1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 63 struct btrfs_iget_args { 64 struct btrfs_key *location; 65 struct btrfs_root *root; 66 }; 67 68 static const struct inode_operations btrfs_dir_inode_operations; 69 static const struct inode_operations btrfs_symlink_inode_operations; 70 static const struct inode_operations btrfs_dir_ro_inode_operations; 71 static const struct inode_operations btrfs_special_inode_operations; 72 static const struct inode_operations btrfs_file_inode_operations; 73 static const struct address_space_operations btrfs_aops; 74 static const struct address_space_operations btrfs_symlink_aops; 75 static const struct file_operations btrfs_dir_file_operations; 76 static struct extent_io_ops btrfs_extent_io_ops; 77 78 static struct kmem_cache *btrfs_inode_cachep; 79 static struct kmem_cache *btrfs_delalloc_work_cachep; 80 struct kmem_cache *btrfs_trans_handle_cachep; 81 struct kmem_cache *btrfs_transaction_cachep; 82 struct kmem_cache *btrfs_path_cachep; 83 struct kmem_cache *btrfs_free_space_cachep; 84 85 #define S_SHIFT 12 86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 94 }; 95 96 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 97 static int btrfs_truncate(struct inode *inode); 98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 99 static noinline int cow_file_range(struct inode *inode, 100 struct page *locked_page, 101 u64 start, u64 end, int *page_started, 102 unsigned long *nr_written, int unlock); 103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 104 u64 len, u64 orig_start, 105 u64 block_start, u64 block_len, 106 u64 orig_block_len, u64 ram_bytes, 107 int type); 108 109 static int btrfs_dirty_inode(struct inode *inode); 110 111 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 112 void btrfs_test_inode_set_ops(struct inode *inode) 113 { 114 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 115 } 116 #endif 117 118 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 119 struct inode *inode, struct inode *dir, 120 const struct qstr *qstr) 121 { 122 int err; 123 124 err = btrfs_init_acl(trans, inode, dir); 125 if (!err) 126 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 127 return err; 128 } 129 130 /* 131 * this does all the hard work for inserting an inline extent into 132 * the btree. The caller should have done a btrfs_drop_extents so that 133 * no overlapping inline items exist in the btree 134 */ 135 static int insert_inline_extent(struct btrfs_trans_handle *trans, 136 struct btrfs_path *path, int extent_inserted, 137 struct btrfs_root *root, struct inode *inode, 138 u64 start, size_t size, size_t compressed_size, 139 int compress_type, 140 struct page **compressed_pages) 141 { 142 struct extent_buffer *leaf; 143 struct page *page = NULL; 144 char *kaddr; 145 unsigned long ptr; 146 struct btrfs_file_extent_item *ei; 147 int err = 0; 148 int ret; 149 size_t cur_size = size; 150 unsigned long offset; 151 152 if (compressed_size && compressed_pages) 153 cur_size = compressed_size; 154 155 inode_add_bytes(inode, size); 156 157 if (!extent_inserted) { 158 struct btrfs_key key; 159 size_t datasize; 160 161 key.objectid = btrfs_ino(inode); 162 key.offset = start; 163 key.type = BTRFS_EXTENT_DATA_KEY; 164 165 datasize = btrfs_file_extent_calc_inline_size(cur_size); 166 path->leave_spinning = 1; 167 ret = btrfs_insert_empty_item(trans, root, path, &key, 168 datasize); 169 if (ret) { 170 err = ret; 171 goto fail; 172 } 173 } 174 leaf = path->nodes[0]; 175 ei = btrfs_item_ptr(leaf, path->slots[0], 176 struct btrfs_file_extent_item); 177 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 178 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 179 btrfs_set_file_extent_encryption(leaf, ei, 0); 180 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 181 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 182 ptr = btrfs_file_extent_inline_start(ei); 183 184 if (compress_type != BTRFS_COMPRESS_NONE) { 185 struct page *cpage; 186 int i = 0; 187 while (compressed_size > 0) { 188 cpage = compressed_pages[i]; 189 cur_size = min_t(unsigned long, compressed_size, 190 PAGE_CACHE_SIZE); 191 192 kaddr = kmap_atomic(cpage); 193 write_extent_buffer(leaf, kaddr, ptr, cur_size); 194 kunmap_atomic(kaddr); 195 196 i++; 197 ptr += cur_size; 198 compressed_size -= cur_size; 199 } 200 btrfs_set_file_extent_compression(leaf, ei, 201 compress_type); 202 } else { 203 page = find_get_page(inode->i_mapping, 204 start >> PAGE_CACHE_SHIFT); 205 btrfs_set_file_extent_compression(leaf, ei, 0); 206 kaddr = kmap_atomic(page); 207 offset = start & (PAGE_CACHE_SIZE - 1); 208 write_extent_buffer(leaf, kaddr + offset, ptr, size); 209 kunmap_atomic(kaddr); 210 page_cache_release(page); 211 } 212 btrfs_mark_buffer_dirty(leaf); 213 btrfs_release_path(path); 214 215 /* 216 * we're an inline extent, so nobody can 217 * extend the file past i_size without locking 218 * a page we already have locked. 219 * 220 * We must do any isize and inode updates 221 * before we unlock the pages. Otherwise we 222 * could end up racing with unlink. 223 */ 224 BTRFS_I(inode)->disk_i_size = inode->i_size; 225 ret = btrfs_update_inode(trans, root, inode); 226 227 return ret; 228 fail: 229 return err; 230 } 231 232 233 /* 234 * conditionally insert an inline extent into the file. This 235 * does the checks required to make sure the data is small enough 236 * to fit as an inline extent. 237 */ 238 static noinline int cow_file_range_inline(struct btrfs_root *root, 239 struct inode *inode, u64 start, 240 u64 end, size_t compressed_size, 241 int compress_type, 242 struct page **compressed_pages) 243 { 244 struct btrfs_trans_handle *trans; 245 u64 isize = i_size_read(inode); 246 u64 actual_end = min(end + 1, isize); 247 u64 inline_len = actual_end - start; 248 u64 aligned_end = ALIGN(end, root->sectorsize); 249 u64 data_len = inline_len; 250 int ret; 251 struct btrfs_path *path; 252 int extent_inserted = 0; 253 u32 extent_item_size; 254 255 if (compressed_size) 256 data_len = compressed_size; 257 258 if (start > 0 || 259 actual_end > PAGE_CACHE_SIZE || 260 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 261 (!compressed_size && 262 (actual_end & (root->sectorsize - 1)) == 0) || 263 end + 1 < isize || 264 data_len > root->fs_info->max_inline) { 265 return 1; 266 } 267 268 path = btrfs_alloc_path(); 269 if (!path) 270 return -ENOMEM; 271 272 trans = btrfs_join_transaction(root); 273 if (IS_ERR(trans)) { 274 btrfs_free_path(path); 275 return PTR_ERR(trans); 276 } 277 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 278 279 if (compressed_size && compressed_pages) 280 extent_item_size = btrfs_file_extent_calc_inline_size( 281 compressed_size); 282 else 283 extent_item_size = btrfs_file_extent_calc_inline_size( 284 inline_len); 285 286 ret = __btrfs_drop_extents(trans, root, inode, path, 287 start, aligned_end, NULL, 288 1, 1, extent_item_size, &extent_inserted); 289 if (ret) { 290 btrfs_abort_transaction(trans, root, ret); 291 goto out; 292 } 293 294 if (isize > actual_end) 295 inline_len = min_t(u64, isize, actual_end); 296 ret = insert_inline_extent(trans, path, extent_inserted, 297 root, inode, start, 298 inline_len, compressed_size, 299 compress_type, compressed_pages); 300 if (ret && ret != -ENOSPC) { 301 btrfs_abort_transaction(trans, root, ret); 302 goto out; 303 } else if (ret == -ENOSPC) { 304 ret = 1; 305 goto out; 306 } 307 308 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 309 btrfs_delalloc_release_metadata(inode, end + 1 - start); 310 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 311 out: 312 btrfs_free_path(path); 313 btrfs_end_transaction(trans, root); 314 return ret; 315 } 316 317 struct async_extent { 318 u64 start; 319 u64 ram_size; 320 u64 compressed_size; 321 struct page **pages; 322 unsigned long nr_pages; 323 int compress_type; 324 struct list_head list; 325 }; 326 327 struct async_cow { 328 struct inode *inode; 329 struct btrfs_root *root; 330 struct page *locked_page; 331 u64 start; 332 u64 end; 333 struct list_head extents; 334 struct btrfs_work work; 335 }; 336 337 static noinline int add_async_extent(struct async_cow *cow, 338 u64 start, u64 ram_size, 339 u64 compressed_size, 340 struct page **pages, 341 unsigned long nr_pages, 342 int compress_type) 343 { 344 struct async_extent *async_extent; 345 346 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 347 BUG_ON(!async_extent); /* -ENOMEM */ 348 async_extent->start = start; 349 async_extent->ram_size = ram_size; 350 async_extent->compressed_size = compressed_size; 351 async_extent->pages = pages; 352 async_extent->nr_pages = nr_pages; 353 async_extent->compress_type = compress_type; 354 list_add_tail(&async_extent->list, &cow->extents); 355 return 0; 356 } 357 358 static inline int inode_need_compress(struct inode *inode) 359 { 360 struct btrfs_root *root = BTRFS_I(inode)->root; 361 362 /* force compress */ 363 if (btrfs_test_opt(root, FORCE_COMPRESS)) 364 return 1; 365 /* bad compression ratios */ 366 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 367 return 0; 368 if (btrfs_test_opt(root, COMPRESS) || 369 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 370 BTRFS_I(inode)->force_compress) 371 return 1; 372 return 0; 373 } 374 375 /* 376 * we create compressed extents in two phases. The first 377 * phase compresses a range of pages that have already been 378 * locked (both pages and state bits are locked). 379 * 380 * This is done inside an ordered work queue, and the compression 381 * is spread across many cpus. The actual IO submission is step 382 * two, and the ordered work queue takes care of making sure that 383 * happens in the same order things were put onto the queue by 384 * writepages and friends. 385 * 386 * If this code finds it can't get good compression, it puts an 387 * entry onto the work queue to write the uncompressed bytes. This 388 * makes sure that both compressed inodes and uncompressed inodes 389 * are written in the same order that the flusher thread sent them 390 * down. 391 */ 392 static noinline void compress_file_range(struct inode *inode, 393 struct page *locked_page, 394 u64 start, u64 end, 395 struct async_cow *async_cow, 396 int *num_added) 397 { 398 struct btrfs_root *root = BTRFS_I(inode)->root; 399 u64 num_bytes; 400 u64 blocksize = root->sectorsize; 401 u64 actual_end; 402 u64 isize = i_size_read(inode); 403 int ret = 0; 404 struct page **pages = NULL; 405 unsigned long nr_pages; 406 unsigned long nr_pages_ret = 0; 407 unsigned long total_compressed = 0; 408 unsigned long total_in = 0; 409 unsigned long max_compressed = 128 * 1024; 410 unsigned long max_uncompressed = 128 * 1024; 411 int i; 412 int will_compress; 413 int compress_type = root->fs_info->compress_type; 414 int redirty = 0; 415 416 /* if this is a small write inside eof, kick off a defrag */ 417 if ((end - start + 1) < 16 * 1024 && 418 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 419 btrfs_add_inode_defrag(NULL, inode); 420 421 actual_end = min_t(u64, isize, end + 1); 422 again: 423 will_compress = 0; 424 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 425 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 426 427 /* 428 * we don't want to send crud past the end of i_size through 429 * compression, that's just a waste of CPU time. So, if the 430 * end of the file is before the start of our current 431 * requested range of bytes, we bail out to the uncompressed 432 * cleanup code that can deal with all of this. 433 * 434 * It isn't really the fastest way to fix things, but this is a 435 * very uncommon corner. 436 */ 437 if (actual_end <= start) 438 goto cleanup_and_bail_uncompressed; 439 440 total_compressed = actual_end - start; 441 442 /* 443 * skip compression for a small file range(<=blocksize) that 444 * isn't an inline extent, since it dosen't save disk space at all. 445 */ 446 if (total_compressed <= blocksize && 447 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 448 goto cleanup_and_bail_uncompressed; 449 450 /* we want to make sure that amount of ram required to uncompress 451 * an extent is reasonable, so we limit the total size in ram 452 * of a compressed extent to 128k. This is a crucial number 453 * because it also controls how easily we can spread reads across 454 * cpus for decompression. 455 * 456 * We also want to make sure the amount of IO required to do 457 * a random read is reasonably small, so we limit the size of 458 * a compressed extent to 128k. 459 */ 460 total_compressed = min(total_compressed, max_uncompressed); 461 num_bytes = ALIGN(end - start + 1, blocksize); 462 num_bytes = max(blocksize, num_bytes); 463 total_in = 0; 464 ret = 0; 465 466 /* 467 * we do compression for mount -o compress and when the 468 * inode has not been flagged as nocompress. This flag can 469 * change at any time if we discover bad compression ratios. 470 */ 471 if (inode_need_compress(inode)) { 472 WARN_ON(pages); 473 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 474 if (!pages) { 475 /* just bail out to the uncompressed code */ 476 goto cont; 477 } 478 479 if (BTRFS_I(inode)->force_compress) 480 compress_type = BTRFS_I(inode)->force_compress; 481 482 /* 483 * we need to call clear_page_dirty_for_io on each 484 * page in the range. Otherwise applications with the file 485 * mmap'd can wander in and change the page contents while 486 * we are compressing them. 487 * 488 * If the compression fails for any reason, we set the pages 489 * dirty again later on. 490 */ 491 extent_range_clear_dirty_for_io(inode, start, end); 492 redirty = 1; 493 ret = btrfs_compress_pages(compress_type, 494 inode->i_mapping, start, 495 total_compressed, pages, 496 nr_pages, &nr_pages_ret, 497 &total_in, 498 &total_compressed, 499 max_compressed); 500 501 if (!ret) { 502 unsigned long offset = total_compressed & 503 (PAGE_CACHE_SIZE - 1); 504 struct page *page = pages[nr_pages_ret - 1]; 505 char *kaddr; 506 507 /* zero the tail end of the last page, we might be 508 * sending it down to disk 509 */ 510 if (offset) { 511 kaddr = kmap_atomic(page); 512 memset(kaddr + offset, 0, 513 PAGE_CACHE_SIZE - offset); 514 kunmap_atomic(kaddr); 515 } 516 will_compress = 1; 517 } 518 } 519 cont: 520 if (start == 0) { 521 /* lets try to make an inline extent */ 522 if (ret || total_in < (actual_end - start)) { 523 /* we didn't compress the entire range, try 524 * to make an uncompressed inline extent. 525 */ 526 ret = cow_file_range_inline(root, inode, start, end, 527 0, 0, NULL); 528 } else { 529 /* try making a compressed inline extent */ 530 ret = cow_file_range_inline(root, inode, start, end, 531 total_compressed, 532 compress_type, pages); 533 } 534 if (ret <= 0) { 535 unsigned long clear_flags = EXTENT_DELALLOC | 536 EXTENT_DEFRAG; 537 unsigned long page_error_op; 538 539 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 540 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 541 542 /* 543 * inline extent creation worked or returned error, 544 * we don't need to create any more async work items. 545 * Unlock and free up our temp pages. 546 */ 547 extent_clear_unlock_delalloc(inode, start, end, NULL, 548 clear_flags, PAGE_UNLOCK | 549 PAGE_CLEAR_DIRTY | 550 PAGE_SET_WRITEBACK | 551 page_error_op | 552 PAGE_END_WRITEBACK); 553 goto free_pages_out; 554 } 555 } 556 557 if (will_compress) { 558 /* 559 * we aren't doing an inline extent round the compressed size 560 * up to a block size boundary so the allocator does sane 561 * things 562 */ 563 total_compressed = ALIGN(total_compressed, blocksize); 564 565 /* 566 * one last check to make sure the compression is really a 567 * win, compare the page count read with the blocks on disk 568 */ 569 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 570 if (total_compressed >= total_in) { 571 will_compress = 0; 572 } else { 573 num_bytes = total_in; 574 } 575 } 576 if (!will_compress && pages) { 577 /* 578 * the compression code ran but failed to make things smaller, 579 * free any pages it allocated and our page pointer array 580 */ 581 for (i = 0; i < nr_pages_ret; i++) { 582 WARN_ON(pages[i]->mapping); 583 page_cache_release(pages[i]); 584 } 585 kfree(pages); 586 pages = NULL; 587 total_compressed = 0; 588 nr_pages_ret = 0; 589 590 /* flag the file so we don't compress in the future */ 591 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 592 !(BTRFS_I(inode)->force_compress)) { 593 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 594 } 595 } 596 if (will_compress) { 597 *num_added += 1; 598 599 /* the async work queues will take care of doing actual 600 * allocation on disk for these compressed pages, 601 * and will submit them to the elevator. 602 */ 603 add_async_extent(async_cow, start, num_bytes, 604 total_compressed, pages, nr_pages_ret, 605 compress_type); 606 607 if (start + num_bytes < end) { 608 start += num_bytes; 609 pages = NULL; 610 cond_resched(); 611 goto again; 612 } 613 } else { 614 cleanup_and_bail_uncompressed: 615 /* 616 * No compression, but we still need to write the pages in 617 * the file we've been given so far. redirty the locked 618 * page if it corresponds to our extent and set things up 619 * for the async work queue to run cow_file_range to do 620 * the normal delalloc dance 621 */ 622 if (page_offset(locked_page) >= start && 623 page_offset(locked_page) <= end) { 624 __set_page_dirty_nobuffers(locked_page); 625 /* unlocked later on in the async handlers */ 626 } 627 if (redirty) 628 extent_range_redirty_for_io(inode, start, end); 629 add_async_extent(async_cow, start, end - start + 1, 630 0, NULL, 0, BTRFS_COMPRESS_NONE); 631 *num_added += 1; 632 } 633 634 return; 635 636 free_pages_out: 637 for (i = 0; i < nr_pages_ret; i++) { 638 WARN_ON(pages[i]->mapping); 639 page_cache_release(pages[i]); 640 } 641 kfree(pages); 642 } 643 644 static void free_async_extent_pages(struct async_extent *async_extent) 645 { 646 int i; 647 648 if (!async_extent->pages) 649 return; 650 651 for (i = 0; i < async_extent->nr_pages; i++) { 652 WARN_ON(async_extent->pages[i]->mapping); 653 page_cache_release(async_extent->pages[i]); 654 } 655 kfree(async_extent->pages); 656 async_extent->nr_pages = 0; 657 async_extent->pages = NULL; 658 } 659 660 /* 661 * phase two of compressed writeback. This is the ordered portion 662 * of the code, which only gets called in the order the work was 663 * queued. We walk all the async extents created by compress_file_range 664 * and send them down to the disk. 665 */ 666 static noinline void submit_compressed_extents(struct inode *inode, 667 struct async_cow *async_cow) 668 { 669 struct async_extent *async_extent; 670 u64 alloc_hint = 0; 671 struct btrfs_key ins; 672 struct extent_map *em; 673 struct btrfs_root *root = BTRFS_I(inode)->root; 674 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 675 struct extent_io_tree *io_tree; 676 int ret = 0; 677 678 again: 679 while (!list_empty(&async_cow->extents)) { 680 async_extent = list_entry(async_cow->extents.next, 681 struct async_extent, list); 682 list_del(&async_extent->list); 683 684 io_tree = &BTRFS_I(inode)->io_tree; 685 686 retry: 687 /* did the compression code fall back to uncompressed IO? */ 688 if (!async_extent->pages) { 689 int page_started = 0; 690 unsigned long nr_written = 0; 691 692 lock_extent(io_tree, async_extent->start, 693 async_extent->start + 694 async_extent->ram_size - 1); 695 696 /* allocate blocks */ 697 ret = cow_file_range(inode, async_cow->locked_page, 698 async_extent->start, 699 async_extent->start + 700 async_extent->ram_size - 1, 701 &page_started, &nr_written, 0); 702 703 /* JDM XXX */ 704 705 /* 706 * if page_started, cow_file_range inserted an 707 * inline extent and took care of all the unlocking 708 * and IO for us. Otherwise, we need to submit 709 * all those pages down to the drive. 710 */ 711 if (!page_started && !ret) 712 extent_write_locked_range(io_tree, 713 inode, async_extent->start, 714 async_extent->start + 715 async_extent->ram_size - 1, 716 btrfs_get_extent, 717 WB_SYNC_ALL); 718 else if (ret) 719 unlock_page(async_cow->locked_page); 720 kfree(async_extent); 721 cond_resched(); 722 continue; 723 } 724 725 lock_extent(io_tree, async_extent->start, 726 async_extent->start + async_extent->ram_size - 1); 727 728 ret = btrfs_reserve_extent(root, 729 async_extent->compressed_size, 730 async_extent->compressed_size, 731 0, alloc_hint, &ins, 1, 1); 732 if (ret) { 733 free_async_extent_pages(async_extent); 734 735 if (ret == -ENOSPC) { 736 unlock_extent(io_tree, async_extent->start, 737 async_extent->start + 738 async_extent->ram_size - 1); 739 740 /* 741 * we need to redirty the pages if we decide to 742 * fallback to uncompressed IO, otherwise we 743 * will not submit these pages down to lower 744 * layers. 745 */ 746 extent_range_redirty_for_io(inode, 747 async_extent->start, 748 async_extent->start + 749 async_extent->ram_size - 1); 750 751 goto retry; 752 } 753 goto out_free; 754 } 755 756 /* 757 * here we're doing allocation and writeback of the 758 * compressed pages 759 */ 760 btrfs_drop_extent_cache(inode, async_extent->start, 761 async_extent->start + 762 async_extent->ram_size - 1, 0); 763 764 em = alloc_extent_map(); 765 if (!em) { 766 ret = -ENOMEM; 767 goto out_free_reserve; 768 } 769 em->start = async_extent->start; 770 em->len = async_extent->ram_size; 771 em->orig_start = em->start; 772 em->mod_start = em->start; 773 em->mod_len = em->len; 774 775 em->block_start = ins.objectid; 776 em->block_len = ins.offset; 777 em->orig_block_len = ins.offset; 778 em->ram_bytes = async_extent->ram_size; 779 em->bdev = root->fs_info->fs_devices->latest_bdev; 780 em->compress_type = async_extent->compress_type; 781 set_bit(EXTENT_FLAG_PINNED, &em->flags); 782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 783 em->generation = -1; 784 785 while (1) { 786 write_lock(&em_tree->lock); 787 ret = add_extent_mapping(em_tree, em, 1); 788 write_unlock(&em_tree->lock); 789 if (ret != -EEXIST) { 790 free_extent_map(em); 791 break; 792 } 793 btrfs_drop_extent_cache(inode, async_extent->start, 794 async_extent->start + 795 async_extent->ram_size - 1, 0); 796 } 797 798 if (ret) 799 goto out_free_reserve; 800 801 ret = btrfs_add_ordered_extent_compress(inode, 802 async_extent->start, 803 ins.objectid, 804 async_extent->ram_size, 805 ins.offset, 806 BTRFS_ORDERED_COMPRESSED, 807 async_extent->compress_type); 808 if (ret) { 809 btrfs_drop_extent_cache(inode, async_extent->start, 810 async_extent->start + 811 async_extent->ram_size - 1, 0); 812 goto out_free_reserve; 813 } 814 815 /* 816 * clear dirty, set writeback and unlock the pages. 817 */ 818 extent_clear_unlock_delalloc(inode, async_extent->start, 819 async_extent->start + 820 async_extent->ram_size - 1, 821 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 822 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 823 PAGE_SET_WRITEBACK); 824 ret = btrfs_submit_compressed_write(inode, 825 async_extent->start, 826 async_extent->ram_size, 827 ins.objectid, 828 ins.offset, async_extent->pages, 829 async_extent->nr_pages); 830 if (ret) { 831 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 832 struct page *p = async_extent->pages[0]; 833 const u64 start = async_extent->start; 834 const u64 end = start + async_extent->ram_size - 1; 835 836 p->mapping = inode->i_mapping; 837 tree->ops->writepage_end_io_hook(p, start, end, 838 NULL, 0); 839 p->mapping = NULL; 840 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 841 PAGE_END_WRITEBACK | 842 PAGE_SET_ERROR); 843 free_async_extent_pages(async_extent); 844 } 845 alloc_hint = ins.objectid + ins.offset; 846 kfree(async_extent); 847 cond_resched(); 848 } 849 return; 850 out_free_reserve: 851 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 852 out_free: 853 extent_clear_unlock_delalloc(inode, async_extent->start, 854 async_extent->start + 855 async_extent->ram_size - 1, 856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 857 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 859 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 860 PAGE_SET_ERROR); 861 free_async_extent_pages(async_extent); 862 kfree(async_extent); 863 goto again; 864 } 865 866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 867 u64 num_bytes) 868 { 869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 870 struct extent_map *em; 871 u64 alloc_hint = 0; 872 873 read_lock(&em_tree->lock); 874 em = search_extent_mapping(em_tree, start, num_bytes); 875 if (em) { 876 /* 877 * if block start isn't an actual block number then find the 878 * first block in this inode and use that as a hint. If that 879 * block is also bogus then just don't worry about it. 880 */ 881 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 882 free_extent_map(em); 883 em = search_extent_mapping(em_tree, 0, 0); 884 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 885 alloc_hint = em->block_start; 886 if (em) 887 free_extent_map(em); 888 } else { 889 alloc_hint = em->block_start; 890 free_extent_map(em); 891 } 892 } 893 read_unlock(&em_tree->lock); 894 895 return alloc_hint; 896 } 897 898 /* 899 * when extent_io.c finds a delayed allocation range in the file, 900 * the call backs end up in this code. The basic idea is to 901 * allocate extents on disk for the range, and create ordered data structs 902 * in ram to track those extents. 903 * 904 * locked_page is the page that writepage had locked already. We use 905 * it to make sure we don't do extra locks or unlocks. 906 * 907 * *page_started is set to one if we unlock locked_page and do everything 908 * required to start IO on it. It may be clean and already done with 909 * IO when we return. 