xref: /openbmc/linux/fs/btrfs/inode.c (revision 5f66f73b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 
55 struct btrfs_iget_args {
56 	u64 ino;
57 	struct btrfs_root *root;
58 };
59 
60 struct btrfs_dio_data {
61 	u64 reserve;
62 	loff_t length;
63 	ssize_t submitted;
64 	struct extent_changeset *data_reserved;
65 };
66 
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_special_inode_operations;
70 static const struct inode_operations btrfs_file_inode_operations;
71 static const struct address_space_operations btrfs_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 
74 static struct kmem_cache *btrfs_inode_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 struct kmem_cache *btrfs_free_space_bitmap_cachep;
79 
80 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
81 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
83 static noinline int cow_file_range(struct btrfs_inode *inode,
84 				   struct page *locked_page,
85 				   u64 start, u64 end, int *page_started,
86 				   unsigned long *nr_written, int unlock);
87 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
88 				       u64 len, u64 orig_start, u64 block_start,
89 				       u64 block_len, u64 orig_block_len,
90 				       u64 ram_bytes, int compress_type,
91 				       int type);
92 
93 static void __endio_write_update_ordered(struct btrfs_inode *inode,
94 					 const u64 offset, const u64 bytes,
95 					 const bool uptodate);
96 
97 /*
98  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
99  *
100  * ilock_flags can have the following bit set:
101  *
102  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
103  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
104  *		     return -EAGAIN
105  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
106  */
107 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
108 {
109 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
110 		if (ilock_flags & BTRFS_ILOCK_TRY) {
111 			if (!inode_trylock_shared(inode))
112 				return -EAGAIN;
113 			else
114 				return 0;
115 		}
116 		inode_lock_shared(inode);
117 	} else {
118 		if (ilock_flags & BTRFS_ILOCK_TRY) {
119 			if (!inode_trylock(inode))
120 				return -EAGAIN;
121 			else
122 				return 0;
123 		}
124 		inode_lock(inode);
125 	}
126 	if (ilock_flags & BTRFS_ILOCK_MMAP)
127 		down_write(&BTRFS_I(inode)->i_mmap_lock);
128 	return 0;
129 }
130 
131 /*
132  * btrfs_inode_unlock - unock inode i_rwsem
133  *
134  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
135  * to decide whether the lock acquired is shared or exclusive.
136  */
137 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
138 {
139 	if (ilock_flags & BTRFS_ILOCK_MMAP)
140 		up_write(&BTRFS_I(inode)->i_mmap_lock);
141 	if (ilock_flags & BTRFS_ILOCK_SHARED)
142 		inode_unlock_shared(inode);
143 	else
144 		inode_unlock(inode);
145 }
146 
147 /*
148  * Cleanup all submitted ordered extents in specified range to handle errors
149  * from the btrfs_run_delalloc_range() callback.
150  *
151  * NOTE: caller must ensure that when an error happens, it can not call
152  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
153  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
154  * to be released, which we want to happen only when finishing the ordered
155  * extent (btrfs_finish_ordered_io()).
156  */
157 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
158 						 struct page *locked_page,
159 						 u64 offset, u64 bytes)
160 {
161 	unsigned long index = offset >> PAGE_SHIFT;
162 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
163 	u64 page_start = page_offset(locked_page);
164 	u64 page_end = page_start + PAGE_SIZE - 1;
165 
166 	struct page *page;
167 
168 	while (index <= end_index) {
169 		page = find_get_page(inode->vfs_inode.i_mapping, index);
170 		index++;
171 		if (!page)
172 			continue;
173 		ClearPagePrivate2(page);
174 		put_page(page);
175 	}
176 
177 	/*
178 	 * In case this page belongs to the delalloc range being instantiated
179 	 * then skip it, since the first page of a range is going to be
180 	 * properly cleaned up by the caller of run_delalloc_range
181 	 */
182 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
183 		offset += PAGE_SIZE;
184 		bytes -= PAGE_SIZE;
185 	}
186 
187 	return __endio_write_update_ordered(inode, offset, bytes, false);
188 }
189 
190 static int btrfs_dirty_inode(struct inode *inode);
191 
192 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
193 				     struct inode *inode,  struct inode *dir,
194 				     const struct qstr *qstr)
195 {
196 	int err;
197 
198 	err = btrfs_init_acl(trans, inode, dir);
199 	if (!err)
200 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
201 	return err;
202 }
203 
204 /*
205  * this does all the hard work for inserting an inline extent into
206  * the btree.  The caller should have done a btrfs_drop_extents so that
207  * no overlapping inline items exist in the btree
208  */
209 static int insert_inline_extent(struct btrfs_trans_handle *trans,
210 				struct btrfs_path *path, bool extent_inserted,
211 				struct btrfs_root *root, struct inode *inode,
212 				u64 start, size_t size, size_t compressed_size,
213 				int compress_type,
214 				struct page **compressed_pages)
215 {
216 	struct extent_buffer *leaf;
217 	struct page *page = NULL;
218 	char *kaddr;
219 	unsigned long ptr;
220 	struct btrfs_file_extent_item *ei;
221 	int ret;
222 	size_t cur_size = size;
223 	unsigned long offset;
224 
225 	ASSERT((compressed_size > 0 && compressed_pages) ||
226 	       (compressed_size == 0 && !compressed_pages));
227 
228 	if (compressed_size && compressed_pages)
229 		cur_size = compressed_size;
230 
231 	if (!extent_inserted) {
232 		struct btrfs_key key;
233 		size_t datasize;
234 
235 		key.objectid = btrfs_ino(BTRFS_I(inode));
236 		key.offset = start;
237 		key.type = BTRFS_EXTENT_DATA_KEY;
238 
239 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
240 		ret = btrfs_insert_empty_item(trans, root, path, &key,
241 					      datasize);
242 		if (ret)
243 			goto fail;
244 	}
245 	leaf = path->nodes[0];
246 	ei = btrfs_item_ptr(leaf, path->slots[0],
247 			    struct btrfs_file_extent_item);
248 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
249 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
250 	btrfs_set_file_extent_encryption(leaf, ei, 0);
251 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
252 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
253 	ptr = btrfs_file_extent_inline_start(ei);
254 
255 	if (compress_type != BTRFS_COMPRESS_NONE) {
256 		struct page *cpage;
257 		int i = 0;
258 		while (compressed_size > 0) {
259 			cpage = compressed_pages[i];
260 			cur_size = min_t(unsigned long, compressed_size,
261 				       PAGE_SIZE);
262 
263 			kaddr = kmap_atomic(cpage);
264 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
265 			kunmap_atomic(kaddr);
266 
267 			i++;
268 			ptr += cur_size;
269 			compressed_size -= cur_size;
270 		}
271 		btrfs_set_file_extent_compression(leaf, ei,
272 						  compress_type);
273 	} else {
274 		page = find_get_page(inode->i_mapping,
275 				     start >> PAGE_SHIFT);
276 		btrfs_set_file_extent_compression(leaf, ei, 0);
277 		kaddr = kmap_atomic(page);
278 		offset = offset_in_page(start);
279 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
280 		kunmap_atomic(kaddr);
281 		put_page(page);
282 	}
283 	btrfs_mark_buffer_dirty(leaf);
284 	btrfs_release_path(path);
285 
286 	/*
287 	 * We align size to sectorsize for inline extents just for simplicity
288 	 * sake.
289 	 */
290 	size = ALIGN(size, root->fs_info->sectorsize);
291 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
292 	if (ret)
293 		goto fail;
294 
295 	/*
296 	 * we're an inline extent, so nobody can
297 	 * extend the file past i_size without locking
298 	 * a page we already have locked.
299 	 *
300 	 * We must do any isize and inode updates
301 	 * before we unlock the pages.  Otherwise we
302 	 * could end up racing with unlink.
303 	 */
304 	BTRFS_I(inode)->disk_i_size = inode->i_size;
305 fail:
306 	return ret;
307 }
308 
309 
310 /*
311  * conditionally insert an inline extent into the file.  This
312  * does the checks required to make sure the data is small enough
313  * to fit as an inline extent.
314  */
315 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
316 					  u64 end, size_t compressed_size,
317 					  int compress_type,
318 					  struct page **compressed_pages)
319 {
320 	struct btrfs_drop_extents_args drop_args = { 0 };
321 	struct btrfs_root *root = inode->root;
322 	struct btrfs_fs_info *fs_info = root->fs_info;
323 	struct btrfs_trans_handle *trans;
324 	u64 isize = i_size_read(&inode->vfs_inode);
325 	u64 actual_end = min(end + 1, isize);
326 	u64 inline_len = actual_end - start;
327 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
328 	u64 data_len = inline_len;
329 	int ret;
330 	struct btrfs_path *path;
331 
332 	if (compressed_size)
333 		data_len = compressed_size;
334 
335 	if (start > 0 ||
336 	    actual_end > fs_info->sectorsize ||
337 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
338 	    (!compressed_size &&
339 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
340 	    end + 1 < isize ||
341 	    data_len > fs_info->max_inline) {
342 		return 1;
343 	}
344 
345 	path = btrfs_alloc_path();
346 	if (!path)
347 		return -ENOMEM;
348 
349 	trans = btrfs_join_transaction(root);
350 	if (IS_ERR(trans)) {
351 		btrfs_free_path(path);
352 		return PTR_ERR(trans);
353 	}
354 	trans->block_rsv = &inode->block_rsv;
355 
356 	drop_args.path = path;
357 	drop_args.start = start;
358 	drop_args.end = aligned_end;
359 	drop_args.drop_cache = true;
360 	drop_args.replace_extent = true;
361 
362 	if (compressed_size && compressed_pages)
363 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
364 		   compressed_size);
365 	else
366 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
367 		    inline_len);
368 
369 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
370 	if (ret) {
371 		btrfs_abort_transaction(trans, ret);
372 		goto out;
373 	}
374 
375 	if (isize > actual_end)
376 		inline_len = min_t(u64, isize, actual_end);
377 	ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
378 				   root, &inode->vfs_inode, start,
379 				   inline_len, compressed_size,
380 				   compress_type, compressed_pages);
381 	if (ret && ret != -ENOSPC) {
382 		btrfs_abort_transaction(trans, ret);
383 		goto out;
384 	} else if (ret == -ENOSPC) {
385 		ret = 1;
386 		goto out;
387 	}
388 
389 	btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
390 	ret = btrfs_update_inode(trans, root, inode);
391 	if (ret && ret != -ENOSPC) {
392 		btrfs_abort_transaction(trans, ret);
393 		goto out;
394 	} else if (ret == -ENOSPC) {
395 		ret = 1;
396 		goto out;
397 	}
398 
399 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
400 out:
401 	/*
402 	 * Don't forget to free the reserved space, as for inlined extent
403 	 * it won't count as data extent, free them directly here.
404 	 * And at reserve time, it's always aligned to page size, so
405 	 * just free one page here.
406 	 */
407 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
408 	btrfs_free_path(path);
409 	btrfs_end_transaction(trans);
410 	return ret;
411 }
412 
413 struct async_extent {
414 	u64 start;
415 	u64 ram_size;
416 	u64 compressed_size;
417 	struct page **pages;
418 	unsigned long nr_pages;
419 	int compress_type;
420 	struct list_head list;
421 };
422 
423 struct async_chunk {
424 	struct inode *inode;
425 	struct page *locked_page;
426 	u64 start;
427 	u64 end;
428 	unsigned int write_flags;
429 	struct list_head extents;
430 	struct cgroup_subsys_state *blkcg_css;
431 	struct btrfs_work work;
432 	atomic_t *pending;
433 };
434 
435 struct async_cow {
436 	/* Number of chunks in flight; must be first in the structure */
437 	atomic_t num_chunks;
438 	struct async_chunk chunks[];
439 };
440 
441 static noinline int add_async_extent(struct async_chunk *cow,
442 				     u64 start, u64 ram_size,
443 				     u64 compressed_size,
444 				     struct page **pages,
445 				     unsigned long nr_pages,
446 				     int compress_type)
447 {
448 	struct async_extent *async_extent;
449 
450 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
451 	BUG_ON(!async_extent); /* -ENOMEM */
452 	async_extent->start = start;
453 	async_extent->ram_size = ram_size;
454 	async_extent->compressed_size = compressed_size;
455 	async_extent->pages = pages;
456 	async_extent->nr_pages = nr_pages;
457 	async_extent->compress_type = compress_type;
458 	list_add_tail(&async_extent->list, &cow->extents);
459 	return 0;
460 }
461 
462 /*
463  * Check if the inode has flags compatible with compression
464  */
465 static inline bool inode_can_compress(struct btrfs_inode *inode)
466 {
467 	if (inode->flags & BTRFS_INODE_NODATACOW ||
468 	    inode->flags & BTRFS_INODE_NODATASUM)
469 		return false;
470 	return true;
471 }
472 
473 /*
474  * Check if the inode needs to be submitted to compression, based on mount
475  * options, defragmentation, properties or heuristics.
476  */
477 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
478 				      u64 end)
479 {
480 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
481 
482 	if (!inode_can_compress(inode)) {
483 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
484 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
485 			btrfs_ino(inode));
486 		return 0;
487 	}
488 	/* force compress */
489 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
490 		return 1;
491 	/* defrag ioctl */
492 	if (inode->defrag_compress)
493 		return 1;
494 	/* bad compression ratios */
495 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
496 		return 0;
497 	if (btrfs_test_opt(fs_info, COMPRESS) ||
498 	    inode->flags & BTRFS_INODE_COMPRESS ||
499 	    inode->prop_compress)
500 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
501 	return 0;
502 }
503 
504 static inline void inode_should_defrag(struct btrfs_inode *inode,
505 		u64 start, u64 end, u64 num_bytes, u64 small_write)
506 {
507 	/* If this is a small write inside eof, kick off a defrag */
508 	if (num_bytes < small_write &&
509 	    (start > 0 || end + 1 < inode->disk_i_size))
510 		btrfs_add_inode_defrag(NULL, inode);
511 }
512 
513 /*
514  * we create compressed extents in two phases.  The first
515  * phase compresses a range of pages that have already been
516  * locked (both pages and state bits are locked).
517  *
518  * This is done inside an ordered work queue, and the compression
519  * is spread across many cpus.  The actual IO submission is step
520  * two, and the ordered work queue takes care of making sure that
521  * happens in the same order things were put onto the queue by
522  * writepages and friends.
523  *
524  * If this code finds it can't get good compression, it puts an
525  * entry onto the work queue to write the uncompressed bytes.  This
526  * makes sure that both compressed inodes and uncompressed inodes
527  * are written in the same order that the flusher thread sent them
528  * down.
529  */
530 static noinline int compress_file_range(struct async_chunk *async_chunk)
531 {
532 	struct inode *inode = async_chunk->inode;
533 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
534 	u64 blocksize = fs_info->sectorsize;
535 	u64 start = async_chunk->start;
536 	u64 end = async_chunk->end;
537 	u64 actual_end;
538 	u64 i_size;
539 	int ret = 0;
540 	struct page **pages = NULL;
541 	unsigned long nr_pages;
542 	unsigned long total_compressed = 0;
543 	unsigned long total_in = 0;
544 	int i;
545 	int will_compress;
546 	int compress_type = fs_info->compress_type;
547 	int compressed_extents = 0;
548 	int redirty = 0;
549 
550 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
551 			SZ_16K);
552 
553 	/*
554 	 * We need to save i_size before now because it could change in between
555 	 * us evaluating the size and assigning it.  This is because we lock and
556 	 * unlock the page in truncate and fallocate, and then modify the i_size
557 	 * later on.
558 	 *
559 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
560 	 * does that for us.
561 	 */
562 	barrier();
563 	i_size = i_size_read(inode);
564 	barrier();
565 	actual_end = min_t(u64, i_size, end + 1);
566 again:
567 	will_compress = 0;
568 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
569 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
570 	nr_pages = min_t(unsigned long, nr_pages,
571 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
572 
573 	/*
574 	 * we don't want to send crud past the end of i_size through
575 	 * compression, that's just a waste of CPU time.  So, if the
576 	 * end of the file is before the start of our current
577 	 * requested range of bytes, we bail out to the uncompressed
578 	 * cleanup code that can deal with all of this.
579 	 *
580 	 * It isn't really the fastest way to fix things, but this is a
581 	 * very uncommon corner.
582 	 */
583 	if (actual_end <= start)
584 		goto cleanup_and_bail_uncompressed;
585 
586 	total_compressed = actual_end - start;
587 
588 	/*
589 	 * skip compression for a small file range(<=blocksize) that
590 	 * isn't an inline extent, since it doesn't save disk space at all.
591 	 */
592 	if (total_compressed <= blocksize &&
593 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
594 		goto cleanup_and_bail_uncompressed;
595 
596 	total_compressed = min_t(unsigned long, total_compressed,
597 			BTRFS_MAX_UNCOMPRESSED);
598 	total_in = 0;
599 	ret = 0;
600 
601 	/*
602 	 * we do compression for mount -o compress and when the
603 	 * inode has not been flagged as nocompress.  This flag can
604 	 * change at any time if we discover bad compression ratios.
605 	 */
606 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
607 		WARN_ON(pages);
608 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
609 		if (!pages) {
610 			/* just bail out to the uncompressed code */
611 			nr_pages = 0;
612 			goto cont;
613 		}
614 
615 		if (BTRFS_I(inode)->defrag_compress)
616 			compress_type = BTRFS_I(inode)->defrag_compress;
617 		else if (BTRFS_I(inode)->prop_compress)
618 			compress_type = BTRFS_I(inode)->prop_compress;
619 
620 		/*
621 		 * we need to call clear_page_dirty_for_io on each
622 		 * page in the range.  Otherwise applications with the file
623 		 * mmap'd can wander in and change the page contents while
624 		 * we are compressing them.
625 		 *
626 		 * If the compression fails for any reason, we set the pages
627 		 * dirty again later on.
628 		 *
629 		 * Note that the remaining part is redirtied, the start pointer
630 		 * has moved, the end is the original one.
631 		 */
632 		if (!redirty) {
633 			extent_range_clear_dirty_for_io(inode, start, end);
634 			redirty = 1;
635 		}
636 
637 		/* Compression level is applied here and only here */
638 		ret = btrfs_compress_pages(
639 			compress_type | (fs_info->compress_level << 4),
640 					   inode->i_mapping, start,
641 					   pages,
642 					   &nr_pages,
643 					   &total_in,
644 					   &total_compressed);
645 
646 		if (!ret) {
647 			unsigned long offset = offset_in_page(total_compressed);
648 			struct page *page = pages[nr_pages - 1];
649 			char *kaddr;
650 
651 			/* zero the tail end of the last page, we might be
652 			 * sending it down to disk
653 			 */
654 			if (offset) {
655 				kaddr = kmap_atomic(page);
656 				memset(kaddr + offset, 0,
657 				       PAGE_SIZE - offset);
658 				kunmap_atomic(kaddr);
659 			}
660 			will_compress = 1;
661 		}
662 	}
663 cont:
664 	if (start == 0) {
665 		/* lets try to make an inline extent */
666 		if (ret || total_in < actual_end) {
667 			/* we didn't compress the entire range, try
668 			 * to make an uncompressed inline extent.
669 			 */
670 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
671 						    0, BTRFS_COMPRESS_NONE,
672 						    NULL);
673 		} else {
674 			/* try making a compressed inline extent */
675 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
676 						    total_compressed,
677 						    compress_type, pages);
678 		}
679 		if (ret <= 0) {
680 			unsigned long clear_flags = EXTENT_DELALLOC |
681 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
682 				EXTENT_DO_ACCOUNTING;
683 			unsigned long page_error_op;
684 
685 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
686 
687 			/*
688 			 * inline extent creation worked or returned error,
689 			 * we don't need to create any more async work items.
690 			 * Unlock and free up our temp pages.
691 			 *
692 			 * We use DO_ACCOUNTING here because we need the
693 			 * delalloc_release_metadata to be done _after_ we drop
694 			 * our outstanding extent for clearing delalloc for this
695 			 * range.
696 			 */
697 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
698 						     NULL,
699 						     clear_flags,
700 						     PAGE_UNLOCK |
701 						     PAGE_START_WRITEBACK |
702 						     page_error_op |
703 						     PAGE_END_WRITEBACK);
704 
705 			/*
706 			 * Ensure we only free the compressed pages if we have
707 			 * them allocated, as we can still reach here with
708 			 * inode_need_compress() == false.
709 			 */
710 			if (pages) {
711 				for (i = 0; i < nr_pages; i++) {
712 					WARN_ON(pages[i]->mapping);
713 					put_page(pages[i]);
714 				}
715 				kfree(pages);
716 			}
717 			return 0;
718 		}
719 	}
720 
721 	if (will_compress) {
722 		/*
723 		 * we aren't doing an inline extent round the compressed size
724 		 * up to a block size boundary so the allocator does sane
725 		 * things
726 		 */
727 		total_compressed = ALIGN(total_compressed, blocksize);
728 
729 		/*
730 		 * one last check to make sure the compression is really a
731 		 * win, compare the page count read with the blocks on disk,
732 		 * compression must free at least one sector size
733 		 */
734 		total_in = ALIGN(total_in, PAGE_SIZE);
735 		if (total_compressed + blocksize <= total_in) {
736 			compressed_extents++;
737 
738 			/*
739 			 * The async work queues will take care of doing actual
740 			 * allocation on disk for these compressed pages, and
741 			 * will submit them to the elevator.
742 			 */
743 			add_async_extent(async_chunk, start, total_in,
744 					total_compressed, pages, nr_pages,
745 					compress_type);
746 
747 			if (start + total_in < end) {
748 				start += total_in;
749 				pages = NULL;
750 				cond_resched();
751 				goto again;
752 			}
753 			return compressed_extents;
754 		}
755 	}
756 	if (pages) {
757 		/*
758 		 * the compression code ran but failed to make things smaller,
759 		 * free any pages it allocated and our page pointer array
760 		 */
761 		for (i = 0; i < nr_pages; i++) {
762 			WARN_ON(pages[i]->mapping);
763 			put_page(pages[i]);
764 		}
765 		kfree(pages);
766 		pages = NULL;
767 		total_compressed = 0;
768 		nr_pages = 0;
769 
770 		/* flag the file so we don't compress in the future */
771 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
772 		    !(BTRFS_I(inode)->prop_compress)) {
773 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
774 		}
775 	}
776 cleanup_and_bail_uncompressed:
777 	/*
778 	 * No compression, but we still need to write the pages in the file
779 	 * we've been given so far.  redirty the locked page if it corresponds
780 	 * to our extent and set things up for the async work queue to run
781 	 * cow_file_range to do the normal delalloc dance.
782 	 */
783 	if (async_chunk->locked_page &&
784 	    (page_offset(async_chunk->locked_page) >= start &&
785 	     page_offset(async_chunk->locked_page)) <= end) {
786 		__set_page_dirty_nobuffers(async_chunk->locked_page);
787 		/* unlocked later on in the async handlers */
788 	}
789 
790 	if (redirty)
791 		extent_range_redirty_for_io(inode, start, end);
792 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
793 			 BTRFS_COMPRESS_NONE);
794 	compressed_extents++;
795 
796 	return compressed_extents;
797 }
798 
799 static void free_async_extent_pages(struct async_extent *async_extent)
800 {
801 	int i;
802 
803 	if (!async_extent->pages)
804 		return;
805 
806 	for (i = 0; i < async_extent->nr_pages; i++) {
807 		WARN_ON(async_extent->pages[i]->mapping);
808 		put_page(async_extent->pages[i]);
809 	}
810 	kfree(async_extent->pages);
811 	async_extent->nr_pages = 0;
812 	async_extent->pages = NULL;
813 }
814 
815 /*
816  * phase two of compressed writeback.  This is the ordered portion
817  * of the code, which only gets called in the order the work was
818  * queued.  We walk all the async extents created by compress_file_range
819  * and send them down to the disk.
820  */
821 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
822 {
823 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
824 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
825 	struct async_extent *async_extent;
826 	u64 alloc_hint = 0;
827 	struct btrfs_key ins;
828 	struct extent_map *em;
829 	struct btrfs_root *root = inode->root;
830 	struct extent_io_tree *io_tree = &inode->io_tree;
831 	int ret = 0;
832 
833 again:
834 	while (!list_empty(&async_chunk->extents)) {
835 		async_extent = list_entry(async_chunk->extents.next,
836 					  struct async_extent, list);
837 		list_del(&async_extent->list);
838 
839 retry:
840 		lock_extent(io_tree, async_extent->start,
841 			    async_extent->start + async_extent->ram_size - 1);
842 		/* did the compression code fall back to uncompressed IO? */
843 		if (!async_extent->pages) {
844 			int page_started = 0;
845 			unsigned long nr_written = 0;
846 
847 			/* allocate blocks */
848 			ret = cow_file_range(inode, async_chunk->locked_page,
849 					     async_extent->start,
850 					     async_extent->start +
851 					     async_extent->ram_size - 1,
852 					     &page_started, &nr_written, 0);
853 
854 			/* JDM XXX */
855 
856 			/*
857 			 * if page_started, cow_file_range inserted an
858 			 * inline extent and took care of all the unlocking
859 			 * and IO for us.  Otherwise, we need to submit
860 			 * all those pages down to the drive.
861 			 */
862 			if (!page_started && !ret)
863 				extent_write_locked_range(&inode->vfs_inode,
864 						  async_extent->start,
865 						  async_extent->start +
866 						  async_extent->ram_size - 1,
867 						  WB_SYNC_ALL);
868 			else if (ret && async_chunk->locked_page)
869 				unlock_page(async_chunk->locked_page);
870 			kfree(async_extent);
871 			cond_resched();
872 			continue;
873 		}
874 
875 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
876 					   async_extent->compressed_size,
877 					   async_extent->compressed_size,
878 					   0, alloc_hint, &ins, 1, 1);
879 		if (ret) {
880 			free_async_extent_pages(async_extent);
881 
882 			if (ret == -ENOSPC) {
883 				unlock_extent(io_tree, async_extent->start,
884 					      async_extent->start +
885 					      async_extent->ram_size - 1);
886 
887 				/*
888 				 * we need to redirty the pages if we decide to
889 				 * fallback to uncompressed IO, otherwise we
890 				 * will not submit these pages down to lower
891 				 * layers.
892 				 */
893 				extent_range_redirty_for_io(&inode->vfs_inode,
894 						async_extent->start,
895 						async_extent->start +
896 						async_extent->ram_size - 1);
897 
898 				goto retry;
899 			}
900 			goto out_free;
901 		}
902 		/*
903 		 * here we're doing allocation and writeback of the
904 		 * compressed pages
905 		 */
906 		em = create_io_em(inode, async_extent->start,
907 				  async_extent->ram_size, /* len */
908 				  async_extent->start, /* orig_start */
909 				  ins.objectid, /* block_start */
910 				  ins.offset, /* block_len */
911 				  ins.offset, /* orig_block_len */
912 				  async_extent->ram_size, /* ram_bytes */
913 				  async_extent->compress_type,
914 				  BTRFS_ORDERED_COMPRESSED);
915 		if (IS_ERR(em))
916 			/* ret value is not necessary due to void function */
917 			goto out_free_reserve;
918 		free_extent_map(em);
919 
920 		ret = btrfs_add_ordered_extent_compress(inode,
921 						async_extent->start,
922 						ins.objectid,
923 						async_extent->ram_size,
924 						ins.offset,
925 						async_extent->compress_type);
926 		if (ret) {
927 			btrfs_drop_extent_cache(inode, async_extent->start,
928 						async_extent->start +
929 						async_extent->ram_size - 1, 0);
930 			goto out_free_reserve;
931 		}
932 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
933 
934 		/*
935 		 * clear dirty, set writeback and unlock the pages.
936 		 */
937 		extent_clear_unlock_delalloc(inode, async_extent->start,
938 				async_extent->start +
939 				async_extent->ram_size - 1,
940 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
941 				PAGE_UNLOCK | PAGE_START_WRITEBACK);
942 		if (btrfs_submit_compressed_write(inode, async_extent->start,
943 				    async_extent->ram_size,
944 				    ins.objectid,
945 				    ins.offset, async_extent->pages,
946 				    async_extent->nr_pages,
947 				    async_chunk->write_flags,
948 				    async_chunk->blkcg_css)) {
949 			struct page *p = async_extent->pages[0];
950 			const u64 start = async_extent->start;
951 			const u64 end = start + async_extent->ram_size - 1;
952 
953 			p->mapping = inode->vfs_inode.i_mapping;
954 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
955 
956 			p->mapping = NULL;
957 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
958 						     PAGE_END_WRITEBACK |
959 						     PAGE_SET_ERROR);
960 			free_async_extent_pages(async_extent);
961 		}
962 		alloc_hint = ins.objectid + ins.offset;
963 		kfree(async_extent);
964 		cond_resched();
965 	}
966 	return;
967 out_free_reserve:
968 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
969 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
970 out_free:
971 	extent_clear_unlock_delalloc(inode, async_extent->start,
972 				     async_extent->start +
973 				     async_extent->ram_size - 1,
974 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
975 				     EXTENT_DELALLOC_NEW |
976 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
977 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
978 				     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
979 	free_async_extent_pages(async_extent);
980 	kfree(async_extent);
981 	goto again;
982 }
983 
984 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
985 				      u64 num_bytes)
986 {
987 	struct extent_map_tree *em_tree = &inode->extent_tree;
988 	struct extent_map *em;
989 	u64 alloc_hint = 0;
990 
991 	read_lock(&em_tree->lock);
992 	em = search_extent_mapping(em_tree, start, num_bytes);
993 	if (em) {
994 		/*
995 		 * if block start isn't an actual block number then find the
996 		 * first block in this inode and use that as a hint.  If that
997 		 * block is also bogus then just don't worry about it.
998 		 */
999 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1000 			free_extent_map(em);
1001 			em = search_extent_mapping(em_tree, 0, 0);
1002 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1003 				alloc_hint = em->block_start;
1004 			if (em)
1005 				free_extent_map(em);
1006 		} else {
1007 			alloc_hint = em->block_start;
1008 			free_extent_map(em);
1009 		}
1010 	}
1011 	read_unlock(&em_tree->lock);
1012 
1013 	return alloc_hint;
1014 }
1015 
1016 /*
1017  * when extent_io.c finds a delayed allocation range in the file,
1018  * the call backs end up in this code.  The basic idea is to
1019  * allocate extents on disk for the range, and create ordered data structs
1020  * in ram to track those extents.
1021  *
1022  * locked_page is the page that writepage had locked already.  We use
1023  * it to make sure we don't do extra locks or unlocks.
1024  *
1025  * *page_started is set to one if we unlock locked_page and do everything
1026  * required to start IO on it.  It may be clean and already done with
1027  * IO when we return.
1028  */
1029 static noinline int cow_file_range(struct btrfs_inode *inode,
1030 				   struct page *locked_page,
1031 				   u64 start, u64 end, int *page_started,
1032 				   unsigned long *nr_written, int unlock)
1033 {
1034 	struct btrfs_root *root = inode->root;
1035 	struct btrfs_fs_info *fs_info = root->fs_info;
1036 	u64 alloc_hint = 0;
1037 	u64 num_bytes;
1038 	unsigned long ram_size;
1039 	u64 cur_alloc_size = 0;
1040 	u64 min_alloc_size;
1041 	u64 blocksize = fs_info->sectorsize;
1042 	struct btrfs_key ins;
1043 	struct extent_map *em;
1044 	unsigned clear_bits;
1045 	unsigned long page_ops;
1046 	bool extent_reserved = false;
1047 	int ret = 0;
1048 
1049 	if (btrfs_is_free_space_inode(inode)) {
1050 		WARN_ON_ONCE(1);
1051 		ret = -EINVAL;
1052 		goto out_unlock;
1053 	}
1054 
1055 	num_bytes = ALIGN(end - start + 1, blocksize);
1056 	num_bytes = max(blocksize,  num_bytes);
1057 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1058 
1059 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1060 
1061 	if (start == 0) {
1062 		/* lets try to make an inline extent */
1063 		ret = cow_file_range_inline(inode, start, end, 0,
1064 					    BTRFS_COMPRESS_NONE, NULL);
1065 		if (ret == 0) {
1066 			/*
1067 			 * We use DO_ACCOUNTING here because we need the
1068 			 * delalloc_release_metadata to be run _after_ we drop
1069 			 * our outstanding extent for clearing delalloc for this
1070 			 * range.
1071 			 */
1072 			extent_clear_unlock_delalloc(inode, start, end, NULL,
1073 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1074 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1075 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1076 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1077 			*nr_written = *nr_written +
1078 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1079 			*page_started = 1;
1080 			goto out;
1081 		} else if (ret < 0) {
1082 			goto out_unlock;
1083 		}
1084 	}
1085 
1086 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1087 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1088 
1089 	/*
1090 	 * Relocation relies on the relocated extents to have exactly the same
1091 	 * size as the original extents. Normally writeback for relocation data
1092 	 * extents follows a NOCOW path because relocation preallocates the
1093 	 * extents. However, due to an operation such as scrub turning a block
1094 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1095 	 * an extent allocated during COW has exactly the requested size and can
1096 	 * not be split into smaller extents, otherwise relocation breaks and
1097 	 * fails during the stage where it updates the bytenr of file extent
1098 	 * items.
1099 	 */
1100 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1101 		min_alloc_size = num_bytes;
1102 	else
1103 		min_alloc_size = fs_info->sectorsize;
1104 
1105 	while (num_bytes > 0) {
1106 		cur_alloc_size = num_bytes;
1107 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1108 					   min_alloc_size, 0, alloc_hint,
1109 					   &ins, 1, 1);
1110 		if (ret < 0)
1111 			goto out_unlock;
1112 		cur_alloc_size = ins.offset;
1113 		extent_reserved = true;
1114 
1115 		ram_size = ins.offset;
1116 		em = create_io_em(inode, start, ins.offset, /* len */
1117 				  start, /* orig_start */
1118 				  ins.objectid, /* block_start */
1119 				  ins.offset, /* block_len */
1120 				  ins.offset, /* orig_block_len */
1121 				  ram_size, /* ram_bytes */
1122 				  BTRFS_COMPRESS_NONE, /* compress_type */
1123 				  BTRFS_ORDERED_REGULAR /* type */);
1124 		if (IS_ERR(em)) {
1125 			ret = PTR_ERR(em);
1126 			goto out_reserve;
1127 		}
1128 		free_extent_map(em);
1129 
1130 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1131 					       ram_size, cur_alloc_size,
1132 					       BTRFS_ORDERED_REGULAR);
1133 		if (ret)
1134 			goto out_drop_extent_cache;
1135 
1136 		if (root->root_key.objectid ==
1137 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1138 			ret = btrfs_reloc_clone_csums(inode, start,
1139 						      cur_alloc_size);
1140 			/*
1141 			 * Only drop cache here, and process as normal.
1142 			 *
1143 			 * We must not allow extent_clear_unlock_delalloc()
1144 			 * at out_unlock label to free meta of this ordered
1145 			 * extent, as its meta should be freed by
1146 			 * btrfs_finish_ordered_io().
1147 			 *
1148 			 * So we must continue until @start is increased to
1149 			 * skip current ordered extent.
1150 			 */
1151 			if (ret)
1152 				btrfs_drop_extent_cache(inode, start,
1153 						start + ram_size - 1, 0);
1154 		}
1155 
1156 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1157 
1158 		/* we're not doing compressed IO, don't unlock the first
1159 		 * page (which the caller expects to stay locked), don't
1160 		 * clear any dirty bits and don't set any writeback bits
1161 		 *
1162 		 * Do set the Private2 bit so we know this page was properly
1163 		 * setup for writepage
1164 		 */
1165 		page_ops = unlock ? PAGE_UNLOCK : 0;
1166 		page_ops |= PAGE_SET_PRIVATE2;
1167 
1168 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1169 					     locked_page,
1170 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1171 					     page_ops);
1172 		if (num_bytes < cur_alloc_size)
1173 			num_bytes = 0;
1174 		else
1175 			num_bytes -= cur_alloc_size;
1176 		alloc_hint = ins.objectid + ins.offset;
1177 		start += cur_alloc_size;
1178 		extent_reserved = false;
1179 
1180 		/*
1181 		 * btrfs_reloc_clone_csums() error, since start is increased
1182 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1183 		 * free metadata of current ordered extent, we're OK to exit.
1184 		 */
1185 		if (ret)
1186 			goto out_unlock;
1187 	}
1188 out:
1189 	return ret;
1190 
1191 out_drop_extent_cache:
1192 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1193 out_reserve:
1194 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1195 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1196 out_unlock:
1197 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1198 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1199 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1200 	/*
1201 	 * If we reserved an extent for our delalloc range (or a subrange) and
1202 	 * failed to create the respective ordered extent, then it means that
1203 	 * when we reserved the extent we decremented the extent's size from
1204 	 * the data space_info's bytes_may_use counter and incremented the
1205 	 * space_info's bytes_reserved counter by the same amount. We must make
1206 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1207 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1208 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1209 	 */
1210 	if (extent_reserved) {
1211 		extent_clear_unlock_delalloc(inode, start,
1212 					     start + cur_alloc_size - 1,
1213 					     locked_page,
1214 					     clear_bits,
1215 					     page_ops);
1216 		start += cur_alloc_size;
1217 		if (start >= end)
1218 			goto out;
1219 	}
1220 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1221 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1222 				     page_ops);
1223 	goto out;
1224 }
1225 
1226 /*
1227  * work queue call back to started compression on a file and pages
1228  */
1229 static noinline void async_cow_start(struct btrfs_work *work)
1230 {
1231 	struct async_chunk *async_chunk;
1232 	int compressed_extents;
1233 
1234 	async_chunk = container_of(work, struct async_chunk, work);
1235 
1236 	compressed_extents = compress_file_range(async_chunk);
1237 	if (compressed_extents == 0) {
1238 		btrfs_add_delayed_iput(async_chunk->inode);
1239 		async_chunk->inode = NULL;
1240 	}
1241 }
1242 
1243 /*
1244  * work queue call back to submit previously compressed pages
1245  */
1246 static noinline void async_cow_submit(struct btrfs_work *work)
1247 {
1248 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1249 						     work);
1250 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1251 	unsigned long nr_pages;
1252 
1253 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1254 		PAGE_SHIFT;
1255 
1256 	/* atomic_sub_return implies a barrier */
1257 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1258 	    5 * SZ_1M)
1259 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1260 
1261 	/*
1262 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1263 	 * in which case we don't have anything to submit, yet we need to
1264 	 * always adjust ->async_delalloc_pages as its paired with the init
1265 	 * happening in cow_file_range_async
1266 	 */
1267 	if (async_chunk->inode)
1268 		submit_compressed_extents(async_chunk);
1269 }
1270 
1271 static noinline void async_cow_free(struct btrfs_work *work)
1272 {
1273 	struct async_chunk *async_chunk;
1274 
1275 	async_chunk = container_of(work, struct async_chunk, work);
1276 	if (async_chunk->inode)
1277 		btrfs_add_delayed_iput(async_chunk->inode);
1278 	if (async_chunk->blkcg_css)
1279 		css_put(async_chunk->blkcg_css);
1280 	/*
1281 	 * Since the pointer to 'pending' is at the beginning of the array of
1282 	 * async_chunk's, freeing it ensures the whole array has been freed.
1283 	 */
1284 	if (atomic_dec_and_test(async_chunk->pending))
1285 		kvfree(async_chunk->pending);
1286 }
1287 
1288 static int cow_file_range_async(struct btrfs_inode *inode,
1289 				struct writeback_control *wbc,
1290 				struct page *locked_page,
1291 				u64 start, u64 end, int *page_started,
1292 				unsigned long *nr_written)
1293 {
1294 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1295 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1296 	struct async_cow *ctx;
1297 	struct async_chunk *async_chunk;
1298 	unsigned long nr_pages;
1299 	u64 cur_end;
1300 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1301 	int i;
1302 	bool should_compress;
1303 	unsigned nofs_flag;
1304 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1305 
1306 	unlock_extent(&inode->io_tree, start, end);
1307 
1308 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1309 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1310 		num_chunks = 1;
1311 		should_compress = false;
1312 	} else {
1313 		should_compress = true;
1314 	}
1315 
1316 	nofs_flag = memalloc_nofs_save();
1317 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1318 	memalloc_nofs_restore(nofs_flag);
1319 
1320 	if (!ctx) {
1321 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1322 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1323 			EXTENT_DO_ACCOUNTING;
1324 		unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1325 					 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1326 
1327 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1328 					     clear_bits, page_ops);
1329 		return -ENOMEM;
1330 	}
1331 
1332 	async_chunk = ctx->chunks;
1333 	atomic_set(&ctx->num_chunks, num_chunks);
1334 
1335 	for (i = 0; i < num_chunks; i++) {
1336 		if (should_compress)
1337 			cur_end = min(end, start + SZ_512K - 1);
1338 		else
1339 			cur_end = end;
1340 
1341 		/*
1342 		 * igrab is called higher up in the call chain, take only the
1343 		 * lightweight reference for the callback lifetime
1344 		 */
1345 		ihold(&inode->vfs_inode);
1346 		async_chunk[i].pending = &ctx->num_chunks;
1347 		async_chunk[i].inode = &inode->vfs_inode;
1348 		async_chunk[i].start = start;
1349 		async_chunk[i].end = cur_end;
1350 		async_chunk[i].write_flags = write_flags;
1351 		INIT_LIST_HEAD(&async_chunk[i].extents);
1352 
1353 		/*
1354 		 * The locked_page comes all the way from writepage and its
1355 		 * the original page we were actually given.  As we spread
1356 		 * this large delalloc region across multiple async_chunk
1357 		 * structs, only the first struct needs a pointer to locked_page
1358 		 *
1359 		 * This way we don't need racey decisions about who is supposed
1360 		 * to unlock it.
1361 		 */
1362 		if (locked_page) {
1363 			/*
1364 			 * Depending on the compressibility, the pages might or
1365 			 * might not go through async.  We want all of them to
1366 			 * be accounted against wbc once.  Let's do it here
1367 			 * before the paths diverge.  wbc accounting is used
1368 			 * only for foreign writeback detection and doesn't
1369 			 * need full accuracy.  Just account the whole thing
1370 			 * against the first page.
