1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/sched/mm.h> 32 #include <asm/unaligned.h> 33 #include "misc.h" 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "ordered-data.h" 40 #include "xattr.h" 41 #include "tree-log.h" 42 #include "volumes.h" 43 #include "compression.h" 44 #include "locking.h" 45 #include "free-space-cache.h" 46 #include "inode-map.h" 47 #include "props.h" 48 #include "qgroup.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 52 struct btrfs_iget_args { 53 struct btrfs_key *location; 54 struct btrfs_root *root; 55 }; 56 57 struct btrfs_dio_data { 58 u64 reserve; 59 u64 unsubmitted_oe_range_start; 60 u64 unsubmitted_oe_range_end; 61 int overwrite; 62 }; 63 64 static const struct inode_operations btrfs_dir_inode_operations; 65 static const struct inode_operations btrfs_symlink_inode_operations; 66 static const struct inode_operations btrfs_special_inode_operations; 67 static const struct inode_operations btrfs_file_inode_operations; 68 static const struct address_space_operations btrfs_aops; 69 static const struct file_operations btrfs_dir_file_operations; 70 static const struct extent_io_ops btrfs_extent_io_ops; 71 72 static struct kmem_cache *btrfs_inode_cachep; 73 struct kmem_cache *btrfs_trans_handle_cachep; 74 struct kmem_cache *btrfs_path_cachep; 75 struct kmem_cache *btrfs_free_space_cachep; 76 struct kmem_cache *btrfs_free_space_bitmap_cachep; 77 78 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 79 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 80 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 81 static noinline int cow_file_range(struct inode *inode, 82 struct page *locked_page, 83 u64 start, u64 end, int *page_started, 84 unsigned long *nr_written, int unlock); 85 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 86 u64 orig_start, u64 block_start, 87 u64 block_len, u64 orig_block_len, 88 u64 ram_bytes, int compress_type, 89 int type); 90 91 static void __endio_write_update_ordered(struct inode *inode, 92 const u64 offset, const u64 bytes, 93 const bool uptodate); 94 95 /* 96 * Cleanup all submitted ordered extents in specified range to handle errors 97 * from the btrfs_run_delalloc_range() callback. 98 * 99 * NOTE: caller must ensure that when an error happens, it can not call 100 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 101 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 102 * to be released, which we want to happen only when finishing the ordered 103 * extent (btrfs_finish_ordered_io()). 104 */ 105 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 106 struct page *locked_page, 107 u64 offset, u64 bytes) 108 { 109 unsigned long index = offset >> PAGE_SHIFT; 110 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 111 u64 page_start = page_offset(locked_page); 112 u64 page_end = page_start + PAGE_SIZE - 1; 113 114 struct page *page; 115 116 while (index <= end_index) { 117 page = find_get_page(inode->i_mapping, index); 118 index++; 119 if (!page) 120 continue; 121 ClearPagePrivate2(page); 122 put_page(page); 123 } 124 125 /* 126 * In case this page belongs to the delalloc range being instantiated 127 * then skip it, since the first page of a range is going to be 128 * properly cleaned up by the caller of run_delalloc_range 129 */ 130 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 131 offset += PAGE_SIZE; 132 bytes -= PAGE_SIZE; 133 } 134 135 return __endio_write_update_ordered(inode, offset, bytes, false); 136 } 137 138 static int btrfs_dirty_inode(struct inode *inode); 139 140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 141 void btrfs_test_inode_set_ops(struct inode *inode) 142 { 143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 144 } 145 #endif 146 147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 148 struct inode *inode, struct inode *dir, 149 const struct qstr *qstr) 150 { 151 int err; 152 153 err = btrfs_init_acl(trans, inode, dir); 154 if (!err) 155 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 156 return err; 157 } 158 159 /* 160 * this does all the hard work for inserting an inline extent into 161 * the btree. The caller should have done a btrfs_drop_extents so that 162 * no overlapping inline items exist in the btree 163 */ 164 static int insert_inline_extent(struct btrfs_trans_handle *trans, 165 struct btrfs_path *path, int extent_inserted, 166 struct btrfs_root *root, struct inode *inode, 167 u64 start, size_t size, size_t compressed_size, 168 int compress_type, 169 struct page **compressed_pages) 170 { 171 struct extent_buffer *leaf; 172 struct page *page = NULL; 173 char *kaddr; 174 unsigned long ptr; 175 struct btrfs_file_extent_item *ei; 176 int ret; 177 size_t cur_size = size; 178 unsigned long offset; 179 180 ASSERT((compressed_size > 0 && compressed_pages) || 181 (compressed_size == 0 && !compressed_pages)); 182 183 if (compressed_size && compressed_pages) 184 cur_size = compressed_size; 185 186 inode_add_bytes(inode, size); 187 188 if (!extent_inserted) { 189 struct btrfs_key key; 190 size_t datasize; 191 192 key.objectid = btrfs_ino(BTRFS_I(inode)); 193 key.offset = start; 194 key.type = BTRFS_EXTENT_DATA_KEY; 195 196 datasize = btrfs_file_extent_calc_inline_size(cur_size); 197 path->leave_spinning = 1; 198 ret = btrfs_insert_empty_item(trans, root, path, &key, 199 datasize); 200 if (ret) 201 goto fail; 202 } 203 leaf = path->nodes[0]; 204 ei = btrfs_item_ptr(leaf, path->slots[0], 205 struct btrfs_file_extent_item); 206 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 207 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 208 btrfs_set_file_extent_encryption(leaf, ei, 0); 209 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 210 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 211 ptr = btrfs_file_extent_inline_start(ei); 212 213 if (compress_type != BTRFS_COMPRESS_NONE) { 214 struct page *cpage; 215 int i = 0; 216 while (compressed_size > 0) { 217 cpage = compressed_pages[i]; 218 cur_size = min_t(unsigned long, compressed_size, 219 PAGE_SIZE); 220 221 kaddr = kmap_atomic(cpage); 222 write_extent_buffer(leaf, kaddr, ptr, cur_size); 223 kunmap_atomic(kaddr); 224 225 i++; 226 ptr += cur_size; 227 compressed_size -= cur_size; 228 } 229 btrfs_set_file_extent_compression(leaf, ei, 230 compress_type); 231 } else { 232 page = find_get_page(inode->i_mapping, 233 start >> PAGE_SHIFT); 234 btrfs_set_file_extent_compression(leaf, ei, 0); 235 kaddr = kmap_atomic(page); 236 offset = offset_in_page(start); 237 write_extent_buffer(leaf, kaddr + offset, ptr, size); 238 kunmap_atomic(kaddr); 239 put_page(page); 240 } 241 btrfs_mark_buffer_dirty(leaf); 242 btrfs_release_path(path); 243 244 /* 245 * we're an inline extent, so nobody can 246 * extend the file past i_size without locking 247 * a page we already have locked. 248 * 249 * We must do any isize and inode updates 250 * before we unlock the pages. Otherwise we 251 * could end up racing with unlink. 252 */ 253 BTRFS_I(inode)->disk_i_size = inode->i_size; 254 ret = btrfs_update_inode(trans, root, inode); 255 256 fail: 257 return ret; 258 } 259 260 261 /* 262 * conditionally insert an inline extent into the file. This 263 * does the checks required to make sure the data is small enough 264 * to fit as an inline extent. 265 */ 266 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 267 u64 end, size_t compressed_size, 268 int compress_type, 269 struct page **compressed_pages) 270 { 271 struct btrfs_root *root = BTRFS_I(inode)->root; 272 struct btrfs_fs_info *fs_info = root->fs_info; 273 struct btrfs_trans_handle *trans; 274 u64 isize = i_size_read(inode); 275 u64 actual_end = min(end + 1, isize); 276 u64 inline_len = actual_end - start; 277 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 278 u64 data_len = inline_len; 279 int ret; 280 struct btrfs_path *path; 281 int extent_inserted = 0; 282 u32 extent_item_size; 283 284 if (compressed_size) 285 data_len = compressed_size; 286 287 if (start > 0 || 288 actual_end > fs_info->sectorsize || 289 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 290 (!compressed_size && 291 (actual_end & (fs_info->sectorsize - 1)) == 0) || 292 end + 1 < isize || 293 data_len > fs_info->max_inline) { 294 return 1; 295 } 296 297 path = btrfs_alloc_path(); 298 if (!path) 299 return -ENOMEM; 300 301 trans = btrfs_join_transaction(root); 302 if (IS_ERR(trans)) { 303 btrfs_free_path(path); 304 return PTR_ERR(trans); 305 } 306 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 307 308 if (compressed_size && compressed_pages) 309 extent_item_size = btrfs_file_extent_calc_inline_size( 310 compressed_size); 311 else 312 extent_item_size = btrfs_file_extent_calc_inline_size( 313 inline_len); 314 315 ret = __btrfs_drop_extents(trans, root, inode, path, 316 start, aligned_end, NULL, 317 1, 1, extent_item_size, &extent_inserted); 318 if (ret) { 319 btrfs_abort_transaction(trans, ret); 320 goto out; 321 } 322 323 if (isize > actual_end) 324 inline_len = min_t(u64, isize, actual_end); 325 ret = insert_inline_extent(trans, path, extent_inserted, 326 root, inode, start, 327 inline_len, compressed_size, 328 compress_type, compressed_pages); 329 if (ret && ret != -ENOSPC) { 330 btrfs_abort_transaction(trans, ret); 331 goto out; 332 } else if (ret == -ENOSPC) { 333 ret = 1; 334 goto out; 335 } 336 337 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 338 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 339 out: 340 /* 341 * Don't forget to free the reserved space, as for inlined extent 342 * it won't count as data extent, free them directly here. 343 * And at reserve time, it's always aligned to page size, so 344 * just free one page here. 345 */ 346 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 347 btrfs_free_path(path); 348 btrfs_end_transaction(trans); 349 return ret; 350 } 351 352 struct async_extent { 353 u64 start; 354 u64 ram_size; 355 u64 compressed_size; 356 struct page **pages; 357 unsigned long nr_pages; 358 int compress_type; 359 struct list_head list; 360 }; 361 362 struct async_chunk { 363 struct inode *inode; 364 struct page *locked_page; 365 u64 start; 366 u64 end; 367 unsigned int write_flags; 368 struct list_head extents; 369 struct cgroup_subsys_state *blkcg_css; 370 struct btrfs_work work; 371 atomic_t *pending; 372 }; 373 374 struct async_cow { 375 /* Number of chunks in flight; must be first in the structure */ 376 atomic_t num_chunks; 377 struct async_chunk chunks[]; 378 }; 379 380 static noinline int add_async_extent(struct async_chunk *cow, 381 u64 start, u64 ram_size, 382 u64 compressed_size, 383 struct page **pages, 384 unsigned long nr_pages, 385 int compress_type) 386 { 387 struct async_extent *async_extent; 388 389 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 390 BUG_ON(!async_extent); /* -ENOMEM */ 391 async_extent->start = start; 392 async_extent->ram_size = ram_size; 393 async_extent->compressed_size = compressed_size; 394 async_extent->pages = pages; 395 async_extent->nr_pages = nr_pages; 396 async_extent->compress_type = compress_type; 397 list_add_tail(&async_extent->list, &cow->extents); 398 return 0; 399 } 400 401 /* 402 * Check if the inode has flags compatible with compression 403 */ 404 static inline bool inode_can_compress(struct inode *inode) 405 { 406 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW || 407 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 408 return false; 409 return true; 410 } 411 412 /* 413 * Check if the inode needs to be submitted to compression, based on mount 414 * options, defragmentation, properties or heuristics. 415 */ 416 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 417 { 418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 419 420 if (!inode_can_compress(inode)) { 421 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 422 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 423 btrfs_ino(BTRFS_I(inode))); 424 return 0; 425 } 426 /* force compress */ 427 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 428 return 1; 429 /* defrag ioctl */ 430 if (BTRFS_I(inode)->defrag_compress) 431 return 1; 432 /* bad compression ratios */ 433 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 434 return 0; 435 if (btrfs_test_opt(fs_info, COMPRESS) || 436 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 437 BTRFS_I(inode)->prop_compress) 438 return btrfs_compress_heuristic(inode, start, end); 439 return 0; 440 } 441 442 static inline void inode_should_defrag(struct btrfs_inode *inode, 443 u64 start, u64 end, u64 num_bytes, u64 small_write) 444 { 445 /* If this is a small write inside eof, kick off a defrag */ 446 if (num_bytes < small_write && 447 (start > 0 || end + 1 < inode->disk_i_size)) 448 btrfs_add_inode_defrag(NULL, inode); 449 } 450 451 /* 452 * we create compressed extents in two phases. The first 453 * phase compresses a range of pages that have already been 454 * locked (both pages and state bits are locked). 455 * 456 * This is done inside an ordered work queue, and the compression 457 * is spread across many cpus. The actual IO submission is step 458 * two, and the ordered work queue takes care of making sure that 459 * happens in the same order things were put onto the queue by 460 * writepages and friends. 461 * 462 * If this code finds it can't get good compression, it puts an 463 * entry onto the work queue to write the uncompressed bytes. This 464 * makes sure that both compressed inodes and uncompressed inodes 465 * are written in the same order that the flusher thread sent them 466 * down. 467 */ 468 static noinline int compress_file_range(struct async_chunk *async_chunk) 469 { 470 struct inode *inode = async_chunk->inode; 471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 472 u64 blocksize = fs_info->sectorsize; 473 u64 start = async_chunk->start; 474 u64 end = async_chunk->end; 475 u64 actual_end; 476 u64 i_size; 477 int ret = 0; 478 struct page **pages = NULL; 479 unsigned long nr_pages; 480 unsigned long total_compressed = 0; 481 unsigned long total_in = 0; 482 int i; 483 int will_compress; 484 int compress_type = fs_info->compress_type; 485 int compressed_extents = 0; 486 int redirty = 0; 487 488 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 489 SZ_16K); 490 491 /* 492 * We need to save i_size before now because it could change in between 493 * us evaluating the size and assigning it. This is because we lock and 494 * unlock the page in truncate and fallocate, and then modify the i_size 495 * later on. 496 * 497 * The barriers are to emulate READ_ONCE, remove that once i_size_read 498 * does that for us. 499 */ 500 barrier(); 501 i_size = i_size_read(inode); 502 barrier(); 503 actual_end = min_t(u64, i_size, end + 1); 504 again: 505 will_compress = 0; 506 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 507 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 508 nr_pages = min_t(unsigned long, nr_pages, 509 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 510 511 /* 512 * we don't want to send crud past the end of i_size through 513 * compression, that's just a waste of CPU time. So, if the 514 * end of the file is before the start of our current 515 * requested range of bytes, we bail out to the uncompressed 516 * cleanup code that can deal with all of this. 517 * 518 * It isn't really the fastest way to fix things, but this is a 519 * very uncommon corner. 520 */ 521 if (actual_end <= start) 522 goto cleanup_and_bail_uncompressed; 523 524 total_compressed = actual_end - start; 525 526 /* 527 * skip compression for a small file range(<=blocksize) that 528 * isn't an inline extent, since it doesn't save disk space at all. 529 */ 530 if (total_compressed <= blocksize && 531 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 532 goto cleanup_and_bail_uncompressed; 533 534 total_compressed = min_t(unsigned long, total_compressed, 535 BTRFS_MAX_UNCOMPRESSED); 536 total_in = 0; 537 ret = 0; 538 539 /* 540 * we do compression for mount -o compress and when the 541 * inode has not been flagged as nocompress. This flag can 542 * change at any time if we discover bad compression ratios. 543 */ 544 if (inode_need_compress(inode, start, end)) { 545 WARN_ON(pages); 546 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 547 if (!pages) { 548 /* just bail out to the uncompressed code */ 549 nr_pages = 0; 550 goto cont; 551 } 552 553 if (BTRFS_I(inode)->defrag_compress) 554 compress_type = BTRFS_I(inode)->defrag_compress; 555 else if (BTRFS_I(inode)->prop_compress) 556 compress_type = BTRFS_I(inode)->prop_compress; 557 558 /* 559 * we need to call clear_page_dirty_for_io on each 560 * page in the range. Otherwise applications with the file 561 * mmap'd can wander in and change the page contents while 562 * we are compressing them. 563 * 564 * If the compression fails for any reason, we set the pages 565 * dirty again later on. 566 * 567 * Note that the remaining part is redirtied, the start pointer 568 * has moved, the end is the original one. 569 */ 570 if (!redirty) { 571 extent_range_clear_dirty_for_io(inode, start, end); 572 redirty = 1; 573 } 574 575 /* Compression level is applied here and only here */ 576 ret = btrfs_compress_pages( 577 compress_type | (fs_info->compress_level << 4), 578 inode->i_mapping, start, 579 pages, 580 &nr_pages, 581 &total_in, 582 &total_compressed); 583 584 if (!ret) { 585 unsigned long offset = offset_in_page(total_compressed); 586 struct page *page = pages[nr_pages - 1]; 587 char *kaddr; 588 589 /* zero the tail end of the last page, we might be 590 * sending it down to disk 591 */ 592 if (offset) { 593 kaddr = kmap_atomic(page); 594 memset(kaddr + offset, 0, 595 PAGE_SIZE - offset); 596 kunmap_atomic(kaddr); 597 } 598 will_compress = 1; 599 } 600 } 601 cont: 602 if (start == 0) { 603 /* lets try to make an inline extent */ 604 if (ret || total_in < actual_end) { 605 /* we didn't compress the entire range, try 606 * to make an uncompressed inline extent. 607 */ 608 ret = cow_file_range_inline(inode, start, end, 0, 609 BTRFS_COMPRESS_NONE, NULL); 610 } else { 611 /* try making a compressed inline extent */ 612 ret = cow_file_range_inline(inode, start, end, 613 total_compressed, 614 compress_type, pages); 615 } 616 if (ret <= 0) { 617 unsigned long clear_flags = EXTENT_DELALLOC | 618 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 619 EXTENT_DO_ACCOUNTING; 620 unsigned long page_error_op; 621 622 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 623 624 /* 625 * inline extent creation worked or returned error, 626 * we don't need to create any more async work items. 627 * Unlock and free up our temp pages. 628 * 629 * We use DO_ACCOUNTING here because we need the 630 * delalloc_release_metadata to be done _after_ we drop 631 * our outstanding extent for clearing delalloc for this 632 * range. 633 */ 634 extent_clear_unlock_delalloc(inode, start, end, NULL, 635 clear_flags, 636 PAGE_UNLOCK | 637 PAGE_CLEAR_DIRTY | 638 PAGE_SET_WRITEBACK | 639 page_error_op | 640 PAGE_END_WRITEBACK); 641 642 for (i = 0; i < nr_pages; i++) { 643 WARN_ON(pages[i]->mapping); 644 put_page(pages[i]); 645 } 646 kfree(pages); 647 648 return 0; 649 } 650 } 651 652 if (will_compress) { 653 /* 654 * we aren't doing an inline extent round the compressed size 655 * up to a block size boundary so the allocator does sane 656 * things 657 */ 658 total_compressed = ALIGN(total_compressed, blocksize); 659 660 /* 661 * one last check to make sure the compression is really a 662 * win, compare the page count read with the blocks on disk, 663 * compression must free at least one sector size 664 */ 665 total_in = ALIGN(total_in, PAGE_SIZE); 666 if (total_compressed + blocksize <= total_in) { 667 compressed_extents++; 668 669 /* 670 * The async work queues will take care of doing actual 671 * allocation on disk for these compressed pages, and 672 * will submit them to the elevator. 673 */ 674 add_async_extent(async_chunk, start, total_in, 675 total_compressed, pages, nr_pages, 676 compress_type); 677 678 if (start + total_in < end) { 679 start += total_in; 680 pages = NULL; 681 cond_resched(); 682 goto again; 683 } 684 return compressed_extents; 685 } 686 } 687 if (pages) { 688 /* 689 * the compression code ran but failed to make things smaller, 690 * free any pages it allocated and our page pointer array 691 */ 692 for (i = 0; i < nr_pages; i++) { 693 WARN_ON(pages[i]->mapping); 694 put_page(pages[i]); 695 } 696 kfree(pages); 697 pages = NULL; 698 total_compressed = 0; 699 nr_pages = 0; 700 701 /* flag the file so we don't compress in the future */ 702 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 703 !(BTRFS_I(inode)->prop_compress)) { 704 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 705 } 706 } 707 cleanup_and_bail_uncompressed: 708 /* 709 * No compression, but we still need to write the pages in the file 710 * we've been given so far. redirty the locked page if it corresponds 711 * to our extent and set things up for the async work queue to run 712 * cow_file_range to do the normal delalloc dance. 713 */ 714 if (async_chunk->locked_page && 715 (page_offset(async_chunk->locked_page) >= start && 716 page_offset(async_chunk->locked_page)) <= end) { 717 __set_page_dirty_nobuffers(async_chunk->locked_page); 718 /* unlocked later on in the async handlers */ 719 } 720 721 if (redirty) 722 extent_range_redirty_for_io(inode, start, end); 723 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 724 BTRFS_COMPRESS_NONE); 725 compressed_extents++; 726 727 return compressed_extents; 728 } 729 730 static void free_async_extent_pages(struct async_extent *async_extent) 731 { 732 int i; 733 734 if (!async_extent->pages) 735 return; 736 737 for (i = 0; i < async_extent->nr_pages; i++) { 738 WARN_ON(async_extent->pages[i]->mapping); 739 put_page(async_extent->pages[i]); 740 } 741 kfree(async_extent->pages); 742 async_extent->nr_pages = 0; 743 async_extent->pages = NULL; 744 } 745 746 /* 747 * phase two of compressed writeback. This is the ordered portion 748 * of the code, which only gets called in the order the work was 749 * queued. We walk all the async extents created by compress_file_range 750 * and send them down to the disk. 751 */ 752 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 753 { 754 struct inode *inode = async_chunk->inode; 755 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 756 struct async_extent *async_extent; 757 u64 alloc_hint = 0; 758 struct btrfs_key ins; 759 struct extent_map *em; 760 struct btrfs_root *root = BTRFS_I(inode)->root; 761 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 762 int ret = 0; 763 764 again: 765 while (!list_empty(&async_chunk->extents)) { 766 async_extent = list_entry(async_chunk->extents.next, 767 struct async_extent, list); 768 list_del(&async_extent->list); 769 770 retry: 771 lock_extent(io_tree, async_extent->start, 772 async_extent->start + async_extent->ram_size - 1); 773 /* did the compression code fall back to uncompressed IO? */ 774 if (!async_extent->pages) { 775 int page_started = 0; 776 unsigned long nr_written = 0; 777 778 /* allocate blocks */ 779 ret = cow_file_range(inode, async_chunk->locked_page, 780 async_extent->start, 781 async_extent->start + 782 async_extent->ram_size - 1, 783 &page_started, &nr_written, 0); 784 785 /* JDM XXX */ 786 787 /* 788 * if page_started, cow_file_range inserted an 789 * inline extent and took care of all the unlocking 790 * and IO for us. Otherwise, we need to submit 791 * all those pages down to the drive. 792 */ 793 if (!page_started && !ret) 794 extent_write_locked_range(inode, 795 async_extent->start, 796 async_extent->start + 797 async_extent->ram_size - 1, 798 WB_SYNC_ALL); 799 else if (ret && async_chunk->locked_page) 800 unlock_page(async_chunk->locked_page); 801 kfree(async_extent); 802 cond_resched(); 803 continue; 804 } 805 806 ret = btrfs_reserve_extent(root, async_extent->ram_size, 807 async_extent->compressed_size, 808 async_extent->compressed_size, 809 0, alloc_hint, &ins, 1, 1); 810 if (ret) { 811 free_async_extent_pages(async_extent); 812 813 if (ret == -ENOSPC) { 814 unlock_extent(io_tree, async_extent->start, 815 async_extent->start + 816 async_extent->ram_size - 1); 817 818 /* 819 * we need to redirty the pages if we decide to 820 * fallback to uncompressed IO, otherwise we 821 * will not submit these pages down to lower 822 * layers. 823 */ 824 extent_range_redirty_for_io(inode, 825 async_extent->start, 826 async_extent->start + 827 async_extent->ram_size - 1); 828 829 goto retry; 830 } 831 goto out_free; 832 } 833 /* 834 * here we're doing allocation and writeback of the 835 * compressed pages 836 */ 837 em = create_io_em(inode, async_extent->start, 838 async_extent->ram_size, /* len */ 839 async_extent->start, /* orig_start */ 840 ins.objectid, /* block_start */ 841 ins.offset, /* block_len */ 842 ins.offset, /* orig_block_len */ 843 async_extent->ram_size, /* ram_bytes */ 844 async_extent->compress_type, 845 BTRFS_ORDERED_COMPRESSED); 846 if (IS_ERR(em)) 847 /* ret value is not necessary due to void function */ 848 goto out_free_reserve; 849 free_extent_map(em); 850 851 ret = btrfs_add_ordered_extent_compress(inode, 852 async_extent->start, 853 ins.objectid, 854 async_extent->ram_size, 855 ins.offset, 856 BTRFS_ORDERED_COMPRESSED, 857 async_extent->compress_type); 858 if (ret) { 859 btrfs_drop_extent_cache(BTRFS_I(inode), 860 async_extent->start, 861 async_extent->start + 862 async_extent->ram_size - 1, 0); 863 goto out_free_reserve; 864 } 865 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 866 867 /* 868 * clear dirty, set writeback and unlock the pages. 869 */ 870 extent_clear_unlock_delalloc(inode, async_extent->start, 871 async_extent->start + 872 async_extent->ram_size - 1, 873 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 874 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 875 PAGE_SET_WRITEBACK); 876 if (btrfs_submit_compressed_write(inode, 877 async_extent->start, 878 async_extent->ram_size, 879 ins.objectid, 880 ins.offset, async_extent->pages, 881 async_extent->nr_pages, 882 async_chunk->write_flags, 883 async_chunk->blkcg_css)) { 884 struct page *p = async_extent->pages[0]; 885 const u64 start = async_extent->start; 886 const u64 end = start + async_extent->ram_size - 1; 887 888 p->mapping = inode->i_mapping; 889 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 890 891 p->mapping = NULL; 892 extent_clear_unlock_delalloc(inode, start, end, 893 NULL, 0, 894 PAGE_END_WRITEBACK | 895 PAGE_SET_ERROR); 896 free_async_extent_pages(async_extent); 897 } 898 alloc_hint = ins.objectid + ins.offset; 899 kfree(async_extent); 900 cond_resched(); 901 } 902 return; 903 out_free_reserve: 904 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 905 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 906 out_free: 907 extent_clear_unlock_delalloc(inode, async_extent->start, 908 async_extent->start + 909 async_extent->ram_size - 1, 910 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 911 EXTENT_DELALLOC_NEW | 912 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 913 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 914 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 915 PAGE_SET_ERROR); 916 free_async_extent_pages(async_extent); 917 kfree(async_extent); 918 goto again; 919 } 920 921 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 922 u64 num_bytes) 923 { 924 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 925 struct extent_map *em; 926 u64 alloc_hint = 0; 927 928 read_lock(&em_tree->lock); 929 em = search_extent_mapping(em_tree, start, num_bytes); 930 if (em) { 931 /* 932 * if block start isn't an actual block number then find the 933 * first block in this inode and use that as a hint. If that 934 * block is also bogus then just don't worry about it. 935 */ 936 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 937 free_extent_map(em); 938 em = search_extent_mapping(em_tree, 0, 0); 939 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 940 alloc_hint = em->block_start; 941 if (em) 942 free_extent_map(em); 943 } else { 944 alloc_hint = em->block_start; 945 free_extent_map(em); 946 } 947 } 948 read_unlock(&em_tree->lock); 949 950 return alloc_hint; 951 } 952 953 /* 954 * when extent_io.c finds a delayed allocation range in the file, 955 * the call backs end up in this code. The basic idea is to 956 * allocate extents on disk for the range, and create ordered data structs 957 * in ram to track those extents. 958 * 959 * locked_page is the page that writepage had locked already. We use 960 * it to make sure we don't do extra locks or unlocks. 961 * 962 * *page_started is set to one if we unlock locked_page and do everything 963 * required to start IO on it. It may be clean and already done with 964 * IO when we return. 965 */ 966 static noinline int cow_file_range(struct inode *inode, 967 struct page *locked_page, 968 u64 start, u64 end, int *page_started, 969 unsigned long *nr_written, int unlock) 970 { 971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 972 struct btrfs_root *root = BTRFS_I(inode)->root; 973 u64 alloc_hint = 0; 974 u64 num_bytes; 975 unsigned long ram_size; 976 u64 cur_alloc_size = 0; 977 u64 blocksize = fs_info->sectorsize; 978 struct btrfs_key ins; 979 struct extent_map *em; 980 unsigned clear_bits; 981 unsigned long page_ops; 982 bool extent_reserved = false; 983 int ret = 0; 984 985 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 986 WARN_ON_ONCE(1); 987 ret = -EINVAL; 988 goto out_unlock; 989 } 990 991 num_bytes = ALIGN(end - start + 1, blocksize); 992 num_bytes = max(blocksize, num_bytes); 993 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 994 995 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 996 997 if (start == 0) { 998 /* lets try to make an inline extent */ 999 ret = cow_file_range_inline(inode, start, end, 0, 1000 BTRFS_COMPRESS_NONE, NULL); 1001 if (ret == 0) { 1002 /* 1003 * We use DO_ACCOUNTING here because we need the 1004 * delalloc_release_metadata to be run _after_ we drop 1005 * our outstanding extent for clearing delalloc for this 1006 * range. 1007 */ 1008 extent_clear_unlock_delalloc(inode, start, end, NULL, 1009 EXTENT_LOCKED | EXTENT_DELALLOC | 1010 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1011 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1012 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1013 PAGE_END_WRITEBACK); 1014 *nr_written = *nr_written + 1015 (end - start + PAGE_SIZE) / PAGE_SIZE; 1016 *page_started = 1; 1017 goto out; 1018 } else if (ret < 0) { 1019 goto out_unlock; 1020 } 1021 } 1022 1023 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1024 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1025 start + num_bytes - 1, 0); 1026 1027 while (num_bytes > 0) { 1028 cur_alloc_size = num_bytes; 1029 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1030 fs_info->sectorsize, 0, alloc_hint, 1031 &ins, 1, 1); 1032 if (ret < 0) 1033 goto out_unlock; 1034 cur_alloc_size = ins.offset; 1035 extent_reserved = true; 1036 1037 ram_size = ins.offset; 1038 em = create_io_em(inode, start, ins.offset, /* len */ 1039 start, /* orig_start */ 1040 ins.objectid, /* block_start */ 1041 ins.offset, /* block_len */ 1042 ins.offset, /* orig_block_len */ 1043 ram_size, /* ram_bytes */ 1044 BTRFS_COMPRESS_NONE, /* compress_type */ 1045 BTRFS_ORDERED_REGULAR /* type */); 1046 if (IS_ERR(em)) { 1047 ret = PTR_ERR(em); 1048 goto out_reserve; 1049 } 1050 free_extent_map(em); 1051 1052 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1053 ram_size, cur_alloc_size, 0); 1054 if (ret) 1055 goto out_drop_extent_cache; 1056 1057 if (root->root_key.objectid == 1058 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1059 ret = btrfs_reloc_clone_csums(inode, start, 1060 cur_alloc_size); 1061 /* 1062 * Only drop cache here, and process as normal. 1063 * 1064 * We must not allow extent_clear_unlock_delalloc() 1065 * at out_unlock label to free meta of this ordered 1066 * extent, as its meta should be freed by 1067 * btrfs_finish_ordered_io(). 1068 * 1069 * So we must continue until @start is increased to 1070 * skip current ordered extent. 1071 */ 1072 if (ret) 1073 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1074 start + ram_size - 1, 0); 1075 } 1076 1077 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1078 1079 /* we're not doing compressed IO, don't unlock the first 1080 * page (which the caller expects to stay locked), don't 1081 * clear any dirty bits and don't set any writeback bits 1082 * 1083 * Do set the Private2 bit so we know this page was properly 1084 * setup for writepage 1085 */ 1086 page_ops = unlock ? PAGE_UNLOCK : 0; 1087 page_ops |= PAGE_SET_PRIVATE2; 1088 1089 extent_clear_unlock_delalloc(inode, start, 1090 start + ram_size - 1, 1091 locked_page, 1092 EXTENT_LOCKED | EXTENT_DELALLOC, 1093 page_ops); 1094 if (num_bytes < cur_alloc_size) 1095 num_bytes = 0; 1096 else 1097 num_bytes -= cur_alloc_size; 1098 alloc_hint = ins.objectid + ins.offset; 1099 start += cur_alloc_size; 1100 extent_reserved = false; 1101 1102 /* 1103 * btrfs_reloc_clone_csums() error, since start is increased 1104 * extent_clear_unlock_delalloc() at out_unlock label won't 1105 * free metadata of current ordered extent, we're OK to exit. 1106 */ 1107 if (ret) 1108 goto out_unlock; 1109 } 1110 out: 1111 return ret; 1112 1113 out_drop_extent_cache: 1114 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1115 out_reserve: 1116 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1117 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1118 out_unlock: 1119 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1120 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1121 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1122 PAGE_END_WRITEBACK; 1123 /* 1124 * If we reserved an extent for our delalloc range (or a subrange) and 1125 * failed to create the respective ordered extent, then it means that 1126 * when we reserved the extent we decremented the extent's size from 1127 * the data space_info's bytes_may_use counter and incremented the 1128 * space_info's bytes_reserved counter by the same amount. We must make 1129 * sure extent_clear_unlock_delalloc() does not try to decrement again 1130 * the data space_info's bytes_may_use counter, therefore we do not pass 1131 * it the flag EXTENT_CLEAR_DATA_RESV. 1132 */ 1133 if (extent_reserved) { 1134 extent_clear_unlock_delalloc(inode, start, 1135 start + cur_alloc_size, 1136 locked_page, 1137 clear_bits, 1138 page_ops); 1139 start += cur_alloc_size; 1140 if (start >= end) 1141 goto out; 1142 } 1143 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1144 clear_bits | EXTENT_CLEAR_DATA_RESV, 1145 page_ops); 1146 goto out; 1147 } 1148 1149 /* 1150 * work queue call back to started compression on a file and pages 1151 */ 1152 static noinline void async_cow_start(struct btrfs_work *work) 1153 { 1154 struct async_chunk *async_chunk; 1155 int compressed_extents; 1156 1157 async_chunk = container_of(work, struct async_chunk, work); 1158 1159 compressed_extents = compress_file_range(async_chunk); 1160 if (compressed_extents == 0) { 1161 btrfs_add_delayed_iput(async_chunk->inode); 1162 async_chunk->inode = NULL; 1163 } 1164 } 1165 1166 /* 1167 * work queue call back to submit previously compressed pages 1168 */ 1169 static noinline void async_cow_submit(struct btrfs_work *work) 1170 { 1171 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1172 work); 1173 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1174 unsigned long nr_pages; 1175 1176 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1177 PAGE_SHIFT; 1178 1179 /* atomic_sub_return implies a barrier */ 1180 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1181 5 * SZ_1M) 1182 cond_wake_up_nomb(&fs_info->async_submit_wait); 1183 1184 /* 1185 * ->inode could be NULL if async_chunk_start has failed to compress, 1186 * in which case we don't have anything to submit, yet we need to 1187 * always adjust ->async_delalloc_pages as its paired with the init 1188 * happening in cow_file_range_async 1189 */ 1190 if (async_chunk->inode) 1191 submit_compressed_extents(async_chunk); 1192 } 1193 1194 static noinline void async_cow_free(struct btrfs_work *work) 1195 { 1196 struct async_chunk *async_chunk; 1197 1198 async_chunk = container_of(work, struct async_chunk, work); 1199 if (async_chunk->inode) 1200 btrfs_add_delayed_iput(async_chunk->inode); 1201 if (async_chunk->blkcg_css) 1202 css_put(async_chunk->blkcg_css); 1203 /* 1204 * Since the pointer to 'pending' is at the beginning of the array of 1205 * async_chunk's, freeing it ensures the whole array has been freed. 1206 */ 1207 if (atomic_dec_and_test(async_chunk->pending)) 1208 kvfree(async_chunk->pending); 1209 } 1210 1211 static int cow_file_range_async(struct inode *inode, 1212 struct writeback_control *wbc, 1213 struct page *locked_page, 1214 u64 start, u64 end, int *page_started, 1215 unsigned long *nr_written) 1216 { 1217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1218 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1219 struct async_cow *ctx; 1220 struct async_chunk *async_chunk; 1221 unsigned long nr_pages; 1222 u64 cur_end; 1223 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1224 int i; 1225 bool should_compress; 1226 unsigned nofs_flag; 1227 const unsigned int write_flags = wbc_to_write_flags(wbc); 1228 1229 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1230 1231 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1232 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1233 num_chunks = 1; 1234 should_compress = false; 1235 } else { 1236 should_compress = true; 1237 } 1238 1239 nofs_flag = memalloc_nofs_save(); 1240 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1241 memalloc_nofs_restore(nofs_flag); 1242 1243 if (!ctx) { 1244 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1245 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1246 EXTENT_DO_ACCOUNTING; 1247 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1248 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1249 PAGE_SET_ERROR; 1250 1251 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1252 clear_bits, page_ops); 1253 return -ENOMEM; 1254 } 1255 1256 async_chunk = ctx->chunks; 1257 atomic_set(&ctx->num_chunks, num_chunks); 1258 1259 for (i = 0; i < num_chunks; i++) { 1260 if (should_compress) 1261 cur_end = min(end, start + SZ_512K - 1); 1262 else 1263 cur_end = end; 1264 1265 /* 1266 * igrab is called higher up in the call chain, take only the 1267 * lightweight reference for the callback lifetime 1268 */ 1269 ihold(inode); 1270 async_chunk[i].pending = &ctx->num_chunks; 1271 async_chunk[i].inode = inode; 1272 async_chunk[i].start = start; 1273 async_chunk[i].end = cur_end; 1274 async_chunk[i].write_flags = write_flags; 1275 INIT_LIST_HEAD(&async_chunk[i].extents); 1276 1277 /* 1278 * The locked_page comes all the way from writepage and its 1279 * the original page we were actually given. As we spread 1280 * this large delalloc region across multiple async_chunk 1281 * structs, only the first struct needs a pointer to locked_page 1282 * 1283 * This way we don't need racey decisions about who is supposed 1284 * to unlock it. 1285 */ 1286 if (locked_page) { 1287 /* 1288 * Depending on the compressibility, the pages might or 1289 * might not go through async. We want all of them to 1290 * be accounted against wbc once. Let's do it here 1291 * before the paths diverge. wbc accounting is used 1292 * only for foreign writeback detection and doesn't 1293 * need full accuracy. Just account the whole thing 1294 * against the first page. 1295 */ 1296 wbc_account_cgroup_owner(wbc, locked_page, 1297 cur_end - start); 1298 async_chunk[i].locked_page = locked_page; 1299 locked_page = NULL; 1300 } else { 1301 async_chunk[i].locked_page = NULL; 1302 } 1303 1304 if (blkcg_css != blkcg_root_css) { 1305 css_get(blkcg_css); 1306 async_chunk[i].blkcg_css = blkcg_css; 1307 } else { 1308 async_chunk[i].blkcg_css = NULL; 1309 } 1310 1311 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1312 async_cow_submit, async_cow_free); 1313 1314 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1315 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1316 1317 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1318 1319 *nr_written += nr_pages; 1320 start = cur_end + 1; 1321 } 1322 *page_started = 1; 1323 return 0; 1324 } 1325 1326 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1327 u64 bytenr, u64 num_bytes) 1328 { 1329 int ret; 1330 struct btrfs_ordered_sum *sums; 1331 LIST_HEAD(list); 1332 1333 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1334 bytenr + num_bytes - 1, &list, 0); 1335 if (ret == 0 && list_empty(&list)) 1336 return 0; 1337 1338 while (!list_empty(&list)) { 1339 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1340 list_del(&sums->list); 1341 kfree(sums); 1342 } 1343 if (ret < 0) 1344 return ret; 1345 return 1; 1346 } 1347 1348 /* 1349 * when nowcow writeback call back. This checks for snapshots or COW copies 1350 * of the extents that exist in the file, and COWs the file as required. 