7246 7247 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7248 goto out; 7249 7250 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7251 if (extent_end <= offset) 7252 goto out; 7253 7254 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7255 if (disk_bytenr == 0) 7256 goto out; 7257 7258 if (btrfs_file_extent_compression(leaf, fi) || 7259 btrfs_file_extent_encryption(leaf, fi) || 7260 btrfs_file_extent_other_encoding(leaf, fi)) 7261 goto out; 7262 7263 /* 7264 * Do the same check as in btrfs_cross_ref_exist but without the 7265 * unnecessary search. 7266 */ 7267 if (btrfs_file_extent_generation(leaf, fi) <= 7268 btrfs_root_last_snapshot(&root->root_item)) 7269 goto out; 7270 7271 backref_offset = btrfs_file_extent_offset(leaf, fi); 7272 7273 if (orig_start) { 7274 *orig_start = key.offset - backref_offset; 7275 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7276 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7277 } 7278 7279 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7280 goto out; 7281 7282 num_bytes = min(offset + *len, extent_end) - offset; 7283 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7284 u64 range_end; 7285 7286 range_end = round_up(offset + num_bytes, 7287 root->fs_info->sectorsize) - 1; 7288 ret = test_range_bit(io_tree, offset, range_end, 7289 EXTENT_DELALLOC, 0, NULL); 7290 if (ret) { 7291 ret = -EAGAIN; 7292 goto out; 7293 } 7294 } 7295 7296 btrfs_release_path(path); 7297 7298 /* 7299 * look for other files referencing this extent, if we 7300 * find any we must cow 7301 */ 7302 7303 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7304 key.offset - backref_offset, disk_bytenr); 7305 if (ret) { 7306 ret = 0; 7307 goto out; 7308 } 7309 7310 /* 7311 * adjust disk_bytenr and num_bytes to cover just the bytes 7312 * in this extent we are about to write. If there 7313 * are any csums in that range we have to cow in order 7314 * to keep the csums correct 7315 */ 7316 disk_bytenr += backref_offset; 7317 disk_bytenr += offset - key.offset; 7318 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7319 goto out; 7320 /* 7321 * all of the above have passed, it is safe to overwrite this extent 7322 * without cow 7323 */ 7324 *len = num_bytes; 7325 ret = 1; 7326 out: 7327 btrfs_free_path(path); 7328 return ret; 7329 } 7330 7331 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7332 struct extent_state **cached_state, int writing) 7333 { 7334 struct btrfs_ordered_extent *ordered; 7335 int ret = 0; 7336 7337 while (1) { 7338 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7339 cached_state); 7340 /* 7341 * We're concerned with the entire range that we're going to be 7342 * doing DIO to, so we need to make sure there's no ordered 7343 * extents in this range. 7344 */ 7345 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7346 lockend - lockstart + 1); 7347 7348 /* 7349 * We need to make sure there are no buffered pages in this 7350 * range either, we could have raced between the invalidate in 7351 * generic_file_direct_write and locking the extent. The 7352 * invalidate needs to happen so that reads after a write do not 7353 * get stale data. 7354 */ 7355 if (!ordered && 7356 (!writing || !filemap_range_has_page(inode->i_mapping, 7357 lockstart, lockend))) 7358 break; 7359 7360 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7361 cached_state); 7362 7363 if (ordered) { 7364 /* 7365 * If we are doing a DIO read and the ordered extent we 7366 * found is for a buffered write, we can not wait for it 7367 * to complete and retry, because if we do so we can 7368 * deadlock with concurrent buffered writes on page 7369 * locks. This happens only if our DIO read covers more 7370 * than one extent map, if at this point has already 7371 * created an ordered extent for a previous extent map 7372 * and locked its range in the inode's io tree, and a 7373 * concurrent write against that previous extent map's 7374 * range and this range started (we unlock the ranges 7375 * in the io tree only when the bios complete and 7376 * buffered writes always lock pages before attempting 7377 * to lock range in the io tree). 7378 */ 7379 if (writing || 7380 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7381 btrfs_start_ordered_extent(inode, ordered, 1); 7382 else 7383 ret = -ENOTBLK; 7384 btrfs_put_ordered_extent(ordered); 7385 } else { 7386 /* 7387 * We could trigger writeback for this range (and wait 7388 * for it to complete) and then invalidate the pages for 7389 * this range (through invalidate_inode_pages2_range()), 7390 * but that can lead us to a deadlock with a concurrent 7391 * call to readpages() (a buffered read or a defrag call 7392 * triggered a readahead) on a page lock due to an 7393 * ordered dio extent we created before but did not have 7394 * yet a corresponding bio submitted (whence it can not 7395 * complete), which makes readpages() wait for that 7396 * ordered extent to complete while holding a lock on 7397 * that page. 7398 */ 7399 ret = -ENOTBLK; 7400 } 7401 7402 if (ret) 7403 break; 7404 7405 cond_resched(); 7406 } 7407 7408 return ret; 7409 } 7410 7411 /* The callers of this must take lock_extent() */ 7412 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7413 u64 orig_start, u64 block_start, 7414 u64 block_len, u64 orig_block_len, 7415 u64 ram_bytes, int compress_type, 7416 int type) 7417 { 7418 struct extent_map_tree *em_tree; 7419 struct extent_map *em; 7420 struct btrfs_root *root = BTRFS_I(inode)->root; 7421 int ret; 7422 7423 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7424 type == BTRFS_ORDERED_COMPRESSED || 7425 type == BTRFS_ORDERED_NOCOW || 7426 type == BTRFS_ORDERED_REGULAR); 7427 7428 em_tree = &BTRFS_I(inode)->extent_tree; 7429 em = alloc_extent_map(); 7430 if (!em) 7431 return ERR_PTR(-ENOMEM); 7432 7433 em->start = start; 7434 em->orig_start = orig_start; 7435 em->len = len; 7436 em->block_len = block_len; 7437 em->block_start = block_start; 7438 em->bdev = root->fs_info->fs_devices->latest_bdev; 7439 em->orig_block_len = orig_block_len; 7440 em->ram_bytes = ram_bytes; 7441 em->generation = -1; 7442 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7443 if (type == BTRFS_ORDERED_PREALLOC) { 7444 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7445 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7446 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7447 em->compress_type = compress_type; 7448 } 7449 7450 do { 7451 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7452 em->start + em->len - 1, 0); 7453 write_lock(&em_tree->lock); 7454 ret = add_extent_mapping(em_tree, em, 1); 7455 write_unlock(&em_tree->lock); 7456 /* 7457 * The caller has taken lock_extent(), who could race with us 7458 * to add em? 7459 */ 7460 } while (ret == -EEXIST); 7461 7462 if (ret) { 7463 free_extent_map(em); 7464 return ERR_PTR(ret); 7465 } 7466 7467 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7468 return em; 7469 } 7470 7471 7472 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7473 struct buffer_head *bh_result, 7474 struct inode *inode, 7475 u64 start, u64 len) 7476 { 7477 if (em->block_start == EXTENT_MAP_HOLE || 7478 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7479 return -ENOENT; 7480 7481 len = min(len, em->len - (start - em->start)); 7482 7483 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7484 inode->i_blkbits; 7485 bh_result->b_size = len; 7486 bh_result->b_bdev = em->bdev; 7487 set_buffer_mapped(bh_result); 7488 7489 return 0; 7490 } 7491 7492 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7493 struct buffer_head *bh_result, 7494 struct inode *inode, 7495 struct btrfs_dio_data *dio_data, 7496 u64 start, u64 len) 7497 { 7498 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7499 struct extent_map *em = *map; 7500 int ret = 0; 7501 7502 /* 7503 * We don't allocate a new extent in the following cases 7504 * 7505 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7506 * existing extent. 7507 * 2) The extent is marked as PREALLOC. We're good to go here and can 7508 * just use the extent. 7509 * 7510 */ 7511 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7512 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7513 em->block_start != EXTENT_MAP_HOLE)) { 7514 int type; 7515 u64 block_start, orig_start, orig_block_len, ram_bytes; 7516 7517 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7518 type = BTRFS_ORDERED_PREALLOC; 7519 else 7520 type = BTRFS_ORDERED_NOCOW; 7521 len = min(len, em->len - (start - em->start)); 7522 block_start = em->block_start + (start - em->start); 7523 7524 if (can_nocow_extent(inode, start, &len, &orig_start, 7525 &orig_block_len, &ram_bytes) == 1 && 7526 btrfs_inc_nocow_writers(fs_info, block_start)) { 7527 struct extent_map *em2; 7528 7529 em2 = btrfs_create_dio_extent(inode, start, len, 7530 orig_start, block_start, 7531 len, orig_block_len, 7532 ram_bytes, type); 7533 btrfs_dec_nocow_writers(fs_info, block_start); 7534 if (type == BTRFS_ORDERED_PREALLOC) { 7535 free_extent_map(em); 7536 *map = em = em2; 7537 } 7538 7539 if (em2 && IS_ERR(em2)) { 7540 ret = PTR_ERR(em2); 7541 goto out; 7542 } 7543 /* 7544 * For inode marked NODATACOW or extent marked PREALLOC, 7545 * use the existing or preallocated extent, so does not 7546 * need to adjust btrfs_space_info's bytes_may_use. 7547 */ 7548 btrfs_free_reserved_data_space_noquota(inode, start, 7549 len); 7550 goto skip_cow; 7551 } 7552 } 7553 7554 /* this will cow the extent */ 7555 len = bh_result->b_size; 7556 free_extent_map(em); 7557 *map = em = btrfs_new_extent_direct(inode, start, len); 7558 if (IS_ERR(em)) { 7559 ret = PTR_ERR(em); 7560 goto out; 7561 } 7562 7563 len = min(len, em->len - (start - em->start)); 7564 7565 skip_cow: 7566 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7567 inode->i_blkbits; 7568 bh_result->b_size = len; 7569 bh_result->b_bdev = em->bdev; 7570 set_buffer_mapped(bh_result); 7571 7572 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7573 set_buffer_new(bh_result); 7574 7575 /* 7576 * Need to update the i_size under the extent lock so buffered 7577 * readers will get the updated i_size when we unlock. 7578 */ 7579 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7580 i_size_write(inode, start + len); 7581 7582 WARN_ON(dio_data->reserve < len); 7583 dio_data->reserve -= len; 7584 dio_data->unsubmitted_oe_range_end = start + len; 7585 current->journal_info = dio_data; 7586 out: 7587 return ret; 7588 } 7589 7590 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7591 struct buffer_head *bh_result, int create) 7592 { 7593 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7594 struct extent_map *em; 7595 struct extent_state *cached_state = NULL; 7596 struct btrfs_dio_data *dio_data = NULL; 7597 u64 start = iblock << inode->i_blkbits; 7598 u64 lockstart, lockend; 7599 u64 len = bh_result->b_size; 7600 int unlock_bits = EXTENT_LOCKED; 7601 int ret = 0; 7602 7603 if (create) 7604 unlock_bits |= EXTENT_DIRTY; 7605 else 7606 len = min_t(u64, len, fs_info->sectorsize); 7607 7608 lockstart = start; 7609 lockend = start + len - 1; 7610 7611 if (current->journal_info) { 7612 /* 7613 * Need to pull our outstanding extents and set journal_info to NULL so 7614 * that anything that needs to check if there's a transaction doesn't get 7615 * confused. 7616 */ 7617 dio_data = current->journal_info; 7618 current->journal_info = NULL; 7619 } 7620 7621 /* 7622 * If this errors out it's because we couldn't invalidate pagecache for 7623 * this range and we need to fallback to buffered. 7624 */ 7625 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7626 create)) { 7627 ret = -ENOTBLK; 7628 goto err; 7629 } 7630 7631 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7632 if (IS_ERR(em)) { 7633 ret = PTR_ERR(em); 7634 goto unlock_err; 7635 } 7636 7637 /* 7638 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7639 * io. INLINE is special, and we could probably kludge it in here, but 7640 * it's still buffered so for safety lets just fall back to the generic 7641 * buffered path. 7642 * 7643 * For COMPRESSED we _have_ to read the entire extent in so we can 7644 * decompress it, so there will be buffering required no matter what we 7645 * do, so go ahead and fallback to buffered. 7646 * 7647 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7648 * to buffered IO. Don't blame me, this is the price we pay for using 7649 * the generic code. 7650 */ 7651 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7652 em->block_start == EXTENT_MAP_INLINE) { 7653 free_extent_map(em); 7654 ret = -ENOTBLK; 7655 goto unlock_err; 7656 } 7657 7658 if (create) { 7659 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7660 dio_data, start, len); 7661 if (ret < 0) 7662 goto unlock_err; 7663 7664 /* clear and unlock the entire range */ 7665 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7666 unlock_bits, 1, 0, &cached_state); 7667 } else { 7668 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7669 start, len); 7670 /* Can be negative only if we read from a hole */ 7671 if (ret < 0) { 7672 ret = 0; 7673 free_extent_map(em); 7674 goto unlock_err; 7675 } 7676 /* 7677 * We need to unlock only the end area that we aren't using. 