xref: /openbmc/linux/fs/btrfs/inode.c (revision 63dc02bd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57 
58 struct btrfs_iget_args {
59 	u64 ino;
60 	struct btrfs_root *root;
61 };
62 
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72 
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 
79 #define S_SHIFT 12
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
82 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
83 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
84 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
85 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
86 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
87 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
88 };
89 
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
93 static noinline int cow_file_range(struct inode *inode,
94 				   struct page *locked_page,
95 				   u64 start, u64 end, int *page_started,
96 				   unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 				struct btrfs_root *root, struct inode *inode);
99 
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 				     struct inode *inode,  struct inode *dir,
102 				     const struct qstr *qstr)
103 {
104 	int err;
105 
106 	err = btrfs_init_acl(trans, inode, dir);
107 	if (!err)
108 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
109 	return err;
110 }
111 
112 /*
113  * this does all the hard work for inserting an inline extent into
114  * the btree.  The caller should have done a btrfs_drop_extents so that
115  * no overlapping inline items exist in the btree
116  */
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 				struct btrfs_root *root, struct inode *inode,
119 				u64 start, size_t size, size_t compressed_size,
120 				int compress_type,
121 				struct page **compressed_pages)
122 {
123 	struct btrfs_key key;
124 	struct btrfs_path *path;
125 	struct extent_buffer *leaf;
126 	struct page *page = NULL;
127 	char *kaddr;
128 	unsigned long ptr;
129 	struct btrfs_file_extent_item *ei;
130 	int err = 0;
131 	int ret;
132 	size_t cur_size = size;
133 	size_t datasize;
134 	unsigned long offset;
135 
136 	if (compressed_size && compressed_pages)
137 		cur_size = compressed_size;
138 
139 	path = btrfs_alloc_path();
140 	if (!path)
141 		return -ENOMEM;
142 
143 	path->leave_spinning = 1;
144 
145 	key.objectid = btrfs_ino(inode);
146 	key.offset = start;
147 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
149 
150 	inode_add_bytes(inode, size);
151 	ret = btrfs_insert_empty_item(trans, root, path, &key,
152 				      datasize);
153 	if (ret) {
154 		err = ret;
155 		goto fail;
156 	}
157 	leaf = path->nodes[0];
158 	ei = btrfs_item_ptr(leaf, path->slots[0],
159 			    struct btrfs_file_extent_item);
160 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 	btrfs_set_file_extent_encryption(leaf, ei, 0);
163 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 	ptr = btrfs_file_extent_inline_start(ei);
166 
167 	if (compress_type != BTRFS_COMPRESS_NONE) {
168 		struct page *cpage;
169 		int i = 0;
170 		while (compressed_size > 0) {
171 			cpage = compressed_pages[i];
172 			cur_size = min_t(unsigned long, compressed_size,
173 				       PAGE_CACHE_SIZE);
174 
175 			kaddr = kmap_atomic(cpage);
176 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
177 			kunmap_atomic(kaddr);
178 
179 			i++;
180 			ptr += cur_size;
181 			compressed_size -= cur_size;
182 		}
183 		btrfs_set_file_extent_compression(leaf, ei,
184 						  compress_type);
185 	} else {
186 		page = find_get_page(inode->i_mapping,
187 				     start >> PAGE_CACHE_SHIFT);
188 		btrfs_set_file_extent_compression(leaf, ei, 0);
189 		kaddr = kmap_atomic(page);
190 		offset = start & (PAGE_CACHE_SIZE - 1);
191 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
192 		kunmap_atomic(kaddr);
193 		page_cache_release(page);
194 	}
195 	btrfs_mark_buffer_dirty(leaf);
196 	btrfs_free_path(path);
197 
198 	/*
199 	 * we're an inline extent, so nobody can
200 	 * extend the file past i_size without locking
201 	 * a page we already have locked.
202 	 *
203 	 * We must do any isize and inode updates
204 	 * before we unlock the pages.  Otherwise we
205 	 * could end up racing with unlink.
206 	 */
207 	BTRFS_I(inode)->disk_i_size = inode->i_size;
208 	ret = btrfs_update_inode(trans, root, inode);
209 
210 	return ret;
211 fail:
212 	btrfs_free_path(path);
213 	return err;
214 }
215 
216 
217 /*
218  * conditionally insert an inline extent into the file.  This
219  * does the checks required to make sure the data is small enough
220  * to fit as an inline extent.
221  */
222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
223 				 struct btrfs_root *root,
224 				 struct inode *inode, u64 start, u64 end,
225 				 size_t compressed_size, int compress_type,
226 				 struct page **compressed_pages)
227 {
228 	u64 isize = i_size_read(inode);
229 	u64 actual_end = min(end + 1, isize);
230 	u64 inline_len = actual_end - start;
231 	u64 aligned_end = (end + root->sectorsize - 1) &
232 			~((u64)root->sectorsize - 1);
233 	u64 hint_byte;
234 	u64 data_len = inline_len;
235 	int ret;
236 
237 	if (compressed_size)
238 		data_len = compressed_size;
239 
240 	if (start > 0 ||
241 	    actual_end >= PAGE_CACHE_SIZE ||
242 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
243 	    (!compressed_size &&
244 	    (actual_end & (root->sectorsize - 1)) == 0) ||
245 	    end + 1 < isize ||
246 	    data_len > root->fs_info->max_inline) {
247 		return 1;
248 	}
249 
250 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
251 				 &hint_byte, 1);
252 	if (ret)
253 		return ret;
254 
255 	if (isize > actual_end)
256 		inline_len = min_t(u64, isize, actual_end);
257 	ret = insert_inline_extent(trans, root, inode, start,
258 				   inline_len, compressed_size,
259 				   compress_type, compressed_pages);
260 	if (ret) {
261 		btrfs_abort_transaction(trans, root, ret);
262 		return ret;
263 	}
264 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
265 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
266 	return 0;
267 }
268 
269 struct async_extent {
270 	u64 start;
271 	u64 ram_size;
272 	u64 compressed_size;
273 	struct page **pages;
274 	unsigned long nr_pages;
275 	int compress_type;
276 	struct list_head list;
277 };
278 
279 struct async_cow {
280 	struct inode *inode;
281 	struct btrfs_root *root;
282 	struct page *locked_page;
283 	u64 start;
284 	u64 end;
285 	struct list_head extents;
286 	struct btrfs_work work;
287 };
288 
289 static noinline int add_async_extent(struct async_cow *cow,
290 				     u64 start, u64 ram_size,
291 				     u64 compressed_size,
292 				     struct page **pages,
293 				     unsigned long nr_pages,
294 				     int compress_type)
295 {
296 	struct async_extent *async_extent;
297 
298 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
299 	BUG_ON(!async_extent); /* -ENOMEM */
300 	async_extent->start = start;
301 	async_extent->ram_size = ram_size;
302 	async_extent->compressed_size = compressed_size;
303 	async_extent->pages = pages;
304 	async_extent->nr_pages = nr_pages;
305 	async_extent->compress_type = compress_type;
306 	list_add_tail(&async_extent->list, &cow->extents);
307 	return 0;
308 }
309 
310 /*
311  * we create compressed extents in two phases.  The first
312  * phase compresses a range of pages that have already been
313  * locked (both pages and state bits are locked).
314  *
315  * This is done inside an ordered work queue, and the compression
316  * is spread across many cpus.  The actual IO submission is step
317  * two, and the ordered work queue takes care of making sure that
318  * happens in the same order things were put onto the queue by
319  * writepages and friends.
320  *
321  * If this code finds it can't get good compression, it puts an
322  * entry onto the work queue to write the uncompressed bytes.  This
323  * makes sure that both compressed inodes and uncompressed inodes
324  * are written in the same order that pdflush sent them down.
325  */
326 static noinline int compress_file_range(struct inode *inode,
327 					struct page *locked_page,
328 					u64 start, u64 end,
329 					struct async_cow *async_cow,
330 					int *num_added)
331 {
332 	struct btrfs_root *root = BTRFS_I(inode)->root;
333 	struct btrfs_trans_handle *trans;
334 	u64 num_bytes;
335 	u64 blocksize = root->sectorsize;
336 	u64 actual_end;
337 	u64 isize = i_size_read(inode);
338 	int ret = 0;
339 	struct page **pages = NULL;
340 	unsigned long nr_pages;
341 	unsigned long nr_pages_ret = 0;
342 	unsigned long total_compressed = 0;
343 	unsigned long total_in = 0;
344 	unsigned long max_compressed = 128 * 1024;
345 	unsigned long max_uncompressed = 128 * 1024;
346 	int i;
347 	int will_compress;
348 	int compress_type = root->fs_info->compress_type;
349 
350 	/* if this is a small write inside eof, kick off a defrag */
351 	if ((end - start + 1) < 16 * 1024 &&
352 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
353 		btrfs_add_inode_defrag(NULL, inode);
354 
355 	actual_end = min_t(u64, isize, end + 1);
356 again:
357 	will_compress = 0;
358 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
359 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
360 
361 	/*
362 	 * we don't want to send crud past the end of i_size through
363 	 * compression, that's just a waste of CPU time.  So, if the
364 	 * end of the file is before the start of our current
365 	 * requested range of bytes, we bail out to the uncompressed
366 	 * cleanup code that can deal with all of this.
367 	 *
368 	 * It isn't really the fastest way to fix things, but this is a
369 	 * very uncommon corner.
370 	 */
371 	if (actual_end <= start)
372 		goto cleanup_and_bail_uncompressed;
373 
374 	total_compressed = actual_end - start;
375 
376 	/* we want to make sure that amount of ram required to uncompress
377 	 * an extent is reasonable, so we limit the total size in ram
378 	 * of a compressed extent to 128k.  This is a crucial number
379 	 * because it also controls how easily we can spread reads across
380 	 * cpus for decompression.
381 	 *
382 	 * We also want to make sure the amount of IO required to do
383 	 * a random read is reasonably small, so we limit the size of
384 	 * a compressed extent to 128k.
385 	 */
386 	total_compressed = min(total_compressed, max_uncompressed);
387 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
388 	num_bytes = max(blocksize,  num_bytes);
389 	total_in = 0;
390 	ret = 0;
391 
392 	/*
393 	 * we do compression for mount -o compress and when the
394 	 * inode has not been flagged as nocompress.  This flag can
395 	 * change at any time if we discover bad compression ratios.
396 	 */
397 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
398 	    (btrfs_test_opt(root, COMPRESS) ||
399 	     (BTRFS_I(inode)->force_compress) ||
400 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
401 		WARN_ON(pages);
402 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
403 		if (!pages) {
404 			/* just bail out to the uncompressed code */
405 			goto cont;
406 		}
407 
408 		if (BTRFS_I(inode)->force_compress)
409 			compress_type = BTRFS_I(inode)->force_compress;
410 
411 		ret = btrfs_compress_pages(compress_type,
412 					   inode->i_mapping, start,
413 					   total_compressed, pages,
414 					   nr_pages, &nr_pages_ret,
415 					   &total_in,
416 					   &total_compressed,
417 					   max_compressed);
418 
419 		if (!ret) {
420 			unsigned long offset = total_compressed &
421 				(PAGE_CACHE_SIZE - 1);
422 			struct page *page = pages[nr_pages_ret - 1];
423 			char *kaddr;
424 
425 			/* zero the tail end of the last page, we might be
426 			 * sending it down to disk
427 			 */
428 			if (offset) {
429 				kaddr = kmap_atomic(page);
430 				memset(kaddr + offset, 0,
431 				       PAGE_CACHE_SIZE - offset);
432 				kunmap_atomic(kaddr);
433 			}
434 			will_compress = 1;
435 		}
436 	}
437 cont:
438 	if (start == 0) {
439 		trans = btrfs_join_transaction(root);
440 		if (IS_ERR(trans)) {
441 			ret = PTR_ERR(trans);
442 			trans = NULL;
443 			goto cleanup_and_out;
444 		}
445 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
446 
447 		/* lets try to make an inline extent */
448 		if (ret || total_in < (actual_end - start)) {
449 			/* we didn't compress the entire range, try
450 			 * to make an uncompressed inline extent.
451 			 */
452 			ret = cow_file_range_inline(trans, root, inode,
453 						    start, end, 0, 0, NULL);
454 		} else {
455 			/* try making a compressed inline extent */
456 			ret = cow_file_range_inline(trans, root, inode,
457 						    start, end,
458 						    total_compressed,
459 						    compress_type, pages);
460 		}
461 		if (ret <= 0) {
462 			/*
463 			 * inline extent creation worked or returned error,
464 			 * we don't need to create any more async work items.
465 			 * Unlock and free up our temp pages.
466 			 */
467 			extent_clear_unlock_delalloc(inode,
468 			     &BTRFS_I(inode)->io_tree,
469 			     start, end, NULL,
470 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
471 			     EXTENT_CLEAR_DELALLOC |
472 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
473 
474 			btrfs_end_transaction(trans, root);
475 			goto free_pages_out;
476 		}
477 		btrfs_end_transaction(trans, root);
478 	}
479 
480 	if (will_compress) {
481 		/*
482 		 * we aren't doing an inline extent round the compressed size
483 		 * up to a block size boundary so the allocator does sane
484 		 * things
485 		 */
486 		total_compressed = (total_compressed + blocksize - 1) &
487 			~(blocksize - 1);
488 
489 		/*
490 		 * one last check to make sure the compression is really a
491 		 * win, compare the page count read with the blocks on disk
492 		 */
493 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
494 			~(PAGE_CACHE_SIZE - 1);
495 		if (total_compressed >= total_in) {
496 			will_compress = 0;
497 		} else {
498 			num_bytes = total_in;
499 		}
500 	}
501 	if (!will_compress && pages) {
502 		/*
503 		 * the compression code ran but failed to make things smaller,
504 		 * free any pages it allocated and our page pointer array
505 		 */
506 		for (i = 0; i < nr_pages_ret; i++) {
507 			WARN_ON(pages[i]->mapping);
508 			page_cache_release(pages[i]);
509 		}
510 		kfree(pages);
511 		pages = NULL;
512 		total_compressed = 0;
513 		nr_pages_ret = 0;
514 
515 		/* flag the file so we don't compress in the future */
516 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
517 		    !(BTRFS_I(inode)->force_compress)) {
518 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
519 		}
520 	}
521 	if (will_compress) {
522 		*num_added += 1;
523 
524 		/* the async work queues will take care of doing actual
525 		 * allocation on disk for these compressed pages,
526 		 * and will submit them to the elevator.
527 		 */
528 		add_async_extent(async_cow, start, num_bytes,
529 				 total_compressed, pages, nr_pages_ret,
530 				 compress_type);
531 
532 		if (start + num_bytes < end) {
533 			start += num_bytes;
534 			pages = NULL;
535 			cond_resched();
536 			goto again;
537 		}
538 	} else {
539 cleanup_and_bail_uncompressed:
540 		/*
541 		 * No compression, but we still need to write the pages in
542 		 * the file we've been given so far.  redirty the locked
543 		 * page if it corresponds to our extent and set things up
544 		 * for the async work queue to run cow_file_range to do
545 		 * the normal delalloc dance
546 		 */
547 		if (page_offset(locked_page) >= start &&
548 		    page_offset(locked_page) <= end) {
549 			__set_page_dirty_nobuffers(locked_page);
550 			/* unlocked later on in the async handlers */
551 		}
552 		add_async_extent(async_cow, start, end - start + 1,
553 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
554 		*num_added += 1;
555 	}
556 
557 out:
558 	return ret;
559 
560 free_pages_out:
561 	for (i = 0; i < nr_pages_ret; i++) {
562 		WARN_ON(pages[i]->mapping);
563 		page_cache_release(pages[i]);
564 	}
565 	kfree(pages);
566 
567 	goto out;
568 
569 cleanup_and_out:
570 	extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
571 				     start, end, NULL,
572 				     EXTENT_CLEAR_UNLOCK_PAGE |
573 				     EXTENT_CLEAR_DIRTY |
574 				     EXTENT_CLEAR_DELALLOC |
575 				     EXTENT_SET_WRITEBACK |
576 				     EXTENT_END_WRITEBACK);
577 	if (!trans || IS_ERR(trans))
578 		btrfs_error(root->fs_info, ret, "Failed to join transaction");
579 	else
580 		btrfs_abort_transaction(trans, root, ret);
581 	goto free_pages_out;
582 }
583 
584 /*
585  * phase two of compressed writeback.  This is the ordered portion
586  * of the code, which only gets called in the order the work was
587  * queued.  We walk all the async extents created by compress_file_range
588  * and send them down to the disk.
589  */
590 static noinline int submit_compressed_extents(struct inode *inode,
591 					      struct async_cow *async_cow)
592 {
593 	struct async_extent *async_extent;
594 	u64 alloc_hint = 0;
595 	struct btrfs_trans_handle *trans;
596 	struct btrfs_key ins;
597 	struct extent_map *em;
598 	struct btrfs_root *root = BTRFS_I(inode)->root;
599 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
600 	struct extent_io_tree *io_tree;
601 	int ret = 0;
602 
603 	if (list_empty(&async_cow->extents))
604 		return 0;
605 
606 
607 	while (!list_empty(&async_cow->extents)) {
608 		async_extent = list_entry(async_cow->extents.next,
609 					  struct async_extent, list);
610 		list_del(&async_extent->list);
611 
612 		io_tree = &BTRFS_I(inode)->io_tree;
613 
614 retry:
615 		/* did the compression code fall back to uncompressed IO? */
616 		if (!async_extent->pages) {
617 			int page_started = 0;
618 			unsigned long nr_written = 0;
619 
620 			lock_extent(io_tree, async_extent->start,
621 					 async_extent->start +
622 					 async_extent->ram_size - 1);
623 
624 			/* allocate blocks */
625 			ret = cow_file_range(inode, async_cow->locked_page,
626 					     async_extent->start,
627 					     async_extent->start +
628 					     async_extent->ram_size - 1,
629 					     &page_started, &nr_written, 0);
630 
631 			/* JDM XXX */
632 
633 			/*
634 			 * if page_started, cow_file_range inserted an
635 			 * inline extent and took care of all the unlocking
636 			 * and IO for us.  Otherwise, we need to submit
637 			 * all those pages down to the drive.
638 			 */
639 			if (!page_started && !ret)
640 				extent_write_locked_range(io_tree,
641 						  inode, async_extent->start,
642 						  async_extent->start +
643 						  async_extent->ram_size - 1,
644 						  btrfs_get_extent,
645 						  WB_SYNC_ALL);
646 			kfree(async_extent);
647 			cond_resched();
648 			continue;
649 		}
650 
651 		lock_extent(io_tree, async_extent->start,
652 			    async_extent->start + async_extent->ram_size - 1);
653 
654 		trans = btrfs_join_transaction(root);
655 		if (IS_ERR(trans)) {
656 			ret = PTR_ERR(trans);
657 		} else {
658 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
659 			ret = btrfs_reserve_extent(trans, root,
660 					   async_extent->compressed_size,
661 					   async_extent->compressed_size,
662 					   0, alloc_hint, &ins, 1);
663 			if (ret)
664 				btrfs_abort_transaction(trans, root, ret);
665 			btrfs_end_transaction(trans, root);
666 		}
667 
668 		if (ret) {
669 			int i;
670 			for (i = 0; i < async_extent->nr_pages; i++) {
671 				WARN_ON(async_extent->pages[i]->mapping);
672 				page_cache_release(async_extent->pages[i]);
673 			}
674 			kfree(async_extent->pages);
675 			async_extent->nr_pages = 0;
676 			async_extent->pages = NULL;
677 			unlock_extent(io_tree, async_extent->start,
678 				      async_extent->start +
679 				      async_extent->ram_size - 1);
680 			if (ret == -ENOSPC)
681 				goto retry;
682 			goto out_free; /* JDM: Requeue? */
683 		}
684 
685 		/*
686 		 * here we're doing allocation and writeback of the
687 		 * compressed pages
688 		 */
689 		btrfs_drop_extent_cache(inode, async_extent->start,
690 					async_extent->start +
691 					async_extent->ram_size - 1, 0);
692 
693 		em = alloc_extent_map();
694 		BUG_ON(!em); /* -ENOMEM */
695 		em->start = async_extent->start;
696 		em->len = async_extent->ram_size;
697 		em->orig_start = em->start;
698 
699 		em->block_start = ins.objectid;
700 		em->block_len = ins.offset;
701 		em->bdev = root->fs_info->fs_devices->latest_bdev;
702 		em->compress_type = async_extent->compress_type;
703 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
704 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
705 
706 		while (1) {
707 			write_lock(&em_tree->lock);
708 			ret = add_extent_mapping(em_tree, em);
709 			write_unlock(&em_tree->lock);
710 			if (ret != -EEXIST) {
711 				free_extent_map(em);
712 				break;
713 			}
714 			btrfs_drop_extent_cache(inode, async_extent->start,
715 						async_extent->start +
716 						async_extent->ram_size - 1, 0);
717 		}
718 
719 		ret = btrfs_add_ordered_extent_compress(inode,
720 						async_extent->start,
721 						ins.objectid,
722 						async_extent->ram_size,
723 						ins.offset,
724 						BTRFS_ORDERED_COMPRESSED,
725 						async_extent->compress_type);
726 		BUG_ON(ret); /* -ENOMEM */
727 
728 		/*
729 		 * clear dirty, set writeback and unlock the pages.
730 		 */
731 		extent_clear_unlock_delalloc(inode,
732 				&BTRFS_I(inode)->io_tree,
733 				async_extent->start,
734 				async_extent->start +
735 				async_extent->ram_size - 1,
736 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
737 				EXTENT_CLEAR_UNLOCK |
738 				EXTENT_CLEAR_DELALLOC |
739 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
740 
741 		ret = btrfs_submit_compressed_write(inode,
742 				    async_extent->start,
743 				    async_extent->ram_size,
744 				    ins.objectid,
745 				    ins.offset, async_extent->pages,
746 				    async_extent->nr_pages);
747 
748 		BUG_ON(ret); /* -ENOMEM */
749 		alloc_hint = ins.objectid + ins.offset;
750 		kfree(async_extent);
751 		cond_resched();
752 	}
753 	ret = 0;
754 out:
755 	return ret;
756 out_free:
757 	kfree(async_extent);
758 	goto out;
759 }
760 
761 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
762 				      u64 num_bytes)
763 {
764 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
765 	struct extent_map *em;
766 	u64 alloc_hint = 0;
767 
768 	read_lock(&em_tree->lock);
769 	em = search_extent_mapping(em_tree, start, num_bytes);
770 	if (em) {
771 		/*
772 		 * if block start isn't an actual block number then find the
773 		 * first block in this inode and use that as a hint.  If that
774 		 * block is also bogus then just don't worry about it.
775 		 */
776 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
777 			free_extent_map(em);
778 			em = search_extent_mapping(em_tree, 0, 0);
779 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
780 				alloc_hint = em->block_start;
781 			if (em)
782 				free_extent_map(em);
783 		} else {
784 			alloc_hint = em->block_start;
785 			free_extent_map(em);
786 		}
787 	}
788 	read_unlock(&em_tree->lock);
789 
790 	return alloc_hint;
791 }
792 
793 /*
794  * when extent_io.c finds a delayed allocation range in the file,
795  * the call backs end up in this code.  The basic idea is to
796  * allocate extents on disk for the range, and create ordered data structs
797  * in ram to track those extents.
798  *
799  * locked_page is the page that writepage had locked already.  We use
800  * it to make sure we don't do extra locks or unlocks.
801  *
802  * *page_started is set to one if we unlock locked_page and do everything
803  * required to start IO on it.  It may be clean and already done with
804  * IO when we return.
805  */
806 static noinline int cow_file_range(struct inode *inode,
807 				   struct page *locked_page,
808 				   u64 start, u64 end, int *page_started,
809 				   unsigned long *nr_written,
810 				   int unlock)
811 {
812 	struct btrfs_root *root = BTRFS_I(inode)->root;
813 	struct btrfs_trans_handle *trans;
814 	u64 alloc_hint = 0;
815 	u64 num_bytes;
816 	unsigned long ram_size;
817 	u64 disk_num_bytes;
818 	u64 cur_alloc_size;
819 	u64 blocksize = root->sectorsize;
820 	struct btrfs_key ins;
821 	struct extent_map *em;
822 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
823 	int ret = 0;
824 
825 	BUG_ON(btrfs_is_free_space_inode(root, inode));
826 	trans = btrfs_join_transaction(root);
827 	if (IS_ERR(trans)) {
828 		extent_clear_unlock_delalloc(inode,
829 			     &BTRFS_I(inode)->io_tree,
830 			     start, end, NULL,
831 			     EXTENT_CLEAR_UNLOCK_PAGE |
832 			     EXTENT_CLEAR_UNLOCK |
833 			     EXTENT_CLEAR_DELALLOC |
834 			     EXTENT_CLEAR_DIRTY |
835 			     EXTENT_SET_WRITEBACK |
836 			     EXTENT_END_WRITEBACK);
837 		return PTR_ERR(trans);
838 	}
839 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
840 
841 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
842 	num_bytes = max(blocksize,  num_bytes);
843 	disk_num_bytes = num_bytes;
844 	ret = 0;
845 
846 	/* if this is a small write inside eof, kick off defrag */
847 	if (num_bytes < 64 * 1024 &&
848 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
849 		btrfs_add_inode_defrag(trans, inode);
850 
851 	if (start == 0) {
852 		/* lets try to make an inline extent */
853 		ret = cow_file_range_inline(trans, root, inode,
854 					    start, end, 0, 0, NULL);
855 		if (ret == 0) {
856 			extent_clear_unlock_delalloc(inode,
857 				     &BTRFS_I(inode)->io_tree,
858 				     start, end, NULL,
859 				     EXTENT_CLEAR_UNLOCK_PAGE |
860 				     EXTENT_CLEAR_UNLOCK |
861 				     EXTENT_CLEAR_DELALLOC |
862 				     EXTENT_CLEAR_DIRTY |
863 				     EXTENT_SET_WRITEBACK |
864 				     EXTENT_END_WRITEBACK);
865 
866 			*nr_written = *nr_written +
867 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
868 			*page_started = 1;
869 			goto out;
870 		} else if (ret < 0) {
871 			btrfs_abort_transaction(trans, root, ret);
872 			goto out_unlock;
873 		}
874 	}
875 
876 	BUG_ON(disk_num_bytes >
877 	       btrfs_super_total_bytes(root->fs_info->super_copy));
878 
879 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
880 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
881 
882 	while (disk_num_bytes > 0) {
883 		unsigned long op;
884 
885 		cur_alloc_size = disk_num_bytes;
886 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
887 					   root->sectorsize, 0, alloc_hint,
888 					   &ins, 1);
889 		if (ret < 0) {
890 			btrfs_abort_transaction(trans, root, ret);
891 			goto out_unlock;
892 		}
893 
894 		em = alloc_extent_map();
895 		BUG_ON(!em); /* -ENOMEM */
896 		em->start = start;
897 		em->orig_start = em->start;
898 		ram_size = ins.offset;
899 		em->len = ins.offset;
900 
901 		em->block_start = ins.objectid;
902 		em->block_len = ins.offset;
903 		em->bdev = root->fs_info->fs_devices->latest_bdev;
904 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
905 
906 		while (1) {
907 			write_lock(&em_tree->lock);
908 			ret = add_extent_mapping(em_tree, em);
909 			write_unlock(&em_tree->lock);
910 			if (ret != -EEXIST) {
911 				free_extent_map(em);
912 				break;
913 			}
914 			btrfs_drop_extent_cache(inode, start,
915 						start + ram_size - 1, 0);
916 		}
917 
918 		cur_alloc_size = ins.offset;
919 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
920 					       ram_size, cur_alloc_size, 0);
921 		BUG_ON(ret); /* -ENOMEM */
922 
923 		if (root->root_key.objectid ==
924 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
925 			ret = btrfs_reloc_clone_csums(inode, start,
926 						      cur_alloc_size);
927 			if (ret) {
928 				btrfs_abort_transaction(trans, root, ret);
929 				goto out_unlock;
930 			}
931 		}
932 
933 		if (disk_num_bytes < cur_alloc_size)
934 			break;
935 
936 		/* we're not doing compressed IO, don't unlock the first
937 		 * page (which the caller expects to stay locked), don't
938 		 * clear any dirty bits and don't set any writeback bits
939 		 *
940 		 * Do set the Private2 bit so we know this page was properly
941 		 * setup for writepage
942 		 */
943 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
944 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
945 			EXTENT_SET_PRIVATE2;
946 
947 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
948 					     start, start + ram_size - 1,
949 					     locked_page, op);
950 		disk_num_bytes -= cur_alloc_size;
951 		num_bytes -= cur_alloc_size;
952 		alloc_hint = ins.objectid + ins.offset;
953 		start += cur_alloc_size;
954 	}
955 	ret = 0;
956 out:
957 	btrfs_end_transaction(trans, root);
958 
959 	return ret;
960 out_unlock:
961 	extent_clear_unlock_delalloc(inode,
962 		     &BTRFS_I(inode)->io_tree,
963 		     start, end, NULL,
964 		     EXTENT_CLEAR_UNLOCK_PAGE |
965 		     EXTENT_CLEAR_UNLOCK |
966 		     EXTENT_CLEAR_DELALLOC |
967 		     EXTENT_CLEAR_DIRTY |
968 		     EXTENT_SET_WRITEBACK |
969 		     EXTENT_END_WRITEBACK);
970 
971 	goto out;
972 }
973 
974 /*
975  * work queue call back to started compression on a file and pages
976  */
977 static noinline void async_cow_start(struct btrfs_work *work)
978 {
979 	struct async_cow *async_cow;
980 	int num_added = 0;
981 	async_cow = container_of(work, struct async_cow, work);
982 
983 	compress_file_range(async_cow->inode, async_cow->locked_page,
984 			    async_cow->start, async_cow->end, async_cow,
985 			    &num_added);
986 	if (num_added == 0)
987 		async_cow->inode = NULL;
988 }
989 
990 /*
991  * work queue call back to submit previously compressed pages
992  */
993 static noinline void async_cow_submit(struct btrfs_work *work)
994 {
995 	struct async_cow *async_cow;
996 	struct btrfs_root *root;
997 	unsigned long nr_pages;
998 
999 	async_cow = container_of(work, struct async_cow, work);
1000 
1001 	root = async_cow->root;
1002 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1003 		PAGE_CACHE_SHIFT;
1004 
1005 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
1006 
1007 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
1008 	    5 * 1042 * 1024 &&
1009 	    waitqueue_active(&root->fs_info->async_submit_wait))
1010 		wake_up(&root->fs_info->async_submit_wait);
1011 
1012 	if (async_cow->inode)
1013 		submit_compressed_extents(async_cow->inode, async_cow);
1014 }
1015 
1016 static noinline void async_cow_free(struct btrfs_work *work)
1017 {
1018 	struct async_cow *async_cow;
1019 	async_cow = container_of(work, struct async_cow, work);
1020 	kfree(async_cow);
1021 }
1022 
1023 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1024 				u64 start, u64 end, int *page_started,
1025 				unsigned long *nr_written)
1026 {
1027 	struct async_cow *async_cow;
1028 	struct btrfs_root *root = BTRFS_I(inode)->root;
1029 	unsigned long nr_pages;
1030 	u64 cur_end;
1031 	int limit = 10 * 1024 * 1042;
1032 
1033 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1034 			 1, 0, NULL, GFP_NOFS);
1035 	while (start < end) {
1036 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1037 		BUG_ON(!async_cow); /* -ENOMEM */
1038 		async_cow->inode = inode;
1039 		async_cow->root = root;
1040 		async_cow->locked_page = locked_page;
1041 		async_cow->start = start;
1042 
1043 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1044 			cur_end = end;
1045 		else
1046 			cur_end = min(end, start + 512 * 1024 - 1);
1047 
1048 		async_cow->end = cur_end;
1049 		INIT_LIST_HEAD(&async_cow->extents);
1050 
1051 		async_cow->work.func = async_cow_start;
1052 		async_cow->work.ordered_func = async_cow_submit;
1053 		async_cow->work.ordered_free = async_cow_free;
1054 		async_cow->work.flags = 0;
1055 
1056 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1057 			PAGE_CACHE_SHIFT;
1058 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1059 
1060 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
1061 				   &async_cow->work);
1062 
1063 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1064 			wait_event(root->fs_info->async_submit_wait,
1065 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1066 			    limit));
1067 		}
1068 
1069 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1070 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1071 			wait_event(root->fs_info->async_submit_wait,
1072 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1073 			   0));
1074 		}
1075 
1076 		*nr_written += nr_pages;
1077 		start = cur_end + 1;
1078 	}
1079 	*page_started = 1;
1080 	return 0;
1081 }
1082 
1083 static noinline int csum_exist_in_range(struct btrfs_root *root,
1084 					u64 bytenr, u64 num_bytes)
1085 {
1086 	int ret;
1087 	struct btrfs_ordered_sum *sums;
1088 	LIST_HEAD(list);
1089 
1090 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1091 				       bytenr + num_bytes - 1, &list, 0);
1092 	if (ret == 0 && list_empty(&list))
1093 		return 0;
1094 
1095 	while (!list_empty(&list)) {
1096 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1097 		list_del(&sums->list);
1098 		kfree(sums);
1099 	}
1100 	return 1;
1101 }
1102 
1103 /*
1104  * when nowcow writeback call back.  This checks for snapshots or COW copies
1105  * of the extents that exist in the file, and COWs the file as required.