1351 * 1352 * If no cow copies or snapshots exist, we write directly to the existing 1353 * blocks on disk 1354 */ 1355 static noinline int run_delalloc_nocow(struct inode *inode, 1356 struct page *locked_page, 1357 const u64 start, const u64 end, 1358 int *page_started, int force, 1359 unsigned long *nr_written) 1360 { 1361 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1362 struct btrfs_root *root = BTRFS_I(inode)->root; 1363 struct btrfs_path *path; 1364 u64 cow_start = (u64)-1; 1365 u64 cur_offset = start; 1366 int ret; 1367 bool check_prev = true; 1368 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 1369 u64 ino = btrfs_ino(BTRFS_I(inode)); 1370 bool nocow = false; 1371 u64 disk_bytenr = 0; 1372 1373 path = btrfs_alloc_path(); 1374 if (!path) { 1375 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1376 EXTENT_LOCKED | EXTENT_DELALLOC | 1377 EXTENT_DO_ACCOUNTING | 1378 EXTENT_DEFRAG, PAGE_UNLOCK | 1379 PAGE_CLEAR_DIRTY | 1380 PAGE_SET_WRITEBACK | 1381 PAGE_END_WRITEBACK); 1382 return -ENOMEM; 1383 } 1384 1385 while (1) { 1386 struct btrfs_key found_key; 1387 struct btrfs_file_extent_item *fi; 1388 struct extent_buffer *leaf; 1389 u64 extent_end; 1390 u64 extent_offset; 1391 u64 num_bytes = 0; 1392 u64 disk_num_bytes; 1393 u64 ram_bytes; 1394 int extent_type; 1395 1396 nocow = false; 1397 1398 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1399 cur_offset, 0); 1400 if (ret < 0) 1401 goto error; 1402 1403 /* 1404 * If there is no extent for our range when doing the initial 1405 * search, then go back to the previous slot as it will be the 1406 * one containing the search offset 1407 */ 1408 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1409 leaf = path->nodes[0]; 1410 btrfs_item_key_to_cpu(leaf, &found_key, 1411 path->slots[0] - 1); 1412 if (found_key.objectid == ino && 1413 found_key.type == BTRFS_EXTENT_DATA_KEY) 1414 path->slots[0]--; 1415 } 1416 check_prev = false; 1417 next_slot: 1418 /* Go to next leaf if we have exhausted the current one */ 1419 leaf = path->nodes[0]; 1420 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1421 ret = btrfs_next_leaf(root, path); 1422 if (ret < 0) { 1423 if (cow_start != (u64)-1) 1424 cur_offset = cow_start; 1425 goto error; 1426 } 1427 if (ret > 0) 1428 break; 1429 leaf = path->nodes[0]; 1430 } 1431 1432 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1433 1434 /* Didn't find anything for our INO */ 1435 if (found_key.objectid > ino) 1436 break; 1437 /* 1438 * Keep searching until we find an EXTENT_ITEM or there are no 1439 * more extents for this inode 1440 */ 1441 if (WARN_ON_ONCE(found_key.objectid < ino) || 1442 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1443 path->slots[0]++; 1444 goto next_slot; 1445 } 1446 1447 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1448 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1449 found_key.offset > end) 1450 break; 1451 1452 /* 1453 * If the found extent starts after requested offset, then 1454 * adjust extent_end to be right before this extent begins 1455 */ 1456 if (found_key.offset > cur_offset) { 1457 extent_end = found_key.offset; 1458 extent_type = 0; 1459 goto out_check; 1460 } 1461 1462 /* 1463 * Found extent which begins before our range and potentially 1464 * intersect it 1465 */ 1466 fi = btrfs_item_ptr(leaf, path->slots[0], 1467 struct btrfs_file_extent_item); 1468 extent_type = btrfs_file_extent_type(leaf, fi); 1469 1470 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1471 if (extent_type == BTRFS_FILE_EXTENT_REG || 1472 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1473 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1474 extent_offset = btrfs_file_extent_offset(leaf, fi); 1475 extent_end = found_key.offset + 1476 btrfs_file_extent_num_bytes(leaf, fi); 1477 disk_num_bytes = 1478 btrfs_file_extent_disk_num_bytes(leaf, fi); 1479 /* 1480 * If the extent we got ends before our current offset, 1481 * skip to the next extent. 1482 */ 1483 if (extent_end <= cur_offset) { 1484 path->slots[0]++; 1485 goto next_slot; 1486 } 1487 /* Skip holes */ 1488 if (disk_bytenr == 0) 1489 goto out_check; 1490 /* Skip compressed/encrypted/encoded extents */ 1491 if (btrfs_file_extent_compression(leaf, fi) || 1492 btrfs_file_extent_encryption(leaf, fi) || 1493 btrfs_file_extent_other_encoding(leaf, fi)) 1494 goto out_check; 1495 /* 1496 * If extent is created before the last volume's snapshot 1497 * this implies the extent is shared, hence we can't do 1498 * nocow. This is the same check as in 1499 * btrfs_cross_ref_exist but without calling 1500 * btrfs_search_slot. 1501 */ 1502 if (!freespace_inode && 1503 btrfs_file_extent_generation(leaf, fi) <= 1504 btrfs_root_last_snapshot(&root->root_item)) 1505 goto out_check; 1506 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1507 goto out_check; 1508 /* If extent is RO, we must COW it */ 1509 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1510 goto out_check; 1511 ret = btrfs_cross_ref_exist(root, ino, 1512 found_key.offset - 1513 extent_offset, disk_bytenr); 1514 if (ret) { 1515 /* 1516 * ret could be -EIO if the above fails to read 1517 * metadata. 1518 */ 1519 if (ret < 0) { 1520 if (cow_start != (u64)-1) 1521 cur_offset = cow_start; 1522 goto error; 1523 } 1524 1525 WARN_ON_ONCE(freespace_inode); 1526 goto out_check; 1527 } 1528 disk_bytenr += extent_offset; 1529 disk_bytenr += cur_offset - found_key.offset; 1530 num_bytes = min(end + 1, extent_end) - cur_offset; 1531 /* 1532 * If there are pending snapshots for this root, we 1533 * fall into common COW way 1534 */ 1535 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1536 goto out_check; 1537 /* 1538 * force cow if csum exists in the range. 1539 * this ensure that csum for a given extent are 1540 * either valid or do not exist. 1541 */ 1542 ret = csum_exist_in_range(fs_info, disk_bytenr, 1543 num_bytes); 1544 if (ret) { 1545 /* 1546 * ret could be -EIO if the above fails to read 1547 * metadata. 1548 */ 1549 if (ret < 0) { 1550 if (cow_start != (u64)-1) 1551 cur_offset = cow_start; 1552 goto error; 1553 } 1554 WARN_ON_ONCE(freespace_inode); 1555 goto out_check; 1556 } 1557 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1558 goto out_check; 1559 nocow = true; 1560 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1561 extent_end = found_key.offset + ram_bytes; 1562 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1563 /* Skip extents outside of our requested range */ 1564 if (extent_end <= start) { 1565 path->slots[0]++; 1566 goto next_slot; 1567 } 1568 } else { 1569 /* If this triggers then we have a memory corruption */ 1570 BUG(); 1571 } 1572 out_check: 1573 /* 1574 * If nocow is false then record the beginning of the range 1575 * that needs to be COWed 1576 */ 1577 if (!nocow) { 1578 if (cow_start == (u64)-1) 1579 cow_start = cur_offset; 1580 cur_offset = extent_end; 1581 if (cur_offset > end) 1582 break; 1583 path->slots[0]++; 1584 goto next_slot; 1585 } 1586 1587 btrfs_release_path(path); 1588 1589 /* 1590 * COW range from cow_start to found_key.offset - 1. As the key 1591 * will contain the beginning of the first extent that can be 1592 * NOCOW, following one which needs to be COW'ed 1593 */ 1594 if (cow_start != (u64)-1) { 1595 ret = cow_file_range(inode, locked_page, 1596 cow_start, found_key.offset - 1, 1597 page_started, nr_written, 1); 1598 if (ret) { 1599 if (nocow) 1600 btrfs_dec_nocow_writers(fs_info, 1601 disk_bytenr); 1602 goto error; 1603 } 1604 cow_start = (u64)-1; 1605 } 1606 1607 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1608 u64 orig_start = found_key.offset - extent_offset; 1609 struct extent_map *em; 1610 1611 em = create_io_em(inode, cur_offset, num_bytes, 1612 orig_start, 1613 disk_bytenr, /* block_start */ 1614 num_bytes, /* block_len */ 1615 disk_num_bytes, /* orig_block_len */ 1616 ram_bytes, BTRFS_COMPRESS_NONE, 1617 BTRFS_ORDERED_PREALLOC); 1618 if (IS_ERR(em)) { 1619 if (nocow) 1620 btrfs_dec_nocow_writers(fs_info, 1621 disk_bytenr); 1622 ret = PTR_ERR(em); 1623 goto error; 1624 } 1625 free_extent_map(em); 1626 ret = btrfs_add_ordered_extent(inode, cur_offset, 1627 disk_bytenr, num_bytes, 1628 num_bytes, 1629 BTRFS_ORDERED_PREALLOC); 1630 if (ret) { 1631 btrfs_drop_extent_cache(BTRFS_I(inode), 1632 cur_offset, 1633 cur_offset + num_bytes - 1, 1634 0); 1635 goto error; 1636 } 1637 } else { 1638 ret = btrfs_add_ordered_extent(inode, cur_offset, 1639 disk_bytenr, num_bytes, 1640 num_bytes, 1641 BTRFS_ORDERED_NOCOW); 1642 if (ret) 1643 goto error; 1644 } 1645 1646 if (nocow) 1647 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1648 nocow = false; 1649 1650 if (root->root_key.objectid == 1651 BTRFS_DATA_RELOC_TREE_OBJECTID) 1652 /* 1653 * Error handled later, as we must prevent 1654 * extent_clear_unlock_delalloc() in error handler 1655 * from freeing metadata of created ordered extent. 1656 */ 1657 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1658 num_bytes); 1659 1660 extent_clear_unlock_delalloc(inode, cur_offset, 1661 cur_offset + num_bytes - 1, 1662 locked_page, EXTENT_LOCKED | 1663 EXTENT_DELALLOC | 1664 EXTENT_CLEAR_DATA_RESV, 1665 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1666 1667 cur_offset = extent_end; 1668 1669 /* 1670 * btrfs_reloc_clone_csums() error, now we're OK to call error 1671 * handler, as metadata for created ordered extent will only 1672 * be freed by btrfs_finish_ordered_io(). 1673 */ 1674 if (ret) 1675 goto error; 1676 if (cur_offset > end) 1677 break; 1678 } 1679 btrfs_release_path(path); 1680 1681 if (cur_offset <= end && cow_start == (u64)-1) 1682 cow_start = cur_offset; 1683 1684 if (cow_start != (u64)-1) { 1685 cur_offset = end; 1686 ret = cow_file_range(inode, locked_page, cow_start, end, 1687 page_started, nr_written, 1); 1688 if (ret) 1689 goto error; 1690 } 1691 1692 error: 1693 if (nocow) 1694 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1695 1696 if (ret && cur_offset < end) 1697 extent_clear_unlock_delalloc(inode, cur_offset, end, 1698 locked_page, EXTENT_LOCKED | 1699 EXTENT_DELALLOC | EXTENT_DEFRAG | 1700 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1701 PAGE_CLEAR_DIRTY | 1702 PAGE_SET_WRITEBACK | 1703 PAGE_END_WRITEBACK); 1704 btrfs_free_path(path); 1705 return ret; 1706 } 1707 1708 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1709 { 1710 1711 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1712 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1713 return 0; 1714 1715 /* 1716 * @defrag_bytes is a hint value, no spinlock held here, 1717 * if is not zero, it means the file is defragging. 1718 * Force cow if given extent needs to be defragged. 1719 */ 1720 if (BTRFS_I(inode)->defrag_bytes && 1721 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1722 EXTENT_DEFRAG, 0, NULL)) 1723 return 1; 1724 1725 return 0; 1726 } 1727 1728 /* 1729 * Function to process delayed allocation (create CoW) for ranges which are 1730 * being touched for the first time. 1731 */ 1732 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1733 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1734 struct writeback_control *wbc) 1735 { 1736 int ret; 1737 int force_cow = need_force_cow(inode, start, end); 1738 1739 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1740 ret = run_delalloc_nocow(inode, locked_page, start, end, 1741 page_started, 1, nr_written); 1742 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1743 ret = run_delalloc_nocow(inode, locked_page, start, end, 1744 page_started, 0, nr_written); 1745 } else if (!inode_can_compress(inode) || 1746 !inode_need_compress(inode, start, end)) { 1747 ret = cow_file_range(inode, locked_page, start, end, 1748 page_started, nr_written, 1); 1749 } else { 1750 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1751 &BTRFS_I(inode)->runtime_flags); 1752 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1753 page_started, nr_written); 1754 } 1755 if (ret) 1756 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1757 end - start + 1); 1758 return ret; 1759 } 1760 1761 void btrfs_split_delalloc_extent(struct inode *inode, 1762 struct extent_state *orig, u64 split) 1763 { 1764 u64 size; 1765 1766 /* not delalloc, ignore it */ 1767 if (!(orig->state & EXTENT_DELALLOC)) 1768 return; 1769 1770 size = orig->end - orig->start + 1; 1771 if (size > BTRFS_MAX_EXTENT_SIZE) { 1772 u32 num_extents; 1773 u64 new_size; 1774 1775 /* 1776 * See the explanation in btrfs_merge_delalloc_extent, the same 1777 * applies here, just in reverse. 1778 */ 1779 new_size = orig->end - split + 1; 1780 num_extents = count_max_extents(new_size); 1781 new_size = split - orig->start; 1782 num_extents += count_max_extents(new_size); 1783 if (count_max_extents(size) >= num_extents) 1784 return; 1785 } 1786 1787 spin_lock(&BTRFS_I(inode)->lock); 1788 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1789 spin_unlock(&BTRFS_I(inode)->lock); 1790 } 1791 1792 /* 1793 * Handle merged delayed allocation extents so we can keep track of new extents 1794 * that are just merged onto old extents, such as when we are doing sequential 1795 * writes, so we can properly account for the metadata space we'll need. 1796 */ 1797 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1798 struct extent_state *other) 1799 { 1800 u64 new_size, old_size; 1801 u32 num_extents; 1802 1803 /* not delalloc, ignore it */ 1804 if (!(other->state & EXTENT_DELALLOC)) 1805 return; 1806 1807 if (new->start > other->start) 1808 new_size = new->end - other->start + 1; 1809 else 1810 new_size = other->end - new->start + 1; 1811 1812 /* we're not bigger than the max, unreserve the space and go */ 1813 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1814 spin_lock(&BTRFS_I(inode)->lock); 1815 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1816 spin_unlock(&BTRFS_I(inode)->lock); 1817 return; 1818 } 1819 1820 /* 1821 * We have to add up either side to figure out how many extents were 1822 * accounted for before we merged into one big extent. If the number of 1823 * extents we accounted for is <= the amount we need for the new range 1824 * then we can return, otherwise drop. Think of it like this 1825 * 1826 * [ 4k][MAX_SIZE] 1827 * 1828 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1829 * need 2 outstanding extents, on one side we have 1 and the other side 1830 * we have 1 so they are == and we can return. But in this case 1831 * 1832 * [MAX_SIZE+4k][MAX_SIZE+4k] 1833 * 1834 * Each range on their own accounts for 2 extents, but merged together 1835 * they are only 3 extents worth of accounting, so we need to drop in 1836 * this case. 1837 */ 1838 old_size = other->end - other->start + 1; 1839 num_extents = count_max_extents(old_size); 1840 old_size = new->end - new->start + 1; 1841 num_extents += count_max_extents(old_size); 1842 if (count_max_extents(new_size) >= num_extents) 1843 return; 1844 1845 spin_lock(&BTRFS_I(inode)->lock); 1846 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1847 spin_unlock(&BTRFS_I(inode)->lock); 1848 } 1849 1850 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1851 struct inode *inode) 1852 { 1853 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1854 1855 spin_lock(&root->delalloc_lock); 1856 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1857 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1858 &root->delalloc_inodes); 1859 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1860 &BTRFS_I(inode)->runtime_flags); 1861 root->nr_delalloc_inodes++; 1862 if (root->nr_delalloc_inodes == 1) { 1863 spin_lock(&fs_info->delalloc_root_lock); 1864 BUG_ON(!list_empty(&root->delalloc_root)); 1865 list_add_tail(&root->delalloc_root, 1866 &fs_info->delalloc_roots); 1867 spin_unlock(&fs_info->delalloc_root_lock); 1868 } 1869 } 1870 spin_unlock(&root->delalloc_lock); 1871 } 1872 1873 1874 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1875 struct btrfs_inode *inode) 1876 { 1877 struct btrfs_fs_info *fs_info = root->fs_info; 1878 1879 if (!list_empty(&inode->delalloc_inodes)) { 1880 list_del_init(&inode->delalloc_inodes); 1881 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1882 &inode->runtime_flags); 1883 root->nr_delalloc_inodes--; 1884 if (!root->nr_delalloc_inodes) { 1885 ASSERT(list_empty(&root->delalloc_inodes)); 1886 spin_lock(&fs_info->delalloc_root_lock); 1887 BUG_ON(list_empty(&root->delalloc_root)); 1888 list_del_init(&root->delalloc_root); 1889 spin_unlock(&fs_info->delalloc_root_lock); 1890 } 1891 } 1892 } 1893 1894 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1895 struct btrfs_inode *inode) 1896 { 1897 spin_lock(&root->delalloc_lock); 1898 __btrfs_del_delalloc_inode(root, inode); 1899 spin_unlock(&root->delalloc_lock); 1900 } 1901 1902 /* 1903 * Properly track delayed allocation bytes in the inode and to maintain the 1904 * list of inodes that have pending delalloc work to be done. 1905 */ 1906 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1907 unsigned *bits) 1908 { 1909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1910 1911 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1912 WARN_ON(1); 1913 /* 1914 * set_bit and clear bit hooks normally require _irqsave/restore 1915 * but in this case, we are only testing for the DELALLOC 1916 * bit, which is only set or cleared with irqs on 1917 */ 1918 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1919 struct btrfs_root *root = BTRFS_I(inode)->root; 1920 u64 len = state->end + 1 - state->start; 1921 u32 num_extents = count_max_extents(len); 1922 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1923 1924 spin_lock(&BTRFS_I(inode)->lock); 1925 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1926 spin_unlock(&BTRFS_I(inode)->lock); 1927 1928 /* For sanity tests */ 1929 if (btrfs_is_testing(fs_info)) 1930 return; 1931 1932 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1933 fs_info->delalloc_batch); 1934 spin_lock(&BTRFS_I(inode)->lock); 1935 BTRFS_I(inode)->delalloc_bytes += len; 1936 if (*bits & EXTENT_DEFRAG) 1937 BTRFS_I(inode)->defrag_bytes += len; 1938 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1939 &BTRFS_I(inode)->runtime_flags)) 1940 btrfs_add_delalloc_inodes(root, inode); 1941 spin_unlock(&BTRFS_I(inode)->lock); 1942 } 1943 1944 if (!(state->state & EXTENT_DELALLOC_NEW) && 1945 (*bits & EXTENT_DELALLOC_NEW)) { 1946 spin_lock(&BTRFS_I(inode)->lock); 1947 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1948 state->start; 1949 spin_unlock(&BTRFS_I(inode)->lock); 1950 } 1951 } 1952 1953 /* 1954 * Once a range is no longer delalloc this function ensures that proper 1955 * accounting happens. 1956 */ 1957 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 1958 struct extent_state *state, unsigned *bits) 1959 { 1960 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1961 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 1962 u64 len = state->end + 1 - state->start; 1963 u32 num_extents = count_max_extents(len); 1964 1965 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1966 spin_lock(&inode->lock); 1967 inode->defrag_bytes -= len; 1968 spin_unlock(&inode->lock); 1969 } 1970 1971 /* 1972 * set_bit and clear bit hooks normally require _irqsave/restore 1973 * but in this case, we are only testing for the DELALLOC 1974 * bit, which is only set or cleared with irqs on 1975 */ 1976 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1977 struct btrfs_root *root = inode->root; 1978 bool do_list = !btrfs_is_free_space_inode(inode); 1979 1980 spin_lock(&inode->lock); 1981 btrfs_mod_outstanding_extents(inode, -num_extents); 1982 spin_unlock(&inode->lock); 1983 1984 /* 1985 * We don't reserve metadata space for space cache inodes so we 1986 * don't need to call delalloc_release_metadata if there is an 1987 * error. 1988 */ 1989 if (*bits & EXTENT_CLEAR_META_RESV && 1990 root != fs_info->tree_root) 1991 btrfs_delalloc_release_metadata(inode, len, false); 1992 1993 /* For sanity tests. */ 1994 if (btrfs_is_testing(fs_info)) 1995 return; 1996 1997 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1998 do_list && !(state->state & EXTENT_NORESERVE) && 1999 (*bits & EXTENT_CLEAR_DATA_RESV)) 2000 btrfs_free_reserved_data_space_noquota( 2001 &inode->vfs_inode, 2002 state->start, len); 2003 2004 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2005 fs_info->delalloc_batch); 2006 spin_lock(&inode->lock); 2007 inode->delalloc_bytes -= len; 2008 if (do_list && inode->delalloc_bytes == 0 && 2009 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2010 &inode->runtime_flags)) 2011 btrfs_del_delalloc_inode(root, inode); 2012 spin_unlock(&inode->lock); 2013 } 2014 2015 if ((state->state & EXTENT_DELALLOC_NEW) && 2016 (*bits & EXTENT_DELALLOC_NEW)) { 2017 spin_lock(&inode->lock); 2018 ASSERT(inode->new_delalloc_bytes >= len); 2019 inode->new_delalloc_bytes -= len; 2020 spin_unlock(&inode->lock); 2021 } 2022 } 2023 2024 /* 2025 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2026 * in a chunk's stripe. This function ensures that bios do not span a 2027 * stripe/chunk 2028 * 2029 * @page - The page we are about to add to the bio 2030 * @size - size we want to add to the bio 2031 * @bio - bio we want to ensure is smaller than a stripe 2032 * @bio_flags - flags of the bio 2033 * 2034 * return 1 if page cannot be added to the bio 2035 * return 0 if page can be added to the bio 2036 * return error otherwise 2037 */ 2038 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2039 unsigned long bio_flags) 2040 { 2041 struct inode *inode = page->mapping->host; 2042 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2043 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2044 u64 length = 0; 2045 u64 map_length; 2046 int ret; 2047 struct btrfs_io_geometry geom; 2048 2049 if (bio_flags & EXTENT_BIO_COMPRESSED) 2050 return 0; 2051 2052 length = bio->bi_iter.bi_size; 2053 map_length = length; 2054 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2055 &geom); 2056 if (ret < 0) 2057 return ret; 2058 2059 if (geom.len < length + size) 2060 return 1; 2061 return 0; 2062 } 2063 2064 /* 2065 * in order to insert checksums into the metadata in large chunks, 2066 * we wait until bio submission time. All the pages in the bio are 2067 * checksummed and sums are attached onto the ordered extent record. 2068 * 2069 * At IO completion time the cums attached on the ordered extent record 2070 * are inserted into the btree 2071 */ 2072 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2073 u64 bio_offset) 2074 { 2075 struct inode *inode = private_data; 2076 blk_status_t ret = 0; 2077 2078 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2079 BUG_ON(ret); /* -ENOMEM */ 2080 return 0; 2081 } 2082 2083 /* 2084 * extent_io.c submission hook. This does the right thing for csum calculation 2085 * on write, or reading the csums from the tree before a read. 2086 * 2087 * Rules about async/sync submit, 2088 * a) read: sync submit 2089 * 2090 * b) write without checksum: sync submit 2091 * 2092 * c) write with checksum: 2093 * c-1) if bio is issued by fsync: sync submit 2094 * (sync_writers != 0) 2095 * 2096 * c-2) if root is reloc root: sync submit 2097 * (only in case of buffered IO) 2098 * 2099 * c-3) otherwise: async submit 2100 */ 2101 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 2102 int mirror_num, 2103 unsigned long bio_flags) 2104 2105 { 2106 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2107 struct btrfs_root *root = BTRFS_I(inode)->root; 2108 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2109 blk_status_t ret = 0; 2110 int skip_sum; 2111 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2112 2113 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2114 2115 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2116 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2117 2118 if (bio_op(bio) != REQ_OP_WRITE) { 2119 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2120 if (ret) 2121 goto out; 2122 2123 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2124 ret = btrfs_submit_compressed_read(inode, bio, 2125 mirror_num, 2126 bio_flags); 2127 goto out; 2128 } else if (!skip_sum) { 2129 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL); 2130 if (ret) 2131 goto out; 2132 } 2133 goto mapit; 2134 } else if (async && !skip_sum) { 2135 /* csum items have already been cloned */ 2136 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2137 goto mapit; 2138 /* we're doing a write, do the async checksumming */ 2139 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2140 0, inode, btrfs_submit_bio_start); 2141 goto out; 2142 } else if (!skip_sum) { 2143 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2144 if (ret) 2145 goto out; 2146 } 2147 2148 mapit: 2149 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2150 2151 out: 2152 if (ret) { 2153 bio->bi_status = ret; 2154 bio_endio(bio); 2155 } 2156 return ret; 2157 } 2158 2159 /* 2160 * given a list of ordered sums record them in the inode. This happens 2161 * at IO completion time based on sums calculated at bio submission time. 2162 */ 2163 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2164 struct inode *inode, struct list_head *list) 2165 { 2166 struct btrfs_ordered_sum *sum; 2167 int ret; 2168 2169 list_for_each_entry(sum, list, list) { 2170 trans->adding_csums = true; 2171 ret = btrfs_csum_file_blocks(trans, 2172 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2173 trans->adding_csums = false; 2174 if (ret) 2175 return ret; 2176 } 2177 return 0; 2178 } 2179 2180 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2181 unsigned int extra_bits, 2182 struct extent_state **cached_state) 2183 { 2184 WARN_ON(PAGE_ALIGNED(end)); 2185 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2186 extra_bits, cached_state); 2187 } 2188 2189 /* see btrfs_writepage_start_hook for details on why this is required */ 2190 struct btrfs_writepage_fixup { 2191 struct page *page; 2192 struct btrfs_work work; 2193 }; 2194 2195 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2196 { 2197 struct btrfs_writepage_fixup *fixup; 2198 struct btrfs_ordered_extent *ordered; 2199 struct extent_state *cached_state = NULL; 2200 struct extent_changeset *data_reserved = NULL; 2201 struct page *page; 2202 struct inode *inode; 2203 u64 page_start; 2204 u64 page_end; 2205 int ret; 2206 2207 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2208 page = fixup->page; 2209 again: 2210 lock_page(page); 2211 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2212 ClearPageChecked(page); 2213 goto out_page; 2214 } 2215 2216 inode = page->mapping->host; 2217 page_start = page_offset(page); 2218 page_end = page_offset(page) + PAGE_SIZE - 1; 2219 2220 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2221 &cached_state); 2222 2223 /* already ordered? We're done */ 2224 if (PagePrivate2(page)) 2225 goto out; 2226 2227 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2228 PAGE_SIZE); 2229 if (ordered) { 2230 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2231 page_end, &cached_state); 2232 unlock_page(page); 2233 btrfs_start_ordered_extent(inode, ordered, 1); 2234 btrfs_put_ordered_extent(ordered); 2235 goto again; 2236 } 2237 2238 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2239 PAGE_SIZE); 2240 if (ret) { 2241 mapping_set_error(page->mapping, ret); 2242 end_extent_writepage(page, ret, page_start, page_end); 2243 ClearPageChecked(page); 2244 goto out; 2245 } 2246 2247 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2248 &cached_state); 2249 if (ret) { 2250 mapping_set_error(page->mapping, ret); 2251 end_extent_writepage(page, ret, page_start, page_end); 2252 ClearPageChecked(page); 2253 goto out_reserved; 2254 } 2255 2256 ClearPageChecked(page); 2257 set_page_dirty(page); 2258 out_reserved: 2259 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2260 if (ret) 2261 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2262 PAGE_SIZE, true); 2263 out: 2264 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2265 &cached_state); 2266 out_page: 2267 unlock_page(page); 2268 put_page(page); 2269 kfree(fixup); 2270 extent_changeset_free(data_reserved); 2271 } 2272 2273 /* 2274 * There are a few paths in the higher layers of the kernel that directly 2275 * set the page dirty bit without asking the filesystem if it is a 2276 * good idea. This causes problems because we want to make sure COW 2277 * properly happens and the data=ordered rules are followed. 2278 * 2279 * In our case any range that doesn't have the ORDERED bit set 2280 * hasn't been properly setup for IO. We kick off an async process 2281 * to fix it up. The async helper will wait for ordered extents, set 2282 * the delalloc bit and make it safe to write the page. 2283 */ 2284 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2285 { 2286 struct inode *inode = page->mapping->host; 2287 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2288 struct btrfs_writepage_fixup *fixup; 2289 2290 /* this page is properly in the ordered list */ 2291 if (TestClearPagePrivate2(page)) 2292 return 0; 2293 2294 if (PageChecked(page)) 2295 return -EAGAIN; 2296 2297 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2298 if (!fixup) 2299 return -EAGAIN; 2300 2301 SetPageChecked(page); 2302 get_page(page); 2303 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2304 fixup->page = page; 2305 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2306 return -EBUSY; 2307 } 2308 2309 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2310 struct inode *inode, u64 file_pos, 2311 u64 disk_bytenr, u64 disk_num_bytes, 2312 u64 num_bytes, u64 ram_bytes, 2313 u8 compression, u8 encryption, 2314 u16 other_encoding, int extent_type) 2315 { 2316 struct btrfs_root *root = BTRFS_I(inode)->root; 2317 struct btrfs_file_extent_item *fi; 2318 struct btrfs_path *path; 2319 struct extent_buffer *leaf; 2320 struct btrfs_key ins; 2321 u64 qg_released; 2322 int extent_inserted = 0; 2323 int ret; 2324 2325 path = btrfs_alloc_path(); 2326 if (!path) 2327 return -ENOMEM; 2328 2329 /* 2330 * we may be replacing one extent in the tree with another. 2331 * The new extent is pinned in the extent map, and we don't want 2332 * to drop it from the cache until it is completely in the btree. 2333 * 2334 * So, tell btrfs_drop_extents to leave this extent in the cache. 2335 * the caller is expected to unpin it and allow it to be merged 2336 * with the others. 2337 */ 2338 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2339 file_pos + num_bytes, NULL, 0, 2340 1, sizeof(*fi), &extent_inserted); 2341 if (ret) 2342 goto out; 2343 2344 if (!extent_inserted) { 2345 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2346 ins.offset = file_pos; 2347 ins.type = BTRFS_EXTENT_DATA_KEY; 2348 2349 path->leave_spinning = 1; 2350 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2351 sizeof(*fi)); 2352 if (ret) 2353 goto out; 2354 } 2355 leaf = path->nodes[0]; 2356 fi = btrfs_item_ptr(leaf, path->slots[0], 2357 struct btrfs_file_extent_item); 2358 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2359 btrfs_set_file_extent_type(leaf, fi, extent_type); 2360 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2361 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2362 btrfs_set_file_extent_offset(leaf, fi, 0); 2363 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2364 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2365 btrfs_set_file_extent_compression(leaf, fi, compression); 2366 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2367 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2368 2369 btrfs_mark_buffer_dirty(leaf); 2370 btrfs_release_path(path); 2371 2372 inode_add_bytes(inode, num_bytes); 2373 2374 ins.objectid = disk_bytenr; 2375 ins.offset = disk_num_bytes; 2376 ins.type = BTRFS_EXTENT_ITEM_KEY; 2377 2378 /* 2379 * Release the reserved range from inode dirty range map, as it is 2380 * already moved into delayed_ref_head 2381 */ 2382 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2383 if (ret < 0) 2384 goto out; 2385 qg_released = ret; 2386 ret = btrfs_alloc_reserved_file_extent(trans, root, 2387 btrfs_ino(BTRFS_I(inode)), 2388 file_pos, qg_released, &ins); 2389 out: 2390 btrfs_free_path(path); 2391 2392 return ret; 2393 } 2394 2395 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2396 u64 start, u64 len) 2397 { 2398 struct btrfs_block_group *cache; 2399 2400 cache = btrfs_lookup_block_group(fs_info, start); 2401 ASSERT(cache); 2402 2403 spin_lock(&cache->lock); 2404 cache->delalloc_bytes -= len; 2405 spin_unlock(&cache->lock); 2406 2407 btrfs_put_block_group(cache); 2408 } 2409 2410 /* as ordered data IO finishes, this gets called so we can finish 2411 * an ordered extent if the range of bytes in the file it covers are 2412 * fully written. 2413 */ 2414 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2415 { 2416 struct inode *inode = ordered_extent->inode; 2417 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2418 struct btrfs_root *root = BTRFS_I(inode)->root; 2419 struct btrfs_trans_handle *trans = NULL; 2420 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2421 struct extent_state *cached_state = NULL; 2422 u64 start, end; 2423 int compress_type = 0; 2424 int ret = 0; 2425 u64 logical_len = ordered_extent->num_bytes; 2426 bool freespace_inode; 2427 bool truncated = false; 2428 bool range_locked = false; 2429 bool clear_new_delalloc_bytes = false; 2430 bool clear_reserved_extent = true; 2431 unsigned int clear_bits; 2432 2433 start = ordered_extent->file_offset; 2434 end = start + ordered_extent->num_bytes - 1; 2435 2436 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2437 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2438 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2439 clear_new_delalloc_bytes = true; 2440 2441 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 2442 2443 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2444 ret = -EIO; 2445 goto out; 2446 } 2447 2448 btrfs_free_io_failure_record(BTRFS_I(inode), start, end); 2449 2450 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2451 truncated = true; 2452 logical_len = ordered_extent->truncated_len; 2453 /* Truncated the entire extent, don't bother adding */ 2454 if (!logical_len) 2455 goto out; 2456 } 2457 2458 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2459 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2460 2461 /* 2462 * For mwrite(mmap + memset to write) case, we still reserve 2463 * space for NOCOW range. 2464 * As NOCOW won't cause a new delayed ref, just free the space 2465 */ 2466 btrfs_qgroup_free_data(inode, NULL, start, 2467 ordered_extent->num_bytes); 2468 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2469 if (freespace_inode) 2470 trans = btrfs_join_transaction_spacecache(root); 2471 else 2472 trans = btrfs_join_transaction(root); 2473 if (IS_ERR(trans)) { 2474 ret = PTR_ERR(trans); 2475 trans = NULL; 2476 goto out; 2477 } 2478 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2479 ret = btrfs_update_inode_fallback(trans, root, inode); 2480 if (ret) /* -ENOMEM or corruption */ 2481 btrfs_abort_transaction(trans, ret); 2482 goto out; 2483 } 2484 2485 range_locked = true; 2486 lock_extent_bits(io_tree, start, end, &cached_state); 2487 2488 if (freespace_inode) 2489 trans = btrfs_join_transaction_spacecache(root); 2490 else 2491 trans = btrfs_join_transaction(root); 2492 if (IS_ERR(trans)) { 2493 ret = PTR_ERR(trans); 2494 trans = NULL; 2495 goto out; 2496 } 2497 2498 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2499 2500 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2501 compress_type = ordered_extent->compress_type; 2502 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2503 BUG_ON(compress_type); 2504 btrfs_qgroup_free_data(inode, NULL, start, 2505 ordered_extent->num_bytes); 2506 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 2507 ordered_extent->file_offset, 2508 ordered_extent->file_offset + 2509 logical_len); 2510 } else { 2511 BUG_ON(root == fs_info->tree_root); 2512 ret = insert_reserved_file_extent(trans, inode, start, 2513 ordered_extent->disk_bytenr, 2514 ordered_extent->disk_num_bytes, 2515 logical_len, logical_len, 2516 compress_type, 0, 0, 2517 BTRFS_FILE_EXTENT_REG); 2518 if (!ret) { 2519 clear_reserved_extent = false; 2520 btrfs_release_delalloc_bytes(fs_info, 2521 ordered_extent->disk_bytenr, 2522 ordered_extent->disk_num_bytes); 2523 } 2524 } 2525 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2526 ordered_extent->file_offset, 2527 ordered_extent->num_bytes, trans->transid); 2528 if (ret < 0) { 2529 btrfs_abort_transaction(trans, ret); 2530 goto out; 2531 } 2532 2533 ret = add_pending_csums(trans, inode, &ordered_extent->list); 2534 if (ret) { 2535 btrfs_abort_transaction(trans, ret); 2536 goto out; 2537 } 2538 2539 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2540 ret = btrfs_update_inode_fallback(trans, root, inode); 2541 if (ret) { /* -ENOMEM or corruption */ 2542 btrfs_abort_transaction(trans, ret); 2543 goto out; 2544 } 2545 ret = 0; 2546 out: 2547 clear_bits = EXTENT_DEFRAG; 2548 if (range_locked) 2549 clear_bits |= EXTENT_LOCKED; 2550 if (clear_new_delalloc_bytes) 2551 clear_bits |= EXTENT_DELALLOC_NEW; 2552 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 2553 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2554 &cached_state); 2555 2556 if (trans) 2557 btrfs_end_transaction(trans); 2558 2559 if (ret || truncated) { 2560 u64 unwritten_start = start; 2561 2562 if (truncated) 2563 unwritten_start += logical_len; 2564 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 2565 2566 /* Drop the cache for the part of the extent we didn't write. */ 2567 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0); 2568 2569 /* 2570 * If the ordered extent had an IOERR or something else went 2571 * wrong we need to return the space for this ordered extent 2572 * back to the allocator. We only free the extent in the 2573 * truncated case if we didn't write out the extent at all. 2574 * 2575 * If we made it past insert_reserved_file_extent before we 2576 * errored out then we don't need to do this as the accounting 2577 * has already been done. 2578 */ 2579 if ((ret || !logical_len) && 2580 clear_reserved_extent && 2581 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2582 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2583 /* 2584 * Discard the range before returning it back to the 2585 * free space pool 2586 */ 2587 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 2588 btrfs_discard_extent(fs_info, 2589 ordered_extent->disk_bytenr, 2590 ordered_extent->disk_num_bytes, 2591 NULL); 2592 btrfs_free_reserved_extent(fs_info, 2593 ordered_extent->disk_bytenr, 2594 ordered_extent->disk_num_bytes, 1); 2595 } 2596 } 2597 2598 /* 2599 * This needs to be done to make sure anybody waiting knows we are done 2600 * updating everything for this ordered extent. 