1371 			 */
1372 			wbc_account_cgroup_owner(wbc, locked_page,
1373 						 cur_end - start);
1374 			async_chunk[i].locked_page = locked_page;
1375 			locked_page = NULL;
1376 		} else {
1377 			async_chunk[i].locked_page = NULL;
1378 		}
1379 
1380 		if (blkcg_css != blkcg_root_css) {
1381 			css_get(blkcg_css);
1382 			async_chunk[i].blkcg_css = blkcg_css;
1383 		} else {
1384 			async_chunk[i].blkcg_css = NULL;
1385 		}
1386 
1387 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1388 				async_cow_submit, async_cow_free);
1389 
1390 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1391 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1392 
1393 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1394 
1395 		*nr_written += nr_pages;
1396 		start = cur_end + 1;
1397 	}
1398 	*page_started = 1;
1399 	return 0;
1400 }
1401 
1402 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1403 				       struct page *locked_page, u64 start,
1404 				       u64 end, int *page_started,
1405 				       unsigned long *nr_written)
1406 {
1407 	int ret;
1408 
1409 	ret = cow_file_range(inode, locked_page, start, end, page_started,
1410 			     nr_written, 0);
1411 	if (ret)
1412 		return ret;
1413 
1414 	if (*page_started)
1415 		return 0;
1416 
1417 	__set_page_dirty_nobuffers(locked_page);
1418 	account_page_redirty(locked_page);
1419 	extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL);
1420 	*page_started = 1;
1421 
1422 	return 0;
1423 }
1424 
1425 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1426 					u64 bytenr, u64 num_bytes)
1427 {
1428 	int ret;
1429 	struct btrfs_ordered_sum *sums;
1430 	LIST_HEAD(list);
1431 
1432 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1433 				       bytenr + num_bytes - 1, &list, 0);
1434 	if (ret == 0 && list_empty(&list))
1435 		return 0;
1436 
1437 	while (!list_empty(&list)) {
1438 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1439 		list_del(&sums->list);
1440 		kfree(sums);
1441 	}
1442 	if (ret < 0)
1443 		return ret;
1444 	return 1;
1445 }
1446 
1447 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1448 			   const u64 start, const u64 end,
1449 			   int *page_started, unsigned long *nr_written)
1450 {
1451 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1452 	const bool is_reloc_ino = (inode->root->root_key.objectid ==
1453 				   BTRFS_DATA_RELOC_TREE_OBJECTID);
1454 	const u64 range_bytes = end + 1 - start;
1455 	struct extent_io_tree *io_tree = &inode->io_tree;
1456 	u64 range_start = start;
1457 	u64 count;
1458 
1459 	/*
1460 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1461 	 * made we had not enough available data space and therefore we did not
1462 	 * reserve data space for it, since we though we could do NOCOW for the
1463 	 * respective file range (either there is prealloc extent or the inode
1464 	 * has the NOCOW bit set).
1465 	 *
1466 	 * However when we need to fallback to COW mode (because for example the
1467 	 * block group for the corresponding extent was turned to RO mode by a
1468 	 * scrub or relocation) we need to do the following:
1469 	 *
1470 	 * 1) We increment the bytes_may_use counter of the data space info.
1471 	 *    If COW succeeds, it allocates a new data extent and after doing
1472 	 *    that it decrements the space info's bytes_may_use counter and
1473 	 *    increments its bytes_reserved counter by the same amount (we do
1474 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1475 	 *    bytes_may_use counter to compensate (when space is reserved at
1476 	 *    buffered write time, the bytes_may_use counter is incremented);
1477 	 *
1478 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1479 	 *    that if the COW path fails for any reason, it decrements (through
1480 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1481 	 *    data space info, which we incremented in the step above.
1482 	 *
1483 	 * If we need to fallback to cow and the inode corresponds to a free
1484 	 * space cache inode or an inode of the data relocation tree, we must
1485 	 * also increment bytes_may_use of the data space_info for the same
1486 	 * reason. Space caches and relocated data extents always get a prealloc
1487 	 * extent for them, however scrub or balance may have set the block
1488 	 * group that contains that extent to RO mode and therefore force COW
1489 	 * when starting writeback.
1490 	 */
1491 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1492 				 EXTENT_NORESERVE, 0);
1493 	if (count > 0 || is_space_ino || is_reloc_ino) {
1494 		u64 bytes = count;
1495 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1496 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1497 
1498 		if (is_space_ino || is_reloc_ino)
1499 			bytes = range_bytes;
1500 
1501 		spin_lock(&sinfo->lock);
1502 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1503 		spin_unlock(&sinfo->lock);
1504 
1505 		if (count > 0)
1506 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1507 					 0, 0, NULL);
1508 	}
1509 
1510 	return cow_file_range(inode, locked_page, start, end, page_started,
1511 			      nr_written, 1);
1512 }
1513 
1514 /*
1515  * when nowcow writeback call back.  This checks for snapshots or COW copies
1516  * of the extents that exist in the file, and COWs the file as required.
1517  *
1518  * If no cow copies or snapshots exist, we write directly to the existing
1519  * blocks on disk
1520  */
1521 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1522 				       struct page *locked_page,
1523 				       const u64 start, const u64 end,
1524 				       int *page_started,
1525 				       unsigned long *nr_written)
1526 {
1527 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1528 	struct btrfs_root *root = inode->root;
1529 	struct btrfs_path *path;
1530 	u64 cow_start = (u64)-1;
1531 	u64 cur_offset = start;
1532 	int ret;
1533 	bool check_prev = true;
1534 	const bool freespace_inode = btrfs_is_free_space_inode(inode);
1535 	u64 ino = btrfs_ino(inode);
1536 	bool nocow = false;
1537 	u64 disk_bytenr = 0;
1538 	const bool force = inode->flags & BTRFS_INODE_NODATACOW;
1539 
1540 	path = btrfs_alloc_path();
1541 	if (!path) {
1542 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1543 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1544 					     EXTENT_DO_ACCOUNTING |
1545 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1546 					     PAGE_START_WRITEBACK |
1547 					     PAGE_END_WRITEBACK);
1548 		return -ENOMEM;
1549 	}
1550 
1551 	while (1) {
1552 		struct btrfs_key found_key;
1553 		struct btrfs_file_extent_item *fi;
1554 		struct extent_buffer *leaf;
1555 		u64 extent_end;
1556 		u64 extent_offset;
1557 		u64 num_bytes = 0;
1558 		u64 disk_num_bytes;
1559 		u64 ram_bytes;
1560 		int extent_type;
1561 
1562 		nocow = false;
1563 
1564 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1565 					       cur_offset, 0);
1566 		if (ret < 0)
1567 			goto error;
1568 
1569 		/*
1570 		 * If there is no extent for our range when doing the initial
1571 		 * search, then go back to the previous slot as it will be the
1572 		 * one containing the search offset
1573 		 */
1574 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1575 			leaf = path->nodes[0];
1576 			btrfs_item_key_to_cpu(leaf, &found_key,
1577 					      path->slots[0] - 1);
1578 			if (found_key.objectid == ino &&
1579 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1580 				path->slots[0]--;
1581 		}
1582 		check_prev = false;
1583 next_slot:
1584 		/* Go to next leaf if we have exhausted the current one */
1585 		leaf = path->nodes[0];
1586 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1587 			ret = btrfs_next_leaf(root, path);
1588 			if (ret < 0) {
1589 				if (cow_start != (u64)-1)
1590 					cur_offset = cow_start;
1591 				goto error;
1592 			}
1593 			if (ret > 0)
1594 				break;
1595 			leaf = path->nodes[0];
1596 		}
1597 
1598 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1599 
1600 		/* Didn't find anything for our INO */
1601 		if (found_key.objectid > ino)
1602 			break;
1603 		/*
1604 		 * Keep searching until we find an EXTENT_ITEM or there are no
1605 		 * more extents for this inode
1606 		 */
1607 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1608 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1609 			path->slots[0]++;
1610 			goto next_slot;
1611 		}
1612 
1613 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1614 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1615 		    found_key.offset > end)
1616 			break;
1617 
1618 		/*
1619 		 * If the found extent starts after requested offset, then
1620 		 * adjust extent_end to be right before this extent begins
1621 		 */
1622 		if (found_key.offset > cur_offset) {
1623 			extent_end = found_key.offset;
1624 			extent_type = 0;
1625 			goto out_check;
1626 		}
1627 
1628 		/*
1629 		 * Found extent which begins before our range and potentially
1630 		 * intersect it
1631 		 */
1632 		fi = btrfs_item_ptr(leaf, path->slots[0],
1633 				    struct btrfs_file_extent_item);
1634 		extent_type = btrfs_file_extent_type(leaf, fi);
1635 
1636 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1637 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1638 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1639 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1640 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1641 			extent_end = found_key.offset +
1642 				btrfs_file_extent_num_bytes(leaf, fi);
1643 			disk_num_bytes =
1644 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1645 			/*
1646 			 * If the extent we got ends before our current offset,
1647 			 * skip to the next extent.
1648 			 */
1649 			if (extent_end <= cur_offset) {
1650 				path->slots[0]++;
1651 				goto next_slot;
1652 			}
1653 			/* Skip holes */
1654 			if (disk_bytenr == 0)
1655 				goto out_check;
1656 			/* Skip compressed/encrypted/encoded extents */
1657 			if (btrfs_file_extent_compression(leaf, fi) ||
1658 			    btrfs_file_extent_encryption(leaf, fi) ||
1659 			    btrfs_file_extent_other_encoding(leaf, fi))
1660 				goto out_check;
1661 			/*
1662 			 * If extent is created before the last volume's snapshot
1663 			 * this implies the extent is shared, hence we can't do
1664 			 * nocow. This is the same check as in
1665 			 * btrfs_cross_ref_exist but without calling
1666 			 * btrfs_search_slot.
1667 			 */
1668 			if (!freespace_inode &&
1669 			    btrfs_file_extent_generation(leaf, fi) <=
1670 			    btrfs_root_last_snapshot(&root->root_item))
1671 				goto out_check;
1672 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1673 				goto out_check;
1674 
1675 			/*
1676 			 * The following checks can be expensive, as they need to
1677 			 * take other locks and do btree or rbtree searches, so
1678 			 * release the path to avoid blocking other tasks for too
1679 			 * long.
1680 			 */
1681 			btrfs_release_path(path);
1682 
1683 			ret = btrfs_cross_ref_exist(root, ino,
1684 						    found_key.offset -
1685 						    extent_offset, disk_bytenr, false);
1686 			if (ret) {
1687 				/*
1688 				 * ret could be -EIO if the above fails to read
1689 				 * metadata.
1690 				 */
1691 				if (ret < 0) {
1692 					if (cow_start != (u64)-1)
1693 						cur_offset = cow_start;
1694 					goto error;
1695 				}
1696 
1697 				WARN_ON_ONCE(freespace_inode);
1698 				goto out_check;
1699 			}
1700 			disk_bytenr += extent_offset;
1701 			disk_bytenr += cur_offset - found_key.offset;
1702 			num_bytes = min(end + 1, extent_end) - cur_offset;
1703 			/*
1704 			 * If there are pending snapshots for this root, we
1705 			 * fall into common COW way
1706 			 */
1707 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1708 				goto out_check;
1709 			/*
1710 			 * force cow if csum exists in the range.
1711 			 * this ensure that csum for a given extent are
1712 			 * either valid or do not exist.
1713 			 */
1714 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1715 						  num_bytes);
1716 			if (ret) {
1717 				/*
1718 				 * ret could be -EIO if the above fails to read
1719 				 * metadata.
1720 				 */
1721 				if (ret < 0) {
1722 					if (cow_start != (u64)-1)
1723 						cur_offset = cow_start;
1724 					goto error;
1725 				}
1726 				WARN_ON_ONCE(freespace_inode);
1727 				goto out_check;
1728 			}
1729 			/* If the extent's block group is RO, we must COW */
1730 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1731 				goto out_check;
1732 			nocow = true;
1733 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1734 			extent_end = found_key.offset + ram_bytes;
1735 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1736 			/* Skip extents outside of our requested range */
1737 			if (extent_end <= start) {
1738 				path->slots[0]++;
1739 				goto next_slot;
1740 			}
1741 		} else {
1742 			/* If this triggers then we have a memory corruption */
1743 			BUG();
1744 		}
1745 out_check:
1746 		/*
1747 		 * If nocow is false then record the beginning of the range
1748 		 * that needs to be COWed
1749 		 */
1750 		if (!nocow) {
1751 			if (cow_start == (u64)-1)
1752 				cow_start = cur_offset;
1753 			cur_offset = extent_end;
1754 			if (cur_offset > end)
1755 				break;
1756 			if (!path->nodes[0])
1757 				continue;
1758 			path->slots[0]++;
1759 			goto next_slot;
1760 		}
1761 
1762 		/*
1763 		 * COW range from cow_start to found_key.offset - 1. As the key
1764 		 * will contain the beginning of the first extent that can be
1765 		 * NOCOW, following one which needs to be COW'ed
1766 		 */
1767 		if (cow_start != (u64)-1) {
1768 			ret = fallback_to_cow(inode, locked_page,
1769 					      cow_start, found_key.offset - 1,
1770 					      page_started, nr_written);
1771 			if (ret)
1772 				goto error;
1773 			cow_start = (u64)-1;
1774 		}
1775 
1776 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1777 			u64 orig_start = found_key.offset - extent_offset;
1778 			struct extent_map *em;
1779 
1780 			em = create_io_em(inode, cur_offset, num_bytes,
1781 					  orig_start,
1782 					  disk_bytenr, /* block_start */
1783 					  num_bytes, /* block_len */
1784 					  disk_num_bytes, /* orig_block_len */
1785 					  ram_bytes, BTRFS_COMPRESS_NONE,
1786 					  BTRFS_ORDERED_PREALLOC);
1787 			if (IS_ERR(em)) {
1788 				ret = PTR_ERR(em);
1789 				goto error;
1790 			}
1791 			free_extent_map(em);
1792 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1793 						       disk_bytenr, num_bytes,
1794 						       num_bytes,
1795 						       BTRFS_ORDERED_PREALLOC);
1796 			if (ret) {
1797 				btrfs_drop_extent_cache(inode, cur_offset,
1798 							cur_offset + num_bytes - 1,
1799 							0);
1800 				goto error;
1801 			}
1802 		} else {
1803 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1804 						       disk_bytenr, num_bytes,
1805 						       num_bytes,
1806 						       BTRFS_ORDERED_NOCOW);
1807 			if (ret)
1808 				goto error;
1809 		}
1810 
1811 		if (nocow)
1812 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1813 		nocow = false;
1814 
1815 		if (root->root_key.objectid ==
1816 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1817 			/*
1818 			 * Error handled later, as we must prevent
1819 			 * extent_clear_unlock_delalloc() in error handler
1820 			 * from freeing metadata of created ordered extent.
1821 			 */
1822 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1823 						      num_bytes);
1824 
1825 		extent_clear_unlock_delalloc(inode, cur_offset,
1826 					     cur_offset + num_bytes - 1,
1827 					     locked_page, EXTENT_LOCKED |
1828 					     EXTENT_DELALLOC |
1829 					     EXTENT_CLEAR_DATA_RESV,
1830 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1831 
1832 		cur_offset = extent_end;
1833 
1834 		/*
1835 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1836 		 * handler, as metadata for created ordered extent will only
1837 		 * be freed by btrfs_finish_ordered_io().
1838 		 */
1839 		if (ret)
1840 			goto error;
1841 		if (cur_offset > end)
1842 			break;
1843 	}
1844 	btrfs_release_path(path);
1845 
1846 	if (cur_offset <= end && cow_start == (u64)-1)
1847 		cow_start = cur_offset;
1848 
1849 	if (cow_start != (u64)-1) {
1850 		cur_offset = end;
1851 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1852 				      page_started, nr_written);
1853 		if (ret)
1854 			goto error;
1855 	}
1856 
1857 error:
1858 	if (nocow)
1859 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1860 
1861 	if (ret && cur_offset < end)
1862 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1863 					     locked_page, EXTENT_LOCKED |
1864 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1865 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1866 					     PAGE_START_WRITEBACK |
1867 					     PAGE_END_WRITEBACK);
1868 	btrfs_free_path(path);
1869 	return ret;
1870 }
1871 
1872 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
1873 {
1874 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
1875 		if (inode->defrag_bytes &&
1876 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
1877 				   0, NULL))
1878 			return false;
1879 		return true;
1880 	}
1881 	return false;
1882 }
1883 
1884 /*
1885  * Function to process delayed allocation (create CoW) for ranges which are
1886  * being touched for the first time.
1887  */
1888 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1889 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1890 		struct writeback_control *wbc)
1891 {
1892 	int ret;
1893 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
1894 
1895 	if (should_nocow(inode, start, end)) {
1896 		ASSERT(!zoned);
1897 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1898 					 page_started, nr_written);
1899 	} else if (!inode_can_compress(inode) ||
1900 		   !inode_need_compress(inode, start, end)) {
1901 		if (zoned)
1902 			ret = run_delalloc_zoned(inode, locked_page, start, end,
1903 						 page_started, nr_written);
1904 		else
1905 			ret = cow_file_range(inode, locked_page, start, end,
1906 					     page_started, nr_written, 1);
1907 	} else {
1908 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1909 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1910 					   page_started, nr_written);
1911 	}
1912 	if (ret)
1913 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1914 					      end - start + 1);
1915 	return ret;
1916 }
1917 
1918 void btrfs_split_delalloc_extent(struct inode *inode,
1919 				 struct extent_state *orig, u64 split)
1920 {
1921 	u64 size;
1922 
1923 	/* not delalloc, ignore it */
1924 	if (!(orig->state & EXTENT_DELALLOC))
1925 		return;
1926 
1927 	size = orig->end - orig->start + 1;
1928 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1929 		u32 num_extents;
1930 		u64 new_size;
1931 
1932 		/*
1933 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1934 		 * applies here, just in reverse.
1935 		 */
1936 		new_size = orig->end - split + 1;
1937 		num_extents = count_max_extents(new_size);
1938 		new_size = split - orig->start;
1939 		num_extents += count_max_extents(new_size);
1940 		if (count_max_extents(size) >= num_extents)
1941 			return;
1942 	}
1943 
1944 	spin_lock(&BTRFS_I(inode)->lock);
1945 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1946 	spin_unlock(&BTRFS_I(inode)->lock);
1947 }
1948 
1949 /*
1950  * Handle merged delayed allocation extents so we can keep track of new extents
1951  * that are just merged onto old extents, such as when we are doing sequential
1952  * writes, so we can properly account for the metadata space we'll need.
1953  */
1954 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1955 				 struct extent_state *other)
1956 {
1957 	u64 new_size, old_size;
1958 	u32 num_extents;
1959 
1960 	/* not delalloc, ignore it */
1961 	if (!(other->state & EXTENT_DELALLOC))
1962 		return;
1963 
1964 	if (new->start > other->start)
1965 		new_size = new->end - other->start + 1;
1966 	else
1967 		new_size = other->end - new->start + 1;
1968 
1969 	/* we're not bigger than the max, unreserve the space and go */
1970 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1971 		spin_lock(&BTRFS_I(inode)->lock);
1972 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1973 		spin_unlock(&BTRFS_I(inode)->lock);
1974 		return;
1975 	}
1976 
1977 	/*
1978 	 * We have to add up either side to figure out how many extents were
1979 	 * accounted for before we merged into one big extent.  If the number of
1980 	 * extents we accounted for is <= the amount we need for the new range
1981 	 * then we can return, otherwise drop.  Think of it like this
1982 	 *
1983 	 * [ 4k][MAX_SIZE]
1984 	 *
1985 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1986 	 * need 2 outstanding extents, on one side we have 1 and the other side
1987 	 * we have 1 so they are == and we can return.  But in this case
1988 	 *
1989 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1990 	 *
1991 	 * Each range on their own accounts for 2 extents, but merged together
1992 	 * they are only 3 extents worth of accounting, so we need to drop in
1993 	 * this case.
1994 	 */
1995 	old_size = other->end - other->start + 1;
1996 	num_extents = count_max_extents(old_size);
1997 	old_size = new->end - new->start + 1;
1998 	num_extents += count_max_extents(old_size);
1999 	if (count_max_extents(new_size) >= num_extents)
2000 		return;
2001 
2002 	spin_lock(&BTRFS_I(inode)->lock);
2003 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2004 	spin_unlock(&BTRFS_I(inode)->lock);
2005 }
2006 
2007 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2008 				      struct inode *inode)
2009 {
2010 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2011 
2012 	spin_lock(&root->delalloc_lock);
2013 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2014 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2015 			      &root->delalloc_inodes);
2016 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2017 			&BTRFS_I(inode)->runtime_flags);
2018 		root->nr_delalloc_inodes++;
2019 		if (root->nr_delalloc_inodes == 1) {
2020 			spin_lock(&fs_info->delalloc_root_lock);
2021 			BUG_ON(!list_empty(&root->delalloc_root));
2022 			list_add_tail(&root->delalloc_root,
2023 				      &fs_info->delalloc_roots);
2024 			spin_unlock(&fs_info->delalloc_root_lock);
2025 		}
2026 	}
2027 	spin_unlock(&root->delalloc_lock);
2028 }
2029 
2030 
2031 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2032 				struct btrfs_inode *inode)
2033 {
2034 	struct btrfs_fs_info *fs_info = root->fs_info;
2035 
2036 	if (!list_empty(&inode->delalloc_inodes)) {
2037 		list_del_init(&inode->delalloc_inodes);
2038 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2039 			  &inode->runtime_flags);
2040 		root->nr_delalloc_inodes--;
2041 		if (!root->nr_delalloc_inodes) {
2042 			ASSERT(list_empty(&root->delalloc_inodes));
2043 			spin_lock(&fs_info->delalloc_root_lock);
2044 			BUG_ON(list_empty(&root->delalloc_root));
2045 			list_del_init(&root->delalloc_root);
2046 			spin_unlock(&fs_info->delalloc_root_lock);
2047 		}
2048 	}
2049 }
2050 
2051 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2052 				     struct btrfs_inode *inode)
2053 {
2054 	spin_lock(&root->delalloc_lock);
2055 	__btrfs_del_delalloc_inode(root, inode);
2056 	spin_unlock(&root->delalloc_lock);
2057 }
2058 
2059 /*
2060  * Properly track delayed allocation bytes in the inode and to maintain the
2061  * list of inodes that have pending delalloc work to be done.
2062  */
2063 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2064 			       unsigned *bits)
2065 {
2066 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2067 
2068 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2069 		WARN_ON(1);
2070 	/*
2071 	 * set_bit and clear bit hooks normally require _irqsave/restore
2072 	 * but in this case, we are only testing for the DELALLOC
2073 	 * bit, which is only set or cleared with irqs on
2074 	 */
2075 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2076 		struct btrfs_root *root = BTRFS_I(inode)->root;
2077 		u64 len = state->end + 1 - state->start;
2078 		u32 num_extents = count_max_extents(len);
2079 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2080 
2081 		spin_lock(&BTRFS_I(inode)->lock);
2082 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2083 		spin_unlock(&BTRFS_I(inode)->lock);
2084 
2085 		/* For sanity tests */
2086 		if (btrfs_is_testing(fs_info))
2087 			return;
2088 
2089 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2090 					 fs_info->delalloc_batch);
2091 		spin_lock(&BTRFS_I(inode)->lock);
2092 		BTRFS_I(inode)->delalloc_bytes += len;
2093 		if (*bits & EXTENT_DEFRAG)
2094 			BTRFS_I(inode)->defrag_bytes += len;
2095 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2096 					 &BTRFS_I(inode)->runtime_flags))
2097 			btrfs_add_delalloc_inodes(root, inode);
2098 		spin_unlock(&BTRFS_I(inode)->lock);
2099 	}
2100 
2101 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2102 	    (*bits & EXTENT_DELALLOC_NEW)) {
2103 		spin_lock(&BTRFS_I(inode)->lock);
2104 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2105 			state->start;
2106 		spin_unlock(&BTRFS_I(inode)->lock);
2107 	}
2108 }
2109 
2110 /*
2111  * Once a range is no longer delalloc this function ensures that proper
2112  * accounting happens.
2113  */
2114 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2115 				 struct extent_state *state, unsigned *bits)
2116 {
2117 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2118 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2119 	u64 len = state->end + 1 - state->start;
2120 	u32 num_extents = count_max_extents(len);
2121 
2122 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2123 		spin_lock(&inode->lock);
2124 		inode->defrag_bytes -= len;
2125 		spin_unlock(&inode->lock);
2126 	}
2127 
2128 	/*
2129 	 * set_bit and clear bit hooks normally require _irqsave/restore
2130 	 * but in this case, we are only testing for the DELALLOC
2131 	 * bit, which is only set or cleared with irqs on
2132 	 */
2133 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2134 		struct btrfs_root *root = inode->root;
2135 		bool do_list = !btrfs_is_free_space_inode(inode);
2136 
2137 		spin_lock(&inode->lock);
2138 		btrfs_mod_outstanding_extents(inode, -num_extents);
2139 		spin_unlock(&inode->lock);
2140 
2141 		/*
2142 		 * We don't reserve metadata space for space cache inodes so we
2143 		 * don't need to call delalloc_release_metadata if there is an
2144 		 * error.
2145 		 */
2146 		if (*bits & EXTENT_CLEAR_META_RESV &&
2147 		    root != fs_info->tree_root)
2148 			btrfs_delalloc_release_metadata(inode, len, false);
2149 
2150 		/* For sanity tests. */
2151 		if (btrfs_is_testing(fs_info))
2152 			return;
2153 
2154 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2155 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2156 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2157 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2158 
2159 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2160 					 fs_info->delalloc_batch);
2161 		spin_lock(&inode->lock);
2162 		inode->delalloc_bytes -= len;
2163 		if (do_list && inode->delalloc_bytes == 0 &&
2164 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2165 					&inode->runtime_flags))
2166 			btrfs_del_delalloc_inode(root, inode);
2167 		spin_unlock(&inode->lock);
2168 	}
2169 
2170 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2171 	    (*bits & EXTENT_DELALLOC_NEW)) {
2172 		spin_lock(&inode->lock);
2173 		ASSERT(inode->new_delalloc_bytes >= len);
2174 		inode->new_delalloc_bytes -= len;
2175 		if (*bits & EXTENT_ADD_INODE_BYTES)
2176 			inode_add_bytes(&inode->vfs_inode, len);
2177 		spin_unlock(&inode->lock);
2178 	}
2179 }
2180 
2181 /*
2182  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2183  * in a chunk's stripe. This function ensures that bios do not span a
2184  * stripe/chunk
2185  *
2186  * @page - The page we are about to add to the bio
2187  * @size - size we want to add to the bio
2188  * @bio - bio we want to ensure is smaller than a stripe
2189  * @bio_flags - flags of the bio
2190  *
2191  * return 1 if page cannot be added to the bio
2192  * return 0 if page can be added to the bio
2193  * return error otherwise
2194  */
2195 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2196 			     unsigned long bio_flags)
2197 {
2198 	struct inode *inode = page->mapping->host;
2199 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2200 	u64 logical = bio->bi_iter.bi_sector << 9;
2201 	struct extent_map *em;
2202 	u64 length = 0;
2203 	u64 map_length;
2204 	int ret = 0;
2205 	struct btrfs_io_geometry geom;
2206 
2207 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2208 		return 0;
2209 
2210 	length = bio->bi_iter.bi_size;
2211 	map_length = length;
2212 	em = btrfs_get_chunk_map(fs_info, logical, map_length);
2213 	if (IS_ERR(em))
2214 		return PTR_ERR(em);
2215 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical,
2216 				    map_length, &geom);
2217 	if (ret < 0)
2218 		goto out;
2219 
2220 	if (geom.len < length + size)
2221 		ret = 1;
2222 out:
2223 	free_extent_map(em);
2224 	return ret;
2225 }
2226 
2227 /*
2228  * in order to insert checksums into the metadata in large chunks,
2229  * we wait until bio submission time.   All the pages in the bio are
2230  * checksummed and sums are attached onto the ordered extent record.
2231  *
2232  * At IO completion time the cums attached on the ordered extent record
2233  * are inserted into the btree
2234  */
2235 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2236 					   u64 dio_file_offset)
2237 {
2238 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2239 }
2240 
2241 bool btrfs_bio_fits_in_ordered_extent(struct page *page, struct bio *bio,
2242 				      unsigned int size)
2243 {
2244 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2245 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2246 	struct btrfs_ordered_extent *ordered;
2247 	u64 len = bio->bi_iter.bi_size + size;
2248 	bool ret = true;
2249 
2250 	ASSERT(btrfs_is_zoned(fs_info));
2251 	ASSERT(fs_info->max_zone_append_size > 0);
2252 	ASSERT(bio_op(bio) == REQ_OP_ZONE_APPEND);
2253 
2254 	/* Ordered extent not yet created, so we're good */
2255 	ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
2256 	if (!ordered)
2257 		return ret;
2258 
2259 	if ((bio->bi_iter.bi_sector << SECTOR_SHIFT) + len >
2260 	    ordered->disk_bytenr + ordered->disk_num_bytes)
2261 		ret = false;
2262 
2263 	btrfs_put_ordered_extent(ordered);
2264 
2265 	return ret;
2266 }
2267 
2268 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2269 					   struct bio *bio, loff_t file_offset)
2270 {
2271 	struct btrfs_ordered_extent *ordered;
2272 	struct extent_map *em = NULL, *em_new = NULL;
2273 	struct extent_map_tree *em_tree = &inode->extent_tree;
2274 	u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2275 	u64 len = bio->bi_iter.bi_size;
2276 	u64 end = start + len;
2277 	u64 ordered_end;
2278 	u64 pre, post;
2279 	int ret = 0;
2280 
2281 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2282 	if (WARN_ON_ONCE(!ordered))
2283 		return BLK_STS_IOERR;
2284 
2285 	/* No need to split */
2286 	if (ordered->disk_num_bytes == len)
2287 		goto out;
2288 
2289 	/* We cannot split once end_bio'd ordered extent */
2290 	if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2291 		ret = -EINVAL;
2292 		goto out;
2293 	}
2294 
2295 	/* We cannot split a compressed ordered extent */
2296 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2297 		ret = -EINVAL;
2298 		goto out;
2299 	}
2300 
2301 	ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2302 	/* bio must be in one ordered extent */
2303 	if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2304 		ret = -EINVAL;
2305 		goto out;
2306 	}
2307 
2308 	/* Checksum list should be empty */
2309 	if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2310 		ret = -EINVAL;
2311 		goto out;
2312 	}
2313 
2314 	pre = start - ordered->disk_bytenr;
2315 	post = ordered_end - end;
2316 
2317 	ret = btrfs_split_ordered_extent(ordered, pre, post);
2318 	if (ret)
2319 		goto out;
2320 
2321 	read_lock(&em_tree->lock);
2322 	em = lookup_extent_mapping(em_tree, ordered->file_offset, len);
2323 	if (!em) {
2324 		read_unlock(&em_tree->lock);
2325 		ret = -EIO;
2326 		goto out;
2327 	}
2328 	read_unlock(&em_tree->lock);
2329 
2330 	ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2331 	/*
2332 	 * We cannot reuse em_new here but have to create a new one, as
2333 	 * unpin_extent_cache() expects the start of the extent map to be the
2334 	 * logical offset of the file, which does not hold true anymore after
2335 	 * splitting.
2336 	 */
2337 	em_new = create_io_em(inode, em->start + pre, len,
2338 			      em->start + pre, em->block_start + pre, len,
2339 			      len, len, BTRFS_COMPRESS_NONE,
2340 			      BTRFS_ORDERED_REGULAR);
2341 	if (IS_ERR(em_new)) {
2342 		ret = PTR_ERR(em_new);
2343 		goto out;
2344 	}
2345 	free_extent_map(em_new);
2346 
2347 out:
2348 	free_extent_map(em);
2349 	btrfs_put_ordered_extent(ordered);
2350 
2351 	return errno_to_blk_status(ret);
2352 }
2353 
2354 /*
2355  * extent_io.c submission hook. This does the right thing for csum calculation
2356  * on write, or reading the csums from the tree before a read.
2357  *
2358  * Rules about async/sync submit,
2359  * a) read:				sync submit
2360  *
2361  * b) write without checksum:		sync submit
2362  *
2363  * c) write with checksum:
2364  *    c-1) if bio is issued by fsync:	sync submit
2365  *         (sync_writers != 0)
2366  *
2367  *    c-2) if root is reloc root:	sync submit
2368  *         (only in case of buffered IO)
2369  *
2370  *    c-3) otherwise:			async submit
2371  */
2372 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2373 				   int mirror_num, unsigned long bio_flags)
2374 
2375 {
2376 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2377 	struct btrfs_root *root = BTRFS_I(inode)->root;
2378 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2379 	blk_status_t ret = 0;
2380 	int skip_sum;
2381 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2382 
2383 	skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2384 		   !fs_info->csum_root;
2385 
2386 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2387 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2388 
2389 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2390 		struct page *page = bio_first_bvec_all(bio)->bv_page;
2391 		loff_t file_offset = page_offset(page);
2392 
2393 		ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2394 		if (ret)
2395 			goto out;
2396 	}
2397 
2398 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2399 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2400 		if (ret)
2401 			goto out;
2402 
2403 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2404 			ret = btrfs_submit_compressed_read(inode, bio,
2405 							   mirror_num,
2406 							   bio_flags);
2407 			goto out;
2408 		} else {
2409 			/*
2410 			 * Lookup bio sums does extra checks around whether we
2411 			 * need to csum or not, which is why we ignore skip_sum
2412 			 * here.
2413 			 */
2414 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2415 			if (ret)
2416 				goto out;
2417 		}
2418 		goto mapit;
2419 	} else if (async && !skip_sum) {
2420 		/* csum items have already been cloned */
2421 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2422 			goto mapit;
2423 		/* we're doing a write, do the async checksumming */
2424 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2425 					  0, btrfs_submit_bio_start);
2426 		goto out;
2427 	} else if (!skip_sum) {
2428 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2429 		if (ret)
2430 			goto out;
2431 	}
2432 
2433 mapit:
2434 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2435 
2436 out:
2437 	if (ret) {
2438 		bio->bi_status = ret;
2439 		bio_endio(bio);
2440 	}
2441 	return ret;
2442 }
2443 
2444 /*
2445  * given a list of ordered sums record them in the inode.  This happens
2446  * at IO completion time based on sums calculated at bio submission time.
2447  */
2448 static int add_pending_csums(struct btrfs_trans_handle *trans,
2449 			     struct list_head *list)
2450 {
2451 	struct btrfs_ordered_sum *sum;
2452 	int ret;
2453 
2454 	list_for_each_entry(sum, list, list) {
2455 		trans->adding_csums = true;
2456 		ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2457 		trans->adding_csums = false;
2458 		if (ret)
2459 			return ret;
2460 	}
2461 	return 0;
2462 }
2463 
2464 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2465 					 const u64 start,
2466 					 const u64 len,
2467 					 struct extent_state **cached_state)
2468 {
2469 	u64 search_start = start;
2470 	const u64 end = start + len - 1;
2471 
2472 	while (search_start < end) {
2473 		const u64 search_len = end - search_start + 1;
2474 		struct extent_map *em;
2475 		u64 em_len;
2476 		int ret = 0;
2477 
2478 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2479 		if (IS_ERR(em))
2480 			return PTR_ERR(em);
2481 
2482 		if (em->block_start != EXTENT_MAP_HOLE)
2483 			goto next;
2484 
2485 		em_len = em->len;
2486 		if (em->start < search_start)
2487 			em_len -= search_start - em->start;
2488 		if (em_len > search_len)
2489 			em_len = search_len;
2490 
2491 		ret = set_extent_bit(&inode->io_tree, search_start,
2492 				     search_start + em_len - 1,
2493 				     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2494 				     GFP_NOFS, NULL);
2495 next:
2496 		search_start = extent_map_end(em);
2497 		free_extent_map(em);
2498 		if (ret)
2499 			return ret;
2500 	}
2501 	return 0;
2502 }
2503 
2504 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2505 			      unsigned int extra_bits,
2506 			      struct extent_state **cached_state)
2507 {
2508 	WARN_ON(PAGE_ALIGNED(end));
2509 
2510 	if (start >= i_size_read(&inode->vfs_inode) &&
2511 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2512 		/*
2513 		 * There can't be any extents following eof in this case so just
2514 		 * set the delalloc new bit for the range directly.
2515 		 */
2516 		extra_bits |= EXTENT_DELALLOC_NEW;
2517 	} else {
2518 		int ret;
2519 
2520 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2521 						    end + 1 - start,
2522 						    cached_state);
2523 		if (ret)
2524 			return ret;
2525 	}
2526 
2527 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2528 				   cached_state);
2529 }
2530 
2531 /* see btrfs_writepage_start_hook for details on why this is required */
2532 struct btrfs_writepage_fixup {
2533 	struct page *page;
2534 	struct inode *inode;
2535 	struct btrfs_work work;
2536 };
2537 
2538 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2539 {
2540 	struct btrfs_writepage_fixup *fixup;
2541 	struct btrfs_ordered_extent *ordered;
2542 	struct extent_state *cached_state = NULL;
2543 	struct extent_changeset *data_reserved = NULL;
2544 	struct page *page;
2545 	struct btrfs_inode *inode;
2546 	u64 page_start;
2547 	u64 page_end;
2548 	int ret = 0;
2549 	bool free_delalloc_space = true;
2550 
2551 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2552 	page = fixup->page;
2553 	inode = BTRFS_I(fixup->inode);
2554 	page_start = page_offset(page);
2555 	page_end = page_offset(page) + PAGE_SIZE - 1;
2556 
2557 	/*
2558 	 * This is similar to page_mkwrite, we need to reserve the space before
2559 	 * we take the page lock.
2560 	 */
2561 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2562 					   PAGE_SIZE);
2563 again:
2564 	lock_page(page);
2565 
2566 	/*
2567 	 * Before we queued this fixup, we took a reference on the page.
2568 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2569 	 * address space.
2570 	 */
2571 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2572 		/*
2573 		 * Unfortunately this is a little tricky, either
2574 		 *
2575 		 * 1) We got here and our page had already been dealt with and
2576 		 *    we reserved our space, thus ret == 0, so we need to just
2577 		 *    drop our space reservation and bail.  This can happen the
2578 		 *    first time we come into the fixup worker, or could happen
2579 		 *    while waiting for the ordered extent.
2580 		 * 2) Our page was already dealt with, but we happened to get an
2581 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2582 		 *    this case we obviously don't have anything to release, but
2583 		 *    because the page was already dealt with we don't want to
2584 		 *    mark the page with an error, so make sure we're resetting
2585 		 *    ret to 0.  This is why we have this check _before_ the ret
2586 		 *    check, because we do not want to have a surprise ENOSPC
2587 		 *    when the page was already properly dealt with.
2588 		 */
2589 		if (!ret) {
2590 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2591 			btrfs_delalloc_release_space(inode, data_reserved,
2592 						     page_start, PAGE_SIZE,
2593 						     true);
2594 		}
2595 		ret = 0;
2596 		goto out_page;
2597 	}
2598 
2599 	/*
2600 	 * We can't mess with the page state unless it is locked, so now that
2601 	 * it is locked bail if we failed to make our space reservation.
2602 	 */
2603 	if (ret)
2604 		goto out_page;
2605 
2606 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2607 
2608 	/* already ordered? We're done */
2609 	if (PagePrivate2(page))
2610 		goto out_reserved;
2611 
2612 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2613 	if (ordered) {
2614 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2615 				     &cached_state);
2616 		unlock_page(page);
2617 		btrfs_start_ordered_extent(ordered, 1);
2618 		btrfs_put_ordered_extent(ordered);
2619 		goto again;
2620 	}
2621 
2622 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2623 					&cached_state);
2624 	if (ret)
2625 		goto out_reserved;
2626 
2627 	/*
2628 	 * Everything went as planned, we're now the owner of a dirty page with
2629 	 * delayed allocation bits set and space reserved for our COW
2630 	 * destination.
2631 	 *
2632 	 * The page was dirty when we started, nothing should have cleaned it.
2633 	 */
2634 	BUG_ON(!PageDirty(page));
2635 	free_delalloc_space = false;
2636 out_reserved:
2637 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2638 	if (free_delalloc_space)
2639 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2640 					     PAGE_SIZE, true);
2641 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2642 			     &cached_state);
2643 out_page:
2644 	if (ret) {
2645 		/*
2646 		 * We hit ENOSPC or other errors.  Update the mapping and page
2647 		 * to reflect the errors and clean the page.
2648 		 */
2649 		mapping_set_error(page->mapping, ret);
2650 		end_extent_writepage(page, ret, page_start, page_end);
2651 		clear_page_dirty_for_io(page);
2652 		SetPageError(page);
2653 	}
2654 	ClearPageChecked(page);
2655 	unlock_page(page);
2656 	put_page(page);
2657 	kfree(fixup);
2658 	extent_changeset_free(data_reserved);
2659 	/*
2660 	 * As a precaution, do a delayed iput in case it would be the last iput
2661 	 * that could need flushing space. Recursing back to fixup worker would
2662 	 * deadlock.
2663 	 */
2664 	btrfs_add_delayed_iput(&inode->vfs_inode);
2665 }
2666 
2667 /*
2668  * There are a few paths in the higher layers of the kernel that directly
2669  * set the page dirty bit without asking the filesystem if it is a
2670  * good idea.  This causes problems because we want to make sure COW
2671  * properly happens and the data=ordered rules are followed.
2672  *
2673  * In our case any range that doesn't have the ORDERED bit set
2674  * hasn't been properly setup for IO.  We kick off an async process
2675  * to fix it up.  The async helper will wait for ordered extents, set
2676  * the delalloc bit and make it safe to write the page.
2677  */
2678 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2679 {
2680 	struct inode *inode = page->mapping->host;
2681 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2682 	struct btrfs_writepage_fixup *fixup;
2683 
2684 	/* this page is properly in the ordered list */
2685 	if (TestClearPagePrivate2(page))
2686 		return 0;
2687 
2688 	/*
2689 	 * PageChecked is set below when we create a fixup worker for this page,
2690 	 * don't try to create another one if we're already PageChecked()
2691 	 *
2692 	 * The extent_io writepage code will redirty the page if we send back
2693 	 * EAGAIN.
2694 	 */
2695 	if (PageChecked(page))
2696 		return -EAGAIN;
2697 
2698 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2699 	if (!fixup)
2700 		return -EAGAIN;
2701 
2702 	/*
2703 	 * We are already holding a reference to this inode from
2704 	 * write_cache_pages.  We need to hold it because the space reservation
2705 	 * takes place outside of the page lock, and we can't trust
2706 	 * page->mapping outside of the page lock.
