1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/compat.h> 34 #include <linux/bit_spinlock.h> 35 #include <linux/xattr.h> 36 #include <linux/posix_acl.h> 37 #include <linux/falloc.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/mount.h> 41 #include <linux/btrfs.h> 42 #include <linux/blkdev.h> 43 #include <linux/posix_acl_xattr.h> 44 #include <linux/uio.h> 45 #include <linux/magic.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 #include "dedupe.h" 64 65 struct btrfs_iget_args { 66 struct btrfs_key *location; 67 struct btrfs_root *root; 68 }; 69 70 struct btrfs_dio_data { 71 u64 reserve; 72 u64 unsubmitted_oe_range_start; 73 u64 unsubmitted_oe_range_end; 74 int overwrite; 75 }; 76 77 static const struct inode_operations btrfs_dir_inode_operations; 78 static const struct inode_operations btrfs_symlink_inode_operations; 79 static const struct inode_operations btrfs_dir_ro_inode_operations; 80 static const struct inode_operations btrfs_special_inode_operations; 81 static const struct inode_operations btrfs_file_inode_operations; 82 static const struct address_space_operations btrfs_aops; 83 static const struct address_space_operations btrfs_symlink_aops; 84 static const struct file_operations btrfs_dir_file_operations; 85 static const struct extent_io_ops btrfs_extent_io_ops; 86 87 static struct kmem_cache *btrfs_inode_cachep; 88 struct kmem_cache *btrfs_trans_handle_cachep; 89 struct kmem_cache *btrfs_path_cachep; 90 struct kmem_cache *btrfs_free_space_cachep; 91 92 #define S_SHIFT 12 93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 101 }; 102 103 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 104 static int btrfs_truncate(struct inode *inode); 105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 106 static noinline int cow_file_range(struct inode *inode, 107 struct page *locked_page, 108 u64 start, u64 end, u64 delalloc_end, 109 int *page_started, unsigned long *nr_written, 110 int unlock, struct btrfs_dedupe_hash *hash); 111 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 112 u64 orig_start, u64 block_start, 113 u64 block_len, u64 orig_block_len, 114 u64 ram_bytes, int compress_type, 115 int type); 116 117 static void __endio_write_update_ordered(struct inode *inode, 118 const u64 offset, const u64 bytes, 119 const bool uptodate); 120 121 /* 122 * Cleanup all submitted ordered extents in specified range to handle errors 123 * from the fill_dellaloc() callback. 124 * 125 * NOTE: caller must ensure that when an error happens, it can not call 126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 128 * to be released, which we want to happen only when finishing the ordered 129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 130 * fill_delalloc() callback already does proper cleanup for the first page of 131 * the range, that is, it invokes the callback writepage_end_io_hook() for the 132 * range of the first page. 133 */ 134 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 135 const u64 offset, 136 const u64 bytes) 137 { 138 unsigned long index = offset >> PAGE_SHIFT; 139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 140 struct page *page; 141 142 while (index <= end_index) { 143 page = find_get_page(inode->i_mapping, index); 144 index++; 145 if (!page) 146 continue; 147 ClearPagePrivate2(page); 148 put_page(page); 149 } 150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 151 bytes - PAGE_SIZE, false); 152 } 153 154 static int btrfs_dirty_inode(struct inode *inode); 155 156 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 157 void btrfs_test_inode_set_ops(struct inode *inode) 158 { 159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 160 } 161 #endif 162 163 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 164 struct inode *inode, struct inode *dir, 165 const struct qstr *qstr) 166 { 167 int err; 168 169 err = btrfs_init_acl(trans, inode, dir); 170 if (!err) 171 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 172 return err; 173 } 174 175 /* 176 * this does all the hard work for inserting an inline extent into 177 * the btree. The caller should have done a btrfs_drop_extents so that 178 * no overlapping inline items exist in the btree 179 */ 180 static int insert_inline_extent(struct btrfs_trans_handle *trans, 181 struct btrfs_path *path, int extent_inserted, 182 struct btrfs_root *root, struct inode *inode, 183 u64 start, size_t size, size_t compressed_size, 184 int compress_type, 185 struct page **compressed_pages) 186 { 187 struct extent_buffer *leaf; 188 struct page *page = NULL; 189 char *kaddr; 190 unsigned long ptr; 191 struct btrfs_file_extent_item *ei; 192 int ret; 193 size_t cur_size = size; 194 unsigned long offset; 195 196 if (compressed_size && compressed_pages) 197 cur_size = compressed_size; 198 199 inode_add_bytes(inode, size); 200 201 if (!extent_inserted) { 202 struct btrfs_key key; 203 size_t datasize; 204 205 key.objectid = btrfs_ino(BTRFS_I(inode)); 206 key.offset = start; 207 key.type = BTRFS_EXTENT_DATA_KEY; 208 209 datasize = btrfs_file_extent_calc_inline_size(cur_size); 210 path->leave_spinning = 1; 211 ret = btrfs_insert_empty_item(trans, root, path, &key, 212 datasize); 213 if (ret) 214 goto fail; 215 } 216 leaf = path->nodes[0]; 217 ei = btrfs_item_ptr(leaf, path->slots[0], 218 struct btrfs_file_extent_item); 219 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 221 btrfs_set_file_extent_encryption(leaf, ei, 0); 222 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 223 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 224 ptr = btrfs_file_extent_inline_start(ei); 225 226 if (compress_type != BTRFS_COMPRESS_NONE) { 227 struct page *cpage; 228 int i = 0; 229 while (compressed_size > 0) { 230 cpage = compressed_pages[i]; 231 cur_size = min_t(unsigned long, compressed_size, 232 PAGE_SIZE); 233 234 kaddr = kmap_atomic(cpage); 235 write_extent_buffer(leaf, kaddr, ptr, cur_size); 236 kunmap_atomic(kaddr); 237 238 i++; 239 ptr += cur_size; 240 compressed_size -= cur_size; 241 } 242 btrfs_set_file_extent_compression(leaf, ei, 243 compress_type); 244 } else { 245 page = find_get_page(inode->i_mapping, 246 start >> PAGE_SHIFT); 247 btrfs_set_file_extent_compression(leaf, ei, 0); 248 kaddr = kmap_atomic(page); 249 offset = start & (PAGE_SIZE - 1); 250 write_extent_buffer(leaf, kaddr + offset, ptr, size); 251 kunmap_atomic(kaddr); 252 put_page(page); 253 } 254 btrfs_mark_buffer_dirty(leaf); 255 btrfs_release_path(path); 256 257 /* 258 * we're an inline extent, so nobody can 259 * extend the file past i_size without locking 260 * a page we already have locked. 261 * 262 * We must do any isize and inode updates 263 * before we unlock the pages. Otherwise we 264 * could end up racing with unlink. 265 */ 266 BTRFS_I(inode)->disk_i_size = inode->i_size; 267 ret = btrfs_update_inode(trans, root, inode); 268 269 fail: 270 return ret; 271 } 272 273 274 /* 275 * conditionally insert an inline extent into the file. This 276 * does the checks required to make sure the data is small enough 277 * to fit as an inline extent. 278 */ 279 static noinline int cow_file_range_inline(struct btrfs_root *root, 280 struct inode *inode, u64 start, 281 u64 end, size_t compressed_size, 282 int compress_type, 283 struct page **compressed_pages) 284 { 285 struct btrfs_fs_info *fs_info = root->fs_info; 286 struct btrfs_trans_handle *trans; 287 u64 isize = i_size_read(inode); 288 u64 actual_end = min(end + 1, isize); 289 u64 inline_len = actual_end - start; 290 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 291 u64 data_len = inline_len; 292 int ret; 293 struct btrfs_path *path; 294 int extent_inserted = 0; 295 u32 extent_item_size; 296 297 if (compressed_size) 298 data_len = compressed_size; 299 300 if (start > 0 || 301 actual_end > fs_info->sectorsize || 302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 303 (!compressed_size && 304 (actual_end & (fs_info->sectorsize - 1)) == 0) || 305 end + 1 < isize || 306 data_len > fs_info->max_inline) { 307 return 1; 308 } 309 310 path = btrfs_alloc_path(); 311 if (!path) 312 return -ENOMEM; 313 314 trans = btrfs_join_transaction(root); 315 if (IS_ERR(trans)) { 316 btrfs_free_path(path); 317 return PTR_ERR(trans); 318 } 319 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 320 321 if (compressed_size && compressed_pages) 322 extent_item_size = btrfs_file_extent_calc_inline_size( 323 compressed_size); 324 else 325 extent_item_size = btrfs_file_extent_calc_inline_size( 326 inline_len); 327 328 ret = __btrfs_drop_extents(trans, root, inode, path, 329 start, aligned_end, NULL, 330 1, 1, extent_item_size, &extent_inserted); 331 if (ret) { 332 btrfs_abort_transaction(trans, ret); 333 goto out; 334 } 335 336 if (isize > actual_end) 337 inline_len = min_t(u64, isize, actual_end); 338 ret = insert_inline_extent(trans, path, extent_inserted, 339 root, inode, start, 340 inline_len, compressed_size, 341 compress_type, compressed_pages); 342 if (ret && ret != -ENOSPC) { 343 btrfs_abort_transaction(trans, ret); 344 goto out; 345 } else if (ret == -ENOSPC) { 346 ret = 1; 347 goto out; 348 } 349 350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 351 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 352 out: 353 /* 354 * Don't forget to free the reserved space, as for inlined extent 355 * it won't count as data extent, free them directly here. 356 * And at reserve time, it's always aligned to page size, so 357 * just free one page here. 358 */ 359 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 360 btrfs_free_path(path); 361 btrfs_end_transaction(trans); 362 return ret; 363 } 364 365 struct async_extent { 366 u64 start; 367 u64 ram_size; 368 u64 compressed_size; 369 struct page **pages; 370 unsigned long nr_pages; 371 int compress_type; 372 struct list_head list; 373 }; 374 375 struct async_cow { 376 struct inode *inode; 377 struct btrfs_root *root; 378 struct page *locked_page; 379 u64 start; 380 u64 end; 381 unsigned int write_flags; 382 struct list_head extents; 383 struct btrfs_work work; 384 }; 385 386 static noinline int add_async_extent(struct async_cow *cow, 387 u64 start, u64 ram_size, 388 u64 compressed_size, 389 struct page **pages, 390 unsigned long nr_pages, 391 int compress_type) 392 { 393 struct async_extent *async_extent; 394 395 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 396 BUG_ON(!async_extent); /* -ENOMEM */ 397 async_extent->start = start; 398 async_extent->ram_size = ram_size; 399 async_extent->compressed_size = compressed_size; 400 async_extent->pages = pages; 401 async_extent->nr_pages = nr_pages; 402 async_extent->compress_type = compress_type; 403 list_add_tail(&async_extent->list, &cow->extents); 404 return 0; 405 } 406 407 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 408 { 409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 410 411 /* force compress */ 412 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 413 return 1; 414 /* defrag ioctl */ 415 if (BTRFS_I(inode)->defrag_compress) 416 return 1; 417 /* bad compression ratios */ 418 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 419 return 0; 420 if (btrfs_test_opt(fs_info, COMPRESS) || 421 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 422 BTRFS_I(inode)->prop_compress) 423 return btrfs_compress_heuristic(inode, start, end); 424 return 0; 425 } 426 427 static inline void inode_should_defrag(struct btrfs_inode *inode, 428 u64 start, u64 end, u64 num_bytes, u64 small_write) 429 { 430 /* If this is a small write inside eof, kick off a defrag */ 431 if (num_bytes < small_write && 432 (start > 0 || end + 1 < inode->disk_i_size)) 433 btrfs_add_inode_defrag(NULL, inode); 434 } 435 436 /* 437 * we create compressed extents in two phases. The first 438 * phase compresses a range of pages that have already been 439 * locked (both pages and state bits are locked). 440 * 441 * This is done inside an ordered work queue, and the compression 442 * is spread across many cpus. The actual IO submission is step 443 * two, and the ordered work queue takes care of making sure that 444 * happens in the same order things were put onto the queue by 445 * writepages and friends. 446 * 447 * If this code finds it can't get good compression, it puts an 448 * entry onto the work queue to write the uncompressed bytes. This 449 * makes sure that both compressed inodes and uncompressed inodes 450 * are written in the same order that the flusher thread sent them 451 * down. 452 */ 453 static noinline void compress_file_range(struct inode *inode, 454 struct page *locked_page, 455 u64 start, u64 end, 456 struct async_cow *async_cow, 457 int *num_added) 458 { 459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 460 struct btrfs_root *root = BTRFS_I(inode)->root; 461 u64 blocksize = fs_info->sectorsize; 462 u64 actual_end; 463 u64 isize = i_size_read(inode); 464 int ret = 0; 465 struct page **pages = NULL; 466 unsigned long nr_pages; 467 unsigned long total_compressed = 0; 468 unsigned long total_in = 0; 469 int i; 470 int will_compress; 471 int compress_type = fs_info->compress_type; 472 int redirty = 0; 473 474 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 475 SZ_16K); 476 477 actual_end = min_t(u64, isize, end + 1); 478 again: 479 will_compress = 0; 480 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 481 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 482 nr_pages = min_t(unsigned long, nr_pages, 483 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 484 485 /* 486 * we don't want to send crud past the end of i_size through 487 * compression, that's just a waste of CPU time. So, if the 488 * end of the file is before the start of our current 489 * requested range of bytes, we bail out to the uncompressed 490 * cleanup code that can deal with all of this. 491 * 492 * It isn't really the fastest way to fix things, but this is a 493 * very uncommon corner. 494 */ 495 if (actual_end <= start) 496 goto cleanup_and_bail_uncompressed; 497 498 total_compressed = actual_end - start; 499 500 /* 501 * skip compression for a small file range(<=blocksize) that 502 * isn't an inline extent, since it doesn't save disk space at all. 503 */ 504 if (total_compressed <= blocksize && 505 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 506 goto cleanup_and_bail_uncompressed; 507 508 total_compressed = min_t(unsigned long, total_compressed, 509 BTRFS_MAX_UNCOMPRESSED); 510 total_in = 0; 511 ret = 0; 512 513 /* 514 * we do compression for mount -o compress and when the 515 * inode has not been flagged as nocompress. This flag can 516 * change at any time if we discover bad compression ratios. 517 */ 518 if (inode_need_compress(inode, start, end)) { 519 WARN_ON(pages); 520 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 521 if (!pages) { 522 /* just bail out to the uncompressed code */ 523 goto cont; 524 } 525 526 if (BTRFS_I(inode)->defrag_compress) 527 compress_type = BTRFS_I(inode)->defrag_compress; 528 else if (BTRFS_I(inode)->prop_compress) 529 compress_type = BTRFS_I(inode)->prop_compress; 530 531 /* 532 * we need to call clear_page_dirty_for_io on each 533 * page in the range. Otherwise applications with the file 534 * mmap'd can wander in and change the page contents while 535 * we are compressing them. 536 * 537 * If the compression fails for any reason, we set the pages 538 * dirty again later on. 539 */ 540 extent_range_clear_dirty_for_io(inode, start, end); 541 redirty = 1; 542 543 /* Compression level is applied here and only here */ 544 ret = btrfs_compress_pages( 545 compress_type | (fs_info->compress_level << 4), 546 inode->i_mapping, start, 547 pages, 548 &nr_pages, 549 &total_in, 550 &total_compressed); 551 552 if (!ret) { 553 unsigned long offset = total_compressed & 554 (PAGE_SIZE - 1); 555 struct page *page = pages[nr_pages - 1]; 556 char *kaddr; 557 558 /* zero the tail end of the last page, we might be 559 * sending it down to disk 560 */ 561 if (offset) { 562 kaddr = kmap_atomic(page); 563 memset(kaddr + offset, 0, 564 PAGE_SIZE - offset); 565 kunmap_atomic(kaddr); 566 } 567 will_compress = 1; 568 } 569 } 570 cont: 571 if (start == 0) { 572 /* lets try to make an inline extent */ 573 if (ret || total_in < actual_end) { 574 /* we didn't compress the entire range, try 575 * to make an uncompressed inline extent. 576 */ 577 ret = cow_file_range_inline(root, inode, start, end, 578 0, BTRFS_COMPRESS_NONE, NULL); 579 } else { 580 /* try making a compressed inline extent */ 581 ret = cow_file_range_inline(root, inode, start, end, 582 total_compressed, 583 compress_type, pages); 584 } 585 if (ret <= 0) { 586 unsigned long clear_flags = EXTENT_DELALLOC | 587 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 588 EXTENT_DO_ACCOUNTING; 589 unsigned long page_error_op; 590 591 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 592 593 /* 594 * inline extent creation worked or returned error, 595 * we don't need to create any more async work items. 596 * Unlock and free up our temp pages. 597 * 598 * We use DO_ACCOUNTING here because we need the 599 * delalloc_release_metadata to be done _after_ we drop 600 * our outstanding extent for clearing delalloc for this 601 * range. 602 */ 603 extent_clear_unlock_delalloc(inode, start, end, end, 604 NULL, clear_flags, 605 PAGE_UNLOCK | 606 PAGE_CLEAR_DIRTY | 607 PAGE_SET_WRITEBACK | 608 page_error_op | 609 PAGE_END_WRITEBACK); 610 goto free_pages_out; 611 } 612 } 613 614 if (will_compress) { 615 /* 616 * we aren't doing an inline extent round the compressed size 617 * up to a block size boundary so the allocator does sane 618 * things 619 */ 620 total_compressed = ALIGN(total_compressed, blocksize); 621 622 /* 623 * one last check to make sure the compression is really a 624 * win, compare the page count read with the blocks on disk, 625 * compression must free at least one sector size 626 */ 627 total_in = ALIGN(total_in, PAGE_SIZE); 628 if (total_compressed + blocksize <= total_in) { 629 *num_added += 1; 630 631 /* 632 * The async work queues will take care of doing actual 633 * allocation on disk for these compressed pages, and 634 * will submit them to the elevator. 635 */ 636 add_async_extent(async_cow, start, total_in, 637 total_compressed, pages, nr_pages, 638 compress_type); 639 640 if (start + total_in < end) { 641 start += total_in; 642 pages = NULL; 643 cond_resched(); 644 goto again; 645 } 646 return; 647 } 648 } 649 if (pages) { 650 /* 651 * the compression code ran but failed to make things smaller, 652 * free any pages it allocated and our page pointer array 653 */ 654 for (i = 0; i < nr_pages; i++) { 655 WARN_ON(pages[i]->mapping); 656 put_page(pages[i]); 657 } 658 kfree(pages); 659 pages = NULL; 660 total_compressed = 0; 661 nr_pages = 0; 662 663 /* flag the file so we don't compress in the future */ 664 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 665 !(BTRFS_I(inode)->prop_compress)) { 666 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 667 } 668 } 669 cleanup_and_bail_uncompressed: 670 /* 671 * No compression, but we still need to write the pages in the file 672 * we've been given so far. redirty the locked page if it corresponds 673 * to our extent and set things up for the async work queue to run 674 * cow_file_range to do the normal delalloc dance. 675 */ 676 if (page_offset(locked_page) >= start && 677 page_offset(locked_page) <= end) 678 __set_page_dirty_nobuffers(locked_page); 679 /* unlocked later on in the async handlers */ 680 681 if (redirty) 682 extent_range_redirty_for_io(inode, start, end); 683 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 684 BTRFS_COMPRESS_NONE); 685 *num_added += 1; 686 687 return; 688 689 free_pages_out: 690 for (i = 0; i < nr_pages; i++) { 691 WARN_ON(pages[i]->mapping); 692 put_page(pages[i]); 693 } 694 kfree(pages); 695 } 696 697 static void free_async_extent_pages(struct async_extent *async_extent) 698 { 699 int i; 700 701 if (!async_extent->pages) 702 return; 703 704 for (i = 0; i < async_extent->nr_pages; i++) { 705 WARN_ON(async_extent->pages[i]->mapping); 706 put_page(async_extent->pages[i]); 707 } 708 kfree(async_extent->pages); 709 async_extent->nr_pages = 0; 710 async_extent->pages = NULL; 711 } 712 713 /* 714 * phase two of compressed writeback. This is the ordered portion 715 * of the code, which only gets called in the order the work was 716 * queued. We walk all the async extents created by compress_file_range 717 * and send them down to the disk. 718 */ 719 static noinline void submit_compressed_extents(struct inode *inode, 720 struct async_cow *async_cow) 721 { 722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 723 struct async_extent *async_extent; 724 u64 alloc_hint = 0; 725 struct btrfs_key ins; 726 struct extent_map *em; 727 struct btrfs_root *root = BTRFS_I(inode)->root; 728 struct extent_io_tree *io_tree; 729 int ret = 0; 730 731 again: 732 while (!list_empty(&async_cow->extents)) { 733 async_extent = list_entry(async_cow->extents.next, 734 struct async_extent, list); 735 list_del(&async_extent->list); 736 737 io_tree = &BTRFS_I(inode)->io_tree; 738 739 retry: 740 /* did the compression code fall back to uncompressed IO? */ 741 if (!async_extent->pages) { 742 int page_started = 0; 743 unsigned long nr_written = 0; 744 745 lock_extent(io_tree, async_extent->start, 746 async_extent->start + 747 async_extent->ram_size - 1); 748 749 /* allocate blocks */ 750 ret = cow_file_range(inode, async_cow->locked_page, 751 async_extent->start, 752 async_extent->start + 753 async_extent->ram_size - 1, 754 async_extent->start + 755 async_extent->ram_size - 1, 756 &page_started, &nr_written, 0, 757 NULL); 758 759 /* JDM XXX */ 760 761 /* 762 * if page_started, cow_file_range inserted an 763 * inline extent and took care of all the unlocking 764 * and IO for us. Otherwise, we need to submit 765 * all those pages down to the drive. 766 */ 767 if (!page_started && !ret) 768 extent_write_locked_range(io_tree, 769 inode, async_extent->start, 770 async_extent->start + 771 async_extent->ram_size - 1, 772 btrfs_get_extent, 773 WB_SYNC_ALL); 774 else if (ret) 775 unlock_page(async_cow->locked_page); 776 kfree(async_extent); 777 cond_resched(); 778 continue; 779 } 780 781 lock_extent(io_tree, async_extent->start, 782 async_extent->start + async_extent->ram_size - 1); 783 784 ret = btrfs_reserve_extent(root, async_extent->ram_size, 785 async_extent->compressed_size, 786 async_extent->compressed_size, 787 0, alloc_hint, &ins, 1, 1); 788 if (ret) { 789 free_async_extent_pages(async_extent); 790 791 if (ret == -ENOSPC) { 792 unlock_extent(io_tree, async_extent->start, 793 async_extent->start + 794 async_extent->ram_size - 1); 795 796 /* 797 * we need to redirty the pages if we decide to 798 * fallback to uncompressed IO, otherwise we 799 * will not submit these pages down to lower 800 * layers. 801 */ 802 extent_range_redirty_for_io(inode, 803 async_extent->start, 804 async_extent->start + 805 async_extent->ram_size - 1); 806 807 goto retry; 808 } 809 goto out_free; 810 } 811 /* 812 * here we're doing allocation and writeback of the 813 * compressed pages 814 */ 815 em = create_io_em(inode, async_extent->start, 816 async_extent->ram_size, /* len */ 817 async_extent->start, /* orig_start */ 818 ins.objectid, /* block_start */ 819 ins.offset, /* block_len */ 820 ins.offset, /* orig_block_len */ 821 async_extent->ram_size, /* ram_bytes */ 822 async_extent->compress_type, 823 BTRFS_ORDERED_COMPRESSED); 824 if (IS_ERR(em)) 825 /* ret value is not necessary due to void function */ 826 goto out_free_reserve; 827 free_extent_map(em); 828 829 ret = btrfs_add_ordered_extent_compress(inode, 830 async_extent->start, 831 ins.objectid, 832 async_extent->ram_size, 833 ins.offset, 834 BTRFS_ORDERED_COMPRESSED, 835 async_extent->compress_type); 836 if (ret) { 837 btrfs_drop_extent_cache(BTRFS_I(inode), 838 async_extent->start, 839 async_extent->start + 840 async_extent->ram_size - 1, 0); 841 goto out_free_reserve; 842 } 843 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 844 845 /* 846 * clear dirty, set writeback and unlock the pages. 847 */ 848 extent_clear_unlock_delalloc(inode, async_extent->start, 849 async_extent->start + 850 async_extent->ram_size - 1, 851 async_extent->start + 852 async_extent->ram_size - 1, 853 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 854 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 855 PAGE_SET_WRITEBACK); 856 if (btrfs_submit_compressed_write(inode, 857 async_extent->start, 858 async_extent->ram_size, 859 ins.objectid, 860 ins.offset, async_extent->pages, 861 async_extent->nr_pages, 862 async_cow->write_flags)) { 863 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 864 struct page *p = async_extent->pages[0]; 865 const u64 start = async_extent->start; 866 const u64 end = start + async_extent->ram_size - 1; 867 868 p->mapping = inode->i_mapping; 869 tree->ops->writepage_end_io_hook(p, start, end, 870 NULL, 0); 871 p->mapping = NULL; 872 extent_clear_unlock_delalloc(inode, start, end, end, 873 NULL, 0, 874 PAGE_END_WRITEBACK | 875 PAGE_SET_ERROR); 876 free_async_extent_pages(async_extent); 877 } 878 alloc_hint = ins.objectid + ins.offset; 879 kfree(async_extent); 880 cond_resched(); 881 } 882 return; 883 out_free_reserve: 884 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 885 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 886 out_free: 887 extent_clear_unlock_delalloc(inode, async_extent->start, 888 async_extent->start + 889 async_extent->ram_size - 1, 890 async_extent->start + 891 async_extent->ram_size - 1, 892 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 893 EXTENT_DELALLOC_NEW | 894 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 895 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 896 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 897 PAGE_SET_ERROR); 898 free_async_extent_pages(async_extent); 899 kfree(async_extent); 900 goto again; 901 } 902 903 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 904 u64 num_bytes) 905 { 906 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 907 struct extent_map *em; 908 u64 alloc_hint = 0; 909 910 read_lock(&em_tree->lock); 911 em = search_extent_mapping(em_tree, start, num_bytes); 912 if (em) { 913 /* 914 * if block start isn't an actual block number then find the 915 * first block in this inode and use that as a hint. If that 916 * block is also bogus then just don't worry about it. 917 */ 918 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 919 free_extent_map(em); 920 em = search_extent_mapping(em_tree, 0, 0); 921 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 922 alloc_hint = em->block_start; 923 if (em) 924 free_extent_map(em); 925 } else { 926 alloc_hint = em->block_start; 927 free_extent_map(em); 928 } 929 } 930 read_unlock(&em_tree->lock); 931 932 return alloc_hint; 933 } 934 935 /* 936 * when extent_io.c finds a delayed allocation range in the file, 937 * the call backs end up in this code. The basic idea is to 938 * allocate extents on disk for the range, and create ordered data structs 939 * in ram to track those extents. 940 * 941 * locked_page is the page that writepage had locked already. We use 942 * it to make sure we don't do extra locks or unlocks. 943 * 944 * *page_started is set to one if we unlock locked_page and do everything 945 * required to start IO on it. It may be clean and already done with 946 * IO when we return. 947 */ 948 static noinline int cow_file_range(struct inode *inode, 949 struct page *locked_page, 950 u64 start, u64 end, u64 delalloc_end, 951 int *page_started, unsigned long *nr_written, 952 int unlock, struct btrfs_dedupe_hash *hash) 953 { 954 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 955 struct btrfs_root *root = BTRFS_I(inode)->root; 956 u64 alloc_hint = 0; 957 u64 num_bytes; 958 unsigned long ram_size; 959 u64 disk_num_bytes; 960 u64 cur_alloc_size = 0; 961 u64 blocksize = fs_info->sectorsize; 962 struct btrfs_key ins; 963 struct extent_map *em; 964 unsigned clear_bits; 965 unsigned long page_ops; 966 bool extent_reserved = false; 967 int ret = 0; 968 969 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 970 WARN_ON_ONCE(1); 971 ret = -EINVAL; 972 goto out_unlock; 973 } 974 975 num_bytes = ALIGN(end - start + 1, blocksize); 976 num_bytes = max(blocksize, num_bytes); 977 disk_num_bytes = num_bytes; 978 979 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 980 981 if (start == 0) { 982 /* lets try to make an inline extent */ 983 ret = cow_file_range_inline(root, inode, start, end, 0, 984 BTRFS_COMPRESS_NONE, NULL); 985 if (ret == 0) { 986 /* 987 * We use DO_ACCOUNTING here because we need the 988 * delalloc_release_metadata to be run _after_ we drop 989 * our outstanding extent for clearing delalloc for this 990 * range. 991 */ 992 extent_clear_unlock_delalloc(inode, start, end, 993 delalloc_end, NULL, 994 EXTENT_LOCKED | EXTENT_DELALLOC | 995 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 996 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 997 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 998 PAGE_END_WRITEBACK); 999 *nr_written = *nr_written + 1000 (end - start + PAGE_SIZE) / PAGE_SIZE; 1001 *page_started = 1; 1002 goto out; 1003 } else if (ret < 0) { 1004 goto out_unlock; 1005 } 1006 } 1007 1008 BUG_ON(disk_num_bytes > 1009 btrfs_super_total_bytes(fs_info->super_copy)); 1010 1011 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1012 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1013 start + num_bytes - 1, 0); 1014 1015 while (disk_num_bytes > 0) { 1016 cur_alloc_size = disk_num_bytes; 1017 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1018 fs_info->sectorsize, 0, alloc_hint, 1019 &ins, 1, 1); 1020 if (ret < 0) 1021 goto out_unlock; 1022 cur_alloc_size = ins.offset; 1023 extent_reserved = true; 1024 1025 ram_size = ins.offset; 1026 em = create_io_em(inode, start, ins.offset, /* len */ 1027 start, /* orig_start */ 1028 ins.objectid, /* block_start */ 1029 ins.offset, /* block_len */ 1030 ins.offset, /* orig_block_len */ 1031 ram_size, /* ram_bytes */ 1032 BTRFS_COMPRESS_NONE, /* compress_type */ 1033 BTRFS_ORDERED_REGULAR /* type */); 1034 if (IS_ERR(em)) 1035 goto out_reserve; 1036 free_extent_map(em); 1037 1038 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1039 ram_size, cur_alloc_size, 0); 1040 if (ret) 1041 goto out_drop_extent_cache; 1042 1043 if (root->root_key.objectid == 1044 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1045 ret = btrfs_reloc_clone_csums(inode, start, 1046 cur_alloc_size); 1047 /* 1048 * Only drop cache here, and process as normal. 1049 * 1050 * We must not allow extent_clear_unlock_delalloc() 1051 * at out_unlock label to free meta of this ordered 1052 * extent, as its meta should be freed by 1053 * btrfs_finish_ordered_io(). 1054 * 1055 * So we must continue until @start is increased to 1056 * skip current ordered extent. 1057 */ 1058 if (ret) 1059 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1060 start + ram_size - 1, 0); 1061 } 1062 1063 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1064 1065 /* we're not doing compressed IO, don't unlock the first 1066 * page (which the caller expects to stay locked), don't 1067 * clear any dirty bits and don't set any writeback bits 1068 * 1069 * Do set the Private2 bit so we know this page was properly 1070 * setup for writepage 1071 */ 1072 page_ops = unlock ? PAGE_UNLOCK : 0; 1073 page_ops |= PAGE_SET_PRIVATE2; 1074 1075 extent_clear_unlock_delalloc(inode, start, 1076 start + ram_size - 1, 1077 delalloc_end, locked_page, 1078 EXTENT_LOCKED | EXTENT_DELALLOC, 1079 page_ops); 1080 if (disk_num_bytes < cur_alloc_size) 1081 disk_num_bytes = 0; 1082 else 1083 disk_num_bytes -= cur_alloc_size; 1084 num_bytes -= cur_alloc_size; 1085 alloc_hint = ins.objectid + ins.offset; 1086 start += cur_alloc_size; 1087 extent_reserved = false; 1088 1089 /* 1090 * btrfs_reloc_clone_csums() error, since start is increased 1091 * extent_clear_unlock_delalloc() at out_unlock label won't 1092 * free metadata of current ordered extent, we're OK to exit. 1093 */ 1094 if (ret) 1095 goto out_unlock; 1096 } 1097 out: 1098 return ret; 1099 1100 out_drop_extent_cache: 1101 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1102 out_reserve: 1103 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1104 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1105 out_unlock: 1106 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1107 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1108 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1109 PAGE_END_WRITEBACK; 1110 /* 1111 * If we reserved an extent for our delalloc range (or a subrange) and 1112 * failed to create the respective ordered extent, then it means that 1113 * when we reserved the extent we decremented the extent's size from 1114 * the data space_info's bytes_may_use counter and incremented the 1115 * space_info's bytes_reserved counter by the same amount. We must make 1116 * sure extent_clear_unlock_delalloc() does not try to decrement again 1117 * the data space_info's bytes_may_use counter, therefore we do not pass 1118 * it the flag EXTENT_CLEAR_DATA_RESV. 1119 */ 1120 if (extent_reserved) { 1121 extent_clear_unlock_delalloc(inode, start, 1122 start + cur_alloc_size, 1123 start + cur_alloc_size, 1124 locked_page, 1125 clear_bits, 1126 page_ops); 1127 start += cur_alloc_size; 1128 if (start >= end) 1129 goto out; 1130 } 1131 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1132 locked_page, 1133 clear_bits | EXTENT_CLEAR_DATA_RESV, 1134 page_ops); 1135 goto out; 1136 } 1137 1138 /* 1139 * work queue call back to started compression on a file and pages 1140 */ 1141 static noinline void async_cow_start(struct btrfs_work *work) 1142 { 1143 struct async_cow *async_cow; 1144 int num_added = 0; 1145 async_cow = container_of(work, struct async_cow, work); 1146 1147 compress_file_range(async_cow->inode, async_cow->locked_page, 1148 async_cow->start, async_cow->end, async_cow, 1149 &num_added); 1150 if (num_added == 0) { 1151 btrfs_add_delayed_iput(async_cow->inode); 1152 async_cow->inode = NULL; 1153 } 1154 } 1155 1156 /* 1157 * work queue call back to submit previously compressed pages 1158 */ 1159 static noinline void async_cow_submit(struct btrfs_work *work) 1160 { 1161 struct btrfs_fs_info *fs_info; 1162 struct async_cow *async_cow; 1163 struct btrfs_root *root; 1164 unsigned long nr_pages; 1165 1166 async_cow = container_of(work, struct async_cow, work); 1167 1168 root = async_cow->root; 1169 fs_info = root->fs_info; 1170 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1171 PAGE_SHIFT; 1172 1173 /* 1174 * atomic_sub_return implies a barrier for waitqueue_active 1175 */ 1176 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1177 5 * SZ_1M && 1178 waitqueue_active(&fs_info->async_submit_wait)) 1179 wake_up(&fs_info->async_submit_wait); 1180 1181 if (async_cow->inode) 1182 submit_compressed_extents(async_cow->inode, async_cow); 1183 } 1184 1185 static noinline void async_cow_free(struct btrfs_work *work) 1186 { 1187 struct async_cow *async_cow; 1188 async_cow = container_of(work, struct async_cow, work); 1189 if (async_cow->inode) 1190 btrfs_add_delayed_iput(async_cow->inode); 1191 kfree(async_cow); 1192 } 1193 1194 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1195 u64 start, u64 end, int *page_started, 1196 unsigned long *nr_written, 1197 unsigned int write_flags) 1198 { 1199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1200 struct async_cow *async_cow; 1201 struct btrfs_root *root = BTRFS_I(inode)->root; 1202 unsigned long nr_pages; 1203 u64 cur_end; 1204 1205 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1206 1, 0, NULL, GFP_NOFS); 1207 while (start < end) { 1208 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1209 BUG_ON(!async_cow); /* -ENOMEM */ 1210 async_cow->inode = igrab(inode); 1211 async_cow->root = root; 1212 async_cow->locked_page = locked_page; 1213 async_cow->start = start; 1214 async_cow->write_flags = write_flags; 1215 1216 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1217 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1218 cur_end = end; 1219 else 1220 cur_end = min(end, start + SZ_512K - 1); 1221 1222 async_cow->end = cur_end; 1223 INIT_LIST_HEAD(&async_cow->extents); 1224 1225 btrfs_init_work(&async_cow->work, 1226 btrfs_delalloc_helper, 1227 async_cow_start, async_cow_submit, 1228 async_cow_free); 1229 1230 nr_pages = (cur_end - start + PAGE_SIZE) >> 1231 PAGE_SHIFT; 1232 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1233 1234 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1235 1236 *nr_written += nr_pages; 1237 start = cur_end + 1; 1238 } 1239 *page_started = 1; 1240 return 0; 1241 } 1242 1243 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1244 u64 bytenr, u64 num_bytes) 1245 { 1246 int ret; 1247 struct btrfs_ordered_sum *sums; 1248 LIST_HEAD(list); 1249 1250 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1251 bytenr + num_bytes - 1, &list, 0); 1252 if (ret == 0 && list_empty(&list)) 1253 return 0; 1254 1255 while (!list_empty(&list)) { 1256 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1257 list_del(&sums->list); 1258 kfree(sums); 1259 } 1260 return 1; 1261 } 1262 1263 /* 1264 * when nowcow writeback call back. This checks for snapshots or COW copies 1265 * of the extents that exist in the file, and COWs the file as required. 1266 * 1267 * If no cow copies or snapshots exist, we write directly to the existing 1268 * blocks on disk 1269 */ 1270 static noinline int run_delalloc_nocow(struct inode *inode, 1271 struct page *locked_page, 1272 u64 start, u64 end, int *page_started, int force, 1273 unsigned long *nr_written) 1274 { 1275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1276 struct btrfs_root *root = BTRFS_I(inode)->root; 1277 struct extent_buffer *leaf; 1278 struct btrfs_path *path; 1279 struct btrfs_file_extent_item *fi; 1280 struct btrfs_key found_key; 1281 struct extent_map *em; 1282 u64 cow_start; 1283 u64 cur_offset; 1284 u64 extent_end; 1285 u64 extent_offset; 1286 u64 disk_bytenr; 1287 u64 num_bytes; 1288 u64 disk_num_bytes; 1289 u64 ram_bytes; 1290 int extent_type; 1291 int ret, err; 1292 int type; 1293 int nocow; 1294 int check_prev = 1; 1295 bool nolock; 1296 u64 ino = btrfs_ino(BTRFS_I(inode)); 1297 1298 path = btrfs_alloc_path(); 1299 if (!path) { 1300 extent_clear_unlock_delalloc(inode, start, end, end, 1301 locked_page, 1302 EXTENT_LOCKED | EXTENT_DELALLOC | 1303 EXTENT_DO_ACCOUNTING | 1304 EXTENT_DEFRAG, PAGE_UNLOCK | 1305 PAGE_CLEAR_DIRTY | 1306 PAGE_SET_WRITEBACK | 1307 PAGE_END_WRITEBACK); 1308 return -ENOMEM; 1309 } 1310 1311 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1312 1313 cow_start = (u64)-1; 1314 cur_offset = start; 1315 while (1) { 1316 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1317 cur_offset, 0); 1318 if (ret < 0) 1319 goto error; 1320 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1321 leaf = path->nodes[0]; 1322 btrfs_item_key_to_cpu(leaf, &found_key, 1323 path->slots[0] - 1); 1324 if (found_key.objectid == ino && 1325 found_key.type == BTRFS_EXTENT_DATA_KEY) 1326 path->slots[0]--; 1327 } 1328 check_prev = 0; 1329 next_slot: 1330 leaf = path->nodes[0]; 1331 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1332 ret = btrfs_next_leaf(root, path); 1333 if (ret < 0) 1334 goto error; 1335 if (ret > 0) 1336 break; 1337 leaf = path->nodes[0]; 1338 } 1339 1340 nocow = 0; 1341 disk_bytenr = 0; 1342 num_bytes = 0; 1343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1344 1345 if (found_key.objectid > ino) 1346 break; 1347 if (WARN_ON_ONCE(found_key.objectid < ino) || 1348 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1349 path->slots[0]++; 1350 goto next_slot; 1351 } 1352 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1353 found_key.offset > end) 1354 break; 1355 1356 if (found_key.offset > cur_offset) { 1357 extent_end = found_key.offset; 1358 extent_type = 0; 1359 goto out_check; 1360 } 1361 1362 fi = btrfs_item_ptr(leaf, path->slots[0], 1363 struct btrfs_file_extent_item); 1364 extent_type = btrfs_file_extent_type(leaf, fi); 1365 1366 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1367 if (extent_type == BTRFS_FILE_EXTENT_REG || 1368 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1369 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1370 extent_offset = btrfs_file_extent_offset(leaf, fi); 1371 extent_end = found_key.offset + 1372 btrfs_file_extent_num_bytes(leaf, fi); 1373 disk_num_bytes = 1374 btrfs_file_extent_disk_num_bytes(leaf, fi); 1375 if (extent_end <= start) { 1376 path->slots[0]++; 1377 goto next_slot; 1378 } 1379 if (disk_bytenr == 0) 1380 goto out_check; 1381 if (btrfs_file_extent_compression(leaf, fi) || 1382 btrfs_file_extent_encryption(leaf, fi) || 1383 btrfs_file_extent_other_encoding(leaf, fi)) 1384 goto out_check; 1385 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1386 goto out_check; 1387 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1388 goto out_check; 1389 if (btrfs_cross_ref_exist(root, ino, 1390 found_key.offset - 1391 extent_offset, disk_bytenr)) 1392 goto out_check; 1393 disk_bytenr += extent_offset; 1394 disk_bytenr += cur_offset - found_key.offset; 1395 num_bytes = min(end + 1, extent_end) - cur_offset; 1396 /* 1397 * if there are pending snapshots for this root, 1398 * we fall into common COW way. 1399 */ 1400 if (!nolock) { 1401 err = btrfs_start_write_no_snapshotting(root); 1402 if (!err) 1403 goto out_check; 1404 } 1405 /* 1406 * force cow if csum exists in the range. 