7678 * The rest is going to be unlocked by the endio routine. 7679 */ 7680 lockstart = start + bh_result->b_size; 7681 if (lockstart < lockend) { 7682 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7683 lockend, unlock_bits, 1, 0, 7684 &cached_state); 7685 } else { 7686 free_extent_state(cached_state); 7687 } 7688 } 7689 7690 free_extent_map(em); 7691 7692 return 0; 7693 7694 unlock_err: 7695 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7696 unlock_bits, 1, 0, &cached_state); 7697 err: 7698 if (dio_data) 7699 current->journal_info = dio_data; 7700 return ret; 7701 } 7702 7703 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7704 struct bio *bio, 7705 int mirror_num) 7706 { 7707 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7708 blk_status_t ret; 7709 7710 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7711 7712 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7713 if (ret) 7714 return ret; 7715 7716 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7717 7718 return ret; 7719 } 7720 7721 static int btrfs_check_dio_repairable(struct inode *inode, 7722 struct bio *failed_bio, 7723 struct io_failure_record *failrec, 7724 int failed_mirror) 7725 { 7726 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7727 int num_copies; 7728 7729 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7730 if (num_copies == 1) { 7731 /* 7732 * we only have a single copy of the data, so don't bother with 7733 * all the retry and error correction code that follows. no 7734 * matter what the error is, it is very likely to persist. 7735 */ 7736 btrfs_debug(fs_info, 7737 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7738 num_copies, failrec->this_mirror, failed_mirror); 7739 return 0; 7740 } 7741 7742 failrec->failed_mirror = failed_mirror; 7743 failrec->this_mirror++; 7744 if (failrec->this_mirror == failed_mirror) 7745 failrec->this_mirror++; 7746 7747 if (failrec->this_mirror > num_copies) { 7748 btrfs_debug(fs_info, 7749 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7750 num_copies, failrec->this_mirror, failed_mirror); 7751 return 0; 7752 } 7753 7754 return 1; 7755 } 7756 7757 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7758 struct page *page, unsigned int pgoff, 7759 u64 start, u64 end, int failed_mirror, 7760 bio_end_io_t *repair_endio, void *repair_arg) 7761 { 7762 struct io_failure_record *failrec; 7763 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7764 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7765 struct bio *bio; 7766 int isector; 7767 unsigned int read_mode = 0; 7768 int segs; 7769 int ret; 7770 blk_status_t status; 7771 struct bio_vec bvec; 7772 7773 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7774 7775 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7776 if (ret) 7777 return errno_to_blk_status(ret); 7778 7779 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7780 failed_mirror); 7781 if (!ret) { 7782 free_io_failure(failure_tree, io_tree, failrec); 7783 return BLK_STS_IOERR; 7784 } 7785 7786 segs = bio_segments(failed_bio); 7787 bio_get_first_bvec(failed_bio, &bvec); 7788 if (segs > 1 || 7789 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7790 read_mode |= REQ_FAILFAST_DEV; 7791 7792 isector = start - btrfs_io_bio(failed_bio)->logical; 7793 isector >>= inode->i_sb->s_blocksize_bits; 7794 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7795 pgoff, isector, repair_endio, repair_arg); 7796 bio->bi_opf = REQ_OP_READ | read_mode; 7797 7798 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7799 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7800 read_mode, failrec->this_mirror, failrec->in_validation); 7801 7802 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7803 if (status) { 7804 free_io_failure(failure_tree, io_tree, failrec); 7805 bio_put(bio); 7806 } 7807 7808 return status; 7809 } 7810 7811 struct btrfs_retry_complete { 7812 struct completion done; 7813 struct inode *inode; 7814 u64 start; 7815 int uptodate; 7816 }; 7817 7818 static void btrfs_retry_endio_nocsum(struct bio *bio) 7819 { 7820 struct btrfs_retry_complete *done = bio->bi_private; 7821 struct inode *inode = done->inode; 7822 struct bio_vec *bvec; 7823 struct extent_io_tree *io_tree, *failure_tree; 7824 int i; 7825 7826 if (bio->bi_status) 7827 goto end; 7828 7829 ASSERT(bio->bi_vcnt == 1); 7830 io_tree = &BTRFS_I(inode)->io_tree; 7831 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7832 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7833 7834 done->uptodate = 1; 7835 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7836 bio_for_each_segment_all(bvec, bio, i) 7837 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7838 io_tree, done->start, bvec->bv_page, 7839 btrfs_ino(BTRFS_I(inode)), 0); 7840 end: 7841 complete(&done->done); 7842 bio_put(bio); 7843 } 7844 7845 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7846 struct btrfs_io_bio *io_bio) 7847 { 7848 struct btrfs_fs_info *fs_info; 7849 struct bio_vec bvec; 7850 struct bvec_iter iter; 7851 struct btrfs_retry_complete done; 7852 u64 start; 7853 unsigned int pgoff; 7854 u32 sectorsize; 7855 int nr_sectors; 7856 blk_status_t ret; 7857 blk_status_t err = BLK_STS_OK; 7858 7859 fs_info = BTRFS_I(inode)->root->fs_info; 7860 sectorsize = fs_info->sectorsize; 7861 7862 start = io_bio->logical; 7863 done.inode = inode; 7864 io_bio->bio.bi_iter = io_bio->iter; 7865 7866 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7867 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7868 pgoff = bvec.bv_offset; 7869 7870 next_block_or_try_again: 7871 done.uptodate = 0; 7872 done.start = start; 7873 init_completion(&done.done); 7874 7875 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7876 pgoff, start, start + sectorsize - 1, 7877 io_bio->mirror_num, 7878 btrfs_retry_endio_nocsum, &done); 7879 if (ret) { 7880 err = ret; 7881 goto next; 7882 } 7883 7884 wait_for_completion_io(&done.done); 7885 7886 if (!done.uptodate) { 7887 /* We might have another mirror, so try again */ 7888 goto next_block_or_try_again; 7889 } 7890 7891 next: 7892 start += sectorsize; 7893 7894 nr_sectors--; 7895 if (nr_sectors) { 7896 pgoff += sectorsize; 7897 ASSERT(pgoff < PAGE_SIZE); 7898 goto next_block_or_try_again; 7899 } 7900 } 7901 7902 return err; 7903 } 7904 7905 static void btrfs_retry_endio(struct bio *bio) 7906 { 7907 struct btrfs_retry_complete *done = bio->bi_private; 7908 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7909 struct extent_io_tree *io_tree, *failure_tree; 7910 struct inode *inode = done->inode; 7911 struct bio_vec *bvec; 7912 int uptodate; 7913 int ret; 7914 int i; 7915 7916 if (bio->bi_status) 7917 goto end; 7918 7919 uptodate = 1; 7920 7921 ASSERT(bio->bi_vcnt == 1); 7922 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 7923 7924 io_tree = &BTRFS_I(inode)->io_tree; 7925 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7926 7927 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7928 bio_for_each_segment_all(bvec, bio, i) { 7929 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7930 bvec->bv_offset, done->start, 7931 bvec->bv_len); 7932 if (!ret) 7933 clean_io_failure(BTRFS_I(inode)->root->fs_info, 7934 failure_tree, io_tree, done->start, 7935 bvec->bv_page, 7936 btrfs_ino(BTRFS_I(inode)), 7937 bvec->bv_offset); 7938 else 7939 uptodate = 0; 7940 } 7941 7942 done->uptodate = uptodate; 7943 end: 7944 complete(&done->done); 7945 bio_put(bio); 7946 } 7947 7948 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 7949 struct btrfs_io_bio *io_bio, blk_status_t err) 7950 { 7951 struct btrfs_fs_info *fs_info; 7952 struct bio_vec bvec; 7953 struct bvec_iter iter; 7954 struct btrfs_retry_complete done; 7955 u64 start; 7956 u64 offset = 0; 7957 u32 sectorsize; 7958 int nr_sectors; 7959 unsigned int pgoff; 7960 int csum_pos; 7961 bool uptodate = (err == 0); 7962 int ret; 7963 blk_status_t status; 7964 7965 fs_info = BTRFS_I(inode)->root->fs_info; 7966 sectorsize = fs_info->sectorsize; 7967 7968 err = BLK_STS_OK; 7969 start = io_bio->logical; 7970 done.inode = inode; 7971 io_bio->bio.bi_iter = io_bio->iter; 7972 7973 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7974 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7975 7976 pgoff = bvec.bv_offset; 7977 next_block: 7978 if (uptodate) { 7979 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 7980 ret = __readpage_endio_check(inode, io_bio, csum_pos, 7981 bvec.bv_page, pgoff, start, sectorsize); 7982 if (likely(!ret)) 7983 goto next; 7984 } 7985 try_again: 7986 done.uptodate = 0; 7987 done.start = start; 7988 init_completion(&done.done); 7989 7990 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7991 pgoff, start, start + sectorsize - 1, 7992 io_bio->mirror_num, btrfs_retry_endio, 7993 &done); 7994 if (status) { 7995 err = status; 7996 goto next; 7997 } 7998 7999 wait_for_completion_io(&done.done); 8000 8001 if (!done.uptodate) { 8002 /* We might have another mirror, so try again */ 8003 goto try_again; 8004 } 8005 next: 8006 offset += sectorsize; 8007 start += sectorsize; 8008 8009 ASSERT(nr_sectors); 8010 8011 nr_sectors--; 8012 if (nr_sectors) { 8013 pgoff += sectorsize; 8014 ASSERT(pgoff < PAGE_SIZE); 8015 goto next_block; 8016 } 8017 } 8018 8019 return err; 8020 } 8021 8022 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8023 struct btrfs_io_bio *io_bio, blk_status_t err) 8024 { 8025 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8026 8027 if (skip_csum) { 8028 if (unlikely(err)) 8029 return __btrfs_correct_data_nocsum(inode, io_bio); 8030 else 8031 return BLK_STS_OK; 8032 } else { 8033 return __btrfs_subio_endio_read(inode, io_bio, err); 8034 } 8035 } 8036 8037 static void btrfs_endio_direct_read(struct bio *bio) 8038 { 8039 struct btrfs_dio_private *dip = bio->bi_private; 8040 struct inode *inode = dip->inode; 8041 struct bio *dio_bio; 8042 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8043 blk_status_t err = bio->bi_status; 8044 8045 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8046 err = btrfs_subio_endio_read(inode, io_bio, err); 8047 8048 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8049 dip->logical_offset + dip->bytes - 1); 8050 dio_bio = dip->dio_bio; 8051 8052 kfree(dip); 8053 8054 dio_bio->bi_status = err; 8055 dio_end_io(dio_bio); 8056 8057 if (io_bio->end_io) 8058 io_bio->end_io(io_bio, blk_status_to_errno(err)); 8059 bio_put(bio); 8060 } 8061 8062 static void __endio_write_update_ordered(struct inode *inode, 8063 const u64 offset, const u64 bytes, 8064 const bool uptodate) 8065 { 8066 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8067 struct btrfs_ordered_extent *ordered = NULL; 8068 struct btrfs_workqueue *wq; 8069 btrfs_work_func_t func; 8070 u64 ordered_offset = offset; 8071 u64 ordered_bytes = bytes; 8072 u64 last_offset; 8073 8074 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8075 wq = fs_info->endio_freespace_worker; 8076 func = btrfs_freespace_write_helper; 8077 } else { 8078 wq = fs_info->endio_write_workers; 8079 func = btrfs_endio_write_helper; 8080 } 8081 8082 while (ordered_offset < offset + bytes) { 8083 last_offset = ordered_offset; 8084 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 8085 &ordered_offset, 8086 ordered_bytes, 8087 uptodate)) { 8088 btrfs_init_work(&ordered->work, func, 8089 finish_ordered_fn, 8090 NULL, NULL); 8091 btrfs_queue_work(wq, &ordered->work); 8092 } 8093 /* 8094 * If btrfs_dec_test_ordered_pending does not find any ordered 8095 * extent in the range, we can exit. 8096 */ 8097 if (ordered_offset == last_offset) 8098 return; 8099 /* 8100 * Our bio might span multiple ordered extents. In this case 8101 * we keep goin until we have accounted the whole dio. 8102 */ 8103 if (ordered_offset < offset + bytes) { 8104 ordered_bytes = offset + bytes - ordered_offset; 8105 ordered = NULL; 8106 } 8107 } 8108 } 8109 8110 static void btrfs_endio_direct_write(struct bio *bio) 8111 { 8112 struct btrfs_dio_private *dip = bio->bi_private; 8113 struct bio *dio_bio = dip->dio_bio; 8114 8115 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8116 dip->bytes, !bio->bi_status); 8117 8118 kfree(dip); 8119 8120 dio_bio->bi_status = bio->bi_status; 8121 dio_end_io(dio_bio); 8122 bio_put(bio); 8123 } 8124 8125 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8126 struct bio *bio, u64 offset) 8127 { 8128 struct inode *inode = private_data; 8129 blk_status_t ret; 8130 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8131 BUG_ON(ret); /* -ENOMEM */ 8132 return 0; 8133 } 8134 8135 static void btrfs_end_dio_bio(struct bio *bio) 8136 { 8137 struct btrfs_dio_private *dip = bio->bi_private; 8138 blk_status_t err = bio->bi_status; 8139 8140 if (err) 8141 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8142 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8143 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8144 bio->bi_opf, 8145 (unsigned long long)bio->bi_iter.bi_sector, 8146 bio->bi_iter.bi_size, err); 8147 8148 if (dip->subio_endio) 8149 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8150 8151 if (err) { 8152 /* 8153 * We want to perceive the errors flag being set before 8154 * decrementing the reference count. We don't need a barrier 8155 * since atomic operations with a return value are fully 8156 * ordered as per atomic_t.txt 8157 */ 8158 dip->errors = 1; 8159 } 8160 8161 /* if there are more bios still pending for this dio, just exit */ 8162 if (!atomic_dec_and_test(&dip->pending_bios)) 8163 goto out; 8164 8165 if (dip->errors) { 8166 bio_io_error(dip->orig_bio); 8167 } else { 8168 dip->dio_bio->bi_status = BLK_STS_OK; 8169 bio_endio(dip->orig_bio); 8170 } 8171 out: 8172 bio_put(bio); 8173 } 8174 8175 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8176 struct btrfs_dio_private *dip, 8177 struct bio *bio, 8178 u64 file_offset) 8179 { 8180 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8181 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8182 blk_status_t ret; 8183 8184 /* 8185 * We load all the csum data we need when we submit 8186 * the first bio to reduce the csum tree search and 8187 * contention. 