1106  *
1107  * If no cow copies or snapshots exist, we write directly to the existing
1108  * blocks on disk
1109  */
1110 static noinline int run_delalloc_nocow(struct inode *inode,
1111 				       struct page *locked_page,
1112 			      u64 start, u64 end, int *page_started, int force,
1113 			      unsigned long *nr_written)
1114 {
1115 	struct btrfs_root *root = BTRFS_I(inode)->root;
1116 	struct btrfs_trans_handle *trans;
1117 	struct extent_buffer *leaf;
1118 	struct btrfs_path *path;
1119 	struct btrfs_file_extent_item *fi;
1120 	struct btrfs_key found_key;
1121 	u64 cow_start;
1122 	u64 cur_offset;
1123 	u64 extent_end;
1124 	u64 extent_offset;
1125 	u64 disk_bytenr;
1126 	u64 num_bytes;
1127 	int extent_type;
1128 	int ret, err;
1129 	int type;
1130 	int nocow;
1131 	int check_prev = 1;
1132 	bool nolock;
1133 	u64 ino = btrfs_ino(inode);
1134 
1135 	path = btrfs_alloc_path();
1136 	if (!path)
1137 		return -ENOMEM;
1138 
1139 	nolock = btrfs_is_free_space_inode(root, inode);
1140 
1141 	if (nolock)
1142 		trans = btrfs_join_transaction_nolock(root);
1143 	else
1144 		trans = btrfs_join_transaction(root);
1145 
1146 	if (IS_ERR(trans)) {
1147 		btrfs_free_path(path);
1148 		return PTR_ERR(trans);
1149 	}
1150 
1151 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1152 
1153 	cow_start = (u64)-1;
1154 	cur_offset = start;
1155 	while (1) {
1156 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1157 					       cur_offset, 0);
1158 		if (ret < 0) {
1159 			btrfs_abort_transaction(trans, root, ret);
1160 			goto error;
1161 		}
1162 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1163 			leaf = path->nodes[0];
1164 			btrfs_item_key_to_cpu(leaf, &found_key,
1165 					      path->slots[0] - 1);
1166 			if (found_key.objectid == ino &&
1167 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1168 				path->slots[0]--;
1169 		}
1170 		check_prev = 0;
1171 next_slot:
1172 		leaf = path->nodes[0];
1173 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1174 			ret = btrfs_next_leaf(root, path);
1175 			if (ret < 0) {
1176 				btrfs_abort_transaction(trans, root, ret);
1177 				goto error;
1178 			}
1179 			if (ret > 0)
1180 				break;
1181 			leaf = path->nodes[0];
1182 		}
1183 
1184 		nocow = 0;
1185 		disk_bytenr = 0;
1186 		num_bytes = 0;
1187 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1188 
1189 		if (found_key.objectid > ino ||
1190 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1191 		    found_key.offset > end)
1192 			break;
1193 
1194 		if (found_key.offset > cur_offset) {
1195 			extent_end = found_key.offset;
1196 			extent_type = 0;
1197 			goto out_check;
1198 		}
1199 
1200 		fi = btrfs_item_ptr(leaf, path->slots[0],
1201 				    struct btrfs_file_extent_item);
1202 		extent_type = btrfs_file_extent_type(leaf, fi);
1203 
1204 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1205 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1206 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1207 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1208 			extent_end = found_key.offset +
1209 				btrfs_file_extent_num_bytes(leaf, fi);
1210 			if (extent_end <= start) {
1211 				path->slots[0]++;
1212 				goto next_slot;
1213 			}
1214 			if (disk_bytenr == 0)
1215 				goto out_check;
1216 			if (btrfs_file_extent_compression(leaf, fi) ||
1217 			    btrfs_file_extent_encryption(leaf, fi) ||
1218 			    btrfs_file_extent_other_encoding(leaf, fi))
1219 				goto out_check;
1220 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1221 				goto out_check;
1222 			if (btrfs_extent_readonly(root, disk_bytenr))
1223 				goto out_check;
1224 			if (btrfs_cross_ref_exist(trans, root, ino,
1225 						  found_key.offset -
1226 						  extent_offset, disk_bytenr))
1227 				goto out_check;
1228 			disk_bytenr += extent_offset;
1229 			disk_bytenr += cur_offset - found_key.offset;
1230 			num_bytes = min(end + 1, extent_end) - cur_offset;
1231 			/*
1232 			 * force cow if csum exists in the range.
1233 			 * this ensure that csum for a given extent are
1234 			 * either valid or do not exist.
1235 			 */
1236 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1237 				goto out_check;
1238 			nocow = 1;
1239 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1240 			extent_end = found_key.offset +
1241 				btrfs_file_extent_inline_len(leaf, fi);
1242 			extent_end = ALIGN(extent_end, root->sectorsize);
1243 		} else {
1244 			BUG_ON(1);
1245 		}
1246 out_check:
1247 		if (extent_end <= start) {
1248 			path->slots[0]++;
1249 			goto next_slot;
1250 		}
1251 		if (!nocow) {
1252 			if (cow_start == (u64)-1)
1253 				cow_start = cur_offset;
1254 			cur_offset = extent_end;
1255 			if (cur_offset > end)
1256 				break;
1257 			path->slots[0]++;
1258 			goto next_slot;
1259 		}
1260 
1261 		btrfs_release_path(path);
1262 		if (cow_start != (u64)-1) {
1263 			ret = cow_file_range(inode, locked_page, cow_start,
1264 					found_key.offset - 1, page_started,
1265 					nr_written, 1);
1266 			if (ret) {
1267 				btrfs_abort_transaction(trans, root, ret);
1268 				goto error;
1269 			}
1270 			cow_start = (u64)-1;
1271 		}
1272 
1273 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1274 			struct extent_map *em;
1275 			struct extent_map_tree *em_tree;
1276 			em_tree = &BTRFS_I(inode)->extent_tree;
1277 			em = alloc_extent_map();
1278 			BUG_ON(!em); /* -ENOMEM */
1279 			em->start = cur_offset;
1280 			em->orig_start = em->start;
1281 			em->len = num_bytes;
1282 			em->block_len = num_bytes;
1283 			em->block_start = disk_bytenr;
1284 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1285 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1286 			while (1) {
1287 				write_lock(&em_tree->lock);
1288 				ret = add_extent_mapping(em_tree, em);
1289 				write_unlock(&em_tree->lock);
1290 				if (ret != -EEXIST) {
1291 					free_extent_map(em);
1292 					break;
1293 				}
1294 				btrfs_drop_extent_cache(inode, em->start,
1295 						em->start + em->len - 1, 0);
1296 			}
1297 			type = BTRFS_ORDERED_PREALLOC;
1298 		} else {
1299 			type = BTRFS_ORDERED_NOCOW;
1300 		}
1301 
1302 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1303 					       num_bytes, num_bytes, type);
1304 		BUG_ON(ret); /* -ENOMEM */
1305 
1306 		if (root->root_key.objectid ==
1307 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1308 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1309 						      num_bytes);
1310 			if (ret) {
1311 				btrfs_abort_transaction(trans, root, ret);
1312 				goto error;
1313 			}
1314 		}
1315 
1316 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1317 				cur_offset, cur_offset + num_bytes - 1,
1318 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1319 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1320 				EXTENT_SET_PRIVATE2);
1321 		cur_offset = extent_end;
1322 		if (cur_offset > end)
1323 			break;
1324 	}
1325 	btrfs_release_path(path);
1326 
1327 	if (cur_offset <= end && cow_start == (u64)-1)
1328 		cow_start = cur_offset;
1329 	if (cow_start != (u64)-1) {
1330 		ret = cow_file_range(inode, locked_page, cow_start, end,
1331 				     page_started, nr_written, 1);
1332 		if (ret) {
1333 			btrfs_abort_transaction(trans, root, ret);
1334 			goto error;
1335 		}
1336 	}
1337 
1338 error:
1339 	if (nolock) {
1340 		err = btrfs_end_transaction_nolock(trans, root);
1341 	} else {
1342 		err = btrfs_end_transaction(trans, root);
1343 	}
1344 	if (!ret)
1345 		ret = err;
1346 
1347 	btrfs_free_path(path);
1348 	return ret;
1349 }
1350 
1351 /*
1352  * extent_io.c call back to do delayed allocation processing
1353  */
1354 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1355 			      u64 start, u64 end, int *page_started,
1356 			      unsigned long *nr_written)
1357 {
1358 	int ret;
1359 	struct btrfs_root *root = BTRFS_I(inode)->root;
1360 
1361 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1362 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1363 					 page_started, 1, nr_written);
1364 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1365 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1366 					 page_started, 0, nr_written);
1367 	else if (!btrfs_test_opt(root, COMPRESS) &&
1368 		 !(BTRFS_I(inode)->force_compress) &&
1369 		 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1370 		ret = cow_file_range(inode, locked_page, start, end,
1371 				      page_started, nr_written, 1);
1372 	else
1373 		ret = cow_file_range_async(inode, locked_page, start, end,
1374 					   page_started, nr_written);
1375 	return ret;
1376 }
1377 
1378 static void btrfs_split_extent_hook(struct inode *inode,
1379 				    struct extent_state *orig, u64 split)
1380 {
1381 	/* not delalloc, ignore it */
1382 	if (!(orig->state & EXTENT_DELALLOC))
1383 		return;
1384 
1385 	spin_lock(&BTRFS_I(inode)->lock);
1386 	BTRFS_I(inode)->outstanding_extents++;
1387 	spin_unlock(&BTRFS_I(inode)->lock);
1388 }
1389 
1390 /*
1391  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1392  * extents so we can keep track of new extents that are just merged onto old
1393  * extents, such as when we are doing sequential writes, so we can properly
1394  * account for the metadata space we'll need.
1395  */
1396 static void btrfs_merge_extent_hook(struct inode *inode,
1397 				    struct extent_state *new,
1398 				    struct extent_state *other)
1399 {
1400 	/* not delalloc, ignore it */
1401 	if (!(other->state & EXTENT_DELALLOC))
1402 		return;
1403 
1404 	spin_lock(&BTRFS_I(inode)->lock);
1405 	BTRFS_I(inode)->outstanding_extents--;
1406 	spin_unlock(&BTRFS_I(inode)->lock);
1407 }
1408 
1409 /*
1410  * extent_io.c set_bit_hook, used to track delayed allocation
1411  * bytes in this file, and to maintain the list of inodes that
1412  * have pending delalloc work to be done.
1413  */
1414 static void btrfs_set_bit_hook(struct inode *inode,
1415 			       struct extent_state *state, int *bits)
1416 {
1417 
1418 	/*
1419 	 * set_bit and clear bit hooks normally require _irqsave/restore
1420 	 * but in this case, we are only testing for the DELALLOC
1421 	 * bit, which is only set or cleared with irqs on
1422 	 */
1423 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1424 		struct btrfs_root *root = BTRFS_I(inode)->root;
1425 		u64 len = state->end + 1 - state->start;
1426 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1427 
1428 		if (*bits & EXTENT_FIRST_DELALLOC) {
1429 			*bits &= ~EXTENT_FIRST_DELALLOC;
1430 		} else {
1431 			spin_lock(&BTRFS_I(inode)->lock);
1432 			BTRFS_I(inode)->outstanding_extents++;
1433 			spin_unlock(&BTRFS_I(inode)->lock);
1434 		}
1435 
1436 		spin_lock(&root->fs_info->delalloc_lock);
1437 		BTRFS_I(inode)->delalloc_bytes += len;
1438 		root->fs_info->delalloc_bytes += len;
1439 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1440 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1441 				      &root->fs_info->delalloc_inodes);
1442 		}
1443 		spin_unlock(&root->fs_info->delalloc_lock);
1444 	}
1445 }
1446 
1447 /*
1448  * extent_io.c clear_bit_hook, see set_bit_hook for why
1449  */
1450 static void btrfs_clear_bit_hook(struct inode *inode,
1451 				 struct extent_state *state, int *bits)
1452 {
1453 	/*
1454 	 * set_bit and clear bit hooks normally require _irqsave/restore
1455 	 * but in this case, we are only testing for the DELALLOC
1456 	 * bit, which is only set or cleared with irqs on
1457 	 */
1458 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1459 		struct btrfs_root *root = BTRFS_I(inode)->root;
1460 		u64 len = state->end + 1 - state->start;
1461 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1462 
1463 		if (*bits & EXTENT_FIRST_DELALLOC) {
1464 			*bits &= ~EXTENT_FIRST_DELALLOC;
1465 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1466 			spin_lock(&BTRFS_I(inode)->lock);
1467 			BTRFS_I(inode)->outstanding_extents--;
1468 			spin_unlock(&BTRFS_I(inode)->lock);
1469 		}
1470 
1471 		if (*bits & EXTENT_DO_ACCOUNTING)
1472 			btrfs_delalloc_release_metadata(inode, len);
1473 
1474 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1475 		    && do_list)
1476 			btrfs_free_reserved_data_space(inode, len);
1477 
1478 		spin_lock(&root->fs_info->delalloc_lock);
1479 		root->fs_info->delalloc_bytes -= len;
1480 		BTRFS_I(inode)->delalloc_bytes -= len;
1481 
1482 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1483 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1484 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1485 		}
1486 		spin_unlock(&root->fs_info->delalloc_lock);
1487 	}
1488 }
1489 
1490 /*
1491  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1492  * we don't create bios that span stripes or chunks
1493  */
1494 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1495 			 size_t size, struct bio *bio,
1496 			 unsigned long bio_flags)
1497 {
1498 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1499 	struct btrfs_mapping_tree *map_tree;
1500 	u64 logical = (u64)bio->bi_sector << 9;
1501 	u64 length = 0;
1502 	u64 map_length;
1503 	int ret;
1504 
1505 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1506 		return 0;
1507 
1508 	length = bio->bi_size;
1509 	map_tree = &root->fs_info->mapping_tree;
1510 	map_length = length;
1511 	ret = btrfs_map_block(map_tree, READ, logical,
1512 			      &map_length, NULL, 0);
1513 	/* Will always return 0 or 1 with map_multi == NULL */
1514 	BUG_ON(ret < 0);
1515 	if (map_length < length + size)
1516 		return 1;
1517 	return 0;
1518 }
1519 
1520 /*
1521  * in order to insert checksums into the metadata in large chunks,
1522  * we wait until bio submission time.   All the pages in the bio are
1523  * checksummed and sums are attached onto the ordered extent record.
1524  *
1525  * At IO completion time the cums attached on the ordered extent record
1526  * are inserted into the btree
1527  */
1528 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1529 				    struct bio *bio, int mirror_num,
1530 				    unsigned long bio_flags,
1531 				    u64 bio_offset)
1532 {
1533 	struct btrfs_root *root = BTRFS_I(inode)->root;
1534 	int ret = 0;
1535 
1536 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1537 	BUG_ON(ret); /* -ENOMEM */
1538 	return 0;
1539 }
1540 
1541 /*
1542  * in order to insert checksums into the metadata in large chunks,
1543  * we wait until bio submission time.   All the pages in the bio are
1544  * checksummed and sums are attached onto the ordered extent record.
1545  *
1546  * At IO completion time the cums attached on the ordered extent record
1547  * are inserted into the btree
1548  */
1549 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1550 			  int mirror_num, unsigned long bio_flags,
1551 			  u64 bio_offset)
1552 {
1553 	struct btrfs_root *root = BTRFS_I(inode)->root;
1554 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1555 }
1556 
1557 /*
1558  * extent_io.c submission hook. This does the right thing for csum calculation
1559  * on write, or reading the csums from the tree before a read
1560  */
1561 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1562 			  int mirror_num, unsigned long bio_flags,
1563 			  u64 bio_offset)
1564 {
1565 	struct btrfs_root *root = BTRFS_I(inode)->root;
1566 	int ret = 0;
1567 	int skip_sum;
1568 	int metadata = 0;
1569 
1570 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1571 
1572 	if (btrfs_is_free_space_inode(root, inode))
1573 		metadata = 2;
1574 
1575 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1576 	if (ret)
1577 		return ret;
1578 
1579 	if (!(rw & REQ_WRITE)) {
1580 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1581 			return btrfs_submit_compressed_read(inode, bio,
1582 						    mirror_num, bio_flags);
1583 		} else if (!skip_sum) {
1584 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1585 			if (ret)
1586 				return ret;
1587 		}
1588 		goto mapit;
1589 	} else if (!skip_sum) {
1590 		/* csum items have already been cloned */
1591 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1592 			goto mapit;
1593 		/* we're doing a write, do the async checksumming */
1594 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1595 				   inode, rw, bio, mirror_num,
1596 				   bio_flags, bio_offset,
1597 				   __btrfs_submit_bio_start,
1598 				   __btrfs_submit_bio_done);
1599 	}
1600 
1601 mapit:
1602 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1603 }
1604 
1605 /*
1606  * given a list of ordered sums record them in the inode.  This happens
1607  * at IO completion time based on sums calculated at bio submission time.
1608  */
1609 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1610 			     struct inode *inode, u64 file_offset,
1611 			     struct list_head *list)
1612 {
1613 	struct btrfs_ordered_sum *sum;
1614 
1615 	list_for_each_entry(sum, list, list) {
1616 		btrfs_csum_file_blocks(trans,
1617 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1618 	}
1619 	return 0;
1620 }
1621 
1622 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1623 			      struct extent_state **cached_state)
1624 {
1625 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1626 		WARN_ON(1);
1627 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1628 				   cached_state, GFP_NOFS);
1629 }
1630 
1631 /* see btrfs_writepage_start_hook for details on why this is required */
1632 struct btrfs_writepage_fixup {
1633 	struct page *page;
1634 	struct btrfs_work work;
1635 };
1636 
1637 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1638 {
1639 	struct btrfs_writepage_fixup *fixup;
1640 	struct btrfs_ordered_extent *ordered;
1641 	struct extent_state *cached_state = NULL;
1642 	struct page *page;
1643 	struct inode *inode;
1644 	u64 page_start;
1645 	u64 page_end;
1646 	int ret;
1647 
1648 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1649 	page = fixup->page;
1650 again:
1651 	lock_page(page);
1652 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1653 		ClearPageChecked(page);
1654 		goto out_page;
1655 	}
1656 
1657 	inode = page->mapping->host;
1658 	page_start = page_offset(page);
1659 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1660 
1661 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1662 			 &cached_state);
1663 
1664 	/* already ordered? We're done */
1665 	if (PagePrivate2(page))
1666 		goto out;
1667 
1668 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1669 	if (ordered) {
1670 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1671 				     page_end, &cached_state, GFP_NOFS);
1672 		unlock_page(page);
1673 		btrfs_start_ordered_extent(inode, ordered, 1);
1674 		btrfs_put_ordered_extent(ordered);
1675 		goto again;
1676 	}
1677 
1678 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1679 	if (ret) {
1680 		mapping_set_error(page->mapping, ret);
1681 		end_extent_writepage(page, ret, page_start, page_end);
1682 		ClearPageChecked(page);
1683 		goto out;
1684 	 }
1685 
1686 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1687 	ClearPageChecked(page);
1688 	set_page_dirty(page);
1689 out:
1690 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1691 			     &cached_state, GFP_NOFS);
1692 out_page:
1693 	unlock_page(page);
1694 	page_cache_release(page);
1695 	kfree(fixup);
1696 }
1697 
1698 /*
1699  * There are a few paths in the higher layers of the kernel that directly
1700  * set the page dirty bit without asking the filesystem if it is a
1701  * good idea.  This causes problems because we want to make sure COW
1702  * properly happens and the data=ordered rules are followed.
1703  *
1704  * In our case any range that doesn't have the ORDERED bit set
1705  * hasn't been properly setup for IO.  We kick off an async process
1706  * to fix it up.  The async helper will wait for ordered extents, set
1707  * the delalloc bit and make it safe to write the page.
1708  */
1709 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1710 {
1711 	struct inode *inode = page->mapping->host;
1712 	struct btrfs_writepage_fixup *fixup;
1713 	struct btrfs_root *root = BTRFS_I(inode)->root;
1714 
1715 	/* this page is properly in the ordered list */
1716 	if (TestClearPagePrivate2(page))
1717 		return 0;
1718 
1719 	if (PageChecked(page))
1720 		return -EAGAIN;
1721 
1722 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1723 	if (!fixup)
1724 		return -EAGAIN;
1725 
1726 	SetPageChecked(page);
1727 	page_cache_get(page);
1728 	fixup->work.func = btrfs_writepage_fixup_worker;
1729 	fixup->page = page;
1730 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1731 	return -EBUSY;
1732 }
1733 
1734 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1735 				       struct inode *inode, u64 file_pos,
1736 				       u64 disk_bytenr, u64 disk_num_bytes,
1737 				       u64 num_bytes, u64 ram_bytes,
1738 				       u8 compression, u8 encryption,
1739 				       u16 other_encoding, int extent_type)
1740 {
1741 	struct btrfs_root *root = BTRFS_I(inode)->root;
1742 	struct btrfs_file_extent_item *fi;
1743 	struct btrfs_path *path;
1744 	struct extent_buffer *leaf;
1745 	struct btrfs_key ins;
1746 	u64 hint;
1747 	int ret;
1748 
1749 	path = btrfs_alloc_path();
1750 	if (!path)
1751 		return -ENOMEM;
1752 
1753 	path->leave_spinning = 1;
1754 
1755 	/*
1756 	 * we may be replacing one extent in the tree with another.
1757 	 * The new extent is pinned in the extent map, and we don't want
1758 	 * to drop it from the cache until it is completely in the btree.
1759 	 *
1760 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1761 	 * the caller is expected to unpin it and allow it to be merged
1762 	 * with the others.
1763 	 */
1764 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1765 				 &hint, 0);
1766 	if (ret)
1767 		goto out;
1768 
1769 	ins.objectid = btrfs_ino(inode);
1770 	ins.offset = file_pos;
1771 	ins.type = BTRFS_EXTENT_DATA_KEY;
1772 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1773 	if (ret)
1774 		goto out;
1775 	leaf = path->nodes[0];
1776 	fi = btrfs_item_ptr(leaf, path->slots[0],
1777 			    struct btrfs_file_extent_item);
1778 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1779 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1780 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1781 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1782 	btrfs_set_file_extent_offset(leaf, fi, 0);
1783 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1784 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1785 	btrfs_set_file_extent_compression(leaf, fi, compression);
1786 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1787 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1788 
1789 	btrfs_unlock_up_safe(path, 1);
1790 	btrfs_set_lock_blocking(leaf);
1791 
1792 	btrfs_mark_buffer_dirty(leaf);
1793 
1794 	inode_add_bytes(inode, num_bytes);
1795 
1796 	ins.objectid = disk_bytenr;
1797 	ins.offset = disk_num_bytes;
1798 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1799 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1800 					root->root_key.objectid,
1801 					btrfs_ino(inode), file_pos, &ins);
1802 out:
1803 	btrfs_free_path(path);
1804 
1805 	return ret;
1806 }
1807 
1808 /*
1809  * helper function for btrfs_finish_ordered_io, this
1810  * just reads in some of the csum leaves to prime them into ram
1811  * before we start the transaction.  It limits the amount of btree
1812  * reads required while inside the transaction.
1813  */
1814 /* as ordered data IO finishes, this gets called so we can finish
1815  * an ordered extent if the range of bytes in the file it covers are
1816  * fully written.
1817  */
1818 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1819 {
1820 	struct btrfs_root *root = BTRFS_I(inode)->root;
1821 	struct btrfs_trans_handle *trans = NULL;
1822 	struct btrfs_ordered_extent *ordered_extent = NULL;
1823 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1824 	struct extent_state *cached_state = NULL;
1825 	int compress_type = 0;
1826 	int ret;
1827 	bool nolock;
1828 
1829 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1830 					     end - start + 1);
1831 	if (!ret)
1832 		return 0;
1833 	BUG_ON(!ordered_extent); /* Logic error */
1834 
1835 	nolock = btrfs_is_free_space_inode(root, inode);
1836 
1837 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1838 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1839 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1840 		if (!ret) {
1841 			if (nolock)
1842 				trans = btrfs_join_transaction_nolock(root);
1843 			else
1844 				trans = btrfs_join_transaction(root);
1845 			if (IS_ERR(trans))
1846 				return PTR_ERR(trans);
1847 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1848 			ret = btrfs_update_inode_fallback(trans, root, inode);
1849 			if (ret) /* -ENOMEM or corruption */
1850 				btrfs_abort_transaction(trans, root, ret);
1851 		}
1852 		goto out;
1853 	}
1854 
1855 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1856 			 ordered_extent->file_offset + ordered_extent->len - 1,
1857 			 0, &cached_state);
1858 
1859 	if (nolock)
1860 		trans = btrfs_join_transaction_nolock(root);
1861 	else
1862 		trans = btrfs_join_transaction(root);
1863 	if (IS_ERR(trans)) {
1864 		ret = PTR_ERR(trans);
1865 		trans = NULL;
1866 		goto out_unlock;
1867 	}
1868 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1869 
1870 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1871 		compress_type = ordered_extent->compress_type;
1872 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1873 		BUG_ON(compress_type);
1874 		ret = btrfs_mark_extent_written(trans, inode,
1875 						ordered_extent->file_offset,
1876 						ordered_extent->file_offset +
1877 						ordered_extent->len);
1878 	} else {
1879 		BUG_ON(root == root->fs_info->tree_root);
1880 		ret = insert_reserved_file_extent(trans, inode,
1881 						ordered_extent->file_offset,
1882 						ordered_extent->start,
1883 						ordered_extent->disk_len,
1884 						ordered_extent->len,
1885 						ordered_extent->len,
1886 						compress_type, 0, 0,
1887 						BTRFS_FILE_EXTENT_REG);
1888 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1889 				   ordered_extent->file_offset,
1890 				   ordered_extent->len);
1891 	}
1892 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1893 			     ordered_extent->file_offset +
1894 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1895 	if (ret < 0) {
1896 		btrfs_abort_transaction(trans, root, ret);
1897 		goto out;
1898 	}
1899 
1900 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1901 			  &ordered_extent->list);
1902 
1903 	ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1904 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1905 		ret = btrfs_update_inode_fallback(trans, root, inode);
1906 		if (ret) { /* -ENOMEM or corruption */
1907 			btrfs_abort_transaction(trans, root, ret);
1908 			goto out;
1909 		}
1910 	}
1911 	ret = 0;
1912 out:
1913 	if (root != root->fs_info->tree_root)
1914 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1915 	if (trans) {
1916 		if (nolock)
1917 			btrfs_end_transaction_nolock(trans, root);
1918 		else
1919 			btrfs_end_transaction(trans, root);
1920 	}
1921 
1922 	/* once for us */
1923 	btrfs_put_ordered_extent(ordered_extent);
1924 	/* once for the tree */
1925 	btrfs_put_ordered_extent(ordered_extent);
1926 
1927 	return 0;
1928 out_unlock:
1929 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1930 			     ordered_extent->file_offset +
1931 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1932 	goto out;
1933 }
1934 
1935 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1936 				struct extent_state *state, int uptodate)
1937 {
1938 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1939 
1940 	ClearPagePrivate2(page);
1941 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1942 }
1943 
1944 /*
1945  * when reads are done, we need to check csums to verify the data is correct
1946  * if there's a match, we allow the bio to finish.  If not, the code in
1947  * extent_io.c will try to find good copies for us.
