1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <asm/unaligned.h> 34 #include "misc.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "ordered-data.h" 41 #include "xattr.h" 42 #include "tree-log.h" 43 #include "volumes.h" 44 #include "compression.h" 45 #include "locking.h" 46 #include "free-space-cache.h" 47 #include "inode-map.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 54 struct btrfs_iget_args { 55 u64 ino; 56 struct btrfs_root *root; 57 }; 58 59 struct btrfs_dio_data { 60 u64 reserve; 61 u64 unsubmitted_oe_range_start; 62 u64 unsubmitted_oe_range_end; 63 int overwrite; 64 }; 65 66 static const struct inode_operations btrfs_dir_inode_operations; 67 static const struct inode_operations btrfs_symlink_inode_operations; 68 static const struct inode_operations btrfs_special_inode_operations; 69 static const struct inode_operations btrfs_file_inode_operations; 70 static const struct address_space_operations btrfs_aops; 71 static const struct file_operations btrfs_dir_file_operations; 72 static const struct extent_io_ops btrfs_extent_io_ops; 73 74 static struct kmem_cache *btrfs_inode_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 struct kmem_cache *btrfs_free_space_bitmap_cachep; 79 80 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 81 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 83 static noinline int cow_file_range(struct inode *inode, 84 struct page *locked_page, 85 u64 start, u64 end, int *page_started, 86 unsigned long *nr_written, int unlock); 87 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 88 u64 orig_start, u64 block_start, 89 u64 block_len, u64 orig_block_len, 90 u64 ram_bytes, int compress_type, 91 int type); 92 93 static void __endio_write_update_ordered(struct inode *inode, 94 const u64 offset, const u64 bytes, 95 const bool uptodate); 96 97 /* 98 * Cleanup all submitted ordered extents in specified range to handle errors 99 * from the btrfs_run_delalloc_range() callback. 100 * 101 * NOTE: caller must ensure that when an error happens, it can not call 102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 104 * to be released, which we want to happen only when finishing the ordered 105 * extent (btrfs_finish_ordered_io()). 106 */ 107 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 108 struct page *locked_page, 109 u64 offset, u64 bytes) 110 { 111 unsigned long index = offset >> PAGE_SHIFT; 112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 113 u64 page_start = page_offset(locked_page); 114 u64 page_end = page_start + PAGE_SIZE - 1; 115 116 struct page *page; 117 118 while (index <= end_index) { 119 page = find_get_page(inode->i_mapping, index); 120 index++; 121 if (!page) 122 continue; 123 ClearPagePrivate2(page); 124 put_page(page); 125 } 126 127 /* 128 * In case this page belongs to the delalloc range being instantiated 129 * then skip it, since the first page of a range is going to be 130 * properly cleaned up by the caller of run_delalloc_range 131 */ 132 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 133 offset += PAGE_SIZE; 134 bytes -= PAGE_SIZE; 135 } 136 137 return __endio_write_update_ordered(inode, offset, bytes, false); 138 } 139 140 static int btrfs_dirty_inode(struct inode *inode); 141 142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 143 void btrfs_test_inode_set_ops(struct inode *inode) 144 { 145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 146 } 147 #endif 148 149 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 150 struct inode *inode, struct inode *dir, 151 const struct qstr *qstr) 152 { 153 int err; 154 155 err = btrfs_init_acl(trans, inode, dir); 156 if (!err) 157 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 158 return err; 159 } 160 161 /* 162 * this does all the hard work for inserting an inline extent into 163 * the btree. The caller should have done a btrfs_drop_extents so that 164 * no overlapping inline items exist in the btree 165 */ 166 static int insert_inline_extent(struct btrfs_trans_handle *trans, 167 struct btrfs_path *path, int extent_inserted, 168 struct btrfs_root *root, struct inode *inode, 169 u64 start, size_t size, size_t compressed_size, 170 int compress_type, 171 struct page **compressed_pages) 172 { 173 struct extent_buffer *leaf; 174 struct page *page = NULL; 175 char *kaddr; 176 unsigned long ptr; 177 struct btrfs_file_extent_item *ei; 178 int ret; 179 size_t cur_size = size; 180 unsigned long offset; 181 182 ASSERT((compressed_size > 0 && compressed_pages) || 183 (compressed_size == 0 && !compressed_pages)); 184 185 if (compressed_size && compressed_pages) 186 cur_size = compressed_size; 187 188 inode_add_bytes(inode, size); 189 190 if (!extent_inserted) { 191 struct btrfs_key key; 192 size_t datasize; 193 194 key.objectid = btrfs_ino(BTRFS_I(inode)); 195 key.offset = start; 196 key.type = BTRFS_EXTENT_DATA_KEY; 197 198 datasize = btrfs_file_extent_calc_inline_size(cur_size); 199 path->leave_spinning = 1; 200 ret = btrfs_insert_empty_item(trans, root, path, &key, 201 datasize); 202 if (ret) 203 goto fail; 204 } 205 leaf = path->nodes[0]; 206 ei = btrfs_item_ptr(leaf, path->slots[0], 207 struct btrfs_file_extent_item); 208 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 210 btrfs_set_file_extent_encryption(leaf, ei, 0); 211 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 212 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 213 ptr = btrfs_file_extent_inline_start(ei); 214 215 if (compress_type != BTRFS_COMPRESS_NONE) { 216 struct page *cpage; 217 int i = 0; 218 while (compressed_size > 0) { 219 cpage = compressed_pages[i]; 220 cur_size = min_t(unsigned long, compressed_size, 221 PAGE_SIZE); 222 223 kaddr = kmap_atomic(cpage); 224 write_extent_buffer(leaf, kaddr, ptr, cur_size); 225 kunmap_atomic(kaddr); 226 227 i++; 228 ptr += cur_size; 229 compressed_size -= cur_size; 230 } 231 btrfs_set_file_extent_compression(leaf, ei, 232 compress_type); 233 } else { 234 page = find_get_page(inode->i_mapping, 235 start >> PAGE_SHIFT); 236 btrfs_set_file_extent_compression(leaf, ei, 0); 237 kaddr = kmap_atomic(page); 238 offset = offset_in_page(start); 239 write_extent_buffer(leaf, kaddr + offset, ptr, size); 240 kunmap_atomic(kaddr); 241 put_page(page); 242 } 243 btrfs_mark_buffer_dirty(leaf); 244 btrfs_release_path(path); 245 246 /* 247 * We align size to sectorsize for inline extents just for simplicity 248 * sake. 249 */ 250 size = ALIGN(size, root->fs_info->sectorsize); 251 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 252 if (ret) 253 goto fail; 254 255 /* 256 * we're an inline extent, so nobody can 257 * extend the file past i_size without locking 258 * a page we already have locked. 259 * 260 * We must do any isize and inode updates 261 * before we unlock the pages. Otherwise we 262 * could end up racing with unlink. 263 */ 264 BTRFS_I(inode)->disk_i_size = inode->i_size; 265 ret = btrfs_update_inode(trans, root, inode); 266 267 fail: 268 return ret; 269 } 270 271 272 /* 273 * conditionally insert an inline extent into the file. This 274 * does the checks required to make sure the data is small enough 275 * to fit as an inline extent. 276 */ 277 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 278 u64 end, size_t compressed_size, 279 int compress_type, 280 struct page **compressed_pages) 281 { 282 struct btrfs_root *root = BTRFS_I(inode)->root; 283 struct btrfs_fs_info *fs_info = root->fs_info; 284 struct btrfs_trans_handle *trans; 285 u64 isize = i_size_read(inode); 286 u64 actual_end = min(end + 1, isize); 287 u64 inline_len = actual_end - start; 288 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 289 u64 data_len = inline_len; 290 int ret; 291 struct btrfs_path *path; 292 int extent_inserted = 0; 293 u32 extent_item_size; 294 295 if (compressed_size) 296 data_len = compressed_size; 297 298 if (start > 0 || 299 actual_end > fs_info->sectorsize || 300 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 301 (!compressed_size && 302 (actual_end & (fs_info->sectorsize - 1)) == 0) || 303 end + 1 < isize || 304 data_len > fs_info->max_inline) { 305 return 1; 306 } 307 308 path = btrfs_alloc_path(); 309 if (!path) 310 return -ENOMEM; 311 312 trans = btrfs_join_transaction(root); 313 if (IS_ERR(trans)) { 314 btrfs_free_path(path); 315 return PTR_ERR(trans); 316 } 317 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 318 319 if (compressed_size && compressed_pages) 320 extent_item_size = btrfs_file_extent_calc_inline_size( 321 compressed_size); 322 else 323 extent_item_size = btrfs_file_extent_calc_inline_size( 324 inline_len); 325 326 ret = __btrfs_drop_extents(trans, root, inode, path, 327 start, aligned_end, NULL, 328 1, 1, extent_item_size, &extent_inserted); 329 if (ret) { 330 btrfs_abort_transaction(trans, ret); 331 goto out; 332 } 333 334 if (isize > actual_end) 335 inline_len = min_t(u64, isize, actual_end); 336 ret = insert_inline_extent(trans, path, extent_inserted, 337 root, inode, start, 338 inline_len, compressed_size, 339 compress_type, compressed_pages); 340 if (ret && ret != -ENOSPC) { 341 btrfs_abort_transaction(trans, ret); 342 goto out; 343 } else if (ret == -ENOSPC) { 344 ret = 1; 345 goto out; 346 } 347 348 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 349 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 350 out: 351 /* 352 * Don't forget to free the reserved space, as for inlined extent 353 * it won't count as data extent, free them directly here. 354 * And at reserve time, it's always aligned to page size, so 355 * just free one page here. 356 */ 357 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 358 btrfs_free_path(path); 359 btrfs_end_transaction(trans); 360 return ret; 361 } 362 363 struct async_extent { 364 u64 start; 365 u64 ram_size; 366 u64 compressed_size; 367 struct page **pages; 368 unsigned long nr_pages; 369 int compress_type; 370 struct list_head list; 371 }; 372 373 struct async_chunk { 374 struct inode *inode; 375 struct page *locked_page; 376 u64 start; 377 u64 end; 378 unsigned int write_flags; 379 struct list_head extents; 380 struct cgroup_subsys_state *blkcg_css; 381 struct btrfs_work work; 382 atomic_t *pending; 383 }; 384 385 struct async_cow { 386 /* Number of chunks in flight; must be first in the structure */ 387 atomic_t num_chunks; 388 struct async_chunk chunks[]; 389 }; 390 391 static noinline int add_async_extent(struct async_chunk *cow, 392 u64 start, u64 ram_size, 393 u64 compressed_size, 394 struct page **pages, 395 unsigned long nr_pages, 396 int compress_type) 397 { 398 struct async_extent *async_extent; 399 400 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 401 BUG_ON(!async_extent); /* -ENOMEM */ 402 async_extent->start = start; 403 async_extent->ram_size = ram_size; 404 async_extent->compressed_size = compressed_size; 405 async_extent->pages = pages; 406 async_extent->nr_pages = nr_pages; 407 async_extent->compress_type = compress_type; 408 list_add_tail(&async_extent->list, &cow->extents); 409 return 0; 410 } 411 412 /* 413 * Check if the inode has flags compatible with compression 414 */ 415 static inline bool inode_can_compress(struct inode *inode) 416 { 417 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW || 418 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 419 return false; 420 return true; 421 } 422 423 /* 424 * Check if the inode needs to be submitted to compression, based on mount 425 * options, defragmentation, properties or heuristics. 426 */ 427 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 428 { 429 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 430 431 if (!inode_can_compress(inode)) { 432 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 433 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 434 btrfs_ino(BTRFS_I(inode))); 435 return 0; 436 } 437 /* force compress */ 438 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 439 return 1; 440 /* defrag ioctl */ 441 if (BTRFS_I(inode)->defrag_compress) 442 return 1; 443 /* bad compression ratios */ 444 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 445 return 0; 446 if (btrfs_test_opt(fs_info, COMPRESS) || 447 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 448 BTRFS_I(inode)->prop_compress) 449 return btrfs_compress_heuristic(inode, start, end); 450 return 0; 451 } 452 453 static inline void inode_should_defrag(struct btrfs_inode *inode, 454 u64 start, u64 end, u64 num_bytes, u64 small_write) 455 { 456 /* If this is a small write inside eof, kick off a defrag */ 457 if (num_bytes < small_write && 458 (start > 0 || end + 1 < inode->disk_i_size)) 459 btrfs_add_inode_defrag(NULL, inode); 460 } 461 462 /* 463 * we create compressed extents in two phases. The first 464 * phase compresses a range of pages that have already been 465 * locked (both pages and state bits are locked). 466 * 467 * This is done inside an ordered work queue, and the compression 468 * is spread across many cpus. The actual IO submission is step 469 * two, and the ordered work queue takes care of making sure that 470 * happens in the same order things were put onto the queue by 471 * writepages and friends. 472 * 473 * If this code finds it can't get good compression, it puts an 474 * entry onto the work queue to write the uncompressed bytes. This 475 * makes sure that both compressed inodes and uncompressed inodes 476 * are written in the same order that the flusher thread sent them 477 * down. 478 */ 479 static noinline int compress_file_range(struct async_chunk *async_chunk) 480 { 481 struct inode *inode = async_chunk->inode; 482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 483 u64 blocksize = fs_info->sectorsize; 484 u64 start = async_chunk->start; 485 u64 end = async_chunk->end; 486 u64 actual_end; 487 u64 i_size; 488 int ret = 0; 489 struct page **pages = NULL; 490 unsigned long nr_pages; 491 unsigned long total_compressed = 0; 492 unsigned long total_in = 0; 493 int i; 494 int will_compress; 495 int compress_type = fs_info->compress_type; 496 int compressed_extents = 0; 497 int redirty = 0; 498 499 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 500 SZ_16K); 501 502 /* 503 * We need to save i_size before now because it could change in between 504 * us evaluating the size and assigning it. This is because we lock and 505 * unlock the page in truncate and fallocate, and then modify the i_size 506 * later on. 507 * 508 * The barriers are to emulate READ_ONCE, remove that once i_size_read 509 * does that for us. 510 */ 511 barrier(); 512 i_size = i_size_read(inode); 513 barrier(); 514 actual_end = min_t(u64, i_size, end + 1); 515 again: 516 will_compress = 0; 517 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 518 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 519 nr_pages = min_t(unsigned long, nr_pages, 520 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 521 522 /* 523 * we don't want to send crud past the end of i_size through 524 * compression, that's just a waste of CPU time. So, if the 525 * end of the file is before the start of our current 526 * requested range of bytes, we bail out to the uncompressed 527 * cleanup code that can deal with all of this. 528 * 529 * It isn't really the fastest way to fix things, but this is a 530 * very uncommon corner. 531 */ 532 if (actual_end <= start) 533 goto cleanup_and_bail_uncompressed; 534 535 total_compressed = actual_end - start; 536 537 /* 538 * skip compression for a small file range(<=blocksize) that 539 * isn't an inline extent, since it doesn't save disk space at all. 540 */ 541 if (total_compressed <= blocksize && 542 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 543 goto cleanup_and_bail_uncompressed; 544 545 total_compressed = min_t(unsigned long, total_compressed, 546 BTRFS_MAX_UNCOMPRESSED); 547 total_in = 0; 548 ret = 0; 549 550 /* 551 * we do compression for mount -o compress and when the 552 * inode has not been flagged as nocompress. This flag can 553 * change at any time if we discover bad compression ratios. 554 */ 555 if (inode_need_compress(inode, start, end)) { 556 WARN_ON(pages); 557 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 558 if (!pages) { 559 /* just bail out to the uncompressed code */ 560 nr_pages = 0; 561 goto cont; 562 } 563 564 if (BTRFS_I(inode)->defrag_compress) 565 compress_type = BTRFS_I(inode)->defrag_compress; 566 else if (BTRFS_I(inode)->prop_compress) 567 compress_type = BTRFS_I(inode)->prop_compress; 568 569 /* 570 * we need to call clear_page_dirty_for_io on each 571 * page in the range. Otherwise applications with the file 572 * mmap'd can wander in and change the page contents while 573 * we are compressing them. 574 * 575 * If the compression fails for any reason, we set the pages 576 * dirty again later on. 577 * 578 * Note that the remaining part is redirtied, the start pointer 579 * has moved, the end is the original one. 580 */ 581 if (!redirty) { 582 extent_range_clear_dirty_for_io(inode, start, end); 583 redirty = 1; 584 } 585 586 /* Compression level is applied here and only here */ 587 ret = btrfs_compress_pages( 588 compress_type | (fs_info->compress_level << 4), 589 inode->i_mapping, start, 590 pages, 591 &nr_pages, 592 &total_in, 593 &total_compressed); 594 595 if (!ret) { 596 unsigned long offset = offset_in_page(total_compressed); 597 struct page *page = pages[nr_pages - 1]; 598 char *kaddr; 599 600 /* zero the tail end of the last page, we might be 601 * sending it down to disk 602 */ 603 if (offset) { 604 kaddr = kmap_atomic(page); 605 memset(kaddr + offset, 0, 606 PAGE_SIZE - offset); 607 kunmap_atomic(kaddr); 608 } 609 will_compress = 1; 610 } 611 } 612 cont: 613 if (start == 0) { 614 /* lets try to make an inline extent */ 615 if (ret || total_in < actual_end) { 616 /* we didn't compress the entire range, try 617 * to make an uncompressed inline extent. 618 */ 619 ret = cow_file_range_inline(inode, start, end, 0, 620 BTRFS_COMPRESS_NONE, NULL); 621 } else { 622 /* try making a compressed inline extent */ 623 ret = cow_file_range_inline(inode, start, end, 624 total_compressed, 625 compress_type, pages); 626 } 627 if (ret <= 0) { 628 unsigned long clear_flags = EXTENT_DELALLOC | 629 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 630 EXTENT_DO_ACCOUNTING; 631 unsigned long page_error_op; 632 633 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 634 635 /* 636 * inline extent creation worked or returned error, 637 * we don't need to create any more async work items. 638 * Unlock and free up our temp pages. 639 * 640 * We use DO_ACCOUNTING here because we need the 641 * delalloc_release_metadata to be done _after_ we drop 642 * our outstanding extent for clearing delalloc for this 643 * range. 644 */ 645 extent_clear_unlock_delalloc(inode, start, end, NULL, 646 clear_flags, 647 PAGE_UNLOCK | 648 PAGE_CLEAR_DIRTY | 649 PAGE_SET_WRITEBACK | 650 page_error_op | 651 PAGE_END_WRITEBACK); 652 653 for (i = 0; i < nr_pages; i++) { 654 WARN_ON(pages[i]->mapping); 655 put_page(pages[i]); 656 } 657 kfree(pages); 658 659 return 0; 660 } 661 } 662 663 if (will_compress) { 664 /* 665 * we aren't doing an inline extent round the compressed size 666 * up to a block size boundary so the allocator does sane 667 * things 668 */ 669 total_compressed = ALIGN(total_compressed, blocksize); 670 671 /* 672 * one last check to make sure the compression is really a 673 * win, compare the page count read with the blocks on disk, 674 * compression must free at least one sector size 675 */ 676 total_in = ALIGN(total_in, PAGE_SIZE); 677 if (total_compressed + blocksize <= total_in) { 678 compressed_extents++; 679 680 /* 681 * The async work queues will take care of doing actual 682 * allocation on disk for these compressed pages, and 683 * will submit them to the elevator. 684 */ 685 add_async_extent(async_chunk, start, total_in, 686 total_compressed, pages, nr_pages, 687 compress_type); 688 689 if (start + total_in < end) { 690 start += total_in; 691 pages = NULL; 692 cond_resched(); 693 goto again; 694 } 695 return compressed_extents; 696 } 697 } 698 if (pages) { 699 /* 700 * the compression code ran but failed to make things smaller, 701 * free any pages it allocated and our page pointer array 702 */ 703 for (i = 0; i < nr_pages; i++) { 704 WARN_ON(pages[i]->mapping); 705 put_page(pages[i]); 706 } 707 kfree(pages); 708 pages = NULL; 709 total_compressed = 0; 710 nr_pages = 0; 711 712 /* flag the file so we don't compress in the future */ 713 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 714 !(BTRFS_I(inode)->prop_compress)) { 715 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 716 } 717 } 718 cleanup_and_bail_uncompressed: 719 /* 720 * No compression, but we still need to write the pages in the file 721 * we've been given so far. redirty the locked page if it corresponds 722 * to our extent and set things up for the async work queue to run 723 * cow_file_range to do the normal delalloc dance. 724 */ 725 if (async_chunk->locked_page && 726 (page_offset(async_chunk->locked_page) >= start && 727 page_offset(async_chunk->locked_page)) <= end) { 728 __set_page_dirty_nobuffers(async_chunk->locked_page); 729 /* unlocked later on in the async handlers */ 730 } 731 732 if (redirty) 733 extent_range_redirty_for_io(inode, start, end); 734 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 735 BTRFS_COMPRESS_NONE); 736 compressed_extents++; 737 738 return compressed_extents; 739 } 740 741 static void free_async_extent_pages(struct async_extent *async_extent) 742 { 743 int i; 744 745 if (!async_extent->pages) 746 return; 747 748 for (i = 0; i < async_extent->nr_pages; i++) { 749 WARN_ON(async_extent->pages[i]->mapping); 750 put_page(async_extent->pages[i]); 751 } 752 kfree(async_extent->pages); 753 async_extent->nr_pages = 0; 754 async_extent->pages = NULL; 755 } 756 757 /* 758 * phase two of compressed writeback. This is the ordered portion 759 * of the code, which only gets called in the order the work was 760 * queued. We walk all the async extents created by compress_file_range 761 * and send them down to the disk. 762 */ 763 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 764 { 765 struct inode *inode = async_chunk->inode; 766 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 767 struct async_extent *async_extent; 768 u64 alloc_hint = 0; 769 struct btrfs_key ins; 770 struct extent_map *em; 771 struct btrfs_root *root = BTRFS_I(inode)->root; 772 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 773 int ret = 0; 774 775 again: 776 while (!list_empty(&async_chunk->extents)) { 777 async_extent = list_entry(async_chunk->extents.next, 778 struct async_extent, list); 779 list_del(&async_extent->list); 780 781 retry: 782 lock_extent(io_tree, async_extent->start, 783 async_extent->start + async_extent->ram_size - 1); 784 /* did the compression code fall back to uncompressed IO? */ 785 if (!async_extent->pages) { 786 int page_started = 0; 787 unsigned long nr_written = 0; 788 789 /* allocate blocks */ 790 ret = cow_file_range(inode, async_chunk->locked_page, 791 async_extent->start, 792 async_extent->start + 793 async_extent->ram_size - 1, 794 &page_started, &nr_written, 0); 795 796 /* JDM XXX */ 797 798 /* 799 * if page_started, cow_file_range inserted an 800 * inline extent and took care of all the unlocking 801 * and IO for us. Otherwise, we need to submit 802 * all those pages down to the drive. 803 */ 804 if (!page_started && !ret) 805 extent_write_locked_range(inode, 806 async_extent->start, 807 async_extent->start + 808 async_extent->ram_size - 1, 809 WB_SYNC_ALL); 810 else if (ret && async_chunk->locked_page) 811 unlock_page(async_chunk->locked_page); 812 kfree(async_extent); 813 cond_resched(); 814 continue; 815 } 816 817 ret = btrfs_reserve_extent(root, async_extent->ram_size, 818 async_extent->compressed_size, 819 async_extent->compressed_size, 820 0, alloc_hint, &ins, 1, 1); 821 if (ret) { 822 free_async_extent_pages(async_extent); 823 824 if (ret == -ENOSPC) { 825 unlock_extent(io_tree, async_extent->start, 826 async_extent->start + 827 async_extent->ram_size - 1); 828 829 /* 830 * we need to redirty the pages if we decide to 831 * fallback to uncompressed IO, otherwise we 832 * will not submit these pages down to lower 833 * layers. 834 */ 835 extent_range_redirty_for_io(inode, 836 async_extent->start, 837 async_extent->start + 838 async_extent->ram_size - 1); 839 840 goto retry; 841 } 842 goto out_free; 843 } 844 /* 845 * here we're doing allocation and writeback of the 846 * compressed pages 847 */ 848 em = create_io_em(inode, async_extent->start, 849 async_extent->ram_size, /* len */ 850 async_extent->start, /* orig_start */ 851 ins.objectid, /* block_start */ 852 ins.offset, /* block_len */ 853 ins.offset, /* orig_block_len */ 854 async_extent->ram_size, /* ram_bytes */ 855 async_extent->compress_type, 856 BTRFS_ORDERED_COMPRESSED); 857 if (IS_ERR(em)) 858 /* ret value is not necessary due to void function */ 859 goto out_free_reserve; 860 free_extent_map(em); 861 862 ret = btrfs_add_ordered_extent_compress(inode, 863 async_extent->start, 864 ins.objectid, 865 async_extent->ram_size, 866 ins.offset, 867 BTRFS_ORDERED_COMPRESSED, 868 async_extent->compress_type); 869 if (ret) { 870 btrfs_drop_extent_cache(BTRFS_I(inode), 871 async_extent->start, 872 async_extent->start + 873 async_extent->ram_size - 1, 0); 874 goto out_free_reserve; 875 } 876 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 877 878 /* 879 * clear dirty, set writeback and unlock the pages. 880 */ 881 extent_clear_unlock_delalloc(inode, async_extent->start, 882 async_extent->start + 883 async_extent->ram_size - 1, 884 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 885 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 886 PAGE_SET_WRITEBACK); 887 if (btrfs_submit_compressed_write(inode, 888 async_extent->start, 889 async_extent->ram_size, 890 ins.objectid, 891 ins.offset, async_extent->pages, 892 async_extent->nr_pages, 893 async_chunk->write_flags, 894 async_chunk->blkcg_css)) { 895 struct page *p = async_extent->pages[0]; 896 const u64 start = async_extent->start; 897 const u64 end = start + async_extent->ram_size - 1; 898 899 p->mapping = inode->i_mapping; 900 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 901 902 p->mapping = NULL; 903 extent_clear_unlock_delalloc(inode, start, end, 904 NULL, 0, 905 PAGE_END_WRITEBACK | 906 PAGE_SET_ERROR); 907 free_async_extent_pages(async_extent); 908 } 909 alloc_hint = ins.objectid + ins.offset; 910 kfree(async_extent); 911 cond_resched(); 912 } 913 return; 914 out_free_reserve: 915 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 916 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 917 out_free: 918 extent_clear_unlock_delalloc(inode, async_extent->start, 919 async_extent->start + 920 async_extent->ram_size - 1, 921 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 922 EXTENT_DELALLOC_NEW | 923 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 924 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 925 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 926 PAGE_SET_ERROR); 927 free_async_extent_pages(async_extent); 928 kfree(async_extent); 929 goto again; 930 } 931 932 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 933 u64 num_bytes) 934 { 935 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 936 struct extent_map *em; 937 u64 alloc_hint = 0; 938 939 read_lock(&em_tree->lock); 940 em = search_extent_mapping(em_tree, start, num_bytes); 941 if (em) { 942 /* 943 * if block start isn't an actual block number then find the 944 * first block in this inode and use that as a hint. If that 945 * block is also bogus then just don't worry about it. 946 */ 947 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 948 free_extent_map(em); 949 em = search_extent_mapping(em_tree, 0, 0); 950 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 951 alloc_hint = em->block_start; 952 if (em) 953 free_extent_map(em); 954 } else { 955 alloc_hint = em->block_start; 956 free_extent_map(em); 957 } 958 } 959 read_unlock(&em_tree->lock); 960 961 return alloc_hint; 962 } 963 964 /* 965 * when extent_io.c finds a delayed allocation range in the file, 966 * the call backs end up in this code. The basic idea is to 967 * allocate extents on disk for the range, and create ordered data structs 968 * in ram to track those extents. 969 * 970 * locked_page is the page that writepage had locked already. We use 971 * it to make sure we don't do extra locks or unlocks. 972 * 973 * *page_started is set to one if we unlock locked_page and do everything 974 * required to start IO on it. It may be clean and already done with 975 * IO when we return. 976 */ 977 static noinline int cow_file_range(struct inode *inode, 978 struct page *locked_page, 979 u64 start, u64 end, int *page_started, 980 unsigned long *nr_written, int unlock) 981 { 982 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 983 struct btrfs_root *root = BTRFS_I(inode)->root; 984 u64 alloc_hint = 0; 985 u64 num_bytes; 986 unsigned long ram_size; 987 u64 cur_alloc_size = 0; 988 u64 min_alloc_size; 989 u64 blocksize = fs_info->sectorsize; 990 struct btrfs_key ins; 991 struct extent_map *em; 992 unsigned clear_bits; 993 unsigned long page_ops; 994 bool extent_reserved = false; 995 int ret = 0; 996 997 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 998 WARN_ON_ONCE(1); 999 ret = -EINVAL; 1000 goto out_unlock; 1001 } 1002 1003 num_bytes = ALIGN(end - start + 1, blocksize); 1004 num_bytes = max(blocksize, num_bytes); 1005 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1006 1007 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 1008 1009 if (start == 0) { 1010 /* lets try to make an inline extent */ 1011 ret = cow_file_range_inline(inode, start, end, 0, 1012 BTRFS_COMPRESS_NONE, NULL); 1013 if (ret == 0) { 1014 /* 1015 * We use DO_ACCOUNTING here because we need the 1016 * delalloc_release_metadata to be run _after_ we drop 1017 * our outstanding extent for clearing delalloc for this 1018 * range. 1019 */ 1020 extent_clear_unlock_delalloc(inode, start, end, NULL, 1021 EXTENT_LOCKED | EXTENT_DELALLOC | 1022 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1023 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1024 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1025 PAGE_END_WRITEBACK); 1026 *nr_written = *nr_written + 1027 (end - start + PAGE_SIZE) / PAGE_SIZE; 1028 *page_started = 1; 1029 goto out; 1030 } else if (ret < 0) { 1031 goto out_unlock; 1032 } 1033 } 1034 1035 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1036 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1037 start + num_bytes - 1, 0); 1038 1039 /* 1040 * Relocation relies on the relocated extents to have exactly the same 1041 * size as the original extents. Normally writeback for relocation data 1042 * extents follows a NOCOW path because relocation preallocates the 1043 * extents. However, due to an operation such as scrub turning a block 1044 * group to RO mode, it may fallback to COW mode, so we must make sure 1045 * an extent allocated during COW has exactly the requested size and can 1046 * not be split into smaller extents, otherwise relocation breaks and 1047 * fails during the stage where it updates the bytenr of file extent 1048 * items. 1049 */ 1050 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1051 min_alloc_size = num_bytes; 1052 else 1053 min_alloc_size = fs_info->sectorsize; 1054 1055 while (num_bytes > 0) { 1056 cur_alloc_size = num_bytes; 1057 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1058 min_alloc_size, 0, alloc_hint, 1059 &ins, 1, 1); 1060 if (ret < 0) 1061 goto out_unlock; 1062 cur_alloc_size = ins.offset; 1063 extent_reserved = true; 1064 1065 ram_size = ins.offset; 1066 em = create_io_em(inode, start, ins.offset, /* len */ 1067 start, /* orig_start */ 1068 ins.objectid, /* block_start */ 1069 ins.offset, /* block_len */ 1070 ins.offset, /* orig_block_len */ 1071 ram_size, /* ram_bytes */ 1072 BTRFS_COMPRESS_NONE, /* compress_type */ 1073 BTRFS_ORDERED_REGULAR /* type */); 1074 if (IS_ERR(em)) { 1075 ret = PTR_ERR(em); 1076 goto out_reserve; 1077 } 1078 free_extent_map(em); 1079 1080 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1081 ram_size, cur_alloc_size, 0); 1082 if (ret) 1083 goto out_drop_extent_cache; 1084 1085 if (root->root_key.objectid == 1086 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1087 ret = btrfs_reloc_clone_csums(inode, start, 1088 cur_alloc_size); 1089 /* 1090 * Only drop cache here, and process as normal. 1091 * 1092 * We must not allow extent_clear_unlock_delalloc() 1093 * at out_unlock label to free meta of this ordered 1094 * extent, as its meta should be freed by 1095 * btrfs_finish_ordered_io(). 1096 * 1097 * So we must continue until @start is increased to 1098 * skip current ordered extent. 1099 */ 1100 if (ret) 1101 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1102 start + ram_size - 1, 0); 1103 } 1104 1105 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1106 1107 /* we're not doing compressed IO, don't unlock the first 1108 * page (which the caller expects to stay locked), don't 1109 * clear any dirty bits and don't set any writeback bits 1110 * 1111 * Do set the Private2 bit so we know this page was properly 1112 * setup for writepage 1113 */ 1114 page_ops = unlock ? PAGE_UNLOCK : 0; 1115 page_ops |= PAGE_SET_PRIVATE2; 1116 1117 extent_clear_unlock_delalloc(inode, start, 1118 start + ram_size - 1, 1119 locked_page, 1120 EXTENT_LOCKED | EXTENT_DELALLOC, 1121 page_ops); 1122 if (num_bytes < cur_alloc_size) 1123 num_bytes = 0; 1124 else 1125 num_bytes -= cur_alloc_size; 1126 alloc_hint = ins.objectid + ins.offset; 1127 start += cur_alloc_size; 1128 extent_reserved = false; 1129 1130 /* 1131 * btrfs_reloc_clone_csums() error, since start is increased 1132 * extent_clear_unlock_delalloc() at out_unlock label won't 1133 * free metadata of current ordered extent, we're OK to exit. 1134 */ 1135 if (ret) 1136 goto out_unlock; 1137 } 1138 out: 1139 return ret; 1140 1141 out_drop_extent_cache: 1142 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1143 out_reserve: 1144 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1145 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1146 out_unlock: 1147 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1148 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1149 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1150 PAGE_END_WRITEBACK; 1151 /* 1152 * If we reserved an extent for our delalloc range (or a subrange) and 1153 * failed to create the respective ordered extent, then it means that 1154 * when we reserved the extent we decremented the extent's size from 1155 * the data space_info's bytes_may_use counter and incremented the 1156 * space_info's bytes_reserved counter by the same amount. We must make 1157 * sure extent_clear_unlock_delalloc() does not try to decrement again 1158 * the data space_info's bytes_may_use counter, therefore we do not pass 1159 * it the flag EXTENT_CLEAR_DATA_RESV. 1160 */ 1161 if (extent_reserved) { 1162 extent_clear_unlock_delalloc(inode, start, 1163 start + cur_alloc_size - 1, 1164 locked_page, 1165 clear_bits, 1166 page_ops); 1167 start += cur_alloc_size; 1168 if (start >= end) 1169 goto out; 1170 } 1171 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1172 clear_bits | EXTENT_CLEAR_DATA_RESV, 1173 page_ops); 1174 goto out; 1175 } 1176 1177 /* 1178 * work queue call back to started compression on a file and pages 1179 */ 1180 static noinline void async_cow_start(struct btrfs_work *work) 1181 { 1182 struct async_chunk *async_chunk; 1183 int compressed_extents; 1184 1185 async_chunk = container_of(work, struct async_chunk, work); 1186 1187 compressed_extents = compress_file_range(async_chunk); 1188 if (compressed_extents == 0) { 1189 btrfs_add_delayed_iput(async_chunk->inode); 1190 async_chunk->inode = NULL; 1191 } 1192 } 1193 1194 /* 1195 * work queue call back to submit previously compressed pages 1196 */ 1197 static noinline void async_cow_submit(struct btrfs_work *work) 1198 { 1199 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1200 work); 1201 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1202 unsigned long nr_pages; 1203 1204 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1205 PAGE_SHIFT; 1206 1207 /* atomic_sub_return implies a barrier */ 1208 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1209 5 * SZ_1M) 1210 cond_wake_up_nomb(&fs_info->async_submit_wait); 1211 1212 /* 1213 * ->inode could be NULL if async_chunk_start has failed to compress, 1214 * in which case we don't have anything to submit, yet we need to 1215 * always adjust ->async_delalloc_pages as its paired with the init 1216 * happening in cow_file_range_async 1217 */ 1218 if (async_chunk->inode) 1219 submit_compressed_extents(async_chunk); 1220 } 1221 1222 static noinline void async_cow_free(struct btrfs_work *work) 1223 { 1224 struct async_chunk *async_chunk; 1225 1226 async_chunk = container_of(work, struct async_chunk, work); 1227 if (async_chunk->inode) 1228 btrfs_add_delayed_iput(async_chunk->inode); 1229 if (async_chunk->blkcg_css) 1230 css_put(async_chunk->blkcg_css); 1231 /* 1232 * Since the pointer to 'pending' is at the beginning of the array of 1233 * async_chunk's, freeing it ensures the whole array has been freed. 