xref: /openbmc/linux/fs/btrfs/inode.c (revision 6724ed7f)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include <linux/magic.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 #include "dedupe.h"
64 
65 struct btrfs_iget_args {
66 	struct btrfs_key *location;
67 	struct btrfs_root *root;
68 };
69 
70 struct btrfs_dio_data {
71 	u64 reserve;
72 	u64 unsubmitted_oe_range_start;
73 	u64 unsubmitted_oe_range_end;
74 	int overwrite;
75 };
76 
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
86 
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91 
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
95 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
96 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
97 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
98 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
99 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
100 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
101 };
102 
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 				   struct page *locked_page,
108 				   u64 start, u64 end, u64 delalloc_end,
109 				   int *page_started, unsigned long *nr_written,
110 				   int unlock, struct btrfs_dedupe_hash *hash);
111 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 				       u64 orig_start, u64 block_start,
113 				       u64 block_len, u64 orig_block_len,
114 				       u64 ram_bytes, int compress_type,
115 				       int type);
116 
117 static void __endio_write_update_ordered(struct inode *inode,
118 					 const u64 offset, const u64 bytes,
119 					 const bool uptodate);
120 
121 /*
122  * Cleanup all submitted ordered extents in specified range to handle errors
123  * from the fill_dellaloc() callback.
124  *
125  * NOTE: caller must ensure that when an error happens, it can not call
126  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128  * to be released, which we want to happen only when finishing the ordered
129  * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130  * fill_delalloc() callback already does proper cleanup for the first page of
131  * the range, that is, it invokes the callback writepage_end_io_hook() for the
132  * range of the first page.
133  */
134 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 						 const u64 offset,
136 						 const u64 bytes)
137 {
138 	unsigned long index = offset >> PAGE_SHIFT;
139 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
140 	struct page *page;
141 
142 	while (index <= end_index) {
143 		page = find_get_page(inode->i_mapping, index);
144 		index++;
145 		if (!page)
146 			continue;
147 		ClearPagePrivate2(page);
148 		put_page(page);
149 	}
150 	return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
151 					    bytes - PAGE_SIZE, false);
152 }
153 
154 static int btrfs_dirty_inode(struct inode *inode);
155 
156 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157 void btrfs_test_inode_set_ops(struct inode *inode)
158 {
159 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
160 }
161 #endif
162 
163 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
164 				     struct inode *inode,  struct inode *dir,
165 				     const struct qstr *qstr)
166 {
167 	int err;
168 
169 	err = btrfs_init_acl(trans, inode, dir);
170 	if (!err)
171 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
172 	return err;
173 }
174 
175 /*
176  * this does all the hard work for inserting an inline extent into
177  * the btree.  The caller should have done a btrfs_drop_extents so that
178  * no overlapping inline items exist in the btree
179  */
180 static int insert_inline_extent(struct btrfs_trans_handle *trans,
181 				struct btrfs_path *path, int extent_inserted,
182 				struct btrfs_root *root, struct inode *inode,
183 				u64 start, size_t size, size_t compressed_size,
184 				int compress_type,
185 				struct page **compressed_pages)
186 {
187 	struct extent_buffer *leaf;
188 	struct page *page = NULL;
189 	char *kaddr;
190 	unsigned long ptr;
191 	struct btrfs_file_extent_item *ei;
192 	int ret;
193 	size_t cur_size = size;
194 	unsigned long offset;
195 
196 	if (compressed_size && compressed_pages)
197 		cur_size = compressed_size;
198 
199 	inode_add_bytes(inode, size);
200 
201 	if (!extent_inserted) {
202 		struct btrfs_key key;
203 		size_t datasize;
204 
205 		key.objectid = btrfs_ino(BTRFS_I(inode));
206 		key.offset = start;
207 		key.type = BTRFS_EXTENT_DATA_KEY;
208 
209 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
210 		path->leave_spinning = 1;
211 		ret = btrfs_insert_empty_item(trans, root, path, &key,
212 					      datasize);
213 		if (ret)
214 			goto fail;
215 	}
216 	leaf = path->nodes[0];
217 	ei = btrfs_item_ptr(leaf, path->slots[0],
218 			    struct btrfs_file_extent_item);
219 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
220 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
221 	btrfs_set_file_extent_encryption(leaf, ei, 0);
222 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
223 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
224 	ptr = btrfs_file_extent_inline_start(ei);
225 
226 	if (compress_type != BTRFS_COMPRESS_NONE) {
227 		struct page *cpage;
228 		int i = 0;
229 		while (compressed_size > 0) {
230 			cpage = compressed_pages[i];
231 			cur_size = min_t(unsigned long, compressed_size,
232 				       PAGE_SIZE);
233 
234 			kaddr = kmap_atomic(cpage);
235 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
236 			kunmap_atomic(kaddr);
237 
238 			i++;
239 			ptr += cur_size;
240 			compressed_size -= cur_size;
241 		}
242 		btrfs_set_file_extent_compression(leaf, ei,
243 						  compress_type);
244 	} else {
245 		page = find_get_page(inode->i_mapping,
246 				     start >> PAGE_SHIFT);
247 		btrfs_set_file_extent_compression(leaf, ei, 0);
248 		kaddr = kmap_atomic(page);
249 		offset = start & (PAGE_SIZE - 1);
250 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
251 		kunmap_atomic(kaddr);
252 		put_page(page);
253 	}
254 	btrfs_mark_buffer_dirty(leaf);
255 	btrfs_release_path(path);
256 
257 	/*
258 	 * we're an inline extent, so nobody can
259 	 * extend the file past i_size without locking
260 	 * a page we already have locked.
261 	 *
262 	 * We must do any isize and inode updates
263 	 * before we unlock the pages.  Otherwise we
264 	 * could end up racing with unlink.
265 	 */
266 	BTRFS_I(inode)->disk_i_size = inode->i_size;
267 	ret = btrfs_update_inode(trans, root, inode);
268 
269 fail:
270 	return ret;
271 }
272 
273 
274 /*
275  * conditionally insert an inline extent into the file.  This
276  * does the checks required to make sure the data is small enough
277  * to fit as an inline extent.
278  */
279 static noinline int cow_file_range_inline(struct btrfs_root *root,
280 					  struct inode *inode, u64 start,
281 					  u64 end, size_t compressed_size,
282 					  int compress_type,
283 					  struct page **compressed_pages)
284 {
285 	struct btrfs_fs_info *fs_info = root->fs_info;
286 	struct btrfs_trans_handle *trans;
287 	u64 isize = i_size_read(inode);
288 	u64 actual_end = min(end + 1, isize);
289 	u64 inline_len = actual_end - start;
290 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
291 	u64 data_len = inline_len;
292 	int ret;
293 	struct btrfs_path *path;
294 	int extent_inserted = 0;
295 	u32 extent_item_size;
296 
297 	if (compressed_size)
298 		data_len = compressed_size;
299 
300 	if (start > 0 ||
301 	    actual_end > fs_info->sectorsize ||
302 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
303 	    (!compressed_size &&
304 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
305 	    end + 1 < isize ||
306 	    data_len > fs_info->max_inline) {
307 		return 1;
308 	}
309 
310 	path = btrfs_alloc_path();
311 	if (!path)
312 		return -ENOMEM;
313 
314 	trans = btrfs_join_transaction(root);
315 	if (IS_ERR(trans)) {
316 		btrfs_free_path(path);
317 		return PTR_ERR(trans);
318 	}
319 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
320 
321 	if (compressed_size && compressed_pages)
322 		extent_item_size = btrfs_file_extent_calc_inline_size(
323 		   compressed_size);
324 	else
325 		extent_item_size = btrfs_file_extent_calc_inline_size(
326 		    inline_len);
327 
328 	ret = __btrfs_drop_extents(trans, root, inode, path,
329 				   start, aligned_end, NULL,
330 				   1, 1, extent_item_size, &extent_inserted);
331 	if (ret) {
332 		btrfs_abort_transaction(trans, ret);
333 		goto out;
334 	}
335 
336 	if (isize > actual_end)
337 		inline_len = min_t(u64, isize, actual_end);
338 	ret = insert_inline_extent(trans, path, extent_inserted,
339 				   root, inode, start,
340 				   inline_len, compressed_size,
341 				   compress_type, compressed_pages);
342 	if (ret && ret != -ENOSPC) {
343 		btrfs_abort_transaction(trans, ret);
344 		goto out;
345 	} else if (ret == -ENOSPC) {
346 		ret = 1;
347 		goto out;
348 	}
349 
350 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
351 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
352 out:
353 	/*
354 	 * Don't forget to free the reserved space, as for inlined extent
355 	 * it won't count as data extent, free them directly here.
356 	 * And at reserve time, it's always aligned to page size, so
357 	 * just free one page here.
358 	 */
359 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
360 	btrfs_free_path(path);
361 	btrfs_end_transaction(trans);
362 	return ret;
363 }
364 
365 struct async_extent {
366 	u64 start;
367 	u64 ram_size;
368 	u64 compressed_size;
369 	struct page **pages;
370 	unsigned long nr_pages;
371 	int compress_type;
372 	struct list_head list;
373 };
374 
375 struct async_cow {
376 	struct inode *inode;
377 	struct btrfs_root *root;
378 	struct page *locked_page;
379 	u64 start;
380 	u64 end;
381 	unsigned int write_flags;
382 	struct list_head extents;
383 	struct btrfs_work work;
384 };
385 
386 static noinline int add_async_extent(struct async_cow *cow,
387 				     u64 start, u64 ram_size,
388 				     u64 compressed_size,
389 				     struct page **pages,
390 				     unsigned long nr_pages,
391 				     int compress_type)
392 {
393 	struct async_extent *async_extent;
394 
395 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
396 	BUG_ON(!async_extent); /* -ENOMEM */
397 	async_extent->start = start;
398 	async_extent->ram_size = ram_size;
399 	async_extent->compressed_size = compressed_size;
400 	async_extent->pages = pages;
401 	async_extent->nr_pages = nr_pages;
402 	async_extent->compress_type = compress_type;
403 	list_add_tail(&async_extent->list, &cow->extents);
404 	return 0;
405 }
406 
407 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
408 {
409 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
410 
411 	/* force compress */
412 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
413 		return 1;
414 	/* defrag ioctl */
415 	if (BTRFS_I(inode)->defrag_compress)
416 		return 1;
417 	/* bad compression ratios */
418 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
419 		return 0;
420 	if (btrfs_test_opt(fs_info, COMPRESS) ||
421 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
422 	    BTRFS_I(inode)->prop_compress)
423 		return btrfs_compress_heuristic(inode, start, end);
424 	return 0;
425 }
426 
427 static inline void inode_should_defrag(struct btrfs_inode *inode,
428 		u64 start, u64 end, u64 num_bytes, u64 small_write)
429 {
430 	/* If this is a small write inside eof, kick off a defrag */
431 	if (num_bytes < small_write &&
432 	    (start > 0 || end + 1 < inode->disk_i_size))
433 		btrfs_add_inode_defrag(NULL, inode);
434 }
435 
436 /*
437  * we create compressed extents in two phases.  The first
438  * phase compresses a range of pages that have already been
439  * locked (both pages and state bits are locked).
440  *
441  * This is done inside an ordered work queue, and the compression
442  * is spread across many cpus.  The actual IO submission is step
443  * two, and the ordered work queue takes care of making sure that
444  * happens in the same order things were put onto the queue by
445  * writepages and friends.
446  *
447  * If this code finds it can't get good compression, it puts an
448  * entry onto the work queue to write the uncompressed bytes.  This
449  * makes sure that both compressed inodes and uncompressed inodes
450  * are written in the same order that the flusher thread sent them
451  * down.
452  */
453 static noinline void compress_file_range(struct inode *inode,
454 					struct page *locked_page,
455 					u64 start, u64 end,
456 					struct async_cow *async_cow,
457 					int *num_added)
458 {
459 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
460 	struct btrfs_root *root = BTRFS_I(inode)->root;
461 	u64 blocksize = fs_info->sectorsize;
462 	u64 actual_end;
463 	u64 isize = i_size_read(inode);
464 	int ret = 0;
465 	struct page **pages = NULL;
466 	unsigned long nr_pages;
467 	unsigned long total_compressed = 0;
468 	unsigned long total_in = 0;
469 	int i;
470 	int will_compress;
471 	int compress_type = fs_info->compress_type;
472 	int redirty = 0;
473 
474 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
475 			SZ_16K);
476 
477 	actual_end = min_t(u64, isize, end + 1);
478 again:
479 	will_compress = 0;
480 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
481 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
482 	nr_pages = min_t(unsigned long, nr_pages,
483 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
484 
485 	/*
486 	 * we don't want to send crud past the end of i_size through
487 	 * compression, that's just a waste of CPU time.  So, if the
488 	 * end of the file is before the start of our current
489 	 * requested range of bytes, we bail out to the uncompressed
490 	 * cleanup code that can deal with all of this.
491 	 *
492 	 * It isn't really the fastest way to fix things, but this is a
493 	 * very uncommon corner.
494 	 */
495 	if (actual_end <= start)
496 		goto cleanup_and_bail_uncompressed;
497 
498 	total_compressed = actual_end - start;
499 
500 	/*
501 	 * skip compression for a small file range(<=blocksize) that
502 	 * isn't an inline extent, since it doesn't save disk space at all.
503 	 */
504 	if (total_compressed <= blocksize &&
505 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
506 		goto cleanup_and_bail_uncompressed;
507 
508 	total_compressed = min_t(unsigned long, total_compressed,
509 			BTRFS_MAX_UNCOMPRESSED);
510 	total_in = 0;
511 	ret = 0;
512 
513 	/*
514 	 * we do compression for mount -o compress and when the
515 	 * inode has not been flagged as nocompress.  This flag can
516 	 * change at any time if we discover bad compression ratios.
517 	 */
518 	if (inode_need_compress(inode, start, end)) {
519 		WARN_ON(pages);
520 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
521 		if (!pages) {
522 			/* just bail out to the uncompressed code */
523 			goto cont;
524 		}
525 
526 		if (BTRFS_I(inode)->defrag_compress)
527 			compress_type = BTRFS_I(inode)->defrag_compress;
528 		else if (BTRFS_I(inode)->prop_compress)
529 			compress_type = BTRFS_I(inode)->prop_compress;
530 
531 		/*
532 		 * we need to call clear_page_dirty_for_io on each
533 		 * page in the range.  Otherwise applications with the file
534 		 * mmap'd can wander in and change the page contents while
535 		 * we are compressing them.
536 		 *
537 		 * If the compression fails for any reason, we set the pages
538 		 * dirty again later on.
539 		 */
540 		extent_range_clear_dirty_for_io(inode, start, end);
541 		redirty = 1;
542 
543 		/* Compression level is applied here and only here */
544 		ret = btrfs_compress_pages(
545 			compress_type | (fs_info->compress_level << 4),
546 					   inode->i_mapping, start,
547 					   pages,
548 					   &nr_pages,
549 					   &total_in,
550 					   &total_compressed);
551 
552 		if (!ret) {
553 			unsigned long offset = total_compressed &
554 				(PAGE_SIZE - 1);
555 			struct page *page = pages[nr_pages - 1];
556 			char *kaddr;
557 
558 			/* zero the tail end of the last page, we might be
559 			 * sending it down to disk
560 			 */
561 			if (offset) {
562 				kaddr = kmap_atomic(page);
563 				memset(kaddr + offset, 0,
564 				       PAGE_SIZE - offset);
565 				kunmap_atomic(kaddr);
566 			}
567 			will_compress = 1;
568 		}
569 	}
570 cont:
571 	if (start == 0) {
572 		/* lets try to make an inline extent */
573 		if (ret || total_in < actual_end) {
574 			/* we didn't compress the entire range, try
575 			 * to make an uncompressed inline extent.
576 			 */
577 			ret = cow_file_range_inline(root, inode, start, end,
578 					    0, BTRFS_COMPRESS_NONE, NULL);
579 		} else {
580 			/* try making a compressed inline extent */
581 			ret = cow_file_range_inline(root, inode, start, end,
582 						    total_compressed,
583 						    compress_type, pages);
584 		}
585 		if (ret <= 0) {
586 			unsigned long clear_flags = EXTENT_DELALLOC |
587 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
588 				EXTENT_DO_ACCOUNTING;
589 			unsigned long page_error_op;
590 
591 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
592 
593 			/*
594 			 * inline extent creation worked or returned error,
595 			 * we don't need to create any more async work items.
596 			 * Unlock and free up our temp pages.
597 			 *
598 			 * We use DO_ACCOUNTING here because we need the
599 			 * delalloc_release_metadata to be done _after_ we drop
600 			 * our outstanding extent for clearing delalloc for this
601 			 * range.
602 			 */
603 			extent_clear_unlock_delalloc(inode, start, end, end,
604 						     NULL, clear_flags,
605 						     PAGE_UNLOCK |
606 						     PAGE_CLEAR_DIRTY |
607 						     PAGE_SET_WRITEBACK |
608 						     page_error_op |
609 						     PAGE_END_WRITEBACK);
610 			goto free_pages_out;
611 		}
612 	}
613 
614 	if (will_compress) {
615 		/*
616 		 * we aren't doing an inline extent round the compressed size
617 		 * up to a block size boundary so the allocator does sane
618 		 * things
619 		 */
620 		total_compressed = ALIGN(total_compressed, blocksize);
621 
622 		/*
623 		 * one last check to make sure the compression is really a
624 		 * win, compare the page count read with the blocks on disk,
625 		 * compression must free at least one sector size
626 		 */
627 		total_in = ALIGN(total_in, PAGE_SIZE);
628 		if (total_compressed + blocksize <= total_in) {
629 			*num_added += 1;
630 
631 			/*
632 			 * The async work queues will take care of doing actual
633 			 * allocation on disk for these compressed pages, and
634 			 * will submit them to the elevator.
635 			 */
636 			add_async_extent(async_cow, start, total_in,
637 					total_compressed, pages, nr_pages,
638 					compress_type);
639 
640 			if (start + total_in < end) {
641 				start += total_in;
642 				pages = NULL;
643 				cond_resched();
644 				goto again;
645 			}
646 			return;
647 		}
648 	}
649 	if (pages) {
650 		/*
651 		 * the compression code ran but failed to make things smaller,
652 		 * free any pages it allocated and our page pointer array
653 		 */
654 		for (i = 0; i < nr_pages; i++) {
655 			WARN_ON(pages[i]->mapping);
656 			put_page(pages[i]);
657 		}
658 		kfree(pages);
659 		pages = NULL;
660 		total_compressed = 0;
661 		nr_pages = 0;
662 
663 		/* flag the file so we don't compress in the future */
664 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
665 		    !(BTRFS_I(inode)->prop_compress)) {
666 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
667 		}
668 	}
669 cleanup_and_bail_uncompressed:
670 	/*
671 	 * No compression, but we still need to write the pages in the file
672 	 * we've been given so far.  redirty the locked page if it corresponds
673 	 * to our extent and set things up for the async work queue to run
674 	 * cow_file_range to do the normal delalloc dance.
675 	 */
676 	if (page_offset(locked_page) >= start &&
677 	    page_offset(locked_page) <= end)
678 		__set_page_dirty_nobuffers(locked_page);
679 		/* unlocked later on in the async handlers */
680 
681 	if (redirty)
682 		extent_range_redirty_for_io(inode, start, end);
683 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
684 			 BTRFS_COMPRESS_NONE);
685 	*num_added += 1;
686 
687 	return;
688 
689 free_pages_out:
690 	for (i = 0; i < nr_pages; i++) {
691 		WARN_ON(pages[i]->mapping);
692 		put_page(pages[i]);
693 	}
694 	kfree(pages);
695 }
696 
697 static void free_async_extent_pages(struct async_extent *async_extent)
698 {
699 	int i;
700 
701 	if (!async_extent->pages)
702 		return;
703 
704 	for (i = 0; i < async_extent->nr_pages; i++) {
705 		WARN_ON(async_extent->pages[i]->mapping);
706 		put_page(async_extent->pages[i]);
707 	}
708 	kfree(async_extent->pages);
709 	async_extent->nr_pages = 0;
710 	async_extent->pages = NULL;
711 }
712 
713 /*
714  * phase two of compressed writeback.  This is the ordered portion
715  * of the code, which only gets called in the order the work was
716  * queued.  We walk all the async extents created by compress_file_range
717  * and send them down to the disk.
718  */
719 static noinline void submit_compressed_extents(struct inode *inode,
720 					      struct async_cow *async_cow)
721 {
722 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
723 	struct async_extent *async_extent;
724 	u64 alloc_hint = 0;
725 	struct btrfs_key ins;
726 	struct extent_map *em;
727 	struct btrfs_root *root = BTRFS_I(inode)->root;
728 	struct extent_io_tree *io_tree;
729 	int ret = 0;
730 
731 again:
732 	while (!list_empty(&async_cow->extents)) {
733 		async_extent = list_entry(async_cow->extents.next,
734 					  struct async_extent, list);
735 		list_del(&async_extent->list);
736 
737 		io_tree = &BTRFS_I(inode)->io_tree;
738 
739 retry:
740 		/* did the compression code fall back to uncompressed IO? */
741 		if (!async_extent->pages) {
742 			int page_started = 0;
743 			unsigned long nr_written = 0;
744 
745 			lock_extent(io_tree, async_extent->start,
746 					 async_extent->start +
747 					 async_extent->ram_size - 1);
748 
749 			/* allocate blocks */
750 			ret = cow_file_range(inode, async_cow->locked_page,
751 					     async_extent->start,
752 					     async_extent->start +
753 					     async_extent->ram_size - 1,
754 					     async_extent->start +
755 					     async_extent->ram_size - 1,
756 					     &page_started, &nr_written, 0,
757 					     NULL);
758 
759 			/* JDM XXX */
760 
761 			/*
762 			 * if page_started, cow_file_range inserted an
763 			 * inline extent and took care of all the unlocking
764 			 * and IO for us.  Otherwise, we need to submit
765 			 * all those pages down to the drive.
766 			 */
767 			if (!page_started && !ret)
768 				extent_write_locked_range(io_tree,
769 						  inode, async_extent->start,
770 						  async_extent->start +
771 						  async_extent->ram_size - 1,
772 						  btrfs_get_extent,
773 						  WB_SYNC_ALL);
774 			else if (ret)
775 				unlock_page(async_cow->locked_page);
776 			kfree(async_extent);
777 			cond_resched();
778 			continue;
779 		}
780 
781 		lock_extent(io_tree, async_extent->start,
782 			    async_extent->start + async_extent->ram_size - 1);
783 
784 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
785 					   async_extent->compressed_size,
786 					   async_extent->compressed_size,
787 					   0, alloc_hint, &ins, 1, 1);
788 		if (ret) {
789 			free_async_extent_pages(async_extent);
790 
791 			if (ret == -ENOSPC) {
792 				unlock_extent(io_tree, async_extent->start,
793 					      async_extent->start +
794 					      async_extent->ram_size - 1);
795 
796 				/*
797 				 * we need to redirty the pages if we decide to
798 				 * fallback to uncompressed IO, otherwise we
799 				 * will not submit these pages down to lower
800 				 * layers.
801 				 */
802 				extent_range_redirty_for_io(inode,
803 						async_extent->start,
804 						async_extent->start +
805 						async_extent->ram_size - 1);
806 
807 				goto retry;
808 			}
809 			goto out_free;
810 		}
811 		/*
812 		 * here we're doing allocation and writeback of the
813 		 * compressed pages
814 		 */
815 		em = create_io_em(inode, async_extent->start,
816 				  async_extent->ram_size, /* len */
817 				  async_extent->start, /* orig_start */
818 				  ins.objectid, /* block_start */
819 				  ins.offset, /* block_len */
820 				  ins.offset, /* orig_block_len */
821 				  async_extent->ram_size, /* ram_bytes */
822 				  async_extent->compress_type,
823 				  BTRFS_ORDERED_COMPRESSED);
824 		if (IS_ERR(em))
825 			/* ret value is not necessary due to void function */
826 			goto out_free_reserve;
827 		free_extent_map(em);
828 
829 		ret = btrfs_add_ordered_extent_compress(inode,
830 						async_extent->start,
831 						ins.objectid,
832 						async_extent->ram_size,
833 						ins.offset,
834 						BTRFS_ORDERED_COMPRESSED,
835 						async_extent->compress_type);
836 		if (ret) {
837 			btrfs_drop_extent_cache(BTRFS_I(inode),
838 						async_extent->start,
839 						async_extent->start +
840 						async_extent->ram_size - 1, 0);
841 			goto out_free_reserve;
842 		}
843 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
844 
845 		/*
846 		 * clear dirty, set writeback and unlock the pages.
847 		 */
848 		extent_clear_unlock_delalloc(inode, async_extent->start,
849 				async_extent->start +
850 				async_extent->ram_size - 1,
851 				async_extent->start +
852 				async_extent->ram_size - 1,
853 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
854 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
855 				PAGE_SET_WRITEBACK);
856 		if (btrfs_submit_compressed_write(inode,
857 				    async_extent->start,
858 				    async_extent->ram_size,
859 				    ins.objectid,
860 				    ins.offset, async_extent->pages,
861 				    async_extent->nr_pages,
862 				    async_cow->write_flags)) {
863 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
864 			struct page *p = async_extent->pages[0];
865 			const u64 start = async_extent->start;
866 			const u64 end = start + async_extent->ram_size - 1;
867 
868 			p->mapping = inode->i_mapping;
869 			tree->ops->writepage_end_io_hook(p, start, end,
870 							 NULL, 0);
871 			p->mapping = NULL;
872 			extent_clear_unlock_delalloc(inode, start, end, end,
873 						     NULL, 0,
874 						     PAGE_END_WRITEBACK |
875 						     PAGE_SET_ERROR);
876 			free_async_extent_pages(async_extent);
877 		}
878 		alloc_hint = ins.objectid + ins.offset;
879 		kfree(async_extent);
880 		cond_resched();
881 	}
882 	return;
883 out_free_reserve:
884 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
885 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
886 out_free:
887 	extent_clear_unlock_delalloc(inode, async_extent->start,
888 				     async_extent->start +
889 				     async_extent->ram_size - 1,
890 				     async_extent->start +
891 				     async_extent->ram_size - 1,
892 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
893 				     EXTENT_DELALLOC_NEW |
894 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
895 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
896 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
897 				     PAGE_SET_ERROR);
898 	free_async_extent_pages(async_extent);
899 	kfree(async_extent);
900 	goto again;
901 }
902 
903 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
904 				      u64 num_bytes)
905 {
906 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
907 	struct extent_map *em;
908 	u64 alloc_hint = 0;
909 
910 	read_lock(&em_tree->lock);
911 	em = search_extent_mapping(em_tree, start, num_bytes);
912 	if (em) {
913 		/*
914 		 * if block start isn't an actual block number then find the
915 		 * first block in this inode and use that as a hint.  If that
916 		 * block is also bogus then just don't worry about it.
917 		 */
918 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
919 			free_extent_map(em);
920 			em = search_extent_mapping(em_tree, 0, 0);
921 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
922 				alloc_hint = em->block_start;
923 			if (em)
924 				free_extent_map(em);
925 		} else {
926 			alloc_hint = em->block_start;
927 			free_extent_map(em);
928 		}
929 	}
930 	read_unlock(&em_tree->lock);
931 
932 	return alloc_hint;
933 }
934 
935 /*
936  * when extent_io.c finds a delayed allocation range in the file,
937  * the call backs end up in this code.  The basic idea is to
938  * allocate extents on disk for the range, and create ordered data structs
939  * in ram to track those extents.
940  *
941  * locked_page is the page that writepage had locked already.  We use
942  * it to make sure we don't do extra locks or unlocks.
943  *
944  * *page_started is set to one if we unlock locked_page and do everything
945  * required to start IO on it.  It may be clean and already done with
946  * IO when we return.
947  */
948 static noinline int cow_file_range(struct inode *inode,
949 				   struct page *locked_page,
950 				   u64 start, u64 end, u64 delalloc_end,
951 				   int *page_started, unsigned long *nr_written,
952 				   int unlock, struct btrfs_dedupe_hash *hash)
953 {
954 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
955 	struct btrfs_root *root = BTRFS_I(inode)->root;
956 	u64 alloc_hint = 0;
957 	u64 num_bytes;
958 	unsigned long ram_size;
959 	u64 disk_num_bytes;
960 	u64 cur_alloc_size = 0;
961 	u64 blocksize = fs_info->sectorsize;
962 	struct btrfs_key ins;
963 	struct extent_map *em;
964 	unsigned clear_bits;
965 	unsigned long page_ops;
966 	bool extent_reserved = false;
967 	int ret = 0;
968 
969 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
970 		WARN_ON_ONCE(1);
971 		ret = -EINVAL;
972 		goto out_unlock;
973 	}
974 
975 	num_bytes = ALIGN(end - start + 1, blocksize);
976 	num_bytes = max(blocksize,  num_bytes);
977 	disk_num_bytes = num_bytes;
978 
979 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
980 
981 	if (start == 0) {
982 		/* lets try to make an inline extent */
983 		ret = cow_file_range_inline(root, inode, start, end, 0,
984 					BTRFS_COMPRESS_NONE, NULL);
985 		if (ret == 0) {
986 			/*
987 			 * We use DO_ACCOUNTING here because we need the
988 			 * delalloc_release_metadata to be run _after_ we drop
989 			 * our outstanding extent for clearing delalloc for this
990 			 * range.
991 			 */
992 			extent_clear_unlock_delalloc(inode, start, end,
993 				     delalloc_end, NULL,
994 				     EXTENT_LOCKED | EXTENT_DELALLOC |
995 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
996 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
997 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
998 				     PAGE_END_WRITEBACK);
999 			*nr_written = *nr_written +
1000 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1001 			*page_started = 1;
1002 			goto out;
1003 		} else if (ret < 0) {
1004 			goto out_unlock;
1005 		}
1006 	}
1007 
1008 	BUG_ON(disk_num_bytes >
1009 	       btrfs_super_total_bytes(fs_info->super_copy));
1010 
1011 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1012 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1013 			start + num_bytes - 1, 0);
1014 
1015 	while (disk_num_bytes > 0) {
1016 		cur_alloc_size = disk_num_bytes;
1017 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1018 					   fs_info->sectorsize, 0, alloc_hint,
1019 					   &ins, 1, 1);
1020 		if (ret < 0)
1021 			goto out_unlock;
1022 		cur_alloc_size = ins.offset;
1023 		extent_reserved = true;
1024 
1025 		ram_size = ins.offset;
1026 		em = create_io_em(inode, start, ins.offset, /* len */
1027 				  start, /* orig_start */
1028 				  ins.objectid, /* block_start */
1029 				  ins.offset, /* block_len */
1030 				  ins.offset, /* orig_block_len */
1031 				  ram_size, /* ram_bytes */
1032 				  BTRFS_COMPRESS_NONE, /* compress_type */
1033 				  BTRFS_ORDERED_REGULAR /* type */);
1034 		if (IS_ERR(em))
1035 			goto out_reserve;
1036 		free_extent_map(em);
1037 
1038 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1039 					       ram_size, cur_alloc_size, 0);
1040 		if (ret)
1041 			goto out_drop_extent_cache;
1042 
1043 		if (root->root_key.objectid ==
1044 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1045 			ret = btrfs_reloc_clone_csums(inode, start,
1046 						      cur_alloc_size);
1047 			/*
1048 			 * Only drop cache here, and process as normal.
1049 			 *
1050 			 * We must not allow extent_clear_unlock_delalloc()
1051 			 * at out_unlock label to free meta of this ordered
1052 			 * extent, as its meta should be freed by
1053 			 * btrfs_finish_ordered_io().
1054 			 *
1055 			 * So we must continue until @start is increased to
1056 			 * skip current ordered extent.
1057 			 */
1058 			if (ret)
1059 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1060 						start + ram_size - 1, 0);
1061 		}
1062 
1063 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1064 
1065 		/* we're not doing compressed IO, don't unlock the first
1066 		 * page (which the caller expects to stay locked), don't
1067 		 * clear any dirty bits and don't set any writeback bits
1068 		 *
1069 		 * Do set the Private2 bit so we know this page was properly
1070 		 * setup for writepage
1071 		 */
1072 		page_ops = unlock ? PAGE_UNLOCK : 0;
1073 		page_ops |= PAGE_SET_PRIVATE2;
1074 
1075 		extent_clear_unlock_delalloc(inode, start,
1076 					     start + ram_size - 1,
1077 					     delalloc_end, locked_page,
1078 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1079 					     page_ops);
1080 		if (disk_num_bytes < cur_alloc_size)
1081 			disk_num_bytes = 0;
1082 		else
1083 			disk_num_bytes -= cur_alloc_size;
1084 		num_bytes -= cur_alloc_size;
1085 		alloc_hint = ins.objectid + ins.offset;
1086 		start += cur_alloc_size;
1087 		extent_reserved = false;
1088 
1089 		/*
1090 		 * btrfs_reloc_clone_csums() error, since start is increased
1091 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1092 		 * free metadata of current ordered extent, we're OK to exit.
1093 		 */
1094 		if (ret)
1095 			goto out_unlock;
1096 	}
1097 out:
1098 	return ret;
1099 
1100 out_drop_extent_cache:
1101 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1102 out_reserve:
1103 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1104 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1105 out_unlock:
1106 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1107 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1108 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1109 		PAGE_END_WRITEBACK;
1110 	/*
1111 	 * If we reserved an extent for our delalloc range (or a subrange) and
1112 	 * failed to create the respective ordered extent, then it means that
1113 	 * when we reserved the extent we decremented the extent's size from
1114 	 * the data space_info's bytes_may_use counter and incremented the
1115 	 * space_info's bytes_reserved counter by the same amount. We must make
1116 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1117 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1118 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1119 	 */
1120 	if (extent_reserved) {
1121 		extent_clear_unlock_delalloc(inode, start,
1122 					     start + cur_alloc_size,
1123 					     start + cur_alloc_size,
1124 					     locked_page,
1125 					     clear_bits,
1126 					     page_ops);
1127 		start += cur_alloc_size;
1128 		if (start >= end)
1129 			goto out;
1130 	}
1131 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1132 				     locked_page,
1133 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1134 				     page_ops);
1135 	goto out;
1136 }
1137 
1138 /*
1139  * work queue call back to started compression on a file and pages
1140  */
1141 static noinline void async_cow_start(struct btrfs_work *work)
1142 {
1143 	struct async_cow *async_cow;
1144 	int num_added = 0;
1145 	async_cow = container_of(work, struct async_cow, work);
1146 
1147 	compress_file_range(async_cow->inode, async_cow->locked_page,
1148 			    async_cow->start, async_cow->end, async_cow,
1149 			    &num_added);
1150 	if (num_added == 0) {
1151 		btrfs_add_delayed_iput(async_cow->inode);
1152 		async_cow->inode = NULL;
1153 	}
1154 }
1155 
1156 /*
1157  * work queue call back to submit previously compressed pages
1158  */
1159 static noinline void async_cow_submit(struct btrfs_work *work)
1160 {
1161 	struct btrfs_fs_info *fs_info;
1162 	struct async_cow *async_cow;
1163 	struct btrfs_root *root;
1164 	unsigned long nr_pages;
1165 
1166 	async_cow = container_of(work, struct async_cow, work);
1167 
1168 	root = async_cow->root;
1169 	fs_info = root->fs_info;
1170 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1171 		PAGE_SHIFT;
1172 
1173 	/*
1174 	 * atomic_sub_return implies a barrier for waitqueue_active
1175 	 */
1176 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1177 	    5 * SZ_1M &&
1178 	    waitqueue_active(&fs_info->async_submit_wait))
1179 		wake_up(&fs_info->async_submit_wait);
1180 
1181 	if (async_cow->inode)
1182 		submit_compressed_extents(async_cow->inode, async_cow);
1183 }
1184 
1185 static noinline void async_cow_free(struct btrfs_work *work)
1186 {
1187 	struct async_cow *async_cow;
1188 	async_cow = container_of(work, struct async_cow, work);
1189 	if (async_cow->inode)
1190 		btrfs_add_delayed_iput(async_cow->inode);
1191 	kfree(async_cow);
1192 }
1193 
1194 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1195 				u64 start, u64 end, int *page_started,
1196 				unsigned long *nr_written,
1197 				unsigned int write_flags)
1198 {
1199 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1200 	struct async_cow *async_cow;
1201 	struct btrfs_root *root = BTRFS_I(inode)->root;
1202 	unsigned long nr_pages;
1203 	u64 cur_end;
1204 
1205 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1206 			 1, 0, NULL, GFP_NOFS);
1207 	while (start < end) {
1208 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1209 		BUG_ON(!async_cow); /* -ENOMEM */
1210 		async_cow->inode = igrab(inode);
1211 		async_cow->root = root;
1212 		async_cow->locked_page = locked_page;
1213 		async_cow->start = start;
1214 		async_cow->write_flags = write_flags;
1215 
1216 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1217 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1218 			cur_end = end;
1219 		else
1220 			cur_end = min(end, start + SZ_512K - 1);
1221 
1222 		async_cow->end = cur_end;
1223 		INIT_LIST_HEAD(&async_cow->extents);
1224 
1225 		btrfs_init_work(&async_cow->work,
1226 				btrfs_delalloc_helper,
1227 				async_cow_start, async_cow_submit,
1228 				async_cow_free);
1229 
1230 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1231 			PAGE_SHIFT;
1232 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1233 
1234 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1235 
1236 		*nr_written += nr_pages;
1237 		start = cur_end + 1;
1238 	}
1239 	*page_started = 1;
1240 	return 0;
1241 }
1242 
1243 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1244 					u64 bytenr, u64 num_bytes)
1245 {
1246 	int ret;
1247 	struct btrfs_ordered_sum *sums;
1248 	LIST_HEAD(list);
1249 
1250 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1251 				       bytenr + num_bytes - 1, &list, 0);
1252 	if (ret == 0 && list_empty(&list))
1253 		return 0;
1254 
1255 	while (!list_empty(&list)) {
1256 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1257 		list_del(&sums->list);
1258 		kfree(sums);
1259 	}
1260 	return 1;
1261 }
1262 
1263 /*
1264  * when nowcow writeback call back.  This checks for snapshots or COW copies
1265  * of the extents that exist in the file, and COWs the file as required.
1266  *
1267  * If no cow copies or snapshots exist, we write directly to the existing
1268  * blocks on disk
1269  */
1270 static noinline int run_delalloc_nocow(struct inode *inode,
1271 				       struct page *locked_page,
1272 			      u64 start, u64 end, int *page_started, int force,
1273 			      unsigned long *nr_written)
1274 {
1275 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1276 	struct btrfs_root *root = BTRFS_I(inode)->root;
1277 	struct extent_buffer *leaf;
1278 	struct btrfs_path *path;
1279 	struct btrfs_file_extent_item *fi;
1280 	struct btrfs_key found_key;
1281 	struct extent_map *em;
1282 	u64 cow_start;
1283 	u64 cur_offset;
1284 	u64 extent_end;
1285 	u64 extent_offset;
1286 	u64 disk_bytenr;
1287 	u64 num_bytes;
1288 	u64 disk_num_bytes;
1289 	u64 ram_bytes;
1290 	int extent_type;
1291 	int ret, err;
1292 	int type;
1293 	int nocow;
1294 	int check_prev = 1;
1295 	bool nolock;
1296 	u64 ino = btrfs_ino(BTRFS_I(inode));
1297 
1298 	path = btrfs_alloc_path();
1299 	if (!path) {
1300 		extent_clear_unlock_delalloc(inode, start, end, end,
1301 					     locked_page,
1302 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1303 					     EXTENT_DO_ACCOUNTING |
1304 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1305 					     PAGE_CLEAR_DIRTY |
1306 					     PAGE_SET_WRITEBACK |
1307 					     PAGE_END_WRITEBACK);
1308 		return -ENOMEM;
1309 	}
1310 
1311 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1312 
1313 	cow_start = (u64)-1;
1314 	cur_offset = start;
1315 	while (1) {
1316 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1317 					       cur_offset, 0);
1318 		if (ret < 0)
1319 			goto error;
1320 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1321 			leaf = path->nodes[0];
1322 			btrfs_item_key_to_cpu(leaf, &found_key,
1323 					      path->slots[0] - 1);
1324 			if (found_key.objectid == ino &&
1325 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1326 				path->slots[0]--;
1327 		}
1328 		check_prev = 0;
1329 next_slot:
1330 		leaf = path->nodes[0];
1331 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1332 			ret = btrfs_next_leaf(root, path);
1333 			if (ret < 0)
1334 				goto error;
1335 			if (ret > 0)
1336 				break;
1337 			leaf = path->nodes[0];
1338 		}
1339 
1340 		nocow = 0;
1341 		disk_bytenr = 0;
1342 		num_bytes = 0;
1343 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1344 
1345 		if (found_key.objectid > ino)
1346 			break;
1347 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1348 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1349 			path->slots[0]++;
1350 			goto next_slot;
1351 		}
1352 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1353 		    found_key.offset > end)
1354 			break;
1355 
1356 		if (found_key.offset > cur_offset) {
1357 			extent_end = found_key.offset;
1358 			extent_type = 0;
1359 			goto out_check;
1360 		}
1361 
1362 		fi = btrfs_item_ptr(leaf, path->slots[0],
1363 				    struct btrfs_file_extent_item);
1364 		extent_type = btrfs_file_extent_type(leaf, fi);
1365 
1366 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1367 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1368 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1369 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1370 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1371 			extent_end = found_key.offset +
1372 				btrfs_file_extent_num_bytes(leaf, fi);
1373 			disk_num_bytes =
1374 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1375 			if (extent_end <= start) {
1376 				path->slots[0]++;
1377 				goto next_slot;
1378 			}
1379 			if (disk_bytenr == 0)
1380 				goto out_check;
1381 			if (btrfs_file_extent_compression(leaf, fi) ||
1382 			    btrfs_file_extent_encryption(leaf, fi) ||
1383 			    btrfs_file_extent_other_encoding(leaf, fi))
1384 				goto out_check;
1385 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1386 				goto out_check;
1387 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1388 				goto out_check;
1389 			if (btrfs_cross_ref_exist(root, ino,
1390 						  found_key.offset -
1391 						  extent_offset, disk_bytenr))
1392 				goto out_check;
1393 			disk_bytenr += extent_offset;
1394 			disk_bytenr += cur_offset - found_key.offset;
1395 			num_bytes = min(end + 1, extent_end) - cur_offset;
1396 			/*
1397 			 * if there are pending snapshots for this root,
1398 			 * we fall into common COW way.
