1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <linux/iomap.h> 34 #include <asm/unaligned.h> 35 #include "misc.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "print-tree.h" 41 #include "ordered-data.h" 42 #include "xattr.h" 43 #include "tree-log.h" 44 #include "volumes.h" 45 #include "compression.h" 46 #include "locking.h" 47 #include "free-space-cache.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 struct btrfs_dio_data { 61 u64 reserve; 62 loff_t length; 63 ssize_t submitted; 64 struct extent_changeset *data_reserved; 65 }; 66 67 static const struct inode_operations btrfs_dir_inode_operations; 68 static const struct inode_operations btrfs_symlink_inode_operations; 69 static const struct inode_operations btrfs_special_inode_operations; 70 static const struct inode_operations btrfs_file_inode_operations; 71 static const struct address_space_operations btrfs_aops; 72 static const struct file_operations btrfs_dir_file_operations; 73 74 static struct kmem_cache *btrfs_inode_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 struct kmem_cache *btrfs_free_space_bitmap_cachep; 79 80 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 81 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 83 static noinline int cow_file_range(struct btrfs_inode *inode, 84 struct page *locked_page, 85 u64 start, u64 end, int *page_started, 86 unsigned long *nr_written, int unlock); 87 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 88 u64 len, u64 orig_start, u64 block_start, 89 u64 block_len, u64 orig_block_len, 90 u64 ram_bytes, int compress_type, 91 int type); 92 93 static void __endio_write_update_ordered(struct btrfs_inode *inode, 94 const u64 offset, const u64 bytes, 95 const bool uptodate); 96 97 /* 98 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 99 * 100 * ilock_flags can have the following bit set: 101 * 102 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 103 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 104 * return -EAGAIN 105 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 106 */ 107 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 108 { 109 if (ilock_flags & BTRFS_ILOCK_SHARED) { 110 if (ilock_flags & BTRFS_ILOCK_TRY) { 111 if (!inode_trylock_shared(inode)) 112 return -EAGAIN; 113 else 114 return 0; 115 } 116 inode_lock_shared(inode); 117 } else { 118 if (ilock_flags & BTRFS_ILOCK_TRY) { 119 if (!inode_trylock(inode)) 120 return -EAGAIN; 121 else 122 return 0; 123 } 124 inode_lock(inode); 125 } 126 if (ilock_flags & BTRFS_ILOCK_MMAP) 127 down_write(&BTRFS_I(inode)->i_mmap_lock); 128 return 0; 129 } 130 131 /* 132 * btrfs_inode_unlock - unock inode i_rwsem 133 * 134 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 135 * to decide whether the lock acquired is shared or exclusive. 136 */ 137 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 138 { 139 if (ilock_flags & BTRFS_ILOCK_MMAP) 140 up_write(&BTRFS_I(inode)->i_mmap_lock); 141 if (ilock_flags & BTRFS_ILOCK_SHARED) 142 inode_unlock_shared(inode); 143 else 144 inode_unlock(inode); 145 } 146 147 /* 148 * Cleanup all submitted ordered extents in specified range to handle errors 149 * from the btrfs_run_delalloc_range() callback. 150 * 151 * NOTE: caller must ensure that when an error happens, it can not call 152 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 153 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 154 * to be released, which we want to happen only when finishing the ordered 155 * extent (btrfs_finish_ordered_io()). 156 */ 157 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 158 struct page *locked_page, 159 u64 offset, u64 bytes) 160 { 161 unsigned long index = offset >> PAGE_SHIFT; 162 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 163 u64 page_start = page_offset(locked_page); 164 u64 page_end = page_start + PAGE_SIZE - 1; 165 166 struct page *page; 167 168 while (index <= end_index) { 169 page = find_get_page(inode->vfs_inode.i_mapping, index); 170 index++; 171 if (!page) 172 continue; 173 ClearPagePrivate2(page); 174 put_page(page); 175 } 176 177 /* 178 * In case this page belongs to the delalloc range being instantiated 179 * then skip it, since the first page of a range is going to be 180 * properly cleaned up by the caller of run_delalloc_range 181 */ 182 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 183 offset += PAGE_SIZE; 184 bytes -= PAGE_SIZE; 185 } 186 187 return __endio_write_update_ordered(inode, offset, bytes, false); 188 } 189 190 static int btrfs_dirty_inode(struct inode *inode); 191 192 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 193 struct inode *inode, struct inode *dir, 194 const struct qstr *qstr) 195 { 196 int err; 197 198 err = btrfs_init_acl(trans, inode, dir); 199 if (!err) 200 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 201 return err; 202 } 203 204 /* 205 * this does all the hard work for inserting an inline extent into 206 * the btree. The caller should have done a btrfs_drop_extents so that 207 * no overlapping inline items exist in the btree 208 */ 209 static int insert_inline_extent(struct btrfs_trans_handle *trans, 210 struct btrfs_path *path, bool extent_inserted, 211 struct btrfs_root *root, struct inode *inode, 212 u64 start, size_t size, size_t compressed_size, 213 int compress_type, 214 struct page **compressed_pages) 215 { 216 struct extent_buffer *leaf; 217 struct page *page = NULL; 218 char *kaddr; 219 unsigned long ptr; 220 struct btrfs_file_extent_item *ei; 221 int ret; 222 size_t cur_size = size; 223 unsigned long offset; 224 225 ASSERT((compressed_size > 0 && compressed_pages) || 226 (compressed_size == 0 && !compressed_pages)); 227 228 if (compressed_size && compressed_pages) 229 cur_size = compressed_size; 230 231 if (!extent_inserted) { 232 struct btrfs_key key; 233 size_t datasize; 234 235 key.objectid = btrfs_ino(BTRFS_I(inode)); 236 key.offset = start; 237 key.type = BTRFS_EXTENT_DATA_KEY; 238 239 datasize = btrfs_file_extent_calc_inline_size(cur_size); 240 ret = btrfs_insert_empty_item(trans, root, path, &key, 241 datasize); 242 if (ret) 243 goto fail; 244 } 245 leaf = path->nodes[0]; 246 ei = btrfs_item_ptr(leaf, path->slots[0], 247 struct btrfs_file_extent_item); 248 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 249 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 250 btrfs_set_file_extent_encryption(leaf, ei, 0); 251 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 252 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 253 ptr = btrfs_file_extent_inline_start(ei); 254 255 if (compress_type != BTRFS_COMPRESS_NONE) { 256 struct page *cpage; 257 int i = 0; 258 while (compressed_size > 0) { 259 cpage = compressed_pages[i]; 260 cur_size = min_t(unsigned long, compressed_size, 261 PAGE_SIZE); 262 263 kaddr = kmap_atomic(cpage); 264 write_extent_buffer(leaf, kaddr, ptr, cur_size); 265 kunmap_atomic(kaddr); 266 267 i++; 268 ptr += cur_size; 269 compressed_size -= cur_size; 270 } 271 btrfs_set_file_extent_compression(leaf, ei, 272 compress_type); 273 } else { 274 page = find_get_page(inode->i_mapping, 275 start >> PAGE_SHIFT); 276 btrfs_set_file_extent_compression(leaf, ei, 0); 277 kaddr = kmap_atomic(page); 278 offset = offset_in_page(start); 279 write_extent_buffer(leaf, kaddr + offset, ptr, size); 280 kunmap_atomic(kaddr); 281 put_page(page); 282 } 283 btrfs_mark_buffer_dirty(leaf); 284 btrfs_release_path(path); 285 286 /* 287 * We align size to sectorsize for inline extents just for simplicity 288 * sake. 289 */ 290 size = ALIGN(size, root->fs_info->sectorsize); 291 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 292 if (ret) 293 goto fail; 294 295 /* 296 * we're an inline extent, so nobody can 297 * extend the file past i_size without locking 298 * a page we already have locked. 299 * 300 * We must do any isize and inode updates 301 * before we unlock the pages. Otherwise we 302 * could end up racing with unlink. 303 */ 304 BTRFS_I(inode)->disk_i_size = inode->i_size; 305 fail: 306 return ret; 307 } 308 309 310 /* 311 * conditionally insert an inline extent into the file. This 312 * does the checks required to make sure the data is small enough 313 * to fit as an inline extent. 314 */ 315 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, 316 u64 end, size_t compressed_size, 317 int compress_type, 318 struct page **compressed_pages) 319 { 320 struct btrfs_drop_extents_args drop_args = { 0 }; 321 struct btrfs_root *root = inode->root; 322 struct btrfs_fs_info *fs_info = root->fs_info; 323 struct btrfs_trans_handle *trans; 324 u64 isize = i_size_read(&inode->vfs_inode); 325 u64 actual_end = min(end + 1, isize); 326 u64 inline_len = actual_end - start; 327 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 328 u64 data_len = inline_len; 329 int ret; 330 struct btrfs_path *path; 331 332 if (compressed_size) 333 data_len = compressed_size; 334 335 if (start > 0 || 336 actual_end > fs_info->sectorsize || 337 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 338 (!compressed_size && 339 (actual_end & (fs_info->sectorsize - 1)) == 0) || 340 end + 1 < isize || 341 data_len > fs_info->max_inline) { 342 return 1; 343 } 344 345 path = btrfs_alloc_path(); 346 if (!path) 347 return -ENOMEM; 348 349 trans = btrfs_join_transaction(root); 350 if (IS_ERR(trans)) { 351 btrfs_free_path(path); 352 return PTR_ERR(trans); 353 } 354 trans->block_rsv = &inode->block_rsv; 355 356 drop_args.path = path; 357 drop_args.start = start; 358 drop_args.end = aligned_end; 359 drop_args.drop_cache = true; 360 drop_args.replace_extent = true; 361 362 if (compressed_size && compressed_pages) 363 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 364 compressed_size); 365 else 366 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 367 inline_len); 368 369 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 370 if (ret) { 371 btrfs_abort_transaction(trans, ret); 372 goto out; 373 } 374 375 if (isize > actual_end) 376 inline_len = min_t(u64, isize, actual_end); 377 ret = insert_inline_extent(trans, path, drop_args.extent_inserted, 378 root, &inode->vfs_inode, start, 379 inline_len, compressed_size, 380 compress_type, compressed_pages); 381 if (ret && ret != -ENOSPC) { 382 btrfs_abort_transaction(trans, ret); 383 goto out; 384 } else if (ret == -ENOSPC) { 385 ret = 1; 386 goto out; 387 } 388 389 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found); 390 ret = btrfs_update_inode(trans, root, inode); 391 if (ret && ret != -ENOSPC) { 392 btrfs_abort_transaction(trans, ret); 393 goto out; 394 } else if (ret == -ENOSPC) { 395 ret = 1; 396 goto out; 397 } 398 399 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 400 out: 401 /* 402 * Don't forget to free the reserved space, as for inlined extent 403 * it won't count as data extent, free them directly here. 404 * And at reserve time, it's always aligned to page size, so 405 * just free one page here. 406 */ 407 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 408 btrfs_free_path(path); 409 btrfs_end_transaction(trans); 410 return ret; 411 } 412 413 struct async_extent { 414 u64 start; 415 u64 ram_size; 416 u64 compressed_size; 417 struct page **pages; 418 unsigned long nr_pages; 419 int compress_type; 420 struct list_head list; 421 }; 422 423 struct async_chunk { 424 struct inode *inode; 425 struct page *locked_page; 426 u64 start; 427 u64 end; 428 unsigned int write_flags; 429 struct list_head extents; 430 struct cgroup_subsys_state *blkcg_css; 431 struct btrfs_work work; 432 atomic_t *pending; 433 }; 434 435 struct async_cow { 436 /* Number of chunks in flight; must be first in the structure */ 437 atomic_t num_chunks; 438 struct async_chunk chunks[]; 439 }; 440 441 static noinline int add_async_extent(struct async_chunk *cow, 442 u64 start, u64 ram_size, 443 u64 compressed_size, 444 struct page **pages, 445 unsigned long nr_pages, 446 int compress_type) 447 { 448 struct async_extent *async_extent; 449 450 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 451 BUG_ON(!async_extent); /* -ENOMEM */ 452 async_extent->start = start; 453 async_extent->ram_size = ram_size; 454 async_extent->compressed_size = compressed_size; 455 async_extent->pages = pages; 456 async_extent->nr_pages = nr_pages; 457 async_extent->compress_type = compress_type; 458 list_add_tail(&async_extent->list, &cow->extents); 459 return 0; 460 } 461 462 /* 463 * Check if the inode has flags compatible with compression 464 */ 465 static inline bool inode_can_compress(struct btrfs_inode *inode) 466 { 467 if (inode->flags & BTRFS_INODE_NODATACOW || 468 inode->flags & BTRFS_INODE_NODATASUM) 469 return false; 470 return true; 471 } 472 473 /* 474 * Check if the inode needs to be submitted to compression, based on mount 475 * options, defragmentation, properties or heuristics. 476 */ 477 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 478 u64 end) 479 { 480 struct btrfs_fs_info *fs_info = inode->root->fs_info; 481 482 if (!inode_can_compress(inode)) { 483 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 484 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 485 btrfs_ino(inode)); 486 return 0; 487 } 488 /* force compress */ 489 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 490 return 1; 491 /* defrag ioctl */ 492 if (inode->defrag_compress) 493 return 1; 494 /* bad compression ratios */ 495 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 496 return 0; 497 if (btrfs_test_opt(fs_info, COMPRESS) || 498 inode->flags & BTRFS_INODE_COMPRESS || 499 inode->prop_compress) 500 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 501 return 0; 502 } 503 504 static inline void inode_should_defrag(struct btrfs_inode *inode, 505 u64 start, u64 end, u64 num_bytes, u64 small_write) 506 { 507 /* If this is a small write inside eof, kick off a defrag */ 508 if (num_bytes < small_write && 509 (start > 0 || end + 1 < inode->disk_i_size)) 510 btrfs_add_inode_defrag(NULL, inode); 511 } 512 513 /* 514 * we create compressed extents in two phases. The first 515 * phase compresses a range of pages that have already been 516 * locked (both pages and state bits are locked). 517 * 518 * This is done inside an ordered work queue, and the compression 519 * is spread across many cpus. The actual IO submission is step 520 * two, and the ordered work queue takes care of making sure that 521 * happens in the same order things were put onto the queue by 522 * writepages and friends. 523 * 524 * If this code finds it can't get good compression, it puts an 525 * entry onto the work queue to write the uncompressed bytes. This 526 * makes sure that both compressed inodes and uncompressed inodes 527 * are written in the same order that the flusher thread sent them 528 * down. 529 */ 530 static noinline int compress_file_range(struct async_chunk *async_chunk) 531 { 532 struct inode *inode = async_chunk->inode; 533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 534 u64 blocksize = fs_info->sectorsize; 535 u64 start = async_chunk->start; 536 u64 end = async_chunk->end; 537 u64 actual_end; 538 u64 i_size; 539 int ret = 0; 540 struct page **pages = NULL; 541 unsigned long nr_pages; 542 unsigned long total_compressed = 0; 543 unsigned long total_in = 0; 544 int i; 545 int will_compress; 546 int compress_type = fs_info->compress_type; 547 int compressed_extents = 0; 548 int redirty = 0; 549 550 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 551 SZ_16K); 552 553 /* 554 * We need to save i_size before now because it could change in between 555 * us evaluating the size and assigning it. This is because we lock and 556 * unlock the page in truncate and fallocate, and then modify the i_size 557 * later on. 558 * 559 * The barriers are to emulate READ_ONCE, remove that once i_size_read 560 * does that for us. 561 */ 562 barrier(); 563 i_size = i_size_read(inode); 564 barrier(); 565 actual_end = min_t(u64, i_size, end + 1); 566 again: 567 will_compress = 0; 568 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 569 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 570 nr_pages = min_t(unsigned long, nr_pages, 571 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 572 573 /* 574 * we don't want to send crud past the end of i_size through 575 * compression, that's just a waste of CPU time. So, if the 576 * end of the file is before the start of our current 577 * requested range of bytes, we bail out to the uncompressed 578 * cleanup code that can deal with all of this. 579 * 580 * It isn't really the fastest way to fix things, but this is a 581 * very uncommon corner. 582 */ 583 if (actual_end <= start) 584 goto cleanup_and_bail_uncompressed; 585 586 total_compressed = actual_end - start; 587 588 /* 589 * skip compression for a small file range(<=blocksize) that 590 * isn't an inline extent, since it doesn't save disk space at all. 591 */ 592 if (total_compressed <= blocksize && 593 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 594 goto cleanup_and_bail_uncompressed; 595 596 total_compressed = min_t(unsigned long, total_compressed, 597 BTRFS_MAX_UNCOMPRESSED); 598 total_in = 0; 599 ret = 0; 600 601 /* 602 * we do compression for mount -o compress and when the 603 * inode has not been flagged as nocompress. This flag can 604 * change at any time if we discover bad compression ratios. 605 */ 606 if (inode_need_compress(BTRFS_I(inode), start, end)) { 607 WARN_ON(pages); 608 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 609 if (!pages) { 610 /* just bail out to the uncompressed code */ 611 nr_pages = 0; 612 goto cont; 613 } 614 615 if (BTRFS_I(inode)->defrag_compress) 616 compress_type = BTRFS_I(inode)->defrag_compress; 617 else if (BTRFS_I(inode)->prop_compress) 618 compress_type = BTRFS_I(inode)->prop_compress; 619 620 /* 621 * we need to call clear_page_dirty_for_io on each 622 * page in the range. Otherwise applications with the file 623 * mmap'd can wander in and change the page contents while 624 * we are compressing them. 625 * 626 * If the compression fails for any reason, we set the pages 627 * dirty again later on. 628 * 629 * Note that the remaining part is redirtied, the start pointer 630 * has moved, the end is the original one. 631 */ 632 if (!redirty) { 633 extent_range_clear_dirty_for_io(inode, start, end); 634 redirty = 1; 635 } 636 637 /* Compression level is applied here and only here */ 638 ret = btrfs_compress_pages( 639 compress_type | (fs_info->compress_level << 4), 640 inode->i_mapping, start, 641 pages, 642 &nr_pages, 643 &total_in, 644 &total_compressed); 645 646 if (!ret) { 647 unsigned long offset = offset_in_page(total_compressed); 648 struct page *page = pages[nr_pages - 1]; 649 char *kaddr; 650 651 /* zero the tail end of the last page, we might be 652 * sending it down to disk 653 */ 654 if (offset) { 655 kaddr = kmap_atomic(page); 656 memset(kaddr + offset, 0, 657 PAGE_SIZE - offset); 658 kunmap_atomic(kaddr); 659 } 660 will_compress = 1; 661 } 662 } 663 cont: 664 if (start == 0) { 665 /* lets try to make an inline extent */ 666 if (ret || total_in < actual_end) { 667 /* we didn't compress the entire range, try 668 * to make an uncompressed inline extent. 669 */ 670 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 671 0, BTRFS_COMPRESS_NONE, 672 NULL); 673 } else { 674 /* try making a compressed inline extent */ 675 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 676 total_compressed, 677 compress_type, pages); 678 } 679 if (ret <= 0) { 680 unsigned long clear_flags = EXTENT_DELALLOC | 681 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 682 EXTENT_DO_ACCOUNTING; 683 unsigned long page_error_op; 684 685 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 686 687 /* 688 * inline extent creation worked or returned error, 689 * we don't need to create any more async work items. 690 * Unlock and free up our temp pages. 691 * 692 * We use DO_ACCOUNTING here because we need the 693 * delalloc_release_metadata to be done _after_ we drop 694 * our outstanding extent for clearing delalloc for this 695 * range. 696 */ 697 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 698 NULL, 699 clear_flags, 700 PAGE_UNLOCK | 701 PAGE_START_WRITEBACK | 702 page_error_op | 703 PAGE_END_WRITEBACK); 704 705 /* 706 * Ensure we only free the compressed pages if we have 707 * them allocated, as we can still reach here with 708 * inode_need_compress() == false. 709 */ 710 if (pages) { 711 for (i = 0; i < nr_pages; i++) { 712 WARN_ON(pages[i]->mapping); 713 put_page(pages[i]); 714 } 715 kfree(pages); 716 } 717 return 0; 718 } 719 } 720 721 if (will_compress) { 722 /* 723 * we aren't doing an inline extent round the compressed size 724 * up to a block size boundary so the allocator does sane 725 * things 726 */ 727 total_compressed = ALIGN(total_compressed, blocksize); 728 729 /* 730 * one last check to make sure the compression is really a 731 * win, compare the page count read with the blocks on disk, 732 * compression must free at least one sector size 733 */ 734 total_in = ALIGN(total_in, PAGE_SIZE); 735 if (total_compressed + blocksize <= total_in) { 736 compressed_extents++; 737 738 /* 739 * The async work queues will take care of doing actual 740 * allocation on disk for these compressed pages, and 741 * will submit them to the elevator. 742 */ 743 add_async_extent(async_chunk, start, total_in, 744 total_compressed, pages, nr_pages, 745 compress_type); 746 747 if (start + total_in < end) { 748 start += total_in; 749 pages = NULL; 750 cond_resched(); 751 goto again; 752 } 753 return compressed_extents; 754 } 755 } 756 if (pages) { 757 /* 758 * the compression code ran but failed to make things smaller, 759 * free any pages it allocated and our page pointer array 760 */ 761 for (i = 0; i < nr_pages; i++) { 762 WARN_ON(pages[i]->mapping); 763 put_page(pages[i]); 764 } 765 kfree(pages); 766 pages = NULL; 767 total_compressed = 0; 768 nr_pages = 0; 769 770 /* flag the file so we don't compress in the future */ 771 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 772 !(BTRFS_I(inode)->prop_compress)) { 773 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 774 } 775 } 776 cleanup_and_bail_uncompressed: 777 /* 778 * No compression, but we still need to write the pages in the file 779 * we've been given so far. redirty the locked page if it corresponds 780 * to our extent and set things up for the async work queue to run 781 * cow_file_range to do the normal delalloc dance. 782 */ 783 if (async_chunk->locked_page && 784 (page_offset(async_chunk->locked_page) >= start && 785 page_offset(async_chunk->locked_page)) <= end) { 786 __set_page_dirty_nobuffers(async_chunk->locked_page); 787 /* unlocked later on in the async handlers */ 788 } 789 790 if (redirty) 791 extent_range_redirty_for_io(inode, start, end); 792 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 793 BTRFS_COMPRESS_NONE); 794 compressed_extents++; 795 796 return compressed_extents; 797 } 798 799 static void free_async_extent_pages(struct async_extent *async_extent) 800 { 801 int i; 802 803 if (!async_extent->pages) 804 return; 805 806 for (i = 0; i < async_extent->nr_pages; i++) { 807 WARN_ON(async_extent->pages[i]->mapping); 808 put_page(async_extent->pages[i]); 809 } 810 kfree(async_extent->pages); 811 async_extent->nr_pages = 0; 812 async_extent->pages = NULL; 813 } 814 815 /* 816 * phase two of compressed writeback. This is the ordered portion 817 * of the code, which only gets called in the order the work was 818 * queued. We walk all the async extents created by compress_file_range 819 * and send them down to the disk. 820 */ 821 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 822 { 823 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 824 struct btrfs_fs_info *fs_info = inode->root->fs_info; 825 struct async_extent *async_extent; 826 u64 alloc_hint = 0; 827 struct btrfs_key ins; 828 struct extent_map *em; 829 struct btrfs_root *root = inode->root; 830 struct extent_io_tree *io_tree = &inode->io_tree; 831 int ret = 0; 832 833 again: 834 while (!list_empty(&async_chunk->extents)) { 835 async_extent = list_entry(async_chunk->extents.next, 836 struct async_extent, list); 837 list_del(&async_extent->list); 838 839 retry: 840 lock_extent(io_tree, async_extent->start, 841 async_extent->start + async_extent->ram_size - 1); 842 /* did the compression code fall back to uncompressed IO? */ 843 if (!async_extent->pages) { 844 int page_started = 0; 845 unsigned long nr_written = 0; 846 847 /* allocate blocks */ 848 ret = cow_file_range(inode, async_chunk->locked_page, 849 async_extent->start, 850 async_extent->start + 851 async_extent->ram_size - 1, 852 &page_started, &nr_written, 0); 853 854 /* JDM XXX */ 855 856 /* 857 * if page_started, cow_file_range inserted an 858 * inline extent and took care of all the unlocking 859 * and IO for us. Otherwise, we need to submit 860 * all those pages down to the drive. 861 */ 862 if (!page_started && !ret) 863 extent_write_locked_range(&inode->vfs_inode, 864 async_extent->start, 865 async_extent->start + 866 async_extent->ram_size - 1, 867 WB_SYNC_ALL); 868 else if (ret && async_chunk->locked_page) 869 unlock_page(async_chunk->locked_page); 870 kfree(async_extent); 871 cond_resched(); 872 continue; 873 } 874 875 ret = btrfs_reserve_extent(root, async_extent->ram_size, 876 async_extent->compressed_size, 877 async_extent->compressed_size, 878 0, alloc_hint, &ins, 1, 1); 879 if (ret) { 880 free_async_extent_pages(async_extent); 881 882 if (ret == -ENOSPC) { 883 unlock_extent(io_tree, async_extent->start, 884 async_extent->start + 885 async_extent->ram_size - 1); 886 887 /* 888 * we need to redirty the pages if we decide to 889 * fallback to uncompressed IO, otherwise we 890 * will not submit these pages down to lower 891 * layers. 892 */ 893 extent_range_redirty_for_io(&inode->vfs_inode, 894 async_extent->start, 895 async_extent->start + 896 async_extent->ram_size - 1); 897 898 goto retry; 899 } 900 goto out_free; 901 } 902 /* 903 * here we're doing allocation and writeback of the 904 * compressed pages 905 */ 906 em = create_io_em(inode, async_extent->start, 907 async_extent->ram_size, /* len */ 908 async_extent->start, /* orig_start */ 909 ins.objectid, /* block_start */ 910 ins.offset, /* block_len */ 911 ins.offset, /* orig_block_len */ 912 async_extent->ram_size, /* ram_bytes */ 913 async_extent->compress_type, 914 BTRFS_ORDERED_COMPRESSED); 915 if (IS_ERR(em)) 916 /* ret value is not necessary due to void function */ 917 goto out_free_reserve; 918 free_extent_map(em); 919 920 ret = btrfs_add_ordered_extent_compress(inode, 921 async_extent->start, 922 ins.objectid, 923 async_extent->ram_size, 924 ins.offset, 925 async_extent->compress_type); 926 if (ret) { 927 btrfs_drop_extent_cache(inode, async_extent->start, 928 async_extent->start + 929 async_extent->ram_size - 1, 0); 930 goto out_free_reserve; 931 } 932 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 933 934 /* 935 * clear dirty, set writeback and unlock the pages. 936 */ 937 extent_clear_unlock_delalloc(inode, async_extent->start, 938 async_extent->start + 939 async_extent->ram_size - 1, 940 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 941 PAGE_UNLOCK | PAGE_START_WRITEBACK); 942 if (btrfs_submit_compressed_write(inode, async_extent->start, 943 async_extent->ram_size, 944 ins.objectid, 945 ins.offset, async_extent->pages, 946 async_extent->nr_pages, 947 async_chunk->write_flags, 948 async_chunk->blkcg_css)) { 949 struct page *p = async_extent->pages[0]; 950 const u64 start = async_extent->start; 951 const u64 end = start + async_extent->ram_size - 1; 952 953 p->mapping = inode->vfs_inode.i_mapping; 954 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 955 956 p->mapping = NULL; 957 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 958 PAGE_END_WRITEBACK | 959 PAGE_SET_ERROR); 960 free_async_extent_pages(async_extent); 961 } 962 alloc_hint = ins.objectid + ins.offset; 963 kfree(async_extent); 964 cond_resched(); 965 } 966 return; 967 out_free_reserve: 968 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 969 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 970 out_free: 971 extent_clear_unlock_delalloc(inode, async_extent->start, 972 async_extent->start + 973 async_extent->ram_size - 1, 974 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 975 EXTENT_DELALLOC_NEW | 976 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 977 PAGE_UNLOCK | PAGE_START_WRITEBACK | 978 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 979 free_async_extent_pages(async_extent); 980 kfree(async_extent); 981 goto again; 982 } 983 984 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 985 u64 num_bytes) 986 { 987 struct extent_map_tree *em_tree = &inode->extent_tree; 988 struct extent_map *em; 989 u64 alloc_hint = 0; 990 991 read_lock(&em_tree->lock); 992 em = search_extent_mapping(em_tree, start, num_bytes); 993 if (em) { 994 /* 995 * if block start isn't an actual block number then find the 996 * first block in this inode and use that as a hint. If that 997 * block is also bogus then just don't worry about it. 998 */ 999 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1000 free_extent_map(em); 1001 em = search_extent_mapping(em_tree, 0, 0); 1002 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1003 alloc_hint = em->block_start; 1004 if (em) 1005 free_extent_map(em); 1006 } else { 1007 alloc_hint = em->block_start; 1008 free_extent_map(em); 1009 } 1010 } 1011 read_unlock(&em_tree->lock); 1012 1013 return alloc_hint; 1014 } 1015 1016 /* 1017 * when extent_io.c finds a delayed allocation range in the file, 1018 * the call backs end up in this code. The basic idea is to 1019 * allocate extents on disk for the range, and create ordered data structs 1020 * in ram to track those extents. 1021 * 1022 * locked_page is the page that writepage had locked already. We use 1023 * it to make sure we don't do extra locks or unlocks. 1024 * 1025 * *page_started is set to one if we unlock locked_page and do everything 1026 * required to start IO on it. It may be clean and already done with 1027 * IO when we return. 1028 */ 1029 static noinline int cow_file_range(struct btrfs_inode *inode, 1030 struct page *locked_page, 1031 u64 start, u64 end, int *page_started, 1032 unsigned long *nr_written, int unlock) 1033 { 1034 struct btrfs_root *root = inode->root; 1035 struct btrfs_fs_info *fs_info = root->fs_info; 1036 u64 alloc_hint = 0; 1037 u64 num_bytes; 1038 unsigned long ram_size; 1039 u64 cur_alloc_size = 0; 1040 u64 min_alloc_size; 1041 u64 blocksize = fs_info->sectorsize; 1042 struct btrfs_key ins; 1043 struct extent_map *em; 1044 unsigned clear_bits; 1045 unsigned long page_ops; 1046 bool extent_reserved = false; 1047 int ret = 0; 1048 1049 if (btrfs_is_free_space_inode(inode)) { 1050 WARN_ON_ONCE(1); 1051 ret = -EINVAL; 1052 goto out_unlock; 1053 } 1054 1055 num_bytes = ALIGN(end - start + 1, blocksize); 1056 num_bytes = max(blocksize, num_bytes); 1057 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1058 1059 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1060 1061 if (start == 0) { 1062 /* lets try to make an inline extent */ 1063 ret = cow_file_range_inline(inode, start, end, 0, 1064 BTRFS_COMPRESS_NONE, NULL); 1065 if (ret == 0) { 1066 /* 1067 * We use DO_ACCOUNTING here because we need the 1068 * delalloc_release_metadata to be run _after_ we drop 1069 * our outstanding extent for clearing delalloc for this 1070 * range. 1071 */ 1072 extent_clear_unlock_delalloc(inode, start, end, NULL, 1073 EXTENT_LOCKED | EXTENT_DELALLOC | 1074 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1075 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1076 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1077 *nr_written = *nr_written + 1078 (end - start + PAGE_SIZE) / PAGE_SIZE; 1079 *page_started = 1; 1080 goto out; 1081 } else if (ret < 0) { 1082 goto out_unlock; 1083 } 1084 } 1085 1086 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1087 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1088 1089 /* 1090 * Relocation relies on the relocated extents to have exactly the same 1091 * size as the original extents. Normally writeback for relocation data 1092 * extents follows a NOCOW path because relocation preallocates the 1093 * extents. However, due to an operation such as scrub turning a block 1094 * group to RO mode, it may fallback to COW mode, so we must make sure 1095 * an extent allocated during COW has exactly the requested size and can 1096 * not be split into smaller extents, otherwise relocation breaks and 1097 * fails during the stage where it updates the bytenr of file extent 1098 * items. 1099 */ 1100 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1101 min_alloc_size = num_bytes; 1102 else 1103 min_alloc_size = fs_info->sectorsize; 1104 1105 while (num_bytes > 0) { 1106 cur_alloc_size = num_bytes; 1107 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1108 min_alloc_size, 0, alloc_hint, 1109 &ins, 1, 1); 1110 if (ret < 0) 1111 goto out_unlock; 1112 cur_alloc_size = ins.offset; 1113 extent_reserved = true; 1114 1115 ram_size = ins.offset; 1116 em = create_io_em(inode, start, ins.offset, /* len */ 1117 start, /* orig_start */ 1118 ins.objectid, /* block_start */ 1119 ins.offset, /* block_len */ 1120 ins.offset, /* orig_block_len */ 1121 ram_size, /* ram_bytes */ 1122 BTRFS_COMPRESS_NONE, /* compress_type */ 1123 BTRFS_ORDERED_REGULAR /* type */); 1124 if (IS_ERR(em)) { 1125 ret = PTR_ERR(em); 1126 goto out_reserve; 1127 } 1128 free_extent_map(em); 1129 1130 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1131 ram_size, cur_alloc_size, 1132 BTRFS_ORDERED_REGULAR); 1133 if (ret) 1134 goto out_drop_extent_cache; 1135 1136 if (root->root_key.objectid == 1137 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1138 ret = btrfs_reloc_clone_csums(inode, start, 1139 cur_alloc_size); 1140 /* 1141 * Only drop cache here, and process as normal. 1142 * 1143 * We must not allow extent_clear_unlock_delalloc() 1144 * at out_unlock label to free meta of this ordered 1145 * extent, as its meta should be freed by 1146 * btrfs_finish_ordered_io(). 1147 * 1148 * So we must continue until @start is increased to 1149 * skip current ordered extent. 1150 */ 1151 if (ret) 1152 btrfs_drop_extent_cache(inode, start, 1153 start + ram_size - 1, 0); 1154 } 1155 1156 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1157 1158 /* we're not doing compressed IO, don't unlock the first 1159 * page (which the caller expects to stay locked), don't 1160 * clear any dirty bits and don't set any writeback bits 1161 * 1162 * Do set the Private2 bit so we know this page was properly 1163 * setup for writepage 1164 */ 1165 page_ops = unlock ? PAGE_UNLOCK : 0; 1166 page_ops |= PAGE_SET_PRIVATE2; 1167 1168 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1169 locked_page, 1170 EXTENT_LOCKED | EXTENT_DELALLOC, 1171 page_ops); 1172 if (num_bytes < cur_alloc_size) 1173 num_bytes = 0; 1174 else 1175 num_bytes -= cur_alloc_size; 1176 alloc_hint = ins.objectid + ins.offset; 1177 start += cur_alloc_size; 1178 extent_reserved = false; 1179 1180 /* 1181 * btrfs_reloc_clone_csums() error, since start is increased 1182 * extent_clear_unlock_delalloc() at out_unlock label won't 1183 * free metadata of current ordered extent, we're OK to exit. 1184 */ 1185 if (ret) 1186 goto out_unlock; 1187 } 1188 out: 1189 return ret; 1190 1191 out_drop_extent_cache: 1192 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1193 out_reserve: 1194 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1195 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1196 out_unlock: 1197 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1198 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1199 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1200 /* 1201 * If we reserved an extent for our delalloc range (or a subrange) and 1202 * failed to create the respective ordered extent, then it means that 1203 * when we reserved the extent we decremented the extent's size from 1204 * the data space_info's bytes_may_use counter and incremented the 1205 * space_info's bytes_reserved counter by the same amount. We must make 1206 * sure extent_clear_unlock_delalloc() does not try to decrement again 1207 * the data space_info's bytes_may_use counter, therefore we do not pass 1208 * it the flag EXTENT_CLEAR_DATA_RESV. 1209 */ 1210 if (extent_reserved) { 1211 extent_clear_unlock_delalloc(inode, start, 1212 start + cur_alloc_size - 1, 1213 locked_page, 1214 clear_bits, 1215 page_ops); 1216 start += cur_alloc_size; 1217 if (start >= end) 1218 goto out; 1219 } 1220 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1221 clear_bits | EXTENT_CLEAR_DATA_RESV, 1222 page_ops); 1223 goto out; 1224 } 1225 1226 /* 1227 * work queue call back to started compression on a file and pages 1228 */ 1229 static noinline void async_cow_start(struct btrfs_work *work) 1230 { 1231 struct async_chunk *async_chunk; 1232 int compressed_extents; 1233 1234 async_chunk = container_of(work, struct async_chunk, work); 1235 1236 compressed_extents = compress_file_range(async_chunk); 1237 if (compressed_extents == 0) { 1238 btrfs_add_delayed_iput(async_chunk->inode); 1239 async_chunk->inode = NULL; 1240 } 1241 } 1242 1243 /* 1244 * work queue call back to submit previously compressed pages 1245 */ 1246 static noinline void async_cow_submit(struct btrfs_work *work) 1247 { 1248 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1249 work); 1250 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1251 unsigned long nr_pages; 1252 1253 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1254 PAGE_SHIFT; 1255 1256 /* atomic_sub_return implies a barrier */ 1257 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1258 5 * SZ_1M) 1259 cond_wake_up_nomb(&fs_info->async_submit_wait); 1260 1261 /* 1262 * ->inode could be NULL if async_chunk_start has failed to compress, 1263 * in which case we don't have anything to submit, yet we need to 1264 * always adjust ->async_delalloc_pages as its paired with the init 1265 * happening in cow_file_range_async 1266 */ 1267 if (async_chunk->inode) 1268 submit_compressed_extents(async_chunk); 1269 } 1270 1271 static noinline void async_cow_free(struct btrfs_work *work) 1272 { 1273 struct async_chunk *async_chunk; 1274 1275 async_chunk = container_of(work, struct async_chunk, work); 1276 if (async_chunk->inode) 1277 btrfs_add_delayed_iput(async_chunk->inode); 1278 if (async_chunk->blkcg_css) 1279 css_put(async_chunk->blkcg_css); 1280 /* 1281 * Since the pointer to 'pending' is at the beginning of the array of 1282 * async_chunk's, freeing it ensures the whole array has been freed. 