1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/compat.h> 34 #include <linux/bit_spinlock.h> 35 #include <linux/xattr.h> 36 #include <linux/posix_acl.h> 37 #include <linux/falloc.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/mount.h> 41 #include <linux/btrfs.h> 42 #include <linux/blkdev.h> 43 #include <linux/posix_acl_xattr.h> 44 #include <linux/uio.h> 45 #include <linux/magic.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 #include "dedupe.h" 64 65 struct btrfs_iget_args { 66 struct btrfs_key *location; 67 struct btrfs_root *root; 68 }; 69 70 struct btrfs_dio_data { 71 u64 reserve; 72 u64 unsubmitted_oe_range_start; 73 u64 unsubmitted_oe_range_end; 74 int overwrite; 75 }; 76 77 static const struct inode_operations btrfs_dir_inode_operations; 78 static const struct inode_operations btrfs_symlink_inode_operations; 79 static const struct inode_operations btrfs_dir_ro_inode_operations; 80 static const struct inode_operations btrfs_special_inode_operations; 81 static const struct inode_operations btrfs_file_inode_operations; 82 static const struct address_space_operations btrfs_aops; 83 static const struct address_space_operations btrfs_symlink_aops; 84 static const struct file_operations btrfs_dir_file_operations; 85 static const struct extent_io_ops btrfs_extent_io_ops; 86 87 static struct kmem_cache *btrfs_inode_cachep; 88 struct kmem_cache *btrfs_trans_handle_cachep; 89 struct kmem_cache *btrfs_path_cachep; 90 struct kmem_cache *btrfs_free_space_cachep; 91 92 #define S_SHIFT 12 93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 101 }; 102 103 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 104 static int btrfs_truncate(struct inode *inode); 105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 106 static noinline int cow_file_range(struct inode *inode, 107 struct page *locked_page, 108 u64 start, u64 end, u64 delalloc_end, 109 int *page_started, unsigned long *nr_written, 110 int unlock, struct btrfs_dedupe_hash *hash); 111 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 112 u64 orig_start, u64 block_start, 113 u64 block_len, u64 orig_block_len, 114 u64 ram_bytes, int compress_type, 115 int type); 116 117 static void __endio_write_update_ordered(struct inode *inode, 118 const u64 offset, const u64 bytes, 119 const bool uptodate); 120 121 /* 122 * Cleanup all submitted ordered extents in specified range to handle errors 123 * from the fill_dellaloc() callback. 124 * 125 * NOTE: caller must ensure that when an error happens, it can not call 126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 128 * to be released, which we want to happen only when finishing the ordered 129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 130 * fill_delalloc() callback already does proper cleanup for the first page of 131 * the range, that is, it invokes the callback writepage_end_io_hook() for the 132 * range of the first page. 133 */ 134 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 135 const u64 offset, 136 const u64 bytes) 137 { 138 unsigned long index = offset >> PAGE_SHIFT; 139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 140 struct page *page; 141 142 while (index <= end_index) { 143 page = find_get_page(inode->i_mapping, index); 144 index++; 145 if (!page) 146 continue; 147 ClearPagePrivate2(page); 148 put_page(page); 149 } 150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 151 bytes - PAGE_SIZE, false); 152 } 153 154 static int btrfs_dirty_inode(struct inode *inode); 155 156 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 157 void btrfs_test_inode_set_ops(struct inode *inode) 158 { 159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 160 } 161 #endif 162 163 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 164 struct inode *inode, struct inode *dir, 165 const struct qstr *qstr) 166 { 167 int err; 168 169 err = btrfs_init_acl(trans, inode, dir); 170 if (!err) 171 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 172 return err; 173 } 174 175 /* 176 * this does all the hard work for inserting an inline extent into 177 * the btree. The caller should have done a btrfs_drop_extents so that 178 * no overlapping inline items exist in the btree 179 */ 180 static int insert_inline_extent(struct btrfs_trans_handle *trans, 181 struct btrfs_path *path, int extent_inserted, 182 struct btrfs_root *root, struct inode *inode, 183 u64 start, size_t size, size_t compressed_size, 184 int compress_type, 185 struct page **compressed_pages) 186 { 187 struct extent_buffer *leaf; 188 struct page *page = NULL; 189 char *kaddr; 190 unsigned long ptr; 191 struct btrfs_file_extent_item *ei; 192 int ret; 193 size_t cur_size = size; 194 unsigned long offset; 195 196 if (compressed_size && compressed_pages) 197 cur_size = compressed_size; 198 199 inode_add_bytes(inode, size); 200 201 if (!extent_inserted) { 202 struct btrfs_key key; 203 size_t datasize; 204 205 key.objectid = btrfs_ino(BTRFS_I(inode)); 206 key.offset = start; 207 key.type = BTRFS_EXTENT_DATA_KEY; 208 209 datasize = btrfs_file_extent_calc_inline_size(cur_size); 210 path->leave_spinning = 1; 211 ret = btrfs_insert_empty_item(trans, root, path, &key, 212 datasize); 213 if (ret) 214 goto fail; 215 } 216 leaf = path->nodes[0]; 217 ei = btrfs_item_ptr(leaf, path->slots[0], 218 struct btrfs_file_extent_item); 219 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 221 btrfs_set_file_extent_encryption(leaf, ei, 0); 222 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 223 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 224 ptr = btrfs_file_extent_inline_start(ei); 225 226 if (compress_type != BTRFS_COMPRESS_NONE) { 227 struct page *cpage; 228 int i = 0; 229 while (compressed_size > 0) { 230 cpage = compressed_pages[i]; 231 cur_size = min_t(unsigned long, compressed_size, 232 PAGE_SIZE); 233 234 kaddr = kmap_atomic(cpage); 235 write_extent_buffer(leaf, kaddr, ptr, cur_size); 236 kunmap_atomic(kaddr); 237 238 i++; 239 ptr += cur_size; 240 compressed_size -= cur_size; 241 } 242 btrfs_set_file_extent_compression(leaf, ei, 243 compress_type); 244 } else { 245 page = find_get_page(inode->i_mapping, 246 start >> PAGE_SHIFT); 247 btrfs_set_file_extent_compression(leaf, ei, 0); 248 kaddr = kmap_atomic(page); 249 offset = start & (PAGE_SIZE - 1); 250 write_extent_buffer(leaf, kaddr + offset, ptr, size); 251 kunmap_atomic(kaddr); 252 put_page(page); 253 } 254 btrfs_mark_buffer_dirty(leaf); 255 btrfs_release_path(path); 256 257 /* 258 * we're an inline extent, so nobody can 259 * extend the file past i_size without locking 260 * a page we already have locked. 261 * 262 * We must do any isize and inode updates 263 * before we unlock the pages. Otherwise we 264 * could end up racing with unlink. 265 */ 266 BTRFS_I(inode)->disk_i_size = inode->i_size; 267 ret = btrfs_update_inode(trans, root, inode); 268 269 fail: 270 return ret; 271 } 272 273 274 /* 275 * conditionally insert an inline extent into the file. This 276 * does the checks required to make sure the data is small enough 277 * to fit as an inline extent. 278 */ 279 static noinline int cow_file_range_inline(struct btrfs_root *root, 280 struct inode *inode, u64 start, 281 u64 end, size_t compressed_size, 282 int compress_type, 283 struct page **compressed_pages) 284 { 285 struct btrfs_fs_info *fs_info = root->fs_info; 286 struct btrfs_trans_handle *trans; 287 u64 isize = i_size_read(inode); 288 u64 actual_end = min(end + 1, isize); 289 u64 inline_len = actual_end - start; 290 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 291 u64 data_len = inline_len; 292 int ret; 293 struct btrfs_path *path; 294 int extent_inserted = 0; 295 u32 extent_item_size; 296 297 if (compressed_size) 298 data_len = compressed_size; 299 300 if (start > 0 || 301 actual_end > fs_info->sectorsize || 302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 303 (!compressed_size && 304 (actual_end & (fs_info->sectorsize - 1)) == 0) || 305 end + 1 < isize || 306 data_len > fs_info->max_inline) { 307 return 1; 308 } 309 310 path = btrfs_alloc_path(); 311 if (!path) 312 return -ENOMEM; 313 314 trans = btrfs_join_transaction(root); 315 if (IS_ERR(trans)) { 316 btrfs_free_path(path); 317 return PTR_ERR(trans); 318 } 319 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 320 321 if (compressed_size && compressed_pages) 322 extent_item_size = btrfs_file_extent_calc_inline_size( 323 compressed_size); 324 else 325 extent_item_size = btrfs_file_extent_calc_inline_size( 326 inline_len); 327 328 ret = __btrfs_drop_extents(trans, root, inode, path, 329 start, aligned_end, NULL, 330 1, 1, extent_item_size, &extent_inserted); 331 if (ret) { 332 btrfs_abort_transaction(trans, ret); 333 goto out; 334 } 335 336 if (isize > actual_end) 337 inline_len = min_t(u64, isize, actual_end); 338 ret = insert_inline_extent(trans, path, extent_inserted, 339 root, inode, start, 340 inline_len, compressed_size, 341 compress_type, compressed_pages); 342 if (ret && ret != -ENOSPC) { 343 btrfs_abort_transaction(trans, ret); 344 goto out; 345 } else if (ret == -ENOSPC) { 346 ret = 1; 347 goto out; 348 } 349 350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 351 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 352 out: 353 /* 354 * Don't forget to free the reserved space, as for inlined extent 355 * it won't count as data extent, free them directly here. 356 * And at reserve time, it's always aligned to page size, so 357 * just free one page here. 358 */ 359 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 360 btrfs_free_path(path); 361 btrfs_end_transaction(trans); 362 return ret; 363 } 364 365 struct async_extent { 366 u64 start; 367 u64 ram_size; 368 u64 compressed_size; 369 struct page **pages; 370 unsigned long nr_pages; 371 int compress_type; 372 struct list_head list; 373 }; 374 375 struct async_cow { 376 struct inode *inode; 377 struct btrfs_root *root; 378 struct page *locked_page; 379 u64 start; 380 u64 end; 381 struct list_head extents; 382 struct btrfs_work work; 383 }; 384 385 static noinline int add_async_extent(struct async_cow *cow, 386 u64 start, u64 ram_size, 387 u64 compressed_size, 388 struct page **pages, 389 unsigned long nr_pages, 390 int compress_type) 391 { 392 struct async_extent *async_extent; 393 394 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 395 BUG_ON(!async_extent); /* -ENOMEM */ 396 async_extent->start = start; 397 async_extent->ram_size = ram_size; 398 async_extent->compressed_size = compressed_size; 399 async_extent->pages = pages; 400 async_extent->nr_pages = nr_pages; 401 async_extent->compress_type = compress_type; 402 list_add_tail(&async_extent->list, &cow->extents); 403 return 0; 404 } 405 406 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 407 { 408 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 409 410 /* force compress */ 411 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 412 return 1; 413 /* defrag ioctl */ 414 if (BTRFS_I(inode)->defrag_compress) 415 return 1; 416 /* bad compression ratios */ 417 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 418 return 0; 419 if (btrfs_test_opt(fs_info, COMPRESS) || 420 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 421 BTRFS_I(inode)->prop_compress) 422 return btrfs_compress_heuristic(inode, start, end); 423 return 0; 424 } 425 426 static inline void inode_should_defrag(struct btrfs_inode *inode, 427 u64 start, u64 end, u64 num_bytes, u64 small_write) 428 { 429 /* If this is a small write inside eof, kick off a defrag */ 430 if (num_bytes < small_write && 431 (start > 0 || end + 1 < inode->disk_i_size)) 432 btrfs_add_inode_defrag(NULL, inode); 433 } 434 435 /* 436 * we create compressed extents in two phases. The first 437 * phase compresses a range of pages that have already been 438 * locked (both pages and state bits are locked). 439 * 440 * This is done inside an ordered work queue, and the compression 441 * is spread across many cpus. The actual IO submission is step 442 * two, and the ordered work queue takes care of making sure that 443 * happens in the same order things were put onto the queue by 444 * writepages and friends. 445 * 446 * If this code finds it can't get good compression, it puts an 447 * entry onto the work queue to write the uncompressed bytes. This 448 * makes sure that both compressed inodes and uncompressed inodes 449 * are written in the same order that the flusher thread sent them 450 * down. 451 */ 452 static noinline void compress_file_range(struct inode *inode, 453 struct page *locked_page, 454 u64 start, u64 end, 455 struct async_cow *async_cow, 456 int *num_added) 457 { 458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 459 struct btrfs_root *root = BTRFS_I(inode)->root; 460 u64 blocksize = fs_info->sectorsize; 461 u64 actual_end; 462 u64 isize = i_size_read(inode); 463 int ret = 0; 464 struct page **pages = NULL; 465 unsigned long nr_pages; 466 unsigned long total_compressed = 0; 467 unsigned long total_in = 0; 468 int i; 469 int will_compress; 470 int compress_type = fs_info->compress_type; 471 int redirty = 0; 472 473 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 474 SZ_16K); 475 476 actual_end = min_t(u64, isize, end + 1); 477 again: 478 will_compress = 0; 479 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 480 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 481 nr_pages = min_t(unsigned long, nr_pages, 482 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 483 484 /* 485 * we don't want to send crud past the end of i_size through 486 * compression, that's just a waste of CPU time. So, if the 487 * end of the file is before the start of our current 488 * requested range of bytes, we bail out to the uncompressed 489 * cleanup code that can deal with all of this. 490 * 491 * It isn't really the fastest way to fix things, but this is a 492 * very uncommon corner. 493 */ 494 if (actual_end <= start) 495 goto cleanup_and_bail_uncompressed; 496 497 total_compressed = actual_end - start; 498 499 /* 500 * skip compression for a small file range(<=blocksize) that 501 * isn't an inline extent, since it doesn't save disk space at all. 502 */ 503 if (total_compressed <= blocksize && 504 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 505 goto cleanup_and_bail_uncompressed; 506 507 total_compressed = min_t(unsigned long, total_compressed, 508 BTRFS_MAX_UNCOMPRESSED); 509 total_in = 0; 510 ret = 0; 511 512 /* 513 * we do compression for mount -o compress and when the 514 * inode has not been flagged as nocompress. This flag can 515 * change at any time if we discover bad compression ratios. 516 */ 517 if (inode_need_compress(inode, start, end)) { 518 WARN_ON(pages); 519 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 520 if (!pages) { 521 /* just bail out to the uncompressed code */ 522 goto cont; 523 } 524 525 if (BTRFS_I(inode)->defrag_compress) 526 compress_type = BTRFS_I(inode)->defrag_compress; 527 else if (BTRFS_I(inode)->prop_compress) 528 compress_type = BTRFS_I(inode)->prop_compress; 529 530 /* 531 * we need to call clear_page_dirty_for_io on each 532 * page in the range. Otherwise applications with the file 533 * mmap'd can wander in and change the page contents while 534 * we are compressing them. 535 * 536 * If the compression fails for any reason, we set the pages 537 * dirty again later on. 538 */ 539 extent_range_clear_dirty_for_io(inode, start, end); 540 redirty = 1; 541 542 /* Compression level is applied here and only here */ 543 ret = btrfs_compress_pages( 544 compress_type | (fs_info->compress_level << 4), 545 inode->i_mapping, start, 546 pages, 547 &nr_pages, 548 &total_in, 549 &total_compressed); 550 551 if (!ret) { 552 unsigned long offset = total_compressed & 553 (PAGE_SIZE - 1); 554 struct page *page = pages[nr_pages - 1]; 555 char *kaddr; 556 557 /* zero the tail end of the last page, we might be 558 * sending it down to disk 559 */ 560 if (offset) { 561 kaddr = kmap_atomic(page); 562 memset(kaddr + offset, 0, 563 PAGE_SIZE - offset); 564 kunmap_atomic(kaddr); 565 } 566 will_compress = 1; 567 } 568 } 569 cont: 570 if (start == 0) { 571 /* lets try to make an inline extent */ 572 if (ret || total_in < actual_end) { 573 /* we didn't compress the entire range, try 574 * to make an uncompressed inline extent. 575 */ 576 ret = cow_file_range_inline(root, inode, start, end, 577 0, BTRFS_COMPRESS_NONE, NULL); 578 } else { 579 /* try making a compressed inline extent */ 580 ret = cow_file_range_inline(root, inode, start, end, 581 total_compressed, 582 compress_type, pages); 583 } 584 if (ret <= 0) { 585 unsigned long clear_flags = EXTENT_DELALLOC | 586 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 587 EXTENT_DO_ACCOUNTING; 588 unsigned long page_error_op; 589 590 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 591 592 /* 593 * inline extent creation worked or returned error, 594 * we don't need to create any more async work items. 595 * Unlock and free up our temp pages. 596 * 597 * We use DO_ACCOUNTING here because we need the 598 * delalloc_release_metadata to be done _after_ we drop 599 * our outstanding extent for clearing delalloc for this 600 * range. 601 */ 602 extent_clear_unlock_delalloc(inode, start, end, end, 603 NULL, clear_flags, 604 PAGE_UNLOCK | 605 PAGE_CLEAR_DIRTY | 606 PAGE_SET_WRITEBACK | 607 page_error_op | 608 PAGE_END_WRITEBACK); 609 goto free_pages_out; 610 } 611 } 612 613 if (will_compress) { 614 /* 615 * we aren't doing an inline extent round the compressed size 616 * up to a block size boundary so the allocator does sane 617 * things 618 */ 619 total_compressed = ALIGN(total_compressed, blocksize); 620 621 /* 622 * one last check to make sure the compression is really a 623 * win, compare the page count read with the blocks on disk, 624 * compression must free at least one sector size 625 */ 626 total_in = ALIGN(total_in, PAGE_SIZE); 627 if (total_compressed + blocksize <= total_in) { 628 *num_added += 1; 629 630 /* 631 * The async work queues will take care of doing actual 632 * allocation on disk for these compressed pages, and 633 * will submit them to the elevator. 634 */ 635 add_async_extent(async_cow, start, total_in, 636 total_compressed, pages, nr_pages, 637 compress_type); 638 639 if (start + total_in < end) { 640 start += total_in; 641 pages = NULL; 642 cond_resched(); 643 goto again; 644 } 645 return; 646 } 647 } 648 if (pages) { 649 /* 650 * the compression code ran but failed to make things smaller, 651 * free any pages it allocated and our page pointer array 652 */ 653 for (i = 0; i < nr_pages; i++) { 654 WARN_ON(pages[i]->mapping); 655 put_page(pages[i]); 656 } 657 kfree(pages); 658 pages = NULL; 659 total_compressed = 0; 660 nr_pages = 0; 661 662 /* flag the file so we don't compress in the future */ 663 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 664 !(BTRFS_I(inode)->prop_compress)) { 665 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 666 } 667 } 668 cleanup_and_bail_uncompressed: 669 /* 670 * No compression, but we still need to write the pages in the file 671 * we've been given so far. redirty the locked page if it corresponds 672 * to our extent and set things up for the async work queue to run 673 * cow_file_range to do the normal delalloc dance. 674 */ 675 if (page_offset(locked_page) >= start && 676 page_offset(locked_page) <= end) 677 __set_page_dirty_nobuffers(locked_page); 678 /* unlocked later on in the async handlers */ 679 680 if (redirty) 681 extent_range_redirty_for_io(inode, start, end); 682 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 683 BTRFS_COMPRESS_NONE); 684 *num_added += 1; 685 686 return; 687 688 free_pages_out: 689 for (i = 0; i < nr_pages; i++) { 690 WARN_ON(pages[i]->mapping); 691 put_page(pages[i]); 692 } 693 kfree(pages); 694 } 695 696 static void free_async_extent_pages(struct async_extent *async_extent) 697 { 698 int i; 699 700 if (!async_extent->pages) 701 return; 702 703 for (i = 0; i < async_extent->nr_pages; i++) { 704 WARN_ON(async_extent->pages[i]->mapping); 705 put_page(async_extent->pages[i]); 706 } 707 kfree(async_extent->pages); 708 async_extent->nr_pages = 0; 709 async_extent->pages = NULL; 710 } 711 712 /* 713 * phase two of compressed writeback. This is the ordered portion 714 * of the code, which only gets called in the order the work was 715 * queued. We walk all the async extents created by compress_file_range 716 * and send them down to the disk. 717 */ 718 static noinline void submit_compressed_extents(struct inode *inode, 719 struct async_cow *async_cow) 720 { 721 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 722 struct async_extent *async_extent; 723 u64 alloc_hint = 0; 724 struct btrfs_key ins; 725 struct extent_map *em; 726 struct btrfs_root *root = BTRFS_I(inode)->root; 727 struct extent_io_tree *io_tree; 728 int ret = 0; 729 730 again: 731 while (!list_empty(&async_cow->extents)) { 732 async_extent = list_entry(async_cow->extents.next, 733 struct async_extent, list); 734 list_del(&async_extent->list); 735 736 io_tree = &BTRFS_I(inode)->io_tree; 737 738 retry: 739 /* did the compression code fall back to uncompressed IO? */ 740 if (!async_extent->pages) { 741 int page_started = 0; 742 unsigned long nr_written = 0; 743 744 lock_extent(io_tree, async_extent->start, 745 async_extent->start + 746 async_extent->ram_size - 1); 747 748 /* allocate blocks */ 749 ret = cow_file_range(inode, async_cow->locked_page, 750 async_extent->start, 751 async_extent->start + 752 async_extent->ram_size - 1, 753 async_extent->start + 754 async_extent->ram_size - 1, 755 &page_started, &nr_written, 0, 756 NULL); 757 758 /* JDM XXX */ 759 760 /* 761 * if page_started, cow_file_range inserted an 762 * inline extent and took care of all the unlocking 763 * and IO for us. Otherwise, we need to submit 764 * all those pages down to the drive. 765 */ 766 if (!page_started && !ret) 767 extent_write_locked_range(io_tree, 768 inode, async_extent->start, 769 async_extent->start + 770 async_extent->ram_size - 1, 771 btrfs_get_extent, 772 WB_SYNC_ALL); 773 else if (ret) 774 unlock_page(async_cow->locked_page); 775 kfree(async_extent); 776 cond_resched(); 777 continue; 778 } 779 780 lock_extent(io_tree, async_extent->start, 781 async_extent->start + async_extent->ram_size - 1); 782 783 ret = btrfs_reserve_extent(root, async_extent->ram_size, 784 async_extent->compressed_size, 785 async_extent->compressed_size, 786 0, alloc_hint, &ins, 1, 1); 787 if (ret) { 788 free_async_extent_pages(async_extent); 789 790 if (ret == -ENOSPC) { 791 unlock_extent(io_tree, async_extent->start, 792 async_extent->start + 793 async_extent->ram_size - 1); 794 795 /* 796 * we need to redirty the pages if we decide to 797 * fallback to uncompressed IO, otherwise we 798 * will not submit these pages down to lower 799 * layers. 800 */ 801 extent_range_redirty_for_io(inode, 802 async_extent->start, 803 async_extent->start + 804 async_extent->ram_size - 1); 805 806 goto retry; 807 } 808 goto out_free; 809 } 810 /* 811 * here we're doing allocation and writeback of the 812 * compressed pages 813 */ 814 em = create_io_em(inode, async_extent->start, 815 async_extent->ram_size, /* len */ 816 async_extent->start, /* orig_start */ 817 ins.objectid, /* block_start */ 818 ins.offset, /* block_len */ 819 ins.offset, /* orig_block_len */ 820 async_extent->ram_size, /* ram_bytes */ 821 async_extent->compress_type, 822 BTRFS_ORDERED_COMPRESSED); 823 if (IS_ERR(em)) 824 /* ret value is not necessary due to void function */ 825 goto out_free_reserve; 826 free_extent_map(em); 827 828 ret = btrfs_add_ordered_extent_compress(inode, 829 async_extent->start, 830 ins.objectid, 831 async_extent->ram_size, 832 ins.offset, 833 BTRFS_ORDERED_COMPRESSED, 834 async_extent->compress_type); 835 if (ret) { 836 btrfs_drop_extent_cache(BTRFS_I(inode), 837 async_extent->start, 838 async_extent->start + 839 async_extent->ram_size - 1, 0); 840 goto out_free_reserve; 841 } 842 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 843 844 /* 845 * clear dirty, set writeback and unlock the pages. 846 */ 847 extent_clear_unlock_delalloc(inode, async_extent->start, 848 async_extent->start + 849 async_extent->ram_size - 1, 850 async_extent->start + 851 async_extent->ram_size - 1, 852 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 853 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 854 PAGE_SET_WRITEBACK); 855 if (btrfs_submit_compressed_write(inode, 856 async_extent->start, 857 async_extent->ram_size, 858 ins.objectid, 859 ins.offset, async_extent->pages, 860 async_extent->nr_pages)) { 861 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 862 struct page *p = async_extent->pages[0]; 863 const u64 start = async_extent->start; 864 const u64 end = start + async_extent->ram_size - 1; 865 866 p->mapping = inode->i_mapping; 867 tree->ops->writepage_end_io_hook(p, start, end, 868 NULL, 0); 869 p->mapping = NULL; 870 extent_clear_unlock_delalloc(inode, start, end, end, 871 NULL, 0, 872 PAGE_END_WRITEBACK | 873 PAGE_SET_ERROR); 874 free_async_extent_pages(async_extent); 875 } 876 alloc_hint = ins.objectid + ins.offset; 877 kfree(async_extent); 878 cond_resched(); 879 } 880 return; 881 out_free_reserve: 882 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 883 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 884 out_free: 885 extent_clear_unlock_delalloc(inode, async_extent->start, 886 async_extent->start + 887 async_extent->ram_size - 1, 888 async_extent->start + 889 async_extent->ram_size - 1, 890 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 891 EXTENT_DELALLOC_NEW | 892 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 893 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 894 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 895 PAGE_SET_ERROR); 896 free_async_extent_pages(async_extent); 897 kfree(async_extent); 898 goto again; 899 } 900 901 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 902 u64 num_bytes) 903 { 904 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 905 struct extent_map *em; 906 u64 alloc_hint = 0; 907 908 read_lock(&em_tree->lock); 909 em = search_extent_mapping(em_tree, start, num_bytes); 910 if (em) { 911 /* 912 * if block start isn't an actual block number then find the 913 * first block in this inode and use that as a hint. If that 914 * block is also bogus then just don't worry about it. 915 */ 916 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 917 free_extent_map(em); 918 em = search_extent_mapping(em_tree, 0, 0); 919 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 920 alloc_hint = em->block_start; 921 if (em) 922 free_extent_map(em); 923 } else { 924 alloc_hint = em->block_start; 925 free_extent_map(em); 926 } 927 } 928 read_unlock(&em_tree->lock); 929 930 return alloc_hint; 931 } 932 933 /* 934 * when extent_io.c finds a delayed allocation range in the file, 935 * the call backs end up in this code. The basic idea is to 936 * allocate extents on disk for the range, and create ordered data structs 937 * in ram to track those extents. 938 * 939 * locked_page is the page that writepage had locked already. We use 940 * it to make sure we don't do extra locks or unlocks. 941 * 942 * *page_started is set to one if we unlock locked_page and do everything 943 * required to start IO on it. It may be clean and already done with 944 * IO when we return. 945 */ 946 static noinline int cow_file_range(struct inode *inode, 947 struct page *locked_page, 948 u64 start, u64 end, u64 delalloc_end, 949 int *page_started, unsigned long *nr_written, 950 int unlock, struct btrfs_dedupe_hash *hash) 951 { 952 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 953 struct btrfs_root *root = BTRFS_I(inode)->root; 954 u64 alloc_hint = 0; 955 u64 num_bytes; 956 unsigned long ram_size; 957 u64 disk_num_bytes; 958 u64 cur_alloc_size = 0; 959 u64 blocksize = fs_info->sectorsize; 960 struct btrfs_key ins; 961 struct extent_map *em; 962 unsigned clear_bits; 963 unsigned long page_ops; 964 bool extent_reserved = false; 965 int ret = 0; 966 967 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 968 WARN_ON_ONCE(1); 969 ret = -EINVAL; 970 goto out_unlock; 971 } 972 973 num_bytes = ALIGN(end - start + 1, blocksize); 974 num_bytes = max(blocksize, num_bytes); 975 disk_num_bytes = num_bytes; 976 977 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 978 979 if (start == 0) { 980 /* lets try to make an inline extent */ 981 ret = cow_file_range_inline(root, inode, start, end, 0, 982 BTRFS_COMPRESS_NONE, NULL); 983 if (ret == 0) { 984 /* 985 * We use DO_ACCOUNTING here because we need the 986 * delalloc_release_metadata to be run _after_ we drop 987 * our outstanding extent for clearing delalloc for this 988 * range. 989 */ 990 extent_clear_unlock_delalloc(inode, start, end, 991 delalloc_end, NULL, 992 EXTENT_LOCKED | EXTENT_DELALLOC | 993 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 994 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 995 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 996 PAGE_END_WRITEBACK); 997 *nr_written = *nr_written + 998 (end - start + PAGE_SIZE) / PAGE_SIZE; 999 *page_started = 1; 1000 goto out; 1001 } else if (ret < 0) { 1002 goto out_unlock; 1003 } 1004 } 1005 1006 BUG_ON(disk_num_bytes > 1007 btrfs_super_total_bytes(fs_info->super_copy)); 1008 1009 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1010 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1011 start + num_bytes - 1, 0); 1012 1013 while (disk_num_bytes > 0) { 1014 cur_alloc_size = disk_num_bytes; 1015 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1016 fs_info->sectorsize, 0, alloc_hint, 1017 &ins, 1, 1); 1018 if (ret < 0) 1019 goto out_unlock; 1020 cur_alloc_size = ins.offset; 1021 extent_reserved = true; 1022 1023 ram_size = ins.offset; 1024 em = create_io_em(inode, start, ins.offset, /* len */ 1025 start, /* orig_start */ 1026 ins.objectid, /* block_start */ 1027 ins.offset, /* block_len */ 1028 ins.offset, /* orig_block_len */ 1029 ram_size, /* ram_bytes */ 1030 BTRFS_COMPRESS_NONE, /* compress_type */ 1031 BTRFS_ORDERED_REGULAR /* type */); 1032 if (IS_ERR(em)) 1033 goto out_reserve; 1034 free_extent_map(em); 1035 1036 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1037 ram_size, cur_alloc_size, 0); 1038 if (ret) 1039 goto out_drop_extent_cache; 1040 1041 if (root->root_key.objectid == 1042 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1043 ret = btrfs_reloc_clone_csums(inode, start, 1044 cur_alloc_size); 1045 /* 1046 * Only drop cache here, and process as normal. 1047 * 1048 * We must not allow extent_clear_unlock_delalloc() 1049 * at out_unlock label to free meta of this ordered 1050 * extent, as its meta should be freed by 1051 * btrfs_finish_ordered_io(). 1052 * 1053 * So we must continue until @start is increased to 1054 * skip current ordered extent. 1055 */ 1056 if (ret) 1057 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1058 start + ram_size - 1, 0); 1059 } 1060 1061 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1062 1063 /* we're not doing compressed IO, don't unlock the first 1064 * page (which the caller expects to stay locked), don't 1065 * clear any dirty bits and don't set any writeback bits 1066 * 1067 * Do set the Private2 bit so we know this page was properly 1068 * setup for writepage 1069 */ 1070 page_ops = unlock ? PAGE_UNLOCK : 0; 1071 page_ops |= PAGE_SET_PRIVATE2; 1072 1073 extent_clear_unlock_delalloc(inode, start, 1074 start + ram_size - 1, 1075 delalloc_end, locked_page, 1076 EXTENT_LOCKED | EXTENT_DELALLOC, 1077 page_ops); 1078 if (disk_num_bytes < cur_alloc_size) 1079 disk_num_bytes = 0; 1080 else 1081 disk_num_bytes -= cur_alloc_size; 1082 num_bytes -= cur_alloc_size; 1083 alloc_hint = ins.objectid + ins.offset; 1084 start += cur_alloc_size; 1085 extent_reserved = false; 1086 1087 /* 1088 * btrfs_reloc_clone_csums() error, since start is increased 1089 * extent_clear_unlock_delalloc() at out_unlock label won't 1090 * free metadata of current ordered extent, we're OK to exit. 1091 */ 1092 if (ret) 1093 goto out_unlock; 1094 } 1095 out: 1096 return ret; 1097 1098 out_drop_extent_cache: 1099 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1100 out_reserve: 1101 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1102 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1103 out_unlock: 1104 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1105 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1106 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1107 PAGE_END_WRITEBACK; 1108 /* 1109 * If we reserved an extent for our delalloc range (or a subrange) and 1110 * failed to create the respective ordered extent, then it means that 1111 * when we reserved the extent we decremented the extent's size from 1112 * the data space_info's bytes_may_use counter and incremented the 1113 * space_info's bytes_reserved counter by the same amount. We must make 1114 * sure extent_clear_unlock_delalloc() does not try to decrement again 1115 * the data space_info's bytes_may_use counter, therefore we do not pass 1116 * it the flag EXTENT_CLEAR_DATA_RESV. 1117 */ 1118 if (extent_reserved) { 1119 extent_clear_unlock_delalloc(inode, start, 1120 start + cur_alloc_size, 1121 start + cur_alloc_size, 1122 locked_page, 1123 clear_bits, 1124 page_ops); 1125 start += cur_alloc_size; 1126 if (start >= end) 1127 goto out; 1128 } 1129 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1130 locked_page, 1131 clear_bits | EXTENT_CLEAR_DATA_RESV, 1132 page_ops); 1133 goto out; 1134 } 1135 1136 /* 1137 * work queue call back to started compression on a file and pages 1138 */ 1139 static noinline void async_cow_start(struct btrfs_work *work) 1140 { 1141 struct async_cow *async_cow; 1142 int num_added = 0; 1143 async_cow = container_of(work, struct async_cow, work); 1144 1145 compress_file_range(async_cow->inode, async_cow->locked_page, 1146 async_cow->start, async_cow->end, async_cow, 1147 &num_added); 1148 if (num_added == 0) { 1149 btrfs_add_delayed_iput(async_cow->inode); 1150 async_cow->inode = NULL; 1151 } 1152 } 1153 1154 /* 1155 * work queue call back to submit previously compressed pages 1156 */ 1157 static noinline void async_cow_submit(struct btrfs_work *work) 1158 { 1159 struct btrfs_fs_info *fs_info; 1160 struct async_cow *async_cow; 1161 struct btrfs_root *root; 1162 unsigned long nr_pages; 1163 1164 async_cow = container_of(work, struct async_cow, work); 1165 1166 root = async_cow->root; 1167 fs_info = root->fs_info; 1168 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1169 PAGE_SHIFT; 1170 1171 /* 1172 * atomic_sub_return implies a barrier for waitqueue_active 1173 */ 1174 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1175 5 * SZ_1M && 1176 waitqueue_active(&fs_info->async_submit_wait)) 1177 wake_up(&fs_info->async_submit_wait); 1178 1179 if (async_cow->inode) 1180 submit_compressed_extents(async_cow->inode, async_cow); 1181 } 1182 1183 static noinline void async_cow_free(struct btrfs_work *work) 1184 { 1185 struct async_cow *async_cow; 1186 async_cow = container_of(work, struct async_cow, work); 1187 if (async_cow->inode) 1188 btrfs_add_delayed_iput(async_cow->inode); 1189 kfree(async_cow); 1190 } 1191 1192 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1193 u64 start, u64 end, int *page_started, 1194 unsigned long *nr_written) 1195 { 1196 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1197 struct async_cow *async_cow; 1198 struct btrfs_root *root = BTRFS_I(inode)->root; 1199 unsigned long nr_pages; 1200 u64 cur_end; 1201 1202 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1203 1, 0, NULL, GFP_NOFS); 1204 while (start < end) { 1205 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1206 BUG_ON(!async_cow); /* -ENOMEM */ 1207 async_cow->inode = igrab(inode); 1208 async_cow->root = root; 1209 async_cow->locked_page = locked_page; 1210 async_cow->start = start; 1211 1212 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1213 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1214 cur_end = end; 1215 else 1216 cur_end = min(end, start + SZ_512K - 1); 1217 1218 async_cow->end = cur_end; 1219 INIT_LIST_HEAD(&async_cow->extents); 1220 1221 btrfs_init_work(&async_cow->work, 1222 btrfs_delalloc_helper, 1223 async_cow_start, async_cow_submit, 1224 async_cow_free); 1225 1226 nr_pages = (cur_end - start + PAGE_SIZE) >> 1227 PAGE_SHIFT; 1228 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1229 1230 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1231 1232 *nr_written += nr_pages; 1233 start = cur_end + 1; 1234 } 1235 *page_started = 1; 1236 return 0; 1237 } 1238 1239 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1240 u64 bytenr, u64 num_bytes) 1241 { 1242 int ret; 1243 struct btrfs_ordered_sum *sums; 1244 LIST_HEAD(list); 1245 1246 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1247 bytenr + num_bytes - 1, &list, 0); 1248 if (ret == 0 && list_empty(&list)) 1249 return 0; 1250 1251 while (!list_empty(&list)) { 1252 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1253 list_del(&sums->list); 1254 kfree(sums); 1255 } 1256 return 1; 1257 } 1258 1259 /* 1260 * when nowcow writeback call back. This checks for snapshots or COW copies 1261 * of the extents that exist in the file, and COWs the file as required. 1262 * 1263 * If no cow copies or snapshots exist, we write directly to the existing 1264 * blocks on disk 1265 */ 1266 static noinline int run_delalloc_nocow(struct inode *inode, 1267 struct page *locked_page, 1268 u64 start, u64 end, int *page_started, int force, 1269 unsigned long *nr_written) 1270 { 1271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1272 struct btrfs_root *root = BTRFS_I(inode)->root; 1273 struct extent_buffer *leaf; 1274 struct btrfs_path *path; 1275 struct btrfs_file_extent_item *fi; 1276 struct btrfs_key found_key; 1277 struct extent_map *em; 1278 u64 cow_start; 1279 u64 cur_offset; 1280 u64 extent_end; 1281 u64 extent_offset; 1282 u64 disk_bytenr; 1283 u64 num_bytes; 1284 u64 disk_num_bytes; 1285 u64 ram_bytes; 1286 int extent_type; 1287 int ret, err; 1288 int type; 1289 int nocow; 1290 int check_prev = 1; 1291 bool nolock; 1292 u64 ino = btrfs_ino(BTRFS_I(inode)); 1293 1294 path = btrfs_alloc_path(); 1295 if (!path) { 1296 extent_clear_unlock_delalloc(inode, start, end, end, 1297 locked_page, 1298 EXTENT_LOCKED | EXTENT_DELALLOC | 1299 EXTENT_DO_ACCOUNTING | 1300 EXTENT_DEFRAG, PAGE_UNLOCK | 1301 PAGE_CLEAR_DIRTY | 1302 PAGE_SET_WRITEBACK | 1303 PAGE_END_WRITEBACK); 1304 return -ENOMEM; 1305 } 1306 1307 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1308 1309 cow_start = (u64)-1; 1310 cur_offset = start; 1311 while (1) { 1312 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1313 cur_offset, 0); 1314 if (ret < 0) 1315 goto error; 1316 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1317 leaf = path->nodes[0]; 1318 btrfs_item_key_to_cpu(leaf, &found_key, 1319 path->slots[0] - 1); 1320 if (found_key.objectid == ino && 1321 found_key.type == BTRFS_EXTENT_DATA_KEY) 1322 path->slots[0]--; 1323 } 1324 check_prev = 0; 1325 next_slot: 1326 leaf = path->nodes[0]; 1327 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1328 ret = btrfs_next_leaf(root, path); 1329 if (ret < 0) 1330 goto error; 1331 if (ret > 0) 1332 break; 1333 leaf = path->nodes[0]; 1334 } 1335 1336 nocow = 0; 1337 disk_bytenr = 0; 1338 num_bytes = 0; 1339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1340 1341 if (found_key.objectid > ino) 1342 break; 1343 if (WARN_ON_ONCE(found_key.objectid < ino) || 1344 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1345 path->slots[0]++; 1346 goto next_slot; 1347 } 1348 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1349 found_key.offset > end) 1350 break; 1351 1352 if (found_key.offset > cur_offset) { 1353 extent_end = found_key.offset; 1354 extent_type = 0; 1355 goto out_check; 1356 } 1357 1358 fi = btrfs_item_ptr(leaf, path->slots[0], 1359 struct btrfs_file_extent_item); 1360 extent_type = btrfs_file_extent_type(leaf, fi); 1361 1362 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1363 if (extent_type == BTRFS_FILE_EXTENT_REG || 1364 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1365 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1366 extent_offset = btrfs_file_extent_offset(leaf, fi); 1367 extent_end = found_key.offset + 1368 btrfs_file_extent_num_bytes(leaf, fi); 1369 disk_num_bytes = 1370 btrfs_file_extent_disk_num_bytes(leaf, fi); 1371 if (extent_end <= start) { 1372 path->slots[0]++; 1373 goto next_slot; 1374 } 1375 if (disk_bytenr == 0) 1376 goto out_check; 1377 if (btrfs_file_extent_compression(leaf, fi) || 1378 btrfs_file_extent_encryption(leaf, fi) || 1379 btrfs_file_extent_other_encoding(leaf, fi)) 1380 goto out_check; 1381 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1382 goto out_check; 1383 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1384 goto out_check; 1385 if (btrfs_cross_ref_exist(root, ino, 1386 found_key.offset - 1387 extent_offset, disk_bytenr)) 1388 goto out_check; 1389 disk_bytenr += extent_offset; 1390 disk_bytenr += cur_offset - found_key.offset; 1391 num_bytes = min(end + 1, extent_end) - cur_offset; 1392 /* 1393 * if there are pending snapshots for this root, 1394 * we fall into common COW way. 1395 */ 1396 if (!nolock) { 1397 err = btrfs_start_write_no_snapshotting(root); 1398 if (!err) 1399 goto out_check; 1400 } 1401 /* 1402 * force cow if csum exists in the range. 