1407 * this ensure that csum for a given extent are 1408 * either valid or do not exist. 1409 */ 1410 if (csum_exist_in_range(fs_info, disk_bytenr, 1411 num_bytes)) { 1412 if (!nolock) 1413 btrfs_end_write_no_snapshotting(root); 1414 goto out_check; 1415 } 1416 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) { 1417 if (!nolock) 1418 btrfs_end_write_no_snapshotting(root); 1419 goto out_check; 1420 } 1421 nocow = 1; 1422 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1423 extent_end = found_key.offset + 1424 btrfs_file_extent_inline_len(leaf, 1425 path->slots[0], fi); 1426 extent_end = ALIGN(extent_end, 1427 fs_info->sectorsize); 1428 } else { 1429 BUG_ON(1); 1430 } 1431 out_check: 1432 if (extent_end <= start) { 1433 path->slots[0]++; 1434 if (!nolock && nocow) 1435 btrfs_end_write_no_snapshotting(root); 1436 if (nocow) 1437 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1438 goto next_slot; 1439 } 1440 if (!nocow) { 1441 if (cow_start == (u64)-1) 1442 cow_start = cur_offset; 1443 cur_offset = extent_end; 1444 if (cur_offset > end) 1445 break; 1446 path->slots[0]++; 1447 goto next_slot; 1448 } 1449 1450 btrfs_release_path(path); 1451 if (cow_start != (u64)-1) { 1452 ret = cow_file_range(inode, locked_page, 1453 cow_start, found_key.offset - 1, 1454 end, page_started, nr_written, 1, 1455 NULL); 1456 if (ret) { 1457 if (!nolock && nocow) 1458 btrfs_end_write_no_snapshotting(root); 1459 if (nocow) 1460 btrfs_dec_nocow_writers(fs_info, 1461 disk_bytenr); 1462 goto error; 1463 } 1464 cow_start = (u64)-1; 1465 } 1466 1467 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1468 u64 orig_start = found_key.offset - extent_offset; 1469 1470 em = create_io_em(inode, cur_offset, num_bytes, 1471 orig_start, 1472 disk_bytenr, /* block_start */ 1473 num_bytes, /* block_len */ 1474 disk_num_bytes, /* orig_block_len */ 1475 ram_bytes, BTRFS_COMPRESS_NONE, 1476 BTRFS_ORDERED_PREALLOC); 1477 if (IS_ERR(em)) { 1478 if (!nolock && nocow) 1479 btrfs_end_write_no_snapshotting(root); 1480 if (nocow) 1481 btrfs_dec_nocow_writers(fs_info, 1482 disk_bytenr); 1483 ret = PTR_ERR(em); 1484 goto error; 1485 } 1486 free_extent_map(em); 1487 } 1488 1489 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1490 type = BTRFS_ORDERED_PREALLOC; 1491 } else { 1492 type = BTRFS_ORDERED_NOCOW; 1493 } 1494 1495 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1496 num_bytes, num_bytes, type); 1497 if (nocow) 1498 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1499 BUG_ON(ret); /* -ENOMEM */ 1500 1501 if (root->root_key.objectid == 1502 BTRFS_DATA_RELOC_TREE_OBJECTID) 1503 /* 1504 * Error handled later, as we must prevent 1505 * extent_clear_unlock_delalloc() in error handler 1506 * from freeing metadata of created ordered extent. 1507 */ 1508 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1509 num_bytes); 1510 1511 extent_clear_unlock_delalloc(inode, cur_offset, 1512 cur_offset + num_bytes - 1, end, 1513 locked_page, EXTENT_LOCKED | 1514 EXTENT_DELALLOC | 1515 EXTENT_CLEAR_DATA_RESV, 1516 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1517 1518 if (!nolock && nocow) 1519 btrfs_end_write_no_snapshotting(root); 1520 cur_offset = extent_end; 1521 1522 /* 1523 * btrfs_reloc_clone_csums() error, now we're OK to call error 1524 * handler, as metadata for created ordered extent will only 1525 * be freed by btrfs_finish_ordered_io(). 1526 */ 1527 if (ret) 1528 goto error; 1529 if (cur_offset > end) 1530 break; 1531 } 1532 btrfs_release_path(path); 1533 1534 if (cur_offset <= end && cow_start == (u64)-1) { 1535 cow_start = cur_offset; 1536 cur_offset = end; 1537 } 1538 1539 if (cow_start != (u64)-1) { 1540 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1541 page_started, nr_written, 1, NULL); 1542 if (ret) 1543 goto error; 1544 } 1545 1546 error: 1547 if (ret && cur_offset < end) 1548 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1549 locked_page, EXTENT_LOCKED | 1550 EXTENT_DELALLOC | EXTENT_DEFRAG | 1551 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1552 PAGE_CLEAR_DIRTY | 1553 PAGE_SET_WRITEBACK | 1554 PAGE_END_WRITEBACK); 1555 btrfs_free_path(path); 1556 return ret; 1557 } 1558 1559 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1560 { 1561 1562 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1563 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1564 return 0; 1565 1566 /* 1567 * @defrag_bytes is a hint value, no spinlock held here, 1568 * if is not zero, it means the file is defragging. 1569 * Force cow if given extent needs to be defragged. 1570 */ 1571 if (BTRFS_I(inode)->defrag_bytes && 1572 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1573 EXTENT_DEFRAG, 0, NULL)) 1574 return 1; 1575 1576 return 0; 1577 } 1578 1579 /* 1580 * extent_io.c call back to do delayed allocation processing 1581 */ 1582 static int run_delalloc_range(void *private_data, struct page *locked_page, 1583 u64 start, u64 end, int *page_started, 1584 unsigned long *nr_written, 1585 struct writeback_control *wbc) 1586 { 1587 struct inode *inode = private_data; 1588 int ret; 1589 int force_cow = need_force_cow(inode, start, end); 1590 unsigned int write_flags = wbc_to_write_flags(wbc); 1591 1592 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1593 ret = run_delalloc_nocow(inode, locked_page, start, end, 1594 page_started, 1, nr_written); 1595 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1596 ret = run_delalloc_nocow(inode, locked_page, start, end, 1597 page_started, 0, nr_written); 1598 } else if (!inode_need_compress(inode, start, end)) { 1599 ret = cow_file_range(inode, locked_page, start, end, end, 1600 page_started, nr_written, 1, NULL); 1601 } else { 1602 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1603 &BTRFS_I(inode)->runtime_flags); 1604 ret = cow_file_range_async(inode, locked_page, start, end, 1605 page_started, nr_written, 1606 write_flags); 1607 } 1608 if (ret) 1609 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1610 return ret; 1611 } 1612 1613 static void btrfs_split_extent_hook(void *private_data, 1614 struct extent_state *orig, u64 split) 1615 { 1616 struct inode *inode = private_data; 1617 u64 size; 1618 1619 /* not delalloc, ignore it */ 1620 if (!(orig->state & EXTENT_DELALLOC)) 1621 return; 1622 1623 size = orig->end - orig->start + 1; 1624 if (size > BTRFS_MAX_EXTENT_SIZE) { 1625 u32 num_extents; 1626 u64 new_size; 1627 1628 /* 1629 * See the explanation in btrfs_merge_extent_hook, the same 1630 * applies here, just in reverse. 1631 */ 1632 new_size = orig->end - split + 1; 1633 num_extents = count_max_extents(new_size); 1634 new_size = split - orig->start; 1635 num_extents += count_max_extents(new_size); 1636 if (count_max_extents(size) >= num_extents) 1637 return; 1638 } 1639 1640 spin_lock(&BTRFS_I(inode)->lock); 1641 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1642 spin_unlock(&BTRFS_I(inode)->lock); 1643 } 1644 1645 /* 1646 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1647 * extents so we can keep track of new extents that are just merged onto old 1648 * extents, such as when we are doing sequential writes, so we can properly 1649 * account for the metadata space we'll need. 1650 */ 1651 static void btrfs_merge_extent_hook(void *private_data, 1652 struct extent_state *new, 1653 struct extent_state *other) 1654 { 1655 struct inode *inode = private_data; 1656 u64 new_size, old_size; 1657 u32 num_extents; 1658 1659 /* not delalloc, ignore it */ 1660 if (!(other->state & EXTENT_DELALLOC)) 1661 return; 1662 1663 if (new->start > other->start) 1664 new_size = new->end - other->start + 1; 1665 else 1666 new_size = other->end - new->start + 1; 1667 1668 /* we're not bigger than the max, unreserve the space and go */ 1669 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1670 spin_lock(&BTRFS_I(inode)->lock); 1671 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1672 spin_unlock(&BTRFS_I(inode)->lock); 1673 return; 1674 } 1675 1676 /* 1677 * We have to add up either side to figure out how many extents were 1678 * accounted for before we merged into one big extent. If the number of 1679 * extents we accounted for is <= the amount we need for the new range 1680 * then we can return, otherwise drop. Think of it like this 1681 * 1682 * [ 4k][MAX_SIZE] 1683 * 1684 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1685 * need 2 outstanding extents, on one side we have 1 and the other side 1686 * we have 1 so they are == and we can return. But in this case 1687 * 1688 * [MAX_SIZE+4k][MAX_SIZE+4k] 1689 * 1690 * Each range on their own accounts for 2 extents, but merged together 1691 * they are only 3 extents worth of accounting, so we need to drop in 1692 * this case. 1693 */ 1694 old_size = other->end - other->start + 1; 1695 num_extents = count_max_extents(old_size); 1696 old_size = new->end - new->start + 1; 1697 num_extents += count_max_extents(old_size); 1698 if (count_max_extents(new_size) >= num_extents) 1699 return; 1700 1701 spin_lock(&BTRFS_I(inode)->lock); 1702 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1703 spin_unlock(&BTRFS_I(inode)->lock); 1704 } 1705 1706 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1707 struct inode *inode) 1708 { 1709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1710 1711 spin_lock(&root->delalloc_lock); 1712 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1713 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1714 &root->delalloc_inodes); 1715 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1716 &BTRFS_I(inode)->runtime_flags); 1717 root->nr_delalloc_inodes++; 1718 if (root->nr_delalloc_inodes == 1) { 1719 spin_lock(&fs_info->delalloc_root_lock); 1720 BUG_ON(!list_empty(&root->delalloc_root)); 1721 list_add_tail(&root->delalloc_root, 1722 &fs_info->delalloc_roots); 1723 spin_unlock(&fs_info->delalloc_root_lock); 1724 } 1725 } 1726 spin_unlock(&root->delalloc_lock); 1727 } 1728 1729 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1730 struct btrfs_inode *inode) 1731 { 1732 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1733 1734 spin_lock(&root->delalloc_lock); 1735 if (!list_empty(&inode->delalloc_inodes)) { 1736 list_del_init(&inode->delalloc_inodes); 1737 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1738 &inode->runtime_flags); 1739 root->nr_delalloc_inodes--; 1740 if (!root->nr_delalloc_inodes) { 1741 spin_lock(&fs_info->delalloc_root_lock); 1742 BUG_ON(list_empty(&root->delalloc_root)); 1743 list_del_init(&root->delalloc_root); 1744 spin_unlock(&fs_info->delalloc_root_lock); 1745 } 1746 } 1747 spin_unlock(&root->delalloc_lock); 1748 } 1749 1750 /* 1751 * extent_io.c set_bit_hook, used to track delayed allocation 1752 * bytes in this file, and to maintain the list of inodes that 1753 * have pending delalloc work to be done. 1754 */ 1755 static void btrfs_set_bit_hook(void *private_data, 1756 struct extent_state *state, unsigned *bits) 1757 { 1758 struct inode *inode = private_data; 1759 1760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1761 1762 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1763 WARN_ON(1); 1764 /* 1765 * set_bit and clear bit hooks normally require _irqsave/restore 1766 * but in this case, we are only testing for the DELALLOC 1767 * bit, which is only set or cleared with irqs on 1768 */ 1769 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1770 struct btrfs_root *root = BTRFS_I(inode)->root; 1771 u64 len = state->end + 1 - state->start; 1772 u32 num_extents = count_max_extents(len); 1773 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1774 1775 spin_lock(&BTRFS_I(inode)->lock); 1776 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1777 spin_unlock(&BTRFS_I(inode)->lock); 1778 1779 /* For sanity tests */ 1780 if (btrfs_is_testing(fs_info)) 1781 return; 1782 1783 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1784 fs_info->delalloc_batch); 1785 spin_lock(&BTRFS_I(inode)->lock); 1786 BTRFS_I(inode)->delalloc_bytes += len; 1787 if (*bits & EXTENT_DEFRAG) 1788 BTRFS_I(inode)->defrag_bytes += len; 1789 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1790 &BTRFS_I(inode)->runtime_flags)) 1791 btrfs_add_delalloc_inodes(root, inode); 1792 spin_unlock(&BTRFS_I(inode)->lock); 1793 } 1794 1795 if (!(state->state & EXTENT_DELALLOC_NEW) && 1796 (*bits & EXTENT_DELALLOC_NEW)) { 1797 spin_lock(&BTRFS_I(inode)->lock); 1798 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1799 state->start; 1800 spin_unlock(&BTRFS_I(inode)->lock); 1801 } 1802 } 1803 1804 /* 1805 * extent_io.c clear_bit_hook, see set_bit_hook for why 1806 */ 1807 static void btrfs_clear_bit_hook(void *private_data, 1808 struct extent_state *state, 1809 unsigned *bits) 1810 { 1811 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); 1812 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1813 u64 len = state->end + 1 - state->start; 1814 u32 num_extents = count_max_extents(len); 1815 1816 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1817 spin_lock(&inode->lock); 1818 inode->defrag_bytes -= len; 1819 spin_unlock(&inode->lock); 1820 } 1821 1822 /* 1823 * set_bit and clear bit hooks normally require _irqsave/restore 1824 * but in this case, we are only testing for the DELALLOC 1825 * bit, which is only set or cleared with irqs on 1826 */ 1827 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1828 struct btrfs_root *root = inode->root; 1829 bool do_list = !btrfs_is_free_space_inode(inode); 1830 1831 spin_lock(&inode->lock); 1832 btrfs_mod_outstanding_extents(inode, -num_extents); 1833 spin_unlock(&inode->lock); 1834 1835 /* 1836 * We don't reserve metadata space for space cache inodes so we 1837 * don't need to call dellalloc_release_metadata if there is an 1838 * error. 1839 */ 1840 if (*bits & EXTENT_CLEAR_META_RESV && 1841 root != fs_info->tree_root) 1842 btrfs_delalloc_release_metadata(inode, len); 1843 1844 /* For sanity tests. */ 1845 if (btrfs_is_testing(fs_info)) 1846 return; 1847 1848 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1849 do_list && !(state->state & EXTENT_NORESERVE) && 1850 (*bits & EXTENT_CLEAR_DATA_RESV)) 1851 btrfs_free_reserved_data_space_noquota( 1852 &inode->vfs_inode, 1853 state->start, len); 1854 1855 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1856 fs_info->delalloc_batch); 1857 spin_lock(&inode->lock); 1858 inode->delalloc_bytes -= len; 1859 if (do_list && inode->delalloc_bytes == 0 && 1860 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1861 &inode->runtime_flags)) 1862 btrfs_del_delalloc_inode(root, inode); 1863 spin_unlock(&inode->lock); 1864 } 1865 1866 if ((state->state & EXTENT_DELALLOC_NEW) && 1867 (*bits & EXTENT_DELALLOC_NEW)) { 1868 spin_lock(&inode->lock); 1869 ASSERT(inode->new_delalloc_bytes >= len); 1870 inode->new_delalloc_bytes -= len; 1871 spin_unlock(&inode->lock); 1872 } 1873 } 1874 1875 /* 1876 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1877 * we don't create bios that span stripes or chunks 1878 * 1879 * return 1 if page cannot be merged to bio 1880 * return 0 if page can be merged to bio 1881 * return error otherwise 1882 */ 1883 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1884 size_t size, struct bio *bio, 1885 unsigned long bio_flags) 1886 { 1887 struct inode *inode = page->mapping->host; 1888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1889 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1890 u64 length = 0; 1891 u64 map_length; 1892 int ret; 1893 1894 if (bio_flags & EXTENT_BIO_COMPRESSED) 1895 return 0; 1896 1897 length = bio->bi_iter.bi_size; 1898 map_length = length; 1899 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1900 NULL, 0); 1901 if (ret < 0) 1902 return ret; 1903 if (map_length < length + size) 1904 return 1; 1905 return 0; 1906 } 1907 1908 /* 1909 * in order to insert checksums into the metadata in large chunks, 1910 * we wait until bio submission time. All the pages in the bio are 1911 * checksummed and sums are attached onto the ordered extent record. 1912 * 1913 * At IO completion time the cums attached on the ordered extent record 1914 * are inserted into the btree 1915 */ 1916 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio, 1917 int mirror_num, unsigned long bio_flags, 1918 u64 bio_offset) 1919 { 1920 struct inode *inode = private_data; 1921 blk_status_t ret = 0; 1922 1923 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1924 BUG_ON(ret); /* -ENOMEM */ 1925 return 0; 1926 } 1927 1928 /* 1929 * in order to insert checksums into the metadata in large chunks, 1930 * we wait until bio submission time. All the pages in the bio are 1931 * checksummed and sums are attached onto the ordered extent record. 1932 * 1933 * At IO completion time the cums attached on the ordered extent record 1934 * are inserted into the btree 1935 */ 1936 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio, 1937 int mirror_num, unsigned long bio_flags, 1938 u64 bio_offset) 1939 { 1940 struct inode *inode = private_data; 1941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1942 blk_status_t ret; 1943 1944 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1945 if (ret) { 1946 bio->bi_status = ret; 1947 bio_endio(bio); 1948 } 1949 return ret; 1950 } 1951 1952 /* 1953 * extent_io.c submission hook. This does the right thing for csum calculation 1954 * on write, or reading the csums from the tree before a read 1955 */ 1956 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1957 int mirror_num, unsigned long bio_flags, 1958 u64 bio_offset) 1959 { 1960 struct inode *inode = private_data; 1961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1962 struct btrfs_root *root = BTRFS_I(inode)->root; 1963 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1964 blk_status_t ret = 0; 1965 int skip_sum; 1966 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1967 1968 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1969 1970 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1971 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1972 1973 if (bio_op(bio) != REQ_OP_WRITE) { 1974 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1975 if (ret) 1976 goto out; 1977 1978 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1979 ret = btrfs_submit_compressed_read(inode, bio, 1980 mirror_num, 1981 bio_flags); 1982 goto out; 1983 } else if (!skip_sum) { 1984 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 1985 if (ret) 1986 goto out; 1987 } 1988 goto mapit; 1989 } else if (async && !skip_sum) { 1990 /* csum items have already been cloned */ 1991 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1992 goto mapit; 1993 /* we're doing a write, do the async checksumming */ 1994 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 1995 bio_offset, inode, 1996 __btrfs_submit_bio_start, 1997 __btrfs_submit_bio_done); 1998 goto out; 1999 } else if (!skip_sum) { 2000 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2001 if (ret) 2002 goto out; 2003 } 2004 2005 mapit: 2006 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2007 2008 out: 2009 if (ret) { 2010 bio->bi_status = ret; 2011 bio_endio(bio); 2012 } 2013 return ret; 2014 } 2015 2016 /* 2017 * given a list of ordered sums record them in the inode. This happens 2018 * at IO completion time based on sums calculated at bio submission time. 2019 */ 2020 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2021 struct inode *inode, struct list_head *list) 2022 { 2023 struct btrfs_ordered_sum *sum; 2024 2025 list_for_each_entry(sum, list, list) { 2026 trans->adding_csums = 1; 2027 btrfs_csum_file_blocks(trans, 2028 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2029 trans->adding_csums = 0; 2030 } 2031 return 0; 2032 } 2033 2034 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2035 unsigned int extra_bits, 2036 struct extent_state **cached_state, int dedupe) 2037 { 2038 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2039 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2040 extra_bits, cached_state); 2041 } 2042 2043 /* see btrfs_writepage_start_hook for details on why this is required */ 2044 struct btrfs_writepage_fixup { 2045 struct page *page; 2046 struct btrfs_work work; 2047 }; 2048 2049 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2050 { 2051 struct btrfs_writepage_fixup *fixup; 2052 struct btrfs_ordered_extent *ordered; 2053 struct extent_state *cached_state = NULL; 2054 struct extent_changeset *data_reserved = NULL; 2055 struct page *page; 2056 struct inode *inode; 2057 u64 page_start; 2058 u64 page_end; 2059 int ret; 2060 2061 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2062 page = fixup->page; 2063 again: 2064 lock_page(page); 2065 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2066 ClearPageChecked(page); 2067 goto out_page; 2068 } 2069 2070 inode = page->mapping->host; 2071 page_start = page_offset(page); 2072 page_end = page_offset(page) + PAGE_SIZE - 1; 2073 2074 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2075 &cached_state); 2076 2077 /* already ordered? We're done */ 2078 if (PagePrivate2(page)) 2079 goto out; 2080 2081 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2082 PAGE_SIZE); 2083 if (ordered) { 2084 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2085 page_end, &cached_state, GFP_NOFS); 2086 unlock_page(page); 2087 btrfs_start_ordered_extent(inode, ordered, 1); 2088 btrfs_put_ordered_extent(ordered); 2089 goto again; 2090 } 2091 2092 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2093 PAGE_SIZE); 2094 if (ret) { 2095 mapping_set_error(page->mapping, ret); 2096 end_extent_writepage(page, ret, page_start, page_end); 2097 ClearPageChecked(page); 2098 goto out; 2099 } 2100 2101 btrfs_set_extent_delalloc(inode, page_start, page_end, 0, &cached_state, 2102 0); 2103 ClearPageChecked(page); 2104 set_page_dirty(page); 2105 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2106 out: 2107 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2108 &cached_state, GFP_NOFS); 2109 out_page: 2110 unlock_page(page); 2111 put_page(page); 2112 kfree(fixup); 2113 extent_changeset_free(data_reserved); 2114 } 2115 2116 /* 2117 * There are a few paths in the higher layers of the kernel that directly 2118 * set the page dirty bit without asking the filesystem if it is a 2119 * good idea. This causes problems because we want to make sure COW 2120 * properly happens and the data=ordered rules are followed. 2121 * 2122 * In our case any range that doesn't have the ORDERED bit set 2123 * hasn't been properly setup for IO. We kick off an async process 2124 * to fix it up. The async helper will wait for ordered extents, set 2125 * the delalloc bit and make it safe to write the page. 2126 */ 2127 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2128 { 2129 struct inode *inode = page->mapping->host; 2130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2131 struct btrfs_writepage_fixup *fixup; 2132 2133 /* this page is properly in the ordered list */ 2134 if (TestClearPagePrivate2(page)) 2135 return 0; 2136 2137 if (PageChecked(page)) 2138 return -EAGAIN; 2139 2140 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2141 if (!fixup) 2142 return -EAGAIN; 2143 2144 SetPageChecked(page); 2145 get_page(page); 2146 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2147 btrfs_writepage_fixup_worker, NULL, NULL); 2148 fixup->page = page; 2149 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2150 return -EBUSY; 2151 } 2152 2153 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2154 struct inode *inode, u64 file_pos, 2155 u64 disk_bytenr, u64 disk_num_bytes, 2156 u64 num_bytes, u64 ram_bytes, 2157 u8 compression, u8 encryption, 2158 u16 other_encoding, int extent_type) 2159 { 2160 struct btrfs_root *root = BTRFS_I(inode)->root; 2161 struct btrfs_file_extent_item *fi; 2162 struct btrfs_path *path; 2163 struct extent_buffer *leaf; 2164 struct btrfs_key ins; 2165 u64 qg_released; 2166 int extent_inserted = 0; 2167 int ret; 2168 2169 path = btrfs_alloc_path(); 2170 if (!path) 2171 return -ENOMEM; 2172 2173 /* 2174 * we may be replacing one extent in the tree with another. 2175 * The new extent is pinned in the extent map, and we don't want 2176 * to drop it from the cache until it is completely in the btree. 2177 * 2178 * So, tell btrfs_drop_extents to leave this extent in the cache. 2179 * the caller is expected to unpin it and allow it to be merged 2180 * with the others. 2181 */ 2182 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2183 file_pos + num_bytes, NULL, 0, 2184 1, sizeof(*fi), &extent_inserted); 2185 if (ret) 2186 goto out; 2187 2188 if (!extent_inserted) { 2189 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2190 ins.offset = file_pos; 2191 ins.type = BTRFS_EXTENT_DATA_KEY; 2192 2193 path->leave_spinning = 1; 2194 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2195 sizeof(*fi)); 2196 if (ret) 2197 goto out; 2198 } 2199 leaf = path->nodes[0]; 2200 fi = btrfs_item_ptr(leaf, path->slots[0], 2201 struct btrfs_file_extent_item); 2202 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2203 btrfs_set_file_extent_type(leaf, fi, extent_type); 2204 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2205 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2206 btrfs_set_file_extent_offset(leaf, fi, 0); 2207 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2208 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2209 btrfs_set_file_extent_compression(leaf, fi, compression); 2210 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2211 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2212 2213 btrfs_mark_buffer_dirty(leaf); 2214 btrfs_release_path(path); 2215 2216 inode_add_bytes(inode, num_bytes); 2217 2218 ins.objectid = disk_bytenr; 2219 ins.offset = disk_num_bytes; 2220 ins.type = BTRFS_EXTENT_ITEM_KEY; 2221 2222 /* 2223 * Release the reserved range from inode dirty range map, as it is 2224 * already moved into delayed_ref_head 2225 */ 2226 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2227 if (ret < 0) 2228 goto out; 2229 qg_released = ret; 2230 ret = btrfs_alloc_reserved_file_extent(trans, root, 2231 btrfs_ino(BTRFS_I(inode)), 2232 file_pos, qg_released, &ins); 2233 out: 2234 btrfs_free_path(path); 2235 2236 return ret; 2237 } 2238 2239 /* snapshot-aware defrag */ 2240 struct sa_defrag_extent_backref { 2241 struct rb_node node; 2242 struct old_sa_defrag_extent *old; 2243 u64 root_id; 2244 u64 inum; 2245 u64 file_pos; 2246 u64 extent_offset; 2247 u64 num_bytes; 2248 u64 generation; 2249 }; 2250 2251 struct old_sa_defrag_extent { 2252 struct list_head list; 2253 struct new_sa_defrag_extent *new; 2254 2255 u64 extent_offset; 2256 u64 bytenr; 2257 u64 offset; 2258 u64 len; 2259 int count; 2260 }; 2261 2262 struct new_sa_defrag_extent { 2263 struct rb_root root; 2264 struct list_head head; 2265 struct btrfs_path *path; 2266 struct inode *inode; 2267 u64 file_pos; 2268 u64 len; 2269 u64 bytenr; 2270 u64 disk_len; 2271 u8 compress_type; 2272 }; 2273 2274 static int backref_comp(struct sa_defrag_extent_backref *b1, 2275 struct sa_defrag_extent_backref *b2) 2276 { 2277 if (b1->root_id < b2->root_id) 2278 return -1; 2279 else if (b1->root_id > b2->root_id) 2280 return 1; 2281 2282 if (b1->inum < b2->inum) 2283 return -1; 2284 else if (b1->inum > b2->inum) 2285 return 1; 2286 2287 if (b1->file_pos < b2->file_pos) 2288 return -1; 2289 else if (b1->file_pos > b2->file_pos) 2290 return 1; 2291 2292 /* 2293 * [------------------------------] ===> (a range of space) 2294 * |<--->| |<---->| =============> (fs/file tree A) 2295 * |<---------------------------->| ===> (fs/file tree B) 2296 * 2297 * A range of space can refer to two file extents in one tree while 2298 * refer to only one file extent in another tree. 2299 * 2300 * So we may process a disk offset more than one time(two extents in A) 2301 * and locate at the same extent(one extent in B), then insert two same 2302 * backrefs(both refer to the extent in B). 2303 */ 2304 return 0; 2305 } 2306 2307 static void backref_insert(struct rb_root *root, 2308 struct sa_defrag_extent_backref *backref) 2309 { 2310 struct rb_node **p = &root->rb_node; 2311 struct rb_node *parent = NULL; 2312 struct sa_defrag_extent_backref *entry; 2313 int ret; 2314 2315 while (*p) { 2316 parent = *p; 2317 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2318 2319 ret = backref_comp(backref, entry); 2320 if (ret < 0) 2321 p = &(*p)->rb_left; 2322 else 2323 p = &(*p)->rb_right; 2324 } 2325 2326 rb_link_node(&backref->node, parent, p); 2327 rb_insert_color(&backref->node, root); 2328 } 2329 2330 /* 2331 * Note the backref might has changed, and in this case we just return 0. 2332 */ 2333 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2334 void *ctx) 2335 { 2336 struct btrfs_file_extent_item *extent; 2337 struct old_sa_defrag_extent *old = ctx; 2338 struct new_sa_defrag_extent *new = old->new; 2339 struct btrfs_path *path = new->path; 2340 struct btrfs_key key; 2341 struct btrfs_root *root; 2342 struct sa_defrag_extent_backref *backref; 2343 struct extent_buffer *leaf; 2344 struct inode *inode = new->inode; 2345 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2346 int slot; 2347 int ret; 2348 u64 extent_offset; 2349 u64 num_bytes; 2350 2351 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2352 inum == btrfs_ino(BTRFS_I(inode))) 2353 return 0; 2354 2355 key.objectid = root_id; 2356 key.type = BTRFS_ROOT_ITEM_KEY; 2357 key.offset = (u64)-1; 2358 2359 root = btrfs_read_fs_root_no_name(fs_info, &key); 2360 if (IS_ERR(root)) { 2361 if (PTR_ERR(root) == -ENOENT) 2362 return 0; 2363 WARN_ON(1); 2364 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2365 inum, offset, root_id); 2366 return PTR_ERR(root); 2367 } 2368 2369 key.objectid = inum; 2370 key.type = BTRFS_EXTENT_DATA_KEY; 2371 if (offset > (u64)-1 << 32) 2372 key.offset = 0; 2373 else 2374 key.offset = offset; 2375 2376 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2377 if (WARN_ON(ret < 0)) 2378 return ret; 2379 ret = 0; 2380 2381 while (1) { 2382 cond_resched(); 2383 2384 leaf = path->nodes[0]; 2385 slot = path->slots[0]; 2386 2387 if (slot >= btrfs_header_nritems(leaf)) { 2388 ret = btrfs_next_leaf(root, path); 2389 if (ret < 0) { 2390 goto out; 2391 } else if (ret > 0) { 2392 ret = 0; 2393 goto out; 2394 } 2395 continue; 2396 } 2397 2398 path->slots[0]++; 2399 2400 btrfs_item_key_to_cpu(leaf, &key, slot); 2401 2402 if (key.objectid > inum) 2403 goto out; 2404 2405 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2406 continue; 2407 2408 extent = btrfs_item_ptr(leaf, slot, 2409 struct btrfs_file_extent_item); 2410 2411 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2412 continue; 2413 2414 /* 2415 * 'offset' refers to the exact key.offset, 2416 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2417 * (key.offset - extent_offset). 2418 */ 2419 if (key.offset != offset) 2420 continue; 2421 2422 extent_offset = btrfs_file_extent_offset(leaf, extent); 2423 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2424 2425 if (extent_offset >= old->extent_offset + old->offset + 2426 old->len || extent_offset + num_bytes <= 2427 old->extent_offset + old->offset) 2428 continue; 2429 break; 2430 } 2431 2432 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2433 if (!backref) { 2434 ret = -ENOENT; 2435 goto out; 2436 } 2437 2438 backref->root_id = root_id; 2439 backref->inum = inum; 2440 backref->file_pos = offset; 2441 backref->num_bytes = num_bytes; 2442 backref->extent_offset = extent_offset; 2443 backref->generation = btrfs_file_extent_generation(leaf, extent); 2444 backref->old = old; 2445 backref_insert(&new->root, backref); 2446 old->count++; 2447 out: 2448 btrfs_release_path(path); 2449 WARN_ON(ret); 2450 return ret; 2451 } 2452 2453 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2454 struct new_sa_defrag_extent *new) 2455 { 2456 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2457 struct old_sa_defrag_extent *old, *tmp; 2458 int ret; 2459 2460 new->path = path; 2461 2462 list_for_each_entry_safe(old, tmp, &new->head, list) { 2463 ret = iterate_inodes_from_logical(old->bytenr + 2464 old->extent_offset, fs_info, 2465 path, record_one_backref, 2466 old, false); 2467 if (ret < 0 && ret != -ENOENT) 2468 return false; 2469 2470 /* no backref to be processed for this extent */ 2471 if (!old->count) { 2472 list_del(&old->list); 2473 kfree(old); 2474 } 2475 } 2476 2477 if (list_empty(&new->head)) 2478 return false; 2479 2480 return true; 2481 } 2482 2483 static int relink_is_mergable(struct extent_buffer *leaf, 2484 struct btrfs_file_extent_item *fi, 2485 struct new_sa_defrag_extent *new) 2486 { 2487 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2488 return 0; 2489 2490 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2491 return 0; 2492 2493 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2494 return 0; 2495 2496 if (btrfs_file_extent_encryption(leaf, fi) || 2497 btrfs_file_extent_other_encoding(leaf, fi)) 2498 return 0; 2499 2500 return 1; 2501 } 2502 2503 /* 2504 * Note the backref might has changed, and in this case we just return 0. 2505 */ 2506 static noinline int relink_extent_backref(struct btrfs_path *path, 2507 struct sa_defrag_extent_backref *prev, 2508 struct sa_defrag_extent_backref *backref) 2509 { 2510 struct btrfs_file_extent_item *extent; 2511 struct btrfs_file_extent_item *item; 2512 struct btrfs_ordered_extent *ordered; 2513 struct btrfs_trans_handle *trans; 2514 struct btrfs_root *root; 2515 struct btrfs_key key; 2516 struct extent_buffer *leaf; 2517 struct old_sa_defrag_extent *old = backref->old; 2518 struct new_sa_defrag_extent *new = old->new; 2519 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2520 struct inode *inode; 2521 struct extent_state *cached = NULL; 2522 int ret = 0; 2523 u64 start; 2524 u64 len; 2525 u64 lock_start; 2526 u64 lock_end; 2527 bool merge = false; 2528 int index; 2529 2530 if (prev && prev->root_id == backref->root_id && 2531 prev->inum == backref->inum && 2532 prev->file_pos + prev->num_bytes == backref->file_pos) 2533 merge = true; 2534 2535 /* step 1: get root */ 2536 key.objectid = backref->root_id; 2537 key.type = BTRFS_ROOT_ITEM_KEY; 2538 key.offset = (u64)-1; 2539 2540 index = srcu_read_lock(&fs_info->subvol_srcu); 2541 2542 root = btrfs_read_fs_root_no_name(fs_info, &key); 2543 if (IS_ERR(root)) { 2544 srcu_read_unlock(&fs_info->subvol_srcu, index); 2545 if (PTR_ERR(root) == -ENOENT) 2546 return 0; 2547 return PTR_ERR(root); 2548 } 2549 2550 if (btrfs_root_readonly(root)) { 2551 srcu_read_unlock(&fs_info->subvol_srcu, index); 2552 return 0; 2553 } 2554 2555 /* step 2: get inode */ 2556 key.objectid = backref->inum; 2557 key.type = BTRFS_INODE_ITEM_KEY; 2558 key.offset = 0; 2559 2560 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2561 if (IS_ERR(inode)) { 2562 srcu_read_unlock(&fs_info->subvol_srcu, index); 2563 return 0; 2564 } 2565 2566 srcu_read_unlock(&fs_info->subvol_srcu, index); 2567 2568 /* step 3: relink backref */ 2569 lock_start = backref->file_pos; 2570 lock_end = backref->file_pos + backref->num_bytes - 1; 2571 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2572 &cached); 2573 2574 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2575 if (ordered) { 2576 btrfs_put_ordered_extent(ordered); 2577 goto out_unlock; 2578 } 2579 2580 trans = btrfs_join_transaction(root); 2581 if (IS_ERR(trans)) { 2582 ret = PTR_ERR(trans); 2583 goto out_unlock; 2584 } 2585 2586 key.objectid = backref->inum; 2587 key.type = BTRFS_EXTENT_DATA_KEY; 2588 key.offset = backref->file_pos; 2589 2590 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2591 if (ret < 0) { 2592 goto out_free_path; 2593 } else if (ret > 0) { 2594 ret = 0; 2595 goto out_free_path; 2596 } 2597 2598 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2599 struct btrfs_file_extent_item); 2600 2601 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2602 backref->generation) 2603 goto out_free_path; 2604 2605 btrfs_release_path(path); 2606 2607 start = backref->file_pos; 2608 if (backref->extent_offset < old->extent_offset + old->offset) 2609 start += old->extent_offset + old->offset - 2610 backref->extent_offset; 2611 2612 len = min(backref->extent_offset + backref->num_bytes, 2613 old->extent_offset + old->offset + old->len); 2614 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2615 2616 ret = btrfs_drop_extents(trans, root, inode, start, 2617 start + len, 1); 2618 if (ret) 2619 goto out_free_path; 2620 again: 2621 key.objectid = btrfs_ino(BTRFS_I(inode)); 2622 key.type = BTRFS_EXTENT_DATA_KEY; 2623 key.offset = start; 2624 2625 path->leave_spinning = 1; 2626 if (merge) { 2627 struct btrfs_file_extent_item *fi; 2628 u64 extent_len; 2629 struct btrfs_key found_key; 2630 2631 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2632 if (ret < 0) 2633 goto out_free_path; 2634 2635 path->slots[0]--; 2636 leaf = path->nodes[0]; 2637 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2638 2639 fi = btrfs_item_ptr(leaf, path->slots[0], 2640 struct btrfs_file_extent_item); 2641 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2642 2643 if (extent_len + found_key.offset == start && 2644 relink_is_mergable(leaf, fi, new)) { 2645 btrfs_set_file_extent_num_bytes(leaf, fi, 2646 extent_len + len); 2647 btrfs_mark_buffer_dirty(leaf); 2648 inode_add_bytes(inode, len); 2649 2650 ret = 1; 2651 goto out_free_path; 2652 } else { 2653 merge = false; 2654 btrfs_release_path(path); 2655 goto again; 2656 } 2657 } 2658 2659 ret = btrfs_insert_empty_item(trans, root, path, &key, 2660 sizeof(*extent)); 2661 if (ret) { 2662 btrfs_abort_transaction(trans, ret); 2663 goto out_free_path; 2664 } 2665 2666 leaf = path->nodes[0]; 2667 item = btrfs_item_ptr(leaf, path->slots[0], 2668 struct btrfs_file_extent_item); 2669 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2670 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2671 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2672 btrfs_set_file_extent_num_bytes(leaf, item, len); 2673 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2674 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2675 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2676 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2677 btrfs_set_file_extent_encryption(leaf, item, 0); 2678 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2679 2680 btrfs_mark_buffer_dirty(leaf); 2681 inode_add_bytes(inode, len); 2682 btrfs_release_path(path); 2683 2684 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2685 new->disk_len, 0, 2686 backref->root_id, backref->inum, 2687 new->file_pos); /* start - extent_offset */ 2688 if (ret) { 2689 btrfs_abort_transaction(trans, ret); 2690 goto out_free_path; 2691 } 2692 2693 ret = 1; 2694 out_free_path: 2695 btrfs_release_path(path); 2696 path->leave_spinning = 0; 2697 btrfs_end_transaction(trans); 2698 out_unlock: 2699 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2700 &cached, GFP_NOFS); 2701 iput(inode); 2702 return ret; 2703 } 2704 2705 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2706 { 2707 struct old_sa_defrag_extent *old, *tmp; 2708 2709 if (!new) 2710 return; 2711 2712 list_for_each_entry_safe(old, tmp, &new->head, list) { 2713 kfree(old); 2714 } 2715 kfree(new); 2716 } 2717 2718 static void relink_file_extents(struct new_sa_defrag_extent *new) 2719 { 2720 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2721 struct btrfs_path *path; 2722 struct sa_defrag_extent_backref *backref; 2723 struct sa_defrag_extent_backref *prev = NULL; 2724 struct inode *inode; 2725 struct btrfs_root *root; 2726 struct rb_node *node; 2727 int ret; 2728 2729 inode = new->inode; 2730 root = BTRFS_I(inode)->root; 2731 2732 path = btrfs_alloc_path(); 2733 if (!path) 2734 return; 2735 2736 if (!record_extent_backrefs(path, new)) { 2737 btrfs_free_path(path); 2738 goto out; 2739 } 2740 btrfs_release_path(path); 2741 2742 while (1) { 2743 node = rb_first(&new->root); 2744 if (!node) 2745 break; 2746 rb_erase(node, &new->root); 2747 2748 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2749 2750 ret = relink_extent_backref(path, prev, backref); 2751 WARN_ON(ret < 0); 2752 2753 kfree(prev); 2754 2755 if (ret == 1) 2756 prev = backref; 2757 else 2758 prev = NULL; 2759 cond_resched(); 2760 } 2761 kfree(prev); 2762 2763 btrfs_free_path(path); 2764 out: 2765 free_sa_defrag_extent(new); 2766 2767 atomic_dec(&fs_info->defrag_running); 2768 wake_up(&fs_info->transaction_wait); 2769 } 2770 2771 static struct new_sa_defrag_extent * 2772 record_old_file_extents(struct inode *inode, 2773 struct btrfs_ordered_extent *ordered) 2774 { 2775 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2776 struct btrfs_root *root = BTRFS_I(inode)->root; 2777 struct btrfs_path *path; 2778 struct btrfs_key key; 2779 struct old_sa_defrag_extent *old; 2780 struct new_sa_defrag_extent *new; 2781 int ret; 2782 2783 new = kmalloc(sizeof(*new), GFP_NOFS); 2784 if (!new) 2785 return NULL; 2786 2787 new->inode = inode; 2788 new->file_pos = ordered->file_offset; 2789 new->len = ordered->len; 2790 new->bytenr = ordered->start; 2791 new->disk_len = ordered->disk_len; 2792 new->compress_type = ordered->compress_type; 2793 new->root = RB_ROOT; 2794 INIT_LIST_HEAD(&new->head); 2795 2796 path = btrfs_alloc_path(); 2797 if (!path) 2798 goto out_kfree; 2799 2800 key.objectid = btrfs_ino(BTRFS_I(inode)); 2801 key.type = BTRFS_EXTENT_DATA_KEY; 2802 key.offset = new->file_pos; 2803 2804 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2805 if (ret < 0) 2806 goto out_free_path; 2807 if (ret > 0 && path->slots[0] > 0) 2808 path->slots[0]--; 2809 2810 /* find out all the old extents for the file range */ 2811 while (1) { 2812 struct btrfs_file_extent_item *extent; 2813 struct extent_buffer *l; 2814 int slot; 2815 u64 num_bytes; 2816 u64 offset; 2817 u64 end; 2818 u64 disk_bytenr; 2819 u64 extent_offset; 2820 2821 l = path->nodes[0]; 2822 slot = path->slots[0]; 2823 2824 if (slot >= btrfs_header_nritems(l)) { 2825 ret = btrfs_next_leaf(root, path); 2826 if (ret < 0) 2827 goto out_free_path; 2828 else if (ret > 0) 2829 break; 2830 continue; 2831 } 2832 2833 btrfs_item_key_to_cpu(l, &key, slot); 2834 2835 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2836 break; 2837 if (key.type != BTRFS_EXTENT_DATA_KEY) 2838 break; 2839 if (key.offset >= new->file_pos + new->len) 2840 break; 2841 2842 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2843 2844 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2845 if (key.offset + num_bytes < new->file_pos) 2846 goto next; 2847 2848 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2849 if (!disk_bytenr) 2850 goto next; 2851 2852 extent_offset = btrfs_file_extent_offset(l, extent); 2853 2854 old = kmalloc(sizeof(*old), GFP_NOFS); 2855 if (!old) 2856 goto out_free_path; 2857 2858 offset = max(new->file_pos, key.offset); 2859 end = min(new->file_pos + new->len, key.offset + num_bytes); 2860 2861 old->bytenr = disk_bytenr; 2862 old->extent_offset = extent_offset; 2863 old->offset = offset - key.offset; 2864 old->len = end - offset; 2865 old->new = new; 2866 old->count = 0; 2867 list_add_tail(&old->list, &new->head); 2868 next: 2869 path->slots[0]++; 2870 cond_resched(); 2871 } 2872 2873 btrfs_free_path(path); 2874 atomic_inc(&fs_info->defrag_running); 2875 2876 return new; 2877 2878 out_free_path: 2879 btrfs_free_path(path); 2880 out_kfree: 2881 free_sa_defrag_extent(new); 2882 return NULL; 2883 } 2884 2885 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2886 u64 start, u64 len) 2887 { 2888 struct btrfs_block_group_cache *cache; 2889 2890 cache = btrfs_lookup_block_group(fs_info, start); 2891 ASSERT(cache); 2892 2893 spin_lock(&cache->lock); 2894 cache->delalloc_bytes -= len; 2895 spin_unlock(&cache->lock); 2896 2897 btrfs_put_block_group(cache); 2898 } 2899 2900 /* as ordered data IO finishes, this gets called so we can finish 2901 * an ordered extent if the range of bytes in the file it covers are 2902 * fully written. 