1283 */ 1284 if (atomic_dec_and_test(async_chunk->pending)) 1285 kvfree(async_chunk->pending); 1286 } 1287 1288 static int cow_file_range_async(struct btrfs_inode *inode, 1289 struct writeback_control *wbc, 1290 struct page *locked_page, 1291 u64 start, u64 end, int *page_started, 1292 unsigned long *nr_written) 1293 { 1294 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1295 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1296 struct async_cow *ctx; 1297 struct async_chunk *async_chunk; 1298 unsigned long nr_pages; 1299 u64 cur_end; 1300 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1301 int i; 1302 bool should_compress; 1303 unsigned nofs_flag; 1304 const unsigned int write_flags = wbc_to_write_flags(wbc); 1305 1306 unlock_extent(&inode->io_tree, start, end); 1307 1308 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1309 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1310 num_chunks = 1; 1311 should_compress = false; 1312 } else { 1313 should_compress = true; 1314 } 1315 1316 nofs_flag = memalloc_nofs_save(); 1317 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1318 memalloc_nofs_restore(nofs_flag); 1319 1320 if (!ctx) { 1321 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1322 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1323 EXTENT_DO_ACCOUNTING; 1324 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1325 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1326 1327 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1328 clear_bits, page_ops); 1329 return -ENOMEM; 1330 } 1331 1332 async_chunk = ctx->chunks; 1333 atomic_set(&ctx->num_chunks, num_chunks); 1334 1335 for (i = 0; i < num_chunks; i++) { 1336 if (should_compress) 1337 cur_end = min(end, start + SZ_512K - 1); 1338 else 1339 cur_end = end; 1340 1341 /* 1342 * igrab is called higher up in the call chain, take only the 1343 * lightweight reference for the callback lifetime 1344 */ 1345 ihold(&inode->vfs_inode); 1346 async_chunk[i].pending = &ctx->num_chunks; 1347 async_chunk[i].inode = &inode->vfs_inode; 1348 async_chunk[i].start = start; 1349 async_chunk[i].end = cur_end; 1350 async_chunk[i].write_flags = write_flags; 1351 INIT_LIST_HEAD(&async_chunk[i].extents); 1352 1353 /* 1354 * The locked_page comes all the way from writepage and its 1355 * the original page we were actually given. As we spread 1356 * this large delalloc region across multiple async_chunk 1357 * structs, only the first struct needs a pointer to locked_page 1358 * 1359 * This way we don't need racey decisions about who is supposed 1360 * to unlock it. 1361 */ 1362 if (locked_page) { 1363 /* 1364 * Depending on the compressibility, the pages might or 1365 * might not go through async. We want all of them to 1366 * be accounted against wbc once. Let's do it here 1367 * before the paths diverge. wbc accounting is used 1368 * only for foreign writeback detection and doesn't 1369 * need full accuracy. Just account the whole thing 1370 * against the first page. 1371 */ 1372 wbc_account_cgroup_owner(wbc, locked_page, 1373 cur_end - start); 1374 async_chunk[i].locked_page = locked_page; 1375 locked_page = NULL; 1376 } else { 1377 async_chunk[i].locked_page = NULL; 1378 } 1379 1380 if (blkcg_css != blkcg_root_css) { 1381 css_get(blkcg_css); 1382 async_chunk[i].blkcg_css = blkcg_css; 1383 } else { 1384 async_chunk[i].blkcg_css = NULL; 1385 } 1386 1387 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1388 async_cow_submit, async_cow_free); 1389 1390 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1391 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1392 1393 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1394 1395 *nr_written += nr_pages; 1396 start = cur_end + 1; 1397 } 1398 *page_started = 1; 1399 return 0; 1400 } 1401 1402 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1403 struct page *locked_page, u64 start, 1404 u64 end, int *page_started, 1405 unsigned long *nr_written) 1406 { 1407 int ret; 1408 1409 ret = cow_file_range(inode, locked_page, start, end, page_started, 1410 nr_written, 0); 1411 if (ret) 1412 return ret; 1413 1414 if (*page_started) 1415 return 0; 1416 1417 __set_page_dirty_nobuffers(locked_page); 1418 account_page_redirty(locked_page); 1419 extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL); 1420 *page_started = 1; 1421 1422 return 0; 1423 } 1424 1425 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1426 u64 bytenr, u64 num_bytes) 1427 { 1428 int ret; 1429 struct btrfs_ordered_sum *sums; 1430 LIST_HEAD(list); 1431 1432 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1433 bytenr + num_bytes - 1, &list, 0); 1434 if (ret == 0 && list_empty(&list)) 1435 return 0; 1436 1437 while (!list_empty(&list)) { 1438 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1439 list_del(&sums->list); 1440 kfree(sums); 1441 } 1442 if (ret < 0) 1443 return ret; 1444 return 1; 1445 } 1446 1447 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1448 const u64 start, const u64 end, 1449 int *page_started, unsigned long *nr_written) 1450 { 1451 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1452 const bool is_reloc_ino = (inode->root->root_key.objectid == 1453 BTRFS_DATA_RELOC_TREE_OBJECTID); 1454 const u64 range_bytes = end + 1 - start; 1455 struct extent_io_tree *io_tree = &inode->io_tree; 1456 u64 range_start = start; 1457 u64 count; 1458 1459 /* 1460 * If EXTENT_NORESERVE is set it means that when the buffered write was 1461 * made we had not enough available data space and therefore we did not 1462 * reserve data space for it, since we though we could do NOCOW for the 1463 * respective file range (either there is prealloc extent or the inode 1464 * has the NOCOW bit set). 1465 * 1466 * However when we need to fallback to COW mode (because for example the 1467 * block group for the corresponding extent was turned to RO mode by a 1468 * scrub or relocation) we need to do the following: 1469 * 1470 * 1) We increment the bytes_may_use counter of the data space info. 1471 * If COW succeeds, it allocates a new data extent and after doing 1472 * that it decrements the space info's bytes_may_use counter and 1473 * increments its bytes_reserved counter by the same amount (we do 1474 * this at btrfs_add_reserved_bytes()). So we need to increment the 1475 * bytes_may_use counter to compensate (when space is reserved at 1476 * buffered write time, the bytes_may_use counter is incremented); 1477 * 1478 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1479 * that if the COW path fails for any reason, it decrements (through 1480 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1481 * data space info, which we incremented in the step above. 1482 * 1483 * If we need to fallback to cow and the inode corresponds to a free 1484 * space cache inode or an inode of the data relocation tree, we must 1485 * also increment bytes_may_use of the data space_info for the same 1486 * reason. Space caches and relocated data extents always get a prealloc 1487 * extent for them, however scrub or balance may have set the block 1488 * group that contains that extent to RO mode and therefore force COW 1489 * when starting writeback. 1490 */ 1491 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1492 EXTENT_NORESERVE, 0); 1493 if (count > 0 || is_space_ino || is_reloc_ino) { 1494 u64 bytes = count; 1495 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1496 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1497 1498 if (is_space_ino || is_reloc_ino) 1499 bytes = range_bytes; 1500 1501 spin_lock(&sinfo->lock); 1502 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1503 spin_unlock(&sinfo->lock); 1504 1505 if (count > 0) 1506 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1507 0, 0, NULL); 1508 } 1509 1510 return cow_file_range(inode, locked_page, start, end, page_started, 1511 nr_written, 1); 1512 } 1513 1514 /* 1515 * when nowcow writeback call back. This checks for snapshots or COW copies 1516 * of the extents that exist in the file, and COWs the file as required. 1517 * 1518 * If no cow copies or snapshots exist, we write directly to the existing 1519 * blocks on disk 1520 */ 1521 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1522 struct page *locked_page, 1523 const u64 start, const u64 end, 1524 int *page_started, 1525 unsigned long *nr_written) 1526 { 1527 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1528 struct btrfs_root *root = inode->root; 1529 struct btrfs_path *path; 1530 u64 cow_start = (u64)-1; 1531 u64 cur_offset = start; 1532 int ret; 1533 bool check_prev = true; 1534 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1535 u64 ino = btrfs_ino(inode); 1536 bool nocow = false; 1537 u64 disk_bytenr = 0; 1538 const bool force = inode->flags & BTRFS_INODE_NODATACOW; 1539 1540 path = btrfs_alloc_path(); 1541 if (!path) { 1542 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1543 EXTENT_LOCKED | EXTENT_DELALLOC | 1544 EXTENT_DO_ACCOUNTING | 1545 EXTENT_DEFRAG, PAGE_UNLOCK | 1546 PAGE_START_WRITEBACK | 1547 PAGE_END_WRITEBACK); 1548 return -ENOMEM; 1549 } 1550 1551 while (1) { 1552 struct btrfs_key found_key; 1553 struct btrfs_file_extent_item *fi; 1554 struct extent_buffer *leaf; 1555 u64 extent_end; 1556 u64 extent_offset; 1557 u64 num_bytes = 0; 1558 u64 disk_num_bytes; 1559 u64 ram_bytes; 1560 int extent_type; 1561 1562 nocow = false; 1563 1564 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1565 cur_offset, 0); 1566 if (ret < 0) 1567 goto error; 1568 1569 /* 1570 * If there is no extent for our range when doing the initial 1571 * search, then go back to the previous slot as it will be the 1572 * one containing the search offset 1573 */ 1574 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1575 leaf = path->nodes[0]; 1576 btrfs_item_key_to_cpu(leaf, &found_key, 1577 path->slots[0] - 1); 1578 if (found_key.objectid == ino && 1579 found_key.type == BTRFS_EXTENT_DATA_KEY) 1580 path->slots[0]--; 1581 } 1582 check_prev = false; 1583 next_slot: 1584 /* Go to next leaf if we have exhausted the current one */ 1585 leaf = path->nodes[0]; 1586 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1587 ret = btrfs_next_leaf(root, path); 1588 if (ret < 0) { 1589 if (cow_start != (u64)-1) 1590 cur_offset = cow_start; 1591 goto error; 1592 } 1593 if (ret > 0) 1594 break; 1595 leaf = path->nodes[0]; 1596 } 1597 1598 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1599 1600 /* Didn't find anything for our INO */ 1601 if (found_key.objectid > ino) 1602 break; 1603 /* 1604 * Keep searching until we find an EXTENT_ITEM or there are no 1605 * more extents for this inode 1606 */ 1607 if (WARN_ON_ONCE(found_key.objectid < ino) || 1608 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1609 path->slots[0]++; 1610 goto next_slot; 1611 } 1612 1613 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1614 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1615 found_key.offset > end) 1616 break; 1617 1618 /* 1619 * If the found extent starts after requested offset, then 1620 * adjust extent_end to be right before this extent begins 1621 */ 1622 if (found_key.offset > cur_offset) { 1623 extent_end = found_key.offset; 1624 extent_type = 0; 1625 goto out_check; 1626 } 1627 1628 /* 1629 * Found extent which begins before our range and potentially 1630 * intersect it 1631 */ 1632 fi = btrfs_item_ptr(leaf, path->slots[0], 1633 struct btrfs_file_extent_item); 1634 extent_type = btrfs_file_extent_type(leaf, fi); 1635 1636 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1637 if (extent_type == BTRFS_FILE_EXTENT_REG || 1638 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1639 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1640 extent_offset = btrfs_file_extent_offset(leaf, fi); 1641 extent_end = found_key.offset + 1642 btrfs_file_extent_num_bytes(leaf, fi); 1643 disk_num_bytes = 1644 btrfs_file_extent_disk_num_bytes(leaf, fi); 1645 /* 1646 * If the extent we got ends before our current offset, 1647 * skip to the next extent. 1648 */ 1649 if (extent_end <= cur_offset) { 1650 path->slots[0]++; 1651 goto next_slot; 1652 } 1653 /* Skip holes */ 1654 if (disk_bytenr == 0) 1655 goto out_check; 1656 /* Skip compressed/encrypted/encoded extents */ 1657 if (btrfs_file_extent_compression(leaf, fi) || 1658 btrfs_file_extent_encryption(leaf, fi) || 1659 btrfs_file_extent_other_encoding(leaf, fi)) 1660 goto out_check; 1661 /* 1662 * If extent is created before the last volume's snapshot 1663 * this implies the extent is shared, hence we can't do 1664 * nocow. This is the same check as in 1665 * btrfs_cross_ref_exist but without calling 1666 * btrfs_search_slot. 1667 */ 1668 if (!freespace_inode && 1669 btrfs_file_extent_generation(leaf, fi) <= 1670 btrfs_root_last_snapshot(&root->root_item)) 1671 goto out_check; 1672 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1673 goto out_check; 1674 1675 /* 1676 * The following checks can be expensive, as they need to 1677 * take other locks and do btree or rbtree searches, so 1678 * release the path to avoid blocking other tasks for too 1679 * long. 1680 */ 1681 btrfs_release_path(path); 1682 1683 ret = btrfs_cross_ref_exist(root, ino, 1684 found_key.offset - 1685 extent_offset, disk_bytenr, false); 1686 if (ret) { 1687 /* 1688 * ret could be -EIO if the above fails to read 1689 * metadata. 1690 */ 1691 if (ret < 0) { 1692 if (cow_start != (u64)-1) 1693 cur_offset = cow_start; 1694 goto error; 1695 } 1696 1697 WARN_ON_ONCE(freespace_inode); 1698 goto out_check; 1699 } 1700 disk_bytenr += extent_offset; 1701 disk_bytenr += cur_offset - found_key.offset; 1702 num_bytes = min(end + 1, extent_end) - cur_offset; 1703 /* 1704 * If there are pending snapshots for this root, we 1705 * fall into common COW way 1706 */ 1707 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1708 goto out_check; 1709 /* 1710 * force cow if csum exists in the range. 1711 * this ensure that csum for a given extent are 1712 * either valid or do not exist. 1713 */ 1714 ret = csum_exist_in_range(fs_info, disk_bytenr, 1715 num_bytes); 1716 if (ret) { 1717 /* 1718 * ret could be -EIO if the above fails to read 1719 * metadata. 1720 */ 1721 if (ret < 0) { 1722 if (cow_start != (u64)-1) 1723 cur_offset = cow_start; 1724 goto error; 1725 } 1726 WARN_ON_ONCE(freespace_inode); 1727 goto out_check; 1728 } 1729 /* If the extent's block group is RO, we must COW */ 1730 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1731 goto out_check; 1732 nocow = true; 1733 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1734 extent_end = found_key.offset + ram_bytes; 1735 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1736 /* Skip extents outside of our requested range */ 1737 if (extent_end <= start) { 1738 path->slots[0]++; 1739 goto next_slot; 1740 } 1741 } else { 1742 /* If this triggers then we have a memory corruption */ 1743 BUG(); 1744 } 1745 out_check: 1746 /* 1747 * If nocow is false then record the beginning of the range 1748 * that needs to be COWed 1749 */ 1750 if (!nocow) { 1751 if (cow_start == (u64)-1) 1752 cow_start = cur_offset; 1753 cur_offset = extent_end; 1754 if (cur_offset > end) 1755 break; 1756 if (!path->nodes[0]) 1757 continue; 1758 path->slots[0]++; 1759 goto next_slot; 1760 } 1761 1762 /* 1763 * COW range from cow_start to found_key.offset - 1. As the key 1764 * will contain the beginning of the first extent that can be 1765 * NOCOW, following one which needs to be COW'ed 1766 */ 1767 if (cow_start != (u64)-1) { 1768 ret = fallback_to_cow(inode, locked_page, 1769 cow_start, found_key.offset - 1, 1770 page_started, nr_written); 1771 if (ret) 1772 goto error; 1773 cow_start = (u64)-1; 1774 } 1775 1776 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1777 u64 orig_start = found_key.offset - extent_offset; 1778 struct extent_map *em; 1779 1780 em = create_io_em(inode, cur_offset, num_bytes, 1781 orig_start, 1782 disk_bytenr, /* block_start */ 1783 num_bytes, /* block_len */ 1784 disk_num_bytes, /* orig_block_len */ 1785 ram_bytes, BTRFS_COMPRESS_NONE, 1786 BTRFS_ORDERED_PREALLOC); 1787 if (IS_ERR(em)) { 1788 ret = PTR_ERR(em); 1789 goto error; 1790 } 1791 free_extent_map(em); 1792 ret = btrfs_add_ordered_extent(inode, cur_offset, 1793 disk_bytenr, num_bytes, 1794 num_bytes, 1795 BTRFS_ORDERED_PREALLOC); 1796 if (ret) { 1797 btrfs_drop_extent_cache(inode, cur_offset, 1798 cur_offset + num_bytes - 1, 1799 0); 1800 goto error; 1801 } 1802 } else { 1803 ret = btrfs_add_ordered_extent(inode, cur_offset, 1804 disk_bytenr, num_bytes, 1805 num_bytes, 1806 BTRFS_ORDERED_NOCOW); 1807 if (ret) 1808 goto error; 1809 } 1810 1811 if (nocow) 1812 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1813 nocow = false; 1814 1815 if (root->root_key.objectid == 1816 BTRFS_DATA_RELOC_TREE_OBJECTID) 1817 /* 1818 * Error handled later, as we must prevent 1819 * extent_clear_unlock_delalloc() in error handler 1820 * from freeing metadata of created ordered extent. 1821 */ 1822 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1823 num_bytes); 1824 1825 extent_clear_unlock_delalloc(inode, cur_offset, 1826 cur_offset + num_bytes - 1, 1827 locked_page, EXTENT_LOCKED | 1828 EXTENT_DELALLOC | 1829 EXTENT_CLEAR_DATA_RESV, 1830 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1831 1832 cur_offset = extent_end; 1833 1834 /* 1835 * btrfs_reloc_clone_csums() error, now we're OK to call error 1836 * handler, as metadata for created ordered extent will only 1837 * be freed by btrfs_finish_ordered_io(). 1838 */ 1839 if (ret) 1840 goto error; 1841 if (cur_offset > end) 1842 break; 1843 } 1844 btrfs_release_path(path); 1845 1846 if (cur_offset <= end && cow_start == (u64)-1) 1847 cow_start = cur_offset; 1848 1849 if (cow_start != (u64)-1) { 1850 cur_offset = end; 1851 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1852 page_started, nr_written); 1853 if (ret) 1854 goto error; 1855 } 1856 1857 error: 1858 if (nocow) 1859 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1860 1861 if (ret && cur_offset < end) 1862 extent_clear_unlock_delalloc(inode, cur_offset, end, 1863 locked_page, EXTENT_LOCKED | 1864 EXTENT_DELALLOC | EXTENT_DEFRAG | 1865 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1866 PAGE_START_WRITEBACK | 1867 PAGE_END_WRITEBACK); 1868 btrfs_free_path(path); 1869 return ret; 1870 } 1871 1872 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 1873 { 1874 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 1875 if (inode->defrag_bytes && 1876 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 1877 0, NULL)) 1878 return false; 1879 return true; 1880 } 1881 return false; 1882 } 1883 1884 /* 1885 * Function to process delayed allocation (create CoW) for ranges which are 1886 * being touched for the first time. 1887 */ 1888 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1889 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1890 struct writeback_control *wbc) 1891 { 1892 int ret; 1893 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 1894 1895 if (should_nocow(inode, start, end)) { 1896 ASSERT(!zoned); 1897 ret = run_delalloc_nocow(inode, locked_page, start, end, 1898 page_started, nr_written); 1899 } else if (!inode_can_compress(inode) || 1900 !inode_need_compress(inode, start, end)) { 1901 if (zoned) 1902 ret = run_delalloc_zoned(inode, locked_page, start, end, 1903 page_started, nr_written); 1904 else 1905 ret = cow_file_range(inode, locked_page, start, end, 1906 page_started, nr_written, 1); 1907 } else { 1908 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1909 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1910 page_started, nr_written); 1911 } 1912 if (ret) 1913 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1914 end - start + 1); 1915 return ret; 1916 } 1917 1918 void btrfs_split_delalloc_extent(struct inode *inode, 1919 struct extent_state *orig, u64 split) 1920 { 1921 u64 size; 1922 1923 /* not delalloc, ignore it */ 1924 if (!(orig->state & EXTENT_DELALLOC)) 1925 return; 1926 1927 size = orig->end - orig->start + 1; 1928 if (size > BTRFS_MAX_EXTENT_SIZE) { 1929 u32 num_extents; 1930 u64 new_size; 1931 1932 /* 1933 * See the explanation in btrfs_merge_delalloc_extent, the same 1934 * applies here, just in reverse. 1935 */ 1936 new_size = orig->end - split + 1; 1937 num_extents = count_max_extents(new_size); 1938 new_size = split - orig->start; 1939 num_extents += count_max_extents(new_size); 1940 if (count_max_extents(size) >= num_extents) 1941 return; 1942 } 1943 1944 spin_lock(&BTRFS_I(inode)->lock); 1945 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1946 spin_unlock(&BTRFS_I(inode)->lock); 1947 } 1948 1949 /* 1950 * Handle merged delayed allocation extents so we can keep track of new extents 1951 * that are just merged onto old extents, such as when we are doing sequential 1952 * writes, so we can properly account for the metadata space we'll need. 1953 */ 1954 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1955 struct extent_state *other) 1956 { 1957 u64 new_size, old_size; 1958 u32 num_extents; 1959 1960 /* not delalloc, ignore it */ 1961 if (!(other->state & EXTENT_DELALLOC)) 1962 return; 1963 1964 if (new->start > other->start) 1965 new_size = new->end - other->start + 1; 1966 else 1967 new_size = other->end - new->start + 1; 1968 1969 /* we're not bigger than the max, unreserve the space and go */ 1970 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1971 spin_lock(&BTRFS_I(inode)->lock); 1972 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1973 spin_unlock(&BTRFS_I(inode)->lock); 1974 return; 1975 } 1976 1977 /* 1978 * We have to add up either side to figure out how many extents were 1979 * accounted for before we merged into one big extent. If the number of 1980 * extents we accounted for is <= the amount we need for the new range 1981 * then we can return, otherwise drop. Think of it like this 1982 * 1983 * [ 4k][MAX_SIZE] 1984 * 1985 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1986 * need 2 outstanding extents, on one side we have 1 and the other side 1987 * we have 1 so they are == and we can return. But in this case 1988 * 1989 * [MAX_SIZE+4k][MAX_SIZE+4k] 1990 * 1991 * Each range on their own accounts for 2 extents, but merged together 1992 * they are only 3 extents worth of accounting, so we need to drop in 1993 * this case. 1994 */ 1995 old_size = other->end - other->start + 1; 1996 num_extents = count_max_extents(old_size); 1997 old_size = new->end - new->start + 1; 1998 num_extents += count_max_extents(old_size); 1999 if (count_max_extents(new_size) >= num_extents) 2000 return; 2001 2002 spin_lock(&BTRFS_I(inode)->lock); 2003 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2004 spin_unlock(&BTRFS_I(inode)->lock); 2005 } 2006 2007 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2008 struct inode *inode) 2009 { 2010 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2011 2012 spin_lock(&root->delalloc_lock); 2013 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2014 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2015 &root->delalloc_inodes); 2016 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2017 &BTRFS_I(inode)->runtime_flags); 2018 root->nr_delalloc_inodes++; 2019 if (root->nr_delalloc_inodes == 1) { 2020 spin_lock(&fs_info->delalloc_root_lock); 2021 BUG_ON(!list_empty(&root->delalloc_root)); 2022 list_add_tail(&root->delalloc_root, 2023 &fs_info->delalloc_roots); 2024 spin_unlock(&fs_info->delalloc_root_lock); 2025 } 2026 } 2027 spin_unlock(&root->delalloc_lock); 2028 } 2029 2030 2031 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2032 struct btrfs_inode *inode) 2033 { 2034 struct btrfs_fs_info *fs_info = root->fs_info; 2035 2036 if (!list_empty(&inode->delalloc_inodes)) { 2037 list_del_init(&inode->delalloc_inodes); 2038 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2039 &inode->runtime_flags); 2040 root->nr_delalloc_inodes--; 2041 if (!root->nr_delalloc_inodes) { 2042 ASSERT(list_empty(&root->delalloc_inodes)); 2043 spin_lock(&fs_info->delalloc_root_lock); 2044 BUG_ON(list_empty(&root->delalloc_root)); 2045 list_del_init(&root->delalloc_root); 2046 spin_unlock(&fs_info->delalloc_root_lock); 2047 } 2048 } 2049 } 2050 2051 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2052 struct btrfs_inode *inode) 2053 { 2054 spin_lock(&root->delalloc_lock); 2055 __btrfs_del_delalloc_inode(root, inode); 2056 spin_unlock(&root->delalloc_lock); 2057 } 2058 2059 /* 2060 * Properly track delayed allocation bytes in the inode and to maintain the 2061 * list of inodes that have pending delalloc work to be done. 2062 */ 2063 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2064 unsigned *bits) 2065 { 2066 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2067 2068 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2069 WARN_ON(1); 2070 /* 2071 * set_bit and clear bit hooks normally require _irqsave/restore 2072 * but in this case, we are only testing for the DELALLOC 2073 * bit, which is only set or cleared with irqs on 2074 */ 2075 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2076 struct btrfs_root *root = BTRFS_I(inode)->root; 2077 u64 len = state->end + 1 - state->start; 2078 u32 num_extents = count_max_extents(len); 2079 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2080 2081 spin_lock(&BTRFS_I(inode)->lock); 2082 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2083 spin_unlock(&BTRFS_I(inode)->lock); 2084 2085 /* For sanity tests */ 2086 if (btrfs_is_testing(fs_info)) 2087 return; 2088 2089 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2090 fs_info->delalloc_batch); 2091 spin_lock(&BTRFS_I(inode)->lock); 2092 BTRFS_I(inode)->delalloc_bytes += len; 2093 if (*bits & EXTENT_DEFRAG) 2094 BTRFS_I(inode)->defrag_bytes += len; 2095 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2096 &BTRFS_I(inode)->runtime_flags)) 2097 btrfs_add_delalloc_inodes(root, inode); 2098 spin_unlock(&BTRFS_I(inode)->lock); 2099 } 2100 2101 if (!(state->state & EXTENT_DELALLOC_NEW) && 2102 (*bits & EXTENT_DELALLOC_NEW)) { 2103 spin_lock(&BTRFS_I(inode)->lock); 2104 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2105 state->start; 2106 spin_unlock(&BTRFS_I(inode)->lock); 2107 } 2108 } 2109 2110 /* 2111 * Once a range is no longer delalloc this function ensures that proper 2112 * accounting happens. 2113 */ 2114 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2115 struct extent_state *state, unsigned *bits) 2116 { 2117 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2118 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2119 u64 len = state->end + 1 - state->start; 2120 u32 num_extents = count_max_extents(len); 2121 2122 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2123 spin_lock(&inode->lock); 2124 inode->defrag_bytes -= len; 2125 spin_unlock(&inode->lock); 2126 } 2127 2128 /* 2129 * set_bit and clear bit hooks normally require _irqsave/restore 2130 * but in this case, we are only testing for the DELALLOC 2131 * bit, which is only set or cleared with irqs on 2132 */ 2133 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2134 struct btrfs_root *root = inode->root; 2135 bool do_list = !btrfs_is_free_space_inode(inode); 2136 2137 spin_lock(&inode->lock); 2138 btrfs_mod_outstanding_extents(inode, -num_extents); 2139 spin_unlock(&inode->lock); 2140 2141 /* 2142 * We don't reserve metadata space for space cache inodes so we 2143 * don't need to call delalloc_release_metadata if there is an 2144 * error. 2145 */ 2146 if (*bits & EXTENT_CLEAR_META_RESV && 2147 root != fs_info->tree_root) 2148 btrfs_delalloc_release_metadata(inode, len, false); 2149 2150 /* For sanity tests. */ 2151 if (btrfs_is_testing(fs_info)) 2152 return; 2153 2154 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2155 do_list && !(state->state & EXTENT_NORESERVE) && 2156 (*bits & EXTENT_CLEAR_DATA_RESV)) 2157 btrfs_free_reserved_data_space_noquota(fs_info, len); 2158 2159 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2160 fs_info->delalloc_batch); 2161 spin_lock(&inode->lock); 2162 inode->delalloc_bytes -= len; 2163 if (do_list && inode->delalloc_bytes == 0 && 2164 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2165 &inode->runtime_flags)) 2166 btrfs_del_delalloc_inode(root, inode); 2167 spin_unlock(&inode->lock); 2168 } 2169 2170 if ((state->state & EXTENT_DELALLOC_NEW) && 2171 (*bits & EXTENT_DELALLOC_NEW)) { 2172 spin_lock(&inode->lock); 2173 ASSERT(inode->new_delalloc_bytes >= len); 2174 inode->new_delalloc_bytes -= len; 2175 if (*bits & EXTENT_ADD_INODE_BYTES) 2176 inode_add_bytes(&inode->vfs_inode, len); 2177 spin_unlock(&inode->lock); 2178 } 2179 } 2180 2181 /* 2182 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2183 * in a chunk's stripe. This function ensures that bios do not span a 2184 * stripe/chunk 2185 * 2186 * @page - The page we are about to add to the bio 2187 * @size - size we want to add to the bio 2188 * @bio - bio we want to ensure is smaller than a stripe 2189 * @bio_flags - flags of the bio 2190 * 2191 * return 1 if page cannot be added to the bio 2192 * return 0 if page can be added to the bio 2193 * return error otherwise 2194 */ 2195 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2196 unsigned long bio_flags) 2197 { 2198 struct inode *inode = page->mapping->host; 2199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2200 u64 logical = bio->bi_iter.bi_sector << 9; 2201 struct extent_map *em; 2202 u64 length = 0; 2203 u64 map_length; 2204 int ret = 0; 2205 struct btrfs_io_geometry geom; 2206 2207 if (bio_flags & EXTENT_BIO_COMPRESSED) 2208 return 0; 2209 2210 length = bio->bi_iter.bi_size; 2211 map_length = length; 2212 em = btrfs_get_chunk_map(fs_info, logical, map_length); 2213 if (IS_ERR(em)) 2214 return PTR_ERR(em); 2215 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical, 2216 map_length, &geom); 2217 if (ret < 0) 2218 goto out; 2219 2220 if (geom.len < length + size) 2221 ret = 1; 2222 out: 2223 free_extent_map(em); 2224 return ret; 2225 } 2226 2227 /* 2228 * in order to insert checksums into the metadata in large chunks, 2229 * we wait until bio submission time. All the pages in the bio are 2230 * checksummed and sums are attached onto the ordered extent record. 2231 * 2232 * At IO completion time the cums attached on the ordered extent record 2233 * are inserted into the btree 2234 */ 2235 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2236 u64 dio_file_offset) 2237 { 2238 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2239 } 2240 2241 bool btrfs_bio_fits_in_ordered_extent(struct page *page, struct bio *bio, 2242 unsigned int size) 2243 { 2244 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 2245 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2246 struct btrfs_ordered_extent *ordered; 2247 u64 len = bio->bi_iter.bi_size + size; 2248 bool ret = true; 2249 2250 ASSERT(btrfs_is_zoned(fs_info)); 2251 ASSERT(fs_info->max_zone_append_size > 0); 2252 ASSERT(bio_op(bio) == REQ_OP_ZONE_APPEND); 2253 2254 /* Ordered extent not yet created, so we're good */ 2255 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page)); 2256 if (!ordered) 2257 return ret; 2258 2259 if ((bio->bi_iter.bi_sector << SECTOR_SHIFT) + len > 2260 ordered->disk_bytenr + ordered->disk_num_bytes) 2261 ret = false; 2262 2263 btrfs_put_ordered_extent(ordered); 2264 2265 return ret; 2266 } 2267 2268 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2269 struct bio *bio, loff_t file_offset) 2270 { 2271 struct btrfs_ordered_extent *ordered; 2272 struct extent_map *em = NULL, *em_new = NULL; 2273 struct extent_map_tree *em_tree = &inode->extent_tree; 2274 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2275 u64 len = bio->bi_iter.bi_size; 2276 u64 end = start + len; 2277 u64 ordered_end; 2278 u64 pre, post; 2279 int ret = 0; 2280 2281 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2282 if (WARN_ON_ONCE(!ordered)) 2283 return BLK_STS_IOERR; 2284 2285 /* No need to split */ 2286 if (ordered->disk_num_bytes == len) 2287 goto out; 2288 2289 /* We cannot split once end_bio'd ordered extent */ 2290 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2291 ret = -EINVAL; 2292 goto out; 2293 } 2294 2295 /* We cannot split a compressed ordered extent */ 2296 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2297 ret = -EINVAL; 2298 goto out; 2299 } 2300 2301 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2302 /* bio must be in one ordered extent */ 2303 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2304 ret = -EINVAL; 2305 goto out; 2306 } 2307 2308 /* Checksum list should be empty */ 2309 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2310 ret = -EINVAL; 2311 goto out; 2312 } 2313 2314 pre = start - ordered->disk_bytenr; 2315 post = ordered_end - end; 2316 2317 ret = btrfs_split_ordered_extent(ordered, pre, post); 2318 if (ret) 2319 goto out; 2320 2321 read_lock(&em_tree->lock); 2322 em = lookup_extent_mapping(em_tree, ordered->file_offset, len); 2323 if (!em) { 2324 read_unlock(&em_tree->lock); 2325 ret = -EIO; 2326 goto out; 2327 } 2328 read_unlock(&em_tree->lock); 2329 2330 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2331 /* 2332 * We cannot reuse em_new here but have to create a new one, as 2333 * unpin_extent_cache() expects the start of the extent map to be the 2334 * logical offset of the file, which does not hold true anymore after 2335 * splitting. 2336 */ 2337 em_new = create_io_em(inode, em->start + pre, len, 2338 em->start + pre, em->block_start + pre, len, 2339 len, len, BTRFS_COMPRESS_NONE, 2340 BTRFS_ORDERED_REGULAR); 2341 if (IS_ERR(em_new)) { 2342 ret = PTR_ERR(em_new); 2343 goto out; 2344 } 2345 free_extent_map(em_new); 2346 2347 out: 2348 free_extent_map(em); 2349 btrfs_put_ordered_extent(ordered); 2350 2351 return errno_to_blk_status(ret); 2352 } 2353 2354 /* 2355 * extent_io.c submission hook. This does the right thing for csum calculation 2356 * on write, or reading the csums from the tree before a read. 2357 * 2358 * Rules about async/sync submit, 2359 * a) read: sync submit 2360 * 2361 * b) write without checksum: sync submit 2362 * 2363 * c) write with checksum: 2364 * c-1) if bio is issued by fsync: sync submit 2365 * (sync_writers != 0) 2366 * 2367 * c-2) if root is reloc root: sync submit 2368 * (only in case of buffered IO) 2369 * 2370 * c-3) otherwise: async submit 2371 */ 2372 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2373 int mirror_num, unsigned long bio_flags) 2374 2375 { 2376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2377 struct btrfs_root *root = BTRFS_I(inode)->root; 2378 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2379 blk_status_t ret = 0; 2380 int skip_sum; 2381 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2382 2383 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 2384 !fs_info->csum_root; 2385 2386 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2387 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2388 2389 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2390 struct page *page = bio_first_bvec_all(bio)->bv_page; 2391 loff_t file_offset = page_offset(page); 2392 2393 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); 2394 if (ret) 2395 goto out; 2396 } 2397 2398 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 2399 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2400 if (ret) 2401 goto out; 2402 2403 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2404 ret = btrfs_submit_compressed_read(inode, bio, 2405 mirror_num, 2406 bio_flags); 2407 goto out; 2408 } else { 2409 /* 2410 * Lookup bio sums does extra checks around whether we 2411 * need to csum or not, which is why we ignore skip_sum 2412 * here. 2413 */ 2414 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2415 if (ret) 2416 goto out; 2417 } 2418 goto mapit; 2419 } else if (async && !skip_sum) { 2420 /* csum items have already been cloned */ 2421 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2422 goto mapit; 2423 /* we're doing a write, do the async checksumming */ 2424 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags, 2425 0, btrfs_submit_bio_start); 2426 goto out; 2427 } else if (!skip_sum) { 2428 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2429 if (ret) 2430 goto out; 2431 } 2432 2433 mapit: 2434 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2435 2436 out: 2437 if (ret) { 2438 bio->bi_status = ret; 2439 bio_endio(bio); 2440 } 2441 return ret; 2442 } 2443 2444 /* 2445 * given a list of ordered sums record them in the inode. This happens 2446 * at IO completion time based on sums calculated at bio submission time. 2447 */ 2448 static int add_pending_csums(struct btrfs_trans_handle *trans, 2449 struct list_head *list) 2450 { 2451 struct btrfs_ordered_sum *sum; 2452 int ret; 2453 2454 list_for_each_entry(sum, list, list) { 2455 trans->adding_csums = true; 2456 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum); 2457 trans->adding_csums = false; 2458 if (ret) 2459 return ret; 2460 } 2461 return 0; 2462 } 2463 2464 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2465 const u64 start, 2466 const u64 len, 2467 struct extent_state **cached_state) 2468 { 2469 u64 search_start = start; 2470 const u64 end = start + len - 1; 2471 2472 while (search_start < end) { 2473 const u64 search_len = end - search_start + 1; 2474 struct extent_map *em; 2475 u64 em_len; 2476 int ret = 0; 2477 2478 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2479 if (IS_ERR(em)) 2480 return PTR_ERR(em); 2481 2482 if (em->block_start != EXTENT_MAP_HOLE) 2483 goto next; 2484 2485 em_len = em->len; 2486 if (em->start < search_start) 2487 em_len -= search_start - em->start; 2488 if (em_len > search_len) 2489 em_len = search_len; 2490 2491 ret = set_extent_bit(&inode->io_tree, search_start, 2492 search_start + em_len - 1, 2493 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2494 GFP_NOFS, NULL); 2495 next: 2496 search_start = extent_map_end(em); 2497 free_extent_map(em); 2498 if (ret) 2499 return ret; 2500 } 2501 return 0; 2502 } 2503 2504 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2505 unsigned int extra_bits, 2506 struct extent_state **cached_state) 2507 { 2508 WARN_ON(PAGE_ALIGNED(end)); 2509 2510 if (start >= i_size_read(&inode->vfs_inode) && 2511 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2512 /* 2513 * There can't be any extents following eof in this case so just 2514 * set the delalloc new bit for the range directly. 2515 */ 2516 extra_bits |= EXTENT_DELALLOC_NEW; 2517 } else { 2518 int ret; 2519 2520 ret = btrfs_find_new_delalloc_bytes(inode, start, 2521 end + 1 - start, 2522 cached_state); 2523 if (ret) 2524 return ret; 2525 } 2526 2527 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2528 cached_state); 2529 } 2530 2531 /* see btrfs_writepage_start_hook for details on why this is required */ 2532 struct btrfs_writepage_fixup { 2533 struct page *page; 2534 struct inode *inode; 2535 struct btrfs_work work; 2536 }; 2537 2538 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2539 { 2540 struct btrfs_writepage_fixup *fixup; 2541 struct btrfs_ordered_extent *ordered; 2542 struct extent_state *cached_state = NULL; 2543 struct extent_changeset *data_reserved = NULL; 2544 struct page *page; 2545 struct btrfs_inode *inode; 2546 u64 page_start; 2547 u64 page_end; 2548 int ret = 0; 2549 bool free_delalloc_space = true; 2550 2551 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2552 page = fixup->page; 2553 inode = BTRFS_I(fixup->inode); 2554 page_start = page_offset(page); 2555 page_end = page_offset(page) + PAGE_SIZE - 1; 2556 2557 /* 2558 * This is similar to page_mkwrite, we need to reserve the space before 2559 * we take the page lock. 2560 */ 2561 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2562 PAGE_SIZE); 2563 again: 2564 lock_page(page); 2565 2566 /* 2567 * Before we queued this fixup, we took a reference on the page. 2568 * page->mapping may go NULL, but it shouldn't be moved to a different 2569 * address space. 2570 */ 2571 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2572 /* 2573 * Unfortunately this is a little tricky, either 2574 * 2575 * 1) We got here and our page had already been dealt with and 2576 * we reserved our space, thus ret == 0, so we need to just 2577 * drop our space reservation and bail. This can happen the 2578 * first time we come into the fixup worker, or could happen 2579 * while waiting for the ordered extent. 2580 * 2) Our page was already dealt with, but we happened to get an 2581 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2582 * this case we obviously don't have anything to release, but 2583 * because the page was already dealt with we don't want to 2584 * mark the page with an error, so make sure we're resetting 2585 * ret to 0. This is why we have this check _before_ the ret 2586 * check, because we do not want to have a surprise ENOSPC 2587 * when the page was already properly dealt with. 2588 */ 2589 if (!ret) { 2590 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2591 btrfs_delalloc_release_space(inode, data_reserved, 2592 page_start, PAGE_SIZE, 2593 true); 2594 } 2595 ret = 0; 2596 goto out_page; 2597 } 2598 2599 /* 2600 * We can't mess with the page state unless it is locked, so now that 2601 * it is locked bail if we failed to make our space reservation. 2602 */ 2603 if (ret) 2604 goto out_page; 2605 2606 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2607 2608 /* already ordered? We're done */ 2609 if (PagePrivate2(page)) 2610 goto out_reserved; 2611 2612 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2613 if (ordered) { 2614 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2615 &cached_state); 2616 unlock_page(page); 2617 btrfs_start_ordered_extent(ordered, 1); 2618 btrfs_put_ordered_extent(ordered); 2619 goto again; 2620 } 2621 2622 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2623 &cached_state); 2624 if (ret) 2625 goto out_reserved; 2626 2627 /* 2628 * Everything went as planned, we're now the owner of a dirty page with 2629 * delayed allocation bits set and space reserved for our COW 2630 * destination. 2631 * 2632 * The page was dirty when we started, nothing should have cleaned it. 2633 */ 2634 BUG_ON(!PageDirty(page)); 2635 free_delalloc_space = false; 2636 out_reserved: 2637 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2638 if (free_delalloc_space) 2639 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2640 PAGE_SIZE, true); 2641 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2642 &cached_state); 2643 out_page: 2644 if (ret) { 2645 /* 2646 * We hit ENOSPC or other errors. Update the mapping and page 2647 * to reflect the errors and clean the page. 2648 */ 2649 mapping_set_error(page->mapping, ret); 2650 end_extent_writepage(page, ret, page_start, page_end); 2651 clear_page_dirty_for_io(page); 2652 SetPageError(page); 2653 } 2654 ClearPageChecked(page); 2655 unlock_page(page); 2656 put_page(page); 2657 kfree(fixup); 2658 extent_changeset_free(data_reserved); 2659 /* 2660 * As a precaution, do a delayed iput in case it would be the last iput 2661 * that could need flushing space. Recursing back to fixup worker would 2662 * deadlock. 