1234 */ 1235 if (atomic_dec_and_test(async_chunk->pending)) 1236 kvfree(async_chunk->pending); 1237 } 1238 1239 static int cow_file_range_async(struct inode *inode, 1240 struct writeback_control *wbc, 1241 struct page *locked_page, 1242 u64 start, u64 end, int *page_started, 1243 unsigned long *nr_written) 1244 { 1245 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1246 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1247 struct async_cow *ctx; 1248 struct async_chunk *async_chunk; 1249 unsigned long nr_pages; 1250 u64 cur_end; 1251 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1252 int i; 1253 bool should_compress; 1254 unsigned nofs_flag; 1255 const unsigned int write_flags = wbc_to_write_flags(wbc); 1256 1257 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1258 1259 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1260 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1261 num_chunks = 1; 1262 should_compress = false; 1263 } else { 1264 should_compress = true; 1265 } 1266 1267 nofs_flag = memalloc_nofs_save(); 1268 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1269 memalloc_nofs_restore(nofs_flag); 1270 1271 if (!ctx) { 1272 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1273 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1274 EXTENT_DO_ACCOUNTING; 1275 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1276 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1277 PAGE_SET_ERROR; 1278 1279 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1280 clear_bits, page_ops); 1281 return -ENOMEM; 1282 } 1283 1284 async_chunk = ctx->chunks; 1285 atomic_set(&ctx->num_chunks, num_chunks); 1286 1287 for (i = 0; i < num_chunks; i++) { 1288 if (should_compress) 1289 cur_end = min(end, start + SZ_512K - 1); 1290 else 1291 cur_end = end; 1292 1293 /* 1294 * igrab is called higher up in the call chain, take only the 1295 * lightweight reference for the callback lifetime 1296 */ 1297 ihold(inode); 1298 async_chunk[i].pending = &ctx->num_chunks; 1299 async_chunk[i].inode = inode; 1300 async_chunk[i].start = start; 1301 async_chunk[i].end = cur_end; 1302 async_chunk[i].write_flags = write_flags; 1303 INIT_LIST_HEAD(&async_chunk[i].extents); 1304 1305 /* 1306 * The locked_page comes all the way from writepage and its 1307 * the original page we were actually given. As we spread 1308 * this large delalloc region across multiple async_chunk 1309 * structs, only the first struct needs a pointer to locked_page 1310 * 1311 * This way we don't need racey decisions about who is supposed 1312 * to unlock it. 1313 */ 1314 if (locked_page) { 1315 /* 1316 * Depending on the compressibility, the pages might or 1317 * might not go through async. We want all of them to 1318 * be accounted against wbc once. Let's do it here 1319 * before the paths diverge. wbc accounting is used 1320 * only for foreign writeback detection and doesn't 1321 * need full accuracy. Just account the whole thing 1322 * against the first page. 1323 */ 1324 wbc_account_cgroup_owner(wbc, locked_page, 1325 cur_end - start); 1326 async_chunk[i].locked_page = locked_page; 1327 locked_page = NULL; 1328 } else { 1329 async_chunk[i].locked_page = NULL; 1330 } 1331 1332 if (blkcg_css != blkcg_root_css) { 1333 css_get(blkcg_css); 1334 async_chunk[i].blkcg_css = blkcg_css; 1335 } else { 1336 async_chunk[i].blkcg_css = NULL; 1337 } 1338 1339 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1340 async_cow_submit, async_cow_free); 1341 1342 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1343 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1344 1345 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1346 1347 *nr_written += nr_pages; 1348 start = cur_end + 1; 1349 } 1350 *page_started = 1; 1351 return 0; 1352 } 1353 1354 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1355 u64 bytenr, u64 num_bytes) 1356 { 1357 int ret; 1358 struct btrfs_ordered_sum *sums; 1359 LIST_HEAD(list); 1360 1361 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1362 bytenr + num_bytes - 1, &list, 0); 1363 if (ret == 0 && list_empty(&list)) 1364 return 0; 1365 1366 while (!list_empty(&list)) { 1367 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1368 list_del(&sums->list); 1369 kfree(sums); 1370 } 1371 if (ret < 0) 1372 return ret; 1373 return 1; 1374 } 1375 1376 static int fallback_to_cow(struct inode *inode, struct page *locked_page, 1377 const u64 start, const u64 end, 1378 int *page_started, unsigned long *nr_written) 1379 { 1380 const bool is_space_ino = btrfs_is_free_space_inode(BTRFS_I(inode)); 1381 const bool is_reloc_ino = (BTRFS_I(inode)->root->root_key.objectid == 1382 BTRFS_DATA_RELOC_TREE_OBJECTID); 1383 const u64 range_bytes = end + 1 - start; 1384 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1385 u64 range_start = start; 1386 u64 count; 1387 1388 /* 1389 * If EXTENT_NORESERVE is set it means that when the buffered write was 1390 * made we had not enough available data space and therefore we did not 1391 * reserve data space for it, since we though we could do NOCOW for the 1392 * respective file range (either there is prealloc extent or the inode 1393 * has the NOCOW bit set). 1394 * 1395 * However when we need to fallback to COW mode (because for example the 1396 * block group for the corresponding extent was turned to RO mode by a 1397 * scrub or relocation) we need to do the following: 1398 * 1399 * 1) We increment the bytes_may_use counter of the data space info. 1400 * If COW succeeds, it allocates a new data extent and after doing 1401 * that it decrements the space info's bytes_may_use counter and 1402 * increments its bytes_reserved counter by the same amount (we do 1403 * this at btrfs_add_reserved_bytes()). So we need to increment the 1404 * bytes_may_use counter to compensate (when space is reserved at 1405 * buffered write time, the bytes_may_use counter is incremented); 1406 * 1407 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1408 * that if the COW path fails for any reason, it decrements (through 1409 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1410 * data space info, which we incremented in the step above. 1411 * 1412 * If we need to fallback to cow and the inode corresponds to a free 1413 * space cache inode or an inode of the data relocation tree, we must 1414 * also increment bytes_may_use of the data space_info for the same 1415 * reason. Space caches and relocated data extents always get a prealloc 1416 * extent for them, however scrub or balance may have set the block 1417 * group that contains that extent to RO mode and therefore force COW 1418 * when starting writeback. 1419 */ 1420 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1421 EXTENT_NORESERVE, 0); 1422 if (count > 0 || is_space_ino || is_reloc_ino) { 1423 u64 bytes = count; 1424 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1425 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1426 1427 if (is_space_ino || is_reloc_ino) 1428 bytes = range_bytes; 1429 1430 spin_lock(&sinfo->lock); 1431 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1432 spin_unlock(&sinfo->lock); 1433 1434 if (count > 0) 1435 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1436 0, 0, NULL); 1437 } 1438 1439 return cow_file_range(inode, locked_page, start, end, page_started, 1440 nr_written, 1); 1441 } 1442 1443 /* 1444 * when nowcow writeback call back. This checks for snapshots or COW copies 1445 * of the extents that exist in the file, and COWs the file as required. 1446 * 1447 * If no cow copies or snapshots exist, we write directly to the existing 1448 * blocks on disk 1449 */ 1450 static noinline int run_delalloc_nocow(struct inode *inode, 1451 struct page *locked_page, 1452 const u64 start, const u64 end, 1453 int *page_started, int force, 1454 unsigned long *nr_written) 1455 { 1456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1457 struct btrfs_root *root = BTRFS_I(inode)->root; 1458 struct btrfs_path *path; 1459 u64 cow_start = (u64)-1; 1460 u64 cur_offset = start; 1461 int ret; 1462 bool check_prev = true; 1463 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 1464 u64 ino = btrfs_ino(BTRFS_I(inode)); 1465 bool nocow = false; 1466 u64 disk_bytenr = 0; 1467 1468 path = btrfs_alloc_path(); 1469 if (!path) { 1470 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1471 EXTENT_LOCKED | EXTENT_DELALLOC | 1472 EXTENT_DO_ACCOUNTING | 1473 EXTENT_DEFRAG, PAGE_UNLOCK | 1474 PAGE_CLEAR_DIRTY | 1475 PAGE_SET_WRITEBACK | 1476 PAGE_END_WRITEBACK); 1477 return -ENOMEM; 1478 } 1479 1480 while (1) { 1481 struct btrfs_key found_key; 1482 struct btrfs_file_extent_item *fi; 1483 struct extent_buffer *leaf; 1484 u64 extent_end; 1485 u64 extent_offset; 1486 u64 num_bytes = 0; 1487 u64 disk_num_bytes; 1488 u64 ram_bytes; 1489 int extent_type; 1490 1491 nocow = false; 1492 1493 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1494 cur_offset, 0); 1495 if (ret < 0) 1496 goto error; 1497 1498 /* 1499 * If there is no extent for our range when doing the initial 1500 * search, then go back to the previous slot as it will be the 1501 * one containing the search offset 1502 */ 1503 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1504 leaf = path->nodes[0]; 1505 btrfs_item_key_to_cpu(leaf, &found_key, 1506 path->slots[0] - 1); 1507 if (found_key.objectid == ino && 1508 found_key.type == BTRFS_EXTENT_DATA_KEY) 1509 path->slots[0]--; 1510 } 1511 check_prev = false; 1512 next_slot: 1513 /* Go to next leaf if we have exhausted the current one */ 1514 leaf = path->nodes[0]; 1515 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1516 ret = btrfs_next_leaf(root, path); 1517 if (ret < 0) { 1518 if (cow_start != (u64)-1) 1519 cur_offset = cow_start; 1520 goto error; 1521 } 1522 if (ret > 0) 1523 break; 1524 leaf = path->nodes[0]; 1525 } 1526 1527 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1528 1529 /* Didn't find anything for our INO */ 1530 if (found_key.objectid > ino) 1531 break; 1532 /* 1533 * Keep searching until we find an EXTENT_ITEM or there are no 1534 * more extents for this inode 1535 */ 1536 if (WARN_ON_ONCE(found_key.objectid < ino) || 1537 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1538 path->slots[0]++; 1539 goto next_slot; 1540 } 1541 1542 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1543 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1544 found_key.offset > end) 1545 break; 1546 1547 /* 1548 * If the found extent starts after requested offset, then 1549 * adjust extent_end to be right before this extent begins 1550 */ 1551 if (found_key.offset > cur_offset) { 1552 extent_end = found_key.offset; 1553 extent_type = 0; 1554 goto out_check; 1555 } 1556 1557 /* 1558 * Found extent which begins before our range and potentially 1559 * intersect it 1560 */ 1561 fi = btrfs_item_ptr(leaf, path->slots[0], 1562 struct btrfs_file_extent_item); 1563 extent_type = btrfs_file_extent_type(leaf, fi); 1564 1565 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1566 if (extent_type == BTRFS_FILE_EXTENT_REG || 1567 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1568 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1569 extent_offset = btrfs_file_extent_offset(leaf, fi); 1570 extent_end = found_key.offset + 1571 btrfs_file_extent_num_bytes(leaf, fi); 1572 disk_num_bytes = 1573 btrfs_file_extent_disk_num_bytes(leaf, fi); 1574 /* 1575 * If the extent we got ends before our current offset, 1576 * skip to the next extent. 1577 */ 1578 if (extent_end <= cur_offset) { 1579 path->slots[0]++; 1580 goto next_slot; 1581 } 1582 /* Skip holes */ 1583 if (disk_bytenr == 0) 1584 goto out_check; 1585 /* Skip compressed/encrypted/encoded extents */ 1586 if (btrfs_file_extent_compression(leaf, fi) || 1587 btrfs_file_extent_encryption(leaf, fi) || 1588 btrfs_file_extent_other_encoding(leaf, fi)) 1589 goto out_check; 1590 /* 1591 * If extent is created before the last volume's snapshot 1592 * this implies the extent is shared, hence we can't do 1593 * nocow. This is the same check as in 1594 * btrfs_cross_ref_exist but without calling 1595 * btrfs_search_slot. 1596 */ 1597 if (!freespace_inode && 1598 btrfs_file_extent_generation(leaf, fi) <= 1599 btrfs_root_last_snapshot(&root->root_item)) 1600 goto out_check; 1601 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1602 goto out_check; 1603 /* If extent is RO, we must COW it */ 1604 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1605 goto out_check; 1606 ret = btrfs_cross_ref_exist(root, ino, 1607 found_key.offset - 1608 extent_offset, disk_bytenr); 1609 if (ret) { 1610 /* 1611 * ret could be -EIO if the above fails to read 1612 * metadata. 1613 */ 1614 if (ret < 0) { 1615 if (cow_start != (u64)-1) 1616 cur_offset = cow_start; 1617 goto error; 1618 } 1619 1620 WARN_ON_ONCE(freespace_inode); 1621 goto out_check; 1622 } 1623 disk_bytenr += extent_offset; 1624 disk_bytenr += cur_offset - found_key.offset; 1625 num_bytes = min(end + 1, extent_end) - cur_offset; 1626 /* 1627 * If there are pending snapshots for this root, we 1628 * fall into common COW way 1629 */ 1630 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1631 goto out_check; 1632 /* 1633 * force cow if csum exists in the range. 1634 * this ensure that csum for a given extent are 1635 * either valid or do not exist. 1636 */ 1637 ret = csum_exist_in_range(fs_info, disk_bytenr, 1638 num_bytes); 1639 if (ret) { 1640 /* 1641 * ret could be -EIO if the above fails to read 1642 * metadata. 1643 */ 1644 if (ret < 0) { 1645 if (cow_start != (u64)-1) 1646 cur_offset = cow_start; 1647 goto error; 1648 } 1649 WARN_ON_ONCE(freespace_inode); 1650 goto out_check; 1651 } 1652 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1653 goto out_check; 1654 nocow = true; 1655 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1656 extent_end = found_key.offset + ram_bytes; 1657 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1658 /* Skip extents outside of our requested range */ 1659 if (extent_end <= start) { 1660 path->slots[0]++; 1661 goto next_slot; 1662 } 1663 } else { 1664 /* If this triggers then we have a memory corruption */ 1665 BUG(); 1666 } 1667 out_check: 1668 /* 1669 * If nocow is false then record the beginning of the range 1670 * that needs to be COWed 1671 */ 1672 if (!nocow) { 1673 if (cow_start == (u64)-1) 1674 cow_start = cur_offset; 1675 cur_offset = extent_end; 1676 if (cur_offset > end) 1677 break; 1678 path->slots[0]++; 1679 goto next_slot; 1680 } 1681 1682 btrfs_release_path(path); 1683 1684 /* 1685 * COW range from cow_start to found_key.offset - 1. As the key 1686 * will contain the beginning of the first extent that can be 1687 * NOCOW, following one which needs to be COW'ed 1688 */ 1689 if (cow_start != (u64)-1) { 1690 ret = fallback_to_cow(inode, locked_page, cow_start, 1691 found_key.offset - 1, 1692 page_started, nr_written); 1693 if (ret) 1694 goto error; 1695 cow_start = (u64)-1; 1696 } 1697 1698 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1699 u64 orig_start = found_key.offset - extent_offset; 1700 struct extent_map *em; 1701 1702 em = create_io_em(inode, cur_offset, num_bytes, 1703 orig_start, 1704 disk_bytenr, /* block_start */ 1705 num_bytes, /* block_len */ 1706 disk_num_bytes, /* orig_block_len */ 1707 ram_bytes, BTRFS_COMPRESS_NONE, 1708 BTRFS_ORDERED_PREALLOC); 1709 if (IS_ERR(em)) { 1710 ret = PTR_ERR(em); 1711 goto error; 1712 } 1713 free_extent_map(em); 1714 ret = btrfs_add_ordered_extent(inode, cur_offset, 1715 disk_bytenr, num_bytes, 1716 num_bytes, 1717 BTRFS_ORDERED_PREALLOC); 1718 if (ret) { 1719 btrfs_drop_extent_cache(BTRFS_I(inode), 1720 cur_offset, 1721 cur_offset + num_bytes - 1, 1722 0); 1723 goto error; 1724 } 1725 } else { 1726 ret = btrfs_add_ordered_extent(inode, cur_offset, 1727 disk_bytenr, num_bytes, 1728 num_bytes, 1729 BTRFS_ORDERED_NOCOW); 1730 if (ret) 1731 goto error; 1732 } 1733 1734 if (nocow) 1735 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1736 nocow = false; 1737 1738 if (root->root_key.objectid == 1739 BTRFS_DATA_RELOC_TREE_OBJECTID) 1740 /* 1741 * Error handled later, as we must prevent 1742 * extent_clear_unlock_delalloc() in error handler 1743 * from freeing metadata of created ordered extent. 1744 */ 1745 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1746 num_bytes); 1747 1748 extent_clear_unlock_delalloc(inode, cur_offset, 1749 cur_offset + num_bytes - 1, 1750 locked_page, EXTENT_LOCKED | 1751 EXTENT_DELALLOC | 1752 EXTENT_CLEAR_DATA_RESV, 1753 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1754 1755 cur_offset = extent_end; 1756 1757 /* 1758 * btrfs_reloc_clone_csums() error, now we're OK to call error 1759 * handler, as metadata for created ordered extent will only 1760 * be freed by btrfs_finish_ordered_io(). 1761 */ 1762 if (ret) 1763 goto error; 1764 if (cur_offset > end) 1765 break; 1766 } 1767 btrfs_release_path(path); 1768 1769 if (cur_offset <= end && cow_start == (u64)-1) 1770 cow_start = cur_offset; 1771 1772 if (cow_start != (u64)-1) { 1773 cur_offset = end; 1774 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1775 page_started, nr_written); 1776 if (ret) 1777 goto error; 1778 } 1779 1780 error: 1781 if (nocow) 1782 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1783 1784 if (ret && cur_offset < end) 1785 extent_clear_unlock_delalloc(inode, cur_offset, end, 1786 locked_page, EXTENT_LOCKED | 1787 EXTENT_DELALLOC | EXTENT_DEFRAG | 1788 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1789 PAGE_CLEAR_DIRTY | 1790 PAGE_SET_WRITEBACK | 1791 PAGE_END_WRITEBACK); 1792 btrfs_free_path(path); 1793 return ret; 1794 } 1795 1796 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1797 { 1798 1799 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1800 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1801 return 0; 1802 1803 /* 1804 * @defrag_bytes is a hint value, no spinlock held here, 1805 * if is not zero, it means the file is defragging. 1806 * Force cow if given extent needs to be defragged. 1807 */ 1808 if (BTRFS_I(inode)->defrag_bytes && 1809 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1810 EXTENT_DEFRAG, 0, NULL)) 1811 return 1; 1812 1813 return 0; 1814 } 1815 1816 /* 1817 * Function to process delayed allocation (create CoW) for ranges which are 1818 * being touched for the first time. 1819 */ 1820 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1821 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1822 struct writeback_control *wbc) 1823 { 1824 int ret; 1825 int force_cow = need_force_cow(inode, start, end); 1826 1827 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1828 ret = run_delalloc_nocow(inode, locked_page, start, end, 1829 page_started, 1, nr_written); 1830 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1831 ret = run_delalloc_nocow(inode, locked_page, start, end, 1832 page_started, 0, nr_written); 1833 } else if (!inode_can_compress(inode) || 1834 !inode_need_compress(inode, start, end)) { 1835 ret = cow_file_range(inode, locked_page, start, end, 1836 page_started, nr_written, 1); 1837 } else { 1838 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1839 &BTRFS_I(inode)->runtime_flags); 1840 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1841 page_started, nr_written); 1842 } 1843 if (ret) 1844 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1845 end - start + 1); 1846 return ret; 1847 } 1848 1849 void btrfs_split_delalloc_extent(struct inode *inode, 1850 struct extent_state *orig, u64 split) 1851 { 1852 u64 size; 1853 1854 /* not delalloc, ignore it */ 1855 if (!(orig->state & EXTENT_DELALLOC)) 1856 return; 1857 1858 size = orig->end - orig->start + 1; 1859 if (size > BTRFS_MAX_EXTENT_SIZE) { 1860 u32 num_extents; 1861 u64 new_size; 1862 1863 /* 1864 * See the explanation in btrfs_merge_delalloc_extent, the same 1865 * applies here, just in reverse. 1866 */ 1867 new_size = orig->end - split + 1; 1868 num_extents = count_max_extents(new_size); 1869 new_size = split - orig->start; 1870 num_extents += count_max_extents(new_size); 1871 if (count_max_extents(size) >= num_extents) 1872 return; 1873 } 1874 1875 spin_lock(&BTRFS_I(inode)->lock); 1876 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1877 spin_unlock(&BTRFS_I(inode)->lock); 1878 } 1879 1880 /* 1881 * Handle merged delayed allocation extents so we can keep track of new extents 1882 * that are just merged onto old extents, such as when we are doing sequential 1883 * writes, so we can properly account for the metadata space we'll need. 1884 */ 1885 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1886 struct extent_state *other) 1887 { 1888 u64 new_size, old_size; 1889 u32 num_extents; 1890 1891 /* not delalloc, ignore it */ 1892 if (!(other->state & EXTENT_DELALLOC)) 1893 return; 1894 1895 if (new->start > other->start) 1896 new_size = new->end - other->start + 1; 1897 else 1898 new_size = other->end - new->start + 1; 1899 1900 /* we're not bigger than the max, unreserve the space and go */ 1901 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1902 spin_lock(&BTRFS_I(inode)->lock); 1903 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1904 spin_unlock(&BTRFS_I(inode)->lock); 1905 return; 1906 } 1907 1908 /* 1909 * We have to add up either side to figure out how many extents were 1910 * accounted for before we merged into one big extent. If the number of 1911 * extents we accounted for is <= the amount we need for the new range 1912 * then we can return, otherwise drop. Think of it like this 1913 * 1914 * [ 4k][MAX_SIZE] 1915 * 1916 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1917 * need 2 outstanding extents, on one side we have 1 and the other side 1918 * we have 1 so they are == and we can return. But in this case 1919 * 1920 * [MAX_SIZE+4k][MAX_SIZE+4k] 1921 * 1922 * Each range on their own accounts for 2 extents, but merged together 1923 * they are only 3 extents worth of accounting, so we need to drop in 1924 * this case. 1925 */ 1926 old_size = other->end - other->start + 1; 1927 num_extents = count_max_extents(old_size); 1928 old_size = new->end - new->start + 1; 1929 num_extents += count_max_extents(old_size); 1930 if (count_max_extents(new_size) >= num_extents) 1931 return; 1932 1933 spin_lock(&BTRFS_I(inode)->lock); 1934 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1935 spin_unlock(&BTRFS_I(inode)->lock); 1936 } 1937 1938 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1939 struct inode *inode) 1940 { 1941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1942 1943 spin_lock(&root->delalloc_lock); 1944 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1945 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1946 &root->delalloc_inodes); 1947 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1948 &BTRFS_I(inode)->runtime_flags); 1949 root->nr_delalloc_inodes++; 1950 if (root->nr_delalloc_inodes == 1) { 1951 spin_lock(&fs_info->delalloc_root_lock); 1952 BUG_ON(!list_empty(&root->delalloc_root)); 1953 list_add_tail(&root->delalloc_root, 1954 &fs_info->delalloc_roots); 1955 spin_unlock(&fs_info->delalloc_root_lock); 1956 } 1957 } 1958 spin_unlock(&root->delalloc_lock); 1959 } 1960 1961 1962 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1963 struct btrfs_inode *inode) 1964 { 1965 struct btrfs_fs_info *fs_info = root->fs_info; 1966 1967 if (!list_empty(&inode->delalloc_inodes)) { 1968 list_del_init(&inode->delalloc_inodes); 1969 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1970 &inode->runtime_flags); 1971 root->nr_delalloc_inodes--; 1972 if (!root->nr_delalloc_inodes) { 1973 ASSERT(list_empty(&root->delalloc_inodes)); 1974 spin_lock(&fs_info->delalloc_root_lock); 1975 BUG_ON(list_empty(&root->delalloc_root)); 1976 list_del_init(&root->delalloc_root); 1977 spin_unlock(&fs_info->delalloc_root_lock); 1978 } 1979 } 1980 } 1981 1982 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1983 struct btrfs_inode *inode) 1984 { 1985 spin_lock(&root->delalloc_lock); 1986 __btrfs_del_delalloc_inode(root, inode); 1987 spin_unlock(&root->delalloc_lock); 1988 } 1989 1990 /* 1991 * Properly track delayed allocation bytes in the inode and to maintain the 1992 * list of inodes that have pending delalloc work to be done. 1993 */ 1994 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1995 unsigned *bits) 1996 { 1997 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1998 1999 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2000 WARN_ON(1); 2001 /* 2002 * set_bit and clear bit hooks normally require _irqsave/restore 2003 * but in this case, we are only testing for the DELALLOC 2004 * bit, which is only set or cleared with irqs on 2005 */ 2006 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2007 struct btrfs_root *root = BTRFS_I(inode)->root; 2008 u64 len = state->end + 1 - state->start; 2009 u32 num_extents = count_max_extents(len); 2010 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2011 2012 spin_lock(&BTRFS_I(inode)->lock); 2013 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2014 spin_unlock(&BTRFS_I(inode)->lock); 2015 2016 /* For sanity tests */ 2017 if (btrfs_is_testing(fs_info)) 2018 return; 2019 2020 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2021 fs_info->delalloc_batch); 2022 spin_lock(&BTRFS_I(inode)->lock); 2023 BTRFS_I(inode)->delalloc_bytes += len; 2024 if (*bits & EXTENT_DEFRAG) 2025 BTRFS_I(inode)->defrag_bytes += len; 2026 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2027 &BTRFS_I(inode)->runtime_flags)) 2028 btrfs_add_delalloc_inodes(root, inode); 2029 spin_unlock(&BTRFS_I(inode)->lock); 2030 } 2031 2032 if (!(state->state & EXTENT_DELALLOC_NEW) && 2033 (*bits & EXTENT_DELALLOC_NEW)) { 2034 spin_lock(&BTRFS_I(inode)->lock); 2035 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2036 state->start; 2037 spin_unlock(&BTRFS_I(inode)->lock); 2038 } 2039 } 2040 2041 /* 2042 * Once a range is no longer delalloc this function ensures that proper 2043 * accounting happens. 2044 */ 2045 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2046 struct extent_state *state, unsigned *bits) 2047 { 2048 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2049 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2050 u64 len = state->end + 1 - state->start; 2051 u32 num_extents = count_max_extents(len); 2052 2053 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2054 spin_lock(&inode->lock); 2055 inode->defrag_bytes -= len; 2056 spin_unlock(&inode->lock); 2057 } 2058 2059 /* 2060 * set_bit and clear bit hooks normally require _irqsave/restore 2061 * but in this case, we are only testing for the DELALLOC 2062 * bit, which is only set or cleared with irqs on 2063 */ 2064 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2065 struct btrfs_root *root = inode->root; 2066 bool do_list = !btrfs_is_free_space_inode(inode); 2067 2068 spin_lock(&inode->lock); 2069 btrfs_mod_outstanding_extents(inode, -num_extents); 2070 spin_unlock(&inode->lock); 2071 2072 /* 2073 * We don't reserve metadata space for space cache inodes so we 2074 * don't need to call delalloc_release_metadata if there is an 2075 * error. 2076 */ 2077 if (*bits & EXTENT_CLEAR_META_RESV && 2078 root != fs_info->tree_root) 2079 btrfs_delalloc_release_metadata(inode, len, false); 2080 2081 /* For sanity tests. */ 2082 if (btrfs_is_testing(fs_info)) 2083 return; 2084 2085 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2086 do_list && !(state->state & EXTENT_NORESERVE) && 2087 (*bits & EXTENT_CLEAR_DATA_RESV)) 2088 btrfs_free_reserved_data_space_noquota( 2089 &inode->vfs_inode, 2090 state->start, len); 2091 2092 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2093 fs_info->delalloc_batch); 2094 spin_lock(&inode->lock); 2095 inode->delalloc_bytes -= len; 2096 if (do_list && inode->delalloc_bytes == 0 && 2097 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2098 &inode->runtime_flags)) 2099 btrfs_del_delalloc_inode(root, inode); 2100 spin_unlock(&inode->lock); 2101 } 2102 2103 if ((state->state & EXTENT_DELALLOC_NEW) && 2104 (*bits & EXTENT_DELALLOC_NEW)) { 2105 spin_lock(&inode->lock); 2106 ASSERT(inode->new_delalloc_bytes >= len); 2107 inode->new_delalloc_bytes -= len; 2108 spin_unlock(&inode->lock); 2109 } 2110 } 2111 2112 /* 2113 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2114 * in a chunk's stripe. This function ensures that bios do not span a 2115 * stripe/chunk 2116 * 2117 * @page - The page we are about to add to the bio 2118 * @size - size we want to add to the bio 2119 * @bio - bio we want to ensure is smaller than a stripe 2120 * @bio_flags - flags of the bio 2121 * 2122 * return 1 if page cannot be added to the bio 2123 * return 0 if page can be added to the bio 2124 * return error otherwise 2125 */ 2126 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2127 unsigned long bio_flags) 2128 { 2129 struct inode *inode = page->mapping->host; 2130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2131 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2132 u64 length = 0; 2133 u64 map_length; 2134 int ret; 2135 struct btrfs_io_geometry geom; 2136 2137 if (bio_flags & EXTENT_BIO_COMPRESSED) 2138 return 0; 2139 2140 length = bio->bi_iter.bi_size; 2141 map_length = length; 2142 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2143 &geom); 2144 if (ret < 0) 2145 return ret; 2146 2147 if (geom.len < length + size) 2148 return 1; 2149 return 0; 2150 } 2151 2152 /* 2153 * in order to insert checksums into the metadata in large chunks, 2154 * we wait until bio submission time. All the pages in the bio are 2155 * checksummed and sums are attached onto the ordered extent record. 2156 * 2157 * At IO completion time the cums attached on the ordered extent record 2158 * are inserted into the btree 2159 */ 2160 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2161 u64 bio_offset) 2162 { 2163 struct inode *inode = private_data; 2164 blk_status_t ret = 0; 2165 2166 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2167 BUG_ON(ret); /* -ENOMEM */ 2168 return 0; 2169 } 2170 2171 /* 2172 * extent_io.c submission hook. This does the right thing for csum calculation 2173 * on write, or reading the csums from the tree before a read. 2174 * 2175 * Rules about async/sync submit, 2176 * a) read: sync submit 2177 * 2178 * b) write without checksum: sync submit 2179 * 2180 * c) write with checksum: 2181 * c-1) if bio is issued by fsync: sync submit 2182 * (sync_writers != 0) 2183 * 2184 * c-2) if root is reloc root: sync submit 2185 * (only in case of buffered IO) 2186 * 2187 * c-3) otherwise: async submit 2188 */ 2189 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 2190 int mirror_num, 2191 unsigned long bio_flags) 2192 2193 { 2194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2195 struct btrfs_root *root = BTRFS_I(inode)->root; 2196 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2197 blk_status_t ret = 0; 2198 int skip_sum; 2199 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2200 2201 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2202 2203 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2204 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2205 2206 if (bio_op(bio) != REQ_OP_WRITE) { 2207 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2208 if (ret) 2209 goto out; 2210 2211 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2212 ret = btrfs_submit_compressed_read(inode, bio, 2213 mirror_num, 2214 bio_flags); 2215 goto out; 2216 } else if (!skip_sum) { 2217 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL); 2218 if (ret) 2219 goto out; 2220 } 2221 goto mapit; 2222 } else if (async && !skip_sum) { 2223 /* csum items have already been cloned */ 2224 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2225 goto mapit; 2226 /* we're doing a write, do the async checksumming */ 2227 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2228 0, inode, btrfs_submit_bio_start); 2229 goto out; 2230 } else if (!skip_sum) { 2231 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2232 if (ret) 2233 goto out; 2234 } 2235 2236 mapit: 2237 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2238 2239 out: 2240 if (ret) { 2241 bio->bi_status = ret; 2242 bio_endio(bio); 2243 } 2244 return ret; 2245 } 2246 2247 /* 2248 * given a list of ordered sums record them in the inode. This happens 2249 * at IO completion time based on sums calculated at bio submission time. 2250 */ 2251 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2252 struct inode *inode, struct list_head *list) 2253 { 2254 struct btrfs_ordered_sum *sum; 2255 int ret; 2256 2257 list_for_each_entry(sum, list, list) { 2258 trans->adding_csums = true; 2259 ret = btrfs_csum_file_blocks(trans, 2260 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2261 trans->adding_csums = false; 2262 if (ret) 2263 return ret; 2264 } 2265 return 0; 2266 } 2267 2268 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2269 unsigned int extra_bits, 2270 struct extent_state **cached_state) 2271 { 2272 WARN_ON(PAGE_ALIGNED(end)); 2273 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2274 extra_bits, cached_state); 2275 } 2276 2277 /* see btrfs_writepage_start_hook for details on why this is required */ 2278 struct btrfs_writepage_fixup { 2279 struct page *page; 2280 struct inode *inode; 2281 struct btrfs_work work; 2282 }; 2283 2284 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2285 { 2286 struct btrfs_writepage_fixup *fixup; 2287 struct btrfs_ordered_extent *ordered; 2288 struct extent_state *cached_state = NULL; 2289 struct extent_changeset *data_reserved = NULL; 2290 struct page *page; 2291 struct inode *inode; 2292 u64 page_start; 2293 u64 page_end; 2294 int ret = 0; 2295 bool free_delalloc_space = true; 2296 2297 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2298 page = fixup->page; 2299 inode = fixup->inode; 2300 page_start = page_offset(page); 2301 page_end = page_offset(page) + PAGE_SIZE - 1; 2302 2303 /* 2304 * This is similar to page_mkwrite, we need to reserve the space before 2305 * we take the page lock. 2306 */ 2307 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2308 PAGE_SIZE); 2309 again: 2310 lock_page(page); 2311 2312 /* 2313 * Before we queued this fixup, we took a reference on the page. 2314 * page->mapping may go NULL, but it shouldn't be moved to a different 2315 * address space. 2316 */ 2317 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2318 /* 2319 * Unfortunately this is a little tricky, either 2320 * 2321 * 1) We got here and our page had already been dealt with and 2322 * we reserved our space, thus ret == 0, so we need to just 2323 * drop our space reservation and bail. This can happen the 2324 * first time we come into the fixup worker, or could happen 2325 * while waiting for the ordered extent. 2326 * 2) Our page was already dealt with, but we happened to get an 2327 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2328 * this case we obviously don't have anything to release, but 2329 * because the page was already dealt with we don't want to 2330 * mark the page with an error, so make sure we're resetting 2331 * ret to 0. This is why we have this check _before_ the ret 2332 * check, because we do not want to have a surprise ENOSPC 2333 * when the page was already properly dealt with. 2334 */ 2335 if (!ret) { 2336 btrfs_delalloc_release_extents(BTRFS_I(inode), 2337 PAGE_SIZE); 2338 btrfs_delalloc_release_space(inode, data_reserved, 2339 page_start, PAGE_SIZE, 2340 true); 2341 } 2342 ret = 0; 2343 goto out_page; 2344 } 2345 2346 /* 2347 * We can't mess with the page state unless it is locked, so now that 2348 * it is locked bail if we failed to make our space reservation. 2349 */ 2350 if (ret) 2351 goto out_page; 2352 2353 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2354 &cached_state); 2355 2356 /* already ordered? We're done */ 2357 if (PagePrivate2(page)) 2358 goto out_reserved; 2359 2360 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2361 PAGE_SIZE); 2362 if (ordered) { 2363 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2364 page_end, &cached_state); 2365 unlock_page(page); 2366 btrfs_start_ordered_extent(inode, ordered, 1); 2367 btrfs_put_ordered_extent(ordered); 2368 goto again; 2369 } 2370 2371 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2372 &cached_state); 2373 if (ret) 2374 goto out_reserved; 2375 2376 /* 2377 * Everything went as planned, we're now the owner of a dirty page with 2378 * delayed allocation bits set and space reserved for our COW 2379 * destination. 2380 * 2381 * The page was dirty when we started, nothing should have cleaned it. 2382 */ 2383 BUG_ON(!PageDirty(page)); 2384 free_delalloc_space = false; 2385 out_reserved: 2386 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2387 if (free_delalloc_space) 2388 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2389 PAGE_SIZE, true); 2390 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2391 &cached_state); 2392 out_page: 2393 if (ret) { 2394 /* 2395 * We hit ENOSPC or other errors. Update the mapping and page 2396 * to reflect the errors and clean the page. 2397 */ 2398 mapping_set_error(page->mapping, ret); 2399 end_extent_writepage(page, ret, page_start, page_end); 2400 clear_page_dirty_for_io(page); 2401 SetPageError(page); 2402 } 2403 ClearPageChecked(page); 2404 unlock_page(page); 2405 put_page(page); 2406 kfree(fixup); 2407 extent_changeset_free(data_reserved); 2408 /* 2409 * As a precaution, do a delayed iput in case it would be the last iput 2410 * that could need flushing space. Recursing back to fixup worker would 2411 * deadlock. 2412 */ 2413 btrfs_add_delayed_iput(inode); 2414 } 2415 2416 /* 2417 * There are a few paths in the higher layers of the kernel that directly 2418 * set the page dirty bit without asking the filesystem if it is a 2419 * good idea. This causes problems because we want to make sure COW 2420 * properly happens and the data=ordered rules are followed. 2421 * 2422 * In our case any range that doesn't have the ORDERED bit set 2423 * hasn't been properly setup for IO. We kick off an async process 2424 * to fix it up. The async helper will wait for ordered extents, set 2425 * the delalloc bit and make it safe to write the page. 2426 */ 2427 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2428 { 2429 struct inode *inode = page->mapping->host; 2430 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2431 struct btrfs_writepage_fixup *fixup; 2432 2433 /* this page is properly in the ordered list */ 2434 if (TestClearPagePrivate2(page)) 2435 return 0; 2436 2437 /* 2438 * PageChecked is set below when we create a fixup worker for this page, 2439 * don't try to create another one if we're already PageChecked() 2440 * 2441 * The extent_io writepage code will redirty the page if we send back 2442 * EAGAIN. 2443 */ 2444 if (PageChecked(page)) 2445 return -EAGAIN; 2446 2447 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2448 if (!fixup) 2449 return -EAGAIN; 2450 2451 /* 2452 * We are already holding a reference to this inode from 2453 * write_cache_pages. We need to hold it because the space reservation 2454 * takes place outside of the page lock, and we can't trust 2455 * page->mapping outside of the page lock. 2456 */ 2457 ihold(inode); 2458 SetPageChecked(page); 2459 get_page(page); 2460 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2461 fixup->page = page; 2462 fixup->inode = inode; 2463 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2464 2465 return -EAGAIN; 2466 } 2467 2468 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2469 struct inode *inode, u64 file_pos, 2470 u64 disk_bytenr, u64 disk_num_bytes, 2471 u64 num_bytes, u64 ram_bytes, 2472 u8 compression, u8 encryption, 2473 u16 other_encoding, int extent_type) 2474 { 2475 struct btrfs_root *root = BTRFS_I(inode)->root; 2476 struct btrfs_file_extent_item *fi; 2477 struct btrfs_path *path; 2478 struct extent_buffer *leaf; 2479 struct btrfs_key ins; 2480 u64 qg_released; 2481 int extent_inserted = 0; 2482 int ret; 2483 2484 path = btrfs_alloc_path(); 2485 if (!path) 2486 return -ENOMEM; 2487 2488 /* 2489 * we may be replacing one extent in the tree with another. 2490 * The new extent is pinned in the extent map, and we don't want 2491 * to drop it from the cache until it is completely in the btree. 2492 * 2493 * So, tell btrfs_drop_extents to leave this extent in the cache. 2494 * the caller is expected to unpin it and allow it to be merged 2495 * with the others. 