2903 */ 2904 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2905 { 2906 struct inode *inode = ordered_extent->inode; 2907 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2908 struct btrfs_root *root = BTRFS_I(inode)->root; 2909 struct btrfs_trans_handle *trans = NULL; 2910 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2911 struct extent_state *cached_state = NULL; 2912 struct new_sa_defrag_extent *new = NULL; 2913 int compress_type = 0; 2914 int ret = 0; 2915 u64 logical_len = ordered_extent->len; 2916 bool nolock; 2917 bool truncated = false; 2918 bool range_locked = false; 2919 bool clear_new_delalloc_bytes = false; 2920 2921 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2922 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2923 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2924 clear_new_delalloc_bytes = true; 2925 2926 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2927 2928 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2929 ret = -EIO; 2930 goto out; 2931 } 2932 2933 btrfs_free_io_failure_record(BTRFS_I(inode), 2934 ordered_extent->file_offset, 2935 ordered_extent->file_offset + 2936 ordered_extent->len - 1); 2937 2938 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2939 truncated = true; 2940 logical_len = ordered_extent->truncated_len; 2941 /* Truncated the entire extent, don't bother adding */ 2942 if (!logical_len) 2943 goto out; 2944 } 2945 2946 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2947 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2948 2949 /* 2950 * For mwrite(mmap + memset to write) case, we still reserve 2951 * space for NOCOW range. 2952 * As NOCOW won't cause a new delayed ref, just free the space 2953 */ 2954 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2955 ordered_extent->len); 2956 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2957 if (nolock) 2958 trans = btrfs_join_transaction_nolock(root); 2959 else 2960 trans = btrfs_join_transaction(root); 2961 if (IS_ERR(trans)) { 2962 ret = PTR_ERR(trans); 2963 trans = NULL; 2964 goto out; 2965 } 2966 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2967 ret = btrfs_update_inode_fallback(trans, root, inode); 2968 if (ret) /* -ENOMEM or corruption */ 2969 btrfs_abort_transaction(trans, ret); 2970 goto out; 2971 } 2972 2973 range_locked = true; 2974 lock_extent_bits(io_tree, ordered_extent->file_offset, 2975 ordered_extent->file_offset + ordered_extent->len - 1, 2976 &cached_state); 2977 2978 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2979 ordered_extent->file_offset + ordered_extent->len - 1, 2980 EXTENT_DEFRAG, 0, cached_state); 2981 if (ret) { 2982 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2983 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2984 /* the inode is shared */ 2985 new = record_old_file_extents(inode, ordered_extent); 2986 2987 clear_extent_bit(io_tree, ordered_extent->file_offset, 2988 ordered_extent->file_offset + ordered_extent->len - 1, 2989 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2990 } 2991 2992 if (nolock) 2993 trans = btrfs_join_transaction_nolock(root); 2994 else 2995 trans = btrfs_join_transaction(root); 2996 if (IS_ERR(trans)) { 2997 ret = PTR_ERR(trans); 2998 trans = NULL; 2999 goto out; 3000 } 3001 3002 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3003 3004 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3005 compress_type = ordered_extent->compress_type; 3006 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3007 BUG_ON(compress_type); 3008 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3009 ordered_extent->len); 3010 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3011 ordered_extent->file_offset, 3012 ordered_extent->file_offset + 3013 logical_len); 3014 } else { 3015 BUG_ON(root == fs_info->tree_root); 3016 ret = insert_reserved_file_extent(trans, inode, 3017 ordered_extent->file_offset, 3018 ordered_extent->start, 3019 ordered_extent->disk_len, 3020 logical_len, logical_len, 3021 compress_type, 0, 0, 3022 BTRFS_FILE_EXTENT_REG); 3023 if (!ret) 3024 btrfs_release_delalloc_bytes(fs_info, 3025 ordered_extent->start, 3026 ordered_extent->disk_len); 3027 } 3028 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3029 ordered_extent->file_offset, ordered_extent->len, 3030 trans->transid); 3031 if (ret < 0) { 3032 btrfs_abort_transaction(trans, ret); 3033 goto out; 3034 } 3035 3036 add_pending_csums(trans, inode, &ordered_extent->list); 3037 3038 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3039 ret = btrfs_update_inode_fallback(trans, root, inode); 3040 if (ret) { /* -ENOMEM or corruption */ 3041 btrfs_abort_transaction(trans, ret); 3042 goto out; 3043 } 3044 ret = 0; 3045 out: 3046 if (range_locked || clear_new_delalloc_bytes) { 3047 unsigned int clear_bits = 0; 3048 3049 if (range_locked) 3050 clear_bits |= EXTENT_LOCKED; 3051 if (clear_new_delalloc_bytes) 3052 clear_bits |= EXTENT_DELALLOC_NEW; 3053 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3054 ordered_extent->file_offset, 3055 ordered_extent->file_offset + 3056 ordered_extent->len - 1, 3057 clear_bits, 3058 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3059 0, &cached_state, GFP_NOFS); 3060 } 3061 3062 if (trans) 3063 btrfs_end_transaction(trans); 3064 3065 if (ret || truncated) { 3066 u64 start, end; 3067 3068 if (truncated) 3069 start = ordered_extent->file_offset + logical_len; 3070 else 3071 start = ordered_extent->file_offset; 3072 end = ordered_extent->file_offset + ordered_extent->len - 1; 3073 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 3074 3075 /* Drop the cache for the part of the extent we didn't write. */ 3076 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3077 3078 /* 3079 * If the ordered extent had an IOERR or something else went 3080 * wrong we need to return the space for this ordered extent 3081 * back to the allocator. We only free the extent in the 3082 * truncated case if we didn't write out the extent at all. 3083 */ 3084 if ((ret || !logical_len) && 3085 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3086 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3087 btrfs_free_reserved_extent(fs_info, 3088 ordered_extent->start, 3089 ordered_extent->disk_len, 1); 3090 } 3091 3092 3093 /* 3094 * This needs to be done to make sure anybody waiting knows we are done 3095 * updating everything for this ordered extent. 3096 */ 3097 btrfs_remove_ordered_extent(inode, ordered_extent); 3098 3099 /* for snapshot-aware defrag */ 3100 if (new) { 3101 if (ret) { 3102 free_sa_defrag_extent(new); 3103 atomic_dec(&fs_info->defrag_running); 3104 } else { 3105 relink_file_extents(new); 3106 } 3107 } 3108 3109 /* once for us */ 3110 btrfs_put_ordered_extent(ordered_extent); 3111 /* once for the tree */ 3112 btrfs_put_ordered_extent(ordered_extent); 3113 3114 return ret; 3115 } 3116 3117 static void finish_ordered_fn(struct btrfs_work *work) 3118 { 3119 struct btrfs_ordered_extent *ordered_extent; 3120 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3121 btrfs_finish_ordered_io(ordered_extent); 3122 } 3123 3124 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3125 struct extent_state *state, int uptodate) 3126 { 3127 struct inode *inode = page->mapping->host; 3128 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3129 struct btrfs_ordered_extent *ordered_extent = NULL; 3130 struct btrfs_workqueue *wq; 3131 btrfs_work_func_t func; 3132 3133 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3134 3135 ClearPagePrivate2(page); 3136 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3137 end - start + 1, uptodate)) 3138 return; 3139 3140 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3141 wq = fs_info->endio_freespace_worker; 3142 func = btrfs_freespace_write_helper; 3143 } else { 3144 wq = fs_info->endio_write_workers; 3145 func = btrfs_endio_write_helper; 3146 } 3147 3148 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3149 NULL); 3150 btrfs_queue_work(wq, &ordered_extent->work); 3151 } 3152 3153 static int __readpage_endio_check(struct inode *inode, 3154 struct btrfs_io_bio *io_bio, 3155 int icsum, struct page *page, 3156 int pgoff, u64 start, size_t len) 3157 { 3158 char *kaddr; 3159 u32 csum_expected; 3160 u32 csum = ~(u32)0; 3161 3162 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3163 3164 kaddr = kmap_atomic(page); 3165 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3166 btrfs_csum_final(csum, (u8 *)&csum); 3167 if (csum != csum_expected) 3168 goto zeroit; 3169 3170 kunmap_atomic(kaddr); 3171 return 0; 3172 zeroit: 3173 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3174 io_bio->mirror_num); 3175 memset(kaddr + pgoff, 1, len); 3176 flush_dcache_page(page); 3177 kunmap_atomic(kaddr); 3178 return -EIO; 3179 } 3180 3181 /* 3182 * when reads are done, we need to check csums to verify the data is correct 3183 * if there's a match, we allow the bio to finish. If not, the code in 3184 * extent_io.c will try to find good copies for us. 3185 */ 3186 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3187 u64 phy_offset, struct page *page, 3188 u64 start, u64 end, int mirror) 3189 { 3190 size_t offset = start - page_offset(page); 3191 struct inode *inode = page->mapping->host; 3192 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3193 struct btrfs_root *root = BTRFS_I(inode)->root; 3194 3195 if (PageChecked(page)) { 3196 ClearPageChecked(page); 3197 return 0; 3198 } 3199 3200 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3201 return 0; 3202 3203 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3204 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3205 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3206 return 0; 3207 } 3208 3209 phy_offset >>= inode->i_sb->s_blocksize_bits; 3210 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3211 start, (size_t)(end - start + 1)); 3212 } 3213 3214 void btrfs_add_delayed_iput(struct inode *inode) 3215 { 3216 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3217 struct btrfs_inode *binode = BTRFS_I(inode); 3218 3219 if (atomic_add_unless(&inode->i_count, -1, 1)) 3220 return; 3221 3222 spin_lock(&fs_info->delayed_iput_lock); 3223 if (binode->delayed_iput_count == 0) { 3224 ASSERT(list_empty(&binode->delayed_iput)); 3225 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3226 } else { 3227 binode->delayed_iput_count++; 3228 } 3229 spin_unlock(&fs_info->delayed_iput_lock); 3230 } 3231 3232 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3233 { 3234 3235 spin_lock(&fs_info->delayed_iput_lock); 3236 while (!list_empty(&fs_info->delayed_iputs)) { 3237 struct btrfs_inode *inode; 3238 3239 inode = list_first_entry(&fs_info->delayed_iputs, 3240 struct btrfs_inode, delayed_iput); 3241 if (inode->delayed_iput_count) { 3242 inode->delayed_iput_count--; 3243 list_move_tail(&inode->delayed_iput, 3244 &fs_info->delayed_iputs); 3245 } else { 3246 list_del_init(&inode->delayed_iput); 3247 } 3248 spin_unlock(&fs_info->delayed_iput_lock); 3249 iput(&inode->vfs_inode); 3250 spin_lock(&fs_info->delayed_iput_lock); 3251 } 3252 spin_unlock(&fs_info->delayed_iput_lock); 3253 } 3254 3255 /* 3256 * This is called in transaction commit time. If there are no orphan 3257 * files in the subvolume, it removes orphan item and frees block_rsv 3258 * structure. 3259 */ 3260 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3261 struct btrfs_root *root) 3262 { 3263 struct btrfs_fs_info *fs_info = root->fs_info; 3264 struct btrfs_block_rsv *block_rsv; 3265 int ret; 3266 3267 if (atomic_read(&root->orphan_inodes) || 3268 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3269 return; 3270 3271 spin_lock(&root->orphan_lock); 3272 if (atomic_read(&root->orphan_inodes)) { 3273 spin_unlock(&root->orphan_lock); 3274 return; 3275 } 3276 3277 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3278 spin_unlock(&root->orphan_lock); 3279 return; 3280 } 3281 3282 block_rsv = root->orphan_block_rsv; 3283 root->orphan_block_rsv = NULL; 3284 spin_unlock(&root->orphan_lock); 3285 3286 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3287 btrfs_root_refs(&root->root_item) > 0) { 3288 ret = btrfs_del_orphan_item(trans, fs_info->tree_root, 3289 root->root_key.objectid); 3290 if (ret) 3291 btrfs_abort_transaction(trans, ret); 3292 else 3293 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3294 &root->state); 3295 } 3296 3297 if (block_rsv) { 3298 WARN_ON(block_rsv->size > 0); 3299 btrfs_free_block_rsv(fs_info, block_rsv); 3300 } 3301 } 3302 3303 /* 3304 * This creates an orphan entry for the given inode in case something goes 3305 * wrong in the middle of an unlink/truncate. 3306 * 3307 * NOTE: caller of this function should reserve 5 units of metadata for 3308 * this function. 3309 */ 3310 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3311 struct btrfs_inode *inode) 3312 { 3313 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 3314 struct btrfs_root *root = inode->root; 3315 struct btrfs_block_rsv *block_rsv = NULL; 3316 int reserve = 0; 3317 int insert = 0; 3318 int ret; 3319 3320 if (!root->orphan_block_rsv) { 3321 block_rsv = btrfs_alloc_block_rsv(fs_info, 3322 BTRFS_BLOCK_RSV_TEMP); 3323 if (!block_rsv) 3324 return -ENOMEM; 3325 } 3326 3327 spin_lock(&root->orphan_lock); 3328 if (!root->orphan_block_rsv) { 3329 root->orphan_block_rsv = block_rsv; 3330 } else if (block_rsv) { 3331 btrfs_free_block_rsv(fs_info, block_rsv); 3332 block_rsv = NULL; 3333 } 3334 3335 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3336 &inode->runtime_flags)) { 3337 #if 0 3338 /* 3339 * For proper ENOSPC handling, we should do orphan 3340 * cleanup when mounting. But this introduces backward 3341 * compatibility issue. 3342 */ 3343 if (!xchg(&root->orphan_item_inserted, 1)) 3344 insert = 2; 3345 else 3346 insert = 1; 3347 #endif 3348 insert = 1; 3349 atomic_inc(&root->orphan_inodes); 3350 } 3351 3352 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3353 &inode->runtime_flags)) 3354 reserve = 1; 3355 spin_unlock(&root->orphan_lock); 3356 3357 /* grab metadata reservation from transaction handle */ 3358 if (reserve) { 3359 ret = btrfs_orphan_reserve_metadata(trans, inode); 3360 ASSERT(!ret); 3361 if (ret) { 3362 atomic_dec(&root->orphan_inodes); 3363 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3364 &inode->runtime_flags); 3365 if (insert) 3366 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3367 &inode->runtime_flags); 3368 return ret; 3369 } 3370 } 3371 3372 /* insert an orphan item to track this unlinked/truncated file */ 3373 if (insert >= 1) { 3374 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3375 if (ret) { 3376 atomic_dec(&root->orphan_inodes); 3377 if (reserve) { 3378 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3379 &inode->runtime_flags); 3380 btrfs_orphan_release_metadata(inode); 3381 } 3382 if (ret != -EEXIST) { 3383 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3384 &inode->runtime_flags); 3385 btrfs_abort_transaction(trans, ret); 3386 return ret; 3387 } 3388 } 3389 ret = 0; 3390 } 3391 3392 /* insert an orphan item to track subvolume contains orphan files */ 3393 if (insert >= 2) { 3394 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root, 3395 root->root_key.objectid); 3396 if (ret && ret != -EEXIST) { 3397 btrfs_abort_transaction(trans, ret); 3398 return ret; 3399 } 3400 } 3401 return 0; 3402 } 3403 3404 /* 3405 * We have done the truncate/delete so we can go ahead and remove the orphan 3406 * item for this particular inode. 3407 */ 3408 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3409 struct btrfs_inode *inode) 3410 { 3411 struct btrfs_root *root = inode->root; 3412 int delete_item = 0; 3413 int release_rsv = 0; 3414 int ret = 0; 3415 3416 spin_lock(&root->orphan_lock); 3417 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3418 &inode->runtime_flags)) 3419 delete_item = 1; 3420 3421 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3422 &inode->runtime_flags)) 3423 release_rsv = 1; 3424 spin_unlock(&root->orphan_lock); 3425 3426 if (delete_item) { 3427 atomic_dec(&root->orphan_inodes); 3428 if (trans) 3429 ret = btrfs_del_orphan_item(trans, root, 3430 btrfs_ino(inode)); 3431 } 3432 3433 if (release_rsv) 3434 btrfs_orphan_release_metadata(inode); 3435 3436 return ret; 3437 } 3438 3439 /* 3440 * this cleans up any orphans that may be left on the list from the last use 3441 * of this root. 3442 */ 3443 int btrfs_orphan_cleanup(struct btrfs_root *root) 3444 { 3445 struct btrfs_fs_info *fs_info = root->fs_info; 3446 struct btrfs_path *path; 3447 struct extent_buffer *leaf; 3448 struct btrfs_key key, found_key; 3449 struct btrfs_trans_handle *trans; 3450 struct inode *inode; 3451 u64 last_objectid = 0; 3452 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3453 3454 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3455 return 0; 3456 3457 path = btrfs_alloc_path(); 3458 if (!path) { 3459 ret = -ENOMEM; 3460 goto out; 3461 } 3462 path->reada = READA_BACK; 3463 3464 key.objectid = BTRFS_ORPHAN_OBJECTID; 3465 key.type = BTRFS_ORPHAN_ITEM_KEY; 3466 key.offset = (u64)-1; 3467 3468 while (1) { 3469 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3470 if (ret < 0) 3471 goto out; 3472 3473 /* 3474 * if ret == 0 means we found what we were searching for, which 3475 * is weird, but possible, so only screw with path if we didn't 3476 * find the key and see if we have stuff that matches 3477 */ 3478 if (ret > 0) { 3479 ret = 0; 3480 if (path->slots[0] == 0) 3481 break; 3482 path->slots[0]--; 3483 } 3484 3485 /* pull out the item */ 3486 leaf = path->nodes[0]; 3487 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3488 3489 /* make sure the item matches what we want */ 3490 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3491 break; 3492 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3493 break; 3494 3495 /* release the path since we're done with it */ 3496 btrfs_release_path(path); 3497 3498 /* 3499 * this is where we are basically btrfs_lookup, without the 3500 * crossing root thing. we store the inode number in the 3501 * offset of the orphan item. 3502 */ 3503 3504 if (found_key.offset == last_objectid) { 3505 btrfs_err(fs_info, 3506 "Error removing orphan entry, stopping orphan cleanup"); 3507 ret = -EINVAL; 3508 goto out; 3509 } 3510 3511 last_objectid = found_key.offset; 3512 3513 found_key.objectid = found_key.offset; 3514 found_key.type = BTRFS_INODE_ITEM_KEY; 3515 found_key.offset = 0; 3516 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3517 ret = PTR_ERR_OR_ZERO(inode); 3518 if (ret && ret != -ENOENT) 3519 goto out; 3520 3521 if (ret == -ENOENT && root == fs_info->tree_root) { 3522 struct btrfs_root *dead_root; 3523 struct btrfs_fs_info *fs_info = root->fs_info; 3524 int is_dead_root = 0; 3525 3526 /* 3527 * this is an orphan in the tree root. Currently these 3528 * could come from 2 sources: 3529 * a) a snapshot deletion in progress 3530 * b) a free space cache inode 3531 * We need to distinguish those two, as the snapshot 3532 * orphan must not get deleted. 3533 * find_dead_roots already ran before us, so if this 3534 * is a snapshot deletion, we should find the root 3535 * in the dead_roots list 3536 */ 3537 spin_lock(&fs_info->trans_lock); 3538 list_for_each_entry(dead_root, &fs_info->dead_roots, 3539 root_list) { 3540 if (dead_root->root_key.objectid == 3541 found_key.objectid) { 3542 is_dead_root = 1; 3543 break; 3544 } 3545 } 3546 spin_unlock(&fs_info->trans_lock); 3547 if (is_dead_root) { 3548 /* prevent this orphan from being found again */ 3549 key.offset = found_key.objectid - 1; 3550 continue; 3551 } 3552 } 3553 /* 3554 * Inode is already gone but the orphan item is still there, 3555 * kill the orphan item. 3556 */ 3557 if (ret == -ENOENT) { 3558 trans = btrfs_start_transaction(root, 1); 3559 if (IS_ERR(trans)) { 3560 ret = PTR_ERR(trans); 3561 goto out; 3562 } 3563 btrfs_debug(fs_info, "auto deleting %Lu", 3564 found_key.objectid); 3565 ret = btrfs_del_orphan_item(trans, root, 3566 found_key.objectid); 3567 btrfs_end_transaction(trans); 3568 if (ret) 3569 goto out; 3570 continue; 3571 } 3572 3573 /* 3574 * add this inode to the orphan list so btrfs_orphan_del does 3575 * the proper thing when we hit it 3576 */ 3577 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3578 &BTRFS_I(inode)->runtime_flags); 3579 atomic_inc(&root->orphan_inodes); 3580 3581 /* if we have links, this was a truncate, lets do that */ 3582 if (inode->i_nlink) { 3583 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3584 iput(inode); 3585 continue; 3586 } 3587 nr_truncate++; 3588 3589 /* 1 for the orphan item deletion. */ 3590 trans = btrfs_start_transaction(root, 1); 3591 if (IS_ERR(trans)) { 3592 iput(inode); 3593 ret = PTR_ERR(trans); 3594 goto out; 3595 } 3596 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3597 btrfs_end_transaction(trans); 3598 if (ret) { 3599 iput(inode); 3600 goto out; 3601 } 3602 3603 ret = btrfs_truncate(inode); 3604 if (ret) 3605 btrfs_orphan_del(NULL, BTRFS_I(inode)); 3606 } else { 3607 nr_unlink++; 3608 } 3609 3610 /* this will do delete_inode and everything for us */ 3611 iput(inode); 3612 if (ret) 3613 goto out; 3614 } 3615 /* release the path since we're done with it */ 3616 btrfs_release_path(path); 3617 3618 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3619 3620 if (root->orphan_block_rsv) 3621 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, 3622 (u64)-1); 3623 3624 if (root->orphan_block_rsv || 3625 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3626 trans = btrfs_join_transaction(root); 3627 if (!IS_ERR(trans)) 3628 btrfs_end_transaction(trans); 3629 } 3630 3631 if (nr_unlink) 3632 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3633 if (nr_truncate) 3634 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate); 3635 3636 out: 3637 if (ret) 3638 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3639 btrfs_free_path(path); 3640 return ret; 3641 } 3642 3643 /* 3644 * very simple check to peek ahead in the leaf looking for xattrs. If we 3645 * don't find any xattrs, we know there can't be any acls. 3646 * 3647 * slot is the slot the inode is in, objectid is the objectid of the inode 3648 */ 3649 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3650 int slot, u64 objectid, 3651 int *first_xattr_slot) 3652 { 3653 u32 nritems = btrfs_header_nritems(leaf); 3654 struct btrfs_key found_key; 3655 static u64 xattr_access = 0; 3656 static u64 xattr_default = 0; 3657 int scanned = 0; 3658 3659 if (!xattr_access) { 3660 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3661 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3662 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3663 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3664 } 3665 3666 slot++; 3667 *first_xattr_slot = -1; 3668 while (slot < nritems) { 3669 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3670 3671 /* we found a different objectid, there must not be acls */ 3672 if (found_key.objectid != objectid) 3673 return 0; 3674 3675 /* we found an xattr, assume we've got an acl */ 3676 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3677 if (*first_xattr_slot == -1) 3678 *first_xattr_slot = slot; 3679 if (found_key.offset == xattr_access || 3680 found_key.offset == xattr_default) 3681 return 1; 3682 } 3683 3684 /* 3685 * we found a key greater than an xattr key, there can't 3686 * be any acls later on 3687 */ 3688 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3689 return 0; 3690 3691 slot++; 3692 scanned++; 3693 3694 /* 3695 * it goes inode, inode backrefs, xattrs, extents, 3696 * so if there are a ton of hard links to an inode there can 3697 * be a lot of backrefs. Don't waste time searching too hard, 3698 * this is just an optimization 3699 */ 3700 if (scanned >= 8) 3701 break; 3702 } 3703 /* we hit the end of the leaf before we found an xattr or 3704 * something larger than an xattr. We have to assume the inode 3705 * has acls 3706 */ 3707 if (*first_xattr_slot == -1) 3708 *first_xattr_slot = slot; 3709 return 1; 3710 } 3711 3712 /* 3713 * read an inode from the btree into the in-memory inode 3714 */ 3715 static int btrfs_read_locked_inode(struct inode *inode) 3716 { 3717 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3718 struct btrfs_path *path; 3719 struct extent_buffer *leaf; 3720 struct btrfs_inode_item *inode_item; 3721 struct btrfs_root *root = BTRFS_I(inode)->root; 3722 struct btrfs_key location; 3723 unsigned long ptr; 3724 int maybe_acls; 3725 u32 rdev; 3726 int ret; 3727 bool filled = false; 3728 int first_xattr_slot; 3729 3730 ret = btrfs_fill_inode(inode, &rdev); 3731 if (!ret) 3732 filled = true; 3733 3734 path = btrfs_alloc_path(); 3735 if (!path) { 3736 ret = -ENOMEM; 3737 goto make_bad; 3738 } 3739 3740 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3741 3742 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3743 if (ret) { 3744 if (ret > 0) 3745 ret = -ENOENT; 3746 goto make_bad; 3747 } 3748 3749 leaf = path->nodes[0]; 3750 3751 if (filled) 3752 goto cache_index; 3753 3754 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3755 struct btrfs_inode_item); 3756 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3757 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3758 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3759 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3760 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3761 3762 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3763 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3764 3765 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3766 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3767 3768 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3769 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3770 3771 BTRFS_I(inode)->i_otime.tv_sec = 3772 btrfs_timespec_sec(leaf, &inode_item->otime); 3773 BTRFS_I(inode)->i_otime.tv_nsec = 3774 btrfs_timespec_nsec(leaf, &inode_item->otime); 3775 3776 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3777 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3778 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3779 3780 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3781 inode->i_generation = BTRFS_I(inode)->generation; 3782 inode->i_rdev = 0; 3783 rdev = btrfs_inode_rdev(leaf, inode_item); 3784 3785 BTRFS_I(inode)->index_cnt = (u64)-1; 3786 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3787 3788 cache_index: 3789 /* 3790 * If we were modified in the current generation and evicted from memory 3791 * and then re-read we need to do a full sync since we don't have any 3792 * idea about which extents were modified before we were evicted from 3793 * cache. 3794 * 3795 * This is required for both inode re-read from disk and delayed inode 3796 * in delayed_nodes_tree. 3797 */ 3798 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3799 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3800 &BTRFS_I(inode)->runtime_flags); 3801 3802 /* 3803 * We don't persist the id of the transaction where an unlink operation 3804 * against the inode was last made. So here we assume the inode might 3805 * have been evicted, and therefore the exact value of last_unlink_trans 3806 * lost, and set it to last_trans to avoid metadata inconsistencies 3807 * between the inode and its parent if the inode is fsync'ed and the log 3808 * replayed. For example, in the scenario: 3809 * 3810 * touch mydir/foo 3811 * ln mydir/foo mydir/bar 3812 * sync 3813 * unlink mydir/bar 3814 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3815 * xfs_io -c fsync mydir/foo 3816 * <power failure> 3817 * mount fs, triggers fsync log replay 3818 * 3819 * We must make sure that when we fsync our inode foo we also log its 3820 * parent inode, otherwise after log replay the parent still has the 3821 * dentry with the "bar" name but our inode foo has a link count of 1 3822 * and doesn't have an inode ref with the name "bar" anymore. 3823 * 3824 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3825 * but it guarantees correctness at the expense of occasional full 3826 * transaction commits on fsync if our inode is a directory, or if our 3827 * inode is not a directory, logging its parent unnecessarily. 3828 */ 3829 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3830 3831 path->slots[0]++; 3832 if (inode->i_nlink != 1 || 3833 path->slots[0] >= btrfs_header_nritems(leaf)) 3834 goto cache_acl; 3835 3836 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3837 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3838 goto cache_acl; 3839 3840 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3841 if (location.type == BTRFS_INODE_REF_KEY) { 3842 struct btrfs_inode_ref *ref; 3843 3844 ref = (struct btrfs_inode_ref *)ptr; 3845 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3846 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3847 struct btrfs_inode_extref *extref; 3848 3849 extref = (struct btrfs_inode_extref *)ptr; 3850 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3851 extref); 3852 } 3853 cache_acl: 3854 /* 3855 * try to precache a NULL acl entry for files that don't have 3856 * any xattrs or acls 3857 */ 3858 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3859 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3860 if (first_xattr_slot != -1) { 3861 path->slots[0] = first_xattr_slot; 3862 ret = btrfs_load_inode_props(inode, path); 3863 if (ret) 3864 btrfs_err(fs_info, 3865 "error loading props for ino %llu (root %llu): %d", 3866 btrfs_ino(BTRFS_I(inode)), 3867 root->root_key.objectid, ret); 3868 } 3869 btrfs_free_path(path); 3870 3871 if (!maybe_acls) 3872 cache_no_acl(inode); 3873 3874 switch (inode->i_mode & S_IFMT) { 3875 case S_IFREG: 3876 inode->i_mapping->a_ops = &btrfs_aops; 3877 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3878 inode->i_fop = &btrfs_file_operations; 3879 inode->i_op = &btrfs_file_inode_operations; 3880 break; 3881 case S_IFDIR: 3882 inode->i_fop = &btrfs_dir_file_operations; 3883 inode->i_op = &btrfs_dir_inode_operations; 3884 break; 3885 case S_IFLNK: 3886 inode->i_op = &btrfs_symlink_inode_operations; 3887 inode_nohighmem(inode); 3888 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3889 break; 3890 default: 3891 inode->i_op = &btrfs_special_inode_operations; 3892 init_special_inode(inode, inode->i_mode, rdev); 3893 break; 3894 } 3895 3896 btrfs_update_iflags(inode); 3897 return 0; 3898 3899 make_bad: 3900 btrfs_free_path(path); 3901 make_bad_inode(inode); 3902 return ret; 3903 } 3904 3905 /* 3906 * given a leaf and an inode, copy the inode fields into the leaf 3907 */ 3908 static void fill_inode_item(struct btrfs_trans_handle *trans, 3909 struct extent_buffer *leaf, 3910 struct btrfs_inode_item *item, 3911 struct inode *inode) 3912 { 3913 struct btrfs_map_token token; 3914 3915 btrfs_init_map_token(&token); 3916 3917 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3918 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3919 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3920 &token); 3921 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3922 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3923 3924 btrfs_set_token_timespec_sec(leaf, &item->atime, 3925 inode->i_atime.tv_sec, &token); 3926 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3927 inode->i_atime.tv_nsec, &token); 3928 3929 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3930 inode->i_mtime.tv_sec, &token); 3931 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3932 inode->i_mtime.tv_nsec, &token); 3933 3934 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3935 inode->i_ctime.tv_sec, &token); 3936 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3937 inode->i_ctime.tv_nsec, &token); 3938 3939 btrfs_set_token_timespec_sec(leaf, &item->otime, 3940 BTRFS_I(inode)->i_otime.tv_sec, &token); 3941 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3942 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3943 3944 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3945 &token); 3946 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3947 &token); 3948 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3949 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3950 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3951 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3952 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3953 } 3954 3955 /* 3956 * copy everything in the in-memory inode into the btree. 3957 */ 3958 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3959 struct btrfs_root *root, struct inode *inode) 3960 { 3961 struct btrfs_inode_item *inode_item; 3962 struct btrfs_path *path; 3963 struct extent_buffer *leaf; 3964 int ret; 3965 3966 path = btrfs_alloc_path(); 3967 if (!path) 3968 return -ENOMEM; 3969 3970 path->leave_spinning = 1; 3971 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3972 1); 3973 if (ret) { 3974 if (ret > 0) 3975 ret = -ENOENT; 3976 goto failed; 3977 } 3978 3979 leaf = path->nodes[0]; 3980 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3981 struct btrfs_inode_item); 3982 3983 fill_inode_item(trans, leaf, inode_item, inode); 3984 btrfs_mark_buffer_dirty(leaf); 3985 btrfs_set_inode_last_trans(trans, inode); 3986 ret = 0; 3987 failed: 3988 btrfs_free_path(path); 3989 return ret; 3990 } 3991 3992 /* 3993 * copy everything in the in-memory inode into the btree. 3994 */ 3995 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3996 struct btrfs_root *root, struct inode *inode) 3997 { 3998 struct btrfs_fs_info *fs_info = root->fs_info; 3999 int ret; 4000 4001 /* 4002 * If the inode is a free space inode, we can deadlock during commit 4003 * if we put it into the delayed code. 4004 * 4005 * The data relocation inode should also be directly updated 4006 * without delay 4007 */ 4008 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 4009 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 4010 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4011 btrfs_update_root_times(trans, root); 4012 4013 ret = btrfs_delayed_update_inode(trans, root, inode); 4014 if (!ret) 4015 btrfs_set_inode_last_trans(trans, inode); 4016 return ret; 4017 } 4018 4019 return btrfs_update_inode_item(trans, root, inode); 4020 } 4021 4022 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4023 struct btrfs_root *root, 4024 struct inode *inode) 4025 { 4026 int ret; 4027 4028 ret = btrfs_update_inode(trans, root, inode); 4029 if (ret == -ENOSPC) 4030 return btrfs_update_inode_item(trans, root, inode); 4031 return ret; 4032 } 4033 4034 /* 4035 * unlink helper that gets used here in inode.c and in the tree logging 4036 * recovery code. It remove a link in a directory with a given name, and 4037 * also drops the back refs in the inode to the directory 4038 */ 4039 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4040 struct btrfs_root *root, 4041 struct btrfs_inode *dir, 4042 struct btrfs_inode *inode, 4043 const char *name, int name_len) 4044 { 4045 struct btrfs_fs_info *fs_info = root->fs_info; 4046 struct btrfs_path *path; 4047 int ret = 0; 4048 struct extent_buffer *leaf; 4049 struct btrfs_dir_item *di; 4050 struct btrfs_key key; 4051 u64 index; 4052 u64 ino = btrfs_ino(inode); 4053 u64 dir_ino = btrfs_ino(dir); 4054 4055 path = btrfs_alloc_path(); 4056 if (!path) { 4057 ret = -ENOMEM; 4058 goto out; 4059 } 4060 4061 path->leave_spinning = 1; 4062 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4063 name, name_len, -1); 4064 if (IS_ERR(di)) { 4065 ret = PTR_ERR(di); 4066 goto err; 4067 } 4068 if (!di) { 4069 ret = -ENOENT; 4070 goto err; 4071 } 4072 leaf = path->nodes[0]; 4073 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4074 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4075 if (ret) 4076 goto err; 4077 btrfs_release_path(path); 4078 4079 /* 4080 * If we don't have dir index, we have to get it by looking up 4081 * the inode ref, since we get the inode ref, remove it directly, 4082 * it is unnecessary to do delayed deletion. 