2663 */ 2664 btrfs_add_delayed_iput(&inode->vfs_inode); 2665 } 2666 2667 /* 2668 * There are a few paths in the higher layers of the kernel that directly 2669 * set the page dirty bit without asking the filesystem if it is a 2670 * good idea. This causes problems because we want to make sure COW 2671 * properly happens and the data=ordered rules are followed. 2672 * 2673 * In our case any range that doesn't have the ORDERED bit set 2674 * hasn't been properly setup for IO. We kick off an async process 2675 * to fix it up. The async helper will wait for ordered extents, set 2676 * the delalloc bit and make it safe to write the page. 2677 */ 2678 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2679 { 2680 struct inode *inode = page->mapping->host; 2681 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2682 struct btrfs_writepage_fixup *fixup; 2683 2684 /* this page is properly in the ordered list */ 2685 if (TestClearPagePrivate2(page)) 2686 return 0; 2687 2688 /* 2689 * PageChecked is set below when we create a fixup worker for this page, 2690 * don't try to create another one if we're already PageChecked() 2691 * 2692 * The extent_io writepage code will redirty the page if we send back 2693 * EAGAIN. 2694 */ 2695 if (PageChecked(page)) 2696 return -EAGAIN; 2697 2698 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2699 if (!fixup) 2700 return -EAGAIN; 2701 2702 /* 2703 * We are already holding a reference to this inode from 2704 * write_cache_pages. We need to hold it because the space reservation 2705 * takes place outside of the page lock, and we can't trust 2706 * page->mapping outside of the page lock. 2707 */ 2708 ihold(inode); 2709 SetPageChecked(page); 2710 get_page(page); 2711 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2712 fixup->page = page; 2713 fixup->inode = inode; 2714 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2715 2716 return -EAGAIN; 2717 } 2718 2719 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2720 struct btrfs_inode *inode, u64 file_pos, 2721 struct btrfs_file_extent_item *stack_fi, 2722 const bool update_inode_bytes, 2723 u64 qgroup_reserved) 2724 { 2725 struct btrfs_root *root = inode->root; 2726 const u64 sectorsize = root->fs_info->sectorsize; 2727 struct btrfs_path *path; 2728 struct extent_buffer *leaf; 2729 struct btrfs_key ins; 2730 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2731 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2732 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2733 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2734 struct btrfs_drop_extents_args drop_args = { 0 }; 2735 int ret; 2736 2737 path = btrfs_alloc_path(); 2738 if (!path) 2739 return -ENOMEM; 2740 2741 /* 2742 * we may be replacing one extent in the tree with another. 2743 * The new extent is pinned in the extent map, and we don't want 2744 * to drop it from the cache until it is completely in the btree. 2745 * 2746 * So, tell btrfs_drop_extents to leave this extent in the cache. 2747 * the caller is expected to unpin it and allow it to be merged 2748 * with the others. 2749 */ 2750 drop_args.path = path; 2751 drop_args.start = file_pos; 2752 drop_args.end = file_pos + num_bytes; 2753 drop_args.replace_extent = true; 2754 drop_args.extent_item_size = sizeof(*stack_fi); 2755 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2756 if (ret) 2757 goto out; 2758 2759 if (!drop_args.extent_inserted) { 2760 ins.objectid = btrfs_ino(inode); 2761 ins.offset = file_pos; 2762 ins.type = BTRFS_EXTENT_DATA_KEY; 2763 2764 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2765 sizeof(*stack_fi)); 2766 if (ret) 2767 goto out; 2768 } 2769 leaf = path->nodes[0]; 2770 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2771 write_extent_buffer(leaf, stack_fi, 2772 btrfs_item_ptr_offset(leaf, path->slots[0]), 2773 sizeof(struct btrfs_file_extent_item)); 2774 2775 btrfs_mark_buffer_dirty(leaf); 2776 btrfs_release_path(path); 2777 2778 /* 2779 * If we dropped an inline extent here, we know the range where it is 2780 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2781 * number of bytes only for that range contaning the inline extent. 2782 * The remaining of the range will be processed when clearning the 2783 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2784 */ 2785 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2786 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2787 2788 inline_size = drop_args.bytes_found - inline_size; 2789 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2790 drop_args.bytes_found -= inline_size; 2791 num_bytes -= sectorsize; 2792 } 2793 2794 if (update_inode_bytes) 2795 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2796 2797 ins.objectid = disk_bytenr; 2798 ins.offset = disk_num_bytes; 2799 ins.type = BTRFS_EXTENT_ITEM_KEY; 2800 2801 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2802 if (ret) 2803 goto out; 2804 2805 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2806 file_pos, qgroup_reserved, &ins); 2807 out: 2808 btrfs_free_path(path); 2809 2810 return ret; 2811 } 2812 2813 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2814 u64 start, u64 len) 2815 { 2816 struct btrfs_block_group *cache; 2817 2818 cache = btrfs_lookup_block_group(fs_info, start); 2819 ASSERT(cache); 2820 2821 spin_lock(&cache->lock); 2822 cache->delalloc_bytes -= len; 2823 spin_unlock(&cache->lock); 2824 2825 btrfs_put_block_group(cache); 2826 } 2827 2828 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2829 struct btrfs_ordered_extent *oe) 2830 { 2831 struct btrfs_file_extent_item stack_fi; 2832 u64 logical_len; 2833 bool update_inode_bytes; 2834 2835 memset(&stack_fi, 0, sizeof(stack_fi)); 2836 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2837 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2838 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2839 oe->disk_num_bytes); 2840 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2841 logical_len = oe->truncated_len; 2842 else 2843 logical_len = oe->num_bytes; 2844 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); 2845 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); 2846 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2847 /* Encryption and other encoding is reserved and all 0 */ 2848 2849 /* 2850 * For delalloc, when completing an ordered extent we update the inode's 2851 * bytes when clearing the range in the inode's io tree, so pass false 2852 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2853 * except if the ordered extent was truncated. 2854 */ 2855 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 2856 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 2857 2858 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 2859 oe->file_offset, &stack_fi, 2860 update_inode_bytes, oe->qgroup_rsv); 2861 } 2862 2863 /* 2864 * As ordered data IO finishes, this gets called so we can finish 2865 * an ordered extent if the range of bytes in the file it covers are 2866 * fully written. 2867 */ 2868 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2869 { 2870 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 2871 struct btrfs_root *root = inode->root; 2872 struct btrfs_fs_info *fs_info = root->fs_info; 2873 struct btrfs_trans_handle *trans = NULL; 2874 struct extent_io_tree *io_tree = &inode->io_tree; 2875 struct extent_state *cached_state = NULL; 2876 u64 start, end; 2877 int compress_type = 0; 2878 int ret = 0; 2879 u64 logical_len = ordered_extent->num_bytes; 2880 bool freespace_inode; 2881 bool truncated = false; 2882 bool clear_reserved_extent = true; 2883 unsigned int clear_bits = EXTENT_DEFRAG; 2884 2885 start = ordered_extent->file_offset; 2886 end = start + ordered_extent->num_bytes - 1; 2887 2888 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2889 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2890 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2891 clear_bits |= EXTENT_DELALLOC_NEW; 2892 2893 freespace_inode = btrfs_is_free_space_inode(inode); 2894 2895 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2896 ret = -EIO; 2897 goto out; 2898 } 2899 2900 if (ordered_extent->disk) 2901 btrfs_rewrite_logical_zoned(ordered_extent); 2902 2903 btrfs_free_io_failure_record(inode, start, end); 2904 2905 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2906 truncated = true; 2907 logical_len = ordered_extent->truncated_len; 2908 /* Truncated the entire extent, don't bother adding */ 2909 if (!logical_len) 2910 goto out; 2911 } 2912 2913 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2914 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2915 2916 btrfs_inode_safe_disk_i_size_write(inode, 0); 2917 if (freespace_inode) 2918 trans = btrfs_join_transaction_spacecache(root); 2919 else 2920 trans = btrfs_join_transaction(root); 2921 if (IS_ERR(trans)) { 2922 ret = PTR_ERR(trans); 2923 trans = NULL; 2924 goto out; 2925 } 2926 trans->block_rsv = &inode->block_rsv; 2927 ret = btrfs_update_inode_fallback(trans, root, inode); 2928 if (ret) /* -ENOMEM or corruption */ 2929 btrfs_abort_transaction(trans, ret); 2930 goto out; 2931 } 2932 2933 clear_bits |= EXTENT_LOCKED; 2934 lock_extent_bits(io_tree, start, end, &cached_state); 2935 2936 if (freespace_inode) 2937 trans = btrfs_join_transaction_spacecache(root); 2938 else 2939 trans = btrfs_join_transaction(root); 2940 if (IS_ERR(trans)) { 2941 ret = PTR_ERR(trans); 2942 trans = NULL; 2943 goto out; 2944 } 2945 2946 trans->block_rsv = &inode->block_rsv; 2947 2948 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2949 compress_type = ordered_extent->compress_type; 2950 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2951 BUG_ON(compress_type); 2952 ret = btrfs_mark_extent_written(trans, inode, 2953 ordered_extent->file_offset, 2954 ordered_extent->file_offset + 2955 logical_len); 2956 } else { 2957 BUG_ON(root == fs_info->tree_root); 2958 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 2959 if (!ret) { 2960 clear_reserved_extent = false; 2961 btrfs_release_delalloc_bytes(fs_info, 2962 ordered_extent->disk_bytenr, 2963 ordered_extent->disk_num_bytes); 2964 } 2965 } 2966 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 2967 ordered_extent->num_bytes, trans->transid); 2968 if (ret < 0) { 2969 btrfs_abort_transaction(trans, ret); 2970 goto out; 2971 } 2972 2973 ret = add_pending_csums(trans, &ordered_extent->list); 2974 if (ret) { 2975 btrfs_abort_transaction(trans, ret); 2976 goto out; 2977 } 2978 2979 /* 2980 * If this is a new delalloc range, clear its new delalloc flag to 2981 * update the inode's number of bytes. This needs to be done first 2982 * before updating the inode item. 2983 */ 2984 if ((clear_bits & EXTENT_DELALLOC_NEW) && 2985 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 2986 clear_extent_bit(&inode->io_tree, start, end, 2987 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 2988 0, 0, &cached_state); 2989 2990 btrfs_inode_safe_disk_i_size_write(inode, 0); 2991 ret = btrfs_update_inode_fallback(trans, root, inode); 2992 if (ret) { /* -ENOMEM or corruption */ 2993 btrfs_abort_transaction(trans, ret); 2994 goto out; 2995 } 2996 ret = 0; 2997 out: 2998 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 2999 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 3000 &cached_state); 3001 3002 if (trans) 3003 btrfs_end_transaction(trans); 3004 3005 if (ret || truncated) { 3006 u64 unwritten_start = start; 3007 3008 if (truncated) 3009 unwritten_start += logical_len; 3010 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3011 3012 /* Drop the cache for the part of the extent we didn't write. */ 3013 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 3014 3015 /* 3016 * If the ordered extent had an IOERR or something else went 3017 * wrong we need to return the space for this ordered extent 3018 * back to the allocator. We only free the extent in the 3019 * truncated case if we didn't write out the extent at all. 3020 * 3021 * If we made it past insert_reserved_file_extent before we 3022 * errored out then we don't need to do this as the accounting 3023 * has already been done. 3024 */ 3025 if ((ret || !logical_len) && 3026 clear_reserved_extent && 3027 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3028 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3029 /* 3030 * Discard the range before returning it back to the 3031 * free space pool 3032 */ 3033 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3034 btrfs_discard_extent(fs_info, 3035 ordered_extent->disk_bytenr, 3036 ordered_extent->disk_num_bytes, 3037 NULL); 3038 btrfs_free_reserved_extent(fs_info, 3039 ordered_extent->disk_bytenr, 3040 ordered_extent->disk_num_bytes, 1); 3041 } 3042 } 3043 3044 /* 3045 * This needs to be done to make sure anybody waiting knows we are done 3046 * updating everything for this ordered extent. 3047 */ 3048 btrfs_remove_ordered_extent(inode, ordered_extent); 3049 3050 /* once for us */ 3051 btrfs_put_ordered_extent(ordered_extent); 3052 /* once for the tree */ 3053 btrfs_put_ordered_extent(ordered_extent); 3054 3055 return ret; 3056 } 3057 3058 static void finish_ordered_fn(struct btrfs_work *work) 3059 { 3060 struct btrfs_ordered_extent *ordered_extent; 3061 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3062 btrfs_finish_ordered_io(ordered_extent); 3063 } 3064 3065 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3066 u64 end, int uptodate) 3067 { 3068 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3069 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3070 struct btrfs_ordered_extent *ordered_extent = NULL; 3071 struct btrfs_workqueue *wq; 3072 3073 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3074 3075 ClearPagePrivate2(page); 3076 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3077 end - start + 1, uptodate)) 3078 return; 3079 3080 if (btrfs_is_free_space_inode(inode)) 3081 wq = fs_info->endio_freespace_worker; 3082 else 3083 wq = fs_info->endio_write_workers; 3084 3085 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 3086 btrfs_queue_work(wq, &ordered_extent->work); 3087 } 3088 3089 /* 3090 * check_data_csum - verify checksum of one sector of uncompressed data 3091 * @inode: inode 3092 * @io_bio: btrfs_io_bio which contains the csum 3093 * @bio_offset: offset to the beginning of the bio (in bytes) 3094 * @page: page where is the data to be verified 3095 * @pgoff: offset inside the page 3096 * @start: logical offset in the file 3097 * 3098 * The length of such check is always one sector size. 3099 */ 3100 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 3101 u32 bio_offset, struct page *page, u32 pgoff, 3102 u64 start) 3103 { 3104 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3105 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3106 char *kaddr; 3107 u32 len = fs_info->sectorsize; 3108 const u32 csum_size = fs_info->csum_size; 3109 unsigned int offset_sectors; 3110 u8 *csum_expected; 3111 u8 csum[BTRFS_CSUM_SIZE]; 3112 3113 ASSERT(pgoff + len <= PAGE_SIZE); 3114 3115 offset_sectors = bio_offset >> fs_info->sectorsize_bits; 3116 csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size; 3117 3118 kaddr = kmap_atomic(page); 3119 shash->tfm = fs_info->csum_shash; 3120 3121 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 3122 3123 if (memcmp(csum, csum_expected, csum_size)) 3124 goto zeroit; 3125 3126 kunmap_atomic(kaddr); 3127 return 0; 3128 zeroit: 3129 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3130 io_bio->mirror_num); 3131 if (io_bio->device) 3132 btrfs_dev_stat_inc_and_print(io_bio->device, 3133 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3134 memset(kaddr + pgoff, 1, len); 3135 flush_dcache_page(page); 3136 kunmap_atomic(kaddr); 3137 return -EIO; 3138 } 3139 3140 /* 3141 * When reads are done, we need to check csums to verify the data is correct. 3142 * if there's a match, we allow the bio to finish. If not, the code in 3143 * extent_io.c will try to find good copies for us. 3144 * 3145 * @bio_offset: offset to the beginning of the bio (in bytes) 3146 * @start: file offset of the range start 3147 * @end: file offset of the range end (inclusive) 3148 */ 3149 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset, 3150 struct page *page, u64 start, u64 end) 3151 { 3152 struct inode *inode = page->mapping->host; 3153 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3154 struct btrfs_root *root = BTRFS_I(inode)->root; 3155 const u32 sectorsize = root->fs_info->sectorsize; 3156 u32 pg_off; 3157 3158 if (PageChecked(page)) { 3159 ClearPageChecked(page); 3160 return 0; 3161 } 3162 3163 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3164 return 0; 3165 3166 if (!root->fs_info->csum_root) 3167 return 0; 3168 3169 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3170 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3171 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3172 return 0; 3173 } 3174 3175 ASSERT(page_offset(page) <= start && 3176 end <= page_offset(page) + PAGE_SIZE - 1); 3177 for (pg_off = offset_in_page(start); 3178 pg_off < offset_in_page(end); 3179 pg_off += sectorsize, bio_offset += sectorsize) { 3180 int ret; 3181 3182 ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off, 3183 page_offset(page) + pg_off); 3184 if (ret < 0) 3185 return -EIO; 3186 } 3187 return 0; 3188 } 3189 3190 /* 3191 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3192 * 3193 * @inode: The inode we want to perform iput on 3194 * 3195 * This function uses the generic vfs_inode::i_count to track whether we should 3196 * just decrement it (in case it's > 1) or if this is the last iput then link 3197 * the inode to the delayed iput machinery. Delayed iputs are processed at 3198 * transaction commit time/superblock commit/cleaner kthread. 3199 */ 3200 void btrfs_add_delayed_iput(struct inode *inode) 3201 { 3202 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3203 struct btrfs_inode *binode = BTRFS_I(inode); 3204 3205 if (atomic_add_unless(&inode->i_count, -1, 1)) 3206 return; 3207 3208 atomic_inc(&fs_info->nr_delayed_iputs); 3209 spin_lock(&fs_info->delayed_iput_lock); 3210 ASSERT(list_empty(&binode->delayed_iput)); 3211 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3212 spin_unlock(&fs_info->delayed_iput_lock); 3213 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3214 wake_up_process(fs_info->cleaner_kthread); 3215 } 3216 3217 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3218 struct btrfs_inode *inode) 3219 { 3220 list_del_init(&inode->delayed_iput); 3221 spin_unlock(&fs_info->delayed_iput_lock); 3222 iput(&inode->vfs_inode); 3223 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3224 wake_up(&fs_info->delayed_iputs_wait); 3225 spin_lock(&fs_info->delayed_iput_lock); 3226 } 3227 3228 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3229 struct btrfs_inode *inode) 3230 { 3231 if (!list_empty(&inode->delayed_iput)) { 3232 spin_lock(&fs_info->delayed_iput_lock); 3233 if (!list_empty(&inode->delayed_iput)) 3234 run_delayed_iput_locked(fs_info, inode); 3235 spin_unlock(&fs_info->delayed_iput_lock); 3236 } 3237 } 3238 3239 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3240 { 3241 3242 spin_lock(&fs_info->delayed_iput_lock); 3243 while (!list_empty(&fs_info->delayed_iputs)) { 3244 struct btrfs_inode *inode; 3245 3246 inode = list_first_entry(&fs_info->delayed_iputs, 3247 struct btrfs_inode, delayed_iput); 3248 run_delayed_iput_locked(fs_info, inode); 3249 } 3250 spin_unlock(&fs_info->delayed_iput_lock); 3251 } 3252 3253 /** 3254 * Wait for flushing all delayed iputs 3255 * 3256 * @fs_info: the filesystem 3257 * 3258 * This will wait on any delayed iputs that are currently running with KILLABLE 3259 * set. Once they are all done running we will return, unless we are killed in 3260 * which case we return EINTR. This helps in user operations like fallocate etc 3261 * that might get blocked on the iputs. 3262 * 3263 * Return EINTR if we were killed, 0 if nothing's pending 3264 */ 3265 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3266 { 3267 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3268 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3269 if (ret) 3270 return -EINTR; 3271 return 0; 3272 } 3273 3274 /* 3275 * This creates an orphan entry for the given inode in case something goes wrong 3276 * in the middle of an unlink. 3277 */ 3278 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3279 struct btrfs_inode *inode) 3280 { 3281 int ret; 3282 3283 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3284 if (ret && ret != -EEXIST) { 3285 btrfs_abort_transaction(trans, ret); 3286 return ret; 3287 } 3288 3289 return 0; 3290 } 3291 3292 /* 3293 * We have done the delete so we can go ahead and remove the orphan item for 3294 * this particular inode. 3295 */ 3296 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3297 struct btrfs_inode *inode) 3298 { 3299 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3300 } 3301 3302 /* 3303 * this cleans up any orphans that may be left on the list from the last use 3304 * of this root. 3305 */ 3306 int btrfs_orphan_cleanup(struct btrfs_root *root) 3307 { 3308 struct btrfs_fs_info *fs_info = root->fs_info; 3309 struct btrfs_path *path; 3310 struct extent_buffer *leaf; 3311 struct btrfs_key key, found_key; 3312 struct btrfs_trans_handle *trans; 3313 struct inode *inode; 3314 u64 last_objectid = 0; 3315 int ret = 0, nr_unlink = 0; 3316 3317 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3318 return 0; 3319 3320 path = btrfs_alloc_path(); 3321 if (!path) { 3322 ret = -ENOMEM; 3323 goto out; 3324 } 3325 path->reada = READA_BACK; 3326 3327 key.objectid = BTRFS_ORPHAN_OBJECTID; 3328 key.type = BTRFS_ORPHAN_ITEM_KEY; 3329 key.offset = (u64)-1; 3330 3331 while (1) { 3332 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3333 if (ret < 0) 3334 goto out; 3335 3336 /* 3337 * if ret == 0 means we found what we were searching for, which 3338 * is weird, but possible, so only screw with path if we didn't 3339 * find the key and see if we have stuff that matches 3340 */ 3341 if (ret > 0) { 3342 ret = 0; 3343 if (path->slots[0] == 0) 3344 break; 3345 path->slots[0]--; 3346 } 3347 3348 /* pull out the item */ 3349 leaf = path->nodes[0]; 3350 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3351 3352 /* make sure the item matches what we want */ 3353 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3354 break; 3355 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3356 break; 3357 3358 /* release the path since we're done with it */ 3359 btrfs_release_path(path); 3360 3361 /* 3362 * this is where we are basically btrfs_lookup, without the 3363 * crossing root thing. we store the inode number in the 3364 * offset of the orphan item. 3365 */ 3366 3367 if (found_key.offset == last_objectid) { 3368 btrfs_err(fs_info, 3369 "Error removing orphan entry, stopping orphan cleanup"); 3370 ret = -EINVAL; 3371 goto out; 3372 } 3373 3374 last_objectid = found_key.offset; 3375 3376 found_key.objectid = found_key.offset; 3377 found_key.type = BTRFS_INODE_ITEM_KEY; 3378 found_key.offset = 0; 3379 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3380 ret = PTR_ERR_OR_ZERO(inode); 3381 if (ret && ret != -ENOENT) 3382 goto out; 3383 3384 if (ret == -ENOENT && root == fs_info->tree_root) { 3385 struct btrfs_root *dead_root; 3386 int is_dead_root = 0; 3387 3388 /* 3389 * This is an orphan in the tree root. Currently these 3390 * could come from 2 sources: 3391 * a) a root (snapshot/subvolume) deletion in progress 3392 * b) a free space cache inode 3393 * We need to distinguish those two, as the orphan item 3394 * for a root must not get deleted before the deletion 3395 * of the snapshot/subvolume's tree completes. 3396 * 3397 * btrfs_find_orphan_roots() ran before us, which has 3398 * found all deleted roots and loaded them into 3399 * fs_info->fs_roots_radix. So here we can find if an 3400 * orphan item corresponds to a deleted root by looking 3401 * up the root from that radix tree. 3402 */ 3403 3404 spin_lock(&fs_info->fs_roots_radix_lock); 3405 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3406 (unsigned long)found_key.objectid); 3407 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3408 is_dead_root = 1; 3409 spin_unlock(&fs_info->fs_roots_radix_lock); 3410 3411 if (is_dead_root) { 3412 /* prevent this orphan from being found again */ 3413 key.offset = found_key.objectid - 1; 3414 continue; 3415 } 3416 3417 } 3418 3419 /* 3420 * If we have an inode with links, there are a couple of 3421 * possibilities. Old kernels (before v3.12) used to create an 3422 * orphan item for truncate indicating that there were possibly 3423 * extent items past i_size that needed to be deleted. In v3.12, 3424 * truncate was changed to update i_size in sync with the extent 3425 * items, but the (useless) orphan item was still created. Since 3426 * v4.18, we don't create the orphan item for truncate at all. 3427 * 3428 * So, this item could mean that we need to do a truncate, but 3429 * only if this filesystem was last used on a pre-v3.12 kernel 3430 * and was not cleanly unmounted. The odds of that are quite 3431 * slim, and it's a pain to do the truncate now, so just delete 3432 * the orphan item. 3433 * 3434 * It's also possible that this orphan item was supposed to be 3435 * deleted but wasn't. The inode number may have been reused, 3436 * but either way, we can delete the orphan item. 3437 */ 3438 if (ret == -ENOENT || inode->i_nlink) { 3439 if (!ret) 3440 iput(inode); 3441 trans = btrfs_start_transaction(root, 1); 3442 if (IS_ERR(trans)) { 3443 ret = PTR_ERR(trans); 3444 goto out; 3445 } 3446 btrfs_debug(fs_info, "auto deleting %Lu", 3447 found_key.objectid); 3448 ret = btrfs_del_orphan_item(trans, root, 3449 found_key.objectid); 3450 btrfs_end_transaction(trans); 3451 if (ret) 3452 goto out; 3453 continue; 3454 } 3455 3456 nr_unlink++; 3457 3458 /* this will do delete_inode and everything for us */ 3459 iput(inode); 3460 } 3461 /* release the path since we're done with it */ 3462 btrfs_release_path(path); 3463 3464 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3465 3466 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3467 trans = btrfs_join_transaction(root); 3468 if (!IS_ERR(trans)) 3469 btrfs_end_transaction(trans); 3470 } 3471 3472 if (nr_unlink) 3473 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3474 3475 out: 3476 if (ret) 3477 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3478 btrfs_free_path(path); 3479 return ret; 3480 } 3481 3482 /* 3483 * very simple check to peek ahead in the leaf looking for xattrs. If we 3484 * don't find any xattrs, we know there can't be any acls. 3485 * 3486 * slot is the slot the inode is in, objectid is the objectid of the inode 3487 */ 3488 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3489 int slot, u64 objectid, 3490 int *first_xattr_slot) 3491 { 3492 u32 nritems = btrfs_header_nritems(leaf); 3493 struct btrfs_key found_key; 3494 static u64 xattr_access = 0; 3495 static u64 xattr_default = 0; 3496 int scanned = 0; 3497 3498 if (!xattr_access) { 3499 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3500 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3501 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3502 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3503 } 3504 3505 slot++; 3506 *first_xattr_slot = -1; 3507 while (slot < nritems) { 3508 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3509 3510 /* we found a different objectid, there must not be acls */ 3511 if (found_key.objectid != objectid) 3512 return 0; 3513 3514 /* we found an xattr, assume we've got an acl */ 3515 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3516 if (*first_xattr_slot == -1) 3517 *first_xattr_slot = slot; 3518 if (found_key.offset == xattr_access || 3519 found_key.offset == xattr_default) 3520 return 1; 3521 } 3522 3523 /* 3524 * we found a key greater than an xattr key, there can't 3525 * be any acls later on 3526 */ 3527 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3528 return 0; 3529 3530 slot++; 3531 scanned++; 3532 3533 /* 3534 * it goes inode, inode backrefs, xattrs, extents, 3535 * so if there are a ton of hard links to an inode there can 3536 * be a lot of backrefs. Don't waste time searching too hard, 3537 * this is just an optimization 3538 */ 3539 if (scanned >= 8) 3540 break; 3541 } 3542 /* we hit the end of the leaf before we found an xattr or 3543 * something larger than an xattr. We have to assume the inode 3544 * has acls 3545 */ 3546 if (*first_xattr_slot == -1) 3547 *first_xattr_slot = slot; 3548 return 1; 3549 } 3550 3551 /* 3552 * read an inode from the btree into the in-memory inode 3553 */ 3554 static int btrfs_read_locked_inode(struct inode *inode, 3555 struct btrfs_path *in_path) 3556 { 3557 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3558 struct btrfs_path *path = in_path; 3559 struct extent_buffer *leaf; 3560 struct btrfs_inode_item *inode_item; 3561 struct btrfs_root *root = BTRFS_I(inode)->root; 3562 struct btrfs_key location; 3563 unsigned long ptr; 3564 int maybe_acls; 3565 u32 rdev; 3566 int ret; 3567 bool filled = false; 3568 int first_xattr_slot; 3569 3570 ret = btrfs_fill_inode(inode, &rdev); 3571 if (!ret) 3572 filled = true; 3573 3574 if (!path) { 3575 path = btrfs_alloc_path(); 3576 if (!path) 3577 return -ENOMEM; 3578 } 3579 3580 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3581 3582 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3583 if (ret) { 3584 if (path != in_path) 3585 btrfs_free_path(path); 3586 return ret; 3587 } 3588 3589 leaf = path->nodes[0]; 3590 3591 if (filled) 3592 goto cache_index; 3593 3594 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3595 struct btrfs_inode_item); 3596 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3597 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3598 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3599 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3600 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3601 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3602 round_up(i_size_read(inode), fs_info->sectorsize)); 3603 3604 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3605 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3606 3607 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3608 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3609 3610 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3611 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3612 3613 BTRFS_I(inode)->i_otime.tv_sec = 3614 btrfs_timespec_sec(leaf, &inode_item->otime); 3615 BTRFS_I(inode)->i_otime.tv_nsec = 3616 btrfs_timespec_nsec(leaf, &inode_item->otime); 3617 3618 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3619 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3620 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3621 3622 inode_set_iversion_queried(inode, 3623 btrfs_inode_sequence(leaf, inode_item)); 3624 inode->i_generation = BTRFS_I(inode)->generation; 3625 inode->i_rdev = 0; 3626 rdev = btrfs_inode_rdev(leaf, inode_item); 3627 3628 BTRFS_I(inode)->index_cnt = (u64)-1; 3629 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3630 3631 cache_index: 3632 /* 3633 * If we were modified in the current generation and evicted from memory 3634 * and then re-read we need to do a full sync since we don't have any 3635 * idea about which extents were modified before we were evicted from 3636 * cache. 3637 * 3638 * This is required for both inode re-read from disk and delayed inode 3639 * in delayed_nodes_tree. 3640 */ 3641 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3642 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3643 &BTRFS_I(inode)->runtime_flags); 3644 3645 /* 3646 * We don't persist the id of the transaction where an unlink operation 3647 * against the inode was last made. So here we assume the inode might 3648 * have been evicted, and therefore the exact value of last_unlink_trans 3649 * lost, and set it to last_trans to avoid metadata inconsistencies 3650 * between the inode and its parent if the inode is fsync'ed and the log 3651 * replayed. For example, in the scenario: 3652 * 3653 * touch mydir/foo 3654 * ln mydir/foo mydir/bar 3655 * sync 3656 * unlink mydir/bar 3657 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3658 * xfs_io -c fsync mydir/foo 3659 * <power failure> 3660 * mount fs, triggers fsync log replay 3661 * 3662 * We must make sure that when we fsync our inode foo we also log its 3663 * parent inode, otherwise after log replay the parent still has the 3664 * dentry with the "bar" name but our inode foo has a link count of 1 3665 * and doesn't have an inode ref with the name "bar" anymore. 3666 * 3667 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3668 * but it guarantees correctness at the expense of occasional full 3669 * transaction commits on fsync if our inode is a directory, or if our 3670 * inode is not a directory, logging its parent unnecessarily. 3671 */ 3672 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3673 3674 /* 3675 * Same logic as for last_unlink_trans. We don't persist the generation 3676 * of the last transaction where this inode was used for a reflink 3677 * operation, so after eviction and reloading the inode we must be 3678 * pessimistic and assume the last transaction that modified the inode. 3679 */ 3680 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3681 3682 path->slots[0]++; 3683 if (inode->i_nlink != 1 || 3684 path->slots[0] >= btrfs_header_nritems(leaf)) 3685 goto cache_acl; 3686 3687 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3688 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3689 goto cache_acl; 3690 3691 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3692 if (location.type == BTRFS_INODE_REF_KEY) { 3693 struct btrfs_inode_ref *ref; 3694 3695 ref = (struct btrfs_inode_ref *)ptr; 3696 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3697 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3698 struct btrfs_inode_extref *extref; 3699 3700 extref = (struct btrfs_inode_extref *)ptr; 3701 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3702 extref); 3703 } 3704 cache_acl: 3705 /* 3706 * try to precache a NULL acl entry for files that don't have 3707 * any xattrs or acls 3708 */ 3709 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3710 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3711 if (first_xattr_slot != -1) { 3712 path->slots[0] = first_xattr_slot; 3713 ret = btrfs_load_inode_props(inode, path); 3714 if (ret) 3715 btrfs_err(fs_info, 3716 "error loading props for ino %llu (root %llu): %d", 3717 btrfs_ino(BTRFS_I(inode)), 3718 root->root_key.objectid, ret); 3719 } 3720 if (path != in_path) 3721 btrfs_free_path(path); 3722 3723 if (!maybe_acls) 3724 cache_no_acl(inode); 3725 3726 switch (inode->i_mode & S_IFMT) { 3727 case S_IFREG: 3728 inode->i_mapping->a_ops = &btrfs_aops; 3729 inode->i_fop = &btrfs_file_operations; 3730 inode->i_op = &btrfs_file_inode_operations; 3731 break; 3732 case S_IFDIR: 3733 inode->i_fop = &btrfs_dir_file_operations; 3734 inode->i_op = &btrfs_dir_inode_operations; 3735 break; 3736 case S_IFLNK: 3737 inode->i_op = &btrfs_symlink_inode_operations; 3738 inode_nohighmem(inode); 3739 inode->i_mapping->a_ops = &btrfs_aops; 3740 break; 3741 default: 3742 inode->i_op = &btrfs_special_inode_operations; 3743 init_special_inode(inode, inode->i_mode, rdev); 3744 break; 3745 } 3746 3747 btrfs_sync_inode_flags_to_i_flags(inode); 3748 return 0; 3749 } 3750 3751 /* 3752 * given a leaf and an inode, copy the inode fields into the leaf 3753 */ 3754 static void fill_inode_item(struct btrfs_trans_handle *trans, 3755 struct extent_buffer *leaf, 3756 struct btrfs_inode_item *item, 3757 struct inode *inode) 3758 { 3759 struct btrfs_map_token token; 3760 3761 btrfs_init_map_token(&token, leaf); 3762 3763 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3764 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3765 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3766 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3767 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3768 3769 btrfs_set_token_timespec_sec(&token, &item->atime, 3770 inode->i_atime.tv_sec); 3771 btrfs_set_token_timespec_nsec(&token, &item->atime, 3772 inode->i_atime.tv_nsec); 3773 3774 btrfs_set_token_timespec_sec(&token, &item->mtime, 3775 inode->i_mtime.tv_sec); 3776 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3777 inode->i_mtime.tv_nsec); 3778 3779 btrfs_set_token_timespec_sec(&token, &item->ctime, 3780 inode->i_ctime.tv_sec); 3781 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3782 inode->i_ctime.tv_nsec); 3783 3784 btrfs_set_token_timespec_sec(&token, &item->otime, 3785 BTRFS_I(inode)->i_otime.tv_sec); 3786 btrfs_set_token_timespec_nsec(&token, &item->otime, 3787 BTRFS_I(inode)->i_otime.tv_nsec); 3788 3789 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3790 btrfs_set_token_inode_generation(&token, item, 3791 BTRFS_I(inode)->generation); 3792 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3793 btrfs_set_token_inode_transid(&token, item, trans->transid); 3794 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3795 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3796 btrfs_set_token_inode_block_group(&token, item, 0); 3797 } 3798 3799 /* 3800 * copy everything in the in-memory inode into the btree. 3801 */ 3802 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3803 struct btrfs_root *root, 3804 struct btrfs_inode *inode) 3805 { 3806 struct btrfs_inode_item *inode_item; 3807 struct btrfs_path *path; 3808 struct extent_buffer *leaf; 3809 int ret; 3810 3811 path = btrfs_alloc_path(); 3812 if (!path) 3813 return -ENOMEM; 3814 3815 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 3816 if (ret) { 3817 if (ret > 0) 3818 ret = -ENOENT; 3819 goto failed; 3820 } 3821 3822 leaf = path->nodes[0]; 3823 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3824 struct btrfs_inode_item); 3825 3826 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3827 btrfs_mark_buffer_dirty(leaf); 3828 btrfs_set_inode_last_trans(trans, inode); 3829 ret = 0; 3830 failed: 3831 btrfs_free_path(path); 3832 return ret; 3833 } 3834 3835 /* 3836 * copy everything in the in-memory inode into the btree. 3837 */ 3838 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3839 struct btrfs_root *root, 3840 struct btrfs_inode *inode) 3841 { 3842 struct btrfs_fs_info *fs_info = root->fs_info; 3843 int ret; 3844 3845 /* 3846 * If the inode is a free space inode, we can deadlock during commit 3847 * if we put it into the delayed code. 3848 * 3849 * The data relocation inode should also be directly updated 3850 * without delay 3851 */ 3852 if (!btrfs_is_free_space_inode(inode) 3853 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3854 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3855 btrfs_update_root_times(trans, root); 3856 3857 ret = btrfs_delayed_update_inode(trans, root, inode); 3858 if (!ret) 3859 btrfs_set_inode_last_trans(trans, inode); 3860 return ret; 3861 } 3862 3863 return btrfs_update_inode_item(trans, root, inode); 3864 } 3865 3866 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3867 struct btrfs_root *root, struct btrfs_inode *inode) 3868 { 3869 int ret; 3870 3871 ret = btrfs_update_inode(trans, root, inode); 3872 if (ret == -ENOSPC) 3873 return btrfs_update_inode_item(trans, root, inode); 3874 return ret; 3875 } 3876 3877 /* 3878 * unlink helper that gets used here in inode.c and in the tree logging 3879 * recovery code. It remove a link in a directory with a given name, and 3880 * also drops the back refs in the inode to the directory 3881 */ 3882 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3883 struct btrfs_root *root, 3884 struct btrfs_inode *dir, 3885 struct btrfs_inode *inode, 3886 const char *name, int name_len) 3887 { 3888 struct btrfs_fs_info *fs_info = root->fs_info; 3889 struct btrfs_path *path; 3890 int ret = 0; 3891 struct btrfs_dir_item *di; 3892 u64 index; 3893 u64 ino = btrfs_ino(inode); 3894 u64 dir_ino = btrfs_ino(dir); 3895 3896 path = btrfs_alloc_path(); 3897 if (!path) { 3898 ret = -ENOMEM; 3899 goto out; 3900 } 3901 3902 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3903 name, name_len, -1); 3904 if (IS_ERR_OR_NULL(di)) { 3905 ret = di ? PTR_ERR(di) : -ENOENT; 3906 goto err; 3907 } 3908 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3909 if (ret) 3910 goto err; 3911 btrfs_release_path(path); 3912 3913 /* 3914 * If we don't have dir index, we have to get it by looking up 3915 * the inode ref, since we get the inode ref, remove it directly, 3916 * it is unnecessary to do delayed deletion. 