2707 	 */
2708 	ihold(inode);
2709 	SetPageChecked(page);
2710 	get_page(page);
2711 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2712 	fixup->page = page;
2713 	fixup->inode = inode;
2714 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2715 
2716 	return -EAGAIN;
2717 }
2718 
2719 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2720 				       struct btrfs_inode *inode, u64 file_pos,
2721 				       struct btrfs_file_extent_item *stack_fi,
2722 				       const bool update_inode_bytes,
2723 				       u64 qgroup_reserved)
2724 {
2725 	struct btrfs_root *root = inode->root;
2726 	const u64 sectorsize = root->fs_info->sectorsize;
2727 	struct btrfs_path *path;
2728 	struct extent_buffer *leaf;
2729 	struct btrfs_key ins;
2730 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2731 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2732 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2733 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2734 	struct btrfs_drop_extents_args drop_args = { 0 };
2735 	int ret;
2736 
2737 	path = btrfs_alloc_path();
2738 	if (!path)
2739 		return -ENOMEM;
2740 
2741 	/*
2742 	 * we may be replacing one extent in the tree with another.
2743 	 * The new extent is pinned in the extent map, and we don't want
2744 	 * to drop it from the cache until it is completely in the btree.
2745 	 *
2746 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2747 	 * the caller is expected to unpin it and allow it to be merged
2748 	 * with the others.
2749 	 */
2750 	drop_args.path = path;
2751 	drop_args.start = file_pos;
2752 	drop_args.end = file_pos + num_bytes;
2753 	drop_args.replace_extent = true;
2754 	drop_args.extent_item_size = sizeof(*stack_fi);
2755 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2756 	if (ret)
2757 		goto out;
2758 
2759 	if (!drop_args.extent_inserted) {
2760 		ins.objectid = btrfs_ino(inode);
2761 		ins.offset = file_pos;
2762 		ins.type = BTRFS_EXTENT_DATA_KEY;
2763 
2764 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2765 					      sizeof(*stack_fi));
2766 		if (ret)
2767 			goto out;
2768 	}
2769 	leaf = path->nodes[0];
2770 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2771 	write_extent_buffer(leaf, stack_fi,
2772 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2773 			sizeof(struct btrfs_file_extent_item));
2774 
2775 	btrfs_mark_buffer_dirty(leaf);
2776 	btrfs_release_path(path);
2777 
2778 	/*
2779 	 * If we dropped an inline extent here, we know the range where it is
2780 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2781 	 * number of bytes only for that range contaning the inline extent.
2782 	 * The remaining of the range will be processed when clearning the
2783 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2784 	 */
2785 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2786 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2787 
2788 		inline_size = drop_args.bytes_found - inline_size;
2789 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2790 		drop_args.bytes_found -= inline_size;
2791 		num_bytes -= sectorsize;
2792 	}
2793 
2794 	if (update_inode_bytes)
2795 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2796 
2797 	ins.objectid = disk_bytenr;
2798 	ins.offset = disk_num_bytes;
2799 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2800 
2801 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2802 	if (ret)
2803 		goto out;
2804 
2805 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2806 					       file_pos, qgroup_reserved, &ins);
2807 out:
2808 	btrfs_free_path(path);
2809 
2810 	return ret;
2811 }
2812 
2813 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2814 					 u64 start, u64 len)
2815 {
2816 	struct btrfs_block_group *cache;
2817 
2818 	cache = btrfs_lookup_block_group(fs_info, start);
2819 	ASSERT(cache);
2820 
2821 	spin_lock(&cache->lock);
2822 	cache->delalloc_bytes -= len;
2823 	spin_unlock(&cache->lock);
2824 
2825 	btrfs_put_block_group(cache);
2826 }
2827 
2828 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2829 					     struct btrfs_ordered_extent *oe)
2830 {
2831 	struct btrfs_file_extent_item stack_fi;
2832 	u64 logical_len;
2833 	bool update_inode_bytes;
2834 
2835 	memset(&stack_fi, 0, sizeof(stack_fi));
2836 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2837 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2838 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2839 						   oe->disk_num_bytes);
2840 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2841 		logical_len = oe->truncated_len;
2842 	else
2843 		logical_len = oe->num_bytes;
2844 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2845 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2846 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2847 	/* Encryption and other encoding is reserved and all 0 */
2848 
2849 	/*
2850 	 * For delalloc, when completing an ordered extent we update the inode's
2851 	 * bytes when clearing the range in the inode's io tree, so pass false
2852 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2853 	 * except if the ordered extent was truncated.
2854 	 */
2855 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2856 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
2857 
2858 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2859 					   oe->file_offset, &stack_fi,
2860 					   update_inode_bytes, oe->qgroup_rsv);
2861 }
2862 
2863 /*
2864  * As ordered data IO finishes, this gets called so we can finish
2865  * an ordered extent if the range of bytes in the file it covers are
2866  * fully written.
2867  */
2868 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2869 {
2870 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
2871 	struct btrfs_root *root = inode->root;
2872 	struct btrfs_fs_info *fs_info = root->fs_info;
2873 	struct btrfs_trans_handle *trans = NULL;
2874 	struct extent_io_tree *io_tree = &inode->io_tree;
2875 	struct extent_state *cached_state = NULL;
2876 	u64 start, end;
2877 	int compress_type = 0;
2878 	int ret = 0;
2879 	u64 logical_len = ordered_extent->num_bytes;
2880 	bool freespace_inode;
2881 	bool truncated = false;
2882 	bool clear_reserved_extent = true;
2883 	unsigned int clear_bits = EXTENT_DEFRAG;
2884 
2885 	start = ordered_extent->file_offset;
2886 	end = start + ordered_extent->num_bytes - 1;
2887 
2888 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2889 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2890 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2891 		clear_bits |= EXTENT_DELALLOC_NEW;
2892 
2893 	freespace_inode = btrfs_is_free_space_inode(inode);
2894 
2895 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2896 		ret = -EIO;
2897 		goto out;
2898 	}
2899 
2900 	if (ordered_extent->disk)
2901 		btrfs_rewrite_logical_zoned(ordered_extent);
2902 
2903 	btrfs_free_io_failure_record(inode, start, end);
2904 
2905 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2906 		truncated = true;
2907 		logical_len = ordered_extent->truncated_len;
2908 		/* Truncated the entire extent, don't bother adding */
2909 		if (!logical_len)
2910 			goto out;
2911 	}
2912 
2913 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2914 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2915 
2916 		btrfs_inode_safe_disk_i_size_write(inode, 0);
2917 		if (freespace_inode)
2918 			trans = btrfs_join_transaction_spacecache(root);
2919 		else
2920 			trans = btrfs_join_transaction(root);
2921 		if (IS_ERR(trans)) {
2922 			ret = PTR_ERR(trans);
2923 			trans = NULL;
2924 			goto out;
2925 		}
2926 		trans->block_rsv = &inode->block_rsv;
2927 		ret = btrfs_update_inode_fallback(trans, root, inode);
2928 		if (ret) /* -ENOMEM or corruption */
2929 			btrfs_abort_transaction(trans, ret);
2930 		goto out;
2931 	}
2932 
2933 	clear_bits |= EXTENT_LOCKED;
2934 	lock_extent_bits(io_tree, start, end, &cached_state);
2935 
2936 	if (freespace_inode)
2937 		trans = btrfs_join_transaction_spacecache(root);
2938 	else
2939 		trans = btrfs_join_transaction(root);
2940 	if (IS_ERR(trans)) {
2941 		ret = PTR_ERR(trans);
2942 		trans = NULL;
2943 		goto out;
2944 	}
2945 
2946 	trans->block_rsv = &inode->block_rsv;
2947 
2948 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2949 		compress_type = ordered_extent->compress_type;
2950 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2951 		BUG_ON(compress_type);
2952 		ret = btrfs_mark_extent_written(trans, inode,
2953 						ordered_extent->file_offset,
2954 						ordered_extent->file_offset +
2955 						logical_len);
2956 	} else {
2957 		BUG_ON(root == fs_info->tree_root);
2958 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
2959 		if (!ret) {
2960 			clear_reserved_extent = false;
2961 			btrfs_release_delalloc_bytes(fs_info,
2962 						ordered_extent->disk_bytenr,
2963 						ordered_extent->disk_num_bytes);
2964 		}
2965 	}
2966 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
2967 			   ordered_extent->num_bytes, trans->transid);
2968 	if (ret < 0) {
2969 		btrfs_abort_transaction(trans, ret);
2970 		goto out;
2971 	}
2972 
2973 	ret = add_pending_csums(trans, &ordered_extent->list);
2974 	if (ret) {
2975 		btrfs_abort_transaction(trans, ret);
2976 		goto out;
2977 	}
2978 
2979 	/*
2980 	 * If this is a new delalloc range, clear its new delalloc flag to
2981 	 * update the inode's number of bytes. This needs to be done first
2982 	 * before updating the inode item.
2983 	 */
2984 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
2985 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
2986 		clear_extent_bit(&inode->io_tree, start, end,
2987 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
2988 				 0, 0, &cached_state);
2989 
2990 	btrfs_inode_safe_disk_i_size_write(inode, 0);
2991 	ret = btrfs_update_inode_fallback(trans, root, inode);
2992 	if (ret) { /* -ENOMEM or corruption */
2993 		btrfs_abort_transaction(trans, ret);
2994 		goto out;
2995 	}
2996 	ret = 0;
2997 out:
2998 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
2999 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3000 			 &cached_state);
3001 
3002 	if (trans)
3003 		btrfs_end_transaction(trans);
3004 
3005 	if (ret || truncated) {
3006 		u64 unwritten_start = start;
3007 
3008 		if (truncated)
3009 			unwritten_start += logical_len;
3010 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3011 
3012 		/* Drop the cache for the part of the extent we didn't write. */
3013 		btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3014 
3015 		/*
3016 		 * If the ordered extent had an IOERR or something else went
3017 		 * wrong we need to return the space for this ordered extent
3018 		 * back to the allocator.  We only free the extent in the
3019 		 * truncated case if we didn't write out the extent at all.
3020 		 *
3021 		 * If we made it past insert_reserved_file_extent before we
3022 		 * errored out then we don't need to do this as the accounting
3023 		 * has already been done.
3024 		 */
3025 		if ((ret || !logical_len) &&
3026 		    clear_reserved_extent &&
3027 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3028 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3029 			/*
3030 			 * Discard the range before returning it back to the
3031 			 * free space pool
3032 			 */
3033 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3034 				btrfs_discard_extent(fs_info,
3035 						ordered_extent->disk_bytenr,
3036 						ordered_extent->disk_num_bytes,
3037 						NULL);
3038 			btrfs_free_reserved_extent(fs_info,
3039 					ordered_extent->disk_bytenr,
3040 					ordered_extent->disk_num_bytes, 1);
3041 		}
3042 	}
3043 
3044 	/*
3045 	 * This needs to be done to make sure anybody waiting knows we are done
3046 	 * updating everything for this ordered extent.
3047 	 */
3048 	btrfs_remove_ordered_extent(inode, ordered_extent);
3049 
3050 	/* once for us */
3051 	btrfs_put_ordered_extent(ordered_extent);
3052 	/* once for the tree */
3053 	btrfs_put_ordered_extent(ordered_extent);
3054 
3055 	return ret;
3056 }
3057 
3058 static void finish_ordered_fn(struct btrfs_work *work)
3059 {
3060 	struct btrfs_ordered_extent *ordered_extent;
3061 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3062 	btrfs_finish_ordered_io(ordered_extent);
3063 }
3064 
3065 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3066 					  u64 end, int uptodate)
3067 {
3068 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3069 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3070 	struct btrfs_ordered_extent *ordered_extent = NULL;
3071 	struct btrfs_workqueue *wq;
3072 
3073 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3074 
3075 	ClearPagePrivate2(page);
3076 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3077 					    end - start + 1, uptodate))
3078 		return;
3079 
3080 	if (btrfs_is_free_space_inode(inode))
3081 		wq = fs_info->endio_freespace_worker;
3082 	else
3083 		wq = fs_info->endio_write_workers;
3084 
3085 	btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
3086 	btrfs_queue_work(wq, &ordered_extent->work);
3087 }
3088 
3089 /*
3090  * check_data_csum - verify checksum of one sector of uncompressed data
3091  * @inode:	inode
3092  * @io_bio:	btrfs_io_bio which contains the csum
3093  * @bio_offset:	offset to the beginning of the bio (in bytes)
3094  * @page:	page where is the data to be verified
3095  * @pgoff:	offset inside the page
3096  * @start:	logical offset in the file
3097  *
3098  * The length of such check is always one sector size.
3099  */
3100 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
3101 			   u32 bio_offset, struct page *page, u32 pgoff,
3102 			   u64 start)
3103 {
3104 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3105 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3106 	char *kaddr;
3107 	u32 len = fs_info->sectorsize;
3108 	const u32 csum_size = fs_info->csum_size;
3109 	unsigned int offset_sectors;
3110 	u8 *csum_expected;
3111 	u8 csum[BTRFS_CSUM_SIZE];
3112 
3113 	ASSERT(pgoff + len <= PAGE_SIZE);
3114 
3115 	offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3116 	csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size;
3117 
3118 	kaddr = kmap_atomic(page);
3119 	shash->tfm = fs_info->csum_shash;
3120 
3121 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3122 
3123 	if (memcmp(csum, csum_expected, csum_size))
3124 		goto zeroit;
3125 
3126 	kunmap_atomic(kaddr);
3127 	return 0;
3128 zeroit:
3129 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3130 				    io_bio->mirror_num);
3131 	if (io_bio->device)
3132 		btrfs_dev_stat_inc_and_print(io_bio->device,
3133 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
3134 	memset(kaddr + pgoff, 1, len);
3135 	flush_dcache_page(page);
3136 	kunmap_atomic(kaddr);
3137 	return -EIO;
3138 }
3139 
3140 /*
3141  * When reads are done, we need to check csums to verify the data is correct.
3142  * if there's a match, we allow the bio to finish.  If not, the code in
3143  * extent_io.c will try to find good copies for us.
3144  *
3145  * @bio_offset:	offset to the beginning of the bio (in bytes)
3146  * @start:	file offset of the range start
3147  * @end:	file offset of the range end (inclusive)
3148  */
3149 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3150 			   struct page *page, u64 start, u64 end)
3151 {
3152 	struct inode *inode = page->mapping->host;
3153 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3154 	struct btrfs_root *root = BTRFS_I(inode)->root;
3155 	const u32 sectorsize = root->fs_info->sectorsize;
3156 	u32 pg_off;
3157 
3158 	if (PageChecked(page)) {
3159 		ClearPageChecked(page);
3160 		return 0;
3161 	}
3162 
3163 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3164 		return 0;
3165 
3166 	if (!root->fs_info->csum_root)
3167 		return 0;
3168 
3169 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3170 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3171 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3172 		return 0;
3173 	}
3174 
3175 	ASSERT(page_offset(page) <= start &&
3176 	       end <= page_offset(page) + PAGE_SIZE - 1);
3177 	for (pg_off = offset_in_page(start);
3178 	     pg_off < offset_in_page(end);
3179 	     pg_off += sectorsize, bio_offset += sectorsize) {
3180 		int ret;
3181 
3182 		ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off,
3183 				      page_offset(page) + pg_off);
3184 		if (ret < 0)
3185 			return -EIO;
3186 	}
3187 	return 0;
3188 }
3189 
3190 /*
3191  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3192  *
3193  * @inode: The inode we want to perform iput on
3194  *
3195  * This function uses the generic vfs_inode::i_count to track whether we should
3196  * just decrement it (in case it's > 1) or if this is the last iput then link
3197  * the inode to the delayed iput machinery. Delayed iputs are processed at
3198  * transaction commit time/superblock commit/cleaner kthread.
3199  */
3200 void btrfs_add_delayed_iput(struct inode *inode)
3201 {
3202 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3203 	struct btrfs_inode *binode = BTRFS_I(inode);
3204 
3205 	if (atomic_add_unless(&inode->i_count, -1, 1))
3206 		return;
3207 
3208 	atomic_inc(&fs_info->nr_delayed_iputs);
3209 	spin_lock(&fs_info->delayed_iput_lock);
3210 	ASSERT(list_empty(&binode->delayed_iput));
3211 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3212 	spin_unlock(&fs_info->delayed_iput_lock);
3213 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3214 		wake_up_process(fs_info->cleaner_kthread);
3215 }
3216 
3217 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3218 				    struct btrfs_inode *inode)
3219 {
3220 	list_del_init(&inode->delayed_iput);
3221 	spin_unlock(&fs_info->delayed_iput_lock);
3222 	iput(&inode->vfs_inode);
3223 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3224 		wake_up(&fs_info->delayed_iputs_wait);
3225 	spin_lock(&fs_info->delayed_iput_lock);
3226 }
3227 
3228 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3229 				   struct btrfs_inode *inode)
3230 {
3231 	if (!list_empty(&inode->delayed_iput)) {
3232 		spin_lock(&fs_info->delayed_iput_lock);
3233 		if (!list_empty(&inode->delayed_iput))
3234 			run_delayed_iput_locked(fs_info, inode);
3235 		spin_unlock(&fs_info->delayed_iput_lock);
3236 	}
3237 }
3238 
3239 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3240 {
3241 
3242 	spin_lock(&fs_info->delayed_iput_lock);
3243 	while (!list_empty(&fs_info->delayed_iputs)) {
3244 		struct btrfs_inode *inode;
3245 
3246 		inode = list_first_entry(&fs_info->delayed_iputs,
3247 				struct btrfs_inode, delayed_iput);
3248 		run_delayed_iput_locked(fs_info, inode);
3249 	}
3250 	spin_unlock(&fs_info->delayed_iput_lock);
3251 }
3252 
3253 /**
3254  * Wait for flushing all delayed iputs
3255  *
3256  * @fs_info:  the filesystem
3257  *
3258  * This will wait on any delayed iputs that are currently running with KILLABLE
3259  * set.  Once they are all done running we will return, unless we are killed in
3260  * which case we return EINTR. This helps in user operations like fallocate etc
3261  * that might get blocked on the iputs.
3262  *
3263  * Return EINTR if we were killed, 0 if nothing's pending
3264  */
3265 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3266 {
3267 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3268 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3269 	if (ret)
3270 		return -EINTR;
3271 	return 0;
3272 }
3273 
3274 /*
3275  * This creates an orphan entry for the given inode in case something goes wrong
3276  * in the middle of an unlink.
3277  */
3278 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3279 		     struct btrfs_inode *inode)
3280 {
3281 	int ret;
3282 
3283 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3284 	if (ret && ret != -EEXIST) {
3285 		btrfs_abort_transaction(trans, ret);
3286 		return ret;
3287 	}
3288 
3289 	return 0;
3290 }
3291 
3292 /*
3293  * We have done the delete so we can go ahead and remove the orphan item for
3294  * this particular inode.
3295  */
3296 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3297 			    struct btrfs_inode *inode)
3298 {
3299 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3300 }
3301 
3302 /*
3303  * this cleans up any orphans that may be left on the list from the last use
3304  * of this root.
3305  */
3306 int btrfs_orphan_cleanup(struct btrfs_root *root)
3307 {
3308 	struct btrfs_fs_info *fs_info = root->fs_info;
3309 	struct btrfs_path *path;
3310 	struct extent_buffer *leaf;
3311 	struct btrfs_key key, found_key;
3312 	struct btrfs_trans_handle *trans;
3313 	struct inode *inode;
3314 	u64 last_objectid = 0;
3315 	int ret = 0, nr_unlink = 0;
3316 
3317 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3318 		return 0;
3319 
3320 	path = btrfs_alloc_path();
3321 	if (!path) {
3322 		ret = -ENOMEM;
3323 		goto out;
3324 	}
3325 	path->reada = READA_BACK;
3326 
3327 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3328 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3329 	key.offset = (u64)-1;
3330 
3331 	while (1) {
3332 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3333 		if (ret < 0)
3334 			goto out;
3335 
3336 		/*
3337 		 * if ret == 0 means we found what we were searching for, which
3338 		 * is weird, but possible, so only screw with path if we didn't
3339 		 * find the key and see if we have stuff that matches
3340 		 */
3341 		if (ret > 0) {
3342 			ret = 0;
3343 			if (path->slots[0] == 0)
3344 				break;
3345 			path->slots[0]--;
3346 		}
3347 
3348 		/* pull out the item */
3349 		leaf = path->nodes[0];
3350 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3351 
3352 		/* make sure the item matches what we want */
3353 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3354 			break;
3355 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3356 			break;
3357 
3358 		/* release the path since we're done with it */
3359 		btrfs_release_path(path);
3360 
3361 		/*
3362 		 * this is where we are basically btrfs_lookup, without the
3363 		 * crossing root thing.  we store the inode number in the
3364 		 * offset of the orphan item.
3365 		 */
3366 
3367 		if (found_key.offset == last_objectid) {
3368 			btrfs_err(fs_info,
3369 				  "Error removing orphan entry, stopping orphan cleanup");
3370 			ret = -EINVAL;
3371 			goto out;
3372 		}
3373 
3374 		last_objectid = found_key.offset;
3375 
3376 		found_key.objectid = found_key.offset;
3377 		found_key.type = BTRFS_INODE_ITEM_KEY;
3378 		found_key.offset = 0;
3379 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3380 		ret = PTR_ERR_OR_ZERO(inode);
3381 		if (ret && ret != -ENOENT)
3382 			goto out;
3383 
3384 		if (ret == -ENOENT && root == fs_info->tree_root) {
3385 			struct btrfs_root *dead_root;
3386 			int is_dead_root = 0;
3387 
3388 			/*
3389 			 * This is an orphan in the tree root. Currently these
3390 			 * could come from 2 sources:
3391 			 *  a) a root (snapshot/subvolume) deletion in progress
3392 			 *  b) a free space cache inode
3393 			 * We need to distinguish those two, as the orphan item
3394 			 * for a root must not get deleted before the deletion
3395 			 * of the snapshot/subvolume's tree completes.
3396 			 *
3397 			 * btrfs_find_orphan_roots() ran before us, which has
3398 			 * found all deleted roots and loaded them into
3399 			 * fs_info->fs_roots_radix. So here we can find if an
3400 			 * orphan item corresponds to a deleted root by looking
3401 			 * up the root from that radix tree.
3402 			 */
3403 
3404 			spin_lock(&fs_info->fs_roots_radix_lock);
3405 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3406 							 (unsigned long)found_key.objectid);
3407 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3408 				is_dead_root = 1;
3409 			spin_unlock(&fs_info->fs_roots_radix_lock);
3410 
3411 			if (is_dead_root) {
3412 				/* prevent this orphan from being found again */
3413 				key.offset = found_key.objectid - 1;
3414 				continue;
3415 			}
3416 
3417 		}
3418 
3419 		/*
3420 		 * If we have an inode with links, there are a couple of
3421 		 * possibilities. Old kernels (before v3.12) used to create an
3422 		 * orphan item for truncate indicating that there were possibly
3423 		 * extent items past i_size that needed to be deleted. In v3.12,
3424 		 * truncate was changed to update i_size in sync with the extent
3425 		 * items, but the (useless) orphan item was still created. Since
3426 		 * v4.18, we don't create the orphan item for truncate at all.
3427 		 *
3428 		 * So, this item could mean that we need to do a truncate, but
3429 		 * only if this filesystem was last used on a pre-v3.12 kernel
3430 		 * and was not cleanly unmounted. The odds of that are quite
3431 		 * slim, and it's a pain to do the truncate now, so just delete
3432 		 * the orphan item.
3433 		 *
3434 		 * It's also possible that this orphan item was supposed to be
3435 		 * deleted but wasn't. The inode number may have been reused,
3436 		 * but either way, we can delete the orphan item.
3437 		 */
3438 		if (ret == -ENOENT || inode->i_nlink) {
3439 			if (!ret)
3440 				iput(inode);
3441 			trans = btrfs_start_transaction(root, 1);
3442 			if (IS_ERR(trans)) {
3443 				ret = PTR_ERR(trans);
3444 				goto out;
3445 			}
3446 			btrfs_debug(fs_info, "auto deleting %Lu",
3447 				    found_key.objectid);
3448 			ret = btrfs_del_orphan_item(trans, root,
3449 						    found_key.objectid);
3450 			btrfs_end_transaction(trans);
3451 			if (ret)
3452 				goto out;
3453 			continue;
3454 		}
3455 
3456 		nr_unlink++;
3457 
3458 		/* this will do delete_inode and everything for us */
3459 		iput(inode);
3460 	}
3461 	/* release the path since we're done with it */
3462 	btrfs_release_path(path);
3463 
3464 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3465 
3466 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3467 		trans = btrfs_join_transaction(root);
3468 		if (!IS_ERR(trans))
3469 			btrfs_end_transaction(trans);
3470 	}
3471 
3472 	if (nr_unlink)
3473 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3474 
3475 out:
3476 	if (ret)
3477 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3478 	btrfs_free_path(path);
3479 	return ret;
3480 }
3481 
3482 /*
3483  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3484  * don't find any xattrs, we know there can't be any acls.
3485  *
3486  * slot is the slot the inode is in, objectid is the objectid of the inode
3487  */
3488 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3489 					  int slot, u64 objectid,
3490 					  int *first_xattr_slot)
3491 {
3492 	u32 nritems = btrfs_header_nritems(leaf);
3493 	struct btrfs_key found_key;
3494 	static u64 xattr_access = 0;
3495 	static u64 xattr_default = 0;
3496 	int scanned = 0;
3497 
3498 	if (!xattr_access) {
3499 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3500 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3501 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3502 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3503 	}
3504 
3505 	slot++;
3506 	*first_xattr_slot = -1;
3507 	while (slot < nritems) {
3508 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3509 
3510 		/* we found a different objectid, there must not be acls */
3511 		if (found_key.objectid != objectid)
3512 			return 0;
3513 
3514 		/* we found an xattr, assume we've got an acl */
3515 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3516 			if (*first_xattr_slot == -1)
3517 				*first_xattr_slot = slot;
3518 			if (found_key.offset == xattr_access ||
3519 			    found_key.offset == xattr_default)
3520 				return 1;
3521 		}
3522 
3523 		/*
3524 		 * we found a key greater than an xattr key, there can't
3525 		 * be any acls later on
3526 		 */
3527 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3528 			return 0;
3529 
3530 		slot++;
3531 		scanned++;
3532 
3533 		/*
3534 		 * it goes inode, inode backrefs, xattrs, extents,
3535 		 * so if there are a ton of hard links to an inode there can
3536 		 * be a lot of backrefs.  Don't waste time searching too hard,
3537 		 * this is just an optimization
3538 		 */
3539 		if (scanned >= 8)
3540 			break;
3541 	}
3542 	/* we hit the end of the leaf before we found an xattr or
3543 	 * something larger than an xattr.  We have to assume the inode
3544 	 * has acls
3545 	 */
3546 	if (*first_xattr_slot == -1)
3547 		*first_xattr_slot = slot;
3548 	return 1;
3549 }
3550 
3551 /*
3552  * read an inode from the btree into the in-memory inode
3553  */
3554 static int btrfs_read_locked_inode(struct inode *inode,
3555 				   struct btrfs_path *in_path)
3556 {
3557 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3558 	struct btrfs_path *path = in_path;
3559 	struct extent_buffer *leaf;
3560 	struct btrfs_inode_item *inode_item;
3561 	struct btrfs_root *root = BTRFS_I(inode)->root;
3562 	struct btrfs_key location;
3563 	unsigned long ptr;
3564 	int maybe_acls;
3565 	u32 rdev;
3566 	int ret;
3567 	bool filled = false;
3568 	int first_xattr_slot;
3569 
3570 	ret = btrfs_fill_inode(inode, &rdev);
3571 	if (!ret)
3572 		filled = true;
3573 
3574 	if (!path) {
3575 		path = btrfs_alloc_path();
3576 		if (!path)
3577 			return -ENOMEM;
3578 	}
3579 
3580 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3581 
3582 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3583 	if (ret) {
3584 		if (path != in_path)
3585 			btrfs_free_path(path);
3586 		return ret;
3587 	}
3588 
3589 	leaf = path->nodes[0];
3590 
3591 	if (filled)
3592 		goto cache_index;
3593 
3594 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3595 				    struct btrfs_inode_item);
3596 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3597 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3598 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3599 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3600 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3601 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3602 			round_up(i_size_read(inode), fs_info->sectorsize));
3603 
3604 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3605 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3606 
3607 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3608 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3609 
3610 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3611 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3612 
3613 	BTRFS_I(inode)->i_otime.tv_sec =
3614 		btrfs_timespec_sec(leaf, &inode_item->otime);
3615 	BTRFS_I(inode)->i_otime.tv_nsec =
3616 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3617 
3618 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3619 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3620 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3621 
3622 	inode_set_iversion_queried(inode,
3623 				   btrfs_inode_sequence(leaf, inode_item));
3624 	inode->i_generation = BTRFS_I(inode)->generation;
3625 	inode->i_rdev = 0;
3626 	rdev = btrfs_inode_rdev(leaf, inode_item);
3627 
3628 	BTRFS_I(inode)->index_cnt = (u64)-1;
3629 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3630 
3631 cache_index:
3632 	/*
3633 	 * If we were modified in the current generation and evicted from memory
3634 	 * and then re-read we need to do a full sync since we don't have any
3635 	 * idea about which extents were modified before we were evicted from
3636 	 * cache.
3637 	 *
3638 	 * This is required for both inode re-read from disk and delayed inode
3639 	 * in delayed_nodes_tree.
3640 	 */
3641 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3642 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3643 			&BTRFS_I(inode)->runtime_flags);
3644 
3645 	/*
3646 	 * We don't persist the id of the transaction where an unlink operation
3647 	 * against the inode was last made. So here we assume the inode might
3648 	 * have been evicted, and therefore the exact value of last_unlink_trans
3649 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3650 	 * between the inode and its parent if the inode is fsync'ed and the log
3651 	 * replayed. For example, in the scenario:
3652 	 *
3653 	 * touch mydir/foo
3654 	 * ln mydir/foo mydir/bar
3655 	 * sync
3656 	 * unlink mydir/bar
3657 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3658 	 * xfs_io -c fsync mydir/foo
3659 	 * <power failure>
3660 	 * mount fs, triggers fsync log replay
3661 	 *
3662 	 * We must make sure that when we fsync our inode foo we also log its
3663 	 * parent inode, otherwise after log replay the parent still has the
3664 	 * dentry with the "bar" name but our inode foo has a link count of 1
3665 	 * and doesn't have an inode ref with the name "bar" anymore.
3666 	 *
3667 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3668 	 * but it guarantees correctness at the expense of occasional full
3669 	 * transaction commits on fsync if our inode is a directory, or if our
3670 	 * inode is not a directory, logging its parent unnecessarily.
3671 	 */
3672 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3673 
3674 	/*
3675 	 * Same logic as for last_unlink_trans. We don't persist the generation
3676 	 * of the last transaction where this inode was used for a reflink
3677 	 * operation, so after eviction and reloading the inode we must be
3678 	 * pessimistic and assume the last transaction that modified the inode.
3679 	 */
3680 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3681 
3682 	path->slots[0]++;
3683 	if (inode->i_nlink != 1 ||
3684 	    path->slots[0] >= btrfs_header_nritems(leaf))
3685 		goto cache_acl;
3686 
3687 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3688 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3689 		goto cache_acl;
3690 
3691 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3692 	if (location.type == BTRFS_INODE_REF_KEY) {
3693 		struct btrfs_inode_ref *ref;
3694 
3695 		ref = (struct btrfs_inode_ref *)ptr;
3696 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3697 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3698 		struct btrfs_inode_extref *extref;
3699 
3700 		extref = (struct btrfs_inode_extref *)ptr;
3701 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3702 								     extref);
3703 	}
3704 cache_acl:
3705 	/*
3706 	 * try to precache a NULL acl entry for files that don't have
3707 	 * any xattrs or acls
3708 	 */
3709 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3710 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3711 	if (first_xattr_slot != -1) {
3712 		path->slots[0] = first_xattr_slot;
3713 		ret = btrfs_load_inode_props(inode, path);
3714 		if (ret)
3715 			btrfs_err(fs_info,
3716 				  "error loading props for ino %llu (root %llu): %d",
3717 				  btrfs_ino(BTRFS_I(inode)),
3718 				  root->root_key.objectid, ret);
3719 	}
3720 	if (path != in_path)
3721 		btrfs_free_path(path);
3722 
3723 	if (!maybe_acls)
3724 		cache_no_acl(inode);
3725 
3726 	switch (inode->i_mode & S_IFMT) {
3727 	case S_IFREG:
3728 		inode->i_mapping->a_ops = &btrfs_aops;
3729 		inode->i_fop = &btrfs_file_operations;
3730 		inode->i_op = &btrfs_file_inode_operations;
3731 		break;
3732 	case S_IFDIR:
3733 		inode->i_fop = &btrfs_dir_file_operations;
3734 		inode->i_op = &btrfs_dir_inode_operations;
3735 		break;
3736 	case S_IFLNK:
3737 		inode->i_op = &btrfs_symlink_inode_operations;
3738 		inode_nohighmem(inode);
3739 		inode->i_mapping->a_ops = &btrfs_aops;
3740 		break;
3741 	default:
3742 		inode->i_op = &btrfs_special_inode_operations;
3743 		init_special_inode(inode, inode->i_mode, rdev);
3744 		break;
3745 	}
3746 
3747 	btrfs_sync_inode_flags_to_i_flags(inode);
3748 	return 0;
3749 }
3750 
3751 /*
3752  * given a leaf and an inode, copy the inode fields into the leaf
3753  */
3754 static void fill_inode_item(struct btrfs_trans_handle *trans,
3755 			    struct extent_buffer *leaf,
3756 			    struct btrfs_inode_item *item,
3757 			    struct inode *inode)
3758 {
3759 	struct btrfs_map_token token;
3760 
3761 	btrfs_init_map_token(&token, leaf);
3762 
3763 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3764 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3765 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3766 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3767 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3768 
3769 	btrfs_set_token_timespec_sec(&token, &item->atime,
3770 				     inode->i_atime.tv_sec);
3771 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3772 				      inode->i_atime.tv_nsec);
3773 
3774 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3775 				     inode->i_mtime.tv_sec);
3776 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3777 				      inode->i_mtime.tv_nsec);
3778 
3779 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3780 				     inode->i_ctime.tv_sec);
3781 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3782 				      inode->i_ctime.tv_nsec);
3783 
3784 	btrfs_set_token_timespec_sec(&token, &item->otime,
3785 				     BTRFS_I(inode)->i_otime.tv_sec);
3786 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3787 				      BTRFS_I(inode)->i_otime.tv_nsec);
3788 
3789 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3790 	btrfs_set_token_inode_generation(&token, item,
3791 					 BTRFS_I(inode)->generation);
3792 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3793 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3794 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3795 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3796 	btrfs_set_token_inode_block_group(&token, item, 0);
3797 }
3798 
3799 /*
3800  * copy everything in the in-memory inode into the btree.
3801  */
3802 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3803 				struct btrfs_root *root,
3804 				struct btrfs_inode *inode)
3805 {
3806 	struct btrfs_inode_item *inode_item;
3807 	struct btrfs_path *path;
3808 	struct extent_buffer *leaf;
3809 	int ret;
3810 
3811 	path = btrfs_alloc_path();
3812 	if (!path)
3813 		return -ENOMEM;
3814 
3815 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3816 	if (ret) {
3817 		if (ret > 0)
3818 			ret = -ENOENT;
3819 		goto failed;
3820 	}
3821 
3822 	leaf = path->nodes[0];
3823 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3824 				    struct btrfs_inode_item);
3825 
3826 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3827 	btrfs_mark_buffer_dirty(leaf);
3828 	btrfs_set_inode_last_trans(trans, inode);
3829 	ret = 0;
3830 failed:
3831 	btrfs_free_path(path);
3832 	return ret;
3833 }
3834 
3835 /*
3836  * copy everything in the in-memory inode into the btree.
3837  */
3838 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3839 				struct btrfs_root *root,
3840 				struct btrfs_inode *inode)
3841 {
3842 	struct btrfs_fs_info *fs_info = root->fs_info;
3843 	int ret;
3844 
3845 	/*
3846 	 * If the inode is a free space inode, we can deadlock during commit
3847 	 * if we put it into the delayed code.
3848 	 *
3849 	 * The data relocation inode should also be directly updated
3850 	 * without delay
3851 	 */
3852 	if (!btrfs_is_free_space_inode(inode)
3853 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3854 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3855 		btrfs_update_root_times(trans, root);
3856 
3857 		ret = btrfs_delayed_update_inode(trans, root, inode);
3858 		if (!ret)
3859 			btrfs_set_inode_last_trans(trans, inode);
3860 		return ret;
3861 	}
3862 
3863 	return btrfs_update_inode_item(trans, root, inode);
3864 }
3865 
3866 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3867 				struct btrfs_root *root, struct btrfs_inode *inode)
3868 {
3869 	int ret;
3870 
3871 	ret = btrfs_update_inode(trans, root, inode);
3872 	if (ret == -ENOSPC)
3873 		return btrfs_update_inode_item(trans, root, inode);
3874 	return ret;
3875 }
3876 
3877 /*
3878  * unlink helper that gets used here in inode.c and in the tree logging
3879  * recovery code.  It remove a link in a directory with a given name, and
3880  * also drops the back refs in the inode to the directory
3881  */
3882 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3883 				struct btrfs_root *root,
3884 				struct btrfs_inode *dir,
3885 				struct btrfs_inode *inode,
3886 				const char *name, int name_len)
3887 {
3888 	struct btrfs_fs_info *fs_info = root->fs_info;
3889 	struct btrfs_path *path;
3890 	int ret = 0;
3891 	struct btrfs_dir_item *di;
3892 	u64 index;
3893 	u64 ino = btrfs_ino(inode);
3894 	u64 dir_ino = btrfs_ino(dir);
3895 
3896 	path = btrfs_alloc_path();
3897 	if (!path) {
3898 		ret = -ENOMEM;
3899 		goto out;
3900 	}
3901 
3902 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3903 				    name, name_len, -1);
3904 	if (IS_ERR_OR_NULL(di)) {
3905 		ret = di ? PTR_ERR(di) : -ENOENT;
3906 		goto err;
3907 	}
3908 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3909 	if (ret)
3910 		goto err;
3911 	btrfs_release_path(path);
3912 
3913 	/*
3914 	 * If we don't have dir index, we have to get it by looking up
3915 	 * the inode ref, since we get the inode ref, remove it directly,
3916 	 * it is unnecessary to do delayed deletion.
3917 	 *
3918 	 * But if we have dir index, needn't search inode ref to get it.
3919 	 * Since the inode ref is close to the inode item, it is better
3920 	 * that we delay to delete it, and just do this deletion when
3921 	 * we update the inode item.
3922 	 */
3923 	if (inode->dir_index) {
3924 		ret = btrfs_delayed_delete_inode_ref(inode);
3925 		if (!ret) {
3926 			index = inode->dir_index;
3927 			goto skip_backref;
3928 		}
3929 	}
3930 
3931 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3932 				  dir_ino, &index);
3933 	if (ret) {
3934 		btrfs_info(fs_info,
3935 			"failed to delete reference to %.*s, inode %llu parent %llu",
3936 			name_len, name, ino, dir_ino);
3937 		btrfs_abort_transaction(trans, ret);
3938 		goto err;
3939 	}
3940 skip_backref:
3941 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3942 	if (ret) {
3943 		btrfs_abort_transaction(trans, ret);
3944 		goto err;
3945 	}
3946 
3947 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3948 			dir_ino);
3949 	if (ret != 0 && ret != -ENOENT) {
3950 		btrfs_abort_transaction(trans, ret);
3951 		goto err;
3952 	}
3953 
3954 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3955 			index);
3956 	if (ret == -ENOENT)
3957 		ret = 0;
3958 	else if (ret)
3959 		btrfs_abort_transaction(trans, ret);
3960 
3961 	/*
3962 	 * If we have a pending delayed iput we could end up with the final iput
3963 	 * being run in btrfs-cleaner context.  If we have enough of these built
3964 	 * up we can end up burning a lot of time in btrfs-cleaner without any
3965 	 * way to throttle the unlinks.  Since we're currently holding a ref on
3966 	 * the inode we can run the delayed iput here without any issues as the
3967 	 * final iput won't be done until after we drop the ref we're currently
3968 	 * holding.
3969 	 */
3970 	btrfs_run_delayed_iput(fs_info, inode);
3971 err:
3972 	btrfs_free_path(path);
3973 	if (ret)
3974 		goto out;
3975 
3976 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3977 	inode_inc_iversion(&inode->vfs_inode);
3978 	inode_inc_iversion(&dir->vfs_inode);
3979 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3980 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3981 	ret = btrfs_update_inode(trans, root, dir);
3982 out:
3983 	return ret;
3984 }
3985 
3986 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3987 		       struct btrfs_root *root,
3988 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3989 		       const char *name, int name_len)
3990 {
3991 	int ret;
3992 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3993 	if (!ret) {
3994 		drop_nlink(&inode->vfs_inode);
3995 		ret = btrfs_update_inode(trans, root, inode);
3996 	}
3997 	return ret;
3998 }
3999 
4000 /*
4001  * helper to start transaction for unlink and rmdir.
4002  *
4003  * unlink and rmdir are special in btrfs, they do not always free space, so
4004  * if we cannot make our reservations the normal way try and see if there is
4005  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4006  * allow the unlink to occur.