910 */ 911 static noinline int cow_file_range(struct inode *inode, 912 struct page *locked_page, 913 u64 start, u64 end, int *page_started, 914 unsigned long *nr_written, 915 int unlock) 916 { 917 struct btrfs_root *root = BTRFS_I(inode)->root; 918 u64 alloc_hint = 0; 919 u64 num_bytes; 920 unsigned long ram_size; 921 u64 disk_num_bytes; 922 u64 cur_alloc_size; 923 u64 blocksize = root->sectorsize; 924 struct btrfs_key ins; 925 struct extent_map *em; 926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 927 int ret = 0; 928 929 if (btrfs_is_free_space_inode(inode)) { 930 WARN_ON_ONCE(1); 931 ret = -EINVAL; 932 goto out_unlock; 933 } 934 935 num_bytes = ALIGN(end - start + 1, blocksize); 936 num_bytes = max(blocksize, num_bytes); 937 disk_num_bytes = num_bytes; 938 939 /* if this is a small write inside eof, kick off defrag */ 940 if (num_bytes < 64 * 1024 && 941 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 942 btrfs_add_inode_defrag(NULL, inode); 943 944 if (start == 0) { 945 /* lets try to make an inline extent */ 946 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 947 NULL); 948 if (ret == 0) { 949 extent_clear_unlock_delalloc(inode, start, end, NULL, 950 EXTENT_LOCKED | EXTENT_DELALLOC | 951 EXTENT_DEFRAG, PAGE_UNLOCK | 952 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 953 PAGE_END_WRITEBACK); 954 955 *nr_written = *nr_written + 956 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 957 *page_started = 1; 958 goto out; 959 } else if (ret < 0) { 960 goto out_unlock; 961 } 962 } 963 964 BUG_ON(disk_num_bytes > 965 btrfs_super_total_bytes(root->fs_info->super_copy)); 966 967 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 968 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 969 970 while (disk_num_bytes > 0) { 971 unsigned long op; 972 973 cur_alloc_size = disk_num_bytes; 974 ret = btrfs_reserve_extent(root, cur_alloc_size, 975 root->sectorsize, 0, alloc_hint, 976 &ins, 1, 1); 977 if (ret < 0) 978 goto out_unlock; 979 980 em = alloc_extent_map(); 981 if (!em) { 982 ret = -ENOMEM; 983 goto out_reserve; 984 } 985 em->start = start; 986 em->orig_start = em->start; 987 ram_size = ins.offset; 988 em->len = ins.offset; 989 em->mod_start = em->start; 990 em->mod_len = em->len; 991 992 em->block_start = ins.objectid; 993 em->block_len = ins.offset; 994 em->orig_block_len = ins.offset; 995 em->ram_bytes = ram_size; 996 em->bdev = root->fs_info->fs_devices->latest_bdev; 997 set_bit(EXTENT_FLAG_PINNED, &em->flags); 998 em->generation = -1; 999 1000 while (1) { 1001 write_lock(&em_tree->lock); 1002 ret = add_extent_mapping(em_tree, em, 1); 1003 write_unlock(&em_tree->lock); 1004 if (ret != -EEXIST) { 1005 free_extent_map(em); 1006 break; 1007 } 1008 btrfs_drop_extent_cache(inode, start, 1009 start + ram_size - 1, 0); 1010 } 1011 if (ret) 1012 goto out_reserve; 1013 1014 cur_alloc_size = ins.offset; 1015 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1016 ram_size, cur_alloc_size, 0); 1017 if (ret) 1018 goto out_drop_extent_cache; 1019 1020 if (root->root_key.objectid == 1021 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1022 ret = btrfs_reloc_clone_csums(inode, start, 1023 cur_alloc_size); 1024 if (ret) 1025 goto out_drop_extent_cache; 1026 } 1027 1028 if (disk_num_bytes < cur_alloc_size) 1029 break; 1030 1031 /* we're not doing compressed IO, don't unlock the first 1032 * page (which the caller expects to stay locked), don't 1033 * clear any dirty bits and don't set any writeback bits 1034 * 1035 * Do set the Private2 bit so we know this page was properly 1036 * setup for writepage 1037 */ 1038 op = unlock ? PAGE_UNLOCK : 0; 1039 op |= PAGE_SET_PRIVATE2; 1040 1041 extent_clear_unlock_delalloc(inode, start, 1042 start + ram_size - 1, locked_page, 1043 EXTENT_LOCKED | EXTENT_DELALLOC, 1044 op); 1045 disk_num_bytes -= cur_alloc_size; 1046 num_bytes -= cur_alloc_size; 1047 alloc_hint = ins.objectid + ins.offset; 1048 start += cur_alloc_size; 1049 } 1050 out: 1051 return ret; 1052 1053 out_drop_extent_cache: 1054 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1055 out_reserve: 1056 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1057 out_unlock: 1058 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1059 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1060 EXTENT_DELALLOC | EXTENT_DEFRAG, 1061 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1062 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1063 goto out; 1064 } 1065 1066 /* 1067 * work queue call back to started compression on a file and pages 1068 */ 1069 static noinline void async_cow_start(struct btrfs_work *work) 1070 { 1071 struct async_cow *async_cow; 1072 int num_added = 0; 1073 async_cow = container_of(work, struct async_cow, work); 1074 1075 compress_file_range(async_cow->inode, async_cow->locked_page, 1076 async_cow->start, async_cow->end, async_cow, 1077 &num_added); 1078 if (num_added == 0) { 1079 btrfs_add_delayed_iput(async_cow->inode); 1080 async_cow->inode = NULL; 1081 } 1082 } 1083 1084 /* 1085 * work queue call back to submit previously compressed pages 1086 */ 1087 static noinline void async_cow_submit(struct btrfs_work *work) 1088 { 1089 struct async_cow *async_cow; 1090 struct btrfs_root *root; 1091 unsigned long nr_pages; 1092 1093 async_cow = container_of(work, struct async_cow, work); 1094 1095 root = async_cow->root; 1096 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1097 PAGE_CACHE_SHIFT; 1098 1099 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1100 5 * 1024 * 1024 && 1101 waitqueue_active(&root->fs_info->async_submit_wait)) 1102 wake_up(&root->fs_info->async_submit_wait); 1103 1104 if (async_cow->inode) 1105 submit_compressed_extents(async_cow->inode, async_cow); 1106 } 1107 1108 static noinline void async_cow_free(struct btrfs_work *work) 1109 { 1110 struct async_cow *async_cow; 1111 async_cow = container_of(work, struct async_cow, work); 1112 if (async_cow->inode) 1113 btrfs_add_delayed_iput(async_cow->inode); 1114 kfree(async_cow); 1115 } 1116 1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1118 u64 start, u64 end, int *page_started, 1119 unsigned long *nr_written) 1120 { 1121 struct async_cow *async_cow; 1122 struct btrfs_root *root = BTRFS_I(inode)->root; 1123 unsigned long nr_pages; 1124 u64 cur_end; 1125 int limit = 10 * 1024 * 1024; 1126 1127 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1128 1, 0, NULL, GFP_NOFS); 1129 while (start < end) { 1130 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1131 BUG_ON(!async_cow); /* -ENOMEM */ 1132 async_cow->inode = igrab(inode); 1133 async_cow->root = root; 1134 async_cow->locked_page = locked_page; 1135 async_cow->start = start; 1136 1137 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1138 !btrfs_test_opt(root, FORCE_COMPRESS)) 1139 cur_end = end; 1140 else 1141 cur_end = min(end, start + 512 * 1024 - 1); 1142 1143 async_cow->end = cur_end; 1144 INIT_LIST_HEAD(&async_cow->extents); 1145 1146 btrfs_init_work(&async_cow->work, 1147 btrfs_delalloc_helper, 1148 async_cow_start, async_cow_submit, 1149 async_cow_free); 1150 1151 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1152 PAGE_CACHE_SHIFT; 1153 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1154 1155 btrfs_queue_work(root->fs_info->delalloc_workers, 1156 &async_cow->work); 1157 1158 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1159 wait_event(root->fs_info->async_submit_wait, 1160 (atomic_read(&root->fs_info->async_delalloc_pages) < 1161 limit)); 1162 } 1163 1164 while (atomic_read(&root->fs_info->async_submit_draining) && 1165 atomic_read(&root->fs_info->async_delalloc_pages)) { 1166 wait_event(root->fs_info->async_submit_wait, 1167 (atomic_read(&root->fs_info->async_delalloc_pages) == 1168 0)); 1169 } 1170 1171 *nr_written += nr_pages; 1172 start = cur_end + 1; 1173 } 1174 *page_started = 1; 1175 return 0; 1176 } 1177 1178 static noinline int csum_exist_in_range(struct btrfs_root *root, 1179 u64 bytenr, u64 num_bytes) 1180 { 1181 int ret; 1182 struct btrfs_ordered_sum *sums; 1183 LIST_HEAD(list); 1184 1185 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1186 bytenr + num_bytes - 1, &list, 0); 1187 if (ret == 0 && list_empty(&list)) 1188 return 0; 1189 1190 while (!list_empty(&list)) { 1191 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1192 list_del(&sums->list); 1193 kfree(sums); 1194 } 1195 return 1; 1196 } 1197 1198 /* 1199 * when nowcow writeback call back. This checks for snapshots or COW copies 1200 * of the extents that exist in the file, and COWs the file as required. 1201 * 1202 * If no cow copies or snapshots exist, we write directly to the existing 1203 * blocks on disk 1204 */ 1205 static noinline int run_delalloc_nocow(struct inode *inode, 1206 struct page *locked_page, 1207 u64 start, u64 end, int *page_started, int force, 1208 unsigned long *nr_written) 1209 { 1210 struct btrfs_root *root = BTRFS_I(inode)->root; 1211 struct btrfs_trans_handle *trans; 1212 struct extent_buffer *leaf; 1213 struct btrfs_path *path; 1214 struct btrfs_file_extent_item *fi; 1215 struct btrfs_key found_key; 1216 u64 cow_start; 1217 u64 cur_offset; 1218 u64 extent_end; 1219 u64 extent_offset; 1220 u64 disk_bytenr; 1221 u64 num_bytes; 1222 u64 disk_num_bytes; 1223 u64 ram_bytes; 1224 int extent_type; 1225 int ret, err; 1226 int type; 1227 int nocow; 1228 int check_prev = 1; 1229 bool nolock; 1230 u64 ino = btrfs_ino(inode); 1231 1232 path = btrfs_alloc_path(); 1233 if (!path) { 1234 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1235 EXTENT_LOCKED | EXTENT_DELALLOC | 1236 EXTENT_DO_ACCOUNTING | 1237 EXTENT_DEFRAG, PAGE_UNLOCK | 1238 PAGE_CLEAR_DIRTY | 1239 PAGE_SET_WRITEBACK | 1240 PAGE_END_WRITEBACK); 1241 return -ENOMEM; 1242 } 1243 1244 nolock = btrfs_is_free_space_inode(inode); 1245 1246 if (nolock) 1247 trans = btrfs_join_transaction_nolock(root); 1248 else 1249 trans = btrfs_join_transaction(root); 1250 1251 if (IS_ERR(trans)) { 1252 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1253 EXTENT_LOCKED | EXTENT_DELALLOC | 1254 EXTENT_DO_ACCOUNTING | 1255 EXTENT_DEFRAG, PAGE_UNLOCK | 1256 PAGE_CLEAR_DIRTY | 1257 PAGE_SET_WRITEBACK | 1258 PAGE_END_WRITEBACK); 1259 btrfs_free_path(path); 1260 return PTR_ERR(trans); 1261 } 1262 1263 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1264 1265 cow_start = (u64)-1; 1266 cur_offset = start; 1267 while (1) { 1268 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1269 cur_offset, 0); 1270 if (ret < 0) 1271 goto error; 1272 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1273 leaf = path->nodes[0]; 1274 btrfs_item_key_to_cpu(leaf, &found_key, 1275 path->slots[0] - 1); 1276 if (found_key.objectid == ino && 1277 found_key.type == BTRFS_EXTENT_DATA_KEY) 1278 path->slots[0]--; 1279 } 1280 check_prev = 0; 1281 next_slot: 1282 leaf = path->nodes[0]; 1283 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1284 ret = btrfs_next_leaf(root, path); 1285 if (ret < 0) 1286 goto error; 1287 if (ret > 0) 1288 break; 1289 leaf = path->nodes[0]; 1290 } 1291 1292 nocow = 0; 1293 disk_bytenr = 0; 1294 num_bytes = 0; 1295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1296 1297 if (found_key.objectid > ino || 1298 found_key.type > BTRFS_EXTENT_DATA_KEY || 1299 found_key.offset > end) 1300 break; 1301 1302 if (found_key.offset > cur_offset) { 1303 extent_end = found_key.offset; 1304 extent_type = 0; 1305 goto out_check; 1306 } 1307 1308 fi = btrfs_item_ptr(leaf, path->slots[0], 1309 struct btrfs_file_extent_item); 1310 extent_type = btrfs_file_extent_type(leaf, fi); 1311 1312 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1313 if (extent_type == BTRFS_FILE_EXTENT_REG || 1314 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1315 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1316 extent_offset = btrfs_file_extent_offset(leaf, fi); 1317 extent_end = found_key.offset + 1318 btrfs_file_extent_num_bytes(leaf, fi); 1319 disk_num_bytes = 1320 btrfs_file_extent_disk_num_bytes(leaf, fi); 1321 if (extent_end <= start) { 1322 path->slots[0]++; 1323 goto next_slot; 1324 } 1325 if (disk_bytenr == 0) 1326 goto out_check; 1327 if (btrfs_file_extent_compression(leaf, fi) || 1328 btrfs_file_extent_encryption(leaf, fi) || 1329 btrfs_file_extent_other_encoding(leaf, fi)) 1330 goto out_check; 1331 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1332 goto out_check; 1333 if (btrfs_extent_readonly(root, disk_bytenr)) 1334 goto out_check; 1335 if (btrfs_cross_ref_exist(trans, root, ino, 1336 found_key.offset - 1337 extent_offset, disk_bytenr)) 1338 goto out_check; 1339 disk_bytenr += extent_offset; 1340 disk_bytenr += cur_offset - found_key.offset; 1341 num_bytes = min(end + 1, extent_end) - cur_offset; 1342 /* 1343 * if there are pending snapshots for this root, 1344 * we fall into common COW way. 1345 */ 1346 if (!nolock) { 1347 err = btrfs_start_write_no_snapshoting(root); 1348 if (!err) 1349 goto out_check; 1350 } 1351 /* 1352 * force cow if csum exists in the range. 1353 * this ensure that csum for a given extent are 1354 * either valid or do not exist. 1355 */ 1356 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1357 goto out_check; 1358 nocow = 1; 1359 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1360 extent_end = found_key.offset + 1361 btrfs_file_extent_inline_len(leaf, 1362 path->slots[0], fi); 1363 extent_end = ALIGN(extent_end, root->sectorsize); 1364 } else { 1365 BUG_ON(1); 1366 } 1367 out_check: 1368 if (extent_end <= start) { 1369 path->slots[0]++; 1370 if (!nolock && nocow) 1371 btrfs_end_write_no_snapshoting(root); 1372 goto next_slot; 1373 } 1374 if (!nocow) { 1375 if (cow_start == (u64)-1) 1376 cow_start = cur_offset; 1377 cur_offset = extent_end; 1378 if (cur_offset > end) 1379 break; 1380 path->slots[0]++; 1381 goto next_slot; 1382 } 1383 1384 btrfs_release_path(path); 1385 if (cow_start != (u64)-1) { 1386 ret = cow_file_range(inode, locked_page, 1387 cow_start, found_key.offset - 1, 1388 page_started, nr_written, 1); 1389 if (ret) { 1390 if (!nolock && nocow) 1391 btrfs_end_write_no_snapshoting(root); 1392 goto error; 1393 } 1394 cow_start = (u64)-1; 1395 } 1396 1397 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1398 struct extent_map *em; 1399 struct extent_map_tree *em_tree; 1400 em_tree = &BTRFS_I(inode)->extent_tree; 1401 em = alloc_extent_map(); 1402 BUG_ON(!em); /* -ENOMEM */ 1403 em->start = cur_offset; 1404 em->orig_start = found_key.offset - extent_offset; 1405 em->len = num_bytes; 1406 em->block_len = num_bytes; 1407 em->block_start = disk_bytenr; 1408 em->orig_block_len = disk_num_bytes; 1409 em->ram_bytes = ram_bytes; 1410 em->bdev = root->fs_info->fs_devices->latest_bdev; 1411 em->mod_start = em->start; 1412 em->mod_len = em->len; 1413 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1414 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1415 em->generation = -1; 1416 while (1) { 1417 write_lock(&em_tree->lock); 1418 ret = add_extent_mapping(em_tree, em, 1); 1419 write_unlock(&em_tree->lock); 1420 if (ret != -EEXIST) { 1421 free_extent_map(em); 1422 break; 1423 } 1424 btrfs_drop_extent_cache(inode, em->start, 1425 em->start + em->len - 1, 0); 1426 } 1427 type = BTRFS_ORDERED_PREALLOC; 1428 } else { 1429 type = BTRFS_ORDERED_NOCOW; 1430 } 1431 1432 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1433 num_bytes, num_bytes, type); 1434 BUG_ON(ret); /* -ENOMEM */ 1435 1436 if (root->root_key.objectid == 1437 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1438 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1439 num_bytes); 1440 if (ret) { 1441 if (!nolock && nocow) 1442 btrfs_end_write_no_snapshoting(root); 1443 goto error; 1444 } 1445 } 1446 1447 extent_clear_unlock_delalloc(inode, cur_offset, 1448 cur_offset + num_bytes - 1, 1449 locked_page, EXTENT_LOCKED | 1450 EXTENT_DELALLOC, PAGE_UNLOCK | 1451 PAGE_SET_PRIVATE2); 1452 if (!nolock && nocow) 1453 btrfs_end_write_no_snapshoting(root); 1454 cur_offset = extent_end; 1455 if (cur_offset > end) 1456 break; 1457 } 1458 btrfs_release_path(path); 1459 1460 if (cur_offset <= end && cow_start == (u64)-1) { 1461 cow_start = cur_offset; 1462 cur_offset = end; 1463 } 1464 1465 if (cow_start != (u64)-1) { 1466 ret = cow_file_range(inode, locked_page, cow_start, end, 1467 page_started, nr_written, 1); 1468 if (ret) 1469 goto error; 1470 } 1471 1472 error: 1473 err = btrfs_end_transaction(trans, root); 1474 if (!ret) 1475 ret = err; 1476 1477 if (ret && cur_offset < end) 1478 extent_clear_unlock_delalloc(inode, cur_offset, end, 1479 locked_page, EXTENT_LOCKED | 1480 EXTENT_DELALLOC | EXTENT_DEFRAG | 1481 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1482 PAGE_CLEAR_DIRTY | 1483 PAGE_SET_WRITEBACK | 1484 PAGE_END_WRITEBACK); 1485 btrfs_free_path(path); 1486 return ret; 1487 } 1488 1489 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1490 { 1491 1492 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1493 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1494 return 0; 1495 1496 /* 1497 * @defrag_bytes is a hint value, no spinlock held here, 1498 * if is not zero, it means the file is defragging. 1499 * Force cow if given extent needs to be defragged. 1500 */ 1501 if (BTRFS_I(inode)->defrag_bytes && 1502 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1503 EXTENT_DEFRAG, 0, NULL)) 1504 return 1; 1505 1506 return 0; 1507 } 1508 1509 /* 1510 * extent_io.c call back to do delayed allocation processing 1511 */ 1512 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1513 u64 start, u64 end, int *page_started, 1514 unsigned long *nr_written) 1515 { 1516 int ret; 1517 int force_cow = need_force_cow(inode, start, end); 1518 1519 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1520 ret = run_delalloc_nocow(inode, locked_page, start, end, 1521 page_started, 1, nr_written); 1522 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1523 ret = run_delalloc_nocow(inode, locked_page, start, end, 1524 page_started, 0, nr_written); 1525 } else if (!inode_need_compress(inode)) { 1526 ret = cow_file_range(inode, locked_page, start, end, 1527 page_started, nr_written, 1); 1528 } else { 1529 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1530 &BTRFS_I(inode)->runtime_flags); 1531 ret = cow_file_range_async(inode, locked_page, start, end, 1532 page_started, nr_written); 1533 } 1534 return ret; 1535 } 1536 1537 static void btrfs_split_extent_hook(struct inode *inode, 1538 struct extent_state *orig, u64 split) 1539 { 1540 u64 size; 1541 1542 /* not delalloc, ignore it */ 1543 if (!(orig->state & EXTENT_DELALLOC)) 1544 return; 1545 1546 size = orig->end - orig->start + 1; 1547 if (size > BTRFS_MAX_EXTENT_SIZE) { 1548 u64 num_extents; 1549 u64 new_size; 1550 1551 /* 1552 * See the explanation in btrfs_merge_extent_hook, the same 1553 * applies here, just in reverse. 1554 */ 1555 new_size = orig->end - split + 1; 1556 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1557 BTRFS_MAX_EXTENT_SIZE); 1558 new_size = split - orig->start; 1559 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1560 BTRFS_MAX_EXTENT_SIZE); 1561 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1562 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1563 return; 1564 } 1565 1566 spin_lock(&BTRFS_I(inode)->lock); 1567 BTRFS_I(inode)->outstanding_extents++; 1568 spin_unlock(&BTRFS_I(inode)->lock); 1569 } 1570 1571 /* 1572 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1573 * extents so we can keep track of new extents that are just merged onto old 1574 * extents, such as when we are doing sequential writes, so we can properly 1575 * account for the metadata space we'll need. 1576 */ 1577 static void btrfs_merge_extent_hook(struct inode *inode, 1578 struct extent_state *new, 1579 struct extent_state *other) 1580 { 1581 u64 new_size, old_size; 1582 u64 num_extents; 1583 1584 /* not delalloc, ignore it */ 1585 if (!(other->state & EXTENT_DELALLOC)) 1586 return; 1587 1588 if (new->start > other->start) 1589 new_size = new->end - other->start + 1; 1590 else 1591 new_size = other->end - new->start + 1; 1592 1593 /* we're not bigger than the max, unreserve the space and go */ 1594 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1595 spin_lock(&BTRFS_I(inode)->lock); 1596 BTRFS_I(inode)->outstanding_extents--; 1597 spin_unlock(&BTRFS_I(inode)->lock); 1598 return; 1599 } 1600 1601 /* 1602 * We have to add up either side to figure out how many extents were 1603 * accounted for before we merged into one big extent. If the number of 1604 * extents we accounted for is <= the amount we need for the new range 1605 * then we can return, otherwise drop. Think of it like this 1606 * 1607 * [ 4k][MAX_SIZE] 1608 * 1609 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1610 * need 2 outstanding extents, on one side we have 1 and the other side 1611 * we have 1 so they are == and we can return. But in this case 1612 * 1613 * [MAX_SIZE+4k][MAX_SIZE+4k] 1614 * 1615 * Each range on their own accounts for 2 extents, but merged together 1616 * they are only 3 extents worth of accounting, so we need to drop in 1617 * this case. 1618 */ 1619 old_size = other->end - other->start + 1; 1620 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1621 BTRFS_MAX_EXTENT_SIZE); 1622 old_size = new->end - new->start + 1; 1623 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1624 BTRFS_MAX_EXTENT_SIZE); 1625 1626 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1627 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1628 return; 1629 1630 spin_lock(&BTRFS_I(inode)->lock); 1631 BTRFS_I(inode)->outstanding_extents--; 1632 spin_unlock(&BTRFS_I(inode)->lock); 1633 } 1634 1635 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1636 struct inode *inode) 1637 { 1638 spin_lock(&root->delalloc_lock); 1639 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1640 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1641 &root->delalloc_inodes); 1642 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1643 &BTRFS_I(inode)->runtime_flags); 1644 root->nr_delalloc_inodes++; 1645 if (root->nr_delalloc_inodes == 1) { 1646 spin_lock(&root->fs_info->delalloc_root_lock); 1647 BUG_ON(!list_empty(&root->delalloc_root)); 1648 list_add_tail(&root->delalloc_root, 1649 &root->fs_info->delalloc_roots); 1650 spin_unlock(&root->fs_info->delalloc_root_lock); 1651 } 1652 } 1653 spin_unlock(&root->delalloc_lock); 1654 } 1655 1656 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1657 struct inode *inode) 1658 { 1659 spin_lock(&root->delalloc_lock); 1660 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1661 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1662 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1663 &BTRFS_I(inode)->runtime_flags); 1664 root->nr_delalloc_inodes--; 1665 if (!root->nr_delalloc_inodes) { 1666 spin_lock(&root->fs_info->delalloc_root_lock); 1667 BUG_ON(list_empty(&root->delalloc_root)); 1668 list_del_init(&root->delalloc_root); 1669 spin_unlock(&root->fs_info->delalloc_root_lock); 1670 } 1671 } 1672 spin_unlock(&root->delalloc_lock); 1673 } 1674 1675 /* 1676 * extent_io.c set_bit_hook, used to track delayed allocation 1677 * bytes in this file, and to maintain the list of inodes that 1678 * have pending delalloc work to be done. 1679 */ 1680 static void btrfs_set_bit_hook(struct inode *inode, 1681 struct extent_state *state, unsigned *bits) 1682 { 1683 1684 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1685 WARN_ON(1); 1686 /* 1687 * set_bit and clear bit hooks normally require _irqsave/restore 1688 * but in this case, we are only testing for the DELALLOC 1689 * bit, which is only set or cleared with irqs on 1690 */ 1691 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1692 struct btrfs_root *root = BTRFS_I(inode)->root; 1693 u64 len = state->end + 1 - state->start; 1694 bool do_list = !btrfs_is_free_space_inode(inode); 1695 1696 if (*bits & EXTENT_FIRST_DELALLOC) { 1697 *bits &= ~EXTENT_FIRST_DELALLOC; 1698 } else { 1699 spin_lock(&BTRFS_I(inode)->lock); 1700 BTRFS_I(inode)->outstanding_extents++; 1701 spin_unlock(&BTRFS_I(inode)->lock); 1702 } 1703 1704 /* For sanity tests */ 1705 if (btrfs_test_is_dummy_root(root)) 1706 return; 1707 1708 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1709 root->fs_info->delalloc_batch); 1710 spin_lock(&BTRFS_I(inode)->lock); 1711 BTRFS_I(inode)->delalloc_bytes += len; 1712 if (*bits & EXTENT_DEFRAG) 1713 BTRFS_I(inode)->defrag_bytes += len; 1714 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1715 &BTRFS_I(inode)->runtime_flags)) 1716 btrfs_add_delalloc_inodes(root, inode); 1717 spin_unlock(&BTRFS_I(inode)->lock); 1718 } 1719 } 1720 1721 /* 1722 * extent_io.c clear_bit_hook, see set_bit_hook for why 1723 */ 1724 static void btrfs_clear_bit_hook(struct inode *inode, 1725 struct extent_state *state, 1726 unsigned *bits) 1727 { 1728 u64 len = state->end + 1 - state->start; 1729 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1730 BTRFS_MAX_EXTENT_SIZE); 1731 1732 spin_lock(&BTRFS_I(inode)->lock); 1733 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1734 BTRFS_I(inode)->defrag_bytes -= len; 1735 spin_unlock(&BTRFS_I(inode)->lock); 1736 1737 /* 1738 * set_bit and clear bit hooks normally require _irqsave/restore 1739 * but in this case, we are only testing for the DELALLOC 1740 * bit, which is only set or cleared with irqs on 1741 */ 1742 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1743 struct btrfs_root *root = BTRFS_I(inode)->root; 1744 bool do_list = !btrfs_is_free_space_inode(inode); 1745 1746 if (*bits & EXTENT_FIRST_DELALLOC) { 1747 *bits &= ~EXTENT_FIRST_DELALLOC; 1748 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1749 spin_lock(&BTRFS_I(inode)->lock); 1750 BTRFS_I(inode)->outstanding_extents -= num_extents; 1751 spin_unlock(&BTRFS_I(inode)->lock); 1752 } 1753 1754 /* 1755 * We don't reserve metadata space for space cache inodes so we 1756 * don't need to call dellalloc_release_metadata if there is an 1757 * error. 1758 */ 1759 if (*bits & EXTENT_DO_ACCOUNTING && 1760 root != root->fs_info->tree_root) 1761 btrfs_delalloc_release_metadata(inode, len); 1762 1763 /* For sanity tests. */ 1764 if (btrfs_test_is_dummy_root(root)) 1765 return; 1766 1767 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1768 && do_list && !(state->state & EXTENT_NORESERVE)) 1769 btrfs_free_reserved_data_space(inode, len); 1770 1771 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1772 root->fs_info->delalloc_batch); 1773 spin_lock(&BTRFS_I(inode)->lock); 1774 BTRFS_I(inode)->delalloc_bytes -= len; 1775 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1776 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1777 &BTRFS_I(inode)->runtime_flags)) 1778 btrfs_del_delalloc_inode(root, inode); 1779 spin_unlock(&BTRFS_I(inode)->lock); 1780 } 1781 } 1782 1783 /* 1784 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1785 * we don't create bios that span stripes or chunks 1786 */ 1787 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1788 size_t size, struct bio *bio, 1789 unsigned long bio_flags) 1790 { 1791 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1792 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1793 u64 length = 0; 1794 u64 map_length; 1795 int ret; 1796 1797 if (bio_flags & EXTENT_BIO_COMPRESSED) 1798 return 0; 1799 1800 length = bio->bi_iter.bi_size; 1801 map_length = length; 1802 ret = btrfs_map_block(root->fs_info, rw, logical, 1803 &map_length, NULL, 0); 1804 /* Will always return 0 with map_multi == NULL */ 1805 BUG_ON(ret < 0); 1806 if (map_length < length + size) 1807 return 1; 1808 return 0; 1809 } 1810 1811 /* 1812 * in order to insert checksums into the metadata in large chunks, 1813 * we wait until bio submission time. All the pages in the bio are 1814 * checksummed and sums are attached onto the ordered extent record. 1815 * 1816 * At IO completion time the cums attached on the ordered extent record 1817 * are inserted into the btree 1818 */ 1819 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1820 struct bio *bio, int mirror_num, 1821 unsigned long bio_flags, 1822 u64 bio_offset) 1823 { 1824 struct btrfs_root *root = BTRFS_I(inode)->root; 1825 int ret = 0; 1826 1827 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1828 BUG_ON(ret); /* -ENOMEM */ 1829 return 0; 1830 } 1831 1832 /* 1833 * in order to insert checksums into the metadata in large chunks, 1834 * we wait until bio submission time. All the pages in the bio are 1835 * checksummed and sums are attached onto the ordered extent record. 