2601 */ 2602 btrfs_remove_ordered_extent(inode, ordered_extent); 2603 2604 /* once for us */ 2605 btrfs_put_ordered_extent(ordered_extent); 2606 /* once for the tree */ 2607 btrfs_put_ordered_extent(ordered_extent); 2608 2609 return ret; 2610 } 2611 2612 static void finish_ordered_fn(struct btrfs_work *work) 2613 { 2614 struct btrfs_ordered_extent *ordered_extent; 2615 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2616 btrfs_finish_ordered_io(ordered_extent); 2617 } 2618 2619 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 2620 u64 end, int uptodate) 2621 { 2622 struct inode *inode = page->mapping->host; 2623 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2624 struct btrfs_ordered_extent *ordered_extent = NULL; 2625 struct btrfs_workqueue *wq; 2626 2627 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2628 2629 ClearPagePrivate2(page); 2630 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2631 end - start + 1, uptodate)) 2632 return; 2633 2634 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2635 wq = fs_info->endio_freespace_worker; 2636 else 2637 wq = fs_info->endio_write_workers; 2638 2639 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2640 btrfs_queue_work(wq, &ordered_extent->work); 2641 } 2642 2643 static int __readpage_endio_check(struct inode *inode, 2644 struct btrfs_io_bio *io_bio, 2645 int icsum, struct page *page, 2646 int pgoff, u64 start, size_t len) 2647 { 2648 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2649 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2650 char *kaddr; 2651 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2652 u8 *csum_expected; 2653 u8 csum[BTRFS_CSUM_SIZE]; 2654 2655 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 2656 2657 kaddr = kmap_atomic(page); 2658 shash->tfm = fs_info->csum_shash; 2659 2660 crypto_shash_init(shash); 2661 crypto_shash_update(shash, kaddr + pgoff, len); 2662 crypto_shash_final(shash, csum); 2663 2664 if (memcmp(csum, csum_expected, csum_size)) 2665 goto zeroit; 2666 2667 kunmap_atomic(kaddr); 2668 return 0; 2669 zeroit: 2670 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 2671 io_bio->mirror_num); 2672 memset(kaddr + pgoff, 1, len); 2673 flush_dcache_page(page); 2674 kunmap_atomic(kaddr); 2675 return -EIO; 2676 } 2677 2678 /* 2679 * when reads are done, we need to check csums to verify the data is correct 2680 * if there's a match, we allow the bio to finish. If not, the code in 2681 * extent_io.c will try to find good copies for us. 2682 */ 2683 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2684 u64 phy_offset, struct page *page, 2685 u64 start, u64 end, int mirror) 2686 { 2687 size_t offset = start - page_offset(page); 2688 struct inode *inode = page->mapping->host; 2689 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2690 struct btrfs_root *root = BTRFS_I(inode)->root; 2691 2692 if (PageChecked(page)) { 2693 ClearPageChecked(page); 2694 return 0; 2695 } 2696 2697 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2698 return 0; 2699 2700 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2701 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2702 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 2703 return 0; 2704 } 2705 2706 phy_offset >>= inode->i_sb->s_blocksize_bits; 2707 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 2708 start, (size_t)(end - start + 1)); 2709 } 2710 2711 /* 2712 * btrfs_add_delayed_iput - perform a delayed iput on @inode 2713 * 2714 * @inode: The inode we want to perform iput on 2715 * 2716 * This function uses the generic vfs_inode::i_count to track whether we should 2717 * just decrement it (in case it's > 1) or if this is the last iput then link 2718 * the inode to the delayed iput machinery. Delayed iputs are processed at 2719 * transaction commit time/superblock commit/cleaner kthread. 2720 */ 2721 void btrfs_add_delayed_iput(struct inode *inode) 2722 { 2723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2724 struct btrfs_inode *binode = BTRFS_I(inode); 2725 2726 if (atomic_add_unless(&inode->i_count, -1, 1)) 2727 return; 2728 2729 atomic_inc(&fs_info->nr_delayed_iputs); 2730 spin_lock(&fs_info->delayed_iput_lock); 2731 ASSERT(list_empty(&binode->delayed_iput)); 2732 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 2733 spin_unlock(&fs_info->delayed_iput_lock); 2734 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 2735 wake_up_process(fs_info->cleaner_kthread); 2736 } 2737 2738 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 2739 struct btrfs_inode *inode) 2740 { 2741 list_del_init(&inode->delayed_iput); 2742 spin_unlock(&fs_info->delayed_iput_lock); 2743 iput(&inode->vfs_inode); 2744 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 2745 wake_up(&fs_info->delayed_iputs_wait); 2746 spin_lock(&fs_info->delayed_iput_lock); 2747 } 2748 2749 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 2750 struct btrfs_inode *inode) 2751 { 2752 if (!list_empty(&inode->delayed_iput)) { 2753 spin_lock(&fs_info->delayed_iput_lock); 2754 if (!list_empty(&inode->delayed_iput)) 2755 run_delayed_iput_locked(fs_info, inode); 2756 spin_unlock(&fs_info->delayed_iput_lock); 2757 } 2758 } 2759 2760 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 2761 { 2762 2763 spin_lock(&fs_info->delayed_iput_lock); 2764 while (!list_empty(&fs_info->delayed_iputs)) { 2765 struct btrfs_inode *inode; 2766 2767 inode = list_first_entry(&fs_info->delayed_iputs, 2768 struct btrfs_inode, delayed_iput); 2769 run_delayed_iput_locked(fs_info, inode); 2770 } 2771 spin_unlock(&fs_info->delayed_iput_lock); 2772 } 2773 2774 /** 2775 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 2776 * @fs_info - the fs_info for this fs 2777 * @return - EINTR if we were killed, 0 if nothing's pending 2778 * 2779 * This will wait on any delayed iputs that are currently running with KILLABLE 2780 * set. Once they are all done running we will return, unless we are killed in 2781 * which case we return EINTR. This helps in user operations like fallocate etc 2782 * that might get blocked on the iputs. 2783 */ 2784 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 2785 { 2786 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 2787 atomic_read(&fs_info->nr_delayed_iputs) == 0); 2788 if (ret) 2789 return -EINTR; 2790 return 0; 2791 } 2792 2793 /* 2794 * This creates an orphan entry for the given inode in case something goes wrong 2795 * in the middle of an unlink. 2796 */ 2797 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 2798 struct btrfs_inode *inode) 2799 { 2800 int ret; 2801 2802 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 2803 if (ret && ret != -EEXIST) { 2804 btrfs_abort_transaction(trans, ret); 2805 return ret; 2806 } 2807 2808 return 0; 2809 } 2810 2811 /* 2812 * We have done the delete so we can go ahead and remove the orphan item for 2813 * this particular inode. 2814 */ 2815 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 2816 struct btrfs_inode *inode) 2817 { 2818 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 2819 } 2820 2821 /* 2822 * this cleans up any orphans that may be left on the list from the last use 2823 * of this root. 2824 */ 2825 int btrfs_orphan_cleanup(struct btrfs_root *root) 2826 { 2827 struct btrfs_fs_info *fs_info = root->fs_info; 2828 struct btrfs_path *path; 2829 struct extent_buffer *leaf; 2830 struct btrfs_key key, found_key; 2831 struct btrfs_trans_handle *trans; 2832 struct inode *inode; 2833 u64 last_objectid = 0; 2834 int ret = 0, nr_unlink = 0; 2835 2836 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2837 return 0; 2838 2839 path = btrfs_alloc_path(); 2840 if (!path) { 2841 ret = -ENOMEM; 2842 goto out; 2843 } 2844 path->reada = READA_BACK; 2845 2846 key.objectid = BTRFS_ORPHAN_OBJECTID; 2847 key.type = BTRFS_ORPHAN_ITEM_KEY; 2848 key.offset = (u64)-1; 2849 2850 while (1) { 2851 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2852 if (ret < 0) 2853 goto out; 2854 2855 /* 2856 * if ret == 0 means we found what we were searching for, which 2857 * is weird, but possible, so only screw with path if we didn't 2858 * find the key and see if we have stuff that matches 2859 */ 2860 if (ret > 0) { 2861 ret = 0; 2862 if (path->slots[0] == 0) 2863 break; 2864 path->slots[0]--; 2865 } 2866 2867 /* pull out the item */ 2868 leaf = path->nodes[0]; 2869 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2870 2871 /* make sure the item matches what we want */ 2872 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2873 break; 2874 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 2875 break; 2876 2877 /* release the path since we're done with it */ 2878 btrfs_release_path(path); 2879 2880 /* 2881 * this is where we are basically btrfs_lookup, without the 2882 * crossing root thing. we store the inode number in the 2883 * offset of the orphan item. 2884 */ 2885 2886 if (found_key.offset == last_objectid) { 2887 btrfs_err(fs_info, 2888 "Error removing orphan entry, stopping orphan cleanup"); 2889 ret = -EINVAL; 2890 goto out; 2891 } 2892 2893 last_objectid = found_key.offset; 2894 2895 found_key.objectid = found_key.offset; 2896 found_key.type = BTRFS_INODE_ITEM_KEY; 2897 found_key.offset = 0; 2898 inode = btrfs_iget(fs_info->sb, &found_key, root); 2899 ret = PTR_ERR_OR_ZERO(inode); 2900 if (ret && ret != -ENOENT) 2901 goto out; 2902 2903 if (ret == -ENOENT && root == fs_info->tree_root) { 2904 struct btrfs_root *dead_root; 2905 struct btrfs_fs_info *fs_info = root->fs_info; 2906 int is_dead_root = 0; 2907 2908 /* 2909 * this is an orphan in the tree root. Currently these 2910 * could come from 2 sources: 2911 * a) a snapshot deletion in progress 2912 * b) a free space cache inode 2913 * We need to distinguish those two, as the snapshot 2914 * orphan must not get deleted. 2915 * find_dead_roots already ran before us, so if this 2916 * is a snapshot deletion, we should find the root 2917 * in the dead_roots list 2918 */ 2919 spin_lock(&fs_info->trans_lock); 2920 list_for_each_entry(dead_root, &fs_info->dead_roots, 2921 root_list) { 2922 if (dead_root->root_key.objectid == 2923 found_key.objectid) { 2924 is_dead_root = 1; 2925 break; 2926 } 2927 } 2928 spin_unlock(&fs_info->trans_lock); 2929 if (is_dead_root) { 2930 /* prevent this orphan from being found again */ 2931 key.offset = found_key.objectid - 1; 2932 continue; 2933 } 2934 2935 } 2936 2937 /* 2938 * If we have an inode with links, there are a couple of 2939 * possibilities. Old kernels (before v3.12) used to create an 2940 * orphan item for truncate indicating that there were possibly 2941 * extent items past i_size that needed to be deleted. In v3.12, 2942 * truncate was changed to update i_size in sync with the extent 2943 * items, but the (useless) orphan item was still created. Since 2944 * v4.18, we don't create the orphan item for truncate at all. 2945 * 2946 * So, this item could mean that we need to do a truncate, but 2947 * only if this filesystem was last used on a pre-v3.12 kernel 2948 * and was not cleanly unmounted. The odds of that are quite 2949 * slim, and it's a pain to do the truncate now, so just delete 2950 * the orphan item. 2951 * 2952 * It's also possible that this orphan item was supposed to be 2953 * deleted but wasn't. The inode number may have been reused, 2954 * but either way, we can delete the orphan item. 2955 */ 2956 if (ret == -ENOENT || inode->i_nlink) { 2957 if (!ret) 2958 iput(inode); 2959 trans = btrfs_start_transaction(root, 1); 2960 if (IS_ERR(trans)) { 2961 ret = PTR_ERR(trans); 2962 goto out; 2963 } 2964 btrfs_debug(fs_info, "auto deleting %Lu", 2965 found_key.objectid); 2966 ret = btrfs_del_orphan_item(trans, root, 2967 found_key.objectid); 2968 btrfs_end_transaction(trans); 2969 if (ret) 2970 goto out; 2971 continue; 2972 } 2973 2974 nr_unlink++; 2975 2976 /* this will do delete_inode and everything for us */ 2977 iput(inode); 2978 } 2979 /* release the path since we're done with it */ 2980 btrfs_release_path(path); 2981 2982 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2983 2984 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 2985 trans = btrfs_join_transaction(root); 2986 if (!IS_ERR(trans)) 2987 btrfs_end_transaction(trans); 2988 } 2989 2990 if (nr_unlink) 2991 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 2992 2993 out: 2994 if (ret) 2995 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 2996 btrfs_free_path(path); 2997 return ret; 2998 } 2999 3000 /* 3001 * very simple check to peek ahead in the leaf looking for xattrs. If we 3002 * don't find any xattrs, we know there can't be any acls. 3003 * 3004 * slot is the slot the inode is in, objectid is the objectid of the inode 3005 */ 3006 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3007 int slot, u64 objectid, 3008 int *first_xattr_slot) 3009 { 3010 u32 nritems = btrfs_header_nritems(leaf); 3011 struct btrfs_key found_key; 3012 static u64 xattr_access = 0; 3013 static u64 xattr_default = 0; 3014 int scanned = 0; 3015 3016 if (!xattr_access) { 3017 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3018 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3019 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3020 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3021 } 3022 3023 slot++; 3024 *first_xattr_slot = -1; 3025 while (slot < nritems) { 3026 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3027 3028 /* we found a different objectid, there must not be acls */ 3029 if (found_key.objectid != objectid) 3030 return 0; 3031 3032 /* we found an xattr, assume we've got an acl */ 3033 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3034 if (*first_xattr_slot == -1) 3035 *first_xattr_slot = slot; 3036 if (found_key.offset == xattr_access || 3037 found_key.offset == xattr_default) 3038 return 1; 3039 } 3040 3041 /* 3042 * we found a key greater than an xattr key, there can't 3043 * be any acls later on 3044 */ 3045 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3046 return 0; 3047 3048 slot++; 3049 scanned++; 3050 3051 /* 3052 * it goes inode, inode backrefs, xattrs, extents, 3053 * so if there are a ton of hard links to an inode there can 3054 * be a lot of backrefs. Don't waste time searching too hard, 3055 * this is just an optimization 3056 */ 3057 if (scanned >= 8) 3058 break; 3059 } 3060 /* we hit the end of the leaf before we found an xattr or 3061 * something larger than an xattr. We have to assume the inode 3062 * has acls 3063 */ 3064 if (*first_xattr_slot == -1) 3065 *first_xattr_slot = slot; 3066 return 1; 3067 } 3068 3069 /* 3070 * read an inode from the btree into the in-memory inode 3071 */ 3072 static int btrfs_read_locked_inode(struct inode *inode, 3073 struct btrfs_path *in_path) 3074 { 3075 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3076 struct btrfs_path *path = in_path; 3077 struct extent_buffer *leaf; 3078 struct btrfs_inode_item *inode_item; 3079 struct btrfs_root *root = BTRFS_I(inode)->root; 3080 struct btrfs_key location; 3081 unsigned long ptr; 3082 int maybe_acls; 3083 u32 rdev; 3084 int ret; 3085 bool filled = false; 3086 int first_xattr_slot; 3087 3088 ret = btrfs_fill_inode(inode, &rdev); 3089 if (!ret) 3090 filled = true; 3091 3092 if (!path) { 3093 path = btrfs_alloc_path(); 3094 if (!path) 3095 return -ENOMEM; 3096 } 3097 3098 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3099 3100 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3101 if (ret) { 3102 if (path != in_path) 3103 btrfs_free_path(path); 3104 return ret; 3105 } 3106 3107 leaf = path->nodes[0]; 3108 3109 if (filled) 3110 goto cache_index; 3111 3112 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3113 struct btrfs_inode_item); 3114 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3115 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3116 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3117 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3118 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3119 3120 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3121 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3122 3123 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3124 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3125 3126 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3127 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3128 3129 BTRFS_I(inode)->i_otime.tv_sec = 3130 btrfs_timespec_sec(leaf, &inode_item->otime); 3131 BTRFS_I(inode)->i_otime.tv_nsec = 3132 btrfs_timespec_nsec(leaf, &inode_item->otime); 3133 3134 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3135 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3136 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3137 3138 inode_set_iversion_queried(inode, 3139 btrfs_inode_sequence(leaf, inode_item)); 3140 inode->i_generation = BTRFS_I(inode)->generation; 3141 inode->i_rdev = 0; 3142 rdev = btrfs_inode_rdev(leaf, inode_item); 3143 3144 BTRFS_I(inode)->index_cnt = (u64)-1; 3145 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3146 3147 cache_index: 3148 /* 3149 * If we were modified in the current generation and evicted from memory 3150 * and then re-read we need to do a full sync since we don't have any 3151 * idea about which extents were modified before we were evicted from 3152 * cache. 3153 * 3154 * This is required for both inode re-read from disk and delayed inode 3155 * in delayed_nodes_tree. 3156 */ 3157 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3158 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3159 &BTRFS_I(inode)->runtime_flags); 3160 3161 /* 3162 * We don't persist the id of the transaction where an unlink operation 3163 * against the inode was last made. So here we assume the inode might 3164 * have been evicted, and therefore the exact value of last_unlink_trans 3165 * lost, and set it to last_trans to avoid metadata inconsistencies 3166 * between the inode and its parent if the inode is fsync'ed and the log 3167 * replayed. For example, in the scenario: 3168 * 3169 * touch mydir/foo 3170 * ln mydir/foo mydir/bar 3171 * sync 3172 * unlink mydir/bar 3173 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3174 * xfs_io -c fsync mydir/foo 3175 * <power failure> 3176 * mount fs, triggers fsync log replay 3177 * 3178 * We must make sure that when we fsync our inode foo we also log its 3179 * parent inode, otherwise after log replay the parent still has the 3180 * dentry with the "bar" name but our inode foo has a link count of 1 3181 * and doesn't have an inode ref with the name "bar" anymore. 3182 * 3183 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3184 * but it guarantees correctness at the expense of occasional full 3185 * transaction commits on fsync if our inode is a directory, or if our 3186 * inode is not a directory, logging its parent unnecessarily. 3187 */ 3188 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3189 3190 path->slots[0]++; 3191 if (inode->i_nlink != 1 || 3192 path->slots[0] >= btrfs_header_nritems(leaf)) 3193 goto cache_acl; 3194 3195 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3196 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3197 goto cache_acl; 3198 3199 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3200 if (location.type == BTRFS_INODE_REF_KEY) { 3201 struct btrfs_inode_ref *ref; 3202 3203 ref = (struct btrfs_inode_ref *)ptr; 3204 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3205 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3206 struct btrfs_inode_extref *extref; 3207 3208 extref = (struct btrfs_inode_extref *)ptr; 3209 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3210 extref); 3211 } 3212 cache_acl: 3213 /* 3214 * try to precache a NULL acl entry for files that don't have 3215 * any xattrs or acls 3216 */ 3217 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3218 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3219 if (first_xattr_slot != -1) { 3220 path->slots[0] = first_xattr_slot; 3221 ret = btrfs_load_inode_props(inode, path); 3222 if (ret) 3223 btrfs_err(fs_info, 3224 "error loading props for ino %llu (root %llu): %d", 3225 btrfs_ino(BTRFS_I(inode)), 3226 root->root_key.objectid, ret); 3227 } 3228 if (path != in_path) 3229 btrfs_free_path(path); 3230 3231 if (!maybe_acls) 3232 cache_no_acl(inode); 3233 3234 switch (inode->i_mode & S_IFMT) { 3235 case S_IFREG: 3236 inode->i_mapping->a_ops = &btrfs_aops; 3237 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3238 inode->i_fop = &btrfs_file_operations; 3239 inode->i_op = &btrfs_file_inode_operations; 3240 break; 3241 case S_IFDIR: 3242 inode->i_fop = &btrfs_dir_file_operations; 3243 inode->i_op = &btrfs_dir_inode_operations; 3244 break; 3245 case S_IFLNK: 3246 inode->i_op = &btrfs_symlink_inode_operations; 3247 inode_nohighmem(inode); 3248 inode->i_mapping->a_ops = &btrfs_aops; 3249 break; 3250 default: 3251 inode->i_op = &btrfs_special_inode_operations; 3252 init_special_inode(inode, inode->i_mode, rdev); 3253 break; 3254 } 3255 3256 btrfs_sync_inode_flags_to_i_flags(inode); 3257 return 0; 3258 } 3259 3260 /* 3261 * given a leaf and an inode, copy the inode fields into the leaf 3262 */ 3263 static void fill_inode_item(struct btrfs_trans_handle *trans, 3264 struct extent_buffer *leaf, 3265 struct btrfs_inode_item *item, 3266 struct inode *inode) 3267 { 3268 struct btrfs_map_token token; 3269 3270 btrfs_init_map_token(&token, leaf); 3271 3272 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3273 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3274 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3275 &token); 3276 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3277 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3278 3279 btrfs_set_token_timespec_sec(leaf, &item->atime, 3280 inode->i_atime.tv_sec, &token); 3281 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3282 inode->i_atime.tv_nsec, &token); 3283 3284 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3285 inode->i_mtime.tv_sec, &token); 3286 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3287 inode->i_mtime.tv_nsec, &token); 3288 3289 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3290 inode->i_ctime.tv_sec, &token); 3291 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3292 inode->i_ctime.tv_nsec, &token); 3293 3294 btrfs_set_token_timespec_sec(leaf, &item->otime, 3295 BTRFS_I(inode)->i_otime.tv_sec, &token); 3296 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3297 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3298 3299 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3300 &token); 3301 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3302 &token); 3303 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3304 &token); 3305 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3306 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3307 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3308 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3309 } 3310 3311 /* 3312 * copy everything in the in-memory inode into the btree. 3313 */ 3314 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3315 struct btrfs_root *root, struct inode *inode) 3316 { 3317 struct btrfs_inode_item *inode_item; 3318 struct btrfs_path *path; 3319 struct extent_buffer *leaf; 3320 int ret; 3321 3322 path = btrfs_alloc_path(); 3323 if (!path) 3324 return -ENOMEM; 3325 3326 path->leave_spinning = 1; 3327 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3328 1); 3329 if (ret) { 3330 if (ret > 0) 3331 ret = -ENOENT; 3332 goto failed; 3333 } 3334 3335 leaf = path->nodes[0]; 3336 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3337 struct btrfs_inode_item); 3338 3339 fill_inode_item(trans, leaf, inode_item, inode); 3340 btrfs_mark_buffer_dirty(leaf); 3341 btrfs_set_inode_last_trans(trans, inode); 3342 ret = 0; 3343 failed: 3344 btrfs_free_path(path); 3345 return ret; 3346 } 3347 3348 /* 3349 * copy everything in the in-memory inode into the btree. 3350 */ 3351 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3352 struct btrfs_root *root, struct inode *inode) 3353 { 3354 struct btrfs_fs_info *fs_info = root->fs_info; 3355 int ret; 3356 3357 /* 3358 * If the inode is a free space inode, we can deadlock during commit 3359 * if we put it into the delayed code. 3360 * 3361 * The data relocation inode should also be directly updated 3362 * without delay 3363 */ 3364 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3365 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3366 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3367 btrfs_update_root_times(trans, root); 3368 3369 ret = btrfs_delayed_update_inode(trans, root, inode); 3370 if (!ret) 3371 btrfs_set_inode_last_trans(trans, inode); 3372 return ret; 3373 } 3374 3375 return btrfs_update_inode_item(trans, root, inode); 3376 } 3377 3378 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3379 struct btrfs_root *root, 3380 struct inode *inode) 3381 { 3382 int ret; 3383 3384 ret = btrfs_update_inode(trans, root, inode); 3385 if (ret == -ENOSPC) 3386 return btrfs_update_inode_item(trans, root, inode); 3387 return ret; 3388 } 3389 3390 /* 3391 * unlink helper that gets used here in inode.c and in the tree logging 3392 * recovery code. It remove a link in a directory with a given name, and 3393 * also drops the back refs in the inode to the directory 3394 */ 3395 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3396 struct btrfs_root *root, 3397 struct btrfs_inode *dir, 3398 struct btrfs_inode *inode, 3399 const char *name, int name_len) 3400 { 3401 struct btrfs_fs_info *fs_info = root->fs_info; 3402 struct btrfs_path *path; 3403 int ret = 0; 3404 struct btrfs_dir_item *di; 3405 u64 index; 3406 u64 ino = btrfs_ino(inode); 3407 u64 dir_ino = btrfs_ino(dir); 3408 3409 path = btrfs_alloc_path(); 3410 if (!path) { 3411 ret = -ENOMEM; 3412 goto out; 3413 } 3414 3415 path->leave_spinning = 1; 3416 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3417 name, name_len, -1); 3418 if (IS_ERR_OR_NULL(di)) { 3419 ret = di ? PTR_ERR(di) : -ENOENT; 3420 goto err; 3421 } 3422 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3423 if (ret) 3424 goto err; 3425 btrfs_release_path(path); 3426 3427 /* 3428 * If we don't have dir index, we have to get it by looking up 3429 * the inode ref, since we get the inode ref, remove it directly, 3430 * it is unnecessary to do delayed deletion. 3431 * 3432 * But if we have dir index, needn't search inode ref to get it. 3433 * Since the inode ref is close to the inode item, it is better 3434 * that we delay to delete it, and just do this deletion when 3435 * we update the inode item. 3436 */ 3437 if (inode->dir_index) { 3438 ret = btrfs_delayed_delete_inode_ref(inode); 3439 if (!ret) { 3440 index = inode->dir_index; 3441 goto skip_backref; 3442 } 3443 } 3444 3445 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3446 dir_ino, &index); 3447 if (ret) { 3448 btrfs_info(fs_info, 3449 "failed to delete reference to %.*s, inode %llu parent %llu", 3450 name_len, name, ino, dir_ino); 3451 btrfs_abort_transaction(trans, ret); 3452 goto err; 3453 } 3454 skip_backref: 3455 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3456 if (ret) { 3457 btrfs_abort_transaction(trans, ret); 3458 goto err; 3459 } 3460 3461 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3462 dir_ino); 3463 if (ret != 0 && ret != -ENOENT) { 3464 btrfs_abort_transaction(trans, ret); 3465 goto err; 3466 } 3467 3468 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3469 index); 3470 if (ret == -ENOENT) 3471 ret = 0; 3472 else if (ret) 3473 btrfs_abort_transaction(trans, ret); 3474 3475 /* 3476 * If we have a pending delayed iput we could end up with the final iput 3477 * being run in btrfs-cleaner context. If we have enough of these built 3478 * up we can end up burning a lot of time in btrfs-cleaner without any 3479 * way to throttle the unlinks. Since we're currently holding a ref on 3480 * the inode we can run the delayed iput here without any issues as the 3481 * final iput won't be done until after we drop the ref we're currently 3482 * holding. 3483 */ 3484 btrfs_run_delayed_iput(fs_info, inode); 3485 err: 3486 btrfs_free_path(path); 3487 if (ret) 3488 goto out; 3489 3490 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3491 inode_inc_iversion(&inode->vfs_inode); 3492 inode_inc_iversion(&dir->vfs_inode); 3493 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3494 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3495 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3496 out: 3497 return ret; 3498 } 3499 3500 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3501 struct btrfs_root *root, 3502 struct btrfs_inode *dir, struct btrfs_inode *inode, 3503 const char *name, int name_len) 3504 { 3505 int ret; 3506 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3507 if (!ret) { 3508 drop_nlink(&inode->vfs_inode); 3509 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 3510 } 3511 return ret; 3512 } 3513 3514 /* 3515 * helper to start transaction for unlink and rmdir. 3516 * 3517 * unlink and rmdir are special in btrfs, they do not always free space, so 3518 * if we cannot make our reservations the normal way try and see if there is 3519 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3520 * allow the unlink to occur. 3521 */ 3522 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3523 { 3524 struct btrfs_root *root = BTRFS_I(dir)->root; 3525 3526 /* 3527 * 1 for the possible orphan item 3528 * 1 for the dir item 3529 * 1 for the dir index 3530 * 1 for the inode ref 3531 * 1 for the inode 3532 */ 3533 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 3534 } 3535 3536 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3537 { 3538 struct btrfs_root *root = BTRFS_I(dir)->root; 3539 struct btrfs_trans_handle *trans; 3540 struct inode *inode = d_inode(dentry); 3541 int ret; 3542 3543 trans = __unlink_start_trans(dir); 3544 if (IS_ERR(trans)) 3545 return PTR_ERR(trans); 3546 3547 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 3548 0); 3549 3550 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 3551 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 3552 dentry->d_name.len); 3553 if (ret) 3554 goto out; 3555 3556 if (inode->i_nlink == 0) { 3557 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3558 if (ret) 3559 goto out; 3560 } 3561 3562 out: 3563 btrfs_end_transaction(trans); 3564 btrfs_btree_balance_dirty(root->fs_info); 3565 return ret; 3566 } 3567 3568 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3569 struct inode *dir, struct dentry *dentry) 3570 { 3571 struct btrfs_root *root = BTRFS_I(dir)->root; 3572 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 3573 struct btrfs_path *path; 3574 struct extent_buffer *leaf; 3575 struct btrfs_dir_item *di; 3576 struct btrfs_key key; 3577 const char *name = dentry->d_name.name; 3578 int name_len = dentry->d_name.len; 3579 u64 index; 3580 int ret; 3581 u64 objectid; 3582 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 3583 3584 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 3585 objectid = inode->root->root_key.objectid; 3586 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3587 objectid = inode->location.objectid; 3588 } else { 3589 WARN_ON(1); 3590 return -EINVAL; 3591 } 3592 3593 path = btrfs_alloc_path(); 3594 if (!path) 3595 return -ENOMEM; 3596 3597 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3598 name, name_len, -1); 3599 if (IS_ERR_OR_NULL(di)) { 3600 ret = di ? PTR_ERR(di) : -ENOENT; 3601 goto out; 3602 } 3603 3604 leaf = path->nodes[0]; 3605 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3606 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3607 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3608 if (ret) { 3609 btrfs_abort_transaction(trans, ret); 3610 goto out; 3611 } 3612 btrfs_release_path(path); 3613 3614 /* 3615 * This is a placeholder inode for a subvolume we didn't have a 3616 * reference to at the time of the snapshot creation. In the meantime 3617 * we could have renamed the real subvol link into our snapshot, so 3618 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 3619 * Instead simply lookup the dir_index_item for this entry so we can 3620 * remove it. Otherwise we know we have a ref to the root and we can 3621 * call btrfs_del_root_ref, and it _shouldn't_ fail. 3622 */ 3623 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3624 di = btrfs_search_dir_index_item(root, path, dir_ino, 3625 name, name_len); 3626 if (IS_ERR_OR_NULL(di)) { 3627 if (!di) 3628 ret = -ENOENT; 3629 else 3630 ret = PTR_ERR(di); 3631 btrfs_abort_transaction(trans, ret); 3632 goto out; 3633 } 3634 3635 leaf = path->nodes[0]; 3636 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3637 index = key.offset; 3638 btrfs_release_path(path); 3639 } else { 3640 ret = btrfs_del_root_ref(trans, objectid, 3641 root->root_key.objectid, dir_ino, 3642 &index, name, name_len); 3643 if (ret) { 3644 btrfs_abort_transaction(trans, ret); 3645 goto out; 3646 } 3647 } 3648 3649 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 3650 if (ret) { 3651 btrfs_abort_transaction(trans, ret); 3652 goto out; 3653 } 3654 3655 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 3656 inode_inc_iversion(dir); 3657 dir->i_mtime = dir->i_ctime = current_time(dir); 3658 ret = btrfs_update_inode_fallback(trans, root, dir); 3659 if (ret) 3660 btrfs_abort_transaction(trans, ret); 3661 out: 3662 btrfs_free_path(path); 3663 return ret; 3664 } 3665 3666 /* 3667 * Helper to check if the subvolume references other subvolumes or if it's 3668 * default. 3669 */ 3670 static noinline int may_destroy_subvol(struct btrfs_root *root) 3671 { 3672 struct btrfs_fs_info *fs_info = root->fs_info; 3673 struct btrfs_path *path; 3674 struct btrfs_dir_item *di; 3675 struct btrfs_key key; 3676 u64 dir_id; 3677 int ret; 3678 3679 path = btrfs_alloc_path(); 3680 if (!path) 3681 return -ENOMEM; 3682 3683 /* Make sure this root isn't set as the default subvol */ 3684 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3685 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 3686 dir_id, "default", 7, 0); 3687 if (di && !IS_ERR(di)) { 3688 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 3689 if (key.objectid == root->root_key.objectid) { 3690 ret = -EPERM; 3691 btrfs_err(fs_info, 3692 "deleting default subvolume %llu is not allowed", 3693 key.objectid); 3694 goto out; 3695 } 3696 btrfs_release_path(path); 3697 } 3698 3699 key.objectid = root->root_key.objectid; 3700 key.type = BTRFS_ROOT_REF_KEY; 3701 key.offset = (u64)-1; 3702 3703 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3704 if (ret < 0) 3705 goto out; 3706 BUG_ON(ret == 0); 3707 3708 ret = 0; 3709 if (path->slots[0] > 0) { 3710 path->slots[0]--; 3711 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3712 if (key.objectid == root->root_key.objectid && 3713 key.type == BTRFS_ROOT_REF_KEY) 3714 ret = -ENOTEMPTY; 3715 } 3716 out: 3717 btrfs_free_path(path); 3718 return ret; 3719 } 3720 3721 /* Delete all dentries for inodes belonging to the root */ 3722 static void btrfs_prune_dentries(struct btrfs_root *root) 3723 { 3724 struct btrfs_fs_info *fs_info = root->fs_info; 3725 struct rb_node *node; 3726 struct rb_node *prev; 3727 struct btrfs_inode *entry; 3728 struct inode *inode; 3729 u64 objectid = 0; 3730 3731 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3732 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3733 3734 spin_lock(&root->inode_lock); 3735 again: 3736 node = root->inode_tree.rb_node; 3737 prev = NULL; 3738 while (node) { 3739 prev = node; 3740 entry = rb_entry(node, struct btrfs_inode, rb_node); 3741 3742 if (objectid < btrfs_ino(entry)) 3743 node = node->rb_left; 3744 else if (objectid > btrfs_ino(entry)) 3745 node = node->rb_right; 3746 else 3747 break; 3748 } 3749 if (!node) { 3750 while (prev) { 3751 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3752 if (objectid <= btrfs_ino(entry)) { 3753 node = prev; 3754 break; 3755 } 3756 prev = rb_next(prev); 3757 } 3758 } 3759 while (node) { 3760 entry = rb_entry(node, struct btrfs_inode, rb_node); 3761 objectid = btrfs_ino(entry) + 1; 3762 inode = igrab(&entry->vfs_inode); 3763 if (inode) { 3764 spin_unlock(&root->inode_lock); 3765 if (atomic_read(&inode->i_count) > 1) 3766 d_prune_aliases(inode); 3767 /* 3768 * btrfs_drop_inode will have it removed from the inode 3769 * cache when its usage count hits zero. 3770 */ 3771 iput(inode); 3772 cond_resched(); 3773 spin_lock(&root->inode_lock); 3774 goto again; 3775 } 3776 3777 if (cond_resched_lock(&root->inode_lock)) 3778 goto again; 3779 3780 node = rb_next(node); 3781 } 3782 spin_unlock(&root->inode_lock); 3783 } 3784 3785 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 3786 { 3787 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 3788 struct btrfs_root *root = BTRFS_I(dir)->root; 3789 struct inode *inode = d_inode(dentry); 3790 struct btrfs_root *dest = BTRFS_I(inode)->root; 3791 struct btrfs_trans_handle *trans; 3792 struct btrfs_block_rsv block_rsv; 3793 u64 root_flags; 3794 int ret; 3795 int err; 3796 3797 /* 3798 * Don't allow to delete a subvolume with send in progress. This is 3799 * inside the inode lock so the error handling that has to drop the bit 3800 * again is not run concurrently. 3801 */ 3802 spin_lock(&dest->root_item_lock); 3803 if (dest->send_in_progress) { 3804 spin_unlock(&dest->root_item_lock); 3805 btrfs_warn(fs_info, 3806 "attempt to delete subvolume %llu during send", 3807 dest->root_key.objectid); 3808 return -EPERM; 3809 } 3810 root_flags = btrfs_root_flags(&dest->root_item); 3811 btrfs_set_root_flags(&dest->root_item, 3812 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 3813 spin_unlock(&dest->root_item_lock); 3814 3815 down_write(&fs_info->subvol_sem); 3816 3817 err = may_destroy_subvol(dest); 3818 if (err) 3819 goto out_up_write; 3820 3821 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 3822 /* 3823 * One for dir inode, 3824 * two for dir entries, 3825 * two for root ref/backref. 