3917 * 3918 * But if we have dir index, needn't search inode ref to get it. 3919 * Since the inode ref is close to the inode item, it is better 3920 * that we delay to delete it, and just do this deletion when 3921 * we update the inode item. 3922 */ 3923 if (inode->dir_index) { 3924 ret = btrfs_delayed_delete_inode_ref(inode); 3925 if (!ret) { 3926 index = inode->dir_index; 3927 goto skip_backref; 3928 } 3929 } 3930 3931 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3932 dir_ino, &index); 3933 if (ret) { 3934 btrfs_info(fs_info, 3935 "failed to delete reference to %.*s, inode %llu parent %llu", 3936 name_len, name, ino, dir_ino); 3937 btrfs_abort_transaction(trans, ret); 3938 goto err; 3939 } 3940 skip_backref: 3941 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3942 if (ret) { 3943 btrfs_abort_transaction(trans, ret); 3944 goto err; 3945 } 3946 3947 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3948 dir_ino); 3949 if (ret != 0 && ret != -ENOENT) { 3950 btrfs_abort_transaction(trans, ret); 3951 goto err; 3952 } 3953 3954 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3955 index); 3956 if (ret == -ENOENT) 3957 ret = 0; 3958 else if (ret) 3959 btrfs_abort_transaction(trans, ret); 3960 3961 /* 3962 * If we have a pending delayed iput we could end up with the final iput 3963 * being run in btrfs-cleaner context. If we have enough of these built 3964 * up we can end up burning a lot of time in btrfs-cleaner without any 3965 * way to throttle the unlinks. Since we're currently holding a ref on 3966 * the inode we can run the delayed iput here without any issues as the 3967 * final iput won't be done until after we drop the ref we're currently 3968 * holding. 3969 */ 3970 btrfs_run_delayed_iput(fs_info, inode); 3971 err: 3972 btrfs_free_path(path); 3973 if (ret) 3974 goto out; 3975 3976 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3977 inode_inc_iversion(&inode->vfs_inode); 3978 inode_inc_iversion(&dir->vfs_inode); 3979 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3980 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3981 ret = btrfs_update_inode(trans, root, dir); 3982 out: 3983 return ret; 3984 } 3985 3986 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3987 struct btrfs_root *root, 3988 struct btrfs_inode *dir, struct btrfs_inode *inode, 3989 const char *name, int name_len) 3990 { 3991 int ret; 3992 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3993 if (!ret) { 3994 drop_nlink(&inode->vfs_inode); 3995 ret = btrfs_update_inode(trans, root, inode); 3996 } 3997 return ret; 3998 } 3999 4000 /* 4001 * helper to start transaction for unlink and rmdir. 4002 * 4003 * unlink and rmdir are special in btrfs, they do not always free space, so 4004 * if we cannot make our reservations the normal way try and see if there is 4005 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4006 * allow the unlink to occur. 4007 */ 4008 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4009 { 4010 struct btrfs_root *root = BTRFS_I(dir)->root; 4011 4012 /* 4013 * 1 for the possible orphan item 4014 * 1 for the dir item 4015 * 1 for the dir index 4016 * 1 for the inode ref 4017 * 1 for the inode 4018 */ 4019 return btrfs_start_transaction_fallback_global_rsv(root, 5); 4020 } 4021 4022 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4023 { 4024 struct btrfs_root *root = BTRFS_I(dir)->root; 4025 struct btrfs_trans_handle *trans; 4026 struct inode *inode = d_inode(dentry); 4027 int ret; 4028 4029 trans = __unlink_start_trans(dir); 4030 if (IS_ERR(trans)) 4031 return PTR_ERR(trans); 4032 4033 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4034 0); 4035 4036 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4037 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4038 dentry->d_name.len); 4039 if (ret) 4040 goto out; 4041 4042 if (inode->i_nlink == 0) { 4043 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4044 if (ret) 4045 goto out; 4046 } 4047 4048 out: 4049 btrfs_end_transaction(trans); 4050 btrfs_btree_balance_dirty(root->fs_info); 4051 return ret; 4052 } 4053 4054 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4055 struct inode *dir, struct dentry *dentry) 4056 { 4057 struct btrfs_root *root = BTRFS_I(dir)->root; 4058 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4059 struct btrfs_path *path; 4060 struct extent_buffer *leaf; 4061 struct btrfs_dir_item *di; 4062 struct btrfs_key key; 4063 const char *name = dentry->d_name.name; 4064 int name_len = dentry->d_name.len; 4065 u64 index; 4066 int ret; 4067 u64 objectid; 4068 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4069 4070 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4071 objectid = inode->root->root_key.objectid; 4072 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4073 objectid = inode->location.objectid; 4074 } else { 4075 WARN_ON(1); 4076 return -EINVAL; 4077 } 4078 4079 path = btrfs_alloc_path(); 4080 if (!path) 4081 return -ENOMEM; 4082 4083 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4084 name, name_len, -1); 4085 if (IS_ERR_OR_NULL(di)) { 4086 ret = di ? PTR_ERR(di) : -ENOENT; 4087 goto out; 4088 } 4089 4090 leaf = path->nodes[0]; 4091 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4092 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4093 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4094 if (ret) { 4095 btrfs_abort_transaction(trans, ret); 4096 goto out; 4097 } 4098 btrfs_release_path(path); 4099 4100 /* 4101 * This is a placeholder inode for a subvolume we didn't have a 4102 * reference to at the time of the snapshot creation. In the meantime 4103 * we could have renamed the real subvol link into our snapshot, so 4104 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 4105 * Instead simply lookup the dir_index_item for this entry so we can 4106 * remove it. Otherwise we know we have a ref to the root and we can 4107 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4108 */ 4109 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4110 di = btrfs_search_dir_index_item(root, path, dir_ino, 4111 name, name_len); 4112 if (IS_ERR_OR_NULL(di)) { 4113 if (!di) 4114 ret = -ENOENT; 4115 else 4116 ret = PTR_ERR(di); 4117 btrfs_abort_transaction(trans, ret); 4118 goto out; 4119 } 4120 4121 leaf = path->nodes[0]; 4122 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4123 index = key.offset; 4124 btrfs_release_path(path); 4125 } else { 4126 ret = btrfs_del_root_ref(trans, objectid, 4127 root->root_key.objectid, dir_ino, 4128 &index, name, name_len); 4129 if (ret) { 4130 btrfs_abort_transaction(trans, ret); 4131 goto out; 4132 } 4133 } 4134 4135 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4136 if (ret) { 4137 btrfs_abort_transaction(trans, ret); 4138 goto out; 4139 } 4140 4141 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4142 inode_inc_iversion(dir); 4143 dir->i_mtime = dir->i_ctime = current_time(dir); 4144 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4145 if (ret) 4146 btrfs_abort_transaction(trans, ret); 4147 out: 4148 btrfs_free_path(path); 4149 return ret; 4150 } 4151 4152 /* 4153 * Helper to check if the subvolume references other subvolumes or if it's 4154 * default. 4155 */ 4156 static noinline int may_destroy_subvol(struct btrfs_root *root) 4157 { 4158 struct btrfs_fs_info *fs_info = root->fs_info; 4159 struct btrfs_path *path; 4160 struct btrfs_dir_item *di; 4161 struct btrfs_key key; 4162 u64 dir_id; 4163 int ret; 4164 4165 path = btrfs_alloc_path(); 4166 if (!path) 4167 return -ENOMEM; 4168 4169 /* Make sure this root isn't set as the default subvol */ 4170 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4171 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4172 dir_id, "default", 7, 0); 4173 if (di && !IS_ERR(di)) { 4174 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4175 if (key.objectid == root->root_key.objectid) { 4176 ret = -EPERM; 4177 btrfs_err(fs_info, 4178 "deleting default subvolume %llu is not allowed", 4179 key.objectid); 4180 goto out; 4181 } 4182 btrfs_release_path(path); 4183 } 4184 4185 key.objectid = root->root_key.objectid; 4186 key.type = BTRFS_ROOT_REF_KEY; 4187 key.offset = (u64)-1; 4188 4189 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4190 if (ret < 0) 4191 goto out; 4192 BUG_ON(ret == 0); 4193 4194 ret = 0; 4195 if (path->slots[0] > 0) { 4196 path->slots[0]--; 4197 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4198 if (key.objectid == root->root_key.objectid && 4199 key.type == BTRFS_ROOT_REF_KEY) 4200 ret = -ENOTEMPTY; 4201 } 4202 out: 4203 btrfs_free_path(path); 4204 return ret; 4205 } 4206 4207 /* Delete all dentries for inodes belonging to the root */ 4208 static void btrfs_prune_dentries(struct btrfs_root *root) 4209 { 4210 struct btrfs_fs_info *fs_info = root->fs_info; 4211 struct rb_node *node; 4212 struct rb_node *prev; 4213 struct btrfs_inode *entry; 4214 struct inode *inode; 4215 u64 objectid = 0; 4216 4217 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4218 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4219 4220 spin_lock(&root->inode_lock); 4221 again: 4222 node = root->inode_tree.rb_node; 4223 prev = NULL; 4224 while (node) { 4225 prev = node; 4226 entry = rb_entry(node, struct btrfs_inode, rb_node); 4227 4228 if (objectid < btrfs_ino(entry)) 4229 node = node->rb_left; 4230 else if (objectid > btrfs_ino(entry)) 4231 node = node->rb_right; 4232 else 4233 break; 4234 } 4235 if (!node) { 4236 while (prev) { 4237 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4238 if (objectid <= btrfs_ino(entry)) { 4239 node = prev; 4240 break; 4241 } 4242 prev = rb_next(prev); 4243 } 4244 } 4245 while (node) { 4246 entry = rb_entry(node, struct btrfs_inode, rb_node); 4247 objectid = btrfs_ino(entry) + 1; 4248 inode = igrab(&entry->vfs_inode); 4249 if (inode) { 4250 spin_unlock(&root->inode_lock); 4251 if (atomic_read(&inode->i_count) > 1) 4252 d_prune_aliases(inode); 4253 /* 4254 * btrfs_drop_inode will have it removed from the inode 4255 * cache when its usage count hits zero. 4256 */ 4257 iput(inode); 4258 cond_resched(); 4259 spin_lock(&root->inode_lock); 4260 goto again; 4261 } 4262 4263 if (cond_resched_lock(&root->inode_lock)) 4264 goto again; 4265 4266 node = rb_next(node); 4267 } 4268 spin_unlock(&root->inode_lock); 4269 } 4270 4271 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4272 { 4273 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4274 struct btrfs_root *root = BTRFS_I(dir)->root; 4275 struct inode *inode = d_inode(dentry); 4276 struct btrfs_root *dest = BTRFS_I(inode)->root; 4277 struct btrfs_trans_handle *trans; 4278 struct btrfs_block_rsv block_rsv; 4279 u64 root_flags; 4280 int ret; 4281 4282 /* 4283 * Don't allow to delete a subvolume with send in progress. This is 4284 * inside the inode lock so the error handling that has to drop the bit 4285 * again is not run concurrently. 4286 */ 4287 spin_lock(&dest->root_item_lock); 4288 if (dest->send_in_progress) { 4289 spin_unlock(&dest->root_item_lock); 4290 btrfs_warn(fs_info, 4291 "attempt to delete subvolume %llu during send", 4292 dest->root_key.objectid); 4293 return -EPERM; 4294 } 4295 root_flags = btrfs_root_flags(&dest->root_item); 4296 btrfs_set_root_flags(&dest->root_item, 4297 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4298 spin_unlock(&dest->root_item_lock); 4299 4300 down_write(&fs_info->subvol_sem); 4301 4302 ret = may_destroy_subvol(dest); 4303 if (ret) 4304 goto out_up_write; 4305 4306 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4307 /* 4308 * One for dir inode, 4309 * two for dir entries, 4310 * two for root ref/backref. 4311 */ 4312 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4313 if (ret) 4314 goto out_up_write; 4315 4316 trans = btrfs_start_transaction(root, 0); 4317 if (IS_ERR(trans)) { 4318 ret = PTR_ERR(trans); 4319 goto out_release; 4320 } 4321 trans->block_rsv = &block_rsv; 4322 trans->bytes_reserved = block_rsv.size; 4323 4324 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4325 4326 ret = btrfs_unlink_subvol(trans, dir, dentry); 4327 if (ret) { 4328 btrfs_abort_transaction(trans, ret); 4329 goto out_end_trans; 4330 } 4331 4332 ret = btrfs_record_root_in_trans(trans, dest); 4333 if (ret) { 4334 btrfs_abort_transaction(trans, ret); 4335 goto out_end_trans; 4336 } 4337 4338 memset(&dest->root_item.drop_progress, 0, 4339 sizeof(dest->root_item.drop_progress)); 4340 btrfs_set_root_drop_level(&dest->root_item, 0); 4341 btrfs_set_root_refs(&dest->root_item, 0); 4342 4343 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4344 ret = btrfs_insert_orphan_item(trans, 4345 fs_info->tree_root, 4346 dest->root_key.objectid); 4347 if (ret) { 4348 btrfs_abort_transaction(trans, ret); 4349 goto out_end_trans; 4350 } 4351 } 4352 4353 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4354 BTRFS_UUID_KEY_SUBVOL, 4355 dest->root_key.objectid); 4356 if (ret && ret != -ENOENT) { 4357 btrfs_abort_transaction(trans, ret); 4358 goto out_end_trans; 4359 } 4360 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4361 ret = btrfs_uuid_tree_remove(trans, 4362 dest->root_item.received_uuid, 4363 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4364 dest->root_key.objectid); 4365 if (ret && ret != -ENOENT) { 4366 btrfs_abort_transaction(trans, ret); 4367 goto out_end_trans; 4368 } 4369 } 4370 4371 free_anon_bdev(dest->anon_dev); 4372 dest->anon_dev = 0; 4373 out_end_trans: 4374 trans->block_rsv = NULL; 4375 trans->bytes_reserved = 0; 4376 ret = btrfs_end_transaction(trans); 4377 inode->i_flags |= S_DEAD; 4378 out_release: 4379 btrfs_subvolume_release_metadata(root, &block_rsv); 4380 out_up_write: 4381 up_write(&fs_info->subvol_sem); 4382 if (ret) { 4383 spin_lock(&dest->root_item_lock); 4384 root_flags = btrfs_root_flags(&dest->root_item); 4385 btrfs_set_root_flags(&dest->root_item, 4386 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4387 spin_unlock(&dest->root_item_lock); 4388 } else { 4389 d_invalidate(dentry); 4390 btrfs_prune_dentries(dest); 4391 ASSERT(dest->send_in_progress == 0); 4392 } 4393 4394 return ret; 4395 } 4396 4397 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4398 { 4399 struct inode *inode = d_inode(dentry); 4400 int err = 0; 4401 struct btrfs_root *root = BTRFS_I(dir)->root; 4402 struct btrfs_trans_handle *trans; 4403 u64 last_unlink_trans; 4404 4405 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4406 return -ENOTEMPTY; 4407 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4408 return btrfs_delete_subvolume(dir, dentry); 4409 4410 trans = __unlink_start_trans(dir); 4411 if (IS_ERR(trans)) 4412 return PTR_ERR(trans); 4413 4414 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4415 err = btrfs_unlink_subvol(trans, dir, dentry); 4416 goto out; 4417 } 4418 4419 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4420 if (err) 4421 goto out; 4422 4423 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4424 4425 /* now the directory is empty */ 4426 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4427 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4428 dentry->d_name.len); 4429 if (!err) { 4430 btrfs_i_size_write(BTRFS_I(inode), 0); 4431 /* 4432 * Propagate the last_unlink_trans value of the deleted dir to 4433 * its parent directory. This is to prevent an unrecoverable 4434 * log tree in the case we do something like this: 4435 * 1) create dir foo 4436 * 2) create snapshot under dir foo 4437 * 3) delete the snapshot 4438 * 4) rmdir foo 4439 * 5) mkdir foo 4440 * 6) fsync foo or some file inside foo 4441 */ 4442 if (last_unlink_trans >= trans->transid) 4443 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4444 } 4445 out: 4446 btrfs_end_transaction(trans); 4447 btrfs_btree_balance_dirty(root->fs_info); 4448 4449 return err; 4450 } 4451 4452 /* 4453 * Return this if we need to call truncate_block for the last bit of the 4454 * truncate. 4455 */ 4456 #define NEED_TRUNCATE_BLOCK 1 4457 4458 /* 4459 * this can truncate away extent items, csum items and directory items. 4460 * It starts at a high offset and removes keys until it can't find 4461 * any higher than new_size 4462 * 4463 * csum items that cross the new i_size are truncated to the new size 4464 * as well. 4465 * 4466 * min_type is the minimum key type to truncate down to. If set to 0, this 4467 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4468 */ 4469 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4470 struct btrfs_root *root, 4471 struct btrfs_inode *inode, 4472 u64 new_size, u32 min_type) 4473 { 4474 struct btrfs_fs_info *fs_info = root->fs_info; 4475 struct btrfs_path *path; 4476 struct extent_buffer *leaf; 4477 struct btrfs_file_extent_item *fi; 4478 struct btrfs_key key; 4479 struct btrfs_key found_key; 4480 u64 extent_start = 0; 4481 u64 extent_num_bytes = 0; 4482 u64 extent_offset = 0; 4483 u64 item_end = 0; 4484 u64 last_size = new_size; 4485 u32 found_type = (u8)-1; 4486 int found_extent; 4487 int del_item; 4488 int pending_del_nr = 0; 4489 int pending_del_slot = 0; 4490 int extent_type = -1; 4491 int ret; 4492 u64 ino = btrfs_ino(inode); 4493 u64 bytes_deleted = 0; 4494 bool be_nice = false; 4495 bool should_throttle = false; 4496 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4497 struct extent_state *cached_state = NULL; 4498 4499 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4500 4501 /* 4502 * For non-free space inodes and non-shareable roots, we want to back 4503 * off from time to time. This means all inodes in subvolume roots, 4504 * reloc roots, and data reloc roots. 4505 */ 4506 if (!btrfs_is_free_space_inode(inode) && 4507 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4508 be_nice = true; 4509 4510 path = btrfs_alloc_path(); 4511 if (!path) 4512 return -ENOMEM; 4513 path->reada = READA_BACK; 4514 4515 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4516 lock_extent_bits(&inode->io_tree, lock_start, (u64)-1, 4517 &cached_state); 4518 4519 /* 4520 * We want to drop from the next block forward in case this 4521 * new size is not block aligned since we will be keeping the 4522 * last block of the extent just the way it is. 4523 */ 4524 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4525 fs_info->sectorsize), 4526 (u64)-1, 0); 4527 } 4528 4529 /* 4530 * This function is also used to drop the items in the log tree before 4531 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4532 * it is used to drop the logged items. So we shouldn't kill the delayed 4533 * items. 4534 */ 4535 if (min_type == 0 && root == inode->root) 4536 btrfs_kill_delayed_inode_items(inode); 4537 4538 key.objectid = ino; 4539 key.offset = (u64)-1; 4540 key.type = (u8)-1; 4541 4542 search_again: 4543 /* 4544 * with a 16K leaf size and 128MB extents, you can actually queue 4545 * up a huge file in a single leaf. Most of the time that 4546 * bytes_deleted is > 0, it will be huge by the time we get here 4547 */ 4548 if (be_nice && bytes_deleted > SZ_32M && 4549 btrfs_should_end_transaction(trans)) { 4550 ret = -EAGAIN; 4551 goto out; 4552 } 4553 4554 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4555 if (ret < 0) 4556 goto out; 4557 4558 if (ret > 0) { 4559 ret = 0; 4560 /* there are no items in the tree for us to truncate, we're 4561 * done 4562 */ 4563 if (path->slots[0] == 0) 4564 goto out; 4565 path->slots[0]--; 4566 } 4567 4568 while (1) { 4569 u64 clear_start = 0, clear_len = 0; 4570 4571 fi = NULL; 4572 leaf = path->nodes[0]; 4573 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4574 found_type = found_key.type; 4575 4576 if (found_key.objectid != ino) 4577 break; 4578 4579 if (found_type < min_type) 4580 break; 4581 4582 item_end = found_key.offset; 4583 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4584 fi = btrfs_item_ptr(leaf, path->slots[0], 4585 struct btrfs_file_extent_item); 4586 extent_type = btrfs_file_extent_type(leaf, fi); 4587 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4588 item_end += 4589 btrfs_file_extent_num_bytes(leaf, fi); 4590 4591 trace_btrfs_truncate_show_fi_regular( 4592 inode, leaf, fi, found_key.offset); 4593 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4594 item_end += btrfs_file_extent_ram_bytes(leaf, 4595 fi); 4596 4597 trace_btrfs_truncate_show_fi_inline( 4598 inode, leaf, fi, path->slots[0], 4599 found_key.offset); 4600 } 4601 item_end--; 4602 } 4603 if (found_type > min_type) { 4604 del_item = 1; 4605 } else { 4606 if (item_end < new_size) 4607 break; 4608 if (found_key.offset >= new_size) 4609 del_item = 1; 4610 else 4611 del_item = 0; 4612 } 4613 found_extent = 0; 4614 /* FIXME, shrink the extent if the ref count is only 1 */ 4615 if (found_type != BTRFS_EXTENT_DATA_KEY) 4616 goto delete; 4617 4618 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4619 u64 num_dec; 4620 4621 clear_start = found_key.offset; 4622 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4623 if (!del_item) { 4624 u64 orig_num_bytes = 4625 btrfs_file_extent_num_bytes(leaf, fi); 4626 extent_num_bytes = ALIGN(new_size - 4627 found_key.offset, 4628 fs_info->sectorsize); 4629 clear_start = ALIGN(new_size, fs_info->sectorsize); 4630 btrfs_set_file_extent_num_bytes(leaf, fi, 4631 extent_num_bytes); 4632 num_dec = (orig_num_bytes - 4633 extent_num_bytes); 4634 if (test_bit(BTRFS_ROOT_SHAREABLE, 4635 &root->state) && 4636 extent_start != 0) 4637 inode_sub_bytes(&inode->vfs_inode, 4638 num_dec); 4639 btrfs_mark_buffer_dirty(leaf); 4640 } else { 4641 extent_num_bytes = 4642 btrfs_file_extent_disk_num_bytes(leaf, 4643 fi); 4644 extent_offset = found_key.offset - 4645 btrfs_file_extent_offset(leaf, fi); 4646 4647 /* FIXME blocksize != 4096 */ 4648 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4649 if (extent_start != 0) { 4650 found_extent = 1; 4651 if (test_bit(BTRFS_ROOT_SHAREABLE, 4652 &root->state)) 4653 inode_sub_bytes(&inode->vfs_inode, 4654 num_dec); 4655 } 4656 } 4657 clear_len = num_dec; 4658 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4659 /* 4660 * we can't truncate inline items that have had 4661 * special encodings 4662 */ 4663 if (!del_item && 4664 btrfs_file_extent_encryption(leaf, fi) == 0 && 4665 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4666 btrfs_file_extent_compression(leaf, fi) == 0) { 4667 u32 size = (u32)(new_size - found_key.offset); 4668 4669 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4670 size = btrfs_file_extent_calc_inline_size(size); 4671 btrfs_truncate_item(path, size, 1); 4672 } else if (!del_item) { 4673 /* 4674 * We have to bail so the last_size is set to 4675 * just before this extent. 4676 */ 4677 ret = NEED_TRUNCATE_BLOCK; 4678 break; 4679 } else { 4680 /* 4681 * Inline extents are special, we just treat 4682 * them as a full sector worth in the file 4683 * extent tree just for simplicity sake. 4684 */ 4685 clear_len = fs_info->sectorsize; 4686 } 4687 4688 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4689 inode_sub_bytes(&inode->vfs_inode, 4690 item_end + 1 - new_size); 4691 } 4692 delete: 4693 /* 4694 * We use btrfs_truncate_inode_items() to clean up log trees for 4695 * multiple fsyncs, and in this case we don't want to clear the 4696 * file extent range because it's just the log. 4697 */ 4698 if (root == inode->root) { 4699 ret = btrfs_inode_clear_file_extent_range(inode, 4700 clear_start, clear_len); 4701 if (ret) { 4702 btrfs_abort_transaction(trans, ret); 4703 break; 4704 } 4705 } 4706 4707 if (del_item) 4708 last_size = found_key.offset; 4709 else 4710 last_size = new_size; 4711 if (del_item) { 4712 if (!pending_del_nr) { 4713 /* no pending yet, add ourselves */ 4714 pending_del_slot = path->slots[0]; 4715 pending_del_nr = 1; 4716 } else if (pending_del_nr && 4717 path->slots[0] + 1 == pending_del_slot) { 4718 /* hop on the pending chunk */ 4719 pending_del_nr++; 4720 pending_del_slot = path->slots[0]; 4721 } else { 4722 BUG(); 4723 } 4724 } else { 4725 break; 4726 } 4727 should_throttle = false; 4728 4729 if (found_extent && 4730 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4731 struct btrfs_ref ref = { 0 }; 4732 4733 bytes_deleted += extent_num_bytes; 4734 4735 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4736 extent_start, extent_num_bytes, 0); 4737 ref.real_root = root->root_key.objectid; 4738 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4739 ino, extent_offset); 4740 ret = btrfs_free_extent(trans, &ref); 4741 if (ret) { 4742 btrfs_abort_transaction(trans, ret); 4743 break; 4744 } 4745 if (be_nice) { 4746 if (btrfs_should_throttle_delayed_refs(trans)) 4747 should_throttle = true; 4748 } 4749 } 4750 4751 if (found_type == BTRFS_INODE_ITEM_KEY) 4752 break; 4753 4754 if (path->slots[0] == 0 || 4755 path->slots[0] != pending_del_slot || 4756 should_throttle) { 4757 if (pending_del_nr) { 4758 ret = btrfs_del_items(trans, root, path, 4759 pending_del_slot, 4760 pending_del_nr); 4761 if (ret) { 4762 btrfs_abort_transaction(trans, ret); 4763 break; 4764 } 4765 pending_del_nr = 0; 4766 } 4767 btrfs_release_path(path); 4768 4769 /* 4770 * We can generate a lot of delayed refs, so we need to 4771 * throttle every once and a while and make sure we're 4772 * adding enough space to keep up with the work we are 4773 * generating. Since we hold a transaction here we 4774 * can't flush, and we don't want to FLUSH_LIMIT because 4775 * we could have generated too many delayed refs to 4776 * actually allocate, so just bail if we're short and 4777 * let the normal reservation dance happen higher up. 4778 */ 4779 if (should_throttle) { 4780 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4781 BTRFS_RESERVE_NO_FLUSH); 4782 if (ret) { 4783 ret = -EAGAIN; 4784 break; 4785 } 4786 } 4787 goto search_again; 4788 } else { 4789 path->slots[0]--; 4790 } 4791 } 4792 out: 4793 if (ret >= 0 && pending_del_nr) { 4794 int err; 4795 4796 err = btrfs_del_items(trans, root, path, pending_del_slot, 4797 pending_del_nr); 4798 if (err) { 4799 btrfs_abort_transaction(trans, err); 4800 ret = err; 4801 } 4802 } 4803 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4804 ASSERT(last_size >= new_size); 4805 if (!ret && last_size > new_size) 4806 last_size = new_size; 4807 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4808 unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1, 4809 &cached_state); 4810 } 4811 4812 btrfs_free_path(path); 4813 return ret; 4814 } 4815 4816 /* 4817 * btrfs_truncate_block - read, zero a chunk and write a block 4818 * @inode - inode that we're zeroing 4819 * @from - the offset to start zeroing 4820 * @len - the length to zero, 0 to zero the entire range respective to the 4821 * offset 4822 * @front - zero up to the offset instead of from the offset on 4823 * 4824 * This will find the block for the "from" offset and cow the block and zero the 4825 * part we want to zero. This is used with truncate and hole punching. 4826 */ 4827 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4828 int front) 4829 { 4830 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4831 struct address_space *mapping = inode->vfs_inode.i_mapping; 4832 struct extent_io_tree *io_tree = &inode->io_tree; 4833 struct btrfs_ordered_extent *ordered; 4834 struct extent_state *cached_state = NULL; 4835 struct extent_changeset *data_reserved = NULL; 4836 char *kaddr; 4837 bool only_release_metadata = false; 4838 u32 blocksize = fs_info->sectorsize; 4839 pgoff_t index = from >> PAGE_SHIFT; 4840 unsigned offset = from & (blocksize - 1); 4841 struct page *page; 4842 gfp_t mask = btrfs_alloc_write_mask(mapping); 4843 size_t write_bytes = blocksize; 4844 int ret = 0; 4845 u64 block_start; 4846 u64 block_end; 4847 4848 if (IS_ALIGNED(offset, blocksize) && 4849 (!len || IS_ALIGNED(len, blocksize))) 4850 goto out; 4851 4852 block_start = round_down(from, blocksize); 4853 block_end = block_start + blocksize - 1; 4854 4855 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4856 blocksize); 4857 if (ret < 0) { 4858 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 4859 /* For nocow case, no need to reserve data space */ 4860 only_release_metadata = true; 4861 } else { 4862 goto out; 4863 } 4864 } 4865 ret = btrfs_delalloc_reserve_metadata(inode, blocksize); 4866 if (ret < 0) { 4867 if (!only_release_metadata) 4868 btrfs_free_reserved_data_space(inode, data_reserved, 4869 block_start, blocksize); 4870 goto out; 4871 } 4872 again: 4873 page = find_or_create_page(mapping, index, mask); 4874 if (!page) { 4875 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4876 blocksize, true); 4877 btrfs_delalloc_release_extents(inode, blocksize); 4878 ret = -ENOMEM; 4879 goto out; 4880 } 4881 ret = set_page_extent_mapped(page); 4882 if (ret < 0) 4883 goto out_unlock; 4884 4885 if (!PageUptodate(page)) { 4886 ret = btrfs_readpage(NULL, page); 4887 lock_page(page); 4888 if (page->mapping != mapping) { 4889 unlock_page(page); 4890 put_page(page); 4891 goto again; 4892 } 4893 if (!PageUptodate(page)) { 4894 ret = -EIO; 4895 goto out_unlock; 4896 } 4897 } 4898 wait_on_page_writeback(page); 4899 4900 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4901 4902 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4903 if (ordered) { 4904 unlock_extent_cached(io_tree, block_start, block_end, 4905 &cached_state); 4906 unlock_page(page); 4907 put_page(page); 4908 btrfs_start_ordered_extent(ordered, 1); 4909 btrfs_put_ordered_extent(ordered); 4910 goto again; 4911 } 4912 4913 clear_extent_bit(&inode->io_tree, block_start, block_end, 4914 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4915 0, 0, &cached_state); 4916 4917 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4918 &cached_state); 4919 if (ret) { 4920 unlock_extent_cached(io_tree, block_start, block_end, 4921 &cached_state); 4922 goto out_unlock; 4923 } 4924 4925 if (offset != blocksize) { 4926 if (!len) 4927 len = blocksize - offset; 4928 kaddr = kmap(page); 4929 if (front) 4930 memset(kaddr + (block_start - page_offset(page)), 4931 0, offset); 4932 else 4933 memset(kaddr + (block_start - page_offset(page)) + offset, 4934 0, len); 4935 flush_dcache_page(page); 4936 kunmap(page); 4937 } 4938 ClearPageChecked(page); 4939 set_page_dirty(page); 4940 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4941 4942 if (only_release_metadata) 4943 set_extent_bit(&inode->io_tree, block_start, block_end, 4944 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 4945 4946 out_unlock: 4947 if (ret) { 4948 if (only_release_metadata) 4949 btrfs_delalloc_release_metadata(inode, blocksize, true); 4950 else 4951 btrfs_delalloc_release_space(inode, data_reserved, 4952 block_start, blocksize, true); 4953 } 4954 btrfs_delalloc_release_extents(inode, blocksize); 4955 unlock_page(page); 4956 put_page(page); 4957 out: 4958 if (only_release_metadata) 4959 btrfs_check_nocow_unlock(inode); 4960 extent_changeset_free(data_reserved); 4961 return ret; 4962 } 4963 4964 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4965 u64 offset, u64 len) 4966 { 4967 struct btrfs_fs_info *fs_info = root->fs_info; 4968 struct btrfs_trans_handle *trans; 4969 struct btrfs_drop_extents_args drop_args = { 0 }; 4970 int ret; 4971 4972 /* 4973 * Still need to make sure the inode looks like it's been updated so 4974 * that any holes get logged if we fsync. 4975 */ 4976 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4977 inode->last_trans = fs_info->generation; 4978 inode->last_sub_trans = root->log_transid; 4979 inode->last_log_commit = root->last_log_commit; 4980 return 0; 4981 } 4982 4983 /* 4984 * 1 - for the one we're dropping 4985 * 1 - for the one we're adding 4986 * 1 - for updating the inode. 4987 */ 4988 trans = btrfs_start_transaction(root, 3); 4989 if (IS_ERR(trans)) 4990 return PTR_ERR(trans); 4991 4992 drop_args.start = offset; 4993 drop_args.end = offset + len; 4994 drop_args.drop_cache = true; 4995 4996 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4997 if (ret) { 4998 btrfs_abort_transaction(trans, ret); 4999 btrfs_end_transaction(trans); 5000 return ret; 5001 } 5002 5003 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 5004 offset, 0, 0, len, 0, len, 0, 0, 0); 5005 if (ret) { 5006 btrfs_abort_transaction(trans, ret); 5007 } else { 5008 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5009 btrfs_update_inode(trans, root, inode); 5010 } 5011 btrfs_end_transaction(trans); 5012 return ret; 5013 } 5014 5015 /* 5016 * This function puts in dummy file extents for the area we're creating a hole 5017 * for. So if we are truncating this file to a larger size we need to insert 5018 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5019 * the range between oldsize and size 5020 */ 5021 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5022 { 5023 struct btrfs_root *root = inode->root; 5024 struct btrfs_fs_info *fs_info = root->fs_info; 5025 struct extent_io_tree *io_tree = &inode->io_tree; 5026 struct extent_map *em = NULL; 5027 struct extent_state *cached_state = NULL; 5028 struct extent_map_tree *em_tree = &inode->extent_tree; 5029 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5030 u64 block_end = ALIGN(size, fs_info->sectorsize); 5031 u64 last_byte; 5032 u64 cur_offset; 5033 u64 hole_size; 5034 int err = 0; 5035 5036 /* 5037 * If our size started in the middle of a block we need to zero out the 5038 * rest of the block before we expand the i_size, otherwise we could 5039 * expose stale data. 5040 */ 5041 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5042 if (err) 5043 return err; 5044 5045 if (size <= hole_start) 5046 return 0; 5047 5048 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5049 &cached_state); 5050 cur_offset = hole_start; 5051 while (1) { 5052 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5053 block_end - cur_offset); 5054 if (IS_ERR(em)) { 5055 err = PTR_ERR(em); 5056 em = NULL; 5057 break; 5058 } 5059 last_byte = min(extent_map_end(em), block_end); 5060 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5061 hole_size = last_byte - cur_offset; 5062 5063 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5064 struct extent_map *hole_em; 5065 5066 err = maybe_insert_hole(root, inode, cur_offset, 5067 hole_size); 5068 if (err) 5069 break; 5070 5071 err = btrfs_inode_set_file_extent_range(inode, 5072 cur_offset, hole_size); 5073 if (err) 5074 break; 5075 5076 btrfs_drop_extent_cache(inode, cur_offset, 5077 cur_offset + hole_size - 1, 0); 5078 hole_em = alloc_extent_map(); 5079 if (!hole_em) { 5080 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5081 &inode->runtime_flags); 5082 goto next; 5083 } 5084 hole_em->start = cur_offset; 5085 hole_em->len = hole_size; 5086 hole_em->orig_start = cur_offset; 5087 5088 hole_em->block_start = EXTENT_MAP_HOLE; 5089 hole_em->block_len = 0; 5090 hole_em->orig_block_len = 0; 5091 hole_em->ram_bytes = hole_size; 5092 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5093 hole_em->generation = fs_info->generation; 5094 5095 while (1) { 5096 write_lock(&em_tree->lock); 5097 err = add_extent_mapping(em_tree, hole_em, 1); 5098 write_unlock(&em_tree->lock); 5099 if (err != -EEXIST) 5100 break; 5101 btrfs_drop_extent_cache(inode, cur_offset, 5102 cur_offset + 5103 hole_size - 1, 0); 5104 } 5105 free_extent_map(hole_em); 5106 } else { 5107 err = btrfs_inode_set_file_extent_range(inode, 5108 cur_offset, hole_size); 5109 if (err) 5110 break; 5111 } 5112 next: 5113 free_extent_map(em); 5114 em = NULL; 5115 cur_offset = last_byte; 5116 if (cur_offset >= block_end) 5117 break; 5118 } 5119 free_extent_map(em); 5120 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5121 return err; 5122 } 5123 5124 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5125 { 5126 struct btrfs_root *root = BTRFS_I(inode)->root; 5127 struct btrfs_trans_handle *trans; 5128 loff_t oldsize = i_size_read(inode); 5129 loff_t newsize = attr->ia_size; 5130 int mask = attr->ia_valid; 5131 int ret; 5132 5133 /* 5134 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5135 * special case where we need to update the times despite not having 5136 * these flags set. For all other operations the VFS set these flags 5137 * explicitly if it wants a timestamp update. 5138 */ 5139 if (newsize != oldsize) { 5140 inode_inc_iversion(inode); 5141 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5142 inode->i_ctime = inode->i_mtime = 5143 current_time(inode); 5144 } 5145 5146 if (newsize > oldsize) { 5147 /* 5148 * Don't do an expanding truncate while snapshotting is ongoing. 5149 * This is to ensure the snapshot captures a fully consistent 5150 * state of this file - if the snapshot captures this expanding 5151 * truncation, it must capture all writes that happened before 5152 * this truncation. 5153 */ 5154 btrfs_drew_write_lock(&root->snapshot_lock); 5155 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5156 if (ret) { 5157 btrfs_drew_write_unlock(&root->snapshot_lock); 5158 return ret; 5159 } 5160 5161 trans = btrfs_start_transaction(root, 1); 5162 if (IS_ERR(trans)) { 5163 btrfs_drew_write_unlock(&root->snapshot_lock); 5164 return PTR_ERR(trans); 5165 } 5166 5167 i_size_write(inode, newsize); 5168 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5169 pagecache_isize_extended(inode, oldsize, newsize); 5170 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5171 btrfs_drew_write_unlock(&root->snapshot_lock); 5172 btrfs_end_transaction(trans); 5173 } else { 5174 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5175 5176 if (btrfs_is_zoned(fs_info)) { 5177 ret = btrfs_wait_ordered_range(inode, 5178 ALIGN(newsize, fs_info->sectorsize), 5179 (u64)-1); 5180 if (ret) 5181 return ret; 5182 } 5183 5184 /* 5185 * We're truncating a file that used to have good data down to 5186 * zero. Make sure any new writes to the file get on disk 5187 * on close. 5188 */ 5189 if (newsize == 0) 5190 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5191 &BTRFS_I(inode)->runtime_flags); 5192 5193 truncate_setsize(inode, newsize); 5194 5195 inode_dio_wait(inode); 5196 5197 ret = btrfs_truncate(inode, newsize == oldsize); 5198 if (ret && inode->i_nlink) { 5199 int err; 5200 5201 /* 5202 * Truncate failed, so fix up the in-memory size. We 5203 * adjusted disk_i_size down as we removed extents, so 5204 * wait for disk_i_size to be stable and then update the 5205 * in-memory size to match. 5206 */ 5207 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5208 if (err) 5209 return err; 5210 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5211 } 5212 } 5213 5214 return ret; 5215 } 5216 5217 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5218 struct iattr *attr) 5219 { 5220 struct inode *inode = d_inode(dentry); 5221 struct btrfs_root *root = BTRFS_I(inode)->root; 5222 int err; 5223 5224 if (btrfs_root_readonly(root)) 5225 return -EROFS; 5226 5227 err = setattr_prepare(&init_user_ns, dentry, attr); 5228 if (err) 5229 return err; 5230 5231 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5232 err = btrfs_setsize(inode, attr); 5233 if (err) 5234 return err; 5235 } 5236 5237 if (attr->ia_valid) { 5238 setattr_copy(&init_user_ns, inode, attr); 5239 inode_inc_iversion(inode); 5240 err = btrfs_dirty_inode(inode); 5241 5242 if (!err && attr->ia_valid & ATTR_MODE) 5243 err = posix_acl_chmod(&init_user_ns, inode, 5244 inode->i_mode); 5245 } 5246 5247 return err; 5248 } 5249 5250 /* 5251 * While truncating the inode pages during eviction, we get the VFS calling 5252 * btrfs_invalidatepage() against each page of the inode. This is slow because 5253 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5254 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5255 * extent_state structures over and over, wasting lots of time. 5256 * 5257 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5258 * those expensive operations on a per page basis and do only the ordered io 5259 * finishing, while we release here the extent_map and extent_state structures, 5260 * without the excessive merging and splitting. 5261 */ 5262 static void evict_inode_truncate_pages(struct inode *inode) 5263 { 5264 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5265 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5266 struct rb_node *node; 5267 5268 ASSERT(inode->i_state & I_FREEING); 5269 truncate_inode_pages_final(&inode->i_data); 5270 5271 write_lock(&map_tree->lock); 5272 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5273 struct extent_map *em; 5274 5275 node = rb_first_cached(&map_tree->map); 5276 em = rb_entry(node, struct extent_map, rb_node); 5277 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5278 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5279 remove_extent_mapping(map_tree, em); 5280 free_extent_map(em); 5281 if (need_resched()) { 5282 write_unlock(&map_tree->lock); 5283 cond_resched(); 5284 write_lock(&map_tree->lock); 5285 } 5286 } 5287 write_unlock(&map_tree->lock); 5288 5289 /* 5290 * Keep looping until we have no more ranges in the io tree. 5291 * We can have ongoing bios started by readahead that have 5292 * their endio callback (extent_io.c:end_bio_extent_readpage) 5293 * still in progress (unlocked the pages in the bio but did not yet 5294 * unlocked the ranges in the io tree). Therefore this means some 5295 * ranges can still be locked and eviction started because before 5296 * submitting those bios, which are executed by a separate task (work 5297 * queue kthread), inode references (inode->i_count) were not taken 5298 * (which would be dropped in the end io callback of each bio). 