2496 */ 2497 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2498 file_pos + num_bytes, NULL, 0, 2499 1, sizeof(*fi), &extent_inserted); 2500 if (ret) 2501 goto out; 2502 2503 if (!extent_inserted) { 2504 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2505 ins.offset = file_pos; 2506 ins.type = BTRFS_EXTENT_DATA_KEY; 2507 2508 path->leave_spinning = 1; 2509 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2510 sizeof(*fi)); 2511 if (ret) 2512 goto out; 2513 } 2514 leaf = path->nodes[0]; 2515 fi = btrfs_item_ptr(leaf, path->slots[0], 2516 struct btrfs_file_extent_item); 2517 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2518 btrfs_set_file_extent_type(leaf, fi, extent_type); 2519 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2520 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2521 btrfs_set_file_extent_offset(leaf, fi, 0); 2522 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2523 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2524 btrfs_set_file_extent_compression(leaf, fi, compression); 2525 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2526 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2527 2528 btrfs_mark_buffer_dirty(leaf); 2529 btrfs_release_path(path); 2530 2531 inode_add_bytes(inode, num_bytes); 2532 2533 ins.objectid = disk_bytenr; 2534 ins.offset = disk_num_bytes; 2535 ins.type = BTRFS_EXTENT_ITEM_KEY; 2536 2537 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), file_pos, 2538 ram_bytes); 2539 if (ret) 2540 goto out; 2541 2542 /* 2543 * Release the reserved range from inode dirty range map, as it is 2544 * already moved into delayed_ref_head 2545 */ 2546 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2547 if (ret < 0) 2548 goto out; 2549 qg_released = ret; 2550 ret = btrfs_alloc_reserved_file_extent(trans, root, 2551 btrfs_ino(BTRFS_I(inode)), 2552 file_pos, qg_released, &ins); 2553 out: 2554 btrfs_free_path(path); 2555 2556 return ret; 2557 } 2558 2559 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2560 u64 start, u64 len) 2561 { 2562 struct btrfs_block_group *cache; 2563 2564 cache = btrfs_lookup_block_group(fs_info, start); 2565 ASSERT(cache); 2566 2567 spin_lock(&cache->lock); 2568 cache->delalloc_bytes -= len; 2569 spin_unlock(&cache->lock); 2570 2571 btrfs_put_block_group(cache); 2572 } 2573 2574 /* as ordered data IO finishes, this gets called so we can finish 2575 * an ordered extent if the range of bytes in the file it covers are 2576 * fully written. 2577 */ 2578 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2579 { 2580 struct inode *inode = ordered_extent->inode; 2581 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2582 struct btrfs_root *root = BTRFS_I(inode)->root; 2583 struct btrfs_trans_handle *trans = NULL; 2584 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2585 struct extent_state *cached_state = NULL; 2586 u64 start, end; 2587 int compress_type = 0; 2588 int ret = 0; 2589 u64 logical_len = ordered_extent->num_bytes; 2590 bool freespace_inode; 2591 bool truncated = false; 2592 bool range_locked = false; 2593 bool clear_new_delalloc_bytes = false; 2594 bool clear_reserved_extent = true; 2595 unsigned int clear_bits; 2596 2597 start = ordered_extent->file_offset; 2598 end = start + ordered_extent->num_bytes - 1; 2599 2600 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2601 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2602 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2603 clear_new_delalloc_bytes = true; 2604 2605 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 2606 2607 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2608 ret = -EIO; 2609 goto out; 2610 } 2611 2612 btrfs_free_io_failure_record(BTRFS_I(inode), start, end); 2613 2614 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2615 truncated = true; 2616 logical_len = ordered_extent->truncated_len; 2617 /* Truncated the entire extent, don't bother adding */ 2618 if (!logical_len) 2619 goto out; 2620 } 2621 2622 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2623 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2624 2625 /* 2626 * For mwrite(mmap + memset to write) case, we still reserve 2627 * space for NOCOW range. 2628 * As NOCOW won't cause a new delayed ref, just free the space 2629 */ 2630 btrfs_qgroup_free_data(inode, NULL, start, 2631 ordered_extent->num_bytes); 2632 btrfs_inode_safe_disk_i_size_write(inode, 0); 2633 if (freespace_inode) 2634 trans = btrfs_join_transaction_spacecache(root); 2635 else 2636 trans = btrfs_join_transaction(root); 2637 if (IS_ERR(trans)) { 2638 ret = PTR_ERR(trans); 2639 trans = NULL; 2640 goto out; 2641 } 2642 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2643 ret = btrfs_update_inode_fallback(trans, root, inode); 2644 if (ret) /* -ENOMEM or corruption */ 2645 btrfs_abort_transaction(trans, ret); 2646 goto out; 2647 } 2648 2649 range_locked = true; 2650 lock_extent_bits(io_tree, start, end, &cached_state); 2651 2652 if (freespace_inode) 2653 trans = btrfs_join_transaction_spacecache(root); 2654 else 2655 trans = btrfs_join_transaction(root); 2656 if (IS_ERR(trans)) { 2657 ret = PTR_ERR(trans); 2658 trans = NULL; 2659 goto out; 2660 } 2661 2662 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2663 2664 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2665 compress_type = ordered_extent->compress_type; 2666 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2667 BUG_ON(compress_type); 2668 btrfs_qgroup_free_data(inode, NULL, start, 2669 ordered_extent->num_bytes); 2670 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 2671 ordered_extent->file_offset, 2672 ordered_extent->file_offset + 2673 logical_len); 2674 } else { 2675 BUG_ON(root == fs_info->tree_root); 2676 ret = insert_reserved_file_extent(trans, inode, start, 2677 ordered_extent->disk_bytenr, 2678 ordered_extent->disk_num_bytes, 2679 logical_len, logical_len, 2680 compress_type, 0, 0, 2681 BTRFS_FILE_EXTENT_REG); 2682 if (!ret) { 2683 clear_reserved_extent = false; 2684 btrfs_release_delalloc_bytes(fs_info, 2685 ordered_extent->disk_bytenr, 2686 ordered_extent->disk_num_bytes); 2687 } 2688 } 2689 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2690 ordered_extent->file_offset, 2691 ordered_extent->num_bytes, trans->transid); 2692 if (ret < 0) { 2693 btrfs_abort_transaction(trans, ret); 2694 goto out; 2695 } 2696 2697 ret = add_pending_csums(trans, inode, &ordered_extent->list); 2698 if (ret) { 2699 btrfs_abort_transaction(trans, ret); 2700 goto out; 2701 } 2702 2703 btrfs_inode_safe_disk_i_size_write(inode, 0); 2704 ret = btrfs_update_inode_fallback(trans, root, inode); 2705 if (ret) { /* -ENOMEM or corruption */ 2706 btrfs_abort_transaction(trans, ret); 2707 goto out; 2708 } 2709 ret = 0; 2710 out: 2711 clear_bits = EXTENT_DEFRAG; 2712 if (range_locked) 2713 clear_bits |= EXTENT_LOCKED; 2714 if (clear_new_delalloc_bytes) 2715 clear_bits |= EXTENT_DELALLOC_NEW; 2716 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 2717 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2718 &cached_state); 2719 2720 if (trans) 2721 btrfs_end_transaction(trans); 2722 2723 if (ret || truncated) { 2724 u64 unwritten_start = start; 2725 2726 if (truncated) 2727 unwritten_start += logical_len; 2728 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 2729 2730 /* Drop the cache for the part of the extent we didn't write. */ 2731 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0); 2732 2733 /* 2734 * If the ordered extent had an IOERR or something else went 2735 * wrong we need to return the space for this ordered extent 2736 * back to the allocator. We only free the extent in the 2737 * truncated case if we didn't write out the extent at all. 2738 * 2739 * If we made it past insert_reserved_file_extent before we 2740 * errored out then we don't need to do this as the accounting 2741 * has already been done. 2742 */ 2743 if ((ret || !logical_len) && 2744 clear_reserved_extent && 2745 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2746 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2747 /* 2748 * Discard the range before returning it back to the 2749 * free space pool 2750 */ 2751 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 2752 btrfs_discard_extent(fs_info, 2753 ordered_extent->disk_bytenr, 2754 ordered_extent->disk_num_bytes, 2755 NULL); 2756 btrfs_free_reserved_extent(fs_info, 2757 ordered_extent->disk_bytenr, 2758 ordered_extent->disk_num_bytes, 1); 2759 } 2760 } 2761 2762 /* 2763 * This needs to be done to make sure anybody waiting knows we are done 2764 * updating everything for this ordered extent. 2765 */ 2766 btrfs_remove_ordered_extent(inode, ordered_extent); 2767 2768 /* once for us */ 2769 btrfs_put_ordered_extent(ordered_extent); 2770 /* once for the tree */ 2771 btrfs_put_ordered_extent(ordered_extent); 2772 2773 return ret; 2774 } 2775 2776 static void finish_ordered_fn(struct btrfs_work *work) 2777 { 2778 struct btrfs_ordered_extent *ordered_extent; 2779 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2780 btrfs_finish_ordered_io(ordered_extent); 2781 } 2782 2783 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 2784 u64 end, int uptodate) 2785 { 2786 struct inode *inode = page->mapping->host; 2787 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2788 struct btrfs_ordered_extent *ordered_extent = NULL; 2789 struct btrfs_workqueue *wq; 2790 2791 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2792 2793 ClearPagePrivate2(page); 2794 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2795 end - start + 1, uptodate)) 2796 return; 2797 2798 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2799 wq = fs_info->endio_freespace_worker; 2800 else 2801 wq = fs_info->endio_write_workers; 2802 2803 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2804 btrfs_queue_work(wq, &ordered_extent->work); 2805 } 2806 2807 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 2808 int icsum, struct page *page, int pgoff, u64 start, 2809 size_t len) 2810 { 2811 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2812 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2813 char *kaddr; 2814 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2815 u8 *csum_expected; 2816 u8 csum[BTRFS_CSUM_SIZE]; 2817 2818 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 2819 2820 kaddr = kmap_atomic(page); 2821 shash->tfm = fs_info->csum_shash; 2822 2823 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 2824 2825 if (memcmp(csum, csum_expected, csum_size)) 2826 goto zeroit; 2827 2828 kunmap_atomic(kaddr); 2829 return 0; 2830 zeroit: 2831 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 2832 io_bio->mirror_num); 2833 memset(kaddr + pgoff, 1, len); 2834 flush_dcache_page(page); 2835 kunmap_atomic(kaddr); 2836 return -EIO; 2837 } 2838 2839 /* 2840 * when reads are done, we need to check csums to verify the data is correct 2841 * if there's a match, we allow the bio to finish. If not, the code in 2842 * extent_io.c will try to find good copies for us. 2843 */ 2844 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2845 u64 phy_offset, struct page *page, 2846 u64 start, u64 end, int mirror) 2847 { 2848 size_t offset = start - page_offset(page); 2849 struct inode *inode = page->mapping->host; 2850 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2851 struct btrfs_root *root = BTRFS_I(inode)->root; 2852 2853 if (PageChecked(page)) { 2854 ClearPageChecked(page); 2855 return 0; 2856 } 2857 2858 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2859 return 0; 2860 2861 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2862 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2863 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 2864 return 0; 2865 } 2866 2867 phy_offset >>= inode->i_sb->s_blocksize_bits; 2868 return check_data_csum(inode, io_bio, phy_offset, page, offset, start, 2869 (size_t)(end - start + 1)); 2870 } 2871 2872 /* 2873 * btrfs_add_delayed_iput - perform a delayed iput on @inode 2874 * 2875 * @inode: The inode we want to perform iput on 2876 * 2877 * This function uses the generic vfs_inode::i_count to track whether we should 2878 * just decrement it (in case it's > 1) or if this is the last iput then link 2879 * the inode to the delayed iput machinery. Delayed iputs are processed at 2880 * transaction commit time/superblock commit/cleaner kthread. 2881 */ 2882 void btrfs_add_delayed_iput(struct inode *inode) 2883 { 2884 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2885 struct btrfs_inode *binode = BTRFS_I(inode); 2886 2887 if (atomic_add_unless(&inode->i_count, -1, 1)) 2888 return; 2889 2890 atomic_inc(&fs_info->nr_delayed_iputs); 2891 spin_lock(&fs_info->delayed_iput_lock); 2892 ASSERT(list_empty(&binode->delayed_iput)); 2893 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 2894 spin_unlock(&fs_info->delayed_iput_lock); 2895 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 2896 wake_up_process(fs_info->cleaner_kthread); 2897 } 2898 2899 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 2900 struct btrfs_inode *inode) 2901 { 2902 list_del_init(&inode->delayed_iput); 2903 spin_unlock(&fs_info->delayed_iput_lock); 2904 iput(&inode->vfs_inode); 2905 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 2906 wake_up(&fs_info->delayed_iputs_wait); 2907 spin_lock(&fs_info->delayed_iput_lock); 2908 } 2909 2910 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 2911 struct btrfs_inode *inode) 2912 { 2913 if (!list_empty(&inode->delayed_iput)) { 2914 spin_lock(&fs_info->delayed_iput_lock); 2915 if (!list_empty(&inode->delayed_iput)) 2916 run_delayed_iput_locked(fs_info, inode); 2917 spin_unlock(&fs_info->delayed_iput_lock); 2918 } 2919 } 2920 2921 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 2922 { 2923 2924 spin_lock(&fs_info->delayed_iput_lock); 2925 while (!list_empty(&fs_info->delayed_iputs)) { 2926 struct btrfs_inode *inode; 2927 2928 inode = list_first_entry(&fs_info->delayed_iputs, 2929 struct btrfs_inode, delayed_iput); 2930 run_delayed_iput_locked(fs_info, inode); 2931 } 2932 spin_unlock(&fs_info->delayed_iput_lock); 2933 } 2934 2935 /** 2936 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 2937 * @fs_info - the fs_info for this fs 2938 * @return - EINTR if we were killed, 0 if nothing's pending 2939 * 2940 * This will wait on any delayed iputs that are currently running with KILLABLE 2941 * set. Once they are all done running we will return, unless we are killed in 2942 * which case we return EINTR. This helps in user operations like fallocate etc 2943 * that might get blocked on the iputs. 2944 */ 2945 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 2946 { 2947 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 2948 atomic_read(&fs_info->nr_delayed_iputs) == 0); 2949 if (ret) 2950 return -EINTR; 2951 return 0; 2952 } 2953 2954 /* 2955 * This creates an orphan entry for the given inode in case something goes wrong 2956 * in the middle of an unlink. 2957 */ 2958 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 2959 struct btrfs_inode *inode) 2960 { 2961 int ret; 2962 2963 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 2964 if (ret && ret != -EEXIST) { 2965 btrfs_abort_transaction(trans, ret); 2966 return ret; 2967 } 2968 2969 return 0; 2970 } 2971 2972 /* 2973 * We have done the delete so we can go ahead and remove the orphan item for 2974 * this particular inode. 2975 */ 2976 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 2977 struct btrfs_inode *inode) 2978 { 2979 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 2980 } 2981 2982 /* 2983 * this cleans up any orphans that may be left on the list from the last use 2984 * of this root. 2985 */ 2986 int btrfs_orphan_cleanup(struct btrfs_root *root) 2987 { 2988 struct btrfs_fs_info *fs_info = root->fs_info; 2989 struct btrfs_path *path; 2990 struct extent_buffer *leaf; 2991 struct btrfs_key key, found_key; 2992 struct btrfs_trans_handle *trans; 2993 struct inode *inode; 2994 u64 last_objectid = 0; 2995 int ret = 0, nr_unlink = 0; 2996 2997 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2998 return 0; 2999 3000 path = btrfs_alloc_path(); 3001 if (!path) { 3002 ret = -ENOMEM; 3003 goto out; 3004 } 3005 path->reada = READA_BACK; 3006 3007 key.objectid = BTRFS_ORPHAN_OBJECTID; 3008 key.type = BTRFS_ORPHAN_ITEM_KEY; 3009 key.offset = (u64)-1; 3010 3011 while (1) { 3012 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3013 if (ret < 0) 3014 goto out; 3015 3016 /* 3017 * if ret == 0 means we found what we were searching for, which 3018 * is weird, but possible, so only screw with path if we didn't 3019 * find the key and see if we have stuff that matches 3020 */ 3021 if (ret > 0) { 3022 ret = 0; 3023 if (path->slots[0] == 0) 3024 break; 3025 path->slots[0]--; 3026 } 3027 3028 /* pull out the item */ 3029 leaf = path->nodes[0]; 3030 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3031 3032 /* make sure the item matches what we want */ 3033 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3034 break; 3035 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3036 break; 3037 3038 /* release the path since we're done with it */ 3039 btrfs_release_path(path); 3040 3041 /* 3042 * this is where we are basically btrfs_lookup, without the 3043 * crossing root thing. we store the inode number in the 3044 * offset of the orphan item. 3045 */ 3046 3047 if (found_key.offset == last_objectid) { 3048 btrfs_err(fs_info, 3049 "Error removing orphan entry, stopping orphan cleanup"); 3050 ret = -EINVAL; 3051 goto out; 3052 } 3053 3054 last_objectid = found_key.offset; 3055 3056 found_key.objectid = found_key.offset; 3057 found_key.type = BTRFS_INODE_ITEM_KEY; 3058 found_key.offset = 0; 3059 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3060 ret = PTR_ERR_OR_ZERO(inode); 3061 if (ret && ret != -ENOENT) 3062 goto out; 3063 3064 if (ret == -ENOENT && root == fs_info->tree_root) { 3065 struct btrfs_root *dead_root; 3066 struct btrfs_fs_info *fs_info = root->fs_info; 3067 int is_dead_root = 0; 3068 3069 /* 3070 * this is an orphan in the tree root. Currently these 3071 * could come from 2 sources: 3072 * a) a snapshot deletion in progress 3073 * b) a free space cache inode 3074 * We need to distinguish those two, as the snapshot 3075 * orphan must not get deleted. 3076 * find_dead_roots already ran before us, so if this 3077 * is a snapshot deletion, we should find the root 3078 * in the fs_roots radix tree. 3079 */ 3080 3081 spin_lock(&fs_info->fs_roots_radix_lock); 3082 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3083 (unsigned long)found_key.objectid); 3084 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3085 is_dead_root = 1; 3086 spin_unlock(&fs_info->fs_roots_radix_lock); 3087 3088 if (is_dead_root) { 3089 /* prevent this orphan from being found again */ 3090 key.offset = found_key.objectid - 1; 3091 continue; 3092 } 3093 3094 } 3095 3096 /* 3097 * If we have an inode with links, there are a couple of 3098 * possibilities. Old kernels (before v3.12) used to create an 3099 * orphan item for truncate indicating that there were possibly 3100 * extent items past i_size that needed to be deleted. In v3.12, 3101 * truncate was changed to update i_size in sync with the extent 3102 * items, but the (useless) orphan item was still created. Since 3103 * v4.18, we don't create the orphan item for truncate at all. 3104 * 3105 * So, this item could mean that we need to do a truncate, but 3106 * only if this filesystem was last used on a pre-v3.12 kernel 3107 * and was not cleanly unmounted. The odds of that are quite 3108 * slim, and it's a pain to do the truncate now, so just delete 3109 * the orphan item. 3110 * 3111 * It's also possible that this orphan item was supposed to be 3112 * deleted but wasn't. The inode number may have been reused, 3113 * but either way, we can delete the orphan item. 3114 */ 3115 if (ret == -ENOENT || inode->i_nlink) { 3116 if (!ret) 3117 iput(inode); 3118 trans = btrfs_start_transaction(root, 1); 3119 if (IS_ERR(trans)) { 3120 ret = PTR_ERR(trans); 3121 goto out; 3122 } 3123 btrfs_debug(fs_info, "auto deleting %Lu", 3124 found_key.objectid); 3125 ret = btrfs_del_orphan_item(trans, root, 3126 found_key.objectid); 3127 btrfs_end_transaction(trans); 3128 if (ret) 3129 goto out; 3130 continue; 3131 } 3132 3133 nr_unlink++; 3134 3135 /* this will do delete_inode and everything for us */ 3136 iput(inode); 3137 } 3138 /* release the path since we're done with it */ 3139 btrfs_release_path(path); 3140 3141 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3142 3143 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3144 trans = btrfs_join_transaction(root); 3145 if (!IS_ERR(trans)) 3146 btrfs_end_transaction(trans); 3147 } 3148 3149 if (nr_unlink) 3150 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3151 3152 out: 3153 if (ret) 3154 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3155 btrfs_free_path(path); 3156 return ret; 3157 } 3158 3159 /* 3160 * very simple check to peek ahead in the leaf looking for xattrs. If we 3161 * don't find any xattrs, we know there can't be any acls. 3162 * 3163 * slot is the slot the inode is in, objectid is the objectid of the inode 3164 */ 3165 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3166 int slot, u64 objectid, 3167 int *first_xattr_slot) 3168 { 3169 u32 nritems = btrfs_header_nritems(leaf); 3170 struct btrfs_key found_key; 3171 static u64 xattr_access = 0; 3172 static u64 xattr_default = 0; 3173 int scanned = 0; 3174 3175 if (!xattr_access) { 3176 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3177 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3178 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3179 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3180 } 3181 3182 slot++; 3183 *first_xattr_slot = -1; 3184 while (slot < nritems) { 3185 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3186 3187 /* we found a different objectid, there must not be acls */ 3188 if (found_key.objectid != objectid) 3189 return 0; 3190 3191 /* we found an xattr, assume we've got an acl */ 3192 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3193 if (*first_xattr_slot == -1) 3194 *first_xattr_slot = slot; 3195 if (found_key.offset == xattr_access || 3196 found_key.offset == xattr_default) 3197 return 1; 3198 } 3199 3200 /* 3201 * we found a key greater than an xattr key, there can't 3202 * be any acls later on 3203 */ 3204 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3205 return 0; 3206 3207 slot++; 3208 scanned++; 3209 3210 /* 3211 * it goes inode, inode backrefs, xattrs, extents, 3212 * so if there are a ton of hard links to an inode there can 3213 * be a lot of backrefs. Don't waste time searching too hard, 3214 * this is just an optimization 3215 */ 3216 if (scanned >= 8) 3217 break; 3218 } 3219 /* we hit the end of the leaf before we found an xattr or 3220 * something larger than an xattr. We have to assume the inode 3221 * has acls 3222 */ 3223 if (*first_xattr_slot == -1) 3224 *first_xattr_slot = slot; 3225 return 1; 3226 } 3227 3228 /* 3229 * read an inode from the btree into the in-memory inode 3230 */ 3231 static int btrfs_read_locked_inode(struct inode *inode, 3232 struct btrfs_path *in_path) 3233 { 3234 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3235 struct btrfs_path *path = in_path; 3236 struct extent_buffer *leaf; 3237 struct btrfs_inode_item *inode_item; 3238 struct btrfs_root *root = BTRFS_I(inode)->root; 3239 struct btrfs_key location; 3240 unsigned long ptr; 3241 int maybe_acls; 3242 u32 rdev; 3243 int ret; 3244 bool filled = false; 3245 int first_xattr_slot; 3246 3247 ret = btrfs_fill_inode(inode, &rdev); 3248 if (!ret) 3249 filled = true; 3250 3251 if (!path) { 3252 path = btrfs_alloc_path(); 3253 if (!path) 3254 return -ENOMEM; 3255 } 3256 3257 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3258 3259 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3260 if (ret) { 3261 if (path != in_path) 3262 btrfs_free_path(path); 3263 return ret; 3264 } 3265 3266 leaf = path->nodes[0]; 3267 3268 if (filled) 3269 goto cache_index; 3270 3271 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3272 struct btrfs_inode_item); 3273 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3274 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3275 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3276 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3277 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3278 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3279 round_up(i_size_read(inode), fs_info->sectorsize)); 3280 3281 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3282 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3283 3284 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3285 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3286 3287 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3288 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3289 3290 BTRFS_I(inode)->i_otime.tv_sec = 3291 btrfs_timespec_sec(leaf, &inode_item->otime); 3292 BTRFS_I(inode)->i_otime.tv_nsec = 3293 btrfs_timespec_nsec(leaf, &inode_item->otime); 3294 3295 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3296 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3297 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3298 3299 inode_set_iversion_queried(inode, 3300 btrfs_inode_sequence(leaf, inode_item)); 3301 inode->i_generation = BTRFS_I(inode)->generation; 3302 inode->i_rdev = 0; 3303 rdev = btrfs_inode_rdev(leaf, inode_item); 3304 3305 BTRFS_I(inode)->index_cnt = (u64)-1; 3306 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3307 3308 cache_index: 3309 /* 3310 * If we were modified in the current generation and evicted from memory 3311 * and then re-read we need to do a full sync since we don't have any 3312 * idea about which extents were modified before we were evicted from 3313 * cache. 3314 * 3315 * This is required for both inode re-read from disk and delayed inode 3316 * in delayed_nodes_tree. 3317 */ 3318 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3319 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3320 &BTRFS_I(inode)->runtime_flags); 3321 3322 /* 3323 * We don't persist the id of the transaction where an unlink operation 3324 * against the inode was last made. So here we assume the inode might 3325 * have been evicted, and therefore the exact value of last_unlink_trans 3326 * lost, and set it to last_trans to avoid metadata inconsistencies 3327 * between the inode and its parent if the inode is fsync'ed and the log 3328 * replayed. For example, in the scenario: 3329 * 3330 * touch mydir/foo 3331 * ln mydir/foo mydir/bar 3332 * sync 3333 * unlink mydir/bar 3334 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3335 * xfs_io -c fsync mydir/foo 3336 * <power failure> 3337 * mount fs, triggers fsync log replay 3338 * 3339 * We must make sure that when we fsync our inode foo we also log its 3340 * parent inode, otherwise after log replay the parent still has the 3341 * dentry with the "bar" name but our inode foo has a link count of 1 3342 * and doesn't have an inode ref with the name "bar" anymore. 3343 * 3344 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3345 * but it guarantees correctness at the expense of occasional full 3346 * transaction commits on fsync if our inode is a directory, or if our 3347 * inode is not a directory, logging its parent unnecessarily. 3348 */ 3349 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3350 3351 path->slots[0]++; 3352 if (inode->i_nlink != 1 || 3353 path->slots[0] >= btrfs_header_nritems(leaf)) 3354 goto cache_acl; 3355 3356 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3357 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3358 goto cache_acl; 3359 3360 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3361 if (location.type == BTRFS_INODE_REF_KEY) { 3362 struct btrfs_inode_ref *ref; 3363 3364 ref = (struct btrfs_inode_ref *)ptr; 3365 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3366 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3367 struct btrfs_inode_extref *extref; 3368 3369 extref = (struct btrfs_inode_extref *)ptr; 3370 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3371 extref); 3372 } 3373 cache_acl: 3374 /* 3375 * try to precache a NULL acl entry for files that don't have 3376 * any xattrs or acls 3377 */ 3378 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3379 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3380 if (first_xattr_slot != -1) { 3381 path->slots[0] = first_xattr_slot; 3382 ret = btrfs_load_inode_props(inode, path); 3383 if (ret) 3384 btrfs_err(fs_info, 3385 "error loading props for ino %llu (root %llu): %d", 3386 btrfs_ino(BTRFS_I(inode)), 3387 root->root_key.objectid, ret); 3388 } 3389 if (path != in_path) 3390 btrfs_free_path(path); 3391 3392 if (!maybe_acls) 3393 cache_no_acl(inode); 3394 3395 switch (inode->i_mode & S_IFMT) { 3396 case S_IFREG: 3397 inode->i_mapping->a_ops = &btrfs_aops; 3398 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3399 inode->i_fop = &btrfs_file_operations; 3400 inode->i_op = &btrfs_file_inode_operations; 3401 break; 3402 case S_IFDIR: 3403 inode->i_fop = &btrfs_dir_file_operations; 3404 inode->i_op = &btrfs_dir_inode_operations; 3405 break; 3406 case S_IFLNK: 3407 inode->i_op = &btrfs_symlink_inode_operations; 3408 inode_nohighmem(inode); 3409 inode->i_mapping->a_ops = &btrfs_aops; 3410 break; 3411 default: 3412 inode->i_op = &btrfs_special_inode_operations; 3413 init_special_inode(inode, inode->i_mode, rdev); 3414 break; 3415 } 3416 3417 btrfs_sync_inode_flags_to_i_flags(inode); 3418 return 0; 3419 } 3420 3421 /* 3422 * given a leaf and an inode, copy the inode fields into the leaf 3423 */ 3424 static void fill_inode_item(struct btrfs_trans_handle *trans, 3425 struct extent_buffer *leaf, 3426 struct btrfs_inode_item *item, 3427 struct inode *inode) 3428 { 3429 struct btrfs_map_token token; 3430 3431 btrfs_init_map_token(&token, leaf); 3432 3433 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3434 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3435 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3436 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3437 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3438 3439 btrfs_set_token_timespec_sec(&token, &item->atime, 3440 inode->i_atime.tv_sec); 3441 btrfs_set_token_timespec_nsec(&token, &item->atime, 3442 inode->i_atime.tv_nsec); 3443 3444 btrfs_set_token_timespec_sec(&token, &item->mtime, 3445 inode->i_mtime.tv_sec); 3446 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3447 inode->i_mtime.tv_nsec); 3448 3449 btrfs_set_token_timespec_sec(&token, &item->ctime, 3450 inode->i_ctime.tv_sec); 3451 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3452 inode->i_ctime.tv_nsec); 3453 3454 btrfs_set_token_timespec_sec(&token, &item->otime, 3455 BTRFS_I(inode)->i_otime.tv_sec); 3456 btrfs_set_token_timespec_nsec(&token, &item->otime, 3457 BTRFS_I(inode)->i_otime.tv_nsec); 3458 3459 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3460 btrfs_set_token_inode_generation(&token, item, 3461 BTRFS_I(inode)->generation); 3462 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3463 btrfs_set_token_inode_transid(&token, item, trans->transid); 3464 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3465 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3466 btrfs_set_token_inode_block_group(&token, item, 0); 3467 } 3468 3469 /* 3470 * copy everything in the in-memory inode into the btree. 3471 */ 3472 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3473 struct btrfs_root *root, struct inode *inode) 3474 { 3475 struct btrfs_inode_item *inode_item; 3476 struct btrfs_path *path; 3477 struct extent_buffer *leaf; 3478 int ret; 3479 3480 path = btrfs_alloc_path(); 3481 if (!path) 3482 return -ENOMEM; 3483 3484 path->leave_spinning = 1; 3485 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3486 1); 3487 if (ret) { 3488 if (ret > 0) 3489 ret = -ENOENT; 3490 goto failed; 3491 } 3492 3493 leaf = path->nodes[0]; 3494 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3495 struct btrfs_inode_item); 3496 3497 fill_inode_item(trans, leaf, inode_item, inode); 3498 btrfs_mark_buffer_dirty(leaf); 3499 btrfs_set_inode_last_trans(trans, inode); 3500 ret = 0; 3501 failed: 3502 btrfs_free_path(path); 3503 return ret; 3504 } 3505 3506 /* 3507 * copy everything in the in-memory inode into the btree. 3508 */ 3509 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3510 struct btrfs_root *root, struct inode *inode) 3511 { 3512 struct btrfs_fs_info *fs_info = root->fs_info; 3513 int ret; 3514 3515 /* 3516 * If the inode is a free space inode, we can deadlock during commit 3517 * if we put it into the delayed code. 3518 * 3519 * The data relocation inode should also be directly updated 3520 * without delay 3521 */ 3522 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3523 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3524 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3525 btrfs_update_root_times(trans, root); 3526 3527 ret = btrfs_delayed_update_inode(trans, root, inode); 3528 if (!ret) 3529 btrfs_set_inode_last_trans(trans, inode); 3530 return ret; 3531 } 3532 3533 return btrfs_update_inode_item(trans, root, inode); 3534 } 3535 3536 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3537 struct btrfs_root *root, 3538 struct inode *inode) 3539 { 3540 int ret; 3541 3542 ret = btrfs_update_inode(trans, root, inode); 3543 if (ret == -ENOSPC) 3544 return btrfs_update_inode_item(trans, root, inode); 3545 return ret; 3546 } 3547 3548 /* 3549 * unlink helper that gets used here in inode.c and in the tree logging 3550 * recovery code. It remove a link in a directory with a given name, and 3551 * also drops the back refs in the inode to the directory 3552 */ 3553 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3554 struct btrfs_root *root, 3555 struct btrfs_inode *dir, 3556 struct btrfs_inode *inode, 3557 const char *name, int name_len) 3558 { 3559 struct btrfs_fs_info *fs_info = root->fs_info; 3560 struct btrfs_path *path; 3561 int ret = 0; 3562 struct btrfs_dir_item *di; 3563 u64 index; 3564 u64 ino = btrfs_ino(inode); 3565 u64 dir_ino = btrfs_ino(dir); 3566 3567 path = btrfs_alloc_path(); 3568 if (!path) { 3569 ret = -ENOMEM; 3570 goto out; 3571 } 3572 3573 path->leave_spinning = 1; 3574 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3575 name, name_len, -1); 3576 if (IS_ERR_OR_NULL(di)) { 3577 ret = di ? PTR_ERR(di) : -ENOENT; 3578 goto err; 3579 } 3580 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3581 if (ret) 3582 goto err; 3583 btrfs_release_path(path); 3584 3585 /* 3586 * If we don't have dir index, we have to get it by looking up 3587 * the inode ref, since we get the inode ref, remove it directly, 3588 * it is unnecessary to do delayed deletion. 3589 * 3590 * But if we have dir index, needn't search inode ref to get it. 3591 * Since the inode ref is close to the inode item, it is better 3592 * that we delay to delete it, and just do this deletion when 3593 * we update the inode item. 3594 */ 3595 if (inode->dir_index) { 3596 ret = btrfs_delayed_delete_inode_ref(inode); 3597 if (!ret) { 3598 index = inode->dir_index; 3599 goto skip_backref; 3600 } 3601 } 3602 3603 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3604 dir_ino, &index); 3605 if (ret) { 3606 btrfs_info(fs_info, 3607 "failed to delete reference to %.*s, inode %llu parent %llu", 3608 name_len, name, ino, dir_ino); 3609 btrfs_abort_transaction(trans, ret); 3610 goto err; 3611 } 3612 skip_backref: 3613 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3614 if (ret) { 3615 btrfs_abort_transaction(trans, ret); 3616 goto err; 3617 } 3618 3619 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3620 dir_ino); 3621 if (ret != 0 && ret != -ENOENT) { 3622 btrfs_abort_transaction(trans, ret); 3623 goto err; 3624 } 3625 3626 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3627 index); 3628 if (ret == -ENOENT) 3629 ret = 0; 3630 else if (ret) 3631 btrfs_abort_transaction(trans, ret); 3632 3633 /* 3634 * If we have a pending delayed iput we could end up with the final iput 3635 * being run in btrfs-cleaner context. If we have enough of these built 3636 * up we can end up burning a lot of time in btrfs-cleaner without any 3637 * way to throttle the unlinks. Since we're currently holding a ref on 3638 * the inode we can run the delayed iput here without any issues as the 3639 * final iput won't be done until after we drop the ref we're currently 3640 * holding. 3641 */ 3642 btrfs_run_delayed_iput(fs_info, inode); 3643 err: 3644 btrfs_free_path(path); 3645 if (ret) 3646 goto out; 3647 3648 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3649 inode_inc_iversion(&inode->vfs_inode); 3650 inode_inc_iversion(&dir->vfs_inode); 3651 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3652 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3653 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3654 out: 3655 return ret; 3656 } 3657 3658 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3659 struct btrfs_root *root, 3660 struct btrfs_inode *dir, struct btrfs_inode *inode, 3661 const char *name, int name_len) 3662 { 3663 int ret; 3664 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3665 if (!ret) { 3666 drop_nlink(&inode->vfs_inode); 3667 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 3668 } 3669 return ret; 3670 } 3671 3672 /* 3673 * helper to start transaction for unlink and rmdir. 3674 * 3675 * unlink and rmdir are special in btrfs, they do not always free space, so 3676 * if we cannot make our reservations the normal way try and see if there is 3677 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3678 * allow the unlink to occur. 