1403 * this ensure that csum for a given extent are 1404 * either valid or do not exist. 1405 */ 1406 if (csum_exist_in_range(fs_info, disk_bytenr, 1407 num_bytes)) { 1408 if (!nolock) 1409 btrfs_end_write_no_snapshotting(root); 1410 goto out_check; 1411 } 1412 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) { 1413 if (!nolock) 1414 btrfs_end_write_no_snapshotting(root); 1415 goto out_check; 1416 } 1417 nocow = 1; 1418 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1419 extent_end = found_key.offset + 1420 btrfs_file_extent_inline_len(leaf, 1421 path->slots[0], fi); 1422 extent_end = ALIGN(extent_end, 1423 fs_info->sectorsize); 1424 } else { 1425 BUG_ON(1); 1426 } 1427 out_check: 1428 if (extent_end <= start) { 1429 path->slots[0]++; 1430 if (!nolock && nocow) 1431 btrfs_end_write_no_snapshotting(root); 1432 if (nocow) 1433 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1434 goto next_slot; 1435 } 1436 if (!nocow) { 1437 if (cow_start == (u64)-1) 1438 cow_start = cur_offset; 1439 cur_offset = extent_end; 1440 if (cur_offset > end) 1441 break; 1442 path->slots[0]++; 1443 goto next_slot; 1444 } 1445 1446 btrfs_release_path(path); 1447 if (cow_start != (u64)-1) { 1448 ret = cow_file_range(inode, locked_page, 1449 cow_start, found_key.offset - 1, 1450 end, page_started, nr_written, 1, 1451 NULL); 1452 if (ret) { 1453 if (!nolock && nocow) 1454 btrfs_end_write_no_snapshotting(root); 1455 if (nocow) 1456 btrfs_dec_nocow_writers(fs_info, 1457 disk_bytenr); 1458 goto error; 1459 } 1460 cow_start = (u64)-1; 1461 } 1462 1463 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1464 u64 orig_start = found_key.offset - extent_offset; 1465 1466 em = create_io_em(inode, cur_offset, num_bytes, 1467 orig_start, 1468 disk_bytenr, /* block_start */ 1469 num_bytes, /* block_len */ 1470 disk_num_bytes, /* orig_block_len */ 1471 ram_bytes, BTRFS_COMPRESS_NONE, 1472 BTRFS_ORDERED_PREALLOC); 1473 if (IS_ERR(em)) { 1474 if (!nolock && nocow) 1475 btrfs_end_write_no_snapshotting(root); 1476 if (nocow) 1477 btrfs_dec_nocow_writers(fs_info, 1478 disk_bytenr); 1479 ret = PTR_ERR(em); 1480 goto error; 1481 } 1482 free_extent_map(em); 1483 } 1484 1485 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1486 type = BTRFS_ORDERED_PREALLOC; 1487 } else { 1488 type = BTRFS_ORDERED_NOCOW; 1489 } 1490 1491 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1492 num_bytes, num_bytes, type); 1493 if (nocow) 1494 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1495 BUG_ON(ret); /* -ENOMEM */ 1496 1497 if (root->root_key.objectid == 1498 BTRFS_DATA_RELOC_TREE_OBJECTID) 1499 /* 1500 * Error handled later, as we must prevent 1501 * extent_clear_unlock_delalloc() in error handler 1502 * from freeing metadata of created ordered extent. 1503 */ 1504 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1505 num_bytes); 1506 1507 extent_clear_unlock_delalloc(inode, cur_offset, 1508 cur_offset + num_bytes - 1, end, 1509 locked_page, EXTENT_LOCKED | 1510 EXTENT_DELALLOC | 1511 EXTENT_CLEAR_DATA_RESV, 1512 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1513 1514 if (!nolock && nocow) 1515 btrfs_end_write_no_snapshotting(root); 1516 cur_offset = extent_end; 1517 1518 /* 1519 * btrfs_reloc_clone_csums() error, now we're OK to call error 1520 * handler, as metadata for created ordered extent will only 1521 * be freed by btrfs_finish_ordered_io(). 1522 */ 1523 if (ret) 1524 goto error; 1525 if (cur_offset > end) 1526 break; 1527 } 1528 btrfs_release_path(path); 1529 1530 if (cur_offset <= end && cow_start == (u64)-1) { 1531 cow_start = cur_offset; 1532 cur_offset = end; 1533 } 1534 1535 if (cow_start != (u64)-1) { 1536 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1537 page_started, nr_written, 1, NULL); 1538 if (ret) 1539 goto error; 1540 } 1541 1542 error: 1543 if (ret && cur_offset < end) 1544 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1545 locked_page, EXTENT_LOCKED | 1546 EXTENT_DELALLOC | EXTENT_DEFRAG | 1547 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1548 PAGE_CLEAR_DIRTY | 1549 PAGE_SET_WRITEBACK | 1550 PAGE_END_WRITEBACK); 1551 btrfs_free_path(path); 1552 return ret; 1553 } 1554 1555 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1556 { 1557 1558 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1559 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1560 return 0; 1561 1562 /* 1563 * @defrag_bytes is a hint value, no spinlock held here, 1564 * if is not zero, it means the file is defragging. 1565 * Force cow if given extent needs to be defragged. 1566 */ 1567 if (BTRFS_I(inode)->defrag_bytes && 1568 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1569 EXTENT_DEFRAG, 0, NULL)) 1570 return 1; 1571 1572 return 0; 1573 } 1574 1575 /* 1576 * extent_io.c call back to do delayed allocation processing 1577 */ 1578 static int run_delalloc_range(void *private_data, struct page *locked_page, 1579 u64 start, u64 end, int *page_started, 1580 unsigned long *nr_written) 1581 { 1582 struct inode *inode = private_data; 1583 int ret; 1584 int force_cow = need_force_cow(inode, start, end); 1585 1586 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1587 ret = run_delalloc_nocow(inode, locked_page, start, end, 1588 page_started, 1, nr_written); 1589 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1590 ret = run_delalloc_nocow(inode, locked_page, start, end, 1591 page_started, 0, nr_written); 1592 } else if (!inode_need_compress(inode, start, end)) { 1593 ret = cow_file_range(inode, locked_page, start, end, end, 1594 page_started, nr_written, 1, NULL); 1595 } else { 1596 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1597 &BTRFS_I(inode)->runtime_flags); 1598 ret = cow_file_range_async(inode, locked_page, start, end, 1599 page_started, nr_written); 1600 } 1601 if (ret) 1602 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1603 return ret; 1604 } 1605 1606 static void btrfs_split_extent_hook(void *private_data, 1607 struct extent_state *orig, u64 split) 1608 { 1609 struct inode *inode = private_data; 1610 u64 size; 1611 1612 /* not delalloc, ignore it */ 1613 if (!(orig->state & EXTENT_DELALLOC)) 1614 return; 1615 1616 size = orig->end - orig->start + 1; 1617 if (size > BTRFS_MAX_EXTENT_SIZE) { 1618 u32 num_extents; 1619 u64 new_size; 1620 1621 /* 1622 * See the explanation in btrfs_merge_extent_hook, the same 1623 * applies here, just in reverse. 1624 */ 1625 new_size = orig->end - split + 1; 1626 num_extents = count_max_extents(new_size); 1627 new_size = split - orig->start; 1628 num_extents += count_max_extents(new_size); 1629 if (count_max_extents(size) >= num_extents) 1630 return; 1631 } 1632 1633 spin_lock(&BTRFS_I(inode)->lock); 1634 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1635 spin_unlock(&BTRFS_I(inode)->lock); 1636 } 1637 1638 /* 1639 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1640 * extents so we can keep track of new extents that are just merged onto old 1641 * extents, such as when we are doing sequential writes, so we can properly 1642 * account for the metadata space we'll need. 1643 */ 1644 static void btrfs_merge_extent_hook(void *private_data, 1645 struct extent_state *new, 1646 struct extent_state *other) 1647 { 1648 struct inode *inode = private_data; 1649 u64 new_size, old_size; 1650 u32 num_extents; 1651 1652 /* not delalloc, ignore it */ 1653 if (!(other->state & EXTENT_DELALLOC)) 1654 return; 1655 1656 if (new->start > other->start) 1657 new_size = new->end - other->start + 1; 1658 else 1659 new_size = other->end - new->start + 1; 1660 1661 /* we're not bigger than the max, unreserve the space and go */ 1662 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1663 spin_lock(&BTRFS_I(inode)->lock); 1664 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1665 spin_unlock(&BTRFS_I(inode)->lock); 1666 return; 1667 } 1668 1669 /* 1670 * We have to add up either side to figure out how many extents were 1671 * accounted for before we merged into one big extent. If the number of 1672 * extents we accounted for is <= the amount we need for the new range 1673 * then we can return, otherwise drop. Think of it like this 1674 * 1675 * [ 4k][MAX_SIZE] 1676 * 1677 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1678 * need 2 outstanding extents, on one side we have 1 and the other side 1679 * we have 1 so they are == and we can return. But in this case 1680 * 1681 * [MAX_SIZE+4k][MAX_SIZE+4k] 1682 * 1683 * Each range on their own accounts for 2 extents, but merged together 1684 * they are only 3 extents worth of accounting, so we need to drop in 1685 * this case. 1686 */ 1687 old_size = other->end - other->start + 1; 1688 num_extents = count_max_extents(old_size); 1689 old_size = new->end - new->start + 1; 1690 num_extents += count_max_extents(old_size); 1691 if (count_max_extents(new_size) >= num_extents) 1692 return; 1693 1694 spin_lock(&BTRFS_I(inode)->lock); 1695 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1696 spin_unlock(&BTRFS_I(inode)->lock); 1697 } 1698 1699 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1700 struct inode *inode) 1701 { 1702 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1703 1704 spin_lock(&root->delalloc_lock); 1705 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1706 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1707 &root->delalloc_inodes); 1708 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1709 &BTRFS_I(inode)->runtime_flags); 1710 root->nr_delalloc_inodes++; 1711 if (root->nr_delalloc_inodes == 1) { 1712 spin_lock(&fs_info->delalloc_root_lock); 1713 BUG_ON(!list_empty(&root->delalloc_root)); 1714 list_add_tail(&root->delalloc_root, 1715 &fs_info->delalloc_roots); 1716 spin_unlock(&fs_info->delalloc_root_lock); 1717 } 1718 } 1719 spin_unlock(&root->delalloc_lock); 1720 } 1721 1722 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1723 struct btrfs_inode *inode) 1724 { 1725 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1726 1727 spin_lock(&root->delalloc_lock); 1728 if (!list_empty(&inode->delalloc_inodes)) { 1729 list_del_init(&inode->delalloc_inodes); 1730 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1731 &inode->runtime_flags); 1732 root->nr_delalloc_inodes--; 1733 if (!root->nr_delalloc_inodes) { 1734 spin_lock(&fs_info->delalloc_root_lock); 1735 BUG_ON(list_empty(&root->delalloc_root)); 1736 list_del_init(&root->delalloc_root); 1737 spin_unlock(&fs_info->delalloc_root_lock); 1738 } 1739 } 1740 spin_unlock(&root->delalloc_lock); 1741 } 1742 1743 /* 1744 * extent_io.c set_bit_hook, used to track delayed allocation 1745 * bytes in this file, and to maintain the list of inodes that 1746 * have pending delalloc work to be done. 1747 */ 1748 static void btrfs_set_bit_hook(void *private_data, 1749 struct extent_state *state, unsigned *bits) 1750 { 1751 struct inode *inode = private_data; 1752 1753 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1754 1755 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1756 WARN_ON(1); 1757 /* 1758 * set_bit and clear bit hooks normally require _irqsave/restore 1759 * but in this case, we are only testing for the DELALLOC 1760 * bit, which is only set or cleared with irqs on 1761 */ 1762 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1763 struct btrfs_root *root = BTRFS_I(inode)->root; 1764 u64 len = state->end + 1 - state->start; 1765 u32 num_extents = count_max_extents(len); 1766 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1767 1768 spin_lock(&BTRFS_I(inode)->lock); 1769 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1770 spin_unlock(&BTRFS_I(inode)->lock); 1771 1772 /* For sanity tests */ 1773 if (btrfs_is_testing(fs_info)) 1774 return; 1775 1776 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1777 fs_info->delalloc_batch); 1778 spin_lock(&BTRFS_I(inode)->lock); 1779 BTRFS_I(inode)->delalloc_bytes += len; 1780 if (*bits & EXTENT_DEFRAG) 1781 BTRFS_I(inode)->defrag_bytes += len; 1782 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1783 &BTRFS_I(inode)->runtime_flags)) 1784 btrfs_add_delalloc_inodes(root, inode); 1785 spin_unlock(&BTRFS_I(inode)->lock); 1786 } 1787 1788 if (!(state->state & EXTENT_DELALLOC_NEW) && 1789 (*bits & EXTENT_DELALLOC_NEW)) { 1790 spin_lock(&BTRFS_I(inode)->lock); 1791 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1792 state->start; 1793 spin_unlock(&BTRFS_I(inode)->lock); 1794 } 1795 } 1796 1797 /* 1798 * extent_io.c clear_bit_hook, see set_bit_hook for why 1799 */ 1800 static void btrfs_clear_bit_hook(void *private_data, 1801 struct extent_state *state, 1802 unsigned *bits) 1803 { 1804 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); 1805 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1806 u64 len = state->end + 1 - state->start; 1807 u32 num_extents = count_max_extents(len); 1808 1809 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1810 spin_lock(&inode->lock); 1811 inode->defrag_bytes -= len; 1812 spin_unlock(&inode->lock); 1813 } 1814 1815 /* 1816 * set_bit and clear bit hooks normally require _irqsave/restore 1817 * but in this case, we are only testing for the DELALLOC 1818 * bit, which is only set or cleared with irqs on 1819 */ 1820 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1821 struct btrfs_root *root = inode->root; 1822 bool do_list = !btrfs_is_free_space_inode(inode); 1823 1824 spin_lock(&inode->lock); 1825 btrfs_mod_outstanding_extents(inode, -num_extents); 1826 spin_unlock(&inode->lock); 1827 1828 /* 1829 * We don't reserve metadata space for space cache inodes so we 1830 * don't need to call dellalloc_release_metadata if there is an 1831 * error. 1832 */ 1833 if (*bits & EXTENT_CLEAR_META_RESV && 1834 root != fs_info->tree_root) 1835 btrfs_delalloc_release_metadata(inode, len); 1836 1837 /* For sanity tests. */ 1838 if (btrfs_is_testing(fs_info)) 1839 return; 1840 1841 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1842 do_list && !(state->state & EXTENT_NORESERVE) && 1843 (*bits & EXTENT_CLEAR_DATA_RESV)) 1844 btrfs_free_reserved_data_space_noquota( 1845 &inode->vfs_inode, 1846 state->start, len); 1847 1848 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1849 fs_info->delalloc_batch); 1850 spin_lock(&inode->lock); 1851 inode->delalloc_bytes -= len; 1852 if (do_list && inode->delalloc_bytes == 0 && 1853 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1854 &inode->runtime_flags)) 1855 btrfs_del_delalloc_inode(root, inode); 1856 spin_unlock(&inode->lock); 1857 } 1858 1859 if ((state->state & EXTENT_DELALLOC_NEW) && 1860 (*bits & EXTENT_DELALLOC_NEW)) { 1861 spin_lock(&inode->lock); 1862 ASSERT(inode->new_delalloc_bytes >= len); 1863 inode->new_delalloc_bytes -= len; 1864 spin_unlock(&inode->lock); 1865 } 1866 } 1867 1868 /* 1869 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1870 * we don't create bios that span stripes or chunks 1871 * 1872 * return 1 if page cannot be merged to bio 1873 * return 0 if page can be merged to bio 1874 * return error otherwise 1875 */ 1876 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1877 size_t size, struct bio *bio, 1878 unsigned long bio_flags) 1879 { 1880 struct inode *inode = page->mapping->host; 1881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1882 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1883 u64 length = 0; 1884 u64 map_length; 1885 int ret; 1886 1887 if (bio_flags & EXTENT_BIO_COMPRESSED) 1888 return 0; 1889 1890 length = bio->bi_iter.bi_size; 1891 map_length = length; 1892 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1893 NULL, 0); 1894 if (ret < 0) 1895 return ret; 1896 if (map_length < length + size) 1897 return 1; 1898 return 0; 1899 } 1900 1901 /* 1902 * in order to insert checksums into the metadata in large chunks, 1903 * we wait until bio submission time. All the pages in the bio are 1904 * checksummed and sums are attached onto the ordered extent record. 1905 * 1906 * At IO completion time the cums attached on the ordered extent record 1907 * are inserted into the btree 1908 */ 1909 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio, 1910 int mirror_num, unsigned long bio_flags, 1911 u64 bio_offset) 1912 { 1913 struct inode *inode = private_data; 1914 blk_status_t ret = 0; 1915 1916 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1917 BUG_ON(ret); /* -ENOMEM */ 1918 return 0; 1919 } 1920 1921 /* 1922 * in order to insert checksums into the metadata in large chunks, 1923 * we wait until bio submission time. All the pages in the bio are 1924 * checksummed and sums are attached onto the ordered extent record. 1925 * 1926 * At IO completion time the cums attached on the ordered extent record 1927 * are inserted into the btree 1928 */ 1929 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio, 1930 int mirror_num, unsigned long bio_flags, 1931 u64 bio_offset) 1932 { 1933 struct inode *inode = private_data; 1934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1935 blk_status_t ret; 1936 1937 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1938 if (ret) { 1939 bio->bi_status = ret; 1940 bio_endio(bio); 1941 } 1942 return ret; 1943 } 1944 1945 /* 1946 * extent_io.c submission hook. This does the right thing for csum calculation 1947 * on write, or reading the csums from the tree before a read 1948 */ 1949 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1950 int mirror_num, unsigned long bio_flags, 1951 u64 bio_offset) 1952 { 1953 struct inode *inode = private_data; 1954 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1955 struct btrfs_root *root = BTRFS_I(inode)->root; 1956 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1957 blk_status_t ret = 0; 1958 int skip_sum; 1959 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1960 1961 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1962 1963 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1964 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1965 1966 if (bio_op(bio) != REQ_OP_WRITE) { 1967 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1968 if (ret) 1969 goto out; 1970 1971 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1972 ret = btrfs_submit_compressed_read(inode, bio, 1973 mirror_num, 1974 bio_flags); 1975 goto out; 1976 } else if (!skip_sum) { 1977 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 1978 if (ret) 1979 goto out; 1980 } 1981 goto mapit; 1982 } else if (async && !skip_sum) { 1983 /* csum items have already been cloned */ 1984 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1985 goto mapit; 1986 /* we're doing a write, do the async checksumming */ 1987 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 1988 bio_offset, inode, 1989 __btrfs_submit_bio_start, 1990 __btrfs_submit_bio_done); 1991 goto out; 1992 } else if (!skip_sum) { 1993 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1994 if (ret) 1995 goto out; 1996 } 1997 1998 mapit: 1999 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2000 2001 out: 2002 if (ret) { 2003 bio->bi_status = ret; 2004 bio_endio(bio); 2005 } 2006 return ret; 2007 } 2008 2009 /* 2010 * given a list of ordered sums record them in the inode. This happens 2011 * at IO completion time based on sums calculated at bio submission time. 2012 */ 2013 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2014 struct inode *inode, struct list_head *list) 2015 { 2016 struct btrfs_ordered_sum *sum; 2017 2018 list_for_each_entry(sum, list, list) { 2019 trans->adding_csums = 1; 2020 btrfs_csum_file_blocks(trans, 2021 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2022 trans->adding_csums = 0; 2023 } 2024 return 0; 2025 } 2026 2027 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2028 struct extent_state **cached_state, int dedupe) 2029 { 2030 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2031 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2032 cached_state); 2033 } 2034 2035 /* see btrfs_writepage_start_hook for details on why this is required */ 2036 struct btrfs_writepage_fixup { 2037 struct page *page; 2038 struct btrfs_work work; 2039 }; 2040 2041 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2042 { 2043 struct btrfs_writepage_fixup *fixup; 2044 struct btrfs_ordered_extent *ordered; 2045 struct extent_state *cached_state = NULL; 2046 struct extent_changeset *data_reserved = NULL; 2047 struct page *page; 2048 struct inode *inode; 2049 u64 page_start; 2050 u64 page_end; 2051 int ret; 2052 2053 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2054 page = fixup->page; 2055 again: 2056 lock_page(page); 2057 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2058 ClearPageChecked(page); 2059 goto out_page; 2060 } 2061 2062 inode = page->mapping->host; 2063 page_start = page_offset(page); 2064 page_end = page_offset(page) + PAGE_SIZE - 1; 2065 2066 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2067 &cached_state); 2068 2069 /* already ordered? We're done */ 2070 if (PagePrivate2(page)) 2071 goto out; 2072 2073 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2074 PAGE_SIZE); 2075 if (ordered) { 2076 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2077 page_end, &cached_state, GFP_NOFS); 2078 unlock_page(page); 2079 btrfs_start_ordered_extent(inode, ordered, 1); 2080 btrfs_put_ordered_extent(ordered); 2081 goto again; 2082 } 2083 2084 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2085 PAGE_SIZE); 2086 if (ret) { 2087 mapping_set_error(page->mapping, ret); 2088 end_extent_writepage(page, ret, page_start, page_end); 2089 ClearPageChecked(page); 2090 goto out; 2091 } 2092 2093 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state, 2094 0); 2095 ClearPageChecked(page); 2096 set_page_dirty(page); 2097 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2098 out: 2099 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2100 &cached_state, GFP_NOFS); 2101 out_page: 2102 unlock_page(page); 2103 put_page(page); 2104 kfree(fixup); 2105 extent_changeset_free(data_reserved); 2106 } 2107 2108 /* 2109 * There are a few paths in the higher layers of the kernel that directly 2110 * set the page dirty bit without asking the filesystem if it is a 2111 * good idea. This causes problems because we want to make sure COW 2112 * properly happens and the data=ordered rules are followed. 2113 * 2114 * In our case any range that doesn't have the ORDERED bit set 2115 * hasn't been properly setup for IO. We kick off an async process 2116 * to fix it up. The async helper will wait for ordered extents, set 2117 * the delalloc bit and make it safe to write the page. 2118 */ 2119 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2120 { 2121 struct inode *inode = page->mapping->host; 2122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2123 struct btrfs_writepage_fixup *fixup; 2124 2125 /* this page is properly in the ordered list */ 2126 if (TestClearPagePrivate2(page)) 2127 return 0; 2128 2129 if (PageChecked(page)) 2130 return -EAGAIN; 2131 2132 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2133 if (!fixup) 2134 return -EAGAIN; 2135 2136 SetPageChecked(page); 2137 get_page(page); 2138 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2139 btrfs_writepage_fixup_worker, NULL, NULL); 2140 fixup->page = page; 2141 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2142 return -EBUSY; 2143 } 2144 2145 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2146 struct inode *inode, u64 file_pos, 2147 u64 disk_bytenr, u64 disk_num_bytes, 2148 u64 num_bytes, u64 ram_bytes, 2149 u8 compression, u8 encryption, 2150 u16 other_encoding, int extent_type) 2151 { 2152 struct btrfs_root *root = BTRFS_I(inode)->root; 2153 struct btrfs_file_extent_item *fi; 2154 struct btrfs_path *path; 2155 struct extent_buffer *leaf; 2156 struct btrfs_key ins; 2157 u64 qg_released; 2158 int extent_inserted = 0; 2159 int ret; 2160 2161 path = btrfs_alloc_path(); 2162 if (!path) 2163 return -ENOMEM; 2164 2165 /* 2166 * we may be replacing one extent in the tree with another. 2167 * The new extent is pinned in the extent map, and we don't want 2168 * to drop it from the cache until it is completely in the btree. 2169 * 2170 * So, tell btrfs_drop_extents to leave this extent in the cache. 2171 * the caller is expected to unpin it and allow it to be merged 2172 * with the others. 2173 */ 2174 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2175 file_pos + num_bytes, NULL, 0, 2176 1, sizeof(*fi), &extent_inserted); 2177 if (ret) 2178 goto out; 2179 2180 if (!extent_inserted) { 2181 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2182 ins.offset = file_pos; 2183 ins.type = BTRFS_EXTENT_DATA_KEY; 2184 2185 path->leave_spinning = 1; 2186 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2187 sizeof(*fi)); 2188 if (ret) 2189 goto out; 2190 } 2191 leaf = path->nodes[0]; 2192 fi = btrfs_item_ptr(leaf, path->slots[0], 2193 struct btrfs_file_extent_item); 2194 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2195 btrfs_set_file_extent_type(leaf, fi, extent_type); 2196 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2197 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2198 btrfs_set_file_extent_offset(leaf, fi, 0); 2199 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2200 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2201 btrfs_set_file_extent_compression(leaf, fi, compression); 2202 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2203 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2204 2205 btrfs_mark_buffer_dirty(leaf); 2206 btrfs_release_path(path); 2207 2208 inode_add_bytes(inode, num_bytes); 2209 2210 ins.objectid = disk_bytenr; 2211 ins.offset = disk_num_bytes; 2212 ins.type = BTRFS_EXTENT_ITEM_KEY; 2213 2214 /* 2215 * Release the reserved range from inode dirty range map, as it is 2216 * already moved into delayed_ref_head 2217 */ 2218 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2219 if (ret < 0) 2220 goto out; 2221 qg_released = ret; 2222 ret = btrfs_alloc_reserved_file_extent(trans, root, 2223 btrfs_ino(BTRFS_I(inode)), 2224 file_pos, qg_released, &ins); 2225 out: 2226 btrfs_free_path(path); 2227 2228 return ret; 2229 } 2230 2231 /* snapshot-aware defrag */ 2232 struct sa_defrag_extent_backref { 2233 struct rb_node node; 2234 struct old_sa_defrag_extent *old; 2235 u64 root_id; 2236 u64 inum; 2237 u64 file_pos; 2238 u64 extent_offset; 2239 u64 num_bytes; 2240 u64 generation; 2241 }; 2242 2243 struct old_sa_defrag_extent { 2244 struct list_head list; 2245 struct new_sa_defrag_extent *new; 2246 2247 u64 extent_offset; 2248 u64 bytenr; 2249 u64 offset; 2250 u64 len; 2251 int count; 2252 }; 2253 2254 struct new_sa_defrag_extent { 2255 struct rb_root root; 2256 struct list_head head; 2257 struct btrfs_path *path; 2258 struct inode *inode; 2259 u64 file_pos; 2260 u64 len; 2261 u64 bytenr; 2262 u64 disk_len; 2263 u8 compress_type; 2264 }; 2265 2266 static int backref_comp(struct sa_defrag_extent_backref *b1, 2267 struct sa_defrag_extent_backref *b2) 2268 { 2269 if (b1->root_id < b2->root_id) 2270 return -1; 2271 else if (b1->root_id > b2->root_id) 2272 return 1; 2273 2274 if (b1->inum < b2->inum) 2275 return -1; 2276 else if (b1->inum > b2->inum) 2277 return 1; 2278 2279 if (b1->file_pos < b2->file_pos) 2280 return -1; 2281 else if (b1->file_pos > b2->file_pos) 2282 return 1; 2283 2284 /* 2285 * [------------------------------] ===> (a range of space) 2286 * |<--->| |<---->| =============> (fs/file tree A) 2287 * |<---------------------------->| ===> (fs/file tree B) 2288 * 2289 * A range of space can refer to two file extents in one tree while 2290 * refer to only one file extent in another tree. 2291 * 2292 * So we may process a disk offset more than one time(two extents in A) 2293 * and locate at the same extent(one extent in B), then insert two same 2294 * backrefs(both refer to the extent in B). 2295 */ 2296 return 0; 2297 } 2298 2299 static void backref_insert(struct rb_root *root, 2300 struct sa_defrag_extent_backref *backref) 2301 { 2302 struct rb_node **p = &root->rb_node; 2303 struct rb_node *parent = NULL; 2304 struct sa_defrag_extent_backref *entry; 2305 int ret; 2306 2307 while (*p) { 2308 parent = *p; 2309 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2310 2311 ret = backref_comp(backref, entry); 2312 if (ret < 0) 2313 p = &(*p)->rb_left; 2314 else 2315 p = &(*p)->rb_right; 2316 } 2317 2318 rb_link_node(&backref->node, parent, p); 2319 rb_insert_color(&backref->node, root); 2320 } 2321 2322 /* 2323 * Note the backref might has changed, and in this case we just return 0. 2324 */ 2325 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2326 void *ctx) 2327 { 2328 struct btrfs_file_extent_item *extent; 2329 struct old_sa_defrag_extent *old = ctx; 2330 struct new_sa_defrag_extent *new = old->new; 2331 struct btrfs_path *path = new->path; 2332 struct btrfs_key key; 2333 struct btrfs_root *root; 2334 struct sa_defrag_extent_backref *backref; 2335 struct extent_buffer *leaf; 2336 struct inode *inode = new->inode; 2337 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2338 int slot; 2339 int ret; 2340 u64 extent_offset; 2341 u64 num_bytes; 2342 2343 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2344 inum == btrfs_ino(BTRFS_I(inode))) 2345 return 0; 2346 2347 key.objectid = root_id; 2348 key.type = BTRFS_ROOT_ITEM_KEY; 2349 key.offset = (u64)-1; 2350 2351 root = btrfs_read_fs_root_no_name(fs_info, &key); 2352 if (IS_ERR(root)) { 2353 if (PTR_ERR(root) == -ENOENT) 2354 return 0; 2355 WARN_ON(1); 2356 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2357 inum, offset, root_id); 2358 return PTR_ERR(root); 2359 } 2360 2361 key.objectid = inum; 2362 key.type = BTRFS_EXTENT_DATA_KEY; 2363 if (offset > (u64)-1 << 32) 2364 key.offset = 0; 2365 else 2366 key.offset = offset; 2367 2368 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2369 if (WARN_ON(ret < 0)) 2370 return ret; 2371 ret = 0; 2372 2373 while (1) { 2374 cond_resched(); 2375 2376 leaf = path->nodes[0]; 2377 slot = path->slots[0]; 2378 2379 if (slot >= btrfs_header_nritems(leaf)) { 2380 ret = btrfs_next_leaf(root, path); 2381 if (ret < 0) { 2382 goto out; 2383 } else if (ret > 0) { 2384 ret = 0; 2385 goto out; 2386 } 2387 continue; 2388 } 2389 2390 path->slots[0]++; 2391 2392 btrfs_item_key_to_cpu(leaf, &key, slot); 2393 2394 if (key.objectid > inum) 2395 goto out; 2396 2397 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2398 continue; 2399 2400 extent = btrfs_item_ptr(leaf, slot, 2401 struct btrfs_file_extent_item); 2402 2403 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2404 continue; 2405 2406 /* 2407 * 'offset' refers to the exact key.offset, 2408 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2409 * (key.offset - extent_offset). 2410 */ 2411 if (key.offset != offset) 2412 continue; 2413 2414 extent_offset = btrfs_file_extent_offset(leaf, extent); 2415 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2416 2417 if (extent_offset >= old->extent_offset + old->offset + 2418 old->len || extent_offset + num_bytes <= 2419 old->extent_offset + old->offset) 2420 continue; 2421 break; 2422 } 2423 2424 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2425 if (!backref) { 2426 ret = -ENOENT; 2427 goto out; 2428 } 2429 2430 backref->root_id = root_id; 2431 backref->inum = inum; 2432 backref->file_pos = offset; 2433 backref->num_bytes = num_bytes; 2434 backref->extent_offset = extent_offset; 2435 backref->generation = btrfs_file_extent_generation(leaf, extent); 2436 backref->old = old; 2437 backref_insert(&new->root, backref); 2438 old->count++; 2439 out: 2440 btrfs_release_path(path); 2441 WARN_ON(ret); 2442 return ret; 2443 } 2444 2445 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2446 struct new_sa_defrag_extent *new) 2447 { 2448 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2449 struct old_sa_defrag_extent *old, *tmp; 2450 int ret; 2451 2452 new->path = path; 2453 2454 list_for_each_entry_safe(old, tmp, &new->head, list) { 2455 ret = iterate_inodes_from_logical(old->bytenr + 2456 old->extent_offset, fs_info, 2457 path, record_one_backref, 2458 old, false); 2459 if (ret < 0 && ret != -ENOENT) 2460 return false; 2461 2462 /* no backref to be processed for this extent */ 2463 if (!old->count) { 2464 list_del(&old->list); 2465 kfree(old); 2466 } 2467 } 2468 2469 if (list_empty(&new->head)) 2470 return false; 2471 2472 return true; 2473 } 2474 2475 static int relink_is_mergable(struct extent_buffer *leaf, 2476 struct btrfs_file_extent_item *fi, 2477 struct new_sa_defrag_extent *new) 2478 { 2479 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2480 return 0; 2481 2482 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2483 return 0; 2484 2485 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2486 return 0; 2487 2488 if (btrfs_file_extent_encryption(leaf, fi) || 2489 btrfs_file_extent_other_encoding(leaf, fi)) 2490 return 0; 2491 2492 return 1; 2493 } 2494 2495 /* 2496 * Note the backref might has changed, and in this case we just return 0. 2497 */ 2498 static noinline int relink_extent_backref(struct btrfs_path *path, 2499 struct sa_defrag_extent_backref *prev, 2500 struct sa_defrag_extent_backref *backref) 2501 { 2502 struct btrfs_file_extent_item *extent; 2503 struct btrfs_file_extent_item *item; 2504 struct btrfs_ordered_extent *ordered; 2505 struct btrfs_trans_handle *trans; 2506 struct btrfs_root *root; 2507 struct btrfs_key key; 2508 struct extent_buffer *leaf; 2509 struct old_sa_defrag_extent *old = backref->old; 2510 struct new_sa_defrag_extent *new = old->new; 2511 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2512 struct inode *inode; 2513 struct extent_state *cached = NULL; 2514 int ret = 0; 2515 u64 start; 2516 u64 len; 2517 u64 lock_start; 2518 u64 lock_end; 2519 bool merge = false; 2520 int index; 2521 2522 if (prev && prev->root_id == backref->root_id && 2523 prev->inum == backref->inum && 2524 prev->file_pos + prev->num_bytes == backref->file_pos) 2525 merge = true; 2526 2527 /* step 1: get root */ 2528 key.objectid = backref->root_id; 2529 key.type = BTRFS_ROOT_ITEM_KEY; 2530 key.offset = (u64)-1; 2531 2532 index = srcu_read_lock(&fs_info->subvol_srcu); 2533 2534 root = btrfs_read_fs_root_no_name(fs_info, &key); 2535 if (IS_ERR(root)) { 2536 srcu_read_unlock(&fs_info->subvol_srcu, index); 2537 if (PTR_ERR(root) == -ENOENT) 2538 return 0; 2539 return PTR_ERR(root); 2540 } 2541 2542 if (btrfs_root_readonly(root)) { 2543 srcu_read_unlock(&fs_info->subvol_srcu, index); 2544 return 0; 2545 } 2546 2547 /* step 2: get inode */ 2548 key.objectid = backref->inum; 2549 key.type = BTRFS_INODE_ITEM_KEY; 2550 key.offset = 0; 2551 2552 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2553 if (IS_ERR(inode)) { 2554 srcu_read_unlock(&fs_info->subvol_srcu, index); 2555 return 0; 2556 } 2557 2558 srcu_read_unlock(&fs_info->subvol_srcu, index); 2559 2560 /* step 3: relink backref */ 2561 lock_start = backref->file_pos; 2562 lock_end = backref->file_pos + backref->num_bytes - 1; 2563 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2564 &cached); 2565 2566 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2567 if (ordered) { 2568 btrfs_put_ordered_extent(ordered); 2569 goto out_unlock; 2570 } 2571 2572 trans = btrfs_join_transaction(root); 2573 if (IS_ERR(trans)) { 2574 ret = PTR_ERR(trans); 2575 goto out_unlock; 2576 } 2577 2578 key.objectid = backref->inum; 2579 key.type = BTRFS_EXTENT_DATA_KEY; 2580 key.offset = backref->file_pos; 2581 2582 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2583 if (ret < 0) { 2584 goto out_free_path; 2585 } else if (ret > 0) { 2586 ret = 0; 2587 goto out_free_path; 2588 } 2589 2590 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2591 struct btrfs_file_extent_item); 2592 2593 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2594 backref->generation) 2595 goto out_free_path; 2596 2597 btrfs_release_path(path); 2598 2599 start = backref->file_pos; 2600 if (backref->extent_offset < old->extent_offset + old->offset) 2601 start += old->extent_offset + old->offset - 2602 backref->extent_offset; 2603 2604 len = min(backref->extent_offset + backref->num_bytes, 2605 old->extent_offset + old->offset + old->len); 2606 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2607 2608 ret = btrfs_drop_extents(trans, root, inode, start, 2609 start + len, 1); 2610 if (ret) 2611 goto out_free_path; 2612 again: 2613 key.objectid = btrfs_ino(BTRFS_I(inode)); 2614 key.type = BTRFS_EXTENT_DATA_KEY; 2615 key.offset = start; 2616 2617 path->leave_spinning = 1; 2618 if (merge) { 2619 struct btrfs_file_extent_item *fi; 2620 u64 extent_len; 2621 struct btrfs_key found_key; 2622 2623 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2624 if (ret < 0) 2625 goto out_free_path; 2626 2627 path->slots[0]--; 2628 leaf = path->nodes[0]; 2629 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2630 2631 fi = btrfs_item_ptr(leaf, path->slots[0], 2632 struct btrfs_file_extent_item); 2633 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2634 2635 if (extent_len + found_key.offset == start && 2636 relink_is_mergable(leaf, fi, new)) { 2637 btrfs_set_file_extent_num_bytes(leaf, fi, 2638 extent_len + len); 2639 btrfs_mark_buffer_dirty(leaf); 2640 inode_add_bytes(inode, len); 2641 2642 ret = 1; 2643 goto out_free_path; 2644 } else { 2645 merge = false; 2646 btrfs_release_path(path); 2647 goto again; 2648 } 2649 } 2650 2651 ret = btrfs_insert_empty_item(trans, root, path, &key, 2652 sizeof(*extent)); 2653 if (ret) { 2654 btrfs_abort_transaction(trans, ret); 2655 goto out_free_path; 2656 } 2657 2658 leaf = path->nodes[0]; 2659 item = btrfs_item_ptr(leaf, path->slots[0], 2660 struct btrfs_file_extent_item); 2661 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2662 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2663 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2664 btrfs_set_file_extent_num_bytes(leaf, item, len); 2665 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2666 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2667 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2668 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2669 btrfs_set_file_extent_encryption(leaf, item, 0); 2670 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2671 2672 btrfs_mark_buffer_dirty(leaf); 2673 inode_add_bytes(inode, len); 2674 btrfs_release_path(path); 2675 2676 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2677 new->disk_len, 0, 2678 backref->root_id, backref->inum, 2679 new->file_pos); /* start - extent_offset */ 2680 if (ret) { 2681 btrfs_abort_transaction(trans, ret); 2682 goto out_free_path; 2683 } 2684 2685 ret = 1; 2686 out_free_path: 2687 btrfs_release_path(path); 2688 path->leave_spinning = 0; 2689 btrfs_end_transaction(trans); 2690 out_unlock: 2691 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2692 &cached, GFP_NOFS); 2693 iput(inode); 2694 return ret; 2695 } 2696 2697 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2698 { 2699 struct old_sa_defrag_extent *old, *tmp; 2700 2701 if (!new) 2702 return; 2703 2704 list_for_each_entry_safe(old, tmp, &new->head, list) { 2705 kfree(old); 2706 } 2707 kfree(new); 2708 } 2709 2710 static void relink_file_extents(struct new_sa_defrag_extent *new) 2711 { 2712 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2713 struct btrfs_path *path; 2714 struct sa_defrag_extent_backref *backref; 2715 struct sa_defrag_extent_backref *prev = NULL; 2716 struct inode *inode; 2717 struct btrfs_root *root; 2718 struct rb_node *node; 2719 int ret; 2720 2721 inode = new->inode; 2722 root = BTRFS_I(inode)->root; 2723 2724 path = btrfs_alloc_path(); 2725 if (!path) 2726 return; 2727 2728 if (!record_extent_backrefs(path, new)) { 2729 btrfs_free_path(path); 2730 goto out; 2731 } 2732 btrfs_release_path(path); 2733 2734 while (1) { 2735 node = rb_first(&new->root); 2736 if (!node) 2737 break; 2738 rb_erase(node, &new->root); 2739 2740 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2741 2742 ret = relink_extent_backref(path, prev, backref); 2743 WARN_ON(ret < 0); 2744 2745 kfree(prev); 2746 2747 if (ret == 1) 2748 prev = backref; 2749 else 2750 prev = NULL; 2751 cond_resched(); 2752 } 2753 kfree(prev); 2754 2755 btrfs_free_path(path); 2756 out: 2757 free_sa_defrag_extent(new); 2758 2759 atomic_dec(&fs_info->defrag_running); 2760 wake_up(&fs_info->transaction_wait); 2761 } 2762 2763 static struct new_sa_defrag_extent * 2764 record_old_file_extents(struct inode *inode, 2765 struct btrfs_ordered_extent *ordered) 2766 { 2767 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2768 struct btrfs_root *root = BTRFS_I(inode)->root; 2769 struct btrfs_path *path; 2770 struct btrfs_key key; 2771 struct old_sa_defrag_extent *old; 2772 struct new_sa_defrag_extent *new; 2773 int ret; 2774 2775 new = kmalloc(sizeof(*new), GFP_NOFS); 2776 if (!new) 2777 return NULL; 2778 2779 new->inode = inode; 2780 new->file_pos = ordered->file_offset; 2781 new->len = ordered->len; 2782 new->bytenr = ordered->start; 2783 new->disk_len = ordered->disk_len; 2784 new->compress_type = ordered->compress_type; 2785 new->root = RB_ROOT; 2786 INIT_LIST_HEAD(&new->head); 2787 2788 path = btrfs_alloc_path(); 2789 if (!path) 2790 goto out_kfree; 2791 2792 key.objectid = btrfs_ino(BTRFS_I(inode)); 2793 key.type = BTRFS_EXTENT_DATA_KEY; 2794 key.offset = new->file_pos; 2795 2796 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2797 if (ret < 0) 2798 goto out_free_path; 2799 if (ret > 0 && path->slots[0] > 0) 2800 path->slots[0]--; 2801 2802 /* find out all the old extents for the file range */ 2803 while (1) { 2804 struct btrfs_file_extent_item *extent; 2805 struct extent_buffer *l; 2806 int slot; 2807 u64 num_bytes; 2808 u64 offset; 2809 u64 end; 2810 u64 disk_bytenr; 2811 u64 extent_offset; 2812 2813 l = path->nodes[0]; 2814 slot = path->slots[0]; 2815 2816 if (slot >= btrfs_header_nritems(l)) { 2817 ret = btrfs_next_leaf(root, path); 2818 if (ret < 0) 2819 goto out_free_path; 2820 else if (ret > 0) 2821 break; 2822 continue; 2823 } 2824 2825 btrfs_item_key_to_cpu(l, &key, slot); 2826 2827 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2828 break; 2829 if (key.type != BTRFS_EXTENT_DATA_KEY) 2830 break; 2831 if (key.offset >= new->file_pos + new->len) 2832 break; 2833 2834 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2835 2836 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2837 if (key.offset + num_bytes < new->file_pos) 2838 goto next; 2839 2840 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2841 if (!disk_bytenr) 2842 goto next; 2843 2844 extent_offset = btrfs_file_extent_offset(l, extent); 2845 2846 old = kmalloc(sizeof(*old), GFP_NOFS); 2847 if (!old) 2848 goto out_free_path; 2849 2850 offset = max(new->file_pos, key.offset); 2851 end = min(new->file_pos + new->len, key.offset + num_bytes); 2852 2853 old->bytenr = disk_bytenr; 2854 old->extent_offset = extent_offset; 2855 old->offset = offset - key.offset; 2856 old->len = end - offset; 2857 old->new = new; 2858 old->count = 0; 2859 list_add_tail(&old->list, &new->head); 2860 next: 2861 path->slots[0]++; 2862 cond_resched(); 2863 } 2864 2865 btrfs_free_path(path); 2866 atomic_inc(&fs_info->defrag_running); 2867 2868 return new; 2869 2870 out_free_path: 2871 btrfs_free_path(path); 2872 out_kfree: 2873 free_sa_defrag_extent(new); 2874 return NULL; 2875 } 2876 2877 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2878 u64 start, u64 len) 2879 { 2880 struct btrfs_block_group_cache *cache; 2881 2882 cache = btrfs_lookup_block_group(fs_info, start); 2883 ASSERT(cache); 2884 2885 spin_lock(&cache->lock); 2886 cache->delalloc_bytes -= len; 2887 spin_unlock(&cache->lock); 2888 2889 btrfs_put_block_group(cache); 2890 } 2891 2892 /* as ordered data IO finishes, this gets called so we can finish 2893 * an ordered extent if the range of bytes in the file it covers are 2894 * fully written. 