5299 * Therefore here we effectively end up waiting for those bios and 5300 * anyone else holding locked ranges without having bumped the inode's 5301 * reference count - if we don't do it, when they access the inode's 5302 * io_tree to unlock a range it may be too late, leading to an 5303 * use-after-free issue. 5304 */ 5305 spin_lock(&io_tree->lock); 5306 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5307 struct extent_state *state; 5308 struct extent_state *cached_state = NULL; 5309 u64 start; 5310 u64 end; 5311 unsigned state_flags; 5312 5313 node = rb_first(&io_tree->state); 5314 state = rb_entry(node, struct extent_state, rb_node); 5315 start = state->start; 5316 end = state->end; 5317 state_flags = state->state; 5318 spin_unlock(&io_tree->lock); 5319 5320 lock_extent_bits(io_tree, start, end, &cached_state); 5321 5322 /* 5323 * If still has DELALLOC flag, the extent didn't reach disk, 5324 * and its reserved space won't be freed by delayed_ref. 5325 * So we need to free its reserved space here. 5326 * (Refer to comment in btrfs_invalidatepage, case 2) 5327 * 5328 * Note, end is the bytenr of last byte, so we need + 1 here. 5329 */ 5330 if (state_flags & EXTENT_DELALLOC) 5331 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5332 end - start + 1); 5333 5334 clear_extent_bit(io_tree, start, end, 5335 EXTENT_LOCKED | EXTENT_DELALLOC | 5336 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5337 &cached_state); 5338 5339 cond_resched(); 5340 spin_lock(&io_tree->lock); 5341 } 5342 spin_unlock(&io_tree->lock); 5343 } 5344 5345 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5346 struct btrfs_block_rsv *rsv) 5347 { 5348 struct btrfs_fs_info *fs_info = root->fs_info; 5349 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5350 struct btrfs_trans_handle *trans; 5351 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5352 int ret; 5353 5354 /* 5355 * Eviction should be taking place at some place safe because of our 5356 * delayed iputs. However the normal flushing code will run delayed 5357 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5358 * 5359 * We reserve the delayed_refs_extra here again because we can't use 5360 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5361 * above. We reserve our extra bit here because we generate a ton of 5362 * delayed refs activity by truncating. 5363 * 5364 * If we cannot make our reservation we'll attempt to steal from the 5365 * global reserve, because we really want to be able to free up space. 5366 */ 5367 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5368 BTRFS_RESERVE_FLUSH_EVICT); 5369 if (ret) { 5370 /* 5371 * Try to steal from the global reserve if there is space for 5372 * it. 5373 */ 5374 if (btrfs_check_space_for_delayed_refs(fs_info) || 5375 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5376 btrfs_warn(fs_info, 5377 "could not allocate space for delete; will truncate on mount"); 5378 return ERR_PTR(-ENOSPC); 5379 } 5380 delayed_refs_extra = 0; 5381 } 5382 5383 trans = btrfs_join_transaction(root); 5384 if (IS_ERR(trans)) 5385 return trans; 5386 5387 if (delayed_refs_extra) { 5388 trans->block_rsv = &fs_info->trans_block_rsv; 5389 trans->bytes_reserved = delayed_refs_extra; 5390 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5391 delayed_refs_extra, 1); 5392 } 5393 return trans; 5394 } 5395 5396 void btrfs_evict_inode(struct inode *inode) 5397 { 5398 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5399 struct btrfs_trans_handle *trans; 5400 struct btrfs_root *root = BTRFS_I(inode)->root; 5401 struct btrfs_block_rsv *rsv; 5402 int ret; 5403 5404 trace_btrfs_inode_evict(inode); 5405 5406 if (!root) { 5407 clear_inode(inode); 5408 return; 5409 } 5410 5411 evict_inode_truncate_pages(inode); 5412 5413 if (inode->i_nlink && 5414 ((btrfs_root_refs(&root->root_item) != 0 && 5415 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5416 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5417 goto no_delete; 5418 5419 if (is_bad_inode(inode)) 5420 goto no_delete; 5421 5422 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5423 5424 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5425 goto no_delete; 5426 5427 if (inode->i_nlink > 0) { 5428 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5429 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5430 goto no_delete; 5431 } 5432 5433 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5434 if (ret) 5435 goto no_delete; 5436 5437 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5438 if (!rsv) 5439 goto no_delete; 5440 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5441 rsv->failfast = 1; 5442 5443 btrfs_i_size_write(BTRFS_I(inode), 0); 5444 5445 while (1) { 5446 trans = evict_refill_and_join(root, rsv); 5447 if (IS_ERR(trans)) 5448 goto free_rsv; 5449 5450 trans->block_rsv = rsv; 5451 5452 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 5453 0, 0); 5454 trans->block_rsv = &fs_info->trans_block_rsv; 5455 btrfs_end_transaction(trans); 5456 btrfs_btree_balance_dirty(fs_info); 5457 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5458 goto free_rsv; 5459 else if (!ret) 5460 break; 5461 } 5462 5463 /* 5464 * Errors here aren't a big deal, it just means we leave orphan items in 5465 * the tree. They will be cleaned up on the next mount. If the inode 5466 * number gets reused, cleanup deletes the orphan item without doing 5467 * anything, and unlink reuses the existing orphan item. 5468 * 5469 * If it turns out that we are dropping too many of these, we might want 5470 * to add a mechanism for retrying these after a commit. 5471 */ 5472 trans = evict_refill_and_join(root, rsv); 5473 if (!IS_ERR(trans)) { 5474 trans->block_rsv = rsv; 5475 btrfs_orphan_del(trans, BTRFS_I(inode)); 5476 trans->block_rsv = &fs_info->trans_block_rsv; 5477 btrfs_end_transaction(trans); 5478 } 5479 5480 free_rsv: 5481 btrfs_free_block_rsv(fs_info, rsv); 5482 no_delete: 5483 /* 5484 * If we didn't successfully delete, the orphan item will still be in 5485 * the tree and we'll retry on the next mount. Again, we might also want 5486 * to retry these periodically in the future. 5487 */ 5488 btrfs_remove_delayed_node(BTRFS_I(inode)); 5489 clear_inode(inode); 5490 } 5491 5492 /* 5493 * Return the key found in the dir entry in the location pointer, fill @type 5494 * with BTRFS_FT_*, and return 0. 5495 * 5496 * If no dir entries were found, returns -ENOENT. 5497 * If found a corrupted location in dir entry, returns -EUCLEAN. 5498 */ 5499 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5500 struct btrfs_key *location, u8 *type) 5501 { 5502 const char *name = dentry->d_name.name; 5503 int namelen = dentry->d_name.len; 5504 struct btrfs_dir_item *di; 5505 struct btrfs_path *path; 5506 struct btrfs_root *root = BTRFS_I(dir)->root; 5507 int ret = 0; 5508 5509 path = btrfs_alloc_path(); 5510 if (!path) 5511 return -ENOMEM; 5512 5513 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5514 name, namelen, 0); 5515 if (IS_ERR_OR_NULL(di)) { 5516 ret = di ? PTR_ERR(di) : -ENOENT; 5517 goto out; 5518 } 5519 5520 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5521 if (location->type != BTRFS_INODE_ITEM_KEY && 5522 location->type != BTRFS_ROOT_ITEM_KEY) { 5523 ret = -EUCLEAN; 5524 btrfs_warn(root->fs_info, 5525 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5526 __func__, name, btrfs_ino(BTRFS_I(dir)), 5527 location->objectid, location->type, location->offset); 5528 } 5529 if (!ret) 5530 *type = btrfs_dir_type(path->nodes[0], di); 5531 out: 5532 btrfs_free_path(path); 5533 return ret; 5534 } 5535 5536 /* 5537 * when we hit a tree root in a directory, the btrfs part of the inode 5538 * needs to be changed to reflect the root directory of the tree root. This 5539 * is kind of like crossing a mount point. 5540 */ 5541 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5542 struct inode *dir, 5543 struct dentry *dentry, 5544 struct btrfs_key *location, 5545 struct btrfs_root **sub_root) 5546 { 5547 struct btrfs_path *path; 5548 struct btrfs_root *new_root; 5549 struct btrfs_root_ref *ref; 5550 struct extent_buffer *leaf; 5551 struct btrfs_key key; 5552 int ret; 5553 int err = 0; 5554 5555 path = btrfs_alloc_path(); 5556 if (!path) { 5557 err = -ENOMEM; 5558 goto out; 5559 } 5560 5561 err = -ENOENT; 5562 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5563 key.type = BTRFS_ROOT_REF_KEY; 5564 key.offset = location->objectid; 5565 5566 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5567 if (ret) { 5568 if (ret < 0) 5569 err = ret; 5570 goto out; 5571 } 5572 5573 leaf = path->nodes[0]; 5574 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5575 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5576 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5577 goto out; 5578 5579 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5580 (unsigned long)(ref + 1), 5581 dentry->d_name.len); 5582 if (ret) 5583 goto out; 5584 5585 btrfs_release_path(path); 5586 5587 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5588 if (IS_ERR(new_root)) { 5589 err = PTR_ERR(new_root); 5590 goto out; 5591 } 5592 5593 *sub_root = new_root; 5594 location->objectid = btrfs_root_dirid(&new_root->root_item); 5595 location->type = BTRFS_INODE_ITEM_KEY; 5596 location->offset = 0; 5597 err = 0; 5598 out: 5599 btrfs_free_path(path); 5600 return err; 5601 } 5602 5603 static void inode_tree_add(struct inode *inode) 5604 { 5605 struct btrfs_root *root = BTRFS_I(inode)->root; 5606 struct btrfs_inode *entry; 5607 struct rb_node **p; 5608 struct rb_node *parent; 5609 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5610 u64 ino = btrfs_ino(BTRFS_I(inode)); 5611 5612 if (inode_unhashed(inode)) 5613 return; 5614 parent = NULL; 5615 spin_lock(&root->inode_lock); 5616 p = &root->inode_tree.rb_node; 5617 while (*p) { 5618 parent = *p; 5619 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5620 5621 if (ino < btrfs_ino(entry)) 5622 p = &parent->rb_left; 5623 else if (ino > btrfs_ino(entry)) 5624 p = &parent->rb_right; 5625 else { 5626 WARN_ON(!(entry->vfs_inode.i_state & 5627 (I_WILL_FREE | I_FREEING))); 5628 rb_replace_node(parent, new, &root->inode_tree); 5629 RB_CLEAR_NODE(parent); 5630 spin_unlock(&root->inode_lock); 5631 return; 5632 } 5633 } 5634 rb_link_node(new, parent, p); 5635 rb_insert_color(new, &root->inode_tree); 5636 spin_unlock(&root->inode_lock); 5637 } 5638 5639 static void inode_tree_del(struct btrfs_inode *inode) 5640 { 5641 struct btrfs_root *root = inode->root; 5642 int empty = 0; 5643 5644 spin_lock(&root->inode_lock); 5645 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5646 rb_erase(&inode->rb_node, &root->inode_tree); 5647 RB_CLEAR_NODE(&inode->rb_node); 5648 empty = RB_EMPTY_ROOT(&root->inode_tree); 5649 } 5650 spin_unlock(&root->inode_lock); 5651 5652 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5653 spin_lock(&root->inode_lock); 5654 empty = RB_EMPTY_ROOT(&root->inode_tree); 5655 spin_unlock(&root->inode_lock); 5656 if (empty) 5657 btrfs_add_dead_root(root); 5658 } 5659 } 5660 5661 5662 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5663 { 5664 struct btrfs_iget_args *args = p; 5665 5666 inode->i_ino = args->ino; 5667 BTRFS_I(inode)->location.objectid = args->ino; 5668 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5669 BTRFS_I(inode)->location.offset = 0; 5670 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5671 BUG_ON(args->root && !BTRFS_I(inode)->root); 5672 return 0; 5673 } 5674 5675 static int btrfs_find_actor(struct inode *inode, void *opaque) 5676 { 5677 struct btrfs_iget_args *args = opaque; 5678 5679 return args->ino == BTRFS_I(inode)->location.objectid && 5680 args->root == BTRFS_I(inode)->root; 5681 } 5682 5683 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5684 struct btrfs_root *root) 5685 { 5686 struct inode *inode; 5687 struct btrfs_iget_args args; 5688 unsigned long hashval = btrfs_inode_hash(ino, root); 5689 5690 args.ino = ino; 5691 args.root = root; 5692 5693 inode = iget5_locked(s, hashval, btrfs_find_actor, 5694 btrfs_init_locked_inode, 5695 (void *)&args); 5696 return inode; 5697 } 5698 5699 /* 5700 * Get an inode object given its inode number and corresponding root. 5701 * Path can be preallocated to prevent recursing back to iget through 5702 * allocator. NULL is also valid but may require an additional allocation 5703 * later. 5704 */ 5705 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5706 struct btrfs_root *root, struct btrfs_path *path) 5707 { 5708 struct inode *inode; 5709 5710 inode = btrfs_iget_locked(s, ino, root); 5711 if (!inode) 5712 return ERR_PTR(-ENOMEM); 5713 5714 if (inode->i_state & I_NEW) { 5715 int ret; 5716 5717 ret = btrfs_read_locked_inode(inode, path); 5718 if (!ret) { 5719 inode_tree_add(inode); 5720 unlock_new_inode(inode); 5721 } else { 5722 iget_failed(inode); 5723 /* 5724 * ret > 0 can come from btrfs_search_slot called by 5725 * btrfs_read_locked_inode, this means the inode item 5726 * was not found. 5727 */ 5728 if (ret > 0) 5729 ret = -ENOENT; 5730 inode = ERR_PTR(ret); 5731 } 5732 } 5733 5734 return inode; 5735 } 5736 5737 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5738 { 5739 return btrfs_iget_path(s, ino, root, NULL); 5740 } 5741 5742 static struct inode *new_simple_dir(struct super_block *s, 5743 struct btrfs_key *key, 5744 struct btrfs_root *root) 5745 { 5746 struct inode *inode = new_inode(s); 5747 5748 if (!inode) 5749 return ERR_PTR(-ENOMEM); 5750 5751 BTRFS_I(inode)->root = btrfs_grab_root(root); 5752 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5753 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5754 5755 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5756 /* 5757 * We only need lookup, the rest is read-only and there's no inode 5758 * associated with the dentry 5759 */ 5760 inode->i_op = &simple_dir_inode_operations; 5761 inode->i_opflags &= ~IOP_XATTR; 5762 inode->i_fop = &simple_dir_operations; 5763 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5764 inode->i_mtime = current_time(inode); 5765 inode->i_atime = inode->i_mtime; 5766 inode->i_ctime = inode->i_mtime; 5767 BTRFS_I(inode)->i_otime = inode->i_mtime; 5768 5769 return inode; 5770 } 5771 5772 static inline u8 btrfs_inode_type(struct inode *inode) 5773 { 5774 /* 5775 * Compile-time asserts that generic FT_* types still match 5776 * BTRFS_FT_* types 5777 */ 5778 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5779 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5780 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5781 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5782 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5783 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5784 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5785 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5786 5787 return fs_umode_to_ftype(inode->i_mode); 5788 } 5789 5790 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5791 { 5792 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5793 struct inode *inode; 5794 struct btrfs_root *root = BTRFS_I(dir)->root; 5795 struct btrfs_root *sub_root = root; 5796 struct btrfs_key location; 5797 u8 di_type = 0; 5798 int ret = 0; 5799 5800 if (dentry->d_name.len > BTRFS_NAME_LEN) 5801 return ERR_PTR(-ENAMETOOLONG); 5802 5803 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5804 if (ret < 0) 5805 return ERR_PTR(ret); 5806 5807 if (location.type == BTRFS_INODE_ITEM_KEY) { 5808 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5809 if (IS_ERR(inode)) 5810 return inode; 5811 5812 /* Do extra check against inode mode with di_type */ 5813 if (btrfs_inode_type(inode) != di_type) { 5814 btrfs_crit(fs_info, 5815 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5816 inode->i_mode, btrfs_inode_type(inode), 5817 di_type); 5818 iput(inode); 5819 return ERR_PTR(-EUCLEAN); 5820 } 5821 return inode; 5822 } 5823 5824 ret = fixup_tree_root_location(fs_info, dir, dentry, 5825 &location, &sub_root); 5826 if (ret < 0) { 5827 if (ret != -ENOENT) 5828 inode = ERR_PTR(ret); 5829 else 5830 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5831 } else { 5832 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5833 } 5834 if (root != sub_root) 5835 btrfs_put_root(sub_root); 5836 5837 if (!IS_ERR(inode) && root != sub_root) { 5838 down_read(&fs_info->cleanup_work_sem); 5839 if (!sb_rdonly(inode->i_sb)) 5840 ret = btrfs_orphan_cleanup(sub_root); 5841 up_read(&fs_info->cleanup_work_sem); 5842 if (ret) { 5843 iput(inode); 5844 inode = ERR_PTR(ret); 5845 } 5846 } 5847 5848 return inode; 5849 } 5850 5851 static int btrfs_dentry_delete(const struct dentry *dentry) 5852 { 5853 struct btrfs_root *root; 5854 struct inode *inode = d_inode(dentry); 5855 5856 if (!inode && !IS_ROOT(dentry)) 5857 inode = d_inode(dentry->d_parent); 5858 5859 if (inode) { 5860 root = BTRFS_I(inode)->root; 5861 if (btrfs_root_refs(&root->root_item) == 0) 5862 return 1; 5863 5864 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5865 return 1; 5866 } 5867 return 0; 5868 } 5869 5870 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5871 unsigned int flags) 5872 { 5873 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5874 5875 if (inode == ERR_PTR(-ENOENT)) 5876 inode = NULL; 5877 return d_splice_alias(inode, dentry); 5878 } 5879 5880 /* 5881 * All this infrastructure exists because dir_emit can fault, and we are holding 5882 * the tree lock when doing readdir. For now just allocate a buffer and copy 5883 * our information into that, and then dir_emit from the buffer. This is 5884 * similar to what NFS does, only we don't keep the buffer around in pagecache 5885 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5886 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5887 * tree lock. 5888 */ 5889 static int btrfs_opendir(struct inode *inode, struct file *file) 5890 { 5891 struct btrfs_file_private *private; 5892 5893 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5894 if (!private) 5895 return -ENOMEM; 5896 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5897 if (!private->filldir_buf) { 5898 kfree(private); 5899 return -ENOMEM; 5900 } 5901 file->private_data = private; 5902 return 0; 5903 } 5904 5905 struct dir_entry { 5906 u64 ino; 5907 u64 offset; 5908 unsigned type; 5909 int name_len; 5910 }; 5911 5912 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5913 { 5914 while (entries--) { 5915 struct dir_entry *entry = addr; 5916 char *name = (char *)(entry + 1); 5917 5918 ctx->pos = get_unaligned(&entry->offset); 5919 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5920 get_unaligned(&entry->ino), 5921 get_unaligned(&entry->type))) 5922 return 1; 5923 addr += sizeof(struct dir_entry) + 5924 get_unaligned(&entry->name_len); 5925 ctx->pos++; 5926 } 5927 return 0; 5928 } 5929 5930 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5931 { 5932 struct inode *inode = file_inode(file); 5933 struct btrfs_root *root = BTRFS_I(inode)->root; 5934 struct btrfs_file_private *private = file->private_data; 5935 struct btrfs_dir_item *di; 5936 struct btrfs_key key; 5937 struct btrfs_key found_key; 5938 struct btrfs_path *path; 5939 void *addr; 5940 struct list_head ins_list; 5941 struct list_head del_list; 5942 int ret; 5943 struct extent_buffer *leaf; 5944 int slot; 5945 char *name_ptr; 5946 int name_len; 5947 int entries = 0; 5948 int total_len = 0; 5949 bool put = false; 5950 struct btrfs_key location; 5951 5952 if (!dir_emit_dots(file, ctx)) 5953 return 0; 5954 5955 path = btrfs_alloc_path(); 5956 if (!path) 5957 return -ENOMEM; 5958 5959 addr = private->filldir_buf; 5960 path->reada = READA_FORWARD; 5961 5962 INIT_LIST_HEAD(&ins_list); 5963 INIT_LIST_HEAD(&del_list); 5964 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5965 5966 again: 5967 key.type = BTRFS_DIR_INDEX_KEY; 5968 key.offset = ctx->pos; 5969 key.objectid = btrfs_ino(BTRFS_I(inode)); 5970 5971 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5972 if (ret < 0) 5973 goto err; 5974 5975 while (1) { 5976 struct dir_entry *entry; 5977 5978 leaf = path->nodes[0]; 5979 slot = path->slots[0]; 5980 if (slot >= btrfs_header_nritems(leaf)) { 5981 ret = btrfs_next_leaf(root, path); 5982 if (ret < 0) 5983 goto err; 5984 else if (ret > 0) 5985 break; 5986 continue; 5987 } 5988 5989 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5990 5991 if (found_key.objectid != key.objectid) 5992 break; 5993 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5994 break; 5995 if (found_key.offset < ctx->pos) 5996 goto next; 5997 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5998 goto next; 5999 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 6000 name_len = btrfs_dir_name_len(leaf, di); 6001 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6002 PAGE_SIZE) { 6003 btrfs_release_path(path); 6004 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6005 if (ret) 6006 goto nopos; 6007 addr = private->filldir_buf; 6008 entries = 0; 6009 total_len = 0; 6010 goto again; 6011 } 6012 6013 entry = addr; 6014 put_unaligned(name_len, &entry->name_len); 6015 name_ptr = (char *)(entry + 1); 6016 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6017 name_len); 6018 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6019 &entry->type); 6020 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6021 put_unaligned(location.objectid, &entry->ino); 6022 put_unaligned(found_key.offset, &entry->offset); 6023 entries++; 6024 addr += sizeof(struct dir_entry) + name_len; 6025 total_len += sizeof(struct dir_entry) + name_len; 6026 next: 6027 path->slots[0]++; 6028 } 6029 btrfs_release_path(path); 6030 6031 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6032 if (ret) 6033 goto nopos; 6034 6035 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6036 if (ret) 6037 goto nopos; 6038 6039 /* 6040 * Stop new entries from being returned after we return the last 6041 * entry. 6042 * 6043 * New directory entries are assigned a strictly increasing 6044 * offset. This means that new entries created during readdir 6045 * are *guaranteed* to be seen in the future by that readdir. 6046 * This has broken buggy programs which operate on names as 6047 * they're returned by readdir. Until we re-use freed offsets 6048 * we have this hack to stop new entries from being returned 6049 * under the assumption that they'll never reach this huge 6050 * offset. 6051 * 6052 * This is being careful not to overflow 32bit loff_t unless the 6053 * last entry requires it because doing so has broken 32bit apps 6054 * in the past. 6055 */ 6056 if (ctx->pos >= INT_MAX) 6057 ctx->pos = LLONG_MAX; 6058 else 6059 ctx->pos = INT_MAX; 6060 nopos: 6061 ret = 0; 6062 err: 6063 if (put) 6064 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6065 btrfs_free_path(path); 6066 return ret; 6067 } 6068 6069 /* 6070 * This is somewhat expensive, updating the tree every time the 6071 * inode changes. But, it is most likely to find the inode in cache. 6072 * FIXME, needs more benchmarking...there are no reasons other than performance 6073 * to keep or drop this code. 6074 */ 6075 static int btrfs_dirty_inode(struct inode *inode) 6076 { 6077 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6078 struct btrfs_root *root = BTRFS_I(inode)->root; 6079 struct btrfs_trans_handle *trans; 6080 int ret; 6081 6082 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6083 return 0; 6084 6085 trans = btrfs_join_transaction(root); 6086 if (IS_ERR(trans)) 6087 return PTR_ERR(trans); 6088 6089 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6090 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6091 /* whoops, lets try again with the full transaction */ 6092 btrfs_end_transaction(trans); 6093 trans = btrfs_start_transaction(root, 1); 6094 if (IS_ERR(trans)) 6095 return PTR_ERR(trans); 6096 6097 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6098 } 6099 btrfs_end_transaction(trans); 6100 if (BTRFS_I(inode)->delayed_node) 6101 btrfs_balance_delayed_items(fs_info); 6102 6103 return ret; 6104 } 6105 6106 /* 6107 * This is a copy of file_update_time. We need this so we can return error on 6108 * ENOSPC for updating the inode in the case of file write and mmap writes. 6109 */ 6110 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6111 int flags) 6112 { 6113 struct btrfs_root *root = BTRFS_I(inode)->root; 6114 bool dirty = flags & ~S_VERSION; 6115 6116 if (btrfs_root_readonly(root)) 6117 return -EROFS; 6118 6119 if (flags & S_VERSION) 6120 dirty |= inode_maybe_inc_iversion(inode, dirty); 6121 if (flags & S_CTIME) 6122 inode->i_ctime = *now; 6123 if (flags & S_MTIME) 6124 inode->i_mtime = *now; 6125 if (flags & S_ATIME) 6126 inode->i_atime = *now; 6127 return dirty ? btrfs_dirty_inode(inode) : 0; 6128 } 6129 6130 /* 6131 * find the highest existing sequence number in a directory 6132 * and then set the in-memory index_cnt variable to reflect 6133 * free sequence numbers 6134 */ 6135 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6136 { 6137 struct btrfs_root *root = inode->root; 6138 struct btrfs_key key, found_key; 6139 struct btrfs_path *path; 6140 struct extent_buffer *leaf; 6141 int ret; 6142 6143 key.objectid = btrfs_ino(inode); 6144 key.type = BTRFS_DIR_INDEX_KEY; 6145 key.offset = (u64)-1; 6146 6147 path = btrfs_alloc_path(); 6148 if (!path) 6149 return -ENOMEM; 6150 6151 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6152 if (ret < 0) 6153 goto out; 6154 /* FIXME: we should be able to handle this */ 6155 if (ret == 0) 6156 goto out; 6157 ret = 0; 6158 6159 /* 6160 * MAGIC NUMBER EXPLANATION: 6161 * since we search a directory based on f_pos we have to start at 2 6162 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6163 * else has to start at 2 6164 */ 6165 if (path->slots[0] == 0) { 6166 inode->index_cnt = 2; 6167 goto out; 6168 } 6169 6170 path->slots[0]--; 6171 6172 leaf = path->nodes[0]; 6173 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6174 6175 if (found_key.objectid != btrfs_ino(inode) || 6176 found_key.type != BTRFS_DIR_INDEX_KEY) { 6177 inode->index_cnt = 2; 6178 goto out; 6179 } 6180 6181 inode->index_cnt = found_key.offset + 1; 6182 out: 6183 btrfs_free_path(path); 6184 return ret; 6185 } 6186 6187 /* 6188 * helper to find a free sequence number in a given directory. This current 6189 * code is very simple, later versions will do smarter things in the btree 6190 */ 6191 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6192 { 6193 int ret = 0; 6194 6195 if (dir->index_cnt == (u64)-1) { 6196 ret = btrfs_inode_delayed_dir_index_count(dir); 6197 if (ret) { 6198 ret = btrfs_set_inode_index_count(dir); 6199 if (ret) 6200 return ret; 6201 } 6202 } 6203 6204 *index = dir->index_cnt; 6205 dir->index_cnt++; 6206 6207 return ret; 6208 } 6209 6210 static int btrfs_insert_inode_locked(struct inode *inode) 6211 { 6212 struct btrfs_iget_args args; 6213 6214 args.ino = BTRFS_I(inode)->location.objectid; 6215 args.root = BTRFS_I(inode)->root; 6216 6217 return insert_inode_locked4(inode, 6218 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6219 btrfs_find_actor, &args); 6220 } 6221 6222 /* 6223 * Inherit flags from the parent inode. 6224 * 6225 * Currently only the compression flags and the cow flags are inherited. 6226 */ 6227 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6228 { 6229 unsigned int flags; 6230 6231 if (!dir) 6232 return; 6233 6234 flags = BTRFS_I(dir)->flags; 6235 6236 if (flags & BTRFS_INODE_NOCOMPRESS) { 6237 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6238 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6239 } else if (flags & BTRFS_INODE_COMPRESS) { 6240 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6241 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6242 } 6243 6244 if (flags & BTRFS_INODE_NODATACOW) { 6245 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6246 if (S_ISREG(inode->i_mode)) 6247 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6248 } 6249 6250 btrfs_sync_inode_flags_to_i_flags(inode); 6251 } 6252 6253 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6254 struct btrfs_root *root, 6255 struct inode *dir, 6256 const char *name, int name_len, 6257 u64 ref_objectid, u64 objectid, 6258 umode_t mode, u64 *index) 6259 { 6260 struct btrfs_fs_info *fs_info = root->fs_info; 6261 struct inode *inode; 6262 struct btrfs_inode_item *inode_item; 6263 struct btrfs_key *location; 6264 struct btrfs_path *path; 6265 struct btrfs_inode_ref *ref; 6266 struct btrfs_key key[2]; 6267 u32 sizes[2]; 6268 int nitems = name ? 2 : 1; 6269 unsigned long ptr; 6270 unsigned int nofs_flag; 6271 int ret; 6272 6273 path = btrfs_alloc_path(); 6274 if (!path) 6275 return ERR_PTR(-ENOMEM); 6276 6277 nofs_flag = memalloc_nofs_save(); 6278 inode = new_inode(fs_info->sb); 6279 memalloc_nofs_restore(nofs_flag); 6280 if (!inode) { 6281 btrfs_free_path(path); 6282 return ERR_PTR(-ENOMEM); 6283 } 6284 6285 /* 6286 * O_TMPFILE, set link count to 0, so that after this point, 6287 * we fill in an inode item with the correct link count. 6288 */ 6289 if (!name) 6290 set_nlink(inode, 0); 6291 6292 /* 6293 * we have to initialize this early, so we can reclaim the inode 6294 * number if we fail afterwards in this function. 6295 */ 6296 inode->i_ino = objectid; 6297 6298 if (dir && name) { 6299 trace_btrfs_inode_request(dir); 6300 6301 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6302 if (ret) { 6303 btrfs_free_path(path); 6304 iput(inode); 6305 return ERR_PTR(ret); 6306 } 6307 } else if (dir) { 6308 *index = 0; 6309 } 6310 /* 6311 * index_cnt is ignored for everything but a dir, 6312 * btrfs_set_inode_index_count has an explanation for the magic 6313 * number 6314 */ 6315 BTRFS_I(inode)->index_cnt = 2; 6316 BTRFS_I(inode)->dir_index = *index; 6317 BTRFS_I(inode)->root = btrfs_grab_root(root); 6318 BTRFS_I(inode)->generation = trans->transid; 6319 inode->i_generation = BTRFS_I(inode)->generation; 6320 6321 /* 6322 * We could have gotten an inode number from somebody who was fsynced 6323 * and then removed in this same transaction, so let's just set full 6324 * sync since it will be a full sync anyway and this will blow away the 6325 * old info in the log. 6326 */ 6327 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6328 6329 key[0].objectid = objectid; 6330 key[0].type = BTRFS_INODE_ITEM_KEY; 6331 key[0].offset = 0; 6332 6333 sizes[0] = sizeof(struct btrfs_inode_item); 6334 6335 if (name) { 6336 /* 6337 * Start new inodes with an inode_ref. This is slightly more 6338 * efficient for small numbers of hard links since they will 6339 * be packed into one item. Extended refs will kick in if we 6340 * add more hard links than can fit in the ref item. 6341 */ 6342 key[1].objectid = objectid; 6343 key[1].type = BTRFS_INODE_REF_KEY; 6344 key[1].offset = ref_objectid; 6345 6346 sizes[1] = name_len + sizeof(*ref); 6347 } 6348 6349 location = &BTRFS_I(inode)->location; 6350 location->objectid = objectid; 6351 location->offset = 0; 6352 location->type = BTRFS_INODE_ITEM_KEY; 6353 6354 ret = btrfs_insert_inode_locked(inode); 6355 if (ret < 0) { 6356 iput(inode); 6357 goto fail; 6358 } 6359 6360 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6361 if (ret != 0) 6362 goto fail_unlock; 6363 6364 inode_init_owner(&init_user_ns, inode, dir, mode); 6365 inode_set_bytes(inode, 0); 6366 6367 inode->i_mtime = current_time(inode); 6368 inode->i_atime = inode->i_mtime; 6369 inode->i_ctime = inode->i_mtime; 6370 BTRFS_I(inode)->i_otime = inode->i_mtime; 6371 6372 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6373 struct btrfs_inode_item); 6374 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6375 sizeof(*inode_item)); 6376 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6377 6378 if (name) { 6379 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6380 struct btrfs_inode_ref); 6381 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6382 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6383 ptr = (unsigned long)(ref + 1); 6384 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6385 } 6386 6387 btrfs_mark_buffer_dirty(path->nodes[0]); 6388 btrfs_free_path(path); 6389 6390 btrfs_inherit_iflags(inode, dir); 6391 6392 if (S_ISREG(mode)) { 6393 if (btrfs_test_opt(fs_info, NODATASUM)) 6394 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6395 if (btrfs_test_opt(fs_info, NODATACOW)) 6396 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6397 BTRFS_INODE_NODATASUM; 6398 } 6399 6400 inode_tree_add(inode); 6401 6402 trace_btrfs_inode_new(inode); 6403 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6404 6405 btrfs_update_root_times(trans, root); 6406 6407 ret = btrfs_inode_inherit_props(trans, inode, dir); 6408 if (ret) 6409 btrfs_err(fs_info, 6410 "error inheriting props for ino %llu (root %llu): %d", 6411 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6412 6413 return inode; 6414 6415 fail_unlock: 6416 discard_new_inode(inode); 6417 fail: 6418 if (dir && name) 6419 BTRFS_I(dir)->index_cnt--; 6420 btrfs_free_path(path); 6421 return ERR_PTR(ret); 6422 } 6423 6424 /* 6425 * utility function to add 'inode' into 'parent_inode' with 6426 * a give name and a given sequence number. 6427 * if 'add_backref' is true, also insert a backref from the 6428 * inode to the parent directory. 6429 */ 6430 int btrfs_add_link(struct btrfs_trans_handle *trans, 6431 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6432 const char *name, int name_len, int add_backref, u64 index) 6433 { 6434 int ret = 0; 6435 struct btrfs_key key; 6436 struct btrfs_root *root = parent_inode->root; 6437 u64 ino = btrfs_ino(inode); 6438 u64 parent_ino = btrfs_ino(parent_inode); 6439 6440 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6441 memcpy(&key, &inode->root->root_key, sizeof(key)); 6442 } else { 6443 key.objectid = ino; 6444 key.type = BTRFS_INODE_ITEM_KEY; 6445 key.offset = 0; 6446 } 6447 6448 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6449 ret = btrfs_add_root_ref(trans, key.objectid, 6450 root->root_key.objectid, parent_ino, 6451 index, name, name_len); 6452 } else if (add_backref) { 6453 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6454 parent_ino, index); 6455 } 6456 6457 /* Nothing to clean up yet */ 6458 if (ret) 6459 return ret; 6460 6461 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6462 btrfs_inode_type(&inode->vfs_inode), index); 6463 if (ret == -EEXIST || ret == -EOVERFLOW) 6464 goto fail_dir_item; 6465 else if (ret) { 6466 btrfs_abort_transaction(trans, ret); 6467 return ret; 6468 } 6469 6470 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6471 name_len * 2); 6472 inode_inc_iversion(&parent_inode->vfs_inode); 6473 /* 6474 * If we are replaying a log tree, we do not want to update the mtime 6475 * and ctime of the parent directory with the current time, since the 6476 * log replay procedure is responsible for setting them to their correct 6477 * values (the ones it had when the fsync was done). 6478 */ 6479 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6480 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6481 6482 parent_inode->vfs_inode.i_mtime = now; 6483 parent_inode->vfs_inode.i_ctime = now; 6484 } 6485 ret = btrfs_update_inode(trans, root, parent_inode); 6486 if (ret) 6487 btrfs_abort_transaction(trans, ret); 6488 return ret; 6489 6490 fail_dir_item: 6491 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6492 u64 local_index; 6493 int err; 6494 err = btrfs_del_root_ref(trans, key.objectid, 6495 root->root_key.objectid, parent_ino, 6496 &local_index, name, name_len); 6497 if (err) 6498 btrfs_abort_transaction(trans, err); 6499 } else if (add_backref) { 6500 u64 local_index; 6501 int err; 6502 6503 err = btrfs_del_inode_ref(trans, root, name, name_len, 6504 ino, parent_ino, &local_index); 6505 if (err) 6506 btrfs_abort_transaction(trans, err); 6507 } 6508 6509 /* Return the original error code */ 6510 return ret; 6511 } 6512 6513 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6514 struct btrfs_inode *dir, struct dentry *dentry, 6515 struct btrfs_inode *inode, int backref, u64 index) 6516 { 6517 int err = btrfs_add_link(trans, dir, inode, 6518 dentry->d_name.name, dentry->d_name.len, 6519 backref, index); 6520 if (err > 0) 6521 err = -EEXIST; 6522 return err; 6523 } 6524 6525 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6526 struct dentry *dentry, umode_t mode, dev_t rdev) 6527 { 6528 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6529 struct btrfs_trans_handle *trans; 6530 struct btrfs_root *root = BTRFS_I(dir)->root; 6531 struct inode *inode = NULL; 6532 int err; 6533 u64 objectid; 6534 u64 index = 0; 6535 6536 /* 6537 * 2 for inode item and ref 6538 * 2 for dir items 6539 * 1 for xattr if selinux is on 6540 */ 6541 trans = btrfs_start_transaction(root, 5); 6542 if (IS_ERR(trans)) 6543 return PTR_ERR(trans); 6544 6545 err = btrfs_get_free_objectid(root, &objectid); 6546 if (err) 6547 goto out_unlock; 6548 6549 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6550 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6551 mode, &index); 6552 if (IS_ERR(inode)) { 6553 err = PTR_ERR(inode); 6554 inode = NULL; 6555 goto out_unlock; 6556 } 6557 6558 /* 6559 * If the active LSM wants to access the inode during 6560 * d_instantiate it needs these. Smack checks to see 6561 * if the filesystem supports xattrs by looking at the 6562 * ops vector. 6563 */ 6564 inode->i_op = &btrfs_special_inode_operations; 6565 init_special_inode(inode, inode->i_mode, rdev); 6566 6567 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6568 if (err) 6569 goto out_unlock; 6570 6571 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6572 0, index); 6573 if (err) 6574 goto out_unlock; 6575 6576 btrfs_update_inode(trans, root, BTRFS_I(inode)); 6577 d_instantiate_new(dentry, inode); 6578 6579 out_unlock: 6580 btrfs_end_transaction(trans); 6581 btrfs_btree_balance_dirty(fs_info); 6582 if (err && inode) { 6583 inode_dec_link_count(inode); 6584 discard_new_inode(inode); 6585 } 6586 return err; 6587 } 6588 6589 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6590 struct dentry *dentry, umode_t mode, bool excl) 6591 { 6592 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6593 struct btrfs_trans_handle *trans; 6594 struct btrfs_root *root = BTRFS_I(dir)->root; 6595 struct inode *inode = NULL; 6596 int err; 6597 u64 objectid; 6598 u64 index = 0; 6599 6600 /* 6601 * 2 for inode item and ref 6602 * 2 for dir items 6603 * 1 for xattr if selinux is on 6604 */ 6605 trans = btrfs_start_transaction(root, 5); 6606 if (IS_ERR(trans)) 6607 return PTR_ERR(trans); 6608 6609 err = btrfs_get_free_objectid(root, &objectid); 6610 if (err) 6611 goto out_unlock; 6612 6613 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6614 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6615 mode, &index); 6616 if (IS_ERR(inode)) { 6617 err = PTR_ERR(inode); 6618 inode = NULL; 6619 goto out_unlock; 6620 } 6621 /* 6622 * If the active LSM wants to access the inode during 6623 * d_instantiate it needs these. Smack checks to see 6624 * if the filesystem supports xattrs by looking at the 6625 * ops vector. 