1948  */
1949 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1950 			       struct extent_state *state, int mirror)
1951 {
1952 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1953 	struct inode *inode = page->mapping->host;
1954 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1955 	char *kaddr;
1956 	u64 private = ~(u32)0;
1957 	int ret;
1958 	struct btrfs_root *root = BTRFS_I(inode)->root;
1959 	u32 csum = ~(u32)0;
1960 
1961 	if (PageChecked(page)) {
1962 		ClearPageChecked(page);
1963 		goto good;
1964 	}
1965 
1966 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1967 		goto good;
1968 
1969 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1970 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1971 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1972 				  GFP_NOFS);
1973 		return 0;
1974 	}
1975 
1976 	if (state && state->start == start) {
1977 		private = state->private;
1978 		ret = 0;
1979 	} else {
1980 		ret = get_state_private(io_tree, start, &private);
1981 	}
1982 	kaddr = kmap_atomic(page);
1983 	if (ret)
1984 		goto zeroit;
1985 
1986 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1987 	btrfs_csum_final(csum, (char *)&csum);
1988 	if (csum != private)
1989 		goto zeroit;
1990 
1991 	kunmap_atomic(kaddr);
1992 good:
1993 	return 0;
1994 
1995 zeroit:
1996 	printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
1997 		       "private %llu\n",
1998 		       (unsigned long long)btrfs_ino(page->mapping->host),
1999 		       (unsigned long long)start, csum,
2000 		       (unsigned long long)private);
2001 	memset(kaddr + offset, 1, end - start + 1);
2002 	flush_dcache_page(page);
2003 	kunmap_atomic(kaddr);
2004 	if (private == 0)
2005 		return 0;
2006 	return -EIO;
2007 }
2008 
2009 struct delayed_iput {
2010 	struct list_head list;
2011 	struct inode *inode;
2012 };
2013 
2014 /* JDM: If this is fs-wide, why can't we add a pointer to
2015  * btrfs_inode instead and avoid the allocation? */
2016 void btrfs_add_delayed_iput(struct inode *inode)
2017 {
2018 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2019 	struct delayed_iput *delayed;
2020 
2021 	if (atomic_add_unless(&inode->i_count, -1, 1))
2022 		return;
2023 
2024 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2025 	delayed->inode = inode;
2026 
2027 	spin_lock(&fs_info->delayed_iput_lock);
2028 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2029 	spin_unlock(&fs_info->delayed_iput_lock);
2030 }
2031 
2032 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2033 {
2034 	LIST_HEAD(list);
2035 	struct btrfs_fs_info *fs_info = root->fs_info;
2036 	struct delayed_iput *delayed;
2037 	int empty;
2038 
2039 	spin_lock(&fs_info->delayed_iput_lock);
2040 	empty = list_empty(&fs_info->delayed_iputs);
2041 	spin_unlock(&fs_info->delayed_iput_lock);
2042 	if (empty)
2043 		return;
2044 
2045 	down_read(&root->fs_info->cleanup_work_sem);
2046 	spin_lock(&fs_info->delayed_iput_lock);
2047 	list_splice_init(&fs_info->delayed_iputs, &list);
2048 	spin_unlock(&fs_info->delayed_iput_lock);
2049 
2050 	while (!list_empty(&list)) {
2051 		delayed = list_entry(list.next, struct delayed_iput, list);
2052 		list_del(&delayed->list);
2053 		iput(delayed->inode);
2054 		kfree(delayed);
2055 	}
2056 	up_read(&root->fs_info->cleanup_work_sem);
2057 }
2058 
2059 enum btrfs_orphan_cleanup_state {
2060 	ORPHAN_CLEANUP_STARTED	= 1,
2061 	ORPHAN_CLEANUP_DONE	= 2,
2062 };
2063 
2064 /*
2065  * This is called in transaction commit time. If there are no orphan
2066  * files in the subvolume, it removes orphan item and frees block_rsv
2067  * structure.
2068  */
2069 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2070 			      struct btrfs_root *root)
2071 {
2072 	struct btrfs_block_rsv *block_rsv;
2073 	int ret;
2074 
2075 	if (!list_empty(&root->orphan_list) ||
2076 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2077 		return;
2078 
2079 	spin_lock(&root->orphan_lock);
2080 	if (!list_empty(&root->orphan_list)) {
2081 		spin_unlock(&root->orphan_lock);
2082 		return;
2083 	}
2084 
2085 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2086 		spin_unlock(&root->orphan_lock);
2087 		return;
2088 	}
2089 
2090 	block_rsv = root->orphan_block_rsv;
2091 	root->orphan_block_rsv = NULL;
2092 	spin_unlock(&root->orphan_lock);
2093 
2094 	if (root->orphan_item_inserted &&
2095 	    btrfs_root_refs(&root->root_item) > 0) {
2096 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2097 					    root->root_key.objectid);
2098 		BUG_ON(ret);
2099 		root->orphan_item_inserted = 0;
2100 	}
2101 
2102 	if (block_rsv) {
2103 		WARN_ON(block_rsv->size > 0);
2104 		btrfs_free_block_rsv(root, block_rsv);
2105 	}
2106 }
2107 
2108 /*
2109  * This creates an orphan entry for the given inode in case something goes
2110  * wrong in the middle of an unlink/truncate.
2111  *
2112  * NOTE: caller of this function should reserve 5 units of metadata for
2113  *	 this function.
2114  */
2115 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2116 {
2117 	struct btrfs_root *root = BTRFS_I(inode)->root;
2118 	struct btrfs_block_rsv *block_rsv = NULL;
2119 	int reserve = 0;
2120 	int insert = 0;
2121 	int ret;
2122 
2123 	if (!root->orphan_block_rsv) {
2124 		block_rsv = btrfs_alloc_block_rsv(root);
2125 		if (!block_rsv)
2126 			return -ENOMEM;
2127 	}
2128 
2129 	spin_lock(&root->orphan_lock);
2130 	if (!root->orphan_block_rsv) {
2131 		root->orphan_block_rsv = block_rsv;
2132 	} else if (block_rsv) {
2133 		btrfs_free_block_rsv(root, block_rsv);
2134 		block_rsv = NULL;
2135 	}
2136 
2137 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2138 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2139 #if 0
2140 		/*
2141 		 * For proper ENOSPC handling, we should do orphan
2142 		 * cleanup when mounting. But this introduces backward
2143 		 * compatibility issue.
2144 		 */
2145 		if (!xchg(&root->orphan_item_inserted, 1))
2146 			insert = 2;
2147 		else
2148 			insert = 1;
2149 #endif
2150 		insert = 1;
2151 	}
2152 
2153 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2154 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2155 		reserve = 1;
2156 	}
2157 	spin_unlock(&root->orphan_lock);
2158 
2159 	/* grab metadata reservation from transaction handle */
2160 	if (reserve) {
2161 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2162 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2163 	}
2164 
2165 	/* insert an orphan item to track this unlinked/truncated file */
2166 	if (insert >= 1) {
2167 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2168 		if (ret && ret != -EEXIST) {
2169 			btrfs_abort_transaction(trans, root, ret);
2170 			return ret;
2171 		}
2172 		ret = 0;
2173 	}
2174 
2175 	/* insert an orphan item to track subvolume contains orphan files */
2176 	if (insert >= 2) {
2177 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2178 					       root->root_key.objectid);
2179 		if (ret && ret != -EEXIST) {
2180 			btrfs_abort_transaction(trans, root, ret);
2181 			return ret;
2182 		}
2183 	}
2184 	return 0;
2185 }
2186 
2187 /*
2188  * We have done the truncate/delete so we can go ahead and remove the orphan
2189  * item for this particular inode.
2190  */
2191 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2192 {
2193 	struct btrfs_root *root = BTRFS_I(inode)->root;
2194 	int delete_item = 0;
2195 	int release_rsv = 0;
2196 	int ret = 0;
2197 
2198 	spin_lock(&root->orphan_lock);
2199 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2200 		list_del_init(&BTRFS_I(inode)->i_orphan);
2201 		delete_item = 1;
2202 	}
2203 
2204 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2205 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2206 		release_rsv = 1;
2207 	}
2208 	spin_unlock(&root->orphan_lock);
2209 
2210 	if (trans && delete_item) {
2211 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2212 		BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2213 	}
2214 
2215 	if (release_rsv)
2216 		btrfs_orphan_release_metadata(inode);
2217 
2218 	return 0;
2219 }
2220 
2221 /*
2222  * this cleans up any orphans that may be left on the list from the last use
2223  * of this root.
2224  */
2225 int btrfs_orphan_cleanup(struct btrfs_root *root)
2226 {
2227 	struct btrfs_path *path;
2228 	struct extent_buffer *leaf;
2229 	struct btrfs_key key, found_key;
2230 	struct btrfs_trans_handle *trans;
2231 	struct inode *inode;
2232 	u64 last_objectid = 0;
2233 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2234 
2235 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2236 		return 0;
2237 
2238 	path = btrfs_alloc_path();
2239 	if (!path) {
2240 		ret = -ENOMEM;
2241 		goto out;
2242 	}
2243 	path->reada = -1;
2244 
2245 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2246 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2247 	key.offset = (u64)-1;
2248 
2249 	while (1) {
2250 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2251 		if (ret < 0)
2252 			goto out;
2253 
2254 		/*
2255 		 * if ret == 0 means we found what we were searching for, which
2256 		 * is weird, but possible, so only screw with path if we didn't
2257 		 * find the key and see if we have stuff that matches
2258 		 */
2259 		if (ret > 0) {
2260 			ret = 0;
2261 			if (path->slots[0] == 0)
2262 				break;
2263 			path->slots[0]--;
2264 		}
2265 
2266 		/* pull out the item */
2267 		leaf = path->nodes[0];
2268 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2269 
2270 		/* make sure the item matches what we want */
2271 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2272 			break;
2273 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2274 			break;
2275 
2276 		/* release the path since we're done with it */
2277 		btrfs_release_path(path);
2278 
2279 		/*
2280 		 * this is where we are basically btrfs_lookup, without the
2281 		 * crossing root thing.  we store the inode number in the
2282 		 * offset of the orphan item.
2283 		 */
2284 
2285 		if (found_key.offset == last_objectid) {
2286 			printk(KERN_ERR "btrfs: Error removing orphan entry, "
2287 			       "stopping orphan cleanup\n");
2288 			ret = -EINVAL;
2289 			goto out;
2290 		}
2291 
2292 		last_objectid = found_key.offset;
2293 
2294 		found_key.objectid = found_key.offset;
2295 		found_key.type = BTRFS_INODE_ITEM_KEY;
2296 		found_key.offset = 0;
2297 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2298 		ret = PTR_RET(inode);
2299 		if (ret && ret != -ESTALE)
2300 			goto out;
2301 
2302 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
2303 			struct btrfs_root *dead_root;
2304 			struct btrfs_fs_info *fs_info = root->fs_info;
2305 			int is_dead_root = 0;
2306 
2307 			/*
2308 			 * this is an orphan in the tree root. Currently these
2309 			 * could come from 2 sources:
2310 			 *  a) a snapshot deletion in progress
2311 			 *  b) a free space cache inode
2312 			 * We need to distinguish those two, as the snapshot
2313 			 * orphan must not get deleted.
2314 			 * find_dead_roots already ran before us, so if this
2315 			 * is a snapshot deletion, we should find the root
2316 			 * in the dead_roots list
2317 			 */
2318 			spin_lock(&fs_info->trans_lock);
2319 			list_for_each_entry(dead_root, &fs_info->dead_roots,
2320 					    root_list) {
2321 				if (dead_root->root_key.objectid ==
2322 				    found_key.objectid) {
2323 					is_dead_root = 1;
2324 					break;
2325 				}
2326 			}
2327 			spin_unlock(&fs_info->trans_lock);
2328 			if (is_dead_root) {
2329 				/* prevent this orphan from being found again */
2330 				key.offset = found_key.objectid - 1;
2331 				continue;
2332 			}
2333 		}
2334 		/*
2335 		 * Inode is already gone but the orphan item is still there,
2336 		 * kill the orphan item.
2337 		 */
2338 		if (ret == -ESTALE) {
2339 			trans = btrfs_start_transaction(root, 1);
2340 			if (IS_ERR(trans)) {
2341 				ret = PTR_ERR(trans);
2342 				goto out;
2343 			}
2344 			ret = btrfs_del_orphan_item(trans, root,
2345 						    found_key.objectid);
2346 			BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2347 			btrfs_end_transaction(trans, root);
2348 			continue;
2349 		}
2350 
2351 		/*
2352 		 * add this inode to the orphan list so btrfs_orphan_del does
2353 		 * the proper thing when we hit it
2354 		 */
2355 		spin_lock(&root->orphan_lock);
2356 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2357 		spin_unlock(&root->orphan_lock);
2358 
2359 		/* if we have links, this was a truncate, lets do that */
2360 		if (inode->i_nlink) {
2361 			if (!S_ISREG(inode->i_mode)) {
2362 				WARN_ON(1);
2363 				iput(inode);
2364 				continue;
2365 			}
2366 			nr_truncate++;
2367 			ret = btrfs_truncate(inode);
2368 		} else {
2369 			nr_unlink++;
2370 		}
2371 
2372 		/* this will do delete_inode and everything for us */
2373 		iput(inode);
2374 		if (ret)
2375 			goto out;
2376 	}
2377 	/* release the path since we're done with it */
2378 	btrfs_release_path(path);
2379 
2380 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2381 
2382 	if (root->orphan_block_rsv)
2383 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2384 					(u64)-1);
2385 
2386 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2387 		trans = btrfs_join_transaction(root);
2388 		if (!IS_ERR(trans))
2389 			btrfs_end_transaction(trans, root);
2390 	}
2391 
2392 	if (nr_unlink)
2393 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2394 	if (nr_truncate)
2395 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2396 
2397 out:
2398 	if (ret)
2399 		printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2400 	btrfs_free_path(path);
2401 	return ret;
2402 }
2403 
2404 /*
2405  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2406  * don't find any xattrs, we know there can't be any acls.
2407  *
2408  * slot is the slot the inode is in, objectid is the objectid of the inode
2409  */
2410 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2411 					  int slot, u64 objectid)
2412 {
2413 	u32 nritems = btrfs_header_nritems(leaf);
2414 	struct btrfs_key found_key;
2415 	int scanned = 0;
2416 
2417 	slot++;
2418 	while (slot < nritems) {
2419 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2420 
2421 		/* we found a different objectid, there must not be acls */
2422 		if (found_key.objectid != objectid)
2423 			return 0;
2424 
2425 		/* we found an xattr, assume we've got an acl */
2426 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2427 			return 1;
2428 
2429 		/*
2430 		 * we found a key greater than an xattr key, there can't
2431 		 * be any acls later on
2432 		 */
2433 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2434 			return 0;
2435 
2436 		slot++;
2437 		scanned++;
2438 
2439 		/*
2440 		 * it goes inode, inode backrefs, xattrs, extents,
2441 		 * so if there are a ton of hard links to an inode there can
2442 		 * be a lot of backrefs.  Don't waste time searching too hard,
2443 		 * this is just an optimization
2444 		 */
2445 		if (scanned >= 8)
2446 			break;
2447 	}
2448 	/* we hit the end of the leaf before we found an xattr or
2449 	 * something larger than an xattr.  We have to assume the inode
2450 	 * has acls
2451 	 */
2452 	return 1;
2453 }
2454 
2455 /*
2456  * read an inode from the btree into the in-memory inode
2457  */
2458 static void btrfs_read_locked_inode(struct inode *inode)
2459 {
2460 	struct btrfs_path *path;
2461 	struct extent_buffer *leaf;
2462 	struct btrfs_inode_item *inode_item;
2463 	struct btrfs_timespec *tspec;
2464 	struct btrfs_root *root = BTRFS_I(inode)->root;
2465 	struct btrfs_key location;
2466 	int maybe_acls;
2467 	u32 rdev;
2468 	int ret;
2469 	bool filled = false;
2470 
2471 	ret = btrfs_fill_inode(inode, &rdev);
2472 	if (!ret)
2473 		filled = true;
2474 
2475 	path = btrfs_alloc_path();
2476 	if (!path)
2477 		goto make_bad;
2478 
2479 	path->leave_spinning = 1;
2480 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2481 
2482 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2483 	if (ret)
2484 		goto make_bad;
2485 
2486 	leaf = path->nodes[0];
2487 
2488 	if (filled)
2489 		goto cache_acl;
2490 
2491 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2492 				    struct btrfs_inode_item);
2493 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2494 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2495 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2496 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2497 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2498 
2499 	tspec = btrfs_inode_atime(inode_item);
2500 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2501 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2502 
2503 	tspec = btrfs_inode_mtime(inode_item);
2504 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2505 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2506 
2507 	tspec = btrfs_inode_ctime(inode_item);
2508 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2509 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2510 
2511 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2512 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2513 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2514 	inode->i_generation = BTRFS_I(inode)->generation;
2515 	inode->i_rdev = 0;
2516 	rdev = btrfs_inode_rdev(leaf, inode_item);
2517 
2518 	BTRFS_I(inode)->index_cnt = (u64)-1;
2519 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2520 cache_acl:
2521 	/*
2522 	 * try to precache a NULL acl entry for files that don't have
2523 	 * any xattrs or acls
2524 	 */
2525 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2526 					   btrfs_ino(inode));
2527 	if (!maybe_acls)
2528 		cache_no_acl(inode);
2529 
2530 	btrfs_free_path(path);
2531 
2532 	switch (inode->i_mode & S_IFMT) {
2533 	case S_IFREG:
2534 		inode->i_mapping->a_ops = &btrfs_aops;
2535 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2536 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2537 		inode->i_fop = &btrfs_file_operations;
2538 		inode->i_op = &btrfs_file_inode_operations;
2539 		break;
2540 	case S_IFDIR:
2541 		inode->i_fop = &btrfs_dir_file_operations;
2542 		if (root == root->fs_info->tree_root)
2543 			inode->i_op = &btrfs_dir_ro_inode_operations;
2544 		else
2545 			inode->i_op = &btrfs_dir_inode_operations;
2546 		break;
2547 	case S_IFLNK:
2548 		inode->i_op = &btrfs_symlink_inode_operations;
2549 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2550 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2551 		break;
2552 	default:
2553 		inode->i_op = &btrfs_special_inode_operations;
2554 		init_special_inode(inode, inode->i_mode, rdev);
2555 		break;
2556 	}
2557 
2558 	btrfs_update_iflags(inode);
2559 	return;
2560 
2561 make_bad:
2562 	btrfs_free_path(path);
2563 	make_bad_inode(inode);
2564 }
2565 
2566 /*
2567  * given a leaf and an inode, copy the inode fields into the leaf
2568  */
2569 static void fill_inode_item(struct btrfs_trans_handle *trans,
2570 			    struct extent_buffer *leaf,
2571 			    struct btrfs_inode_item *item,
2572 			    struct inode *inode)
2573 {
2574 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2575 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2576 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2577 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2578 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2579 
2580 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2581 			       inode->i_atime.tv_sec);
2582 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2583 				inode->i_atime.tv_nsec);
2584 
2585 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2586 			       inode->i_mtime.tv_sec);
2587 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2588 				inode->i_mtime.tv_nsec);
2589 
2590 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2591 			       inode->i_ctime.tv_sec);
2592 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2593 				inode->i_ctime.tv_nsec);
2594 
2595 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2596 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2597 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2598 	btrfs_set_inode_transid(leaf, item, trans->transid);
2599 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2600 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2601 	btrfs_set_inode_block_group(leaf, item, 0);
2602 }
2603 
2604 /*
2605  * copy everything in the in-memory inode into the btree.
2606  */
2607 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2608 				struct btrfs_root *root, struct inode *inode)
2609 {
2610 	struct btrfs_inode_item *inode_item;
2611 	struct btrfs_path *path;
2612 	struct extent_buffer *leaf;
2613 	int ret;
2614 
2615 	path = btrfs_alloc_path();
2616 	if (!path)
2617 		return -ENOMEM;
2618 
2619 	path->leave_spinning = 1;
2620 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2621 				 1);
2622 	if (ret) {
2623 		if (ret > 0)
2624 			ret = -ENOENT;
2625 		goto failed;
2626 	}
2627 
2628 	btrfs_unlock_up_safe(path, 1);
2629 	leaf = path->nodes[0];
2630 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2631 				    struct btrfs_inode_item);
2632 
2633 	fill_inode_item(trans, leaf, inode_item, inode);
2634 	btrfs_mark_buffer_dirty(leaf);
2635 	btrfs_set_inode_last_trans(trans, inode);
2636 	ret = 0;
2637 failed:
2638 	btrfs_free_path(path);
2639 	return ret;
2640 }
2641 
2642 /*
2643  * copy everything in the in-memory inode into the btree.
2644  */
2645 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2646 				struct btrfs_root *root, struct inode *inode)
2647 {
2648 	int ret;
2649 
2650 	/*
2651 	 * If the inode is a free space inode, we can deadlock during commit
2652 	 * if we put it into the delayed code.
2653 	 *
2654 	 * The data relocation inode should also be directly updated
2655 	 * without delay
2656 	 */
2657 	if (!btrfs_is_free_space_inode(root, inode)
2658 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2659 		ret = btrfs_delayed_update_inode(trans, root, inode);
2660 		if (!ret)
2661 			btrfs_set_inode_last_trans(trans, inode);
2662 		return ret;
2663 	}
2664 
2665 	return btrfs_update_inode_item(trans, root, inode);
2666 }
2667 
2668 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2669 				struct btrfs_root *root, struct inode *inode)
2670 {
2671 	int ret;
2672 
2673 	ret = btrfs_update_inode(trans, root, inode);
2674 	if (ret == -ENOSPC)
2675 		return btrfs_update_inode_item(trans, root, inode);
2676 	return ret;
2677 }
2678 
2679 /*
2680  * unlink helper that gets used here in inode.c and in the tree logging
2681  * recovery code.  It remove a link in a directory with a given name, and
2682  * also drops the back refs in the inode to the directory
2683  */
2684 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2685 				struct btrfs_root *root,
2686 				struct inode *dir, struct inode *inode,
2687 				const char *name, int name_len)
2688 {
2689 	struct btrfs_path *path;
2690 	int ret = 0;
2691 	struct extent_buffer *leaf;
2692 	struct btrfs_dir_item *di;
2693 	struct btrfs_key key;
2694 	u64 index;
2695 	u64 ino = btrfs_ino(inode);
2696 	u64 dir_ino = btrfs_ino(dir);
2697 
2698 	path = btrfs_alloc_path();
2699 	if (!path) {
2700 		ret = -ENOMEM;
2701 		goto out;
2702 	}
2703 
2704 	path->leave_spinning = 1;
2705 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2706 				    name, name_len, -1);
2707 	if (IS_ERR(di)) {
2708 		ret = PTR_ERR(di);
2709 		goto err;
2710 	}
2711 	if (!di) {
2712 		ret = -ENOENT;
2713 		goto err;
2714 	}
2715 	leaf = path->nodes[0];
2716 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2717 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2718 	if (ret)
2719 		goto err;
2720 	btrfs_release_path(path);
2721 
2722 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2723 				  dir_ino, &index);
2724 	if (ret) {
2725 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2726 		       "inode %llu parent %llu\n", name_len, name,
2727 		       (unsigned long long)ino, (unsigned long long)dir_ino);
2728 		btrfs_abort_transaction(trans, root, ret);
2729 		goto err;
2730 	}
2731 
2732 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2733 	if (ret) {
2734 		btrfs_abort_transaction(trans, root, ret);
2735 		goto err;
2736 	}
2737 
2738 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2739 					 inode, dir_ino);
2740 	if (ret != 0 && ret != -ENOENT) {
2741 		btrfs_abort_transaction(trans, root, ret);
2742 		goto err;
2743 	}
2744 
2745 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2746 					   dir, index);
2747 	if (ret == -ENOENT)
2748 		ret = 0;
2749 err:
2750 	btrfs_free_path(path);
2751 	if (ret)
2752 		goto out;
2753 
2754 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2755 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2756 	btrfs_update_inode(trans, root, dir);
2757 out:
2758 	return ret;
2759 }
2760 
2761 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2762 		       struct btrfs_root *root,
2763 		       struct inode *dir, struct inode *inode,
2764 		       const char *name, int name_len)
2765 {
2766 	int ret;
2767 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2768 	if (!ret) {
2769 		btrfs_drop_nlink(inode);
2770 		ret = btrfs_update_inode(trans, root, inode);
2771 	}
2772 	return ret;
2773 }
2774 
2775 
2776 /* helper to check if there is any shared block in the path */
2777 static int check_path_shared(struct btrfs_root *root,
2778 			     struct btrfs_path *path)
2779 {
2780 	struct extent_buffer *eb;
2781 	int level;
2782 	u64 refs = 1;
2783 
2784 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2785 		int ret;
2786 
2787 		if (!path->nodes[level])
2788 			break;
2789 		eb = path->nodes[level];
2790 		if (!btrfs_block_can_be_shared(root, eb))
2791 			continue;
2792 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2793 					       &refs, NULL);
2794 		if (refs > 1)
2795 			return 1;
2796 	}
2797 	return 0;
2798 }
2799 
2800 /*
2801  * helper to start transaction for unlink and rmdir.
2802  *
2803  * unlink and rmdir are special in btrfs, they do not always free space.
2804  * so in enospc case, we should make sure they will free space before
2805  * allowing them to use the global metadata reservation.
2806  */
2807 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2808 						       struct dentry *dentry)
2809 {
2810 	struct btrfs_trans_handle *trans;
2811 	struct btrfs_root *root = BTRFS_I(dir)->root;
2812 	struct btrfs_path *path;
2813 	struct btrfs_inode_ref *ref;
2814 	struct btrfs_dir_item *di;
2815 	struct inode *inode = dentry->d_inode;
2816 	u64 index;
2817 	int check_link = 1;
2818 	int err = -ENOSPC;
2819 	int ret;
2820 	u64 ino = btrfs_ino(inode);
2821 	u64 dir_ino = btrfs_ino(dir);
2822 
2823 	/*
2824 	 * 1 for the possible orphan item
2825 	 * 1 for the dir item
2826 	 * 1 for the dir index
2827 	 * 1 for the inode ref
2828 	 * 1 for the inode ref in the tree log
2829 	 * 2 for the dir entries in the log
2830 	 * 1 for the inode
2831 	 */
2832 	trans = btrfs_start_transaction(root, 8);
2833 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2834 		return trans;
2835 
2836 	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2837 		return ERR_PTR(-ENOSPC);
2838 
2839 	/* check if there is someone else holds reference */
2840 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2841 		return ERR_PTR(-ENOSPC);
2842 
2843 	if (atomic_read(&inode->i_count) > 2)
2844 		return ERR_PTR(-ENOSPC);
2845 
2846 	if (xchg(&root->fs_info->enospc_unlink, 1))
2847 		return ERR_PTR(-ENOSPC);
2848 
2849 	path = btrfs_alloc_path();
2850 	if (!path) {
2851 		root->fs_info->enospc_unlink = 0;
2852 		return ERR_PTR(-ENOMEM);
2853 	}
2854 
2855 	/* 1 for the orphan item */
2856 	trans = btrfs_start_transaction(root, 1);
2857 	if (IS_ERR(trans)) {
2858 		btrfs_free_path(path);
2859 		root->fs_info->enospc_unlink = 0;
2860 		return trans;
2861 	}
2862 
2863 	path->skip_locking = 1;
2864 	path->search_commit_root = 1;
2865 
2866 	ret = btrfs_lookup_inode(trans, root, path,
2867 				&BTRFS_I(dir)->location, 0);
2868 	if (ret < 0) {
2869 		err = ret;
2870 		goto out;
2871 	}
2872 	if (ret == 0) {
2873 		if (check_path_shared(root, path))
2874 			goto out;
2875 	} else {
2876 		check_link = 0;
2877 	}
2878 	btrfs_release_path(path);
2879 
2880 	ret = btrfs_lookup_inode(trans, root, path,
2881 				&BTRFS_I(inode)->location, 0);
2882 	if (ret < 0) {
2883 		err = ret;
2884 		goto out;
2885 	}
2886 	if (ret == 0) {
2887 		if (check_path_shared(root, path))
2888 			goto out;
2889 	} else {
2890 		check_link = 0;
2891 	}
2892 	btrfs_release_path(path);
2893 
2894 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2895 		ret = btrfs_lookup_file_extent(trans, root, path,
2896 					       ino, (u64)-1, 0);
2897 		if (ret < 0) {
2898 			err = ret;
2899 			goto out;
2900 		}
2901 		BUG_ON(ret == 0); /* Corruption */
2902 		if (check_path_shared(root, path))
2903 			goto out;
2904 		btrfs_release_path(path);
2905 	}
2906 
2907 	if (!check_link) {
2908 		err = 0;
2909 		goto out;
2910 	}
2911 
2912 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2913 				dentry->d_name.name, dentry->d_name.len, 0);
2914 	if (IS_ERR(di)) {
2915 		err = PTR_ERR(di);
2916 		goto out;
2917 	}
2918 	if (di) {
2919 		if (check_path_shared(root, path))
2920 			goto out;
2921 	} else {
2922 		err = 0;
2923 		goto out;
2924 	}
2925 	btrfs_release_path(path);
2926 
2927 	ref = btrfs_lookup_inode_ref(trans, root, path,
2928 				dentry->d_name.name, dentry->d_name.len,
2929 				ino, dir_ino, 0);
2930 	if (IS_ERR(ref)) {
2931 		err = PTR_ERR(ref);
2932 		goto out;
2933 	}
2934 	BUG_ON(!ref); /* Logic error */
2935 	if (check_path_shared(root, path))
2936 		goto out;
2937 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2938 	btrfs_release_path(path);
2939 
2940 	/*
2941 	 * This is a commit root search, if we can lookup inode item and other
2942 	 * relative items in the commit root, it means the transaction of
2943 	 * dir/file creation has been committed, and the dir index item that we
2944 	 * delay to insert has also been inserted into the commit root. So
2945 	 * we needn't worry about the delayed insertion of the dir index item
2946 	 * here.