2895 */ 2896 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2897 { 2898 struct inode *inode = ordered_extent->inode; 2899 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2900 struct btrfs_root *root = BTRFS_I(inode)->root; 2901 struct btrfs_trans_handle *trans = NULL; 2902 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2903 struct extent_state *cached_state = NULL; 2904 struct new_sa_defrag_extent *new = NULL; 2905 int compress_type = 0; 2906 int ret = 0; 2907 u64 logical_len = ordered_extent->len; 2908 bool nolock; 2909 bool truncated = false; 2910 bool range_locked = false; 2911 bool clear_new_delalloc_bytes = false; 2912 2913 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2914 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2915 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2916 clear_new_delalloc_bytes = true; 2917 2918 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2919 2920 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2921 ret = -EIO; 2922 goto out; 2923 } 2924 2925 btrfs_free_io_failure_record(BTRFS_I(inode), 2926 ordered_extent->file_offset, 2927 ordered_extent->file_offset + 2928 ordered_extent->len - 1); 2929 2930 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2931 truncated = true; 2932 logical_len = ordered_extent->truncated_len; 2933 /* Truncated the entire extent, don't bother adding */ 2934 if (!logical_len) 2935 goto out; 2936 } 2937 2938 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2939 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2940 2941 /* 2942 * For mwrite(mmap + memset to write) case, we still reserve 2943 * space for NOCOW range. 2944 * As NOCOW won't cause a new delayed ref, just free the space 2945 */ 2946 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2947 ordered_extent->len); 2948 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2949 if (nolock) 2950 trans = btrfs_join_transaction_nolock(root); 2951 else 2952 trans = btrfs_join_transaction(root); 2953 if (IS_ERR(trans)) { 2954 ret = PTR_ERR(trans); 2955 trans = NULL; 2956 goto out; 2957 } 2958 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2959 ret = btrfs_update_inode_fallback(trans, root, inode); 2960 if (ret) /* -ENOMEM or corruption */ 2961 btrfs_abort_transaction(trans, ret); 2962 goto out; 2963 } 2964 2965 range_locked = true; 2966 lock_extent_bits(io_tree, ordered_extent->file_offset, 2967 ordered_extent->file_offset + ordered_extent->len - 1, 2968 &cached_state); 2969 2970 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2971 ordered_extent->file_offset + ordered_extent->len - 1, 2972 EXTENT_DEFRAG, 0, cached_state); 2973 if (ret) { 2974 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2975 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2976 /* the inode is shared */ 2977 new = record_old_file_extents(inode, ordered_extent); 2978 2979 clear_extent_bit(io_tree, ordered_extent->file_offset, 2980 ordered_extent->file_offset + ordered_extent->len - 1, 2981 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2982 } 2983 2984 if (nolock) 2985 trans = btrfs_join_transaction_nolock(root); 2986 else 2987 trans = btrfs_join_transaction(root); 2988 if (IS_ERR(trans)) { 2989 ret = PTR_ERR(trans); 2990 trans = NULL; 2991 goto out; 2992 } 2993 2994 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2995 2996 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2997 compress_type = ordered_extent->compress_type; 2998 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2999 BUG_ON(compress_type); 3000 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3001 ordered_extent->file_offset, 3002 ordered_extent->file_offset + 3003 logical_len); 3004 } else { 3005 BUG_ON(root == fs_info->tree_root); 3006 ret = insert_reserved_file_extent(trans, inode, 3007 ordered_extent->file_offset, 3008 ordered_extent->start, 3009 ordered_extent->disk_len, 3010 logical_len, logical_len, 3011 compress_type, 0, 0, 3012 BTRFS_FILE_EXTENT_REG); 3013 if (!ret) 3014 btrfs_release_delalloc_bytes(fs_info, 3015 ordered_extent->start, 3016 ordered_extent->disk_len); 3017 } 3018 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3019 ordered_extent->file_offset, ordered_extent->len, 3020 trans->transid); 3021 if (ret < 0) { 3022 btrfs_abort_transaction(trans, ret); 3023 goto out; 3024 } 3025 3026 add_pending_csums(trans, inode, &ordered_extent->list); 3027 3028 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3029 ret = btrfs_update_inode_fallback(trans, root, inode); 3030 if (ret) { /* -ENOMEM or corruption */ 3031 btrfs_abort_transaction(trans, ret); 3032 goto out; 3033 } 3034 ret = 0; 3035 out: 3036 if (range_locked || clear_new_delalloc_bytes) { 3037 unsigned int clear_bits = 0; 3038 3039 if (range_locked) 3040 clear_bits |= EXTENT_LOCKED; 3041 if (clear_new_delalloc_bytes) 3042 clear_bits |= EXTENT_DELALLOC_NEW; 3043 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3044 ordered_extent->file_offset, 3045 ordered_extent->file_offset + 3046 ordered_extent->len - 1, 3047 clear_bits, 3048 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3049 0, &cached_state, GFP_NOFS); 3050 } 3051 3052 if (trans) 3053 btrfs_end_transaction(trans); 3054 3055 if (ret || truncated) { 3056 u64 start, end; 3057 3058 if (truncated) 3059 start = ordered_extent->file_offset + logical_len; 3060 else 3061 start = ordered_extent->file_offset; 3062 end = ordered_extent->file_offset + ordered_extent->len - 1; 3063 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 3064 3065 /* Drop the cache for the part of the extent we didn't write. */ 3066 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3067 3068 /* 3069 * If the ordered extent had an IOERR or something else went 3070 * wrong we need to return the space for this ordered extent 3071 * back to the allocator. We only free the extent in the 3072 * truncated case if we didn't write out the extent at all. 3073 */ 3074 if ((ret || !logical_len) && 3075 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3076 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3077 btrfs_free_reserved_extent(fs_info, 3078 ordered_extent->start, 3079 ordered_extent->disk_len, 1); 3080 } 3081 3082 3083 /* 3084 * This needs to be done to make sure anybody waiting knows we are done 3085 * updating everything for this ordered extent. 3086 */ 3087 btrfs_remove_ordered_extent(inode, ordered_extent); 3088 3089 /* for snapshot-aware defrag */ 3090 if (new) { 3091 if (ret) { 3092 free_sa_defrag_extent(new); 3093 atomic_dec(&fs_info->defrag_running); 3094 } else { 3095 relink_file_extents(new); 3096 } 3097 } 3098 3099 /* once for us */ 3100 btrfs_put_ordered_extent(ordered_extent); 3101 /* once for the tree */ 3102 btrfs_put_ordered_extent(ordered_extent); 3103 3104 return ret; 3105 } 3106 3107 static void finish_ordered_fn(struct btrfs_work *work) 3108 { 3109 struct btrfs_ordered_extent *ordered_extent; 3110 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3111 btrfs_finish_ordered_io(ordered_extent); 3112 } 3113 3114 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3115 struct extent_state *state, int uptodate) 3116 { 3117 struct inode *inode = page->mapping->host; 3118 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3119 struct btrfs_ordered_extent *ordered_extent = NULL; 3120 struct btrfs_workqueue *wq; 3121 btrfs_work_func_t func; 3122 3123 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3124 3125 ClearPagePrivate2(page); 3126 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3127 end - start + 1, uptodate)) 3128 return; 3129 3130 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3131 wq = fs_info->endio_freespace_worker; 3132 func = btrfs_freespace_write_helper; 3133 } else { 3134 wq = fs_info->endio_write_workers; 3135 func = btrfs_endio_write_helper; 3136 } 3137 3138 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3139 NULL); 3140 btrfs_queue_work(wq, &ordered_extent->work); 3141 } 3142 3143 static int __readpage_endio_check(struct inode *inode, 3144 struct btrfs_io_bio *io_bio, 3145 int icsum, struct page *page, 3146 int pgoff, u64 start, size_t len) 3147 { 3148 char *kaddr; 3149 u32 csum_expected; 3150 u32 csum = ~(u32)0; 3151 3152 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3153 3154 kaddr = kmap_atomic(page); 3155 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3156 btrfs_csum_final(csum, (u8 *)&csum); 3157 if (csum != csum_expected) 3158 goto zeroit; 3159 3160 kunmap_atomic(kaddr); 3161 return 0; 3162 zeroit: 3163 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3164 io_bio->mirror_num); 3165 memset(kaddr + pgoff, 1, len); 3166 flush_dcache_page(page); 3167 kunmap_atomic(kaddr); 3168 return -EIO; 3169 } 3170 3171 /* 3172 * when reads are done, we need to check csums to verify the data is correct 3173 * if there's a match, we allow the bio to finish. If not, the code in 3174 * extent_io.c will try to find good copies for us. 3175 */ 3176 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3177 u64 phy_offset, struct page *page, 3178 u64 start, u64 end, int mirror) 3179 { 3180 size_t offset = start - page_offset(page); 3181 struct inode *inode = page->mapping->host; 3182 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3183 struct btrfs_root *root = BTRFS_I(inode)->root; 3184 3185 if (PageChecked(page)) { 3186 ClearPageChecked(page); 3187 return 0; 3188 } 3189 3190 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3191 return 0; 3192 3193 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3194 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3195 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3196 return 0; 3197 } 3198 3199 phy_offset >>= inode->i_sb->s_blocksize_bits; 3200 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3201 start, (size_t)(end - start + 1)); 3202 } 3203 3204 void btrfs_add_delayed_iput(struct inode *inode) 3205 { 3206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3207 struct btrfs_inode *binode = BTRFS_I(inode); 3208 3209 if (atomic_add_unless(&inode->i_count, -1, 1)) 3210 return; 3211 3212 spin_lock(&fs_info->delayed_iput_lock); 3213 if (binode->delayed_iput_count == 0) { 3214 ASSERT(list_empty(&binode->delayed_iput)); 3215 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3216 } else { 3217 binode->delayed_iput_count++; 3218 } 3219 spin_unlock(&fs_info->delayed_iput_lock); 3220 } 3221 3222 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3223 { 3224 3225 spin_lock(&fs_info->delayed_iput_lock); 3226 while (!list_empty(&fs_info->delayed_iputs)) { 3227 struct btrfs_inode *inode; 3228 3229 inode = list_first_entry(&fs_info->delayed_iputs, 3230 struct btrfs_inode, delayed_iput); 3231 if (inode->delayed_iput_count) { 3232 inode->delayed_iput_count--; 3233 list_move_tail(&inode->delayed_iput, 3234 &fs_info->delayed_iputs); 3235 } else { 3236 list_del_init(&inode->delayed_iput); 3237 } 3238 spin_unlock(&fs_info->delayed_iput_lock); 3239 iput(&inode->vfs_inode); 3240 spin_lock(&fs_info->delayed_iput_lock); 3241 } 3242 spin_unlock(&fs_info->delayed_iput_lock); 3243 } 3244 3245 /* 3246 * This is called in transaction commit time. If there are no orphan 3247 * files in the subvolume, it removes orphan item and frees block_rsv 3248 * structure. 3249 */ 3250 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3251 struct btrfs_root *root) 3252 { 3253 struct btrfs_fs_info *fs_info = root->fs_info; 3254 struct btrfs_block_rsv *block_rsv; 3255 int ret; 3256 3257 if (atomic_read(&root->orphan_inodes) || 3258 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3259 return; 3260 3261 spin_lock(&root->orphan_lock); 3262 if (atomic_read(&root->orphan_inodes)) { 3263 spin_unlock(&root->orphan_lock); 3264 return; 3265 } 3266 3267 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3268 spin_unlock(&root->orphan_lock); 3269 return; 3270 } 3271 3272 block_rsv = root->orphan_block_rsv; 3273 root->orphan_block_rsv = NULL; 3274 spin_unlock(&root->orphan_lock); 3275 3276 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3277 btrfs_root_refs(&root->root_item) > 0) { 3278 ret = btrfs_del_orphan_item(trans, fs_info->tree_root, 3279 root->root_key.objectid); 3280 if (ret) 3281 btrfs_abort_transaction(trans, ret); 3282 else 3283 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3284 &root->state); 3285 } 3286 3287 if (block_rsv) { 3288 WARN_ON(block_rsv->size > 0); 3289 btrfs_free_block_rsv(fs_info, block_rsv); 3290 } 3291 } 3292 3293 /* 3294 * This creates an orphan entry for the given inode in case something goes 3295 * wrong in the middle of an unlink/truncate. 3296 * 3297 * NOTE: caller of this function should reserve 5 units of metadata for 3298 * this function. 3299 */ 3300 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3301 struct btrfs_inode *inode) 3302 { 3303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 3304 struct btrfs_root *root = inode->root; 3305 struct btrfs_block_rsv *block_rsv = NULL; 3306 int reserve = 0; 3307 int insert = 0; 3308 int ret; 3309 3310 if (!root->orphan_block_rsv) { 3311 block_rsv = btrfs_alloc_block_rsv(fs_info, 3312 BTRFS_BLOCK_RSV_TEMP); 3313 if (!block_rsv) 3314 return -ENOMEM; 3315 } 3316 3317 spin_lock(&root->orphan_lock); 3318 if (!root->orphan_block_rsv) { 3319 root->orphan_block_rsv = block_rsv; 3320 } else if (block_rsv) { 3321 btrfs_free_block_rsv(fs_info, block_rsv); 3322 block_rsv = NULL; 3323 } 3324 3325 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3326 &inode->runtime_flags)) { 3327 #if 0 3328 /* 3329 * For proper ENOSPC handling, we should do orphan 3330 * cleanup when mounting. But this introduces backward 3331 * compatibility issue. 3332 */ 3333 if (!xchg(&root->orphan_item_inserted, 1)) 3334 insert = 2; 3335 else 3336 insert = 1; 3337 #endif 3338 insert = 1; 3339 atomic_inc(&root->orphan_inodes); 3340 } 3341 3342 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3343 &inode->runtime_flags)) 3344 reserve = 1; 3345 spin_unlock(&root->orphan_lock); 3346 3347 /* grab metadata reservation from transaction handle */ 3348 if (reserve) { 3349 ret = btrfs_orphan_reserve_metadata(trans, inode); 3350 ASSERT(!ret); 3351 if (ret) { 3352 atomic_dec(&root->orphan_inodes); 3353 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3354 &inode->runtime_flags); 3355 if (insert) 3356 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3357 &inode->runtime_flags); 3358 return ret; 3359 } 3360 } 3361 3362 /* insert an orphan item to track this unlinked/truncated file */ 3363 if (insert >= 1) { 3364 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3365 if (ret) { 3366 atomic_dec(&root->orphan_inodes); 3367 if (reserve) { 3368 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3369 &inode->runtime_flags); 3370 btrfs_orphan_release_metadata(inode); 3371 } 3372 if (ret != -EEXIST) { 3373 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3374 &inode->runtime_flags); 3375 btrfs_abort_transaction(trans, ret); 3376 return ret; 3377 } 3378 } 3379 ret = 0; 3380 } 3381 3382 /* insert an orphan item to track subvolume contains orphan files */ 3383 if (insert >= 2) { 3384 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root, 3385 root->root_key.objectid); 3386 if (ret && ret != -EEXIST) { 3387 btrfs_abort_transaction(trans, ret); 3388 return ret; 3389 } 3390 } 3391 return 0; 3392 } 3393 3394 /* 3395 * We have done the truncate/delete so we can go ahead and remove the orphan 3396 * item for this particular inode. 3397 */ 3398 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3399 struct btrfs_inode *inode) 3400 { 3401 struct btrfs_root *root = inode->root; 3402 int delete_item = 0; 3403 int release_rsv = 0; 3404 int ret = 0; 3405 3406 spin_lock(&root->orphan_lock); 3407 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3408 &inode->runtime_flags)) 3409 delete_item = 1; 3410 3411 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3412 &inode->runtime_flags)) 3413 release_rsv = 1; 3414 spin_unlock(&root->orphan_lock); 3415 3416 if (delete_item) { 3417 atomic_dec(&root->orphan_inodes); 3418 if (trans) 3419 ret = btrfs_del_orphan_item(trans, root, 3420 btrfs_ino(inode)); 3421 } 3422 3423 if (release_rsv) 3424 btrfs_orphan_release_metadata(inode); 3425 3426 return ret; 3427 } 3428 3429 /* 3430 * this cleans up any orphans that may be left on the list from the last use 3431 * of this root. 3432 */ 3433 int btrfs_orphan_cleanup(struct btrfs_root *root) 3434 { 3435 struct btrfs_fs_info *fs_info = root->fs_info; 3436 struct btrfs_path *path; 3437 struct extent_buffer *leaf; 3438 struct btrfs_key key, found_key; 3439 struct btrfs_trans_handle *trans; 3440 struct inode *inode; 3441 u64 last_objectid = 0; 3442 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3443 3444 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3445 return 0; 3446 3447 path = btrfs_alloc_path(); 3448 if (!path) { 3449 ret = -ENOMEM; 3450 goto out; 3451 } 3452 path->reada = READA_BACK; 3453 3454 key.objectid = BTRFS_ORPHAN_OBJECTID; 3455 key.type = BTRFS_ORPHAN_ITEM_KEY; 3456 key.offset = (u64)-1; 3457 3458 while (1) { 3459 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3460 if (ret < 0) 3461 goto out; 3462 3463 /* 3464 * if ret == 0 means we found what we were searching for, which 3465 * is weird, but possible, so only screw with path if we didn't 3466 * find the key and see if we have stuff that matches 3467 */ 3468 if (ret > 0) { 3469 ret = 0; 3470 if (path->slots[0] == 0) 3471 break; 3472 path->slots[0]--; 3473 } 3474 3475 /* pull out the item */ 3476 leaf = path->nodes[0]; 3477 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3478 3479 /* make sure the item matches what we want */ 3480 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3481 break; 3482 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3483 break; 3484 3485 /* release the path since we're done with it */ 3486 btrfs_release_path(path); 3487 3488 /* 3489 * this is where we are basically btrfs_lookup, without the 3490 * crossing root thing. we store the inode number in the 3491 * offset of the orphan item. 3492 */ 3493 3494 if (found_key.offset == last_objectid) { 3495 btrfs_err(fs_info, 3496 "Error removing orphan entry, stopping orphan cleanup"); 3497 ret = -EINVAL; 3498 goto out; 3499 } 3500 3501 last_objectid = found_key.offset; 3502 3503 found_key.objectid = found_key.offset; 3504 found_key.type = BTRFS_INODE_ITEM_KEY; 3505 found_key.offset = 0; 3506 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3507 ret = PTR_ERR_OR_ZERO(inode); 3508 if (ret && ret != -ENOENT) 3509 goto out; 3510 3511 if (ret == -ENOENT && root == fs_info->tree_root) { 3512 struct btrfs_root *dead_root; 3513 struct btrfs_fs_info *fs_info = root->fs_info; 3514 int is_dead_root = 0; 3515 3516 /* 3517 * this is an orphan in the tree root. Currently these 3518 * could come from 2 sources: 3519 * a) a snapshot deletion in progress 3520 * b) a free space cache inode 3521 * We need to distinguish those two, as the snapshot 3522 * orphan must not get deleted. 3523 * find_dead_roots already ran before us, so if this 3524 * is a snapshot deletion, we should find the root 3525 * in the dead_roots list 3526 */ 3527 spin_lock(&fs_info->trans_lock); 3528 list_for_each_entry(dead_root, &fs_info->dead_roots, 3529 root_list) { 3530 if (dead_root->root_key.objectid == 3531 found_key.objectid) { 3532 is_dead_root = 1; 3533 break; 3534 } 3535 } 3536 spin_unlock(&fs_info->trans_lock); 3537 if (is_dead_root) { 3538 /* prevent this orphan from being found again */ 3539 key.offset = found_key.objectid - 1; 3540 continue; 3541 } 3542 } 3543 /* 3544 * Inode is already gone but the orphan item is still there, 3545 * kill the orphan item. 3546 */ 3547 if (ret == -ENOENT) { 3548 trans = btrfs_start_transaction(root, 1); 3549 if (IS_ERR(trans)) { 3550 ret = PTR_ERR(trans); 3551 goto out; 3552 } 3553 btrfs_debug(fs_info, "auto deleting %Lu", 3554 found_key.objectid); 3555 ret = btrfs_del_orphan_item(trans, root, 3556 found_key.objectid); 3557 btrfs_end_transaction(trans); 3558 if (ret) 3559 goto out; 3560 continue; 3561 } 3562 3563 /* 3564 * add this inode to the orphan list so btrfs_orphan_del does 3565 * the proper thing when we hit it 3566 */ 3567 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3568 &BTRFS_I(inode)->runtime_flags); 3569 atomic_inc(&root->orphan_inodes); 3570 3571 /* if we have links, this was a truncate, lets do that */ 3572 if (inode->i_nlink) { 3573 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3574 iput(inode); 3575 continue; 3576 } 3577 nr_truncate++; 3578 3579 /* 1 for the orphan item deletion. */ 3580 trans = btrfs_start_transaction(root, 1); 3581 if (IS_ERR(trans)) { 3582 iput(inode); 3583 ret = PTR_ERR(trans); 3584 goto out; 3585 } 3586 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3587 btrfs_end_transaction(trans); 3588 if (ret) { 3589 iput(inode); 3590 goto out; 3591 } 3592 3593 ret = btrfs_truncate(inode); 3594 if (ret) 3595 btrfs_orphan_del(NULL, BTRFS_I(inode)); 3596 } else { 3597 nr_unlink++; 3598 } 3599 3600 /* this will do delete_inode and everything for us */ 3601 iput(inode); 3602 if (ret) 3603 goto out; 3604 } 3605 /* release the path since we're done with it */ 3606 btrfs_release_path(path); 3607 3608 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3609 3610 if (root->orphan_block_rsv) 3611 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, 3612 (u64)-1); 3613 3614 if (root->orphan_block_rsv || 3615 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3616 trans = btrfs_join_transaction(root); 3617 if (!IS_ERR(trans)) 3618 btrfs_end_transaction(trans); 3619 } 3620 3621 if (nr_unlink) 3622 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3623 if (nr_truncate) 3624 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate); 3625 3626 out: 3627 if (ret) 3628 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3629 btrfs_free_path(path); 3630 return ret; 3631 } 3632 3633 /* 3634 * very simple check to peek ahead in the leaf looking for xattrs. If we 3635 * don't find any xattrs, we know there can't be any acls. 3636 * 3637 * slot is the slot the inode is in, objectid is the objectid of the inode 3638 */ 3639 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3640 int slot, u64 objectid, 3641 int *first_xattr_slot) 3642 { 3643 u32 nritems = btrfs_header_nritems(leaf); 3644 struct btrfs_key found_key; 3645 static u64 xattr_access = 0; 3646 static u64 xattr_default = 0; 3647 int scanned = 0; 3648 3649 if (!xattr_access) { 3650 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3651 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3652 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3653 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3654 } 3655 3656 slot++; 3657 *first_xattr_slot = -1; 3658 while (slot < nritems) { 3659 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3660 3661 /* we found a different objectid, there must not be acls */ 3662 if (found_key.objectid != objectid) 3663 return 0; 3664 3665 /* we found an xattr, assume we've got an acl */ 3666 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3667 if (*first_xattr_slot == -1) 3668 *first_xattr_slot = slot; 3669 if (found_key.offset == xattr_access || 3670 found_key.offset == xattr_default) 3671 return 1; 3672 } 3673 3674 /* 3675 * we found a key greater than an xattr key, there can't 3676 * be any acls later on 3677 */ 3678 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3679 return 0; 3680 3681 slot++; 3682 scanned++; 3683 3684 /* 3685 * it goes inode, inode backrefs, xattrs, extents, 3686 * so if there are a ton of hard links to an inode there can 3687 * be a lot of backrefs. Don't waste time searching too hard, 3688 * this is just an optimization 3689 */ 3690 if (scanned >= 8) 3691 break; 3692 } 3693 /* we hit the end of the leaf before we found an xattr or 3694 * something larger than an xattr. We have to assume the inode 3695 * has acls 3696 */ 3697 if (*first_xattr_slot == -1) 3698 *first_xattr_slot = slot; 3699 return 1; 3700 } 3701 3702 /* 3703 * read an inode from the btree into the in-memory inode 3704 */ 3705 static int btrfs_read_locked_inode(struct inode *inode) 3706 { 3707 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3708 struct btrfs_path *path; 3709 struct extent_buffer *leaf; 3710 struct btrfs_inode_item *inode_item; 3711 struct btrfs_root *root = BTRFS_I(inode)->root; 3712 struct btrfs_key location; 3713 unsigned long ptr; 3714 int maybe_acls; 3715 u32 rdev; 3716 int ret; 3717 bool filled = false; 3718 int first_xattr_slot; 3719 3720 ret = btrfs_fill_inode(inode, &rdev); 3721 if (!ret) 3722 filled = true; 3723 3724 path = btrfs_alloc_path(); 3725 if (!path) { 3726 ret = -ENOMEM; 3727 goto make_bad; 3728 } 3729 3730 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3731 3732 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3733 if (ret) { 3734 if (ret > 0) 3735 ret = -ENOENT; 3736 goto make_bad; 3737 } 3738 3739 leaf = path->nodes[0]; 3740 3741 if (filled) 3742 goto cache_index; 3743 3744 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3745 struct btrfs_inode_item); 3746 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3747 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3748 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3749 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3750 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3751 3752 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3753 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3754 3755 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3756 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3757 3758 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3759 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3760 3761 BTRFS_I(inode)->i_otime.tv_sec = 3762 btrfs_timespec_sec(leaf, &inode_item->otime); 3763 BTRFS_I(inode)->i_otime.tv_nsec = 3764 btrfs_timespec_nsec(leaf, &inode_item->otime); 3765 3766 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3767 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3768 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3769 3770 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3771 inode->i_generation = BTRFS_I(inode)->generation; 3772 inode->i_rdev = 0; 3773 rdev = btrfs_inode_rdev(leaf, inode_item); 3774 3775 BTRFS_I(inode)->index_cnt = (u64)-1; 3776 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3777 3778 cache_index: 3779 /* 3780 * If we were modified in the current generation and evicted from memory 3781 * and then re-read we need to do a full sync since we don't have any 3782 * idea about which extents were modified before we were evicted from 3783 * cache. 3784 * 3785 * This is required for both inode re-read from disk and delayed inode 3786 * in delayed_nodes_tree. 3787 */ 3788 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3789 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3790 &BTRFS_I(inode)->runtime_flags); 3791 3792 /* 3793 * We don't persist the id of the transaction where an unlink operation 3794 * against the inode was last made. So here we assume the inode might 3795 * have been evicted, and therefore the exact value of last_unlink_trans 3796 * lost, and set it to last_trans to avoid metadata inconsistencies 3797 * between the inode and its parent if the inode is fsync'ed and the log 3798 * replayed. For example, in the scenario: 3799 * 3800 * touch mydir/foo 3801 * ln mydir/foo mydir/bar 3802 * sync 3803 * unlink mydir/bar 3804 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3805 * xfs_io -c fsync mydir/foo 3806 * <power failure> 3807 * mount fs, triggers fsync log replay 3808 * 3809 * We must make sure that when we fsync our inode foo we also log its 3810 * parent inode, otherwise after log replay the parent still has the 3811 * dentry with the "bar" name but our inode foo has a link count of 1 3812 * and doesn't have an inode ref with the name "bar" anymore. 3813 * 3814 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3815 * but it guarantees correctness at the expense of occasional full 3816 * transaction commits on fsync if our inode is a directory, or if our 3817 * inode is not a directory, logging its parent unnecessarily. 3818 */ 3819 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3820 3821 path->slots[0]++; 3822 if (inode->i_nlink != 1 || 3823 path->slots[0] >= btrfs_header_nritems(leaf)) 3824 goto cache_acl; 3825 3826 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3827 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3828 goto cache_acl; 3829 3830 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3831 if (location.type == BTRFS_INODE_REF_KEY) { 3832 struct btrfs_inode_ref *ref; 3833 3834 ref = (struct btrfs_inode_ref *)ptr; 3835 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3836 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3837 struct btrfs_inode_extref *extref; 3838 3839 extref = (struct btrfs_inode_extref *)ptr; 3840 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3841 extref); 3842 } 3843 cache_acl: 3844 /* 3845 * try to precache a NULL acl entry for files that don't have 3846 * any xattrs or acls 3847 */ 3848 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3849 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3850 if (first_xattr_slot != -1) { 3851 path->slots[0] = first_xattr_slot; 3852 ret = btrfs_load_inode_props(inode, path); 3853 if (ret) 3854 btrfs_err(fs_info, 3855 "error loading props for ino %llu (root %llu): %d", 3856 btrfs_ino(BTRFS_I(inode)), 3857 root->root_key.objectid, ret); 3858 } 3859 btrfs_free_path(path); 3860 3861 if (!maybe_acls) 3862 cache_no_acl(inode); 3863 3864 switch (inode->i_mode & S_IFMT) { 3865 case S_IFREG: 3866 inode->i_mapping->a_ops = &btrfs_aops; 3867 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3868 inode->i_fop = &btrfs_file_operations; 3869 inode->i_op = &btrfs_file_inode_operations; 3870 break; 3871 case S_IFDIR: 3872 inode->i_fop = &btrfs_dir_file_operations; 3873 inode->i_op = &btrfs_dir_inode_operations; 3874 break; 3875 case S_IFLNK: 3876 inode->i_op = &btrfs_symlink_inode_operations; 3877 inode_nohighmem(inode); 3878 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3879 break; 3880 default: 3881 inode->i_op = &btrfs_special_inode_operations; 3882 init_special_inode(inode, inode->i_mode, rdev); 3883 break; 3884 } 3885 3886 btrfs_update_iflags(inode); 3887 return 0; 3888 3889 make_bad: 3890 btrfs_free_path(path); 3891 make_bad_inode(inode); 3892 return ret; 3893 } 3894 3895 /* 3896 * given a leaf and an inode, copy the inode fields into the leaf 3897 */ 3898 static void fill_inode_item(struct btrfs_trans_handle *trans, 3899 struct extent_buffer *leaf, 3900 struct btrfs_inode_item *item, 3901 struct inode *inode) 3902 { 3903 struct btrfs_map_token token; 3904 3905 btrfs_init_map_token(&token); 3906 3907 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3908 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3909 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3910 &token); 3911 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3912 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3913 3914 btrfs_set_token_timespec_sec(leaf, &item->atime, 3915 inode->i_atime.tv_sec, &token); 3916 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3917 inode->i_atime.tv_nsec, &token); 3918 3919 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3920 inode->i_mtime.tv_sec, &token); 3921 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3922 inode->i_mtime.tv_nsec, &token); 3923 3924 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3925 inode->i_ctime.tv_sec, &token); 3926 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3927 inode->i_ctime.tv_nsec, &token); 3928 3929 btrfs_set_token_timespec_sec(leaf, &item->otime, 3930 BTRFS_I(inode)->i_otime.tv_sec, &token); 3931 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3932 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3933 3934 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3935 &token); 3936 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3937 &token); 3938 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3939 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3940 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3941 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3942 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3943 } 3944 3945 /* 3946 * copy everything in the in-memory inode into the btree. 3947 */ 3948 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3949 struct btrfs_root *root, struct inode *inode) 3950 { 3951 struct btrfs_inode_item *inode_item; 3952 struct btrfs_path *path; 3953 struct extent_buffer *leaf; 3954 int ret; 3955 3956 path = btrfs_alloc_path(); 3957 if (!path) 3958 return -ENOMEM; 3959 3960 path->leave_spinning = 1; 3961 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3962 1); 3963 if (ret) { 3964 if (ret > 0) 3965 ret = -ENOENT; 3966 goto failed; 3967 } 3968 3969 leaf = path->nodes[0]; 3970 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3971 struct btrfs_inode_item); 3972 3973 fill_inode_item(trans, leaf, inode_item, inode); 3974 btrfs_mark_buffer_dirty(leaf); 3975 btrfs_set_inode_last_trans(trans, inode); 3976 ret = 0; 3977 failed: 3978 btrfs_free_path(path); 3979 return ret; 3980 } 3981 3982 /* 3983 * copy everything in the in-memory inode into the btree. 3984 */ 3985 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3986 struct btrfs_root *root, struct inode *inode) 3987 { 3988 struct btrfs_fs_info *fs_info = root->fs_info; 3989 int ret; 3990 3991 /* 3992 * If the inode is a free space inode, we can deadlock during commit 3993 * if we put it into the delayed code. 3994 * 3995 * The data relocation inode should also be directly updated 3996 * without delay 3997 */ 3998 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3999 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 4000 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4001 btrfs_update_root_times(trans, root); 4002 4003 ret = btrfs_delayed_update_inode(trans, root, inode); 4004 if (!ret) 4005 btrfs_set_inode_last_trans(trans, inode); 4006 return ret; 4007 } 4008 4009 return btrfs_update_inode_item(trans, root, inode); 4010 } 4011 4012 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4013 struct btrfs_root *root, 4014 struct inode *inode) 4015 { 4016 int ret; 4017 4018 ret = btrfs_update_inode(trans, root, inode); 4019 if (ret == -ENOSPC) 4020 return btrfs_update_inode_item(trans, root, inode); 4021 return ret; 4022 } 4023 4024 /* 4025 * unlink helper that gets used here in inode.c and in the tree logging 4026 * recovery code. It remove a link in a directory with a given name, and 4027 * also drops the back refs in the inode to the directory 4028 */ 4029 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4030 struct btrfs_root *root, 4031 struct btrfs_inode *dir, 4032 struct btrfs_inode *inode, 4033 const char *name, int name_len) 4034 { 4035 struct btrfs_fs_info *fs_info = root->fs_info; 4036 struct btrfs_path *path; 4037 int ret = 0; 4038 struct extent_buffer *leaf; 4039 struct btrfs_dir_item *di; 4040 struct btrfs_key key; 4041 u64 index; 4042 u64 ino = btrfs_ino(inode); 4043 u64 dir_ino = btrfs_ino(dir); 4044 4045 path = btrfs_alloc_path(); 4046 if (!path) { 4047 ret = -ENOMEM; 4048 goto out; 4049 } 4050 4051 path->leave_spinning = 1; 4052 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4053 name, name_len, -1); 4054 if (IS_ERR(di)) { 4055 ret = PTR_ERR(di); 4056 goto err; 4057 } 4058 if (!di) { 4059 ret = -ENOENT; 4060 goto err; 4061 } 4062 leaf = path->nodes[0]; 4063 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4064 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4065 if (ret) 4066 goto err; 4067 btrfs_release_path(path); 4068 4069 /* 4070 * If we don't have dir index, we have to get it by looking up 4071 * the inode ref, since we get the inode ref, remove it directly, 4072 * it is unnecessary to do delayed deletion. 