1836 * 1837 * At IO completion time the cums attached on the ordered extent record 1838 * are inserted into the btree 1839 */ 1840 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1841 int mirror_num, unsigned long bio_flags, 1842 u64 bio_offset) 1843 { 1844 struct btrfs_root *root = BTRFS_I(inode)->root; 1845 int ret; 1846 1847 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1848 if (ret) 1849 bio_endio(bio, ret); 1850 return ret; 1851 } 1852 1853 /* 1854 * extent_io.c submission hook. This does the right thing for csum calculation 1855 * on write, or reading the csums from the tree before a read 1856 */ 1857 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1858 int mirror_num, unsigned long bio_flags, 1859 u64 bio_offset) 1860 { 1861 struct btrfs_root *root = BTRFS_I(inode)->root; 1862 int ret = 0; 1863 int skip_sum; 1864 int metadata = 0; 1865 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1866 1867 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1868 1869 if (btrfs_is_free_space_inode(inode)) 1870 metadata = 2; 1871 1872 if (!(rw & REQ_WRITE)) { 1873 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1874 if (ret) 1875 goto out; 1876 1877 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1878 ret = btrfs_submit_compressed_read(inode, bio, 1879 mirror_num, 1880 bio_flags); 1881 goto out; 1882 } else if (!skip_sum) { 1883 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1884 if (ret) 1885 goto out; 1886 } 1887 goto mapit; 1888 } else if (async && !skip_sum) { 1889 /* csum items have already been cloned */ 1890 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1891 goto mapit; 1892 /* we're doing a write, do the async checksumming */ 1893 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1894 inode, rw, bio, mirror_num, 1895 bio_flags, bio_offset, 1896 __btrfs_submit_bio_start, 1897 __btrfs_submit_bio_done); 1898 goto out; 1899 } else if (!skip_sum) { 1900 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1901 if (ret) 1902 goto out; 1903 } 1904 1905 mapit: 1906 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1907 1908 out: 1909 if (ret < 0) 1910 bio_endio(bio, ret); 1911 return ret; 1912 } 1913 1914 /* 1915 * given a list of ordered sums record them in the inode. This happens 1916 * at IO completion time based on sums calculated at bio submission time. 1917 */ 1918 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1919 struct inode *inode, u64 file_offset, 1920 struct list_head *list) 1921 { 1922 struct btrfs_ordered_sum *sum; 1923 1924 list_for_each_entry(sum, list, list) { 1925 trans->adding_csums = 1; 1926 btrfs_csum_file_blocks(trans, 1927 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1928 trans->adding_csums = 0; 1929 } 1930 return 0; 1931 } 1932 1933 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1934 struct extent_state **cached_state) 1935 { 1936 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1937 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1938 cached_state, GFP_NOFS); 1939 } 1940 1941 /* see btrfs_writepage_start_hook for details on why this is required */ 1942 struct btrfs_writepage_fixup { 1943 struct page *page; 1944 struct btrfs_work work; 1945 }; 1946 1947 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1948 { 1949 struct btrfs_writepage_fixup *fixup; 1950 struct btrfs_ordered_extent *ordered; 1951 struct extent_state *cached_state = NULL; 1952 struct page *page; 1953 struct inode *inode; 1954 u64 page_start; 1955 u64 page_end; 1956 int ret; 1957 1958 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1959 page = fixup->page; 1960 again: 1961 lock_page(page); 1962 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1963 ClearPageChecked(page); 1964 goto out_page; 1965 } 1966 1967 inode = page->mapping->host; 1968 page_start = page_offset(page); 1969 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1970 1971 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1972 &cached_state); 1973 1974 /* already ordered? We're done */ 1975 if (PagePrivate2(page)) 1976 goto out; 1977 1978 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1979 if (ordered) { 1980 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1981 page_end, &cached_state, GFP_NOFS); 1982 unlock_page(page); 1983 btrfs_start_ordered_extent(inode, ordered, 1); 1984 btrfs_put_ordered_extent(ordered); 1985 goto again; 1986 } 1987 1988 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1989 if (ret) { 1990 mapping_set_error(page->mapping, ret); 1991 end_extent_writepage(page, ret, page_start, page_end); 1992 ClearPageChecked(page); 1993 goto out; 1994 } 1995 1996 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1997 ClearPageChecked(page); 1998 set_page_dirty(page); 1999 out: 2000 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2001 &cached_state, GFP_NOFS); 2002 out_page: 2003 unlock_page(page); 2004 page_cache_release(page); 2005 kfree(fixup); 2006 } 2007 2008 /* 2009 * There are a few paths in the higher layers of the kernel that directly 2010 * set the page dirty bit without asking the filesystem if it is a 2011 * good idea. This causes problems because we want to make sure COW 2012 * properly happens and the data=ordered rules are followed. 2013 * 2014 * In our case any range that doesn't have the ORDERED bit set 2015 * hasn't been properly setup for IO. We kick off an async process 2016 * to fix it up. The async helper will wait for ordered extents, set 2017 * the delalloc bit and make it safe to write the page. 2018 */ 2019 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2020 { 2021 struct inode *inode = page->mapping->host; 2022 struct btrfs_writepage_fixup *fixup; 2023 struct btrfs_root *root = BTRFS_I(inode)->root; 2024 2025 /* this page is properly in the ordered list */ 2026 if (TestClearPagePrivate2(page)) 2027 return 0; 2028 2029 if (PageChecked(page)) 2030 return -EAGAIN; 2031 2032 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2033 if (!fixup) 2034 return -EAGAIN; 2035 2036 SetPageChecked(page); 2037 page_cache_get(page); 2038 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2039 btrfs_writepage_fixup_worker, NULL, NULL); 2040 fixup->page = page; 2041 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2042 return -EBUSY; 2043 } 2044 2045 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2046 struct inode *inode, u64 file_pos, 2047 u64 disk_bytenr, u64 disk_num_bytes, 2048 u64 num_bytes, u64 ram_bytes, 2049 u8 compression, u8 encryption, 2050 u16 other_encoding, int extent_type) 2051 { 2052 struct btrfs_root *root = BTRFS_I(inode)->root; 2053 struct btrfs_file_extent_item *fi; 2054 struct btrfs_path *path; 2055 struct extent_buffer *leaf; 2056 struct btrfs_key ins; 2057 int extent_inserted = 0; 2058 int ret; 2059 2060 path = btrfs_alloc_path(); 2061 if (!path) 2062 return -ENOMEM; 2063 2064 /* 2065 * we may be replacing one extent in the tree with another. 2066 * The new extent is pinned in the extent map, and we don't want 2067 * to drop it from the cache until it is completely in the btree. 2068 * 2069 * So, tell btrfs_drop_extents to leave this extent in the cache. 2070 * the caller is expected to unpin it and allow it to be merged 2071 * with the others. 2072 */ 2073 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2074 file_pos + num_bytes, NULL, 0, 2075 1, sizeof(*fi), &extent_inserted); 2076 if (ret) 2077 goto out; 2078 2079 if (!extent_inserted) { 2080 ins.objectid = btrfs_ino(inode); 2081 ins.offset = file_pos; 2082 ins.type = BTRFS_EXTENT_DATA_KEY; 2083 2084 path->leave_spinning = 1; 2085 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2086 sizeof(*fi)); 2087 if (ret) 2088 goto out; 2089 } 2090 leaf = path->nodes[0]; 2091 fi = btrfs_item_ptr(leaf, path->slots[0], 2092 struct btrfs_file_extent_item); 2093 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2094 btrfs_set_file_extent_type(leaf, fi, extent_type); 2095 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2096 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2097 btrfs_set_file_extent_offset(leaf, fi, 0); 2098 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2099 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2100 btrfs_set_file_extent_compression(leaf, fi, compression); 2101 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2102 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2103 2104 btrfs_mark_buffer_dirty(leaf); 2105 btrfs_release_path(path); 2106 2107 inode_add_bytes(inode, num_bytes); 2108 2109 ins.objectid = disk_bytenr; 2110 ins.offset = disk_num_bytes; 2111 ins.type = BTRFS_EXTENT_ITEM_KEY; 2112 ret = btrfs_alloc_reserved_file_extent(trans, root, 2113 root->root_key.objectid, 2114 btrfs_ino(inode), file_pos, &ins); 2115 out: 2116 btrfs_free_path(path); 2117 2118 return ret; 2119 } 2120 2121 /* snapshot-aware defrag */ 2122 struct sa_defrag_extent_backref { 2123 struct rb_node node; 2124 struct old_sa_defrag_extent *old; 2125 u64 root_id; 2126 u64 inum; 2127 u64 file_pos; 2128 u64 extent_offset; 2129 u64 num_bytes; 2130 u64 generation; 2131 }; 2132 2133 struct old_sa_defrag_extent { 2134 struct list_head list; 2135 struct new_sa_defrag_extent *new; 2136 2137 u64 extent_offset; 2138 u64 bytenr; 2139 u64 offset; 2140 u64 len; 2141 int count; 2142 }; 2143 2144 struct new_sa_defrag_extent { 2145 struct rb_root root; 2146 struct list_head head; 2147 struct btrfs_path *path; 2148 struct inode *inode; 2149 u64 file_pos; 2150 u64 len; 2151 u64 bytenr; 2152 u64 disk_len; 2153 u8 compress_type; 2154 }; 2155 2156 static int backref_comp(struct sa_defrag_extent_backref *b1, 2157 struct sa_defrag_extent_backref *b2) 2158 { 2159 if (b1->root_id < b2->root_id) 2160 return -1; 2161 else if (b1->root_id > b2->root_id) 2162 return 1; 2163 2164 if (b1->inum < b2->inum) 2165 return -1; 2166 else if (b1->inum > b2->inum) 2167 return 1; 2168 2169 if (b1->file_pos < b2->file_pos) 2170 return -1; 2171 else if (b1->file_pos > b2->file_pos) 2172 return 1; 2173 2174 /* 2175 * [------------------------------] ===> (a range of space) 2176 * |<--->| |<---->| =============> (fs/file tree A) 2177 * |<---------------------------->| ===> (fs/file tree B) 2178 * 2179 * A range of space can refer to two file extents in one tree while 2180 * refer to only one file extent in another tree. 2181 * 2182 * So we may process a disk offset more than one time(two extents in A) 2183 * and locate at the same extent(one extent in B), then insert two same 2184 * backrefs(both refer to the extent in B). 2185 */ 2186 return 0; 2187 } 2188 2189 static void backref_insert(struct rb_root *root, 2190 struct sa_defrag_extent_backref *backref) 2191 { 2192 struct rb_node **p = &root->rb_node; 2193 struct rb_node *parent = NULL; 2194 struct sa_defrag_extent_backref *entry; 2195 int ret; 2196 2197 while (*p) { 2198 parent = *p; 2199 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2200 2201 ret = backref_comp(backref, entry); 2202 if (ret < 0) 2203 p = &(*p)->rb_left; 2204 else 2205 p = &(*p)->rb_right; 2206 } 2207 2208 rb_link_node(&backref->node, parent, p); 2209 rb_insert_color(&backref->node, root); 2210 } 2211 2212 /* 2213 * Note the backref might has changed, and in this case we just return 0. 2214 */ 2215 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2216 void *ctx) 2217 { 2218 struct btrfs_file_extent_item *extent; 2219 struct btrfs_fs_info *fs_info; 2220 struct old_sa_defrag_extent *old = ctx; 2221 struct new_sa_defrag_extent *new = old->new; 2222 struct btrfs_path *path = new->path; 2223 struct btrfs_key key; 2224 struct btrfs_root *root; 2225 struct sa_defrag_extent_backref *backref; 2226 struct extent_buffer *leaf; 2227 struct inode *inode = new->inode; 2228 int slot; 2229 int ret; 2230 u64 extent_offset; 2231 u64 num_bytes; 2232 2233 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2234 inum == btrfs_ino(inode)) 2235 return 0; 2236 2237 key.objectid = root_id; 2238 key.type = BTRFS_ROOT_ITEM_KEY; 2239 key.offset = (u64)-1; 2240 2241 fs_info = BTRFS_I(inode)->root->fs_info; 2242 root = btrfs_read_fs_root_no_name(fs_info, &key); 2243 if (IS_ERR(root)) { 2244 if (PTR_ERR(root) == -ENOENT) 2245 return 0; 2246 WARN_ON(1); 2247 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2248 inum, offset, root_id); 2249 return PTR_ERR(root); 2250 } 2251 2252 key.objectid = inum; 2253 key.type = BTRFS_EXTENT_DATA_KEY; 2254 if (offset > (u64)-1 << 32) 2255 key.offset = 0; 2256 else 2257 key.offset = offset; 2258 2259 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2260 if (WARN_ON(ret < 0)) 2261 return ret; 2262 ret = 0; 2263 2264 while (1) { 2265 cond_resched(); 2266 2267 leaf = path->nodes[0]; 2268 slot = path->slots[0]; 2269 2270 if (slot >= btrfs_header_nritems(leaf)) { 2271 ret = btrfs_next_leaf(root, path); 2272 if (ret < 0) { 2273 goto out; 2274 } else if (ret > 0) { 2275 ret = 0; 2276 goto out; 2277 } 2278 continue; 2279 } 2280 2281 path->slots[0]++; 2282 2283 btrfs_item_key_to_cpu(leaf, &key, slot); 2284 2285 if (key.objectid > inum) 2286 goto out; 2287 2288 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2289 continue; 2290 2291 extent = btrfs_item_ptr(leaf, slot, 2292 struct btrfs_file_extent_item); 2293 2294 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2295 continue; 2296 2297 /* 2298 * 'offset' refers to the exact key.offset, 2299 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2300 * (key.offset - extent_offset). 2301 */ 2302 if (key.offset != offset) 2303 continue; 2304 2305 extent_offset = btrfs_file_extent_offset(leaf, extent); 2306 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2307 2308 if (extent_offset >= old->extent_offset + old->offset + 2309 old->len || extent_offset + num_bytes <= 2310 old->extent_offset + old->offset) 2311 continue; 2312 break; 2313 } 2314 2315 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2316 if (!backref) { 2317 ret = -ENOENT; 2318 goto out; 2319 } 2320 2321 backref->root_id = root_id; 2322 backref->inum = inum; 2323 backref->file_pos = offset; 2324 backref->num_bytes = num_bytes; 2325 backref->extent_offset = extent_offset; 2326 backref->generation = btrfs_file_extent_generation(leaf, extent); 2327 backref->old = old; 2328 backref_insert(&new->root, backref); 2329 old->count++; 2330 out: 2331 btrfs_release_path(path); 2332 WARN_ON(ret); 2333 return ret; 2334 } 2335 2336 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2337 struct new_sa_defrag_extent *new) 2338 { 2339 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2340 struct old_sa_defrag_extent *old, *tmp; 2341 int ret; 2342 2343 new->path = path; 2344 2345 list_for_each_entry_safe(old, tmp, &new->head, list) { 2346 ret = iterate_inodes_from_logical(old->bytenr + 2347 old->extent_offset, fs_info, 2348 path, record_one_backref, 2349 old); 2350 if (ret < 0 && ret != -ENOENT) 2351 return false; 2352 2353 /* no backref to be processed for this extent */ 2354 if (!old->count) { 2355 list_del(&old->list); 2356 kfree(old); 2357 } 2358 } 2359 2360 if (list_empty(&new->head)) 2361 return false; 2362 2363 return true; 2364 } 2365 2366 static int relink_is_mergable(struct extent_buffer *leaf, 2367 struct btrfs_file_extent_item *fi, 2368 struct new_sa_defrag_extent *new) 2369 { 2370 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2371 return 0; 2372 2373 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2374 return 0; 2375 2376 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2377 return 0; 2378 2379 if (btrfs_file_extent_encryption(leaf, fi) || 2380 btrfs_file_extent_other_encoding(leaf, fi)) 2381 return 0; 2382 2383 return 1; 2384 } 2385 2386 /* 2387 * Note the backref might has changed, and in this case we just return 0. 2388 */ 2389 static noinline int relink_extent_backref(struct btrfs_path *path, 2390 struct sa_defrag_extent_backref *prev, 2391 struct sa_defrag_extent_backref *backref) 2392 { 2393 struct btrfs_file_extent_item *extent; 2394 struct btrfs_file_extent_item *item; 2395 struct btrfs_ordered_extent *ordered; 2396 struct btrfs_trans_handle *trans; 2397 struct btrfs_fs_info *fs_info; 2398 struct btrfs_root *root; 2399 struct btrfs_key key; 2400 struct extent_buffer *leaf; 2401 struct old_sa_defrag_extent *old = backref->old; 2402 struct new_sa_defrag_extent *new = old->new; 2403 struct inode *src_inode = new->inode; 2404 struct inode *inode; 2405 struct extent_state *cached = NULL; 2406 int ret = 0; 2407 u64 start; 2408 u64 len; 2409 u64 lock_start; 2410 u64 lock_end; 2411 bool merge = false; 2412 int index; 2413 2414 if (prev && prev->root_id == backref->root_id && 2415 prev->inum == backref->inum && 2416 prev->file_pos + prev->num_bytes == backref->file_pos) 2417 merge = true; 2418 2419 /* step 1: get root */ 2420 key.objectid = backref->root_id; 2421 key.type = BTRFS_ROOT_ITEM_KEY; 2422 key.offset = (u64)-1; 2423 2424 fs_info = BTRFS_I(src_inode)->root->fs_info; 2425 index = srcu_read_lock(&fs_info->subvol_srcu); 2426 2427 root = btrfs_read_fs_root_no_name(fs_info, &key); 2428 if (IS_ERR(root)) { 2429 srcu_read_unlock(&fs_info->subvol_srcu, index); 2430 if (PTR_ERR(root) == -ENOENT) 2431 return 0; 2432 return PTR_ERR(root); 2433 } 2434 2435 if (btrfs_root_readonly(root)) { 2436 srcu_read_unlock(&fs_info->subvol_srcu, index); 2437 return 0; 2438 } 2439 2440 /* step 2: get inode */ 2441 key.objectid = backref->inum; 2442 key.type = BTRFS_INODE_ITEM_KEY; 2443 key.offset = 0; 2444 2445 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2446 if (IS_ERR(inode)) { 2447 srcu_read_unlock(&fs_info->subvol_srcu, index); 2448 return 0; 2449 } 2450 2451 srcu_read_unlock(&fs_info->subvol_srcu, index); 2452 2453 /* step 3: relink backref */ 2454 lock_start = backref->file_pos; 2455 lock_end = backref->file_pos + backref->num_bytes - 1; 2456 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2457 0, &cached); 2458 2459 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2460 if (ordered) { 2461 btrfs_put_ordered_extent(ordered); 2462 goto out_unlock; 2463 } 2464 2465 trans = btrfs_join_transaction(root); 2466 if (IS_ERR(trans)) { 2467 ret = PTR_ERR(trans); 2468 goto out_unlock; 2469 } 2470 2471 key.objectid = backref->inum; 2472 key.type = BTRFS_EXTENT_DATA_KEY; 2473 key.offset = backref->file_pos; 2474 2475 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2476 if (ret < 0) { 2477 goto out_free_path; 2478 } else if (ret > 0) { 2479 ret = 0; 2480 goto out_free_path; 2481 } 2482 2483 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2484 struct btrfs_file_extent_item); 2485 2486 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2487 backref->generation) 2488 goto out_free_path; 2489 2490 btrfs_release_path(path); 2491 2492 start = backref->file_pos; 2493 if (backref->extent_offset < old->extent_offset + old->offset) 2494 start += old->extent_offset + old->offset - 2495 backref->extent_offset; 2496 2497 len = min(backref->extent_offset + backref->num_bytes, 2498 old->extent_offset + old->offset + old->len); 2499 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2500 2501 ret = btrfs_drop_extents(trans, root, inode, start, 2502 start + len, 1); 2503 if (ret) 2504 goto out_free_path; 2505 again: 2506 key.objectid = btrfs_ino(inode); 2507 key.type = BTRFS_EXTENT_DATA_KEY; 2508 key.offset = start; 2509 2510 path->leave_spinning = 1; 2511 if (merge) { 2512 struct btrfs_file_extent_item *fi; 2513 u64 extent_len; 2514 struct btrfs_key found_key; 2515 2516 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2517 if (ret < 0) 2518 goto out_free_path; 2519 2520 path->slots[0]--; 2521 leaf = path->nodes[0]; 2522 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2523 2524 fi = btrfs_item_ptr(leaf, path->slots[0], 2525 struct btrfs_file_extent_item); 2526 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2527 2528 if (extent_len + found_key.offset == start && 2529 relink_is_mergable(leaf, fi, new)) { 2530 btrfs_set_file_extent_num_bytes(leaf, fi, 2531 extent_len + len); 2532 btrfs_mark_buffer_dirty(leaf); 2533 inode_add_bytes(inode, len); 2534 2535 ret = 1; 2536 goto out_free_path; 2537 } else { 2538 merge = false; 2539 btrfs_release_path(path); 2540 goto again; 2541 } 2542 } 2543 2544 ret = btrfs_insert_empty_item(trans, root, path, &key, 2545 sizeof(*extent)); 2546 if (ret) { 2547 btrfs_abort_transaction(trans, root, ret); 2548 goto out_free_path; 2549 } 2550 2551 leaf = path->nodes[0]; 2552 item = btrfs_item_ptr(leaf, path->slots[0], 2553 struct btrfs_file_extent_item); 2554 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2555 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2556 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2557 btrfs_set_file_extent_num_bytes(leaf, item, len); 2558 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2559 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2560 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2561 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2562 btrfs_set_file_extent_encryption(leaf, item, 0); 2563 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2564 2565 btrfs_mark_buffer_dirty(leaf); 2566 inode_add_bytes(inode, len); 2567 btrfs_release_path(path); 2568 2569 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2570 new->disk_len, 0, 2571 backref->root_id, backref->inum, 2572 new->file_pos, 0); /* start - extent_offset */ 2573 if (ret) { 2574 btrfs_abort_transaction(trans, root, ret); 2575 goto out_free_path; 2576 } 2577 2578 ret = 1; 2579 out_free_path: 2580 btrfs_release_path(path); 2581 path->leave_spinning = 0; 2582 btrfs_end_transaction(trans, root); 2583 out_unlock: 2584 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2585 &cached, GFP_NOFS); 2586 iput(inode); 2587 return ret; 2588 } 2589 2590 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2591 { 2592 struct old_sa_defrag_extent *old, *tmp; 2593 2594 if (!new) 2595 return; 2596 2597 list_for_each_entry_safe(old, tmp, &new->head, list) { 2598 list_del(&old->list); 2599 kfree(old); 2600 } 2601 kfree(new); 2602 } 2603 2604 static void relink_file_extents(struct new_sa_defrag_extent *new) 2605 { 2606 struct btrfs_path *path; 2607 struct sa_defrag_extent_backref *backref; 2608 struct sa_defrag_extent_backref *prev = NULL; 2609 struct inode *inode; 2610 struct btrfs_root *root; 2611 struct rb_node *node; 2612 int ret; 2613 2614 inode = new->inode; 2615 root = BTRFS_I(inode)->root; 2616 2617 path = btrfs_alloc_path(); 2618 if (!path) 2619 return; 2620 2621 if (!record_extent_backrefs(path, new)) { 2622 btrfs_free_path(path); 2623 goto out; 2624 } 2625 btrfs_release_path(path); 2626 2627 while (1) { 2628 node = rb_first(&new->root); 2629 if (!node) 2630 break; 2631 rb_erase(node, &new->root); 2632 2633 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2634 2635 ret = relink_extent_backref(path, prev, backref); 2636 WARN_ON(ret < 0); 2637 2638 kfree(prev); 2639 2640 if (ret == 1) 2641 prev = backref; 2642 else 2643 prev = NULL; 2644 cond_resched(); 2645 } 2646 kfree(prev); 2647 2648 btrfs_free_path(path); 2649 out: 2650 free_sa_defrag_extent(new); 2651 2652 atomic_dec(&root->fs_info->defrag_running); 2653 wake_up(&root->fs_info->transaction_wait); 2654 } 2655 2656 static struct new_sa_defrag_extent * 2657 record_old_file_extents(struct inode *inode, 2658 struct btrfs_ordered_extent *ordered) 2659 { 2660 struct btrfs_root *root = BTRFS_I(inode)->root; 2661 struct btrfs_path *path; 2662 struct btrfs_key key; 2663 struct old_sa_defrag_extent *old; 2664 struct new_sa_defrag_extent *new; 2665 int ret; 2666 2667 new = kmalloc(sizeof(*new), GFP_NOFS); 2668 if (!new) 2669 return NULL; 2670 2671 new->inode = inode; 2672 new->file_pos = ordered->file_offset; 2673 new->len = ordered->len; 2674 new->bytenr = ordered->start; 2675 new->disk_len = ordered->disk_len; 2676 new->compress_type = ordered->compress_type; 2677 new->root = RB_ROOT; 2678 INIT_LIST_HEAD(&new->head); 2679 2680 path = btrfs_alloc_path(); 2681 if (!path) 2682 goto out_kfree; 2683 2684 key.objectid = btrfs_ino(inode); 2685 key.type = BTRFS_EXTENT_DATA_KEY; 2686 key.offset = new->file_pos; 2687 2688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2689 if (ret < 0) 2690 goto out_free_path; 2691 if (ret > 0 && path->slots[0] > 0) 2692 path->slots[0]--; 2693 2694 /* find out all the old extents for the file range */ 2695 while (1) { 2696 struct btrfs_file_extent_item *extent; 2697 struct extent_buffer *l; 2698 int slot; 2699 u64 num_bytes; 2700 u64 offset; 2701 u64 end; 2702 u64 disk_bytenr; 2703 u64 extent_offset; 2704 2705 l = path->nodes[0]; 2706 slot = path->slots[0]; 2707 2708 if (slot >= btrfs_header_nritems(l)) { 2709 ret = btrfs_next_leaf(root, path); 2710 if (ret < 0) 2711 goto out_free_path; 2712 else if (ret > 0) 2713 break; 2714 continue; 2715 } 2716 2717 btrfs_item_key_to_cpu(l, &key, slot); 2718 2719 if (key.objectid != btrfs_ino(inode)) 2720 break; 2721 if (key.type != BTRFS_EXTENT_DATA_KEY) 2722 break; 2723 if (key.offset >= new->file_pos + new->len) 2724 break; 2725 2726 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2727 2728 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2729 if (key.offset + num_bytes < new->file_pos) 2730 goto next; 2731 2732 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2733 if (!disk_bytenr) 2734 goto next; 2735 2736 extent_offset = btrfs_file_extent_offset(l, extent); 2737 2738 old = kmalloc(sizeof(*old), GFP_NOFS); 2739 if (!old) 2740 goto out_free_path; 2741 2742 offset = max(new->file_pos, key.offset); 2743 end = min(new->file_pos + new->len, key.offset + num_bytes); 2744 2745 old->bytenr = disk_bytenr; 2746 old->extent_offset = extent_offset; 2747 old->offset = offset - key.offset; 2748 old->len = end - offset; 2749 old->new = new; 2750 old->count = 0; 2751 list_add_tail(&old->list, &new->head); 2752 next: 2753 path->slots[0]++; 2754 cond_resched(); 2755 } 2756 2757 btrfs_free_path(path); 2758 atomic_inc(&root->fs_info->defrag_running); 2759 2760 return new; 2761 2762 out_free_path: 2763 btrfs_free_path(path); 2764 out_kfree: 2765 free_sa_defrag_extent(new); 2766 return NULL; 2767 } 2768 2769 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2770 u64 start, u64 len) 2771 { 2772 struct btrfs_block_group_cache *cache; 2773 2774 cache = btrfs_lookup_block_group(root->fs_info, start); 2775 ASSERT(cache); 2776 2777 spin_lock(&cache->lock); 2778 cache->delalloc_bytes -= len; 2779 spin_unlock(&cache->lock); 2780 2781 btrfs_put_block_group(cache); 2782 } 2783 2784 /* as ordered data IO finishes, this gets called so we can finish 2785 * an ordered extent if the range of bytes in the file it covers are 2786 * fully written. 