2947 	 */
2948 	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2949 				dentry->d_name.name, dentry->d_name.len, 0);
2950 	if (IS_ERR(di)) {
2951 		err = PTR_ERR(di);
2952 		goto out;
2953 	}
2954 	BUG_ON(ret == -ENOENT);
2955 	if (check_path_shared(root, path))
2956 		goto out;
2957 
2958 	err = 0;
2959 out:
2960 	btrfs_free_path(path);
2961 	/* Migrate the orphan reservation over */
2962 	if (!err)
2963 		err = btrfs_block_rsv_migrate(trans->block_rsv,
2964 				&root->fs_info->global_block_rsv,
2965 				trans->bytes_reserved);
2966 
2967 	if (err) {
2968 		btrfs_end_transaction(trans, root);
2969 		root->fs_info->enospc_unlink = 0;
2970 		return ERR_PTR(err);
2971 	}
2972 
2973 	trans->block_rsv = &root->fs_info->global_block_rsv;
2974 	return trans;
2975 }
2976 
2977 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2978 			       struct btrfs_root *root)
2979 {
2980 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2981 		btrfs_block_rsv_release(root, trans->block_rsv,
2982 					trans->bytes_reserved);
2983 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2984 		BUG_ON(!root->fs_info->enospc_unlink);
2985 		root->fs_info->enospc_unlink = 0;
2986 	}
2987 	btrfs_end_transaction(trans, root);
2988 }
2989 
2990 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2991 {
2992 	struct btrfs_root *root = BTRFS_I(dir)->root;
2993 	struct btrfs_trans_handle *trans;
2994 	struct inode *inode = dentry->d_inode;
2995 	int ret;
2996 	unsigned long nr = 0;
2997 
2998 	trans = __unlink_start_trans(dir, dentry);
2999 	if (IS_ERR(trans))
3000 		return PTR_ERR(trans);
3001 
3002 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3003 
3004 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3005 				 dentry->d_name.name, dentry->d_name.len);
3006 	if (ret)
3007 		goto out;
3008 
3009 	if (inode->i_nlink == 0) {
3010 		ret = btrfs_orphan_add(trans, inode);
3011 		if (ret)
3012 			goto out;
3013 	}
3014 
3015 out:
3016 	nr = trans->blocks_used;
3017 	__unlink_end_trans(trans, root);
3018 	btrfs_btree_balance_dirty(root, nr);
3019 	return ret;
3020 }
3021 
3022 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3023 			struct btrfs_root *root,
3024 			struct inode *dir, u64 objectid,
3025 			const char *name, int name_len)
3026 {
3027 	struct btrfs_path *path;
3028 	struct extent_buffer *leaf;
3029 	struct btrfs_dir_item *di;
3030 	struct btrfs_key key;
3031 	u64 index;
3032 	int ret;
3033 	u64 dir_ino = btrfs_ino(dir);
3034 
3035 	path = btrfs_alloc_path();
3036 	if (!path)
3037 		return -ENOMEM;
3038 
3039 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3040 				   name, name_len, -1);
3041 	if (IS_ERR_OR_NULL(di)) {
3042 		if (!di)
3043 			ret = -ENOENT;
3044 		else
3045 			ret = PTR_ERR(di);
3046 		goto out;
3047 	}
3048 
3049 	leaf = path->nodes[0];
3050 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3051 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3052 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3053 	if (ret) {
3054 		btrfs_abort_transaction(trans, root, ret);
3055 		goto out;
3056 	}
3057 	btrfs_release_path(path);
3058 
3059 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3060 				 objectid, root->root_key.objectid,
3061 				 dir_ino, &index, name, name_len);
3062 	if (ret < 0) {
3063 		if (ret != -ENOENT) {
3064 			btrfs_abort_transaction(trans, root, ret);
3065 			goto out;
3066 		}
3067 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3068 						 name, name_len);
3069 		if (IS_ERR_OR_NULL(di)) {
3070 			if (!di)
3071 				ret = -ENOENT;
3072 			else
3073 				ret = PTR_ERR(di);
3074 			btrfs_abort_transaction(trans, root, ret);
3075 			goto out;
3076 		}
3077 
3078 		leaf = path->nodes[0];
3079 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3080 		btrfs_release_path(path);
3081 		index = key.offset;
3082 	}
3083 	btrfs_release_path(path);
3084 
3085 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3086 	if (ret) {
3087 		btrfs_abort_transaction(trans, root, ret);
3088 		goto out;
3089 	}
3090 
3091 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3092 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3093 	ret = btrfs_update_inode(trans, root, dir);
3094 	if (ret)
3095 		btrfs_abort_transaction(trans, root, ret);
3096 out:
3097 	btrfs_free_path(path);
3098 	return ret;
3099 }
3100 
3101 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3102 {
3103 	struct inode *inode = dentry->d_inode;
3104 	int err = 0;
3105 	struct btrfs_root *root = BTRFS_I(dir)->root;
3106 	struct btrfs_trans_handle *trans;
3107 	unsigned long nr = 0;
3108 
3109 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3110 	    btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3111 		return -ENOTEMPTY;
3112 
3113 	trans = __unlink_start_trans(dir, dentry);
3114 	if (IS_ERR(trans))
3115 		return PTR_ERR(trans);
3116 
3117 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3118 		err = btrfs_unlink_subvol(trans, root, dir,
3119 					  BTRFS_I(inode)->location.objectid,
3120 					  dentry->d_name.name,
3121 					  dentry->d_name.len);
3122 		goto out;
3123 	}
3124 
3125 	err = btrfs_orphan_add(trans, inode);
3126 	if (err)
3127 		goto out;
3128 
3129 	/* now the directory is empty */
3130 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3131 				 dentry->d_name.name, dentry->d_name.len);
3132 	if (!err)
3133 		btrfs_i_size_write(inode, 0);
3134 out:
3135 	nr = trans->blocks_used;
3136 	__unlink_end_trans(trans, root);
3137 	btrfs_btree_balance_dirty(root, nr);
3138 
3139 	return err;
3140 }
3141 
3142 /*
3143  * this can truncate away extent items, csum items and directory items.
3144  * It starts at a high offset and removes keys until it can't find
3145  * any higher than new_size
3146  *
3147  * csum items that cross the new i_size are truncated to the new size
3148  * as well.
3149  *
3150  * min_type is the minimum key type to truncate down to.  If set to 0, this
3151  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3152  */
3153 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3154 			       struct btrfs_root *root,
3155 			       struct inode *inode,
3156 			       u64 new_size, u32 min_type)
3157 {
3158 	struct btrfs_path *path;
3159 	struct extent_buffer *leaf;
3160 	struct btrfs_file_extent_item *fi;
3161 	struct btrfs_key key;
3162 	struct btrfs_key found_key;
3163 	u64 extent_start = 0;
3164 	u64 extent_num_bytes = 0;
3165 	u64 extent_offset = 0;
3166 	u64 item_end = 0;
3167 	u64 mask = root->sectorsize - 1;
3168 	u32 found_type = (u8)-1;
3169 	int found_extent;
3170 	int del_item;
3171 	int pending_del_nr = 0;
3172 	int pending_del_slot = 0;
3173 	int extent_type = -1;
3174 	int ret;
3175 	int err = 0;
3176 	u64 ino = btrfs_ino(inode);
3177 
3178 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3179 
3180 	path = btrfs_alloc_path();
3181 	if (!path)
3182 		return -ENOMEM;
3183 	path->reada = -1;
3184 
3185 	if (root->ref_cows || root == root->fs_info->tree_root)
3186 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3187 
3188 	/*
3189 	 * This function is also used to drop the items in the log tree before
3190 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3191 	 * it is used to drop the loged items. So we shouldn't kill the delayed
3192 	 * items.
3193 	 */
3194 	if (min_type == 0 && root == BTRFS_I(inode)->root)
3195 		btrfs_kill_delayed_inode_items(inode);
3196 
3197 	key.objectid = ino;
3198 	key.offset = (u64)-1;
3199 	key.type = (u8)-1;
3200 
3201 search_again:
3202 	path->leave_spinning = 1;
3203 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3204 	if (ret < 0) {
3205 		err = ret;
3206 		goto out;
3207 	}
3208 
3209 	if (ret > 0) {
3210 		/* there are no items in the tree for us to truncate, we're
3211 		 * done
3212 		 */
3213 		if (path->slots[0] == 0)
3214 			goto out;
3215 		path->slots[0]--;
3216 	}
3217 
3218 	while (1) {
3219 		fi = NULL;
3220 		leaf = path->nodes[0];
3221 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3222 		found_type = btrfs_key_type(&found_key);
3223 
3224 		if (found_key.objectid != ino)
3225 			break;
3226 
3227 		if (found_type < min_type)
3228 			break;
3229 
3230 		item_end = found_key.offset;
3231 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3232 			fi = btrfs_item_ptr(leaf, path->slots[0],
3233 					    struct btrfs_file_extent_item);
3234 			extent_type = btrfs_file_extent_type(leaf, fi);
3235 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3236 				item_end +=
3237 				    btrfs_file_extent_num_bytes(leaf, fi);
3238 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3239 				item_end += btrfs_file_extent_inline_len(leaf,
3240 									 fi);
3241 			}
3242 			item_end--;
3243 		}
3244 		if (found_type > min_type) {
3245 			del_item = 1;
3246 		} else {
3247 			if (item_end < new_size)
3248 				break;
3249 			if (found_key.offset >= new_size)
3250 				del_item = 1;
3251 			else
3252 				del_item = 0;
3253 		}
3254 		found_extent = 0;
3255 		/* FIXME, shrink the extent if the ref count is only 1 */
3256 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3257 			goto delete;
3258 
3259 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3260 			u64 num_dec;
3261 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3262 			if (!del_item) {
3263 				u64 orig_num_bytes =
3264 					btrfs_file_extent_num_bytes(leaf, fi);
3265 				extent_num_bytes = new_size -
3266 					found_key.offset + root->sectorsize - 1;
3267 				extent_num_bytes = extent_num_bytes &
3268 					~((u64)root->sectorsize - 1);
3269 				btrfs_set_file_extent_num_bytes(leaf, fi,
3270 							 extent_num_bytes);
3271 				num_dec = (orig_num_bytes -
3272 					   extent_num_bytes);
3273 				if (root->ref_cows && extent_start != 0)
3274 					inode_sub_bytes(inode, num_dec);
3275 				btrfs_mark_buffer_dirty(leaf);
3276 			} else {
3277 				extent_num_bytes =
3278 					btrfs_file_extent_disk_num_bytes(leaf,
3279 									 fi);
3280 				extent_offset = found_key.offset -
3281 					btrfs_file_extent_offset(leaf, fi);
3282 
3283 				/* FIXME blocksize != 4096 */
3284 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3285 				if (extent_start != 0) {
3286 					found_extent = 1;
3287 					if (root->ref_cows)
3288 						inode_sub_bytes(inode, num_dec);
3289 				}
3290 			}
3291 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3292 			/*
3293 			 * we can't truncate inline items that have had
3294 			 * special encodings
3295 			 */
3296 			if (!del_item &&
3297 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3298 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3299 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3300 				u32 size = new_size - found_key.offset;
3301 
3302 				if (root->ref_cows) {
3303 					inode_sub_bytes(inode, item_end + 1 -
3304 							new_size);
3305 				}
3306 				size =
3307 				    btrfs_file_extent_calc_inline_size(size);
3308 				btrfs_truncate_item(trans, root, path,
3309 						    size, 1);
3310 			} else if (root->ref_cows) {
3311 				inode_sub_bytes(inode, item_end + 1 -
3312 						found_key.offset);
3313 			}
3314 		}
3315 delete:
3316 		if (del_item) {
3317 			if (!pending_del_nr) {
3318 				/* no pending yet, add ourselves */
3319 				pending_del_slot = path->slots[0];
3320 				pending_del_nr = 1;
3321 			} else if (pending_del_nr &&
3322 				   path->slots[0] + 1 == pending_del_slot) {
3323 				/* hop on the pending chunk */
3324 				pending_del_nr++;
3325 				pending_del_slot = path->slots[0];
3326 			} else {
3327 				BUG();
3328 			}
3329 		} else {
3330 			break;
3331 		}
3332 		if (found_extent && (root->ref_cows ||
3333 				     root == root->fs_info->tree_root)) {
3334 			btrfs_set_path_blocking(path);
3335 			ret = btrfs_free_extent(trans, root, extent_start,
3336 						extent_num_bytes, 0,
3337 						btrfs_header_owner(leaf),
3338 						ino, extent_offset, 0);
3339 			BUG_ON(ret);
3340 		}
3341 
3342 		if (found_type == BTRFS_INODE_ITEM_KEY)
3343 			break;
3344 
3345 		if (path->slots[0] == 0 ||
3346 		    path->slots[0] != pending_del_slot) {
3347 			if (root->ref_cows &&
3348 			    BTRFS_I(inode)->location.objectid !=
3349 						BTRFS_FREE_INO_OBJECTID) {
3350 				err = -EAGAIN;
3351 				goto out;
3352 			}
3353 			if (pending_del_nr) {
3354 				ret = btrfs_del_items(trans, root, path,
3355 						pending_del_slot,
3356 						pending_del_nr);
3357 				if (ret) {
3358 					btrfs_abort_transaction(trans,
3359 								root, ret);
3360 					goto error;
3361 				}
3362 				pending_del_nr = 0;
3363 			}
3364 			btrfs_release_path(path);
3365 			goto search_again;
3366 		} else {
3367 			path->slots[0]--;
3368 		}
3369 	}
3370 out:
3371 	if (pending_del_nr) {
3372 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3373 				      pending_del_nr);
3374 		if (ret)
3375 			btrfs_abort_transaction(trans, root, ret);
3376 	}
3377 error:
3378 	btrfs_free_path(path);
3379 	return err;
3380 }
3381 
3382 /*
3383  * taken from block_truncate_page, but does cow as it zeros out
3384  * any bytes left in the last page in the file.
3385  */
3386 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3387 {
3388 	struct inode *inode = mapping->host;
3389 	struct btrfs_root *root = BTRFS_I(inode)->root;
3390 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3391 	struct btrfs_ordered_extent *ordered;
3392 	struct extent_state *cached_state = NULL;
3393 	char *kaddr;
3394 	u32 blocksize = root->sectorsize;
3395 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3396 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3397 	struct page *page;
3398 	gfp_t mask = btrfs_alloc_write_mask(mapping);
3399 	int ret = 0;
3400 	u64 page_start;
3401 	u64 page_end;
3402 
3403 	if ((offset & (blocksize - 1)) == 0)
3404 		goto out;
3405 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3406 	if (ret)
3407 		goto out;
3408 
3409 	ret = -ENOMEM;
3410 again:
3411 	page = find_or_create_page(mapping, index, mask);
3412 	if (!page) {
3413 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3414 		goto out;
3415 	}
3416 
3417 	page_start = page_offset(page);
3418 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3419 
3420 	if (!PageUptodate(page)) {
3421 		ret = btrfs_readpage(NULL, page);
3422 		lock_page(page);
3423 		if (page->mapping != mapping) {
3424 			unlock_page(page);
3425 			page_cache_release(page);
3426 			goto again;
3427 		}
3428 		if (!PageUptodate(page)) {
3429 			ret = -EIO;
3430 			goto out_unlock;
3431 		}
3432 	}
3433 	wait_on_page_writeback(page);
3434 
3435 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3436 	set_page_extent_mapped(page);
3437 
3438 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3439 	if (ordered) {
3440 		unlock_extent_cached(io_tree, page_start, page_end,
3441 				     &cached_state, GFP_NOFS);
3442 		unlock_page(page);
3443 		page_cache_release(page);
3444 		btrfs_start_ordered_extent(inode, ordered, 1);
3445 		btrfs_put_ordered_extent(ordered);
3446 		goto again;
3447 	}
3448 
3449 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3450 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3451 			  0, 0, &cached_state, GFP_NOFS);
3452 
3453 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3454 					&cached_state);
3455 	if (ret) {
3456 		unlock_extent_cached(io_tree, page_start, page_end,
3457 				     &cached_state, GFP_NOFS);
3458 		goto out_unlock;
3459 	}
3460 
3461 	ret = 0;
3462 	if (offset != PAGE_CACHE_SIZE) {
3463 		kaddr = kmap(page);
3464 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3465 		flush_dcache_page(page);
3466 		kunmap(page);
3467 	}
3468 	ClearPageChecked(page);
3469 	set_page_dirty(page);
3470 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3471 			     GFP_NOFS);
3472 
3473 out_unlock:
3474 	if (ret)
3475 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3476 	unlock_page(page);
3477 	page_cache_release(page);
3478 out:
3479 	return ret;
3480 }
3481 
3482 /*
3483  * This function puts in dummy file extents for the area we're creating a hole
3484  * for.  So if we are truncating this file to a larger size we need to insert
3485  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3486  * the range between oldsize and size
3487  */
3488 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3489 {
3490 	struct btrfs_trans_handle *trans;
3491 	struct btrfs_root *root = BTRFS_I(inode)->root;
3492 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3493 	struct extent_map *em = NULL;
3494 	struct extent_state *cached_state = NULL;
3495 	u64 mask = root->sectorsize - 1;
3496 	u64 hole_start = (oldsize + mask) & ~mask;
3497 	u64 block_end = (size + mask) & ~mask;
3498 	u64 last_byte;
3499 	u64 cur_offset;
3500 	u64 hole_size;
3501 	int err = 0;
3502 
3503 	if (size <= hole_start)
3504 		return 0;
3505 
3506 	while (1) {
3507 		struct btrfs_ordered_extent *ordered;
3508 		btrfs_wait_ordered_range(inode, hole_start,
3509 					 block_end - hole_start);
3510 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3511 				 &cached_state);
3512 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3513 		if (!ordered)
3514 			break;
3515 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3516 				     &cached_state, GFP_NOFS);
3517 		btrfs_put_ordered_extent(ordered);
3518 	}
3519 
3520 	cur_offset = hole_start;
3521 	while (1) {
3522 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3523 				block_end - cur_offset, 0);
3524 		if (IS_ERR(em)) {
3525 			err = PTR_ERR(em);
3526 			break;
3527 		}
3528 		last_byte = min(extent_map_end(em), block_end);
3529 		last_byte = (last_byte + mask) & ~mask;
3530 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3531 			u64 hint_byte = 0;
3532 			hole_size = last_byte - cur_offset;
3533 
3534 			trans = btrfs_start_transaction(root, 3);
3535 			if (IS_ERR(trans)) {
3536 				err = PTR_ERR(trans);
3537 				break;
3538 			}
3539 
3540 			err = btrfs_drop_extents(trans, inode, cur_offset,
3541 						 cur_offset + hole_size,
3542 						 &hint_byte, 1);
3543 			if (err) {
3544 				btrfs_abort_transaction(trans, root, err);
3545 				btrfs_end_transaction(trans, root);
3546 				break;
3547 			}
3548 
3549 			err = btrfs_insert_file_extent(trans, root,
3550 					btrfs_ino(inode), cur_offset, 0,
3551 					0, hole_size, 0, hole_size,
3552 					0, 0, 0);
3553 			if (err) {
3554 				btrfs_abort_transaction(trans, root, err);
3555 				btrfs_end_transaction(trans, root);
3556 				break;
3557 			}
3558 
3559 			btrfs_drop_extent_cache(inode, hole_start,
3560 					last_byte - 1, 0);
3561 
3562 			btrfs_update_inode(trans, root, inode);
3563 			btrfs_end_transaction(trans, root);
3564 		}
3565 		free_extent_map(em);
3566 		em = NULL;
3567 		cur_offset = last_byte;
3568 		if (cur_offset >= block_end)
3569 			break;
3570 	}
3571 
3572 	free_extent_map(em);
3573 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3574 			     GFP_NOFS);
3575 	return err;
3576 }
3577 
3578 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3579 {
3580 	struct btrfs_root *root = BTRFS_I(inode)->root;
3581 	struct btrfs_trans_handle *trans;
3582 	loff_t oldsize = i_size_read(inode);
3583 	int ret;
3584 
3585 	if (newsize == oldsize)
3586 		return 0;
3587 
3588 	if (newsize > oldsize) {
3589 		truncate_pagecache(inode, oldsize, newsize);
3590 		ret = btrfs_cont_expand(inode, oldsize, newsize);
3591 		if (ret)
3592 			return ret;
3593 
3594 		trans = btrfs_start_transaction(root, 1);
3595 		if (IS_ERR(trans))
3596 			return PTR_ERR(trans);
3597 
3598 		i_size_write(inode, newsize);
3599 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3600 		ret = btrfs_update_inode(trans, root, inode);
3601 		btrfs_end_transaction(trans, root);
3602 	} else {
3603 
3604 		/*
3605 		 * We're truncating a file that used to have good data down to
3606 		 * zero. Make sure it gets into the ordered flush list so that
3607 		 * any new writes get down to disk quickly.
3608 		 */
3609 		if (newsize == 0)
3610 			BTRFS_I(inode)->ordered_data_close = 1;
3611 
3612 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
3613 		truncate_setsize(inode, newsize);
3614 		ret = btrfs_truncate(inode);
3615 	}
3616 
3617 	return ret;
3618 }
3619 
3620 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3621 {
3622 	struct inode *inode = dentry->d_inode;
3623 	struct btrfs_root *root = BTRFS_I(inode)->root;
3624 	int err;
3625 
3626 	if (btrfs_root_readonly(root))
3627 		return -EROFS;
3628 
3629 	err = inode_change_ok(inode, attr);
3630 	if (err)
3631 		return err;
3632 
3633 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3634 		err = btrfs_setsize(inode, attr->ia_size);
3635 		if (err)
3636 			return err;
3637 	}
3638 
3639 	if (attr->ia_valid) {
3640 		setattr_copy(inode, attr);
3641 		err = btrfs_dirty_inode(inode);
3642 
3643 		if (!err && attr->ia_valid & ATTR_MODE)
3644 			err = btrfs_acl_chmod(inode);
3645 	}
3646 
3647 	return err;
3648 }
3649 
3650 void btrfs_evict_inode(struct inode *inode)
3651 {
3652 	struct btrfs_trans_handle *trans;
3653 	struct btrfs_root *root = BTRFS_I(inode)->root;
3654 	struct btrfs_block_rsv *rsv, *global_rsv;
3655 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3656 	unsigned long nr;
3657 	int ret;
3658 
3659 	trace_btrfs_inode_evict(inode);
3660 
3661 	truncate_inode_pages(&inode->i_data, 0);
3662 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3663 			       btrfs_is_free_space_inode(root, inode)))
3664 		goto no_delete;
3665 
3666 	if (is_bad_inode(inode)) {
3667 		btrfs_orphan_del(NULL, inode);
3668 		goto no_delete;
3669 	}
3670 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3671 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3672 
3673 	if (root->fs_info->log_root_recovering) {
3674 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3675 		goto no_delete;
3676 	}
3677 
3678 	if (inode->i_nlink > 0) {
3679 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3680 		goto no_delete;
3681 	}
3682 
3683 	rsv = btrfs_alloc_block_rsv(root);
3684 	if (!rsv) {
3685 		btrfs_orphan_del(NULL, inode);
3686 		goto no_delete;
3687 	}
3688 	rsv->size = min_size;
3689 	global_rsv = &root->fs_info->global_block_rsv;
3690 
3691 	btrfs_i_size_write(inode, 0);
3692 
3693 	/*
3694 	 * This is a bit simpler than btrfs_truncate since
3695 	 *
3696 	 * 1) We've already reserved our space for our orphan item in the
3697 	 *    unlink.
3698 	 * 2) We're going to delete the inode item, so we don't need to update
3699 	 *    it at all.
3700 	 *
3701 	 * So we just need to reserve some slack space in case we add bytes when
3702 	 * doing the truncate.
3703 	 */
3704 	while (1) {
3705 		ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3706 
3707 		/*
3708 		 * Try and steal from the global reserve since we will
3709 		 * likely not use this space anyway, we want to try as
3710 		 * hard as possible to get this to work.
3711 		 */
3712 		if (ret)
3713 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3714 
3715 		if (ret) {
3716 			printk(KERN_WARNING "Could not get space for a "
3717 			       "delete, will truncate on mount %d\n", ret);
3718 			btrfs_orphan_del(NULL, inode);
3719 			btrfs_free_block_rsv(root, rsv);
3720 			goto no_delete;
3721 		}
3722 
3723 		trans = btrfs_start_transaction(root, 0);
3724 		if (IS_ERR(trans)) {
3725 			btrfs_orphan_del(NULL, inode);
3726 			btrfs_free_block_rsv(root, rsv);
3727 			goto no_delete;
3728 		}
3729 
3730 		trans->block_rsv = rsv;
3731 
3732 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3733 		if (ret != -EAGAIN)
3734 			break;
3735 
3736 		nr = trans->blocks_used;
3737 		btrfs_end_transaction(trans, root);
3738 		trans = NULL;
3739 		btrfs_btree_balance_dirty(root, nr);
3740 	}
3741 
3742 	btrfs_free_block_rsv(root, rsv);
3743 
3744 	if (ret == 0) {
3745 		trans->block_rsv = root->orphan_block_rsv;
3746 		ret = btrfs_orphan_del(trans, inode);
3747 		BUG_ON(ret);
3748 	}
3749 
3750 	trans->block_rsv = &root->fs_info->trans_block_rsv;
3751 	if (!(root == root->fs_info->tree_root ||
3752 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3753 		btrfs_return_ino(root, btrfs_ino(inode));
3754 
3755 	nr = trans->blocks_used;
3756 	btrfs_end_transaction(trans, root);
3757 	btrfs_btree_balance_dirty(root, nr);
3758 no_delete:
3759 	end_writeback(inode);
3760 	return;
3761 }
3762 
3763 /*
3764  * this returns the key found in the dir entry in the location pointer.
3765  * If no dir entries were found, location->objectid is 0.
3766  */
3767 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3768 			       struct btrfs_key *location)
3769 {
3770 	const char *name = dentry->d_name.name;
3771 	int namelen = dentry->d_name.len;
3772 	struct btrfs_dir_item *di;
3773 	struct btrfs_path *path;
3774 	struct btrfs_root *root = BTRFS_I(dir)->root;
3775 	int ret = 0;
3776 
3777 	path = btrfs_alloc_path();
3778 	if (!path)
3779 		return -ENOMEM;
3780 
3781 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3782 				    namelen, 0);
3783 	if (IS_ERR(di))
3784 		ret = PTR_ERR(di);
3785 
3786 	if (IS_ERR_OR_NULL(di))
3787 		goto out_err;
3788 
3789 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3790 out:
3791 	btrfs_free_path(path);
3792 	return ret;
3793 out_err:
3794 	location->objectid = 0;
3795 	goto out;
3796 }
3797 
3798 /*
3799  * when we hit a tree root in a directory, the btrfs part of the inode
3800  * needs to be changed to reflect the root directory of the tree root.  This
3801  * is kind of like crossing a mount point.
3802  */
3803 static int fixup_tree_root_location(struct btrfs_root *root,
3804 				    struct inode *dir,
3805 				    struct dentry *dentry,
3806 				    struct btrfs_key *location,
3807 				    struct btrfs_root **sub_root)
3808 {
3809 	struct btrfs_path *path;
3810 	struct btrfs_root *new_root;
3811 	struct btrfs_root_ref *ref;
3812 	struct extent_buffer *leaf;
3813 	int ret;
3814 	int err = 0;
3815 
3816 	path = btrfs_alloc_path();
3817 	if (!path) {
3818 		err = -ENOMEM;
3819 		goto out;
3820 	}
3821 
3822 	err = -ENOENT;
3823 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3824 				  BTRFS_I(dir)->root->root_key.objectid,
3825 				  location->objectid);
3826 	if (ret) {
3827 		if (ret < 0)
3828 			err = ret;
3829 		goto out;
3830 	}
3831 
3832 	leaf = path->nodes[0];
3833 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3834 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3835 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3836 		goto out;
3837 
3838 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3839 				   (unsigned long)(ref + 1),
3840 				   dentry->d_name.len);
3841 	if (ret)
3842 		goto out;
3843 
3844 	btrfs_release_path(path);
3845 
3846 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3847 	if (IS_ERR(new_root)) {
3848 		err = PTR_ERR(new_root);
3849 		goto out;
3850 	}
3851 
3852 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3853 		err = -ENOENT;
3854 		goto out;
3855 	}
3856 
3857 	*sub_root = new_root;
3858 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3859 	location->type = BTRFS_INODE_ITEM_KEY;
3860 	location->offset = 0;
3861 	err = 0;
3862 out:
3863 	btrfs_free_path(path);
3864 	return err;
3865 }
3866 
3867 static void inode_tree_add(struct inode *inode)
3868 {
3869 	struct btrfs_root *root = BTRFS_I(inode)->root;
3870 	struct btrfs_inode *entry;
3871 	struct rb_node **p;
3872 	struct rb_node *parent;
3873 	u64 ino = btrfs_ino(inode);
3874 again:
3875 	p = &root->inode_tree.rb_node;
3876 	parent = NULL;
3877 
3878 	if (inode_unhashed(inode))
3879 		return;
3880 
3881 	spin_lock(&root->inode_lock);
3882 	while (*p) {
3883 		parent = *p;
3884 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3885 
3886 		if (ino < btrfs_ino(&entry->vfs_inode))
3887 			p = &parent->rb_left;
3888 		else if (ino > btrfs_ino(&entry->vfs_inode))
3889 			p = &parent->rb_right;
3890 		else {
3891 			WARN_ON(!(entry->vfs_inode.i_state &
3892 				  (I_WILL_FREE | I_FREEING)));
3893 			rb_erase(parent, &root->inode_tree);
3894 			RB_CLEAR_NODE(parent);
3895 			spin_unlock(&root->inode_lock);
3896 			goto again;
3897 		}
3898 	}
3899 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3900 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3901 	spin_unlock(&root->inode_lock);
3902 }
3903 
3904 static void inode_tree_del(struct inode *inode)
3905 {
3906 	struct btrfs_root *root = BTRFS_I(inode)->root;
3907 	int empty = 0;
3908 
3909 	spin_lock(&root->inode_lock);
3910 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3911 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3912 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3913 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3914 	}
3915 	spin_unlock(&root->inode_lock);
3916 
3917 	/*
3918 	 * Free space cache has inodes in the tree root, but the tree root has a
3919 	 * root_refs of 0, so this could end up dropping the tree root as a
3920 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
3921 	 * make sure we don't drop it.