4073 * 4074 * But if we have dir index, needn't search inode ref to get it. 4075 * Since the inode ref is close to the inode item, it is better 4076 * that we delay to delete it, and just do this deletion when 4077 * we update the inode item. 4078 */ 4079 if (inode->dir_index) { 4080 ret = btrfs_delayed_delete_inode_ref(inode); 4081 if (!ret) { 4082 index = inode->dir_index; 4083 goto skip_backref; 4084 } 4085 } 4086 4087 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4088 dir_ino, &index); 4089 if (ret) { 4090 btrfs_info(fs_info, 4091 "failed to delete reference to %.*s, inode %llu parent %llu", 4092 name_len, name, ino, dir_ino); 4093 btrfs_abort_transaction(trans, ret); 4094 goto err; 4095 } 4096 skip_backref: 4097 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index); 4098 if (ret) { 4099 btrfs_abort_transaction(trans, ret); 4100 goto err; 4101 } 4102 4103 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4104 dir_ino); 4105 if (ret != 0 && ret != -ENOENT) { 4106 btrfs_abort_transaction(trans, ret); 4107 goto err; 4108 } 4109 4110 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4111 index); 4112 if (ret == -ENOENT) 4113 ret = 0; 4114 else if (ret) 4115 btrfs_abort_transaction(trans, ret); 4116 err: 4117 btrfs_free_path(path); 4118 if (ret) 4119 goto out; 4120 4121 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4122 inode_inc_iversion(&inode->vfs_inode); 4123 inode_inc_iversion(&dir->vfs_inode); 4124 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4125 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4126 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4127 out: 4128 return ret; 4129 } 4130 4131 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4132 struct btrfs_root *root, 4133 struct btrfs_inode *dir, struct btrfs_inode *inode, 4134 const char *name, int name_len) 4135 { 4136 int ret; 4137 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4138 if (!ret) { 4139 drop_nlink(&inode->vfs_inode); 4140 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4141 } 4142 return ret; 4143 } 4144 4145 /* 4146 * helper to start transaction for unlink and rmdir. 4147 * 4148 * unlink and rmdir are special in btrfs, they do not always free space, so 4149 * if we cannot make our reservations the normal way try and see if there is 4150 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4151 * allow the unlink to occur. 4152 */ 4153 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4154 { 4155 struct btrfs_root *root = BTRFS_I(dir)->root; 4156 4157 /* 4158 * 1 for the possible orphan item 4159 * 1 for the dir item 4160 * 1 for the dir index 4161 * 1 for the inode ref 4162 * 1 for the inode 4163 */ 4164 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4165 } 4166 4167 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4168 { 4169 struct btrfs_root *root = BTRFS_I(dir)->root; 4170 struct btrfs_trans_handle *trans; 4171 struct inode *inode = d_inode(dentry); 4172 int ret; 4173 4174 trans = __unlink_start_trans(dir); 4175 if (IS_ERR(trans)) 4176 return PTR_ERR(trans); 4177 4178 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4179 0); 4180 4181 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4182 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4183 dentry->d_name.len); 4184 if (ret) 4185 goto out; 4186 4187 if (inode->i_nlink == 0) { 4188 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4189 if (ret) 4190 goto out; 4191 } 4192 4193 out: 4194 btrfs_end_transaction(trans); 4195 btrfs_btree_balance_dirty(root->fs_info); 4196 return ret; 4197 } 4198 4199 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4200 struct btrfs_root *root, 4201 struct inode *dir, u64 objectid, 4202 const char *name, int name_len) 4203 { 4204 struct btrfs_fs_info *fs_info = root->fs_info; 4205 struct btrfs_path *path; 4206 struct extent_buffer *leaf; 4207 struct btrfs_dir_item *di; 4208 struct btrfs_key key; 4209 u64 index; 4210 int ret; 4211 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4212 4213 path = btrfs_alloc_path(); 4214 if (!path) 4215 return -ENOMEM; 4216 4217 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4218 name, name_len, -1); 4219 if (IS_ERR_OR_NULL(di)) { 4220 if (!di) 4221 ret = -ENOENT; 4222 else 4223 ret = PTR_ERR(di); 4224 goto out; 4225 } 4226 4227 leaf = path->nodes[0]; 4228 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4229 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4230 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4231 if (ret) { 4232 btrfs_abort_transaction(trans, ret); 4233 goto out; 4234 } 4235 btrfs_release_path(path); 4236 4237 ret = btrfs_del_root_ref(trans, fs_info, objectid, 4238 root->root_key.objectid, dir_ino, 4239 &index, name, name_len); 4240 if (ret < 0) { 4241 if (ret != -ENOENT) { 4242 btrfs_abort_transaction(trans, ret); 4243 goto out; 4244 } 4245 di = btrfs_search_dir_index_item(root, path, dir_ino, 4246 name, name_len); 4247 if (IS_ERR_OR_NULL(di)) { 4248 if (!di) 4249 ret = -ENOENT; 4250 else 4251 ret = PTR_ERR(di); 4252 btrfs_abort_transaction(trans, ret); 4253 goto out; 4254 } 4255 4256 leaf = path->nodes[0]; 4257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4258 btrfs_release_path(path); 4259 index = key.offset; 4260 } 4261 btrfs_release_path(path); 4262 4263 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index); 4264 if (ret) { 4265 btrfs_abort_transaction(trans, ret); 4266 goto out; 4267 } 4268 4269 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4270 inode_inc_iversion(dir); 4271 dir->i_mtime = dir->i_ctime = current_time(dir); 4272 ret = btrfs_update_inode_fallback(trans, root, dir); 4273 if (ret) 4274 btrfs_abort_transaction(trans, ret); 4275 out: 4276 btrfs_free_path(path); 4277 return ret; 4278 } 4279 4280 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4281 { 4282 struct inode *inode = d_inode(dentry); 4283 int err = 0; 4284 struct btrfs_root *root = BTRFS_I(dir)->root; 4285 struct btrfs_trans_handle *trans; 4286 u64 last_unlink_trans; 4287 4288 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4289 return -ENOTEMPTY; 4290 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4291 return -EPERM; 4292 4293 trans = __unlink_start_trans(dir); 4294 if (IS_ERR(trans)) 4295 return PTR_ERR(trans); 4296 4297 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4298 err = btrfs_unlink_subvol(trans, root, dir, 4299 BTRFS_I(inode)->location.objectid, 4300 dentry->d_name.name, 4301 dentry->d_name.len); 4302 goto out; 4303 } 4304 4305 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4306 if (err) 4307 goto out; 4308 4309 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4310 4311 /* now the directory is empty */ 4312 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4313 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4314 dentry->d_name.len); 4315 if (!err) { 4316 btrfs_i_size_write(BTRFS_I(inode), 0); 4317 /* 4318 * Propagate the last_unlink_trans value of the deleted dir to 4319 * its parent directory. This is to prevent an unrecoverable 4320 * log tree in the case we do something like this: 4321 * 1) create dir foo 4322 * 2) create snapshot under dir foo 4323 * 3) delete the snapshot 4324 * 4) rmdir foo 4325 * 5) mkdir foo 4326 * 6) fsync foo or some file inside foo 4327 */ 4328 if (last_unlink_trans >= trans->transid) 4329 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4330 } 4331 out: 4332 btrfs_end_transaction(trans); 4333 btrfs_btree_balance_dirty(root->fs_info); 4334 4335 return err; 4336 } 4337 4338 static int truncate_space_check(struct btrfs_trans_handle *trans, 4339 struct btrfs_root *root, 4340 u64 bytes_deleted) 4341 { 4342 struct btrfs_fs_info *fs_info = root->fs_info; 4343 int ret; 4344 4345 /* 4346 * This is only used to apply pressure to the enospc system, we don't 4347 * intend to use this reservation at all. 4348 */ 4349 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4350 bytes_deleted *= fs_info->nodesize; 4351 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4352 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4353 if (!ret) { 4354 trace_btrfs_space_reservation(fs_info, "transaction", 4355 trans->transid, 4356 bytes_deleted, 1); 4357 trans->bytes_reserved += bytes_deleted; 4358 } 4359 return ret; 4360 4361 } 4362 4363 /* 4364 * Return this if we need to call truncate_block for the last bit of the 4365 * truncate. 4366 */ 4367 #define NEED_TRUNCATE_BLOCK 1 4368 4369 /* 4370 * this can truncate away extent items, csum items and directory items. 4371 * It starts at a high offset and removes keys until it can't find 4372 * any higher than new_size 4373 * 4374 * csum items that cross the new i_size are truncated to the new size 4375 * as well. 4376 * 4377 * min_type is the minimum key type to truncate down to. If set to 0, this 4378 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4379 */ 4380 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4381 struct btrfs_root *root, 4382 struct inode *inode, 4383 u64 new_size, u32 min_type) 4384 { 4385 struct btrfs_fs_info *fs_info = root->fs_info; 4386 struct btrfs_path *path; 4387 struct extent_buffer *leaf; 4388 struct btrfs_file_extent_item *fi; 4389 struct btrfs_key key; 4390 struct btrfs_key found_key; 4391 u64 extent_start = 0; 4392 u64 extent_num_bytes = 0; 4393 u64 extent_offset = 0; 4394 u64 item_end = 0; 4395 u64 last_size = new_size; 4396 u32 found_type = (u8)-1; 4397 int found_extent; 4398 int del_item; 4399 int pending_del_nr = 0; 4400 int pending_del_slot = 0; 4401 int extent_type = -1; 4402 int ret; 4403 int err = 0; 4404 u64 ino = btrfs_ino(BTRFS_I(inode)); 4405 u64 bytes_deleted = 0; 4406 bool be_nice = false; 4407 bool should_throttle = false; 4408 bool should_end = false; 4409 4410 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4411 4412 /* 4413 * for non-free space inodes and ref cows, we want to back off from 4414 * time to time 4415 */ 4416 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4417 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4418 be_nice = true; 4419 4420 path = btrfs_alloc_path(); 4421 if (!path) 4422 return -ENOMEM; 4423 path->reada = READA_BACK; 4424 4425 /* 4426 * We want to drop from the next block forward in case this new size is 4427 * not block aligned since we will be keeping the last block of the 4428 * extent just the way it is. 4429 */ 4430 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4431 root == fs_info->tree_root) 4432 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4433 fs_info->sectorsize), 4434 (u64)-1, 0); 4435 4436 /* 4437 * This function is also used to drop the items in the log tree before 4438 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4439 * it is used to drop the loged items. So we shouldn't kill the delayed 4440 * items. 4441 */ 4442 if (min_type == 0 && root == BTRFS_I(inode)->root) 4443 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4444 4445 key.objectid = ino; 4446 key.offset = (u64)-1; 4447 key.type = (u8)-1; 4448 4449 search_again: 4450 /* 4451 * with a 16K leaf size and 128MB extents, you can actually queue 4452 * up a huge file in a single leaf. Most of the time that 4453 * bytes_deleted is > 0, it will be huge by the time we get here 4454 */ 4455 if (be_nice && bytes_deleted > SZ_32M) { 4456 if (btrfs_should_end_transaction(trans)) { 4457 err = -EAGAIN; 4458 goto error; 4459 } 4460 } 4461 4462 4463 path->leave_spinning = 1; 4464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4465 if (ret < 0) { 4466 err = ret; 4467 goto out; 4468 } 4469 4470 if (ret > 0) { 4471 /* there are no items in the tree for us to truncate, we're 4472 * done 4473 */ 4474 if (path->slots[0] == 0) 4475 goto out; 4476 path->slots[0]--; 4477 } 4478 4479 while (1) { 4480 fi = NULL; 4481 leaf = path->nodes[0]; 4482 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4483 found_type = found_key.type; 4484 4485 if (found_key.objectid != ino) 4486 break; 4487 4488 if (found_type < min_type) 4489 break; 4490 4491 item_end = found_key.offset; 4492 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4493 fi = btrfs_item_ptr(leaf, path->slots[0], 4494 struct btrfs_file_extent_item); 4495 extent_type = btrfs_file_extent_type(leaf, fi); 4496 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4497 item_end += 4498 btrfs_file_extent_num_bytes(leaf, fi); 4499 4500 trace_btrfs_truncate_show_fi_regular( 4501 BTRFS_I(inode), leaf, fi, 4502 found_key.offset); 4503 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4504 item_end += btrfs_file_extent_inline_len(leaf, 4505 path->slots[0], fi); 4506 4507 trace_btrfs_truncate_show_fi_inline( 4508 BTRFS_I(inode), leaf, fi, path->slots[0], 4509 found_key.offset); 4510 } 4511 item_end--; 4512 } 4513 if (found_type > min_type) { 4514 del_item = 1; 4515 } else { 4516 if (item_end < new_size) 4517 break; 4518 if (found_key.offset >= new_size) 4519 del_item = 1; 4520 else 4521 del_item = 0; 4522 } 4523 found_extent = 0; 4524 /* FIXME, shrink the extent if the ref count is only 1 */ 4525 if (found_type != BTRFS_EXTENT_DATA_KEY) 4526 goto delete; 4527 4528 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4529 u64 num_dec; 4530 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4531 if (!del_item) { 4532 u64 orig_num_bytes = 4533 btrfs_file_extent_num_bytes(leaf, fi); 4534 extent_num_bytes = ALIGN(new_size - 4535 found_key.offset, 4536 fs_info->sectorsize); 4537 btrfs_set_file_extent_num_bytes(leaf, fi, 4538 extent_num_bytes); 4539 num_dec = (orig_num_bytes - 4540 extent_num_bytes); 4541 if (test_bit(BTRFS_ROOT_REF_COWS, 4542 &root->state) && 4543 extent_start != 0) 4544 inode_sub_bytes(inode, num_dec); 4545 btrfs_mark_buffer_dirty(leaf); 4546 } else { 4547 extent_num_bytes = 4548 btrfs_file_extent_disk_num_bytes(leaf, 4549 fi); 4550 extent_offset = found_key.offset - 4551 btrfs_file_extent_offset(leaf, fi); 4552 4553 /* FIXME blocksize != 4096 */ 4554 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4555 if (extent_start != 0) { 4556 found_extent = 1; 4557 if (test_bit(BTRFS_ROOT_REF_COWS, 4558 &root->state)) 4559 inode_sub_bytes(inode, num_dec); 4560 } 4561 } 4562 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4563 /* 4564 * we can't truncate inline items that have had 4565 * special encodings 4566 */ 4567 if (!del_item && 4568 btrfs_file_extent_encryption(leaf, fi) == 0 && 4569 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4570 btrfs_file_extent_compression(leaf, fi) == 0) { 4571 u32 size = (u32)(new_size - found_key.offset); 4572 4573 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4574 size = btrfs_file_extent_calc_inline_size(size); 4575 btrfs_truncate_item(root->fs_info, path, size, 1); 4576 } else if (!del_item) { 4577 /* 4578 * We have to bail so the last_size is set to 4579 * just before this extent. 4580 */ 4581 err = NEED_TRUNCATE_BLOCK; 4582 break; 4583 } 4584 4585 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4586 inode_sub_bytes(inode, item_end + 1 - new_size); 4587 } 4588 delete: 4589 if (del_item) 4590 last_size = found_key.offset; 4591 else 4592 last_size = new_size; 4593 if (del_item) { 4594 if (!pending_del_nr) { 4595 /* no pending yet, add ourselves */ 4596 pending_del_slot = path->slots[0]; 4597 pending_del_nr = 1; 4598 } else if (pending_del_nr && 4599 path->slots[0] + 1 == pending_del_slot) { 4600 /* hop on the pending chunk */ 4601 pending_del_nr++; 4602 pending_del_slot = path->slots[0]; 4603 } else { 4604 BUG(); 4605 } 4606 } else { 4607 break; 4608 } 4609 should_throttle = false; 4610 4611 if (found_extent && 4612 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4613 root == fs_info->tree_root)) { 4614 btrfs_set_path_blocking(path); 4615 bytes_deleted += extent_num_bytes; 4616 ret = btrfs_free_extent(trans, root, extent_start, 4617 extent_num_bytes, 0, 4618 btrfs_header_owner(leaf), 4619 ino, extent_offset); 4620 BUG_ON(ret); 4621 if (btrfs_should_throttle_delayed_refs(trans, fs_info)) 4622 btrfs_async_run_delayed_refs(fs_info, 4623 trans->delayed_ref_updates * 2, 4624 trans->transid, 0); 4625 if (be_nice) { 4626 if (truncate_space_check(trans, root, 4627 extent_num_bytes)) { 4628 should_end = true; 4629 } 4630 if (btrfs_should_throttle_delayed_refs(trans, 4631 fs_info)) 4632 should_throttle = true; 4633 } 4634 } 4635 4636 if (found_type == BTRFS_INODE_ITEM_KEY) 4637 break; 4638 4639 if (path->slots[0] == 0 || 4640 path->slots[0] != pending_del_slot || 4641 should_throttle || should_end) { 4642 if (pending_del_nr) { 4643 ret = btrfs_del_items(trans, root, path, 4644 pending_del_slot, 4645 pending_del_nr); 4646 if (ret) { 4647 btrfs_abort_transaction(trans, ret); 4648 goto error; 4649 } 4650 pending_del_nr = 0; 4651 } 4652 btrfs_release_path(path); 4653 if (should_throttle) { 4654 unsigned long updates = trans->delayed_ref_updates; 4655 if (updates) { 4656 trans->delayed_ref_updates = 0; 4657 ret = btrfs_run_delayed_refs(trans, 4658 fs_info, 4659 updates * 2); 4660 if (ret && !err) 4661 err = ret; 4662 } 4663 } 4664 /* 4665 * if we failed to refill our space rsv, bail out 4666 * and let the transaction restart 4667 */ 4668 if (should_end) { 4669 err = -EAGAIN; 4670 goto error; 4671 } 4672 goto search_again; 4673 } else { 4674 path->slots[0]--; 4675 } 4676 } 4677 out: 4678 if (pending_del_nr) { 4679 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4680 pending_del_nr); 4681 if (ret) 4682 btrfs_abort_transaction(trans, ret); 4683 } 4684 error: 4685 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4686 ASSERT(last_size >= new_size); 4687 if (!err && last_size > new_size) 4688 last_size = new_size; 4689 btrfs_ordered_update_i_size(inode, last_size, NULL); 4690 } 4691 4692 btrfs_free_path(path); 4693 4694 if (be_nice && bytes_deleted > SZ_32M) { 4695 unsigned long updates = trans->delayed_ref_updates; 4696 if (updates) { 4697 trans->delayed_ref_updates = 0; 4698 ret = btrfs_run_delayed_refs(trans, fs_info, 4699 updates * 2); 4700 if (ret && !err) 4701 err = ret; 4702 } 4703 } 4704 return err; 4705 } 4706 4707 /* 4708 * btrfs_truncate_block - read, zero a chunk and write a block 4709 * @inode - inode that we're zeroing 4710 * @from - the offset to start zeroing 4711 * @len - the length to zero, 0 to zero the entire range respective to the 4712 * offset 4713 * @front - zero up to the offset instead of from the offset on 4714 * 4715 * This will find the block for the "from" offset and cow the block and zero the 4716 * part we want to zero. This is used with truncate and hole punching. 4717 */ 4718 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4719 int front) 4720 { 4721 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4722 struct address_space *mapping = inode->i_mapping; 4723 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4724 struct btrfs_ordered_extent *ordered; 4725 struct extent_state *cached_state = NULL; 4726 struct extent_changeset *data_reserved = NULL; 4727 char *kaddr; 4728 u32 blocksize = fs_info->sectorsize; 4729 pgoff_t index = from >> PAGE_SHIFT; 4730 unsigned offset = from & (blocksize - 1); 4731 struct page *page; 4732 gfp_t mask = btrfs_alloc_write_mask(mapping); 4733 int ret = 0; 4734 u64 block_start; 4735 u64 block_end; 4736 4737 if ((offset & (blocksize - 1)) == 0 && 4738 (!len || ((len & (blocksize - 1)) == 0))) 4739 goto out; 4740 4741 block_start = round_down(from, blocksize); 4742 block_end = block_start + blocksize - 1; 4743 4744 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4745 block_start, blocksize); 4746 if (ret) 4747 goto out; 4748 4749 again: 4750 page = find_or_create_page(mapping, index, mask); 4751 if (!page) { 4752 btrfs_delalloc_release_space(inode, data_reserved, 4753 block_start, blocksize); 4754 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4755 ret = -ENOMEM; 4756 goto out; 4757 } 4758 4759 if (!PageUptodate(page)) { 4760 ret = btrfs_readpage(NULL, page); 4761 lock_page(page); 4762 if (page->mapping != mapping) { 4763 unlock_page(page); 4764 put_page(page); 4765 goto again; 4766 } 4767 if (!PageUptodate(page)) { 4768 ret = -EIO; 4769 goto out_unlock; 4770 } 4771 } 4772 wait_on_page_writeback(page); 4773 4774 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4775 set_page_extent_mapped(page); 4776 4777 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4778 if (ordered) { 4779 unlock_extent_cached(io_tree, block_start, block_end, 4780 &cached_state, GFP_NOFS); 4781 unlock_page(page); 4782 put_page(page); 4783 btrfs_start_ordered_extent(inode, ordered, 1); 4784 btrfs_put_ordered_extent(ordered); 4785 goto again; 4786 } 4787 4788 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4789 EXTENT_DIRTY | EXTENT_DELALLOC | 4790 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4791 0, 0, &cached_state, GFP_NOFS); 4792 4793 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4794 &cached_state, 0); 4795 if (ret) { 4796 unlock_extent_cached(io_tree, block_start, block_end, 4797 &cached_state, GFP_NOFS); 4798 goto out_unlock; 4799 } 4800 4801 if (offset != blocksize) { 4802 if (!len) 4803 len = blocksize - offset; 4804 kaddr = kmap(page); 4805 if (front) 4806 memset(kaddr + (block_start - page_offset(page)), 4807 0, offset); 4808 else 4809 memset(kaddr + (block_start - page_offset(page)) + offset, 4810 0, len); 4811 flush_dcache_page(page); 4812 kunmap(page); 4813 } 4814 ClearPageChecked(page); 4815 set_page_dirty(page); 4816 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4817 GFP_NOFS); 4818 4819 out_unlock: 4820 if (ret) 4821 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4822 blocksize); 4823 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4824 unlock_page(page); 4825 put_page(page); 4826 out: 4827 extent_changeset_free(data_reserved); 4828 return ret; 4829 } 4830 4831 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4832 u64 offset, u64 len) 4833 { 4834 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4835 struct btrfs_trans_handle *trans; 4836 int ret; 4837 4838 /* 4839 * Still need to make sure the inode looks like it's been updated so 4840 * that any holes get logged if we fsync. 4841 */ 4842 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4843 BTRFS_I(inode)->last_trans = fs_info->generation; 4844 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4845 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4846 return 0; 4847 } 4848 4849 /* 4850 * 1 - for the one we're dropping 4851 * 1 - for the one we're adding 4852 * 1 - for updating the inode. 4853 */ 4854 trans = btrfs_start_transaction(root, 3); 4855 if (IS_ERR(trans)) 4856 return PTR_ERR(trans); 4857 4858 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4859 if (ret) { 4860 btrfs_abort_transaction(trans, ret); 4861 btrfs_end_transaction(trans); 4862 return ret; 4863 } 4864 4865 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4866 offset, 0, 0, len, 0, len, 0, 0, 0); 4867 if (ret) 4868 btrfs_abort_transaction(trans, ret); 4869 else 4870 btrfs_update_inode(trans, root, inode); 4871 btrfs_end_transaction(trans); 4872 return ret; 4873 } 4874 4875 /* 4876 * This function puts in dummy file extents for the area we're creating a hole 4877 * for. So if we are truncating this file to a larger size we need to insert 4878 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4879 * the range between oldsize and size 4880 */ 4881 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4882 { 4883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4884 struct btrfs_root *root = BTRFS_I(inode)->root; 4885 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4886 struct extent_map *em = NULL; 4887 struct extent_state *cached_state = NULL; 4888 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4889 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4890 u64 block_end = ALIGN(size, fs_info->sectorsize); 4891 u64 last_byte; 4892 u64 cur_offset; 4893 u64 hole_size; 4894 int err = 0; 4895 4896 /* 4897 * If our size started in the middle of a block we need to zero out the 4898 * rest of the block before we expand the i_size, otherwise we could 4899 * expose stale data. 4900 */ 4901 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4902 if (err) 4903 return err; 4904 4905 if (size <= hole_start) 4906 return 0; 4907 4908 while (1) { 4909 struct btrfs_ordered_extent *ordered; 4910 4911 lock_extent_bits(io_tree, hole_start, block_end - 1, 4912 &cached_state); 4913 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 4914 block_end - hole_start); 4915 if (!ordered) 4916 break; 4917 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4918 &cached_state, GFP_NOFS); 4919 btrfs_start_ordered_extent(inode, ordered, 1); 4920 btrfs_put_ordered_extent(ordered); 4921 } 4922 4923 cur_offset = hole_start; 4924 while (1) { 4925 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4926 block_end - cur_offset, 0); 4927 if (IS_ERR(em)) { 4928 err = PTR_ERR(em); 4929 em = NULL; 4930 break; 4931 } 4932 last_byte = min(extent_map_end(em), block_end); 4933 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4934 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4935 struct extent_map *hole_em; 4936 hole_size = last_byte - cur_offset; 4937 4938 err = maybe_insert_hole(root, inode, cur_offset, 4939 hole_size); 4940 if (err) 4941 break; 4942 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4943 cur_offset + hole_size - 1, 0); 4944 hole_em = alloc_extent_map(); 4945 if (!hole_em) { 4946 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4947 &BTRFS_I(inode)->runtime_flags); 4948 goto next; 4949 } 4950 hole_em->start = cur_offset; 4951 hole_em->len = hole_size; 4952 hole_em->orig_start = cur_offset; 4953 4954 hole_em->block_start = EXTENT_MAP_HOLE; 4955 hole_em->block_len = 0; 4956 hole_em->orig_block_len = 0; 4957 hole_em->ram_bytes = hole_size; 4958 hole_em->bdev = fs_info->fs_devices->latest_bdev; 4959 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4960 hole_em->generation = fs_info->generation; 4961 4962 while (1) { 4963 write_lock(&em_tree->lock); 4964 err = add_extent_mapping(em_tree, hole_em, 1); 4965 write_unlock(&em_tree->lock); 4966 if (err != -EEXIST) 4967 break; 4968 btrfs_drop_extent_cache(BTRFS_I(inode), 4969 cur_offset, 4970 cur_offset + 4971 hole_size - 1, 0); 4972 } 4973 free_extent_map(hole_em); 4974 } 4975 next: 4976 free_extent_map(em); 4977 em = NULL; 4978 cur_offset = last_byte; 4979 if (cur_offset >= block_end) 4980 break; 4981 } 4982 free_extent_map(em); 4983 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4984 GFP_NOFS); 4985 return err; 4986 } 4987 4988 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4989 { 4990 struct btrfs_root *root = BTRFS_I(inode)->root; 4991 struct btrfs_trans_handle *trans; 4992 loff_t oldsize = i_size_read(inode); 4993 loff_t newsize = attr->ia_size; 4994 int mask = attr->ia_valid; 4995 int ret; 4996 4997 /* 4998 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4999 * special case where we need to update the times despite not having 5000 * these flags set. For all other operations the VFS set these flags 5001 * explicitly if it wants a timestamp update. 5002 */ 5003 if (newsize != oldsize) { 5004 inode_inc_iversion(inode); 5005 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5006 inode->i_ctime = inode->i_mtime = 5007 current_time(inode); 5008 } 5009 5010 if (newsize > oldsize) { 5011 /* 5012 * Don't do an expanding truncate while snapshotting is ongoing. 5013 * This is to ensure the snapshot captures a fully consistent 5014 * state of this file - if the snapshot captures this expanding 5015 * truncation, it must capture all writes that happened before 5016 * this truncation. 5017 */ 5018 btrfs_wait_for_snapshot_creation(root); 5019 ret = btrfs_cont_expand(inode, oldsize, newsize); 5020 if (ret) { 5021 btrfs_end_write_no_snapshotting(root); 5022 return ret; 5023 } 5024 5025 trans = btrfs_start_transaction(root, 1); 5026 if (IS_ERR(trans)) { 5027 btrfs_end_write_no_snapshotting(root); 5028 return PTR_ERR(trans); 5029 } 5030 5031 i_size_write(inode, newsize); 5032 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5033 pagecache_isize_extended(inode, oldsize, newsize); 5034 ret = btrfs_update_inode(trans, root, inode); 5035 btrfs_end_write_no_snapshotting(root); 5036 btrfs_end_transaction(trans); 5037 } else { 5038 5039 /* 5040 * We're truncating a file that used to have good data down to 5041 * zero. Make sure it gets into the ordered flush list so that 5042 * any new writes get down to disk quickly. 5043 */ 5044 if (newsize == 0) 5045 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5046 &BTRFS_I(inode)->runtime_flags); 5047 5048 /* 5049 * 1 for the orphan item we're going to add 5050 * 1 for the orphan item deletion. 5051 */ 5052 trans = btrfs_start_transaction(root, 2); 5053 if (IS_ERR(trans)) 5054 return PTR_ERR(trans); 5055 5056 /* 5057 * We need to do this in case we fail at _any_ point during the 5058 * actual truncate. Once we do the truncate_setsize we could 5059 * invalidate pages which forces any outstanding ordered io to 5060 * be instantly completed which will give us extents that need 5061 * to be truncated. If we fail to get an orphan inode down we 5062 * could have left over extents that were never meant to live, 5063 * so we need to guarantee from this point on that everything 5064 * will be consistent. 5065 */ 5066 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 5067 btrfs_end_transaction(trans); 5068 if (ret) 5069 return ret; 5070 5071 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5072 truncate_setsize(inode, newsize); 5073 5074 /* Disable nonlocked read DIO to avoid the end less truncate */ 5075 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5076 inode_dio_wait(inode); 5077 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5078 5079 ret = btrfs_truncate(inode); 5080 if (ret && inode->i_nlink) { 5081 int err; 5082 5083 /* To get a stable disk_i_size */ 5084 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5085 if (err) { 5086 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5087 return err; 5088 } 5089 5090 /* 5091 * failed to truncate, disk_i_size is only adjusted down 5092 * as we remove extents, so it should represent the true 5093 * size of the inode, so reset the in memory size and 5094 * delete our orphan entry. 5095 */ 5096 trans = btrfs_join_transaction(root); 5097 if (IS_ERR(trans)) { 5098 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5099 return ret; 5100 } 5101 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5102 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 5103 if (err) 5104 btrfs_abort_transaction(trans, err); 5105 btrfs_end_transaction(trans); 5106 } 5107 } 5108 5109 return ret; 5110 } 5111 5112 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5113 { 5114 struct inode *inode = d_inode(dentry); 5115 struct btrfs_root *root = BTRFS_I(inode)->root; 5116 int err; 5117 5118 if (btrfs_root_readonly(root)) 5119 return -EROFS; 5120 5121 err = setattr_prepare(dentry, attr); 5122 if (err) 5123 return err; 5124 5125 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5126 err = btrfs_setsize(inode, attr); 5127 if (err) 5128 return err; 5129 } 5130 5131 if (attr->ia_valid) { 5132 setattr_copy(inode, attr); 5133 inode_inc_iversion(inode); 5134 err = btrfs_dirty_inode(inode); 5135 5136 if (!err && attr->ia_valid & ATTR_MODE) 5137 err = posix_acl_chmod(inode, inode->i_mode); 5138 } 5139 5140 return err; 5141 } 5142 5143 /* 5144 * While truncating the inode pages during eviction, we get the VFS calling 5145 * btrfs_invalidatepage() against each page of the inode. This is slow because 5146 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5147 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5148 * extent_state structures over and over, wasting lots of time. 5149 * 5150 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5151 * those expensive operations on a per page basis and do only the ordered io 5152 * finishing, while we release here the extent_map and extent_state structures, 5153 * without the excessive merging and splitting. 5154 */ 5155 static void evict_inode_truncate_pages(struct inode *inode) 5156 { 5157 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5158 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5159 struct rb_node *node; 5160 5161 ASSERT(inode->i_state & I_FREEING); 5162 truncate_inode_pages_final(&inode->i_data); 5163 5164 write_lock(&map_tree->lock); 5165 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5166 struct extent_map *em; 5167 5168 node = rb_first(&map_tree->map); 5169 em = rb_entry(node, struct extent_map, rb_node); 5170 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5171 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5172 remove_extent_mapping(map_tree, em); 5173 free_extent_map(em); 5174 if (need_resched()) { 5175 write_unlock(&map_tree->lock); 5176 cond_resched(); 5177 write_lock(&map_tree->lock); 5178 } 5179 } 5180 write_unlock(&map_tree->lock); 5181 5182 /* 5183 * Keep looping until we have no more ranges in the io tree. 5184 * We can have ongoing bios started by readpages (called from readahead) 5185 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5186 * still in progress (unlocked the pages in the bio but did not yet 5187 * unlocked the ranges in the io tree). Therefore this means some 5188 * ranges can still be locked and eviction started because before 5189 * submitting those bios, which are executed by a separate task (work 5190 * queue kthread), inode references (inode->i_count) were not taken 5191 * (which would be dropped in the end io callback of each bio). 5192 * Therefore here we effectively end up waiting for those bios and 5193 * anyone else holding locked ranges without having bumped the inode's 5194 * reference count - if we don't do it, when they access the inode's 5195 * io_tree to unlock a range it may be too late, leading to an 5196 * use-after-free issue. 5197 */ 5198 spin_lock(&io_tree->lock); 5199 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5200 struct extent_state *state; 5201 struct extent_state *cached_state = NULL; 5202 u64 start; 5203 u64 end; 5204 5205 node = rb_first(&io_tree->state); 5206 state = rb_entry(node, struct extent_state, rb_node); 5207 start = state->start; 5208 end = state->end; 5209 spin_unlock(&io_tree->lock); 5210 5211 lock_extent_bits(io_tree, start, end, &cached_state); 5212 5213 /* 5214 * If still has DELALLOC flag, the extent didn't reach disk, 5215 * and its reserved space won't be freed by delayed_ref. 5216 * So we need to free its reserved space here. 5217 * (Refer to comment in btrfs_invalidatepage, case 2) 5218 * 5219 * Note, end is the bytenr of last byte, so we need + 1 here. 5220 */ 5221 if (state->state & EXTENT_DELALLOC) 5222 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5223 5224 clear_extent_bit(io_tree, start, end, 5225 EXTENT_LOCKED | EXTENT_DIRTY | 5226 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5227 EXTENT_DEFRAG, 1, 1, 5228 &cached_state, GFP_NOFS); 5229 5230 cond_resched(); 5231 spin_lock(&io_tree->lock); 5232 } 5233 spin_unlock(&io_tree->lock); 5234 } 5235 5236 void btrfs_evict_inode(struct inode *inode) 5237 { 5238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5239 struct btrfs_trans_handle *trans; 5240 struct btrfs_root *root = BTRFS_I(inode)->root; 5241 struct btrfs_block_rsv *rsv, *global_rsv; 5242 int steal_from_global = 0; 5243 u64 min_size; 5244 int ret; 5245 5246 trace_btrfs_inode_evict(inode); 5247 5248 if (!root) { 5249 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 5250 return; 5251 } 5252 5253 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5254 5255 evict_inode_truncate_pages(inode); 5256 5257 if (inode->i_nlink && 5258 ((btrfs_root_refs(&root->root_item) != 0 && 5259 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5260 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5261 goto no_delete; 5262 5263 if (is_bad_inode(inode)) { 5264 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5265 goto no_delete; 5266 } 5267 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5268 if (!special_file(inode->i_mode)) 5269 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5270 5271 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5272 5273 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 5274 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5275 &BTRFS_I(inode)->runtime_flags)); 5276 goto no_delete; 5277 } 5278 5279 if (inode->i_nlink > 0) { 5280 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5281 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5282 goto no_delete; 5283 } 5284 5285 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5286 if (ret) { 5287 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5288 goto no_delete; 5289 } 5290 5291 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5292 if (!rsv) { 5293 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5294 goto no_delete; 5295 } 5296 rsv->size = min_size; 5297 rsv->failfast = 1; 5298 global_rsv = &fs_info->global_block_rsv; 5299 5300 btrfs_i_size_write(BTRFS_I(inode), 0); 5301 5302 /* 5303 * This is a bit simpler than btrfs_truncate since we've already 5304 * reserved our space for our orphan item in the unlink, so we just 5305 * need to reserve some slack space in case we add bytes and update 5306 * inode item when doing the truncate. 5307 */ 5308 while (1) { 5309 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5310 BTRFS_RESERVE_FLUSH_LIMIT); 5311 5312 /* 5313 * Try and steal from the global reserve since we will 5314 * likely not use this space anyway, we want to try as 5315 * hard as possible to get this to work. 5316 */ 5317 if (ret) 5318 steal_from_global++; 5319 else 5320 steal_from_global = 0; 5321 ret = 0; 5322 5323 /* 5324 * steal_from_global == 0: we reserved stuff, hooray! 5325 * steal_from_global == 1: we didn't reserve stuff, boo! 5326 * steal_from_global == 2: we've committed, still not a lot of 5327 * room but maybe we'll have room in the global reserve this 5328 * time. 5329 * steal_from_global == 3: abandon all hope! 5330 */ 5331 if (steal_from_global > 2) { 5332 btrfs_warn(fs_info, 5333 "Could not get space for a delete, will truncate on mount %d", 5334 ret); 5335 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5336 btrfs_free_block_rsv(fs_info, rsv); 5337 goto no_delete; 5338 } 5339 5340 trans = btrfs_join_transaction(root); 5341 if (IS_ERR(trans)) { 5342 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5343 btrfs_free_block_rsv(fs_info, rsv); 5344 goto no_delete; 5345 } 5346 5347 /* 5348 * We can't just steal from the global reserve, we need to make 5349 * sure there is room to do it, if not we need to commit and try 5350 * again. 5351 */ 5352 if (steal_from_global) { 5353 if (!btrfs_check_space_for_delayed_refs(trans, fs_info)) 5354 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5355 min_size, 0); 5356 else 5357 ret = -ENOSPC; 5358 } 5359 5360 /* 5361 * Couldn't steal from the global reserve, we have too much 5362 * pending stuff built up, commit the transaction and try it 5363 * again. 5364 */ 5365 if (ret) { 5366 ret = btrfs_commit_transaction(trans); 5367 if (ret) { 5368 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5369 btrfs_free_block_rsv(fs_info, rsv); 5370 goto no_delete; 5371 } 5372 continue; 5373 } else { 5374 steal_from_global = 0; 5375 } 5376 5377 trans->block_rsv = rsv; 5378 5379 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5380 if (ret != -ENOSPC && ret != -EAGAIN) 5381 break; 5382 5383 trans->block_rsv = &fs_info->trans_block_rsv; 5384 btrfs_end_transaction(trans); 5385 trans = NULL; 5386 btrfs_btree_balance_dirty(fs_info); 5387 } 5388 5389 btrfs_free_block_rsv(fs_info, rsv); 5390 5391 /* 5392 * Errors here aren't a big deal, it just means we leave orphan items 5393 * in the tree. They will be cleaned up on the next mount. 5394 */ 5395 if (ret == 0) { 5396 trans->block_rsv = root->orphan_block_rsv; 5397 btrfs_orphan_del(trans, BTRFS_I(inode)); 5398 } else { 5399 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5400 } 5401 5402 trans->block_rsv = &fs_info->trans_block_rsv; 5403 if (!