1399 			 */
1400 			if (!nolock) {
1401 				err = btrfs_start_write_no_snapshotting(root);
1402 				if (!err)
1403 					goto out_check;
1404 			}
1405 			/*
1406 			 * force cow if csum exists in the range.
1407 			 * this ensure that csum for a given extent are
1408 			 * either valid or do not exist.
1409 			 */
1410 			if (csum_exist_in_range(fs_info, disk_bytenr,
1411 						num_bytes)) {
1412 				if (!nolock)
1413 					btrfs_end_write_no_snapshotting(root);
1414 				goto out_check;
1415 			}
1416 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1417 				if (!nolock)
1418 					btrfs_end_write_no_snapshotting(root);
1419 				goto out_check;
1420 			}
1421 			nocow = 1;
1422 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1423 			extent_end = found_key.offset +
1424 				btrfs_file_extent_inline_len(leaf,
1425 						     path->slots[0], fi);
1426 			extent_end = ALIGN(extent_end,
1427 					   fs_info->sectorsize);
1428 		} else {
1429 			BUG_ON(1);
1430 		}
1431 out_check:
1432 		if (extent_end <= start) {
1433 			path->slots[0]++;
1434 			if (!nolock && nocow)
1435 				btrfs_end_write_no_snapshotting(root);
1436 			if (nocow)
1437 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1438 			goto next_slot;
1439 		}
1440 		if (!nocow) {
1441 			if (cow_start == (u64)-1)
1442 				cow_start = cur_offset;
1443 			cur_offset = extent_end;
1444 			if (cur_offset > end)
1445 				break;
1446 			path->slots[0]++;
1447 			goto next_slot;
1448 		}
1449 
1450 		btrfs_release_path(path);
1451 		if (cow_start != (u64)-1) {
1452 			ret = cow_file_range(inode, locked_page,
1453 					     cow_start, found_key.offset - 1,
1454 					     end, page_started, nr_written, 1,
1455 					     NULL);
1456 			if (ret) {
1457 				if (!nolock && nocow)
1458 					btrfs_end_write_no_snapshotting(root);
1459 				if (nocow)
1460 					btrfs_dec_nocow_writers(fs_info,
1461 								disk_bytenr);
1462 				goto error;
1463 			}
1464 			cow_start = (u64)-1;
1465 		}
1466 
1467 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1468 			u64 orig_start = found_key.offset - extent_offset;
1469 
1470 			em = create_io_em(inode, cur_offset, num_bytes,
1471 					  orig_start,
1472 					  disk_bytenr, /* block_start */
1473 					  num_bytes, /* block_len */
1474 					  disk_num_bytes, /* orig_block_len */
1475 					  ram_bytes, BTRFS_COMPRESS_NONE,
1476 					  BTRFS_ORDERED_PREALLOC);
1477 			if (IS_ERR(em)) {
1478 				if (!nolock && nocow)
1479 					btrfs_end_write_no_snapshotting(root);
1480 				if (nocow)
1481 					btrfs_dec_nocow_writers(fs_info,
1482 								disk_bytenr);
1483 				ret = PTR_ERR(em);
1484 				goto error;
1485 			}
1486 			free_extent_map(em);
1487 		}
1488 
1489 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1490 			type = BTRFS_ORDERED_PREALLOC;
1491 		} else {
1492 			type = BTRFS_ORDERED_NOCOW;
1493 		}
1494 
1495 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1496 					       num_bytes, num_bytes, type);
1497 		if (nocow)
1498 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1499 		BUG_ON(ret); /* -ENOMEM */
1500 
1501 		if (root->root_key.objectid ==
1502 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1503 			/*
1504 			 * Error handled later, as we must prevent
1505 			 * extent_clear_unlock_delalloc() in error handler
1506 			 * from freeing metadata of created ordered extent.
1507 			 */
1508 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1509 						      num_bytes);
1510 
1511 		extent_clear_unlock_delalloc(inode, cur_offset,
1512 					     cur_offset + num_bytes - 1, end,
1513 					     locked_page, EXTENT_LOCKED |
1514 					     EXTENT_DELALLOC |
1515 					     EXTENT_CLEAR_DATA_RESV,
1516 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1517 
1518 		if (!nolock && nocow)
1519 			btrfs_end_write_no_snapshotting(root);
1520 		cur_offset = extent_end;
1521 
1522 		/*
1523 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 		 * handler, as metadata for created ordered extent will only
1525 		 * be freed by btrfs_finish_ordered_io().
1526 		 */
1527 		if (ret)
1528 			goto error;
1529 		if (cur_offset > end)
1530 			break;
1531 	}
1532 	btrfs_release_path(path);
1533 
1534 	if (cur_offset <= end && cow_start == (u64)-1) {
1535 		cow_start = cur_offset;
1536 		cur_offset = end;
1537 	}
1538 
1539 	if (cow_start != (u64)-1) {
1540 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1541 				     page_started, nr_written, 1, NULL);
1542 		if (ret)
1543 			goto error;
1544 	}
1545 
1546 error:
1547 	if (ret && cur_offset < end)
1548 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1549 					     locked_page, EXTENT_LOCKED |
1550 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1551 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1552 					     PAGE_CLEAR_DIRTY |
1553 					     PAGE_SET_WRITEBACK |
1554 					     PAGE_END_WRITEBACK);
1555 	btrfs_free_path(path);
1556 	return ret;
1557 }
1558 
1559 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1560 {
1561 
1562 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1563 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1564 		return 0;
1565 
1566 	/*
1567 	 * @defrag_bytes is a hint value, no spinlock held here,
1568 	 * if is not zero, it means the file is defragging.
1569 	 * Force cow if given extent needs to be defragged.
1570 	 */
1571 	if (BTRFS_I(inode)->defrag_bytes &&
1572 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1573 			   EXTENT_DEFRAG, 0, NULL))
1574 		return 1;
1575 
1576 	return 0;
1577 }
1578 
1579 /*
1580  * extent_io.c call back to do delayed allocation processing
1581  */
1582 static int run_delalloc_range(void *private_data, struct page *locked_page,
1583 			      u64 start, u64 end, int *page_started,
1584 			      unsigned long *nr_written,
1585 			      struct writeback_control *wbc)
1586 {
1587 	struct inode *inode = private_data;
1588 	int ret;
1589 	int force_cow = need_force_cow(inode, start, end);
1590 	unsigned int write_flags = wbc_to_write_flags(wbc);
1591 
1592 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1593 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1594 					 page_started, 1, nr_written);
1595 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1596 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1597 					 page_started, 0, nr_written);
1598 	} else if (!inode_need_compress(inode, start, end)) {
1599 		ret = cow_file_range(inode, locked_page, start, end, end,
1600 				      page_started, nr_written, 1, NULL);
1601 	} else {
1602 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1603 			&BTRFS_I(inode)->runtime_flags);
1604 		ret = cow_file_range_async(inode, locked_page, start, end,
1605 					   page_started, nr_written,
1606 					   write_flags);
1607 	}
1608 	if (ret)
1609 		btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1610 	return ret;
1611 }
1612 
1613 static void btrfs_split_extent_hook(void *private_data,
1614 				    struct extent_state *orig, u64 split)
1615 {
1616 	struct inode *inode = private_data;
1617 	u64 size;
1618 
1619 	/* not delalloc, ignore it */
1620 	if (!(orig->state & EXTENT_DELALLOC))
1621 		return;
1622 
1623 	size = orig->end - orig->start + 1;
1624 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1625 		u32 num_extents;
1626 		u64 new_size;
1627 
1628 		/*
1629 		 * See the explanation in btrfs_merge_extent_hook, the same
1630 		 * applies here, just in reverse.
1631 		 */
1632 		new_size = orig->end - split + 1;
1633 		num_extents = count_max_extents(new_size);
1634 		new_size = split - orig->start;
1635 		num_extents += count_max_extents(new_size);
1636 		if (count_max_extents(size) >= num_extents)
1637 			return;
1638 	}
1639 
1640 	spin_lock(&BTRFS_I(inode)->lock);
1641 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1642 	spin_unlock(&BTRFS_I(inode)->lock);
1643 }
1644 
1645 /*
1646  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1647  * extents so we can keep track of new extents that are just merged onto old
1648  * extents, such as when we are doing sequential writes, so we can properly
1649  * account for the metadata space we'll need.
1650  */
1651 static void btrfs_merge_extent_hook(void *private_data,
1652 				    struct extent_state *new,
1653 				    struct extent_state *other)
1654 {
1655 	struct inode *inode = private_data;
1656 	u64 new_size, old_size;
1657 	u32 num_extents;
1658 
1659 	/* not delalloc, ignore it */
1660 	if (!(other->state & EXTENT_DELALLOC))
1661 		return;
1662 
1663 	if (new->start > other->start)
1664 		new_size = new->end - other->start + 1;
1665 	else
1666 		new_size = other->end - new->start + 1;
1667 
1668 	/* we're not bigger than the max, unreserve the space and go */
1669 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1670 		spin_lock(&BTRFS_I(inode)->lock);
1671 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1672 		spin_unlock(&BTRFS_I(inode)->lock);
1673 		return;
1674 	}
1675 
1676 	/*
1677 	 * We have to add up either side to figure out how many extents were
1678 	 * accounted for before we merged into one big extent.  If the number of
1679 	 * extents we accounted for is <= the amount we need for the new range
1680 	 * then we can return, otherwise drop.  Think of it like this
1681 	 *
1682 	 * [ 4k][MAX_SIZE]
1683 	 *
1684 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1685 	 * need 2 outstanding extents, on one side we have 1 and the other side
1686 	 * we have 1 so they are == and we can return.  But in this case
1687 	 *
1688 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1689 	 *
1690 	 * Each range on their own accounts for 2 extents, but merged together
1691 	 * they are only 3 extents worth of accounting, so we need to drop in
1692 	 * this case.
1693 	 */
1694 	old_size = other->end - other->start + 1;
1695 	num_extents = count_max_extents(old_size);
1696 	old_size = new->end - new->start + 1;
1697 	num_extents += count_max_extents(old_size);
1698 	if (count_max_extents(new_size) >= num_extents)
1699 		return;
1700 
1701 	spin_lock(&BTRFS_I(inode)->lock);
1702 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1703 	spin_unlock(&BTRFS_I(inode)->lock);
1704 }
1705 
1706 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1707 				      struct inode *inode)
1708 {
1709 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1710 
1711 	spin_lock(&root->delalloc_lock);
1712 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1713 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1714 			      &root->delalloc_inodes);
1715 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1716 			&BTRFS_I(inode)->runtime_flags);
1717 		root->nr_delalloc_inodes++;
1718 		if (root->nr_delalloc_inodes == 1) {
1719 			spin_lock(&fs_info->delalloc_root_lock);
1720 			BUG_ON(!list_empty(&root->delalloc_root));
1721 			list_add_tail(&root->delalloc_root,
1722 				      &fs_info->delalloc_roots);
1723 			spin_unlock(&fs_info->delalloc_root_lock);
1724 		}
1725 	}
1726 	spin_unlock(&root->delalloc_lock);
1727 }
1728 
1729 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1730 				     struct btrfs_inode *inode)
1731 {
1732 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1733 
1734 	spin_lock(&root->delalloc_lock);
1735 	if (!list_empty(&inode->delalloc_inodes)) {
1736 		list_del_init(&inode->delalloc_inodes);
1737 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1738 			  &inode->runtime_flags);
1739 		root->nr_delalloc_inodes--;
1740 		if (!root->nr_delalloc_inodes) {
1741 			spin_lock(&fs_info->delalloc_root_lock);
1742 			BUG_ON(list_empty(&root->delalloc_root));
1743 			list_del_init(&root->delalloc_root);
1744 			spin_unlock(&fs_info->delalloc_root_lock);
1745 		}
1746 	}
1747 	spin_unlock(&root->delalloc_lock);
1748 }
1749 
1750 /*
1751  * extent_io.c set_bit_hook, used to track delayed allocation
1752  * bytes in this file, and to maintain the list of inodes that
1753  * have pending delalloc work to be done.
1754  */
1755 static void btrfs_set_bit_hook(void *private_data,
1756 			       struct extent_state *state, unsigned *bits)
1757 {
1758 	struct inode *inode = private_data;
1759 
1760 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1761 
1762 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1763 		WARN_ON(1);
1764 	/*
1765 	 * set_bit and clear bit hooks normally require _irqsave/restore
1766 	 * but in this case, we are only testing for the DELALLOC
1767 	 * bit, which is only set or cleared with irqs on
1768 	 */
1769 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1770 		struct btrfs_root *root = BTRFS_I(inode)->root;
1771 		u64 len = state->end + 1 - state->start;
1772 		u32 num_extents = count_max_extents(len);
1773 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1774 
1775 		spin_lock(&BTRFS_I(inode)->lock);
1776 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1777 		spin_unlock(&BTRFS_I(inode)->lock);
1778 
1779 		/* For sanity tests */
1780 		if (btrfs_is_testing(fs_info))
1781 			return;
1782 
1783 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1784 					 fs_info->delalloc_batch);
1785 		spin_lock(&BTRFS_I(inode)->lock);
1786 		BTRFS_I(inode)->delalloc_bytes += len;
1787 		if (*bits & EXTENT_DEFRAG)
1788 			BTRFS_I(inode)->defrag_bytes += len;
1789 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1790 					 &BTRFS_I(inode)->runtime_flags))
1791 			btrfs_add_delalloc_inodes(root, inode);
1792 		spin_unlock(&BTRFS_I(inode)->lock);
1793 	}
1794 
1795 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1796 	    (*bits & EXTENT_DELALLOC_NEW)) {
1797 		spin_lock(&BTRFS_I(inode)->lock);
1798 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1799 			state->start;
1800 		spin_unlock(&BTRFS_I(inode)->lock);
1801 	}
1802 }
1803 
1804 /*
1805  * extent_io.c clear_bit_hook, see set_bit_hook for why
1806  */
1807 static void btrfs_clear_bit_hook(void *private_data,
1808 				 struct extent_state *state,
1809 				 unsigned *bits)
1810 {
1811 	struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1812 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1813 	u64 len = state->end + 1 - state->start;
1814 	u32 num_extents = count_max_extents(len);
1815 
1816 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1817 		spin_lock(&inode->lock);
1818 		inode->defrag_bytes -= len;
1819 		spin_unlock(&inode->lock);
1820 	}
1821 
1822 	/*
1823 	 * set_bit and clear bit hooks normally require _irqsave/restore
1824 	 * but in this case, we are only testing for the DELALLOC
1825 	 * bit, which is only set or cleared with irqs on
1826 	 */
1827 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1828 		struct btrfs_root *root = inode->root;
1829 		bool do_list = !btrfs_is_free_space_inode(inode);
1830 
1831 		spin_lock(&inode->lock);
1832 		btrfs_mod_outstanding_extents(inode, -num_extents);
1833 		spin_unlock(&inode->lock);
1834 
1835 		/*
1836 		 * We don't reserve metadata space for space cache inodes so we
1837 		 * don't need to call dellalloc_release_metadata if there is an
1838 		 * error.
1839 		 */
1840 		if (*bits & EXTENT_CLEAR_META_RESV &&
1841 		    root != fs_info->tree_root)
1842 			btrfs_delalloc_release_metadata(inode, len);
1843 
1844 		/* For sanity tests. */
1845 		if (btrfs_is_testing(fs_info))
1846 			return;
1847 
1848 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1849 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1850 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1851 			btrfs_free_reserved_data_space_noquota(
1852 					&inode->vfs_inode,
1853 					state->start, len);
1854 
1855 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1856 					 fs_info->delalloc_batch);
1857 		spin_lock(&inode->lock);
1858 		inode->delalloc_bytes -= len;
1859 		if (do_list && inode->delalloc_bytes == 0 &&
1860 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1861 					&inode->runtime_flags))
1862 			btrfs_del_delalloc_inode(root, inode);
1863 		spin_unlock(&inode->lock);
1864 	}
1865 
1866 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1867 	    (*bits & EXTENT_DELALLOC_NEW)) {
1868 		spin_lock(&inode->lock);
1869 		ASSERT(inode->new_delalloc_bytes >= len);
1870 		inode->new_delalloc_bytes -= len;
1871 		spin_unlock(&inode->lock);
1872 	}
1873 }
1874 
1875 /*
1876  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1877  * we don't create bios that span stripes or chunks
1878  *
1879  * return 1 if page cannot be merged to bio
1880  * return 0 if page can be merged to bio
1881  * return error otherwise
1882  */
1883 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1884 			 size_t size, struct bio *bio,
1885 			 unsigned long bio_flags)
1886 {
1887 	struct inode *inode = page->mapping->host;
1888 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1889 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1890 	u64 length = 0;
1891 	u64 map_length;
1892 	int ret;
1893 
1894 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1895 		return 0;
1896 
1897 	length = bio->bi_iter.bi_size;
1898 	map_length = length;
1899 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1900 			      NULL, 0);
1901 	if (ret < 0)
1902 		return ret;
1903 	if (map_length < length + size)
1904 		return 1;
1905 	return 0;
1906 }
1907 
1908 /*
1909  * in order to insert checksums into the metadata in large chunks,
1910  * we wait until bio submission time.   All the pages in the bio are
1911  * checksummed and sums are attached onto the ordered extent record.
1912  *
1913  * At IO completion time the cums attached on the ordered extent record
1914  * are inserted into the btree
1915  */
1916 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
1917 				    int mirror_num, unsigned long bio_flags,
1918 				    u64 bio_offset)
1919 {
1920 	struct inode *inode = private_data;
1921 	blk_status_t ret = 0;
1922 
1923 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1924 	BUG_ON(ret); /* -ENOMEM */
1925 	return 0;
1926 }
1927 
1928 /*
1929  * in order to insert checksums into the metadata in large chunks,
1930  * we wait until bio submission time.   All the pages in the bio are
1931  * checksummed and sums are attached onto the ordered extent record.
1932  *
1933  * At IO completion time the cums attached on the ordered extent record
1934  * are inserted into the btree
1935  */
1936 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
1937 			  int mirror_num, unsigned long bio_flags,
1938 			  u64 bio_offset)
1939 {
1940 	struct inode *inode = private_data;
1941 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1942 	blk_status_t ret;
1943 
1944 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1945 	if (ret) {
1946 		bio->bi_status = ret;
1947 		bio_endio(bio);
1948 	}
1949 	return ret;
1950 }
1951 
1952 /*
1953  * extent_io.c submission hook. This does the right thing for csum calculation
1954  * on write, or reading the csums from the tree before a read
1955  */
1956 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1957 				 int mirror_num, unsigned long bio_flags,
1958 				 u64 bio_offset)
1959 {
1960 	struct inode *inode = private_data;
1961 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1962 	struct btrfs_root *root = BTRFS_I(inode)->root;
1963 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1964 	blk_status_t ret = 0;
1965 	int skip_sum;
1966 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1967 
1968 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1969 
1970 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1971 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1972 
1973 	if (bio_op(bio) != REQ_OP_WRITE) {
1974 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1975 		if (ret)
1976 			goto out;
1977 
1978 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1979 			ret = btrfs_submit_compressed_read(inode, bio,
1980 							   mirror_num,
1981 							   bio_flags);
1982 			goto out;
1983 		} else if (!skip_sum) {
1984 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1985 			if (ret)
1986 				goto out;
1987 		}
1988 		goto mapit;
1989 	} else if (async && !skip_sum) {
1990 		/* csum items have already been cloned */
1991 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1992 			goto mapit;
1993 		/* we're doing a write, do the async checksumming */
1994 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1995 					  bio_offset, inode,
1996 					  __btrfs_submit_bio_start,
1997 					  __btrfs_submit_bio_done);
1998 		goto out;
1999 	} else if (!skip_sum) {
2000 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2001 		if (ret)
2002 			goto out;
2003 	}
2004 
2005 mapit:
2006 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2007 
2008 out:
2009 	if (ret) {
2010 		bio->bi_status = ret;
2011 		bio_endio(bio);
2012 	}
2013 	return ret;
2014 }
2015 
2016 /*
2017  * given a list of ordered sums record them in the inode.  This happens
2018  * at IO completion time based on sums calculated at bio submission time.
2019  */
2020 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2021 			     struct inode *inode, struct list_head *list)
2022 {
2023 	struct btrfs_ordered_sum *sum;
2024 
2025 	list_for_each_entry(sum, list, list) {
2026 		trans->adding_csums = 1;
2027 		btrfs_csum_file_blocks(trans,
2028 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2029 		trans->adding_csums = 0;
2030 	}
2031 	return 0;
2032 }
2033 
2034 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2035 			      unsigned int extra_bits,
2036 			      struct extent_state **cached_state, int dedupe)
2037 {
2038 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2039 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2040 				   extra_bits, cached_state);
2041 }
2042 
2043 /* see btrfs_writepage_start_hook for details on why this is required */
2044 struct btrfs_writepage_fixup {
2045 	struct page *page;
2046 	struct btrfs_work work;
2047 };
2048 
2049 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2050 {
2051 	struct btrfs_writepage_fixup *fixup;
2052 	struct btrfs_ordered_extent *ordered;
2053 	struct extent_state *cached_state = NULL;
2054 	struct extent_changeset *data_reserved = NULL;
2055 	struct page *page;
2056 	struct inode *inode;
2057 	u64 page_start;
2058 	u64 page_end;
2059 	int ret;
2060 
2061 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2062 	page = fixup->page;
2063 again:
2064 	lock_page(page);
2065 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2066 		ClearPageChecked(page);
2067 		goto out_page;
2068 	}
2069 
2070 	inode = page->mapping->host;
2071 	page_start = page_offset(page);
2072 	page_end = page_offset(page) + PAGE_SIZE - 1;
2073 
2074 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2075 			 &cached_state);
2076 
2077 	/* already ordered? We're done */
2078 	if (PagePrivate2(page))
2079 		goto out;
2080 
2081 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2082 					PAGE_SIZE);
2083 	if (ordered) {
2084 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2085 				     page_end, &cached_state, GFP_NOFS);
2086 		unlock_page(page);
2087 		btrfs_start_ordered_extent(inode, ordered, 1);
2088 		btrfs_put_ordered_extent(ordered);
2089 		goto again;
2090 	}
2091 
2092 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2093 					   PAGE_SIZE);
2094 	if (ret) {
2095 		mapping_set_error(page->mapping, ret);
2096 		end_extent_writepage(page, ret, page_start, page_end);
2097 		ClearPageChecked(page);
2098 		goto out;
2099 	 }
2100 
2101 	btrfs_set_extent_delalloc(inode, page_start, page_end, 0, &cached_state,
2102 				  0);
2103 	ClearPageChecked(page);
2104 	set_page_dirty(page);
2105 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2106 out:
2107 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2108 			     &cached_state, GFP_NOFS);
2109 out_page:
2110 	unlock_page(page);
2111 	put_page(page);
2112 	kfree(fixup);
2113 	extent_changeset_free(data_reserved);
2114 }
2115 
2116 /*
2117  * There are a few paths in the higher layers of the kernel that directly
2118  * set the page dirty bit without asking the filesystem if it is a
2119  * good idea.  This causes problems because we want to make sure COW
2120  * properly happens and the data=ordered rules are followed.
2121  *
2122  * In our case any range that doesn't have the ORDERED bit set
2123  * hasn't been properly setup for IO.  We kick off an async process
2124  * to fix it up.  The async helper will wait for ordered extents, set
2125  * the delalloc bit and make it safe to write the page.
2126  */
2127 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2128 {
2129 	struct inode *inode = page->mapping->host;
2130 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2131 	struct btrfs_writepage_fixup *fixup;
2132 
2133 	/* this page is properly in the ordered list */
2134 	if (TestClearPagePrivate2(page))
2135 		return 0;
2136 
2137 	if (PageChecked(page))
2138 		return -EAGAIN;
2139 
2140 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2141 	if (!fixup)
2142 		return -EAGAIN;
2143 
2144 	SetPageChecked(page);
2145 	get_page(page);
2146 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2147 			btrfs_writepage_fixup_worker, NULL, NULL);
2148 	fixup->page = page;
2149 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2150 	return -EBUSY;
2151 }
2152 
2153 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2154 				       struct inode *inode, u64 file_pos,
2155 				       u64 disk_bytenr, u64 disk_num_bytes,
2156 				       u64 num_bytes, u64 ram_bytes,
2157 				       u8 compression, u8 encryption,
2158 				       u16 other_encoding, int extent_type)
2159 {
2160 	struct btrfs_root *root = BTRFS_I(inode)->root;
2161 	struct btrfs_file_extent_item *fi;
2162 	struct btrfs_path *path;
2163 	struct extent_buffer *leaf;
2164 	struct btrfs_key ins;
2165 	u64 qg_released;
2166 	int extent_inserted = 0;
2167 	int ret;
2168 
2169 	path = btrfs_alloc_path();
2170 	if (!path)
2171 		return -ENOMEM;
2172 
2173 	/*
2174 	 * we may be replacing one extent in the tree with another.
2175 	 * The new extent is pinned in the extent map, and we don't want
2176 	 * to drop it from the cache until it is completely in the btree.
2177 	 *
2178 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2179 	 * the caller is expected to unpin it and allow it to be merged
2180 	 * with the others.
2181 	 */
2182 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2183 				   file_pos + num_bytes, NULL, 0,
2184 				   1, sizeof(*fi), &extent_inserted);
2185 	if (ret)
2186 		goto out;
2187 
2188 	if (!extent_inserted) {
2189 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2190 		ins.offset = file_pos;
2191 		ins.type = BTRFS_EXTENT_DATA_KEY;
2192 
2193 		path->leave_spinning = 1;
2194 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2195 					      sizeof(*fi));
2196 		if (ret)
2197 			goto out;
2198 	}
2199 	leaf = path->nodes[0];
2200 	fi = btrfs_item_ptr(leaf, path->slots[0],
2201 			    struct btrfs_file_extent_item);
2202 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2203 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2204 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2205 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2206 	btrfs_set_file_extent_offset(leaf, fi, 0);
2207 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2208 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2209 	btrfs_set_file_extent_compression(leaf, fi, compression);
2210 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2211 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2212 
2213 	btrfs_mark_buffer_dirty(leaf);
2214 	btrfs_release_path(path);
2215 
2216 	inode_add_bytes(inode, num_bytes);
2217 
2218 	ins.objectid = disk_bytenr;
2219 	ins.offset = disk_num_bytes;
2220 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2221 
2222 	/*
2223 	 * Release the reserved range from inode dirty range map, as it is
2224 	 * already moved into delayed_ref_head
2225 	 */
2226 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2227 	if (ret < 0)
2228 		goto out;
2229 	qg_released = ret;
2230 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2231 					       btrfs_ino(BTRFS_I(inode)),
2232 					       file_pos, qg_released, &ins);
2233 out:
2234 	btrfs_free_path(path);
2235 
2236 	return ret;
2237 }
2238 
2239 /* snapshot-aware defrag */
2240 struct sa_defrag_extent_backref {
2241 	struct rb_node node;
2242 	struct old_sa_defrag_extent *old;
2243 	u64 root_id;
2244 	u64 inum;
2245 	u64 file_pos;
2246 	u64 extent_offset;
2247 	u64 num_bytes;
2248 	u64 generation;
2249 };
2250 
2251 struct old_sa_defrag_extent {
2252 	struct list_head list;
2253 	struct new_sa_defrag_extent *new;
2254 
2255 	u64 extent_offset;
2256 	u64 bytenr;
2257 	u64 offset;
2258 	u64 len;
2259 	int count;
2260 };
2261 
2262 struct new_sa_defrag_extent {
2263 	struct rb_root root;
2264 	struct list_head head;
2265 	struct btrfs_path *path;
2266 	struct inode *inode;
2267 	u64 file_pos;
2268 	u64 len;
2269 	u64 bytenr;
2270 	u64 disk_len;
2271 	u8 compress_type;
2272 };
2273 
2274 static int backref_comp(struct sa_defrag_extent_backref *b1,
2275 			struct sa_defrag_extent_backref *b2)
2276 {
2277 	if (b1->root_id < b2->root_id)
2278 		return -1;
2279 	else if (b1->root_id > b2->root_id)
2280 		return 1;
2281 
2282 	if (b1->inum < b2->inum)
2283 		return -1;
2284 	else if (b1->inum > b2->inum)
2285 		return 1;
2286 
2287 	if (b1->file_pos < b2->file_pos)
2288 		return -1;
2289 	else if (b1->file_pos > b2->file_pos)
2290 		return 1;
2291 
2292 	/*
2293 	 * [------------------------------] ===> (a range of space)
2294 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2295 	 * |<---------------------------->| ===> (fs/file tree B)
2296 	 *
2297 	 * A range of space can refer to two file extents in one tree while
2298 	 * refer to only one file extent in another tree.
2299 	 *
2300 	 * So we may process a disk offset more than one time(two extents in A)
2301 	 * and locate at the same extent(one extent in B), then insert two same
2302 	 * backrefs(both refer to the extent in B).
2303 	 */
2304 	return 0;
2305 }
2306 
2307 static void backref_insert(struct rb_root *root,
2308 			   struct sa_defrag_extent_backref *backref)
2309 {
2310 	struct rb_node **p = &root->rb_node;
2311 	struct rb_node *parent = NULL;
2312 	struct sa_defrag_extent_backref *entry;
2313 	int ret;
2314 
2315 	while (*p) {
2316 		parent = *p;
2317 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2318 
2319 		ret = backref_comp(backref, entry);
2320 		if (ret < 0)
2321 			p = &(*p)->rb_left;
2322 		else
2323 			p = &(*p)->rb_right;
2324 	}
2325 
2326 	rb_link_node(&backref->node, parent, p);
2327 	rb_insert_color(&backref->node, root);
2328 }
2329 
2330 /*
2331  * Note the backref might has changed, and in this case we just return 0.
2332  */
2333 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2334 				       void *ctx)
2335 {
2336 	struct btrfs_file_extent_item *extent;
2337 	struct old_sa_defrag_extent *old = ctx;
2338 	struct new_sa_defrag_extent *new = old->new;
2339 	struct btrfs_path *path = new->path;
2340 	struct btrfs_key key;
2341 	struct btrfs_root *root;
2342 	struct sa_defrag_extent_backref *backref;
2343 	struct extent_buffer *leaf;
2344 	struct inode *inode = new->inode;
2345 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2346 	int slot;
2347 	int ret;
2348 	u64 extent_offset;
2349 	u64 num_bytes;
2350 
2351 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2352 	    inum == btrfs_ino(BTRFS_I(inode)))
2353 		return 0;
2354 
2355 	key.objectid = root_id;
2356 	key.type = BTRFS_ROOT_ITEM_KEY;
2357 	key.offset = (u64)-1;
2358 
2359 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2360 	if (IS_ERR(root)) {
2361 		if (PTR_ERR(root) == -ENOENT)
2362 			return 0;
2363 		WARN_ON(1);
2364 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2365 			 inum, offset, root_id);
2366 		return PTR_ERR(root);
2367 	}
2368 
2369 	key.objectid = inum;
2370 	key.type = BTRFS_EXTENT_DATA_KEY;
2371 	if (offset > (u64)-1 << 32)
2372 		key.offset = 0;
2373 	else
2374 		key.offset = offset;
2375 
2376 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2377 	if (WARN_ON(ret < 0))
2378 		return ret;
2379 	ret = 0;
2380 
2381 	while (1) {
2382 		cond_resched();
2383 
2384 		leaf = path->nodes[0];
2385 		slot = path->slots[0];
2386 
2387 		if (slot >= btrfs_header_nritems(leaf)) {
2388 			ret = btrfs_next_leaf(root, path);
2389 			if (ret < 0) {
2390 				goto out;
2391 			} else if (ret > 0) {
2392 				ret = 0;
2393 				goto out;
2394 			}
2395 			continue;
2396 		}
2397 
2398 		path->slots[0]++;
2399 
2400 		btrfs_item_key_to_cpu(leaf, &key, slot);
2401 
2402 		if (key.objectid > inum)
2403 			goto out;
2404 
2405 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2406 			continue;
2407 
2408 		extent = btrfs_item_ptr(leaf, slot,
2409 					struct btrfs_file_extent_item);
2410 
2411 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2412 			continue;
2413 
2414 		/*
2415 		 * 'offset' refers to the exact key.offset,
2416 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2417 		 * (key.offset - extent_offset).
2418 		 */
2419 		if (key.offset != offset)
2420 			continue;
2421 
2422 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2423 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2424 
2425 		if (extent_offset >= old->extent_offset + old->offset +
2426 		    old->len || extent_offset + num_bytes <=
2427 		    old->extent_offset + old->offset)
2428 			continue;
2429 		break;
2430 	}
2431 
2432 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2433 	if (!backref) {
2434 		ret = -ENOENT;
2435 		goto out;
2436 	}
2437 
2438 	backref->root_id = root_id;
2439 	backref->inum = inum;
2440 	backref->file_pos = offset;
2441 	backref->num_bytes = num_bytes;
2442 	backref->extent_offset = extent_offset;
2443 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2444 	backref->old = old;
2445 	backref_insert(&new->root, backref);
2446 	old->count++;
2447 out:
2448 	btrfs_release_path(path);
2449 	WARN_ON(ret);
2450 	return ret;
2451 }
2452 
2453 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2454 				   struct new_sa_defrag_extent *new)
2455 {
2456 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2457 	struct old_sa_defrag_extent *old, *tmp;
2458 	int ret;
2459 
2460 	new->path = path;
2461 
2462 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2463 		ret = iterate_inodes_from_logical(old->bytenr +
2464 						  old->extent_offset, fs_info,
2465 						  path, record_one_backref,
2466 						  old, false);
2467 		if (ret < 0 && ret != -ENOENT)
2468 			return false;
2469 
2470 		/* no backref to be processed for this extent */
2471 		if (!old->count) {
2472 			list_del(&old->list);
2473 			kfree(old);
2474 		}
2475 	}
2476 
2477 	if (list_empty(&new->head))
2478 		return false;
2479 
2480 	return true;
2481 }
2482 
2483 static int relink_is_mergable(struct extent_buffer *leaf,
2484 			      struct btrfs_file_extent_item *fi,
2485 			      struct new_sa_defrag_extent *new)
2486 {
2487 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2488 		return 0;
2489 
2490 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2491 		return 0;
2492 
2493 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2494 		return 0;
2495 
2496 	if (btrfs_file_extent_encryption(leaf, fi) ||
2497 	    btrfs_file_extent_other_encoding(leaf, fi))
2498 		return 0;
2499 
2500 	return 1;
2501 }
2502 
2503 /*
2504  * Note the backref might has changed, and in this case we just return 0.
2505  */
2506 static noinline int relink_extent_backref(struct btrfs_path *path,
2507 				 struct sa_defrag_extent_backref *prev,
2508 				 struct sa_defrag_extent_backref *backref)
2509 {
2510 	struct btrfs_file_extent_item *extent;
2511 	struct btrfs_file_extent_item *item;
2512 	struct btrfs_ordered_extent *ordered;
2513 	struct btrfs_trans_handle *trans;
2514 	struct btrfs_root *root;
2515 	struct btrfs_key key;
2516 	struct extent_buffer *leaf;
2517 	struct old_sa_defrag_extent *old = backref->old;
2518 	struct new_sa_defrag_extent *new = old->new;
2519 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2520 	struct inode *inode;
2521 	struct extent_state *cached = NULL;
2522 	int ret = 0;
2523 	u64 start;
2524 	u64 len;
2525 	u64 lock_start;
2526 	u64 lock_end;
2527 	bool merge = false;
2528 	int index;
2529 
2530 	if (prev && prev->root_id == backref->root_id &&
2531 	    prev->inum == backref->inum &&
2532 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2533 		merge = true;
2534 
2535 	/* step 1: get root */
2536 	key.objectid = backref->root_id;
2537 	key.type = BTRFS_ROOT_ITEM_KEY;
2538 	key.offset = (u64)-1;
2539 
2540 	index = srcu_read_lock(&fs_info->subvol_srcu);
2541 
2542 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2543 	if (IS_ERR(root)) {
2544 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2545 		if (PTR_ERR(root) == -ENOENT)
2546 			return 0;
2547 		return PTR_ERR(root);
2548 	}
2549 
2550 	if (btrfs_root_readonly(root)) {
2551 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2552 		return 0;
2553 	}
2554 
2555 	/* step 2: get inode */
2556 	key.objectid = backref->inum;
2557 	key.type = BTRFS_INODE_ITEM_KEY;
2558 	key.offset = 0;
2559 
2560 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2561 	if (IS_ERR(inode)) {
2562 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2563 		return 0;
2564 	}
2565 
2566 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2567 
2568 	/* step 3: relink backref */
2569 	lock_start = backref->file_pos;
2570 	lock_end = backref->file_pos + backref->num_bytes - 1;
2571 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2572 			 &cached);
2573 
2574 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2575 	if (ordered) {
2576 		btrfs_put_ordered_extent(ordered);
2577 		goto out_unlock;
2578 	}
2579 
2580 	trans = btrfs_join_transaction(root);
2581 	if (IS_ERR(trans)) {
2582 		ret = PTR_ERR(trans);
2583 		goto out_unlock;
2584 	}
2585 
2586 	key.objectid = backref->inum;
2587 	key.type = BTRFS_EXTENT_DATA_KEY;
2588 	key.offset = backref->file_pos;
2589 
2590 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2591 	if (ret < 0) {
2592 		goto out_free_path;
2593 	} else if (ret > 0) {
2594 		ret = 0;
2595 		goto out_free_path;
2596 	}
2597 
2598 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2599 				struct btrfs_file_extent_item);
2600 
2601 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2602 	    backref->generation)
2603 		goto out_free_path;
2604 
2605 	btrfs_release_path(path);
2606 
2607 	start = backref->file_pos;
2608 	if (backref->extent_offset < old->extent_offset + old->offset)
2609 		start += old->extent_offset + old->offset -
2610 			 backref->extent_offset;
2611 
2612 	len = min(backref->extent_offset + backref->num_bytes,
2613 		  old->extent_offset + old->offset + old->len);
2614 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2615 
2616 	ret = btrfs_drop_extents(trans, root, inode, start,
2617 				 start + len, 1);
2618 	if (ret)
2619 		goto out_free_path;
2620 again:
2621 	key.objectid = btrfs_ino(BTRFS_I(inode));
2622 	key.type = BTRFS_EXTENT_DATA_KEY;
2623 	key.offset = start;
2624 
2625 	path->leave_spinning = 1;
2626 	if (merge) {
2627 		struct btrfs_file_extent_item *fi;
2628 		u64 extent_len;
2629 		struct btrfs_key found_key;
2630 
2631 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2632 		if (ret < 0)
2633 			goto out_free_path;
2634 
2635 		path->slots[0]--;
2636 		leaf = path->nodes[0];
2637 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2638 
2639 		fi = btrfs_item_ptr(leaf, path->slots[0],
2640 				    struct btrfs_file_extent_item);
2641 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2642 
2643 		if (extent_len + found_key.offset == start &&
2644 		    relink_is_mergable(leaf, fi, new)) {
2645 			btrfs_set_file_extent_num_bytes(leaf, fi,
2646 							extent_len + len);
2647 			btrfs_mark_buffer_dirty(leaf);
2648 			inode_add_bytes(inode, len);
2649 
2650 			ret = 1;
2651 			goto out_free_path;
2652 		} else {
2653 			merge = false;
2654 			btrfs_release_path(path);
2655 			goto again;
2656 		}
2657 	}
2658 
2659 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2660 					sizeof(*extent));
2661 	if (ret) {
2662 		btrfs_abort_transaction(trans, ret);
2663 		goto out_free_path;
2664 	}
2665 
2666 	leaf = path->nodes[0];
2667 	item = btrfs_item_ptr(leaf, path->slots[0],
2668 				struct btrfs_file_extent_item);
2669 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2670 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2671 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2672 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2673 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2674 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2675 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2676 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2677 	btrfs_set_file_extent_encryption(leaf, item, 0);
2678 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2679 
2680 	btrfs_mark_buffer_dirty(leaf);
2681 	inode_add_bytes(inode, len);
2682 	btrfs_release_path(path);
2683 
2684 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2685 			new->disk_len, 0,
2686 			backref->root_id, backref->inum,
2687 			new->file_pos);	/* start - extent_offset */
2688 	if (ret) {
2689 		btrfs_abort_transaction(trans, ret);
2690 		goto out_free_path;
2691 	}
2692 
2693 	ret = 1;
2694 out_free_path:
2695 	btrfs_release_path(path);
2696 	path->leave_spinning = 0;
2697 	btrfs_end_transaction(trans);
2698 out_unlock:
2699 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2700 			     &cached, GFP_NOFS);
2701 	iput(inode);
2702 	return ret;
2703 }
2704 
2705 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2706 {
2707 	struct old_sa_defrag_extent *old, *tmp;
2708 
2709 	if (!new)
2710 		return;
2711 
2712 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2713 		kfree(old);
2714 	}
2715 	kfree(new);
2716 }
2717 
2718 static void relink_file_extents(struct new_sa_defrag_extent *new)
2719 {
2720 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2721 	struct btrfs_path *path;
2722 	struct sa_defrag_extent_backref *backref;
2723 	struct sa_defrag_extent_backref *prev = NULL;
2724 	struct inode *inode;
2725 	struct btrfs_root *root;
2726 	struct rb_node *node;
2727 	int ret;
2728 
2729 	inode = new->inode;
2730 	root = BTRFS_I(inode)->root;
2731 
2732 	path = btrfs_alloc_path();
2733 	if (!path)
2734 		return;
2735 
2736 	if (!record_extent_backrefs(path, new)) {
2737 		btrfs_free_path(path);
2738 		goto out;
2739 	}
2740 	btrfs_release_path(path);
2741 
2742 	while (1) {
2743 		node = rb_first(&new->root);
2744 		if (!node)
2745 			break;
2746 		rb_erase(node, &new->root);
2747 
2748 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2749 
2750 		ret = relink_extent_backref(path, prev, backref);
2751 		WARN_ON(ret < 0);
2752 
2753 		kfree(prev);
2754 
2755 		if (ret == 1)
2756 			prev = backref;
2757 		else
2758 			prev = NULL;
2759 		cond_resched();
2760 	}
2761 	kfree(prev);
2762 
2763 	btrfs_free_path(path);
2764 out:
2765 	free_sa_defrag_extent(new);
2766 
2767 	atomic_dec(&fs_info->defrag_running);
2768 	wake_up(&fs_info->transaction_wait);
2769 }
2770 
2771 static struct new_sa_defrag_extent *
2772 record_old_file_extents(struct inode *inode,
2773 			struct btrfs_ordered_extent *ordered)
2774 {
2775 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2776 	struct btrfs_root *root = BTRFS_I(inode)->root;
2777 	struct btrfs_path *path;
2778 	struct btrfs_key key;
2779 	struct old_sa_defrag_extent *old;
2780 	struct new_sa_defrag_extent *new;
2781 	int ret;
2782 
2783 	new = kmalloc(sizeof(*new), GFP_NOFS);
2784 	if (!new)
2785 		return NULL;
2786 
2787 	new->inode = inode;
2788 	new->file_pos = ordered->file_offset;
2789 	new->len = ordered->len;
2790 	new->bytenr = ordered->start;
2791 	new->disk_len = ordered->disk_len;
2792 	new->compress_type = ordered->compress_type;
2793 	new->root = RB_ROOT;
2794 	INIT_LIST_HEAD(&new->head);
2795 
2796 	path = btrfs_alloc_path();
2797 	if (!path)
2798 		goto out_kfree;
2799 
2800 	key.objectid = btrfs_ino(BTRFS_I(inode));
2801 	key.type = BTRFS_EXTENT_DATA_KEY;
2802 	key.offset = new->file_pos;
2803 
2804 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2805 	if (ret < 0)
2806 		goto out_free_path;
2807 	if (ret > 0 && path->slots[0] > 0)
2808 		path->slots[0]--;
2809 
2810 	/* find out all the old extents for the file range */
2811 	while (1) {
2812 		struct btrfs_file_extent_item *extent;
2813 		struct extent_buffer *l;
2814 		int slot;
2815 		u64 num_bytes;
2816 		u64 offset;
2817 		u64 end;
2818 		u64 disk_bytenr;
2819 		u64 extent_offset;
2820 
2821 		l = path->nodes[0];
2822 		slot = path->slots[0];
2823 
2824 		if (slot >= btrfs_header_nritems(l)) {
2825 			ret = btrfs_next_leaf(root, path);
2826 			if (ret < 0)
2827 				goto out_free_path;
2828 			else if (ret > 0)
2829 				break;
2830 			continue;
2831 		}
2832 
2833 		btrfs_item_key_to_cpu(l, &key, slot);
2834 
2835 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2836 			break;
2837 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2838 			break;
2839 		if (key.offset >= new->file_pos + new->len)
2840 			break;
2841 
2842 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2843 
2844 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2845 		if (key.offset + num_bytes < new->file_pos)
2846 			goto next;
2847 
2848 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2849 		if (!disk_bytenr)
2850 			goto next;
2851 
2852 		extent_offset = btrfs_file_extent_offset(l, extent);
2853 
2854 		old = kmalloc(sizeof(*old), GFP_NOFS);
2855 		if (!old)
2856 			goto out_free_path;
2857 
2858 		offset = max(new->file_pos, key.offset);
2859 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2860 
2861 		old->bytenr = disk_bytenr;
2862 		old->extent_offset = extent_offset;
2863 		old->offset = offset - key.offset;
2864 		old->len = end - offset;
2865 		old->new = new;
2866 		old->count = 0;
2867 		list_add_tail(&old->list, &new->head);
2868 next:
2869 		path->slots[0]++;
2870 		cond_resched();
2871 	}
2872 
2873 	btrfs_free_path(path);
2874 	atomic_inc(&fs_info->defrag_running);
2875 
2876 	return new;
2877 
2878 out_free_path:
2879 	btrfs_free_path(path);
2880 out_kfree:
2881 	free_sa_defrag_extent(new);
2882 	return NULL;
2883 }
2884 
2885 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2886 					 u64 start, u64 len)
2887 {
2888 	struct btrfs_block_group_cache *cache;
2889 
2890 	cache = btrfs_lookup_block_group(fs_info, start);
2891 	ASSERT(cache);
2892 
2893 	spin_lock(&cache->lock);
2894 	cache->delalloc_bytes -= len;
2895 	spin_unlock(&cache->lock);
2896 
2897 	btrfs_put_block_group(cache);
2898 }
2899 
2900 /* as ordered data IO finishes, this gets called so we can finish
2901  * an ordered extent if the range of bytes in the file it covers are
2902  * fully written.