4083 * 4084 * But if we have dir index, needn't search inode ref to get it. 4085 * Since the inode ref is close to the inode item, it is better 4086 * that we delay to delete it, and just do this deletion when 4087 * we update the inode item. 4088 */ 4089 if (inode->dir_index) { 4090 ret = btrfs_delayed_delete_inode_ref(inode); 4091 if (!ret) { 4092 index = inode->dir_index; 4093 goto skip_backref; 4094 } 4095 } 4096 4097 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4098 dir_ino, &index); 4099 if (ret) { 4100 btrfs_info(fs_info, 4101 "failed to delete reference to %.*s, inode %llu parent %llu", 4102 name_len, name, ino, dir_ino); 4103 btrfs_abort_transaction(trans, ret); 4104 goto err; 4105 } 4106 skip_backref: 4107 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index); 4108 if (ret) { 4109 btrfs_abort_transaction(trans, ret); 4110 goto err; 4111 } 4112 4113 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4114 dir_ino); 4115 if (ret != 0 && ret != -ENOENT) { 4116 btrfs_abort_transaction(trans, ret); 4117 goto err; 4118 } 4119 4120 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4121 index); 4122 if (ret == -ENOENT) 4123 ret = 0; 4124 else if (ret) 4125 btrfs_abort_transaction(trans, ret); 4126 err: 4127 btrfs_free_path(path); 4128 if (ret) 4129 goto out; 4130 4131 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4132 inode_inc_iversion(&inode->vfs_inode); 4133 inode_inc_iversion(&dir->vfs_inode); 4134 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4135 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4136 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4137 out: 4138 return ret; 4139 } 4140 4141 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4142 struct btrfs_root *root, 4143 struct btrfs_inode *dir, struct btrfs_inode *inode, 4144 const char *name, int name_len) 4145 { 4146 int ret; 4147 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4148 if (!ret) { 4149 drop_nlink(&inode->vfs_inode); 4150 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4151 } 4152 return ret; 4153 } 4154 4155 /* 4156 * helper to start transaction for unlink and rmdir. 4157 * 4158 * unlink and rmdir are special in btrfs, they do not always free space, so 4159 * if we cannot make our reservations the normal way try and see if there is 4160 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4161 * allow the unlink to occur. 4162 */ 4163 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4164 { 4165 struct btrfs_root *root = BTRFS_I(dir)->root; 4166 4167 /* 4168 * 1 for the possible orphan item 4169 * 1 for the dir item 4170 * 1 for the dir index 4171 * 1 for the inode ref 4172 * 1 for the inode 4173 */ 4174 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4175 } 4176 4177 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4178 { 4179 struct btrfs_root *root = BTRFS_I(dir)->root; 4180 struct btrfs_trans_handle *trans; 4181 struct inode *inode = d_inode(dentry); 4182 int ret; 4183 4184 trans = __unlink_start_trans(dir); 4185 if (IS_ERR(trans)) 4186 return PTR_ERR(trans); 4187 4188 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4189 0); 4190 4191 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4192 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4193 dentry->d_name.len); 4194 if (ret) 4195 goto out; 4196 4197 if (inode->i_nlink == 0) { 4198 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4199 if (ret) 4200 goto out; 4201 } 4202 4203 out: 4204 btrfs_end_transaction(trans); 4205 btrfs_btree_balance_dirty(root->fs_info); 4206 return ret; 4207 } 4208 4209 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4210 struct btrfs_root *root, 4211 struct inode *dir, u64 objectid, 4212 const char *name, int name_len) 4213 { 4214 struct btrfs_fs_info *fs_info = root->fs_info; 4215 struct btrfs_path *path; 4216 struct extent_buffer *leaf; 4217 struct btrfs_dir_item *di; 4218 struct btrfs_key key; 4219 u64 index; 4220 int ret; 4221 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4222 4223 path = btrfs_alloc_path(); 4224 if (!path) 4225 return -ENOMEM; 4226 4227 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4228 name, name_len, -1); 4229 if (IS_ERR_OR_NULL(di)) { 4230 if (!di) 4231 ret = -ENOENT; 4232 else 4233 ret = PTR_ERR(di); 4234 goto out; 4235 } 4236 4237 leaf = path->nodes[0]; 4238 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4239 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4240 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4241 if (ret) { 4242 btrfs_abort_transaction(trans, ret); 4243 goto out; 4244 } 4245 btrfs_release_path(path); 4246 4247 ret = btrfs_del_root_ref(trans, fs_info, objectid, 4248 root->root_key.objectid, dir_ino, 4249 &index, name, name_len); 4250 if (ret < 0) { 4251 if (ret != -ENOENT) { 4252 btrfs_abort_transaction(trans, ret); 4253 goto out; 4254 } 4255 di = btrfs_search_dir_index_item(root, path, dir_ino, 4256 name, name_len); 4257 if (IS_ERR_OR_NULL(di)) { 4258 if (!di) 4259 ret = -ENOENT; 4260 else 4261 ret = PTR_ERR(di); 4262 btrfs_abort_transaction(trans, ret); 4263 goto out; 4264 } 4265 4266 leaf = path->nodes[0]; 4267 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4268 btrfs_release_path(path); 4269 index = key.offset; 4270 } 4271 btrfs_release_path(path); 4272 4273 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index); 4274 if (ret) { 4275 btrfs_abort_transaction(trans, ret); 4276 goto out; 4277 } 4278 4279 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4280 inode_inc_iversion(dir); 4281 dir->i_mtime = dir->i_ctime = current_time(dir); 4282 ret = btrfs_update_inode_fallback(trans, root, dir); 4283 if (ret) 4284 btrfs_abort_transaction(trans, ret); 4285 out: 4286 btrfs_free_path(path); 4287 return ret; 4288 } 4289 4290 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4291 { 4292 struct inode *inode = d_inode(dentry); 4293 int err = 0; 4294 struct btrfs_root *root = BTRFS_I(dir)->root; 4295 struct btrfs_trans_handle *trans; 4296 u64 last_unlink_trans; 4297 4298 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4299 return -ENOTEMPTY; 4300 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4301 return -EPERM; 4302 4303 trans = __unlink_start_trans(dir); 4304 if (IS_ERR(trans)) 4305 return PTR_ERR(trans); 4306 4307 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4308 err = btrfs_unlink_subvol(trans, root, dir, 4309 BTRFS_I(inode)->location.objectid, 4310 dentry->d_name.name, 4311 dentry->d_name.len); 4312 goto out; 4313 } 4314 4315 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4316 if (err) 4317 goto out; 4318 4319 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4320 4321 /* now the directory is empty */ 4322 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4323 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4324 dentry->d_name.len); 4325 if (!err) { 4326 btrfs_i_size_write(BTRFS_I(inode), 0); 4327 /* 4328 * Propagate the last_unlink_trans value of the deleted dir to 4329 * its parent directory. This is to prevent an unrecoverable 4330 * log tree in the case we do something like this: 4331 * 1) create dir foo 4332 * 2) create snapshot under dir foo 4333 * 3) delete the snapshot 4334 * 4) rmdir foo 4335 * 5) mkdir foo 4336 * 6) fsync foo or some file inside foo 4337 */ 4338 if (last_unlink_trans >= trans->transid) 4339 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4340 } 4341 out: 4342 btrfs_end_transaction(trans); 4343 btrfs_btree_balance_dirty(root->fs_info); 4344 4345 return err; 4346 } 4347 4348 static int truncate_space_check(struct btrfs_trans_handle *trans, 4349 struct btrfs_root *root, 4350 u64 bytes_deleted) 4351 { 4352 struct btrfs_fs_info *fs_info = root->fs_info; 4353 int ret; 4354 4355 /* 4356 * This is only used to apply pressure to the enospc system, we don't 4357 * intend to use this reservation at all. 4358 */ 4359 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4360 bytes_deleted *= fs_info->nodesize; 4361 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4362 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4363 if (!ret) { 4364 trace_btrfs_space_reservation(fs_info, "transaction", 4365 trans->transid, 4366 bytes_deleted, 1); 4367 trans->bytes_reserved += bytes_deleted; 4368 } 4369 return ret; 4370 4371 } 4372 4373 /* 4374 * Return this if we need to call truncate_block for the last bit of the 4375 * truncate. 4376 */ 4377 #define NEED_TRUNCATE_BLOCK 1 4378 4379 /* 4380 * this can truncate away extent items, csum items and directory items. 4381 * It starts at a high offset and removes keys until it can't find 4382 * any higher than new_size 4383 * 4384 * csum items that cross the new i_size are truncated to the new size 4385 * as well. 4386 * 4387 * min_type is the minimum key type to truncate down to. If set to 0, this 4388 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4389 */ 4390 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4391 struct btrfs_root *root, 4392 struct inode *inode, 4393 u64 new_size, u32 min_type) 4394 { 4395 struct btrfs_fs_info *fs_info = root->fs_info; 4396 struct btrfs_path *path; 4397 struct extent_buffer *leaf; 4398 struct btrfs_file_extent_item *fi; 4399 struct btrfs_key key; 4400 struct btrfs_key found_key; 4401 u64 extent_start = 0; 4402 u64 extent_num_bytes = 0; 4403 u64 extent_offset = 0; 4404 u64 item_end = 0; 4405 u64 last_size = new_size; 4406 u32 found_type = (u8)-1; 4407 int found_extent; 4408 int del_item; 4409 int pending_del_nr = 0; 4410 int pending_del_slot = 0; 4411 int extent_type = -1; 4412 int ret; 4413 int err = 0; 4414 u64 ino = btrfs_ino(BTRFS_I(inode)); 4415 u64 bytes_deleted = 0; 4416 bool be_nice = false; 4417 bool should_throttle = false; 4418 bool should_end = false; 4419 4420 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4421 4422 /* 4423 * for non-free space inodes and ref cows, we want to back off from 4424 * time to time 4425 */ 4426 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4427 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4428 be_nice = true; 4429 4430 path = btrfs_alloc_path(); 4431 if (!path) 4432 return -ENOMEM; 4433 path->reada = READA_BACK; 4434 4435 /* 4436 * We want to drop from the next block forward in case this new size is 4437 * not block aligned since we will be keeping the last block of the 4438 * extent just the way it is. 4439 */ 4440 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4441 root == fs_info->tree_root) 4442 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4443 fs_info->sectorsize), 4444 (u64)-1, 0); 4445 4446 /* 4447 * This function is also used to drop the items in the log tree before 4448 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4449 * it is used to drop the loged items. So we shouldn't kill the delayed 4450 * items. 4451 */ 4452 if (min_type == 0 && root == BTRFS_I(inode)->root) 4453 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4454 4455 key.objectid = ino; 4456 key.offset = (u64)-1; 4457 key.type = (u8)-1; 4458 4459 search_again: 4460 /* 4461 * with a 16K leaf size and 128MB extents, you can actually queue 4462 * up a huge file in a single leaf. Most of the time that 4463 * bytes_deleted is > 0, it will be huge by the time we get here 4464 */ 4465 if (be_nice && bytes_deleted > SZ_32M) { 4466 if (btrfs_should_end_transaction(trans)) { 4467 err = -EAGAIN; 4468 goto error; 4469 } 4470 } 4471 4472 4473 path->leave_spinning = 1; 4474 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4475 if (ret < 0) { 4476 err = ret; 4477 goto out; 4478 } 4479 4480 if (ret > 0) { 4481 /* there are no items in the tree for us to truncate, we're 4482 * done 4483 */ 4484 if (path->slots[0] == 0) 4485 goto out; 4486 path->slots[0]--; 4487 } 4488 4489 while (1) { 4490 fi = NULL; 4491 leaf = path->nodes[0]; 4492 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4493 found_type = found_key.type; 4494 4495 if (found_key.objectid != ino) 4496 break; 4497 4498 if (found_type < min_type) 4499 break; 4500 4501 item_end = found_key.offset; 4502 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4503 fi = btrfs_item_ptr(leaf, path->slots[0], 4504 struct btrfs_file_extent_item); 4505 extent_type = btrfs_file_extent_type(leaf, fi); 4506 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4507 item_end += 4508 btrfs_file_extent_num_bytes(leaf, fi); 4509 4510 trace_btrfs_truncate_show_fi_regular( 4511 BTRFS_I(inode), leaf, fi, 4512 found_key.offset); 4513 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4514 item_end += btrfs_file_extent_inline_len(leaf, 4515 path->slots[0], fi); 4516 4517 trace_btrfs_truncate_show_fi_inline( 4518 BTRFS_I(inode), leaf, fi, path->slots[0], 4519 found_key.offset); 4520 } 4521 item_end--; 4522 } 4523 if (found_type > min_type) { 4524 del_item = 1; 4525 } else { 4526 if (item_end < new_size) 4527 break; 4528 if (found_key.offset >= new_size) 4529 del_item = 1; 4530 else 4531 del_item = 0; 4532 } 4533 found_extent = 0; 4534 /* FIXME, shrink the extent if the ref count is only 1 */ 4535 if (found_type != BTRFS_EXTENT_DATA_KEY) 4536 goto delete; 4537 4538 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4539 u64 num_dec; 4540 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4541 if (!del_item) { 4542 u64 orig_num_bytes = 4543 btrfs_file_extent_num_bytes(leaf, fi); 4544 extent_num_bytes = ALIGN(new_size - 4545 found_key.offset, 4546 fs_info->sectorsize); 4547 btrfs_set_file_extent_num_bytes(leaf, fi, 4548 extent_num_bytes); 4549 num_dec = (orig_num_bytes - 4550 extent_num_bytes); 4551 if (test_bit(BTRFS_ROOT_REF_COWS, 4552 &root->state) && 4553 extent_start != 0) 4554 inode_sub_bytes(inode, num_dec); 4555 btrfs_mark_buffer_dirty(leaf); 4556 } else { 4557 extent_num_bytes = 4558 btrfs_file_extent_disk_num_bytes(leaf, 4559 fi); 4560 extent_offset = found_key.offset - 4561 btrfs_file_extent_offset(leaf, fi); 4562 4563 /* FIXME blocksize != 4096 */ 4564 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4565 if (extent_start != 0) { 4566 found_extent = 1; 4567 if (test_bit(BTRFS_ROOT_REF_COWS, 4568 &root->state)) 4569 inode_sub_bytes(inode, num_dec); 4570 } 4571 } 4572 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4573 /* 4574 * we can't truncate inline items that have had 4575 * special encodings 4576 */ 4577 if (!del_item && 4578 btrfs_file_extent_encryption(leaf, fi) == 0 && 4579 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4580 btrfs_file_extent_compression(leaf, fi) == 0) { 4581 u32 size = (u32)(new_size - found_key.offset); 4582 4583 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4584 size = btrfs_file_extent_calc_inline_size(size); 4585 btrfs_truncate_item(root->fs_info, path, size, 1); 4586 } else if (!del_item) { 4587 /* 4588 * We have to bail so the last_size is set to 4589 * just before this extent. 4590 */ 4591 err = NEED_TRUNCATE_BLOCK; 4592 break; 4593 } 4594 4595 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4596 inode_sub_bytes(inode, item_end + 1 - new_size); 4597 } 4598 delete: 4599 if (del_item) 4600 last_size = found_key.offset; 4601 else 4602 last_size = new_size; 4603 if (del_item) { 4604 if (!pending_del_nr) { 4605 /* no pending yet, add ourselves */ 4606 pending_del_slot = path->slots[0]; 4607 pending_del_nr = 1; 4608 } else if (pending_del_nr && 4609 path->slots[0] + 1 == pending_del_slot) { 4610 /* hop on the pending chunk */ 4611 pending_del_nr++; 4612 pending_del_slot = path->slots[0]; 4613 } else { 4614 BUG(); 4615 } 4616 } else { 4617 break; 4618 } 4619 should_throttle = false; 4620 4621 if (found_extent && 4622 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4623 root == fs_info->tree_root)) { 4624 btrfs_set_path_blocking(path); 4625 bytes_deleted += extent_num_bytes; 4626 ret = btrfs_free_extent(trans, root, extent_start, 4627 extent_num_bytes, 0, 4628 btrfs_header_owner(leaf), 4629 ino, extent_offset); 4630 BUG_ON(ret); 4631 if (btrfs_should_throttle_delayed_refs(trans, fs_info)) 4632 btrfs_async_run_delayed_refs(fs_info, 4633 trans->delayed_ref_updates * 2, 4634 trans->transid, 0); 4635 if (be_nice) { 4636 if (truncate_space_check(trans, root, 4637 extent_num_bytes)) { 4638 should_end = true; 4639 } 4640 if (btrfs_should_throttle_delayed_refs(trans, 4641 fs_info)) 4642 should_throttle = true; 4643 } 4644 } 4645 4646 if (found_type == BTRFS_INODE_ITEM_KEY) 4647 break; 4648 4649 if (path->slots[0] == 0 || 4650 path->slots[0] != pending_del_slot || 4651 should_throttle || should_end) { 4652 if (pending_del_nr) { 4653 ret = btrfs_del_items(trans, root, path, 4654 pending_del_slot, 4655 pending_del_nr); 4656 if (ret) { 4657 btrfs_abort_transaction(trans, ret); 4658 goto error; 4659 } 4660 pending_del_nr = 0; 4661 } 4662 btrfs_release_path(path); 4663 if (should_throttle) { 4664 unsigned long updates = trans->delayed_ref_updates; 4665 if (updates) { 4666 trans->delayed_ref_updates = 0; 4667 ret = btrfs_run_delayed_refs(trans, 4668 fs_info, 4669 updates * 2); 4670 if (ret && !err) 4671 err = ret; 4672 } 4673 } 4674 /* 4675 * if we failed to refill our space rsv, bail out 4676 * and let the transaction restart 4677 */ 4678 if (should_end) { 4679 err = -EAGAIN; 4680 goto error; 4681 } 4682 goto search_again; 4683 } else { 4684 path->slots[0]--; 4685 } 4686 } 4687 out: 4688 if (pending_del_nr) { 4689 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4690 pending_del_nr); 4691 if (ret) 4692 btrfs_abort_transaction(trans, ret); 4693 } 4694 error: 4695 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4696 ASSERT(last_size >= new_size); 4697 if (!err && last_size > new_size) 4698 last_size = new_size; 4699 btrfs_ordered_update_i_size(inode, last_size, NULL); 4700 } 4701 4702 btrfs_free_path(path); 4703 4704 if (be_nice && bytes_deleted > SZ_32M) { 4705 unsigned long updates = trans->delayed_ref_updates; 4706 if (updates) { 4707 trans->delayed_ref_updates = 0; 4708 ret = btrfs_run_delayed_refs(trans, fs_info, 4709 updates * 2); 4710 if (ret && !err) 4711 err = ret; 4712 } 4713 } 4714 return err; 4715 } 4716 4717 /* 4718 * btrfs_truncate_block - read, zero a chunk and write a block 4719 * @inode - inode that we're zeroing 4720 * @from - the offset to start zeroing 4721 * @len - the length to zero, 0 to zero the entire range respective to the 4722 * offset 4723 * @front - zero up to the offset instead of from the offset on 4724 * 4725 * This will find the block for the "from" offset and cow the block and zero the 4726 * part we want to zero. This is used with truncate and hole punching. 4727 */ 4728 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4729 int front) 4730 { 4731 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4732 struct address_space *mapping = inode->i_mapping; 4733 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4734 struct btrfs_ordered_extent *ordered; 4735 struct extent_state *cached_state = NULL; 4736 struct extent_changeset *data_reserved = NULL; 4737 char *kaddr; 4738 u32 blocksize = fs_info->sectorsize; 4739 pgoff_t index = from >> PAGE_SHIFT; 4740 unsigned offset = from & (blocksize - 1); 4741 struct page *page; 4742 gfp_t mask = btrfs_alloc_write_mask(mapping); 4743 int ret = 0; 4744 u64 block_start; 4745 u64 block_end; 4746 4747 if ((offset & (blocksize - 1)) == 0 && 4748 (!len || ((len & (blocksize - 1)) == 0))) 4749 goto out; 4750 4751 block_start = round_down(from, blocksize); 4752 block_end = block_start + blocksize - 1; 4753 4754 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4755 block_start, blocksize); 4756 if (ret) 4757 goto out; 4758 4759 again: 4760 page = find_or_create_page(mapping, index, mask); 4761 if (!page) { 4762 btrfs_delalloc_release_space(inode, data_reserved, 4763 block_start, blocksize); 4764 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4765 ret = -ENOMEM; 4766 goto out; 4767 } 4768 4769 if (!PageUptodate(page)) { 4770 ret = btrfs_readpage(NULL, page); 4771 lock_page(page); 4772 if (page->mapping != mapping) { 4773 unlock_page(page); 4774 put_page(page); 4775 goto again; 4776 } 4777 if (!PageUptodate(page)) { 4778 ret = -EIO; 4779 goto out_unlock; 4780 } 4781 } 4782 wait_on_page_writeback(page); 4783 4784 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4785 set_page_extent_mapped(page); 4786 4787 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4788 if (ordered) { 4789 unlock_extent_cached(io_tree, block_start, block_end, 4790 &cached_state, GFP_NOFS); 4791 unlock_page(page); 4792 put_page(page); 4793 btrfs_start_ordered_extent(inode, ordered, 1); 4794 btrfs_put_ordered_extent(ordered); 4795 goto again; 4796 } 4797 4798 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4799 EXTENT_DIRTY | EXTENT_DELALLOC | 4800 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4801 0, 0, &cached_state, GFP_NOFS); 4802 4803 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4804 &cached_state, 0); 4805 if (ret) { 4806 unlock_extent_cached(io_tree, block_start, block_end, 4807 &cached_state, GFP_NOFS); 4808 goto out_unlock; 4809 } 4810 4811 if (offset != blocksize) { 4812 if (!len) 4813 len = blocksize - offset; 4814 kaddr = kmap(page); 4815 if (front) 4816 memset(kaddr + (block_start - page_offset(page)), 4817 0, offset); 4818 else 4819 memset(kaddr + (block_start - page_offset(page)) + offset, 4820 0, len); 4821 flush_dcache_page(page); 4822 kunmap(page); 4823 } 4824 ClearPageChecked(page); 4825 set_page_dirty(page); 4826 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4827 GFP_NOFS); 4828 4829 out_unlock: 4830 if (ret) 4831 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4832 blocksize); 4833 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4834 unlock_page(page); 4835 put_page(page); 4836 out: 4837 extent_changeset_free(data_reserved); 4838 return ret; 4839 } 4840 4841 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4842 u64 offset, u64 len) 4843 { 4844 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4845 struct btrfs_trans_handle *trans; 4846 int ret; 4847 4848 /* 4849 * Still need to make sure the inode looks like it's been updated so 4850 * that any holes get logged if we fsync. 4851 */ 4852 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4853 BTRFS_I(inode)->last_trans = fs_info->generation; 4854 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4855 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4856 return 0; 4857 } 4858 4859 /* 4860 * 1 - for the one we're dropping 4861 * 1 - for the one we're adding 4862 * 1 - for updating the inode. 4863 */ 4864 trans = btrfs_start_transaction(root, 3); 4865 if (IS_ERR(trans)) 4866 return PTR_ERR(trans); 4867 4868 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4869 if (ret) { 4870 btrfs_abort_transaction(trans, ret); 4871 btrfs_end_transaction(trans); 4872 return ret; 4873 } 4874 4875 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4876 offset, 0, 0, len, 0, len, 0, 0, 0); 4877 if (ret) 4878 btrfs_abort_transaction(trans, ret); 4879 else 4880 btrfs_update_inode(trans, root, inode); 4881 btrfs_end_transaction(trans); 4882 return ret; 4883 } 4884 4885 /* 4886 * This function puts in dummy file extents for the area we're creating a hole 4887 * for. So if we are truncating this file to a larger size we need to insert 4888 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4889 * the range between oldsize and size 4890 */ 4891 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4892 { 4893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4894 struct btrfs_root *root = BTRFS_I(inode)->root; 4895 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4896 struct extent_map *em = NULL; 4897 struct extent_state *cached_state = NULL; 4898 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4899 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4900 u64 block_end = ALIGN(size, fs_info->sectorsize); 4901 u64 last_byte; 4902 u64 cur_offset; 4903 u64 hole_size; 4904 int err = 0; 4905 4906 /* 4907 * If our size started in the middle of a block we need to zero out the 4908 * rest of the block before we expand the i_size, otherwise we could 4909 * expose stale data. 4910 */ 4911 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4912 if (err) 4913 return err; 4914 4915 if (size <= hole_start) 4916 return 0; 4917 4918 while (1) { 4919 struct btrfs_ordered_extent *ordered; 4920 4921 lock_extent_bits(io_tree, hole_start, block_end - 1, 4922 &cached_state); 4923 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 4924 block_end - hole_start); 4925 if (!ordered) 4926 break; 4927 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4928 &cached_state, GFP_NOFS); 4929 btrfs_start_ordered_extent(inode, ordered, 1); 4930 btrfs_put_ordered_extent(ordered); 4931 } 4932 4933 cur_offset = hole_start; 4934 while (1) { 4935 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4936 block_end - cur_offset, 0); 4937 if (IS_ERR(em)) { 4938 err = PTR_ERR(em); 4939 em = NULL; 4940 break; 4941 } 4942 last_byte = min(extent_map_end(em), block_end); 4943 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4944 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4945 struct extent_map *hole_em; 4946 hole_size = last_byte - cur_offset; 4947 4948 err = maybe_insert_hole(root, inode, cur_offset, 4949 hole_size); 4950 if (err) 4951 break; 4952 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4953 cur_offset + hole_size - 1, 0); 4954 hole_em = alloc_extent_map(); 4955 if (!hole_em) { 4956 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4957 &BTRFS_I(inode)->runtime_flags); 4958 goto next; 4959 } 4960 hole_em->start = cur_offset; 4961 hole_em->len = hole_size; 4962 hole_em->orig_start = cur_offset; 4963 4964 hole_em->block_start = EXTENT_MAP_HOLE; 4965 hole_em->block_len = 0; 4966 hole_em->orig_block_len = 0; 4967 hole_em->ram_bytes = hole_size; 4968 hole_em->bdev = fs_info->fs_devices->latest_bdev; 4969 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4970 hole_em->generation = fs_info->generation; 4971 4972 while (1) { 4973 write_lock(&em_tree->lock); 4974 err = add_extent_mapping(em_tree, hole_em, 1); 4975 write_unlock(&em_tree->lock); 4976 if (err != -EEXIST) 4977 break; 4978 btrfs_drop_extent_cache(BTRFS_I(inode), 4979 cur_offset, 4980 cur_offset + 4981 hole_size - 1, 0); 4982 } 4983 free_extent_map(hole_em); 4984 } 4985 next: 4986 free_extent_map(em); 4987 em = NULL; 4988 cur_offset = last_byte; 4989 if (cur_offset >= block_end) 4990 break; 4991 } 4992 free_extent_map(em); 4993 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4994 GFP_NOFS); 4995 return err; 4996 } 4997 4998 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4999 { 5000 struct btrfs_root *root = BTRFS_I(inode)->root; 5001 struct btrfs_trans_handle *trans; 5002 loff_t oldsize = i_size_read(inode); 5003 loff_t newsize = attr->ia_size; 5004 int mask = attr->ia_valid; 5005 int ret; 5006 5007 /* 5008 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5009 * special case where we need to update the times despite not having 5010 * these flags set. For all other operations the VFS set these flags 5011 * explicitly if it wants a timestamp update. 5012 */ 5013 if (newsize != oldsize) { 5014 inode_inc_iversion(inode); 5015 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5016 inode->i_ctime = inode->i_mtime = 5017 current_time(inode); 5018 } 5019 5020 if (newsize > oldsize) { 5021 /* 5022 * Don't do an expanding truncate while snapshotting is ongoing. 5023 * This is to ensure the snapshot captures a fully consistent 5024 * state of this file - if the snapshot captures this expanding 5025 * truncation, it must capture all writes that happened before 5026 * this truncation. 5027 */ 5028 btrfs_wait_for_snapshot_creation(root); 5029 ret = btrfs_cont_expand(inode, oldsize, newsize); 5030 if (ret) { 5031 btrfs_end_write_no_snapshotting(root); 5032 return ret; 5033 } 5034 5035 trans = btrfs_start_transaction(root, 1); 5036 if (IS_ERR(trans)) { 5037 btrfs_end_write_no_snapshotting(root); 5038 return PTR_ERR(trans); 5039 } 5040 5041 i_size_write(inode, newsize); 5042 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5043 pagecache_isize_extended(inode, oldsize, newsize); 5044 ret = btrfs_update_inode(trans, root, inode); 5045 btrfs_end_write_no_snapshotting(root); 5046 btrfs_end_transaction(trans); 5047 } else { 5048 5049 /* 5050 * We're truncating a file that used to have good data down to 5051 * zero. Make sure it gets into the ordered flush list so that 5052 * any new writes get down to disk quickly. 5053 */ 5054 if (newsize == 0) 5055 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5056 &BTRFS_I(inode)->runtime_flags); 5057 5058 /* 5059 * 1 for the orphan item we're going to add 5060 * 1 for the orphan item deletion. 5061 */ 5062 trans = btrfs_start_transaction(root, 2); 5063 if (IS_ERR(trans)) 5064 return PTR_ERR(trans); 5065 5066 /* 5067 * We need to do this in case we fail at _any_ point during the 5068 * actual truncate. Once we do the truncate_setsize we could 5069 * invalidate pages which forces any outstanding ordered io to 5070 * be instantly completed which will give us extents that need 5071 * to be truncated. If we fail to get an orphan inode down we 5072 * could have left over extents that were never meant to live, 5073 * so we need to guarantee from this point on that everything 5074 * will be consistent. 5075 */ 5076 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 5077 btrfs_end_transaction(trans); 5078 if (ret) 5079 return ret; 5080 5081 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5082 truncate_setsize(inode, newsize); 5083 5084 /* Disable nonlocked read DIO to avoid the end less truncate */ 5085 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5086 inode_dio_wait(inode); 5087 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5088 5089 ret = btrfs_truncate(inode); 5090 if (ret && inode->i_nlink) { 5091 int err; 5092 5093 /* To get a stable disk_i_size */ 5094 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5095 if (err) { 5096 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5097 return err; 5098 } 5099 5100 /* 5101 * failed to truncate, disk_i_size is only adjusted down 5102 * as we remove extents, so it should represent the true 5103 * size of the inode, so reset the in memory size and 5104 * delete our orphan entry. 5105 */ 5106 trans = btrfs_join_transaction(root); 5107 if (IS_ERR(trans)) { 5108 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5109 return ret; 5110 } 5111 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5112 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 5113 if (err) 5114 btrfs_abort_transaction(trans, err); 5115 btrfs_end_transaction(trans); 5116 } 5117 } 5118 5119 return ret; 5120 } 5121 5122 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5123 { 5124 struct inode *inode = d_inode(dentry); 5125 struct btrfs_root *root = BTRFS_I(inode)->root; 5126 int err; 5127 5128 if (btrfs_root_readonly(root)) 5129 return -EROFS; 5130 5131 err = setattr_prepare(dentry, attr); 5132 if (err) 5133 return err; 5134 5135 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5136 err = btrfs_setsize(inode, attr); 5137 if (err) 5138 return err; 5139 } 5140 5141 if (attr->ia_valid) { 5142 setattr_copy(inode, attr); 5143 inode_inc_iversion(inode); 5144 err = btrfs_dirty_inode(inode); 5145 5146 if (!err && attr->ia_valid & ATTR_MODE) 5147 err = posix_acl_chmod(inode, inode->i_mode); 5148 } 5149 5150 return err; 5151 } 5152 5153 /* 5154 * While truncating the inode pages during eviction, we get the VFS calling 5155 * btrfs_invalidatepage() against each page of the inode. This is slow because 5156 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5157 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5158 * extent_state structures over and over, wasting lots of time. 5159 * 5160 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5161 * those expensive operations on a per page basis and do only the ordered io 5162 * finishing, while we release here the extent_map and extent_state structures, 5163 * without the excessive merging and splitting. 5164 */ 5165 static void evict_inode_truncate_pages(struct inode *inode) 5166 { 5167 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5168 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5169 struct rb_node *node; 5170 5171 ASSERT(inode->i_state & I_FREEING); 5172 truncate_inode_pages_final(&inode->i_data); 5173 5174 write_lock(&map_tree->lock); 5175 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5176 struct extent_map *em; 5177 5178 node = rb_first(&map_tree->map); 5179 em = rb_entry(node, struct extent_map, rb_node); 5180 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5181 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5182 remove_extent_mapping(map_tree, em); 5183 free_extent_map(em); 5184 if (need_resched()) { 5185 write_unlock(&map_tree->lock); 5186 cond_resched(); 5187 write_lock(&map_tree->lock); 5188 } 5189 } 5190 write_unlock(&map_tree->lock); 5191 5192 /* 5193 * Keep looping until we have no more ranges in the io tree. 5194 * We can have ongoing bios started by readpages (called from readahead) 5195 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5196 * still in progress (unlocked the pages in the bio but did not yet 5197 * unlocked the ranges in the io tree). Therefore this means some 5198 * ranges can still be locked and eviction started because before 5199 * submitting those bios, which are executed by a separate task (work 5200 * queue kthread), inode references (inode->i_count) were not taken 5201 * (which would be dropped in the end io callback of each bio). 5202 * Therefore here we effectively end up waiting for those bios and 5203 * anyone else holding locked ranges without having bumped the inode's 5204 * reference count - if we don't do it, when they access the inode's 5205 * io_tree to unlock a range it may be too late, leading to an 5206 * use-after-free issue. 5207 */ 5208 spin_lock(&io_tree->lock); 5209 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5210 struct extent_state *state; 5211 struct extent_state *cached_state = NULL; 5212 u64 start; 5213 u64 end; 5214 5215 node = rb_first(&io_tree->state); 5216 state = rb_entry(node, struct extent_state, rb_node); 5217 start = state->start; 5218 end = state->end; 5219 spin_unlock(&io_tree->lock); 5220 5221 lock_extent_bits(io_tree, start, end, &cached_state); 5222 5223 /* 5224 * If still has DELALLOC flag, the extent didn't reach disk, 5225 * and its reserved space won't be freed by delayed_ref. 5226 * So we need to free its reserved space here. 5227 * (Refer to comment in btrfs_invalidatepage, case 2) 5228 * 5229 * Note, end is the bytenr of last byte, so we need + 1 here. 5230 */ 5231 if (state->state & EXTENT_DELALLOC) 5232 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5233 5234 clear_extent_bit(io_tree, start, end, 5235 EXTENT_LOCKED | EXTENT_DIRTY | 5236 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5237 EXTENT_DEFRAG, 1, 1, 5238 &cached_state, GFP_NOFS); 5239 5240 cond_resched(); 5241 spin_lock(&io_tree->lock); 5242 } 5243 spin_unlock(&io_tree->lock); 5244 } 5245 5246 void btrfs_evict_inode(struct inode *inode) 5247 { 5248 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5249 struct btrfs_trans_handle *trans; 5250 struct btrfs_root *root = BTRFS_I(inode)->root; 5251 struct btrfs_block_rsv *rsv, *global_rsv; 5252 int steal_from_global = 0; 5253 u64 min_size; 5254 int ret; 5255 5256 trace_btrfs_inode_evict(inode); 5257 5258 if (!root) { 5259 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 5260 return; 5261 } 5262 5263 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5264 5265 evict_inode_truncate_pages(inode); 5266 5267 if (inode->i_nlink && 5268 ((btrfs_root_refs(&root->root_item) != 0 && 5269 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5270 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5271 goto no_delete; 5272 5273 if (is_bad_inode(inode)) { 5274 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5275 goto no_delete; 5276 } 5277 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5278 if (!special_file(inode->i_mode)) 5279 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5280 5281 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5282 5283 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 5284 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5285 &BTRFS_I(inode)->runtime_flags)); 5286 goto no_delete; 5287 } 5288 5289 if (inode->i_nlink > 0) { 5290 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5291 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5292 goto no_delete; 5293 } 5294 5295 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5296 if (ret) { 5297 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5298 goto no_delete; 5299 } 5300 5301 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5302 if (!rsv) { 5303 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5304 goto no_delete; 5305 } 5306 rsv->size = min_size; 5307 rsv->failfast = 1; 5308 global_rsv = &fs_info->global_block_rsv; 5309 5310 btrfs_i_size_write(BTRFS_I(inode), 0); 5311 5312 /* 5313 * This is a bit simpler than btrfs_truncate since we've already 5314 * reserved our space for our orphan item in the unlink, so we just 5315 * need to reserve some slack space in case we add bytes and update 5316 * inode item when doing the truncate. 5317 */ 5318 while (1) { 5319 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5320 BTRFS_RESERVE_FLUSH_LIMIT); 5321 5322 /* 5323 * Try and steal from the global reserve since we will 5324 * likely not use this space anyway, we want to try as 5325 * hard as possible to get this to work. 5326 */ 5327 if (ret) 5328 steal_from_global++; 5329 else 5330 steal_from_global = 0; 5331 ret = 0; 5332 5333 /* 5334 * steal_from_global == 0: we reserved stuff, hooray! 5335 * steal_from_global == 1: we didn't reserve stuff, boo! 5336 * steal_from_global == 2: we've committed, still not a lot of 5337 * room but maybe we'll have room in the global reserve this 5338 * time. 5339 * steal_from_global == 3: abandon all hope! 5340 */ 5341 if (steal_from_global > 2) { 5342 btrfs_warn(fs_info, 5343 "Could not get space for a delete, will truncate on mount %d", 5344 ret); 5345 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5346 btrfs_free_block_rsv(fs_info, rsv); 5347 goto no_delete; 5348 } 5349 5350 trans = btrfs_join_transaction(root); 5351 if (IS_ERR(trans)) { 5352 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5353 btrfs_free_block_rsv(fs_info, rsv); 5354 goto no_delete; 5355 } 5356 5357 /* 5358 * We can't just steal from the global reserve, we need to make 5359 * sure there is room to do it, if not we need to commit and try 5360 * again. 5361 */ 5362 if (steal_from_global) { 5363 if (!btrfs_check_space_for_delayed_refs(trans, fs_info)) 5364 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5365 min_size, 0); 5366 else 5367 ret = -ENOSPC; 5368 } 5369 5370 /* 5371 * Couldn't steal from the global reserve, we have too much 5372 * pending stuff built up, commit the transaction and try it 5373 * again. 5374 */ 5375 if (ret) { 5376 ret = btrfs_commit_transaction(trans); 5377 if (ret) { 5378 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5379 btrfs_free_block_rsv(fs_info, rsv); 5380 goto no_delete; 5381 } 5382 continue; 5383 } else { 5384 steal_from_global = 0; 5385 } 5386 5387 trans->block_rsv = rsv; 5388 5389 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5390 if (ret != -ENOSPC && ret != -EAGAIN) 5391 break; 5392 5393 trans->block_rsv = &fs_info->trans_block_rsv; 5394 btrfs_end_transaction(trans); 5395 trans = NULL; 5396 btrfs_btree_balance_dirty(fs_info); 5397 } 5398 5399 btrfs_free_block_rsv(fs_info, rsv); 5400 5401 /* 5402 * Errors here aren't a big deal, it just means we leave orphan items 5403 * in the tree. They will be cleaned up on the next mount. 5404 */ 5405 if (ret == 0) { 5406 trans->block_rsv = root->orphan_block_rsv; 5407 btrfs_orphan_del(trans, BTRFS_I(inode)); 5408 } else { 5409 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5410 } 5411 5412 trans->block_rsv = &fs_info->trans_block_rsv; 5413 if (!