8188 */ 8189 if (dip->logical_offset == file_offset) { 8190 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8191 file_offset); 8192 if (ret) 8193 return ret; 8194 } 8195 8196 if (bio == dip->orig_bio) 8197 return 0; 8198 8199 file_offset -= dip->logical_offset; 8200 file_offset >>= inode->i_sb->s_blocksize_bits; 8201 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8202 8203 return 0; 8204 } 8205 8206 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8207 struct inode *inode, u64 file_offset, int async_submit) 8208 { 8209 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8210 struct btrfs_dio_private *dip = bio->bi_private; 8211 bool write = bio_op(bio) == REQ_OP_WRITE; 8212 blk_status_t ret; 8213 8214 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8215 if (async_submit) 8216 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8217 8218 if (!write) { 8219 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8220 if (ret) 8221 goto err; 8222 } 8223 8224 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8225 goto map; 8226 8227 if (write && async_submit) { 8228 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8229 file_offset, inode, 8230 btrfs_submit_bio_start_direct_io); 8231 goto err; 8232 } else if (write) { 8233 /* 8234 * If we aren't doing async submit, calculate the csum of the 8235 * bio now. 8236 */ 8237 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8238 if (ret) 8239 goto err; 8240 } else { 8241 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8242 file_offset); 8243 if (ret) 8244 goto err; 8245 } 8246 map: 8247 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8248 err: 8249 return ret; 8250 } 8251 8252 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8253 { 8254 struct inode *inode = dip->inode; 8255 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8256 struct bio *bio; 8257 struct bio *orig_bio = dip->orig_bio; 8258 u64 start_sector = orig_bio->bi_iter.bi_sector; 8259 u64 file_offset = dip->logical_offset; 8260 u64 map_length; 8261 int async_submit = 0; 8262 u64 submit_len; 8263 int clone_offset = 0; 8264 int clone_len; 8265 int ret; 8266 blk_status_t status; 8267 8268 map_length = orig_bio->bi_iter.bi_size; 8269 submit_len = map_length; 8270 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8271 &map_length, NULL, 0); 8272 if (ret) 8273 return -EIO; 8274 8275 if (map_length >= submit_len) { 8276 bio = orig_bio; 8277 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8278 goto submit; 8279 } 8280 8281 /* async crcs make it difficult to collect full stripe writes. */ 8282 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8283 async_submit = 0; 8284 else 8285 async_submit = 1; 8286 8287 /* bio split */ 8288 ASSERT(map_length <= INT_MAX); 8289 atomic_inc(&dip->pending_bios); 8290 do { 8291 clone_len = min_t(int, submit_len, map_length); 8292 8293 /* 8294 * This will never fail as it's passing GPF_NOFS and 8295 * the allocation is backed by btrfs_bioset. 8296 */ 8297 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8298 clone_len); 8299 bio->bi_private = dip; 8300 bio->bi_end_io = btrfs_end_dio_bio; 8301 btrfs_io_bio(bio)->logical = file_offset; 8302 8303 ASSERT(submit_len >= clone_len); 8304 submit_len -= clone_len; 8305 if (submit_len == 0) 8306 break; 8307 8308 /* 8309 * Increase the count before we submit the bio so we know 8310 * the end IO handler won't happen before we increase the 8311 * count. Otherwise, the dip might get freed before we're 8312 * done setting it up. 8313 */ 8314 atomic_inc(&dip->pending_bios); 8315 8316 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8317 async_submit); 8318 if (status) { 8319 bio_put(bio); 8320 atomic_dec(&dip->pending_bios); 8321 goto out_err; 8322 } 8323 8324 clone_offset += clone_len; 8325 start_sector += clone_len >> 9; 8326 file_offset += clone_len; 8327 8328 map_length = submit_len; 8329 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8330 start_sector << 9, &map_length, NULL, 0); 8331 if (ret) 8332 goto out_err; 8333 } while (submit_len > 0); 8334 8335 submit: 8336 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8337 if (!status) 8338 return 0; 8339 8340 bio_put(bio); 8341 out_err: 8342 dip->errors = 1; 8343 /* 8344 * Before atomic variable goto zero, we must make sure dip->errors is 8345 * perceived to be set. This ordering is ensured by the fact that an 8346 * atomic operations with a return value are fully ordered as per 8347 * atomic_t.txt 8348 */ 8349 if (atomic_dec_and_test(&dip->pending_bios)) 8350 bio_io_error(dip->orig_bio); 8351 8352 /* bio_end_io() will handle error, so we needn't return it */ 8353 return 0; 8354 } 8355 8356 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8357 loff_t file_offset) 8358 { 8359 struct btrfs_dio_private *dip = NULL; 8360 struct bio *bio = NULL; 8361 struct btrfs_io_bio *io_bio; 8362 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8363 int ret = 0; 8364 8365 bio = btrfs_bio_clone(dio_bio); 8366 8367 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8368 if (!dip) { 8369 ret = -ENOMEM; 8370 goto free_ordered; 8371 } 8372 8373 dip->private = dio_bio->bi_private; 8374 dip->inode = inode; 8375 dip->logical_offset = file_offset; 8376 dip->bytes = dio_bio->bi_iter.bi_size; 8377 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8378 bio->bi_private = dip; 8379 dip->orig_bio = bio; 8380 dip->dio_bio = dio_bio; 8381 atomic_set(&dip->pending_bios, 0); 8382 io_bio = btrfs_io_bio(bio); 8383 io_bio->logical = file_offset; 8384 8385 if (write) { 8386 bio->bi_end_io = btrfs_endio_direct_write; 8387 } else { 8388 bio->bi_end_io = btrfs_endio_direct_read; 8389 dip->subio_endio = btrfs_subio_endio_read; 8390 } 8391 8392 /* 8393 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8394 * even if we fail to submit a bio, because in such case we do the 8395 * corresponding error handling below and it must not be done a second 8396 * time by btrfs_direct_IO(). 8397 */ 8398 if (write) { 8399 struct btrfs_dio_data *dio_data = current->journal_info; 8400 8401 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8402 dip->bytes; 8403 dio_data->unsubmitted_oe_range_start = 8404 dio_data->unsubmitted_oe_range_end; 8405 } 8406 8407 ret = btrfs_submit_direct_hook(dip); 8408 if (!ret) 8409 return; 8410 8411 if (io_bio->end_io) 8412 io_bio->end_io(io_bio, ret); 8413 8414 free_ordered: 8415 /* 8416 * If we arrived here it means either we failed to submit the dip 8417 * or we either failed to clone the dio_bio or failed to allocate the 8418 * dip. If we cloned the dio_bio and allocated the dip, we can just 8419 * call bio_endio against our io_bio so that we get proper resource 8420 * cleanup if we fail to submit the dip, otherwise, we must do the 8421 * same as btrfs_endio_direct_[write|read] because we can't call these 8422 * callbacks - they require an allocated dip and a clone of dio_bio. 8423 */ 8424 if (bio && dip) { 8425 bio_io_error(bio); 8426 /* 8427 * The end io callbacks free our dip, do the final put on bio 8428 * and all the cleanup and final put for dio_bio (through 8429 * dio_end_io()). 8430 */ 8431 dip = NULL; 8432 bio = NULL; 8433 } else { 8434 if (write) 8435 __endio_write_update_ordered(inode, 8436 file_offset, 8437 dio_bio->bi_iter.bi_size, 8438 false); 8439 else 8440 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8441 file_offset + dio_bio->bi_iter.bi_size - 1); 8442 8443 dio_bio->bi_status = BLK_STS_IOERR; 8444 /* 8445 * Releases and cleans up our dio_bio, no need to bio_put() 8446 * nor bio_endio()/bio_io_error() against dio_bio. 8447 */ 8448 dio_end_io(dio_bio); 8449 } 8450 if (bio) 8451 bio_put(bio); 8452 kfree(dip); 8453 } 8454 8455 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8456 const struct iov_iter *iter, loff_t offset) 8457 { 8458 int seg; 8459 int i; 8460 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8461 ssize_t retval = -EINVAL; 8462 8463 if (offset & blocksize_mask) 8464 goto out; 8465 8466 if (iov_iter_alignment(iter) & blocksize_mask) 8467 goto out; 8468 8469 /* If this is a write we don't need to check anymore */ 8470 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8471 return 0; 8472 /* 8473 * Check to make sure we don't have duplicate iov_base's in this 8474 * iovec, if so return EINVAL, otherwise we'll get csum errors 8475 * when reading back. 8476 */ 8477 for (seg = 0; seg < iter->nr_segs; seg++) { 8478 for (i = seg + 1; i < iter->nr_segs; i++) { 8479 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8480 goto out; 8481 } 8482 } 8483 retval = 0; 8484 out: 8485 return retval; 8486 } 8487 8488 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8489 { 8490 struct file *file = iocb->ki_filp; 8491 struct inode *inode = file->f_mapping->host; 8492 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8493 struct btrfs_dio_data dio_data = { 0 }; 8494 struct extent_changeset *data_reserved = NULL; 8495 loff_t offset = iocb->ki_pos; 8496 size_t count = 0; 8497 int flags = 0; 8498 bool wakeup = true; 8499 bool relock = false; 8500 ssize_t ret; 8501 8502 if (check_direct_IO(fs_info, iter, offset)) 8503 return 0; 8504 8505 inode_dio_begin(inode); 8506 8507 /* 8508 * The generic stuff only does filemap_write_and_wait_range, which 8509 * isn't enough if we've written compressed pages to this area, so 8510 * we need to flush the dirty pages again to make absolutely sure 8511 * that any outstanding dirty pages are on disk. 8512 */ 8513 count = iov_iter_count(iter); 8514 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8515 &BTRFS_I(inode)->runtime_flags)) 8516 filemap_fdatawrite_range(inode->i_mapping, offset, 8517 offset + count - 1); 8518 8519 if (iov_iter_rw(iter) == WRITE) { 8520 /* 8521 * If the write DIO is beyond the EOF, we need update 8522 * the isize, but it is protected by i_mutex. So we can 8523 * not unlock the i_mutex at this case. 8524 */ 8525 if (offset + count <= inode->i_size) { 8526 dio_data.overwrite = 1; 8527 inode_unlock(inode); 8528 relock = true; 8529 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8530 ret = -EAGAIN; 8531 goto out; 8532 } 8533 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8534 offset, count); 8535 if (ret) 8536 goto out; 8537 8538 /* 8539 * We need to know how many extents we reserved so that we can 8540 * do the accounting properly if we go over the number we 8541 * originally calculated. Abuse current->journal_info for this. 8542 */ 8543 dio_data.reserve = round_up(count, 8544 fs_info->sectorsize); 8545 dio_data.unsubmitted_oe_range_start = (u64)offset; 8546 dio_data.unsubmitted_oe_range_end = (u64)offset; 8547 current->journal_info = &dio_data; 8548 down_read(&BTRFS_I(inode)->dio_sem); 8549 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8550 &BTRFS_I(inode)->runtime_flags)) { 8551 inode_dio_end(inode); 8552 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8553 wakeup = false; 8554 } 8555 8556 ret = __blockdev_direct_IO(iocb, inode, 8557 fs_info->fs_devices->latest_bdev, 8558 iter, btrfs_get_blocks_direct, NULL, 8559 btrfs_submit_direct, flags); 8560 if (iov_iter_rw(iter) == WRITE) { 8561 up_read(&BTRFS_I(inode)->dio_sem); 8562 current->journal_info = NULL; 8563 if (ret < 0 && ret != -EIOCBQUEUED) { 8564 if (dio_data.reserve) 8565 btrfs_delalloc_release_space(inode, data_reserved, 8566 offset, dio_data.reserve, true); 8567 /* 8568 * On error we might have left some ordered extents 8569 * without submitting corresponding bios for them, so 8570 * cleanup them up to avoid other tasks getting them 8571 * and waiting for them to complete forever. 