2903  */
2904 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2905 {
2906 	struct inode *inode = ordered_extent->inode;
2907 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2908 	struct btrfs_root *root = BTRFS_I(inode)->root;
2909 	struct btrfs_trans_handle *trans = NULL;
2910 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2911 	struct extent_state *cached_state = NULL;
2912 	struct new_sa_defrag_extent *new = NULL;
2913 	int compress_type = 0;
2914 	int ret = 0;
2915 	u64 logical_len = ordered_extent->len;
2916 	bool nolock;
2917 	bool truncated = false;
2918 	bool range_locked = false;
2919 	bool clear_new_delalloc_bytes = false;
2920 
2921 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2922 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2923 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2924 		clear_new_delalloc_bytes = true;
2925 
2926 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2927 
2928 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2929 		ret = -EIO;
2930 		goto out;
2931 	}
2932 
2933 	btrfs_free_io_failure_record(BTRFS_I(inode),
2934 			ordered_extent->file_offset,
2935 			ordered_extent->file_offset +
2936 			ordered_extent->len - 1);
2937 
2938 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2939 		truncated = true;
2940 		logical_len = ordered_extent->truncated_len;
2941 		/* Truncated the entire extent, don't bother adding */
2942 		if (!logical_len)
2943 			goto out;
2944 	}
2945 
2946 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2947 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2948 
2949 		/*
2950 		 * For mwrite(mmap + memset to write) case, we still reserve
2951 		 * space for NOCOW range.
2952 		 * As NOCOW won't cause a new delayed ref, just free the space
2953 		 */
2954 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2955 				       ordered_extent->len);
2956 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2957 		if (nolock)
2958 			trans = btrfs_join_transaction_nolock(root);
2959 		else
2960 			trans = btrfs_join_transaction(root);
2961 		if (IS_ERR(trans)) {
2962 			ret = PTR_ERR(trans);
2963 			trans = NULL;
2964 			goto out;
2965 		}
2966 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2967 		ret = btrfs_update_inode_fallback(trans, root, inode);
2968 		if (ret) /* -ENOMEM or corruption */
2969 			btrfs_abort_transaction(trans, ret);
2970 		goto out;
2971 	}
2972 
2973 	range_locked = true;
2974 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2975 			 ordered_extent->file_offset + ordered_extent->len - 1,
2976 			 &cached_state);
2977 
2978 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2979 			ordered_extent->file_offset + ordered_extent->len - 1,
2980 			EXTENT_DEFRAG, 0, cached_state);
2981 	if (ret) {
2982 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2983 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2984 			/* the inode is shared */
2985 			new = record_old_file_extents(inode, ordered_extent);
2986 
2987 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2988 			ordered_extent->file_offset + ordered_extent->len - 1,
2989 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2990 	}
2991 
2992 	if (nolock)
2993 		trans = btrfs_join_transaction_nolock(root);
2994 	else
2995 		trans = btrfs_join_transaction(root);
2996 	if (IS_ERR(trans)) {
2997 		ret = PTR_ERR(trans);
2998 		trans = NULL;
2999 		goto out;
3000 	}
3001 
3002 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3003 
3004 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3005 		compress_type = ordered_extent->compress_type;
3006 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3007 		BUG_ON(compress_type);
3008 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3009 				       ordered_extent->len);
3010 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3011 						ordered_extent->file_offset,
3012 						ordered_extent->file_offset +
3013 						logical_len);
3014 	} else {
3015 		BUG_ON(root == fs_info->tree_root);
3016 		ret = insert_reserved_file_extent(trans, inode,
3017 						ordered_extent->file_offset,
3018 						ordered_extent->start,
3019 						ordered_extent->disk_len,
3020 						logical_len, logical_len,
3021 						compress_type, 0, 0,
3022 						BTRFS_FILE_EXTENT_REG);
3023 		if (!ret)
3024 			btrfs_release_delalloc_bytes(fs_info,
3025 						     ordered_extent->start,
3026 						     ordered_extent->disk_len);
3027 	}
3028 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3029 			   ordered_extent->file_offset, ordered_extent->len,
3030 			   trans->transid);
3031 	if (ret < 0) {
3032 		btrfs_abort_transaction(trans, ret);
3033 		goto out;
3034 	}
3035 
3036 	add_pending_csums(trans, inode, &ordered_extent->list);
3037 
3038 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3039 	ret = btrfs_update_inode_fallback(trans, root, inode);
3040 	if (ret) { /* -ENOMEM or corruption */
3041 		btrfs_abort_transaction(trans, ret);
3042 		goto out;
3043 	}
3044 	ret = 0;
3045 out:
3046 	if (range_locked || clear_new_delalloc_bytes) {
3047 		unsigned int clear_bits = 0;
3048 
3049 		if (range_locked)
3050 			clear_bits |= EXTENT_LOCKED;
3051 		if (clear_new_delalloc_bytes)
3052 			clear_bits |= EXTENT_DELALLOC_NEW;
3053 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3054 				 ordered_extent->file_offset,
3055 				 ordered_extent->file_offset +
3056 				 ordered_extent->len - 1,
3057 				 clear_bits,
3058 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3059 				 0, &cached_state, GFP_NOFS);
3060 	}
3061 
3062 	if (trans)
3063 		btrfs_end_transaction(trans);
3064 
3065 	if (ret || truncated) {
3066 		u64 start, end;
3067 
3068 		if (truncated)
3069 			start = ordered_extent->file_offset + logical_len;
3070 		else
3071 			start = ordered_extent->file_offset;
3072 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3073 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3074 
3075 		/* Drop the cache for the part of the extent we didn't write. */
3076 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3077 
3078 		/*
3079 		 * If the ordered extent had an IOERR or something else went
3080 		 * wrong we need to return the space for this ordered extent
3081 		 * back to the allocator.  We only free the extent in the
3082 		 * truncated case if we didn't write out the extent at all.
3083 		 */
3084 		if ((ret || !logical_len) &&
3085 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3086 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3087 			btrfs_free_reserved_extent(fs_info,
3088 						   ordered_extent->start,
3089 						   ordered_extent->disk_len, 1);
3090 	}
3091 
3092 
3093 	/*
3094 	 * This needs to be done to make sure anybody waiting knows we are done
3095 	 * updating everything for this ordered extent.
3096 	 */
3097 	btrfs_remove_ordered_extent(inode, ordered_extent);
3098 
3099 	/* for snapshot-aware defrag */
3100 	if (new) {
3101 		if (ret) {
3102 			free_sa_defrag_extent(new);
3103 			atomic_dec(&fs_info->defrag_running);
3104 		} else {
3105 			relink_file_extents(new);
3106 		}
3107 	}
3108 
3109 	/* once for us */
3110 	btrfs_put_ordered_extent(ordered_extent);
3111 	/* once for the tree */
3112 	btrfs_put_ordered_extent(ordered_extent);
3113 
3114 	return ret;
3115 }
3116 
3117 static void finish_ordered_fn(struct btrfs_work *work)
3118 {
3119 	struct btrfs_ordered_extent *ordered_extent;
3120 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3121 	btrfs_finish_ordered_io(ordered_extent);
3122 }
3123 
3124 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3125 				struct extent_state *state, int uptodate)
3126 {
3127 	struct inode *inode = page->mapping->host;
3128 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3129 	struct btrfs_ordered_extent *ordered_extent = NULL;
3130 	struct btrfs_workqueue *wq;
3131 	btrfs_work_func_t func;
3132 
3133 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3134 
3135 	ClearPagePrivate2(page);
3136 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3137 					    end - start + 1, uptodate))
3138 		return;
3139 
3140 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3141 		wq = fs_info->endio_freespace_worker;
3142 		func = btrfs_freespace_write_helper;
3143 	} else {
3144 		wq = fs_info->endio_write_workers;
3145 		func = btrfs_endio_write_helper;
3146 	}
3147 
3148 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3149 			NULL);
3150 	btrfs_queue_work(wq, &ordered_extent->work);
3151 }
3152 
3153 static int __readpage_endio_check(struct inode *inode,
3154 				  struct btrfs_io_bio *io_bio,
3155 				  int icsum, struct page *page,
3156 				  int pgoff, u64 start, size_t len)
3157 {
3158 	char *kaddr;
3159 	u32 csum_expected;
3160 	u32 csum = ~(u32)0;
3161 
3162 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3163 
3164 	kaddr = kmap_atomic(page);
3165 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3166 	btrfs_csum_final(csum, (u8 *)&csum);
3167 	if (csum != csum_expected)
3168 		goto zeroit;
3169 
3170 	kunmap_atomic(kaddr);
3171 	return 0;
3172 zeroit:
3173 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3174 				    io_bio->mirror_num);
3175 	memset(kaddr + pgoff, 1, len);
3176 	flush_dcache_page(page);
3177 	kunmap_atomic(kaddr);
3178 	return -EIO;
3179 }
3180 
3181 /*
3182  * when reads are done, we need to check csums to verify the data is correct
3183  * if there's a match, we allow the bio to finish.  If not, the code in
3184  * extent_io.c will try to find good copies for us.
3185  */
3186 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3187 				      u64 phy_offset, struct page *page,
3188 				      u64 start, u64 end, int mirror)
3189 {
3190 	size_t offset = start - page_offset(page);
3191 	struct inode *inode = page->mapping->host;
3192 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3193 	struct btrfs_root *root = BTRFS_I(inode)->root;
3194 
3195 	if (PageChecked(page)) {
3196 		ClearPageChecked(page);
3197 		return 0;
3198 	}
3199 
3200 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3201 		return 0;
3202 
3203 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3204 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3205 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3206 		return 0;
3207 	}
3208 
3209 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3210 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3211 				      start, (size_t)(end - start + 1));
3212 }
3213 
3214 void btrfs_add_delayed_iput(struct inode *inode)
3215 {
3216 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3217 	struct btrfs_inode *binode = BTRFS_I(inode);
3218 
3219 	if (atomic_add_unless(&inode->i_count, -1, 1))
3220 		return;
3221 
3222 	spin_lock(&fs_info->delayed_iput_lock);
3223 	if (binode->delayed_iput_count == 0) {
3224 		ASSERT(list_empty(&binode->delayed_iput));
3225 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3226 	} else {
3227 		binode->delayed_iput_count++;
3228 	}
3229 	spin_unlock(&fs_info->delayed_iput_lock);
3230 }
3231 
3232 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3233 {
3234 
3235 	spin_lock(&fs_info->delayed_iput_lock);
3236 	while (!list_empty(&fs_info->delayed_iputs)) {
3237 		struct btrfs_inode *inode;
3238 
3239 		inode = list_first_entry(&fs_info->delayed_iputs,
3240 				struct btrfs_inode, delayed_iput);
3241 		if (inode->delayed_iput_count) {
3242 			inode->delayed_iput_count--;
3243 			list_move_tail(&inode->delayed_iput,
3244 					&fs_info->delayed_iputs);
3245 		} else {
3246 			list_del_init(&inode->delayed_iput);
3247 		}
3248 		spin_unlock(&fs_info->delayed_iput_lock);
3249 		iput(&inode->vfs_inode);
3250 		spin_lock(&fs_info->delayed_iput_lock);
3251 	}
3252 	spin_unlock(&fs_info->delayed_iput_lock);
3253 }
3254 
3255 /*
3256  * This is called in transaction commit time. If there are no orphan
3257  * files in the subvolume, it removes orphan item and frees block_rsv
3258  * structure.
3259  */
3260 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3261 			      struct btrfs_root *root)
3262 {
3263 	struct btrfs_fs_info *fs_info = root->fs_info;
3264 	struct btrfs_block_rsv *block_rsv;
3265 	int ret;
3266 
3267 	if (atomic_read(&root->orphan_inodes) ||
3268 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3269 		return;
3270 
3271 	spin_lock(&root->orphan_lock);
3272 	if (atomic_read(&root->orphan_inodes)) {
3273 		spin_unlock(&root->orphan_lock);
3274 		return;
3275 	}
3276 
3277 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3278 		spin_unlock(&root->orphan_lock);
3279 		return;
3280 	}
3281 
3282 	block_rsv = root->orphan_block_rsv;
3283 	root->orphan_block_rsv = NULL;
3284 	spin_unlock(&root->orphan_lock);
3285 
3286 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3287 	    btrfs_root_refs(&root->root_item) > 0) {
3288 		ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3289 					    root->root_key.objectid);
3290 		if (ret)
3291 			btrfs_abort_transaction(trans, ret);
3292 		else
3293 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3294 				  &root->state);
3295 	}
3296 
3297 	if (block_rsv) {
3298 		WARN_ON(block_rsv->size > 0);
3299 		btrfs_free_block_rsv(fs_info, block_rsv);
3300 	}
3301 }
3302 
3303 /*
3304  * This creates an orphan entry for the given inode in case something goes
3305  * wrong in the middle of an unlink/truncate.
3306  *
3307  * NOTE: caller of this function should reserve 5 units of metadata for
3308  *	 this function.
3309  */
3310 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3311 		struct btrfs_inode *inode)
3312 {
3313 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3314 	struct btrfs_root *root = inode->root;
3315 	struct btrfs_block_rsv *block_rsv = NULL;
3316 	int reserve = 0;
3317 	int insert = 0;
3318 	int ret;
3319 
3320 	if (!root->orphan_block_rsv) {
3321 		block_rsv = btrfs_alloc_block_rsv(fs_info,
3322 						  BTRFS_BLOCK_RSV_TEMP);
3323 		if (!block_rsv)
3324 			return -ENOMEM;
3325 	}
3326 
3327 	spin_lock(&root->orphan_lock);
3328 	if (!root->orphan_block_rsv) {
3329 		root->orphan_block_rsv = block_rsv;
3330 	} else if (block_rsv) {
3331 		btrfs_free_block_rsv(fs_info, block_rsv);
3332 		block_rsv = NULL;
3333 	}
3334 
3335 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3336 			      &inode->runtime_flags)) {
3337 #if 0
3338 		/*
3339 		 * For proper ENOSPC handling, we should do orphan
3340 		 * cleanup when mounting. But this introduces backward
3341 		 * compatibility issue.
3342 		 */
3343 		if (!xchg(&root->orphan_item_inserted, 1))
3344 			insert = 2;
3345 		else
3346 			insert = 1;
3347 #endif
3348 		insert = 1;
3349 		atomic_inc(&root->orphan_inodes);
3350 	}
3351 
3352 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3353 			      &inode->runtime_flags))
3354 		reserve = 1;
3355 	spin_unlock(&root->orphan_lock);
3356 
3357 	/* grab metadata reservation from transaction handle */
3358 	if (reserve) {
3359 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3360 		ASSERT(!ret);
3361 		if (ret) {
3362 			atomic_dec(&root->orphan_inodes);
3363 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3364 				  &inode->runtime_flags);
3365 			if (insert)
3366 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3367 					  &inode->runtime_flags);
3368 			return ret;
3369 		}
3370 	}
3371 
3372 	/* insert an orphan item to track this unlinked/truncated file */
3373 	if (insert >= 1) {
3374 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3375 		if (ret) {
3376 			atomic_dec(&root->orphan_inodes);
3377 			if (reserve) {
3378 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3379 					  &inode->runtime_flags);
3380 				btrfs_orphan_release_metadata(inode);
3381 			}
3382 			if (ret != -EEXIST) {
3383 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3384 					  &inode->runtime_flags);
3385 				btrfs_abort_transaction(trans, ret);
3386 				return ret;
3387 			}
3388 		}
3389 		ret = 0;
3390 	}
3391 
3392 	/* insert an orphan item to track subvolume contains orphan files */
3393 	if (insert >= 2) {
3394 		ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3395 					       root->root_key.objectid);
3396 		if (ret && ret != -EEXIST) {
3397 			btrfs_abort_transaction(trans, ret);
3398 			return ret;
3399 		}
3400 	}
3401 	return 0;
3402 }
3403 
3404 /*
3405  * We have done the truncate/delete so we can go ahead and remove the orphan
3406  * item for this particular inode.
3407  */
3408 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3409 			    struct btrfs_inode *inode)
3410 {
3411 	struct btrfs_root *root = inode->root;
3412 	int delete_item = 0;
3413 	int release_rsv = 0;
3414 	int ret = 0;
3415 
3416 	spin_lock(&root->orphan_lock);
3417 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3418 			       &inode->runtime_flags))
3419 		delete_item = 1;
3420 
3421 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3422 			       &inode->runtime_flags))
3423 		release_rsv = 1;
3424 	spin_unlock(&root->orphan_lock);
3425 
3426 	if (delete_item) {
3427 		atomic_dec(&root->orphan_inodes);
3428 		if (trans)
3429 			ret = btrfs_del_orphan_item(trans, root,
3430 						    btrfs_ino(inode));
3431 	}
3432 
3433 	if (release_rsv)
3434 		btrfs_orphan_release_metadata(inode);
3435 
3436 	return ret;
3437 }
3438 
3439 /*
3440  * this cleans up any orphans that may be left on the list from the last use
3441  * of this root.
3442  */
3443 int btrfs_orphan_cleanup(struct btrfs_root *root)
3444 {
3445 	struct btrfs_fs_info *fs_info = root->fs_info;
3446 	struct btrfs_path *path;
3447 	struct extent_buffer *leaf;
3448 	struct btrfs_key key, found_key;
3449 	struct btrfs_trans_handle *trans;
3450 	struct inode *inode;
3451 	u64 last_objectid = 0;
3452 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3453 
3454 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3455 		return 0;
3456 
3457 	path = btrfs_alloc_path();
3458 	if (!path) {
3459 		ret = -ENOMEM;
3460 		goto out;
3461 	}
3462 	path->reada = READA_BACK;
3463 
3464 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3465 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3466 	key.offset = (u64)-1;
3467 
3468 	while (1) {
3469 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3470 		if (ret < 0)
3471 			goto out;
3472 
3473 		/*
3474 		 * if ret == 0 means we found what we were searching for, which
3475 		 * is weird, but possible, so only screw with path if we didn't
3476 		 * find the key and see if we have stuff that matches
3477 		 */
3478 		if (ret > 0) {
3479 			ret = 0;
3480 			if (path->slots[0] == 0)
3481 				break;
3482 			path->slots[0]--;
3483 		}
3484 
3485 		/* pull out the item */
3486 		leaf = path->nodes[0];
3487 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3488 
3489 		/* make sure the item matches what we want */
3490 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3491 			break;
3492 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3493 			break;
3494 
3495 		/* release the path since we're done with it */
3496 		btrfs_release_path(path);
3497 
3498 		/*
3499 		 * this is where we are basically btrfs_lookup, without the
3500 		 * crossing root thing.  we store the inode number in the
3501 		 * offset of the orphan item.
3502 		 */
3503 
3504 		if (found_key.offset == last_objectid) {
3505 			btrfs_err(fs_info,
3506 				  "Error removing orphan entry, stopping orphan cleanup");
3507 			ret = -EINVAL;
3508 			goto out;
3509 		}
3510 
3511 		last_objectid = found_key.offset;
3512 
3513 		found_key.objectid = found_key.offset;
3514 		found_key.type = BTRFS_INODE_ITEM_KEY;
3515 		found_key.offset = 0;
3516 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3517 		ret = PTR_ERR_OR_ZERO(inode);
3518 		if (ret && ret != -ENOENT)
3519 			goto out;
3520 
3521 		if (ret == -ENOENT && root == fs_info->tree_root) {
3522 			struct btrfs_root *dead_root;
3523 			struct btrfs_fs_info *fs_info = root->fs_info;
3524 			int is_dead_root = 0;
3525 
3526 			/*
3527 			 * this is an orphan in the tree root. Currently these
3528 			 * could come from 2 sources:
3529 			 *  a) a snapshot deletion in progress
3530 			 *  b) a free space cache inode
3531 			 * We need to distinguish those two, as the snapshot
3532 			 * orphan must not get deleted.
3533 			 * find_dead_roots already ran before us, so if this
3534 			 * is a snapshot deletion, we should find the root
3535 			 * in the dead_roots list
3536 			 */
3537 			spin_lock(&fs_info->trans_lock);
3538 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3539 					    root_list) {
3540 				if (dead_root->root_key.objectid ==
3541 				    found_key.objectid) {
3542 					is_dead_root = 1;
3543 					break;
3544 				}
3545 			}
3546 			spin_unlock(&fs_info->trans_lock);
3547 			if (is_dead_root) {
3548 				/* prevent this orphan from being found again */
3549 				key.offset = found_key.objectid - 1;
3550 				continue;
3551 			}
3552 		}
3553 		/*
3554 		 * Inode is already gone but the orphan item is still there,
3555 		 * kill the orphan item.
3556 		 */
3557 		if (ret == -ENOENT) {
3558 			trans = btrfs_start_transaction(root, 1);
3559 			if (IS_ERR(trans)) {
3560 				ret = PTR_ERR(trans);
3561 				goto out;
3562 			}
3563 			btrfs_debug(fs_info, "auto deleting %Lu",
3564 				    found_key.objectid);
3565 			ret = btrfs_del_orphan_item(trans, root,
3566 						    found_key.objectid);
3567 			btrfs_end_transaction(trans);
3568 			if (ret)
3569 				goto out;
3570 			continue;
3571 		}
3572 
3573 		/*
3574 		 * add this inode to the orphan list so btrfs_orphan_del does
3575 		 * the proper thing when we hit it
3576 		 */
3577 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3578 			&BTRFS_I(inode)->runtime_flags);
3579 		atomic_inc(&root->orphan_inodes);
3580 
3581 		/* if we have links, this was a truncate, lets do that */
3582 		if (inode->i_nlink) {
3583 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3584 				iput(inode);
3585 				continue;
3586 			}
3587 			nr_truncate++;
3588 
3589 			/* 1 for the orphan item deletion. */
3590 			trans = btrfs_start_transaction(root, 1);
3591 			if (IS_ERR(trans)) {
3592 				iput(inode);
3593 				ret = PTR_ERR(trans);
3594 				goto out;
3595 			}
3596 			ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3597 			btrfs_end_transaction(trans);
3598 			if (ret) {
3599 				iput(inode);
3600 				goto out;
3601 			}
3602 
3603 			ret = btrfs_truncate(inode);
3604 			if (ret)
3605 				btrfs_orphan_del(NULL, BTRFS_I(inode));
3606 		} else {
3607 			nr_unlink++;
3608 		}
3609 
3610 		/* this will do delete_inode and everything for us */
3611 		iput(inode);
3612 		if (ret)
3613 			goto out;
3614 	}
3615 	/* release the path since we're done with it */
3616 	btrfs_release_path(path);
3617 
3618 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3619 
3620 	if (root->orphan_block_rsv)
3621 		btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3622 					(u64)-1);
3623 
3624 	if (root->orphan_block_rsv ||
3625 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3626 		trans = btrfs_join_transaction(root);
3627 		if (!IS_ERR(trans))
3628 			btrfs_end_transaction(trans);
3629 	}
3630 
3631 	if (nr_unlink)
3632 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3633 	if (nr_truncate)
3634 		btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3635 
3636 out:
3637 	if (ret)
3638 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3639 	btrfs_free_path(path);
3640 	return ret;
3641 }
3642 
3643 /*
3644  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3645  * don't find any xattrs, we know there can't be any acls.
3646  *
3647  * slot is the slot the inode is in, objectid is the objectid of the inode
3648  */
3649 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3650 					  int slot, u64 objectid,
3651 					  int *first_xattr_slot)
3652 {
3653 	u32 nritems = btrfs_header_nritems(leaf);
3654 	struct btrfs_key found_key;
3655 	static u64 xattr_access = 0;
3656 	static u64 xattr_default = 0;
3657 	int scanned = 0;
3658 
3659 	if (!xattr_access) {
3660 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3661 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3662 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3663 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3664 	}
3665 
3666 	slot++;
3667 	*first_xattr_slot = -1;
3668 	while (slot < nritems) {
3669 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3670 
3671 		/* we found a different objectid, there must not be acls */
3672 		if (found_key.objectid != objectid)
3673 			return 0;
3674 
3675 		/* we found an xattr, assume we've got an acl */
3676 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3677 			if (*first_xattr_slot == -1)
3678 				*first_xattr_slot = slot;
3679 			if (found_key.offset == xattr_access ||
3680 			    found_key.offset == xattr_default)
3681 				return 1;
3682 		}
3683 
3684 		/*
3685 		 * we found a key greater than an xattr key, there can't
3686 		 * be any acls later on
3687 		 */
3688 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3689 			return 0;
3690 
3691 		slot++;
3692 		scanned++;
3693 
3694 		/*
3695 		 * it goes inode, inode backrefs, xattrs, extents,
3696 		 * so if there are a ton of hard links to an inode there can
3697 		 * be a lot of backrefs.  Don't waste time searching too hard,
3698 		 * this is just an optimization
3699 		 */
3700 		if (scanned >= 8)
3701 			break;
3702 	}
3703 	/* we hit the end of the leaf before we found an xattr or
3704 	 * something larger than an xattr.  We have to assume the inode
3705 	 * has acls
3706 	 */
3707 	if (*first_xattr_slot == -1)
3708 		*first_xattr_slot = slot;
3709 	return 1;
3710 }
3711 
3712 /*
3713  * read an inode from the btree into the in-memory inode
3714  */
3715 static int btrfs_read_locked_inode(struct inode *inode)
3716 {
3717 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3718 	struct btrfs_path *path;
3719 	struct extent_buffer *leaf;
3720 	struct btrfs_inode_item *inode_item;
3721 	struct btrfs_root *root = BTRFS_I(inode)->root;
3722 	struct btrfs_key location;
3723 	unsigned long ptr;
3724 	int maybe_acls;
3725 	u32 rdev;
3726 	int ret;
3727 	bool filled = false;
3728 	int first_xattr_slot;
3729 
3730 	ret = btrfs_fill_inode(inode, &rdev);
3731 	if (!ret)
3732 		filled = true;
3733 
3734 	path = btrfs_alloc_path();
3735 	if (!path) {
3736 		ret = -ENOMEM;
3737 		goto make_bad;
3738 	}
3739 
3740 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3741 
3742 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3743 	if (ret) {
3744 		if (ret > 0)
3745 			ret = -ENOENT;
3746 		goto make_bad;
3747 	}
3748 
3749 	leaf = path->nodes[0];
3750 
3751 	if (filled)
3752 		goto cache_index;
3753 
3754 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3755 				    struct btrfs_inode_item);
3756 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3757 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3758 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3759 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3760 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3761 
3762 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3763 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3764 
3765 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3766 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3767 
3768 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3769 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3770 
3771 	BTRFS_I(inode)->i_otime.tv_sec =
3772 		btrfs_timespec_sec(leaf, &inode_item->otime);
3773 	BTRFS_I(inode)->i_otime.tv_nsec =
3774 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3775 
3776 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3777 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3778 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3779 
3780 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3781 	inode->i_generation = BTRFS_I(inode)->generation;
3782 	inode->i_rdev = 0;
3783 	rdev = btrfs_inode_rdev(leaf, inode_item);
3784 
3785 	BTRFS_I(inode)->index_cnt = (u64)-1;
3786 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3787 
3788 cache_index:
3789 	/*
3790 	 * If we were modified in the current generation and evicted from memory
3791 	 * and then re-read we need to do a full sync since we don't have any
3792 	 * idea about which extents were modified before we were evicted from
3793 	 * cache.
3794 	 *
3795 	 * This is required for both inode re-read from disk and delayed inode
3796 	 * in delayed_nodes_tree.
3797 	 */
3798 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3799 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3800 			&BTRFS_I(inode)->runtime_flags);
3801 
3802 	/*
3803 	 * We don't persist the id of the transaction where an unlink operation
3804 	 * against the inode was last made. So here we assume the inode might
3805 	 * have been evicted, and therefore the exact value of last_unlink_trans
3806 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3807 	 * between the inode and its parent if the inode is fsync'ed and the log
3808 	 * replayed. For example, in the scenario:
3809 	 *
3810 	 * touch mydir/foo
3811 	 * ln mydir/foo mydir/bar
3812 	 * sync
3813 	 * unlink mydir/bar
3814 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3815 	 * xfs_io -c fsync mydir/foo
3816 	 * <power failure>
3817 	 * mount fs, triggers fsync log replay
3818 	 *
3819 	 * We must make sure that when we fsync our inode foo we also log its
3820 	 * parent inode, otherwise after log replay the parent still has the
3821 	 * dentry with the "bar" name but our inode foo has a link count of 1
3822 	 * and doesn't have an inode ref with the name "bar" anymore.
3823 	 *
3824 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3825 	 * but it guarantees correctness at the expense of occasional full
3826 	 * transaction commits on fsync if our inode is a directory, or if our
3827 	 * inode is not a directory, logging its parent unnecessarily.
3828 	 */
3829 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3830 
3831 	path->slots[0]++;
3832 	if (inode->i_nlink != 1 ||
3833 	    path->slots[0] >= btrfs_header_nritems(leaf))
3834 		goto cache_acl;
3835 
3836 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3837 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3838 		goto cache_acl;
3839 
3840 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3841 	if (location.type == BTRFS_INODE_REF_KEY) {
3842 		struct btrfs_inode_ref *ref;
3843 
3844 		ref = (struct btrfs_inode_ref *)ptr;
3845 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3846 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3847 		struct btrfs_inode_extref *extref;
3848 
3849 		extref = (struct btrfs_inode_extref *)ptr;
3850 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3851 								     extref);
3852 	}
3853 cache_acl:
3854 	/*
3855 	 * try to precache a NULL acl entry for files that don't have
3856 	 * any xattrs or acls
3857 	 */
3858 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3859 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3860 	if (first_xattr_slot != -1) {
3861 		path->slots[0] = first_xattr_slot;
3862 		ret = btrfs_load_inode_props(inode, path);
3863 		if (ret)
3864 			btrfs_err(fs_info,
3865 				  "error loading props for ino %llu (root %llu): %d",
3866 				  btrfs_ino(BTRFS_I(inode)),
3867 				  root->root_key.objectid, ret);
3868 	}
3869 	btrfs_free_path(path);
3870 
3871 	if (!maybe_acls)
3872 		cache_no_acl(inode);
3873 
3874 	switch (inode->i_mode & S_IFMT) {
3875 	case S_IFREG:
3876 		inode->i_mapping->a_ops = &btrfs_aops;
3877 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3878 		inode->i_fop = &btrfs_file_operations;
3879 		inode->i_op = &btrfs_file_inode_operations;
3880 		break;
3881 	case S_IFDIR:
3882 		inode->i_fop = &btrfs_dir_file_operations;
3883 		inode->i_op = &btrfs_dir_inode_operations;
3884 		break;
3885 	case S_IFLNK:
3886 		inode->i_op = &btrfs_symlink_inode_operations;
3887 		inode_nohighmem(inode);
3888 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3889 		break;
3890 	default:
3891 		inode->i_op = &btrfs_special_inode_operations;
3892 		init_special_inode(inode, inode->i_mode, rdev);
3893 		break;
3894 	}
3895 
3896 	btrfs_update_iflags(inode);
3897 	return 0;
3898 
3899 make_bad:
3900 	btrfs_free_path(path);
3901 	make_bad_inode(inode);
3902 	return ret;
3903 }
3904 
3905 /*
3906  * given a leaf and an inode, copy the inode fields into the leaf
3907  */
3908 static void fill_inode_item(struct btrfs_trans_handle *trans,
3909 			    struct extent_buffer *leaf,
3910 			    struct btrfs_inode_item *item,
3911 			    struct inode *inode)
3912 {
3913 	struct btrfs_map_token token;
3914 
3915 	btrfs_init_map_token(&token);
3916 
3917 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3918 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3919 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3920 				   &token);
3921 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3922 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3923 
3924 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3925 				     inode->i_atime.tv_sec, &token);
3926 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3927 				      inode->i_atime.tv_nsec, &token);
3928 
3929 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3930 				     inode->i_mtime.tv_sec, &token);
3931 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3932 				      inode->i_mtime.tv_nsec, &token);
3933 
3934 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3935 				     inode->i_ctime.tv_sec, &token);
3936 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3937 				      inode->i_ctime.tv_nsec, &token);
3938 
3939 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3940 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3941 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3942 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3943 
3944 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3945 				     &token);
3946 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3947 					 &token);
3948 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3949 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3950 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3951 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3952 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3953 }
3954 
3955 /*
3956  * copy everything in the in-memory inode into the btree.
3957  */
3958 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3959 				struct btrfs_root *root, struct inode *inode)
3960 {
3961 	struct btrfs_inode_item *inode_item;
3962 	struct btrfs_path *path;
3963 	struct extent_buffer *leaf;
3964 	int ret;
3965 
3966 	path = btrfs_alloc_path();
3967 	if (!path)
3968 		return -ENOMEM;
3969 
3970 	path->leave_spinning = 1;
3971 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3972 				 1);
3973 	if (ret) {
3974 		if (ret > 0)
3975 			ret = -ENOENT;
3976 		goto failed;
3977 	}
3978 
3979 	leaf = path->nodes[0];
3980 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3981 				    struct btrfs_inode_item);
3982 
3983 	fill_inode_item(trans, leaf, inode_item, inode);
3984 	btrfs_mark_buffer_dirty(leaf);
3985 	btrfs_set_inode_last_trans(trans, inode);
3986 	ret = 0;
3987 failed:
3988 	btrfs_free_path(path);
3989 	return ret;
3990 }
3991 
3992 /*
3993  * copy everything in the in-memory inode into the btree.
3994  */
3995 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3996 				struct btrfs_root *root, struct inode *inode)
3997 {
3998 	struct btrfs_fs_info *fs_info = root->fs_info;
3999 	int ret;
4000 
4001 	/*
4002 	 * If the inode is a free space inode, we can deadlock during commit
4003 	 * if we put it into the delayed code.
4004 	 *
4005 	 * The data relocation inode should also be directly updated
4006 	 * without delay
4007 	 */
4008 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4009 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4010 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4011 		btrfs_update_root_times(trans, root);
4012 
4013 		ret = btrfs_delayed_update_inode(trans, root, inode);
4014 		if (!ret)
4015 			btrfs_set_inode_last_trans(trans, inode);
4016 		return ret;
4017 	}
4018 
4019 	return btrfs_update_inode_item(trans, root, inode);
4020 }
4021 
4022 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4023 					 struct btrfs_root *root,
4024 					 struct inode *inode)
4025 {
4026 	int ret;
4027 
4028 	ret = btrfs_update_inode(trans, root, inode);
4029 	if (ret == -ENOSPC)
4030 		return btrfs_update_inode_item(trans, root, inode);
4031 	return ret;
4032 }
4033 
4034 /*
4035  * unlink helper that gets used here in inode.c and in the tree logging
4036  * recovery code.  It remove a link in a directory with a given name, and
4037  * also drops the back refs in the inode to the directory
4038  */
4039 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4040 				struct btrfs_root *root,
4041 				struct btrfs_inode *dir,
4042 				struct btrfs_inode *inode,
4043 				const char *name, int name_len)
4044 {
4045 	struct btrfs_fs_info *fs_info = root->fs_info;
4046 	struct btrfs_path *path;
4047 	int ret = 0;
4048 	struct extent_buffer *leaf;
4049 	struct btrfs_dir_item *di;
4050 	struct btrfs_key key;
4051 	u64 index;
4052 	u64 ino = btrfs_ino(inode);
4053 	u64 dir_ino = btrfs_ino(dir);
4054 
4055 	path = btrfs_alloc_path();
4056 	if (!path) {
4057 		ret = -ENOMEM;
4058 		goto out;
4059 	}
4060 
4061 	path->leave_spinning = 1;
4062 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4063 				    name, name_len, -1);
4064 	if (IS_ERR(di)) {
4065 		ret = PTR_ERR(di);
4066 		goto err;
4067 	}
4068 	if (!di) {
4069 		ret = -ENOENT;
4070 		goto err;
4071 	}
4072 	leaf = path->nodes[0];
4073 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4074 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4075 	if (ret)
4076 		goto err;
4077 	btrfs_release_path(path);
4078 
4079 	/*
4080 	 * If we don't have dir index, we have to get it by looking up
4081 	 * the inode ref, since we get the inode ref, remove it directly,
4082 	 * it is unnecessary to do delayed deletion.
4083 	 *
4084 	 * But if we have dir index, needn't search inode ref to get it.
4085 	 * Since the inode ref is close to the inode item, it is better
4086 	 * that we delay to delete it, and just do this deletion when
4087 	 * we update the inode item.
4088 	 */
4089 	if (inode->dir_index) {
4090 		ret = btrfs_delayed_delete_inode_ref(inode);
4091 		if (!ret) {
4092 			index = inode->dir_index;
4093 			goto skip_backref;
4094 		}
4095 	}
4096 
4097 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4098 				  dir_ino, &index);
4099 	if (ret) {
4100 		btrfs_info(fs_info,
4101 			"failed to delete reference to %.*s, inode %llu parent %llu",
4102 			name_len, name, ino, dir_ino);
4103 		btrfs_abort_transaction(trans, ret);
4104 		goto err;
4105 	}
4106 skip_backref:
4107 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4108 	if (ret) {
4109 		btrfs_abort_transaction(trans, ret);
4110 		goto err;
4111 	}
4112 
4113 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4114 			dir_ino);
4115 	if (ret != 0 && ret != -ENOENT) {
4116 		btrfs_abort_transaction(trans, ret);
4117 		goto err;
4118 	}
4119 
4120 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4121 			index);
4122 	if (ret == -ENOENT)
4123 		ret = 0;
4124 	else if (ret)
4125 		btrfs_abort_transaction(trans, ret);
4126 err:
4127 	btrfs_free_path(path);
4128 	if (ret)
4129 		goto out;
4130 
4131 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4132 	inode_inc_iversion(&inode->vfs_inode);
4133 	inode_inc_iversion(&dir->vfs_inode);
4134 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4135 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4136 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4137 out:
4138 	return ret;
4139 }
4140 
4141 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4142 		       struct btrfs_root *root,
4143 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4144 		       const char *name, int name_len)
4145 {
4146 	int ret;
4147 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4148 	if (!ret) {
4149 		drop_nlink(&inode->vfs_inode);
4150 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4151 	}
4152 	return ret;
4153 }
4154 
4155 /*
4156  * helper to start transaction for unlink and rmdir.