4007  */
4008 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4009 {
4010 	struct btrfs_root *root = BTRFS_I(dir)->root;
4011 
4012 	/*
4013 	 * 1 for the possible orphan item
4014 	 * 1 for the dir item
4015 	 * 1 for the dir index
4016 	 * 1 for the inode ref
4017 	 * 1 for the inode
4018 	 */
4019 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
4020 }
4021 
4022 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4023 {
4024 	struct btrfs_root *root = BTRFS_I(dir)->root;
4025 	struct btrfs_trans_handle *trans;
4026 	struct inode *inode = d_inode(dentry);
4027 	int ret;
4028 
4029 	trans = __unlink_start_trans(dir);
4030 	if (IS_ERR(trans))
4031 		return PTR_ERR(trans);
4032 
4033 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4034 			0);
4035 
4036 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4037 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4038 			dentry->d_name.len);
4039 	if (ret)
4040 		goto out;
4041 
4042 	if (inode->i_nlink == 0) {
4043 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4044 		if (ret)
4045 			goto out;
4046 	}
4047 
4048 out:
4049 	btrfs_end_transaction(trans);
4050 	btrfs_btree_balance_dirty(root->fs_info);
4051 	return ret;
4052 }
4053 
4054 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4055 			       struct inode *dir, struct dentry *dentry)
4056 {
4057 	struct btrfs_root *root = BTRFS_I(dir)->root;
4058 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4059 	struct btrfs_path *path;
4060 	struct extent_buffer *leaf;
4061 	struct btrfs_dir_item *di;
4062 	struct btrfs_key key;
4063 	const char *name = dentry->d_name.name;
4064 	int name_len = dentry->d_name.len;
4065 	u64 index;
4066 	int ret;
4067 	u64 objectid;
4068 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4069 
4070 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4071 		objectid = inode->root->root_key.objectid;
4072 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4073 		objectid = inode->location.objectid;
4074 	} else {
4075 		WARN_ON(1);
4076 		return -EINVAL;
4077 	}
4078 
4079 	path = btrfs_alloc_path();
4080 	if (!path)
4081 		return -ENOMEM;
4082 
4083 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4084 				   name, name_len, -1);
4085 	if (IS_ERR_OR_NULL(di)) {
4086 		ret = di ? PTR_ERR(di) : -ENOENT;
4087 		goto out;
4088 	}
4089 
4090 	leaf = path->nodes[0];
4091 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4092 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4093 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4094 	if (ret) {
4095 		btrfs_abort_transaction(trans, ret);
4096 		goto out;
4097 	}
4098 	btrfs_release_path(path);
4099 
4100 	/*
4101 	 * This is a placeholder inode for a subvolume we didn't have a
4102 	 * reference to at the time of the snapshot creation.  In the meantime
4103 	 * we could have renamed the real subvol link into our snapshot, so
4104 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4105 	 * Instead simply lookup the dir_index_item for this entry so we can
4106 	 * remove it.  Otherwise we know we have a ref to the root and we can
4107 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4108 	 */
4109 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4110 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4111 						 name, name_len);
4112 		if (IS_ERR_OR_NULL(di)) {
4113 			if (!di)
4114 				ret = -ENOENT;
4115 			else
4116 				ret = PTR_ERR(di);
4117 			btrfs_abort_transaction(trans, ret);
4118 			goto out;
4119 		}
4120 
4121 		leaf = path->nodes[0];
4122 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4123 		index = key.offset;
4124 		btrfs_release_path(path);
4125 	} else {
4126 		ret = btrfs_del_root_ref(trans, objectid,
4127 					 root->root_key.objectid, dir_ino,
4128 					 &index, name, name_len);
4129 		if (ret) {
4130 			btrfs_abort_transaction(trans, ret);
4131 			goto out;
4132 		}
4133 	}
4134 
4135 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4136 	if (ret) {
4137 		btrfs_abort_transaction(trans, ret);
4138 		goto out;
4139 	}
4140 
4141 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4142 	inode_inc_iversion(dir);
4143 	dir->i_mtime = dir->i_ctime = current_time(dir);
4144 	ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4145 	if (ret)
4146 		btrfs_abort_transaction(trans, ret);
4147 out:
4148 	btrfs_free_path(path);
4149 	return ret;
4150 }
4151 
4152 /*
4153  * Helper to check if the subvolume references other subvolumes or if it's
4154  * default.
4155  */
4156 static noinline int may_destroy_subvol(struct btrfs_root *root)
4157 {
4158 	struct btrfs_fs_info *fs_info = root->fs_info;
4159 	struct btrfs_path *path;
4160 	struct btrfs_dir_item *di;
4161 	struct btrfs_key key;
4162 	u64 dir_id;
4163 	int ret;
4164 
4165 	path = btrfs_alloc_path();
4166 	if (!path)
4167 		return -ENOMEM;
4168 
4169 	/* Make sure this root isn't set as the default subvol */
4170 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4171 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4172 				   dir_id, "default", 7, 0);
4173 	if (di && !IS_ERR(di)) {
4174 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4175 		if (key.objectid == root->root_key.objectid) {
4176 			ret = -EPERM;
4177 			btrfs_err(fs_info,
4178 				  "deleting default subvolume %llu is not allowed",
4179 				  key.objectid);
4180 			goto out;
4181 		}
4182 		btrfs_release_path(path);
4183 	}
4184 
4185 	key.objectid = root->root_key.objectid;
4186 	key.type = BTRFS_ROOT_REF_KEY;
4187 	key.offset = (u64)-1;
4188 
4189 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4190 	if (ret < 0)
4191 		goto out;
4192 	BUG_ON(ret == 0);
4193 
4194 	ret = 0;
4195 	if (path->slots[0] > 0) {
4196 		path->slots[0]--;
4197 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4198 		if (key.objectid == root->root_key.objectid &&
4199 		    key.type == BTRFS_ROOT_REF_KEY)
4200 			ret = -ENOTEMPTY;
4201 	}
4202 out:
4203 	btrfs_free_path(path);
4204 	return ret;
4205 }
4206 
4207 /* Delete all dentries for inodes belonging to the root */
4208 static void btrfs_prune_dentries(struct btrfs_root *root)
4209 {
4210 	struct btrfs_fs_info *fs_info = root->fs_info;
4211 	struct rb_node *node;
4212 	struct rb_node *prev;
4213 	struct btrfs_inode *entry;
4214 	struct inode *inode;
4215 	u64 objectid = 0;
4216 
4217 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4218 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4219 
4220 	spin_lock(&root->inode_lock);
4221 again:
4222 	node = root->inode_tree.rb_node;
4223 	prev = NULL;
4224 	while (node) {
4225 		prev = node;
4226 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4227 
4228 		if (objectid < btrfs_ino(entry))
4229 			node = node->rb_left;
4230 		else if (objectid > btrfs_ino(entry))
4231 			node = node->rb_right;
4232 		else
4233 			break;
4234 	}
4235 	if (!node) {
4236 		while (prev) {
4237 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4238 			if (objectid <= btrfs_ino(entry)) {
4239 				node = prev;
4240 				break;
4241 			}
4242 			prev = rb_next(prev);
4243 		}
4244 	}
4245 	while (node) {
4246 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4247 		objectid = btrfs_ino(entry) + 1;
4248 		inode = igrab(&entry->vfs_inode);
4249 		if (inode) {
4250 			spin_unlock(&root->inode_lock);
4251 			if (atomic_read(&inode->i_count) > 1)
4252 				d_prune_aliases(inode);
4253 			/*
4254 			 * btrfs_drop_inode will have it removed from the inode
4255 			 * cache when its usage count hits zero.
4256 			 */
4257 			iput(inode);
4258 			cond_resched();
4259 			spin_lock(&root->inode_lock);
4260 			goto again;
4261 		}
4262 
4263 		if (cond_resched_lock(&root->inode_lock))
4264 			goto again;
4265 
4266 		node = rb_next(node);
4267 	}
4268 	spin_unlock(&root->inode_lock);
4269 }
4270 
4271 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4272 {
4273 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4274 	struct btrfs_root *root = BTRFS_I(dir)->root;
4275 	struct inode *inode = d_inode(dentry);
4276 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4277 	struct btrfs_trans_handle *trans;
4278 	struct btrfs_block_rsv block_rsv;
4279 	u64 root_flags;
4280 	int ret;
4281 
4282 	/*
4283 	 * Don't allow to delete a subvolume with send in progress. This is
4284 	 * inside the inode lock so the error handling that has to drop the bit
4285 	 * again is not run concurrently.
4286 	 */
4287 	spin_lock(&dest->root_item_lock);
4288 	if (dest->send_in_progress) {
4289 		spin_unlock(&dest->root_item_lock);
4290 		btrfs_warn(fs_info,
4291 			   "attempt to delete subvolume %llu during send",
4292 			   dest->root_key.objectid);
4293 		return -EPERM;
4294 	}
4295 	root_flags = btrfs_root_flags(&dest->root_item);
4296 	btrfs_set_root_flags(&dest->root_item,
4297 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4298 	spin_unlock(&dest->root_item_lock);
4299 
4300 	down_write(&fs_info->subvol_sem);
4301 
4302 	ret = may_destroy_subvol(dest);
4303 	if (ret)
4304 		goto out_up_write;
4305 
4306 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4307 	/*
4308 	 * One for dir inode,
4309 	 * two for dir entries,
4310 	 * two for root ref/backref.
4311 	 */
4312 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4313 	if (ret)
4314 		goto out_up_write;
4315 
4316 	trans = btrfs_start_transaction(root, 0);
4317 	if (IS_ERR(trans)) {
4318 		ret = PTR_ERR(trans);
4319 		goto out_release;
4320 	}
4321 	trans->block_rsv = &block_rsv;
4322 	trans->bytes_reserved = block_rsv.size;
4323 
4324 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4325 
4326 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4327 	if (ret) {
4328 		btrfs_abort_transaction(trans, ret);
4329 		goto out_end_trans;
4330 	}
4331 
4332 	ret = btrfs_record_root_in_trans(trans, dest);
4333 	if (ret) {
4334 		btrfs_abort_transaction(trans, ret);
4335 		goto out_end_trans;
4336 	}
4337 
4338 	memset(&dest->root_item.drop_progress, 0,
4339 		sizeof(dest->root_item.drop_progress));
4340 	btrfs_set_root_drop_level(&dest->root_item, 0);
4341 	btrfs_set_root_refs(&dest->root_item, 0);
4342 
4343 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4344 		ret = btrfs_insert_orphan_item(trans,
4345 					fs_info->tree_root,
4346 					dest->root_key.objectid);
4347 		if (ret) {
4348 			btrfs_abort_transaction(trans, ret);
4349 			goto out_end_trans;
4350 		}
4351 	}
4352 
4353 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4354 				  BTRFS_UUID_KEY_SUBVOL,
4355 				  dest->root_key.objectid);
4356 	if (ret && ret != -ENOENT) {
4357 		btrfs_abort_transaction(trans, ret);
4358 		goto out_end_trans;
4359 	}
4360 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4361 		ret = btrfs_uuid_tree_remove(trans,
4362 					  dest->root_item.received_uuid,
4363 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4364 					  dest->root_key.objectid);
4365 		if (ret && ret != -ENOENT) {
4366 			btrfs_abort_transaction(trans, ret);
4367 			goto out_end_trans;
4368 		}
4369 	}
4370 
4371 	free_anon_bdev(dest->anon_dev);
4372 	dest->anon_dev = 0;
4373 out_end_trans:
4374 	trans->block_rsv = NULL;
4375 	trans->bytes_reserved = 0;
4376 	ret = btrfs_end_transaction(trans);
4377 	inode->i_flags |= S_DEAD;
4378 out_release:
4379 	btrfs_subvolume_release_metadata(root, &block_rsv);
4380 out_up_write:
4381 	up_write(&fs_info->subvol_sem);
4382 	if (ret) {
4383 		spin_lock(&dest->root_item_lock);
4384 		root_flags = btrfs_root_flags(&dest->root_item);
4385 		btrfs_set_root_flags(&dest->root_item,
4386 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4387 		spin_unlock(&dest->root_item_lock);
4388 	} else {
4389 		d_invalidate(dentry);
4390 		btrfs_prune_dentries(dest);
4391 		ASSERT(dest->send_in_progress == 0);
4392 	}
4393 
4394 	return ret;
4395 }
4396 
4397 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4398 {
4399 	struct inode *inode = d_inode(dentry);
4400 	int err = 0;
4401 	struct btrfs_root *root = BTRFS_I(dir)->root;
4402 	struct btrfs_trans_handle *trans;
4403 	u64 last_unlink_trans;
4404 
4405 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4406 		return -ENOTEMPTY;
4407 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4408 		return btrfs_delete_subvolume(dir, dentry);
4409 
4410 	trans = __unlink_start_trans(dir);
4411 	if (IS_ERR(trans))
4412 		return PTR_ERR(trans);
4413 
4414 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4415 		err = btrfs_unlink_subvol(trans, dir, dentry);
4416 		goto out;
4417 	}
4418 
4419 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4420 	if (err)
4421 		goto out;
4422 
4423 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4424 
4425 	/* now the directory is empty */
4426 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4427 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4428 			dentry->d_name.len);
4429 	if (!err) {
4430 		btrfs_i_size_write(BTRFS_I(inode), 0);
4431 		/*
4432 		 * Propagate the last_unlink_trans value of the deleted dir to
4433 		 * its parent directory. This is to prevent an unrecoverable
4434 		 * log tree in the case we do something like this:
4435 		 * 1) create dir foo
4436 		 * 2) create snapshot under dir foo
4437 		 * 3) delete the snapshot
4438 		 * 4) rmdir foo
4439 		 * 5) mkdir foo
4440 		 * 6) fsync foo or some file inside foo
4441 		 */
4442 		if (last_unlink_trans >= trans->transid)
4443 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4444 	}
4445 out:
4446 	btrfs_end_transaction(trans);
4447 	btrfs_btree_balance_dirty(root->fs_info);
4448 
4449 	return err;
4450 }
4451 
4452 /*
4453  * Return this if we need to call truncate_block for the last bit of the
4454  * truncate.
4455  */
4456 #define NEED_TRUNCATE_BLOCK 1
4457 
4458 /*
4459  * this can truncate away extent items, csum items and directory items.
4460  * It starts at a high offset and removes keys until it can't find
4461  * any higher than new_size
4462  *
4463  * csum items that cross the new i_size are truncated to the new size
4464  * as well.
4465  *
4466  * min_type is the minimum key type to truncate down to.  If set to 0, this
4467  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4468  */
4469 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4470 			       struct btrfs_root *root,
4471 			       struct btrfs_inode *inode,
4472 			       u64 new_size, u32 min_type)
4473 {
4474 	struct btrfs_fs_info *fs_info = root->fs_info;
4475 	struct btrfs_path *path;
4476 	struct extent_buffer *leaf;
4477 	struct btrfs_file_extent_item *fi;
4478 	struct btrfs_key key;
4479 	struct btrfs_key found_key;
4480 	u64 extent_start = 0;
4481 	u64 extent_num_bytes = 0;
4482 	u64 extent_offset = 0;
4483 	u64 item_end = 0;
4484 	u64 last_size = new_size;
4485 	u32 found_type = (u8)-1;
4486 	int found_extent;
4487 	int del_item;
4488 	int pending_del_nr = 0;
4489 	int pending_del_slot = 0;
4490 	int extent_type = -1;
4491 	int ret;
4492 	u64 ino = btrfs_ino(inode);
4493 	u64 bytes_deleted = 0;
4494 	bool be_nice = false;
4495 	bool should_throttle = false;
4496 	const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4497 	struct extent_state *cached_state = NULL;
4498 
4499 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4500 
4501 	/*
4502 	 * For non-free space inodes and non-shareable roots, we want to back
4503 	 * off from time to time.  This means all inodes in subvolume roots,
4504 	 * reloc roots, and data reloc roots.
4505 	 */
4506 	if (!btrfs_is_free_space_inode(inode) &&
4507 	    test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4508 		be_nice = true;
4509 
4510 	path = btrfs_alloc_path();
4511 	if (!path)
4512 		return -ENOMEM;
4513 	path->reada = READA_BACK;
4514 
4515 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4516 		lock_extent_bits(&inode->io_tree, lock_start, (u64)-1,
4517 				 &cached_state);
4518 
4519 		/*
4520 		 * We want to drop from the next block forward in case this
4521 		 * new size is not block aligned since we will be keeping the
4522 		 * last block of the extent just the way it is.
4523 		 */
4524 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4525 					fs_info->sectorsize),
4526 					(u64)-1, 0);
4527 	}
4528 
4529 	/*
4530 	 * This function is also used to drop the items in the log tree before
4531 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4532 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4533 	 * items.
4534 	 */
4535 	if (min_type == 0 && root == inode->root)
4536 		btrfs_kill_delayed_inode_items(inode);
4537 
4538 	key.objectid = ino;
4539 	key.offset = (u64)-1;
4540 	key.type = (u8)-1;
4541 
4542 search_again:
4543 	/*
4544 	 * with a 16K leaf size and 128MB extents, you can actually queue
4545 	 * up a huge file in a single leaf.  Most of the time that
4546 	 * bytes_deleted is > 0, it will be huge by the time we get here
4547 	 */
4548 	if (be_nice && bytes_deleted > SZ_32M &&
4549 	    btrfs_should_end_transaction(trans)) {
4550 		ret = -EAGAIN;
4551 		goto out;
4552 	}
4553 
4554 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4555 	if (ret < 0)
4556 		goto out;
4557 
4558 	if (ret > 0) {
4559 		ret = 0;
4560 		/* there are no items in the tree for us to truncate, we're
4561 		 * done
4562 		 */
4563 		if (path->slots[0] == 0)
4564 			goto out;
4565 		path->slots[0]--;
4566 	}
4567 
4568 	while (1) {
4569 		u64 clear_start = 0, clear_len = 0;
4570 
4571 		fi = NULL;
4572 		leaf = path->nodes[0];
4573 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4574 		found_type = found_key.type;
4575 
4576 		if (found_key.objectid != ino)
4577 			break;
4578 
4579 		if (found_type < min_type)
4580 			break;
4581 
4582 		item_end = found_key.offset;
4583 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4584 			fi = btrfs_item_ptr(leaf, path->slots[0],
4585 					    struct btrfs_file_extent_item);
4586 			extent_type = btrfs_file_extent_type(leaf, fi);
4587 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4588 				item_end +=
4589 				    btrfs_file_extent_num_bytes(leaf, fi);
4590 
4591 				trace_btrfs_truncate_show_fi_regular(
4592 					inode, leaf, fi, found_key.offset);
4593 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4594 				item_end += btrfs_file_extent_ram_bytes(leaf,
4595 									fi);
4596 
4597 				trace_btrfs_truncate_show_fi_inline(
4598 					inode, leaf, fi, path->slots[0],
4599 					found_key.offset);
4600 			}
4601 			item_end--;
4602 		}
4603 		if (found_type > min_type) {
4604 			del_item = 1;
4605 		} else {
4606 			if (item_end < new_size)
4607 				break;
4608 			if (found_key.offset >= new_size)
4609 				del_item = 1;
4610 			else
4611 				del_item = 0;
4612 		}
4613 		found_extent = 0;
4614 		/* FIXME, shrink the extent if the ref count is only 1 */
4615 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4616 			goto delete;
4617 
4618 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4619 			u64 num_dec;
4620 
4621 			clear_start = found_key.offset;
4622 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4623 			if (!del_item) {
4624 				u64 orig_num_bytes =
4625 					btrfs_file_extent_num_bytes(leaf, fi);
4626 				extent_num_bytes = ALIGN(new_size -
4627 						found_key.offset,
4628 						fs_info->sectorsize);
4629 				clear_start = ALIGN(new_size, fs_info->sectorsize);
4630 				btrfs_set_file_extent_num_bytes(leaf, fi,
4631 							 extent_num_bytes);
4632 				num_dec = (orig_num_bytes -
4633 					   extent_num_bytes);
4634 				if (test_bit(BTRFS_ROOT_SHAREABLE,
4635 					     &root->state) &&
4636 				    extent_start != 0)
4637 					inode_sub_bytes(&inode->vfs_inode,
4638 							num_dec);
4639 				btrfs_mark_buffer_dirty(leaf);
4640 			} else {
4641 				extent_num_bytes =
4642 					btrfs_file_extent_disk_num_bytes(leaf,
4643 									 fi);
4644 				extent_offset = found_key.offset -
4645 					btrfs_file_extent_offset(leaf, fi);
4646 
4647 				/* FIXME blocksize != 4096 */
4648 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4649 				if (extent_start != 0) {
4650 					found_extent = 1;
4651 					if (test_bit(BTRFS_ROOT_SHAREABLE,
4652 						     &root->state))
4653 						inode_sub_bytes(&inode->vfs_inode,
4654 								num_dec);
4655 				}
4656 			}
4657 			clear_len = num_dec;
4658 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4659 			/*
4660 			 * we can't truncate inline items that have had
4661 			 * special encodings
4662 			 */
4663 			if (!del_item &&
4664 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4665 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4666 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4667 				u32 size = (u32)(new_size - found_key.offset);
4668 
4669 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4670 				size = btrfs_file_extent_calc_inline_size(size);
4671 				btrfs_truncate_item(path, size, 1);
4672 			} else if (!del_item) {
4673 				/*
4674 				 * We have to bail so the last_size is set to
4675 				 * just before this extent.
4676 				 */
4677 				ret = NEED_TRUNCATE_BLOCK;
4678 				break;
4679 			} else {
4680 				/*
4681 				 * Inline extents are special, we just treat
4682 				 * them as a full sector worth in the file
4683 				 * extent tree just for simplicity sake.
4684 				 */
4685 				clear_len = fs_info->sectorsize;
4686 			}
4687 
4688 			if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4689 				inode_sub_bytes(&inode->vfs_inode,
4690 						item_end + 1 - new_size);
4691 		}
4692 delete:
4693 		/*
4694 		 * We use btrfs_truncate_inode_items() to clean up log trees for
4695 		 * multiple fsyncs, and in this case we don't want to clear the
4696 		 * file extent range because it's just the log.
4697 		 */
4698 		if (root == inode->root) {
4699 			ret = btrfs_inode_clear_file_extent_range(inode,
4700 						  clear_start, clear_len);
4701 			if (ret) {
4702 				btrfs_abort_transaction(trans, ret);
4703 				break;
4704 			}
4705 		}
4706 
4707 		if (del_item)
4708 			last_size = found_key.offset;
4709 		else
4710 			last_size = new_size;
4711 		if (del_item) {
4712 			if (!pending_del_nr) {
4713 				/* no pending yet, add ourselves */
4714 				pending_del_slot = path->slots[0];
4715 				pending_del_nr = 1;
4716 			} else if (pending_del_nr &&
4717 				   path->slots[0] + 1 == pending_del_slot) {
4718 				/* hop on the pending chunk */
4719 				pending_del_nr++;
4720 				pending_del_slot = path->slots[0];
4721 			} else {
4722 				BUG();
4723 			}
4724 		} else {
4725 			break;
4726 		}
4727 		should_throttle = false;
4728 
4729 		if (found_extent &&
4730 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4731 			struct btrfs_ref ref = { 0 };
4732 
4733 			bytes_deleted += extent_num_bytes;
4734 
4735 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4736 					extent_start, extent_num_bytes, 0);
4737 			ref.real_root = root->root_key.objectid;
4738 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4739 					ino, extent_offset);
4740 			ret = btrfs_free_extent(trans, &ref);
4741 			if (ret) {
4742 				btrfs_abort_transaction(trans, ret);
4743 				break;
4744 			}
4745 			if (be_nice) {
4746 				if (btrfs_should_throttle_delayed_refs(trans))
4747 					should_throttle = true;
4748 			}
4749 		}
4750 
4751 		if (found_type == BTRFS_INODE_ITEM_KEY)
4752 			break;
4753 
4754 		if (path->slots[0] == 0 ||
4755 		    path->slots[0] != pending_del_slot ||
4756 		    should_throttle) {
4757 			if (pending_del_nr) {
4758 				ret = btrfs_del_items(trans, root, path,
4759 						pending_del_slot,
4760 						pending_del_nr);
4761 				if (ret) {
4762 					btrfs_abort_transaction(trans, ret);
4763 					break;
4764 				}
4765 				pending_del_nr = 0;
4766 			}
4767 			btrfs_release_path(path);
4768 
4769 			/*
4770 			 * We can generate a lot of delayed refs, so we need to
4771 			 * throttle every once and a while and make sure we're
4772 			 * adding enough space to keep up with the work we are
4773 			 * generating.  Since we hold a transaction here we
4774 			 * can't flush, and we don't want to FLUSH_LIMIT because
4775 			 * we could have generated too many delayed refs to
4776 			 * actually allocate, so just bail if we're short and
4777 			 * let the normal reservation dance happen higher up.
4778 			 */
4779 			if (should_throttle) {
4780 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4781 							BTRFS_RESERVE_NO_FLUSH);
4782 				if (ret) {
4783 					ret = -EAGAIN;
4784 					break;
4785 				}
4786 			}
4787 			goto search_again;
4788 		} else {
4789 			path->slots[0]--;
4790 		}
4791 	}
4792 out:
4793 	if (ret >= 0 && pending_del_nr) {
4794 		int err;
4795 
4796 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4797 				      pending_del_nr);
4798 		if (err) {
4799 			btrfs_abort_transaction(trans, err);
4800 			ret = err;
4801 		}
4802 	}
4803 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4804 		ASSERT(last_size >= new_size);
4805 		if (!ret && last_size > new_size)
4806 			last_size = new_size;
4807 		btrfs_inode_safe_disk_i_size_write(inode, last_size);
4808 		unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1,
4809 				     &cached_state);
4810 	}
4811 
4812 	btrfs_free_path(path);
4813 	return ret;
4814 }
4815 
4816 /*
4817  * btrfs_truncate_block - read, zero a chunk and write a block
4818  * @inode - inode that we're zeroing
4819  * @from - the offset to start zeroing
4820  * @len - the length to zero, 0 to zero the entire range respective to the
4821  *	offset
4822  * @front - zero up to the offset instead of from the offset on
4823  *
4824  * This will find the block for the "from" offset and cow the block and zero the
4825  * part we want to zero.  This is used with truncate and hole punching.
4826  */
4827 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4828 			 int front)
4829 {
4830 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4831 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4832 	struct extent_io_tree *io_tree = &inode->io_tree;
4833 	struct btrfs_ordered_extent *ordered;
4834 	struct extent_state *cached_state = NULL;
4835 	struct extent_changeset *data_reserved = NULL;
4836 	char *kaddr;
4837 	bool only_release_metadata = false;
4838 	u32 blocksize = fs_info->sectorsize;
4839 	pgoff_t index = from >> PAGE_SHIFT;
4840 	unsigned offset = from & (blocksize - 1);
4841 	struct page *page;
4842 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4843 	size_t write_bytes = blocksize;
4844 	int ret = 0;
4845 	u64 block_start;
4846 	u64 block_end;
4847 
4848 	if (IS_ALIGNED(offset, blocksize) &&
4849 	    (!len || IS_ALIGNED(len, blocksize)))
4850 		goto out;
4851 
4852 	block_start = round_down(from, blocksize);
4853 	block_end = block_start + blocksize - 1;
4854 
4855 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4856 					  blocksize);
4857 	if (ret < 0) {
4858 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4859 			/* For nocow case, no need to reserve data space */
4860 			only_release_metadata = true;
4861 		} else {
4862 			goto out;
4863 		}
4864 	}
4865 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
4866 	if (ret < 0) {
4867 		if (!only_release_metadata)
4868 			btrfs_free_reserved_data_space(inode, data_reserved,
4869 						       block_start, blocksize);
4870 		goto out;
4871 	}
4872 again:
4873 	page = find_or_create_page(mapping, index, mask);
4874 	if (!page) {
4875 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4876 					     blocksize, true);
4877 		btrfs_delalloc_release_extents(inode, blocksize);
4878 		ret = -ENOMEM;
4879 		goto out;
4880 	}
4881 	ret = set_page_extent_mapped(page);
4882 	if (ret < 0)
4883 		goto out_unlock;
4884 
4885 	if (!PageUptodate(page)) {
4886 		ret = btrfs_readpage(NULL, page);
4887 		lock_page(page);
4888 		if (page->mapping != mapping) {
4889 			unlock_page(page);
4890 			put_page(page);
4891 			goto again;
4892 		}
4893 		if (!PageUptodate(page)) {
4894 			ret = -EIO;
4895 			goto out_unlock;
4896 		}
4897 	}
4898 	wait_on_page_writeback(page);
4899 
4900 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4901 
4902 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4903 	if (ordered) {
4904 		unlock_extent_cached(io_tree, block_start, block_end,
4905 				     &cached_state);
4906 		unlock_page(page);
4907 		put_page(page);
4908 		btrfs_start_ordered_extent(ordered, 1);
4909 		btrfs_put_ordered_extent(ordered);
4910 		goto again;
4911 	}
4912 
4913 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4914 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4915 			 0, 0, &cached_state);
4916 
4917 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4918 					&cached_state);
4919 	if (ret) {
4920 		unlock_extent_cached(io_tree, block_start, block_end,
4921 				     &cached_state);
4922 		goto out_unlock;
4923 	}
4924 
4925 	if (offset != blocksize) {
4926 		if (!len)
4927 			len = blocksize - offset;
4928 		kaddr = kmap(page);
4929 		if (front)
4930 			memset(kaddr + (block_start - page_offset(page)),
4931 				0, offset);
4932 		else
4933 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4934 				0, len);
4935 		flush_dcache_page(page);
4936 		kunmap(page);
4937 	}
4938 	ClearPageChecked(page);
4939 	set_page_dirty(page);
4940 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4941 
4942 	if (only_release_metadata)
4943 		set_extent_bit(&inode->io_tree, block_start, block_end,
4944 			       EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4945 
4946 out_unlock:
4947 	if (ret) {
4948 		if (only_release_metadata)
4949 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4950 		else
4951 			btrfs_delalloc_release_space(inode, data_reserved,
4952 					block_start, blocksize, true);
4953 	}
4954 	btrfs_delalloc_release_extents(inode, blocksize);
4955 	unlock_page(page);
4956 	put_page(page);
4957 out:
4958 	if (only_release_metadata)
4959 		btrfs_check_nocow_unlock(inode);
4960 	extent_changeset_free(data_reserved);
4961 	return ret;
4962 }
4963 
4964 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4965 			     u64 offset, u64 len)
4966 {
4967 	struct btrfs_fs_info *fs_info = root->fs_info;
4968 	struct btrfs_trans_handle *trans;
4969 	struct btrfs_drop_extents_args drop_args = { 0 };
4970 	int ret;
4971 
4972 	/*
4973 	 * Still need to make sure the inode looks like it's been updated so
4974 	 * that any holes get logged if we fsync.
4975 	 */
4976 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4977 		inode->last_trans = fs_info->generation;
4978 		inode->last_sub_trans = root->log_transid;
4979 		inode->last_log_commit = root->last_log_commit;
4980 		return 0;
4981 	}
4982 
4983 	/*
4984 	 * 1 - for the one we're dropping
4985 	 * 1 - for the one we're adding
4986 	 * 1 - for updating the inode.
4987 	 */
4988 	trans = btrfs_start_transaction(root, 3);
4989 	if (IS_ERR(trans))
4990 		return PTR_ERR(trans);
4991 
4992 	drop_args.start = offset;
4993 	drop_args.end = offset + len;
4994 	drop_args.drop_cache = true;
4995 
4996 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4997 	if (ret) {
4998 		btrfs_abort_transaction(trans, ret);
4999 		btrfs_end_transaction(trans);
5000 		return ret;
5001 	}
5002 
5003 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
5004 			offset, 0, 0, len, 0, len, 0, 0, 0);
5005 	if (ret) {
5006 		btrfs_abort_transaction(trans, ret);
5007 	} else {
5008 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5009 		btrfs_update_inode(trans, root, inode);
5010 	}
5011 	btrfs_end_transaction(trans);
5012 	return ret;
5013 }
5014 
5015 /*
5016  * This function puts in dummy file extents for the area we're creating a hole
5017  * for.  So if we are truncating this file to a larger size we need to insert
5018  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5019  * the range between oldsize and size
5020  */
5021 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5022 {
5023 	struct btrfs_root *root = inode->root;
5024 	struct btrfs_fs_info *fs_info = root->fs_info;
5025 	struct extent_io_tree *io_tree = &inode->io_tree;
5026 	struct extent_map *em = NULL;
5027 	struct extent_state *cached_state = NULL;
5028 	struct extent_map_tree *em_tree = &inode->extent_tree;
5029 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5030 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5031 	u64 last_byte;
5032 	u64 cur_offset;
5033 	u64 hole_size;
5034 	int err = 0;
5035 
5036 	/*
5037 	 * If our size started in the middle of a block we need to zero out the
5038 	 * rest of the block before we expand the i_size, otherwise we could
5039 	 * expose stale data.
5040 	 */
5041 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5042 	if (err)
5043 		return err;
5044 
5045 	if (size <= hole_start)
5046 		return 0;
5047 
5048 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5049 					   &cached_state);
5050 	cur_offset = hole_start;
5051 	while (1) {
5052 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5053 				      block_end - cur_offset);
5054 		if (IS_ERR(em)) {
5055 			err = PTR_ERR(em);
5056 			em = NULL;
5057 			break;
5058 		}
5059 		last_byte = min(extent_map_end(em), block_end);
5060 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5061 		hole_size = last_byte - cur_offset;
5062 
5063 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5064 			struct extent_map *hole_em;
5065 
5066 			err = maybe_insert_hole(root, inode, cur_offset,
5067 						hole_size);
5068 			if (err)
5069 				break;
5070 
5071 			err = btrfs_inode_set_file_extent_range(inode,
5072 							cur_offset, hole_size);
5073 			if (err)
5074 				break;
5075 
5076 			btrfs_drop_extent_cache(inode, cur_offset,
5077 						cur_offset + hole_size - 1, 0);
5078 			hole_em = alloc_extent_map();
5079 			if (!hole_em) {
5080 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5081 					&inode->runtime_flags);
5082 				goto next;
5083 			}
5084 			hole_em->start = cur_offset;
5085 			hole_em->len = hole_size;
5086 			hole_em->orig_start = cur_offset;
5087 
5088 			hole_em->block_start = EXTENT_MAP_HOLE;
5089 			hole_em->block_len = 0;
5090 			hole_em->orig_block_len = 0;
5091 			hole_em->ram_bytes = hole_size;
5092 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5093 			hole_em->generation = fs_info->generation;
5094 
5095 			while (1) {
5096 				write_lock(&em_tree->lock);
5097 				err = add_extent_mapping(em_tree, hole_em, 1);
5098 				write_unlock(&em_tree->lock);
5099 				if (err != -EEXIST)
5100 					break;
5101 				btrfs_drop_extent_cache(inode, cur_offset,
5102 							cur_offset +
5103 							hole_size - 1, 0);
5104 			}
5105 			free_extent_map(hole_em);
5106 		} else {
5107 			err = btrfs_inode_set_file_extent_range(inode,
5108 							cur_offset, hole_size);
5109 			if (err)
5110 				break;
5111 		}
5112 next:
5113 		free_extent_map(em);
5114 		em = NULL;
5115 		cur_offset = last_byte;
5116 		if (cur_offset >= block_end)
5117 			break;
5118 	}
5119 	free_extent_map(em);
5120 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5121 	return err;
5122 }
5123 
5124 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5125 {
5126 	struct btrfs_root *root = BTRFS_I(inode)->root;
5127 	struct btrfs_trans_handle *trans;
5128 	loff_t oldsize = i_size_read(inode);
5129 	loff_t newsize = attr->ia_size;
5130 	int mask = attr->ia_valid;
5131 	int ret;
5132 
5133 	/*
5134 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5135 	 * special case where we need to update the times despite not having
5136 	 * these flags set.  For all other operations the VFS set these flags
5137 	 * explicitly if it wants a timestamp update.
5138 	 */
5139 	if (newsize != oldsize) {
5140 		inode_inc_iversion(inode);
5141 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5142 			inode->i_ctime = inode->i_mtime =
5143 				current_time(inode);
5144 	}
5145 
5146 	if (newsize > oldsize) {
5147 		/*
5148 		 * Don't do an expanding truncate while snapshotting is ongoing.
5149 		 * This is to ensure the snapshot captures a fully consistent
5150 		 * state of this file - if the snapshot captures this expanding
5151 		 * truncation, it must capture all writes that happened before
5152 		 * this truncation.
5153 		 */
5154 		btrfs_drew_write_lock(&root->snapshot_lock);
5155 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5156 		if (ret) {
5157 			btrfs_drew_write_unlock(&root->snapshot_lock);
5158 			return ret;
5159 		}
5160 
5161 		trans = btrfs_start_transaction(root, 1);
5162 		if (IS_ERR(trans)) {
5163 			btrfs_drew_write_unlock(&root->snapshot_lock);
5164 			return PTR_ERR(trans);
5165 		}
5166 
5167 		i_size_write(inode, newsize);
5168 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5169 		pagecache_isize_extended(inode, oldsize, newsize);
5170 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5171 		btrfs_drew_write_unlock(&root->snapshot_lock);
5172 		btrfs_end_transaction(trans);
5173 	} else {
5174 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5175 
5176 		if (btrfs_is_zoned(fs_info)) {
5177 			ret = btrfs_wait_ordered_range(inode,
5178 					ALIGN(newsize, fs_info->sectorsize),
5179 					(u64)-1);
5180 			if (ret)
5181 				return ret;
5182 		}
5183 
5184 		/*
5185 		 * We're truncating a file that used to have good data down to
5186 		 * zero. Make sure any new writes to the file get on disk
5187 		 * on close.
5188 		 */
5189 		if (newsize == 0)
5190 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5191 				&BTRFS_I(inode)->runtime_flags);
5192 
5193 		truncate_setsize(inode, newsize);
5194 
5195 		inode_dio_wait(inode);
5196 
5197 		ret = btrfs_truncate(inode, newsize == oldsize);
5198 		if (ret && inode->i_nlink) {
5199 			int err;
5200 
5201 			/*
5202 			 * Truncate failed, so fix up the in-memory size. We
5203 			 * adjusted disk_i_size down as we removed extents, so
5204 			 * wait for disk_i_size to be stable and then update the
5205 			 * in-memory size to match.
5206 			 */
5207 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5208 			if (err)
5209 				return err;
5210 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5211 		}
5212 	}
5213 
5214 	return ret;
5215 }
5216 
5217 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5218 			 struct iattr *attr)
5219 {
5220 	struct inode *inode = d_inode(dentry);
5221 	struct btrfs_root *root = BTRFS_I(inode)->root;
5222 	int err;
5223 
5224 	if (btrfs_root_readonly(root))
5225 		return -EROFS;
5226 
5227 	err = setattr_prepare(&init_user_ns, dentry, attr);
5228 	if (err)
5229 		return err;
5230 
5231 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5232 		err = btrfs_setsize(inode, attr);
5233 		if (err)
5234 			return err;
5235 	}
5236 
5237 	if (attr->ia_valid) {
5238 		setattr_copy(&init_user_ns, inode, attr);
5239 		inode_inc_iversion(inode);
5240 		err = btrfs_dirty_inode(inode);
5241 
5242 		if (!err && attr->ia_valid & ATTR_MODE)
5243 			err = posix_acl_chmod(&init_user_ns, inode,
5244 					      inode->i_mode);
5245 	}
5246 
5247 	return err;
5248 }
5249 
5250 /*
5251  * While truncating the inode pages during eviction, we get the VFS calling
5252  * btrfs_invalidatepage() against each page of the inode. This is slow because
5253  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5254  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5255  * extent_state structures over and over, wasting lots of time.
5256  *
5257  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5258  * those expensive operations on a per page basis and do only the ordered io
5259  * finishing, while we release here the extent_map and extent_state structures,
5260  * without the excessive merging and splitting.
5261  */
5262 static void evict_inode_truncate_pages(struct inode *inode)
5263 {
5264 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5265 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5266 	struct rb_node *node;
5267 
5268 	ASSERT(inode->i_state & I_FREEING);
5269 	truncate_inode_pages_final(&inode->i_data);
5270 
5271 	write_lock(&map_tree->lock);
5272 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5273 		struct extent_map *em;
5274 
5275 		node = rb_first_cached(&map_tree->map);
5276 		em = rb_entry(node, struct extent_map, rb_node);
5277 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5278 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5279 		remove_extent_mapping(map_tree, em);
5280 		free_extent_map(em);
5281 		if (need_resched()) {
5282 			write_unlock(&map_tree->lock);
5283 			cond_resched();
5284 			write_lock(&map_tree->lock);
5285 		}
5286 	}
5287 	write_unlock(&map_tree->lock);
5288 
5289 	/*
5290 	 * Keep looping until we have no more ranges in the io tree.
5291 	 * We can have ongoing bios started by readahead that have
5292 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5293 	 * still in progress (unlocked the pages in the bio but did not yet
5294 	 * unlocked the ranges in the io tree). Therefore this means some
5295 	 * ranges can still be locked and eviction started because before
5296 	 * submitting those bios, which are executed by a separate task (work
5297 	 * queue kthread), inode references (inode->i_count) were not taken
5298 	 * (which would be dropped in the end io callback of each bio).
5299 	 * Therefore here we effectively end up waiting for those bios and
5300 	 * anyone else holding locked ranges without having bumped the inode's
5301 	 * reference count - if we don't do it, when they access the inode's
5302 	 * io_tree to unlock a range it may be too late, leading to an
5303 	 * use-after-free issue.
5304 	 */
5305 	spin_lock(&io_tree->lock);
5306 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5307 		struct extent_state *state;
5308 		struct extent_state *cached_state = NULL;
5309 		u64 start;
5310 		u64 end;
5311 		unsigned state_flags;
5312 
5313 		node = rb_first(&io_tree->state);
5314 		state = rb_entry(node, struct extent_state, rb_node);
5315 		start = state->start;
5316 		end = state->end;
5317 		state_flags = state->state;
5318 		spin_unlock(&io_tree->lock);
5319 
5320 		lock_extent_bits(io_tree, start, end, &cached_state);
5321 
5322 		/*
5323 		 * If still has DELALLOC flag, the extent didn't reach disk,
5324 		 * and its reserved space won't be freed by delayed_ref.
5325 		 * So we need to free its reserved space here.
5326 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5327 		 *
5328 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5329 		 */
5330 		if (state_flags & EXTENT_DELALLOC)
5331 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5332 					       end - start + 1);
5333 
5334 		clear_extent_bit(io_tree, start, end,
5335 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5336 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5337 				 &cached_state);
5338 
5339 		cond_resched();
5340 		spin_lock(&io_tree->lock);
5341 	}
5342 	spin_unlock(&io_tree->lock);
5343 }
5344 
5345 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5346 							struct btrfs_block_rsv *rsv)
5347 {
5348 	struct btrfs_fs_info *fs_info = root->fs_info;
5349 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5350 	struct btrfs_trans_handle *trans;
5351 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5352 	int ret;
5353 
5354 	/*
5355 	 * Eviction should be taking place at some place safe because of our
5356 	 * delayed iputs.  However the normal flushing code will run delayed
5357 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5358 	 *
5359 	 * We reserve the delayed_refs_extra here again because we can't use
5360 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5361 	 * above.  We reserve our extra bit here because we generate a ton of
5362 	 * delayed refs activity by truncating.
