1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <linux/iomap.h> 34 #include <asm/unaligned.h> 35 #include "misc.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "print-tree.h" 41 #include "ordered-data.h" 42 #include "xattr.h" 43 #include "tree-log.h" 44 #include "volumes.h" 45 #include "compression.h" 46 #include "locking.h" 47 #include "free-space-cache.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 struct btrfs_dio_data { 61 u64 reserve; 62 loff_t length; 63 ssize_t submitted; 64 struct extent_changeset *data_reserved; 65 }; 66 67 static const struct inode_operations btrfs_dir_inode_operations; 68 static const struct inode_operations btrfs_symlink_inode_operations; 69 static const struct inode_operations btrfs_special_inode_operations; 70 static const struct inode_operations btrfs_file_inode_operations; 71 static const struct address_space_operations btrfs_aops; 72 static const struct file_operations btrfs_dir_file_operations; 73 74 static struct kmem_cache *btrfs_inode_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 struct kmem_cache *btrfs_free_space_bitmap_cachep; 79 80 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 81 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 83 static noinline int cow_file_range(struct btrfs_inode *inode, 84 struct page *locked_page, 85 u64 start, u64 end, int *page_started, 86 unsigned long *nr_written, int unlock); 87 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 88 u64 len, u64 orig_start, u64 block_start, 89 u64 block_len, u64 orig_block_len, 90 u64 ram_bytes, int compress_type, 91 int type); 92 93 static void __endio_write_update_ordered(struct btrfs_inode *inode, 94 const u64 offset, const u64 bytes, 95 const bool uptodate); 96 97 /* 98 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 99 * 100 * ilock_flags can have the following bit set: 101 * 102 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 103 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 104 * return -EAGAIN 105 */ 106 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 107 { 108 if (ilock_flags & BTRFS_ILOCK_SHARED) { 109 if (ilock_flags & BTRFS_ILOCK_TRY) { 110 if (!inode_trylock_shared(inode)) 111 return -EAGAIN; 112 else 113 return 0; 114 } 115 inode_lock_shared(inode); 116 } else { 117 if (ilock_flags & BTRFS_ILOCK_TRY) { 118 if (!inode_trylock(inode)) 119 return -EAGAIN; 120 else 121 return 0; 122 } 123 inode_lock(inode); 124 } 125 return 0; 126 } 127 128 /* 129 * btrfs_inode_unlock - unock inode i_rwsem 130 * 131 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 132 * to decide whether the lock acquired is shared or exclusive. 133 */ 134 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 135 { 136 if (ilock_flags & BTRFS_ILOCK_SHARED) 137 inode_unlock_shared(inode); 138 else 139 inode_unlock(inode); 140 } 141 142 /* 143 * Cleanup all submitted ordered extents in specified range to handle errors 144 * from the btrfs_run_delalloc_range() callback. 145 * 146 * NOTE: caller must ensure that when an error happens, it can not call 147 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 148 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 149 * to be released, which we want to happen only when finishing the ordered 150 * extent (btrfs_finish_ordered_io()). 151 */ 152 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 153 struct page *locked_page, 154 u64 offset, u64 bytes) 155 { 156 unsigned long index = offset >> PAGE_SHIFT; 157 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 158 u64 page_start = page_offset(locked_page); 159 u64 page_end = page_start + PAGE_SIZE - 1; 160 161 struct page *page; 162 163 while (index <= end_index) { 164 page = find_get_page(inode->vfs_inode.i_mapping, index); 165 index++; 166 if (!page) 167 continue; 168 ClearPagePrivate2(page); 169 put_page(page); 170 } 171 172 /* 173 * In case this page belongs to the delalloc range being instantiated 174 * then skip it, since the first page of a range is going to be 175 * properly cleaned up by the caller of run_delalloc_range 176 */ 177 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 178 offset += PAGE_SIZE; 179 bytes -= PAGE_SIZE; 180 } 181 182 return __endio_write_update_ordered(inode, offset, bytes, false); 183 } 184 185 static int btrfs_dirty_inode(struct inode *inode); 186 187 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 188 struct inode *inode, struct inode *dir, 189 const struct qstr *qstr) 190 { 191 int err; 192 193 err = btrfs_init_acl(trans, inode, dir); 194 if (!err) 195 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 196 return err; 197 } 198 199 /* 200 * this does all the hard work for inserting an inline extent into 201 * the btree. The caller should have done a btrfs_drop_extents so that 202 * no overlapping inline items exist in the btree 203 */ 204 static int insert_inline_extent(struct btrfs_trans_handle *trans, 205 struct btrfs_path *path, bool extent_inserted, 206 struct btrfs_root *root, struct inode *inode, 207 u64 start, size_t size, size_t compressed_size, 208 int compress_type, 209 struct page **compressed_pages) 210 { 211 struct extent_buffer *leaf; 212 struct page *page = NULL; 213 char *kaddr; 214 unsigned long ptr; 215 struct btrfs_file_extent_item *ei; 216 int ret; 217 size_t cur_size = size; 218 unsigned long offset; 219 220 ASSERT((compressed_size > 0 && compressed_pages) || 221 (compressed_size == 0 && !compressed_pages)); 222 223 if (compressed_size && compressed_pages) 224 cur_size = compressed_size; 225 226 if (!extent_inserted) { 227 struct btrfs_key key; 228 size_t datasize; 229 230 key.objectid = btrfs_ino(BTRFS_I(inode)); 231 key.offset = start; 232 key.type = BTRFS_EXTENT_DATA_KEY; 233 234 datasize = btrfs_file_extent_calc_inline_size(cur_size); 235 ret = btrfs_insert_empty_item(trans, root, path, &key, 236 datasize); 237 if (ret) 238 goto fail; 239 } 240 leaf = path->nodes[0]; 241 ei = btrfs_item_ptr(leaf, path->slots[0], 242 struct btrfs_file_extent_item); 243 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 244 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 245 btrfs_set_file_extent_encryption(leaf, ei, 0); 246 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 247 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 248 ptr = btrfs_file_extent_inline_start(ei); 249 250 if (compress_type != BTRFS_COMPRESS_NONE) { 251 struct page *cpage; 252 int i = 0; 253 while (compressed_size > 0) { 254 cpage = compressed_pages[i]; 255 cur_size = min_t(unsigned long, compressed_size, 256 PAGE_SIZE); 257 258 kaddr = kmap_atomic(cpage); 259 write_extent_buffer(leaf, kaddr, ptr, cur_size); 260 kunmap_atomic(kaddr); 261 262 i++; 263 ptr += cur_size; 264 compressed_size -= cur_size; 265 } 266 btrfs_set_file_extent_compression(leaf, ei, 267 compress_type); 268 } else { 269 page = find_get_page(inode->i_mapping, 270 start >> PAGE_SHIFT); 271 btrfs_set_file_extent_compression(leaf, ei, 0); 272 kaddr = kmap_atomic(page); 273 offset = offset_in_page(start); 274 write_extent_buffer(leaf, kaddr + offset, ptr, size); 275 kunmap_atomic(kaddr); 276 put_page(page); 277 } 278 btrfs_mark_buffer_dirty(leaf); 279 btrfs_release_path(path); 280 281 /* 282 * We align size to sectorsize for inline extents just for simplicity 283 * sake. 284 */ 285 size = ALIGN(size, root->fs_info->sectorsize); 286 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 287 if (ret) 288 goto fail; 289 290 /* 291 * we're an inline extent, so nobody can 292 * extend the file past i_size without locking 293 * a page we already have locked. 294 * 295 * We must do any isize and inode updates 296 * before we unlock the pages. Otherwise we 297 * could end up racing with unlink. 298 */ 299 BTRFS_I(inode)->disk_i_size = inode->i_size; 300 fail: 301 return ret; 302 } 303 304 305 /* 306 * conditionally insert an inline extent into the file. This 307 * does the checks required to make sure the data is small enough 308 * to fit as an inline extent. 309 */ 310 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, 311 u64 end, size_t compressed_size, 312 int compress_type, 313 struct page **compressed_pages) 314 { 315 struct btrfs_drop_extents_args drop_args = { 0 }; 316 struct btrfs_root *root = inode->root; 317 struct btrfs_fs_info *fs_info = root->fs_info; 318 struct btrfs_trans_handle *trans; 319 u64 isize = i_size_read(&inode->vfs_inode); 320 u64 actual_end = min(end + 1, isize); 321 u64 inline_len = actual_end - start; 322 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 323 u64 data_len = inline_len; 324 int ret; 325 struct btrfs_path *path; 326 327 if (compressed_size) 328 data_len = compressed_size; 329 330 if (start > 0 || 331 actual_end > fs_info->sectorsize || 332 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 333 (!compressed_size && 334 (actual_end & (fs_info->sectorsize - 1)) == 0) || 335 end + 1 < isize || 336 data_len > fs_info->max_inline) { 337 return 1; 338 } 339 340 path = btrfs_alloc_path(); 341 if (!path) 342 return -ENOMEM; 343 344 trans = btrfs_join_transaction(root); 345 if (IS_ERR(trans)) { 346 btrfs_free_path(path); 347 return PTR_ERR(trans); 348 } 349 trans->block_rsv = &inode->block_rsv; 350 351 drop_args.path = path; 352 drop_args.start = start; 353 drop_args.end = aligned_end; 354 drop_args.drop_cache = true; 355 drop_args.replace_extent = true; 356 357 if (compressed_size && compressed_pages) 358 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 359 compressed_size); 360 else 361 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 362 inline_len); 363 364 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 365 if (ret) { 366 btrfs_abort_transaction(trans, ret); 367 goto out; 368 } 369 370 if (isize > actual_end) 371 inline_len = min_t(u64, isize, actual_end); 372 ret = insert_inline_extent(trans, path, drop_args.extent_inserted, 373 root, &inode->vfs_inode, start, 374 inline_len, compressed_size, 375 compress_type, compressed_pages); 376 if (ret && ret != -ENOSPC) { 377 btrfs_abort_transaction(trans, ret); 378 goto out; 379 } else if (ret == -ENOSPC) { 380 ret = 1; 381 goto out; 382 } 383 384 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found); 385 ret = btrfs_update_inode(trans, root, inode); 386 if (ret && ret != -ENOSPC) { 387 btrfs_abort_transaction(trans, ret); 388 goto out; 389 } else if (ret == -ENOSPC) { 390 ret = 1; 391 goto out; 392 } 393 394 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 395 out: 396 /* 397 * Don't forget to free the reserved space, as for inlined extent 398 * it won't count as data extent, free them directly here. 399 * And at reserve time, it's always aligned to page size, so 400 * just free one page here. 401 */ 402 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 403 btrfs_free_path(path); 404 btrfs_end_transaction(trans); 405 return ret; 406 } 407 408 struct async_extent { 409 u64 start; 410 u64 ram_size; 411 u64 compressed_size; 412 struct page **pages; 413 unsigned long nr_pages; 414 int compress_type; 415 struct list_head list; 416 }; 417 418 struct async_chunk { 419 struct inode *inode; 420 struct page *locked_page; 421 u64 start; 422 u64 end; 423 unsigned int write_flags; 424 struct list_head extents; 425 struct cgroup_subsys_state *blkcg_css; 426 struct btrfs_work work; 427 atomic_t *pending; 428 }; 429 430 struct async_cow { 431 /* Number of chunks in flight; must be first in the structure */ 432 atomic_t num_chunks; 433 struct async_chunk chunks[]; 434 }; 435 436 static noinline int add_async_extent(struct async_chunk *cow, 437 u64 start, u64 ram_size, 438 u64 compressed_size, 439 struct page **pages, 440 unsigned long nr_pages, 441 int compress_type) 442 { 443 struct async_extent *async_extent; 444 445 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 446 BUG_ON(!async_extent); /* -ENOMEM */ 447 async_extent->start = start; 448 async_extent->ram_size = ram_size; 449 async_extent->compressed_size = compressed_size; 450 async_extent->pages = pages; 451 async_extent->nr_pages = nr_pages; 452 async_extent->compress_type = compress_type; 453 list_add_tail(&async_extent->list, &cow->extents); 454 return 0; 455 } 456 457 /* 458 * Check if the inode has flags compatible with compression 459 */ 460 static inline bool inode_can_compress(struct btrfs_inode *inode) 461 { 462 if (inode->flags & BTRFS_INODE_NODATACOW || 463 inode->flags & BTRFS_INODE_NODATASUM) 464 return false; 465 return true; 466 } 467 468 /* 469 * Check if the inode needs to be submitted to compression, based on mount 470 * options, defragmentation, properties or heuristics. 471 */ 472 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 473 u64 end) 474 { 475 struct btrfs_fs_info *fs_info = inode->root->fs_info; 476 477 if (!inode_can_compress(inode)) { 478 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 479 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 480 btrfs_ino(inode)); 481 return 0; 482 } 483 /* force compress */ 484 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 485 return 1; 486 /* defrag ioctl */ 487 if (inode->defrag_compress) 488 return 1; 489 /* bad compression ratios */ 490 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 491 return 0; 492 if (btrfs_test_opt(fs_info, COMPRESS) || 493 inode->flags & BTRFS_INODE_COMPRESS || 494 inode->prop_compress) 495 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 496 return 0; 497 } 498 499 static inline void inode_should_defrag(struct btrfs_inode *inode, 500 u64 start, u64 end, u64 num_bytes, u64 small_write) 501 { 502 /* If this is a small write inside eof, kick off a defrag */ 503 if (num_bytes < small_write && 504 (start > 0 || end + 1 < inode->disk_i_size)) 505 btrfs_add_inode_defrag(NULL, inode); 506 } 507 508 /* 509 * we create compressed extents in two phases. The first 510 * phase compresses a range of pages that have already been 511 * locked (both pages and state bits are locked). 512 * 513 * This is done inside an ordered work queue, and the compression 514 * is spread across many cpus. The actual IO submission is step 515 * two, and the ordered work queue takes care of making sure that 516 * happens in the same order things were put onto the queue by 517 * writepages and friends. 518 * 519 * If this code finds it can't get good compression, it puts an 520 * entry onto the work queue to write the uncompressed bytes. This 521 * makes sure that both compressed inodes and uncompressed inodes 522 * are written in the same order that the flusher thread sent them 523 * down. 524 */ 525 static noinline int compress_file_range(struct async_chunk *async_chunk) 526 { 527 struct inode *inode = async_chunk->inode; 528 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 529 u64 blocksize = fs_info->sectorsize; 530 u64 start = async_chunk->start; 531 u64 end = async_chunk->end; 532 u64 actual_end; 533 u64 i_size; 534 int ret = 0; 535 struct page **pages = NULL; 536 unsigned long nr_pages; 537 unsigned long total_compressed = 0; 538 unsigned long total_in = 0; 539 int i; 540 int will_compress; 541 int compress_type = fs_info->compress_type; 542 int compressed_extents = 0; 543 int redirty = 0; 544 545 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 546 SZ_16K); 547 548 /* 549 * We need to save i_size before now because it could change in between 550 * us evaluating the size and assigning it. This is because we lock and 551 * unlock the page in truncate and fallocate, and then modify the i_size 552 * later on. 553 * 554 * The barriers are to emulate READ_ONCE, remove that once i_size_read 555 * does that for us. 556 */ 557 barrier(); 558 i_size = i_size_read(inode); 559 barrier(); 560 actual_end = min_t(u64, i_size, end + 1); 561 again: 562 will_compress = 0; 563 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 564 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 565 nr_pages = min_t(unsigned long, nr_pages, 566 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 567 568 /* 569 * we don't want to send crud past the end of i_size through 570 * compression, that's just a waste of CPU time. So, if the 571 * end of the file is before the start of our current 572 * requested range of bytes, we bail out to the uncompressed 573 * cleanup code that can deal with all of this. 574 * 575 * It isn't really the fastest way to fix things, but this is a 576 * very uncommon corner. 577 */ 578 if (actual_end <= start) 579 goto cleanup_and_bail_uncompressed; 580 581 total_compressed = actual_end - start; 582 583 /* 584 * skip compression for a small file range(<=blocksize) that 585 * isn't an inline extent, since it doesn't save disk space at all. 586 */ 587 if (total_compressed <= blocksize && 588 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 589 goto cleanup_and_bail_uncompressed; 590 591 total_compressed = min_t(unsigned long, total_compressed, 592 BTRFS_MAX_UNCOMPRESSED); 593 total_in = 0; 594 ret = 0; 595 596 /* 597 * we do compression for mount -o compress and when the 598 * inode has not been flagged as nocompress. This flag can 599 * change at any time if we discover bad compression ratios. 600 */ 601 if (inode_need_compress(BTRFS_I(inode), start, end)) { 602 WARN_ON(pages); 603 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 604 if (!pages) { 605 /* just bail out to the uncompressed code */ 606 nr_pages = 0; 607 goto cont; 608 } 609 610 if (BTRFS_I(inode)->defrag_compress) 611 compress_type = BTRFS_I(inode)->defrag_compress; 612 else if (BTRFS_I(inode)->prop_compress) 613 compress_type = BTRFS_I(inode)->prop_compress; 614 615 /* 616 * we need to call clear_page_dirty_for_io on each 617 * page in the range. Otherwise applications with the file 618 * mmap'd can wander in and change the page contents while 619 * we are compressing them. 620 * 621 * If the compression fails for any reason, we set the pages 622 * dirty again later on. 623 * 624 * Note that the remaining part is redirtied, the start pointer 625 * has moved, the end is the original one. 626 */ 627 if (!redirty) { 628 extent_range_clear_dirty_for_io(inode, start, end); 629 redirty = 1; 630 } 631 632 /* Compression level is applied here and only here */ 633 ret = btrfs_compress_pages( 634 compress_type | (fs_info->compress_level << 4), 635 inode->i_mapping, start, 636 pages, 637 &nr_pages, 638 &total_in, 639 &total_compressed); 640 641 if (!ret) { 642 unsigned long offset = offset_in_page(total_compressed); 643 struct page *page = pages[nr_pages - 1]; 644 char *kaddr; 645 646 /* zero the tail end of the last page, we might be 647 * sending it down to disk 648 */ 649 if (offset) { 650 kaddr = kmap_atomic(page); 651 memset(kaddr + offset, 0, 652 PAGE_SIZE - offset); 653 kunmap_atomic(kaddr); 654 } 655 will_compress = 1; 656 } 657 } 658 cont: 659 if (start == 0) { 660 /* lets try to make an inline extent */ 661 if (ret || total_in < actual_end) { 662 /* we didn't compress the entire range, try 663 * to make an uncompressed inline extent. 664 */ 665 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 666 0, BTRFS_COMPRESS_NONE, 667 NULL); 668 } else { 669 /* try making a compressed inline extent */ 670 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 671 total_compressed, 672 compress_type, pages); 673 } 674 if (ret <= 0) { 675 unsigned long clear_flags = EXTENT_DELALLOC | 676 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 677 EXTENT_DO_ACCOUNTING; 678 unsigned long page_error_op; 679 680 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 681 682 /* 683 * inline extent creation worked or returned error, 684 * we don't need to create any more async work items. 685 * Unlock and free up our temp pages. 686 * 687 * We use DO_ACCOUNTING here because we need the 688 * delalloc_release_metadata to be done _after_ we drop 689 * our outstanding extent for clearing delalloc for this 690 * range. 691 */ 692 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 693 NULL, 694 clear_flags, 695 PAGE_UNLOCK | 696 PAGE_START_WRITEBACK | 697 page_error_op | 698 PAGE_END_WRITEBACK); 699 700 /* 701 * Ensure we only free the compressed pages if we have 702 * them allocated, as we can still reach here with 703 * inode_need_compress() == false. 704 */ 705 if (pages) { 706 for (i = 0; i < nr_pages; i++) { 707 WARN_ON(pages[i]->mapping); 708 put_page(pages[i]); 709 } 710 kfree(pages); 711 } 712 return 0; 713 } 714 } 715 716 if (will_compress) { 717 /* 718 * we aren't doing an inline extent round the compressed size 719 * up to a block size boundary so the allocator does sane 720 * things 721 */ 722 total_compressed = ALIGN(total_compressed, blocksize); 723 724 /* 725 * one last check to make sure the compression is really a 726 * win, compare the page count read with the blocks on disk, 727 * compression must free at least one sector size 728 */ 729 total_in = ALIGN(total_in, PAGE_SIZE); 730 if (total_compressed + blocksize <= total_in) { 731 compressed_extents++; 732 733 /* 734 * The async work queues will take care of doing actual 735 * allocation on disk for these compressed pages, and 736 * will submit them to the elevator. 737 */ 738 add_async_extent(async_chunk, start, total_in, 739 total_compressed, pages, nr_pages, 740 compress_type); 741 742 if (start + total_in < end) { 743 start += total_in; 744 pages = NULL; 745 cond_resched(); 746 goto again; 747 } 748 return compressed_extents; 749 } 750 } 751 if (pages) { 752 /* 753 * the compression code ran but failed to make things smaller, 754 * free any pages it allocated and our page pointer array 755 */ 756 for (i = 0; i < nr_pages; i++) { 757 WARN_ON(pages[i]->mapping); 758 put_page(pages[i]); 759 } 760 kfree(pages); 761 pages = NULL; 762 total_compressed = 0; 763 nr_pages = 0; 764 765 /* flag the file so we don't compress in the future */ 766 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 767 !(BTRFS_I(inode)->prop_compress)) { 768 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 769 } 770 } 771 cleanup_and_bail_uncompressed: 772 /* 773 * No compression, but we still need to write the pages in the file 774 * we've been given so far. redirty the locked page if it corresponds 775 * to our extent and set things up for the async work queue to run 776 * cow_file_range to do the normal delalloc dance. 777 */ 778 if (async_chunk->locked_page && 779 (page_offset(async_chunk->locked_page) >= start && 780 page_offset(async_chunk->locked_page)) <= end) { 781 __set_page_dirty_nobuffers(async_chunk->locked_page); 782 /* unlocked later on in the async handlers */ 783 } 784 785 if (redirty) 786 extent_range_redirty_for_io(inode, start, end); 787 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 788 BTRFS_COMPRESS_NONE); 789 compressed_extents++; 790 791 return compressed_extents; 792 } 793 794 static void free_async_extent_pages(struct async_extent *async_extent) 795 { 796 int i; 797 798 if (!async_extent->pages) 799 return; 800 801 for (i = 0; i < async_extent->nr_pages; i++) { 802 WARN_ON(async_extent->pages[i]->mapping); 803 put_page(async_extent->pages[i]); 804 } 805 kfree(async_extent->pages); 806 async_extent->nr_pages = 0; 807 async_extent->pages = NULL; 808 } 809 810 /* 811 * phase two of compressed writeback. This is the ordered portion 812 * of the code, which only gets called in the order the work was 813 * queued. We walk all the async extents created by compress_file_range 814 * and send them down to the disk. 815 */ 816 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 817 { 818 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 819 struct btrfs_fs_info *fs_info = inode->root->fs_info; 820 struct async_extent *async_extent; 821 u64 alloc_hint = 0; 822 struct btrfs_key ins; 823 struct extent_map *em; 824 struct btrfs_root *root = inode->root; 825 struct extent_io_tree *io_tree = &inode->io_tree; 826 int ret = 0; 827 828 again: 829 while (!list_empty(&async_chunk->extents)) { 830 async_extent = list_entry(async_chunk->extents.next, 831 struct async_extent, list); 832 list_del(&async_extent->list); 833 834 retry: 835 lock_extent(io_tree, async_extent->start, 836 async_extent->start + async_extent->ram_size - 1); 837 /* did the compression code fall back to uncompressed IO? */ 838 if (!async_extent->pages) { 839 int page_started = 0; 840 unsigned long nr_written = 0; 841 842 /* allocate blocks */ 843 ret = cow_file_range(inode, async_chunk->locked_page, 844 async_extent->start, 845 async_extent->start + 846 async_extent->ram_size - 1, 847 &page_started, &nr_written, 0); 848 849 /* JDM XXX */ 850 851 /* 852 * if page_started, cow_file_range inserted an 853 * inline extent and took care of all the unlocking 854 * and IO for us. Otherwise, we need to submit 855 * all those pages down to the drive. 856 */ 857 if (!page_started && !ret) 858 extent_write_locked_range(&inode->vfs_inode, 859 async_extent->start, 860 async_extent->start + 861 async_extent->ram_size - 1, 862 WB_SYNC_ALL); 863 else if (ret && async_chunk->locked_page) 864 unlock_page(async_chunk->locked_page); 865 kfree(async_extent); 866 cond_resched(); 867 continue; 868 } 869 870 ret = btrfs_reserve_extent(root, async_extent->ram_size, 871 async_extent->compressed_size, 872 async_extent->compressed_size, 873 0, alloc_hint, &ins, 1, 1); 874 if (ret) { 875 free_async_extent_pages(async_extent); 876 877 if (ret == -ENOSPC) { 878 unlock_extent(io_tree, async_extent->start, 879 async_extent->start + 880 async_extent->ram_size - 1); 881 882 /* 883 * we need to redirty the pages if we decide to 884 * fallback to uncompressed IO, otherwise we 885 * will not submit these pages down to lower 886 * layers. 887 */ 888 extent_range_redirty_for_io(&inode->vfs_inode, 889 async_extent->start, 890 async_extent->start + 891 async_extent->ram_size - 1); 892 893 goto retry; 894 } 895 goto out_free; 896 } 897 /* 898 * here we're doing allocation and writeback of the 899 * compressed pages 900 */ 901 em = create_io_em(inode, async_extent->start, 902 async_extent->ram_size, /* len */ 903 async_extent->start, /* orig_start */ 904 ins.objectid, /* block_start */ 905 ins.offset, /* block_len */ 906 ins.offset, /* orig_block_len */ 907 async_extent->ram_size, /* ram_bytes */ 908 async_extent->compress_type, 909 BTRFS_ORDERED_COMPRESSED); 910 if (IS_ERR(em)) 911 /* ret value is not necessary due to void function */ 912 goto out_free_reserve; 913 free_extent_map(em); 914 915 ret = btrfs_add_ordered_extent_compress(inode, 916 async_extent->start, 917 ins.objectid, 918 async_extent->ram_size, 919 ins.offset, 920 async_extent->compress_type); 921 if (ret) { 922 btrfs_drop_extent_cache(inode, async_extent->start, 923 async_extent->start + 924 async_extent->ram_size - 1, 0); 925 goto out_free_reserve; 926 } 927 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 928 929 /* 930 * clear dirty, set writeback and unlock the pages. 931 */ 932 extent_clear_unlock_delalloc(inode, async_extent->start, 933 async_extent->start + 934 async_extent->ram_size - 1, 935 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 936 PAGE_UNLOCK | PAGE_START_WRITEBACK); 937 if (btrfs_submit_compressed_write(inode, async_extent->start, 938 async_extent->ram_size, 939 ins.objectid, 940 ins.offset, async_extent->pages, 941 async_extent->nr_pages, 942 async_chunk->write_flags, 943 async_chunk->blkcg_css)) { 944 struct page *p = async_extent->pages[0]; 945 const u64 start = async_extent->start; 946 const u64 end = start + async_extent->ram_size - 1; 947 948 p->mapping = inode->vfs_inode.i_mapping; 949 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 950 951 p->mapping = NULL; 952 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 953 PAGE_END_WRITEBACK | 954 PAGE_SET_ERROR); 955 free_async_extent_pages(async_extent); 956 } 957 alloc_hint = ins.objectid + ins.offset; 958 kfree(async_extent); 959 cond_resched(); 960 } 961 return; 962 out_free_reserve: 963 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 964 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 965 out_free: 966 extent_clear_unlock_delalloc(inode, async_extent->start, 967 async_extent->start + 968 async_extent->ram_size - 1, 969 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 970 EXTENT_DELALLOC_NEW | 971 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 972 PAGE_UNLOCK | PAGE_START_WRITEBACK | 973 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 974 free_async_extent_pages(async_extent); 975 kfree(async_extent); 976 goto again; 977 } 978 979 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 980 u64 num_bytes) 981 { 982 struct extent_map_tree *em_tree = &inode->extent_tree; 983 struct extent_map *em; 984 u64 alloc_hint = 0; 985 986 read_lock(&em_tree->lock); 987 em = search_extent_mapping(em_tree, start, num_bytes); 988 if (em) { 989 /* 990 * if block start isn't an actual block number then find the 991 * first block in this inode and use that as a hint. If that 992 * block is also bogus then just don't worry about it. 993 */ 994 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 995 free_extent_map(em); 996 em = search_extent_mapping(em_tree, 0, 0); 997 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 998 alloc_hint = em->block_start; 999 if (em) 1000 free_extent_map(em); 1001 } else { 1002 alloc_hint = em->block_start; 1003 free_extent_map(em); 1004 } 1005 } 1006 read_unlock(&em_tree->lock); 1007 1008 return alloc_hint; 1009 } 1010 1011 /* 1012 * when extent_io.c finds a delayed allocation range in the file, 1013 * the call backs end up in this code. The basic idea is to 1014 * allocate extents on disk for the range, and create ordered data structs 1015 * in ram to track those extents. 1016 * 1017 * locked_page is the page that writepage had locked already. We use 1018 * it to make sure we don't do extra locks or unlocks. 1019 * 1020 * *page_started is set to one if we unlock locked_page and do everything 1021 * required to start IO on it. It may be clean and already done with 1022 * IO when we return. 1023 */ 1024 static noinline int cow_file_range(struct btrfs_inode *inode, 1025 struct page *locked_page, 1026 u64 start, u64 end, int *page_started, 1027 unsigned long *nr_written, int unlock) 1028 { 1029 struct btrfs_root *root = inode->root; 1030 struct btrfs_fs_info *fs_info = root->fs_info; 1031 u64 alloc_hint = 0; 1032 u64 num_bytes; 1033 unsigned long ram_size; 1034 u64 cur_alloc_size = 0; 1035 u64 min_alloc_size; 1036 u64 blocksize = fs_info->sectorsize; 1037 struct btrfs_key ins; 1038 struct extent_map *em; 1039 unsigned clear_bits; 1040 unsigned long page_ops; 1041 bool extent_reserved = false; 1042 int ret = 0; 1043 1044 if (btrfs_is_free_space_inode(inode)) { 1045 WARN_ON_ONCE(1); 1046 ret = -EINVAL; 1047 goto out_unlock; 1048 } 1049 1050 num_bytes = ALIGN(end - start + 1, blocksize); 1051 num_bytes = max(blocksize, num_bytes); 1052 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1053 1054 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1055 1056 if (start == 0) { 1057 /* lets try to make an inline extent */ 1058 ret = cow_file_range_inline(inode, start, end, 0, 1059 BTRFS_COMPRESS_NONE, NULL); 1060 if (ret == 0) { 1061 /* 1062 * We use DO_ACCOUNTING here because we need the 1063 * delalloc_release_metadata to be run _after_ we drop 1064 * our outstanding extent for clearing delalloc for this 1065 * range. 1066 */ 1067 extent_clear_unlock_delalloc(inode, start, end, NULL, 1068 EXTENT_LOCKED | EXTENT_DELALLOC | 1069 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1070 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1071 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1072 *nr_written = *nr_written + 1073 (end - start + PAGE_SIZE) / PAGE_SIZE; 1074 *page_started = 1; 1075 goto out; 1076 } else if (ret < 0) { 1077 goto out_unlock; 1078 } 1079 } 1080 1081 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1082 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1083 1084 /* 1085 * Relocation relies on the relocated extents to have exactly the same 1086 * size as the original extents. Normally writeback for relocation data 1087 * extents follows a NOCOW path because relocation preallocates the 1088 * extents. However, due to an operation such as scrub turning a block 1089 * group to RO mode, it may fallback to COW mode, so we must make sure 1090 * an extent allocated during COW has exactly the requested size and can 1091 * not be split into smaller extents, otherwise relocation breaks and 1092 * fails during the stage where it updates the bytenr of file extent 1093 * items. 1094 */ 1095 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1096 min_alloc_size = num_bytes; 1097 else 1098 min_alloc_size = fs_info->sectorsize; 1099 1100 while (num_bytes > 0) { 1101 cur_alloc_size = num_bytes; 1102 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1103 min_alloc_size, 0, alloc_hint, 1104 &ins, 1, 1); 1105 if (ret < 0) 1106 goto out_unlock; 1107 cur_alloc_size = ins.offset; 1108 extent_reserved = true; 1109 1110 ram_size = ins.offset; 1111 em = create_io_em(inode, start, ins.offset, /* len */ 1112 start, /* orig_start */ 1113 ins.objectid, /* block_start */ 1114 ins.offset, /* block_len */ 1115 ins.offset, /* orig_block_len */ 1116 ram_size, /* ram_bytes */ 1117 BTRFS_COMPRESS_NONE, /* compress_type */ 1118 BTRFS_ORDERED_REGULAR /* type */); 1119 if (IS_ERR(em)) { 1120 ret = PTR_ERR(em); 1121 goto out_reserve; 1122 } 1123 free_extent_map(em); 1124 1125 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1126 ram_size, cur_alloc_size, 1127 BTRFS_ORDERED_REGULAR); 1128 if (ret) 1129 goto out_drop_extent_cache; 1130 1131 if (root->root_key.objectid == 1132 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1133 ret = btrfs_reloc_clone_csums(inode, start, 1134 cur_alloc_size); 1135 /* 1136 * Only drop cache here, and process as normal. 1137 * 1138 * We must not allow extent_clear_unlock_delalloc() 1139 * at out_unlock label to free meta of this ordered 1140 * extent, as its meta should be freed by 1141 * btrfs_finish_ordered_io(). 1142 * 1143 * So we must continue until @start is increased to 1144 * skip current ordered extent. 1145 */ 1146 if (ret) 1147 btrfs_drop_extent_cache(inode, start, 1148 start + ram_size - 1, 0); 1149 } 1150 1151 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1152 1153 /* we're not doing compressed IO, don't unlock the first 1154 * page (which the caller expects to stay locked), don't 1155 * clear any dirty bits and don't set any writeback bits 1156 * 1157 * Do set the Private2 bit so we know this page was properly 1158 * setup for writepage 1159 */ 1160 page_ops = unlock ? PAGE_UNLOCK : 0; 1161 page_ops |= PAGE_SET_PRIVATE2; 1162 1163 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1164 locked_page, 1165 EXTENT_LOCKED | EXTENT_DELALLOC, 1166 page_ops); 1167 if (num_bytes < cur_alloc_size) 1168 num_bytes = 0; 1169 else 1170 num_bytes -= cur_alloc_size; 1171 alloc_hint = ins.objectid + ins.offset; 1172 start += cur_alloc_size; 1173 extent_reserved = false; 1174 1175 /* 1176 * btrfs_reloc_clone_csums() error, since start is increased 1177 * extent_clear_unlock_delalloc() at out_unlock label won't 1178 * free metadata of current ordered extent, we're OK to exit. 1179 */ 1180 if (ret) 1181 goto out_unlock; 1182 } 1183 out: 1184 return ret; 1185 1186 out_drop_extent_cache: 1187 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1188 out_reserve: 1189 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1190 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1191 out_unlock: 1192 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1193 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1194 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1195 /* 1196 * If we reserved an extent for our delalloc range (or a subrange) and 1197 * failed to create the respective ordered extent, then it means that 1198 * when we reserved the extent we decremented the extent's size from 1199 * the data space_info's bytes_may_use counter and incremented the 1200 * space_info's bytes_reserved counter by the same amount. We must make 1201 * sure extent_clear_unlock_delalloc() does not try to decrement again 1202 * the data space_info's bytes_may_use counter, therefore we do not pass 1203 * it the flag EXTENT_CLEAR_DATA_RESV. 1204 */ 1205 if (extent_reserved) { 1206 extent_clear_unlock_delalloc(inode, start, 1207 start + cur_alloc_size - 1, 1208 locked_page, 1209 clear_bits, 1210 page_ops); 1211 start += cur_alloc_size; 1212 if (start >= end) 1213 goto out; 1214 } 1215 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1216 clear_bits | EXTENT_CLEAR_DATA_RESV, 1217 page_ops); 1218 goto out; 1219 } 1220 1221 /* 1222 * work queue call back to started compression on a file and pages 1223 */ 1224 static noinline void async_cow_start(struct btrfs_work *work) 1225 { 1226 struct async_chunk *async_chunk; 1227 int compressed_extents; 1228 1229 async_chunk = container_of(work, struct async_chunk, work); 1230 1231 compressed_extents = compress_file_range(async_chunk); 1232 if (compressed_extents == 0) { 1233 btrfs_add_delayed_iput(async_chunk->inode); 1234 async_chunk->inode = NULL; 1235 } 1236 } 1237 1238 /* 1239 * work queue call back to submit previously compressed pages 1240 */ 1241 static noinline void async_cow_submit(struct btrfs_work *work) 1242 { 1243 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1244 work); 1245 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1246 unsigned long nr_pages; 1247 1248 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1249 PAGE_SHIFT; 1250 1251 /* atomic_sub_return implies a barrier */ 1252 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1253 5 * SZ_1M) 1254 cond_wake_up_nomb(&fs_info->async_submit_wait); 1255 1256 /* 1257 * ->inode could be NULL if async_chunk_start has failed to compress, 1258 * in which case we don't have anything to submit, yet we need to 1259 * always adjust ->async_delalloc_pages as its paired with the init 1260 * happening in cow_file_range_async 1261 */ 1262 if (async_chunk->inode) 1263 submit_compressed_extents(async_chunk); 1264 } 1265 1266 static noinline void async_cow_free(struct btrfs_work *work) 1267 { 1268 struct async_chunk *async_chunk; 1269 1270 async_chunk = container_of(work, struct async_chunk, work); 1271 if (async_chunk->inode) 1272 btrfs_add_delayed_iput(async_chunk->inode); 1273 if (async_chunk->blkcg_css) 1274 css_put(async_chunk->blkcg_css); 1275 /* 1276 * Since the pointer to 'pending' is at the beginning of the array of 1277 * async_chunk's, freeing it ensures the whole array has been freed. 