4157  *
4158  * unlink and rmdir are special in btrfs, they do not always free space, so
4159  * if we cannot make our reservations the normal way try and see if there is
4160  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4161  * allow the unlink to occur.
4162  */
4163 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4164 {
4165 	struct btrfs_root *root = BTRFS_I(dir)->root;
4166 
4167 	/*
4168 	 * 1 for the possible orphan item
4169 	 * 1 for the dir item
4170 	 * 1 for the dir index
4171 	 * 1 for the inode ref
4172 	 * 1 for the inode
4173 	 */
4174 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4175 }
4176 
4177 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4178 {
4179 	struct btrfs_root *root = BTRFS_I(dir)->root;
4180 	struct btrfs_trans_handle *trans;
4181 	struct inode *inode = d_inode(dentry);
4182 	int ret;
4183 
4184 	trans = __unlink_start_trans(dir);
4185 	if (IS_ERR(trans))
4186 		return PTR_ERR(trans);
4187 
4188 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4189 			0);
4190 
4191 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4192 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4193 			dentry->d_name.len);
4194 	if (ret)
4195 		goto out;
4196 
4197 	if (inode->i_nlink == 0) {
4198 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4199 		if (ret)
4200 			goto out;
4201 	}
4202 
4203 out:
4204 	btrfs_end_transaction(trans);
4205 	btrfs_btree_balance_dirty(root->fs_info);
4206 	return ret;
4207 }
4208 
4209 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4210 			struct btrfs_root *root,
4211 			struct inode *dir, u64 objectid,
4212 			const char *name, int name_len)
4213 {
4214 	struct btrfs_fs_info *fs_info = root->fs_info;
4215 	struct btrfs_path *path;
4216 	struct extent_buffer *leaf;
4217 	struct btrfs_dir_item *di;
4218 	struct btrfs_key key;
4219 	u64 index;
4220 	int ret;
4221 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4222 
4223 	path = btrfs_alloc_path();
4224 	if (!path)
4225 		return -ENOMEM;
4226 
4227 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4228 				   name, name_len, -1);
4229 	if (IS_ERR_OR_NULL(di)) {
4230 		if (!di)
4231 			ret = -ENOENT;
4232 		else
4233 			ret = PTR_ERR(di);
4234 		goto out;
4235 	}
4236 
4237 	leaf = path->nodes[0];
4238 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4239 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4240 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4241 	if (ret) {
4242 		btrfs_abort_transaction(trans, ret);
4243 		goto out;
4244 	}
4245 	btrfs_release_path(path);
4246 
4247 	ret = btrfs_del_root_ref(trans, fs_info, objectid,
4248 				 root->root_key.objectid, dir_ino,
4249 				 &index, name, name_len);
4250 	if (ret < 0) {
4251 		if (ret != -ENOENT) {
4252 			btrfs_abort_transaction(trans, ret);
4253 			goto out;
4254 		}
4255 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4256 						 name, name_len);
4257 		if (IS_ERR_OR_NULL(di)) {
4258 			if (!di)
4259 				ret = -ENOENT;
4260 			else
4261 				ret = PTR_ERR(di);
4262 			btrfs_abort_transaction(trans, ret);
4263 			goto out;
4264 		}
4265 
4266 		leaf = path->nodes[0];
4267 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4268 		btrfs_release_path(path);
4269 		index = key.offset;
4270 	}
4271 	btrfs_release_path(path);
4272 
4273 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4274 	if (ret) {
4275 		btrfs_abort_transaction(trans, ret);
4276 		goto out;
4277 	}
4278 
4279 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4280 	inode_inc_iversion(dir);
4281 	dir->i_mtime = dir->i_ctime = current_time(dir);
4282 	ret = btrfs_update_inode_fallback(trans, root, dir);
4283 	if (ret)
4284 		btrfs_abort_transaction(trans, ret);
4285 out:
4286 	btrfs_free_path(path);
4287 	return ret;
4288 }
4289 
4290 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4291 {
4292 	struct inode *inode = d_inode(dentry);
4293 	int err = 0;
4294 	struct btrfs_root *root = BTRFS_I(dir)->root;
4295 	struct btrfs_trans_handle *trans;
4296 	u64 last_unlink_trans;
4297 
4298 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4299 		return -ENOTEMPTY;
4300 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4301 		return -EPERM;
4302 
4303 	trans = __unlink_start_trans(dir);
4304 	if (IS_ERR(trans))
4305 		return PTR_ERR(trans);
4306 
4307 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4308 		err = btrfs_unlink_subvol(trans, root, dir,
4309 					  BTRFS_I(inode)->location.objectid,
4310 					  dentry->d_name.name,
4311 					  dentry->d_name.len);
4312 		goto out;
4313 	}
4314 
4315 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4316 	if (err)
4317 		goto out;
4318 
4319 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4320 
4321 	/* now the directory is empty */
4322 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4323 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4324 			dentry->d_name.len);
4325 	if (!err) {
4326 		btrfs_i_size_write(BTRFS_I(inode), 0);
4327 		/*
4328 		 * Propagate the last_unlink_trans value of the deleted dir to
4329 		 * its parent directory. This is to prevent an unrecoverable
4330 		 * log tree in the case we do something like this:
4331 		 * 1) create dir foo
4332 		 * 2) create snapshot under dir foo
4333 		 * 3) delete the snapshot
4334 		 * 4) rmdir foo
4335 		 * 5) mkdir foo
4336 		 * 6) fsync foo or some file inside foo
4337 		 */
4338 		if (last_unlink_trans >= trans->transid)
4339 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4340 	}
4341 out:
4342 	btrfs_end_transaction(trans);
4343 	btrfs_btree_balance_dirty(root->fs_info);
4344 
4345 	return err;
4346 }
4347 
4348 static int truncate_space_check(struct btrfs_trans_handle *trans,
4349 				struct btrfs_root *root,
4350 				u64 bytes_deleted)
4351 {
4352 	struct btrfs_fs_info *fs_info = root->fs_info;
4353 	int ret;
4354 
4355 	/*
4356 	 * This is only used to apply pressure to the enospc system, we don't
4357 	 * intend to use this reservation at all.
4358 	 */
4359 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4360 	bytes_deleted *= fs_info->nodesize;
4361 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4362 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4363 	if (!ret) {
4364 		trace_btrfs_space_reservation(fs_info, "transaction",
4365 					      trans->transid,
4366 					      bytes_deleted, 1);
4367 		trans->bytes_reserved += bytes_deleted;
4368 	}
4369 	return ret;
4370 
4371 }
4372 
4373 /*
4374  * Return this if we need to call truncate_block for the last bit of the
4375  * truncate.
4376  */
4377 #define NEED_TRUNCATE_BLOCK 1
4378 
4379 /*
4380  * this can truncate away extent items, csum items and directory items.
4381  * It starts at a high offset and removes keys until it can't find
4382  * any higher than new_size
4383  *
4384  * csum items that cross the new i_size are truncated to the new size
4385  * as well.
4386  *
4387  * min_type is the minimum key type to truncate down to.  If set to 0, this
4388  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4389  */
4390 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4391 			       struct btrfs_root *root,
4392 			       struct inode *inode,
4393 			       u64 new_size, u32 min_type)
4394 {
4395 	struct btrfs_fs_info *fs_info = root->fs_info;
4396 	struct btrfs_path *path;
4397 	struct extent_buffer *leaf;
4398 	struct btrfs_file_extent_item *fi;
4399 	struct btrfs_key key;
4400 	struct btrfs_key found_key;
4401 	u64 extent_start = 0;
4402 	u64 extent_num_bytes = 0;
4403 	u64 extent_offset = 0;
4404 	u64 item_end = 0;
4405 	u64 last_size = new_size;
4406 	u32 found_type = (u8)-1;
4407 	int found_extent;
4408 	int del_item;
4409 	int pending_del_nr = 0;
4410 	int pending_del_slot = 0;
4411 	int extent_type = -1;
4412 	int ret;
4413 	int err = 0;
4414 	u64 ino = btrfs_ino(BTRFS_I(inode));
4415 	u64 bytes_deleted = 0;
4416 	bool be_nice = false;
4417 	bool should_throttle = false;
4418 	bool should_end = false;
4419 
4420 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4421 
4422 	/*
4423 	 * for non-free space inodes and ref cows, we want to back off from
4424 	 * time to time
4425 	 */
4426 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4427 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4428 		be_nice = true;
4429 
4430 	path = btrfs_alloc_path();
4431 	if (!path)
4432 		return -ENOMEM;
4433 	path->reada = READA_BACK;
4434 
4435 	/*
4436 	 * We want to drop from the next block forward in case this new size is
4437 	 * not block aligned since we will be keeping the last block of the
4438 	 * extent just the way it is.
4439 	 */
4440 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4441 	    root == fs_info->tree_root)
4442 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4443 					fs_info->sectorsize),
4444 					(u64)-1, 0);
4445 
4446 	/*
4447 	 * This function is also used to drop the items in the log tree before
4448 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4449 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4450 	 * items.
4451 	 */
4452 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4453 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4454 
4455 	key.objectid = ino;
4456 	key.offset = (u64)-1;
4457 	key.type = (u8)-1;
4458 
4459 search_again:
4460 	/*
4461 	 * with a 16K leaf size and 128MB extents, you can actually queue
4462 	 * up a huge file in a single leaf.  Most of the time that
4463 	 * bytes_deleted is > 0, it will be huge by the time we get here
4464 	 */
4465 	if (be_nice && bytes_deleted > SZ_32M) {
4466 		if (btrfs_should_end_transaction(trans)) {
4467 			err = -EAGAIN;
4468 			goto error;
4469 		}
4470 	}
4471 
4472 
4473 	path->leave_spinning = 1;
4474 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4475 	if (ret < 0) {
4476 		err = ret;
4477 		goto out;
4478 	}
4479 
4480 	if (ret > 0) {
4481 		/* there are no items in the tree for us to truncate, we're
4482 		 * done
4483 		 */
4484 		if (path->slots[0] == 0)
4485 			goto out;
4486 		path->slots[0]--;
4487 	}
4488 
4489 	while (1) {
4490 		fi = NULL;
4491 		leaf = path->nodes[0];
4492 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4493 		found_type = found_key.type;
4494 
4495 		if (found_key.objectid != ino)
4496 			break;
4497 
4498 		if (found_type < min_type)
4499 			break;
4500 
4501 		item_end = found_key.offset;
4502 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4503 			fi = btrfs_item_ptr(leaf, path->slots[0],
4504 					    struct btrfs_file_extent_item);
4505 			extent_type = btrfs_file_extent_type(leaf, fi);
4506 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4507 				item_end +=
4508 				    btrfs_file_extent_num_bytes(leaf, fi);
4509 
4510 				trace_btrfs_truncate_show_fi_regular(
4511 					BTRFS_I(inode), leaf, fi,
4512 					found_key.offset);
4513 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4514 				item_end += btrfs_file_extent_inline_len(leaf,
4515 							 path->slots[0], fi);
4516 
4517 				trace_btrfs_truncate_show_fi_inline(
4518 					BTRFS_I(inode), leaf, fi, path->slots[0],
4519 					found_key.offset);
4520 			}
4521 			item_end--;
4522 		}
4523 		if (found_type > min_type) {
4524 			del_item = 1;
4525 		} else {
4526 			if (item_end < new_size)
4527 				break;
4528 			if (found_key.offset >= new_size)
4529 				del_item = 1;
4530 			else
4531 				del_item = 0;
4532 		}
4533 		found_extent = 0;
4534 		/* FIXME, shrink the extent if the ref count is only 1 */
4535 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4536 			goto delete;
4537 
4538 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4539 			u64 num_dec;
4540 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4541 			if (!del_item) {
4542 				u64 orig_num_bytes =
4543 					btrfs_file_extent_num_bytes(leaf, fi);
4544 				extent_num_bytes = ALIGN(new_size -
4545 						found_key.offset,
4546 						fs_info->sectorsize);
4547 				btrfs_set_file_extent_num_bytes(leaf, fi,
4548 							 extent_num_bytes);
4549 				num_dec = (orig_num_bytes -
4550 					   extent_num_bytes);
4551 				if (test_bit(BTRFS_ROOT_REF_COWS,
4552 					     &root->state) &&
4553 				    extent_start != 0)
4554 					inode_sub_bytes(inode, num_dec);
4555 				btrfs_mark_buffer_dirty(leaf);
4556 			} else {
4557 				extent_num_bytes =
4558 					btrfs_file_extent_disk_num_bytes(leaf,
4559 									 fi);
4560 				extent_offset = found_key.offset -
4561 					btrfs_file_extent_offset(leaf, fi);
4562 
4563 				/* FIXME blocksize != 4096 */
4564 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4565 				if (extent_start != 0) {
4566 					found_extent = 1;
4567 					if (test_bit(BTRFS_ROOT_REF_COWS,
4568 						     &root->state))
4569 						inode_sub_bytes(inode, num_dec);
4570 				}
4571 			}
4572 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4573 			/*
4574 			 * we can't truncate inline items that have had
4575 			 * special encodings
4576 			 */
4577 			if (!del_item &&
4578 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4579 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4580 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4581 				u32 size = (u32)(new_size - found_key.offset);
4582 
4583 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4584 				size = btrfs_file_extent_calc_inline_size(size);
4585 				btrfs_truncate_item(root->fs_info, path, size, 1);
4586 			} else if (!del_item) {
4587 				/*
4588 				 * We have to bail so the last_size is set to
4589 				 * just before this extent.
4590 				 */
4591 				err = NEED_TRUNCATE_BLOCK;
4592 				break;
4593 			}
4594 
4595 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4596 				inode_sub_bytes(inode, item_end + 1 - new_size);
4597 		}
4598 delete:
4599 		if (del_item)
4600 			last_size = found_key.offset;
4601 		else
4602 			last_size = new_size;
4603 		if (del_item) {
4604 			if (!pending_del_nr) {
4605 				/* no pending yet, add ourselves */
4606 				pending_del_slot = path->slots[0];
4607 				pending_del_nr = 1;
4608 			} else if (pending_del_nr &&
4609 				   path->slots[0] + 1 == pending_del_slot) {
4610 				/* hop on the pending chunk */
4611 				pending_del_nr++;
4612 				pending_del_slot = path->slots[0];
4613 			} else {
4614 				BUG();
4615 			}
4616 		} else {
4617 			break;
4618 		}
4619 		should_throttle = false;
4620 
4621 		if (found_extent &&
4622 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4623 		     root == fs_info->tree_root)) {
4624 			btrfs_set_path_blocking(path);
4625 			bytes_deleted += extent_num_bytes;
4626 			ret = btrfs_free_extent(trans, root, extent_start,
4627 						extent_num_bytes, 0,
4628 						btrfs_header_owner(leaf),
4629 						ino, extent_offset);
4630 			BUG_ON(ret);
4631 			if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4632 				btrfs_async_run_delayed_refs(fs_info,
4633 					trans->delayed_ref_updates * 2,
4634 					trans->transid, 0);
4635 			if (be_nice) {
4636 				if (truncate_space_check(trans, root,
4637 							 extent_num_bytes)) {
4638 					should_end = true;
4639 				}
4640 				if (btrfs_should_throttle_delayed_refs(trans,
4641 								       fs_info))
4642 					should_throttle = true;
4643 			}
4644 		}
4645 
4646 		if (found_type == BTRFS_INODE_ITEM_KEY)
4647 			break;
4648 
4649 		if (path->slots[0] == 0 ||
4650 		    path->slots[0] != pending_del_slot ||
4651 		    should_throttle || should_end) {
4652 			if (pending_del_nr) {
4653 				ret = btrfs_del_items(trans, root, path,
4654 						pending_del_slot,
4655 						pending_del_nr);
4656 				if (ret) {
4657 					btrfs_abort_transaction(trans, ret);
4658 					goto error;
4659 				}
4660 				pending_del_nr = 0;
4661 			}
4662 			btrfs_release_path(path);
4663 			if (should_throttle) {
4664 				unsigned long updates = trans->delayed_ref_updates;
4665 				if (updates) {
4666 					trans->delayed_ref_updates = 0;
4667 					ret = btrfs_run_delayed_refs(trans,
4668 								   fs_info,
4669 								   updates * 2);
4670 					if (ret && !err)
4671 						err = ret;
4672 				}
4673 			}
4674 			/*
4675 			 * if we failed to refill our space rsv, bail out
4676 			 * and let the transaction restart
4677 			 */
4678 			if (should_end) {
4679 				err = -EAGAIN;
4680 				goto error;
4681 			}
4682 			goto search_again;
4683 		} else {
4684 			path->slots[0]--;
4685 		}
4686 	}
4687 out:
4688 	if (pending_del_nr) {
4689 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4690 				      pending_del_nr);
4691 		if (ret)
4692 			btrfs_abort_transaction(trans, ret);
4693 	}
4694 error:
4695 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4696 		ASSERT(last_size >= new_size);
4697 		if (!err && last_size > new_size)
4698 			last_size = new_size;
4699 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4700 	}
4701 
4702 	btrfs_free_path(path);
4703 
4704 	if (be_nice && bytes_deleted > SZ_32M) {
4705 		unsigned long updates = trans->delayed_ref_updates;
4706 		if (updates) {
4707 			trans->delayed_ref_updates = 0;
4708 			ret = btrfs_run_delayed_refs(trans, fs_info,
4709 						     updates * 2);
4710 			if (ret && !err)
4711 				err = ret;
4712 		}
4713 	}
4714 	return err;
4715 }
4716 
4717 /*
4718  * btrfs_truncate_block - read, zero a chunk and write a block
4719  * @inode - inode that we're zeroing
4720  * @from - the offset to start zeroing
4721  * @len - the length to zero, 0 to zero the entire range respective to the
4722  *	offset
4723  * @front - zero up to the offset instead of from the offset on
4724  *
4725  * This will find the block for the "from" offset and cow the block and zero the
4726  * part we want to zero.  This is used with truncate and hole punching.
4727  */
4728 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4729 			int front)
4730 {
4731 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4732 	struct address_space *mapping = inode->i_mapping;
4733 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4734 	struct btrfs_ordered_extent *ordered;
4735 	struct extent_state *cached_state = NULL;
4736 	struct extent_changeset *data_reserved = NULL;
4737 	char *kaddr;
4738 	u32 blocksize = fs_info->sectorsize;
4739 	pgoff_t index = from >> PAGE_SHIFT;
4740 	unsigned offset = from & (blocksize - 1);
4741 	struct page *page;
4742 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4743 	int ret = 0;
4744 	u64 block_start;
4745 	u64 block_end;
4746 
4747 	if ((offset & (blocksize - 1)) == 0 &&
4748 	    (!len || ((len & (blocksize - 1)) == 0)))
4749 		goto out;
4750 
4751 	block_start = round_down(from, blocksize);
4752 	block_end = block_start + blocksize - 1;
4753 
4754 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4755 					   block_start, blocksize);
4756 	if (ret)
4757 		goto out;
4758 
4759 again:
4760 	page = find_or_create_page(mapping, index, mask);
4761 	if (!page) {
4762 		btrfs_delalloc_release_space(inode, data_reserved,
4763 					     block_start, blocksize);
4764 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4765 		ret = -ENOMEM;
4766 		goto out;
4767 	}
4768 
4769 	if (!PageUptodate(page)) {
4770 		ret = btrfs_readpage(NULL, page);
4771 		lock_page(page);
4772 		if (page->mapping != mapping) {
4773 			unlock_page(page);
4774 			put_page(page);
4775 			goto again;
4776 		}
4777 		if (!PageUptodate(page)) {
4778 			ret = -EIO;
4779 			goto out_unlock;
4780 		}
4781 	}
4782 	wait_on_page_writeback(page);
4783 
4784 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4785 	set_page_extent_mapped(page);
4786 
4787 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4788 	if (ordered) {
4789 		unlock_extent_cached(io_tree, block_start, block_end,
4790 				     &cached_state, GFP_NOFS);
4791 		unlock_page(page);
4792 		put_page(page);
4793 		btrfs_start_ordered_extent(inode, ordered, 1);
4794 		btrfs_put_ordered_extent(ordered);
4795 		goto again;
4796 	}
4797 
4798 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4799 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4800 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4801 			  0, 0, &cached_state, GFP_NOFS);
4802 
4803 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4804 					&cached_state, 0);
4805 	if (ret) {
4806 		unlock_extent_cached(io_tree, block_start, block_end,
4807 				     &cached_state, GFP_NOFS);
4808 		goto out_unlock;
4809 	}
4810 
4811 	if (offset != blocksize) {
4812 		if (!len)
4813 			len = blocksize - offset;
4814 		kaddr = kmap(page);
4815 		if (front)
4816 			memset(kaddr + (block_start - page_offset(page)),
4817 				0, offset);
4818 		else
4819 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4820 				0, len);
4821 		flush_dcache_page(page);
4822 		kunmap(page);
4823 	}
4824 	ClearPageChecked(page);
4825 	set_page_dirty(page);
4826 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4827 			     GFP_NOFS);
4828 
4829 out_unlock:
4830 	if (ret)
4831 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4832 					     blocksize);
4833 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4834 	unlock_page(page);
4835 	put_page(page);
4836 out:
4837 	extent_changeset_free(data_reserved);
4838 	return ret;
4839 }
4840 
4841 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4842 			     u64 offset, u64 len)
4843 {
4844 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4845 	struct btrfs_trans_handle *trans;
4846 	int ret;
4847 
4848 	/*
4849 	 * Still need to make sure the inode looks like it's been updated so
4850 	 * that any holes get logged if we fsync.
4851 	 */
4852 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4853 		BTRFS_I(inode)->last_trans = fs_info->generation;
4854 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4855 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4856 		return 0;
4857 	}
4858 
4859 	/*
4860 	 * 1 - for the one we're dropping
4861 	 * 1 - for the one we're adding
4862 	 * 1 - for updating the inode.
4863 	 */
4864 	trans = btrfs_start_transaction(root, 3);
4865 	if (IS_ERR(trans))
4866 		return PTR_ERR(trans);
4867 
4868 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4869 	if (ret) {
4870 		btrfs_abort_transaction(trans, ret);
4871 		btrfs_end_transaction(trans);
4872 		return ret;
4873 	}
4874 
4875 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4876 			offset, 0, 0, len, 0, len, 0, 0, 0);
4877 	if (ret)
4878 		btrfs_abort_transaction(trans, ret);
4879 	else
4880 		btrfs_update_inode(trans, root, inode);
4881 	btrfs_end_transaction(trans);
4882 	return ret;
4883 }
4884 
4885 /*
4886  * This function puts in dummy file extents for the area we're creating a hole
4887  * for.  So if we are truncating this file to a larger size we need to insert
4888  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4889  * the range between oldsize and size
4890  */
4891 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4892 {
4893 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4894 	struct btrfs_root *root = BTRFS_I(inode)->root;
4895 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4896 	struct extent_map *em = NULL;
4897 	struct extent_state *cached_state = NULL;
4898 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4899 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4900 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4901 	u64 last_byte;
4902 	u64 cur_offset;
4903 	u64 hole_size;
4904 	int err = 0;
4905 
4906 	/*
4907 	 * If our size started in the middle of a block we need to zero out the
4908 	 * rest of the block before we expand the i_size, otherwise we could
4909 	 * expose stale data.
4910 	 */
4911 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4912 	if (err)
4913 		return err;
4914 
4915 	if (size <= hole_start)
4916 		return 0;
4917 
4918 	while (1) {
4919 		struct btrfs_ordered_extent *ordered;
4920 
4921 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4922 				 &cached_state);
4923 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4924 						     block_end - hole_start);
4925 		if (!ordered)
4926 			break;
4927 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4928 				     &cached_state, GFP_NOFS);
4929 		btrfs_start_ordered_extent(inode, ordered, 1);
4930 		btrfs_put_ordered_extent(ordered);
4931 	}
4932 
4933 	cur_offset = hole_start;
4934 	while (1) {
4935 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4936 				block_end - cur_offset, 0);
4937 		if (IS_ERR(em)) {
4938 			err = PTR_ERR(em);
4939 			em = NULL;
4940 			break;
4941 		}
4942 		last_byte = min(extent_map_end(em), block_end);
4943 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4944 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4945 			struct extent_map *hole_em;
4946 			hole_size = last_byte - cur_offset;
4947 
4948 			err = maybe_insert_hole(root, inode, cur_offset,
4949 						hole_size);
4950 			if (err)
4951 				break;
4952 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4953 						cur_offset + hole_size - 1, 0);
4954 			hole_em = alloc_extent_map();
4955 			if (!hole_em) {
4956 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4957 					&BTRFS_I(inode)->runtime_flags);
4958 				goto next;
4959 			}
4960 			hole_em->start = cur_offset;
4961 			hole_em->len = hole_size;
4962 			hole_em->orig_start = cur_offset;
4963 
4964 			hole_em->block_start = EXTENT_MAP_HOLE;
4965 			hole_em->block_len = 0;
4966 			hole_em->orig_block_len = 0;
4967 			hole_em->ram_bytes = hole_size;
4968 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
4969 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4970 			hole_em->generation = fs_info->generation;
4971 
4972 			while (1) {
4973 				write_lock(&em_tree->lock);
4974 				err = add_extent_mapping(em_tree, hole_em, 1);
4975 				write_unlock(&em_tree->lock);
4976 				if (err != -EEXIST)
4977 					break;
4978 				btrfs_drop_extent_cache(BTRFS_I(inode),
4979 							cur_offset,
4980 							cur_offset +
4981 							hole_size - 1, 0);
4982 			}
4983 			free_extent_map(hole_em);
4984 		}
4985 next:
4986 		free_extent_map(em);
4987 		em = NULL;
4988 		cur_offset = last_byte;
4989 		if (cur_offset >= block_end)
4990 			break;
4991 	}
4992 	free_extent_map(em);
4993 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4994 			     GFP_NOFS);
4995 	return err;
4996 }
4997 
4998 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4999 {
5000 	struct btrfs_root *root = BTRFS_I(inode)->root;
5001 	struct btrfs_trans_handle *trans;
5002 	loff_t oldsize = i_size_read(inode);
5003 	loff_t newsize = attr->ia_size;
5004 	int mask = attr->ia_valid;
5005 	int ret;
5006 
5007 	/*
5008 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5009 	 * special case where we need to update the times despite not having
5010 	 * these flags set.  For all other operations the VFS set these flags
5011 	 * explicitly if it wants a timestamp update.
5012 	 */
5013 	if (newsize != oldsize) {
5014 		inode_inc_iversion(inode);
5015 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5016 			inode->i_ctime = inode->i_mtime =
5017 				current_time(inode);
5018 	}
5019 
5020 	if (newsize > oldsize) {
5021 		/*
5022 		 * Don't do an expanding truncate while snapshotting is ongoing.
5023 		 * This is to ensure the snapshot captures a fully consistent
5024 		 * state of this file - if the snapshot captures this expanding
5025 		 * truncation, it must capture all writes that happened before
5026 		 * this truncation.
5027 		 */
5028 		btrfs_wait_for_snapshot_creation(root);
5029 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5030 		if (ret) {
5031 			btrfs_end_write_no_snapshotting(root);
5032 			return ret;
5033 		}
5034 
5035 		trans = btrfs_start_transaction(root, 1);
5036 		if (IS_ERR(trans)) {
5037 			btrfs_end_write_no_snapshotting(root);
5038 			return PTR_ERR(trans);
5039 		}
5040 
5041 		i_size_write(inode, newsize);
5042 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5043 		pagecache_isize_extended(inode, oldsize, newsize);
5044 		ret = btrfs_update_inode(trans, root, inode);
5045 		btrfs_end_write_no_snapshotting(root);
5046 		btrfs_end_transaction(trans);
5047 	} else {
5048 
5049 		/*
5050 		 * We're truncating a file that used to have good data down to
5051 		 * zero. Make sure it gets into the ordered flush list so that
5052 		 * any new writes get down to disk quickly.
5053 		 */
5054 		if (newsize == 0)
5055 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5056 				&BTRFS_I(inode)->runtime_flags);
5057 
5058 		/*
5059 		 * 1 for the orphan item we're going to add
5060 		 * 1 for the orphan item deletion.
5061 		 */
5062 		trans = btrfs_start_transaction(root, 2);
5063 		if (IS_ERR(trans))
5064 			return PTR_ERR(trans);
5065 
5066 		/*
5067 		 * We need to do this in case we fail at _any_ point during the
5068 		 * actual truncate.  Once we do the truncate_setsize we could
5069 		 * invalidate pages which forces any outstanding ordered io to
5070 		 * be instantly completed which will give us extents that need
5071 		 * to be truncated.  If we fail to get an orphan inode down we
5072 		 * could have left over extents that were never meant to live,
5073 		 * so we need to guarantee from this point on that everything
5074 		 * will be consistent.
5075 		 */
5076 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5077 		btrfs_end_transaction(trans);
5078 		if (ret)
5079 			return ret;
5080 
5081 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5082 		truncate_setsize(inode, newsize);
5083 
5084 		/* Disable nonlocked read DIO to avoid the end less truncate */
5085 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5086 		inode_dio_wait(inode);
5087 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5088 
5089 		ret = btrfs_truncate(inode);
5090 		if (ret && inode->i_nlink) {
5091 			int err;
5092 
5093 			/* To get a stable disk_i_size */
5094 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5095 			if (err) {
5096 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5097 				return err;
5098 			}
5099 
5100 			/*
5101 			 * failed to truncate, disk_i_size is only adjusted down
5102 			 * as we remove extents, so it should represent the true
5103 			 * size of the inode, so reset the in memory size and
5104 			 * delete our orphan entry.
5105 			 */
5106 			trans = btrfs_join_transaction(root);
5107 			if (IS_ERR(trans)) {
5108 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5109 				return ret;
5110 			}
5111 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5112 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
5113 			if (err)
5114 				btrfs_abort_transaction(trans, err);
5115 			btrfs_end_transaction(trans);
5116 		}
5117 	}
5118 
5119 	return ret;
5120 }
5121 
5122 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5123 {
5124 	struct inode *inode = d_inode(dentry);
5125 	struct btrfs_root *root = BTRFS_I(inode)->root;
5126 	int err;
5127 
5128 	if (btrfs_root_readonly(root))
5129 		return -EROFS;
5130 
5131 	err = setattr_prepare(dentry, attr);
5132 	if (err)
5133 		return err;
5134 
5135 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5136 		err = btrfs_setsize(inode, attr);
5137 		if (err)
5138 			return err;
5139 	}
5140 
5141 	if (attr->ia_valid) {
5142 		setattr_copy(inode, attr);
5143 		inode_inc_iversion(inode);
5144 		err = btrfs_dirty_inode(inode);
5145 
5146 		if (!err && attr->ia_valid & ATTR_MODE)
5147 			err = posix_acl_chmod(inode, inode->i_mode);
5148 	}
5149 
5150 	return err;
5151 }
5152 
5153 /*
5154  * While truncating the inode pages during eviction, we get the VFS calling
5155  * btrfs_invalidatepage() against each page of the inode. This is slow because
5156  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5157  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5158  * extent_state structures over and over, wasting lots of time.
5159  *
5160  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5161  * those expensive operations on a per page basis and do only the ordered io
5162  * finishing, while we release here the extent_map and extent_state structures,
5163  * without the excessive merging and splitting.
5164  */
5165 static void evict_inode_truncate_pages(struct inode *inode)
5166 {
5167 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5168 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5169 	struct rb_node *node;
5170 
5171 	ASSERT(inode->i_state & I_FREEING);
5172 	truncate_inode_pages_final(&inode->i_data);
5173 
5174 	write_lock(&map_tree->lock);
5175 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5176 		struct extent_map *em;
5177 
5178 		node = rb_first(&map_tree->map);
5179 		em = rb_entry(node, struct extent_map, rb_node);
5180 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5181 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5182 		remove_extent_mapping(map_tree, em);
5183 		free_extent_map(em);
5184 		if (need_resched()) {
5185 			write_unlock(&map_tree->lock);
5186 			cond_resched();
5187 			write_lock(&map_tree->lock);
5188 		}
5189 	}
5190 	write_unlock(&map_tree->lock);
5191 
5192 	/*
5193 	 * Keep looping until we have no more ranges in the io tree.
5194 	 * We can have ongoing bios started by readpages (called from readahead)
5195 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5196 	 * still in progress (unlocked the pages in the bio but did not yet
5197 	 * unlocked the ranges in the io tree). Therefore this means some
5198 	 * ranges can still be locked and eviction started because before
5199 	 * submitting those bios, which are executed by a separate task (work
5200 	 * queue kthread), inode references (inode->i_count) were not taken
5201 	 * (which would be dropped in the end io callback of each bio).
5202 	 * Therefore here we effectively end up waiting for those bios and
5203 	 * anyone else holding locked ranges without having bumped the inode's
5204 	 * reference count - if we don't do it, when they access the inode's
5205 	 * io_tree to unlock a range it may be too late, leading to an
5206 	 * use-after-free issue.
5207 	 */
5208 	spin_lock(&io_tree->lock);
5209 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5210 		struct extent_state *state;
5211 		struct extent_state *cached_state = NULL;
5212 		u64 start;
5213 		u64 end;
5214 
5215 		node = rb_first(&io_tree->state);
5216 		state = rb_entry(node, struct extent_state, rb_node);
5217 		start = state->start;
5218 		end = state->end;
5219 		spin_unlock(&io_tree->lock);
5220 
5221 		lock_extent_bits(io_tree, start, end, &cached_state);
5222 
5223 		/*
5224 		 * If still has DELALLOC flag, the extent didn't reach disk,
5225 		 * and its reserved space won't be freed by delayed_ref.
5226 		 * So we need to free its reserved space here.
5227 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5228 		 *
5229 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5230 		 */
5231 		if (state->state & EXTENT_DELALLOC)
5232 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5233 
5234 		clear_extent_bit(io_tree, start, end,
5235 				 EXTENT_LOCKED | EXTENT_DIRTY |
5236 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5237 				 EXTENT_DEFRAG, 1, 1,
5238 				 &cached_state, GFP_NOFS);
5239 
5240 		cond_resched();
5241 		spin_lock(&io_tree->lock);
5242 	}
5243 	spin_unlock(&io_tree->lock);
5244 }
5245 
5246 void btrfs_evict_inode(struct inode *inode)
5247 {
5248 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5249 	struct btrfs_trans_handle *trans;
5250 	struct btrfs_root *root = BTRFS_I(inode)->root;
5251 	struct btrfs_block_rsv *rsv, *global_rsv;
5252 	int steal_from_global = 0;
5253 	u64 min_size;
5254 	int ret;
5255 
5256 	trace_btrfs_inode_evict(inode);
5257 
5258 	if (!root) {
5259 		kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5260 		return;
5261 	}
5262 
5263 	min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5264 
5265 	evict_inode_truncate_pages(inode);
5266 
5267 	if (inode->i_nlink &&
5268 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5269 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5270 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5271 		goto no_delete;
5272 
5273 	if (is_bad_inode(inode)) {
5274 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5275 		goto no_delete;
5276 	}
5277 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5278 	if (!special_file(inode->i_mode))
5279 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5280 
5281 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5282 
5283 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5284 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5285 				 &BTRFS_I(inode)->runtime_flags));
5286 		goto no_delete;
5287 	}
5288 
5289 	if (inode->i_nlink > 0) {
5290 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5291 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5292 		goto no_delete;
5293 	}
5294 
5295 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5296 	if (ret) {
5297 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5298 		goto no_delete;
5299 	}
5300 
5301 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5302 	if (!rsv) {
5303 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5304 		goto no_delete;
5305 	}
5306 	rsv->size = min_size;
5307 	rsv->failfast = 1;
5308 	global_rsv = &fs_info->global_block_rsv;
5309 
5310 	btrfs_i_size_write(BTRFS_I(inode), 0);
5311 
5312 	/*
5313 	 * This is a bit simpler than btrfs_truncate since we've already
5314 	 * reserved our space for our orphan item in the unlink, so we just
5315 	 * need to reserve some slack space in case we add bytes and update
5316 	 * inode item when doing the truncate.
5317 	 */
5318 	while (1) {
5319 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5320 					     BTRFS_RESERVE_FLUSH_LIMIT);
5321 
5322 		/*
5323 		 * Try and steal from the global reserve since we will
5324 		 * likely not use this space anyway, we want to try as
5325 		 * hard as possible to get this to work.
5326 		 */
5327 		if (ret)
5328 			steal_from_global++;
5329 		else
5330 			steal_from_global = 0;
5331 		ret = 0;
5332 
5333 		/*
5334 		 * steal_from_global == 0: we reserved stuff, hooray!
5335 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5336 		 * steal_from_global == 2: we've committed, still not a lot of
5337 		 * room but maybe we'll have room in the global reserve this
5338 		 * time.
5339 		 * steal_from_global == 3: abandon all hope!
5340 		 */
5341 		if (steal_from_global > 2) {
5342 			btrfs_warn(fs_info,
5343 				   "Could not get space for a delete, will truncate on mount %d",
5344 				   ret);
5345 			btrfs_orphan_del(NULL, BTRFS_I(inode));
5346 			btrfs_free_block_rsv(fs_info, rsv);
5347 			goto no_delete;
5348 		}
5349 
5350 		trans = btrfs_join_transaction(root);
5351 		if (IS_ERR(trans)) {
5352 			btrfs_orphan_del(NULL, BTRFS_I(inode));
5353 			btrfs_free_block_rsv(fs_info, rsv);
5354 			goto no_delete;
5355 		}
5356 
5357 		/*
5358 		 * We can't just steal from the global reserve, we need to make
5359 		 * sure there is room to do it, if not we need to commit and try
5360 		 * again.
5361 		 */
5362 		if (steal_from_global) {
5363 			if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5364 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5365 							      min_size, 0);
5366 			else
5367 				ret = -ENOSPC;
5368 		}
5369 
5370 		/*
5371 		 * Couldn't steal from the global reserve, we have too much
5372 		 * pending stuff built up, commit the transaction and try it
5373 		 * again.
5374 		 */
5375 		if (ret) {
5376 			ret = btrfs_commit_transaction(trans);
5377 			if (ret) {
5378 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5379 				btrfs_free_block_rsv(fs_info, rsv);
5380 				goto no_delete;
5381 			}
5382 			continue;
5383 		} else {
5384 			steal_from_global = 0;
5385 		}
5386 
5387 		trans->block_rsv = rsv;
5388 
5389 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5390 		if (ret != -ENOSPC && ret != -EAGAIN)
5391 			break;
5392 
5393 		trans->block_rsv = &fs_info->trans_block_rsv;
5394 		btrfs_end_transaction(trans);
5395 		trans = NULL;
5396 		btrfs_btree_balance_dirty(fs_info);
5397 	}
5398 
5399 	btrfs_free_block_rsv(fs_info, rsv);
5400 
5401 	/*
5402 	 * Errors here aren't a big deal, it just means we leave orphan items
5403 	 * in the tree.  They will be cleaned up on the next mount.
5404 	 */
5405 	if (ret == 0) {
5406 		trans->block_rsv = root->orphan_block_rsv;
5407 		btrfs_orphan_del(trans, BTRFS_I(inode));
5408 	} else {
5409 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5410 	}
5411 
5412 	trans->block_rsv = &fs_info->trans_block_rsv;
5413 	if (!(root == fs_info->tree_root ||
5414 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5415 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5416 
5417 	btrfs_end_transaction(trans);
5418 	btrfs_btree_balance_dirty(fs_info);
5419 no_delete:
5420 	btrfs_remove_delayed_node(BTRFS_I(inode));
5421 	clear_inode(inode);
5422 }
5423 
5424 /*
5425  * this returns the key found in the dir entry in the location pointer.
5426  * If no dir entries were found, location->objectid is 0.
5427  */
5428 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5429 			       struct btrfs_key *location)
5430 {
5431 	const char *name = dentry->d_name.name;
5432 	int namelen = dentry->d_name.len;
5433 	struct btrfs_dir_item *di;
5434 	struct btrfs_path *path;
5435 	struct btrfs_root *root = BTRFS_I(dir)->root;
5436 	int ret = 0;
5437 
5438 	path = btrfs_alloc_path();
5439 	if (!path)
5440 		return -ENOMEM;
5441 
5442 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5443 			name, namelen, 0);
5444 	if (IS_ERR(di))
5445 		ret = PTR_ERR(di);
5446 
5447 	if (IS_ERR_OR_NULL(di))
5448 		goto out_err;
5449 
5450 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5451 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5452 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5453 		btrfs_warn(root->fs_info,
5454 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5455 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5456 			   location->objectid, location->type, location->offset);
5457 		goto out_err;
5458 	}
5459 out:
5460 	btrfs_free_path(path);
5461 	return ret;
5462 out_err:
5463 	location->objectid = 0;
5464 	goto out;
5465 }
5466 
5467 /*
5468  * when we hit a tree root in a directory, the btrfs part of the inode
5469  * needs to be changed to reflect the root directory of the tree root.  This
5470  * is kind of like crossing a mount point.