2787 */ 2788 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2789 { 2790 struct inode *inode = ordered_extent->inode; 2791 struct btrfs_root *root = BTRFS_I(inode)->root; 2792 struct btrfs_trans_handle *trans = NULL; 2793 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2794 struct extent_state *cached_state = NULL; 2795 struct new_sa_defrag_extent *new = NULL; 2796 int compress_type = 0; 2797 int ret = 0; 2798 u64 logical_len = ordered_extent->len; 2799 bool nolock; 2800 bool truncated = false; 2801 2802 nolock = btrfs_is_free_space_inode(inode); 2803 2804 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2805 ret = -EIO; 2806 goto out; 2807 } 2808 2809 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2810 ordered_extent->file_offset + 2811 ordered_extent->len - 1); 2812 2813 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2814 truncated = true; 2815 logical_len = ordered_extent->truncated_len; 2816 /* Truncated the entire extent, don't bother adding */ 2817 if (!logical_len) 2818 goto out; 2819 } 2820 2821 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2822 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2823 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2824 if (nolock) 2825 trans = btrfs_join_transaction_nolock(root); 2826 else 2827 trans = btrfs_join_transaction(root); 2828 if (IS_ERR(trans)) { 2829 ret = PTR_ERR(trans); 2830 trans = NULL; 2831 goto out; 2832 } 2833 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2834 ret = btrfs_update_inode_fallback(trans, root, inode); 2835 if (ret) /* -ENOMEM or corruption */ 2836 btrfs_abort_transaction(trans, root, ret); 2837 goto out; 2838 } 2839 2840 lock_extent_bits(io_tree, ordered_extent->file_offset, 2841 ordered_extent->file_offset + ordered_extent->len - 1, 2842 0, &cached_state); 2843 2844 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2845 ordered_extent->file_offset + ordered_extent->len - 1, 2846 EXTENT_DEFRAG, 1, cached_state); 2847 if (ret) { 2848 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2849 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2850 /* the inode is shared */ 2851 new = record_old_file_extents(inode, ordered_extent); 2852 2853 clear_extent_bit(io_tree, ordered_extent->file_offset, 2854 ordered_extent->file_offset + ordered_extent->len - 1, 2855 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2856 } 2857 2858 if (nolock) 2859 trans = btrfs_join_transaction_nolock(root); 2860 else 2861 trans = btrfs_join_transaction(root); 2862 if (IS_ERR(trans)) { 2863 ret = PTR_ERR(trans); 2864 trans = NULL; 2865 goto out_unlock; 2866 } 2867 2868 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2869 2870 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2871 compress_type = ordered_extent->compress_type; 2872 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2873 BUG_ON(compress_type); 2874 ret = btrfs_mark_extent_written(trans, inode, 2875 ordered_extent->file_offset, 2876 ordered_extent->file_offset + 2877 logical_len); 2878 } else { 2879 BUG_ON(root == root->fs_info->tree_root); 2880 ret = insert_reserved_file_extent(trans, inode, 2881 ordered_extent->file_offset, 2882 ordered_extent->start, 2883 ordered_extent->disk_len, 2884 logical_len, logical_len, 2885 compress_type, 0, 0, 2886 BTRFS_FILE_EXTENT_REG); 2887 if (!ret) 2888 btrfs_release_delalloc_bytes(root, 2889 ordered_extent->start, 2890 ordered_extent->disk_len); 2891 } 2892 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2893 ordered_extent->file_offset, ordered_extent->len, 2894 trans->transid); 2895 if (ret < 0) { 2896 btrfs_abort_transaction(trans, root, ret); 2897 goto out_unlock; 2898 } 2899 2900 add_pending_csums(trans, inode, ordered_extent->file_offset, 2901 &ordered_extent->list); 2902 2903 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2904 ret = btrfs_update_inode_fallback(trans, root, inode); 2905 if (ret) { /* -ENOMEM or corruption */ 2906 btrfs_abort_transaction(trans, root, ret); 2907 goto out_unlock; 2908 } 2909 ret = 0; 2910 out_unlock: 2911 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2912 ordered_extent->file_offset + 2913 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2914 out: 2915 if (root != root->fs_info->tree_root) 2916 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2917 if (trans) 2918 btrfs_end_transaction(trans, root); 2919 2920 if (ret || truncated) { 2921 u64 start, end; 2922 2923 if (truncated) 2924 start = ordered_extent->file_offset + logical_len; 2925 else 2926 start = ordered_extent->file_offset; 2927 end = ordered_extent->file_offset + ordered_extent->len - 1; 2928 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2929 2930 /* Drop the cache for the part of the extent we didn't write. */ 2931 btrfs_drop_extent_cache(inode, start, end, 0); 2932 2933 /* 2934 * If the ordered extent had an IOERR or something else went 2935 * wrong we need to return the space for this ordered extent 2936 * back to the allocator. We only free the extent in the 2937 * truncated case if we didn't write out the extent at all. 2938 */ 2939 if ((ret || !logical_len) && 2940 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2941 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2942 btrfs_free_reserved_extent(root, ordered_extent->start, 2943 ordered_extent->disk_len, 1); 2944 } 2945 2946 2947 /* 2948 * This needs to be done to make sure anybody waiting knows we are done 2949 * updating everything for this ordered extent. 2950 */ 2951 btrfs_remove_ordered_extent(inode, ordered_extent); 2952 2953 /* for snapshot-aware defrag */ 2954 if (new) { 2955 if (ret) { 2956 free_sa_defrag_extent(new); 2957 atomic_dec(&root->fs_info->defrag_running); 2958 } else { 2959 relink_file_extents(new); 2960 } 2961 } 2962 2963 /* once for us */ 2964 btrfs_put_ordered_extent(ordered_extent); 2965 /* once for the tree */ 2966 btrfs_put_ordered_extent(ordered_extent); 2967 2968 return ret; 2969 } 2970 2971 static void finish_ordered_fn(struct btrfs_work *work) 2972 { 2973 struct btrfs_ordered_extent *ordered_extent; 2974 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2975 btrfs_finish_ordered_io(ordered_extent); 2976 } 2977 2978 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2979 struct extent_state *state, int uptodate) 2980 { 2981 struct inode *inode = page->mapping->host; 2982 struct btrfs_root *root = BTRFS_I(inode)->root; 2983 struct btrfs_ordered_extent *ordered_extent = NULL; 2984 struct btrfs_workqueue *wq; 2985 btrfs_work_func_t func; 2986 2987 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2988 2989 ClearPagePrivate2(page); 2990 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2991 end - start + 1, uptodate)) 2992 return 0; 2993 2994 if (btrfs_is_free_space_inode(inode)) { 2995 wq = root->fs_info->endio_freespace_worker; 2996 func = btrfs_freespace_write_helper; 2997 } else { 2998 wq = root->fs_info->endio_write_workers; 2999 func = btrfs_endio_write_helper; 3000 } 3001 3002 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3003 NULL); 3004 btrfs_queue_work(wq, &ordered_extent->work); 3005 3006 return 0; 3007 } 3008 3009 static int __readpage_endio_check(struct inode *inode, 3010 struct btrfs_io_bio *io_bio, 3011 int icsum, struct page *page, 3012 int pgoff, u64 start, size_t len) 3013 { 3014 char *kaddr; 3015 u32 csum_expected; 3016 u32 csum = ~(u32)0; 3017 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 3018 DEFAULT_RATELIMIT_BURST); 3019 3020 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3021 3022 kaddr = kmap_atomic(page); 3023 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3024 btrfs_csum_final(csum, (char *)&csum); 3025 if (csum != csum_expected) 3026 goto zeroit; 3027 3028 kunmap_atomic(kaddr); 3029 return 0; 3030 zeroit: 3031 if (__ratelimit(&_rs)) 3032 btrfs_warn(BTRFS_I(inode)->root->fs_info, 3033 "csum failed ino %llu off %llu csum %u expected csum %u", 3034 btrfs_ino(inode), start, csum, csum_expected); 3035 memset(kaddr + pgoff, 1, len); 3036 flush_dcache_page(page); 3037 kunmap_atomic(kaddr); 3038 if (csum_expected == 0) 3039 return 0; 3040 return -EIO; 3041 } 3042 3043 /* 3044 * when reads are done, we need to check csums to verify the data is correct 3045 * if there's a match, we allow the bio to finish. If not, the code in 3046 * extent_io.c will try to find good copies for us. 3047 */ 3048 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3049 u64 phy_offset, struct page *page, 3050 u64 start, u64 end, int mirror) 3051 { 3052 size_t offset = start - page_offset(page); 3053 struct inode *inode = page->mapping->host; 3054 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3055 struct btrfs_root *root = BTRFS_I(inode)->root; 3056 3057 if (PageChecked(page)) { 3058 ClearPageChecked(page); 3059 return 0; 3060 } 3061 3062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3063 return 0; 3064 3065 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3066 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3067 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 3068 GFP_NOFS); 3069 return 0; 3070 } 3071 3072 phy_offset >>= inode->i_sb->s_blocksize_bits; 3073 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3074 start, (size_t)(end - start + 1)); 3075 } 3076 3077 struct delayed_iput { 3078 struct list_head list; 3079 struct inode *inode; 3080 }; 3081 3082 /* JDM: If this is fs-wide, why can't we add a pointer to 3083 * btrfs_inode instead and avoid the allocation? */ 3084 void btrfs_add_delayed_iput(struct inode *inode) 3085 { 3086 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3087 struct delayed_iput *delayed; 3088 3089 if (atomic_add_unless(&inode->i_count, -1, 1)) 3090 return; 3091 3092 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 3093 delayed->inode = inode; 3094 3095 spin_lock(&fs_info->delayed_iput_lock); 3096 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 3097 spin_unlock(&fs_info->delayed_iput_lock); 3098 } 3099 3100 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3101 { 3102 LIST_HEAD(list); 3103 struct btrfs_fs_info *fs_info = root->fs_info; 3104 struct delayed_iput *delayed; 3105 int empty; 3106 3107 spin_lock(&fs_info->delayed_iput_lock); 3108 empty = list_empty(&fs_info->delayed_iputs); 3109 spin_unlock(&fs_info->delayed_iput_lock); 3110 if (empty) 3111 return; 3112 3113 spin_lock(&fs_info->delayed_iput_lock); 3114 list_splice_init(&fs_info->delayed_iputs, &list); 3115 spin_unlock(&fs_info->delayed_iput_lock); 3116 3117 while (!list_empty(&list)) { 3118 delayed = list_entry(list.next, struct delayed_iput, list); 3119 list_del(&delayed->list); 3120 iput(delayed->inode); 3121 kfree(delayed); 3122 } 3123 } 3124 3125 /* 3126 * This is called in transaction commit time. If there are no orphan 3127 * files in the subvolume, it removes orphan item and frees block_rsv 3128 * structure. 3129 */ 3130 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3131 struct btrfs_root *root) 3132 { 3133 struct btrfs_block_rsv *block_rsv; 3134 int ret; 3135 3136 if (atomic_read(&root->orphan_inodes) || 3137 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3138 return; 3139 3140 spin_lock(&root->orphan_lock); 3141 if (atomic_read(&root->orphan_inodes)) { 3142 spin_unlock(&root->orphan_lock); 3143 return; 3144 } 3145 3146 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3147 spin_unlock(&root->orphan_lock); 3148 return; 3149 } 3150 3151 block_rsv = root->orphan_block_rsv; 3152 root->orphan_block_rsv = NULL; 3153 spin_unlock(&root->orphan_lock); 3154 3155 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3156 btrfs_root_refs(&root->root_item) > 0) { 3157 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3158 root->root_key.objectid); 3159 if (ret) 3160 btrfs_abort_transaction(trans, root, ret); 3161 else 3162 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3163 &root->state); 3164 } 3165 3166 if (block_rsv) { 3167 WARN_ON(block_rsv->size > 0); 3168 btrfs_free_block_rsv(root, block_rsv); 3169 } 3170 } 3171 3172 /* 3173 * This creates an orphan entry for the given inode in case something goes 3174 * wrong in the middle of an unlink/truncate. 3175 * 3176 * NOTE: caller of this function should reserve 5 units of metadata for 3177 * this function. 3178 */ 3179 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3180 { 3181 struct btrfs_root *root = BTRFS_I(inode)->root; 3182 struct btrfs_block_rsv *block_rsv = NULL; 3183 int reserve = 0; 3184 int insert = 0; 3185 int ret; 3186 3187 if (!root->orphan_block_rsv) { 3188 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3189 if (!block_rsv) 3190 return -ENOMEM; 3191 } 3192 3193 spin_lock(&root->orphan_lock); 3194 if (!root->orphan_block_rsv) { 3195 root->orphan_block_rsv = block_rsv; 3196 } else if (block_rsv) { 3197 btrfs_free_block_rsv(root, block_rsv); 3198 block_rsv = NULL; 3199 } 3200 3201 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3202 &BTRFS_I(inode)->runtime_flags)) { 3203 #if 0 3204 /* 3205 * For proper ENOSPC handling, we should do orphan 3206 * cleanup when mounting. But this introduces backward 3207 * compatibility issue. 3208 */ 3209 if (!xchg(&root->orphan_item_inserted, 1)) 3210 insert = 2; 3211 else 3212 insert = 1; 3213 #endif 3214 insert = 1; 3215 atomic_inc(&root->orphan_inodes); 3216 } 3217 3218 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3219 &BTRFS_I(inode)->runtime_flags)) 3220 reserve = 1; 3221 spin_unlock(&root->orphan_lock); 3222 3223 /* grab metadata reservation from transaction handle */ 3224 if (reserve) { 3225 ret = btrfs_orphan_reserve_metadata(trans, inode); 3226 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3227 } 3228 3229 /* insert an orphan item to track this unlinked/truncated file */ 3230 if (insert >= 1) { 3231 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3232 if (ret) { 3233 atomic_dec(&root->orphan_inodes); 3234 if (reserve) { 3235 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3236 &BTRFS_I(inode)->runtime_flags); 3237 btrfs_orphan_release_metadata(inode); 3238 } 3239 if (ret != -EEXIST) { 3240 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3241 &BTRFS_I(inode)->runtime_flags); 3242 btrfs_abort_transaction(trans, root, ret); 3243 return ret; 3244 } 3245 } 3246 ret = 0; 3247 } 3248 3249 /* insert an orphan item to track subvolume contains orphan files */ 3250 if (insert >= 2) { 3251 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3252 root->root_key.objectid); 3253 if (ret && ret != -EEXIST) { 3254 btrfs_abort_transaction(trans, root, ret); 3255 return ret; 3256 } 3257 } 3258 return 0; 3259 } 3260 3261 /* 3262 * We have done the truncate/delete so we can go ahead and remove the orphan 3263 * item for this particular inode. 3264 */ 3265 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3266 struct inode *inode) 3267 { 3268 struct btrfs_root *root = BTRFS_I(inode)->root; 3269 int delete_item = 0; 3270 int release_rsv = 0; 3271 int ret = 0; 3272 3273 spin_lock(&root->orphan_lock); 3274 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3275 &BTRFS_I(inode)->runtime_flags)) 3276 delete_item = 1; 3277 3278 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3279 &BTRFS_I(inode)->runtime_flags)) 3280 release_rsv = 1; 3281 spin_unlock(&root->orphan_lock); 3282 3283 if (delete_item) { 3284 atomic_dec(&root->orphan_inodes); 3285 if (trans) 3286 ret = btrfs_del_orphan_item(trans, root, 3287 btrfs_ino(inode)); 3288 } 3289 3290 if (release_rsv) 3291 btrfs_orphan_release_metadata(inode); 3292 3293 return ret; 3294 } 3295 3296 /* 3297 * this cleans up any orphans that may be left on the list from the last use 3298 * of this root. 3299 */ 3300 int btrfs_orphan_cleanup(struct btrfs_root *root) 3301 { 3302 struct btrfs_path *path; 3303 struct extent_buffer *leaf; 3304 struct btrfs_key key, found_key; 3305 struct btrfs_trans_handle *trans; 3306 struct inode *inode; 3307 u64 last_objectid = 0; 3308 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3309 3310 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3311 return 0; 3312 3313 path = btrfs_alloc_path(); 3314 if (!path) { 3315 ret = -ENOMEM; 3316 goto out; 3317 } 3318 path->reada = -1; 3319 3320 key.objectid = BTRFS_ORPHAN_OBJECTID; 3321 key.type = BTRFS_ORPHAN_ITEM_KEY; 3322 key.offset = (u64)-1; 3323 3324 while (1) { 3325 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3326 if (ret < 0) 3327 goto out; 3328 3329 /* 3330 * if ret == 0 means we found what we were searching for, which 3331 * is weird, but possible, so only screw with path if we didn't 3332 * find the key and see if we have stuff that matches 3333 */ 3334 if (ret > 0) { 3335 ret = 0; 3336 if (path->slots[0] == 0) 3337 break; 3338 path->slots[0]--; 3339 } 3340 3341 /* pull out the item */ 3342 leaf = path->nodes[0]; 3343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3344 3345 /* make sure the item matches what we want */ 3346 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3347 break; 3348 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3349 break; 3350 3351 /* release the path since we're done with it */ 3352 btrfs_release_path(path); 3353 3354 /* 3355 * this is where we are basically btrfs_lookup, without the 3356 * crossing root thing. we store the inode number in the 3357 * offset of the orphan item. 3358 */ 3359 3360 if (found_key.offset == last_objectid) { 3361 btrfs_err(root->fs_info, 3362 "Error removing orphan entry, stopping orphan cleanup"); 3363 ret = -EINVAL; 3364 goto out; 3365 } 3366 3367 last_objectid = found_key.offset; 3368 3369 found_key.objectid = found_key.offset; 3370 found_key.type = BTRFS_INODE_ITEM_KEY; 3371 found_key.offset = 0; 3372 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3373 ret = PTR_ERR_OR_ZERO(inode); 3374 if (ret && ret != -ESTALE) 3375 goto out; 3376 3377 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3378 struct btrfs_root *dead_root; 3379 struct btrfs_fs_info *fs_info = root->fs_info; 3380 int is_dead_root = 0; 3381 3382 /* 3383 * this is an orphan in the tree root. Currently these 3384 * could come from 2 sources: 3385 * a) a snapshot deletion in progress 3386 * b) a free space cache inode 3387 * We need to distinguish those two, as the snapshot 3388 * orphan must not get deleted. 3389 * find_dead_roots already ran before us, so if this 3390 * is a snapshot deletion, we should find the root 3391 * in the dead_roots list 3392 */ 3393 spin_lock(&fs_info->trans_lock); 3394 list_for_each_entry(dead_root, &fs_info->dead_roots, 3395 root_list) { 3396 if (dead_root->root_key.objectid == 3397 found_key.objectid) { 3398 is_dead_root = 1; 3399 break; 3400 } 3401 } 3402 spin_unlock(&fs_info->trans_lock); 3403 if (is_dead_root) { 3404 /* prevent this orphan from being found again */ 3405 key.offset = found_key.objectid - 1; 3406 continue; 3407 } 3408 } 3409 /* 3410 * Inode is already gone but the orphan item is still there, 3411 * kill the orphan item. 3412 */ 3413 if (ret == -ESTALE) { 3414 trans = btrfs_start_transaction(root, 1); 3415 if (IS_ERR(trans)) { 3416 ret = PTR_ERR(trans); 3417 goto out; 3418 } 3419 btrfs_debug(root->fs_info, "auto deleting %Lu", 3420 found_key.objectid); 3421 ret = btrfs_del_orphan_item(trans, root, 3422 found_key.objectid); 3423 btrfs_end_transaction(trans, root); 3424 if (ret) 3425 goto out; 3426 continue; 3427 } 3428 3429 /* 3430 * add this inode to the orphan list so btrfs_orphan_del does 3431 * the proper thing when we hit it 3432 */ 3433 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3434 &BTRFS_I(inode)->runtime_flags); 3435 atomic_inc(&root->orphan_inodes); 3436 3437 /* if we have links, this was a truncate, lets do that */ 3438 if (inode->i_nlink) { 3439 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3440 iput(inode); 3441 continue; 3442 } 3443 nr_truncate++; 3444 3445 /* 1 for the orphan item deletion. */ 3446 trans = btrfs_start_transaction(root, 1); 3447 if (IS_ERR(trans)) { 3448 iput(inode); 3449 ret = PTR_ERR(trans); 3450 goto out; 3451 } 3452 ret = btrfs_orphan_add(trans, inode); 3453 btrfs_end_transaction(trans, root); 3454 if (ret) { 3455 iput(inode); 3456 goto out; 3457 } 3458 3459 ret = btrfs_truncate(inode); 3460 if (ret) 3461 btrfs_orphan_del(NULL, inode); 3462 } else { 3463 nr_unlink++; 3464 } 3465 3466 /* this will do delete_inode and everything for us */ 3467 iput(inode); 3468 if (ret) 3469 goto out; 3470 } 3471 /* release the path since we're done with it */ 3472 btrfs_release_path(path); 3473 3474 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3475 3476 if (root->orphan_block_rsv) 3477 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3478 (u64)-1); 3479 3480 if (root->orphan_block_rsv || 3481 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3482 trans = btrfs_join_transaction(root); 3483 if (!IS_ERR(trans)) 3484 btrfs_end_transaction(trans, root); 3485 } 3486 3487 if (nr_unlink) 3488 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3489 if (nr_truncate) 3490 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3491 3492 out: 3493 if (ret) 3494 btrfs_err(root->fs_info, 3495 "could not do orphan cleanup %d", ret); 3496 btrfs_free_path(path); 3497 return ret; 3498 } 3499 3500 /* 3501 * very simple check to peek ahead in the leaf looking for xattrs. If we 3502 * don't find any xattrs, we know there can't be any acls. 3503 * 3504 * slot is the slot the inode is in, objectid is the objectid of the inode 3505 */ 3506 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3507 int slot, u64 objectid, 3508 int *first_xattr_slot) 3509 { 3510 u32 nritems = btrfs_header_nritems(leaf); 3511 struct btrfs_key found_key; 3512 static u64 xattr_access = 0; 3513 static u64 xattr_default = 0; 3514 int scanned = 0; 3515 3516 if (!xattr_access) { 3517 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3518 strlen(POSIX_ACL_XATTR_ACCESS)); 3519 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3520 strlen(POSIX_ACL_XATTR_DEFAULT)); 3521 } 3522 3523 slot++; 3524 *first_xattr_slot = -1; 3525 while (slot < nritems) { 3526 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3527 3528 /* we found a different objectid, there must not be acls */ 3529 if (found_key.objectid != objectid) 3530 return 0; 3531 3532 /* we found an xattr, assume we've got an acl */ 3533 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3534 if (*first_xattr_slot == -1) 3535 *first_xattr_slot = slot; 3536 if (found_key.offset == xattr_access || 3537 found_key.offset == xattr_default) 3538 return 1; 3539 } 3540 3541 /* 3542 * we found a key greater than an xattr key, there can't 3543 * be any acls later on 3544 */ 3545 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3546 return 0; 3547 3548 slot++; 3549 scanned++; 3550 3551 /* 3552 * it goes inode, inode backrefs, xattrs, extents, 3553 * so if there are a ton of hard links to an inode there can 3554 * be a lot of backrefs. Don't waste time searching too hard, 3555 * this is just an optimization 3556 */ 3557 if (scanned >= 8) 3558 break; 3559 } 3560 /* we hit the end of the leaf before we found an xattr or 3561 * something larger than an xattr. We have to assume the inode 3562 * has acls 3563 */ 3564 if (*first_xattr_slot == -1) 3565 *first_xattr_slot = slot; 3566 return 1; 3567 } 3568 3569 /* 3570 * read an inode from the btree into the in-memory inode 3571 */ 3572 static void btrfs_read_locked_inode(struct inode *inode) 3573 { 3574 struct btrfs_path *path; 3575 struct extent_buffer *leaf; 3576 struct btrfs_inode_item *inode_item; 3577 struct btrfs_root *root = BTRFS_I(inode)->root; 3578 struct btrfs_key location; 3579 unsigned long ptr; 3580 int maybe_acls; 3581 u32 rdev; 3582 int ret; 3583 bool filled = false; 3584 int first_xattr_slot; 3585 3586 ret = btrfs_fill_inode(inode, &rdev); 3587 if (!ret) 3588 filled = true; 3589 3590 path = btrfs_alloc_path(); 3591 if (!path) 3592 goto make_bad; 3593 3594 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3595 3596 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3597 if (ret) 3598 goto make_bad; 3599 3600 leaf = path->nodes[0]; 3601 3602 if (filled) 3603 goto cache_index; 3604 3605 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3606 struct btrfs_inode_item); 3607 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3608 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3609 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3610 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3611 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3612 3613 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3614 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3615 3616 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3617 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3618 3619 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3620 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3621 3622 BTRFS_I(inode)->i_otime.tv_sec = 3623 btrfs_timespec_sec(leaf, &inode_item->otime); 3624 BTRFS_I(inode)->i_otime.tv_nsec = 3625 btrfs_timespec_nsec(leaf, &inode_item->otime); 3626 3627 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3628 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3629 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3630 3631 /* 3632 * If we were modified in the current generation and evicted from memory 3633 * and then re-read we need to do a full sync since we don't have any 3634 * idea about which extents were modified before we were evicted from 3635 * cache. 3636 */ 3637 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3638 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3639 &BTRFS_I(inode)->runtime_flags); 3640 3641 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3642 inode->i_generation = BTRFS_I(inode)->generation; 3643 inode->i_rdev = 0; 3644 rdev = btrfs_inode_rdev(leaf, inode_item); 3645 3646 BTRFS_I(inode)->index_cnt = (u64)-1; 3647 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3648 3649 cache_index: 3650 path->slots[0]++; 3651 if (inode->i_nlink != 1 || 3652 path->slots[0] >= btrfs_header_nritems(leaf)) 3653 goto cache_acl; 3654 3655 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3656 if (location.objectid != btrfs_ino(inode)) 3657 goto cache_acl; 3658 3659 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3660 if (location.type == BTRFS_INODE_REF_KEY) { 3661 struct btrfs_inode_ref *ref; 3662 3663 ref = (struct btrfs_inode_ref *)ptr; 3664 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3665 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3666 struct btrfs_inode_extref *extref; 3667 3668 extref = (struct btrfs_inode_extref *)ptr; 3669 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3670 extref); 3671 } 3672 cache_acl: 3673 /* 3674 * try to precache a NULL acl entry for files that don't have 3675 * any xattrs or acls 3676 */ 3677 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3678 btrfs_ino(inode), &first_xattr_slot); 3679 if (first_xattr_slot != -1) { 3680 path->slots[0] = first_xattr_slot; 3681 ret = btrfs_load_inode_props(inode, path); 3682 if (ret) 3683 btrfs_err(root->fs_info, 3684 "error loading props for ino %llu (root %llu): %d", 3685 btrfs_ino(inode), 3686 root->root_key.objectid, ret); 3687 } 3688 btrfs_free_path(path); 3689 3690 if (!maybe_acls) 3691 cache_no_acl(inode); 3692 3693 switch (inode->i_mode & S_IFMT) { 3694 case S_IFREG: 3695 inode->i_mapping->a_ops = &btrfs_aops; 3696 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3697 inode->i_fop = &btrfs_file_operations; 3698 inode->i_op = &btrfs_file_inode_operations; 3699 break; 3700 case S_IFDIR: 3701 inode->i_fop = &btrfs_dir_file_operations; 3702 if (root == root->fs_info->tree_root) 3703 inode->i_op = &btrfs_dir_ro_inode_operations; 3704 else 3705 inode->i_op = &btrfs_dir_inode_operations; 3706 break; 3707 case S_IFLNK: 3708 inode->i_op = &btrfs_symlink_inode_operations; 3709 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3710 break; 3711 default: 3712 inode->i_op = &btrfs_special_inode_operations; 3713 init_special_inode(inode, inode->i_mode, rdev); 3714 break; 3715 } 3716 3717 btrfs_update_iflags(inode); 3718 return; 3719 3720 make_bad: 3721 btrfs_free_path(path); 3722 make_bad_inode(inode); 3723 } 3724 3725 /* 3726 * given a leaf and an inode, copy the inode fields into the leaf 3727 */ 3728 static void fill_inode_item(struct btrfs_trans_handle *trans, 3729 struct extent_buffer *leaf, 3730 struct btrfs_inode_item *item, 3731 struct inode *inode) 3732 { 3733 struct btrfs_map_token token; 3734 3735 btrfs_init_map_token(&token); 3736 3737 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3738 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3739 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3740 &token); 3741 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3742 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3743 3744 btrfs_set_token_timespec_sec(leaf, &item->atime, 3745 inode->i_atime.tv_sec, &token); 3746 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3747 inode->i_atime.tv_nsec, &token); 3748 3749 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3750 inode->i_mtime.tv_sec, &token); 3751 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3752 inode->i_mtime.tv_nsec, &token); 3753 3754 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3755 inode->i_ctime.tv_sec, &token); 3756 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3757 inode->i_ctime.tv_nsec, &token); 3758 3759 btrfs_set_token_timespec_sec(leaf, &item->otime, 3760 BTRFS_I(inode)->i_otime.tv_sec, &token); 3761 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3762 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3763 3764 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3765 &token); 3766 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3767 &token); 3768 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3769 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3770 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3771 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3772 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3773 } 3774 3775 /* 3776 * copy everything in the in-memory inode into the btree. 