1278 */ 1279 if (atomic_dec_and_test(async_chunk->pending)) 1280 kvfree(async_chunk->pending); 1281 } 1282 1283 static int cow_file_range_async(struct btrfs_inode *inode, 1284 struct writeback_control *wbc, 1285 struct page *locked_page, 1286 u64 start, u64 end, int *page_started, 1287 unsigned long *nr_written) 1288 { 1289 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1290 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1291 struct async_cow *ctx; 1292 struct async_chunk *async_chunk; 1293 unsigned long nr_pages; 1294 u64 cur_end; 1295 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1296 int i; 1297 bool should_compress; 1298 unsigned nofs_flag; 1299 const unsigned int write_flags = wbc_to_write_flags(wbc); 1300 1301 unlock_extent(&inode->io_tree, start, end); 1302 1303 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1304 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1305 num_chunks = 1; 1306 should_compress = false; 1307 } else { 1308 should_compress = true; 1309 } 1310 1311 nofs_flag = memalloc_nofs_save(); 1312 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1313 memalloc_nofs_restore(nofs_flag); 1314 1315 if (!ctx) { 1316 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1317 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1318 EXTENT_DO_ACCOUNTING; 1319 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1320 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1321 1322 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1323 clear_bits, page_ops); 1324 return -ENOMEM; 1325 } 1326 1327 async_chunk = ctx->chunks; 1328 atomic_set(&ctx->num_chunks, num_chunks); 1329 1330 for (i = 0; i < num_chunks; i++) { 1331 if (should_compress) 1332 cur_end = min(end, start + SZ_512K - 1); 1333 else 1334 cur_end = end; 1335 1336 /* 1337 * igrab is called higher up in the call chain, take only the 1338 * lightweight reference for the callback lifetime 1339 */ 1340 ihold(&inode->vfs_inode); 1341 async_chunk[i].pending = &ctx->num_chunks; 1342 async_chunk[i].inode = &inode->vfs_inode; 1343 async_chunk[i].start = start; 1344 async_chunk[i].end = cur_end; 1345 async_chunk[i].write_flags = write_flags; 1346 INIT_LIST_HEAD(&async_chunk[i].extents); 1347 1348 /* 1349 * The locked_page comes all the way from writepage and its 1350 * the original page we were actually given. As we spread 1351 * this large delalloc region across multiple async_chunk 1352 * structs, only the first struct needs a pointer to locked_page 1353 * 1354 * This way we don't need racey decisions about who is supposed 1355 * to unlock it. 1356 */ 1357 if (locked_page) { 1358 /* 1359 * Depending on the compressibility, the pages might or 1360 * might not go through async. We want all of them to 1361 * be accounted against wbc once. Let's do it here 1362 * before the paths diverge. wbc accounting is used 1363 * only for foreign writeback detection and doesn't 1364 * need full accuracy. Just account the whole thing 1365 * against the first page. 1366 */ 1367 wbc_account_cgroup_owner(wbc, locked_page, 1368 cur_end - start); 1369 async_chunk[i].locked_page = locked_page; 1370 locked_page = NULL; 1371 } else { 1372 async_chunk[i].locked_page = NULL; 1373 } 1374 1375 if (blkcg_css != blkcg_root_css) { 1376 css_get(blkcg_css); 1377 async_chunk[i].blkcg_css = blkcg_css; 1378 } else { 1379 async_chunk[i].blkcg_css = NULL; 1380 } 1381 1382 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1383 async_cow_submit, async_cow_free); 1384 1385 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1386 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1387 1388 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1389 1390 *nr_written += nr_pages; 1391 start = cur_end + 1; 1392 } 1393 *page_started = 1; 1394 return 0; 1395 } 1396 1397 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1398 struct page *locked_page, u64 start, 1399 u64 end, int *page_started, 1400 unsigned long *nr_written) 1401 { 1402 int ret; 1403 1404 ret = cow_file_range(inode, locked_page, start, end, page_started, 1405 nr_written, 0); 1406 if (ret) 1407 return ret; 1408 1409 if (*page_started) 1410 return 0; 1411 1412 __set_page_dirty_nobuffers(locked_page); 1413 account_page_redirty(locked_page); 1414 extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL); 1415 *page_started = 1; 1416 1417 return 0; 1418 } 1419 1420 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1421 u64 bytenr, u64 num_bytes) 1422 { 1423 int ret; 1424 struct btrfs_ordered_sum *sums; 1425 LIST_HEAD(list); 1426 1427 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1428 bytenr + num_bytes - 1, &list, 0); 1429 if (ret == 0 && list_empty(&list)) 1430 return 0; 1431 1432 while (!list_empty(&list)) { 1433 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1434 list_del(&sums->list); 1435 kfree(sums); 1436 } 1437 if (ret < 0) 1438 return ret; 1439 return 1; 1440 } 1441 1442 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1443 const u64 start, const u64 end, 1444 int *page_started, unsigned long *nr_written) 1445 { 1446 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1447 const bool is_reloc_ino = (inode->root->root_key.objectid == 1448 BTRFS_DATA_RELOC_TREE_OBJECTID); 1449 const u64 range_bytes = end + 1 - start; 1450 struct extent_io_tree *io_tree = &inode->io_tree; 1451 u64 range_start = start; 1452 u64 count; 1453 1454 /* 1455 * If EXTENT_NORESERVE is set it means that when the buffered write was 1456 * made we had not enough available data space and therefore we did not 1457 * reserve data space for it, since we though we could do NOCOW for the 1458 * respective file range (either there is prealloc extent or the inode 1459 * has the NOCOW bit set). 1460 * 1461 * However when we need to fallback to COW mode (because for example the 1462 * block group for the corresponding extent was turned to RO mode by a 1463 * scrub or relocation) we need to do the following: 1464 * 1465 * 1) We increment the bytes_may_use counter of the data space info. 1466 * If COW succeeds, it allocates a new data extent and after doing 1467 * that it decrements the space info's bytes_may_use counter and 1468 * increments its bytes_reserved counter by the same amount (we do 1469 * this at btrfs_add_reserved_bytes()). So we need to increment the 1470 * bytes_may_use counter to compensate (when space is reserved at 1471 * buffered write time, the bytes_may_use counter is incremented); 1472 * 1473 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1474 * that if the COW path fails for any reason, it decrements (through 1475 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1476 * data space info, which we incremented in the step above. 1477 * 1478 * If we need to fallback to cow and the inode corresponds to a free 1479 * space cache inode or an inode of the data relocation tree, we must 1480 * also increment bytes_may_use of the data space_info for the same 1481 * reason. Space caches and relocated data extents always get a prealloc 1482 * extent for them, however scrub or balance may have set the block 1483 * group that contains that extent to RO mode and therefore force COW 1484 * when starting writeback. 1485 */ 1486 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1487 EXTENT_NORESERVE, 0); 1488 if (count > 0 || is_space_ino || is_reloc_ino) { 1489 u64 bytes = count; 1490 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1491 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1492 1493 if (is_space_ino || is_reloc_ino) 1494 bytes = range_bytes; 1495 1496 spin_lock(&sinfo->lock); 1497 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1498 spin_unlock(&sinfo->lock); 1499 1500 if (count > 0) 1501 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1502 0, 0, NULL); 1503 } 1504 1505 return cow_file_range(inode, locked_page, start, end, page_started, 1506 nr_written, 1); 1507 } 1508 1509 /* 1510 * when nowcow writeback call back. This checks for snapshots or COW copies 1511 * of the extents that exist in the file, and COWs the file as required. 1512 * 1513 * If no cow copies or snapshots exist, we write directly to the existing 1514 * blocks on disk 1515 */ 1516 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1517 struct page *locked_page, 1518 const u64 start, const u64 end, 1519 int *page_started, int force, 1520 unsigned long *nr_written) 1521 { 1522 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1523 struct btrfs_root *root = inode->root; 1524 struct btrfs_path *path; 1525 u64 cow_start = (u64)-1; 1526 u64 cur_offset = start; 1527 int ret; 1528 bool check_prev = true; 1529 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1530 u64 ino = btrfs_ino(inode); 1531 bool nocow = false; 1532 u64 disk_bytenr = 0; 1533 1534 path = btrfs_alloc_path(); 1535 if (!path) { 1536 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1537 EXTENT_LOCKED | EXTENT_DELALLOC | 1538 EXTENT_DO_ACCOUNTING | 1539 EXTENT_DEFRAG, PAGE_UNLOCK | 1540 PAGE_START_WRITEBACK | 1541 PAGE_END_WRITEBACK); 1542 return -ENOMEM; 1543 } 1544 1545 while (1) { 1546 struct btrfs_key found_key; 1547 struct btrfs_file_extent_item *fi; 1548 struct extent_buffer *leaf; 1549 u64 extent_end; 1550 u64 extent_offset; 1551 u64 num_bytes = 0; 1552 u64 disk_num_bytes; 1553 u64 ram_bytes; 1554 int extent_type; 1555 1556 nocow = false; 1557 1558 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1559 cur_offset, 0); 1560 if (ret < 0) 1561 goto error; 1562 1563 /* 1564 * If there is no extent for our range when doing the initial 1565 * search, then go back to the previous slot as it will be the 1566 * one containing the search offset 1567 */ 1568 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1569 leaf = path->nodes[0]; 1570 btrfs_item_key_to_cpu(leaf, &found_key, 1571 path->slots[0] - 1); 1572 if (found_key.objectid == ino && 1573 found_key.type == BTRFS_EXTENT_DATA_KEY) 1574 path->slots[0]--; 1575 } 1576 check_prev = false; 1577 next_slot: 1578 /* Go to next leaf if we have exhausted the current one */ 1579 leaf = path->nodes[0]; 1580 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1581 ret = btrfs_next_leaf(root, path); 1582 if (ret < 0) { 1583 if (cow_start != (u64)-1) 1584 cur_offset = cow_start; 1585 goto error; 1586 } 1587 if (ret > 0) 1588 break; 1589 leaf = path->nodes[0]; 1590 } 1591 1592 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1593 1594 /* Didn't find anything for our INO */ 1595 if (found_key.objectid > ino) 1596 break; 1597 /* 1598 * Keep searching until we find an EXTENT_ITEM or there are no 1599 * more extents for this inode 1600 */ 1601 if (WARN_ON_ONCE(found_key.objectid < ino) || 1602 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1603 path->slots[0]++; 1604 goto next_slot; 1605 } 1606 1607 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1608 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1609 found_key.offset > end) 1610 break; 1611 1612 /* 1613 * If the found extent starts after requested offset, then 1614 * adjust extent_end to be right before this extent begins 1615 */ 1616 if (found_key.offset > cur_offset) { 1617 extent_end = found_key.offset; 1618 extent_type = 0; 1619 goto out_check; 1620 } 1621 1622 /* 1623 * Found extent which begins before our range and potentially 1624 * intersect it 1625 */ 1626 fi = btrfs_item_ptr(leaf, path->slots[0], 1627 struct btrfs_file_extent_item); 1628 extent_type = btrfs_file_extent_type(leaf, fi); 1629 1630 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1631 if (extent_type == BTRFS_FILE_EXTENT_REG || 1632 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1633 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1634 extent_offset = btrfs_file_extent_offset(leaf, fi); 1635 extent_end = found_key.offset + 1636 btrfs_file_extent_num_bytes(leaf, fi); 1637 disk_num_bytes = 1638 btrfs_file_extent_disk_num_bytes(leaf, fi); 1639 /* 1640 * If the extent we got ends before our current offset, 1641 * skip to the next extent. 1642 */ 1643 if (extent_end <= cur_offset) { 1644 path->slots[0]++; 1645 goto next_slot; 1646 } 1647 /* Skip holes */ 1648 if (disk_bytenr == 0) 1649 goto out_check; 1650 /* Skip compressed/encrypted/encoded extents */ 1651 if (btrfs_file_extent_compression(leaf, fi) || 1652 btrfs_file_extent_encryption(leaf, fi) || 1653 btrfs_file_extent_other_encoding(leaf, fi)) 1654 goto out_check; 1655 /* 1656 * If extent is created before the last volume's snapshot 1657 * this implies the extent is shared, hence we can't do 1658 * nocow. This is the same check as in 1659 * btrfs_cross_ref_exist but without calling 1660 * btrfs_search_slot. 1661 */ 1662 if (!freespace_inode && 1663 btrfs_file_extent_generation(leaf, fi) <= 1664 btrfs_root_last_snapshot(&root->root_item)) 1665 goto out_check; 1666 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1667 goto out_check; 1668 1669 /* 1670 * The following checks can be expensive, as they need to 1671 * take other locks and do btree or rbtree searches, so 1672 * release the path to avoid blocking other tasks for too 1673 * long. 1674 */ 1675 btrfs_release_path(path); 1676 1677 ret = btrfs_cross_ref_exist(root, ino, 1678 found_key.offset - 1679 extent_offset, disk_bytenr, false); 1680 if (ret) { 1681 /* 1682 * ret could be -EIO if the above fails to read 1683 * metadata. 1684 */ 1685 if (ret < 0) { 1686 if (cow_start != (u64)-1) 1687 cur_offset = cow_start; 1688 goto error; 1689 } 1690 1691 WARN_ON_ONCE(freespace_inode); 1692 goto out_check; 1693 } 1694 disk_bytenr += extent_offset; 1695 disk_bytenr += cur_offset - found_key.offset; 1696 num_bytes = min(end + 1, extent_end) - cur_offset; 1697 /* 1698 * If there are pending snapshots for this root, we 1699 * fall into common COW way 1700 */ 1701 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1702 goto out_check; 1703 /* 1704 * force cow if csum exists in the range. 1705 * this ensure that csum for a given extent are 1706 * either valid or do not exist. 1707 */ 1708 ret = csum_exist_in_range(fs_info, disk_bytenr, 1709 num_bytes); 1710 if (ret) { 1711 /* 1712 * ret could be -EIO if the above fails to read 1713 * metadata. 1714 */ 1715 if (ret < 0) { 1716 if (cow_start != (u64)-1) 1717 cur_offset = cow_start; 1718 goto error; 1719 } 1720 WARN_ON_ONCE(freespace_inode); 1721 goto out_check; 1722 } 1723 /* If the extent's block group is RO, we must COW */ 1724 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1725 goto out_check; 1726 nocow = true; 1727 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1728 extent_end = found_key.offset + ram_bytes; 1729 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1730 /* Skip extents outside of our requested range */ 1731 if (extent_end <= start) { 1732 path->slots[0]++; 1733 goto next_slot; 1734 } 1735 } else { 1736 /* If this triggers then we have a memory corruption */ 1737 BUG(); 1738 } 1739 out_check: 1740 /* 1741 * If nocow is false then record the beginning of the range 1742 * that needs to be COWed 1743 */ 1744 if (!nocow) { 1745 if (cow_start == (u64)-1) 1746 cow_start = cur_offset; 1747 cur_offset = extent_end; 1748 if (cur_offset > end) 1749 break; 1750 if (!path->nodes[0]) 1751 continue; 1752 path->slots[0]++; 1753 goto next_slot; 1754 } 1755 1756 /* 1757 * COW range from cow_start to found_key.offset - 1. As the key 1758 * will contain the beginning of the first extent that can be 1759 * NOCOW, following one which needs to be COW'ed 1760 */ 1761 if (cow_start != (u64)-1) { 1762 ret = fallback_to_cow(inode, locked_page, 1763 cow_start, found_key.offset - 1, 1764 page_started, nr_written); 1765 if (ret) 1766 goto error; 1767 cow_start = (u64)-1; 1768 } 1769 1770 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1771 u64 orig_start = found_key.offset - extent_offset; 1772 struct extent_map *em; 1773 1774 em = create_io_em(inode, cur_offset, num_bytes, 1775 orig_start, 1776 disk_bytenr, /* block_start */ 1777 num_bytes, /* block_len */ 1778 disk_num_bytes, /* orig_block_len */ 1779 ram_bytes, BTRFS_COMPRESS_NONE, 1780 BTRFS_ORDERED_PREALLOC); 1781 if (IS_ERR(em)) { 1782 ret = PTR_ERR(em); 1783 goto error; 1784 } 1785 free_extent_map(em); 1786 ret = btrfs_add_ordered_extent(inode, cur_offset, 1787 disk_bytenr, num_bytes, 1788 num_bytes, 1789 BTRFS_ORDERED_PREALLOC); 1790 if (ret) { 1791 btrfs_drop_extent_cache(inode, cur_offset, 1792 cur_offset + num_bytes - 1, 1793 0); 1794 goto error; 1795 } 1796 } else { 1797 ret = btrfs_add_ordered_extent(inode, cur_offset, 1798 disk_bytenr, num_bytes, 1799 num_bytes, 1800 BTRFS_ORDERED_NOCOW); 1801 if (ret) 1802 goto error; 1803 } 1804 1805 if (nocow) 1806 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1807 nocow = false; 1808 1809 if (root->root_key.objectid == 1810 BTRFS_DATA_RELOC_TREE_OBJECTID) 1811 /* 1812 * Error handled later, as we must prevent 1813 * extent_clear_unlock_delalloc() in error handler 1814 * from freeing metadata of created ordered extent. 1815 */ 1816 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1817 num_bytes); 1818 1819 extent_clear_unlock_delalloc(inode, cur_offset, 1820 cur_offset + num_bytes - 1, 1821 locked_page, EXTENT_LOCKED | 1822 EXTENT_DELALLOC | 1823 EXTENT_CLEAR_DATA_RESV, 1824 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1825 1826 cur_offset = extent_end; 1827 1828 /* 1829 * btrfs_reloc_clone_csums() error, now we're OK to call error 1830 * handler, as metadata for created ordered extent will only 1831 * be freed by btrfs_finish_ordered_io(). 1832 */ 1833 if (ret) 1834 goto error; 1835 if (cur_offset > end) 1836 break; 1837 } 1838 btrfs_release_path(path); 1839 1840 if (cur_offset <= end && cow_start == (u64)-1) 1841 cow_start = cur_offset; 1842 1843 if (cow_start != (u64)-1) { 1844 cur_offset = end; 1845 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1846 page_started, nr_written); 1847 if (ret) 1848 goto error; 1849 } 1850 1851 error: 1852 if (nocow) 1853 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1854 1855 if (ret && cur_offset < end) 1856 extent_clear_unlock_delalloc(inode, cur_offset, end, 1857 locked_page, EXTENT_LOCKED | 1858 EXTENT_DELALLOC | EXTENT_DEFRAG | 1859 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1860 PAGE_START_WRITEBACK | 1861 PAGE_END_WRITEBACK); 1862 btrfs_free_path(path); 1863 return ret; 1864 } 1865 1866 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end) 1867 { 1868 1869 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1870 !(inode->flags & BTRFS_INODE_PREALLOC)) 1871 return 0; 1872 1873 /* 1874 * @defrag_bytes is a hint value, no spinlock held here, 1875 * if is not zero, it means the file is defragging. 1876 * Force cow if given extent needs to be defragged. 1877 */ 1878 if (inode->defrag_bytes && 1879 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL)) 1880 return 1; 1881 1882 return 0; 1883 } 1884 1885 /* 1886 * Function to process delayed allocation (create CoW) for ranges which are 1887 * being touched for the first time. 1888 */ 1889 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1890 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1891 struct writeback_control *wbc) 1892 { 1893 int ret; 1894 int force_cow = need_force_cow(inode, start, end); 1895 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 1896 1897 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1898 ASSERT(!zoned); 1899 ret = run_delalloc_nocow(inode, locked_page, start, end, 1900 page_started, 1, nr_written); 1901 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1902 ASSERT(!zoned); 1903 ret = run_delalloc_nocow(inode, locked_page, start, end, 1904 page_started, 0, nr_written); 1905 } else if (!inode_can_compress(inode) || 1906 !inode_need_compress(inode, start, end)) { 1907 if (zoned) 1908 ret = run_delalloc_zoned(inode, locked_page, start, end, 1909 page_started, nr_written); 1910 else 1911 ret = cow_file_range(inode, locked_page, start, end, 1912 page_started, nr_written, 1); 1913 } else { 1914 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1915 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1916 page_started, nr_written); 1917 } 1918 if (ret) 1919 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1920 end - start + 1); 1921 return ret; 1922 } 1923 1924 void btrfs_split_delalloc_extent(struct inode *inode, 1925 struct extent_state *orig, u64 split) 1926 { 1927 u64 size; 1928 1929 /* not delalloc, ignore it */ 1930 if (!(orig->state & EXTENT_DELALLOC)) 1931 return; 1932 1933 size = orig->end - orig->start + 1; 1934 if (size > BTRFS_MAX_EXTENT_SIZE) { 1935 u32 num_extents; 1936 u64 new_size; 1937 1938 /* 1939 * See the explanation in btrfs_merge_delalloc_extent, the same 1940 * applies here, just in reverse. 1941 */ 1942 new_size = orig->end - split + 1; 1943 num_extents = count_max_extents(new_size); 1944 new_size = split - orig->start; 1945 num_extents += count_max_extents(new_size); 1946 if (count_max_extents(size) >= num_extents) 1947 return; 1948 } 1949 1950 spin_lock(&BTRFS_I(inode)->lock); 1951 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1952 spin_unlock(&BTRFS_I(inode)->lock); 1953 } 1954 1955 /* 1956 * Handle merged delayed allocation extents so we can keep track of new extents 1957 * that are just merged onto old extents, such as when we are doing sequential 1958 * writes, so we can properly account for the metadata space we'll need. 1959 */ 1960 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1961 struct extent_state *other) 1962 { 1963 u64 new_size, old_size; 1964 u32 num_extents; 1965 1966 /* not delalloc, ignore it */ 1967 if (!(other->state & EXTENT_DELALLOC)) 1968 return; 1969 1970 if (new->start > other->start) 1971 new_size = new->end - other->start + 1; 1972 else 1973 new_size = other->end - new->start + 1; 1974 1975 /* we're not bigger than the max, unreserve the space and go */ 1976 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1977 spin_lock(&BTRFS_I(inode)->lock); 1978 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1979 spin_unlock(&BTRFS_I(inode)->lock); 1980 return; 1981 } 1982 1983 /* 1984 * We have to add up either side to figure out how many extents were 1985 * accounted for before we merged into one big extent. If the number of 1986 * extents we accounted for is <= the amount we need for the new range 1987 * then we can return, otherwise drop. Think of it like this 1988 * 1989 * [ 4k][MAX_SIZE] 1990 * 1991 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1992 * need 2 outstanding extents, on one side we have 1 and the other side 1993 * we have 1 so they are == and we can return. But in this case 1994 * 1995 * [MAX_SIZE+4k][MAX_SIZE+4k] 1996 * 1997 * Each range on their own accounts for 2 extents, but merged together 1998 * they are only 3 extents worth of accounting, so we need to drop in 1999 * this case. 2000 */ 2001 old_size = other->end - other->start + 1; 2002 num_extents = count_max_extents(old_size); 2003 old_size = new->end - new->start + 1; 2004 num_extents += count_max_extents(old_size); 2005 if (count_max_extents(new_size) >= num_extents) 2006 return; 2007 2008 spin_lock(&BTRFS_I(inode)->lock); 2009 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2010 spin_unlock(&BTRFS_I(inode)->lock); 2011 } 2012 2013 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2014 struct inode *inode) 2015 { 2016 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2017 2018 spin_lock(&root->delalloc_lock); 2019 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2020 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2021 &root->delalloc_inodes); 2022 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2023 &BTRFS_I(inode)->runtime_flags); 2024 root->nr_delalloc_inodes++; 2025 if (root->nr_delalloc_inodes == 1) { 2026 spin_lock(&fs_info->delalloc_root_lock); 2027 BUG_ON(!list_empty(&root->delalloc_root)); 2028 list_add_tail(&root->delalloc_root, 2029 &fs_info->delalloc_roots); 2030 spin_unlock(&fs_info->delalloc_root_lock); 2031 } 2032 } 2033 spin_unlock(&root->delalloc_lock); 2034 } 2035 2036 2037 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2038 struct btrfs_inode *inode) 2039 { 2040 struct btrfs_fs_info *fs_info = root->fs_info; 2041 2042 if (!list_empty(&inode->delalloc_inodes)) { 2043 list_del_init(&inode->delalloc_inodes); 2044 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2045 &inode->runtime_flags); 2046 root->nr_delalloc_inodes--; 2047 if (!root->nr_delalloc_inodes) { 2048 ASSERT(list_empty(&root->delalloc_inodes)); 2049 spin_lock(&fs_info->delalloc_root_lock); 2050 BUG_ON(list_empty(&root->delalloc_root)); 2051 list_del_init(&root->delalloc_root); 2052 spin_unlock(&fs_info->delalloc_root_lock); 2053 } 2054 } 2055 } 2056 2057 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2058 struct btrfs_inode *inode) 2059 { 2060 spin_lock(&root->delalloc_lock); 2061 __btrfs_del_delalloc_inode(root, inode); 2062 spin_unlock(&root->delalloc_lock); 2063 } 2064 2065 /* 2066 * Properly track delayed allocation bytes in the inode and to maintain the 2067 * list of inodes that have pending delalloc work to be done. 2068 */ 2069 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2070 unsigned *bits) 2071 { 2072 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2073 2074 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2075 WARN_ON(1); 2076 /* 2077 * set_bit and clear bit hooks normally require _irqsave/restore 2078 * but in this case, we are only testing for the DELALLOC 2079 * bit, which is only set or cleared with irqs on 2080 */ 2081 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2082 struct btrfs_root *root = BTRFS_I(inode)->root; 2083 u64 len = state->end + 1 - state->start; 2084 u32 num_extents = count_max_extents(len); 2085 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2086 2087 spin_lock(&BTRFS_I(inode)->lock); 2088 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2089 spin_unlock(&BTRFS_I(inode)->lock); 2090 2091 /* For sanity tests */ 2092 if (btrfs_is_testing(fs_info)) 2093 return; 2094 2095 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2096 fs_info->delalloc_batch); 2097 spin_lock(&BTRFS_I(inode)->lock); 2098 BTRFS_I(inode)->delalloc_bytes += len; 2099 if (*bits & EXTENT_DEFRAG) 2100 BTRFS_I(inode)->defrag_bytes += len; 2101 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2102 &BTRFS_I(inode)->runtime_flags)) 2103 btrfs_add_delalloc_inodes(root, inode); 2104 spin_unlock(&BTRFS_I(inode)->lock); 2105 } 2106 2107 if (!(state->state & EXTENT_DELALLOC_NEW) && 2108 (*bits & EXTENT_DELALLOC_NEW)) { 2109 spin_lock(&BTRFS_I(inode)->lock); 2110 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2111 state->start; 2112 spin_unlock(&BTRFS_I(inode)->lock); 2113 } 2114 } 2115 2116 /* 2117 * Once a range is no longer delalloc this function ensures that proper 2118 * accounting happens. 2119 */ 2120 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2121 struct extent_state *state, unsigned *bits) 2122 { 2123 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2124 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2125 u64 len = state->end + 1 - state->start; 2126 u32 num_extents = count_max_extents(len); 2127 2128 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2129 spin_lock(&inode->lock); 2130 inode->defrag_bytes -= len; 2131 spin_unlock(&inode->lock); 2132 } 2133 2134 /* 2135 * set_bit and clear bit hooks normally require _irqsave/restore 2136 * but in this case, we are only testing for the DELALLOC 2137 * bit, which is only set or cleared with irqs on 2138 */ 2139 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2140 struct btrfs_root *root = inode->root; 2141 bool do_list = !btrfs_is_free_space_inode(inode); 2142 2143 spin_lock(&inode->lock); 2144 btrfs_mod_outstanding_extents(inode, -num_extents); 2145 spin_unlock(&inode->lock); 2146 2147 /* 2148 * We don't reserve metadata space for space cache inodes so we 2149 * don't need to call delalloc_release_metadata if there is an 2150 * error. 2151 */ 2152 if (*bits & EXTENT_CLEAR_META_RESV && 2153 root != fs_info->tree_root) 2154 btrfs_delalloc_release_metadata(inode, len, false); 2155 2156 /* For sanity tests. */ 2157 if (btrfs_is_testing(fs_info)) 2158 return; 2159 2160 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2161 do_list && !(state->state & EXTENT_NORESERVE) && 2162 (*bits & EXTENT_CLEAR_DATA_RESV)) 2163 btrfs_free_reserved_data_space_noquota(fs_info, len); 2164 2165 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2166 fs_info->delalloc_batch); 2167 spin_lock(&inode->lock); 2168 inode->delalloc_bytes -= len; 2169 if (do_list && inode->delalloc_bytes == 0 && 2170 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2171 &inode->runtime_flags)) 2172 btrfs_del_delalloc_inode(root, inode); 2173 spin_unlock(&inode->lock); 2174 } 2175 2176 if ((state->state & EXTENT_DELALLOC_NEW) && 2177 (*bits & EXTENT_DELALLOC_NEW)) { 2178 spin_lock(&inode->lock); 2179 ASSERT(inode->new_delalloc_bytes >= len); 2180 inode->new_delalloc_bytes -= len; 2181 if (*bits & EXTENT_ADD_INODE_BYTES) 2182 inode_add_bytes(&inode->vfs_inode, len); 2183 spin_unlock(&inode->lock); 2184 } 2185 } 2186 2187 /* 2188 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2189 * in a chunk's stripe. This function ensures that bios do not span a 2190 * stripe/chunk 2191 * 2192 * @page - The page we are about to add to the bio 2193 * @size - size we want to add to the bio 2194 * @bio - bio we want to ensure is smaller than a stripe 2195 * @bio_flags - flags of the bio 2196 * 2197 * return 1 if page cannot be added to the bio 2198 * return 0 if page can be added to the bio 2199 * return error otherwise 2200 */ 2201 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2202 unsigned long bio_flags) 2203 { 2204 struct inode *inode = page->mapping->host; 2205 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2206 u64 logical = bio->bi_iter.bi_sector << 9; 2207 struct extent_map *em; 2208 u64 length = 0; 2209 u64 map_length; 2210 int ret = 0; 2211 struct btrfs_io_geometry geom; 2212 2213 if (bio_flags & EXTENT_BIO_COMPRESSED) 2214 return 0; 2215 2216 length = bio->bi_iter.bi_size; 2217 map_length = length; 2218 em = btrfs_get_chunk_map(fs_info, logical, map_length); 2219 if (IS_ERR(em)) 2220 return PTR_ERR(em); 2221 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical, 2222 map_length, &geom); 2223 if (ret < 0) 2224 goto out; 2225 2226 if (geom.len < length + size) 2227 ret = 1; 2228 out: 2229 free_extent_map(em); 2230 return ret; 2231 } 2232 2233 /* 2234 * in order to insert checksums into the metadata in large chunks, 2235 * we wait until bio submission time. All the pages in the bio are 2236 * checksummed and sums are attached onto the ordered extent record. 2237 * 2238 * At IO completion time the cums attached on the ordered extent record 2239 * are inserted into the btree 2240 */ 2241 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2242 u64 dio_file_offset) 2243 { 2244 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2245 } 2246 2247 bool btrfs_bio_fits_in_ordered_extent(struct page *page, struct bio *bio, 2248 unsigned int size) 2249 { 2250 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 2251 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2252 struct btrfs_ordered_extent *ordered; 2253 u64 len = bio->bi_iter.bi_size + size; 2254 bool ret = true; 2255 2256 ASSERT(btrfs_is_zoned(fs_info)); 2257 ASSERT(fs_info->max_zone_append_size > 0); 2258 ASSERT(bio_op(bio) == REQ_OP_ZONE_APPEND); 2259 2260 /* Ordered extent not yet created, so we're good */ 2261 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page)); 2262 if (!ordered) 2263 return ret; 2264 2265 if ((bio->bi_iter.bi_sector << SECTOR_SHIFT) + len > 2266 ordered->disk_bytenr + ordered->disk_num_bytes) 2267 ret = false; 2268 2269 btrfs_put_ordered_extent(ordered); 2270 2271 return ret; 2272 } 2273 2274 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2275 struct bio *bio, loff_t file_offset) 2276 { 2277 struct btrfs_ordered_extent *ordered; 2278 struct extent_map *em = NULL, *em_new = NULL; 2279 struct extent_map_tree *em_tree = &inode->extent_tree; 2280 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2281 u64 len = bio->bi_iter.bi_size; 2282 u64 end = start + len; 2283 u64 ordered_end; 2284 u64 pre, post; 2285 int ret = 0; 2286 2287 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2288 if (WARN_ON_ONCE(!ordered)) 2289 return BLK_STS_IOERR; 2290 2291 /* No need to split */ 2292 if (ordered->disk_num_bytes == len) 2293 goto out; 2294 2295 /* We cannot split once end_bio'd ordered extent */ 2296 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2297 ret = -EINVAL; 2298 goto out; 2299 } 2300 2301 /* We cannot split a compressed ordered extent */ 2302 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2303 ret = -EINVAL; 2304 goto out; 2305 } 2306 2307 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2308 /* bio must be in one ordered extent */ 2309 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2310 ret = -EINVAL; 2311 goto out; 2312 } 2313 2314 /* Checksum list should be empty */ 2315 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2316 ret = -EINVAL; 2317 goto out; 2318 } 2319 2320 pre = start - ordered->disk_bytenr; 2321 post = ordered_end - end; 2322 2323 ret = btrfs_split_ordered_extent(ordered, pre, post); 2324 if (ret) 2325 goto out; 2326 2327 read_lock(&em_tree->lock); 2328 em = lookup_extent_mapping(em_tree, ordered->file_offset, len); 2329 if (!em) { 2330 read_unlock(&em_tree->lock); 2331 ret = -EIO; 2332 goto out; 2333 } 2334 read_unlock(&em_tree->lock); 2335 2336 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2337 /* 2338 * We cannot reuse em_new here but have to create a new one, as 2339 * unpin_extent_cache() expects the start of the extent map to be the 2340 * logical offset of the file, which does not hold true anymore after 2341 * splitting. 2342 */ 2343 em_new = create_io_em(inode, em->start + pre, len, 2344 em->start + pre, em->block_start + pre, len, 2345 len, len, BTRFS_COMPRESS_NONE, 2346 BTRFS_ORDERED_REGULAR); 2347 if (IS_ERR(em_new)) { 2348 ret = PTR_ERR(em_new); 2349 goto out; 2350 } 2351 free_extent_map(em_new); 2352 2353 out: 2354 free_extent_map(em); 2355 btrfs_put_ordered_extent(ordered); 2356 2357 return errno_to_blk_status(ret); 2358 } 2359 2360 /* 2361 * extent_io.c submission hook. This does the right thing for csum calculation 2362 * on write, or reading the csums from the tree before a read. 2363 * 2364 * Rules about async/sync submit, 2365 * a) read: sync submit 2366 * 2367 * b) write without checksum: sync submit 2368 * 2369 * c) write with checksum: 2370 * c-1) if bio is issued by fsync: sync submit 2371 * (sync_writers != 0) 2372 * 2373 * c-2) if root is reloc root: sync submit 2374 * (only in case of buffered IO) 2375 * 2376 * c-3) otherwise: async submit 2377 */ 2378 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2379 int mirror_num, unsigned long bio_flags) 2380 2381 { 2382 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2383 struct btrfs_root *root = BTRFS_I(inode)->root; 2384 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2385 blk_status_t ret = 0; 2386 int skip_sum; 2387 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2388 2389 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 2390 !fs_info->csum_root; 2391 2392 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2393 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2394 2395 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2396 struct page *page = bio_first_bvec_all(bio)->bv_page; 2397 loff_t file_offset = page_offset(page); 2398 2399 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); 2400 if (ret) 2401 goto out; 2402 } 2403 2404 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 2405 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2406 if (ret) 2407 goto out; 2408 2409 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2410 ret = btrfs_submit_compressed_read(inode, bio, 2411 mirror_num, 2412 bio_flags); 2413 goto out; 2414 } else { 2415 /* 2416 * Lookup bio sums does extra checks around whether we 2417 * need to csum or not, which is why we ignore skip_sum 2418 * here. 2419 */ 2420 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2421 if (ret) 2422 goto out; 2423 } 2424 goto mapit; 2425 } else if (async && !skip_sum) { 2426 /* csum items have already been cloned */ 2427 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2428 goto mapit; 2429 /* we're doing a write, do the async checksumming */ 2430 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags, 2431 0, btrfs_submit_bio_start); 2432 goto out; 2433 } else if (!skip_sum) { 2434 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2435 if (ret) 2436 goto out; 2437 } 2438 2439 mapit: 2440 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2441 2442 out: 2443 if (ret) { 2444 bio->bi_status = ret; 2445 bio_endio(bio); 2446 } 2447 return ret; 2448 } 2449 2450 /* 2451 * given a list of ordered sums record them in the inode. This happens 2452 * at IO completion time based on sums calculated at bio submission time. 2453 */ 2454 static int add_pending_csums(struct btrfs_trans_handle *trans, 2455 struct list_head *list) 2456 { 2457 struct btrfs_ordered_sum *sum; 2458 int ret; 2459 2460 list_for_each_entry(sum, list, list) { 2461 trans->adding_csums = true; 2462 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum); 2463 trans->adding_csums = false; 2464 if (ret) 2465 return ret; 2466 } 2467 return 0; 2468 } 2469 2470 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2471 const u64 start, 2472 const u64 len, 2473 struct extent_state **cached_state) 2474 { 2475 u64 search_start = start; 2476 const u64 end = start + len - 1; 2477 2478 while (search_start < end) { 2479 const u64 search_len = end - search_start + 1; 2480 struct extent_map *em; 2481 u64 em_len; 2482 int ret = 0; 2483 2484 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2485 if (IS_ERR(em)) 2486 return PTR_ERR(em); 2487 2488 if (em->block_start != EXTENT_MAP_HOLE) 2489 goto next; 2490 2491 em_len = em->len; 2492 if (em->start < search_start) 2493 em_len -= search_start - em->start; 2494 if (em_len > search_len) 2495 em_len = search_len; 2496 2497 ret = set_extent_bit(&inode->io_tree, search_start, 2498 search_start + em_len - 1, 2499 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2500 GFP_NOFS, NULL); 2501 next: 2502 search_start = extent_map_end(em); 2503 free_extent_map(em); 2504 if (ret) 2505 return ret; 2506 } 2507 return 0; 2508 } 2509 2510 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2511 unsigned int extra_bits, 2512 struct extent_state **cached_state) 2513 { 2514 WARN_ON(PAGE_ALIGNED(end)); 2515 2516 if (start >= i_size_read(&inode->vfs_inode) && 2517 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2518 /* 2519 * There can't be any extents following eof in this case so just 2520 * set the delalloc new bit for the range directly. 2521 */ 2522 extra_bits |= EXTENT_DELALLOC_NEW; 2523 } else { 2524 int ret; 2525 2526 ret = btrfs_find_new_delalloc_bytes(inode, start, 2527 end + 1 - start, 2528 cached_state); 2529 if (ret) 2530 return ret; 2531 } 2532 2533 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2534 cached_state); 2535 } 2536 2537 /* see btrfs_writepage_start_hook for details on why this is required */ 2538 struct btrfs_writepage_fixup { 2539 struct page *page; 2540 struct inode *inode; 2541 struct btrfs_work work; 2542 }; 2543 2544 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2545 { 2546 struct btrfs_writepage_fixup *fixup; 2547 struct btrfs_ordered_extent *ordered; 2548 struct extent_state *cached_state = NULL; 2549 struct extent_changeset *data_reserved = NULL; 2550 struct page *page; 2551 struct btrfs_inode *inode; 2552 u64 page_start; 2553 u64 page_end; 2554 int ret = 0; 2555 bool free_delalloc_space = true; 2556 2557 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2558 page = fixup->page; 2559 inode = BTRFS_I(fixup->inode); 2560 page_start = page_offset(page); 2561 page_end = page_offset(page) + PAGE_SIZE - 1; 2562 2563 /* 2564 * This is similar to page_mkwrite, we need to reserve the space before 2565 * we take the page lock. 2566 */ 2567 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2568 PAGE_SIZE); 2569 again: 2570 lock_page(page); 2571 2572 /* 2573 * Before we queued this fixup, we took a reference on the page. 2574 * page->mapping may go NULL, but it shouldn't be moved to a different 2575 * address space. 2576 */ 2577 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2578 /* 2579 * Unfortunately this is a little tricky, either 2580 * 2581 * 1) We got here and our page had already been dealt with and 2582 * we reserved our space, thus ret == 0, so we need to just 2583 * drop our space reservation and bail. This can happen the 2584 * first time we come into the fixup worker, or could happen 2585 * while waiting for the ordered extent. 2586 * 2) Our page was already dealt with, but we happened to get an 2587 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2588 * this case we obviously don't have anything to release, but 2589 * because the page was already dealt with we don't want to 2590 * mark the page with an error, so make sure we're resetting 2591 * ret to 0. This is why we have this check _before_ the ret 2592 * check, because we do not want to have a surprise ENOSPC 2593 * when the page was already properly dealt with. 2594 */ 2595 if (!ret) { 2596 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2597 btrfs_delalloc_release_space(inode, data_reserved, 2598 page_start, PAGE_SIZE, 2599 true); 2600 } 2601 ret = 0; 2602 goto out_page; 2603 } 2604 2605 /* 2606 * We can't mess with the page state unless it is locked, so now that 2607 * it is locked bail if we failed to make our space reservation. 2608 */ 2609 if (ret) 2610 goto out_page; 2611 2612 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2613 2614 /* already ordered? We're done */ 2615 if (PagePrivate2(page)) 2616 goto out_reserved; 2617 2618 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2619 if (ordered) { 2620 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2621 &cached_state); 2622 unlock_page(page); 2623 btrfs_start_ordered_extent(ordered, 1); 2624 btrfs_put_ordered_extent(ordered); 2625 goto again; 2626 } 2627 2628 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2629 &cached_state); 2630 if (ret) 2631 goto out_reserved; 2632 2633 /* 2634 * Everything went as planned, we're now the owner of a dirty page with 2635 * delayed allocation bits set and space reserved for our COW 2636 * destination. 2637 * 2638 * The page was dirty when we started, nothing should have cleaned it. 2639 */ 2640 BUG_ON(!PageDirty(page)); 2641 free_delalloc_space = false; 2642 out_reserved: 2643 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2644 if (free_delalloc_space) 2645 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2646 PAGE_SIZE, true); 2647 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2648 &cached_state); 2649 out_page: 2650 if (ret) { 2651 /* 2652 * We hit ENOSPC or other errors. Update the mapping and page 2653 * to reflect the errors and clean the page. 2654 */ 2655 mapping_set_error(page->mapping, ret); 2656 end_extent_writepage(page, ret, page_start, page_end); 2657 clear_page_dirty_for_io(page); 2658 SetPageError(page); 2659 } 2660 ClearPageChecked(page); 2661 unlock_page(page); 2662 put_page(page); 2663 kfree(fixup); 2664 extent_changeset_free(data_reserved); 2665 /* 2666 * As a precaution, do a delayed iput in case it would be the last iput 2667 * that could need flushing space. Recursing back to fixup worker would 2668 * deadlock. 