5363 	 *
5364 	 * If we cannot make our reservation we'll attempt to steal from the
5365 	 * global reserve, because we really want to be able to free up space.
5366 	 */
5367 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5368 				     BTRFS_RESERVE_FLUSH_EVICT);
5369 	if (ret) {
5370 		/*
5371 		 * Try to steal from the global reserve if there is space for
5372 		 * it.
5373 		 */
5374 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5375 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5376 			btrfs_warn(fs_info,
5377 				   "could not allocate space for delete; will truncate on mount");
5378 			return ERR_PTR(-ENOSPC);
5379 		}
5380 		delayed_refs_extra = 0;
5381 	}
5382 
5383 	trans = btrfs_join_transaction(root);
5384 	if (IS_ERR(trans))
5385 		return trans;
5386 
5387 	if (delayed_refs_extra) {
5388 		trans->block_rsv = &fs_info->trans_block_rsv;
5389 		trans->bytes_reserved = delayed_refs_extra;
5390 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5391 					delayed_refs_extra, 1);
5392 	}
5393 	return trans;
5394 }
5395 
5396 void btrfs_evict_inode(struct inode *inode)
5397 {
5398 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5399 	struct btrfs_trans_handle *trans;
5400 	struct btrfs_root *root = BTRFS_I(inode)->root;
5401 	struct btrfs_block_rsv *rsv;
5402 	int ret;
5403 
5404 	trace_btrfs_inode_evict(inode);
5405 
5406 	if (!root) {
5407 		clear_inode(inode);
5408 		return;
5409 	}
5410 
5411 	evict_inode_truncate_pages(inode);
5412 
5413 	if (inode->i_nlink &&
5414 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5415 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5416 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5417 		goto no_delete;
5418 
5419 	if (is_bad_inode(inode))
5420 		goto no_delete;
5421 
5422 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5423 
5424 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5425 		goto no_delete;
5426 
5427 	if (inode->i_nlink > 0) {
5428 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5429 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5430 		goto no_delete;
5431 	}
5432 
5433 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5434 	if (ret)
5435 		goto no_delete;
5436 
5437 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5438 	if (!rsv)
5439 		goto no_delete;
5440 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5441 	rsv->failfast = 1;
5442 
5443 	btrfs_i_size_write(BTRFS_I(inode), 0);
5444 
5445 	while (1) {
5446 		trans = evict_refill_and_join(root, rsv);
5447 		if (IS_ERR(trans))
5448 			goto free_rsv;
5449 
5450 		trans->block_rsv = rsv;
5451 
5452 		ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
5453 						 0, 0);
5454 		trans->block_rsv = &fs_info->trans_block_rsv;
5455 		btrfs_end_transaction(trans);
5456 		btrfs_btree_balance_dirty(fs_info);
5457 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5458 			goto free_rsv;
5459 		else if (!ret)
5460 			break;
5461 	}
5462 
5463 	/*
5464 	 * Errors here aren't a big deal, it just means we leave orphan items in
5465 	 * the tree. They will be cleaned up on the next mount. If the inode
5466 	 * number gets reused, cleanup deletes the orphan item without doing
5467 	 * anything, and unlink reuses the existing orphan item.
5468 	 *
5469 	 * If it turns out that we are dropping too many of these, we might want
5470 	 * to add a mechanism for retrying these after a commit.
5471 	 */
5472 	trans = evict_refill_and_join(root, rsv);
5473 	if (!IS_ERR(trans)) {
5474 		trans->block_rsv = rsv;
5475 		btrfs_orphan_del(trans, BTRFS_I(inode));
5476 		trans->block_rsv = &fs_info->trans_block_rsv;
5477 		btrfs_end_transaction(trans);
5478 	}
5479 
5480 free_rsv:
5481 	btrfs_free_block_rsv(fs_info, rsv);
5482 no_delete:
5483 	/*
5484 	 * If we didn't successfully delete, the orphan item will still be in
5485 	 * the tree and we'll retry on the next mount. Again, we might also want
5486 	 * to retry these periodically in the future.
5487 	 */
5488 	btrfs_remove_delayed_node(BTRFS_I(inode));
5489 	clear_inode(inode);
5490 }
5491 
5492 /*
5493  * Return the key found in the dir entry in the location pointer, fill @type
5494  * with BTRFS_FT_*, and return 0.
5495  *
5496  * If no dir entries were found, returns -ENOENT.
5497  * If found a corrupted location in dir entry, returns -EUCLEAN.
5498  */
5499 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5500 			       struct btrfs_key *location, u8 *type)
5501 {
5502 	const char *name = dentry->d_name.name;
5503 	int namelen = dentry->d_name.len;
5504 	struct btrfs_dir_item *di;
5505 	struct btrfs_path *path;
5506 	struct btrfs_root *root = BTRFS_I(dir)->root;
5507 	int ret = 0;
5508 
5509 	path = btrfs_alloc_path();
5510 	if (!path)
5511 		return -ENOMEM;
5512 
5513 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5514 			name, namelen, 0);
5515 	if (IS_ERR_OR_NULL(di)) {
5516 		ret = di ? PTR_ERR(di) : -ENOENT;
5517 		goto out;
5518 	}
5519 
5520 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5521 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5522 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5523 		ret = -EUCLEAN;
5524 		btrfs_warn(root->fs_info,
5525 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5526 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5527 			   location->objectid, location->type, location->offset);
5528 	}
5529 	if (!ret)
5530 		*type = btrfs_dir_type(path->nodes[0], di);
5531 out:
5532 	btrfs_free_path(path);
5533 	return ret;
5534 }
5535 
5536 /*
5537  * when we hit a tree root in a directory, the btrfs part of the inode
5538  * needs to be changed to reflect the root directory of the tree root.  This
5539  * is kind of like crossing a mount point.
5540  */
5541 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5542 				    struct inode *dir,
5543 				    struct dentry *dentry,
5544 				    struct btrfs_key *location,
5545 				    struct btrfs_root **sub_root)
5546 {
5547 	struct btrfs_path *path;
5548 	struct btrfs_root *new_root;
5549 	struct btrfs_root_ref *ref;
5550 	struct extent_buffer *leaf;
5551 	struct btrfs_key key;
5552 	int ret;
5553 	int err = 0;
5554 
5555 	path = btrfs_alloc_path();
5556 	if (!path) {
5557 		err = -ENOMEM;
5558 		goto out;
5559 	}
5560 
5561 	err = -ENOENT;
5562 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5563 	key.type = BTRFS_ROOT_REF_KEY;
5564 	key.offset = location->objectid;
5565 
5566 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5567 	if (ret) {
5568 		if (ret < 0)
5569 			err = ret;
5570 		goto out;
5571 	}
5572 
5573 	leaf = path->nodes[0];
5574 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5575 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5576 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5577 		goto out;
5578 
5579 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5580 				   (unsigned long)(ref + 1),
5581 				   dentry->d_name.len);
5582 	if (ret)
5583 		goto out;
5584 
5585 	btrfs_release_path(path);
5586 
5587 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5588 	if (IS_ERR(new_root)) {
5589 		err = PTR_ERR(new_root);
5590 		goto out;
5591 	}
5592 
5593 	*sub_root = new_root;
5594 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5595 	location->type = BTRFS_INODE_ITEM_KEY;
5596 	location->offset = 0;
5597 	err = 0;
5598 out:
5599 	btrfs_free_path(path);
5600 	return err;
5601 }
5602 
5603 static void inode_tree_add(struct inode *inode)
5604 {
5605 	struct btrfs_root *root = BTRFS_I(inode)->root;
5606 	struct btrfs_inode *entry;
5607 	struct rb_node **p;
5608 	struct rb_node *parent;
5609 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5610 	u64 ino = btrfs_ino(BTRFS_I(inode));
5611 
5612 	if (inode_unhashed(inode))
5613 		return;
5614 	parent = NULL;
5615 	spin_lock(&root->inode_lock);
5616 	p = &root->inode_tree.rb_node;
5617 	while (*p) {
5618 		parent = *p;
5619 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5620 
5621 		if (ino < btrfs_ino(entry))
5622 			p = &parent->rb_left;
5623 		else if (ino > btrfs_ino(entry))
5624 			p = &parent->rb_right;
5625 		else {
5626 			WARN_ON(!(entry->vfs_inode.i_state &
5627 				  (I_WILL_FREE | I_FREEING)));
5628 			rb_replace_node(parent, new, &root->inode_tree);
5629 			RB_CLEAR_NODE(parent);
5630 			spin_unlock(&root->inode_lock);
5631 			return;
5632 		}
5633 	}
5634 	rb_link_node(new, parent, p);
5635 	rb_insert_color(new, &root->inode_tree);
5636 	spin_unlock(&root->inode_lock);
5637 }
5638 
5639 static void inode_tree_del(struct btrfs_inode *inode)
5640 {
5641 	struct btrfs_root *root = inode->root;
5642 	int empty = 0;
5643 
5644 	spin_lock(&root->inode_lock);
5645 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5646 		rb_erase(&inode->rb_node, &root->inode_tree);
5647 		RB_CLEAR_NODE(&inode->rb_node);
5648 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5649 	}
5650 	spin_unlock(&root->inode_lock);
5651 
5652 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5653 		spin_lock(&root->inode_lock);
5654 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5655 		spin_unlock(&root->inode_lock);
5656 		if (empty)
5657 			btrfs_add_dead_root(root);
5658 	}
5659 }
5660 
5661 
5662 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5663 {
5664 	struct btrfs_iget_args *args = p;
5665 
5666 	inode->i_ino = args->ino;
5667 	BTRFS_I(inode)->location.objectid = args->ino;
5668 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5669 	BTRFS_I(inode)->location.offset = 0;
5670 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5671 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5672 	return 0;
5673 }
5674 
5675 static int btrfs_find_actor(struct inode *inode, void *opaque)
5676 {
5677 	struct btrfs_iget_args *args = opaque;
5678 
5679 	return args->ino == BTRFS_I(inode)->location.objectid &&
5680 		args->root == BTRFS_I(inode)->root;
5681 }
5682 
5683 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5684 				       struct btrfs_root *root)
5685 {
5686 	struct inode *inode;
5687 	struct btrfs_iget_args args;
5688 	unsigned long hashval = btrfs_inode_hash(ino, root);
5689 
5690 	args.ino = ino;
5691 	args.root = root;
5692 
5693 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5694 			     btrfs_init_locked_inode,
5695 			     (void *)&args);
5696 	return inode;
5697 }
5698 
5699 /*
5700  * Get an inode object given its inode number and corresponding root.
5701  * Path can be preallocated to prevent recursing back to iget through
5702  * allocator. NULL is also valid but may require an additional allocation
5703  * later.
5704  */
5705 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5706 			      struct btrfs_root *root, struct btrfs_path *path)
5707 {
5708 	struct inode *inode;
5709 
5710 	inode = btrfs_iget_locked(s, ino, root);
5711 	if (!inode)
5712 		return ERR_PTR(-ENOMEM);
5713 
5714 	if (inode->i_state & I_NEW) {
5715 		int ret;
5716 
5717 		ret = btrfs_read_locked_inode(inode, path);
5718 		if (!ret) {
5719 			inode_tree_add(inode);
5720 			unlock_new_inode(inode);
5721 		} else {
5722 			iget_failed(inode);
5723 			/*
5724 			 * ret > 0 can come from btrfs_search_slot called by
5725 			 * btrfs_read_locked_inode, this means the inode item
5726 			 * was not found.
5727 			 */
5728 			if (ret > 0)
5729 				ret = -ENOENT;
5730 			inode = ERR_PTR(ret);
5731 		}
5732 	}
5733 
5734 	return inode;
5735 }
5736 
5737 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5738 {
5739 	return btrfs_iget_path(s, ino, root, NULL);
5740 }
5741 
5742 static struct inode *new_simple_dir(struct super_block *s,
5743 				    struct btrfs_key *key,
5744 				    struct btrfs_root *root)
5745 {
5746 	struct inode *inode = new_inode(s);
5747 
5748 	if (!inode)
5749 		return ERR_PTR(-ENOMEM);
5750 
5751 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5752 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5753 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5754 
5755 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5756 	/*
5757 	 * We only need lookup, the rest is read-only and there's no inode
5758 	 * associated with the dentry
5759 	 */
5760 	inode->i_op = &simple_dir_inode_operations;
5761 	inode->i_opflags &= ~IOP_XATTR;
5762 	inode->i_fop = &simple_dir_operations;
5763 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5764 	inode->i_mtime = current_time(inode);
5765 	inode->i_atime = inode->i_mtime;
5766 	inode->i_ctime = inode->i_mtime;
5767 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5768 
5769 	return inode;
5770 }
5771 
5772 static inline u8 btrfs_inode_type(struct inode *inode)
5773 {
5774 	/*
5775 	 * Compile-time asserts that generic FT_* types still match
5776 	 * BTRFS_FT_* types
5777 	 */
5778 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5779 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5780 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5781 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5782 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5783 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5784 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5785 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5786 
5787 	return fs_umode_to_ftype(inode->i_mode);
5788 }
5789 
5790 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5791 {
5792 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5793 	struct inode *inode;
5794 	struct btrfs_root *root = BTRFS_I(dir)->root;
5795 	struct btrfs_root *sub_root = root;
5796 	struct btrfs_key location;
5797 	u8 di_type = 0;
5798 	int ret = 0;
5799 
5800 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5801 		return ERR_PTR(-ENAMETOOLONG);
5802 
5803 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5804 	if (ret < 0)
5805 		return ERR_PTR(ret);
5806 
5807 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5808 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5809 		if (IS_ERR(inode))
5810 			return inode;
5811 
5812 		/* Do extra check against inode mode with di_type */
5813 		if (btrfs_inode_type(inode) != di_type) {
5814 			btrfs_crit(fs_info,
5815 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5816 				  inode->i_mode, btrfs_inode_type(inode),
5817 				  di_type);
5818 			iput(inode);
5819 			return ERR_PTR(-EUCLEAN);
5820 		}
5821 		return inode;
5822 	}
5823 
5824 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5825 				       &location, &sub_root);
5826 	if (ret < 0) {
5827 		if (ret != -ENOENT)
5828 			inode = ERR_PTR(ret);
5829 		else
5830 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5831 	} else {
5832 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5833 	}
5834 	if (root != sub_root)
5835 		btrfs_put_root(sub_root);
5836 
5837 	if (!IS_ERR(inode) && root != sub_root) {
5838 		down_read(&fs_info->cleanup_work_sem);
5839 		if (!sb_rdonly(inode->i_sb))
5840 			ret = btrfs_orphan_cleanup(sub_root);
5841 		up_read(&fs_info->cleanup_work_sem);
5842 		if (ret) {
5843 			iput(inode);
5844 			inode = ERR_PTR(ret);
5845 		}
5846 	}
5847 
5848 	return inode;
5849 }
5850 
5851 static int btrfs_dentry_delete(const struct dentry *dentry)
5852 {
5853 	struct btrfs_root *root;
5854 	struct inode *inode = d_inode(dentry);
5855 
5856 	if (!inode && !IS_ROOT(dentry))
5857 		inode = d_inode(dentry->d_parent);
5858 
5859 	if (inode) {
5860 		root = BTRFS_I(inode)->root;
5861 		if (btrfs_root_refs(&root->root_item) == 0)
5862 			return 1;
5863 
5864 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5865 			return 1;
5866 	}
5867 	return 0;
5868 }
5869 
5870 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5871 				   unsigned int flags)
5872 {
5873 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5874 
5875 	if (inode == ERR_PTR(-ENOENT))
5876 		inode = NULL;
5877 	return d_splice_alias(inode, dentry);
5878 }
5879 
5880 /*
5881  * All this infrastructure exists because dir_emit can fault, and we are holding
5882  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5883  * our information into that, and then dir_emit from the buffer.  This is
5884  * similar to what NFS does, only we don't keep the buffer around in pagecache
5885  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5886  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5887  * tree lock.
5888  */
5889 static int btrfs_opendir(struct inode *inode, struct file *file)
5890 {
5891 	struct btrfs_file_private *private;
5892 
5893 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5894 	if (!private)
5895 		return -ENOMEM;
5896 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5897 	if (!private->filldir_buf) {
5898 		kfree(private);
5899 		return -ENOMEM;
5900 	}
5901 	file->private_data = private;
5902 	return 0;
5903 }
5904 
5905 struct dir_entry {
5906 	u64 ino;
5907 	u64 offset;
5908 	unsigned type;
5909 	int name_len;
5910 };
5911 
5912 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5913 {
5914 	while (entries--) {
5915 		struct dir_entry *entry = addr;
5916 		char *name = (char *)(entry + 1);
5917 
5918 		ctx->pos = get_unaligned(&entry->offset);
5919 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5920 					 get_unaligned(&entry->ino),
5921 					 get_unaligned(&entry->type)))
5922 			return 1;
5923 		addr += sizeof(struct dir_entry) +
5924 			get_unaligned(&entry->name_len);
5925 		ctx->pos++;
5926 	}
5927 	return 0;
5928 }
5929 
5930 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5931 {
5932 	struct inode *inode = file_inode(file);
5933 	struct btrfs_root *root = BTRFS_I(inode)->root;
5934 	struct btrfs_file_private *private = file->private_data;
5935 	struct btrfs_dir_item *di;
5936 	struct btrfs_key key;
5937 	struct btrfs_key found_key;
5938 	struct btrfs_path *path;
5939 	void *addr;
5940 	struct list_head ins_list;
5941 	struct list_head del_list;
5942 	int ret;
5943 	struct extent_buffer *leaf;
5944 	int slot;
5945 	char *name_ptr;
5946 	int name_len;
5947 	int entries = 0;
5948 	int total_len = 0;
5949 	bool put = false;
5950 	struct btrfs_key location;
5951 
5952 	if (!dir_emit_dots(file, ctx))
5953 		return 0;
5954 
5955 	path = btrfs_alloc_path();
5956 	if (!path)
5957 		return -ENOMEM;
5958 
5959 	addr = private->filldir_buf;
5960 	path->reada = READA_FORWARD;
5961 
5962 	INIT_LIST_HEAD(&ins_list);
5963 	INIT_LIST_HEAD(&del_list);
5964 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5965 
5966 again:
5967 	key.type = BTRFS_DIR_INDEX_KEY;
5968 	key.offset = ctx->pos;
5969 	key.objectid = btrfs_ino(BTRFS_I(inode));
5970 
5971 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5972 	if (ret < 0)
5973 		goto err;
5974 
5975 	while (1) {
5976 		struct dir_entry *entry;
5977 
5978 		leaf = path->nodes[0];
5979 		slot = path->slots[0];
5980 		if (slot >= btrfs_header_nritems(leaf)) {
5981 			ret = btrfs_next_leaf(root, path);
5982 			if (ret < 0)
5983 				goto err;
5984 			else if (ret > 0)
5985 				break;
5986 			continue;
5987 		}
5988 
5989 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5990 
5991 		if (found_key.objectid != key.objectid)
5992 			break;
5993 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5994 			break;
5995 		if (found_key.offset < ctx->pos)
5996 			goto next;
5997 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5998 			goto next;
5999 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6000 		name_len = btrfs_dir_name_len(leaf, di);
6001 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6002 		    PAGE_SIZE) {
6003 			btrfs_release_path(path);
6004 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6005 			if (ret)
6006 				goto nopos;
6007 			addr = private->filldir_buf;
6008 			entries = 0;
6009 			total_len = 0;
6010 			goto again;
6011 		}
6012 
6013 		entry = addr;
6014 		put_unaligned(name_len, &entry->name_len);
6015 		name_ptr = (char *)(entry + 1);
6016 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6017 				   name_len);
6018 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6019 				&entry->type);
6020 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6021 		put_unaligned(location.objectid, &entry->ino);
6022 		put_unaligned(found_key.offset, &entry->offset);
6023 		entries++;
6024 		addr += sizeof(struct dir_entry) + name_len;
6025 		total_len += sizeof(struct dir_entry) + name_len;
6026 next:
6027 		path->slots[0]++;
6028 	}
6029 	btrfs_release_path(path);
6030 
6031 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6032 	if (ret)
6033 		goto nopos;
6034 
6035 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6036 	if (ret)
6037 		goto nopos;
6038 
6039 	/*
6040 	 * Stop new entries from being returned after we return the last
6041 	 * entry.
6042 	 *
6043 	 * New directory entries are assigned a strictly increasing
6044 	 * offset.  This means that new entries created during readdir
6045 	 * are *guaranteed* to be seen in the future by that readdir.
6046 	 * This has broken buggy programs which operate on names as
6047 	 * they're returned by readdir.  Until we re-use freed offsets
6048 	 * we have this hack to stop new entries from being returned
6049 	 * under the assumption that they'll never reach this huge
6050 	 * offset.
6051 	 *
6052 	 * This is being careful not to overflow 32bit loff_t unless the
6053 	 * last entry requires it because doing so has broken 32bit apps
6054 	 * in the past.
6055 	 */
6056 	if (ctx->pos >= INT_MAX)
6057 		ctx->pos = LLONG_MAX;
6058 	else
6059 		ctx->pos = INT_MAX;
6060 nopos:
6061 	ret = 0;
6062 err:
6063 	if (put)
6064 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6065 	btrfs_free_path(path);
6066 	return ret;
6067 }
6068 
6069 /*
6070  * This is somewhat expensive, updating the tree every time the
6071  * inode changes.  But, it is most likely to find the inode in cache.
6072  * FIXME, needs more benchmarking...there are no reasons other than performance
6073  * to keep or drop this code.
6074  */
6075 static int btrfs_dirty_inode(struct inode *inode)
6076 {
6077 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6078 	struct btrfs_root *root = BTRFS_I(inode)->root;
6079 	struct btrfs_trans_handle *trans;
6080 	int ret;
6081 
6082 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6083 		return 0;
6084 
6085 	trans = btrfs_join_transaction(root);
6086 	if (IS_ERR(trans))
6087 		return PTR_ERR(trans);
6088 
6089 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6090 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6091 		/* whoops, lets try again with the full transaction */
6092 		btrfs_end_transaction(trans);
6093 		trans = btrfs_start_transaction(root, 1);
6094 		if (IS_ERR(trans))
6095 			return PTR_ERR(trans);
6096 
6097 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6098 	}
6099 	btrfs_end_transaction(trans);
6100 	if (BTRFS_I(inode)->delayed_node)
6101 		btrfs_balance_delayed_items(fs_info);
6102 
6103 	return ret;
6104 }
6105 
6106 /*
6107  * This is a copy of file_update_time.  We need this so we can return error on
6108  * ENOSPC for updating the inode in the case of file write and mmap writes.
6109  */
6110 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6111 			     int flags)
6112 {
6113 	struct btrfs_root *root = BTRFS_I(inode)->root;
6114 	bool dirty = flags & ~S_VERSION;
6115 
6116 	if (btrfs_root_readonly(root))
6117 		return -EROFS;
6118 
6119 	if (flags & S_VERSION)
6120 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6121 	if (flags & S_CTIME)
6122 		inode->i_ctime = *now;
6123 	if (flags & S_MTIME)
6124 		inode->i_mtime = *now;
6125 	if (flags & S_ATIME)
6126 		inode->i_atime = *now;
6127 	return dirty ? btrfs_dirty_inode(inode) : 0;
6128 }
6129 
6130 /*
6131  * find the highest existing sequence number in a directory
6132  * and then set the in-memory index_cnt variable to reflect
6133  * free sequence numbers
6134  */
6135 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6136 {
6137 	struct btrfs_root *root = inode->root;
6138 	struct btrfs_key key, found_key;
6139 	struct btrfs_path *path;
6140 	struct extent_buffer *leaf;
6141 	int ret;
6142 
6143 	key.objectid = btrfs_ino(inode);
6144 	key.type = BTRFS_DIR_INDEX_KEY;
6145 	key.offset = (u64)-1;
6146 
6147 	path = btrfs_alloc_path();
6148 	if (!path)
6149 		return -ENOMEM;
6150 
6151 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6152 	if (ret < 0)
6153 		goto out;
6154 	/* FIXME: we should be able to handle this */
6155 	if (ret == 0)
6156 		goto out;
6157 	ret = 0;
6158 
6159 	/*
6160 	 * MAGIC NUMBER EXPLANATION:
6161 	 * since we search a directory based on f_pos we have to start at 2
6162 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6163 	 * else has to start at 2
6164 	 */
6165 	if (path->slots[0] == 0) {
6166 		inode->index_cnt = 2;
6167 		goto out;
6168 	}
6169 
6170 	path->slots[0]--;
6171 
6172 	leaf = path->nodes[0];
6173 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6174 
6175 	if (found_key.objectid != btrfs_ino(inode) ||
6176 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6177 		inode->index_cnt = 2;
6178 		goto out;
6179 	}
6180 
6181 	inode->index_cnt = found_key.offset + 1;
6182 out:
6183 	btrfs_free_path(path);
6184 	return ret;
6185 }
6186 
6187 /*
6188  * helper to find a free sequence number in a given directory.  This current
6189  * code is very simple, later versions will do smarter things in the btree
6190  */
6191 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6192 {
6193 	int ret = 0;
6194 
6195 	if (dir->index_cnt == (u64)-1) {
6196 		ret = btrfs_inode_delayed_dir_index_count(dir);
6197 		if (ret) {
6198 			ret = btrfs_set_inode_index_count(dir);
6199 			if (ret)
6200 				return ret;
6201 		}
6202 	}
6203 
6204 	*index = dir->index_cnt;
6205 	dir->index_cnt++;
6206 
6207 	return ret;
6208 }
6209 
6210 static int btrfs_insert_inode_locked(struct inode *inode)
6211 {
6212 	struct btrfs_iget_args args;
6213 
6214 	args.ino = BTRFS_I(inode)->location.objectid;
6215 	args.root = BTRFS_I(inode)->root;
6216 
6217 	return insert_inode_locked4(inode,
6218 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6219 		   btrfs_find_actor, &args);
6220 }
6221 
6222 /*
6223  * Inherit flags from the parent inode.
6224  *
6225  * Currently only the compression flags and the cow flags are inherited.
6226  */
6227 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6228 {
6229 	unsigned int flags;
6230 
6231 	if (!dir)
6232 		return;
6233 
6234 	flags = BTRFS_I(dir)->flags;
6235 
6236 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6237 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6238 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6239 	} else if (flags & BTRFS_INODE_COMPRESS) {
6240 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6241 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6242 	}
6243 
6244 	if (flags & BTRFS_INODE_NODATACOW) {
6245 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6246 		if (S_ISREG(inode->i_mode))
6247 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6248 	}
6249 
6250 	btrfs_sync_inode_flags_to_i_flags(inode);
6251 }
6252 
6253 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6254 				     struct btrfs_root *root,
6255 				     struct inode *dir,
6256 				     const char *name, int name_len,
6257 				     u64 ref_objectid, u64 objectid,
6258 				     umode_t mode, u64 *index)
6259 {
6260 	struct btrfs_fs_info *fs_info = root->fs_info;
6261 	struct inode *inode;
6262 	struct btrfs_inode_item *inode_item;
6263 	struct btrfs_key *location;
6264 	struct btrfs_path *path;
6265 	struct btrfs_inode_ref *ref;
6266 	struct btrfs_key key[2];
6267 	u32 sizes[2];
6268 	int nitems = name ? 2 : 1;
6269 	unsigned long ptr;
6270 	unsigned int nofs_flag;
6271 	int ret;
6272 
6273 	path = btrfs_alloc_path();
6274 	if (!path)
6275 		return ERR_PTR(-ENOMEM);
6276 
6277 	nofs_flag = memalloc_nofs_save();
6278 	inode = new_inode(fs_info->sb);
6279 	memalloc_nofs_restore(nofs_flag);
6280 	if (!inode) {
6281 		btrfs_free_path(path);
6282 		return ERR_PTR(-ENOMEM);
6283 	}
6284 
6285 	/*
6286 	 * O_TMPFILE, set link count to 0, so that after this point,
6287 	 * we fill in an inode item with the correct link count.
6288 	 */
6289 	if (!name)
6290 		set_nlink(inode, 0);
6291 
6292 	/*
6293 	 * we have to initialize this early, so we can reclaim the inode
6294 	 * number if we fail afterwards in this function.
6295 	 */
6296 	inode->i_ino = objectid;
6297 
6298 	if (dir && name) {
6299 		trace_btrfs_inode_request(dir);
6300 
6301 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6302 		if (ret) {
6303 			btrfs_free_path(path);
6304 			iput(inode);
6305 			return ERR_PTR(ret);
6306 		}
6307 	} else if (dir) {
6308 		*index = 0;
6309 	}
6310 	/*
6311 	 * index_cnt is ignored for everything but a dir,
6312 	 * btrfs_set_inode_index_count has an explanation for the magic
6313 	 * number
6314 	 */
6315 	BTRFS_I(inode)->index_cnt = 2;
6316 	BTRFS_I(inode)->dir_index = *index;
6317 	BTRFS_I(inode)->root = btrfs_grab_root(root);
6318 	BTRFS_I(inode)->generation = trans->transid;
6319 	inode->i_generation = BTRFS_I(inode)->generation;
6320 
6321 	/*
6322 	 * We could have gotten an inode number from somebody who was fsynced
6323 	 * and then removed in this same transaction, so let's just set full
6324 	 * sync since it will be a full sync anyway and this will blow away the
6325 	 * old info in the log.
6326 	 */
6327 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6328 
6329 	key[0].objectid = objectid;
6330 	key[0].type = BTRFS_INODE_ITEM_KEY;
6331 	key[0].offset = 0;
6332 
6333 	sizes[0] = sizeof(struct btrfs_inode_item);
6334 
6335 	if (name) {
6336 		/*
6337 		 * Start new inodes with an inode_ref. This is slightly more
6338 		 * efficient for small numbers of hard links since they will
6339 		 * be packed into one item. Extended refs will kick in if we
6340 		 * add more hard links than can fit in the ref item.
6341 		 */
6342 		key[1].objectid = objectid;
6343 		key[1].type = BTRFS_INODE_REF_KEY;
6344 		key[1].offset = ref_objectid;
6345 
6346 		sizes[1] = name_len + sizeof(*ref);
6347 	}
6348 
6349 	location = &BTRFS_I(inode)->location;
6350 	location->objectid = objectid;
6351 	location->offset = 0;
6352 	location->type = BTRFS_INODE_ITEM_KEY;
6353 
6354 	ret = btrfs_insert_inode_locked(inode);
6355 	if (ret < 0) {
6356 		iput(inode);
6357 		goto fail;
6358 	}
6359 
6360 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6361 	if (ret != 0)
6362 		goto fail_unlock;
6363 
6364 	inode_init_owner(&init_user_ns, inode, dir, mode);
6365 	inode_set_bytes(inode, 0);
6366 
6367 	inode->i_mtime = current_time(inode);
6368 	inode->i_atime = inode->i_mtime;
6369 	inode->i_ctime = inode->i_mtime;
6370 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6371 
6372 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6373 				  struct btrfs_inode_item);
6374 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6375 			     sizeof(*inode_item));
6376 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6377 
6378 	if (name) {
6379 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6380 				     struct btrfs_inode_ref);
6381 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6382 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6383 		ptr = (unsigned long)(ref + 1);
6384 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6385 	}
6386 
6387 	btrfs_mark_buffer_dirty(path->nodes[0]);
6388 	btrfs_free_path(path);
6389 
6390 	btrfs_inherit_iflags(inode, dir);
6391 
6392 	if (S_ISREG(mode)) {
6393 		if (btrfs_test_opt(fs_info, NODATASUM))
6394 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6395 		if (btrfs_test_opt(fs_info, NODATACOW))
6396 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6397 				BTRFS_INODE_NODATASUM;
6398 	}
6399 
6400 	inode_tree_add(inode);
6401 
6402 	trace_btrfs_inode_new(inode);
6403 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6404 
6405 	btrfs_update_root_times(trans, root);
6406 
6407 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6408 	if (ret)
6409 		btrfs_err(fs_info,
6410 			  "error inheriting props for ino %llu (root %llu): %d",
6411 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6412 
6413 	return inode;
6414 
6415 fail_unlock:
6416 	discard_new_inode(inode);
6417 fail:
6418 	if (dir && name)
6419 		BTRFS_I(dir)->index_cnt--;
6420 	btrfs_free_path(path);
6421 	return ERR_PTR(ret);
6422 }
6423 
6424 /*
6425  * utility function to add 'inode' into 'parent_inode' with
6426  * a give name and a given sequence number.
6427  * if 'add_backref' is true, also insert a backref from the
6428  * inode to the parent directory.
6429  */
6430 int btrfs_add_link(struct btrfs_trans_handle *trans,
6431 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6432 		   const char *name, int name_len, int add_backref, u64 index)
6433 {
6434 	int ret = 0;
6435 	struct btrfs_key key;
6436 	struct btrfs_root *root = parent_inode->root;
6437 	u64 ino = btrfs_ino(inode);
6438 	u64 parent_ino = btrfs_ino(parent_inode);
6439 
6440 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6441 		memcpy(&key, &inode->root->root_key, sizeof(key));
6442 	} else {
6443 		key.objectid = ino;
6444 		key.type = BTRFS_INODE_ITEM_KEY;
6445 		key.offset = 0;
6446 	}
6447 
6448 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6449 		ret = btrfs_add_root_ref(trans, key.objectid,
6450 					 root->root_key.objectid, parent_ino,
6451 					 index, name, name_len);
6452 	} else if (add_backref) {
6453 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6454 					     parent_ino, index);
6455 	}
6456 
6457 	/* Nothing to clean up yet */
6458 	if (ret)
6459 		return ret;
6460 
6461 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6462 				    btrfs_inode_type(&inode->vfs_inode), index);
6463 	if (ret == -EEXIST || ret == -EOVERFLOW)
6464 		goto fail_dir_item;
6465 	else if (ret) {
6466 		btrfs_abort_transaction(trans, ret);
6467 		return ret;
6468 	}
6469 
6470 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6471 			   name_len * 2);
6472 	inode_inc_iversion(&parent_inode->vfs_inode);
6473 	/*
6474 	 * If we are replaying a log tree, we do not want to update the mtime
6475 	 * and ctime of the parent directory with the current time, since the
6476 	 * log replay procedure is responsible for setting them to their correct
6477 	 * values (the ones it had when the fsync was done).
6478 	 */
6479 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6480 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6481 
6482 		parent_inode->vfs_inode.i_mtime = now;
6483 		parent_inode->vfs_inode.i_ctime = now;
6484 	}
6485 	ret = btrfs_update_inode(trans, root, parent_inode);
6486 	if (ret)
6487 		btrfs_abort_transaction(trans, ret);
6488 	return ret;
6489 
6490 fail_dir_item:
6491 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6492 		u64 local_index;
6493 		int err;
6494 		err = btrfs_del_root_ref(trans, key.objectid,
6495 					 root->root_key.objectid, parent_ino,
6496 					 &local_index, name, name_len);
6497 		if (err)
6498 			btrfs_abort_transaction(trans, err);
6499 	} else if (add_backref) {
6500 		u64 local_index;
6501 		int err;
6502 
6503 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6504 					  ino, parent_ino, &local_index);
6505 		if (err)
6506 			btrfs_abort_transaction(trans, err);
6507 	}
6508 
6509 	/* Return the original error code */
6510 	return ret;
6511 }
6512 
6513 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6514 			    struct btrfs_inode *dir, struct dentry *dentry,
6515 			    struct btrfs_inode *inode, int backref, u64 index)
6516 {
6517 	int err = btrfs_add_link(trans, dir, inode,
6518 				 dentry->d_name.name, dentry->d_name.len,
6519 				 backref, index);
6520 	if (err > 0)
6521 		err = -EEXIST;
6522 	return err;
6523 }
6524 
6525 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6526 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6527 {
6528 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6529 	struct btrfs_trans_handle *trans;
6530 	struct btrfs_root *root = BTRFS_I(dir)->root;
6531 	struct inode *inode = NULL;
6532 	int err;
6533 	u64 objectid;
6534 	u64 index = 0;
6535 
6536 	/*
6537 	 * 2 for inode item and ref
6538 	 * 2 for dir items
6539 	 * 1 for xattr if selinux is on
6540 	 */
6541 	trans = btrfs_start_transaction(root, 5);
6542 	if (IS_ERR(trans))
6543 		return PTR_ERR(trans);
6544 
6545 	err = btrfs_get_free_objectid(root, &objectid);
6546 	if (err)
6547 		goto out_unlock;
6548 
6549 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6550 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6551 			mode, &index);
6552 	if (IS_ERR(inode)) {
6553 		err = PTR_ERR(inode);
6554 		inode = NULL;
6555 		goto out_unlock;
6556 	}
6557 
6558 	/*
6559 	* If the active LSM wants to access the inode during
6560 	* d_instantiate it needs these. Smack checks to see
6561 	* if the filesystem supports xattrs by looking at the
6562 	* ops vector.
6563 	*/
6564 	inode->i_op = &btrfs_special_inode_operations;
6565 	init_special_inode(inode, inode->i_mode, rdev);
6566 
6567 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6568 	if (err)
6569 		goto out_unlock;
6570 
6571 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6572 			0, index);
6573 	if (err)
6574 		goto out_unlock;
6575 
6576 	btrfs_update_inode(trans, root, BTRFS_I(inode));
6577 	d_instantiate_new(dentry, inode);
6578 
6579 out_unlock:
6580 	btrfs_end_transaction(trans);
6581 	btrfs_btree_balance_dirty(fs_info);
6582 	if (err && inode) {
6583 		inode_dec_link_count(inode);
6584 		discard_new_inode(inode);
6585 	}
6586 	return err;
6587 }
6588 
6589 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6590 			struct dentry *dentry, umode_t mode, bool excl)
6591 {
6592 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6593 	struct btrfs_trans_handle *trans;
6594 	struct btrfs_root *root = BTRFS_I(dir)->root;
6595 	struct inode *inode = NULL;
6596 	int err;
6597 	u64 objectid;
6598 	u64 index = 0;
6599 
6600 	/*
6601 	 * 2 for inode item and ref
6602 	 * 2 for dir items
6603 	 * 1 for xattr if selinux is on
6604 	 */
6605 	trans = btrfs_start_transaction(root, 5);
6606 	if (IS_ERR(trans))
6607 		return PTR_ERR(trans);
6608 
6609 	err = btrfs_get_free_objectid(root, &objectid);
6610 	if (err)
6611 		goto out_unlock;
6612 
6613 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6614 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6615 			mode, &index);
6616 	if (IS_ERR(inode)) {
6617 		err = PTR_ERR(inode);
6618 		inode = NULL;
6619 		goto out_unlock;
6620 	}
6621 	/*
6622 	* If the active LSM wants to access the inode during
6623 	* d_instantiate it needs these. Smack checks to see
6624 	* if the filesystem supports xattrs by looking at the
6625 	* ops vector.
6626 	*/
6627 	inode->i_fop = &btrfs_file_operations;
6628 	inode->i_op = &btrfs_file_inode_operations;
6629 	inode->i_mapping->a_ops = &btrfs_aops;
6630 
6631 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6632 	if (err)
6633 		goto out_unlock;
6634 
6635 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6636 	if (err)
6637 		goto out_unlock;
6638 
6639 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6640 			0, index);
6641 	if (err)
6642 		goto out_unlock;
6643 
6644 	d_instantiate_new(dentry, inode);
6645 
6646 out_unlock:
6647 	btrfs_end_transaction(trans);
6648 	if (err && inode) {
6649 		inode_dec_link_count(inode);
6650 		discard_new_inode(inode);
6651 	}
6652 	btrfs_btree_balance_dirty(fs_info);
6653 	return err;
6654 }
6655 
6656 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6657 		      struct dentry *dentry)
6658 {
6659 	struct btrfs_trans_handle *trans = NULL;
6660 	struct btrfs_root *root = BTRFS_I(dir)->root;
6661 	struct inode *inode = d_inode(old_dentry);
6662 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6663 	u64 index;
6664 	int err;
6665 	int drop_inode = 0;
6666 
6667 	/* do not allow sys_link's with other subvols of the same device */
6668 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6669 		return -EXDEV;
6670 
6671 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6672 		return -EMLINK;
6673 
6674 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6675 	if (err)
6676 		goto fail;
6677 
6678 	/*
6679 	 * 2 items for inode and inode ref
6680 	 * 2 items for dir items
6681 	 * 1 item for parent inode
6682 	 * 1 item for orphan item deletion if O_TMPFILE
6683 	 */
6684 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6685 	if (IS_ERR(trans)) {
6686 		err = PTR_ERR(trans);
6687 		trans = NULL;
6688 		goto fail;
6689 	}
6690 
6691 	/* There are several dir indexes for this inode, clear the cache. */
6692 	BTRFS_I(inode)->dir_index = 0ULL;
6693 	inc_nlink(inode);
6694 	inode_inc_iversion(inode);
6695 	inode->i_ctime = current_time(inode);
6696 	ihold(inode);
6697 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6698 
6699 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6700 			1, index);
6701 
6702 	if (err) {
6703 		drop_inode = 1;
6704 	} else {
6705 		struct dentry *parent = dentry->d_parent;
6706 
6707 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6708 		if (err)
6709 			goto fail;
6710 		if (inode->i_nlink == 1) {
6711 			/*
6712 			 * If new hard link count is 1, it's a file created
6713 			 * with open(2) O_TMPFILE flag.