6626 */ 6627 inode->i_fop = &btrfs_file_operations; 6628 inode->i_op = &btrfs_file_inode_operations; 6629 inode->i_mapping->a_ops = &btrfs_aops; 6630 6631 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6632 if (err) 6633 goto out_unlock; 6634 6635 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6636 if (err) 6637 goto out_unlock; 6638 6639 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6640 0, index); 6641 if (err) 6642 goto out_unlock; 6643 6644 d_instantiate_new(dentry, inode); 6645 6646 out_unlock: 6647 btrfs_end_transaction(trans); 6648 if (err && inode) { 6649 inode_dec_link_count(inode); 6650 discard_new_inode(inode); 6651 } 6652 btrfs_btree_balance_dirty(fs_info); 6653 return err; 6654 } 6655 6656 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6657 struct dentry *dentry) 6658 { 6659 struct btrfs_trans_handle *trans = NULL; 6660 struct btrfs_root *root = BTRFS_I(dir)->root; 6661 struct inode *inode = d_inode(old_dentry); 6662 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6663 u64 index; 6664 int err; 6665 int drop_inode = 0; 6666 6667 /* do not allow sys_link's with other subvols of the same device */ 6668 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6669 return -EXDEV; 6670 6671 if (inode->i_nlink >= BTRFS_LINK_MAX) 6672 return -EMLINK; 6673 6674 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6675 if (err) 6676 goto fail; 6677 6678 /* 6679 * 2 items for inode and inode ref 6680 * 2 items for dir items 6681 * 1 item for parent inode 6682 * 1 item for orphan item deletion if O_TMPFILE 6683 */ 6684 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6685 if (IS_ERR(trans)) { 6686 err = PTR_ERR(trans); 6687 trans = NULL; 6688 goto fail; 6689 } 6690 6691 /* There are several dir indexes for this inode, clear the cache. */ 6692 BTRFS_I(inode)->dir_index = 0ULL; 6693 inc_nlink(inode); 6694 inode_inc_iversion(inode); 6695 inode->i_ctime = current_time(inode); 6696 ihold(inode); 6697 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6698 6699 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6700 1, index); 6701 6702 if (err) { 6703 drop_inode = 1; 6704 } else { 6705 struct dentry *parent = dentry->d_parent; 6706 6707 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6708 if (err) 6709 goto fail; 6710 if (inode->i_nlink == 1) { 6711 /* 6712 * If new hard link count is 1, it's a file created 6713 * with open(2) O_TMPFILE flag. 6714 */ 6715 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6716 if (err) 6717 goto fail; 6718 } 6719 d_instantiate(dentry, inode); 6720 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6721 } 6722 6723 fail: 6724 if (trans) 6725 btrfs_end_transaction(trans); 6726 if (drop_inode) { 6727 inode_dec_link_count(inode); 6728 iput(inode); 6729 } 6730 btrfs_btree_balance_dirty(fs_info); 6731 return err; 6732 } 6733 6734 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6735 struct dentry *dentry, umode_t mode) 6736 { 6737 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6738 struct inode *inode = NULL; 6739 struct btrfs_trans_handle *trans; 6740 struct btrfs_root *root = BTRFS_I(dir)->root; 6741 int err = 0; 6742 u64 objectid = 0; 6743 u64 index = 0; 6744 6745 /* 6746 * 2 items for inode and ref 6747 * 2 items for dir items 6748 * 1 for xattr if selinux is on 6749 */ 6750 trans = btrfs_start_transaction(root, 5); 6751 if (IS_ERR(trans)) 6752 return PTR_ERR(trans); 6753 6754 err = btrfs_get_free_objectid(root, &objectid); 6755 if (err) 6756 goto out_fail; 6757 6758 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6759 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6760 S_IFDIR | mode, &index); 6761 if (IS_ERR(inode)) { 6762 err = PTR_ERR(inode); 6763 inode = NULL; 6764 goto out_fail; 6765 } 6766 6767 /* these must be set before we unlock the inode */ 6768 inode->i_op = &btrfs_dir_inode_operations; 6769 inode->i_fop = &btrfs_dir_file_operations; 6770 6771 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6772 if (err) 6773 goto out_fail; 6774 6775 btrfs_i_size_write(BTRFS_I(inode), 0); 6776 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6777 if (err) 6778 goto out_fail; 6779 6780 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6781 dentry->d_name.name, 6782 dentry->d_name.len, 0, index); 6783 if (err) 6784 goto out_fail; 6785 6786 d_instantiate_new(dentry, inode); 6787 6788 out_fail: 6789 btrfs_end_transaction(trans); 6790 if (err && inode) { 6791 inode_dec_link_count(inode); 6792 discard_new_inode(inode); 6793 } 6794 btrfs_btree_balance_dirty(fs_info); 6795 return err; 6796 } 6797 6798 static noinline int uncompress_inline(struct btrfs_path *path, 6799 struct page *page, 6800 size_t pg_offset, u64 extent_offset, 6801 struct btrfs_file_extent_item *item) 6802 { 6803 int ret; 6804 struct extent_buffer *leaf = path->nodes[0]; 6805 char *tmp; 6806 size_t max_size; 6807 unsigned long inline_size; 6808 unsigned long ptr; 6809 int compress_type; 6810 6811 WARN_ON(pg_offset != 0); 6812 compress_type = btrfs_file_extent_compression(leaf, item); 6813 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6814 inline_size = btrfs_file_extent_inline_item_len(leaf, 6815 btrfs_item_nr(path->slots[0])); 6816 tmp = kmalloc(inline_size, GFP_NOFS); 6817 if (!tmp) 6818 return -ENOMEM; 6819 ptr = btrfs_file_extent_inline_start(item); 6820 6821 read_extent_buffer(leaf, tmp, ptr, inline_size); 6822 6823 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6824 ret = btrfs_decompress(compress_type, tmp, page, 6825 extent_offset, inline_size, max_size); 6826 6827 /* 6828 * decompression code contains a memset to fill in any space between the end 6829 * of the uncompressed data and the end of max_size in case the decompressed 6830 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6831 * the end of an inline extent and the beginning of the next block, so we 6832 * cover that region here. 6833 */ 6834 6835 if (max_size + pg_offset < PAGE_SIZE) { 6836 char *map = kmap(page); 6837 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6838 kunmap(page); 6839 } 6840 kfree(tmp); 6841 return ret; 6842 } 6843 6844 /** 6845 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6846 * @inode: file to search in 6847 * @page: page to read extent data into if the extent is inline 6848 * @pg_offset: offset into @page to copy to 6849 * @start: file offset 6850 * @len: length of range starting at @start 6851 * 6852 * This returns the first &struct extent_map which overlaps with the given 6853 * range, reading it from the B-tree and caching it if necessary. Note that 6854 * there may be more extents which overlap the given range after the returned 6855 * extent_map. 6856 * 6857 * If @page is not NULL and the extent is inline, this also reads the extent 6858 * data directly into the page and marks the extent up to date in the io_tree. 6859 * 6860 * Return: ERR_PTR on error, non-NULL extent_map on success. 6861 */ 6862 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6863 struct page *page, size_t pg_offset, 6864 u64 start, u64 len) 6865 { 6866 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6867 int ret = 0; 6868 u64 extent_start = 0; 6869 u64 extent_end = 0; 6870 u64 objectid = btrfs_ino(inode); 6871 int extent_type = -1; 6872 struct btrfs_path *path = NULL; 6873 struct btrfs_root *root = inode->root; 6874 struct btrfs_file_extent_item *item; 6875 struct extent_buffer *leaf; 6876 struct btrfs_key found_key; 6877 struct extent_map *em = NULL; 6878 struct extent_map_tree *em_tree = &inode->extent_tree; 6879 struct extent_io_tree *io_tree = &inode->io_tree; 6880 6881 read_lock(&em_tree->lock); 6882 em = lookup_extent_mapping(em_tree, start, len); 6883 read_unlock(&em_tree->lock); 6884 6885 if (em) { 6886 if (em->start > start || em->start + em->len <= start) 6887 free_extent_map(em); 6888 else if (em->block_start == EXTENT_MAP_INLINE && page) 6889 free_extent_map(em); 6890 else 6891 goto out; 6892 } 6893 em = alloc_extent_map(); 6894 if (!em) { 6895 ret = -ENOMEM; 6896 goto out; 6897 } 6898 em->start = EXTENT_MAP_HOLE; 6899 em->orig_start = EXTENT_MAP_HOLE; 6900 em->len = (u64)-1; 6901 em->block_len = (u64)-1; 6902 6903 path = btrfs_alloc_path(); 6904 if (!path) { 6905 ret = -ENOMEM; 6906 goto out; 6907 } 6908 6909 /* Chances are we'll be called again, so go ahead and do readahead */ 6910 path->reada = READA_FORWARD; 6911 6912 /* 6913 * The same explanation in load_free_space_cache applies here as well, 6914 * we only read when we're loading the free space cache, and at that 6915 * point the commit_root has everything we need. 6916 */ 6917 if (btrfs_is_free_space_inode(inode)) { 6918 path->search_commit_root = 1; 6919 path->skip_locking = 1; 6920 } 6921 6922 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6923 if (ret < 0) { 6924 goto out; 6925 } else if (ret > 0) { 6926 if (path->slots[0] == 0) 6927 goto not_found; 6928 path->slots[0]--; 6929 ret = 0; 6930 } 6931 6932 leaf = path->nodes[0]; 6933 item = btrfs_item_ptr(leaf, path->slots[0], 6934 struct btrfs_file_extent_item); 6935 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6936 if (found_key.objectid != objectid || 6937 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6938 /* 6939 * If we backup past the first extent we want to move forward 6940 * and see if there is an extent in front of us, otherwise we'll 6941 * say there is a hole for our whole search range which can 6942 * cause problems. 6943 */ 6944 extent_end = start; 6945 goto next; 6946 } 6947 6948 extent_type = btrfs_file_extent_type(leaf, item); 6949 extent_start = found_key.offset; 6950 extent_end = btrfs_file_extent_end(path); 6951 if (extent_type == BTRFS_FILE_EXTENT_REG || 6952 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6953 /* Only regular file could have regular/prealloc extent */ 6954 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6955 ret = -EUCLEAN; 6956 btrfs_crit(fs_info, 6957 "regular/prealloc extent found for non-regular inode %llu", 6958 btrfs_ino(inode)); 6959 goto out; 6960 } 6961 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6962 extent_start); 6963 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6964 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6965 path->slots[0], 6966 extent_start); 6967 } 6968 next: 6969 if (start >= extent_end) { 6970 path->slots[0]++; 6971 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6972 ret = btrfs_next_leaf(root, path); 6973 if (ret < 0) 6974 goto out; 6975 else if (ret > 0) 6976 goto not_found; 6977 6978 leaf = path->nodes[0]; 6979 } 6980 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6981 if (found_key.objectid != objectid || 6982 found_key.type != BTRFS_EXTENT_DATA_KEY) 6983 goto not_found; 6984 if (start + len <= found_key.offset) 6985 goto not_found; 6986 if (start > found_key.offset) 6987 goto next; 6988 6989 /* New extent overlaps with existing one */ 6990 em->start = start; 6991 em->orig_start = start; 6992 em->len = found_key.offset - start; 6993 em->block_start = EXTENT_MAP_HOLE; 6994 goto insert; 6995 } 6996 6997 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6998 6999 if (extent_type == BTRFS_FILE_EXTENT_REG || 7000 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7001 goto insert; 7002 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7003 unsigned long ptr; 7004 char *map; 7005 size_t size; 7006 size_t extent_offset; 7007 size_t copy_size; 7008 7009 if (!page) 7010 goto out; 7011 7012 size = btrfs_file_extent_ram_bytes(leaf, item); 7013 extent_offset = page_offset(page) + pg_offset - extent_start; 7014 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7015 size - extent_offset); 7016 em->start = extent_start + extent_offset; 7017 em->len = ALIGN(copy_size, fs_info->sectorsize); 7018 em->orig_block_len = em->len; 7019 em->orig_start = em->start; 7020 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7021 7022 if (!PageUptodate(page)) { 7023 if (btrfs_file_extent_compression(leaf, item) != 7024 BTRFS_COMPRESS_NONE) { 7025 ret = uncompress_inline(path, page, pg_offset, 7026 extent_offset, item); 7027 if (ret) 7028 goto out; 7029 } else { 7030 map = kmap_local_page(page); 7031 read_extent_buffer(leaf, map + pg_offset, ptr, 7032 copy_size); 7033 if (pg_offset + copy_size < PAGE_SIZE) { 7034 memset(map + pg_offset + copy_size, 0, 7035 PAGE_SIZE - pg_offset - 7036 copy_size); 7037 } 7038 kunmap_local(map); 7039 } 7040 flush_dcache_page(page); 7041 } 7042 set_extent_uptodate(io_tree, em->start, 7043 extent_map_end(em) - 1, NULL, GFP_NOFS); 7044 goto insert; 7045 } 7046 not_found: 7047 em->start = start; 7048 em->orig_start = start; 7049 em->len = len; 7050 em->block_start = EXTENT_MAP_HOLE; 7051 insert: 7052 ret = 0; 7053 btrfs_release_path(path); 7054 if (em->start > start || extent_map_end(em) <= start) { 7055 btrfs_err(fs_info, 7056 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7057 em->start, em->len, start, len); 7058 ret = -EIO; 7059 goto out; 7060 } 7061 7062 write_lock(&em_tree->lock); 7063 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7064 write_unlock(&em_tree->lock); 7065 out: 7066 btrfs_free_path(path); 7067 7068 trace_btrfs_get_extent(root, inode, em); 7069 7070 if (ret) { 7071 free_extent_map(em); 7072 return ERR_PTR(ret); 7073 } 7074 return em; 7075 } 7076 7077 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7078 u64 start, u64 len) 7079 { 7080 struct extent_map *em; 7081 struct extent_map *hole_em = NULL; 7082 u64 delalloc_start = start; 7083 u64 end; 7084 u64 delalloc_len; 7085 u64 delalloc_end; 7086 int err = 0; 7087 7088 em = btrfs_get_extent(inode, NULL, 0, start, len); 7089 if (IS_ERR(em)) 7090 return em; 7091 /* 7092 * If our em maps to: 7093 * - a hole or 7094 * - a pre-alloc extent, 7095 * there might actually be delalloc bytes behind it. 7096 */ 7097 if (em->block_start != EXTENT_MAP_HOLE && 7098 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7099 return em; 7100 else 7101 hole_em = em; 7102 7103 /* check to see if we've wrapped (len == -1 or similar) */ 7104 end = start + len; 7105 if (end < start) 7106 end = (u64)-1; 7107 else 7108 end -= 1; 7109 7110 em = NULL; 7111 7112 /* ok, we didn't find anything, lets look for delalloc */ 7113 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7114 end, len, EXTENT_DELALLOC, 1); 7115 delalloc_end = delalloc_start + delalloc_len; 7116 if (delalloc_end < delalloc_start) 7117 delalloc_end = (u64)-1; 7118 7119 /* 7120 * We didn't find anything useful, return the original results from 7121 * get_extent() 7122 */ 7123 if (delalloc_start > end || delalloc_end <= start) { 7124 em = hole_em; 7125 hole_em = NULL; 7126 goto out; 7127 } 7128 7129 /* 7130 * Adjust the delalloc_start to make sure it doesn't go backwards from 7131 * the start they passed in 7132 */ 7133 delalloc_start = max(start, delalloc_start); 7134 delalloc_len = delalloc_end - delalloc_start; 7135 7136 if (delalloc_len > 0) { 7137 u64 hole_start; 7138 u64 hole_len; 7139 const u64 hole_end = extent_map_end(hole_em); 7140 7141 em = alloc_extent_map(); 7142 if (!em) { 7143 err = -ENOMEM; 7144 goto out; 7145 } 7146 7147 ASSERT(hole_em); 7148 /* 7149 * When btrfs_get_extent can't find anything it returns one 7150 * huge hole 7151 * 7152 * Make sure what it found really fits our range, and adjust to 7153 * make sure it is based on the start from the caller 7154 */ 7155 if (hole_end <= start || hole_em->start > end) { 7156 free_extent_map(hole_em); 7157 hole_em = NULL; 7158 } else { 7159 hole_start = max(hole_em->start, start); 7160 hole_len = hole_end - hole_start; 7161 } 7162 7163 if (hole_em && delalloc_start > hole_start) { 7164 /* 7165 * Our hole starts before our delalloc, so we have to 7166 * return just the parts of the hole that go until the 7167 * delalloc starts 7168 */ 7169 em->len = min(hole_len, delalloc_start - hole_start); 7170 em->start = hole_start; 7171 em->orig_start = hole_start; 7172 /* 7173 * Don't adjust block start at all, it is fixed at 7174 * EXTENT_MAP_HOLE 7175 */ 7176 em->block_start = hole_em->block_start; 7177 em->block_len = hole_len; 7178 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7179 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7180 } else { 7181 /* 7182 * Hole is out of passed range or it starts after 7183 * delalloc range 7184 */ 7185 em->start = delalloc_start; 7186 em->len = delalloc_len; 7187 em->orig_start = delalloc_start; 7188 em->block_start = EXTENT_MAP_DELALLOC; 7189 em->block_len = delalloc_len; 7190 } 7191 } else { 7192 return hole_em; 7193 } 7194 out: 7195 7196 free_extent_map(hole_em); 7197 if (err) { 7198 free_extent_map(em); 7199 return ERR_PTR(err); 7200 } 7201 return em; 7202 } 7203 7204 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7205 const u64 start, 7206 const u64 len, 7207 const u64 orig_start, 7208 const u64 block_start, 7209 const u64 block_len, 7210 const u64 orig_block_len, 7211 const u64 ram_bytes, 7212 const int type) 7213 { 7214 struct extent_map *em = NULL; 7215 int ret; 7216 7217 if (type != BTRFS_ORDERED_NOCOW) { 7218 em = create_io_em(inode, start, len, orig_start, block_start, 7219 block_len, orig_block_len, ram_bytes, 7220 BTRFS_COMPRESS_NONE, /* compress_type */ 7221 type); 7222 if (IS_ERR(em)) 7223 goto out; 7224 } 7225 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, 7226 block_len, type); 7227 if (ret) { 7228 if (em) { 7229 free_extent_map(em); 7230 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7231 } 7232 em = ERR_PTR(ret); 7233 } 7234 out: 7235 7236 return em; 7237 } 7238 7239 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7240 u64 start, u64 len) 7241 { 7242 struct btrfs_root *root = inode->root; 7243 struct btrfs_fs_info *fs_info = root->fs_info; 7244 struct extent_map *em; 7245 struct btrfs_key ins; 7246 u64 alloc_hint; 7247 int ret; 7248 7249 alloc_hint = get_extent_allocation_hint(inode, start, len); 7250 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7251 0, alloc_hint, &ins, 1, 1); 7252 if (ret) 7253 return ERR_PTR(ret); 7254 7255 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7256 ins.objectid, ins.offset, ins.offset, 7257 ins.offset, BTRFS_ORDERED_REGULAR); 7258 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7259 if (IS_ERR(em)) 7260 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7261 1); 7262 7263 return em; 7264 } 7265 7266 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7267 { 7268 struct btrfs_block_group *block_group; 7269 bool readonly = false; 7270 7271 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7272 if (!block_group || block_group->ro) 7273 readonly = true; 7274 if (block_group) 7275 btrfs_put_block_group(block_group); 7276 return readonly; 7277 } 7278 7279 /* 7280 * Check if we can do nocow write into the range [@offset, @offset + @len) 7281 * 7282 * @offset: File offset 7283 * @len: The length to write, will be updated to the nocow writeable 7284 * range 7285 * @orig_start: (optional) Return the original file offset of the file extent 7286 * @orig_len: (optional) Return the original on-disk length of the file extent 7287 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7288 * @strict: if true, omit optimizations that might force us into unnecessary 7289 * cow. e.g., don't trust generation number. 7290 * 7291 * Return: 7292 * >0 and update @len if we can do nocow write 7293 * 0 if we can't do nocow write 7294 * <0 if error happened 7295 * 7296 * NOTE: This only checks the file extents, caller is responsible to wait for 7297 * any ordered extents. 7298 */ 7299 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7300 u64 *orig_start, u64 *orig_block_len, 7301 u64 *ram_bytes, bool strict) 7302 { 7303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7304 struct btrfs_path *path; 7305 int ret; 7306 struct extent_buffer *leaf; 7307 struct btrfs_root *root = BTRFS_I(inode)->root; 7308 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7309 struct btrfs_file_extent_item *fi; 7310 struct btrfs_key key; 7311 u64 disk_bytenr; 7312 u64 backref_offset; 7313 u64 extent_end; 7314 u64 num_bytes; 7315 int slot; 7316 int found_type; 7317 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7318 7319 path = btrfs_alloc_path(); 7320 if (!path) 7321 return -ENOMEM; 7322 7323 ret = btrfs_lookup_file_extent(NULL, root, path, 7324 btrfs_ino(BTRFS_I(inode)), offset, 0); 7325 if (ret < 0) 7326 goto out; 7327 7328 slot = path->slots[0]; 7329 if (ret == 1) { 7330 if (slot == 0) { 7331 /* can't find the item, must cow */ 7332 ret = 0; 7333 goto out; 7334 } 7335 slot--; 7336 } 7337 ret = 0; 7338 leaf = path->nodes[0]; 7339 btrfs_item_key_to_cpu(leaf, &key, slot); 7340 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7341 key.type != BTRFS_EXTENT_DATA_KEY) { 7342 /* not our file or wrong item type, must cow */ 7343 goto out; 7344 } 7345 7346 if (key.offset > offset) { 7347 /* Wrong offset, must cow */ 7348 goto out; 7349 } 7350 7351 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7352 found_type = btrfs_file_extent_type(leaf, fi); 7353 if (found_type != BTRFS_FILE_EXTENT_REG && 7354 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7355 /* not a regular extent, must cow */ 7356 goto out; 7357 } 7358 7359 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7360 goto out; 7361 7362 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7363 if (extent_end <= offset) 7364 goto out; 7365 7366 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7367 if (disk_bytenr == 0) 7368 goto out; 7369 7370 if (btrfs_file_extent_compression(leaf, fi) || 7371 btrfs_file_extent_encryption(leaf, fi) || 7372 btrfs_file_extent_other_encoding(leaf, fi)) 7373 goto out; 7374 7375 /* 7376 * Do the same check as in btrfs_cross_ref_exist but without the 7377 * unnecessary search. 7378 */ 7379 if (!strict && 7380 (btrfs_file_extent_generation(leaf, fi) <= 7381 btrfs_root_last_snapshot(&root->root_item))) 7382 goto out; 7383 7384 backref_offset = btrfs_file_extent_offset(leaf, fi); 7385 7386 if (orig_start) { 7387 *orig_start = key.offset - backref_offset; 7388 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7389 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7390 } 7391 7392 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7393 goto out; 7394 7395 num_bytes = min(offset + *len, extent_end) - offset; 7396 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7397 u64 range_end; 7398 7399 range_end = round_up(offset + num_bytes, 7400 root->fs_info->sectorsize) - 1; 7401 ret = test_range_bit(io_tree, offset, range_end, 7402 EXTENT_DELALLOC, 0, NULL); 7403 if (ret) { 7404 ret = -EAGAIN; 7405 goto out; 7406 } 7407 } 7408 7409 btrfs_release_path(path); 7410 7411 /* 7412 * look for other files referencing this extent, if we 7413 * find any we must cow 7414 */ 7415 7416 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7417 key.offset - backref_offset, disk_bytenr, 7418 strict); 7419 if (ret) { 7420 ret = 0; 7421 goto out; 7422 } 7423 7424 /* 7425 * adjust disk_bytenr and num_bytes to cover just the bytes 7426 * in this extent we are about to write. If there 7427 * are any csums in that range we have to cow in order 7428 * to keep the csums correct 7429 */ 7430 disk_bytenr += backref_offset; 7431 disk_bytenr += offset - key.offset; 7432 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7433 goto out; 7434 /* 7435 * all of the above have passed, it is safe to overwrite this extent 7436 * without cow 7437 */ 7438 *len = num_bytes; 7439 ret = 1; 7440 out: 7441 btrfs_free_path(path); 7442 return ret; 7443 } 7444 7445 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7446 struct extent_state **cached_state, bool writing) 7447 { 7448 struct btrfs_ordered_extent *ordered; 7449 int ret = 0; 7450 7451 while (1) { 7452 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7453 cached_state); 7454 /* 7455 * We're concerned with the entire range that we're going to be 7456 * doing DIO to, so we need to make sure there's no ordered 7457 * extents in this range. 7458 */ 7459 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7460 lockend - lockstart + 1); 7461 7462 /* 7463 * We need to make sure there are no buffered pages in this 7464 * range either, we could have raced between the invalidate in 7465 * generic_file_direct_write and locking the extent. The 7466 * invalidate needs to happen so that reads after a write do not 7467 * get stale data. 7468 */ 7469 if (!ordered && 7470 (!writing || !filemap_range_has_page(inode->i_mapping, 7471 lockstart, lockend))) 7472 break; 7473 7474 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7475 cached_state); 7476 7477 if (ordered) { 7478 /* 7479 * If we are doing a DIO read and the ordered extent we 7480 * found is for a buffered write, we can not wait for it 7481 * to complete and retry, because if we do so we can 7482 * deadlock with concurrent buffered writes on page 7483 * locks. This happens only if our DIO read covers more 7484 * than one extent map, if at this point has already 7485 * created an ordered extent for a previous extent map 7486 * and locked its range in the inode's io tree, and a 7487 * concurrent write against that previous extent map's 7488 * range and this range started (we unlock the ranges 7489 * in the io tree only when the bios complete and 7490 * buffered writes always lock pages before attempting 7491 * to lock range in the io tree). 7492 */ 7493 if (writing || 7494 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7495 btrfs_start_ordered_extent(ordered, 1); 7496 else 7497 ret = -ENOTBLK; 7498 btrfs_put_ordered_extent(ordered); 7499 } else { 7500 /* 7501 * We could trigger writeback for this range (and wait 7502 * for it to complete) and then invalidate the pages for 7503 * this range (through invalidate_inode_pages2_range()), 7504 * but that can lead us to a deadlock with a concurrent 7505 * call to readahead (a buffered read or a defrag call 7506 * triggered a readahead) on a page lock due to an 7507 * ordered dio extent we created before but did not have 7508 * yet a corresponding bio submitted (whence it can not 7509 * complete), which makes readahead wait for that 7510 * ordered extent to complete while holding a lock on 7511 * that page. 7512 */ 7513 ret = -ENOTBLK; 7514 } 7515 7516 if (ret) 7517 break; 7518 7519 cond_resched(); 7520 } 7521 7522 return ret; 7523 } 7524 7525 /* The callers of this must take lock_extent() */ 7526 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7527 u64 len, u64 orig_start, u64 block_start, 7528 u64 block_len, u64 orig_block_len, 7529 u64 ram_bytes, int compress_type, 7530 int type) 7531 { 7532 struct extent_map_tree *em_tree; 7533 struct extent_map *em; 7534 int ret; 7535 7536 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7537 type == BTRFS_ORDERED_COMPRESSED || 7538 type == BTRFS_ORDERED_NOCOW || 7539 type == BTRFS_ORDERED_REGULAR); 7540 7541 em_tree = &inode->extent_tree; 7542 em = alloc_extent_map(); 7543 if (!em) 7544 return ERR_PTR(-ENOMEM); 7545 7546 em->start = start; 7547 em->orig_start = orig_start; 7548 em->len = len; 7549 em->block_len = block_len; 7550 em->block_start = block_start; 7551 em->orig_block_len = orig_block_len; 7552 em->ram_bytes = ram_bytes; 7553 em->generation = -1; 7554 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7555 if (type == BTRFS_ORDERED_PREALLOC) { 7556 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7557 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7558 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7559 em->compress_type = compress_type; 7560 } 7561 7562 do { 7563 btrfs_drop_extent_cache(inode, em->start, 7564 em->start + em->len - 1, 0); 7565 write_lock(&em_tree->lock); 7566 ret = add_extent_mapping(em_tree, em, 1); 7567 write_unlock(&em_tree->lock); 7568 /* 7569 * The caller has taken lock_extent(), who could race with us 7570 * to add em? 7571 */ 7572 } while (ret == -EEXIST); 7573 7574 if (ret) { 7575 free_extent_map(em); 7576 return ERR_PTR(ret); 7577 } 7578 7579 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7580 return em; 7581 } 7582 7583 7584 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7585 struct inode *inode, 7586 struct btrfs_dio_data *dio_data, 7587 u64 start, u64 len) 7588 { 7589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7590 struct extent_map *em = *map; 7591 int ret = 0; 7592 7593 /* 7594 * We don't allocate a new extent in the following cases 7595 * 7596 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7597 * existing extent. 7598 * 2) The extent is marked as PREALLOC. We're good to go here and can 7599 * just use the extent. 7600 * 7601 */ 7602 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7603 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7604 em->block_start != EXTENT_MAP_HOLE)) { 7605 int type; 7606 u64 block_start, orig_start, orig_block_len, ram_bytes; 7607 7608 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7609 type = BTRFS_ORDERED_PREALLOC; 7610 else 7611 type = BTRFS_ORDERED_NOCOW; 7612 len = min(len, em->len - (start - em->start)); 7613 block_start = em->block_start + (start - em->start); 7614 7615 if (can_nocow_extent(inode, start, &len, &orig_start, 7616 &orig_block_len, &ram_bytes, false) == 1 && 7617 btrfs_inc_nocow_writers(fs_info, block_start)) { 7618 struct extent_map *em2; 7619 7620 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7621 orig_start, block_start, 7622 len, orig_block_len, 7623 ram_bytes, type); 7624 btrfs_dec_nocow_writers(fs_info, block_start); 7625 if (type == BTRFS_ORDERED_PREALLOC) { 7626 free_extent_map(em); 7627 *map = em = em2; 7628 } 7629 7630 if (em2 && IS_ERR(em2)) { 7631 ret = PTR_ERR(em2); 7632 goto out; 7633 } 7634 /* 7635 * For inode marked NODATACOW or extent marked PREALLOC, 7636 * use the existing or preallocated extent, so does not 7637 * need to adjust btrfs_space_info's bytes_may_use. 7638 */ 7639 btrfs_free_reserved_data_space_noquota(fs_info, len); 7640 goto skip_cow; 7641 } 7642 } 7643 7644 /* this will cow the extent */ 7645 free_extent_map(em); 7646 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7647 if (IS_ERR(em)) { 7648 ret = PTR_ERR(em); 7649 goto out; 7650 } 7651 7652 len = min(len, em->len - (start - em->start)); 7653 7654 skip_cow: 7655 /* 7656 * Need to update the i_size under the extent lock so buffered 7657 * readers will get the updated i_size when we unlock. 7658 */ 7659 if (start + len > i_size_read(inode)) 7660 i_size_write(inode, start + len); 7661 7662 dio_data->reserve -= len; 7663 out: 7664 return ret; 7665 } 7666 7667 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7668 loff_t length, unsigned int flags, struct iomap *iomap, 7669 struct iomap *srcmap) 7670 { 7671 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7672 struct extent_map *em; 7673 struct extent_state *cached_state = NULL; 7674 struct btrfs_dio_data *dio_data = NULL; 7675 u64 lockstart, lockend; 7676 const bool write = !!(flags & IOMAP_WRITE); 7677 int ret = 0; 7678 u64 len = length; 7679 bool unlock_extents = false; 7680 7681 if (!write) 7682 len = min_t(u64, len, fs_info->sectorsize); 7683 7684 lockstart = start; 7685 lockend = start + len - 1; 7686 7687 /* 7688 * The generic stuff only does filemap_write_and_wait_range, which 7689 * isn't enough if we've written compressed pages to this area, so we 7690 * need to flush the dirty pages again to make absolutely sure that any 7691 * outstanding dirty pages are on disk. 7692 */ 7693 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7694 &BTRFS_I(inode)->runtime_flags)) { 7695 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7696 start + length - 1); 7697 if (ret) 7698 return ret; 7699 } 7700 7701 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7702 if (!dio_data) 7703 return -ENOMEM; 7704 7705 dio_data->length = length; 7706 if (write) { 7707 dio_data->reserve = round_up(length, fs_info->sectorsize); 7708 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7709 &dio_data->data_reserved, 7710 start, dio_data->reserve); 7711 if (ret) { 7712 extent_changeset_free(dio_data->data_reserved); 7713 kfree(dio_data); 7714 return ret; 7715 } 7716 } 7717 iomap->private = dio_data; 7718 7719 7720 /* 7721 * If this errors out it's because we couldn't invalidate pagecache for 7722 * this range and we need to fallback to buffered. 7723 */ 7724 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7725 ret = -ENOTBLK; 7726 goto err; 7727 } 7728 7729 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7730 if (IS_ERR(em)) { 7731 ret = PTR_ERR(em); 7732 goto unlock_err; 7733 } 7734 7735 /* 7736 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7737 * io. INLINE is special, and we could probably kludge it in here, but 7738 * it's still buffered so for safety lets just fall back to the generic 7739 * buffered path. 7740 * 7741 * For COMPRESSED we _have_ to read the entire extent in so we can 7742 * decompress it, so there will be buffering required no matter what we 7743 * do, so go ahead and fallback to buffered. 7744 * 7745 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7746 * to buffered IO. Don't blame me, this is the price we pay for using 7747 * the generic code. 7748 */ 7749 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7750 em->block_start == EXTENT_MAP_INLINE) { 7751 free_extent_map(em); 7752 ret = -ENOTBLK; 7753 goto unlock_err; 7754 } 7755 7756 len = min(len, em->len - (start - em->start)); 7757 if (write) { 7758 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7759 start, len); 7760 if (ret < 0) 7761 goto unlock_err; 7762 unlock_extents = true; 7763 /* Recalc len in case the new em is smaller than requested */ 7764 len = min(len, em->len - (start - em->start)); 7765 } else { 7766 /* 7767 * We need to unlock only the end area that we aren't using. 7768 * The rest is going to be unlocked by the endio routine. 7769 */ 7770 lockstart = start + len; 7771 if (lockstart < lockend) 7772 unlock_extents = true; 7773 } 7774 7775 if (unlock_extents) 7776 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7777 lockstart, lockend, &cached_state); 7778 else 7779 free_extent_state(cached_state); 7780 7781 /* 7782 * Translate extent map information to iomap. 7783 * We trim the extents (and move the addr) even though iomap code does 7784 * that, since we have locked only the parts we are performing I/O in. 7785 */ 7786 if ((em->block_start == EXTENT_MAP_HOLE) || 7787 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7788 iomap->addr = IOMAP_NULL_ADDR; 7789 iomap->type = IOMAP_HOLE; 7790 } else { 7791 iomap->addr = em->block_start + (start - em->start); 7792 iomap->type = IOMAP_MAPPED; 7793 } 7794 iomap->offset = start; 7795 iomap->bdev = fs_info->fs_devices->latest_bdev; 7796 iomap->length = len; 7797 7798 if (write && btrfs_use_zone_append(BTRFS_I(inode), em)) 7799 iomap->flags |= IOMAP_F_ZONE_APPEND; 7800 7801 free_extent_map(em); 7802 7803 return 0; 7804 7805 unlock_err: 7806 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7807 &cached_state); 7808 err: 7809 if (dio_data) { 7810 btrfs_delalloc_release_space(BTRFS_I(inode), 7811 dio_data->data_reserved, start, 7812 dio_data->reserve, true); 7813 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve); 7814 extent_changeset_free(dio_data->data_reserved); 7815 kfree(dio_data); 7816 } 7817 return ret; 7818 } 7819 7820 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7821 ssize_t written, unsigned int flags, struct iomap *iomap) 7822 { 7823 int ret = 0; 7824 struct btrfs_dio_data *dio_data = iomap->private; 7825 size_t submitted = dio_data->submitted; 7826 const bool write = !!(flags & IOMAP_WRITE); 7827 7828 if (!write && (iomap->type == IOMAP_HOLE)) { 7829 /* If reading from a hole, unlock and return */ 7830 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7831 goto out; 7832 } 7833 7834 if (submitted < length) { 7835 pos += submitted; 7836 length -= submitted; 7837 if (write) 7838 __endio_write_update_ordered(BTRFS_I(inode), pos, 7839 length, false); 7840 else 7841 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7842 pos + length - 1); 7843 ret = -ENOTBLK; 7844 } 7845 7846 if (write) { 7847 if (dio_data->reserve) 7848 btrfs_delalloc_release_space(BTRFS_I(inode), 7849 dio_data->data_reserved, pos, 7850 dio_data->reserve, true); 7851 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length); 7852 extent_changeset_free(dio_data->data_reserved); 7853 } 7854 out: 7855 kfree(dio_data); 7856 iomap->private = NULL; 7857 7858 return ret; 7859 } 7860 7861 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7862 { 7863 /* 7864 * This implies a barrier so that stores to dio_bio->bi_status before 7865 * this and loads of dio_bio->bi_status after this are fully ordered. 7866 */ 7867 if (!refcount_dec_and_test(&dip->refs)) 7868 return; 7869 7870 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) { 7871 __endio_write_update_ordered(BTRFS_I(dip->inode), 7872 dip->logical_offset, 7873 dip->bytes, 7874 !dip->dio_bio->bi_status); 7875 } else { 7876 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7877 dip->logical_offset, 7878 dip->logical_offset + dip->bytes - 1); 7879 } 7880 7881 bio_endio(dip->dio_bio); 7882 kfree(dip); 7883 } 7884 7885 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7886 int mirror_num, 7887 unsigned long bio_flags) 7888 { 7889 struct btrfs_dio_private *dip = bio->bi_private; 7890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7891 blk_status_t ret; 7892 7893 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7894 7895 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7896 if (ret) 7897 return ret; 7898 7899 refcount_inc(&dip->refs); 7900 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7901 if (ret) 7902 refcount_dec(&dip->refs); 7903 return ret; 7904 } 7905 7906 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7907 struct btrfs_io_bio *io_bio, 7908 const bool uptodate) 7909 { 7910 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7911 const u32 sectorsize = fs_info->sectorsize; 7912 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7913 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7914 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7915 struct bio_vec bvec; 7916 struct bvec_iter iter; 7917 u64 start = io_bio->logical; 7918 u32 bio_offset = 0; 7919 blk_status_t err = BLK_STS_OK; 7920 7921 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7922 unsigned int i, nr_sectors, pgoff; 7923 7924 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7925 pgoff = bvec.bv_offset; 7926 for (i = 0; i < nr_sectors; i++) { 7927 ASSERT(pgoff < PAGE_SIZE); 7928 if (uptodate && 7929 (!csum || !check_data_csum(inode, io_bio, 7930 bio_offset, bvec.bv_page, 7931 pgoff, start))) { 7932 clean_io_failure(fs_info, failure_tree, io_tree, 7933 start, bvec.bv_page, 7934 btrfs_ino(BTRFS_I(inode)), 7935 pgoff); 7936 } else { 7937 blk_status_t status; 7938 7939 ASSERT((start - io_bio->logical) < UINT_MAX); 7940 status = btrfs_submit_read_repair(inode, 7941 &io_bio->bio, 7942 start - io_bio->logical, 7943 bvec.bv_page, pgoff, 7944 start, 7945 start + sectorsize - 1, 7946 io_bio->mirror_num, 7947 submit_dio_repair_bio); 7948 if (status) 7949 err = status; 7950 } 7951 start += sectorsize; 7952 ASSERT(bio_offset + sectorsize > bio_offset); 7953 bio_offset += sectorsize; 7954 pgoff += sectorsize; 7955 } 7956 } 7957 return err; 7958 } 7959 7960 static void __endio_write_update_ordered(struct btrfs_inode *inode, 7961 const u64 offset, const u64 bytes, 7962 const bool uptodate) 7963 { 7964 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7965 struct btrfs_ordered_extent *ordered = NULL; 7966 struct btrfs_workqueue *wq; 7967 u64 ordered_offset = offset; 7968 u64 ordered_bytes = bytes; 7969 u64 last_offset; 7970 7971 if (btrfs_is_free_space_inode(inode)) 7972 wq = fs_info->endio_freespace_worker; 7973 else 7974 wq = fs_info->endio_write_workers; 7975 7976 while (ordered_offset < offset + bytes) { 7977 last_offset = ordered_offset; 7978 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7979 &ordered_offset, 7980 ordered_bytes, 7981 uptodate)) { 7982 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7983 NULL); 7984 btrfs_queue_work(wq, &ordered->work); 7985 } 7986 7987 /* No ordered extent found in the range, exit */ 7988 if (ordered_offset == last_offset) 7989 return; 7990 /* 7991 * Our bio might span multiple ordered extents. In this case 7992 * we keep going until we have accounted the whole dio. 7993 */ 7994 if (ordered_offset < offset + bytes) { 7995 ordered_bytes = offset + bytes - ordered_offset; 7996 ordered = NULL; 7997 } 7998 } 7999 } 8000 8001 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 8002 struct bio *bio, 8003 u64 dio_file_offset) 8004 { 8005 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1); 8006 } 8007 8008 static void btrfs_end_dio_bio(struct bio *bio) 8009 { 8010 struct btrfs_dio_private *dip = bio->bi_private; 8011 blk_status_t err = bio->bi_status; 8012 8013 if (err) 8014 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8015 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8016 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8017 bio->bi_opf, bio->bi_iter.bi_sector, 8018 bio->bi_iter.bi_size, err); 8019 8020 if (bio_op(bio) == REQ_OP_READ) { 8021 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 8022 !err); 8023 } 8024 8025 if (err) 8026 dip->dio_bio->bi_status = err; 8027 8028 btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio); 8029 8030 bio_put(bio); 8031 btrfs_dio_private_put(dip); 8032 } 8033 8034 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8035 struct inode *inode, u64 file_offset, int async_submit) 8036 { 8037 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8038 struct btrfs_dio_private *dip = bio->bi_private; 8039 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE; 8040 blk_status_t ret; 8041 8042 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8043 if (async_submit) 8044 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8045 8046 if (!write) { 8047 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8048 if (ret) 8049 goto err; 8050 } 8051 8052 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8053 goto map; 8054 8055 if (write && async_submit) { 8056 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset, 8057 btrfs_submit_bio_start_direct_io); 8058 goto err; 8059 } else if (write) { 8060 /* 8061 * If we aren't doing async submit, calculate the csum of the 8062 * bio now. 8063 */ 8064 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); 8065 if (ret) 8066 goto err; 8067 } else { 8068 u64 csum_offset; 8069 8070 csum_offset = file_offset - dip->logical_offset; 8071 csum_offset >>= fs_info->sectorsize_bits; 8072 csum_offset *= fs_info->csum_size; 8073 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 8074 } 8075 map: 8076 ret = btrfs_map_bio(fs_info, bio, 0); 8077 err: 8078 return ret; 8079 } 8080 8081 /* 8082 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 8083 * or ordered extents whether or not we submit any bios. 8084 */ 8085 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 8086 struct inode *inode, 8087 loff_t file_offset) 8088 { 8089 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8090 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 8091 size_t dip_size; 8092 struct btrfs_dio_private *dip; 8093 8094 dip_size = sizeof(*dip); 8095 if (!write && csum) { 8096 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8097 size_t nblocks; 8098 8099 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits; 8100 dip_size += fs_info->csum_size * nblocks; 8101 } 8102 8103 dip = kzalloc(dip_size, GFP_NOFS); 8104 if (!dip) 8105 return NULL; 8106 8107 dip->inode = inode; 8108 dip->logical_offset = file_offset; 8109 dip->bytes = dio_bio->bi_iter.bi_size; 8110 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9; 8111 dip->dio_bio = dio_bio; 8112 refcount_set(&dip->refs, 1); 8113 return dip; 8114 } 8115 8116 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap, 8117 struct bio *dio_bio, loff_t file_offset) 8118 { 8119 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8120 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8121 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 8122 BTRFS_BLOCK_GROUP_RAID56_MASK); 8123 struct btrfs_dio_private *dip; 8124 struct bio *bio; 8125 u64 start_sector; 8126 int async_submit = 0; 8127 u64 submit_len; 8128 int clone_offset = 0; 8129 int clone_len; 8130 u64 logical; 8131 int ret; 8132 blk_status_t status; 8133 struct btrfs_io_geometry geom; 8134 struct btrfs_dio_data *dio_data = iomap->private; 8135 struct extent_map *em = NULL; 8136 8137 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 8138 if (!dip) { 8139 if (!write) { 8140 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8141 file_offset + dio_bio->bi_iter.bi_size - 1); 8142 } 8143 dio_bio->bi_status = BLK_STS_RESOURCE; 8144 bio_endio(dio_bio); 8145 return BLK_QC_T_NONE; 8146 } 8147 8148 if (!write) { 8149 /* 8150 * Load the csums up front to reduce csum tree searches and 8151 * contention when submitting bios. 8152 * 8153 * If we have csums disabled this will do nothing. 