(root == fs_info->tree_root || 5414 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5415 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5416 5417 btrfs_end_transaction(trans); 5418 btrfs_btree_balance_dirty(fs_info); 5419 no_delete: 5420 btrfs_remove_delayed_node(BTRFS_I(inode)); 5421 clear_inode(inode); 5422 } 5423 5424 /* 5425 * this returns the key found in the dir entry in the location pointer. 5426 * If no dir entries were found, location->objectid is 0. 5427 */ 5428 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5429 struct btrfs_key *location) 5430 { 5431 const char *name = dentry->d_name.name; 5432 int namelen = dentry->d_name.len; 5433 struct btrfs_dir_item *di; 5434 struct btrfs_path *path; 5435 struct btrfs_root *root = BTRFS_I(dir)->root; 5436 int ret = 0; 5437 5438 path = btrfs_alloc_path(); 5439 if (!path) 5440 return -ENOMEM; 5441 5442 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5443 name, namelen, 0); 5444 if (IS_ERR(di)) 5445 ret = PTR_ERR(di); 5446 5447 if (IS_ERR_OR_NULL(di)) 5448 goto out_err; 5449 5450 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5451 if (location->type != BTRFS_INODE_ITEM_KEY && 5452 location->type != BTRFS_ROOT_ITEM_KEY) { 5453 btrfs_warn(root->fs_info, 5454 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5455 __func__, name, btrfs_ino(BTRFS_I(dir)), 5456 location->objectid, location->type, location->offset); 5457 goto out_err; 5458 } 5459 out: 5460 btrfs_free_path(path); 5461 return ret; 5462 out_err: 5463 location->objectid = 0; 5464 goto out; 5465 } 5466 5467 /* 5468 * when we hit a tree root in a directory, the btrfs part of the inode 5469 * needs to be changed to reflect the root directory of the tree root. This 5470 * is kind of like crossing a mount point. 5471 */ 5472 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5473 struct inode *dir, 5474 struct dentry *dentry, 5475 struct btrfs_key *location, 5476 struct btrfs_root **sub_root) 5477 { 5478 struct btrfs_path *path; 5479 struct btrfs_root *new_root; 5480 struct btrfs_root_ref *ref; 5481 struct extent_buffer *leaf; 5482 struct btrfs_key key; 5483 int ret; 5484 int err = 0; 5485 5486 path = btrfs_alloc_path(); 5487 if (!path) { 5488 err = -ENOMEM; 5489 goto out; 5490 } 5491 5492 err = -ENOENT; 5493 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5494 key.type = BTRFS_ROOT_REF_KEY; 5495 key.offset = location->objectid; 5496 5497 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5498 if (ret) { 5499 if (ret < 0) 5500 err = ret; 5501 goto out; 5502 } 5503 5504 leaf = path->nodes[0]; 5505 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5506 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5507 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5508 goto out; 5509 5510 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5511 (unsigned long)(ref + 1), 5512 dentry->d_name.len); 5513 if (ret) 5514 goto out; 5515 5516 btrfs_release_path(path); 5517 5518 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5519 if (IS_ERR(new_root)) { 5520 err = PTR_ERR(new_root); 5521 goto out; 5522 } 5523 5524 *sub_root = new_root; 5525 location->objectid = btrfs_root_dirid(&new_root->root_item); 5526 location->type = BTRFS_INODE_ITEM_KEY; 5527 location->offset = 0; 5528 err = 0; 5529 out: 5530 btrfs_free_path(path); 5531 return err; 5532 } 5533 5534 static void inode_tree_add(struct inode *inode) 5535 { 5536 struct btrfs_root *root = BTRFS_I(inode)->root; 5537 struct btrfs_inode *entry; 5538 struct rb_node **p; 5539 struct rb_node *parent; 5540 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5541 u64 ino = btrfs_ino(BTRFS_I(inode)); 5542 5543 if (inode_unhashed(inode)) 5544 return; 5545 parent = NULL; 5546 spin_lock(&root->inode_lock); 5547 p = &root->inode_tree.rb_node; 5548 while (*p) { 5549 parent = *p; 5550 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5551 5552 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5553 p = &parent->rb_left; 5554 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5555 p = &parent->rb_right; 5556 else { 5557 WARN_ON(!(entry->vfs_inode.i_state & 5558 (I_WILL_FREE | I_FREEING))); 5559 rb_replace_node(parent, new, &root->inode_tree); 5560 RB_CLEAR_NODE(parent); 5561 spin_unlock(&root->inode_lock); 5562 return; 5563 } 5564 } 5565 rb_link_node(new, parent, p); 5566 rb_insert_color(new, &root->inode_tree); 5567 spin_unlock(&root->inode_lock); 5568 } 5569 5570 static void inode_tree_del(struct inode *inode) 5571 { 5572 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5573 struct btrfs_root *root = BTRFS_I(inode)->root; 5574 int empty = 0; 5575 5576 spin_lock(&root->inode_lock); 5577 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5578 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5579 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5580 empty = RB_EMPTY_ROOT(&root->inode_tree); 5581 } 5582 spin_unlock(&root->inode_lock); 5583 5584 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5585 synchronize_srcu(&fs_info->subvol_srcu); 5586 spin_lock(&root->inode_lock); 5587 empty = RB_EMPTY_ROOT(&root->inode_tree); 5588 spin_unlock(&root->inode_lock); 5589 if (empty) 5590 btrfs_add_dead_root(root); 5591 } 5592 } 5593 5594 void btrfs_invalidate_inodes(struct btrfs_root *root) 5595 { 5596 struct btrfs_fs_info *fs_info = root->fs_info; 5597 struct rb_node *node; 5598 struct rb_node *prev; 5599 struct btrfs_inode *entry; 5600 struct inode *inode; 5601 u64 objectid = 0; 5602 5603 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 5604 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5605 5606 spin_lock(&root->inode_lock); 5607 again: 5608 node = root->inode_tree.rb_node; 5609 prev = NULL; 5610 while (node) { 5611 prev = node; 5612 entry = rb_entry(node, struct btrfs_inode, rb_node); 5613 5614 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5615 node = node->rb_left; 5616 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5617 node = node->rb_right; 5618 else 5619 break; 5620 } 5621 if (!node) { 5622 while (prev) { 5623 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5624 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) { 5625 node = prev; 5626 break; 5627 } 5628 prev = rb_next(prev); 5629 } 5630 } 5631 while (node) { 5632 entry = rb_entry(node, struct btrfs_inode, rb_node); 5633 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1; 5634 inode = igrab(&entry->vfs_inode); 5635 if (inode) { 5636 spin_unlock(&root->inode_lock); 5637 if (atomic_read(&inode->i_count) > 1) 5638 d_prune_aliases(inode); 5639 /* 5640 * btrfs_drop_inode will have it removed from 5641 * the inode cache when its usage count 5642 * hits zero. 5643 */ 5644 iput(inode); 5645 cond_resched(); 5646 spin_lock(&root->inode_lock); 5647 goto again; 5648 } 5649 5650 if (cond_resched_lock(&root->inode_lock)) 5651 goto again; 5652 5653 node = rb_next(node); 5654 } 5655 spin_unlock(&root->inode_lock); 5656 } 5657 5658 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5659 { 5660 struct btrfs_iget_args *args = p; 5661 inode->i_ino = args->location->objectid; 5662 memcpy(&BTRFS_I(inode)->location, args->location, 5663 sizeof(*args->location)); 5664 BTRFS_I(inode)->root = args->root; 5665 return 0; 5666 } 5667 5668 static int btrfs_find_actor(struct inode *inode, void *opaque) 5669 { 5670 struct btrfs_iget_args *args = opaque; 5671 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5672 args->root == BTRFS_I(inode)->root; 5673 } 5674 5675 static struct inode *btrfs_iget_locked(struct super_block *s, 5676 struct btrfs_key *location, 5677 struct btrfs_root *root) 5678 { 5679 struct inode *inode; 5680 struct btrfs_iget_args args; 5681 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5682 5683 args.location = location; 5684 args.root = root; 5685 5686 inode = iget5_locked(s, hashval, btrfs_find_actor, 5687 btrfs_init_locked_inode, 5688 (void *)&args); 5689 return inode; 5690 } 5691 5692 /* Get an inode object given its location and corresponding root. 5693 * Returns in *is_new if the inode was read from disk 5694 */ 5695 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5696 struct btrfs_root *root, int *new) 5697 { 5698 struct inode *inode; 5699 5700 inode = btrfs_iget_locked(s, location, root); 5701 if (!inode) 5702 return ERR_PTR(-ENOMEM); 5703 5704 if (inode->i_state & I_NEW) { 5705 int ret; 5706 5707 ret = btrfs_read_locked_inode(inode); 5708 if (!is_bad_inode(inode)) { 5709 inode_tree_add(inode); 5710 unlock_new_inode(inode); 5711 if (new) 5712 *new = 1; 5713 } else { 5714 unlock_new_inode(inode); 5715 iput(inode); 5716 ASSERT(ret < 0); 5717 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5718 } 5719 } 5720 5721 return inode; 5722 } 5723 5724 static struct inode *new_simple_dir(struct super_block *s, 5725 struct btrfs_key *key, 5726 struct btrfs_root *root) 5727 { 5728 struct inode *inode = new_inode(s); 5729 5730 if (!inode) 5731 return ERR_PTR(-ENOMEM); 5732 5733 BTRFS_I(inode)->root = root; 5734 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5735 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5736 5737 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5738 inode->i_op = &btrfs_dir_ro_inode_operations; 5739 inode->i_opflags &= ~IOP_XATTR; 5740 inode->i_fop = &simple_dir_operations; 5741 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5742 inode->i_mtime = current_time(inode); 5743 inode->i_atime = inode->i_mtime; 5744 inode->i_ctime = inode->i_mtime; 5745 BTRFS_I(inode)->i_otime = inode->i_mtime; 5746 5747 return inode; 5748 } 5749 5750 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5751 { 5752 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5753 struct inode *inode; 5754 struct btrfs_root *root = BTRFS_I(dir)->root; 5755 struct btrfs_root *sub_root = root; 5756 struct btrfs_key location; 5757 int index; 5758 int ret = 0; 5759 5760 if (dentry->d_name.len > BTRFS_NAME_LEN) 5761 return ERR_PTR(-ENAMETOOLONG); 5762 5763 ret = btrfs_inode_by_name(dir, dentry, &location); 5764 if (ret < 0) 5765 return ERR_PTR(ret); 5766 5767 if (location.objectid == 0) 5768 return ERR_PTR(-ENOENT); 5769 5770 if (location.type == BTRFS_INODE_ITEM_KEY) { 5771 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5772 return inode; 5773 } 5774 5775 index = srcu_read_lock(&fs_info->subvol_srcu); 5776 ret = fixup_tree_root_location(fs_info, dir, dentry, 5777 &location, &sub_root); 5778 if (ret < 0) { 5779 if (ret != -ENOENT) 5780 inode = ERR_PTR(ret); 5781 else 5782 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5783 } else { 5784 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5785 } 5786 srcu_read_unlock(&fs_info->subvol_srcu, index); 5787 5788 if (!IS_ERR(inode) && root != sub_root) { 5789 down_read(&fs_info->cleanup_work_sem); 5790 if (!sb_rdonly(inode->i_sb)) 5791 ret = btrfs_orphan_cleanup(sub_root); 5792 up_read(&fs_info->cleanup_work_sem); 5793 if (ret) { 5794 iput(inode); 5795 inode = ERR_PTR(ret); 5796 } 5797 } 5798 5799 return inode; 5800 } 5801 5802 static int btrfs_dentry_delete(const struct dentry *dentry) 5803 { 5804 struct btrfs_root *root; 5805 struct inode *inode = d_inode(dentry); 5806 5807 if (!inode && !IS_ROOT(dentry)) 5808 inode = d_inode(dentry->d_parent); 5809 5810 if (inode) { 5811 root = BTRFS_I(inode)->root; 5812 if (btrfs_root_refs(&root->root_item) == 0) 5813 return 1; 5814 5815 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5816 return 1; 5817 } 5818 return 0; 5819 } 5820 5821 static void btrfs_dentry_release(struct dentry *dentry) 5822 { 5823 kfree(dentry->d_fsdata); 5824 } 5825 5826 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5827 unsigned int flags) 5828 { 5829 struct inode *inode; 5830 5831 inode = btrfs_lookup_dentry(dir, dentry); 5832 if (IS_ERR(inode)) { 5833 if (PTR_ERR(inode) == -ENOENT) 5834 inode = NULL; 5835 else 5836 return ERR_CAST(inode); 5837 } 5838 5839 return d_splice_alias(inode, dentry); 5840 } 5841 5842 unsigned char btrfs_filetype_table[] = { 5843 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5844 }; 5845 5846 /* 5847 * All this infrastructure exists because dir_emit can fault, and we are holding 5848 * the tree lock when doing readdir. For now just allocate a buffer and copy 5849 * our information into that, and then dir_emit from the buffer. This is 5850 * similar to what NFS does, only we don't keep the buffer around in pagecache 5851 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5852 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5853 * tree lock. 5854 */ 5855 static int btrfs_opendir(struct inode *inode, struct file *file) 5856 { 5857 struct btrfs_file_private *private; 5858 5859 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5860 if (!private) 5861 return -ENOMEM; 5862 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5863 if (!private->filldir_buf) { 5864 kfree(private); 5865 return -ENOMEM; 5866 } 5867 file->private_data = private; 5868 return 0; 5869 } 5870 5871 struct dir_entry { 5872 u64 ino; 5873 u64 offset; 5874 unsigned type; 5875 int name_len; 5876 }; 5877 5878 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5879 { 5880 while (entries--) { 5881 struct dir_entry *entry = addr; 5882 char *name = (char *)(entry + 1); 5883 5884 ctx->pos = entry->offset; 5885 if (!dir_emit(ctx, name, entry->name_len, entry->ino, 5886 entry->type)) 5887 return 1; 5888 addr += sizeof(struct dir_entry) + entry->name_len; 5889 ctx->pos++; 5890 } 5891 return 0; 5892 } 5893 5894 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5895 { 5896 struct inode *inode = file_inode(file); 5897 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5898 struct btrfs_root *root = BTRFS_I(inode)->root; 5899 struct btrfs_file_private *private = file->private_data; 5900 struct btrfs_dir_item *di; 5901 struct btrfs_key key; 5902 struct btrfs_key found_key; 5903 struct btrfs_path *path; 5904 void *addr; 5905 struct list_head ins_list; 5906 struct list_head del_list; 5907 int ret; 5908 struct extent_buffer *leaf; 5909 int slot; 5910 char *name_ptr; 5911 int name_len; 5912 int entries = 0; 5913 int total_len = 0; 5914 bool put = false; 5915 struct btrfs_key location; 5916 5917 if (!dir_emit_dots(file, ctx)) 5918 return 0; 5919 5920 path = btrfs_alloc_path(); 5921 if (!path) 5922 return -ENOMEM; 5923 5924 addr = private->filldir_buf; 5925 path->reada = READA_FORWARD; 5926 5927 INIT_LIST_HEAD(&ins_list); 5928 INIT_LIST_HEAD(&del_list); 5929 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5930 5931 again: 5932 key.type = BTRFS_DIR_INDEX_KEY; 5933 key.offset = ctx->pos; 5934 key.objectid = btrfs_ino(BTRFS_I(inode)); 5935 5936 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5937 if (ret < 0) 5938 goto err; 5939 5940 while (1) { 5941 struct dir_entry *entry; 5942 5943 leaf = path->nodes[0]; 5944 slot = path->slots[0]; 5945 if (slot >= btrfs_header_nritems(leaf)) { 5946 ret = btrfs_next_leaf(root, path); 5947 if (ret < 0) 5948 goto err; 5949 else if (ret > 0) 5950 break; 5951 continue; 5952 } 5953 5954 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5955 5956 if (found_key.objectid != key.objectid) 5957 break; 5958 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5959 break; 5960 if (found_key.offset < ctx->pos) 5961 goto next; 5962 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5963 goto next; 5964 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5965 if (verify_dir_item(fs_info, leaf, slot, di)) 5966 goto next; 5967 5968 name_len = btrfs_dir_name_len(leaf, di); 5969 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5970 PAGE_SIZE) { 5971 btrfs_release_path(path); 5972 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5973 if (ret) 5974 goto nopos; 5975 addr = private->filldir_buf; 5976 entries = 0; 5977 total_len = 0; 5978 goto again; 5979 } 5980 5981 entry = addr; 5982 entry->name_len = name_len; 5983 name_ptr = (char *)(entry + 1); 5984 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5985 name_len); 5986 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5987 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5988 entry->ino = location.objectid; 5989 entry->offset = found_key.offset; 5990 entries++; 5991 addr += sizeof(struct dir_entry) + name_len; 5992 total_len += sizeof(struct dir_entry) + name_len; 5993 next: 5994 path->slots[0]++; 5995 } 5996 btrfs_release_path(path); 5997 5998 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5999 if (ret) 6000 goto nopos; 6001 6002 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6003 if (ret) 6004 goto nopos; 6005 6006 /* 6007 * Stop new entries from being returned after we return the last 6008 * entry. 6009 * 6010 * New directory entries are assigned a strictly increasing 6011 * offset. This means that new entries created during readdir 6012 * are *guaranteed* to be seen in the future by that readdir. 6013 * This has broken buggy programs which operate on names as 6014 * they're returned by readdir. Until we re-use freed offsets 6015 * we have this hack to stop new entries from being returned 6016 * under the assumption that they'll never reach this huge 6017 * offset. 6018 * 6019 * This is being careful not to overflow 32bit loff_t unless the 6020 * last entry requires it because doing so has broken 32bit apps 6021 * in the past. 6022 */ 6023 if (ctx->pos >= INT_MAX) 6024 ctx->pos = LLONG_MAX; 6025 else 6026 ctx->pos = INT_MAX; 6027 nopos: 6028 ret = 0; 6029 err: 6030 if (put) 6031 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6032 btrfs_free_path(path); 6033 return ret; 6034 } 6035 6036 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 6037 { 6038 struct btrfs_root *root = BTRFS_I(inode)->root; 6039 struct btrfs_trans_handle *trans; 6040 int ret = 0; 6041 bool nolock = false; 6042 6043 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6044 return 0; 6045 6046 if (btrfs_fs_closing(root->fs_info) && 6047 btrfs_is_free_space_inode(BTRFS_I(inode))) 6048 nolock = true; 6049 6050 if (wbc->sync_mode == WB_SYNC_ALL) { 6051 if (nolock) 6052 trans = btrfs_join_transaction_nolock(root); 6053 else 6054 trans = btrfs_join_transaction(root); 6055 if (IS_ERR(trans)) 6056 return PTR_ERR(trans); 6057 ret = btrfs_commit_transaction(trans); 6058 } 6059 return ret; 6060 } 6061 6062 /* 6063 * This is somewhat expensive, updating the tree every time the 6064 * inode changes. But, it is most likely to find the inode in cache. 6065 * FIXME, needs more benchmarking...there are no reasons other than performance 6066 * to keep or drop this code. 6067 */ 6068 static int btrfs_dirty_inode(struct inode *inode) 6069 { 6070 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6071 struct btrfs_root *root = BTRFS_I(inode)->root; 6072 struct btrfs_trans_handle *trans; 6073 int ret; 6074 6075 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6076 return 0; 6077 6078 trans = btrfs_join_transaction(root); 6079 if (IS_ERR(trans)) 6080 return PTR_ERR(trans); 6081 6082 ret = btrfs_update_inode(trans, root, inode); 6083 if (ret && ret == -ENOSPC) { 6084 /* whoops, lets try again with the full transaction */ 6085 btrfs_end_transaction(trans); 6086 trans = btrfs_start_transaction(root, 1); 6087 if (IS_ERR(trans)) 6088 return PTR_ERR(trans); 6089 6090 ret = btrfs_update_inode(trans, root, inode); 6091 } 6092 btrfs_end_transaction(trans); 6093 if (BTRFS_I(inode)->delayed_node) 6094 btrfs_balance_delayed_items(fs_info); 6095 6096 return ret; 6097 } 6098 6099 /* 6100 * This is a copy of file_update_time. We need this so we can return error on 6101 * ENOSPC for updating the inode in the case of file write and mmap writes. 6102 */ 6103 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6104 int flags) 6105 { 6106 struct btrfs_root *root = BTRFS_I(inode)->root; 6107 6108 if (btrfs_root_readonly(root)) 6109 return -EROFS; 6110 6111 if (flags & S_VERSION) 6112 inode_inc_iversion(inode); 6113 if (flags & S_CTIME) 6114 inode->i_ctime = *now; 6115 if (flags & S_MTIME) 6116 inode->i_mtime = *now; 6117 if (flags & S_ATIME) 6118 inode->i_atime = *now; 6119 return btrfs_dirty_inode(inode); 6120 } 6121 6122 /* 6123 * find the highest existing sequence number in a directory 6124 * and then set the in-memory index_cnt variable to reflect 6125 * free sequence numbers 6126 */ 6127 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6128 { 6129 struct btrfs_root *root = inode->root; 6130 struct btrfs_key key, found_key; 6131 struct btrfs_path *path; 6132 struct extent_buffer *leaf; 6133 int ret; 6134 6135 key.objectid = btrfs_ino(inode); 6136 key.type = BTRFS_DIR_INDEX_KEY; 6137 key.offset = (u64)-1; 6138 6139 path = btrfs_alloc_path(); 6140 if (!path) 6141 return -ENOMEM; 6142 6143 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6144 if (ret < 0) 6145 goto out; 6146 /* FIXME: we should be able to handle this */ 6147 if (ret == 0) 6148 goto out; 6149 ret = 0; 6150 6151 /* 6152 * MAGIC NUMBER EXPLANATION: 6153 * since we search a directory based on f_pos we have to start at 2 6154 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6155 * else has to start at 2 6156 */ 6157 if (path->slots[0] == 0) { 6158 inode->index_cnt = 2; 6159 goto out; 6160 } 6161 6162 path->slots[0]--; 6163 6164 leaf = path->nodes[0]; 6165 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6166 6167 if (found_key.objectid != btrfs_ino(inode) || 6168 found_key.type != BTRFS_DIR_INDEX_KEY) { 6169 inode->index_cnt = 2; 6170 goto out; 6171 } 6172 6173 inode->index_cnt = found_key.offset + 1; 6174 out: 6175 btrfs_free_path(path); 6176 return ret; 6177 } 6178 6179 /* 6180 * helper to find a free sequence number in a given directory. This current 6181 * code is very simple, later versions will do smarter things in the btree 6182 */ 6183 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6184 { 6185 int ret = 0; 6186 6187 if (dir->index_cnt == (u64)-1) { 6188 ret = btrfs_inode_delayed_dir_index_count(dir); 6189 if (ret) { 6190 ret = btrfs_set_inode_index_count(dir); 6191 if (ret) 6192 return ret; 6193 } 6194 } 6195 6196 *index = dir->index_cnt; 6197 dir->index_cnt++; 6198 6199 return ret; 6200 } 6201 6202 static int btrfs_insert_inode_locked(struct inode *inode) 6203 { 6204 struct btrfs_iget_args args; 6205 args.location = &BTRFS_I(inode)->location; 6206 args.root = BTRFS_I(inode)->root; 6207 6208 return insert_inode_locked4(inode, 6209 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6210 btrfs_find_actor, &args); 6211 } 6212 6213 /* 6214 * Inherit flags from the parent inode. 6215 * 6216 * Currently only the compression flags and the cow flags are inherited. 6217 */ 6218 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6219 { 6220 unsigned int flags; 6221 6222 if (!dir) 6223 return; 6224 6225 flags = BTRFS_I(dir)->flags; 6226 6227 if (flags & BTRFS_INODE_NOCOMPRESS) { 6228 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6229 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6230 } else if (flags & BTRFS_INODE_COMPRESS) { 6231 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6232 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6233 } 6234 6235 if (flags & BTRFS_INODE_NODATACOW) { 6236 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6237 if (S_ISREG(inode->i_mode)) 6238 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6239 } 6240 6241 btrfs_update_iflags(inode); 6242 } 6243 6244 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6245 struct btrfs_root *root, 6246 struct inode *dir, 6247 const char *name, int name_len, 6248 u64 ref_objectid, u64 objectid, 6249 umode_t mode, u64 *index) 6250 { 6251 struct btrfs_fs_info *fs_info = root->fs_info; 6252 struct inode *inode; 6253 struct btrfs_inode_item *inode_item; 6254 struct btrfs_key *location; 6255 struct btrfs_path *path; 6256 struct btrfs_inode_ref *ref; 6257 struct btrfs_key key[2]; 6258 u32 sizes[2]; 6259 int nitems = name ? 2 : 1; 6260 unsigned long ptr; 6261 int ret; 6262 6263 path = btrfs_alloc_path(); 6264 if (!path) 6265 return ERR_PTR(-ENOMEM); 6266 6267 inode = new_inode(fs_info->sb); 6268 if (!inode) { 6269 btrfs_free_path(path); 6270 return ERR_PTR(-ENOMEM); 6271 } 6272 6273 /* 6274 * O_TMPFILE, set link count to 0, so that after this point, 6275 * we fill in an inode item with the correct link count. 6276 */ 6277 if (!name) 6278 set_nlink(inode, 0); 6279 6280 /* 6281 * we have to initialize this early, so we can reclaim the inode 6282 * number if we fail afterwards in this function. 6283 */ 6284 inode->i_ino = objectid; 6285 6286 if (dir && name) { 6287 trace_btrfs_inode_request(dir); 6288 6289 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6290 if (ret) { 6291 btrfs_free_path(path); 6292 iput(inode); 6293 return ERR_PTR(ret); 6294 } 6295 } else if (dir) { 6296 *index = 0; 6297 } 6298 /* 6299 * index_cnt is ignored for everything but a dir, 6300 * btrfs_get_inode_index_count has an explanation for the magic 6301 * number 6302 */ 6303 BTRFS_I(inode)->index_cnt = 2; 6304 BTRFS_I(inode)->dir_index = *index; 6305 BTRFS_I(inode)->root = root; 6306 BTRFS_I(inode)->generation = trans->transid; 6307 inode->i_generation = BTRFS_I(inode)->generation; 6308 6309 /* 6310 * We could have gotten an inode number from somebody who was fsynced 6311 * and then removed in this same transaction, so let's just set full 6312 * sync since it will be a full sync anyway and this will blow away the 6313 * old info in the log. 6314 */ 6315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6316 6317 key[0].objectid = objectid; 6318 key[0].type = BTRFS_INODE_ITEM_KEY; 6319 key[0].offset = 0; 6320 6321 sizes[0] = sizeof(struct btrfs_inode_item); 6322 6323 if (name) { 6324 /* 6325 * Start new inodes with an inode_ref. This is slightly more 6326 * efficient for small numbers of hard links since they will 6327 * be packed into one item. Extended refs will kick in if we 6328 * add more hard links than can fit in the ref item. 6329 */ 6330 key[1].objectid = objectid; 6331 key[1].type = BTRFS_INODE_REF_KEY; 6332 key[1].offset = ref_objectid; 6333 6334 sizes[1] = name_len + sizeof(*ref); 6335 } 6336 6337 location = &BTRFS_I(inode)->location; 6338 location->objectid = objectid; 6339 location->offset = 0; 6340 location->type = BTRFS_INODE_ITEM_KEY; 6341 6342 ret = btrfs_insert_inode_locked(inode); 6343 if (ret < 0) 6344 goto fail; 6345 6346 path->leave_spinning = 1; 6347 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6348 if (ret != 0) 6349 goto fail_unlock; 6350 6351 inode_init_owner(inode, dir, mode); 6352 inode_set_bytes(inode, 0); 6353 6354 inode->i_mtime = current_time(inode); 6355 inode->i_atime = inode->i_mtime; 6356 inode->i_ctime = inode->i_mtime; 6357 BTRFS_I(inode)->i_otime = inode->i_mtime; 6358 6359 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6360 struct btrfs_inode_item); 6361 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6362 sizeof(*inode_item)); 6363 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6364 6365 if (name) { 6366 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6367 struct btrfs_inode_ref); 6368 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6369 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6370 ptr = (unsigned long)(ref + 1); 6371 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6372 } 6373 6374 btrfs_mark_buffer_dirty(path->nodes[0]); 6375 btrfs_free_path(path); 6376 6377 btrfs_inherit_iflags(inode, dir); 6378 6379 if (S_ISREG(mode)) { 6380 if (btrfs_test_opt(fs_info, NODATASUM)) 6381 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6382 if (btrfs_test_opt(fs_info, NODATACOW)) 6383 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6384 BTRFS_INODE_NODATASUM; 6385 } 6386 6387 inode_tree_add(inode); 6388 6389 trace_btrfs_inode_new(inode); 6390 btrfs_set_inode_last_trans(trans, inode); 6391 6392 btrfs_update_root_times(trans, root); 6393 6394 ret = btrfs_inode_inherit_props(trans, inode, dir); 6395 if (ret) 6396 btrfs_err(fs_info, 6397 "error inheriting props for ino %llu (root %llu): %d", 6398 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6399 6400 return inode; 6401 6402 fail_unlock: 6403 unlock_new_inode(inode); 6404 fail: 6405 if (dir && name) 6406 BTRFS_I(dir)->index_cnt--; 6407 btrfs_free_path(path); 6408 iput(inode); 6409 return ERR_PTR(ret); 6410 } 6411 6412 static inline u8 btrfs_inode_type(struct inode *inode) 6413 { 6414 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6415 } 6416 6417 /* 6418 * utility function to add 'inode' into 'parent_inode' with 6419 * a give name and a given sequence number. 6420 * if 'add_backref' is true, also insert a backref from the 6421 * inode to the parent directory. 6422 */ 6423 int btrfs_add_link(struct btrfs_trans_handle *trans, 6424 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6425 const char *name, int name_len, int add_backref, u64 index) 6426 { 6427 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6428 int ret = 0; 6429 struct btrfs_key key; 6430 struct btrfs_root *root = parent_inode->root; 6431 u64 ino = btrfs_ino(inode); 6432 u64 parent_ino = btrfs_ino(parent_inode); 6433 6434 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6435 memcpy(&key, &inode->root->root_key, sizeof(key)); 6436 } else { 6437 key.objectid = ino; 6438 key.type = BTRFS_INODE_ITEM_KEY; 6439 key.offset = 0; 6440 } 6441 6442 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6443 ret = btrfs_add_root_ref(trans, fs_info, key.objectid, 6444 root->root_key.objectid, parent_ino, 6445 index, name, name_len); 6446 } else if (add_backref) { 6447 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6448 parent_ino, index); 6449 } 6450 6451 /* Nothing to clean up yet */ 6452 if (ret) 6453 return ret; 6454 6455 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6456 parent_inode, &key, 6457 btrfs_inode_type(&inode->vfs_inode), index); 6458 if (ret == -EEXIST || ret == -EOVERFLOW) 6459 goto fail_dir_item; 6460 else if (ret) { 6461 btrfs_abort_transaction(trans, ret); 6462 return ret; 6463 } 6464 6465 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6466 name_len * 2); 6467 inode_inc_iversion(&parent_inode->vfs_inode); 6468 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6469 current_time(&parent_inode->vfs_inode); 6470 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6471 if (ret) 6472 btrfs_abort_transaction(trans, ret); 6473 return ret; 6474 6475 fail_dir_item: 6476 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6477 u64 local_index; 6478 int err; 6479 err = btrfs_del_root_ref(trans, fs_info, key.objectid, 6480 root->root_key.objectid, parent_ino, 6481 &local_index, name, name_len); 6482 6483 } else if (add_backref) { 6484 u64 local_index; 6485 int err; 6486 6487 err = btrfs_del_inode_ref(trans, root, name, name_len, 6488 ino, parent_ino, &local_index); 6489 } 6490 return ret; 6491 } 6492 6493 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6494 struct btrfs_inode *dir, struct dentry *dentry, 6495 struct btrfs_inode *inode, int backref, u64 index) 6496 { 6497 int err = btrfs_add_link(trans, dir, inode, 6498 dentry->d_name.name, dentry->d_name.len, 6499 backref, index); 6500 if (err > 0) 6501 err = -EEXIST; 6502 return err; 6503 } 6504 6505 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6506 umode_t mode, dev_t rdev) 6507 { 6508 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6509 struct btrfs_trans_handle *trans; 6510 struct btrfs_root *root = BTRFS_I(dir)->root; 6511 struct inode *inode = NULL; 6512 int err; 6513 int drop_inode = 0; 6514 u64 objectid; 6515 u64 index = 0; 6516 6517 /* 6518 * 2 for inode item and ref 6519 * 2 for dir items 6520 * 1 for xattr if selinux is on 6521 */ 6522 trans = btrfs_start_transaction(root, 5); 6523 if (IS_ERR(trans)) 6524 return PTR_ERR(trans); 6525 6526 err = btrfs_find_free_ino(root, &objectid); 6527 if (err) 6528 goto out_unlock; 6529 6530 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6531 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6532 mode, &index); 6533 if (IS_ERR(inode)) { 6534 err = PTR_ERR(inode); 6535 goto out_unlock; 6536 } 6537 6538 /* 6539 * If the active LSM wants to access the inode during 6540 * d_instantiate it needs these. Smack checks to see 6541 * if the filesystem supports xattrs by looking at the 6542 * ops vector. 6543 */ 6544 inode->i_op = &btrfs_special_inode_operations; 6545 init_special_inode(inode, inode->i_mode, rdev); 6546 6547 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6548 if (err) 6549 goto out_unlock_inode; 6550 6551 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6552 0, index); 6553 if (err) { 6554 goto out_unlock_inode; 6555 } else { 6556 btrfs_update_inode(trans, root, inode); 6557 unlock_new_inode(inode); 6558 d_instantiate(dentry, inode); 6559 } 6560 6561 out_unlock: 6562 btrfs_end_transaction(trans); 6563 btrfs_balance_delayed_items(fs_info); 6564 btrfs_btree_balance_dirty(fs_info); 6565 if (drop_inode) { 6566 inode_dec_link_count(inode); 6567 iput(inode); 6568 } 6569 return err; 6570 6571 out_unlock_inode: 6572 drop_inode = 1; 6573 unlock_new_inode(inode); 6574 goto out_unlock; 6575 6576 } 6577 6578 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6579 umode_t mode, bool excl) 6580 { 6581 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6582 struct btrfs_trans_handle *trans; 6583 struct btrfs_root *root = BTRFS_I(dir)->root; 6584 struct inode *inode = NULL; 6585 int drop_inode_on_err = 0; 6586 int err; 6587 u64 objectid; 6588 u64 index = 0; 6589 6590 /* 6591 * 2 for inode item and ref 6592 * 2 for dir items 6593 * 1 for xattr if selinux is on 6594 */ 6595 trans = btrfs_start_transaction(root, 5); 6596 if (IS_ERR(trans)) 6597 return PTR_ERR(trans); 6598 6599 err = btrfs_find_free_ino(root, &objectid); 6600 if (err) 6601 goto out_unlock; 6602 6603 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6604 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6605 mode, &index); 6606 if (IS_ERR(inode)) { 6607 err = PTR_ERR(inode); 6608 goto out_unlock; 6609 } 6610 drop_inode_on_err = 1; 6611 /* 6612 * If the active LSM wants to access the inode during 6613 * d_instantiate it needs these. Smack checks to see 6614 * if the filesystem supports xattrs by looking at the 6615 * ops vector. 6616 */ 6617 inode->i_fop = &btrfs_file_operations; 6618 inode->i_op = &btrfs_file_inode_operations; 6619 inode->i_mapping->a_ops = &btrfs_aops; 6620 6621 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6622 if (err) 6623 goto out_unlock_inode; 6624 6625 err = btrfs_update_inode(trans, root, inode); 6626 if (err) 6627 goto out_unlock_inode; 6628 6629 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6630 0, index); 6631 if (err) 6632 goto out_unlock_inode; 6633 6634 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6635 unlock_new_inode(inode); 6636 d_instantiate(dentry, inode); 6637 6638 out_unlock: 6639 btrfs_end_transaction(trans); 6640 if (err && drop_inode_on_err) { 6641 inode_dec_link_count(inode); 6642 iput(inode); 6643 } 6644 btrfs_balance_delayed_items(fs_info); 6645 btrfs_btree_balance_dirty(fs_info); 6646 return err; 6647 6648 out_unlock_inode: 6649 unlock_new_inode(inode); 6650 goto out_unlock; 6651 6652 } 6653 6654 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6655 struct dentry *dentry) 6656 { 6657 struct btrfs_trans_handle *trans = NULL; 6658 struct btrfs_root *root = BTRFS_I(dir)->root; 6659 struct inode *inode = d_inode(old_dentry); 6660 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6661 u64 index; 6662 int err; 6663 int drop_inode = 0; 6664 6665 /* do not allow sys_link's with other subvols of the same device */ 6666 if (root->objectid != BTRFS_I(inode)->root->objectid) 6667 return -EXDEV; 6668 6669 if (inode->i_nlink >= BTRFS_LINK_MAX) 6670 return -EMLINK; 6671 6672 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6673 if (err) 6674 goto fail; 6675 6676 /* 6677 * 2 items for inode and inode ref 6678 * 2 items for dir items 6679 * 1 item for parent inode 6680 */ 6681 trans = btrfs_start_transaction(root, 5); 6682 if (IS_ERR(trans)) { 6683 err = PTR_ERR(trans); 6684 trans = NULL; 6685 goto fail; 6686 } 6687 6688 /* There are several dir indexes for this inode, clear the cache. */ 6689 BTRFS_I(inode)->dir_index = 0ULL; 6690 inc_nlink(inode); 6691 inode_inc_iversion(inode); 6692 inode->i_ctime = current_time(inode); 6693 ihold(inode); 6694 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6695 6696 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6697 1, index); 6698 6699 if (err) { 6700 drop_inode = 1; 6701 } else { 6702 struct dentry *parent = dentry->d_parent; 6703 err = btrfs_update_inode(trans, root, inode); 6704 if (err) 6705 goto fail; 6706 if (inode->i_nlink == 1) { 6707 /* 6708 * If new hard link count is 1, it's a file created 6709 * with open(2) O_TMPFILE flag. 6710 */ 6711 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6712 if (err) 6713 goto fail; 6714 } 6715 d_instantiate(dentry, inode); 6716 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6717 } 6718 6719 btrfs_balance_delayed_items(fs_info); 6720 fail: 6721 if (trans) 6722 btrfs_end_transaction(trans); 6723 if (drop_inode) { 6724 inode_dec_link_count(inode); 6725 iput(inode); 6726 } 6727 btrfs_btree_balance_dirty(fs_info); 6728 return err; 6729 } 6730 6731 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6732 { 6733 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6734 struct inode *inode = NULL; 6735 struct btrfs_trans_handle *trans; 6736 struct btrfs_root *root = BTRFS_I(dir)->root; 6737 int err = 0; 6738 int drop_on_err = 0; 6739 u64 objectid = 0; 6740 u64 index = 0; 6741 6742 /* 6743 * 2 items for inode and ref 6744 * 2 items for dir items 6745 * 1 for xattr if selinux is on 6746 */ 6747 trans = btrfs_start_transaction(root, 5); 6748 if (IS_ERR(trans)) 6749 return PTR_ERR(trans); 6750 6751 err = btrfs_find_free_ino(root, &objectid); 6752 if (err) 6753 goto out_fail; 6754 6755 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6756 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6757 S_IFDIR | mode, &index); 6758 if (IS_ERR(inode)) { 6759 err = PTR_ERR(inode); 6760 goto out_fail; 6761 } 6762 6763 drop_on_err = 1; 6764 /* these must be set before we unlock the inode */ 6765 inode->i_op = &btrfs_dir_inode_operations; 6766 inode->i_fop = &btrfs_dir_file_operations; 6767 6768 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6769 if (err) 6770 goto out_fail_inode; 6771 6772 btrfs_i_size_write(BTRFS_I(inode), 0); 6773 err = btrfs_update_inode(trans, root, inode); 6774 if (err) 6775 goto out_fail_inode; 6776 6777 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6778 dentry->d_name.name, 6779 dentry->d_name.len, 0, index); 6780 if (err) 6781 goto out_fail_inode; 6782 6783 d_instantiate(dentry, inode); 6784 /* 6785 * mkdir is special. We're unlocking after we call d_instantiate 6786 * to avoid a race with nfsd calling d_instantiate. 