(root == fs_info->tree_root || 5404 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5405 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5406 5407 btrfs_end_transaction(trans); 5408 btrfs_btree_balance_dirty(fs_info); 5409 no_delete: 5410 btrfs_remove_delayed_node(BTRFS_I(inode)); 5411 clear_inode(inode); 5412 } 5413 5414 /* 5415 * this returns the key found in the dir entry in the location pointer. 5416 * If no dir entries were found, location->objectid is 0. 5417 */ 5418 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5419 struct btrfs_key *location) 5420 { 5421 const char *name = dentry->d_name.name; 5422 int namelen = dentry->d_name.len; 5423 struct btrfs_dir_item *di; 5424 struct btrfs_path *path; 5425 struct btrfs_root *root = BTRFS_I(dir)->root; 5426 int ret = 0; 5427 5428 path = btrfs_alloc_path(); 5429 if (!path) 5430 return -ENOMEM; 5431 5432 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5433 name, namelen, 0); 5434 if (IS_ERR(di)) 5435 ret = PTR_ERR(di); 5436 5437 if (IS_ERR_OR_NULL(di)) 5438 goto out_err; 5439 5440 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5441 out: 5442 btrfs_free_path(path); 5443 return ret; 5444 out_err: 5445 location->objectid = 0; 5446 goto out; 5447 } 5448 5449 /* 5450 * when we hit a tree root in a directory, the btrfs part of the inode 5451 * needs to be changed to reflect the root directory of the tree root. This 5452 * is kind of like crossing a mount point. 5453 */ 5454 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5455 struct inode *dir, 5456 struct dentry *dentry, 5457 struct btrfs_key *location, 5458 struct btrfs_root **sub_root) 5459 { 5460 struct btrfs_path *path; 5461 struct btrfs_root *new_root; 5462 struct btrfs_root_ref *ref; 5463 struct extent_buffer *leaf; 5464 struct btrfs_key key; 5465 int ret; 5466 int err = 0; 5467 5468 path = btrfs_alloc_path(); 5469 if (!path) { 5470 err = -ENOMEM; 5471 goto out; 5472 } 5473 5474 err = -ENOENT; 5475 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5476 key.type = BTRFS_ROOT_REF_KEY; 5477 key.offset = location->objectid; 5478 5479 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5480 if (ret) { 5481 if (ret < 0) 5482 err = ret; 5483 goto out; 5484 } 5485 5486 leaf = path->nodes[0]; 5487 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5488 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5489 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5490 goto out; 5491 5492 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5493 (unsigned long)(ref + 1), 5494 dentry->d_name.len); 5495 if (ret) 5496 goto out; 5497 5498 btrfs_release_path(path); 5499 5500 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5501 if (IS_ERR(new_root)) { 5502 err = PTR_ERR(new_root); 5503 goto out; 5504 } 5505 5506 *sub_root = new_root; 5507 location->objectid = btrfs_root_dirid(&new_root->root_item); 5508 location->type = BTRFS_INODE_ITEM_KEY; 5509 location->offset = 0; 5510 err = 0; 5511 out: 5512 btrfs_free_path(path); 5513 return err; 5514 } 5515 5516 static void inode_tree_add(struct inode *inode) 5517 { 5518 struct btrfs_root *root = BTRFS_I(inode)->root; 5519 struct btrfs_inode *entry; 5520 struct rb_node **p; 5521 struct rb_node *parent; 5522 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5523 u64 ino = btrfs_ino(BTRFS_I(inode)); 5524 5525 if (inode_unhashed(inode)) 5526 return; 5527 parent = NULL; 5528 spin_lock(&root->inode_lock); 5529 p = &root->inode_tree.rb_node; 5530 while (*p) { 5531 parent = *p; 5532 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5533 5534 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5535 p = &parent->rb_left; 5536 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5537 p = &parent->rb_right; 5538 else { 5539 WARN_ON(!(entry->vfs_inode.i_state & 5540 (I_WILL_FREE | I_FREEING))); 5541 rb_replace_node(parent, new, &root->inode_tree); 5542 RB_CLEAR_NODE(parent); 5543 spin_unlock(&root->inode_lock); 5544 return; 5545 } 5546 } 5547 rb_link_node(new, parent, p); 5548 rb_insert_color(new, &root->inode_tree); 5549 spin_unlock(&root->inode_lock); 5550 } 5551 5552 static void inode_tree_del(struct inode *inode) 5553 { 5554 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5555 struct btrfs_root *root = BTRFS_I(inode)->root; 5556 int empty = 0; 5557 5558 spin_lock(&root->inode_lock); 5559 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5560 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5561 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5562 empty = RB_EMPTY_ROOT(&root->inode_tree); 5563 } 5564 spin_unlock(&root->inode_lock); 5565 5566 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5567 synchronize_srcu(&fs_info->subvol_srcu); 5568 spin_lock(&root->inode_lock); 5569 empty = RB_EMPTY_ROOT(&root->inode_tree); 5570 spin_unlock(&root->inode_lock); 5571 if (empty) 5572 btrfs_add_dead_root(root); 5573 } 5574 } 5575 5576 void btrfs_invalidate_inodes(struct btrfs_root *root) 5577 { 5578 struct btrfs_fs_info *fs_info = root->fs_info; 5579 struct rb_node *node; 5580 struct rb_node *prev; 5581 struct btrfs_inode *entry; 5582 struct inode *inode; 5583 u64 objectid = 0; 5584 5585 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 5586 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5587 5588 spin_lock(&root->inode_lock); 5589 again: 5590 node = root->inode_tree.rb_node; 5591 prev = NULL; 5592 while (node) { 5593 prev = node; 5594 entry = rb_entry(node, struct btrfs_inode, rb_node); 5595 5596 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5597 node = node->rb_left; 5598 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5599 node = node->rb_right; 5600 else 5601 break; 5602 } 5603 if (!node) { 5604 while (prev) { 5605 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5606 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) { 5607 node = prev; 5608 break; 5609 } 5610 prev = rb_next(prev); 5611 } 5612 } 5613 while (node) { 5614 entry = rb_entry(node, struct btrfs_inode, rb_node); 5615 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1; 5616 inode = igrab(&entry->vfs_inode); 5617 if (inode) { 5618 spin_unlock(&root->inode_lock); 5619 if (atomic_read(&inode->i_count) > 1) 5620 d_prune_aliases(inode); 5621 /* 5622 * btrfs_drop_inode will have it removed from 5623 * the inode cache when its usage count 5624 * hits zero. 5625 */ 5626 iput(inode); 5627 cond_resched(); 5628 spin_lock(&root->inode_lock); 5629 goto again; 5630 } 5631 5632 if (cond_resched_lock(&root->inode_lock)) 5633 goto again; 5634 5635 node = rb_next(node); 5636 } 5637 spin_unlock(&root->inode_lock); 5638 } 5639 5640 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5641 { 5642 struct btrfs_iget_args *args = p; 5643 inode->i_ino = args->location->objectid; 5644 memcpy(&BTRFS_I(inode)->location, args->location, 5645 sizeof(*args->location)); 5646 BTRFS_I(inode)->root = args->root; 5647 return 0; 5648 } 5649 5650 static int btrfs_find_actor(struct inode *inode, void *opaque) 5651 { 5652 struct btrfs_iget_args *args = opaque; 5653 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5654 args->root == BTRFS_I(inode)->root; 5655 } 5656 5657 static struct inode *btrfs_iget_locked(struct super_block *s, 5658 struct btrfs_key *location, 5659 struct btrfs_root *root) 5660 { 5661 struct inode *inode; 5662 struct btrfs_iget_args args; 5663 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5664 5665 args.location = location; 5666 args.root = root; 5667 5668 inode = iget5_locked(s, hashval, btrfs_find_actor, 5669 btrfs_init_locked_inode, 5670 (void *)&args); 5671 return inode; 5672 } 5673 5674 /* Get an inode object given its location and corresponding root. 5675 * Returns in *is_new if the inode was read from disk 5676 */ 5677 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5678 struct btrfs_root *root, int *new) 5679 { 5680 struct inode *inode; 5681 5682 inode = btrfs_iget_locked(s, location, root); 5683 if (!inode) 5684 return ERR_PTR(-ENOMEM); 5685 5686 if (inode->i_state & I_NEW) { 5687 int ret; 5688 5689 ret = btrfs_read_locked_inode(inode); 5690 if (!is_bad_inode(inode)) { 5691 inode_tree_add(inode); 5692 unlock_new_inode(inode); 5693 if (new) 5694 *new = 1; 5695 } else { 5696 unlock_new_inode(inode); 5697 iput(inode); 5698 ASSERT(ret < 0); 5699 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5700 } 5701 } 5702 5703 return inode; 5704 } 5705 5706 static struct inode *new_simple_dir(struct super_block *s, 5707 struct btrfs_key *key, 5708 struct btrfs_root *root) 5709 { 5710 struct inode *inode = new_inode(s); 5711 5712 if (!inode) 5713 return ERR_PTR(-ENOMEM); 5714 5715 BTRFS_I(inode)->root = root; 5716 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5717 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5718 5719 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5720 inode->i_op = &btrfs_dir_ro_inode_operations; 5721 inode->i_opflags &= ~IOP_XATTR; 5722 inode->i_fop = &simple_dir_operations; 5723 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5724 inode->i_mtime = current_time(inode); 5725 inode->i_atime = inode->i_mtime; 5726 inode->i_ctime = inode->i_mtime; 5727 BTRFS_I(inode)->i_otime = inode->i_mtime; 5728 5729 return inode; 5730 } 5731 5732 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5733 { 5734 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5735 struct inode *inode; 5736 struct btrfs_root *root = BTRFS_I(dir)->root; 5737 struct btrfs_root *sub_root = root; 5738 struct btrfs_key location; 5739 int index; 5740 int ret = 0; 5741 5742 if (dentry->d_name.len > BTRFS_NAME_LEN) 5743 return ERR_PTR(-ENAMETOOLONG); 5744 5745 ret = btrfs_inode_by_name(dir, dentry, &location); 5746 if (ret < 0) 5747 return ERR_PTR(ret); 5748 5749 if (location.objectid == 0) 5750 return ERR_PTR(-ENOENT); 5751 5752 if (location.type == BTRFS_INODE_ITEM_KEY) { 5753 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5754 return inode; 5755 } 5756 5757 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5758 5759 index = srcu_read_lock(&fs_info->subvol_srcu); 5760 ret = fixup_tree_root_location(fs_info, dir, dentry, 5761 &location, &sub_root); 5762 if (ret < 0) { 5763 if (ret != -ENOENT) 5764 inode = ERR_PTR(ret); 5765 else 5766 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5767 } else { 5768 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5769 } 5770 srcu_read_unlock(&fs_info->subvol_srcu, index); 5771 5772 if (!IS_ERR(inode) && root != sub_root) { 5773 down_read(&fs_info->cleanup_work_sem); 5774 if (!sb_rdonly(inode->i_sb)) 5775 ret = btrfs_orphan_cleanup(sub_root); 5776 up_read(&fs_info->cleanup_work_sem); 5777 if (ret) { 5778 iput(inode); 5779 inode = ERR_PTR(ret); 5780 } 5781 } 5782 5783 return inode; 5784 } 5785 5786 static int btrfs_dentry_delete(const struct dentry *dentry) 5787 { 5788 struct btrfs_root *root; 5789 struct inode *inode = d_inode(dentry); 5790 5791 if (!inode && !IS_ROOT(dentry)) 5792 inode = d_inode(dentry->d_parent); 5793 5794 if (inode) { 5795 root = BTRFS_I(inode)->root; 5796 if (btrfs_root_refs(&root->root_item) == 0) 5797 return 1; 5798 5799 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5800 return 1; 5801 } 5802 return 0; 5803 } 5804 5805 static void btrfs_dentry_release(struct dentry *dentry) 5806 { 5807 kfree(dentry->d_fsdata); 5808 } 5809 5810 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5811 unsigned int flags) 5812 { 5813 struct inode *inode; 5814 5815 inode = btrfs_lookup_dentry(dir, dentry); 5816 if (IS_ERR(inode)) { 5817 if (PTR_ERR(inode) == -ENOENT) 5818 inode = NULL; 5819 else 5820 return ERR_CAST(inode); 5821 } 5822 5823 return d_splice_alias(inode, dentry); 5824 } 5825 5826 unsigned char btrfs_filetype_table[] = { 5827 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5828 }; 5829 5830 /* 5831 * All this infrastructure exists because dir_emit can fault, and we are holding 5832 * the tree lock when doing readdir. For now just allocate a buffer and copy 5833 * our information into that, and then dir_emit from the buffer. This is 5834 * similar to what NFS does, only we don't keep the buffer around in pagecache 5835 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5836 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5837 * tree lock. 5838 */ 5839 static int btrfs_opendir(struct inode *inode, struct file *file) 5840 { 5841 struct btrfs_file_private *private; 5842 5843 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5844 if (!private) 5845 return -ENOMEM; 5846 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5847 if (!private->filldir_buf) { 5848 kfree(private); 5849 return -ENOMEM; 5850 } 5851 file->private_data = private; 5852 return 0; 5853 } 5854 5855 struct dir_entry { 5856 u64 ino; 5857 u64 offset; 5858 unsigned type; 5859 int name_len; 5860 }; 5861 5862 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5863 { 5864 while (entries--) { 5865 struct dir_entry *entry = addr; 5866 char *name = (char *)(entry + 1); 5867 5868 ctx->pos = entry->offset; 5869 if (!dir_emit(ctx, name, entry->name_len, entry->ino, 5870 entry->type)) 5871 return 1; 5872 addr += sizeof(struct dir_entry) + entry->name_len; 5873 ctx->pos++; 5874 } 5875 return 0; 5876 } 5877 5878 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5879 { 5880 struct inode *inode = file_inode(file); 5881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5882 struct btrfs_root *root = BTRFS_I(inode)->root; 5883 struct btrfs_file_private *private = file->private_data; 5884 struct btrfs_dir_item *di; 5885 struct btrfs_key key; 5886 struct btrfs_key found_key; 5887 struct btrfs_path *path; 5888 void *addr; 5889 struct list_head ins_list; 5890 struct list_head del_list; 5891 int ret; 5892 struct extent_buffer *leaf; 5893 int slot; 5894 char *name_ptr; 5895 int name_len; 5896 int entries = 0; 5897 int total_len = 0; 5898 bool put = false; 5899 struct btrfs_key location; 5900 5901 if (!dir_emit_dots(file, ctx)) 5902 return 0; 5903 5904 path = btrfs_alloc_path(); 5905 if (!path) 5906 return -ENOMEM; 5907 5908 addr = private->filldir_buf; 5909 path->reada = READA_FORWARD; 5910 5911 INIT_LIST_HEAD(&ins_list); 5912 INIT_LIST_HEAD(&del_list); 5913 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5914 5915 again: 5916 key.type = BTRFS_DIR_INDEX_KEY; 5917 key.offset = ctx->pos; 5918 key.objectid = btrfs_ino(BTRFS_I(inode)); 5919 5920 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5921 if (ret < 0) 5922 goto err; 5923 5924 while (1) { 5925 struct dir_entry *entry; 5926 5927 leaf = path->nodes[0]; 5928 slot = path->slots[0]; 5929 if (slot >= btrfs_header_nritems(leaf)) { 5930 ret = btrfs_next_leaf(root, path); 5931 if (ret < 0) 5932 goto err; 5933 else if (ret > 0) 5934 break; 5935 continue; 5936 } 5937 5938 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5939 5940 if (found_key.objectid != key.objectid) 5941 break; 5942 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5943 break; 5944 if (found_key.offset < ctx->pos) 5945 goto next; 5946 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5947 goto next; 5948 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5949 if (verify_dir_item(fs_info, leaf, slot, di)) 5950 goto next; 5951 5952 name_len = btrfs_dir_name_len(leaf, di); 5953 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5954 PAGE_SIZE) { 5955 btrfs_release_path(path); 5956 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5957 if (ret) 5958 goto nopos; 5959 addr = private->filldir_buf; 5960 entries = 0; 5961 total_len = 0; 5962 goto again; 5963 } 5964 5965 entry = addr; 5966 entry->name_len = name_len; 5967 name_ptr = (char *)(entry + 1); 5968 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5969 name_len); 5970 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5971 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5972 entry->ino = location.objectid; 5973 entry->offset = found_key.offset; 5974 entries++; 5975 addr += sizeof(struct dir_entry) + name_len; 5976 total_len += sizeof(struct dir_entry) + name_len; 5977 next: 5978 path->slots[0]++; 5979 } 5980 btrfs_release_path(path); 5981 5982 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5983 if (ret) 5984 goto nopos; 5985 5986 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5987 if (ret) 5988 goto nopos; 5989 5990 /* 5991 * Stop new entries from being returned after we return the last 5992 * entry. 5993 * 5994 * New directory entries are assigned a strictly increasing 5995 * offset. This means that new entries created during readdir 5996 * are *guaranteed* to be seen in the future by that readdir. 5997 * This has broken buggy programs which operate on names as 5998 * they're returned by readdir. Until we re-use freed offsets 5999 * we have this hack to stop new entries from being returned 6000 * under the assumption that they'll never reach this huge 6001 * offset. 6002 * 6003 * This is being careful not to overflow 32bit loff_t unless the 6004 * last entry requires it because doing so has broken 32bit apps 6005 * in the past. 6006 */ 6007 if (ctx->pos >= INT_MAX) 6008 ctx->pos = LLONG_MAX; 6009 else 6010 ctx->pos = INT_MAX; 6011 nopos: 6012 ret = 0; 6013 err: 6014 if (put) 6015 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6016 btrfs_free_path(path); 6017 return ret; 6018 } 6019 6020 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 6021 { 6022 struct btrfs_root *root = BTRFS_I(inode)->root; 6023 struct btrfs_trans_handle *trans; 6024 int ret = 0; 6025 bool nolock = false; 6026 6027 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6028 return 0; 6029 6030 if (btrfs_fs_closing(root->fs_info) && 6031 btrfs_is_free_space_inode(BTRFS_I(inode))) 6032 nolock = true; 6033 6034 if (wbc->sync_mode == WB_SYNC_ALL) { 6035 if (nolock) 6036 trans = btrfs_join_transaction_nolock(root); 6037 else 6038 trans = btrfs_join_transaction(root); 6039 if (IS_ERR(trans)) 6040 return PTR_ERR(trans); 6041 ret = btrfs_commit_transaction(trans); 6042 } 6043 return ret; 6044 } 6045 6046 /* 6047 * This is somewhat expensive, updating the tree every time the 6048 * inode changes. But, it is most likely to find the inode in cache. 6049 * FIXME, needs more benchmarking...there are no reasons other than performance 6050 * to keep or drop this code. 6051 */ 6052 static int btrfs_dirty_inode(struct inode *inode) 6053 { 6054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6055 struct btrfs_root *root = BTRFS_I(inode)->root; 6056 struct btrfs_trans_handle *trans; 6057 int ret; 6058 6059 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6060 return 0; 6061 6062 trans = btrfs_join_transaction(root); 6063 if (IS_ERR(trans)) 6064 return PTR_ERR(trans); 6065 6066 ret = btrfs_update_inode(trans, root, inode); 6067 if (ret && ret == -ENOSPC) { 6068 /* whoops, lets try again with the full transaction */ 6069 btrfs_end_transaction(trans); 6070 trans = btrfs_start_transaction(root, 1); 6071 if (IS_ERR(trans)) 6072 return PTR_ERR(trans); 6073 6074 ret = btrfs_update_inode(trans, root, inode); 6075 } 6076 btrfs_end_transaction(trans); 6077 if (BTRFS_I(inode)->delayed_node) 6078 btrfs_balance_delayed_items(fs_info); 6079 6080 return ret; 6081 } 6082 6083 /* 6084 * This is a copy of file_update_time. We need this so we can return error on 6085 * ENOSPC for updating the inode in the case of file write and mmap writes. 6086 */ 6087 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6088 int flags) 6089 { 6090 struct btrfs_root *root = BTRFS_I(inode)->root; 6091 6092 if (btrfs_root_readonly(root)) 6093 return -EROFS; 6094 6095 if (flags & S_VERSION) 6096 inode_inc_iversion(inode); 6097 if (flags & S_CTIME) 6098 inode->i_ctime = *now; 6099 if (flags & S_MTIME) 6100 inode->i_mtime = *now; 6101 if (flags & S_ATIME) 6102 inode->i_atime = *now; 6103 return btrfs_dirty_inode(inode); 6104 } 6105 6106 /* 6107 * find the highest existing sequence number in a directory 6108 * and then set the in-memory index_cnt variable to reflect 6109 * free sequence numbers 6110 */ 6111 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6112 { 6113 struct btrfs_root *root = inode->root; 6114 struct btrfs_key key, found_key; 6115 struct btrfs_path *path; 6116 struct extent_buffer *leaf; 6117 int ret; 6118 6119 key.objectid = btrfs_ino(inode); 6120 key.type = BTRFS_DIR_INDEX_KEY; 6121 key.offset = (u64)-1; 6122 6123 path = btrfs_alloc_path(); 6124 if (!path) 6125 return -ENOMEM; 6126 6127 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6128 if (ret < 0) 6129 goto out; 6130 /* FIXME: we should be able to handle this */ 6131 if (ret == 0) 6132 goto out; 6133 ret = 0; 6134 6135 /* 6136 * MAGIC NUMBER EXPLANATION: 6137 * since we search a directory based on f_pos we have to start at 2 6138 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6139 * else has to start at 2 6140 */ 6141 if (path->slots[0] == 0) { 6142 inode->index_cnt = 2; 6143 goto out; 6144 } 6145 6146 path->slots[0]--; 6147 6148 leaf = path->nodes[0]; 6149 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6150 6151 if (found_key.objectid != btrfs_ino(inode) || 6152 found_key.type != BTRFS_DIR_INDEX_KEY) { 6153 inode->index_cnt = 2; 6154 goto out; 6155 } 6156 6157 inode->index_cnt = found_key.offset + 1; 6158 out: 6159 btrfs_free_path(path); 6160 return ret; 6161 } 6162 6163 /* 6164 * helper to find a free sequence number in a given directory. This current 6165 * code is very simple, later versions will do smarter things in the btree 6166 */ 6167 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6168 { 6169 int ret = 0; 6170 6171 if (dir->index_cnt == (u64)-1) { 6172 ret = btrfs_inode_delayed_dir_index_count(dir); 6173 if (ret) { 6174 ret = btrfs_set_inode_index_count(dir); 6175 if (ret) 6176 return ret; 6177 } 6178 } 6179 6180 *index = dir->index_cnt; 6181 dir->index_cnt++; 6182 6183 return ret; 6184 } 6185 6186 static int btrfs_insert_inode_locked(struct inode *inode) 6187 { 6188 struct btrfs_iget_args args; 6189 args.location = &BTRFS_I(inode)->location; 6190 args.root = BTRFS_I(inode)->root; 6191 6192 return insert_inode_locked4(inode, 6193 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6194 btrfs_find_actor, &args); 6195 } 6196 6197 /* 6198 * Inherit flags from the parent inode. 6199 * 6200 * Currently only the compression flags and the cow flags are inherited. 6201 */ 6202 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6203 { 6204 unsigned int flags; 6205 6206 if (!dir) 6207 return; 6208 6209 flags = BTRFS_I(dir)->flags; 6210 6211 if (flags & BTRFS_INODE_NOCOMPRESS) { 6212 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6213 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6214 } else if (flags & BTRFS_INODE_COMPRESS) { 6215 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6216 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6217 } 6218 6219 if (flags & BTRFS_INODE_NODATACOW) { 6220 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6221 if (S_ISREG(inode->i_mode)) 6222 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6223 } 6224 6225 btrfs_update_iflags(inode); 6226 } 6227 6228 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6229 struct btrfs_root *root, 6230 struct inode *dir, 6231 const char *name, int name_len, 6232 u64 ref_objectid, u64 objectid, 6233 umode_t mode, u64 *index) 6234 { 6235 struct btrfs_fs_info *fs_info = root->fs_info; 6236 struct inode *inode; 6237 struct btrfs_inode_item *inode_item; 6238 struct btrfs_key *location; 6239 struct btrfs_path *path; 6240 struct btrfs_inode_ref *ref; 6241 struct btrfs_key key[2]; 6242 u32 sizes[2]; 6243 int nitems = name ? 2 : 1; 6244 unsigned long ptr; 6245 int ret; 6246 6247 path = btrfs_alloc_path(); 6248 if (!path) 6249 return ERR_PTR(-ENOMEM); 6250 6251 inode = new_inode(fs_info->sb); 6252 if (!inode) { 6253 btrfs_free_path(path); 6254 return ERR_PTR(-ENOMEM); 6255 } 6256 6257 /* 6258 * O_TMPFILE, set link count to 0, so that after this point, 6259 * we fill in an inode item with the correct link count. 6260 */ 6261 if (!name) 6262 set_nlink(inode, 0); 6263 6264 /* 6265 * we have to initialize this early, so we can reclaim the inode 6266 * number if we fail afterwards in this function. 6267 */ 6268 inode->i_ino = objectid; 6269 6270 if (dir && name) { 6271 trace_btrfs_inode_request(dir); 6272 6273 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6274 if (ret) { 6275 btrfs_free_path(path); 6276 iput(inode); 6277 return ERR_PTR(ret); 6278 } 6279 } else if (dir) { 6280 *index = 0; 6281 } 6282 /* 6283 * index_cnt is ignored for everything but a dir, 6284 * btrfs_get_inode_index_count has an explanation for the magic 6285 * number 6286 */ 6287 BTRFS_I(inode)->index_cnt = 2; 6288 BTRFS_I(inode)->dir_index = *index; 6289 BTRFS_I(inode)->root = root; 6290 BTRFS_I(inode)->generation = trans->transid; 6291 inode->i_generation = BTRFS_I(inode)->generation; 6292 6293 /* 6294 * We could have gotten an inode number from somebody who was fsynced 6295 * and then removed in this same transaction, so let's just set full 6296 * sync since it will be a full sync anyway and this will blow away the 6297 * old info in the log. 6298 */ 6299 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6300 6301 key[0].objectid = objectid; 6302 key[0].type = BTRFS_INODE_ITEM_KEY; 6303 key[0].offset = 0; 6304 6305 sizes[0] = sizeof(struct btrfs_inode_item); 6306 6307 if (name) { 6308 /* 6309 * Start new inodes with an inode_ref. This is slightly more 6310 * efficient for small numbers of hard links since they will 6311 * be packed into one item. Extended refs will kick in if we 6312 * add more hard links than can fit in the ref item. 6313 */ 6314 key[1].objectid = objectid; 6315 key[1].type = BTRFS_INODE_REF_KEY; 6316 key[1].offset = ref_objectid; 6317 6318 sizes[1] = name_len + sizeof(*ref); 6319 } 6320 6321 location = &BTRFS_I(inode)->location; 6322 location->objectid = objectid; 6323 location->offset = 0; 6324 location->type = BTRFS_INODE_ITEM_KEY; 6325 6326 ret = btrfs_insert_inode_locked(inode); 6327 if (ret < 0) 6328 goto fail; 6329 6330 path->leave_spinning = 1; 6331 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6332 if (ret != 0) 6333 goto fail_unlock; 6334 6335 inode_init_owner(inode, dir, mode); 6336 inode_set_bytes(inode, 0); 6337 6338 inode->i_mtime = current_time(inode); 6339 inode->i_atime = inode->i_mtime; 6340 inode->i_ctime = inode->i_mtime; 6341 BTRFS_I(inode)->i_otime = inode->i_mtime; 6342 6343 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6344 struct btrfs_inode_item); 6345 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6346 sizeof(*inode_item)); 6347 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6348 6349 if (name) { 6350 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6351 struct btrfs_inode_ref); 6352 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6353 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6354 ptr = (unsigned long)(ref + 1); 6355 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6356 } 6357 6358 btrfs_mark_buffer_dirty(path->nodes[0]); 6359 btrfs_free_path(path); 6360 6361 btrfs_inherit_iflags(inode, dir); 6362 6363 if (S_ISREG(mode)) { 6364 if (btrfs_test_opt(fs_info, NODATASUM)) 6365 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6366 if (btrfs_test_opt(fs_info, NODATACOW)) 6367 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6368 BTRFS_INODE_NODATASUM; 6369 } 6370 6371 inode_tree_add(inode); 6372 6373 trace_btrfs_inode_new(inode); 6374 btrfs_set_inode_last_trans(trans, inode); 6375 6376 btrfs_update_root_times(trans, root); 6377 6378 ret = btrfs_inode_inherit_props(trans, inode, dir); 6379 if (ret) 6380 btrfs_err(fs_info, 6381 "error inheriting props for ino %llu (root %llu): %d", 6382 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6383 6384 return inode; 6385 6386 fail_unlock: 6387 unlock_new_inode(inode); 6388 fail: 6389 if (dir && name) 6390 BTRFS_I(dir)->index_cnt--; 6391 btrfs_free_path(path); 6392 iput(inode); 6393 return ERR_PTR(ret); 6394 } 6395 6396 static inline u8 btrfs_inode_type(struct inode *inode) 6397 { 6398 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6399 } 6400 6401 /* 6402 * utility function to add 'inode' into 'parent_inode' with 6403 * a give name and a given sequence number. 6404 * if 'add_backref' is true, also insert a backref from the 6405 * inode to the parent directory. 6406 */ 6407 int btrfs_add_link(struct btrfs_trans_handle *trans, 6408 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6409 const char *name, int name_len, int add_backref, u64 index) 6410 { 6411 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6412 int ret = 0; 6413 struct btrfs_key key; 6414 struct btrfs_root *root = parent_inode->root; 6415 u64 ino = btrfs_ino(inode); 6416 u64 parent_ino = btrfs_ino(parent_inode); 6417 6418 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6419 memcpy(&key, &inode->root->root_key, sizeof(key)); 6420 } else { 6421 key.objectid = ino; 6422 key.type = BTRFS_INODE_ITEM_KEY; 6423 key.offset = 0; 6424 } 6425 6426 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6427 ret = btrfs_add_root_ref(trans, fs_info, key.objectid, 6428 root->root_key.objectid, parent_ino, 6429 index, name, name_len); 6430 } else if (add_backref) { 6431 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6432 parent_ino, index); 6433 } 6434 6435 /* Nothing to clean up yet */ 6436 if (ret) 6437 return ret; 6438 6439 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6440 parent_inode, &key, 6441 btrfs_inode_type(&inode->vfs_inode), index); 6442 if (ret == -EEXIST || ret == -EOVERFLOW) 6443 goto fail_dir_item; 6444 else if (ret) { 6445 btrfs_abort_transaction(trans, ret); 6446 return ret; 6447 } 6448 6449 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6450 name_len * 2); 6451 inode_inc_iversion(&parent_inode->vfs_inode); 6452 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6453 current_time(&parent_inode->vfs_inode); 6454 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6455 if (ret) 6456 btrfs_abort_transaction(trans, ret); 6457 return ret; 6458 6459 fail_dir_item: 6460 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6461 u64 local_index; 6462 int err; 6463 err = btrfs_del_root_ref(trans, fs_info, key.objectid, 6464 root->root_key.objectid, parent_ino, 6465 &local_index, name, name_len); 6466 6467 } else if (add_backref) { 6468 u64 local_index; 6469 int err; 6470 6471 err = btrfs_del_inode_ref(trans, root, name, name_len, 6472 ino, parent_ino, &local_index); 6473 } 6474 return ret; 6475 } 6476 6477 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6478 struct btrfs_inode *dir, struct dentry *dentry, 6479 struct btrfs_inode *inode, int backref, u64 index) 6480 { 6481 int err = btrfs_add_link(trans, dir, inode, 6482 dentry->d_name.name, dentry->d_name.len, 6483 backref, index); 6484 if (err > 0) 6485 err = -EEXIST; 6486 return err; 6487 } 6488 6489 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6490 umode_t mode, dev_t rdev) 6491 { 6492 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6493 struct btrfs_trans_handle *trans; 6494 struct btrfs_root *root = BTRFS_I(dir)->root; 6495 struct inode *inode = NULL; 6496 int err; 6497 int drop_inode = 0; 6498 u64 objectid; 6499 u64 index = 0; 6500 6501 /* 6502 * 2 for inode item and ref 6503 * 2 for dir items 6504 * 1 for xattr if selinux is on 6505 */ 6506 trans = btrfs_start_transaction(root, 5); 6507 if (IS_ERR(trans)) 6508 return PTR_ERR(trans); 6509 6510 err = btrfs_find_free_ino(root, &objectid); 6511 if (err) 6512 goto out_unlock; 6513 6514 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6515 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6516 mode, &index); 6517 if (IS_ERR(inode)) { 6518 err = PTR_ERR(inode); 6519 goto out_unlock; 6520 } 6521 6522 /* 6523 * If the active LSM wants to access the inode during 6524 * d_instantiate it needs these. Smack checks to see 6525 * if the filesystem supports xattrs by looking at the 6526 * ops vector. 6527 */ 6528 inode->i_op = &btrfs_special_inode_operations; 6529 init_special_inode(inode, inode->i_mode, rdev); 6530 6531 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6532 if (err) 6533 goto out_unlock_inode; 6534 6535 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6536 0, index); 6537 if (err) { 6538 goto out_unlock_inode; 6539 } else { 6540 btrfs_update_inode(trans, root, inode); 6541 unlock_new_inode(inode); 6542 d_instantiate(dentry, inode); 6543 } 6544 6545 out_unlock: 6546 btrfs_end_transaction(trans); 6547 btrfs_balance_delayed_items(fs_info); 6548 btrfs_btree_balance_dirty(fs_info); 6549 if (drop_inode) { 6550 inode_dec_link_count(inode); 6551 iput(inode); 6552 } 6553 return err; 6554 6555 out_unlock_inode: 6556 drop_inode = 1; 6557 unlock_new_inode(inode); 6558 goto out_unlock; 6559 6560 } 6561 6562 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6563 umode_t mode, bool excl) 6564 { 6565 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6566 struct btrfs_trans_handle *trans; 6567 struct btrfs_root *root = BTRFS_I(dir)->root; 6568 struct inode *inode = NULL; 6569 int drop_inode_on_err = 0; 6570 int err; 6571 u64 objectid; 6572 u64 index = 0; 6573 6574 /* 6575 * 2 for inode item and ref 6576 * 2 for dir items 6577 * 1 for xattr if selinux is on 6578 */ 6579 trans = btrfs_start_transaction(root, 5); 6580 if (IS_ERR(trans)) 6581 return PTR_ERR(trans); 6582 6583 err = btrfs_find_free_ino(root, &objectid); 6584 if (err) 6585 goto out_unlock; 6586 6587 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6588 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6589 mode, &index); 6590 if (IS_ERR(inode)) { 6591 err = PTR_ERR(inode); 6592 goto out_unlock; 6593 } 6594 drop_inode_on_err = 1; 6595 /* 6596 * If the active LSM wants to access the inode during 6597 * d_instantiate it needs these. Smack checks to see 6598 * if the filesystem supports xattrs by looking at the 6599 * ops vector. 6600 */ 6601 inode->i_fop = &btrfs_file_operations; 6602 inode->i_op = &btrfs_file_inode_operations; 6603 inode->i_mapping->a_ops = &btrfs_aops; 6604 6605 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6606 if (err) 6607 goto out_unlock_inode; 6608 6609 err = btrfs_update_inode(trans, root, inode); 6610 if (err) 6611 goto out_unlock_inode; 6612 6613 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6614 0, index); 6615 if (err) 6616 goto out_unlock_inode; 6617 6618 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6619 unlock_new_inode(inode); 6620 d_instantiate(dentry, inode); 6621 6622 out_unlock: 6623 btrfs_end_transaction(trans); 6624 if (err && drop_inode_on_err) { 6625 inode_dec_link_count(inode); 6626 iput(inode); 6627 } 6628 btrfs_balance_delayed_items(fs_info); 6629 btrfs_btree_balance_dirty(fs_info); 6630 return err; 6631 6632 out_unlock_inode: 6633 unlock_new_inode(inode); 6634 goto out_unlock; 6635 6636 } 6637 6638 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6639 struct dentry *dentry) 6640 { 6641 struct btrfs_trans_handle *trans = NULL; 6642 struct btrfs_root *root = BTRFS_I(dir)->root; 6643 struct inode *inode = d_inode(old_dentry); 6644 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6645 u64 index; 6646 int err; 6647 int drop_inode = 0; 6648 6649 /* do not allow sys_link's with other subvols of the same device */ 6650 if (root->objectid != BTRFS_I(inode)->root->objectid) 6651 return -EXDEV; 6652 6653 if (inode->i_nlink >= BTRFS_LINK_MAX) 6654 return -EMLINK; 6655 6656 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6657 if (err) 6658 goto fail; 6659 6660 /* 6661 * 2 items for inode and inode ref 6662 * 2 items for dir items 6663 * 1 item for parent inode 6664 */ 6665 trans = btrfs_start_transaction(root, 5); 6666 if (IS_ERR(trans)) { 6667 err = PTR_ERR(trans); 6668 trans = NULL; 6669 goto fail; 6670 } 6671 6672 /* There are several dir indexes for this inode, clear the cache. */ 6673 BTRFS_I(inode)->dir_index = 0ULL; 6674 inc_nlink(inode); 6675 inode_inc_iversion(inode); 6676 inode->i_ctime = current_time(inode); 6677 ihold(inode); 6678 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6679 6680 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6681 1, index); 6682 6683 if (err) { 6684 drop_inode = 1; 6685 } else { 6686 struct dentry *parent = dentry->d_parent; 6687 err = btrfs_update_inode(trans, root, inode); 6688 if (err) 6689 goto fail; 6690 if (inode->i_nlink == 1) { 6691 /* 6692 * If new hard link count is 1, it's a file created 6693 * with open(2) O_TMPFILE flag. 6694 */ 6695 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6696 if (err) 6697 goto fail; 6698 } 6699 d_instantiate(dentry, inode); 6700 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6701 } 6702 6703 btrfs_balance_delayed_items(fs_info); 6704 fail: 6705 if (trans) 6706 btrfs_end_transaction(trans); 6707 if (drop_inode) { 6708 inode_dec_link_count(inode); 6709 iput(inode); 6710 } 6711 btrfs_btree_balance_dirty(fs_info); 6712 return err; 6713 } 6714 6715 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6716 { 6717 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6718 struct inode *inode = NULL; 6719 struct btrfs_trans_handle *trans; 6720 struct btrfs_root *root = BTRFS_I(dir)->root; 6721 int err = 0; 6722 int drop_on_err = 0; 6723 u64 objectid = 0; 6724 u64 index = 0; 6725 6726 /* 6727 * 2 items for inode and ref 6728 * 2 items for dir items 6729 * 1 for xattr if selinux is on 6730 */ 6731 trans = btrfs_start_transaction(root, 5); 6732 if (IS_ERR(trans)) 6733 return PTR_ERR(trans); 6734 6735 err = btrfs_find_free_ino(root, &objectid); 6736 if (err) 6737 goto out_fail; 6738 6739 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6740 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6741 S_IFDIR | mode, &index); 6742 if (IS_ERR(inode)) { 6743 err = PTR_ERR(inode); 6744 goto out_fail; 6745 } 6746 6747 drop_on_err = 1; 6748 /* these must be set before we unlock the inode */ 6749 inode->i_op = &btrfs_dir_inode_operations; 6750 inode->i_fop = &btrfs_dir_file_operations; 6751 6752 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6753 if (err) 6754 goto out_fail_inode; 6755 6756 btrfs_i_size_write(BTRFS_I(inode), 0); 6757 err = btrfs_update_inode(trans, root, inode); 6758 if (err) 6759 goto out_fail_inode; 6760 6761 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6762 dentry->d_name.name, 6763 dentry->d_name.len, 0, index); 6764 if (err) 6765 goto out_fail_inode; 6766 6767 d_instantiate(dentry, inode); 6768 /* 6769 * mkdir is special. We're unlocking after we call d_instantiate 6770 * to avoid a race with nfsd calling d_instantiate. 