8572 */ 8573 if (dio_data.unsubmitted_oe_range_start < 8574 dio_data.unsubmitted_oe_range_end) 8575 __endio_write_update_ordered(inode, 8576 dio_data.unsubmitted_oe_range_start, 8577 dio_data.unsubmitted_oe_range_end - 8578 dio_data.unsubmitted_oe_range_start, 8579 false); 8580 } else if (ret >= 0 && (size_t)ret < count) 8581 btrfs_delalloc_release_space(inode, data_reserved, 8582 offset, count - (size_t)ret, true); 8583 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false); 8584 } 8585 out: 8586 if (wakeup) 8587 inode_dio_end(inode); 8588 if (relock) 8589 inode_lock(inode); 8590 8591 extent_changeset_free(data_reserved); 8592 return ret; 8593 } 8594 8595 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8596 8597 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8598 __u64 start, __u64 len) 8599 { 8600 int ret; 8601 8602 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8603 if (ret) 8604 return ret; 8605 8606 return extent_fiemap(inode, fieinfo, start, len); 8607 } 8608 8609 int btrfs_readpage(struct file *file, struct page *page) 8610 { 8611 struct extent_io_tree *tree; 8612 tree = &BTRFS_I(page->mapping->host)->io_tree; 8613 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8614 } 8615 8616 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8617 { 8618 struct inode *inode = page->mapping->host; 8619 int ret; 8620 8621 if (current->flags & PF_MEMALLOC) { 8622 redirty_page_for_writepage(wbc, page); 8623 unlock_page(page); 8624 return 0; 8625 } 8626 8627 /* 8628 * If we are under memory pressure we will call this directly from the 8629 * VM, we need to make sure we have the inode referenced for the ordered 8630 * extent. If not just return like we didn't do anything. 8631 */ 8632 if (!igrab(inode)) { 8633 redirty_page_for_writepage(wbc, page); 8634 return AOP_WRITEPAGE_ACTIVATE; 8635 } 8636 ret = extent_write_full_page(page, wbc); 8637 btrfs_add_delayed_iput(inode); 8638 return ret; 8639 } 8640 8641 static int btrfs_writepages(struct address_space *mapping, 8642 struct writeback_control *wbc) 8643 { 8644 return extent_writepages(mapping, wbc); 8645 } 8646 8647 static int 8648 btrfs_readpages(struct file *file, struct address_space *mapping, 8649 struct list_head *pages, unsigned nr_pages) 8650 { 8651 return extent_readpages(mapping, pages, nr_pages); 8652 } 8653 8654 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8655 { 8656 int ret = try_release_extent_mapping(page, gfp_flags); 8657 if (ret == 1) { 8658 ClearPagePrivate(page); 8659 set_page_private(page, 0); 8660 put_page(page); 8661 } 8662 return ret; 8663 } 8664 8665 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8666 { 8667 if (PageWriteback(page) || PageDirty(page)) 8668 return 0; 8669 return __btrfs_releasepage(page, gfp_flags); 8670 } 8671 8672 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8673 unsigned int length) 8674 { 8675 struct inode *inode = page->mapping->host; 8676 struct extent_io_tree *tree; 8677 struct btrfs_ordered_extent *ordered; 8678 struct extent_state *cached_state = NULL; 8679 u64 page_start = page_offset(page); 8680 u64 page_end = page_start + PAGE_SIZE - 1; 8681 u64 start; 8682 u64 end; 8683 int inode_evicting = inode->i_state & I_FREEING; 8684 8685 /* 8686 * we have the page locked, so new writeback can't start, 8687 * and the dirty bit won't be cleared while we are here. 8688 * 8689 * Wait for IO on this page so that we can safely clear 8690 * the PagePrivate2 bit and do ordered accounting 8691 */ 8692 wait_on_page_writeback(page); 8693 8694 tree = &BTRFS_I(inode)->io_tree; 8695 if (offset) { 8696 btrfs_releasepage(page, GFP_NOFS); 8697 return; 8698 } 8699 8700 if (!inode_evicting) 8701 lock_extent_bits(tree, page_start, page_end, &cached_state); 8702 again: 8703 start = page_start; 8704 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8705 page_end - start + 1); 8706 if (ordered) { 8707 end = min(page_end, ordered->file_offset + ordered->len - 1); 8708 /* 8709 * IO on this page will never be started, so we need 8710 * to account for any ordered extents now 8711 */ 8712 if (!inode_evicting) 8713 clear_extent_bit(tree, start, end, 8714 EXTENT_DIRTY | EXTENT_DELALLOC | 8715 EXTENT_DELALLOC_NEW | 8716 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8717 EXTENT_DEFRAG, 1, 0, &cached_state); 8718 /* 8719 * whoever cleared the private bit is responsible 8720 * for the finish_ordered_io 8721 */ 8722 if (TestClearPagePrivate2(page)) { 8723 struct btrfs_ordered_inode_tree *tree; 8724 u64 new_len; 8725 8726 tree = &BTRFS_I(inode)->ordered_tree; 8727 8728 spin_lock_irq(&tree->lock); 8729 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8730 new_len = start - ordered->file_offset; 8731 if (new_len < ordered->truncated_len) 8732 ordered->truncated_len = new_len; 8733 spin_unlock_irq(&tree->lock); 8734 8735 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8736 start, 8737 end - start + 1, 1)) 8738 btrfs_finish_ordered_io(ordered); 8739 } 8740 btrfs_put_ordered_extent(ordered); 8741 if (!inode_evicting) { 8742 cached_state = NULL; 8743 lock_extent_bits(tree, start, end, 8744 &cached_state); 8745 } 8746 8747 start = end + 1; 8748 if (start < page_end) 8749 goto again; 8750 } 8751 8752 /* 8753 * Qgroup reserved space handler 8754 * Page here will be either 8755 * 1) Already written to disk 8756 * In this case, its reserved space is released from data rsv map 8757 * and will be freed by delayed_ref handler finally. 8758 * So even we call qgroup_free_data(), it won't decrease reserved 8759 * space. 8760 * 2) Not written to disk 8761 * This means the reserved space should be freed here. However, 8762 * if a truncate invalidates the page (by clearing PageDirty) 8763 * and the page is accounted for while allocating extent 8764 * in btrfs_check_data_free_space() we let delayed_ref to 8765 * free the entire extent. 8766 */ 8767 if (PageDirty(page)) 8768 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8769 if (!inode_evicting) { 8770 clear_extent_bit(tree, page_start, page_end, 8771 EXTENT_LOCKED | EXTENT_DIRTY | 8772 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8773 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8774 &cached_state); 8775 8776 __btrfs_releasepage(page, GFP_NOFS); 8777 } 8778 8779 ClearPageChecked(page); 8780 if (PagePrivate(page)) { 8781 ClearPagePrivate(page); 8782 set_page_private(page, 0); 8783 put_page(page); 8784 } 8785 } 8786 8787 /* 8788 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8789 * called from a page fault handler when a page is first dirtied. Hence we must 8790 * be careful to check for EOF conditions here. We set the page up correctly 8791 * for a written page which means we get ENOSPC checking when writing into 8792 * holes and correct delalloc and unwritten extent mapping on filesystems that 8793 * support these features. 8794 * 8795 * We are not allowed to take the i_mutex here so we have to play games to 8796 * protect against truncate races as the page could now be beyond EOF. Because 8797 * truncate_setsize() writes the inode size before removing pages, once we have 8798 * the page lock we can determine safely if the page is beyond EOF. If it is not 8799 * beyond EOF, then the page is guaranteed safe against truncation until we 8800 * unlock the page. 8801 */ 8802 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8803 { 8804 struct page *page = vmf->page; 8805 struct inode *inode = file_inode(vmf->vma->vm_file); 8806 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8807 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8808 struct btrfs_ordered_extent *ordered; 8809 struct extent_state *cached_state = NULL; 8810 struct extent_changeset *data_reserved = NULL; 8811 char *kaddr; 8812 unsigned long zero_start; 8813 loff_t size; 8814 vm_fault_t ret; 8815 int ret2; 8816 int reserved = 0; 8817 u64 reserved_space; 8818 u64 page_start; 8819 u64 page_end; 8820 u64 end; 8821 8822 reserved_space = PAGE_SIZE; 8823 8824 sb_start_pagefault(inode->i_sb); 8825 page_start = page_offset(page); 8826 page_end = page_start + PAGE_SIZE - 1; 8827 end = page_end; 8828 8829 /* 8830 * Reserving delalloc space after obtaining the page lock can lead to 8831 * deadlock. For example, if a dirty page is locked by this function 8832 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8833 * dirty page write out, then the btrfs_writepage() function could 8834 * end up waiting indefinitely to get a lock on the page currently 8835 * being processed by btrfs_page_mkwrite() function. 8836 */ 8837 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8838 reserved_space); 8839 if (!ret2) { 8840 ret2 = file_update_time(vmf->vma->vm_file); 8841 reserved = 1; 8842 } 8843 if (ret2) { 8844 ret = vmf_error(ret2); 8845 if (reserved) 8846 goto out; 8847 goto out_noreserve; 8848 } 8849 8850 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8851 again: 8852 lock_page(page); 8853 size = i_size_read(inode); 8854 8855 if ((page->mapping != inode->i_mapping) || 8856 (page_start >= size)) { 8857 /* page got truncated out from underneath us */ 8858 goto out_unlock; 8859 } 8860 wait_on_page_writeback(page); 8861 8862 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8863 set_page_extent_mapped(page); 8864 8865 /* 8866 * we can't set the delalloc bits if there are pending ordered 8867 * extents. Drop our locks and wait for them to finish 8868 */ 8869 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8870 PAGE_SIZE); 8871 if (ordered) { 8872 unlock_extent_cached(io_tree, page_start, page_end, 8873 &cached_state); 8874 unlock_page(page); 8875 btrfs_start_ordered_extent(inode, ordered, 1); 8876 btrfs_put_ordered_extent(ordered); 8877 goto again; 8878 } 8879 8880 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8881 reserved_space = round_up(size - page_start, 8882 fs_info->sectorsize); 8883 if (reserved_space < PAGE_SIZE) { 8884 end = page_start + reserved_space - 1; 8885 btrfs_delalloc_release_space(inode, data_reserved, 8886 page_start, PAGE_SIZE - reserved_space, 8887 true); 8888 } 8889 } 8890 8891 /* 8892 * page_mkwrite gets called when the page is firstly dirtied after it's 8893 * faulted in, but write(2) could also dirty a page and set delalloc 8894 * bits, thus in this case for space account reason, we still need to 8895 * clear any delalloc bits within this page range since we have to 8896 * reserve data&meta space before lock_page() (see above comments). 8897 */ 8898 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8899 EXTENT_DIRTY | EXTENT_DELALLOC | 8900 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8901 0, 0, &cached_state); 8902 8903 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8904 &cached_state, 0); 8905 if (ret2) { 8906 unlock_extent_cached(io_tree, page_start, page_end, 8907 &cached_state); 8908 ret = VM_FAULT_SIGBUS; 8909 goto out_unlock; 8910 } 8911 ret2 = 0; 8912 8913 /* page is wholly or partially inside EOF */ 8914 if (page_start + PAGE_SIZE > size) 8915 zero_start = size & ~PAGE_MASK; 8916 else 8917 zero_start = PAGE_SIZE; 8918 8919 if (zero_start != PAGE_SIZE) { 8920 kaddr = kmap(page); 8921 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8922 flush_dcache_page(page); 8923 kunmap(page); 8924 } 8925 ClearPageChecked(page); 8926 set_page_dirty(page); 8927 SetPageUptodate(page); 8928 8929 BTRFS_I(inode)->last_trans = fs_info->generation; 8930 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8931 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8932 8933 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8934 8935 if (!ret2) { 8936 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true); 8937 sb_end_pagefault(inode->i_sb); 8938 extent_changeset_free(data_reserved); 8939 return VM_FAULT_LOCKED; 8940 } 8941 8942 out_unlock: 8943 unlock_page(page); 8944 out: 8945 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0)); 8946 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8947 reserved_space, (ret != 0)); 8948 out_noreserve: 8949 sb_end_pagefault(inode->i_sb); 8950 extent_changeset_free(data_reserved); 8951 return ret; 8952 } 8953 8954 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8955 { 8956 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8957 struct btrfs_root *root = BTRFS_I(inode)->root; 8958 struct btrfs_block_rsv *rsv; 8959 int ret; 8960 struct btrfs_trans_handle *trans; 8961 u64 mask = fs_info->sectorsize - 1; 8962 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 8963 8964 if (!skip_writeback) { 8965 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8966 (u64)-1); 8967 if (ret) 8968 return ret; 8969 } 8970 8971 /* 8972 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8973 * things going on here: 8974 * 8975 * 1) We need to reserve space to update our inode. 