6787 */ 6788 unlock_new_inode(inode); 6789 drop_on_err = 0; 6790 6791 out_fail: 6792 btrfs_end_transaction(trans); 6793 if (drop_on_err) { 6794 inode_dec_link_count(inode); 6795 iput(inode); 6796 } 6797 btrfs_balance_delayed_items(fs_info); 6798 btrfs_btree_balance_dirty(fs_info); 6799 return err; 6800 6801 out_fail_inode: 6802 unlock_new_inode(inode); 6803 goto out_fail; 6804 } 6805 6806 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6807 static struct extent_map *next_extent_map(struct extent_map *em) 6808 { 6809 struct rb_node *next; 6810 6811 next = rb_next(&em->rb_node); 6812 if (!next) 6813 return NULL; 6814 return container_of(next, struct extent_map, rb_node); 6815 } 6816 6817 static struct extent_map *prev_extent_map(struct extent_map *em) 6818 { 6819 struct rb_node *prev; 6820 6821 prev = rb_prev(&em->rb_node); 6822 if (!prev) 6823 return NULL; 6824 return container_of(prev, struct extent_map, rb_node); 6825 } 6826 6827 /* helper for btfs_get_extent. Given an existing extent in the tree, 6828 * the existing extent is the nearest extent to map_start, 6829 * and an extent that you want to insert, deal with overlap and insert 6830 * the best fitted new extent into the tree. 6831 */ 6832 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6833 struct extent_map *existing, 6834 struct extent_map *em, 6835 u64 map_start) 6836 { 6837 struct extent_map *prev; 6838 struct extent_map *next; 6839 u64 start; 6840 u64 end; 6841 u64 start_diff; 6842 6843 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6844 6845 if (existing->start > map_start) { 6846 next = existing; 6847 prev = prev_extent_map(next); 6848 } else { 6849 prev = existing; 6850 next = next_extent_map(prev); 6851 } 6852 6853 start = prev ? extent_map_end(prev) : em->start; 6854 start = max_t(u64, start, em->start); 6855 end = next ? next->start : extent_map_end(em); 6856 end = min_t(u64, end, extent_map_end(em)); 6857 start_diff = start - em->start; 6858 em->start = start; 6859 em->len = end - start; 6860 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6861 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6862 em->block_start += start_diff; 6863 em->block_len -= start_diff; 6864 } 6865 return add_extent_mapping(em_tree, em, 0); 6866 } 6867 6868 static noinline int uncompress_inline(struct btrfs_path *path, 6869 struct page *page, 6870 size_t pg_offset, u64 extent_offset, 6871 struct btrfs_file_extent_item *item) 6872 { 6873 int ret; 6874 struct extent_buffer *leaf = path->nodes[0]; 6875 char *tmp; 6876 size_t max_size; 6877 unsigned long inline_size; 6878 unsigned long ptr; 6879 int compress_type; 6880 6881 WARN_ON(pg_offset != 0); 6882 compress_type = btrfs_file_extent_compression(leaf, item); 6883 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6884 inline_size = btrfs_file_extent_inline_item_len(leaf, 6885 btrfs_item_nr(path->slots[0])); 6886 tmp = kmalloc(inline_size, GFP_NOFS); 6887 if (!tmp) 6888 return -ENOMEM; 6889 ptr = btrfs_file_extent_inline_start(item); 6890 6891 read_extent_buffer(leaf, tmp, ptr, inline_size); 6892 6893 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6894 ret = btrfs_decompress(compress_type, tmp, page, 6895 extent_offset, inline_size, max_size); 6896 6897 /* 6898 * decompression code contains a memset to fill in any space between the end 6899 * of the uncompressed data and the end of max_size in case the decompressed 6900 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6901 * the end of an inline extent and the beginning of the next block, so we 6902 * cover that region here. 6903 */ 6904 6905 if (max_size + pg_offset < PAGE_SIZE) { 6906 char *map = kmap(page); 6907 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6908 kunmap(page); 6909 } 6910 kfree(tmp); 6911 return ret; 6912 } 6913 6914 /* 6915 * a bit scary, this does extent mapping from logical file offset to the disk. 6916 * the ugly parts come from merging extents from the disk with the in-ram 6917 * representation. This gets more complex because of the data=ordered code, 6918 * where the in-ram extents might be locked pending data=ordered completion. 6919 * 6920 * This also copies inline extents directly into the page. 6921 */ 6922 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6923 struct page *page, 6924 size_t pg_offset, u64 start, u64 len, 6925 int create) 6926 { 6927 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6928 int ret; 6929 int err = 0; 6930 u64 extent_start = 0; 6931 u64 extent_end = 0; 6932 u64 objectid = btrfs_ino(inode); 6933 u32 found_type; 6934 struct btrfs_path *path = NULL; 6935 struct btrfs_root *root = inode->root; 6936 struct btrfs_file_extent_item *item; 6937 struct extent_buffer *leaf; 6938 struct btrfs_key found_key; 6939 struct extent_map *em = NULL; 6940 struct extent_map_tree *em_tree = &inode->extent_tree; 6941 struct extent_io_tree *io_tree = &inode->io_tree; 6942 struct btrfs_trans_handle *trans = NULL; 6943 const bool new_inline = !page || create; 6944 6945 again: 6946 read_lock(&em_tree->lock); 6947 em = lookup_extent_mapping(em_tree, start, len); 6948 if (em) 6949 em->bdev = fs_info->fs_devices->latest_bdev; 6950 read_unlock(&em_tree->lock); 6951 6952 if (em) { 6953 if (em->start > start || em->start + em->len <= start) 6954 free_extent_map(em); 6955 else if (em->block_start == EXTENT_MAP_INLINE && page) 6956 free_extent_map(em); 6957 else 6958 goto out; 6959 } 6960 em = alloc_extent_map(); 6961 if (!em) { 6962 err = -ENOMEM; 6963 goto out; 6964 } 6965 em->bdev = fs_info->fs_devices->latest_bdev; 6966 em->start = EXTENT_MAP_HOLE; 6967 em->orig_start = EXTENT_MAP_HOLE; 6968 em->len = (u64)-1; 6969 em->block_len = (u64)-1; 6970 6971 if (!path) { 6972 path = btrfs_alloc_path(); 6973 if (!path) { 6974 err = -ENOMEM; 6975 goto out; 6976 } 6977 /* 6978 * Chances are we'll be called again, so go ahead and do 6979 * readahead 6980 */ 6981 path->reada = READA_FORWARD; 6982 } 6983 6984 ret = btrfs_lookup_file_extent(trans, root, path, 6985 objectid, start, trans != NULL); 6986 if (ret < 0) { 6987 err = ret; 6988 goto out; 6989 } 6990 6991 if (ret != 0) { 6992 if (path->slots[0] == 0) 6993 goto not_found; 6994 path->slots[0]--; 6995 } 6996 6997 leaf = path->nodes[0]; 6998 item = btrfs_item_ptr(leaf, path->slots[0], 6999 struct btrfs_file_extent_item); 7000 /* are we inside the extent that was found? */ 7001 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7002 found_type = found_key.type; 7003 if (found_key.objectid != objectid || 7004 found_type != BTRFS_EXTENT_DATA_KEY) { 7005 /* 7006 * If we backup past the first extent we want to move forward 7007 * and see if there is an extent in front of us, otherwise we'll 7008 * say there is a hole for our whole search range which can 7009 * cause problems. 7010 */ 7011 extent_end = start; 7012 goto next; 7013 } 7014 7015 found_type = btrfs_file_extent_type(leaf, item); 7016 extent_start = found_key.offset; 7017 if (found_type == BTRFS_FILE_EXTENT_REG || 7018 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7019 extent_end = extent_start + 7020 btrfs_file_extent_num_bytes(leaf, item); 7021 7022 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7023 extent_start); 7024 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7025 size_t size; 7026 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7027 extent_end = ALIGN(extent_start + size, 7028 fs_info->sectorsize); 7029 7030 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7031 path->slots[0], 7032 extent_start); 7033 } 7034 next: 7035 if (start >= extent_end) { 7036 path->slots[0]++; 7037 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7038 ret = btrfs_next_leaf(root, path); 7039 if (ret < 0) { 7040 err = ret; 7041 goto out; 7042 } 7043 if (ret > 0) 7044 goto not_found; 7045 leaf = path->nodes[0]; 7046 } 7047 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7048 if (found_key.objectid != objectid || 7049 found_key.type != BTRFS_EXTENT_DATA_KEY) 7050 goto not_found; 7051 if (start + len <= found_key.offset) 7052 goto not_found; 7053 if (start > found_key.offset) 7054 goto next; 7055 em->start = start; 7056 em->orig_start = start; 7057 em->len = found_key.offset - start; 7058 goto not_found_em; 7059 } 7060 7061 btrfs_extent_item_to_extent_map(inode, path, item, 7062 new_inline, em); 7063 7064 if (found_type == BTRFS_FILE_EXTENT_REG || 7065 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7066 goto insert; 7067 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7068 unsigned long ptr; 7069 char *map; 7070 size_t size; 7071 size_t extent_offset; 7072 size_t copy_size; 7073 7074 if (new_inline) 7075 goto out; 7076 7077 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7078 extent_offset = page_offset(page) + pg_offset - extent_start; 7079 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7080 size - extent_offset); 7081 em->start = extent_start + extent_offset; 7082 em->len = ALIGN(copy_size, fs_info->sectorsize); 7083 em->orig_block_len = em->len; 7084 em->orig_start = em->start; 7085 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7086 if (create == 0 && !PageUptodate(page)) { 7087 if (btrfs_file_extent_compression(leaf, item) != 7088 BTRFS_COMPRESS_NONE) { 7089 ret = uncompress_inline(path, page, pg_offset, 7090 extent_offset, item); 7091 if (ret) { 7092 err = ret; 7093 goto out; 7094 } 7095 } else { 7096 map = kmap(page); 7097 read_extent_buffer(leaf, map + pg_offset, ptr, 7098 copy_size); 7099 if (pg_offset + copy_size < PAGE_SIZE) { 7100 memset(map + pg_offset + copy_size, 0, 7101 PAGE_SIZE - pg_offset - 7102 copy_size); 7103 } 7104 kunmap(page); 7105 } 7106 flush_dcache_page(page); 7107 } else if (create && PageUptodate(page)) { 7108 BUG(); 7109 if (!trans) { 7110 kunmap(page); 7111 free_extent_map(em); 7112 em = NULL; 7113 7114 btrfs_release_path(path); 7115 trans = btrfs_join_transaction(root); 7116 7117 if (IS_ERR(trans)) 7118 return ERR_CAST(trans); 7119 goto again; 7120 } 7121 map = kmap(page); 7122 write_extent_buffer(leaf, map + pg_offset, ptr, 7123 copy_size); 7124 kunmap(page); 7125 btrfs_mark_buffer_dirty(leaf); 7126 } 7127 set_extent_uptodate(io_tree, em->start, 7128 extent_map_end(em) - 1, NULL, GFP_NOFS); 7129 goto insert; 7130 } 7131 not_found: 7132 em->start = start; 7133 em->orig_start = start; 7134 em->len = len; 7135 not_found_em: 7136 em->block_start = EXTENT_MAP_HOLE; 7137 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 7138 insert: 7139 btrfs_release_path(path); 7140 if (em->start > start || extent_map_end(em) <= start) { 7141 btrfs_err(fs_info, 7142 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7143 em->start, em->len, start, len); 7144 err = -EIO; 7145 goto out; 7146 } 7147 7148 err = 0; 7149 write_lock(&em_tree->lock); 7150 ret = add_extent_mapping(em_tree, em, 0); 7151 /* it is possible that someone inserted the extent into the tree 7152 * while we had the lock dropped. It is also possible that 7153 * an overlapping map exists in the tree 7154 */ 7155 if (ret == -EEXIST) { 7156 struct extent_map *existing; 7157 7158 ret = 0; 7159 7160 existing = search_extent_mapping(em_tree, start, len); 7161 /* 7162 * existing will always be non-NULL, since there must be 7163 * extent causing the -EEXIST. 7164 */ 7165 if (existing->start == em->start && 7166 extent_map_end(existing) >= extent_map_end(em) && 7167 em->block_start == existing->block_start) { 7168 /* 7169 * The existing extent map already encompasses the 7170 * entire extent map we tried to add. 7171 */ 7172 free_extent_map(em); 7173 em = existing; 7174 err = 0; 7175 7176 } else if (start >= extent_map_end(existing) || 7177 start <= existing->start) { 7178 /* 7179 * The existing extent map is the one nearest to 7180 * the [start, start + len) range which overlaps 7181 */ 7182 err = merge_extent_mapping(em_tree, existing, 7183 em, start); 7184 free_extent_map(existing); 7185 if (err) { 7186 free_extent_map(em); 7187 em = NULL; 7188 } 7189 } else { 7190 free_extent_map(em); 7191 em = existing; 7192 err = 0; 7193 } 7194 } 7195 write_unlock(&em_tree->lock); 7196 out: 7197 7198 trace_btrfs_get_extent(root, inode, em); 7199 7200 btrfs_free_path(path); 7201 if (trans) { 7202 ret = btrfs_end_transaction(trans); 7203 if (!err) 7204 err = ret; 7205 } 7206 if (err) { 7207 free_extent_map(em); 7208 return ERR_PTR(err); 7209 } 7210 BUG_ON(!em); /* Error is always set */ 7211 return em; 7212 } 7213 7214 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7215 struct page *page, 7216 size_t pg_offset, u64 start, u64 len, 7217 int create) 7218 { 7219 struct extent_map *em; 7220 struct extent_map *hole_em = NULL; 7221 u64 range_start = start; 7222 u64 end; 7223 u64 found; 7224 u64 found_end; 7225 int err = 0; 7226 7227 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7228 if (IS_ERR(em)) 7229 return em; 7230 /* 7231 * If our em maps to: 7232 * - a hole or 7233 * - a pre-alloc extent, 7234 * there might actually be delalloc bytes behind it. 7235 */ 7236 if (em->block_start != EXTENT_MAP_HOLE && 7237 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7238 return em; 7239 else 7240 hole_em = em; 7241 7242 /* check to see if we've wrapped (len == -1 or similar) */ 7243 end = start + len; 7244 if (end < start) 7245 end = (u64)-1; 7246 else 7247 end -= 1; 7248 7249 em = NULL; 7250 7251 /* ok, we didn't find anything, lets look for delalloc */ 7252 found = count_range_bits(&inode->io_tree, &range_start, 7253 end, len, EXTENT_DELALLOC, 1); 7254 found_end = range_start + found; 7255 if (found_end < range_start) 7256 found_end = (u64)-1; 7257 7258 /* 7259 * we didn't find anything useful, return 7260 * the original results from get_extent() 7261 */ 7262 if (range_start > end || found_end <= start) { 7263 em = hole_em; 7264 hole_em = NULL; 7265 goto out; 7266 } 7267 7268 /* adjust the range_start to make sure it doesn't 7269 * go backwards from the start they passed in 7270 */ 7271 range_start = max(start, range_start); 7272 found = found_end - range_start; 7273 7274 if (found > 0) { 7275 u64 hole_start = start; 7276 u64 hole_len = len; 7277 7278 em = alloc_extent_map(); 7279 if (!em) { 7280 err = -ENOMEM; 7281 goto out; 7282 } 7283 /* 7284 * when btrfs_get_extent can't find anything it 7285 * returns one huge hole 7286 * 7287 * make sure what it found really fits our range, and 7288 * adjust to make sure it is based on the start from 7289 * the caller 7290 */ 7291 if (hole_em) { 7292 u64 calc_end = extent_map_end(hole_em); 7293 7294 if (calc_end <= start || (hole_em->start > end)) { 7295 free_extent_map(hole_em); 7296 hole_em = NULL; 7297 } else { 7298 hole_start = max(hole_em->start, start); 7299 hole_len = calc_end - hole_start; 7300 } 7301 } 7302 em->bdev = NULL; 7303 if (hole_em && range_start > hole_start) { 7304 /* our hole starts before our delalloc, so we 7305 * have to return just the parts of the hole 7306 * that go until the delalloc starts 7307 */ 7308 em->len = min(hole_len, 7309 range_start - hole_start); 7310 em->start = hole_start; 7311 em->orig_start = hole_start; 7312 /* 7313 * don't adjust block start at all, 7314 * it is fixed at EXTENT_MAP_HOLE 7315 */ 7316 em->block_start = hole_em->block_start; 7317 em->block_len = hole_len; 7318 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7319 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7320 } else { 7321 em->start = range_start; 7322 em->len = found; 7323 em->orig_start = range_start; 7324 em->block_start = EXTENT_MAP_DELALLOC; 7325 em->block_len = found; 7326 } 7327 } else if (hole_em) { 7328 return hole_em; 7329 } 7330 out: 7331 7332 free_extent_map(hole_em); 7333 if (err) { 7334 free_extent_map(em); 7335 return ERR_PTR(err); 7336 } 7337 return em; 7338 } 7339 7340 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7341 const u64 start, 7342 const u64 len, 7343 const u64 orig_start, 7344 const u64 block_start, 7345 const u64 block_len, 7346 const u64 orig_block_len, 7347 const u64 ram_bytes, 7348 const int type) 7349 { 7350 struct extent_map *em = NULL; 7351 int ret; 7352 7353 if (type != BTRFS_ORDERED_NOCOW) { 7354 em = create_io_em(inode, start, len, orig_start, 7355 block_start, block_len, orig_block_len, 7356 ram_bytes, 7357 BTRFS_COMPRESS_NONE, /* compress_type */ 7358 type); 7359 if (IS_ERR(em)) 7360 goto out; 7361 } 7362 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7363 len, block_len, type); 7364 if (ret) { 7365 if (em) { 7366 free_extent_map(em); 7367 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7368 start + len - 1, 0); 7369 } 7370 em = ERR_PTR(ret); 7371 } 7372 out: 7373 7374 return em; 7375 } 7376 7377 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7378 u64 start, u64 len) 7379 { 7380 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7381 struct btrfs_root *root = BTRFS_I(inode)->root; 7382 struct extent_map *em; 7383 struct btrfs_key ins; 7384 u64 alloc_hint; 7385 int ret; 7386 7387 alloc_hint = get_extent_allocation_hint(inode, start, len); 7388 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7389 0, alloc_hint, &ins, 1, 1); 7390 if (ret) 7391 return ERR_PTR(ret); 7392 7393 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7394 ins.objectid, ins.offset, ins.offset, 7395 ins.offset, BTRFS_ORDERED_REGULAR); 7396 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7397 if (IS_ERR(em)) 7398 btrfs_free_reserved_extent(fs_info, ins.objectid, 7399 ins.offset, 1); 7400 7401 return em; 7402 } 7403 7404 /* 7405 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7406 * block must be cow'd 7407 */ 7408 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7409 u64 *orig_start, u64 *orig_block_len, 7410 u64 *ram_bytes) 7411 { 7412 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7413 struct btrfs_path *path; 7414 int ret; 7415 struct extent_buffer *leaf; 7416 struct btrfs_root *root = BTRFS_I(inode)->root; 7417 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7418 struct btrfs_file_extent_item *fi; 7419 struct btrfs_key key; 7420 u64 disk_bytenr; 7421 u64 backref_offset; 7422 u64 extent_end; 7423 u64 num_bytes; 7424 int slot; 7425 int found_type; 7426 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7427 7428 path = btrfs_alloc_path(); 7429 if (!path) 7430 return -ENOMEM; 7431 7432 ret = btrfs_lookup_file_extent(NULL, root, path, 7433 btrfs_ino(BTRFS_I(inode)), offset, 0); 7434 if (ret < 0) 7435 goto out; 7436 7437 slot = path->slots[0]; 7438 if (ret == 1) { 7439 if (slot == 0) { 7440 /* can't find the item, must cow */ 7441 ret = 0; 7442 goto out; 7443 } 7444 slot--; 7445 } 7446 ret = 0; 7447 leaf = path->nodes[0]; 7448 btrfs_item_key_to_cpu(leaf, &key, slot); 7449 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7450 key.type != BTRFS_EXTENT_DATA_KEY) { 7451 /* not our file or wrong item type, must cow */ 7452 goto out; 7453 } 7454 7455 if (key.offset > offset) { 7456 /* Wrong offset, must cow */ 7457 goto out; 7458 } 7459 7460 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7461 found_type = btrfs_file_extent_type(leaf, fi); 7462 if (found_type != BTRFS_FILE_EXTENT_REG && 7463 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7464 /* not a regular extent, must cow */ 7465 goto out; 7466 } 7467 7468 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7469 goto out; 7470 7471 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7472 if (extent_end <= offset) 7473 goto out; 7474 7475 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7476 if (disk_bytenr == 0) 7477 goto out; 7478 7479 if (btrfs_file_extent_compression(leaf, fi) || 7480 btrfs_file_extent_encryption(leaf, fi) || 7481 btrfs_file_extent_other_encoding(leaf, fi)) 7482 goto out; 7483 7484 backref_offset = btrfs_file_extent_offset(leaf, fi); 7485 7486 if (orig_start) { 7487 *orig_start = key.offset - backref_offset; 7488 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7489 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7490 } 7491 7492 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7493 goto out; 7494 7495 num_bytes = min(offset + *len, extent_end) - offset; 7496 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7497 u64 range_end; 7498 7499 range_end = round_up(offset + num_bytes, 7500 root->fs_info->sectorsize) - 1; 7501 ret = test_range_bit(io_tree, offset, range_end, 7502 EXTENT_DELALLOC, 0, NULL); 7503 if (ret) { 7504 ret = -EAGAIN; 7505 goto out; 7506 } 7507 } 7508 7509 btrfs_release_path(path); 7510 7511 /* 7512 * look for other files referencing this extent, if we 7513 * find any we must cow 7514 */ 7515 7516 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7517 key.offset - backref_offset, disk_bytenr); 7518 if (ret) { 7519 ret = 0; 7520 goto out; 7521 } 7522 7523 /* 7524 * adjust disk_bytenr and num_bytes to cover just the bytes 7525 * in this extent we are about to write. If there 7526 * are any csums in that range we have to cow in order 7527 * to keep the csums correct 7528 */ 7529 disk_bytenr += backref_offset; 7530 disk_bytenr += offset - key.offset; 7531 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7532 goto out; 7533 /* 7534 * all of the above have passed, it is safe to overwrite this extent 7535 * without cow 7536 */ 7537 *len = num_bytes; 7538 ret = 1; 7539 out: 7540 btrfs_free_path(path); 7541 return ret; 7542 } 7543 7544 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7545 { 7546 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7547 bool found = false; 7548 void **pagep = NULL; 7549 struct page *page = NULL; 7550 unsigned long start_idx; 7551 unsigned long end_idx; 7552 7553 start_idx = start >> PAGE_SHIFT; 7554 7555 /* 7556 * end is the last byte in the last page. end == start is legal 7557 */ 7558 end_idx = end >> PAGE_SHIFT; 7559 7560 rcu_read_lock(); 7561 7562 /* Most of the code in this while loop is lifted from 7563 * find_get_page. It's been modified to begin searching from a 7564 * page and return just the first page found in that range. If the 7565 * found idx is less than or equal to the end idx then we know that 7566 * a page exists. If no pages are found or if those pages are 7567 * outside of the range then we're fine (yay!) */ 7568 while (page == NULL && 7569 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7570 page = radix_tree_deref_slot(pagep); 7571 if (unlikely(!page)) 7572 break; 7573 7574 if (radix_tree_exception(page)) { 7575 if (radix_tree_deref_retry(page)) { 7576 page = NULL; 7577 continue; 7578 } 7579 /* 7580 * Otherwise, shmem/tmpfs must be storing a swap entry 7581 * here as an exceptional entry: so return it without 7582 * attempting to raise page count. 7583 */ 7584 page = NULL; 7585 break; /* TODO: Is this relevant for this use case? */ 7586 } 7587 7588 if (!page_cache_get_speculative(page)) { 7589 page = NULL; 7590 continue; 7591 } 7592 7593 /* 7594 * Has the page moved? 7595 * This is part of the lockless pagecache protocol. See 7596 * include/linux/pagemap.h for details. 7597 */ 7598 if (unlikely(page != *pagep)) { 7599 put_page(page); 7600 page = NULL; 7601 } 7602 } 7603 7604 if (page) { 7605 if (page->index <= end_idx) 7606 found = true; 7607 put_page(page); 7608 } 7609 7610 rcu_read_unlock(); 7611 return found; 7612 } 7613 7614 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7615 struct extent_state **cached_state, int writing) 7616 { 7617 struct btrfs_ordered_extent *ordered; 7618 int ret = 0; 7619 7620 while (1) { 7621 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7622 cached_state); 7623 /* 7624 * We're concerned with the entire range that we're going to be 7625 * doing DIO to, so we need to make sure there's no ordered 7626 * extents in this range. 7627 */ 7628 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7629 lockend - lockstart + 1); 7630 7631 /* 7632 * We need to make sure there are no buffered pages in this 7633 * range either, we could have raced between the invalidate in 7634 * generic_file_direct_write and locking the extent. The 7635 * invalidate needs to happen so that reads after a write do not 7636 * get stale data. 7637 */ 7638 if (!ordered && 7639 (!writing || 7640 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7641 break; 7642 7643 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7644 cached_state, GFP_NOFS); 7645 7646 if (ordered) { 7647 /* 7648 * If we are doing a DIO read and the ordered extent we 7649 * found is for a buffered write, we can not wait for it 7650 * to complete and retry, because if we do so we can 7651 * deadlock with concurrent buffered writes on page 7652 * locks. This happens only if our DIO read covers more 7653 * than one extent map, if at this point has already 7654 * created an ordered extent for a previous extent map 7655 * and locked its range in the inode's io tree, and a 7656 * concurrent write against that previous extent map's 7657 * range and this range started (we unlock the ranges 7658 * in the io tree only when the bios complete and 7659 * buffered writes always lock pages before attempting 7660 * to lock range in the io tree). 7661 */ 7662 if (writing || 7663 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7664 btrfs_start_ordered_extent(inode, ordered, 1); 7665 else 7666 ret = -ENOTBLK; 7667 btrfs_put_ordered_extent(ordered); 7668 } else { 7669 /* 7670 * We could trigger writeback for this range (and wait 7671 * for it to complete) and then invalidate the pages for 7672 * this range (through invalidate_inode_pages2_range()), 7673 * but that can lead us to a deadlock with a concurrent 7674 * call to readpages() (a buffered read or a defrag call 7675 * triggered a readahead) on a page lock due to an 7676 * ordered dio extent we created before but did not have 7677 * yet a corresponding bio submitted (whence it can not 7678 * complete), which makes readpages() wait for that 7679 * ordered extent to complete while holding a lock on 7680 * that page. 7681 */ 7682 ret = -ENOTBLK; 7683 } 7684 7685 if (ret) 7686 break; 7687 7688 cond_resched(); 7689 } 7690 7691 return ret; 7692 } 7693 7694 /* The callers of this must take lock_extent() */ 7695 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7696 u64 orig_start, u64 block_start, 7697 u64 block_len, u64 orig_block_len, 7698 u64 ram_bytes, int compress_type, 7699 int type) 7700 { 7701 struct extent_map_tree *em_tree; 7702 struct extent_map *em; 7703 struct btrfs_root *root = BTRFS_I(inode)->root; 7704 int ret; 7705 7706 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7707 type == BTRFS_ORDERED_COMPRESSED || 7708 type == BTRFS_ORDERED_NOCOW || 7709 type == BTRFS_ORDERED_REGULAR); 7710 7711 em_tree = &BTRFS_I(inode)->extent_tree; 7712 em = alloc_extent_map(); 7713 if (!em) 7714 return ERR_PTR(-ENOMEM); 7715 7716 em->start = start; 7717 em->orig_start = orig_start; 7718 em->len = len; 7719 em->block_len = block_len; 7720 em->block_start = block_start; 7721 em->bdev = root->fs_info->fs_devices->latest_bdev; 7722 em->orig_block_len = orig_block_len; 7723 em->ram_bytes = ram_bytes; 7724 em->generation = -1; 7725 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7726 if (type == BTRFS_ORDERED_PREALLOC) { 7727 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7728 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7729 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7730 em->compress_type = compress_type; 7731 } 7732 7733 do { 7734 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7735 em->start + em->len - 1, 0); 7736 write_lock(&em_tree->lock); 7737 ret = add_extent_mapping(em_tree, em, 1); 7738 write_unlock(&em_tree->lock); 7739 /* 7740 * The caller has taken lock_extent(), who could race with us 7741 * to add em? 7742 */ 7743 } while (ret == -EEXIST); 7744 7745 if (ret) { 7746 free_extent_map(em); 7747 return ERR_PTR(ret); 7748 } 7749 7750 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7751 return em; 7752 } 7753 7754 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7755 struct buffer_head *bh_result, int create) 7756 { 7757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7758 struct extent_map *em; 7759 struct extent_state *cached_state = NULL; 7760 struct btrfs_dio_data *dio_data = NULL; 7761 u64 start = iblock << inode->i_blkbits; 7762 u64 lockstart, lockend; 7763 u64 len = bh_result->b_size; 7764 int unlock_bits = EXTENT_LOCKED; 7765 int ret = 0; 7766 7767 if (create) 7768 unlock_bits |= EXTENT_DIRTY; 7769 else 7770 len = min_t(u64, len, fs_info->sectorsize); 7771 7772 lockstart = start; 7773 lockend = start + len - 1; 7774 7775 if (current->journal_info) { 7776 /* 7777 * Need to pull our outstanding extents and set journal_info to NULL so 7778 * that anything that needs to check if there's a transaction doesn't get 7779 * confused. 7780 */ 7781 dio_data = current->journal_info; 7782 current->journal_info = NULL; 7783 } 7784 7785 /* 7786 * If this errors out it's because we couldn't invalidate pagecache for 7787 * this range and we need to fallback to buffered. 7788 */ 7789 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7790 create)) { 7791 ret = -ENOTBLK; 7792 goto err; 7793 } 7794 7795 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7796 if (IS_ERR(em)) { 7797 ret = PTR_ERR(em); 7798 goto unlock_err; 7799 } 7800 7801 /* 7802 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7803 * io. INLINE is special, and we could probably kludge it in here, but 7804 * it's still buffered so for safety lets just fall back to the generic 7805 * buffered path. 7806 * 7807 * For COMPRESSED we _have_ to read the entire extent in so we can 7808 * decompress it, so there will be buffering required no matter what we 7809 * do, so go ahead and fallback to buffered. 7810 * 7811 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7812 * to buffered IO. Don't blame me, this is the price we pay for using 7813 * the generic code. 7814 */ 7815 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7816 em->block_start == EXTENT_MAP_INLINE) { 7817 free_extent_map(em); 7818 ret = -ENOTBLK; 7819 goto unlock_err; 7820 } 7821 7822 /* Just a good old fashioned hole, return */ 7823 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7824 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7825 free_extent_map(em); 7826 goto unlock_err; 7827 } 7828 7829 /* 7830 * We don't allocate a new extent in the following cases 7831 * 7832 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7833 * existing extent. 7834 * 2) The extent is marked as PREALLOC. We're good to go here and can 7835 * just use the extent. 7836 * 7837 */ 7838 if (!create) { 7839 len = min(len, em->len - (start - em->start)); 7840 lockstart = start + len; 7841 goto unlock; 7842 } 7843 7844 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7845 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7846 em->block_start != EXTENT_MAP_HOLE)) { 7847 int type; 7848 u64 block_start, orig_start, orig_block_len, ram_bytes; 7849 7850 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7851 type = BTRFS_ORDERED_PREALLOC; 7852 else 7853 type = BTRFS_ORDERED_NOCOW; 7854 len = min(len, em->len - (start - em->start)); 7855 block_start = em->block_start + (start - em->start); 7856 7857 if (can_nocow_extent(inode, start, &len, &orig_start, 7858 &orig_block_len, &ram_bytes) == 1 && 7859 btrfs_inc_nocow_writers(fs_info, block_start)) { 7860 struct extent_map *em2; 7861 7862 em2 = btrfs_create_dio_extent(inode, start, len, 7863 orig_start, block_start, 7864 len, orig_block_len, 7865 ram_bytes, type); 7866 btrfs_dec_nocow_writers(fs_info, block_start); 7867 if (type == BTRFS_ORDERED_PREALLOC) { 7868 free_extent_map(em); 7869 em = em2; 7870 } 7871 if (em2 && IS_ERR(em2)) { 7872 ret = PTR_ERR(em2); 7873 goto unlock_err; 7874 } 7875 /* 7876 * For inode marked NODATACOW or extent marked PREALLOC, 7877 * use the existing or preallocated extent, so does not 7878 * need to adjust btrfs_space_info's bytes_may_use. 7879 */ 7880 btrfs_free_reserved_data_space_noquota(inode, 7881 start, len); 7882 goto unlock; 7883 } 7884 } 7885 7886 /* 7887 * this will cow the extent, reset the len in case we changed 7888 * it above 7889 */ 7890 len = bh_result->b_size; 7891 free_extent_map(em); 7892 em = btrfs_new_extent_direct(inode, start, len); 7893 if (IS_ERR(em)) { 7894 ret = PTR_ERR(em); 7895 goto unlock_err; 7896 } 7897 len = min(len, em->len - (start - em->start)); 7898 unlock: 7899 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7900 inode->i_blkbits; 7901 bh_result->b_size = len; 7902 bh_result->b_bdev = em->bdev; 7903 set_buffer_mapped(bh_result); 7904 if (create) { 7905 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7906 set_buffer_new(bh_result); 7907 7908 /* 7909 * Need to update the i_size under the extent lock so buffered 7910 * readers will get the updated i_size when we unlock. 7911 */ 7912 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7913 i_size_write(inode, start + len); 7914 7915 WARN_ON(dio_data->reserve < len); 7916 dio_data->reserve -= len; 7917 dio_data->unsubmitted_oe_range_end = start + len; 7918 current->journal_info = dio_data; 7919 } 7920 7921 /* 7922 * In the case of write we need to clear and unlock the entire range, 7923 * in the case of read we need to unlock only the end area that we 7924 * aren't using if there is any left over space. 7925 */ 7926 if (lockstart < lockend) { 7927 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7928 lockend, unlock_bits, 1, 0, 7929 &cached_state, GFP_NOFS); 7930 } else { 7931 free_extent_state(cached_state); 7932 } 7933 7934 free_extent_map(em); 7935 7936 return 0; 7937 7938 unlock_err: 7939 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7940 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7941 err: 7942 if (dio_data) 7943 current->journal_info = dio_data; 7944 return ret; 7945 } 7946 7947 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7948 struct bio *bio, 7949 int mirror_num) 7950 { 7951 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7952 blk_status_t ret; 7953 7954 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7955 7956 bio_get(bio); 7957 7958 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7959 if (ret) 7960 goto err; 7961 7962 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7963 err: 7964 bio_put(bio); 7965 return ret; 7966 } 7967 7968 static int btrfs_check_dio_repairable(struct inode *inode, 7969 struct bio *failed_bio, 7970 struct io_failure_record *failrec, 7971 int failed_mirror) 7972 { 7973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7974 int num_copies; 7975 7976 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7977 if (num_copies == 1) { 7978 /* 7979 * we only have a single copy of the data, so don't bother with 7980 * all the retry and error correction code that follows. no 7981 * matter what the error is, it is very likely to persist. 7982 */ 7983 btrfs_debug(fs_info, 7984 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7985 num_copies, failrec->this_mirror, failed_mirror); 7986 return 0; 7987 } 7988 7989 failrec->failed_mirror = failed_mirror; 7990 failrec->this_mirror++; 7991 if (failrec->this_mirror == failed_mirror) 7992 failrec->this_mirror++; 7993 7994 if (failrec->this_mirror > num_copies) { 7995 btrfs_debug(fs_info, 7996 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7997 num_copies, failrec->this_mirror, failed_mirror); 7998 return 0; 7999 } 8000 8001 return 1; 8002 } 8003 8004 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 8005 struct page *page, unsigned int pgoff, 8006 u64 start, u64 end, int failed_mirror, 8007 bio_end_io_t *repair_endio, void *repair_arg) 8008 { 8009 struct io_failure_record *failrec; 8010 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8011 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 8012 struct bio *bio; 8013 int isector; 8014 unsigned int read_mode = 0; 8015 int segs; 8016 int ret; 8017 blk_status_t status; 8018 8019 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 8020 8021 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 8022 if (ret) 8023 return errno_to_blk_status(ret); 8024 8025 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 8026 failed_mirror); 8027 if (!ret) { 8028 free_io_failure(failure_tree, io_tree, failrec); 8029 return BLK_STS_IOERR; 8030 } 8031 8032 segs = bio_segments(failed_bio); 8033 if (segs > 1 || 8034 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode))) 8035 read_mode |= REQ_FAILFAST_DEV; 8036 8037 isector = start - btrfs_io_bio(failed_bio)->logical; 8038 isector >>= inode->i_sb->s_blocksize_bits; 8039 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 8040 pgoff, isector, repair_endio, repair_arg); 8041 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 8042 8043 btrfs_debug(BTRFS_I(inode)->root->fs_info, 8044 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 8045 read_mode, failrec->this_mirror, failrec->in_validation); 8046 8047 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 8048 if (status) { 8049 free_io_failure(failure_tree, io_tree, failrec); 8050 bio_put(bio); 8051 } 8052 8053 return status; 8054 } 8055 8056 struct btrfs_retry_complete { 8057 struct completion done; 8058 struct inode *inode; 8059 u64 start; 8060 int uptodate; 8061 }; 8062 8063 static void btrfs_retry_endio_nocsum(struct bio *bio) 8064 { 8065 struct btrfs_retry_complete *done = bio->bi_private; 8066 struct inode *inode = done->inode; 8067 struct bio_vec *bvec; 8068 struct extent_io_tree *io_tree, *failure_tree; 8069 int i; 8070 8071 if (bio->bi_status) 8072 goto end; 8073 8074 ASSERT(bio->bi_vcnt == 1); 8075 io_tree = &BTRFS_I(inode)->io_tree; 8076 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8077 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode)); 8078 8079 done->uptodate = 1; 8080 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8081 bio_for_each_segment_all(bvec, bio, i) 8082 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 8083 io_tree, done->start, bvec->bv_page, 8084 btrfs_ino(BTRFS_I(inode)), 0); 8085 end: 8086 complete(&done->done); 8087 bio_put(bio); 8088 } 8089 8090 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 8091 struct btrfs_io_bio *io_bio) 8092 { 8093 struct btrfs_fs_info *fs_info; 8094 struct bio_vec bvec; 8095 struct bvec_iter iter; 8096 struct btrfs_retry_complete done; 8097 u64 start; 8098 unsigned int pgoff; 8099 u32 sectorsize; 8100 int nr_sectors; 8101 blk_status_t ret; 8102 blk_status_t err = BLK_STS_OK; 8103 8104 fs_info = BTRFS_I(inode)->root->fs_info; 8105 sectorsize = fs_info->sectorsize; 8106 8107 start = io_bio->logical; 8108 done.inode = inode; 8109 io_bio->bio.bi_iter = io_bio->iter; 8110 8111 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8112 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8113 pgoff = bvec.bv_offset; 8114 8115 next_block_or_try_again: 8116 done.uptodate = 0; 8117 done.start = start; 8118 init_completion(&done.done); 8119 8120 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8121 pgoff, start, start + sectorsize - 1, 8122 io_bio->mirror_num, 8123 btrfs_retry_endio_nocsum, &done); 8124 if (ret) { 8125 err = ret; 8126 goto next; 8127 } 8128 8129 wait_for_completion_io(&done.done); 8130 8131 if (!done.uptodate) { 8132 /* We might have another mirror, so try again */ 8133 goto next_block_or_try_again; 8134 } 8135 8136 next: 8137 start += sectorsize; 8138 8139 nr_sectors--; 8140 if (nr_sectors) { 8141 pgoff += sectorsize; 8142 ASSERT(pgoff < PAGE_SIZE); 8143 goto next_block_or_try_again; 8144 } 8145 } 8146 8147 return err; 8148 } 8149 8150 static void btrfs_retry_endio(struct bio *bio) 8151 { 8152 struct btrfs_retry_complete *done = bio->bi_private; 8153 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8154 struct extent_io_tree *io_tree, *failure_tree; 8155 struct inode *inode = done->inode; 8156 struct bio_vec *bvec; 8157 int uptodate; 8158 int ret; 8159 int i; 8160 8161 if (bio->bi_status) 8162 goto end; 8163 8164 uptodate = 1; 8165 8166 ASSERT(bio->bi_vcnt == 1); 8167 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode)); 8168 8169 io_tree = &BTRFS_I(inode)->io_tree; 8170 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8171 8172 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8173 bio_for_each_segment_all(bvec, bio, i) { 8174 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8175 bvec->bv_offset, done->start, 8176 bvec->bv_len); 8177 if (!ret) 8178 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8179 failure_tree, io_tree, done->start, 8180 bvec->bv_page, 8181 btrfs_ino(BTRFS_I(inode)), 8182 bvec->bv_offset); 8183 else 8184 uptodate = 0; 8185 } 8186 8187 done->uptodate = uptodate; 8188 end: 8189 complete(&done->done); 8190 bio_put(bio); 8191 } 8192 8193 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8194 struct btrfs_io_bio *io_bio, blk_status_t err) 8195 { 8196 struct btrfs_fs_info *fs_info; 8197 struct bio_vec bvec; 8198 struct bvec_iter iter; 8199 struct btrfs_retry_complete done; 8200 u64 start; 8201 u64 offset = 0; 8202 u32 sectorsize; 8203 int nr_sectors; 8204 unsigned int pgoff; 8205 int csum_pos; 8206 bool uptodate = (err == 0); 8207 int ret; 8208 blk_status_t status; 8209 8210 fs_info = BTRFS_I(inode)->root->fs_info; 8211 sectorsize = fs_info->sectorsize; 8212 8213 err = BLK_STS_OK; 8214 start = io_bio->logical; 8215 done.inode = inode; 8216 io_bio->bio.bi_iter = io_bio->iter; 8217 8218 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8219 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8220 8221 pgoff = bvec.bv_offset; 8222 next_block: 8223 if (uptodate) { 8224 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8225 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8226 bvec.bv_page, pgoff, start, sectorsize); 8227 if (likely(!ret)) 8228 goto next; 8229 } 8230 try_again: 8231 done.uptodate = 0; 8232 done.start = start; 8233 init_completion(&done.done); 8234 8235 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8236 pgoff, start, start + sectorsize - 1, 8237 io_bio->mirror_num, btrfs_retry_endio, 8238 &done); 8239 if (status) { 8240 err = status; 8241 goto next; 8242 } 8243 8244 wait_for_completion_io(&done.done); 8245 8246 if (!done.uptodate) { 8247 /* We might have another mirror, so try again */ 8248 goto try_again; 8249 } 8250 next: 8251 offset += sectorsize; 8252 start += sectorsize; 8253 8254 ASSERT(nr_sectors); 8255 8256 nr_sectors--; 8257 if (nr_sectors) { 8258 pgoff += sectorsize; 8259 ASSERT(pgoff < PAGE_SIZE); 8260 goto next_block; 8261 } 8262 } 8263 8264 return err; 8265 } 8266 8267 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8268 struct btrfs_io_bio *io_bio, blk_status_t err) 8269 { 8270 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8271 8272 if (skip_csum) { 8273 if (unlikely(err)) 8274 return __btrfs_correct_data_nocsum(inode, io_bio); 8275 else 8276 return BLK_STS_OK; 8277 } else { 8278 return __btrfs_subio_endio_read(inode, io_bio, err); 8279 } 8280 } 8281 8282 static void btrfs_endio_direct_read(struct bio *bio) 8283 { 8284 struct btrfs_dio_private *dip = bio->bi_private; 8285 struct inode *inode = dip->inode; 8286 struct bio *dio_bio; 8287 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8288 blk_status_t err = bio->bi_status; 8289 8290 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8291 err = btrfs_subio_endio_read(inode, io_bio, err); 8292 8293 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8294 dip->logical_offset + dip->bytes - 1); 8295 dio_bio = dip->dio_bio; 8296 8297 kfree(dip); 8298 8299 dio_bio->bi_status = err; 8300 dio_end_io(dio_bio); 8301 8302 if (io_bio->end_io) 8303 io_bio->end_io(io_bio, blk_status_to_errno(err)); 8304 bio_put(bio); 8305 } 8306 8307 static void __endio_write_update_ordered(struct inode *inode, 8308 const u64 offset, const u64 bytes, 8309 const bool uptodate) 8310 { 8311 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8312 struct btrfs_ordered_extent *ordered = NULL; 8313 struct btrfs_workqueue *wq; 8314 btrfs_work_func_t func; 8315 u64 ordered_offset = offset; 8316 u64 ordered_bytes = bytes; 8317 u64 last_offset; 8318 int ret; 8319 8320 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8321 wq = fs_info->endio_freespace_worker; 8322 func = btrfs_freespace_write_helper; 8323 } else { 8324 wq = fs_info->endio_write_workers; 8325 func = btrfs_endio_write_helper; 8326 } 8327 8328 again: 8329 last_offset = ordered_offset; 8330 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8331 &ordered_offset, 8332 ordered_bytes, 8333 uptodate); 8334 if (!ret) 8335 goto out_test; 8336 8337 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL); 8338 btrfs_queue_work(wq, &ordered->work); 8339 out_test: 8340 /* 8341 * If btrfs_dec_test_ordered_pending does not find any ordered extent 8342 * in the range, we can exit. 8343 */ 8344 if (ordered_offset == last_offset) 8345 return; 8346 /* 8347 * our bio might span multiple ordered extents. If we haven't 8348 * completed the accounting for the whole dio, go back and try again 8349 */ 8350 if (ordered_offset < offset + bytes) { 8351 ordered_bytes = offset + bytes - ordered_offset; 8352 ordered = NULL; 8353 goto again; 8354 } 8355 } 8356 8357 static void btrfs_endio_direct_write(struct bio *bio) 8358 { 8359 struct btrfs_dio_private *dip = bio->bi_private; 8360 struct bio *dio_bio = dip->dio_bio; 8361 8362 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8363 dip->bytes, !bio->bi_status); 8364 8365 kfree(dip); 8366 8367 dio_bio->bi_status = bio->bi_status; 8368 dio_end_io(dio_bio); 8369 bio_put(bio); 8370 } 8371 8372 static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data, 8373 struct bio *bio, int mirror_num, 8374 unsigned long bio_flags, u64 offset) 8375 { 8376 struct inode *inode = private_data; 8377 blk_status_t ret; 8378 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8379 BUG_ON(ret); /* -ENOMEM */ 8380 return 0; 8381 } 8382 8383 static void btrfs_end_dio_bio(struct bio *bio) 8384 { 8385 struct btrfs_dio_private *dip = bio->bi_private; 8386 blk_status_t err = bio->bi_status; 8387 8388 if (err) 8389 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8390 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8391 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8392 bio->bi_opf, 8393 (unsigned long long)bio->bi_iter.bi_sector, 8394 bio->bi_iter.bi_size, err); 8395 8396 if (dip->subio_endio) 8397 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8398 8399 if (err) { 8400 dip->errors = 1; 8401 8402 /* 8403 * before atomic variable goto zero, we must make sure 8404 * dip->errors is perceived to be set. 8405 */ 8406 smp_mb__before_atomic(); 8407 } 8408 8409 /* if there are more bios still pending for this dio, just exit */ 8410 if (!atomic_dec_and_test(&dip->pending_bios)) 8411 goto out; 8412 8413 if (dip->errors) { 8414 bio_io_error(dip->orig_bio); 8415 } else { 8416 dip->dio_bio->bi_status = BLK_STS_OK; 8417 bio_endio(dip->orig_bio); 8418 } 8419 out: 8420 bio_put(bio); 8421 } 8422 8423 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8424 struct btrfs_dio_private *dip, 8425 struct bio *bio, 8426 u64 file_offset) 8427 { 8428 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8429 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8430 blk_status_t ret; 8431 8432 /* 8433 * We load all the csum data we need when we submit 8434 * the first bio to reduce the csum tree search and 8435 * contention. 