8154 */ 8155 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 8156 if (status != BLK_STS_OK) 8157 goto out_err; 8158 } 8159 8160 start_sector = dio_bio->bi_iter.bi_sector; 8161 submit_len = dio_bio->bi_iter.bi_size; 8162 8163 do { 8164 logical = start_sector << 9; 8165 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 8166 if (IS_ERR(em)) { 8167 status = errno_to_blk_status(PTR_ERR(em)); 8168 em = NULL; 8169 goto out_err_em; 8170 } 8171 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8172 logical, submit_len, &geom); 8173 if (ret) { 8174 status = errno_to_blk_status(ret); 8175 goto out_err_em; 8176 } 8177 ASSERT(geom.len <= INT_MAX); 8178 8179 clone_len = min_t(int, submit_len, geom.len); 8180 8181 /* 8182 * This will never fail as it's passing GPF_NOFS and 8183 * the allocation is backed by btrfs_bioset. 8184 */ 8185 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 8186 bio->bi_private = dip; 8187 bio->bi_end_io = btrfs_end_dio_bio; 8188 btrfs_io_bio(bio)->logical = file_offset; 8189 8190 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8191 status = extract_ordered_extent(BTRFS_I(inode), bio, 8192 file_offset); 8193 if (status) { 8194 bio_put(bio); 8195 goto out_err; 8196 } 8197 } 8198 8199 ASSERT(submit_len >= clone_len); 8200 submit_len -= clone_len; 8201 8202 /* 8203 * Increase the count before we submit the bio so we know 8204 * the end IO handler won't happen before we increase the 8205 * count. Otherwise, the dip might get freed before we're 8206 * done setting it up. 8207 * 8208 * We transfer the initial reference to the last bio, so we 8209 * don't need to increment the reference count for the last one. 8210 */ 8211 if (submit_len > 0) { 8212 refcount_inc(&dip->refs); 8213 /* 8214 * If we are submitting more than one bio, submit them 8215 * all asynchronously. The exception is RAID 5 or 6, as 8216 * asynchronous checksums make it difficult to collect 8217 * full stripe writes. 8218 */ 8219 if (!raid56) 8220 async_submit = 1; 8221 } 8222 8223 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8224 async_submit); 8225 if (status) { 8226 bio_put(bio); 8227 if (submit_len > 0) 8228 refcount_dec(&dip->refs); 8229 goto out_err_em; 8230 } 8231 8232 dio_data->submitted += clone_len; 8233 clone_offset += clone_len; 8234 start_sector += clone_len >> 9; 8235 file_offset += clone_len; 8236 8237 free_extent_map(em); 8238 } while (submit_len > 0); 8239 return BLK_QC_T_NONE; 8240 8241 out_err_em: 8242 free_extent_map(em); 8243 out_err: 8244 dip->dio_bio->bi_status = status; 8245 btrfs_dio_private_put(dip); 8246 8247 return BLK_QC_T_NONE; 8248 } 8249 8250 const struct iomap_ops btrfs_dio_iomap_ops = { 8251 .iomap_begin = btrfs_dio_iomap_begin, 8252 .iomap_end = btrfs_dio_iomap_end, 8253 }; 8254 8255 const struct iomap_dio_ops btrfs_dio_ops = { 8256 .submit_io = btrfs_submit_direct, 8257 }; 8258 8259 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8260 u64 start, u64 len) 8261 { 8262 int ret; 8263 8264 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8265 if (ret) 8266 return ret; 8267 8268 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8269 } 8270 8271 int btrfs_readpage(struct file *file, struct page *page) 8272 { 8273 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8274 u64 start = page_offset(page); 8275 u64 end = start + PAGE_SIZE - 1; 8276 unsigned long bio_flags = 0; 8277 struct bio *bio = NULL; 8278 int ret; 8279 8280 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8281 8282 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL); 8283 if (bio) 8284 ret = submit_one_bio(bio, 0, bio_flags); 8285 return ret; 8286 } 8287 8288 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8289 { 8290 struct inode *inode = page->mapping->host; 8291 int ret; 8292 8293 if (current->flags & PF_MEMALLOC) { 8294 redirty_page_for_writepage(wbc, page); 8295 unlock_page(page); 8296 return 0; 8297 } 8298 8299 /* 8300 * If we are under memory pressure we will call this directly from the 8301 * VM, we need to make sure we have the inode referenced for the ordered 8302 * extent. If not just return like we didn't do anything. 8303 */ 8304 if (!igrab(inode)) { 8305 redirty_page_for_writepage(wbc, page); 8306 return AOP_WRITEPAGE_ACTIVATE; 8307 } 8308 ret = extent_write_full_page(page, wbc); 8309 btrfs_add_delayed_iput(inode); 8310 return ret; 8311 } 8312 8313 static int btrfs_writepages(struct address_space *mapping, 8314 struct writeback_control *wbc) 8315 { 8316 return extent_writepages(mapping, wbc); 8317 } 8318 8319 static void btrfs_readahead(struct readahead_control *rac) 8320 { 8321 extent_readahead(rac); 8322 } 8323 8324 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8325 { 8326 int ret = try_release_extent_mapping(page, gfp_flags); 8327 if (ret == 1) 8328 clear_page_extent_mapped(page); 8329 return ret; 8330 } 8331 8332 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8333 { 8334 if (PageWriteback(page) || PageDirty(page)) 8335 return 0; 8336 return __btrfs_releasepage(page, gfp_flags); 8337 } 8338 8339 #ifdef CONFIG_MIGRATION 8340 static int btrfs_migratepage(struct address_space *mapping, 8341 struct page *newpage, struct page *page, 8342 enum migrate_mode mode) 8343 { 8344 int ret; 8345 8346 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8347 if (ret != MIGRATEPAGE_SUCCESS) 8348 return ret; 8349 8350 if (page_has_private(page)) 8351 attach_page_private(newpage, detach_page_private(page)); 8352 8353 if (PagePrivate2(page)) { 8354 ClearPagePrivate2(page); 8355 SetPagePrivate2(newpage); 8356 } 8357 8358 if (mode != MIGRATE_SYNC_NO_COPY) 8359 migrate_page_copy(newpage, page); 8360 else 8361 migrate_page_states(newpage, page); 8362 return MIGRATEPAGE_SUCCESS; 8363 } 8364 #endif 8365 8366 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8367 unsigned int length) 8368 { 8369 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8370 struct extent_io_tree *tree = &inode->io_tree; 8371 struct btrfs_ordered_extent *ordered; 8372 struct extent_state *cached_state = NULL; 8373 u64 page_start = page_offset(page); 8374 u64 page_end = page_start + PAGE_SIZE - 1; 8375 u64 start; 8376 u64 end; 8377 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8378 bool found_ordered = false; 8379 bool completed_ordered = false; 8380 8381 /* 8382 * we have the page locked, so new writeback can't start, 8383 * and the dirty bit won't be cleared while we are here. 8384 * 8385 * Wait for IO on this page so that we can safely clear 8386 * the PagePrivate2 bit and do ordered accounting 8387 */ 8388 wait_on_page_writeback(page); 8389 8390 if (offset) { 8391 btrfs_releasepage(page, GFP_NOFS); 8392 return; 8393 } 8394 8395 if (!inode_evicting) 8396 lock_extent_bits(tree, page_start, page_end, &cached_state); 8397 8398 start = page_start; 8399 again: 8400 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1); 8401 if (ordered) { 8402 found_ordered = true; 8403 end = min(page_end, 8404 ordered->file_offset + ordered->num_bytes - 1); 8405 /* 8406 * IO on this page will never be started, so we need to account 8407 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8408 * here, must leave that up for the ordered extent completion. 8409 */ 8410 if (!inode_evicting) 8411 clear_extent_bit(tree, start, end, 8412 EXTENT_DELALLOC | 8413 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8414 EXTENT_DEFRAG, 1, 0, &cached_state); 8415 /* 8416 * whoever cleared the private bit is responsible 8417 * for the finish_ordered_io 8418 */ 8419 if (TestClearPagePrivate2(page)) { 8420 spin_lock_irq(&inode->ordered_tree.lock); 8421 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8422 ordered->truncated_len = min(ordered->truncated_len, 8423 start - ordered->file_offset); 8424 spin_unlock_irq(&inode->ordered_tree.lock); 8425 8426 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8427 start, 8428 end - start + 1, 1)) { 8429 btrfs_finish_ordered_io(ordered); 8430 completed_ordered = true; 8431 } 8432 } 8433 btrfs_put_ordered_extent(ordered); 8434 if (!inode_evicting) { 8435 cached_state = NULL; 8436 lock_extent_bits(tree, start, end, 8437 &cached_state); 8438 } 8439 8440 start = end + 1; 8441 if (start < page_end) 8442 goto again; 8443 } 8444 8445 /* 8446 * Qgroup reserved space handler 8447 * Page here will be either 8448 * 1) Already written to disk or ordered extent already submitted 8449 * Then its QGROUP_RESERVED bit in io_tree is already cleaned. 8450 * Qgroup will be handled by its qgroup_record then. 8451 * btrfs_qgroup_free_data() call will do nothing here. 8452 * 8453 * 2) Not written to disk yet 8454 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED 8455 * bit of its io_tree, and free the qgroup reserved data space. 8456 * Since the IO will never happen for this page. 8457 */ 8458 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8459 if (!inode_evicting) { 8460 bool delete = true; 8461 8462 /* 8463 * If there's an ordered extent for this range and we have not 8464 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set 8465 * in the range for the ordered extent completion. We must also 8466 * not delete the range, otherwise we would lose that bit (and 8467 * any other bits set in the range). Make sure EXTENT_UPTODATE 8468 * is cleared if we don't delete, otherwise it can lead to 8469 * corruptions if the i_size is extented later. 8470 */ 8471 if (found_ordered && !completed_ordered) 8472 delete = false; 8473 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8474 EXTENT_DELALLOC | EXTENT_UPTODATE | 8475 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8476 delete, &cached_state); 8477 8478 __btrfs_releasepage(page, GFP_NOFS); 8479 } 8480 8481 ClearPageChecked(page); 8482 clear_page_extent_mapped(page); 8483 } 8484 8485 /* 8486 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8487 * called from a page fault handler when a page is first dirtied. Hence we must 8488 * be careful to check for EOF conditions here. We set the page up correctly 8489 * for a written page which means we get ENOSPC checking when writing into 8490 * holes and correct delalloc and unwritten extent mapping on filesystems that 8491 * support these features. 8492 * 8493 * We are not allowed to take the i_mutex here so we have to play games to 8494 * protect against truncate races as the page could now be beyond EOF. Because 8495 * truncate_setsize() writes the inode size before removing pages, once we have 8496 * the page lock we can determine safely if the page is beyond EOF. If it is not 8497 * beyond EOF, then the page is guaranteed safe against truncation until we 8498 * unlock the page. 8499 */ 8500 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8501 { 8502 struct page *page = vmf->page; 8503 struct inode *inode = file_inode(vmf->vma->vm_file); 8504 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8505 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8506 struct btrfs_ordered_extent *ordered; 8507 struct extent_state *cached_state = NULL; 8508 struct extent_changeset *data_reserved = NULL; 8509 char *kaddr; 8510 unsigned long zero_start; 8511 loff_t size; 8512 vm_fault_t ret; 8513 int ret2; 8514 int reserved = 0; 8515 u64 reserved_space; 8516 u64 page_start; 8517 u64 page_end; 8518 u64 end; 8519 8520 reserved_space = PAGE_SIZE; 8521 8522 sb_start_pagefault(inode->i_sb); 8523 page_start = page_offset(page); 8524 page_end = page_start + PAGE_SIZE - 1; 8525 end = page_end; 8526 8527 /* 8528 * Reserving delalloc space after obtaining the page lock can lead to 8529 * deadlock. For example, if a dirty page is locked by this function 8530 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8531 * dirty page write out, then the btrfs_writepage() function could 8532 * end up waiting indefinitely to get a lock on the page currently 8533 * being processed by btrfs_page_mkwrite() function. 8534 */ 8535 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8536 page_start, reserved_space); 8537 if (!ret2) { 8538 ret2 = file_update_time(vmf->vma->vm_file); 8539 reserved = 1; 8540 } 8541 if (ret2) { 8542 ret = vmf_error(ret2); 8543 if (reserved) 8544 goto out; 8545 goto out_noreserve; 8546 } 8547 8548 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8549 again: 8550 down_read(&BTRFS_I(inode)->i_mmap_lock); 8551 lock_page(page); 8552 size = i_size_read(inode); 8553 8554 if ((page->mapping != inode->i_mapping) || 8555 (page_start >= size)) { 8556 /* page got truncated out from underneath us */ 8557 goto out_unlock; 8558 } 8559 wait_on_page_writeback(page); 8560 8561 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8562 ret2 = set_page_extent_mapped(page); 8563 if (ret2 < 0) { 8564 ret = vmf_error(ret2); 8565 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8566 goto out_unlock; 8567 } 8568 8569 /* 8570 * we can't set the delalloc bits if there are pending ordered 8571 * extents. Drop our locks and wait for them to finish 8572 */ 8573 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8574 PAGE_SIZE); 8575 if (ordered) { 8576 unlock_extent_cached(io_tree, page_start, page_end, 8577 &cached_state); 8578 unlock_page(page); 8579 up_read(&BTRFS_I(inode)->i_mmap_lock); 8580 btrfs_start_ordered_extent(ordered, 1); 8581 btrfs_put_ordered_extent(ordered); 8582 goto again; 8583 } 8584 8585 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8586 reserved_space = round_up(size - page_start, 8587 fs_info->sectorsize); 8588 if (reserved_space < PAGE_SIZE) { 8589 end = page_start + reserved_space - 1; 8590 btrfs_delalloc_release_space(BTRFS_I(inode), 8591 data_reserved, page_start, 8592 PAGE_SIZE - reserved_space, true); 8593 } 8594 } 8595 8596 /* 8597 * page_mkwrite gets called when the page is firstly dirtied after it's 8598 * faulted in, but write(2) could also dirty a page and set delalloc 8599 * bits, thus in this case for space account reason, we still need to 8600 * clear any delalloc bits within this page range since we have to 8601 * reserve data&meta space before lock_page() (see above comments). 8602 */ 8603 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8604 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8605 EXTENT_DEFRAG, 0, 0, &cached_state); 8606 8607 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8608 &cached_state); 8609 if (ret2) { 8610 unlock_extent_cached(io_tree, page_start, page_end, 8611 &cached_state); 8612 ret = VM_FAULT_SIGBUS; 8613 goto out_unlock; 8614 } 8615 8616 /* page is wholly or partially inside EOF */ 8617 if (page_start + PAGE_SIZE > size) 8618 zero_start = offset_in_page(size); 8619 else 8620 zero_start = PAGE_SIZE; 8621 8622 if (zero_start != PAGE_SIZE) { 8623 kaddr = kmap(page); 8624 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8625 flush_dcache_page(page); 8626 kunmap(page); 8627 } 8628 ClearPageChecked(page); 8629 set_page_dirty(page); 8630 SetPageUptodate(page); 8631 8632 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8633 8634 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8635 up_read(&BTRFS_I(inode)->i_mmap_lock); 8636 8637 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8638 sb_end_pagefault(inode->i_sb); 8639 extent_changeset_free(data_reserved); 8640 return VM_FAULT_LOCKED; 8641 8642 out_unlock: 8643 unlock_page(page); 8644 up_read(&BTRFS_I(inode)->i_mmap_lock); 8645 out: 8646 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8647 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8648 reserved_space, (ret != 0)); 8649 out_noreserve: 8650 sb_end_pagefault(inode->i_sb); 8651 extent_changeset_free(data_reserved); 8652 return ret; 8653 } 8654 8655 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8656 { 8657 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8658 struct btrfs_root *root = BTRFS_I(inode)->root; 8659 struct btrfs_block_rsv *rsv; 8660 int ret; 8661 struct btrfs_trans_handle *trans; 8662 u64 mask = fs_info->sectorsize - 1; 8663 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8664 8665 if (!skip_writeback) { 8666 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8667 (u64)-1); 8668 if (ret) 8669 return ret; 8670 } 8671 8672 /* 8673 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8674 * things going on here: 8675 * 8676 * 1) We need to reserve space to update our inode. 8677 * 8678 * 2) We need to have something to cache all the space that is going to 8679 * be free'd up by the truncate operation, but also have some slack 8680 * space reserved in case it uses space during the truncate (thank you 8681 * very much snapshotting). 8682 * 8683 * And we need these to be separate. The fact is we can use a lot of 8684 * space doing the truncate, and we have no earthly idea how much space 8685 * we will use, so we need the truncate reservation to be separate so it 8686 * doesn't end up using space reserved for updating the inode. We also 8687 * need to be able to stop the transaction and start a new one, which 8688 * means we need to be able to update the inode several times, and we 8689 * have no idea of knowing how many times that will be, so we can't just 8690 * reserve 1 item for the entirety of the operation, so that has to be 8691 * done separately as well. 8692 * 8693 * So that leaves us with 8694 * 8695 * 1) rsv - for the truncate reservation, which we will steal from the 8696 * transaction reservation. 8697 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8698 * updating the inode. 8699 */ 8700 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8701 if (!rsv) 8702 return -ENOMEM; 8703 rsv->size = min_size; 8704 rsv->failfast = 1; 8705 8706 /* 8707 * 1 for the truncate slack space 8708 * 1 for updating the inode. 8709 */ 8710 trans = btrfs_start_transaction(root, 2); 8711 if (IS_ERR(trans)) { 8712 ret = PTR_ERR(trans); 8713 goto out; 8714 } 8715 8716 /* Migrate the slack space for the truncate to our reserve */ 8717 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8718 min_size, false); 8719 BUG_ON(ret); 8720 8721 /* 8722 * So if we truncate and then write and fsync we normally would just 8723 * write the extents that changed, which is a problem if we need to 8724 * first truncate that entire inode. So set this flag so we write out 8725 * all of the extents in the inode to the sync log so we're completely 8726 * safe. 8727 */ 8728 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8729 trans->block_rsv = rsv; 8730 8731 while (1) { 8732 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 8733 inode->i_size, 8734 BTRFS_EXTENT_DATA_KEY); 8735 trans->block_rsv = &fs_info->trans_block_rsv; 8736 if (ret != -ENOSPC && ret != -EAGAIN) 8737 break; 8738 8739 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8740 if (ret) 8741 break; 8742 8743 btrfs_end_transaction(trans); 8744 btrfs_btree_balance_dirty(fs_info); 8745 8746 trans = btrfs_start_transaction(root, 2); 8747 if (IS_ERR(trans)) { 8748 ret = PTR_ERR(trans); 8749 trans = NULL; 8750 break; 8751 } 8752 8753 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8754 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8755 rsv, min_size, false); 8756 BUG_ON(ret); /* shouldn't happen */ 8757 trans->block_rsv = rsv; 8758 } 8759 8760 /* 8761 * We can't call btrfs_truncate_block inside a trans handle as we could 8762 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8763 * we've truncated everything except the last little bit, and can do 8764 * btrfs_truncate_block and then update the disk_i_size. 8765 */ 8766 if (ret == NEED_TRUNCATE_BLOCK) { 8767 btrfs_end_transaction(trans); 8768 btrfs_btree_balance_dirty(fs_info); 8769 8770 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8771 if (ret) 8772 goto out; 8773 trans = btrfs_start_transaction(root, 1); 8774 if (IS_ERR(trans)) { 8775 ret = PTR_ERR(trans); 8776 goto out; 8777 } 8778 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8779 } 8780 8781 if (trans) { 8782 int ret2; 8783 8784 trans->block_rsv = &fs_info->trans_block_rsv; 8785 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8786 if (ret2 && !ret) 8787 ret = ret2; 8788 8789 ret2 = btrfs_end_transaction(trans); 8790 if (ret2 && !ret) 8791 ret = ret2; 8792 btrfs_btree_balance_dirty(fs_info); 8793 } 8794 out: 8795 btrfs_free_block_rsv(fs_info, rsv); 8796 8797 return ret; 8798 } 8799 8800 /* 8801 * create a new subvolume directory/inode (helper for the ioctl). 8802 */ 8803 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8804 struct btrfs_root *new_root, 8805 struct btrfs_root *parent_root) 8806 { 8807 struct inode *inode; 8808 int err; 8809 u64 index = 0; 8810 u64 ino; 8811 8812 err = btrfs_get_free_objectid(new_root, &ino); 8813 if (err < 0) 8814 return err; 8815 8816 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino, 8817 S_IFDIR | (~current_umask() & S_IRWXUGO), 8818 &index); 8819 if (IS_ERR(inode)) 8820 return PTR_ERR(inode); 8821 inode->i_op = &btrfs_dir_inode_operations; 8822 inode->i_fop = &btrfs_dir_file_operations; 8823 8824 set_nlink(inode, 1); 8825 btrfs_i_size_write(BTRFS_I(inode), 0); 8826 unlock_new_inode(inode); 8827 8828 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8829 if (err) 8830 btrfs_err(new_root->fs_info, 8831 "error inheriting subvolume %llu properties: %d", 8832 new_root->root_key.objectid, err); 8833 8834 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode)); 8835 8836 iput(inode); 8837 return err; 8838 } 8839 8840 struct inode *btrfs_alloc_inode(struct super_block *sb) 8841 { 8842 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8843 struct btrfs_inode *ei; 8844 struct inode *inode; 8845 8846 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8847 if (!ei) 8848 return NULL; 8849 8850 ei->root = NULL; 8851 ei->generation = 0; 8852 ei->last_trans = 0; 8853 ei->last_sub_trans = 0; 8854 ei->logged_trans = 0; 8855 ei->delalloc_bytes = 0; 8856 ei->new_delalloc_bytes = 0; 8857 ei->defrag_bytes = 0; 8858 ei->disk_i_size = 0; 8859 ei->flags = 0; 8860 ei->csum_bytes = 0; 8861 ei->index_cnt = (u64)-1; 8862 ei->dir_index = 0; 8863 ei->last_unlink_trans = 0; 8864 ei->last_reflink_trans = 0; 8865 ei->last_log_commit = 0; 8866 8867 spin_lock_init(&ei->lock); 8868 ei->outstanding_extents = 0; 8869 if (sb->s_magic != BTRFS_TEST_MAGIC) 8870 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8871 BTRFS_BLOCK_RSV_DELALLOC); 8872 ei->runtime_flags = 0; 8873 ei->prop_compress = BTRFS_COMPRESS_NONE; 8874 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8875 8876 ei->delayed_node = NULL; 8877 8878 ei->i_otime.tv_sec = 0; 8879 ei->i_otime.tv_nsec = 0; 8880 8881 inode = &ei->vfs_inode; 8882 extent_map_tree_init(&ei->extent_tree); 8883 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8884 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8885 IO_TREE_INODE_IO_FAILURE, inode); 8886 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8887 IO_TREE_INODE_FILE_EXTENT, inode); 8888 ei->io_tree.track_uptodate = true; 8889 ei->io_failure_tree.track_uptodate = true; 8890 atomic_set(&ei->sync_writers, 0); 8891 mutex_init(&ei->log_mutex); 8892 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8893 INIT_LIST_HEAD(&ei->delalloc_inodes); 8894 INIT_LIST_HEAD(&ei->delayed_iput); 8895 RB_CLEAR_NODE(&ei->rb_node); 8896 init_rwsem(&ei->i_mmap_lock); 8897 8898 return inode; 8899 } 8900 8901 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8902 void btrfs_test_destroy_inode(struct inode *inode) 8903 { 8904 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8905 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8906 } 8907 #endif 8908 8909 void btrfs_free_inode(struct inode *inode) 8910 { 8911 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8912 } 8913 8914 void btrfs_destroy_inode(struct inode *vfs_inode) 8915 { 8916 struct btrfs_ordered_extent *ordered; 8917 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8918 struct btrfs_root *root = inode->root; 8919 8920 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8921 WARN_ON(vfs_inode->i_data.nrpages); 8922 WARN_ON(inode->block_rsv.reserved); 8923 WARN_ON(inode->block_rsv.size); 8924 WARN_ON(inode->outstanding_extents); 8925 WARN_ON(inode->delalloc_bytes); 8926 WARN_ON(inode->new_delalloc_bytes); 8927 WARN_ON(inode->csum_bytes); 8928 WARN_ON(inode->defrag_bytes); 8929 8930 /* 8931 * This can happen where we create an inode, but somebody else also 8932 * created the same inode and we need to destroy the one we already 8933 * created. 8934 */ 8935 if (!root) 8936 return; 8937 8938 while (1) { 8939 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8940 if (!ordered) 8941 break; 8942 else { 8943 btrfs_err(root->fs_info, 8944 "found ordered extent %llu %llu on inode cleanup", 8945 ordered->file_offset, ordered->num_bytes); 8946 btrfs_remove_ordered_extent(inode, ordered); 8947 btrfs_put_ordered_extent(ordered); 8948 btrfs_put_ordered_extent(ordered); 8949 } 8950 } 8951 btrfs_qgroup_check_reserved_leak(inode); 8952 inode_tree_del(inode); 8953 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8954 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8955 btrfs_put_root(inode->root); 8956 } 8957 8958 int btrfs_drop_inode(struct inode *inode) 8959 { 8960 struct btrfs_root *root = BTRFS_I(inode)->root; 8961 8962 if (root == NULL) 8963 return 1; 8964 8965 /* the snap/subvol tree is on deleting */ 8966 if (btrfs_root_refs(&root->root_item) == 0) 8967 return 1; 8968 else 8969 return generic_drop_inode(inode); 8970 } 8971 8972 static void init_once(void *foo) 8973 { 8974 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8975 8976 inode_init_once(&ei->vfs_inode); 8977 } 8978 8979 void __cold btrfs_destroy_cachep(void) 8980 { 8981 /* 8982 * Make sure all delayed rcu free inodes are flushed before we 8983 * destroy cache. 8984 */ 8985 rcu_barrier(); 8986 kmem_cache_destroy(btrfs_inode_cachep); 8987 kmem_cache_destroy(btrfs_trans_handle_cachep); 8988 kmem_cache_destroy(btrfs_path_cachep); 8989 kmem_cache_destroy(btrfs_free_space_cachep); 8990 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8991 } 8992 8993 int __init btrfs_init_cachep(void) 8994 { 8995 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8996 sizeof(struct btrfs_inode), 0, 8997 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8998 init_once); 8999 if (!btrfs_inode_cachep) 9000 goto fail; 9001 9002 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9003 sizeof(struct btrfs_trans_handle), 0, 9004 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9005 if (!btrfs_trans_handle_cachep) 9006 goto fail; 9007 9008 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9009 sizeof(struct btrfs_path), 0, 9010 SLAB_MEM_SPREAD, NULL); 9011 if (!btrfs_path_cachep) 9012 goto fail; 9013 9014 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9015 sizeof(struct btrfs_free_space), 0, 9016 SLAB_MEM_SPREAD, NULL); 9017 if (!btrfs_free_space_cachep) 9018 goto fail; 9019 9020 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9021 PAGE_SIZE, PAGE_SIZE, 9022 SLAB_MEM_SPREAD, NULL); 9023 if (!btrfs_free_space_bitmap_cachep) 9024 goto fail; 9025 9026 return 0; 9027 fail: 9028 btrfs_destroy_cachep(); 9029 return -ENOMEM; 9030 } 9031 9032 static int btrfs_getattr(struct user_namespace *mnt_userns, 9033 const struct path *path, struct kstat *stat, 9034 u32 request_mask, unsigned int flags) 9035 { 9036 u64 delalloc_bytes; 9037 u64 inode_bytes; 9038 struct inode *inode = d_inode(path->dentry); 9039 u32 blocksize = inode->i_sb->s_blocksize; 9040 u32 bi_flags = BTRFS_I(inode)->flags; 9041 9042 stat->result_mask |= STATX_BTIME; 9043 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9044 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9045 if (bi_flags & BTRFS_INODE_APPEND) 9046 stat->attributes |= STATX_ATTR_APPEND; 9047 if (bi_flags & BTRFS_INODE_COMPRESS) 9048 stat->attributes |= STATX_ATTR_COMPRESSED; 9049 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9050 stat->attributes |= STATX_ATTR_IMMUTABLE; 9051 if (bi_flags & BTRFS_INODE_NODUMP) 9052 stat->attributes |= STATX_ATTR_NODUMP; 9053 9054 stat->attributes_mask |= (STATX_ATTR_APPEND | 9055 STATX_ATTR_COMPRESSED | 9056 STATX_ATTR_IMMUTABLE | 9057 STATX_ATTR_NODUMP); 9058 9059 generic_fillattr(&init_user_ns, inode, stat); 9060 stat->dev = BTRFS_I(inode)->root->anon_dev; 9061 9062 spin_lock(&BTRFS_I(inode)->lock); 9063 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9064 inode_bytes = inode_get_bytes(inode); 9065 spin_unlock(&BTRFS_I(inode)->lock); 9066 stat->blocks = (ALIGN(inode_bytes, blocksize) + 9067 ALIGN(delalloc_bytes, blocksize)) >> 9; 9068 return 0; 9069 } 9070 9071 static int btrfs_rename_exchange(struct inode *old_dir, 9072 struct dentry *old_dentry, 9073 struct inode *new_dir, 9074 struct dentry *new_dentry) 9075 { 9076 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9077 struct btrfs_trans_handle *trans; 9078 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9079 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9080 struct inode *new_inode = new_dentry->d_inode; 9081 struct inode *old_inode = old_dentry->d_inode; 9082 struct timespec64 ctime = current_time(old_inode); 9083 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9084 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9085 u64 old_idx = 0; 9086 u64 new_idx = 0; 9087 int ret; 9088 int ret2; 9089 bool root_log_pinned = false; 9090 bool dest_log_pinned = false; 9091 9092 /* we only allow rename subvolume link between subvolumes */ 9093 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9094 return -EXDEV; 9095 9096 /* close the race window with snapshot create/destroy ioctl */ 9097 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9098 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9099 down_read(&fs_info->subvol_sem); 9100 9101 /* 9102 * We want to reserve the absolute worst case amount of items. So if 9103 * both inodes are subvols and we need to unlink them then that would 9104 * require 4 item modifications, but if they are both normal inodes it 9105 * would require 5 item modifications, so we'll assume their normal 9106 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9107 * should cover the worst case number of items we'll modify. 9108 */ 9109 trans = btrfs_start_transaction(root, 12); 9110 if (IS_ERR(trans)) { 9111 ret = PTR_ERR(trans); 9112 goto out_notrans; 9113 } 9114 9115 if (dest != root) { 9116 ret = btrfs_record_root_in_trans(trans, dest); 9117 if (ret) 9118 goto out_fail; 9119 } 9120 9121 /* 9122 * We need to find a free sequence number both in the source and 9123 * in the destination directory for the exchange. 9124 */ 9125 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9126 if (ret) 9127 goto out_fail; 9128 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9129 if (ret) 9130 goto out_fail; 9131 9132 BTRFS_I(old_inode)->dir_index = 0ULL; 9133 BTRFS_I(new_inode)->dir_index = 0ULL; 9134 9135 /* Reference for the source. */ 9136 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9137 /* force full log commit if subvolume involved. */ 9138 btrfs_set_log_full_commit(trans); 9139 } else { 9140 btrfs_pin_log_trans(root); 9141 root_log_pinned = true; 9142 ret = btrfs_insert_inode_ref(trans, dest, 9143 new_dentry->d_name.name, 9144 new_dentry->d_name.len, 9145 old_ino, 9146 btrfs_ino(BTRFS_I(new_dir)), 9147 old_idx); 9148 if (ret) 9149 goto out_fail; 9150 } 9151 9152 /* And now for the dest. */ 9153 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9154 /* force full log commit if subvolume involved. */ 9155 btrfs_set_log_full_commit(trans); 9156 } else { 9157 btrfs_pin_log_trans(dest); 9158 dest_log_pinned = true; 9159 ret = btrfs_insert_inode_ref(trans, root, 9160 old_dentry->d_name.name, 9161 old_dentry->d_name.len, 9162 new_ino, 9163 btrfs_ino(BTRFS_I(old_dir)), 9164 new_idx); 9165 if (ret) 9166 goto out_fail; 9167 } 9168 9169 /* Update inode version and ctime/mtime. */ 9170 inode_inc_iversion(old_dir); 9171 inode_inc_iversion(new_dir); 9172 inode_inc_iversion(old_inode); 9173 inode_inc_iversion(new_inode); 9174 old_dir->i_ctime = old_dir->i_mtime = ctime; 9175 new_dir->i_ctime = new_dir->i_mtime = ctime; 9176 old_inode->i_ctime = ctime; 9177 new_inode->i_ctime = ctime; 9178 9179 if (old_dentry->d_parent != new_dentry->d_parent) { 9180 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9181 BTRFS_I(old_inode), 1); 9182 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9183 BTRFS_I(new_inode), 1); 9184 } 9185 9186 /* src is a subvolume */ 9187 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9188 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9189 } else { /* src is an inode */ 9190 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9191 BTRFS_I(old_dentry->d_inode), 9192 old_dentry->d_name.name, 9193 old_dentry->d_name.len); 9194 if (!ret) 9195 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9196 } 9197 if (ret) { 9198 btrfs_abort_transaction(trans, ret); 9199 goto out_fail; 9200 } 9201 9202 /* dest is a subvolume */ 9203 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9204 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9205 } else { /* dest is an inode */ 9206 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9207 BTRFS_I(new_dentry->d_inode), 9208 new_dentry->d_name.name, 9209 new_dentry->d_name.len); 9210 if (!ret) 9211 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9212 } 9213 if (ret) { 9214 btrfs_abort_transaction(trans, ret); 9215 goto out_fail; 9216 } 9217 9218 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9219 new_dentry->d_name.name, 9220 new_dentry->d_name.len, 0, old_idx); 9221 if (ret) { 9222 btrfs_abort_transaction(trans, ret); 9223 goto out_fail; 9224 } 9225 9226 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9227 old_dentry->d_name.name, 9228 old_dentry->d_name.len, 0, new_idx); 9229 if (ret) { 9230 btrfs_abort_transaction(trans, ret); 9231 goto out_fail; 9232 } 9233 9234 if (old_inode->i_nlink == 1) 9235 BTRFS_I(old_inode)->dir_index = old_idx; 9236 if (new_inode->i_nlink == 1) 9237 BTRFS_I(new_inode)->dir_index = new_idx; 9238 9239 if (root_log_pinned) { 9240 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9241 new_dentry->d_parent); 9242 btrfs_end_log_trans(root); 9243 root_log_pinned = false; 9244 } 9245 if (dest_log_pinned) { 9246 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9247 old_dentry->d_parent); 9248 btrfs_end_log_trans(dest); 9249 dest_log_pinned = false; 9250 } 9251 out_fail: 9252 /* 9253 * If we have pinned a log and an error happened, we unpin tasks 9254 * trying to sync the log and force them to fallback to a transaction 9255 * commit if the log currently contains any of the inodes involved in 9256 * this rename operation (to ensure we do not persist a log with an 9257 * inconsistent state for any of these inodes or leading to any 9258 * inconsistencies when replayed). If the transaction was aborted, the 9259 * abortion reason is propagated to userspace when attempting to commit 9260 * the transaction. If the log does not contain any of these inodes, we 9261 * allow the tasks to sync it. 9262 */ 9263 if (ret && (root_log_pinned || dest_log_pinned)) { 9264 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9265 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9266 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9267 (new_inode && 9268 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9269 btrfs_set_log_full_commit(trans); 9270 9271 if (root_log_pinned) { 9272 btrfs_end_log_trans(root); 9273 root_log_pinned = false; 9274 } 9275 if (dest_log_pinned) { 9276 btrfs_end_log_trans(dest); 9277 dest_log_pinned = false; 9278 } 9279 } 9280 ret2 = btrfs_end_transaction(trans); 9281 ret = ret ? ret : ret2; 9282 out_notrans: 9283 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9284 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9285 up_read(&fs_info->subvol_sem); 9286 9287 return ret; 9288 } 9289 9290 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9291 struct btrfs_root *root, 9292 struct inode *dir, 9293 struct dentry *dentry) 9294 { 9295 int ret; 9296 struct inode *inode; 9297 u64 objectid; 9298 u64 index; 9299 9300 ret = btrfs_get_free_objectid(root, &objectid); 9301 if (ret) 9302 return ret; 9303 9304 inode = btrfs_new_inode(trans, root, dir, 9305 dentry->d_name.name, 9306 dentry->d_name.len, 9307 btrfs_ino(BTRFS_I(dir)), 9308 objectid, 9309 S_IFCHR | WHITEOUT_MODE, 9310 &index); 9311 9312 if (IS_ERR(inode)) { 9313 ret = PTR_ERR(inode); 9314 return ret; 9315 } 9316 9317 inode->i_op = &btrfs_special_inode_operations; 9318 init_special_inode(inode, inode->i_mode, 9319 WHITEOUT_DEV); 9320 9321 ret = btrfs_init_inode_security(trans, inode, dir, 9322 &dentry->d_name); 9323 if (ret) 9324 goto out; 9325 9326 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9327 BTRFS_I(inode), 0, index); 9328 if (ret) 9329 goto out; 9330 9331 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9332 out: 9333 unlock_new_inode(inode); 9334 if (ret) 9335 inode_dec_link_count(inode); 9336 iput(inode); 9337 9338 return ret; 9339 } 9340 9341 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9342 struct inode *new_dir, struct dentry *new_dentry, 9343 unsigned int flags) 9344 { 9345 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9346 struct btrfs_trans_handle *trans; 9347 unsigned int trans_num_items; 9348 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9349 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9350 struct inode *new_inode = d_inode(new_dentry); 9351 struct inode *old_inode = d_inode(old_dentry); 9352 u64 index = 0; 9353 int ret; 9354 int ret2; 9355 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9356 bool log_pinned = false; 9357 9358 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9359 return -EPERM; 9360 9361 /* we only allow rename subvolume link between subvolumes */ 9362 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9363 return -EXDEV; 9364 9365 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9366 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9367 return -ENOTEMPTY; 9368 9369 if (S_ISDIR(old_inode->i_mode) && new_inode && 9370 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9371 return -ENOTEMPTY; 9372 9373 9374 /* check for collisions, even if the name isn't there */ 9375 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9376 new_dentry->d_name.name, 9377 new_dentry->d_name.len); 9378 9379 if (ret) { 9380 if (ret == -EEXIST) { 9381 /* we shouldn't get 9382 * eexist without a new_inode */ 9383 if (WARN_ON(!new_inode)) { 9384 return ret; 9385 } 9386 } else { 9387 /* maybe -EOVERFLOW */ 9388 return ret; 9389 } 9390 } 9391 ret = 0; 9392 9393 /* 9394 * we're using rename to replace one file with another. Start IO on it 9395 * now so we don't add too much work to the end of the transaction 9396 */ 9397 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9398 filemap_flush(old_inode->i_mapping); 9399 9400 /* close the racy window with snapshot create/destroy ioctl */ 9401 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9402 down_read(&fs_info->subvol_sem); 9403 /* 9404 * We want to reserve the absolute worst case amount of items. So if 9405 * both inodes are subvols and we need to unlink them then that would 9406 * require 4 item modifications, but if they are both normal inodes it 9407 * would require 5 item modifications, so we'll assume they are normal 9408 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9409 * should cover the worst case number of items we'll modify. 