2669 */ 2670 btrfs_add_delayed_iput(&inode->vfs_inode); 2671 } 2672 2673 /* 2674 * There are a few paths in the higher layers of the kernel that directly 2675 * set the page dirty bit without asking the filesystem if it is a 2676 * good idea. This causes problems because we want to make sure COW 2677 * properly happens and the data=ordered rules are followed. 2678 * 2679 * In our case any range that doesn't have the ORDERED bit set 2680 * hasn't been properly setup for IO. We kick off an async process 2681 * to fix it up. The async helper will wait for ordered extents, set 2682 * the delalloc bit and make it safe to write the page. 2683 */ 2684 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2685 { 2686 struct inode *inode = page->mapping->host; 2687 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2688 struct btrfs_writepage_fixup *fixup; 2689 2690 /* this page is properly in the ordered list */ 2691 if (TestClearPagePrivate2(page)) 2692 return 0; 2693 2694 /* 2695 * PageChecked is set below when we create a fixup worker for this page, 2696 * don't try to create another one if we're already PageChecked() 2697 * 2698 * The extent_io writepage code will redirty the page if we send back 2699 * EAGAIN. 2700 */ 2701 if (PageChecked(page)) 2702 return -EAGAIN; 2703 2704 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2705 if (!fixup) 2706 return -EAGAIN; 2707 2708 /* 2709 * We are already holding a reference to this inode from 2710 * write_cache_pages. We need to hold it because the space reservation 2711 * takes place outside of the page lock, and we can't trust 2712 * page->mapping outside of the page lock. 2713 */ 2714 ihold(inode); 2715 SetPageChecked(page); 2716 get_page(page); 2717 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2718 fixup->page = page; 2719 fixup->inode = inode; 2720 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2721 2722 return -EAGAIN; 2723 } 2724 2725 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2726 struct btrfs_inode *inode, u64 file_pos, 2727 struct btrfs_file_extent_item *stack_fi, 2728 const bool update_inode_bytes, 2729 u64 qgroup_reserved) 2730 { 2731 struct btrfs_root *root = inode->root; 2732 const u64 sectorsize = root->fs_info->sectorsize; 2733 struct btrfs_path *path; 2734 struct extent_buffer *leaf; 2735 struct btrfs_key ins; 2736 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2737 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2738 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2739 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2740 struct btrfs_drop_extents_args drop_args = { 0 }; 2741 int ret; 2742 2743 path = btrfs_alloc_path(); 2744 if (!path) 2745 return -ENOMEM; 2746 2747 /* 2748 * we may be replacing one extent in the tree with another. 2749 * The new extent is pinned in the extent map, and we don't want 2750 * to drop it from the cache until it is completely in the btree. 2751 * 2752 * So, tell btrfs_drop_extents to leave this extent in the cache. 2753 * the caller is expected to unpin it and allow it to be merged 2754 * with the others. 2755 */ 2756 drop_args.path = path; 2757 drop_args.start = file_pos; 2758 drop_args.end = file_pos + num_bytes; 2759 drop_args.replace_extent = true; 2760 drop_args.extent_item_size = sizeof(*stack_fi); 2761 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2762 if (ret) 2763 goto out; 2764 2765 if (!drop_args.extent_inserted) { 2766 ins.objectid = btrfs_ino(inode); 2767 ins.offset = file_pos; 2768 ins.type = BTRFS_EXTENT_DATA_KEY; 2769 2770 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2771 sizeof(*stack_fi)); 2772 if (ret) 2773 goto out; 2774 } 2775 leaf = path->nodes[0]; 2776 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2777 write_extent_buffer(leaf, stack_fi, 2778 btrfs_item_ptr_offset(leaf, path->slots[0]), 2779 sizeof(struct btrfs_file_extent_item)); 2780 2781 btrfs_mark_buffer_dirty(leaf); 2782 btrfs_release_path(path); 2783 2784 /* 2785 * If we dropped an inline extent here, we know the range where it is 2786 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2787 * number of bytes only for that range contaning the inline extent. 2788 * The remaining of the range will be processed when clearning the 2789 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2790 */ 2791 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2792 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2793 2794 inline_size = drop_args.bytes_found - inline_size; 2795 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2796 drop_args.bytes_found -= inline_size; 2797 num_bytes -= sectorsize; 2798 } 2799 2800 if (update_inode_bytes) 2801 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2802 2803 ins.objectid = disk_bytenr; 2804 ins.offset = disk_num_bytes; 2805 ins.type = BTRFS_EXTENT_ITEM_KEY; 2806 2807 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2808 if (ret) 2809 goto out; 2810 2811 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2812 file_pos, qgroup_reserved, &ins); 2813 out: 2814 btrfs_free_path(path); 2815 2816 return ret; 2817 } 2818 2819 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2820 u64 start, u64 len) 2821 { 2822 struct btrfs_block_group *cache; 2823 2824 cache = btrfs_lookup_block_group(fs_info, start); 2825 ASSERT(cache); 2826 2827 spin_lock(&cache->lock); 2828 cache->delalloc_bytes -= len; 2829 spin_unlock(&cache->lock); 2830 2831 btrfs_put_block_group(cache); 2832 } 2833 2834 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2835 struct btrfs_ordered_extent *oe) 2836 { 2837 struct btrfs_file_extent_item stack_fi; 2838 u64 logical_len; 2839 bool update_inode_bytes; 2840 2841 memset(&stack_fi, 0, sizeof(stack_fi)); 2842 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2843 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2844 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2845 oe->disk_num_bytes); 2846 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2847 logical_len = oe->truncated_len; 2848 else 2849 logical_len = oe->num_bytes; 2850 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); 2851 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); 2852 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2853 /* Encryption and other encoding is reserved and all 0 */ 2854 2855 /* 2856 * For delalloc, when completing an ordered extent we update the inode's 2857 * bytes when clearing the range in the inode's io tree, so pass false 2858 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2859 * except if the ordered extent was truncated. 2860 */ 2861 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 2862 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 2863 2864 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 2865 oe->file_offset, &stack_fi, 2866 update_inode_bytes, oe->qgroup_rsv); 2867 } 2868 2869 /* 2870 * As ordered data IO finishes, this gets called so we can finish 2871 * an ordered extent if the range of bytes in the file it covers are 2872 * fully written. 2873 */ 2874 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2875 { 2876 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 2877 struct btrfs_root *root = inode->root; 2878 struct btrfs_fs_info *fs_info = root->fs_info; 2879 struct btrfs_trans_handle *trans = NULL; 2880 struct extent_io_tree *io_tree = &inode->io_tree; 2881 struct extent_state *cached_state = NULL; 2882 u64 start, end; 2883 int compress_type = 0; 2884 int ret = 0; 2885 u64 logical_len = ordered_extent->num_bytes; 2886 bool freespace_inode; 2887 bool truncated = false; 2888 bool clear_reserved_extent = true; 2889 unsigned int clear_bits = EXTENT_DEFRAG; 2890 2891 start = ordered_extent->file_offset; 2892 end = start + ordered_extent->num_bytes - 1; 2893 2894 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2895 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2896 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2897 clear_bits |= EXTENT_DELALLOC_NEW; 2898 2899 freespace_inode = btrfs_is_free_space_inode(inode); 2900 2901 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2902 ret = -EIO; 2903 goto out; 2904 } 2905 2906 if (ordered_extent->disk) 2907 btrfs_rewrite_logical_zoned(ordered_extent); 2908 2909 btrfs_free_io_failure_record(inode, start, end); 2910 2911 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2912 truncated = true; 2913 logical_len = ordered_extent->truncated_len; 2914 /* Truncated the entire extent, don't bother adding */ 2915 if (!logical_len) 2916 goto out; 2917 } 2918 2919 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2920 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2921 2922 btrfs_inode_safe_disk_i_size_write(inode, 0); 2923 if (freespace_inode) 2924 trans = btrfs_join_transaction_spacecache(root); 2925 else 2926 trans = btrfs_join_transaction(root); 2927 if (IS_ERR(trans)) { 2928 ret = PTR_ERR(trans); 2929 trans = NULL; 2930 goto out; 2931 } 2932 trans->block_rsv = &inode->block_rsv; 2933 ret = btrfs_update_inode_fallback(trans, root, inode); 2934 if (ret) /* -ENOMEM or corruption */ 2935 btrfs_abort_transaction(trans, ret); 2936 goto out; 2937 } 2938 2939 clear_bits |= EXTENT_LOCKED; 2940 lock_extent_bits(io_tree, start, end, &cached_state); 2941 2942 if (freespace_inode) 2943 trans = btrfs_join_transaction_spacecache(root); 2944 else 2945 trans = btrfs_join_transaction(root); 2946 if (IS_ERR(trans)) { 2947 ret = PTR_ERR(trans); 2948 trans = NULL; 2949 goto out; 2950 } 2951 2952 trans->block_rsv = &inode->block_rsv; 2953 2954 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2955 compress_type = ordered_extent->compress_type; 2956 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2957 BUG_ON(compress_type); 2958 ret = btrfs_mark_extent_written(trans, inode, 2959 ordered_extent->file_offset, 2960 ordered_extent->file_offset + 2961 logical_len); 2962 } else { 2963 BUG_ON(root == fs_info->tree_root); 2964 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 2965 if (!ret) { 2966 clear_reserved_extent = false; 2967 btrfs_release_delalloc_bytes(fs_info, 2968 ordered_extent->disk_bytenr, 2969 ordered_extent->disk_num_bytes); 2970 } 2971 } 2972 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 2973 ordered_extent->num_bytes, trans->transid); 2974 if (ret < 0) { 2975 btrfs_abort_transaction(trans, ret); 2976 goto out; 2977 } 2978 2979 ret = add_pending_csums(trans, &ordered_extent->list); 2980 if (ret) { 2981 btrfs_abort_transaction(trans, ret); 2982 goto out; 2983 } 2984 2985 /* 2986 * If this is a new delalloc range, clear its new delalloc flag to 2987 * update the inode's number of bytes. This needs to be done first 2988 * before updating the inode item. 2989 */ 2990 if ((clear_bits & EXTENT_DELALLOC_NEW) && 2991 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 2992 clear_extent_bit(&inode->io_tree, start, end, 2993 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 2994 0, 0, &cached_state); 2995 2996 btrfs_inode_safe_disk_i_size_write(inode, 0); 2997 ret = btrfs_update_inode_fallback(trans, root, inode); 2998 if (ret) { /* -ENOMEM or corruption */ 2999 btrfs_abort_transaction(trans, ret); 3000 goto out; 3001 } 3002 ret = 0; 3003 out: 3004 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3005 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 3006 &cached_state); 3007 3008 if (trans) 3009 btrfs_end_transaction(trans); 3010 3011 if (ret || truncated) { 3012 u64 unwritten_start = start; 3013 3014 if (truncated) 3015 unwritten_start += logical_len; 3016 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3017 3018 /* Drop the cache for the part of the extent we didn't write. */ 3019 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 3020 3021 /* 3022 * If the ordered extent had an IOERR or something else went 3023 * wrong we need to return the space for this ordered extent 3024 * back to the allocator. We only free the extent in the 3025 * truncated case if we didn't write out the extent at all. 3026 * 3027 * If we made it past insert_reserved_file_extent before we 3028 * errored out then we don't need to do this as the accounting 3029 * has already been done. 3030 */ 3031 if ((ret || !logical_len) && 3032 clear_reserved_extent && 3033 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3034 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3035 /* 3036 * Discard the range before returning it back to the 3037 * free space pool 3038 */ 3039 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3040 btrfs_discard_extent(fs_info, 3041 ordered_extent->disk_bytenr, 3042 ordered_extent->disk_num_bytes, 3043 NULL); 3044 btrfs_free_reserved_extent(fs_info, 3045 ordered_extent->disk_bytenr, 3046 ordered_extent->disk_num_bytes, 1); 3047 } 3048 } 3049 3050 /* 3051 * This needs to be done to make sure anybody waiting knows we are done 3052 * updating everything for this ordered extent. 3053 */ 3054 btrfs_remove_ordered_extent(inode, ordered_extent); 3055 3056 /* once for us */ 3057 btrfs_put_ordered_extent(ordered_extent); 3058 /* once for the tree */ 3059 btrfs_put_ordered_extent(ordered_extent); 3060 3061 return ret; 3062 } 3063 3064 static void finish_ordered_fn(struct btrfs_work *work) 3065 { 3066 struct btrfs_ordered_extent *ordered_extent; 3067 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3068 btrfs_finish_ordered_io(ordered_extent); 3069 } 3070 3071 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3072 u64 end, int uptodate) 3073 { 3074 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3075 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3076 struct btrfs_ordered_extent *ordered_extent = NULL; 3077 struct btrfs_workqueue *wq; 3078 3079 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3080 3081 ClearPagePrivate2(page); 3082 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3083 end - start + 1, uptodate)) 3084 return; 3085 3086 if (btrfs_is_free_space_inode(inode)) 3087 wq = fs_info->endio_freespace_worker; 3088 else 3089 wq = fs_info->endio_write_workers; 3090 3091 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 3092 btrfs_queue_work(wq, &ordered_extent->work); 3093 } 3094 3095 /* 3096 * check_data_csum - verify checksum of one sector of uncompressed data 3097 * @inode: inode 3098 * @io_bio: btrfs_io_bio which contains the csum 3099 * @bio_offset: offset to the beginning of the bio (in bytes) 3100 * @page: page where is the data to be verified 3101 * @pgoff: offset inside the page 3102 * 3103 * The length of such check is always one sector size. 3104 */ 3105 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 3106 u32 bio_offset, struct page *page, u32 pgoff) 3107 { 3108 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3109 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3110 char *kaddr; 3111 u32 len = fs_info->sectorsize; 3112 const u32 csum_size = fs_info->csum_size; 3113 unsigned int offset_sectors; 3114 u8 *csum_expected; 3115 u8 csum[BTRFS_CSUM_SIZE]; 3116 3117 ASSERT(pgoff + len <= PAGE_SIZE); 3118 3119 offset_sectors = bio_offset >> fs_info->sectorsize_bits; 3120 csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size; 3121 3122 kaddr = kmap_atomic(page); 3123 shash->tfm = fs_info->csum_shash; 3124 3125 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 3126 3127 if (memcmp(csum, csum_expected, csum_size)) 3128 goto zeroit; 3129 3130 kunmap_atomic(kaddr); 3131 return 0; 3132 zeroit: 3133 btrfs_print_data_csum_error(BTRFS_I(inode), page_offset(page) + pgoff, 3134 csum, csum_expected, io_bio->mirror_num); 3135 if (io_bio->device) 3136 btrfs_dev_stat_inc_and_print(io_bio->device, 3137 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3138 memset(kaddr + pgoff, 1, len); 3139 flush_dcache_page(page); 3140 kunmap_atomic(kaddr); 3141 return -EIO; 3142 } 3143 3144 /* 3145 * When reads are done, we need to check csums to verify the data is correct. 3146 * if there's a match, we allow the bio to finish. If not, the code in 3147 * extent_io.c will try to find good copies for us. 3148 * 3149 * @bio_offset: offset to the beginning of the bio (in bytes) 3150 * @start: file offset of the range start 3151 * @end: file offset of the range end (inclusive) 3152 * @mirror: mirror number 3153 */ 3154 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset, 3155 struct page *page, u64 start, u64 end, int mirror) 3156 { 3157 struct inode *inode = page->mapping->host; 3158 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3159 struct btrfs_root *root = BTRFS_I(inode)->root; 3160 const u32 sectorsize = root->fs_info->sectorsize; 3161 u32 pg_off; 3162 3163 if (PageChecked(page)) { 3164 ClearPageChecked(page); 3165 return 0; 3166 } 3167 3168 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3169 return 0; 3170 3171 if (!root->fs_info->csum_root) 3172 return 0; 3173 3174 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3175 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3176 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3177 return 0; 3178 } 3179 3180 ASSERT(page_offset(page) <= start && 3181 end <= page_offset(page) + PAGE_SIZE - 1); 3182 for (pg_off = offset_in_page(start); 3183 pg_off < offset_in_page(end); 3184 pg_off += sectorsize, bio_offset += sectorsize) { 3185 int ret; 3186 3187 ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off); 3188 if (ret < 0) 3189 return -EIO; 3190 } 3191 return 0; 3192 } 3193 3194 /* 3195 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3196 * 3197 * @inode: The inode we want to perform iput on 3198 * 3199 * This function uses the generic vfs_inode::i_count to track whether we should 3200 * just decrement it (in case it's > 1) or if this is the last iput then link 3201 * the inode to the delayed iput machinery. Delayed iputs are processed at 3202 * transaction commit time/superblock commit/cleaner kthread. 3203 */ 3204 void btrfs_add_delayed_iput(struct inode *inode) 3205 { 3206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3207 struct btrfs_inode *binode = BTRFS_I(inode); 3208 3209 if (atomic_add_unless(&inode->i_count, -1, 1)) 3210 return; 3211 3212 atomic_inc(&fs_info->nr_delayed_iputs); 3213 spin_lock(&fs_info->delayed_iput_lock); 3214 ASSERT(list_empty(&binode->delayed_iput)); 3215 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3216 spin_unlock(&fs_info->delayed_iput_lock); 3217 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3218 wake_up_process(fs_info->cleaner_kthread); 3219 } 3220 3221 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3222 struct btrfs_inode *inode) 3223 { 3224 list_del_init(&inode->delayed_iput); 3225 spin_unlock(&fs_info->delayed_iput_lock); 3226 iput(&inode->vfs_inode); 3227 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3228 wake_up(&fs_info->delayed_iputs_wait); 3229 spin_lock(&fs_info->delayed_iput_lock); 3230 } 3231 3232 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3233 struct btrfs_inode *inode) 3234 { 3235 if (!list_empty(&inode->delayed_iput)) { 3236 spin_lock(&fs_info->delayed_iput_lock); 3237 if (!list_empty(&inode->delayed_iput)) 3238 run_delayed_iput_locked(fs_info, inode); 3239 spin_unlock(&fs_info->delayed_iput_lock); 3240 } 3241 } 3242 3243 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3244 { 3245 3246 spin_lock(&fs_info->delayed_iput_lock); 3247 while (!list_empty(&fs_info->delayed_iputs)) { 3248 struct btrfs_inode *inode; 3249 3250 inode = list_first_entry(&fs_info->delayed_iputs, 3251 struct btrfs_inode, delayed_iput); 3252 run_delayed_iput_locked(fs_info, inode); 3253 } 3254 spin_unlock(&fs_info->delayed_iput_lock); 3255 } 3256 3257 /** 3258 * Wait for flushing all delayed iputs 3259 * 3260 * @fs_info: the filesystem 3261 * 3262 * This will wait on any delayed iputs that are currently running with KILLABLE 3263 * set. Once they are all done running we will return, unless we are killed in 3264 * which case we return EINTR. This helps in user operations like fallocate etc 3265 * that might get blocked on the iputs. 3266 * 3267 * Return EINTR if we were killed, 0 if nothing's pending 3268 */ 3269 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3270 { 3271 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3272 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3273 if (ret) 3274 return -EINTR; 3275 return 0; 3276 } 3277 3278 /* 3279 * This creates an orphan entry for the given inode in case something goes wrong 3280 * in the middle of an unlink. 3281 */ 3282 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3283 struct btrfs_inode *inode) 3284 { 3285 int ret; 3286 3287 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3288 if (ret && ret != -EEXIST) { 3289 btrfs_abort_transaction(trans, ret); 3290 return ret; 3291 } 3292 3293 return 0; 3294 } 3295 3296 /* 3297 * We have done the delete so we can go ahead and remove the orphan item for 3298 * this particular inode. 3299 */ 3300 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3301 struct btrfs_inode *inode) 3302 { 3303 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3304 } 3305 3306 /* 3307 * this cleans up any orphans that may be left on the list from the last use 3308 * of this root. 3309 */ 3310 int btrfs_orphan_cleanup(struct btrfs_root *root) 3311 { 3312 struct btrfs_fs_info *fs_info = root->fs_info; 3313 struct btrfs_path *path; 3314 struct extent_buffer *leaf; 3315 struct btrfs_key key, found_key; 3316 struct btrfs_trans_handle *trans; 3317 struct inode *inode; 3318 u64 last_objectid = 0; 3319 int ret = 0, nr_unlink = 0; 3320 3321 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3322 return 0; 3323 3324 path = btrfs_alloc_path(); 3325 if (!path) { 3326 ret = -ENOMEM; 3327 goto out; 3328 } 3329 path->reada = READA_BACK; 3330 3331 key.objectid = BTRFS_ORPHAN_OBJECTID; 3332 key.type = BTRFS_ORPHAN_ITEM_KEY; 3333 key.offset = (u64)-1; 3334 3335 while (1) { 3336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3337 if (ret < 0) 3338 goto out; 3339 3340 /* 3341 * if ret == 0 means we found what we were searching for, which 3342 * is weird, but possible, so only screw with path if we didn't 3343 * find the key and see if we have stuff that matches 3344 */ 3345 if (ret > 0) { 3346 ret = 0; 3347 if (path->slots[0] == 0) 3348 break; 3349 path->slots[0]--; 3350 } 3351 3352 /* pull out the item */ 3353 leaf = path->nodes[0]; 3354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3355 3356 /* make sure the item matches what we want */ 3357 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3358 break; 3359 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3360 break; 3361 3362 /* release the path since we're done with it */ 3363 btrfs_release_path(path); 3364 3365 /* 3366 * this is where we are basically btrfs_lookup, without the 3367 * crossing root thing. we store the inode number in the 3368 * offset of the orphan item. 3369 */ 3370 3371 if (found_key.offset == last_objectid) { 3372 btrfs_err(fs_info, 3373 "Error removing orphan entry, stopping orphan cleanup"); 3374 ret = -EINVAL; 3375 goto out; 3376 } 3377 3378 last_objectid = found_key.offset; 3379 3380 found_key.objectid = found_key.offset; 3381 found_key.type = BTRFS_INODE_ITEM_KEY; 3382 found_key.offset = 0; 3383 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3384 ret = PTR_ERR_OR_ZERO(inode); 3385 if (ret && ret != -ENOENT) 3386 goto out; 3387 3388 if (ret == -ENOENT && root == fs_info->tree_root) { 3389 struct btrfs_root *dead_root; 3390 int is_dead_root = 0; 3391 3392 /* 3393 * this is an orphan in the tree root. Currently these 3394 * could come from 2 sources: 3395 * a) a snapshot deletion in progress 3396 * b) a free space cache inode 3397 * We need to distinguish those two, as the snapshot 3398 * orphan must not get deleted. 3399 * find_dead_roots already ran before us, so if this 3400 * is a snapshot deletion, we should find the root 3401 * in the fs_roots radix tree. 3402 */ 3403 3404 spin_lock(&fs_info->fs_roots_radix_lock); 3405 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3406 (unsigned long)found_key.objectid); 3407 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3408 is_dead_root = 1; 3409 spin_unlock(&fs_info->fs_roots_radix_lock); 3410 3411 if (is_dead_root) { 3412 /* prevent this orphan from being found again */ 3413 key.offset = found_key.objectid - 1; 3414 continue; 3415 } 3416 3417 } 3418 3419 /* 3420 * If we have an inode with links, there are a couple of 3421 * possibilities. Old kernels (before v3.12) used to create an 3422 * orphan item for truncate indicating that there were possibly 3423 * extent items past i_size that needed to be deleted. In v3.12, 3424 * truncate was changed to update i_size in sync with the extent 3425 * items, but the (useless) orphan item was still created. Since 3426 * v4.18, we don't create the orphan item for truncate at all. 3427 * 3428 * So, this item could mean that we need to do a truncate, but 3429 * only if this filesystem was last used on a pre-v3.12 kernel 3430 * and was not cleanly unmounted. The odds of that are quite 3431 * slim, and it's a pain to do the truncate now, so just delete 3432 * the orphan item. 3433 * 3434 * It's also possible that this orphan item was supposed to be 3435 * deleted but wasn't. The inode number may have been reused, 3436 * but either way, we can delete the orphan item. 3437 */ 3438 if (ret == -ENOENT || inode->i_nlink) { 3439 if (!ret) 3440 iput(inode); 3441 trans = btrfs_start_transaction(root, 1); 3442 if (IS_ERR(trans)) { 3443 ret = PTR_ERR(trans); 3444 goto out; 3445 } 3446 btrfs_debug(fs_info, "auto deleting %Lu", 3447 found_key.objectid); 3448 ret = btrfs_del_orphan_item(trans, root, 3449 found_key.objectid); 3450 btrfs_end_transaction(trans); 3451 if (ret) 3452 goto out; 3453 continue; 3454 } 3455 3456 nr_unlink++; 3457 3458 /* this will do delete_inode and everything for us */ 3459 iput(inode); 3460 } 3461 /* release the path since we're done with it */ 3462 btrfs_release_path(path); 3463 3464 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3465 3466 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3467 trans = btrfs_join_transaction(root); 3468 if (!IS_ERR(trans)) 3469 btrfs_end_transaction(trans); 3470 } 3471 3472 if (nr_unlink) 3473 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3474 3475 out: 3476 if (ret) 3477 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3478 btrfs_free_path(path); 3479 return ret; 3480 } 3481 3482 /* 3483 * very simple check to peek ahead in the leaf looking for xattrs. If we 3484 * don't find any xattrs, we know there can't be any acls. 3485 * 3486 * slot is the slot the inode is in, objectid is the objectid of the inode 3487 */ 3488 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3489 int slot, u64 objectid, 3490 int *first_xattr_slot) 3491 { 3492 u32 nritems = btrfs_header_nritems(leaf); 3493 struct btrfs_key found_key; 3494 static u64 xattr_access = 0; 3495 static u64 xattr_default = 0; 3496 int scanned = 0; 3497 3498 if (!xattr_access) { 3499 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3500 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3501 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3502 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3503 } 3504 3505 slot++; 3506 *first_xattr_slot = -1; 3507 while (slot < nritems) { 3508 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3509 3510 /* we found a different objectid, there must not be acls */ 3511 if (found_key.objectid != objectid) 3512 return 0; 3513 3514 /* we found an xattr, assume we've got an acl */ 3515 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3516 if (*first_xattr_slot == -1) 3517 *first_xattr_slot = slot; 3518 if (found_key.offset == xattr_access || 3519 found_key.offset == xattr_default) 3520 return 1; 3521 } 3522 3523 /* 3524 * we found a key greater than an xattr key, there can't 3525 * be any acls later on 3526 */ 3527 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3528 return 0; 3529 3530 slot++; 3531 scanned++; 3532 3533 /* 3534 * it goes inode, inode backrefs, xattrs, extents, 3535 * so if there are a ton of hard links to an inode there can 3536 * be a lot of backrefs. Don't waste time searching too hard, 3537 * this is just an optimization 3538 */ 3539 if (scanned >= 8) 3540 break; 3541 } 3542 /* we hit the end of the leaf before we found an xattr or 3543 * something larger than an xattr. We have to assume the inode 3544 * has acls 3545 */ 3546 if (*first_xattr_slot == -1) 3547 *first_xattr_slot = slot; 3548 return 1; 3549 } 3550 3551 /* 3552 * read an inode from the btree into the in-memory inode 3553 */ 3554 static int btrfs_read_locked_inode(struct inode *inode, 3555 struct btrfs_path *in_path) 3556 { 3557 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3558 struct btrfs_path *path = in_path; 3559 struct extent_buffer *leaf; 3560 struct btrfs_inode_item *inode_item; 3561 struct btrfs_root *root = BTRFS_I(inode)->root; 3562 struct btrfs_key location; 3563 unsigned long ptr; 3564 int maybe_acls; 3565 u32 rdev; 3566 int ret; 3567 bool filled = false; 3568 int first_xattr_slot; 3569 3570 ret = btrfs_fill_inode(inode, &rdev); 3571 if (!ret) 3572 filled = true; 3573 3574 if (!path) { 3575 path = btrfs_alloc_path(); 3576 if (!path) 3577 return -ENOMEM; 3578 } 3579 3580 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3581 3582 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3583 if (ret) { 3584 if (path != in_path) 3585 btrfs_free_path(path); 3586 return ret; 3587 } 3588 3589 leaf = path->nodes[0]; 3590 3591 if (filled) 3592 goto cache_index; 3593 3594 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3595 struct btrfs_inode_item); 3596 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3597 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3598 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3599 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3600 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3601 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3602 round_up(i_size_read(inode), fs_info->sectorsize)); 3603 3604 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3605 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3606 3607 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3608 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3609 3610 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3611 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3612 3613 BTRFS_I(inode)->i_otime.tv_sec = 3614 btrfs_timespec_sec(leaf, &inode_item->otime); 3615 BTRFS_I(inode)->i_otime.tv_nsec = 3616 btrfs_timespec_nsec(leaf, &inode_item->otime); 3617 3618 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3619 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3620 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3621 3622 inode_set_iversion_queried(inode, 3623 btrfs_inode_sequence(leaf, inode_item)); 3624 inode->i_generation = BTRFS_I(inode)->generation; 3625 inode->i_rdev = 0; 3626 rdev = btrfs_inode_rdev(leaf, inode_item); 3627 3628 BTRFS_I(inode)->index_cnt = (u64)-1; 3629 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3630 3631 cache_index: 3632 /* 3633 * If we were modified in the current generation and evicted from memory 3634 * and then re-read we need to do a full sync since we don't have any 3635 * idea about which extents were modified before we were evicted from 3636 * cache. 3637 * 3638 * This is required for both inode re-read from disk and delayed inode 3639 * in delayed_nodes_tree. 3640 */ 3641 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3642 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3643 &BTRFS_I(inode)->runtime_flags); 3644 3645 /* 3646 * We don't persist the id of the transaction where an unlink operation 3647 * against the inode was last made. So here we assume the inode might 3648 * have been evicted, and therefore the exact value of last_unlink_trans 3649 * lost, and set it to last_trans to avoid metadata inconsistencies 3650 * between the inode and its parent if the inode is fsync'ed and the log 3651 * replayed. For example, in the scenario: 3652 * 3653 * touch mydir/foo 3654 * ln mydir/foo mydir/bar 3655 * sync 3656 * unlink mydir/bar 3657 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3658 * xfs_io -c fsync mydir/foo 3659 * <power failure> 3660 * mount fs, triggers fsync log replay 3661 * 3662 * We must make sure that when we fsync our inode foo we also log its 3663 * parent inode, otherwise after log replay the parent still has the 3664 * dentry with the "bar" name but our inode foo has a link count of 1 3665 * and doesn't have an inode ref with the name "bar" anymore. 3666 * 3667 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3668 * but it guarantees correctness at the expense of occasional full 3669 * transaction commits on fsync if our inode is a directory, or if our 3670 * inode is not a directory, logging its parent unnecessarily. 3671 */ 3672 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3673 3674 /* 3675 * Same logic as for last_unlink_trans. We don't persist the generation 3676 * of the last transaction where this inode was used for a reflink 3677 * operation, so after eviction and reloading the inode we must be 3678 * pessimistic and assume the last transaction that modified the inode. 3679 */ 3680 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3681 3682 path->slots[0]++; 3683 if (inode->i_nlink != 1 || 3684 path->slots[0] >= btrfs_header_nritems(leaf)) 3685 goto cache_acl; 3686 3687 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3688 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3689 goto cache_acl; 3690 3691 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3692 if (location.type == BTRFS_INODE_REF_KEY) { 3693 struct btrfs_inode_ref *ref; 3694 3695 ref = (struct btrfs_inode_ref *)ptr; 3696 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3697 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3698 struct btrfs_inode_extref *extref; 3699 3700 extref = (struct btrfs_inode_extref *)ptr; 3701 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3702 extref); 3703 } 3704 cache_acl: 3705 /* 3706 * try to precache a NULL acl entry for files that don't have 3707 * any xattrs or acls 3708 */ 3709 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3710 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3711 if (first_xattr_slot != -1) { 3712 path->slots[0] = first_xattr_slot; 3713 ret = btrfs_load_inode_props(inode, path); 3714 if (ret) 3715 btrfs_err(fs_info, 3716 "error loading props for ino %llu (root %llu): %d", 3717 btrfs_ino(BTRFS_I(inode)), 3718 root->root_key.objectid, ret); 3719 } 3720 if (path != in_path) 3721 btrfs_free_path(path); 3722 3723 if (!maybe_acls) 3724 cache_no_acl(inode); 3725 3726 switch (inode->i_mode & S_IFMT) { 3727 case S_IFREG: 3728 inode->i_mapping->a_ops = &btrfs_aops; 3729 inode->i_fop = &btrfs_file_operations; 3730 inode->i_op = &btrfs_file_inode_operations; 3731 break; 3732 case S_IFDIR: 3733 inode->i_fop = &btrfs_dir_file_operations; 3734 inode->i_op = &btrfs_dir_inode_operations; 3735 break; 3736 case S_IFLNK: 3737 inode->i_op = &btrfs_symlink_inode_operations; 3738 inode_nohighmem(inode); 3739 inode->i_mapping->a_ops = &btrfs_aops; 3740 break; 3741 default: 3742 inode->i_op = &btrfs_special_inode_operations; 3743 init_special_inode(inode, inode->i_mode, rdev); 3744 break; 3745 } 3746 3747 btrfs_sync_inode_flags_to_i_flags(inode); 3748 return 0; 3749 } 3750 3751 /* 3752 * given a leaf and an inode, copy the inode fields into the leaf 3753 */ 3754 static void fill_inode_item(struct btrfs_trans_handle *trans, 3755 struct extent_buffer *leaf, 3756 struct btrfs_inode_item *item, 3757 struct inode *inode) 3758 { 3759 struct btrfs_map_token token; 3760 3761 btrfs_init_map_token(&token, leaf); 3762 3763 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3764 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3765 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3766 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3767 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3768 3769 btrfs_set_token_timespec_sec(&token, &item->atime, 3770 inode->i_atime.tv_sec); 3771 btrfs_set_token_timespec_nsec(&token, &item->atime, 3772 inode->i_atime.tv_nsec); 3773 3774 btrfs_set_token_timespec_sec(&token, &item->mtime, 3775 inode->i_mtime.tv_sec); 3776 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3777 inode->i_mtime.tv_nsec); 3778 3779 btrfs_set_token_timespec_sec(&token, &item->ctime, 3780 inode->i_ctime.tv_sec); 3781 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3782 inode->i_ctime.tv_nsec); 3783 3784 btrfs_set_token_timespec_sec(&token, &item->otime, 3785 BTRFS_I(inode)->i_otime.tv_sec); 3786 btrfs_set_token_timespec_nsec(&token, &item->otime, 3787 BTRFS_I(inode)->i_otime.tv_nsec); 3788 3789 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3790 btrfs_set_token_inode_generation(&token, item, 3791 BTRFS_I(inode)->generation); 3792 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3793 btrfs_set_token_inode_transid(&token, item, trans->transid); 3794 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3795 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3796 btrfs_set_token_inode_block_group(&token, item, 0); 3797 } 3798 3799 /* 3800 * copy everything in the in-memory inode into the btree. 3801 */ 3802 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3803 struct btrfs_root *root, 3804 struct btrfs_inode *inode) 3805 { 3806 struct btrfs_inode_item *inode_item; 3807 struct btrfs_path *path; 3808 struct extent_buffer *leaf; 3809 int ret; 3810 3811 path = btrfs_alloc_path(); 3812 if (!path) 3813 return -ENOMEM; 3814 3815 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 3816 if (ret) { 3817 if (ret > 0) 3818 ret = -ENOENT; 3819 goto failed; 3820 } 3821 3822 leaf = path->nodes[0]; 3823 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3824 struct btrfs_inode_item); 3825 3826 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3827 btrfs_mark_buffer_dirty(leaf); 3828 btrfs_set_inode_last_trans(trans, inode); 3829 ret = 0; 3830 failed: 3831 btrfs_free_path(path); 3832 return ret; 3833 } 3834 3835 /* 3836 * copy everything in the in-memory inode into the btree. 3837 */ 3838 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3839 struct btrfs_root *root, 3840 struct btrfs_inode *inode) 3841 { 3842 struct btrfs_fs_info *fs_info = root->fs_info; 3843 int ret; 3844 3845 /* 3846 * If the inode is a free space inode, we can deadlock during commit 3847 * if we put it into the delayed code. 3848 * 3849 * The data relocation inode should also be directly updated 3850 * without delay 3851 */ 3852 if (!btrfs_is_free_space_inode(inode) 3853 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3854 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3855 btrfs_update_root_times(trans, root); 3856 3857 ret = btrfs_delayed_update_inode(trans, root, inode); 3858 if (!ret) 3859 btrfs_set_inode_last_trans(trans, inode); 3860 return ret; 3861 } 3862 3863 return btrfs_update_inode_item(trans, root, inode); 3864 } 3865 3866 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3867 struct btrfs_root *root, struct btrfs_inode *inode) 3868 { 3869 int ret; 3870 3871 ret = btrfs_update_inode(trans, root, inode); 3872 if (ret == -ENOSPC) 3873 return btrfs_update_inode_item(trans, root, inode); 3874 return ret; 3875 } 3876 3877 /* 3878 * unlink helper that gets used here in inode.c and in the tree logging 3879 * recovery code. It remove a link in a directory with a given name, and 3880 * also drops the back refs in the inode to the directory 3881 */ 3882 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3883 struct btrfs_root *root, 3884 struct btrfs_inode *dir, 3885 struct btrfs_inode *inode, 3886 const char *name, int name_len) 3887 { 3888 struct btrfs_fs_info *fs_info = root->fs_info; 3889 struct btrfs_path *path; 3890 int ret = 0; 3891 struct btrfs_dir_item *di; 3892 u64 index; 3893 u64 ino = btrfs_ino(inode); 3894 u64 dir_ino = btrfs_ino(dir); 3895 3896 path = btrfs_alloc_path(); 3897 if (!path) { 3898 ret = -ENOMEM; 3899 goto out; 3900 } 3901 3902 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3903 name, name_len, -1); 3904 if (IS_ERR_OR_NULL(di)) { 3905 ret = di ? PTR_ERR(di) : -ENOENT; 3906 goto err; 3907 } 3908 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3909 if (ret) 3910 goto err; 3911 btrfs_release_path(path); 3912 3913 /* 3914 * If we don't have dir index, we have to get it by looking up 3915 * the inode ref, since we get the inode ref, remove it directly, 3916 * it is unnecessary to do delayed deletion. 