3826 */ 3827 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 3828 if (err) 3829 goto out_up_write; 3830 3831 trans = btrfs_start_transaction(root, 0); 3832 if (IS_ERR(trans)) { 3833 err = PTR_ERR(trans); 3834 goto out_release; 3835 } 3836 trans->block_rsv = &block_rsv; 3837 trans->bytes_reserved = block_rsv.size; 3838 3839 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 3840 3841 ret = btrfs_unlink_subvol(trans, dir, dentry); 3842 if (ret) { 3843 err = ret; 3844 btrfs_abort_transaction(trans, ret); 3845 goto out_end_trans; 3846 } 3847 3848 btrfs_record_root_in_trans(trans, dest); 3849 3850 memset(&dest->root_item.drop_progress, 0, 3851 sizeof(dest->root_item.drop_progress)); 3852 dest->root_item.drop_level = 0; 3853 btrfs_set_root_refs(&dest->root_item, 0); 3854 3855 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 3856 ret = btrfs_insert_orphan_item(trans, 3857 fs_info->tree_root, 3858 dest->root_key.objectid); 3859 if (ret) { 3860 btrfs_abort_transaction(trans, ret); 3861 err = ret; 3862 goto out_end_trans; 3863 } 3864 } 3865 3866 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 3867 BTRFS_UUID_KEY_SUBVOL, 3868 dest->root_key.objectid); 3869 if (ret && ret != -ENOENT) { 3870 btrfs_abort_transaction(trans, ret); 3871 err = ret; 3872 goto out_end_trans; 3873 } 3874 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 3875 ret = btrfs_uuid_tree_remove(trans, 3876 dest->root_item.received_uuid, 3877 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3878 dest->root_key.objectid); 3879 if (ret && ret != -ENOENT) { 3880 btrfs_abort_transaction(trans, ret); 3881 err = ret; 3882 goto out_end_trans; 3883 } 3884 } 3885 3886 out_end_trans: 3887 trans->block_rsv = NULL; 3888 trans->bytes_reserved = 0; 3889 ret = btrfs_end_transaction(trans); 3890 if (ret && !err) 3891 err = ret; 3892 inode->i_flags |= S_DEAD; 3893 out_release: 3894 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 3895 out_up_write: 3896 up_write(&fs_info->subvol_sem); 3897 if (err) { 3898 spin_lock(&dest->root_item_lock); 3899 root_flags = btrfs_root_flags(&dest->root_item); 3900 btrfs_set_root_flags(&dest->root_item, 3901 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 3902 spin_unlock(&dest->root_item_lock); 3903 } else { 3904 d_invalidate(dentry); 3905 btrfs_prune_dentries(dest); 3906 ASSERT(dest->send_in_progress == 0); 3907 3908 /* the last ref */ 3909 if (dest->ino_cache_inode) { 3910 iput(dest->ino_cache_inode); 3911 dest->ino_cache_inode = NULL; 3912 } 3913 } 3914 3915 return err; 3916 } 3917 3918 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3919 { 3920 struct inode *inode = d_inode(dentry); 3921 int err = 0; 3922 struct btrfs_root *root = BTRFS_I(dir)->root; 3923 struct btrfs_trans_handle *trans; 3924 u64 last_unlink_trans; 3925 3926 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3927 return -ENOTEMPTY; 3928 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 3929 return btrfs_delete_subvolume(dir, dentry); 3930 3931 trans = __unlink_start_trans(dir); 3932 if (IS_ERR(trans)) 3933 return PTR_ERR(trans); 3934 3935 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3936 err = btrfs_unlink_subvol(trans, dir, dentry); 3937 goto out; 3938 } 3939 3940 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3941 if (err) 3942 goto out; 3943 3944 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 3945 3946 /* now the directory is empty */ 3947 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 3948 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 3949 dentry->d_name.len); 3950 if (!err) { 3951 btrfs_i_size_write(BTRFS_I(inode), 0); 3952 /* 3953 * Propagate the last_unlink_trans value of the deleted dir to 3954 * its parent directory. This is to prevent an unrecoverable 3955 * log tree in the case we do something like this: 3956 * 1) create dir foo 3957 * 2) create snapshot under dir foo 3958 * 3) delete the snapshot 3959 * 4) rmdir foo 3960 * 5) mkdir foo 3961 * 6) fsync foo or some file inside foo 3962 */ 3963 if (last_unlink_trans >= trans->transid) 3964 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 3965 } 3966 out: 3967 btrfs_end_transaction(trans); 3968 btrfs_btree_balance_dirty(root->fs_info); 3969 3970 return err; 3971 } 3972 3973 /* 3974 * Return this if we need to call truncate_block for the last bit of the 3975 * truncate. 3976 */ 3977 #define NEED_TRUNCATE_BLOCK 1 3978 3979 /* 3980 * this can truncate away extent items, csum items and directory items. 3981 * It starts at a high offset and removes keys until it can't find 3982 * any higher than new_size 3983 * 3984 * csum items that cross the new i_size are truncated to the new size 3985 * as well. 3986 * 3987 * min_type is the minimum key type to truncate down to. If set to 0, this 3988 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3989 */ 3990 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3991 struct btrfs_root *root, 3992 struct inode *inode, 3993 u64 new_size, u32 min_type) 3994 { 3995 struct btrfs_fs_info *fs_info = root->fs_info; 3996 struct btrfs_path *path; 3997 struct extent_buffer *leaf; 3998 struct btrfs_file_extent_item *fi; 3999 struct btrfs_key key; 4000 struct btrfs_key found_key; 4001 u64 extent_start = 0; 4002 u64 extent_num_bytes = 0; 4003 u64 extent_offset = 0; 4004 u64 item_end = 0; 4005 u64 last_size = new_size; 4006 u32 found_type = (u8)-1; 4007 int found_extent; 4008 int del_item; 4009 int pending_del_nr = 0; 4010 int pending_del_slot = 0; 4011 int extent_type = -1; 4012 int ret; 4013 u64 ino = btrfs_ino(BTRFS_I(inode)); 4014 u64 bytes_deleted = 0; 4015 bool be_nice = false; 4016 bool should_throttle = false; 4017 4018 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4019 4020 /* 4021 * for non-free space inodes and ref cows, we want to back off from 4022 * time to time 4023 */ 4024 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4025 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4026 be_nice = true; 4027 4028 path = btrfs_alloc_path(); 4029 if (!path) 4030 return -ENOMEM; 4031 path->reada = READA_BACK; 4032 4033 /* 4034 * We want to drop from the next block forward in case this new size is 4035 * not block aligned since we will be keeping the last block of the 4036 * extent just the way it is. 4037 */ 4038 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4039 root == fs_info->tree_root) 4040 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4041 fs_info->sectorsize), 4042 (u64)-1, 0); 4043 4044 /* 4045 * This function is also used to drop the items in the log tree before 4046 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4047 * it is used to drop the logged items. So we shouldn't kill the delayed 4048 * items. 4049 */ 4050 if (min_type == 0 && root == BTRFS_I(inode)->root) 4051 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4052 4053 key.objectid = ino; 4054 key.offset = (u64)-1; 4055 key.type = (u8)-1; 4056 4057 search_again: 4058 /* 4059 * with a 16K leaf size and 128MB extents, you can actually queue 4060 * up a huge file in a single leaf. Most of the time that 4061 * bytes_deleted is > 0, it will be huge by the time we get here 4062 */ 4063 if (be_nice && bytes_deleted > SZ_32M && 4064 btrfs_should_end_transaction(trans)) { 4065 ret = -EAGAIN; 4066 goto out; 4067 } 4068 4069 path->leave_spinning = 1; 4070 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4071 if (ret < 0) 4072 goto out; 4073 4074 if (ret > 0) { 4075 ret = 0; 4076 /* there are no items in the tree for us to truncate, we're 4077 * done 4078 */ 4079 if (path->slots[0] == 0) 4080 goto out; 4081 path->slots[0]--; 4082 } 4083 4084 while (1) { 4085 fi = NULL; 4086 leaf = path->nodes[0]; 4087 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4088 found_type = found_key.type; 4089 4090 if (found_key.objectid != ino) 4091 break; 4092 4093 if (found_type < min_type) 4094 break; 4095 4096 item_end = found_key.offset; 4097 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4098 fi = btrfs_item_ptr(leaf, path->slots[0], 4099 struct btrfs_file_extent_item); 4100 extent_type = btrfs_file_extent_type(leaf, fi); 4101 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4102 item_end += 4103 btrfs_file_extent_num_bytes(leaf, fi); 4104 4105 trace_btrfs_truncate_show_fi_regular( 4106 BTRFS_I(inode), leaf, fi, 4107 found_key.offset); 4108 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4109 item_end += btrfs_file_extent_ram_bytes(leaf, 4110 fi); 4111 4112 trace_btrfs_truncate_show_fi_inline( 4113 BTRFS_I(inode), leaf, fi, path->slots[0], 4114 found_key.offset); 4115 } 4116 item_end--; 4117 } 4118 if (found_type > min_type) { 4119 del_item = 1; 4120 } else { 4121 if (item_end < new_size) 4122 break; 4123 if (found_key.offset >= new_size) 4124 del_item = 1; 4125 else 4126 del_item = 0; 4127 } 4128 found_extent = 0; 4129 /* FIXME, shrink the extent if the ref count is only 1 */ 4130 if (found_type != BTRFS_EXTENT_DATA_KEY) 4131 goto delete; 4132 4133 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4134 u64 num_dec; 4135 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4136 if (!del_item) { 4137 u64 orig_num_bytes = 4138 btrfs_file_extent_num_bytes(leaf, fi); 4139 extent_num_bytes = ALIGN(new_size - 4140 found_key.offset, 4141 fs_info->sectorsize); 4142 btrfs_set_file_extent_num_bytes(leaf, fi, 4143 extent_num_bytes); 4144 num_dec = (orig_num_bytes - 4145 extent_num_bytes); 4146 if (test_bit(BTRFS_ROOT_REF_COWS, 4147 &root->state) && 4148 extent_start != 0) 4149 inode_sub_bytes(inode, num_dec); 4150 btrfs_mark_buffer_dirty(leaf); 4151 } else { 4152 extent_num_bytes = 4153 btrfs_file_extent_disk_num_bytes(leaf, 4154 fi); 4155 extent_offset = found_key.offset - 4156 btrfs_file_extent_offset(leaf, fi); 4157 4158 /* FIXME blocksize != 4096 */ 4159 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4160 if (extent_start != 0) { 4161 found_extent = 1; 4162 if (test_bit(BTRFS_ROOT_REF_COWS, 4163 &root->state)) 4164 inode_sub_bytes(inode, num_dec); 4165 } 4166 } 4167 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4168 /* 4169 * we can't truncate inline items that have had 4170 * special encodings 4171 */ 4172 if (!del_item && 4173 btrfs_file_extent_encryption(leaf, fi) == 0 && 4174 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4175 btrfs_file_extent_compression(leaf, fi) == 0) { 4176 u32 size = (u32)(new_size - found_key.offset); 4177 4178 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4179 size = btrfs_file_extent_calc_inline_size(size); 4180 btrfs_truncate_item(path, size, 1); 4181 } else if (!del_item) { 4182 /* 4183 * We have to bail so the last_size is set to 4184 * just before this extent. 4185 */ 4186 ret = NEED_TRUNCATE_BLOCK; 4187 break; 4188 } 4189 4190 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4191 inode_sub_bytes(inode, item_end + 1 - new_size); 4192 } 4193 delete: 4194 if (del_item) 4195 last_size = found_key.offset; 4196 else 4197 last_size = new_size; 4198 if (del_item) { 4199 if (!pending_del_nr) { 4200 /* no pending yet, add ourselves */ 4201 pending_del_slot = path->slots[0]; 4202 pending_del_nr = 1; 4203 } else if (pending_del_nr && 4204 path->slots[0] + 1 == pending_del_slot) { 4205 /* hop on the pending chunk */ 4206 pending_del_nr++; 4207 pending_del_slot = path->slots[0]; 4208 } else { 4209 BUG(); 4210 } 4211 } else { 4212 break; 4213 } 4214 should_throttle = false; 4215 4216 if (found_extent && 4217 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4218 root == fs_info->tree_root)) { 4219 struct btrfs_ref ref = { 0 }; 4220 4221 btrfs_set_path_blocking(path); 4222 bytes_deleted += extent_num_bytes; 4223 4224 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4225 extent_start, extent_num_bytes, 0); 4226 ref.real_root = root->root_key.objectid; 4227 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4228 ino, extent_offset); 4229 ret = btrfs_free_extent(trans, &ref); 4230 if (ret) { 4231 btrfs_abort_transaction(trans, ret); 4232 break; 4233 } 4234 if (be_nice) { 4235 if (btrfs_should_throttle_delayed_refs(trans)) 4236 should_throttle = true; 4237 } 4238 } 4239 4240 if (found_type == BTRFS_INODE_ITEM_KEY) 4241 break; 4242 4243 if (path->slots[0] == 0 || 4244 path->slots[0] != pending_del_slot || 4245 should_throttle) { 4246 if (pending_del_nr) { 4247 ret = btrfs_del_items(trans, root, path, 4248 pending_del_slot, 4249 pending_del_nr); 4250 if (ret) { 4251 btrfs_abort_transaction(trans, ret); 4252 break; 4253 } 4254 pending_del_nr = 0; 4255 } 4256 btrfs_release_path(path); 4257 4258 /* 4259 * We can generate a lot of delayed refs, so we need to 4260 * throttle every once and a while and make sure we're 4261 * adding enough space to keep up with the work we are 4262 * generating. Since we hold a transaction here we 4263 * can't flush, and we don't want to FLUSH_LIMIT because 4264 * we could have generated too many delayed refs to 4265 * actually allocate, so just bail if we're short and 4266 * let the normal reservation dance happen higher up. 4267 */ 4268 if (should_throttle) { 4269 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4270 BTRFS_RESERVE_NO_FLUSH); 4271 if (ret) { 4272 ret = -EAGAIN; 4273 break; 4274 } 4275 } 4276 goto search_again; 4277 } else { 4278 path->slots[0]--; 4279 } 4280 } 4281 out: 4282 if (ret >= 0 && pending_del_nr) { 4283 int err; 4284 4285 err = btrfs_del_items(trans, root, path, pending_del_slot, 4286 pending_del_nr); 4287 if (err) { 4288 btrfs_abort_transaction(trans, err); 4289 ret = err; 4290 } 4291 } 4292 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4293 ASSERT(last_size >= new_size); 4294 if (!ret && last_size > new_size) 4295 last_size = new_size; 4296 btrfs_ordered_update_i_size(inode, last_size, NULL); 4297 } 4298 4299 btrfs_free_path(path); 4300 return ret; 4301 } 4302 4303 /* 4304 * btrfs_truncate_block - read, zero a chunk and write a block 4305 * @inode - inode that we're zeroing 4306 * @from - the offset to start zeroing 4307 * @len - the length to zero, 0 to zero the entire range respective to the 4308 * offset 4309 * @front - zero up to the offset instead of from the offset on 4310 * 4311 * This will find the block for the "from" offset and cow the block and zero the 4312 * part we want to zero. This is used with truncate and hole punching. 4313 */ 4314 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4315 int front) 4316 { 4317 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4318 struct address_space *mapping = inode->i_mapping; 4319 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4320 struct btrfs_ordered_extent *ordered; 4321 struct extent_state *cached_state = NULL; 4322 struct extent_changeset *data_reserved = NULL; 4323 char *kaddr; 4324 u32 blocksize = fs_info->sectorsize; 4325 pgoff_t index = from >> PAGE_SHIFT; 4326 unsigned offset = from & (blocksize - 1); 4327 struct page *page; 4328 gfp_t mask = btrfs_alloc_write_mask(mapping); 4329 int ret = 0; 4330 u64 block_start; 4331 u64 block_end; 4332 4333 if (IS_ALIGNED(offset, blocksize) && 4334 (!len || IS_ALIGNED(len, blocksize))) 4335 goto out; 4336 4337 block_start = round_down(from, blocksize); 4338 block_end = block_start + blocksize - 1; 4339 4340 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4341 block_start, blocksize); 4342 if (ret) 4343 goto out; 4344 4345 again: 4346 page = find_or_create_page(mapping, index, mask); 4347 if (!page) { 4348 btrfs_delalloc_release_space(inode, data_reserved, 4349 block_start, blocksize, true); 4350 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4351 ret = -ENOMEM; 4352 goto out; 4353 } 4354 4355 if (!PageUptodate(page)) { 4356 ret = btrfs_readpage(NULL, page); 4357 lock_page(page); 4358 if (page->mapping != mapping) { 4359 unlock_page(page); 4360 put_page(page); 4361 goto again; 4362 } 4363 if (!PageUptodate(page)) { 4364 ret = -EIO; 4365 goto out_unlock; 4366 } 4367 } 4368 wait_on_page_writeback(page); 4369 4370 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4371 set_page_extent_mapped(page); 4372 4373 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4374 if (ordered) { 4375 unlock_extent_cached(io_tree, block_start, block_end, 4376 &cached_state); 4377 unlock_page(page); 4378 put_page(page); 4379 btrfs_start_ordered_extent(inode, ordered, 1); 4380 btrfs_put_ordered_extent(ordered); 4381 goto again; 4382 } 4383 4384 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4385 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4386 0, 0, &cached_state); 4387 4388 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4389 &cached_state); 4390 if (ret) { 4391 unlock_extent_cached(io_tree, block_start, block_end, 4392 &cached_state); 4393 goto out_unlock; 4394 } 4395 4396 if (offset != blocksize) { 4397 if (!len) 4398 len = blocksize - offset; 4399 kaddr = kmap(page); 4400 if (front) 4401 memset(kaddr + (block_start - page_offset(page)), 4402 0, offset); 4403 else 4404 memset(kaddr + (block_start - page_offset(page)) + offset, 4405 0, len); 4406 flush_dcache_page(page); 4407 kunmap(page); 4408 } 4409 ClearPageChecked(page); 4410 set_page_dirty(page); 4411 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4412 4413 out_unlock: 4414 if (ret) 4415 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4416 blocksize, true); 4417 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4418 unlock_page(page); 4419 put_page(page); 4420 out: 4421 extent_changeset_free(data_reserved); 4422 return ret; 4423 } 4424 4425 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4426 u64 offset, u64 len) 4427 { 4428 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4429 struct btrfs_trans_handle *trans; 4430 int ret; 4431 4432 /* 4433 * Still need to make sure the inode looks like it's been updated so 4434 * that any holes get logged if we fsync. 4435 */ 4436 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4437 BTRFS_I(inode)->last_trans = fs_info->generation; 4438 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4439 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4440 return 0; 4441 } 4442 4443 /* 4444 * 1 - for the one we're dropping 4445 * 1 - for the one we're adding 4446 * 1 - for updating the inode. 4447 */ 4448 trans = btrfs_start_transaction(root, 3); 4449 if (IS_ERR(trans)) 4450 return PTR_ERR(trans); 4451 4452 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4453 if (ret) { 4454 btrfs_abort_transaction(trans, ret); 4455 btrfs_end_transaction(trans); 4456 return ret; 4457 } 4458 4459 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4460 offset, 0, 0, len, 0, len, 0, 0, 0); 4461 if (ret) 4462 btrfs_abort_transaction(trans, ret); 4463 else 4464 btrfs_update_inode(trans, root, inode); 4465 btrfs_end_transaction(trans); 4466 return ret; 4467 } 4468 4469 /* 4470 * This function puts in dummy file extents for the area we're creating a hole 4471 * for. So if we are truncating this file to a larger size we need to insert 4472 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4473 * the range between oldsize and size 4474 */ 4475 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4476 { 4477 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4478 struct btrfs_root *root = BTRFS_I(inode)->root; 4479 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4480 struct extent_map *em = NULL; 4481 struct extent_state *cached_state = NULL; 4482 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4483 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4484 u64 block_end = ALIGN(size, fs_info->sectorsize); 4485 u64 last_byte; 4486 u64 cur_offset; 4487 u64 hole_size; 4488 int err = 0; 4489 4490 /* 4491 * If our size started in the middle of a block we need to zero out the 4492 * rest of the block before we expand the i_size, otherwise we could 4493 * expose stale data. 4494 */ 4495 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4496 if (err) 4497 return err; 4498 4499 if (size <= hole_start) 4500 return 0; 4501 4502 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start, 4503 block_end - 1, &cached_state); 4504 cur_offset = hole_start; 4505 while (1) { 4506 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4507 block_end - cur_offset); 4508 if (IS_ERR(em)) { 4509 err = PTR_ERR(em); 4510 em = NULL; 4511 break; 4512 } 4513 last_byte = min(extent_map_end(em), block_end); 4514 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4515 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4516 struct extent_map *hole_em; 4517 hole_size = last_byte - cur_offset; 4518 4519 err = maybe_insert_hole(root, inode, cur_offset, 4520 hole_size); 4521 if (err) 4522 break; 4523 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4524 cur_offset + hole_size - 1, 0); 4525 hole_em = alloc_extent_map(); 4526 if (!hole_em) { 4527 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4528 &BTRFS_I(inode)->runtime_flags); 4529 goto next; 4530 } 4531 hole_em->start = cur_offset; 4532 hole_em->len = hole_size; 4533 hole_em->orig_start = cur_offset; 4534 4535 hole_em->block_start = EXTENT_MAP_HOLE; 4536 hole_em->block_len = 0; 4537 hole_em->orig_block_len = 0; 4538 hole_em->ram_bytes = hole_size; 4539 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4540 hole_em->generation = fs_info->generation; 4541 4542 while (1) { 4543 write_lock(&em_tree->lock); 4544 err = add_extent_mapping(em_tree, hole_em, 1); 4545 write_unlock(&em_tree->lock); 4546 if (err != -EEXIST) 4547 break; 4548 btrfs_drop_extent_cache(BTRFS_I(inode), 4549 cur_offset, 4550 cur_offset + 4551 hole_size - 1, 0); 4552 } 4553 free_extent_map(hole_em); 4554 } 4555 next: 4556 free_extent_map(em); 4557 em = NULL; 4558 cur_offset = last_byte; 4559 if (cur_offset >= block_end) 4560 break; 4561 } 4562 free_extent_map(em); 4563 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4564 return err; 4565 } 4566 4567 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4568 { 4569 struct btrfs_root *root = BTRFS_I(inode)->root; 4570 struct btrfs_trans_handle *trans; 4571 loff_t oldsize = i_size_read(inode); 4572 loff_t newsize = attr->ia_size; 4573 int mask = attr->ia_valid; 4574 int ret; 4575 4576 /* 4577 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4578 * special case where we need to update the times despite not having 4579 * these flags set. For all other operations the VFS set these flags 4580 * explicitly if it wants a timestamp update. 4581 */ 4582 if (newsize != oldsize) { 4583 inode_inc_iversion(inode); 4584 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4585 inode->i_ctime = inode->i_mtime = 4586 current_time(inode); 4587 } 4588 4589 if (newsize > oldsize) { 4590 /* 4591 * Don't do an expanding truncate while snapshotting is ongoing. 4592 * This is to ensure the snapshot captures a fully consistent 4593 * state of this file - if the snapshot captures this expanding 4594 * truncation, it must capture all writes that happened before 4595 * this truncation. 4596 */ 4597 btrfs_wait_for_snapshot_creation(root); 4598 ret = btrfs_cont_expand(inode, oldsize, newsize); 4599 if (ret) { 4600 btrfs_end_write_no_snapshotting(root); 4601 return ret; 4602 } 4603 4604 trans = btrfs_start_transaction(root, 1); 4605 if (IS_ERR(trans)) { 4606 btrfs_end_write_no_snapshotting(root); 4607 return PTR_ERR(trans); 4608 } 4609 4610 i_size_write(inode, newsize); 4611 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4612 pagecache_isize_extended(inode, oldsize, newsize); 4613 ret = btrfs_update_inode(trans, root, inode); 4614 btrfs_end_write_no_snapshotting(root); 4615 btrfs_end_transaction(trans); 4616 } else { 4617 4618 /* 4619 * We're truncating a file that used to have good data down to 4620 * zero. Make sure it gets into the ordered flush list so that 4621 * any new writes get down to disk quickly. 4622 */ 4623 if (newsize == 0) 4624 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4625 &BTRFS_I(inode)->runtime_flags); 4626 4627 truncate_setsize(inode, newsize); 4628 4629 /* Disable nonlocked read DIO to avoid the endless truncate */ 4630 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 4631 inode_dio_wait(inode); 4632 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 4633 4634 ret = btrfs_truncate(inode, newsize == oldsize); 4635 if (ret && inode->i_nlink) { 4636 int err; 4637 4638 /* 4639 * Truncate failed, so fix up the in-memory size. We 4640 * adjusted disk_i_size down as we removed extents, so 4641 * wait for disk_i_size to be stable and then update the 4642 * in-memory size to match. 4643 */ 4644 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 4645 if (err) 4646 return err; 4647 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4648 } 4649 } 4650 4651 return ret; 4652 } 4653 4654 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4655 { 4656 struct inode *inode = d_inode(dentry); 4657 struct btrfs_root *root = BTRFS_I(inode)->root; 4658 int err; 4659 4660 if (btrfs_root_readonly(root)) 4661 return -EROFS; 4662 4663 err = setattr_prepare(dentry, attr); 4664 if (err) 4665 return err; 4666 4667 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4668 err = btrfs_setsize(inode, attr); 4669 if (err) 4670 return err; 4671 } 4672 4673 if (attr->ia_valid) { 4674 setattr_copy(inode, attr); 4675 inode_inc_iversion(inode); 4676 err = btrfs_dirty_inode(inode); 4677 4678 if (!err && attr->ia_valid & ATTR_MODE) 4679 err = posix_acl_chmod(inode, inode->i_mode); 4680 } 4681 4682 return err; 4683 } 4684 4685 /* 4686 * While truncating the inode pages during eviction, we get the VFS calling 4687 * btrfs_invalidatepage() against each page of the inode. This is slow because 4688 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4689 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4690 * extent_state structures over and over, wasting lots of time. 4691 * 4692 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4693 * those expensive operations on a per page basis and do only the ordered io 4694 * finishing, while we release here the extent_map and extent_state structures, 4695 * without the excessive merging and splitting. 4696 */ 4697 static void evict_inode_truncate_pages(struct inode *inode) 4698 { 4699 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4700 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4701 struct rb_node *node; 4702 4703 ASSERT(inode->i_state & I_FREEING); 4704 truncate_inode_pages_final(&inode->i_data); 4705 4706 write_lock(&map_tree->lock); 4707 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 4708 struct extent_map *em; 4709 4710 node = rb_first_cached(&map_tree->map); 4711 em = rb_entry(node, struct extent_map, rb_node); 4712 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4713 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4714 remove_extent_mapping(map_tree, em); 4715 free_extent_map(em); 4716 if (need_resched()) { 4717 write_unlock(&map_tree->lock); 4718 cond_resched(); 4719 write_lock(&map_tree->lock); 4720 } 4721 } 4722 write_unlock(&map_tree->lock); 4723 4724 /* 4725 * Keep looping until we have no more ranges in the io tree. 4726 * We can have ongoing bios started by readpages (called from readahead) 4727 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 4728 * still in progress (unlocked the pages in the bio but did not yet 4729 * unlocked the ranges in the io tree). Therefore this means some 4730 * ranges can still be locked and eviction started because before 4731 * submitting those bios, which are executed by a separate task (work 4732 * queue kthread), inode references (inode->i_count) were not taken 4733 * (which would be dropped in the end io callback of each bio). 4734 * Therefore here we effectively end up waiting for those bios and 4735 * anyone else holding locked ranges without having bumped the inode's 4736 * reference count - if we don't do it, when they access the inode's 4737 * io_tree to unlock a range it may be too late, leading to an 4738 * use-after-free issue. 4739 */ 4740 spin_lock(&io_tree->lock); 4741 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4742 struct extent_state *state; 4743 struct extent_state *cached_state = NULL; 4744 u64 start; 4745 u64 end; 4746 unsigned state_flags; 4747 4748 node = rb_first(&io_tree->state); 4749 state = rb_entry(node, struct extent_state, rb_node); 4750 start = state->start; 4751 end = state->end; 4752 state_flags = state->state; 4753 spin_unlock(&io_tree->lock); 4754 4755 lock_extent_bits(io_tree, start, end, &cached_state); 4756 4757 /* 4758 * If still has DELALLOC flag, the extent didn't reach disk, 4759 * and its reserved space won't be freed by delayed_ref. 4760 * So we need to free its reserved space here. 4761 * (Refer to comment in btrfs_invalidatepage, case 2) 4762 * 4763 * Note, end is the bytenr of last byte, so we need + 1 here. 4764 */ 4765 if (state_flags & EXTENT_DELALLOC) 4766 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 4767 4768 clear_extent_bit(io_tree, start, end, 4769 EXTENT_LOCKED | EXTENT_DELALLOC | 4770 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 4771 &cached_state); 4772 4773 cond_resched(); 4774 spin_lock(&io_tree->lock); 4775 } 4776 spin_unlock(&io_tree->lock); 4777 } 4778 4779 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 4780 struct btrfs_block_rsv *rsv) 4781 { 4782 struct btrfs_fs_info *fs_info = root->fs_info; 4783 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4784 struct btrfs_trans_handle *trans; 4785 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 4786 int ret; 4787 4788 /* 4789 * Eviction should be taking place at some place safe because of our 4790 * delayed iputs. However the normal flushing code will run delayed 4791 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 4792 * 4793 * We reserve the delayed_refs_extra here again because we can't use 4794 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 4795 * above. We reserve our extra bit here because we generate a ton of 4796 * delayed refs activity by truncating. 4797 * 4798 * If we cannot make our reservation we'll attempt to steal from the 4799 * global reserve, because we really want to be able to free up space. 4800 */ 4801 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 4802 BTRFS_RESERVE_FLUSH_EVICT); 4803 if (ret) { 4804 /* 4805 * Try to steal from the global reserve if there is space for 4806 * it. 4807 */ 4808 if (btrfs_check_space_for_delayed_refs(fs_info) || 4809 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 4810 btrfs_warn(fs_info, 4811 "could not allocate space for delete; will truncate on mount"); 4812 return ERR_PTR(-ENOSPC); 4813 } 4814 delayed_refs_extra = 0; 4815 } 4816 4817 trans = btrfs_join_transaction(root); 4818 if (IS_ERR(trans)) 4819 return trans; 4820 4821 if (delayed_refs_extra) { 4822 trans->block_rsv = &fs_info->trans_block_rsv; 4823 trans->bytes_reserved = delayed_refs_extra; 4824 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 4825 delayed_refs_extra, 1); 4826 } 4827 return trans; 4828 } 4829 4830 void btrfs_evict_inode(struct inode *inode) 4831 { 4832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4833 struct btrfs_trans_handle *trans; 4834 struct btrfs_root *root = BTRFS_I(inode)->root; 4835 struct btrfs_block_rsv *rsv; 4836 int ret; 4837 4838 trace_btrfs_inode_evict(inode); 4839 4840 if (!root) { 4841 clear_inode(inode); 4842 return; 4843 } 4844 4845 evict_inode_truncate_pages(inode); 4846 4847 if (inode->i_nlink && 4848 ((btrfs_root_refs(&root->root_item) != 0 && 4849 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 4850 btrfs_is_free_space_inode(BTRFS_I(inode)))) 4851 goto no_delete; 4852 4853 if (is_bad_inode(inode)) 4854 goto no_delete; 4855 4856 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 4857 4858 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 4859 goto no_delete; 4860 4861 if (inode->i_nlink > 0) { 4862 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 4863 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 4864 goto no_delete; 4865 } 4866 4867 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 4868 if (ret) 4869 goto no_delete; 4870 4871 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 4872 if (!rsv) 4873 goto no_delete; 4874 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 4875 rsv->failfast = 1; 4876 4877 btrfs_i_size_write(BTRFS_I(inode), 0); 4878 4879 while (1) { 4880 trans = evict_refill_and_join(root, rsv); 4881 if (IS_ERR(trans)) 4882 goto free_rsv; 4883 4884 trans->block_rsv = rsv; 4885 4886 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4887 trans->block_rsv = &fs_info->trans_block_rsv; 4888 btrfs_end_transaction(trans); 4889 btrfs_btree_balance_dirty(fs_info); 4890 if (ret && ret != -ENOSPC && ret != -EAGAIN) 4891 goto free_rsv; 4892 else if (!ret) 4893 break; 4894 } 4895 4896 /* 4897 * Errors here aren't a big deal, it just means we leave orphan items in 4898 * the tree. They will be cleaned up on the next mount. If the inode 4899 * number gets reused, cleanup deletes the orphan item without doing 4900 * anything, and unlink reuses the existing orphan item. 4901 * 4902 * If it turns out that we are dropping too many of these, we might want 4903 * to add a mechanism for retrying these after a commit. 4904 */ 4905 trans = evict_refill_and_join(root, rsv); 4906 if (!IS_ERR(trans)) { 4907 trans->block_rsv = rsv; 4908 btrfs_orphan_del(trans, BTRFS_I(inode)); 4909 trans->block_rsv = &fs_info->trans_block_rsv; 4910 btrfs_end_transaction(trans); 4911 } 4912 4913 if (!(root == fs_info->tree_root || 4914 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4915 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 4916 4917 free_rsv: 4918 btrfs_free_block_rsv(fs_info, rsv); 4919 no_delete: 4920 /* 4921 * If we didn't successfully delete, the orphan item will still be in 4922 * the tree and we'll retry on the next mount. Again, we might also want 4923 * to retry these periodically in the future. 4924 */ 4925 btrfs_remove_delayed_node(BTRFS_I(inode)); 4926 clear_inode(inode); 4927 } 4928 4929 /* 4930 * Return the key found in the dir entry in the location pointer, fill @type 4931 * with BTRFS_FT_*, and return 0. 4932 * 4933 * If no dir entries were found, returns -ENOENT. 4934 * If found a corrupted location in dir entry, returns -EUCLEAN. 4935 */ 4936 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 4937 struct btrfs_key *location, u8 *type) 4938 { 4939 const char *name = dentry->d_name.name; 4940 int namelen = dentry->d_name.len; 4941 struct btrfs_dir_item *di; 4942 struct btrfs_path *path; 4943 struct btrfs_root *root = BTRFS_I(dir)->root; 4944 int ret = 0; 4945 4946 path = btrfs_alloc_path(); 4947 if (!path) 4948 return -ENOMEM; 4949 4950 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 4951 name, namelen, 0); 4952 if (IS_ERR_OR_NULL(di)) { 4953 ret = di ? PTR_ERR(di) : -ENOENT; 4954 goto out; 4955 } 4956 4957 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 4958 if (location->type != BTRFS_INODE_ITEM_KEY && 4959 location->type != BTRFS_ROOT_ITEM_KEY) { 4960 ret = -EUCLEAN; 4961 btrfs_warn(root->fs_info, 4962 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 4963 __func__, name, btrfs_ino(BTRFS_I(dir)), 4964 location->objectid, location->type, location->offset); 4965 } 4966 if (!ret) 4967 *type = btrfs_dir_type(path->nodes[0], di); 4968 out: 4969 btrfs_free_path(path); 4970 return ret; 4971 } 4972 4973 /* 4974 * when we hit a tree root in a directory, the btrfs part of the inode 4975 * needs to be changed to reflect the root directory of the tree root. This 4976 * is kind of like crossing a mount point. 4977 */ 4978 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 4979 struct inode *dir, 4980 struct dentry *dentry, 4981 struct btrfs_key *location, 4982 struct btrfs_root **sub_root) 4983 { 4984 struct btrfs_path *path; 4985 struct btrfs_root *new_root; 4986 struct btrfs_root_ref *ref; 4987 struct extent_buffer *leaf; 4988 struct btrfs_key key; 4989 int ret; 4990 int err = 0; 4991 4992 path = btrfs_alloc_path(); 4993 if (!path) { 4994 err = -ENOMEM; 4995 goto out; 4996 } 4997 4998 err = -ENOENT; 4999 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5000 key.type = BTRFS_ROOT_REF_KEY; 5001 key.offset = location->objectid; 5002 5003 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5004 if (ret) { 5005 if (ret < 0) 5006 err = ret; 5007 goto out; 5008 } 5009 5010 leaf = path->nodes[0]; 5011 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5012 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5013 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5014 goto out; 5015 5016 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5017 (unsigned long)(ref + 1), 5018 dentry->d_name.len); 5019 if (ret) 5020 goto out; 5021 5022 btrfs_release_path(path); 5023 5024 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5025 if (IS_ERR(new_root)) { 5026 err = PTR_ERR(new_root); 5027 goto out; 5028 } 5029 5030 *sub_root = new_root; 5031 location->objectid = btrfs_root_dirid(&new_root->root_item); 5032 location->type = BTRFS_INODE_ITEM_KEY; 5033 location->offset = 0; 5034 err = 0; 5035 out: 5036 btrfs_free_path(path); 5037 return err; 5038 } 5039 5040 static void inode_tree_add(struct inode *inode) 5041 { 5042 struct btrfs_root *root = BTRFS_I(inode)->root; 5043 struct btrfs_inode *entry; 5044 struct rb_node **p; 5045 struct rb_node *parent; 5046 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5047 u64 ino = btrfs_ino(BTRFS_I(inode)); 5048 5049 if (inode_unhashed(inode)) 5050 return; 5051 parent = NULL; 5052 spin_lock(&root->inode_lock); 5053 p = &root->inode_tree.rb_node; 5054 while (*p) { 5055 parent = *p; 5056 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5057 5058 if (ino < btrfs_ino(entry)) 5059 p = &parent->rb_left; 5060 else if (ino > btrfs_ino(entry)) 5061 p = &parent->rb_right; 5062 else { 5063 WARN_ON(!(entry->vfs_inode.i_state & 5064 (I_WILL_FREE | I_FREEING))); 5065 rb_replace_node(parent, new, &root->inode_tree); 5066 RB_CLEAR_NODE(parent); 5067 spin_unlock(&root->inode_lock); 5068 return; 5069 } 5070 } 5071 rb_link_node(new, parent, p); 5072 rb_insert_color(new, &root->inode_tree); 5073 spin_unlock(&root->inode_lock); 5074 } 5075 5076 static void inode_tree_del(struct inode *inode) 5077 { 5078 struct btrfs_root *root = BTRFS_I(inode)->root; 5079 int empty = 0; 5080 5081 spin_lock(&root->inode_lock); 5082 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5083 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5084 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5085 empty = RB_EMPTY_ROOT(&root->inode_tree); 5086 } 5087 spin_unlock(&root->inode_lock); 5088 5089 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5090 spin_lock(&root->inode_lock); 5091 empty = RB_EMPTY_ROOT(&root->inode_tree); 5092 spin_unlock(&root->inode_lock); 5093 if (empty) 5094 btrfs_add_dead_root(root); 5095 } 5096 } 5097 5098 5099 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5100 { 5101 struct btrfs_iget_args *args = p; 5102 inode->i_ino = args->location->objectid; 5103 memcpy(&BTRFS_I(inode)->location, args->location, 5104 sizeof(*args->location)); 5105 BTRFS_I(inode)->root = args->root; 5106 return 0; 5107 } 5108 5109 static int btrfs_find_actor(struct inode *inode, void *opaque) 5110 { 5111 struct btrfs_iget_args *args = opaque; 5112 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5113 args->root == BTRFS_I(inode)->root; 5114 } 5115 5116 static struct inode *btrfs_iget_locked(struct super_block *s, 5117 struct btrfs_key *location, 5118 struct btrfs_root *root) 5119 { 5120 struct inode *inode; 5121 struct btrfs_iget_args args; 5122 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5123 5124 args.location = location; 5125 args.root = root; 5126 5127 inode = iget5_locked(s, hashval, btrfs_find_actor, 5128 btrfs_init_locked_inode, 5129 (void *)&args); 5130 return inode; 5131 } 5132 5133 /* 5134 * Get an inode object given its location and corresponding root. 5135 * Path can be preallocated to prevent recursing back to iget through 5136 * allocator. NULL is also valid but may require an additional allocation 5137 * later. 