9410 * If our rename has the whiteout flag, we need more 5 units for the 9411 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9412 * when selinux is enabled). 9413 */ 9414 trans_num_items = 11; 9415 if (flags & RENAME_WHITEOUT) 9416 trans_num_items += 5; 9417 trans = btrfs_start_transaction(root, trans_num_items); 9418 if (IS_ERR(trans)) { 9419 ret = PTR_ERR(trans); 9420 goto out_notrans; 9421 } 9422 9423 if (dest != root) { 9424 ret = btrfs_record_root_in_trans(trans, dest); 9425 if (ret) 9426 goto out_fail; 9427 } 9428 9429 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9430 if (ret) 9431 goto out_fail; 9432 9433 BTRFS_I(old_inode)->dir_index = 0ULL; 9434 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9435 /* force full log commit if subvolume involved. */ 9436 btrfs_set_log_full_commit(trans); 9437 } else { 9438 btrfs_pin_log_trans(root); 9439 log_pinned = true; 9440 ret = btrfs_insert_inode_ref(trans, dest, 9441 new_dentry->d_name.name, 9442 new_dentry->d_name.len, 9443 old_ino, 9444 btrfs_ino(BTRFS_I(new_dir)), index); 9445 if (ret) 9446 goto out_fail; 9447 } 9448 9449 inode_inc_iversion(old_dir); 9450 inode_inc_iversion(new_dir); 9451 inode_inc_iversion(old_inode); 9452 old_dir->i_ctime = old_dir->i_mtime = 9453 new_dir->i_ctime = new_dir->i_mtime = 9454 old_inode->i_ctime = current_time(old_dir); 9455 9456 if (old_dentry->d_parent != new_dentry->d_parent) 9457 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9458 BTRFS_I(old_inode), 1); 9459 9460 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9461 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9462 } else { 9463 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9464 BTRFS_I(d_inode(old_dentry)), 9465 old_dentry->d_name.name, 9466 old_dentry->d_name.len); 9467 if (!ret) 9468 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9469 } 9470 if (ret) { 9471 btrfs_abort_transaction(trans, ret); 9472 goto out_fail; 9473 } 9474 9475 if (new_inode) { 9476 inode_inc_iversion(new_inode); 9477 new_inode->i_ctime = current_time(new_inode); 9478 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9479 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9480 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9481 BUG_ON(new_inode->i_nlink == 0); 9482 } else { 9483 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9484 BTRFS_I(d_inode(new_dentry)), 9485 new_dentry->d_name.name, 9486 new_dentry->d_name.len); 9487 } 9488 if (!ret && new_inode->i_nlink == 0) 9489 ret = btrfs_orphan_add(trans, 9490 BTRFS_I(d_inode(new_dentry))); 9491 if (ret) { 9492 btrfs_abort_transaction(trans, ret); 9493 goto out_fail; 9494 } 9495 } 9496 9497 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9498 new_dentry->d_name.name, 9499 new_dentry->d_name.len, 0, index); 9500 if (ret) { 9501 btrfs_abort_transaction(trans, ret); 9502 goto out_fail; 9503 } 9504 9505 if (old_inode->i_nlink == 1) 9506 BTRFS_I(old_inode)->dir_index = index; 9507 9508 if (log_pinned) { 9509 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9510 new_dentry->d_parent); 9511 btrfs_end_log_trans(root); 9512 log_pinned = false; 9513 } 9514 9515 if (flags & RENAME_WHITEOUT) { 9516 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9517 old_dentry); 9518 9519 if (ret) { 9520 btrfs_abort_transaction(trans, ret); 9521 goto out_fail; 9522 } 9523 } 9524 out_fail: 9525 /* 9526 * If we have pinned the log and an error happened, we unpin tasks 9527 * trying to sync the log and force them to fallback to a transaction 9528 * commit if the log currently contains any of the inodes involved in 9529 * this rename operation (to ensure we do not persist a log with an 9530 * inconsistent state for any of these inodes or leading to any 9531 * inconsistencies when replayed). If the transaction was aborted, the 9532 * abortion reason is propagated to userspace when attempting to commit 9533 * the transaction. If the log does not contain any of these inodes, we 9534 * allow the tasks to sync it. 9535 */ 9536 if (ret && log_pinned) { 9537 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9538 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9539 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9540 (new_inode && 9541 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9542 btrfs_set_log_full_commit(trans); 9543 9544 btrfs_end_log_trans(root); 9545 log_pinned = false; 9546 } 9547 ret2 = btrfs_end_transaction(trans); 9548 ret = ret ? ret : ret2; 9549 out_notrans: 9550 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9551 up_read(&fs_info->subvol_sem); 9552 9553 return ret; 9554 } 9555 9556 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9557 struct dentry *old_dentry, struct inode *new_dir, 9558 struct dentry *new_dentry, unsigned int flags) 9559 { 9560 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9561 return -EINVAL; 9562 9563 if (flags & RENAME_EXCHANGE) 9564 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9565 new_dentry); 9566 9567 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9568 } 9569 9570 struct btrfs_delalloc_work { 9571 struct inode *inode; 9572 struct completion completion; 9573 struct list_head list; 9574 struct btrfs_work work; 9575 }; 9576 9577 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9578 { 9579 struct btrfs_delalloc_work *delalloc_work; 9580 struct inode *inode; 9581 9582 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9583 work); 9584 inode = delalloc_work->inode; 9585 filemap_flush(inode->i_mapping); 9586 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9587 &BTRFS_I(inode)->runtime_flags)) 9588 filemap_flush(inode->i_mapping); 9589 9590 iput(inode); 9591 complete(&delalloc_work->completion); 9592 } 9593 9594 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9595 { 9596 struct btrfs_delalloc_work *work; 9597 9598 work = kmalloc(sizeof(*work), GFP_NOFS); 9599 if (!work) 9600 return NULL; 9601 9602 init_completion(&work->completion); 9603 INIT_LIST_HEAD(&work->list); 9604 work->inode = inode; 9605 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9606 9607 return work; 9608 } 9609 9610 /* 9611 * some fairly slow code that needs optimization. This walks the list 9612 * of all the inodes with pending delalloc and forces them to disk. 9613 */ 9614 static int start_delalloc_inodes(struct btrfs_root *root, 9615 struct writeback_control *wbc, bool snapshot, 9616 bool in_reclaim_context) 9617 { 9618 struct btrfs_inode *binode; 9619 struct inode *inode; 9620 struct btrfs_delalloc_work *work, *next; 9621 struct list_head works; 9622 struct list_head splice; 9623 int ret = 0; 9624 bool full_flush = wbc->nr_to_write == LONG_MAX; 9625 9626 INIT_LIST_HEAD(&works); 9627 INIT_LIST_HEAD(&splice); 9628 9629 mutex_lock(&root->delalloc_mutex); 9630 spin_lock(&root->delalloc_lock); 9631 list_splice_init(&root->delalloc_inodes, &splice); 9632 while (!list_empty(&splice)) { 9633 binode = list_entry(splice.next, struct btrfs_inode, 9634 delalloc_inodes); 9635 9636 list_move_tail(&binode->delalloc_inodes, 9637 &root->delalloc_inodes); 9638 9639 if (in_reclaim_context && 9640 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9641 continue; 9642 9643 inode = igrab(&binode->vfs_inode); 9644 if (!inode) { 9645 cond_resched_lock(&root->delalloc_lock); 9646 continue; 9647 } 9648 spin_unlock(&root->delalloc_lock); 9649 9650 if (snapshot) 9651 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9652 &binode->runtime_flags); 9653 if (full_flush) { 9654 work = btrfs_alloc_delalloc_work(inode); 9655 if (!work) { 9656 iput(inode); 9657 ret = -ENOMEM; 9658 goto out; 9659 } 9660 list_add_tail(&work->list, &works); 9661 btrfs_queue_work(root->fs_info->flush_workers, 9662 &work->work); 9663 } else { 9664 ret = sync_inode(inode, wbc); 9665 if (!ret && 9666 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9667 &BTRFS_I(inode)->runtime_flags)) 9668 ret = sync_inode(inode, wbc); 9669 btrfs_add_delayed_iput(inode); 9670 if (ret || wbc->nr_to_write <= 0) 9671 goto out; 9672 } 9673 cond_resched(); 9674 spin_lock(&root->delalloc_lock); 9675 } 9676 spin_unlock(&root->delalloc_lock); 9677 9678 out: 9679 list_for_each_entry_safe(work, next, &works, list) { 9680 list_del_init(&work->list); 9681 wait_for_completion(&work->completion); 9682 kfree(work); 9683 } 9684 9685 if (!list_empty(&splice)) { 9686 spin_lock(&root->delalloc_lock); 9687 list_splice_tail(&splice, &root->delalloc_inodes); 9688 spin_unlock(&root->delalloc_lock); 9689 } 9690 mutex_unlock(&root->delalloc_mutex); 9691 return ret; 9692 } 9693 9694 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9695 { 9696 struct writeback_control wbc = { 9697 .nr_to_write = LONG_MAX, 9698 .sync_mode = WB_SYNC_NONE, 9699 .range_start = 0, 9700 .range_end = LLONG_MAX, 9701 }; 9702 struct btrfs_fs_info *fs_info = root->fs_info; 9703 9704 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9705 return -EROFS; 9706 9707 return start_delalloc_inodes(root, &wbc, true, false); 9708 } 9709 9710 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9711 bool in_reclaim_context) 9712 { 9713 struct writeback_control wbc = { 9714 .nr_to_write = nr, 9715 .sync_mode = WB_SYNC_NONE, 9716 .range_start = 0, 9717 .range_end = LLONG_MAX, 9718 }; 9719 struct btrfs_root *root; 9720 struct list_head splice; 9721 int ret; 9722 9723 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9724 return -EROFS; 9725 9726 INIT_LIST_HEAD(&splice); 9727 9728 mutex_lock(&fs_info->delalloc_root_mutex); 9729 spin_lock(&fs_info->delalloc_root_lock); 9730 list_splice_init(&fs_info->delalloc_roots, &splice); 9731 while (!list_empty(&splice)) { 9732 /* 9733 * Reset nr_to_write here so we know that we're doing a full 9734 * flush. 9735 */ 9736 if (nr == LONG_MAX) 9737 wbc.nr_to_write = LONG_MAX; 9738 9739 root = list_first_entry(&splice, struct btrfs_root, 9740 delalloc_root); 9741 root = btrfs_grab_root(root); 9742 BUG_ON(!root); 9743 list_move_tail(&root->delalloc_root, 9744 &fs_info->delalloc_roots); 9745 spin_unlock(&fs_info->delalloc_root_lock); 9746 9747 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9748 btrfs_put_root(root); 9749 if (ret < 0 || wbc.nr_to_write <= 0) 9750 goto out; 9751 spin_lock(&fs_info->delalloc_root_lock); 9752 } 9753 spin_unlock(&fs_info->delalloc_root_lock); 9754 9755 ret = 0; 9756 out: 9757 if (!list_empty(&splice)) { 9758 spin_lock(&fs_info->delalloc_root_lock); 9759 list_splice_tail(&splice, &fs_info->delalloc_roots); 9760 spin_unlock(&fs_info->delalloc_root_lock); 9761 } 9762 mutex_unlock(&fs_info->delalloc_root_mutex); 9763 return ret; 9764 } 9765 9766 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 9767 struct dentry *dentry, const char *symname) 9768 { 9769 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9770 struct btrfs_trans_handle *trans; 9771 struct btrfs_root *root = BTRFS_I(dir)->root; 9772 struct btrfs_path *path; 9773 struct btrfs_key key; 9774 struct inode *inode = NULL; 9775 int err; 9776 u64 objectid; 9777 u64 index = 0; 9778 int name_len; 9779 int datasize; 9780 unsigned long ptr; 9781 struct btrfs_file_extent_item *ei; 9782 struct extent_buffer *leaf; 9783 9784 name_len = strlen(symname); 9785 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9786 return -ENAMETOOLONG; 9787 9788 /* 9789 * 2 items for inode item and ref 9790 * 2 items for dir items 9791 * 1 item for updating parent inode item 9792 * 1 item for the inline extent item 9793 * 1 item for xattr if selinux is on 9794 */ 9795 trans = btrfs_start_transaction(root, 7); 9796 if (IS_ERR(trans)) 9797 return PTR_ERR(trans); 9798 9799 err = btrfs_get_free_objectid(root, &objectid); 9800 if (err) 9801 goto out_unlock; 9802 9803 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9804 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9805 objectid, S_IFLNK|S_IRWXUGO, &index); 9806 if (IS_ERR(inode)) { 9807 err = PTR_ERR(inode); 9808 inode = NULL; 9809 goto out_unlock; 9810 } 9811 9812 /* 9813 * If the active LSM wants to access the inode during 9814 * d_instantiate it needs these. Smack checks to see 9815 * if the filesystem supports xattrs by looking at the 9816 * ops vector. 9817 */ 9818 inode->i_fop = &btrfs_file_operations; 9819 inode->i_op = &btrfs_file_inode_operations; 9820 inode->i_mapping->a_ops = &btrfs_aops; 9821 9822 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9823 if (err) 9824 goto out_unlock; 9825 9826 path = btrfs_alloc_path(); 9827 if (!path) { 9828 err = -ENOMEM; 9829 goto out_unlock; 9830 } 9831 key.objectid = btrfs_ino(BTRFS_I(inode)); 9832 key.offset = 0; 9833 key.type = BTRFS_EXTENT_DATA_KEY; 9834 datasize = btrfs_file_extent_calc_inline_size(name_len); 9835 err = btrfs_insert_empty_item(trans, root, path, &key, 9836 datasize); 9837 if (err) { 9838 btrfs_free_path(path); 9839 goto out_unlock; 9840 } 9841 leaf = path->nodes[0]; 9842 ei = btrfs_item_ptr(leaf, path->slots[0], 9843 struct btrfs_file_extent_item); 9844 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9845 btrfs_set_file_extent_type(leaf, ei, 9846 BTRFS_FILE_EXTENT_INLINE); 9847 btrfs_set_file_extent_encryption(leaf, ei, 0); 9848 btrfs_set_file_extent_compression(leaf, ei, 0); 9849 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9850 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9851 9852 ptr = btrfs_file_extent_inline_start(ei); 9853 write_extent_buffer(leaf, symname, ptr, name_len); 9854 btrfs_mark_buffer_dirty(leaf); 9855 btrfs_free_path(path); 9856 9857 inode->i_op = &btrfs_symlink_inode_operations; 9858 inode_nohighmem(inode); 9859 inode_set_bytes(inode, name_len); 9860 btrfs_i_size_write(BTRFS_I(inode), name_len); 9861 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9862 /* 9863 * Last step, add directory indexes for our symlink inode. This is the 9864 * last step to avoid extra cleanup of these indexes if an error happens 9865 * elsewhere above. 9866 */ 9867 if (!err) 9868 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9869 BTRFS_I(inode), 0, index); 9870 if (err) 9871 goto out_unlock; 9872 9873 d_instantiate_new(dentry, inode); 9874 9875 out_unlock: 9876 btrfs_end_transaction(trans); 9877 if (err && inode) { 9878 inode_dec_link_count(inode); 9879 discard_new_inode(inode); 9880 } 9881 btrfs_btree_balance_dirty(fs_info); 9882 return err; 9883 } 9884 9885 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9886 struct btrfs_trans_handle *trans_in, 9887 struct btrfs_inode *inode, 9888 struct btrfs_key *ins, 9889 u64 file_offset) 9890 { 9891 struct btrfs_file_extent_item stack_fi; 9892 struct btrfs_replace_extent_info extent_info; 9893 struct btrfs_trans_handle *trans = trans_in; 9894 struct btrfs_path *path; 9895 u64 start = ins->objectid; 9896 u64 len = ins->offset; 9897 int qgroup_released; 9898 int ret; 9899 9900 memset(&stack_fi, 0, sizeof(stack_fi)); 9901 9902 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9903 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9904 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9905 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9906 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9907 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9908 /* Encryption and other encoding is reserved and all 0 */ 9909 9910 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9911 if (qgroup_released < 0) 9912 return ERR_PTR(qgroup_released); 9913 9914 if (trans) { 9915 ret = insert_reserved_file_extent(trans, inode, 9916 file_offset, &stack_fi, 9917 true, qgroup_released); 9918 if (ret) 9919 goto free_qgroup; 9920 return trans; 9921 } 9922 9923 extent_info.disk_offset = start; 9924 extent_info.disk_len = len; 9925 extent_info.data_offset = 0; 9926 extent_info.data_len = len; 9927 extent_info.file_offset = file_offset; 9928 extent_info.extent_buf = (char *)&stack_fi; 9929 extent_info.is_new_extent = true; 9930 extent_info.qgroup_reserved = qgroup_released; 9931 extent_info.insertions = 0; 9932 9933 path = btrfs_alloc_path(); 9934 if (!path) { 9935 ret = -ENOMEM; 9936 goto free_qgroup; 9937 } 9938 9939 ret = btrfs_replace_file_extents(inode, path, file_offset, 9940 file_offset + len - 1, &extent_info, 9941 &trans); 9942 btrfs_free_path(path); 9943 if (ret) 9944 goto free_qgroup; 9945 return trans; 9946 9947 free_qgroup: 9948 /* 9949 * We have released qgroup data range at the beginning of the function, 9950 * and normally qgroup_released bytes will be freed when committing 9951 * transaction. 9952 * But if we error out early, we have to free what we have released 9953 * or we leak qgroup data reservation. 9954 */ 9955 btrfs_qgroup_free_refroot(inode->root->fs_info, 9956 inode->root->root_key.objectid, qgroup_released, 9957 BTRFS_QGROUP_RSV_DATA); 9958 return ERR_PTR(ret); 9959 } 9960 9961 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9962 u64 start, u64 num_bytes, u64 min_size, 9963 loff_t actual_len, u64 *alloc_hint, 9964 struct btrfs_trans_handle *trans) 9965 { 9966 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9967 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9968 struct extent_map *em; 9969 struct btrfs_root *root = BTRFS_I(inode)->root; 9970 struct btrfs_key ins; 9971 u64 cur_offset = start; 9972 u64 clear_offset = start; 9973 u64 i_size; 9974 u64 cur_bytes; 9975 u64 last_alloc = (u64)-1; 9976 int ret = 0; 9977 bool own_trans = true; 9978 u64 end = start + num_bytes - 1; 9979 9980 if (trans) 9981 own_trans = false; 9982 while (num_bytes > 0) { 9983 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9984 cur_bytes = max(cur_bytes, min_size); 9985 /* 9986 * If we are severely fragmented we could end up with really 9987 * small allocations, so if the allocator is returning small 9988 * chunks lets make its job easier by only searching for those 9989 * sized chunks. 9990 */ 9991 cur_bytes = min(cur_bytes, last_alloc); 9992 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9993 min_size, 0, *alloc_hint, &ins, 1, 0); 9994 if (ret) 9995 break; 9996 9997 /* 9998 * We've reserved this space, and thus converted it from 9999 * ->bytes_may_use to ->bytes_reserved. Any error that happens 10000 * from here on out we will only need to clear our reservation 10001 * for the remaining unreserved area, so advance our 10002 * clear_offset by our extent size. 10003 */ 10004 clear_offset += ins.offset; 10005 10006 last_alloc = ins.offset; 10007 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 10008 &ins, cur_offset); 10009 /* 10010 * Now that we inserted the prealloc extent we can finally 10011 * decrement the number of reservations in the block group. 10012 * If we did it before, we could race with relocation and have 10013 * relocation miss the reserved extent, making it fail later. 10014 */ 10015 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10016 if (IS_ERR(trans)) { 10017 ret = PTR_ERR(trans); 10018 btrfs_free_reserved_extent(fs_info, ins.objectid, 10019 ins.offset, 0); 10020 break; 10021 } 10022 10023 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10024 cur_offset + ins.offset -1, 0); 10025 10026 em = alloc_extent_map(); 10027 if (!em) { 10028 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10029 &BTRFS_I(inode)->runtime_flags); 10030 goto next; 10031 } 10032 10033 em->start = cur_offset; 10034 em->orig_start = cur_offset; 10035 em->len = ins.offset; 10036 em->block_start = ins.objectid; 10037 em->block_len = ins.offset; 10038 em->orig_block_len = ins.offset; 10039 em->ram_bytes = ins.offset; 10040 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10041 em->generation = trans->transid; 10042 10043 while (1) { 10044 write_lock(&em_tree->lock); 10045 ret = add_extent_mapping(em_tree, em, 1); 10046 write_unlock(&em_tree->lock); 10047 if (ret != -EEXIST) 10048 break; 10049 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10050 cur_offset + ins.offset - 1, 10051 0); 10052 } 10053 free_extent_map(em); 10054 next: 10055 num_bytes -= ins.offset; 10056 cur_offset += ins.offset; 10057 *alloc_hint = ins.objectid + ins.offset; 10058 10059 inode_inc_iversion(inode); 10060 inode->i_ctime = current_time(inode); 10061 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10062 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10063 (actual_len > inode->i_size) && 10064 (cur_offset > inode->i_size)) { 10065 if (cur_offset > actual_len) 10066 i_size = actual_len; 10067 else 10068 i_size = cur_offset; 10069 i_size_write(inode, i_size); 10070 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 10071 } 10072 10073 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10074 10075 if (ret) { 10076 btrfs_abort_transaction(trans, ret); 10077 if (own_trans) 10078 btrfs_end_transaction(trans); 10079 break; 10080 } 10081 10082 if (own_trans) { 10083 btrfs_end_transaction(trans); 10084 trans = NULL; 10085 } 10086 } 10087 if (clear_offset < end) 10088 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 10089 end - clear_offset + 1); 10090 return ret; 10091 } 10092 10093 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10094 u64 start, u64 num_bytes, u64 min_size, 10095 loff_t actual_len, u64 *alloc_hint) 10096 { 10097 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10098 min_size, actual_len, alloc_hint, 10099 NULL); 10100 } 10101 10102 int btrfs_prealloc_file_range_trans(struct inode *inode, 10103 struct btrfs_trans_handle *trans, int mode, 10104 u64 start, u64 num_bytes, u64 min_size, 10105 loff_t actual_len, u64 *alloc_hint) 10106 { 10107 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10108 min_size, actual_len, alloc_hint, trans); 10109 } 10110 10111 static int btrfs_set_page_dirty(struct page *page) 10112 { 10113 return __set_page_dirty_nobuffers(page); 10114 } 10115 10116 static int btrfs_permission(struct user_namespace *mnt_userns, 10117 struct inode *inode, int mask) 10118 { 10119 struct btrfs_root *root = BTRFS_I(inode)->root; 10120 umode_t mode = inode->i_mode; 10121 10122 if (mask & MAY_WRITE && 10123 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10124 if (btrfs_root_readonly(root)) 10125 return -EROFS; 10126 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10127 return -EACCES; 10128 } 10129 return generic_permission(&init_user_ns, inode, mask); 10130 } 10131 10132 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10133 struct dentry *dentry, umode_t mode) 10134 { 10135 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10136 struct btrfs_trans_handle *trans; 10137 struct btrfs_root *root = BTRFS_I(dir)->root; 10138 struct inode *inode = NULL; 10139 u64 objectid; 10140 u64 index; 10141 int ret = 0; 10142 10143 /* 10144 * 5 units required for adding orphan entry 10145 */ 10146 trans = btrfs_start_transaction(root, 5); 10147 if (IS_ERR(trans)) 10148 return PTR_ERR(trans); 10149 10150 ret = btrfs_get_free_objectid(root, &objectid); 10151 if (ret) 10152 goto out; 10153 10154 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10155 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10156 if (IS_ERR(inode)) { 10157 ret = PTR_ERR(inode); 10158 inode = NULL; 10159 goto out; 10160 } 10161 10162 inode->i_fop = &btrfs_file_operations; 10163 inode->i_op = &btrfs_file_inode_operations; 10164 10165 inode->i_mapping->a_ops = &btrfs_aops; 10166 10167 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10168 if (ret) 10169 goto out; 10170 10171 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10172 if (ret) 10173 goto out; 10174 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10175 if (ret) 10176 goto out; 10177 10178 /* 10179 * We set number of links to 0 in btrfs_new_inode(), and here we set 10180 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10181 * through: 10182 * 10183 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10184 */ 10185 set_nlink(inode, 1); 10186 d_tmpfile(dentry, inode); 10187 unlock_new_inode(inode); 10188 mark_inode_dirty(inode); 10189 out: 10190 btrfs_end_transaction(trans); 10191 if (ret && inode) 10192 discard_new_inode(inode); 10193 btrfs_btree_balance_dirty(fs_info); 10194 return ret; 10195 } 10196 10197 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10198 { 10199 struct inode *inode = tree->private_data; 10200 unsigned long index = start >> PAGE_SHIFT; 10201 unsigned long end_index = end >> PAGE_SHIFT; 10202 struct page *page; 10203 10204 while (index <= end_index) { 10205 page = find_get_page(inode->i_mapping, index); 10206 ASSERT(page); /* Pages should be in the extent_io_tree */ 10207 set_page_writeback(page); 10208 put_page(page); 10209 index++; 10210 } 10211 } 10212 10213 #ifdef CONFIG_SWAP 10214 /* 10215 * Add an entry indicating a block group or device which is pinned by a 10216 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10217 * negative errno on failure. 10218 */ 10219 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10220 bool is_block_group) 10221 { 10222 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10223 struct btrfs_swapfile_pin *sp, *entry; 10224 struct rb_node **p; 10225 struct rb_node *parent = NULL; 10226 10227 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10228 if (!sp) 10229 return -ENOMEM; 10230 sp->ptr = ptr; 10231 sp->inode = inode; 10232 sp->is_block_group = is_block_group; 10233 sp->bg_extent_count = 1; 10234 10235 spin_lock(&fs_info->swapfile_pins_lock); 10236 p = &fs_info->swapfile_pins.rb_node; 10237 while (*p) { 10238 parent = *p; 10239 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10240 if (sp->ptr < entry->ptr || 10241 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10242 p = &(*p)->rb_left; 10243 } else if (sp->ptr > entry->ptr || 10244 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10245 p = &(*p)->rb_right; 10246 } else { 10247 if (is_block_group) 10248 entry->bg_extent_count++; 10249 spin_unlock(&fs_info->swapfile_pins_lock); 10250 kfree(sp); 10251 return 1; 10252 } 10253 } 10254 rb_link_node(&sp->node, parent, p); 10255 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10256 spin_unlock(&fs_info->swapfile_pins_lock); 10257 return 0; 10258 } 10259 10260 /* Free all of the entries pinned by this swapfile. */ 10261 static void btrfs_free_swapfile_pins(struct inode *inode) 10262 { 10263 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10264 struct btrfs_swapfile_pin *sp; 10265 struct rb_node *node, *next; 10266 10267 spin_lock(&fs_info->swapfile_pins_lock); 10268 node = rb_first(&fs_info->swapfile_pins); 10269 while (node) { 10270 next = rb_next(node); 10271 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10272 if (sp->inode == inode) { 10273 rb_erase(&sp->node, &fs_info->swapfile_pins); 10274 if (sp->is_block_group) { 10275 btrfs_dec_block_group_swap_extents(sp->ptr, 10276 sp->bg_extent_count); 10277 btrfs_put_block_group(sp->ptr); 10278 } 10279 kfree(sp); 10280 } 10281 node = next; 10282 } 10283 spin_unlock(&fs_info->swapfile_pins_lock); 10284 } 10285 10286 struct btrfs_swap_info { 10287 u64 start; 10288 u64 block_start; 10289 u64 block_len; 10290 u64 lowest_ppage; 10291 u64 highest_ppage; 10292 unsigned long nr_pages; 10293 int nr_extents; 10294 }; 10295 10296 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10297 struct btrfs_swap_info *bsi) 10298 { 10299 unsigned long nr_pages; 10300 u64 first_ppage, first_ppage_reported, next_ppage; 10301 int ret; 10302 10303 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10304 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10305 PAGE_SIZE) >> PAGE_SHIFT; 10306 10307 if (first_ppage >= next_ppage) 10308 return 0; 10309 nr_pages = next_ppage - first_ppage; 10310 10311 first_ppage_reported = first_ppage; 10312 if (bsi->start == 0) 10313 first_ppage_reported++; 10314 if (bsi->lowest_ppage > first_ppage_reported) 10315 bsi->lowest_ppage = first_ppage_reported; 10316 if (bsi->highest_ppage < (next_ppage - 1)) 10317 bsi->highest_ppage = next_ppage - 1; 10318 10319 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10320 if (ret < 0) 10321 return ret; 10322 bsi->nr_extents += ret; 10323 bsi->nr_pages += nr_pages; 10324 return 0; 10325 } 10326 10327 static void btrfs_swap_deactivate(struct file *file) 10328 { 10329 struct inode *inode = file_inode(file); 10330 10331 btrfs_free_swapfile_pins(inode); 10332 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10333 } 10334 10335 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10336 sector_t *span) 10337 { 10338 struct inode *inode = file_inode(file); 10339 struct btrfs_root *root = BTRFS_I(inode)->root; 10340 struct btrfs_fs_info *fs_info = root->fs_info; 10341 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10342 struct extent_state *cached_state = NULL; 10343 struct extent_map *em = NULL; 10344 struct btrfs_device *device = NULL; 10345 struct btrfs_swap_info bsi = { 10346 .lowest_ppage = (sector_t)-1ULL, 10347 }; 10348 int ret = 0; 10349 u64 isize; 10350 u64 start; 10351 10352 /* 10353 * If the swap file was just created, make sure delalloc is done. If the 10354 * file changes again after this, the user is doing something stupid and 10355 * we don't really care. 10356 */ 10357 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10358 if (ret) 10359 return ret; 10360 10361 /* 10362 * The inode is locked, so these flags won't change after we check them. 10363 */ 10364 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10365 btrfs_warn(fs_info, "swapfile must not be compressed"); 10366 return -EINVAL; 10367 } 10368 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10369 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10370 return -EINVAL; 10371 } 10372 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10373 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10374 return -EINVAL; 10375 } 10376 10377 /* 10378 * Balance or device remove/replace/resize can move stuff around from 10379 * under us. The exclop protection makes sure they aren't running/won't 10380 * run concurrently while we are mapping the swap extents, and 10381 * fs_info->swapfile_pins prevents them from running while the swap 10382 * file is active and moving the extents. Note that this also prevents 10383 * a concurrent device add which isn't actually necessary, but it's not 10384 * really worth the trouble to allow it. 10385 */ 10386 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10387 btrfs_warn(fs_info, 10388 "cannot activate swapfile while exclusive operation is running"); 10389 return -EBUSY; 10390 } 10391 10392 /* 10393 * Prevent snapshot creation while we are activating the swap file. 10394 * We do not want to race with snapshot creation. If snapshot creation 10395 * already started before we bumped nr_swapfiles from 0 to 1 and 10396 * completes before the first write into the swap file after it is 10397 * activated, than that write would fallback to COW. 10398 */ 10399 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10400 btrfs_exclop_finish(fs_info); 10401 btrfs_warn(fs_info, 10402 "cannot activate swapfile because snapshot creation is in progress"); 10403 return -EINVAL; 10404 } 10405 /* 10406 * Snapshots can create extents which require COW even if NODATACOW is 10407 * set. We use this counter to prevent snapshots. We must increment it 10408 * before walking the extents because we don't want a concurrent 10409 * snapshot to run after we've already checked the extents. 10410 */ 10411 atomic_inc(&root->nr_swapfiles); 10412 10413 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10414 10415 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10416 start = 0; 10417 while (start < isize) { 10418 u64 logical_block_start, physical_block_start; 10419 struct btrfs_block_group *bg; 10420 u64 len = isize - start; 10421 10422 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10423 if (IS_ERR(em)) { 10424 ret = PTR_ERR(em); 10425 goto out; 10426 } 10427 10428 if (em->block_start == EXTENT_MAP_HOLE) { 10429 btrfs_warn(fs_info, "swapfile must not have holes"); 10430 ret = -EINVAL; 10431 goto out; 10432 } 10433 if (em->block_start == EXTENT_MAP_INLINE) { 10434 /* 10435 * It's unlikely we'll ever actually find ourselves 10436 * here, as a file small enough to fit inline won't be 10437 * big enough to store more than the swap header, but in 10438 * case something changes in the future, let's catch it 10439 * here rather than later. 10440 */ 10441 btrfs_warn(fs_info, "swapfile must not be inline"); 10442 ret = -EINVAL; 10443 goto out; 10444 } 10445 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10446 btrfs_warn(fs_info, "swapfile must not be compressed"); 10447 ret = -EINVAL; 10448 goto out; 10449 } 10450 10451 logical_block_start = em->block_start + (start - em->start); 10452 len = min(len, em->len - (start - em->start)); 10453 free_extent_map(em); 10454 em = NULL; 10455 10456 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 10457 if (ret < 0) { 10458 goto out; 10459 } else if (ret) { 10460 ret = 0; 10461 } else { 10462 btrfs_warn(fs_info, 10463 "swapfile must not be copy-on-write"); 10464 ret = -EINVAL; 10465 goto out; 10466 } 10467 10468 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10469 if (IS_ERR(em)) { 10470 ret = PTR_ERR(em); 10471 goto out; 10472 } 10473 10474 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10475 btrfs_warn(fs_info, 10476 "swapfile must have single data profile"); 10477 ret = -EINVAL; 10478 goto out; 10479 } 10480 10481 if (device == NULL) { 10482 device = em->map_lookup->stripes[0].dev; 10483 ret = btrfs_add_swapfile_pin(inode, device, false); 10484 if (ret == 1) 10485 ret = 0; 10486 else if (ret) 10487 goto out; 10488 } else if (device != em->map_lookup->stripes[0].dev) { 10489 btrfs_warn(fs_info, "swapfile must be on one device"); 10490 ret = -EINVAL; 10491 goto out; 10492 } 10493 10494 physical_block_start = (em->map_lookup->stripes[0].physical + 10495 (logical_block_start - em->start)); 10496 len = min(len, em->len - (logical_block_start - em->start)); 10497 free_extent_map(em); 10498 em = NULL; 10499 10500 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10501 if (!bg) { 10502 btrfs_warn(fs_info, 10503 "could not find block group containing swapfile"); 10504 ret = -EINVAL; 10505 goto out; 10506 } 10507 10508 if (!btrfs_inc_block_group_swap_extents(bg)) { 10509 btrfs_warn(fs_info, 10510 "block group for swapfile at %llu is read-only%s", 10511 bg->start, 10512 atomic_read(&fs_info->scrubs_running) ? 10513 " (scrub running)" : ""); 10514 btrfs_put_block_group(bg); 10515 ret = -EINVAL; 10516 goto out; 10517 } 10518 10519 ret = btrfs_add_swapfile_pin(inode, bg, true); 10520 if (ret) { 10521 btrfs_put_block_group(bg); 10522 if (ret == 1) 10523 ret = 0; 10524 else 10525 goto out; 10526 } 10527 10528 if (bsi.block_len && 10529 bsi.block_start + bsi.block_len == physical_block_start) { 10530 bsi.block_len += len; 10531 } else { 10532 if (bsi.block_len) { 10533 ret = btrfs_add_swap_extent(sis, &bsi); 10534 if (ret) 10535 goto out; 10536 } 10537 bsi.start = start; 10538 bsi.block_start = physical_block_start; 10539 bsi.block_len = len; 10540 } 10541 10542 start += len; 10543 } 10544 10545 if (bsi.block_len) 10546 ret = btrfs_add_swap_extent(sis, &bsi); 10547 10548 out: 10549 if (!IS_ERR_OR_NULL(em)) 10550 free_extent_map(em); 10551 10552 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10553 10554 if (ret) 10555 btrfs_swap_deactivate(file); 10556 10557 btrfs_drew_write_unlock(&root->snapshot_lock); 10558 10559 btrfs_exclop_finish(fs_info); 10560 10561 if (ret) 10562 return ret; 10563 10564 if (device) 10565 sis->bdev = device->bdev; 10566 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10567 sis->max = bsi.nr_pages; 10568 sis->pages = bsi.nr_pages - 1; 10569 sis->highest_bit = bsi.nr_pages - 1; 10570 return bsi.nr_extents; 10571 } 10572 #else 10573 static void btrfs_swap_deactivate(struct file *file) 10574 { 10575 } 10576 10577 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10578 sector_t *span) 10579 { 10580 return -EOPNOTSUPP; 10581 } 10582 #endif 10583 10584 /* 10585 * Update the number of bytes used in the VFS' inode. When we replace extents in 10586 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10587 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10588 * always get a correct value. 10589 */ 10590 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10591 const u64 add_bytes, 10592 const u64 del_bytes) 10593 { 10594 if (add_bytes == del_bytes) 10595 return; 10596 10597 spin_lock(&inode->lock); 10598 if (del_bytes > 0) 10599 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10600 if (add_bytes > 0) 10601 inode_add_bytes(&inode->vfs_inode, add_bytes); 10602 spin_unlock(&inode->lock); 10603 } 10604 10605 static const struct inode_operations btrfs_dir_inode_operations = { 10606 .getattr = btrfs_getattr, 10607 .lookup = btrfs_lookup, 10608 .create = btrfs_create, 10609 .unlink = btrfs_unlink, 10610 .link = btrfs_link, 10611 .mkdir = btrfs_mkdir, 10612 .rmdir = btrfs_rmdir, 10613 .rename = btrfs_rename2, 10614 .symlink = btrfs_symlink, 10615 .setattr = btrfs_setattr, 10616 .mknod = btrfs_mknod, 10617 .listxattr = btrfs_listxattr, 10618 .permission = btrfs_permission, 10619 .get_acl = btrfs_get_acl, 10620 .set_acl = btrfs_set_acl, 10621 .update_time = btrfs_update_time, 10622 .tmpfile = btrfs_tmpfile, 10623 .fileattr_get = btrfs_fileattr_get, 10624 .fileattr_set = btrfs_fileattr_set, 10625 }; 10626 10627 static const struct file_operations btrfs_dir_file_operations = { 10628 .llseek = generic_file_llseek, 10629 .read = generic_read_dir, 10630 .iterate_shared = btrfs_real_readdir, 10631 .open = btrfs_opendir, 10632 .unlocked_ioctl = btrfs_ioctl, 10633 #ifdef CONFIG_COMPAT 10634 .compat_ioctl = btrfs_compat_ioctl, 10635 #endif 10636 .release = btrfs_release_file, 10637 .fsync = btrfs_sync_file, 10638 }; 10639 10640 /* 10641 * btrfs doesn't support the bmap operation because swapfiles 10642 * use bmap to make a mapping of extents in the file. They assume 10643 * these extents won't change over the life of the file and they 10644 * use the bmap result to do IO directly to the drive. 10645 * 10646 * the btrfs bmap call would return logical addresses that aren't 10647 * suitable for IO and they also will change frequently as COW 10648 * operations happen. So, swapfile + btrfs == corruption. 10649 * 10650 * For now we're avoiding this by dropping bmap. 10651 */ 10652 static const struct address_space_operations btrfs_aops = { 10653 .readpage = btrfs_readpage, 10654 .writepage = btrfs_writepage, 10655 .writepages = btrfs_writepages, 10656 .readahead = btrfs_readahead, 10657 .direct_IO = noop_direct_IO, 10658 .invalidatepage = btrfs_invalidatepage, 10659 .releasepage = btrfs_releasepage, 10660 #ifdef CONFIG_MIGRATION 10661 .migratepage = btrfs_migratepage, 10662 #endif 10663 .set_page_dirty = btrfs_set_page_dirty, 10664 .error_remove_page = generic_error_remove_page, 10665 .swap_activate = btrfs_swap_activate, 10666 .swap_deactivate = btrfs_swap_deactivate, 10667 }; 10668 10669 static const struct inode_operations btrfs_file_inode_operations = { 10670 .getattr = btrfs_getattr, 10671 .setattr = btrfs_setattr, 10672 .listxattr = btrfs_listxattr, 10673 .permission = btrfs_permission, 10674 .fiemap = btrfs_fiemap, 10675 .get_acl = btrfs_get_acl, 10676 .set_acl = btrfs_set_acl, 10677 .update_time = btrfs_update_time, 10678 .fileattr_get = btrfs_fileattr_get, 10679 .fileattr_set = btrfs_fileattr_set, 10680 }; 10681 static const struct inode_operations btrfs_special_inode_operations = { 10682 .getattr = btrfs_getattr, 10683 .setattr = btrfs_setattr, 10684 .permission = btrfs_permission, 10685 .listxattr = btrfs_listxattr, 10686 .get_acl = btrfs_get_acl, 10687 .set_acl = btrfs_set_acl, 10688 .update_time = btrfs_update_time, 10689 }; 10690 static const struct inode_operations btrfs_symlink_inode_operations = { 10691 .get_link = page_get_link, 10692 .getattr = btrfs_getattr, 10693 .setattr = btrfs_setattr, 10694 .permission = btrfs_permission, 10695 .listxattr = btrfs_listxattr, 10696 .update_time = btrfs_update_time, 10697 }; 10698 10699 const struct dentry_operations btrfs_dentry_operations = { 10700 .d_delete = btrfs_dentry_delete, 10701 }; 10702