3679 */ 3680 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3681 { 3682 struct btrfs_root *root = BTRFS_I(dir)->root; 3683 3684 /* 3685 * 1 for the possible orphan item 3686 * 1 for the dir item 3687 * 1 for the dir index 3688 * 1 for the inode ref 3689 * 1 for the inode 3690 */ 3691 return btrfs_start_transaction_fallback_global_rsv(root, 5); 3692 } 3693 3694 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3695 { 3696 struct btrfs_root *root = BTRFS_I(dir)->root; 3697 struct btrfs_trans_handle *trans; 3698 struct inode *inode = d_inode(dentry); 3699 int ret; 3700 3701 trans = __unlink_start_trans(dir); 3702 if (IS_ERR(trans)) 3703 return PTR_ERR(trans); 3704 3705 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 3706 0); 3707 3708 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 3709 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 3710 dentry->d_name.len); 3711 if (ret) 3712 goto out; 3713 3714 if (inode->i_nlink == 0) { 3715 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3716 if (ret) 3717 goto out; 3718 } 3719 3720 out: 3721 btrfs_end_transaction(trans); 3722 btrfs_btree_balance_dirty(root->fs_info); 3723 return ret; 3724 } 3725 3726 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3727 struct inode *dir, struct dentry *dentry) 3728 { 3729 struct btrfs_root *root = BTRFS_I(dir)->root; 3730 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 3731 struct btrfs_path *path; 3732 struct extent_buffer *leaf; 3733 struct btrfs_dir_item *di; 3734 struct btrfs_key key; 3735 const char *name = dentry->d_name.name; 3736 int name_len = dentry->d_name.len; 3737 u64 index; 3738 int ret; 3739 u64 objectid; 3740 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 3741 3742 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 3743 objectid = inode->root->root_key.objectid; 3744 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3745 objectid = inode->location.objectid; 3746 } else { 3747 WARN_ON(1); 3748 return -EINVAL; 3749 } 3750 3751 path = btrfs_alloc_path(); 3752 if (!path) 3753 return -ENOMEM; 3754 3755 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3756 name, name_len, -1); 3757 if (IS_ERR_OR_NULL(di)) { 3758 ret = di ? PTR_ERR(di) : -ENOENT; 3759 goto out; 3760 } 3761 3762 leaf = path->nodes[0]; 3763 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3764 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3765 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3766 if (ret) { 3767 btrfs_abort_transaction(trans, ret); 3768 goto out; 3769 } 3770 btrfs_release_path(path); 3771 3772 /* 3773 * This is a placeholder inode for a subvolume we didn't have a 3774 * reference to at the time of the snapshot creation. In the meantime 3775 * we could have renamed the real subvol link into our snapshot, so 3776 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 3777 * Instead simply lookup the dir_index_item for this entry so we can 3778 * remove it. Otherwise we know we have a ref to the root and we can 3779 * call btrfs_del_root_ref, and it _shouldn't_ fail. 3780 */ 3781 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3782 di = btrfs_search_dir_index_item(root, path, dir_ino, 3783 name, name_len); 3784 if (IS_ERR_OR_NULL(di)) { 3785 if (!di) 3786 ret = -ENOENT; 3787 else 3788 ret = PTR_ERR(di); 3789 btrfs_abort_transaction(trans, ret); 3790 goto out; 3791 } 3792 3793 leaf = path->nodes[0]; 3794 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3795 index = key.offset; 3796 btrfs_release_path(path); 3797 } else { 3798 ret = btrfs_del_root_ref(trans, objectid, 3799 root->root_key.objectid, dir_ino, 3800 &index, name, name_len); 3801 if (ret) { 3802 btrfs_abort_transaction(trans, ret); 3803 goto out; 3804 } 3805 } 3806 3807 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 3808 if (ret) { 3809 btrfs_abort_transaction(trans, ret); 3810 goto out; 3811 } 3812 3813 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 3814 inode_inc_iversion(dir); 3815 dir->i_mtime = dir->i_ctime = current_time(dir); 3816 ret = btrfs_update_inode_fallback(trans, root, dir); 3817 if (ret) 3818 btrfs_abort_transaction(trans, ret); 3819 out: 3820 btrfs_free_path(path); 3821 return ret; 3822 } 3823 3824 /* 3825 * Helper to check if the subvolume references other subvolumes or if it's 3826 * default. 3827 */ 3828 static noinline int may_destroy_subvol(struct btrfs_root *root) 3829 { 3830 struct btrfs_fs_info *fs_info = root->fs_info; 3831 struct btrfs_path *path; 3832 struct btrfs_dir_item *di; 3833 struct btrfs_key key; 3834 u64 dir_id; 3835 int ret; 3836 3837 path = btrfs_alloc_path(); 3838 if (!path) 3839 return -ENOMEM; 3840 3841 /* Make sure this root isn't set as the default subvol */ 3842 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3843 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 3844 dir_id, "default", 7, 0); 3845 if (di && !IS_ERR(di)) { 3846 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 3847 if (key.objectid == root->root_key.objectid) { 3848 ret = -EPERM; 3849 btrfs_err(fs_info, 3850 "deleting default subvolume %llu is not allowed", 3851 key.objectid); 3852 goto out; 3853 } 3854 btrfs_release_path(path); 3855 } 3856 3857 key.objectid = root->root_key.objectid; 3858 key.type = BTRFS_ROOT_REF_KEY; 3859 key.offset = (u64)-1; 3860 3861 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3862 if (ret < 0) 3863 goto out; 3864 BUG_ON(ret == 0); 3865 3866 ret = 0; 3867 if (path->slots[0] > 0) { 3868 path->slots[0]--; 3869 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3870 if (key.objectid == root->root_key.objectid && 3871 key.type == BTRFS_ROOT_REF_KEY) 3872 ret = -ENOTEMPTY; 3873 } 3874 out: 3875 btrfs_free_path(path); 3876 return ret; 3877 } 3878 3879 /* Delete all dentries for inodes belonging to the root */ 3880 static void btrfs_prune_dentries(struct btrfs_root *root) 3881 { 3882 struct btrfs_fs_info *fs_info = root->fs_info; 3883 struct rb_node *node; 3884 struct rb_node *prev; 3885 struct btrfs_inode *entry; 3886 struct inode *inode; 3887 u64 objectid = 0; 3888 3889 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3890 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3891 3892 spin_lock(&root->inode_lock); 3893 again: 3894 node = root->inode_tree.rb_node; 3895 prev = NULL; 3896 while (node) { 3897 prev = node; 3898 entry = rb_entry(node, struct btrfs_inode, rb_node); 3899 3900 if (objectid < btrfs_ino(entry)) 3901 node = node->rb_left; 3902 else if (objectid > btrfs_ino(entry)) 3903 node = node->rb_right; 3904 else 3905 break; 3906 } 3907 if (!node) { 3908 while (prev) { 3909 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3910 if (objectid <= btrfs_ino(entry)) { 3911 node = prev; 3912 break; 3913 } 3914 prev = rb_next(prev); 3915 } 3916 } 3917 while (node) { 3918 entry = rb_entry(node, struct btrfs_inode, rb_node); 3919 objectid = btrfs_ino(entry) + 1; 3920 inode = igrab(&entry->vfs_inode); 3921 if (inode) { 3922 spin_unlock(&root->inode_lock); 3923 if (atomic_read(&inode->i_count) > 1) 3924 d_prune_aliases(inode); 3925 /* 3926 * btrfs_drop_inode will have it removed from the inode 3927 * cache when its usage count hits zero. 3928 */ 3929 iput(inode); 3930 cond_resched(); 3931 spin_lock(&root->inode_lock); 3932 goto again; 3933 } 3934 3935 if (cond_resched_lock(&root->inode_lock)) 3936 goto again; 3937 3938 node = rb_next(node); 3939 } 3940 spin_unlock(&root->inode_lock); 3941 } 3942 3943 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 3944 { 3945 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 3946 struct btrfs_root *root = BTRFS_I(dir)->root; 3947 struct inode *inode = d_inode(dentry); 3948 struct btrfs_root *dest = BTRFS_I(inode)->root; 3949 struct btrfs_trans_handle *trans; 3950 struct btrfs_block_rsv block_rsv; 3951 u64 root_flags; 3952 int ret; 3953 int err; 3954 3955 /* 3956 * Don't allow to delete a subvolume with send in progress. This is 3957 * inside the inode lock so the error handling that has to drop the bit 3958 * again is not run concurrently. 3959 */ 3960 spin_lock(&dest->root_item_lock); 3961 if (dest->send_in_progress) { 3962 spin_unlock(&dest->root_item_lock); 3963 btrfs_warn(fs_info, 3964 "attempt to delete subvolume %llu during send", 3965 dest->root_key.objectid); 3966 return -EPERM; 3967 } 3968 root_flags = btrfs_root_flags(&dest->root_item); 3969 btrfs_set_root_flags(&dest->root_item, 3970 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 3971 spin_unlock(&dest->root_item_lock); 3972 3973 down_write(&fs_info->subvol_sem); 3974 3975 err = may_destroy_subvol(dest); 3976 if (err) 3977 goto out_up_write; 3978 3979 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 3980 /* 3981 * One for dir inode, 3982 * two for dir entries, 3983 * two for root ref/backref. 3984 */ 3985 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 3986 if (err) 3987 goto out_up_write; 3988 3989 trans = btrfs_start_transaction(root, 0); 3990 if (IS_ERR(trans)) { 3991 err = PTR_ERR(trans); 3992 goto out_release; 3993 } 3994 trans->block_rsv = &block_rsv; 3995 trans->bytes_reserved = block_rsv.size; 3996 3997 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 3998 3999 ret = btrfs_unlink_subvol(trans, dir, dentry); 4000 if (ret) { 4001 err = ret; 4002 btrfs_abort_transaction(trans, ret); 4003 goto out_end_trans; 4004 } 4005 4006 btrfs_record_root_in_trans(trans, dest); 4007 4008 memset(&dest->root_item.drop_progress, 0, 4009 sizeof(dest->root_item.drop_progress)); 4010 dest->root_item.drop_level = 0; 4011 btrfs_set_root_refs(&dest->root_item, 0); 4012 4013 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4014 ret = btrfs_insert_orphan_item(trans, 4015 fs_info->tree_root, 4016 dest->root_key.objectid); 4017 if (ret) { 4018 btrfs_abort_transaction(trans, ret); 4019 err = ret; 4020 goto out_end_trans; 4021 } 4022 } 4023 4024 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4025 BTRFS_UUID_KEY_SUBVOL, 4026 dest->root_key.objectid); 4027 if (ret && ret != -ENOENT) { 4028 btrfs_abort_transaction(trans, ret); 4029 err = ret; 4030 goto out_end_trans; 4031 } 4032 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4033 ret = btrfs_uuid_tree_remove(trans, 4034 dest->root_item.received_uuid, 4035 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4036 dest->root_key.objectid); 4037 if (ret && ret != -ENOENT) { 4038 btrfs_abort_transaction(trans, ret); 4039 err = ret; 4040 goto out_end_trans; 4041 } 4042 } 4043 4044 out_end_trans: 4045 trans->block_rsv = NULL; 4046 trans->bytes_reserved = 0; 4047 ret = btrfs_end_transaction(trans); 4048 if (ret && !err) 4049 err = ret; 4050 inode->i_flags |= S_DEAD; 4051 out_release: 4052 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4053 out_up_write: 4054 up_write(&fs_info->subvol_sem); 4055 if (err) { 4056 spin_lock(&dest->root_item_lock); 4057 root_flags = btrfs_root_flags(&dest->root_item); 4058 btrfs_set_root_flags(&dest->root_item, 4059 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4060 spin_unlock(&dest->root_item_lock); 4061 } else { 4062 d_invalidate(dentry); 4063 btrfs_prune_dentries(dest); 4064 ASSERT(dest->send_in_progress == 0); 4065 4066 /* the last ref */ 4067 if (dest->ino_cache_inode) { 4068 iput(dest->ino_cache_inode); 4069 dest->ino_cache_inode = NULL; 4070 } 4071 } 4072 4073 return err; 4074 } 4075 4076 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4077 { 4078 struct inode *inode = d_inode(dentry); 4079 int err = 0; 4080 struct btrfs_root *root = BTRFS_I(dir)->root; 4081 struct btrfs_trans_handle *trans; 4082 u64 last_unlink_trans; 4083 4084 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4085 return -ENOTEMPTY; 4086 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4087 return btrfs_delete_subvolume(dir, dentry); 4088 4089 trans = __unlink_start_trans(dir); 4090 if (IS_ERR(trans)) 4091 return PTR_ERR(trans); 4092 4093 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4094 err = btrfs_unlink_subvol(trans, dir, dentry); 4095 goto out; 4096 } 4097 4098 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4099 if (err) 4100 goto out; 4101 4102 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4103 4104 /* now the directory is empty */ 4105 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4106 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4107 dentry->d_name.len); 4108 if (!err) { 4109 btrfs_i_size_write(BTRFS_I(inode), 0); 4110 /* 4111 * Propagate the last_unlink_trans value of the deleted dir to 4112 * its parent directory. This is to prevent an unrecoverable 4113 * log tree in the case we do something like this: 4114 * 1) create dir foo 4115 * 2) create snapshot under dir foo 4116 * 3) delete the snapshot 4117 * 4) rmdir foo 4118 * 5) mkdir foo 4119 * 6) fsync foo or some file inside foo 4120 */ 4121 if (last_unlink_trans >= trans->transid) 4122 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4123 } 4124 out: 4125 btrfs_end_transaction(trans); 4126 btrfs_btree_balance_dirty(root->fs_info); 4127 4128 return err; 4129 } 4130 4131 /* 4132 * Return this if we need to call truncate_block for the last bit of the 4133 * truncate. 4134 */ 4135 #define NEED_TRUNCATE_BLOCK 1 4136 4137 /* 4138 * this can truncate away extent items, csum items and directory items. 4139 * It starts at a high offset and removes keys until it can't find 4140 * any higher than new_size 4141 * 4142 * csum items that cross the new i_size are truncated to the new size 4143 * as well. 4144 * 4145 * min_type is the minimum key type to truncate down to. If set to 0, this 4146 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4147 */ 4148 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4149 struct btrfs_root *root, 4150 struct inode *inode, 4151 u64 new_size, u32 min_type) 4152 { 4153 struct btrfs_fs_info *fs_info = root->fs_info; 4154 struct btrfs_path *path; 4155 struct extent_buffer *leaf; 4156 struct btrfs_file_extent_item *fi; 4157 struct btrfs_key key; 4158 struct btrfs_key found_key; 4159 u64 extent_start = 0; 4160 u64 extent_num_bytes = 0; 4161 u64 extent_offset = 0; 4162 u64 item_end = 0; 4163 u64 last_size = new_size; 4164 u32 found_type = (u8)-1; 4165 int found_extent; 4166 int del_item; 4167 int pending_del_nr = 0; 4168 int pending_del_slot = 0; 4169 int extent_type = -1; 4170 int ret; 4171 u64 ino = btrfs_ino(BTRFS_I(inode)); 4172 u64 bytes_deleted = 0; 4173 bool be_nice = false; 4174 bool should_throttle = false; 4175 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4176 struct extent_state *cached_state = NULL; 4177 4178 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4179 4180 /* 4181 * For non-free space inodes and non-shareable roots, we want to back 4182 * off from time to time. This means all inodes in subvolume roots, 4183 * reloc roots, and data reloc roots. 4184 */ 4185 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4186 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4187 be_nice = true; 4188 4189 path = btrfs_alloc_path(); 4190 if (!path) 4191 return -ENOMEM; 4192 path->reada = READA_BACK; 4193 4194 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4195 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 4196 &cached_state); 4197 4198 /* 4199 * We want to drop from the next block forward in case this 4200 * new size is not block aligned since we will be keeping the 4201 * last block of the extent just the way it is. 4202 */ 4203 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4204 fs_info->sectorsize), 4205 (u64)-1, 0); 4206 } 4207 4208 /* 4209 * This function is also used to drop the items in the log tree before 4210 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4211 * it is used to drop the logged items. So we shouldn't kill the delayed 4212 * items. 4213 */ 4214 if (min_type == 0 && root == BTRFS_I(inode)->root) 4215 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4216 4217 key.objectid = ino; 4218 key.offset = (u64)-1; 4219 key.type = (u8)-1; 4220 4221 search_again: 4222 /* 4223 * with a 16K leaf size and 128MB extents, you can actually queue 4224 * up a huge file in a single leaf. Most of the time that 4225 * bytes_deleted is > 0, it will be huge by the time we get here 4226 */ 4227 if (be_nice && bytes_deleted > SZ_32M && 4228 btrfs_should_end_transaction(trans)) { 4229 ret = -EAGAIN; 4230 goto out; 4231 } 4232 4233 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4234 if (ret < 0) 4235 goto out; 4236 4237 if (ret > 0) { 4238 ret = 0; 4239 /* there are no items in the tree for us to truncate, we're 4240 * done 4241 */ 4242 if (path->slots[0] == 0) 4243 goto out; 4244 path->slots[0]--; 4245 } 4246 4247 while (1) { 4248 u64 clear_start = 0, clear_len = 0; 4249 4250 fi = NULL; 4251 leaf = path->nodes[0]; 4252 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4253 found_type = found_key.type; 4254 4255 if (found_key.objectid != ino) 4256 break; 4257 4258 if (found_type < min_type) 4259 break; 4260 4261 item_end = found_key.offset; 4262 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4263 fi = btrfs_item_ptr(leaf, path->slots[0], 4264 struct btrfs_file_extent_item); 4265 extent_type = btrfs_file_extent_type(leaf, fi); 4266 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4267 item_end += 4268 btrfs_file_extent_num_bytes(leaf, fi); 4269 4270 trace_btrfs_truncate_show_fi_regular( 4271 BTRFS_I(inode), leaf, fi, 4272 found_key.offset); 4273 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4274 item_end += btrfs_file_extent_ram_bytes(leaf, 4275 fi); 4276 4277 trace_btrfs_truncate_show_fi_inline( 4278 BTRFS_I(inode), leaf, fi, path->slots[0], 4279 found_key.offset); 4280 } 4281 item_end--; 4282 } 4283 if (found_type > min_type) { 4284 del_item = 1; 4285 } else { 4286 if (item_end < new_size) 4287 break; 4288 if (found_key.offset >= new_size) 4289 del_item = 1; 4290 else 4291 del_item = 0; 4292 } 4293 found_extent = 0; 4294 /* FIXME, shrink the extent if the ref count is only 1 */ 4295 if (found_type != BTRFS_EXTENT_DATA_KEY) 4296 goto delete; 4297 4298 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4299 u64 num_dec; 4300 4301 clear_start = found_key.offset; 4302 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4303 if (!del_item) { 4304 u64 orig_num_bytes = 4305 btrfs_file_extent_num_bytes(leaf, fi); 4306 extent_num_bytes = ALIGN(new_size - 4307 found_key.offset, 4308 fs_info->sectorsize); 4309 clear_start = ALIGN(new_size, fs_info->sectorsize); 4310 btrfs_set_file_extent_num_bytes(leaf, fi, 4311 extent_num_bytes); 4312 num_dec = (orig_num_bytes - 4313 extent_num_bytes); 4314 if (test_bit(BTRFS_ROOT_SHAREABLE, 4315 &root->state) && 4316 extent_start != 0) 4317 inode_sub_bytes(inode, num_dec); 4318 btrfs_mark_buffer_dirty(leaf); 4319 } else { 4320 extent_num_bytes = 4321 btrfs_file_extent_disk_num_bytes(leaf, 4322 fi); 4323 extent_offset = found_key.offset - 4324 btrfs_file_extent_offset(leaf, fi); 4325 4326 /* FIXME blocksize != 4096 */ 4327 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4328 if (extent_start != 0) { 4329 found_extent = 1; 4330 if (test_bit(BTRFS_ROOT_SHAREABLE, 4331 &root->state)) 4332 inode_sub_bytes(inode, num_dec); 4333 } 4334 } 4335 clear_len = num_dec; 4336 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4337 /* 4338 * we can't truncate inline items that have had 4339 * special encodings 4340 */ 4341 if (!del_item && 4342 btrfs_file_extent_encryption(leaf, fi) == 0 && 4343 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4344 btrfs_file_extent_compression(leaf, fi) == 0) { 4345 u32 size = (u32)(new_size - found_key.offset); 4346 4347 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4348 size = btrfs_file_extent_calc_inline_size(size); 4349 btrfs_truncate_item(path, size, 1); 4350 } else if (!del_item) { 4351 /* 4352 * We have to bail so the last_size is set to 4353 * just before this extent. 4354 */ 4355 ret = NEED_TRUNCATE_BLOCK; 4356 break; 4357 } else { 4358 /* 4359 * Inline extents are special, we just treat 4360 * them as a full sector worth in the file 4361 * extent tree just for simplicity sake. 4362 */ 4363 clear_len = fs_info->sectorsize; 4364 } 4365 4366 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4367 inode_sub_bytes(inode, item_end + 1 - new_size); 4368 } 4369 delete: 4370 /* 4371 * We use btrfs_truncate_inode_items() to clean up log trees for 4372 * multiple fsyncs, and in this case we don't want to clear the 4373 * file extent range because it's just the log. 4374 */ 4375 if (root == BTRFS_I(inode)->root) { 4376 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 4377 clear_start, clear_len); 4378 if (ret) { 4379 btrfs_abort_transaction(trans, ret); 4380 break; 4381 } 4382 } 4383 4384 if (del_item) 4385 last_size = found_key.offset; 4386 else 4387 last_size = new_size; 4388 if (del_item) { 4389 if (!pending_del_nr) { 4390 /* no pending yet, add ourselves */ 4391 pending_del_slot = path->slots[0]; 4392 pending_del_nr = 1; 4393 } else if (pending_del_nr && 4394 path->slots[0] + 1 == pending_del_slot) { 4395 /* hop on the pending chunk */ 4396 pending_del_nr++; 4397 pending_del_slot = path->slots[0]; 4398 } else { 4399 BUG(); 4400 } 4401 } else { 4402 break; 4403 } 4404 should_throttle = false; 4405 4406 if (found_extent && 4407 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4408 struct btrfs_ref ref = { 0 }; 4409 4410 bytes_deleted += extent_num_bytes; 4411 4412 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4413 extent_start, extent_num_bytes, 0); 4414 ref.real_root = root->root_key.objectid; 4415 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4416 ino, extent_offset); 4417 ret = btrfs_free_extent(trans, &ref); 4418 if (ret) { 4419 btrfs_abort_transaction(trans, ret); 4420 break; 4421 } 4422 if (be_nice) { 4423 if (btrfs_should_throttle_delayed_refs(trans)) 4424 should_throttle = true; 4425 } 4426 } 4427 4428 if (found_type == BTRFS_INODE_ITEM_KEY) 4429 break; 4430 4431 if (path->slots[0] == 0 || 4432 path->slots[0] != pending_del_slot || 4433 should_throttle) { 4434 if (pending_del_nr) { 4435 ret = btrfs_del_items(trans, root, path, 4436 pending_del_slot, 4437 pending_del_nr); 4438 if (ret) { 4439 btrfs_abort_transaction(trans, ret); 4440 break; 4441 } 4442 pending_del_nr = 0; 4443 } 4444 btrfs_release_path(path); 4445 4446 /* 4447 * We can generate a lot of delayed refs, so we need to 4448 * throttle every once and a while and make sure we're 4449 * adding enough space to keep up with the work we are 4450 * generating. Since we hold a transaction here we 4451 * can't flush, and we don't want to FLUSH_LIMIT because 4452 * we could have generated too many delayed refs to 4453 * actually allocate, so just bail if we're short and 4454 * let the normal reservation dance happen higher up. 4455 */ 4456 if (should_throttle) { 4457 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4458 BTRFS_RESERVE_NO_FLUSH); 4459 if (ret) { 4460 ret = -EAGAIN; 4461 break; 4462 } 4463 } 4464 goto search_again; 4465 } else { 4466 path->slots[0]--; 4467 } 4468 } 4469 out: 4470 if (ret >= 0 && pending_del_nr) { 4471 int err; 4472 4473 err = btrfs_del_items(trans, root, path, pending_del_slot, 4474 pending_del_nr); 4475 if (err) { 4476 btrfs_abort_transaction(trans, err); 4477 ret = err; 4478 } 4479 } 4480 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4481 ASSERT(last_size >= new_size); 4482 if (!ret && last_size > new_size) 4483 last_size = new_size; 4484 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4485 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 4486 (u64)-1, &cached_state); 4487 } 4488 4489 btrfs_free_path(path); 4490 return ret; 4491 } 4492 4493 /* 4494 * btrfs_truncate_block - read, zero a chunk and write a block 4495 * @inode - inode that we're zeroing 4496 * @from - the offset to start zeroing 4497 * @len - the length to zero, 0 to zero the entire range respective to the 4498 * offset 4499 * @front - zero up to the offset instead of from the offset on 4500 * 4501 * This will find the block for the "from" offset and cow the block and zero the 4502 * part we want to zero. This is used with truncate and hole punching. 4503 */ 4504 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4505 int front) 4506 { 4507 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4508 struct address_space *mapping = inode->i_mapping; 4509 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4510 struct btrfs_ordered_extent *ordered; 4511 struct extent_state *cached_state = NULL; 4512 struct extent_changeset *data_reserved = NULL; 4513 char *kaddr; 4514 u32 blocksize = fs_info->sectorsize; 4515 pgoff_t index = from >> PAGE_SHIFT; 4516 unsigned offset = from & (blocksize - 1); 4517 struct page *page; 4518 gfp_t mask = btrfs_alloc_write_mask(mapping); 4519 int ret = 0; 4520 u64 block_start; 4521 u64 block_end; 4522 4523 if (IS_ALIGNED(offset, blocksize) && 4524 (!len || IS_ALIGNED(len, blocksize))) 4525 goto out; 4526 4527 block_start = round_down(from, blocksize); 4528 block_end = block_start + blocksize - 1; 4529 4530 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4531 block_start, blocksize); 4532 if (ret) 4533 goto out; 4534 4535 again: 4536 page = find_or_create_page(mapping, index, mask); 4537 if (!page) { 4538 btrfs_delalloc_release_space(inode, data_reserved, 4539 block_start, blocksize, true); 4540 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4541 ret = -ENOMEM; 4542 goto out; 4543 } 4544 4545 if (!PageUptodate(page)) { 4546 ret = btrfs_readpage(NULL, page); 4547 lock_page(page); 4548 if (page->mapping != mapping) { 4549 unlock_page(page); 4550 put_page(page); 4551 goto again; 4552 } 4553 if (!PageUptodate(page)) { 4554 ret = -EIO; 4555 goto out_unlock; 4556 } 4557 } 4558 wait_on_page_writeback(page); 4559 4560 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4561 set_page_extent_mapped(page); 4562 4563 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4564 if (ordered) { 4565 unlock_extent_cached(io_tree, block_start, block_end, 4566 &cached_state); 4567 unlock_page(page); 4568 put_page(page); 4569 btrfs_start_ordered_extent(inode, ordered, 1); 4570 btrfs_put_ordered_extent(ordered); 4571 goto again; 4572 } 4573 4574 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4575 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4576 0, 0, &cached_state); 4577 4578 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4579 &cached_state); 4580 if (ret) { 4581 unlock_extent_cached(io_tree, block_start, block_end, 4582 &cached_state); 4583 goto out_unlock; 4584 } 4585 4586 if (offset != blocksize) { 4587 if (!len) 4588 len = blocksize - offset; 4589 kaddr = kmap(page); 4590 if (front) 4591 memset(kaddr + (block_start - page_offset(page)), 4592 0, offset); 4593 else 4594 memset(kaddr + (block_start - page_offset(page)) + offset, 4595 0, len); 4596 flush_dcache_page(page); 4597 kunmap(page); 4598 } 4599 ClearPageChecked(page); 4600 set_page_dirty(page); 4601 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4602 4603 out_unlock: 4604 if (ret) 4605 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4606 blocksize, true); 4607 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4608 unlock_page(page); 4609 put_page(page); 4610 out: 4611 extent_changeset_free(data_reserved); 4612 return ret; 4613 } 4614 4615 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4616 u64 offset, u64 len) 4617 { 4618 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4619 struct btrfs_trans_handle *trans; 4620 int ret; 4621 4622 /* 4623 * Still need to make sure the inode looks like it's been updated so 4624 * that any holes get logged if we fsync. 4625 */ 4626 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4627 BTRFS_I(inode)->last_trans = fs_info->generation; 4628 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4629 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4630 return 0; 4631 } 4632 4633 /* 4634 * 1 - for the one we're dropping 4635 * 1 - for the one we're adding 4636 * 1 - for updating the inode. 4637 */ 4638 trans = btrfs_start_transaction(root, 3); 4639 if (IS_ERR(trans)) 4640 return PTR_ERR(trans); 4641 4642 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4643 if (ret) { 4644 btrfs_abort_transaction(trans, ret); 4645 btrfs_end_transaction(trans); 4646 return ret; 4647 } 4648 4649 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4650 offset, 0, 0, len, 0, len, 0, 0, 0); 4651 if (ret) 4652 btrfs_abort_transaction(trans, ret); 4653 else 4654 btrfs_update_inode(trans, root, inode); 4655 btrfs_end_transaction(trans); 4656 return ret; 4657 } 4658 4659 /* 4660 * This function puts in dummy file extents for the area we're creating a hole 4661 * for. So if we are truncating this file to a larger size we need to insert 4662 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4663 * the range between oldsize and size 4664 */ 4665 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4666 { 4667 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4668 struct btrfs_root *root = BTRFS_I(inode)->root; 4669 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4670 struct extent_map *em = NULL; 4671 struct extent_state *cached_state = NULL; 4672 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4673 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4674 u64 block_end = ALIGN(size, fs_info->sectorsize); 4675 u64 last_byte; 4676 u64 cur_offset; 4677 u64 hole_size; 4678 int err = 0; 4679 4680 /* 4681 * If our size started in the middle of a block we need to zero out the 4682 * rest of the block before we expand the i_size, otherwise we could 4683 * expose stale data. 4684 */ 4685 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4686 if (err) 4687 return err; 4688 4689 if (size <= hole_start) 4690 return 0; 4691 4692 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start, 4693 block_end - 1, &cached_state); 4694 cur_offset = hole_start; 4695 while (1) { 4696 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4697 block_end - cur_offset); 4698 if (IS_ERR(em)) { 4699 err = PTR_ERR(em); 4700 em = NULL; 4701 break; 4702 } 4703 last_byte = min(extent_map_end(em), block_end); 4704 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4705 hole_size = last_byte - cur_offset; 4706 4707 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4708 struct extent_map *hole_em; 4709 4710 err = maybe_insert_hole(root, inode, cur_offset, 4711 hole_size); 4712 if (err) 4713 break; 4714 4715 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4716 cur_offset, hole_size); 4717 if (err) 4718 break; 4719 4720 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4721 cur_offset + hole_size - 1, 0); 4722 hole_em = alloc_extent_map(); 4723 if (!hole_em) { 4724 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4725 &BTRFS_I(inode)->runtime_flags); 4726 goto next; 4727 } 4728 hole_em->start = cur_offset; 4729 hole_em->len = hole_size; 4730 hole_em->orig_start = cur_offset; 4731 4732 hole_em->block_start = EXTENT_MAP_HOLE; 4733 hole_em->block_len = 0; 4734 hole_em->orig_block_len = 0; 4735 hole_em->ram_bytes = hole_size; 4736 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4737 hole_em->generation = fs_info->generation; 4738 4739 while (1) { 4740 write_lock(&em_tree->lock); 4741 err = add_extent_mapping(em_tree, hole_em, 1); 4742 write_unlock(&em_tree->lock); 4743 if (err != -EEXIST) 4744 break; 4745 btrfs_drop_extent_cache(BTRFS_I(inode), 4746 cur_offset, 4747 cur_offset + 4748 hole_size - 1, 0); 4749 } 4750 free_extent_map(hole_em); 4751 } else { 4752 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4753 cur_offset, hole_size); 4754 if (err) 4755 break; 4756 } 4757 next: 4758 free_extent_map(em); 4759 em = NULL; 4760 cur_offset = last_byte; 4761 if (cur_offset >= block_end) 4762 break; 4763 } 4764 free_extent_map(em); 4765 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4766 return err; 4767 } 4768 4769 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4770 { 4771 struct btrfs_root *root = BTRFS_I(inode)->root; 4772 struct btrfs_trans_handle *trans; 4773 loff_t oldsize = i_size_read(inode); 4774 loff_t newsize = attr->ia_size; 4775 int mask = attr->ia_valid; 4776 int ret; 4777 4778 /* 4779 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4780 * special case where we need to update the times despite not having 4781 * these flags set. For all other operations the VFS set these flags 4782 * explicitly if it wants a timestamp update. 4783 */ 4784 if (newsize != oldsize) { 4785 inode_inc_iversion(inode); 4786 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4787 inode->i_ctime = inode->i_mtime = 4788 current_time(inode); 4789 } 4790 4791 if (newsize > oldsize) { 4792 /* 4793 * Don't do an expanding truncate while snapshotting is ongoing. 4794 * This is to ensure the snapshot captures a fully consistent 4795 * state of this file - if the snapshot captures this expanding 4796 * truncation, it must capture all writes that happened before 4797 * this truncation. 4798 */ 4799 btrfs_drew_write_lock(&root->snapshot_lock); 4800 ret = btrfs_cont_expand(inode, oldsize, newsize); 4801 if (ret) { 4802 btrfs_drew_write_unlock(&root->snapshot_lock); 4803 return ret; 4804 } 4805 4806 trans = btrfs_start_transaction(root, 1); 4807 if (IS_ERR(trans)) { 4808 btrfs_drew_write_unlock(&root->snapshot_lock); 4809 return PTR_ERR(trans); 4810 } 4811 4812 i_size_write(inode, newsize); 4813 btrfs_inode_safe_disk_i_size_write(inode, 0); 4814 pagecache_isize_extended(inode, oldsize, newsize); 4815 ret = btrfs_update_inode(trans, root, inode); 4816 btrfs_drew_write_unlock(&root->snapshot_lock); 4817 btrfs_end_transaction(trans); 4818 } else { 4819 4820 /* 4821 * We're truncating a file that used to have good data down to 4822 * zero. Make sure it gets into the ordered flush list so that 4823 * any new writes get down to disk quickly. 4824 */ 4825 if (newsize == 0) 4826 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4827 &BTRFS_I(inode)->runtime_flags); 4828 4829 truncate_setsize(inode, newsize); 4830 4831 /* Disable nonlocked read DIO to avoid the endless truncate */ 4832 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 4833 inode_dio_wait(inode); 4834 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 4835 4836 ret = btrfs_truncate(inode, newsize == oldsize); 4837 if (ret && inode->i_nlink) { 4838 int err; 4839 4840 /* 4841 * Truncate failed, so fix up the in-memory size. We 4842 * adjusted disk_i_size down as we removed extents, so 4843 * wait for disk_i_size to be stable and then update the 4844 * in-memory size to match. 4845 */ 4846 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 4847 if (err) 4848 return err; 4849 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4850 } 4851 } 4852 4853 return ret; 4854 } 4855 4856 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4857 { 4858 struct inode *inode = d_inode(dentry); 4859 struct btrfs_root *root = BTRFS_I(inode)->root; 4860 int err; 4861 4862 if (btrfs_root_readonly(root)) 4863 return -EROFS; 4864 4865 err = setattr_prepare(dentry, attr); 4866 if (err) 4867 return err; 4868 4869 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4870 err = btrfs_setsize(inode, attr); 4871 if (err) 4872 return err; 4873 } 4874 4875 if (attr->ia_valid) { 4876 setattr_copy(inode, attr); 4877 inode_inc_iversion(inode); 4878 err = btrfs_dirty_inode(inode); 4879 4880 if (!err && attr->ia_valid & ATTR_MODE) 4881 err = posix_acl_chmod(inode, inode->i_mode); 4882 } 4883 4884 return err; 4885 } 4886 4887 /* 4888 * While truncating the inode pages during eviction, we get the VFS calling 4889 * btrfs_invalidatepage() against each page of the inode. This is slow because 4890 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4891 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4892 * extent_state structures over and over, wasting lots of time. 4893 * 4894 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4895 * those expensive operations on a per page basis and do only the ordered io 4896 * finishing, while we release here the extent_map and extent_state structures, 4897 * without the excessive merging and splitting. 4898 */ 4899 static void evict_inode_truncate_pages(struct inode *inode) 4900 { 4901 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4902 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4903 struct rb_node *node; 4904 4905 ASSERT(inode->i_state & I_FREEING); 4906 truncate_inode_pages_final(&inode->i_data); 4907 4908 write_lock(&map_tree->lock); 4909 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 4910 struct extent_map *em; 4911 4912 node = rb_first_cached(&map_tree->map); 4913 em = rb_entry(node, struct extent_map, rb_node); 4914 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4915 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4916 remove_extent_mapping(map_tree, em); 4917 free_extent_map(em); 4918 if (need_resched()) { 4919 write_unlock(&map_tree->lock); 4920 cond_resched(); 4921 write_lock(&map_tree->lock); 4922 } 4923 } 4924 write_unlock(&map_tree->lock); 4925 4926 /* 4927 * Keep looping until we have no more ranges in the io tree. 4928 * We can have ongoing bios started by readahead that have 4929 * their endio callback (extent_io.c:end_bio_extent_readpage) 4930 * still in progress (unlocked the pages in the bio but did not yet 4931 * unlocked the ranges in the io tree). Therefore this means some 4932 * ranges can still be locked and eviction started because before 4933 * submitting those bios, which are executed by a separate task (work 4934 * queue kthread), inode references (inode->i_count) were not taken 4935 * (which would be dropped in the end io callback of each bio). 4936 * Therefore here we effectively end up waiting for those bios and 4937 * anyone else holding locked ranges without having bumped the inode's 4938 * reference count - if we don't do it, when they access the inode's 4939 * io_tree to unlock a range it may be too late, leading to an 4940 * use-after-free issue. 4941 */ 4942 spin_lock(&io_tree->lock); 4943 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4944 struct extent_state *state; 4945 struct extent_state *cached_state = NULL; 4946 u64 start; 4947 u64 end; 4948 unsigned state_flags; 4949 4950 node = rb_first(&io_tree->state); 4951 state = rb_entry(node, struct extent_state, rb_node); 4952 start = state->start; 4953 end = state->end; 4954 state_flags = state->state; 4955 spin_unlock(&io_tree->lock); 4956 4957 lock_extent_bits(io_tree, start, end, &cached_state); 4958 4959 /* 4960 * If still has DELALLOC flag, the extent didn't reach disk, 4961 * and its reserved space won't be freed by delayed_ref. 4962 * So we need to free its reserved space here. 4963 * (Refer to comment in btrfs_invalidatepage, case 2) 4964 * 4965 * Note, end is the bytenr of last byte, so we need + 1 here. 4966 */ 4967 if (state_flags & EXTENT_DELALLOC) 4968 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 4969 4970 clear_extent_bit(io_tree, start, end, 4971 EXTENT_LOCKED | EXTENT_DELALLOC | 4972 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 4973 &cached_state); 4974 4975 cond_resched(); 4976 spin_lock(&io_tree->lock); 4977 } 4978 spin_unlock(&io_tree->lock); 4979 } 4980 4981 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 4982 struct btrfs_block_rsv *rsv) 4983 { 4984 struct btrfs_fs_info *fs_info = root->fs_info; 4985 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4986 struct btrfs_trans_handle *trans; 4987 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 4988 int ret; 4989 4990 /* 4991 * Eviction should be taking place at some place safe because of our 4992 * delayed iputs. However the normal flushing code will run delayed 4993 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 4994 * 4995 * We reserve the delayed_refs_extra here again because we can't use 4996 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 4997 * above. We reserve our extra bit here because we generate a ton of 4998 * delayed refs activity by truncating. 4999 * 5000 * If we cannot make our reservation we'll attempt to steal from the 5001 * global reserve, because we really want to be able to free up space. 