3922 	 */
3923 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3924 	    root != root->fs_info->tree_root) {
3925 		synchronize_srcu(&root->fs_info->subvol_srcu);
3926 		spin_lock(&root->inode_lock);
3927 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3928 		spin_unlock(&root->inode_lock);
3929 		if (empty)
3930 			btrfs_add_dead_root(root);
3931 	}
3932 }
3933 
3934 void btrfs_invalidate_inodes(struct btrfs_root *root)
3935 {
3936 	struct rb_node *node;
3937 	struct rb_node *prev;
3938 	struct btrfs_inode *entry;
3939 	struct inode *inode;
3940 	u64 objectid = 0;
3941 
3942 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3943 
3944 	spin_lock(&root->inode_lock);
3945 again:
3946 	node = root->inode_tree.rb_node;
3947 	prev = NULL;
3948 	while (node) {
3949 		prev = node;
3950 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3951 
3952 		if (objectid < btrfs_ino(&entry->vfs_inode))
3953 			node = node->rb_left;
3954 		else if (objectid > btrfs_ino(&entry->vfs_inode))
3955 			node = node->rb_right;
3956 		else
3957 			break;
3958 	}
3959 	if (!node) {
3960 		while (prev) {
3961 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3962 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3963 				node = prev;
3964 				break;
3965 			}
3966 			prev = rb_next(prev);
3967 		}
3968 	}
3969 	while (node) {
3970 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3971 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
3972 		inode = igrab(&entry->vfs_inode);
3973 		if (inode) {
3974 			spin_unlock(&root->inode_lock);
3975 			if (atomic_read(&inode->i_count) > 1)
3976 				d_prune_aliases(inode);
3977 			/*
3978 			 * btrfs_drop_inode will have it removed from
3979 			 * the inode cache when its usage count
3980 			 * hits zero.
3981 			 */
3982 			iput(inode);
3983 			cond_resched();
3984 			spin_lock(&root->inode_lock);
3985 			goto again;
3986 		}
3987 
3988 		if (cond_resched_lock(&root->inode_lock))
3989 			goto again;
3990 
3991 		node = rb_next(node);
3992 	}
3993 	spin_unlock(&root->inode_lock);
3994 }
3995 
3996 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3997 {
3998 	struct btrfs_iget_args *args = p;
3999 	inode->i_ino = args->ino;
4000 	BTRFS_I(inode)->root = args->root;
4001 	btrfs_set_inode_space_info(args->root, inode);
4002 	return 0;
4003 }
4004 
4005 static int btrfs_find_actor(struct inode *inode, void *opaque)
4006 {
4007 	struct btrfs_iget_args *args = opaque;
4008 	return args->ino == btrfs_ino(inode) &&
4009 		args->root == BTRFS_I(inode)->root;
4010 }
4011 
4012 static struct inode *btrfs_iget_locked(struct super_block *s,
4013 				       u64 objectid,
4014 				       struct btrfs_root *root)
4015 {
4016 	struct inode *inode;
4017 	struct btrfs_iget_args args;
4018 	args.ino = objectid;
4019 	args.root = root;
4020 
4021 	inode = iget5_locked(s, objectid, btrfs_find_actor,
4022 			     btrfs_init_locked_inode,
4023 			     (void *)&args);
4024 	return inode;
4025 }
4026 
4027 /* Get an inode object given its location and corresponding root.
4028  * Returns in *is_new if the inode was read from disk
4029  */
4030 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4031 			 struct btrfs_root *root, int *new)
4032 {
4033 	struct inode *inode;
4034 
4035 	inode = btrfs_iget_locked(s, location->objectid, root);
4036 	if (!inode)
4037 		return ERR_PTR(-ENOMEM);
4038 
4039 	if (inode->i_state & I_NEW) {
4040 		BTRFS_I(inode)->root = root;
4041 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4042 		btrfs_read_locked_inode(inode);
4043 		if (!is_bad_inode(inode)) {
4044 			inode_tree_add(inode);
4045 			unlock_new_inode(inode);
4046 			if (new)
4047 				*new = 1;
4048 		} else {
4049 			unlock_new_inode(inode);
4050 			iput(inode);
4051 			inode = ERR_PTR(-ESTALE);
4052 		}
4053 	}
4054 
4055 	return inode;
4056 }
4057 
4058 static struct inode *new_simple_dir(struct super_block *s,
4059 				    struct btrfs_key *key,
4060 				    struct btrfs_root *root)
4061 {
4062 	struct inode *inode = new_inode(s);
4063 
4064 	if (!inode)
4065 		return ERR_PTR(-ENOMEM);
4066 
4067 	BTRFS_I(inode)->root = root;
4068 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4069 	BTRFS_I(inode)->dummy_inode = 1;
4070 
4071 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4072 	inode->i_op = &btrfs_dir_ro_inode_operations;
4073 	inode->i_fop = &simple_dir_operations;
4074 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4075 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4076 
4077 	return inode;
4078 }
4079 
4080 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4081 {
4082 	struct inode *inode;
4083 	struct btrfs_root *root = BTRFS_I(dir)->root;
4084 	struct btrfs_root *sub_root = root;
4085 	struct btrfs_key location;
4086 	int index;
4087 	int ret = 0;
4088 
4089 	if (dentry->d_name.len > BTRFS_NAME_LEN)
4090 		return ERR_PTR(-ENAMETOOLONG);
4091 
4092 	if (unlikely(d_need_lookup(dentry))) {
4093 		memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4094 		kfree(dentry->d_fsdata);
4095 		dentry->d_fsdata = NULL;
4096 		/* This thing is hashed, drop it for now */
4097 		d_drop(dentry);
4098 	} else {
4099 		ret = btrfs_inode_by_name(dir, dentry, &location);
4100 	}
4101 
4102 	if (ret < 0)
4103 		return ERR_PTR(ret);
4104 
4105 	if (location.objectid == 0)
4106 		return NULL;
4107 
4108 	if (location.type == BTRFS_INODE_ITEM_KEY) {
4109 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4110 		return inode;
4111 	}
4112 
4113 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4114 
4115 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
4116 	ret = fixup_tree_root_location(root, dir, dentry,
4117 				       &location, &sub_root);
4118 	if (ret < 0) {
4119 		if (ret != -ENOENT)
4120 			inode = ERR_PTR(ret);
4121 		else
4122 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
4123 	} else {
4124 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4125 	}
4126 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4127 
4128 	if (!IS_ERR(inode) && root != sub_root) {
4129 		down_read(&root->fs_info->cleanup_work_sem);
4130 		if (!(inode->i_sb->s_flags & MS_RDONLY))
4131 			ret = btrfs_orphan_cleanup(sub_root);
4132 		up_read(&root->fs_info->cleanup_work_sem);
4133 		if (ret)
4134 			inode = ERR_PTR(ret);
4135 	}
4136 
4137 	return inode;
4138 }
4139 
4140 static int btrfs_dentry_delete(const struct dentry *dentry)
4141 {
4142 	struct btrfs_root *root;
4143 	struct inode *inode = dentry->d_inode;
4144 
4145 	if (!inode && !IS_ROOT(dentry))
4146 		inode = dentry->d_parent->d_inode;
4147 
4148 	if (inode) {
4149 		root = BTRFS_I(inode)->root;
4150 		if (btrfs_root_refs(&root->root_item) == 0)
4151 			return 1;
4152 
4153 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4154 			return 1;
4155 	}
4156 	return 0;
4157 }
4158 
4159 static void btrfs_dentry_release(struct dentry *dentry)
4160 {
4161 	if (dentry->d_fsdata)
4162 		kfree(dentry->d_fsdata);
4163 }
4164 
4165 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4166 				   struct nameidata *nd)
4167 {
4168 	struct dentry *ret;
4169 
4170 	ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4171 	if (unlikely(d_need_lookup(dentry))) {
4172 		spin_lock(&dentry->d_lock);
4173 		dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4174 		spin_unlock(&dentry->d_lock);
4175 	}
4176 	return ret;
4177 }
4178 
4179 unsigned char btrfs_filetype_table[] = {
4180 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4181 };
4182 
4183 static int btrfs_real_readdir(struct file *filp, void *dirent,
4184 			      filldir_t filldir)
4185 {
4186 	struct inode *inode = filp->f_dentry->d_inode;
4187 	struct btrfs_root *root = BTRFS_I(inode)->root;
4188 	struct btrfs_item *item;
4189 	struct btrfs_dir_item *di;
4190 	struct btrfs_key key;
4191 	struct btrfs_key found_key;
4192 	struct btrfs_path *path;
4193 	struct list_head ins_list;
4194 	struct list_head del_list;
4195 	int ret;
4196 	struct extent_buffer *leaf;
4197 	int slot;
4198 	unsigned char d_type;
4199 	int over = 0;
4200 	u32 di_cur;
4201 	u32 di_total;
4202 	u32 di_len;
4203 	int key_type = BTRFS_DIR_INDEX_KEY;
4204 	char tmp_name[32];
4205 	char *name_ptr;
4206 	int name_len;
4207 	int is_curr = 0;	/* filp->f_pos points to the current index? */
4208 
4209 	/* FIXME, use a real flag for deciding about the key type */
4210 	if (root->fs_info->tree_root == root)
4211 		key_type = BTRFS_DIR_ITEM_KEY;
4212 
4213 	/* special case for "." */
4214 	if (filp->f_pos == 0) {
4215 		over = filldir(dirent, ".", 1,
4216 			       filp->f_pos, btrfs_ino(inode), DT_DIR);
4217 		if (over)
4218 			return 0;
4219 		filp->f_pos = 1;
4220 	}
4221 	/* special case for .., just use the back ref */
4222 	if (filp->f_pos == 1) {
4223 		u64 pino = parent_ino(filp->f_path.dentry);
4224 		over = filldir(dirent, "..", 2,
4225 			       filp->f_pos, pino, DT_DIR);
4226 		if (over)
4227 			return 0;
4228 		filp->f_pos = 2;
4229 	}
4230 	path = btrfs_alloc_path();
4231 	if (!path)
4232 		return -ENOMEM;
4233 
4234 	path->reada = 1;
4235 
4236 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4237 		INIT_LIST_HEAD(&ins_list);
4238 		INIT_LIST_HEAD(&del_list);
4239 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
4240 	}
4241 
4242 	btrfs_set_key_type(&key, key_type);
4243 	key.offset = filp->f_pos;
4244 	key.objectid = btrfs_ino(inode);
4245 
4246 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4247 	if (ret < 0)
4248 		goto err;
4249 
4250 	while (1) {
4251 		leaf = path->nodes[0];
4252 		slot = path->slots[0];
4253 		if (slot >= btrfs_header_nritems(leaf)) {
4254 			ret = btrfs_next_leaf(root, path);
4255 			if (ret < 0)
4256 				goto err;
4257 			else if (ret > 0)
4258 				break;
4259 			continue;
4260 		}
4261 
4262 		item = btrfs_item_nr(leaf, slot);
4263 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4264 
4265 		if (found_key.objectid != key.objectid)
4266 			break;
4267 		if (btrfs_key_type(&found_key) != key_type)
4268 			break;
4269 		if (found_key.offset < filp->f_pos)
4270 			goto next;
4271 		if (key_type == BTRFS_DIR_INDEX_KEY &&
4272 		    btrfs_should_delete_dir_index(&del_list,
4273 						  found_key.offset))
4274 			goto next;
4275 
4276 		filp->f_pos = found_key.offset;
4277 		is_curr = 1;
4278 
4279 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4280 		di_cur = 0;
4281 		di_total = btrfs_item_size(leaf, item);
4282 
4283 		while (di_cur < di_total) {
4284 			struct btrfs_key location;
4285 
4286 			if (verify_dir_item(root, leaf, di))
4287 				break;
4288 
4289 			name_len = btrfs_dir_name_len(leaf, di);
4290 			if (name_len <= sizeof(tmp_name)) {
4291 				name_ptr = tmp_name;
4292 			} else {
4293 				name_ptr = kmalloc(name_len, GFP_NOFS);
4294 				if (!name_ptr) {
4295 					ret = -ENOMEM;
4296 					goto err;
4297 				}
4298 			}
4299 			read_extent_buffer(leaf, name_ptr,
4300 					   (unsigned long)(di + 1), name_len);
4301 
4302 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4303 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4304 
4305 
4306 			/* is this a reference to our own snapshot? If so
4307 			 * skip it.
4308 			 *
4309 			 * In contrast to old kernels, we insert the snapshot's
4310 			 * dir item and dir index after it has been created, so
4311 			 * we won't find a reference to our own snapshot. We
4312 			 * still keep the following code for backward
4313 			 * compatibility.
4314 			 */
4315 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4316 			    location.objectid == root->root_key.objectid) {
4317 				over = 0;
4318 				goto skip;
4319 			}
4320 			over = filldir(dirent, name_ptr, name_len,
4321 				       found_key.offset, location.objectid,
4322 				       d_type);
4323 
4324 skip:
4325 			if (name_ptr != tmp_name)
4326 				kfree(name_ptr);
4327 
4328 			if (over)
4329 				goto nopos;
4330 			di_len = btrfs_dir_name_len(leaf, di) +
4331 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4332 			di_cur += di_len;
4333 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4334 		}
4335 next:
4336 		path->slots[0]++;
4337 	}
4338 
4339 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4340 		if (is_curr)
4341 			filp->f_pos++;
4342 		ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4343 						      &ins_list);
4344 		if (ret)
4345 			goto nopos;
4346 	}
4347 
4348 	/* Reached end of directory/root. Bump pos past the last item. */
4349 	if (key_type == BTRFS_DIR_INDEX_KEY)
4350 		/*
4351 		 * 32-bit glibc will use getdents64, but then strtol -
4352 		 * so the last number we can serve is this.
4353 		 */
4354 		filp->f_pos = 0x7fffffff;
4355 	else
4356 		filp->f_pos++;
4357 nopos:
4358 	ret = 0;
4359 err:
4360 	if (key_type == BTRFS_DIR_INDEX_KEY)
4361 		btrfs_put_delayed_items(&ins_list, &del_list);
4362 	btrfs_free_path(path);
4363 	return ret;
4364 }
4365 
4366 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4367 {
4368 	struct btrfs_root *root = BTRFS_I(inode)->root;
4369 	struct btrfs_trans_handle *trans;
4370 	int ret = 0;
4371 	bool nolock = false;
4372 
4373 	if (BTRFS_I(inode)->dummy_inode)
4374 		return 0;
4375 
4376 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4377 		nolock = true;
4378 
4379 	if (wbc->sync_mode == WB_SYNC_ALL) {
4380 		if (nolock)
4381 			trans = btrfs_join_transaction_nolock(root);
4382 		else
4383 			trans = btrfs_join_transaction(root);
4384 		if (IS_ERR(trans))
4385 			return PTR_ERR(trans);
4386 		if (nolock)
4387 			ret = btrfs_end_transaction_nolock(trans, root);
4388 		else
4389 			ret = btrfs_commit_transaction(trans, root);
4390 	}
4391 	return ret;
4392 }
4393 
4394 /*
4395  * This is somewhat expensive, updating the tree every time the
4396  * inode changes.  But, it is most likely to find the inode in cache.
4397  * FIXME, needs more benchmarking...there are no reasons other than performance
4398  * to keep or drop this code.
4399  */
4400 int btrfs_dirty_inode(struct inode *inode)
4401 {
4402 	struct btrfs_root *root = BTRFS_I(inode)->root;
4403 	struct btrfs_trans_handle *trans;
4404 	int ret;
4405 
4406 	if (BTRFS_I(inode)->dummy_inode)
4407 		return 0;
4408 
4409 	trans = btrfs_join_transaction(root);
4410 	if (IS_ERR(trans))
4411 		return PTR_ERR(trans);
4412 
4413 	ret = btrfs_update_inode(trans, root, inode);
4414 	if (ret && ret == -ENOSPC) {
4415 		/* whoops, lets try again with the full transaction */
4416 		btrfs_end_transaction(trans, root);
4417 		trans = btrfs_start_transaction(root, 1);
4418 		if (IS_ERR(trans))
4419 			return PTR_ERR(trans);
4420 
4421 		ret = btrfs_update_inode(trans, root, inode);
4422 	}
4423 	btrfs_end_transaction(trans, root);
4424 	if (BTRFS_I(inode)->delayed_node)
4425 		btrfs_balance_delayed_items(root);
4426 
4427 	return ret;
4428 }
4429 
4430 /*
4431  * This is a copy of file_update_time.  We need this so we can return error on
4432  * ENOSPC for updating the inode in the case of file write and mmap writes.
4433  */
4434 int btrfs_update_time(struct file *file)
4435 {
4436 	struct inode *inode = file->f_path.dentry->d_inode;
4437 	struct timespec now;
4438 	int ret;
4439 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
4440 
4441 	/* First try to exhaust all avenues to not sync */
4442 	if (IS_NOCMTIME(inode))
4443 		return 0;
4444 
4445 	now = current_fs_time(inode->i_sb);
4446 	if (!timespec_equal(&inode->i_mtime, &now))
4447 		sync_it = S_MTIME;
4448 
4449 	if (!timespec_equal(&inode->i_ctime, &now))
4450 		sync_it |= S_CTIME;
4451 
4452 	if (IS_I_VERSION(inode))
4453 		sync_it |= S_VERSION;
4454 
4455 	if (!sync_it)
4456 		return 0;
4457 
4458 	/* Finally allowed to write? Takes lock. */
4459 	if (mnt_want_write_file(file))
4460 		return 0;
4461 
4462 	/* Only change inode inside the lock region */
4463 	if (sync_it & S_VERSION)
4464 		inode_inc_iversion(inode);
4465 	if (sync_it & S_CTIME)
4466 		inode->i_ctime = now;
4467 	if (sync_it & S_MTIME)
4468 		inode->i_mtime = now;
4469 	ret = btrfs_dirty_inode(inode);
4470 	if (!ret)
4471 		mark_inode_dirty_sync(inode);
4472 	mnt_drop_write(file->f_path.mnt);
4473 	return ret;
4474 }
4475 
4476 /*
4477  * find the highest existing sequence number in a directory
4478  * and then set the in-memory index_cnt variable to reflect
4479  * free sequence numbers
4480  */
4481 static int btrfs_set_inode_index_count(struct inode *inode)
4482 {
4483 	struct btrfs_root *root = BTRFS_I(inode)->root;
4484 	struct btrfs_key key, found_key;
4485 	struct btrfs_path *path;
4486 	struct extent_buffer *leaf;
4487 	int ret;
4488 
4489 	key.objectid = btrfs_ino(inode);
4490 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4491 	key.offset = (u64)-1;
4492 
4493 	path = btrfs_alloc_path();
4494 	if (!path)
4495 		return -ENOMEM;
4496 
4497 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4498 	if (ret < 0)
4499 		goto out;
4500 	/* FIXME: we should be able to handle this */
4501 	if (ret == 0)
4502 		goto out;
4503 	ret = 0;
4504 
4505 	/*
4506 	 * MAGIC NUMBER EXPLANATION:
4507 	 * since we search a directory based on f_pos we have to start at 2
4508 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4509 	 * else has to start at 2
4510 	 */
4511 	if (path->slots[0] == 0) {
4512 		BTRFS_I(inode)->index_cnt = 2;
4513 		goto out;
4514 	}
4515 
4516 	path->slots[0]--;
4517 
4518 	leaf = path->nodes[0];
4519 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4520 
4521 	if (found_key.objectid != btrfs_ino(inode) ||
4522 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4523 		BTRFS_I(inode)->index_cnt = 2;
4524 		goto out;
4525 	}
4526 
4527 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4528 out:
4529 	btrfs_free_path(path);
4530 	return ret;
4531 }
4532 
4533 /*
4534  * helper to find a free sequence number in a given directory.  This current
4535  * code is very simple, later versions will do smarter things in the btree
4536  */
4537 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4538 {
4539 	int ret = 0;
4540 
4541 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4542 		ret = btrfs_inode_delayed_dir_index_count(dir);
4543 		if (ret) {
4544 			ret = btrfs_set_inode_index_count(dir);
4545 			if (ret)
4546 				return ret;
4547 		}
4548 	}
4549 
4550 	*index = BTRFS_I(dir)->index_cnt;
4551 	BTRFS_I(dir)->index_cnt++;
4552 
4553 	return ret;
4554 }
4555 
4556 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4557 				     struct btrfs_root *root,
4558 				     struct inode *dir,
4559 				     const char *name, int name_len,
4560 				     u64 ref_objectid, u64 objectid,
4561 				     umode_t mode, u64 *index)
4562 {
4563 	struct inode *inode;
4564 	struct btrfs_inode_item *inode_item;
4565 	struct btrfs_key *location;
4566 	struct btrfs_path *path;
4567 	struct btrfs_inode_ref *ref;
4568 	struct btrfs_key key[2];
4569 	u32 sizes[2];
4570 	unsigned long ptr;
4571 	int ret;
4572 	int owner;
4573 
4574 	path = btrfs_alloc_path();
4575 	if (!path)
4576 		return ERR_PTR(-ENOMEM);
4577 
4578 	inode = new_inode(root->fs_info->sb);
4579 	if (!inode) {
4580 		btrfs_free_path(path);
4581 		return ERR_PTR(-ENOMEM);
4582 	}
4583 
4584 	/*
4585 	 * we have to initialize this early, so we can reclaim the inode
4586 	 * number if we fail afterwards in this function.
4587 	 */
4588 	inode->i_ino = objectid;
4589 
4590 	if (dir) {
4591 		trace_btrfs_inode_request(dir);
4592 
4593 		ret = btrfs_set_inode_index(dir, index);
4594 		if (ret) {
4595 			btrfs_free_path(path);
4596 			iput(inode);
4597 			return ERR_PTR(ret);
4598 		}
4599 	}
4600 	/*
4601 	 * index_cnt is ignored for everything but a dir,
4602 	 * btrfs_get_inode_index_count has an explanation for the magic
4603 	 * number
4604 	 */
4605 	BTRFS_I(inode)->index_cnt = 2;
4606 	BTRFS_I(inode)->root = root;
4607 	BTRFS_I(inode)->generation = trans->transid;
4608 	inode->i_generation = BTRFS_I(inode)->generation;
4609 	btrfs_set_inode_space_info(root, inode);
4610 
4611 	if (S_ISDIR(mode))
4612 		owner = 0;
4613 	else
4614 		owner = 1;
4615 
4616 	key[0].objectid = objectid;
4617 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4618 	key[0].offset = 0;
4619 
4620 	key[1].objectid = objectid;
4621 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4622 	key[1].offset = ref_objectid;
4623 
4624 	sizes[0] = sizeof(struct btrfs_inode_item);
4625 	sizes[1] = name_len + sizeof(*ref);
4626 
4627 	path->leave_spinning = 1;
4628 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4629 	if (ret != 0)
4630 		goto fail;
4631 
4632 	inode_init_owner(inode, dir, mode);
4633 	inode_set_bytes(inode, 0);
4634 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4635 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4636 				  struct btrfs_inode_item);
4637 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4638 
4639 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4640 			     struct btrfs_inode_ref);
4641 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4642 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4643 	ptr = (unsigned long)(ref + 1);
4644 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4645 
4646 	btrfs_mark_buffer_dirty(path->nodes[0]);
4647 	btrfs_free_path(path);
4648 
4649 	location = &BTRFS_I(inode)->location;
4650 	location->objectid = objectid;
4651 	location->offset = 0;
4652 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4653 
4654 	btrfs_inherit_iflags(inode, dir);
4655 
4656 	if (S_ISREG(mode)) {
4657 		if (btrfs_test_opt(root, NODATASUM))
4658 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4659 		if (btrfs_test_opt(root, NODATACOW) ||
4660 		    (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4661 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4662 	}
4663 
4664 	insert_inode_hash(inode);
4665 	inode_tree_add(inode);
4666 
4667 	trace_btrfs_inode_new(inode);
4668 	btrfs_set_inode_last_trans(trans, inode);
4669 
4670 	return inode;
4671 fail:
4672 	if (dir)
4673 		BTRFS_I(dir)->index_cnt--;
4674 	btrfs_free_path(path);
4675 	iput(inode);
4676 	return ERR_PTR(ret);
4677 }
4678 
4679 static inline u8 btrfs_inode_type(struct inode *inode)
4680 {
4681 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4682 }
4683 
4684 /*
4685  * utility function to add 'inode' into 'parent_inode' with
4686  * a give name and a given sequence number.
4687  * if 'add_backref' is true, also insert a backref from the
4688  * inode to the parent directory.
4689  */
4690 int btrfs_add_link(struct btrfs_trans_handle *trans,
4691 		   struct inode *parent_inode, struct inode *inode,
4692 		   const char *name, int name_len, int add_backref, u64 index)
4693 {
4694 	int ret = 0;
4695 	struct btrfs_key key;
4696 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4697 	u64 ino = btrfs_ino(inode);
4698 	u64 parent_ino = btrfs_ino(parent_inode);
4699 
4700 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4701 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4702 	} else {
4703 		key.objectid = ino;
4704 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4705 		key.offset = 0;
4706 	}
4707 
4708 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4709 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4710 					 key.objectid, root->root_key.objectid,
4711 					 parent_ino, index, name, name_len);
4712 	} else if (add_backref) {
4713 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4714 					     parent_ino, index);
4715 	}
4716 
4717 	/* Nothing to clean up yet */
4718 	if (ret)
4719 		return ret;
4720 
4721 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
4722 				    parent_inode, &key,
4723 				    btrfs_inode_type(inode), index);
4724 	if (ret == -EEXIST)
4725 		goto fail_dir_item;
4726 	else if (ret) {
4727 		btrfs_abort_transaction(trans, root, ret);
4728 		return ret;
4729 	}
4730 
4731 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
4732 			   name_len * 2);
4733 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4734 	ret = btrfs_update_inode(trans, root, parent_inode);
4735 	if (ret)
4736 		btrfs_abort_transaction(trans, root, ret);
4737 	return ret;
4738 
4739 fail_dir_item:
4740 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4741 		u64 local_index;
4742 		int err;
4743 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4744 				 key.objectid, root->root_key.objectid,
4745 				 parent_ino, &local_index, name, name_len);
4746 
4747 	} else if (add_backref) {
4748 		u64 local_index;
4749 		int err;
4750 
4751 		err = btrfs_del_inode_ref(trans, root, name, name_len,
4752 					  ino, parent_ino, &local_index);
4753 	}
4754 	return ret;
4755 }
4756 
4757 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4758 			    struct inode *dir, struct dentry *dentry,
4759 			    struct inode *inode, int backref, u64 index)
4760 {
4761 	int err = btrfs_add_link(trans, dir, inode,
4762 				 dentry->d_name.name, dentry->d_name.len,
4763 				 backref, index);
4764 	if (err > 0)
4765 		err = -EEXIST;
4766 	return err;
4767 }
4768 
4769 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4770 			umode_t mode, dev_t rdev)
4771 {
4772 	struct btrfs_trans_handle *trans;
4773 	struct btrfs_root *root = BTRFS_I(dir)->root;
4774 	struct inode *inode = NULL;
4775 	int err;
4776 	int drop_inode = 0;
4777 	u64 objectid;
4778 	unsigned long nr = 0;
4779 	u64 index = 0;
4780 
4781 	if (!new_valid_dev(rdev))
4782 		return -EINVAL;
4783 
4784 	/*
4785 	 * 2 for inode item and ref
4786 	 * 2 for dir items
4787 	 * 1 for xattr if selinux is on
4788 	 */
4789 	trans = btrfs_start_transaction(root, 5);
4790 	if (IS_ERR(trans))
4791 		return PTR_ERR(trans);
4792 
4793 	err = btrfs_find_free_ino(root, &objectid);
4794 	if (err)
4795 		goto out_unlock;
4796 
4797 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4798 				dentry->d_name.len, btrfs_ino(dir), objectid,
4799 				mode, &index);
4800 	if (IS_ERR(inode)) {
4801 		err = PTR_ERR(inode);
4802 		goto out_unlock;
4803 	}
4804 
4805 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4806 	if (err) {
4807 		drop_inode = 1;
4808 		goto out_unlock;
4809 	}
4810 
4811 	/*
4812 	* If the active LSM wants to access the inode during
4813 	* d_instantiate it needs these. Smack checks to see
4814 	* if the filesystem supports xattrs by looking at the
4815 	* ops vector.
4816 	*/
4817 
4818 	inode->i_op = &btrfs_special_inode_operations;
4819 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4820 	if (err)
4821 		drop_inode = 1;
4822 	else {
4823 		init_special_inode(inode, inode->i_mode, rdev);
4824 		btrfs_update_inode(trans, root, inode);
4825 		d_instantiate(dentry, inode);
4826 	}
4827 out_unlock:
4828 	nr = trans->blocks_used;
4829 	btrfs_end_transaction(trans, root);
4830 	btrfs_btree_balance_dirty(root, nr);
4831 	if (drop_inode) {
4832 		inode_dec_link_count(inode);
4833 		iput(inode);
4834 	}
4835 	return err;
4836 }
4837 
4838 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4839 			umode_t mode, struct nameidata *nd)
4840 {
4841 	struct btrfs_trans_handle *trans;
4842 	struct btrfs_root *root = BTRFS_I(dir)->root;
4843 	struct inode *inode = NULL;
4844 	int drop_inode = 0;
4845 	int err;
4846 	unsigned long nr = 0;
4847 	u64 objectid;
4848 	u64 index = 0;
4849 
4850 	/*
4851 	 * 2 for inode item and ref
4852 	 * 2 for dir items
4853 	 * 1 for xattr if selinux is on
4854 	 */
4855 	trans = btrfs_start_transaction(root, 5);
4856 	if (IS_ERR(trans))
4857 		return PTR_ERR(trans);
4858 
4859 	err = btrfs_find_free_ino(root, &objectid);
4860 	if (err)
4861 		goto out_unlock;
4862 
4863 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4864 				dentry->d_name.len, btrfs_ino(dir), objectid,
4865 				mode, &index);
4866 	if (IS_ERR(inode)) {
4867 		err = PTR_ERR(inode);
4868 		goto out_unlock;
4869 	}
4870 
4871 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4872 	if (err) {
4873 		drop_inode = 1;
4874 		goto out_unlock;
4875 	}
4876 
4877 	/*
4878 	* If the active LSM wants to access the inode during
4879 	* d_instantiate it needs these. Smack checks to see
4880 	* if the filesystem supports xattrs by looking at the
4881 	* ops vector.