3777 */ 3778 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3779 struct btrfs_root *root, struct inode *inode) 3780 { 3781 struct btrfs_inode_item *inode_item; 3782 struct btrfs_path *path; 3783 struct extent_buffer *leaf; 3784 int ret; 3785 3786 path = btrfs_alloc_path(); 3787 if (!path) 3788 return -ENOMEM; 3789 3790 path->leave_spinning = 1; 3791 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3792 1); 3793 if (ret) { 3794 if (ret > 0) 3795 ret = -ENOENT; 3796 goto failed; 3797 } 3798 3799 leaf = path->nodes[0]; 3800 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3801 struct btrfs_inode_item); 3802 3803 fill_inode_item(trans, leaf, inode_item, inode); 3804 btrfs_mark_buffer_dirty(leaf); 3805 btrfs_set_inode_last_trans(trans, inode); 3806 ret = 0; 3807 failed: 3808 btrfs_free_path(path); 3809 return ret; 3810 } 3811 3812 /* 3813 * copy everything in the in-memory inode into the btree. 3814 */ 3815 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3816 struct btrfs_root *root, struct inode *inode) 3817 { 3818 int ret; 3819 3820 /* 3821 * If the inode is a free space inode, we can deadlock during commit 3822 * if we put it into the delayed code. 3823 * 3824 * The data relocation inode should also be directly updated 3825 * without delay 3826 */ 3827 if (!btrfs_is_free_space_inode(inode) 3828 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3829 && !root->fs_info->log_root_recovering) { 3830 btrfs_update_root_times(trans, root); 3831 3832 ret = btrfs_delayed_update_inode(trans, root, inode); 3833 if (!ret) 3834 btrfs_set_inode_last_trans(trans, inode); 3835 return ret; 3836 } 3837 3838 return btrfs_update_inode_item(trans, root, inode); 3839 } 3840 3841 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3842 struct btrfs_root *root, 3843 struct inode *inode) 3844 { 3845 int ret; 3846 3847 ret = btrfs_update_inode(trans, root, inode); 3848 if (ret == -ENOSPC) 3849 return btrfs_update_inode_item(trans, root, inode); 3850 return ret; 3851 } 3852 3853 /* 3854 * unlink helper that gets used here in inode.c and in the tree logging 3855 * recovery code. It remove a link in a directory with a given name, and 3856 * also drops the back refs in the inode to the directory 3857 */ 3858 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3859 struct btrfs_root *root, 3860 struct inode *dir, struct inode *inode, 3861 const char *name, int name_len) 3862 { 3863 struct btrfs_path *path; 3864 int ret = 0; 3865 struct extent_buffer *leaf; 3866 struct btrfs_dir_item *di; 3867 struct btrfs_key key; 3868 u64 index; 3869 u64 ino = btrfs_ino(inode); 3870 u64 dir_ino = btrfs_ino(dir); 3871 3872 path = btrfs_alloc_path(); 3873 if (!path) { 3874 ret = -ENOMEM; 3875 goto out; 3876 } 3877 3878 path->leave_spinning = 1; 3879 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3880 name, name_len, -1); 3881 if (IS_ERR(di)) { 3882 ret = PTR_ERR(di); 3883 goto err; 3884 } 3885 if (!di) { 3886 ret = -ENOENT; 3887 goto err; 3888 } 3889 leaf = path->nodes[0]; 3890 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3891 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3892 if (ret) 3893 goto err; 3894 btrfs_release_path(path); 3895 3896 /* 3897 * If we don't have dir index, we have to get it by looking up 3898 * the inode ref, since we get the inode ref, remove it directly, 3899 * it is unnecessary to do delayed deletion. 3900 * 3901 * But if we have dir index, needn't search inode ref to get it. 3902 * Since the inode ref is close to the inode item, it is better 3903 * that we delay to delete it, and just do this deletion when 3904 * we update the inode item. 3905 */ 3906 if (BTRFS_I(inode)->dir_index) { 3907 ret = btrfs_delayed_delete_inode_ref(inode); 3908 if (!ret) { 3909 index = BTRFS_I(inode)->dir_index; 3910 goto skip_backref; 3911 } 3912 } 3913 3914 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3915 dir_ino, &index); 3916 if (ret) { 3917 btrfs_info(root->fs_info, 3918 "failed to delete reference to %.*s, inode %llu parent %llu", 3919 name_len, name, ino, dir_ino); 3920 btrfs_abort_transaction(trans, root, ret); 3921 goto err; 3922 } 3923 skip_backref: 3924 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3925 if (ret) { 3926 btrfs_abort_transaction(trans, root, ret); 3927 goto err; 3928 } 3929 3930 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3931 inode, dir_ino); 3932 if (ret != 0 && ret != -ENOENT) { 3933 btrfs_abort_transaction(trans, root, ret); 3934 goto err; 3935 } 3936 3937 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3938 dir, index); 3939 if (ret == -ENOENT) 3940 ret = 0; 3941 else if (ret) 3942 btrfs_abort_transaction(trans, root, ret); 3943 err: 3944 btrfs_free_path(path); 3945 if (ret) 3946 goto out; 3947 3948 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3949 inode_inc_iversion(inode); 3950 inode_inc_iversion(dir); 3951 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3952 ret = btrfs_update_inode(trans, root, dir); 3953 out: 3954 return ret; 3955 } 3956 3957 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3958 struct btrfs_root *root, 3959 struct inode *dir, struct inode *inode, 3960 const char *name, int name_len) 3961 { 3962 int ret; 3963 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3964 if (!ret) { 3965 drop_nlink(inode); 3966 ret = btrfs_update_inode(trans, root, inode); 3967 } 3968 return ret; 3969 } 3970 3971 /* 3972 * helper to start transaction for unlink and rmdir. 3973 * 3974 * unlink and rmdir are special in btrfs, they do not always free space, so 3975 * if we cannot make our reservations the normal way try and see if there is 3976 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3977 * allow the unlink to occur. 3978 */ 3979 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3980 { 3981 struct btrfs_trans_handle *trans; 3982 struct btrfs_root *root = BTRFS_I(dir)->root; 3983 int ret; 3984 3985 /* 3986 * 1 for the possible orphan item 3987 * 1 for the dir item 3988 * 1 for the dir index 3989 * 1 for the inode ref 3990 * 1 for the inode 3991 */ 3992 trans = btrfs_start_transaction(root, 5); 3993 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3994 return trans; 3995 3996 if (PTR_ERR(trans) == -ENOSPC) { 3997 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 3998 3999 trans = btrfs_start_transaction(root, 0); 4000 if (IS_ERR(trans)) 4001 return trans; 4002 ret = btrfs_cond_migrate_bytes(root->fs_info, 4003 &root->fs_info->trans_block_rsv, 4004 num_bytes, 5); 4005 if (ret) { 4006 btrfs_end_transaction(trans, root); 4007 return ERR_PTR(ret); 4008 } 4009 trans->block_rsv = &root->fs_info->trans_block_rsv; 4010 trans->bytes_reserved = num_bytes; 4011 } 4012 return trans; 4013 } 4014 4015 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4016 { 4017 struct btrfs_root *root = BTRFS_I(dir)->root; 4018 struct btrfs_trans_handle *trans; 4019 struct inode *inode = dentry->d_inode; 4020 int ret; 4021 4022 trans = __unlink_start_trans(dir); 4023 if (IS_ERR(trans)) 4024 return PTR_ERR(trans); 4025 4026 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 4027 4028 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 4029 dentry->d_name.name, dentry->d_name.len); 4030 if (ret) 4031 goto out; 4032 4033 if (inode->i_nlink == 0) { 4034 ret = btrfs_orphan_add(trans, inode); 4035 if (ret) 4036 goto out; 4037 } 4038 4039 out: 4040 btrfs_end_transaction(trans, root); 4041 btrfs_btree_balance_dirty(root); 4042 return ret; 4043 } 4044 4045 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4046 struct btrfs_root *root, 4047 struct inode *dir, u64 objectid, 4048 const char *name, int name_len) 4049 { 4050 struct btrfs_path *path; 4051 struct extent_buffer *leaf; 4052 struct btrfs_dir_item *di; 4053 struct btrfs_key key; 4054 u64 index; 4055 int ret; 4056 u64 dir_ino = btrfs_ino(dir); 4057 4058 path = btrfs_alloc_path(); 4059 if (!path) 4060 return -ENOMEM; 4061 4062 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4063 name, name_len, -1); 4064 if (IS_ERR_OR_NULL(di)) { 4065 if (!di) 4066 ret = -ENOENT; 4067 else 4068 ret = PTR_ERR(di); 4069 goto out; 4070 } 4071 4072 leaf = path->nodes[0]; 4073 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4074 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4075 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4076 if (ret) { 4077 btrfs_abort_transaction(trans, root, ret); 4078 goto out; 4079 } 4080 btrfs_release_path(path); 4081 4082 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4083 objectid, root->root_key.objectid, 4084 dir_ino, &index, name, name_len); 4085 if (ret < 0) { 4086 if (ret != -ENOENT) { 4087 btrfs_abort_transaction(trans, root, ret); 4088 goto out; 4089 } 4090 di = btrfs_search_dir_index_item(root, path, dir_ino, 4091 name, name_len); 4092 if (IS_ERR_OR_NULL(di)) { 4093 if (!di) 4094 ret = -ENOENT; 4095 else 4096 ret = PTR_ERR(di); 4097 btrfs_abort_transaction(trans, root, ret); 4098 goto out; 4099 } 4100 4101 leaf = path->nodes[0]; 4102 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4103 btrfs_release_path(path); 4104 index = key.offset; 4105 } 4106 btrfs_release_path(path); 4107 4108 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4109 if (ret) { 4110 btrfs_abort_transaction(trans, root, ret); 4111 goto out; 4112 } 4113 4114 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4115 inode_inc_iversion(dir); 4116 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 4117 ret = btrfs_update_inode_fallback(trans, root, dir); 4118 if (ret) 4119 btrfs_abort_transaction(trans, root, ret); 4120 out: 4121 btrfs_free_path(path); 4122 return ret; 4123 } 4124 4125 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4126 { 4127 struct inode *inode = dentry->d_inode; 4128 int err = 0; 4129 struct btrfs_root *root = BTRFS_I(dir)->root; 4130 struct btrfs_trans_handle *trans; 4131 4132 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4133 return -ENOTEMPTY; 4134 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4135 return -EPERM; 4136 4137 trans = __unlink_start_trans(dir); 4138 if (IS_ERR(trans)) 4139 return PTR_ERR(trans); 4140 4141 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4142 err = btrfs_unlink_subvol(trans, root, dir, 4143 BTRFS_I(inode)->location.objectid, 4144 dentry->d_name.name, 4145 dentry->d_name.len); 4146 goto out; 4147 } 4148 4149 err = btrfs_orphan_add(trans, inode); 4150 if (err) 4151 goto out; 4152 4153 /* now the directory is empty */ 4154 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 4155 dentry->d_name.name, dentry->d_name.len); 4156 if (!err) 4157 btrfs_i_size_write(inode, 0); 4158 out: 4159 btrfs_end_transaction(trans, root); 4160 btrfs_btree_balance_dirty(root); 4161 4162 return err; 4163 } 4164 4165 /* 4166 * this can truncate away extent items, csum items and directory items. 4167 * It starts at a high offset and removes keys until it can't find 4168 * any higher than new_size 4169 * 4170 * csum items that cross the new i_size are truncated to the new size 4171 * as well. 4172 * 4173 * min_type is the minimum key type to truncate down to. If set to 0, this 4174 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4175 */ 4176 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4177 struct btrfs_root *root, 4178 struct inode *inode, 4179 u64 new_size, u32 min_type) 4180 { 4181 struct btrfs_path *path; 4182 struct extent_buffer *leaf; 4183 struct btrfs_file_extent_item *fi; 4184 struct btrfs_key key; 4185 struct btrfs_key found_key; 4186 u64 extent_start = 0; 4187 u64 extent_num_bytes = 0; 4188 u64 extent_offset = 0; 4189 u64 item_end = 0; 4190 u64 last_size = (u64)-1; 4191 u32 found_type = (u8)-1; 4192 int found_extent; 4193 int del_item; 4194 int pending_del_nr = 0; 4195 int pending_del_slot = 0; 4196 int extent_type = -1; 4197 int ret; 4198 int err = 0; 4199 u64 ino = btrfs_ino(inode); 4200 4201 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4202 4203 path = btrfs_alloc_path(); 4204 if (!path) 4205 return -ENOMEM; 4206 path->reada = -1; 4207 4208 /* 4209 * We want to drop from the next block forward in case this new size is 4210 * not block aligned since we will be keeping the last block of the 4211 * extent just the way it is. 4212 */ 4213 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4214 root == root->fs_info->tree_root) 4215 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4216 root->sectorsize), (u64)-1, 0); 4217 4218 /* 4219 * This function is also used to drop the items in the log tree before 4220 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4221 * it is used to drop the loged items. So we shouldn't kill the delayed 4222 * items. 4223 */ 4224 if (min_type == 0 && root == BTRFS_I(inode)->root) 4225 btrfs_kill_delayed_inode_items(inode); 4226 4227 key.objectid = ino; 4228 key.offset = (u64)-1; 4229 key.type = (u8)-1; 4230 4231 search_again: 4232 path->leave_spinning = 1; 4233 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4234 if (ret < 0) { 4235 err = ret; 4236 goto out; 4237 } 4238 4239 if (ret > 0) { 4240 /* there are no items in the tree for us to truncate, we're 4241 * done 4242 */ 4243 if (path->slots[0] == 0) 4244 goto out; 4245 path->slots[0]--; 4246 } 4247 4248 while (1) { 4249 fi = NULL; 4250 leaf = path->nodes[0]; 4251 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4252 found_type = found_key.type; 4253 4254 if (found_key.objectid != ino) 4255 break; 4256 4257 if (found_type < min_type) 4258 break; 4259 4260 item_end = found_key.offset; 4261 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4262 fi = btrfs_item_ptr(leaf, path->slots[0], 4263 struct btrfs_file_extent_item); 4264 extent_type = btrfs_file_extent_type(leaf, fi); 4265 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4266 item_end += 4267 btrfs_file_extent_num_bytes(leaf, fi); 4268 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4269 item_end += btrfs_file_extent_inline_len(leaf, 4270 path->slots[0], fi); 4271 } 4272 item_end--; 4273 } 4274 if (found_type > min_type) { 4275 del_item = 1; 4276 } else { 4277 if (item_end < new_size) 4278 break; 4279 if (found_key.offset >= new_size) 4280 del_item = 1; 4281 else 4282 del_item = 0; 4283 } 4284 found_extent = 0; 4285 /* FIXME, shrink the extent if the ref count is only 1 */ 4286 if (found_type != BTRFS_EXTENT_DATA_KEY) 4287 goto delete; 4288 4289 if (del_item) 4290 last_size = found_key.offset; 4291 else 4292 last_size = new_size; 4293 4294 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4295 u64 num_dec; 4296 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4297 if (!del_item) { 4298 u64 orig_num_bytes = 4299 btrfs_file_extent_num_bytes(leaf, fi); 4300 extent_num_bytes = ALIGN(new_size - 4301 found_key.offset, 4302 root->sectorsize); 4303 btrfs_set_file_extent_num_bytes(leaf, fi, 4304 extent_num_bytes); 4305 num_dec = (orig_num_bytes - 4306 extent_num_bytes); 4307 if (test_bit(BTRFS_ROOT_REF_COWS, 4308 &root->state) && 4309 extent_start != 0) 4310 inode_sub_bytes(inode, num_dec); 4311 btrfs_mark_buffer_dirty(leaf); 4312 } else { 4313 extent_num_bytes = 4314 btrfs_file_extent_disk_num_bytes(leaf, 4315 fi); 4316 extent_offset = found_key.offset - 4317 btrfs_file_extent_offset(leaf, fi); 4318 4319 /* FIXME blocksize != 4096 */ 4320 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4321 if (extent_start != 0) { 4322 found_extent = 1; 4323 if (test_bit(BTRFS_ROOT_REF_COWS, 4324 &root->state)) 4325 inode_sub_bytes(inode, num_dec); 4326 } 4327 } 4328 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4329 /* 4330 * we can't truncate inline items that have had 4331 * special encodings 4332 */ 4333 if (!del_item && 4334 btrfs_file_extent_compression(leaf, fi) == 0 && 4335 btrfs_file_extent_encryption(leaf, fi) == 0 && 4336 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4337 u32 size = new_size - found_key.offset; 4338 4339 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4340 inode_sub_bytes(inode, item_end + 1 - 4341 new_size); 4342 4343 /* 4344 * update the ram bytes to properly reflect 4345 * the new size of our item 4346 */ 4347 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4348 size = 4349 btrfs_file_extent_calc_inline_size(size); 4350 btrfs_truncate_item(root, path, size, 1); 4351 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4352 &root->state)) { 4353 inode_sub_bytes(inode, item_end + 1 - 4354 found_key.offset); 4355 } 4356 } 4357 delete: 4358 if (del_item) { 4359 if (!pending_del_nr) { 4360 /* no pending yet, add ourselves */ 4361 pending_del_slot = path->slots[0]; 4362 pending_del_nr = 1; 4363 } else if (pending_del_nr && 4364 path->slots[0] + 1 == pending_del_slot) { 4365 /* hop on the pending chunk */ 4366 pending_del_nr++; 4367 pending_del_slot = path->slots[0]; 4368 } else { 4369 BUG(); 4370 } 4371 } else { 4372 break; 4373 } 4374 if (found_extent && 4375 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4376 root == root->fs_info->tree_root)) { 4377 btrfs_set_path_blocking(path); 4378 ret = btrfs_free_extent(trans, root, extent_start, 4379 extent_num_bytes, 0, 4380 btrfs_header_owner(leaf), 4381 ino, extent_offset, 0); 4382 BUG_ON(ret); 4383 } 4384 4385 if (found_type == BTRFS_INODE_ITEM_KEY) 4386 break; 4387 4388 if (path->slots[0] == 0 || 4389 path->slots[0] != pending_del_slot) { 4390 if (pending_del_nr) { 4391 ret = btrfs_del_items(trans, root, path, 4392 pending_del_slot, 4393 pending_del_nr); 4394 if (ret) { 4395 btrfs_abort_transaction(trans, 4396 root, ret); 4397 goto error; 4398 } 4399 pending_del_nr = 0; 4400 } 4401 btrfs_release_path(path); 4402 goto search_again; 4403 } else { 4404 path->slots[0]--; 4405 } 4406 } 4407 out: 4408 if (pending_del_nr) { 4409 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4410 pending_del_nr); 4411 if (ret) 4412 btrfs_abort_transaction(trans, root, ret); 4413 } 4414 error: 4415 if (last_size != (u64)-1 && 4416 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4417 btrfs_ordered_update_i_size(inode, last_size, NULL); 4418 btrfs_free_path(path); 4419 return err; 4420 } 4421 4422 /* 4423 * btrfs_truncate_page - read, zero a chunk and write a page 4424 * @inode - inode that we're zeroing 4425 * @from - the offset to start zeroing 4426 * @len - the length to zero, 0 to zero the entire range respective to the 4427 * offset 4428 * @front - zero up to the offset instead of from the offset on 4429 * 4430 * This will find the page for the "from" offset and cow the page and zero the 4431 * part we want to zero. This is used with truncate and hole punching. 4432 */ 4433 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4434 int front) 4435 { 4436 struct address_space *mapping = inode->i_mapping; 4437 struct btrfs_root *root = BTRFS_I(inode)->root; 4438 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4439 struct btrfs_ordered_extent *ordered; 4440 struct extent_state *cached_state = NULL; 4441 char *kaddr; 4442 u32 blocksize = root->sectorsize; 4443 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4444 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4445 struct page *page; 4446 gfp_t mask = btrfs_alloc_write_mask(mapping); 4447 int ret = 0; 4448 u64 page_start; 4449 u64 page_end; 4450 4451 if ((offset & (blocksize - 1)) == 0 && 4452 (!len || ((len & (blocksize - 1)) == 0))) 4453 goto out; 4454 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4455 if (ret) 4456 goto out; 4457 4458 again: 4459 page = find_or_create_page(mapping, index, mask); 4460 if (!page) { 4461 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4462 ret = -ENOMEM; 4463 goto out; 4464 } 4465 4466 page_start = page_offset(page); 4467 page_end = page_start + PAGE_CACHE_SIZE - 1; 4468 4469 if (!PageUptodate(page)) { 4470 ret = btrfs_readpage(NULL, page); 4471 lock_page(page); 4472 if (page->mapping != mapping) { 4473 unlock_page(page); 4474 page_cache_release(page); 4475 goto again; 4476 } 4477 if (!PageUptodate(page)) { 4478 ret = -EIO; 4479 goto out_unlock; 4480 } 4481 } 4482 wait_on_page_writeback(page); 4483 4484 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4485 set_page_extent_mapped(page); 4486 4487 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4488 if (ordered) { 4489 unlock_extent_cached(io_tree, page_start, page_end, 4490 &cached_state, GFP_NOFS); 4491 unlock_page(page); 4492 page_cache_release(page); 4493 btrfs_start_ordered_extent(inode, ordered, 1); 4494 btrfs_put_ordered_extent(ordered); 4495 goto again; 4496 } 4497 4498 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4499 EXTENT_DIRTY | EXTENT_DELALLOC | 4500 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4501 0, 0, &cached_state, GFP_NOFS); 4502 4503 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4504 &cached_state); 4505 if (ret) { 4506 unlock_extent_cached(io_tree, page_start, page_end, 4507 &cached_state, GFP_NOFS); 4508 goto out_unlock; 4509 } 4510 4511 if (offset != PAGE_CACHE_SIZE) { 4512 if (!len) 4513 len = PAGE_CACHE_SIZE - offset; 4514 kaddr = kmap(page); 4515 if (front) 4516 memset(kaddr, 0, offset); 4517 else 4518 memset(kaddr + offset, 0, len); 4519 flush_dcache_page(page); 4520 kunmap(page); 4521 } 4522 ClearPageChecked(page); 4523 set_page_dirty(page); 4524 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4525 GFP_NOFS); 4526 4527 out_unlock: 4528 if (ret) 4529 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4530 unlock_page(page); 4531 page_cache_release(page); 4532 out: 4533 return ret; 4534 } 4535 4536 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4537 u64 offset, u64 len) 4538 { 4539 struct btrfs_trans_handle *trans; 4540 int ret; 4541 4542 /* 4543 * Still need to make sure the inode looks like it's been updated so 4544 * that any holes get logged if we fsync. 4545 */ 4546 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4547 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4548 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4549 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4550 return 0; 4551 } 4552 4553 /* 4554 * 1 - for the one we're dropping 4555 * 1 - for the one we're adding 4556 * 1 - for updating the inode. 4557 */ 4558 trans = btrfs_start_transaction(root, 3); 4559 if (IS_ERR(trans)) 4560 return PTR_ERR(trans); 4561 4562 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4563 if (ret) { 4564 btrfs_abort_transaction(trans, root, ret); 4565 btrfs_end_transaction(trans, root); 4566 return ret; 4567 } 4568 4569 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4570 0, 0, len, 0, len, 0, 0, 0); 4571 if (ret) 4572 btrfs_abort_transaction(trans, root, ret); 4573 else 4574 btrfs_update_inode(trans, root, inode); 4575 btrfs_end_transaction(trans, root); 4576 return ret; 4577 } 4578 4579 /* 4580 * This function puts in dummy file extents for the area we're creating a hole 4581 * for. So if we are truncating this file to a larger size we need to insert 4582 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4583 * the range between oldsize and size 4584 */ 4585 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4586 { 4587 struct btrfs_root *root = BTRFS_I(inode)->root; 4588 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4589 struct extent_map *em = NULL; 4590 struct extent_state *cached_state = NULL; 4591 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4592 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4593 u64 block_end = ALIGN(size, root->sectorsize); 4594 u64 last_byte; 4595 u64 cur_offset; 4596 u64 hole_size; 4597 int err = 0; 4598 4599 /* 4600 * If our size started in the middle of a page we need to zero out the 4601 * rest of the page before we expand the i_size, otherwise we could 4602 * expose stale data. 4603 */ 4604 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4605 if (err) 4606 return err; 4607 4608 if (size <= hole_start) 4609 return 0; 4610 4611 while (1) { 4612 struct btrfs_ordered_extent *ordered; 4613 4614 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4615 &cached_state); 4616 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4617 block_end - hole_start); 4618 if (!ordered) 4619 break; 4620 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4621 &cached_state, GFP_NOFS); 4622 btrfs_start_ordered_extent(inode, ordered, 1); 4623 btrfs_put_ordered_extent(ordered); 4624 } 4625 4626 cur_offset = hole_start; 4627 while (1) { 4628 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4629 block_end - cur_offset, 0); 4630 if (IS_ERR(em)) { 4631 err = PTR_ERR(em); 4632 em = NULL; 4633 break; 4634 } 4635 last_byte = min(extent_map_end(em), block_end); 4636 last_byte = ALIGN(last_byte , root->sectorsize); 4637 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4638 struct extent_map *hole_em; 4639 hole_size = last_byte - cur_offset; 4640 4641 err = maybe_insert_hole(root, inode, cur_offset, 4642 hole_size); 4643 if (err) 4644 break; 4645 btrfs_drop_extent_cache(inode, cur_offset, 4646 cur_offset + hole_size - 1, 0); 4647 hole_em = alloc_extent_map(); 4648 if (!hole_em) { 4649 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4650 &BTRFS_I(inode)->runtime_flags); 4651 goto next; 4652 } 4653 hole_em->start = cur_offset; 4654 hole_em->len = hole_size; 4655 hole_em->orig_start = cur_offset; 4656 4657 hole_em->block_start = EXTENT_MAP_HOLE; 4658 hole_em->block_len = 0; 4659 hole_em->orig_block_len = 0; 4660 hole_em->ram_bytes = hole_size; 4661 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4662 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4663 hole_em->generation = root->fs_info->generation; 4664 4665 while (1) { 4666 write_lock(&em_tree->lock); 4667 err = add_extent_mapping(em_tree, hole_em, 1); 4668 write_unlock(&em_tree->lock); 4669 if (err != -EEXIST) 4670 break; 4671 btrfs_drop_extent_cache(inode, cur_offset, 4672 cur_offset + 4673 hole_size - 1, 0); 4674 } 4675 free_extent_map(hole_em); 4676 } 4677 next: 4678 free_extent_map(em); 4679 em = NULL; 4680 cur_offset = last_byte; 4681 if (cur_offset >= block_end) 4682 break; 4683 } 4684 free_extent_map(em); 4685 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4686 GFP_NOFS); 4687 return err; 4688 } 4689 4690 static int wait_snapshoting_atomic_t(atomic_t *a) 4691 { 4692 schedule(); 4693 return 0; 4694 } 4695 4696 static void wait_for_snapshot_creation(struct btrfs_root *root) 4697 { 4698 while (true) { 4699 int ret; 4700 4701 ret = btrfs_start_write_no_snapshoting(root); 4702 if (ret) 4703 break; 4704 wait_on_atomic_t(&root->will_be_snapshoted, 4705 wait_snapshoting_atomic_t, 4706 TASK_UNINTERRUPTIBLE); 4707 } 4708 } 4709 4710 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4711 { 4712 struct btrfs_root *root = BTRFS_I(inode)->root; 4713 struct btrfs_trans_handle *trans; 4714 loff_t oldsize = i_size_read(inode); 4715 loff_t newsize = attr->ia_size; 4716 int mask = attr->ia_valid; 4717 int ret; 4718 4719 /* 4720 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4721 * special case where we need to update the times despite not having 4722 * these flags set. For all other operations the VFS set these flags 4723 * explicitly if it wants a timestamp update. 