5138 */ 5139 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5140 struct btrfs_root *root, struct btrfs_path *path) 5141 { 5142 struct inode *inode; 5143 5144 inode = btrfs_iget_locked(s, location, root); 5145 if (!inode) 5146 return ERR_PTR(-ENOMEM); 5147 5148 if (inode->i_state & I_NEW) { 5149 int ret; 5150 5151 ret = btrfs_read_locked_inode(inode, path); 5152 if (!ret) { 5153 inode_tree_add(inode); 5154 unlock_new_inode(inode); 5155 } else { 5156 iget_failed(inode); 5157 /* 5158 * ret > 0 can come from btrfs_search_slot called by 5159 * btrfs_read_locked_inode, this means the inode item 5160 * was not found. 5161 */ 5162 if (ret > 0) 5163 ret = -ENOENT; 5164 inode = ERR_PTR(ret); 5165 } 5166 } 5167 5168 return inode; 5169 } 5170 5171 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5172 struct btrfs_root *root) 5173 { 5174 return btrfs_iget_path(s, location, root, NULL); 5175 } 5176 5177 static struct inode *new_simple_dir(struct super_block *s, 5178 struct btrfs_key *key, 5179 struct btrfs_root *root) 5180 { 5181 struct inode *inode = new_inode(s); 5182 5183 if (!inode) 5184 return ERR_PTR(-ENOMEM); 5185 5186 BTRFS_I(inode)->root = root; 5187 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5188 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5189 5190 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5191 /* 5192 * We only need lookup, the rest is read-only and there's no inode 5193 * associated with the dentry 5194 */ 5195 inode->i_op = &simple_dir_inode_operations; 5196 inode->i_opflags &= ~IOP_XATTR; 5197 inode->i_fop = &simple_dir_operations; 5198 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5199 inode->i_mtime = current_time(inode); 5200 inode->i_atime = inode->i_mtime; 5201 inode->i_ctime = inode->i_mtime; 5202 BTRFS_I(inode)->i_otime = inode->i_mtime; 5203 5204 return inode; 5205 } 5206 5207 static inline u8 btrfs_inode_type(struct inode *inode) 5208 { 5209 /* 5210 * Compile-time asserts that generic FT_* types still match 5211 * BTRFS_FT_* types 5212 */ 5213 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5214 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5215 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5216 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5217 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5218 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5219 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5220 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5221 5222 return fs_umode_to_ftype(inode->i_mode); 5223 } 5224 5225 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5226 { 5227 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5228 struct inode *inode; 5229 struct btrfs_root *root = BTRFS_I(dir)->root; 5230 struct btrfs_root *sub_root = root; 5231 struct btrfs_key location; 5232 u8 di_type = 0; 5233 int index; 5234 int ret = 0; 5235 5236 if (dentry->d_name.len > BTRFS_NAME_LEN) 5237 return ERR_PTR(-ENAMETOOLONG); 5238 5239 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5240 if (ret < 0) 5241 return ERR_PTR(ret); 5242 5243 if (location.type == BTRFS_INODE_ITEM_KEY) { 5244 inode = btrfs_iget(dir->i_sb, &location, root); 5245 if (IS_ERR(inode)) 5246 return inode; 5247 5248 /* Do extra check against inode mode with di_type */ 5249 if (btrfs_inode_type(inode) != di_type) { 5250 btrfs_crit(fs_info, 5251 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5252 inode->i_mode, btrfs_inode_type(inode), 5253 di_type); 5254 iput(inode); 5255 return ERR_PTR(-EUCLEAN); 5256 } 5257 return inode; 5258 } 5259 5260 index = srcu_read_lock(&fs_info->subvol_srcu); 5261 ret = fixup_tree_root_location(fs_info, dir, dentry, 5262 &location, &sub_root); 5263 if (ret < 0) { 5264 if (ret != -ENOENT) 5265 inode = ERR_PTR(ret); 5266 else 5267 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5268 } else { 5269 inode = btrfs_iget(dir->i_sb, &location, sub_root); 5270 } 5271 srcu_read_unlock(&fs_info->subvol_srcu, index); 5272 5273 if (!IS_ERR(inode) && root != sub_root) { 5274 down_read(&fs_info->cleanup_work_sem); 5275 if (!sb_rdonly(inode->i_sb)) 5276 ret = btrfs_orphan_cleanup(sub_root); 5277 up_read(&fs_info->cleanup_work_sem); 5278 if (ret) { 5279 iput(inode); 5280 inode = ERR_PTR(ret); 5281 } 5282 } 5283 5284 return inode; 5285 } 5286 5287 static int btrfs_dentry_delete(const struct dentry *dentry) 5288 { 5289 struct btrfs_root *root; 5290 struct inode *inode = d_inode(dentry); 5291 5292 if (!inode && !IS_ROOT(dentry)) 5293 inode = d_inode(dentry->d_parent); 5294 5295 if (inode) { 5296 root = BTRFS_I(inode)->root; 5297 if (btrfs_root_refs(&root->root_item) == 0) 5298 return 1; 5299 5300 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5301 return 1; 5302 } 5303 return 0; 5304 } 5305 5306 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5307 unsigned int flags) 5308 { 5309 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5310 5311 if (inode == ERR_PTR(-ENOENT)) 5312 inode = NULL; 5313 return d_splice_alias(inode, dentry); 5314 } 5315 5316 /* 5317 * All this infrastructure exists because dir_emit can fault, and we are holding 5318 * the tree lock when doing readdir. For now just allocate a buffer and copy 5319 * our information into that, and then dir_emit from the buffer. This is 5320 * similar to what NFS does, only we don't keep the buffer around in pagecache 5321 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5322 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5323 * tree lock. 5324 */ 5325 static int btrfs_opendir(struct inode *inode, struct file *file) 5326 { 5327 struct btrfs_file_private *private; 5328 5329 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5330 if (!private) 5331 return -ENOMEM; 5332 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5333 if (!private->filldir_buf) { 5334 kfree(private); 5335 return -ENOMEM; 5336 } 5337 file->private_data = private; 5338 return 0; 5339 } 5340 5341 struct dir_entry { 5342 u64 ino; 5343 u64 offset; 5344 unsigned type; 5345 int name_len; 5346 }; 5347 5348 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5349 { 5350 while (entries--) { 5351 struct dir_entry *entry = addr; 5352 char *name = (char *)(entry + 1); 5353 5354 ctx->pos = get_unaligned(&entry->offset); 5355 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5356 get_unaligned(&entry->ino), 5357 get_unaligned(&entry->type))) 5358 return 1; 5359 addr += sizeof(struct dir_entry) + 5360 get_unaligned(&entry->name_len); 5361 ctx->pos++; 5362 } 5363 return 0; 5364 } 5365 5366 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5367 { 5368 struct inode *inode = file_inode(file); 5369 struct btrfs_root *root = BTRFS_I(inode)->root; 5370 struct btrfs_file_private *private = file->private_data; 5371 struct btrfs_dir_item *di; 5372 struct btrfs_key key; 5373 struct btrfs_key found_key; 5374 struct btrfs_path *path; 5375 void *addr; 5376 struct list_head ins_list; 5377 struct list_head del_list; 5378 int ret; 5379 struct extent_buffer *leaf; 5380 int slot; 5381 char *name_ptr; 5382 int name_len; 5383 int entries = 0; 5384 int total_len = 0; 5385 bool put = false; 5386 struct btrfs_key location; 5387 5388 if (!dir_emit_dots(file, ctx)) 5389 return 0; 5390 5391 path = btrfs_alloc_path(); 5392 if (!path) 5393 return -ENOMEM; 5394 5395 addr = private->filldir_buf; 5396 path->reada = READA_FORWARD; 5397 5398 INIT_LIST_HEAD(&ins_list); 5399 INIT_LIST_HEAD(&del_list); 5400 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5401 5402 again: 5403 key.type = BTRFS_DIR_INDEX_KEY; 5404 key.offset = ctx->pos; 5405 key.objectid = btrfs_ino(BTRFS_I(inode)); 5406 5407 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5408 if (ret < 0) 5409 goto err; 5410 5411 while (1) { 5412 struct dir_entry *entry; 5413 5414 leaf = path->nodes[0]; 5415 slot = path->slots[0]; 5416 if (slot >= btrfs_header_nritems(leaf)) { 5417 ret = btrfs_next_leaf(root, path); 5418 if (ret < 0) 5419 goto err; 5420 else if (ret > 0) 5421 break; 5422 continue; 5423 } 5424 5425 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5426 5427 if (found_key.objectid != key.objectid) 5428 break; 5429 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5430 break; 5431 if (found_key.offset < ctx->pos) 5432 goto next; 5433 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5434 goto next; 5435 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5436 name_len = btrfs_dir_name_len(leaf, di); 5437 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5438 PAGE_SIZE) { 5439 btrfs_release_path(path); 5440 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5441 if (ret) 5442 goto nopos; 5443 addr = private->filldir_buf; 5444 entries = 0; 5445 total_len = 0; 5446 goto again; 5447 } 5448 5449 entry = addr; 5450 put_unaligned(name_len, &entry->name_len); 5451 name_ptr = (char *)(entry + 1); 5452 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5453 name_len); 5454 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5455 &entry->type); 5456 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5457 put_unaligned(location.objectid, &entry->ino); 5458 put_unaligned(found_key.offset, &entry->offset); 5459 entries++; 5460 addr += sizeof(struct dir_entry) + name_len; 5461 total_len += sizeof(struct dir_entry) + name_len; 5462 next: 5463 path->slots[0]++; 5464 } 5465 btrfs_release_path(path); 5466 5467 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5468 if (ret) 5469 goto nopos; 5470 5471 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5472 if (ret) 5473 goto nopos; 5474 5475 /* 5476 * Stop new entries from being returned after we return the last 5477 * entry. 5478 * 5479 * New directory entries are assigned a strictly increasing 5480 * offset. This means that new entries created during readdir 5481 * are *guaranteed* to be seen in the future by that readdir. 5482 * This has broken buggy programs which operate on names as 5483 * they're returned by readdir. Until we re-use freed offsets 5484 * we have this hack to stop new entries from being returned 5485 * under the assumption that they'll never reach this huge 5486 * offset. 5487 * 5488 * This is being careful not to overflow 32bit loff_t unless the 5489 * last entry requires it because doing so has broken 32bit apps 5490 * in the past. 5491 */ 5492 if (ctx->pos >= INT_MAX) 5493 ctx->pos = LLONG_MAX; 5494 else 5495 ctx->pos = INT_MAX; 5496 nopos: 5497 ret = 0; 5498 err: 5499 if (put) 5500 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5501 btrfs_free_path(path); 5502 return ret; 5503 } 5504 5505 /* 5506 * This is somewhat expensive, updating the tree every time the 5507 * inode changes. But, it is most likely to find the inode in cache. 5508 * FIXME, needs more benchmarking...there are no reasons other than performance 5509 * to keep or drop this code. 5510 */ 5511 static int btrfs_dirty_inode(struct inode *inode) 5512 { 5513 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5514 struct btrfs_root *root = BTRFS_I(inode)->root; 5515 struct btrfs_trans_handle *trans; 5516 int ret; 5517 5518 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5519 return 0; 5520 5521 trans = btrfs_join_transaction(root); 5522 if (IS_ERR(trans)) 5523 return PTR_ERR(trans); 5524 5525 ret = btrfs_update_inode(trans, root, inode); 5526 if (ret && ret == -ENOSPC) { 5527 /* whoops, lets try again with the full transaction */ 5528 btrfs_end_transaction(trans); 5529 trans = btrfs_start_transaction(root, 1); 5530 if (IS_ERR(trans)) 5531 return PTR_ERR(trans); 5532 5533 ret = btrfs_update_inode(trans, root, inode); 5534 } 5535 btrfs_end_transaction(trans); 5536 if (BTRFS_I(inode)->delayed_node) 5537 btrfs_balance_delayed_items(fs_info); 5538 5539 return ret; 5540 } 5541 5542 /* 5543 * This is a copy of file_update_time. We need this so we can return error on 5544 * ENOSPC for updating the inode in the case of file write and mmap writes. 5545 */ 5546 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5547 int flags) 5548 { 5549 struct btrfs_root *root = BTRFS_I(inode)->root; 5550 bool dirty = flags & ~S_VERSION; 5551 5552 if (btrfs_root_readonly(root)) 5553 return -EROFS; 5554 5555 if (flags & S_VERSION) 5556 dirty |= inode_maybe_inc_iversion(inode, dirty); 5557 if (flags & S_CTIME) 5558 inode->i_ctime = *now; 5559 if (flags & S_MTIME) 5560 inode->i_mtime = *now; 5561 if (flags & S_ATIME) 5562 inode->i_atime = *now; 5563 return dirty ? btrfs_dirty_inode(inode) : 0; 5564 } 5565 5566 /* 5567 * find the highest existing sequence number in a directory 5568 * and then set the in-memory index_cnt variable to reflect 5569 * free sequence numbers 5570 */ 5571 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5572 { 5573 struct btrfs_root *root = inode->root; 5574 struct btrfs_key key, found_key; 5575 struct btrfs_path *path; 5576 struct extent_buffer *leaf; 5577 int ret; 5578 5579 key.objectid = btrfs_ino(inode); 5580 key.type = BTRFS_DIR_INDEX_KEY; 5581 key.offset = (u64)-1; 5582 5583 path = btrfs_alloc_path(); 5584 if (!path) 5585 return -ENOMEM; 5586 5587 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5588 if (ret < 0) 5589 goto out; 5590 /* FIXME: we should be able to handle this */ 5591 if (ret == 0) 5592 goto out; 5593 ret = 0; 5594 5595 /* 5596 * MAGIC NUMBER EXPLANATION: 5597 * since we search a directory based on f_pos we have to start at 2 5598 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5599 * else has to start at 2 5600 */ 5601 if (path->slots[0] == 0) { 5602 inode->index_cnt = 2; 5603 goto out; 5604 } 5605 5606 path->slots[0]--; 5607 5608 leaf = path->nodes[0]; 5609 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5610 5611 if (found_key.objectid != btrfs_ino(inode) || 5612 found_key.type != BTRFS_DIR_INDEX_KEY) { 5613 inode->index_cnt = 2; 5614 goto out; 5615 } 5616 5617 inode->index_cnt = found_key.offset + 1; 5618 out: 5619 btrfs_free_path(path); 5620 return ret; 5621 } 5622 5623 /* 5624 * helper to find a free sequence number in a given directory. This current 5625 * code is very simple, later versions will do smarter things in the btree 5626 */ 5627 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 5628 { 5629 int ret = 0; 5630 5631 if (dir->index_cnt == (u64)-1) { 5632 ret = btrfs_inode_delayed_dir_index_count(dir); 5633 if (ret) { 5634 ret = btrfs_set_inode_index_count(dir); 5635 if (ret) 5636 return ret; 5637 } 5638 } 5639 5640 *index = dir->index_cnt; 5641 dir->index_cnt++; 5642 5643 return ret; 5644 } 5645 5646 static int btrfs_insert_inode_locked(struct inode *inode) 5647 { 5648 struct btrfs_iget_args args; 5649 args.location = &BTRFS_I(inode)->location; 5650 args.root = BTRFS_I(inode)->root; 5651 5652 return insert_inode_locked4(inode, 5653 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5654 btrfs_find_actor, &args); 5655 } 5656 5657 /* 5658 * Inherit flags from the parent inode. 5659 * 5660 * Currently only the compression flags and the cow flags are inherited. 5661 */ 5662 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 5663 { 5664 unsigned int flags; 5665 5666 if (!dir) 5667 return; 5668 5669 flags = BTRFS_I(dir)->flags; 5670 5671 if (flags & BTRFS_INODE_NOCOMPRESS) { 5672 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 5673 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 5674 } else if (flags & BTRFS_INODE_COMPRESS) { 5675 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 5676 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 5677 } 5678 5679 if (flags & BTRFS_INODE_NODATACOW) { 5680 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 5681 if (S_ISREG(inode->i_mode)) 5682 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5683 } 5684 5685 btrfs_sync_inode_flags_to_i_flags(inode); 5686 } 5687 5688 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5689 struct btrfs_root *root, 5690 struct inode *dir, 5691 const char *name, int name_len, 5692 u64 ref_objectid, u64 objectid, 5693 umode_t mode, u64 *index) 5694 { 5695 struct btrfs_fs_info *fs_info = root->fs_info; 5696 struct inode *inode; 5697 struct btrfs_inode_item *inode_item; 5698 struct btrfs_key *location; 5699 struct btrfs_path *path; 5700 struct btrfs_inode_ref *ref; 5701 struct btrfs_key key[2]; 5702 u32 sizes[2]; 5703 int nitems = name ? 2 : 1; 5704 unsigned long ptr; 5705 unsigned int nofs_flag; 5706 int ret; 5707 5708 path = btrfs_alloc_path(); 5709 if (!path) 5710 return ERR_PTR(-ENOMEM); 5711 5712 nofs_flag = memalloc_nofs_save(); 5713 inode = new_inode(fs_info->sb); 5714 memalloc_nofs_restore(nofs_flag); 5715 if (!inode) { 5716 btrfs_free_path(path); 5717 return ERR_PTR(-ENOMEM); 5718 } 5719 5720 /* 5721 * O_TMPFILE, set link count to 0, so that after this point, 5722 * we fill in an inode item with the correct link count. 5723 */ 5724 if (!name) 5725 set_nlink(inode, 0); 5726 5727 /* 5728 * we have to initialize this early, so we can reclaim the inode 5729 * number if we fail afterwards in this function. 5730 */ 5731 inode->i_ino = objectid; 5732 5733 if (dir && name) { 5734 trace_btrfs_inode_request(dir); 5735 5736 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 5737 if (ret) { 5738 btrfs_free_path(path); 5739 iput(inode); 5740 return ERR_PTR(ret); 5741 } 5742 } else if (dir) { 5743 *index = 0; 5744 } 5745 /* 5746 * index_cnt is ignored for everything but a dir, 5747 * btrfs_set_inode_index_count has an explanation for the magic 5748 * number 5749 */ 5750 BTRFS_I(inode)->index_cnt = 2; 5751 BTRFS_I(inode)->dir_index = *index; 5752 BTRFS_I(inode)->root = root; 5753 BTRFS_I(inode)->generation = trans->transid; 5754 inode->i_generation = BTRFS_I(inode)->generation; 5755 5756 /* 5757 * We could have gotten an inode number from somebody who was fsynced 5758 * and then removed in this same transaction, so let's just set full 5759 * sync since it will be a full sync anyway and this will blow away the 5760 * old info in the log. 5761 */ 5762 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5763 5764 key[0].objectid = objectid; 5765 key[0].type = BTRFS_INODE_ITEM_KEY; 5766 key[0].offset = 0; 5767 5768 sizes[0] = sizeof(struct btrfs_inode_item); 5769 5770 if (name) { 5771 /* 5772 * Start new inodes with an inode_ref. This is slightly more 5773 * efficient for small numbers of hard links since they will 5774 * be packed into one item. Extended refs will kick in if we 5775 * add more hard links than can fit in the ref item. 5776 */ 5777 key[1].objectid = objectid; 5778 key[1].type = BTRFS_INODE_REF_KEY; 5779 key[1].offset = ref_objectid; 5780 5781 sizes[1] = name_len + sizeof(*ref); 5782 } 5783 5784 location = &BTRFS_I(inode)->location; 5785 location->objectid = objectid; 5786 location->offset = 0; 5787 location->type = BTRFS_INODE_ITEM_KEY; 5788 5789 ret = btrfs_insert_inode_locked(inode); 5790 if (ret < 0) { 5791 iput(inode); 5792 goto fail; 5793 } 5794 5795 path->leave_spinning = 1; 5796 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 5797 if (ret != 0) 5798 goto fail_unlock; 5799 5800 inode_init_owner(inode, dir, mode); 5801 inode_set_bytes(inode, 0); 5802 5803 inode->i_mtime = current_time(inode); 5804 inode->i_atime = inode->i_mtime; 5805 inode->i_ctime = inode->i_mtime; 5806 BTRFS_I(inode)->i_otime = inode->i_mtime; 5807 5808 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5809 struct btrfs_inode_item); 5810 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 5811 sizeof(*inode_item)); 5812 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5813 5814 if (name) { 5815 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5816 struct btrfs_inode_ref); 5817 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5818 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5819 ptr = (unsigned long)(ref + 1); 5820 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5821 } 5822 5823 btrfs_mark_buffer_dirty(path->nodes[0]); 5824 btrfs_free_path(path); 5825 5826 btrfs_inherit_iflags(inode, dir); 5827 5828 if (S_ISREG(mode)) { 5829 if (btrfs_test_opt(fs_info, NODATASUM)) 5830 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5831 if (btrfs_test_opt(fs_info, NODATACOW)) 5832 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5833 BTRFS_INODE_NODATASUM; 5834 } 5835 5836 inode_tree_add(inode); 5837 5838 trace_btrfs_inode_new(inode); 5839 btrfs_set_inode_last_trans(trans, inode); 5840 5841 btrfs_update_root_times(trans, root); 5842 5843 ret = btrfs_inode_inherit_props(trans, inode, dir); 5844 if (ret) 5845 btrfs_err(fs_info, 5846 "error inheriting props for ino %llu (root %llu): %d", 5847 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 5848 5849 return inode; 5850 5851 fail_unlock: 5852 discard_new_inode(inode); 5853 fail: 5854 if (dir && name) 5855 BTRFS_I(dir)->index_cnt--; 5856 btrfs_free_path(path); 5857 return ERR_PTR(ret); 5858 } 5859 5860 /* 5861 * utility function to add 'inode' into 'parent_inode' with 5862 * a give name and a given sequence number. 5863 * if 'add_backref' is true, also insert a backref from the 5864 * inode to the parent directory. 5865 */ 5866 int btrfs_add_link(struct btrfs_trans_handle *trans, 5867 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 5868 const char *name, int name_len, int add_backref, u64 index) 5869 { 5870 int ret = 0; 5871 struct btrfs_key key; 5872 struct btrfs_root *root = parent_inode->root; 5873 u64 ino = btrfs_ino(inode); 5874 u64 parent_ino = btrfs_ino(parent_inode); 5875 5876 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5877 memcpy(&key, &inode->root->root_key, sizeof(key)); 5878 } else { 5879 key.objectid = ino; 5880 key.type = BTRFS_INODE_ITEM_KEY; 5881 key.offset = 0; 5882 } 5883 5884 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5885 ret = btrfs_add_root_ref(trans, key.objectid, 5886 root->root_key.objectid, parent_ino, 5887 index, name, name_len); 5888 } else if (add_backref) { 5889 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5890 parent_ino, index); 5891 } 5892 5893 /* Nothing to clean up yet */ 5894 if (ret) 5895 return ret; 5896 5897 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 5898 btrfs_inode_type(&inode->vfs_inode), index); 5899 if (ret == -EEXIST || ret == -EOVERFLOW) 5900 goto fail_dir_item; 5901 else if (ret) { 5902 btrfs_abort_transaction(trans, ret); 5903 return ret; 5904 } 5905 5906 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 5907 name_len * 2); 5908 inode_inc_iversion(&parent_inode->vfs_inode); 5909 /* 5910 * If we are replaying a log tree, we do not want to update the mtime 5911 * and ctime of the parent directory with the current time, since the 5912 * log replay procedure is responsible for setting them to their correct 5913 * values (the ones it had when the fsync was done). 5914 */ 5915 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 5916 struct timespec64 now = current_time(&parent_inode->vfs_inode); 5917 5918 parent_inode->vfs_inode.i_mtime = now; 5919 parent_inode->vfs_inode.i_ctime = now; 5920 } 5921 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 5922 if (ret) 5923 btrfs_abort_transaction(trans, ret); 5924 return ret; 5925 5926 fail_dir_item: 5927 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5928 u64 local_index; 5929 int err; 5930 err = btrfs_del_root_ref(trans, key.objectid, 5931 root->root_key.objectid, parent_ino, 5932 &local_index, name, name_len); 5933 if (err) 5934 btrfs_abort_transaction(trans, err); 5935 } else if (add_backref) { 5936 u64 local_index; 5937 int err; 5938 5939 err = btrfs_del_inode_ref(trans, root, name, name_len, 5940 ino, parent_ino, &local_index); 5941 if (err) 5942 btrfs_abort_transaction(trans, err); 5943 } 5944 5945 /* Return the original error code */ 5946 return ret; 5947 } 5948 5949 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 5950 struct btrfs_inode *dir, struct dentry *dentry, 5951 struct btrfs_inode *inode, int backref, u64 index) 5952 { 5953 int err = btrfs_add_link(trans, dir, inode, 5954 dentry->d_name.name, dentry->d_name.len, 5955 backref, index); 5956 if (err > 0) 5957 err = -EEXIST; 5958 return err; 5959 } 5960 5961 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 5962 umode_t mode, dev_t rdev) 5963 { 5964 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5965 struct btrfs_trans_handle *trans; 5966 struct btrfs_root *root = BTRFS_I(dir)->root; 5967 struct inode *inode = NULL; 5968 int err; 5969 u64 objectid; 5970 u64 index = 0; 5971 5972 /* 5973 * 2 for inode item and ref 5974 * 2 for dir items 5975 * 1 for xattr if selinux is on 5976 */ 5977 trans = btrfs_start_transaction(root, 5); 5978 if (IS_ERR(trans)) 5979 return PTR_ERR(trans); 5980 5981 err = btrfs_find_free_ino(root, &objectid); 5982 if (err) 5983 goto out_unlock; 5984 5985 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5986 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 5987 mode, &index); 5988 if (IS_ERR(inode)) { 5989 err = PTR_ERR(inode); 5990 inode = NULL; 5991 goto out_unlock; 5992 } 5993 5994 /* 5995 * If the active LSM wants to access the inode during 5996 * d_instantiate it needs these. Smack checks to see 5997 * if the filesystem supports xattrs by looking at the 5998 * ops vector. 5999 */ 6000 inode->i_op = &btrfs_special_inode_operations; 6001 init_special_inode(inode, inode->i_mode, rdev); 6002 6003 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6004 if (err) 6005 goto out_unlock; 6006 6007 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6008 0, index); 6009 if (err) 6010 goto out_unlock; 6011 6012 btrfs_update_inode(trans, root, inode); 6013 d_instantiate_new(dentry, inode); 6014 6015 out_unlock: 6016 btrfs_end_transaction(trans); 6017 btrfs_btree_balance_dirty(fs_info); 6018 if (err && inode) { 6019 inode_dec_link_count(inode); 6020 discard_new_inode(inode); 6021 } 6022 return err; 6023 } 6024 6025 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6026 umode_t mode, bool excl) 6027 { 6028 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6029 struct btrfs_trans_handle *trans; 6030 struct btrfs_root *root = BTRFS_I(dir)->root; 6031 struct inode *inode = NULL; 6032 int err; 6033 u64 objectid; 6034 u64 index = 0; 6035 6036 /* 6037 * 2 for inode item and ref 6038 * 2 for dir items 6039 * 1 for xattr if selinux is on 6040 */ 6041 trans = btrfs_start_transaction(root, 5); 6042 if (IS_ERR(trans)) 6043 return PTR_ERR(trans); 6044 6045 err = btrfs_find_free_ino(root, &objectid); 6046 if (err) 6047 goto out_unlock; 6048 6049 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6050 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6051 mode, &index); 6052 if (IS_ERR(inode)) { 6053 err = PTR_ERR(inode); 6054 inode = NULL; 6055 goto out_unlock; 6056 } 6057 /* 6058 * If the active LSM wants to access the inode during 6059 * d_instantiate it needs these. Smack checks to see 6060 * if the filesystem supports xattrs by looking at the 6061 * ops vector. 6062 */ 6063 inode->i_fop = &btrfs_file_operations; 6064 inode->i_op = &btrfs_file_inode_operations; 6065 inode->i_mapping->a_ops = &btrfs_aops; 6066 6067 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6068 if (err) 6069 goto out_unlock; 6070 6071 err = btrfs_update_inode(trans, root, inode); 6072 if (err) 6073 goto out_unlock; 6074 6075 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6076 0, index); 6077 if (err) 6078 goto out_unlock; 6079 6080 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6081 d_instantiate_new(dentry, inode); 6082 6083 out_unlock: 6084 btrfs_end_transaction(trans); 6085 if (err && inode) { 6086 inode_dec_link_count(inode); 6087 discard_new_inode(inode); 6088 } 6089 btrfs_btree_balance_dirty(fs_info); 6090 return err; 6091 } 6092 6093 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6094 struct dentry *dentry) 6095 { 6096 struct btrfs_trans_handle *trans = NULL; 6097 struct btrfs_root *root = BTRFS_I(dir)->root; 6098 struct inode *inode = d_inode(old_dentry); 6099 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6100 u64 index; 6101 int err; 6102 int drop_inode = 0; 6103 6104 /* do not allow sys_link's with other subvols of the same device */ 6105 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6106 return -EXDEV; 6107 6108 if (inode->i_nlink >= BTRFS_LINK_MAX) 6109 return -EMLINK; 6110 6111 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6112 if (err) 6113 goto fail; 6114 6115 /* 6116 * 2 items for inode and inode ref 6117 * 2 items for dir items 6118 * 1 item for parent inode 6119 * 1 item for orphan item deletion if O_TMPFILE 6120 */ 6121 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6122 if (IS_ERR(trans)) { 6123 err = PTR_ERR(trans); 6124 trans = NULL; 6125 goto fail; 6126 } 6127 6128 /* There are several dir indexes for this inode, clear the cache. */ 6129 BTRFS_I(inode)->dir_index = 0ULL; 6130 inc_nlink(inode); 6131 inode_inc_iversion(inode); 6132 inode->i_ctime = current_time(inode); 6133 ihold(inode); 6134 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6135 6136 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6137 1, index); 6138 6139 if (err) { 6140 drop_inode = 1; 6141 } else { 6142 struct dentry *parent = dentry->d_parent; 6143 int ret; 6144 6145 err = btrfs_update_inode(trans, root, inode); 6146 if (err) 6147 goto fail; 6148 if (inode->i_nlink == 1) { 6149 /* 6150 * If new hard link count is 1, it's a file created 6151 * with open(2) O_TMPFILE flag. 6152 */ 6153 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6154 if (err) 6155 goto fail; 6156 } 6157 d_instantiate(dentry, inode); 6158 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6159 true, NULL); 6160 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6161 err = btrfs_commit_transaction(trans); 6162 trans = NULL; 6163 } 6164 } 6165 6166 fail: 6167 if (trans) 6168 btrfs_end_transaction(trans); 6169 if (drop_inode) { 6170 inode_dec_link_count(inode); 6171 iput(inode); 6172 } 6173 btrfs_btree_balance_dirty(fs_info); 6174 return err; 6175 } 6176 6177 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6178 { 6179 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6180 struct inode *inode = NULL; 6181 struct btrfs_trans_handle *trans; 6182 struct btrfs_root *root = BTRFS_I(dir)->root; 6183 int err = 0; 6184 u64 objectid = 0; 6185 u64 index = 0; 6186 6187 /* 6188 * 2 items for inode and ref 6189 * 2 items for dir items 6190 * 1 for xattr if selinux is on 6191 */ 6192 trans = btrfs_start_transaction(root, 5); 6193 if (IS_ERR(trans)) 6194 return PTR_ERR(trans); 6195 6196 err = btrfs_find_free_ino(root, &objectid); 6197 if (err) 6198 goto out_fail; 6199 6200 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6201 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6202 S_IFDIR | mode, &index); 6203 if (IS_ERR(inode)) { 6204 err = PTR_ERR(inode); 6205 inode = NULL; 6206 goto out_fail; 6207 } 6208 6209 /* these must be set before we unlock the inode */ 6210 inode->i_op = &btrfs_dir_inode_operations; 6211 inode->i_fop = &btrfs_dir_file_operations; 6212 6213 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6214 if (err) 6215 goto out_fail; 6216 6217 btrfs_i_size_write(BTRFS_I(inode), 0); 6218 err = btrfs_update_inode(trans, root, inode); 6219 if (err) 6220 goto out_fail; 6221 6222 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6223 dentry->d_name.name, 6224 dentry->d_name.len, 0, index); 6225 if (err) 6226 goto out_fail; 6227 6228 d_instantiate_new(dentry, inode); 6229 6230 out_fail: 6231 btrfs_end_transaction(trans); 6232 if (err && inode) { 6233 inode_dec_link_count(inode); 6234 discard_new_inode(inode); 6235 } 6236 btrfs_btree_balance_dirty(fs_info); 6237 return err; 6238 } 6239 6240 static noinline int uncompress_inline(struct btrfs_path *path, 6241 struct page *page, 6242 size_t pg_offset, u64 extent_offset, 6243 struct btrfs_file_extent_item *item) 6244 { 6245 int ret; 6246 struct extent_buffer *leaf = path->nodes[0]; 6247 char *tmp; 6248 size_t max_size; 6249 unsigned long inline_size; 6250 unsigned long ptr; 6251 int compress_type; 6252 6253 WARN_ON(pg_offset != 0); 6254 compress_type = btrfs_file_extent_compression(leaf, item); 6255 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6256 inline_size = btrfs_file_extent_inline_item_len(leaf, 6257 btrfs_item_nr(path->slots[0])); 6258 tmp = kmalloc(inline_size, GFP_NOFS); 6259 if (!tmp) 6260 return -ENOMEM; 6261 ptr = btrfs_file_extent_inline_start(item); 6262 6263 read_extent_buffer(leaf, tmp, ptr, inline_size); 6264 6265 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6266 ret = btrfs_decompress(compress_type, tmp, page, 6267 extent_offset, inline_size, max_size); 6268 6269 /* 6270 * decompression code contains a memset to fill in any space between the end 6271 * of the uncompressed data and the end of max_size in case the decompressed 6272 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6273 * the end of an inline extent and the beginning of the next block, so we 6274 * cover that region here. 6275 */ 6276 6277 if (max_size + pg_offset < PAGE_SIZE) { 6278 char *map = kmap(page); 6279 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6280 kunmap(page); 6281 } 6282 kfree(tmp); 6283 return ret; 6284 } 6285 6286 /** 6287 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6288 * @inode: file to search in 6289 * @page: page to read extent data into if the extent is inline 6290 * @pg_offset: offset into @page to copy to 6291 * @start: file offset 6292 * @len: length of range starting at @start 6293 * 6294 * This returns the first &struct extent_map which overlaps with the given 6295 * range, reading it from the B-tree and caching it if necessary. Note that 6296 * there may be more extents which overlap the given range after the returned 6297 * extent_map. 6298 * 6299 * If @page is not NULL and the extent is inline, this also reads the extent 6300 * data directly into the page and marks the extent up to date in the io_tree. 6301 * 6302 * Return: ERR_PTR on error, non-NULL extent_map on success. 6303 */ 6304 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6305 struct page *page, size_t pg_offset, 6306 u64 start, u64 len) 6307 { 6308 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6309 int ret; 6310 int err = 0; 6311 u64 extent_start = 0; 6312 u64 extent_end = 0; 6313 u64 objectid = btrfs_ino(inode); 6314 int extent_type = -1; 6315 struct btrfs_path *path = NULL; 6316 struct btrfs_root *root = inode->root; 6317 struct btrfs_file_extent_item *item; 6318 struct extent_buffer *leaf; 6319 struct btrfs_key found_key; 6320 struct extent_map *em = NULL; 6321 struct extent_map_tree *em_tree = &inode->extent_tree; 6322 struct extent_io_tree *io_tree = &inode->io_tree; 6323 6324 read_lock(&em_tree->lock); 6325 em = lookup_extent_mapping(em_tree, start, len); 6326 read_unlock(&em_tree->lock); 6327 6328 if (em) { 6329 if (em->start > start || em->start + em->len <= start) 6330 free_extent_map(em); 6331 else if (em->block_start == EXTENT_MAP_INLINE && page) 6332 free_extent_map(em); 6333 else 6334 goto out; 6335 } 6336 em = alloc_extent_map(); 6337 if (!em) { 6338 err = -ENOMEM; 6339 goto out; 6340 } 6341 em->start = EXTENT_MAP_HOLE; 6342 em->orig_start = EXTENT_MAP_HOLE; 6343 em->len = (u64)-1; 6344 em->block_len = (u64)-1; 6345 6346 path = btrfs_alloc_path(); 6347 if (!path) { 6348 err = -ENOMEM; 6349 goto out; 6350 } 6351 6352 /* Chances are we'll be called again, so go ahead and do readahead */ 6353 path->reada = READA_FORWARD; 6354 6355 /* 6356 * Unless we're going to uncompress the inline extent, no sleep would 6357 * happen. 6358 */ 6359 path->leave_spinning = 1; 6360 6361 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6362 if (ret < 0) { 6363 err = ret; 6364 goto out; 6365 } else if (ret > 0) { 6366 if (path->slots[0] == 0) 6367 goto not_found; 6368 path->slots[0]--; 6369 } 6370 6371 leaf = path->nodes[0]; 6372 item = btrfs_item_ptr(leaf, path->slots[0], 6373 struct btrfs_file_extent_item); 6374 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6375 if (found_key.objectid != objectid || 6376 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6377 /* 6378 * If we backup past the first extent we want to move forward 6379 * and see if there is an extent in front of us, otherwise we'll 6380 * say there is a hole for our whole search range which can 6381 * cause problems. 