3917 * 3918 * But if we have dir index, needn't search inode ref to get it. 3919 * Since the inode ref is close to the inode item, it is better 3920 * that we delay to delete it, and just do this deletion when 3921 * we update the inode item. 3922 */ 3923 if (inode->dir_index) { 3924 ret = btrfs_delayed_delete_inode_ref(inode); 3925 if (!ret) { 3926 index = inode->dir_index; 3927 goto skip_backref; 3928 } 3929 } 3930 3931 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3932 dir_ino, &index); 3933 if (ret) { 3934 btrfs_info(fs_info, 3935 "failed to delete reference to %.*s, inode %llu parent %llu", 3936 name_len, name, ino, dir_ino); 3937 btrfs_abort_transaction(trans, ret); 3938 goto err; 3939 } 3940 skip_backref: 3941 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3942 if (ret) { 3943 btrfs_abort_transaction(trans, ret); 3944 goto err; 3945 } 3946 3947 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3948 dir_ino); 3949 if (ret != 0 && ret != -ENOENT) { 3950 btrfs_abort_transaction(trans, ret); 3951 goto err; 3952 } 3953 3954 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3955 index); 3956 if (ret == -ENOENT) 3957 ret = 0; 3958 else if (ret) 3959 btrfs_abort_transaction(trans, ret); 3960 3961 /* 3962 * If we have a pending delayed iput we could end up with the final iput 3963 * being run in btrfs-cleaner context. If we have enough of these built 3964 * up we can end up burning a lot of time in btrfs-cleaner without any 3965 * way to throttle the unlinks. Since we're currently holding a ref on 3966 * the inode we can run the delayed iput here without any issues as the 3967 * final iput won't be done until after we drop the ref we're currently 3968 * holding. 3969 */ 3970 btrfs_run_delayed_iput(fs_info, inode); 3971 err: 3972 btrfs_free_path(path); 3973 if (ret) 3974 goto out; 3975 3976 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3977 inode_inc_iversion(&inode->vfs_inode); 3978 inode_inc_iversion(&dir->vfs_inode); 3979 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3980 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3981 ret = btrfs_update_inode(trans, root, dir); 3982 out: 3983 return ret; 3984 } 3985 3986 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3987 struct btrfs_root *root, 3988 struct btrfs_inode *dir, struct btrfs_inode *inode, 3989 const char *name, int name_len) 3990 { 3991 int ret; 3992 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3993 if (!ret) { 3994 drop_nlink(&inode->vfs_inode); 3995 ret = btrfs_update_inode(trans, root, inode); 3996 } 3997 return ret; 3998 } 3999 4000 /* 4001 * helper to start transaction for unlink and rmdir. 4002 * 4003 * unlink and rmdir are special in btrfs, they do not always free space, so 4004 * if we cannot make our reservations the normal way try and see if there is 4005 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4006 * allow the unlink to occur. 4007 */ 4008 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4009 { 4010 struct btrfs_root *root = BTRFS_I(dir)->root; 4011 4012 /* 4013 * 1 for the possible orphan item 4014 * 1 for the dir item 4015 * 1 for the dir index 4016 * 1 for the inode ref 4017 * 1 for the inode 4018 */ 4019 return btrfs_start_transaction_fallback_global_rsv(root, 5); 4020 } 4021 4022 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4023 { 4024 struct btrfs_root *root = BTRFS_I(dir)->root; 4025 struct btrfs_trans_handle *trans; 4026 struct inode *inode = d_inode(dentry); 4027 int ret; 4028 4029 trans = __unlink_start_trans(dir); 4030 if (IS_ERR(trans)) 4031 return PTR_ERR(trans); 4032 4033 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4034 0); 4035 4036 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4037 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4038 dentry->d_name.len); 4039 if (ret) 4040 goto out; 4041 4042 if (inode->i_nlink == 0) { 4043 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4044 if (ret) 4045 goto out; 4046 } 4047 4048 out: 4049 btrfs_end_transaction(trans); 4050 btrfs_btree_balance_dirty(root->fs_info); 4051 return ret; 4052 } 4053 4054 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4055 struct inode *dir, struct dentry *dentry) 4056 { 4057 struct btrfs_root *root = BTRFS_I(dir)->root; 4058 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4059 struct btrfs_path *path; 4060 struct extent_buffer *leaf; 4061 struct btrfs_dir_item *di; 4062 struct btrfs_key key; 4063 const char *name = dentry->d_name.name; 4064 int name_len = dentry->d_name.len; 4065 u64 index; 4066 int ret; 4067 u64 objectid; 4068 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4069 4070 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4071 objectid = inode->root->root_key.objectid; 4072 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4073 objectid = inode->location.objectid; 4074 } else { 4075 WARN_ON(1); 4076 return -EINVAL; 4077 } 4078 4079 path = btrfs_alloc_path(); 4080 if (!path) 4081 return -ENOMEM; 4082 4083 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4084 name, name_len, -1); 4085 if (IS_ERR_OR_NULL(di)) { 4086 ret = di ? PTR_ERR(di) : -ENOENT; 4087 goto out; 4088 } 4089 4090 leaf = path->nodes[0]; 4091 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4092 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4093 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4094 if (ret) { 4095 btrfs_abort_transaction(trans, ret); 4096 goto out; 4097 } 4098 btrfs_release_path(path); 4099 4100 /* 4101 * This is a placeholder inode for a subvolume we didn't have a 4102 * reference to at the time of the snapshot creation. In the meantime 4103 * we could have renamed the real subvol link into our snapshot, so 4104 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 4105 * Instead simply lookup the dir_index_item for this entry so we can 4106 * remove it. Otherwise we know we have a ref to the root and we can 4107 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4108 */ 4109 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4110 di = btrfs_search_dir_index_item(root, path, dir_ino, 4111 name, name_len); 4112 if (IS_ERR_OR_NULL(di)) { 4113 if (!di) 4114 ret = -ENOENT; 4115 else 4116 ret = PTR_ERR(di); 4117 btrfs_abort_transaction(trans, ret); 4118 goto out; 4119 } 4120 4121 leaf = path->nodes[0]; 4122 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4123 index = key.offset; 4124 btrfs_release_path(path); 4125 } else { 4126 ret = btrfs_del_root_ref(trans, objectid, 4127 root->root_key.objectid, dir_ino, 4128 &index, name, name_len); 4129 if (ret) { 4130 btrfs_abort_transaction(trans, ret); 4131 goto out; 4132 } 4133 } 4134 4135 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4136 if (ret) { 4137 btrfs_abort_transaction(trans, ret); 4138 goto out; 4139 } 4140 4141 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4142 inode_inc_iversion(dir); 4143 dir->i_mtime = dir->i_ctime = current_time(dir); 4144 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4145 if (ret) 4146 btrfs_abort_transaction(trans, ret); 4147 out: 4148 btrfs_free_path(path); 4149 return ret; 4150 } 4151 4152 /* 4153 * Helper to check if the subvolume references other subvolumes or if it's 4154 * default. 4155 */ 4156 static noinline int may_destroy_subvol(struct btrfs_root *root) 4157 { 4158 struct btrfs_fs_info *fs_info = root->fs_info; 4159 struct btrfs_path *path; 4160 struct btrfs_dir_item *di; 4161 struct btrfs_key key; 4162 u64 dir_id; 4163 int ret; 4164 4165 path = btrfs_alloc_path(); 4166 if (!path) 4167 return -ENOMEM; 4168 4169 /* Make sure this root isn't set as the default subvol */ 4170 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4171 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4172 dir_id, "default", 7, 0); 4173 if (di && !IS_ERR(di)) { 4174 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4175 if (key.objectid == root->root_key.objectid) { 4176 ret = -EPERM; 4177 btrfs_err(fs_info, 4178 "deleting default subvolume %llu is not allowed", 4179 key.objectid); 4180 goto out; 4181 } 4182 btrfs_release_path(path); 4183 } 4184 4185 key.objectid = root->root_key.objectid; 4186 key.type = BTRFS_ROOT_REF_KEY; 4187 key.offset = (u64)-1; 4188 4189 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4190 if (ret < 0) 4191 goto out; 4192 BUG_ON(ret == 0); 4193 4194 ret = 0; 4195 if (path->slots[0] > 0) { 4196 path->slots[0]--; 4197 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4198 if (key.objectid == root->root_key.objectid && 4199 key.type == BTRFS_ROOT_REF_KEY) 4200 ret = -ENOTEMPTY; 4201 } 4202 out: 4203 btrfs_free_path(path); 4204 return ret; 4205 } 4206 4207 /* Delete all dentries for inodes belonging to the root */ 4208 static void btrfs_prune_dentries(struct btrfs_root *root) 4209 { 4210 struct btrfs_fs_info *fs_info = root->fs_info; 4211 struct rb_node *node; 4212 struct rb_node *prev; 4213 struct btrfs_inode *entry; 4214 struct inode *inode; 4215 u64 objectid = 0; 4216 4217 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4218 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4219 4220 spin_lock(&root->inode_lock); 4221 again: 4222 node = root->inode_tree.rb_node; 4223 prev = NULL; 4224 while (node) { 4225 prev = node; 4226 entry = rb_entry(node, struct btrfs_inode, rb_node); 4227 4228 if (objectid < btrfs_ino(entry)) 4229 node = node->rb_left; 4230 else if (objectid > btrfs_ino(entry)) 4231 node = node->rb_right; 4232 else 4233 break; 4234 } 4235 if (!node) { 4236 while (prev) { 4237 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4238 if (objectid <= btrfs_ino(entry)) { 4239 node = prev; 4240 break; 4241 } 4242 prev = rb_next(prev); 4243 } 4244 } 4245 while (node) { 4246 entry = rb_entry(node, struct btrfs_inode, rb_node); 4247 objectid = btrfs_ino(entry) + 1; 4248 inode = igrab(&entry->vfs_inode); 4249 if (inode) { 4250 spin_unlock(&root->inode_lock); 4251 if (atomic_read(&inode->i_count) > 1) 4252 d_prune_aliases(inode); 4253 /* 4254 * btrfs_drop_inode will have it removed from the inode 4255 * cache when its usage count hits zero. 4256 */ 4257 iput(inode); 4258 cond_resched(); 4259 spin_lock(&root->inode_lock); 4260 goto again; 4261 } 4262 4263 if (cond_resched_lock(&root->inode_lock)) 4264 goto again; 4265 4266 node = rb_next(node); 4267 } 4268 spin_unlock(&root->inode_lock); 4269 } 4270 4271 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4272 { 4273 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4274 struct btrfs_root *root = BTRFS_I(dir)->root; 4275 struct inode *inode = d_inode(dentry); 4276 struct btrfs_root *dest = BTRFS_I(inode)->root; 4277 struct btrfs_trans_handle *trans; 4278 struct btrfs_block_rsv block_rsv; 4279 u64 root_flags; 4280 int ret; 4281 4282 /* 4283 * Don't allow to delete a subvolume with send in progress. This is 4284 * inside the inode lock so the error handling that has to drop the bit 4285 * again is not run concurrently. 4286 */ 4287 spin_lock(&dest->root_item_lock); 4288 if (dest->send_in_progress) { 4289 spin_unlock(&dest->root_item_lock); 4290 btrfs_warn(fs_info, 4291 "attempt to delete subvolume %llu during send", 4292 dest->root_key.objectid); 4293 return -EPERM; 4294 } 4295 root_flags = btrfs_root_flags(&dest->root_item); 4296 btrfs_set_root_flags(&dest->root_item, 4297 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4298 spin_unlock(&dest->root_item_lock); 4299 4300 down_write(&fs_info->subvol_sem); 4301 4302 ret = may_destroy_subvol(dest); 4303 if (ret) 4304 goto out_up_write; 4305 4306 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4307 /* 4308 * One for dir inode, 4309 * two for dir entries, 4310 * two for root ref/backref. 4311 */ 4312 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4313 if (ret) 4314 goto out_up_write; 4315 4316 trans = btrfs_start_transaction(root, 0); 4317 if (IS_ERR(trans)) { 4318 ret = PTR_ERR(trans); 4319 goto out_release; 4320 } 4321 trans->block_rsv = &block_rsv; 4322 trans->bytes_reserved = block_rsv.size; 4323 4324 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4325 4326 ret = btrfs_unlink_subvol(trans, dir, dentry); 4327 if (ret) { 4328 btrfs_abort_transaction(trans, ret); 4329 goto out_end_trans; 4330 } 4331 4332 btrfs_record_root_in_trans(trans, dest); 4333 4334 memset(&dest->root_item.drop_progress, 0, 4335 sizeof(dest->root_item.drop_progress)); 4336 btrfs_set_root_drop_level(&dest->root_item, 0); 4337 btrfs_set_root_refs(&dest->root_item, 0); 4338 4339 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4340 ret = btrfs_insert_orphan_item(trans, 4341 fs_info->tree_root, 4342 dest->root_key.objectid); 4343 if (ret) { 4344 btrfs_abort_transaction(trans, ret); 4345 goto out_end_trans; 4346 } 4347 } 4348 4349 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4350 BTRFS_UUID_KEY_SUBVOL, 4351 dest->root_key.objectid); 4352 if (ret && ret != -ENOENT) { 4353 btrfs_abort_transaction(trans, ret); 4354 goto out_end_trans; 4355 } 4356 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4357 ret = btrfs_uuid_tree_remove(trans, 4358 dest->root_item.received_uuid, 4359 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4360 dest->root_key.objectid); 4361 if (ret && ret != -ENOENT) { 4362 btrfs_abort_transaction(trans, ret); 4363 goto out_end_trans; 4364 } 4365 } 4366 4367 free_anon_bdev(dest->anon_dev); 4368 dest->anon_dev = 0; 4369 out_end_trans: 4370 trans->block_rsv = NULL; 4371 trans->bytes_reserved = 0; 4372 ret = btrfs_end_transaction(trans); 4373 inode->i_flags |= S_DEAD; 4374 out_release: 4375 btrfs_subvolume_release_metadata(root, &block_rsv); 4376 out_up_write: 4377 up_write(&fs_info->subvol_sem); 4378 if (ret) { 4379 spin_lock(&dest->root_item_lock); 4380 root_flags = btrfs_root_flags(&dest->root_item); 4381 btrfs_set_root_flags(&dest->root_item, 4382 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4383 spin_unlock(&dest->root_item_lock); 4384 } else { 4385 d_invalidate(dentry); 4386 btrfs_prune_dentries(dest); 4387 ASSERT(dest->send_in_progress == 0); 4388 } 4389 4390 return ret; 4391 } 4392 4393 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4394 { 4395 struct inode *inode = d_inode(dentry); 4396 int err = 0; 4397 struct btrfs_root *root = BTRFS_I(dir)->root; 4398 struct btrfs_trans_handle *trans; 4399 u64 last_unlink_trans; 4400 4401 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4402 return -ENOTEMPTY; 4403 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4404 return btrfs_delete_subvolume(dir, dentry); 4405 4406 trans = __unlink_start_trans(dir); 4407 if (IS_ERR(trans)) 4408 return PTR_ERR(trans); 4409 4410 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4411 err = btrfs_unlink_subvol(trans, dir, dentry); 4412 goto out; 4413 } 4414 4415 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4416 if (err) 4417 goto out; 4418 4419 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4420 4421 /* now the directory is empty */ 4422 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4423 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4424 dentry->d_name.len); 4425 if (!err) { 4426 btrfs_i_size_write(BTRFS_I(inode), 0); 4427 /* 4428 * Propagate the last_unlink_trans value of the deleted dir to 4429 * its parent directory. This is to prevent an unrecoverable 4430 * log tree in the case we do something like this: 4431 * 1) create dir foo 4432 * 2) create snapshot under dir foo 4433 * 3) delete the snapshot 4434 * 4) rmdir foo 4435 * 5) mkdir foo 4436 * 6) fsync foo or some file inside foo 4437 */ 4438 if (last_unlink_trans >= trans->transid) 4439 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4440 } 4441 out: 4442 btrfs_end_transaction(trans); 4443 btrfs_btree_balance_dirty(root->fs_info); 4444 4445 return err; 4446 } 4447 4448 /* 4449 * Return this if we need to call truncate_block for the last bit of the 4450 * truncate. 4451 */ 4452 #define NEED_TRUNCATE_BLOCK 1 4453 4454 /* 4455 * this can truncate away extent items, csum items and directory items. 4456 * It starts at a high offset and removes keys until it can't find 4457 * any higher than new_size 4458 * 4459 * csum items that cross the new i_size are truncated to the new size 4460 * as well. 4461 * 4462 * min_type is the minimum key type to truncate down to. If set to 0, this 4463 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4464 */ 4465 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4466 struct btrfs_root *root, 4467 struct btrfs_inode *inode, 4468 u64 new_size, u32 min_type) 4469 { 4470 struct btrfs_fs_info *fs_info = root->fs_info; 4471 struct btrfs_path *path; 4472 struct extent_buffer *leaf; 4473 struct btrfs_file_extent_item *fi; 4474 struct btrfs_key key; 4475 struct btrfs_key found_key; 4476 u64 extent_start = 0; 4477 u64 extent_num_bytes = 0; 4478 u64 extent_offset = 0; 4479 u64 item_end = 0; 4480 u64 last_size = new_size; 4481 u32 found_type = (u8)-1; 4482 int found_extent; 4483 int del_item; 4484 int pending_del_nr = 0; 4485 int pending_del_slot = 0; 4486 int extent_type = -1; 4487 int ret; 4488 u64 ino = btrfs_ino(inode); 4489 u64 bytes_deleted = 0; 4490 bool be_nice = false; 4491 bool should_throttle = false; 4492 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4493 struct extent_state *cached_state = NULL; 4494 4495 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4496 4497 /* 4498 * For non-free space inodes and non-shareable roots, we want to back 4499 * off from time to time. This means all inodes in subvolume roots, 4500 * reloc roots, and data reloc roots. 4501 */ 4502 if (!btrfs_is_free_space_inode(inode) && 4503 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4504 be_nice = true; 4505 4506 path = btrfs_alloc_path(); 4507 if (!path) 4508 return -ENOMEM; 4509 path->reada = READA_BACK; 4510 4511 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4512 lock_extent_bits(&inode->io_tree, lock_start, (u64)-1, 4513 &cached_state); 4514 4515 /* 4516 * We want to drop from the next block forward in case this 4517 * new size is not block aligned since we will be keeping the 4518 * last block of the extent just the way it is. 4519 */ 4520 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4521 fs_info->sectorsize), 4522 (u64)-1, 0); 4523 } 4524 4525 /* 4526 * This function is also used to drop the items in the log tree before 4527 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4528 * it is used to drop the logged items. So we shouldn't kill the delayed 4529 * items. 4530 */ 4531 if (min_type == 0 && root == inode->root) 4532 btrfs_kill_delayed_inode_items(inode); 4533 4534 key.objectid = ino; 4535 key.offset = (u64)-1; 4536 key.type = (u8)-1; 4537 4538 search_again: 4539 /* 4540 * with a 16K leaf size and 128MB extents, you can actually queue 4541 * up a huge file in a single leaf. Most of the time that 4542 * bytes_deleted is > 0, it will be huge by the time we get here 4543 */ 4544 if (be_nice && bytes_deleted > SZ_32M && 4545 btrfs_should_end_transaction(trans)) { 4546 ret = -EAGAIN; 4547 goto out; 4548 } 4549 4550 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4551 if (ret < 0) 4552 goto out; 4553 4554 if (ret > 0) { 4555 ret = 0; 4556 /* there are no items in the tree for us to truncate, we're 4557 * done 4558 */ 4559 if (path->slots[0] == 0) 4560 goto out; 4561 path->slots[0]--; 4562 } 4563 4564 while (1) { 4565 u64 clear_start = 0, clear_len = 0; 4566 4567 fi = NULL; 4568 leaf = path->nodes[0]; 4569 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4570 found_type = found_key.type; 4571 4572 if (found_key.objectid != ino) 4573 break; 4574 4575 if (found_type < min_type) 4576 break; 4577 4578 item_end = found_key.offset; 4579 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4580 fi = btrfs_item_ptr(leaf, path->slots[0], 4581 struct btrfs_file_extent_item); 4582 extent_type = btrfs_file_extent_type(leaf, fi); 4583 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4584 item_end += 4585 btrfs_file_extent_num_bytes(leaf, fi); 4586 4587 trace_btrfs_truncate_show_fi_regular( 4588 inode, leaf, fi, found_key.offset); 4589 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4590 item_end += btrfs_file_extent_ram_bytes(leaf, 4591 fi); 4592 4593 trace_btrfs_truncate_show_fi_inline( 4594 inode, leaf, fi, path->slots[0], 4595 found_key.offset); 4596 } 4597 item_end--; 4598 } 4599 if (found_type > min_type) { 4600 del_item = 1; 4601 } else { 4602 if (item_end < new_size) 4603 break; 4604 if (found_key.offset >= new_size) 4605 del_item = 1; 4606 else 4607 del_item = 0; 4608 } 4609 found_extent = 0; 4610 /* FIXME, shrink the extent if the ref count is only 1 */ 4611 if (found_type != BTRFS_EXTENT_DATA_KEY) 4612 goto delete; 4613 4614 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4615 u64 num_dec; 4616 4617 clear_start = found_key.offset; 4618 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4619 if (!del_item) { 4620 u64 orig_num_bytes = 4621 btrfs_file_extent_num_bytes(leaf, fi); 4622 extent_num_bytes = ALIGN(new_size - 4623 found_key.offset, 4624 fs_info->sectorsize); 4625 clear_start = ALIGN(new_size, fs_info->sectorsize); 4626 btrfs_set_file_extent_num_bytes(leaf, fi, 4627 extent_num_bytes); 4628 num_dec = (orig_num_bytes - 4629 extent_num_bytes); 4630 if (test_bit(BTRFS_ROOT_SHAREABLE, 4631 &root->state) && 4632 extent_start != 0) 4633 inode_sub_bytes(&inode->vfs_inode, 4634 num_dec); 4635 btrfs_mark_buffer_dirty(leaf); 4636 } else { 4637 extent_num_bytes = 4638 btrfs_file_extent_disk_num_bytes(leaf, 4639 fi); 4640 extent_offset = found_key.offset - 4641 btrfs_file_extent_offset(leaf, fi); 4642 4643 /* FIXME blocksize != 4096 */ 4644 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4645 if (extent_start != 0) { 4646 found_extent = 1; 4647 if (test_bit(BTRFS_ROOT_SHAREABLE, 4648 &root->state)) 4649 inode_sub_bytes(&inode->vfs_inode, 4650 num_dec); 4651 } 4652 } 4653 clear_len = num_dec; 4654 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4655 /* 4656 * we can't truncate inline items that have had 4657 * special encodings 4658 */ 4659 if (!del_item && 4660 btrfs_file_extent_encryption(leaf, fi) == 0 && 4661 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4662 btrfs_file_extent_compression(leaf, fi) == 0) { 4663 u32 size = (u32)(new_size - found_key.offset); 4664 4665 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4666 size = btrfs_file_extent_calc_inline_size(size); 4667 btrfs_truncate_item(path, size, 1); 4668 } else if (!del_item) { 4669 /* 4670 * We have to bail so the last_size is set to 4671 * just before this extent. 4672 */ 4673 ret = NEED_TRUNCATE_BLOCK; 4674 break; 4675 } else { 4676 /* 4677 * Inline extents are special, we just treat 4678 * them as a full sector worth in the file 4679 * extent tree just for simplicity sake. 4680 */ 4681 clear_len = fs_info->sectorsize; 4682 } 4683 4684 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4685 inode_sub_bytes(&inode->vfs_inode, 4686 item_end + 1 - new_size); 4687 } 4688 delete: 4689 /* 4690 * We use btrfs_truncate_inode_items() to clean up log trees for 4691 * multiple fsyncs, and in this case we don't want to clear the 4692 * file extent range because it's just the log. 4693 */ 4694 if (root == inode->root) { 4695 ret = btrfs_inode_clear_file_extent_range(inode, 4696 clear_start, clear_len); 4697 if (ret) { 4698 btrfs_abort_transaction(trans, ret); 4699 break; 4700 } 4701 } 4702 4703 if (del_item) 4704 last_size = found_key.offset; 4705 else 4706 last_size = new_size; 4707 if (del_item) { 4708 if (!pending_del_nr) { 4709 /* no pending yet, add ourselves */ 4710 pending_del_slot = path->slots[0]; 4711 pending_del_nr = 1; 4712 } else if (pending_del_nr && 4713 path->slots[0] + 1 == pending_del_slot) { 4714 /* hop on the pending chunk */ 4715 pending_del_nr++; 4716 pending_del_slot = path->slots[0]; 4717 } else { 4718 BUG(); 4719 } 4720 } else { 4721 break; 4722 } 4723 should_throttle = false; 4724 4725 if (found_extent && 4726 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4727 struct btrfs_ref ref = { 0 }; 4728 4729 bytes_deleted += extent_num_bytes; 4730 4731 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4732 extent_start, extent_num_bytes, 0); 4733 ref.real_root = root->root_key.objectid; 4734 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4735 ino, extent_offset); 4736 ret = btrfs_free_extent(trans, &ref); 4737 if (ret) { 4738 btrfs_abort_transaction(trans, ret); 4739 break; 4740 } 4741 if (be_nice) { 4742 if (btrfs_should_throttle_delayed_refs(trans)) 4743 should_throttle = true; 4744 } 4745 } 4746 4747 if (found_type == BTRFS_INODE_ITEM_KEY) 4748 break; 4749 4750 if (path->slots[0] == 0 || 4751 path->slots[0] != pending_del_slot || 4752 should_throttle) { 4753 if (pending_del_nr) { 4754 ret = btrfs_del_items(trans, root, path, 4755 pending_del_slot, 4756 pending_del_nr); 4757 if (ret) { 4758 btrfs_abort_transaction(trans, ret); 4759 break; 4760 } 4761 pending_del_nr = 0; 4762 } 4763 btrfs_release_path(path); 4764 4765 /* 4766 * We can generate a lot of delayed refs, so we need to 4767 * throttle every once and a while and make sure we're 4768 * adding enough space to keep up with the work we are 4769 * generating. Since we hold a transaction here we 4770 * can't flush, and we don't want to FLUSH_LIMIT because 4771 * we could have generated too many delayed refs to 4772 * actually allocate, so just bail if we're short and 4773 * let the normal reservation dance happen higher up. 4774 */ 4775 if (should_throttle) { 4776 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4777 BTRFS_RESERVE_NO_FLUSH); 4778 if (ret) { 4779 ret = -EAGAIN; 4780 break; 4781 } 4782 } 4783 goto search_again; 4784 } else { 4785 path->slots[0]--; 4786 } 4787 } 4788 out: 4789 if (ret >= 0 && pending_del_nr) { 4790 int err; 4791 4792 err = btrfs_del_items(trans, root, path, pending_del_slot, 4793 pending_del_nr); 4794 if (err) { 4795 btrfs_abort_transaction(trans, err); 4796 ret = err; 4797 } 4798 } 4799 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4800 ASSERT(last_size >= new_size); 4801 if (!ret && last_size > new_size) 4802 last_size = new_size; 4803 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4804 unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1, 4805 &cached_state); 4806 } 4807 4808 btrfs_free_path(path); 4809 return ret; 4810 } 4811 4812 /* 4813 * btrfs_truncate_block - read, zero a chunk and write a block 4814 * @inode - inode that we're zeroing 4815 * @from - the offset to start zeroing 4816 * @len - the length to zero, 0 to zero the entire range respective to the 4817 * offset 4818 * @front - zero up to the offset instead of from the offset on 4819 * 4820 * This will find the block for the "from" offset and cow the block and zero the 4821 * part we want to zero. This is used with truncate and hole punching. 4822 */ 4823 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4824 int front) 4825 { 4826 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4827 struct address_space *mapping = inode->vfs_inode.i_mapping; 4828 struct extent_io_tree *io_tree = &inode->io_tree; 4829 struct btrfs_ordered_extent *ordered; 4830 struct extent_state *cached_state = NULL; 4831 struct extent_changeset *data_reserved = NULL; 4832 char *kaddr; 4833 bool only_release_metadata = false; 4834 u32 blocksize = fs_info->sectorsize; 4835 pgoff_t index = from >> PAGE_SHIFT; 4836 unsigned offset = from & (blocksize - 1); 4837 struct page *page; 4838 gfp_t mask = btrfs_alloc_write_mask(mapping); 4839 size_t write_bytes = blocksize; 4840 int ret = 0; 4841 u64 block_start; 4842 u64 block_end; 4843 4844 if (IS_ALIGNED(offset, blocksize) && 4845 (!len || IS_ALIGNED(len, blocksize))) 4846 goto out; 4847 4848 block_start = round_down(from, blocksize); 4849 block_end = block_start + blocksize - 1; 4850 4851 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4852 blocksize); 4853 if (ret < 0) { 4854 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 4855 /* For nocow case, no need to reserve data space */ 4856 only_release_metadata = true; 4857 } else { 4858 goto out; 4859 } 4860 } 4861 ret = btrfs_delalloc_reserve_metadata(inode, blocksize); 4862 if (ret < 0) { 4863 if (!only_release_metadata) 4864 btrfs_free_reserved_data_space(inode, data_reserved, 4865 block_start, blocksize); 4866 goto out; 4867 } 4868 again: 4869 page = find_or_create_page(mapping, index, mask); 4870 if (!page) { 4871 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4872 blocksize, true); 4873 btrfs_delalloc_release_extents(inode, blocksize); 4874 ret = -ENOMEM; 4875 goto out; 4876 } 4877 ret = set_page_extent_mapped(page); 4878 if (ret < 0) 4879 goto out_unlock; 4880 4881 if (!PageUptodate(page)) { 4882 ret = btrfs_readpage(NULL, page); 4883 lock_page(page); 4884 if (page->mapping != mapping) { 4885 unlock_page(page); 4886 put_page(page); 4887 goto again; 4888 } 4889 if (!PageUptodate(page)) { 4890 ret = -EIO; 4891 goto out_unlock; 4892 } 4893 } 4894 wait_on_page_writeback(page); 4895 4896 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4897 4898 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4899 if (ordered) { 4900 unlock_extent_cached(io_tree, block_start, block_end, 4901 &cached_state); 4902 unlock_page(page); 4903 put_page(page); 4904 btrfs_start_ordered_extent(ordered, 1); 4905 btrfs_put_ordered_extent(ordered); 4906 goto again; 4907 } 4908 4909 clear_extent_bit(&inode->io_tree, block_start, block_end, 4910 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4911 0, 0, &cached_state); 4912 4913 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4914 &cached_state); 4915 if (ret) { 4916 unlock_extent_cached(io_tree, block_start, block_end, 4917 &cached_state); 4918 goto out_unlock; 4919 } 4920 4921 if (offset != blocksize) { 4922 if (!len) 4923 len = blocksize - offset; 4924 kaddr = kmap(page); 4925 if (front) 4926 memset(kaddr + (block_start - page_offset(page)), 4927 0, offset); 4928 else 4929 memset(kaddr + (block_start - page_offset(page)) + offset, 4930 0, len); 4931 flush_dcache_page(page); 4932 kunmap(page); 4933 } 4934 ClearPageChecked(page); 4935 set_page_dirty(page); 4936 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4937 4938 if (only_release_metadata) 4939 set_extent_bit(&inode->io_tree, block_start, block_end, 4940 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 4941 4942 out_unlock: 4943 if (ret) { 4944 if (only_release_metadata) 4945 btrfs_delalloc_release_metadata(inode, blocksize, true); 4946 else 4947 btrfs_delalloc_release_space(inode, data_reserved, 4948 block_start, blocksize, true); 4949 } 4950 btrfs_delalloc_release_extents(inode, blocksize); 4951 unlock_page(page); 4952 put_page(page); 4953 out: 4954 if (only_release_metadata) 4955 btrfs_check_nocow_unlock(inode); 4956 extent_changeset_free(data_reserved); 4957 return ret; 4958 } 4959 4960 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4961 u64 offset, u64 len) 4962 { 4963 struct btrfs_fs_info *fs_info = root->fs_info; 4964 struct btrfs_trans_handle *trans; 4965 struct btrfs_drop_extents_args drop_args = { 0 }; 4966 int ret; 4967 4968 /* 4969 * Still need to make sure the inode looks like it's been updated so 4970 * that any holes get logged if we fsync. 4971 */ 4972 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4973 inode->last_trans = fs_info->generation; 4974 inode->last_sub_trans = root->log_transid; 4975 inode->last_log_commit = root->last_log_commit; 4976 return 0; 4977 } 4978 4979 /* 4980 * 1 - for the one we're dropping 4981 * 1 - for the one we're adding 4982 * 1 - for updating the inode. 4983 */ 4984 trans = btrfs_start_transaction(root, 3); 4985 if (IS_ERR(trans)) 4986 return PTR_ERR(trans); 4987 4988 drop_args.start = offset; 4989 drop_args.end = offset + len; 4990 drop_args.drop_cache = true; 4991 4992 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4993 if (ret) { 4994 btrfs_abort_transaction(trans, ret); 4995 btrfs_end_transaction(trans); 4996 return ret; 4997 } 4998 4999 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 5000 offset, 0, 0, len, 0, len, 0, 0, 0); 5001 if (ret) { 5002 btrfs_abort_transaction(trans, ret); 5003 } else { 5004 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5005 btrfs_update_inode(trans, root, inode); 5006 } 5007 btrfs_end_transaction(trans); 5008 return ret; 5009 } 5010 5011 /* 5012 * This function puts in dummy file extents for the area we're creating a hole 5013 * for. So if we are truncating this file to a larger size we need to insert 5014 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5015 * the range between oldsize and size 5016 */ 5017 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5018 { 5019 struct btrfs_root *root = inode->root; 5020 struct btrfs_fs_info *fs_info = root->fs_info; 5021 struct extent_io_tree *io_tree = &inode->io_tree; 5022 struct extent_map *em = NULL; 5023 struct extent_state *cached_state = NULL; 5024 struct extent_map_tree *em_tree = &inode->extent_tree; 5025 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5026 u64 block_end = ALIGN(size, fs_info->sectorsize); 5027 u64 last_byte; 5028 u64 cur_offset; 5029 u64 hole_size; 5030 int err = 0; 5031 5032 /* 5033 * If our size started in the middle of a block we need to zero out the 5034 * rest of the block before we expand the i_size, otherwise we could 5035 * expose stale data. 5036 */ 5037 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5038 if (err) 5039 return err; 5040 5041 if (size <= hole_start) 5042 return 0; 5043 5044 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5045 &cached_state); 5046 cur_offset = hole_start; 5047 while (1) { 5048 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5049 block_end - cur_offset); 5050 if (IS_ERR(em)) { 5051 err = PTR_ERR(em); 5052 em = NULL; 5053 break; 5054 } 5055 last_byte = min(extent_map_end(em), block_end); 5056 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5057 hole_size = last_byte - cur_offset; 5058 5059 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5060 struct extent_map *hole_em; 5061 5062 err = maybe_insert_hole(root, inode, cur_offset, 5063 hole_size); 5064 if (err) 5065 break; 5066 5067 err = btrfs_inode_set_file_extent_range(inode, 5068 cur_offset, hole_size); 5069 if (err) 5070 break; 5071 5072 btrfs_drop_extent_cache(inode, cur_offset, 5073 cur_offset + hole_size - 1, 0); 5074 hole_em = alloc_extent_map(); 5075 if (!hole_em) { 5076 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5077 &inode->runtime_flags); 5078 goto next; 5079 } 5080 hole_em->start = cur_offset; 5081 hole_em->len = hole_size; 5082 hole_em->orig_start = cur_offset; 5083 5084 hole_em->block_start = EXTENT_MAP_HOLE; 5085 hole_em->block_len = 0; 5086 hole_em->orig_block_len = 0; 5087 hole_em->ram_bytes = hole_size; 5088 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5089 hole_em->generation = fs_info->generation; 5090 5091 while (1) { 5092 write_lock(&em_tree->lock); 5093 err = add_extent_mapping(em_tree, hole_em, 1); 5094 write_unlock(&em_tree->lock); 5095 if (err != -EEXIST) 5096 break; 5097 btrfs_drop_extent_cache(inode, cur_offset, 5098 cur_offset + 5099 hole_size - 1, 0); 5100 } 5101 free_extent_map(hole_em); 5102 } else { 5103 err = btrfs_inode_set_file_extent_range(inode, 5104 cur_offset, hole_size); 5105 if (err) 5106 break; 5107 } 5108 next: 5109 free_extent_map(em); 5110 em = NULL; 5111 cur_offset = last_byte; 5112 if (cur_offset >= block_end) 5113 break; 5114 } 5115 free_extent_map(em); 5116 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5117 return err; 5118 } 5119 5120 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5121 { 5122 struct btrfs_root *root = BTRFS_I(inode)->root; 5123 struct btrfs_trans_handle *trans; 5124 loff_t oldsize = i_size_read(inode); 5125 loff_t newsize = attr->ia_size; 5126 int mask = attr->ia_valid; 5127 int ret; 5128 5129 /* 5130 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5131 * special case where we need to update the times despite not having 5132 * these flags set. For all other operations the VFS set these flags 5133 * explicitly if it wants a timestamp update. 5134 */ 5135 if (newsize != oldsize) { 5136 inode_inc_iversion(inode); 5137 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5138 inode->i_ctime = inode->i_mtime = 5139 current_time(inode); 5140 } 5141 5142 if (newsize > oldsize) { 5143 /* 5144 * Don't do an expanding truncate while snapshotting is ongoing. 5145 * This is to ensure the snapshot captures a fully consistent 5146 * state of this file - if the snapshot captures this expanding 5147 * truncation, it must capture all writes that happened before 5148 * this truncation. 5149 */ 5150 btrfs_drew_write_lock(&root->snapshot_lock); 5151 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5152 if (ret) { 5153 btrfs_drew_write_unlock(&root->snapshot_lock); 5154 return ret; 5155 } 5156 5157 trans = btrfs_start_transaction(root, 1); 5158 if (IS_ERR(trans)) { 5159 btrfs_drew_write_unlock(&root->snapshot_lock); 5160 return PTR_ERR(trans); 5161 } 5162 5163 i_size_write(inode, newsize); 5164 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5165 pagecache_isize_extended(inode, oldsize, newsize); 5166 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5167 btrfs_drew_write_unlock(&root->snapshot_lock); 5168 btrfs_end_transaction(trans); 5169 } else { 5170 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5171 5172 if (btrfs_is_zoned(fs_info)) { 5173 ret = btrfs_wait_ordered_range(inode, 5174 ALIGN(newsize, fs_info->sectorsize), 5175 (u64)-1); 5176 if (ret) 5177 return ret; 5178 } 5179 5180 /* 5181 * We're truncating a file that used to have good data down to 5182 * zero. Make sure any new writes to the file get on disk 5183 * on close. 5184 */ 5185 if (newsize == 0) 5186 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5187 &BTRFS_I(inode)->runtime_flags); 5188 5189 truncate_setsize(inode, newsize); 5190 5191 inode_dio_wait(inode); 5192 5193 ret = btrfs_truncate(inode, newsize == oldsize); 5194 if (ret && inode->i_nlink) { 5195 int err; 5196 5197 /* 5198 * Truncate failed, so fix up the in-memory size. We 5199 * adjusted disk_i_size down as we removed extents, so 5200 * wait for disk_i_size to be stable and then update the 5201 * in-memory size to match. 5202 */ 5203 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5204 if (err) 5205 return err; 5206 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5207 } 5208 } 5209 5210 return ret; 5211 } 5212 5213 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5214 struct iattr *attr) 5215 { 5216 struct inode *inode = d_inode(dentry); 5217 struct btrfs_root *root = BTRFS_I(inode)->root; 5218 int err; 5219 5220 if (btrfs_root_readonly(root)) 5221 return -EROFS; 5222 5223 err = setattr_prepare(&init_user_ns, dentry, attr); 5224 if (err) 5225 return err; 5226 5227 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5228 err = btrfs_setsize(inode, attr); 5229 if (err) 5230 return err; 5231 } 5232 5233 if (attr->ia_valid) { 5234 setattr_copy(&init_user_ns, inode, attr); 5235 inode_inc_iversion(inode); 5236 err = btrfs_dirty_inode(inode); 5237 5238 if (!err && attr->ia_valid & ATTR_MODE) 5239 err = posix_acl_chmod(&init_user_ns, inode, 5240 inode->i_mode); 5241 } 5242 5243 return err; 5244 } 5245 5246 /* 5247 * While truncating the inode pages during eviction, we get the VFS calling 5248 * btrfs_invalidatepage() against each page of the inode. This is slow because 5249 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5250 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5251 * extent_state structures over and over, wasting lots of time. 5252 * 5253 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5254 * those expensive operations on a per page basis and do only the ordered io 5255 * finishing, while we release here the extent_map and extent_state structures, 5256 * without the excessive merging and splitting. 