6714 			 */
6715 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6716 			if (err)
6717 				goto fail;
6718 		}
6719 		d_instantiate(dentry, inode);
6720 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6721 	}
6722 
6723 fail:
6724 	if (trans)
6725 		btrfs_end_transaction(trans);
6726 	if (drop_inode) {
6727 		inode_dec_link_count(inode);
6728 		iput(inode);
6729 	}
6730 	btrfs_btree_balance_dirty(fs_info);
6731 	return err;
6732 }
6733 
6734 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6735 		       struct dentry *dentry, umode_t mode)
6736 {
6737 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6738 	struct inode *inode = NULL;
6739 	struct btrfs_trans_handle *trans;
6740 	struct btrfs_root *root = BTRFS_I(dir)->root;
6741 	int err = 0;
6742 	u64 objectid = 0;
6743 	u64 index = 0;
6744 
6745 	/*
6746 	 * 2 items for inode and ref
6747 	 * 2 items for dir items
6748 	 * 1 for xattr if selinux is on
6749 	 */
6750 	trans = btrfs_start_transaction(root, 5);
6751 	if (IS_ERR(trans))
6752 		return PTR_ERR(trans);
6753 
6754 	err = btrfs_get_free_objectid(root, &objectid);
6755 	if (err)
6756 		goto out_fail;
6757 
6758 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6759 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6760 			S_IFDIR | mode, &index);
6761 	if (IS_ERR(inode)) {
6762 		err = PTR_ERR(inode);
6763 		inode = NULL;
6764 		goto out_fail;
6765 	}
6766 
6767 	/* these must be set before we unlock the inode */
6768 	inode->i_op = &btrfs_dir_inode_operations;
6769 	inode->i_fop = &btrfs_dir_file_operations;
6770 
6771 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6772 	if (err)
6773 		goto out_fail;
6774 
6775 	btrfs_i_size_write(BTRFS_I(inode), 0);
6776 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6777 	if (err)
6778 		goto out_fail;
6779 
6780 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6781 			dentry->d_name.name,
6782 			dentry->d_name.len, 0, index);
6783 	if (err)
6784 		goto out_fail;
6785 
6786 	d_instantiate_new(dentry, inode);
6787 
6788 out_fail:
6789 	btrfs_end_transaction(trans);
6790 	if (err && inode) {
6791 		inode_dec_link_count(inode);
6792 		discard_new_inode(inode);
6793 	}
6794 	btrfs_btree_balance_dirty(fs_info);
6795 	return err;
6796 }
6797 
6798 static noinline int uncompress_inline(struct btrfs_path *path,
6799 				      struct page *page,
6800 				      size_t pg_offset, u64 extent_offset,
6801 				      struct btrfs_file_extent_item *item)
6802 {
6803 	int ret;
6804 	struct extent_buffer *leaf = path->nodes[0];
6805 	char *tmp;
6806 	size_t max_size;
6807 	unsigned long inline_size;
6808 	unsigned long ptr;
6809 	int compress_type;
6810 
6811 	WARN_ON(pg_offset != 0);
6812 	compress_type = btrfs_file_extent_compression(leaf, item);
6813 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6814 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6815 					btrfs_item_nr(path->slots[0]));
6816 	tmp = kmalloc(inline_size, GFP_NOFS);
6817 	if (!tmp)
6818 		return -ENOMEM;
6819 	ptr = btrfs_file_extent_inline_start(item);
6820 
6821 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6822 
6823 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6824 	ret = btrfs_decompress(compress_type, tmp, page,
6825 			       extent_offset, inline_size, max_size);
6826 
6827 	/*
6828 	 * decompression code contains a memset to fill in any space between the end
6829 	 * of the uncompressed data and the end of max_size in case the decompressed
6830 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6831 	 * the end of an inline extent and the beginning of the next block, so we
6832 	 * cover that region here.
6833 	 */
6834 
6835 	if (max_size + pg_offset < PAGE_SIZE) {
6836 		char *map = kmap(page);
6837 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6838 		kunmap(page);
6839 	}
6840 	kfree(tmp);
6841 	return ret;
6842 }
6843 
6844 /**
6845  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6846  * @inode:	file to search in
6847  * @page:	page to read extent data into if the extent is inline
6848  * @pg_offset:	offset into @page to copy to
6849  * @start:	file offset
6850  * @len:	length of range starting at @start
6851  *
6852  * This returns the first &struct extent_map which overlaps with the given
6853  * range, reading it from the B-tree and caching it if necessary. Note that
6854  * there may be more extents which overlap the given range after the returned
6855  * extent_map.
6856  *
6857  * If @page is not NULL and the extent is inline, this also reads the extent
6858  * data directly into the page and marks the extent up to date in the io_tree.
6859  *
6860  * Return: ERR_PTR on error, non-NULL extent_map on success.
6861  */
6862 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6863 				    struct page *page, size_t pg_offset,
6864 				    u64 start, u64 len)
6865 {
6866 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6867 	int ret = 0;
6868 	u64 extent_start = 0;
6869 	u64 extent_end = 0;
6870 	u64 objectid = btrfs_ino(inode);
6871 	int extent_type = -1;
6872 	struct btrfs_path *path = NULL;
6873 	struct btrfs_root *root = inode->root;
6874 	struct btrfs_file_extent_item *item;
6875 	struct extent_buffer *leaf;
6876 	struct btrfs_key found_key;
6877 	struct extent_map *em = NULL;
6878 	struct extent_map_tree *em_tree = &inode->extent_tree;
6879 	struct extent_io_tree *io_tree = &inode->io_tree;
6880 
6881 	read_lock(&em_tree->lock);
6882 	em = lookup_extent_mapping(em_tree, start, len);
6883 	read_unlock(&em_tree->lock);
6884 
6885 	if (em) {
6886 		if (em->start > start || em->start + em->len <= start)
6887 			free_extent_map(em);
6888 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6889 			free_extent_map(em);
6890 		else
6891 			goto out;
6892 	}
6893 	em = alloc_extent_map();
6894 	if (!em) {
6895 		ret = -ENOMEM;
6896 		goto out;
6897 	}
6898 	em->start = EXTENT_MAP_HOLE;
6899 	em->orig_start = EXTENT_MAP_HOLE;
6900 	em->len = (u64)-1;
6901 	em->block_len = (u64)-1;
6902 
6903 	path = btrfs_alloc_path();
6904 	if (!path) {
6905 		ret = -ENOMEM;
6906 		goto out;
6907 	}
6908 
6909 	/* Chances are we'll be called again, so go ahead and do readahead */
6910 	path->reada = READA_FORWARD;
6911 
6912 	/*
6913 	 * The same explanation in load_free_space_cache applies here as well,
6914 	 * we only read when we're loading the free space cache, and at that
6915 	 * point the commit_root has everything we need.
6916 	 */
6917 	if (btrfs_is_free_space_inode(inode)) {
6918 		path->search_commit_root = 1;
6919 		path->skip_locking = 1;
6920 	}
6921 
6922 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6923 	if (ret < 0) {
6924 		goto out;
6925 	} else if (ret > 0) {
6926 		if (path->slots[0] == 0)
6927 			goto not_found;
6928 		path->slots[0]--;
6929 		ret = 0;
6930 	}
6931 
6932 	leaf = path->nodes[0];
6933 	item = btrfs_item_ptr(leaf, path->slots[0],
6934 			      struct btrfs_file_extent_item);
6935 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6936 	if (found_key.objectid != objectid ||
6937 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6938 		/*
6939 		 * If we backup past the first extent we want to move forward
6940 		 * and see if there is an extent in front of us, otherwise we'll
6941 		 * say there is a hole for our whole search range which can
6942 		 * cause problems.
6943 		 */
6944 		extent_end = start;
6945 		goto next;
6946 	}
6947 
6948 	extent_type = btrfs_file_extent_type(leaf, item);
6949 	extent_start = found_key.offset;
6950 	extent_end = btrfs_file_extent_end(path);
6951 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6952 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6953 		/* Only regular file could have regular/prealloc extent */
6954 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6955 			ret = -EUCLEAN;
6956 			btrfs_crit(fs_info,
6957 		"regular/prealloc extent found for non-regular inode %llu",
6958 				   btrfs_ino(inode));
6959 			goto out;
6960 		}
6961 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6962 						       extent_start);
6963 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6964 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6965 						      path->slots[0],
6966 						      extent_start);
6967 	}
6968 next:
6969 	if (start >= extent_end) {
6970 		path->slots[0]++;
6971 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6972 			ret = btrfs_next_leaf(root, path);
6973 			if (ret < 0)
6974 				goto out;
6975 			else if (ret > 0)
6976 				goto not_found;
6977 
6978 			leaf = path->nodes[0];
6979 		}
6980 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6981 		if (found_key.objectid != objectid ||
6982 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6983 			goto not_found;
6984 		if (start + len <= found_key.offset)
6985 			goto not_found;
6986 		if (start > found_key.offset)
6987 			goto next;
6988 
6989 		/* New extent overlaps with existing one */
6990 		em->start = start;
6991 		em->orig_start = start;
6992 		em->len = found_key.offset - start;
6993 		em->block_start = EXTENT_MAP_HOLE;
6994 		goto insert;
6995 	}
6996 
6997 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6998 
6999 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7000 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7001 		goto insert;
7002 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7003 		unsigned long ptr;
7004 		char *map;
7005 		size_t size;
7006 		size_t extent_offset;
7007 		size_t copy_size;
7008 
7009 		if (!page)
7010 			goto out;
7011 
7012 		size = btrfs_file_extent_ram_bytes(leaf, item);
7013 		extent_offset = page_offset(page) + pg_offset - extent_start;
7014 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7015 				  size - extent_offset);
7016 		em->start = extent_start + extent_offset;
7017 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7018 		em->orig_block_len = em->len;
7019 		em->orig_start = em->start;
7020 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7021 
7022 		if (!PageUptodate(page)) {
7023 			if (btrfs_file_extent_compression(leaf, item) !=
7024 			    BTRFS_COMPRESS_NONE) {
7025 				ret = uncompress_inline(path, page, pg_offset,
7026 							extent_offset, item);
7027 				if (ret)
7028 					goto out;
7029 			} else {
7030 				map = kmap_local_page(page);
7031 				read_extent_buffer(leaf, map + pg_offset, ptr,
7032 						   copy_size);
7033 				if (pg_offset + copy_size < PAGE_SIZE) {
7034 					memset(map + pg_offset + copy_size, 0,
7035 					       PAGE_SIZE - pg_offset -
7036 					       copy_size);
7037 				}
7038 				kunmap_local(map);
7039 			}
7040 			flush_dcache_page(page);
7041 		}
7042 		set_extent_uptodate(io_tree, em->start,
7043 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7044 		goto insert;
7045 	}
7046 not_found:
7047 	em->start = start;
7048 	em->orig_start = start;
7049 	em->len = len;
7050 	em->block_start = EXTENT_MAP_HOLE;
7051 insert:
7052 	ret = 0;
7053 	btrfs_release_path(path);
7054 	if (em->start > start || extent_map_end(em) <= start) {
7055 		btrfs_err(fs_info,
7056 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7057 			  em->start, em->len, start, len);
7058 		ret = -EIO;
7059 		goto out;
7060 	}
7061 
7062 	write_lock(&em_tree->lock);
7063 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7064 	write_unlock(&em_tree->lock);
7065 out:
7066 	btrfs_free_path(path);
7067 
7068 	trace_btrfs_get_extent(root, inode, em);
7069 
7070 	if (ret) {
7071 		free_extent_map(em);
7072 		return ERR_PTR(ret);
7073 	}
7074 	return em;
7075 }
7076 
7077 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7078 					   u64 start, u64 len)
7079 {
7080 	struct extent_map *em;
7081 	struct extent_map *hole_em = NULL;
7082 	u64 delalloc_start = start;
7083 	u64 end;
7084 	u64 delalloc_len;
7085 	u64 delalloc_end;
7086 	int err = 0;
7087 
7088 	em = btrfs_get_extent(inode, NULL, 0, start, len);
7089 	if (IS_ERR(em))
7090 		return em;
7091 	/*
7092 	 * If our em maps to:
7093 	 * - a hole or
7094 	 * - a pre-alloc extent,
7095 	 * there might actually be delalloc bytes behind it.
7096 	 */
7097 	if (em->block_start != EXTENT_MAP_HOLE &&
7098 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7099 		return em;
7100 	else
7101 		hole_em = em;
7102 
7103 	/* check to see if we've wrapped (len == -1 or similar) */
7104 	end = start + len;
7105 	if (end < start)
7106 		end = (u64)-1;
7107 	else
7108 		end -= 1;
7109 
7110 	em = NULL;
7111 
7112 	/* ok, we didn't find anything, lets look for delalloc */
7113 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7114 				 end, len, EXTENT_DELALLOC, 1);
7115 	delalloc_end = delalloc_start + delalloc_len;
7116 	if (delalloc_end < delalloc_start)
7117 		delalloc_end = (u64)-1;
7118 
7119 	/*
7120 	 * We didn't find anything useful, return the original results from
7121 	 * get_extent()
7122 	 */
7123 	if (delalloc_start > end || delalloc_end <= start) {
7124 		em = hole_em;
7125 		hole_em = NULL;
7126 		goto out;
7127 	}
7128 
7129 	/*
7130 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7131 	 * the start they passed in
7132 	 */
7133 	delalloc_start = max(start, delalloc_start);
7134 	delalloc_len = delalloc_end - delalloc_start;
7135 
7136 	if (delalloc_len > 0) {
7137 		u64 hole_start;
7138 		u64 hole_len;
7139 		const u64 hole_end = extent_map_end(hole_em);
7140 
7141 		em = alloc_extent_map();
7142 		if (!em) {
7143 			err = -ENOMEM;
7144 			goto out;
7145 		}
7146 
7147 		ASSERT(hole_em);
7148 		/*
7149 		 * When btrfs_get_extent can't find anything it returns one
7150 		 * huge hole
7151 		 *
7152 		 * Make sure what it found really fits our range, and adjust to
7153 		 * make sure it is based on the start from the caller
7154 		 */
7155 		if (hole_end <= start || hole_em->start > end) {
7156 		       free_extent_map(hole_em);
7157 		       hole_em = NULL;
7158 		} else {
7159 		       hole_start = max(hole_em->start, start);
7160 		       hole_len = hole_end - hole_start;
7161 		}
7162 
7163 		if (hole_em && delalloc_start > hole_start) {
7164 			/*
7165 			 * Our hole starts before our delalloc, so we have to
7166 			 * return just the parts of the hole that go until the
7167 			 * delalloc starts
7168 			 */
7169 			em->len = min(hole_len, delalloc_start - hole_start);
7170 			em->start = hole_start;
7171 			em->orig_start = hole_start;
7172 			/*
7173 			 * Don't adjust block start at all, it is fixed at
7174 			 * EXTENT_MAP_HOLE
7175 			 */
7176 			em->block_start = hole_em->block_start;
7177 			em->block_len = hole_len;
7178 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7179 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7180 		} else {
7181 			/*
7182 			 * Hole is out of passed range or it starts after
7183 			 * delalloc range
7184 			 */
7185 			em->start = delalloc_start;
7186 			em->len = delalloc_len;
7187 			em->orig_start = delalloc_start;
7188 			em->block_start = EXTENT_MAP_DELALLOC;
7189 			em->block_len = delalloc_len;
7190 		}
7191 	} else {
7192 		return hole_em;
7193 	}
7194 out:
7195 
7196 	free_extent_map(hole_em);
7197 	if (err) {
7198 		free_extent_map(em);
7199 		return ERR_PTR(err);
7200 	}
7201 	return em;
7202 }
7203 
7204 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7205 						  const u64 start,
7206 						  const u64 len,
7207 						  const u64 orig_start,
7208 						  const u64 block_start,
7209 						  const u64 block_len,
7210 						  const u64 orig_block_len,
7211 						  const u64 ram_bytes,
7212 						  const int type)
7213 {
7214 	struct extent_map *em = NULL;
7215 	int ret;
7216 
7217 	if (type != BTRFS_ORDERED_NOCOW) {
7218 		em = create_io_em(inode, start, len, orig_start, block_start,
7219 				  block_len, orig_block_len, ram_bytes,
7220 				  BTRFS_COMPRESS_NONE, /* compress_type */
7221 				  type);
7222 		if (IS_ERR(em))
7223 			goto out;
7224 	}
7225 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7226 					   block_len, type);
7227 	if (ret) {
7228 		if (em) {
7229 			free_extent_map(em);
7230 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7231 		}
7232 		em = ERR_PTR(ret);
7233 	}
7234  out:
7235 
7236 	return em;
7237 }
7238 
7239 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7240 						  u64 start, u64 len)
7241 {
7242 	struct btrfs_root *root = inode->root;
7243 	struct btrfs_fs_info *fs_info = root->fs_info;
7244 	struct extent_map *em;
7245 	struct btrfs_key ins;
7246 	u64 alloc_hint;
7247 	int ret;
7248 
7249 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7250 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7251 				   0, alloc_hint, &ins, 1, 1);
7252 	if (ret)
7253 		return ERR_PTR(ret);
7254 
7255 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7256 				     ins.objectid, ins.offset, ins.offset,
7257 				     ins.offset, BTRFS_ORDERED_REGULAR);
7258 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7259 	if (IS_ERR(em))
7260 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7261 					   1);
7262 
7263 	return em;
7264 }
7265 
7266 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7267 {
7268 	struct btrfs_block_group *block_group;
7269 	bool readonly = false;
7270 
7271 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7272 	if (!block_group || block_group->ro)
7273 		readonly = true;
7274 	if (block_group)
7275 		btrfs_put_block_group(block_group);
7276 	return readonly;
7277 }
7278 
7279 /*
7280  * Check if we can do nocow write into the range [@offset, @offset + @len)
7281  *
7282  * @offset:	File offset
7283  * @len:	The length to write, will be updated to the nocow writeable
7284  *		range
7285  * @orig_start:	(optional) Return the original file offset of the file extent
7286  * @orig_len:	(optional) Return the original on-disk length of the file extent
7287  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7288  * @strict:	if true, omit optimizations that might force us into unnecessary
7289  *		cow. e.g., don't trust generation number.
7290  *
7291  * Return:
7292  * >0	and update @len if we can do nocow write
7293  *  0	if we can't do nocow write
7294  * <0	if error happened
7295  *
7296  * NOTE: This only checks the file extents, caller is responsible to wait for
7297  *	 any ordered extents.
7298  */
7299 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7300 			      u64 *orig_start, u64 *orig_block_len,
7301 			      u64 *ram_bytes, bool strict)
7302 {
7303 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7304 	struct btrfs_path *path;
7305 	int ret;
7306 	struct extent_buffer *leaf;
7307 	struct btrfs_root *root = BTRFS_I(inode)->root;
7308 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7309 	struct btrfs_file_extent_item *fi;
7310 	struct btrfs_key key;
7311 	u64 disk_bytenr;
7312 	u64 backref_offset;
7313 	u64 extent_end;
7314 	u64 num_bytes;
7315 	int slot;
7316 	int found_type;
7317 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7318 
7319 	path = btrfs_alloc_path();
7320 	if (!path)
7321 		return -ENOMEM;
7322 
7323 	ret = btrfs_lookup_file_extent(NULL, root, path,
7324 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7325 	if (ret < 0)
7326 		goto out;
7327 
7328 	slot = path->slots[0];
7329 	if (ret == 1) {
7330 		if (slot == 0) {
7331 			/* can't find the item, must cow */
7332 			ret = 0;
7333 			goto out;
7334 		}
7335 		slot--;
7336 	}
7337 	ret = 0;
7338 	leaf = path->nodes[0];
7339 	btrfs_item_key_to_cpu(leaf, &key, slot);
7340 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7341 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7342 		/* not our file or wrong item type, must cow */
7343 		goto out;
7344 	}
7345 
7346 	if (key.offset > offset) {
7347 		/* Wrong offset, must cow */
7348 		goto out;
7349 	}
7350 
7351 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7352 	found_type = btrfs_file_extent_type(leaf, fi);
7353 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7354 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7355 		/* not a regular extent, must cow */
7356 		goto out;
7357 	}
7358 
7359 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7360 		goto out;
7361 
7362 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7363 	if (extent_end <= offset)
7364 		goto out;
7365 
7366 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7367 	if (disk_bytenr == 0)
7368 		goto out;
7369 
7370 	if (btrfs_file_extent_compression(leaf, fi) ||
7371 	    btrfs_file_extent_encryption(leaf, fi) ||
7372 	    btrfs_file_extent_other_encoding(leaf, fi))
7373 		goto out;
7374 
7375 	/*
7376 	 * Do the same check as in btrfs_cross_ref_exist but without the
7377 	 * unnecessary search.
7378 	 */
7379 	if (!strict &&
7380 	    (btrfs_file_extent_generation(leaf, fi) <=
7381 	     btrfs_root_last_snapshot(&root->root_item)))
7382 		goto out;
7383 
7384 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7385 
7386 	if (orig_start) {
7387 		*orig_start = key.offset - backref_offset;
7388 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7389 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7390 	}
7391 
7392 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7393 		goto out;
7394 
7395 	num_bytes = min(offset + *len, extent_end) - offset;
7396 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7397 		u64 range_end;
7398 
7399 		range_end = round_up(offset + num_bytes,
7400 				     root->fs_info->sectorsize) - 1;
7401 		ret = test_range_bit(io_tree, offset, range_end,
7402 				     EXTENT_DELALLOC, 0, NULL);
7403 		if (ret) {
7404 			ret = -EAGAIN;
7405 			goto out;
7406 		}
7407 	}
7408 
7409 	btrfs_release_path(path);
7410 
7411 	/*
7412 	 * look for other files referencing this extent, if we
7413 	 * find any we must cow
7414 	 */
7415 
7416 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7417 				    key.offset - backref_offset, disk_bytenr,
7418 				    strict);
7419 	if (ret) {
7420 		ret = 0;
7421 		goto out;
7422 	}
7423 
7424 	/*
7425 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7426 	 * in this extent we are about to write.  If there
7427 	 * are any csums in that range we have to cow in order
7428 	 * to keep the csums correct
7429 	 */
7430 	disk_bytenr += backref_offset;
7431 	disk_bytenr += offset - key.offset;
7432 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7433 		goto out;
7434 	/*
7435 	 * all of the above have passed, it is safe to overwrite this extent
7436 	 * without cow
7437 	 */
7438 	*len = num_bytes;
7439 	ret = 1;
7440 out:
7441 	btrfs_free_path(path);
7442 	return ret;
7443 }
7444 
7445 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7446 			      struct extent_state **cached_state, bool writing)
7447 {
7448 	struct btrfs_ordered_extent *ordered;
7449 	int ret = 0;
7450 
7451 	while (1) {
7452 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7453 				 cached_state);
7454 		/*
7455 		 * We're concerned with the entire range that we're going to be
7456 		 * doing DIO to, so we need to make sure there's no ordered
7457 		 * extents in this range.
7458 		 */
7459 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7460 						     lockend - lockstart + 1);
7461 
7462 		/*
7463 		 * We need to make sure there are no buffered pages in this
7464 		 * range either, we could have raced between the invalidate in
7465 		 * generic_file_direct_write and locking the extent.  The
7466 		 * invalidate needs to happen so that reads after a write do not
7467 		 * get stale data.
7468 		 */
7469 		if (!ordered &&
7470 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7471 							 lockstart, lockend)))
7472 			break;
7473 
7474 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7475 				     cached_state);
7476 
7477 		if (ordered) {
7478 			/*
7479 			 * If we are doing a DIO read and the ordered extent we
7480 			 * found is for a buffered write, we can not wait for it
7481 			 * to complete and retry, because if we do so we can
7482 			 * deadlock with concurrent buffered writes on page
7483 			 * locks. This happens only if our DIO read covers more
7484 			 * than one extent map, if at this point has already
7485 			 * created an ordered extent for a previous extent map
7486 			 * and locked its range in the inode's io tree, and a
7487 			 * concurrent write against that previous extent map's
7488 			 * range and this range started (we unlock the ranges
7489 			 * in the io tree only when the bios complete and
7490 			 * buffered writes always lock pages before attempting
7491 			 * to lock range in the io tree).
7492 			 */
7493 			if (writing ||
7494 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7495 				btrfs_start_ordered_extent(ordered, 1);
7496 			else
7497 				ret = -ENOTBLK;
7498 			btrfs_put_ordered_extent(ordered);
7499 		} else {
7500 			/*
7501 			 * We could trigger writeback for this range (and wait
7502 			 * for it to complete) and then invalidate the pages for
7503 			 * this range (through invalidate_inode_pages2_range()),
7504 			 * but that can lead us to a deadlock with a concurrent
7505 			 * call to readahead (a buffered read or a defrag call
7506 			 * triggered a readahead) on a page lock due to an
7507 			 * ordered dio extent we created before but did not have
7508 			 * yet a corresponding bio submitted (whence it can not
7509 			 * complete), which makes readahead wait for that
7510 			 * ordered extent to complete while holding a lock on
7511 			 * that page.
7512 			 */
7513 			ret = -ENOTBLK;
7514 		}
7515 
7516 		if (ret)
7517 			break;
7518 
7519 		cond_resched();
7520 	}
7521 
7522 	return ret;
7523 }
7524 
7525 /* The callers of this must take lock_extent() */
7526 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7527 				       u64 len, u64 orig_start, u64 block_start,
7528 				       u64 block_len, u64 orig_block_len,
7529 				       u64 ram_bytes, int compress_type,
7530 				       int type)
7531 {
7532 	struct extent_map_tree *em_tree;
7533 	struct extent_map *em;
7534 	int ret;
7535 
7536 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7537 	       type == BTRFS_ORDERED_COMPRESSED ||
7538 	       type == BTRFS_ORDERED_NOCOW ||
7539 	       type == BTRFS_ORDERED_REGULAR);
7540 
7541 	em_tree = &inode->extent_tree;
7542 	em = alloc_extent_map();
7543 	if (!em)
7544 		return ERR_PTR(-ENOMEM);
7545 
7546 	em->start = start;
7547 	em->orig_start = orig_start;
7548 	em->len = len;
7549 	em->block_len = block_len;
7550 	em->block_start = block_start;
7551 	em->orig_block_len = orig_block_len;
7552 	em->ram_bytes = ram_bytes;
7553 	em->generation = -1;
7554 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7555 	if (type == BTRFS_ORDERED_PREALLOC) {
7556 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7557 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7558 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7559 		em->compress_type = compress_type;
7560 	}
7561 
7562 	do {
7563 		btrfs_drop_extent_cache(inode, em->start,
7564 					em->start + em->len - 1, 0);
7565 		write_lock(&em_tree->lock);
7566 		ret = add_extent_mapping(em_tree, em, 1);
7567 		write_unlock(&em_tree->lock);
7568 		/*
7569 		 * The caller has taken lock_extent(), who could race with us
7570 		 * to add em?
7571 		 */
7572 	} while (ret == -EEXIST);
7573 
7574 	if (ret) {
7575 		free_extent_map(em);
7576 		return ERR_PTR(ret);
7577 	}
7578 
7579 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7580 	return em;
7581 }
7582 
7583 
7584 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7585 					 struct inode *inode,
7586 					 struct btrfs_dio_data *dio_data,
7587 					 u64 start, u64 len)
7588 {
7589 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7590 	struct extent_map *em = *map;
7591 	int ret = 0;
7592 
7593 	/*
7594 	 * We don't allocate a new extent in the following cases
7595 	 *
7596 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7597 	 * existing extent.
7598 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7599 	 * just use the extent.
7600 	 *
7601 	 */
7602 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7603 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7604 	     em->block_start != EXTENT_MAP_HOLE)) {
7605 		int type;
7606 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7607 
7608 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7609 			type = BTRFS_ORDERED_PREALLOC;
7610 		else
7611 			type = BTRFS_ORDERED_NOCOW;
7612 		len = min(len, em->len - (start - em->start));
7613 		block_start = em->block_start + (start - em->start);
7614 
7615 		if (can_nocow_extent(inode, start, &len, &orig_start,
7616 				     &orig_block_len, &ram_bytes, false) == 1 &&
7617 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7618 			struct extent_map *em2;
7619 
7620 			em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7621 						      orig_start, block_start,
7622 						      len, orig_block_len,
7623 						      ram_bytes, type);
7624 			btrfs_dec_nocow_writers(fs_info, block_start);
7625 			if (type == BTRFS_ORDERED_PREALLOC) {
7626 				free_extent_map(em);
7627 				*map = em = em2;
7628 			}
7629 
7630 			if (em2 && IS_ERR(em2)) {
7631 				ret = PTR_ERR(em2);
7632 				goto out;
7633 			}
7634 			/*
7635 			 * For inode marked NODATACOW or extent marked PREALLOC,
7636 			 * use the existing or preallocated extent, so does not
7637 			 * need to adjust btrfs_space_info's bytes_may_use.
7638 			 */
7639 			btrfs_free_reserved_data_space_noquota(fs_info, len);
7640 			goto skip_cow;
7641 		}
7642 	}
7643 
7644 	/* this will cow the extent */
7645 	free_extent_map(em);
7646 	*map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7647 	if (IS_ERR(em)) {
7648 		ret = PTR_ERR(em);
7649 		goto out;
7650 	}
7651 
7652 	len = min(len, em->len - (start - em->start));
7653 
7654 skip_cow:
7655 	/*
7656 	 * Need to update the i_size under the extent lock so buffered
7657 	 * readers will get the updated i_size when we unlock.
7658 	 */
7659 	if (start + len > i_size_read(inode))
7660 		i_size_write(inode, start + len);
7661 
7662 	dio_data->reserve -= len;
7663 out:
7664 	return ret;
7665 }
7666 
7667 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7668 		loff_t length, unsigned int flags, struct iomap *iomap,
7669 		struct iomap *srcmap)
7670 {
7671 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7672 	struct extent_map *em;
7673 	struct extent_state *cached_state = NULL;
7674 	struct btrfs_dio_data *dio_data = NULL;
7675 	u64 lockstart, lockend;
7676 	const bool write = !!(flags & IOMAP_WRITE);
7677 	int ret = 0;
7678 	u64 len = length;
7679 	bool unlock_extents = false;
7680 
7681 	if (!write)
7682 		len = min_t(u64, len, fs_info->sectorsize);
7683 
7684 	lockstart = start;
7685 	lockend = start + len - 1;
7686 
7687 	/*
7688 	 * The generic stuff only does filemap_write_and_wait_range, which
7689 	 * isn't enough if we've written compressed pages to this area, so we
7690 	 * need to flush the dirty pages again to make absolutely sure that any
7691 	 * outstanding dirty pages are on disk.
7692 	 */
7693 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7694 		     &BTRFS_I(inode)->runtime_flags)) {
7695 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
7696 					       start + length - 1);
7697 		if (ret)
7698 			return ret;
7699 	}
7700 
7701 	dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7702 	if (!dio_data)
7703 		return -ENOMEM;
7704 
7705 	dio_data->length = length;
7706 	if (write) {
7707 		dio_data->reserve = round_up(length, fs_info->sectorsize);
7708 		ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7709 				&dio_data->data_reserved,
7710 				start, dio_data->reserve);
7711 		if (ret) {
7712 			extent_changeset_free(dio_data->data_reserved);
7713 			kfree(dio_data);
7714 			return ret;
7715 		}
7716 	}
7717 	iomap->private = dio_data;
7718 
7719 
7720 	/*
7721 	 * If this errors out it's because we couldn't invalidate pagecache for
7722 	 * this range and we need to fallback to buffered.
7723 	 */
7724 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7725 		ret = -ENOTBLK;
7726 		goto err;
7727 	}
7728 
7729 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7730 	if (IS_ERR(em)) {
7731 		ret = PTR_ERR(em);
7732 		goto unlock_err;
7733 	}
7734 
7735 	/*
7736 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7737 	 * io.  INLINE is special, and we could probably kludge it in here, but
7738 	 * it's still buffered so for safety lets just fall back to the generic
7739 	 * buffered path.
7740 	 *
7741 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7742 	 * decompress it, so there will be buffering required no matter what we
7743 	 * do, so go ahead and fallback to buffered.
7744 	 *
7745 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7746 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7747 	 * the generic code.
7748 	 */
7749 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7750 	    em->block_start == EXTENT_MAP_INLINE) {
7751 		free_extent_map(em);
7752 		ret = -ENOTBLK;
7753 		goto unlock_err;
7754 	}
7755 
7756 	len = min(len, em->len - (start - em->start));
7757 	if (write) {
7758 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7759 						    start, len);
7760 		if (ret < 0)
7761 			goto unlock_err;
7762 		unlock_extents = true;
7763 		/* Recalc len in case the new em is smaller than requested */
7764 		len = min(len, em->len - (start - em->start));
7765 	} else {
7766 		/*
7767 		 * We need to unlock only the end area that we aren't using.
7768 		 * The rest is going to be unlocked by the endio routine.
7769 		 */
7770 		lockstart = start + len;
7771 		if (lockstart < lockend)
7772 			unlock_extents = true;
7773 	}
7774 
7775 	if (unlock_extents)
7776 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7777 				     lockstart, lockend, &cached_state);
7778 	else
7779 		free_extent_state(cached_state);
7780 
7781 	/*
7782 	 * Translate extent map information to iomap.
7783 	 * We trim the extents (and move the addr) even though iomap code does
7784 	 * that, since we have locked only the parts we are performing I/O in.
7785 	 */
7786 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7787 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7788 		iomap->addr = IOMAP_NULL_ADDR;
7789 		iomap->type = IOMAP_HOLE;
7790 	} else {
7791 		iomap->addr = em->block_start + (start - em->start);
7792 		iomap->type = IOMAP_MAPPED;
7793 	}
7794 	iomap->offset = start;
7795 	iomap->bdev = fs_info->fs_devices->latest_bdev;
7796 	iomap->length = len;
7797 
7798 	if (write && btrfs_use_zone_append(BTRFS_I(inode), em))
7799 		iomap->flags |= IOMAP_F_ZONE_APPEND;
7800 
7801 	free_extent_map(em);
7802 
7803 	return 0;
7804 
7805 unlock_err:
7806 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7807 			     &cached_state);
7808 err:
7809 	if (dio_data) {
7810 		btrfs_delalloc_release_space(BTRFS_I(inode),
7811 				dio_data->data_reserved, start,
7812 				dio_data->reserve, true);
7813 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7814 		extent_changeset_free(dio_data->data_reserved);
7815 		kfree(dio_data);
7816 	}
7817 	return ret;
7818 }
7819 
7820 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7821 		ssize_t written, unsigned int flags, struct iomap *iomap)
7822 {
7823 	int ret = 0;
7824 	struct btrfs_dio_data *dio_data = iomap->private;
7825 	size_t submitted = dio_data->submitted;
7826 	const bool write = !!(flags & IOMAP_WRITE);
7827 
7828 	if (!write && (iomap->type == IOMAP_HOLE)) {
7829 		/* If reading from a hole, unlock and return */
7830 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7831 		goto out;
7832 	}
7833 
7834 	if (submitted < length) {
7835 		pos += submitted;
7836 		length -= submitted;
7837 		if (write)
7838 			__endio_write_update_ordered(BTRFS_I(inode), pos,
7839 					length, false);
7840 		else
7841 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7842 				      pos + length - 1);
7843 		ret = -ENOTBLK;
7844 	}
7845 
7846 	if (write) {
7847 		if (dio_data->reserve)
7848 			btrfs_delalloc_release_space(BTRFS_I(inode),
7849 					dio_data->data_reserved, pos,
7850 					dio_data->reserve, true);
7851 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7852 		extent_changeset_free(dio_data->data_reserved);
7853 	}
7854 out:
7855 	kfree(dio_data);
7856 	iomap->private = NULL;
7857 
7858 	return ret;
7859 }
7860 
7861 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7862 {
7863 	/*
7864 	 * This implies a barrier so that stores to dio_bio->bi_status before
7865 	 * this and loads of dio_bio->bi_status after this are fully ordered.
7866 	 */
7867 	if (!refcount_dec_and_test(&dip->refs))
7868 		return;
7869 
7870 	if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
7871 		__endio_write_update_ordered(BTRFS_I(dip->inode),
7872 					     dip->logical_offset,
7873 					     dip->bytes,
7874 					     !dip->dio_bio->bi_status);
7875 	} else {
7876 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7877 			      dip->logical_offset,
7878 			      dip->logical_offset + dip->bytes - 1);
7879 	}
7880 
7881 	bio_endio(dip->dio_bio);
7882 	kfree(dip);
7883 }
7884 
7885 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7886 					  int mirror_num,
7887 					  unsigned long bio_flags)
7888 {
7889 	struct btrfs_dio_private *dip = bio->bi_private;
7890 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7891 	blk_status_t ret;
7892 
7893 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7894 
7895 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7896 	if (ret)
7897 		return ret;
7898 
7899 	refcount_inc(&dip->refs);
7900 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
7901 	if (ret)
7902 		refcount_dec(&dip->refs);
7903 	return ret;
7904 }
7905 
7906 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7907 					     struct btrfs_io_bio *io_bio,
7908 					     const bool uptodate)
7909 {
7910 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7911 	const u32 sectorsize = fs_info->sectorsize;
7912 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7913 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7914 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7915 	struct bio_vec bvec;
7916 	struct bvec_iter iter;
7917 	u64 start = io_bio->logical;
7918 	u32 bio_offset = 0;
7919 	blk_status_t err = BLK_STS_OK;
7920 
7921 	__bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7922 		unsigned int i, nr_sectors, pgoff;
7923 
7924 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7925 		pgoff = bvec.bv_offset;
7926 		for (i = 0; i < nr_sectors; i++) {
7927 			ASSERT(pgoff < PAGE_SIZE);
7928 			if (uptodate &&
7929 			    (!csum || !check_data_csum(inode, io_bio,
7930 						       bio_offset, bvec.bv_page,
7931 						       pgoff, start))) {
7932 				clean_io_failure(fs_info, failure_tree, io_tree,
7933 						 start, bvec.bv_page,
7934 						 btrfs_ino(BTRFS_I(inode)),
7935 						 pgoff);
7936 			} else {
7937 				blk_status_t status;
7938 
7939 				ASSERT((start - io_bio->logical) < UINT_MAX);
7940 				status = btrfs_submit_read_repair(inode,
7941 							&io_bio->bio,
7942 							start - io_bio->logical,
7943 							bvec.bv_page, pgoff,
7944 							start,
7945 							start + sectorsize - 1,
7946 							io_bio->mirror_num,
7947 							submit_dio_repair_bio);
7948 				if (status)
7949 					err = status;
7950 			}
7951 			start += sectorsize;
7952 			ASSERT(bio_offset + sectorsize > bio_offset);
7953 			bio_offset += sectorsize;
7954 			pgoff += sectorsize;
7955 		}
7956 	}
7957 	return err;
7958 }
7959 
7960 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7961 					 const u64 offset, const u64 bytes,
7962 					 const bool uptodate)
7963 {
7964 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7965 	struct btrfs_ordered_extent *ordered = NULL;
7966 	struct btrfs_workqueue *wq;
7967 	u64 ordered_offset = offset;
7968 	u64 ordered_bytes = bytes;
7969 	u64 last_offset;
7970 
7971 	if (btrfs_is_free_space_inode(inode))
7972 		wq = fs_info->endio_freespace_worker;
7973 	else
7974 		wq = fs_info->endio_write_workers;
7975 
7976 	while (ordered_offset < offset + bytes) {
7977 		last_offset = ordered_offset;
7978 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7979 							 &ordered_offset,
7980 							 ordered_bytes,
7981 							 uptodate)) {
7982 			btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7983 					NULL);
7984 			btrfs_queue_work(wq, &ordered->work);
7985 		}
7986 
7987 		/* No ordered extent found in the range, exit */
7988 		if (ordered_offset == last_offset)
7989 			return;
7990 		/*
7991 		 * Our bio might span multiple ordered extents. In this case
7992 		 * we keep going until we have accounted the whole dio.
7993 		 */
7994 		if (ordered_offset < offset + bytes) {
7995 			ordered_bytes = offset + bytes - ordered_offset;
7996 			ordered = NULL;
7997 		}
7998 	}
7999 }
8000 
8001 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
8002 						     struct bio *bio,
8003 						     u64 dio_file_offset)
8004 {
8005 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
8006 }
8007 
8008 static void btrfs_end_dio_bio(struct bio *bio)
8009 {
8010 	struct btrfs_dio_private *dip = bio->bi_private;
8011 	blk_status_t err = bio->bi_status;
8012 
8013 	if (err)
8014 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8015 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8016 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8017 			   bio->bi_opf, bio->bi_iter.bi_sector,
8018 			   bio->bi_iter.bi_size, err);
8019 
8020 	if (bio_op(bio) == REQ_OP_READ) {
8021 		err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
8022 					       !err);
8023 	}
8024 
8025 	if (err)
8026 		dip->dio_bio->bi_status = err;
8027 
8028 	btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio);
8029 
8030 	bio_put(bio);
8031 	btrfs_dio_private_put(dip);
8032 }
8033 
8034 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8035 		struct inode *inode, u64 file_offset, int async_submit)
8036 {
8037 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8038 	struct btrfs_dio_private *dip = bio->bi_private;
8039 	bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
8040 	blk_status_t ret;
8041 
8042 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8043 	if (async_submit)
8044 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8045 
8046 	if (!write) {
8047 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8048 		if (ret)
8049 			goto err;
8050 	}
8051 
8052 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8053 		goto map;
8054 
8055 	if (write && async_submit) {
8056 		ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
8057 					  btrfs_submit_bio_start_direct_io);
8058 		goto err;
8059 	} else if (write) {
8060 		/*
8061 		 * If we aren't doing async submit, calculate the csum of the
8062 		 * bio now.
8063 		 */
8064 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
8065 		if (ret)
8066 			goto err;
8067 	} else {
8068 		u64 csum_offset;
8069 
8070 		csum_offset = file_offset - dip->logical_offset;
8071 		csum_offset >>= fs_info->sectorsize_bits;
8072 		csum_offset *= fs_info->csum_size;
8073 		btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
8074 	}
8075 map:
8076 	ret = btrfs_map_bio(fs_info, bio, 0);
8077 err:
8078 	return ret;
8079 }
8080 
8081 /*
8082  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
8083  * or ordered extents whether or not we submit any bios.
8084  */
8085 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
8086 							  struct inode *inode,
8087 							  loff_t file_offset)
8088 {
8089 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8090 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8091 	size_t dip_size;
8092 	struct btrfs_dio_private *dip;
8093 
8094 	dip_size = sizeof(*dip);
8095 	if (!write && csum) {
8096 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8097 		size_t nblocks;
8098 
8099 		nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
8100 		dip_size += fs_info->csum_size * nblocks;
8101 	}
8102 
8103 	dip = kzalloc(dip_size, GFP_NOFS);
8104 	if (!dip)
8105 		return NULL;
8106 
8107 	dip->inode = inode;
8108 	dip->logical_offset = file_offset;
8109 	dip->bytes = dio_bio->bi_iter.bi_size;
8110 	dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
8111 	dip->dio_bio = dio_bio;
8112 	refcount_set(&dip->refs, 1);
8113 	return dip;
8114 }
8115 
8116 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
8117 		struct bio *dio_bio, loff_t file_offset)
8118 {
8119 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8120 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8121 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8122 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
8123 	struct btrfs_dio_private *dip;
8124 	struct bio *bio;
8125 	u64 start_sector;
8126 	int async_submit = 0;
8127 	u64 submit_len;
8128 	int clone_offset = 0;
8129 	int clone_len;
8130 	u64 logical;
8131 	int ret;
8132 	blk_status_t status;
8133 	struct btrfs_io_geometry geom;
8134 	struct btrfs_dio_data *dio_data = iomap->private;
8135 	struct extent_map *em = NULL;
8136 
8137 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8138 	if (!dip) {
8139 		if (!write) {
8140 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8141 				file_offset + dio_bio->bi_iter.bi_size - 1);
8142 		}
8143 		dio_bio->bi_status = BLK_STS_RESOURCE;
8144 		bio_endio(dio_bio);
8145 		return BLK_QC_T_NONE;
8146 	}
8147 
8148 	if (!write) {
8149 		/*
8150 		 * Load the csums up front to reduce csum tree searches and
8151 		 * contention when submitting bios.