6771 */ 6772 unlock_new_inode(inode); 6773 drop_on_err = 0; 6774 6775 out_fail: 6776 btrfs_end_transaction(trans); 6777 if (drop_on_err) { 6778 inode_dec_link_count(inode); 6779 iput(inode); 6780 } 6781 btrfs_balance_delayed_items(fs_info); 6782 btrfs_btree_balance_dirty(fs_info); 6783 return err; 6784 6785 out_fail_inode: 6786 unlock_new_inode(inode); 6787 goto out_fail; 6788 } 6789 6790 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6791 static struct extent_map *next_extent_map(struct extent_map *em) 6792 { 6793 struct rb_node *next; 6794 6795 next = rb_next(&em->rb_node); 6796 if (!next) 6797 return NULL; 6798 return container_of(next, struct extent_map, rb_node); 6799 } 6800 6801 static struct extent_map *prev_extent_map(struct extent_map *em) 6802 { 6803 struct rb_node *prev; 6804 6805 prev = rb_prev(&em->rb_node); 6806 if (!prev) 6807 return NULL; 6808 return container_of(prev, struct extent_map, rb_node); 6809 } 6810 6811 /* helper for btfs_get_extent. Given an existing extent in the tree, 6812 * the existing extent is the nearest extent to map_start, 6813 * and an extent that you want to insert, deal with overlap and insert 6814 * the best fitted new extent into the tree. 6815 */ 6816 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6817 struct extent_map *existing, 6818 struct extent_map *em, 6819 u64 map_start) 6820 { 6821 struct extent_map *prev; 6822 struct extent_map *next; 6823 u64 start; 6824 u64 end; 6825 u64 start_diff; 6826 6827 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6828 6829 if (existing->start > map_start) { 6830 next = existing; 6831 prev = prev_extent_map(next); 6832 } else { 6833 prev = existing; 6834 next = next_extent_map(prev); 6835 } 6836 6837 start = prev ? extent_map_end(prev) : em->start; 6838 start = max_t(u64, start, em->start); 6839 end = next ? next->start : extent_map_end(em); 6840 end = min_t(u64, end, extent_map_end(em)); 6841 start_diff = start - em->start; 6842 em->start = start; 6843 em->len = end - start; 6844 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6845 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6846 em->block_start += start_diff; 6847 em->block_len -= start_diff; 6848 } 6849 return add_extent_mapping(em_tree, em, 0); 6850 } 6851 6852 static noinline int uncompress_inline(struct btrfs_path *path, 6853 struct page *page, 6854 size_t pg_offset, u64 extent_offset, 6855 struct btrfs_file_extent_item *item) 6856 { 6857 int ret; 6858 struct extent_buffer *leaf = path->nodes[0]; 6859 char *tmp; 6860 size_t max_size; 6861 unsigned long inline_size; 6862 unsigned long ptr; 6863 int compress_type; 6864 6865 WARN_ON(pg_offset != 0); 6866 compress_type = btrfs_file_extent_compression(leaf, item); 6867 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6868 inline_size = btrfs_file_extent_inline_item_len(leaf, 6869 btrfs_item_nr(path->slots[0])); 6870 tmp = kmalloc(inline_size, GFP_NOFS); 6871 if (!tmp) 6872 return -ENOMEM; 6873 ptr = btrfs_file_extent_inline_start(item); 6874 6875 read_extent_buffer(leaf, tmp, ptr, inline_size); 6876 6877 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6878 ret = btrfs_decompress(compress_type, tmp, page, 6879 extent_offset, inline_size, max_size); 6880 6881 /* 6882 * decompression code contains a memset to fill in any space between the end 6883 * of the uncompressed data and the end of max_size in case the decompressed 6884 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6885 * the end of an inline extent and the beginning of the next block, so we 6886 * cover that region here. 6887 */ 6888 6889 if (max_size + pg_offset < PAGE_SIZE) { 6890 char *map = kmap(page); 6891 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6892 kunmap(page); 6893 } 6894 kfree(tmp); 6895 return ret; 6896 } 6897 6898 /* 6899 * a bit scary, this does extent mapping from logical file offset to the disk. 6900 * the ugly parts come from merging extents from the disk with the in-ram 6901 * representation. This gets more complex because of the data=ordered code, 6902 * where the in-ram extents might be locked pending data=ordered completion. 6903 * 6904 * This also copies inline extents directly into the page. 6905 */ 6906 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6907 struct page *page, 6908 size_t pg_offset, u64 start, u64 len, 6909 int create) 6910 { 6911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6912 int ret; 6913 int err = 0; 6914 u64 extent_start = 0; 6915 u64 extent_end = 0; 6916 u64 objectid = btrfs_ino(inode); 6917 u32 found_type; 6918 struct btrfs_path *path = NULL; 6919 struct btrfs_root *root = inode->root; 6920 struct btrfs_file_extent_item *item; 6921 struct extent_buffer *leaf; 6922 struct btrfs_key found_key; 6923 struct extent_map *em = NULL; 6924 struct extent_map_tree *em_tree = &inode->extent_tree; 6925 struct extent_io_tree *io_tree = &inode->io_tree; 6926 struct btrfs_trans_handle *trans = NULL; 6927 const bool new_inline = !page || create; 6928 6929 again: 6930 read_lock(&em_tree->lock); 6931 em = lookup_extent_mapping(em_tree, start, len); 6932 if (em) 6933 em->bdev = fs_info->fs_devices->latest_bdev; 6934 read_unlock(&em_tree->lock); 6935 6936 if (em) { 6937 if (em->start > start || em->start + em->len <= start) 6938 free_extent_map(em); 6939 else if (em->block_start == EXTENT_MAP_INLINE && page) 6940 free_extent_map(em); 6941 else 6942 goto out; 6943 } 6944 em = alloc_extent_map(); 6945 if (!em) { 6946 err = -ENOMEM; 6947 goto out; 6948 } 6949 em->bdev = fs_info->fs_devices->latest_bdev; 6950 em->start = EXTENT_MAP_HOLE; 6951 em->orig_start = EXTENT_MAP_HOLE; 6952 em->len = (u64)-1; 6953 em->block_len = (u64)-1; 6954 6955 if (!path) { 6956 path = btrfs_alloc_path(); 6957 if (!path) { 6958 err = -ENOMEM; 6959 goto out; 6960 } 6961 /* 6962 * Chances are we'll be called again, so go ahead and do 6963 * readahead 6964 */ 6965 path->reada = READA_FORWARD; 6966 } 6967 6968 ret = btrfs_lookup_file_extent(trans, root, path, 6969 objectid, start, trans != NULL); 6970 if (ret < 0) { 6971 err = ret; 6972 goto out; 6973 } 6974 6975 if (ret != 0) { 6976 if (path->slots[0] == 0) 6977 goto not_found; 6978 path->slots[0]--; 6979 } 6980 6981 leaf = path->nodes[0]; 6982 item = btrfs_item_ptr(leaf, path->slots[0], 6983 struct btrfs_file_extent_item); 6984 /* are we inside the extent that was found? */ 6985 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6986 found_type = found_key.type; 6987 if (found_key.objectid != objectid || 6988 found_type != BTRFS_EXTENT_DATA_KEY) { 6989 /* 6990 * If we backup past the first extent we want to move forward 6991 * and see if there is an extent in front of us, otherwise we'll 6992 * say there is a hole for our whole search range which can 6993 * cause problems. 6994 */ 6995 extent_end = start; 6996 goto next; 6997 } 6998 6999 found_type = btrfs_file_extent_type(leaf, item); 7000 extent_start = found_key.offset; 7001 if (found_type == BTRFS_FILE_EXTENT_REG || 7002 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7003 extent_end = extent_start + 7004 btrfs_file_extent_num_bytes(leaf, item); 7005 7006 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7007 extent_start); 7008 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7009 size_t size; 7010 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7011 extent_end = ALIGN(extent_start + size, 7012 fs_info->sectorsize); 7013 7014 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7015 path->slots[0], 7016 extent_start); 7017 } 7018 next: 7019 if (start >= extent_end) { 7020 path->slots[0]++; 7021 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7022 ret = btrfs_next_leaf(root, path); 7023 if (ret < 0) { 7024 err = ret; 7025 goto out; 7026 } 7027 if (ret > 0) 7028 goto not_found; 7029 leaf = path->nodes[0]; 7030 } 7031 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7032 if (found_key.objectid != objectid || 7033 found_key.type != BTRFS_EXTENT_DATA_KEY) 7034 goto not_found; 7035 if (start + len <= found_key.offset) 7036 goto not_found; 7037 if (start > found_key.offset) 7038 goto next; 7039 em->start = start; 7040 em->orig_start = start; 7041 em->len = found_key.offset - start; 7042 goto not_found_em; 7043 } 7044 7045 btrfs_extent_item_to_extent_map(inode, path, item, 7046 new_inline, em); 7047 7048 if (found_type == BTRFS_FILE_EXTENT_REG || 7049 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7050 goto insert; 7051 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7052 unsigned long ptr; 7053 char *map; 7054 size_t size; 7055 size_t extent_offset; 7056 size_t copy_size; 7057 7058 if (new_inline) 7059 goto out; 7060 7061 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7062 extent_offset = page_offset(page) + pg_offset - extent_start; 7063 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7064 size - extent_offset); 7065 em->start = extent_start + extent_offset; 7066 em->len = ALIGN(copy_size, fs_info->sectorsize); 7067 em->orig_block_len = em->len; 7068 em->orig_start = em->start; 7069 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7070 if (create == 0 && !PageUptodate(page)) { 7071 if (btrfs_file_extent_compression(leaf, item) != 7072 BTRFS_COMPRESS_NONE) { 7073 ret = uncompress_inline(path, page, pg_offset, 7074 extent_offset, item); 7075 if (ret) { 7076 err = ret; 7077 goto out; 7078 } 7079 } else { 7080 map = kmap(page); 7081 read_extent_buffer(leaf, map + pg_offset, ptr, 7082 copy_size); 7083 if (pg_offset + copy_size < PAGE_SIZE) { 7084 memset(map + pg_offset + copy_size, 0, 7085 PAGE_SIZE - pg_offset - 7086 copy_size); 7087 } 7088 kunmap(page); 7089 } 7090 flush_dcache_page(page); 7091 } else if (create && PageUptodate(page)) { 7092 BUG(); 7093 if (!trans) { 7094 kunmap(page); 7095 free_extent_map(em); 7096 em = NULL; 7097 7098 btrfs_release_path(path); 7099 trans = btrfs_join_transaction(root); 7100 7101 if (IS_ERR(trans)) 7102 return ERR_CAST(trans); 7103 goto again; 7104 } 7105 map = kmap(page); 7106 write_extent_buffer(leaf, map + pg_offset, ptr, 7107 copy_size); 7108 kunmap(page); 7109 btrfs_mark_buffer_dirty(leaf); 7110 } 7111 set_extent_uptodate(io_tree, em->start, 7112 extent_map_end(em) - 1, NULL, GFP_NOFS); 7113 goto insert; 7114 } 7115 not_found: 7116 em->start = start; 7117 em->orig_start = start; 7118 em->len = len; 7119 not_found_em: 7120 em->block_start = EXTENT_MAP_HOLE; 7121 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 7122 insert: 7123 btrfs_release_path(path); 7124 if (em->start > start || extent_map_end(em) <= start) { 7125 btrfs_err(fs_info, 7126 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7127 em->start, em->len, start, len); 7128 err = -EIO; 7129 goto out; 7130 } 7131 7132 err = 0; 7133 write_lock(&em_tree->lock); 7134 ret = add_extent_mapping(em_tree, em, 0); 7135 /* it is possible that someone inserted the extent into the tree 7136 * while we had the lock dropped. It is also possible that 7137 * an overlapping map exists in the tree 7138 */ 7139 if (ret == -EEXIST) { 7140 struct extent_map *existing; 7141 7142 ret = 0; 7143 7144 existing = search_extent_mapping(em_tree, start, len); 7145 /* 7146 * existing will always be non-NULL, since there must be 7147 * extent causing the -EEXIST. 7148 */ 7149 if (existing->start == em->start && 7150 extent_map_end(existing) >= extent_map_end(em) && 7151 em->block_start == existing->block_start) { 7152 /* 7153 * The existing extent map already encompasses the 7154 * entire extent map we tried to add. 7155 */ 7156 free_extent_map(em); 7157 em = existing; 7158 err = 0; 7159 7160 } else if (start >= extent_map_end(existing) || 7161 start <= existing->start) { 7162 /* 7163 * The existing extent map is the one nearest to 7164 * the [start, start + len) range which overlaps 7165 */ 7166 err = merge_extent_mapping(em_tree, existing, 7167 em, start); 7168 free_extent_map(existing); 7169 if (err) { 7170 free_extent_map(em); 7171 em = NULL; 7172 } 7173 } else { 7174 free_extent_map(em); 7175 em = existing; 7176 err = 0; 7177 } 7178 } 7179 write_unlock(&em_tree->lock); 7180 out: 7181 7182 trace_btrfs_get_extent(root, inode, em); 7183 7184 btrfs_free_path(path); 7185 if (trans) { 7186 ret = btrfs_end_transaction(trans); 7187 if (!err) 7188 err = ret; 7189 } 7190 if (err) { 7191 free_extent_map(em); 7192 return ERR_PTR(err); 7193 } 7194 BUG_ON(!em); /* Error is always set */ 7195 return em; 7196 } 7197 7198 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7199 struct page *page, 7200 size_t pg_offset, u64 start, u64 len, 7201 int create) 7202 { 7203 struct extent_map *em; 7204 struct extent_map *hole_em = NULL; 7205 u64 range_start = start; 7206 u64 end; 7207 u64 found; 7208 u64 found_end; 7209 int err = 0; 7210 7211 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7212 if (IS_ERR(em)) 7213 return em; 7214 /* 7215 * If our em maps to: 7216 * - a hole or 7217 * - a pre-alloc extent, 7218 * there might actually be delalloc bytes behind it. 7219 */ 7220 if (em->block_start != EXTENT_MAP_HOLE && 7221 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7222 return em; 7223 else 7224 hole_em = em; 7225 7226 /* check to see if we've wrapped (len == -1 or similar) */ 7227 end = start + len; 7228 if (end < start) 7229 end = (u64)-1; 7230 else 7231 end -= 1; 7232 7233 em = NULL; 7234 7235 /* ok, we didn't find anything, lets look for delalloc */ 7236 found = count_range_bits(&inode->io_tree, &range_start, 7237 end, len, EXTENT_DELALLOC, 1); 7238 found_end = range_start + found; 7239 if (found_end < range_start) 7240 found_end = (u64)-1; 7241 7242 /* 7243 * we didn't find anything useful, return 7244 * the original results from get_extent() 7245 */ 7246 if (range_start > end || found_end <= start) { 7247 em = hole_em; 7248 hole_em = NULL; 7249 goto out; 7250 } 7251 7252 /* adjust the range_start to make sure it doesn't 7253 * go backwards from the start they passed in 7254 */ 7255 range_start = max(start, range_start); 7256 found = found_end - range_start; 7257 7258 if (found > 0) { 7259 u64 hole_start = start; 7260 u64 hole_len = len; 7261 7262 em = alloc_extent_map(); 7263 if (!em) { 7264 err = -ENOMEM; 7265 goto out; 7266 } 7267 /* 7268 * when btrfs_get_extent can't find anything it 7269 * returns one huge hole 7270 * 7271 * make sure what it found really fits our range, and 7272 * adjust to make sure it is based on the start from 7273 * the caller 7274 */ 7275 if (hole_em) { 7276 u64 calc_end = extent_map_end(hole_em); 7277 7278 if (calc_end <= start || (hole_em->start > end)) { 7279 free_extent_map(hole_em); 7280 hole_em = NULL; 7281 } else { 7282 hole_start = max(hole_em->start, start); 7283 hole_len = calc_end - hole_start; 7284 } 7285 } 7286 em->bdev = NULL; 7287 if (hole_em && range_start > hole_start) { 7288 /* our hole starts before our delalloc, so we 7289 * have to return just the parts of the hole 7290 * that go until the delalloc starts 7291 */ 7292 em->len = min(hole_len, 7293 range_start - hole_start); 7294 em->start = hole_start; 7295 em->orig_start = hole_start; 7296 /* 7297 * don't adjust block start at all, 7298 * it is fixed at EXTENT_MAP_HOLE 7299 */ 7300 em->block_start = hole_em->block_start; 7301 em->block_len = hole_len; 7302 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7303 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7304 } else { 7305 em->start = range_start; 7306 em->len = found; 7307 em->orig_start = range_start; 7308 em->block_start = EXTENT_MAP_DELALLOC; 7309 em->block_len = found; 7310 } 7311 } else if (hole_em) { 7312 return hole_em; 7313 } 7314 out: 7315 7316 free_extent_map(hole_em); 7317 if (err) { 7318 free_extent_map(em); 7319 return ERR_PTR(err); 7320 } 7321 return em; 7322 } 7323 7324 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7325 const u64 start, 7326 const u64 len, 7327 const u64 orig_start, 7328 const u64 block_start, 7329 const u64 block_len, 7330 const u64 orig_block_len, 7331 const u64 ram_bytes, 7332 const int type) 7333 { 7334 struct extent_map *em = NULL; 7335 int ret; 7336 7337 if (type != BTRFS_ORDERED_NOCOW) { 7338 em = create_io_em(inode, start, len, orig_start, 7339 block_start, block_len, orig_block_len, 7340 ram_bytes, 7341 BTRFS_COMPRESS_NONE, /* compress_type */ 7342 type); 7343 if (IS_ERR(em)) 7344 goto out; 7345 } 7346 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7347 len, block_len, type); 7348 if (ret) { 7349 if (em) { 7350 free_extent_map(em); 7351 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7352 start + len - 1, 0); 7353 } 7354 em = ERR_PTR(ret); 7355 } 7356 out: 7357 7358 return em; 7359 } 7360 7361 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7362 u64 start, u64 len) 7363 { 7364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7365 struct btrfs_root *root = BTRFS_I(inode)->root; 7366 struct extent_map *em; 7367 struct btrfs_key ins; 7368 u64 alloc_hint; 7369 int ret; 7370 7371 alloc_hint = get_extent_allocation_hint(inode, start, len); 7372 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7373 0, alloc_hint, &ins, 1, 1); 7374 if (ret) 7375 return ERR_PTR(ret); 7376 7377 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7378 ins.objectid, ins.offset, ins.offset, 7379 ins.offset, BTRFS_ORDERED_REGULAR); 7380 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7381 if (IS_ERR(em)) 7382 btrfs_free_reserved_extent(fs_info, ins.objectid, 7383 ins.offset, 1); 7384 7385 return em; 7386 } 7387 7388 /* 7389 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7390 * block must be cow'd 7391 */ 7392 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7393 u64 *orig_start, u64 *orig_block_len, 7394 u64 *ram_bytes) 7395 { 7396 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7397 struct btrfs_path *path; 7398 int ret; 7399 struct extent_buffer *leaf; 7400 struct btrfs_root *root = BTRFS_I(inode)->root; 7401 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7402 struct btrfs_file_extent_item *fi; 7403 struct btrfs_key key; 7404 u64 disk_bytenr; 7405 u64 backref_offset; 7406 u64 extent_end; 7407 u64 num_bytes; 7408 int slot; 7409 int found_type; 7410 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7411 7412 path = btrfs_alloc_path(); 7413 if (!path) 7414 return -ENOMEM; 7415 7416 ret = btrfs_lookup_file_extent(NULL, root, path, 7417 btrfs_ino(BTRFS_I(inode)), offset, 0); 7418 if (ret < 0) 7419 goto out; 7420 7421 slot = path->slots[0]; 7422 if (ret == 1) { 7423 if (slot == 0) { 7424 /* can't find the item, must cow */ 7425 ret = 0; 7426 goto out; 7427 } 7428 slot--; 7429 } 7430 ret = 0; 7431 leaf = path->nodes[0]; 7432 btrfs_item_key_to_cpu(leaf, &key, slot); 7433 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7434 key.type != BTRFS_EXTENT_DATA_KEY) { 7435 /* not our file or wrong item type, must cow */ 7436 goto out; 7437 } 7438 7439 if (key.offset > offset) { 7440 /* Wrong offset, must cow */ 7441 goto out; 7442 } 7443 7444 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7445 found_type = btrfs_file_extent_type(leaf, fi); 7446 if (found_type != BTRFS_FILE_EXTENT_REG && 7447 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7448 /* not a regular extent, must cow */ 7449 goto out; 7450 } 7451 7452 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7453 goto out; 7454 7455 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7456 if (extent_end <= offset) 7457 goto out; 7458 7459 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7460 if (disk_bytenr == 0) 7461 goto out; 7462 7463 if (btrfs_file_extent_compression(leaf, fi) || 7464 btrfs_file_extent_encryption(leaf, fi) || 7465 btrfs_file_extent_other_encoding(leaf, fi)) 7466 goto out; 7467 7468 backref_offset = btrfs_file_extent_offset(leaf, fi); 7469 7470 if (orig_start) { 7471 *orig_start = key.offset - backref_offset; 7472 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7473 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7474 } 7475 7476 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7477 goto out; 7478 7479 num_bytes = min(offset + *len, extent_end) - offset; 7480 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7481 u64 range_end; 7482 7483 range_end = round_up(offset + num_bytes, 7484 root->fs_info->sectorsize) - 1; 7485 ret = test_range_bit(io_tree, offset, range_end, 7486 EXTENT_DELALLOC, 0, NULL); 7487 if (ret) { 7488 ret = -EAGAIN; 7489 goto out; 7490 } 7491 } 7492 7493 btrfs_release_path(path); 7494 7495 /* 7496 * look for other files referencing this extent, if we 7497 * find any we must cow 7498 */ 7499 7500 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7501 key.offset - backref_offset, disk_bytenr); 7502 if (ret) { 7503 ret = 0; 7504 goto out; 7505 } 7506 7507 /* 7508 * adjust disk_bytenr and num_bytes to cover just the bytes 7509 * in this extent we are about to write. If there 7510 * are any csums in that range we have to cow in order 7511 * to keep the csums correct 7512 */ 7513 disk_bytenr += backref_offset; 7514 disk_bytenr += offset - key.offset; 7515 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7516 goto out; 7517 /* 7518 * all of the above have passed, it is safe to overwrite this extent 7519 * without cow 7520 */ 7521 *len = num_bytes; 7522 ret = 1; 7523 out: 7524 btrfs_free_path(path); 7525 return ret; 7526 } 7527 7528 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7529 { 7530 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7531 bool found = false; 7532 void **pagep = NULL; 7533 struct page *page = NULL; 7534 unsigned long start_idx; 7535 unsigned long end_idx; 7536 7537 start_idx = start >> PAGE_SHIFT; 7538 7539 /* 7540 * end is the last byte in the last page. end == start is legal 7541 */ 7542 end_idx = end >> PAGE_SHIFT; 7543 7544 rcu_read_lock(); 7545 7546 /* Most of the code in this while loop is lifted from 7547 * find_get_page. It's been modified to begin searching from a 7548 * page and return just the first page found in that range. If the 7549 * found idx is less than or equal to the end idx then we know that 7550 * a page exists. If no pages are found or if those pages are 7551 * outside of the range then we're fine (yay!) */ 7552 while (page == NULL && 7553 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7554 page = radix_tree_deref_slot(pagep); 7555 if (unlikely(!page)) 7556 break; 7557 7558 if (radix_tree_exception(page)) { 7559 if (radix_tree_deref_retry(page)) { 7560 page = NULL; 7561 continue; 7562 } 7563 /* 7564 * Otherwise, shmem/tmpfs must be storing a swap entry 7565 * here as an exceptional entry: so return it without 7566 * attempting to raise page count. 7567 */ 7568 page = NULL; 7569 break; /* TODO: Is this relevant for this use case? */ 7570 } 7571 7572 if (!page_cache_get_speculative(page)) { 7573 page = NULL; 7574 continue; 7575 } 7576 7577 /* 7578 * Has the page moved? 7579 * This is part of the lockless pagecache protocol. See 7580 * include/linux/pagemap.h for details. 7581 */ 7582 if (unlikely(page != *pagep)) { 7583 put_page(page); 7584 page = NULL; 7585 } 7586 } 7587 7588 if (page) { 7589 if (page->index <= end_idx) 7590 found = true; 7591 put_page(page); 7592 } 7593 7594 rcu_read_unlock(); 7595 return found; 7596 } 7597 7598 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7599 struct extent_state **cached_state, int writing) 7600 { 7601 struct btrfs_ordered_extent *ordered; 7602 int ret = 0; 7603 7604 while (1) { 7605 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7606 cached_state); 7607 /* 7608 * We're concerned with the entire range that we're going to be 7609 * doing DIO to, so we need to make sure there's no ordered 7610 * extents in this range. 7611 */ 7612 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7613 lockend - lockstart + 1); 7614 7615 /* 7616 * We need to make sure there are no buffered pages in this 7617 * range either, we could have raced between the invalidate in 7618 * generic_file_direct_write and locking the extent. The 7619 * invalidate needs to happen so that reads after a write do not 7620 * get stale data. 7621 */ 7622 if (!ordered && 7623 (!writing || 7624 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7625 break; 7626 7627 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7628 cached_state, GFP_NOFS); 7629 7630 if (ordered) { 7631 /* 7632 * If we are doing a DIO read and the ordered extent we 7633 * found is for a buffered write, we can not wait for it 7634 * to complete and retry, because if we do so we can 7635 * deadlock with concurrent buffered writes on page 7636 * locks. This happens only if our DIO read covers more 7637 * than one extent map, if at this point has already 7638 * created an ordered extent for a previous extent map 7639 * and locked its range in the inode's io tree, and a 7640 * concurrent write against that previous extent map's 7641 * range and this range started (we unlock the ranges 7642 * in the io tree only when the bios complete and 7643 * buffered writes always lock pages before attempting 7644 * to lock range in the io tree). 7645 */ 7646 if (writing || 7647 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7648 btrfs_start_ordered_extent(inode, ordered, 1); 7649 else 7650 ret = -ENOTBLK; 7651 btrfs_put_ordered_extent(ordered); 7652 } else { 7653 /* 7654 * We could trigger writeback for this range (and wait 7655 * for it to complete) and then invalidate the pages for 7656 * this range (through invalidate_inode_pages2_range()), 7657 * but that can lead us to a deadlock with a concurrent 7658 * call to readpages() (a buffered read or a defrag call 7659 * triggered a readahead) on a page lock due to an 7660 * ordered dio extent we created before but did not have 7661 * yet a corresponding bio submitted (whence it can not 7662 * complete), which makes readpages() wait for that 7663 * ordered extent to complete while holding a lock on 7664 * that page. 7665 */ 7666 ret = -ENOTBLK; 7667 } 7668 7669 if (ret) 7670 break; 7671 7672 cond_resched(); 7673 } 7674 7675 return ret; 7676 } 7677 7678 /* The callers of this must take lock_extent() */ 7679 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7680 u64 orig_start, u64 block_start, 7681 u64 block_len, u64 orig_block_len, 7682 u64 ram_bytes, int compress_type, 7683 int type) 7684 { 7685 struct extent_map_tree *em_tree; 7686 struct extent_map *em; 7687 struct btrfs_root *root = BTRFS_I(inode)->root; 7688 int ret; 7689 7690 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7691 type == BTRFS_ORDERED_COMPRESSED || 7692 type == BTRFS_ORDERED_NOCOW || 7693 type == BTRFS_ORDERED_REGULAR); 7694 7695 em_tree = &BTRFS_I(inode)->extent_tree; 7696 em = alloc_extent_map(); 7697 if (!em) 7698 return ERR_PTR(-ENOMEM); 7699 7700 em->start = start; 7701 em->orig_start = orig_start; 7702 em->len = len; 7703 em->block_len = block_len; 7704 em->block_start = block_start; 7705 em->bdev = root->fs_info->fs_devices->latest_bdev; 7706 em->orig_block_len = orig_block_len; 7707 em->ram_bytes = ram_bytes; 7708 em->generation = -1; 7709 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7710 if (type == BTRFS_ORDERED_PREALLOC) { 7711 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7712 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7713 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7714 em->compress_type = compress_type; 7715 } 7716 7717 do { 7718 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7719 em->start + em->len - 1, 0); 7720 write_lock(&em_tree->lock); 7721 ret = add_extent_mapping(em_tree, em, 1); 7722 write_unlock(&em_tree->lock); 7723 /* 7724 * The caller has taken lock_extent(), who could race with us 7725 * to add em? 7726 */ 7727 } while (ret == -EEXIST); 7728 7729 if (ret) { 7730 free_extent_map(em); 7731 return ERR_PTR(ret); 7732 } 7733 7734 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7735 return em; 7736 } 7737 7738 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7739 struct buffer_head *bh_result, int create) 7740 { 7741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7742 struct extent_map *em; 7743 struct extent_state *cached_state = NULL; 7744 struct btrfs_dio_data *dio_data = NULL; 7745 u64 start = iblock << inode->i_blkbits; 7746 u64 lockstart, lockend; 7747 u64 len = bh_result->b_size; 7748 int unlock_bits = EXTENT_LOCKED; 7749 int ret = 0; 7750 7751 if (create) 7752 unlock_bits |= EXTENT_DIRTY; 7753 else 7754 len = min_t(u64, len, fs_info->sectorsize); 7755 7756 lockstart = start; 7757 lockend = start + len - 1; 7758 7759 if (current->journal_info) { 7760 /* 7761 * Need to pull our outstanding extents and set journal_info to NULL so 7762 * that anything that needs to check if there's a transaction doesn't get 7763 * confused. 7764 */ 7765 dio_data = current->journal_info; 7766 current->journal_info = NULL; 7767 } 7768 7769 /* 7770 * If this errors out it's because we couldn't invalidate pagecache for 7771 * this range and we need to fallback to buffered. 7772 */ 7773 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7774 create)) { 7775 ret = -ENOTBLK; 7776 goto err; 7777 } 7778 7779 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7780 if (IS_ERR(em)) { 7781 ret = PTR_ERR(em); 7782 goto unlock_err; 7783 } 7784 7785 /* 7786 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7787 * io. INLINE is special, and we could probably kludge it in here, but 7788 * it's still buffered so for safety lets just fall back to the generic 7789 * buffered path. 7790 * 7791 * For COMPRESSED we _have_ to read the entire extent in so we can 7792 * decompress it, so there will be buffering required no matter what we 7793 * do, so go ahead and fallback to buffered. 7794 * 7795 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7796 * to buffered IO. Don't blame me, this is the price we pay for using 7797 * the generic code. 7798 */ 7799 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7800 em->block_start == EXTENT_MAP_INLINE) { 7801 free_extent_map(em); 7802 ret = -ENOTBLK; 7803 goto unlock_err; 7804 } 7805 7806 /* Just a good old fashioned hole, return */ 7807 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7808 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7809 free_extent_map(em); 7810 goto unlock_err; 7811 } 7812 7813 /* 7814 * We don't allocate a new extent in the following cases 7815 * 7816 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7817 * existing extent. 7818 * 2) The extent is marked as PREALLOC. We're good to go here and can 7819 * just use the extent. 7820 * 7821 */ 7822 if (!create) { 7823 len = min(len, em->len - (start - em->start)); 7824 lockstart = start + len; 7825 goto unlock; 7826 } 7827 7828 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7829 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7830 em->block_start != EXTENT_MAP_HOLE)) { 7831 int type; 7832 u64 block_start, orig_start, orig_block_len, ram_bytes; 7833 7834 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7835 type = BTRFS_ORDERED_PREALLOC; 7836 else 7837 type = BTRFS_ORDERED_NOCOW; 7838 len = min(len, em->len - (start - em->start)); 7839 block_start = em->block_start + (start - em->start); 7840 7841 if (can_nocow_extent(inode, start, &len, &orig_start, 7842 &orig_block_len, &ram_bytes) == 1 && 7843 btrfs_inc_nocow_writers(fs_info, block_start)) { 7844 struct extent_map *em2; 7845 7846 em2 = btrfs_create_dio_extent(inode, start, len, 7847 orig_start, block_start, 7848 len, orig_block_len, 7849 ram_bytes, type); 7850 btrfs_dec_nocow_writers(fs_info, block_start); 7851 if (type == BTRFS_ORDERED_PREALLOC) { 7852 free_extent_map(em); 7853 em = em2; 7854 } 7855 if (em2 && IS_ERR(em2)) { 7856 ret = PTR_ERR(em2); 7857 goto unlock_err; 7858 } 7859 /* 7860 * For inode marked NODATACOW or extent marked PREALLOC, 7861 * use the existing or preallocated extent, so does not 7862 * need to adjust btrfs_space_info's bytes_may_use. 7863 */ 7864 btrfs_free_reserved_data_space_noquota(inode, 7865 start, len); 7866 goto unlock; 7867 } 7868 } 7869 7870 /* 7871 * this will cow the extent, reset the len in case we changed 7872 * it above 7873 */ 7874 len = bh_result->b_size; 7875 free_extent_map(em); 7876 em = btrfs_new_extent_direct(inode, start, len); 7877 if (IS_ERR(em)) { 7878 ret = PTR_ERR(em); 7879 goto unlock_err; 7880 } 7881 len = min(len, em->len - (start - em->start)); 7882 unlock: 7883 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7884 inode->i_blkbits; 7885 bh_result->b_size = len; 7886 bh_result->b_bdev = em->bdev; 7887 set_buffer_mapped(bh_result); 7888 if (create) { 7889 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7890 set_buffer_new(bh_result); 7891 7892 /* 7893 * Need to update the i_size under the extent lock so buffered 7894 * readers will get the updated i_size when we unlock. 7895 */ 7896 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7897 i_size_write(inode, start + len); 7898 7899 WARN_ON(dio_data->reserve < len); 7900 dio_data->reserve -= len; 7901 dio_data->unsubmitted_oe_range_end = start + len; 7902 current->journal_info = dio_data; 7903 } 7904 7905 /* 7906 * In the case of write we need to clear and unlock the entire range, 7907 * in the case of read we need to unlock only the end area that we 7908 * aren't using if there is any left over space. 7909 */ 7910 if (lockstart < lockend) { 7911 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7912 lockend, unlock_bits, 1, 0, 7913 &cached_state, GFP_NOFS); 7914 } else { 7915 free_extent_state(cached_state); 7916 } 7917 7918 free_extent_map(em); 7919 7920 return 0; 7921 7922 unlock_err: 7923 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7924 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7925 err: 7926 if (dio_data) 7927 current->journal_info = dio_data; 7928 return ret; 7929 } 7930 7931 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7932 struct bio *bio, 7933 int mirror_num) 7934 { 7935 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7936 blk_status_t ret; 7937 7938 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7939 7940 bio_get(bio); 7941 7942 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7943 if (ret) 7944 goto err; 7945 7946 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7947 err: 7948 bio_put(bio); 7949 return ret; 7950 } 7951 7952 static int btrfs_check_dio_repairable(struct inode *inode, 7953 struct bio *failed_bio, 7954 struct io_failure_record *failrec, 7955 int failed_mirror) 7956 { 7957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7958 int num_copies; 7959 7960 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7961 if (num_copies == 1) { 7962 /* 7963 * we only have a single copy of the data, so don't bother with 7964 * all the retry and error correction code that follows. no 7965 * matter what the error is, it is very likely to persist. 7966 */ 7967 btrfs_debug(fs_info, 7968 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7969 num_copies, failrec->this_mirror, failed_mirror); 7970 return 0; 7971 } 7972 7973 failrec->failed_mirror = failed_mirror; 7974 failrec->this_mirror++; 7975 if (failrec->this_mirror == failed_mirror) 7976 failrec->this_mirror++; 7977 7978 if (failrec->this_mirror > num_copies) { 7979 btrfs_debug(fs_info, 7980 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7981 num_copies, failrec->this_mirror, failed_mirror); 7982 return 0; 7983 } 7984 7985 return 1; 7986 } 7987 7988 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7989 struct page *page, unsigned int pgoff, 7990 u64 start, u64 end, int failed_mirror, 7991 bio_end_io_t *repair_endio, void *repair_arg) 7992 { 7993 struct io_failure_record *failrec; 7994 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7995 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7996 struct bio *bio; 7997 int isector; 7998 unsigned int read_mode = 0; 7999 int segs; 8000 int ret; 8001 blk_status_t status; 8002 8003 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 8004 8005 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 8006 if (ret) 8007 return errno_to_blk_status(ret); 8008 8009 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 8010 failed_mirror); 8011 if (!ret) { 8012 free_io_failure(failure_tree, io_tree, failrec); 8013 return BLK_STS_IOERR; 8014 } 8015 8016 segs = bio_segments(failed_bio); 8017 if (segs > 1 || 8018 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode))) 8019 read_mode |= REQ_FAILFAST_DEV; 8020 8021 isector = start - btrfs_io_bio(failed_bio)->logical; 8022 isector >>= inode->i_sb->s_blocksize_bits; 8023 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 8024 pgoff, isector, repair_endio, repair_arg); 8025 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 8026 8027 btrfs_debug(BTRFS_I(inode)->root->fs_info, 8028 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 8029 read_mode, failrec->this_mirror, failrec->in_validation); 8030 8031 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 8032 if (status) { 8033 free_io_failure(failure_tree, io_tree, failrec); 8034 bio_put(bio); 8035 } 8036 8037 return status; 8038 } 8039 8040 struct btrfs_retry_complete { 8041 struct completion done; 8042 struct inode *inode; 8043 u64 start; 8044 int uptodate; 8045 }; 8046 8047 static void btrfs_retry_endio_nocsum(struct bio *bio) 8048 { 8049 struct btrfs_retry_complete *done = bio->bi_private; 8050 struct inode *inode = done->inode; 8051 struct bio_vec *bvec; 8052 struct extent_io_tree *io_tree, *failure_tree; 8053 int i; 8054 8055 if (bio->bi_status) 8056 goto end; 8057 8058 ASSERT(bio->bi_vcnt == 1); 8059 io_tree = &BTRFS_I(inode)->io_tree; 8060 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8061 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode)); 8062 8063 done->uptodate = 1; 8064 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8065 bio_for_each_segment_all(bvec, bio, i) 8066 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 8067 io_tree, done->start, bvec->bv_page, 8068 btrfs_ino(BTRFS_I(inode)), 0); 8069 end: 8070 complete(&done->done); 8071 bio_put(bio); 8072 } 8073 8074 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 8075 struct btrfs_io_bio *io_bio) 8076 { 8077 struct btrfs_fs_info *fs_info; 8078 struct bio_vec bvec; 8079 struct bvec_iter iter; 8080 struct btrfs_retry_complete done; 8081 u64 start; 8082 unsigned int pgoff; 8083 u32 sectorsize; 8084 int nr_sectors; 8085 blk_status_t ret; 8086 blk_status_t err = BLK_STS_OK; 8087 8088 fs_info = BTRFS_I(inode)->root->fs_info; 8089 sectorsize = fs_info->sectorsize; 8090 8091 start = io_bio->logical; 8092 done.inode = inode; 8093 io_bio->bio.bi_iter = io_bio->iter; 8094 8095 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8096 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8097 pgoff = bvec.bv_offset; 8098 8099 next_block_or_try_again: 8100 done.uptodate = 0; 8101 done.start = start; 8102 init_completion(&done.done); 8103 8104 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8105 pgoff, start, start + sectorsize - 1, 8106 io_bio->mirror_num, 8107 btrfs_retry_endio_nocsum, &done); 8108 if (ret) { 8109 err = ret; 8110 goto next; 8111 } 8112 8113 wait_for_completion_io(&done.done); 8114 8115 if (!done.uptodate) { 8116 /* We might have another mirror, so try again */ 8117 goto next_block_or_try_again; 8118 } 8119 8120 next: 8121 start += sectorsize; 8122 8123 nr_sectors--; 8124 if (nr_sectors) { 8125 pgoff += sectorsize; 8126 ASSERT(pgoff < PAGE_SIZE); 8127 goto next_block_or_try_again; 8128 } 8129 } 8130 8131 return err; 8132 } 8133 8134 static void btrfs_retry_endio(struct bio *bio) 8135 { 8136 struct btrfs_retry_complete *done = bio->bi_private; 8137 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8138 struct extent_io_tree *io_tree, *failure_tree; 8139 struct inode *inode = done->inode; 8140 struct bio_vec *bvec; 8141 int uptodate; 8142 int ret; 8143 int i; 8144 8145 if (bio->bi_status) 8146 goto end; 8147 8148 uptodate = 1; 8149 8150 ASSERT(bio->bi_vcnt == 1); 8151 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode)); 8152 8153 io_tree = &BTRFS_I(inode)->io_tree; 8154 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8155 8156 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8157 bio_for_each_segment_all(bvec, bio, i) { 8158 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8159 bvec->bv_offset, done->start, 8160 bvec->bv_len); 8161 if (!ret) 8162 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8163 failure_tree, io_tree, done->start, 8164 bvec->bv_page, 8165 btrfs_ino(BTRFS_I(inode)), 8166 bvec->bv_offset); 8167 else 8168 uptodate = 0; 8169 } 8170 8171 done->uptodate = uptodate; 8172 end: 8173 complete(&done->done); 8174 bio_put(bio); 8175 } 8176 8177 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8178 struct btrfs_io_bio *io_bio, blk_status_t err) 8179 { 8180 struct btrfs_fs_info *fs_info; 8181 struct bio_vec bvec; 8182 struct bvec_iter iter; 8183 struct btrfs_retry_complete done; 8184 u64 start; 8185 u64 offset = 0; 8186 u32 sectorsize; 8187 int nr_sectors; 8188 unsigned int pgoff; 8189 int csum_pos; 8190 bool uptodate = (err == 0); 8191 int ret; 8192 blk_status_t status; 8193 8194 fs_info = BTRFS_I(inode)->root->fs_info; 8195 sectorsize = fs_info->sectorsize; 8196 8197 err = BLK_STS_OK; 8198 start = io_bio->logical; 8199 done.inode = inode; 8200 io_bio->bio.bi_iter = io_bio->iter; 8201 8202 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8203 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8204 8205 pgoff = bvec.bv_offset; 8206 next_block: 8207 if (uptodate) { 8208 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8209 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8210 bvec.bv_page, pgoff, start, sectorsize); 8211 if (likely(!ret)) 8212 goto next; 8213 } 8214 try_again: 8215 done.uptodate = 0; 8216 done.start = start; 8217 init_completion(&done.done); 8218 8219 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8220 pgoff, start, start + sectorsize - 1, 8221 io_bio->mirror_num, btrfs_retry_endio, 8222 &done); 8223 if (status) { 8224 err = status; 8225 goto next; 8226 } 8227 8228 wait_for_completion_io(&done.done); 8229 8230 if (!done.uptodate) { 8231 /* We might have another mirror, so try again */ 8232 goto try_again; 8233 } 8234 next: 8235 offset += sectorsize; 8236 start += sectorsize; 8237 8238 ASSERT(nr_sectors); 8239 8240 nr_sectors--; 8241 if (nr_sectors) { 8242 pgoff += sectorsize; 8243 ASSERT(pgoff < PAGE_SIZE); 8244 goto next_block; 8245 } 8246 } 8247 8248 return err; 8249 } 8250 8251 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8252 struct btrfs_io_bio *io_bio, blk_status_t err) 8253 { 8254 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8255 8256 if (skip_csum) { 8257 if (unlikely(err)) 8258 return __btrfs_correct_data_nocsum(inode, io_bio); 8259 else 8260 return BLK_STS_OK; 8261 } else { 8262 return __btrfs_subio_endio_read(inode, io_bio, err); 8263 } 8264 } 8265 8266 static void btrfs_endio_direct_read(struct bio *bio) 8267 { 8268 struct btrfs_dio_private *dip = bio->bi_private; 8269 struct inode *inode = dip->inode; 8270 struct bio *dio_bio; 8271 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8272 blk_status_t err = bio->bi_status; 8273 8274 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8275 err = btrfs_subio_endio_read(inode, io_bio, err); 8276 8277 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8278 dip->logical_offset + dip->bytes - 1); 8279 dio_bio = dip->dio_bio; 8280 8281 kfree(dip); 8282 8283 dio_bio->bi_status = err; 8284 dio_end_io(dio_bio); 8285 8286 if (io_bio->end_io) 8287 io_bio->end_io(io_bio, blk_status_to_errno(err)); 8288 bio_put(bio); 8289 } 8290 8291 static void __endio_write_update_ordered(struct inode *inode, 8292 const u64 offset, const u64 bytes, 8293 const bool uptodate) 8294 { 8295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8296 struct btrfs_ordered_extent *ordered = NULL; 8297 struct btrfs_workqueue *wq; 8298 btrfs_work_func_t func; 8299 u64 ordered_offset = offset; 8300 u64 ordered_bytes = bytes; 8301 u64 last_offset; 8302 int ret; 8303 8304 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8305 wq = fs_info->endio_freespace_worker; 8306 func = btrfs_freespace_write_helper; 8307 } else { 8308 wq = fs_info->endio_write_workers; 8309 func = btrfs_endio_write_helper; 8310 } 8311 8312 again: 8313 last_offset = ordered_offset; 8314 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8315 &ordered_offset, 8316 ordered_bytes, 8317 uptodate); 8318 if (!ret) 8319 goto out_test; 8320 8321 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL); 8322 btrfs_queue_work(wq, &ordered->work); 8323 out_test: 8324 /* 8325 * If btrfs_dec_test_ordered_pending does not find any ordered extent 8326 * in the range, we can exit. 8327 */ 8328 if (ordered_offset == last_offset) 8329 return; 8330 /* 8331 * our bio might span multiple ordered extents. If we haven't 8332 * completed the accounting for the whole dio, go back and try again 8333 */ 8334 if (ordered_offset < offset + bytes) { 8335 ordered_bytes = offset + bytes - ordered_offset; 8336 ordered = NULL; 8337 goto again; 8338 } 8339 } 8340 8341 static void btrfs_endio_direct_write(struct bio *bio) 8342 { 8343 struct btrfs_dio_private *dip = bio->bi_private; 8344 struct bio *dio_bio = dip->dio_bio; 8345 8346 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8347 dip->bytes, !bio->bi_status); 8348 8349 kfree(dip); 8350 8351 dio_bio->bi_status = bio->bi_status; 8352 dio_end_io(dio_bio); 8353 bio_put(bio); 8354 } 8355 8356 static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data, 8357 struct bio *bio, int mirror_num, 8358 unsigned long bio_flags, u64 offset) 8359 { 8360 struct inode *inode = private_data; 8361 blk_status_t ret; 8362 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8363 BUG_ON(ret); /* -ENOMEM */ 8364 return 0; 8365 } 8366 8367 static void btrfs_end_dio_bio(struct bio *bio) 8368 { 8369 struct btrfs_dio_private *dip = bio->bi_private; 8370 blk_status_t err = bio->bi_status; 8371 8372 if (err) 8373 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8374 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8375 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8376 bio->bi_opf, 8377 (unsigned long long)bio->bi_iter.bi_sector, 8378 bio->bi_iter.bi_size, err); 8379 8380 if (dip->subio_endio) 8381 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8382 8383 if (err) { 8384 dip->errors = 1; 8385 8386 /* 8387 * before atomic variable goto zero, we must make sure 8388 * dip->errors is perceived to be set. 8389 */ 8390 smp_mb__before_atomic(); 8391 } 8392 8393 /* if there are more bios still pending for this dio, just exit */ 8394 if (!atomic_dec_and_test(&dip->pending_bios)) 8395 goto out; 8396 8397 if (dip->errors) { 8398 bio_io_error(dip->orig_bio); 8399 } else { 8400 dip->dio_bio->bi_status = BLK_STS_OK; 8401 bio_endio(dip->orig_bio); 8402 } 8403 out: 8404 bio_put(bio); 8405 } 8406 8407 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8408 struct btrfs_dio_private *dip, 8409 struct bio *bio, 8410 u64 file_offset) 8411 { 8412 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8413 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8414 blk_status_t ret; 8415 8416 /* 8417 * We load all the csum data we need when we submit 8418 * the first bio to reduce the csum tree search and 8419 * contention. 