5002 */ 5003 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5004 BTRFS_RESERVE_FLUSH_EVICT); 5005 if (ret) { 5006 /* 5007 * Try to steal from the global reserve if there is space for 5008 * it. 5009 */ 5010 if (btrfs_check_space_for_delayed_refs(fs_info) || 5011 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5012 btrfs_warn(fs_info, 5013 "could not allocate space for delete; will truncate on mount"); 5014 return ERR_PTR(-ENOSPC); 5015 } 5016 delayed_refs_extra = 0; 5017 } 5018 5019 trans = btrfs_join_transaction(root); 5020 if (IS_ERR(trans)) 5021 return trans; 5022 5023 if (delayed_refs_extra) { 5024 trans->block_rsv = &fs_info->trans_block_rsv; 5025 trans->bytes_reserved = delayed_refs_extra; 5026 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5027 delayed_refs_extra, 1); 5028 } 5029 return trans; 5030 } 5031 5032 void btrfs_evict_inode(struct inode *inode) 5033 { 5034 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5035 struct btrfs_trans_handle *trans; 5036 struct btrfs_root *root = BTRFS_I(inode)->root; 5037 struct btrfs_block_rsv *rsv; 5038 int ret; 5039 5040 trace_btrfs_inode_evict(inode); 5041 5042 if (!root) { 5043 clear_inode(inode); 5044 return; 5045 } 5046 5047 evict_inode_truncate_pages(inode); 5048 5049 if (inode->i_nlink && 5050 ((btrfs_root_refs(&root->root_item) != 0 && 5051 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5052 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5053 goto no_delete; 5054 5055 if (is_bad_inode(inode)) 5056 goto no_delete; 5057 5058 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5059 5060 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5061 goto no_delete; 5062 5063 if (inode->i_nlink > 0) { 5064 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5065 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5066 goto no_delete; 5067 } 5068 5069 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5070 if (ret) 5071 goto no_delete; 5072 5073 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5074 if (!rsv) 5075 goto no_delete; 5076 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5077 rsv->failfast = 1; 5078 5079 btrfs_i_size_write(BTRFS_I(inode), 0); 5080 5081 while (1) { 5082 trans = evict_refill_and_join(root, rsv); 5083 if (IS_ERR(trans)) 5084 goto free_rsv; 5085 5086 trans->block_rsv = rsv; 5087 5088 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5089 trans->block_rsv = &fs_info->trans_block_rsv; 5090 btrfs_end_transaction(trans); 5091 btrfs_btree_balance_dirty(fs_info); 5092 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5093 goto free_rsv; 5094 else if (!ret) 5095 break; 5096 } 5097 5098 /* 5099 * Errors here aren't a big deal, it just means we leave orphan items in 5100 * the tree. They will be cleaned up on the next mount. If the inode 5101 * number gets reused, cleanup deletes the orphan item without doing 5102 * anything, and unlink reuses the existing orphan item. 5103 * 5104 * If it turns out that we are dropping too many of these, we might want 5105 * to add a mechanism for retrying these after a commit. 5106 */ 5107 trans = evict_refill_and_join(root, rsv); 5108 if (!IS_ERR(trans)) { 5109 trans->block_rsv = rsv; 5110 btrfs_orphan_del(trans, BTRFS_I(inode)); 5111 trans->block_rsv = &fs_info->trans_block_rsv; 5112 btrfs_end_transaction(trans); 5113 } 5114 5115 if (!(root == fs_info->tree_root || 5116 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5117 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5118 5119 free_rsv: 5120 btrfs_free_block_rsv(fs_info, rsv); 5121 no_delete: 5122 /* 5123 * If we didn't successfully delete, the orphan item will still be in 5124 * the tree and we'll retry on the next mount. Again, we might also want 5125 * to retry these periodically in the future. 5126 */ 5127 btrfs_remove_delayed_node(BTRFS_I(inode)); 5128 clear_inode(inode); 5129 } 5130 5131 /* 5132 * Return the key found in the dir entry in the location pointer, fill @type 5133 * with BTRFS_FT_*, and return 0. 5134 * 5135 * If no dir entries were found, returns -ENOENT. 5136 * If found a corrupted location in dir entry, returns -EUCLEAN. 5137 */ 5138 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5139 struct btrfs_key *location, u8 *type) 5140 { 5141 const char *name = dentry->d_name.name; 5142 int namelen = dentry->d_name.len; 5143 struct btrfs_dir_item *di; 5144 struct btrfs_path *path; 5145 struct btrfs_root *root = BTRFS_I(dir)->root; 5146 int ret = 0; 5147 5148 path = btrfs_alloc_path(); 5149 if (!path) 5150 return -ENOMEM; 5151 5152 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5153 name, namelen, 0); 5154 if (IS_ERR_OR_NULL(di)) { 5155 ret = di ? PTR_ERR(di) : -ENOENT; 5156 goto out; 5157 } 5158 5159 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5160 if (location->type != BTRFS_INODE_ITEM_KEY && 5161 location->type != BTRFS_ROOT_ITEM_KEY) { 5162 ret = -EUCLEAN; 5163 btrfs_warn(root->fs_info, 5164 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5165 __func__, name, btrfs_ino(BTRFS_I(dir)), 5166 location->objectid, location->type, location->offset); 5167 } 5168 if (!ret) 5169 *type = btrfs_dir_type(path->nodes[0], di); 5170 out: 5171 btrfs_free_path(path); 5172 return ret; 5173 } 5174 5175 /* 5176 * when we hit a tree root in a directory, the btrfs part of the inode 5177 * needs to be changed to reflect the root directory of the tree root. This 5178 * is kind of like crossing a mount point. 5179 */ 5180 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5181 struct inode *dir, 5182 struct dentry *dentry, 5183 struct btrfs_key *location, 5184 struct btrfs_root **sub_root) 5185 { 5186 struct btrfs_path *path; 5187 struct btrfs_root *new_root; 5188 struct btrfs_root_ref *ref; 5189 struct extent_buffer *leaf; 5190 struct btrfs_key key; 5191 int ret; 5192 int err = 0; 5193 5194 path = btrfs_alloc_path(); 5195 if (!path) { 5196 err = -ENOMEM; 5197 goto out; 5198 } 5199 5200 err = -ENOENT; 5201 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5202 key.type = BTRFS_ROOT_REF_KEY; 5203 key.offset = location->objectid; 5204 5205 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5206 if (ret) { 5207 if (ret < 0) 5208 err = ret; 5209 goto out; 5210 } 5211 5212 leaf = path->nodes[0]; 5213 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5214 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5215 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5216 goto out; 5217 5218 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5219 (unsigned long)(ref + 1), 5220 dentry->d_name.len); 5221 if (ret) 5222 goto out; 5223 5224 btrfs_release_path(path); 5225 5226 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5227 if (IS_ERR(new_root)) { 5228 err = PTR_ERR(new_root); 5229 goto out; 5230 } 5231 5232 *sub_root = new_root; 5233 location->objectid = btrfs_root_dirid(&new_root->root_item); 5234 location->type = BTRFS_INODE_ITEM_KEY; 5235 location->offset = 0; 5236 err = 0; 5237 out: 5238 btrfs_free_path(path); 5239 return err; 5240 } 5241 5242 static void inode_tree_add(struct inode *inode) 5243 { 5244 struct btrfs_root *root = BTRFS_I(inode)->root; 5245 struct btrfs_inode *entry; 5246 struct rb_node **p; 5247 struct rb_node *parent; 5248 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5249 u64 ino = btrfs_ino(BTRFS_I(inode)); 5250 5251 if (inode_unhashed(inode)) 5252 return; 5253 parent = NULL; 5254 spin_lock(&root->inode_lock); 5255 p = &root->inode_tree.rb_node; 5256 while (*p) { 5257 parent = *p; 5258 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5259 5260 if (ino < btrfs_ino(entry)) 5261 p = &parent->rb_left; 5262 else if (ino > btrfs_ino(entry)) 5263 p = &parent->rb_right; 5264 else { 5265 WARN_ON(!(entry->vfs_inode.i_state & 5266 (I_WILL_FREE | I_FREEING))); 5267 rb_replace_node(parent, new, &root->inode_tree); 5268 RB_CLEAR_NODE(parent); 5269 spin_unlock(&root->inode_lock); 5270 return; 5271 } 5272 } 5273 rb_link_node(new, parent, p); 5274 rb_insert_color(new, &root->inode_tree); 5275 spin_unlock(&root->inode_lock); 5276 } 5277 5278 static void inode_tree_del(struct inode *inode) 5279 { 5280 struct btrfs_root *root = BTRFS_I(inode)->root; 5281 int empty = 0; 5282 5283 spin_lock(&root->inode_lock); 5284 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5285 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5286 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5287 empty = RB_EMPTY_ROOT(&root->inode_tree); 5288 } 5289 spin_unlock(&root->inode_lock); 5290 5291 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5292 spin_lock(&root->inode_lock); 5293 empty = RB_EMPTY_ROOT(&root->inode_tree); 5294 spin_unlock(&root->inode_lock); 5295 if (empty) 5296 btrfs_add_dead_root(root); 5297 } 5298 } 5299 5300 5301 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5302 { 5303 struct btrfs_iget_args *args = p; 5304 5305 inode->i_ino = args->ino; 5306 BTRFS_I(inode)->location.objectid = args->ino; 5307 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5308 BTRFS_I(inode)->location.offset = 0; 5309 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5310 BUG_ON(args->root && !BTRFS_I(inode)->root); 5311 return 0; 5312 } 5313 5314 static int btrfs_find_actor(struct inode *inode, void *opaque) 5315 { 5316 struct btrfs_iget_args *args = opaque; 5317 5318 return args->ino == BTRFS_I(inode)->location.objectid && 5319 args->root == BTRFS_I(inode)->root; 5320 } 5321 5322 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5323 struct btrfs_root *root) 5324 { 5325 struct inode *inode; 5326 struct btrfs_iget_args args; 5327 unsigned long hashval = btrfs_inode_hash(ino, root); 5328 5329 args.ino = ino; 5330 args.root = root; 5331 5332 inode = iget5_locked(s, hashval, btrfs_find_actor, 5333 btrfs_init_locked_inode, 5334 (void *)&args); 5335 return inode; 5336 } 5337 5338 /* 5339 * Get an inode object given its inode number and corresponding root. 5340 * Path can be preallocated to prevent recursing back to iget through 5341 * allocator. NULL is also valid but may require an additional allocation 5342 * later. 5343 */ 5344 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5345 struct btrfs_root *root, struct btrfs_path *path) 5346 { 5347 struct inode *inode; 5348 5349 inode = btrfs_iget_locked(s, ino, root); 5350 if (!inode) 5351 return ERR_PTR(-ENOMEM); 5352 5353 if (inode->i_state & I_NEW) { 5354 int ret; 5355 5356 ret = btrfs_read_locked_inode(inode, path); 5357 if (!ret) { 5358 inode_tree_add(inode); 5359 unlock_new_inode(inode); 5360 } else { 5361 iget_failed(inode); 5362 /* 5363 * ret > 0 can come from btrfs_search_slot called by 5364 * btrfs_read_locked_inode, this means the inode item 5365 * was not found. 5366 */ 5367 if (ret > 0) 5368 ret = -ENOENT; 5369 inode = ERR_PTR(ret); 5370 } 5371 } 5372 5373 return inode; 5374 } 5375 5376 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5377 { 5378 return btrfs_iget_path(s, ino, root, NULL); 5379 } 5380 5381 static struct inode *new_simple_dir(struct super_block *s, 5382 struct btrfs_key *key, 5383 struct btrfs_root *root) 5384 { 5385 struct inode *inode = new_inode(s); 5386 5387 if (!inode) 5388 return ERR_PTR(-ENOMEM); 5389 5390 BTRFS_I(inode)->root = btrfs_grab_root(root); 5391 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5392 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5393 5394 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5395 /* 5396 * We only need lookup, the rest is read-only and there's no inode 5397 * associated with the dentry 5398 */ 5399 inode->i_op = &simple_dir_inode_operations; 5400 inode->i_opflags &= ~IOP_XATTR; 5401 inode->i_fop = &simple_dir_operations; 5402 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5403 inode->i_mtime = current_time(inode); 5404 inode->i_atime = inode->i_mtime; 5405 inode->i_ctime = inode->i_mtime; 5406 BTRFS_I(inode)->i_otime = inode->i_mtime; 5407 5408 return inode; 5409 } 5410 5411 static inline u8 btrfs_inode_type(struct inode *inode) 5412 { 5413 /* 5414 * Compile-time asserts that generic FT_* types still match 5415 * BTRFS_FT_* types 5416 */ 5417 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5418 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5419 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5420 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5421 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5422 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5423 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5424 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5425 5426 return fs_umode_to_ftype(inode->i_mode); 5427 } 5428 5429 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5430 { 5431 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5432 struct inode *inode; 5433 struct btrfs_root *root = BTRFS_I(dir)->root; 5434 struct btrfs_root *sub_root = root; 5435 struct btrfs_key location; 5436 u8 di_type = 0; 5437 int ret = 0; 5438 5439 if (dentry->d_name.len > BTRFS_NAME_LEN) 5440 return ERR_PTR(-ENAMETOOLONG); 5441 5442 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5443 if (ret < 0) 5444 return ERR_PTR(ret); 5445 5446 if (location.type == BTRFS_INODE_ITEM_KEY) { 5447 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5448 if (IS_ERR(inode)) 5449 return inode; 5450 5451 /* Do extra check against inode mode with di_type */ 5452 if (btrfs_inode_type(inode) != di_type) { 5453 btrfs_crit(fs_info, 5454 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5455 inode->i_mode, btrfs_inode_type(inode), 5456 di_type); 5457 iput(inode); 5458 return ERR_PTR(-EUCLEAN); 5459 } 5460 return inode; 5461 } 5462 5463 ret = fixup_tree_root_location(fs_info, dir, dentry, 5464 &location, &sub_root); 5465 if (ret < 0) { 5466 if (ret != -ENOENT) 5467 inode = ERR_PTR(ret); 5468 else 5469 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5470 } else { 5471 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5472 } 5473 if (root != sub_root) 5474 btrfs_put_root(sub_root); 5475 5476 if (!IS_ERR(inode) && root != sub_root) { 5477 down_read(&fs_info->cleanup_work_sem); 5478 if (!sb_rdonly(inode->i_sb)) 5479 ret = btrfs_orphan_cleanup(sub_root); 5480 up_read(&fs_info->cleanup_work_sem); 5481 if (ret) { 5482 iput(inode); 5483 inode = ERR_PTR(ret); 5484 } 5485 } 5486 5487 return inode; 5488 } 5489 5490 static int btrfs_dentry_delete(const struct dentry *dentry) 5491 { 5492 struct btrfs_root *root; 5493 struct inode *inode = d_inode(dentry); 5494 5495 if (!inode && !IS_ROOT(dentry)) 5496 inode = d_inode(dentry->d_parent); 5497 5498 if (inode) { 5499 root = BTRFS_I(inode)->root; 5500 if (btrfs_root_refs(&root->root_item) == 0) 5501 return 1; 5502 5503 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5504 return 1; 5505 } 5506 return 0; 5507 } 5508 5509 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5510 unsigned int flags) 5511 { 5512 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5513 5514 if (inode == ERR_PTR(-ENOENT)) 5515 inode = NULL; 5516 return d_splice_alias(inode, dentry); 5517 } 5518 5519 /* 5520 * All this infrastructure exists because dir_emit can fault, and we are holding 5521 * the tree lock when doing readdir. For now just allocate a buffer and copy 5522 * our information into that, and then dir_emit from the buffer. This is 5523 * similar to what NFS does, only we don't keep the buffer around in pagecache 5524 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5525 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5526 * tree lock. 5527 */ 5528 static int btrfs_opendir(struct inode *inode, struct file *file) 5529 { 5530 struct btrfs_file_private *private; 5531 5532 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5533 if (!private) 5534 return -ENOMEM; 5535 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5536 if (!private->filldir_buf) { 5537 kfree(private); 5538 return -ENOMEM; 5539 } 5540 file->private_data = private; 5541 return 0; 5542 } 5543 5544 struct dir_entry { 5545 u64 ino; 5546 u64 offset; 5547 unsigned type; 5548 int name_len; 5549 }; 5550 5551 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5552 { 5553 while (entries--) { 5554 struct dir_entry *entry = addr; 5555 char *name = (char *)(entry + 1); 5556 5557 ctx->pos = get_unaligned(&entry->offset); 5558 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5559 get_unaligned(&entry->ino), 5560 get_unaligned(&entry->type))) 5561 return 1; 5562 addr += sizeof(struct dir_entry) + 5563 get_unaligned(&entry->name_len); 5564 ctx->pos++; 5565 } 5566 return 0; 5567 } 5568 5569 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5570 { 5571 struct inode *inode = file_inode(file); 5572 struct btrfs_root *root = BTRFS_I(inode)->root; 5573 struct btrfs_file_private *private = file->private_data; 5574 struct btrfs_dir_item *di; 5575 struct btrfs_key key; 5576 struct btrfs_key found_key; 5577 struct btrfs_path *path; 5578 void *addr; 5579 struct list_head ins_list; 5580 struct list_head del_list; 5581 int ret; 5582 struct extent_buffer *leaf; 5583 int slot; 5584 char *name_ptr; 5585 int name_len; 5586 int entries = 0; 5587 int total_len = 0; 5588 bool put = false; 5589 struct btrfs_key location; 5590 5591 if (!dir_emit_dots(file, ctx)) 5592 return 0; 5593 5594 path = btrfs_alloc_path(); 5595 if (!path) 5596 return -ENOMEM; 5597 5598 addr = private->filldir_buf; 5599 path->reada = READA_FORWARD; 5600 5601 INIT_LIST_HEAD(&ins_list); 5602 INIT_LIST_HEAD(&del_list); 5603 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5604 5605 again: 5606 key.type = BTRFS_DIR_INDEX_KEY; 5607 key.offset = ctx->pos; 5608 key.objectid = btrfs_ino(BTRFS_I(inode)); 5609 5610 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5611 if (ret < 0) 5612 goto err; 5613 5614 while (1) { 5615 struct dir_entry *entry; 5616 5617 leaf = path->nodes[0]; 5618 slot = path->slots[0]; 5619 if (slot >= btrfs_header_nritems(leaf)) { 5620 ret = btrfs_next_leaf(root, path); 5621 if (ret < 0) 5622 goto err; 5623 else if (ret > 0) 5624 break; 5625 continue; 5626 } 5627 5628 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5629 5630 if (found_key.objectid != key.objectid) 5631 break; 5632 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5633 break; 5634 if (found_key.offset < ctx->pos) 5635 goto next; 5636 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5637 goto next; 5638 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5639 name_len = btrfs_dir_name_len(leaf, di); 5640 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5641 PAGE_SIZE) { 5642 btrfs_release_path(path); 5643 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5644 if (ret) 5645 goto nopos; 5646 addr = private->filldir_buf; 5647 entries = 0; 5648 total_len = 0; 5649 goto again; 5650 } 5651 5652 entry = addr; 5653 put_unaligned(name_len, &entry->name_len); 5654 name_ptr = (char *)(entry + 1); 5655 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5656 name_len); 5657 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5658 &entry->type); 5659 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5660 put_unaligned(location.objectid, &entry->ino); 5661 put_unaligned(found_key.offset, &entry->offset); 5662 entries++; 5663 addr += sizeof(struct dir_entry) + name_len; 5664 total_len += sizeof(struct dir_entry) + name_len; 5665 next: 5666 path->slots[0]++; 5667 } 5668 btrfs_release_path(path); 5669 5670 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5671 if (ret) 5672 goto nopos; 5673 5674 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5675 if (ret) 5676 goto nopos; 5677 5678 /* 5679 * Stop new entries from being returned after we return the last 5680 * entry. 5681 * 5682 * New directory entries are assigned a strictly increasing 5683 * offset. This means that new entries created during readdir 5684 * are *guaranteed* to be seen in the future by that readdir. 5685 * This has broken buggy programs which operate on names as 5686 * they're returned by readdir. Until we re-use freed offsets 5687 * we have this hack to stop new entries from being returned 5688 * under the assumption that they'll never reach this huge 5689 * offset. 5690 * 5691 * This is being careful not to overflow 32bit loff_t unless the 5692 * last entry requires it because doing so has broken 32bit apps 5693 * in the past. 5694 */ 5695 if (ctx->pos >= INT_MAX) 5696 ctx->pos = LLONG_MAX; 5697 else 5698 ctx->pos = INT_MAX; 5699 nopos: 5700 ret = 0; 5701 err: 5702 if (put) 5703 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5704 btrfs_free_path(path); 5705 return ret; 5706 } 5707 5708 /* 5709 * This is somewhat expensive, updating the tree every time the 5710 * inode changes. But, it is most likely to find the inode in cache. 5711 * FIXME, needs more benchmarking...there are no reasons other than performance 5712 * to keep or drop this code. 5713 */ 5714 static int btrfs_dirty_inode(struct inode *inode) 5715 { 5716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5717 struct btrfs_root *root = BTRFS_I(inode)->root; 5718 struct btrfs_trans_handle *trans; 5719 int ret; 5720 5721 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5722 return 0; 5723 5724 trans = btrfs_join_transaction(root); 5725 if (IS_ERR(trans)) 5726 return PTR_ERR(trans); 5727 5728 ret = btrfs_update_inode(trans, root, inode); 5729 if (ret && ret == -ENOSPC) { 5730 /* whoops, lets try again with the full transaction */ 5731 btrfs_end_transaction(trans); 5732 trans = btrfs_start_transaction(root, 1); 5733 if (IS_ERR(trans)) 5734 return PTR_ERR(trans); 5735 5736 ret = btrfs_update_inode(trans, root, inode); 5737 } 5738 btrfs_end_transaction(trans); 5739 if (BTRFS_I(inode)->delayed_node) 5740 btrfs_balance_delayed_items(fs_info); 5741 5742 return ret; 5743 } 5744 5745 /* 5746 * This is a copy of file_update_time. We need this so we can return error on 5747 * ENOSPC for updating the inode in the case of file write and mmap writes. 5748 */ 5749 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5750 int flags) 5751 { 5752 struct btrfs_root *root = BTRFS_I(inode)->root; 5753 bool dirty = flags & ~S_VERSION; 5754 5755 if (btrfs_root_readonly(root)) 5756 return -EROFS; 5757 5758 if (flags & S_VERSION) 5759 dirty |= inode_maybe_inc_iversion(inode, dirty); 5760 if (flags & S_CTIME) 5761 inode->i_ctime = *now; 5762 if (flags & S_MTIME) 5763 inode->i_mtime = *now; 5764 if (flags & S_ATIME) 5765 inode->i_atime = *now; 5766 return dirty ? btrfs_dirty_inode(inode) : 0; 5767 } 5768 5769 /* 5770 * find the highest existing sequence number in a directory 5771 * and then set the in-memory index_cnt variable to reflect 5772 * free sequence numbers 5773 */ 5774 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5775 { 5776 struct btrfs_root *root = inode->root; 5777 struct btrfs_key key, found_key; 5778 struct btrfs_path *path; 5779 struct extent_buffer *leaf; 5780 int ret; 5781 5782 key.objectid = btrfs_ino(inode); 5783 key.type = BTRFS_DIR_INDEX_KEY; 5784 key.offset = (u64)-1; 5785 5786 path = btrfs_alloc_path(); 5787 if (!path) 5788 return -ENOMEM; 5789 5790 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5791 if (ret < 0) 5792 goto out; 5793 /* FIXME: we should be able to handle this */ 5794 if (ret == 0) 5795 goto out; 5796 ret = 0; 5797 5798 /* 5799 * MAGIC NUMBER EXPLANATION: 5800 * since we search a directory based on f_pos we have to start at 2 5801 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5802 * else has to start at 2 5803 */ 5804 if (path->slots[0] == 0) { 5805 inode->index_cnt = 2; 5806 goto out; 5807 } 5808 5809 path->slots[0]--; 5810 5811 leaf = path->nodes[0]; 5812 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5813 5814 if (found_key.objectid != btrfs_ino(inode) || 5815 found_key.type != BTRFS_DIR_INDEX_KEY) { 5816 inode->index_cnt = 2; 5817 goto out; 5818 } 5819 5820 inode->index_cnt = found_key.offset + 1; 5821 out: 5822 btrfs_free_path(path); 5823 return ret; 5824 } 5825 5826 /* 5827 * helper to find a free sequence number in a given directory. This current 5828 * code is very simple, later versions will do smarter things in the btree 5829 */ 5830 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 5831 { 5832 int ret = 0; 5833 5834 if (dir->index_cnt == (u64)-1) { 5835 ret = btrfs_inode_delayed_dir_index_count(dir); 5836 if (ret) { 5837 ret = btrfs_set_inode_index_count(dir); 5838 if (ret) 5839 return ret; 5840 } 5841 } 5842 5843 *index = dir->index_cnt; 5844 dir->index_cnt++; 5845 5846 return ret; 5847 } 5848 5849 static int btrfs_insert_inode_locked(struct inode *inode) 5850 { 5851 struct btrfs_iget_args args; 5852 5853 args.ino = BTRFS_I(inode)->location.objectid; 5854 args.root = BTRFS_I(inode)->root; 5855 5856 return insert_inode_locked4(inode, 5857 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5858 btrfs_find_actor, &args); 5859 } 5860 5861 /* 5862 * Inherit flags from the parent inode. 5863 * 5864 * Currently only the compression flags and the cow flags are inherited. 5865 */ 5866 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 5867 { 5868 unsigned int flags; 5869 5870 if (!dir) 5871 return; 5872 5873 flags = BTRFS_I(dir)->flags; 5874 5875 if (flags & BTRFS_INODE_NOCOMPRESS) { 5876 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 5877 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 5878 } else if (flags & BTRFS_INODE_COMPRESS) { 5879 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 5880 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 5881 } 5882 5883 if (flags & BTRFS_INODE_NODATACOW) { 5884 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 5885 if (S_ISREG(inode->i_mode)) 5886 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5887 } 5888 5889 btrfs_sync_inode_flags_to_i_flags(inode); 5890 } 5891 5892 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5893 struct btrfs_root *root, 5894 struct inode *dir, 5895 const char *name, int name_len, 5896 u64 ref_objectid, u64 objectid, 5897 umode_t mode, u64 *index) 5898 { 5899 struct btrfs_fs_info *fs_info = root->fs_info; 5900 struct inode *inode; 5901 struct btrfs_inode_item *inode_item; 5902 struct btrfs_key *location; 5903 struct btrfs_path *path; 5904 struct btrfs_inode_ref *ref; 5905 struct btrfs_key key[2]; 5906 u32 sizes[2]; 5907 int nitems = name ? 2 : 1; 5908 unsigned long ptr; 5909 unsigned int nofs_flag; 5910 int ret; 5911 5912 path = btrfs_alloc_path(); 5913 if (!path) 5914 return ERR_PTR(-ENOMEM); 5915 5916 nofs_flag = memalloc_nofs_save(); 5917 inode = new_inode(fs_info->sb); 5918 memalloc_nofs_restore(nofs_flag); 5919 if (!inode) { 5920 btrfs_free_path(path); 5921 return ERR_PTR(-ENOMEM); 5922 } 5923 5924 /* 5925 * O_TMPFILE, set link count to 0, so that after this point, 5926 * we fill in an inode item with the correct link count. 5927 */ 5928 if (!name) 5929 set_nlink(inode, 0); 5930 5931 /* 5932 * we have to initialize this early, so we can reclaim the inode 5933 * number if we fail afterwards in this function. 5934 */ 5935 inode->i_ino = objectid; 5936 5937 if (dir && name) { 5938 trace_btrfs_inode_request(dir); 5939 5940 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 5941 if (ret) { 5942 btrfs_free_path(path); 5943 iput(inode); 5944 return ERR_PTR(ret); 5945 } 5946 } else if (dir) { 5947 *index = 0; 5948 } 5949 /* 5950 * index_cnt is ignored for everything but a dir, 5951 * btrfs_set_inode_index_count has an explanation for the magic 5952 * number 5953 */ 5954 BTRFS_I(inode)->index_cnt = 2; 5955 BTRFS_I(inode)->dir_index = *index; 5956 BTRFS_I(inode)->root = btrfs_grab_root(root); 5957 BTRFS_I(inode)->generation = trans->transid; 5958 inode->i_generation = BTRFS_I(inode)->generation; 5959 5960 /* 5961 * We could have gotten an inode number from somebody who was fsynced 5962 * and then removed in this same transaction, so let's just set full 5963 * sync since it will be a full sync anyway and this will blow away the 5964 * old info in the log. 5965 */ 5966 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5967 5968 key[0].objectid = objectid; 5969 key[0].type = BTRFS_INODE_ITEM_KEY; 5970 key[0].offset = 0; 5971 5972 sizes[0] = sizeof(struct btrfs_inode_item); 5973 5974 if (name) { 5975 /* 5976 * Start new inodes with an inode_ref. This is slightly more 5977 * efficient for small numbers of hard links since they will 5978 * be packed into one item. Extended refs will kick in if we 5979 * add more hard links than can fit in the ref item. 5980 */ 5981 key[1].objectid = objectid; 5982 key[1].type = BTRFS_INODE_REF_KEY; 5983 key[1].offset = ref_objectid; 5984 5985 sizes[1] = name_len + sizeof(*ref); 5986 } 5987 5988 location = &BTRFS_I(inode)->location; 5989 location->objectid = objectid; 5990 location->offset = 0; 5991 location->type = BTRFS_INODE_ITEM_KEY; 5992 5993 ret = btrfs_insert_inode_locked(inode); 5994 if (ret < 0) { 5995 iput(inode); 5996 goto fail; 5997 } 5998 5999 path->leave_spinning = 1; 6000 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6001 if (ret != 0) 6002 goto fail_unlock; 6003 6004 inode_init_owner(inode, dir, mode); 6005 inode_set_bytes(inode, 0); 6006 6007 inode->i_mtime = current_time(inode); 6008 inode->i_atime = inode->i_mtime; 6009 inode->i_ctime = inode->i_mtime; 6010 BTRFS_I(inode)->i_otime = inode->i_mtime; 6011 6012 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6013 struct btrfs_inode_item); 6014 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6015 sizeof(*inode_item)); 6016 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6017 6018 if (name) { 6019 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6020 struct btrfs_inode_ref); 6021 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6022 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6023 ptr = (unsigned long)(ref + 1); 6024 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6025 } 6026 6027 btrfs_mark_buffer_dirty(path->nodes[0]); 6028 btrfs_free_path(path); 6029 6030 btrfs_inherit_iflags(inode, dir); 6031 6032 if (S_ISREG(mode)) { 6033 if (btrfs_test_opt(fs_info, NODATASUM)) 6034 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6035 if (btrfs_test_opt(fs_info, NODATACOW)) 6036 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6037 BTRFS_INODE_NODATASUM; 6038 } 6039 6040 inode_tree_add(inode); 6041 6042 trace_btrfs_inode_new(inode); 6043 btrfs_set_inode_last_trans(trans, inode); 6044 6045 btrfs_update_root_times(trans, root); 6046 6047 ret = btrfs_inode_inherit_props(trans, inode, dir); 6048 if (ret) 6049 btrfs_err(fs_info, 6050 "error inheriting props for ino %llu (root %llu): %d", 6051 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6052 6053 return inode; 6054 6055 fail_unlock: 6056 discard_new_inode(inode); 6057 fail: 6058 if (dir && name) 6059 BTRFS_I(dir)->index_cnt--; 6060 btrfs_free_path(path); 6061 return ERR_PTR(ret); 6062 } 6063 6064 /* 6065 * utility function to add 'inode' into 'parent_inode' with 6066 * a give name and a given sequence number. 6067 * if 'add_backref' is true, also insert a backref from the 6068 * inode to the parent directory. 6069 */ 6070 int btrfs_add_link(struct btrfs_trans_handle *trans, 6071 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6072 const char *name, int name_len, int add_backref, u64 index) 6073 { 6074 int ret = 0; 6075 struct btrfs_key key; 6076 struct btrfs_root *root = parent_inode->root; 6077 u64 ino = btrfs_ino(inode); 6078 u64 parent_ino = btrfs_ino(parent_inode); 6079 6080 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6081 memcpy(&key, &inode->root->root_key, sizeof(key)); 6082 } else { 6083 key.objectid = ino; 6084 key.type = BTRFS_INODE_ITEM_KEY; 6085 key.offset = 0; 6086 } 6087 6088 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6089 ret = btrfs_add_root_ref(trans, key.objectid, 6090 root->root_key.objectid, parent_ino, 6091 index, name, name_len); 6092 } else if (add_backref) { 6093 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6094 parent_ino, index); 6095 } 6096 6097 /* Nothing to clean up yet */ 6098 if (ret) 6099 return ret; 6100 6101 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6102 btrfs_inode_type(&inode->vfs_inode), index); 6103 if (ret == -EEXIST || ret == -EOVERFLOW) 6104 goto fail_dir_item; 6105 else if (ret) { 6106 btrfs_abort_transaction(trans, ret); 6107 return ret; 6108 } 6109 6110 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6111 name_len * 2); 6112 inode_inc_iversion(&parent_inode->vfs_inode); 6113 /* 6114 * If we are replaying a log tree, we do not want to update the mtime 6115 * and ctime of the parent directory with the current time, since the 6116 * log replay procedure is responsible for setting them to their correct 6117 * values (the ones it had when the fsync was done). 6118 */ 6119 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6120 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6121 6122 parent_inode->vfs_inode.i_mtime = now; 6123 parent_inode->vfs_inode.i_ctime = now; 6124 } 6125 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6126 if (ret) 6127 btrfs_abort_transaction(trans, ret); 6128 return ret; 6129 6130 fail_dir_item: 6131 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6132 u64 local_index; 6133 int err; 6134 err = btrfs_del_root_ref(trans, key.objectid, 6135 root->root_key.objectid, parent_ino, 6136 &local_index, name, name_len); 6137 if (err) 6138 btrfs_abort_transaction(trans, err); 6139 } else if (add_backref) { 6140 u64 local_index; 6141 int err; 6142 6143 err = btrfs_del_inode_ref(trans, root, name, name_len, 6144 ino, parent_ino, &local_index); 6145 if (err) 6146 btrfs_abort_transaction(trans, err); 6147 } 6148 6149 /* Return the original error code */ 6150 return ret; 6151 } 6152 6153 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6154 struct btrfs_inode *dir, struct dentry *dentry, 6155 struct btrfs_inode *inode, int backref, u64 index) 6156 { 6157 int err = btrfs_add_link(trans, dir, inode, 6158 dentry->d_name.name, dentry->d_name.len, 6159 backref, index); 6160 if (err > 0) 6161 err = -EEXIST; 6162 return err; 6163 } 6164 6165 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6166 umode_t mode, dev_t rdev) 6167 { 6168 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6169 struct btrfs_trans_handle *trans; 6170 struct btrfs_root *root = BTRFS_I(dir)->root; 6171 struct inode *inode = NULL; 6172 int err; 6173 u64 objectid; 6174 u64 index = 0; 6175 6176 /* 6177 * 2 for inode item and ref 6178 * 2 for dir items 6179 * 1 for xattr if selinux is on 6180 */ 6181 trans = btrfs_start_transaction(root, 5); 6182 if (IS_ERR(trans)) 6183 return PTR_ERR(trans); 6184 6185 err = btrfs_find_free_ino(root, &objectid); 6186 if (err) 6187 goto out_unlock; 6188 6189 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6190 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6191 mode, &index); 6192 if (IS_ERR(inode)) { 6193 err = PTR_ERR(inode); 6194 inode = NULL; 6195 goto out_unlock; 6196 } 6197 6198 /* 6199 * If the active LSM wants to access the inode during 6200 * d_instantiate it needs these. Smack checks to see 6201 * if the filesystem supports xattrs by looking at the 6202 * ops vector. 6203 */ 6204 inode->i_op = &btrfs_special_inode_operations; 6205 init_special_inode(inode, inode->i_mode, rdev); 6206 6207 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6208 if (err) 6209 goto out_unlock; 6210 6211 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6212 0, index); 6213 if (err) 6214 goto out_unlock; 6215 6216 btrfs_update_inode(trans, root, inode); 6217 d_instantiate_new(dentry, inode); 6218 6219 out_unlock: 6220 btrfs_end_transaction(trans); 6221 btrfs_btree_balance_dirty(fs_info); 6222 if (err && inode) { 6223 inode_dec_link_count(inode); 6224 discard_new_inode(inode); 6225 } 6226 return err; 6227 } 6228 6229 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6230 umode_t mode, bool excl) 6231 { 6232 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6233 struct btrfs_trans_handle *trans; 6234 struct btrfs_root *root = BTRFS_I(dir)->root; 6235 struct inode *inode = NULL; 6236 int err; 6237 u64 objectid; 6238 u64 index = 0; 6239 6240 /* 6241 * 2 for inode item and ref 6242 * 2 for dir items 6243 * 1 for xattr if selinux is on 6244 */ 6245 trans = btrfs_start_transaction(root, 5); 6246 if (IS_ERR(trans)) 6247 return PTR_ERR(trans); 6248 6249 err = btrfs_find_free_ino(root, &objectid); 6250 if (err) 6251 goto out_unlock; 6252 6253 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6254 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6255 mode, &index); 6256 if (IS_ERR(inode)) { 6257 err = PTR_ERR(inode); 6258 inode = NULL; 6259 goto out_unlock; 6260 } 6261 /* 6262 * If the active LSM wants to access the inode during 6263 * d_instantiate it needs these. Smack checks to see 6264 * if the filesystem supports xattrs by looking at the 6265 * ops vector. 6266 */ 6267 inode->i_fop = &btrfs_file_operations; 6268 inode->i_op = &btrfs_file_inode_operations; 6269 inode->i_mapping->a_ops = &btrfs_aops; 6270 6271 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6272 if (err) 6273 goto out_unlock; 6274 6275 err = btrfs_update_inode(trans, root, inode); 6276 if (err) 6277 goto out_unlock; 6278 6279 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6280 0, index); 6281 if (err) 6282 goto out_unlock; 6283 6284 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6285 d_instantiate_new(dentry, inode); 6286 6287 out_unlock: 6288 btrfs_end_transaction(trans); 6289 if (err && inode) { 6290 inode_dec_link_count(inode); 6291 discard_new_inode(inode); 6292 } 6293 btrfs_btree_balance_dirty(fs_info); 6294 return err; 6295 } 6296 6297 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6298 struct dentry *dentry) 6299 { 6300 struct btrfs_trans_handle *trans = NULL; 6301 struct btrfs_root *root = BTRFS_I(dir)->root; 6302 struct inode *inode = d_inode(old_dentry); 6303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6304 u64 index; 6305 int err; 6306 int drop_inode = 0; 6307 6308 /* do not allow sys_link's with other subvols of the same device */ 6309 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6310 return -EXDEV; 6311 6312 if (inode->i_nlink >= BTRFS_LINK_MAX) 6313 return -EMLINK; 6314 6315 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6316 if (err) 6317 goto fail; 6318 6319 /* 6320 * 2 items for inode and inode ref 6321 * 2 items for dir items 6322 * 1 item for parent inode 6323 * 1 item for orphan item deletion if O_TMPFILE 6324 */ 6325 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6326 if (IS_ERR(trans)) { 6327 err = PTR_ERR(trans); 6328 trans = NULL; 6329 goto fail; 6330 } 6331 6332 /* There are several dir indexes for this inode, clear the cache. */ 6333 BTRFS_I(inode)->dir_index = 0ULL; 6334 inc_nlink(inode); 6335 inode_inc_iversion(inode); 6336 inode->i_ctime = current_time(inode); 6337 ihold(inode); 6338 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6339 6340 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6341 1, index); 6342 6343 if (err) { 6344 drop_inode = 1; 6345 } else { 6346 struct dentry *parent = dentry->d_parent; 6347 int ret; 6348 6349 err = btrfs_update_inode(trans, root, inode); 6350 if (err) 6351 goto fail; 6352 if (inode->i_nlink == 1) { 6353 /* 6354 * If new hard link count is 1, it's a file created 6355 * with open(2) O_TMPFILE flag. 6356 */ 6357 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6358 if (err) 6359 goto fail; 6360 } 6361 d_instantiate(dentry, inode); 6362 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6363 true, NULL); 6364 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6365 err = btrfs_commit_transaction(trans); 6366 trans = NULL; 6367 } 6368 } 6369 6370 fail: 6371 if (trans) 6372 btrfs_end_transaction(trans); 6373 if (drop_inode) { 6374 inode_dec_link_count(inode); 6375 iput(inode); 6376 } 6377 btrfs_btree_balance_dirty(fs_info); 6378 return err; 6379 } 6380 6381 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6382 { 6383 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6384 struct inode *inode = NULL; 6385 struct btrfs_trans_handle *trans; 6386 struct btrfs_root *root = BTRFS_I(dir)->root; 6387 int err = 0; 6388 u64 objectid = 0; 6389 u64 index = 0; 6390 6391 /* 6392 * 2 items for inode and ref 6393 * 2 items for dir items 6394 * 1 for xattr if selinux is on 6395 */ 6396 trans = btrfs_start_transaction(root, 5); 6397 if (IS_ERR(trans)) 6398 return PTR_ERR(trans); 6399 6400 err = btrfs_find_free_ino(root, &objectid); 6401 if (err) 6402 goto out_fail; 6403 6404 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6405 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6406 S_IFDIR | mode, &index); 6407 if (IS_ERR(inode)) { 6408 err = PTR_ERR(inode); 6409 inode = NULL; 6410 goto out_fail; 6411 } 6412 6413 /* these must be set before we unlock the inode */ 6414 inode->i_op = &btrfs_dir_inode_operations; 6415 inode->i_fop = &btrfs_dir_file_operations; 6416 6417 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6418 if (err) 6419 goto out_fail; 6420 6421 btrfs_i_size_write(BTRFS_I(inode), 0); 6422 err = btrfs_update_inode(trans, root, inode); 6423 if (err) 6424 goto out_fail; 6425 6426 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6427 dentry->d_name.name, 6428 dentry->d_name.len, 0, index); 6429 if (err) 6430 goto out_fail; 6431 6432 d_instantiate_new(dentry, inode); 6433 6434 out_fail: 6435 btrfs_end_transaction(trans); 6436 if (err && inode) { 6437 inode_dec_link_count(inode); 6438 discard_new_inode(inode); 6439 } 6440 btrfs_btree_balance_dirty(fs_info); 6441 return err; 6442 } 6443 6444 static noinline int uncompress_inline(struct btrfs_path *path, 6445 struct page *page, 6446 size_t pg_offset, u64 extent_offset, 6447 struct btrfs_file_extent_item *item) 6448 { 6449 int ret; 6450 struct extent_buffer *leaf = path->nodes[0]; 6451 char *tmp; 6452 size_t max_size; 6453 unsigned long inline_size; 6454 unsigned long ptr; 6455 int compress_type; 6456 6457 WARN_ON(pg_offset != 0); 6458 compress_type = btrfs_file_extent_compression(leaf, item); 6459 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6460 inline_size = btrfs_file_extent_inline_item_len(leaf, 6461 btrfs_item_nr(path->slots[0])); 6462 tmp = kmalloc(inline_size, GFP_NOFS); 6463 if (!tmp) 6464 return -ENOMEM; 6465 ptr = btrfs_file_extent_inline_start(item); 6466 6467 read_extent_buffer(leaf, tmp, ptr, inline_size); 6468 6469 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6470 ret = btrfs_decompress(compress_type, tmp, page, 6471 extent_offset, inline_size, max_size); 6472 6473 /* 6474 * decompression code contains a memset to fill in any space between the end 6475 * of the uncompressed data and the end of max_size in case the decompressed 6476 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6477 * the end of an inline extent and the beginning of the next block, so we 6478 * cover that region here. 6479 */ 6480 6481 if (max_size + pg_offset < PAGE_SIZE) { 6482 char *map = kmap(page); 6483 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6484 kunmap(page); 6485 } 6486 kfree(tmp); 6487 return ret; 6488 } 6489 6490 /** 6491 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6492 * @inode: file to search in 6493 * @page: page to read extent data into if the extent is inline 6494 * @pg_offset: offset into @page to copy to 6495 * @start: file offset 6496 * @len: length of range starting at @start 6497 * 6498 * This returns the first &struct extent_map which overlaps with the given 6499 * range, reading it from the B-tree and caching it if necessary. Note that 6500 * there may be more extents which overlap the given range after the returned 6501 * extent_map. 6502 * 6503 * If @page is not NULL and the extent is inline, this also reads the extent 6504 * data directly into the page and marks the extent up to date in the io_tree. 6505 * 6506 * Return: ERR_PTR on error, non-NULL extent_map on success. 