4882 	*/
4883 	inode->i_fop = &btrfs_file_operations;
4884 	inode->i_op = &btrfs_file_inode_operations;
4885 
4886 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4887 	if (err)
4888 		drop_inode = 1;
4889 	else {
4890 		inode->i_mapping->a_ops = &btrfs_aops;
4891 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4892 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4893 		d_instantiate(dentry, inode);
4894 	}
4895 out_unlock:
4896 	nr = trans->blocks_used;
4897 	btrfs_end_transaction(trans, root);
4898 	if (drop_inode) {
4899 		inode_dec_link_count(inode);
4900 		iput(inode);
4901 	}
4902 	btrfs_btree_balance_dirty(root, nr);
4903 	return err;
4904 }
4905 
4906 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4907 		      struct dentry *dentry)
4908 {
4909 	struct btrfs_trans_handle *trans;
4910 	struct btrfs_root *root = BTRFS_I(dir)->root;
4911 	struct inode *inode = old_dentry->d_inode;
4912 	u64 index;
4913 	unsigned long nr = 0;
4914 	int err;
4915 	int drop_inode = 0;
4916 
4917 	/* do not allow sys_link's with other subvols of the same device */
4918 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4919 		return -EXDEV;
4920 
4921 	if (inode->i_nlink == ~0U)
4922 		return -EMLINK;
4923 
4924 	err = btrfs_set_inode_index(dir, &index);
4925 	if (err)
4926 		goto fail;
4927 
4928 	/*
4929 	 * 2 items for inode and inode ref
4930 	 * 2 items for dir items
4931 	 * 1 item for parent inode
4932 	 */
4933 	trans = btrfs_start_transaction(root, 5);
4934 	if (IS_ERR(trans)) {
4935 		err = PTR_ERR(trans);
4936 		goto fail;
4937 	}
4938 
4939 	btrfs_inc_nlink(inode);
4940 	inode->i_ctime = CURRENT_TIME;
4941 	ihold(inode);
4942 
4943 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4944 
4945 	if (err) {
4946 		drop_inode = 1;
4947 	} else {
4948 		struct dentry *parent = dentry->d_parent;
4949 		err = btrfs_update_inode(trans, root, inode);
4950 		if (err)
4951 			goto fail;
4952 		d_instantiate(dentry, inode);
4953 		btrfs_log_new_name(trans, inode, NULL, parent);
4954 	}
4955 
4956 	nr = trans->blocks_used;
4957 	btrfs_end_transaction(trans, root);
4958 fail:
4959 	if (drop_inode) {
4960 		inode_dec_link_count(inode);
4961 		iput(inode);
4962 	}
4963 	btrfs_btree_balance_dirty(root, nr);
4964 	return err;
4965 }
4966 
4967 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4968 {
4969 	struct inode *inode = NULL;
4970 	struct btrfs_trans_handle *trans;
4971 	struct btrfs_root *root = BTRFS_I(dir)->root;
4972 	int err = 0;
4973 	int drop_on_err = 0;
4974 	u64 objectid = 0;
4975 	u64 index = 0;
4976 	unsigned long nr = 1;
4977 
4978 	/*
4979 	 * 2 items for inode and ref
4980 	 * 2 items for dir items
4981 	 * 1 for xattr if selinux is on
4982 	 */
4983 	trans = btrfs_start_transaction(root, 5);
4984 	if (IS_ERR(trans))
4985 		return PTR_ERR(trans);
4986 
4987 	err = btrfs_find_free_ino(root, &objectid);
4988 	if (err)
4989 		goto out_fail;
4990 
4991 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4992 				dentry->d_name.len, btrfs_ino(dir), objectid,
4993 				S_IFDIR | mode, &index);
4994 	if (IS_ERR(inode)) {
4995 		err = PTR_ERR(inode);
4996 		goto out_fail;
4997 	}
4998 
4999 	drop_on_err = 1;
5000 
5001 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5002 	if (err)
5003 		goto out_fail;
5004 
5005 	inode->i_op = &btrfs_dir_inode_operations;
5006 	inode->i_fop = &btrfs_dir_file_operations;
5007 
5008 	btrfs_i_size_write(inode, 0);
5009 	err = btrfs_update_inode(trans, root, inode);
5010 	if (err)
5011 		goto out_fail;
5012 
5013 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5014 			     dentry->d_name.len, 0, index);
5015 	if (err)
5016 		goto out_fail;
5017 
5018 	d_instantiate(dentry, inode);
5019 	drop_on_err = 0;
5020 
5021 out_fail:
5022 	nr = trans->blocks_used;
5023 	btrfs_end_transaction(trans, root);
5024 	if (drop_on_err)
5025 		iput(inode);
5026 	btrfs_btree_balance_dirty(root, nr);
5027 	return err;
5028 }
5029 
5030 /* helper for btfs_get_extent.  Given an existing extent in the tree,
5031  * and an extent that you want to insert, deal with overlap and insert
5032  * the new extent into the tree.
5033  */
5034 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5035 				struct extent_map *existing,
5036 				struct extent_map *em,
5037 				u64 map_start, u64 map_len)
5038 {
5039 	u64 start_diff;
5040 
5041 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5042 	start_diff = map_start - em->start;
5043 	em->start = map_start;
5044 	em->len = map_len;
5045 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5046 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5047 		em->block_start += start_diff;
5048 		em->block_len -= start_diff;
5049 	}
5050 	return add_extent_mapping(em_tree, em);
5051 }
5052 
5053 static noinline int uncompress_inline(struct btrfs_path *path,
5054 				      struct inode *inode, struct page *page,
5055 				      size_t pg_offset, u64 extent_offset,
5056 				      struct btrfs_file_extent_item *item)
5057 {
5058 	int ret;
5059 	struct extent_buffer *leaf = path->nodes[0];
5060 	char *tmp;
5061 	size_t max_size;
5062 	unsigned long inline_size;
5063 	unsigned long ptr;
5064 	int compress_type;
5065 
5066 	WARN_ON(pg_offset != 0);
5067 	compress_type = btrfs_file_extent_compression(leaf, item);
5068 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
5069 	inline_size = btrfs_file_extent_inline_item_len(leaf,
5070 					btrfs_item_nr(leaf, path->slots[0]));
5071 	tmp = kmalloc(inline_size, GFP_NOFS);
5072 	if (!tmp)
5073 		return -ENOMEM;
5074 	ptr = btrfs_file_extent_inline_start(item);
5075 
5076 	read_extent_buffer(leaf, tmp, ptr, inline_size);
5077 
5078 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5079 	ret = btrfs_decompress(compress_type, tmp, page,
5080 			       extent_offset, inline_size, max_size);
5081 	if (ret) {
5082 		char *kaddr = kmap_atomic(page);
5083 		unsigned long copy_size = min_t(u64,
5084 				  PAGE_CACHE_SIZE - pg_offset,
5085 				  max_size - extent_offset);
5086 		memset(kaddr + pg_offset, 0, copy_size);
5087 		kunmap_atomic(kaddr);
5088 	}
5089 	kfree(tmp);
5090 	return 0;
5091 }
5092 
5093 /*
5094  * a bit scary, this does extent mapping from logical file offset to the disk.
5095  * the ugly parts come from merging extents from the disk with the in-ram
5096  * representation.  This gets more complex because of the data=ordered code,
5097  * where the in-ram extents might be locked pending data=ordered completion.
5098  *
5099  * This also copies inline extents directly into the page.
5100  */
5101 
5102 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5103 				    size_t pg_offset, u64 start, u64 len,
5104 				    int create)
5105 {
5106 	int ret;
5107 	int err = 0;
5108 	u64 bytenr;
5109 	u64 extent_start = 0;
5110 	u64 extent_end = 0;
5111 	u64 objectid = btrfs_ino(inode);
5112 	u32 found_type;
5113 	struct btrfs_path *path = NULL;
5114 	struct btrfs_root *root = BTRFS_I(inode)->root;
5115 	struct btrfs_file_extent_item *item;
5116 	struct extent_buffer *leaf;
5117 	struct btrfs_key found_key;
5118 	struct extent_map *em = NULL;
5119 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5120 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5121 	struct btrfs_trans_handle *trans = NULL;
5122 	int compress_type;
5123 
5124 again:
5125 	read_lock(&em_tree->lock);
5126 	em = lookup_extent_mapping(em_tree, start, len);
5127 	if (em)
5128 		em->bdev = root->fs_info->fs_devices->latest_bdev;
5129 	read_unlock(&em_tree->lock);
5130 
5131 	if (em) {
5132 		if (em->start > start || em->start + em->len <= start)
5133 			free_extent_map(em);
5134 		else if (em->block_start == EXTENT_MAP_INLINE && page)
5135 			free_extent_map(em);
5136 		else
5137 			goto out;
5138 	}
5139 	em = alloc_extent_map();
5140 	if (!em) {
5141 		err = -ENOMEM;
5142 		goto out;
5143 	}
5144 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5145 	em->start = EXTENT_MAP_HOLE;
5146 	em->orig_start = EXTENT_MAP_HOLE;
5147 	em->len = (u64)-1;
5148 	em->block_len = (u64)-1;
5149 
5150 	if (!path) {
5151 		path = btrfs_alloc_path();
5152 		if (!path) {
5153 			err = -ENOMEM;
5154 			goto out;
5155 		}
5156 		/*
5157 		 * Chances are we'll be called again, so go ahead and do
5158 		 * readahead
5159 		 */
5160 		path->reada = 1;
5161 	}
5162 
5163 	ret = btrfs_lookup_file_extent(trans, root, path,
5164 				       objectid, start, trans != NULL);
5165 	if (ret < 0) {
5166 		err = ret;
5167 		goto out;
5168 	}
5169 
5170 	if (ret != 0) {
5171 		if (path->slots[0] == 0)
5172 			goto not_found;
5173 		path->slots[0]--;
5174 	}
5175 
5176 	leaf = path->nodes[0];
5177 	item = btrfs_item_ptr(leaf, path->slots[0],
5178 			      struct btrfs_file_extent_item);
5179 	/* are we inside the extent that was found? */
5180 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5181 	found_type = btrfs_key_type(&found_key);
5182 	if (found_key.objectid != objectid ||
5183 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5184 		goto not_found;
5185 	}
5186 
5187 	found_type = btrfs_file_extent_type(leaf, item);
5188 	extent_start = found_key.offset;
5189 	compress_type = btrfs_file_extent_compression(leaf, item);
5190 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5191 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5192 		extent_end = extent_start +
5193 		       btrfs_file_extent_num_bytes(leaf, item);
5194 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5195 		size_t size;
5196 		size = btrfs_file_extent_inline_len(leaf, item);
5197 		extent_end = (extent_start + size + root->sectorsize - 1) &
5198 			~((u64)root->sectorsize - 1);
5199 	}
5200 
5201 	if (start >= extent_end) {
5202 		path->slots[0]++;
5203 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5204 			ret = btrfs_next_leaf(root, path);
5205 			if (ret < 0) {
5206 				err = ret;
5207 				goto out;
5208 			}
5209 			if (ret > 0)
5210 				goto not_found;
5211 			leaf = path->nodes[0];
5212 		}
5213 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5214 		if (found_key.objectid != objectid ||
5215 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5216 			goto not_found;
5217 		if (start + len <= found_key.offset)
5218 			goto not_found;
5219 		em->start = start;
5220 		em->len = found_key.offset - start;
5221 		goto not_found_em;
5222 	}
5223 
5224 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5225 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5226 		em->start = extent_start;
5227 		em->len = extent_end - extent_start;
5228 		em->orig_start = extent_start -
5229 				 btrfs_file_extent_offset(leaf, item);
5230 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5231 		if (bytenr == 0) {
5232 			em->block_start = EXTENT_MAP_HOLE;
5233 			goto insert;
5234 		}
5235 		if (compress_type != BTRFS_COMPRESS_NONE) {
5236 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5237 			em->compress_type = compress_type;
5238 			em->block_start = bytenr;
5239 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5240 									 item);
5241 		} else {
5242 			bytenr += btrfs_file_extent_offset(leaf, item);
5243 			em->block_start = bytenr;
5244 			em->block_len = em->len;
5245 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5246 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5247 		}
5248 		goto insert;
5249 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5250 		unsigned long ptr;
5251 		char *map;
5252 		size_t size;
5253 		size_t extent_offset;
5254 		size_t copy_size;
5255 
5256 		em->block_start = EXTENT_MAP_INLINE;
5257 		if (!page || create) {
5258 			em->start = extent_start;
5259 			em->len = extent_end - extent_start;
5260 			goto out;
5261 		}
5262 
5263 		size = btrfs_file_extent_inline_len(leaf, item);
5264 		extent_offset = page_offset(page) + pg_offset - extent_start;
5265 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5266 				size - extent_offset);
5267 		em->start = extent_start + extent_offset;
5268 		em->len = (copy_size + root->sectorsize - 1) &
5269 			~((u64)root->sectorsize - 1);
5270 		em->orig_start = EXTENT_MAP_INLINE;
5271 		if (compress_type) {
5272 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5273 			em->compress_type = compress_type;
5274 		}
5275 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5276 		if (create == 0 && !PageUptodate(page)) {
5277 			if (btrfs_file_extent_compression(leaf, item) !=
5278 			    BTRFS_COMPRESS_NONE) {
5279 				ret = uncompress_inline(path, inode, page,
5280 							pg_offset,
5281 							extent_offset, item);
5282 				BUG_ON(ret); /* -ENOMEM */
5283 			} else {
5284 				map = kmap(page);
5285 				read_extent_buffer(leaf, map + pg_offset, ptr,
5286 						   copy_size);
5287 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5288 					memset(map + pg_offset + copy_size, 0,
5289 					       PAGE_CACHE_SIZE - pg_offset -
5290 					       copy_size);
5291 				}
5292 				kunmap(page);
5293 			}
5294 			flush_dcache_page(page);
5295 		} else if (create && PageUptodate(page)) {
5296 			BUG();
5297 			if (!trans) {
5298 				kunmap(page);
5299 				free_extent_map(em);
5300 				em = NULL;
5301 
5302 				btrfs_release_path(path);
5303 				trans = btrfs_join_transaction(root);
5304 
5305 				if (IS_ERR(trans))
5306 					return ERR_CAST(trans);
5307 				goto again;
5308 			}
5309 			map = kmap(page);
5310 			write_extent_buffer(leaf, map + pg_offset, ptr,
5311 					    copy_size);
5312 			kunmap(page);
5313 			btrfs_mark_buffer_dirty(leaf);
5314 		}
5315 		set_extent_uptodate(io_tree, em->start,
5316 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
5317 		goto insert;
5318 	} else {
5319 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5320 		WARN_ON(1);
5321 	}
5322 not_found:
5323 	em->start = start;
5324 	em->len = len;
5325 not_found_em:
5326 	em->block_start = EXTENT_MAP_HOLE;
5327 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5328 insert:
5329 	btrfs_release_path(path);
5330 	if (em->start > start || extent_map_end(em) <= start) {
5331 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5332 		       "[%llu %llu]\n", (unsigned long long)em->start,
5333 		       (unsigned long long)em->len,
5334 		       (unsigned long long)start,
5335 		       (unsigned long long)len);
5336 		err = -EIO;
5337 		goto out;
5338 	}
5339 
5340 	err = 0;
5341 	write_lock(&em_tree->lock);
5342 	ret = add_extent_mapping(em_tree, em);
5343 	/* it is possible that someone inserted the extent into the tree
5344 	 * while we had the lock dropped.  It is also possible that
5345 	 * an overlapping map exists in the tree
5346 	 */
5347 	if (ret == -EEXIST) {
5348 		struct extent_map *existing;
5349 
5350 		ret = 0;
5351 
5352 		existing = lookup_extent_mapping(em_tree, start, len);
5353 		if (existing && (existing->start > start ||
5354 		    existing->start + existing->len <= start)) {
5355 			free_extent_map(existing);
5356 			existing = NULL;
5357 		}
5358 		if (!existing) {
5359 			existing = lookup_extent_mapping(em_tree, em->start,
5360 							 em->len);
5361 			if (existing) {
5362 				err = merge_extent_mapping(em_tree, existing,
5363 							   em, start,
5364 							   root->sectorsize);
5365 				free_extent_map(existing);
5366 				if (err) {
5367 					free_extent_map(em);
5368 					em = NULL;
5369 				}
5370 			} else {
5371 				err = -EIO;
5372 				free_extent_map(em);
5373 				em = NULL;
5374 			}
5375 		} else {
5376 			free_extent_map(em);
5377 			em = existing;
5378 			err = 0;
5379 		}
5380 	}
5381 	write_unlock(&em_tree->lock);
5382 out:
5383 
5384 	trace_btrfs_get_extent(root, em);
5385 
5386 	if (path)
5387 		btrfs_free_path(path);
5388 	if (trans) {
5389 		ret = btrfs_end_transaction(trans, root);
5390 		if (!err)
5391 			err = ret;
5392 	}
5393 	if (err) {
5394 		free_extent_map(em);
5395 		return ERR_PTR(err);
5396 	}
5397 	BUG_ON(!em); /* Error is always set */
5398 	return em;
5399 }
5400 
5401 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5402 					   size_t pg_offset, u64 start, u64 len,
5403 					   int create)
5404 {
5405 	struct extent_map *em;
5406 	struct extent_map *hole_em = NULL;
5407 	u64 range_start = start;
5408 	u64 end;
5409 	u64 found;
5410 	u64 found_end;
5411 	int err = 0;
5412 
5413 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5414 	if (IS_ERR(em))
5415 		return em;
5416 	if (em) {
5417 		/*
5418 		 * if our em maps to a hole, there might
5419 		 * actually be delalloc bytes behind it
5420 		 */
5421 		if (em->block_start != EXTENT_MAP_HOLE)
5422 			return em;
5423 		else
5424 			hole_em = em;
5425 	}
5426 
5427 	/* check to see if we've wrapped (len == -1 or similar) */
5428 	end = start + len;
5429 	if (end < start)
5430 		end = (u64)-1;
5431 	else
5432 		end -= 1;
5433 
5434 	em = NULL;
5435 
5436 	/* ok, we didn't find anything, lets look for delalloc */
5437 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5438 				 end, len, EXTENT_DELALLOC, 1);
5439 	found_end = range_start + found;
5440 	if (found_end < range_start)
5441 		found_end = (u64)-1;
5442 
5443 	/*
5444 	 * we didn't find anything useful, return
5445 	 * the original results from get_extent()
5446 	 */
5447 	if (range_start > end || found_end <= start) {
5448 		em = hole_em;
5449 		hole_em = NULL;
5450 		goto out;
5451 	}
5452 
5453 	/* adjust the range_start to make sure it doesn't
5454 	 * go backwards from the start they passed in
5455 	 */
5456 	range_start = max(start,range_start);
5457 	found = found_end - range_start;
5458 
5459 	if (found > 0) {
5460 		u64 hole_start = start;
5461 		u64 hole_len = len;
5462 
5463 		em = alloc_extent_map();
5464 		if (!em) {
5465 			err = -ENOMEM;
5466 			goto out;
5467 		}
5468 		/*
5469 		 * when btrfs_get_extent can't find anything it
5470 		 * returns one huge hole
5471 		 *
5472 		 * make sure what it found really fits our range, and
5473 		 * adjust to make sure it is based on the start from
5474 		 * the caller
5475 		 */
5476 		if (hole_em) {
5477 			u64 calc_end = extent_map_end(hole_em);
5478 
5479 			if (calc_end <= start || (hole_em->start > end)) {
5480 				free_extent_map(hole_em);
5481 				hole_em = NULL;
5482 			} else {
5483 				hole_start = max(hole_em->start, start);
5484 				hole_len = calc_end - hole_start;
5485 			}
5486 		}
5487 		em->bdev = NULL;
5488 		if (hole_em && range_start > hole_start) {
5489 			/* our hole starts before our delalloc, so we
5490 			 * have to return just the parts of the hole
5491 			 * that go until  the delalloc starts
5492 			 */
5493 			em->len = min(hole_len,
5494 				      range_start - hole_start);
5495 			em->start = hole_start;
5496 			em->orig_start = hole_start;
5497 			/*
5498 			 * don't adjust block start at all,
5499 			 * it is fixed at EXTENT_MAP_HOLE
5500 			 */
5501 			em->block_start = hole_em->block_start;
5502 			em->block_len = hole_len;
5503 		} else {
5504 			em->start = range_start;
5505 			em->len = found;
5506 			em->orig_start = range_start;
5507 			em->block_start = EXTENT_MAP_DELALLOC;
5508 			em->block_len = found;
5509 		}
5510 	} else if (hole_em) {
5511 		return hole_em;
5512 	}
5513 out:
5514 
5515 	free_extent_map(hole_em);
5516 	if (err) {
5517 		free_extent_map(em);
5518 		return ERR_PTR(err);
5519 	}
5520 	return em;
5521 }
5522 
5523 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5524 						  struct extent_map *em,
5525 						  u64 start, u64 len)
5526 {
5527 	struct btrfs_root *root = BTRFS_I(inode)->root;
5528 	struct btrfs_trans_handle *trans;
5529 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5530 	struct btrfs_key ins;
5531 	u64 alloc_hint;
5532 	int ret;
5533 	bool insert = false;
5534 
5535 	/*
5536 	 * Ok if the extent map we looked up is a hole and is for the exact
5537 	 * range we want, there is no reason to allocate a new one, however if
5538 	 * it is not right then we need to free this one and drop the cache for
5539 	 * our range.
5540 	 */
5541 	if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5542 	    em->len != len) {
5543 		free_extent_map(em);
5544 		em = NULL;
5545 		insert = true;
5546 		btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5547 	}
5548 
5549 	trans = btrfs_join_transaction(root);
5550 	if (IS_ERR(trans))
5551 		return ERR_CAST(trans);
5552 
5553 	if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5554 		btrfs_add_inode_defrag(trans, inode);
5555 
5556 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5557 
5558 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5559 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5560 				   alloc_hint, &ins, 1);
5561 	if (ret) {
5562 		em = ERR_PTR(ret);
5563 		goto out;
5564 	}
5565 
5566 	if (!em) {
5567 		em = alloc_extent_map();
5568 		if (!em) {
5569 			em = ERR_PTR(-ENOMEM);
5570 			goto out;
5571 		}
5572 	}
5573 
5574 	em->start = start;
5575 	em->orig_start = em->start;
5576 	em->len = ins.offset;
5577 
5578 	em->block_start = ins.objectid;
5579 	em->block_len = ins.offset;
5580 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5581 
5582 	/*
5583 	 * We need to do this because if we're using the original em we searched
5584 	 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5585 	 */
5586 	em->flags = 0;
5587 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5588 
5589 	while (insert) {
5590 		write_lock(&em_tree->lock);
5591 		ret = add_extent_mapping(em_tree, em);
5592 		write_unlock(&em_tree->lock);
5593 		if (ret != -EEXIST)
5594 			break;
5595 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5596 	}
5597 
5598 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5599 					   ins.offset, ins.offset, 0);
5600 	if (ret) {
5601 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5602 		em = ERR_PTR(ret);
5603 	}
5604 out:
5605 	btrfs_end_transaction(trans, root);
5606 	return em;
5607 }
5608 
5609 /*
5610  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5611  * block must be cow'd
5612  */
5613 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5614 				      struct inode *inode, u64 offset, u64 len)
5615 {
5616 	struct btrfs_path *path;
5617 	int ret;
5618 	struct extent_buffer *leaf;
5619 	struct btrfs_root *root = BTRFS_I(inode)->root;
5620 	struct btrfs_file_extent_item *fi;
5621 	struct btrfs_key key;
5622 	u64 disk_bytenr;
5623 	u64 backref_offset;
5624 	u64 extent_end;
5625 	u64 num_bytes;
5626 	int slot;
5627 	int found_type;
5628 
5629 	path = btrfs_alloc_path();
5630 	if (!path)
5631 		return -ENOMEM;
5632 
5633 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5634 				       offset, 0);
5635 	if (ret < 0)
5636 		goto out;
5637 
5638 	slot = path->slots[0];
5639 	if (ret == 1) {
5640 		if (slot == 0) {
5641 			/* can't find the item, must cow */
5642 			ret = 0;
5643 			goto out;
5644 		}
5645 		slot--;
5646 	}
5647 	ret = 0;
5648 	leaf = path->nodes[0];
5649 	btrfs_item_key_to_cpu(leaf, &key, slot);
5650 	if (key.objectid != btrfs_ino(inode) ||
5651 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5652 		/* not our file or wrong item type, must cow */
5653 		goto out;
5654 	}
5655 
5656 	if (key.offset > offset) {
5657 		/* Wrong offset, must cow */
5658 		goto out;
5659 	}
5660 
5661 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5662 	found_type = btrfs_file_extent_type(leaf, fi);
5663 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5664 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5665 		/* not a regular extent, must cow */
5666 		goto out;
5667 	}
5668 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5669 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5670 
5671 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5672 	if (extent_end < offset + len) {
5673 		/* extent doesn't include our full range, must cow */
5674 		goto out;
5675 	}
5676 
5677 	if (btrfs_extent_readonly(root, disk_bytenr))
5678 		goto out;
5679 
5680 	/*
5681 	 * look for other files referencing this extent, if we
5682 	 * find any we must cow
5683 	 */
5684 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5685 				  key.offset - backref_offset, disk_bytenr))
5686 		goto out;
5687 
5688 	/*
5689 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5690 	 * in this extent we are about to write.  If there
5691 	 * are any csums in that range we have to cow in order
5692 	 * to keep the csums correct
5693 	 */
5694 	disk_bytenr += backref_offset;
5695 	disk_bytenr += offset - key.offset;
5696 	num_bytes = min(offset + len, extent_end) - offset;
5697 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5698 				goto out;
5699 	/*
5700 	 * all of the above have passed, it is safe to overwrite this extent
5701 	 * without cow
5702 	 */
5703 	ret = 1;
5704 out:
5705 	btrfs_free_path(path);
5706 	return ret;
5707 }
5708 
5709 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5710 				   struct buffer_head *bh_result, int create)
5711 {
5712 	struct extent_map *em;
5713 	struct btrfs_root *root = BTRFS_I(inode)->root;
5714 	u64 start = iblock << inode->i_blkbits;
5715 	u64 len = bh_result->b_size;
5716 	struct btrfs_trans_handle *trans;
5717 
5718 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5719 	if (IS_ERR(em))
5720 		return PTR_ERR(em);
5721 
5722 	/*
5723 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5724 	 * io.  INLINE is special, and we could probably kludge it in here, but
5725 	 * it's still buffered so for safety lets just fall back to the generic
5726 	 * buffered path.
5727 	 *
5728 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5729 	 * decompress it, so there will be buffering required no matter what we
5730 	 * do, so go ahead and fallback to buffered.
5731 	 *
5732 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5733 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5734 	 * the generic code.
5735 	 */
5736 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5737 	    em->block_start == EXTENT_MAP_INLINE) {
5738 		free_extent_map(em);
5739 		return -ENOTBLK;
5740 	}
5741 
5742 	/* Just a good old fashioned hole, return */
5743 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5744 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5745 		free_extent_map(em);
5746 		/* DIO will do one hole at a time, so just unlock a sector */
5747 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5748 			      start + root->sectorsize - 1);
5749 		return 0;
5750 	}
5751 
5752 	/*
5753 	 * We don't allocate a new extent in the following cases
5754 	 *
5755 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5756 	 * existing extent.
5757 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5758 	 * just use the extent.