4724 */ 4725 if (newsize != oldsize) { 4726 inode_inc_iversion(inode); 4727 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4728 inode->i_ctime = inode->i_mtime = 4729 current_fs_time(inode->i_sb); 4730 } 4731 4732 if (newsize > oldsize) { 4733 truncate_pagecache(inode, newsize); 4734 /* 4735 * Don't do an expanding truncate while snapshoting is ongoing. 4736 * This is to ensure the snapshot captures a fully consistent 4737 * state of this file - if the snapshot captures this expanding 4738 * truncation, it must capture all writes that happened before 4739 * this truncation. 4740 */ 4741 wait_for_snapshot_creation(root); 4742 ret = btrfs_cont_expand(inode, oldsize, newsize); 4743 if (ret) { 4744 btrfs_end_write_no_snapshoting(root); 4745 return ret; 4746 } 4747 4748 trans = btrfs_start_transaction(root, 1); 4749 if (IS_ERR(trans)) { 4750 btrfs_end_write_no_snapshoting(root); 4751 return PTR_ERR(trans); 4752 } 4753 4754 i_size_write(inode, newsize); 4755 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4756 ret = btrfs_update_inode(trans, root, inode); 4757 btrfs_end_write_no_snapshoting(root); 4758 btrfs_end_transaction(trans, root); 4759 } else { 4760 4761 /* 4762 * We're truncating a file that used to have good data down to 4763 * zero. Make sure it gets into the ordered flush list so that 4764 * any new writes get down to disk quickly. 4765 */ 4766 if (newsize == 0) 4767 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4768 &BTRFS_I(inode)->runtime_flags); 4769 4770 /* 4771 * 1 for the orphan item we're going to add 4772 * 1 for the orphan item deletion. 4773 */ 4774 trans = btrfs_start_transaction(root, 2); 4775 if (IS_ERR(trans)) 4776 return PTR_ERR(trans); 4777 4778 /* 4779 * We need to do this in case we fail at _any_ point during the 4780 * actual truncate. Once we do the truncate_setsize we could 4781 * invalidate pages which forces any outstanding ordered io to 4782 * be instantly completed which will give us extents that need 4783 * to be truncated. If we fail to get an orphan inode down we 4784 * could have left over extents that were never meant to live, 4785 * so we need to garuntee from this point on that everything 4786 * will be consistent. 4787 */ 4788 ret = btrfs_orphan_add(trans, inode); 4789 btrfs_end_transaction(trans, root); 4790 if (ret) 4791 return ret; 4792 4793 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4794 truncate_setsize(inode, newsize); 4795 4796 /* Disable nonlocked read DIO to avoid the end less truncate */ 4797 btrfs_inode_block_unlocked_dio(inode); 4798 inode_dio_wait(inode); 4799 btrfs_inode_resume_unlocked_dio(inode); 4800 4801 ret = btrfs_truncate(inode); 4802 if (ret && inode->i_nlink) { 4803 int err; 4804 4805 /* 4806 * failed to truncate, disk_i_size is only adjusted down 4807 * as we remove extents, so it should represent the true 4808 * size of the inode, so reset the in memory size and 4809 * delete our orphan entry. 4810 */ 4811 trans = btrfs_join_transaction(root); 4812 if (IS_ERR(trans)) { 4813 btrfs_orphan_del(NULL, inode); 4814 return ret; 4815 } 4816 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4817 err = btrfs_orphan_del(trans, inode); 4818 if (err) 4819 btrfs_abort_transaction(trans, root, err); 4820 btrfs_end_transaction(trans, root); 4821 } 4822 } 4823 4824 return ret; 4825 } 4826 4827 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4828 { 4829 struct inode *inode = dentry->d_inode; 4830 struct btrfs_root *root = BTRFS_I(inode)->root; 4831 int err; 4832 4833 if (btrfs_root_readonly(root)) 4834 return -EROFS; 4835 4836 err = inode_change_ok(inode, attr); 4837 if (err) 4838 return err; 4839 4840 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4841 err = btrfs_setsize(inode, attr); 4842 if (err) 4843 return err; 4844 } 4845 4846 if (attr->ia_valid) { 4847 setattr_copy(inode, attr); 4848 inode_inc_iversion(inode); 4849 err = btrfs_dirty_inode(inode); 4850 4851 if (!err && attr->ia_valid & ATTR_MODE) 4852 err = posix_acl_chmod(inode, inode->i_mode); 4853 } 4854 4855 return err; 4856 } 4857 4858 /* 4859 * While truncating the inode pages during eviction, we get the VFS calling 4860 * btrfs_invalidatepage() against each page of the inode. This is slow because 4861 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4862 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4863 * extent_state structures over and over, wasting lots of time. 4864 * 4865 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4866 * those expensive operations on a per page basis and do only the ordered io 4867 * finishing, while we release here the extent_map and extent_state structures, 4868 * without the excessive merging and splitting. 4869 */ 4870 static void evict_inode_truncate_pages(struct inode *inode) 4871 { 4872 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4873 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4874 struct rb_node *node; 4875 4876 ASSERT(inode->i_state & I_FREEING); 4877 truncate_inode_pages_final(&inode->i_data); 4878 4879 write_lock(&map_tree->lock); 4880 while (!RB_EMPTY_ROOT(&map_tree->map)) { 4881 struct extent_map *em; 4882 4883 node = rb_first(&map_tree->map); 4884 em = rb_entry(node, struct extent_map, rb_node); 4885 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4886 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4887 remove_extent_mapping(map_tree, em); 4888 free_extent_map(em); 4889 if (need_resched()) { 4890 write_unlock(&map_tree->lock); 4891 cond_resched(); 4892 write_lock(&map_tree->lock); 4893 } 4894 } 4895 write_unlock(&map_tree->lock); 4896 4897 spin_lock(&io_tree->lock); 4898 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4899 struct extent_state *state; 4900 struct extent_state *cached_state = NULL; 4901 4902 node = rb_first(&io_tree->state); 4903 state = rb_entry(node, struct extent_state, rb_node); 4904 atomic_inc(&state->refs); 4905 spin_unlock(&io_tree->lock); 4906 4907 lock_extent_bits(io_tree, state->start, state->end, 4908 0, &cached_state); 4909 clear_extent_bit(io_tree, state->start, state->end, 4910 EXTENT_LOCKED | EXTENT_DIRTY | 4911 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 4912 EXTENT_DEFRAG, 1, 1, 4913 &cached_state, GFP_NOFS); 4914 free_extent_state(state); 4915 4916 cond_resched(); 4917 spin_lock(&io_tree->lock); 4918 } 4919 spin_unlock(&io_tree->lock); 4920 } 4921 4922 void btrfs_evict_inode(struct inode *inode) 4923 { 4924 struct btrfs_trans_handle *trans; 4925 struct btrfs_root *root = BTRFS_I(inode)->root; 4926 struct btrfs_block_rsv *rsv, *global_rsv; 4927 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 4928 int ret; 4929 4930 trace_btrfs_inode_evict(inode); 4931 4932 evict_inode_truncate_pages(inode); 4933 4934 if (inode->i_nlink && 4935 ((btrfs_root_refs(&root->root_item) != 0 && 4936 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 4937 btrfs_is_free_space_inode(inode))) 4938 goto no_delete; 4939 4940 if (is_bad_inode(inode)) { 4941 btrfs_orphan_del(NULL, inode); 4942 goto no_delete; 4943 } 4944 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 4945 btrfs_wait_ordered_range(inode, 0, (u64)-1); 4946 4947 btrfs_free_io_failure_record(inode, 0, (u64)-1); 4948 4949 if (root->fs_info->log_root_recovering) { 4950 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 4951 &BTRFS_I(inode)->runtime_flags)); 4952 goto no_delete; 4953 } 4954 4955 if (inode->i_nlink > 0) { 4956 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 4957 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 4958 goto no_delete; 4959 } 4960 4961 ret = btrfs_commit_inode_delayed_inode(inode); 4962 if (ret) { 4963 btrfs_orphan_del(NULL, inode); 4964 goto no_delete; 4965 } 4966 4967 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 4968 if (!rsv) { 4969 btrfs_orphan_del(NULL, inode); 4970 goto no_delete; 4971 } 4972 rsv->size = min_size; 4973 rsv->failfast = 1; 4974 global_rsv = &root->fs_info->global_block_rsv; 4975 4976 btrfs_i_size_write(inode, 0); 4977 4978 /* 4979 * This is a bit simpler than btrfs_truncate since we've already 4980 * reserved our space for our orphan item in the unlink, so we just 4981 * need to reserve some slack space in case we add bytes and update 4982 * inode item when doing the truncate. 4983 */ 4984 while (1) { 4985 ret = btrfs_block_rsv_refill(root, rsv, min_size, 4986 BTRFS_RESERVE_FLUSH_LIMIT); 4987 4988 /* 4989 * Try and steal from the global reserve since we will 4990 * likely not use this space anyway, we want to try as 4991 * hard as possible to get this to work. 4992 */ 4993 if (ret) 4994 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 4995 4996 if (ret) { 4997 btrfs_warn(root->fs_info, 4998 "Could not get space for a delete, will truncate on mount %d", 4999 ret); 5000 btrfs_orphan_del(NULL, inode); 5001 btrfs_free_block_rsv(root, rsv); 5002 goto no_delete; 5003 } 5004 5005 trans = btrfs_join_transaction(root); 5006 if (IS_ERR(trans)) { 5007 btrfs_orphan_del(NULL, inode); 5008 btrfs_free_block_rsv(root, rsv); 5009 goto no_delete; 5010 } 5011 5012 trans->block_rsv = rsv; 5013 5014 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5015 if (ret != -ENOSPC) 5016 break; 5017 5018 trans->block_rsv = &root->fs_info->trans_block_rsv; 5019 btrfs_end_transaction(trans, root); 5020 trans = NULL; 5021 btrfs_btree_balance_dirty(root); 5022 } 5023 5024 btrfs_free_block_rsv(root, rsv); 5025 5026 /* 5027 * Errors here aren't a big deal, it just means we leave orphan items 5028 * in the tree. They will be cleaned up on the next mount. 5029 */ 5030 if (ret == 0) { 5031 trans->block_rsv = root->orphan_block_rsv; 5032 btrfs_orphan_del(trans, inode); 5033 } else { 5034 btrfs_orphan_del(NULL, inode); 5035 } 5036 5037 trans->block_rsv = &root->fs_info->trans_block_rsv; 5038 if (!(root == root->fs_info->tree_root || 5039 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5040 btrfs_return_ino(root, btrfs_ino(inode)); 5041 5042 btrfs_end_transaction(trans, root); 5043 btrfs_btree_balance_dirty(root); 5044 no_delete: 5045 btrfs_remove_delayed_node(inode); 5046 clear_inode(inode); 5047 return; 5048 } 5049 5050 /* 5051 * this returns the key found in the dir entry in the location pointer. 5052 * If no dir entries were found, location->objectid is 0. 5053 */ 5054 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5055 struct btrfs_key *location) 5056 { 5057 const char *name = dentry->d_name.name; 5058 int namelen = dentry->d_name.len; 5059 struct btrfs_dir_item *di; 5060 struct btrfs_path *path; 5061 struct btrfs_root *root = BTRFS_I(dir)->root; 5062 int ret = 0; 5063 5064 path = btrfs_alloc_path(); 5065 if (!path) 5066 return -ENOMEM; 5067 5068 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5069 namelen, 0); 5070 if (IS_ERR(di)) 5071 ret = PTR_ERR(di); 5072 5073 if (IS_ERR_OR_NULL(di)) 5074 goto out_err; 5075 5076 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5077 out: 5078 btrfs_free_path(path); 5079 return ret; 5080 out_err: 5081 location->objectid = 0; 5082 goto out; 5083 } 5084 5085 /* 5086 * when we hit a tree root in a directory, the btrfs part of the inode 5087 * needs to be changed to reflect the root directory of the tree root. This 5088 * is kind of like crossing a mount point. 5089 */ 5090 static int fixup_tree_root_location(struct btrfs_root *root, 5091 struct inode *dir, 5092 struct dentry *dentry, 5093 struct btrfs_key *location, 5094 struct btrfs_root **sub_root) 5095 { 5096 struct btrfs_path *path; 5097 struct btrfs_root *new_root; 5098 struct btrfs_root_ref *ref; 5099 struct extent_buffer *leaf; 5100 struct btrfs_key key; 5101 int ret; 5102 int err = 0; 5103 5104 path = btrfs_alloc_path(); 5105 if (!path) { 5106 err = -ENOMEM; 5107 goto out; 5108 } 5109 5110 err = -ENOENT; 5111 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5112 key.type = BTRFS_ROOT_REF_KEY; 5113 key.offset = location->objectid; 5114 5115 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5116 0, 0); 5117 if (ret) { 5118 if (ret < 0) 5119 err = ret; 5120 goto out; 5121 } 5122 5123 leaf = path->nodes[0]; 5124 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5125 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5126 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5127 goto out; 5128 5129 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5130 (unsigned long)(ref + 1), 5131 dentry->d_name.len); 5132 if (ret) 5133 goto out; 5134 5135 btrfs_release_path(path); 5136 5137 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5138 if (IS_ERR(new_root)) { 5139 err = PTR_ERR(new_root); 5140 goto out; 5141 } 5142 5143 *sub_root = new_root; 5144 location->objectid = btrfs_root_dirid(&new_root->root_item); 5145 location->type = BTRFS_INODE_ITEM_KEY; 5146 location->offset = 0; 5147 err = 0; 5148 out: 5149 btrfs_free_path(path); 5150 return err; 5151 } 5152 5153 static void inode_tree_add(struct inode *inode) 5154 { 5155 struct btrfs_root *root = BTRFS_I(inode)->root; 5156 struct btrfs_inode *entry; 5157 struct rb_node **p; 5158 struct rb_node *parent; 5159 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5160 u64 ino = btrfs_ino(inode); 5161 5162 if (inode_unhashed(inode)) 5163 return; 5164 parent = NULL; 5165 spin_lock(&root->inode_lock); 5166 p = &root->inode_tree.rb_node; 5167 while (*p) { 5168 parent = *p; 5169 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5170 5171 if (ino < btrfs_ino(&entry->vfs_inode)) 5172 p = &parent->rb_left; 5173 else if (ino > btrfs_ino(&entry->vfs_inode)) 5174 p = &parent->rb_right; 5175 else { 5176 WARN_ON(!(entry->vfs_inode.i_state & 5177 (I_WILL_FREE | I_FREEING))); 5178 rb_replace_node(parent, new, &root->inode_tree); 5179 RB_CLEAR_NODE(parent); 5180 spin_unlock(&root->inode_lock); 5181 return; 5182 } 5183 } 5184 rb_link_node(new, parent, p); 5185 rb_insert_color(new, &root->inode_tree); 5186 spin_unlock(&root->inode_lock); 5187 } 5188 5189 static void inode_tree_del(struct inode *inode) 5190 { 5191 struct btrfs_root *root = BTRFS_I(inode)->root; 5192 int empty = 0; 5193 5194 spin_lock(&root->inode_lock); 5195 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5196 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5197 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5198 empty = RB_EMPTY_ROOT(&root->inode_tree); 5199 } 5200 spin_unlock(&root->inode_lock); 5201 5202 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5203 synchronize_srcu(&root->fs_info->subvol_srcu); 5204 spin_lock(&root->inode_lock); 5205 empty = RB_EMPTY_ROOT(&root->inode_tree); 5206 spin_unlock(&root->inode_lock); 5207 if (empty) 5208 btrfs_add_dead_root(root); 5209 } 5210 } 5211 5212 void btrfs_invalidate_inodes(struct btrfs_root *root) 5213 { 5214 struct rb_node *node; 5215 struct rb_node *prev; 5216 struct btrfs_inode *entry; 5217 struct inode *inode; 5218 u64 objectid = 0; 5219 5220 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5221 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5222 5223 spin_lock(&root->inode_lock); 5224 again: 5225 node = root->inode_tree.rb_node; 5226 prev = NULL; 5227 while (node) { 5228 prev = node; 5229 entry = rb_entry(node, struct btrfs_inode, rb_node); 5230 5231 if (objectid < btrfs_ino(&entry->vfs_inode)) 5232 node = node->rb_left; 5233 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5234 node = node->rb_right; 5235 else 5236 break; 5237 } 5238 if (!node) { 5239 while (prev) { 5240 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5241 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5242 node = prev; 5243 break; 5244 } 5245 prev = rb_next(prev); 5246 } 5247 } 5248 while (node) { 5249 entry = rb_entry(node, struct btrfs_inode, rb_node); 5250 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5251 inode = igrab(&entry->vfs_inode); 5252 if (inode) { 5253 spin_unlock(&root->inode_lock); 5254 if (atomic_read(&inode->i_count) > 1) 5255 d_prune_aliases(inode); 5256 /* 5257 * btrfs_drop_inode will have it removed from 5258 * the inode cache when its usage count 5259 * hits zero. 5260 */ 5261 iput(inode); 5262 cond_resched(); 5263 spin_lock(&root->inode_lock); 5264 goto again; 5265 } 5266 5267 if (cond_resched_lock(&root->inode_lock)) 5268 goto again; 5269 5270 node = rb_next(node); 5271 } 5272 spin_unlock(&root->inode_lock); 5273 } 5274 5275 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5276 { 5277 struct btrfs_iget_args *args = p; 5278 inode->i_ino = args->location->objectid; 5279 memcpy(&BTRFS_I(inode)->location, args->location, 5280 sizeof(*args->location)); 5281 BTRFS_I(inode)->root = args->root; 5282 return 0; 5283 } 5284 5285 static int btrfs_find_actor(struct inode *inode, void *opaque) 5286 { 5287 struct btrfs_iget_args *args = opaque; 5288 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5289 args->root == BTRFS_I(inode)->root; 5290 } 5291 5292 static struct inode *btrfs_iget_locked(struct super_block *s, 5293 struct btrfs_key *location, 5294 struct btrfs_root *root) 5295 { 5296 struct inode *inode; 5297 struct btrfs_iget_args args; 5298 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5299 5300 args.location = location; 5301 args.root = root; 5302 5303 inode = iget5_locked(s, hashval, btrfs_find_actor, 5304 btrfs_init_locked_inode, 5305 (void *)&args); 5306 return inode; 5307 } 5308 5309 /* Get an inode object given its location and corresponding root. 5310 * Returns in *is_new if the inode was read from disk 5311 */ 5312 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5313 struct btrfs_root *root, int *new) 5314 { 5315 struct inode *inode; 5316 5317 inode = btrfs_iget_locked(s, location, root); 5318 if (!inode) 5319 return ERR_PTR(-ENOMEM); 5320 5321 if (inode->i_state & I_NEW) { 5322 btrfs_read_locked_inode(inode); 5323 if (!is_bad_inode(inode)) { 5324 inode_tree_add(inode); 5325 unlock_new_inode(inode); 5326 if (new) 5327 *new = 1; 5328 } else { 5329 unlock_new_inode(inode); 5330 iput(inode); 5331 inode = ERR_PTR(-ESTALE); 5332 } 5333 } 5334 5335 return inode; 5336 } 5337 5338 static struct inode *new_simple_dir(struct super_block *s, 5339 struct btrfs_key *key, 5340 struct btrfs_root *root) 5341 { 5342 struct inode *inode = new_inode(s); 5343 5344 if (!inode) 5345 return ERR_PTR(-ENOMEM); 5346 5347 BTRFS_I(inode)->root = root; 5348 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5349 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5350 5351 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5352 inode->i_op = &btrfs_dir_ro_inode_operations; 5353 inode->i_fop = &simple_dir_operations; 5354 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5355 inode->i_mtime = CURRENT_TIME; 5356 inode->i_atime = inode->i_mtime; 5357 inode->i_ctime = inode->i_mtime; 5358 BTRFS_I(inode)->i_otime = inode->i_mtime; 5359 5360 return inode; 5361 } 5362 5363 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5364 { 5365 struct inode *inode; 5366 struct btrfs_root *root = BTRFS_I(dir)->root; 5367 struct btrfs_root *sub_root = root; 5368 struct btrfs_key location; 5369 int index; 5370 int ret = 0; 5371 5372 if (dentry->d_name.len > BTRFS_NAME_LEN) 5373 return ERR_PTR(-ENAMETOOLONG); 5374 5375 ret = btrfs_inode_by_name(dir, dentry, &location); 5376 if (ret < 0) 5377 return ERR_PTR(ret); 5378 5379 if (location.objectid == 0) 5380 return ERR_PTR(-ENOENT); 5381 5382 if (location.type == BTRFS_INODE_ITEM_KEY) { 5383 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5384 return inode; 5385 } 5386 5387 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5388 5389 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5390 ret = fixup_tree_root_location(root, dir, dentry, 5391 &location, &sub_root); 5392 if (ret < 0) { 5393 if (ret != -ENOENT) 5394 inode = ERR_PTR(ret); 5395 else 5396 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5397 } else { 5398 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5399 } 5400 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5401 5402 if (!IS_ERR(inode) && root != sub_root) { 5403 down_read(&root->fs_info->cleanup_work_sem); 5404 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5405 ret = btrfs_orphan_cleanup(sub_root); 5406 up_read(&root->fs_info->cleanup_work_sem); 5407 if (ret) { 5408 iput(inode); 5409 inode = ERR_PTR(ret); 5410 } 5411 } 5412 5413 return inode; 5414 } 5415 5416 static int btrfs_dentry_delete(const struct dentry *dentry) 5417 { 5418 struct btrfs_root *root; 5419 struct inode *inode = dentry->d_inode; 5420 5421 if (!inode && !IS_ROOT(dentry)) 5422 inode = dentry->d_parent->d_inode; 5423 5424 if (inode) { 5425 root = BTRFS_I(inode)->root; 5426 if (btrfs_root_refs(&root->root_item) == 0) 5427 return 1; 5428 5429 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5430 return 1; 5431 } 5432 return 0; 5433 } 5434 5435 static void btrfs_dentry_release(struct dentry *dentry) 5436 { 5437 kfree(dentry->d_fsdata); 5438 } 5439 5440 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5441 unsigned int flags) 5442 { 5443 struct inode *inode; 5444 5445 inode = btrfs_lookup_dentry(dir, dentry); 5446 if (IS_ERR(inode)) { 5447 if (PTR_ERR(inode) == -ENOENT) 5448 inode = NULL; 5449 else 5450 return ERR_CAST(inode); 5451 } 5452 5453 return d_splice_alias(inode, dentry); 5454 } 5455 5456 unsigned char btrfs_filetype_table[] = { 5457 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5458 }; 5459 5460 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5461 { 5462 struct inode *inode = file_inode(file); 5463 struct btrfs_root *root = BTRFS_I(inode)->root; 5464 struct btrfs_item *item; 5465 struct btrfs_dir_item *di; 5466 struct btrfs_key key; 5467 struct btrfs_key found_key; 5468 struct btrfs_path *path; 5469 struct list_head ins_list; 5470 struct list_head del_list; 5471 int ret; 5472 struct extent_buffer *leaf; 5473 int slot; 5474 unsigned char d_type; 5475 int over = 0; 5476 u32 di_cur; 5477 u32 di_total; 5478 u32 di_len; 5479 int key_type = BTRFS_DIR_INDEX_KEY; 5480 char tmp_name[32]; 5481 char *name_ptr; 5482 int name_len; 5483 int is_curr = 0; /* ctx->pos points to the current index? */ 5484 5485 /* FIXME, use a real flag for deciding about the key type */ 5486 if (root->fs_info->tree_root == root) 5487 key_type = BTRFS_DIR_ITEM_KEY; 5488 5489 if (!dir_emit_dots(file, ctx)) 5490 return 0; 5491 5492 path = btrfs_alloc_path(); 5493 if (!path) 5494 return -ENOMEM; 5495 5496 path->reada = 1; 5497 5498 if (key_type == BTRFS_DIR_INDEX_KEY) { 5499 INIT_LIST_HEAD(&ins_list); 5500 INIT_LIST_HEAD(&del_list); 5501 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5502 } 5503 5504 key.type = key_type; 5505 key.offset = ctx->pos; 5506 key.objectid = btrfs_ino(inode); 5507 5508 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5509 if (ret < 0) 5510 goto err; 5511 5512 while (1) { 5513 leaf = path->nodes[0]; 5514 slot = path->slots[0]; 5515 if (slot >= btrfs_header_nritems(leaf)) { 5516 ret = btrfs_next_leaf(root, path); 5517 if (ret < 0) 5518 goto err; 5519 else if (ret > 0) 5520 break; 5521 continue; 5522 } 5523 5524 item = btrfs_item_nr(slot); 5525 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5526 5527 if (found_key.objectid != key.objectid) 5528 break; 5529 if (found_key.type != key_type) 5530 break; 5531 if (found_key.offset < ctx->pos) 5532 goto next; 5533 if (key_type == BTRFS_DIR_INDEX_KEY && 5534 btrfs_should_delete_dir_index(&del_list, 5535 found_key.offset)) 5536 goto next; 5537 5538 ctx->pos = found_key.offset; 5539 is_curr = 1; 5540 5541 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5542 di_cur = 0; 5543 di_total = btrfs_item_size(leaf, item); 5544 5545 while (di_cur < di_total) { 5546 struct btrfs_key location; 5547 5548 if (verify_dir_item(root, leaf, di)) 5549 break; 5550 5551 name_len = btrfs_dir_name_len(leaf, di); 5552 if (name_len <= sizeof(tmp_name)) { 5553 name_ptr = tmp_name; 5554 } else { 5555 name_ptr = kmalloc(name_len, GFP_NOFS); 5556 if (!name_ptr) { 5557 ret = -ENOMEM; 5558 goto err; 5559 } 5560 } 5561 read_extent_buffer(leaf, name_ptr, 5562 (unsigned long)(di + 1), name_len); 5563 5564 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5565 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5566 5567 5568 /* is this a reference to our own snapshot? If so 5569 * skip it. 5570 * 5571 * In contrast to old kernels, we insert the snapshot's 5572 * dir item and dir index after it has been created, so 5573 * we won't find a reference to our own snapshot. We 5574 * still keep the following code for backward 5575 * compatibility. 5576 */ 5577 if (location.type == BTRFS_ROOT_ITEM_KEY && 5578 location.objectid == root->root_key.objectid) { 5579 over = 0; 5580 goto skip; 5581 } 5582 over = !dir_emit(ctx, name_ptr, name_len, 5583 location.objectid, d_type); 5584 5585 skip: 5586 if (name_ptr != tmp_name) 5587 kfree(name_ptr); 5588 5589 if (over) 5590 goto nopos; 5591 di_len = btrfs_dir_name_len(leaf, di) + 5592 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5593 di_cur += di_len; 5594 di = (struct btrfs_dir_item *)((char *)di + di_len); 5595 } 5596 next: 5597 path->slots[0]++; 5598 } 5599 5600 if (key_type == BTRFS_DIR_INDEX_KEY) { 5601 if (is_curr) 5602 ctx->pos++; 5603 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5604 if (ret) 5605 goto nopos; 5606 } 5607 5608 /* Reached end of directory/root. Bump pos past the last item. */ 5609 ctx->pos++; 5610 5611 /* 5612 * Stop new entries from being returned after we return the last 5613 * entry. 5614 * 5615 * New directory entries are assigned a strictly increasing 5616 * offset. This means that new entries created during readdir 5617 * are *guaranteed* to be seen in the future by that readdir. 5618 * This has broken buggy programs which operate on names as 5619 * they're returned by readdir. Until we re-use freed offsets 5620 * we have this hack to stop new entries from being returned 5621 * under the assumption that they'll never reach this huge 5622 * offset. 