5471  */
5472 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5473 				    struct inode *dir,
5474 				    struct dentry *dentry,
5475 				    struct btrfs_key *location,
5476 				    struct btrfs_root **sub_root)
5477 {
5478 	struct btrfs_path *path;
5479 	struct btrfs_root *new_root;
5480 	struct btrfs_root_ref *ref;
5481 	struct extent_buffer *leaf;
5482 	struct btrfs_key key;
5483 	int ret;
5484 	int err = 0;
5485 
5486 	path = btrfs_alloc_path();
5487 	if (!path) {
5488 		err = -ENOMEM;
5489 		goto out;
5490 	}
5491 
5492 	err = -ENOENT;
5493 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5494 	key.type = BTRFS_ROOT_REF_KEY;
5495 	key.offset = location->objectid;
5496 
5497 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5498 	if (ret) {
5499 		if (ret < 0)
5500 			err = ret;
5501 		goto out;
5502 	}
5503 
5504 	leaf = path->nodes[0];
5505 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5506 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5507 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5508 		goto out;
5509 
5510 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5511 				   (unsigned long)(ref + 1),
5512 				   dentry->d_name.len);
5513 	if (ret)
5514 		goto out;
5515 
5516 	btrfs_release_path(path);
5517 
5518 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5519 	if (IS_ERR(new_root)) {
5520 		err = PTR_ERR(new_root);
5521 		goto out;
5522 	}
5523 
5524 	*sub_root = new_root;
5525 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5526 	location->type = BTRFS_INODE_ITEM_KEY;
5527 	location->offset = 0;
5528 	err = 0;
5529 out:
5530 	btrfs_free_path(path);
5531 	return err;
5532 }
5533 
5534 static void inode_tree_add(struct inode *inode)
5535 {
5536 	struct btrfs_root *root = BTRFS_I(inode)->root;
5537 	struct btrfs_inode *entry;
5538 	struct rb_node **p;
5539 	struct rb_node *parent;
5540 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5541 	u64 ino = btrfs_ino(BTRFS_I(inode));
5542 
5543 	if (inode_unhashed(inode))
5544 		return;
5545 	parent = NULL;
5546 	spin_lock(&root->inode_lock);
5547 	p = &root->inode_tree.rb_node;
5548 	while (*p) {
5549 		parent = *p;
5550 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5551 
5552 		if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5553 			p = &parent->rb_left;
5554 		else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5555 			p = &parent->rb_right;
5556 		else {
5557 			WARN_ON(!(entry->vfs_inode.i_state &
5558 				  (I_WILL_FREE | I_FREEING)));
5559 			rb_replace_node(parent, new, &root->inode_tree);
5560 			RB_CLEAR_NODE(parent);
5561 			spin_unlock(&root->inode_lock);
5562 			return;
5563 		}
5564 	}
5565 	rb_link_node(new, parent, p);
5566 	rb_insert_color(new, &root->inode_tree);
5567 	spin_unlock(&root->inode_lock);
5568 }
5569 
5570 static void inode_tree_del(struct inode *inode)
5571 {
5572 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5573 	struct btrfs_root *root = BTRFS_I(inode)->root;
5574 	int empty = 0;
5575 
5576 	spin_lock(&root->inode_lock);
5577 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5578 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5579 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5580 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5581 	}
5582 	spin_unlock(&root->inode_lock);
5583 
5584 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5585 		synchronize_srcu(&fs_info->subvol_srcu);
5586 		spin_lock(&root->inode_lock);
5587 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5588 		spin_unlock(&root->inode_lock);
5589 		if (empty)
5590 			btrfs_add_dead_root(root);
5591 	}
5592 }
5593 
5594 void btrfs_invalidate_inodes(struct btrfs_root *root)
5595 {
5596 	struct btrfs_fs_info *fs_info = root->fs_info;
5597 	struct rb_node *node;
5598 	struct rb_node *prev;
5599 	struct btrfs_inode *entry;
5600 	struct inode *inode;
5601 	u64 objectid = 0;
5602 
5603 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5604 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5605 
5606 	spin_lock(&root->inode_lock);
5607 again:
5608 	node = root->inode_tree.rb_node;
5609 	prev = NULL;
5610 	while (node) {
5611 		prev = node;
5612 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5613 
5614 		if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5615 			node = node->rb_left;
5616 		else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5617 			node = node->rb_right;
5618 		else
5619 			break;
5620 	}
5621 	if (!node) {
5622 		while (prev) {
5623 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5624 			if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5625 				node = prev;
5626 				break;
5627 			}
5628 			prev = rb_next(prev);
5629 		}
5630 	}
5631 	while (node) {
5632 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5633 		objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5634 		inode = igrab(&entry->vfs_inode);
5635 		if (inode) {
5636 			spin_unlock(&root->inode_lock);
5637 			if (atomic_read(&inode->i_count) > 1)
5638 				d_prune_aliases(inode);
5639 			/*
5640 			 * btrfs_drop_inode will have it removed from
5641 			 * the inode cache when its usage count
5642 			 * hits zero.
5643 			 */
5644 			iput(inode);
5645 			cond_resched();
5646 			spin_lock(&root->inode_lock);
5647 			goto again;
5648 		}
5649 
5650 		if (cond_resched_lock(&root->inode_lock))
5651 			goto again;
5652 
5653 		node = rb_next(node);
5654 	}
5655 	spin_unlock(&root->inode_lock);
5656 }
5657 
5658 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5659 {
5660 	struct btrfs_iget_args *args = p;
5661 	inode->i_ino = args->location->objectid;
5662 	memcpy(&BTRFS_I(inode)->location, args->location,
5663 	       sizeof(*args->location));
5664 	BTRFS_I(inode)->root = args->root;
5665 	return 0;
5666 }
5667 
5668 static int btrfs_find_actor(struct inode *inode, void *opaque)
5669 {
5670 	struct btrfs_iget_args *args = opaque;
5671 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5672 		args->root == BTRFS_I(inode)->root;
5673 }
5674 
5675 static struct inode *btrfs_iget_locked(struct super_block *s,
5676 				       struct btrfs_key *location,
5677 				       struct btrfs_root *root)
5678 {
5679 	struct inode *inode;
5680 	struct btrfs_iget_args args;
5681 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5682 
5683 	args.location = location;
5684 	args.root = root;
5685 
5686 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5687 			     btrfs_init_locked_inode,
5688 			     (void *)&args);
5689 	return inode;
5690 }
5691 
5692 /* Get an inode object given its location and corresponding root.
5693  * Returns in *is_new if the inode was read from disk
5694  */
5695 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5696 			 struct btrfs_root *root, int *new)
5697 {
5698 	struct inode *inode;
5699 
5700 	inode = btrfs_iget_locked(s, location, root);
5701 	if (!inode)
5702 		return ERR_PTR(-ENOMEM);
5703 
5704 	if (inode->i_state & I_NEW) {
5705 		int ret;
5706 
5707 		ret = btrfs_read_locked_inode(inode);
5708 		if (!is_bad_inode(inode)) {
5709 			inode_tree_add(inode);
5710 			unlock_new_inode(inode);
5711 			if (new)
5712 				*new = 1;
5713 		} else {
5714 			unlock_new_inode(inode);
5715 			iput(inode);
5716 			ASSERT(ret < 0);
5717 			inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5718 		}
5719 	}
5720 
5721 	return inode;
5722 }
5723 
5724 static struct inode *new_simple_dir(struct super_block *s,
5725 				    struct btrfs_key *key,
5726 				    struct btrfs_root *root)
5727 {
5728 	struct inode *inode = new_inode(s);
5729 
5730 	if (!inode)
5731 		return ERR_PTR(-ENOMEM);
5732 
5733 	BTRFS_I(inode)->root = root;
5734 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5735 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5736 
5737 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5738 	inode->i_op = &btrfs_dir_ro_inode_operations;
5739 	inode->i_opflags &= ~IOP_XATTR;
5740 	inode->i_fop = &simple_dir_operations;
5741 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5742 	inode->i_mtime = current_time(inode);
5743 	inode->i_atime = inode->i_mtime;
5744 	inode->i_ctime = inode->i_mtime;
5745 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5746 
5747 	return inode;
5748 }
5749 
5750 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5751 {
5752 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5753 	struct inode *inode;
5754 	struct btrfs_root *root = BTRFS_I(dir)->root;
5755 	struct btrfs_root *sub_root = root;
5756 	struct btrfs_key location;
5757 	int index;
5758 	int ret = 0;
5759 
5760 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5761 		return ERR_PTR(-ENAMETOOLONG);
5762 
5763 	ret = btrfs_inode_by_name(dir, dentry, &location);
5764 	if (ret < 0)
5765 		return ERR_PTR(ret);
5766 
5767 	if (location.objectid == 0)
5768 		return ERR_PTR(-ENOENT);
5769 
5770 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5771 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5772 		return inode;
5773 	}
5774 
5775 	index = srcu_read_lock(&fs_info->subvol_srcu);
5776 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5777 				       &location, &sub_root);
5778 	if (ret < 0) {
5779 		if (ret != -ENOENT)
5780 			inode = ERR_PTR(ret);
5781 		else
5782 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5783 	} else {
5784 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5785 	}
5786 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5787 
5788 	if (!IS_ERR(inode) && root != sub_root) {
5789 		down_read(&fs_info->cleanup_work_sem);
5790 		if (!sb_rdonly(inode->i_sb))
5791 			ret = btrfs_orphan_cleanup(sub_root);
5792 		up_read(&fs_info->cleanup_work_sem);
5793 		if (ret) {
5794 			iput(inode);
5795 			inode = ERR_PTR(ret);
5796 		}
5797 	}
5798 
5799 	return inode;
5800 }
5801 
5802 static int btrfs_dentry_delete(const struct dentry *dentry)
5803 {
5804 	struct btrfs_root *root;
5805 	struct inode *inode = d_inode(dentry);
5806 
5807 	if (!inode && !IS_ROOT(dentry))
5808 		inode = d_inode(dentry->d_parent);
5809 
5810 	if (inode) {
5811 		root = BTRFS_I(inode)->root;
5812 		if (btrfs_root_refs(&root->root_item) == 0)
5813 			return 1;
5814 
5815 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5816 			return 1;
5817 	}
5818 	return 0;
5819 }
5820 
5821 static void btrfs_dentry_release(struct dentry *dentry)
5822 {
5823 	kfree(dentry->d_fsdata);
5824 }
5825 
5826 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5827 				   unsigned int flags)
5828 {
5829 	struct inode *inode;
5830 
5831 	inode = btrfs_lookup_dentry(dir, dentry);
5832 	if (IS_ERR(inode)) {
5833 		if (PTR_ERR(inode) == -ENOENT)
5834 			inode = NULL;
5835 		else
5836 			return ERR_CAST(inode);
5837 	}
5838 
5839 	return d_splice_alias(inode, dentry);
5840 }
5841 
5842 unsigned char btrfs_filetype_table[] = {
5843 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5844 };
5845 
5846 /*
5847  * All this infrastructure exists because dir_emit can fault, and we are holding
5848  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5849  * our information into that, and then dir_emit from the buffer.  This is
5850  * similar to what NFS does, only we don't keep the buffer around in pagecache
5851  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5852  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5853  * tree lock.
5854  */
5855 static int btrfs_opendir(struct inode *inode, struct file *file)
5856 {
5857 	struct btrfs_file_private *private;
5858 
5859 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5860 	if (!private)
5861 		return -ENOMEM;
5862 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5863 	if (!private->filldir_buf) {
5864 		kfree(private);
5865 		return -ENOMEM;
5866 	}
5867 	file->private_data = private;
5868 	return 0;
5869 }
5870 
5871 struct dir_entry {
5872 	u64 ino;
5873 	u64 offset;
5874 	unsigned type;
5875 	int name_len;
5876 };
5877 
5878 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5879 {
5880 	while (entries--) {
5881 		struct dir_entry *entry = addr;
5882 		char *name = (char *)(entry + 1);
5883 
5884 		ctx->pos = entry->offset;
5885 		if (!dir_emit(ctx, name, entry->name_len, entry->ino,
5886 			      entry->type))
5887 			return 1;
5888 		addr += sizeof(struct dir_entry) + entry->name_len;
5889 		ctx->pos++;
5890 	}
5891 	return 0;
5892 }
5893 
5894 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5895 {
5896 	struct inode *inode = file_inode(file);
5897 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5898 	struct btrfs_root *root = BTRFS_I(inode)->root;
5899 	struct btrfs_file_private *private = file->private_data;
5900 	struct btrfs_dir_item *di;
5901 	struct btrfs_key key;
5902 	struct btrfs_key found_key;
5903 	struct btrfs_path *path;
5904 	void *addr;
5905 	struct list_head ins_list;
5906 	struct list_head del_list;
5907 	int ret;
5908 	struct extent_buffer *leaf;
5909 	int slot;
5910 	char *name_ptr;
5911 	int name_len;
5912 	int entries = 0;
5913 	int total_len = 0;
5914 	bool put = false;
5915 	struct btrfs_key location;
5916 
5917 	if (!dir_emit_dots(file, ctx))
5918 		return 0;
5919 
5920 	path = btrfs_alloc_path();
5921 	if (!path)
5922 		return -ENOMEM;
5923 
5924 	addr = private->filldir_buf;
5925 	path->reada = READA_FORWARD;
5926 
5927 	INIT_LIST_HEAD(&ins_list);
5928 	INIT_LIST_HEAD(&del_list);
5929 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5930 
5931 again:
5932 	key.type = BTRFS_DIR_INDEX_KEY;
5933 	key.offset = ctx->pos;
5934 	key.objectid = btrfs_ino(BTRFS_I(inode));
5935 
5936 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5937 	if (ret < 0)
5938 		goto err;
5939 
5940 	while (1) {
5941 		struct dir_entry *entry;
5942 
5943 		leaf = path->nodes[0];
5944 		slot = path->slots[0];
5945 		if (slot >= btrfs_header_nritems(leaf)) {
5946 			ret = btrfs_next_leaf(root, path);
5947 			if (ret < 0)
5948 				goto err;
5949 			else if (ret > 0)
5950 				break;
5951 			continue;
5952 		}
5953 
5954 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5955 
5956 		if (found_key.objectid != key.objectid)
5957 			break;
5958 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5959 			break;
5960 		if (found_key.offset < ctx->pos)
5961 			goto next;
5962 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5963 			goto next;
5964 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5965 		if (verify_dir_item(fs_info, leaf, slot, di))
5966 			goto next;
5967 
5968 		name_len = btrfs_dir_name_len(leaf, di);
5969 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5970 		    PAGE_SIZE) {
5971 			btrfs_release_path(path);
5972 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5973 			if (ret)
5974 				goto nopos;
5975 			addr = private->filldir_buf;
5976 			entries = 0;
5977 			total_len = 0;
5978 			goto again;
5979 		}
5980 
5981 		entry = addr;
5982 		entry->name_len = name_len;
5983 		name_ptr = (char *)(entry + 1);
5984 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5985 				   name_len);
5986 		entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5987 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5988 		entry->ino = location.objectid;
5989 		entry->offset = found_key.offset;
5990 		entries++;
5991 		addr += sizeof(struct dir_entry) + name_len;
5992 		total_len += sizeof(struct dir_entry) + name_len;
5993 next:
5994 		path->slots[0]++;
5995 	}
5996 	btrfs_release_path(path);
5997 
5998 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5999 	if (ret)
6000 		goto nopos;
6001 
6002 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6003 	if (ret)
6004 		goto nopos;
6005 
6006 	/*
6007 	 * Stop new entries from being returned after we return the last
6008 	 * entry.
6009 	 *
6010 	 * New directory entries are assigned a strictly increasing
6011 	 * offset.  This means that new entries created during readdir
6012 	 * are *guaranteed* to be seen in the future by that readdir.
6013 	 * This has broken buggy programs which operate on names as
6014 	 * they're returned by readdir.  Until we re-use freed offsets
6015 	 * we have this hack to stop new entries from being returned
6016 	 * under the assumption that they'll never reach this huge
6017 	 * offset.
6018 	 *
6019 	 * This is being careful not to overflow 32bit loff_t unless the
6020 	 * last entry requires it because doing so has broken 32bit apps
6021 	 * in the past.
6022 	 */
6023 	if (ctx->pos >= INT_MAX)
6024 		ctx->pos = LLONG_MAX;
6025 	else
6026 		ctx->pos = INT_MAX;
6027 nopos:
6028 	ret = 0;
6029 err:
6030 	if (put)
6031 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6032 	btrfs_free_path(path);
6033 	return ret;
6034 }
6035 
6036 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6037 {
6038 	struct btrfs_root *root = BTRFS_I(inode)->root;
6039 	struct btrfs_trans_handle *trans;
6040 	int ret = 0;
6041 	bool nolock = false;
6042 
6043 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6044 		return 0;
6045 
6046 	if (btrfs_fs_closing(root->fs_info) &&
6047 			btrfs_is_free_space_inode(BTRFS_I(inode)))
6048 		nolock = true;
6049 
6050 	if (wbc->sync_mode == WB_SYNC_ALL) {
6051 		if (nolock)
6052 			trans = btrfs_join_transaction_nolock(root);
6053 		else
6054 			trans = btrfs_join_transaction(root);
6055 		if (IS_ERR(trans))
6056 			return PTR_ERR(trans);
6057 		ret = btrfs_commit_transaction(trans);
6058 	}
6059 	return ret;
6060 }
6061 
6062 /*
6063  * This is somewhat expensive, updating the tree every time the
6064  * inode changes.  But, it is most likely to find the inode in cache.
6065  * FIXME, needs more benchmarking...there are no reasons other than performance
6066  * to keep or drop this code.
6067  */
6068 static int btrfs_dirty_inode(struct inode *inode)
6069 {
6070 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6071 	struct btrfs_root *root = BTRFS_I(inode)->root;
6072 	struct btrfs_trans_handle *trans;
6073 	int ret;
6074 
6075 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6076 		return 0;
6077 
6078 	trans = btrfs_join_transaction(root);
6079 	if (IS_ERR(trans))
6080 		return PTR_ERR(trans);
6081 
6082 	ret = btrfs_update_inode(trans, root, inode);
6083 	if (ret && ret == -ENOSPC) {
6084 		/* whoops, lets try again with the full transaction */
6085 		btrfs_end_transaction(trans);
6086 		trans = btrfs_start_transaction(root, 1);
6087 		if (IS_ERR(trans))
6088 			return PTR_ERR(trans);
6089 
6090 		ret = btrfs_update_inode(trans, root, inode);
6091 	}
6092 	btrfs_end_transaction(trans);
6093 	if (BTRFS_I(inode)->delayed_node)
6094 		btrfs_balance_delayed_items(fs_info);
6095 
6096 	return ret;
6097 }
6098 
6099 /*
6100  * This is a copy of file_update_time.  We need this so we can return error on
6101  * ENOSPC for updating the inode in the case of file write and mmap writes.
6102  */
6103 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6104 			     int flags)
6105 {
6106 	struct btrfs_root *root = BTRFS_I(inode)->root;
6107 
6108 	if (btrfs_root_readonly(root))
6109 		return -EROFS;
6110 
6111 	if (flags & S_VERSION)
6112 		inode_inc_iversion(inode);
6113 	if (flags & S_CTIME)
6114 		inode->i_ctime = *now;
6115 	if (flags & S_MTIME)
6116 		inode->i_mtime = *now;
6117 	if (flags & S_ATIME)
6118 		inode->i_atime = *now;
6119 	return btrfs_dirty_inode(inode);
6120 }
6121 
6122 /*
6123  * find the highest existing sequence number in a directory
6124  * and then set the in-memory index_cnt variable to reflect
6125  * free sequence numbers
6126  */
6127 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6128 {
6129 	struct btrfs_root *root = inode->root;
6130 	struct btrfs_key key, found_key;
6131 	struct btrfs_path *path;
6132 	struct extent_buffer *leaf;
6133 	int ret;
6134 
6135 	key.objectid = btrfs_ino(inode);
6136 	key.type = BTRFS_DIR_INDEX_KEY;
6137 	key.offset = (u64)-1;
6138 
6139 	path = btrfs_alloc_path();
6140 	if (!path)
6141 		return -ENOMEM;
6142 
6143 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6144 	if (ret < 0)
6145 		goto out;
6146 	/* FIXME: we should be able to handle this */
6147 	if (ret == 0)
6148 		goto out;
6149 	ret = 0;
6150 
6151 	/*
6152 	 * MAGIC NUMBER EXPLANATION:
6153 	 * since we search a directory based on f_pos we have to start at 2
6154 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6155 	 * else has to start at 2
6156 	 */
6157 	if (path->slots[0] == 0) {
6158 		inode->index_cnt = 2;
6159 		goto out;
6160 	}
6161 
6162 	path->slots[0]--;
6163 
6164 	leaf = path->nodes[0];
6165 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6166 
6167 	if (found_key.objectid != btrfs_ino(inode) ||
6168 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6169 		inode->index_cnt = 2;
6170 		goto out;
6171 	}
6172 
6173 	inode->index_cnt = found_key.offset + 1;
6174 out:
6175 	btrfs_free_path(path);
6176 	return ret;
6177 }
6178 
6179 /*
6180  * helper to find a free sequence number in a given directory.  This current
6181  * code is very simple, later versions will do smarter things in the btree
6182  */
6183 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6184 {
6185 	int ret = 0;
6186 
6187 	if (dir->index_cnt == (u64)-1) {
6188 		ret = btrfs_inode_delayed_dir_index_count(dir);
6189 		if (ret) {
6190 			ret = btrfs_set_inode_index_count(dir);
6191 			if (ret)
6192 				return ret;
6193 		}
6194 	}
6195 
6196 	*index = dir->index_cnt;
6197 	dir->index_cnt++;
6198 
6199 	return ret;
6200 }
6201 
6202 static int btrfs_insert_inode_locked(struct inode *inode)
6203 {
6204 	struct btrfs_iget_args args;
6205 	args.location = &BTRFS_I(inode)->location;
6206 	args.root = BTRFS_I(inode)->root;
6207 
6208 	return insert_inode_locked4(inode,
6209 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6210 		   btrfs_find_actor, &args);
6211 }
6212 
6213 /*
6214  * Inherit flags from the parent inode.
6215  *
6216  * Currently only the compression flags and the cow flags are inherited.
6217  */
6218 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6219 {
6220 	unsigned int flags;
6221 
6222 	if (!dir)
6223 		return;
6224 
6225 	flags = BTRFS_I(dir)->flags;
6226 
6227 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6228 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6229 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6230 	} else if (flags & BTRFS_INODE_COMPRESS) {
6231 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6232 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6233 	}
6234 
6235 	if (flags & BTRFS_INODE_NODATACOW) {
6236 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6237 		if (S_ISREG(inode->i_mode))
6238 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6239 	}
6240 
6241 	btrfs_update_iflags(inode);
6242 }
6243 
6244 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6245 				     struct btrfs_root *root,
6246 				     struct inode *dir,
6247 				     const char *name, int name_len,
6248 				     u64 ref_objectid, u64 objectid,
6249 				     umode_t mode, u64 *index)
6250 {
6251 	struct btrfs_fs_info *fs_info = root->fs_info;
6252 	struct inode *inode;
6253 	struct btrfs_inode_item *inode_item;
6254 	struct btrfs_key *location;
6255 	struct btrfs_path *path;
6256 	struct btrfs_inode_ref *ref;
6257 	struct btrfs_key key[2];
6258 	u32 sizes[2];
6259 	int nitems = name ? 2 : 1;
6260 	unsigned long ptr;
6261 	int ret;
6262 
6263 	path = btrfs_alloc_path();
6264 	if (!path)
6265 		return ERR_PTR(-ENOMEM);
6266 
6267 	inode = new_inode(fs_info->sb);
6268 	if (!inode) {
6269 		btrfs_free_path(path);
6270 		return ERR_PTR(-ENOMEM);
6271 	}
6272 
6273 	/*
6274 	 * O_TMPFILE, set link count to 0, so that after this point,
6275 	 * we fill in an inode item with the correct link count.
6276 	 */
6277 	if (!name)
6278 		set_nlink(inode, 0);
6279 
6280 	/*
6281 	 * we have to initialize this early, so we can reclaim the inode
6282 	 * number if we fail afterwards in this function.
6283 	 */
6284 	inode->i_ino = objectid;
6285 
6286 	if (dir && name) {
6287 		trace_btrfs_inode_request(dir);
6288 
6289 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6290 		if (ret) {
6291 			btrfs_free_path(path);
6292 			iput(inode);
6293 			return ERR_PTR(ret);
6294 		}
6295 	} else if (dir) {
6296 		*index = 0;
6297 	}
6298 	/*
6299 	 * index_cnt is ignored for everything but a dir,
6300 	 * btrfs_get_inode_index_count has an explanation for the magic
6301 	 * number
6302 	 */
6303 	BTRFS_I(inode)->index_cnt = 2;
6304 	BTRFS_I(inode)->dir_index = *index;
6305 	BTRFS_I(inode)->root = root;
6306 	BTRFS_I(inode)->generation = trans->transid;
6307 	inode->i_generation = BTRFS_I(inode)->generation;
6308 
6309 	/*
6310 	 * We could have gotten an inode number from somebody who was fsynced
6311 	 * and then removed in this same transaction, so let's just set full
6312 	 * sync since it will be a full sync anyway and this will blow away the
6313 	 * old info in the log.
6314 	 */
6315 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6316 
6317 	key[0].objectid = objectid;
6318 	key[0].type = BTRFS_INODE_ITEM_KEY;
6319 	key[0].offset = 0;
6320 
6321 	sizes[0] = sizeof(struct btrfs_inode_item);
6322 
6323 	if (name) {
6324 		/*
6325 		 * Start new inodes with an inode_ref. This is slightly more
6326 		 * efficient for small numbers of hard links since they will
6327 		 * be packed into one item. Extended refs will kick in if we
6328 		 * add more hard links than can fit in the ref item.
6329 		 */
6330 		key[1].objectid = objectid;
6331 		key[1].type = BTRFS_INODE_REF_KEY;
6332 		key[1].offset = ref_objectid;
6333 
6334 		sizes[1] = name_len + sizeof(*ref);
6335 	}
6336 
6337 	location = &BTRFS_I(inode)->location;
6338 	location->objectid = objectid;
6339 	location->offset = 0;
6340 	location->type = BTRFS_INODE_ITEM_KEY;
6341 
6342 	ret = btrfs_insert_inode_locked(inode);
6343 	if (ret < 0)
6344 		goto fail;
6345 
6346 	path->leave_spinning = 1;
6347 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6348 	if (ret != 0)
6349 		goto fail_unlock;
6350 
6351 	inode_init_owner(inode, dir, mode);
6352 	inode_set_bytes(inode, 0);
6353 
6354 	inode->i_mtime = current_time(inode);
6355 	inode->i_atime = inode->i_mtime;
6356 	inode->i_ctime = inode->i_mtime;
6357 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6358 
6359 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6360 				  struct btrfs_inode_item);
6361 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6362 			     sizeof(*inode_item));
6363 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6364 
6365 	if (name) {
6366 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6367 				     struct btrfs_inode_ref);
6368 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6369 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6370 		ptr = (unsigned long)(ref + 1);
6371 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6372 	}
6373 
6374 	btrfs_mark_buffer_dirty(path->nodes[0]);
6375 	btrfs_free_path(path);
6376 
6377 	btrfs_inherit_iflags(inode, dir);
6378 
6379 	if (S_ISREG(mode)) {
6380 		if (btrfs_test_opt(fs_info, NODATASUM))
6381 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6382 		if (btrfs_test_opt(fs_info, NODATACOW))
6383 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6384 				BTRFS_INODE_NODATASUM;
6385 	}
6386 
6387 	inode_tree_add(inode);
6388 
6389 	trace_btrfs_inode_new(inode);
6390 	btrfs_set_inode_last_trans(trans, inode);
6391 
6392 	btrfs_update_root_times(trans, root);
6393 
6394 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6395 	if (ret)
6396 		btrfs_err(fs_info,
6397 			  "error inheriting props for ino %llu (root %llu): %d",
6398 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6399 
6400 	return inode;
6401 
6402 fail_unlock:
6403 	unlock_new_inode(inode);
6404 fail:
6405 	if (dir && name)
6406 		BTRFS_I(dir)->index_cnt--;
6407 	btrfs_free_path(path);
6408 	iput(inode);
6409 	return ERR_PTR(ret);
6410 }
6411 
6412 static inline u8 btrfs_inode_type(struct inode *inode)
6413 {
6414 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6415 }
6416 
6417 /*
6418  * utility function to add 'inode' into 'parent_inode' with
6419  * a give name and a given sequence number.
6420  * if 'add_backref' is true, also insert a backref from the
6421  * inode to the parent directory.
6422  */
6423 int btrfs_add_link(struct btrfs_trans_handle *trans,
6424 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6425 		   const char *name, int name_len, int add_backref, u64 index)
6426 {
6427 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6428 	int ret = 0;
6429 	struct btrfs_key key;
6430 	struct btrfs_root *root = parent_inode->root;
6431 	u64 ino = btrfs_ino(inode);
6432 	u64 parent_ino = btrfs_ino(parent_inode);
6433 
6434 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6435 		memcpy(&key, &inode->root->root_key, sizeof(key));
6436 	} else {
6437 		key.objectid = ino;
6438 		key.type = BTRFS_INODE_ITEM_KEY;
6439 		key.offset = 0;
6440 	}
6441 
6442 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6443 		ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6444 					 root->root_key.objectid, parent_ino,
6445 					 index, name, name_len);
6446 	} else if (add_backref) {
6447 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6448 					     parent_ino, index);
6449 	}
6450 
6451 	/* Nothing to clean up yet */
6452 	if (ret)
6453 		return ret;
6454 
6455 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6456 				    parent_inode, &key,
6457 				    btrfs_inode_type(&inode->vfs_inode), index);
6458 	if (ret == -EEXIST || ret == -EOVERFLOW)
6459 		goto fail_dir_item;
6460 	else if (ret) {
6461 		btrfs_abort_transaction(trans, ret);
6462 		return ret;
6463 	}
6464 
6465 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6466 			   name_len * 2);
6467 	inode_inc_iversion(&parent_inode->vfs_inode);
6468 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6469 		current_time(&parent_inode->vfs_inode);
6470 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6471 	if (ret)
6472 		btrfs_abort_transaction(trans, ret);
6473 	return ret;
6474 
6475 fail_dir_item:
6476 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6477 		u64 local_index;
6478 		int err;
6479 		err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6480 					 root->root_key.objectid, parent_ino,
6481 					 &local_index, name, name_len);
6482 
6483 	} else if (add_backref) {
6484 		u64 local_index;
6485 		int err;
6486 
6487 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6488 					  ino, parent_ino, &local_index);
6489 	}
6490 	return ret;
6491 }
6492 
6493 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6494 			    struct btrfs_inode *dir, struct dentry *dentry,
6495 			    struct btrfs_inode *inode, int backref, u64 index)
6496 {
6497 	int err = btrfs_add_link(trans, dir, inode,
6498 				 dentry->d_name.name, dentry->d_name.len,
6499 				 backref, index);
6500 	if (err > 0)
6501 		err = -EEXIST;
6502 	return err;
6503 }
6504 
6505 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6506 			umode_t mode, dev_t rdev)
6507 {
6508 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6509 	struct btrfs_trans_handle *trans;
6510 	struct btrfs_root *root = BTRFS_I(dir)->root;
6511 	struct inode *inode = NULL;
6512 	int err;
6513 	int drop_inode = 0;
6514 	u64 objectid;
6515 	u64 index = 0;
6516 
6517 	/*
6518 	 * 2 for inode item and ref
6519 	 * 2 for dir items
6520 	 * 1 for xattr if selinux is on
6521 	 */
6522 	trans = btrfs_start_transaction(root, 5);
6523 	if (IS_ERR(trans))
6524 		return PTR_ERR(trans);
6525 
6526 	err = btrfs_find_free_ino(root, &objectid);
6527 	if (err)
6528 		goto out_unlock;
6529 
6530 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6531 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6532 			mode, &index);
6533 	if (IS_ERR(inode)) {
6534 		err = PTR_ERR(inode);
6535 		goto out_unlock;
6536 	}
6537 
6538 	/*
6539 	* If the active LSM wants to access the inode during
6540 	* d_instantiate it needs these. Smack checks to see
6541 	* if the filesystem supports xattrs by looking at the
6542 	* ops vector.
6543 	*/
6544 	inode->i_op = &btrfs_special_inode_operations;
6545 	init_special_inode(inode, inode->i_mode, rdev);
6546 
6547 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6548 	if (err)
6549 		goto out_unlock_inode;
6550 
6551 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6552 			0, index);
6553 	if (err) {
6554 		goto out_unlock_inode;
6555 	} else {
6556 		btrfs_update_inode(trans, root, inode);
6557 		unlock_new_inode(inode);
6558 		d_instantiate(dentry, inode);
6559 	}
6560 
6561 out_unlock:
6562 	btrfs_end_transaction(trans);
6563 	btrfs_balance_delayed_items(fs_info);
6564 	btrfs_btree_balance_dirty(fs_info);
6565 	if (drop_inode) {
6566 		inode_dec_link_count(inode);
6567 		iput(inode);
6568 	}
6569 	return err;
6570 
6571 out_unlock_inode:
6572 	drop_inode = 1;
6573 	unlock_new_inode(inode);
6574 	goto out_unlock;
6575 
6576 }
6577 
6578 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6579 			umode_t mode, bool excl)
6580 {
6581 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6582 	struct btrfs_trans_handle *trans;
6583 	struct btrfs_root *root = BTRFS_I(dir)->root;
6584 	struct inode *inode = NULL;
6585 	int drop_inode_on_err = 0;
6586 	int err;
6587 	u64 objectid;
6588 	u64 index = 0;
6589 
6590 	/*
6591 	 * 2 for inode item and ref
6592 	 * 2 for dir items
6593 	 * 1 for xattr if selinux is on
6594 	 */
6595 	trans = btrfs_start_transaction(root, 5);
6596 	if (IS_ERR(trans))
6597 		return PTR_ERR(trans);
6598 
6599 	err = btrfs_find_free_ino(root, &objectid);
6600 	if (err)
6601 		goto out_unlock;
6602 
6603 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6604 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6605 			mode, &index);
6606 	if (IS_ERR(inode)) {
6607 		err = PTR_ERR(inode);
6608 		goto out_unlock;
6609 	}
6610 	drop_inode_on_err = 1;
6611 	/*
6612 	* If the active LSM wants to access the inode during
6613 	* d_instantiate it needs these. Smack checks to see
6614 	* if the filesystem supports xattrs by looking at the
6615 	* ops vector.
6616 	*/
6617 	inode->i_fop = &btrfs_file_operations;
6618 	inode->i_op = &btrfs_file_inode_operations;
6619 	inode->i_mapping->a_ops = &btrfs_aops;
6620 
6621 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6622 	if (err)
6623 		goto out_unlock_inode;
6624 
6625 	err = btrfs_update_inode(trans, root, inode);
6626 	if (err)
6627 		goto out_unlock_inode;
6628 
6629 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6630 			0, index);
6631 	if (err)
6632 		goto out_unlock_inode;
6633 
6634 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6635 	unlock_new_inode(inode);
6636 	d_instantiate(dentry, inode);
6637 
6638 out_unlock:
6639 	btrfs_end_transaction(trans);
6640 	if (err && drop_inode_on_err) {
6641 		inode_dec_link_count(inode);
6642 		iput(inode);
6643 	}
6644 	btrfs_balance_delayed_items(fs_info);
6645 	btrfs_btree_balance_dirty(fs_info);
6646 	return err;
6647 
6648 out_unlock_inode:
6649 	unlock_new_inode(inode);
6650 	goto out_unlock;
6651 
6652 }
6653 
6654 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6655 		      struct dentry *dentry)
6656 {
6657 	struct btrfs_trans_handle *trans = NULL;
6658 	struct btrfs_root *root = BTRFS_I(dir)->root;
6659 	struct inode *inode = d_inode(old_dentry);
6660 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6661 	u64 index;
6662 	int err;
6663 	int drop_inode = 0;
6664 
6665 	/* do not allow sys_link's with other subvols of the same device */
6666 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6667 		return -EXDEV;
6668 
6669 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6670 		return -EMLINK;
6671 
6672 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6673 	if (err)
6674 		goto fail;
6675 
6676 	/*
6677 	 * 2 items for inode and inode ref
6678 	 * 2 items for dir items
6679 	 * 1 item for parent inode
6680 	 */
6681 	trans = btrfs_start_transaction(root, 5);
6682 	if (IS_ERR(trans)) {
6683 		err = PTR_ERR(trans);
6684 		trans = NULL;
6685 		goto fail;
6686 	}
6687 
6688 	/* There are several dir indexes for this inode, clear the cache. */
6689 	BTRFS_I(inode)->dir_index = 0ULL;
6690 	inc_nlink(inode);
6691 	inode_inc_iversion(inode);
6692 	inode->i_ctime = current_time(inode);
6693 	ihold(inode);
6694 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6695 
6696 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6697 			1, index);
6698 
6699 	if (err) {
6700 		drop_inode = 1;
6701 	} else {
6702 		struct dentry *parent = dentry->d_parent;
6703 		err = btrfs_update_inode(trans, root, inode);
6704 		if (err)
6705 			goto fail;
6706 		if (inode->i_nlink == 1) {
6707 			/*
6708 			 * If new hard link count is 1, it's a file created
6709 			 * with open(2) O_TMPFILE flag.
6710 			 */
6711 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6712 			if (err)
6713 				goto fail;
6714 		}
6715 		d_instantiate(dentry, inode);
6716 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6717 	}
6718 
6719 	btrfs_balance_delayed_items(fs_info);
6720 fail:
6721 	if (trans)
6722 		btrfs_end_transaction(trans);
6723 	if (drop_inode) {
6724 		inode_dec_link_count(inode);
6725 		iput(inode);
6726 	}
6727 	btrfs_btree_balance_dirty(fs_info);
6728 	return err;
6729 }
6730 
6731 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6732 {
6733 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6734 	struct inode *inode = NULL;
6735 	struct btrfs_trans_handle *trans;
6736 	struct btrfs_root *root = BTRFS_I(dir)->root;
6737 	int err = 0;
6738 	int drop_on_err = 0;
6739 	u64 objectid = 0;
6740 	u64 index = 0;
6741 
6742 	/*
6743 	 * 2 items for inode and ref
6744 	 * 2 items for dir items
6745 	 * 1 for xattr if selinux is on
6746 	 */
6747 	trans = btrfs_start_transaction(root, 5);
6748 	if (IS_ERR(trans))
6749 		return PTR_ERR(trans);
6750 
6751 	err = btrfs_find_free_ino(root, &objectid);
6752 	if (err)
6753 		goto out_fail;
6754 
6755 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6756 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6757 			S_IFDIR | mode, &index);
6758 	if (IS_ERR(inode)) {
6759 		err = PTR_ERR(inode);
6760 		goto out_fail;
6761 	}
6762 
6763 	drop_on_err = 1;
6764 	/* these must be set before we unlock the inode */
6765 	inode->i_op = &btrfs_dir_inode_operations;
6766 	inode->i_fop = &btrfs_dir_file_operations;
6767 
6768 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6769 	if (err)
6770 		goto out_fail_inode;
6771 
6772 	btrfs_i_size_write(BTRFS_I(inode), 0);
6773 	err = btrfs_update_inode(trans, root, inode);
6774 	if (err)
6775 		goto out_fail_inode;
6776 
6777 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6778 			dentry->d_name.name,
6779 			dentry->d_name.len, 0, index);
6780 	if (err)
6781 		goto out_fail_inode;
6782 
6783 	d_instantiate(dentry, inode);
6784 	/*
6785 	 * mkdir is special.  We're unlocking after we call d_instantiate
6786 	 * to avoid a race with nfsd calling d_instantiate.
6787 	 */
6788 	unlock_new_inode(inode);
6789 	drop_on_err = 0;
6790 
6791 out_fail:
6792 	btrfs_end_transaction(trans);
6793 	if (drop_on_err) {
6794 		inode_dec_link_count(inode);
6795 		iput(inode);
6796 	}
6797 	btrfs_balance_delayed_items(fs_info);
6798 	btrfs_btree_balance_dirty(fs_info);
6799 	return err;
6800 
6801 out_fail_inode:
6802 	unlock_new_inode(inode);
6803 	goto out_fail;
6804 }
6805 
6806 /* Find next extent map of a given extent map, caller needs to ensure locks */
6807 static struct extent_map *next_extent_map(struct extent_map *em)
6808 {
6809 	struct rb_node *next;
6810 
6811 	next = rb_next(&em->rb_node);
6812 	if (!next)
6813 		return NULL;
6814 	return container_of(next, struct extent_map, rb_node);
6815 }
6816 
6817 static struct extent_map *prev_extent_map(struct extent_map *em)
6818 {
6819 	struct rb_node *prev;
6820 
6821 	prev = rb_prev(&em->rb_node);
6822 	if (!prev)
6823 		return NULL;
6824 	return container_of(prev, struct extent_map, rb_node);
6825 }
6826 
6827 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6828  * the existing extent is the nearest extent to map_start,
6829  * and an extent that you want to insert, deal with overlap and insert
6830  * the best fitted new extent into the tree.
6831  */
6832 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6833 				struct extent_map *existing,
6834 				struct extent_map *em,
6835 				u64 map_start)
6836 {
6837 	struct extent_map *prev;
6838 	struct extent_map *next;
6839 	u64 start;
6840 	u64 end;
6841 	u64 start_diff;
6842 
6843 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6844 
6845 	if (existing->start > map_start) {
6846 		next = existing;
6847 		prev = prev_extent_map(next);
6848 	} else {
6849 		prev = existing;
6850 		next = next_extent_map(prev);
6851 	}
6852 
6853 	start = prev ? extent_map_end(prev) : em->start;
6854 	start = max_t(u64, start, em->start);
6855 	end = next ? next->start : extent_map_end(em);
6856 	end = min_t(u64, end, extent_map_end(em));
6857 	start_diff = start - em->start;
6858 	em->start = start;
6859 	em->len = end - start;
6860 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6861 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6862 		em->block_start += start_diff;
6863 		em->block_len -= start_diff;
6864 	}
6865 	return add_extent_mapping(em_tree, em, 0);
6866 }
6867 
6868 static noinline int uncompress_inline(struct btrfs_path *path,
6869 				      struct page *page,
6870 				      size_t pg_offset, u64 extent_offset,
6871 				      struct btrfs_file_extent_item *item)
6872 {
6873 	int ret;
6874 	struct extent_buffer *leaf = path->nodes[0];
6875 	char *tmp;
6876 	size_t max_size;
6877 	unsigned long inline_size;
6878 	unsigned long ptr;
6879 	int compress_type;
6880 
6881 	WARN_ON(pg_offset != 0);
6882 	compress_type = btrfs_file_extent_compression(leaf, item);
6883 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6884 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6885 					btrfs_item_nr(path->slots[0]));
6886 	tmp = kmalloc(inline_size, GFP_NOFS);
6887 	if (!tmp)
6888 		return -ENOMEM;
6889 	ptr = btrfs_file_extent_inline_start(item);
6890 
6891 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6892 
6893 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6894 	ret = btrfs_decompress(compress_type, tmp, page,
6895 			       extent_offset, inline_size, max_size);
6896 
6897 	/*
6898 	 * decompression code contains a memset to fill in any space between the end
6899 	 * of the uncompressed data and the end of max_size in case the decompressed
6900 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6901 	 * the end of an inline extent and the beginning of the next block, so we
6902 	 * cover that region here.