8976 * 8977 * 2) We need to have something to cache all the space that is going to 8978 * be free'd up by the truncate operation, but also have some slack 8979 * space reserved in case it uses space during the truncate (thank you 8980 * very much snapshotting). 8981 * 8982 * And we need these to be separate. The fact is we can use a lot of 8983 * space doing the truncate, and we have no earthly idea how much space 8984 * we will use, so we need the truncate reservation to be separate so it 8985 * doesn't end up using space reserved for updating the inode. We also 8986 * need to be able to stop the transaction and start a new one, which 8987 * means we need to be able to update the inode several times, and we 8988 * have no idea of knowing how many times that will be, so we can't just 8989 * reserve 1 item for the entirety of the operation, so that has to be 8990 * done separately as well. 8991 * 8992 * So that leaves us with 8993 * 8994 * 1) rsv - for the truncate reservation, which we will steal from the 8995 * transaction reservation. 8996 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8997 * updating the inode. 8998 */ 8999 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9000 if (!rsv) 9001 return -ENOMEM; 9002 rsv->size = min_size; 9003 rsv->failfast = 1; 9004 9005 /* 9006 * 1 for the truncate slack space 9007 * 1 for updating the inode. 9008 */ 9009 trans = btrfs_start_transaction(root, 2); 9010 if (IS_ERR(trans)) { 9011 ret = PTR_ERR(trans); 9012 goto out; 9013 } 9014 9015 /* Migrate the slack space for the truncate to our reserve */ 9016 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9017 min_size, false); 9018 BUG_ON(ret); 9019 9020 /* 9021 * So if we truncate and then write and fsync we normally would just 9022 * write the extents that changed, which is a problem if we need to 9023 * first truncate that entire inode. So set this flag so we write out 9024 * all of the extents in the inode to the sync log so we're completely 9025 * safe. 9026 */ 9027 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9028 trans->block_rsv = rsv; 9029 9030 while (1) { 9031 ret = btrfs_truncate_inode_items(trans, root, inode, 9032 inode->i_size, 9033 BTRFS_EXTENT_DATA_KEY); 9034 trans->block_rsv = &fs_info->trans_block_rsv; 9035 if (ret != -ENOSPC && ret != -EAGAIN) 9036 break; 9037 9038 ret = btrfs_update_inode(trans, root, inode); 9039 if (ret) 9040 break; 9041 9042 btrfs_end_transaction(trans); 9043 btrfs_btree_balance_dirty(fs_info); 9044 9045 trans = btrfs_start_transaction(root, 2); 9046 if (IS_ERR(trans)) { 9047 ret = PTR_ERR(trans); 9048 trans = NULL; 9049 break; 9050 } 9051 9052 btrfs_block_rsv_release(fs_info, rsv, -1); 9053 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9054 rsv, min_size, false); 9055 BUG_ON(ret); /* shouldn't happen */ 9056 trans->block_rsv = rsv; 9057 } 9058 9059 /* 9060 * We can't call btrfs_truncate_block inside a trans handle as we could 9061 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9062 * we've truncated everything except the last little bit, and can do 9063 * btrfs_truncate_block and then update the disk_i_size. 9064 */ 9065 if (ret == NEED_TRUNCATE_BLOCK) { 9066 btrfs_end_transaction(trans); 9067 btrfs_btree_balance_dirty(fs_info); 9068 9069 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9070 if (ret) 9071 goto out; 9072 trans = btrfs_start_transaction(root, 1); 9073 if (IS_ERR(trans)) { 9074 ret = PTR_ERR(trans); 9075 goto out; 9076 } 9077 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9078 } 9079 9080 if (trans) { 9081 int ret2; 9082 9083 trans->block_rsv = &fs_info->trans_block_rsv; 9084 ret2 = btrfs_update_inode(trans, root, inode); 9085 if (ret2 && !ret) 9086 ret = ret2; 9087 9088 ret2 = btrfs_end_transaction(trans); 9089 if (ret2 && !ret) 9090 ret = ret2; 9091 btrfs_btree_balance_dirty(fs_info); 9092 } 9093 out: 9094 btrfs_free_block_rsv(fs_info, rsv); 9095 9096 return ret; 9097 } 9098 9099 /* 9100 * create a new subvolume directory/inode (helper for the ioctl). 9101 */ 9102 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9103 struct btrfs_root *new_root, 9104 struct btrfs_root *parent_root, 9105 u64 new_dirid) 9106 { 9107 struct inode *inode; 9108 int err; 9109 u64 index = 0; 9110 9111 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9112 new_dirid, new_dirid, 9113 S_IFDIR | (~current_umask() & S_IRWXUGO), 9114 &index); 9115 if (IS_ERR(inode)) 9116 return PTR_ERR(inode); 9117 inode->i_op = &btrfs_dir_inode_operations; 9118 inode->i_fop = &btrfs_dir_file_operations; 9119 9120 set_nlink(inode, 1); 9121 btrfs_i_size_write(BTRFS_I(inode), 0); 9122 unlock_new_inode(inode); 9123 9124 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9125 if (err) 9126 btrfs_err(new_root->fs_info, 9127 "error inheriting subvolume %llu properties: %d", 9128 new_root->root_key.objectid, err); 9129 9130 err = btrfs_update_inode(trans, new_root, inode); 9131 9132 iput(inode); 9133 return err; 9134 } 9135 9136 struct inode *btrfs_alloc_inode(struct super_block *sb) 9137 { 9138 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9139 struct btrfs_inode *ei; 9140 struct inode *inode; 9141 9142 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9143 if (!ei) 9144 return NULL; 9145 9146 ei->root = NULL; 9147 ei->generation = 0; 9148 ei->last_trans = 0; 9149 ei->last_sub_trans = 0; 9150 ei->logged_trans = 0; 9151 ei->delalloc_bytes = 0; 9152 ei->new_delalloc_bytes = 0; 9153 ei->defrag_bytes = 0; 9154 ei->disk_i_size = 0; 9155 ei->flags = 0; 9156 ei->csum_bytes = 0; 9157 ei->index_cnt = (u64)-1; 9158 ei->dir_index = 0; 9159 ei->last_unlink_trans = 0; 9160 ei->last_log_commit = 0; 9161 9162 spin_lock_init(&ei->lock); 9163 ei->outstanding_extents = 0; 9164 if (sb->s_magic != BTRFS_TEST_MAGIC) 9165 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9166 BTRFS_BLOCK_RSV_DELALLOC); 9167 ei->runtime_flags = 0; 9168 ei->prop_compress = BTRFS_COMPRESS_NONE; 9169 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9170 9171 ei->delayed_node = NULL; 9172 9173 ei->i_otime.tv_sec = 0; 9174 ei->i_otime.tv_nsec = 0; 9175 9176 inode = &ei->vfs_inode; 9177 extent_map_tree_init(&ei->extent_tree); 9178 extent_io_tree_init(&ei->io_tree, inode); 9179 extent_io_tree_init(&ei->io_failure_tree, inode); 9180 ei->io_tree.track_uptodate = 1; 9181 ei->io_failure_tree.track_uptodate = 1; 9182 atomic_set(&ei->sync_writers, 0); 9183 mutex_init(&ei->log_mutex); 9184 mutex_init(&ei->delalloc_mutex); 9185 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9186 INIT_LIST_HEAD(&ei->delalloc_inodes); 9187 INIT_LIST_HEAD(&ei->delayed_iput); 9188 RB_CLEAR_NODE(&ei->rb_node); 9189 init_rwsem(&ei->dio_sem); 9190 9191 return inode; 9192 } 9193 9194 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9195 void btrfs_test_destroy_inode(struct inode *inode) 9196 { 9197 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9198 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9199 } 9200 #endif 9201 9202 static void btrfs_i_callback(struct rcu_head *head) 9203 { 9204 struct inode *inode = container_of(head, struct inode, i_rcu); 9205 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9206 } 9207 9208 void btrfs_destroy_inode(struct inode *inode) 9209 { 9210 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9211 struct btrfs_ordered_extent *ordered; 9212 struct btrfs_root *root = BTRFS_I(inode)->root; 9213 9214 WARN_ON(!hlist_empty(&inode->i_dentry)); 9215 WARN_ON(inode->i_data.nrpages); 9216 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9217 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9218 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9219 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9220 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9221 WARN_ON(BTRFS_I(inode)->csum_bytes); 9222 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9223 9224 /* 9225 * This can happen where we create an inode, but somebody else also 9226 * created the same inode and we need to destroy the one we already 9227 * created. 9228 */ 9229 if (!root) 9230 goto free; 9231 9232 while (1) { 9233 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9234 if (!ordered) 9235 break; 9236 else { 9237 btrfs_err(fs_info, 9238 "found ordered extent %llu %llu on inode cleanup", 9239 ordered->file_offset, ordered->len); 9240 btrfs_remove_ordered_extent(inode, ordered); 9241 btrfs_put_ordered_extent(ordered); 9242 btrfs_put_ordered_extent(ordered); 9243 } 9244 } 9245 btrfs_qgroup_check_reserved_leak(inode); 9246 inode_tree_del(inode); 9247 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9248 free: 9249 call_rcu(&inode->i_rcu, btrfs_i_callback); 9250 } 9251 9252 int btrfs_drop_inode(struct inode *inode) 9253 { 9254 struct btrfs_root *root = BTRFS_I(inode)->root; 9255 9256 if (root == NULL) 9257 return 1; 9258 9259 /* the snap/subvol tree is on deleting */ 9260 if (btrfs_root_refs(&root->root_item) == 0) 9261 return 1; 9262 else 9263 return generic_drop_inode(inode); 9264 } 9265 9266 static void init_once(void *foo) 9267 { 9268 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9269 9270 inode_init_once(&ei->vfs_inode); 9271 } 9272 9273 void __cold btrfs_destroy_cachep(void) 9274 { 9275 /* 9276 * Make sure all delayed rcu free inodes are flushed before we 9277 * destroy cache. 9278 */ 9279 rcu_barrier(); 9280 kmem_cache_destroy(btrfs_inode_cachep); 9281 kmem_cache_destroy(btrfs_trans_handle_cachep); 9282 kmem_cache_destroy(btrfs_path_cachep); 9283 kmem_cache_destroy(btrfs_free_space_cachep); 9284 } 9285 9286 int __init btrfs_init_cachep(void) 9287 { 9288 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9289 sizeof(struct btrfs_inode), 0, 9290 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9291 init_once); 9292 if (!btrfs_inode_cachep) 9293 goto fail; 9294 9295 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9296 sizeof(struct btrfs_trans_handle), 0, 9297 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9298 if (!btrfs_trans_handle_cachep) 9299 goto fail; 9300 9301 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9302 sizeof(struct btrfs_path), 0, 9303 SLAB_MEM_SPREAD, NULL); 9304 if (!btrfs_path_cachep) 9305 goto fail; 9306 9307 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9308 sizeof(struct btrfs_free_space), 0, 9309 SLAB_MEM_SPREAD, NULL); 9310 if (!btrfs_free_space_cachep) 9311 goto fail; 9312 9313 return 0; 9314 fail: 9315 btrfs_destroy_cachep(); 9316 return -ENOMEM; 9317 } 9318 9319 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9320 u32 request_mask, unsigned int flags) 9321 { 9322 u64 delalloc_bytes; 9323 struct inode *inode = d_inode(path->dentry); 9324 u32 blocksize = inode->i_sb->s_blocksize; 9325 u32 bi_flags = BTRFS_I(inode)->flags; 9326 9327 stat->result_mask |= STATX_BTIME; 9328 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9329 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9330 if (bi_flags & BTRFS_INODE_APPEND) 9331 stat->attributes |= STATX_ATTR_APPEND; 9332 if (bi_flags & BTRFS_INODE_COMPRESS) 9333 stat->attributes |= STATX_ATTR_COMPRESSED; 9334 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9335 stat->attributes |= STATX_ATTR_IMMUTABLE; 9336 if (bi_flags & BTRFS_INODE_NODUMP) 9337 stat->attributes |= STATX_ATTR_NODUMP; 9338 9339 stat->attributes_mask |= (STATX_ATTR_APPEND | 9340 STATX_ATTR_COMPRESSED | 9341 STATX_ATTR_IMMUTABLE | 9342 STATX_ATTR_NODUMP); 9343 9344 generic_fillattr(inode, stat); 9345 stat->dev = BTRFS_I(inode)->root->anon_dev; 9346 9347 spin_lock(&BTRFS_I(inode)->lock); 9348 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9349 spin_unlock(&BTRFS_I(inode)->lock); 9350 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9351 ALIGN(delalloc_bytes, blocksize)) >> 9; 9352 return 0; 9353 } 9354 9355 static int btrfs_rename_exchange(struct inode *old_dir, 9356 struct dentry *old_dentry, 9357 struct inode *new_dir, 9358 struct dentry *new_dentry) 9359 { 9360 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9361 struct btrfs_trans_handle *trans; 9362 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9363 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9364 struct inode *new_inode = new_dentry->d_inode; 9365 struct inode *old_inode = old_dentry->d_inode; 9366 struct timespec64 ctime = current_time(old_inode); 9367 struct dentry *parent; 9368 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9369 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9370 u64 old_idx = 0; 9371 u64 new_idx = 0; 9372 u64 root_objectid; 9373 int ret; 9374 bool root_log_pinned = false; 9375 bool dest_log_pinned = false; 9376 struct btrfs_log_ctx ctx_root; 9377 struct btrfs_log_ctx ctx_dest; 9378 bool sync_log_root = false; 9379 bool sync_log_dest = false; 9380 bool commit_transaction = false; 9381 9382 /* we only allow rename subvolume link between subvolumes */ 9383 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9384 return -EXDEV; 9385 9386 btrfs_init_log_ctx(&ctx_root, old_inode); 9387 btrfs_init_log_ctx(&ctx_dest, new_inode); 9388 9389 /* close the race window with snapshot create/destroy ioctl */ 9390 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9391 down_read(&fs_info->subvol_sem); 9392 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9393 down_read(&fs_info->subvol_sem); 9394 9395 /* 9396 * We want to reserve the absolute worst case amount of items. So if 9397 * both inodes are subvols and we need to unlink them then that would 9398 * require 4 item modifications, but if they are both normal inodes it 9399 * would require 5 item modifications, so we'll assume their normal 9400 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9401 * should cover the worst case number of items we'll modify. 