8436 */ 8437 if (dip->logical_offset == file_offset) { 8438 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8439 file_offset); 8440 if (ret) 8441 return ret; 8442 } 8443 8444 if (bio == dip->orig_bio) 8445 return 0; 8446 8447 file_offset -= dip->logical_offset; 8448 file_offset >>= inode->i_sb->s_blocksize_bits; 8449 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8450 8451 return 0; 8452 } 8453 8454 static inline blk_status_t 8455 __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset, 8456 int async_submit) 8457 { 8458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8459 struct btrfs_dio_private *dip = bio->bi_private; 8460 bool write = bio_op(bio) == REQ_OP_WRITE; 8461 blk_status_t ret; 8462 8463 if (async_submit) 8464 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8465 8466 bio_get(bio); 8467 8468 if (!write) { 8469 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8470 if (ret) 8471 goto err; 8472 } 8473 8474 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8475 goto map; 8476 8477 if (write && async_submit) { 8478 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8479 file_offset, inode, 8480 __btrfs_submit_bio_start_direct_io, 8481 __btrfs_submit_bio_done); 8482 goto err; 8483 } else if (write) { 8484 /* 8485 * If we aren't doing async submit, calculate the csum of the 8486 * bio now. 8487 */ 8488 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8489 if (ret) 8490 goto err; 8491 } else { 8492 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8493 file_offset); 8494 if (ret) 8495 goto err; 8496 } 8497 map: 8498 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8499 err: 8500 bio_put(bio); 8501 return ret; 8502 } 8503 8504 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8505 { 8506 struct inode *inode = dip->inode; 8507 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8508 struct bio *bio; 8509 struct bio *orig_bio = dip->orig_bio; 8510 u64 start_sector = orig_bio->bi_iter.bi_sector; 8511 u64 file_offset = dip->logical_offset; 8512 u64 map_length; 8513 int async_submit = 0; 8514 u64 submit_len; 8515 int clone_offset = 0; 8516 int clone_len; 8517 int ret; 8518 blk_status_t status; 8519 8520 map_length = orig_bio->bi_iter.bi_size; 8521 submit_len = map_length; 8522 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8523 &map_length, NULL, 0); 8524 if (ret) 8525 return -EIO; 8526 8527 if (map_length >= submit_len) { 8528 bio = orig_bio; 8529 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8530 goto submit; 8531 } 8532 8533 /* async crcs make it difficult to collect full stripe writes. */ 8534 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8535 async_submit = 0; 8536 else 8537 async_submit = 1; 8538 8539 /* bio split */ 8540 ASSERT(map_length <= INT_MAX); 8541 atomic_inc(&dip->pending_bios); 8542 do { 8543 clone_len = min_t(int, submit_len, map_length); 8544 8545 /* 8546 * This will never fail as it's passing GPF_NOFS and 8547 * the allocation is backed by btrfs_bioset. 8548 */ 8549 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8550 clone_len); 8551 bio->bi_private = dip; 8552 bio->bi_end_io = btrfs_end_dio_bio; 8553 btrfs_io_bio(bio)->logical = file_offset; 8554 8555 ASSERT(submit_len >= clone_len); 8556 submit_len -= clone_len; 8557 if (submit_len == 0) 8558 break; 8559 8560 /* 8561 * Increase the count before we submit the bio so we know 8562 * the end IO handler won't happen before we increase the 8563 * count. Otherwise, the dip might get freed before we're 8564 * done setting it up. 8565 */ 8566 atomic_inc(&dip->pending_bios); 8567 8568 status = __btrfs_submit_dio_bio(bio, inode, file_offset, 8569 async_submit); 8570 if (status) { 8571 bio_put(bio); 8572 atomic_dec(&dip->pending_bios); 8573 goto out_err; 8574 } 8575 8576 clone_offset += clone_len; 8577 start_sector += clone_len >> 9; 8578 file_offset += clone_len; 8579 8580 map_length = submit_len; 8581 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8582 start_sector << 9, &map_length, NULL, 0); 8583 if (ret) 8584 goto out_err; 8585 } while (submit_len > 0); 8586 8587 submit: 8588 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8589 if (!status) 8590 return 0; 8591 8592 bio_put(bio); 8593 out_err: 8594 dip->errors = 1; 8595 /* 8596 * before atomic variable goto zero, we must 8597 * make sure dip->errors is perceived to be set. 8598 */ 8599 smp_mb__before_atomic(); 8600 if (atomic_dec_and_test(&dip->pending_bios)) 8601 bio_io_error(dip->orig_bio); 8602 8603 /* bio_end_io() will handle error, so we needn't return it */ 8604 return 0; 8605 } 8606 8607 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8608 loff_t file_offset) 8609 { 8610 struct btrfs_dio_private *dip = NULL; 8611 struct bio *bio = NULL; 8612 struct btrfs_io_bio *io_bio; 8613 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8614 int ret = 0; 8615 8616 bio = btrfs_bio_clone(dio_bio); 8617 8618 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8619 if (!dip) { 8620 ret = -ENOMEM; 8621 goto free_ordered; 8622 } 8623 8624 dip->private = dio_bio->bi_private; 8625 dip->inode = inode; 8626 dip->logical_offset = file_offset; 8627 dip->bytes = dio_bio->bi_iter.bi_size; 8628 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8629 bio->bi_private = dip; 8630 dip->orig_bio = bio; 8631 dip->dio_bio = dio_bio; 8632 atomic_set(&dip->pending_bios, 0); 8633 io_bio = btrfs_io_bio(bio); 8634 io_bio->logical = file_offset; 8635 8636 if (write) { 8637 bio->bi_end_io = btrfs_endio_direct_write; 8638 } else { 8639 bio->bi_end_io = btrfs_endio_direct_read; 8640 dip->subio_endio = btrfs_subio_endio_read; 8641 } 8642 8643 /* 8644 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8645 * even if we fail to submit a bio, because in such case we do the 8646 * corresponding error handling below and it must not be done a second 8647 * time by btrfs_direct_IO(). 8648 */ 8649 if (write) { 8650 struct btrfs_dio_data *dio_data = current->journal_info; 8651 8652 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8653 dip->bytes; 8654 dio_data->unsubmitted_oe_range_start = 8655 dio_data->unsubmitted_oe_range_end; 8656 } 8657 8658 ret = btrfs_submit_direct_hook(dip); 8659 if (!ret) 8660 return; 8661 8662 if (io_bio->end_io) 8663 io_bio->end_io(io_bio, ret); 8664 8665 free_ordered: 8666 /* 8667 * If we arrived here it means either we failed to submit the dip 8668 * or we either failed to clone the dio_bio or failed to allocate the 8669 * dip. If we cloned the dio_bio and allocated the dip, we can just 8670 * call bio_endio against our io_bio so that we get proper resource 8671 * cleanup if we fail to submit the dip, otherwise, we must do the 8672 * same as btrfs_endio_direct_[write|read] because we can't call these 8673 * callbacks - they require an allocated dip and a clone of dio_bio. 8674 */ 8675 if (bio && dip) { 8676 bio_io_error(bio); 8677 /* 8678 * The end io callbacks free our dip, do the final put on bio 8679 * and all the cleanup and final put for dio_bio (through 8680 * dio_end_io()). 8681 */ 8682 dip = NULL; 8683 bio = NULL; 8684 } else { 8685 if (write) 8686 __endio_write_update_ordered(inode, 8687 file_offset, 8688 dio_bio->bi_iter.bi_size, 8689 false); 8690 else 8691 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8692 file_offset + dio_bio->bi_iter.bi_size - 1); 8693 8694 dio_bio->bi_status = BLK_STS_IOERR; 8695 /* 8696 * Releases and cleans up our dio_bio, no need to bio_put() 8697 * nor bio_endio()/bio_io_error() against dio_bio. 8698 */ 8699 dio_end_io(dio_bio); 8700 } 8701 if (bio) 8702 bio_put(bio); 8703 kfree(dip); 8704 } 8705 8706 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8707 const struct iov_iter *iter, loff_t offset) 8708 { 8709 int seg; 8710 int i; 8711 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8712 ssize_t retval = -EINVAL; 8713 8714 if (offset & blocksize_mask) 8715 goto out; 8716 8717 if (iov_iter_alignment(iter) & blocksize_mask) 8718 goto out; 8719 8720 /* If this is a write we don't need to check anymore */ 8721 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8722 return 0; 8723 /* 8724 * Check to make sure we don't have duplicate iov_base's in this 8725 * iovec, if so return EINVAL, otherwise we'll get csum errors 8726 * when reading back. 8727 */ 8728 for (seg = 0; seg < iter->nr_segs; seg++) { 8729 for (i = seg + 1; i < iter->nr_segs; i++) { 8730 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8731 goto out; 8732 } 8733 } 8734 retval = 0; 8735 out: 8736 return retval; 8737 } 8738 8739 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8740 { 8741 struct file *file = iocb->ki_filp; 8742 struct inode *inode = file->f_mapping->host; 8743 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8744 struct btrfs_dio_data dio_data = { 0 }; 8745 struct extent_changeset *data_reserved = NULL; 8746 loff_t offset = iocb->ki_pos; 8747 size_t count = 0; 8748 int flags = 0; 8749 bool wakeup = true; 8750 bool relock = false; 8751 ssize_t ret; 8752 8753 if (check_direct_IO(fs_info, iter, offset)) 8754 return 0; 8755 8756 inode_dio_begin(inode); 8757 8758 /* 8759 * The generic stuff only does filemap_write_and_wait_range, which 8760 * isn't enough if we've written compressed pages to this area, so 8761 * we need to flush the dirty pages again to make absolutely sure 8762 * that any outstanding dirty pages are on disk. 8763 */ 8764 count = iov_iter_count(iter); 8765 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8766 &BTRFS_I(inode)->runtime_flags)) 8767 filemap_fdatawrite_range(inode->i_mapping, offset, 8768 offset + count - 1); 8769 8770 if (iov_iter_rw(iter) == WRITE) { 8771 /* 8772 * If the write DIO is beyond the EOF, we need update 8773 * the isize, but it is protected by i_mutex. So we can 8774 * not unlock the i_mutex at this case. 8775 */ 8776 if (offset + count <= inode->i_size) { 8777 dio_data.overwrite = 1; 8778 inode_unlock(inode); 8779 relock = true; 8780 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8781 ret = -EAGAIN; 8782 goto out; 8783 } 8784 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8785 offset, count); 8786 if (ret) 8787 goto out; 8788 8789 /* 8790 * We need to know how many extents we reserved so that we can 8791 * do the accounting properly if we go over the number we 8792 * originally calculated. Abuse current->journal_info for this. 8793 */ 8794 dio_data.reserve = round_up(count, 8795 fs_info->sectorsize); 8796 dio_data.unsubmitted_oe_range_start = (u64)offset; 8797 dio_data.unsubmitted_oe_range_end = (u64)offset; 8798 current->journal_info = &dio_data; 8799 down_read(&BTRFS_I(inode)->dio_sem); 8800 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8801 &BTRFS_I(inode)->runtime_flags)) { 8802 inode_dio_end(inode); 8803 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8804 wakeup = false; 8805 } 8806 8807 ret = __blockdev_direct_IO(iocb, inode, 8808 fs_info->fs_devices->latest_bdev, 8809 iter, btrfs_get_blocks_direct, NULL, 8810 btrfs_submit_direct, flags); 8811 if (iov_iter_rw(iter) == WRITE) { 8812 up_read(&BTRFS_I(inode)->dio_sem); 8813 current->journal_info = NULL; 8814 if (ret < 0 && ret != -EIOCBQUEUED) { 8815 if (dio_data.reserve) 8816 btrfs_delalloc_release_space(inode, data_reserved, 8817 offset, dio_data.reserve); 8818 /* 8819 * On error we might have left some ordered extents 8820 * without submitting corresponding bios for them, so 8821 * cleanup them up to avoid other tasks getting them 8822 * and waiting for them to complete forever. 8823 */ 8824 if (dio_data.unsubmitted_oe_range_start < 8825 dio_data.unsubmitted_oe_range_end) 8826 __endio_write_update_ordered(inode, 8827 dio_data.unsubmitted_oe_range_start, 8828 dio_data.unsubmitted_oe_range_end - 8829 dio_data.unsubmitted_oe_range_start, 8830 false); 8831 } else if (ret >= 0 && (size_t)ret < count) 8832 btrfs_delalloc_release_space(inode, data_reserved, 8833 offset, count - (size_t)ret); 8834 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 8835 } 8836 out: 8837 if (wakeup) 8838 inode_dio_end(inode); 8839 if (relock) 8840 inode_lock(inode); 8841 8842 extent_changeset_free(data_reserved); 8843 return ret; 8844 } 8845 8846 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8847 8848 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8849 __u64 start, __u64 len) 8850 { 8851 int ret; 8852 8853 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8854 if (ret) 8855 return ret; 8856 8857 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8858 } 8859 8860 int btrfs_readpage(struct file *file, struct page *page) 8861 { 8862 struct extent_io_tree *tree; 8863 tree = &BTRFS_I(page->mapping->host)->io_tree; 8864 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8865 } 8866 8867 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8868 { 8869 struct extent_io_tree *tree; 8870 struct inode *inode = page->mapping->host; 8871 int ret; 8872 8873 if (current->flags & PF_MEMALLOC) { 8874 redirty_page_for_writepage(wbc, page); 8875 unlock_page(page); 8876 return 0; 8877 } 8878 8879 /* 8880 * If we are under memory pressure we will call this directly from the 8881 * VM, we need to make sure we have the inode referenced for the ordered 8882 * extent. If not just return like we didn't do anything. 8883 */ 8884 if (!igrab(inode)) { 8885 redirty_page_for_writepage(wbc, page); 8886 return AOP_WRITEPAGE_ACTIVATE; 8887 } 8888 tree = &BTRFS_I(page->mapping->host)->io_tree; 8889 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8890 btrfs_add_delayed_iput(inode); 8891 return ret; 8892 } 8893 8894 static int btrfs_writepages(struct address_space *mapping, 8895 struct writeback_control *wbc) 8896 { 8897 struct extent_io_tree *tree; 8898 8899 tree = &BTRFS_I(mapping->host)->io_tree; 8900 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8901 } 8902 8903 static int 8904 btrfs_readpages(struct file *file, struct address_space *mapping, 8905 struct list_head *pages, unsigned nr_pages) 8906 { 8907 struct extent_io_tree *tree; 8908 tree = &BTRFS_I(mapping->host)->io_tree; 8909 return extent_readpages(tree, mapping, pages, nr_pages, 8910 btrfs_get_extent); 8911 } 8912 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8913 { 8914 struct extent_io_tree *tree; 8915 struct extent_map_tree *map; 8916 int ret; 8917 8918 tree = &BTRFS_I(page->mapping->host)->io_tree; 8919 map = &BTRFS_I(page->mapping->host)->extent_tree; 8920 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8921 if (ret == 1) { 8922 ClearPagePrivate(page); 8923 set_page_private(page, 0); 8924 put_page(page); 8925 } 8926 return ret; 8927 } 8928 8929 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8930 { 8931 if (PageWriteback(page) || PageDirty(page)) 8932 return 0; 8933 return __btrfs_releasepage(page, gfp_flags); 8934 } 8935 8936 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8937 unsigned int length) 8938 { 8939 struct inode *inode = page->mapping->host; 8940 struct extent_io_tree *tree; 8941 struct btrfs_ordered_extent *ordered; 8942 struct extent_state *cached_state = NULL; 8943 u64 page_start = page_offset(page); 8944 u64 page_end = page_start + PAGE_SIZE - 1; 8945 u64 start; 8946 u64 end; 8947 int inode_evicting = inode->i_state & I_FREEING; 8948 8949 /* 8950 * we have the page locked, so new writeback can't start, 8951 * and the dirty bit won't be cleared while we are here. 8952 * 8953 * Wait for IO on this page so that we can safely clear 8954 * the PagePrivate2 bit and do ordered accounting 8955 */ 8956 wait_on_page_writeback(page); 8957 8958 tree = &BTRFS_I(inode)->io_tree; 8959 if (offset) { 8960 btrfs_releasepage(page, GFP_NOFS); 8961 return; 8962 } 8963 8964 if (!inode_evicting) 8965 lock_extent_bits(tree, page_start, page_end, &cached_state); 8966 again: 8967 start = page_start; 8968 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8969 page_end - start + 1); 8970 if (ordered) { 8971 end = min(page_end, ordered->file_offset + ordered->len - 1); 8972 /* 8973 * IO on this page will never be started, so we need 8974 * to account for any ordered extents now 8975 */ 8976 if (!inode_evicting) 8977 clear_extent_bit(tree, start, end, 8978 EXTENT_DIRTY | EXTENT_DELALLOC | 8979 EXTENT_DELALLOC_NEW | 8980 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8981 EXTENT_DEFRAG, 1, 0, &cached_state, 8982 GFP_NOFS); 8983 /* 8984 * whoever cleared the private bit is responsible 8985 * for the finish_ordered_io 8986 */ 8987 if (TestClearPagePrivate2(page)) { 8988 struct btrfs_ordered_inode_tree *tree; 8989 u64 new_len; 8990 8991 tree = &BTRFS_I(inode)->ordered_tree; 8992 8993 spin_lock_irq(&tree->lock); 8994 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8995 new_len = start - ordered->file_offset; 8996 if (new_len < ordered->truncated_len) 8997 ordered->truncated_len = new_len; 8998 spin_unlock_irq(&tree->lock); 8999 9000 if (btrfs_dec_test_ordered_pending(inode, &ordered, 9001 start, 9002 end - start + 1, 1)) 9003 btrfs_finish_ordered_io(ordered); 9004 } 9005 btrfs_put_ordered_extent(ordered); 9006 if (!inode_evicting) { 9007 cached_state = NULL; 9008 lock_extent_bits(tree, start, end, 9009 &cached_state); 9010 } 9011 9012 start = end + 1; 9013 if (start < page_end) 9014 goto again; 9015 } 9016 9017 /* 9018 * Qgroup reserved space handler 9019 * Page here will be either 9020 * 1) Already written to disk 9021 * In this case, its reserved space is released from data rsv map 9022 * and will be freed by delayed_ref handler finally. 9023 * So even we call qgroup_free_data(), it won't decrease reserved 9024 * space. 9025 * 2) Not written to disk 9026 * This means the reserved space should be freed here. However, 9027 * if a truncate invalidates the page (by clearing PageDirty) 9028 * and the page is accounted for while allocating extent 9029 * in btrfs_check_data_free_space() we let delayed_ref to 9030 * free the entire extent. 9031 */ 9032 if (PageDirty(page)) 9033 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 9034 if (!inode_evicting) { 9035 clear_extent_bit(tree, page_start, page_end, 9036 EXTENT_LOCKED | EXTENT_DIRTY | 9037 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 9038 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 9039 &cached_state, GFP_NOFS); 9040 9041 __btrfs_releasepage(page, GFP_NOFS); 9042 } 9043 9044 ClearPageChecked(page); 9045 if (PagePrivate(page)) { 9046 ClearPagePrivate(page); 9047 set_page_private(page, 0); 9048 put_page(page); 9049 } 9050 } 9051 9052 /* 9053 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 9054 * called from a page fault handler when a page is first dirtied. Hence we must 9055 * be careful to check for EOF conditions here. We set the page up correctly 9056 * for a written page which means we get ENOSPC checking when writing into 9057 * holes and correct delalloc and unwritten extent mapping on filesystems that 9058 * support these features. 9059 * 9060 * We are not allowed to take the i_mutex here so we have to play games to 9061 * protect against truncate races as the page could now be beyond EOF. Because 9062 * vmtruncate() writes the inode size before removing pages, once we have the 9063 * page lock we can determine safely if the page is beyond EOF. If it is not 9064 * beyond EOF, then the page is guaranteed safe against truncation until we 9065 * unlock the page. 9066 */ 9067 int btrfs_page_mkwrite(struct vm_fault *vmf) 9068 { 9069 struct page *page = vmf->page; 9070 struct inode *inode = file_inode(vmf->vma->vm_file); 9071 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9072 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9073 struct btrfs_ordered_extent *ordered; 9074 struct extent_state *cached_state = NULL; 9075 struct extent_changeset *data_reserved = NULL; 9076 char *kaddr; 9077 unsigned long zero_start; 9078 loff_t size; 9079 int ret; 9080 int reserved = 0; 9081 u64 reserved_space; 9082 u64 page_start; 9083 u64 page_end; 9084 u64 end; 9085 9086 reserved_space = PAGE_SIZE; 9087 9088 sb_start_pagefault(inode->i_sb); 9089 page_start = page_offset(page); 9090 page_end = page_start + PAGE_SIZE - 1; 9091 end = page_end; 9092 9093 /* 9094 * Reserving delalloc space after obtaining the page lock can lead to 9095 * deadlock. For example, if a dirty page is locked by this function 9096 * and the call to btrfs_delalloc_reserve_space() ends up triggering 9097 * dirty page write out, then the btrfs_writepage() function could 9098 * end up waiting indefinitely to get a lock on the page currently 9099 * being processed by btrfs_page_mkwrite() function. 9100 */ 9101 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 9102 reserved_space); 9103 if (!ret) { 9104 ret = file_update_time(vmf->vma->vm_file); 9105 reserved = 1; 9106 } 9107 if (ret) { 9108 if (ret == -ENOMEM) 9109 ret = VM_FAULT_OOM; 9110 else /* -ENOSPC, -EIO, etc */ 9111 ret = VM_FAULT_SIGBUS; 9112 if (reserved) 9113 goto out; 9114 goto out_noreserve; 9115 } 9116 9117 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 9118 again: 9119 lock_page(page); 9120 size = i_size_read(inode); 9121 9122 if ((page->mapping != inode->i_mapping) || 9123 (page_start >= size)) { 9124 /* page got truncated out from underneath us */ 9125 goto out_unlock; 9126 } 9127 wait_on_page_writeback(page); 9128 9129 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9130 set_page_extent_mapped(page); 9131 9132 /* 9133 * we can't set the delalloc bits if there are pending ordered 9134 * extents. Drop our locks and wait for them to finish 9135 */ 9136 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 9137 PAGE_SIZE); 9138 if (ordered) { 9139 unlock_extent_cached(io_tree, page_start, page_end, 9140 &cached_state, GFP_NOFS); 9141 unlock_page(page); 9142 btrfs_start_ordered_extent(inode, ordered, 1); 9143 btrfs_put_ordered_extent(ordered); 9144 goto again; 9145 } 9146 9147 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9148 reserved_space = round_up(size - page_start, 9149 fs_info->sectorsize); 9150 if (reserved_space < PAGE_SIZE) { 9151 end = page_start + reserved_space - 1; 9152 btrfs_delalloc_release_space(inode, data_reserved, 9153 page_start, PAGE_SIZE - reserved_space); 9154 } 9155 } 9156 9157 /* 9158 * page_mkwrite gets called when the page is firstly dirtied after it's 9159 * faulted in, but write(2) could also dirty a page and set delalloc 9160 * bits, thus in this case for space account reason, we still need to 9161 * clear any delalloc bits within this page range since we have to 9162 * reserve data&meta space before lock_page() (see above comments). 9163 */ 9164 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9165 EXTENT_DIRTY | EXTENT_DELALLOC | 9166 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9167 0, 0, &cached_state, GFP_NOFS); 9168 9169 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0, 9170 &cached_state, 0); 9171 if (ret) { 9172 unlock_extent_cached(io_tree, page_start, page_end, 9173 &cached_state, GFP_NOFS); 9174 ret = VM_FAULT_SIGBUS; 9175 goto out_unlock; 9176 } 9177 ret = 0; 9178 9179 /* page is wholly or partially inside EOF */ 9180 if (page_start + PAGE_SIZE > size) 9181 zero_start = size & ~PAGE_MASK; 9182 else 9183 zero_start = PAGE_SIZE; 9184 9185 if (zero_start != PAGE_SIZE) { 9186 kaddr = kmap(page); 9187 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9188 flush_dcache_page(page); 9189 kunmap(page); 9190 } 9191 ClearPageChecked(page); 9192 set_page_dirty(page); 9193 SetPageUptodate(page); 9194 9195 BTRFS_I(inode)->last_trans = fs_info->generation; 9196 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9197 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9198 9199 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9200 9201 out_unlock: 9202 if (!ret) { 9203 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9204 sb_end_pagefault(inode->i_sb); 9205 extent_changeset_free(data_reserved); 9206 return VM_FAULT_LOCKED; 9207 } 9208 unlock_page(page); 9209 out: 9210 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9211 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9212 reserved_space); 9213 out_noreserve: 9214 sb_end_pagefault(inode->i_sb); 9215 extent_changeset_free(data_reserved); 9216 return ret; 9217 } 9218 9219 static int btrfs_truncate(struct inode *inode) 9220 { 9221 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9222 struct btrfs_root *root = BTRFS_I(inode)->root; 9223 struct btrfs_block_rsv *rsv; 9224 int ret = 0; 9225 int err = 0; 9226 struct btrfs_trans_handle *trans; 9227 u64 mask = fs_info->sectorsize - 1; 9228 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9229 9230 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9231 (u64)-1); 9232 if (ret) 9233 return ret; 9234 9235 /* 9236 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9237 * 3 things going on here 9238 * 9239 * 1) We need to reserve space for our orphan item and the space to 9240 * delete our orphan item. Lord knows we don't want to have a dangling 9241 * orphan item because we didn't reserve space to remove it. 9242 * 9243 * 2) We need to reserve space to update our inode. 9244 * 9245 * 3) We need to have something to cache all the space that is going to 9246 * be free'd up by the truncate operation, but also have some slack 9247 * space reserved in case it uses space during the truncate (thank you 9248 * very much snapshotting). 9249 * 9250 * And we need these to all be separate. The fact is we can use a lot of 9251 * space doing the truncate, and we have no earthly idea how much space 9252 * we will use, so we need the truncate reservation to be separate so it 9253 * doesn't end up using space reserved for updating the inode or 9254 * removing the orphan item. We also need to be able to stop the 9255 * transaction and start a new one, which means we need to be able to 9256 * update the inode several times, and we have no idea of knowing how 9257 * many times that will be, so we can't just reserve 1 item for the 9258 * entirety of the operation, so that has to be done separately as well. 9259 * Then there is the orphan item, which does indeed need to be held on 9260 * to for the whole operation, and we need nobody to touch this reserved 9261 * space except the orphan code. 9262 * 9263 * So that leaves us with 9264 * 9265 * 1) root->orphan_block_rsv - for the orphan deletion. 9266 * 2) rsv - for the truncate reservation, which we will steal from the 9267 * transaction reservation. 9268 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9269 * updating the inode. 9270 */ 9271 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9272 if (!rsv) 9273 return -ENOMEM; 9274 rsv->size = min_size; 9275 rsv->failfast = 1; 9276 9277 /* 9278 * 1 for the truncate slack space 9279 * 1 for updating the inode. 9280 */ 9281 trans = btrfs_start_transaction(root, 2); 9282 if (IS_ERR(trans)) { 9283 err = PTR_ERR(trans); 9284 goto out; 9285 } 9286 9287 /* Migrate the slack space for the truncate to our reserve */ 9288 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9289 min_size, 0); 9290 BUG_ON(ret); 9291 9292 /* 9293 * So if we truncate and then write and fsync we normally would just 9294 * write the extents that changed, which is a problem if we need to 9295 * first truncate that entire inode. So set this flag so we write out 9296 * all of the extents in the inode to the sync log so we're completely 9297 * safe. 9298 */ 9299 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9300 trans->block_rsv = rsv; 9301 9302 while (1) { 9303 ret = btrfs_truncate_inode_items(trans, root, inode, 9304 inode->i_size, 9305 BTRFS_EXTENT_DATA_KEY); 9306 trans->block_rsv = &fs_info->trans_block_rsv; 9307 if (ret != -ENOSPC && ret != -EAGAIN) { 9308 err = ret; 9309 break; 9310 } 9311 9312 ret = btrfs_update_inode(trans, root, inode); 9313 if (ret) { 9314 err = ret; 9315 break; 9316 } 9317 9318 btrfs_end_transaction(trans); 9319 btrfs_btree_balance_dirty(fs_info); 9320 9321 trans = btrfs_start_transaction(root, 2); 9322 if (IS_ERR(trans)) { 9323 ret = err = PTR_ERR(trans); 9324 trans = NULL; 9325 break; 9326 } 9327 9328 btrfs_block_rsv_release(fs_info, rsv, -1); 9329 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9330 rsv, min_size, 0); 9331 BUG_ON(ret); /* shouldn't happen */ 9332 trans->block_rsv = rsv; 9333 } 9334 9335 /* 9336 * We can't call btrfs_truncate_block inside a trans handle as we could 9337 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9338 * we've truncated everything except the last little bit, and can do 9339 * btrfs_truncate_block and then update the disk_i_size. 9340 */ 9341 if (ret == NEED_TRUNCATE_BLOCK) { 9342 btrfs_end_transaction(trans); 9343 btrfs_btree_balance_dirty(fs_info); 9344 9345 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9346 if (ret) 9347 goto out; 9348 trans = btrfs_start_transaction(root, 1); 9349 if (IS_ERR(trans)) { 9350 ret = PTR_ERR(trans); 9351 goto out; 9352 } 9353 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9354 } 9355 9356 if (ret == 0 && inode->i_nlink > 0) { 9357 trans->block_rsv = root->orphan_block_rsv; 9358 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 9359 if (ret) 9360 err = ret; 9361 } 9362 9363 if (trans) { 9364 trans->block_rsv = &fs_info->trans_block_rsv; 9365 ret = btrfs_update_inode(trans, root, inode); 9366 if (ret && !err) 9367 err = ret; 9368 9369 ret = btrfs_end_transaction(trans); 9370 btrfs_btree_balance_dirty(fs_info); 9371 } 9372 out: 9373 btrfs_free_block_rsv(fs_info, rsv); 9374 9375 if (ret && !err) 9376 err = ret; 9377 9378 return err; 9379 } 9380 9381 /* 9382 * create a new subvolume directory/inode (helper for the ioctl). 9383 */ 9384 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9385 struct btrfs_root *new_root, 9386 struct btrfs_root *parent_root, 9387 u64 new_dirid) 9388 { 9389 struct inode *inode; 9390 int err; 9391 u64 index = 0; 9392 9393 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9394 new_dirid, new_dirid, 9395 S_IFDIR | (~current_umask() & S_IRWXUGO), 9396 &index); 9397 if (IS_ERR(inode)) 9398 return PTR_ERR(inode); 9399 inode->i_op = &btrfs_dir_inode_operations; 9400 inode->i_fop = &btrfs_dir_file_operations; 9401 9402 set_nlink(inode, 1); 9403 btrfs_i_size_write(BTRFS_I(inode), 0); 9404 unlock_new_inode(inode); 9405 9406 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9407 if (err) 9408 btrfs_err(new_root->fs_info, 9409 "error inheriting subvolume %llu properties: %d", 9410 new_root->root_key.objectid, err); 9411 9412 err = btrfs_update_inode(trans, new_root, inode); 9413 9414 iput(inode); 9415 return err; 9416 } 9417 9418 struct inode *btrfs_alloc_inode(struct super_block *sb) 9419 { 9420 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9421 struct btrfs_inode *ei; 9422 struct inode *inode; 9423 9424 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9425 if (!ei) 9426 return NULL; 9427 9428 ei->root = NULL; 9429 ei->generation = 0; 9430 ei->last_trans = 0; 9431 ei->last_sub_trans = 0; 9432 ei->logged_trans = 0; 9433 ei->delalloc_bytes = 0; 9434 ei->new_delalloc_bytes = 0; 9435 ei->defrag_bytes = 0; 9436 ei->disk_i_size = 0; 9437 ei->flags = 0; 9438 ei->csum_bytes = 0; 9439 ei->index_cnt = (u64)-1; 9440 ei->dir_index = 0; 9441 ei->last_unlink_trans = 0; 9442 ei->last_log_commit = 0; 9443 ei->delayed_iput_count = 0; 9444 9445 spin_lock_init(&ei->lock); 9446 ei->outstanding_extents = 0; 9447 if (sb->s_magic != BTRFS_TEST_MAGIC) 9448 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9449 BTRFS_BLOCK_RSV_DELALLOC); 9450 ei->runtime_flags = 0; 9451 ei->prop_compress = BTRFS_COMPRESS_NONE; 9452 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9453 9454 ei->delayed_node = NULL; 9455 9456 ei->i_otime.tv_sec = 0; 9457 ei->i_otime.tv_nsec = 0; 9458 9459 inode = &ei->vfs_inode; 9460 extent_map_tree_init(&ei->extent_tree); 9461 extent_io_tree_init(&ei->io_tree, inode); 9462 extent_io_tree_init(&ei->io_failure_tree, inode); 9463 ei->io_tree.track_uptodate = 1; 9464 ei->io_failure_tree.track_uptodate = 1; 9465 atomic_set(&ei->sync_writers, 0); 9466 mutex_init(&ei->log_mutex); 9467 mutex_init(&ei->delalloc_mutex); 9468 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9469 INIT_LIST_HEAD(&ei->delalloc_inodes); 9470 INIT_LIST_HEAD(&ei->delayed_iput); 9471 RB_CLEAR_NODE(&ei->rb_node); 9472 init_rwsem(&ei->dio_sem); 9473 9474 return inode; 9475 } 9476 9477 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9478 void btrfs_test_destroy_inode(struct inode *inode) 9479 { 9480 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9481 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9482 } 9483 #endif 9484 9485 static void btrfs_i_callback(struct rcu_head *head) 9486 { 9487 struct inode *inode = container_of(head, struct inode, i_rcu); 9488 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9489 } 9490 9491 void btrfs_destroy_inode(struct inode *inode) 9492 { 9493 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9494 struct btrfs_ordered_extent *ordered; 9495 struct btrfs_root *root = BTRFS_I(inode)->root; 9496 9497 WARN_ON(!hlist_empty(&inode->i_dentry)); 9498 WARN_ON(inode->i_data.nrpages); 9499 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9500 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9501 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9502 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9503 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9504 WARN_ON(BTRFS_I(inode)->csum_bytes); 9505 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9506 9507 /* 9508 * This can happen where we create an inode, but somebody else also 9509 * created the same inode and we need to destroy the one we already 9510 * created. 9511 */ 9512 if (!root) 9513 goto free; 9514 9515 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9516 &BTRFS_I(inode)->runtime_flags)) { 9517 btrfs_info(fs_info, "inode %llu still on the orphan list", 9518 btrfs_ino(BTRFS_I(inode))); 9519 atomic_dec(&root->orphan_inodes); 9520 } 9521 9522 while (1) { 9523 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9524 if (!ordered) 9525 break; 9526 else { 9527 btrfs_err(fs_info, 9528 "found ordered extent %llu %llu on inode cleanup", 9529 ordered->file_offset, ordered->len); 9530 btrfs_remove_ordered_extent(inode, ordered); 9531 btrfs_put_ordered_extent(ordered); 9532 btrfs_put_ordered_extent(ordered); 9533 } 9534 } 9535 btrfs_qgroup_check_reserved_leak(inode); 9536 inode_tree_del(inode); 9537 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9538 free: 9539 call_rcu(&inode->i_rcu, btrfs_i_callback); 9540 } 9541 9542 int btrfs_drop_inode(struct inode *inode) 9543 { 9544 struct btrfs_root *root = BTRFS_I(inode)->root; 9545 9546 if (root == NULL) 9547 return 1; 9548 9549 /* the snap/subvol tree is on deleting */ 9550 if (btrfs_root_refs(&root->root_item) == 0) 9551 return 1; 9552 else 9553 return generic_drop_inode(inode); 9554 } 9555 9556 static void init_once(void *foo) 9557 { 9558 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9559 9560 inode_init_once(&ei->vfs_inode); 9561 } 9562 9563 void btrfs_destroy_cachep(void) 9564 { 9565 /* 9566 * Make sure all delayed rcu free inodes are flushed before we 9567 * destroy cache. 