6903 	 */
6904 
6905 	if (max_size + pg_offset < PAGE_SIZE) {
6906 		char *map = kmap(page);
6907 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6908 		kunmap(page);
6909 	}
6910 	kfree(tmp);
6911 	return ret;
6912 }
6913 
6914 /*
6915  * a bit scary, this does extent mapping from logical file offset to the disk.
6916  * the ugly parts come from merging extents from the disk with the in-ram
6917  * representation.  This gets more complex because of the data=ordered code,
6918  * where the in-ram extents might be locked pending data=ordered completion.
6919  *
6920  * This also copies inline extents directly into the page.
6921  */
6922 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6923 		struct page *page,
6924 	    size_t pg_offset, u64 start, u64 len,
6925 		int create)
6926 {
6927 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6928 	int ret;
6929 	int err = 0;
6930 	u64 extent_start = 0;
6931 	u64 extent_end = 0;
6932 	u64 objectid = btrfs_ino(inode);
6933 	u32 found_type;
6934 	struct btrfs_path *path = NULL;
6935 	struct btrfs_root *root = inode->root;
6936 	struct btrfs_file_extent_item *item;
6937 	struct extent_buffer *leaf;
6938 	struct btrfs_key found_key;
6939 	struct extent_map *em = NULL;
6940 	struct extent_map_tree *em_tree = &inode->extent_tree;
6941 	struct extent_io_tree *io_tree = &inode->io_tree;
6942 	struct btrfs_trans_handle *trans = NULL;
6943 	const bool new_inline = !page || create;
6944 
6945 again:
6946 	read_lock(&em_tree->lock);
6947 	em = lookup_extent_mapping(em_tree, start, len);
6948 	if (em)
6949 		em->bdev = fs_info->fs_devices->latest_bdev;
6950 	read_unlock(&em_tree->lock);
6951 
6952 	if (em) {
6953 		if (em->start > start || em->start + em->len <= start)
6954 			free_extent_map(em);
6955 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6956 			free_extent_map(em);
6957 		else
6958 			goto out;
6959 	}
6960 	em = alloc_extent_map();
6961 	if (!em) {
6962 		err = -ENOMEM;
6963 		goto out;
6964 	}
6965 	em->bdev = fs_info->fs_devices->latest_bdev;
6966 	em->start = EXTENT_MAP_HOLE;
6967 	em->orig_start = EXTENT_MAP_HOLE;
6968 	em->len = (u64)-1;
6969 	em->block_len = (u64)-1;
6970 
6971 	if (!path) {
6972 		path = btrfs_alloc_path();
6973 		if (!path) {
6974 			err = -ENOMEM;
6975 			goto out;
6976 		}
6977 		/*
6978 		 * Chances are we'll be called again, so go ahead and do
6979 		 * readahead
6980 		 */
6981 		path->reada = READA_FORWARD;
6982 	}
6983 
6984 	ret = btrfs_lookup_file_extent(trans, root, path,
6985 				       objectid, start, trans != NULL);
6986 	if (ret < 0) {
6987 		err = ret;
6988 		goto out;
6989 	}
6990 
6991 	if (ret != 0) {
6992 		if (path->slots[0] == 0)
6993 			goto not_found;
6994 		path->slots[0]--;
6995 	}
6996 
6997 	leaf = path->nodes[0];
6998 	item = btrfs_item_ptr(leaf, path->slots[0],
6999 			      struct btrfs_file_extent_item);
7000 	/* are we inside the extent that was found? */
7001 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7002 	found_type = found_key.type;
7003 	if (found_key.objectid != objectid ||
7004 	    found_type != BTRFS_EXTENT_DATA_KEY) {
7005 		/*
7006 		 * If we backup past the first extent we want to move forward
7007 		 * and see if there is an extent in front of us, otherwise we'll
7008 		 * say there is a hole for our whole search range which can
7009 		 * cause problems.
7010 		 */
7011 		extent_end = start;
7012 		goto next;
7013 	}
7014 
7015 	found_type = btrfs_file_extent_type(leaf, item);
7016 	extent_start = found_key.offset;
7017 	if (found_type == BTRFS_FILE_EXTENT_REG ||
7018 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7019 		extent_end = extent_start +
7020 		       btrfs_file_extent_num_bytes(leaf, item);
7021 
7022 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7023 						       extent_start);
7024 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7025 		size_t size;
7026 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7027 		extent_end = ALIGN(extent_start + size,
7028 				   fs_info->sectorsize);
7029 
7030 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7031 						      path->slots[0],
7032 						      extent_start);
7033 	}
7034 next:
7035 	if (start >= extent_end) {
7036 		path->slots[0]++;
7037 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7038 			ret = btrfs_next_leaf(root, path);
7039 			if (ret < 0) {
7040 				err = ret;
7041 				goto out;
7042 			}
7043 			if (ret > 0)
7044 				goto not_found;
7045 			leaf = path->nodes[0];
7046 		}
7047 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7048 		if (found_key.objectid != objectid ||
7049 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7050 			goto not_found;
7051 		if (start + len <= found_key.offset)
7052 			goto not_found;
7053 		if (start > found_key.offset)
7054 			goto next;
7055 		em->start = start;
7056 		em->orig_start = start;
7057 		em->len = found_key.offset - start;
7058 		goto not_found_em;
7059 	}
7060 
7061 	btrfs_extent_item_to_extent_map(inode, path, item,
7062 			new_inline, em);
7063 
7064 	if (found_type == BTRFS_FILE_EXTENT_REG ||
7065 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7066 		goto insert;
7067 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7068 		unsigned long ptr;
7069 		char *map;
7070 		size_t size;
7071 		size_t extent_offset;
7072 		size_t copy_size;
7073 
7074 		if (new_inline)
7075 			goto out;
7076 
7077 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7078 		extent_offset = page_offset(page) + pg_offset - extent_start;
7079 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7080 				  size - extent_offset);
7081 		em->start = extent_start + extent_offset;
7082 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7083 		em->orig_block_len = em->len;
7084 		em->orig_start = em->start;
7085 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7086 		if (create == 0 && !PageUptodate(page)) {
7087 			if (btrfs_file_extent_compression(leaf, item) !=
7088 			    BTRFS_COMPRESS_NONE) {
7089 				ret = uncompress_inline(path, page, pg_offset,
7090 							extent_offset, item);
7091 				if (ret) {
7092 					err = ret;
7093 					goto out;
7094 				}
7095 			} else {
7096 				map = kmap(page);
7097 				read_extent_buffer(leaf, map + pg_offset, ptr,
7098 						   copy_size);
7099 				if (pg_offset + copy_size < PAGE_SIZE) {
7100 					memset(map + pg_offset + copy_size, 0,
7101 					       PAGE_SIZE - pg_offset -
7102 					       copy_size);
7103 				}
7104 				kunmap(page);
7105 			}
7106 			flush_dcache_page(page);
7107 		} else if (create && PageUptodate(page)) {
7108 			BUG();
7109 			if (!trans) {
7110 				kunmap(page);
7111 				free_extent_map(em);
7112 				em = NULL;
7113 
7114 				btrfs_release_path(path);
7115 				trans = btrfs_join_transaction(root);
7116 
7117 				if (IS_ERR(trans))
7118 					return ERR_CAST(trans);
7119 				goto again;
7120 			}
7121 			map = kmap(page);
7122 			write_extent_buffer(leaf, map + pg_offset, ptr,
7123 					    copy_size);
7124 			kunmap(page);
7125 			btrfs_mark_buffer_dirty(leaf);
7126 		}
7127 		set_extent_uptodate(io_tree, em->start,
7128 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7129 		goto insert;
7130 	}
7131 not_found:
7132 	em->start = start;
7133 	em->orig_start = start;
7134 	em->len = len;
7135 not_found_em:
7136 	em->block_start = EXTENT_MAP_HOLE;
7137 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7138 insert:
7139 	btrfs_release_path(path);
7140 	if (em->start > start || extent_map_end(em) <= start) {
7141 		btrfs_err(fs_info,
7142 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7143 			  em->start, em->len, start, len);
7144 		err = -EIO;
7145 		goto out;
7146 	}
7147 
7148 	err = 0;
7149 	write_lock(&em_tree->lock);
7150 	ret = add_extent_mapping(em_tree, em, 0);
7151 	/* it is possible that someone inserted the extent into the tree
7152 	 * while we had the lock dropped.  It is also possible that
7153 	 * an overlapping map exists in the tree
7154 	 */
7155 	if (ret == -EEXIST) {
7156 		struct extent_map *existing;
7157 
7158 		ret = 0;
7159 
7160 		existing = search_extent_mapping(em_tree, start, len);
7161 		/*
7162 		 * existing will always be non-NULL, since there must be
7163 		 * extent causing the -EEXIST.
7164 		 */
7165 		if (existing->start == em->start &&
7166 		    extent_map_end(existing) >= extent_map_end(em) &&
7167 		    em->block_start == existing->block_start) {
7168 			/*
7169 			 * The existing extent map already encompasses the
7170 			 * entire extent map we tried to add.
7171 			 */
7172 			free_extent_map(em);
7173 			em = existing;
7174 			err = 0;
7175 
7176 		} else if (start >= extent_map_end(existing) ||
7177 		    start <= existing->start) {
7178 			/*
7179 			 * The existing extent map is the one nearest to
7180 			 * the [start, start + len) range which overlaps
7181 			 */
7182 			err = merge_extent_mapping(em_tree, existing,
7183 						   em, start);
7184 			free_extent_map(existing);
7185 			if (err) {
7186 				free_extent_map(em);
7187 				em = NULL;
7188 			}
7189 		} else {
7190 			free_extent_map(em);
7191 			em = existing;
7192 			err = 0;
7193 		}
7194 	}
7195 	write_unlock(&em_tree->lock);
7196 out:
7197 
7198 	trace_btrfs_get_extent(root, inode, em);
7199 
7200 	btrfs_free_path(path);
7201 	if (trans) {
7202 		ret = btrfs_end_transaction(trans);
7203 		if (!err)
7204 			err = ret;
7205 	}
7206 	if (err) {
7207 		free_extent_map(em);
7208 		return ERR_PTR(err);
7209 	}
7210 	BUG_ON(!em); /* Error is always set */
7211 	return em;
7212 }
7213 
7214 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7215 		struct page *page,
7216 		size_t pg_offset, u64 start, u64 len,
7217 		int create)
7218 {
7219 	struct extent_map *em;
7220 	struct extent_map *hole_em = NULL;
7221 	u64 range_start = start;
7222 	u64 end;
7223 	u64 found;
7224 	u64 found_end;
7225 	int err = 0;
7226 
7227 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7228 	if (IS_ERR(em))
7229 		return em;
7230 	/*
7231 	 * If our em maps to:
7232 	 * - a hole or
7233 	 * - a pre-alloc extent,
7234 	 * there might actually be delalloc bytes behind it.
7235 	 */
7236 	if (em->block_start != EXTENT_MAP_HOLE &&
7237 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7238 		return em;
7239 	else
7240 		hole_em = em;
7241 
7242 	/* check to see if we've wrapped (len == -1 or similar) */
7243 	end = start + len;
7244 	if (end < start)
7245 		end = (u64)-1;
7246 	else
7247 		end -= 1;
7248 
7249 	em = NULL;
7250 
7251 	/* ok, we didn't find anything, lets look for delalloc */
7252 	found = count_range_bits(&inode->io_tree, &range_start,
7253 				 end, len, EXTENT_DELALLOC, 1);
7254 	found_end = range_start + found;
7255 	if (found_end < range_start)
7256 		found_end = (u64)-1;
7257 
7258 	/*
7259 	 * we didn't find anything useful, return
7260 	 * the original results from get_extent()
7261 	 */
7262 	if (range_start > end || found_end <= start) {
7263 		em = hole_em;
7264 		hole_em = NULL;
7265 		goto out;
7266 	}
7267 
7268 	/* adjust the range_start to make sure it doesn't
7269 	 * go backwards from the start they passed in
7270 	 */
7271 	range_start = max(start, range_start);
7272 	found = found_end - range_start;
7273 
7274 	if (found > 0) {
7275 		u64 hole_start = start;
7276 		u64 hole_len = len;
7277 
7278 		em = alloc_extent_map();
7279 		if (!em) {
7280 			err = -ENOMEM;
7281 			goto out;
7282 		}
7283 		/*
7284 		 * when btrfs_get_extent can't find anything it
7285 		 * returns one huge hole
7286 		 *
7287 		 * make sure what it found really fits our range, and
7288 		 * adjust to make sure it is based on the start from
7289 		 * the caller
7290 		 */
7291 		if (hole_em) {
7292 			u64 calc_end = extent_map_end(hole_em);
7293 
7294 			if (calc_end <= start || (hole_em->start > end)) {
7295 				free_extent_map(hole_em);
7296 				hole_em = NULL;
7297 			} else {
7298 				hole_start = max(hole_em->start, start);
7299 				hole_len = calc_end - hole_start;
7300 			}
7301 		}
7302 		em->bdev = NULL;
7303 		if (hole_em && range_start > hole_start) {
7304 			/* our hole starts before our delalloc, so we
7305 			 * have to return just the parts of the hole
7306 			 * that go until  the delalloc starts
7307 			 */
7308 			em->len = min(hole_len,
7309 				      range_start - hole_start);
7310 			em->start = hole_start;
7311 			em->orig_start = hole_start;
7312 			/*
7313 			 * don't adjust block start at all,
7314 			 * it is fixed at EXTENT_MAP_HOLE
7315 			 */
7316 			em->block_start = hole_em->block_start;
7317 			em->block_len = hole_len;
7318 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7319 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7320 		} else {
7321 			em->start = range_start;
7322 			em->len = found;
7323 			em->orig_start = range_start;
7324 			em->block_start = EXTENT_MAP_DELALLOC;
7325 			em->block_len = found;
7326 		}
7327 	} else if (hole_em) {
7328 		return hole_em;
7329 	}
7330 out:
7331 
7332 	free_extent_map(hole_em);
7333 	if (err) {
7334 		free_extent_map(em);
7335 		return ERR_PTR(err);
7336 	}
7337 	return em;
7338 }
7339 
7340 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7341 						  const u64 start,
7342 						  const u64 len,
7343 						  const u64 orig_start,
7344 						  const u64 block_start,
7345 						  const u64 block_len,
7346 						  const u64 orig_block_len,
7347 						  const u64 ram_bytes,
7348 						  const int type)
7349 {
7350 	struct extent_map *em = NULL;
7351 	int ret;
7352 
7353 	if (type != BTRFS_ORDERED_NOCOW) {
7354 		em = create_io_em(inode, start, len, orig_start,
7355 				  block_start, block_len, orig_block_len,
7356 				  ram_bytes,
7357 				  BTRFS_COMPRESS_NONE, /* compress_type */
7358 				  type);
7359 		if (IS_ERR(em))
7360 			goto out;
7361 	}
7362 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7363 					   len, block_len, type);
7364 	if (ret) {
7365 		if (em) {
7366 			free_extent_map(em);
7367 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7368 						start + len - 1, 0);
7369 		}
7370 		em = ERR_PTR(ret);
7371 	}
7372  out:
7373 
7374 	return em;
7375 }
7376 
7377 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7378 						  u64 start, u64 len)
7379 {
7380 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7381 	struct btrfs_root *root = BTRFS_I(inode)->root;
7382 	struct extent_map *em;
7383 	struct btrfs_key ins;
7384 	u64 alloc_hint;
7385 	int ret;
7386 
7387 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7388 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7389 				   0, alloc_hint, &ins, 1, 1);
7390 	if (ret)
7391 		return ERR_PTR(ret);
7392 
7393 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7394 				     ins.objectid, ins.offset, ins.offset,
7395 				     ins.offset, BTRFS_ORDERED_REGULAR);
7396 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7397 	if (IS_ERR(em))
7398 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7399 					   ins.offset, 1);
7400 
7401 	return em;
7402 }
7403 
7404 /*
7405  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7406  * block must be cow'd
7407  */
7408 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7409 			      u64 *orig_start, u64 *orig_block_len,
7410 			      u64 *ram_bytes)
7411 {
7412 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7413 	struct btrfs_path *path;
7414 	int ret;
7415 	struct extent_buffer *leaf;
7416 	struct btrfs_root *root = BTRFS_I(inode)->root;
7417 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7418 	struct btrfs_file_extent_item *fi;
7419 	struct btrfs_key key;
7420 	u64 disk_bytenr;
7421 	u64 backref_offset;
7422 	u64 extent_end;
7423 	u64 num_bytes;
7424 	int slot;
7425 	int found_type;
7426 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7427 
7428 	path = btrfs_alloc_path();
7429 	if (!path)
7430 		return -ENOMEM;
7431 
7432 	ret = btrfs_lookup_file_extent(NULL, root, path,
7433 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7434 	if (ret < 0)
7435 		goto out;
7436 
7437 	slot = path->slots[0];
7438 	if (ret == 1) {
7439 		if (slot == 0) {
7440 			/* can't find the item, must cow */
7441 			ret = 0;
7442 			goto out;
7443 		}
7444 		slot--;
7445 	}
7446 	ret = 0;
7447 	leaf = path->nodes[0];
7448 	btrfs_item_key_to_cpu(leaf, &key, slot);
7449 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7450 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7451 		/* not our file or wrong item type, must cow */
7452 		goto out;
7453 	}
7454 
7455 	if (key.offset > offset) {
7456 		/* Wrong offset, must cow */
7457 		goto out;
7458 	}
7459 
7460 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7461 	found_type = btrfs_file_extent_type(leaf, fi);
7462 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7463 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7464 		/* not a regular extent, must cow */
7465 		goto out;
7466 	}
7467 
7468 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7469 		goto out;
7470 
7471 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7472 	if (extent_end <= offset)
7473 		goto out;
7474 
7475 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7476 	if (disk_bytenr == 0)
7477 		goto out;
7478 
7479 	if (btrfs_file_extent_compression(leaf, fi) ||
7480 	    btrfs_file_extent_encryption(leaf, fi) ||
7481 	    btrfs_file_extent_other_encoding(leaf, fi))
7482 		goto out;
7483 
7484 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7485 
7486 	if (orig_start) {
7487 		*orig_start = key.offset - backref_offset;
7488 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7489 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7490 	}
7491 
7492 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7493 		goto out;
7494 
7495 	num_bytes = min(offset + *len, extent_end) - offset;
7496 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7497 		u64 range_end;
7498 
7499 		range_end = round_up(offset + num_bytes,
7500 				     root->fs_info->sectorsize) - 1;
7501 		ret = test_range_bit(io_tree, offset, range_end,
7502 				     EXTENT_DELALLOC, 0, NULL);
7503 		if (ret) {
7504 			ret = -EAGAIN;
7505 			goto out;
7506 		}
7507 	}
7508 
7509 	btrfs_release_path(path);
7510 
7511 	/*
7512 	 * look for other files referencing this extent, if we
7513 	 * find any we must cow
7514 	 */
7515 
7516 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7517 				    key.offset - backref_offset, disk_bytenr);
7518 	if (ret) {
7519 		ret = 0;
7520 		goto out;
7521 	}
7522 
7523 	/*
7524 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7525 	 * in this extent we are about to write.  If there
7526 	 * are any csums in that range we have to cow in order
7527 	 * to keep the csums correct
7528 	 */
7529 	disk_bytenr += backref_offset;
7530 	disk_bytenr += offset - key.offset;
7531 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7532 		goto out;
7533 	/*
7534 	 * all of the above have passed, it is safe to overwrite this extent
7535 	 * without cow
7536 	 */
7537 	*len = num_bytes;
7538 	ret = 1;
7539 out:
7540 	btrfs_free_path(path);
7541 	return ret;
7542 }
7543 
7544 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7545 {
7546 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7547 	bool found = false;
7548 	void **pagep = NULL;
7549 	struct page *page = NULL;
7550 	unsigned long start_idx;
7551 	unsigned long end_idx;
7552 
7553 	start_idx = start >> PAGE_SHIFT;
7554 
7555 	/*
7556 	 * end is the last byte in the last page.  end == start is legal
7557 	 */
7558 	end_idx = end >> PAGE_SHIFT;
7559 
7560 	rcu_read_lock();
7561 
7562 	/* Most of the code in this while loop is lifted from
7563 	 * find_get_page.  It's been modified to begin searching from a
7564 	 * page and return just the first page found in that range.  If the
7565 	 * found idx is less than or equal to the end idx then we know that
7566 	 * a page exists.  If no pages are found or if those pages are
7567 	 * outside of the range then we're fine (yay!) */
7568 	while (page == NULL &&
7569 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7570 		page = radix_tree_deref_slot(pagep);
7571 		if (unlikely(!page))
7572 			break;
7573 
7574 		if (radix_tree_exception(page)) {
7575 			if (radix_tree_deref_retry(page)) {
7576 				page = NULL;
7577 				continue;
7578 			}
7579 			/*
7580 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7581 			 * here as an exceptional entry: so return it without
7582 			 * attempting to raise page count.
7583 			 */
7584 			page = NULL;
7585 			break; /* TODO: Is this relevant for this use case? */
7586 		}
7587 
7588 		if (!page_cache_get_speculative(page)) {
7589 			page = NULL;
7590 			continue;
7591 		}
7592 
7593 		/*
7594 		 * Has the page moved?
7595 		 * This is part of the lockless pagecache protocol. See
7596 		 * include/linux/pagemap.h for details.
7597 		 */
7598 		if (unlikely(page != *pagep)) {
7599 			put_page(page);
7600 			page = NULL;
7601 		}
7602 	}
7603 
7604 	if (page) {
7605 		if (page->index <= end_idx)
7606 			found = true;
7607 		put_page(page);
7608 	}
7609 
7610 	rcu_read_unlock();
7611 	return found;
7612 }
7613 
7614 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7615 			      struct extent_state **cached_state, int writing)
7616 {
7617 	struct btrfs_ordered_extent *ordered;
7618 	int ret = 0;
7619 
7620 	while (1) {
7621 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7622 				 cached_state);
7623 		/*
7624 		 * We're concerned with the entire range that we're going to be
7625 		 * doing DIO to, so we need to make sure there's no ordered
7626 		 * extents in this range.
7627 		 */
7628 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7629 						     lockend - lockstart + 1);
7630 
7631 		/*
7632 		 * We need to make sure there are no buffered pages in this
7633 		 * range either, we could have raced between the invalidate in
7634 		 * generic_file_direct_write and locking the extent.  The
7635 		 * invalidate needs to happen so that reads after a write do not
7636 		 * get stale data.
7637 		 */
7638 		if (!ordered &&
7639 		    (!writing ||
7640 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7641 			break;
7642 
7643 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7644 				     cached_state, GFP_NOFS);
7645 
7646 		if (ordered) {
7647 			/*
7648 			 * If we are doing a DIO read and the ordered extent we
7649 			 * found is for a buffered write, we can not wait for it
7650 			 * to complete and retry, because if we do so we can
7651 			 * deadlock with concurrent buffered writes on page
7652 			 * locks. This happens only if our DIO read covers more
7653 			 * than one extent map, if at this point has already
7654 			 * created an ordered extent for a previous extent map
7655 			 * and locked its range in the inode's io tree, and a
7656 			 * concurrent write against that previous extent map's
7657 			 * range and this range started (we unlock the ranges
7658 			 * in the io tree only when the bios complete and
7659 			 * buffered writes always lock pages before attempting
7660 			 * to lock range in the io tree).
7661 			 */
7662 			if (writing ||
7663 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7664 				btrfs_start_ordered_extent(inode, ordered, 1);
7665 			else
7666 				ret = -ENOTBLK;
7667 			btrfs_put_ordered_extent(ordered);
7668 		} else {
7669 			/*
7670 			 * We could trigger writeback for this range (and wait
7671 			 * for it to complete) and then invalidate the pages for
7672 			 * this range (through invalidate_inode_pages2_range()),
7673 			 * but that can lead us to a deadlock with a concurrent
7674 			 * call to readpages() (a buffered read or a defrag call
7675 			 * triggered a readahead) on a page lock due to an
7676 			 * ordered dio extent we created before but did not have
7677 			 * yet a corresponding bio submitted (whence it can not
7678 			 * complete), which makes readpages() wait for that
7679 			 * ordered extent to complete while holding a lock on
7680 			 * that page.
7681 			 */
7682 			ret = -ENOTBLK;
7683 		}
7684 
7685 		if (ret)
7686 			break;
7687 
7688 		cond_resched();
7689 	}
7690 
7691 	return ret;
7692 }
7693 
7694 /* The callers of this must take lock_extent() */
7695 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7696 				       u64 orig_start, u64 block_start,
7697 				       u64 block_len, u64 orig_block_len,
7698 				       u64 ram_bytes, int compress_type,
7699 				       int type)
7700 {
7701 	struct extent_map_tree *em_tree;
7702 	struct extent_map *em;
7703 	struct btrfs_root *root = BTRFS_I(inode)->root;
7704 	int ret;
7705 
7706 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7707 	       type == BTRFS_ORDERED_COMPRESSED ||
7708 	       type == BTRFS_ORDERED_NOCOW ||
7709 	       type == BTRFS_ORDERED_REGULAR);
7710 
7711 	em_tree = &BTRFS_I(inode)->extent_tree;
7712 	em = alloc_extent_map();
7713 	if (!em)
7714 		return ERR_PTR(-ENOMEM);
7715 
7716 	em->start = start;
7717 	em->orig_start = orig_start;
7718 	em->len = len;
7719 	em->block_len = block_len;
7720 	em->block_start = block_start;
7721 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7722 	em->orig_block_len = orig_block_len;
7723 	em->ram_bytes = ram_bytes;
7724 	em->generation = -1;
7725 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7726 	if (type == BTRFS_ORDERED_PREALLOC) {
7727 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7728 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7729 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7730 		em->compress_type = compress_type;
7731 	}
7732 
7733 	do {
7734 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7735 				em->start + em->len - 1, 0);
7736 		write_lock(&em_tree->lock);
7737 		ret = add_extent_mapping(em_tree, em, 1);
7738 		write_unlock(&em_tree->lock);
7739 		/*
7740 		 * The caller has taken lock_extent(), who could race with us
7741 		 * to add em?
7742 		 */
7743 	} while (ret == -EEXIST);
7744 
7745 	if (ret) {
7746 		free_extent_map(em);
7747 		return ERR_PTR(ret);
7748 	}
7749 
7750 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7751 	return em;
7752 }
7753 
7754 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7755 				   struct buffer_head *bh_result, int create)
7756 {
7757 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7758 	struct extent_map *em;
7759 	struct extent_state *cached_state = NULL;
7760 	struct btrfs_dio_data *dio_data = NULL;
7761 	u64 start = iblock << inode->i_blkbits;
7762 	u64 lockstart, lockend;
7763 	u64 len = bh_result->b_size;
7764 	int unlock_bits = EXTENT_LOCKED;
7765 	int ret = 0;
7766 
7767 	if (create)
7768 		unlock_bits |= EXTENT_DIRTY;
7769 	else
7770 		len = min_t(u64, len, fs_info->sectorsize);
7771 
7772 	lockstart = start;
7773 	lockend = start + len - 1;
7774 
7775 	if (current->journal_info) {
7776 		/*
7777 		 * Need to pull our outstanding extents and set journal_info to NULL so
7778 		 * that anything that needs to check if there's a transaction doesn't get
7779 		 * confused.
7780 		 */
7781 		dio_data = current->journal_info;
7782 		current->journal_info = NULL;
7783 	}
7784 
7785 	/*
7786 	 * If this errors out it's because we couldn't invalidate pagecache for
7787 	 * this range and we need to fallback to buffered.
7788 	 */
7789 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7790 			       create)) {
7791 		ret = -ENOTBLK;
7792 		goto err;
7793 	}
7794 
7795 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7796 	if (IS_ERR(em)) {
7797 		ret = PTR_ERR(em);
7798 		goto unlock_err;
7799 	}
7800 
7801 	/*
7802 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7803 	 * io.  INLINE is special, and we could probably kludge it in here, but
7804 	 * it's still buffered so for safety lets just fall back to the generic
7805 	 * buffered path.
7806 	 *
7807 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7808 	 * decompress it, so there will be buffering required no matter what we
7809 	 * do, so go ahead and fallback to buffered.
7810 	 *
7811 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7812 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7813 	 * the generic code.
7814 	 */
7815 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7816 	    em->block_start == EXTENT_MAP_INLINE) {
7817 		free_extent_map(em);
7818 		ret = -ENOTBLK;
7819 		goto unlock_err;
7820 	}
7821 
7822 	/* Just a good old fashioned hole, return */
7823 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7824 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7825 		free_extent_map(em);
7826 		goto unlock_err;
7827 	}
7828 
7829 	/*
7830 	 * We don't allocate a new extent in the following cases
7831 	 *
7832 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7833 	 * existing extent.
7834 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7835 	 * just use the extent.
7836 	 *
7837 	 */
7838 	if (!create) {
7839 		len = min(len, em->len - (start - em->start));
7840 		lockstart = start + len;
7841 		goto unlock;
7842 	}
7843 
7844 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7845 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7846 	     em->block_start != EXTENT_MAP_HOLE)) {
7847 		int type;
7848 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7849 
7850 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7851 			type = BTRFS_ORDERED_PREALLOC;
7852 		else
7853 			type = BTRFS_ORDERED_NOCOW;
7854 		len = min(len, em->len - (start - em->start));
7855 		block_start = em->block_start + (start - em->start);
7856 
7857 		if (can_nocow_extent(inode, start, &len, &orig_start,
7858 				     &orig_block_len, &ram_bytes) == 1 &&
7859 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7860 			struct extent_map *em2;
7861 
7862 			em2 = btrfs_create_dio_extent(inode, start, len,
7863 						      orig_start, block_start,
7864 						      len, orig_block_len,
7865 						      ram_bytes, type);
7866 			btrfs_dec_nocow_writers(fs_info, block_start);
7867 			if (type == BTRFS_ORDERED_PREALLOC) {
7868 				free_extent_map(em);
7869 				em = em2;
7870 			}
7871 			if (em2 && IS_ERR(em2)) {
7872 				ret = PTR_ERR(em2);
7873 				goto unlock_err;
7874 			}
7875 			/*
7876 			 * For inode marked NODATACOW or extent marked PREALLOC,
7877 			 * use the existing or preallocated extent, so does not
7878 			 * need to adjust btrfs_space_info's bytes_may_use.
7879 			 */
7880 			btrfs_free_reserved_data_space_noquota(inode,
7881 					start, len);
7882 			goto unlock;
7883 		}
7884 	}
7885 
7886 	/*
7887 	 * this will cow the extent, reset the len in case we changed
7888 	 * it above
7889 	 */
7890 	len = bh_result->b_size;
7891 	free_extent_map(em);
7892 	em = btrfs_new_extent_direct(inode, start, len);
7893 	if (IS_ERR(em)) {
7894 		ret = PTR_ERR(em);
7895 		goto unlock_err;
7896 	}
7897 	len = min(len, em->len - (start - em->start));
7898 unlock:
7899 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7900 		inode->i_blkbits;
7901 	bh_result->b_size = len;
7902 	bh_result->b_bdev = em->bdev;
7903 	set_buffer_mapped(bh_result);
7904 	if (create) {
7905 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7906 			set_buffer_new(bh_result);
7907 
7908 		/*
7909 		 * Need to update the i_size under the extent lock so buffered
7910 		 * readers will get the updated i_size when we unlock.
7911 		 */
7912 		if (!dio_data->overwrite && start + len > i_size_read(inode))
7913 			i_size_write(inode, start + len);
7914 
7915 		WARN_ON(dio_data->reserve < len);
7916 		dio_data->reserve -= len;
7917 		dio_data->unsubmitted_oe_range_end = start + len;
7918 		current->journal_info = dio_data;
7919 	}
7920 
7921 	/*
7922 	 * In the case of write we need to clear and unlock the entire range,
7923 	 * in the case of read we need to unlock only the end area that we
7924 	 * aren't using if there is any left over space.
7925 	 */
7926 	if (lockstart < lockend) {
7927 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7928 				 lockend, unlock_bits, 1, 0,
7929 				 &cached_state, GFP_NOFS);
7930 	} else {
7931 		free_extent_state(cached_state);
7932 	}
7933 
7934 	free_extent_map(em);
7935 
7936 	return 0;
7937 
7938 unlock_err:
7939 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7940 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7941 err:
7942 	if (dio_data)
7943 		current->journal_info = dio_data;
7944 	return ret;
7945 }
7946 
7947 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7948 						 struct bio *bio,
7949 						 int mirror_num)
7950 {
7951 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7952 	blk_status_t ret;
7953 
7954 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7955 
7956 	bio_get(bio);
7957 
7958 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7959 	if (ret)
7960 		goto err;
7961 
7962 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7963 err:
7964 	bio_put(bio);
7965 	return ret;
7966 }
7967 
7968 static int btrfs_check_dio_repairable(struct inode *inode,
7969 				      struct bio *failed_bio,
7970 				      struct io_failure_record *failrec,
7971 				      int failed_mirror)
7972 {
7973 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7974 	int num_copies;
7975 
7976 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7977 	if (num_copies == 1) {
7978 		/*
7979 		 * we only have a single copy of the data, so don't bother with
7980 		 * all the retry and error correction code that follows. no
7981 		 * matter what the error is, it is very likely to persist.
7982 		 */
7983 		btrfs_debug(fs_info,
7984 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7985 			num_copies, failrec->this_mirror, failed_mirror);
7986 		return 0;
7987 	}
7988 
7989 	failrec->failed_mirror = failed_mirror;
7990 	failrec->this_mirror++;
7991 	if (failrec->this_mirror == failed_mirror)
7992 		failrec->this_mirror++;
7993 
7994 	if (failrec->this_mirror > num_copies) {
7995 		btrfs_debug(fs_info,
7996 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7997 			num_copies, failrec->this_mirror, failed_mirror);
7998 		return 0;
7999 	}
8000 
8001 	return 1;
8002 }
8003 
8004 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
8005 				   struct page *page, unsigned int pgoff,
8006 				   u64 start, u64 end, int failed_mirror,
8007 				   bio_end_io_t *repair_endio, void *repair_arg)
8008 {
8009 	struct io_failure_record *failrec;
8010 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8011 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8012 	struct bio *bio;
8013 	int isector;
8014 	unsigned int read_mode = 0;
8015 	int segs;
8016 	int ret;
8017 	blk_status_t status;
8018 
8019 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8020 
8021 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8022 	if (ret)
8023 		return errno_to_blk_status(ret);
8024 
8025 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8026 					 failed_mirror);
8027 	if (!ret) {
8028 		free_io_failure(failure_tree, io_tree, failrec);
8029 		return BLK_STS_IOERR;
8030 	}
8031 
8032 	segs = bio_segments(failed_bio);
8033 	if (segs > 1 ||
8034 	    (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
8035 		read_mode |= REQ_FAILFAST_DEV;
8036 
8037 	isector = start - btrfs_io_bio(failed_bio)->logical;
8038 	isector >>= inode->i_sb->s_blocksize_bits;
8039 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
8040 				pgoff, isector, repair_endio, repair_arg);
8041 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8042 
8043 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
8044 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8045 		    read_mode, failrec->this_mirror, failrec->in_validation);
8046 
8047 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8048 	if (status) {
8049 		free_io_failure(failure_tree, io_tree, failrec);
8050 		bio_put(bio);
8051 	}
8052 
8053 	return status;
8054 }
8055 
8056 struct btrfs_retry_complete {
8057 	struct completion done;
8058 	struct inode *inode;
8059 	u64 start;
8060 	int uptodate;
8061 };
8062 
8063 static void btrfs_retry_endio_nocsum(struct bio *bio)
8064 {
8065 	struct btrfs_retry_complete *done = bio->bi_private;
8066 	struct inode *inode = done->inode;
8067 	struct bio_vec *bvec;
8068 	struct extent_io_tree *io_tree, *failure_tree;
8069 	int i;
8070 
8071 	if (bio->bi_status)
8072 		goto end;
8073 
8074 	ASSERT(bio->bi_vcnt == 1);
8075 	io_tree = &BTRFS_I(inode)->io_tree;
8076 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8077 	ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
8078 
8079 	done->uptodate = 1;
8080 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8081 	bio_for_each_segment_all(bvec, bio, i)
8082 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8083 				 io_tree, done->start, bvec->bv_page,
8084 				 btrfs_ino(BTRFS_I(inode)), 0);
8085 end:
8086 	complete(&done->done);
8087 	bio_put(bio);
8088 }
8089 
8090 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8091 						struct btrfs_io_bio *io_bio)
8092 {
8093 	struct btrfs_fs_info *fs_info;
8094 	struct bio_vec bvec;
8095 	struct bvec_iter iter;
8096 	struct btrfs_retry_complete done;
8097 	u64 start;
8098 	unsigned int pgoff;
8099 	u32 sectorsize;
8100 	int nr_sectors;
8101 	blk_status_t ret;
8102 	blk_status_t err = BLK_STS_OK;
8103 
8104 	fs_info = BTRFS_I(inode)->root->fs_info;
8105 	sectorsize = fs_info->sectorsize;
8106 
8107 	start = io_bio->logical;
8108 	done.inode = inode;
8109 	io_bio->bio.bi_iter = io_bio->iter;
8110 
8111 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8112 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8113 		pgoff = bvec.bv_offset;
8114 
8115 next_block_or_try_again:
8116 		done.uptodate = 0;
8117 		done.start = start;
8118 		init_completion(&done.done);
8119 
8120 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8121 				pgoff, start, start + sectorsize - 1,
8122 				io_bio->mirror_num,
8123 				btrfs_retry_endio_nocsum, &done);
8124 		if (ret) {
8125 			err = ret;
8126 			goto next;
8127 		}
8128 
8129 		wait_for_completion_io(&done.done);
8130 
8131 		if (!done.uptodate) {
8132 			/* We might have another mirror, so try again */
8133 			goto next_block_or_try_again;
8134 		}
8135 
8136 next:
8137 		start += sectorsize;
8138 
8139 		nr_sectors--;
8140 		if (nr_sectors) {
8141 			pgoff += sectorsize;
8142 			ASSERT(pgoff < PAGE_SIZE);
8143 			goto next_block_or_try_again;
8144 		}
8145 	}
8146 
8147 	return err;
8148 }
8149 
8150 static void btrfs_retry_endio(struct bio *bio)
8151 {
8152 	struct btrfs_retry_complete *done = bio->bi_private;
8153 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8154 	struct extent_io_tree *io_tree, *failure_tree;
8155 	struct inode *inode = done->inode;
8156 	struct bio_vec *bvec;
8157 	int uptodate;
8158 	int ret;
8159 	int i;
8160 
8161 	if (bio->bi_status)
8162 		goto end;
8163 
8164 	uptodate = 1;
8165 
8166 	ASSERT(bio->bi_vcnt == 1);
8167 	ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8168 
8169 	io_tree = &BTRFS_I(inode)->io_tree;
8170 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8171 
8172 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8173 	bio_for_each_segment_all(bvec, bio, i) {
8174 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8175 					     bvec->bv_offset, done->start,
8176 					     bvec->bv_len);
8177 		if (!ret)
8178 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
8179 					 failure_tree, io_tree, done->start,
8180 					 bvec->bv_page,
8181 					 btrfs_ino(BTRFS_I(inode)),
8182 					 bvec->bv_offset);
8183 		else
8184 			uptodate = 0;
8185 	}
8186 
8187 	done->uptodate = uptodate;
8188 end:
8189 	complete(&done->done);
8190 	bio_put(bio);
8191 }
8192 
8193 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8194 		struct btrfs_io_bio *io_bio, blk_status_t err)
8195 {
8196 	struct btrfs_fs_info *fs_info;
8197 	struct bio_vec bvec;
8198 	struct bvec_iter iter;
8199 	struct btrfs_retry_complete done;
8200 	u64 start;
8201 	u64 offset = 0;
8202 	u32 sectorsize;
8203 	int nr_sectors;
8204 	unsigned int pgoff;
8205 	int csum_pos;
8206 	bool uptodate = (err == 0);
8207 	int ret;
8208 	blk_status_t status;
8209 
8210 	fs_info = BTRFS_I(inode)->root->fs_info;
8211 	sectorsize = fs_info->sectorsize;
8212 
8213 	err = BLK_STS_OK;
8214 	start = io_bio->logical;
8215 	done.inode = inode;
8216 	io_bio->bio.bi_iter = io_bio->iter;
8217 
8218 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8219 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8220 
8221 		pgoff = bvec.bv_offset;
8222 next_block:
8223 		if (uptodate) {
8224 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8225 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8226 					bvec.bv_page, pgoff, start, sectorsize);
8227 			if (likely(!ret))
8228 				goto next;
8229 		}
8230 try_again:
8231 		done.uptodate = 0;
8232 		done.start = start;
8233 		init_completion(&done.done);
8234 
8235 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8236 					pgoff, start, start + sectorsize - 1,
8237 					io_bio->mirror_num, btrfs_retry_endio,
8238 					&done);
8239 		if (status) {
8240 			err = status;
8241 			goto next;
8242 		}
8243 
8244 		wait_for_completion_io(&done.done);
8245 
8246 		if (!done.uptodate) {
8247 			/* We might have another mirror, so try again */
8248 			goto try_again;
8249 		}
8250 next:
8251 		offset += sectorsize;
8252 		start += sectorsize;
8253 
8254 		ASSERT(nr_sectors);
8255 
8256 		nr_sectors--;
8257 		if (nr_sectors) {
8258 			pgoff += sectorsize;
8259 			ASSERT(pgoff < PAGE_SIZE);
8260 			goto next_block;
8261 		}
8262 	}
8263 
8264 	return err;
8265 }
8266 
8267 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8268 		struct btrfs_io_bio *io_bio, blk_status_t err)
8269 {
8270 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8271 
8272 	if (skip_csum) {
8273 		if (unlikely(err))
8274 			return __btrfs_correct_data_nocsum(inode, io_bio);
8275 		else
8276 			return BLK_STS_OK;
8277 	} else {
8278 		return __btrfs_subio_endio_read(inode, io_bio, err);
8279 	}
8280 }
8281 
8282 static void btrfs_endio_direct_read(struct bio *bio)
8283 {
8284 	struct btrfs_dio_private *dip = bio->bi_private;
8285 	struct inode *inode = dip->inode;
8286 	struct bio *dio_bio;
8287 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8288 	blk_status_t err = bio->bi_status;
8289 
8290 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8291 		err = btrfs_subio_endio_read(inode, io_bio, err);
8292 
8293 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8294 		      dip->logical_offset + dip->bytes - 1);
8295 	dio_bio = dip->dio_bio;
8296 
8297 	kfree(dip);
8298 
8299 	dio_bio->bi_status = err;
8300 	dio_end_io(dio_bio);
8301 
8302 	if (io_bio->end_io)
8303 		io_bio->end_io(io_bio, blk_status_to_errno(err));
8304 	bio_put(bio);
8305 }
8306 
8307 static void __endio_write_update_ordered(struct inode *inode,
8308 					 const u64 offset, const u64 bytes,
8309 					 const bool uptodate)
8310 {
8311 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8312 	struct btrfs_ordered_extent *ordered = NULL;
8313 	struct btrfs_workqueue *wq;
8314 	btrfs_work_func_t func;
8315 	u64 ordered_offset = offset;
8316 	u64 ordered_bytes = bytes;
8317 	u64 last_offset;
8318 	int ret;
8319 
8320 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8321 		wq = fs_info->endio_freespace_worker;
8322 		func = btrfs_freespace_write_helper;
8323 	} else {
8324 		wq = fs_info->endio_write_workers;
8325 		func = btrfs_endio_write_helper;
8326 	}
8327 
8328 again:
8329 	last_offset = ordered_offset;
8330 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8331 						   &ordered_offset,
8332 						   ordered_bytes,
8333 						   uptodate);
8334 	if (!ret)
8335 		goto out_test;
8336 
8337 	btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8338 	btrfs_queue_work(wq, &ordered->work);
8339 out_test:
8340 	/*
8341 	 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8342 	 * in the range, we can exit.