5759 	 *
5760 	 */
5761 	if (!create) {
5762 		len = em->len - (start - em->start);
5763 		goto map;
5764 	}
5765 
5766 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5767 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5768 	     em->block_start != EXTENT_MAP_HOLE)) {
5769 		int type;
5770 		int ret;
5771 		u64 block_start;
5772 
5773 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5774 			type = BTRFS_ORDERED_PREALLOC;
5775 		else
5776 			type = BTRFS_ORDERED_NOCOW;
5777 		len = min(len, em->len - (start - em->start));
5778 		block_start = em->block_start + (start - em->start);
5779 
5780 		/*
5781 		 * we're not going to log anything, but we do need
5782 		 * to make sure the current transaction stays open
5783 		 * while we look for nocow cross refs
5784 		 */
5785 		trans = btrfs_join_transaction(root);
5786 		if (IS_ERR(trans))
5787 			goto must_cow;
5788 
5789 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5790 			ret = btrfs_add_ordered_extent_dio(inode, start,
5791 					   block_start, len, len, type);
5792 			btrfs_end_transaction(trans, root);
5793 			if (ret) {
5794 				free_extent_map(em);
5795 				return ret;
5796 			}
5797 			goto unlock;
5798 		}
5799 		btrfs_end_transaction(trans, root);
5800 	}
5801 must_cow:
5802 	/*
5803 	 * this will cow the extent, reset the len in case we changed
5804 	 * it above
5805 	 */
5806 	len = bh_result->b_size;
5807 	em = btrfs_new_extent_direct(inode, em, start, len);
5808 	if (IS_ERR(em))
5809 		return PTR_ERR(em);
5810 	len = min(len, em->len - (start - em->start));
5811 unlock:
5812 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5813 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5814 			  0, NULL, GFP_NOFS);
5815 map:
5816 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5817 		inode->i_blkbits;
5818 	bh_result->b_size = len;
5819 	bh_result->b_bdev = em->bdev;
5820 	set_buffer_mapped(bh_result);
5821 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5822 		set_buffer_new(bh_result);
5823 
5824 	free_extent_map(em);
5825 
5826 	return 0;
5827 }
5828 
5829 struct btrfs_dio_private {
5830 	struct inode *inode;
5831 	u64 logical_offset;
5832 	u64 disk_bytenr;
5833 	u64 bytes;
5834 	u32 *csums;
5835 	void *private;
5836 
5837 	/* number of bios pending for this dio */
5838 	atomic_t pending_bios;
5839 
5840 	/* IO errors */
5841 	int errors;
5842 
5843 	struct bio *orig_bio;
5844 };
5845 
5846 static void btrfs_endio_direct_read(struct bio *bio, int err)
5847 {
5848 	struct btrfs_dio_private *dip = bio->bi_private;
5849 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5850 	struct bio_vec *bvec = bio->bi_io_vec;
5851 	struct inode *inode = dip->inode;
5852 	struct btrfs_root *root = BTRFS_I(inode)->root;
5853 	u64 start;
5854 	u32 *private = dip->csums;
5855 
5856 	start = dip->logical_offset;
5857 	do {
5858 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5859 			struct page *page = bvec->bv_page;
5860 			char *kaddr;
5861 			u32 csum = ~(u32)0;
5862 			unsigned long flags;
5863 
5864 			local_irq_save(flags);
5865 			kaddr = kmap_atomic(page);
5866 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5867 					       csum, bvec->bv_len);
5868 			btrfs_csum_final(csum, (char *)&csum);
5869 			kunmap_atomic(kaddr);
5870 			local_irq_restore(flags);
5871 
5872 			flush_dcache_page(bvec->bv_page);
5873 			if (csum != *private) {
5874 				printk(KERN_ERR "btrfs csum failed ino %llu off"
5875 				      " %llu csum %u private %u\n",
5876 				      (unsigned long long)btrfs_ino(inode),
5877 				      (unsigned long long)start,
5878 				      csum, *private);
5879 				err = -EIO;
5880 			}
5881 		}
5882 
5883 		start += bvec->bv_len;
5884 		private++;
5885 		bvec++;
5886 	} while (bvec <= bvec_end);
5887 
5888 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5889 		      dip->logical_offset + dip->bytes - 1);
5890 	bio->bi_private = dip->private;
5891 
5892 	kfree(dip->csums);
5893 	kfree(dip);
5894 
5895 	/* If we had a csum failure make sure to clear the uptodate flag */
5896 	if (err)
5897 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5898 	dio_end_io(bio, err);
5899 }
5900 
5901 static void btrfs_endio_direct_write(struct bio *bio, int err)
5902 {
5903 	struct btrfs_dio_private *dip = bio->bi_private;
5904 	struct inode *inode = dip->inode;
5905 	struct btrfs_root *root = BTRFS_I(inode)->root;
5906 	struct btrfs_trans_handle *trans;
5907 	struct btrfs_ordered_extent *ordered = NULL;
5908 	struct extent_state *cached_state = NULL;
5909 	u64 ordered_offset = dip->logical_offset;
5910 	u64 ordered_bytes = dip->bytes;
5911 	int ret;
5912 
5913 	if (err)
5914 		goto out_done;
5915 again:
5916 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5917 						   &ordered_offset,
5918 						   ordered_bytes);
5919 	if (!ret)
5920 		goto out_test;
5921 
5922 	BUG_ON(!ordered);
5923 
5924 	trans = btrfs_join_transaction(root);
5925 	if (IS_ERR(trans)) {
5926 		err = -ENOMEM;
5927 		goto out;
5928 	}
5929 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5930 
5931 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5932 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5933 		if (!ret)
5934 			err = btrfs_update_inode_fallback(trans, root, inode);
5935 		goto out;
5936 	}
5937 
5938 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5939 			 ordered->file_offset + ordered->len - 1, 0,
5940 			 &cached_state);
5941 
5942 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5943 		ret = btrfs_mark_extent_written(trans, inode,
5944 						ordered->file_offset,
5945 						ordered->file_offset +
5946 						ordered->len);
5947 		if (ret) {
5948 			err = ret;
5949 			goto out_unlock;
5950 		}
5951 	} else {
5952 		ret = insert_reserved_file_extent(trans, inode,
5953 						  ordered->file_offset,
5954 						  ordered->start,
5955 						  ordered->disk_len,
5956 						  ordered->len,
5957 						  ordered->len,
5958 						  0, 0, 0,
5959 						  BTRFS_FILE_EXTENT_REG);
5960 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5961 				   ordered->file_offset, ordered->len);
5962 		if (ret) {
5963 			err = ret;
5964 			WARN_ON(1);
5965 			goto out_unlock;
5966 		}
5967 	}
5968 
5969 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5970 	ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5971 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
5972 		btrfs_update_inode_fallback(trans, root, inode);
5973 	ret = 0;
5974 out_unlock:
5975 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5976 			     ordered->file_offset + ordered->len - 1,
5977 			     &cached_state, GFP_NOFS);
5978 out:
5979 	btrfs_delalloc_release_metadata(inode, ordered->len);
5980 	btrfs_end_transaction(trans, root);
5981 	ordered_offset = ordered->file_offset + ordered->len;
5982 	btrfs_put_ordered_extent(ordered);
5983 	btrfs_put_ordered_extent(ordered);
5984 
5985 out_test:
5986 	/*
5987 	 * our bio might span multiple ordered extents.  If we haven't
5988 	 * completed the accounting for the whole dio, go back and try again
5989 	 */
5990 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5991 		ordered_bytes = dip->logical_offset + dip->bytes -
5992 			ordered_offset;
5993 		goto again;
5994 	}
5995 out_done:
5996 	bio->bi_private = dip->private;
5997 
5998 	kfree(dip->csums);
5999 	kfree(dip);
6000 
6001 	/* If we had an error make sure to clear the uptodate flag */
6002 	if (err)
6003 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
6004 	dio_end_io(bio, err);
6005 }
6006 
6007 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6008 				    struct bio *bio, int mirror_num,
6009 				    unsigned long bio_flags, u64 offset)
6010 {
6011 	int ret;
6012 	struct btrfs_root *root = BTRFS_I(inode)->root;
6013 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6014 	BUG_ON(ret); /* -ENOMEM */
6015 	return 0;
6016 }
6017 
6018 static void btrfs_end_dio_bio(struct bio *bio, int err)
6019 {
6020 	struct btrfs_dio_private *dip = bio->bi_private;
6021 
6022 	if (err) {
6023 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6024 		      "sector %#Lx len %u err no %d\n",
6025 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6026 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
6027 		dip->errors = 1;
6028 
6029 		/*
6030 		 * before atomic variable goto zero, we must make sure
6031 		 * dip->errors is perceived to be set.
6032 		 */
6033 		smp_mb__before_atomic_dec();
6034 	}
6035 
6036 	/* if there are more bios still pending for this dio, just exit */
6037 	if (!atomic_dec_and_test(&dip->pending_bios))
6038 		goto out;
6039 
6040 	if (dip->errors)
6041 		bio_io_error(dip->orig_bio);
6042 	else {
6043 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6044 		bio_endio(dip->orig_bio, 0);
6045 	}
6046 out:
6047 	bio_put(bio);
6048 }
6049 
6050 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6051 				       u64 first_sector, gfp_t gfp_flags)
6052 {
6053 	int nr_vecs = bio_get_nr_vecs(bdev);
6054 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6055 }
6056 
6057 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6058 					 int rw, u64 file_offset, int skip_sum,
6059 					 u32 *csums, int async_submit)
6060 {
6061 	int write = rw & REQ_WRITE;
6062 	struct btrfs_root *root = BTRFS_I(inode)->root;
6063 	int ret;
6064 
6065 	bio_get(bio);
6066 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6067 	if (ret)
6068 		goto err;
6069 
6070 	if (skip_sum)
6071 		goto map;
6072 
6073 	if (write && async_submit) {
6074 		ret = btrfs_wq_submit_bio(root->fs_info,
6075 				   inode, rw, bio, 0, 0,
6076 				   file_offset,
6077 				   __btrfs_submit_bio_start_direct_io,
6078 				   __btrfs_submit_bio_done);
6079 		goto err;
6080 	} else if (write) {
6081 		/*
6082 		 * If we aren't doing async submit, calculate the csum of the
6083 		 * bio now.
6084 		 */
6085 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6086 		if (ret)
6087 			goto err;
6088 	} else if (!skip_sum) {
6089 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
6090 					  file_offset, csums);
6091 		if (ret)
6092 			goto err;
6093 	}
6094 
6095 map:
6096 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6097 err:
6098 	bio_put(bio);
6099 	return ret;
6100 }
6101 
6102 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6103 				    int skip_sum)
6104 {
6105 	struct inode *inode = dip->inode;
6106 	struct btrfs_root *root = BTRFS_I(inode)->root;
6107 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6108 	struct bio *bio;
6109 	struct bio *orig_bio = dip->orig_bio;
6110 	struct bio_vec *bvec = orig_bio->bi_io_vec;
6111 	u64 start_sector = orig_bio->bi_sector;
6112 	u64 file_offset = dip->logical_offset;
6113 	u64 submit_len = 0;
6114 	u64 map_length;
6115 	int nr_pages = 0;
6116 	u32 *csums = dip->csums;
6117 	int ret = 0;
6118 	int async_submit = 0;
6119 	int write = rw & REQ_WRITE;
6120 
6121 	map_length = orig_bio->bi_size;
6122 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6123 			      &map_length, NULL, 0);
6124 	if (ret) {
6125 		bio_put(orig_bio);
6126 		return -EIO;
6127 	}
6128 
6129 	if (map_length >= orig_bio->bi_size) {
6130 		bio = orig_bio;
6131 		goto submit;
6132 	}
6133 
6134 	async_submit = 1;
6135 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6136 	if (!bio)
6137 		return -ENOMEM;
6138 	bio->bi_private = dip;
6139 	bio->bi_end_io = btrfs_end_dio_bio;
6140 	atomic_inc(&dip->pending_bios);
6141 
6142 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6143 		if (unlikely(map_length < submit_len + bvec->bv_len ||
6144 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6145 				 bvec->bv_offset) < bvec->bv_len)) {
6146 			/*
6147 			 * inc the count before we submit the bio so
6148 			 * we know the end IO handler won't happen before
6149 			 * we inc the count. Otherwise, the dip might get freed
6150 			 * before we're done setting it up
6151 			 */
6152 			atomic_inc(&dip->pending_bios);
6153 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
6154 						     file_offset, skip_sum,
6155 						     csums, async_submit);
6156 			if (ret) {
6157 				bio_put(bio);
6158 				atomic_dec(&dip->pending_bios);
6159 				goto out_err;
6160 			}
6161 
6162 			/* Write's use the ordered csums */
6163 			if (!write && !skip_sum)
6164 				csums = csums + nr_pages;
6165 			start_sector += submit_len >> 9;
6166 			file_offset += submit_len;
6167 
6168 			submit_len = 0;
6169 			nr_pages = 0;
6170 
6171 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6172 						  start_sector, GFP_NOFS);
6173 			if (!bio)
6174 				goto out_err;
6175 			bio->bi_private = dip;
6176 			bio->bi_end_io = btrfs_end_dio_bio;
6177 
6178 			map_length = orig_bio->bi_size;
6179 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6180 					      &map_length, NULL, 0);
6181 			if (ret) {
6182 				bio_put(bio);
6183 				goto out_err;
6184 			}
6185 		} else {
6186 			submit_len += bvec->bv_len;
6187 			nr_pages ++;
6188 			bvec++;
6189 		}
6190 	}
6191 
6192 submit:
6193 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6194 				     csums, async_submit);
6195 	if (!ret)
6196 		return 0;
6197 
6198 	bio_put(bio);
6199 out_err:
6200 	dip->errors = 1;
6201 	/*
6202 	 * before atomic variable goto zero, we must
6203 	 * make sure dip->errors is perceived to be set.
6204 	 */
6205 	smp_mb__before_atomic_dec();
6206 	if (atomic_dec_and_test(&dip->pending_bios))
6207 		bio_io_error(dip->orig_bio);
6208 
6209 	/* bio_end_io() will handle error, so we needn't return it */
6210 	return 0;
6211 }
6212 
6213 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6214 				loff_t file_offset)
6215 {
6216 	struct btrfs_root *root = BTRFS_I(inode)->root;
6217 	struct btrfs_dio_private *dip;
6218 	struct bio_vec *bvec = bio->bi_io_vec;
6219 	int skip_sum;
6220 	int write = rw & REQ_WRITE;
6221 	int ret = 0;
6222 
6223 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6224 
6225 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
6226 	if (!dip) {
6227 		ret = -ENOMEM;
6228 		goto free_ordered;
6229 	}
6230 	dip->csums = NULL;
6231 
6232 	/* Write's use the ordered csum stuff, so we don't need dip->csums */
6233 	if (!write && !skip_sum) {
6234 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6235 		if (!dip->csums) {
6236 			kfree(dip);
6237 			ret = -ENOMEM;
6238 			goto free_ordered;
6239 		}
6240 	}
6241 
6242 	dip->private = bio->bi_private;
6243 	dip->inode = inode;
6244 	dip->logical_offset = file_offset;
6245 
6246 	dip->bytes = 0;
6247 	do {
6248 		dip->bytes += bvec->bv_len;
6249 		bvec++;
6250 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6251 
6252 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
6253 	bio->bi_private = dip;
6254 	dip->errors = 0;
6255 	dip->orig_bio = bio;
6256 	atomic_set(&dip->pending_bios, 0);
6257 
6258 	if (write)
6259 		bio->bi_end_io = btrfs_endio_direct_write;
6260 	else
6261 		bio->bi_end_io = btrfs_endio_direct_read;
6262 
6263 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6264 	if (!ret)
6265 		return;
6266 free_ordered:
6267 	/*
6268 	 * If this is a write, we need to clean up the reserved space and kill
6269 	 * the ordered extent.
6270 	 */
6271 	if (write) {
6272 		struct btrfs_ordered_extent *ordered;
6273 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6274 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6275 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6276 			btrfs_free_reserved_extent(root, ordered->start,
6277 						   ordered->disk_len);
6278 		btrfs_put_ordered_extent(ordered);
6279 		btrfs_put_ordered_extent(ordered);
6280 	}
6281 	bio_endio(bio, ret);
6282 }
6283 
6284 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6285 			const struct iovec *iov, loff_t offset,
6286 			unsigned long nr_segs)
6287 {
6288 	int seg;
6289 	int i;
6290 	size_t size;
6291 	unsigned long addr;
6292 	unsigned blocksize_mask = root->sectorsize - 1;
6293 	ssize_t retval = -EINVAL;
6294 	loff_t end = offset;
6295 
6296 	if (offset & blocksize_mask)
6297 		goto out;
6298 
6299 	/* Check the memory alignment.  Blocks cannot straddle pages */
6300 	for (seg = 0; seg < nr_segs; seg++) {
6301 		addr = (unsigned long)iov[seg].iov_base;
6302 		size = iov[seg].iov_len;
6303 		end += size;
6304 		if ((addr & blocksize_mask) || (size & blocksize_mask))
6305 			goto out;
6306 
6307 		/* If this is a write we don't need to check anymore */
6308 		if (rw & WRITE)
6309 			continue;
6310 
6311 		/*
6312 		 * Check to make sure we don't have duplicate iov_base's in this
6313 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
6314 		 * when reading back.
6315 		 */
6316 		for (i = seg + 1; i < nr_segs; i++) {
6317 			if (iov[seg].iov_base == iov[i].iov_base)
6318 				goto out;
6319 		}
6320 	}
6321 	retval = 0;
6322 out:
6323 	return retval;
6324 }
6325 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6326 			const struct iovec *iov, loff_t offset,
6327 			unsigned long nr_segs)
6328 {
6329 	struct file *file = iocb->ki_filp;
6330 	struct inode *inode = file->f_mapping->host;
6331 	struct btrfs_ordered_extent *ordered;
6332 	struct extent_state *cached_state = NULL;
6333 	u64 lockstart, lockend;
6334 	ssize_t ret;
6335 	int writing = rw & WRITE;
6336 	int write_bits = 0;
6337 	size_t count = iov_length(iov, nr_segs);
6338 
6339 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6340 			    offset, nr_segs)) {
6341 		return 0;
6342 	}
6343 
6344 	lockstart = offset;
6345 	lockend = offset + count - 1;
6346 
6347 	if (writing) {
6348 		ret = btrfs_delalloc_reserve_space(inode, count);
6349 		if (ret)
6350 			goto out;
6351 	}
6352 
6353 	while (1) {
6354 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6355 				 0, &cached_state);
6356 		/*
6357 		 * We're concerned with the entire range that we're going to be
6358 		 * doing DIO to, so we need to make sure theres no ordered
6359 		 * extents in this range.
6360 		 */
6361 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6362 						     lockend - lockstart + 1);
6363 		if (!ordered)
6364 			break;
6365 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6366 				     &cached_state, GFP_NOFS);
6367 		btrfs_start_ordered_extent(inode, ordered, 1);
6368 		btrfs_put_ordered_extent(ordered);
6369 		cond_resched();
6370 	}
6371 
6372 	/*
6373 	 * we don't use btrfs_set_extent_delalloc because we don't want
6374 	 * the dirty or uptodate bits
6375 	 */
6376 	if (writing) {
6377 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6378 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6379 				     EXTENT_DELALLOC, NULL, &cached_state,
6380 				     GFP_NOFS);
6381 		if (ret) {
6382 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6383 					 lockend, EXTENT_LOCKED | write_bits,
6384 					 1, 0, &cached_state, GFP_NOFS);
6385 			goto out;
6386 		}
6387 	}
6388 
6389 	free_extent_state(cached_state);
6390 	cached_state = NULL;
6391 
6392 	ret = __blockdev_direct_IO(rw, iocb, inode,
6393 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6394 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6395 		   btrfs_submit_direct, 0);
6396 
6397 	if (ret < 0 && ret != -EIOCBQUEUED) {
6398 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6399 			      offset + iov_length(iov, nr_segs) - 1,
6400 			      EXTENT_LOCKED | write_bits, 1, 0,
6401 			      &cached_state, GFP_NOFS);
6402 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6403 		/*
6404 		 * We're falling back to buffered, unlock the section we didn't
6405 		 * do IO on.
6406 		 */
6407 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6408 			      offset + iov_length(iov, nr_segs) - 1,
6409 			      EXTENT_LOCKED | write_bits, 1, 0,
6410 			      &cached_state, GFP_NOFS);
6411 	}
6412 out:
6413 	free_extent_state(cached_state);
6414 	return ret;
6415 }
6416 
6417 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6418 		__u64 start, __u64 len)
6419 {
6420 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6421 }
6422 
6423 int btrfs_readpage(struct file *file, struct page *page)
6424 {
6425 	struct extent_io_tree *tree;
6426 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6427 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6428 }
6429 
6430 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6431 {
6432 	struct extent_io_tree *tree;
6433 
6434 
6435 	if (current->flags & PF_MEMALLOC) {
6436 		redirty_page_for_writepage(wbc, page);
6437 		unlock_page(page);
6438 		return 0;
6439 	}
6440 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6441 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6442 }
6443 
6444 int btrfs_writepages(struct address_space *mapping,
6445 		     struct writeback_control *wbc)
6446 {
6447 	struct extent_io_tree *tree;
6448 
6449 	tree = &BTRFS_I(mapping->host)->io_tree;
6450 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6451 }
6452 
6453 static int
6454 btrfs_readpages(struct file *file, struct address_space *mapping,
6455 		struct list_head *pages, unsigned nr_pages)
6456 {
6457 	struct extent_io_tree *tree;
6458 	tree = &BTRFS_I(mapping->host)->io_tree;
6459 	return extent_readpages(tree, mapping, pages, nr_pages,
6460 				btrfs_get_extent);
6461 }
6462 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6463 {
6464 	struct extent_io_tree *tree;
6465 	struct extent_map_tree *map;
6466 	int ret;
6467 
6468 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6469 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6470 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6471 	if (ret == 1) {
6472 		ClearPagePrivate(page);
6473 		set_page_private(page, 0);
6474 		page_cache_release(page);
6475 	}
6476 	return ret;
6477 }
6478 
6479 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6480 {
6481 	if (PageWriteback(page) || PageDirty(page))
6482 		return 0;
6483 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6484 }
6485 
6486 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6487 {
6488 	struct extent_io_tree *tree;
6489 	struct btrfs_ordered_extent *ordered;
6490 	struct extent_state *cached_state = NULL;
6491 	u64 page_start = page_offset(page);
6492 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6493 
6494 
6495 	/*
6496 	 * we have the page locked, so new writeback can't start,
6497 	 * and the dirty bit won't be cleared while we are here.
6498 	 *
6499 	 * Wait for IO on this page so that we can safely clear
6500 	 * the PagePrivate2 bit and do ordered accounting
6501 	 */
6502 	wait_on_page_writeback(page);
6503 
6504 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6505 	if (offset) {
6506 		btrfs_releasepage(page, GFP_NOFS);
6507 		return;
6508 	}
6509 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6510 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6511 					   page_offset(page));
6512 	if (ordered) {
6513 		/*
6514 		 * IO on this page will never be started, so we need
6515 		 * to account for any ordered extents now
6516 		 */
6517 		clear_extent_bit(tree, page_start, page_end,
6518 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6519 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6520 				 &cached_state, GFP_NOFS);
6521 		/*
6522 		 * whoever cleared the private bit is responsible
6523 		 * for the finish_ordered_io
6524 		 */
6525 		if (TestClearPagePrivate2(page)) {
6526 			btrfs_finish_ordered_io(page->mapping->host,
6527 						page_start, page_end);
6528 		}
6529 		btrfs_put_ordered_extent(ordered);
6530 		cached_state = NULL;
6531 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6532 	}
6533 	clear_extent_bit(tree, page_start, page_end,
6534 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6535 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6536 	__btrfs_releasepage(page, GFP_NOFS);
6537 
6538 	ClearPageChecked(page);
6539 	if (PagePrivate(page)) {
6540 		ClearPagePrivate(page);
6541 		set_page_private(page, 0);
6542 		page_cache_release(page);
6543 	}
6544 }
6545 
6546 /*
6547  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6548  * called from a page fault handler when a page is first dirtied. Hence we must
6549  * be careful to check for EOF conditions here. We set the page up correctly
6550  * for a written page which means we get ENOSPC checking when writing into
6551  * holes and correct delalloc and unwritten extent mapping on filesystems that
6552  * support these features.
6553  *
6554  * We are not allowed to take the i_mutex here so we have to play games to
6555  * protect against truncate races as the page could now be beyond EOF.  Because
6556  * vmtruncate() writes the inode size before removing pages, once we have the
6557  * page lock we can determine safely if the page is beyond EOF. If it is not
6558  * beyond EOF, then the page is guaranteed safe against truncation until we
6559  * unlock the page.
6560  */
6561 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6562 {
6563 	struct page *page = vmf->page;
6564 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6565 	struct btrfs_root *root = BTRFS_I(inode)->root;
6566 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6567 	struct btrfs_ordered_extent *ordered;
6568 	struct extent_state *cached_state = NULL;
6569 	char *kaddr;
6570 	unsigned long zero_start;
6571 	loff_t size;
6572 	int ret;
6573 	int reserved = 0;
6574 	u64 page_start;
6575 	u64 page_end;
6576 
6577 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6578 	if (!ret) {
6579 		ret = btrfs_update_time(vma->vm_file);
6580 		reserved = 1;
6581 	}
6582 	if (ret) {
6583 		if (ret == -ENOMEM)
6584 			ret = VM_FAULT_OOM;
6585 		else /* -ENOSPC, -EIO, etc */
6586 			ret = VM_FAULT_SIGBUS;
6587 		if (reserved)
6588 			goto out;
6589 		goto out_noreserve;
6590 	}
6591 
6592 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6593 again:
6594 	lock_page(page);
6595 	size = i_size_read(inode);
6596 	page_start = page_offset(page);
6597 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6598 
6599 	if ((page->mapping != inode->i_mapping) ||
6600 	    (page_start >= size)) {
6601 		/* page got truncated out from underneath us */
6602 		goto out_unlock;
6603 	}
6604 	wait_on_page_writeback(page);
6605 
6606 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6607 	set_page_extent_mapped(page);
6608 
6609 	/*
6610 	 * we can't set the delalloc bits if there are pending ordered
6611 	 * extents.  Drop our locks and wait for them to finish
6612 	 */
6613 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6614 	if (ordered) {
6615 		unlock_extent_cached(io_tree, page_start, page_end,
6616 				     &cached_state, GFP_NOFS);
6617 		unlock_page(page);
6618 		btrfs_start_ordered_extent(inode, ordered, 1);
6619 		btrfs_put_ordered_extent(ordered);
6620 		goto again;
6621 	}
6622 
6623 	/*
6624 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6625 	 * if it was already dirty, so for space accounting reasons we need to
6626 	 * clear any delalloc bits for the range we are fixing to save.  There
6627 	 * is probably a better way to do this, but for now keep consistent with
6628 	 * prepare_pages in the normal write path.
6629 	 */
6630 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6631 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6632 			  0, 0, &cached_state, GFP_NOFS);
6633 
6634 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6635 					&cached_state);
6636 	if (ret) {
6637 		unlock_extent_cached(io_tree, page_start, page_end,
6638 				     &cached_state, GFP_NOFS);
6639 		ret = VM_FAULT_SIGBUS;
6640 		goto out_unlock;
6641 	}
6642 	ret = 0;
6643 
6644 	/* page is wholly or partially inside EOF */
6645 	if (page_start + PAGE_CACHE_SIZE > size)
6646 		zero_start = size & ~PAGE_CACHE_MASK;
6647 	else
6648 		zero_start = PAGE_CACHE_SIZE;
6649 
6650 	if (zero_start != PAGE_CACHE_SIZE) {
6651 		kaddr = kmap(page);
6652 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6653 		flush_dcache_page(page);
6654 		kunmap(page);
6655 	}
6656 	ClearPageChecked(page);
6657 	set_page_dirty(page);
6658 	SetPageUptodate(page);
6659 
6660 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6661 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6662 
6663 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6664 
6665 out_unlock:
6666 	if (!ret)
6667 		return VM_FAULT_LOCKED;
6668 	unlock_page(page);
6669 out:
6670 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6671 out_noreserve:
6672 	return ret;
6673 }
6674 
6675 static int btrfs_truncate(struct inode *inode)
6676 {
6677 	struct btrfs_root *root = BTRFS_I(inode)->root;
6678 	struct btrfs_block_rsv *rsv;
6679 	int ret;
6680 	int err = 0;
6681 	struct btrfs_trans_handle *trans;
6682 	unsigned long nr;
6683 	u64 mask = root->sectorsize - 1;
6684 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6685 
6686 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6687 	if (ret)
6688 		return ret;
6689 
6690 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6691 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6692 
6693 	/*
6694 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6695 	 * 3 things going on here
6696 	 *
6697 	 * 1) We need to reserve space for our orphan item and the space to
6698 	 * delete our orphan item.  Lord knows we don't want to have a dangling
6699 	 * orphan item because we didn't reserve space to remove it.
6700 	 *
6701 	 * 2) We need to reserve space to update our inode.
6702 	 *
6703 	 * 3) We need to have something to cache all the space that is going to
6704 	 * be free'd up by the truncate operation, but also have some slack
6705 	 * space reserved in case it uses space during the truncate (thank you
6706 	 * very much snapshotting).
6707 	 *
6708 	 * And we need these to all be seperate.  The fact is we can use alot of
6709 	 * space doing the truncate, and we have no earthly idea how much space
6710 	 * we will use, so we need the truncate reservation to be seperate so it
6711 	 * doesn't end up using space reserved for updating the inode or
6712 	 * removing the orphan item.  We also need to be able to stop the
6713 	 * transaction and start a new one, which means we need to be able to
6714 	 * update the inode several times, and we have no idea of knowing how
6715 	 * many times that will be, so we can't just reserve 1 item for the
6716 	 * entirety of the opration, so that has to be done seperately as well.
6717 	 * Then there is the orphan item, which does indeed need to be held on
6718 	 * to for the whole operation, and we need nobody to touch this reserved
6719 	 * space except the orphan code.
6720 	 *
6721 	 * So that leaves us with
6722 	 *
6723 	 * 1) root->orphan_block_rsv - for the orphan deletion.
6724 	 * 2) rsv - for the truncate reservation, which we will steal from the
6725 	 * transaction reservation.
6726 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6727 	 * updating the inode.
6728 	 */
6729 	rsv = btrfs_alloc_block_rsv(root);
6730 	if (!rsv)
6731 		return -ENOMEM;
6732 	rsv->size = min_size;
6733 
6734 	/*
6735 	 * 1 for the truncate slack space
6736 	 * 1 for the orphan item we're going to add
6737 	 * 1 for the orphan item deletion
6738 	 * 1 for updating the inode.
6739 	 */
6740 	trans = btrfs_start_transaction(root, 4);
6741 	if (IS_ERR(trans)) {
6742 		err = PTR_ERR(trans);
6743 		goto out;
6744 	}
6745 
6746 	/* Migrate the slack space for the truncate to our reserve */
6747 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6748 				      min_size);
6749 	BUG_ON(ret);
6750 
6751 	ret = btrfs_orphan_add(trans, inode);
6752 	if (ret) {
6753 		btrfs_end_transaction(trans, root);
6754 		goto out;
6755 	}
6756 
6757 	/*
6758 	 * setattr is responsible for setting the ordered_data_close flag,
6759 	 * but that is only tested during the last file release.  That
6760 	 * could happen well after the next commit, leaving a great big
6761 	 * window where new writes may get lost if someone chooses to write
6762 	 * to this file after truncating to zero
6763 	 *
6764 	 * The inode doesn't have any dirty data here, and so if we commit
6765 	 * this is a noop.  If someone immediately starts writing to the inode
6766 	 * it is very likely we'll catch some of their writes in this
6767 	 * transaction, and the commit will find this file on the ordered
6768 	 * data list with good things to send down.
6769 	 *
6770 	 * This is a best effort solution, there is still a window where
6771 	 * using truncate to replace the contents of the file will
6772 	 * end up with a zero length file after a crash.
6773 	 */
6774 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6775 		btrfs_add_ordered_operation(trans, root, inode);
6776 
6777 	while (1) {
6778 		ret = btrfs_block_rsv_refill(root, rsv, min_size);
6779 		if (ret) {
6780 			/*
6781 			 * This can only happen with the original transaction we
6782 			 * started above, every other time we shouldn't have a
6783 			 * transaction started yet.
6784 			 */
6785 			if (ret == -EAGAIN)
6786 				goto end_trans;
6787 			err = ret;
6788 			break;
6789 		}
6790 
6791 		if (!trans) {
6792 			/* Just need the 1 for updating the inode */
6793 			trans = btrfs_start_transaction(root, 1);
6794 			if (IS_ERR(trans)) {
6795 				ret = err = PTR_ERR(trans);
6796 				trans = NULL;
6797 				break;
6798 			}
6799 		}
6800 
6801 		trans->block_rsv = rsv;
6802 
6803 		ret = btrfs_truncate_inode_items(trans, root, inode,
6804 						 inode->i_size,
6805 						 BTRFS_EXTENT_DATA_KEY);
6806 		if (ret != -EAGAIN) {
6807 			err = ret;
6808 			break;
6809 		}
6810 
6811 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6812 		ret = btrfs_update_inode(trans, root, inode);
6813 		if (ret) {
6814 			err = ret;
6815 			break;
6816 		}
6817 end_trans:
6818 		nr = trans->blocks_used;
6819 		btrfs_end_transaction(trans, root);
6820 		trans = NULL;
6821 		btrfs_btree_balance_dirty(root, nr);
6822 	}
6823 
6824 	if (ret == 0 && inode->i_nlink > 0) {
6825 		trans->block_rsv = root->orphan_block_rsv;
6826 		ret = btrfs_orphan_del(trans, inode);
6827 		if (ret)
6828 			err = ret;
6829 	} else if (ret && inode->i_nlink > 0) {
6830 		/*
6831 		 * Failed to do the truncate, remove us from the in memory
6832 		 * orphan list.