6507 */ 6508 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6509 struct page *page, size_t pg_offset, 6510 u64 start, u64 len) 6511 { 6512 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6513 int ret; 6514 int err = 0; 6515 u64 extent_start = 0; 6516 u64 extent_end = 0; 6517 u64 objectid = btrfs_ino(inode); 6518 int extent_type = -1; 6519 struct btrfs_path *path = NULL; 6520 struct btrfs_root *root = inode->root; 6521 struct btrfs_file_extent_item *item; 6522 struct extent_buffer *leaf; 6523 struct btrfs_key found_key; 6524 struct extent_map *em = NULL; 6525 struct extent_map_tree *em_tree = &inode->extent_tree; 6526 struct extent_io_tree *io_tree = &inode->io_tree; 6527 6528 read_lock(&em_tree->lock); 6529 em = lookup_extent_mapping(em_tree, start, len); 6530 read_unlock(&em_tree->lock); 6531 6532 if (em) { 6533 if (em->start > start || em->start + em->len <= start) 6534 free_extent_map(em); 6535 else if (em->block_start == EXTENT_MAP_INLINE && page) 6536 free_extent_map(em); 6537 else 6538 goto out; 6539 } 6540 em = alloc_extent_map(); 6541 if (!em) { 6542 err = -ENOMEM; 6543 goto out; 6544 } 6545 em->start = EXTENT_MAP_HOLE; 6546 em->orig_start = EXTENT_MAP_HOLE; 6547 em->len = (u64)-1; 6548 em->block_len = (u64)-1; 6549 6550 path = btrfs_alloc_path(); 6551 if (!path) { 6552 err = -ENOMEM; 6553 goto out; 6554 } 6555 6556 /* Chances are we'll be called again, so go ahead and do readahead */ 6557 path->reada = READA_FORWARD; 6558 6559 /* 6560 * Unless we're going to uncompress the inline extent, no sleep would 6561 * happen. 6562 */ 6563 path->leave_spinning = 1; 6564 6565 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6566 if (ret < 0) { 6567 err = ret; 6568 goto out; 6569 } else if (ret > 0) { 6570 if (path->slots[0] == 0) 6571 goto not_found; 6572 path->slots[0]--; 6573 } 6574 6575 leaf = path->nodes[0]; 6576 item = btrfs_item_ptr(leaf, path->slots[0], 6577 struct btrfs_file_extent_item); 6578 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6579 if (found_key.objectid != objectid || 6580 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6581 /* 6582 * If we backup past the first extent we want to move forward 6583 * and see if there is an extent in front of us, otherwise we'll 6584 * say there is a hole for our whole search range which can 6585 * cause problems. 6586 */ 6587 extent_end = start; 6588 goto next; 6589 } 6590 6591 extent_type = btrfs_file_extent_type(leaf, item); 6592 extent_start = found_key.offset; 6593 extent_end = btrfs_file_extent_end(path); 6594 if (extent_type == BTRFS_FILE_EXTENT_REG || 6595 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6596 /* Only regular file could have regular/prealloc extent */ 6597 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6598 ret = -EUCLEAN; 6599 btrfs_crit(fs_info, 6600 "regular/prealloc extent found for non-regular inode %llu", 6601 btrfs_ino(inode)); 6602 goto out; 6603 } 6604 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6605 extent_start); 6606 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6607 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6608 path->slots[0], 6609 extent_start); 6610 } 6611 next: 6612 if (start >= extent_end) { 6613 path->slots[0]++; 6614 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6615 ret = btrfs_next_leaf(root, path); 6616 if (ret < 0) { 6617 err = ret; 6618 goto out; 6619 } else if (ret > 0) { 6620 goto not_found; 6621 } 6622 leaf = path->nodes[0]; 6623 } 6624 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6625 if (found_key.objectid != objectid || 6626 found_key.type != BTRFS_EXTENT_DATA_KEY) 6627 goto not_found; 6628 if (start + len <= found_key.offset) 6629 goto not_found; 6630 if (start > found_key.offset) 6631 goto next; 6632 6633 /* New extent overlaps with existing one */ 6634 em->start = start; 6635 em->orig_start = start; 6636 em->len = found_key.offset - start; 6637 em->block_start = EXTENT_MAP_HOLE; 6638 goto insert; 6639 } 6640 6641 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6642 6643 if (extent_type == BTRFS_FILE_EXTENT_REG || 6644 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6645 goto insert; 6646 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6647 unsigned long ptr; 6648 char *map; 6649 size_t size; 6650 size_t extent_offset; 6651 size_t copy_size; 6652 6653 if (!page) 6654 goto out; 6655 6656 size = btrfs_file_extent_ram_bytes(leaf, item); 6657 extent_offset = page_offset(page) + pg_offset - extent_start; 6658 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6659 size - extent_offset); 6660 em->start = extent_start + extent_offset; 6661 em->len = ALIGN(copy_size, fs_info->sectorsize); 6662 em->orig_block_len = em->len; 6663 em->orig_start = em->start; 6664 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6665 6666 btrfs_set_path_blocking(path); 6667 if (!PageUptodate(page)) { 6668 if (btrfs_file_extent_compression(leaf, item) != 6669 BTRFS_COMPRESS_NONE) { 6670 ret = uncompress_inline(path, page, pg_offset, 6671 extent_offset, item); 6672 if (ret) { 6673 err = ret; 6674 goto out; 6675 } 6676 } else { 6677 map = kmap(page); 6678 read_extent_buffer(leaf, map + pg_offset, ptr, 6679 copy_size); 6680 if (pg_offset + copy_size < PAGE_SIZE) { 6681 memset(map + pg_offset + copy_size, 0, 6682 PAGE_SIZE - pg_offset - 6683 copy_size); 6684 } 6685 kunmap(page); 6686 } 6687 flush_dcache_page(page); 6688 } 6689 set_extent_uptodate(io_tree, em->start, 6690 extent_map_end(em) - 1, NULL, GFP_NOFS); 6691 goto insert; 6692 } 6693 not_found: 6694 em->start = start; 6695 em->orig_start = start; 6696 em->len = len; 6697 em->block_start = EXTENT_MAP_HOLE; 6698 insert: 6699 btrfs_release_path(path); 6700 if (em->start > start || extent_map_end(em) <= start) { 6701 btrfs_err(fs_info, 6702 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6703 em->start, em->len, start, len); 6704 err = -EIO; 6705 goto out; 6706 } 6707 6708 err = 0; 6709 write_lock(&em_tree->lock); 6710 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6711 write_unlock(&em_tree->lock); 6712 out: 6713 btrfs_free_path(path); 6714 6715 trace_btrfs_get_extent(root, inode, em); 6716 6717 if (err) { 6718 free_extent_map(em); 6719 return ERR_PTR(err); 6720 } 6721 BUG_ON(!em); /* Error is always set */ 6722 return em; 6723 } 6724 6725 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6726 u64 start, u64 len) 6727 { 6728 struct extent_map *em; 6729 struct extent_map *hole_em = NULL; 6730 u64 delalloc_start = start; 6731 u64 end; 6732 u64 delalloc_len; 6733 u64 delalloc_end; 6734 int err = 0; 6735 6736 em = btrfs_get_extent(inode, NULL, 0, start, len); 6737 if (IS_ERR(em)) 6738 return em; 6739 /* 6740 * If our em maps to: 6741 * - a hole or 6742 * - a pre-alloc extent, 6743 * there might actually be delalloc bytes behind it. 6744 */ 6745 if (em->block_start != EXTENT_MAP_HOLE && 6746 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6747 return em; 6748 else 6749 hole_em = em; 6750 6751 /* check to see if we've wrapped (len == -1 or similar) */ 6752 end = start + len; 6753 if (end < start) 6754 end = (u64)-1; 6755 else 6756 end -= 1; 6757 6758 em = NULL; 6759 6760 /* ok, we didn't find anything, lets look for delalloc */ 6761 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6762 end, len, EXTENT_DELALLOC, 1); 6763 delalloc_end = delalloc_start + delalloc_len; 6764 if (delalloc_end < delalloc_start) 6765 delalloc_end = (u64)-1; 6766 6767 /* 6768 * We didn't find anything useful, return the original results from 6769 * get_extent() 6770 */ 6771 if (delalloc_start > end || delalloc_end <= start) { 6772 em = hole_em; 6773 hole_em = NULL; 6774 goto out; 6775 } 6776 6777 /* 6778 * Adjust the delalloc_start to make sure it doesn't go backwards from 6779 * the start they passed in 6780 */ 6781 delalloc_start = max(start, delalloc_start); 6782 delalloc_len = delalloc_end - delalloc_start; 6783 6784 if (delalloc_len > 0) { 6785 u64 hole_start; 6786 u64 hole_len; 6787 const u64 hole_end = extent_map_end(hole_em); 6788 6789 em = alloc_extent_map(); 6790 if (!em) { 6791 err = -ENOMEM; 6792 goto out; 6793 } 6794 6795 ASSERT(hole_em); 6796 /* 6797 * When btrfs_get_extent can't find anything it returns one 6798 * huge hole 6799 * 6800 * Make sure what it found really fits our range, and adjust to 6801 * make sure it is based on the start from the caller 6802 */ 6803 if (hole_end <= start || hole_em->start > end) { 6804 free_extent_map(hole_em); 6805 hole_em = NULL; 6806 } else { 6807 hole_start = max(hole_em->start, start); 6808 hole_len = hole_end - hole_start; 6809 } 6810 6811 if (hole_em && delalloc_start > hole_start) { 6812 /* 6813 * Our hole starts before our delalloc, so we have to 6814 * return just the parts of the hole that go until the 6815 * delalloc starts 6816 */ 6817 em->len = min(hole_len, delalloc_start - hole_start); 6818 em->start = hole_start; 6819 em->orig_start = hole_start; 6820 /* 6821 * Don't adjust block start at all, it is fixed at 6822 * EXTENT_MAP_HOLE 6823 */ 6824 em->block_start = hole_em->block_start; 6825 em->block_len = hole_len; 6826 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6827 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6828 } else { 6829 /* 6830 * Hole is out of passed range or it starts after 6831 * delalloc range 6832 */ 6833 em->start = delalloc_start; 6834 em->len = delalloc_len; 6835 em->orig_start = delalloc_start; 6836 em->block_start = EXTENT_MAP_DELALLOC; 6837 em->block_len = delalloc_len; 6838 } 6839 } else { 6840 return hole_em; 6841 } 6842 out: 6843 6844 free_extent_map(hole_em); 6845 if (err) { 6846 free_extent_map(em); 6847 return ERR_PTR(err); 6848 } 6849 return em; 6850 } 6851 6852 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 6853 const u64 start, 6854 const u64 len, 6855 const u64 orig_start, 6856 const u64 block_start, 6857 const u64 block_len, 6858 const u64 orig_block_len, 6859 const u64 ram_bytes, 6860 const int type) 6861 { 6862 struct extent_map *em = NULL; 6863 int ret; 6864 6865 if (type != BTRFS_ORDERED_NOCOW) { 6866 em = create_io_em(inode, start, len, orig_start, 6867 block_start, block_len, orig_block_len, 6868 ram_bytes, 6869 BTRFS_COMPRESS_NONE, /* compress_type */ 6870 type); 6871 if (IS_ERR(em)) 6872 goto out; 6873 } 6874 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 6875 len, block_len, type); 6876 if (ret) { 6877 if (em) { 6878 free_extent_map(em); 6879 btrfs_drop_extent_cache(BTRFS_I(inode), start, 6880 start + len - 1, 0); 6881 } 6882 em = ERR_PTR(ret); 6883 } 6884 out: 6885 6886 return em; 6887 } 6888 6889 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6890 u64 start, u64 len) 6891 { 6892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6893 struct btrfs_root *root = BTRFS_I(inode)->root; 6894 struct extent_map *em; 6895 struct btrfs_key ins; 6896 u64 alloc_hint; 6897 int ret; 6898 6899 alloc_hint = get_extent_allocation_hint(inode, start, len); 6900 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6901 0, alloc_hint, &ins, 1, 1); 6902 if (ret) 6903 return ERR_PTR(ret); 6904 6905 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 6906 ins.objectid, ins.offset, ins.offset, 6907 ins.offset, BTRFS_ORDERED_REGULAR); 6908 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 6909 if (IS_ERR(em)) 6910 btrfs_free_reserved_extent(fs_info, ins.objectid, 6911 ins.offset, 1); 6912 6913 return em; 6914 } 6915 6916 /* 6917 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6918 * block must be cow'd 6919 */ 6920 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6921 u64 *orig_start, u64 *orig_block_len, 6922 u64 *ram_bytes) 6923 { 6924 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6925 struct btrfs_path *path; 6926 int ret; 6927 struct extent_buffer *leaf; 6928 struct btrfs_root *root = BTRFS_I(inode)->root; 6929 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6930 struct btrfs_file_extent_item *fi; 6931 struct btrfs_key key; 6932 u64 disk_bytenr; 6933 u64 backref_offset; 6934 u64 extent_end; 6935 u64 num_bytes; 6936 int slot; 6937 int found_type; 6938 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6939 6940 path = btrfs_alloc_path(); 6941 if (!path) 6942 return -ENOMEM; 6943 6944 ret = btrfs_lookup_file_extent(NULL, root, path, 6945 btrfs_ino(BTRFS_I(inode)), offset, 0); 6946 if (ret < 0) 6947 goto out; 6948 6949 slot = path->slots[0]; 6950 if (ret == 1) { 6951 if (slot == 0) { 6952 /* can't find the item, must cow */ 6953 ret = 0; 6954 goto out; 6955 } 6956 slot--; 6957 } 6958 ret = 0; 6959 leaf = path->nodes[0]; 6960 btrfs_item_key_to_cpu(leaf, &key, slot); 6961 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 6962 key.type != BTRFS_EXTENT_DATA_KEY) { 6963 /* not our file or wrong item type, must cow */ 6964 goto out; 6965 } 6966 6967 if (key.offset > offset) { 6968 /* Wrong offset, must cow */ 6969 goto out; 6970 } 6971 6972 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6973 found_type = btrfs_file_extent_type(leaf, fi); 6974 if (found_type != BTRFS_FILE_EXTENT_REG && 6975 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6976 /* not a regular extent, must cow */ 6977 goto out; 6978 } 6979 6980 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6981 goto out; 6982 6983 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6984 if (extent_end <= offset) 6985 goto out; 6986 6987 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6988 if (disk_bytenr == 0) 6989 goto out; 6990 6991 if (btrfs_file_extent_compression(leaf, fi) || 6992 btrfs_file_extent_encryption(leaf, fi) || 6993 btrfs_file_extent_other_encoding(leaf, fi)) 6994 goto out; 6995 6996 /* 6997 * Do the same check as in btrfs_cross_ref_exist but without the 6998 * unnecessary search. 6999 */ 7000 if (btrfs_file_extent_generation(leaf, fi) <= 7001 btrfs_root_last_snapshot(&root->root_item)) 7002 goto out; 7003 7004 backref_offset = btrfs_file_extent_offset(leaf, fi); 7005 7006 if (orig_start) { 7007 *orig_start = key.offset - backref_offset; 7008 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7009 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7010 } 7011 7012 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7013 goto out; 7014 7015 num_bytes = min(offset + *len, extent_end) - offset; 7016 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7017 u64 range_end; 7018 7019 range_end = round_up(offset + num_bytes, 7020 root->fs_info->sectorsize) - 1; 7021 ret = test_range_bit(io_tree, offset, range_end, 7022 EXTENT_DELALLOC, 0, NULL); 7023 if (ret) { 7024 ret = -EAGAIN; 7025 goto out; 7026 } 7027 } 7028 7029 btrfs_release_path(path); 7030 7031 /* 7032 * look for other files referencing this extent, if we 7033 * find any we must cow 7034 */ 7035 7036 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7037 key.offset - backref_offset, disk_bytenr); 7038 if (ret) { 7039 ret = 0; 7040 goto out; 7041 } 7042 7043 /* 7044 * adjust disk_bytenr and num_bytes to cover just the bytes 7045 * in this extent we are about to write. If there 7046 * are any csums in that range we have to cow in order 7047 * to keep the csums correct 7048 */ 7049 disk_bytenr += backref_offset; 7050 disk_bytenr += offset - key.offset; 7051 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7052 goto out; 7053 /* 7054 * all of the above have passed, it is safe to overwrite this extent 7055 * without cow 7056 */ 7057 *len = num_bytes; 7058 ret = 1; 7059 out: 7060 btrfs_free_path(path); 7061 return ret; 7062 } 7063 7064 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7065 struct extent_state **cached_state, int writing) 7066 { 7067 struct btrfs_ordered_extent *ordered; 7068 int ret = 0; 7069 7070 while (1) { 7071 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7072 cached_state); 7073 /* 7074 * We're concerned with the entire range that we're going to be 7075 * doing DIO to, so we need to make sure there's no ordered 7076 * extents in this range. 7077 */ 7078 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7079 lockend - lockstart + 1); 7080 7081 /* 7082 * We need to make sure there are no buffered pages in this 7083 * range either, we could have raced between the invalidate in 7084 * generic_file_direct_write and locking the extent. The 7085 * invalidate needs to happen so that reads after a write do not 7086 * get stale data. 7087 */ 7088 if (!ordered && 7089 (!writing || !filemap_range_has_page(inode->i_mapping, 7090 lockstart, lockend))) 7091 break; 7092 7093 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7094 cached_state); 7095 7096 if (ordered) { 7097 /* 7098 * If we are doing a DIO read and the ordered extent we 7099 * found is for a buffered write, we can not wait for it 7100 * to complete and retry, because if we do so we can 7101 * deadlock with concurrent buffered writes on page 7102 * locks. This happens only if our DIO read covers more 7103 * than one extent map, if at this point has already 7104 * created an ordered extent for a previous extent map 7105 * and locked its range in the inode's io tree, and a 7106 * concurrent write against that previous extent map's 7107 * range and this range started (we unlock the ranges 7108 * in the io tree only when the bios complete and 7109 * buffered writes always lock pages before attempting 7110 * to lock range in the io tree). 7111 */ 7112 if (writing || 7113 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7114 btrfs_start_ordered_extent(inode, ordered, 1); 7115 else 7116 ret = -ENOTBLK; 7117 btrfs_put_ordered_extent(ordered); 7118 } else { 7119 /* 7120 * We could trigger writeback for this range (and wait 7121 * for it to complete) and then invalidate the pages for 7122 * this range (through invalidate_inode_pages2_range()), 7123 * but that can lead us to a deadlock with a concurrent 7124 * call to readahead (a buffered read or a defrag call 7125 * triggered a readahead) on a page lock due to an 7126 * ordered dio extent we created before but did not have 7127 * yet a corresponding bio submitted (whence it can not 7128 * complete), which makes readahead wait for that 7129 * ordered extent to complete while holding a lock on 7130 * that page. 7131 */ 7132 ret = -ENOTBLK; 7133 } 7134 7135 if (ret) 7136 break; 7137 7138 cond_resched(); 7139 } 7140 7141 return ret; 7142 } 7143 7144 /* The callers of this must take lock_extent() */ 7145 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7146 u64 orig_start, u64 block_start, 7147 u64 block_len, u64 orig_block_len, 7148 u64 ram_bytes, int compress_type, 7149 int type) 7150 { 7151 struct extent_map_tree *em_tree; 7152 struct extent_map *em; 7153 int ret; 7154 7155 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7156 type == BTRFS_ORDERED_COMPRESSED || 7157 type == BTRFS_ORDERED_NOCOW || 7158 type == BTRFS_ORDERED_REGULAR); 7159 7160 em_tree = &BTRFS_I(inode)->extent_tree; 7161 em = alloc_extent_map(); 7162 if (!em) 7163 return ERR_PTR(-ENOMEM); 7164 7165 em->start = start; 7166 em->orig_start = orig_start; 7167 em->len = len; 7168 em->block_len = block_len; 7169 em->block_start = block_start; 7170 em->orig_block_len = orig_block_len; 7171 em->ram_bytes = ram_bytes; 7172 em->generation = -1; 7173 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7174 if (type == BTRFS_ORDERED_PREALLOC) { 7175 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7176 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7177 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7178 em->compress_type = compress_type; 7179 } 7180 7181 do { 7182 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7183 em->start + em->len - 1, 0); 7184 write_lock(&em_tree->lock); 7185 ret = add_extent_mapping(em_tree, em, 1); 7186 write_unlock(&em_tree->lock); 7187 /* 7188 * The caller has taken lock_extent(), who could race with us 7189 * to add em? 7190 */ 7191 } while (ret == -EEXIST); 7192 7193 if (ret) { 7194 free_extent_map(em); 7195 return ERR_PTR(ret); 7196 } 7197 7198 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7199 return em; 7200 } 7201 7202 7203 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7204 struct buffer_head *bh_result, 7205 struct inode *inode, 7206 u64 start, u64 len) 7207 { 7208 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7209 7210 if (em->block_start == EXTENT_MAP_HOLE || 7211 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7212 return -ENOENT; 7213 7214 len = min(len, em->len - (start - em->start)); 7215 7216 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7217 inode->i_blkbits; 7218 bh_result->b_size = len; 7219 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7220 set_buffer_mapped(bh_result); 7221 7222 return 0; 7223 } 7224 7225 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7226 struct buffer_head *bh_result, 7227 struct inode *inode, 7228 struct btrfs_dio_data *dio_data, 7229 u64 start, u64 len) 7230 { 7231 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7232 struct extent_map *em = *map; 7233 int ret = 0; 7234 7235 /* 7236 * We don't allocate a new extent in the following cases 7237 * 7238 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7239 * existing extent. 7240 * 2) The extent is marked as PREALLOC. We're good to go here and can 7241 * just use the extent. 7242 * 7243 */ 7244 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7245 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7246 em->block_start != EXTENT_MAP_HOLE)) { 7247 int type; 7248 u64 block_start, orig_start, orig_block_len, ram_bytes; 7249 7250 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7251 type = BTRFS_ORDERED_PREALLOC; 7252 else 7253 type = BTRFS_ORDERED_NOCOW; 7254 len = min(len, em->len - (start - em->start)); 7255 block_start = em->block_start + (start - em->start); 7256 7257 if (can_nocow_extent(inode, start, &len, &orig_start, 7258 &orig_block_len, &ram_bytes) == 1 && 7259 btrfs_inc_nocow_writers(fs_info, block_start)) { 7260 struct extent_map *em2; 7261 7262 em2 = btrfs_create_dio_extent(inode, start, len, 7263 orig_start, block_start, 7264 len, orig_block_len, 7265 ram_bytes, type); 7266 btrfs_dec_nocow_writers(fs_info, block_start); 7267 if (type == BTRFS_ORDERED_PREALLOC) { 7268 free_extent_map(em); 7269 *map = em = em2; 7270 } 7271 7272 if (em2 && IS_ERR(em2)) { 7273 ret = PTR_ERR(em2); 7274 goto out; 7275 } 7276 /* 7277 * For inode marked NODATACOW or extent marked PREALLOC, 7278 * use the existing or preallocated extent, so does not 7279 * need to adjust btrfs_space_info's bytes_may_use. 7280 */ 7281 btrfs_free_reserved_data_space_noquota(inode, start, 7282 len); 7283 goto skip_cow; 7284 } 7285 } 7286 7287 /* this will cow the extent */ 7288 len = bh_result->b_size; 7289 free_extent_map(em); 7290 *map = em = btrfs_new_extent_direct(inode, start, len); 7291 if (IS_ERR(em)) { 7292 ret = PTR_ERR(em); 7293 goto out; 7294 } 7295 7296 len = min(len, em->len - (start - em->start)); 7297 7298 skip_cow: 7299 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7300 inode->i_blkbits; 7301 bh_result->b_size = len; 7302 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7303 set_buffer_mapped(bh_result); 7304 7305 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7306 set_buffer_new(bh_result); 7307 7308 /* 7309 * Need to update the i_size under the extent lock so buffered 7310 * readers will get the updated i_size when we unlock. 7311 */ 7312 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7313 i_size_write(inode, start + len); 7314 7315 WARN_ON(dio_data->reserve < len); 7316 dio_data->reserve -= len; 7317 dio_data->unsubmitted_oe_range_end = start + len; 7318 current->journal_info = dio_data; 7319 out: 7320 return ret; 7321 } 7322 7323 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7324 struct buffer_head *bh_result, int create) 7325 { 7326 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7327 struct extent_map *em; 7328 struct extent_state *cached_state = NULL; 7329 struct btrfs_dio_data *dio_data = NULL; 7330 u64 start = iblock << inode->i_blkbits; 7331 u64 lockstart, lockend; 7332 u64 len = bh_result->b_size; 7333 int ret = 0; 7334 7335 if (!create) 7336 len = min_t(u64, len, fs_info->sectorsize); 7337 7338 lockstart = start; 7339 lockend = start + len - 1; 7340 7341 if (current->journal_info) { 7342 /* 7343 * Need to pull our outstanding extents and set journal_info to NULL so 7344 * that anything that needs to check if there's a transaction doesn't get 7345 * confused. 7346 */ 7347 dio_data = current->journal_info; 7348 current->journal_info = NULL; 7349 } 7350 7351 /* 7352 * If this errors out it's because we couldn't invalidate pagecache for 7353 * this range and we need to fallback to buffered. 7354 */ 7355 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7356 create)) { 7357 ret = -ENOTBLK; 7358 goto err; 7359 } 7360 7361 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7362 if (IS_ERR(em)) { 7363 ret = PTR_ERR(em); 7364 goto unlock_err; 7365 } 7366 7367 /* 7368 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7369 * io. INLINE is special, and we could probably kludge it in here, but 7370 * it's still buffered so for safety lets just fall back to the generic 7371 * buffered path. 7372 * 7373 * For COMPRESSED we _have_ to read the entire extent in so we can 7374 * decompress it, so there will be buffering required no matter what we 7375 * do, so go ahead and fallback to buffered. 7376 * 7377 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7378 * to buffered IO. Don't blame me, this is the price we pay for using 7379 * the generic code. 7380 */ 7381 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7382 em->block_start == EXTENT_MAP_INLINE) { 7383 free_extent_map(em); 7384 ret = -ENOTBLK; 7385 goto unlock_err; 7386 } 7387 7388 if (create) { 7389 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7390 dio_data, start, len); 7391 if (ret < 0) 7392 goto unlock_err; 7393 7394 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 7395 lockend, &cached_state); 7396 } else { 7397 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7398 start, len); 7399 /* Can be negative only if we read from a hole */ 7400 if (ret < 0) { 7401 ret = 0; 7402 free_extent_map(em); 7403 goto unlock_err; 7404 } 7405 /* 7406 * We need to unlock only the end area that we aren't using. 7407 * The rest is going to be unlocked by the endio routine. 7408 */ 7409 lockstart = start + bh_result->b_size; 7410 if (lockstart < lockend) { 7411 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7412 lockstart, lockend, &cached_state); 7413 } else { 7414 free_extent_state(cached_state); 7415 } 7416 } 7417 7418 free_extent_map(em); 7419 7420 return 0; 7421 7422 unlock_err: 7423 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7424 &cached_state); 7425 err: 7426 if (dio_data) 7427 current->journal_info = dio_data; 7428 return ret; 7429 } 7430 7431 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7432 { 7433 /* 7434 * This implies a barrier so that stores to dio_bio->bi_status before 7435 * this and loads of dio_bio->bi_status after this are fully ordered. 7436 */ 7437 if (!refcount_dec_and_test(&dip->refs)) 7438 return; 7439 7440 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) { 7441 __endio_write_update_ordered(dip->inode, dip->logical_offset, 7442 dip->bytes, 7443 !dip->dio_bio->bi_status); 7444 } else { 7445 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7446 dip->logical_offset, 7447 dip->logical_offset + dip->bytes - 1); 7448 } 7449 7450 dio_end_io(dip->dio_bio); 7451 kfree(dip); 7452 } 7453 7454 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7455 int mirror_num, 7456 unsigned long bio_flags) 7457 { 7458 struct btrfs_dio_private *dip = bio->bi_private; 7459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7460 blk_status_t ret; 7461 7462 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7463 7464 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7465 if (ret) 7466 return ret; 7467 7468 refcount_inc(&dip->refs); 7469 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7470 if (ret) 7471 refcount_dec(&dip->refs); 7472 return ret; 7473 } 7474 7475 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7476 struct btrfs_io_bio *io_bio, 7477 const bool uptodate) 7478 { 7479 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7480 const u32 sectorsize = fs_info->sectorsize; 7481 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7482 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7483 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7484 struct bio_vec bvec; 7485 struct bvec_iter iter; 7486 u64 start = io_bio->logical; 7487 int icsum = 0; 7488 blk_status_t err = BLK_STS_OK; 7489 7490 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7491 unsigned int i, nr_sectors, pgoff; 7492 7493 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7494 pgoff = bvec.bv_offset; 7495 for (i = 0; i < nr_sectors; i++) { 7496 ASSERT(pgoff < PAGE_SIZE); 7497 if (uptodate && 7498 (!csum || !check_data_csum(inode, io_bio, icsum, 7499 bvec.bv_page, pgoff, 7500 start, sectorsize))) { 7501 clean_io_failure(fs_info, failure_tree, io_tree, 7502 start, bvec.bv_page, 7503 btrfs_ino(BTRFS_I(inode)), 7504 pgoff); 7505 } else { 7506 blk_status_t status; 7507 7508 status = btrfs_submit_read_repair(inode, 7509 &io_bio->bio, 7510 start - io_bio->logical, 7511 bvec.bv_page, pgoff, 7512 start, 7513 start + sectorsize - 1, 7514 io_bio->mirror_num, 7515 submit_dio_repair_bio); 7516 if (status) 7517 err = status; 7518 } 7519 start += sectorsize; 7520 icsum++; 7521 pgoff += sectorsize; 7522 } 7523 } 7524 return err; 7525 } 7526 7527 static void __endio_write_update_ordered(struct inode *inode, 7528 const u64 offset, const u64 bytes, 7529 const bool uptodate) 7530 { 7531 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7532 struct btrfs_ordered_extent *ordered = NULL; 7533 struct btrfs_workqueue *wq; 7534 u64 ordered_offset = offset; 7535 u64 ordered_bytes = bytes; 7536 u64 last_offset; 7537 7538 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 7539 wq = fs_info->endio_freespace_worker; 7540 else 7541 wq = fs_info->endio_write_workers; 7542 7543 while (ordered_offset < offset + bytes) { 7544 last_offset = ordered_offset; 7545 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7546 &ordered_offset, 7547 ordered_bytes, 7548 uptodate)) { 7549 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7550 NULL); 7551 btrfs_queue_work(wq, &ordered->work); 7552 } 7553 /* 7554 * If btrfs_dec_test_ordered_pending does not find any ordered 7555 * extent in the range, we can exit. 7556 */ 7557 if (ordered_offset == last_offset) 7558 return; 7559 /* 7560 * Our bio might span multiple ordered extents. In this case 7561 * we keep going until we have accounted the whole dio. 7562 */ 7563 if (ordered_offset < offset + bytes) { 7564 ordered_bytes = offset + bytes - ordered_offset; 7565 ordered = NULL; 7566 } 7567 } 7568 } 7569 7570 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 7571 struct bio *bio, u64 offset) 7572 { 7573 struct inode *inode = private_data; 7574 blk_status_t ret; 7575 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 7576 BUG_ON(ret); /* -ENOMEM */ 7577 return 0; 7578 } 7579 7580 static void btrfs_end_dio_bio(struct bio *bio) 7581 { 7582 struct btrfs_dio_private *dip = bio->bi_private; 7583 blk_status_t err = bio->bi_status; 7584 7585 if (err) 7586 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7587 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7588 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7589 bio->bi_opf, 7590 (unsigned long long)bio->bi_iter.bi_sector, 7591 bio->bi_iter.bi_size, err); 7592 7593 if (bio_op(bio) == REQ_OP_READ) { 7594 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 7595 !err); 7596 } 7597 7598 if (err) 7599 dip->dio_bio->bi_status = err; 7600 7601 bio_put(bio); 7602 btrfs_dio_private_put(dip); 7603 } 7604 7605 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7606 struct inode *inode, u64 file_offset, int async_submit) 7607 { 7608 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7609 struct btrfs_dio_private *dip = bio->bi_private; 7610 bool write = bio_op(bio) == REQ_OP_WRITE; 7611 blk_status_t ret; 7612 7613 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7614 if (async_submit) 7615 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7616 7617 if (!write) { 7618 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7619 if (ret) 7620 goto err; 7621 } 7622 7623 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7624 goto map; 7625 7626 if (write && async_submit) { 7627 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 7628 file_offset, inode, 7629 btrfs_submit_bio_start_direct_io); 7630 goto err; 7631 } else if (write) { 7632 /* 7633 * If we aren't doing async submit, calculate the csum of the 7634 * bio now. 7635 */ 7636 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 7637 if (ret) 7638 goto err; 7639 } else { 7640 u64 csum_offset; 7641 7642 csum_offset = file_offset - dip->logical_offset; 7643 csum_offset >>= inode->i_sb->s_blocksize_bits; 7644 csum_offset *= btrfs_super_csum_size(fs_info->super_copy); 7645 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 7646 } 7647 map: 7648 ret = btrfs_map_bio(fs_info, bio, 0); 7649 err: 7650 return ret; 7651 } 7652 7653 /* 7654 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 7655 * or ordered extents whether or not we submit any bios. 7656 */ 7657 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 7658 struct inode *inode, 7659 loff_t file_offset) 7660 { 7661 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7662 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7663 size_t dip_size; 7664 struct btrfs_dio_private *dip; 7665 7666 dip_size = sizeof(*dip); 7667 if (!write && csum) { 7668 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7669 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 7670 size_t nblocks; 7671 7672 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits; 7673 dip_size += csum_size * nblocks; 7674 } 7675 7676 dip = kzalloc(dip_size, GFP_NOFS); 7677 if (!dip) 7678 return NULL; 7679 7680 dip->inode = inode; 7681 dip->logical_offset = file_offset; 7682 dip->bytes = dio_bio->bi_iter.bi_size; 7683 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 7684 dip->dio_bio = dio_bio; 7685 refcount_set(&dip->refs, 1); 7686 7687 if (write) { 7688 struct btrfs_dio_data *dio_data = current->journal_info; 7689 7690 /* 7691 * Setting range start and end to the same value means that 7692 * no cleanup will happen in btrfs_direct_IO 7693 */ 7694 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 7695 dip->bytes; 7696 dio_data->unsubmitted_oe_range_start = 7697 dio_data->unsubmitted_oe_range_end; 7698 } 7699 return dip; 7700 } 7701 7702 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 7703 loff_t file_offset) 7704 { 7705 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7706 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7707 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7708 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 7709 BTRFS_BLOCK_GROUP_RAID56_MASK); 7710 struct btrfs_dio_private *dip; 7711 struct bio *bio; 7712 u64 start_sector; 7713 int async_submit = 0; 7714 u64 submit_len; 7715 int clone_offset = 0; 7716 int clone_len; 7717 int ret; 7718 blk_status_t status; 7719 struct btrfs_io_geometry geom; 7720 7721 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 7722 if (!dip) { 7723 if (!write) { 7724 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 7725 file_offset + dio_bio->bi_iter.bi_size - 1); 7726 } 7727 dio_bio->bi_status = BLK_STS_RESOURCE; 7728 dio_end_io(dio_bio); 7729 return; 7730 } 7731 7732 if (!write && csum) { 7733 /* 7734 * Load the csums up front to reduce csum tree searches and 7735 * contention when submitting bios. 7736 */ 7737 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset, 7738 dip->csums); 7739 if (status != BLK_STS_OK) 7740 goto out_err; 7741 } 7742 7743 start_sector = dio_bio->bi_iter.bi_sector; 7744 submit_len = dio_bio->bi_iter.bi_size; 7745 7746 do { 7747 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio), 7748 start_sector << 9, submit_len, 7749 &geom); 7750 if (ret) { 7751 status = errno_to_blk_status(ret); 7752 goto out_err; 7753 } 7754 ASSERT(geom.len <= INT_MAX); 7755 7756 clone_len = min_t(int, submit_len, geom.len); 7757 7758 /* 7759 * This will never fail as it's passing GPF_NOFS and 7760 * the allocation is backed by btrfs_bioset. 