8420 */ 8421 if (dip->logical_offset == file_offset) { 8422 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8423 file_offset); 8424 if (ret) 8425 return ret; 8426 } 8427 8428 if (bio == dip->orig_bio) 8429 return 0; 8430 8431 file_offset -= dip->logical_offset; 8432 file_offset >>= inode->i_sb->s_blocksize_bits; 8433 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8434 8435 return 0; 8436 } 8437 8438 static inline blk_status_t 8439 __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset, 8440 int async_submit) 8441 { 8442 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8443 struct btrfs_dio_private *dip = bio->bi_private; 8444 bool write = bio_op(bio) == REQ_OP_WRITE; 8445 blk_status_t ret; 8446 8447 if (async_submit) 8448 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8449 8450 bio_get(bio); 8451 8452 if (!write) { 8453 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8454 if (ret) 8455 goto err; 8456 } 8457 8458 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8459 goto map; 8460 8461 if (write && async_submit) { 8462 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8463 file_offset, inode, 8464 __btrfs_submit_bio_start_direct_io, 8465 __btrfs_submit_bio_done); 8466 goto err; 8467 } else if (write) { 8468 /* 8469 * If we aren't doing async submit, calculate the csum of the 8470 * bio now. 8471 */ 8472 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8473 if (ret) 8474 goto err; 8475 } else { 8476 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8477 file_offset); 8478 if (ret) 8479 goto err; 8480 } 8481 map: 8482 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8483 err: 8484 bio_put(bio); 8485 return ret; 8486 } 8487 8488 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8489 { 8490 struct inode *inode = dip->inode; 8491 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8492 struct bio *bio; 8493 struct bio *orig_bio = dip->orig_bio; 8494 u64 start_sector = orig_bio->bi_iter.bi_sector; 8495 u64 file_offset = dip->logical_offset; 8496 u64 map_length; 8497 int async_submit = 0; 8498 u64 submit_len; 8499 int clone_offset = 0; 8500 int clone_len; 8501 int ret; 8502 blk_status_t status; 8503 8504 map_length = orig_bio->bi_iter.bi_size; 8505 submit_len = map_length; 8506 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8507 &map_length, NULL, 0); 8508 if (ret) 8509 return -EIO; 8510 8511 if (map_length >= submit_len) { 8512 bio = orig_bio; 8513 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8514 goto submit; 8515 } 8516 8517 /* async crcs make it difficult to collect full stripe writes. */ 8518 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8519 async_submit = 0; 8520 else 8521 async_submit = 1; 8522 8523 /* bio split */ 8524 ASSERT(map_length <= INT_MAX); 8525 atomic_inc(&dip->pending_bios); 8526 do { 8527 clone_len = min_t(int, submit_len, map_length); 8528 8529 /* 8530 * This will never fail as it's passing GPF_NOFS and 8531 * the allocation is backed by btrfs_bioset. 8532 */ 8533 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8534 clone_len); 8535 bio->bi_private = dip; 8536 bio->bi_end_io = btrfs_end_dio_bio; 8537 btrfs_io_bio(bio)->logical = file_offset; 8538 8539 ASSERT(submit_len >= clone_len); 8540 submit_len -= clone_len; 8541 if (submit_len == 0) 8542 break; 8543 8544 /* 8545 * Increase the count before we submit the bio so we know 8546 * the end IO handler won't happen before we increase the 8547 * count. Otherwise, the dip might get freed before we're 8548 * done setting it up. 8549 */ 8550 atomic_inc(&dip->pending_bios); 8551 8552 status = __btrfs_submit_dio_bio(bio, inode, file_offset, 8553 async_submit); 8554 if (status) { 8555 bio_put(bio); 8556 atomic_dec(&dip->pending_bios); 8557 goto out_err; 8558 } 8559 8560 clone_offset += clone_len; 8561 start_sector += clone_len >> 9; 8562 file_offset += clone_len; 8563 8564 map_length = submit_len; 8565 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8566 start_sector << 9, &map_length, NULL, 0); 8567 if (ret) 8568 goto out_err; 8569 } while (submit_len > 0); 8570 8571 submit: 8572 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8573 if (!status) 8574 return 0; 8575 8576 bio_put(bio); 8577 out_err: 8578 dip->errors = 1; 8579 /* 8580 * before atomic variable goto zero, we must 8581 * make sure dip->errors is perceived to be set. 8582 */ 8583 smp_mb__before_atomic(); 8584 if (atomic_dec_and_test(&dip->pending_bios)) 8585 bio_io_error(dip->orig_bio); 8586 8587 /* bio_end_io() will handle error, so we needn't return it */ 8588 return 0; 8589 } 8590 8591 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8592 loff_t file_offset) 8593 { 8594 struct btrfs_dio_private *dip = NULL; 8595 struct bio *bio = NULL; 8596 struct btrfs_io_bio *io_bio; 8597 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8598 int ret = 0; 8599 8600 bio = btrfs_bio_clone(dio_bio); 8601 8602 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8603 if (!dip) { 8604 ret = -ENOMEM; 8605 goto free_ordered; 8606 } 8607 8608 dip->private = dio_bio->bi_private; 8609 dip->inode = inode; 8610 dip->logical_offset = file_offset; 8611 dip->bytes = dio_bio->bi_iter.bi_size; 8612 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8613 bio->bi_private = dip; 8614 dip->orig_bio = bio; 8615 dip->dio_bio = dio_bio; 8616 atomic_set(&dip->pending_bios, 0); 8617 io_bio = btrfs_io_bio(bio); 8618 io_bio->logical = file_offset; 8619 8620 if (write) { 8621 bio->bi_end_io = btrfs_endio_direct_write; 8622 } else { 8623 bio->bi_end_io = btrfs_endio_direct_read; 8624 dip->subio_endio = btrfs_subio_endio_read; 8625 } 8626 8627 /* 8628 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8629 * even if we fail to submit a bio, because in such case we do the 8630 * corresponding error handling below and it must not be done a second 8631 * time by btrfs_direct_IO(). 8632 */ 8633 if (write) { 8634 struct btrfs_dio_data *dio_data = current->journal_info; 8635 8636 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8637 dip->bytes; 8638 dio_data->unsubmitted_oe_range_start = 8639 dio_data->unsubmitted_oe_range_end; 8640 } 8641 8642 ret = btrfs_submit_direct_hook(dip); 8643 if (!ret) 8644 return; 8645 8646 if (io_bio->end_io) 8647 io_bio->end_io(io_bio, ret); 8648 8649 free_ordered: 8650 /* 8651 * If we arrived here it means either we failed to submit the dip 8652 * or we either failed to clone the dio_bio or failed to allocate the 8653 * dip. If we cloned the dio_bio and allocated the dip, we can just 8654 * call bio_endio against our io_bio so that we get proper resource 8655 * cleanup if we fail to submit the dip, otherwise, we must do the 8656 * same as btrfs_endio_direct_[write|read] because we can't call these 8657 * callbacks - they require an allocated dip and a clone of dio_bio. 8658 */ 8659 if (bio && dip) { 8660 bio_io_error(bio); 8661 /* 8662 * The end io callbacks free our dip, do the final put on bio 8663 * and all the cleanup and final put for dio_bio (through 8664 * dio_end_io()). 8665 */ 8666 dip = NULL; 8667 bio = NULL; 8668 } else { 8669 if (write) 8670 __endio_write_update_ordered(inode, 8671 file_offset, 8672 dio_bio->bi_iter.bi_size, 8673 false); 8674 else 8675 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8676 file_offset + dio_bio->bi_iter.bi_size - 1); 8677 8678 dio_bio->bi_status = BLK_STS_IOERR; 8679 /* 8680 * Releases and cleans up our dio_bio, no need to bio_put() 8681 * nor bio_endio()/bio_io_error() against dio_bio. 8682 */ 8683 dio_end_io(dio_bio); 8684 } 8685 if (bio) 8686 bio_put(bio); 8687 kfree(dip); 8688 } 8689 8690 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8691 const struct iov_iter *iter, loff_t offset) 8692 { 8693 int seg; 8694 int i; 8695 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8696 ssize_t retval = -EINVAL; 8697 8698 if (offset & blocksize_mask) 8699 goto out; 8700 8701 if (iov_iter_alignment(iter) & blocksize_mask) 8702 goto out; 8703 8704 /* If this is a write we don't need to check anymore */ 8705 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8706 return 0; 8707 /* 8708 * Check to make sure we don't have duplicate iov_base's in this 8709 * iovec, if so return EINVAL, otherwise we'll get csum errors 8710 * when reading back. 8711 */ 8712 for (seg = 0; seg < iter->nr_segs; seg++) { 8713 for (i = seg + 1; i < iter->nr_segs; i++) { 8714 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8715 goto out; 8716 } 8717 } 8718 retval = 0; 8719 out: 8720 return retval; 8721 } 8722 8723 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8724 { 8725 struct file *file = iocb->ki_filp; 8726 struct inode *inode = file->f_mapping->host; 8727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8728 struct btrfs_dio_data dio_data = { 0 }; 8729 struct extent_changeset *data_reserved = NULL; 8730 loff_t offset = iocb->ki_pos; 8731 size_t count = 0; 8732 int flags = 0; 8733 bool wakeup = true; 8734 bool relock = false; 8735 ssize_t ret; 8736 8737 if (check_direct_IO(fs_info, iter, offset)) 8738 return 0; 8739 8740 inode_dio_begin(inode); 8741 8742 /* 8743 * The generic stuff only does filemap_write_and_wait_range, which 8744 * isn't enough if we've written compressed pages to this area, so 8745 * we need to flush the dirty pages again to make absolutely sure 8746 * that any outstanding dirty pages are on disk. 8747 */ 8748 count = iov_iter_count(iter); 8749 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8750 &BTRFS_I(inode)->runtime_flags)) 8751 filemap_fdatawrite_range(inode->i_mapping, offset, 8752 offset + count - 1); 8753 8754 if (iov_iter_rw(iter) == WRITE) { 8755 /* 8756 * If the write DIO is beyond the EOF, we need update 8757 * the isize, but it is protected by i_mutex. So we can 8758 * not unlock the i_mutex at this case. 8759 */ 8760 if (offset + count <= inode->i_size) { 8761 dio_data.overwrite = 1; 8762 inode_unlock(inode); 8763 relock = true; 8764 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8765 ret = -EAGAIN; 8766 goto out; 8767 } 8768 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8769 offset, count); 8770 if (ret) 8771 goto out; 8772 8773 /* 8774 * We need to know how many extents we reserved so that we can 8775 * do the accounting properly if we go over the number we 8776 * originally calculated. Abuse current->journal_info for this. 8777 */ 8778 dio_data.reserve = round_up(count, 8779 fs_info->sectorsize); 8780 dio_data.unsubmitted_oe_range_start = (u64)offset; 8781 dio_data.unsubmitted_oe_range_end = (u64)offset; 8782 current->journal_info = &dio_data; 8783 down_read(&BTRFS_I(inode)->dio_sem); 8784 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8785 &BTRFS_I(inode)->runtime_flags)) { 8786 inode_dio_end(inode); 8787 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8788 wakeup = false; 8789 } 8790 8791 ret = __blockdev_direct_IO(iocb, inode, 8792 fs_info->fs_devices->latest_bdev, 8793 iter, btrfs_get_blocks_direct, NULL, 8794 btrfs_submit_direct, flags); 8795 if (iov_iter_rw(iter) == WRITE) { 8796 up_read(&BTRFS_I(inode)->dio_sem); 8797 current->journal_info = NULL; 8798 if (ret < 0 && ret != -EIOCBQUEUED) { 8799 if (dio_data.reserve) 8800 btrfs_delalloc_release_space(inode, data_reserved, 8801 offset, dio_data.reserve); 8802 /* 8803 * On error we might have left some ordered extents 8804 * without submitting corresponding bios for them, so 8805 * cleanup them up to avoid other tasks getting them 8806 * and waiting for them to complete forever. 8807 */ 8808 if (dio_data.unsubmitted_oe_range_start < 8809 dio_data.unsubmitted_oe_range_end) 8810 __endio_write_update_ordered(inode, 8811 dio_data.unsubmitted_oe_range_start, 8812 dio_data.unsubmitted_oe_range_end - 8813 dio_data.unsubmitted_oe_range_start, 8814 false); 8815 } else if (ret >= 0 && (size_t)ret < count) 8816 btrfs_delalloc_release_space(inode, data_reserved, 8817 offset, count - (size_t)ret); 8818 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 8819 } 8820 out: 8821 if (wakeup) 8822 inode_dio_end(inode); 8823 if (relock) 8824 inode_lock(inode); 8825 8826 extent_changeset_free(data_reserved); 8827 return ret; 8828 } 8829 8830 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8831 8832 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8833 __u64 start, __u64 len) 8834 { 8835 int ret; 8836 8837 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8838 if (ret) 8839 return ret; 8840 8841 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8842 } 8843 8844 int btrfs_readpage(struct file *file, struct page *page) 8845 { 8846 struct extent_io_tree *tree; 8847 tree = &BTRFS_I(page->mapping->host)->io_tree; 8848 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8849 } 8850 8851 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8852 { 8853 struct extent_io_tree *tree; 8854 struct inode *inode = page->mapping->host; 8855 int ret; 8856 8857 if (current->flags & PF_MEMALLOC) { 8858 redirty_page_for_writepage(wbc, page); 8859 unlock_page(page); 8860 return 0; 8861 } 8862 8863 /* 8864 * If we are under memory pressure we will call this directly from the 8865 * VM, we need to make sure we have the inode referenced for the ordered 8866 * extent. If not just return like we didn't do anything. 8867 */ 8868 if (!igrab(inode)) { 8869 redirty_page_for_writepage(wbc, page); 8870 return AOP_WRITEPAGE_ACTIVATE; 8871 } 8872 tree = &BTRFS_I(page->mapping->host)->io_tree; 8873 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8874 btrfs_add_delayed_iput(inode); 8875 return ret; 8876 } 8877 8878 static int btrfs_writepages(struct address_space *mapping, 8879 struct writeback_control *wbc) 8880 { 8881 struct extent_io_tree *tree; 8882 8883 tree = &BTRFS_I(mapping->host)->io_tree; 8884 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8885 } 8886 8887 static int 8888 btrfs_readpages(struct file *file, struct address_space *mapping, 8889 struct list_head *pages, unsigned nr_pages) 8890 { 8891 struct extent_io_tree *tree; 8892 tree = &BTRFS_I(mapping->host)->io_tree; 8893 return extent_readpages(tree, mapping, pages, nr_pages, 8894 btrfs_get_extent); 8895 } 8896 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8897 { 8898 struct extent_io_tree *tree; 8899 struct extent_map_tree *map; 8900 int ret; 8901 8902 tree = &BTRFS_I(page->mapping->host)->io_tree; 8903 map = &BTRFS_I(page->mapping->host)->extent_tree; 8904 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8905 if (ret == 1) { 8906 ClearPagePrivate(page); 8907 set_page_private(page, 0); 8908 put_page(page); 8909 } 8910 return ret; 8911 } 8912 8913 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8914 { 8915 if (PageWriteback(page) || PageDirty(page)) 8916 return 0; 8917 return __btrfs_releasepage(page, gfp_flags); 8918 } 8919 8920 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8921 unsigned int length) 8922 { 8923 struct inode *inode = page->mapping->host; 8924 struct extent_io_tree *tree; 8925 struct btrfs_ordered_extent *ordered; 8926 struct extent_state *cached_state = NULL; 8927 u64 page_start = page_offset(page); 8928 u64 page_end = page_start + PAGE_SIZE - 1; 8929 u64 start; 8930 u64 end; 8931 int inode_evicting = inode->i_state & I_FREEING; 8932 8933 /* 8934 * we have the page locked, so new writeback can't start, 8935 * and the dirty bit won't be cleared while we are here. 8936 * 8937 * Wait for IO on this page so that we can safely clear 8938 * the PagePrivate2 bit and do ordered accounting 8939 */ 8940 wait_on_page_writeback(page); 8941 8942 tree = &BTRFS_I(inode)->io_tree; 8943 if (offset) { 8944 btrfs_releasepage(page, GFP_NOFS); 8945 return; 8946 } 8947 8948 if (!inode_evicting) 8949 lock_extent_bits(tree, page_start, page_end, &cached_state); 8950 again: 8951 start = page_start; 8952 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8953 page_end - start + 1); 8954 if (ordered) { 8955 end = min(page_end, ordered->file_offset + ordered->len - 1); 8956 /* 8957 * IO on this page will never be started, so we need 8958 * to account for any ordered extents now 8959 */ 8960 if (!inode_evicting) 8961 clear_extent_bit(tree, start, end, 8962 EXTENT_DIRTY | EXTENT_DELALLOC | 8963 EXTENT_DELALLOC_NEW | 8964 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8965 EXTENT_DEFRAG, 1, 0, &cached_state, 8966 GFP_NOFS); 8967 /* 8968 * whoever cleared the private bit is responsible 8969 * for the finish_ordered_io 8970 */ 8971 if (TestClearPagePrivate2(page)) { 8972 struct btrfs_ordered_inode_tree *tree; 8973 u64 new_len; 8974 8975 tree = &BTRFS_I(inode)->ordered_tree; 8976 8977 spin_lock_irq(&tree->lock); 8978 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8979 new_len = start - ordered->file_offset; 8980 if (new_len < ordered->truncated_len) 8981 ordered->truncated_len = new_len; 8982 spin_unlock_irq(&tree->lock); 8983 8984 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8985 start, 8986 end - start + 1, 1)) 8987 btrfs_finish_ordered_io(ordered); 8988 } 8989 btrfs_put_ordered_extent(ordered); 8990 if (!inode_evicting) { 8991 cached_state = NULL; 8992 lock_extent_bits(tree, start, end, 8993 &cached_state); 8994 } 8995 8996 start = end + 1; 8997 if (start < page_end) 8998 goto again; 8999 } 9000 9001 /* 9002 * Qgroup reserved space handler 9003 * Page here will be either 9004 * 1) Already written to disk 9005 * In this case, its reserved space is released from data rsv map 9006 * and will be freed by delayed_ref handler finally. 9007 * So even we call qgroup_free_data(), it won't decrease reserved 9008 * space. 9009 * 2) Not written to disk 9010 * This means the reserved space should be freed here. However, 9011 * if a truncate invalidates the page (by clearing PageDirty) 9012 * and the page is accounted for while allocating extent 9013 * in btrfs_check_data_free_space() we let delayed_ref to 9014 * free the entire extent. 9015 */ 9016 if (PageDirty(page)) 9017 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 9018 if (!inode_evicting) { 9019 clear_extent_bit(tree, page_start, page_end, 9020 EXTENT_LOCKED | EXTENT_DIRTY | 9021 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 9022 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 9023 &cached_state, GFP_NOFS); 9024 9025 __btrfs_releasepage(page, GFP_NOFS); 9026 } 9027 9028 ClearPageChecked(page); 9029 if (PagePrivate(page)) { 9030 ClearPagePrivate(page); 9031 set_page_private(page, 0); 9032 put_page(page); 9033 } 9034 } 9035 9036 /* 9037 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 9038 * called from a page fault handler when a page is first dirtied. Hence we must 9039 * be careful to check for EOF conditions here. We set the page up correctly 9040 * for a written page which means we get ENOSPC checking when writing into 9041 * holes and correct delalloc and unwritten extent mapping on filesystems that 9042 * support these features. 9043 * 9044 * We are not allowed to take the i_mutex here so we have to play games to 9045 * protect against truncate races as the page could now be beyond EOF. Because 9046 * vmtruncate() writes the inode size before removing pages, once we have the 9047 * page lock we can determine safely if the page is beyond EOF. If it is not 9048 * beyond EOF, then the page is guaranteed safe against truncation until we 9049 * unlock the page. 9050 */ 9051 int btrfs_page_mkwrite(struct vm_fault *vmf) 9052 { 9053 struct page *page = vmf->page; 9054 struct inode *inode = file_inode(vmf->vma->vm_file); 9055 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9056 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9057 struct btrfs_ordered_extent *ordered; 9058 struct extent_state *cached_state = NULL; 9059 struct extent_changeset *data_reserved = NULL; 9060 char *kaddr; 9061 unsigned long zero_start; 9062 loff_t size; 9063 int ret; 9064 int reserved = 0; 9065 u64 reserved_space; 9066 u64 page_start; 9067 u64 page_end; 9068 u64 end; 9069 9070 reserved_space = PAGE_SIZE; 9071 9072 sb_start_pagefault(inode->i_sb); 9073 page_start = page_offset(page); 9074 page_end = page_start + PAGE_SIZE - 1; 9075 end = page_end; 9076 9077 /* 9078 * Reserving delalloc space after obtaining the page lock can lead to 9079 * deadlock. For example, if a dirty page is locked by this function 9080 * and the call to btrfs_delalloc_reserve_space() ends up triggering 9081 * dirty page write out, then the btrfs_writepage() function could 9082 * end up waiting indefinitely to get a lock on the page currently 9083 * being processed by btrfs_page_mkwrite() function. 9084 */ 9085 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 9086 reserved_space); 9087 if (!ret) { 9088 ret = file_update_time(vmf->vma->vm_file); 9089 reserved = 1; 9090 } 9091 if (ret) { 9092 if (ret == -ENOMEM) 9093 ret = VM_FAULT_OOM; 9094 else /* -ENOSPC, -EIO, etc */ 9095 ret = VM_FAULT_SIGBUS; 9096 if (reserved) 9097 goto out; 9098 goto out_noreserve; 9099 } 9100 9101 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 9102 again: 9103 lock_page(page); 9104 size = i_size_read(inode); 9105 9106 if ((page->mapping != inode->i_mapping) || 9107 (page_start >= size)) { 9108 /* page got truncated out from underneath us */ 9109 goto out_unlock; 9110 } 9111 wait_on_page_writeback(page); 9112 9113 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9114 set_page_extent_mapped(page); 9115 9116 /* 9117 * we can't set the delalloc bits if there are pending ordered 9118 * extents. Drop our locks and wait for them to finish 9119 */ 9120 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 9121 PAGE_SIZE); 9122 if (ordered) { 9123 unlock_extent_cached(io_tree, page_start, page_end, 9124 &cached_state, GFP_NOFS); 9125 unlock_page(page); 9126 btrfs_start_ordered_extent(inode, ordered, 1); 9127 btrfs_put_ordered_extent(ordered); 9128 goto again; 9129 } 9130 9131 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9132 reserved_space = round_up(size - page_start, 9133 fs_info->sectorsize); 9134 if (reserved_space < PAGE_SIZE) { 9135 end = page_start + reserved_space - 1; 9136 btrfs_delalloc_release_space(inode, data_reserved, 9137 page_start, PAGE_SIZE - reserved_space); 9138 } 9139 } 9140 9141 /* 9142 * page_mkwrite gets called when the page is firstly dirtied after it's 9143 * faulted in, but write(2) could also dirty a page and set delalloc 9144 * bits, thus in this case for space account reason, we still need to 9145 * clear any delalloc bits within this page range since we have to 9146 * reserve data&meta space before lock_page() (see above comments). 9147 */ 9148 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9149 EXTENT_DIRTY | EXTENT_DELALLOC | 9150 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9151 0, 0, &cached_state, GFP_NOFS); 9152 9153 ret = btrfs_set_extent_delalloc(inode, page_start, end, 9154 &cached_state, 0); 9155 if (ret) { 9156 unlock_extent_cached(io_tree, page_start, page_end, 9157 &cached_state, GFP_NOFS); 9158 ret = VM_FAULT_SIGBUS; 9159 goto out_unlock; 9160 } 9161 ret = 0; 9162 9163 /* page is wholly or partially inside EOF */ 9164 if (page_start + PAGE_SIZE > size) 9165 zero_start = size & ~PAGE_MASK; 9166 else 9167 zero_start = PAGE_SIZE; 9168 9169 if (zero_start != PAGE_SIZE) { 9170 kaddr = kmap(page); 9171 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9172 flush_dcache_page(page); 9173 kunmap(page); 9174 } 9175 ClearPageChecked(page); 9176 set_page_dirty(page); 9177 SetPageUptodate(page); 9178 9179 BTRFS_I(inode)->last_trans = fs_info->generation; 9180 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9181 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9182 9183 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9184 9185 out_unlock: 9186 if (!ret) { 9187 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9188 sb_end_pagefault(inode->i_sb); 9189 extent_changeset_free(data_reserved); 9190 return VM_FAULT_LOCKED; 9191 } 9192 unlock_page(page); 9193 out: 9194 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9195 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9196 reserved_space); 9197 out_noreserve: 9198 sb_end_pagefault(inode->i_sb); 9199 extent_changeset_free(data_reserved); 9200 return ret; 9201 } 9202 9203 static int btrfs_truncate(struct inode *inode) 9204 { 9205 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9206 struct btrfs_root *root = BTRFS_I(inode)->root; 9207 struct btrfs_block_rsv *rsv; 9208 int ret = 0; 9209 int err = 0; 9210 struct btrfs_trans_handle *trans; 9211 u64 mask = fs_info->sectorsize - 1; 9212 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9213 9214 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9215 (u64)-1); 9216 if (ret) 9217 return ret; 9218 9219 /* 9220 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9221 * 3 things going on here 9222 * 9223 * 1) We need to reserve space for our orphan item and the space to 9224 * delete our orphan item. Lord knows we don't want to have a dangling 9225 * orphan item because we didn't reserve space to remove it. 9226 * 9227 * 2) We need to reserve space to update our inode. 9228 * 9229 * 3) We need to have something to cache all the space that is going to 9230 * be free'd up by the truncate operation, but also have some slack 9231 * space reserved in case it uses space during the truncate (thank you 9232 * very much snapshotting). 9233 * 9234 * And we need these to all be separate. The fact is we can use a lot of 9235 * space doing the truncate, and we have no earthly idea how much space 9236 * we will use, so we need the truncate reservation to be separate so it 9237 * doesn't end up using space reserved for updating the inode or 9238 * removing the orphan item. We also need to be able to stop the 9239 * transaction and start a new one, which means we need to be able to 9240 * update the inode several times, and we have no idea of knowing how 9241 * many times that will be, so we can't just reserve 1 item for the 9242 * entirety of the operation, so that has to be done separately as well. 9243 * Then there is the orphan item, which does indeed need to be held on 9244 * to for the whole operation, and we need nobody to touch this reserved 9245 * space except the orphan code. 9246 * 9247 * So that leaves us with 9248 * 9249 * 1) root->orphan_block_rsv - for the orphan deletion. 9250 * 2) rsv - for the truncate reservation, which we will steal from the 9251 * transaction reservation. 9252 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9253 * updating the inode. 9254 */ 9255 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9256 if (!rsv) 9257 return -ENOMEM; 9258 rsv->size = min_size; 9259 rsv->failfast = 1; 9260 9261 /* 9262 * 1 for the truncate slack space 9263 * 1 for updating the inode. 9264 */ 9265 trans = btrfs_start_transaction(root, 2); 9266 if (IS_ERR(trans)) { 9267 err = PTR_ERR(trans); 9268 goto out; 9269 } 9270 9271 /* Migrate the slack space for the truncate to our reserve */ 9272 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9273 min_size, 0); 9274 BUG_ON(ret); 9275 9276 /* 9277 * So if we truncate and then write and fsync we normally would just 9278 * write the extents that changed, which is a problem if we need to 9279 * first truncate that entire inode. So set this flag so we write out 9280 * all of the extents in the inode to the sync log so we're completely 9281 * safe. 9282 */ 9283 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9284 trans->block_rsv = rsv; 9285 9286 while (1) { 9287 ret = btrfs_truncate_inode_items(trans, root, inode, 9288 inode->i_size, 9289 BTRFS_EXTENT_DATA_KEY); 9290 trans->block_rsv = &fs_info->trans_block_rsv; 9291 if (ret != -ENOSPC && ret != -EAGAIN) { 9292 err = ret; 9293 break; 9294 } 9295 9296 ret = btrfs_update_inode(trans, root, inode); 9297 if (ret) { 9298 err = ret; 9299 break; 9300 } 9301 9302 btrfs_end_transaction(trans); 9303 btrfs_btree_balance_dirty(fs_info); 9304 9305 trans = btrfs_start_transaction(root, 2); 9306 if (IS_ERR(trans)) { 9307 ret = err = PTR_ERR(trans); 9308 trans = NULL; 9309 break; 9310 } 9311 9312 btrfs_block_rsv_release(fs_info, rsv, -1); 9313 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9314 rsv, min_size, 0); 9315 BUG_ON(ret); /* shouldn't happen */ 9316 trans->block_rsv = rsv; 9317 } 9318 9319 /* 9320 * We can't call btrfs_truncate_block inside a trans handle as we could 9321 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9322 * we've truncated everything except the last little bit, and can do 9323 * btrfs_truncate_block and then update the disk_i_size. 9324 */ 9325 if (ret == NEED_TRUNCATE_BLOCK) { 9326 btrfs_end_transaction(trans); 9327 btrfs_btree_balance_dirty(fs_info); 9328 9329 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9330 if (ret) 9331 goto out; 9332 trans = btrfs_start_transaction(root, 1); 9333 if (IS_ERR(trans)) { 9334 ret = PTR_ERR(trans); 9335 goto out; 9336 } 9337 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9338 } 9339 9340 if (ret == 0 && inode->i_nlink > 0) { 9341 trans->block_rsv = root->orphan_block_rsv; 9342 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 9343 if (ret) 9344 err = ret; 9345 } 9346 9347 if (trans) { 9348 trans->block_rsv = &fs_info->trans_block_rsv; 9349 ret = btrfs_update_inode(trans, root, inode); 9350 if (ret && !err) 9351 err = ret; 9352 9353 ret = btrfs_end_transaction(trans); 9354 btrfs_btree_balance_dirty(fs_info); 9355 } 9356 out: 9357 btrfs_free_block_rsv(fs_info, rsv); 9358 9359 if (ret && !err) 9360 err = ret; 9361 9362 return err; 9363 } 9364 9365 /* 9366 * create a new subvolume directory/inode (helper for the ioctl). 9367 */ 9368 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9369 struct btrfs_root *new_root, 9370 struct btrfs_root *parent_root, 9371 u64 new_dirid) 9372 { 9373 struct inode *inode; 9374 int err; 9375 u64 index = 0; 9376 9377 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9378 new_dirid, new_dirid, 9379 S_IFDIR | (~current_umask() & S_IRWXUGO), 9380 &index); 9381 if (IS_ERR(inode)) 9382 return PTR_ERR(inode); 9383 inode->i_op = &btrfs_dir_inode_operations; 9384 inode->i_fop = &btrfs_dir_file_operations; 9385 9386 set_nlink(inode, 1); 9387 btrfs_i_size_write(BTRFS_I(inode), 0); 9388 unlock_new_inode(inode); 9389 9390 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9391 if (err) 9392 btrfs_err(new_root->fs_info, 9393 "error inheriting subvolume %llu properties: %d", 9394 new_root->root_key.objectid, err); 9395 9396 err = btrfs_update_inode(trans, new_root, inode); 9397 9398 iput(inode); 9399 return err; 9400 } 9401 9402 struct inode *btrfs_alloc_inode(struct super_block *sb) 9403 { 9404 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9405 struct btrfs_inode *ei; 9406 struct inode *inode; 9407 9408 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9409 if (!ei) 9410 return NULL; 9411 9412 ei->root = NULL; 9413 ei->generation = 0; 9414 ei->last_trans = 0; 9415 ei->last_sub_trans = 0; 9416 ei->logged_trans = 0; 9417 ei->delalloc_bytes = 0; 9418 ei->new_delalloc_bytes = 0; 9419 ei->defrag_bytes = 0; 9420 ei->disk_i_size = 0; 9421 ei->flags = 0; 9422 ei->csum_bytes = 0; 9423 ei->index_cnt = (u64)-1; 9424 ei->dir_index = 0; 9425 ei->last_unlink_trans = 0; 9426 ei->last_log_commit = 0; 9427 ei->delayed_iput_count = 0; 9428 9429 spin_lock_init(&ei->lock); 9430 ei->outstanding_extents = 0; 9431 if (sb->s_magic != BTRFS_TEST_MAGIC) 9432 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9433 BTRFS_BLOCK_RSV_DELALLOC); 9434 ei->runtime_flags = 0; 9435 ei->prop_compress = BTRFS_COMPRESS_NONE; 9436 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9437 9438 ei->delayed_node = NULL; 9439 9440 ei->i_otime.tv_sec = 0; 9441 ei->i_otime.tv_nsec = 0; 9442 9443 inode = &ei->vfs_inode; 9444 extent_map_tree_init(&ei->extent_tree); 9445 extent_io_tree_init(&ei->io_tree, inode); 9446 extent_io_tree_init(&ei->io_failure_tree, inode); 9447 ei->io_tree.track_uptodate = 1; 9448 ei->io_failure_tree.track_uptodate = 1; 9449 atomic_set(&ei->sync_writers, 0); 9450 mutex_init(&ei->log_mutex); 9451 mutex_init(&ei->delalloc_mutex); 9452 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9453 INIT_LIST_HEAD(&ei->delalloc_inodes); 9454 INIT_LIST_HEAD(&ei->delayed_iput); 9455 RB_CLEAR_NODE(&ei->rb_node); 9456 init_rwsem(&ei->dio_sem); 9457 9458 return inode; 9459 } 9460 9461 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9462 void btrfs_test_destroy_inode(struct inode *inode) 9463 { 9464 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9465 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9466 } 9467 #endif 9468 9469 static void btrfs_i_callback(struct rcu_head *head) 9470 { 9471 struct inode *inode = container_of(head, struct inode, i_rcu); 9472 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9473 } 9474 9475 void btrfs_destroy_inode(struct inode *inode) 9476 { 9477 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9478 struct btrfs_ordered_extent *ordered; 9479 struct btrfs_root *root = BTRFS_I(inode)->root; 9480 9481 WARN_ON(!hlist_empty(&inode->i_dentry)); 9482 WARN_ON(inode->i_data.nrpages); 9483 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9484 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9485 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9486 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9487 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9488 WARN_ON(BTRFS_I(inode)->csum_bytes); 9489 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9490 9491 /* 9492 * This can happen where we create an inode, but somebody else also 9493 * created the same inode and we need to destroy the one we already 9494 * created. 9495 */ 9496 if (!root) 9497 goto free; 9498 9499 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9500 &BTRFS_I(inode)->runtime_flags)) { 9501 btrfs_info(fs_info, "inode %llu still on the orphan list", 9502 btrfs_ino(BTRFS_I(inode))); 9503 atomic_dec(&root->orphan_inodes); 9504 } 9505 9506 while (1) { 9507 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9508 if (!ordered) 9509 break; 9510 else { 9511 btrfs_err(fs_info, 9512 "found ordered extent %llu %llu on inode cleanup", 9513 ordered->file_offset, ordered->len); 9514 btrfs_remove_ordered_extent(inode, ordered); 9515 btrfs_put_ordered_extent(ordered); 9516 btrfs_put_ordered_extent(ordered); 9517 } 9518 } 9519 btrfs_qgroup_check_reserved_leak(inode); 9520 inode_tree_del(inode); 9521 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9522 free: 9523 call_rcu(&inode->i_rcu, btrfs_i_callback); 9524 } 9525 9526 int btrfs_drop_inode(struct inode *inode) 9527 { 9528 struct btrfs_root *root = BTRFS_I(inode)->root; 9529 9530 if (root == NULL) 9531 return 1; 9532 9533 /* the snap/subvol tree is on deleting */ 9534 if (btrfs_root_refs(&root->root_item) == 0) 9535 return 1; 9536 else 9537 return generic_drop_inode(inode); 9538 } 9539 9540 static void init_once(void *foo) 9541 { 9542 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9543 9544 inode_init_once(&ei->vfs_inode); 9545 } 9546 9547 void btrfs_destroy_cachep(void) 9548 { 9549 /* 9550 * Make sure all delayed rcu free inodes are flushed before we 9551 * destroy cache. 