6382 */ 6383 extent_end = start; 6384 goto next; 6385 } 6386 6387 extent_type = btrfs_file_extent_type(leaf, item); 6388 extent_start = found_key.offset; 6389 if (extent_type == BTRFS_FILE_EXTENT_REG || 6390 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6391 /* Only regular file could have regular/prealloc extent */ 6392 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6393 ret = -EUCLEAN; 6394 btrfs_crit(fs_info, 6395 "regular/prealloc extent found for non-regular inode %llu", 6396 btrfs_ino(inode)); 6397 goto out; 6398 } 6399 extent_end = extent_start + 6400 btrfs_file_extent_num_bytes(leaf, item); 6401 6402 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6403 extent_start); 6404 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6405 size_t size; 6406 6407 size = btrfs_file_extent_ram_bytes(leaf, item); 6408 extent_end = ALIGN(extent_start + size, 6409 fs_info->sectorsize); 6410 6411 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6412 path->slots[0], 6413 extent_start); 6414 } 6415 next: 6416 if (start >= extent_end) { 6417 path->slots[0]++; 6418 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6419 ret = btrfs_next_leaf(root, path); 6420 if (ret < 0) { 6421 err = ret; 6422 goto out; 6423 } else if (ret > 0) { 6424 goto not_found; 6425 } 6426 leaf = path->nodes[0]; 6427 } 6428 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6429 if (found_key.objectid != objectid || 6430 found_key.type != BTRFS_EXTENT_DATA_KEY) 6431 goto not_found; 6432 if (start + len <= found_key.offset) 6433 goto not_found; 6434 if (start > found_key.offset) 6435 goto next; 6436 6437 /* New extent overlaps with existing one */ 6438 em->start = start; 6439 em->orig_start = start; 6440 em->len = found_key.offset - start; 6441 em->block_start = EXTENT_MAP_HOLE; 6442 goto insert; 6443 } 6444 6445 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6446 6447 if (extent_type == BTRFS_FILE_EXTENT_REG || 6448 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6449 goto insert; 6450 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6451 unsigned long ptr; 6452 char *map; 6453 size_t size; 6454 size_t extent_offset; 6455 size_t copy_size; 6456 6457 if (!page) 6458 goto out; 6459 6460 size = btrfs_file_extent_ram_bytes(leaf, item); 6461 extent_offset = page_offset(page) + pg_offset - extent_start; 6462 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6463 size - extent_offset); 6464 em->start = extent_start + extent_offset; 6465 em->len = ALIGN(copy_size, fs_info->sectorsize); 6466 em->orig_block_len = em->len; 6467 em->orig_start = em->start; 6468 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6469 6470 btrfs_set_path_blocking(path); 6471 if (!PageUptodate(page)) { 6472 if (btrfs_file_extent_compression(leaf, item) != 6473 BTRFS_COMPRESS_NONE) { 6474 ret = uncompress_inline(path, page, pg_offset, 6475 extent_offset, item); 6476 if (ret) { 6477 err = ret; 6478 goto out; 6479 } 6480 } else { 6481 map = kmap(page); 6482 read_extent_buffer(leaf, map + pg_offset, ptr, 6483 copy_size); 6484 if (pg_offset + copy_size < PAGE_SIZE) { 6485 memset(map + pg_offset + copy_size, 0, 6486 PAGE_SIZE - pg_offset - 6487 copy_size); 6488 } 6489 kunmap(page); 6490 } 6491 flush_dcache_page(page); 6492 } 6493 set_extent_uptodate(io_tree, em->start, 6494 extent_map_end(em) - 1, NULL, GFP_NOFS); 6495 goto insert; 6496 } 6497 not_found: 6498 em->start = start; 6499 em->orig_start = start; 6500 em->len = len; 6501 em->block_start = EXTENT_MAP_HOLE; 6502 insert: 6503 btrfs_release_path(path); 6504 if (em->start > start || extent_map_end(em) <= start) { 6505 btrfs_err(fs_info, 6506 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6507 em->start, em->len, start, len); 6508 err = -EIO; 6509 goto out; 6510 } 6511 6512 err = 0; 6513 write_lock(&em_tree->lock); 6514 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6515 write_unlock(&em_tree->lock); 6516 out: 6517 btrfs_free_path(path); 6518 6519 trace_btrfs_get_extent(root, inode, em); 6520 6521 if (err) { 6522 free_extent_map(em); 6523 return ERR_PTR(err); 6524 } 6525 BUG_ON(!em); /* Error is always set */ 6526 return em; 6527 } 6528 6529 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6530 u64 start, u64 len) 6531 { 6532 struct extent_map *em; 6533 struct extent_map *hole_em = NULL; 6534 u64 delalloc_start = start; 6535 u64 end; 6536 u64 delalloc_len; 6537 u64 delalloc_end; 6538 int err = 0; 6539 6540 em = btrfs_get_extent(inode, NULL, 0, start, len); 6541 if (IS_ERR(em)) 6542 return em; 6543 /* 6544 * If our em maps to: 6545 * - a hole or 6546 * - a pre-alloc extent, 6547 * there might actually be delalloc bytes behind it. 6548 */ 6549 if (em->block_start != EXTENT_MAP_HOLE && 6550 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6551 return em; 6552 else 6553 hole_em = em; 6554 6555 /* check to see if we've wrapped (len == -1 or similar) */ 6556 end = start + len; 6557 if (end < start) 6558 end = (u64)-1; 6559 else 6560 end -= 1; 6561 6562 em = NULL; 6563 6564 /* ok, we didn't find anything, lets look for delalloc */ 6565 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6566 end, len, EXTENT_DELALLOC, 1); 6567 delalloc_end = delalloc_start + delalloc_len; 6568 if (delalloc_end < delalloc_start) 6569 delalloc_end = (u64)-1; 6570 6571 /* 6572 * We didn't find anything useful, return the original results from 6573 * get_extent() 6574 */ 6575 if (delalloc_start > end || delalloc_end <= start) { 6576 em = hole_em; 6577 hole_em = NULL; 6578 goto out; 6579 } 6580 6581 /* 6582 * Adjust the delalloc_start to make sure it doesn't go backwards from 6583 * the start they passed in 6584 */ 6585 delalloc_start = max(start, delalloc_start); 6586 delalloc_len = delalloc_end - delalloc_start; 6587 6588 if (delalloc_len > 0) { 6589 u64 hole_start; 6590 u64 hole_len; 6591 const u64 hole_end = extent_map_end(hole_em); 6592 6593 em = alloc_extent_map(); 6594 if (!em) { 6595 err = -ENOMEM; 6596 goto out; 6597 } 6598 6599 ASSERT(hole_em); 6600 /* 6601 * When btrfs_get_extent can't find anything it returns one 6602 * huge hole 6603 * 6604 * Make sure what it found really fits our range, and adjust to 6605 * make sure it is based on the start from the caller 6606 */ 6607 if (hole_end <= start || hole_em->start > end) { 6608 free_extent_map(hole_em); 6609 hole_em = NULL; 6610 } else { 6611 hole_start = max(hole_em->start, start); 6612 hole_len = hole_end - hole_start; 6613 } 6614 6615 if (hole_em && delalloc_start > hole_start) { 6616 /* 6617 * Our hole starts before our delalloc, so we have to 6618 * return just the parts of the hole that go until the 6619 * delalloc starts 6620 */ 6621 em->len = min(hole_len, delalloc_start - hole_start); 6622 em->start = hole_start; 6623 em->orig_start = hole_start; 6624 /* 6625 * Don't adjust block start at all, it is fixed at 6626 * EXTENT_MAP_HOLE 6627 */ 6628 em->block_start = hole_em->block_start; 6629 em->block_len = hole_len; 6630 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6631 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6632 } else { 6633 /* 6634 * Hole is out of passed range or it starts after 6635 * delalloc range 6636 */ 6637 em->start = delalloc_start; 6638 em->len = delalloc_len; 6639 em->orig_start = delalloc_start; 6640 em->block_start = EXTENT_MAP_DELALLOC; 6641 em->block_len = delalloc_len; 6642 } 6643 } else { 6644 return hole_em; 6645 } 6646 out: 6647 6648 free_extent_map(hole_em); 6649 if (err) { 6650 free_extent_map(em); 6651 return ERR_PTR(err); 6652 } 6653 return em; 6654 } 6655 6656 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 6657 const u64 start, 6658 const u64 len, 6659 const u64 orig_start, 6660 const u64 block_start, 6661 const u64 block_len, 6662 const u64 orig_block_len, 6663 const u64 ram_bytes, 6664 const int type) 6665 { 6666 struct extent_map *em = NULL; 6667 int ret; 6668 6669 if (type != BTRFS_ORDERED_NOCOW) { 6670 em = create_io_em(inode, start, len, orig_start, 6671 block_start, block_len, orig_block_len, 6672 ram_bytes, 6673 BTRFS_COMPRESS_NONE, /* compress_type */ 6674 type); 6675 if (IS_ERR(em)) 6676 goto out; 6677 } 6678 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 6679 len, block_len, type); 6680 if (ret) { 6681 if (em) { 6682 free_extent_map(em); 6683 btrfs_drop_extent_cache(BTRFS_I(inode), start, 6684 start + len - 1, 0); 6685 } 6686 em = ERR_PTR(ret); 6687 } 6688 out: 6689 6690 return em; 6691 } 6692 6693 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6694 u64 start, u64 len) 6695 { 6696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6697 struct btrfs_root *root = BTRFS_I(inode)->root; 6698 struct extent_map *em; 6699 struct btrfs_key ins; 6700 u64 alloc_hint; 6701 int ret; 6702 6703 alloc_hint = get_extent_allocation_hint(inode, start, len); 6704 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6705 0, alloc_hint, &ins, 1, 1); 6706 if (ret) 6707 return ERR_PTR(ret); 6708 6709 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 6710 ins.objectid, ins.offset, ins.offset, 6711 ins.offset, BTRFS_ORDERED_REGULAR); 6712 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 6713 if (IS_ERR(em)) 6714 btrfs_free_reserved_extent(fs_info, ins.objectid, 6715 ins.offset, 1); 6716 6717 return em; 6718 } 6719 6720 /* 6721 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6722 * block must be cow'd 6723 */ 6724 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6725 u64 *orig_start, u64 *orig_block_len, 6726 u64 *ram_bytes) 6727 { 6728 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6729 struct btrfs_path *path; 6730 int ret; 6731 struct extent_buffer *leaf; 6732 struct btrfs_root *root = BTRFS_I(inode)->root; 6733 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6734 struct btrfs_file_extent_item *fi; 6735 struct btrfs_key key; 6736 u64 disk_bytenr; 6737 u64 backref_offset; 6738 u64 extent_end; 6739 u64 num_bytes; 6740 int slot; 6741 int found_type; 6742 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6743 6744 path = btrfs_alloc_path(); 6745 if (!path) 6746 return -ENOMEM; 6747 6748 ret = btrfs_lookup_file_extent(NULL, root, path, 6749 btrfs_ino(BTRFS_I(inode)), offset, 0); 6750 if (ret < 0) 6751 goto out; 6752 6753 slot = path->slots[0]; 6754 if (ret == 1) { 6755 if (slot == 0) { 6756 /* can't find the item, must cow */ 6757 ret = 0; 6758 goto out; 6759 } 6760 slot--; 6761 } 6762 ret = 0; 6763 leaf = path->nodes[0]; 6764 btrfs_item_key_to_cpu(leaf, &key, slot); 6765 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 6766 key.type != BTRFS_EXTENT_DATA_KEY) { 6767 /* not our file or wrong item type, must cow */ 6768 goto out; 6769 } 6770 6771 if (key.offset > offset) { 6772 /* Wrong offset, must cow */ 6773 goto out; 6774 } 6775 6776 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6777 found_type = btrfs_file_extent_type(leaf, fi); 6778 if (found_type != BTRFS_FILE_EXTENT_REG && 6779 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6780 /* not a regular extent, must cow */ 6781 goto out; 6782 } 6783 6784 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6785 goto out; 6786 6787 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6788 if (extent_end <= offset) 6789 goto out; 6790 6791 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6792 if (disk_bytenr == 0) 6793 goto out; 6794 6795 if (btrfs_file_extent_compression(leaf, fi) || 6796 btrfs_file_extent_encryption(leaf, fi) || 6797 btrfs_file_extent_other_encoding(leaf, fi)) 6798 goto out; 6799 6800 /* 6801 * Do the same check as in btrfs_cross_ref_exist but without the 6802 * unnecessary search. 6803 */ 6804 if (btrfs_file_extent_generation(leaf, fi) <= 6805 btrfs_root_last_snapshot(&root->root_item)) 6806 goto out; 6807 6808 backref_offset = btrfs_file_extent_offset(leaf, fi); 6809 6810 if (orig_start) { 6811 *orig_start = key.offset - backref_offset; 6812 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6813 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6814 } 6815 6816 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 6817 goto out; 6818 6819 num_bytes = min(offset + *len, extent_end) - offset; 6820 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6821 u64 range_end; 6822 6823 range_end = round_up(offset + num_bytes, 6824 root->fs_info->sectorsize) - 1; 6825 ret = test_range_bit(io_tree, offset, range_end, 6826 EXTENT_DELALLOC, 0, NULL); 6827 if (ret) { 6828 ret = -EAGAIN; 6829 goto out; 6830 } 6831 } 6832 6833 btrfs_release_path(path); 6834 6835 /* 6836 * look for other files referencing this extent, if we 6837 * find any we must cow 6838 */ 6839 6840 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 6841 key.offset - backref_offset, disk_bytenr); 6842 if (ret) { 6843 ret = 0; 6844 goto out; 6845 } 6846 6847 /* 6848 * adjust disk_bytenr and num_bytes to cover just the bytes 6849 * in this extent we are about to write. If there 6850 * are any csums in that range we have to cow in order 6851 * to keep the csums correct 6852 */ 6853 disk_bytenr += backref_offset; 6854 disk_bytenr += offset - key.offset; 6855 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 6856 goto out; 6857 /* 6858 * all of the above have passed, it is safe to overwrite this extent 6859 * without cow 6860 */ 6861 *len = num_bytes; 6862 ret = 1; 6863 out: 6864 btrfs_free_path(path); 6865 return ret; 6866 } 6867 6868 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6869 struct extent_state **cached_state, int writing) 6870 { 6871 struct btrfs_ordered_extent *ordered; 6872 int ret = 0; 6873 6874 while (1) { 6875 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6876 cached_state); 6877 /* 6878 * We're concerned with the entire range that we're going to be 6879 * doing DIO to, so we need to make sure there's no ordered 6880 * extents in this range. 6881 */ 6882 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 6883 lockend - lockstart + 1); 6884 6885 /* 6886 * We need to make sure there are no buffered pages in this 6887 * range either, we could have raced between the invalidate in 6888 * generic_file_direct_write and locking the extent. The 6889 * invalidate needs to happen so that reads after a write do not 6890 * get stale data. 6891 */ 6892 if (!ordered && 6893 (!writing || !filemap_range_has_page(inode->i_mapping, 6894 lockstart, lockend))) 6895 break; 6896 6897 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6898 cached_state); 6899 6900 if (ordered) { 6901 /* 6902 * If we are doing a DIO read and the ordered extent we 6903 * found is for a buffered write, we can not wait for it 6904 * to complete and retry, because if we do so we can 6905 * deadlock with concurrent buffered writes on page 6906 * locks. This happens only if our DIO read covers more 6907 * than one extent map, if at this point has already 6908 * created an ordered extent for a previous extent map 6909 * and locked its range in the inode's io tree, and a 6910 * concurrent write against that previous extent map's 6911 * range and this range started (we unlock the ranges 6912 * in the io tree only when the bios complete and 6913 * buffered writes always lock pages before attempting 6914 * to lock range in the io tree). 6915 */ 6916 if (writing || 6917 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 6918 btrfs_start_ordered_extent(inode, ordered, 1); 6919 else 6920 ret = -ENOTBLK; 6921 btrfs_put_ordered_extent(ordered); 6922 } else { 6923 /* 6924 * We could trigger writeback for this range (and wait 6925 * for it to complete) and then invalidate the pages for 6926 * this range (through invalidate_inode_pages2_range()), 6927 * but that can lead us to a deadlock with a concurrent 6928 * call to readpages() (a buffered read or a defrag call 6929 * triggered a readahead) on a page lock due to an 6930 * ordered dio extent we created before but did not have 6931 * yet a corresponding bio submitted (whence it can not 6932 * complete), which makes readpages() wait for that 6933 * ordered extent to complete while holding a lock on 6934 * that page. 6935 */ 6936 ret = -ENOTBLK; 6937 } 6938 6939 if (ret) 6940 break; 6941 6942 cond_resched(); 6943 } 6944 6945 return ret; 6946 } 6947 6948 /* The callers of this must take lock_extent() */ 6949 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 6950 u64 orig_start, u64 block_start, 6951 u64 block_len, u64 orig_block_len, 6952 u64 ram_bytes, int compress_type, 6953 int type) 6954 { 6955 struct extent_map_tree *em_tree; 6956 struct extent_map *em; 6957 int ret; 6958 6959 ASSERT(type == BTRFS_ORDERED_PREALLOC || 6960 type == BTRFS_ORDERED_COMPRESSED || 6961 type == BTRFS_ORDERED_NOCOW || 6962 type == BTRFS_ORDERED_REGULAR); 6963 6964 em_tree = &BTRFS_I(inode)->extent_tree; 6965 em = alloc_extent_map(); 6966 if (!em) 6967 return ERR_PTR(-ENOMEM); 6968 6969 em->start = start; 6970 em->orig_start = orig_start; 6971 em->len = len; 6972 em->block_len = block_len; 6973 em->block_start = block_start; 6974 em->orig_block_len = orig_block_len; 6975 em->ram_bytes = ram_bytes; 6976 em->generation = -1; 6977 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6978 if (type == BTRFS_ORDERED_PREALLOC) { 6979 set_bit(EXTENT_FLAG_FILLING, &em->flags); 6980 } else if (type == BTRFS_ORDERED_COMPRESSED) { 6981 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6982 em->compress_type = compress_type; 6983 } 6984 6985 do { 6986 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 6987 em->start + em->len - 1, 0); 6988 write_lock(&em_tree->lock); 6989 ret = add_extent_mapping(em_tree, em, 1); 6990 write_unlock(&em_tree->lock); 6991 /* 6992 * The caller has taken lock_extent(), who could race with us 6993 * to add em? 6994 */ 6995 } while (ret == -EEXIST); 6996 6997 if (ret) { 6998 free_extent_map(em); 6999 return ERR_PTR(ret); 7000 } 7001 7002 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7003 return em; 7004 } 7005 7006 7007 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7008 struct buffer_head *bh_result, 7009 struct inode *inode, 7010 u64 start, u64 len) 7011 { 7012 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7013 7014 if (em->block_start == EXTENT_MAP_HOLE || 7015 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7016 return -ENOENT; 7017 7018 len = min(len, em->len - (start - em->start)); 7019 7020 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7021 inode->i_blkbits; 7022 bh_result->b_size = len; 7023 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7024 set_buffer_mapped(bh_result); 7025 7026 return 0; 7027 } 7028 7029 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7030 struct buffer_head *bh_result, 7031 struct inode *inode, 7032 struct btrfs_dio_data *dio_data, 7033 u64 start, u64 len) 7034 { 7035 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7036 struct extent_map *em = *map; 7037 int ret = 0; 7038 7039 /* 7040 * We don't allocate a new extent in the following cases 7041 * 7042 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7043 * existing extent. 7044 * 2) The extent is marked as PREALLOC. We're good to go here and can 7045 * just use the extent. 7046 * 7047 */ 7048 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7049 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7050 em->block_start != EXTENT_MAP_HOLE)) { 7051 int type; 7052 u64 block_start, orig_start, orig_block_len, ram_bytes; 7053 7054 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7055 type = BTRFS_ORDERED_PREALLOC; 7056 else 7057 type = BTRFS_ORDERED_NOCOW; 7058 len = min(len, em->len - (start - em->start)); 7059 block_start = em->block_start + (start - em->start); 7060 7061 if (can_nocow_extent(inode, start, &len, &orig_start, 7062 &orig_block_len, &ram_bytes) == 1 && 7063 btrfs_inc_nocow_writers(fs_info, block_start)) { 7064 struct extent_map *em2; 7065 7066 em2 = btrfs_create_dio_extent(inode, start, len, 7067 orig_start, block_start, 7068 len, orig_block_len, 7069 ram_bytes, type); 7070 btrfs_dec_nocow_writers(fs_info, block_start); 7071 if (type == BTRFS_ORDERED_PREALLOC) { 7072 free_extent_map(em); 7073 *map = em = em2; 7074 } 7075 7076 if (em2 && IS_ERR(em2)) { 7077 ret = PTR_ERR(em2); 7078 goto out; 7079 } 7080 /* 7081 * For inode marked NODATACOW or extent marked PREALLOC, 7082 * use the existing or preallocated extent, so does not 7083 * need to adjust btrfs_space_info's bytes_may_use. 7084 */ 7085 btrfs_free_reserved_data_space_noquota(inode, start, 7086 len); 7087 goto skip_cow; 7088 } 7089 } 7090 7091 /* this will cow the extent */ 7092 len = bh_result->b_size; 7093 free_extent_map(em); 7094 *map = em = btrfs_new_extent_direct(inode, start, len); 7095 if (IS_ERR(em)) { 7096 ret = PTR_ERR(em); 7097 goto out; 7098 } 7099 7100 len = min(len, em->len - (start - em->start)); 7101 7102 skip_cow: 7103 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7104 inode->i_blkbits; 7105 bh_result->b_size = len; 7106 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7107 set_buffer_mapped(bh_result); 7108 7109 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7110 set_buffer_new(bh_result); 7111 7112 /* 7113 * Need to update the i_size under the extent lock so buffered 7114 * readers will get the updated i_size when we unlock. 7115 */ 7116 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7117 i_size_write(inode, start + len); 7118 7119 WARN_ON(dio_data->reserve < len); 7120 dio_data->reserve -= len; 7121 dio_data->unsubmitted_oe_range_end = start + len; 7122 current->journal_info = dio_data; 7123 out: 7124 return ret; 7125 } 7126 7127 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7128 struct buffer_head *bh_result, int create) 7129 { 7130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7131 struct extent_map *em; 7132 struct extent_state *cached_state = NULL; 7133 struct btrfs_dio_data *dio_data = NULL; 7134 u64 start = iblock << inode->i_blkbits; 7135 u64 lockstart, lockend; 7136 u64 len = bh_result->b_size; 7137 int ret = 0; 7138 7139 if (!create) 7140 len = min_t(u64, len, fs_info->sectorsize); 7141 7142 lockstart = start; 7143 lockend = start + len - 1; 7144 7145 if (current->journal_info) { 7146 /* 7147 * Need to pull our outstanding extents and set journal_info to NULL so 7148 * that anything that needs to check if there's a transaction doesn't get 7149 * confused. 7150 */ 7151 dio_data = current->journal_info; 7152 current->journal_info = NULL; 7153 } 7154 7155 /* 7156 * If this errors out it's because we couldn't invalidate pagecache for 7157 * this range and we need to fallback to buffered. 7158 */ 7159 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7160 create)) { 7161 ret = -ENOTBLK; 7162 goto err; 7163 } 7164 7165 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7166 if (IS_ERR(em)) { 7167 ret = PTR_ERR(em); 7168 goto unlock_err; 7169 } 7170 7171 /* 7172 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7173 * io. INLINE is special, and we could probably kludge it in here, but 7174 * it's still buffered so for safety lets just fall back to the generic 7175 * buffered path. 7176 * 7177 * For COMPRESSED we _have_ to read the entire extent in so we can 7178 * decompress it, so there will be buffering required no matter what we 7179 * do, so go ahead and fallback to buffered. 7180 * 7181 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7182 * to buffered IO. Don't blame me, this is the price we pay for using 7183 * the generic code. 7184 */ 7185 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7186 em->block_start == EXTENT_MAP_INLINE) { 7187 free_extent_map(em); 7188 ret = -ENOTBLK; 7189 goto unlock_err; 7190 } 7191 7192 if (create) { 7193 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7194 dio_data, start, len); 7195 if (ret < 0) 7196 goto unlock_err; 7197 7198 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 7199 lockend, &cached_state); 7200 } else { 7201 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7202 start, len); 7203 /* Can be negative only if we read from a hole */ 7204 if (ret < 0) { 7205 ret = 0; 7206 free_extent_map(em); 7207 goto unlock_err; 7208 } 7209 /* 7210 * We need to unlock only the end area that we aren't using. 7211 * The rest is going to be unlocked by the endio routine. 7212 */ 7213 lockstart = start + bh_result->b_size; 7214 if (lockstart < lockend) { 7215 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7216 lockstart, lockend, &cached_state); 7217 } else { 7218 free_extent_state(cached_state); 7219 } 7220 } 7221 7222 free_extent_map(em); 7223 7224 return 0; 7225 7226 unlock_err: 7227 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7228 &cached_state); 7229 err: 7230 if (dio_data) 7231 current->journal_info = dio_data; 7232 return ret; 7233 } 7234 7235 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7236 struct bio *bio, 7237 int mirror_num) 7238 { 7239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7240 blk_status_t ret; 7241 7242 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7243 7244 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7245 if (ret) 7246 return ret; 7247 7248 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7249 7250 return ret; 7251 } 7252 7253 static int btrfs_check_dio_repairable(struct inode *inode, 7254 struct bio *failed_bio, 7255 struct io_failure_record *failrec, 7256 int failed_mirror) 7257 { 7258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7259 int num_copies; 7260 7261 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7262 if (num_copies == 1) { 7263 /* 7264 * we only have a single copy of the data, so don't bother with 7265 * all the retry and error correction code that follows. no 7266 * matter what the error is, it is very likely to persist. 7267 */ 7268 btrfs_debug(fs_info, 7269 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7270 num_copies, failrec->this_mirror, failed_mirror); 7271 return 0; 7272 } 7273 7274 failrec->failed_mirror = failed_mirror; 7275 failrec->this_mirror++; 7276 if (failrec->this_mirror == failed_mirror) 7277 failrec->this_mirror++; 7278 7279 if (failrec->this_mirror > num_copies) { 7280 btrfs_debug(fs_info, 7281 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7282 num_copies, failrec->this_mirror, failed_mirror); 7283 return 0; 7284 } 7285 7286 return 1; 7287 } 7288 7289 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7290 struct page *page, unsigned int pgoff, 7291 u64 start, u64 end, int failed_mirror, 7292 bio_end_io_t *repair_endio, void *repair_arg) 7293 { 7294 struct io_failure_record *failrec; 7295 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7296 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7297 struct bio *bio; 7298 int isector; 7299 unsigned int read_mode = 0; 7300 int segs; 7301 int ret; 7302 blk_status_t status; 7303 struct bio_vec bvec; 7304 7305 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7306 7307 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7308 if (ret) 7309 return errno_to_blk_status(ret); 7310 7311 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7312 failed_mirror); 7313 if (!ret) { 7314 free_io_failure(failure_tree, io_tree, failrec); 7315 return BLK_STS_IOERR; 7316 } 7317 7318 segs = bio_segments(failed_bio); 7319 bio_get_first_bvec(failed_bio, &bvec); 7320 if (segs > 1 || 7321 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7322 read_mode |= REQ_FAILFAST_DEV; 7323 7324 isector = start - btrfs_io_bio(failed_bio)->logical; 7325 isector >>= inode->i_sb->s_blocksize_bits; 7326 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7327 pgoff, isector, repair_endio, repair_arg); 7328 bio->bi_opf = REQ_OP_READ | read_mode; 7329 7330 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7331 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7332 read_mode, failrec->this_mirror, failrec->in_validation); 7333 7334 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7335 if (status) { 7336 free_io_failure(failure_tree, io_tree, failrec); 7337 bio_put(bio); 7338 } 7339 7340 return status; 7341 } 7342 7343 struct btrfs_retry_complete { 7344 struct completion done; 7345 struct inode *inode; 7346 u64 start; 7347 int uptodate; 7348 }; 7349 7350 static void btrfs_retry_endio_nocsum(struct bio *bio) 7351 { 7352 struct btrfs_retry_complete *done = bio->bi_private; 7353 struct inode *inode = done->inode; 7354 struct bio_vec *bvec; 7355 struct extent_io_tree *io_tree, *failure_tree; 7356 struct bvec_iter_all iter_all; 7357 7358 if (bio->bi_status) 7359 goto end; 7360 7361 ASSERT(bio->bi_vcnt == 1); 7362 io_tree = &BTRFS_I(inode)->io_tree; 7363 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7364 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7365 7366 done->uptodate = 1; 7367 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7368 bio_for_each_segment_all(bvec, bio, iter_all) 7369 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7370 io_tree, done->start, bvec->bv_page, 7371 btrfs_ino(BTRFS_I(inode)), 0); 7372 end: 7373 complete(&done->done); 7374 bio_put(bio); 7375 } 7376 7377 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7378 struct btrfs_io_bio *io_bio) 7379 { 7380 struct btrfs_fs_info *fs_info; 7381 struct bio_vec bvec; 7382 struct bvec_iter iter; 7383 struct btrfs_retry_complete done; 7384 u64 start; 7385 unsigned int pgoff; 7386 u32 sectorsize; 7387 int nr_sectors; 7388 blk_status_t ret; 7389 blk_status_t err = BLK_STS_OK; 7390 7391 fs_info = BTRFS_I(inode)->root->fs_info; 7392 sectorsize = fs_info->sectorsize; 7393 7394 start = io_bio->logical; 7395 done.inode = inode; 7396 io_bio->bio.bi_iter = io_bio->iter; 7397 7398 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7399 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7400 pgoff = bvec.bv_offset; 7401 7402 next_block_or_try_again: 7403 done.uptodate = 0; 7404 done.start = start; 7405 init_completion(&done.done); 7406 7407 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7408 pgoff, start, start + sectorsize - 1, 7409 io_bio->mirror_num, 7410 btrfs_retry_endio_nocsum, &done); 7411 if (ret) { 7412 err = ret; 7413 goto next; 7414 } 7415 7416 wait_for_completion_io(&done.done); 7417 7418 if (!done.uptodate) { 7419 /* We might have another mirror, so try again */ 7420 goto next_block_or_try_again; 7421 } 7422 7423 next: 7424 start += sectorsize; 7425 7426 nr_sectors--; 7427 if (nr_sectors) { 7428 pgoff += sectorsize; 7429 ASSERT(pgoff < PAGE_SIZE); 7430 goto next_block_or_try_again; 7431 } 7432 } 7433 7434 return err; 7435 } 7436 7437 static void btrfs_retry_endio(struct bio *bio) 7438 { 7439 struct btrfs_retry_complete *done = bio->bi_private; 7440 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7441 struct extent_io_tree *io_tree, *failure_tree; 7442 struct inode *inode = done->inode; 7443 struct bio_vec *bvec; 7444 int uptodate; 7445 int ret; 7446 int i = 0; 7447 struct bvec_iter_all iter_all; 7448 7449 if (bio->bi_status) 7450 goto end; 7451 7452 uptodate = 1; 7453 7454 ASSERT(bio->bi_vcnt == 1); 7455 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 7456 7457 io_tree = &BTRFS_I(inode)->io_tree; 7458 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7459 7460 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7461 bio_for_each_segment_all(bvec, bio, iter_all) { 7462 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7463 bvec->bv_offset, done->start, 7464 bvec->bv_len); 7465 if (!ret) 7466 clean_io_failure(BTRFS_I(inode)->root->fs_info, 7467 failure_tree, io_tree, done->start, 7468 bvec->bv_page, 7469 btrfs_ino(BTRFS_I(inode)), 7470 bvec->bv_offset); 7471 else 7472 uptodate = 0; 7473 i++; 7474 } 7475 7476 done->uptodate = uptodate; 7477 end: 7478 complete(&done->done); 7479 bio_put(bio); 7480 } 7481 7482 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 7483 struct btrfs_io_bio *io_bio, blk_status_t err) 7484 { 7485 struct btrfs_fs_info *fs_info; 7486 struct bio_vec bvec; 7487 struct bvec_iter iter; 7488 struct btrfs_retry_complete done; 7489 u64 start; 7490 u64 offset = 0; 7491 u32 sectorsize; 7492 int nr_sectors; 7493 unsigned int pgoff; 7494 int csum_pos; 7495 bool uptodate = (err == 0); 7496 int ret; 7497 blk_status_t status; 7498 7499 fs_info = BTRFS_I(inode)->root->fs_info; 7500 sectorsize = fs_info->sectorsize; 7501 7502 err = BLK_STS_OK; 7503 start = io_bio->logical; 7504 done.inode = inode; 7505 io_bio->bio.bi_iter = io_bio->iter; 7506 7507 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7508 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7509 7510 pgoff = bvec.bv_offset; 7511 next_block: 7512 if (uptodate) { 7513 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 7514 ret = __readpage_endio_check(inode, io_bio, csum_pos, 7515 bvec.bv_page, pgoff, start, sectorsize); 7516 if (likely(!ret)) 7517 goto next; 7518 } 7519 try_again: 7520 done.uptodate = 0; 7521 done.start = start; 7522 init_completion(&done.done); 7523 7524 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7525 pgoff, start, start + sectorsize - 1, 7526 io_bio->mirror_num, btrfs_retry_endio, 7527 &done); 7528 if (status) { 7529 err = status; 7530 goto next; 7531 } 7532 7533 wait_for_completion_io(&done.done); 7534 7535 if (!done.uptodate) { 7536 /* We might have another mirror, so try again */ 7537 goto try_again; 7538 } 7539 next: 7540 offset += sectorsize; 7541 start += sectorsize; 7542 7543 ASSERT(nr_sectors); 7544 7545 nr_sectors--; 7546 if (nr_sectors) { 7547 pgoff += sectorsize; 7548 ASSERT(pgoff < PAGE_SIZE); 7549 goto next_block; 7550 } 7551 } 7552 7553 return err; 7554 } 7555 7556 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 7557 struct btrfs_io_bio *io_bio, blk_status_t err) 7558 { 7559 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7560 7561 if (skip_csum) { 7562 if (unlikely(err)) 7563 return __btrfs_correct_data_nocsum(inode, io_bio); 7564 else 7565 return BLK_STS_OK; 7566 } else { 7567 return __btrfs_subio_endio_read(inode, io_bio, err); 7568 } 7569 } 7570 7571 static void btrfs_endio_direct_read(struct bio *bio) 7572 { 7573 struct btrfs_dio_private *dip = bio->bi_private; 7574 struct inode *inode = dip->inode; 7575 struct bio *dio_bio; 7576 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7577 blk_status_t err = bio->bi_status; 7578 7579 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 7580 err = btrfs_subio_endio_read(inode, io_bio, err); 7581 7582 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7583 dip->logical_offset + dip->bytes - 1); 7584 dio_bio = dip->dio_bio; 7585 7586 kfree(dip); 7587 7588 dio_bio->bi_status = err; 7589 dio_end_io(dio_bio); 7590 btrfs_io_bio_free_csum(io_bio); 7591 bio_put(bio); 7592 } 7593 7594 static void __endio_write_update_ordered(struct inode *inode, 7595 const u64 offset, const u64 bytes, 7596 const bool uptodate) 7597 { 7598 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7599 struct btrfs_ordered_extent *ordered = NULL; 7600 struct btrfs_workqueue *wq; 7601 u64 ordered_offset = offset; 7602 u64 ordered_bytes = bytes; 7603 u64 last_offset; 7604 7605 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 7606 wq = fs_info->endio_freespace_worker; 7607 else 7608 wq = fs_info->endio_write_workers; 7609 7610 while (ordered_offset < offset + bytes) { 7611 last_offset = ordered_offset; 7612 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7613 &ordered_offset, 7614 ordered_bytes, 7615 uptodate)) { 7616 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7617 NULL); 7618 btrfs_queue_work(wq, &ordered->work); 7619 } 7620 /* 7621 * If btrfs_dec_test_ordered_pending does not find any ordered 7622 * extent in the range, we can exit. 7623 */ 7624 if (ordered_offset == last_offset) 7625 return; 7626 /* 7627 * Our bio might span multiple ordered extents. In this case 7628 * we keep going until we have accounted the whole dio. 7629 */ 7630 if (ordered_offset < offset + bytes) { 7631 ordered_bytes = offset + bytes - ordered_offset; 7632 ordered = NULL; 7633 } 7634 } 7635 } 7636 7637 static void btrfs_endio_direct_write(struct bio *bio) 7638 { 7639 struct btrfs_dio_private *dip = bio->bi_private; 7640 struct bio *dio_bio = dip->dio_bio; 7641 7642 __endio_write_update_ordered(dip->inode, dip->logical_offset, 7643 dip->bytes, !bio->bi_status); 7644 7645 kfree(dip); 7646 7647 dio_bio->bi_status = bio->bi_status; 7648 dio_end_io(dio_bio); 7649 bio_put(bio); 7650 } 7651 7652 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 7653 struct bio *bio, u64 offset) 7654 { 7655 struct inode *inode = private_data; 7656 blk_status_t ret; 7657 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 7658 BUG_ON(ret); /* -ENOMEM */ 7659 return 0; 7660 } 7661 7662 static void btrfs_end_dio_bio(struct bio *bio) 7663 { 7664 struct btrfs_dio_private *dip = bio->bi_private; 7665 blk_status_t err = bio->bi_status; 7666 7667 if (err) 7668 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7669 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7670 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7671 bio->bi_opf, 7672 (unsigned long long)bio->bi_iter.bi_sector, 7673 bio->bi_iter.bi_size, err); 7674 7675 if (dip->subio_endio) 7676 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 7677 7678 if (err) { 7679 /* 7680 * We want to perceive the errors flag being set before 7681 * decrementing the reference count. We don't need a barrier 7682 * since atomic operations with a return value are fully 7683 * ordered as per atomic_t.txt 7684 */ 7685 dip->errors = 1; 7686 } 7687 7688 /* if there are more bios still pending for this dio, just exit */ 7689 if (!atomic_dec_and_test(&dip->pending_bios)) 7690 goto out; 7691 7692 if (dip->errors) { 7693 bio_io_error(dip->orig_bio); 7694 } else { 7695 dip->dio_bio->bi_status = BLK_STS_OK; 7696 bio_endio(dip->orig_bio); 7697 } 7698 out: 7699 bio_put(bio); 7700 } 7701 7702 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 7703 struct btrfs_dio_private *dip, 7704 struct bio *bio, 7705 u64 file_offset) 7706 { 7707 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7708 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 7709 blk_status_t ret; 7710 7711 /* 7712 * We load all the csum data we need when we submit 7713 * the first bio to reduce the csum tree search and 7714 * contention. 7715 */ 7716 if (dip->logical_offset == file_offset) { 7717 ret = btrfs_lookup_bio_sums(inode, dip->orig_bio, file_offset, 7718 NULL); 7719 if (ret) 7720 return ret; 7721 } 7722 7723 if (bio == dip->orig_bio) 7724 return 0; 7725 7726 file_offset -= dip->logical_offset; 7727 file_offset >>= inode->i_sb->s_blocksize_bits; 7728 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 7729 7730 return 0; 7731 } 7732 7733 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7734 struct inode *inode, u64 file_offset, int async_submit) 7735 { 7736 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7737 struct btrfs_dio_private *dip = bio->bi_private; 7738 bool write = bio_op(bio) == REQ_OP_WRITE; 7739 blk_status_t ret; 7740 7741 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7742 if (async_submit) 7743 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7744 7745 if (!write) { 7746 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7747 if (ret) 7748 goto err; 7749 } 7750 7751 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7752 goto map; 7753 7754 if (write && async_submit) { 7755 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 7756 file_offset, inode, 7757 btrfs_submit_bio_start_direct_io); 7758 goto err; 7759 } else if (write) { 7760 /* 7761 * If we aren't doing async submit, calculate the csum of the 7762 * bio now. 7763 */ 7764 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 7765 if (ret) 7766 goto err; 7767 } else { 7768 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 7769 file_offset); 7770 if (ret) 7771 goto err; 7772 } 7773 map: 7774 ret = btrfs_map_bio(fs_info, bio, 0); 7775 err: 7776 return ret; 7777 } 7778 7779 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 7780 { 7781 struct inode *inode = dip->inode; 7782 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7783 struct bio *bio; 7784 struct bio *orig_bio = dip->orig_bio; 7785 u64 start_sector = orig_bio->bi_iter.bi_sector; 7786 u64 file_offset = dip->logical_offset; 7787 int async_submit = 0; 7788 u64 submit_len; 7789 int clone_offset = 0; 7790 int clone_len; 7791 int ret; 7792 blk_status_t status; 7793 struct btrfs_io_geometry geom; 7794 7795 submit_len = orig_bio->bi_iter.bi_size; 7796 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 7797 start_sector << 9, submit_len, &geom); 7798 if (ret) 7799 return -EIO; 7800 7801 if (geom.len >= submit_len) { 7802 bio = orig_bio; 7803 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 7804 goto submit; 7805 } 7806 7807 /* async crcs make it difficult to collect full stripe writes. */ 7808 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 7809 async_submit = 0; 7810 else 7811 async_submit = 1; 7812 7813 /* bio split */ 7814 ASSERT(geom.len <= INT_MAX); 7815 atomic_inc(&dip->pending_bios); 7816 do { 7817 clone_len = min_t(int, submit_len, geom.len); 7818 7819 /* 7820 * This will never fail as it's passing GPF_NOFS and 7821 * the allocation is backed by btrfs_bioset. 7822 */ 7823 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 7824 clone_len); 7825 bio->bi_private = dip; 7826 bio->bi_end_io = btrfs_end_dio_bio; 7827 btrfs_io_bio(bio)->logical = file_offset; 7828 7829 ASSERT(submit_len >= clone_len); 7830 submit_len -= clone_len; 7831 if (submit_len == 0) 7832 break; 7833 7834 /* 7835 * Increase the count before we submit the bio so we know 7836 * the end IO handler won't happen before we increase the 7837 * count. Otherwise, the dip might get freed before we're 7838 * done setting it up. 7839 */ 7840 atomic_inc(&dip->pending_bios); 7841 7842 status = btrfs_submit_dio_bio(bio, inode, file_offset, 7843 async_submit); 7844 if (status) { 7845 bio_put(bio); 7846 atomic_dec(&dip->pending_bios); 7847 goto out_err; 7848 } 7849 7850 clone_offset += clone_len; 7851 start_sector += clone_len >> 9; 7852 file_offset += clone_len; 7853 7854 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 7855 start_sector << 9, submit_len, &geom); 7856 if (ret) 7857 goto out_err; 7858 } while (submit_len > 0); 7859 7860 submit: 7861 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 7862 if (!status) 7863 return 0; 7864 7865 bio_put(bio); 7866 out_err: 7867 dip->errors = 1; 7868 /* 7869 * Before atomic variable goto zero, we must make sure dip->errors is 7870 * perceived to be set. This ordering is ensured by the fact that an 7871 * atomic operations with a return value are fully ordered as per 7872 * atomic_t.txt 7873 */ 7874 if (atomic_dec_and_test(&dip->pending_bios)) 7875 bio_io_error(dip->orig_bio); 7876 7877 /* bio_end_io() will handle error, so we needn't return it */ 7878 return 0; 7879 } 7880 7881 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 7882 loff_t file_offset) 7883 { 7884 struct btrfs_dio_private *dip = NULL; 7885 struct bio *bio = NULL; 7886 struct btrfs_io_bio *io_bio; 7887 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7888 int ret = 0; 7889 7890 bio = btrfs_bio_clone(dio_bio); 7891 7892 dip = kzalloc(sizeof(*dip), GFP_NOFS); 7893 if (!dip) { 7894 ret = -ENOMEM; 7895 goto free_ordered; 7896 } 7897 7898 dip->private = dio_bio->bi_private; 7899 dip->inode = inode; 7900 dip->logical_offset = file_offset; 7901 dip->bytes = dio_bio->bi_iter.bi_size; 7902 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 7903 bio->bi_private = dip; 7904 dip->orig_bio = bio; 7905 dip->dio_bio = dio_bio; 7906 atomic_set(&dip->pending_bios, 0); 7907 io_bio = btrfs_io_bio(bio); 7908 io_bio->logical = file_offset; 7909 7910 if (write) { 7911 bio->bi_end_io = btrfs_endio_direct_write; 7912 } else { 7913 bio->bi_end_io = btrfs_endio_direct_read; 7914 dip->subio_endio = btrfs_subio_endio_read; 7915 } 7916 7917 /* 7918 * Reset the range for unsubmitted ordered extents (to a 0 length range) 7919 * even if we fail to submit a bio, because in such case we do the 7920 * corresponding error handling below and it must not be done a second 7921 * time by btrfs_direct_IO(). 