9402 */ 9403 trans = btrfs_start_transaction(root, 12); 9404 if (IS_ERR(trans)) { 9405 ret = PTR_ERR(trans); 9406 goto out_notrans; 9407 } 9408 9409 /* 9410 * We need to find a free sequence number both in the source and 9411 * in the destination directory for the exchange. 9412 */ 9413 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9414 if (ret) 9415 goto out_fail; 9416 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9417 if (ret) 9418 goto out_fail; 9419 9420 BTRFS_I(old_inode)->dir_index = 0ULL; 9421 BTRFS_I(new_inode)->dir_index = 0ULL; 9422 9423 /* Reference for the source. */ 9424 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9425 /* force full log commit if subvolume involved. */ 9426 btrfs_set_log_full_commit(fs_info, trans); 9427 } else { 9428 btrfs_pin_log_trans(root); 9429 root_log_pinned = true; 9430 ret = btrfs_insert_inode_ref(trans, dest, 9431 new_dentry->d_name.name, 9432 new_dentry->d_name.len, 9433 old_ino, 9434 btrfs_ino(BTRFS_I(new_dir)), 9435 old_idx); 9436 if (ret) 9437 goto out_fail; 9438 } 9439 9440 /* And now for the dest. */ 9441 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9442 /* force full log commit if subvolume involved. */ 9443 btrfs_set_log_full_commit(fs_info, trans); 9444 } else { 9445 btrfs_pin_log_trans(dest); 9446 dest_log_pinned = true; 9447 ret = btrfs_insert_inode_ref(trans, root, 9448 old_dentry->d_name.name, 9449 old_dentry->d_name.len, 9450 new_ino, 9451 btrfs_ino(BTRFS_I(old_dir)), 9452 new_idx); 9453 if (ret) 9454 goto out_fail; 9455 } 9456 9457 /* Update inode version and ctime/mtime. */ 9458 inode_inc_iversion(old_dir); 9459 inode_inc_iversion(new_dir); 9460 inode_inc_iversion(old_inode); 9461 inode_inc_iversion(new_inode); 9462 old_dir->i_ctime = old_dir->i_mtime = ctime; 9463 new_dir->i_ctime = new_dir->i_mtime = ctime; 9464 old_inode->i_ctime = ctime; 9465 new_inode->i_ctime = ctime; 9466 9467 if (old_dentry->d_parent != new_dentry->d_parent) { 9468 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9469 BTRFS_I(old_inode), 1); 9470 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9471 BTRFS_I(new_inode), 1); 9472 } 9473 9474 /* src is a subvolume */ 9475 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9476 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9477 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9478 old_dentry->d_name.name, 9479 old_dentry->d_name.len); 9480 } else { /* src is an inode */ 9481 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9482 BTRFS_I(old_dentry->d_inode), 9483 old_dentry->d_name.name, 9484 old_dentry->d_name.len); 9485 if (!ret) 9486 ret = btrfs_update_inode(trans, root, old_inode); 9487 } 9488 if (ret) { 9489 btrfs_abort_transaction(trans, ret); 9490 goto out_fail; 9491 } 9492 9493 /* dest is a subvolume */ 9494 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9495 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9496 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9497 new_dentry->d_name.name, 9498 new_dentry->d_name.len); 9499 } else { /* dest is an inode */ 9500 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9501 BTRFS_I(new_dentry->d_inode), 9502 new_dentry->d_name.name, 9503 new_dentry->d_name.len); 9504 if (!ret) 9505 ret = btrfs_update_inode(trans, dest, new_inode); 9506 } 9507 if (ret) { 9508 btrfs_abort_transaction(trans, ret); 9509 goto out_fail; 9510 } 9511 9512 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9513 new_dentry->d_name.name, 9514 new_dentry->d_name.len, 0, old_idx); 9515 if (ret) { 9516 btrfs_abort_transaction(trans, ret); 9517 goto out_fail; 9518 } 9519 9520 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9521 old_dentry->d_name.name, 9522 old_dentry->d_name.len, 0, new_idx); 9523 if (ret) { 9524 btrfs_abort_transaction(trans, ret); 9525 goto out_fail; 9526 } 9527 9528 if (old_inode->i_nlink == 1) 9529 BTRFS_I(old_inode)->dir_index = old_idx; 9530 if (new_inode->i_nlink == 1) 9531 BTRFS_I(new_inode)->dir_index = new_idx; 9532 9533 if (root_log_pinned) { 9534 parent = new_dentry->d_parent; 9535 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9536 BTRFS_I(old_dir), parent, 9537 false, &ctx_root); 9538 if (ret == BTRFS_NEED_LOG_SYNC) 9539 sync_log_root = true; 9540 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9541 commit_transaction = true; 9542 ret = 0; 9543 btrfs_end_log_trans(root); 9544 root_log_pinned = false; 9545 } 9546 if (dest_log_pinned) { 9547 if (!commit_transaction) { 9548 parent = old_dentry->d_parent; 9549 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9550 BTRFS_I(new_dir), parent, 9551 false, &ctx_dest); 9552 if (ret == BTRFS_NEED_LOG_SYNC) 9553 sync_log_dest = true; 9554 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9555 commit_transaction = true; 9556 ret = 0; 9557 } 9558 btrfs_end_log_trans(dest); 9559 dest_log_pinned = false; 9560 } 9561 out_fail: 9562 /* 9563 * If we have pinned a log and an error happened, we unpin tasks 9564 * trying to sync the log and force them to fallback to a transaction 9565 * commit if the log currently contains any of the inodes involved in 9566 * this rename operation (to ensure we do not persist a log with an 9567 * inconsistent state for any of these inodes or leading to any 9568 * inconsistencies when replayed). If the transaction was aborted, the 9569 * abortion reason is propagated to userspace when attempting to commit 9570 * the transaction. If the log does not contain any of these inodes, we 9571 * allow the tasks to sync it. 9572 */ 9573 if (ret && (root_log_pinned || dest_log_pinned)) { 9574 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9575 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9576 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9577 (new_inode && 9578 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9579 btrfs_set_log_full_commit(fs_info, trans); 9580 9581 if (root_log_pinned) { 9582 btrfs_end_log_trans(root); 9583 root_log_pinned = false; 9584 } 9585 if (dest_log_pinned) { 9586 btrfs_end_log_trans(dest); 9587 dest_log_pinned = false; 9588 } 9589 } 9590 if (!ret && sync_log_root && !commit_transaction) { 9591 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9592 &ctx_root); 9593 if (ret) 9594 commit_transaction = true; 9595 } 9596 if (!ret && sync_log_dest && !commit_transaction) { 9597 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9598 &ctx_dest); 9599 if (ret) 9600 commit_transaction = true; 9601 } 9602 if (commit_transaction) { 9603 ret = btrfs_commit_transaction(trans); 9604 } else { 9605 int ret2; 9606 9607 ret2 = btrfs_end_transaction(trans); 9608 ret = ret ? ret : ret2; 9609 } 9610 out_notrans: 9611 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9612 up_read(&fs_info->subvol_sem); 9613 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9614 up_read(&fs_info->subvol_sem); 9615 9616 return ret; 9617 } 9618 9619 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9620 struct btrfs_root *root, 9621 struct inode *dir, 9622 struct dentry *dentry) 9623 { 9624 int ret; 9625 struct inode *inode; 9626 u64 objectid; 9627 u64 index; 9628 9629 ret = btrfs_find_free_ino(root, &objectid); 9630 if (ret) 9631 return ret; 9632 9633 inode = btrfs_new_inode(trans, root, dir, 9634 dentry->d_name.name, 9635 dentry->d_name.len, 9636 btrfs_ino(BTRFS_I(dir)), 9637 objectid, 9638 S_IFCHR | WHITEOUT_MODE, 9639 &index); 9640 9641 if (IS_ERR(inode)) { 9642 ret = PTR_ERR(inode); 9643 return ret; 9644 } 9645 9646 inode->i_op = &btrfs_special_inode_operations; 9647 init_special_inode(inode, inode->i_mode, 9648 WHITEOUT_DEV); 9649 9650 ret = btrfs_init_inode_security(trans, inode, dir, 9651 &dentry->d_name); 9652 if (ret) 9653 goto out; 9654 9655 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9656 BTRFS_I(inode), 0, index); 9657 if (ret) 9658 goto out; 9659 9660 ret = btrfs_update_inode(trans, root, inode); 9661 out: 9662 unlock_new_inode(inode); 9663 if (ret) 9664 inode_dec_link_count(inode); 9665 iput(inode); 9666 9667 return ret; 9668 } 9669 9670 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9671 struct inode *new_dir, struct dentry *new_dentry, 9672 unsigned int flags) 9673 { 9674 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9675 struct btrfs_trans_handle *trans; 9676 unsigned int trans_num_items; 9677 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9678 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9679 struct inode *new_inode = d_inode(new_dentry); 9680 struct inode *old_inode = d_inode(old_dentry); 9681 u64 index = 0; 9682 u64 root_objectid; 9683 int ret; 9684 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9685 bool log_pinned = false; 9686 struct btrfs_log_ctx ctx; 9687 bool sync_log = false; 9688 bool commit_transaction = false; 9689 9690 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9691 return -EPERM; 9692 9693 /* we only allow rename subvolume link between subvolumes */ 9694 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9695 return -EXDEV; 9696 9697 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9698 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9699 return -ENOTEMPTY; 9700 9701 if (S_ISDIR(old_inode->i_mode) && new_inode && 9702 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9703 return -ENOTEMPTY; 9704 9705 9706 /* check for collisions, even if the name isn't there */ 9707 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9708 new_dentry->d_name.name, 9709 new_dentry->d_name.len); 9710 9711 if (ret) { 9712 if (ret == -EEXIST) { 9713 /* we shouldn't get 9714 * eexist without a new_inode */ 9715 if (WARN_ON(!new_inode)) { 9716 return ret; 9717 } 9718 } else { 9719 /* maybe -EOVERFLOW */ 9720 return ret; 9721 } 9722 } 9723 ret = 0; 9724 9725 /* 9726 * we're using rename to replace one file with another. Start IO on it 9727 * now so we don't add too much work to the end of the transaction 9728 */ 9729 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9730 filemap_flush(old_inode->i_mapping); 9731 9732 /* close the racy window with snapshot create/destroy ioctl */ 9733 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9734 down_read(&fs_info->subvol_sem); 9735 /* 9736 * We want to reserve the absolute worst case amount of items. So if 9737 * both inodes are subvols and we need to unlink them then that would 9738 * require 4 item modifications, but if they are both normal inodes it 9739 * would require 5 item modifications, so we'll assume they are normal 9740 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9741 * should cover the worst case number of items we'll modify. 9742 * If our rename has the whiteout flag, we need more 5 units for the 9743 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9744 * when selinux is enabled). 