8152 		 *
8153 		 * If we have csums disabled this will do nothing.
8154 		 */
8155 		status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8156 		if (status != BLK_STS_OK)
8157 			goto out_err;
8158 	}
8159 
8160 	start_sector = dio_bio->bi_iter.bi_sector;
8161 	submit_len = dio_bio->bi_iter.bi_size;
8162 
8163 	do {
8164 		logical = start_sector << 9;
8165 		em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8166 		if (IS_ERR(em)) {
8167 			status = errno_to_blk_status(PTR_ERR(em));
8168 			em = NULL;
8169 			goto out_err_em;
8170 		}
8171 		ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8172 					    logical, submit_len, &geom);
8173 		if (ret) {
8174 			status = errno_to_blk_status(ret);
8175 			goto out_err_em;
8176 		}
8177 		ASSERT(geom.len <= INT_MAX);
8178 
8179 		clone_len = min_t(int, submit_len, geom.len);
8180 
8181 		/*
8182 		 * This will never fail as it's passing GPF_NOFS and
8183 		 * the allocation is backed by btrfs_bioset.
8184 		 */
8185 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8186 		bio->bi_private = dip;
8187 		bio->bi_end_io = btrfs_end_dio_bio;
8188 		btrfs_io_bio(bio)->logical = file_offset;
8189 
8190 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8191 			status = extract_ordered_extent(BTRFS_I(inode), bio,
8192 							file_offset);
8193 			if (status) {
8194 				bio_put(bio);
8195 				goto out_err;
8196 			}
8197 		}
8198 
8199 		ASSERT(submit_len >= clone_len);
8200 		submit_len -= clone_len;
8201 
8202 		/*
8203 		 * Increase the count before we submit the bio so we know
8204 		 * the end IO handler won't happen before we increase the
8205 		 * count. Otherwise, the dip might get freed before we're
8206 		 * done setting it up.
8207 		 *
8208 		 * We transfer the initial reference to the last bio, so we
8209 		 * don't need to increment the reference count for the last one.
8210 		 */
8211 		if (submit_len > 0) {
8212 			refcount_inc(&dip->refs);
8213 			/*
8214 			 * If we are submitting more than one bio, submit them
8215 			 * all asynchronously. The exception is RAID 5 or 6, as
8216 			 * asynchronous checksums make it difficult to collect
8217 			 * full stripe writes.
8218 			 */
8219 			if (!raid56)
8220 				async_submit = 1;
8221 		}
8222 
8223 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8224 						async_submit);
8225 		if (status) {
8226 			bio_put(bio);
8227 			if (submit_len > 0)
8228 				refcount_dec(&dip->refs);
8229 			goto out_err_em;
8230 		}
8231 
8232 		dio_data->submitted += clone_len;
8233 		clone_offset += clone_len;
8234 		start_sector += clone_len >> 9;
8235 		file_offset += clone_len;
8236 
8237 		free_extent_map(em);
8238 	} while (submit_len > 0);
8239 	return BLK_QC_T_NONE;
8240 
8241 out_err_em:
8242 	free_extent_map(em);
8243 out_err:
8244 	dip->dio_bio->bi_status = status;
8245 	btrfs_dio_private_put(dip);
8246 
8247 	return BLK_QC_T_NONE;
8248 }
8249 
8250 const struct iomap_ops btrfs_dio_iomap_ops = {
8251 	.iomap_begin            = btrfs_dio_iomap_begin,
8252 	.iomap_end              = btrfs_dio_iomap_end,
8253 };
8254 
8255 const struct iomap_dio_ops btrfs_dio_ops = {
8256 	.submit_io		= btrfs_submit_direct,
8257 };
8258 
8259 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8260 			u64 start, u64 len)
8261 {
8262 	int	ret;
8263 
8264 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8265 	if (ret)
8266 		return ret;
8267 
8268 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8269 }
8270 
8271 int btrfs_readpage(struct file *file, struct page *page)
8272 {
8273 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8274 	u64 start = page_offset(page);
8275 	u64 end = start + PAGE_SIZE - 1;
8276 	unsigned long bio_flags = 0;
8277 	struct bio *bio = NULL;
8278 	int ret;
8279 
8280 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8281 
8282 	ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
8283 	if (bio)
8284 		ret = submit_one_bio(bio, 0, bio_flags);
8285 	return ret;
8286 }
8287 
8288 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8289 {
8290 	struct inode *inode = page->mapping->host;
8291 	int ret;
8292 
8293 	if (current->flags & PF_MEMALLOC) {
8294 		redirty_page_for_writepage(wbc, page);
8295 		unlock_page(page);
8296 		return 0;
8297 	}
8298 
8299 	/*
8300 	 * If we are under memory pressure we will call this directly from the
8301 	 * VM, we need to make sure we have the inode referenced for the ordered
8302 	 * extent.  If not just return like we didn't do anything.
8303 	 */
8304 	if (!igrab(inode)) {
8305 		redirty_page_for_writepage(wbc, page);
8306 		return AOP_WRITEPAGE_ACTIVATE;
8307 	}
8308 	ret = extent_write_full_page(page, wbc);
8309 	btrfs_add_delayed_iput(inode);
8310 	return ret;
8311 }
8312 
8313 static int btrfs_writepages(struct address_space *mapping,
8314 			    struct writeback_control *wbc)
8315 {
8316 	return extent_writepages(mapping, wbc);
8317 }
8318 
8319 static void btrfs_readahead(struct readahead_control *rac)
8320 {
8321 	extent_readahead(rac);
8322 }
8323 
8324 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8325 {
8326 	int ret = try_release_extent_mapping(page, gfp_flags);
8327 	if (ret == 1)
8328 		clear_page_extent_mapped(page);
8329 	return ret;
8330 }
8331 
8332 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8333 {
8334 	if (PageWriteback(page) || PageDirty(page))
8335 		return 0;
8336 	return __btrfs_releasepage(page, gfp_flags);
8337 }
8338 
8339 #ifdef CONFIG_MIGRATION
8340 static int btrfs_migratepage(struct address_space *mapping,
8341 			     struct page *newpage, struct page *page,
8342 			     enum migrate_mode mode)
8343 {
8344 	int ret;
8345 
8346 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8347 	if (ret != MIGRATEPAGE_SUCCESS)
8348 		return ret;
8349 
8350 	if (page_has_private(page))
8351 		attach_page_private(newpage, detach_page_private(page));
8352 
8353 	if (PagePrivate2(page)) {
8354 		ClearPagePrivate2(page);
8355 		SetPagePrivate2(newpage);
8356 	}
8357 
8358 	if (mode != MIGRATE_SYNC_NO_COPY)
8359 		migrate_page_copy(newpage, page);
8360 	else
8361 		migrate_page_states(newpage, page);
8362 	return MIGRATEPAGE_SUCCESS;
8363 }
8364 #endif
8365 
8366 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8367 				 unsigned int length)
8368 {
8369 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8370 	struct extent_io_tree *tree = &inode->io_tree;
8371 	struct btrfs_ordered_extent *ordered;
8372 	struct extent_state *cached_state = NULL;
8373 	u64 page_start = page_offset(page);
8374 	u64 page_end = page_start + PAGE_SIZE - 1;
8375 	u64 start;
8376 	u64 end;
8377 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8378 	bool found_ordered = false;
8379 	bool completed_ordered = false;
8380 
8381 	/*
8382 	 * we have the page locked, so new writeback can't start,
8383 	 * and the dirty bit won't be cleared while we are here.
8384 	 *
8385 	 * Wait for IO on this page so that we can safely clear
8386 	 * the PagePrivate2 bit and do ordered accounting
8387 	 */
8388 	wait_on_page_writeback(page);
8389 
8390 	if (offset) {
8391 		btrfs_releasepage(page, GFP_NOFS);
8392 		return;
8393 	}
8394 
8395 	if (!inode_evicting)
8396 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8397 
8398 	start = page_start;
8399 again:
8400 	ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
8401 	if (ordered) {
8402 		found_ordered = true;
8403 		end = min(page_end,
8404 			  ordered->file_offset + ordered->num_bytes - 1);
8405 		/*
8406 		 * IO on this page will never be started, so we need to account
8407 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8408 		 * here, must leave that up for the ordered extent completion.
8409 		 */
8410 		if (!inode_evicting)
8411 			clear_extent_bit(tree, start, end,
8412 					 EXTENT_DELALLOC |
8413 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8414 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8415 		/*
8416 		 * whoever cleared the private bit is responsible
8417 		 * for the finish_ordered_io
8418 		 */
8419 		if (TestClearPagePrivate2(page)) {
8420 			spin_lock_irq(&inode->ordered_tree.lock);
8421 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8422 			ordered->truncated_len = min(ordered->truncated_len,
8423 						     start - ordered->file_offset);
8424 			spin_unlock_irq(&inode->ordered_tree.lock);
8425 
8426 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8427 							   start,
8428 							   end - start + 1, 1)) {
8429 				btrfs_finish_ordered_io(ordered);
8430 				completed_ordered = true;
8431 			}
8432 		}
8433 		btrfs_put_ordered_extent(ordered);
8434 		if (!inode_evicting) {
8435 			cached_state = NULL;
8436 			lock_extent_bits(tree, start, end,
8437 					 &cached_state);
8438 		}
8439 
8440 		start = end + 1;
8441 		if (start < page_end)
8442 			goto again;
8443 	}
8444 
8445 	/*
8446 	 * Qgroup reserved space handler
8447 	 * Page here will be either
8448 	 * 1) Already written to disk or ordered extent already submitted
8449 	 *    Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8450 	 *    Qgroup will be handled by its qgroup_record then.
8451 	 *    btrfs_qgroup_free_data() call will do nothing here.
8452 	 *
8453 	 * 2) Not written to disk yet
8454 	 *    Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8455 	 *    bit of its io_tree, and free the qgroup reserved data space.
8456 	 *    Since the IO will never happen for this page.
8457 	 */
8458 	btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8459 	if (!inode_evicting) {
8460 		bool delete = true;
8461 
8462 		/*
8463 		 * If there's an ordered extent for this range and we have not
8464 		 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set
8465 		 * in the range for the ordered extent completion. We must also
8466 		 * not delete the range, otherwise we would lose that bit (and
8467 		 * any other bits set in the range). Make sure EXTENT_UPTODATE
8468 		 * is cleared if we don't delete, otherwise it can lead to
8469 		 * corruptions if the i_size is extented later.
8470 		 */
8471 		if (found_ordered && !completed_ordered)
8472 			delete = false;
8473 		clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8474 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8475 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8476 				 delete, &cached_state);
8477 
8478 		__btrfs_releasepage(page, GFP_NOFS);
8479 	}
8480 
8481 	ClearPageChecked(page);
8482 	clear_page_extent_mapped(page);
8483 }
8484 
8485 /*
8486  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8487  * called from a page fault handler when a page is first dirtied. Hence we must
8488  * be careful to check for EOF conditions here. We set the page up correctly
8489  * for a written page which means we get ENOSPC checking when writing into
8490  * holes and correct delalloc and unwritten extent mapping on filesystems that
8491  * support these features.
8492  *
8493  * We are not allowed to take the i_mutex here so we have to play games to
8494  * protect against truncate races as the page could now be beyond EOF.  Because
8495  * truncate_setsize() writes the inode size before removing pages, once we have
8496  * the page lock we can determine safely if the page is beyond EOF. If it is not
8497  * beyond EOF, then the page is guaranteed safe against truncation until we
8498  * unlock the page.
8499  */
8500 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8501 {
8502 	struct page *page = vmf->page;
8503 	struct inode *inode = file_inode(vmf->vma->vm_file);
8504 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8505 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8506 	struct btrfs_ordered_extent *ordered;
8507 	struct extent_state *cached_state = NULL;
8508 	struct extent_changeset *data_reserved = NULL;
8509 	char *kaddr;
8510 	unsigned long zero_start;
8511 	loff_t size;
8512 	vm_fault_t ret;
8513 	int ret2;
8514 	int reserved = 0;
8515 	u64 reserved_space;
8516 	u64 page_start;
8517 	u64 page_end;
8518 	u64 end;
8519 
8520 	reserved_space = PAGE_SIZE;
8521 
8522 	sb_start_pagefault(inode->i_sb);
8523 	page_start = page_offset(page);
8524 	page_end = page_start + PAGE_SIZE - 1;
8525 	end = page_end;
8526 
8527 	/*
8528 	 * Reserving delalloc space after obtaining the page lock can lead to
8529 	 * deadlock. For example, if a dirty page is locked by this function
8530 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8531 	 * dirty page write out, then the btrfs_writepage() function could
8532 	 * end up waiting indefinitely to get a lock on the page currently
8533 	 * being processed by btrfs_page_mkwrite() function.
8534 	 */
8535 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8536 					    page_start, reserved_space);
8537 	if (!ret2) {
8538 		ret2 = file_update_time(vmf->vma->vm_file);
8539 		reserved = 1;
8540 	}
8541 	if (ret2) {
8542 		ret = vmf_error(ret2);
8543 		if (reserved)
8544 			goto out;
8545 		goto out_noreserve;
8546 	}
8547 
8548 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8549 again:
8550 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8551 	lock_page(page);
8552 	size = i_size_read(inode);
8553 
8554 	if ((page->mapping != inode->i_mapping) ||
8555 	    (page_start >= size)) {
8556 		/* page got truncated out from underneath us */
8557 		goto out_unlock;
8558 	}
8559 	wait_on_page_writeback(page);
8560 
8561 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8562 	ret2 = set_page_extent_mapped(page);
8563 	if (ret2 < 0) {
8564 		ret = vmf_error(ret2);
8565 		unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8566 		goto out_unlock;
8567 	}
8568 
8569 	/*
8570 	 * we can't set the delalloc bits if there are pending ordered
8571 	 * extents.  Drop our locks and wait for them to finish
8572 	 */
8573 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8574 			PAGE_SIZE);
8575 	if (ordered) {
8576 		unlock_extent_cached(io_tree, page_start, page_end,
8577 				     &cached_state);
8578 		unlock_page(page);
8579 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8580 		btrfs_start_ordered_extent(ordered, 1);
8581 		btrfs_put_ordered_extent(ordered);
8582 		goto again;
8583 	}
8584 
8585 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8586 		reserved_space = round_up(size - page_start,
8587 					  fs_info->sectorsize);
8588 		if (reserved_space < PAGE_SIZE) {
8589 			end = page_start + reserved_space - 1;
8590 			btrfs_delalloc_release_space(BTRFS_I(inode),
8591 					data_reserved, page_start,
8592 					PAGE_SIZE - reserved_space, true);
8593 		}
8594 	}
8595 
8596 	/*
8597 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8598 	 * faulted in, but write(2) could also dirty a page and set delalloc
8599 	 * bits, thus in this case for space account reason, we still need to
8600 	 * clear any delalloc bits within this page range since we have to
8601 	 * reserve data&meta space before lock_page() (see above comments).
8602 	 */
8603 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8604 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8605 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8606 
8607 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8608 					&cached_state);
8609 	if (ret2) {
8610 		unlock_extent_cached(io_tree, page_start, page_end,
8611 				     &cached_state);
8612 		ret = VM_FAULT_SIGBUS;
8613 		goto out_unlock;
8614 	}
8615 
8616 	/* page is wholly or partially inside EOF */
8617 	if (page_start + PAGE_SIZE > size)
8618 		zero_start = offset_in_page(size);
8619 	else
8620 		zero_start = PAGE_SIZE;
8621 
8622 	if (zero_start != PAGE_SIZE) {
8623 		kaddr = kmap(page);
8624 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8625 		flush_dcache_page(page);
8626 		kunmap(page);
8627 	}
8628 	ClearPageChecked(page);
8629 	set_page_dirty(page);
8630 	SetPageUptodate(page);
8631 
8632 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8633 
8634 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8635 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8636 
8637 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8638 	sb_end_pagefault(inode->i_sb);
8639 	extent_changeset_free(data_reserved);
8640 	return VM_FAULT_LOCKED;
8641 
8642 out_unlock:
8643 	unlock_page(page);
8644 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8645 out:
8646 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8647 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8648 				     reserved_space, (ret != 0));
8649 out_noreserve:
8650 	sb_end_pagefault(inode->i_sb);
8651 	extent_changeset_free(data_reserved);
8652 	return ret;
8653 }
8654 
8655 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8656 {
8657 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8658 	struct btrfs_root *root = BTRFS_I(inode)->root;
8659 	struct btrfs_block_rsv *rsv;
8660 	int ret;
8661 	struct btrfs_trans_handle *trans;
8662 	u64 mask = fs_info->sectorsize - 1;
8663 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8664 
8665 	if (!skip_writeback) {
8666 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8667 					       (u64)-1);
8668 		if (ret)
8669 			return ret;
8670 	}
8671 
8672 	/*
8673 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8674 	 * things going on here:
8675 	 *
8676 	 * 1) We need to reserve space to update our inode.
8677 	 *
8678 	 * 2) We need to have something to cache all the space that is going to
8679 	 * be free'd up by the truncate operation, but also have some slack
8680 	 * space reserved in case it uses space during the truncate (thank you
8681 	 * very much snapshotting).
8682 	 *
8683 	 * And we need these to be separate.  The fact is we can use a lot of
8684 	 * space doing the truncate, and we have no earthly idea how much space
8685 	 * we will use, so we need the truncate reservation to be separate so it
8686 	 * doesn't end up using space reserved for updating the inode.  We also
8687 	 * need to be able to stop the transaction and start a new one, which
8688 	 * means we need to be able to update the inode several times, and we
8689 	 * have no idea of knowing how many times that will be, so we can't just
8690 	 * reserve 1 item for the entirety of the operation, so that has to be
8691 	 * done separately as well.
8692 	 *
8693 	 * So that leaves us with
8694 	 *
8695 	 * 1) rsv - for the truncate reservation, which we will steal from the
8696 	 * transaction reservation.
8697 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8698 	 * updating the inode.
8699 	 */
8700 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8701 	if (!rsv)
8702 		return -ENOMEM;
8703 	rsv->size = min_size;
8704 	rsv->failfast = 1;
8705 
8706 	/*
8707 	 * 1 for the truncate slack space
8708 	 * 1 for updating the inode.
8709 	 */
8710 	trans = btrfs_start_transaction(root, 2);
8711 	if (IS_ERR(trans)) {
8712 		ret = PTR_ERR(trans);
8713 		goto out;
8714 	}
8715 
8716 	/* Migrate the slack space for the truncate to our reserve */
8717 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8718 				      min_size, false);
8719 	BUG_ON(ret);
8720 
8721 	/*
8722 	 * So if we truncate and then write and fsync we normally would just
8723 	 * write the extents that changed, which is a problem if we need to
8724 	 * first truncate that entire inode.  So set this flag so we write out
8725 	 * all of the extents in the inode to the sync log so we're completely
8726 	 * safe.
8727 	 */
8728 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8729 	trans->block_rsv = rsv;
8730 
8731 	while (1) {
8732 		ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
8733 						 inode->i_size,
8734 						 BTRFS_EXTENT_DATA_KEY);
8735 		trans->block_rsv = &fs_info->trans_block_rsv;
8736 		if (ret != -ENOSPC && ret != -EAGAIN)
8737 			break;
8738 
8739 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8740 		if (ret)
8741 			break;
8742 
8743 		btrfs_end_transaction(trans);
8744 		btrfs_btree_balance_dirty(fs_info);
8745 
8746 		trans = btrfs_start_transaction(root, 2);
8747 		if (IS_ERR(trans)) {
8748 			ret = PTR_ERR(trans);
8749 			trans = NULL;
8750 			break;
8751 		}
8752 
8753 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8754 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8755 					      rsv, min_size, false);
8756 		BUG_ON(ret);	/* shouldn't happen */
8757 		trans->block_rsv = rsv;
8758 	}
8759 
8760 	/*
8761 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8762 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8763 	 * we've truncated everything except the last little bit, and can do
8764 	 * btrfs_truncate_block and then update the disk_i_size.
8765 	 */
8766 	if (ret == NEED_TRUNCATE_BLOCK) {
8767 		btrfs_end_transaction(trans);
8768 		btrfs_btree_balance_dirty(fs_info);
8769 
8770 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8771 		if (ret)
8772 			goto out;
8773 		trans = btrfs_start_transaction(root, 1);
8774 		if (IS_ERR(trans)) {
8775 			ret = PTR_ERR(trans);
8776 			goto out;
8777 		}
8778 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8779 	}
8780 
8781 	if (trans) {
8782 		int ret2;
8783 
8784 		trans->block_rsv = &fs_info->trans_block_rsv;
8785 		ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8786 		if (ret2 && !ret)
8787 			ret = ret2;
8788 
8789 		ret2 = btrfs_end_transaction(trans);
8790 		if (ret2 && !ret)
8791 			ret = ret2;
8792 		btrfs_btree_balance_dirty(fs_info);
8793 	}
8794 out:
8795 	btrfs_free_block_rsv(fs_info, rsv);
8796 
8797 	return ret;
8798 }
8799 
8800 /*
8801  * create a new subvolume directory/inode (helper for the ioctl).
8802  */
8803 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8804 			     struct btrfs_root *new_root,
8805 			     struct btrfs_root *parent_root)
8806 {
8807 	struct inode *inode;
8808 	int err;
8809 	u64 index = 0;
8810 	u64 ino;
8811 
8812 	err = btrfs_get_free_objectid(new_root, &ino);
8813 	if (err < 0)
8814 		return err;
8815 
8816 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino,
8817 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8818 				&index);
8819 	if (IS_ERR(inode))
8820 		return PTR_ERR(inode);
8821 	inode->i_op = &btrfs_dir_inode_operations;
8822 	inode->i_fop = &btrfs_dir_file_operations;
8823 
8824 	set_nlink(inode, 1);
8825 	btrfs_i_size_write(BTRFS_I(inode), 0);
8826 	unlock_new_inode(inode);
8827 
8828 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8829 	if (err)
8830 		btrfs_err(new_root->fs_info,
8831 			  "error inheriting subvolume %llu properties: %d",
8832 			  new_root->root_key.objectid, err);
8833 
8834 	err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
8835 
8836 	iput(inode);
8837 	return err;
8838 }
8839 
8840 struct inode *btrfs_alloc_inode(struct super_block *sb)
8841 {
8842 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8843 	struct btrfs_inode *ei;
8844 	struct inode *inode;
8845 
8846 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8847 	if (!ei)
8848 		return NULL;
8849 
8850 	ei->root = NULL;
8851 	ei->generation = 0;
8852 	ei->last_trans = 0;
8853 	ei->last_sub_trans = 0;
8854 	ei->logged_trans = 0;
8855 	ei->delalloc_bytes = 0;
8856 	ei->new_delalloc_bytes = 0;
8857 	ei->defrag_bytes = 0;
8858 	ei->disk_i_size = 0;
8859 	ei->flags = 0;
8860 	ei->csum_bytes = 0;
8861 	ei->index_cnt = (u64)-1;
8862 	ei->dir_index = 0;
8863 	ei->last_unlink_trans = 0;
8864 	ei->last_reflink_trans = 0;
8865 	ei->last_log_commit = 0;
8866 
8867 	spin_lock_init(&ei->lock);
8868 	ei->outstanding_extents = 0;
8869 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8870 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8871 					      BTRFS_BLOCK_RSV_DELALLOC);
8872 	ei->runtime_flags = 0;
8873 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8874 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8875 
8876 	ei->delayed_node = NULL;
8877 
8878 	ei->i_otime.tv_sec = 0;
8879 	ei->i_otime.tv_nsec = 0;
8880 
8881 	inode = &ei->vfs_inode;
8882 	extent_map_tree_init(&ei->extent_tree);
8883 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8884 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
8885 			    IO_TREE_INODE_IO_FAILURE, inode);
8886 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8887 			    IO_TREE_INODE_FILE_EXTENT, inode);
8888 	ei->io_tree.track_uptodate = true;
8889 	ei->io_failure_tree.track_uptodate = true;
8890 	atomic_set(&ei->sync_writers, 0);
8891 	mutex_init(&ei->log_mutex);
8892 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8893 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8894 	INIT_LIST_HEAD(&ei->delayed_iput);
8895 	RB_CLEAR_NODE(&ei->rb_node);
8896 	init_rwsem(&ei->i_mmap_lock);
8897 
8898 	return inode;
8899 }
8900 
8901 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8902 void btrfs_test_destroy_inode(struct inode *inode)
8903 {
8904 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8905 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8906 }
8907 #endif
8908 
8909 void btrfs_free_inode(struct inode *inode)
8910 {
8911 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8912 }
8913 
8914 void btrfs_destroy_inode(struct inode *vfs_inode)
8915 {
8916 	struct btrfs_ordered_extent *ordered;
8917 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8918 	struct btrfs_root *root = inode->root;
8919 
8920 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8921 	WARN_ON(vfs_inode->i_data.nrpages);
8922 	WARN_ON(inode->block_rsv.reserved);
8923 	WARN_ON(inode->block_rsv.size);
8924 	WARN_ON(inode->outstanding_extents);
8925 	WARN_ON(inode->delalloc_bytes);
8926 	WARN_ON(inode->new_delalloc_bytes);
8927 	WARN_ON(inode->csum_bytes);
8928 	WARN_ON(inode->defrag_bytes);
8929 
8930 	/*
8931 	 * This can happen where we create an inode, but somebody else also
8932 	 * created the same inode and we need to destroy the one we already
8933 	 * created.
8934 	 */
8935 	if (!root)
8936 		return;
8937 
8938 	while (1) {
8939 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8940 		if (!ordered)
8941 			break;
8942 		else {
8943 			btrfs_err(root->fs_info,
8944 				  "found ordered extent %llu %llu on inode cleanup",
8945 				  ordered->file_offset, ordered->num_bytes);
8946 			btrfs_remove_ordered_extent(inode, ordered);
8947 			btrfs_put_ordered_extent(ordered);
8948 			btrfs_put_ordered_extent(ordered);
8949 		}
8950 	}
8951 	btrfs_qgroup_check_reserved_leak(inode);
8952 	inode_tree_del(inode);
8953 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8954 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8955 	btrfs_put_root(inode->root);
8956 }
8957 
8958 int btrfs_drop_inode(struct inode *inode)
8959 {
8960 	struct btrfs_root *root = BTRFS_I(inode)->root;
8961 
8962 	if (root == NULL)
8963 		return 1;
8964 
8965 	/* the snap/subvol tree is on deleting */
8966 	if (btrfs_root_refs(&root->root_item) == 0)
8967 		return 1;
8968 	else
8969 		return generic_drop_inode(inode);
8970 }
8971 
8972 static void init_once(void *foo)
8973 {
8974 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8975 
8976 	inode_init_once(&ei->vfs_inode);
8977 }
8978 
8979 void __cold btrfs_destroy_cachep(void)
8980 {
8981 	/*
8982 	 * Make sure all delayed rcu free inodes are flushed before we
8983 	 * destroy cache.
8984 	 */
8985 	rcu_barrier();
8986 	kmem_cache_destroy(btrfs_inode_cachep);
8987 	kmem_cache_destroy(btrfs_trans_handle_cachep);
8988 	kmem_cache_destroy(btrfs_path_cachep);
8989 	kmem_cache_destroy(btrfs_free_space_cachep);
8990 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8991 }
8992 
8993 int __init btrfs_init_cachep(void)
8994 {
8995 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8996 			sizeof(struct btrfs_inode), 0,
8997 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8998 			init_once);
8999 	if (!btrfs_inode_cachep)
9000 		goto fail;
9001 
9002 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9003 			sizeof(struct btrfs_trans_handle), 0,
9004 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9005 	if (!btrfs_trans_handle_cachep)
9006 		goto fail;
9007 
9008 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9009 			sizeof(struct btrfs_path), 0,
9010 			SLAB_MEM_SPREAD, NULL);
9011 	if (!btrfs_path_cachep)
9012 		goto fail;
9013 
9014 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9015 			sizeof(struct btrfs_free_space), 0,
9016 			SLAB_MEM_SPREAD, NULL);
9017 	if (!btrfs_free_space_cachep)
9018 		goto fail;
9019 
9020 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9021 							PAGE_SIZE, PAGE_SIZE,
9022 							SLAB_MEM_SPREAD, NULL);
9023 	if (!btrfs_free_space_bitmap_cachep)
9024 		goto fail;
9025 
9026 	return 0;
9027 fail:
9028 	btrfs_destroy_cachep();
9029 	return -ENOMEM;
9030 }
9031 
9032 static int btrfs_getattr(struct user_namespace *mnt_userns,
9033 			 const struct path *path, struct kstat *stat,
9034 			 u32 request_mask, unsigned int flags)
9035 {
9036 	u64 delalloc_bytes;
9037 	u64 inode_bytes;
9038 	struct inode *inode = d_inode(path->dentry);
9039 	u32 blocksize = inode->i_sb->s_blocksize;
9040 	u32 bi_flags = BTRFS_I(inode)->flags;
9041 
9042 	stat->result_mask |= STATX_BTIME;
9043 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9044 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9045 	if (bi_flags & BTRFS_INODE_APPEND)
9046 		stat->attributes |= STATX_ATTR_APPEND;
9047 	if (bi_flags & BTRFS_INODE_COMPRESS)
9048 		stat->attributes |= STATX_ATTR_COMPRESSED;
9049 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9050 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9051 	if (bi_flags & BTRFS_INODE_NODUMP)
9052 		stat->attributes |= STATX_ATTR_NODUMP;
9053 
9054 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9055 				  STATX_ATTR_COMPRESSED |
9056 				  STATX_ATTR_IMMUTABLE |
9057 				  STATX_ATTR_NODUMP);
9058 
9059 	generic_fillattr(&init_user_ns, inode, stat);
9060 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9061 
9062 	spin_lock(&BTRFS_I(inode)->lock);
9063 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9064 	inode_bytes = inode_get_bytes(inode);
9065 	spin_unlock(&BTRFS_I(inode)->lock);
9066 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
9067 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9068 	return 0;
9069 }
9070 
9071 static int btrfs_rename_exchange(struct inode *old_dir,
9072 			      struct dentry *old_dentry,
9073 			      struct inode *new_dir,
9074 			      struct dentry *new_dentry)
9075 {
9076 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9077 	struct btrfs_trans_handle *trans;
9078 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9079 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9080 	struct inode *new_inode = new_dentry->d_inode;
9081 	struct inode *old_inode = old_dentry->d_inode;
9082 	struct timespec64 ctime = current_time(old_inode);
9083 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9084 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9085 	u64 old_idx = 0;
9086 	u64 new_idx = 0;
9087 	int ret;
9088 	int ret2;
9089 	bool root_log_pinned = false;
9090 	bool dest_log_pinned = false;
9091 
9092 	/* we only allow rename subvolume link between subvolumes */
9093 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9094 		return -EXDEV;
9095 
9096 	/* close the race window with snapshot create/destroy ioctl */
9097 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9098 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9099 		down_read(&fs_info->subvol_sem);
9100 
9101 	/*
9102 	 * We want to reserve the absolute worst case amount of items.  So if
9103 	 * both inodes are subvols and we need to unlink them then that would
9104 	 * require 4 item modifications, but if they are both normal inodes it
9105 	 * would require 5 item modifications, so we'll assume their normal
9106 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9107 	 * should cover the worst case number of items we'll modify.
9108 	 */
9109 	trans = btrfs_start_transaction(root, 12);
9110 	if (IS_ERR(trans)) {
9111 		ret = PTR_ERR(trans);
9112 		goto out_notrans;
9113 	}
9114 
9115 	if (dest != root) {
9116 		ret = btrfs_record_root_in_trans(trans, dest);
9117 		if (ret)
9118 			goto out_fail;
9119 	}
9120 
9121 	/*
9122 	 * We need to find a free sequence number both in the source and
9123 	 * in the destination directory for the exchange.
9124 	 */
9125 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9126 	if (ret)
9127 		goto out_fail;
9128 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9129 	if (ret)
9130 		goto out_fail;
9131 
9132 	BTRFS_I(old_inode)->dir_index = 0ULL;
9133 	BTRFS_I(new_inode)->dir_index = 0ULL;
9134 
9135 	/* Reference for the source. */
9136 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9137 		/* force full log commit if subvolume involved. */
9138 		btrfs_set_log_full_commit(trans);
9139 	} else {
9140 		btrfs_pin_log_trans(root);
9141 		root_log_pinned = true;
9142 		ret = btrfs_insert_inode_ref(trans, dest,
9143 					     new_dentry->d_name.name,
9144 					     new_dentry->d_name.len,
9145 					     old_ino,
9146 					     btrfs_ino(BTRFS_I(new_dir)),
9147 					     old_idx);
9148 		if (ret)
9149 			goto out_fail;
9150 	}
9151 
9152 	/* And now for the dest. */
9153 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9154 		/* force full log commit if subvolume involved. */
9155 		btrfs_set_log_full_commit(trans);
9156 	} else {
9157 		btrfs_pin_log_trans(dest);
9158 		dest_log_pinned = true;
9159 		ret = btrfs_insert_inode_ref(trans, root,
9160 					     old_dentry->d_name.name,
9161 					     old_dentry->d_name.len,
9162 					     new_ino,
9163 					     btrfs_ino(BTRFS_I(old_dir)),
9164 					     new_idx);
9165 		if (ret)
9166 			goto out_fail;
9167 	}
9168 
9169 	/* Update inode version and ctime/mtime. */
9170 	inode_inc_iversion(old_dir);
9171 	inode_inc_iversion(new_dir);
9172 	inode_inc_iversion(old_inode);
9173 	inode_inc_iversion(new_inode);
9174 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9175 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9176 	old_inode->i_ctime = ctime;
9177 	new_inode->i_ctime = ctime;
9178 
9179 	if (old_dentry->d_parent != new_dentry->d_parent) {
9180 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9181 				BTRFS_I(old_inode), 1);
9182 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9183 				BTRFS_I(new_inode), 1);
9184 	}
9185 
9186 	/* src is a subvolume */
9187 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9188 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9189 	} else { /* src is an inode */
9190 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9191 					   BTRFS_I(old_dentry->d_inode),
9192 					   old_dentry->d_name.name,
9193 					   old_dentry->d_name.len);
9194 		if (!ret)
9195 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9196 	}
9197 	if (ret) {
9198 		btrfs_abort_transaction(trans, ret);
9199 		goto out_fail;
9200 	}
9201 
9202 	/* dest is a subvolume */
9203 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9204 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9205 	} else { /* dest is an inode */
9206 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9207 					   BTRFS_I(new_dentry->d_inode),
9208 					   new_dentry->d_name.name,
9209 					   new_dentry->d_name.len);
9210 		if (!ret)
9211 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9212 	}
9213 	if (ret) {
9214 		btrfs_abort_transaction(trans, ret);
9215 		goto out_fail;
9216 	}
9217 
9218 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9219 			     new_dentry->d_name.name,
9220 			     new_dentry->d_name.len, 0, old_idx);
9221 	if (ret) {
9222 		btrfs_abort_transaction(trans, ret);
9223 		goto out_fail;
9224 	}
9225 
9226 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9227 			     old_dentry->d_name.name,
9228 			     old_dentry->d_name.len, 0, new_idx);
9229 	if (ret) {
9230 		btrfs_abort_transaction(trans, ret);
9231 		goto out_fail;
9232 	}
9233 
9234 	if (old_inode->i_nlink == 1)
9235 		BTRFS_I(old_inode)->dir_index = old_idx;
9236 	if (new_inode->i_nlink == 1)
9237 		BTRFS_I(new_inode)->dir_index = new_idx;
9238 
9239 	if (root_log_pinned) {
9240 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9241 				   new_dentry->d_parent);
9242 		btrfs_end_log_trans(root);
9243 		root_log_pinned = false;
9244 	}
9245 	if (dest_log_pinned) {
9246 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9247 				   old_dentry->d_parent);
9248 		btrfs_end_log_trans(dest);
9249 		dest_log_pinned = false;
9250 	}
9251 out_fail:
9252 	/*
9253 	 * If we have pinned a log and an error happened, we unpin tasks
9254 	 * trying to sync the log and force them to fallback to a transaction
9255 	 * commit if the log currently contains any of the inodes involved in
9256 	 * this rename operation (to ensure we do not persist a log with an
9257 	 * inconsistent state for any of these inodes or leading to any
9258 	 * inconsistencies when replayed). If the transaction was aborted, the
9259 	 * abortion reason is propagated to userspace when attempting to commit
9260 	 * the transaction. If the log does not contain any of these inodes, we
9261 	 * allow the tasks to sync it.
9262 	 */
9263 	if (ret && (root_log_pinned || dest_log_pinned)) {
9264 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9265 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9266 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9267 		    (new_inode &&
9268 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9269 			btrfs_set_log_full_commit(trans);
9270 
9271 		if (root_log_pinned) {
9272 			btrfs_end_log_trans(root);
9273 			root_log_pinned = false;
9274 		}
9275 		if (dest_log_pinned) {
9276 			btrfs_end_log_trans(dest);
9277 			dest_log_pinned = false;
9278 		}
9279 	}
9280 	ret2 = btrfs_end_transaction(trans);
9281 	ret = ret ? ret : ret2;
9282 out_notrans:
9283 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9284 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9285 		up_read(&fs_info->subvol_sem);
9286 
9287 	return ret;
9288 }
9289 
9290 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9291 				     struct btrfs_root *root,
9292 				     struct inode *dir,
9293 				     struct dentry *dentry)
9294 {
9295 	int ret;
9296 	struct inode *inode;
9297 	u64 objectid;
9298 	u64 index;
9299 
9300 	ret = btrfs_get_free_objectid(root, &objectid);
9301 	if (ret)
9302 		return ret;
9303 
9304 	inode = btrfs_new_inode(trans, root, dir,
9305 				dentry->d_name.name,
9306 				dentry->d_name.len,
9307 				btrfs_ino(BTRFS_I(dir)),
9308 				objectid,
9309 				S_IFCHR | WHITEOUT_MODE,
9310 				&index);
9311 
9312 	if (IS_ERR(inode)) {
9313 		ret = PTR_ERR(inode);
9314 		return ret;
9315 	}
9316 
9317 	inode->i_op = &btrfs_special_inode_operations;
9318 	init_special_inode(inode, inode->i_mode,
9319 		WHITEOUT_DEV);
9320 
9321 	ret = btrfs_init_inode_security(trans, inode, dir,
9322 				&dentry->d_name);
9323 	if (ret)
9324 		goto out;
9325 
9326 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9327 				BTRFS_I(inode), 0, index);
9328 	if (ret)
9329 		goto out;
9330 
9331 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9332 out:
9333 	unlock_new_inode(inode);
9334 	if (ret)
9335 		inode_dec_link_count(inode);
9336 	iput(inode);
9337 
9338 	return ret;
9339 }
9340 
9341 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9342 			   struct inode *new_dir, struct dentry *new_dentry,
9343 			   unsigned int flags)
9344 {
9345 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9346 	struct btrfs_trans_handle *trans;
9347 	unsigned int trans_num_items;
9348 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9349 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9350 	struct inode *new_inode = d_inode(new_dentry);
9351 	struct inode *old_inode = d_inode(old_dentry);
9352 	u64 index = 0;
9353 	int ret;
9354 	int ret2;
9355 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9356 	bool log_pinned = false;
9357 
9358 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9359 		return -EPERM;
9360 
9361 	/* we only allow rename subvolume link between subvolumes */
9362 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9363 		return -EXDEV;
9364 
9365 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9366 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9367 		return -ENOTEMPTY;
9368 
9369 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9370 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9371 		return -ENOTEMPTY;
9372 
9373 
9374 	/* check for collisions, even if the  name isn't there */
9375 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9376 			     new_dentry->d_name.name,
9377 			     new_dentry->d_name.len);
9378 
9379 	if (ret) {
9380 		if (ret == -EEXIST) {
9381 			/* we shouldn't get
9382 			 * eexist without a new_inode */
9383 			if (WARN_ON(!new_inode)) {
9384 				return ret;
9385 			}
9386 		} else {
9387 			/* maybe -EOVERFLOW */
9388 			return ret;
9389 		}
9390 	}
9391 	ret = 0;
9392 
9393 	/*
9394 	 * we're using rename to replace one file with another.  Start IO on it
9395 	 * now so  we don't add too much work to the end of the transaction
9396 	 */
9397 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9398 		filemap_flush(old_inode->i_mapping);
9399 
9400 	/* close the racy window with snapshot create/destroy ioctl */
9401 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9402 		down_read(&fs_info->subvol_sem);
9403 	/*
9404 	 * We want to reserve the absolute worst case amount of items.  So if
9405 	 * both inodes are subvols and we need to unlink them then that would
9406 	 * require 4 item modifications, but if they are both normal inodes it
9407 	 * would require 5 item modifications, so we'll assume they are normal
9408 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9409 	 * should cover the worst case number of items we'll modify.
9410 	 * If our rename has the whiteout flag, we need more 5 units for the
9411 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9412 	 * when selinux is enabled).