7761 */ 7762 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 7763 bio->bi_private = dip; 7764 bio->bi_end_io = btrfs_end_dio_bio; 7765 btrfs_io_bio(bio)->logical = file_offset; 7766 7767 ASSERT(submit_len >= clone_len); 7768 submit_len -= clone_len; 7769 7770 /* 7771 * Increase the count before we submit the bio so we know 7772 * the end IO handler won't happen before we increase the 7773 * count. Otherwise, the dip might get freed before we're 7774 * done setting it up. 7775 * 7776 * We transfer the initial reference to the last bio, so we 7777 * don't need to increment the reference count for the last one. 7778 */ 7779 if (submit_len > 0) { 7780 refcount_inc(&dip->refs); 7781 /* 7782 * If we are submitting more than one bio, submit them 7783 * all asynchronously. The exception is RAID 5 or 6, as 7784 * asynchronous checksums make it difficult to collect 7785 * full stripe writes. 7786 */ 7787 if (!raid56) 7788 async_submit = 1; 7789 } 7790 7791 status = btrfs_submit_dio_bio(bio, inode, file_offset, 7792 async_submit); 7793 if (status) { 7794 bio_put(bio); 7795 if (submit_len > 0) 7796 refcount_dec(&dip->refs); 7797 goto out_err; 7798 } 7799 7800 clone_offset += clone_len; 7801 start_sector += clone_len >> 9; 7802 file_offset += clone_len; 7803 } while (submit_len > 0); 7804 return; 7805 7806 out_err: 7807 dip->dio_bio->bi_status = status; 7808 btrfs_dio_private_put(dip); 7809 } 7810 7811 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 7812 const struct iov_iter *iter, loff_t offset) 7813 { 7814 int seg; 7815 int i; 7816 unsigned int blocksize_mask = fs_info->sectorsize - 1; 7817 ssize_t retval = -EINVAL; 7818 7819 if (offset & blocksize_mask) 7820 goto out; 7821 7822 if (iov_iter_alignment(iter) & blocksize_mask) 7823 goto out; 7824 7825 /* If this is a write we don't need to check anymore */ 7826 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 7827 return 0; 7828 /* 7829 * Check to make sure we don't have duplicate iov_base's in this 7830 * iovec, if so return EINVAL, otherwise we'll get csum errors 7831 * when reading back. 7832 */ 7833 for (seg = 0; seg < iter->nr_segs; seg++) { 7834 for (i = seg + 1; i < iter->nr_segs; i++) { 7835 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 7836 goto out; 7837 } 7838 } 7839 retval = 0; 7840 out: 7841 return retval; 7842 } 7843 7844 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 7845 { 7846 struct file *file = iocb->ki_filp; 7847 struct inode *inode = file->f_mapping->host; 7848 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7849 struct btrfs_dio_data dio_data = { 0 }; 7850 struct extent_changeset *data_reserved = NULL; 7851 loff_t offset = iocb->ki_pos; 7852 size_t count = 0; 7853 int flags = 0; 7854 bool wakeup = true; 7855 bool relock = false; 7856 ssize_t ret; 7857 7858 if (check_direct_IO(fs_info, iter, offset)) 7859 return 0; 7860 7861 inode_dio_begin(inode); 7862 7863 /* 7864 * The generic stuff only does filemap_write_and_wait_range, which 7865 * isn't enough if we've written compressed pages to this area, so 7866 * we need to flush the dirty pages again to make absolutely sure 7867 * that any outstanding dirty pages are on disk. 7868 */ 7869 count = iov_iter_count(iter); 7870 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7871 &BTRFS_I(inode)->runtime_flags)) 7872 filemap_fdatawrite_range(inode->i_mapping, offset, 7873 offset + count - 1); 7874 7875 if (iov_iter_rw(iter) == WRITE) { 7876 /* 7877 * If the write DIO is beyond the EOF, we need update 7878 * the isize, but it is protected by i_mutex. So we can 7879 * not unlock the i_mutex at this case. 7880 */ 7881 if (offset + count <= inode->i_size) { 7882 dio_data.overwrite = 1; 7883 inode_unlock(inode); 7884 relock = true; 7885 } 7886 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 7887 offset, count); 7888 if (ret) 7889 goto out; 7890 7891 /* 7892 * We need to know how many extents we reserved so that we can 7893 * do the accounting properly if we go over the number we 7894 * originally calculated. Abuse current->journal_info for this. 7895 */ 7896 dio_data.reserve = round_up(count, 7897 fs_info->sectorsize); 7898 dio_data.unsubmitted_oe_range_start = (u64)offset; 7899 dio_data.unsubmitted_oe_range_end = (u64)offset; 7900 current->journal_info = &dio_data; 7901 down_read(&BTRFS_I(inode)->dio_sem); 7902 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7903 &BTRFS_I(inode)->runtime_flags)) { 7904 inode_dio_end(inode); 7905 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7906 wakeup = false; 7907 } 7908 7909 ret = __blockdev_direct_IO(iocb, inode, 7910 fs_info->fs_devices->latest_bdev, 7911 iter, btrfs_get_blocks_direct, NULL, 7912 btrfs_submit_direct, flags); 7913 if (iov_iter_rw(iter) == WRITE) { 7914 up_read(&BTRFS_I(inode)->dio_sem); 7915 current->journal_info = NULL; 7916 if (ret < 0 && ret != -EIOCBQUEUED) { 7917 if (dio_data.reserve) 7918 btrfs_delalloc_release_space(inode, data_reserved, 7919 offset, dio_data.reserve, true); 7920 /* 7921 * On error we might have left some ordered extents 7922 * without submitting corresponding bios for them, so 7923 * cleanup them up to avoid other tasks getting them 7924 * and waiting for them to complete forever. 7925 */ 7926 if (dio_data.unsubmitted_oe_range_start < 7927 dio_data.unsubmitted_oe_range_end) 7928 __endio_write_update_ordered(inode, 7929 dio_data.unsubmitted_oe_range_start, 7930 dio_data.unsubmitted_oe_range_end - 7931 dio_data.unsubmitted_oe_range_start, 7932 false); 7933 } else if (ret >= 0 && (size_t)ret < count) 7934 btrfs_delalloc_release_space(inode, data_reserved, 7935 offset, count - (size_t)ret, true); 7936 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 7937 } 7938 out: 7939 if (wakeup) 7940 inode_dio_end(inode); 7941 if (relock) 7942 inode_lock(inode); 7943 7944 extent_changeset_free(data_reserved); 7945 return ret; 7946 } 7947 7948 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7949 __u64 start, __u64 len) 7950 { 7951 int ret; 7952 7953 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7954 if (ret) 7955 return ret; 7956 7957 return extent_fiemap(inode, fieinfo, start, len); 7958 } 7959 7960 int btrfs_readpage(struct file *file, struct page *page) 7961 { 7962 return extent_read_full_page(page, btrfs_get_extent, 0); 7963 } 7964 7965 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7966 { 7967 struct inode *inode = page->mapping->host; 7968 int ret; 7969 7970 if (current->flags & PF_MEMALLOC) { 7971 redirty_page_for_writepage(wbc, page); 7972 unlock_page(page); 7973 return 0; 7974 } 7975 7976 /* 7977 * If we are under memory pressure we will call this directly from the 7978 * VM, we need to make sure we have the inode referenced for the ordered 7979 * extent. If not just return like we didn't do anything. 7980 */ 7981 if (!igrab(inode)) { 7982 redirty_page_for_writepage(wbc, page); 7983 return AOP_WRITEPAGE_ACTIVATE; 7984 } 7985 ret = extent_write_full_page(page, wbc); 7986 btrfs_add_delayed_iput(inode); 7987 return ret; 7988 } 7989 7990 static int btrfs_writepages(struct address_space *mapping, 7991 struct writeback_control *wbc) 7992 { 7993 return extent_writepages(mapping, wbc); 7994 } 7995 7996 static void btrfs_readahead(struct readahead_control *rac) 7997 { 7998 extent_readahead(rac); 7999 } 8000 8001 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8002 { 8003 int ret = try_release_extent_mapping(page, gfp_flags); 8004 if (ret == 1) 8005 detach_page_private(page); 8006 return ret; 8007 } 8008 8009 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8010 { 8011 if (PageWriteback(page) || PageDirty(page)) 8012 return 0; 8013 return __btrfs_releasepage(page, gfp_flags); 8014 } 8015 8016 #ifdef CONFIG_MIGRATION 8017 static int btrfs_migratepage(struct address_space *mapping, 8018 struct page *newpage, struct page *page, 8019 enum migrate_mode mode) 8020 { 8021 int ret; 8022 8023 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8024 if (ret != MIGRATEPAGE_SUCCESS) 8025 return ret; 8026 8027 if (page_has_private(page)) 8028 attach_page_private(newpage, detach_page_private(page)); 8029 8030 if (PagePrivate2(page)) { 8031 ClearPagePrivate2(page); 8032 SetPagePrivate2(newpage); 8033 } 8034 8035 if (mode != MIGRATE_SYNC_NO_COPY) 8036 migrate_page_copy(newpage, page); 8037 else 8038 migrate_page_states(newpage, page); 8039 return MIGRATEPAGE_SUCCESS; 8040 } 8041 #endif 8042 8043 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8044 unsigned int length) 8045 { 8046 struct inode *inode = page->mapping->host; 8047 struct extent_io_tree *tree; 8048 struct btrfs_ordered_extent *ordered; 8049 struct extent_state *cached_state = NULL; 8050 u64 page_start = page_offset(page); 8051 u64 page_end = page_start + PAGE_SIZE - 1; 8052 u64 start; 8053 u64 end; 8054 int inode_evicting = inode->i_state & I_FREEING; 8055 8056 /* 8057 * we have the page locked, so new writeback can't start, 8058 * and the dirty bit won't be cleared while we are here. 8059 * 8060 * Wait for IO on this page so that we can safely clear 8061 * the PagePrivate2 bit and do ordered accounting 8062 */ 8063 wait_on_page_writeback(page); 8064 8065 tree = &BTRFS_I(inode)->io_tree; 8066 if (offset) { 8067 btrfs_releasepage(page, GFP_NOFS); 8068 return; 8069 } 8070 8071 if (!inode_evicting) 8072 lock_extent_bits(tree, page_start, page_end, &cached_state); 8073 again: 8074 start = page_start; 8075 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8076 page_end - start + 1); 8077 if (ordered) { 8078 end = min(page_end, 8079 ordered->file_offset + ordered->num_bytes - 1); 8080 /* 8081 * IO on this page will never be started, so we need 8082 * to account for any ordered extents now 8083 */ 8084 if (!inode_evicting) 8085 clear_extent_bit(tree, start, end, 8086 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8087 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8088 EXTENT_DEFRAG, 1, 0, &cached_state); 8089 /* 8090 * whoever cleared the private bit is responsible 8091 * for the finish_ordered_io 8092 */ 8093 if (TestClearPagePrivate2(page)) { 8094 struct btrfs_ordered_inode_tree *tree; 8095 u64 new_len; 8096 8097 tree = &BTRFS_I(inode)->ordered_tree; 8098 8099 spin_lock_irq(&tree->lock); 8100 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8101 new_len = start - ordered->file_offset; 8102 if (new_len < ordered->truncated_len) 8103 ordered->truncated_len = new_len; 8104 spin_unlock_irq(&tree->lock); 8105 8106 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8107 start, 8108 end - start + 1, 1)) 8109 btrfs_finish_ordered_io(ordered); 8110 } 8111 btrfs_put_ordered_extent(ordered); 8112 if (!inode_evicting) { 8113 cached_state = NULL; 8114 lock_extent_bits(tree, start, end, 8115 &cached_state); 8116 } 8117 8118 start = end + 1; 8119 if (start < page_end) 8120 goto again; 8121 } 8122 8123 /* 8124 * Qgroup reserved space handler 8125 * Page here will be either 8126 * 1) Already written to disk or ordered extent already submitted 8127 * Then its QGROUP_RESERVED bit in io_tree is already cleaned. 8128 * Qgroup will be handled by its qgroup_record then. 8129 * btrfs_qgroup_free_data() call will do nothing here. 8130 * 8131 * 2) Not written to disk yet 8132 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED 8133 * bit of its io_tree, and free the qgroup reserved data space. 8134 * Since the IO will never happen for this page. 8135 */ 8136 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8137 if (!inode_evicting) { 8138 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8139 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8140 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8141 &cached_state); 8142 8143 __btrfs_releasepage(page, GFP_NOFS); 8144 } 8145 8146 ClearPageChecked(page); 8147 detach_page_private(page); 8148 } 8149 8150 /* 8151 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8152 * called from a page fault handler when a page is first dirtied. Hence we must 8153 * be careful to check for EOF conditions here. We set the page up correctly 8154 * for a written page which means we get ENOSPC checking when writing into 8155 * holes and correct delalloc and unwritten extent mapping on filesystems that 8156 * support these features. 8157 * 8158 * We are not allowed to take the i_mutex here so we have to play games to 8159 * protect against truncate races as the page could now be beyond EOF. Because 8160 * truncate_setsize() writes the inode size before removing pages, once we have 8161 * the page lock we can determine safely if the page is beyond EOF. If it is not 8162 * beyond EOF, then the page is guaranteed safe against truncation until we 8163 * unlock the page. 8164 */ 8165 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8166 { 8167 struct page *page = vmf->page; 8168 struct inode *inode = file_inode(vmf->vma->vm_file); 8169 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8170 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8171 struct btrfs_ordered_extent *ordered; 8172 struct extent_state *cached_state = NULL; 8173 struct extent_changeset *data_reserved = NULL; 8174 char *kaddr; 8175 unsigned long zero_start; 8176 loff_t size; 8177 vm_fault_t ret; 8178 int ret2; 8179 int reserved = 0; 8180 u64 reserved_space; 8181 u64 page_start; 8182 u64 page_end; 8183 u64 end; 8184 8185 reserved_space = PAGE_SIZE; 8186 8187 sb_start_pagefault(inode->i_sb); 8188 page_start = page_offset(page); 8189 page_end = page_start + PAGE_SIZE - 1; 8190 end = page_end; 8191 8192 /* 8193 * Reserving delalloc space after obtaining the page lock can lead to 8194 * deadlock. For example, if a dirty page is locked by this function 8195 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8196 * dirty page write out, then the btrfs_writepage() function could 8197 * end up waiting indefinitely to get a lock on the page currently 8198 * being processed by btrfs_page_mkwrite() function. 8199 */ 8200 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8201 reserved_space); 8202 if (!ret2) { 8203 ret2 = file_update_time(vmf->vma->vm_file); 8204 reserved = 1; 8205 } 8206 if (ret2) { 8207 ret = vmf_error(ret2); 8208 if (reserved) 8209 goto out; 8210 goto out_noreserve; 8211 } 8212 8213 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8214 again: 8215 lock_page(page); 8216 size = i_size_read(inode); 8217 8218 if ((page->mapping != inode->i_mapping) || 8219 (page_start >= size)) { 8220 /* page got truncated out from underneath us */ 8221 goto out_unlock; 8222 } 8223 wait_on_page_writeback(page); 8224 8225 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8226 set_page_extent_mapped(page); 8227 8228 /* 8229 * we can't set the delalloc bits if there are pending ordered 8230 * extents. Drop our locks and wait for them to finish 8231 */ 8232 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8233 PAGE_SIZE); 8234 if (ordered) { 8235 unlock_extent_cached(io_tree, page_start, page_end, 8236 &cached_state); 8237 unlock_page(page); 8238 btrfs_start_ordered_extent(inode, ordered, 1); 8239 btrfs_put_ordered_extent(ordered); 8240 goto again; 8241 } 8242 8243 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8244 reserved_space = round_up(size - page_start, 8245 fs_info->sectorsize); 8246 if (reserved_space < PAGE_SIZE) { 8247 end = page_start + reserved_space - 1; 8248 btrfs_delalloc_release_space(inode, data_reserved, 8249 page_start, PAGE_SIZE - reserved_space, 8250 true); 8251 } 8252 } 8253 8254 /* 8255 * page_mkwrite gets called when the page is firstly dirtied after it's 8256 * faulted in, but write(2) could also dirty a page and set delalloc 8257 * bits, thus in this case for space account reason, we still need to 8258 * clear any delalloc bits within this page range since we have to 8259 * reserve data&meta space before lock_page() (see above comments). 8260 */ 8261 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8262 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8263 EXTENT_DEFRAG, 0, 0, &cached_state); 8264 8265 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8266 &cached_state); 8267 if (ret2) { 8268 unlock_extent_cached(io_tree, page_start, page_end, 8269 &cached_state); 8270 ret = VM_FAULT_SIGBUS; 8271 goto out_unlock; 8272 } 8273 8274 /* page is wholly or partially inside EOF */ 8275 if (page_start + PAGE_SIZE > size) 8276 zero_start = offset_in_page(size); 8277 else 8278 zero_start = PAGE_SIZE; 8279 8280 if (zero_start != PAGE_SIZE) { 8281 kaddr = kmap(page); 8282 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8283 flush_dcache_page(page); 8284 kunmap(page); 8285 } 8286 ClearPageChecked(page); 8287 set_page_dirty(page); 8288 SetPageUptodate(page); 8289 8290 BTRFS_I(inode)->last_trans = fs_info->generation; 8291 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8292 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8293 8294 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8295 8296 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8297 sb_end_pagefault(inode->i_sb); 8298 extent_changeset_free(data_reserved); 8299 return VM_FAULT_LOCKED; 8300 8301 out_unlock: 8302 unlock_page(page); 8303 out: 8304 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8305 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8306 reserved_space, (ret != 0)); 8307 out_noreserve: 8308 sb_end_pagefault(inode->i_sb); 8309 extent_changeset_free(data_reserved); 8310 return ret; 8311 } 8312 8313 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8314 { 8315 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8316 struct btrfs_root *root = BTRFS_I(inode)->root; 8317 struct btrfs_block_rsv *rsv; 8318 int ret; 8319 struct btrfs_trans_handle *trans; 8320 u64 mask = fs_info->sectorsize - 1; 8321 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8322 8323 if (!skip_writeback) { 8324 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8325 (u64)-1); 8326 if (ret) 8327 return ret; 8328 } 8329 8330 /* 8331 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8332 * things going on here: 8333 * 8334 * 1) We need to reserve space to update our inode. 8335 * 8336 * 2) We need to have something to cache all the space that is going to 8337 * be free'd up by the truncate operation, but also have some slack 8338 * space reserved in case it uses space during the truncate (thank you 8339 * very much snapshotting). 8340 * 8341 * And we need these to be separate. The fact is we can use a lot of 8342 * space doing the truncate, and we have no earthly idea how much space 8343 * we will use, so we need the truncate reservation to be separate so it 8344 * doesn't end up using space reserved for updating the inode. We also 8345 * need to be able to stop the transaction and start a new one, which 8346 * means we need to be able to update the inode several times, and we 8347 * have no idea of knowing how many times that will be, so we can't just 8348 * reserve 1 item for the entirety of the operation, so that has to be 8349 * done separately as well. 8350 * 8351 * So that leaves us with 8352 * 8353 * 1) rsv - for the truncate reservation, which we will steal from the 8354 * transaction reservation. 8355 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8356 * updating the inode. 8357 */ 8358 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8359 if (!rsv) 8360 return -ENOMEM; 8361 rsv->size = min_size; 8362 rsv->failfast = 1; 8363 8364 /* 8365 * 1 for the truncate slack space 8366 * 1 for updating the inode. 8367 */ 8368 trans = btrfs_start_transaction(root, 2); 8369 if (IS_ERR(trans)) { 8370 ret = PTR_ERR(trans); 8371 goto out; 8372 } 8373 8374 /* Migrate the slack space for the truncate to our reserve */ 8375 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8376 min_size, false); 8377 BUG_ON(ret); 8378 8379 /* 8380 * So if we truncate and then write and fsync we normally would just 8381 * write the extents that changed, which is a problem if we need to 8382 * first truncate that entire inode. So set this flag so we write out 8383 * all of the extents in the inode to the sync log so we're completely 8384 * safe. 8385 */ 8386 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8387 trans->block_rsv = rsv; 8388 8389 while (1) { 8390 ret = btrfs_truncate_inode_items(trans, root, inode, 8391 inode->i_size, 8392 BTRFS_EXTENT_DATA_KEY); 8393 trans->block_rsv = &fs_info->trans_block_rsv; 8394 if (ret != -ENOSPC && ret != -EAGAIN) 8395 break; 8396 8397 ret = btrfs_update_inode(trans, root, inode); 8398 if (ret) 8399 break; 8400 8401 btrfs_end_transaction(trans); 8402 btrfs_btree_balance_dirty(fs_info); 8403 8404 trans = btrfs_start_transaction(root, 2); 8405 if (IS_ERR(trans)) { 8406 ret = PTR_ERR(trans); 8407 trans = NULL; 8408 break; 8409 } 8410 8411 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8412 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8413 rsv, min_size, false); 8414 BUG_ON(ret); /* shouldn't happen */ 8415 trans->block_rsv = rsv; 8416 } 8417 8418 /* 8419 * We can't call btrfs_truncate_block inside a trans handle as we could 8420 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8421 * we've truncated everything except the last little bit, and can do 8422 * btrfs_truncate_block and then update the disk_i_size. 8423 */ 8424 if (ret == NEED_TRUNCATE_BLOCK) { 8425 btrfs_end_transaction(trans); 8426 btrfs_btree_balance_dirty(fs_info); 8427 8428 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 8429 if (ret) 8430 goto out; 8431 trans = btrfs_start_transaction(root, 1); 8432 if (IS_ERR(trans)) { 8433 ret = PTR_ERR(trans); 8434 goto out; 8435 } 8436 btrfs_inode_safe_disk_i_size_write(inode, 0); 8437 } 8438 8439 if (trans) { 8440 int ret2; 8441 8442 trans->block_rsv = &fs_info->trans_block_rsv; 8443 ret2 = btrfs_update_inode(trans, root, inode); 8444 if (ret2 && !ret) 8445 ret = ret2; 8446 8447 ret2 = btrfs_end_transaction(trans); 8448 if (ret2 && !ret) 8449 ret = ret2; 8450 btrfs_btree_balance_dirty(fs_info); 8451 } 8452 out: 8453 btrfs_free_block_rsv(fs_info, rsv); 8454 8455 return ret; 8456 } 8457 8458 /* 8459 * create a new subvolume directory/inode (helper for the ioctl). 8460 */ 8461 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8462 struct btrfs_root *new_root, 8463 struct btrfs_root *parent_root, 8464 u64 new_dirid) 8465 { 8466 struct inode *inode; 8467 int err; 8468 u64 index = 0; 8469 8470 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8471 new_dirid, new_dirid, 8472 S_IFDIR | (~current_umask() & S_IRWXUGO), 8473 &index); 8474 if (IS_ERR(inode)) 8475 return PTR_ERR(inode); 8476 inode->i_op = &btrfs_dir_inode_operations; 8477 inode->i_fop = &btrfs_dir_file_operations; 8478 8479 set_nlink(inode, 1); 8480 btrfs_i_size_write(BTRFS_I(inode), 0); 8481 unlock_new_inode(inode); 8482 8483 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8484 if (err) 8485 btrfs_err(new_root->fs_info, 8486 "error inheriting subvolume %llu properties: %d", 8487 new_root->root_key.objectid, err); 8488 8489 err = btrfs_update_inode(trans, new_root, inode); 8490 8491 iput(inode); 8492 return err; 8493 } 8494 8495 struct inode *btrfs_alloc_inode(struct super_block *sb) 8496 { 8497 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8498 struct btrfs_inode *ei; 8499 struct inode *inode; 8500 8501 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8502 if (!ei) 8503 return NULL; 8504 8505 ei->root = NULL; 8506 ei->generation = 0; 8507 ei->last_trans = 0; 8508 ei->last_sub_trans = 0; 8509 ei->logged_trans = 0; 8510 ei->delalloc_bytes = 0; 8511 ei->new_delalloc_bytes = 0; 8512 ei->defrag_bytes = 0; 8513 ei->disk_i_size = 0; 8514 ei->flags = 0; 8515 ei->csum_bytes = 0; 8516 ei->index_cnt = (u64)-1; 8517 ei->dir_index = 0; 8518 ei->last_unlink_trans = 0; 8519 ei->last_log_commit = 0; 8520 8521 spin_lock_init(&ei->lock); 8522 ei->outstanding_extents = 0; 8523 if (sb->s_magic != BTRFS_TEST_MAGIC) 8524 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8525 BTRFS_BLOCK_RSV_DELALLOC); 8526 ei->runtime_flags = 0; 8527 ei->prop_compress = BTRFS_COMPRESS_NONE; 8528 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8529 8530 ei->delayed_node = NULL; 8531 8532 ei->i_otime.tv_sec = 0; 8533 ei->i_otime.tv_nsec = 0; 8534 8535 inode = &ei->vfs_inode; 8536 extent_map_tree_init(&ei->extent_tree); 8537 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8538 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8539 IO_TREE_INODE_IO_FAILURE, inode); 8540 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8541 IO_TREE_INODE_FILE_EXTENT, inode); 8542 ei->io_tree.track_uptodate = true; 8543 ei->io_failure_tree.track_uptodate = true; 8544 atomic_set(&ei->sync_writers, 0); 8545 mutex_init(&ei->log_mutex); 8546 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8547 INIT_LIST_HEAD(&ei->delalloc_inodes); 8548 INIT_LIST_HEAD(&ei->delayed_iput); 8549 RB_CLEAR_NODE(&ei->rb_node); 8550 init_rwsem(&ei->dio_sem); 8551 8552 return inode; 8553 } 8554 8555 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8556 void btrfs_test_destroy_inode(struct inode *inode) 8557 { 8558 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8559 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8560 } 8561 #endif 8562 8563 void btrfs_free_inode(struct inode *inode) 8564 { 8565 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8566 } 8567 8568 void btrfs_destroy_inode(struct inode *inode) 8569 { 8570 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8571 struct btrfs_ordered_extent *ordered; 8572 struct btrfs_root *root = BTRFS_I(inode)->root; 8573 8574 WARN_ON(!hlist_empty(&inode->i_dentry)); 8575 WARN_ON(inode->i_data.nrpages); 8576 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 8577 WARN_ON(BTRFS_I(inode)->block_rsv.size); 8578 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8579 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8580 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 8581 WARN_ON(BTRFS_I(inode)->csum_bytes); 8582 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8583 8584 /* 8585 * This can happen where we create an inode, but somebody else also 8586 * created the same inode and we need to destroy the one we already 8587 * created. 8588 */ 8589 if (!root) 8590 return; 8591 8592 while (1) { 8593 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8594 if (!ordered) 8595 break; 8596 else { 8597 btrfs_err(fs_info, 8598 "found ordered extent %llu %llu on inode cleanup", 8599 ordered->file_offset, ordered->num_bytes); 8600 btrfs_remove_ordered_extent(inode, ordered); 8601 btrfs_put_ordered_extent(ordered); 8602 btrfs_put_ordered_extent(ordered); 8603 } 8604 } 8605 btrfs_qgroup_check_reserved_leak(inode); 8606 inode_tree_del(inode); 8607 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8608 btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1); 8609 btrfs_put_root(BTRFS_I(inode)->root); 8610 } 8611 8612 int btrfs_drop_inode(struct inode *inode) 8613 { 8614 struct btrfs_root *root = BTRFS_I(inode)->root; 8615 8616 if (root == NULL) 8617 return 1; 8618 8619 /* the snap/subvol tree is on deleting */ 8620 if (btrfs_root_refs(&root->root_item) == 0) 8621 return 1; 8622 else 8623 return generic_drop_inode(inode); 8624 } 8625 8626 static void init_once(void *foo) 8627 { 8628 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8629 8630 inode_init_once(&ei->vfs_inode); 8631 } 8632 8633 void __cold btrfs_destroy_cachep(void) 8634 { 8635 /* 8636 * Make sure all delayed rcu free inodes are flushed before we 8637 * destroy cache. 8638 */ 8639 rcu_barrier(); 8640 kmem_cache_destroy(btrfs_inode_cachep); 8641 kmem_cache_destroy(btrfs_trans_handle_cachep); 8642 kmem_cache_destroy(btrfs_path_cachep); 8643 kmem_cache_destroy(btrfs_free_space_cachep); 8644 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8645 } 8646 8647 int __init btrfs_init_cachep(void) 8648 { 8649 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8650 sizeof(struct btrfs_inode), 0, 8651 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8652 init_once); 8653 if (!btrfs_inode_cachep) 8654 goto fail; 8655 8656 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8657 sizeof(struct btrfs_trans_handle), 0, 8658 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8659 if (!btrfs_trans_handle_cachep) 8660 goto fail; 8661 8662 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8663 sizeof(struct btrfs_path), 0, 8664 SLAB_MEM_SPREAD, NULL); 8665 if (!btrfs_path_cachep) 8666 goto fail; 8667 8668 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8669 sizeof(struct btrfs_free_space), 0, 8670 SLAB_MEM_SPREAD, NULL); 8671 if (!btrfs_free_space_cachep) 8672 goto fail; 8673 8674 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8675 PAGE_SIZE, PAGE_SIZE, 8676 SLAB_RED_ZONE, NULL); 8677 if (!btrfs_free_space_bitmap_cachep) 8678 goto fail; 8679 8680 return 0; 8681 fail: 8682 btrfs_destroy_cachep(); 8683 return -ENOMEM; 8684 } 8685 8686 static int btrfs_getattr(const struct path *path, struct kstat *stat, 8687 u32 request_mask, unsigned int flags) 8688 { 8689 u64 delalloc_bytes; 8690 struct inode *inode = d_inode(path->dentry); 8691 u32 blocksize = inode->i_sb->s_blocksize; 8692 u32 bi_flags = BTRFS_I(inode)->flags; 8693 8694 stat->result_mask |= STATX_BTIME; 8695 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8696 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8697 if (bi_flags & BTRFS_INODE_APPEND) 8698 stat->attributes |= STATX_ATTR_APPEND; 8699 if (bi_flags & BTRFS_INODE_COMPRESS) 8700 stat->attributes |= STATX_ATTR_COMPRESSED; 8701 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8702 stat->attributes |= STATX_ATTR_IMMUTABLE; 8703 if (bi_flags & BTRFS_INODE_NODUMP) 8704 stat->attributes |= STATX_ATTR_NODUMP; 8705 8706 stat->attributes_mask |= (STATX_ATTR_APPEND | 8707 STATX_ATTR_COMPRESSED | 8708 STATX_ATTR_IMMUTABLE | 8709 STATX_ATTR_NODUMP); 8710 8711 generic_fillattr(inode, stat); 8712 stat->dev = BTRFS_I(inode)->root->anon_dev; 8713 8714 spin_lock(&BTRFS_I(inode)->lock); 8715 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8716 spin_unlock(&BTRFS_I(inode)->lock); 8717 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8718 ALIGN(delalloc_bytes, blocksize)) >> 9; 8719 return 0; 8720 } 8721 8722 static int btrfs_rename_exchange(struct inode *old_dir, 8723 struct dentry *old_dentry, 8724 struct inode *new_dir, 8725 struct dentry *new_dentry) 8726 { 8727 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8728 struct btrfs_trans_handle *trans; 8729 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8730 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8731 struct inode *new_inode = new_dentry->d_inode; 8732 struct inode *old_inode = old_dentry->d_inode; 8733 struct timespec64 ctime = current_time(old_inode); 8734 struct dentry *parent; 8735 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8736 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8737 u64 old_idx = 0; 8738 u64 new_idx = 0; 8739 int ret; 8740 bool root_log_pinned = false; 8741 bool dest_log_pinned = false; 8742 struct btrfs_log_ctx ctx_root; 8743 struct btrfs_log_ctx ctx_dest; 8744 bool sync_log_root = false; 8745 bool sync_log_dest = false; 8746 bool commit_transaction = false; 8747 8748 /* we only allow rename subvolume link between subvolumes */ 8749 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8750 return -EXDEV; 8751 8752 btrfs_init_log_ctx(&ctx_root, old_inode); 8753 btrfs_init_log_ctx(&ctx_dest, new_inode); 8754 8755 /* close the race window with snapshot create/destroy ioctl */ 8756 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8757 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8758 down_read(&fs_info->subvol_sem); 8759 8760 /* 8761 * We want to reserve the absolute worst case amount of items. So if 8762 * both inodes are subvols and we need to unlink them then that would 8763 * require 4 item modifications, but if they are both normal inodes it 8764 * would require 5 item modifications, so we'll assume their normal 8765 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 8766 * should cover the worst case number of items we'll modify. 8767 */ 8768 trans = btrfs_start_transaction(root, 12); 8769 if (IS_ERR(trans)) { 8770 ret = PTR_ERR(trans); 8771 goto out_notrans; 8772 } 8773 8774 if (dest != root) 8775 btrfs_record_root_in_trans(trans, dest); 8776 8777 /* 8778 * We need to find a free sequence number both in the source and 8779 * in the destination directory for the exchange. 8780 */ 8781 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8782 if (ret) 8783 goto out_fail; 8784 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8785 if (ret) 8786 goto out_fail; 8787 8788 BTRFS_I(old_inode)->dir_index = 0ULL; 8789 BTRFS_I(new_inode)->dir_index = 0ULL; 8790 8791 /* Reference for the source. */ 8792 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8793 /* force full log commit if subvolume involved. */ 8794 btrfs_set_log_full_commit(trans); 8795 } else { 8796 btrfs_pin_log_trans(root); 8797 root_log_pinned = true; 8798 ret = btrfs_insert_inode_ref(trans, dest, 8799 new_dentry->d_name.name, 8800 new_dentry->d_name.len, 8801 old_ino, 8802 btrfs_ino(BTRFS_I(new_dir)), 8803 old_idx); 8804 if (ret) 8805 goto out_fail; 8806 } 8807 8808 /* And now for the dest. */ 8809 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8810 /* force full log commit if subvolume involved. */ 8811 btrfs_set_log_full_commit(trans); 8812 } else { 8813 btrfs_pin_log_trans(dest); 8814 dest_log_pinned = true; 8815 ret = btrfs_insert_inode_ref(trans, root, 8816 old_dentry->d_name.name, 8817 old_dentry->d_name.len, 8818 new_ino, 8819 btrfs_ino(BTRFS_I(old_dir)), 8820 new_idx); 8821 if (ret) 8822 goto out_fail; 8823 } 8824 8825 /* Update inode version and ctime/mtime. */ 8826 inode_inc_iversion(old_dir); 8827 inode_inc_iversion(new_dir); 8828 inode_inc_iversion(old_inode); 8829 inode_inc_iversion(new_inode); 8830 old_dir->i_ctime = old_dir->i_mtime = ctime; 8831 new_dir->i_ctime = new_dir->i_mtime = ctime; 8832 old_inode->i_ctime = ctime; 8833 new_inode->i_ctime = ctime; 8834 8835 if (old_dentry->d_parent != new_dentry->d_parent) { 8836 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8837 BTRFS_I(old_inode), 1); 8838 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8839 BTRFS_I(new_inode), 1); 8840 } 8841 8842 /* src is a subvolume */ 8843 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8844 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 8845 } else { /* src is an inode */ 8846 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 8847 BTRFS_I(old_dentry->d_inode), 8848 old_dentry->d_name.name, 8849 old_dentry->d_name.len); 8850 if (!ret) 8851 ret = btrfs_update_inode(trans, root, old_inode); 8852 } 8853 if (ret) { 8854 btrfs_abort_transaction(trans, ret); 8855 goto out_fail; 8856 } 8857 8858 /* dest is a subvolume */ 8859 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8860 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 8861 } else { /* dest is an inode */ 8862 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 8863 BTRFS_I(new_dentry->d_inode), 8864 new_dentry->d_name.name, 8865 new_dentry->d_name.len); 8866 if (!ret) 8867 ret = btrfs_update_inode(trans, dest, new_inode); 8868 } 8869 if (ret) { 8870 btrfs_abort_transaction(trans, ret); 8871 goto out_fail; 8872 } 8873 8874 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8875 new_dentry->d_name.name, 8876 new_dentry->d_name.len, 0, old_idx); 8877 if (ret) { 8878 btrfs_abort_transaction(trans, ret); 8879 goto out_fail; 8880 } 8881 8882 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8883 old_dentry->d_name.name, 8884 old_dentry->d_name.len, 0, new_idx); 8885 if (ret) { 8886 btrfs_abort_transaction(trans, ret); 8887 goto out_fail; 8888 } 8889 8890 if (old_inode->i_nlink == 1) 8891 BTRFS_I(old_inode)->dir_index = old_idx; 8892 if (new_inode->i_nlink == 1) 8893 BTRFS_I(new_inode)->dir_index = new_idx; 8894 8895 if (root_log_pinned) { 8896 parent = new_dentry->d_parent; 8897 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 8898 BTRFS_I(old_dir), parent, 8899 false, &ctx_root); 8900 if (ret == BTRFS_NEED_LOG_SYNC) 8901 sync_log_root = true; 8902 else if (ret == BTRFS_NEED_TRANS_COMMIT) 8903 commit_transaction = true; 8904 ret = 0; 8905 btrfs_end_log_trans(root); 8906 root_log_pinned = false; 8907 } 8908 if (dest_log_pinned) { 8909 if (!commit_transaction) { 8910 parent = old_dentry->d_parent; 8911 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 8912 BTRFS_I(new_dir), parent, 8913 false, &ctx_dest); 8914 if (ret == BTRFS_NEED_LOG_SYNC) 8915 sync_log_dest = true; 8916 else if (ret == BTRFS_NEED_TRANS_COMMIT) 8917 commit_transaction = true; 8918 ret = 0; 8919 } 8920 btrfs_end_log_trans(dest); 8921 dest_log_pinned = false; 8922 } 8923 out_fail: 8924 /* 8925 * If we have pinned a log and an error happened, we unpin tasks 8926 * trying to sync the log and force them to fallback to a transaction 8927 * commit if the log currently contains any of the inodes involved in 8928 * this rename operation (to ensure we do not persist a log with an 8929 * inconsistent state for any of these inodes or leading to any 8930 * inconsistencies when replayed). If the transaction was aborted, the 8931 * abortion reason is propagated to userspace when attempting to commit 8932 * the transaction. If the log does not contain any of these inodes, we 8933 * allow the tasks to sync it. 8934 */ 8935 if (ret && (root_log_pinned || dest_log_pinned)) { 8936 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 8937 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 8938 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 8939 (new_inode && 8940 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 8941 btrfs_set_log_full_commit(trans); 8942 8943 if (root_log_pinned) { 8944 btrfs_end_log_trans(root); 8945 root_log_pinned = false; 8946 } 8947 if (dest_log_pinned) { 8948 btrfs_end_log_trans(dest); 8949 dest_log_pinned = false; 8950 } 8951 } 8952 if (!ret && sync_log_root && !commit_transaction) { 8953 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 8954 &ctx_root); 8955 if (ret) 8956 commit_transaction = true; 8957 } 8958 if (!ret && sync_log_dest && !commit_transaction) { 8959 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 8960 &ctx_dest); 8961 if (ret) 8962 commit_transaction = true; 8963 } 8964 if (commit_transaction) { 8965 /* 8966 * We may have set commit_transaction when logging the new name 8967 * in the destination root, in which case we left the source 8968 * root context in the list of log contextes. So make sure we 8969 * remove it to avoid invalid memory accesses, since the context 8970 * was allocated in our stack frame. 