9745 */ 9746 trans_num_items = 11; 9747 if (flags & RENAME_WHITEOUT) 9748 trans_num_items += 5; 9749 trans = btrfs_start_transaction(root, trans_num_items); 9750 if (IS_ERR(trans)) { 9751 ret = PTR_ERR(trans); 9752 goto out_notrans; 9753 } 9754 9755 if (dest != root) 9756 btrfs_record_root_in_trans(trans, dest); 9757 9758 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9759 if (ret) 9760 goto out_fail; 9761 9762 BTRFS_I(old_inode)->dir_index = 0ULL; 9763 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9764 /* force full log commit if subvolume involved. */ 9765 btrfs_set_log_full_commit(fs_info, trans); 9766 } else { 9767 btrfs_pin_log_trans(root); 9768 log_pinned = true; 9769 ret = btrfs_insert_inode_ref(trans, dest, 9770 new_dentry->d_name.name, 9771 new_dentry->d_name.len, 9772 old_ino, 9773 btrfs_ino(BTRFS_I(new_dir)), index); 9774 if (ret) 9775 goto out_fail; 9776 } 9777 9778 inode_inc_iversion(old_dir); 9779 inode_inc_iversion(new_dir); 9780 inode_inc_iversion(old_inode); 9781 old_dir->i_ctime = old_dir->i_mtime = 9782 new_dir->i_ctime = new_dir->i_mtime = 9783 old_inode->i_ctime = current_time(old_dir); 9784 9785 if (old_dentry->d_parent != new_dentry->d_parent) 9786 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9787 BTRFS_I(old_inode), 1); 9788 9789 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9790 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9791 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9792 old_dentry->d_name.name, 9793 old_dentry->d_name.len); 9794 } else { 9795 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9796 BTRFS_I(d_inode(old_dentry)), 9797 old_dentry->d_name.name, 9798 old_dentry->d_name.len); 9799 if (!ret) 9800 ret = btrfs_update_inode(trans, root, old_inode); 9801 } 9802 if (ret) { 9803 btrfs_abort_transaction(trans, ret); 9804 goto out_fail; 9805 } 9806 9807 if (new_inode) { 9808 inode_inc_iversion(new_inode); 9809 new_inode->i_ctime = current_time(new_inode); 9810 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9811 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9812 root_objectid = BTRFS_I(new_inode)->location.objectid; 9813 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9814 new_dentry->d_name.name, 9815 new_dentry->d_name.len); 9816 BUG_ON(new_inode->i_nlink == 0); 9817 } else { 9818 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9819 BTRFS_I(d_inode(new_dentry)), 9820 new_dentry->d_name.name, 9821 new_dentry->d_name.len); 9822 } 9823 if (!ret && new_inode->i_nlink == 0) 9824 ret = btrfs_orphan_add(trans, 9825 BTRFS_I(d_inode(new_dentry))); 9826 if (ret) { 9827 btrfs_abort_transaction(trans, ret); 9828 goto out_fail; 9829 } 9830 } 9831 9832 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9833 new_dentry->d_name.name, 9834 new_dentry->d_name.len, 0, index); 9835 if (ret) { 9836 btrfs_abort_transaction(trans, ret); 9837 goto out_fail; 9838 } 9839 9840 if (old_inode->i_nlink == 1) 9841 BTRFS_I(old_inode)->dir_index = index; 9842 9843 if (log_pinned) { 9844 struct dentry *parent = new_dentry->d_parent; 9845 9846 btrfs_init_log_ctx(&ctx, old_inode); 9847 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9848 BTRFS_I(old_dir), parent, 9849 false, &ctx); 9850 if (ret == BTRFS_NEED_LOG_SYNC) 9851 sync_log = true; 9852 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9853 commit_transaction = true; 9854 ret = 0; 9855 btrfs_end_log_trans(root); 9856 log_pinned = false; 9857 } 9858 9859 if (flags & RENAME_WHITEOUT) { 9860 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9861 old_dentry); 9862 9863 if (ret) { 9864 btrfs_abort_transaction(trans, ret); 9865 goto out_fail; 9866 } 9867 } 9868 out_fail: 9869 /* 9870 * If we have pinned the log and an error happened, we unpin tasks 9871 * trying to sync the log and force them to fallback to a transaction 9872 * commit if the log currently contains any of the inodes involved in 9873 * this rename operation (to ensure we do not persist a log with an 9874 * inconsistent state for any of these inodes or leading to any 9875 * inconsistencies when replayed). If the transaction was aborted, the 9876 * abortion reason is propagated to userspace when attempting to commit 9877 * the transaction. If the log does not contain any of these inodes, we 9878 * allow the tasks to sync it. 9879 */ 9880 if (ret && log_pinned) { 9881 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9882 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9883 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9884 (new_inode && 9885 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9886 btrfs_set_log_full_commit(fs_info, trans); 9887 9888 btrfs_end_log_trans(root); 9889 log_pinned = false; 9890 } 9891 if (!ret && sync_log) { 9892 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9893 if (ret) 9894 commit_transaction = true; 9895 } 9896 if (commit_transaction) { 9897 ret = btrfs_commit_transaction(trans); 9898 } else { 9899 int ret2; 9900 9901 ret2 = btrfs_end_transaction(trans); 9902 ret = ret ? ret : ret2; 9903 } 9904 out_notrans: 9905 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9906 up_read(&fs_info->subvol_sem); 9907 9908 return ret; 9909 } 9910 9911 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9912 struct inode *new_dir, struct dentry *new_dentry, 9913 unsigned int flags) 9914 { 9915 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9916 return -EINVAL; 9917 9918 if (flags & RENAME_EXCHANGE) 9919 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9920 new_dentry); 9921 9922 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9923 } 9924 9925 struct btrfs_delalloc_work { 9926 struct inode *inode; 9927 struct completion completion; 9928 struct list_head list; 9929 struct btrfs_work work; 9930 }; 9931 9932 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9933 { 9934 struct btrfs_delalloc_work *delalloc_work; 9935 struct inode *inode; 9936 9937 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9938 work); 9939 inode = delalloc_work->inode; 9940 filemap_flush(inode->i_mapping); 9941 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9942 &BTRFS_I(inode)->runtime_flags)) 9943 filemap_flush(inode->i_mapping); 9944 9945 iput(inode); 9946 complete(&delalloc_work->completion); 9947 } 9948 9949 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9950 { 9951 struct btrfs_delalloc_work *work; 9952 9953 work = kmalloc(sizeof(*work), GFP_NOFS); 9954 if (!work) 9955 return NULL; 9956 9957 init_completion(&work->completion); 9958 INIT_LIST_HEAD(&work->list); 9959 work->inode = inode; 9960 WARN_ON_ONCE(!inode); 9961 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9962 btrfs_run_delalloc_work, NULL, NULL); 9963 9964 return work; 9965 } 9966 9967 /* 9968 * some fairly slow code that needs optimization. This walks the list 9969 * of all the inodes with pending delalloc and forces them to disk. 9970 */ 9971 static int start_delalloc_inodes(struct btrfs_root *root, int nr) 9972 { 9973 struct btrfs_inode *binode; 9974 struct inode *inode; 9975 struct btrfs_delalloc_work *work, *next; 9976 struct list_head works; 9977 struct list_head splice; 9978 int ret = 0; 9979 9980 INIT_LIST_HEAD(&works); 9981 INIT_LIST_HEAD(&splice); 9982 9983 mutex_lock(&root->delalloc_mutex); 9984 spin_lock(&root->delalloc_lock); 9985 list_splice_init(&root->delalloc_inodes, &splice); 9986 while (!list_empty(&splice)) { 9987 binode = list_entry(splice.next, struct btrfs_inode, 9988 delalloc_inodes); 9989 9990 list_move_tail(&binode->delalloc_inodes, 9991 &root->delalloc_inodes); 9992 inode = igrab(&binode->vfs_inode); 9993 if (!inode) { 9994 cond_resched_lock(&root->delalloc_lock); 9995 continue; 9996 } 9997 spin_unlock(&root->delalloc_lock); 9998 9999 work = btrfs_alloc_delalloc_work(inode); 10000 if (!work) { 10001 iput(inode); 10002 ret = -ENOMEM; 10003 goto out; 10004 } 10005 list_add_tail(&work->list, &works); 10006 btrfs_queue_work(root->fs_info->flush_workers, 10007 &work->work); 10008 ret++; 10009 if (nr != -1 && ret >= nr) 10010 goto out; 10011 cond_resched(); 10012 spin_lock(&root->delalloc_lock); 10013 } 10014 spin_unlock(&root->delalloc_lock); 10015 10016 out: 10017 list_for_each_entry_safe(work, next, &works, list) { 10018 list_del_init(&work->list); 10019 wait_for_completion(&work->completion); 10020 kfree(work); 10021 } 10022 10023 if (!list_empty(&splice)) { 10024 spin_lock(&root->delalloc_lock); 10025 list_splice_tail(&splice, &root->delalloc_inodes); 10026 spin_unlock(&root->delalloc_lock); 10027 } 10028 mutex_unlock(&root->delalloc_mutex); 10029 return ret; 10030 } 10031 10032 int btrfs_start_delalloc_inodes(struct btrfs_root *root) 10033 { 10034 struct btrfs_fs_info *fs_info = root->fs_info; 10035 int ret; 10036 10037 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10038 return -EROFS; 10039 10040 ret = start_delalloc_inodes(root, -1); 10041 if (ret > 0) 10042 ret = 0; 10043 return ret; 10044 } 10045 10046 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 10047 { 10048 struct btrfs_root *root; 10049 struct list_head splice; 10050 int ret; 10051 10052 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10053 return -EROFS; 10054 10055 INIT_LIST_HEAD(&splice); 10056 10057 mutex_lock(&fs_info->delalloc_root_mutex); 10058 spin_lock(&fs_info->delalloc_root_lock); 10059 list_splice_init(&fs_info->delalloc_roots, &splice); 10060 while (!list_empty(&splice) && nr) { 10061 root = list_first_entry(&splice, struct btrfs_root, 10062 delalloc_root); 10063 root = btrfs_grab_fs_root(root); 10064 BUG_ON(!root); 10065 list_move_tail(&root->delalloc_root, 10066 &fs_info->delalloc_roots); 10067 spin_unlock(&fs_info->delalloc_root_lock); 10068 10069 ret = start_delalloc_inodes(root, nr); 10070 btrfs_put_fs_root(root); 10071 if (ret < 0) 10072 goto out; 10073 10074 if (nr != -1) { 10075 nr -= ret; 10076 WARN_ON(nr < 0); 10077 } 10078 spin_lock(&fs_info->delalloc_root_lock); 10079 } 10080 spin_unlock(&fs_info->delalloc_root_lock); 10081 10082 ret = 0; 10083 out: 10084 if (!list_empty(&splice)) { 10085 spin_lock(&fs_info->delalloc_root_lock); 10086 list_splice_tail(&splice, &fs_info->delalloc_roots); 10087 spin_unlock(&fs_info->delalloc_root_lock); 10088 } 10089 mutex_unlock(&fs_info->delalloc_root_mutex); 10090 return ret; 10091 } 10092 10093 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10094 const char *symname) 10095 { 10096 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10097 struct btrfs_trans_handle *trans; 10098 struct btrfs_root *root = BTRFS_I(dir)->root; 10099 struct btrfs_path *path; 10100 struct btrfs_key key; 10101 struct inode *inode = NULL; 10102 int err; 10103 u64 objectid; 10104 u64 index = 0; 10105 int name_len; 10106 int datasize; 10107 unsigned long ptr; 10108 struct btrfs_file_extent_item *ei; 10109 struct extent_buffer *leaf; 10110 10111 name_len = strlen(symname); 10112 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10113 return -ENAMETOOLONG; 10114 10115 /* 10116 * 2 items for inode item and ref 10117 * 2 items for dir items 10118 * 1 item for updating parent inode item 10119 * 1 item for the inline extent item 10120 * 1 item for xattr if selinux is on 10121 */ 10122 trans = btrfs_start_transaction(root, 7); 10123 if (IS_ERR(trans)) 10124 return PTR_ERR(trans); 10125 10126 err = btrfs_find_free_ino(root, &objectid); 10127 if (err) 10128 goto out_unlock; 10129 10130 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10131 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10132 objectid, S_IFLNK|S_IRWXUGO, &index); 10133 if (IS_ERR(inode)) { 10134 err = PTR_ERR(inode); 10135 inode = NULL; 10136 goto out_unlock; 10137 } 10138 10139 /* 10140 * If the active LSM wants to access the inode during 10141 * d_instantiate it needs these. Smack checks to see 10142 * if the filesystem supports xattrs by looking at the 10143 * ops vector. 10144 */ 10145 inode->i_fop = &btrfs_file_operations; 10146 inode->i_op = &btrfs_file_inode_operations; 10147 inode->i_mapping->a_ops = &btrfs_aops; 10148 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10149 10150 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10151 if (err) 10152 goto out_unlock; 10153 10154 path = btrfs_alloc_path(); 10155 if (!path) { 10156 err = -ENOMEM; 10157 goto out_unlock; 10158 } 10159 key.objectid = btrfs_ino(BTRFS_I(inode)); 10160 key.offset = 0; 10161 key.type = BTRFS_EXTENT_DATA_KEY; 10162 datasize = btrfs_file_extent_calc_inline_size(name_len); 10163 err = btrfs_insert_empty_item(trans, root, path, &key, 10164 datasize); 10165 if (err) { 10166 btrfs_free_path(path); 10167 goto out_unlock; 10168 } 10169 leaf = path->nodes[0]; 10170 ei = btrfs_item_ptr(leaf, path->slots[0], 10171 struct btrfs_file_extent_item); 10172 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10173 btrfs_set_file_extent_type(leaf, ei, 10174 BTRFS_FILE_EXTENT_INLINE); 10175 btrfs_set_file_extent_encryption(leaf, ei, 0); 10176 btrfs_set_file_extent_compression(leaf, ei, 0); 10177 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10178 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10179 10180 ptr = btrfs_file_extent_inline_start(ei); 10181 write_extent_buffer(leaf, symname, ptr, name_len); 10182 btrfs_mark_buffer_dirty(leaf); 10183 btrfs_free_path(path); 10184 10185 inode->i_op = &btrfs_symlink_inode_operations; 10186 inode_nohighmem(inode); 10187 inode->i_mapping->a_ops = &btrfs_aops; 10188 inode_set_bytes(inode, name_len); 10189 btrfs_i_size_write(BTRFS_I(inode), name_len); 10190 err = btrfs_update_inode(trans, root, inode); 10191 /* 10192 * Last step, add directory indexes for our symlink inode. This is the 10193 * last step to avoid extra cleanup of these indexes if an error happens 10194 * elsewhere above. 