7922 */ 7923 if (write) { 7924 struct btrfs_dio_data *dio_data = current->journal_info; 7925 7926 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 7927 dip->bytes; 7928 dio_data->unsubmitted_oe_range_start = 7929 dio_data->unsubmitted_oe_range_end; 7930 } 7931 7932 ret = btrfs_submit_direct_hook(dip); 7933 if (!ret) 7934 return; 7935 7936 btrfs_io_bio_free_csum(io_bio); 7937 7938 free_ordered: 7939 /* 7940 * If we arrived here it means either we failed to submit the dip 7941 * or we either failed to clone the dio_bio or failed to allocate the 7942 * dip. If we cloned the dio_bio and allocated the dip, we can just 7943 * call bio_endio against our io_bio so that we get proper resource 7944 * cleanup if we fail to submit the dip, otherwise, we must do the 7945 * same as btrfs_endio_direct_[write|read] because we can't call these 7946 * callbacks - they require an allocated dip and a clone of dio_bio. 7947 */ 7948 if (bio && dip) { 7949 bio_io_error(bio); 7950 /* 7951 * The end io callbacks free our dip, do the final put on bio 7952 * and all the cleanup and final put for dio_bio (through 7953 * dio_end_io()). 7954 */ 7955 dip = NULL; 7956 bio = NULL; 7957 } else { 7958 if (write) 7959 __endio_write_update_ordered(inode, 7960 file_offset, 7961 dio_bio->bi_iter.bi_size, 7962 false); 7963 else 7964 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 7965 file_offset + dio_bio->bi_iter.bi_size - 1); 7966 7967 dio_bio->bi_status = BLK_STS_IOERR; 7968 /* 7969 * Releases and cleans up our dio_bio, no need to bio_put() 7970 * nor bio_endio()/bio_io_error() against dio_bio. 7971 */ 7972 dio_end_io(dio_bio); 7973 } 7974 if (bio) 7975 bio_put(bio); 7976 kfree(dip); 7977 } 7978 7979 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 7980 const struct iov_iter *iter, loff_t offset) 7981 { 7982 int seg; 7983 int i; 7984 unsigned int blocksize_mask = fs_info->sectorsize - 1; 7985 ssize_t retval = -EINVAL; 7986 7987 if (offset & blocksize_mask) 7988 goto out; 7989 7990 if (iov_iter_alignment(iter) & blocksize_mask) 7991 goto out; 7992 7993 /* If this is a write we don't need to check anymore */ 7994 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 7995 return 0; 7996 /* 7997 * Check to make sure we don't have duplicate iov_base's in this 7998 * iovec, if so return EINVAL, otherwise we'll get csum errors 7999 * when reading back. 8000 */ 8001 for (seg = 0; seg < iter->nr_segs; seg++) { 8002 for (i = seg + 1; i < iter->nr_segs; i++) { 8003 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8004 goto out; 8005 } 8006 } 8007 retval = 0; 8008 out: 8009 return retval; 8010 } 8011 8012 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8013 { 8014 struct file *file = iocb->ki_filp; 8015 struct inode *inode = file->f_mapping->host; 8016 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8017 struct btrfs_dio_data dio_data = { 0 }; 8018 struct extent_changeset *data_reserved = NULL; 8019 loff_t offset = iocb->ki_pos; 8020 size_t count = 0; 8021 int flags = 0; 8022 bool wakeup = true; 8023 bool relock = false; 8024 ssize_t ret; 8025 8026 if (check_direct_IO(fs_info, iter, offset)) 8027 return 0; 8028 8029 inode_dio_begin(inode); 8030 8031 /* 8032 * The generic stuff only does filemap_write_and_wait_range, which 8033 * isn't enough if we've written compressed pages to this area, so 8034 * we need to flush the dirty pages again to make absolutely sure 8035 * that any outstanding dirty pages are on disk. 8036 */ 8037 count = iov_iter_count(iter); 8038 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8039 &BTRFS_I(inode)->runtime_flags)) 8040 filemap_fdatawrite_range(inode->i_mapping, offset, 8041 offset + count - 1); 8042 8043 if (iov_iter_rw(iter) == WRITE) { 8044 /* 8045 * If the write DIO is beyond the EOF, we need update 8046 * the isize, but it is protected by i_mutex. So we can 8047 * not unlock the i_mutex at this case. 8048 */ 8049 if (offset + count <= inode->i_size) { 8050 dio_data.overwrite = 1; 8051 inode_unlock(inode); 8052 relock = true; 8053 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8054 ret = -EAGAIN; 8055 goto out; 8056 } 8057 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8058 offset, count); 8059 if (ret) 8060 goto out; 8061 8062 /* 8063 * We need to know how many extents we reserved so that we can 8064 * do the accounting properly if we go over the number we 8065 * originally calculated. Abuse current->journal_info for this. 8066 */ 8067 dio_data.reserve = round_up(count, 8068 fs_info->sectorsize); 8069 dio_data.unsubmitted_oe_range_start = (u64)offset; 8070 dio_data.unsubmitted_oe_range_end = (u64)offset; 8071 current->journal_info = &dio_data; 8072 down_read(&BTRFS_I(inode)->dio_sem); 8073 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8074 &BTRFS_I(inode)->runtime_flags)) { 8075 inode_dio_end(inode); 8076 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8077 wakeup = false; 8078 } 8079 8080 ret = __blockdev_direct_IO(iocb, inode, 8081 fs_info->fs_devices->latest_bdev, 8082 iter, btrfs_get_blocks_direct, NULL, 8083 btrfs_submit_direct, flags); 8084 if (iov_iter_rw(iter) == WRITE) { 8085 up_read(&BTRFS_I(inode)->dio_sem); 8086 current->journal_info = NULL; 8087 if (ret < 0 && ret != -EIOCBQUEUED) { 8088 if (dio_data.reserve) 8089 btrfs_delalloc_release_space(inode, data_reserved, 8090 offset, dio_data.reserve, true); 8091 /* 8092 * On error we might have left some ordered extents 8093 * without submitting corresponding bios for them, so 8094 * cleanup them up to avoid other tasks getting them 8095 * and waiting for them to complete forever. 8096 */ 8097 if (dio_data.unsubmitted_oe_range_start < 8098 dio_data.unsubmitted_oe_range_end) 8099 __endio_write_update_ordered(inode, 8100 dio_data.unsubmitted_oe_range_start, 8101 dio_data.unsubmitted_oe_range_end - 8102 dio_data.unsubmitted_oe_range_start, 8103 false); 8104 } else if (ret >= 0 && (size_t)ret < count) 8105 btrfs_delalloc_release_space(inode, data_reserved, 8106 offset, count - (size_t)ret, true); 8107 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 8108 } 8109 out: 8110 if (wakeup) 8111 inode_dio_end(inode); 8112 if (relock) 8113 inode_lock(inode); 8114 8115 extent_changeset_free(data_reserved); 8116 return ret; 8117 } 8118 8119 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8120 8121 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8122 __u64 start, __u64 len) 8123 { 8124 int ret; 8125 8126 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8127 if (ret) 8128 return ret; 8129 8130 return extent_fiemap(inode, fieinfo, start, len); 8131 } 8132 8133 int btrfs_readpage(struct file *file, struct page *page) 8134 { 8135 struct extent_io_tree *tree; 8136 tree = &BTRFS_I(page->mapping->host)->io_tree; 8137 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8138 } 8139 8140 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8141 { 8142 struct inode *inode = page->mapping->host; 8143 int ret; 8144 8145 if (current->flags & PF_MEMALLOC) { 8146 redirty_page_for_writepage(wbc, page); 8147 unlock_page(page); 8148 return 0; 8149 } 8150 8151 /* 8152 * If we are under memory pressure we will call this directly from the 8153 * VM, we need to make sure we have the inode referenced for the ordered 8154 * extent. If not just return like we didn't do anything. 8155 */ 8156 if (!igrab(inode)) { 8157 redirty_page_for_writepage(wbc, page); 8158 return AOP_WRITEPAGE_ACTIVATE; 8159 } 8160 ret = extent_write_full_page(page, wbc); 8161 btrfs_add_delayed_iput(inode); 8162 return ret; 8163 } 8164 8165 static int btrfs_writepages(struct address_space *mapping, 8166 struct writeback_control *wbc) 8167 { 8168 return extent_writepages(mapping, wbc); 8169 } 8170 8171 static int 8172 btrfs_readpages(struct file *file, struct address_space *mapping, 8173 struct list_head *pages, unsigned nr_pages) 8174 { 8175 return extent_readpages(mapping, pages, nr_pages); 8176 } 8177 8178 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8179 { 8180 int ret = try_release_extent_mapping(page, gfp_flags); 8181 if (ret == 1) { 8182 ClearPagePrivate(page); 8183 set_page_private(page, 0); 8184 put_page(page); 8185 } 8186 return ret; 8187 } 8188 8189 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8190 { 8191 if (PageWriteback(page) || PageDirty(page)) 8192 return 0; 8193 return __btrfs_releasepage(page, gfp_flags); 8194 } 8195 8196 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8197 unsigned int length) 8198 { 8199 struct inode *inode = page->mapping->host; 8200 struct extent_io_tree *tree; 8201 struct btrfs_ordered_extent *ordered; 8202 struct extent_state *cached_state = NULL; 8203 u64 page_start = page_offset(page); 8204 u64 page_end = page_start + PAGE_SIZE - 1; 8205 u64 start; 8206 u64 end; 8207 int inode_evicting = inode->i_state & I_FREEING; 8208 8209 /* 8210 * we have the page locked, so new writeback can't start, 8211 * and the dirty bit won't be cleared while we are here. 8212 * 8213 * Wait for IO on this page so that we can safely clear 8214 * the PagePrivate2 bit and do ordered accounting 8215 */ 8216 wait_on_page_writeback(page); 8217 8218 tree = &BTRFS_I(inode)->io_tree; 8219 if (offset) { 8220 btrfs_releasepage(page, GFP_NOFS); 8221 return; 8222 } 8223 8224 if (!inode_evicting) 8225 lock_extent_bits(tree, page_start, page_end, &cached_state); 8226 again: 8227 start = page_start; 8228 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8229 page_end - start + 1); 8230 if (ordered) { 8231 end = min(page_end, 8232 ordered->file_offset + ordered->num_bytes - 1); 8233 /* 8234 * IO on this page will never be started, so we need 8235 * to account for any ordered extents now 8236 */ 8237 if (!inode_evicting) 8238 clear_extent_bit(tree, start, end, 8239 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8240 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8241 EXTENT_DEFRAG, 1, 0, &cached_state); 8242 /* 8243 * whoever cleared the private bit is responsible 8244 * for the finish_ordered_io 8245 */ 8246 if (TestClearPagePrivate2(page)) { 8247 struct btrfs_ordered_inode_tree *tree; 8248 u64 new_len; 8249 8250 tree = &BTRFS_I(inode)->ordered_tree; 8251 8252 spin_lock_irq(&tree->lock); 8253 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8254 new_len = start - ordered->file_offset; 8255 if (new_len < ordered->truncated_len) 8256 ordered->truncated_len = new_len; 8257 spin_unlock_irq(&tree->lock); 8258 8259 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8260 start, 8261 end - start + 1, 1)) 8262 btrfs_finish_ordered_io(ordered); 8263 } 8264 btrfs_put_ordered_extent(ordered); 8265 if (!inode_evicting) { 8266 cached_state = NULL; 8267 lock_extent_bits(tree, start, end, 8268 &cached_state); 8269 } 8270 8271 start = end + 1; 8272 if (start < page_end) 8273 goto again; 8274 } 8275 8276 /* 8277 * Qgroup reserved space handler 8278 * Page here will be either 8279 * 1) Already written to disk 8280 * In this case, its reserved space is released from data rsv map 8281 * and will be freed by delayed_ref handler finally. 8282 * So even we call qgroup_free_data(), it won't decrease reserved 8283 * space. 8284 * 2) Not written to disk 8285 * This means the reserved space should be freed here. However, 8286 * if a truncate invalidates the page (by clearing PageDirty) 8287 * and the page is accounted for while allocating extent 8288 * in btrfs_check_data_free_space() we let delayed_ref to 8289 * free the entire extent. 8290 */ 8291 if (PageDirty(page)) 8292 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8293 if (!inode_evicting) { 8294 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8295 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8296 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8297 &cached_state); 8298 8299 __btrfs_releasepage(page, GFP_NOFS); 8300 } 8301 8302 ClearPageChecked(page); 8303 if (PagePrivate(page)) { 8304 ClearPagePrivate(page); 8305 set_page_private(page, 0); 8306 put_page(page); 8307 } 8308 } 8309 8310 /* 8311 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8312 * called from a page fault handler when a page is first dirtied. Hence we must 8313 * be careful to check for EOF conditions here. We set the page up correctly 8314 * for a written page which means we get ENOSPC checking when writing into 8315 * holes and correct delalloc and unwritten extent mapping on filesystems that 8316 * support these features. 8317 * 8318 * We are not allowed to take the i_mutex here so we have to play games to 8319 * protect against truncate races as the page could now be beyond EOF. Because 8320 * truncate_setsize() writes the inode size before removing pages, once we have 8321 * the page lock we can determine safely if the page is beyond EOF. If it is not 8322 * beyond EOF, then the page is guaranteed safe against truncation until we 8323 * unlock the page. 8324 */ 8325 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8326 { 8327 struct page *page = vmf->page; 8328 struct inode *inode = file_inode(vmf->vma->vm_file); 8329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8330 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8331 struct btrfs_ordered_extent *ordered; 8332 struct extent_state *cached_state = NULL; 8333 struct extent_changeset *data_reserved = NULL; 8334 char *kaddr; 8335 unsigned long zero_start; 8336 loff_t size; 8337 vm_fault_t ret; 8338 int ret2; 8339 int reserved = 0; 8340 u64 reserved_space; 8341 u64 page_start; 8342 u64 page_end; 8343 u64 end; 8344 8345 reserved_space = PAGE_SIZE; 8346 8347 sb_start_pagefault(inode->i_sb); 8348 page_start = page_offset(page); 8349 page_end = page_start + PAGE_SIZE - 1; 8350 end = page_end; 8351 8352 /* 8353 * Reserving delalloc space after obtaining the page lock can lead to 8354 * deadlock. For example, if a dirty page is locked by this function 8355 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8356 * dirty page write out, then the btrfs_writepage() function could 8357 * end up waiting indefinitely to get a lock on the page currently 8358 * being processed by btrfs_page_mkwrite() function. 8359 */ 8360 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8361 reserved_space); 8362 if (!ret2) { 8363 ret2 = file_update_time(vmf->vma->vm_file); 8364 reserved = 1; 8365 } 8366 if (ret2) { 8367 ret = vmf_error(ret2); 8368 if (reserved) 8369 goto out; 8370 goto out_noreserve; 8371 } 8372 8373 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8374 again: 8375 lock_page(page); 8376 size = i_size_read(inode); 8377 8378 if ((page->mapping != inode->i_mapping) || 8379 (page_start >= size)) { 8380 /* page got truncated out from underneath us */ 8381 goto out_unlock; 8382 } 8383 wait_on_page_writeback(page); 8384 8385 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8386 set_page_extent_mapped(page); 8387 8388 /* 8389 * we can't set the delalloc bits if there are pending ordered 8390 * extents. Drop our locks and wait for them to finish 8391 */ 8392 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8393 PAGE_SIZE); 8394 if (ordered) { 8395 unlock_extent_cached(io_tree, page_start, page_end, 8396 &cached_state); 8397 unlock_page(page); 8398 btrfs_start_ordered_extent(inode, ordered, 1); 8399 btrfs_put_ordered_extent(ordered); 8400 goto again; 8401 } 8402 8403 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8404 reserved_space = round_up(size - page_start, 8405 fs_info->sectorsize); 8406 if (reserved_space < PAGE_SIZE) { 8407 end = page_start + reserved_space - 1; 8408 btrfs_delalloc_release_space(inode, data_reserved, 8409 page_start, PAGE_SIZE - reserved_space, 8410 true); 8411 } 8412 } 8413 8414 /* 8415 * page_mkwrite gets called when the page is firstly dirtied after it's 8416 * faulted in, but write(2) could also dirty a page and set delalloc 8417 * bits, thus in this case for space account reason, we still need to 8418 * clear any delalloc bits within this page range since we have to 8419 * reserve data&meta space before lock_page() (see above comments). 8420 */ 8421 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8422 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8423 EXTENT_DEFRAG, 0, 0, &cached_state); 8424 8425 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8426 &cached_state); 8427 if (ret2) { 8428 unlock_extent_cached(io_tree, page_start, page_end, 8429 &cached_state); 8430 ret = VM_FAULT_SIGBUS; 8431 goto out_unlock; 8432 } 8433 8434 /* page is wholly or partially inside EOF */ 8435 if (page_start + PAGE_SIZE > size) 8436 zero_start = offset_in_page(size); 8437 else 8438 zero_start = PAGE_SIZE; 8439 8440 if (zero_start != PAGE_SIZE) { 8441 kaddr = kmap(page); 8442 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8443 flush_dcache_page(page); 8444 kunmap(page); 8445 } 8446 ClearPageChecked(page); 8447 set_page_dirty(page); 8448 SetPageUptodate(page); 8449 8450 BTRFS_I(inode)->last_trans = fs_info->generation; 8451 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8452 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8453 8454 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8455 8456 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8457 sb_end_pagefault(inode->i_sb); 8458 extent_changeset_free(data_reserved); 8459 return VM_FAULT_LOCKED; 8460 8461 out_unlock: 8462 unlock_page(page); 8463 out: 8464 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8465 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8466 reserved_space, (ret != 0)); 8467 out_noreserve: 8468 sb_end_pagefault(inode->i_sb); 8469 extent_changeset_free(data_reserved); 8470 return ret; 8471 } 8472 8473 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8474 { 8475 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8476 struct btrfs_root *root = BTRFS_I(inode)->root; 8477 struct btrfs_block_rsv *rsv; 8478 int ret; 8479 struct btrfs_trans_handle *trans; 8480 u64 mask = fs_info->sectorsize - 1; 8481 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8482 8483 if (!skip_writeback) { 8484 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8485 (u64)-1); 8486 if (ret) 8487 return ret; 8488 } 8489 8490 /* 8491 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8492 * things going on here: 8493 * 8494 * 1) We need to reserve space to update our inode. 8495 * 8496 * 2) We need to have something to cache all the space that is going to 8497 * be free'd up by the truncate operation, but also have some slack 8498 * space reserved in case it uses space during the truncate (thank you 8499 * very much snapshotting). 8500 * 8501 * And we need these to be separate. The fact is we can use a lot of 8502 * space doing the truncate, and we have no earthly idea how much space 8503 * we will use, so we need the truncate reservation to be separate so it 8504 * doesn't end up using space reserved for updating the inode. We also 8505 * need to be able to stop the transaction and start a new one, which 8506 * means we need to be able to update the inode several times, and we 8507 * have no idea of knowing how many times that will be, so we can't just 8508 * reserve 1 item for the entirety of the operation, so that has to be 8509 * done separately as well. 8510 * 8511 * So that leaves us with 8512 * 8513 * 1) rsv - for the truncate reservation, which we will steal from the 8514 * transaction reservation. 8515 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8516 * updating the inode. 8517 */ 8518 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8519 if (!rsv) 8520 return -ENOMEM; 8521 rsv->size = min_size; 8522 rsv->failfast = 1; 8523 8524 /* 8525 * 1 for the truncate slack space 8526 * 1 for updating the inode. 8527 */ 8528 trans = btrfs_start_transaction(root, 2); 8529 if (IS_ERR(trans)) { 8530 ret = PTR_ERR(trans); 8531 goto out; 8532 } 8533 8534 /* Migrate the slack space for the truncate to our reserve */ 8535 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8536 min_size, false); 8537 BUG_ON(ret); 8538 8539 /* 8540 * So if we truncate and then write and fsync we normally would just 8541 * write the extents that changed, which is a problem if we need to 8542 * first truncate that entire inode. So set this flag so we write out 8543 * all of the extents in the inode to the sync log so we're completely 8544 * safe. 8545 */ 8546 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8547 trans->block_rsv = rsv; 8548 8549 while (1) { 8550 ret = btrfs_truncate_inode_items(trans, root, inode, 8551 inode->i_size, 8552 BTRFS_EXTENT_DATA_KEY); 8553 trans->block_rsv = &fs_info->trans_block_rsv; 8554 if (ret != -ENOSPC && ret != -EAGAIN) 8555 break; 8556 8557 ret = btrfs_update_inode(trans, root, inode); 8558 if (ret) 8559 break; 8560 8561 btrfs_end_transaction(trans); 8562 btrfs_btree_balance_dirty(fs_info); 8563 8564 trans = btrfs_start_transaction(root, 2); 8565 if (IS_ERR(trans)) { 8566 ret = PTR_ERR(trans); 8567 trans = NULL; 8568 break; 8569 } 8570 8571 btrfs_block_rsv_release(fs_info, rsv, -1); 8572 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8573 rsv, min_size, false); 8574 BUG_ON(ret); /* shouldn't happen */ 8575 trans->block_rsv = rsv; 8576 } 8577 8578 /* 8579 * We can't call btrfs_truncate_block inside a trans handle as we could 8580 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8581 * we've truncated everything except the last little bit, and can do 8582 * btrfs_truncate_block and then update the disk_i_size. 8583 */ 8584 if (ret == NEED_TRUNCATE_BLOCK) { 8585 btrfs_end_transaction(trans); 8586 btrfs_btree_balance_dirty(fs_info); 8587 8588 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 8589 if (ret) 8590 goto out; 8591 trans = btrfs_start_transaction(root, 1); 8592 if (IS_ERR(trans)) { 8593 ret = PTR_ERR(trans); 8594 goto out; 8595 } 8596 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 8597 } 8598 8599 if (trans) { 8600 int ret2; 8601 8602 trans->block_rsv = &fs_info->trans_block_rsv; 8603 ret2 = btrfs_update_inode(trans, root, inode); 8604 if (ret2 && !ret) 8605 ret = ret2; 8606 8607 ret2 = btrfs_end_transaction(trans); 8608 if (ret2 && !ret) 8609 ret = ret2; 8610 btrfs_btree_balance_dirty(fs_info); 8611 } 8612 out: 8613 btrfs_free_block_rsv(fs_info, rsv); 8614 8615 return ret; 8616 } 8617 8618 /* 8619 * create a new subvolume directory/inode (helper for the ioctl). 8620 */ 8621 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8622 struct btrfs_root *new_root, 8623 struct btrfs_root *parent_root, 8624 u64 new_dirid) 8625 { 8626 struct inode *inode; 8627 int err; 8628 u64 index = 0; 8629 8630 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8631 new_dirid, new_dirid, 8632 S_IFDIR | (~current_umask() & S_IRWXUGO), 8633 &index); 8634 if (IS_ERR(inode)) 8635 return PTR_ERR(inode); 8636 inode->i_op = &btrfs_dir_inode_operations; 8637 inode->i_fop = &btrfs_dir_file_operations; 8638 8639 set_nlink(inode, 1); 8640 btrfs_i_size_write(BTRFS_I(inode), 0); 8641 unlock_new_inode(inode); 8642 8643 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8644 if (err) 8645 btrfs_err(new_root->fs_info, 8646 "error inheriting subvolume %llu properties: %d", 8647 new_root->root_key.objectid, err); 8648 8649 err = btrfs_update_inode(trans, new_root, inode); 8650 8651 iput(inode); 8652 return err; 8653 } 8654 8655 struct inode *btrfs_alloc_inode(struct super_block *sb) 8656 { 8657 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8658 struct btrfs_inode *ei; 8659 struct inode *inode; 8660 8661 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8662 if (!ei) 8663 return NULL; 8664 8665 ei->root = NULL; 8666 ei->generation = 0; 8667 ei->last_trans = 0; 8668 ei->last_sub_trans = 0; 8669 ei->logged_trans = 0; 8670 ei->delalloc_bytes = 0; 8671 ei->new_delalloc_bytes = 0; 8672 ei->defrag_bytes = 0; 8673 ei->disk_i_size = 0; 8674 ei->flags = 0; 8675 ei->csum_bytes = 0; 8676 ei->index_cnt = (u64)-1; 8677 ei->dir_index = 0; 8678 ei->last_unlink_trans = 0; 8679 ei->last_log_commit = 0; 8680 8681 spin_lock_init(&ei->lock); 8682 ei->outstanding_extents = 0; 8683 if (sb->s_magic != BTRFS_TEST_MAGIC) 8684 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8685 BTRFS_BLOCK_RSV_DELALLOC); 8686 ei->runtime_flags = 0; 8687 ei->prop_compress = BTRFS_COMPRESS_NONE; 8688 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8689 8690 ei->delayed_node = NULL; 8691 8692 ei->i_otime.tv_sec = 0; 8693 ei->i_otime.tv_nsec = 0; 8694 8695 inode = &ei->vfs_inode; 8696 extent_map_tree_init(&ei->extent_tree); 8697 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8698 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8699 IO_TREE_INODE_IO_FAILURE, inode); 8700 ei->io_tree.track_uptodate = true; 8701 ei->io_failure_tree.track_uptodate = true; 8702 atomic_set(&ei->sync_writers, 0); 8703 mutex_init(&ei->log_mutex); 8704 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8705 INIT_LIST_HEAD(&ei->delalloc_inodes); 8706 INIT_LIST_HEAD(&ei->delayed_iput); 8707 RB_CLEAR_NODE(&ei->rb_node); 8708 init_rwsem(&ei->dio_sem); 8709 8710 return inode; 8711 } 8712 8713 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8714 void btrfs_test_destroy_inode(struct inode *inode) 8715 { 8716 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8717 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8718 } 8719 #endif 8720 8721 void btrfs_free_inode(struct inode *inode) 8722 { 8723 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8724 } 8725 8726 void btrfs_destroy_inode(struct inode *inode) 8727 { 8728 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8729 struct btrfs_ordered_extent *ordered; 8730 struct btrfs_root *root = BTRFS_I(inode)->root; 8731 8732 WARN_ON(!hlist_empty(&inode->i_dentry)); 8733 WARN_ON(inode->i_data.nrpages); 8734 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 8735 WARN_ON(BTRFS_I(inode)->block_rsv.size); 8736 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8737 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8738 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 8739 WARN_ON(BTRFS_I(inode)->csum_bytes); 8740 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8741 8742 /* 8743 * This can happen where we create an inode, but somebody else also 8744 * created the same inode and we need to destroy the one we already 8745 * created. 8746 */ 8747 if (!root) 8748 return; 8749 8750 while (1) { 8751 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8752 if (!ordered) 8753 break; 8754 else { 8755 btrfs_err(fs_info, 8756 "found ordered extent %llu %llu on inode cleanup", 8757 ordered->file_offset, ordered->num_bytes); 8758 btrfs_remove_ordered_extent(inode, ordered); 8759 btrfs_put_ordered_extent(ordered); 8760 btrfs_put_ordered_extent(ordered); 8761 } 8762 } 8763 btrfs_qgroup_check_reserved_leak(inode); 8764 inode_tree_del(inode); 8765 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8766 } 8767 8768 int btrfs_drop_inode(struct inode *inode) 8769 { 8770 struct btrfs_root *root = BTRFS_I(inode)->root; 8771 8772 if (root == NULL) 8773 return 1; 8774 8775 /* the snap/subvol tree is on deleting */ 8776 if (btrfs_root_refs(&root->root_item) == 0) 8777 return 1; 8778 else 8779 return generic_drop_inode(inode); 8780 } 8781 8782 static void init_once(void *foo) 8783 { 8784 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8785 8786 inode_init_once(&ei->vfs_inode); 8787 } 8788 8789 void __cold btrfs_destroy_cachep(void) 8790 { 8791 /* 8792 * Make sure all delayed rcu free inodes are flushed before we 8793 * destroy cache. 8794 */ 8795 rcu_barrier(); 8796 kmem_cache_destroy(btrfs_inode_cachep); 8797 kmem_cache_destroy(btrfs_trans_handle_cachep); 8798 kmem_cache_destroy(btrfs_path_cachep); 8799 kmem_cache_destroy(btrfs_free_space_cachep); 8800 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8801 } 8802 8803 int __init btrfs_init_cachep(void) 8804 { 8805 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8806 sizeof(struct btrfs_inode), 0, 8807 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8808 init_once); 8809 if (!btrfs_inode_cachep) 8810 goto fail; 8811 8812 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8813 sizeof(struct btrfs_trans_handle), 0, 8814 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8815 if (!btrfs_trans_handle_cachep) 8816 goto fail; 8817 8818 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8819 sizeof(struct btrfs_path), 0, 8820 SLAB_MEM_SPREAD, NULL); 8821 if (!btrfs_path_cachep) 8822 goto fail; 8823 8824 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8825 sizeof(struct btrfs_free_space), 0, 8826 SLAB_MEM_SPREAD, NULL); 8827 if (!btrfs_free_space_cachep) 8828 goto fail; 8829 8830 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8831 PAGE_SIZE, PAGE_SIZE, 8832 SLAB_RED_ZONE, NULL); 8833 if (!btrfs_free_space_bitmap_cachep) 8834 goto fail; 8835 8836 return 0; 8837 fail: 8838 btrfs_destroy_cachep(); 8839 return -ENOMEM; 8840 } 8841 8842 static int btrfs_getattr(const struct path *path, struct kstat *stat, 8843 u32 request_mask, unsigned int flags) 8844 { 8845 u64 delalloc_bytes; 8846 struct inode *inode = d_inode(path->dentry); 8847 u32 blocksize = inode->i_sb->s_blocksize; 8848 u32 bi_flags = BTRFS_I(inode)->flags; 8849 8850 stat->result_mask |= STATX_BTIME; 8851 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8852 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8853 if (bi_flags & BTRFS_INODE_APPEND) 8854 stat->attributes |= STATX_ATTR_APPEND; 8855 if (bi_flags & BTRFS_INODE_COMPRESS) 8856 stat->attributes |= STATX_ATTR_COMPRESSED; 8857 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8858 stat->attributes |= STATX_ATTR_IMMUTABLE; 8859 if (bi_flags & BTRFS_INODE_NODUMP) 8860 stat->attributes |= STATX_ATTR_NODUMP; 8861 8862 stat->attributes_mask |= (STATX_ATTR_APPEND | 8863 STATX_ATTR_COMPRESSED | 8864 STATX_ATTR_IMMUTABLE | 8865 STATX_ATTR_NODUMP); 8866 8867 generic_fillattr(inode, stat); 8868 stat->dev = BTRFS_I(inode)->root->anon_dev; 8869 8870 spin_lock(&BTRFS_I(inode)->lock); 8871 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8872 spin_unlock(&BTRFS_I(inode)->lock); 8873 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8874 ALIGN(delalloc_bytes, blocksize)) >> 9; 8875 return 0; 8876 } 8877 8878 static int btrfs_rename_exchange(struct inode *old_dir, 8879 struct dentry *old_dentry, 8880 struct inode *new_dir, 8881 struct dentry *new_dentry) 8882 { 8883 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8884 struct btrfs_trans_handle *trans; 8885 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8886 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8887 struct inode *new_inode = new_dentry->d_inode; 8888 struct inode *old_inode = old_dentry->d_inode; 8889 struct timespec64 ctime = current_time(old_inode); 8890 struct dentry *parent; 8891 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8892 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8893 u64 old_idx = 0; 8894 u64 new_idx = 0; 8895 int ret; 8896 bool root_log_pinned = false; 8897 bool dest_log_pinned = false; 8898 struct btrfs_log_ctx ctx_root; 8899 struct btrfs_log_ctx ctx_dest; 8900 bool sync_log_root = false; 8901 bool sync_log_dest = false; 8902 bool commit_transaction = false; 8903 8904 /* we only allow rename subvolume link between subvolumes */ 8905 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8906 return -EXDEV; 8907 8908 btrfs_init_log_ctx(&ctx_root, old_inode); 8909 btrfs_init_log_ctx(&ctx_dest, new_inode); 8910 8911 /* close the race window with snapshot create/destroy ioctl */ 8912 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8913 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8914 down_read(&fs_info->subvol_sem); 8915 8916 /* 8917 * We want to reserve the absolute worst case amount of items. So if 8918 * both inodes are subvols and we need to unlink them then that would 8919 * require 4 item modifications, but if they are both normal inodes it 8920 * would require 5 item modifications, so we'll assume their normal 8921 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 8922 * should cover the worst case number of items we'll modify. 8923 */ 8924 trans = btrfs_start_transaction(root, 12); 8925 if (IS_ERR(trans)) { 8926 ret = PTR_ERR(trans); 8927 goto out_notrans; 8928 } 8929 8930 if (dest != root) 8931 btrfs_record_root_in_trans(trans, dest); 8932 8933 /* 8934 * We need to find a free sequence number both in the source and 8935 * in the destination directory for the exchange. 8936 */ 8937 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8938 if (ret) 8939 goto out_fail; 8940 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8941 if (ret) 8942 goto out_fail; 8943 8944 BTRFS_I(old_inode)->dir_index = 0ULL; 8945 BTRFS_I(new_inode)->dir_index = 0ULL; 8946 8947 /* Reference for the source. */ 8948 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8949 /* force full log commit if subvolume involved. */ 8950 btrfs_set_log_full_commit(trans); 8951 } else { 8952 btrfs_pin_log_trans(root); 8953 root_log_pinned = true; 8954 ret = btrfs_insert_inode_ref(trans, dest, 8955 new_dentry->d_name.name, 8956 new_dentry->d_name.len, 8957 old_ino, 8958 btrfs_ino(BTRFS_I(new_dir)), 8959 old_idx); 8960 if (ret) 8961 goto out_fail; 8962 } 8963 8964 /* And now for the dest. */ 8965 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8966 /* force full log commit if subvolume involved. */ 8967 btrfs_set_log_full_commit(trans); 8968 } else { 8969 btrfs_pin_log_trans(dest); 8970 dest_log_pinned = true; 8971 ret = btrfs_insert_inode_ref(trans, root, 8972 old_dentry->d_name.name, 8973 old_dentry->d_name.len, 8974 new_ino, 8975 btrfs_ino(BTRFS_I(old_dir)), 8976 new_idx); 8977 if (ret) 8978 goto out_fail; 8979 } 8980 8981 /* Update inode version and ctime/mtime. */ 8982 inode_inc_iversion(old_dir); 8983 inode_inc_iversion(new_dir); 8984 inode_inc_iversion(old_inode); 8985 inode_inc_iversion(new_inode); 8986 old_dir->i_ctime = old_dir->i_mtime = ctime; 8987 new_dir->i_ctime = new_dir->i_mtime = ctime; 8988 old_inode->i_ctime = ctime; 8989 new_inode->i_ctime = ctime; 8990 8991 if (old_dentry->d_parent != new_dentry->d_parent) { 8992 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8993 BTRFS_I(old_inode), 1); 8994 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8995 BTRFS_I(new_inode), 1); 8996 } 8997 8998 /* src is a subvolume */ 8999 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9000 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9001 } else { /* src is an inode */ 9002 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9003 BTRFS_I(old_dentry->d_inode), 9004 old_dentry->d_name.name, 9005 old_dentry->d_name.len); 9006 if (!ret) 9007 ret = btrfs_update_inode(trans, root, old_inode); 9008 } 9009 if (ret) { 9010 btrfs_abort_transaction(trans, ret); 9011 goto out_fail; 9012 } 9013 9014 /* dest is a subvolume */ 9015 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9016 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9017 } else { /* dest is an inode */ 9018 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9019 BTRFS_I(new_dentry->d_inode), 9020 new_dentry->d_name.name, 9021 new_dentry->d_name.len); 9022 if (!ret) 9023 ret = btrfs_update_inode(trans, dest, new_inode); 9024 } 9025 if (ret) { 9026 btrfs_abort_transaction(trans, ret); 9027 goto out_fail; 9028 } 9029 9030 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9031 new_dentry->d_name.name, 9032 new_dentry->d_name.len, 0, old_idx); 9033 if (ret) { 9034 btrfs_abort_transaction(trans, ret); 9035 goto out_fail; 9036 } 9037 9038 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9039 old_dentry->d_name.name, 9040 old_dentry->d_name.len, 0, new_idx); 9041 if (ret) { 9042 btrfs_abort_transaction(trans, ret); 9043 goto out_fail; 9044 } 9045 9046 if (old_inode->i_nlink == 1) 9047 BTRFS_I(old_inode)->dir_index = old_idx; 9048 if (new_inode->i_nlink == 1) 9049 BTRFS_I(new_inode)->dir_index = new_idx; 9050 9051 if (root_log_pinned) { 9052 parent = new_dentry->d_parent; 9053 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9054 BTRFS_I(old_dir), parent, 9055 false, &ctx_root); 9056 if (ret == BTRFS_NEED_LOG_SYNC) 9057 sync_log_root = true; 9058 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9059 commit_transaction = true; 9060 ret = 0; 9061 btrfs_end_log_trans(root); 9062 root_log_pinned = false; 9063 } 9064 if (dest_log_pinned) { 9065 if (!commit_transaction) { 9066 parent = old_dentry->d_parent; 9067 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9068 BTRFS_I(new_dir), parent, 9069 false, &ctx_dest); 9070 if (ret == BTRFS_NEED_LOG_SYNC) 9071 sync_log_dest = true; 9072 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9073 commit_transaction = true; 9074 ret = 0; 9075 } 9076 btrfs_end_log_trans(dest); 9077 dest_log_pinned = false; 9078 } 9079 out_fail: 9080 /* 9081 * If we have pinned a log and an error happened, we unpin tasks 9082 * trying to sync the log and force them to fallback to a transaction 9083 * commit if the log currently contains any of the inodes involved in 9084 * this rename operation (to ensure we do not persist a log with an 9085 * inconsistent state for any of these inodes or leading to any 9086 * inconsistencies when replayed). If the transaction was aborted, the 9087 * abortion reason is propagated to userspace when attempting to commit 9088 * the transaction. If the log does not contain any of these inodes, we 9089 * allow the tasks to sync it. 9090 */ 9091 if (ret && (root_log_pinned || dest_log_pinned)) { 9092 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9093 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9094 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9095 (new_inode && 9096 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9097 btrfs_set_log_full_commit(trans); 9098 9099 if (root_log_pinned) { 9100 btrfs_end_log_trans(root); 9101 root_log_pinned = false; 9102 } 9103 if (dest_log_pinned) { 9104 btrfs_end_log_trans(dest); 9105 dest_log_pinned = false; 9106 } 9107 } 9108 if (!ret && sync_log_root && !commit_transaction) { 9109 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9110 &ctx_root); 9111 if (ret) 9112 commit_transaction = true; 9113 } 9114 if (!ret && sync_log_dest && !commit_transaction) { 9115 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9116 &ctx_dest); 9117 if (ret) 9118 commit_transaction = true; 9119 } 9120 if (commit_transaction) { 9121 /* 9122 * We may have set commit_transaction when logging the new name 9123 * in the destination root, in which case we left the source 9124 * root context in the list of log contextes. So make sure we 9125 * remove it to avoid invalid memory accesses, since the context 9126 * was allocated in our stack frame. 