8343 	 */
8344 	if (ordered_offset == last_offset)
8345 		return;
8346 	/*
8347 	 * our bio might span multiple ordered extents.  If we haven't
8348 	 * completed the accounting for the whole dio, go back and try again
8349 	 */
8350 	if (ordered_offset < offset + bytes) {
8351 		ordered_bytes = offset + bytes - ordered_offset;
8352 		ordered = NULL;
8353 		goto again;
8354 	}
8355 }
8356 
8357 static void btrfs_endio_direct_write(struct bio *bio)
8358 {
8359 	struct btrfs_dio_private *dip = bio->bi_private;
8360 	struct bio *dio_bio = dip->dio_bio;
8361 
8362 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8363 				     dip->bytes, !bio->bi_status);
8364 
8365 	kfree(dip);
8366 
8367 	dio_bio->bi_status = bio->bi_status;
8368 	dio_end_io(dio_bio);
8369 	bio_put(bio);
8370 }
8371 
8372 static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
8373 				    struct bio *bio, int mirror_num,
8374 				    unsigned long bio_flags, u64 offset)
8375 {
8376 	struct inode *inode = private_data;
8377 	blk_status_t ret;
8378 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8379 	BUG_ON(ret); /* -ENOMEM */
8380 	return 0;
8381 }
8382 
8383 static void btrfs_end_dio_bio(struct bio *bio)
8384 {
8385 	struct btrfs_dio_private *dip = bio->bi_private;
8386 	blk_status_t err = bio->bi_status;
8387 
8388 	if (err)
8389 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8390 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8391 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8392 			   bio->bi_opf,
8393 			   (unsigned long long)bio->bi_iter.bi_sector,
8394 			   bio->bi_iter.bi_size, err);
8395 
8396 	if (dip->subio_endio)
8397 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8398 
8399 	if (err) {
8400 		dip->errors = 1;
8401 
8402 		/*
8403 		 * before atomic variable goto zero, we must make sure
8404 		 * dip->errors is perceived to be set.
8405 		 */
8406 		smp_mb__before_atomic();
8407 	}
8408 
8409 	/* if there are more bios still pending for this dio, just exit */
8410 	if (!atomic_dec_and_test(&dip->pending_bios))
8411 		goto out;
8412 
8413 	if (dip->errors) {
8414 		bio_io_error(dip->orig_bio);
8415 	} else {
8416 		dip->dio_bio->bi_status = BLK_STS_OK;
8417 		bio_endio(dip->orig_bio);
8418 	}
8419 out:
8420 	bio_put(bio);
8421 }
8422 
8423 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8424 						 struct btrfs_dio_private *dip,
8425 						 struct bio *bio,
8426 						 u64 file_offset)
8427 {
8428 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8429 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8430 	blk_status_t ret;
8431 
8432 	/*
8433 	 * We load all the csum data we need when we submit
8434 	 * the first bio to reduce the csum tree search and
8435 	 * contention.
8436 	 */
8437 	if (dip->logical_offset == file_offset) {
8438 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8439 						file_offset);
8440 		if (ret)
8441 			return ret;
8442 	}
8443 
8444 	if (bio == dip->orig_bio)
8445 		return 0;
8446 
8447 	file_offset -= dip->logical_offset;
8448 	file_offset >>= inode->i_sb->s_blocksize_bits;
8449 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8450 
8451 	return 0;
8452 }
8453 
8454 static inline blk_status_t
8455 __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
8456 		       int async_submit)
8457 {
8458 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8459 	struct btrfs_dio_private *dip = bio->bi_private;
8460 	bool write = bio_op(bio) == REQ_OP_WRITE;
8461 	blk_status_t ret;
8462 
8463 	if (async_submit)
8464 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8465 
8466 	bio_get(bio);
8467 
8468 	if (!write) {
8469 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8470 		if (ret)
8471 			goto err;
8472 	}
8473 
8474 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8475 		goto map;
8476 
8477 	if (write && async_submit) {
8478 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8479 					  file_offset, inode,
8480 					  __btrfs_submit_bio_start_direct_io,
8481 					  __btrfs_submit_bio_done);
8482 		goto err;
8483 	} else if (write) {
8484 		/*
8485 		 * If we aren't doing async submit, calculate the csum of the
8486 		 * bio now.
8487 		 */
8488 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8489 		if (ret)
8490 			goto err;
8491 	} else {
8492 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8493 						     file_offset);
8494 		if (ret)
8495 			goto err;
8496 	}
8497 map:
8498 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8499 err:
8500 	bio_put(bio);
8501 	return ret;
8502 }
8503 
8504 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8505 {
8506 	struct inode *inode = dip->inode;
8507 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8508 	struct bio *bio;
8509 	struct bio *orig_bio = dip->orig_bio;
8510 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8511 	u64 file_offset = dip->logical_offset;
8512 	u64 map_length;
8513 	int async_submit = 0;
8514 	u64 submit_len;
8515 	int clone_offset = 0;
8516 	int clone_len;
8517 	int ret;
8518 	blk_status_t status;
8519 
8520 	map_length = orig_bio->bi_iter.bi_size;
8521 	submit_len = map_length;
8522 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8523 			      &map_length, NULL, 0);
8524 	if (ret)
8525 		return -EIO;
8526 
8527 	if (map_length >= submit_len) {
8528 		bio = orig_bio;
8529 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8530 		goto submit;
8531 	}
8532 
8533 	/* async crcs make it difficult to collect full stripe writes. */
8534 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8535 		async_submit = 0;
8536 	else
8537 		async_submit = 1;
8538 
8539 	/* bio split */
8540 	ASSERT(map_length <= INT_MAX);
8541 	atomic_inc(&dip->pending_bios);
8542 	do {
8543 		clone_len = min_t(int, submit_len, map_length);
8544 
8545 		/*
8546 		 * This will never fail as it's passing GPF_NOFS and
8547 		 * the allocation is backed by btrfs_bioset.
8548 		 */
8549 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8550 					      clone_len);
8551 		bio->bi_private = dip;
8552 		bio->bi_end_io = btrfs_end_dio_bio;
8553 		btrfs_io_bio(bio)->logical = file_offset;
8554 
8555 		ASSERT(submit_len >= clone_len);
8556 		submit_len -= clone_len;
8557 		if (submit_len == 0)
8558 			break;
8559 
8560 		/*
8561 		 * Increase the count before we submit the bio so we know
8562 		 * the end IO handler won't happen before we increase the
8563 		 * count. Otherwise, the dip might get freed before we're
8564 		 * done setting it up.
8565 		 */
8566 		atomic_inc(&dip->pending_bios);
8567 
8568 		status = __btrfs_submit_dio_bio(bio, inode, file_offset,
8569 						async_submit);
8570 		if (status) {
8571 			bio_put(bio);
8572 			atomic_dec(&dip->pending_bios);
8573 			goto out_err;
8574 		}
8575 
8576 		clone_offset += clone_len;
8577 		start_sector += clone_len >> 9;
8578 		file_offset += clone_len;
8579 
8580 		map_length = submit_len;
8581 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8582 				      start_sector << 9, &map_length, NULL, 0);
8583 		if (ret)
8584 			goto out_err;
8585 	} while (submit_len > 0);
8586 
8587 submit:
8588 	status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8589 	if (!status)
8590 		return 0;
8591 
8592 	bio_put(bio);
8593 out_err:
8594 	dip->errors = 1;
8595 	/*
8596 	 * before atomic variable goto zero, we must
8597 	 * make sure dip->errors is perceived to be set.
8598 	 */
8599 	smp_mb__before_atomic();
8600 	if (atomic_dec_and_test(&dip->pending_bios))
8601 		bio_io_error(dip->orig_bio);
8602 
8603 	/* bio_end_io() will handle error, so we needn't return it */
8604 	return 0;
8605 }
8606 
8607 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8608 				loff_t file_offset)
8609 {
8610 	struct btrfs_dio_private *dip = NULL;
8611 	struct bio *bio = NULL;
8612 	struct btrfs_io_bio *io_bio;
8613 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8614 	int ret = 0;
8615 
8616 	bio = btrfs_bio_clone(dio_bio);
8617 
8618 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8619 	if (!dip) {
8620 		ret = -ENOMEM;
8621 		goto free_ordered;
8622 	}
8623 
8624 	dip->private = dio_bio->bi_private;
8625 	dip->inode = inode;
8626 	dip->logical_offset = file_offset;
8627 	dip->bytes = dio_bio->bi_iter.bi_size;
8628 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8629 	bio->bi_private = dip;
8630 	dip->orig_bio = bio;
8631 	dip->dio_bio = dio_bio;
8632 	atomic_set(&dip->pending_bios, 0);
8633 	io_bio = btrfs_io_bio(bio);
8634 	io_bio->logical = file_offset;
8635 
8636 	if (write) {
8637 		bio->bi_end_io = btrfs_endio_direct_write;
8638 	} else {
8639 		bio->bi_end_io = btrfs_endio_direct_read;
8640 		dip->subio_endio = btrfs_subio_endio_read;
8641 	}
8642 
8643 	/*
8644 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8645 	 * even if we fail to submit a bio, because in such case we do the
8646 	 * corresponding error handling below and it must not be done a second
8647 	 * time by btrfs_direct_IO().
8648 	 */
8649 	if (write) {
8650 		struct btrfs_dio_data *dio_data = current->journal_info;
8651 
8652 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8653 			dip->bytes;
8654 		dio_data->unsubmitted_oe_range_start =
8655 			dio_data->unsubmitted_oe_range_end;
8656 	}
8657 
8658 	ret = btrfs_submit_direct_hook(dip);
8659 	if (!ret)
8660 		return;
8661 
8662 	if (io_bio->end_io)
8663 		io_bio->end_io(io_bio, ret);
8664 
8665 free_ordered:
8666 	/*
8667 	 * If we arrived here it means either we failed to submit the dip
8668 	 * or we either failed to clone the dio_bio or failed to allocate the
8669 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8670 	 * call bio_endio against our io_bio so that we get proper resource
8671 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8672 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8673 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8674 	 */
8675 	if (bio && dip) {
8676 		bio_io_error(bio);
8677 		/*
8678 		 * The end io callbacks free our dip, do the final put on bio
8679 		 * and all the cleanup and final put for dio_bio (through
8680 		 * dio_end_io()).
8681 		 */
8682 		dip = NULL;
8683 		bio = NULL;
8684 	} else {
8685 		if (write)
8686 			__endio_write_update_ordered(inode,
8687 						file_offset,
8688 						dio_bio->bi_iter.bi_size,
8689 						false);
8690 		else
8691 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8692 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8693 
8694 		dio_bio->bi_status = BLK_STS_IOERR;
8695 		/*
8696 		 * Releases and cleans up our dio_bio, no need to bio_put()
8697 		 * nor bio_endio()/bio_io_error() against dio_bio.
8698 		 */
8699 		dio_end_io(dio_bio);
8700 	}
8701 	if (bio)
8702 		bio_put(bio);
8703 	kfree(dip);
8704 }
8705 
8706 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8707 			       const struct iov_iter *iter, loff_t offset)
8708 {
8709 	int seg;
8710 	int i;
8711 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8712 	ssize_t retval = -EINVAL;
8713 
8714 	if (offset & blocksize_mask)
8715 		goto out;
8716 
8717 	if (iov_iter_alignment(iter) & blocksize_mask)
8718 		goto out;
8719 
8720 	/* If this is a write we don't need to check anymore */
8721 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8722 		return 0;
8723 	/*
8724 	 * Check to make sure we don't have duplicate iov_base's in this
8725 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8726 	 * when reading back.
8727 	 */
8728 	for (seg = 0; seg < iter->nr_segs; seg++) {
8729 		for (i = seg + 1; i < iter->nr_segs; i++) {
8730 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8731 				goto out;
8732 		}
8733 	}
8734 	retval = 0;
8735 out:
8736 	return retval;
8737 }
8738 
8739 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8740 {
8741 	struct file *file = iocb->ki_filp;
8742 	struct inode *inode = file->f_mapping->host;
8743 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8744 	struct btrfs_dio_data dio_data = { 0 };
8745 	struct extent_changeset *data_reserved = NULL;
8746 	loff_t offset = iocb->ki_pos;
8747 	size_t count = 0;
8748 	int flags = 0;
8749 	bool wakeup = true;
8750 	bool relock = false;
8751 	ssize_t ret;
8752 
8753 	if (check_direct_IO(fs_info, iter, offset))
8754 		return 0;
8755 
8756 	inode_dio_begin(inode);
8757 
8758 	/*
8759 	 * The generic stuff only does filemap_write_and_wait_range, which
8760 	 * isn't enough if we've written compressed pages to this area, so
8761 	 * we need to flush the dirty pages again to make absolutely sure
8762 	 * that any outstanding dirty pages are on disk.
8763 	 */
8764 	count = iov_iter_count(iter);
8765 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8766 		     &BTRFS_I(inode)->runtime_flags))
8767 		filemap_fdatawrite_range(inode->i_mapping, offset,
8768 					 offset + count - 1);
8769 
8770 	if (iov_iter_rw(iter) == WRITE) {
8771 		/*
8772 		 * If the write DIO is beyond the EOF, we need update
8773 		 * the isize, but it is protected by i_mutex. So we can
8774 		 * not unlock the i_mutex at this case.
8775 		 */
8776 		if (offset + count <= inode->i_size) {
8777 			dio_data.overwrite = 1;
8778 			inode_unlock(inode);
8779 			relock = true;
8780 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8781 			ret = -EAGAIN;
8782 			goto out;
8783 		}
8784 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8785 						   offset, count);
8786 		if (ret)
8787 			goto out;
8788 
8789 		/*
8790 		 * We need to know how many extents we reserved so that we can
8791 		 * do the accounting properly if we go over the number we
8792 		 * originally calculated.  Abuse current->journal_info for this.
8793 		 */
8794 		dio_data.reserve = round_up(count,
8795 					    fs_info->sectorsize);
8796 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8797 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8798 		current->journal_info = &dio_data;
8799 		down_read(&BTRFS_I(inode)->dio_sem);
8800 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8801 				     &BTRFS_I(inode)->runtime_flags)) {
8802 		inode_dio_end(inode);
8803 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8804 		wakeup = false;
8805 	}
8806 
8807 	ret = __blockdev_direct_IO(iocb, inode,
8808 				   fs_info->fs_devices->latest_bdev,
8809 				   iter, btrfs_get_blocks_direct, NULL,
8810 				   btrfs_submit_direct, flags);
8811 	if (iov_iter_rw(iter) == WRITE) {
8812 		up_read(&BTRFS_I(inode)->dio_sem);
8813 		current->journal_info = NULL;
8814 		if (ret < 0 && ret != -EIOCBQUEUED) {
8815 			if (dio_data.reserve)
8816 				btrfs_delalloc_release_space(inode, data_reserved,
8817 					offset, dio_data.reserve);
8818 			/*
8819 			 * On error we might have left some ordered extents
8820 			 * without submitting corresponding bios for them, so
8821 			 * cleanup them up to avoid other tasks getting them
8822 			 * and waiting for them to complete forever.
8823 			 */
8824 			if (dio_data.unsubmitted_oe_range_start <
8825 			    dio_data.unsubmitted_oe_range_end)
8826 				__endio_write_update_ordered(inode,
8827 					dio_data.unsubmitted_oe_range_start,
8828 					dio_data.unsubmitted_oe_range_end -
8829 					dio_data.unsubmitted_oe_range_start,
8830 					false);
8831 		} else if (ret >= 0 && (size_t)ret < count)
8832 			btrfs_delalloc_release_space(inode, data_reserved,
8833 					offset, count - (size_t)ret);
8834 		btrfs_delalloc_release_extents(BTRFS_I(inode), count);
8835 	}
8836 out:
8837 	if (wakeup)
8838 		inode_dio_end(inode);
8839 	if (relock)
8840 		inode_lock(inode);
8841 
8842 	extent_changeset_free(data_reserved);
8843 	return ret;
8844 }
8845 
8846 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8847 
8848 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8849 		__u64 start, __u64 len)
8850 {
8851 	int	ret;
8852 
8853 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8854 	if (ret)
8855 		return ret;
8856 
8857 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8858 }
8859 
8860 int btrfs_readpage(struct file *file, struct page *page)
8861 {
8862 	struct extent_io_tree *tree;
8863 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8864 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8865 }
8866 
8867 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8868 {
8869 	struct extent_io_tree *tree;
8870 	struct inode *inode = page->mapping->host;
8871 	int ret;
8872 
8873 	if (current->flags & PF_MEMALLOC) {
8874 		redirty_page_for_writepage(wbc, page);
8875 		unlock_page(page);
8876 		return 0;
8877 	}
8878 
8879 	/*
8880 	 * If we are under memory pressure we will call this directly from the
8881 	 * VM, we need to make sure we have the inode referenced for the ordered
8882 	 * extent.  If not just return like we didn't do anything.
8883 	 */
8884 	if (!igrab(inode)) {
8885 		redirty_page_for_writepage(wbc, page);
8886 		return AOP_WRITEPAGE_ACTIVATE;
8887 	}
8888 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8889 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8890 	btrfs_add_delayed_iput(inode);
8891 	return ret;
8892 }
8893 
8894 static int btrfs_writepages(struct address_space *mapping,
8895 			    struct writeback_control *wbc)
8896 {
8897 	struct extent_io_tree *tree;
8898 
8899 	tree = &BTRFS_I(mapping->host)->io_tree;
8900 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8901 }
8902 
8903 static int
8904 btrfs_readpages(struct file *file, struct address_space *mapping,
8905 		struct list_head *pages, unsigned nr_pages)
8906 {
8907 	struct extent_io_tree *tree;
8908 	tree = &BTRFS_I(mapping->host)->io_tree;
8909 	return extent_readpages(tree, mapping, pages, nr_pages,
8910 				btrfs_get_extent);
8911 }
8912 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8913 {
8914 	struct extent_io_tree *tree;
8915 	struct extent_map_tree *map;
8916 	int ret;
8917 
8918 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8919 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8920 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8921 	if (ret == 1) {
8922 		ClearPagePrivate(page);
8923 		set_page_private(page, 0);
8924 		put_page(page);
8925 	}
8926 	return ret;
8927 }
8928 
8929 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8930 {
8931 	if (PageWriteback(page) || PageDirty(page))
8932 		return 0;
8933 	return __btrfs_releasepage(page, gfp_flags);
8934 }
8935 
8936 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8937 				 unsigned int length)
8938 {
8939 	struct inode *inode = page->mapping->host;
8940 	struct extent_io_tree *tree;
8941 	struct btrfs_ordered_extent *ordered;
8942 	struct extent_state *cached_state = NULL;
8943 	u64 page_start = page_offset(page);
8944 	u64 page_end = page_start + PAGE_SIZE - 1;
8945 	u64 start;
8946 	u64 end;
8947 	int inode_evicting = inode->i_state & I_FREEING;
8948 
8949 	/*
8950 	 * we have the page locked, so new writeback can't start,
8951 	 * and the dirty bit won't be cleared while we are here.
8952 	 *
8953 	 * Wait for IO on this page so that we can safely clear
8954 	 * the PagePrivate2 bit and do ordered accounting
8955 	 */
8956 	wait_on_page_writeback(page);
8957 
8958 	tree = &BTRFS_I(inode)->io_tree;
8959 	if (offset) {
8960 		btrfs_releasepage(page, GFP_NOFS);
8961 		return;
8962 	}
8963 
8964 	if (!inode_evicting)
8965 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8966 again:
8967 	start = page_start;
8968 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8969 					page_end - start + 1);
8970 	if (ordered) {
8971 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8972 		/*
8973 		 * IO on this page will never be started, so we need
8974 		 * to account for any ordered extents now
8975 		 */
8976 		if (!inode_evicting)
8977 			clear_extent_bit(tree, start, end,
8978 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8979 					 EXTENT_DELALLOC_NEW |
8980 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8981 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8982 					 GFP_NOFS);
8983 		/*
8984 		 * whoever cleared the private bit is responsible
8985 		 * for the finish_ordered_io
8986 		 */
8987 		if (TestClearPagePrivate2(page)) {
8988 			struct btrfs_ordered_inode_tree *tree;
8989 			u64 new_len;
8990 
8991 			tree = &BTRFS_I(inode)->ordered_tree;
8992 
8993 			spin_lock_irq(&tree->lock);
8994 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8995 			new_len = start - ordered->file_offset;
8996 			if (new_len < ordered->truncated_len)
8997 				ordered->truncated_len = new_len;
8998 			spin_unlock_irq(&tree->lock);
8999 
9000 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
9001 							   start,
9002 							   end - start + 1, 1))
9003 				btrfs_finish_ordered_io(ordered);
9004 		}
9005 		btrfs_put_ordered_extent(ordered);
9006 		if (!inode_evicting) {
9007 			cached_state = NULL;
9008 			lock_extent_bits(tree, start, end,
9009 					 &cached_state);
9010 		}
9011 
9012 		start = end + 1;
9013 		if (start < page_end)
9014 			goto again;
9015 	}
9016 
9017 	/*
9018 	 * Qgroup reserved space handler
9019 	 * Page here will be either
9020 	 * 1) Already written to disk
9021 	 *    In this case, its reserved space is released from data rsv map
9022 	 *    and will be freed by delayed_ref handler finally.
9023 	 *    So even we call qgroup_free_data(), it won't decrease reserved
9024 	 *    space.
9025 	 * 2) Not written to disk
9026 	 *    This means the reserved space should be freed here. However,
9027 	 *    if a truncate invalidates the page (by clearing PageDirty)
9028 	 *    and the page is accounted for while allocating extent
9029 	 *    in btrfs_check_data_free_space() we let delayed_ref to
9030 	 *    free the entire extent.
9031 	 */
9032 	if (PageDirty(page))
9033 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
9034 	if (!inode_evicting) {
9035 		clear_extent_bit(tree, page_start, page_end,
9036 				 EXTENT_LOCKED | EXTENT_DIRTY |
9037 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9038 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
9039 				 &cached_state, GFP_NOFS);
9040 
9041 		__btrfs_releasepage(page, GFP_NOFS);
9042 	}
9043 
9044 	ClearPageChecked(page);
9045 	if (PagePrivate(page)) {
9046 		ClearPagePrivate(page);
9047 		set_page_private(page, 0);
9048 		put_page(page);
9049 	}
9050 }
9051 
9052 /*
9053  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9054  * called from a page fault handler when a page is first dirtied. Hence we must
9055  * be careful to check for EOF conditions here. We set the page up correctly
9056  * for a written page which means we get ENOSPC checking when writing into
9057  * holes and correct delalloc and unwritten extent mapping on filesystems that
9058  * support these features.
9059  *
9060  * We are not allowed to take the i_mutex here so we have to play games to
9061  * protect against truncate races as the page could now be beyond EOF.  Because
9062  * vmtruncate() writes the inode size before removing pages, once we have the
9063  * page lock we can determine safely if the page is beyond EOF. If it is not
9064  * beyond EOF, then the page is guaranteed safe against truncation until we
9065  * unlock the page.
9066  */
9067 int btrfs_page_mkwrite(struct vm_fault *vmf)
9068 {
9069 	struct page *page = vmf->page;
9070 	struct inode *inode = file_inode(vmf->vma->vm_file);
9071 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9072 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9073 	struct btrfs_ordered_extent *ordered;
9074 	struct extent_state *cached_state = NULL;
9075 	struct extent_changeset *data_reserved = NULL;
9076 	char *kaddr;
9077 	unsigned long zero_start;
9078 	loff_t size;
9079 	int ret;
9080 	int reserved = 0;
9081 	u64 reserved_space;
9082 	u64 page_start;
9083 	u64 page_end;
9084 	u64 end;
9085 
9086 	reserved_space = PAGE_SIZE;
9087 
9088 	sb_start_pagefault(inode->i_sb);
9089 	page_start = page_offset(page);
9090 	page_end = page_start + PAGE_SIZE - 1;
9091 	end = page_end;
9092 
9093 	/*
9094 	 * Reserving delalloc space after obtaining the page lock can lead to
9095 	 * deadlock. For example, if a dirty page is locked by this function
9096 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9097 	 * dirty page write out, then the btrfs_writepage() function could
9098 	 * end up waiting indefinitely to get a lock on the page currently
9099 	 * being processed by btrfs_page_mkwrite() function.
9100 	 */
9101 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
9102 					   reserved_space);
9103 	if (!ret) {
9104 		ret = file_update_time(vmf->vma->vm_file);
9105 		reserved = 1;
9106 	}
9107 	if (ret) {
9108 		if (ret == -ENOMEM)
9109 			ret = VM_FAULT_OOM;
9110 		else /* -ENOSPC, -EIO, etc */
9111 			ret = VM_FAULT_SIGBUS;
9112 		if (reserved)
9113 			goto out;
9114 		goto out_noreserve;
9115 	}
9116 
9117 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9118 again:
9119 	lock_page(page);
9120 	size = i_size_read(inode);
9121 
9122 	if ((page->mapping != inode->i_mapping) ||
9123 	    (page_start >= size)) {
9124 		/* page got truncated out from underneath us */
9125 		goto out_unlock;
9126 	}
9127 	wait_on_page_writeback(page);
9128 
9129 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9130 	set_page_extent_mapped(page);
9131 
9132 	/*
9133 	 * we can't set the delalloc bits if there are pending ordered
9134 	 * extents.  Drop our locks and wait for them to finish
9135 	 */
9136 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9137 			PAGE_SIZE);
9138 	if (ordered) {
9139 		unlock_extent_cached(io_tree, page_start, page_end,
9140 				     &cached_state, GFP_NOFS);
9141 		unlock_page(page);
9142 		btrfs_start_ordered_extent(inode, ordered, 1);
9143 		btrfs_put_ordered_extent(ordered);
9144 		goto again;
9145 	}
9146 
9147 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9148 		reserved_space = round_up(size - page_start,
9149 					  fs_info->sectorsize);
9150 		if (reserved_space < PAGE_SIZE) {
9151 			end = page_start + reserved_space - 1;
9152 			btrfs_delalloc_release_space(inode, data_reserved,
9153 					page_start, PAGE_SIZE - reserved_space);
9154 		}
9155 	}
9156 
9157 	/*
9158 	 * page_mkwrite gets called when the page is firstly dirtied after it's
9159 	 * faulted in, but write(2) could also dirty a page and set delalloc
9160 	 * bits, thus in this case for space account reason, we still need to
9161 	 * clear any delalloc bits within this page range since we have to
9162 	 * reserve data&meta space before lock_page() (see above comments).
9163 	 */
9164 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9165 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9166 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9167 			  0, 0, &cached_state, GFP_NOFS);
9168 
9169 	ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9170 					&cached_state, 0);
9171 	if (ret) {
9172 		unlock_extent_cached(io_tree, page_start, page_end,
9173 				     &cached_state, GFP_NOFS);
9174 		ret = VM_FAULT_SIGBUS;
9175 		goto out_unlock;
9176 	}
9177 	ret = 0;
9178 
9179 	/* page is wholly or partially inside EOF */
9180 	if (page_start + PAGE_SIZE > size)
9181 		zero_start = size & ~PAGE_MASK;
9182 	else
9183 		zero_start = PAGE_SIZE;
9184 
9185 	if (zero_start != PAGE_SIZE) {
9186 		kaddr = kmap(page);
9187 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9188 		flush_dcache_page(page);
9189 		kunmap(page);
9190 	}
9191 	ClearPageChecked(page);
9192 	set_page_dirty(page);
9193 	SetPageUptodate(page);
9194 
9195 	BTRFS_I(inode)->last_trans = fs_info->generation;
9196 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9197 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9198 
9199 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9200 
9201 out_unlock:
9202 	if (!ret) {
9203 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9204 		sb_end_pagefault(inode->i_sb);
9205 		extent_changeset_free(data_reserved);
9206 		return VM_FAULT_LOCKED;
9207 	}
9208 	unlock_page(page);
9209 out:
9210 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9211 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9212 				     reserved_space);
9213 out_noreserve:
9214 	sb_end_pagefault(inode->i_sb);
9215 	extent_changeset_free(data_reserved);
9216 	return ret;
9217 }
9218 
9219 static int btrfs_truncate(struct inode *inode)
9220 {
9221 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9222 	struct btrfs_root *root = BTRFS_I(inode)->root;
9223 	struct btrfs_block_rsv *rsv;
9224 	int ret = 0;
9225 	int err = 0;
9226 	struct btrfs_trans_handle *trans;
9227 	u64 mask = fs_info->sectorsize - 1;
9228 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9229 
9230 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9231 				       (u64)-1);
9232 	if (ret)
9233 		return ret;
9234 
9235 	/*
9236 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9237 	 * 3 things going on here
9238 	 *
9239 	 * 1) We need to reserve space for our orphan item and the space to
9240 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9241 	 * orphan item because we didn't reserve space to remove it.
9242 	 *
9243 	 * 2) We need to reserve space to update our inode.
9244 	 *
9245 	 * 3) We need to have something to cache all the space that is going to
9246 	 * be free'd up by the truncate operation, but also have some slack
9247 	 * space reserved in case it uses space during the truncate (thank you
9248 	 * very much snapshotting).
9249 	 *
9250 	 * And we need these to all be separate.  The fact is we can use a lot of
9251 	 * space doing the truncate, and we have no earthly idea how much space
9252 	 * we will use, so we need the truncate reservation to be separate so it
9253 	 * doesn't end up using space reserved for updating the inode or
9254 	 * removing the orphan item.  We also need to be able to stop the
9255 	 * transaction and start a new one, which means we need to be able to
9256 	 * update the inode several times, and we have no idea of knowing how
9257 	 * many times that will be, so we can't just reserve 1 item for the
9258 	 * entirety of the operation, so that has to be done separately as well.
9259 	 * Then there is the orphan item, which does indeed need to be held on
9260 	 * to for the whole operation, and we need nobody to touch this reserved
9261 	 * space except the orphan code.
9262 	 *
9263 	 * So that leaves us with
9264 	 *
9265 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9266 	 * 2) rsv - for the truncate reservation, which we will steal from the
9267 	 * transaction reservation.
9268 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9269 	 * updating the inode.
9270 	 */
9271 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9272 	if (!rsv)
9273 		return -ENOMEM;
9274 	rsv->size = min_size;
9275 	rsv->failfast = 1;
9276 
9277 	/*
9278 	 * 1 for the truncate slack space
9279 	 * 1 for updating the inode.
9280 	 */
9281 	trans = btrfs_start_transaction(root, 2);
9282 	if (IS_ERR(trans)) {
9283 		err = PTR_ERR(trans);
9284 		goto out;
9285 	}
9286 
9287 	/* Migrate the slack space for the truncate to our reserve */
9288 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9289 				      min_size, 0);
9290 	BUG_ON(ret);
9291 
9292 	/*
9293 	 * So if we truncate and then write and fsync we normally would just
9294 	 * write the extents that changed, which is a problem if we need to
9295 	 * first truncate that entire inode.  So set this flag so we write out
9296 	 * all of the extents in the inode to the sync log so we're completely
9297 	 * safe.
9298 	 */
9299 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9300 	trans->block_rsv = rsv;
9301 
9302 	while (1) {
9303 		ret = btrfs_truncate_inode_items(trans, root, inode,
9304 						 inode->i_size,
9305 						 BTRFS_EXTENT_DATA_KEY);
9306 		trans->block_rsv = &fs_info->trans_block_rsv;
9307 		if (ret != -ENOSPC && ret != -EAGAIN) {
9308 			err = ret;
9309 			break;
9310 		}
9311 
9312 		ret = btrfs_update_inode(trans, root, inode);
9313 		if (ret) {
9314 			err = ret;
9315 			break;
9316 		}
9317 
9318 		btrfs_end_transaction(trans);
9319 		btrfs_btree_balance_dirty(fs_info);
9320 
9321 		trans = btrfs_start_transaction(root, 2);
9322 		if (IS_ERR(trans)) {
9323 			ret = err = PTR_ERR(trans);
9324 			trans = NULL;
9325 			break;
9326 		}
9327 
9328 		btrfs_block_rsv_release(fs_info, rsv, -1);
9329 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9330 					      rsv, min_size, 0);
9331 		BUG_ON(ret);	/* shouldn't happen */
9332 		trans->block_rsv = rsv;
9333 	}
9334 
9335 	/*
9336 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9337 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9338 	 * we've truncated everything except the last little bit, and can do
9339 	 * btrfs_truncate_block and then update the disk_i_size.
9340 	 */
9341 	if (ret == NEED_TRUNCATE_BLOCK) {
9342 		btrfs_end_transaction(trans);
9343 		btrfs_btree_balance_dirty(fs_info);
9344 
9345 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9346 		if (ret)
9347 			goto out;
9348 		trans = btrfs_start_transaction(root, 1);
9349 		if (IS_ERR(trans)) {
9350 			ret = PTR_ERR(trans);
9351 			goto out;
9352 		}
9353 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9354 	}
9355 
9356 	if (ret == 0 && inode->i_nlink > 0) {
9357 		trans->block_rsv = root->orphan_block_rsv;
9358 		ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9359 		if (ret)
9360 			err = ret;
9361 	}
9362 
9363 	if (trans) {
9364 		trans->block_rsv = &fs_info->trans_block_rsv;
9365 		ret = btrfs_update_inode(trans, root, inode);
9366 		if (ret && !err)
9367 			err = ret;
9368 
9369 		ret = btrfs_end_transaction(trans);
9370 		btrfs_btree_balance_dirty(fs_info);
9371 	}
9372 out:
9373 	btrfs_free_block_rsv(fs_info, rsv);
9374 
9375 	if (ret && !err)
9376 		err = ret;
9377 
9378 	return err;
9379 }
9380 
9381 /*
9382  * create a new subvolume directory/inode (helper for the ioctl).
9383  */
9384 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9385 			     struct btrfs_root *new_root,
9386 			     struct btrfs_root *parent_root,
9387 			     u64 new_dirid)
9388 {
9389 	struct inode *inode;
9390 	int err;
9391 	u64 index = 0;
9392 
9393 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9394 				new_dirid, new_dirid,
9395 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9396 				&index);
9397 	if (IS_ERR(inode))
9398 		return PTR_ERR(inode);
9399 	inode->i_op = &btrfs_dir_inode_operations;
9400 	inode->i_fop = &btrfs_dir_file_operations;
9401 
9402 	set_nlink(inode, 1);
9403 	btrfs_i_size_write(BTRFS_I(inode), 0);
9404 	unlock_new_inode(inode);
9405 
9406 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9407 	if (err)
9408 		btrfs_err(new_root->fs_info,
9409 			  "error inheriting subvolume %llu properties: %d",
9410 			  new_root->root_key.objectid, err);
9411 
9412 	err = btrfs_update_inode(trans, new_root, inode);
9413 
9414 	iput(inode);
9415 	return err;
9416 }
9417 
9418 struct inode *btrfs_alloc_inode(struct super_block *sb)
9419 {
9420 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9421 	struct btrfs_inode *ei;
9422 	struct inode *inode;
9423 
9424 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9425 	if (!ei)
9426 		return NULL;
9427 
9428 	ei->root = NULL;
9429 	ei->generation = 0;
9430 	ei->last_trans = 0;
9431 	ei->last_sub_trans = 0;
9432 	ei->logged_trans = 0;
9433 	ei->delalloc_bytes = 0;
9434 	ei->new_delalloc_bytes = 0;
9435 	ei->defrag_bytes = 0;
9436 	ei->disk_i_size = 0;
9437 	ei->flags = 0;
9438 	ei->csum_bytes = 0;
9439 	ei->index_cnt = (u64)-1;
9440 	ei->dir_index = 0;
9441 	ei->last_unlink_trans = 0;
9442 	ei->last_log_commit = 0;
9443 	ei->delayed_iput_count = 0;
9444 
9445 	spin_lock_init(&ei->lock);
9446 	ei->outstanding_extents = 0;
9447 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9448 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9449 					      BTRFS_BLOCK_RSV_DELALLOC);
9450 	ei->runtime_flags = 0;
9451 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9452 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9453 
9454 	ei->delayed_node = NULL;
9455 
9456 	ei->i_otime.tv_sec = 0;
9457 	ei->i_otime.tv_nsec = 0;
9458 
9459 	inode = &ei->vfs_inode;
9460 	extent_map_tree_init(&ei->extent_tree);
9461 	extent_io_tree_init(&ei->io_tree, inode);
9462 	extent_io_tree_init(&ei->io_failure_tree, inode);
9463 	ei->io_tree.track_uptodate = 1;
9464 	ei->io_failure_tree.track_uptodate = 1;
9465 	atomic_set(&ei->sync_writers, 0);
9466 	mutex_init(&ei->log_mutex);
9467 	mutex_init(&ei->delalloc_mutex);
9468 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9469 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9470 	INIT_LIST_HEAD(&ei->delayed_iput);
9471 	RB_CLEAR_NODE(&ei->rb_node);
9472 	init_rwsem(&ei->dio_sem);
9473 
9474 	return inode;
9475 }
9476 
9477 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9478 void btrfs_test_destroy_inode(struct inode *inode)
9479 {
9480 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9481 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9482 }
9483 #endif
9484 
9485 static void btrfs_i_callback(struct rcu_head *head)
9486 {
9487 	struct inode *inode = container_of(head, struct inode, i_rcu);
9488 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9489 }
9490 
9491 void btrfs_destroy_inode(struct inode *inode)
9492 {
9493 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9494 	struct btrfs_ordered_extent *ordered;
9495 	struct btrfs_root *root = BTRFS_I(inode)->root;
9496 
9497 	WARN_ON(!hlist_empty(&inode->i_dentry));
9498 	WARN_ON(inode->i_data.nrpages);
9499 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9500 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9501 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9502 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9503 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9504 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9505 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9506 
9507 	/*
9508 	 * This can happen where we create an inode, but somebody else also
9509 	 * created the same inode and we need to destroy the one we already
9510 	 * created.
9511 	 */
9512 	if (!root)
9513 		goto free;
9514 
9515 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9516 		     &BTRFS_I(inode)->runtime_flags)) {
9517 		btrfs_info(fs_info, "inode %llu still on the orphan list",
9518 			   btrfs_ino(BTRFS_I(inode)));
9519 		atomic_dec(&root->orphan_inodes);
9520 	}
9521 
9522 	while (1) {
9523 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9524 		if (!ordered)
9525 			break;
9526 		else {
9527 			btrfs_err(fs_info,
9528 				  "found ordered extent %llu %llu on inode cleanup",
9529 				  ordered->file_offset, ordered->len);
9530 			btrfs_remove_ordered_extent(inode, ordered);
9531 			btrfs_put_ordered_extent(ordered);
9532 			btrfs_put_ordered_extent(ordered);
9533 		}
9534 	}
9535 	btrfs_qgroup_check_reserved_leak(inode);
9536 	inode_tree_del(inode);
9537 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9538 free:
9539 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9540 }
9541 
9542 int btrfs_drop_inode(struct inode *inode)
9543 {
9544 	struct btrfs_root *root = BTRFS_I(inode)->root;
9545 
9546 	if (root == NULL)
9547 		return 1;
9548 
9549 	/* the snap/subvol tree is on deleting */
9550 	if (btrfs_root_refs(&root->root_item) == 0)
9551 		return 1;
9552 	else
9553 		return generic_drop_inode(inode);
9554 }
9555 
9556 static void init_once(void *foo)
9557 {
9558 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9559 
9560 	inode_init_once(&ei->vfs_inode);
9561 }
9562 
9563 void btrfs_destroy_cachep(void)
9564 {
9565 	/*
9566 	 * Make sure all delayed rcu free inodes are flushed before we
9567 	 * destroy cache.