5623 * 5624 * This is being careful not to overflow 32bit loff_t unless the 5625 * last entry requires it because doing so has broken 32bit apps 5626 * in the past. 5627 */ 5628 if (key_type == BTRFS_DIR_INDEX_KEY) { 5629 if (ctx->pos >= INT_MAX) 5630 ctx->pos = LLONG_MAX; 5631 else 5632 ctx->pos = INT_MAX; 5633 } 5634 nopos: 5635 ret = 0; 5636 err: 5637 if (key_type == BTRFS_DIR_INDEX_KEY) 5638 btrfs_put_delayed_items(&ins_list, &del_list); 5639 btrfs_free_path(path); 5640 return ret; 5641 } 5642 5643 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5644 { 5645 struct btrfs_root *root = BTRFS_I(inode)->root; 5646 struct btrfs_trans_handle *trans; 5647 int ret = 0; 5648 bool nolock = false; 5649 5650 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5651 return 0; 5652 5653 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5654 nolock = true; 5655 5656 if (wbc->sync_mode == WB_SYNC_ALL) { 5657 if (nolock) 5658 trans = btrfs_join_transaction_nolock(root); 5659 else 5660 trans = btrfs_join_transaction(root); 5661 if (IS_ERR(trans)) 5662 return PTR_ERR(trans); 5663 ret = btrfs_commit_transaction(trans, root); 5664 } 5665 return ret; 5666 } 5667 5668 /* 5669 * This is somewhat expensive, updating the tree every time the 5670 * inode changes. But, it is most likely to find the inode in cache. 5671 * FIXME, needs more benchmarking...there are no reasons other than performance 5672 * to keep or drop this code. 5673 */ 5674 static int btrfs_dirty_inode(struct inode *inode) 5675 { 5676 struct btrfs_root *root = BTRFS_I(inode)->root; 5677 struct btrfs_trans_handle *trans; 5678 int ret; 5679 5680 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5681 return 0; 5682 5683 trans = btrfs_join_transaction(root); 5684 if (IS_ERR(trans)) 5685 return PTR_ERR(trans); 5686 5687 ret = btrfs_update_inode(trans, root, inode); 5688 if (ret && ret == -ENOSPC) { 5689 /* whoops, lets try again with the full transaction */ 5690 btrfs_end_transaction(trans, root); 5691 trans = btrfs_start_transaction(root, 1); 5692 if (IS_ERR(trans)) 5693 return PTR_ERR(trans); 5694 5695 ret = btrfs_update_inode(trans, root, inode); 5696 } 5697 btrfs_end_transaction(trans, root); 5698 if (BTRFS_I(inode)->delayed_node) 5699 btrfs_balance_delayed_items(root); 5700 5701 return ret; 5702 } 5703 5704 /* 5705 * This is a copy of file_update_time. We need this so we can return error on 5706 * ENOSPC for updating the inode in the case of file write and mmap writes. 5707 */ 5708 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5709 int flags) 5710 { 5711 struct btrfs_root *root = BTRFS_I(inode)->root; 5712 5713 if (btrfs_root_readonly(root)) 5714 return -EROFS; 5715 5716 if (flags & S_VERSION) 5717 inode_inc_iversion(inode); 5718 if (flags & S_CTIME) 5719 inode->i_ctime = *now; 5720 if (flags & S_MTIME) 5721 inode->i_mtime = *now; 5722 if (flags & S_ATIME) 5723 inode->i_atime = *now; 5724 return btrfs_dirty_inode(inode); 5725 } 5726 5727 /* 5728 * find the highest existing sequence number in a directory 5729 * and then set the in-memory index_cnt variable to reflect 5730 * free sequence numbers 5731 */ 5732 static int btrfs_set_inode_index_count(struct inode *inode) 5733 { 5734 struct btrfs_root *root = BTRFS_I(inode)->root; 5735 struct btrfs_key key, found_key; 5736 struct btrfs_path *path; 5737 struct extent_buffer *leaf; 5738 int ret; 5739 5740 key.objectid = btrfs_ino(inode); 5741 key.type = BTRFS_DIR_INDEX_KEY; 5742 key.offset = (u64)-1; 5743 5744 path = btrfs_alloc_path(); 5745 if (!path) 5746 return -ENOMEM; 5747 5748 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5749 if (ret < 0) 5750 goto out; 5751 /* FIXME: we should be able to handle this */ 5752 if (ret == 0) 5753 goto out; 5754 ret = 0; 5755 5756 /* 5757 * MAGIC NUMBER EXPLANATION: 5758 * since we search a directory based on f_pos we have to start at 2 5759 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5760 * else has to start at 2 5761 */ 5762 if (path->slots[0] == 0) { 5763 BTRFS_I(inode)->index_cnt = 2; 5764 goto out; 5765 } 5766 5767 path->slots[0]--; 5768 5769 leaf = path->nodes[0]; 5770 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5771 5772 if (found_key.objectid != btrfs_ino(inode) || 5773 found_key.type != BTRFS_DIR_INDEX_KEY) { 5774 BTRFS_I(inode)->index_cnt = 2; 5775 goto out; 5776 } 5777 5778 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5779 out: 5780 btrfs_free_path(path); 5781 return ret; 5782 } 5783 5784 /* 5785 * helper to find a free sequence number in a given directory. This current 5786 * code is very simple, later versions will do smarter things in the btree 5787 */ 5788 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5789 { 5790 int ret = 0; 5791 5792 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5793 ret = btrfs_inode_delayed_dir_index_count(dir); 5794 if (ret) { 5795 ret = btrfs_set_inode_index_count(dir); 5796 if (ret) 5797 return ret; 5798 } 5799 } 5800 5801 *index = BTRFS_I(dir)->index_cnt; 5802 BTRFS_I(dir)->index_cnt++; 5803 5804 return ret; 5805 } 5806 5807 static int btrfs_insert_inode_locked(struct inode *inode) 5808 { 5809 struct btrfs_iget_args args; 5810 args.location = &BTRFS_I(inode)->location; 5811 args.root = BTRFS_I(inode)->root; 5812 5813 return insert_inode_locked4(inode, 5814 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5815 btrfs_find_actor, &args); 5816 } 5817 5818 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5819 struct btrfs_root *root, 5820 struct inode *dir, 5821 const char *name, int name_len, 5822 u64 ref_objectid, u64 objectid, 5823 umode_t mode, u64 *index) 5824 { 5825 struct inode *inode; 5826 struct btrfs_inode_item *inode_item; 5827 struct btrfs_key *location; 5828 struct btrfs_path *path; 5829 struct btrfs_inode_ref *ref; 5830 struct btrfs_key key[2]; 5831 u32 sizes[2]; 5832 int nitems = name ? 2 : 1; 5833 unsigned long ptr; 5834 int ret; 5835 5836 path = btrfs_alloc_path(); 5837 if (!path) 5838 return ERR_PTR(-ENOMEM); 5839 5840 inode = new_inode(root->fs_info->sb); 5841 if (!inode) { 5842 btrfs_free_path(path); 5843 return ERR_PTR(-ENOMEM); 5844 } 5845 5846 /* 5847 * O_TMPFILE, set link count to 0, so that after this point, 5848 * we fill in an inode item with the correct link count. 5849 */ 5850 if (!name) 5851 set_nlink(inode, 0); 5852 5853 /* 5854 * we have to initialize this early, so we can reclaim the inode 5855 * number if we fail afterwards in this function. 5856 */ 5857 inode->i_ino = objectid; 5858 5859 if (dir && name) { 5860 trace_btrfs_inode_request(dir); 5861 5862 ret = btrfs_set_inode_index(dir, index); 5863 if (ret) { 5864 btrfs_free_path(path); 5865 iput(inode); 5866 return ERR_PTR(ret); 5867 } 5868 } else if (dir) { 5869 *index = 0; 5870 } 5871 /* 5872 * index_cnt is ignored for everything but a dir, 5873 * btrfs_get_inode_index_count has an explanation for the magic 5874 * number 5875 */ 5876 BTRFS_I(inode)->index_cnt = 2; 5877 BTRFS_I(inode)->dir_index = *index; 5878 BTRFS_I(inode)->root = root; 5879 BTRFS_I(inode)->generation = trans->transid; 5880 inode->i_generation = BTRFS_I(inode)->generation; 5881 5882 /* 5883 * We could have gotten an inode number from somebody who was fsynced 5884 * and then removed in this same transaction, so let's just set full 5885 * sync since it will be a full sync anyway and this will blow away the 5886 * old info in the log. 5887 */ 5888 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5889 5890 key[0].objectid = objectid; 5891 key[0].type = BTRFS_INODE_ITEM_KEY; 5892 key[0].offset = 0; 5893 5894 sizes[0] = sizeof(struct btrfs_inode_item); 5895 5896 if (name) { 5897 /* 5898 * Start new inodes with an inode_ref. This is slightly more 5899 * efficient for small numbers of hard links since they will 5900 * be packed into one item. Extended refs will kick in if we 5901 * add more hard links than can fit in the ref item. 5902 */ 5903 key[1].objectid = objectid; 5904 key[1].type = BTRFS_INODE_REF_KEY; 5905 key[1].offset = ref_objectid; 5906 5907 sizes[1] = name_len + sizeof(*ref); 5908 } 5909 5910 location = &BTRFS_I(inode)->location; 5911 location->objectid = objectid; 5912 location->offset = 0; 5913 location->type = BTRFS_INODE_ITEM_KEY; 5914 5915 ret = btrfs_insert_inode_locked(inode); 5916 if (ret < 0) 5917 goto fail; 5918 5919 path->leave_spinning = 1; 5920 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 5921 if (ret != 0) 5922 goto fail_unlock; 5923 5924 inode_init_owner(inode, dir, mode); 5925 inode_set_bytes(inode, 0); 5926 5927 inode->i_mtime = CURRENT_TIME; 5928 inode->i_atime = inode->i_mtime; 5929 inode->i_ctime = inode->i_mtime; 5930 BTRFS_I(inode)->i_otime = inode->i_mtime; 5931 5932 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5933 struct btrfs_inode_item); 5934 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 5935 sizeof(*inode_item)); 5936 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5937 5938 if (name) { 5939 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5940 struct btrfs_inode_ref); 5941 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5942 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5943 ptr = (unsigned long)(ref + 1); 5944 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5945 } 5946 5947 btrfs_mark_buffer_dirty(path->nodes[0]); 5948 btrfs_free_path(path); 5949 5950 btrfs_inherit_iflags(inode, dir); 5951 5952 if (S_ISREG(mode)) { 5953 if (btrfs_test_opt(root, NODATASUM)) 5954 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5955 if (btrfs_test_opt(root, NODATACOW)) 5956 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5957 BTRFS_INODE_NODATASUM; 5958 } 5959 5960 inode_tree_add(inode); 5961 5962 trace_btrfs_inode_new(inode); 5963 btrfs_set_inode_last_trans(trans, inode); 5964 5965 btrfs_update_root_times(trans, root); 5966 5967 ret = btrfs_inode_inherit_props(trans, inode, dir); 5968 if (ret) 5969 btrfs_err(root->fs_info, 5970 "error inheriting props for ino %llu (root %llu): %d", 5971 btrfs_ino(inode), root->root_key.objectid, ret); 5972 5973 return inode; 5974 5975 fail_unlock: 5976 unlock_new_inode(inode); 5977 fail: 5978 if (dir && name) 5979 BTRFS_I(dir)->index_cnt--; 5980 btrfs_free_path(path); 5981 iput(inode); 5982 return ERR_PTR(ret); 5983 } 5984 5985 static inline u8 btrfs_inode_type(struct inode *inode) 5986 { 5987 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 5988 } 5989 5990 /* 5991 * utility function to add 'inode' into 'parent_inode' with 5992 * a give name and a given sequence number. 5993 * if 'add_backref' is true, also insert a backref from the 5994 * inode to the parent directory. 5995 */ 5996 int btrfs_add_link(struct btrfs_trans_handle *trans, 5997 struct inode *parent_inode, struct inode *inode, 5998 const char *name, int name_len, int add_backref, u64 index) 5999 { 6000 int ret = 0; 6001 struct btrfs_key key; 6002 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6003 u64 ino = btrfs_ino(inode); 6004 u64 parent_ino = btrfs_ino(parent_inode); 6005 6006 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6007 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6008 } else { 6009 key.objectid = ino; 6010 key.type = BTRFS_INODE_ITEM_KEY; 6011 key.offset = 0; 6012 } 6013 6014 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6015 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6016 key.objectid, root->root_key.objectid, 6017 parent_ino, index, name, name_len); 6018 } else if (add_backref) { 6019 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6020 parent_ino, index); 6021 } 6022 6023 /* Nothing to clean up yet */ 6024 if (ret) 6025 return ret; 6026 6027 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6028 parent_inode, &key, 6029 btrfs_inode_type(inode), index); 6030 if (ret == -EEXIST || ret == -EOVERFLOW) 6031 goto fail_dir_item; 6032 else if (ret) { 6033 btrfs_abort_transaction(trans, root, ret); 6034 return ret; 6035 } 6036 6037 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6038 name_len * 2); 6039 inode_inc_iversion(parent_inode); 6040 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 6041 ret = btrfs_update_inode(trans, root, parent_inode); 6042 if (ret) 6043 btrfs_abort_transaction(trans, root, ret); 6044 return ret; 6045 6046 fail_dir_item: 6047 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6048 u64 local_index; 6049 int err; 6050 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6051 key.objectid, root->root_key.objectid, 6052 parent_ino, &local_index, name, name_len); 6053 6054 } else if (add_backref) { 6055 u64 local_index; 6056 int err; 6057 6058 err = btrfs_del_inode_ref(trans, root, name, name_len, 6059 ino, parent_ino, &local_index); 6060 } 6061 return ret; 6062 } 6063 6064 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6065 struct inode *dir, struct dentry *dentry, 6066 struct inode *inode, int backref, u64 index) 6067 { 6068 int err = btrfs_add_link(trans, dir, inode, 6069 dentry->d_name.name, dentry->d_name.len, 6070 backref, index); 6071 if (err > 0) 6072 err = -EEXIST; 6073 return err; 6074 } 6075 6076 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6077 umode_t mode, dev_t rdev) 6078 { 6079 struct btrfs_trans_handle *trans; 6080 struct btrfs_root *root = BTRFS_I(dir)->root; 6081 struct inode *inode = NULL; 6082 int err; 6083 int drop_inode = 0; 6084 u64 objectid; 6085 u64 index = 0; 6086 6087 if (!new_valid_dev(rdev)) 6088 return -EINVAL; 6089 6090 /* 6091 * 2 for inode item and ref 6092 * 2 for dir items 6093 * 1 for xattr if selinux is on 6094 */ 6095 trans = btrfs_start_transaction(root, 5); 6096 if (IS_ERR(trans)) 6097 return PTR_ERR(trans); 6098 6099 err = btrfs_find_free_ino(root, &objectid); 6100 if (err) 6101 goto out_unlock; 6102 6103 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6104 dentry->d_name.len, btrfs_ino(dir), objectid, 6105 mode, &index); 6106 if (IS_ERR(inode)) { 6107 err = PTR_ERR(inode); 6108 goto out_unlock; 6109 } 6110 6111 /* 6112 * If the active LSM wants to access the inode during 6113 * d_instantiate it needs these. Smack checks to see 6114 * if the filesystem supports xattrs by looking at the 6115 * ops vector. 6116 */ 6117 inode->i_op = &btrfs_special_inode_operations; 6118 init_special_inode(inode, inode->i_mode, rdev); 6119 6120 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6121 if (err) 6122 goto out_unlock_inode; 6123 6124 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6125 if (err) { 6126 goto out_unlock_inode; 6127 } else { 6128 btrfs_update_inode(trans, root, inode); 6129 unlock_new_inode(inode); 6130 d_instantiate(dentry, inode); 6131 } 6132 6133 out_unlock: 6134 btrfs_end_transaction(trans, root); 6135 btrfs_balance_delayed_items(root); 6136 btrfs_btree_balance_dirty(root); 6137 if (drop_inode) { 6138 inode_dec_link_count(inode); 6139 iput(inode); 6140 } 6141 return err; 6142 6143 out_unlock_inode: 6144 drop_inode = 1; 6145 unlock_new_inode(inode); 6146 goto out_unlock; 6147 6148 } 6149 6150 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6151 umode_t mode, bool excl) 6152 { 6153 struct btrfs_trans_handle *trans; 6154 struct btrfs_root *root = BTRFS_I(dir)->root; 6155 struct inode *inode = NULL; 6156 int drop_inode_on_err = 0; 6157 int err; 6158 u64 objectid; 6159 u64 index = 0; 6160 6161 /* 6162 * 2 for inode item and ref 6163 * 2 for dir items 6164 * 1 for xattr if selinux is on 6165 */ 6166 trans = btrfs_start_transaction(root, 5); 6167 if (IS_ERR(trans)) 6168 return PTR_ERR(trans); 6169 6170 err = btrfs_find_free_ino(root, &objectid); 6171 if (err) 6172 goto out_unlock; 6173 6174 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6175 dentry->d_name.len, btrfs_ino(dir), objectid, 6176 mode, &index); 6177 if (IS_ERR(inode)) { 6178 err = PTR_ERR(inode); 6179 goto out_unlock; 6180 } 6181 drop_inode_on_err = 1; 6182 /* 6183 * If the active LSM wants to access the inode during 6184 * d_instantiate it needs these. Smack checks to see 6185 * if the filesystem supports xattrs by looking at the 6186 * ops vector. 6187 */ 6188 inode->i_fop = &btrfs_file_operations; 6189 inode->i_op = &btrfs_file_inode_operations; 6190 inode->i_mapping->a_ops = &btrfs_aops; 6191 6192 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6193 if (err) 6194 goto out_unlock_inode; 6195 6196 err = btrfs_update_inode(trans, root, inode); 6197 if (err) 6198 goto out_unlock_inode; 6199 6200 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6201 if (err) 6202 goto out_unlock_inode; 6203 6204 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6205 unlock_new_inode(inode); 6206 d_instantiate(dentry, inode); 6207 6208 out_unlock: 6209 btrfs_end_transaction(trans, root); 6210 if (err && drop_inode_on_err) { 6211 inode_dec_link_count(inode); 6212 iput(inode); 6213 } 6214 btrfs_balance_delayed_items(root); 6215 btrfs_btree_balance_dirty(root); 6216 return err; 6217 6218 out_unlock_inode: 6219 unlock_new_inode(inode); 6220 goto out_unlock; 6221 6222 } 6223 6224 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6225 struct dentry *dentry) 6226 { 6227 struct btrfs_trans_handle *trans; 6228 struct btrfs_root *root = BTRFS_I(dir)->root; 6229 struct inode *inode = old_dentry->d_inode; 6230 u64 index; 6231 int err; 6232 int drop_inode = 0; 6233 6234 /* do not allow sys_link's with other subvols of the same device */ 6235 if (root->objectid != BTRFS_I(inode)->root->objectid) 6236 return -EXDEV; 6237 6238 if (inode->i_nlink >= BTRFS_LINK_MAX) 6239 return -EMLINK; 6240 6241 err = btrfs_set_inode_index(dir, &index); 6242 if (err) 6243 goto fail; 6244 6245 /* 6246 * 2 items for inode and inode ref 6247 * 2 items for dir items 6248 * 1 item for parent inode 6249 */ 6250 trans = btrfs_start_transaction(root, 5); 6251 if (IS_ERR(trans)) { 6252 err = PTR_ERR(trans); 6253 goto fail; 6254 } 6255 6256 /* There are several dir indexes for this inode, clear the cache. */ 6257 BTRFS_I(inode)->dir_index = 0ULL; 6258 inc_nlink(inode); 6259 inode_inc_iversion(inode); 6260 inode->i_ctime = CURRENT_TIME; 6261 ihold(inode); 6262 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6263 6264 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6265 6266 if (err) { 6267 drop_inode = 1; 6268 } else { 6269 struct dentry *parent = dentry->d_parent; 6270 err = btrfs_update_inode(trans, root, inode); 6271 if (err) 6272 goto fail; 6273 if (inode->i_nlink == 1) { 6274 /* 6275 * If new hard link count is 1, it's a file created 6276 * with open(2) O_TMPFILE flag. 6277 */ 6278 err = btrfs_orphan_del(trans, inode); 6279 if (err) 6280 goto fail; 6281 } 6282 d_instantiate(dentry, inode); 6283 btrfs_log_new_name(trans, inode, NULL, parent); 6284 } 6285 6286 btrfs_end_transaction(trans, root); 6287 btrfs_balance_delayed_items(root); 6288 fail: 6289 if (drop_inode) { 6290 inode_dec_link_count(inode); 6291 iput(inode); 6292 } 6293 btrfs_btree_balance_dirty(root); 6294 return err; 6295 } 6296 6297 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6298 { 6299 struct inode *inode = NULL; 6300 struct btrfs_trans_handle *trans; 6301 struct btrfs_root *root = BTRFS_I(dir)->root; 6302 int err = 0; 6303 int drop_on_err = 0; 6304 u64 objectid = 0; 6305 u64 index = 0; 6306 6307 /* 6308 * 2 items for inode and ref 6309 * 2 items for dir items 6310 * 1 for xattr if selinux is on 6311 */ 6312 trans = btrfs_start_transaction(root, 5); 6313 if (IS_ERR(trans)) 6314 return PTR_ERR(trans); 6315 6316 err = btrfs_find_free_ino(root, &objectid); 6317 if (err) 6318 goto out_fail; 6319 6320 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6321 dentry->d_name.len, btrfs_ino(dir), objectid, 6322 S_IFDIR | mode, &index); 6323 if (IS_ERR(inode)) { 6324 err = PTR_ERR(inode); 6325 goto out_fail; 6326 } 6327 6328 drop_on_err = 1; 6329 /* these must be set before we unlock the inode */ 6330 inode->i_op = &btrfs_dir_inode_operations; 6331 inode->i_fop = &btrfs_dir_file_operations; 6332 6333 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6334 if (err) 6335 goto out_fail_inode; 6336 6337 btrfs_i_size_write(inode, 0); 6338 err = btrfs_update_inode(trans, root, inode); 6339 if (err) 6340 goto out_fail_inode; 6341 6342 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6343 dentry->d_name.len, 0, index); 6344 if (err) 6345 goto out_fail_inode; 6346 6347 d_instantiate(dentry, inode); 6348 /* 6349 * mkdir is special. We're unlocking after we call d_instantiate 6350 * to avoid a race with nfsd calling d_instantiate. 6351 */ 6352 unlock_new_inode(inode); 6353 drop_on_err = 0; 6354 6355 out_fail: 6356 btrfs_end_transaction(trans, root); 6357 if (drop_on_err) { 6358 inode_dec_link_count(inode); 6359 iput(inode); 6360 } 6361 btrfs_balance_delayed_items(root); 6362 btrfs_btree_balance_dirty(root); 6363 return err; 6364 6365 out_fail_inode: 6366 unlock_new_inode(inode); 6367 goto out_fail; 6368 } 6369 6370 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6371 static struct extent_map *next_extent_map(struct extent_map *em) 6372 { 6373 struct rb_node *next; 6374 6375 next = rb_next(&em->rb_node); 6376 if (!next) 6377 return NULL; 6378 return container_of(next, struct extent_map, rb_node); 6379 } 6380 6381 static struct extent_map *prev_extent_map(struct extent_map *em) 6382 { 6383 struct rb_node *prev; 6384 6385 prev = rb_prev(&em->rb_node); 6386 if (!prev) 6387 return NULL; 6388 return container_of(prev, struct extent_map, rb_node); 6389 } 6390 6391 /* helper for btfs_get_extent. Given an existing extent in the tree, 6392 * the existing extent is the nearest extent to map_start, 6393 * and an extent that you want to insert, deal with overlap and insert 6394 * the best fitted new extent into the tree. 6395 */ 6396 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6397 struct extent_map *existing, 6398 struct extent_map *em, 6399 u64 map_start) 6400 { 6401 struct extent_map *prev; 6402 struct extent_map *next; 6403 u64 start; 6404 u64 end; 6405 u64 start_diff; 6406 6407 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6408 6409 if (existing->start > map_start) { 6410 next = existing; 6411 prev = prev_extent_map(next); 6412 } else { 6413 prev = existing; 6414 next = next_extent_map(prev); 6415 } 6416 6417 start = prev ? extent_map_end(prev) : em->start; 6418 start = max_t(u64, start, em->start); 6419 end = next ? next->start : extent_map_end(em); 6420 end = min_t(u64, end, extent_map_end(em)); 6421 start_diff = start - em->start; 6422 em->start = start; 6423 em->len = end - start; 6424 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6425 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6426 em->block_start += start_diff; 6427 em->block_len -= start_diff; 6428 } 6429 return add_extent_mapping(em_tree, em, 0); 6430 } 6431 6432 static noinline int uncompress_inline(struct btrfs_path *path, 6433 struct inode *inode, struct page *page, 6434 size_t pg_offset, u64 extent_offset, 6435 struct btrfs_file_extent_item *item) 6436 { 6437 int ret; 6438 struct extent_buffer *leaf = path->nodes[0]; 6439 char *tmp; 6440 size_t max_size; 6441 unsigned long inline_size; 6442 unsigned long ptr; 6443 int compress_type; 6444 6445 WARN_ON(pg_offset != 0); 6446 compress_type = btrfs_file_extent_compression(leaf, item); 6447 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6448 inline_size = btrfs_file_extent_inline_item_len(leaf, 6449 btrfs_item_nr(path->slots[0])); 6450 tmp = kmalloc(inline_size, GFP_NOFS); 6451 if (!tmp) 6452 return -ENOMEM; 6453 ptr = btrfs_file_extent_inline_start(item); 6454 6455 read_extent_buffer(leaf, tmp, ptr, inline_size); 6456 6457 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6458 ret = btrfs_decompress(compress_type, tmp, page, 6459 extent_offset, inline_size, max_size); 6460 kfree(tmp); 6461 return ret; 6462 } 6463 6464 /* 6465 * a bit scary, this does extent mapping from logical file offset to the disk. 6466 * the ugly parts come from merging extents from the disk with the in-ram 6467 * representation. This gets more complex because of the data=ordered code, 6468 * where the in-ram extents might be locked pending data=ordered completion. 6469 * 6470 * This also copies inline extents directly into the page. 6471 */ 6472 6473 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6474 size_t pg_offset, u64 start, u64 len, 6475 int create) 6476 { 6477 int ret; 6478 int err = 0; 6479 u64 extent_start = 0; 6480 u64 extent_end = 0; 6481 u64 objectid = btrfs_ino(inode); 6482 u32 found_type; 6483 struct btrfs_path *path = NULL; 6484 struct btrfs_root *root = BTRFS_I(inode)->root; 6485 struct btrfs_file_extent_item *item; 6486 struct extent_buffer *leaf; 6487 struct btrfs_key found_key; 6488 struct extent_map *em = NULL; 6489 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6490 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6491 struct btrfs_trans_handle *trans = NULL; 6492 const bool new_inline = !page || create; 6493 6494 again: 6495 read_lock(&em_tree->lock); 6496 em = lookup_extent_mapping(em_tree, start, len); 6497 if (em) 6498 em->bdev = root->fs_info->fs_devices->latest_bdev; 6499 read_unlock(&em_tree->lock); 6500 6501 if (em) { 6502 if (em->start > start || em->start + em->len <= start) 6503 free_extent_map(em); 6504 else if (em->block_start == EXTENT_MAP_INLINE && page) 6505 free_extent_map(em); 6506 else 6507 goto out; 6508 } 6509 em = alloc_extent_map(); 6510 if (!em) { 6511 err = -ENOMEM; 6512 goto out; 6513 } 6514 em->bdev = root->fs_info->fs_devices->latest_bdev; 6515 em->start = EXTENT_MAP_HOLE; 6516 em->orig_start = EXTENT_MAP_HOLE; 6517 em->len = (u64)-1; 6518 em->block_len = (u64)-1; 6519 6520 if (!path) { 6521 path = btrfs_alloc_path(); 6522 if (!path) { 6523 err = -ENOMEM; 6524 goto out; 6525 } 6526 /* 6527 * Chances are we'll be called again, so go ahead and do 6528 * readahead 6529 */ 6530 path->reada = 1; 6531 } 6532 6533 ret = btrfs_lookup_file_extent(trans, root, path, 6534 objectid, start, trans != NULL); 6535 if (ret < 0) { 6536 err = ret; 6537 goto out; 6538 } 6539 6540 if (ret != 0) { 6541 if (path->slots[0] == 0) 6542 goto not_found; 6543 path->slots[0]--; 6544 } 6545 6546 leaf = path->nodes[0]; 6547 item = btrfs_item_ptr(leaf, path->slots[0], 6548 struct btrfs_file_extent_item); 6549 /* are we inside the extent that was found? */ 6550 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6551 found_type = found_key.type; 6552 if (found_key.objectid != objectid || 6553 found_type != BTRFS_EXTENT_DATA_KEY) { 6554 /* 6555 * If we backup past the first extent we want to move forward 6556 * and see if there is an extent in front of us, otherwise we'll 6557 * say there is a hole for our whole search range which can 6558 * cause problems. 