8971 */ 8972 if (sync_log_root) { 8973 mutex_lock(&root->log_mutex); 8974 list_del_init(&ctx_root.list); 8975 mutex_unlock(&root->log_mutex); 8976 } 8977 ret = btrfs_commit_transaction(trans); 8978 } else { 8979 int ret2; 8980 8981 ret2 = btrfs_end_transaction(trans); 8982 ret = ret ? ret : ret2; 8983 } 8984 out_notrans: 8985 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8986 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8987 up_read(&fs_info->subvol_sem); 8988 8989 ASSERT(list_empty(&ctx_root.list)); 8990 ASSERT(list_empty(&ctx_dest.list)); 8991 8992 return ret; 8993 } 8994 8995 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 8996 struct btrfs_root *root, 8997 struct inode *dir, 8998 struct dentry *dentry) 8999 { 9000 int ret; 9001 struct inode *inode; 9002 u64 objectid; 9003 u64 index; 9004 9005 ret = btrfs_find_free_ino(root, &objectid); 9006 if (ret) 9007 return ret; 9008 9009 inode = btrfs_new_inode(trans, root, dir, 9010 dentry->d_name.name, 9011 dentry->d_name.len, 9012 btrfs_ino(BTRFS_I(dir)), 9013 objectid, 9014 S_IFCHR | WHITEOUT_MODE, 9015 &index); 9016 9017 if (IS_ERR(inode)) { 9018 ret = PTR_ERR(inode); 9019 return ret; 9020 } 9021 9022 inode->i_op = &btrfs_special_inode_operations; 9023 init_special_inode(inode, inode->i_mode, 9024 WHITEOUT_DEV); 9025 9026 ret = btrfs_init_inode_security(trans, inode, dir, 9027 &dentry->d_name); 9028 if (ret) 9029 goto out; 9030 9031 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9032 BTRFS_I(inode), 0, index); 9033 if (ret) 9034 goto out; 9035 9036 ret = btrfs_update_inode(trans, root, inode); 9037 out: 9038 unlock_new_inode(inode); 9039 if (ret) 9040 inode_dec_link_count(inode); 9041 iput(inode); 9042 9043 return ret; 9044 } 9045 9046 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9047 struct inode *new_dir, struct dentry *new_dentry, 9048 unsigned int flags) 9049 { 9050 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9051 struct btrfs_trans_handle *trans; 9052 unsigned int trans_num_items; 9053 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9054 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9055 struct inode *new_inode = d_inode(new_dentry); 9056 struct inode *old_inode = d_inode(old_dentry); 9057 u64 index = 0; 9058 int ret; 9059 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9060 bool log_pinned = false; 9061 struct btrfs_log_ctx ctx; 9062 bool sync_log = false; 9063 bool commit_transaction = false; 9064 9065 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9066 return -EPERM; 9067 9068 /* we only allow rename subvolume link between subvolumes */ 9069 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9070 return -EXDEV; 9071 9072 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9073 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9074 return -ENOTEMPTY; 9075 9076 if (S_ISDIR(old_inode->i_mode) && new_inode && 9077 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9078 return -ENOTEMPTY; 9079 9080 9081 /* check for collisions, even if the name isn't there */ 9082 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9083 new_dentry->d_name.name, 9084 new_dentry->d_name.len); 9085 9086 if (ret) { 9087 if (ret == -EEXIST) { 9088 /* we shouldn't get 9089 * eexist without a new_inode */ 9090 if (WARN_ON(!new_inode)) { 9091 return ret; 9092 } 9093 } else { 9094 /* maybe -EOVERFLOW */ 9095 return ret; 9096 } 9097 } 9098 ret = 0; 9099 9100 /* 9101 * we're using rename to replace one file with another. Start IO on it 9102 * now so we don't add too much work to the end of the transaction 9103 */ 9104 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9105 filemap_flush(old_inode->i_mapping); 9106 9107 /* close the racy window with snapshot create/destroy ioctl */ 9108 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9109 down_read(&fs_info->subvol_sem); 9110 /* 9111 * We want to reserve the absolute worst case amount of items. So if 9112 * both inodes are subvols and we need to unlink them then that would 9113 * require 4 item modifications, but if they are both normal inodes it 9114 * would require 5 item modifications, so we'll assume they are normal 9115 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9116 * should cover the worst case number of items we'll modify. 9117 * If our rename has the whiteout flag, we need more 5 units for the 9118 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9119 * when selinux is enabled). 9120 */ 9121 trans_num_items = 11; 9122 if (flags & RENAME_WHITEOUT) 9123 trans_num_items += 5; 9124 trans = btrfs_start_transaction(root, trans_num_items); 9125 if (IS_ERR(trans)) { 9126 ret = PTR_ERR(trans); 9127 goto out_notrans; 9128 } 9129 9130 if (dest != root) 9131 btrfs_record_root_in_trans(trans, dest); 9132 9133 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9134 if (ret) 9135 goto out_fail; 9136 9137 BTRFS_I(old_inode)->dir_index = 0ULL; 9138 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9139 /* force full log commit if subvolume involved. */ 9140 btrfs_set_log_full_commit(trans); 9141 } else { 9142 btrfs_pin_log_trans(root); 9143 log_pinned = true; 9144 ret = btrfs_insert_inode_ref(trans, dest, 9145 new_dentry->d_name.name, 9146 new_dentry->d_name.len, 9147 old_ino, 9148 btrfs_ino(BTRFS_I(new_dir)), index); 9149 if (ret) 9150 goto out_fail; 9151 } 9152 9153 inode_inc_iversion(old_dir); 9154 inode_inc_iversion(new_dir); 9155 inode_inc_iversion(old_inode); 9156 old_dir->i_ctime = old_dir->i_mtime = 9157 new_dir->i_ctime = new_dir->i_mtime = 9158 old_inode->i_ctime = current_time(old_dir); 9159 9160 if (old_dentry->d_parent != new_dentry->d_parent) 9161 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9162 BTRFS_I(old_inode), 1); 9163 9164 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9165 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9166 } else { 9167 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9168 BTRFS_I(d_inode(old_dentry)), 9169 old_dentry->d_name.name, 9170 old_dentry->d_name.len); 9171 if (!ret) 9172 ret = btrfs_update_inode(trans, root, old_inode); 9173 } 9174 if (ret) { 9175 btrfs_abort_transaction(trans, ret); 9176 goto out_fail; 9177 } 9178 9179 if (new_inode) { 9180 inode_inc_iversion(new_inode); 9181 new_inode->i_ctime = current_time(new_inode); 9182 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9183 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9184 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9185 BUG_ON(new_inode->i_nlink == 0); 9186 } else { 9187 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9188 BTRFS_I(d_inode(new_dentry)), 9189 new_dentry->d_name.name, 9190 new_dentry->d_name.len); 9191 } 9192 if (!ret && new_inode->i_nlink == 0) 9193 ret = btrfs_orphan_add(trans, 9194 BTRFS_I(d_inode(new_dentry))); 9195 if (ret) { 9196 btrfs_abort_transaction(trans, ret); 9197 goto out_fail; 9198 } 9199 } 9200 9201 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9202 new_dentry->d_name.name, 9203 new_dentry->d_name.len, 0, index); 9204 if (ret) { 9205 btrfs_abort_transaction(trans, ret); 9206 goto out_fail; 9207 } 9208 9209 if (old_inode->i_nlink == 1) 9210 BTRFS_I(old_inode)->dir_index = index; 9211 9212 if (log_pinned) { 9213 struct dentry *parent = new_dentry->d_parent; 9214 9215 btrfs_init_log_ctx(&ctx, old_inode); 9216 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9217 BTRFS_I(old_dir), parent, 9218 false, &ctx); 9219 if (ret == BTRFS_NEED_LOG_SYNC) 9220 sync_log = true; 9221 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9222 commit_transaction = true; 9223 ret = 0; 9224 btrfs_end_log_trans(root); 9225 log_pinned = false; 9226 } 9227 9228 if (flags & RENAME_WHITEOUT) { 9229 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9230 old_dentry); 9231 9232 if (ret) { 9233 btrfs_abort_transaction(trans, ret); 9234 goto out_fail; 9235 } 9236 } 9237 out_fail: 9238 /* 9239 * If we have pinned the log and an error happened, we unpin tasks 9240 * trying to sync the log and force them to fallback to a transaction 9241 * commit if the log currently contains any of the inodes involved in 9242 * this rename operation (to ensure we do not persist a log with an 9243 * inconsistent state for any of these inodes or leading to any 9244 * inconsistencies when replayed). If the transaction was aborted, the 9245 * abortion reason is propagated to userspace when attempting to commit 9246 * the transaction. If the log does not contain any of these inodes, we 9247 * allow the tasks to sync it. 9248 */ 9249 if (ret && log_pinned) { 9250 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9251 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9252 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9253 (new_inode && 9254 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9255 btrfs_set_log_full_commit(trans); 9256 9257 btrfs_end_log_trans(root); 9258 log_pinned = false; 9259 } 9260 if (!ret && sync_log) { 9261 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9262 if (ret) 9263 commit_transaction = true; 9264 } else if (sync_log) { 9265 mutex_lock(&root->log_mutex); 9266 list_del(&ctx.list); 9267 mutex_unlock(&root->log_mutex); 9268 } 9269 if (commit_transaction) { 9270 ret = btrfs_commit_transaction(trans); 9271 } else { 9272 int ret2; 9273 9274 ret2 = btrfs_end_transaction(trans); 9275 ret = ret ? ret : ret2; 9276 } 9277 out_notrans: 9278 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9279 up_read(&fs_info->subvol_sem); 9280 9281 return ret; 9282 } 9283 9284 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9285 struct inode *new_dir, struct dentry *new_dentry, 9286 unsigned int flags) 9287 { 9288 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9289 return -EINVAL; 9290 9291 if (flags & RENAME_EXCHANGE) 9292 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9293 new_dentry); 9294 9295 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9296 } 9297 9298 struct btrfs_delalloc_work { 9299 struct inode *inode; 9300 struct completion completion; 9301 struct list_head list; 9302 struct btrfs_work work; 9303 }; 9304 9305 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9306 { 9307 struct btrfs_delalloc_work *delalloc_work; 9308 struct inode *inode; 9309 9310 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9311 work); 9312 inode = delalloc_work->inode; 9313 filemap_flush(inode->i_mapping); 9314 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9315 &BTRFS_I(inode)->runtime_flags)) 9316 filemap_flush(inode->i_mapping); 9317 9318 iput(inode); 9319 complete(&delalloc_work->completion); 9320 } 9321 9322 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9323 { 9324 struct btrfs_delalloc_work *work; 9325 9326 work = kmalloc(sizeof(*work), GFP_NOFS); 9327 if (!work) 9328 return NULL; 9329 9330 init_completion(&work->completion); 9331 INIT_LIST_HEAD(&work->list); 9332 work->inode = inode; 9333 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9334 9335 return work; 9336 } 9337 9338 /* 9339 * some fairly slow code that needs optimization. This walks the list 9340 * of all the inodes with pending delalloc and forces them to disk. 9341 */ 9342 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 9343 { 9344 struct btrfs_inode *binode; 9345 struct inode *inode; 9346 struct btrfs_delalloc_work *work, *next; 9347 struct list_head works; 9348 struct list_head splice; 9349 int ret = 0; 9350 9351 INIT_LIST_HEAD(&works); 9352 INIT_LIST_HEAD(&splice); 9353 9354 mutex_lock(&root->delalloc_mutex); 9355 spin_lock(&root->delalloc_lock); 9356 list_splice_init(&root->delalloc_inodes, &splice); 9357 while (!list_empty(&splice)) { 9358 binode = list_entry(splice.next, struct btrfs_inode, 9359 delalloc_inodes); 9360 9361 list_move_tail(&binode->delalloc_inodes, 9362 &root->delalloc_inodes); 9363 inode = igrab(&binode->vfs_inode); 9364 if (!inode) { 9365 cond_resched_lock(&root->delalloc_lock); 9366 continue; 9367 } 9368 spin_unlock(&root->delalloc_lock); 9369 9370 if (snapshot) 9371 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9372 &binode->runtime_flags); 9373 work = btrfs_alloc_delalloc_work(inode); 9374 if (!work) { 9375 iput(inode); 9376 ret = -ENOMEM; 9377 goto out; 9378 } 9379 list_add_tail(&work->list, &works); 9380 btrfs_queue_work(root->fs_info->flush_workers, 9381 &work->work); 9382 ret++; 9383 if (nr != -1 && ret >= nr) 9384 goto out; 9385 cond_resched(); 9386 spin_lock(&root->delalloc_lock); 9387 } 9388 spin_unlock(&root->delalloc_lock); 9389 9390 out: 9391 list_for_each_entry_safe(work, next, &works, list) { 9392 list_del_init(&work->list); 9393 wait_for_completion(&work->completion); 9394 kfree(work); 9395 } 9396 9397 if (!list_empty(&splice)) { 9398 spin_lock(&root->delalloc_lock); 9399 list_splice_tail(&splice, &root->delalloc_inodes); 9400 spin_unlock(&root->delalloc_lock); 9401 } 9402 mutex_unlock(&root->delalloc_mutex); 9403 return ret; 9404 } 9405 9406 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9407 { 9408 struct btrfs_fs_info *fs_info = root->fs_info; 9409 int ret; 9410 9411 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9412 return -EROFS; 9413 9414 ret = start_delalloc_inodes(root, -1, true); 9415 if (ret > 0) 9416 ret = 0; 9417 return ret; 9418 } 9419 9420 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 9421 { 9422 struct btrfs_root *root; 9423 struct list_head splice; 9424 int ret; 9425 9426 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9427 return -EROFS; 9428 9429 INIT_LIST_HEAD(&splice); 9430 9431 mutex_lock(&fs_info->delalloc_root_mutex); 9432 spin_lock(&fs_info->delalloc_root_lock); 9433 list_splice_init(&fs_info->delalloc_roots, &splice); 9434 while (!list_empty(&splice) && nr) { 9435 root = list_first_entry(&splice, struct btrfs_root, 9436 delalloc_root); 9437 root = btrfs_grab_root(root); 9438 BUG_ON(!root); 9439 list_move_tail(&root->delalloc_root, 9440 &fs_info->delalloc_roots); 9441 spin_unlock(&fs_info->delalloc_root_lock); 9442 9443 ret = start_delalloc_inodes(root, nr, false); 9444 btrfs_put_root(root); 9445 if (ret < 0) 9446 goto out; 9447 9448 if (nr != -1) { 9449 nr -= ret; 9450 WARN_ON(nr < 0); 9451 } 9452 spin_lock(&fs_info->delalloc_root_lock); 9453 } 9454 spin_unlock(&fs_info->delalloc_root_lock); 9455 9456 ret = 0; 9457 out: 9458 if (!list_empty(&splice)) { 9459 spin_lock(&fs_info->delalloc_root_lock); 9460 list_splice_tail(&splice, &fs_info->delalloc_roots); 9461 spin_unlock(&fs_info->delalloc_root_lock); 9462 } 9463 mutex_unlock(&fs_info->delalloc_root_mutex); 9464 return ret; 9465 } 9466 9467 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9468 const char *symname) 9469 { 9470 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9471 struct btrfs_trans_handle *trans; 9472 struct btrfs_root *root = BTRFS_I(dir)->root; 9473 struct btrfs_path *path; 9474 struct btrfs_key key; 9475 struct inode *inode = NULL; 9476 int err; 9477 u64 objectid; 9478 u64 index = 0; 9479 int name_len; 9480 int datasize; 9481 unsigned long ptr; 9482 struct btrfs_file_extent_item *ei; 9483 struct extent_buffer *leaf; 9484 9485 name_len = strlen(symname); 9486 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9487 return -ENAMETOOLONG; 9488 9489 /* 9490 * 2 items for inode item and ref 9491 * 2 items for dir items 9492 * 1 item for updating parent inode item 9493 * 1 item for the inline extent item 9494 * 1 item for xattr if selinux is on 9495 */ 9496 trans = btrfs_start_transaction(root, 7); 9497 if (IS_ERR(trans)) 9498 return PTR_ERR(trans); 9499 9500 err = btrfs_find_free_ino(root, &objectid); 9501 if (err) 9502 goto out_unlock; 9503 9504 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9505 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9506 objectid, S_IFLNK|S_IRWXUGO, &index); 9507 if (IS_ERR(inode)) { 9508 err = PTR_ERR(inode); 9509 inode = NULL; 9510 goto out_unlock; 9511 } 9512 9513 /* 9514 * If the active LSM wants to access the inode during 9515 * d_instantiate it needs these. Smack checks to see 9516 * if the filesystem supports xattrs by looking at the 9517 * ops vector. 9518 */ 9519 inode->i_fop = &btrfs_file_operations; 9520 inode->i_op = &btrfs_file_inode_operations; 9521 inode->i_mapping->a_ops = &btrfs_aops; 9522 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9523 9524 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9525 if (err) 9526 goto out_unlock; 9527 9528 path = btrfs_alloc_path(); 9529 if (!path) { 9530 err = -ENOMEM; 9531 goto out_unlock; 9532 } 9533 key.objectid = btrfs_ino(BTRFS_I(inode)); 9534 key.offset = 0; 9535 key.type = BTRFS_EXTENT_DATA_KEY; 9536 datasize = btrfs_file_extent_calc_inline_size(name_len); 9537 err = btrfs_insert_empty_item(trans, root, path, &key, 9538 datasize); 9539 if (err) { 9540 btrfs_free_path(path); 9541 goto out_unlock; 9542 } 9543 leaf = path->nodes[0]; 9544 ei = btrfs_item_ptr(leaf, path->slots[0], 9545 struct btrfs_file_extent_item); 9546 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9547 btrfs_set_file_extent_type(leaf, ei, 9548 BTRFS_FILE_EXTENT_INLINE); 9549 btrfs_set_file_extent_encryption(leaf, ei, 0); 9550 btrfs_set_file_extent_compression(leaf, ei, 0); 9551 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9552 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9553 9554 ptr = btrfs_file_extent_inline_start(ei); 9555 write_extent_buffer(leaf, symname, ptr, name_len); 9556 btrfs_mark_buffer_dirty(leaf); 9557 btrfs_free_path(path); 9558 9559 inode->i_op = &btrfs_symlink_inode_operations; 9560 inode_nohighmem(inode); 9561 inode_set_bytes(inode, name_len); 9562 btrfs_i_size_write(BTRFS_I(inode), name_len); 9563 err = btrfs_update_inode(trans, root, inode); 9564 /* 9565 * Last step, add directory indexes for our symlink inode. This is the 9566 * last step to avoid extra cleanup of these indexes if an error happens 9567 * elsewhere above. 9568 */ 9569 if (!err) 9570 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9571 BTRFS_I(inode), 0, index); 9572 if (err) 9573 goto out_unlock; 9574 9575 d_instantiate_new(dentry, inode); 9576 9577 out_unlock: 9578 btrfs_end_transaction(trans); 9579 if (err && inode) { 9580 inode_dec_link_count(inode); 9581 discard_new_inode(inode); 9582 } 9583 btrfs_btree_balance_dirty(fs_info); 9584 return err; 9585 } 9586 9587 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9588 u64 start, u64 num_bytes, u64 min_size, 9589 loff_t actual_len, u64 *alloc_hint, 9590 struct btrfs_trans_handle *trans) 9591 { 9592 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9593 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9594 struct extent_map *em; 9595 struct btrfs_root *root = BTRFS_I(inode)->root; 9596 struct btrfs_key ins; 9597 u64 cur_offset = start; 9598 u64 clear_offset = start; 9599 u64 i_size; 9600 u64 cur_bytes; 9601 u64 last_alloc = (u64)-1; 9602 int ret = 0; 9603 bool own_trans = true; 9604 u64 end = start + num_bytes - 1; 9605 9606 if (trans) 9607 own_trans = false; 9608 while (num_bytes > 0) { 9609 if (own_trans) { 9610 trans = btrfs_start_transaction(root, 3); 9611 if (IS_ERR(trans)) { 9612 ret = PTR_ERR(trans); 9613 break; 9614 } 9615 } 9616 9617 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9618 cur_bytes = max(cur_bytes, min_size); 9619 /* 9620 * If we are severely fragmented we could end up with really 9621 * small allocations, so if the allocator is returning small 9622 * chunks lets make its job easier by only searching for those 9623 * sized chunks. 9624 */ 9625 cur_bytes = min(cur_bytes, last_alloc); 9626 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9627 min_size, 0, *alloc_hint, &ins, 1, 0); 9628 if (ret) { 9629 if (own_trans) 9630 btrfs_end_transaction(trans); 9631 break; 9632 } 9633 9634 /* 9635 * We've reserved this space, and thus converted it from 9636 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9637 * from here on out we will only need to clear our reservation 9638 * for the remaining unreserved area, so advance our 9639 * clear_offset by our extent size. 9640 */ 9641 clear_offset += ins.offset; 9642 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9643 9644 last_alloc = ins.offset; 9645 ret = insert_reserved_file_extent(trans, inode, 9646 cur_offset, ins.objectid, 9647 ins.offset, ins.offset, 9648 ins.offset, 0, 0, 0, 9649 BTRFS_FILE_EXTENT_PREALLOC); 9650 if (ret) { 9651 btrfs_free_reserved_extent(fs_info, ins.objectid, 9652 ins.offset, 0); 9653 btrfs_abort_transaction(trans, ret); 9654 if (own_trans) 9655 btrfs_end_transaction(trans); 9656 break; 9657 } 9658 9659 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9660 cur_offset + ins.offset -1, 0); 9661 9662 em = alloc_extent_map(); 9663 if (!em) { 9664 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9665 &BTRFS_I(inode)->runtime_flags); 9666 goto next; 9667 } 9668 9669 em->start = cur_offset; 9670 em->orig_start = cur_offset; 9671 em->len = ins.offset; 9672 em->block_start = ins.objectid; 9673 em->block_len = ins.offset; 9674 em->orig_block_len = ins.offset; 9675 em->ram_bytes = ins.offset; 9676 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9677 em->generation = trans->transid; 9678 9679 while (1) { 9680 write_lock(&em_tree->lock); 9681 ret = add_extent_mapping(em_tree, em, 1); 9682 write_unlock(&em_tree->lock); 9683 if (ret != -EEXIST) 9684 break; 9685 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9686 cur_offset + ins.offset - 1, 9687 0); 9688 } 9689 free_extent_map(em); 9690 next: 9691 num_bytes -= ins.offset; 9692 cur_offset += ins.offset; 9693 *alloc_hint = ins.objectid + ins.offset; 9694 9695 inode_inc_iversion(inode); 9696 inode->i_ctime = current_time(inode); 9697 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9698 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9699 (actual_len > inode->i_size) && 9700 (cur_offset > inode->i_size)) { 9701 if (cur_offset > actual_len) 9702 i_size = actual_len; 9703 else 9704 i_size = cur_offset; 9705 i_size_write(inode, i_size); 9706 btrfs_inode_safe_disk_i_size_write(inode, 0); 9707 } 9708 9709 ret = btrfs_update_inode(trans, root, inode); 9710 9711 if (ret) { 9712 btrfs_abort_transaction(trans, ret); 9713 if (own_trans) 9714 btrfs_end_transaction(trans); 9715 break; 9716 } 9717 9718 if (own_trans) 9719 btrfs_end_transaction(trans); 9720 } 9721 if (clear_offset < end) 9722 btrfs_free_reserved_data_space(inode, NULL, clear_offset, 9723 end - clear_offset + 1); 9724 return ret; 9725 } 9726 9727 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9728 u64 start, u64 num_bytes, u64 min_size, 9729 loff_t actual_len, u64 *alloc_hint) 9730 { 9731 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9732 min_size, actual_len, alloc_hint, 9733 NULL); 9734 } 9735 9736 int btrfs_prealloc_file_range_trans(struct inode *inode, 9737 struct btrfs_trans_handle *trans, int mode, 9738 u64 start, u64 num_bytes, u64 min_size, 9739 loff_t actual_len, u64 *alloc_hint) 9740 { 9741 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9742 min_size, actual_len, alloc_hint, trans); 9743 } 9744 9745 static int btrfs_set_page_dirty(struct page *page) 9746 { 9747 return __set_page_dirty_nobuffers(page); 9748 } 9749 9750 static int btrfs_permission(struct inode *inode, int mask) 9751 { 9752 struct btrfs_root *root = BTRFS_I(inode)->root; 9753 umode_t mode = inode->i_mode; 9754 9755 if (mask & MAY_WRITE && 9756 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9757 if (btrfs_root_readonly(root)) 9758 return -EROFS; 9759 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9760 return -EACCES; 9761 } 9762 return generic_permission(inode, mask); 9763 } 9764 9765 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9766 { 9767 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9768 struct btrfs_trans_handle *trans; 9769 struct btrfs_root *root = BTRFS_I(dir)->root; 9770 struct inode *inode = NULL; 9771 u64 objectid; 9772 u64 index; 9773 int ret = 0; 9774 9775 /* 9776 * 5 units required for adding orphan entry 9777 */ 9778 trans = btrfs_start_transaction(root, 5); 9779 if (IS_ERR(trans)) 9780 return PTR_ERR(trans); 9781 9782 ret = btrfs_find_free_ino(root, &objectid); 9783 if (ret) 9784 goto out; 9785 9786 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9787 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 9788 if (IS_ERR(inode)) { 9789 ret = PTR_ERR(inode); 9790 inode = NULL; 9791 goto out; 9792 } 9793 9794 inode->i_fop = &btrfs_file_operations; 9795 inode->i_op = &btrfs_file_inode_operations; 9796 9797 inode->i_mapping->a_ops = &btrfs_aops; 9798 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9799 9800 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9801 if (ret) 9802 goto out; 9803 9804 ret = btrfs_update_inode(trans, root, inode); 9805 if (ret) 9806 goto out; 9807 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 9808 if (ret) 9809 goto out; 9810 9811 /* 9812 * We set number of links to 0 in btrfs_new_inode(), and here we set 9813 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9814 * through: 9815 * 9816 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9817 */ 9818 set_nlink(inode, 1); 9819 d_tmpfile(dentry, inode); 9820 unlock_new_inode(inode); 9821 mark_inode_dirty(inode); 9822 out: 9823 btrfs_end_transaction(trans); 9824 if (ret && inode) 9825 discard_new_inode(inode); 9826 btrfs_btree_balance_dirty(fs_info); 9827 return ret; 9828 } 9829 9830 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 9831 { 9832 struct inode *inode = tree->private_data; 9833 unsigned long index = start >> PAGE_SHIFT; 9834 unsigned long end_index = end >> PAGE_SHIFT; 9835 struct page *page; 9836 9837 while (index <= end_index) { 9838 page = find_get_page(inode->i_mapping, index); 9839 ASSERT(page); /* Pages should be in the extent_io_tree */ 9840 set_page_writeback(page); 9841 put_page(page); 9842 index++; 9843 } 9844 } 9845 9846 #ifdef CONFIG_SWAP 9847 /* 9848 * Add an entry indicating a block group or device which is pinned by a 9849 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9850 * negative errno on failure. 9851 */ 9852 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9853 bool is_block_group) 9854 { 9855 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9856 struct btrfs_swapfile_pin *sp, *entry; 9857 struct rb_node **p; 9858 struct rb_node *parent = NULL; 9859 9860 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9861 if (!sp) 9862 return -ENOMEM; 9863 sp->ptr = ptr; 9864 sp->inode = inode; 9865 sp->is_block_group = is_block_group; 9866 9867 spin_lock(&fs_info->swapfile_pins_lock); 9868 p = &fs_info->swapfile_pins.rb_node; 9869 while (*p) { 9870 parent = *p; 9871 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9872 if (sp->ptr < entry->ptr || 9873 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9874 p = &(*p)->rb_left; 9875 } else if (sp->ptr > entry->ptr || 9876 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9877 p = &(*p)->rb_right; 9878 } else { 9879 spin_unlock(&fs_info->swapfile_pins_lock); 9880 kfree(sp); 9881 return 1; 9882 } 9883 } 9884 rb_link_node(&sp->node, parent, p); 9885 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9886 spin_unlock(&fs_info->swapfile_pins_lock); 9887 return 0; 9888 } 9889 9890 /* Free all of the entries pinned by this swapfile. */ 9891 static void btrfs_free_swapfile_pins(struct inode *inode) 9892 { 9893 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9894 struct btrfs_swapfile_pin *sp; 9895 struct rb_node *node, *next; 9896 9897 spin_lock(&fs_info->swapfile_pins_lock); 9898 node = rb_first(&fs_info->swapfile_pins); 9899 while (node) { 9900 next = rb_next(node); 9901 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9902 if (sp->inode == inode) { 9903 rb_erase(&sp->node, &fs_info->swapfile_pins); 9904 if (sp->is_block_group) 9905 btrfs_put_block_group(sp->ptr); 9906 kfree(sp); 9907 } 9908 node = next; 9909 } 9910 spin_unlock(&fs_info->swapfile_pins_lock); 9911 } 9912 9913 struct btrfs_swap_info { 9914 u64 start; 9915 u64 block_start; 9916 u64 block_len; 9917 u64 lowest_ppage; 9918 u64 highest_ppage; 9919 unsigned long nr_pages; 9920 int nr_extents; 9921 }; 9922 9923 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9924 struct btrfs_swap_info *bsi) 9925 { 9926 unsigned long nr_pages; 9927 u64 first_ppage, first_ppage_reported, next_ppage; 9928 int ret; 9929 9930 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 9931 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 9932 PAGE_SIZE) >> PAGE_SHIFT; 9933 9934 if (first_ppage >= next_ppage) 9935 return 0; 9936 nr_pages = next_ppage - first_ppage; 9937 9938 first_ppage_reported = first_ppage; 9939 if (bsi->start == 0) 9940 first_ppage_reported++; 9941 if (bsi->lowest_ppage > first_ppage_reported) 9942 bsi->lowest_ppage = first_ppage_reported; 9943 if (bsi->highest_ppage < (next_ppage - 1)) 9944 bsi->highest_ppage = next_ppage - 1; 9945 9946 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9947 if (ret < 0) 9948 return ret; 9949 bsi->nr_extents += ret; 9950 bsi->nr_pages += nr_pages; 9951 return 0; 9952 } 9953 9954 static void btrfs_swap_deactivate(struct file *file) 9955 { 9956 struct inode *inode = file_inode(file); 9957 9958 btrfs_free_swapfile_pins(inode); 9959 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9960 } 9961 9962 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9963 sector_t *span) 9964 { 9965 struct inode *inode = file_inode(file); 9966 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9967 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9968 struct extent_state *cached_state = NULL; 9969 struct extent_map *em = NULL; 9970 struct btrfs_device *device = NULL; 9971 struct btrfs_swap_info bsi = { 9972 .lowest_ppage = (sector_t)-1ULL, 9973 }; 9974 int ret = 0; 9975 u64 isize; 9976 u64 start; 9977 9978 /* 9979 * If the swap file was just created, make sure delalloc is done. If the 9980 * file changes again after this, the user is doing something stupid and 9981 * we don't really care. 9982 */ 9983 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 9984 if (ret) 9985 return ret; 9986 9987 /* 9988 * The inode is locked, so these flags won't change after we check them. 9989 */ 9990 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 9991 btrfs_warn(fs_info, "swapfile must not be compressed"); 9992 return -EINVAL; 9993 } 9994 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 9995 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 9996 return -EINVAL; 9997 } 9998 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 9999 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10000 return -EINVAL; 10001 } 10002 10003 /* 10004 * Balance or device remove/replace/resize can move stuff around from 10005 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10006 * concurrently while we are mapping the swap extents, and 10007 * fs_info->swapfile_pins prevents them from running while the swap file 10008 * is active and moving the extents. Note that this also prevents a 10009 * concurrent device add which isn't actually necessary, but it's not 10010 * really worth the trouble to allow it. 10011 */ 10012 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10013 btrfs_warn(fs_info, 10014 "cannot activate swapfile while exclusive operation is running"); 10015 return -EBUSY; 10016 } 10017 /* 10018 * Snapshots can create extents which require COW even if NODATACOW is 10019 * set. We use this counter to prevent snapshots. We must increment it 10020 * before walking the extents because we don't want a concurrent 10021 * snapshot to run after we've already checked the extents. 10022 */ 10023 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10024 10025 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10026 10027 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10028 start = 0; 10029 while (start < isize) { 10030 u64 logical_block_start, physical_block_start; 10031 struct btrfs_block_group *bg; 10032 u64 len = isize - start; 10033 10034 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10035 if (IS_ERR(em)) { 10036 ret = PTR_ERR(em); 10037 goto out; 10038 } 10039 10040 if (em->block_start == EXTENT_MAP_HOLE) { 10041 btrfs_warn(fs_info, "swapfile must not have holes"); 10042 ret = -EINVAL; 10043 goto out; 10044 } 10045 if (em->block_start == EXTENT_MAP_INLINE) { 10046 /* 10047 * It's unlikely we'll ever actually find ourselves 10048 * here, as a file small enough to fit inline won't be 10049 * big enough to store more than the swap header, but in 10050 * case something changes in the future, let's catch it 10051 * here rather than later. 10052 */ 10053 btrfs_warn(fs_info, "swapfile must not be inline"); 10054 ret = -EINVAL; 10055 goto out; 10056 } 10057 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10058 btrfs_warn(fs_info, "swapfile must not be compressed"); 10059 ret = -EINVAL; 10060 goto out; 10061 } 10062 10063 logical_block_start = em->block_start + (start - em->start); 10064 len = min(len, em->len - (start - em->start)); 10065 free_extent_map(em); 10066 em = NULL; 10067 10068 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10069 if (ret < 0) { 10070 goto out; 10071 } else if (ret) { 10072 ret = 0; 10073 } else { 10074 btrfs_warn(fs_info, 10075 "swapfile must not be copy-on-write"); 10076 ret = -EINVAL; 10077 goto out; 10078 } 10079 10080 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10081 if (IS_ERR(em)) { 10082 ret = PTR_ERR(em); 10083 goto out; 10084 } 10085 10086 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10087 btrfs_warn(fs_info, 10088 "swapfile must have single data profile"); 10089 ret = -EINVAL; 10090 goto out; 10091 } 10092 10093 if (device == NULL) { 10094 device = em->map_lookup->stripes[0].dev; 10095 ret = btrfs_add_swapfile_pin(inode, device, false); 10096 if (ret == 1) 10097 ret = 0; 10098 else if (ret) 10099 goto out; 10100 } else if (device != em->map_lookup->stripes[0].dev) { 10101 btrfs_warn(fs_info, "swapfile must be on one device"); 10102 ret = -EINVAL; 10103 goto out; 10104 } 10105 10106 physical_block_start = (em->map_lookup->stripes[0].physical + 10107 (logical_block_start - em->start)); 10108 len = min(len, em->len - (logical_block_start - em->start)); 10109 free_extent_map(em); 10110 em = NULL; 10111 10112 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10113 if (!bg) { 10114 btrfs_warn(fs_info, 10115 "could not find block group containing swapfile"); 10116 ret = -EINVAL; 10117 goto out; 10118 } 10119 10120 ret = btrfs_add_swapfile_pin(inode, bg, true); 10121 if (ret) { 10122 btrfs_put_block_group(bg); 10123 if (ret == 1) 10124 ret = 0; 10125 else 10126 goto out; 10127 } 10128 10129 if (bsi.block_len && 10130 bsi.block_start + bsi.block_len == physical_block_start) { 10131 bsi.block_len += len; 10132 } else { 10133 if (bsi.block_len) { 10134 ret = btrfs_add_swap_extent(sis, &bsi); 10135 if (ret) 10136 goto out; 10137 } 10138 bsi.start = start; 10139 bsi.block_start = physical_block_start; 10140 bsi.block_len = len; 10141 } 10142 10143 start += len; 10144 } 10145 10146 if (bsi.block_len) 10147 ret = btrfs_add_swap_extent(sis, &bsi); 10148 10149 out: 10150 if (!IS_ERR_OR_NULL(em)) 10151 free_extent_map(em); 10152 10153 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10154 10155 if (ret) 10156 btrfs_swap_deactivate(file); 10157 10158 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10159 10160 if (ret) 10161 return ret; 10162 10163 if (device) 10164 sis->bdev = device->bdev; 10165 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10166 sis->max = bsi.nr_pages; 10167 sis->pages = bsi.nr_pages - 1; 10168 sis->highest_bit = bsi.nr_pages - 1; 10169 return bsi.nr_extents; 10170 } 10171 #else 10172 static void btrfs_swap_deactivate(struct file *file) 10173 { 10174 } 10175 10176 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10177 sector_t *span) 10178 { 10179 return -EOPNOTSUPP; 10180 } 10181 #endif 10182 10183 static const struct inode_operations btrfs_dir_inode_operations = { 10184 .getattr = btrfs_getattr, 10185 .lookup = btrfs_lookup, 10186 .create = btrfs_create, 10187 .unlink = btrfs_unlink, 10188 .link = btrfs_link, 10189 .mkdir = btrfs_mkdir, 10190 .rmdir = btrfs_rmdir, 10191 .rename = btrfs_rename2, 10192 .symlink = btrfs_symlink, 10193 .setattr = btrfs_setattr, 10194 .mknod = btrfs_mknod, 10195 .listxattr = btrfs_listxattr, 10196 .permission = btrfs_permission, 10197 .get_acl = btrfs_get_acl, 10198 .set_acl = btrfs_set_acl, 10199 .update_time = btrfs_update_time, 10200 .tmpfile = btrfs_tmpfile, 10201 }; 10202 10203 static const struct file_operations btrfs_dir_file_operations = { 10204 .llseek = generic_file_llseek, 10205 .read = generic_read_dir, 10206 .iterate_shared = btrfs_real_readdir, 10207 .open = btrfs_opendir, 10208 .unlocked_ioctl = btrfs_ioctl, 10209 #ifdef CONFIG_COMPAT 10210 .compat_ioctl = btrfs_compat_ioctl, 10211 #endif 10212 .release = btrfs_release_file, 10213 .fsync = btrfs_sync_file, 10214 }; 10215 10216 static const struct extent_io_ops btrfs_extent_io_ops = { 10217 /* mandatory callbacks */ 10218 .submit_bio_hook = btrfs_submit_bio_hook, 10219 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10220 }; 10221 10222 /* 10223 * btrfs doesn't support the bmap operation because swapfiles 10224 * use bmap to make a mapping of extents in the file. They assume 10225 * these extents won't change over the life of the file and they 10226 * use the bmap result to do IO directly to the drive. 10227 * 10228 * the btrfs bmap call would return logical addresses that aren't 10229 * suitable for IO and they also will change frequently as COW 10230 * operations happen. So, swapfile + btrfs == corruption. 10231 * 10232 * For now we're avoiding this by dropping bmap. 10233 */ 10234 static const struct address_space_operations btrfs_aops = { 10235 .readpage = btrfs_readpage, 10236 .writepage = btrfs_writepage, 10237 .writepages = btrfs_writepages, 10238 .readahead = btrfs_readahead, 10239 .direct_IO = btrfs_direct_IO, 10240 .invalidatepage = btrfs_invalidatepage, 10241 .releasepage = btrfs_releasepage, 10242 #ifdef CONFIG_MIGRATION 10243 .migratepage = btrfs_migratepage, 10244 #endif 10245 .set_page_dirty = btrfs_set_page_dirty, 10246 .error_remove_page = generic_error_remove_page, 10247 .swap_activate = btrfs_swap_activate, 10248 .swap_deactivate = btrfs_swap_deactivate, 10249 }; 10250 10251 static const struct inode_operations btrfs_file_inode_operations = { 10252 .getattr = btrfs_getattr, 10253 .setattr = btrfs_setattr, 10254 .listxattr = btrfs_listxattr, 10255 .permission = btrfs_permission, 10256 .fiemap = btrfs_fiemap, 10257 .get_acl = btrfs_get_acl, 10258 .set_acl = btrfs_set_acl, 10259 .update_time = btrfs_update_time, 10260 }; 10261 static const struct inode_operations btrfs_special_inode_operations = { 10262 .getattr = btrfs_getattr, 10263 .setattr = btrfs_setattr, 10264 .permission = btrfs_permission, 10265 .listxattr = btrfs_listxattr, 10266 .get_acl = btrfs_get_acl, 10267 .set_acl = btrfs_set_acl, 10268 .update_time = btrfs_update_time, 10269 }; 10270 static const struct inode_operations btrfs_symlink_inode_operations = { 10271 .get_link = page_get_link, 10272 .getattr = btrfs_getattr, 10273 .setattr = btrfs_setattr, 10274 .permission = btrfs_permission, 10275 .listxattr = btrfs_listxattr, 10276 .update_time = btrfs_update_time, 10277 }; 10278 10279 const struct dentry_operations btrfs_dentry_operations = { 10280 .d_delete = btrfs_dentry_delete, 10281 }; 10282