9552 */ 9553 rcu_barrier(); 9554 kmem_cache_destroy(btrfs_inode_cachep); 9555 kmem_cache_destroy(btrfs_trans_handle_cachep); 9556 kmem_cache_destroy(btrfs_path_cachep); 9557 kmem_cache_destroy(btrfs_free_space_cachep); 9558 } 9559 9560 int btrfs_init_cachep(void) 9561 { 9562 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9563 sizeof(struct btrfs_inode), 0, 9564 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9565 init_once); 9566 if (!btrfs_inode_cachep) 9567 goto fail; 9568 9569 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9570 sizeof(struct btrfs_trans_handle), 0, 9571 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9572 if (!btrfs_trans_handle_cachep) 9573 goto fail; 9574 9575 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9576 sizeof(struct btrfs_path), 0, 9577 SLAB_MEM_SPREAD, NULL); 9578 if (!btrfs_path_cachep) 9579 goto fail; 9580 9581 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9582 sizeof(struct btrfs_free_space), 0, 9583 SLAB_MEM_SPREAD, NULL); 9584 if (!btrfs_free_space_cachep) 9585 goto fail; 9586 9587 return 0; 9588 fail: 9589 btrfs_destroy_cachep(); 9590 return -ENOMEM; 9591 } 9592 9593 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9594 u32 request_mask, unsigned int flags) 9595 { 9596 u64 delalloc_bytes; 9597 struct inode *inode = d_inode(path->dentry); 9598 u32 blocksize = inode->i_sb->s_blocksize; 9599 u32 bi_flags = BTRFS_I(inode)->flags; 9600 9601 stat->result_mask |= STATX_BTIME; 9602 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9603 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9604 if (bi_flags & BTRFS_INODE_APPEND) 9605 stat->attributes |= STATX_ATTR_APPEND; 9606 if (bi_flags & BTRFS_INODE_COMPRESS) 9607 stat->attributes |= STATX_ATTR_COMPRESSED; 9608 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9609 stat->attributes |= STATX_ATTR_IMMUTABLE; 9610 if (bi_flags & BTRFS_INODE_NODUMP) 9611 stat->attributes |= STATX_ATTR_NODUMP; 9612 9613 stat->attributes_mask |= (STATX_ATTR_APPEND | 9614 STATX_ATTR_COMPRESSED | 9615 STATX_ATTR_IMMUTABLE | 9616 STATX_ATTR_NODUMP); 9617 9618 generic_fillattr(inode, stat); 9619 stat->dev = BTRFS_I(inode)->root->anon_dev; 9620 9621 spin_lock(&BTRFS_I(inode)->lock); 9622 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9623 spin_unlock(&BTRFS_I(inode)->lock); 9624 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9625 ALIGN(delalloc_bytes, blocksize)) >> 9; 9626 return 0; 9627 } 9628 9629 static int btrfs_rename_exchange(struct inode *old_dir, 9630 struct dentry *old_dentry, 9631 struct inode *new_dir, 9632 struct dentry *new_dentry) 9633 { 9634 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9635 struct btrfs_trans_handle *trans; 9636 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9637 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9638 struct inode *new_inode = new_dentry->d_inode; 9639 struct inode *old_inode = old_dentry->d_inode; 9640 struct timespec ctime = current_time(old_inode); 9641 struct dentry *parent; 9642 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9643 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9644 u64 old_idx = 0; 9645 u64 new_idx = 0; 9646 u64 root_objectid; 9647 int ret; 9648 bool root_log_pinned = false; 9649 bool dest_log_pinned = false; 9650 9651 /* we only allow rename subvolume link between subvolumes */ 9652 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9653 return -EXDEV; 9654 9655 /* close the race window with snapshot create/destroy ioctl */ 9656 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9657 down_read(&fs_info->subvol_sem); 9658 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9659 down_read(&fs_info->subvol_sem); 9660 9661 /* 9662 * We want to reserve the absolute worst case amount of items. So if 9663 * both inodes are subvols and we need to unlink them then that would 9664 * require 4 item modifications, but if they are both normal inodes it 9665 * would require 5 item modifications, so we'll assume their normal 9666 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9667 * should cover the worst case number of items we'll modify. 9668 */ 9669 trans = btrfs_start_transaction(root, 12); 9670 if (IS_ERR(trans)) { 9671 ret = PTR_ERR(trans); 9672 goto out_notrans; 9673 } 9674 9675 /* 9676 * We need to find a free sequence number both in the source and 9677 * in the destination directory for the exchange. 9678 */ 9679 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9680 if (ret) 9681 goto out_fail; 9682 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9683 if (ret) 9684 goto out_fail; 9685 9686 BTRFS_I(old_inode)->dir_index = 0ULL; 9687 BTRFS_I(new_inode)->dir_index = 0ULL; 9688 9689 /* Reference for the source. */ 9690 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9691 /* force full log commit if subvolume involved. */ 9692 btrfs_set_log_full_commit(fs_info, trans); 9693 } else { 9694 btrfs_pin_log_trans(root); 9695 root_log_pinned = true; 9696 ret = btrfs_insert_inode_ref(trans, dest, 9697 new_dentry->d_name.name, 9698 new_dentry->d_name.len, 9699 old_ino, 9700 btrfs_ino(BTRFS_I(new_dir)), 9701 old_idx); 9702 if (ret) 9703 goto out_fail; 9704 } 9705 9706 /* And now for the dest. */ 9707 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9708 /* force full log commit if subvolume involved. */ 9709 btrfs_set_log_full_commit(fs_info, trans); 9710 } else { 9711 btrfs_pin_log_trans(dest); 9712 dest_log_pinned = true; 9713 ret = btrfs_insert_inode_ref(trans, root, 9714 old_dentry->d_name.name, 9715 old_dentry->d_name.len, 9716 new_ino, 9717 btrfs_ino(BTRFS_I(old_dir)), 9718 new_idx); 9719 if (ret) 9720 goto out_fail; 9721 } 9722 9723 /* Update inode version and ctime/mtime. */ 9724 inode_inc_iversion(old_dir); 9725 inode_inc_iversion(new_dir); 9726 inode_inc_iversion(old_inode); 9727 inode_inc_iversion(new_inode); 9728 old_dir->i_ctime = old_dir->i_mtime = ctime; 9729 new_dir->i_ctime = new_dir->i_mtime = ctime; 9730 old_inode->i_ctime = ctime; 9731 new_inode->i_ctime = ctime; 9732 9733 if (old_dentry->d_parent != new_dentry->d_parent) { 9734 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9735 BTRFS_I(old_inode), 1); 9736 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9737 BTRFS_I(new_inode), 1); 9738 } 9739 9740 /* src is a subvolume */ 9741 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9742 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9743 ret = btrfs_unlink_subvol(trans, root, old_dir, 9744 root_objectid, 9745 old_dentry->d_name.name, 9746 old_dentry->d_name.len); 9747 } else { /* src is an inode */ 9748 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9749 BTRFS_I(old_dentry->d_inode), 9750 old_dentry->d_name.name, 9751 old_dentry->d_name.len); 9752 if (!ret) 9753 ret = btrfs_update_inode(trans, root, old_inode); 9754 } 9755 if (ret) { 9756 btrfs_abort_transaction(trans, ret); 9757 goto out_fail; 9758 } 9759 9760 /* dest is a subvolume */ 9761 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9762 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9763 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9764 root_objectid, 9765 new_dentry->d_name.name, 9766 new_dentry->d_name.len); 9767 } else { /* dest is an inode */ 9768 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9769 BTRFS_I(new_dentry->d_inode), 9770 new_dentry->d_name.name, 9771 new_dentry->d_name.len); 9772 if (!ret) 9773 ret = btrfs_update_inode(trans, dest, new_inode); 9774 } 9775 if (ret) { 9776 btrfs_abort_transaction(trans, ret); 9777 goto out_fail; 9778 } 9779 9780 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9781 new_dentry->d_name.name, 9782 new_dentry->d_name.len, 0, old_idx); 9783 if (ret) { 9784 btrfs_abort_transaction(trans, ret); 9785 goto out_fail; 9786 } 9787 9788 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9789 old_dentry->d_name.name, 9790 old_dentry->d_name.len, 0, new_idx); 9791 if (ret) { 9792 btrfs_abort_transaction(trans, ret); 9793 goto out_fail; 9794 } 9795 9796 if (old_inode->i_nlink == 1) 9797 BTRFS_I(old_inode)->dir_index = old_idx; 9798 if (new_inode->i_nlink == 1) 9799 BTRFS_I(new_inode)->dir_index = new_idx; 9800 9801 if (root_log_pinned) { 9802 parent = new_dentry->d_parent; 9803 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9804 parent); 9805 btrfs_end_log_trans(root); 9806 root_log_pinned = false; 9807 } 9808 if (dest_log_pinned) { 9809 parent = old_dentry->d_parent; 9810 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9811 parent); 9812 btrfs_end_log_trans(dest); 9813 dest_log_pinned = false; 9814 } 9815 out_fail: 9816 /* 9817 * If we have pinned a log and an error happened, we unpin tasks 9818 * trying to sync the log and force them to fallback to a transaction 9819 * commit if the log currently contains any of the inodes involved in 9820 * this rename operation (to ensure we do not persist a log with an 9821 * inconsistent state for any of these inodes or leading to any 9822 * inconsistencies when replayed). If the transaction was aborted, the 9823 * abortion reason is propagated to userspace when attempting to commit 9824 * the transaction. If the log does not contain any of these inodes, we 9825 * allow the tasks to sync it. 9826 */ 9827 if (ret && (root_log_pinned || dest_log_pinned)) { 9828 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9829 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9830 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9831 (new_inode && 9832 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9833 btrfs_set_log_full_commit(fs_info, trans); 9834 9835 if (root_log_pinned) { 9836 btrfs_end_log_trans(root); 9837 root_log_pinned = false; 9838 } 9839 if (dest_log_pinned) { 9840 btrfs_end_log_trans(dest); 9841 dest_log_pinned = false; 9842 } 9843 } 9844 ret = btrfs_end_transaction(trans); 9845 out_notrans: 9846 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9847 up_read(&fs_info->subvol_sem); 9848 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9849 up_read(&fs_info->subvol_sem); 9850 9851 return ret; 9852 } 9853 9854 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9855 struct btrfs_root *root, 9856 struct inode *dir, 9857 struct dentry *dentry) 9858 { 9859 int ret; 9860 struct inode *inode; 9861 u64 objectid; 9862 u64 index; 9863 9864 ret = btrfs_find_free_ino(root, &objectid); 9865 if (ret) 9866 return ret; 9867 9868 inode = btrfs_new_inode(trans, root, dir, 9869 dentry->d_name.name, 9870 dentry->d_name.len, 9871 btrfs_ino(BTRFS_I(dir)), 9872 objectid, 9873 S_IFCHR | WHITEOUT_MODE, 9874 &index); 9875 9876 if (IS_ERR(inode)) { 9877 ret = PTR_ERR(inode); 9878 return ret; 9879 } 9880 9881 inode->i_op = &btrfs_special_inode_operations; 9882 init_special_inode(inode, inode->i_mode, 9883 WHITEOUT_DEV); 9884 9885 ret = btrfs_init_inode_security(trans, inode, dir, 9886 &dentry->d_name); 9887 if (ret) 9888 goto out; 9889 9890 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9891 BTRFS_I(inode), 0, index); 9892 if (ret) 9893 goto out; 9894 9895 ret = btrfs_update_inode(trans, root, inode); 9896 out: 9897 unlock_new_inode(inode); 9898 if (ret) 9899 inode_dec_link_count(inode); 9900 iput(inode); 9901 9902 return ret; 9903 } 9904 9905 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9906 struct inode *new_dir, struct dentry *new_dentry, 9907 unsigned int flags) 9908 { 9909 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9910 struct btrfs_trans_handle *trans; 9911 unsigned int trans_num_items; 9912 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9913 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9914 struct inode *new_inode = d_inode(new_dentry); 9915 struct inode *old_inode = d_inode(old_dentry); 9916 u64 index = 0; 9917 u64 root_objectid; 9918 int ret; 9919 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9920 bool log_pinned = false; 9921 9922 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9923 return -EPERM; 9924 9925 /* we only allow rename subvolume link between subvolumes */ 9926 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9927 return -EXDEV; 9928 9929 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9930 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9931 return -ENOTEMPTY; 9932 9933 if (S_ISDIR(old_inode->i_mode) && new_inode && 9934 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9935 return -ENOTEMPTY; 9936 9937 9938 /* check for collisions, even if the name isn't there */ 9939 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9940 new_dentry->d_name.name, 9941 new_dentry->d_name.len); 9942 9943 if (ret) { 9944 if (ret == -EEXIST) { 9945 /* we shouldn't get 9946 * eexist without a new_inode */ 9947 if (WARN_ON(!new_inode)) { 9948 return ret; 9949 } 9950 } else { 9951 /* maybe -EOVERFLOW */ 9952 return ret; 9953 } 9954 } 9955 ret = 0; 9956 9957 /* 9958 * we're using rename to replace one file with another. Start IO on it 9959 * now so we don't add too much work to the end of the transaction 9960 */ 9961 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9962 filemap_flush(old_inode->i_mapping); 9963 9964 /* close the racy window with snapshot create/destroy ioctl */ 9965 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9966 down_read(&fs_info->subvol_sem); 9967 /* 9968 * We want to reserve the absolute worst case amount of items. So if 9969 * both inodes are subvols and we need to unlink them then that would 9970 * require 4 item modifications, but if they are both normal inodes it 9971 * would require 5 item modifications, so we'll assume they are normal 9972 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9973 * should cover the worst case number of items we'll modify. 9974 * If our rename has the whiteout flag, we need more 5 units for the 9975 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9976 * when selinux is enabled). 9977 */ 9978 trans_num_items = 11; 9979 if (flags & RENAME_WHITEOUT) 9980 trans_num_items += 5; 9981 trans = btrfs_start_transaction(root, trans_num_items); 9982 if (IS_ERR(trans)) { 9983 ret = PTR_ERR(trans); 9984 goto out_notrans; 9985 } 9986 9987 if (dest != root) 9988 btrfs_record_root_in_trans(trans, dest); 9989 9990 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9991 if (ret) 9992 goto out_fail; 9993 9994 BTRFS_I(old_inode)->dir_index = 0ULL; 9995 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9996 /* force full log commit if subvolume involved. */ 9997 btrfs_set_log_full_commit(fs_info, trans); 9998 } else { 9999 btrfs_pin_log_trans(root); 10000 log_pinned = true; 10001 ret = btrfs_insert_inode_ref(trans, dest, 10002 new_dentry->d_name.name, 10003 new_dentry->d_name.len, 10004 old_ino, 10005 btrfs_ino(BTRFS_I(new_dir)), index); 10006 if (ret) 10007 goto out_fail; 10008 } 10009 10010 inode_inc_iversion(old_dir); 10011 inode_inc_iversion(new_dir); 10012 inode_inc_iversion(old_inode); 10013 old_dir->i_ctime = old_dir->i_mtime = 10014 new_dir->i_ctime = new_dir->i_mtime = 10015 old_inode->i_ctime = current_time(old_dir); 10016 10017 if (old_dentry->d_parent != new_dentry->d_parent) 10018 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 10019 BTRFS_I(old_inode), 1); 10020 10021 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 10022 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 10023 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 10024 old_dentry->d_name.name, 10025 old_dentry->d_name.len); 10026 } else { 10027 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 10028 BTRFS_I(d_inode(old_dentry)), 10029 old_dentry->d_name.name, 10030 old_dentry->d_name.len); 10031 if (!ret) 10032 ret = btrfs_update_inode(trans, root, old_inode); 10033 } 10034 if (ret) { 10035 btrfs_abort_transaction(trans, ret); 10036 goto out_fail; 10037 } 10038 10039 if (new_inode) { 10040 inode_inc_iversion(new_inode); 10041 new_inode->i_ctime = current_time(new_inode); 10042 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 10043 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 10044 root_objectid = BTRFS_I(new_inode)->location.objectid; 10045 ret = btrfs_unlink_subvol(trans, dest, new_dir, 10046 root_objectid, 10047 new_dentry->d_name.name, 10048 new_dentry->d_name.len); 10049 BUG_ON(new_inode->i_nlink == 0); 10050 } else { 10051 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 10052 BTRFS_I(d_inode(new_dentry)), 10053 new_dentry->d_name.name, 10054 new_dentry->d_name.len); 10055 } 10056 if (!ret && new_inode->i_nlink == 0) 10057 ret = btrfs_orphan_add(trans, 10058 BTRFS_I(d_inode(new_dentry))); 10059 if (ret) { 10060 btrfs_abort_transaction(trans, ret); 10061 goto out_fail; 10062 } 10063 } 10064 10065 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 10066 new_dentry->d_name.name, 10067 new_dentry->d_name.len, 0, index); 10068 if (ret) { 10069 btrfs_abort_transaction(trans, ret); 10070 goto out_fail; 10071 } 10072 10073 if (old_inode->i_nlink == 1) 10074 BTRFS_I(old_inode)->dir_index = index; 10075 10076 if (log_pinned) { 10077 struct dentry *parent = new_dentry->d_parent; 10078 10079 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 10080 parent); 10081 btrfs_end_log_trans(root); 10082 log_pinned = false; 10083 } 10084 10085 if (flags & RENAME_WHITEOUT) { 10086 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 10087 old_dentry); 10088 10089 if (ret) { 10090 btrfs_abort_transaction(trans, ret); 10091 goto out_fail; 10092 } 10093 } 10094 out_fail: 10095 /* 10096 * If we have pinned the log and an error happened, we unpin tasks 10097 * trying to sync the log and force them to fallback to a transaction 10098 * commit if the log currently contains any of the inodes involved in 10099 * this rename operation (to ensure we do not persist a log with an 10100 * inconsistent state for any of these inodes or leading to any 10101 * inconsistencies when replayed). If the transaction was aborted, the 10102 * abortion reason is propagated to userspace when attempting to commit 10103 * the transaction. If the log does not contain any of these inodes, we 10104 * allow the tasks to sync it. 10105 */ 10106 if (ret && log_pinned) { 10107 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 10108 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 10109 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 10110 (new_inode && 10111 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 10112 btrfs_set_log_full_commit(fs_info, trans); 10113 10114 btrfs_end_log_trans(root); 10115 log_pinned = false; 10116 } 10117 btrfs_end_transaction(trans); 10118 out_notrans: 10119 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10120 up_read(&fs_info->subvol_sem); 10121 10122 return ret; 10123 } 10124 10125 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10126 struct inode *new_dir, struct dentry *new_dentry, 10127 unsigned int flags) 10128 { 10129 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10130 return -EINVAL; 10131 10132 if (flags & RENAME_EXCHANGE) 10133 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10134 new_dentry); 10135 10136 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10137 } 10138 10139 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10140 { 10141 struct btrfs_delalloc_work *delalloc_work; 10142 struct inode *inode; 10143 10144 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10145 work); 10146 inode = delalloc_work->inode; 10147 filemap_flush(inode->i_mapping); 10148 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10149 &BTRFS_I(inode)->runtime_flags)) 10150 filemap_flush(inode->i_mapping); 10151 10152 if (delalloc_work->delay_iput) 10153 btrfs_add_delayed_iput(inode); 10154 else 10155 iput(inode); 10156 complete(&delalloc_work->completion); 10157 } 10158 10159 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 10160 int delay_iput) 10161 { 10162 struct btrfs_delalloc_work *work; 10163 10164 work = kmalloc(sizeof(*work), GFP_NOFS); 10165 if (!work) 10166 return NULL; 10167 10168 init_completion(&work->completion); 10169 INIT_LIST_HEAD(&work->list); 10170 work->inode = inode; 10171 work->delay_iput = delay_iput; 10172 WARN_ON_ONCE(!inode); 10173 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10174 btrfs_run_delalloc_work, NULL, NULL); 10175 10176 return work; 10177 } 10178 10179 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10180 { 10181 wait_for_completion(&work->completion); 10182 kfree(work); 10183 } 10184 10185 /* 10186 * some fairly slow code that needs optimization. This walks the list 10187 * of all the inodes with pending delalloc and forces them to disk. 10188 */ 10189 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10190 int nr) 10191 { 10192 struct btrfs_inode *binode; 10193 struct inode *inode; 10194 struct btrfs_delalloc_work *work, *next; 10195 struct list_head works; 10196 struct list_head splice; 10197 int ret = 0; 10198 10199 INIT_LIST_HEAD(&works); 10200 INIT_LIST_HEAD(&splice); 10201 10202 mutex_lock(&root->delalloc_mutex); 10203 spin_lock(&root->delalloc_lock); 10204 list_splice_init(&root->delalloc_inodes, &splice); 10205 while (!list_empty(&splice)) { 10206 binode = list_entry(splice.next, struct btrfs_inode, 10207 delalloc_inodes); 10208 10209 list_move_tail(&binode->delalloc_inodes, 10210 &root->delalloc_inodes); 10211 inode = igrab(&binode->vfs_inode); 10212 if (!inode) { 10213 cond_resched_lock(&root->delalloc_lock); 10214 continue; 10215 } 10216 spin_unlock(&root->delalloc_lock); 10217 10218 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10219 if (!work) { 10220 if (delay_iput) 10221 btrfs_add_delayed_iput(inode); 10222 else 10223 iput(inode); 10224 ret = -ENOMEM; 10225 goto out; 10226 } 10227 list_add_tail(&work->list, &works); 10228 btrfs_queue_work(root->fs_info->flush_workers, 10229 &work->work); 10230 ret++; 10231 if (nr != -1 && ret >= nr) 10232 goto out; 10233 cond_resched(); 10234 spin_lock(&root->delalloc_lock); 10235 } 10236 spin_unlock(&root->delalloc_lock); 10237 10238 out: 10239 list_for_each_entry_safe(work, next, &works, list) { 10240 list_del_init(&work->list); 10241 btrfs_wait_and_free_delalloc_work(work); 10242 } 10243 10244 if (!list_empty_careful(&splice)) { 10245 spin_lock(&root->delalloc_lock); 10246 list_splice_tail(&splice, &root->delalloc_inodes); 10247 spin_unlock(&root->delalloc_lock); 10248 } 10249 mutex_unlock(&root->delalloc_mutex); 10250 return ret; 10251 } 10252 10253 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10254 { 10255 struct btrfs_fs_info *fs_info = root->fs_info; 10256 int ret; 10257 10258 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10259 return -EROFS; 10260 10261 ret = __start_delalloc_inodes(root, delay_iput, -1); 10262 if (ret > 0) 10263 ret = 0; 10264 return ret; 10265 } 10266 10267 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10268 int nr) 10269 { 10270 struct btrfs_root *root; 10271 struct list_head splice; 10272 int ret; 10273 10274 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10275 return -EROFS; 10276 10277 INIT_LIST_HEAD(&splice); 10278 10279 mutex_lock(&fs_info->delalloc_root_mutex); 10280 spin_lock(&fs_info->delalloc_root_lock); 10281 list_splice_init(&fs_info->delalloc_roots, &splice); 10282 while (!list_empty(&splice) && nr) { 10283 root = list_first_entry(&splice, struct btrfs_root, 10284 delalloc_root); 10285 root = btrfs_grab_fs_root(root); 10286 BUG_ON(!root); 10287 list_move_tail(&root->delalloc_root, 10288 &fs_info->delalloc_roots); 10289 spin_unlock(&fs_info->delalloc_root_lock); 10290 10291 ret = __start_delalloc_inodes(root, delay_iput, nr); 10292 btrfs_put_fs_root(root); 10293 if (ret < 0) 10294 goto out; 10295 10296 if (nr != -1) { 10297 nr -= ret; 10298 WARN_ON(nr < 0); 10299 } 10300 spin_lock(&fs_info->delalloc_root_lock); 10301 } 10302 spin_unlock(&fs_info->delalloc_root_lock); 10303 10304 ret = 0; 10305 out: 10306 if (!list_empty_careful(&splice)) { 10307 spin_lock(&fs_info->delalloc_root_lock); 10308 list_splice_tail(&splice, &fs_info->delalloc_roots); 10309 spin_unlock(&fs_info->delalloc_root_lock); 10310 } 10311 mutex_unlock(&fs_info->delalloc_root_mutex); 10312 return ret; 10313 } 10314 10315 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10316 const char *symname) 10317 { 10318 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10319 struct btrfs_trans_handle *trans; 10320 struct btrfs_root *root = BTRFS_I(dir)->root; 10321 struct btrfs_path *path; 10322 struct btrfs_key key; 10323 struct inode *inode = NULL; 10324 int err; 10325 int drop_inode = 0; 10326 u64 objectid; 10327 u64 index = 0; 10328 int name_len; 10329 int datasize; 10330 unsigned long ptr; 10331 struct btrfs_file_extent_item *ei; 10332 struct extent_buffer *leaf; 10333 10334 name_len = strlen(symname); 10335 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10336 return -ENAMETOOLONG; 10337 10338 /* 10339 * 2 items for inode item and ref 10340 * 2 items for dir items 10341 * 1 item for updating parent inode item 10342 * 1 item for the inline extent item 10343 * 1 item for xattr if selinux is on 10344 */ 10345 trans = btrfs_start_transaction(root, 7); 10346 if (IS_ERR(trans)) 10347 return PTR_ERR(trans); 10348 10349 err = btrfs_find_free_ino(root, &objectid); 10350 if (err) 10351 goto out_unlock; 10352 10353 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10354 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10355 objectid, S_IFLNK|S_IRWXUGO, &index); 10356 if (IS_ERR(inode)) { 10357 err = PTR_ERR(inode); 10358 goto out_unlock; 10359 } 10360 10361 /* 10362 * If the active LSM wants to access the inode during 10363 * d_instantiate it needs these. Smack checks to see 10364 * if the filesystem supports xattrs by looking at the 10365 * ops vector. 10366 */ 10367 inode->i_fop = &btrfs_file_operations; 10368 inode->i_op = &btrfs_file_inode_operations; 10369 inode->i_mapping->a_ops = &btrfs_aops; 10370 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10371 10372 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10373 if (err) 10374 goto out_unlock_inode; 10375 10376 path = btrfs_alloc_path(); 10377 if (!path) { 10378 err = -ENOMEM; 10379 goto out_unlock_inode; 10380 } 10381 key.objectid = btrfs_ino(BTRFS_I(inode)); 10382 key.offset = 0; 10383 key.type = BTRFS_EXTENT_DATA_KEY; 10384 datasize = btrfs_file_extent_calc_inline_size(name_len); 10385 err = btrfs_insert_empty_item(trans, root, path, &key, 10386 datasize); 10387 if (err) { 10388 btrfs_free_path(path); 10389 goto out_unlock_inode; 10390 } 10391 leaf = path->nodes[0]; 10392 ei = btrfs_item_ptr(leaf, path->slots[0], 10393 struct btrfs_file_extent_item); 10394 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10395 btrfs_set_file_extent_type(leaf, ei, 10396 BTRFS_FILE_EXTENT_INLINE); 10397 btrfs_set_file_extent_encryption(leaf, ei, 0); 10398 btrfs_set_file_extent_compression(leaf, ei, 0); 10399 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10400 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10401 10402 ptr = btrfs_file_extent_inline_start(ei); 10403 write_extent_buffer(leaf, symname, ptr, name_len); 10404 btrfs_mark_buffer_dirty(leaf); 10405 btrfs_free_path(path); 10406 10407 inode->i_op = &btrfs_symlink_inode_operations; 10408 inode_nohighmem(inode); 10409 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10410 inode_set_bytes(inode, name_len); 10411 btrfs_i_size_write(BTRFS_I(inode), name_len); 10412 err = btrfs_update_inode(trans, root, inode); 10413 /* 10414 * Last step, add directory indexes for our symlink inode. This is the 10415 * last step to avoid extra cleanup of these indexes if an error happens 10416 * elsewhere above. 10417 */ 10418 if (!err) 10419 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10420 BTRFS_I(inode), 0, index); 10421 if (err) { 10422 drop_inode = 1; 10423 goto out_unlock_inode; 10424 } 10425 10426 unlock_new_inode(inode); 10427 d_instantiate(dentry, inode); 10428 10429 out_unlock: 10430 btrfs_end_transaction(trans); 10431 if (drop_inode) { 10432 inode_dec_link_count(inode); 10433 iput(inode); 10434 } 10435 btrfs_btree_balance_dirty(fs_info); 10436 return err; 10437 10438 out_unlock_inode: 10439 drop_inode = 1; 10440 unlock_new_inode(inode); 10441 goto out_unlock; 10442 } 10443 10444 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10445 u64 start, u64 num_bytes, u64 min_size, 10446 loff_t actual_len, u64 *alloc_hint, 10447 struct btrfs_trans_handle *trans) 10448 { 10449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10450 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10451 struct extent_map *em; 10452 struct btrfs_root *root = BTRFS_I(inode)->root; 10453 struct btrfs_key ins; 10454 u64 cur_offset = start; 10455 u64 i_size; 10456 u64 cur_bytes; 10457 u64 last_alloc = (u64)-1; 10458 int ret = 0; 10459 bool own_trans = true; 10460 u64 end = start + num_bytes - 1; 10461 10462 if (trans) 10463 own_trans = false; 10464 while (num_bytes > 0) { 10465 if (own_trans) { 10466 trans = btrfs_start_transaction(root, 3); 10467 if (IS_ERR(trans)) { 10468 ret = PTR_ERR(trans); 10469 break; 10470 } 10471 } 10472 10473 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10474 cur_bytes = max(cur_bytes, min_size); 10475 /* 10476 * If we are severely fragmented we could end up with really 10477 * small allocations, so if the allocator is returning small 10478 * chunks lets make its job easier by only searching for those 10479 * sized chunks. 10480 */ 10481 cur_bytes = min(cur_bytes, last_alloc); 10482 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10483 min_size, 0, *alloc_hint, &ins, 1, 0); 10484 if (ret) { 10485 if (own_trans) 10486 btrfs_end_transaction(trans); 10487 break; 10488 } 10489 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10490 10491 last_alloc = ins.offset; 10492 ret = insert_reserved_file_extent(trans, inode, 10493 cur_offset, ins.objectid, 10494 ins.offset, ins.offset, 10495 ins.offset, 0, 0, 0, 10496 BTRFS_FILE_EXTENT_PREALLOC); 10497 if (ret) { 10498 btrfs_free_reserved_extent(fs_info, ins.objectid, 10499 ins.offset, 0); 10500 btrfs_abort_transaction(trans, ret); 10501 if (own_trans) 10502 btrfs_end_transaction(trans); 10503 break; 10504 } 10505 10506 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10507 cur_offset + ins.offset -1, 0); 10508 10509 em = alloc_extent_map(); 10510 if (!em) { 10511 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10512 &BTRFS_I(inode)->runtime_flags); 10513 goto next; 10514 } 10515 10516 em->start = cur_offset; 10517 em->orig_start = cur_offset; 10518 em->len = ins.offset; 10519 em->block_start = ins.objectid; 10520 em->block_len = ins.offset; 10521 em->orig_block_len = ins.offset; 10522 em->ram_bytes = ins.offset; 10523 em->bdev = fs_info->fs_devices->latest_bdev; 10524 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10525 em->generation = trans->transid; 10526 10527 while (1) { 10528 write_lock(&em_tree->lock); 10529 ret = add_extent_mapping(em_tree, em, 1); 10530 write_unlock(&em_tree->lock); 10531 if (ret != -EEXIST) 10532 break; 10533 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10534 cur_offset + ins.offset - 1, 10535 0); 10536 } 10537 free_extent_map(em); 10538 next: 10539 num_bytes -= ins.offset; 10540 cur_offset += ins.offset; 10541 *alloc_hint = ins.objectid + ins.offset; 10542 10543 inode_inc_iversion(inode); 10544 inode->i_ctime = current_time(inode); 10545 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10546 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10547 (actual_len > inode->i_size) && 10548 (cur_offset > inode->i_size)) { 10549 if (cur_offset > actual_len) 10550 i_size = actual_len; 10551 else 10552 i_size = cur_offset; 10553 i_size_write(inode, i_size); 10554 btrfs_ordered_update_i_size(inode, i_size, NULL); 10555 } 10556 10557 ret = btrfs_update_inode(trans, root, inode); 10558 10559 if (ret) { 10560 btrfs_abort_transaction(trans, ret); 10561 if (own_trans) 10562 btrfs_end_transaction(trans); 10563 break; 10564 } 10565 10566 if (own_trans) 10567 btrfs_end_transaction(trans); 10568 } 10569 if (cur_offset < end) 10570 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10571 end - cur_offset + 1); 10572 return ret; 10573 } 10574 10575 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10576 u64 start, u64 num_bytes, u64 min_size, 10577 loff_t actual_len, u64 *alloc_hint) 10578 { 10579 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10580 min_size, actual_len, alloc_hint, 10581 NULL); 10582 } 10583 10584 int btrfs_prealloc_file_range_trans(struct inode *inode, 10585 struct btrfs_trans_handle *trans, int mode, 10586 u64 start, u64 num_bytes, u64 min_size, 10587 loff_t actual_len, u64 *alloc_hint) 10588 { 10589 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10590 min_size, actual_len, alloc_hint, trans); 10591 } 10592 10593 static int btrfs_set_page_dirty(struct page *page) 10594 { 10595 return __set_page_dirty_nobuffers(page); 10596 } 10597 10598 static int btrfs_permission(struct inode *inode, int mask) 10599 { 10600 struct btrfs_root *root = BTRFS_I(inode)->root; 10601 umode_t mode = inode->i_mode; 10602 10603 if (mask & MAY_WRITE && 10604 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10605 if (btrfs_root_readonly(root)) 10606 return -EROFS; 10607 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10608 return -EACCES; 10609 } 10610 return generic_permission(inode, mask); 10611 } 10612 10613 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10614 { 10615 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10616 struct btrfs_trans_handle *trans; 10617 struct btrfs_root *root = BTRFS_I(dir)->root; 10618 struct inode *inode = NULL; 10619 u64 objectid; 10620 u64 index; 10621 int ret = 0; 10622 10623 /* 10624 * 5 units required for adding orphan entry 10625 */ 10626 trans = btrfs_start_transaction(root, 5); 10627 if (IS_ERR(trans)) 10628 return PTR_ERR(trans); 10629 10630 ret = btrfs_find_free_ino(root, &objectid); 10631 if (ret) 10632 goto out; 10633 10634 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10635 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10636 if (IS_ERR(inode)) { 10637 ret = PTR_ERR(inode); 10638 inode = NULL; 10639 goto out; 10640 } 10641 10642 inode->i_fop = &btrfs_file_operations; 10643 inode->i_op = &btrfs_file_inode_operations; 10644 10645 inode->i_mapping->a_ops = &btrfs_aops; 10646 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10647 10648 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10649 if (ret) 10650 goto out_inode; 10651 10652 ret = btrfs_update_inode(trans, root, inode); 10653 if (ret) 10654 goto out_inode; 10655 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10656 if (ret) 10657 goto out_inode; 10658 10659 /* 10660 * We set number of links to 0 in btrfs_new_inode(), and here we set 10661 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10662 * through: 10663 * 10664 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10665 */ 10666 set_nlink(inode, 1); 10667 unlock_new_inode(inode); 10668 d_tmpfile(dentry, inode); 10669 mark_inode_dirty(inode); 10670 10671 out: 10672 btrfs_end_transaction(trans); 10673 if (ret) 10674 iput(inode); 10675 btrfs_balance_delayed_items(fs_info); 10676 btrfs_btree_balance_dirty(fs_info); 10677 return ret; 10678 10679 out_inode: 10680 unlock_new_inode(inode); 10681 goto out; 10682 10683 } 10684 10685 __attribute__((const)) 10686 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10687 { 10688 return -EAGAIN; 10689 } 10690 10691 static struct btrfs_fs_info *iotree_fs_info(void *private_data) 10692 { 10693 struct inode *inode = private_data; 10694 return btrfs_sb(inode->i_sb); 10695 } 10696 10697 static void btrfs_check_extent_io_range(void *private_data, const char *caller, 10698 u64 start, u64 end) 10699 { 10700 struct inode *inode = private_data; 10701 u64 isize; 10702 10703 isize = i_size_read(inode); 10704 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 10705 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 10706 "%s: ino %llu isize %llu odd range [%llu,%llu]", 10707 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 10708 } 10709 } 10710 10711 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end) 10712 { 10713 struct inode *inode = private_data; 10714 unsigned long index = start >> PAGE_SHIFT; 10715 unsigned long end_index = end >> PAGE_SHIFT; 10716 struct page *page; 10717 10718 while (index <= end_index) { 10719 page = find_get_page(inode->i_mapping, index); 10720 ASSERT(page); /* Pages should be in the extent_io_tree */ 10721 set_page_writeback(page); 10722 put_page(page); 10723 index++; 10724 } 10725 } 10726 10727 static const struct inode_operations btrfs_dir_inode_operations = { 10728 .getattr = btrfs_getattr, 10729 .lookup = btrfs_lookup, 10730 .create = btrfs_create, 10731 .unlink = btrfs_unlink, 10732 .link = btrfs_link, 10733 .mkdir = btrfs_mkdir, 10734 .rmdir = btrfs_rmdir, 10735 .rename = btrfs_rename2, 10736 .symlink = btrfs_symlink, 10737 .setattr = btrfs_setattr, 10738 .mknod = btrfs_mknod, 10739 .listxattr = btrfs_listxattr, 10740 .permission = btrfs_permission, 10741 .get_acl = btrfs_get_acl, 10742 .set_acl = btrfs_set_acl, 10743 .update_time = btrfs_update_time, 10744 .tmpfile = btrfs_tmpfile, 10745 }; 10746 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10747 .lookup = btrfs_lookup, 10748 .permission = btrfs_permission, 10749 .update_time = btrfs_update_time, 10750 }; 10751 10752 static const struct file_operations btrfs_dir_file_operations = { 10753 .llseek = generic_file_llseek, 10754 .read = generic_read_dir, 10755 .iterate_shared = btrfs_real_readdir, 10756 .open = btrfs_opendir, 10757 .unlocked_ioctl = btrfs_ioctl, 10758 #ifdef CONFIG_COMPAT 10759 .compat_ioctl = btrfs_compat_ioctl, 10760 #endif 10761 .release = btrfs_release_file, 10762 .fsync = btrfs_sync_file, 10763 }; 10764 10765 static const struct extent_io_ops btrfs_extent_io_ops = { 10766 /* mandatory callbacks */ 10767 .submit_bio_hook = btrfs_submit_bio_hook, 10768 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10769 .merge_bio_hook = btrfs_merge_bio_hook, 10770 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10771 .tree_fs_info = iotree_fs_info, 10772 .set_range_writeback = btrfs_set_range_writeback, 10773 10774 /* optional callbacks */ 10775 .fill_delalloc = run_delalloc_range, 10776 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10777 .writepage_start_hook = btrfs_writepage_start_hook, 10778 .set_bit_hook = btrfs_set_bit_hook, 10779 .clear_bit_hook = btrfs_clear_bit_hook, 10780 .merge_extent_hook = btrfs_merge_extent_hook, 10781 .split_extent_hook = btrfs_split_extent_hook, 10782 .check_extent_io_range = btrfs_check_extent_io_range, 10783 }; 10784 10785 /* 10786 * btrfs doesn't support the bmap operation because swapfiles 10787 * use bmap to make a mapping of extents in the file. They assume 10788 * these extents won't change over the life of the file and they 10789 * use the bmap result to do IO directly to the drive. 10790 * 10791 * the btrfs bmap call would return logical addresses that aren't 10792 * suitable for IO and they also will change frequently as COW 10793 * operations happen. So, swapfile + btrfs == corruption. 10794 * 10795 * For now we're avoiding this by dropping bmap. 10796 */ 10797 static const struct address_space_operations btrfs_aops = { 10798 .readpage = btrfs_readpage, 10799 .writepage = btrfs_writepage, 10800 .writepages = btrfs_writepages, 10801 .readpages = btrfs_readpages, 10802 .direct_IO = btrfs_direct_IO, 10803 .invalidatepage = btrfs_invalidatepage, 10804 .releasepage = btrfs_releasepage, 10805 .set_page_dirty = btrfs_set_page_dirty, 10806 .error_remove_page = generic_error_remove_page, 10807 }; 10808 10809 static const struct address_space_operations btrfs_symlink_aops = { 10810 .readpage = btrfs_readpage, 10811 .writepage = btrfs_writepage, 10812 .invalidatepage = btrfs_invalidatepage, 10813 .releasepage = btrfs_releasepage, 10814 }; 10815 10816 static const struct inode_operations btrfs_file_inode_operations = { 10817 .getattr = btrfs_getattr, 10818 .setattr = btrfs_setattr, 10819 .listxattr = btrfs_listxattr, 10820 .permission = btrfs_permission, 10821 .fiemap = btrfs_fiemap, 10822 .get_acl = btrfs_get_acl, 10823 .set_acl = btrfs_set_acl, 10824 .update_time = btrfs_update_time, 10825 }; 10826 static const struct inode_operations btrfs_special_inode_operations = { 10827 .getattr = btrfs_getattr, 10828 .setattr = btrfs_setattr, 10829 .permission = btrfs_permission, 10830 .listxattr = btrfs_listxattr, 10831 .get_acl = btrfs_get_acl, 10832 .set_acl = btrfs_set_acl, 10833 .update_time = btrfs_update_time, 10834 }; 10835 static const struct inode_operations btrfs_symlink_inode_operations = { 10836 .get_link = page_get_link, 10837 .getattr = btrfs_getattr, 10838 .setattr = btrfs_setattr, 10839 .permission = btrfs_permission, 10840 .listxattr = btrfs_listxattr, 10841 .update_time = btrfs_update_time, 10842 }; 10843 10844 const struct dentry_operations btrfs_dentry_operations = { 10845 .d_delete = btrfs_dentry_delete, 10846 .d_release = btrfs_dentry_release, 10847 }; 10848