5257 */ 5258 static void evict_inode_truncate_pages(struct inode *inode) 5259 { 5260 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5261 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5262 struct rb_node *node; 5263 5264 ASSERT(inode->i_state & I_FREEING); 5265 truncate_inode_pages_final(&inode->i_data); 5266 5267 write_lock(&map_tree->lock); 5268 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5269 struct extent_map *em; 5270 5271 node = rb_first_cached(&map_tree->map); 5272 em = rb_entry(node, struct extent_map, rb_node); 5273 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5274 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5275 remove_extent_mapping(map_tree, em); 5276 free_extent_map(em); 5277 if (need_resched()) { 5278 write_unlock(&map_tree->lock); 5279 cond_resched(); 5280 write_lock(&map_tree->lock); 5281 } 5282 } 5283 write_unlock(&map_tree->lock); 5284 5285 /* 5286 * Keep looping until we have no more ranges in the io tree. 5287 * We can have ongoing bios started by readahead that have 5288 * their endio callback (extent_io.c:end_bio_extent_readpage) 5289 * still in progress (unlocked the pages in the bio but did not yet 5290 * unlocked the ranges in the io tree). Therefore this means some 5291 * ranges can still be locked and eviction started because before 5292 * submitting those bios, which are executed by a separate task (work 5293 * queue kthread), inode references (inode->i_count) were not taken 5294 * (which would be dropped in the end io callback of each bio). 5295 * Therefore here we effectively end up waiting for those bios and 5296 * anyone else holding locked ranges without having bumped the inode's 5297 * reference count - if we don't do it, when they access the inode's 5298 * io_tree to unlock a range it may be too late, leading to an 5299 * use-after-free issue. 5300 */ 5301 spin_lock(&io_tree->lock); 5302 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5303 struct extent_state *state; 5304 struct extent_state *cached_state = NULL; 5305 u64 start; 5306 u64 end; 5307 unsigned state_flags; 5308 5309 node = rb_first(&io_tree->state); 5310 state = rb_entry(node, struct extent_state, rb_node); 5311 start = state->start; 5312 end = state->end; 5313 state_flags = state->state; 5314 spin_unlock(&io_tree->lock); 5315 5316 lock_extent_bits(io_tree, start, end, &cached_state); 5317 5318 /* 5319 * If still has DELALLOC flag, the extent didn't reach disk, 5320 * and its reserved space won't be freed by delayed_ref. 5321 * So we need to free its reserved space here. 5322 * (Refer to comment in btrfs_invalidatepage, case 2) 5323 * 5324 * Note, end is the bytenr of last byte, so we need + 1 here. 5325 */ 5326 if (state_flags & EXTENT_DELALLOC) 5327 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5328 end - start + 1); 5329 5330 clear_extent_bit(io_tree, start, end, 5331 EXTENT_LOCKED | EXTENT_DELALLOC | 5332 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5333 &cached_state); 5334 5335 cond_resched(); 5336 spin_lock(&io_tree->lock); 5337 } 5338 spin_unlock(&io_tree->lock); 5339 } 5340 5341 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5342 struct btrfs_block_rsv *rsv) 5343 { 5344 struct btrfs_fs_info *fs_info = root->fs_info; 5345 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5346 struct btrfs_trans_handle *trans; 5347 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5348 int ret; 5349 5350 /* 5351 * Eviction should be taking place at some place safe because of our 5352 * delayed iputs. However the normal flushing code will run delayed 5353 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5354 * 5355 * We reserve the delayed_refs_extra here again because we can't use 5356 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5357 * above. We reserve our extra bit here because we generate a ton of 5358 * delayed refs activity by truncating. 5359 * 5360 * If we cannot make our reservation we'll attempt to steal from the 5361 * global reserve, because we really want to be able to free up space. 5362 */ 5363 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5364 BTRFS_RESERVE_FLUSH_EVICT); 5365 if (ret) { 5366 /* 5367 * Try to steal from the global reserve if there is space for 5368 * it. 5369 */ 5370 if (btrfs_check_space_for_delayed_refs(fs_info) || 5371 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5372 btrfs_warn(fs_info, 5373 "could not allocate space for delete; will truncate on mount"); 5374 return ERR_PTR(-ENOSPC); 5375 } 5376 delayed_refs_extra = 0; 5377 } 5378 5379 trans = btrfs_join_transaction(root); 5380 if (IS_ERR(trans)) 5381 return trans; 5382 5383 if (delayed_refs_extra) { 5384 trans->block_rsv = &fs_info->trans_block_rsv; 5385 trans->bytes_reserved = delayed_refs_extra; 5386 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5387 delayed_refs_extra, 1); 5388 } 5389 return trans; 5390 } 5391 5392 void btrfs_evict_inode(struct inode *inode) 5393 { 5394 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5395 struct btrfs_trans_handle *trans; 5396 struct btrfs_root *root = BTRFS_I(inode)->root; 5397 struct btrfs_block_rsv *rsv; 5398 int ret; 5399 5400 trace_btrfs_inode_evict(inode); 5401 5402 if (!root) { 5403 clear_inode(inode); 5404 return; 5405 } 5406 5407 evict_inode_truncate_pages(inode); 5408 5409 if (inode->i_nlink && 5410 ((btrfs_root_refs(&root->root_item) != 0 && 5411 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5412 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5413 goto no_delete; 5414 5415 if (is_bad_inode(inode)) 5416 goto no_delete; 5417 5418 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5419 5420 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5421 goto no_delete; 5422 5423 if (inode->i_nlink > 0) { 5424 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5425 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5426 goto no_delete; 5427 } 5428 5429 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5430 if (ret) 5431 goto no_delete; 5432 5433 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5434 if (!rsv) 5435 goto no_delete; 5436 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5437 rsv->failfast = 1; 5438 5439 btrfs_i_size_write(BTRFS_I(inode), 0); 5440 5441 while (1) { 5442 trans = evict_refill_and_join(root, rsv); 5443 if (IS_ERR(trans)) 5444 goto free_rsv; 5445 5446 trans->block_rsv = rsv; 5447 5448 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 5449 0, 0); 5450 trans->block_rsv = &fs_info->trans_block_rsv; 5451 btrfs_end_transaction(trans); 5452 btrfs_btree_balance_dirty(fs_info); 5453 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5454 goto free_rsv; 5455 else if (!ret) 5456 break; 5457 } 5458 5459 /* 5460 * Errors here aren't a big deal, it just means we leave orphan items in 5461 * the tree. They will be cleaned up on the next mount. If the inode 5462 * number gets reused, cleanup deletes the orphan item without doing 5463 * anything, and unlink reuses the existing orphan item. 5464 * 5465 * If it turns out that we are dropping too many of these, we might want 5466 * to add a mechanism for retrying these after a commit. 5467 */ 5468 trans = evict_refill_and_join(root, rsv); 5469 if (!IS_ERR(trans)) { 5470 trans->block_rsv = rsv; 5471 btrfs_orphan_del(trans, BTRFS_I(inode)); 5472 trans->block_rsv = &fs_info->trans_block_rsv; 5473 btrfs_end_transaction(trans); 5474 } 5475 5476 free_rsv: 5477 btrfs_free_block_rsv(fs_info, rsv); 5478 no_delete: 5479 /* 5480 * If we didn't successfully delete, the orphan item will still be in 5481 * the tree and we'll retry on the next mount. Again, we might also want 5482 * to retry these periodically in the future. 5483 */ 5484 btrfs_remove_delayed_node(BTRFS_I(inode)); 5485 clear_inode(inode); 5486 } 5487 5488 /* 5489 * Return the key found in the dir entry in the location pointer, fill @type 5490 * with BTRFS_FT_*, and return 0. 5491 * 5492 * If no dir entries were found, returns -ENOENT. 5493 * If found a corrupted location in dir entry, returns -EUCLEAN. 5494 */ 5495 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5496 struct btrfs_key *location, u8 *type) 5497 { 5498 const char *name = dentry->d_name.name; 5499 int namelen = dentry->d_name.len; 5500 struct btrfs_dir_item *di; 5501 struct btrfs_path *path; 5502 struct btrfs_root *root = BTRFS_I(dir)->root; 5503 int ret = 0; 5504 5505 path = btrfs_alloc_path(); 5506 if (!path) 5507 return -ENOMEM; 5508 5509 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5510 name, namelen, 0); 5511 if (IS_ERR_OR_NULL(di)) { 5512 ret = di ? PTR_ERR(di) : -ENOENT; 5513 goto out; 5514 } 5515 5516 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5517 if (location->type != BTRFS_INODE_ITEM_KEY && 5518 location->type != BTRFS_ROOT_ITEM_KEY) { 5519 ret = -EUCLEAN; 5520 btrfs_warn(root->fs_info, 5521 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5522 __func__, name, btrfs_ino(BTRFS_I(dir)), 5523 location->objectid, location->type, location->offset); 5524 } 5525 if (!ret) 5526 *type = btrfs_dir_type(path->nodes[0], di); 5527 out: 5528 btrfs_free_path(path); 5529 return ret; 5530 } 5531 5532 /* 5533 * when we hit a tree root in a directory, the btrfs part of the inode 5534 * needs to be changed to reflect the root directory of the tree root. This 5535 * is kind of like crossing a mount point. 5536 */ 5537 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5538 struct inode *dir, 5539 struct dentry *dentry, 5540 struct btrfs_key *location, 5541 struct btrfs_root **sub_root) 5542 { 5543 struct btrfs_path *path; 5544 struct btrfs_root *new_root; 5545 struct btrfs_root_ref *ref; 5546 struct extent_buffer *leaf; 5547 struct btrfs_key key; 5548 int ret; 5549 int err = 0; 5550 5551 path = btrfs_alloc_path(); 5552 if (!path) { 5553 err = -ENOMEM; 5554 goto out; 5555 } 5556 5557 err = -ENOENT; 5558 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5559 key.type = BTRFS_ROOT_REF_KEY; 5560 key.offset = location->objectid; 5561 5562 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5563 if (ret) { 5564 if (ret < 0) 5565 err = ret; 5566 goto out; 5567 } 5568 5569 leaf = path->nodes[0]; 5570 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5571 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5572 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5573 goto out; 5574 5575 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5576 (unsigned long)(ref + 1), 5577 dentry->d_name.len); 5578 if (ret) 5579 goto out; 5580 5581 btrfs_release_path(path); 5582 5583 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5584 if (IS_ERR(new_root)) { 5585 err = PTR_ERR(new_root); 5586 goto out; 5587 } 5588 5589 *sub_root = new_root; 5590 location->objectid = btrfs_root_dirid(&new_root->root_item); 5591 location->type = BTRFS_INODE_ITEM_KEY; 5592 location->offset = 0; 5593 err = 0; 5594 out: 5595 btrfs_free_path(path); 5596 return err; 5597 } 5598 5599 static void inode_tree_add(struct inode *inode) 5600 { 5601 struct btrfs_root *root = BTRFS_I(inode)->root; 5602 struct btrfs_inode *entry; 5603 struct rb_node **p; 5604 struct rb_node *parent; 5605 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5606 u64 ino = btrfs_ino(BTRFS_I(inode)); 5607 5608 if (inode_unhashed(inode)) 5609 return; 5610 parent = NULL; 5611 spin_lock(&root->inode_lock); 5612 p = &root->inode_tree.rb_node; 5613 while (*p) { 5614 parent = *p; 5615 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5616 5617 if (ino < btrfs_ino(entry)) 5618 p = &parent->rb_left; 5619 else if (ino > btrfs_ino(entry)) 5620 p = &parent->rb_right; 5621 else { 5622 WARN_ON(!(entry->vfs_inode.i_state & 5623 (I_WILL_FREE | I_FREEING))); 5624 rb_replace_node(parent, new, &root->inode_tree); 5625 RB_CLEAR_NODE(parent); 5626 spin_unlock(&root->inode_lock); 5627 return; 5628 } 5629 } 5630 rb_link_node(new, parent, p); 5631 rb_insert_color(new, &root->inode_tree); 5632 spin_unlock(&root->inode_lock); 5633 } 5634 5635 static void inode_tree_del(struct btrfs_inode *inode) 5636 { 5637 struct btrfs_root *root = inode->root; 5638 int empty = 0; 5639 5640 spin_lock(&root->inode_lock); 5641 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5642 rb_erase(&inode->rb_node, &root->inode_tree); 5643 RB_CLEAR_NODE(&inode->rb_node); 5644 empty = RB_EMPTY_ROOT(&root->inode_tree); 5645 } 5646 spin_unlock(&root->inode_lock); 5647 5648 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5649 spin_lock(&root->inode_lock); 5650 empty = RB_EMPTY_ROOT(&root->inode_tree); 5651 spin_unlock(&root->inode_lock); 5652 if (empty) 5653 btrfs_add_dead_root(root); 5654 } 5655 } 5656 5657 5658 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5659 { 5660 struct btrfs_iget_args *args = p; 5661 5662 inode->i_ino = args->ino; 5663 BTRFS_I(inode)->location.objectid = args->ino; 5664 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5665 BTRFS_I(inode)->location.offset = 0; 5666 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5667 BUG_ON(args->root && !BTRFS_I(inode)->root); 5668 return 0; 5669 } 5670 5671 static int btrfs_find_actor(struct inode *inode, void *opaque) 5672 { 5673 struct btrfs_iget_args *args = opaque; 5674 5675 return args->ino == BTRFS_I(inode)->location.objectid && 5676 args->root == BTRFS_I(inode)->root; 5677 } 5678 5679 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5680 struct btrfs_root *root) 5681 { 5682 struct inode *inode; 5683 struct btrfs_iget_args args; 5684 unsigned long hashval = btrfs_inode_hash(ino, root); 5685 5686 args.ino = ino; 5687 args.root = root; 5688 5689 inode = iget5_locked(s, hashval, btrfs_find_actor, 5690 btrfs_init_locked_inode, 5691 (void *)&args); 5692 return inode; 5693 } 5694 5695 /* 5696 * Get an inode object given its inode number and corresponding root. 5697 * Path can be preallocated to prevent recursing back to iget through 5698 * allocator. NULL is also valid but may require an additional allocation 5699 * later. 5700 */ 5701 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5702 struct btrfs_root *root, struct btrfs_path *path) 5703 { 5704 struct inode *inode; 5705 5706 inode = btrfs_iget_locked(s, ino, root); 5707 if (!inode) 5708 return ERR_PTR(-ENOMEM); 5709 5710 if (inode->i_state & I_NEW) { 5711 int ret; 5712 5713 ret = btrfs_read_locked_inode(inode, path); 5714 if (!ret) { 5715 inode_tree_add(inode); 5716 unlock_new_inode(inode); 5717 } else { 5718 iget_failed(inode); 5719 /* 5720 * ret > 0 can come from btrfs_search_slot called by 5721 * btrfs_read_locked_inode, this means the inode item 5722 * was not found. 5723 */ 5724 if (ret > 0) 5725 ret = -ENOENT; 5726 inode = ERR_PTR(ret); 5727 } 5728 } 5729 5730 return inode; 5731 } 5732 5733 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5734 { 5735 return btrfs_iget_path(s, ino, root, NULL); 5736 } 5737 5738 static struct inode *new_simple_dir(struct super_block *s, 5739 struct btrfs_key *key, 5740 struct btrfs_root *root) 5741 { 5742 struct inode *inode = new_inode(s); 5743 5744 if (!inode) 5745 return ERR_PTR(-ENOMEM); 5746 5747 BTRFS_I(inode)->root = btrfs_grab_root(root); 5748 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5749 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5750 5751 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5752 /* 5753 * We only need lookup, the rest is read-only and there's no inode 5754 * associated with the dentry 5755 */ 5756 inode->i_op = &simple_dir_inode_operations; 5757 inode->i_opflags &= ~IOP_XATTR; 5758 inode->i_fop = &simple_dir_operations; 5759 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5760 inode->i_mtime = current_time(inode); 5761 inode->i_atime = inode->i_mtime; 5762 inode->i_ctime = inode->i_mtime; 5763 BTRFS_I(inode)->i_otime = inode->i_mtime; 5764 5765 return inode; 5766 } 5767 5768 static inline u8 btrfs_inode_type(struct inode *inode) 5769 { 5770 /* 5771 * Compile-time asserts that generic FT_* types still match 5772 * BTRFS_FT_* types 5773 */ 5774 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5775 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5776 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5777 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5778 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5779 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5780 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5781 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5782 5783 return fs_umode_to_ftype(inode->i_mode); 5784 } 5785 5786 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5787 { 5788 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5789 struct inode *inode; 5790 struct btrfs_root *root = BTRFS_I(dir)->root; 5791 struct btrfs_root *sub_root = root; 5792 struct btrfs_key location; 5793 u8 di_type = 0; 5794 int ret = 0; 5795 5796 if (dentry->d_name.len > BTRFS_NAME_LEN) 5797 return ERR_PTR(-ENAMETOOLONG); 5798 5799 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5800 if (ret < 0) 5801 return ERR_PTR(ret); 5802 5803 if (location.type == BTRFS_INODE_ITEM_KEY) { 5804 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5805 if (IS_ERR(inode)) 5806 return inode; 5807 5808 /* Do extra check against inode mode with di_type */ 5809 if (btrfs_inode_type(inode) != di_type) { 5810 btrfs_crit(fs_info, 5811 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5812 inode->i_mode, btrfs_inode_type(inode), 5813 di_type); 5814 iput(inode); 5815 return ERR_PTR(-EUCLEAN); 5816 } 5817 return inode; 5818 } 5819 5820 ret = fixup_tree_root_location(fs_info, dir, dentry, 5821 &location, &sub_root); 5822 if (ret < 0) { 5823 if (ret != -ENOENT) 5824 inode = ERR_PTR(ret); 5825 else 5826 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5827 } else { 5828 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5829 } 5830 if (root != sub_root) 5831 btrfs_put_root(sub_root); 5832 5833 if (!IS_ERR(inode) && root != sub_root) { 5834 down_read(&fs_info->cleanup_work_sem); 5835 if (!sb_rdonly(inode->i_sb)) 5836 ret = btrfs_orphan_cleanup(sub_root); 5837 up_read(&fs_info->cleanup_work_sem); 5838 if (ret) { 5839 iput(inode); 5840 inode = ERR_PTR(ret); 5841 } 5842 } 5843 5844 return inode; 5845 } 5846 5847 static int btrfs_dentry_delete(const struct dentry *dentry) 5848 { 5849 struct btrfs_root *root; 5850 struct inode *inode = d_inode(dentry); 5851 5852 if (!inode && !IS_ROOT(dentry)) 5853 inode = d_inode(dentry->d_parent); 5854 5855 if (inode) { 5856 root = BTRFS_I(inode)->root; 5857 if (btrfs_root_refs(&root->root_item) == 0) 5858 return 1; 5859 5860 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5861 return 1; 5862 } 5863 return 0; 5864 } 5865 5866 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5867 unsigned int flags) 5868 { 5869 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5870 5871 if (inode == ERR_PTR(-ENOENT)) 5872 inode = NULL; 5873 return d_splice_alias(inode, dentry); 5874 } 5875 5876 /* 5877 * All this infrastructure exists because dir_emit can fault, and we are holding 5878 * the tree lock when doing readdir. For now just allocate a buffer and copy 5879 * our information into that, and then dir_emit from the buffer. This is 5880 * similar to what NFS does, only we don't keep the buffer around in pagecache 5881 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5882 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5883 * tree lock. 5884 */ 5885 static int btrfs_opendir(struct inode *inode, struct file *file) 5886 { 5887 struct btrfs_file_private *private; 5888 5889 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5890 if (!private) 5891 return -ENOMEM; 5892 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5893 if (!private->filldir_buf) { 5894 kfree(private); 5895 return -ENOMEM; 5896 } 5897 file->private_data = private; 5898 return 0; 5899 } 5900 5901 struct dir_entry { 5902 u64 ino; 5903 u64 offset; 5904 unsigned type; 5905 int name_len; 5906 }; 5907 5908 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5909 { 5910 while (entries--) { 5911 struct dir_entry *entry = addr; 5912 char *name = (char *)(entry + 1); 5913 5914 ctx->pos = get_unaligned(&entry->offset); 5915 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5916 get_unaligned(&entry->ino), 5917 get_unaligned(&entry->type))) 5918 return 1; 5919 addr += sizeof(struct dir_entry) + 5920 get_unaligned(&entry->name_len); 5921 ctx->pos++; 5922 } 5923 return 0; 5924 } 5925 5926 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5927 { 5928 struct inode *inode = file_inode(file); 5929 struct btrfs_root *root = BTRFS_I(inode)->root; 5930 struct btrfs_file_private *private = file->private_data; 5931 struct btrfs_dir_item *di; 5932 struct btrfs_key key; 5933 struct btrfs_key found_key; 5934 struct btrfs_path *path; 5935 void *addr; 5936 struct list_head ins_list; 5937 struct list_head del_list; 5938 int ret; 5939 struct extent_buffer *leaf; 5940 int slot; 5941 char *name_ptr; 5942 int name_len; 5943 int entries = 0; 5944 int total_len = 0; 5945 bool put = false; 5946 struct btrfs_key location; 5947 5948 if (!dir_emit_dots(file, ctx)) 5949 return 0; 5950 5951 path = btrfs_alloc_path(); 5952 if (!path) 5953 return -ENOMEM; 5954 5955 addr = private->filldir_buf; 5956 path->reada = READA_FORWARD; 5957 5958 INIT_LIST_HEAD(&ins_list); 5959 INIT_LIST_HEAD(&del_list); 5960 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5961 5962 again: 5963 key.type = BTRFS_DIR_INDEX_KEY; 5964 key.offset = ctx->pos; 5965 key.objectid = btrfs_ino(BTRFS_I(inode)); 5966 5967 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5968 if (ret < 0) 5969 goto err; 5970 5971 while (1) { 5972 struct dir_entry *entry; 5973 5974 leaf = path->nodes[0]; 5975 slot = path->slots[0]; 5976 if (slot >= btrfs_header_nritems(leaf)) { 5977 ret = btrfs_next_leaf(root, path); 5978 if (ret < 0) 5979 goto err; 5980 else if (ret > 0) 5981 break; 5982 continue; 5983 } 5984 5985 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5986 5987 if (found_key.objectid != key.objectid) 5988 break; 5989 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5990 break; 5991 if (found_key.offset < ctx->pos) 5992 goto next; 5993 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5994 goto next; 5995 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5996 name_len = btrfs_dir_name_len(leaf, di); 5997 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5998 PAGE_SIZE) { 5999 btrfs_release_path(path); 6000 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6001 if (ret) 6002 goto nopos; 6003 addr = private->filldir_buf; 6004 entries = 0; 6005 total_len = 0; 6006 goto again; 6007 } 6008 6009 entry = addr; 6010 put_unaligned(name_len, &entry->name_len); 6011 name_ptr = (char *)(entry + 1); 6012 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6013 name_len); 6014 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6015 &entry->type); 6016 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6017 put_unaligned(location.objectid, &entry->ino); 6018 put_unaligned(found_key.offset, &entry->offset); 6019 entries++; 6020 addr += sizeof(struct dir_entry) + name_len; 6021 total_len += sizeof(struct dir_entry) + name_len; 6022 next: 6023 path->slots[0]++; 6024 } 6025 btrfs_release_path(path); 6026 6027 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6028 if (ret) 6029 goto nopos; 6030 6031 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6032 if (ret) 6033 goto nopos; 6034 6035 /* 6036 * Stop new entries from being returned after we return the last 6037 * entry. 6038 * 6039 * New directory entries are assigned a strictly increasing 6040 * offset. This means that new entries created during readdir 6041 * are *guaranteed* to be seen in the future by that readdir. 6042 * This has broken buggy programs which operate on names as 6043 * they're returned by readdir. Until we re-use freed offsets 6044 * we have this hack to stop new entries from being returned 6045 * under the assumption that they'll never reach this huge 6046 * offset. 6047 * 6048 * This is being careful not to overflow 32bit loff_t unless the 6049 * last entry requires it because doing so has broken 32bit apps 6050 * in the past. 6051 */ 6052 if (ctx->pos >= INT_MAX) 6053 ctx->pos = LLONG_MAX; 6054 else 6055 ctx->pos = INT_MAX; 6056 nopos: 6057 ret = 0; 6058 err: 6059 if (put) 6060 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6061 btrfs_free_path(path); 6062 return ret; 6063 } 6064 6065 /* 6066 * This is somewhat expensive, updating the tree every time the 6067 * inode changes. But, it is most likely to find the inode in cache. 6068 * FIXME, needs more benchmarking...there are no reasons other than performance 6069 * to keep or drop this code. 6070 */ 6071 static int btrfs_dirty_inode(struct inode *inode) 6072 { 6073 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6074 struct btrfs_root *root = BTRFS_I(inode)->root; 6075 struct btrfs_trans_handle *trans; 6076 int ret; 6077 6078 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6079 return 0; 6080 6081 trans = btrfs_join_transaction(root); 6082 if (IS_ERR(trans)) 6083 return PTR_ERR(trans); 6084 6085 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6086 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6087 /* whoops, lets try again with the full transaction */ 6088 btrfs_end_transaction(trans); 6089 trans = btrfs_start_transaction(root, 1); 6090 if (IS_ERR(trans)) 6091 return PTR_ERR(trans); 6092 6093 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6094 } 6095 btrfs_end_transaction(trans); 6096 if (BTRFS_I(inode)->delayed_node) 6097 btrfs_balance_delayed_items(fs_info); 6098 6099 return ret; 6100 } 6101 6102 /* 6103 * This is a copy of file_update_time. We need this so we can return error on 6104 * ENOSPC for updating the inode in the case of file write and mmap writes. 6105 */ 6106 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6107 int flags) 6108 { 6109 struct btrfs_root *root = BTRFS_I(inode)->root; 6110 bool dirty = flags & ~S_VERSION; 6111 6112 if (btrfs_root_readonly(root)) 6113 return -EROFS; 6114 6115 if (flags & S_VERSION) 6116 dirty |= inode_maybe_inc_iversion(inode, dirty); 6117 if (flags & S_CTIME) 6118 inode->i_ctime = *now; 6119 if (flags & S_MTIME) 6120 inode->i_mtime = *now; 6121 if (flags & S_ATIME) 6122 inode->i_atime = *now; 6123 return dirty ? btrfs_dirty_inode(inode) : 0; 6124 } 6125 6126 /* 6127 * find the highest existing sequence number in a directory 6128 * and then set the in-memory index_cnt variable to reflect 6129 * free sequence numbers 6130 */ 6131 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6132 { 6133 struct btrfs_root *root = inode->root; 6134 struct btrfs_key key, found_key; 6135 struct btrfs_path *path; 6136 struct extent_buffer *leaf; 6137 int ret; 6138 6139 key.objectid = btrfs_ino(inode); 6140 key.type = BTRFS_DIR_INDEX_KEY; 6141 key.offset = (u64)-1; 6142 6143 path = btrfs_alloc_path(); 6144 if (!path) 6145 return -ENOMEM; 6146 6147 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6148 if (ret < 0) 6149 goto out; 6150 /* FIXME: we should be able to handle this */ 6151 if (ret == 0) 6152 goto out; 6153 ret = 0; 6154 6155 /* 6156 * MAGIC NUMBER EXPLANATION: 6157 * since we search a directory based on f_pos we have to start at 2 6158 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6159 * else has to start at 2 6160 */ 6161 if (path->slots[0] == 0) { 6162 inode->index_cnt = 2; 6163 goto out; 6164 } 6165 6166 path->slots[0]--; 6167 6168 leaf = path->nodes[0]; 6169 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6170 6171 if (found_key.objectid != btrfs_ino(inode) || 6172 found_key.type != BTRFS_DIR_INDEX_KEY) { 6173 inode->index_cnt = 2; 6174 goto out; 6175 } 6176 6177 inode->index_cnt = found_key.offset + 1; 6178 out: 6179 btrfs_free_path(path); 6180 return ret; 6181 } 6182 6183 /* 6184 * helper to find a free sequence number in a given directory. This current 6185 * code is very simple, later versions will do smarter things in the btree 6186 */ 6187 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6188 { 6189 int ret = 0; 6190 6191 if (dir->index_cnt == (u64)-1) { 6192 ret = btrfs_inode_delayed_dir_index_count(dir); 6193 if (ret) { 6194 ret = btrfs_set_inode_index_count(dir); 6195 if (ret) 6196 return ret; 6197 } 6198 } 6199 6200 *index = dir->index_cnt; 6201 dir->index_cnt++; 6202 6203 return ret; 6204 } 6205 6206 static int btrfs_insert_inode_locked(struct inode *inode) 6207 { 6208 struct btrfs_iget_args args; 6209 6210 args.ino = BTRFS_I(inode)->location.objectid; 6211 args.root = BTRFS_I(inode)->root; 6212 6213 return insert_inode_locked4(inode, 6214 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6215 btrfs_find_actor, &args); 6216 } 6217 6218 /* 6219 * Inherit flags from the parent inode. 6220 * 6221 * Currently only the compression flags and the cow flags are inherited. 6222 */ 6223 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6224 { 6225 unsigned int flags; 6226 6227 if (!dir) 6228 return; 6229 6230 flags = BTRFS_I(dir)->flags; 6231 6232 if (flags & BTRFS_INODE_NOCOMPRESS) { 6233 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6234 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6235 } else if (flags & BTRFS_INODE_COMPRESS) { 6236 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6237 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6238 } 6239 6240 if (flags & BTRFS_INODE_NODATACOW) { 6241 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6242 if (S_ISREG(inode->i_mode)) 6243 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6244 } 6245 6246 btrfs_sync_inode_flags_to_i_flags(inode); 6247 } 6248 6249 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6250 struct btrfs_root *root, 6251 struct inode *dir, 6252 const char *name, int name_len, 6253 u64 ref_objectid, u64 objectid, 6254 umode_t mode, u64 *index) 6255 { 6256 struct btrfs_fs_info *fs_info = root->fs_info; 6257 struct inode *inode; 6258 struct btrfs_inode_item *inode_item; 6259 struct btrfs_key *location; 6260 struct btrfs_path *path; 6261 struct btrfs_inode_ref *ref; 6262 struct btrfs_key key[2]; 6263 u32 sizes[2]; 6264 int nitems = name ? 2 : 1; 6265 unsigned long ptr; 6266 unsigned int nofs_flag; 6267 int ret; 6268 6269 path = btrfs_alloc_path(); 6270 if (!path) 6271 return ERR_PTR(-ENOMEM); 6272 6273 nofs_flag = memalloc_nofs_save(); 6274 inode = new_inode(fs_info->sb); 6275 memalloc_nofs_restore(nofs_flag); 6276 if (!inode) { 6277 btrfs_free_path(path); 6278 return ERR_PTR(-ENOMEM); 6279 } 6280 6281 /* 6282 * O_TMPFILE, set link count to 0, so that after this point, 6283 * we fill in an inode item with the correct link count. 6284 */ 6285 if (!name) 6286 set_nlink(inode, 0); 6287 6288 /* 6289 * we have to initialize this early, so we can reclaim the inode 6290 * number if we fail afterwards in this function. 6291 */ 6292 inode->i_ino = objectid; 6293 6294 if (dir && name) { 6295 trace_btrfs_inode_request(dir); 6296 6297 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6298 if (ret) { 6299 btrfs_free_path(path); 6300 iput(inode); 6301 return ERR_PTR(ret); 6302 } 6303 } else if (dir) { 6304 *index = 0; 6305 } 6306 /* 6307 * index_cnt is ignored for everything but a dir, 6308 * btrfs_set_inode_index_count has an explanation for the magic 6309 * number 6310 */ 6311 BTRFS_I(inode)->index_cnt = 2; 6312 BTRFS_I(inode)->dir_index = *index; 6313 BTRFS_I(inode)->root = btrfs_grab_root(root); 6314 BTRFS_I(inode)->generation = trans->transid; 6315 inode->i_generation = BTRFS_I(inode)->generation; 6316 6317 /* 6318 * We could have gotten an inode number from somebody who was fsynced 6319 * and then removed in this same transaction, so let's just set full 6320 * sync since it will be a full sync anyway and this will blow away the 6321 * old info in the log. 6322 */ 6323 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6324 6325 key[0].objectid = objectid; 6326 key[0].type = BTRFS_INODE_ITEM_KEY; 6327 key[0].offset = 0; 6328 6329 sizes[0] = sizeof(struct btrfs_inode_item); 6330 6331 if (name) { 6332 /* 6333 * Start new inodes with an inode_ref. This is slightly more 6334 * efficient for small numbers of hard links since they will 6335 * be packed into one item. Extended refs will kick in if we 6336 * add more hard links than can fit in the ref item. 6337 */ 6338 key[1].objectid = objectid; 6339 key[1].type = BTRFS_INODE_REF_KEY; 6340 key[1].offset = ref_objectid; 6341 6342 sizes[1] = name_len + sizeof(*ref); 6343 } 6344 6345 location = &BTRFS_I(inode)->location; 6346 location->objectid = objectid; 6347 location->offset = 0; 6348 location->type = BTRFS_INODE_ITEM_KEY; 6349 6350 ret = btrfs_insert_inode_locked(inode); 6351 if (ret < 0) { 6352 iput(inode); 6353 goto fail; 6354 } 6355 6356 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6357 if (ret != 0) 6358 goto fail_unlock; 6359 6360 inode_init_owner(&init_user_ns, inode, dir, mode); 6361 inode_set_bytes(inode, 0); 6362 6363 inode->i_mtime = current_time(inode); 6364 inode->i_atime = inode->i_mtime; 6365 inode->i_ctime = inode->i_mtime; 6366 BTRFS_I(inode)->i_otime = inode->i_mtime; 6367 6368 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6369 struct btrfs_inode_item); 6370 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6371 sizeof(*inode_item)); 6372 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6373 6374 if (name) { 6375 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6376 struct btrfs_inode_ref); 6377 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6378 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6379 ptr = (unsigned long)(ref + 1); 6380 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6381 } 6382 6383 btrfs_mark_buffer_dirty(path->nodes[0]); 6384 btrfs_free_path(path); 6385 6386 btrfs_inherit_iflags(inode, dir); 6387 6388 if (S_ISREG(mode)) { 6389 if (btrfs_test_opt(fs_info, NODATASUM)) 6390 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6391 if (btrfs_test_opt(fs_info, NODATACOW)) 6392 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6393 BTRFS_INODE_NODATASUM; 6394 } 6395 6396 inode_tree_add(inode); 6397 6398 trace_btrfs_inode_new(inode); 6399 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6400 6401 btrfs_update_root_times(trans, root); 6402 6403 ret = btrfs_inode_inherit_props(trans, inode, dir); 6404 if (ret) 6405 btrfs_err(fs_info, 6406 "error inheriting props for ino %llu (root %llu): %d", 6407 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6408 6409 return inode; 6410 6411 fail_unlock: 6412 discard_new_inode(inode); 6413 fail: 6414 if (dir && name) 6415 BTRFS_I(dir)->index_cnt--; 6416 btrfs_free_path(path); 6417 return ERR_PTR(ret); 6418 } 6419 6420 /* 6421 * utility function to add 'inode' into 'parent_inode' with 6422 * a give name and a given sequence number. 6423 * if 'add_backref' is true, also insert a backref from the 6424 * inode to the parent directory. 6425 */ 6426 int btrfs_add_link(struct btrfs_trans_handle *trans, 6427 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6428 const char *name, int name_len, int add_backref, u64 index) 6429 { 6430 int ret = 0; 6431 struct btrfs_key key; 6432 struct btrfs_root *root = parent_inode->root; 6433 u64 ino = btrfs_ino(inode); 6434 u64 parent_ino = btrfs_ino(parent_inode); 6435 6436 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6437 memcpy(&key, &inode->root->root_key, sizeof(key)); 6438 } else { 6439 key.objectid = ino; 6440 key.type = BTRFS_INODE_ITEM_KEY; 6441 key.offset = 0; 6442 } 6443 6444 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6445 ret = btrfs_add_root_ref(trans, key.objectid, 6446 root->root_key.objectid, parent_ino, 6447 index, name, name_len); 6448 } else if (add_backref) { 6449 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6450 parent_ino, index); 6451 } 6452 6453 /* Nothing to clean up yet */ 6454 if (ret) 6455 return ret; 6456 6457 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6458 btrfs_inode_type(&inode->vfs_inode), index); 6459 if (ret == -EEXIST || ret == -EOVERFLOW) 6460 goto fail_dir_item; 6461 else if (ret) { 6462 btrfs_abort_transaction(trans, ret); 6463 return ret; 6464 } 6465 6466 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6467 name_len * 2); 6468 inode_inc_iversion(&parent_inode->vfs_inode); 6469 /* 6470 * If we are replaying a log tree, we do not want to update the mtime 6471 * and ctime of the parent directory with the current time, since the 6472 * log replay procedure is responsible for setting them to their correct 6473 * values (the ones it had when the fsync was done). 6474 */ 6475 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6476 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6477 6478 parent_inode->vfs_inode.i_mtime = now; 6479 parent_inode->vfs_inode.i_ctime = now; 6480 } 6481 ret = btrfs_update_inode(trans, root, parent_inode); 6482 if (ret) 6483 btrfs_abort_transaction(trans, ret); 6484 return ret; 6485 6486 fail_dir_item: 6487 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6488 u64 local_index; 6489 int err; 6490 err = btrfs_del_root_ref(trans, key.objectid, 6491 root->root_key.objectid, parent_ino, 6492 &local_index, name, name_len); 6493 if (err) 6494 btrfs_abort_transaction(trans, err); 6495 } else if (add_backref) { 6496 u64 local_index; 6497 int err; 6498 6499 err = btrfs_del_inode_ref(trans, root, name, name_len, 6500 ino, parent_ino, &local_index); 6501 if (err) 6502 btrfs_abort_transaction(trans, err); 6503 } 6504 6505 /* Return the original error code */ 6506 return ret; 6507 } 6508 6509 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6510 struct btrfs_inode *dir, struct dentry *dentry, 6511 struct btrfs_inode *inode, int backref, u64 index) 6512 { 6513 int err = btrfs_add_link(trans, dir, inode, 6514 dentry->d_name.name, dentry->d_name.len, 6515 backref, index); 6516 if (err > 0) 6517 err = -EEXIST; 6518 return err; 6519 } 6520 6521 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6522 struct dentry *dentry, umode_t mode, dev_t rdev) 6523 { 6524 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6525 struct btrfs_trans_handle *trans; 6526 struct btrfs_root *root = BTRFS_I(dir)->root; 6527 struct inode *inode = NULL; 6528 int err; 6529 u64 objectid; 6530 u64 index = 0; 6531 6532 /* 6533 * 2 for inode item and ref 6534 * 2 for dir items 6535 * 1 for xattr if selinux is on 6536 */ 6537 trans = btrfs_start_transaction(root, 5); 6538 if (IS_ERR(trans)) 6539 return PTR_ERR(trans); 6540 6541 err = btrfs_get_free_objectid(root, &objectid); 6542 if (err) 6543 goto out_unlock; 6544 6545 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6546 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6547 mode, &index); 6548 if (IS_ERR(inode)) { 6549 err = PTR_ERR(inode); 6550 inode = NULL; 6551 goto out_unlock; 6552 } 6553 6554 /* 6555 * If the active LSM wants to access the inode during 6556 * d_instantiate it needs these. Smack checks to see 6557 * if the filesystem supports xattrs by looking at the 6558 * ops vector. 6559 */ 6560 inode->i_op = &btrfs_special_inode_operations; 6561 init_special_inode(inode, inode->i_mode, rdev); 6562 6563 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6564 if (err) 6565 goto out_unlock; 6566 6567 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6568 0, index); 6569 if (err) 6570 goto out_unlock; 6571 6572 btrfs_update_inode(trans, root, BTRFS_I(inode)); 6573 d_instantiate_new(dentry, inode); 6574 6575 out_unlock: 6576 btrfs_end_transaction(trans); 6577 btrfs_btree_balance_dirty(fs_info); 6578 if (err && inode) { 6579 inode_dec_link_count(inode); 6580 discard_new_inode(inode); 6581 } 6582 return err; 6583 } 6584 6585 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6586 struct dentry *dentry, umode_t mode, bool excl) 6587 { 6588 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6589 struct btrfs_trans_handle *trans; 6590 struct btrfs_root *root = BTRFS_I(dir)->root; 6591 struct inode *inode = NULL; 6592 int err; 6593 u64 objectid; 6594 u64 index = 0; 6595 6596 /* 6597 * 2 for inode item and ref 6598 * 2 for dir items 6599 * 1 for xattr if selinux is on 6600 */ 6601 trans = btrfs_start_transaction(root, 5); 6602 if (IS_ERR(trans)) 6603 return PTR_ERR(trans); 6604 6605 err = btrfs_get_free_objectid(root, &objectid); 6606 if (err) 6607 goto out_unlock; 6608 6609 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6610 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6611 mode, &index); 6612 if (IS_ERR(inode)) { 6613 err = PTR_ERR(inode); 6614 inode = NULL; 6615 goto out_unlock; 6616 } 6617 /* 6618 * If the active LSM wants to access the inode during 6619 * d_instantiate it needs these. Smack checks to see 6620 * if the filesystem supports xattrs by looking at the 6621 * ops vector. 