9413 	 */
9414 	trans_num_items = 11;
9415 	if (flags & RENAME_WHITEOUT)
9416 		trans_num_items += 5;
9417 	trans = btrfs_start_transaction(root, trans_num_items);
9418 	if (IS_ERR(trans)) {
9419 		ret = PTR_ERR(trans);
9420 		goto out_notrans;
9421 	}
9422 
9423 	if (dest != root) {
9424 		ret = btrfs_record_root_in_trans(trans, dest);
9425 		if (ret)
9426 			goto out_fail;
9427 	}
9428 
9429 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9430 	if (ret)
9431 		goto out_fail;
9432 
9433 	BTRFS_I(old_inode)->dir_index = 0ULL;
9434 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9435 		/* force full log commit if subvolume involved. */
9436 		btrfs_set_log_full_commit(trans);
9437 	} else {
9438 		btrfs_pin_log_trans(root);
9439 		log_pinned = true;
9440 		ret = btrfs_insert_inode_ref(trans, dest,
9441 					     new_dentry->d_name.name,
9442 					     new_dentry->d_name.len,
9443 					     old_ino,
9444 					     btrfs_ino(BTRFS_I(new_dir)), index);
9445 		if (ret)
9446 			goto out_fail;
9447 	}
9448 
9449 	inode_inc_iversion(old_dir);
9450 	inode_inc_iversion(new_dir);
9451 	inode_inc_iversion(old_inode);
9452 	old_dir->i_ctime = old_dir->i_mtime =
9453 	new_dir->i_ctime = new_dir->i_mtime =
9454 	old_inode->i_ctime = current_time(old_dir);
9455 
9456 	if (old_dentry->d_parent != new_dentry->d_parent)
9457 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9458 				BTRFS_I(old_inode), 1);
9459 
9460 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9461 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9462 	} else {
9463 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9464 					BTRFS_I(d_inode(old_dentry)),
9465 					old_dentry->d_name.name,
9466 					old_dentry->d_name.len);
9467 		if (!ret)
9468 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9469 	}
9470 	if (ret) {
9471 		btrfs_abort_transaction(trans, ret);
9472 		goto out_fail;
9473 	}
9474 
9475 	if (new_inode) {
9476 		inode_inc_iversion(new_inode);
9477 		new_inode->i_ctime = current_time(new_inode);
9478 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9479 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9480 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9481 			BUG_ON(new_inode->i_nlink == 0);
9482 		} else {
9483 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9484 						 BTRFS_I(d_inode(new_dentry)),
9485 						 new_dentry->d_name.name,
9486 						 new_dentry->d_name.len);
9487 		}
9488 		if (!ret && new_inode->i_nlink == 0)
9489 			ret = btrfs_orphan_add(trans,
9490 					BTRFS_I(d_inode(new_dentry)));
9491 		if (ret) {
9492 			btrfs_abort_transaction(trans, ret);
9493 			goto out_fail;
9494 		}
9495 	}
9496 
9497 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9498 			     new_dentry->d_name.name,
9499 			     new_dentry->d_name.len, 0, index);
9500 	if (ret) {
9501 		btrfs_abort_transaction(trans, ret);
9502 		goto out_fail;
9503 	}
9504 
9505 	if (old_inode->i_nlink == 1)
9506 		BTRFS_I(old_inode)->dir_index = index;
9507 
9508 	if (log_pinned) {
9509 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9510 				   new_dentry->d_parent);
9511 		btrfs_end_log_trans(root);
9512 		log_pinned = false;
9513 	}
9514 
9515 	if (flags & RENAME_WHITEOUT) {
9516 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9517 						old_dentry);
9518 
9519 		if (ret) {
9520 			btrfs_abort_transaction(trans, ret);
9521 			goto out_fail;
9522 		}
9523 	}
9524 out_fail:
9525 	/*
9526 	 * If we have pinned the log and an error happened, we unpin tasks
9527 	 * trying to sync the log and force them to fallback to a transaction
9528 	 * commit if the log currently contains any of the inodes involved in
9529 	 * this rename operation (to ensure we do not persist a log with an
9530 	 * inconsistent state for any of these inodes or leading to any
9531 	 * inconsistencies when replayed). If the transaction was aborted, the
9532 	 * abortion reason is propagated to userspace when attempting to commit
9533 	 * the transaction. If the log does not contain any of these inodes, we
9534 	 * allow the tasks to sync it.
9535 	 */
9536 	if (ret && log_pinned) {
9537 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9538 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9539 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9540 		    (new_inode &&
9541 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9542 			btrfs_set_log_full_commit(trans);
9543 
9544 		btrfs_end_log_trans(root);
9545 		log_pinned = false;
9546 	}
9547 	ret2 = btrfs_end_transaction(trans);
9548 	ret = ret ? ret : ret2;
9549 out_notrans:
9550 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9551 		up_read(&fs_info->subvol_sem);
9552 
9553 	return ret;
9554 }
9555 
9556 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9557 			 struct dentry *old_dentry, struct inode *new_dir,
9558 			 struct dentry *new_dentry, unsigned int flags)
9559 {
9560 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9561 		return -EINVAL;
9562 
9563 	if (flags & RENAME_EXCHANGE)
9564 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9565 					  new_dentry);
9566 
9567 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9568 }
9569 
9570 struct btrfs_delalloc_work {
9571 	struct inode *inode;
9572 	struct completion completion;
9573 	struct list_head list;
9574 	struct btrfs_work work;
9575 };
9576 
9577 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9578 {
9579 	struct btrfs_delalloc_work *delalloc_work;
9580 	struct inode *inode;
9581 
9582 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9583 				     work);
9584 	inode = delalloc_work->inode;
9585 	filemap_flush(inode->i_mapping);
9586 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9587 				&BTRFS_I(inode)->runtime_flags))
9588 		filemap_flush(inode->i_mapping);
9589 
9590 	iput(inode);
9591 	complete(&delalloc_work->completion);
9592 }
9593 
9594 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9595 {
9596 	struct btrfs_delalloc_work *work;
9597 
9598 	work = kmalloc(sizeof(*work), GFP_NOFS);
9599 	if (!work)
9600 		return NULL;
9601 
9602 	init_completion(&work->completion);
9603 	INIT_LIST_HEAD(&work->list);
9604 	work->inode = inode;
9605 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9606 
9607 	return work;
9608 }
9609 
9610 /*
9611  * some fairly slow code that needs optimization. This walks the list
9612  * of all the inodes with pending delalloc and forces them to disk.
9613  */
9614 static int start_delalloc_inodes(struct btrfs_root *root,
9615 				 struct writeback_control *wbc, bool snapshot,
9616 				 bool in_reclaim_context)
9617 {
9618 	struct btrfs_inode *binode;
9619 	struct inode *inode;
9620 	struct btrfs_delalloc_work *work, *next;
9621 	struct list_head works;
9622 	struct list_head splice;
9623 	int ret = 0;
9624 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9625 
9626 	INIT_LIST_HEAD(&works);
9627 	INIT_LIST_HEAD(&splice);
9628 
9629 	mutex_lock(&root->delalloc_mutex);
9630 	spin_lock(&root->delalloc_lock);
9631 	list_splice_init(&root->delalloc_inodes, &splice);
9632 	while (!list_empty(&splice)) {
9633 		binode = list_entry(splice.next, struct btrfs_inode,
9634 				    delalloc_inodes);
9635 
9636 		list_move_tail(&binode->delalloc_inodes,
9637 			       &root->delalloc_inodes);
9638 
9639 		if (in_reclaim_context &&
9640 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9641 			continue;
9642 
9643 		inode = igrab(&binode->vfs_inode);
9644 		if (!inode) {
9645 			cond_resched_lock(&root->delalloc_lock);
9646 			continue;
9647 		}
9648 		spin_unlock(&root->delalloc_lock);
9649 
9650 		if (snapshot)
9651 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9652 				&binode->runtime_flags);
9653 		if (full_flush) {
9654 			work = btrfs_alloc_delalloc_work(inode);
9655 			if (!work) {
9656 				iput(inode);
9657 				ret = -ENOMEM;
9658 				goto out;
9659 			}
9660 			list_add_tail(&work->list, &works);
9661 			btrfs_queue_work(root->fs_info->flush_workers,
9662 					 &work->work);
9663 		} else {
9664 			ret = sync_inode(inode, wbc);
9665 			if (!ret &&
9666 			    test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9667 				     &BTRFS_I(inode)->runtime_flags))
9668 				ret = sync_inode(inode, wbc);
9669 			btrfs_add_delayed_iput(inode);
9670 			if (ret || wbc->nr_to_write <= 0)
9671 				goto out;
9672 		}
9673 		cond_resched();
9674 		spin_lock(&root->delalloc_lock);
9675 	}
9676 	spin_unlock(&root->delalloc_lock);
9677 
9678 out:
9679 	list_for_each_entry_safe(work, next, &works, list) {
9680 		list_del_init(&work->list);
9681 		wait_for_completion(&work->completion);
9682 		kfree(work);
9683 	}
9684 
9685 	if (!list_empty(&splice)) {
9686 		spin_lock(&root->delalloc_lock);
9687 		list_splice_tail(&splice, &root->delalloc_inodes);
9688 		spin_unlock(&root->delalloc_lock);
9689 	}
9690 	mutex_unlock(&root->delalloc_mutex);
9691 	return ret;
9692 }
9693 
9694 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9695 {
9696 	struct writeback_control wbc = {
9697 		.nr_to_write = LONG_MAX,
9698 		.sync_mode = WB_SYNC_NONE,
9699 		.range_start = 0,
9700 		.range_end = LLONG_MAX,
9701 	};
9702 	struct btrfs_fs_info *fs_info = root->fs_info;
9703 
9704 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9705 		return -EROFS;
9706 
9707 	return start_delalloc_inodes(root, &wbc, true, false);
9708 }
9709 
9710 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9711 			       bool in_reclaim_context)
9712 {
9713 	struct writeback_control wbc = {
9714 		.nr_to_write = nr,
9715 		.sync_mode = WB_SYNC_NONE,
9716 		.range_start = 0,
9717 		.range_end = LLONG_MAX,
9718 	};
9719 	struct btrfs_root *root;
9720 	struct list_head splice;
9721 	int ret;
9722 
9723 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9724 		return -EROFS;
9725 
9726 	INIT_LIST_HEAD(&splice);
9727 
9728 	mutex_lock(&fs_info->delalloc_root_mutex);
9729 	spin_lock(&fs_info->delalloc_root_lock);
9730 	list_splice_init(&fs_info->delalloc_roots, &splice);
9731 	while (!list_empty(&splice)) {
9732 		/*
9733 		 * Reset nr_to_write here so we know that we're doing a full
9734 		 * flush.
9735 		 */
9736 		if (nr == LONG_MAX)
9737 			wbc.nr_to_write = LONG_MAX;
9738 
9739 		root = list_first_entry(&splice, struct btrfs_root,
9740 					delalloc_root);
9741 		root = btrfs_grab_root(root);
9742 		BUG_ON(!root);
9743 		list_move_tail(&root->delalloc_root,
9744 			       &fs_info->delalloc_roots);
9745 		spin_unlock(&fs_info->delalloc_root_lock);
9746 
9747 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9748 		btrfs_put_root(root);
9749 		if (ret < 0 || wbc.nr_to_write <= 0)
9750 			goto out;
9751 		spin_lock(&fs_info->delalloc_root_lock);
9752 	}
9753 	spin_unlock(&fs_info->delalloc_root_lock);
9754 
9755 	ret = 0;
9756 out:
9757 	if (!list_empty(&splice)) {
9758 		spin_lock(&fs_info->delalloc_root_lock);
9759 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9760 		spin_unlock(&fs_info->delalloc_root_lock);
9761 	}
9762 	mutex_unlock(&fs_info->delalloc_root_mutex);
9763 	return ret;
9764 }
9765 
9766 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9767 			 struct dentry *dentry, const char *symname)
9768 {
9769 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9770 	struct btrfs_trans_handle *trans;
9771 	struct btrfs_root *root = BTRFS_I(dir)->root;
9772 	struct btrfs_path *path;
9773 	struct btrfs_key key;
9774 	struct inode *inode = NULL;
9775 	int err;
9776 	u64 objectid;
9777 	u64 index = 0;
9778 	int name_len;
9779 	int datasize;
9780 	unsigned long ptr;
9781 	struct btrfs_file_extent_item *ei;
9782 	struct extent_buffer *leaf;
9783 
9784 	name_len = strlen(symname);
9785 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9786 		return -ENAMETOOLONG;
9787 
9788 	/*
9789 	 * 2 items for inode item and ref
9790 	 * 2 items for dir items
9791 	 * 1 item for updating parent inode item
9792 	 * 1 item for the inline extent item
9793 	 * 1 item for xattr if selinux is on
9794 	 */
9795 	trans = btrfs_start_transaction(root, 7);
9796 	if (IS_ERR(trans))
9797 		return PTR_ERR(trans);
9798 
9799 	err = btrfs_get_free_objectid(root, &objectid);
9800 	if (err)
9801 		goto out_unlock;
9802 
9803 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9804 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9805 				objectid, S_IFLNK|S_IRWXUGO, &index);
9806 	if (IS_ERR(inode)) {
9807 		err = PTR_ERR(inode);
9808 		inode = NULL;
9809 		goto out_unlock;
9810 	}
9811 
9812 	/*
9813 	* If the active LSM wants to access the inode during
9814 	* d_instantiate it needs these. Smack checks to see
9815 	* if the filesystem supports xattrs by looking at the
9816 	* ops vector.
9817 	*/
9818 	inode->i_fop = &btrfs_file_operations;
9819 	inode->i_op = &btrfs_file_inode_operations;
9820 	inode->i_mapping->a_ops = &btrfs_aops;
9821 
9822 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9823 	if (err)
9824 		goto out_unlock;
9825 
9826 	path = btrfs_alloc_path();
9827 	if (!path) {
9828 		err = -ENOMEM;
9829 		goto out_unlock;
9830 	}
9831 	key.objectid = btrfs_ino(BTRFS_I(inode));
9832 	key.offset = 0;
9833 	key.type = BTRFS_EXTENT_DATA_KEY;
9834 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9835 	err = btrfs_insert_empty_item(trans, root, path, &key,
9836 				      datasize);
9837 	if (err) {
9838 		btrfs_free_path(path);
9839 		goto out_unlock;
9840 	}
9841 	leaf = path->nodes[0];
9842 	ei = btrfs_item_ptr(leaf, path->slots[0],
9843 			    struct btrfs_file_extent_item);
9844 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9845 	btrfs_set_file_extent_type(leaf, ei,
9846 				   BTRFS_FILE_EXTENT_INLINE);
9847 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9848 	btrfs_set_file_extent_compression(leaf, ei, 0);
9849 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9850 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9851 
9852 	ptr = btrfs_file_extent_inline_start(ei);
9853 	write_extent_buffer(leaf, symname, ptr, name_len);
9854 	btrfs_mark_buffer_dirty(leaf);
9855 	btrfs_free_path(path);
9856 
9857 	inode->i_op = &btrfs_symlink_inode_operations;
9858 	inode_nohighmem(inode);
9859 	inode_set_bytes(inode, name_len);
9860 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9861 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
9862 	/*
9863 	 * Last step, add directory indexes for our symlink inode. This is the
9864 	 * last step to avoid extra cleanup of these indexes if an error happens
9865 	 * elsewhere above.
9866 	 */
9867 	if (!err)
9868 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9869 				BTRFS_I(inode), 0, index);
9870 	if (err)
9871 		goto out_unlock;
9872 
9873 	d_instantiate_new(dentry, inode);
9874 
9875 out_unlock:
9876 	btrfs_end_transaction(trans);
9877 	if (err && inode) {
9878 		inode_dec_link_count(inode);
9879 		discard_new_inode(inode);
9880 	}
9881 	btrfs_btree_balance_dirty(fs_info);
9882 	return err;
9883 }
9884 
9885 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9886 				       struct btrfs_trans_handle *trans_in,
9887 				       struct btrfs_inode *inode,
9888 				       struct btrfs_key *ins,
9889 				       u64 file_offset)
9890 {
9891 	struct btrfs_file_extent_item stack_fi;
9892 	struct btrfs_replace_extent_info extent_info;
9893 	struct btrfs_trans_handle *trans = trans_in;
9894 	struct btrfs_path *path;
9895 	u64 start = ins->objectid;
9896 	u64 len = ins->offset;
9897 	int qgroup_released;
9898 	int ret;
9899 
9900 	memset(&stack_fi, 0, sizeof(stack_fi));
9901 
9902 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9903 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9904 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9905 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9906 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9907 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9908 	/* Encryption and other encoding is reserved and all 0 */
9909 
9910 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9911 	if (qgroup_released < 0)
9912 		return ERR_PTR(qgroup_released);
9913 
9914 	if (trans) {
9915 		ret = insert_reserved_file_extent(trans, inode,
9916 						  file_offset, &stack_fi,
9917 						  true, qgroup_released);
9918 		if (ret)
9919 			goto free_qgroup;
9920 		return trans;
9921 	}
9922 
9923 	extent_info.disk_offset = start;
9924 	extent_info.disk_len = len;
9925 	extent_info.data_offset = 0;
9926 	extent_info.data_len = len;
9927 	extent_info.file_offset = file_offset;
9928 	extent_info.extent_buf = (char *)&stack_fi;
9929 	extent_info.is_new_extent = true;
9930 	extent_info.qgroup_reserved = qgroup_released;
9931 	extent_info.insertions = 0;
9932 
9933 	path = btrfs_alloc_path();
9934 	if (!path) {
9935 		ret = -ENOMEM;
9936 		goto free_qgroup;
9937 	}
9938 
9939 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9940 				     file_offset + len - 1, &extent_info,
9941 				     &trans);
9942 	btrfs_free_path(path);
9943 	if (ret)
9944 		goto free_qgroup;
9945 	return trans;
9946 
9947 free_qgroup:
9948 	/*
9949 	 * We have released qgroup data range at the beginning of the function,
9950 	 * and normally qgroup_released bytes will be freed when committing
9951 	 * transaction.
9952 	 * But if we error out early, we have to free what we have released
9953 	 * or we leak qgroup data reservation.
9954 	 */
9955 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9956 			inode->root->root_key.objectid, qgroup_released,
9957 			BTRFS_QGROUP_RSV_DATA);
9958 	return ERR_PTR(ret);
9959 }
9960 
9961 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9962 				       u64 start, u64 num_bytes, u64 min_size,
9963 				       loff_t actual_len, u64 *alloc_hint,
9964 				       struct btrfs_trans_handle *trans)
9965 {
9966 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9967 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9968 	struct extent_map *em;
9969 	struct btrfs_root *root = BTRFS_I(inode)->root;
9970 	struct btrfs_key ins;
9971 	u64 cur_offset = start;
9972 	u64 clear_offset = start;
9973 	u64 i_size;
9974 	u64 cur_bytes;
9975 	u64 last_alloc = (u64)-1;
9976 	int ret = 0;
9977 	bool own_trans = true;
9978 	u64 end = start + num_bytes - 1;
9979 
9980 	if (trans)
9981 		own_trans = false;
9982 	while (num_bytes > 0) {
9983 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9984 		cur_bytes = max(cur_bytes, min_size);
9985 		/*
9986 		 * If we are severely fragmented we could end up with really
9987 		 * small allocations, so if the allocator is returning small
9988 		 * chunks lets make its job easier by only searching for those
9989 		 * sized chunks.
9990 		 */
9991 		cur_bytes = min(cur_bytes, last_alloc);
9992 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9993 				min_size, 0, *alloc_hint, &ins, 1, 0);
9994 		if (ret)
9995 			break;
9996 
9997 		/*
9998 		 * We've reserved this space, and thus converted it from
9999 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
10000 		 * from here on out we will only need to clear our reservation
10001 		 * for the remaining unreserved area, so advance our
10002 		 * clear_offset by our extent size.
10003 		 */
10004 		clear_offset += ins.offset;
10005 
10006 		last_alloc = ins.offset;
10007 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
10008 						    &ins, cur_offset);
10009 		/*
10010 		 * Now that we inserted the prealloc extent we can finally
10011 		 * decrement the number of reservations in the block group.
10012 		 * If we did it before, we could race with relocation and have
10013 		 * relocation miss the reserved extent, making it fail later.
10014 		 */
10015 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10016 		if (IS_ERR(trans)) {
10017 			ret = PTR_ERR(trans);
10018 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10019 						   ins.offset, 0);
10020 			break;
10021 		}
10022 
10023 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10024 					cur_offset + ins.offset -1, 0);
10025 
10026 		em = alloc_extent_map();
10027 		if (!em) {
10028 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10029 				&BTRFS_I(inode)->runtime_flags);
10030 			goto next;
10031 		}
10032 
10033 		em->start = cur_offset;
10034 		em->orig_start = cur_offset;
10035 		em->len = ins.offset;
10036 		em->block_start = ins.objectid;
10037 		em->block_len = ins.offset;
10038 		em->orig_block_len = ins.offset;
10039 		em->ram_bytes = ins.offset;
10040 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10041 		em->generation = trans->transid;
10042 
10043 		while (1) {
10044 			write_lock(&em_tree->lock);
10045 			ret = add_extent_mapping(em_tree, em, 1);
10046 			write_unlock(&em_tree->lock);
10047 			if (ret != -EEXIST)
10048 				break;
10049 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10050 						cur_offset + ins.offset - 1,
10051 						0);
10052 		}
10053 		free_extent_map(em);
10054 next:
10055 		num_bytes -= ins.offset;
10056 		cur_offset += ins.offset;
10057 		*alloc_hint = ins.objectid + ins.offset;
10058 
10059 		inode_inc_iversion(inode);
10060 		inode->i_ctime = current_time(inode);
10061 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10062 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10063 		    (actual_len > inode->i_size) &&
10064 		    (cur_offset > inode->i_size)) {
10065 			if (cur_offset > actual_len)
10066 				i_size = actual_len;
10067 			else
10068 				i_size = cur_offset;
10069 			i_size_write(inode, i_size);
10070 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10071 		}
10072 
10073 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10074 
10075 		if (ret) {
10076 			btrfs_abort_transaction(trans, ret);
10077 			if (own_trans)
10078 				btrfs_end_transaction(trans);
10079 			break;
10080 		}
10081 
10082 		if (own_trans) {
10083 			btrfs_end_transaction(trans);
10084 			trans = NULL;
10085 		}
10086 	}
10087 	if (clear_offset < end)
10088 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10089 			end - clear_offset + 1);
10090 	return ret;
10091 }
10092 
10093 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10094 			      u64 start, u64 num_bytes, u64 min_size,
10095 			      loff_t actual_len, u64 *alloc_hint)
10096 {
10097 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10098 					   min_size, actual_len, alloc_hint,
10099 					   NULL);
10100 }
10101 
10102 int btrfs_prealloc_file_range_trans(struct inode *inode,
10103 				    struct btrfs_trans_handle *trans, int mode,
10104 				    u64 start, u64 num_bytes, u64 min_size,
10105 				    loff_t actual_len, u64 *alloc_hint)
10106 {
10107 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10108 					   min_size, actual_len, alloc_hint, trans);
10109 }
10110 
10111 static int btrfs_set_page_dirty(struct page *page)
10112 {
10113 	return __set_page_dirty_nobuffers(page);
10114 }
10115 
10116 static int btrfs_permission(struct user_namespace *mnt_userns,
10117 			    struct inode *inode, int mask)
10118 {
10119 	struct btrfs_root *root = BTRFS_I(inode)->root;
10120 	umode_t mode = inode->i_mode;
10121 
10122 	if (mask & MAY_WRITE &&
10123 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10124 		if (btrfs_root_readonly(root))
10125 			return -EROFS;
10126 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10127 			return -EACCES;
10128 	}
10129 	return generic_permission(&init_user_ns, inode, mask);
10130 }
10131 
10132 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10133 			 struct dentry *dentry, umode_t mode)
10134 {
10135 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10136 	struct btrfs_trans_handle *trans;
10137 	struct btrfs_root *root = BTRFS_I(dir)->root;
10138 	struct inode *inode = NULL;
10139 	u64 objectid;
10140 	u64 index;
10141 	int ret = 0;
10142 
10143 	/*
10144 	 * 5 units required for adding orphan entry
10145 	 */
10146 	trans = btrfs_start_transaction(root, 5);
10147 	if (IS_ERR(trans))
10148 		return PTR_ERR(trans);
10149 
10150 	ret = btrfs_get_free_objectid(root, &objectid);
10151 	if (ret)
10152 		goto out;
10153 
10154 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10155 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10156 	if (IS_ERR(inode)) {
10157 		ret = PTR_ERR(inode);
10158 		inode = NULL;
10159 		goto out;
10160 	}
10161 
10162 	inode->i_fop = &btrfs_file_operations;
10163 	inode->i_op = &btrfs_file_inode_operations;
10164 
10165 	inode->i_mapping->a_ops = &btrfs_aops;
10166 
10167 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10168 	if (ret)
10169 		goto out;
10170 
10171 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10172 	if (ret)
10173 		goto out;
10174 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10175 	if (ret)
10176 		goto out;
10177 
10178 	/*
10179 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10180 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10181 	 * through:
10182 	 *
10183 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10184 	 */
10185 	set_nlink(inode, 1);
10186 	d_tmpfile(dentry, inode);
10187 	unlock_new_inode(inode);
10188 	mark_inode_dirty(inode);
10189 out:
10190 	btrfs_end_transaction(trans);
10191 	if (ret && inode)
10192 		discard_new_inode(inode);
10193 	btrfs_btree_balance_dirty(fs_info);
10194 	return ret;
10195 }
10196 
10197 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10198 {
10199 	struct inode *inode = tree->private_data;
10200 	unsigned long index = start >> PAGE_SHIFT;
10201 	unsigned long end_index = end >> PAGE_SHIFT;
10202 	struct page *page;
10203 
10204 	while (index <= end_index) {
10205 		page = find_get_page(inode->i_mapping, index);
10206 		ASSERT(page); /* Pages should be in the extent_io_tree */
10207 		set_page_writeback(page);
10208 		put_page(page);
10209 		index++;
10210 	}
10211 }
10212 
10213 #ifdef CONFIG_SWAP
10214 /*
10215  * Add an entry indicating a block group or device which is pinned by a
10216  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10217  * negative errno on failure.
10218  */
10219 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10220 				  bool is_block_group)
10221 {
10222 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10223 	struct btrfs_swapfile_pin *sp, *entry;
10224 	struct rb_node **p;
10225 	struct rb_node *parent = NULL;
10226 
10227 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10228 	if (!sp)
10229 		return -ENOMEM;
10230 	sp->ptr = ptr;
10231 	sp->inode = inode;
10232 	sp->is_block_group = is_block_group;
10233 	sp->bg_extent_count = 1;
10234 
10235 	spin_lock(&fs_info->swapfile_pins_lock);
10236 	p = &fs_info->swapfile_pins.rb_node;
10237 	while (*p) {
10238 		parent = *p;
10239 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10240 		if (sp->ptr < entry->ptr ||
10241 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10242 			p = &(*p)->rb_left;
10243 		} else if (sp->ptr > entry->ptr ||
10244 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10245 			p = &(*p)->rb_right;
10246 		} else {
10247 			if (is_block_group)
10248 				entry->bg_extent_count++;
10249 			spin_unlock(&fs_info->swapfile_pins_lock);
10250 			kfree(sp);
10251 			return 1;
10252 		}
10253 	}
10254 	rb_link_node(&sp->node, parent, p);
10255 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10256 	spin_unlock(&fs_info->swapfile_pins_lock);
10257 	return 0;
10258 }
10259 
10260 /* Free all of the entries pinned by this swapfile. */
10261 static void btrfs_free_swapfile_pins(struct inode *inode)
10262 {
10263 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10264 	struct btrfs_swapfile_pin *sp;
10265 	struct rb_node *node, *next;
10266 
10267 	spin_lock(&fs_info->swapfile_pins_lock);
10268 	node = rb_first(&fs_info->swapfile_pins);
10269 	while (node) {
10270 		next = rb_next(node);
10271 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10272 		if (sp->inode == inode) {
10273 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10274 			if (sp->is_block_group) {
10275 				btrfs_dec_block_group_swap_extents(sp->ptr,
10276 							   sp->bg_extent_count);
10277 				btrfs_put_block_group(sp->ptr);
10278 			}
10279 			kfree(sp);
10280 		}
10281 		node = next;
10282 	}
10283 	spin_unlock(&fs_info->swapfile_pins_lock);
10284 }
10285 
10286 struct btrfs_swap_info {
10287 	u64 start;
10288 	u64 block_start;
10289 	u64 block_len;
10290 	u64 lowest_ppage;
10291 	u64 highest_ppage;
10292 	unsigned long nr_pages;
10293 	int nr_extents;
10294 };
10295 
10296 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10297 				 struct btrfs_swap_info *bsi)
10298 {
10299 	unsigned long nr_pages;
10300 	u64 first_ppage, first_ppage_reported, next_ppage;
10301 	int ret;
10302 
10303 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10304 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10305 				PAGE_SIZE) >> PAGE_SHIFT;
10306 
10307 	if (first_ppage >= next_ppage)
10308 		return 0;
10309 	nr_pages = next_ppage - first_ppage;
10310 
10311 	first_ppage_reported = first_ppage;
10312 	if (bsi->start == 0)
10313 		first_ppage_reported++;
10314 	if (bsi->lowest_ppage > first_ppage_reported)
10315 		bsi->lowest_ppage = first_ppage_reported;
10316 	if (bsi->highest_ppage < (next_ppage - 1))
10317 		bsi->highest_ppage = next_ppage - 1;
10318 
10319 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10320 	if (ret < 0)
10321 		return ret;
10322 	bsi->nr_extents += ret;
10323 	bsi->nr_pages += nr_pages;
10324 	return 0;
10325 }
10326 
10327 static void btrfs_swap_deactivate(struct file *file)
10328 {
10329 	struct inode *inode = file_inode(file);
10330 
10331 	btrfs_free_swapfile_pins(inode);
10332 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10333 }
10334 
10335 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10336 			       sector_t *span)
10337 {
10338 	struct inode *inode = file_inode(file);
10339 	struct btrfs_root *root = BTRFS_I(inode)->root;
10340 	struct btrfs_fs_info *fs_info = root->fs_info;
10341 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10342 	struct extent_state *cached_state = NULL;
10343 	struct extent_map *em = NULL;
10344 	struct btrfs_device *device = NULL;
10345 	struct btrfs_swap_info bsi = {
10346 		.lowest_ppage = (sector_t)-1ULL,
10347 	};
10348 	int ret = 0;
10349 	u64 isize;
10350 	u64 start;
10351 
10352 	/*
10353 	 * If the swap file was just created, make sure delalloc is done. If the
10354 	 * file changes again after this, the user is doing something stupid and
10355 	 * we don't really care.
10356 	 */
10357 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10358 	if (ret)
10359 		return ret;
10360 
10361 	/*
10362 	 * The inode is locked, so these flags won't change after we check them.
10363 	 */
10364 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10365 		btrfs_warn(fs_info, "swapfile must not be compressed");
10366 		return -EINVAL;
10367 	}
10368 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10369 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10370 		return -EINVAL;
10371 	}
10372 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10373 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10374 		return -EINVAL;
10375 	}
10376 
10377 	/*
10378 	 * Balance or device remove/replace/resize can move stuff around from
10379 	 * under us. The exclop protection makes sure they aren't running/won't
10380 	 * run concurrently while we are mapping the swap extents, and
10381 	 * fs_info->swapfile_pins prevents them from running while the swap
10382 	 * file is active and moving the extents. Note that this also prevents
10383 	 * a concurrent device add which isn't actually necessary, but it's not
10384 	 * really worth the trouble to allow it.
10385 	 */
10386 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10387 		btrfs_warn(fs_info,
10388 	   "cannot activate swapfile while exclusive operation is running");
10389 		return -EBUSY;
10390 	}
10391 
10392 	/*
10393 	 * Prevent snapshot creation while we are activating the swap file.
10394 	 * We do not want to race with snapshot creation. If snapshot creation
10395 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10396 	 * completes before the first write into the swap file after it is
10397 	 * activated, than that write would fallback to COW.
10398 	 */
10399 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10400 		btrfs_exclop_finish(fs_info);
10401 		btrfs_warn(fs_info,
10402 	   "cannot activate swapfile because snapshot creation is in progress");
10403 		return -EINVAL;
10404 	}
10405 	/*
10406 	 * Snapshots can create extents which require COW even if NODATACOW is
10407 	 * set. We use this counter to prevent snapshots. We must increment it
10408 	 * before walking the extents because we don't want a concurrent
10409 	 * snapshot to run after we've already checked the extents.
10410 	 */
10411 	atomic_inc(&root->nr_swapfiles);
10412 
10413 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10414 
10415 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10416 	start = 0;
10417 	while (start < isize) {
10418 		u64 logical_block_start, physical_block_start;
10419 		struct btrfs_block_group *bg;
10420 		u64 len = isize - start;
10421 
10422 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10423 		if (IS_ERR(em)) {
10424 			ret = PTR_ERR(em);
10425 			goto out;
10426 		}
10427 
10428 		if (em->block_start == EXTENT_MAP_HOLE) {
10429 			btrfs_warn(fs_info, "swapfile must not have holes");
10430 			ret = -EINVAL;
10431 			goto out;
10432 		}
10433 		if (em->block_start == EXTENT_MAP_INLINE) {
10434 			/*
10435 			 * It's unlikely we'll ever actually find ourselves
10436 			 * here, as a file small enough to fit inline won't be
10437 			 * big enough to store more than the swap header, but in
10438 			 * case something changes in the future, let's catch it
10439 			 * here rather than later.
10440 			 */
10441 			btrfs_warn(fs_info, "swapfile must not be inline");
10442 			ret = -EINVAL;
10443 			goto out;
10444 		}
10445 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10446 			btrfs_warn(fs_info, "swapfile must not be compressed");
10447 			ret = -EINVAL;
10448 			goto out;
10449 		}
10450 
10451 		logical_block_start = em->block_start + (start - em->start);
10452 		len = min(len, em->len - (start - em->start));
10453 		free_extent_map(em);
10454 		em = NULL;
10455 
10456 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10457 		if (ret < 0) {
10458 			goto out;
10459 		} else if (ret) {
10460 			ret = 0;
10461 		} else {
10462 			btrfs_warn(fs_info,
10463 				   "swapfile must not be copy-on-write");
10464 			ret = -EINVAL;
10465 			goto out;
10466 		}
10467 
10468 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10469 		if (IS_ERR(em)) {
10470 			ret = PTR_ERR(em);
10471 			goto out;
10472 		}
10473 
10474 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10475 			btrfs_warn(fs_info,
10476 				   "swapfile must have single data profile");
10477 			ret = -EINVAL;
10478 			goto out;
10479 		}
10480 
10481 		if (device == NULL) {
10482 			device = em->map_lookup->stripes[0].dev;
10483 			ret = btrfs_add_swapfile_pin(inode, device, false);
10484 			if (ret == 1)
10485 				ret = 0;
10486 			else if (ret)
10487 				goto out;
10488 		} else if (device != em->map_lookup->stripes[0].dev) {
10489 			btrfs_warn(fs_info, "swapfile must be on one device");
10490 			ret = -EINVAL;
10491 			goto out;
10492 		}
10493 
10494 		physical_block_start = (em->map_lookup->stripes[0].physical +
10495 					(logical_block_start - em->start));
10496 		len = min(len, em->len - (logical_block_start - em->start));
10497 		free_extent_map(em);
10498 		em = NULL;
10499 
10500 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10501 		if (!bg) {
10502 			btrfs_warn(fs_info,
10503 			   "could not find block group containing swapfile");
10504 			ret = -EINVAL;
10505 			goto out;
10506 		}
10507 
10508 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10509 			btrfs_warn(fs_info,
10510 			   "block group for swapfile at %llu is read-only%s",
10511 			   bg->start,
10512 			   atomic_read(&fs_info->scrubs_running) ?
10513 				       " (scrub running)" : "");
10514 			btrfs_put_block_group(bg);
10515 			ret = -EINVAL;
10516 			goto out;
10517 		}
10518 
10519 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10520 		if (ret) {
10521 			btrfs_put_block_group(bg);
10522 			if (ret == 1)
10523 				ret = 0;
10524 			else
10525 				goto out;
10526 		}
10527 
10528 		if (bsi.block_len &&
10529 		    bsi.block_start + bsi.block_len == physical_block_start) {
10530 			bsi.block_len += len;
10531 		} else {
10532 			if (bsi.block_len) {
10533 				ret = btrfs_add_swap_extent(sis, &bsi);
10534 				if (ret)
10535 					goto out;
10536 			}
10537 			bsi.start = start;
10538 			bsi.block_start = physical_block_start;
10539 			bsi.block_len = len;
10540 		}
10541 
10542 		start += len;
10543 	}
10544 
10545 	if (bsi.block_len)
10546 		ret = btrfs_add_swap_extent(sis, &bsi);
10547 
10548 out:
10549 	if (!IS_ERR_OR_NULL(em))
10550 		free_extent_map(em);
10551 
10552 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10553 
10554 	if (ret)
10555 		btrfs_swap_deactivate(file);
10556 
10557 	btrfs_drew_write_unlock(&root->snapshot_lock);
10558 
10559 	btrfs_exclop_finish(fs_info);
10560 
10561 	if (ret)
10562 		return ret;
10563 
10564 	if (device)
10565 		sis->bdev = device->bdev;
10566 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10567 	sis->max = bsi.nr_pages;
10568 	sis->pages = bsi.nr_pages - 1;
10569 	sis->highest_bit = bsi.nr_pages - 1;
10570 	return bsi.nr_extents;
10571 }
10572 #else
10573 static void btrfs_swap_deactivate(struct file *file)
10574 {
10575 }
10576 
10577 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10578 			       sector_t *span)
10579 {
10580 	return -EOPNOTSUPP;
10581 }
10582 #endif
10583 
10584 /*
10585  * Update the number of bytes used in the VFS' inode. When we replace extents in
10586  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10587  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10588  * always get a correct value.
10589  */
10590 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10591 			      const u64 add_bytes,
10592 			      const u64 del_bytes)
10593 {
10594 	if (add_bytes == del_bytes)
10595 		return;
10596 
10597 	spin_lock(&inode->lock);
10598 	if (del_bytes > 0)
10599 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10600 	if (add_bytes > 0)
10601 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10602 	spin_unlock(&inode->lock);
10603 }
10604 
10605 static const struct inode_operations btrfs_dir_inode_operations = {
10606 	.getattr	= btrfs_getattr,
10607 	.lookup		= btrfs_lookup,
10608 	.create		= btrfs_create,
10609 	.unlink		= btrfs_unlink,
10610 	.link		= btrfs_link,
10611 	.mkdir		= btrfs_mkdir,
10612 	.rmdir		= btrfs_rmdir,
10613 	.rename		= btrfs_rename2,
10614 	.symlink	= btrfs_symlink,
10615 	.setattr	= btrfs_setattr,
10616 	.mknod		= btrfs_mknod,
10617 	.listxattr	= btrfs_listxattr,
10618 	.permission	= btrfs_permission,
10619 	.get_acl	= btrfs_get_acl,
10620 	.set_acl	= btrfs_set_acl,
10621 	.update_time	= btrfs_update_time,
10622 	.tmpfile        = btrfs_tmpfile,
10623 	.fileattr_get	= btrfs_fileattr_get,
10624 	.fileattr_set	= btrfs_fileattr_set,
10625 };
10626 
10627 static const struct file_operations btrfs_dir_file_operations = {
10628 	.llseek		= generic_file_llseek,
10629 	.read		= generic_read_dir,
10630 	.iterate_shared	= btrfs_real_readdir,
10631 	.open		= btrfs_opendir,
10632 	.unlocked_ioctl	= btrfs_ioctl,
10633 #ifdef CONFIG_COMPAT
10634 	.compat_ioctl	= btrfs_compat_ioctl,
10635 #endif
10636 	.release        = btrfs_release_file,
10637 	.fsync		= btrfs_sync_file,
10638 };
10639 
10640 /*
10641  * btrfs doesn't support the bmap operation because swapfiles
10642  * use bmap to make a mapping of extents in the file.  They assume
10643  * these extents won't change over the life of the file and they
10644  * use the bmap result to do IO directly to the drive.
10645  *
10646  * the btrfs bmap call would return logical addresses that aren't
10647  * suitable for IO and they also will change frequently as COW
10648  * operations happen.  So, swapfile + btrfs == corruption.
10649  *
10650  * For now we're avoiding this by dropping bmap.
10651  */
10652 static const struct address_space_operations btrfs_aops = {
10653 	.readpage	= btrfs_readpage,
10654 	.writepage	= btrfs_writepage,
10655 	.writepages	= btrfs_writepages,
10656 	.readahead	= btrfs_readahead,
10657 	.direct_IO	= noop_direct_IO,
10658 	.invalidatepage = btrfs_invalidatepage,
10659 	.releasepage	= btrfs_releasepage,
10660 #ifdef CONFIG_MIGRATION
10661 	.migratepage	= btrfs_migratepage,
10662 #endif
10663 	.set_page_dirty	= btrfs_set_page_dirty,
10664 	.error_remove_page = generic_error_remove_page,
10665 	.swap_activate	= btrfs_swap_activate,
10666 	.swap_deactivate = btrfs_swap_deactivate,
10667 };
10668 
10669 static const struct inode_operations btrfs_file_inode_operations = {
10670 	.getattr	= btrfs_getattr,
10671 	.setattr	= btrfs_setattr,
10672 	.listxattr      = btrfs_listxattr,
10673 	.permission	= btrfs_permission,
10674 	.fiemap		= btrfs_fiemap,
10675 	.get_acl	= btrfs_get_acl,
10676 	.set_acl	= btrfs_set_acl,
10677 	.update_time	= btrfs_update_time,
10678 	.fileattr_get	= btrfs_fileattr_get,
10679 	.fileattr_set	= btrfs_fileattr_set,
10680 };
10681 static const struct inode_operations btrfs_special_inode_operations = {
10682 	.getattr	= btrfs_getattr,
10683 	.setattr	= btrfs_setattr,
10684 	.permission	= btrfs_permission,
10685 	.listxattr	= btrfs_listxattr,
10686 	.get_acl	= btrfs_get_acl,
10687 	.set_acl	= btrfs_set_acl,
10688 	.update_time	= btrfs_update_time,
10689 };
10690 static const struct inode_operations btrfs_symlink_inode_operations = {
10691 	.get_link	= page_get_link,
10692 	.getattr	= btrfs_getattr,
10693 	.setattr	= btrfs_setattr,
10694 	.permission	= btrfs_permission,
10695 	.listxattr	= btrfs_listxattr,
10696 	.update_time	= btrfs_update_time,
10697 };
10698 
10699 const struct dentry_operations btrfs_dentry_operations = {
10700 	.d_delete	= btrfs_dentry_delete,
10701 };
10702