9568 */ 9569 rcu_barrier(); 9570 kmem_cache_destroy(btrfs_inode_cachep); 9571 kmem_cache_destroy(btrfs_trans_handle_cachep); 9572 kmem_cache_destroy(btrfs_path_cachep); 9573 kmem_cache_destroy(btrfs_free_space_cachep); 9574 } 9575 9576 int btrfs_init_cachep(void) 9577 { 9578 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9579 sizeof(struct btrfs_inode), 0, 9580 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9581 init_once); 9582 if (!btrfs_inode_cachep) 9583 goto fail; 9584 9585 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9586 sizeof(struct btrfs_trans_handle), 0, 9587 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9588 if (!btrfs_trans_handle_cachep) 9589 goto fail; 9590 9591 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9592 sizeof(struct btrfs_path), 0, 9593 SLAB_MEM_SPREAD, NULL); 9594 if (!btrfs_path_cachep) 9595 goto fail; 9596 9597 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9598 sizeof(struct btrfs_free_space), 0, 9599 SLAB_MEM_SPREAD, NULL); 9600 if (!btrfs_free_space_cachep) 9601 goto fail; 9602 9603 return 0; 9604 fail: 9605 btrfs_destroy_cachep(); 9606 return -ENOMEM; 9607 } 9608 9609 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9610 u32 request_mask, unsigned int flags) 9611 { 9612 u64 delalloc_bytes; 9613 struct inode *inode = d_inode(path->dentry); 9614 u32 blocksize = inode->i_sb->s_blocksize; 9615 u32 bi_flags = BTRFS_I(inode)->flags; 9616 9617 stat->result_mask |= STATX_BTIME; 9618 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9619 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9620 if (bi_flags & BTRFS_INODE_APPEND) 9621 stat->attributes |= STATX_ATTR_APPEND; 9622 if (bi_flags & BTRFS_INODE_COMPRESS) 9623 stat->attributes |= STATX_ATTR_COMPRESSED; 9624 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9625 stat->attributes |= STATX_ATTR_IMMUTABLE; 9626 if (bi_flags & BTRFS_INODE_NODUMP) 9627 stat->attributes |= STATX_ATTR_NODUMP; 9628 9629 stat->attributes_mask |= (STATX_ATTR_APPEND | 9630 STATX_ATTR_COMPRESSED | 9631 STATX_ATTR_IMMUTABLE | 9632 STATX_ATTR_NODUMP); 9633 9634 generic_fillattr(inode, stat); 9635 stat->dev = BTRFS_I(inode)->root->anon_dev; 9636 9637 spin_lock(&BTRFS_I(inode)->lock); 9638 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9639 spin_unlock(&BTRFS_I(inode)->lock); 9640 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9641 ALIGN(delalloc_bytes, blocksize)) >> 9; 9642 return 0; 9643 } 9644 9645 static int btrfs_rename_exchange(struct inode *old_dir, 9646 struct dentry *old_dentry, 9647 struct inode *new_dir, 9648 struct dentry *new_dentry) 9649 { 9650 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9651 struct btrfs_trans_handle *trans; 9652 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9653 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9654 struct inode *new_inode = new_dentry->d_inode; 9655 struct inode *old_inode = old_dentry->d_inode; 9656 struct timespec ctime = current_time(old_inode); 9657 struct dentry *parent; 9658 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9659 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9660 u64 old_idx = 0; 9661 u64 new_idx = 0; 9662 u64 root_objectid; 9663 int ret; 9664 bool root_log_pinned = false; 9665 bool dest_log_pinned = false; 9666 9667 /* we only allow rename subvolume link between subvolumes */ 9668 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9669 return -EXDEV; 9670 9671 /* close the race window with snapshot create/destroy ioctl */ 9672 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9673 down_read(&fs_info->subvol_sem); 9674 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9675 down_read(&fs_info->subvol_sem); 9676 9677 /* 9678 * We want to reserve the absolute worst case amount of items. So if 9679 * both inodes are subvols and we need to unlink them then that would 9680 * require 4 item modifications, but if they are both normal inodes it 9681 * would require 5 item modifications, so we'll assume their normal 9682 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9683 * should cover the worst case number of items we'll modify. 9684 */ 9685 trans = btrfs_start_transaction(root, 12); 9686 if (IS_ERR(trans)) { 9687 ret = PTR_ERR(trans); 9688 goto out_notrans; 9689 } 9690 9691 /* 9692 * We need to find a free sequence number both in the source and 9693 * in the destination directory for the exchange. 9694 */ 9695 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9696 if (ret) 9697 goto out_fail; 9698 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9699 if (ret) 9700 goto out_fail; 9701 9702 BTRFS_I(old_inode)->dir_index = 0ULL; 9703 BTRFS_I(new_inode)->dir_index = 0ULL; 9704 9705 /* Reference for the source. */ 9706 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9707 /* force full log commit if subvolume involved. */ 9708 btrfs_set_log_full_commit(fs_info, trans); 9709 } else { 9710 btrfs_pin_log_trans(root); 9711 root_log_pinned = true; 9712 ret = btrfs_insert_inode_ref(trans, dest, 9713 new_dentry->d_name.name, 9714 new_dentry->d_name.len, 9715 old_ino, 9716 btrfs_ino(BTRFS_I(new_dir)), 9717 old_idx); 9718 if (ret) 9719 goto out_fail; 9720 } 9721 9722 /* And now for the dest. */ 9723 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9724 /* force full log commit if subvolume involved. */ 9725 btrfs_set_log_full_commit(fs_info, trans); 9726 } else { 9727 btrfs_pin_log_trans(dest); 9728 dest_log_pinned = true; 9729 ret = btrfs_insert_inode_ref(trans, root, 9730 old_dentry->d_name.name, 9731 old_dentry->d_name.len, 9732 new_ino, 9733 btrfs_ino(BTRFS_I(old_dir)), 9734 new_idx); 9735 if (ret) 9736 goto out_fail; 9737 } 9738 9739 /* Update inode version and ctime/mtime. */ 9740 inode_inc_iversion(old_dir); 9741 inode_inc_iversion(new_dir); 9742 inode_inc_iversion(old_inode); 9743 inode_inc_iversion(new_inode); 9744 old_dir->i_ctime = old_dir->i_mtime = ctime; 9745 new_dir->i_ctime = new_dir->i_mtime = ctime; 9746 old_inode->i_ctime = ctime; 9747 new_inode->i_ctime = ctime; 9748 9749 if (old_dentry->d_parent != new_dentry->d_parent) { 9750 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9751 BTRFS_I(old_inode), 1); 9752 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9753 BTRFS_I(new_inode), 1); 9754 } 9755 9756 /* src is a subvolume */ 9757 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9758 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9759 ret = btrfs_unlink_subvol(trans, root, old_dir, 9760 root_objectid, 9761 old_dentry->d_name.name, 9762 old_dentry->d_name.len); 9763 } else { /* src is an inode */ 9764 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9765 BTRFS_I(old_dentry->d_inode), 9766 old_dentry->d_name.name, 9767 old_dentry->d_name.len); 9768 if (!ret) 9769 ret = btrfs_update_inode(trans, root, old_inode); 9770 } 9771 if (ret) { 9772 btrfs_abort_transaction(trans, ret); 9773 goto out_fail; 9774 } 9775 9776 /* dest is a subvolume */ 9777 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9778 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9779 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9780 root_objectid, 9781 new_dentry->d_name.name, 9782 new_dentry->d_name.len); 9783 } else { /* dest is an inode */ 9784 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9785 BTRFS_I(new_dentry->d_inode), 9786 new_dentry->d_name.name, 9787 new_dentry->d_name.len); 9788 if (!ret) 9789 ret = btrfs_update_inode(trans, dest, new_inode); 9790 } 9791 if (ret) { 9792 btrfs_abort_transaction(trans, ret); 9793 goto out_fail; 9794 } 9795 9796 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9797 new_dentry->d_name.name, 9798 new_dentry->d_name.len, 0, old_idx); 9799 if (ret) { 9800 btrfs_abort_transaction(trans, ret); 9801 goto out_fail; 9802 } 9803 9804 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9805 old_dentry->d_name.name, 9806 old_dentry->d_name.len, 0, new_idx); 9807 if (ret) { 9808 btrfs_abort_transaction(trans, ret); 9809 goto out_fail; 9810 } 9811 9812 if (old_inode->i_nlink == 1) 9813 BTRFS_I(old_inode)->dir_index = old_idx; 9814 if (new_inode->i_nlink == 1) 9815 BTRFS_I(new_inode)->dir_index = new_idx; 9816 9817 if (root_log_pinned) { 9818 parent = new_dentry->d_parent; 9819 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9820 parent); 9821 btrfs_end_log_trans(root); 9822 root_log_pinned = false; 9823 } 9824 if (dest_log_pinned) { 9825 parent = old_dentry->d_parent; 9826 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9827 parent); 9828 btrfs_end_log_trans(dest); 9829 dest_log_pinned = false; 9830 } 9831 out_fail: 9832 /* 9833 * If we have pinned a log and an error happened, we unpin tasks 9834 * trying to sync the log and force them to fallback to a transaction 9835 * commit if the log currently contains any of the inodes involved in 9836 * this rename operation (to ensure we do not persist a log with an 9837 * inconsistent state for any of these inodes or leading to any 9838 * inconsistencies when replayed). If the transaction was aborted, the 9839 * abortion reason is propagated to userspace when attempting to commit 9840 * the transaction. If the log does not contain any of these inodes, we 9841 * allow the tasks to sync it. 9842 */ 9843 if (ret && (root_log_pinned || dest_log_pinned)) { 9844 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9845 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9846 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9847 (new_inode && 9848 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9849 btrfs_set_log_full_commit(fs_info, trans); 9850 9851 if (root_log_pinned) { 9852 btrfs_end_log_trans(root); 9853 root_log_pinned = false; 9854 } 9855 if (dest_log_pinned) { 9856 btrfs_end_log_trans(dest); 9857 dest_log_pinned = false; 9858 } 9859 } 9860 ret = btrfs_end_transaction(trans); 9861 out_notrans: 9862 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9863 up_read(&fs_info->subvol_sem); 9864 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9865 up_read(&fs_info->subvol_sem); 9866 9867 return ret; 9868 } 9869 9870 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9871 struct btrfs_root *root, 9872 struct inode *dir, 9873 struct dentry *dentry) 9874 { 9875 int ret; 9876 struct inode *inode; 9877 u64 objectid; 9878 u64 index; 9879 9880 ret = btrfs_find_free_ino(root, &objectid); 9881 if (ret) 9882 return ret; 9883 9884 inode = btrfs_new_inode(trans, root, dir, 9885 dentry->d_name.name, 9886 dentry->d_name.len, 9887 btrfs_ino(BTRFS_I(dir)), 9888 objectid, 9889 S_IFCHR | WHITEOUT_MODE, 9890 &index); 9891 9892 if (IS_ERR(inode)) { 9893 ret = PTR_ERR(inode); 9894 return ret; 9895 } 9896 9897 inode->i_op = &btrfs_special_inode_operations; 9898 init_special_inode(inode, inode->i_mode, 9899 WHITEOUT_DEV); 9900 9901 ret = btrfs_init_inode_security(trans, inode, dir, 9902 &dentry->d_name); 9903 if (ret) 9904 goto out; 9905 9906 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9907 BTRFS_I(inode), 0, index); 9908 if (ret) 9909 goto out; 9910 9911 ret = btrfs_update_inode(trans, root, inode); 9912 out: 9913 unlock_new_inode(inode); 9914 if (ret) 9915 inode_dec_link_count(inode); 9916 iput(inode); 9917 9918 return ret; 9919 } 9920 9921 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9922 struct inode *new_dir, struct dentry *new_dentry, 9923 unsigned int flags) 9924 { 9925 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9926 struct btrfs_trans_handle *trans; 9927 unsigned int trans_num_items; 9928 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9929 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9930 struct inode *new_inode = d_inode(new_dentry); 9931 struct inode *old_inode = d_inode(old_dentry); 9932 u64 index = 0; 9933 u64 root_objectid; 9934 int ret; 9935 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9936 bool log_pinned = false; 9937 9938 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9939 return -EPERM; 9940 9941 /* we only allow rename subvolume link between subvolumes */ 9942 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9943 return -EXDEV; 9944 9945 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9946 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9947 return -ENOTEMPTY; 9948 9949 if (S_ISDIR(old_inode->i_mode) && new_inode && 9950 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9951 return -ENOTEMPTY; 9952 9953 9954 /* check for collisions, even if the name isn't there */ 9955 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9956 new_dentry->d_name.name, 9957 new_dentry->d_name.len); 9958 9959 if (ret) { 9960 if (ret == -EEXIST) { 9961 /* we shouldn't get 9962 * eexist without a new_inode */ 9963 if (WARN_ON(!new_inode)) { 9964 return ret; 9965 } 9966 } else { 9967 /* maybe -EOVERFLOW */ 9968 return ret; 9969 } 9970 } 9971 ret = 0; 9972 9973 /* 9974 * we're using rename to replace one file with another. Start IO on it 9975 * now so we don't add too much work to the end of the transaction 9976 */ 9977 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9978 filemap_flush(old_inode->i_mapping); 9979 9980 /* close the racy window with snapshot create/destroy ioctl */ 9981 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9982 down_read(&fs_info->subvol_sem); 9983 /* 9984 * We want to reserve the absolute worst case amount of items. So if 9985 * both inodes are subvols and we need to unlink them then that would 9986 * require 4 item modifications, but if they are both normal inodes it 9987 * would require 5 item modifications, so we'll assume they are normal 9988 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9989 * should cover the worst case number of items we'll modify. 9990 * If our rename has the whiteout flag, we need more 5 units for the 9991 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9992 * when selinux is enabled). 9993 */ 9994 trans_num_items = 11; 9995 if (flags & RENAME_WHITEOUT) 9996 trans_num_items += 5; 9997 trans = btrfs_start_transaction(root, trans_num_items); 9998 if (IS_ERR(trans)) { 9999 ret = PTR_ERR(trans); 10000 goto out_notrans; 10001 } 10002 10003 if (dest != root) 10004 btrfs_record_root_in_trans(trans, dest); 10005 10006 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 10007 if (ret) 10008 goto out_fail; 10009 10010 BTRFS_I(old_inode)->dir_index = 0ULL; 10011 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 10012 /* force full log commit if subvolume involved. */ 10013 btrfs_set_log_full_commit(fs_info, trans); 10014 } else { 10015 btrfs_pin_log_trans(root); 10016 log_pinned = true; 10017 ret = btrfs_insert_inode_ref(trans, dest, 10018 new_dentry->d_name.name, 10019 new_dentry->d_name.len, 10020 old_ino, 10021 btrfs_ino(BTRFS_I(new_dir)), index); 10022 if (ret) 10023 goto out_fail; 10024 } 10025 10026 inode_inc_iversion(old_dir); 10027 inode_inc_iversion(new_dir); 10028 inode_inc_iversion(old_inode); 10029 old_dir->i_ctime = old_dir->i_mtime = 10030 new_dir->i_ctime = new_dir->i_mtime = 10031 old_inode->i_ctime = current_time(old_dir); 10032 10033 if (old_dentry->d_parent != new_dentry->d_parent) 10034 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 10035 BTRFS_I(old_inode), 1); 10036 10037 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 10038 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 10039 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 10040 old_dentry->d_name.name, 10041 old_dentry->d_name.len); 10042 } else { 10043 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 10044 BTRFS_I(d_inode(old_dentry)), 10045 old_dentry->d_name.name, 10046 old_dentry->d_name.len); 10047 if (!ret) 10048 ret = btrfs_update_inode(trans, root, old_inode); 10049 } 10050 if (ret) { 10051 btrfs_abort_transaction(trans, ret); 10052 goto out_fail; 10053 } 10054 10055 if (new_inode) { 10056 inode_inc_iversion(new_inode); 10057 new_inode->i_ctime = current_time(new_inode); 10058 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 10059 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 10060 root_objectid = BTRFS_I(new_inode)->location.objectid; 10061 ret = btrfs_unlink_subvol(trans, dest, new_dir, 10062 root_objectid, 10063 new_dentry->d_name.name, 10064 new_dentry->d_name.len); 10065 BUG_ON(new_inode->i_nlink == 0); 10066 } else { 10067 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 10068 BTRFS_I(d_inode(new_dentry)), 10069 new_dentry->d_name.name, 10070 new_dentry->d_name.len); 10071 } 10072 if (!ret && new_inode->i_nlink == 0) 10073 ret = btrfs_orphan_add(trans, 10074 BTRFS_I(d_inode(new_dentry))); 10075 if (ret) { 10076 btrfs_abort_transaction(trans, ret); 10077 goto out_fail; 10078 } 10079 } 10080 10081 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 10082 new_dentry->d_name.name, 10083 new_dentry->d_name.len, 0, index); 10084 if (ret) { 10085 btrfs_abort_transaction(trans, ret); 10086 goto out_fail; 10087 } 10088 10089 if (old_inode->i_nlink == 1) 10090 BTRFS_I(old_inode)->dir_index = index; 10091 10092 if (log_pinned) { 10093 struct dentry *parent = new_dentry->d_parent; 10094 10095 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 10096 parent); 10097 btrfs_end_log_trans(root); 10098 log_pinned = false; 10099 } 10100 10101 if (flags & RENAME_WHITEOUT) { 10102 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 10103 old_dentry); 10104 10105 if (ret) { 10106 btrfs_abort_transaction(trans, ret); 10107 goto out_fail; 10108 } 10109 } 10110 out_fail: 10111 /* 10112 * If we have pinned the log and an error happened, we unpin tasks 10113 * trying to sync the log and force them to fallback to a transaction 10114 * commit if the log currently contains any of the inodes involved in 10115 * this rename operation (to ensure we do not persist a log with an 10116 * inconsistent state for any of these inodes or leading to any 10117 * inconsistencies when replayed). If the transaction was aborted, the 10118 * abortion reason is propagated to userspace when attempting to commit 10119 * the transaction. If the log does not contain any of these inodes, we 10120 * allow the tasks to sync it. 10121 */ 10122 if (ret && log_pinned) { 10123 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 10124 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 10125 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 10126 (new_inode && 10127 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 10128 btrfs_set_log_full_commit(fs_info, trans); 10129 10130 btrfs_end_log_trans(root); 10131 log_pinned = false; 10132 } 10133 btrfs_end_transaction(trans); 10134 out_notrans: 10135 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10136 up_read(&fs_info->subvol_sem); 10137 10138 return ret; 10139 } 10140 10141 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10142 struct inode *new_dir, struct dentry *new_dentry, 10143 unsigned int flags) 10144 { 10145 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10146 return -EINVAL; 10147 10148 if (flags & RENAME_EXCHANGE) 10149 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10150 new_dentry); 10151 10152 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10153 } 10154 10155 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10156 { 10157 struct btrfs_delalloc_work *delalloc_work; 10158 struct inode *inode; 10159 10160 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10161 work); 10162 inode = delalloc_work->inode; 10163 filemap_flush(inode->i_mapping); 10164 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10165 &BTRFS_I(inode)->runtime_flags)) 10166 filemap_flush(inode->i_mapping); 10167 10168 if (delalloc_work->delay_iput) 10169 btrfs_add_delayed_iput(inode); 10170 else 10171 iput(inode); 10172 complete(&delalloc_work->completion); 10173 } 10174 10175 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 10176 int delay_iput) 10177 { 10178 struct btrfs_delalloc_work *work; 10179 10180 work = kmalloc(sizeof(*work), GFP_NOFS); 10181 if (!work) 10182 return NULL; 10183 10184 init_completion(&work->completion); 10185 INIT_LIST_HEAD(&work->list); 10186 work->inode = inode; 10187 work->delay_iput = delay_iput; 10188 WARN_ON_ONCE(!inode); 10189 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10190 btrfs_run_delalloc_work, NULL, NULL); 10191 10192 return work; 10193 } 10194 10195 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10196 { 10197 wait_for_completion(&work->completion); 10198 kfree(work); 10199 } 10200 10201 /* 10202 * some fairly slow code that needs optimization. This walks the list 10203 * of all the inodes with pending delalloc and forces them to disk. 10204 */ 10205 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10206 int nr) 10207 { 10208 struct btrfs_inode *binode; 10209 struct inode *inode; 10210 struct btrfs_delalloc_work *work, *next; 10211 struct list_head works; 10212 struct list_head splice; 10213 int ret = 0; 10214 10215 INIT_LIST_HEAD(&works); 10216 INIT_LIST_HEAD(&splice); 10217 10218 mutex_lock(&root->delalloc_mutex); 10219 spin_lock(&root->delalloc_lock); 10220 list_splice_init(&root->delalloc_inodes, &splice); 10221 while (!list_empty(&splice)) { 10222 binode = list_entry(splice.next, struct btrfs_inode, 10223 delalloc_inodes); 10224 10225 list_move_tail(&binode->delalloc_inodes, 10226 &root->delalloc_inodes); 10227 inode = igrab(&binode->vfs_inode); 10228 if (!inode) { 10229 cond_resched_lock(&root->delalloc_lock); 10230 continue; 10231 } 10232 spin_unlock(&root->delalloc_lock); 10233 10234 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10235 if (!work) { 10236 if (delay_iput) 10237 btrfs_add_delayed_iput(inode); 10238 else 10239 iput(inode); 10240 ret = -ENOMEM; 10241 goto out; 10242 } 10243 list_add_tail(&work->list, &works); 10244 btrfs_queue_work(root->fs_info->flush_workers, 10245 &work->work); 10246 ret++; 10247 if (nr != -1 && ret >= nr) 10248 goto out; 10249 cond_resched(); 10250 spin_lock(&root->delalloc_lock); 10251 } 10252 spin_unlock(&root->delalloc_lock); 10253 10254 out: 10255 list_for_each_entry_safe(work, next, &works, list) { 10256 list_del_init(&work->list); 10257 btrfs_wait_and_free_delalloc_work(work); 10258 } 10259 10260 if (!list_empty_careful(&splice)) { 10261 spin_lock(&root->delalloc_lock); 10262 list_splice_tail(&splice, &root->delalloc_inodes); 10263 spin_unlock(&root->delalloc_lock); 10264 } 10265 mutex_unlock(&root->delalloc_mutex); 10266 return ret; 10267 } 10268 10269 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10270 { 10271 struct btrfs_fs_info *fs_info = root->fs_info; 10272 int ret; 10273 10274 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10275 return -EROFS; 10276 10277 ret = __start_delalloc_inodes(root, delay_iput, -1); 10278 if (ret > 0) 10279 ret = 0; 10280 return ret; 10281 } 10282 10283 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10284 int nr) 10285 { 10286 struct btrfs_root *root; 10287 struct list_head splice; 10288 int ret; 10289 10290 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10291 return -EROFS; 10292 10293 INIT_LIST_HEAD(&splice); 10294 10295 mutex_lock(&fs_info->delalloc_root_mutex); 10296 spin_lock(&fs_info->delalloc_root_lock); 10297 list_splice_init(&fs_info->delalloc_roots, &splice); 10298 while (!list_empty(&splice) && nr) { 10299 root = list_first_entry(&splice, struct btrfs_root, 10300 delalloc_root); 10301 root = btrfs_grab_fs_root(root); 10302 BUG_ON(!root); 10303 list_move_tail(&root->delalloc_root, 10304 &fs_info->delalloc_roots); 10305 spin_unlock(&fs_info->delalloc_root_lock); 10306 10307 ret = __start_delalloc_inodes(root, delay_iput, nr); 10308 btrfs_put_fs_root(root); 10309 if (ret < 0) 10310 goto out; 10311 10312 if (nr != -1) { 10313 nr -= ret; 10314 WARN_ON(nr < 0); 10315 } 10316 spin_lock(&fs_info->delalloc_root_lock); 10317 } 10318 spin_unlock(&fs_info->delalloc_root_lock); 10319 10320 ret = 0; 10321 out: 10322 if (!list_empty_careful(&splice)) { 10323 spin_lock(&fs_info->delalloc_root_lock); 10324 list_splice_tail(&splice, &fs_info->delalloc_roots); 10325 spin_unlock(&fs_info->delalloc_root_lock); 10326 } 10327 mutex_unlock(&fs_info->delalloc_root_mutex); 10328 return ret; 10329 } 10330 10331 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10332 const char *symname) 10333 { 10334 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10335 struct btrfs_trans_handle *trans; 10336 struct btrfs_root *root = BTRFS_I(dir)->root; 10337 struct btrfs_path *path; 10338 struct btrfs_key key; 10339 struct inode *inode = NULL; 10340 int err; 10341 int drop_inode = 0; 10342 u64 objectid; 10343 u64 index = 0; 10344 int name_len; 10345 int datasize; 10346 unsigned long ptr; 10347 struct btrfs_file_extent_item *ei; 10348 struct extent_buffer *leaf; 10349 10350 name_len = strlen(symname); 10351 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10352 return -ENAMETOOLONG; 10353 10354 /* 10355 * 2 items for inode item and ref 10356 * 2 items for dir items 10357 * 1 item for updating parent inode item 10358 * 1 item for the inline extent item 10359 * 1 item for xattr if selinux is on 10360 */ 10361 trans = btrfs_start_transaction(root, 7); 10362 if (IS_ERR(trans)) 10363 return PTR_ERR(trans); 10364 10365 err = btrfs_find_free_ino(root, &objectid); 10366 if (err) 10367 goto out_unlock; 10368 10369 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10370 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10371 objectid, S_IFLNK|S_IRWXUGO, &index); 10372 if (IS_ERR(inode)) { 10373 err = PTR_ERR(inode); 10374 goto out_unlock; 10375 } 10376 10377 /* 10378 * If the active LSM wants to access the inode during 10379 * d_instantiate it needs these. Smack checks to see 10380 * if the filesystem supports xattrs by looking at the 10381 * ops vector. 10382 */ 10383 inode->i_fop = &btrfs_file_operations; 10384 inode->i_op = &btrfs_file_inode_operations; 10385 inode->i_mapping->a_ops = &btrfs_aops; 10386 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10387 10388 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10389 if (err) 10390 goto out_unlock_inode; 10391 10392 path = btrfs_alloc_path(); 10393 if (!path) { 10394 err = -ENOMEM; 10395 goto out_unlock_inode; 10396 } 10397 key.objectid = btrfs_ino(BTRFS_I(inode)); 10398 key.offset = 0; 10399 key.type = BTRFS_EXTENT_DATA_KEY; 10400 datasize = btrfs_file_extent_calc_inline_size(name_len); 10401 err = btrfs_insert_empty_item(trans, root, path, &key, 10402 datasize); 10403 if (err) { 10404 btrfs_free_path(path); 10405 goto out_unlock_inode; 10406 } 10407 leaf = path->nodes[0]; 10408 ei = btrfs_item_ptr(leaf, path->slots[0], 10409 struct btrfs_file_extent_item); 10410 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10411 btrfs_set_file_extent_type(leaf, ei, 10412 BTRFS_FILE_EXTENT_INLINE); 10413 btrfs_set_file_extent_encryption(leaf, ei, 0); 10414 btrfs_set_file_extent_compression(leaf, ei, 0); 10415 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10416 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10417 10418 ptr = btrfs_file_extent_inline_start(ei); 10419 write_extent_buffer(leaf, symname, ptr, name_len); 10420 btrfs_mark_buffer_dirty(leaf); 10421 btrfs_free_path(path); 10422 10423 inode->i_op = &btrfs_symlink_inode_operations; 10424 inode_nohighmem(inode); 10425 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10426 inode_set_bytes(inode, name_len); 10427 btrfs_i_size_write(BTRFS_I(inode), name_len); 10428 err = btrfs_update_inode(trans, root, inode); 10429 /* 10430 * Last step, add directory indexes for our symlink inode. This is the 10431 * last step to avoid extra cleanup of these indexes if an error happens 10432 * elsewhere above. 10433 */ 10434 if (!err) 10435 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10436 BTRFS_I(inode), 0, index); 10437 if (err) { 10438 drop_inode = 1; 10439 goto out_unlock_inode; 10440 } 10441 10442 unlock_new_inode(inode); 10443 d_instantiate(dentry, inode); 10444 10445 out_unlock: 10446 btrfs_end_transaction(trans); 10447 if (drop_inode) { 10448 inode_dec_link_count(inode); 10449 iput(inode); 10450 } 10451 btrfs_btree_balance_dirty(fs_info); 10452 return err; 10453 10454 out_unlock_inode: 10455 drop_inode = 1; 10456 unlock_new_inode(inode); 10457 goto out_unlock; 10458 } 10459 10460 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10461 u64 start, u64 num_bytes, u64 min_size, 10462 loff_t actual_len, u64 *alloc_hint, 10463 struct btrfs_trans_handle *trans) 10464 { 10465 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10466 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10467 struct extent_map *em; 10468 struct btrfs_root *root = BTRFS_I(inode)->root; 10469 struct btrfs_key ins; 10470 u64 cur_offset = start; 10471 u64 i_size; 10472 u64 cur_bytes; 10473 u64 last_alloc = (u64)-1; 10474 int ret = 0; 10475 bool own_trans = true; 10476 u64 end = start + num_bytes - 1; 10477 10478 if (trans) 10479 own_trans = false; 10480 while (num_bytes > 0) { 10481 if (own_trans) { 10482 trans = btrfs_start_transaction(root, 3); 10483 if (IS_ERR(trans)) { 10484 ret = PTR_ERR(trans); 10485 break; 10486 } 10487 } 10488 10489 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10490 cur_bytes = max(cur_bytes, min_size); 10491 /* 10492 * If we are severely fragmented we could end up with really 10493 * small allocations, so if the allocator is returning small 10494 * chunks lets make its job easier by only searching for those 10495 * sized chunks. 10496 */ 10497 cur_bytes = min(cur_bytes, last_alloc); 10498 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10499 min_size, 0, *alloc_hint, &ins, 1, 0); 10500 if (ret) { 10501 if (own_trans) 10502 btrfs_end_transaction(trans); 10503 break; 10504 } 10505 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10506 10507 last_alloc = ins.offset; 10508 ret = insert_reserved_file_extent(trans, inode, 10509 cur_offset, ins.objectid, 10510 ins.offset, ins.offset, 10511 ins.offset, 0, 0, 0, 10512 BTRFS_FILE_EXTENT_PREALLOC); 10513 if (ret) { 10514 btrfs_free_reserved_extent(fs_info, ins.objectid, 10515 ins.offset, 0); 10516 btrfs_abort_transaction(trans, ret); 10517 if (own_trans) 10518 btrfs_end_transaction(trans); 10519 break; 10520 } 10521 10522 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10523 cur_offset + ins.offset -1, 0); 10524 10525 em = alloc_extent_map(); 10526 if (!em) { 10527 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10528 &BTRFS_I(inode)->runtime_flags); 10529 goto next; 10530 } 10531 10532 em->start = cur_offset; 10533 em->orig_start = cur_offset; 10534 em->len = ins.offset; 10535 em->block_start = ins.objectid; 10536 em->block_len = ins.offset; 10537 em->orig_block_len = ins.offset; 10538 em->ram_bytes = ins.offset; 10539 em->bdev = fs_info->fs_devices->latest_bdev; 10540 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10541 em->generation = trans->transid; 10542 10543 while (1) { 10544 write_lock(&em_tree->lock); 10545 ret = add_extent_mapping(em_tree, em, 1); 10546 write_unlock(&em_tree->lock); 10547 if (ret != -EEXIST) 10548 break; 10549 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10550 cur_offset + ins.offset - 1, 10551 0); 10552 } 10553 free_extent_map(em); 10554 next: 10555 num_bytes -= ins.offset; 10556 cur_offset += ins.offset; 10557 *alloc_hint = ins.objectid + ins.offset; 10558 10559 inode_inc_iversion(inode); 10560 inode->i_ctime = current_time(inode); 10561 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10562 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10563 (actual_len > inode->i_size) && 10564 (cur_offset > inode->i_size)) { 10565 if (cur_offset > actual_len) 10566 i_size = actual_len; 10567 else 10568 i_size = cur_offset; 10569 i_size_write(inode, i_size); 10570 btrfs_ordered_update_i_size(inode, i_size, NULL); 10571 } 10572 10573 ret = btrfs_update_inode(trans, root, inode); 10574 10575 if (ret) { 10576 btrfs_abort_transaction(trans, ret); 10577 if (own_trans) 10578 btrfs_end_transaction(trans); 10579 break; 10580 } 10581 10582 if (own_trans) 10583 btrfs_end_transaction(trans); 10584 } 10585 if (cur_offset < end) 10586 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10587 end - cur_offset + 1); 10588 return ret; 10589 } 10590 10591 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10592 u64 start, u64 num_bytes, u64 min_size, 10593 loff_t actual_len, u64 *alloc_hint) 10594 { 10595 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10596 min_size, actual_len, alloc_hint, 10597 NULL); 10598 } 10599 10600 int btrfs_prealloc_file_range_trans(struct inode *inode, 10601 struct btrfs_trans_handle *trans, int mode, 10602 u64 start, u64 num_bytes, u64 min_size, 10603 loff_t actual_len, u64 *alloc_hint) 10604 { 10605 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10606 min_size, actual_len, alloc_hint, trans); 10607 } 10608 10609 static int btrfs_set_page_dirty(struct page *page) 10610 { 10611 return __set_page_dirty_nobuffers(page); 10612 } 10613 10614 static int btrfs_permission(struct inode *inode, int mask) 10615 { 10616 struct btrfs_root *root = BTRFS_I(inode)->root; 10617 umode_t mode = inode->i_mode; 10618 10619 if (mask & MAY_WRITE && 10620 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10621 if (btrfs_root_readonly(root)) 10622 return -EROFS; 10623 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10624 return -EACCES; 10625 } 10626 return generic_permission(inode, mask); 10627 } 10628 10629 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10630 { 10631 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10632 struct btrfs_trans_handle *trans; 10633 struct btrfs_root *root = BTRFS_I(dir)->root; 10634 struct inode *inode = NULL; 10635 u64 objectid; 10636 u64 index; 10637 int ret = 0; 10638 10639 /* 10640 * 5 units required for adding orphan entry 10641 */ 10642 trans = btrfs_start_transaction(root, 5); 10643 if (IS_ERR(trans)) 10644 return PTR_ERR(trans); 10645 10646 ret = btrfs_find_free_ino(root, &objectid); 10647 if (ret) 10648 goto out; 10649 10650 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10651 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10652 if (IS_ERR(inode)) { 10653 ret = PTR_ERR(inode); 10654 inode = NULL; 10655 goto out; 10656 } 10657 10658 inode->i_fop = &btrfs_file_operations; 10659 inode->i_op = &btrfs_file_inode_operations; 10660 10661 inode->i_mapping->a_ops = &btrfs_aops; 10662 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10663 10664 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10665 if (ret) 10666 goto out_inode; 10667 10668 ret = btrfs_update_inode(trans, root, inode); 10669 if (ret) 10670 goto out_inode; 10671 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10672 if (ret) 10673 goto out_inode; 10674 10675 /* 10676 * We set number of links to 0 in btrfs_new_inode(), and here we set 10677 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10678 * through: 10679 * 10680 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10681 */ 10682 set_nlink(inode, 1); 10683 unlock_new_inode(inode); 10684 d_tmpfile(dentry, inode); 10685 mark_inode_dirty(inode); 10686 10687 out: 10688 btrfs_end_transaction(trans); 10689 if (ret) 10690 iput(inode); 10691 btrfs_balance_delayed_items(fs_info); 10692 btrfs_btree_balance_dirty(fs_info); 10693 return ret; 10694 10695 out_inode: 10696 unlock_new_inode(inode); 10697 goto out; 10698 10699 } 10700 10701 __attribute__((const)) 10702 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10703 { 10704 return -EAGAIN; 10705 } 10706 10707 static struct btrfs_fs_info *iotree_fs_info(void *private_data) 10708 { 10709 struct inode *inode = private_data; 10710 return btrfs_sb(inode->i_sb); 10711 } 10712 10713 static void btrfs_check_extent_io_range(void *private_data, const char *caller, 10714 u64 start, u64 end) 10715 { 10716 struct inode *inode = private_data; 10717 u64 isize; 10718 10719 isize = i_size_read(inode); 10720 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 10721 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 10722 "%s: ino %llu isize %llu odd range [%llu,%llu]", 10723 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 10724 } 10725 } 10726 10727 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end) 10728 { 10729 struct inode *inode = private_data; 10730 unsigned long index = start >> PAGE_SHIFT; 10731 unsigned long end_index = end >> PAGE_SHIFT; 10732 struct page *page; 10733 10734 while (index <= end_index) { 10735 page = find_get_page(inode->i_mapping, index); 10736 ASSERT(page); /* Pages should be in the extent_io_tree */ 10737 set_page_writeback(page); 10738 put_page(page); 10739 index++; 10740 } 10741 } 10742 10743 static const struct inode_operations btrfs_dir_inode_operations = { 10744 .getattr = btrfs_getattr, 10745 .lookup = btrfs_lookup, 10746 .create = btrfs_create, 10747 .unlink = btrfs_unlink, 10748 .link = btrfs_link, 10749 .mkdir = btrfs_mkdir, 10750 .rmdir = btrfs_rmdir, 10751 .rename = btrfs_rename2, 10752 .symlink = btrfs_symlink, 10753 .setattr = btrfs_setattr, 10754 .mknod = btrfs_mknod, 10755 .listxattr = btrfs_listxattr, 10756 .permission = btrfs_permission, 10757 .get_acl = btrfs_get_acl, 10758 .set_acl = btrfs_set_acl, 10759 .update_time = btrfs_update_time, 10760 .tmpfile = btrfs_tmpfile, 10761 }; 10762 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10763 .lookup = btrfs_lookup, 10764 .permission = btrfs_permission, 10765 .update_time = btrfs_update_time, 10766 }; 10767 10768 static const struct file_operations btrfs_dir_file_operations = { 10769 .llseek = generic_file_llseek, 10770 .read = generic_read_dir, 10771 .iterate_shared = btrfs_real_readdir, 10772 .open = btrfs_opendir, 10773 .unlocked_ioctl = btrfs_ioctl, 10774 #ifdef CONFIG_COMPAT 10775 .compat_ioctl = btrfs_compat_ioctl, 10776 #endif 10777 .release = btrfs_release_file, 10778 .fsync = btrfs_sync_file, 10779 }; 10780 10781 static const struct extent_io_ops btrfs_extent_io_ops = { 10782 /* mandatory callbacks */ 10783 .submit_bio_hook = btrfs_submit_bio_hook, 10784 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10785 .merge_bio_hook = btrfs_merge_bio_hook, 10786 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10787 .tree_fs_info = iotree_fs_info, 10788 .set_range_writeback = btrfs_set_range_writeback, 10789 10790 /* optional callbacks */ 10791 .fill_delalloc = run_delalloc_range, 10792 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10793 .writepage_start_hook = btrfs_writepage_start_hook, 10794 .set_bit_hook = btrfs_set_bit_hook, 10795 .clear_bit_hook = btrfs_clear_bit_hook, 10796 .merge_extent_hook = btrfs_merge_extent_hook, 10797 .split_extent_hook = btrfs_split_extent_hook, 10798 .check_extent_io_range = btrfs_check_extent_io_range, 10799 }; 10800 10801 /* 10802 * btrfs doesn't support the bmap operation because swapfiles 10803 * use bmap to make a mapping of extents in the file. They assume 10804 * these extents won't change over the life of the file and they 10805 * use the bmap result to do IO directly to the drive. 10806 * 10807 * the btrfs bmap call would return logical addresses that aren't 10808 * suitable for IO and they also will change frequently as COW 10809 * operations happen. So, swapfile + btrfs == corruption. 10810 * 10811 * For now we're avoiding this by dropping bmap. 10812 */ 10813 static const struct address_space_operations btrfs_aops = { 10814 .readpage = btrfs_readpage, 10815 .writepage = btrfs_writepage, 10816 .writepages = btrfs_writepages, 10817 .readpages = btrfs_readpages, 10818 .direct_IO = btrfs_direct_IO, 10819 .invalidatepage = btrfs_invalidatepage, 10820 .releasepage = btrfs_releasepage, 10821 .set_page_dirty = btrfs_set_page_dirty, 10822 .error_remove_page = generic_error_remove_page, 10823 }; 10824 10825 static const struct address_space_operations btrfs_symlink_aops = { 10826 .readpage = btrfs_readpage, 10827 .writepage = btrfs_writepage, 10828 .invalidatepage = btrfs_invalidatepage, 10829 .releasepage = btrfs_releasepage, 10830 }; 10831 10832 static const struct inode_operations btrfs_file_inode_operations = { 10833 .getattr = btrfs_getattr, 10834 .setattr = btrfs_setattr, 10835 .listxattr = btrfs_listxattr, 10836 .permission = btrfs_permission, 10837 .fiemap = btrfs_fiemap, 10838 .get_acl = btrfs_get_acl, 10839 .set_acl = btrfs_set_acl, 10840 .update_time = btrfs_update_time, 10841 }; 10842 static const struct inode_operations btrfs_special_inode_operations = { 10843 .getattr = btrfs_getattr, 10844 .setattr = btrfs_setattr, 10845 .permission = btrfs_permission, 10846 .listxattr = btrfs_listxattr, 10847 .get_acl = btrfs_get_acl, 10848 .set_acl = btrfs_set_acl, 10849 .update_time = btrfs_update_time, 10850 }; 10851 static const struct inode_operations btrfs_symlink_inode_operations = { 10852 .get_link = page_get_link, 10853 .getattr = btrfs_getattr, 10854 .setattr = btrfs_setattr, 10855 .permission = btrfs_permission, 10856 .listxattr = btrfs_listxattr, 10857 .update_time = btrfs_update_time, 10858 }; 10859 10860 const struct dentry_operations btrfs_dentry_operations = { 10861 .d_delete = btrfs_dentry_delete, 10862 .d_release = btrfs_dentry_release, 10863 }; 10864