6622 */ 6623 inode->i_fop = &btrfs_file_operations; 6624 inode->i_op = &btrfs_file_inode_operations; 6625 inode->i_mapping->a_ops = &btrfs_aops; 6626 6627 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6628 if (err) 6629 goto out_unlock; 6630 6631 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6632 if (err) 6633 goto out_unlock; 6634 6635 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6636 0, index); 6637 if (err) 6638 goto out_unlock; 6639 6640 d_instantiate_new(dentry, inode); 6641 6642 out_unlock: 6643 btrfs_end_transaction(trans); 6644 if (err && inode) { 6645 inode_dec_link_count(inode); 6646 discard_new_inode(inode); 6647 } 6648 btrfs_btree_balance_dirty(fs_info); 6649 return err; 6650 } 6651 6652 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6653 struct dentry *dentry) 6654 { 6655 struct btrfs_trans_handle *trans = NULL; 6656 struct btrfs_root *root = BTRFS_I(dir)->root; 6657 struct inode *inode = d_inode(old_dentry); 6658 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6659 u64 index; 6660 int err; 6661 int drop_inode = 0; 6662 6663 /* do not allow sys_link's with other subvols of the same device */ 6664 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6665 return -EXDEV; 6666 6667 if (inode->i_nlink >= BTRFS_LINK_MAX) 6668 return -EMLINK; 6669 6670 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6671 if (err) 6672 goto fail; 6673 6674 /* 6675 * 2 items for inode and inode ref 6676 * 2 items for dir items 6677 * 1 item for parent inode 6678 * 1 item for orphan item deletion if O_TMPFILE 6679 */ 6680 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6681 if (IS_ERR(trans)) { 6682 err = PTR_ERR(trans); 6683 trans = NULL; 6684 goto fail; 6685 } 6686 6687 /* There are several dir indexes for this inode, clear the cache. */ 6688 BTRFS_I(inode)->dir_index = 0ULL; 6689 inc_nlink(inode); 6690 inode_inc_iversion(inode); 6691 inode->i_ctime = current_time(inode); 6692 ihold(inode); 6693 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6694 6695 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6696 1, index); 6697 6698 if (err) { 6699 drop_inode = 1; 6700 } else { 6701 struct dentry *parent = dentry->d_parent; 6702 6703 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6704 if (err) 6705 goto fail; 6706 if (inode->i_nlink == 1) { 6707 /* 6708 * If new hard link count is 1, it's a file created 6709 * with open(2) O_TMPFILE flag. 6710 */ 6711 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6712 if (err) 6713 goto fail; 6714 } 6715 d_instantiate(dentry, inode); 6716 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6717 } 6718 6719 fail: 6720 if (trans) 6721 btrfs_end_transaction(trans); 6722 if (drop_inode) { 6723 inode_dec_link_count(inode); 6724 iput(inode); 6725 } 6726 btrfs_btree_balance_dirty(fs_info); 6727 return err; 6728 } 6729 6730 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6731 struct dentry *dentry, umode_t mode) 6732 { 6733 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6734 struct inode *inode = NULL; 6735 struct btrfs_trans_handle *trans; 6736 struct btrfs_root *root = BTRFS_I(dir)->root; 6737 int err = 0; 6738 u64 objectid = 0; 6739 u64 index = 0; 6740 6741 /* 6742 * 2 items for inode and ref 6743 * 2 items for dir items 6744 * 1 for xattr if selinux is on 6745 */ 6746 trans = btrfs_start_transaction(root, 5); 6747 if (IS_ERR(trans)) 6748 return PTR_ERR(trans); 6749 6750 err = btrfs_get_free_objectid(root, &objectid); 6751 if (err) 6752 goto out_fail; 6753 6754 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6755 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6756 S_IFDIR | mode, &index); 6757 if (IS_ERR(inode)) { 6758 err = PTR_ERR(inode); 6759 inode = NULL; 6760 goto out_fail; 6761 } 6762 6763 /* these must be set before we unlock the inode */ 6764 inode->i_op = &btrfs_dir_inode_operations; 6765 inode->i_fop = &btrfs_dir_file_operations; 6766 6767 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6768 if (err) 6769 goto out_fail; 6770 6771 btrfs_i_size_write(BTRFS_I(inode), 0); 6772 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6773 if (err) 6774 goto out_fail; 6775 6776 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6777 dentry->d_name.name, 6778 dentry->d_name.len, 0, index); 6779 if (err) 6780 goto out_fail; 6781 6782 d_instantiate_new(dentry, inode); 6783 6784 out_fail: 6785 btrfs_end_transaction(trans); 6786 if (err && inode) { 6787 inode_dec_link_count(inode); 6788 discard_new_inode(inode); 6789 } 6790 btrfs_btree_balance_dirty(fs_info); 6791 return err; 6792 } 6793 6794 static noinline int uncompress_inline(struct btrfs_path *path, 6795 struct page *page, 6796 size_t pg_offset, u64 extent_offset, 6797 struct btrfs_file_extent_item *item) 6798 { 6799 int ret; 6800 struct extent_buffer *leaf = path->nodes[0]; 6801 char *tmp; 6802 size_t max_size; 6803 unsigned long inline_size; 6804 unsigned long ptr; 6805 int compress_type; 6806 6807 WARN_ON(pg_offset != 0); 6808 compress_type = btrfs_file_extent_compression(leaf, item); 6809 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6810 inline_size = btrfs_file_extent_inline_item_len(leaf, 6811 btrfs_item_nr(path->slots[0])); 6812 tmp = kmalloc(inline_size, GFP_NOFS); 6813 if (!tmp) 6814 return -ENOMEM; 6815 ptr = btrfs_file_extent_inline_start(item); 6816 6817 read_extent_buffer(leaf, tmp, ptr, inline_size); 6818 6819 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6820 ret = btrfs_decompress(compress_type, tmp, page, 6821 extent_offset, inline_size, max_size); 6822 6823 /* 6824 * decompression code contains a memset to fill in any space between the end 6825 * of the uncompressed data and the end of max_size in case the decompressed 6826 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6827 * the end of an inline extent and the beginning of the next block, so we 6828 * cover that region here. 6829 */ 6830 6831 if (max_size + pg_offset < PAGE_SIZE) { 6832 char *map = kmap(page); 6833 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6834 kunmap(page); 6835 } 6836 kfree(tmp); 6837 return ret; 6838 } 6839 6840 /** 6841 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6842 * @inode: file to search in 6843 * @page: page to read extent data into if the extent is inline 6844 * @pg_offset: offset into @page to copy to 6845 * @start: file offset 6846 * @len: length of range starting at @start 6847 * 6848 * This returns the first &struct extent_map which overlaps with the given 6849 * range, reading it from the B-tree and caching it if necessary. Note that 6850 * there may be more extents which overlap the given range after the returned 6851 * extent_map. 6852 * 6853 * If @page is not NULL and the extent is inline, this also reads the extent 6854 * data directly into the page and marks the extent up to date in the io_tree. 6855 * 6856 * Return: ERR_PTR on error, non-NULL extent_map on success. 6857 */ 6858 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6859 struct page *page, size_t pg_offset, 6860 u64 start, u64 len) 6861 { 6862 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6863 int ret = 0; 6864 u64 extent_start = 0; 6865 u64 extent_end = 0; 6866 u64 objectid = btrfs_ino(inode); 6867 int extent_type = -1; 6868 struct btrfs_path *path = NULL; 6869 struct btrfs_root *root = inode->root; 6870 struct btrfs_file_extent_item *item; 6871 struct extent_buffer *leaf; 6872 struct btrfs_key found_key; 6873 struct extent_map *em = NULL; 6874 struct extent_map_tree *em_tree = &inode->extent_tree; 6875 struct extent_io_tree *io_tree = &inode->io_tree; 6876 6877 read_lock(&em_tree->lock); 6878 em = lookup_extent_mapping(em_tree, start, len); 6879 read_unlock(&em_tree->lock); 6880 6881 if (em) { 6882 if (em->start > start || em->start + em->len <= start) 6883 free_extent_map(em); 6884 else if (em->block_start == EXTENT_MAP_INLINE && page) 6885 free_extent_map(em); 6886 else 6887 goto out; 6888 } 6889 em = alloc_extent_map(); 6890 if (!em) { 6891 ret = -ENOMEM; 6892 goto out; 6893 } 6894 em->start = EXTENT_MAP_HOLE; 6895 em->orig_start = EXTENT_MAP_HOLE; 6896 em->len = (u64)-1; 6897 em->block_len = (u64)-1; 6898 6899 path = btrfs_alloc_path(); 6900 if (!path) { 6901 ret = -ENOMEM; 6902 goto out; 6903 } 6904 6905 /* Chances are we'll be called again, so go ahead and do readahead */ 6906 path->reada = READA_FORWARD; 6907 6908 /* 6909 * The same explanation in load_free_space_cache applies here as well, 6910 * we only read when we're loading the free space cache, and at that 6911 * point the commit_root has everything we need. 6912 */ 6913 if (btrfs_is_free_space_inode(inode)) { 6914 path->search_commit_root = 1; 6915 path->skip_locking = 1; 6916 } 6917 6918 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6919 if (ret < 0) { 6920 goto out; 6921 } else if (ret > 0) { 6922 if (path->slots[0] == 0) 6923 goto not_found; 6924 path->slots[0]--; 6925 ret = 0; 6926 } 6927 6928 leaf = path->nodes[0]; 6929 item = btrfs_item_ptr(leaf, path->slots[0], 6930 struct btrfs_file_extent_item); 6931 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6932 if (found_key.objectid != objectid || 6933 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6934 /* 6935 * If we backup past the first extent we want to move forward 6936 * and see if there is an extent in front of us, otherwise we'll 6937 * say there is a hole for our whole search range which can 6938 * cause problems. 6939 */ 6940 extent_end = start; 6941 goto next; 6942 } 6943 6944 extent_type = btrfs_file_extent_type(leaf, item); 6945 extent_start = found_key.offset; 6946 extent_end = btrfs_file_extent_end(path); 6947 if (extent_type == BTRFS_FILE_EXTENT_REG || 6948 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6949 /* Only regular file could have regular/prealloc extent */ 6950 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6951 ret = -EUCLEAN; 6952 btrfs_crit(fs_info, 6953 "regular/prealloc extent found for non-regular inode %llu", 6954 btrfs_ino(inode)); 6955 goto out; 6956 } 6957 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6958 extent_start); 6959 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6960 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6961 path->slots[0], 6962 extent_start); 6963 } 6964 next: 6965 if (start >= extent_end) { 6966 path->slots[0]++; 6967 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6968 ret = btrfs_next_leaf(root, path); 6969 if (ret < 0) 6970 goto out; 6971 else if (ret > 0) 6972 goto not_found; 6973 6974 leaf = path->nodes[0]; 6975 } 6976 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6977 if (found_key.objectid != objectid || 6978 found_key.type != BTRFS_EXTENT_DATA_KEY) 6979 goto not_found; 6980 if (start + len <= found_key.offset) 6981 goto not_found; 6982 if (start > found_key.offset) 6983 goto next; 6984 6985 /* New extent overlaps with existing one */ 6986 em->start = start; 6987 em->orig_start = start; 6988 em->len = found_key.offset - start; 6989 em->block_start = EXTENT_MAP_HOLE; 6990 goto insert; 6991 } 6992 6993 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6994 6995 if (extent_type == BTRFS_FILE_EXTENT_REG || 6996 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6997 goto insert; 6998 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6999 unsigned long ptr; 7000 char *map; 7001 size_t size; 7002 size_t extent_offset; 7003 size_t copy_size; 7004 7005 if (!page) 7006 goto out; 7007 7008 size = btrfs_file_extent_ram_bytes(leaf, item); 7009 extent_offset = page_offset(page) + pg_offset - extent_start; 7010 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7011 size - extent_offset); 7012 em->start = extent_start + extent_offset; 7013 em->len = ALIGN(copy_size, fs_info->sectorsize); 7014 em->orig_block_len = em->len; 7015 em->orig_start = em->start; 7016 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7017 7018 if (!PageUptodate(page)) { 7019 if (btrfs_file_extent_compression(leaf, item) != 7020 BTRFS_COMPRESS_NONE) { 7021 ret = uncompress_inline(path, page, pg_offset, 7022 extent_offset, item); 7023 if (ret) 7024 goto out; 7025 } else { 7026 map = kmap(page); 7027 read_extent_buffer(leaf, map + pg_offset, ptr, 7028 copy_size); 7029 if (pg_offset + copy_size < PAGE_SIZE) { 7030 memset(map + pg_offset + copy_size, 0, 7031 PAGE_SIZE - pg_offset - 7032 copy_size); 7033 } 7034 kunmap(page); 7035 } 7036 flush_dcache_page(page); 7037 } 7038 set_extent_uptodate(io_tree, em->start, 7039 extent_map_end(em) - 1, NULL, GFP_NOFS); 7040 goto insert; 7041 } 7042 not_found: 7043 em->start = start; 7044 em->orig_start = start; 7045 em->len = len; 7046 em->block_start = EXTENT_MAP_HOLE; 7047 insert: 7048 ret = 0; 7049 btrfs_release_path(path); 7050 if (em->start > start || extent_map_end(em) <= start) { 7051 btrfs_err(fs_info, 7052 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7053 em->start, em->len, start, len); 7054 ret = -EIO; 7055 goto out; 7056 } 7057 7058 write_lock(&em_tree->lock); 7059 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7060 write_unlock(&em_tree->lock); 7061 out: 7062 btrfs_free_path(path); 7063 7064 trace_btrfs_get_extent(root, inode, em); 7065 7066 if (ret) { 7067 free_extent_map(em); 7068 return ERR_PTR(ret); 7069 } 7070 return em; 7071 } 7072 7073 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7074 u64 start, u64 len) 7075 { 7076 struct extent_map *em; 7077 struct extent_map *hole_em = NULL; 7078 u64 delalloc_start = start; 7079 u64 end; 7080 u64 delalloc_len; 7081 u64 delalloc_end; 7082 int err = 0; 7083 7084 em = btrfs_get_extent(inode, NULL, 0, start, len); 7085 if (IS_ERR(em)) 7086 return em; 7087 /* 7088 * If our em maps to: 7089 * - a hole or 7090 * - a pre-alloc extent, 7091 * there might actually be delalloc bytes behind it. 7092 */ 7093 if (em->block_start != EXTENT_MAP_HOLE && 7094 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7095 return em; 7096 else 7097 hole_em = em; 7098 7099 /* check to see if we've wrapped (len == -1 or similar) */ 7100 end = start + len; 7101 if (end < start) 7102 end = (u64)-1; 7103 else 7104 end -= 1; 7105 7106 em = NULL; 7107 7108 /* ok, we didn't find anything, lets look for delalloc */ 7109 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7110 end, len, EXTENT_DELALLOC, 1); 7111 delalloc_end = delalloc_start + delalloc_len; 7112 if (delalloc_end < delalloc_start) 7113 delalloc_end = (u64)-1; 7114 7115 /* 7116 * We didn't find anything useful, return the original results from 7117 * get_extent() 7118 */ 7119 if (delalloc_start > end || delalloc_end <= start) { 7120 em = hole_em; 7121 hole_em = NULL; 7122 goto out; 7123 } 7124 7125 /* 7126 * Adjust the delalloc_start to make sure it doesn't go backwards from 7127 * the start they passed in 7128 */ 7129 delalloc_start = max(start, delalloc_start); 7130 delalloc_len = delalloc_end - delalloc_start; 7131 7132 if (delalloc_len > 0) { 7133 u64 hole_start; 7134 u64 hole_len; 7135 const u64 hole_end = extent_map_end(hole_em); 7136 7137 em = alloc_extent_map(); 7138 if (!em) { 7139 err = -ENOMEM; 7140 goto out; 7141 } 7142 7143 ASSERT(hole_em); 7144 /* 7145 * When btrfs_get_extent can't find anything it returns one 7146 * huge hole 7147 * 7148 * Make sure what it found really fits our range, and adjust to 7149 * make sure it is based on the start from the caller 7150 */ 7151 if (hole_end <= start || hole_em->start > end) { 7152 free_extent_map(hole_em); 7153 hole_em = NULL; 7154 } else { 7155 hole_start = max(hole_em->start, start); 7156 hole_len = hole_end - hole_start; 7157 } 7158 7159 if (hole_em && delalloc_start > hole_start) { 7160 /* 7161 * Our hole starts before our delalloc, so we have to 7162 * return just the parts of the hole that go until the 7163 * delalloc starts 7164 */ 7165 em->len = min(hole_len, delalloc_start - hole_start); 7166 em->start = hole_start; 7167 em->orig_start = hole_start; 7168 /* 7169 * Don't adjust block start at all, it is fixed at 7170 * EXTENT_MAP_HOLE 7171 */ 7172 em->block_start = hole_em->block_start; 7173 em->block_len = hole_len; 7174 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7175 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7176 } else { 7177 /* 7178 * Hole is out of passed range or it starts after 7179 * delalloc range 7180 */ 7181 em->start = delalloc_start; 7182 em->len = delalloc_len; 7183 em->orig_start = delalloc_start; 7184 em->block_start = EXTENT_MAP_DELALLOC; 7185 em->block_len = delalloc_len; 7186 } 7187 } else { 7188 return hole_em; 7189 } 7190 out: 7191 7192 free_extent_map(hole_em); 7193 if (err) { 7194 free_extent_map(em); 7195 return ERR_PTR(err); 7196 } 7197 return em; 7198 } 7199 7200 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7201 const u64 start, 7202 const u64 len, 7203 const u64 orig_start, 7204 const u64 block_start, 7205 const u64 block_len, 7206 const u64 orig_block_len, 7207 const u64 ram_bytes, 7208 const int type) 7209 { 7210 struct extent_map *em = NULL; 7211 int ret; 7212 7213 if (type != BTRFS_ORDERED_NOCOW) { 7214 em = create_io_em(inode, start, len, orig_start, block_start, 7215 block_len, orig_block_len, ram_bytes, 7216 BTRFS_COMPRESS_NONE, /* compress_type */ 7217 type); 7218 if (IS_ERR(em)) 7219 goto out; 7220 } 7221 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, 7222 block_len, type); 7223 if (ret) { 7224 if (em) { 7225 free_extent_map(em); 7226 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7227 } 7228 em = ERR_PTR(ret); 7229 } 7230 out: 7231 7232 return em; 7233 } 7234 7235 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7236 u64 start, u64 len) 7237 { 7238 struct btrfs_root *root = inode->root; 7239 struct btrfs_fs_info *fs_info = root->fs_info; 7240 struct extent_map *em; 7241 struct btrfs_key ins; 7242 u64 alloc_hint; 7243 int ret; 7244 7245 alloc_hint = get_extent_allocation_hint(inode, start, len); 7246 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7247 0, alloc_hint, &ins, 1, 1); 7248 if (ret) 7249 return ERR_PTR(ret); 7250 7251 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7252 ins.objectid, ins.offset, ins.offset, 7253 ins.offset, BTRFS_ORDERED_REGULAR); 7254 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7255 if (IS_ERR(em)) 7256 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7257 1); 7258 7259 return em; 7260 } 7261 7262 /* 7263 * Check if we can do nocow write into the range [@offset, @offset + @len) 7264 * 7265 * @offset: File offset 7266 * @len: The length to write, will be updated to the nocow writeable 7267 * range 7268 * @orig_start: (optional) Return the original file offset of the file extent 7269 * @orig_len: (optional) Return the original on-disk length of the file extent 7270 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7271 * @strict: if true, omit optimizations that might force us into unnecessary 7272 * cow. e.g., don't trust generation number. 7273 * 7274 * Return: 7275 * >0 and update @len if we can do nocow write 7276 * 0 if we can't do nocow write 7277 * <0 if error happened 7278 * 7279 * NOTE: This only checks the file extents, caller is responsible to wait for 7280 * any ordered extents. 7281 */ 7282 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7283 u64 *orig_start, u64 *orig_block_len, 7284 u64 *ram_bytes, bool strict) 7285 { 7286 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7287 struct btrfs_path *path; 7288 int ret; 7289 struct extent_buffer *leaf; 7290 struct btrfs_root *root = BTRFS_I(inode)->root; 7291 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7292 struct btrfs_file_extent_item *fi; 7293 struct btrfs_key key; 7294 u64 disk_bytenr; 7295 u64 backref_offset; 7296 u64 extent_end; 7297 u64 num_bytes; 7298 int slot; 7299 int found_type; 7300 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7301 7302 path = btrfs_alloc_path(); 7303 if (!path) 7304 return -ENOMEM; 7305 7306 ret = btrfs_lookup_file_extent(NULL, root, path, 7307 btrfs_ino(BTRFS_I(inode)), offset, 0); 7308 if (ret < 0) 7309 goto out; 7310 7311 slot = path->slots[0]; 7312 if (ret == 1) { 7313 if (slot == 0) { 7314 /* can't find the item, must cow */ 7315 ret = 0; 7316 goto out; 7317 } 7318 slot--; 7319 } 7320 ret = 0; 7321 leaf = path->nodes[0]; 7322 btrfs_item_key_to_cpu(leaf, &key, slot); 7323 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7324 key.type != BTRFS_EXTENT_DATA_KEY) { 7325 /* not our file or wrong item type, must cow */ 7326 goto out; 7327 } 7328 7329 if (key.offset > offset) { 7330 /* Wrong offset, must cow */ 7331 goto out; 7332 } 7333 7334 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7335 found_type = btrfs_file_extent_type(leaf, fi); 7336 if (found_type != BTRFS_FILE_EXTENT_REG && 7337 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7338 /* not a regular extent, must cow */ 7339 goto out; 7340 } 7341 7342 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7343 goto out; 7344 7345 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7346 if (extent_end <= offset) 7347 goto out; 7348 7349 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7350 if (disk_bytenr == 0) 7351 goto out; 7352 7353 if (btrfs_file_extent_compression(leaf, fi) || 7354 btrfs_file_extent_encryption(leaf, fi) || 7355 btrfs_file_extent_other_encoding(leaf, fi)) 7356 goto out; 7357 7358 /* 7359 * Do the same check as in btrfs_cross_ref_exist but without the 7360 * unnecessary search. 7361 */ 7362 if (!strict && 7363 (btrfs_file_extent_generation(leaf, fi) <= 7364 btrfs_root_last_snapshot(&root->root_item))) 7365 goto out; 7366 7367 backref_offset = btrfs_file_extent_offset(leaf, fi); 7368 7369 if (orig_start) { 7370 *orig_start = key.offset - backref_offset; 7371 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7372 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7373 } 7374 7375 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7376 goto out; 7377 7378 num_bytes = min(offset + *len, extent_end) - offset; 7379 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7380 u64 range_end; 7381 7382 range_end = round_up(offset + num_bytes, 7383 root->fs_info->sectorsize) - 1; 7384 ret = test_range_bit(io_tree, offset, range_end, 7385 EXTENT_DELALLOC, 0, NULL); 7386 if (ret) { 7387 ret = -EAGAIN; 7388 goto out; 7389 } 7390 } 7391 7392 btrfs_release_path(path); 7393 7394 /* 7395 * look for other files referencing this extent, if we 7396 * find any we must cow 7397 */ 7398 7399 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7400 key.offset - backref_offset, disk_bytenr, 7401 strict); 7402 if (ret) { 7403 ret = 0; 7404 goto out; 7405 } 7406 7407 /* 7408 * adjust disk_bytenr and num_bytes to cover just the bytes 7409 * in this extent we are about to write. If there 7410 * are any csums in that range we have to cow in order 7411 * to keep the csums correct 7412 */ 7413 disk_bytenr += backref_offset; 7414 disk_bytenr += offset - key.offset; 7415 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7416 goto out; 7417 /* 7418 * all of the above have passed, it is safe to overwrite this extent 7419 * without cow 7420 */ 7421 *len = num_bytes; 7422 ret = 1; 7423 out: 7424 btrfs_free_path(path); 7425 return ret; 7426 } 7427 7428 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7429 struct extent_state **cached_state, bool writing) 7430 { 7431 struct btrfs_ordered_extent *ordered; 7432 int ret = 0; 7433 7434 while (1) { 7435 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7436 cached_state); 7437 /* 7438 * We're concerned with the entire range that we're going to be 7439 * doing DIO to, so we need to make sure there's no ordered 7440 * extents in this range. 7441 */ 7442 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7443 lockend - lockstart + 1); 7444 7445 /* 7446 * We need to make sure there are no buffered pages in this 7447 * range either, we could have raced between the invalidate in 7448 * generic_file_direct_write and locking the extent. The 7449 * invalidate needs to happen so that reads after a write do not 7450 * get stale data. 7451 */ 7452 if (!ordered && 7453 (!writing || !filemap_range_has_page(inode->i_mapping, 7454 lockstart, lockend))) 7455 break; 7456 7457 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7458 cached_state); 7459 7460 if (ordered) { 7461 /* 7462 * If we are doing a DIO read and the ordered extent we 7463 * found is for a buffered write, we can not wait for it 7464 * to complete and retry, because if we do so we can 7465 * deadlock with concurrent buffered writes on page 7466 * locks. This happens only if our DIO read covers more 7467 * than one extent map, if at this point has already 7468 * created an ordered extent for a previous extent map 7469 * and locked its range in the inode's io tree, and a 7470 * concurrent write against that previous extent map's 7471 * range and this range started (we unlock the ranges 7472 * in the io tree only when the bios complete and 7473 * buffered writes always lock pages before attempting 7474 * to lock range in the io tree). 7475 */ 7476 if (writing || 7477 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7478 btrfs_start_ordered_extent(ordered, 1); 7479 else 7480 ret = -ENOTBLK; 7481 btrfs_put_ordered_extent(ordered); 7482 } else { 7483 /* 7484 * We could trigger writeback for this range (and wait 7485 * for it to complete) and then invalidate the pages for 7486 * this range (through invalidate_inode_pages2_range()), 7487 * but that can lead us to a deadlock with a concurrent 7488 * call to readahead (a buffered read or a defrag call 7489 * triggered a readahead) on a page lock due to an 7490 * ordered dio extent we created before but did not have 7491 * yet a corresponding bio submitted (whence it can not 7492 * complete), which makes readahead wait for that 7493 * ordered extent to complete while holding a lock on 7494 * that page. 7495 */ 7496 ret = -ENOTBLK; 7497 } 7498 7499 if (ret) 7500 break; 7501 7502 cond_resched(); 7503 } 7504 7505 return ret; 7506 } 7507 7508 /* The callers of this must take lock_extent() */ 7509 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7510 u64 len, u64 orig_start, u64 block_start, 7511 u64 block_len, u64 orig_block_len, 7512 u64 ram_bytes, int compress_type, 7513 int type) 7514 { 7515 struct extent_map_tree *em_tree; 7516 struct extent_map *em; 7517 int ret; 7518 7519 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7520 type == BTRFS_ORDERED_COMPRESSED || 7521 type == BTRFS_ORDERED_NOCOW || 7522 type == BTRFS_ORDERED_REGULAR); 7523 7524 em_tree = &inode->extent_tree; 7525 em = alloc_extent_map(); 7526 if (!em) 7527 return ERR_PTR(-ENOMEM); 7528 7529 em->start = start; 7530 em->orig_start = orig_start; 7531 em->len = len; 7532 em->block_len = block_len; 7533 em->block_start = block_start; 7534 em->orig_block_len = orig_block_len; 7535 em->ram_bytes = ram_bytes; 7536 em->generation = -1; 7537 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7538 if (type == BTRFS_ORDERED_PREALLOC) { 7539 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7540 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7541 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7542 em->compress_type = compress_type; 7543 } 7544 7545 do { 7546 btrfs_drop_extent_cache(inode, em->start, 7547 em->start + em->len - 1, 0); 7548 write_lock(&em_tree->lock); 7549 ret = add_extent_mapping(em_tree, em, 1); 7550 write_unlock(&em_tree->lock); 7551 /* 7552 * The caller has taken lock_extent(), who could race with us 7553 * to add em? 7554 */ 7555 } while (ret == -EEXIST); 7556 7557 if (ret) { 7558 free_extent_map(em); 7559 return ERR_PTR(ret); 7560 } 7561 7562 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7563 return em; 7564 } 7565 7566 7567 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7568 struct inode *inode, 7569 struct btrfs_dio_data *dio_data, 7570 u64 start, u64 len) 7571 { 7572 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7573 struct extent_map *em = *map; 7574 int ret = 0; 7575 7576 /* 7577 * We don't allocate a new extent in the following cases 7578 * 7579 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7580 * existing extent. 7581 * 2) The extent is marked as PREALLOC. We're good to go here and can 7582 * just use the extent. 7583 * 7584 */ 7585 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7586 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7587 em->block_start != EXTENT_MAP_HOLE)) { 7588 int type; 7589 u64 block_start, orig_start, orig_block_len, ram_bytes; 7590 7591 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7592 type = BTRFS_ORDERED_PREALLOC; 7593 else 7594 type = BTRFS_ORDERED_NOCOW; 7595 len = min(len, em->len - (start - em->start)); 7596 block_start = em->block_start + (start - em->start); 7597 7598 if (can_nocow_extent(inode, start, &len, &orig_start, 7599 &orig_block_len, &ram_bytes, false) == 1 && 7600 btrfs_inc_nocow_writers(fs_info, block_start)) { 7601 struct extent_map *em2; 7602 7603 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7604 orig_start, block_start, 7605 len, orig_block_len, 7606 ram_bytes, type); 7607 btrfs_dec_nocow_writers(fs_info, block_start); 7608 if (type == BTRFS_ORDERED_PREALLOC) { 7609 free_extent_map(em); 7610 *map = em = em2; 7611 } 7612 7613 if (em2 && IS_ERR(em2)) { 7614 ret = PTR_ERR(em2); 7615 goto out; 7616 } 7617 /* 7618 * For inode marked NODATACOW or extent marked PREALLOC, 7619 * use the existing or preallocated extent, so does not 7620 * need to adjust btrfs_space_info's bytes_may_use. 7621 */ 7622 btrfs_free_reserved_data_space_noquota(fs_info, len); 7623 goto skip_cow; 7624 } 7625 } 7626 7627 /* this will cow the extent */ 7628 free_extent_map(em); 7629 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7630 if (IS_ERR(em)) { 7631 ret = PTR_ERR(em); 7632 goto out; 7633 } 7634 7635 len = min(len, em->len - (start - em->start)); 7636 7637 skip_cow: 7638 /* 7639 * Need to update the i_size under the extent lock so buffered 7640 * readers will get the updated i_size when we unlock. 7641 */ 7642 if (start + len > i_size_read(inode)) 7643 i_size_write(inode, start + len); 7644 7645 dio_data->reserve -= len; 7646 out: 7647 return ret; 7648 } 7649 7650 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7651 loff_t length, unsigned int flags, struct iomap *iomap, 7652 struct iomap *srcmap) 7653 { 7654 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7655 struct extent_map *em; 7656 struct extent_state *cached_state = NULL; 7657 struct btrfs_dio_data *dio_data = NULL; 7658 u64 lockstart, lockend; 7659 const bool write = !!(flags & IOMAP_WRITE); 7660 int ret = 0; 7661 u64 len = length; 7662 bool unlock_extents = false; 7663 7664 if (!write) 7665 len = min_t(u64, len, fs_info->sectorsize); 7666 7667 lockstart = start; 7668 lockend = start + len - 1; 7669 7670 /* 7671 * The generic stuff only does filemap_write_and_wait_range, which 7672 * isn't enough if we've written compressed pages to this area, so we 7673 * need to flush the dirty pages again to make absolutely sure that any 7674 * outstanding dirty pages are on disk. 7675 */ 7676 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7677 &BTRFS_I(inode)->runtime_flags)) { 7678 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7679 start + length - 1); 7680 if (ret) 7681 return ret; 7682 } 7683 7684 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7685 if (!dio_data) 7686 return -ENOMEM; 7687 7688 dio_data->length = length; 7689 if (write) { 7690 dio_data->reserve = round_up(length, fs_info->sectorsize); 7691 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7692 &dio_data->data_reserved, 7693 start, dio_data->reserve); 7694 if (ret) { 7695 extent_changeset_free(dio_data->data_reserved); 7696 kfree(dio_data); 7697 return ret; 7698 } 7699 } 7700 iomap->private = dio_data; 7701 7702 7703 /* 7704 * If this errors out it's because we couldn't invalidate pagecache for 7705 * this range and we need to fallback to buffered. 7706 */ 7707 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7708 ret = -ENOTBLK; 7709 goto err; 7710 } 7711 7712 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7713 if (IS_ERR(em)) { 7714 ret = PTR_ERR(em); 7715 goto unlock_err; 7716 } 7717 7718 /* 7719 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7720 * io. INLINE is special, and we could probably kludge it in here, but 7721 * it's still buffered so for safety lets just fall back to the generic 7722 * buffered path. 7723 * 7724 * For COMPRESSED we _have_ to read the entire extent in so we can 7725 * decompress it, so there will be buffering required no matter what we 7726 * do, so go ahead and fallback to buffered. 7727 * 7728 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7729 * to buffered IO. Don't blame me, this is the price we pay for using 7730 * the generic code. 7731 */ 7732 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7733 em->block_start == EXTENT_MAP_INLINE) { 7734 free_extent_map(em); 7735 ret = -ENOTBLK; 7736 goto unlock_err; 7737 } 7738 7739 len = min(len, em->len - (start - em->start)); 7740 if (write) { 7741 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7742 start, len); 7743 if (ret < 0) 7744 goto unlock_err; 7745 unlock_extents = true; 7746 /* Recalc len in case the new em is smaller than requested */ 7747 len = min(len, em->len - (start - em->start)); 7748 } else { 7749 /* 7750 * We need to unlock only the end area that we aren't using. 7751 * The rest is going to be unlocked by the endio routine. 7752 */ 7753 lockstart = start + len; 7754 if (lockstart < lockend) 7755 unlock_extents = true; 7756 } 7757 7758 if (unlock_extents) 7759 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7760 lockstart, lockend, &cached_state); 7761 else 7762 free_extent_state(cached_state); 7763 7764 /* 7765 * Translate extent map information to iomap. 7766 * We trim the extents (and move the addr) even though iomap code does 7767 * that, since we have locked only the parts we are performing I/O in. 7768 */ 7769 if ((em->block_start == EXTENT_MAP_HOLE) || 7770 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7771 iomap->addr = IOMAP_NULL_ADDR; 7772 iomap->type = IOMAP_HOLE; 7773 } else { 7774 iomap->addr = em->block_start + (start - em->start); 7775 iomap->type = IOMAP_MAPPED; 7776 } 7777 iomap->offset = start; 7778 iomap->bdev = fs_info->fs_devices->latest_bdev; 7779 iomap->length = len; 7780 7781 if (write && btrfs_use_zone_append(BTRFS_I(inode), em)) 7782 iomap->flags |= IOMAP_F_ZONE_APPEND; 7783 7784 free_extent_map(em); 7785 7786 return 0; 7787 7788 unlock_err: 7789 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7790 &cached_state); 7791 err: 7792 if (dio_data) { 7793 btrfs_delalloc_release_space(BTRFS_I(inode), 7794 dio_data->data_reserved, start, 7795 dio_data->reserve, true); 7796 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve); 7797 extent_changeset_free(dio_data->data_reserved); 7798 kfree(dio_data); 7799 } 7800 return ret; 7801 } 7802 7803 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7804 ssize_t written, unsigned int flags, struct iomap *iomap) 7805 { 7806 int ret = 0; 7807 struct btrfs_dio_data *dio_data = iomap->private; 7808 size_t submitted = dio_data->submitted; 7809 const bool write = !!(flags & IOMAP_WRITE); 7810 7811 if (!write && (iomap->type == IOMAP_HOLE)) { 7812 /* If reading from a hole, unlock and return */ 7813 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7814 goto out; 7815 } 7816 7817 if (submitted < length) { 7818 pos += submitted; 7819 length -= submitted; 7820 if (write) 7821 __endio_write_update_ordered(BTRFS_I(inode), pos, 7822 length, false); 7823 else 7824 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7825 pos + length - 1); 7826 ret = -ENOTBLK; 7827 } 7828 7829 if (write) { 7830 if (dio_data->reserve) 7831 btrfs_delalloc_release_space(BTRFS_I(inode), 7832 dio_data->data_reserved, pos, 7833 dio_data->reserve, true); 7834 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length); 7835 extent_changeset_free(dio_data->data_reserved); 7836 } 7837 out: 7838 kfree(dio_data); 7839 iomap->private = NULL; 7840 7841 return ret; 7842 } 7843 7844 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7845 { 7846 /* 7847 * This implies a barrier so that stores to dio_bio->bi_status before 7848 * this and loads of dio_bio->bi_status after this are fully ordered. 7849 */ 7850 if (!refcount_dec_and_test(&dip->refs)) 7851 return; 7852 7853 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) { 7854 __endio_write_update_ordered(BTRFS_I(dip->inode), 7855 dip->logical_offset, 7856 dip->bytes, 7857 !dip->dio_bio->bi_status); 7858 } else { 7859 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7860 dip->logical_offset, 7861 dip->logical_offset + dip->bytes - 1); 7862 } 7863 7864 bio_endio(dip->dio_bio); 7865 kfree(dip); 7866 } 7867 7868 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7869 int mirror_num, 7870 unsigned long bio_flags) 7871 { 7872 struct btrfs_dio_private *dip = bio->bi_private; 7873 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7874 blk_status_t ret; 7875 7876 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7877 7878 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7879 if (ret) 7880 return ret; 7881 7882 refcount_inc(&dip->refs); 7883 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7884 if (ret) 7885 refcount_dec(&dip->refs); 7886 return ret; 7887 } 7888 7889 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7890 struct btrfs_io_bio *io_bio, 7891 const bool uptodate) 7892 { 7893 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7894 const u32 sectorsize = fs_info->sectorsize; 7895 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7896 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7897 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7898 struct bio_vec bvec; 7899 struct bvec_iter iter; 7900 u64 start = io_bio->logical; 7901 u32 bio_offset = 0; 7902 blk_status_t err = BLK_STS_OK; 7903 7904 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7905 unsigned int i, nr_sectors, pgoff; 7906 7907 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7908 pgoff = bvec.bv_offset; 7909 for (i = 0; i < nr_sectors; i++) { 7910 ASSERT(pgoff < PAGE_SIZE); 7911 if (uptodate && 7912 (!csum || !check_data_csum(inode, io_bio, 7913 bio_offset, bvec.bv_page, pgoff))) { 7914 clean_io_failure(fs_info, failure_tree, io_tree, 7915 start, bvec.bv_page, 7916 btrfs_ino(BTRFS_I(inode)), 7917 pgoff); 7918 } else { 7919 blk_status_t status; 7920 7921 ASSERT((start - io_bio->logical) < UINT_MAX); 7922 status = btrfs_submit_read_repair(inode, 7923 &io_bio->bio, 7924 start - io_bio->logical, 7925 bvec.bv_page, pgoff, 7926 start, 7927 start + sectorsize - 1, 7928 io_bio->mirror_num, 7929 submit_dio_repair_bio); 7930 if (status) 7931 err = status; 7932 } 7933 start += sectorsize; 7934 ASSERT(bio_offset + sectorsize > bio_offset); 7935 bio_offset += sectorsize; 7936 pgoff += sectorsize; 7937 } 7938 } 7939 return err; 7940 } 7941 7942 static void __endio_write_update_ordered(struct btrfs_inode *inode, 7943 const u64 offset, const u64 bytes, 7944 const bool uptodate) 7945 { 7946 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7947 struct btrfs_ordered_extent *ordered = NULL; 7948 struct btrfs_workqueue *wq; 7949 u64 ordered_offset = offset; 7950 u64 ordered_bytes = bytes; 7951 u64 last_offset; 7952 7953 if (btrfs_is_free_space_inode(inode)) 7954 wq = fs_info->endio_freespace_worker; 7955 else 7956 wq = fs_info->endio_write_workers; 7957 7958 while (ordered_offset < offset + bytes) { 7959 last_offset = ordered_offset; 7960 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7961 &ordered_offset, 7962 ordered_bytes, 7963 uptodate)) { 7964 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7965 NULL); 7966 btrfs_queue_work(wq, &ordered->work); 7967 } 7968 7969 /* No ordered extent found in the range, exit */ 7970 if (ordered_offset == last_offset) 7971 return; 7972 /* 7973 * Our bio might span multiple ordered extents. In this case 7974 * we keep going until we have accounted the whole dio. 7975 */ 7976 if (ordered_offset < offset + bytes) { 7977 ordered_bytes = offset + bytes - ordered_offset; 7978 ordered = NULL; 7979 } 7980 } 7981 } 7982 7983 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 7984 struct bio *bio, 7985 u64 dio_file_offset) 7986 { 7987 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1); 7988 } 7989 7990 static void btrfs_end_dio_bio(struct bio *bio) 7991 { 7992 struct btrfs_dio_private *dip = bio->bi_private; 7993 blk_status_t err = bio->bi_status; 7994 7995 if (err) 7996 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7997 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7998 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7999 bio->bi_opf, bio->bi_iter.bi_sector, 8000 bio->bi_iter.bi_size, err); 8001 8002 if (bio_op(bio) == REQ_OP_READ) { 8003 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 8004 !err); 8005 } 8006 8007 if (err) 8008 dip->dio_bio->bi_status = err; 8009 8010 btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio); 8011 8012 bio_put(bio); 8013 btrfs_dio_private_put(dip); 8014 } 8015 8016 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8017 struct inode *inode, u64 file_offset, int async_submit) 8018 { 8019 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8020 struct btrfs_dio_private *dip = bio->bi_private; 8021 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE; 8022 blk_status_t ret; 8023 8024 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8025 if (async_submit) 8026 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8027 8028 if (!write) { 8029 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8030 if (ret) 8031 goto err; 8032 } 8033 8034 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8035 goto map; 8036 8037 if (write && async_submit) { 8038 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset, 8039 btrfs_submit_bio_start_direct_io); 8040 goto err; 8041 } else if (write) { 8042 /* 8043 * If we aren't doing async submit, calculate the csum of the 8044 * bio now. 8045 */ 8046 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); 8047 if (ret) 8048 goto err; 8049 } else { 8050 u64 csum_offset; 8051 8052 csum_offset = file_offset - dip->logical_offset; 8053 csum_offset >>= fs_info->sectorsize_bits; 8054 csum_offset *= fs_info->csum_size; 8055 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 8056 } 8057 map: 8058 ret = btrfs_map_bio(fs_info, bio, 0); 8059 err: 8060 return ret; 8061 } 8062 8063 /* 8064 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 8065 * or ordered extents whether or not we submit any bios. 8066 */ 8067 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 8068 struct inode *inode, 8069 loff_t file_offset) 8070 { 8071 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8072 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 8073 size_t dip_size; 8074 struct btrfs_dio_private *dip; 8075 8076 dip_size = sizeof(*dip); 8077 if (!write && csum) { 8078 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8079 size_t nblocks; 8080 8081 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits; 8082 dip_size += fs_info->csum_size * nblocks; 8083 } 8084 8085 dip = kzalloc(dip_size, GFP_NOFS); 8086 if (!dip) 8087 return NULL; 8088 8089 dip->inode = inode; 8090 dip->logical_offset = file_offset; 8091 dip->bytes = dio_bio->bi_iter.bi_size; 8092 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9; 8093 dip->dio_bio = dio_bio; 8094 refcount_set(&dip->refs, 1); 8095 return dip; 8096 } 8097 8098 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap, 8099 struct bio *dio_bio, loff_t file_offset) 8100 { 8101 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8102 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8103 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 8104 BTRFS_BLOCK_GROUP_RAID56_MASK); 8105 struct btrfs_dio_private *dip; 8106 struct bio *bio; 8107 u64 start_sector; 8108 int async_submit = 0; 8109 u64 submit_len; 8110 int clone_offset = 0; 8111 int clone_len; 8112 u64 logical; 8113 int ret; 8114 blk_status_t status; 8115 struct btrfs_io_geometry geom; 8116 struct btrfs_dio_data *dio_data = iomap->private; 8117 struct extent_map *em = NULL; 8118 8119 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 8120 if (!dip) { 8121 if (!write) { 8122 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8123 file_offset + dio_bio->bi_iter.bi_size - 1); 8124 } 8125 dio_bio->bi_status = BLK_STS_RESOURCE; 8126 bio_endio(dio_bio); 8127 return BLK_QC_T_NONE; 8128 } 8129 8130 if (!write) { 8131 /* 8132 * Load the csums up front to reduce csum tree searches and 8133 * contention when submitting bios. 8134 * 8135 * If we have csums disabled this will do nothing. 