10195 */ 10196 if (!err) 10197 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10198 BTRFS_I(inode), 0, index); 10199 if (err) 10200 goto out_unlock; 10201 10202 d_instantiate_new(dentry, inode); 10203 10204 out_unlock: 10205 btrfs_end_transaction(trans); 10206 if (err && inode) { 10207 inode_dec_link_count(inode); 10208 discard_new_inode(inode); 10209 } 10210 btrfs_btree_balance_dirty(fs_info); 10211 return err; 10212 } 10213 10214 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10215 u64 start, u64 num_bytes, u64 min_size, 10216 loff_t actual_len, u64 *alloc_hint, 10217 struct btrfs_trans_handle *trans) 10218 { 10219 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10220 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10221 struct extent_map *em; 10222 struct btrfs_root *root = BTRFS_I(inode)->root; 10223 struct btrfs_key ins; 10224 u64 cur_offset = start; 10225 u64 i_size; 10226 u64 cur_bytes; 10227 u64 last_alloc = (u64)-1; 10228 int ret = 0; 10229 bool own_trans = true; 10230 u64 end = start + num_bytes - 1; 10231 10232 if (trans) 10233 own_trans = false; 10234 while (num_bytes > 0) { 10235 if (own_trans) { 10236 trans = btrfs_start_transaction(root, 3); 10237 if (IS_ERR(trans)) { 10238 ret = PTR_ERR(trans); 10239 break; 10240 } 10241 } 10242 10243 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10244 cur_bytes = max(cur_bytes, min_size); 10245 /* 10246 * If we are severely fragmented we could end up with really 10247 * small allocations, so if the allocator is returning small 10248 * chunks lets make its job easier by only searching for those 10249 * sized chunks. 10250 */ 10251 cur_bytes = min(cur_bytes, last_alloc); 10252 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10253 min_size, 0, *alloc_hint, &ins, 1, 0); 10254 if (ret) { 10255 if (own_trans) 10256 btrfs_end_transaction(trans); 10257 break; 10258 } 10259 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10260 10261 last_alloc = ins.offset; 10262 ret = insert_reserved_file_extent(trans, inode, 10263 cur_offset, ins.objectid, 10264 ins.offset, ins.offset, 10265 ins.offset, 0, 0, 0, 10266 BTRFS_FILE_EXTENT_PREALLOC); 10267 if (ret) { 10268 btrfs_free_reserved_extent(fs_info, ins.objectid, 10269 ins.offset, 0); 10270 btrfs_abort_transaction(trans, ret); 10271 if (own_trans) 10272 btrfs_end_transaction(trans); 10273 break; 10274 } 10275 10276 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10277 cur_offset + ins.offset -1, 0); 10278 10279 em = alloc_extent_map(); 10280 if (!em) { 10281 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10282 &BTRFS_I(inode)->runtime_flags); 10283 goto next; 10284 } 10285 10286 em->start = cur_offset; 10287 em->orig_start = cur_offset; 10288 em->len = ins.offset; 10289 em->block_start = ins.objectid; 10290 em->block_len = ins.offset; 10291 em->orig_block_len = ins.offset; 10292 em->ram_bytes = ins.offset; 10293 em->bdev = fs_info->fs_devices->latest_bdev; 10294 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10295 em->generation = trans->transid; 10296 10297 while (1) { 10298 write_lock(&em_tree->lock); 10299 ret = add_extent_mapping(em_tree, em, 1); 10300 write_unlock(&em_tree->lock); 10301 if (ret != -EEXIST) 10302 break; 10303 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10304 cur_offset + ins.offset - 1, 10305 0); 10306 } 10307 free_extent_map(em); 10308 next: 10309 num_bytes -= ins.offset; 10310 cur_offset += ins.offset; 10311 *alloc_hint = ins.objectid + ins.offset; 10312 10313 inode_inc_iversion(inode); 10314 inode->i_ctime = current_time(inode); 10315 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10316 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10317 (actual_len > inode->i_size) && 10318 (cur_offset > inode->i_size)) { 10319 if (cur_offset > actual_len) 10320 i_size = actual_len; 10321 else 10322 i_size = cur_offset; 10323 i_size_write(inode, i_size); 10324 btrfs_ordered_update_i_size(inode, i_size, NULL); 10325 } 10326 10327 ret = btrfs_update_inode(trans, root, inode); 10328 10329 if (ret) { 10330 btrfs_abort_transaction(trans, ret); 10331 if (own_trans) 10332 btrfs_end_transaction(trans); 10333 break; 10334 } 10335 10336 if (own_trans) 10337 btrfs_end_transaction(trans); 10338 } 10339 if (cur_offset < end) 10340 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10341 end - cur_offset + 1); 10342 return ret; 10343 } 10344 10345 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10346 u64 start, u64 num_bytes, u64 min_size, 10347 loff_t actual_len, u64 *alloc_hint) 10348 { 10349 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10350 min_size, actual_len, alloc_hint, 10351 NULL); 10352 } 10353 10354 int btrfs_prealloc_file_range_trans(struct inode *inode, 10355 struct btrfs_trans_handle *trans, int mode, 10356 u64 start, u64 num_bytes, u64 min_size, 10357 loff_t actual_len, u64 *alloc_hint) 10358 { 10359 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10360 min_size, actual_len, alloc_hint, trans); 10361 } 10362 10363 static int btrfs_set_page_dirty(struct page *page) 10364 { 10365 return __set_page_dirty_nobuffers(page); 10366 } 10367 10368 static int btrfs_permission(struct inode *inode, int mask) 10369 { 10370 struct btrfs_root *root = BTRFS_I(inode)->root; 10371 umode_t mode = inode->i_mode; 10372 10373 if (mask & MAY_WRITE && 10374 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10375 if (btrfs_root_readonly(root)) 10376 return -EROFS; 10377 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10378 return -EACCES; 10379 } 10380 return generic_permission(inode, mask); 10381 } 10382 10383 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10384 { 10385 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10386 struct btrfs_trans_handle *trans; 10387 struct btrfs_root *root = BTRFS_I(dir)->root; 10388 struct inode *inode = NULL; 10389 u64 objectid; 10390 u64 index; 10391 int ret = 0; 10392 10393 /* 10394 * 5 units required for adding orphan entry 10395 */ 10396 trans = btrfs_start_transaction(root, 5); 10397 if (IS_ERR(trans)) 10398 return PTR_ERR(trans); 10399 10400 ret = btrfs_find_free_ino(root, &objectid); 10401 if (ret) 10402 goto out; 10403 10404 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10405 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10406 if (IS_ERR(inode)) { 10407 ret = PTR_ERR(inode); 10408 inode = NULL; 10409 goto out; 10410 } 10411 10412 inode->i_fop = &btrfs_file_operations; 10413 inode->i_op = &btrfs_file_inode_operations; 10414 10415 inode->i_mapping->a_ops = &btrfs_aops; 10416 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10417 10418 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10419 if (ret) 10420 goto out; 10421 10422 ret = btrfs_update_inode(trans, root, inode); 10423 if (ret) 10424 goto out; 10425 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10426 if (ret) 10427 goto out; 10428 10429 /* 10430 * We set number of links to 0 in btrfs_new_inode(), and here we set 10431 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10432 * through: 10433 * 10434 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10435 */ 10436 set_nlink(inode, 1); 10437 d_tmpfile(dentry, inode); 10438 unlock_new_inode(inode); 10439 mark_inode_dirty(inode); 10440 out: 10441 btrfs_end_transaction(trans); 10442 if (ret && inode) 10443 discard_new_inode(inode); 10444 btrfs_btree_balance_dirty(fs_info); 10445 return ret; 10446 } 10447 10448 __attribute__((const)) 10449 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10450 { 10451 return -EAGAIN; 10452 } 10453 10454 static void btrfs_check_extent_io_range(void *private_data, const char *caller, 10455 u64 start, u64 end) 10456 { 10457 struct inode *inode = private_data; 10458 u64 isize; 10459 10460 isize = i_size_read(inode); 10461 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 10462 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 10463 "%s: ino %llu isize %llu odd range [%llu,%llu]", 10464 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 10465 } 10466 } 10467 10468 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10469 { 10470 struct inode *inode = tree->private_data; 10471 unsigned long index = start >> PAGE_SHIFT; 10472 unsigned long end_index = end >> PAGE_SHIFT; 10473 struct page *page; 10474 10475 while (index <= end_index) { 10476 page = find_get_page(inode->i_mapping, index); 10477 ASSERT(page); /* Pages should be in the extent_io_tree */ 10478 set_page_writeback(page); 10479 put_page(page); 10480 index++; 10481 } 10482 } 10483 10484 static const struct inode_operations btrfs_dir_inode_operations = { 10485 .getattr = btrfs_getattr, 10486 .lookup = btrfs_lookup, 10487 .create = btrfs_create, 10488 .unlink = btrfs_unlink, 10489 .link = btrfs_link, 10490 .mkdir = btrfs_mkdir, 10491 .rmdir = btrfs_rmdir, 10492 .rename = btrfs_rename2, 10493 .symlink = btrfs_symlink, 10494 .setattr = btrfs_setattr, 10495 .mknod = btrfs_mknod, 10496 .listxattr = btrfs_listxattr, 10497 .permission = btrfs_permission, 10498 .get_acl = btrfs_get_acl, 10499 .set_acl = btrfs_set_acl, 10500 .update_time = btrfs_update_time, 10501 .tmpfile = btrfs_tmpfile, 10502 }; 10503 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10504 .lookup = btrfs_lookup, 10505 .permission = btrfs_permission, 10506 .update_time = btrfs_update_time, 10507 }; 10508 10509 static const struct file_operations btrfs_dir_file_operations = { 10510 .llseek = generic_file_llseek, 10511 .read = generic_read_dir, 10512 .iterate_shared = btrfs_real_readdir, 10513 .open = btrfs_opendir, 10514 .unlocked_ioctl = btrfs_ioctl, 10515 #ifdef CONFIG_COMPAT 10516 .compat_ioctl = btrfs_compat_ioctl, 10517 #endif 10518 .release = btrfs_release_file, 10519 .fsync = btrfs_sync_file, 10520 }; 10521 10522 static const struct extent_io_ops btrfs_extent_io_ops = { 10523 /* mandatory callbacks */ 10524 .submit_bio_hook = btrfs_submit_bio_hook, 10525 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10526 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10527 10528 /* optional callbacks */ 10529 .fill_delalloc = run_delalloc_range, 10530 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10531 .writepage_start_hook = btrfs_writepage_start_hook, 10532 .set_bit_hook = btrfs_set_bit_hook, 10533 .clear_bit_hook = btrfs_clear_bit_hook, 10534 .merge_extent_hook = btrfs_merge_extent_hook, 10535 .split_extent_hook = btrfs_split_extent_hook, 10536 .check_extent_io_range = btrfs_check_extent_io_range, 10537 }; 10538 10539 /* 10540 * btrfs doesn't support the bmap operation because swapfiles 10541 * use bmap to make a mapping of extents in the file. They assume 10542 * these extents won't change over the life of the file and they 10543 * use the bmap result to do IO directly to the drive. 10544 * 10545 * the btrfs bmap call would return logical addresses that aren't 10546 * suitable for IO and they also will change frequently as COW 10547 * operations happen. So, swapfile + btrfs == corruption. 10548 * 10549 * For now we're avoiding this by dropping bmap. 10550 */ 10551 static const struct address_space_operations btrfs_aops = { 10552 .readpage = btrfs_readpage, 10553 .writepage = btrfs_writepage, 10554 .writepages = btrfs_writepages, 10555 .readpages = btrfs_readpages, 10556 .direct_IO = btrfs_direct_IO, 10557 .invalidatepage = btrfs_invalidatepage, 10558 .releasepage = btrfs_releasepage, 10559 .set_page_dirty = btrfs_set_page_dirty, 10560 .error_remove_page = generic_error_remove_page, 10561 }; 10562 10563 static const struct inode_operations btrfs_file_inode_operations = { 10564 .getattr = btrfs_getattr, 10565 .setattr = btrfs_setattr, 10566 .listxattr = btrfs_listxattr, 10567 .permission = btrfs_permission, 10568 .fiemap = btrfs_fiemap, 10569 .get_acl = btrfs_get_acl, 10570 .set_acl = btrfs_set_acl, 10571 .update_time = btrfs_update_time, 10572 }; 10573 static const struct inode_operations btrfs_special_inode_operations = { 10574 .getattr = btrfs_getattr, 10575 .setattr = btrfs_setattr, 10576 .permission = btrfs_permission, 10577 .listxattr = btrfs_listxattr, 10578 .get_acl = btrfs_get_acl, 10579 .set_acl = btrfs_set_acl, 10580 .update_time = btrfs_update_time, 10581 }; 10582 static const struct inode_operations btrfs_symlink_inode_operations = { 10583 .get_link = page_get_link, 10584 .getattr = btrfs_getattr, 10585 .setattr = btrfs_setattr, 10586 .permission = btrfs_permission, 10587 .listxattr = btrfs_listxattr, 10588 .update_time = btrfs_update_time, 10589 }; 10590 10591 const struct dentry_operations btrfs_dentry_operations = { 10592 .d_delete = btrfs_dentry_delete, 10593 }; 10594