9127 */ 9128 if (sync_log_root) { 9129 mutex_lock(&root->log_mutex); 9130 list_del_init(&ctx_root.list); 9131 mutex_unlock(&root->log_mutex); 9132 } 9133 ret = btrfs_commit_transaction(trans); 9134 } else { 9135 int ret2; 9136 9137 ret2 = btrfs_end_transaction(trans); 9138 ret = ret ? ret : ret2; 9139 } 9140 out_notrans: 9141 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9142 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9143 up_read(&fs_info->subvol_sem); 9144 9145 ASSERT(list_empty(&ctx_root.list)); 9146 ASSERT(list_empty(&ctx_dest.list)); 9147 9148 return ret; 9149 } 9150 9151 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9152 struct btrfs_root *root, 9153 struct inode *dir, 9154 struct dentry *dentry) 9155 { 9156 int ret; 9157 struct inode *inode; 9158 u64 objectid; 9159 u64 index; 9160 9161 ret = btrfs_find_free_ino(root, &objectid); 9162 if (ret) 9163 return ret; 9164 9165 inode = btrfs_new_inode(trans, root, dir, 9166 dentry->d_name.name, 9167 dentry->d_name.len, 9168 btrfs_ino(BTRFS_I(dir)), 9169 objectid, 9170 S_IFCHR | WHITEOUT_MODE, 9171 &index); 9172 9173 if (IS_ERR(inode)) { 9174 ret = PTR_ERR(inode); 9175 return ret; 9176 } 9177 9178 inode->i_op = &btrfs_special_inode_operations; 9179 init_special_inode(inode, inode->i_mode, 9180 WHITEOUT_DEV); 9181 9182 ret = btrfs_init_inode_security(trans, inode, dir, 9183 &dentry->d_name); 9184 if (ret) 9185 goto out; 9186 9187 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9188 BTRFS_I(inode), 0, index); 9189 if (ret) 9190 goto out; 9191 9192 ret = btrfs_update_inode(trans, root, inode); 9193 out: 9194 unlock_new_inode(inode); 9195 if (ret) 9196 inode_dec_link_count(inode); 9197 iput(inode); 9198 9199 return ret; 9200 } 9201 9202 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9203 struct inode *new_dir, struct dentry *new_dentry, 9204 unsigned int flags) 9205 { 9206 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9207 struct btrfs_trans_handle *trans; 9208 unsigned int trans_num_items; 9209 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9210 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9211 struct inode *new_inode = d_inode(new_dentry); 9212 struct inode *old_inode = d_inode(old_dentry); 9213 u64 index = 0; 9214 int ret; 9215 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9216 bool log_pinned = false; 9217 struct btrfs_log_ctx ctx; 9218 bool sync_log = false; 9219 bool commit_transaction = false; 9220 9221 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9222 return -EPERM; 9223 9224 /* we only allow rename subvolume link between subvolumes */ 9225 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9226 return -EXDEV; 9227 9228 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9229 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9230 return -ENOTEMPTY; 9231 9232 if (S_ISDIR(old_inode->i_mode) && new_inode && 9233 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9234 return -ENOTEMPTY; 9235 9236 9237 /* check for collisions, even if the name isn't there */ 9238 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9239 new_dentry->d_name.name, 9240 new_dentry->d_name.len); 9241 9242 if (ret) { 9243 if (ret == -EEXIST) { 9244 /* we shouldn't get 9245 * eexist without a new_inode */ 9246 if (WARN_ON(!new_inode)) { 9247 return ret; 9248 } 9249 } else { 9250 /* maybe -EOVERFLOW */ 9251 return ret; 9252 } 9253 } 9254 ret = 0; 9255 9256 /* 9257 * we're using rename to replace one file with another. Start IO on it 9258 * now so we don't add too much work to the end of the transaction 9259 */ 9260 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9261 filemap_flush(old_inode->i_mapping); 9262 9263 /* close the racy window with snapshot create/destroy ioctl */ 9264 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9265 down_read(&fs_info->subvol_sem); 9266 /* 9267 * We want to reserve the absolute worst case amount of items. So if 9268 * both inodes are subvols and we need to unlink them then that would 9269 * require 4 item modifications, but if they are both normal inodes it 9270 * would require 5 item modifications, so we'll assume they are normal 9271 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9272 * should cover the worst case number of items we'll modify. 9273 * If our rename has the whiteout flag, we need more 5 units for the 9274 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9275 * when selinux is enabled). 9276 */ 9277 trans_num_items = 11; 9278 if (flags & RENAME_WHITEOUT) 9279 trans_num_items += 5; 9280 trans = btrfs_start_transaction(root, trans_num_items); 9281 if (IS_ERR(trans)) { 9282 ret = PTR_ERR(trans); 9283 goto out_notrans; 9284 } 9285 9286 if (dest != root) 9287 btrfs_record_root_in_trans(trans, dest); 9288 9289 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9290 if (ret) 9291 goto out_fail; 9292 9293 BTRFS_I(old_inode)->dir_index = 0ULL; 9294 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9295 /* force full log commit if subvolume involved. */ 9296 btrfs_set_log_full_commit(trans); 9297 } else { 9298 btrfs_pin_log_trans(root); 9299 log_pinned = true; 9300 ret = btrfs_insert_inode_ref(trans, dest, 9301 new_dentry->d_name.name, 9302 new_dentry->d_name.len, 9303 old_ino, 9304 btrfs_ino(BTRFS_I(new_dir)), index); 9305 if (ret) 9306 goto out_fail; 9307 } 9308 9309 inode_inc_iversion(old_dir); 9310 inode_inc_iversion(new_dir); 9311 inode_inc_iversion(old_inode); 9312 old_dir->i_ctime = old_dir->i_mtime = 9313 new_dir->i_ctime = new_dir->i_mtime = 9314 old_inode->i_ctime = current_time(old_dir); 9315 9316 if (old_dentry->d_parent != new_dentry->d_parent) 9317 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9318 BTRFS_I(old_inode), 1); 9319 9320 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9321 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9322 } else { 9323 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9324 BTRFS_I(d_inode(old_dentry)), 9325 old_dentry->d_name.name, 9326 old_dentry->d_name.len); 9327 if (!ret) 9328 ret = btrfs_update_inode(trans, root, old_inode); 9329 } 9330 if (ret) { 9331 btrfs_abort_transaction(trans, ret); 9332 goto out_fail; 9333 } 9334 9335 if (new_inode) { 9336 inode_inc_iversion(new_inode); 9337 new_inode->i_ctime = current_time(new_inode); 9338 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9339 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9340 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9341 BUG_ON(new_inode->i_nlink == 0); 9342 } else { 9343 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9344 BTRFS_I(d_inode(new_dentry)), 9345 new_dentry->d_name.name, 9346 new_dentry->d_name.len); 9347 } 9348 if (!ret && new_inode->i_nlink == 0) 9349 ret = btrfs_orphan_add(trans, 9350 BTRFS_I(d_inode(new_dentry))); 9351 if (ret) { 9352 btrfs_abort_transaction(trans, ret); 9353 goto out_fail; 9354 } 9355 } 9356 9357 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9358 new_dentry->d_name.name, 9359 new_dentry->d_name.len, 0, index); 9360 if (ret) { 9361 btrfs_abort_transaction(trans, ret); 9362 goto out_fail; 9363 } 9364 9365 if (old_inode->i_nlink == 1) 9366 BTRFS_I(old_inode)->dir_index = index; 9367 9368 if (log_pinned) { 9369 struct dentry *parent = new_dentry->d_parent; 9370 9371 btrfs_init_log_ctx(&ctx, old_inode); 9372 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9373 BTRFS_I(old_dir), parent, 9374 false, &ctx); 9375 if (ret == BTRFS_NEED_LOG_SYNC) 9376 sync_log = true; 9377 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9378 commit_transaction = true; 9379 ret = 0; 9380 btrfs_end_log_trans(root); 9381 log_pinned = false; 9382 } 9383 9384 if (flags & RENAME_WHITEOUT) { 9385 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9386 old_dentry); 9387 9388 if (ret) { 9389 btrfs_abort_transaction(trans, ret); 9390 goto out_fail; 9391 } 9392 } 9393 out_fail: 9394 /* 9395 * If we have pinned the log and an error happened, we unpin tasks 9396 * trying to sync the log and force them to fallback to a transaction 9397 * commit if the log currently contains any of the inodes involved in 9398 * this rename operation (to ensure we do not persist a log with an 9399 * inconsistent state for any of these inodes or leading to any 9400 * inconsistencies when replayed). If the transaction was aborted, the 9401 * abortion reason is propagated to userspace when attempting to commit 9402 * the transaction. If the log does not contain any of these inodes, we 9403 * allow the tasks to sync it. 9404 */ 9405 if (ret && log_pinned) { 9406 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9407 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9408 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9409 (new_inode && 9410 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9411 btrfs_set_log_full_commit(trans); 9412 9413 btrfs_end_log_trans(root); 9414 log_pinned = false; 9415 } 9416 if (!ret && sync_log) { 9417 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9418 if (ret) 9419 commit_transaction = true; 9420 } 9421 if (commit_transaction) { 9422 ret = btrfs_commit_transaction(trans); 9423 } else { 9424 int ret2; 9425 9426 ret2 = btrfs_end_transaction(trans); 9427 ret = ret ? ret : ret2; 9428 } 9429 out_notrans: 9430 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9431 up_read(&fs_info->subvol_sem); 9432 9433 return ret; 9434 } 9435 9436 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9437 struct inode *new_dir, struct dentry *new_dentry, 9438 unsigned int flags) 9439 { 9440 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9441 return -EINVAL; 9442 9443 if (flags & RENAME_EXCHANGE) 9444 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9445 new_dentry); 9446 9447 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9448 } 9449 9450 struct btrfs_delalloc_work { 9451 struct inode *inode; 9452 struct completion completion; 9453 struct list_head list; 9454 struct btrfs_work work; 9455 }; 9456 9457 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9458 { 9459 struct btrfs_delalloc_work *delalloc_work; 9460 struct inode *inode; 9461 9462 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9463 work); 9464 inode = delalloc_work->inode; 9465 filemap_flush(inode->i_mapping); 9466 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9467 &BTRFS_I(inode)->runtime_flags)) 9468 filemap_flush(inode->i_mapping); 9469 9470 iput(inode); 9471 complete(&delalloc_work->completion); 9472 } 9473 9474 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9475 { 9476 struct btrfs_delalloc_work *work; 9477 9478 work = kmalloc(sizeof(*work), GFP_NOFS); 9479 if (!work) 9480 return NULL; 9481 9482 init_completion(&work->completion); 9483 INIT_LIST_HEAD(&work->list); 9484 work->inode = inode; 9485 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9486 9487 return work; 9488 } 9489 9490 /* 9491 * some fairly slow code that needs optimization. This walks the list 9492 * of all the inodes with pending delalloc and forces them to disk. 9493 */ 9494 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 9495 { 9496 struct btrfs_inode *binode; 9497 struct inode *inode; 9498 struct btrfs_delalloc_work *work, *next; 9499 struct list_head works; 9500 struct list_head splice; 9501 int ret = 0; 9502 9503 INIT_LIST_HEAD(&works); 9504 INIT_LIST_HEAD(&splice); 9505 9506 mutex_lock(&root->delalloc_mutex); 9507 spin_lock(&root->delalloc_lock); 9508 list_splice_init(&root->delalloc_inodes, &splice); 9509 while (!list_empty(&splice)) { 9510 binode = list_entry(splice.next, struct btrfs_inode, 9511 delalloc_inodes); 9512 9513 list_move_tail(&binode->delalloc_inodes, 9514 &root->delalloc_inodes); 9515 inode = igrab(&binode->vfs_inode); 9516 if (!inode) { 9517 cond_resched_lock(&root->delalloc_lock); 9518 continue; 9519 } 9520 spin_unlock(&root->delalloc_lock); 9521 9522 if (snapshot) 9523 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9524 &binode->runtime_flags); 9525 work = btrfs_alloc_delalloc_work(inode); 9526 if (!work) { 9527 iput(inode); 9528 ret = -ENOMEM; 9529 goto out; 9530 } 9531 list_add_tail(&work->list, &works); 9532 btrfs_queue_work(root->fs_info->flush_workers, 9533 &work->work); 9534 ret++; 9535 if (nr != -1 && ret >= nr) 9536 goto out; 9537 cond_resched(); 9538 spin_lock(&root->delalloc_lock); 9539 } 9540 spin_unlock(&root->delalloc_lock); 9541 9542 out: 9543 list_for_each_entry_safe(work, next, &works, list) { 9544 list_del_init(&work->list); 9545 wait_for_completion(&work->completion); 9546 kfree(work); 9547 } 9548 9549 if (!list_empty(&splice)) { 9550 spin_lock(&root->delalloc_lock); 9551 list_splice_tail(&splice, &root->delalloc_inodes); 9552 spin_unlock(&root->delalloc_lock); 9553 } 9554 mutex_unlock(&root->delalloc_mutex); 9555 return ret; 9556 } 9557 9558 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9559 { 9560 struct btrfs_fs_info *fs_info = root->fs_info; 9561 int ret; 9562 9563 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9564 return -EROFS; 9565 9566 ret = start_delalloc_inodes(root, -1, true); 9567 if (ret > 0) 9568 ret = 0; 9569 return ret; 9570 } 9571 9572 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 9573 { 9574 struct btrfs_root *root; 9575 struct list_head splice; 9576 int ret; 9577 9578 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9579 return -EROFS; 9580 9581 INIT_LIST_HEAD(&splice); 9582 9583 mutex_lock(&fs_info->delalloc_root_mutex); 9584 spin_lock(&fs_info->delalloc_root_lock); 9585 list_splice_init(&fs_info->delalloc_roots, &splice); 9586 while (!list_empty(&splice) && nr) { 9587 root = list_first_entry(&splice, struct btrfs_root, 9588 delalloc_root); 9589 root = btrfs_grab_fs_root(root); 9590 BUG_ON(!root); 9591 list_move_tail(&root->delalloc_root, 9592 &fs_info->delalloc_roots); 9593 spin_unlock(&fs_info->delalloc_root_lock); 9594 9595 ret = start_delalloc_inodes(root, nr, false); 9596 btrfs_put_fs_root(root); 9597 if (ret < 0) 9598 goto out; 9599 9600 if (nr != -1) { 9601 nr -= ret; 9602 WARN_ON(nr < 0); 9603 } 9604 spin_lock(&fs_info->delalloc_root_lock); 9605 } 9606 spin_unlock(&fs_info->delalloc_root_lock); 9607 9608 ret = 0; 9609 out: 9610 if (!list_empty(&splice)) { 9611 spin_lock(&fs_info->delalloc_root_lock); 9612 list_splice_tail(&splice, &fs_info->delalloc_roots); 9613 spin_unlock(&fs_info->delalloc_root_lock); 9614 } 9615 mutex_unlock(&fs_info->delalloc_root_mutex); 9616 return ret; 9617 } 9618 9619 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9620 const char *symname) 9621 { 9622 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9623 struct btrfs_trans_handle *trans; 9624 struct btrfs_root *root = BTRFS_I(dir)->root; 9625 struct btrfs_path *path; 9626 struct btrfs_key key; 9627 struct inode *inode = NULL; 9628 int err; 9629 u64 objectid; 9630 u64 index = 0; 9631 int name_len; 9632 int datasize; 9633 unsigned long ptr; 9634 struct btrfs_file_extent_item *ei; 9635 struct extent_buffer *leaf; 9636 9637 name_len = strlen(symname); 9638 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9639 return -ENAMETOOLONG; 9640 9641 /* 9642 * 2 items for inode item and ref 9643 * 2 items for dir items 9644 * 1 item for updating parent inode item 9645 * 1 item for the inline extent item 9646 * 1 item for xattr if selinux is on 9647 */ 9648 trans = btrfs_start_transaction(root, 7); 9649 if (IS_ERR(trans)) 9650 return PTR_ERR(trans); 9651 9652 err = btrfs_find_free_ino(root, &objectid); 9653 if (err) 9654 goto out_unlock; 9655 9656 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9657 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9658 objectid, S_IFLNK|S_IRWXUGO, &index); 9659 if (IS_ERR(inode)) { 9660 err = PTR_ERR(inode); 9661 inode = NULL; 9662 goto out_unlock; 9663 } 9664 9665 /* 9666 * If the active LSM wants to access the inode during 9667 * d_instantiate it needs these. Smack checks to see 9668 * if the filesystem supports xattrs by looking at the 9669 * ops vector. 9670 */ 9671 inode->i_fop = &btrfs_file_operations; 9672 inode->i_op = &btrfs_file_inode_operations; 9673 inode->i_mapping->a_ops = &btrfs_aops; 9674 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9675 9676 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9677 if (err) 9678 goto out_unlock; 9679 9680 path = btrfs_alloc_path(); 9681 if (!path) { 9682 err = -ENOMEM; 9683 goto out_unlock; 9684 } 9685 key.objectid = btrfs_ino(BTRFS_I(inode)); 9686 key.offset = 0; 9687 key.type = BTRFS_EXTENT_DATA_KEY; 9688 datasize = btrfs_file_extent_calc_inline_size(name_len); 9689 err = btrfs_insert_empty_item(trans, root, path, &key, 9690 datasize); 9691 if (err) { 9692 btrfs_free_path(path); 9693 goto out_unlock; 9694 } 9695 leaf = path->nodes[0]; 9696 ei = btrfs_item_ptr(leaf, path->slots[0], 9697 struct btrfs_file_extent_item); 9698 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9699 btrfs_set_file_extent_type(leaf, ei, 9700 BTRFS_FILE_EXTENT_INLINE); 9701 btrfs_set_file_extent_encryption(leaf, ei, 0); 9702 btrfs_set_file_extent_compression(leaf, ei, 0); 9703 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9704 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9705 9706 ptr = btrfs_file_extent_inline_start(ei); 9707 write_extent_buffer(leaf, symname, ptr, name_len); 9708 btrfs_mark_buffer_dirty(leaf); 9709 btrfs_free_path(path); 9710 9711 inode->i_op = &btrfs_symlink_inode_operations; 9712 inode_nohighmem(inode); 9713 inode_set_bytes(inode, name_len); 9714 btrfs_i_size_write(BTRFS_I(inode), name_len); 9715 err = btrfs_update_inode(trans, root, inode); 9716 /* 9717 * Last step, add directory indexes for our symlink inode. This is the 9718 * last step to avoid extra cleanup of these indexes if an error happens 9719 * elsewhere above. 9720 */ 9721 if (!err) 9722 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9723 BTRFS_I(inode), 0, index); 9724 if (err) 9725 goto out_unlock; 9726 9727 d_instantiate_new(dentry, inode); 9728 9729 out_unlock: 9730 btrfs_end_transaction(trans); 9731 if (err && inode) { 9732 inode_dec_link_count(inode); 9733 discard_new_inode(inode); 9734 } 9735 btrfs_btree_balance_dirty(fs_info); 9736 return err; 9737 } 9738 9739 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9740 u64 start, u64 num_bytes, u64 min_size, 9741 loff_t actual_len, u64 *alloc_hint, 9742 struct btrfs_trans_handle *trans) 9743 { 9744 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9745 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9746 struct extent_map *em; 9747 struct btrfs_root *root = BTRFS_I(inode)->root; 9748 struct btrfs_key ins; 9749 u64 cur_offset = start; 9750 u64 i_size; 9751 u64 cur_bytes; 9752 u64 last_alloc = (u64)-1; 9753 int ret = 0; 9754 bool own_trans = true; 9755 u64 end = start + num_bytes - 1; 9756 9757 if (trans) 9758 own_trans = false; 9759 while (num_bytes > 0) { 9760 if (own_trans) { 9761 trans = btrfs_start_transaction(root, 3); 9762 if (IS_ERR(trans)) { 9763 ret = PTR_ERR(trans); 9764 break; 9765 } 9766 } 9767 9768 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9769 cur_bytes = max(cur_bytes, min_size); 9770 /* 9771 * If we are severely fragmented we could end up with really 9772 * small allocations, so if the allocator is returning small 9773 * chunks lets make its job easier by only searching for those 9774 * sized chunks. 9775 */ 9776 cur_bytes = min(cur_bytes, last_alloc); 9777 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9778 min_size, 0, *alloc_hint, &ins, 1, 0); 9779 if (ret) { 9780 if (own_trans) 9781 btrfs_end_transaction(trans); 9782 break; 9783 } 9784 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9785 9786 last_alloc = ins.offset; 9787 ret = insert_reserved_file_extent(trans, inode, 9788 cur_offset, ins.objectid, 9789 ins.offset, ins.offset, 9790 ins.offset, 0, 0, 0, 9791 BTRFS_FILE_EXTENT_PREALLOC); 9792 if (ret) { 9793 btrfs_free_reserved_extent(fs_info, ins.objectid, 9794 ins.offset, 0); 9795 btrfs_abort_transaction(trans, ret); 9796 if (own_trans) 9797 btrfs_end_transaction(trans); 9798 break; 9799 } 9800 9801 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9802 cur_offset + ins.offset -1, 0); 9803 9804 em = alloc_extent_map(); 9805 if (!em) { 9806 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9807 &BTRFS_I(inode)->runtime_flags); 9808 goto next; 9809 } 9810 9811 em->start = cur_offset; 9812 em->orig_start = cur_offset; 9813 em->len = ins.offset; 9814 em->block_start = ins.objectid; 9815 em->block_len = ins.offset; 9816 em->orig_block_len = ins.offset; 9817 em->ram_bytes = ins.offset; 9818 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9819 em->generation = trans->transid; 9820 9821 while (1) { 9822 write_lock(&em_tree->lock); 9823 ret = add_extent_mapping(em_tree, em, 1); 9824 write_unlock(&em_tree->lock); 9825 if (ret != -EEXIST) 9826 break; 9827 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9828 cur_offset + ins.offset - 1, 9829 0); 9830 } 9831 free_extent_map(em); 9832 next: 9833 num_bytes -= ins.offset; 9834 cur_offset += ins.offset; 9835 *alloc_hint = ins.objectid + ins.offset; 9836 9837 inode_inc_iversion(inode); 9838 inode->i_ctime = current_time(inode); 9839 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9840 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9841 (actual_len > inode->i_size) && 9842 (cur_offset > inode->i_size)) { 9843 if (cur_offset > actual_len) 9844 i_size = actual_len; 9845 else 9846 i_size = cur_offset; 9847 i_size_write(inode, i_size); 9848 btrfs_ordered_update_i_size(inode, i_size, NULL); 9849 } 9850 9851 ret = btrfs_update_inode(trans, root, inode); 9852 9853 if (ret) { 9854 btrfs_abort_transaction(trans, ret); 9855 if (own_trans) 9856 btrfs_end_transaction(trans); 9857 break; 9858 } 9859 9860 if (own_trans) 9861 btrfs_end_transaction(trans); 9862 } 9863 if (cur_offset < end) 9864 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 9865 end - cur_offset + 1); 9866 return ret; 9867 } 9868 9869 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9870 u64 start, u64 num_bytes, u64 min_size, 9871 loff_t actual_len, u64 *alloc_hint) 9872 { 9873 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9874 min_size, actual_len, alloc_hint, 9875 NULL); 9876 } 9877 9878 int btrfs_prealloc_file_range_trans(struct inode *inode, 9879 struct btrfs_trans_handle *trans, int mode, 9880 u64 start, u64 num_bytes, u64 min_size, 9881 loff_t actual_len, u64 *alloc_hint) 9882 { 9883 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9884 min_size, actual_len, alloc_hint, trans); 9885 } 9886 9887 static int btrfs_set_page_dirty(struct page *page) 9888 { 9889 return __set_page_dirty_nobuffers(page); 9890 } 9891 9892 static int btrfs_permission(struct inode *inode, int mask) 9893 { 9894 struct btrfs_root *root = BTRFS_I(inode)->root; 9895 umode_t mode = inode->i_mode; 9896 9897 if (mask & MAY_WRITE && 9898 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9899 if (btrfs_root_readonly(root)) 9900 return -EROFS; 9901 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9902 return -EACCES; 9903 } 9904 return generic_permission(inode, mask); 9905 } 9906 9907 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9908 { 9909 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9910 struct btrfs_trans_handle *trans; 9911 struct btrfs_root *root = BTRFS_I(dir)->root; 9912 struct inode *inode = NULL; 9913 u64 objectid; 9914 u64 index; 9915 int ret = 0; 9916 9917 /* 9918 * 5 units required for adding orphan entry 9919 */ 9920 trans = btrfs_start_transaction(root, 5); 9921 if (IS_ERR(trans)) 9922 return PTR_ERR(trans); 9923 9924 ret = btrfs_find_free_ino(root, &objectid); 9925 if (ret) 9926 goto out; 9927 9928 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9929 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 9930 if (IS_ERR(inode)) { 9931 ret = PTR_ERR(inode); 9932 inode = NULL; 9933 goto out; 9934 } 9935 9936 inode->i_fop = &btrfs_file_operations; 9937 inode->i_op = &btrfs_file_inode_operations; 9938 9939 inode->i_mapping->a_ops = &btrfs_aops; 9940 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9941 9942 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9943 if (ret) 9944 goto out; 9945 9946 ret = btrfs_update_inode(trans, root, inode); 9947 if (ret) 9948 goto out; 9949 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 9950 if (ret) 9951 goto out; 9952 9953 /* 9954 * We set number of links to 0 in btrfs_new_inode(), and here we set 9955 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9956 * through: 9957 * 9958 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9959 */ 9960 set_nlink(inode, 1); 9961 d_tmpfile(dentry, inode); 9962 unlock_new_inode(inode); 9963 mark_inode_dirty(inode); 9964 out: 9965 btrfs_end_transaction(trans); 9966 if (ret && inode) 9967 discard_new_inode(inode); 9968 btrfs_btree_balance_dirty(fs_info); 9969 return ret; 9970 } 9971 9972 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 9973 { 9974 struct inode *inode = tree->private_data; 9975 unsigned long index = start >> PAGE_SHIFT; 9976 unsigned long end_index = end >> PAGE_SHIFT; 9977 struct page *page; 9978 9979 while (index <= end_index) { 9980 page = find_get_page(inode->i_mapping, index); 9981 ASSERT(page); /* Pages should be in the extent_io_tree */ 9982 set_page_writeback(page); 9983 put_page(page); 9984 index++; 9985 } 9986 } 9987 9988 #ifdef CONFIG_SWAP 9989 /* 9990 * Add an entry indicating a block group or device which is pinned by a 9991 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9992 * negative errno on failure. 9993 */ 9994 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9995 bool is_block_group) 9996 { 9997 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9998 struct btrfs_swapfile_pin *sp, *entry; 9999 struct rb_node **p; 10000 struct rb_node *parent = NULL; 10001 10002 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10003 if (!sp) 10004 return -ENOMEM; 10005 sp->ptr = ptr; 10006 sp->inode = inode; 10007 sp->is_block_group = is_block_group; 10008 10009 spin_lock(&fs_info->swapfile_pins_lock); 10010 p = &fs_info->swapfile_pins.rb_node; 10011 while (*p) { 10012 parent = *p; 10013 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10014 if (sp->ptr < entry->ptr || 10015 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10016 p = &(*p)->rb_left; 10017 } else if (sp->ptr > entry->ptr || 10018 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10019 p = &(*p)->rb_right; 10020 } else { 10021 spin_unlock(&fs_info->swapfile_pins_lock); 10022 kfree(sp); 10023 return 1; 10024 } 10025 } 10026 rb_link_node(&sp->node, parent, p); 10027 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10028 spin_unlock(&fs_info->swapfile_pins_lock); 10029 return 0; 10030 } 10031 10032 /* Free all of the entries pinned by this swapfile. */ 10033 static void btrfs_free_swapfile_pins(struct inode *inode) 10034 { 10035 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10036 struct btrfs_swapfile_pin *sp; 10037 struct rb_node *node, *next; 10038 10039 spin_lock(&fs_info->swapfile_pins_lock); 10040 node = rb_first(&fs_info->swapfile_pins); 10041 while (node) { 10042 next = rb_next(node); 10043 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10044 if (sp->inode == inode) { 10045 rb_erase(&sp->node, &fs_info->swapfile_pins); 10046 if (sp->is_block_group) 10047 btrfs_put_block_group(sp->ptr); 10048 kfree(sp); 10049 } 10050 node = next; 10051 } 10052 spin_unlock(&fs_info->swapfile_pins_lock); 10053 } 10054 10055 struct btrfs_swap_info { 10056 u64 start; 10057 u64 block_start; 10058 u64 block_len; 10059 u64 lowest_ppage; 10060 u64 highest_ppage; 10061 unsigned long nr_pages; 10062 int nr_extents; 10063 }; 10064 10065 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10066 struct btrfs_swap_info *bsi) 10067 { 10068 unsigned long nr_pages; 10069 u64 first_ppage, first_ppage_reported, next_ppage; 10070 int ret; 10071 10072 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10073 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10074 PAGE_SIZE) >> PAGE_SHIFT; 10075 10076 if (first_ppage >= next_ppage) 10077 return 0; 10078 nr_pages = next_ppage - first_ppage; 10079 10080 first_ppage_reported = first_ppage; 10081 if (bsi->start == 0) 10082 first_ppage_reported++; 10083 if (bsi->lowest_ppage > first_ppage_reported) 10084 bsi->lowest_ppage = first_ppage_reported; 10085 if (bsi->highest_ppage < (next_ppage - 1)) 10086 bsi->highest_ppage = next_ppage - 1; 10087 10088 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10089 if (ret < 0) 10090 return ret; 10091 bsi->nr_extents += ret; 10092 bsi->nr_pages += nr_pages; 10093 return 0; 10094 } 10095 10096 static void btrfs_swap_deactivate(struct file *file) 10097 { 10098 struct inode *inode = file_inode(file); 10099 10100 btrfs_free_swapfile_pins(inode); 10101 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10102 } 10103 10104 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10105 sector_t *span) 10106 { 10107 struct inode *inode = file_inode(file); 10108 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10109 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10110 struct extent_state *cached_state = NULL; 10111 struct extent_map *em = NULL; 10112 struct btrfs_device *device = NULL; 10113 struct btrfs_swap_info bsi = { 10114 .lowest_ppage = (sector_t)-1ULL, 10115 }; 10116 int ret = 0; 10117 u64 isize; 10118 u64 start; 10119 10120 /* 10121 * If the swap file was just created, make sure delalloc is done. If the 10122 * file changes again after this, the user is doing something stupid and 10123 * we don't really care. 10124 */ 10125 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10126 if (ret) 10127 return ret; 10128 10129 /* 10130 * The inode is locked, so these flags won't change after we check them. 10131 */ 10132 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10133 btrfs_warn(fs_info, "swapfile must not be compressed"); 10134 return -EINVAL; 10135 } 10136 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10137 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10138 return -EINVAL; 10139 } 10140 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10141 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10142 return -EINVAL; 10143 } 10144 10145 /* 10146 * Balance or device remove/replace/resize can move stuff around from 10147 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10148 * concurrently while we are mapping the swap extents, and 10149 * fs_info->swapfile_pins prevents them from running while the swap file 10150 * is active and moving the extents. Note that this also prevents a 10151 * concurrent device add which isn't actually necessary, but it's not 10152 * really worth the trouble to allow it. 10153 */ 10154 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10155 btrfs_warn(fs_info, 10156 "cannot activate swapfile while exclusive operation is running"); 10157 return -EBUSY; 10158 } 10159 /* 10160 * Snapshots can create extents which require COW even if NODATACOW is 10161 * set. We use this counter to prevent snapshots. We must increment it 10162 * before walking the extents because we don't want a concurrent 10163 * snapshot to run after we've already checked the extents. 10164 */ 10165 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10166 10167 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10168 10169 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10170 start = 0; 10171 while (start < isize) { 10172 u64 logical_block_start, physical_block_start; 10173 struct btrfs_block_group *bg; 10174 u64 len = isize - start; 10175 10176 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10177 if (IS_ERR(em)) { 10178 ret = PTR_ERR(em); 10179 goto out; 10180 } 10181 10182 if (em->block_start == EXTENT_MAP_HOLE) { 10183 btrfs_warn(fs_info, "swapfile must not have holes"); 10184 ret = -EINVAL; 10185 goto out; 10186 } 10187 if (em->block_start == EXTENT_MAP_INLINE) { 10188 /* 10189 * It's unlikely we'll ever actually find ourselves 10190 * here, as a file small enough to fit inline won't be 10191 * big enough to store more than the swap header, but in 10192 * case something changes in the future, let's catch it 10193 * here rather than later. 10194 */ 10195 btrfs_warn(fs_info, "swapfile must not be inline"); 10196 ret = -EINVAL; 10197 goto out; 10198 } 10199 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10200 btrfs_warn(fs_info, "swapfile must not be compressed"); 10201 ret = -EINVAL; 10202 goto out; 10203 } 10204 10205 logical_block_start = em->block_start + (start - em->start); 10206 len = min(len, em->len - (start - em->start)); 10207 free_extent_map(em); 10208 em = NULL; 10209 10210 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10211 if (ret < 0) { 10212 goto out; 10213 } else if (ret) { 10214 ret = 0; 10215 } else { 10216 btrfs_warn(fs_info, 10217 "swapfile must not be copy-on-write"); 10218 ret = -EINVAL; 10219 goto out; 10220 } 10221 10222 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10223 if (IS_ERR(em)) { 10224 ret = PTR_ERR(em); 10225 goto out; 10226 } 10227 10228 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10229 btrfs_warn(fs_info, 10230 "swapfile must have single data profile"); 10231 ret = -EINVAL; 10232 goto out; 10233 } 10234 10235 if (device == NULL) { 10236 device = em->map_lookup->stripes[0].dev; 10237 ret = btrfs_add_swapfile_pin(inode, device, false); 10238 if (ret == 1) 10239 ret = 0; 10240 else if (ret) 10241 goto out; 10242 } else if (device != em->map_lookup->stripes[0].dev) { 10243 btrfs_warn(fs_info, "swapfile must be on one device"); 10244 ret = -EINVAL; 10245 goto out; 10246 } 10247 10248 physical_block_start = (em->map_lookup->stripes[0].physical + 10249 (logical_block_start - em->start)); 10250 len = min(len, em->len - (logical_block_start - em->start)); 10251 free_extent_map(em); 10252 em = NULL; 10253 10254 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10255 if (!bg) { 10256 btrfs_warn(fs_info, 10257 "could not find block group containing swapfile"); 10258 ret = -EINVAL; 10259 goto out; 10260 } 10261 10262 ret = btrfs_add_swapfile_pin(inode, bg, true); 10263 if (ret) { 10264 btrfs_put_block_group(bg); 10265 if (ret == 1) 10266 ret = 0; 10267 else 10268 goto out; 10269 } 10270 10271 if (bsi.block_len && 10272 bsi.block_start + bsi.block_len == physical_block_start) { 10273 bsi.block_len += len; 10274 } else { 10275 if (bsi.block_len) { 10276 ret = btrfs_add_swap_extent(sis, &bsi); 10277 if (ret) 10278 goto out; 10279 } 10280 bsi.start = start; 10281 bsi.block_start = physical_block_start; 10282 bsi.block_len = len; 10283 } 10284 10285 start += len; 10286 } 10287 10288 if (bsi.block_len) 10289 ret = btrfs_add_swap_extent(sis, &bsi); 10290 10291 out: 10292 if (!IS_ERR_OR_NULL(em)) 10293 free_extent_map(em); 10294 10295 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10296 10297 if (ret) 10298 btrfs_swap_deactivate(file); 10299 10300 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10301 10302 if (ret) 10303 return ret; 10304 10305 if (device) 10306 sis->bdev = device->bdev; 10307 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10308 sis->max = bsi.nr_pages; 10309 sis->pages = bsi.nr_pages - 1; 10310 sis->highest_bit = bsi.nr_pages - 1; 10311 return bsi.nr_extents; 10312 } 10313 #else 10314 static void btrfs_swap_deactivate(struct file *file) 10315 { 10316 } 10317 10318 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10319 sector_t *span) 10320 { 10321 return -EOPNOTSUPP; 10322 } 10323 #endif 10324 10325 static const struct inode_operations btrfs_dir_inode_operations = { 10326 .getattr = btrfs_getattr, 10327 .lookup = btrfs_lookup, 10328 .create = btrfs_create, 10329 .unlink = btrfs_unlink, 10330 .link = btrfs_link, 10331 .mkdir = btrfs_mkdir, 10332 .rmdir = btrfs_rmdir, 10333 .rename = btrfs_rename2, 10334 .symlink = btrfs_symlink, 10335 .setattr = btrfs_setattr, 10336 .mknod = btrfs_mknod, 10337 .listxattr = btrfs_listxattr, 10338 .permission = btrfs_permission, 10339 .get_acl = btrfs_get_acl, 10340 .set_acl = btrfs_set_acl, 10341 .update_time = btrfs_update_time, 10342 .tmpfile = btrfs_tmpfile, 10343 }; 10344 10345 static const struct file_operations btrfs_dir_file_operations = { 10346 .llseek = generic_file_llseek, 10347 .read = generic_read_dir, 10348 .iterate_shared = btrfs_real_readdir, 10349 .open = btrfs_opendir, 10350 .unlocked_ioctl = btrfs_ioctl, 10351 #ifdef CONFIG_COMPAT 10352 .compat_ioctl = btrfs_compat_ioctl, 10353 #endif 10354 .release = btrfs_release_file, 10355 .fsync = btrfs_sync_file, 10356 }; 10357 10358 static const struct extent_io_ops btrfs_extent_io_ops = { 10359 /* mandatory callbacks */ 10360 .submit_bio_hook = btrfs_submit_bio_hook, 10361 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10362 }; 10363 10364 /* 10365 * btrfs doesn't support the bmap operation because swapfiles 10366 * use bmap to make a mapping of extents in the file. They assume 10367 * these extents won't change over the life of the file and they 10368 * use the bmap result to do IO directly to the drive. 10369 * 10370 * the btrfs bmap call would return logical addresses that aren't 10371 * suitable for IO and they also will change frequently as COW 10372 * operations happen. So, swapfile + btrfs == corruption. 10373 * 10374 * For now we're avoiding this by dropping bmap. 10375 */ 10376 static const struct address_space_operations btrfs_aops = { 10377 .readpage = btrfs_readpage, 10378 .writepage = btrfs_writepage, 10379 .writepages = btrfs_writepages, 10380 .readpages = btrfs_readpages, 10381 .direct_IO = btrfs_direct_IO, 10382 .invalidatepage = btrfs_invalidatepage, 10383 .releasepage = btrfs_releasepage, 10384 .set_page_dirty = btrfs_set_page_dirty, 10385 .error_remove_page = generic_error_remove_page, 10386 .swap_activate = btrfs_swap_activate, 10387 .swap_deactivate = btrfs_swap_deactivate, 10388 }; 10389 10390 static const struct inode_operations btrfs_file_inode_operations = { 10391 .getattr = btrfs_getattr, 10392 .setattr = btrfs_setattr, 10393 .listxattr = btrfs_listxattr, 10394 .permission = btrfs_permission, 10395 .fiemap = btrfs_fiemap, 10396 .get_acl = btrfs_get_acl, 10397 .set_acl = btrfs_set_acl, 10398 .update_time = btrfs_update_time, 10399 }; 10400 static const struct inode_operations btrfs_special_inode_operations = { 10401 .getattr = btrfs_getattr, 10402 .setattr = btrfs_setattr, 10403 .permission = btrfs_permission, 10404 .listxattr = btrfs_listxattr, 10405 .get_acl = btrfs_get_acl, 10406 .set_acl = btrfs_set_acl, 10407 .update_time = btrfs_update_time, 10408 }; 10409 static const struct inode_operations btrfs_symlink_inode_operations = { 10410 .get_link = page_get_link, 10411 .getattr = btrfs_getattr, 10412 .setattr = btrfs_setattr, 10413 .permission = btrfs_permission, 10414 .listxattr = btrfs_listxattr, 10415 .update_time = btrfs_update_time, 10416 }; 10417 10418 const struct dentry_operations btrfs_dentry_operations = { 10419 .d_delete = btrfs_dentry_delete, 10420 }; 10421