8136 */ 8137 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 8138 if (status != BLK_STS_OK) 8139 goto out_err; 8140 } 8141 8142 start_sector = dio_bio->bi_iter.bi_sector; 8143 submit_len = dio_bio->bi_iter.bi_size; 8144 8145 do { 8146 logical = start_sector << 9; 8147 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 8148 if (IS_ERR(em)) { 8149 status = errno_to_blk_status(PTR_ERR(em)); 8150 em = NULL; 8151 goto out_err_em; 8152 } 8153 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8154 logical, submit_len, &geom); 8155 if (ret) { 8156 status = errno_to_blk_status(ret); 8157 goto out_err_em; 8158 } 8159 ASSERT(geom.len <= INT_MAX); 8160 8161 clone_len = min_t(int, submit_len, geom.len); 8162 8163 /* 8164 * This will never fail as it's passing GPF_NOFS and 8165 * the allocation is backed by btrfs_bioset. 8166 */ 8167 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 8168 bio->bi_private = dip; 8169 bio->bi_end_io = btrfs_end_dio_bio; 8170 btrfs_io_bio(bio)->logical = file_offset; 8171 8172 WARN_ON_ONCE(write && btrfs_is_zoned(fs_info) && 8173 fs_info->max_zone_append_size && 8174 bio_op(bio) != REQ_OP_ZONE_APPEND); 8175 8176 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8177 status = extract_ordered_extent(BTRFS_I(inode), bio, 8178 file_offset); 8179 if (status) { 8180 bio_put(bio); 8181 goto out_err; 8182 } 8183 } 8184 8185 ASSERT(submit_len >= clone_len); 8186 submit_len -= clone_len; 8187 8188 /* 8189 * Increase the count before we submit the bio so we know 8190 * the end IO handler won't happen before we increase the 8191 * count. Otherwise, the dip might get freed before we're 8192 * done setting it up. 8193 * 8194 * We transfer the initial reference to the last bio, so we 8195 * don't need to increment the reference count for the last one. 8196 */ 8197 if (submit_len > 0) { 8198 refcount_inc(&dip->refs); 8199 /* 8200 * If we are submitting more than one bio, submit them 8201 * all asynchronously. The exception is RAID 5 or 6, as 8202 * asynchronous checksums make it difficult to collect 8203 * full stripe writes. 8204 */ 8205 if (!raid56) 8206 async_submit = 1; 8207 } 8208 8209 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8210 async_submit); 8211 if (status) { 8212 bio_put(bio); 8213 if (submit_len > 0) 8214 refcount_dec(&dip->refs); 8215 goto out_err_em; 8216 } 8217 8218 dio_data->submitted += clone_len; 8219 clone_offset += clone_len; 8220 start_sector += clone_len >> 9; 8221 file_offset += clone_len; 8222 8223 free_extent_map(em); 8224 } while (submit_len > 0); 8225 return BLK_QC_T_NONE; 8226 8227 out_err_em: 8228 free_extent_map(em); 8229 out_err: 8230 dip->dio_bio->bi_status = status; 8231 btrfs_dio_private_put(dip); 8232 8233 return BLK_QC_T_NONE; 8234 } 8235 8236 const struct iomap_ops btrfs_dio_iomap_ops = { 8237 .iomap_begin = btrfs_dio_iomap_begin, 8238 .iomap_end = btrfs_dio_iomap_end, 8239 }; 8240 8241 const struct iomap_dio_ops btrfs_dio_ops = { 8242 .submit_io = btrfs_submit_direct, 8243 }; 8244 8245 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8246 u64 start, u64 len) 8247 { 8248 int ret; 8249 8250 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8251 if (ret) 8252 return ret; 8253 8254 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8255 } 8256 8257 int btrfs_readpage(struct file *file, struct page *page) 8258 { 8259 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8260 u64 start = page_offset(page); 8261 u64 end = start + PAGE_SIZE - 1; 8262 unsigned long bio_flags = 0; 8263 struct bio *bio = NULL; 8264 int ret; 8265 8266 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8267 8268 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL); 8269 if (bio) 8270 ret = submit_one_bio(bio, 0, bio_flags); 8271 return ret; 8272 } 8273 8274 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8275 { 8276 struct inode *inode = page->mapping->host; 8277 int ret; 8278 8279 if (current->flags & PF_MEMALLOC) { 8280 redirty_page_for_writepage(wbc, page); 8281 unlock_page(page); 8282 return 0; 8283 } 8284 8285 /* 8286 * If we are under memory pressure we will call this directly from the 8287 * VM, we need to make sure we have the inode referenced for the ordered 8288 * extent. If not just return like we didn't do anything. 8289 */ 8290 if (!igrab(inode)) { 8291 redirty_page_for_writepage(wbc, page); 8292 return AOP_WRITEPAGE_ACTIVATE; 8293 } 8294 ret = extent_write_full_page(page, wbc); 8295 btrfs_add_delayed_iput(inode); 8296 return ret; 8297 } 8298 8299 static int btrfs_writepages(struct address_space *mapping, 8300 struct writeback_control *wbc) 8301 { 8302 return extent_writepages(mapping, wbc); 8303 } 8304 8305 static void btrfs_readahead(struct readahead_control *rac) 8306 { 8307 extent_readahead(rac); 8308 } 8309 8310 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8311 { 8312 int ret = try_release_extent_mapping(page, gfp_flags); 8313 if (ret == 1) 8314 clear_page_extent_mapped(page); 8315 return ret; 8316 } 8317 8318 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8319 { 8320 if (PageWriteback(page) || PageDirty(page)) 8321 return 0; 8322 return __btrfs_releasepage(page, gfp_flags); 8323 } 8324 8325 #ifdef CONFIG_MIGRATION 8326 static int btrfs_migratepage(struct address_space *mapping, 8327 struct page *newpage, struct page *page, 8328 enum migrate_mode mode) 8329 { 8330 int ret; 8331 8332 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8333 if (ret != MIGRATEPAGE_SUCCESS) 8334 return ret; 8335 8336 if (page_has_private(page)) 8337 attach_page_private(newpage, detach_page_private(page)); 8338 8339 if (PagePrivate2(page)) { 8340 ClearPagePrivate2(page); 8341 SetPagePrivate2(newpage); 8342 } 8343 8344 if (mode != MIGRATE_SYNC_NO_COPY) 8345 migrate_page_copy(newpage, page); 8346 else 8347 migrate_page_states(newpage, page); 8348 return MIGRATEPAGE_SUCCESS; 8349 } 8350 #endif 8351 8352 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8353 unsigned int length) 8354 { 8355 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8356 struct extent_io_tree *tree = &inode->io_tree; 8357 struct btrfs_ordered_extent *ordered; 8358 struct extent_state *cached_state = NULL; 8359 u64 page_start = page_offset(page); 8360 u64 page_end = page_start + PAGE_SIZE - 1; 8361 u64 start; 8362 u64 end; 8363 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8364 bool found_ordered = false; 8365 bool completed_ordered = false; 8366 8367 /* 8368 * we have the page locked, so new writeback can't start, 8369 * and the dirty bit won't be cleared while we are here. 8370 * 8371 * Wait for IO on this page so that we can safely clear 8372 * the PagePrivate2 bit and do ordered accounting 8373 */ 8374 wait_on_page_writeback(page); 8375 8376 if (offset) { 8377 btrfs_releasepage(page, GFP_NOFS); 8378 return; 8379 } 8380 8381 if (!inode_evicting) 8382 lock_extent_bits(tree, page_start, page_end, &cached_state); 8383 8384 start = page_start; 8385 again: 8386 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1); 8387 if (ordered) { 8388 found_ordered = true; 8389 end = min(page_end, 8390 ordered->file_offset + ordered->num_bytes - 1); 8391 /* 8392 * IO on this page will never be started, so we need to account 8393 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8394 * here, must leave that up for the ordered extent completion. 8395 */ 8396 if (!inode_evicting) 8397 clear_extent_bit(tree, start, end, 8398 EXTENT_DELALLOC | 8399 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8400 EXTENT_DEFRAG, 1, 0, &cached_state); 8401 /* 8402 * whoever cleared the private bit is responsible 8403 * for the finish_ordered_io 8404 */ 8405 if (TestClearPagePrivate2(page)) { 8406 struct btrfs_ordered_inode_tree *tree; 8407 u64 new_len; 8408 8409 tree = &inode->ordered_tree; 8410 8411 spin_lock_irq(&tree->lock); 8412 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8413 new_len = start - ordered->file_offset; 8414 if (new_len < ordered->truncated_len) 8415 ordered->truncated_len = new_len; 8416 spin_unlock_irq(&tree->lock); 8417 8418 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8419 start, 8420 end - start + 1, 1)) { 8421 btrfs_finish_ordered_io(ordered); 8422 completed_ordered = true; 8423 } 8424 } 8425 btrfs_put_ordered_extent(ordered); 8426 if (!inode_evicting) { 8427 cached_state = NULL; 8428 lock_extent_bits(tree, start, end, 8429 &cached_state); 8430 } 8431 8432 start = end + 1; 8433 if (start < page_end) 8434 goto again; 8435 } 8436 8437 /* 8438 * Qgroup reserved space handler 8439 * Page here will be either 8440 * 1) Already written to disk or ordered extent already submitted 8441 * Then its QGROUP_RESERVED bit in io_tree is already cleaned. 8442 * Qgroup will be handled by its qgroup_record then. 8443 * btrfs_qgroup_free_data() call will do nothing here. 8444 * 8445 * 2) Not written to disk yet 8446 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED 8447 * bit of its io_tree, and free the qgroup reserved data space. 8448 * Since the IO will never happen for this page. 8449 */ 8450 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8451 if (!inode_evicting) { 8452 bool delete = true; 8453 8454 /* 8455 * If there's an ordered extent for this range and we have not 8456 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set 8457 * in the range for the ordered extent completion. We must also 8458 * not delete the range, otherwise we would lose that bit (and 8459 * any other bits set in the range). Make sure EXTENT_UPTODATE 8460 * is cleared if we don't delete, otherwise it can lead to 8461 * corruptions if the i_size is extented later. 8462 */ 8463 if (found_ordered && !completed_ordered) 8464 delete = false; 8465 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8466 EXTENT_DELALLOC | EXTENT_UPTODATE | 8467 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8468 delete, &cached_state); 8469 8470 __btrfs_releasepage(page, GFP_NOFS); 8471 } 8472 8473 ClearPageChecked(page); 8474 clear_page_extent_mapped(page); 8475 } 8476 8477 /* 8478 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8479 * called from a page fault handler when a page is first dirtied. Hence we must 8480 * be careful to check for EOF conditions here. We set the page up correctly 8481 * for a written page which means we get ENOSPC checking when writing into 8482 * holes and correct delalloc and unwritten extent mapping on filesystems that 8483 * support these features. 8484 * 8485 * We are not allowed to take the i_mutex here so we have to play games to 8486 * protect against truncate races as the page could now be beyond EOF. Because 8487 * truncate_setsize() writes the inode size before removing pages, once we have 8488 * the page lock we can determine safely if the page is beyond EOF. If it is not 8489 * beyond EOF, then the page is guaranteed safe against truncation until we 8490 * unlock the page. 8491 */ 8492 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8493 { 8494 struct page *page = vmf->page; 8495 struct inode *inode = file_inode(vmf->vma->vm_file); 8496 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8497 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8498 struct btrfs_ordered_extent *ordered; 8499 struct extent_state *cached_state = NULL; 8500 struct extent_changeset *data_reserved = NULL; 8501 char *kaddr; 8502 unsigned long zero_start; 8503 loff_t size; 8504 vm_fault_t ret; 8505 int ret2; 8506 int reserved = 0; 8507 u64 reserved_space; 8508 u64 page_start; 8509 u64 page_end; 8510 u64 end; 8511 8512 reserved_space = PAGE_SIZE; 8513 8514 sb_start_pagefault(inode->i_sb); 8515 page_start = page_offset(page); 8516 page_end = page_start + PAGE_SIZE - 1; 8517 end = page_end; 8518 8519 /* 8520 * Reserving delalloc space after obtaining the page lock can lead to 8521 * deadlock. For example, if a dirty page is locked by this function 8522 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8523 * dirty page write out, then the btrfs_writepage() function could 8524 * end up waiting indefinitely to get a lock on the page currently 8525 * being processed by btrfs_page_mkwrite() function. 8526 */ 8527 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8528 page_start, reserved_space); 8529 if (!ret2) { 8530 ret2 = file_update_time(vmf->vma->vm_file); 8531 reserved = 1; 8532 } 8533 if (ret2) { 8534 ret = vmf_error(ret2); 8535 if (reserved) 8536 goto out; 8537 goto out_noreserve; 8538 } 8539 8540 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8541 again: 8542 lock_page(page); 8543 size = i_size_read(inode); 8544 8545 if ((page->mapping != inode->i_mapping) || 8546 (page_start >= size)) { 8547 /* page got truncated out from underneath us */ 8548 goto out_unlock; 8549 } 8550 wait_on_page_writeback(page); 8551 8552 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8553 ret2 = set_page_extent_mapped(page); 8554 if (ret2 < 0) { 8555 ret = vmf_error(ret2); 8556 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8557 goto out_unlock; 8558 } 8559 8560 /* 8561 * we can't set the delalloc bits if there are pending ordered 8562 * extents. Drop our locks and wait for them to finish 8563 */ 8564 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8565 PAGE_SIZE); 8566 if (ordered) { 8567 unlock_extent_cached(io_tree, page_start, page_end, 8568 &cached_state); 8569 unlock_page(page); 8570 btrfs_start_ordered_extent(ordered, 1); 8571 btrfs_put_ordered_extent(ordered); 8572 goto again; 8573 } 8574 8575 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8576 reserved_space = round_up(size - page_start, 8577 fs_info->sectorsize); 8578 if (reserved_space < PAGE_SIZE) { 8579 end = page_start + reserved_space - 1; 8580 btrfs_delalloc_release_space(BTRFS_I(inode), 8581 data_reserved, page_start, 8582 PAGE_SIZE - reserved_space, true); 8583 } 8584 } 8585 8586 /* 8587 * page_mkwrite gets called when the page is firstly dirtied after it's 8588 * faulted in, but write(2) could also dirty a page and set delalloc 8589 * bits, thus in this case for space account reason, we still need to 8590 * clear any delalloc bits within this page range since we have to 8591 * reserve data&meta space before lock_page() (see above comments). 8592 */ 8593 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8594 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8595 EXTENT_DEFRAG, 0, 0, &cached_state); 8596 8597 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8598 &cached_state); 8599 if (ret2) { 8600 unlock_extent_cached(io_tree, page_start, page_end, 8601 &cached_state); 8602 ret = VM_FAULT_SIGBUS; 8603 goto out_unlock; 8604 } 8605 8606 /* page is wholly or partially inside EOF */ 8607 if (page_start + PAGE_SIZE > size) 8608 zero_start = offset_in_page(size); 8609 else 8610 zero_start = PAGE_SIZE; 8611 8612 if (zero_start != PAGE_SIZE) { 8613 kaddr = kmap(page); 8614 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8615 flush_dcache_page(page); 8616 kunmap(page); 8617 } 8618 ClearPageChecked(page); 8619 set_page_dirty(page); 8620 SetPageUptodate(page); 8621 8622 BTRFS_I(inode)->last_trans = fs_info->generation; 8623 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8624 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8625 8626 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8627 8628 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8629 sb_end_pagefault(inode->i_sb); 8630 extent_changeset_free(data_reserved); 8631 return VM_FAULT_LOCKED; 8632 8633 out_unlock: 8634 unlock_page(page); 8635 out: 8636 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8637 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8638 reserved_space, (ret != 0)); 8639 out_noreserve: 8640 sb_end_pagefault(inode->i_sb); 8641 extent_changeset_free(data_reserved); 8642 return ret; 8643 } 8644 8645 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8646 { 8647 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8648 struct btrfs_root *root = BTRFS_I(inode)->root; 8649 struct btrfs_block_rsv *rsv; 8650 int ret; 8651 struct btrfs_trans_handle *trans; 8652 u64 mask = fs_info->sectorsize - 1; 8653 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8654 8655 if (!skip_writeback) { 8656 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8657 (u64)-1); 8658 if (ret) 8659 return ret; 8660 } 8661 8662 /* 8663 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8664 * things going on here: 8665 * 8666 * 1) We need to reserve space to update our inode. 8667 * 8668 * 2) We need to have something to cache all the space that is going to 8669 * be free'd up by the truncate operation, but also have some slack 8670 * space reserved in case it uses space during the truncate (thank you 8671 * very much snapshotting). 8672 * 8673 * And we need these to be separate. The fact is we can use a lot of 8674 * space doing the truncate, and we have no earthly idea how much space 8675 * we will use, so we need the truncate reservation to be separate so it 8676 * doesn't end up using space reserved for updating the inode. We also 8677 * need to be able to stop the transaction and start a new one, which 8678 * means we need to be able to update the inode several times, and we 8679 * have no idea of knowing how many times that will be, so we can't just 8680 * reserve 1 item for the entirety of the operation, so that has to be 8681 * done separately as well. 8682 * 8683 * So that leaves us with 8684 * 8685 * 1) rsv - for the truncate reservation, which we will steal from the 8686 * transaction reservation. 8687 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8688 * updating the inode. 8689 */ 8690 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8691 if (!rsv) 8692 return -ENOMEM; 8693 rsv->size = min_size; 8694 rsv->failfast = 1; 8695 8696 /* 8697 * 1 for the truncate slack space 8698 * 1 for updating the inode. 8699 */ 8700 trans = btrfs_start_transaction(root, 2); 8701 if (IS_ERR(trans)) { 8702 ret = PTR_ERR(trans); 8703 goto out; 8704 } 8705 8706 /* Migrate the slack space for the truncate to our reserve */ 8707 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8708 min_size, false); 8709 BUG_ON(ret); 8710 8711 /* 8712 * So if we truncate and then write and fsync we normally would just 8713 * write the extents that changed, which is a problem if we need to 8714 * first truncate that entire inode. So set this flag so we write out 8715 * all of the extents in the inode to the sync log so we're completely 8716 * safe. 8717 */ 8718 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8719 trans->block_rsv = rsv; 8720 8721 while (1) { 8722 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 8723 inode->i_size, 8724 BTRFS_EXTENT_DATA_KEY); 8725 trans->block_rsv = &fs_info->trans_block_rsv; 8726 if (ret != -ENOSPC && ret != -EAGAIN) 8727 break; 8728 8729 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8730 if (ret) 8731 break; 8732 8733 btrfs_end_transaction(trans); 8734 btrfs_btree_balance_dirty(fs_info); 8735 8736 trans = btrfs_start_transaction(root, 2); 8737 if (IS_ERR(trans)) { 8738 ret = PTR_ERR(trans); 8739 trans = NULL; 8740 break; 8741 } 8742 8743 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8744 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8745 rsv, min_size, false); 8746 BUG_ON(ret); /* shouldn't happen */ 8747 trans->block_rsv = rsv; 8748 } 8749 8750 /* 8751 * We can't call btrfs_truncate_block inside a trans handle as we could 8752 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8753 * we've truncated everything except the last little bit, and can do 8754 * btrfs_truncate_block and then update the disk_i_size. 8755 */ 8756 if (ret == NEED_TRUNCATE_BLOCK) { 8757 btrfs_end_transaction(trans); 8758 btrfs_btree_balance_dirty(fs_info); 8759 8760 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8761 if (ret) 8762 goto out; 8763 trans = btrfs_start_transaction(root, 1); 8764 if (IS_ERR(trans)) { 8765 ret = PTR_ERR(trans); 8766 goto out; 8767 } 8768 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8769 } 8770 8771 if (trans) { 8772 int ret2; 8773 8774 trans->block_rsv = &fs_info->trans_block_rsv; 8775 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8776 if (ret2 && !ret) 8777 ret = ret2; 8778 8779 ret2 = btrfs_end_transaction(trans); 8780 if (ret2 && !ret) 8781 ret = ret2; 8782 btrfs_btree_balance_dirty(fs_info); 8783 } 8784 out: 8785 btrfs_free_block_rsv(fs_info, rsv); 8786 8787 return ret; 8788 } 8789 8790 /* 8791 * create a new subvolume directory/inode (helper for the ioctl). 8792 */ 8793 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8794 struct btrfs_root *new_root, 8795 struct btrfs_root *parent_root) 8796 { 8797 struct inode *inode; 8798 int err; 8799 u64 index = 0; 8800 u64 ino; 8801 8802 err = btrfs_get_free_objectid(new_root, &ino); 8803 if (err < 0) 8804 return err; 8805 8806 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino, 8807 S_IFDIR | (~current_umask() & S_IRWXUGO), 8808 &index); 8809 if (IS_ERR(inode)) 8810 return PTR_ERR(inode); 8811 inode->i_op = &btrfs_dir_inode_operations; 8812 inode->i_fop = &btrfs_dir_file_operations; 8813 8814 set_nlink(inode, 1); 8815 btrfs_i_size_write(BTRFS_I(inode), 0); 8816 unlock_new_inode(inode); 8817 8818 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8819 if (err) 8820 btrfs_err(new_root->fs_info, 8821 "error inheriting subvolume %llu properties: %d", 8822 new_root->root_key.objectid, err); 8823 8824 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode)); 8825 8826 iput(inode); 8827 return err; 8828 } 8829 8830 struct inode *btrfs_alloc_inode(struct super_block *sb) 8831 { 8832 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8833 struct btrfs_inode *ei; 8834 struct inode *inode; 8835 8836 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8837 if (!ei) 8838 return NULL; 8839 8840 ei->root = NULL; 8841 ei->generation = 0; 8842 ei->last_trans = 0; 8843 ei->last_sub_trans = 0; 8844 ei->logged_trans = 0; 8845 ei->delalloc_bytes = 0; 8846 ei->new_delalloc_bytes = 0; 8847 ei->defrag_bytes = 0; 8848 ei->disk_i_size = 0; 8849 ei->flags = 0; 8850 ei->csum_bytes = 0; 8851 ei->index_cnt = (u64)-1; 8852 ei->dir_index = 0; 8853 ei->last_unlink_trans = 0; 8854 ei->last_reflink_trans = 0; 8855 ei->last_log_commit = 0; 8856 8857 spin_lock_init(&ei->lock); 8858 ei->outstanding_extents = 0; 8859 if (sb->s_magic != BTRFS_TEST_MAGIC) 8860 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8861 BTRFS_BLOCK_RSV_DELALLOC); 8862 ei->runtime_flags = 0; 8863 ei->prop_compress = BTRFS_COMPRESS_NONE; 8864 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8865 8866 ei->delayed_node = NULL; 8867 8868 ei->i_otime.tv_sec = 0; 8869 ei->i_otime.tv_nsec = 0; 8870 8871 inode = &ei->vfs_inode; 8872 extent_map_tree_init(&ei->extent_tree); 8873 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8874 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8875 IO_TREE_INODE_IO_FAILURE, inode); 8876 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8877 IO_TREE_INODE_FILE_EXTENT, inode); 8878 ei->io_tree.track_uptodate = true; 8879 ei->io_failure_tree.track_uptodate = true; 8880 atomic_set(&ei->sync_writers, 0); 8881 mutex_init(&ei->log_mutex); 8882 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8883 INIT_LIST_HEAD(&ei->delalloc_inodes); 8884 INIT_LIST_HEAD(&ei->delayed_iput); 8885 RB_CLEAR_NODE(&ei->rb_node); 8886 8887 return inode; 8888 } 8889 8890 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8891 void btrfs_test_destroy_inode(struct inode *inode) 8892 { 8893 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8894 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8895 } 8896 #endif 8897 8898 void btrfs_free_inode(struct inode *inode) 8899 { 8900 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8901 } 8902 8903 void btrfs_destroy_inode(struct inode *vfs_inode) 8904 { 8905 struct btrfs_ordered_extent *ordered; 8906 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8907 struct btrfs_root *root = inode->root; 8908 8909 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8910 WARN_ON(vfs_inode->i_data.nrpages); 8911 WARN_ON(inode->block_rsv.reserved); 8912 WARN_ON(inode->block_rsv.size); 8913 WARN_ON(inode->outstanding_extents); 8914 WARN_ON(inode->delalloc_bytes); 8915 WARN_ON(inode->new_delalloc_bytes); 8916 WARN_ON(inode->csum_bytes); 8917 WARN_ON(inode->defrag_bytes); 8918 8919 /* 8920 * This can happen where we create an inode, but somebody else also 8921 * created the same inode and we need to destroy the one we already 8922 * created. 8923 */ 8924 if (!root) 8925 return; 8926 8927 while (1) { 8928 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8929 if (!ordered) 8930 break; 8931 else { 8932 btrfs_err(root->fs_info, 8933 "found ordered extent %llu %llu on inode cleanup", 8934 ordered->file_offset, ordered->num_bytes); 8935 btrfs_remove_ordered_extent(inode, ordered); 8936 btrfs_put_ordered_extent(ordered); 8937 btrfs_put_ordered_extent(ordered); 8938 } 8939 } 8940 btrfs_qgroup_check_reserved_leak(inode); 8941 inode_tree_del(inode); 8942 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8943 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8944 btrfs_put_root(inode->root); 8945 } 8946 8947 int btrfs_drop_inode(struct inode *inode) 8948 { 8949 struct btrfs_root *root = BTRFS_I(inode)->root; 8950 8951 if (root == NULL) 8952 return 1; 8953 8954 /* the snap/subvol tree is on deleting */ 8955 if (btrfs_root_refs(&root->root_item) == 0) 8956 return 1; 8957 else 8958 return generic_drop_inode(inode); 8959 } 8960 8961 static void init_once(void *foo) 8962 { 8963 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8964 8965 inode_init_once(&ei->vfs_inode); 8966 } 8967 8968 void __cold btrfs_destroy_cachep(void) 8969 { 8970 /* 8971 * Make sure all delayed rcu free inodes are flushed before we 8972 * destroy cache. 8973 */ 8974 rcu_barrier(); 8975 kmem_cache_destroy(btrfs_inode_cachep); 8976 kmem_cache_destroy(btrfs_trans_handle_cachep); 8977 kmem_cache_destroy(btrfs_path_cachep); 8978 kmem_cache_destroy(btrfs_free_space_cachep); 8979 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8980 } 8981 8982 int __init btrfs_init_cachep(void) 8983 { 8984 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8985 sizeof(struct btrfs_inode), 0, 8986 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8987 init_once); 8988 if (!btrfs_inode_cachep) 8989 goto fail; 8990 8991 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8992 sizeof(struct btrfs_trans_handle), 0, 8993 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8994 if (!btrfs_trans_handle_cachep) 8995 goto fail; 8996 8997 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8998 sizeof(struct btrfs_path), 0, 8999 SLAB_MEM_SPREAD, NULL); 9000 if (!btrfs_path_cachep) 9001 goto fail; 9002 9003 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9004 sizeof(struct btrfs_free_space), 0, 9005 SLAB_MEM_SPREAD, NULL); 9006 if (!btrfs_free_space_cachep) 9007 goto fail; 9008 9009 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9010 PAGE_SIZE, PAGE_SIZE, 9011 SLAB_RED_ZONE, NULL); 9012 if (!btrfs_free_space_bitmap_cachep) 9013 goto fail; 9014 9015 return 0; 9016 fail: 9017 btrfs_destroy_cachep(); 9018 return -ENOMEM; 9019 } 9020 9021 static int btrfs_getattr(struct user_namespace *mnt_userns, 9022 const struct path *path, struct kstat *stat, 9023 u32 request_mask, unsigned int flags) 9024 { 9025 u64 delalloc_bytes; 9026 u64 inode_bytes; 9027 struct inode *inode = d_inode(path->dentry); 9028 u32 blocksize = inode->i_sb->s_blocksize; 9029 u32 bi_flags = BTRFS_I(inode)->flags; 9030 9031 stat->result_mask |= STATX_BTIME; 9032 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9033 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9034 if (bi_flags & BTRFS_INODE_APPEND) 9035 stat->attributes |= STATX_ATTR_APPEND; 9036 if (bi_flags & BTRFS_INODE_COMPRESS) 9037 stat->attributes |= STATX_ATTR_COMPRESSED; 9038 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9039 stat->attributes |= STATX_ATTR_IMMUTABLE; 9040 if (bi_flags & BTRFS_INODE_NODUMP) 9041 stat->attributes |= STATX_ATTR_NODUMP; 9042 9043 stat->attributes_mask |= (STATX_ATTR_APPEND | 9044 STATX_ATTR_COMPRESSED | 9045 STATX_ATTR_IMMUTABLE | 9046 STATX_ATTR_NODUMP); 9047 9048 generic_fillattr(&init_user_ns, inode, stat); 9049 stat->dev = BTRFS_I(inode)->root->anon_dev; 9050 9051 spin_lock(&BTRFS_I(inode)->lock); 9052 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9053 inode_bytes = inode_get_bytes(inode); 9054 spin_unlock(&BTRFS_I(inode)->lock); 9055 stat->blocks = (ALIGN(inode_bytes, blocksize) + 9056 ALIGN(delalloc_bytes, blocksize)) >> 9; 9057 return 0; 9058 } 9059 9060 static int btrfs_rename_exchange(struct inode *old_dir, 9061 struct dentry *old_dentry, 9062 struct inode *new_dir, 9063 struct dentry *new_dentry) 9064 { 9065 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9066 struct btrfs_trans_handle *trans; 9067 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9068 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9069 struct inode *new_inode = new_dentry->d_inode; 9070 struct inode *old_inode = old_dentry->d_inode; 9071 struct timespec64 ctime = current_time(old_inode); 9072 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9073 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9074 u64 old_idx = 0; 9075 u64 new_idx = 0; 9076 int ret; 9077 int ret2; 9078 bool root_log_pinned = false; 9079 bool dest_log_pinned = false; 9080 9081 /* we only allow rename subvolume link between subvolumes */ 9082 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9083 return -EXDEV; 9084 9085 /* close the race window with snapshot create/destroy ioctl */ 9086 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9087 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9088 down_read(&fs_info->subvol_sem); 9089 9090 /* 9091 * We want to reserve the absolute worst case amount of items. So if 9092 * both inodes are subvols and we need to unlink them then that would 9093 * require 4 item modifications, but if they are both normal inodes it 9094 * would require 5 item modifications, so we'll assume their normal 9095 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9096 * should cover the worst case number of items we'll modify. 9097 */ 9098 trans = btrfs_start_transaction(root, 12); 9099 if (IS_ERR(trans)) { 9100 ret = PTR_ERR(trans); 9101 goto out_notrans; 9102 } 9103 9104 if (dest != root) 9105 btrfs_record_root_in_trans(trans, dest); 9106 9107 /* 9108 * We need to find a free sequence number both in the source and 9109 * in the destination directory for the exchange. 9110 */ 9111 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9112 if (ret) 9113 goto out_fail; 9114 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9115 if (ret) 9116 goto out_fail; 9117 9118 BTRFS_I(old_inode)->dir_index = 0ULL; 9119 BTRFS_I(new_inode)->dir_index = 0ULL; 9120 9121 /* Reference for the source. */ 9122 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9123 /* force full log commit if subvolume involved. */ 9124 btrfs_set_log_full_commit(trans); 9125 } else { 9126 btrfs_pin_log_trans(root); 9127 root_log_pinned = true; 9128 ret = btrfs_insert_inode_ref(trans, dest, 9129 new_dentry->d_name.name, 9130 new_dentry->d_name.len, 9131 old_ino, 9132 btrfs_ino(BTRFS_I(new_dir)), 9133 old_idx); 9134 if (ret) 9135 goto out_fail; 9136 } 9137 9138 /* And now for the dest. */ 9139 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9140 /* force full log commit if subvolume involved. */ 9141 btrfs_set_log_full_commit(trans); 9142 } else { 9143 btrfs_pin_log_trans(dest); 9144 dest_log_pinned = true; 9145 ret = btrfs_insert_inode_ref(trans, root, 9146 old_dentry->d_name.name, 9147 old_dentry->d_name.len, 9148 new_ino, 9149 btrfs_ino(BTRFS_I(old_dir)), 9150 new_idx); 9151 if (ret) 9152 goto out_fail; 9153 } 9154 9155 /* Update inode version and ctime/mtime. */ 9156 inode_inc_iversion(old_dir); 9157 inode_inc_iversion(new_dir); 9158 inode_inc_iversion(old_inode); 9159 inode_inc_iversion(new_inode); 9160 old_dir->i_ctime = old_dir->i_mtime = ctime; 9161 new_dir->i_ctime = new_dir->i_mtime = ctime; 9162 old_inode->i_ctime = ctime; 9163 new_inode->i_ctime = ctime; 9164 9165 if (old_dentry->d_parent != new_dentry->d_parent) { 9166 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9167 BTRFS_I(old_inode), 1); 9168 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9169 BTRFS_I(new_inode), 1); 9170 } 9171 9172 /* src is a subvolume */ 9173 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9174 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9175 } else { /* src is an inode */ 9176 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9177 BTRFS_I(old_dentry->d_inode), 9178 old_dentry->d_name.name, 9179 old_dentry->d_name.len); 9180 if (!ret) 9181 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9182 } 9183 if (ret) { 9184 btrfs_abort_transaction(trans, ret); 9185 goto out_fail; 9186 } 9187 9188 /* dest is a subvolume */ 9189 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9190 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9191 } else { /* dest is an inode */ 9192 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9193 BTRFS_I(new_dentry->d_inode), 9194 new_dentry->d_name.name, 9195 new_dentry->d_name.len); 9196 if (!ret) 9197 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9198 } 9199 if (ret) { 9200 btrfs_abort_transaction(trans, ret); 9201 goto out_fail; 9202 } 9203 9204 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9205 new_dentry->d_name.name, 9206 new_dentry->d_name.len, 0, old_idx); 9207 if (ret) { 9208 btrfs_abort_transaction(trans, ret); 9209 goto out_fail; 9210 } 9211 9212 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9213 old_dentry->d_name.name, 9214 old_dentry->d_name.len, 0, new_idx); 9215 if (ret) { 9216 btrfs_abort_transaction(trans, ret); 9217 goto out_fail; 9218 } 9219 9220 if (old_inode->i_nlink == 1) 9221 BTRFS_I(old_inode)->dir_index = old_idx; 9222 if (new_inode->i_nlink == 1) 9223 BTRFS_I(new_inode)->dir_index = new_idx; 9224 9225 if (root_log_pinned) { 9226 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9227 new_dentry->d_parent); 9228 btrfs_end_log_trans(root); 9229 root_log_pinned = false; 9230 } 9231 if (dest_log_pinned) { 9232 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9233 old_dentry->d_parent); 9234 btrfs_end_log_trans(dest); 9235 dest_log_pinned = false; 9236 } 9237 out_fail: 9238 /* 9239 * If we have pinned a log and an error happened, we unpin tasks 9240 * trying to sync the log and force them to fallback to a transaction 9241 * commit if the log currently contains any of the inodes involved in 9242 * this rename operation (to ensure we do not persist a log with an 9243 * inconsistent state for any of these inodes or leading to any 9244 * inconsistencies when replayed). If the transaction was aborted, the 9245 * abortion reason is propagated to userspace when attempting to commit 9246 * the transaction. If the log does not contain any of these inodes, we 9247 * allow the tasks to sync it. 9248 */ 9249 if (ret && (root_log_pinned || dest_log_pinned)) { 9250 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9251 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9252 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9253 (new_inode && 9254 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9255 btrfs_set_log_full_commit(trans); 9256 9257 if (root_log_pinned) { 9258 btrfs_end_log_trans(root); 9259 root_log_pinned = false; 9260 } 9261 if (dest_log_pinned) { 9262 btrfs_end_log_trans(dest); 9263 dest_log_pinned = false; 9264 } 9265 } 9266 ret2 = btrfs_end_transaction(trans); 9267 ret = ret ? ret : ret2; 9268 out_notrans: 9269 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9270 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9271 up_read(&fs_info->subvol_sem); 9272 9273 return ret; 9274 } 9275 9276 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9277 struct btrfs_root *root, 9278 struct inode *dir, 9279 struct dentry *dentry) 9280 { 9281 int ret; 9282 struct inode *inode; 9283 u64 objectid; 9284 u64 index; 9285 9286 ret = btrfs_get_free_objectid(root, &objectid); 9287 if (ret) 9288 return ret; 9289 9290 inode = btrfs_new_inode(trans, root, dir, 9291 dentry->d_name.name, 9292 dentry->d_name.len, 9293 btrfs_ino(BTRFS_I(dir)), 9294 objectid, 9295 S_IFCHR | WHITEOUT_MODE, 9296 &index); 9297 9298 if (IS_ERR(inode)) { 9299 ret = PTR_ERR(inode); 9300 return ret; 9301 } 9302 9303 inode->i_op = &btrfs_special_inode_operations; 9304 init_special_inode(inode, inode->i_mode, 9305 WHITEOUT_DEV); 9306 9307 ret = btrfs_init_inode_security(trans, inode, dir, 9308 &dentry->d_name); 9309 if (ret) 9310 goto out; 9311 9312 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9313 BTRFS_I(inode), 0, index); 9314 if (ret) 9315 goto out; 9316 9317 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9318 out: 9319 unlock_new_inode(inode); 9320 if (ret) 9321 inode_dec_link_count(inode); 9322 iput(inode); 9323 9324 return ret; 9325 } 9326 9327 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9328 struct inode *new_dir, struct dentry *new_dentry, 9329 unsigned int flags) 9330 { 9331 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9332 struct btrfs_trans_handle *trans; 9333 unsigned int trans_num_items; 9334 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9335 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9336 struct inode *new_inode = d_inode(new_dentry); 9337 struct inode *old_inode = d_inode(old_dentry); 9338 u64 index = 0; 9339 int ret; 9340 int ret2; 9341 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9342 bool log_pinned = false; 9343 9344 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9345 return -EPERM; 9346 9347 /* we only allow rename subvolume link between subvolumes */ 9348 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9349 return -EXDEV; 9350 9351 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9352 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9353 return -ENOTEMPTY; 9354 9355 if (S_ISDIR(old_inode->i_mode) && new_inode && 9356 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9357 return -ENOTEMPTY; 9358 9359 9360 /* check for collisions, even if the name isn't there */ 9361 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9362 new_dentry->d_name.name, 9363 new_dentry->d_name.len); 9364 9365 if (ret) { 9366 if (ret == -EEXIST) { 9367 /* we shouldn't get 9368 * eexist without a new_inode */ 9369 if (WARN_ON(!new_inode)) { 9370 return ret; 9371 } 9372 } else { 9373 /* maybe -EOVERFLOW */ 9374 return ret; 9375 } 9376 } 9377 ret = 0; 9378 9379 /* 9380 * we're using rename to replace one file with another. Start IO on it 9381 * now so we don't add too much work to the end of the transaction 9382 */ 9383 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9384 filemap_flush(old_inode->i_mapping); 9385 9386 /* close the racy window with snapshot create/destroy ioctl */ 9387 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9388 down_read(&fs_info->subvol_sem); 9389 /* 9390 * We want to reserve the absolute worst case amount of items. So if 9391 * both inodes are subvols and we need to unlink them then that would 9392 * require 4 item modifications, but if they are both normal inodes it 9393 * would require 5 item modifications, so we'll assume they are normal 9394 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9395 * should cover the worst case number of items we'll modify. 