9568 	 */
9569 	rcu_barrier();
9570 	kmem_cache_destroy(btrfs_inode_cachep);
9571 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9572 	kmem_cache_destroy(btrfs_path_cachep);
9573 	kmem_cache_destroy(btrfs_free_space_cachep);
9574 }
9575 
9576 int btrfs_init_cachep(void)
9577 {
9578 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9579 			sizeof(struct btrfs_inode), 0,
9580 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9581 			init_once);
9582 	if (!btrfs_inode_cachep)
9583 		goto fail;
9584 
9585 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9586 			sizeof(struct btrfs_trans_handle), 0,
9587 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9588 	if (!btrfs_trans_handle_cachep)
9589 		goto fail;
9590 
9591 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9592 			sizeof(struct btrfs_path), 0,
9593 			SLAB_MEM_SPREAD, NULL);
9594 	if (!btrfs_path_cachep)
9595 		goto fail;
9596 
9597 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9598 			sizeof(struct btrfs_free_space), 0,
9599 			SLAB_MEM_SPREAD, NULL);
9600 	if (!btrfs_free_space_cachep)
9601 		goto fail;
9602 
9603 	return 0;
9604 fail:
9605 	btrfs_destroy_cachep();
9606 	return -ENOMEM;
9607 }
9608 
9609 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9610 			 u32 request_mask, unsigned int flags)
9611 {
9612 	u64 delalloc_bytes;
9613 	struct inode *inode = d_inode(path->dentry);
9614 	u32 blocksize = inode->i_sb->s_blocksize;
9615 	u32 bi_flags = BTRFS_I(inode)->flags;
9616 
9617 	stat->result_mask |= STATX_BTIME;
9618 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9619 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9620 	if (bi_flags & BTRFS_INODE_APPEND)
9621 		stat->attributes |= STATX_ATTR_APPEND;
9622 	if (bi_flags & BTRFS_INODE_COMPRESS)
9623 		stat->attributes |= STATX_ATTR_COMPRESSED;
9624 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9625 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9626 	if (bi_flags & BTRFS_INODE_NODUMP)
9627 		stat->attributes |= STATX_ATTR_NODUMP;
9628 
9629 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9630 				  STATX_ATTR_COMPRESSED |
9631 				  STATX_ATTR_IMMUTABLE |
9632 				  STATX_ATTR_NODUMP);
9633 
9634 	generic_fillattr(inode, stat);
9635 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9636 
9637 	spin_lock(&BTRFS_I(inode)->lock);
9638 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9639 	spin_unlock(&BTRFS_I(inode)->lock);
9640 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9641 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9642 	return 0;
9643 }
9644 
9645 static int btrfs_rename_exchange(struct inode *old_dir,
9646 			      struct dentry *old_dentry,
9647 			      struct inode *new_dir,
9648 			      struct dentry *new_dentry)
9649 {
9650 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9651 	struct btrfs_trans_handle *trans;
9652 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9653 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9654 	struct inode *new_inode = new_dentry->d_inode;
9655 	struct inode *old_inode = old_dentry->d_inode;
9656 	struct timespec ctime = current_time(old_inode);
9657 	struct dentry *parent;
9658 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9659 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9660 	u64 old_idx = 0;
9661 	u64 new_idx = 0;
9662 	u64 root_objectid;
9663 	int ret;
9664 	bool root_log_pinned = false;
9665 	bool dest_log_pinned = false;
9666 
9667 	/* we only allow rename subvolume link between subvolumes */
9668 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9669 		return -EXDEV;
9670 
9671 	/* close the race window with snapshot create/destroy ioctl */
9672 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9673 		down_read(&fs_info->subvol_sem);
9674 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9675 		down_read(&fs_info->subvol_sem);
9676 
9677 	/*
9678 	 * We want to reserve the absolute worst case amount of items.  So if
9679 	 * both inodes are subvols and we need to unlink them then that would
9680 	 * require 4 item modifications, but if they are both normal inodes it
9681 	 * would require 5 item modifications, so we'll assume their normal
9682 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9683 	 * should cover the worst case number of items we'll modify.
9684 	 */
9685 	trans = btrfs_start_transaction(root, 12);
9686 	if (IS_ERR(trans)) {
9687 		ret = PTR_ERR(trans);
9688 		goto out_notrans;
9689 	}
9690 
9691 	/*
9692 	 * We need to find a free sequence number both in the source and
9693 	 * in the destination directory for the exchange.
9694 	 */
9695 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9696 	if (ret)
9697 		goto out_fail;
9698 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9699 	if (ret)
9700 		goto out_fail;
9701 
9702 	BTRFS_I(old_inode)->dir_index = 0ULL;
9703 	BTRFS_I(new_inode)->dir_index = 0ULL;
9704 
9705 	/* Reference for the source. */
9706 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9707 		/* force full log commit if subvolume involved. */
9708 		btrfs_set_log_full_commit(fs_info, trans);
9709 	} else {
9710 		btrfs_pin_log_trans(root);
9711 		root_log_pinned = true;
9712 		ret = btrfs_insert_inode_ref(trans, dest,
9713 					     new_dentry->d_name.name,
9714 					     new_dentry->d_name.len,
9715 					     old_ino,
9716 					     btrfs_ino(BTRFS_I(new_dir)),
9717 					     old_idx);
9718 		if (ret)
9719 			goto out_fail;
9720 	}
9721 
9722 	/* And now for the dest. */
9723 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9724 		/* force full log commit if subvolume involved. */
9725 		btrfs_set_log_full_commit(fs_info, trans);
9726 	} else {
9727 		btrfs_pin_log_trans(dest);
9728 		dest_log_pinned = true;
9729 		ret = btrfs_insert_inode_ref(trans, root,
9730 					     old_dentry->d_name.name,
9731 					     old_dentry->d_name.len,
9732 					     new_ino,
9733 					     btrfs_ino(BTRFS_I(old_dir)),
9734 					     new_idx);
9735 		if (ret)
9736 			goto out_fail;
9737 	}
9738 
9739 	/* Update inode version and ctime/mtime. */
9740 	inode_inc_iversion(old_dir);
9741 	inode_inc_iversion(new_dir);
9742 	inode_inc_iversion(old_inode);
9743 	inode_inc_iversion(new_inode);
9744 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9745 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9746 	old_inode->i_ctime = ctime;
9747 	new_inode->i_ctime = ctime;
9748 
9749 	if (old_dentry->d_parent != new_dentry->d_parent) {
9750 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9751 				BTRFS_I(old_inode), 1);
9752 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9753 				BTRFS_I(new_inode), 1);
9754 	}
9755 
9756 	/* src is a subvolume */
9757 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9758 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9759 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9760 					  root_objectid,
9761 					  old_dentry->d_name.name,
9762 					  old_dentry->d_name.len);
9763 	} else { /* src is an inode */
9764 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9765 					   BTRFS_I(old_dentry->d_inode),
9766 					   old_dentry->d_name.name,
9767 					   old_dentry->d_name.len);
9768 		if (!ret)
9769 			ret = btrfs_update_inode(trans, root, old_inode);
9770 	}
9771 	if (ret) {
9772 		btrfs_abort_transaction(trans, ret);
9773 		goto out_fail;
9774 	}
9775 
9776 	/* dest is a subvolume */
9777 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9778 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9779 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9780 					  root_objectid,
9781 					  new_dentry->d_name.name,
9782 					  new_dentry->d_name.len);
9783 	} else { /* dest is an inode */
9784 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9785 					   BTRFS_I(new_dentry->d_inode),
9786 					   new_dentry->d_name.name,
9787 					   new_dentry->d_name.len);
9788 		if (!ret)
9789 			ret = btrfs_update_inode(trans, dest, new_inode);
9790 	}
9791 	if (ret) {
9792 		btrfs_abort_transaction(trans, ret);
9793 		goto out_fail;
9794 	}
9795 
9796 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9797 			     new_dentry->d_name.name,
9798 			     new_dentry->d_name.len, 0, old_idx);
9799 	if (ret) {
9800 		btrfs_abort_transaction(trans, ret);
9801 		goto out_fail;
9802 	}
9803 
9804 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9805 			     old_dentry->d_name.name,
9806 			     old_dentry->d_name.len, 0, new_idx);
9807 	if (ret) {
9808 		btrfs_abort_transaction(trans, ret);
9809 		goto out_fail;
9810 	}
9811 
9812 	if (old_inode->i_nlink == 1)
9813 		BTRFS_I(old_inode)->dir_index = old_idx;
9814 	if (new_inode->i_nlink == 1)
9815 		BTRFS_I(new_inode)->dir_index = new_idx;
9816 
9817 	if (root_log_pinned) {
9818 		parent = new_dentry->d_parent;
9819 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9820 				parent);
9821 		btrfs_end_log_trans(root);
9822 		root_log_pinned = false;
9823 	}
9824 	if (dest_log_pinned) {
9825 		parent = old_dentry->d_parent;
9826 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9827 				parent);
9828 		btrfs_end_log_trans(dest);
9829 		dest_log_pinned = false;
9830 	}
9831 out_fail:
9832 	/*
9833 	 * If we have pinned a log and an error happened, we unpin tasks
9834 	 * trying to sync the log and force them to fallback to a transaction
9835 	 * commit if the log currently contains any of the inodes involved in
9836 	 * this rename operation (to ensure we do not persist a log with an
9837 	 * inconsistent state for any of these inodes or leading to any
9838 	 * inconsistencies when replayed). If the transaction was aborted, the
9839 	 * abortion reason is propagated to userspace when attempting to commit
9840 	 * the transaction. If the log does not contain any of these inodes, we
9841 	 * allow the tasks to sync it.
9842 	 */
9843 	if (ret && (root_log_pinned || dest_log_pinned)) {
9844 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9845 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9846 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9847 		    (new_inode &&
9848 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9849 			btrfs_set_log_full_commit(fs_info, trans);
9850 
9851 		if (root_log_pinned) {
9852 			btrfs_end_log_trans(root);
9853 			root_log_pinned = false;
9854 		}
9855 		if (dest_log_pinned) {
9856 			btrfs_end_log_trans(dest);
9857 			dest_log_pinned = false;
9858 		}
9859 	}
9860 	ret = btrfs_end_transaction(trans);
9861 out_notrans:
9862 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9863 		up_read(&fs_info->subvol_sem);
9864 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9865 		up_read(&fs_info->subvol_sem);
9866 
9867 	return ret;
9868 }
9869 
9870 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9871 				     struct btrfs_root *root,
9872 				     struct inode *dir,
9873 				     struct dentry *dentry)
9874 {
9875 	int ret;
9876 	struct inode *inode;
9877 	u64 objectid;
9878 	u64 index;
9879 
9880 	ret = btrfs_find_free_ino(root, &objectid);
9881 	if (ret)
9882 		return ret;
9883 
9884 	inode = btrfs_new_inode(trans, root, dir,
9885 				dentry->d_name.name,
9886 				dentry->d_name.len,
9887 				btrfs_ino(BTRFS_I(dir)),
9888 				objectid,
9889 				S_IFCHR | WHITEOUT_MODE,
9890 				&index);
9891 
9892 	if (IS_ERR(inode)) {
9893 		ret = PTR_ERR(inode);
9894 		return ret;
9895 	}
9896 
9897 	inode->i_op = &btrfs_special_inode_operations;
9898 	init_special_inode(inode, inode->i_mode,
9899 		WHITEOUT_DEV);
9900 
9901 	ret = btrfs_init_inode_security(trans, inode, dir,
9902 				&dentry->d_name);
9903 	if (ret)
9904 		goto out;
9905 
9906 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9907 				BTRFS_I(inode), 0, index);
9908 	if (ret)
9909 		goto out;
9910 
9911 	ret = btrfs_update_inode(trans, root, inode);
9912 out:
9913 	unlock_new_inode(inode);
9914 	if (ret)
9915 		inode_dec_link_count(inode);
9916 	iput(inode);
9917 
9918 	return ret;
9919 }
9920 
9921 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9922 			   struct inode *new_dir, struct dentry *new_dentry,
9923 			   unsigned int flags)
9924 {
9925 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9926 	struct btrfs_trans_handle *trans;
9927 	unsigned int trans_num_items;
9928 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9929 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9930 	struct inode *new_inode = d_inode(new_dentry);
9931 	struct inode *old_inode = d_inode(old_dentry);
9932 	u64 index = 0;
9933 	u64 root_objectid;
9934 	int ret;
9935 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9936 	bool log_pinned = false;
9937 
9938 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9939 		return -EPERM;
9940 
9941 	/* we only allow rename subvolume link between subvolumes */
9942 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9943 		return -EXDEV;
9944 
9945 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9946 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9947 		return -ENOTEMPTY;
9948 
9949 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9950 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9951 		return -ENOTEMPTY;
9952 
9953 
9954 	/* check for collisions, even if the  name isn't there */
9955 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9956 			     new_dentry->d_name.name,
9957 			     new_dentry->d_name.len);
9958 
9959 	if (ret) {
9960 		if (ret == -EEXIST) {
9961 			/* we shouldn't get
9962 			 * eexist without a new_inode */
9963 			if (WARN_ON(!new_inode)) {
9964 				return ret;
9965 			}
9966 		} else {
9967 			/* maybe -EOVERFLOW */
9968 			return ret;
9969 		}
9970 	}
9971 	ret = 0;
9972 
9973 	/*
9974 	 * we're using rename to replace one file with another.  Start IO on it
9975 	 * now so  we don't add too much work to the end of the transaction
9976 	 */
9977 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9978 		filemap_flush(old_inode->i_mapping);
9979 
9980 	/* close the racy window with snapshot create/destroy ioctl */
9981 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9982 		down_read(&fs_info->subvol_sem);
9983 	/*
9984 	 * We want to reserve the absolute worst case amount of items.  So if
9985 	 * both inodes are subvols and we need to unlink them then that would
9986 	 * require 4 item modifications, but if they are both normal inodes it
9987 	 * would require 5 item modifications, so we'll assume they are normal
9988 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9989 	 * should cover the worst case number of items we'll modify.
9990 	 * If our rename has the whiteout flag, we need more 5 units for the
9991 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9992 	 * when selinux is enabled).
9993 	 */
9994 	trans_num_items = 11;
9995 	if (flags & RENAME_WHITEOUT)
9996 		trans_num_items += 5;
9997 	trans = btrfs_start_transaction(root, trans_num_items);
9998 	if (IS_ERR(trans)) {
9999 		ret = PTR_ERR(trans);
10000 		goto out_notrans;
10001 	}
10002 
10003 	if (dest != root)
10004 		btrfs_record_root_in_trans(trans, dest);
10005 
10006 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
10007 	if (ret)
10008 		goto out_fail;
10009 
10010 	BTRFS_I(old_inode)->dir_index = 0ULL;
10011 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
10012 		/* force full log commit if subvolume involved. */
10013 		btrfs_set_log_full_commit(fs_info, trans);
10014 	} else {
10015 		btrfs_pin_log_trans(root);
10016 		log_pinned = true;
10017 		ret = btrfs_insert_inode_ref(trans, dest,
10018 					     new_dentry->d_name.name,
10019 					     new_dentry->d_name.len,
10020 					     old_ino,
10021 					     btrfs_ino(BTRFS_I(new_dir)), index);
10022 		if (ret)
10023 			goto out_fail;
10024 	}
10025 
10026 	inode_inc_iversion(old_dir);
10027 	inode_inc_iversion(new_dir);
10028 	inode_inc_iversion(old_inode);
10029 	old_dir->i_ctime = old_dir->i_mtime =
10030 	new_dir->i_ctime = new_dir->i_mtime =
10031 	old_inode->i_ctime = current_time(old_dir);
10032 
10033 	if (old_dentry->d_parent != new_dentry->d_parent)
10034 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
10035 				BTRFS_I(old_inode), 1);
10036 
10037 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
10038 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
10039 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
10040 					old_dentry->d_name.name,
10041 					old_dentry->d_name.len);
10042 	} else {
10043 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
10044 					BTRFS_I(d_inode(old_dentry)),
10045 					old_dentry->d_name.name,
10046 					old_dentry->d_name.len);
10047 		if (!ret)
10048 			ret = btrfs_update_inode(trans, root, old_inode);
10049 	}
10050 	if (ret) {
10051 		btrfs_abort_transaction(trans, ret);
10052 		goto out_fail;
10053 	}
10054 
10055 	if (new_inode) {
10056 		inode_inc_iversion(new_inode);
10057 		new_inode->i_ctime = current_time(new_inode);
10058 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
10059 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10060 			root_objectid = BTRFS_I(new_inode)->location.objectid;
10061 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
10062 						root_objectid,
10063 						new_dentry->d_name.name,
10064 						new_dentry->d_name.len);
10065 			BUG_ON(new_inode->i_nlink == 0);
10066 		} else {
10067 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10068 						 BTRFS_I(d_inode(new_dentry)),
10069 						 new_dentry->d_name.name,
10070 						 new_dentry->d_name.len);
10071 		}
10072 		if (!ret && new_inode->i_nlink == 0)
10073 			ret = btrfs_orphan_add(trans,
10074 					BTRFS_I(d_inode(new_dentry)));
10075 		if (ret) {
10076 			btrfs_abort_transaction(trans, ret);
10077 			goto out_fail;
10078 		}
10079 	}
10080 
10081 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10082 			     new_dentry->d_name.name,
10083 			     new_dentry->d_name.len, 0, index);
10084 	if (ret) {
10085 		btrfs_abort_transaction(trans, ret);
10086 		goto out_fail;
10087 	}
10088 
10089 	if (old_inode->i_nlink == 1)
10090 		BTRFS_I(old_inode)->dir_index = index;
10091 
10092 	if (log_pinned) {
10093 		struct dentry *parent = new_dentry->d_parent;
10094 
10095 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10096 				parent);
10097 		btrfs_end_log_trans(root);
10098 		log_pinned = false;
10099 	}
10100 
10101 	if (flags & RENAME_WHITEOUT) {
10102 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10103 						old_dentry);
10104 
10105 		if (ret) {
10106 			btrfs_abort_transaction(trans, ret);
10107 			goto out_fail;
10108 		}
10109 	}
10110 out_fail:
10111 	/*
10112 	 * If we have pinned the log and an error happened, we unpin tasks
10113 	 * trying to sync the log and force them to fallback to a transaction
10114 	 * commit if the log currently contains any of the inodes involved in
10115 	 * this rename operation (to ensure we do not persist a log with an
10116 	 * inconsistent state for any of these inodes or leading to any
10117 	 * inconsistencies when replayed). If the transaction was aborted, the
10118 	 * abortion reason is propagated to userspace when attempting to commit
10119 	 * the transaction. If the log does not contain any of these inodes, we
10120 	 * allow the tasks to sync it.
10121 	 */
10122 	if (ret && log_pinned) {
10123 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10124 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10125 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10126 		    (new_inode &&
10127 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10128 			btrfs_set_log_full_commit(fs_info, trans);
10129 
10130 		btrfs_end_log_trans(root);
10131 		log_pinned = false;
10132 	}
10133 	btrfs_end_transaction(trans);
10134 out_notrans:
10135 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10136 		up_read(&fs_info->subvol_sem);
10137 
10138 	return ret;
10139 }
10140 
10141 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10142 			 struct inode *new_dir, struct dentry *new_dentry,
10143 			 unsigned int flags)
10144 {
10145 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10146 		return -EINVAL;
10147 
10148 	if (flags & RENAME_EXCHANGE)
10149 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10150 					  new_dentry);
10151 
10152 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10153 }
10154 
10155 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10156 {
10157 	struct btrfs_delalloc_work *delalloc_work;
10158 	struct inode *inode;
10159 
10160 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10161 				     work);
10162 	inode = delalloc_work->inode;
10163 	filemap_flush(inode->i_mapping);
10164 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10165 				&BTRFS_I(inode)->runtime_flags))
10166 		filemap_flush(inode->i_mapping);
10167 
10168 	if (delalloc_work->delay_iput)
10169 		btrfs_add_delayed_iput(inode);
10170 	else
10171 		iput(inode);
10172 	complete(&delalloc_work->completion);
10173 }
10174 
10175 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10176 						    int delay_iput)
10177 {
10178 	struct btrfs_delalloc_work *work;
10179 
10180 	work = kmalloc(sizeof(*work), GFP_NOFS);
10181 	if (!work)
10182 		return NULL;
10183 
10184 	init_completion(&work->completion);
10185 	INIT_LIST_HEAD(&work->list);
10186 	work->inode = inode;
10187 	work->delay_iput = delay_iput;
10188 	WARN_ON_ONCE(!inode);
10189 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10190 			btrfs_run_delalloc_work, NULL, NULL);
10191 
10192 	return work;
10193 }
10194 
10195 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10196 {
10197 	wait_for_completion(&work->completion);
10198 	kfree(work);
10199 }
10200 
10201 /*
10202  * some fairly slow code that needs optimization. This walks the list
10203  * of all the inodes with pending delalloc and forces them to disk.
10204  */
10205 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10206 				   int nr)
10207 {
10208 	struct btrfs_inode *binode;
10209 	struct inode *inode;
10210 	struct btrfs_delalloc_work *work, *next;
10211 	struct list_head works;
10212 	struct list_head splice;
10213 	int ret = 0;
10214 
10215 	INIT_LIST_HEAD(&works);
10216 	INIT_LIST_HEAD(&splice);
10217 
10218 	mutex_lock(&root->delalloc_mutex);
10219 	spin_lock(&root->delalloc_lock);
10220 	list_splice_init(&root->delalloc_inodes, &splice);
10221 	while (!list_empty(&splice)) {
10222 		binode = list_entry(splice.next, struct btrfs_inode,
10223 				    delalloc_inodes);
10224 
10225 		list_move_tail(&binode->delalloc_inodes,
10226 			       &root->delalloc_inodes);
10227 		inode = igrab(&binode->vfs_inode);
10228 		if (!inode) {
10229 			cond_resched_lock(&root->delalloc_lock);
10230 			continue;
10231 		}
10232 		spin_unlock(&root->delalloc_lock);
10233 
10234 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10235 		if (!work) {
10236 			if (delay_iput)
10237 				btrfs_add_delayed_iput(inode);
10238 			else
10239 				iput(inode);
10240 			ret = -ENOMEM;
10241 			goto out;
10242 		}
10243 		list_add_tail(&work->list, &works);
10244 		btrfs_queue_work(root->fs_info->flush_workers,
10245 				 &work->work);
10246 		ret++;
10247 		if (nr != -1 && ret >= nr)
10248 			goto out;
10249 		cond_resched();
10250 		spin_lock(&root->delalloc_lock);
10251 	}
10252 	spin_unlock(&root->delalloc_lock);
10253 
10254 out:
10255 	list_for_each_entry_safe(work, next, &works, list) {
10256 		list_del_init(&work->list);
10257 		btrfs_wait_and_free_delalloc_work(work);
10258 	}
10259 
10260 	if (!list_empty_careful(&splice)) {
10261 		spin_lock(&root->delalloc_lock);
10262 		list_splice_tail(&splice, &root->delalloc_inodes);
10263 		spin_unlock(&root->delalloc_lock);
10264 	}
10265 	mutex_unlock(&root->delalloc_mutex);
10266 	return ret;
10267 }
10268 
10269 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10270 {
10271 	struct btrfs_fs_info *fs_info = root->fs_info;
10272 	int ret;
10273 
10274 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10275 		return -EROFS;
10276 
10277 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10278 	if (ret > 0)
10279 		ret = 0;
10280 	return ret;
10281 }
10282 
10283 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10284 			       int nr)
10285 {
10286 	struct btrfs_root *root;
10287 	struct list_head splice;
10288 	int ret;
10289 
10290 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10291 		return -EROFS;
10292 
10293 	INIT_LIST_HEAD(&splice);
10294 
10295 	mutex_lock(&fs_info->delalloc_root_mutex);
10296 	spin_lock(&fs_info->delalloc_root_lock);
10297 	list_splice_init(&fs_info->delalloc_roots, &splice);
10298 	while (!list_empty(&splice) && nr) {
10299 		root = list_first_entry(&splice, struct btrfs_root,
10300 					delalloc_root);
10301 		root = btrfs_grab_fs_root(root);
10302 		BUG_ON(!root);
10303 		list_move_tail(&root->delalloc_root,
10304 			       &fs_info->delalloc_roots);
10305 		spin_unlock(&fs_info->delalloc_root_lock);
10306 
10307 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10308 		btrfs_put_fs_root(root);
10309 		if (ret < 0)
10310 			goto out;
10311 
10312 		if (nr != -1) {
10313 			nr -= ret;
10314 			WARN_ON(nr < 0);
10315 		}
10316 		spin_lock(&fs_info->delalloc_root_lock);
10317 	}
10318 	spin_unlock(&fs_info->delalloc_root_lock);
10319 
10320 	ret = 0;
10321 out:
10322 	if (!list_empty_careful(&splice)) {
10323 		spin_lock(&fs_info->delalloc_root_lock);
10324 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10325 		spin_unlock(&fs_info->delalloc_root_lock);
10326 	}
10327 	mutex_unlock(&fs_info->delalloc_root_mutex);
10328 	return ret;
10329 }
10330 
10331 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10332 			 const char *symname)
10333 {
10334 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10335 	struct btrfs_trans_handle *trans;
10336 	struct btrfs_root *root = BTRFS_I(dir)->root;
10337 	struct btrfs_path *path;
10338 	struct btrfs_key key;
10339 	struct inode *inode = NULL;
10340 	int err;
10341 	int drop_inode = 0;
10342 	u64 objectid;
10343 	u64 index = 0;
10344 	int name_len;
10345 	int datasize;
10346 	unsigned long ptr;
10347 	struct btrfs_file_extent_item *ei;
10348 	struct extent_buffer *leaf;
10349 
10350 	name_len = strlen(symname);
10351 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10352 		return -ENAMETOOLONG;
10353 
10354 	/*
10355 	 * 2 items for inode item and ref
10356 	 * 2 items for dir items
10357 	 * 1 item for updating parent inode item
10358 	 * 1 item for the inline extent item
10359 	 * 1 item for xattr if selinux is on
10360 	 */
10361 	trans = btrfs_start_transaction(root, 7);
10362 	if (IS_ERR(trans))
10363 		return PTR_ERR(trans);
10364 
10365 	err = btrfs_find_free_ino(root, &objectid);
10366 	if (err)
10367 		goto out_unlock;
10368 
10369 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10370 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10371 				objectid, S_IFLNK|S_IRWXUGO, &index);
10372 	if (IS_ERR(inode)) {
10373 		err = PTR_ERR(inode);
10374 		goto out_unlock;
10375 	}
10376 
10377 	/*
10378 	* If the active LSM wants to access the inode during
10379 	* d_instantiate it needs these. Smack checks to see
10380 	* if the filesystem supports xattrs by looking at the
10381 	* ops vector.
10382 	*/
10383 	inode->i_fop = &btrfs_file_operations;
10384 	inode->i_op = &btrfs_file_inode_operations;
10385 	inode->i_mapping->a_ops = &btrfs_aops;
10386 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10387 
10388 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10389 	if (err)
10390 		goto out_unlock_inode;
10391 
10392 	path = btrfs_alloc_path();
10393 	if (!path) {
10394 		err = -ENOMEM;
10395 		goto out_unlock_inode;
10396 	}
10397 	key.objectid = btrfs_ino(BTRFS_I(inode));
10398 	key.offset = 0;
10399 	key.type = BTRFS_EXTENT_DATA_KEY;
10400 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10401 	err = btrfs_insert_empty_item(trans, root, path, &key,
10402 				      datasize);
10403 	if (err) {
10404 		btrfs_free_path(path);
10405 		goto out_unlock_inode;
10406 	}
10407 	leaf = path->nodes[0];
10408 	ei = btrfs_item_ptr(leaf, path->slots[0],
10409 			    struct btrfs_file_extent_item);
10410 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10411 	btrfs_set_file_extent_type(leaf, ei,
10412 				   BTRFS_FILE_EXTENT_INLINE);
10413 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10414 	btrfs_set_file_extent_compression(leaf, ei, 0);
10415 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10416 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10417 
10418 	ptr = btrfs_file_extent_inline_start(ei);
10419 	write_extent_buffer(leaf, symname, ptr, name_len);
10420 	btrfs_mark_buffer_dirty(leaf);
10421 	btrfs_free_path(path);
10422 
10423 	inode->i_op = &btrfs_symlink_inode_operations;
10424 	inode_nohighmem(inode);
10425 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10426 	inode_set_bytes(inode, name_len);
10427 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10428 	err = btrfs_update_inode(trans, root, inode);
10429 	/*
10430 	 * Last step, add directory indexes for our symlink inode. This is the
10431 	 * last step to avoid extra cleanup of these indexes if an error happens
10432 	 * elsewhere above.
10433 	 */
10434 	if (!err)
10435 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10436 				BTRFS_I(inode), 0, index);
10437 	if (err) {
10438 		drop_inode = 1;
10439 		goto out_unlock_inode;
10440 	}
10441 
10442 	unlock_new_inode(inode);
10443 	d_instantiate(dentry, inode);
10444 
10445 out_unlock:
10446 	btrfs_end_transaction(trans);
10447 	if (drop_inode) {
10448 		inode_dec_link_count(inode);
10449 		iput(inode);
10450 	}
10451 	btrfs_btree_balance_dirty(fs_info);
10452 	return err;
10453 
10454 out_unlock_inode:
10455 	drop_inode = 1;
10456 	unlock_new_inode(inode);
10457 	goto out_unlock;
10458 }
10459 
10460 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10461 				       u64 start, u64 num_bytes, u64 min_size,
10462 				       loff_t actual_len, u64 *alloc_hint,
10463 				       struct btrfs_trans_handle *trans)
10464 {
10465 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10466 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10467 	struct extent_map *em;
10468 	struct btrfs_root *root = BTRFS_I(inode)->root;
10469 	struct btrfs_key ins;
10470 	u64 cur_offset = start;
10471 	u64 i_size;
10472 	u64 cur_bytes;
10473 	u64 last_alloc = (u64)-1;
10474 	int ret = 0;
10475 	bool own_trans = true;
10476 	u64 end = start + num_bytes - 1;
10477 
10478 	if (trans)
10479 		own_trans = false;
10480 	while (num_bytes > 0) {
10481 		if (own_trans) {
10482 			trans = btrfs_start_transaction(root, 3);
10483 			if (IS_ERR(trans)) {
10484 				ret = PTR_ERR(trans);
10485 				break;
10486 			}
10487 		}
10488 
10489 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10490 		cur_bytes = max(cur_bytes, min_size);
10491 		/*
10492 		 * If we are severely fragmented we could end up with really
10493 		 * small allocations, so if the allocator is returning small
10494 		 * chunks lets make its job easier by only searching for those
10495 		 * sized chunks.
10496 		 */
10497 		cur_bytes = min(cur_bytes, last_alloc);
10498 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10499 				min_size, 0, *alloc_hint, &ins, 1, 0);
10500 		if (ret) {
10501 			if (own_trans)
10502 				btrfs_end_transaction(trans);
10503 			break;
10504 		}
10505 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10506 
10507 		last_alloc = ins.offset;
10508 		ret = insert_reserved_file_extent(trans, inode,
10509 						  cur_offset, ins.objectid,
10510 						  ins.offset, ins.offset,
10511 						  ins.offset, 0, 0, 0,
10512 						  BTRFS_FILE_EXTENT_PREALLOC);
10513 		if (ret) {
10514 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10515 						   ins.offset, 0);
10516 			btrfs_abort_transaction(trans, ret);
10517 			if (own_trans)
10518 				btrfs_end_transaction(trans);
10519 			break;
10520 		}
10521 
10522 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10523 					cur_offset + ins.offset -1, 0);
10524 
10525 		em = alloc_extent_map();
10526 		if (!em) {
10527 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10528 				&BTRFS_I(inode)->runtime_flags);
10529 			goto next;
10530 		}
10531 
10532 		em->start = cur_offset;
10533 		em->orig_start = cur_offset;
10534 		em->len = ins.offset;
10535 		em->block_start = ins.objectid;
10536 		em->block_len = ins.offset;
10537 		em->orig_block_len = ins.offset;
10538 		em->ram_bytes = ins.offset;
10539 		em->bdev = fs_info->fs_devices->latest_bdev;
10540 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10541 		em->generation = trans->transid;
10542 
10543 		while (1) {
10544 			write_lock(&em_tree->lock);
10545 			ret = add_extent_mapping(em_tree, em, 1);
10546 			write_unlock(&em_tree->lock);
10547 			if (ret != -EEXIST)
10548 				break;
10549 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10550 						cur_offset + ins.offset - 1,
10551 						0);
10552 		}
10553 		free_extent_map(em);
10554 next:
10555 		num_bytes -= ins.offset;
10556 		cur_offset += ins.offset;
10557 		*alloc_hint = ins.objectid + ins.offset;
10558 
10559 		inode_inc_iversion(inode);
10560 		inode->i_ctime = current_time(inode);
10561 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10562 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10563 		    (actual_len > inode->i_size) &&
10564 		    (cur_offset > inode->i_size)) {
10565 			if (cur_offset > actual_len)
10566 				i_size = actual_len;
10567 			else
10568 				i_size = cur_offset;
10569 			i_size_write(inode, i_size);
10570 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10571 		}
10572 
10573 		ret = btrfs_update_inode(trans, root, inode);
10574 
10575 		if (ret) {
10576 			btrfs_abort_transaction(trans, ret);
10577 			if (own_trans)
10578 				btrfs_end_transaction(trans);
10579 			break;
10580 		}
10581 
10582 		if (own_trans)
10583 			btrfs_end_transaction(trans);
10584 	}
10585 	if (cur_offset < end)
10586 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10587 			end - cur_offset + 1);
10588 	return ret;
10589 }
10590 
10591 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10592 			      u64 start, u64 num_bytes, u64 min_size,
10593 			      loff_t actual_len, u64 *alloc_hint)
10594 {
10595 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10596 					   min_size, actual_len, alloc_hint,
10597 					   NULL);
10598 }
10599 
10600 int btrfs_prealloc_file_range_trans(struct inode *inode,
10601 				    struct btrfs_trans_handle *trans, int mode,
10602 				    u64 start, u64 num_bytes, u64 min_size,
10603 				    loff_t actual_len, u64 *alloc_hint)
10604 {
10605 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10606 					   min_size, actual_len, alloc_hint, trans);
10607 }
10608 
10609 static int btrfs_set_page_dirty(struct page *page)
10610 {
10611 	return __set_page_dirty_nobuffers(page);
10612 }
10613 
10614 static int btrfs_permission(struct inode *inode, int mask)
10615 {
10616 	struct btrfs_root *root = BTRFS_I(inode)->root;
10617 	umode_t mode = inode->i_mode;
10618 
10619 	if (mask & MAY_WRITE &&
10620 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10621 		if (btrfs_root_readonly(root))
10622 			return -EROFS;
10623 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10624 			return -EACCES;
10625 	}
10626 	return generic_permission(inode, mask);
10627 }
10628 
10629 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10630 {
10631 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10632 	struct btrfs_trans_handle *trans;
10633 	struct btrfs_root *root = BTRFS_I(dir)->root;
10634 	struct inode *inode = NULL;
10635 	u64 objectid;
10636 	u64 index;
10637 	int ret = 0;
10638 
10639 	/*
10640 	 * 5 units required for adding orphan entry
10641 	 */
10642 	trans = btrfs_start_transaction(root, 5);
10643 	if (IS_ERR(trans))
10644 		return PTR_ERR(trans);
10645 
10646 	ret = btrfs_find_free_ino(root, &objectid);
10647 	if (ret)
10648 		goto out;
10649 
10650 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10651 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10652 	if (IS_ERR(inode)) {
10653 		ret = PTR_ERR(inode);
10654 		inode = NULL;
10655 		goto out;
10656 	}
10657 
10658 	inode->i_fop = &btrfs_file_operations;
10659 	inode->i_op = &btrfs_file_inode_operations;
10660 
10661 	inode->i_mapping->a_ops = &btrfs_aops;
10662 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10663 
10664 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10665 	if (ret)
10666 		goto out_inode;
10667 
10668 	ret = btrfs_update_inode(trans, root, inode);
10669 	if (ret)
10670 		goto out_inode;
10671 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10672 	if (ret)
10673 		goto out_inode;
10674 
10675 	/*
10676 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10677 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10678 	 * through:
10679 	 *
10680 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10681 	 */
10682 	set_nlink(inode, 1);
10683 	unlock_new_inode(inode);
10684 	d_tmpfile(dentry, inode);
10685 	mark_inode_dirty(inode);
10686 
10687 out:
10688 	btrfs_end_transaction(trans);
10689 	if (ret)
10690 		iput(inode);
10691 	btrfs_balance_delayed_items(fs_info);
10692 	btrfs_btree_balance_dirty(fs_info);
10693 	return ret;
10694 
10695 out_inode:
10696 	unlock_new_inode(inode);
10697 	goto out;
10698 
10699 }
10700 
10701 __attribute__((const))
10702 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10703 {
10704 	return -EAGAIN;
10705 }
10706 
10707 static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10708 {
10709 	struct inode *inode = private_data;
10710 	return btrfs_sb(inode->i_sb);
10711 }
10712 
10713 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10714 					u64 start, u64 end)
10715 {
10716 	struct inode *inode = private_data;
10717 	u64 isize;
10718 
10719 	isize = i_size_read(inode);
10720 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10721 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10722 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
10723 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10724 	}
10725 }
10726 
10727 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10728 {
10729 	struct inode *inode = private_data;
10730 	unsigned long index = start >> PAGE_SHIFT;
10731 	unsigned long end_index = end >> PAGE_SHIFT;
10732 	struct page *page;
10733 
10734 	while (index <= end_index) {
10735 		page = find_get_page(inode->i_mapping, index);
10736 		ASSERT(page); /* Pages should be in the extent_io_tree */
10737 		set_page_writeback(page);
10738 		put_page(page);
10739 		index++;
10740 	}
10741 }
10742 
10743 static const struct inode_operations btrfs_dir_inode_operations = {
10744 	.getattr	= btrfs_getattr,
10745 	.lookup		= btrfs_lookup,
10746 	.create		= btrfs_create,
10747 	.unlink		= btrfs_unlink,
10748 	.link		= btrfs_link,
10749 	.mkdir		= btrfs_mkdir,
10750 	.rmdir		= btrfs_rmdir,
10751 	.rename		= btrfs_rename2,
10752 	.symlink	= btrfs_symlink,
10753 	.setattr	= btrfs_setattr,
10754 	.mknod		= btrfs_mknod,
10755 	.listxattr	= btrfs_listxattr,
10756 	.permission	= btrfs_permission,
10757 	.get_acl	= btrfs_get_acl,
10758 	.set_acl	= btrfs_set_acl,
10759 	.update_time	= btrfs_update_time,
10760 	.tmpfile        = btrfs_tmpfile,
10761 };
10762 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10763 	.lookup		= btrfs_lookup,
10764 	.permission	= btrfs_permission,
10765 	.update_time	= btrfs_update_time,
10766 };
10767 
10768 static const struct file_operations btrfs_dir_file_operations = {
10769 	.llseek		= generic_file_llseek,
10770 	.read		= generic_read_dir,
10771 	.iterate_shared	= btrfs_real_readdir,
10772 	.open		= btrfs_opendir,
10773 	.unlocked_ioctl	= btrfs_ioctl,
10774 #ifdef CONFIG_COMPAT
10775 	.compat_ioctl	= btrfs_compat_ioctl,
10776 #endif
10777 	.release        = btrfs_release_file,
10778 	.fsync		= btrfs_sync_file,
10779 };
10780 
10781 static const struct extent_io_ops btrfs_extent_io_ops = {
10782 	/* mandatory callbacks */
10783 	.submit_bio_hook = btrfs_submit_bio_hook,
10784 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10785 	.merge_bio_hook = btrfs_merge_bio_hook,
10786 	.readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10787 	.tree_fs_info = iotree_fs_info,
10788 	.set_range_writeback = btrfs_set_range_writeback,
10789 
10790 	/* optional callbacks */
10791 	.fill_delalloc = run_delalloc_range,
10792 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10793 	.writepage_start_hook = btrfs_writepage_start_hook,
10794 	.set_bit_hook = btrfs_set_bit_hook,
10795 	.clear_bit_hook = btrfs_clear_bit_hook,
10796 	.merge_extent_hook = btrfs_merge_extent_hook,
10797 	.split_extent_hook = btrfs_split_extent_hook,
10798 	.check_extent_io_range = btrfs_check_extent_io_range,
10799 };
10800 
10801 /*
10802  * btrfs doesn't support the bmap operation because swapfiles
10803  * use bmap to make a mapping of extents in the file.  They assume
10804  * these extents won't change over the life of the file and they
10805  * use the bmap result to do IO directly to the drive.
10806  *
10807  * the btrfs bmap call would return logical addresses that aren't
10808  * suitable for IO and they also will change frequently as COW
10809  * operations happen.  So, swapfile + btrfs == corruption.
10810  *
10811  * For now we're avoiding this by dropping bmap.
10812  */
10813 static const struct address_space_operations btrfs_aops = {
10814 	.readpage	= btrfs_readpage,
10815 	.writepage	= btrfs_writepage,
10816 	.writepages	= btrfs_writepages,
10817 	.readpages	= btrfs_readpages,
10818 	.direct_IO	= btrfs_direct_IO,
10819 	.invalidatepage = btrfs_invalidatepage,
10820 	.releasepage	= btrfs_releasepage,
10821 	.set_page_dirty	= btrfs_set_page_dirty,
10822 	.error_remove_page = generic_error_remove_page,
10823 };
10824 
10825 static const struct address_space_operations btrfs_symlink_aops = {
10826 	.readpage	= btrfs_readpage,
10827 	.writepage	= btrfs_writepage,
10828 	.invalidatepage = btrfs_invalidatepage,
10829 	.releasepage	= btrfs_releasepage,
10830 };
10831 
10832 static const struct inode_operations btrfs_file_inode_operations = {
10833 	.getattr	= btrfs_getattr,
10834 	.setattr	= btrfs_setattr,
10835 	.listxattr      = btrfs_listxattr,
10836 	.permission	= btrfs_permission,
10837 	.fiemap		= btrfs_fiemap,
10838 	.get_acl	= btrfs_get_acl,
10839 	.set_acl	= btrfs_set_acl,
10840 	.update_time	= btrfs_update_time,
10841 };
10842 static const struct inode_operations btrfs_special_inode_operations = {
10843 	.getattr	= btrfs_getattr,
10844 	.setattr	= btrfs_setattr,
10845 	.permission	= btrfs_permission,
10846 	.listxattr	= btrfs_listxattr,
10847 	.get_acl	= btrfs_get_acl,
10848 	.set_acl	= btrfs_set_acl,
10849 	.update_time	= btrfs_update_time,
10850 };
10851 static const struct inode_operations btrfs_symlink_inode_operations = {
10852 	.get_link	= page_get_link,
10853 	.getattr	= btrfs_getattr,
10854 	.setattr	= btrfs_setattr,
10855 	.permission	= btrfs_permission,
10856 	.listxattr	= btrfs_listxattr,
10857 	.update_time	= btrfs_update_time,
10858 };
10859 
10860 const struct dentry_operations btrfs_dentry_operations = {
10861 	.d_delete	= btrfs_dentry_delete,
10862 	.d_release	= btrfs_dentry_release,
10863 };
10864