6833 		 */
6834 		ret = btrfs_orphan_del(NULL, inode);
6835 	}
6836 
6837 	if (trans) {
6838 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6839 		ret = btrfs_update_inode(trans, root, inode);
6840 		if (ret && !err)
6841 			err = ret;
6842 
6843 		nr = trans->blocks_used;
6844 		ret = btrfs_end_transaction(trans, root);
6845 		btrfs_btree_balance_dirty(root, nr);
6846 	}
6847 
6848 out:
6849 	btrfs_free_block_rsv(root, rsv);
6850 
6851 	if (ret && !err)
6852 		err = ret;
6853 
6854 	return err;
6855 }
6856 
6857 /*
6858  * create a new subvolume directory/inode (helper for the ioctl).
6859  */
6860 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6861 			     struct btrfs_root *new_root, u64 new_dirid)
6862 {
6863 	struct inode *inode;
6864 	int err;
6865 	u64 index = 0;
6866 
6867 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6868 				new_dirid, new_dirid,
6869 				S_IFDIR | (~current_umask() & S_IRWXUGO),
6870 				&index);
6871 	if (IS_ERR(inode))
6872 		return PTR_ERR(inode);
6873 	inode->i_op = &btrfs_dir_inode_operations;
6874 	inode->i_fop = &btrfs_dir_file_operations;
6875 
6876 	set_nlink(inode, 1);
6877 	btrfs_i_size_write(inode, 0);
6878 
6879 	err = btrfs_update_inode(trans, new_root, inode);
6880 
6881 	iput(inode);
6882 	return err;
6883 }
6884 
6885 struct inode *btrfs_alloc_inode(struct super_block *sb)
6886 {
6887 	struct btrfs_inode *ei;
6888 	struct inode *inode;
6889 
6890 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6891 	if (!ei)
6892 		return NULL;
6893 
6894 	ei->root = NULL;
6895 	ei->space_info = NULL;
6896 	ei->generation = 0;
6897 	ei->sequence = 0;
6898 	ei->last_trans = 0;
6899 	ei->last_sub_trans = 0;
6900 	ei->logged_trans = 0;
6901 	ei->delalloc_bytes = 0;
6902 	ei->disk_i_size = 0;
6903 	ei->flags = 0;
6904 	ei->csum_bytes = 0;
6905 	ei->index_cnt = (u64)-1;
6906 	ei->last_unlink_trans = 0;
6907 
6908 	spin_lock_init(&ei->lock);
6909 	ei->outstanding_extents = 0;
6910 	ei->reserved_extents = 0;
6911 
6912 	ei->ordered_data_close = 0;
6913 	ei->orphan_meta_reserved = 0;
6914 	ei->dummy_inode = 0;
6915 	ei->in_defrag = 0;
6916 	ei->delalloc_meta_reserved = 0;
6917 	ei->force_compress = BTRFS_COMPRESS_NONE;
6918 
6919 	ei->delayed_node = NULL;
6920 
6921 	inode = &ei->vfs_inode;
6922 	extent_map_tree_init(&ei->extent_tree);
6923 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
6924 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6925 	ei->io_tree.track_uptodate = 1;
6926 	ei->io_failure_tree.track_uptodate = 1;
6927 	mutex_init(&ei->log_mutex);
6928 	mutex_init(&ei->delalloc_mutex);
6929 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6930 	INIT_LIST_HEAD(&ei->i_orphan);
6931 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6932 	INIT_LIST_HEAD(&ei->ordered_operations);
6933 	RB_CLEAR_NODE(&ei->rb_node);
6934 
6935 	return inode;
6936 }
6937 
6938 static void btrfs_i_callback(struct rcu_head *head)
6939 {
6940 	struct inode *inode = container_of(head, struct inode, i_rcu);
6941 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6942 }
6943 
6944 void btrfs_destroy_inode(struct inode *inode)
6945 {
6946 	struct btrfs_ordered_extent *ordered;
6947 	struct btrfs_root *root = BTRFS_I(inode)->root;
6948 
6949 	WARN_ON(!list_empty(&inode->i_dentry));
6950 	WARN_ON(inode->i_data.nrpages);
6951 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
6952 	WARN_ON(BTRFS_I(inode)->reserved_extents);
6953 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6954 	WARN_ON(BTRFS_I(inode)->csum_bytes);
6955 
6956 	/*
6957 	 * This can happen where we create an inode, but somebody else also
6958 	 * created the same inode and we need to destroy the one we already
6959 	 * created.
6960 	 */
6961 	if (!root)
6962 		goto free;
6963 
6964 	/*
6965 	 * Make sure we're properly removed from the ordered operation
6966 	 * lists.
6967 	 */
6968 	smp_mb();
6969 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6970 		spin_lock(&root->fs_info->ordered_extent_lock);
6971 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6972 		spin_unlock(&root->fs_info->ordered_extent_lock);
6973 	}
6974 
6975 	spin_lock(&root->orphan_lock);
6976 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6977 		printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6978 		       (unsigned long long)btrfs_ino(inode));
6979 		list_del_init(&BTRFS_I(inode)->i_orphan);
6980 	}
6981 	spin_unlock(&root->orphan_lock);
6982 
6983 	while (1) {
6984 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6985 		if (!ordered)
6986 			break;
6987 		else {
6988 			printk(KERN_ERR "btrfs found ordered "
6989 			       "extent %llu %llu on inode cleanup\n",
6990 			       (unsigned long long)ordered->file_offset,
6991 			       (unsigned long long)ordered->len);
6992 			btrfs_remove_ordered_extent(inode, ordered);
6993 			btrfs_put_ordered_extent(ordered);
6994 			btrfs_put_ordered_extent(ordered);
6995 		}
6996 	}
6997 	inode_tree_del(inode);
6998 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6999 free:
7000 	btrfs_remove_delayed_node(inode);
7001 	call_rcu(&inode->i_rcu, btrfs_i_callback);
7002 }
7003 
7004 int btrfs_drop_inode(struct inode *inode)
7005 {
7006 	struct btrfs_root *root = BTRFS_I(inode)->root;
7007 
7008 	if (btrfs_root_refs(&root->root_item) == 0 &&
7009 	    !btrfs_is_free_space_inode(root, inode))
7010 		return 1;
7011 	else
7012 		return generic_drop_inode(inode);
7013 }
7014 
7015 static void init_once(void *foo)
7016 {
7017 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7018 
7019 	inode_init_once(&ei->vfs_inode);
7020 }
7021 
7022 void btrfs_destroy_cachep(void)
7023 {
7024 	if (btrfs_inode_cachep)
7025 		kmem_cache_destroy(btrfs_inode_cachep);
7026 	if (btrfs_trans_handle_cachep)
7027 		kmem_cache_destroy(btrfs_trans_handle_cachep);
7028 	if (btrfs_transaction_cachep)
7029 		kmem_cache_destroy(btrfs_transaction_cachep);
7030 	if (btrfs_path_cachep)
7031 		kmem_cache_destroy(btrfs_path_cachep);
7032 	if (btrfs_free_space_cachep)
7033 		kmem_cache_destroy(btrfs_free_space_cachep);
7034 }
7035 
7036 int btrfs_init_cachep(void)
7037 {
7038 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7039 			sizeof(struct btrfs_inode), 0,
7040 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7041 	if (!btrfs_inode_cachep)
7042 		goto fail;
7043 
7044 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7045 			sizeof(struct btrfs_trans_handle), 0,
7046 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7047 	if (!btrfs_trans_handle_cachep)
7048 		goto fail;
7049 
7050 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7051 			sizeof(struct btrfs_transaction), 0,
7052 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7053 	if (!btrfs_transaction_cachep)
7054 		goto fail;
7055 
7056 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7057 			sizeof(struct btrfs_path), 0,
7058 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7059 	if (!btrfs_path_cachep)
7060 		goto fail;
7061 
7062 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7063 			sizeof(struct btrfs_free_space), 0,
7064 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7065 	if (!btrfs_free_space_cachep)
7066 		goto fail;
7067 
7068 	return 0;
7069 fail:
7070 	btrfs_destroy_cachep();
7071 	return -ENOMEM;
7072 }
7073 
7074 static int btrfs_getattr(struct vfsmount *mnt,
7075 			 struct dentry *dentry, struct kstat *stat)
7076 {
7077 	struct inode *inode = dentry->d_inode;
7078 	u32 blocksize = inode->i_sb->s_blocksize;
7079 
7080 	generic_fillattr(inode, stat);
7081 	stat->dev = BTRFS_I(inode)->root->anon_dev;
7082 	stat->blksize = PAGE_CACHE_SIZE;
7083 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7084 		ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7085 	return 0;
7086 }
7087 
7088 /*
7089  * If a file is moved, it will inherit the cow and compression flags of the new
7090  * directory.
7091  */
7092 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7093 {
7094 	struct btrfs_inode *b_dir = BTRFS_I(dir);
7095 	struct btrfs_inode *b_inode = BTRFS_I(inode);
7096 
7097 	if (b_dir->flags & BTRFS_INODE_NODATACOW)
7098 		b_inode->flags |= BTRFS_INODE_NODATACOW;
7099 	else
7100 		b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7101 
7102 	if (b_dir->flags & BTRFS_INODE_COMPRESS)
7103 		b_inode->flags |= BTRFS_INODE_COMPRESS;
7104 	else
7105 		b_inode->flags &= ~BTRFS_INODE_COMPRESS;
7106 }
7107 
7108 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7109 			   struct inode *new_dir, struct dentry *new_dentry)
7110 {
7111 	struct btrfs_trans_handle *trans;
7112 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
7113 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7114 	struct inode *new_inode = new_dentry->d_inode;
7115 	struct inode *old_inode = old_dentry->d_inode;
7116 	struct timespec ctime = CURRENT_TIME;
7117 	u64 index = 0;
7118 	u64 root_objectid;
7119 	int ret;
7120 	u64 old_ino = btrfs_ino(old_inode);
7121 
7122 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7123 		return -EPERM;
7124 
7125 	/* we only allow rename subvolume link between subvolumes */
7126 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7127 		return -EXDEV;
7128 
7129 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7130 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7131 		return -ENOTEMPTY;
7132 
7133 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
7134 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7135 		return -ENOTEMPTY;
7136 	/*
7137 	 * we're using rename to replace one file with another.
7138 	 * and the replacement file is large.  Start IO on it now so
7139 	 * we don't add too much work to the end of the transaction
7140 	 */
7141 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7142 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7143 		filemap_flush(old_inode->i_mapping);
7144 
7145 	/* close the racy window with snapshot create/destroy ioctl */
7146 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7147 		down_read(&root->fs_info->subvol_sem);
7148 	/*
7149 	 * We want to reserve the absolute worst case amount of items.  So if
7150 	 * both inodes are subvols and we need to unlink them then that would
7151 	 * require 4 item modifications, but if they are both normal inodes it
7152 	 * would require 5 item modifications, so we'll assume their normal
7153 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7154 	 * should cover the worst case number of items we'll modify.
7155 	 */
7156 	trans = btrfs_start_transaction(root, 20);
7157 	if (IS_ERR(trans)) {
7158                 ret = PTR_ERR(trans);
7159                 goto out_notrans;
7160         }
7161 
7162 	if (dest != root)
7163 		btrfs_record_root_in_trans(trans, dest);
7164 
7165 	ret = btrfs_set_inode_index(new_dir, &index);
7166 	if (ret)
7167 		goto out_fail;
7168 
7169 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7170 		/* force full log commit if subvolume involved. */
7171 		root->fs_info->last_trans_log_full_commit = trans->transid;
7172 	} else {
7173 		ret = btrfs_insert_inode_ref(trans, dest,
7174 					     new_dentry->d_name.name,
7175 					     new_dentry->d_name.len,
7176 					     old_ino,
7177 					     btrfs_ino(new_dir), index);
7178 		if (ret)
7179 			goto out_fail;
7180 		/*
7181 		 * this is an ugly little race, but the rename is required
7182 		 * to make sure that if we crash, the inode is either at the
7183 		 * old name or the new one.  pinning the log transaction lets
7184 		 * us make sure we don't allow a log commit to come in after
7185 		 * we unlink the name but before we add the new name back in.
7186 		 */
7187 		btrfs_pin_log_trans(root);
7188 	}
7189 	/*
7190 	 * make sure the inode gets flushed if it is replacing
7191 	 * something.
7192 	 */
7193 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7194 		btrfs_add_ordered_operation(trans, root, old_inode);
7195 
7196 	old_dir->i_ctime = old_dir->i_mtime = ctime;
7197 	new_dir->i_ctime = new_dir->i_mtime = ctime;
7198 	old_inode->i_ctime = ctime;
7199 
7200 	if (old_dentry->d_parent != new_dentry->d_parent)
7201 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7202 
7203 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7204 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7205 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7206 					old_dentry->d_name.name,
7207 					old_dentry->d_name.len);
7208 	} else {
7209 		ret = __btrfs_unlink_inode(trans, root, old_dir,
7210 					old_dentry->d_inode,
7211 					old_dentry->d_name.name,
7212 					old_dentry->d_name.len);
7213 		if (!ret)
7214 			ret = btrfs_update_inode(trans, root, old_inode);
7215 	}
7216 	if (ret) {
7217 		btrfs_abort_transaction(trans, root, ret);
7218 		goto out_fail;
7219 	}
7220 
7221 	if (new_inode) {
7222 		new_inode->i_ctime = CURRENT_TIME;
7223 		if (unlikely(btrfs_ino(new_inode) ==
7224 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7225 			root_objectid = BTRFS_I(new_inode)->location.objectid;
7226 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
7227 						root_objectid,
7228 						new_dentry->d_name.name,
7229 						new_dentry->d_name.len);
7230 			BUG_ON(new_inode->i_nlink == 0);
7231 		} else {
7232 			ret = btrfs_unlink_inode(trans, dest, new_dir,
7233 						 new_dentry->d_inode,
7234 						 new_dentry->d_name.name,
7235 						 new_dentry->d_name.len);
7236 		}
7237 		if (!ret && new_inode->i_nlink == 0) {
7238 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7239 			BUG_ON(ret);
7240 		}
7241 		if (ret) {
7242 			btrfs_abort_transaction(trans, root, ret);
7243 			goto out_fail;
7244 		}
7245 	}
7246 
7247 	fixup_inode_flags(new_dir, old_inode);
7248 
7249 	ret = btrfs_add_link(trans, new_dir, old_inode,
7250 			     new_dentry->d_name.name,
7251 			     new_dentry->d_name.len, 0, index);
7252 	if (ret) {
7253 		btrfs_abort_transaction(trans, root, ret);
7254 		goto out_fail;
7255 	}
7256 
7257 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7258 		struct dentry *parent = new_dentry->d_parent;
7259 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
7260 		btrfs_end_log_trans(root);
7261 	}
7262 out_fail:
7263 	btrfs_end_transaction(trans, root);
7264 out_notrans:
7265 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7266 		up_read(&root->fs_info->subvol_sem);
7267 
7268 	return ret;
7269 }
7270 
7271 /*
7272  * some fairly slow code that needs optimization. This walks the list
7273  * of all the inodes with pending delalloc and forces them to disk.
7274  */
7275 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7276 {
7277 	struct list_head *head = &root->fs_info->delalloc_inodes;
7278 	struct btrfs_inode *binode;
7279 	struct inode *inode;
7280 
7281 	if (root->fs_info->sb->s_flags & MS_RDONLY)
7282 		return -EROFS;
7283 
7284 	spin_lock(&root->fs_info->delalloc_lock);
7285 	while (!list_empty(head)) {
7286 		binode = list_entry(head->next, struct btrfs_inode,
7287 				    delalloc_inodes);
7288 		inode = igrab(&binode->vfs_inode);
7289 		if (!inode)
7290 			list_del_init(&binode->delalloc_inodes);
7291 		spin_unlock(&root->fs_info->delalloc_lock);
7292 		if (inode) {
7293 			filemap_flush(inode->i_mapping);
7294 			if (delay_iput)
7295 				btrfs_add_delayed_iput(inode);
7296 			else
7297 				iput(inode);
7298 		}
7299 		cond_resched();
7300 		spin_lock(&root->fs_info->delalloc_lock);
7301 	}
7302 	spin_unlock(&root->fs_info->delalloc_lock);
7303 
7304 	/* the filemap_flush will queue IO into the worker threads, but
7305 	 * we have to make sure the IO is actually started and that
7306 	 * ordered extents get created before we return
7307 	 */
7308 	atomic_inc(&root->fs_info->async_submit_draining);
7309 	while (atomic_read(&root->fs_info->nr_async_submits) ||
7310 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
7311 		wait_event(root->fs_info->async_submit_wait,
7312 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7313 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7314 	}
7315 	atomic_dec(&root->fs_info->async_submit_draining);
7316 	return 0;
7317 }
7318 
7319 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7320 			 const char *symname)
7321 {
7322 	struct btrfs_trans_handle *trans;
7323 	struct btrfs_root *root = BTRFS_I(dir)->root;
7324 	struct btrfs_path *path;
7325 	struct btrfs_key key;
7326 	struct inode *inode = NULL;
7327 	int err;
7328 	int drop_inode = 0;
7329 	u64 objectid;
7330 	u64 index = 0 ;
7331 	int name_len;
7332 	int datasize;
7333 	unsigned long ptr;
7334 	struct btrfs_file_extent_item *ei;
7335 	struct extent_buffer *leaf;
7336 	unsigned long nr = 0;
7337 
7338 	name_len = strlen(symname) + 1;
7339 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7340 		return -ENAMETOOLONG;
7341 
7342 	/*
7343 	 * 2 items for inode item and ref
7344 	 * 2 items for dir items
7345 	 * 1 item for xattr if selinux is on
7346 	 */
7347 	trans = btrfs_start_transaction(root, 5);
7348 	if (IS_ERR(trans))
7349 		return PTR_ERR(trans);
7350 
7351 	err = btrfs_find_free_ino(root, &objectid);
7352 	if (err)
7353 		goto out_unlock;
7354 
7355 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7356 				dentry->d_name.len, btrfs_ino(dir), objectid,
7357 				S_IFLNK|S_IRWXUGO, &index);
7358 	if (IS_ERR(inode)) {
7359 		err = PTR_ERR(inode);
7360 		goto out_unlock;
7361 	}
7362 
7363 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7364 	if (err) {
7365 		drop_inode = 1;
7366 		goto out_unlock;
7367 	}
7368 
7369 	/*
7370 	* If the active LSM wants to access the inode during
7371 	* d_instantiate it needs these. Smack checks to see
7372 	* if the filesystem supports xattrs by looking at the
7373 	* ops vector.
7374 	*/
7375 	inode->i_fop = &btrfs_file_operations;
7376 	inode->i_op = &btrfs_file_inode_operations;
7377 
7378 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7379 	if (err)
7380 		drop_inode = 1;
7381 	else {
7382 		inode->i_mapping->a_ops = &btrfs_aops;
7383 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7384 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7385 	}
7386 	if (drop_inode)
7387 		goto out_unlock;
7388 
7389 	path = btrfs_alloc_path();
7390 	if (!path) {
7391 		err = -ENOMEM;
7392 		drop_inode = 1;
7393 		goto out_unlock;
7394 	}
7395 	key.objectid = btrfs_ino(inode);
7396 	key.offset = 0;
7397 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7398 	datasize = btrfs_file_extent_calc_inline_size(name_len);
7399 	err = btrfs_insert_empty_item(trans, root, path, &key,
7400 				      datasize);
7401 	if (err) {
7402 		drop_inode = 1;
7403 		btrfs_free_path(path);
7404 		goto out_unlock;
7405 	}
7406 	leaf = path->nodes[0];
7407 	ei = btrfs_item_ptr(leaf, path->slots[0],
7408 			    struct btrfs_file_extent_item);
7409 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7410 	btrfs_set_file_extent_type(leaf, ei,
7411 				   BTRFS_FILE_EXTENT_INLINE);
7412 	btrfs_set_file_extent_encryption(leaf, ei, 0);
7413 	btrfs_set_file_extent_compression(leaf, ei, 0);
7414 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7415 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7416 
7417 	ptr = btrfs_file_extent_inline_start(ei);
7418 	write_extent_buffer(leaf, symname, ptr, name_len);
7419 	btrfs_mark_buffer_dirty(leaf);
7420 	btrfs_free_path(path);
7421 
7422 	inode->i_op = &btrfs_symlink_inode_operations;
7423 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
7424 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7425 	inode_set_bytes(inode, name_len);
7426 	btrfs_i_size_write(inode, name_len - 1);
7427 	err = btrfs_update_inode(trans, root, inode);
7428 	if (err)
7429 		drop_inode = 1;
7430 
7431 out_unlock:
7432 	if (!err)
7433 		d_instantiate(dentry, inode);
7434 	nr = trans->blocks_used;
7435 	btrfs_end_transaction(trans, root);
7436 	if (drop_inode) {
7437 		inode_dec_link_count(inode);
7438 		iput(inode);
7439 	}
7440 	btrfs_btree_balance_dirty(root, nr);
7441 	return err;
7442 }
7443 
7444 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7445 				       u64 start, u64 num_bytes, u64 min_size,
7446 				       loff_t actual_len, u64 *alloc_hint,
7447 				       struct btrfs_trans_handle *trans)
7448 {
7449 	struct btrfs_root *root = BTRFS_I(inode)->root;
7450 	struct btrfs_key ins;
7451 	u64 cur_offset = start;
7452 	u64 i_size;
7453 	int ret = 0;
7454 	bool own_trans = true;
7455 
7456 	if (trans)
7457 		own_trans = false;
7458 	while (num_bytes > 0) {
7459 		if (own_trans) {
7460 			trans = btrfs_start_transaction(root, 3);
7461 			if (IS_ERR(trans)) {
7462 				ret = PTR_ERR(trans);
7463 				break;
7464 			}
7465 		}
7466 
7467 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7468 					   0, *alloc_hint, &ins, 1);
7469 		if (ret) {
7470 			if (own_trans)
7471 				btrfs_end_transaction(trans, root);
7472 			break;
7473 		}
7474 
7475 		ret = insert_reserved_file_extent(trans, inode,
7476 						  cur_offset, ins.objectid,
7477 						  ins.offset, ins.offset,
7478 						  ins.offset, 0, 0, 0,
7479 						  BTRFS_FILE_EXTENT_PREALLOC);
7480 		if (ret) {
7481 			btrfs_abort_transaction(trans, root, ret);
7482 			if (own_trans)
7483 				btrfs_end_transaction(trans, root);
7484 			break;
7485 		}
7486 		btrfs_drop_extent_cache(inode, cur_offset,
7487 					cur_offset + ins.offset -1, 0);
7488 
7489 		num_bytes -= ins.offset;
7490 		cur_offset += ins.offset;
7491 		*alloc_hint = ins.objectid + ins.offset;
7492 
7493 		inode->i_ctime = CURRENT_TIME;
7494 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7495 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7496 		    (actual_len > inode->i_size) &&
7497 		    (cur_offset > inode->i_size)) {
7498 			if (cur_offset > actual_len)
7499 				i_size = actual_len;
7500 			else
7501 				i_size = cur_offset;
7502 			i_size_write(inode, i_size);
7503 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7504 		}
7505 
7506 		ret = btrfs_update_inode(trans, root, inode);
7507 
7508 		if (ret) {
7509 			btrfs_abort_transaction(trans, root, ret);
7510 			if (own_trans)
7511 				btrfs_end_transaction(trans, root);
7512 			break;
7513 		}
7514 
7515 		if (own_trans)
7516 			btrfs_end_transaction(trans, root);
7517 	}
7518 	return ret;
7519 }
7520 
7521 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7522 			      u64 start, u64 num_bytes, u64 min_size,
7523 			      loff_t actual_len, u64 *alloc_hint)
7524 {
7525 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7526 					   min_size, actual_len, alloc_hint,
7527 					   NULL);
7528 }
7529 
7530 int btrfs_prealloc_file_range_trans(struct inode *inode,
7531 				    struct btrfs_trans_handle *trans, int mode,
7532 				    u64 start, u64 num_bytes, u64 min_size,
7533 				    loff_t actual_len, u64 *alloc_hint)
7534 {
7535 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7536 					   min_size, actual_len, alloc_hint, trans);
7537 }
7538 
7539 static int btrfs_set_page_dirty(struct page *page)
7540 {
7541 	return __set_page_dirty_nobuffers(page);
7542 }
7543 
7544 static int btrfs_permission(struct inode *inode, int mask)
7545 {
7546 	struct btrfs_root *root = BTRFS_I(inode)->root;
7547 	umode_t mode = inode->i_mode;
7548 
7549 	if (mask & MAY_WRITE &&
7550 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7551 		if (btrfs_root_readonly(root))
7552 			return -EROFS;
7553 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7554 			return -EACCES;
7555 	}
7556 	return generic_permission(inode, mask);
7557 }
7558 
7559 static const struct inode_operations btrfs_dir_inode_operations = {
7560 	.getattr	= btrfs_getattr,
7561 	.lookup		= btrfs_lookup,
7562 	.create		= btrfs_create,
7563 	.unlink		= btrfs_unlink,
7564 	.link		= btrfs_link,
7565 	.mkdir		= btrfs_mkdir,
7566 	.rmdir		= btrfs_rmdir,
7567 	.rename		= btrfs_rename,
7568 	.symlink	= btrfs_symlink,
7569 	.setattr	= btrfs_setattr,
7570 	.mknod		= btrfs_mknod,
7571 	.setxattr	= btrfs_setxattr,
7572 	.getxattr	= btrfs_getxattr,
7573 	.listxattr	= btrfs_listxattr,
7574 	.removexattr	= btrfs_removexattr,
7575 	.permission	= btrfs_permission,
7576 	.get_acl	= btrfs_get_acl,
7577 };
7578 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7579 	.lookup		= btrfs_lookup,
7580 	.permission	= btrfs_permission,
7581 	.get_acl	= btrfs_get_acl,
7582 };
7583 
7584 static const struct file_operations btrfs_dir_file_operations = {
7585 	.llseek		= generic_file_llseek,
7586 	.read		= generic_read_dir,
7587 	.readdir	= btrfs_real_readdir,
7588 	.unlocked_ioctl	= btrfs_ioctl,
7589 #ifdef CONFIG_COMPAT
7590 	.compat_ioctl	= btrfs_ioctl,
7591 #endif
7592 	.release        = btrfs_release_file,
7593 	.fsync		= btrfs_sync_file,
7594 };
7595 
7596 static struct extent_io_ops btrfs_extent_io_ops = {
7597 	.fill_delalloc = run_delalloc_range,
7598 	.submit_bio_hook = btrfs_submit_bio_hook,
7599 	.merge_bio_hook = btrfs_merge_bio_hook,
7600 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7601 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7602 	.writepage_start_hook = btrfs_writepage_start_hook,
7603 	.set_bit_hook = btrfs_set_bit_hook,
7604 	.clear_bit_hook = btrfs_clear_bit_hook,
7605 	.merge_extent_hook = btrfs_merge_extent_hook,
7606 	.split_extent_hook = btrfs_split_extent_hook,
7607 };
7608 
7609 /*
7610  * btrfs doesn't support the bmap operation because swapfiles
7611  * use bmap to make a mapping of extents in the file.  They assume
7612  * these extents won't change over the life of the file and they
7613  * use the bmap result to do IO directly to the drive.
7614  *
7615  * the btrfs bmap call would return logical addresses that aren't
7616  * suitable for IO and they also will change frequently as COW
7617  * operations happen.  So, swapfile + btrfs == corruption.
7618  *
7619  * For now we're avoiding this by dropping bmap.
7620  */
7621 static const struct address_space_operations btrfs_aops = {
7622 	.readpage	= btrfs_readpage,
7623 	.writepage	= btrfs_writepage,
7624 	.writepages	= btrfs_writepages,
7625 	.readpages	= btrfs_readpages,
7626 	.direct_IO	= btrfs_direct_IO,
7627 	.invalidatepage = btrfs_invalidatepage,
7628 	.releasepage	= btrfs_releasepage,
7629 	.set_page_dirty	= btrfs_set_page_dirty,
7630 	.error_remove_page = generic_error_remove_page,
7631 };
7632 
7633 static const struct address_space_operations btrfs_symlink_aops = {
7634 	.readpage	= btrfs_readpage,
7635 	.writepage	= btrfs_writepage,
7636 	.invalidatepage = btrfs_invalidatepage,
7637 	.releasepage	= btrfs_releasepage,
7638 };
7639 
7640 static const struct inode_operations btrfs_file_inode_operations = {
7641 	.getattr	= btrfs_getattr,
7642 	.setattr	= btrfs_setattr,
7643 	.setxattr	= btrfs_setxattr,
7644 	.getxattr	= btrfs_getxattr,
7645 	.listxattr      = btrfs_listxattr,
7646 	.removexattr	= btrfs_removexattr,
7647 	.permission	= btrfs_permission,
7648 	.fiemap		= btrfs_fiemap,
7649 	.get_acl	= btrfs_get_acl,
7650 };
7651 static const struct inode_operations btrfs_special_inode_operations = {
7652 	.getattr	= btrfs_getattr,
7653 	.setattr	= btrfs_setattr,
7654 	.permission	= btrfs_permission,
7655 	.setxattr	= btrfs_setxattr,
7656 	.getxattr	= btrfs_getxattr,
7657 	.listxattr	= btrfs_listxattr,
7658 	.removexattr	= btrfs_removexattr,
7659 	.get_acl	= btrfs_get_acl,
7660 };
7661 static const struct inode_operations btrfs_symlink_inode_operations = {
7662 	.readlink	= generic_readlink,
7663 	.follow_link	= page_follow_link_light,
7664 	.put_link	= page_put_link,
7665 	.getattr	= btrfs_getattr,
7666 	.setattr	= btrfs_setattr,
7667 	.permission	= btrfs_permission,
7668 	.setxattr	= btrfs_setxattr,
7669 	.getxattr	= btrfs_getxattr,
7670 	.listxattr	= btrfs_listxattr,
7671 	.removexattr	= btrfs_removexattr,
7672 	.get_acl	= btrfs_get_acl,
7673 };
7674 
7675 const struct dentry_operations btrfs_dentry_operations = {
7676 	.d_delete	= btrfs_dentry_delete,
7677 	.d_release	= btrfs_dentry_release,
7678 };
7679