9396 * If our rename has the whiteout flag, we need more 5 units for the 9397 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9398 * when selinux is enabled). 9399 */ 9400 trans_num_items = 11; 9401 if (flags & RENAME_WHITEOUT) 9402 trans_num_items += 5; 9403 trans = btrfs_start_transaction(root, trans_num_items); 9404 if (IS_ERR(trans)) { 9405 ret = PTR_ERR(trans); 9406 goto out_notrans; 9407 } 9408 9409 if (dest != root) 9410 btrfs_record_root_in_trans(trans, dest); 9411 9412 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9413 if (ret) 9414 goto out_fail; 9415 9416 BTRFS_I(old_inode)->dir_index = 0ULL; 9417 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9418 /* force full log commit if subvolume involved. */ 9419 btrfs_set_log_full_commit(trans); 9420 } else { 9421 btrfs_pin_log_trans(root); 9422 log_pinned = true; 9423 ret = btrfs_insert_inode_ref(trans, dest, 9424 new_dentry->d_name.name, 9425 new_dentry->d_name.len, 9426 old_ino, 9427 btrfs_ino(BTRFS_I(new_dir)), index); 9428 if (ret) 9429 goto out_fail; 9430 } 9431 9432 inode_inc_iversion(old_dir); 9433 inode_inc_iversion(new_dir); 9434 inode_inc_iversion(old_inode); 9435 old_dir->i_ctime = old_dir->i_mtime = 9436 new_dir->i_ctime = new_dir->i_mtime = 9437 old_inode->i_ctime = current_time(old_dir); 9438 9439 if (old_dentry->d_parent != new_dentry->d_parent) 9440 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9441 BTRFS_I(old_inode), 1); 9442 9443 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9444 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9445 } else { 9446 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9447 BTRFS_I(d_inode(old_dentry)), 9448 old_dentry->d_name.name, 9449 old_dentry->d_name.len); 9450 if (!ret) 9451 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9452 } 9453 if (ret) { 9454 btrfs_abort_transaction(trans, ret); 9455 goto out_fail; 9456 } 9457 9458 if (new_inode) { 9459 inode_inc_iversion(new_inode); 9460 new_inode->i_ctime = current_time(new_inode); 9461 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9462 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9463 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9464 BUG_ON(new_inode->i_nlink == 0); 9465 } else { 9466 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9467 BTRFS_I(d_inode(new_dentry)), 9468 new_dentry->d_name.name, 9469 new_dentry->d_name.len); 9470 } 9471 if (!ret && new_inode->i_nlink == 0) 9472 ret = btrfs_orphan_add(trans, 9473 BTRFS_I(d_inode(new_dentry))); 9474 if (ret) { 9475 btrfs_abort_transaction(trans, ret); 9476 goto out_fail; 9477 } 9478 } 9479 9480 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9481 new_dentry->d_name.name, 9482 new_dentry->d_name.len, 0, index); 9483 if (ret) { 9484 btrfs_abort_transaction(trans, ret); 9485 goto out_fail; 9486 } 9487 9488 if (old_inode->i_nlink == 1) 9489 BTRFS_I(old_inode)->dir_index = index; 9490 9491 if (log_pinned) { 9492 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9493 new_dentry->d_parent); 9494 btrfs_end_log_trans(root); 9495 log_pinned = false; 9496 } 9497 9498 if (flags & RENAME_WHITEOUT) { 9499 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9500 old_dentry); 9501 9502 if (ret) { 9503 btrfs_abort_transaction(trans, ret); 9504 goto out_fail; 9505 } 9506 } 9507 out_fail: 9508 /* 9509 * If we have pinned the log and an error happened, we unpin tasks 9510 * trying to sync the log and force them to fallback to a transaction 9511 * commit if the log currently contains any of the inodes involved in 9512 * this rename operation (to ensure we do not persist a log with an 9513 * inconsistent state for any of these inodes or leading to any 9514 * inconsistencies when replayed). If the transaction was aborted, the 9515 * abortion reason is propagated to userspace when attempting to commit 9516 * the transaction. If the log does not contain any of these inodes, we 9517 * allow the tasks to sync it. 9518 */ 9519 if (ret && log_pinned) { 9520 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9521 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9522 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9523 (new_inode && 9524 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9525 btrfs_set_log_full_commit(trans); 9526 9527 btrfs_end_log_trans(root); 9528 log_pinned = false; 9529 } 9530 ret2 = btrfs_end_transaction(trans); 9531 ret = ret ? ret : ret2; 9532 out_notrans: 9533 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9534 up_read(&fs_info->subvol_sem); 9535 9536 return ret; 9537 } 9538 9539 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9540 struct dentry *old_dentry, struct inode *new_dir, 9541 struct dentry *new_dentry, unsigned int flags) 9542 { 9543 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9544 return -EINVAL; 9545 9546 if (flags & RENAME_EXCHANGE) 9547 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9548 new_dentry); 9549 9550 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9551 } 9552 9553 struct btrfs_delalloc_work { 9554 struct inode *inode; 9555 struct completion completion; 9556 struct list_head list; 9557 struct btrfs_work work; 9558 }; 9559 9560 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9561 { 9562 struct btrfs_delalloc_work *delalloc_work; 9563 struct inode *inode; 9564 9565 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9566 work); 9567 inode = delalloc_work->inode; 9568 filemap_flush(inode->i_mapping); 9569 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9570 &BTRFS_I(inode)->runtime_flags)) 9571 filemap_flush(inode->i_mapping); 9572 9573 iput(inode); 9574 complete(&delalloc_work->completion); 9575 } 9576 9577 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9578 { 9579 struct btrfs_delalloc_work *work; 9580 9581 work = kmalloc(sizeof(*work), GFP_NOFS); 9582 if (!work) 9583 return NULL; 9584 9585 init_completion(&work->completion); 9586 INIT_LIST_HEAD(&work->list); 9587 work->inode = inode; 9588 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9589 9590 return work; 9591 } 9592 9593 /* 9594 * some fairly slow code that needs optimization. This walks the list 9595 * of all the inodes with pending delalloc and forces them to disk. 9596 */ 9597 static int start_delalloc_inodes(struct btrfs_root *root, 9598 struct writeback_control *wbc, bool snapshot, 9599 bool in_reclaim_context) 9600 { 9601 struct btrfs_inode *binode; 9602 struct inode *inode; 9603 struct btrfs_delalloc_work *work, *next; 9604 struct list_head works; 9605 struct list_head splice; 9606 int ret = 0; 9607 bool full_flush = wbc->nr_to_write == LONG_MAX; 9608 9609 INIT_LIST_HEAD(&works); 9610 INIT_LIST_HEAD(&splice); 9611 9612 mutex_lock(&root->delalloc_mutex); 9613 spin_lock(&root->delalloc_lock); 9614 list_splice_init(&root->delalloc_inodes, &splice); 9615 while (!list_empty(&splice)) { 9616 binode = list_entry(splice.next, struct btrfs_inode, 9617 delalloc_inodes); 9618 9619 list_move_tail(&binode->delalloc_inodes, 9620 &root->delalloc_inodes); 9621 9622 if (in_reclaim_context && 9623 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9624 continue; 9625 9626 inode = igrab(&binode->vfs_inode); 9627 if (!inode) { 9628 cond_resched_lock(&root->delalloc_lock); 9629 continue; 9630 } 9631 spin_unlock(&root->delalloc_lock); 9632 9633 if (snapshot) 9634 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9635 &binode->runtime_flags); 9636 if (full_flush) { 9637 work = btrfs_alloc_delalloc_work(inode); 9638 if (!work) { 9639 iput(inode); 9640 ret = -ENOMEM; 9641 goto out; 9642 } 9643 list_add_tail(&work->list, &works); 9644 btrfs_queue_work(root->fs_info->flush_workers, 9645 &work->work); 9646 } else { 9647 ret = sync_inode(inode, wbc); 9648 if (!ret && 9649 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9650 &BTRFS_I(inode)->runtime_flags)) 9651 ret = sync_inode(inode, wbc); 9652 btrfs_add_delayed_iput(inode); 9653 if (ret || wbc->nr_to_write <= 0) 9654 goto out; 9655 } 9656 cond_resched(); 9657 spin_lock(&root->delalloc_lock); 9658 } 9659 spin_unlock(&root->delalloc_lock); 9660 9661 out: 9662 list_for_each_entry_safe(work, next, &works, list) { 9663 list_del_init(&work->list); 9664 wait_for_completion(&work->completion); 9665 kfree(work); 9666 } 9667 9668 if (!list_empty(&splice)) { 9669 spin_lock(&root->delalloc_lock); 9670 list_splice_tail(&splice, &root->delalloc_inodes); 9671 spin_unlock(&root->delalloc_lock); 9672 } 9673 mutex_unlock(&root->delalloc_mutex); 9674 return ret; 9675 } 9676 9677 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9678 { 9679 struct writeback_control wbc = { 9680 .nr_to_write = LONG_MAX, 9681 .sync_mode = WB_SYNC_NONE, 9682 .range_start = 0, 9683 .range_end = LLONG_MAX, 9684 }; 9685 struct btrfs_fs_info *fs_info = root->fs_info; 9686 9687 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9688 return -EROFS; 9689 9690 return start_delalloc_inodes(root, &wbc, true, false); 9691 } 9692 9693 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9694 bool in_reclaim_context) 9695 { 9696 struct writeback_control wbc = { 9697 .nr_to_write = nr, 9698 .sync_mode = WB_SYNC_NONE, 9699 .range_start = 0, 9700 .range_end = LLONG_MAX, 9701 }; 9702 struct btrfs_root *root; 9703 struct list_head splice; 9704 int ret; 9705 9706 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9707 return -EROFS; 9708 9709 INIT_LIST_HEAD(&splice); 9710 9711 mutex_lock(&fs_info->delalloc_root_mutex); 9712 spin_lock(&fs_info->delalloc_root_lock); 9713 list_splice_init(&fs_info->delalloc_roots, &splice); 9714 while (!list_empty(&splice)) { 9715 /* 9716 * Reset nr_to_write here so we know that we're doing a full 9717 * flush. 9718 */ 9719 if (nr == LONG_MAX) 9720 wbc.nr_to_write = LONG_MAX; 9721 9722 root = list_first_entry(&splice, struct btrfs_root, 9723 delalloc_root); 9724 root = btrfs_grab_root(root); 9725 BUG_ON(!root); 9726 list_move_tail(&root->delalloc_root, 9727 &fs_info->delalloc_roots); 9728 spin_unlock(&fs_info->delalloc_root_lock); 9729 9730 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9731 btrfs_put_root(root); 9732 if (ret < 0 || wbc.nr_to_write <= 0) 9733 goto out; 9734 spin_lock(&fs_info->delalloc_root_lock); 9735 } 9736 spin_unlock(&fs_info->delalloc_root_lock); 9737 9738 ret = 0; 9739 out: 9740 if (!list_empty(&splice)) { 9741 spin_lock(&fs_info->delalloc_root_lock); 9742 list_splice_tail(&splice, &fs_info->delalloc_roots); 9743 spin_unlock(&fs_info->delalloc_root_lock); 9744 } 9745 mutex_unlock(&fs_info->delalloc_root_mutex); 9746 return ret; 9747 } 9748 9749 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 9750 struct dentry *dentry, const char *symname) 9751 { 9752 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9753 struct btrfs_trans_handle *trans; 9754 struct btrfs_root *root = BTRFS_I(dir)->root; 9755 struct btrfs_path *path; 9756 struct btrfs_key key; 9757 struct inode *inode = NULL; 9758 int err; 9759 u64 objectid; 9760 u64 index = 0; 9761 int name_len; 9762 int datasize; 9763 unsigned long ptr; 9764 struct btrfs_file_extent_item *ei; 9765 struct extent_buffer *leaf; 9766 9767 name_len = strlen(symname); 9768 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9769 return -ENAMETOOLONG; 9770 9771 /* 9772 * 2 items for inode item and ref 9773 * 2 items for dir items 9774 * 1 item for updating parent inode item 9775 * 1 item for the inline extent item 9776 * 1 item for xattr if selinux is on 9777 */ 9778 trans = btrfs_start_transaction(root, 7); 9779 if (IS_ERR(trans)) 9780 return PTR_ERR(trans); 9781 9782 err = btrfs_get_free_objectid(root, &objectid); 9783 if (err) 9784 goto out_unlock; 9785 9786 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9787 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9788 objectid, S_IFLNK|S_IRWXUGO, &index); 9789 if (IS_ERR(inode)) { 9790 err = PTR_ERR(inode); 9791 inode = NULL; 9792 goto out_unlock; 9793 } 9794 9795 /* 9796 * If the active LSM wants to access the inode during 9797 * d_instantiate it needs these. Smack checks to see 9798 * if the filesystem supports xattrs by looking at the 9799 * ops vector. 9800 */ 9801 inode->i_fop = &btrfs_file_operations; 9802 inode->i_op = &btrfs_file_inode_operations; 9803 inode->i_mapping->a_ops = &btrfs_aops; 9804 9805 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9806 if (err) 9807 goto out_unlock; 9808 9809 path = btrfs_alloc_path(); 9810 if (!path) { 9811 err = -ENOMEM; 9812 goto out_unlock; 9813 } 9814 key.objectid = btrfs_ino(BTRFS_I(inode)); 9815 key.offset = 0; 9816 key.type = BTRFS_EXTENT_DATA_KEY; 9817 datasize = btrfs_file_extent_calc_inline_size(name_len); 9818 err = btrfs_insert_empty_item(trans, root, path, &key, 9819 datasize); 9820 if (err) { 9821 btrfs_free_path(path); 9822 goto out_unlock; 9823 } 9824 leaf = path->nodes[0]; 9825 ei = btrfs_item_ptr(leaf, path->slots[0], 9826 struct btrfs_file_extent_item); 9827 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9828 btrfs_set_file_extent_type(leaf, ei, 9829 BTRFS_FILE_EXTENT_INLINE); 9830 btrfs_set_file_extent_encryption(leaf, ei, 0); 9831 btrfs_set_file_extent_compression(leaf, ei, 0); 9832 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9833 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9834 9835 ptr = btrfs_file_extent_inline_start(ei); 9836 write_extent_buffer(leaf, symname, ptr, name_len); 9837 btrfs_mark_buffer_dirty(leaf); 9838 btrfs_free_path(path); 9839 9840 inode->i_op = &btrfs_symlink_inode_operations; 9841 inode_nohighmem(inode); 9842 inode_set_bytes(inode, name_len); 9843 btrfs_i_size_write(BTRFS_I(inode), name_len); 9844 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9845 /* 9846 * Last step, add directory indexes for our symlink inode. This is the 9847 * last step to avoid extra cleanup of these indexes if an error happens 9848 * elsewhere above. 9849 */ 9850 if (!err) 9851 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9852 BTRFS_I(inode), 0, index); 9853 if (err) 9854 goto out_unlock; 9855 9856 d_instantiate_new(dentry, inode); 9857 9858 out_unlock: 9859 btrfs_end_transaction(trans); 9860 if (err && inode) { 9861 inode_dec_link_count(inode); 9862 discard_new_inode(inode); 9863 } 9864 btrfs_btree_balance_dirty(fs_info); 9865 return err; 9866 } 9867 9868 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9869 struct btrfs_trans_handle *trans_in, 9870 struct btrfs_inode *inode, 9871 struct btrfs_key *ins, 9872 u64 file_offset) 9873 { 9874 struct btrfs_file_extent_item stack_fi; 9875 struct btrfs_replace_extent_info extent_info; 9876 struct btrfs_trans_handle *trans = trans_in; 9877 struct btrfs_path *path; 9878 u64 start = ins->objectid; 9879 u64 len = ins->offset; 9880 int ret; 9881 9882 memset(&stack_fi, 0, sizeof(stack_fi)); 9883 9884 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9885 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9886 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9887 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9888 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9889 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9890 /* Encryption and other encoding is reserved and all 0 */ 9891 9892 ret = btrfs_qgroup_release_data(inode, file_offset, len); 9893 if (ret < 0) 9894 return ERR_PTR(ret); 9895 9896 if (trans) { 9897 ret = insert_reserved_file_extent(trans, inode, 9898 file_offset, &stack_fi, 9899 true, ret); 9900 if (ret) 9901 return ERR_PTR(ret); 9902 return trans; 9903 } 9904 9905 extent_info.disk_offset = start; 9906 extent_info.disk_len = len; 9907 extent_info.data_offset = 0; 9908 extent_info.data_len = len; 9909 extent_info.file_offset = file_offset; 9910 extent_info.extent_buf = (char *)&stack_fi; 9911 extent_info.is_new_extent = true; 9912 extent_info.qgroup_reserved = ret; 9913 extent_info.insertions = 0; 9914 9915 path = btrfs_alloc_path(); 9916 if (!path) 9917 return ERR_PTR(-ENOMEM); 9918 9919 ret = btrfs_replace_file_extents(&inode->vfs_inode, path, file_offset, 9920 file_offset + len - 1, &extent_info, 9921 &trans); 9922 btrfs_free_path(path); 9923 if (ret) 9924 return ERR_PTR(ret); 9925 9926 return trans; 9927 } 9928 9929 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9930 u64 start, u64 num_bytes, u64 min_size, 9931 loff_t actual_len, u64 *alloc_hint, 9932 struct btrfs_trans_handle *trans) 9933 { 9934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9935 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9936 struct extent_map *em; 9937 struct btrfs_root *root = BTRFS_I(inode)->root; 9938 struct btrfs_key ins; 9939 u64 cur_offset = start; 9940 u64 clear_offset = start; 9941 u64 i_size; 9942 u64 cur_bytes; 9943 u64 last_alloc = (u64)-1; 9944 int ret = 0; 9945 bool own_trans = true; 9946 u64 end = start + num_bytes - 1; 9947 9948 if (trans) 9949 own_trans = false; 9950 while (num_bytes > 0) { 9951 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9952 cur_bytes = max(cur_bytes, min_size); 9953 /* 9954 * If we are severely fragmented we could end up with really 9955 * small allocations, so if the allocator is returning small 9956 * chunks lets make its job easier by only searching for those 9957 * sized chunks. 9958 */ 9959 cur_bytes = min(cur_bytes, last_alloc); 9960 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9961 min_size, 0, *alloc_hint, &ins, 1, 0); 9962 if (ret) 9963 break; 9964 9965 /* 9966 * We've reserved this space, and thus converted it from 9967 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9968 * from here on out we will only need to clear our reservation 9969 * for the remaining unreserved area, so advance our 9970 * clear_offset by our extent size. 9971 */ 9972 clear_offset += ins.offset; 9973 9974 last_alloc = ins.offset; 9975 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9976 &ins, cur_offset); 9977 /* 9978 * Now that we inserted the prealloc extent we can finally 9979 * decrement the number of reservations in the block group. 9980 * If we did it before, we could race with relocation and have 9981 * relocation miss the reserved extent, making it fail later. 9982 */ 9983 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9984 if (IS_ERR(trans)) { 9985 ret = PTR_ERR(trans); 9986 btrfs_free_reserved_extent(fs_info, ins.objectid, 9987 ins.offset, 0); 9988 break; 9989 } 9990 9991 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9992 cur_offset + ins.offset -1, 0); 9993 9994 em = alloc_extent_map(); 9995 if (!em) { 9996 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9997 &BTRFS_I(inode)->runtime_flags); 9998 goto next; 9999 } 10000 10001 em->start = cur_offset; 10002 em->orig_start = cur_offset; 10003 em->len = ins.offset; 10004 em->block_start = ins.objectid; 10005 em->block_len = ins.offset; 10006 em->orig_block_len = ins.offset; 10007 em->ram_bytes = ins.offset; 10008 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10009 em->generation = trans->transid; 10010 10011 while (1) { 10012 write_lock(&em_tree->lock); 10013 ret = add_extent_mapping(em_tree, em, 1); 10014 write_unlock(&em_tree->lock); 10015 if (ret != -EEXIST) 10016 break; 10017 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10018 cur_offset + ins.offset - 1, 10019 0); 10020 } 10021 free_extent_map(em); 10022 next: 10023 num_bytes -= ins.offset; 10024 cur_offset += ins.offset; 10025 *alloc_hint = ins.objectid + ins.offset; 10026 10027 inode_inc_iversion(inode); 10028 inode->i_ctime = current_time(inode); 10029 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10030 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10031 (actual_len > inode->i_size) && 10032 (cur_offset > inode->i_size)) { 10033 if (cur_offset > actual_len) 10034 i_size = actual_len; 10035 else 10036 i_size = cur_offset; 10037 i_size_write(inode, i_size); 10038 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 10039 } 10040 10041 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10042 10043 if (ret) { 10044 btrfs_abort_transaction(trans, ret); 10045 if (own_trans) 10046 btrfs_end_transaction(trans); 10047 break; 10048 } 10049 10050 if (own_trans) { 10051 btrfs_end_transaction(trans); 10052 trans = NULL; 10053 } 10054 } 10055 if (clear_offset < end) 10056 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 10057 end - clear_offset + 1); 10058 return ret; 10059 } 10060 10061 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10062 u64 start, u64 num_bytes, u64 min_size, 10063 loff_t actual_len, u64 *alloc_hint) 10064 { 10065 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10066 min_size, actual_len, alloc_hint, 10067 NULL); 10068 } 10069 10070 int btrfs_prealloc_file_range_trans(struct inode *inode, 10071 struct btrfs_trans_handle *trans, int mode, 10072 u64 start, u64 num_bytes, u64 min_size, 10073 loff_t actual_len, u64 *alloc_hint) 10074 { 10075 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10076 min_size, actual_len, alloc_hint, trans); 10077 } 10078 10079 static int btrfs_set_page_dirty(struct page *page) 10080 { 10081 return __set_page_dirty_nobuffers(page); 10082 } 10083 10084 static int btrfs_permission(struct user_namespace *mnt_userns, 10085 struct inode *inode, int mask) 10086 { 10087 struct btrfs_root *root = BTRFS_I(inode)->root; 10088 umode_t mode = inode->i_mode; 10089 10090 if (mask & MAY_WRITE && 10091 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10092 if (btrfs_root_readonly(root)) 10093 return -EROFS; 10094 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10095 return -EACCES; 10096 } 10097 return generic_permission(&init_user_ns, inode, mask); 10098 } 10099 10100 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10101 struct dentry *dentry, umode_t mode) 10102 { 10103 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10104 struct btrfs_trans_handle *trans; 10105 struct btrfs_root *root = BTRFS_I(dir)->root; 10106 struct inode *inode = NULL; 10107 u64 objectid; 10108 u64 index; 10109 int ret = 0; 10110 10111 /* 10112 * 5 units required for adding orphan entry 10113 */ 10114 trans = btrfs_start_transaction(root, 5); 10115 if (IS_ERR(trans)) 10116 return PTR_ERR(trans); 10117 10118 ret = btrfs_get_free_objectid(root, &objectid); 10119 if (ret) 10120 goto out; 10121 10122 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10123 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10124 if (IS_ERR(inode)) { 10125 ret = PTR_ERR(inode); 10126 inode = NULL; 10127 goto out; 10128 } 10129 10130 inode->i_fop = &btrfs_file_operations; 10131 inode->i_op = &btrfs_file_inode_operations; 10132 10133 inode->i_mapping->a_ops = &btrfs_aops; 10134 10135 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10136 if (ret) 10137 goto out; 10138 10139 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10140 if (ret) 10141 goto out; 10142 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10143 if (ret) 10144 goto out; 10145 10146 /* 10147 * We set number of links to 0 in btrfs_new_inode(), and here we set 10148 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10149 * through: 10150 * 10151 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10152 */ 10153 set_nlink(inode, 1); 10154 d_tmpfile(dentry, inode); 10155 unlock_new_inode(inode); 10156 mark_inode_dirty(inode); 10157 out: 10158 btrfs_end_transaction(trans); 10159 if (ret && inode) 10160 discard_new_inode(inode); 10161 btrfs_btree_balance_dirty(fs_info); 10162 return ret; 10163 } 10164 10165 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10166 { 10167 struct inode *inode = tree->private_data; 10168 unsigned long index = start >> PAGE_SHIFT; 10169 unsigned long end_index = end >> PAGE_SHIFT; 10170 struct page *page; 10171 10172 while (index <= end_index) { 10173 page = find_get_page(inode->i_mapping, index); 10174 ASSERT(page); /* Pages should be in the extent_io_tree */ 10175 set_page_writeback(page); 10176 put_page(page); 10177 index++; 10178 } 10179 } 10180 10181 #ifdef CONFIG_SWAP 10182 /* 10183 * Add an entry indicating a block group or device which is pinned by a 10184 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10185 * negative errno on failure. 10186 */ 10187 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10188 bool is_block_group) 10189 { 10190 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10191 struct btrfs_swapfile_pin *sp, *entry; 10192 struct rb_node **p; 10193 struct rb_node *parent = NULL; 10194 10195 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10196 if (!sp) 10197 return -ENOMEM; 10198 sp->ptr = ptr; 10199 sp->inode = inode; 10200 sp->is_block_group = is_block_group; 10201 sp->bg_extent_count = 1; 10202 10203 spin_lock(&fs_info->swapfile_pins_lock); 10204 p = &fs_info->swapfile_pins.rb_node; 10205 while (*p) { 10206 parent = *p; 10207 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10208 if (sp->ptr < entry->ptr || 10209 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10210 p = &(*p)->rb_left; 10211 } else if (sp->ptr > entry->ptr || 10212 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10213 p = &(*p)->rb_right; 10214 } else { 10215 if (is_block_group) 10216 entry->bg_extent_count++; 10217 spin_unlock(&fs_info->swapfile_pins_lock); 10218 kfree(sp); 10219 return 1; 10220 } 10221 } 10222 rb_link_node(&sp->node, parent, p); 10223 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10224 spin_unlock(&fs_info->swapfile_pins_lock); 10225 return 0; 10226 } 10227 10228 /* Free all of the entries pinned by this swapfile. */ 10229 static void btrfs_free_swapfile_pins(struct inode *inode) 10230 { 10231 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10232 struct btrfs_swapfile_pin *sp; 10233 struct rb_node *node, *next; 10234 10235 spin_lock(&fs_info->swapfile_pins_lock); 10236 node = rb_first(&fs_info->swapfile_pins); 10237 while (node) { 10238 next = rb_next(node); 10239 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10240 if (sp->inode == inode) { 10241 rb_erase(&sp->node, &fs_info->swapfile_pins); 10242 if (sp->is_block_group) { 10243 btrfs_dec_block_group_swap_extents(sp->ptr, 10244 sp->bg_extent_count); 10245 btrfs_put_block_group(sp->ptr); 10246 } 10247 kfree(sp); 10248 } 10249 node = next; 10250 } 10251 spin_unlock(&fs_info->swapfile_pins_lock); 10252 } 10253 10254 struct btrfs_swap_info { 10255 u64 start; 10256 u64 block_start; 10257 u64 block_len; 10258 u64 lowest_ppage; 10259 u64 highest_ppage; 10260 unsigned long nr_pages; 10261 int nr_extents; 10262 }; 10263 10264 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10265 struct btrfs_swap_info *bsi) 10266 { 10267 unsigned long nr_pages; 10268 u64 first_ppage, first_ppage_reported, next_ppage; 10269 int ret; 10270 10271 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10272 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10273 PAGE_SIZE) >> PAGE_SHIFT; 10274 10275 if (first_ppage >= next_ppage) 10276 return 0; 10277 nr_pages = next_ppage - first_ppage; 10278 10279 first_ppage_reported = first_ppage; 10280 if (bsi->start == 0) 10281 first_ppage_reported++; 10282 if (bsi->lowest_ppage > first_ppage_reported) 10283 bsi->lowest_ppage = first_ppage_reported; 10284 if (bsi->highest_ppage < (next_ppage - 1)) 10285 bsi->highest_ppage = next_ppage - 1; 10286 10287 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10288 if (ret < 0) 10289 return ret; 10290 bsi->nr_extents += ret; 10291 bsi->nr_pages += nr_pages; 10292 return 0; 10293 } 10294 10295 static void btrfs_swap_deactivate(struct file *file) 10296 { 10297 struct inode *inode = file_inode(file); 10298 10299 btrfs_free_swapfile_pins(inode); 10300 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10301 } 10302 10303 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10304 sector_t *span) 10305 { 10306 struct inode *inode = file_inode(file); 10307 struct btrfs_root *root = BTRFS_I(inode)->root; 10308 struct btrfs_fs_info *fs_info = root->fs_info; 10309 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10310 struct extent_state *cached_state = NULL; 10311 struct extent_map *em = NULL; 10312 struct btrfs_device *device = NULL; 10313 struct btrfs_swap_info bsi = { 10314 .lowest_ppage = (sector_t)-1ULL, 10315 }; 10316 int ret = 0; 10317 u64 isize; 10318 u64 start; 10319 10320 /* 10321 * If the swap file was just created, make sure delalloc is done. If the 10322 * file changes again after this, the user is doing something stupid and 10323 * we don't really care. 10324 */ 10325 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10326 if (ret) 10327 return ret; 10328 10329 /* 10330 * The inode is locked, so these flags won't change after we check them. 10331 */ 10332 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10333 btrfs_warn(fs_info, "swapfile must not be compressed"); 10334 return -EINVAL; 10335 } 10336 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10337 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10338 return -EINVAL; 10339 } 10340 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10341 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10342 return -EINVAL; 10343 } 10344 10345 /* 10346 * Balance or device remove/replace/resize can move stuff around from 10347 * under us. The exclop protection makes sure they aren't running/won't 10348 * run concurrently while we are mapping the swap extents, and 10349 * fs_info->swapfile_pins prevents them from running while the swap 10350 * file is active and moving the extents. Note that this also prevents 10351 * a concurrent device add which isn't actually necessary, but it's not 10352 * really worth the trouble to allow it. 10353 */ 10354 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10355 btrfs_warn(fs_info, 10356 "cannot activate swapfile while exclusive operation is running"); 10357 return -EBUSY; 10358 } 10359 10360 /* 10361 * Prevent snapshot creation while we are activating the swap file. 10362 * We do not want to race with snapshot creation. If snapshot creation 10363 * already started before we bumped nr_swapfiles from 0 to 1 and 10364 * completes before the first write into the swap file after it is 10365 * activated, than that write would fallback to COW. 10366 */ 10367 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10368 btrfs_exclop_finish(fs_info); 10369 btrfs_warn(fs_info, 10370 "cannot activate swapfile because snapshot creation is in progress"); 10371 return -EINVAL; 10372 } 10373 /* 10374 * Snapshots can create extents which require COW even if NODATACOW is 10375 * set. We use this counter to prevent snapshots. We must increment it 10376 * before walking the extents because we don't want a concurrent 10377 * snapshot to run after we've already checked the extents. 10378 */ 10379 atomic_inc(&root->nr_swapfiles); 10380 10381 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10382 10383 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10384 start = 0; 10385 while (start < isize) { 10386 u64 logical_block_start, physical_block_start; 10387 struct btrfs_block_group *bg; 10388 u64 len = isize - start; 10389 10390 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10391 if (IS_ERR(em)) { 10392 ret = PTR_ERR(em); 10393 goto out; 10394 } 10395 10396 if (em->block_start == EXTENT_MAP_HOLE) { 10397 btrfs_warn(fs_info, "swapfile must not have holes"); 10398 ret = -EINVAL; 10399 goto out; 10400 } 10401 if (em->block_start == EXTENT_MAP_INLINE) { 10402 /* 10403 * It's unlikely we'll ever actually find ourselves 10404 * here, as a file small enough to fit inline won't be 10405 * big enough to store more than the swap header, but in 10406 * case something changes in the future, let's catch it 10407 * here rather than later. 10408 */ 10409 btrfs_warn(fs_info, "swapfile must not be inline"); 10410 ret = -EINVAL; 10411 goto out; 10412 } 10413 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10414 btrfs_warn(fs_info, "swapfile must not be compressed"); 10415 ret = -EINVAL; 10416 goto out; 10417 } 10418 10419 logical_block_start = em->block_start + (start - em->start); 10420 len = min(len, em->len - (start - em->start)); 10421 free_extent_map(em); 10422 em = NULL; 10423 10424 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 10425 if (ret < 0) { 10426 goto out; 10427 } else if (ret) { 10428 ret = 0; 10429 } else { 10430 btrfs_warn(fs_info, 10431 "swapfile must not be copy-on-write"); 10432 ret = -EINVAL; 10433 goto out; 10434 } 10435 10436 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10437 if (IS_ERR(em)) { 10438 ret = PTR_ERR(em); 10439 goto out; 10440 } 10441 10442 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10443 btrfs_warn(fs_info, 10444 "swapfile must have single data profile"); 10445 ret = -EINVAL; 10446 goto out; 10447 } 10448 10449 if (device == NULL) { 10450 device = em->map_lookup->stripes[0].dev; 10451 ret = btrfs_add_swapfile_pin(inode, device, false); 10452 if (ret == 1) 10453 ret = 0; 10454 else if (ret) 10455 goto out; 10456 } else if (device != em->map_lookup->stripes[0].dev) { 10457 btrfs_warn(fs_info, "swapfile must be on one device"); 10458 ret = -EINVAL; 10459 goto out; 10460 } 10461 10462 physical_block_start = (em->map_lookup->stripes[0].physical + 10463 (logical_block_start - em->start)); 10464 len = min(len, em->len - (logical_block_start - em->start)); 10465 free_extent_map(em); 10466 em = NULL; 10467 10468 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10469 if (!bg) { 10470 btrfs_warn(fs_info, 10471 "could not find block group containing swapfile"); 10472 ret = -EINVAL; 10473 goto out; 10474 } 10475 10476 if (!btrfs_inc_block_group_swap_extents(bg)) { 10477 btrfs_warn(fs_info, 10478 "block group for swapfile at %llu is read-only%s", 10479 bg->start, 10480 atomic_read(&fs_info->scrubs_running) ? 10481 " (scrub running)" : ""); 10482 btrfs_put_block_group(bg); 10483 ret = -EINVAL; 10484 goto out; 10485 } 10486 10487 ret = btrfs_add_swapfile_pin(inode, bg, true); 10488 if (ret) { 10489 btrfs_put_block_group(bg); 10490 if (ret == 1) 10491 ret = 0; 10492 else 10493 goto out; 10494 } 10495 10496 if (bsi.block_len && 10497 bsi.block_start + bsi.block_len == physical_block_start) { 10498 bsi.block_len += len; 10499 } else { 10500 if (bsi.block_len) { 10501 ret = btrfs_add_swap_extent(sis, &bsi); 10502 if (ret) 10503 goto out; 10504 } 10505 bsi.start = start; 10506 bsi.block_start = physical_block_start; 10507 bsi.block_len = len; 10508 } 10509 10510 start += len; 10511 } 10512 10513 if (bsi.block_len) 10514 ret = btrfs_add_swap_extent(sis, &bsi); 10515 10516 out: 10517 if (!IS_ERR_OR_NULL(em)) 10518 free_extent_map(em); 10519 10520 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10521 10522 if (ret) 10523 btrfs_swap_deactivate(file); 10524 10525 btrfs_drew_write_unlock(&root->snapshot_lock); 10526 10527 btrfs_exclop_finish(fs_info); 10528 10529 if (ret) 10530 return ret; 10531 10532 if (device) 10533 sis->bdev = device->bdev; 10534 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10535 sis->max = bsi.nr_pages; 10536 sis->pages = bsi.nr_pages - 1; 10537 sis->highest_bit = bsi.nr_pages - 1; 10538 return bsi.nr_extents; 10539 } 10540 #else 10541 static void btrfs_swap_deactivate(struct file *file) 10542 { 10543 } 10544 10545 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10546 sector_t *span) 10547 { 10548 return -EOPNOTSUPP; 10549 } 10550 #endif 10551 10552 /* 10553 * Update the number of bytes used in the VFS' inode. When we replace extents in 10554 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10555 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10556 * always get a correct value. 10557 */ 10558 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10559 const u64 add_bytes, 10560 const u64 del_bytes) 10561 { 10562 if (add_bytes == del_bytes) 10563 return; 10564 10565 spin_lock(&inode->lock); 10566 if (del_bytes > 0) 10567 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10568 if (add_bytes > 0) 10569 inode_add_bytes(&inode->vfs_inode, add_bytes); 10570 spin_unlock(&inode->lock); 10571 } 10572 10573 static const struct inode_operations btrfs_dir_inode_operations = { 10574 .getattr = btrfs_getattr, 10575 .lookup = btrfs_lookup, 10576 .create = btrfs_create, 10577 .unlink = btrfs_unlink, 10578 .link = btrfs_link, 10579 .mkdir = btrfs_mkdir, 10580 .rmdir = btrfs_rmdir, 10581 .rename = btrfs_rename2, 10582 .symlink = btrfs_symlink, 10583 .setattr = btrfs_setattr, 10584 .mknod = btrfs_mknod, 10585 .listxattr = btrfs_listxattr, 10586 .permission = btrfs_permission, 10587 .get_acl = btrfs_get_acl, 10588 .set_acl = btrfs_set_acl, 10589 .update_time = btrfs_update_time, 10590 .tmpfile = btrfs_tmpfile, 10591 }; 10592 10593 static const struct file_operations btrfs_dir_file_operations = { 10594 .llseek = generic_file_llseek, 10595 .read = generic_read_dir, 10596 .iterate_shared = btrfs_real_readdir, 10597 .open = btrfs_opendir, 10598 .unlocked_ioctl = btrfs_ioctl, 10599 #ifdef CONFIG_COMPAT 10600 .compat_ioctl = btrfs_compat_ioctl, 10601 #endif 10602 .release = btrfs_release_file, 10603 .fsync = btrfs_sync_file, 10604 }; 10605 10606 /* 10607 * btrfs doesn't support the bmap operation because swapfiles 10608 * use bmap to make a mapping of extents in the file. They assume 10609 * these extents won't change over the life of the file and they 10610 * use the bmap result to do IO directly to the drive. 10611 * 10612 * the btrfs bmap call would return logical addresses that aren't 10613 * suitable for IO and they also will change frequently as COW 10614 * operations happen. So, swapfile + btrfs == corruption. 10615 * 10616 * For now we're avoiding this by dropping bmap. 10617 */ 10618 static const struct address_space_operations btrfs_aops = { 10619 .readpage = btrfs_readpage, 10620 .writepage = btrfs_writepage, 10621 .writepages = btrfs_writepages, 10622 .readahead = btrfs_readahead, 10623 .direct_IO = noop_direct_IO, 10624 .invalidatepage = btrfs_invalidatepage, 10625 .releasepage = btrfs_releasepage, 10626 #ifdef CONFIG_MIGRATION 10627 .migratepage = btrfs_migratepage, 10628 #endif 10629 .set_page_dirty = btrfs_set_page_dirty, 10630 .error_remove_page = generic_error_remove_page, 10631 .swap_activate = btrfs_swap_activate, 10632 .swap_deactivate = btrfs_swap_deactivate, 10633 }; 10634 10635 static const struct inode_operations btrfs_file_inode_operations = { 10636 .getattr = btrfs_getattr, 10637 .setattr = btrfs_setattr, 10638 .listxattr = btrfs_listxattr, 10639 .permission = btrfs_permission, 10640 .fiemap = btrfs_fiemap, 10641 .get_acl = btrfs_get_acl, 10642 .set_acl = btrfs_set_acl, 10643 .update_time = btrfs_update_time, 10644 }; 10645 static const struct inode_operations btrfs_special_inode_operations = { 10646 .getattr = btrfs_getattr, 10647 .setattr = btrfs_setattr, 10648 .permission = btrfs_permission, 10649 .listxattr = btrfs_listxattr, 10650 .get_acl = btrfs_get_acl, 10651 .set_acl = btrfs_set_acl, 10652 .update_time = btrfs_update_time, 10653 }; 10654 static const struct inode_operations btrfs_symlink_inode_operations = { 10655 .get_link = page_get_link, 10656 .getattr = btrfs_getattr, 10657 .setattr = btrfs_setattr, 10658 .permission = btrfs_permission, 10659 .listxattr = btrfs_listxattr, 10660 .update_time = btrfs_update_time, 10661 }; 10662 10663 const struct dentry_operations btrfs_dentry_operations = { 10664 .d_delete = btrfs_dentry_delete, 10665 }; 10666