6559 */ 6560 extent_end = start; 6561 goto next; 6562 } 6563 6564 found_type = btrfs_file_extent_type(leaf, item); 6565 extent_start = found_key.offset; 6566 if (found_type == BTRFS_FILE_EXTENT_REG || 6567 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6568 extent_end = extent_start + 6569 btrfs_file_extent_num_bytes(leaf, item); 6570 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6571 size_t size; 6572 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6573 extent_end = ALIGN(extent_start + size, root->sectorsize); 6574 } 6575 next: 6576 if (start >= extent_end) { 6577 path->slots[0]++; 6578 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6579 ret = btrfs_next_leaf(root, path); 6580 if (ret < 0) { 6581 err = ret; 6582 goto out; 6583 } 6584 if (ret > 0) 6585 goto not_found; 6586 leaf = path->nodes[0]; 6587 } 6588 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6589 if (found_key.objectid != objectid || 6590 found_key.type != BTRFS_EXTENT_DATA_KEY) 6591 goto not_found; 6592 if (start + len <= found_key.offset) 6593 goto not_found; 6594 if (start > found_key.offset) 6595 goto next; 6596 em->start = start; 6597 em->orig_start = start; 6598 em->len = found_key.offset - start; 6599 goto not_found_em; 6600 } 6601 6602 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6603 6604 if (found_type == BTRFS_FILE_EXTENT_REG || 6605 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6606 goto insert; 6607 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6608 unsigned long ptr; 6609 char *map; 6610 size_t size; 6611 size_t extent_offset; 6612 size_t copy_size; 6613 6614 if (new_inline) 6615 goto out; 6616 6617 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6618 extent_offset = page_offset(page) + pg_offset - extent_start; 6619 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6620 size - extent_offset); 6621 em->start = extent_start + extent_offset; 6622 em->len = ALIGN(copy_size, root->sectorsize); 6623 em->orig_block_len = em->len; 6624 em->orig_start = em->start; 6625 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6626 if (create == 0 && !PageUptodate(page)) { 6627 if (btrfs_file_extent_compression(leaf, item) != 6628 BTRFS_COMPRESS_NONE) { 6629 ret = uncompress_inline(path, inode, page, 6630 pg_offset, 6631 extent_offset, item); 6632 if (ret) { 6633 err = ret; 6634 goto out; 6635 } 6636 } else { 6637 map = kmap(page); 6638 read_extent_buffer(leaf, map + pg_offset, ptr, 6639 copy_size); 6640 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6641 memset(map + pg_offset + copy_size, 0, 6642 PAGE_CACHE_SIZE - pg_offset - 6643 copy_size); 6644 } 6645 kunmap(page); 6646 } 6647 flush_dcache_page(page); 6648 } else if (create && PageUptodate(page)) { 6649 BUG(); 6650 if (!trans) { 6651 kunmap(page); 6652 free_extent_map(em); 6653 em = NULL; 6654 6655 btrfs_release_path(path); 6656 trans = btrfs_join_transaction(root); 6657 6658 if (IS_ERR(trans)) 6659 return ERR_CAST(trans); 6660 goto again; 6661 } 6662 map = kmap(page); 6663 write_extent_buffer(leaf, map + pg_offset, ptr, 6664 copy_size); 6665 kunmap(page); 6666 btrfs_mark_buffer_dirty(leaf); 6667 } 6668 set_extent_uptodate(io_tree, em->start, 6669 extent_map_end(em) - 1, NULL, GFP_NOFS); 6670 goto insert; 6671 } 6672 not_found: 6673 em->start = start; 6674 em->orig_start = start; 6675 em->len = len; 6676 not_found_em: 6677 em->block_start = EXTENT_MAP_HOLE; 6678 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6679 insert: 6680 btrfs_release_path(path); 6681 if (em->start > start || extent_map_end(em) <= start) { 6682 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6683 em->start, em->len, start, len); 6684 err = -EIO; 6685 goto out; 6686 } 6687 6688 err = 0; 6689 write_lock(&em_tree->lock); 6690 ret = add_extent_mapping(em_tree, em, 0); 6691 /* it is possible that someone inserted the extent into the tree 6692 * while we had the lock dropped. It is also possible that 6693 * an overlapping map exists in the tree 6694 */ 6695 if (ret == -EEXIST) { 6696 struct extent_map *existing; 6697 6698 ret = 0; 6699 6700 existing = search_extent_mapping(em_tree, start, len); 6701 /* 6702 * existing will always be non-NULL, since there must be 6703 * extent causing the -EEXIST. 6704 */ 6705 if (start >= extent_map_end(existing) || 6706 start <= existing->start) { 6707 /* 6708 * The existing extent map is the one nearest to 6709 * the [start, start + len) range which overlaps 6710 */ 6711 err = merge_extent_mapping(em_tree, existing, 6712 em, start); 6713 free_extent_map(existing); 6714 if (err) { 6715 free_extent_map(em); 6716 em = NULL; 6717 } 6718 } else { 6719 free_extent_map(em); 6720 em = existing; 6721 err = 0; 6722 } 6723 } 6724 write_unlock(&em_tree->lock); 6725 out: 6726 6727 trace_btrfs_get_extent(root, em); 6728 6729 if (path) 6730 btrfs_free_path(path); 6731 if (trans) { 6732 ret = btrfs_end_transaction(trans, root); 6733 if (!err) 6734 err = ret; 6735 } 6736 if (err) { 6737 free_extent_map(em); 6738 return ERR_PTR(err); 6739 } 6740 BUG_ON(!em); /* Error is always set */ 6741 return em; 6742 } 6743 6744 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6745 size_t pg_offset, u64 start, u64 len, 6746 int create) 6747 { 6748 struct extent_map *em; 6749 struct extent_map *hole_em = NULL; 6750 u64 range_start = start; 6751 u64 end; 6752 u64 found; 6753 u64 found_end; 6754 int err = 0; 6755 6756 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6757 if (IS_ERR(em)) 6758 return em; 6759 if (em) { 6760 /* 6761 * if our em maps to 6762 * - a hole or 6763 * - a pre-alloc extent, 6764 * there might actually be delalloc bytes behind it. 6765 */ 6766 if (em->block_start != EXTENT_MAP_HOLE && 6767 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6768 return em; 6769 else 6770 hole_em = em; 6771 } 6772 6773 /* check to see if we've wrapped (len == -1 or similar) */ 6774 end = start + len; 6775 if (end < start) 6776 end = (u64)-1; 6777 else 6778 end -= 1; 6779 6780 em = NULL; 6781 6782 /* ok, we didn't find anything, lets look for delalloc */ 6783 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6784 end, len, EXTENT_DELALLOC, 1); 6785 found_end = range_start + found; 6786 if (found_end < range_start) 6787 found_end = (u64)-1; 6788 6789 /* 6790 * we didn't find anything useful, return 6791 * the original results from get_extent() 6792 */ 6793 if (range_start > end || found_end <= start) { 6794 em = hole_em; 6795 hole_em = NULL; 6796 goto out; 6797 } 6798 6799 /* adjust the range_start to make sure it doesn't 6800 * go backwards from the start they passed in 6801 */ 6802 range_start = max(start, range_start); 6803 found = found_end - range_start; 6804 6805 if (found > 0) { 6806 u64 hole_start = start; 6807 u64 hole_len = len; 6808 6809 em = alloc_extent_map(); 6810 if (!em) { 6811 err = -ENOMEM; 6812 goto out; 6813 } 6814 /* 6815 * when btrfs_get_extent can't find anything it 6816 * returns one huge hole 6817 * 6818 * make sure what it found really fits our range, and 6819 * adjust to make sure it is based on the start from 6820 * the caller 6821 */ 6822 if (hole_em) { 6823 u64 calc_end = extent_map_end(hole_em); 6824 6825 if (calc_end <= start || (hole_em->start > end)) { 6826 free_extent_map(hole_em); 6827 hole_em = NULL; 6828 } else { 6829 hole_start = max(hole_em->start, start); 6830 hole_len = calc_end - hole_start; 6831 } 6832 } 6833 em->bdev = NULL; 6834 if (hole_em && range_start > hole_start) { 6835 /* our hole starts before our delalloc, so we 6836 * have to return just the parts of the hole 6837 * that go until the delalloc starts 6838 */ 6839 em->len = min(hole_len, 6840 range_start - hole_start); 6841 em->start = hole_start; 6842 em->orig_start = hole_start; 6843 /* 6844 * don't adjust block start at all, 6845 * it is fixed at EXTENT_MAP_HOLE 6846 */ 6847 em->block_start = hole_em->block_start; 6848 em->block_len = hole_len; 6849 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6850 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6851 } else { 6852 em->start = range_start; 6853 em->len = found; 6854 em->orig_start = range_start; 6855 em->block_start = EXTENT_MAP_DELALLOC; 6856 em->block_len = found; 6857 } 6858 } else if (hole_em) { 6859 return hole_em; 6860 } 6861 out: 6862 6863 free_extent_map(hole_em); 6864 if (err) { 6865 free_extent_map(em); 6866 return ERR_PTR(err); 6867 } 6868 return em; 6869 } 6870 6871 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6872 u64 start, u64 len) 6873 { 6874 struct btrfs_root *root = BTRFS_I(inode)->root; 6875 struct extent_map *em; 6876 struct btrfs_key ins; 6877 u64 alloc_hint; 6878 int ret; 6879 6880 alloc_hint = get_extent_allocation_hint(inode, start, len); 6881 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 6882 alloc_hint, &ins, 1, 1); 6883 if (ret) 6884 return ERR_PTR(ret); 6885 6886 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 6887 ins.offset, ins.offset, ins.offset, 0); 6888 if (IS_ERR(em)) { 6889 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 6890 return em; 6891 } 6892 6893 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 6894 ins.offset, ins.offset, 0); 6895 if (ret) { 6896 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 6897 free_extent_map(em); 6898 return ERR_PTR(ret); 6899 } 6900 6901 return em; 6902 } 6903 6904 /* 6905 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6906 * block must be cow'd 6907 */ 6908 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6909 u64 *orig_start, u64 *orig_block_len, 6910 u64 *ram_bytes) 6911 { 6912 struct btrfs_trans_handle *trans; 6913 struct btrfs_path *path; 6914 int ret; 6915 struct extent_buffer *leaf; 6916 struct btrfs_root *root = BTRFS_I(inode)->root; 6917 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6918 struct btrfs_file_extent_item *fi; 6919 struct btrfs_key key; 6920 u64 disk_bytenr; 6921 u64 backref_offset; 6922 u64 extent_end; 6923 u64 num_bytes; 6924 int slot; 6925 int found_type; 6926 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6927 6928 path = btrfs_alloc_path(); 6929 if (!path) 6930 return -ENOMEM; 6931 6932 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 6933 offset, 0); 6934 if (ret < 0) 6935 goto out; 6936 6937 slot = path->slots[0]; 6938 if (ret == 1) { 6939 if (slot == 0) { 6940 /* can't find the item, must cow */ 6941 ret = 0; 6942 goto out; 6943 } 6944 slot--; 6945 } 6946 ret = 0; 6947 leaf = path->nodes[0]; 6948 btrfs_item_key_to_cpu(leaf, &key, slot); 6949 if (key.objectid != btrfs_ino(inode) || 6950 key.type != BTRFS_EXTENT_DATA_KEY) { 6951 /* not our file or wrong item type, must cow */ 6952 goto out; 6953 } 6954 6955 if (key.offset > offset) { 6956 /* Wrong offset, must cow */ 6957 goto out; 6958 } 6959 6960 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6961 found_type = btrfs_file_extent_type(leaf, fi); 6962 if (found_type != BTRFS_FILE_EXTENT_REG && 6963 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6964 /* not a regular extent, must cow */ 6965 goto out; 6966 } 6967 6968 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6969 goto out; 6970 6971 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6972 if (extent_end <= offset) 6973 goto out; 6974 6975 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6976 if (disk_bytenr == 0) 6977 goto out; 6978 6979 if (btrfs_file_extent_compression(leaf, fi) || 6980 btrfs_file_extent_encryption(leaf, fi) || 6981 btrfs_file_extent_other_encoding(leaf, fi)) 6982 goto out; 6983 6984 backref_offset = btrfs_file_extent_offset(leaf, fi); 6985 6986 if (orig_start) { 6987 *orig_start = key.offset - backref_offset; 6988 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6989 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6990 } 6991 6992 if (btrfs_extent_readonly(root, disk_bytenr)) 6993 goto out; 6994 6995 num_bytes = min(offset + *len, extent_end) - offset; 6996 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6997 u64 range_end; 6998 6999 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7000 ret = test_range_bit(io_tree, offset, range_end, 7001 EXTENT_DELALLOC, 0, NULL); 7002 if (ret) { 7003 ret = -EAGAIN; 7004 goto out; 7005 } 7006 } 7007 7008 btrfs_release_path(path); 7009 7010 /* 7011 * look for other files referencing this extent, if we 7012 * find any we must cow 7013 */ 7014 trans = btrfs_join_transaction(root); 7015 if (IS_ERR(trans)) { 7016 ret = 0; 7017 goto out; 7018 } 7019 7020 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7021 key.offset - backref_offset, disk_bytenr); 7022 btrfs_end_transaction(trans, root); 7023 if (ret) { 7024 ret = 0; 7025 goto out; 7026 } 7027 7028 /* 7029 * adjust disk_bytenr and num_bytes to cover just the bytes 7030 * in this extent we are about to write. If there 7031 * are any csums in that range we have to cow in order 7032 * to keep the csums correct 7033 */ 7034 disk_bytenr += backref_offset; 7035 disk_bytenr += offset - key.offset; 7036 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7037 goto out; 7038 /* 7039 * all of the above have passed, it is safe to overwrite this extent 7040 * without cow 7041 */ 7042 *len = num_bytes; 7043 ret = 1; 7044 out: 7045 btrfs_free_path(path); 7046 return ret; 7047 } 7048 7049 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7050 { 7051 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7052 int found = false; 7053 void **pagep = NULL; 7054 struct page *page = NULL; 7055 int start_idx; 7056 int end_idx; 7057 7058 start_idx = start >> PAGE_CACHE_SHIFT; 7059 7060 /* 7061 * end is the last byte in the last page. end == start is legal 7062 */ 7063 end_idx = end >> PAGE_CACHE_SHIFT; 7064 7065 rcu_read_lock(); 7066 7067 /* Most of the code in this while loop is lifted from 7068 * find_get_page. It's been modified to begin searching from a 7069 * page and return just the first page found in that range. If the 7070 * found idx is less than or equal to the end idx then we know that 7071 * a page exists. If no pages are found or if those pages are 7072 * outside of the range then we're fine (yay!) */ 7073 while (page == NULL && 7074 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7075 page = radix_tree_deref_slot(pagep); 7076 if (unlikely(!page)) 7077 break; 7078 7079 if (radix_tree_exception(page)) { 7080 if (radix_tree_deref_retry(page)) { 7081 page = NULL; 7082 continue; 7083 } 7084 /* 7085 * Otherwise, shmem/tmpfs must be storing a swap entry 7086 * here as an exceptional entry: so return it without 7087 * attempting to raise page count. 7088 */ 7089 page = NULL; 7090 break; /* TODO: Is this relevant for this use case? */ 7091 } 7092 7093 if (!page_cache_get_speculative(page)) { 7094 page = NULL; 7095 continue; 7096 } 7097 7098 /* 7099 * Has the page moved? 7100 * This is part of the lockless pagecache protocol. See 7101 * include/linux/pagemap.h for details. 7102 */ 7103 if (unlikely(page != *pagep)) { 7104 page_cache_release(page); 7105 page = NULL; 7106 } 7107 } 7108 7109 if (page) { 7110 if (page->index <= end_idx) 7111 found = true; 7112 page_cache_release(page); 7113 } 7114 7115 rcu_read_unlock(); 7116 return found; 7117 } 7118 7119 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7120 struct extent_state **cached_state, int writing) 7121 { 7122 struct btrfs_ordered_extent *ordered; 7123 int ret = 0; 7124 7125 while (1) { 7126 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7127 0, cached_state); 7128 /* 7129 * We're concerned with the entire range that we're going to be 7130 * doing DIO to, so we need to make sure theres no ordered 7131 * extents in this range. 7132 */ 7133 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7134 lockend - lockstart + 1); 7135 7136 /* 7137 * We need to make sure there are no buffered pages in this 7138 * range either, we could have raced between the invalidate in 7139 * generic_file_direct_write and locking the extent. The 7140 * invalidate needs to happen so that reads after a write do not 7141 * get stale data. 7142 */ 7143 if (!ordered && 7144 (!writing || 7145 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7146 break; 7147 7148 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7149 cached_state, GFP_NOFS); 7150 7151 if (ordered) { 7152 btrfs_start_ordered_extent(inode, ordered, 1); 7153 btrfs_put_ordered_extent(ordered); 7154 } else { 7155 /* Screw you mmap */ 7156 ret = btrfs_fdatawrite_range(inode, lockstart, lockend); 7157 if (ret) 7158 break; 7159 ret = filemap_fdatawait_range(inode->i_mapping, 7160 lockstart, 7161 lockend); 7162 if (ret) 7163 break; 7164 7165 /* 7166 * If we found a page that couldn't be invalidated just 7167 * fall back to buffered. 7168 */ 7169 ret = invalidate_inode_pages2_range(inode->i_mapping, 7170 lockstart >> PAGE_CACHE_SHIFT, 7171 lockend >> PAGE_CACHE_SHIFT); 7172 if (ret) 7173 break; 7174 } 7175 7176 cond_resched(); 7177 } 7178 7179 return ret; 7180 } 7181 7182 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7183 u64 len, u64 orig_start, 7184 u64 block_start, u64 block_len, 7185 u64 orig_block_len, u64 ram_bytes, 7186 int type) 7187 { 7188 struct extent_map_tree *em_tree; 7189 struct extent_map *em; 7190 struct btrfs_root *root = BTRFS_I(inode)->root; 7191 int ret; 7192 7193 em_tree = &BTRFS_I(inode)->extent_tree; 7194 em = alloc_extent_map(); 7195 if (!em) 7196 return ERR_PTR(-ENOMEM); 7197 7198 em->start = start; 7199 em->orig_start = orig_start; 7200 em->mod_start = start; 7201 em->mod_len = len; 7202 em->len = len; 7203 em->block_len = block_len; 7204 em->block_start = block_start; 7205 em->bdev = root->fs_info->fs_devices->latest_bdev; 7206 em->orig_block_len = orig_block_len; 7207 em->ram_bytes = ram_bytes; 7208 em->generation = -1; 7209 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7210 if (type == BTRFS_ORDERED_PREALLOC) 7211 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7212 7213 do { 7214 btrfs_drop_extent_cache(inode, em->start, 7215 em->start + em->len - 1, 0); 7216 write_lock(&em_tree->lock); 7217 ret = add_extent_mapping(em_tree, em, 1); 7218 write_unlock(&em_tree->lock); 7219 } while (ret == -EEXIST); 7220 7221 if (ret) { 7222 free_extent_map(em); 7223 return ERR_PTR(ret); 7224 } 7225 7226 return em; 7227 } 7228 7229 7230 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7231 struct buffer_head *bh_result, int create) 7232 { 7233 struct extent_map *em; 7234 struct btrfs_root *root = BTRFS_I(inode)->root; 7235 struct extent_state *cached_state = NULL; 7236 u64 start = iblock << inode->i_blkbits; 7237 u64 lockstart, lockend; 7238 u64 len = bh_result->b_size; 7239 u64 *outstanding_extents = NULL; 7240 int unlock_bits = EXTENT_LOCKED; 7241 int ret = 0; 7242 7243 if (create) 7244 unlock_bits |= EXTENT_DIRTY; 7245 else 7246 len = min_t(u64, len, root->sectorsize); 7247 7248 lockstart = start; 7249 lockend = start + len - 1; 7250 7251 if (current->journal_info) { 7252 /* 7253 * Need to pull our outstanding extents and set journal_info to NULL so 7254 * that anything that needs to check if there's a transction doesn't get 7255 * confused. 7256 */ 7257 outstanding_extents = current->journal_info; 7258 current->journal_info = NULL; 7259 } 7260 7261 /* 7262 * If this errors out it's because we couldn't invalidate pagecache for 7263 * this range and we need to fallback to buffered. 7264 */ 7265 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 7266 return -ENOTBLK; 7267 7268 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7269 if (IS_ERR(em)) { 7270 ret = PTR_ERR(em); 7271 goto unlock_err; 7272 } 7273 7274 /* 7275 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7276 * io. INLINE is special, and we could probably kludge it in here, but 7277 * it's still buffered so for safety lets just fall back to the generic 7278 * buffered path. 7279 * 7280 * For COMPRESSED we _have_ to read the entire extent in so we can 7281 * decompress it, so there will be buffering required no matter what we 7282 * do, so go ahead and fallback to buffered. 7283 * 7284 * We return -ENOTBLK because thats what makes DIO go ahead and go back 7285 * to buffered IO. Don't blame me, this is the price we pay for using 7286 * the generic code. 7287 */ 7288 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7289 em->block_start == EXTENT_MAP_INLINE) { 7290 free_extent_map(em); 7291 ret = -ENOTBLK; 7292 goto unlock_err; 7293 } 7294 7295 /* Just a good old fashioned hole, return */ 7296 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7297 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7298 free_extent_map(em); 7299 goto unlock_err; 7300 } 7301 7302 /* 7303 * We don't allocate a new extent in the following cases 7304 * 7305 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7306 * existing extent. 7307 * 2) The extent is marked as PREALLOC. We're good to go here and can 7308 * just use the extent. 7309 * 7310 */ 7311 if (!create) { 7312 len = min(len, em->len - (start - em->start)); 7313 lockstart = start + len; 7314 goto unlock; 7315 } 7316 7317 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7318 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7319 em->block_start != EXTENT_MAP_HOLE)) { 7320 int type; 7321 u64 block_start, orig_start, orig_block_len, ram_bytes; 7322 7323 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7324 type = BTRFS_ORDERED_PREALLOC; 7325 else 7326 type = BTRFS_ORDERED_NOCOW; 7327 len = min(len, em->len - (start - em->start)); 7328 block_start = em->block_start + (start - em->start); 7329 7330 if (can_nocow_extent(inode, start, &len, &orig_start, 7331 &orig_block_len, &ram_bytes) == 1) { 7332 if (type == BTRFS_ORDERED_PREALLOC) { 7333 free_extent_map(em); 7334 em = create_pinned_em(inode, start, len, 7335 orig_start, 7336 block_start, len, 7337 orig_block_len, 7338 ram_bytes, type); 7339 if (IS_ERR(em)) { 7340 ret = PTR_ERR(em); 7341 goto unlock_err; 7342 } 7343 } 7344 7345 ret = btrfs_add_ordered_extent_dio(inode, start, 7346 block_start, len, len, type); 7347 if (ret) { 7348 free_extent_map(em); 7349 goto unlock_err; 7350 } 7351 goto unlock; 7352 } 7353 } 7354 7355 /* 7356 * this will cow the extent, reset the len in case we changed 7357 * it above 7358 */ 7359 len = bh_result->b_size; 7360 free_extent_map(em); 7361 em = btrfs_new_extent_direct(inode, start, len); 7362 if (IS_ERR(em)) { 7363 ret = PTR_ERR(em); 7364 goto unlock_err; 7365 } 7366 len = min(len, em->len - (start - em->start)); 7367 unlock: 7368 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7369 inode->i_blkbits; 7370 bh_result->b_size = len; 7371 bh_result->b_bdev = em->bdev; 7372 set_buffer_mapped(bh_result); 7373 if (create) { 7374 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7375 set_buffer_new(bh_result); 7376 7377 /* 7378 * Need to update the i_size under the extent lock so buffered 7379 * readers will get the updated i_size when we unlock. 7380 */ 7381 if (start + len > i_size_read(inode)) 7382 i_size_write(inode, start + len); 7383 7384 /* 7385 * If we have an outstanding_extents count still set then we're 7386 * within our reservation, otherwise we need to adjust our inode 7387 * counter appropriately. 7388 */ 7389 if (*outstanding_extents) { 7390 (*outstanding_extents)--; 7391 } else { 7392 spin_lock(&BTRFS_I(inode)->lock); 7393 BTRFS_I(inode)->outstanding_extents++; 7394 spin_unlock(&BTRFS_I(inode)->lock); 7395 } 7396 7397 current->journal_info = outstanding_extents; 7398 btrfs_free_reserved_data_space(inode, len); 7399 } 7400 7401 /* 7402 * In the case of write we need to clear and unlock the entire range, 7403 * in the case of read we need to unlock only the end area that we 7404 * aren't using if there is any left over space. 7405 */ 7406 if (lockstart < lockend) { 7407 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7408 lockend, unlock_bits, 1, 0, 7409 &cached_state, GFP_NOFS); 7410 } else { 7411 free_extent_state(cached_state); 7412 } 7413 7414 free_extent_map(em); 7415 7416 return 0; 7417 7418 unlock_err: 7419 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7420 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7421 if (outstanding_extents) 7422 current->journal_info = outstanding_extents; 7423 return ret; 7424 } 7425 7426 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7427 int rw, int mirror_num) 7428 { 7429 struct btrfs_root *root = BTRFS_I(inode)->root; 7430 int ret; 7431 7432 BUG_ON(rw & REQ_WRITE); 7433 7434 bio_get(bio); 7435 7436 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7437 BTRFS_WQ_ENDIO_DIO_REPAIR); 7438 if (ret) 7439 goto err; 7440 7441 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 7442 err: 7443 bio_put(bio); 7444 return ret; 7445 } 7446 7447 static int btrfs_check_dio_repairable(struct inode *inode, 7448 struct bio *failed_bio, 7449 struct io_failure_record *failrec, 7450 int failed_mirror) 7451 { 7452 int num_copies; 7453 7454 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7455 failrec->logical, failrec->len); 7456 if (num_copies == 1) { 7457 /* 7458 * we only have a single copy of the data, so don't bother with 7459 * all the retry and error correction code that follows. no 7460 * matter what the error is, it is very likely to persist. 7461 */ 7462 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7463 num_copies, failrec->this_mirror, failed_mirror); 7464 return 0; 7465 } 7466 7467 failrec->failed_mirror = failed_mirror; 7468 failrec->this_mirror++; 7469 if (failrec->this_mirror == failed_mirror) 7470 failrec->this_mirror++; 7471 7472 if (failrec->this_mirror > num_copies) { 7473 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7474 num_copies, failrec->this_mirror, failed_mirror); 7475 return 0; 7476 } 7477 7478 return 1; 7479 } 7480 7481 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7482 struct page *page, u64 start, u64 end, 7483 int failed_mirror, bio_end_io_t *repair_endio, 7484 void *repair_arg) 7485 { 7486 struct io_failure_record *failrec; 7487 struct bio *bio; 7488 int isector; 7489 int read_mode; 7490 int ret; 7491 7492 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 7493 7494 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7495 if (ret) 7496 return ret; 7497 7498 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7499 failed_mirror); 7500 if (!ret) { 7501 free_io_failure(inode, failrec); 7502 return -EIO; 7503 } 7504 7505 if (failed_bio->bi_vcnt > 1) 7506 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7507 else 7508 read_mode = READ_SYNC; 7509 7510 isector = start - btrfs_io_bio(failed_bio)->logical; 7511 isector >>= inode->i_sb->s_blocksize_bits; 7512 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7513 0, isector, repair_endio, repair_arg); 7514 if (!bio) { 7515 free_io_failure(inode, failrec); 7516 return -EIO; 7517 } 7518 7519 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7520 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7521 read_mode, failrec->this_mirror, failrec->in_validation); 7522 7523 ret = submit_dio_repair_bio(inode, bio, read_mode, 7524 failrec->this_mirror); 7525 if (ret) { 7526 free_io_failure(inode, failrec); 7527 bio_put(bio); 7528 } 7529 7530 return ret; 7531 } 7532 7533 struct btrfs_retry_complete { 7534 struct completion done; 7535 struct inode *inode; 7536 u64 start; 7537 int uptodate; 7538 }; 7539 7540 static void btrfs_retry_endio_nocsum(struct bio *bio, int err) 7541 { 7542 struct btrfs_retry_complete *done = bio->bi_private; 7543 struct bio_vec *bvec; 7544 int i; 7545 7546 if (err) 7547 goto end; 7548 7549 done->uptodate = 1; 7550 bio_for_each_segment_all(bvec, bio, i) 7551 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7552 end: 7553 complete(&done->done); 7554 bio_put(bio); 7555 } 7556 7557 static int __btrfs_correct_data_nocsum(struct inode *inode, 7558 struct btrfs_io_bio *io_bio) 7559 { 7560 struct bio_vec *bvec; 7561 struct btrfs_retry_complete done; 7562 u64 start; 7563 int i; 7564 int ret; 7565 7566 start = io_bio->logical; 7567 done.inode = inode; 7568 7569 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7570 try_again: 7571 done.uptodate = 0; 7572 done.start = start; 7573 init_completion(&done.done); 7574 7575 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7576 start + bvec->bv_len - 1, 7577 io_bio->mirror_num, 7578 btrfs_retry_endio_nocsum, &done); 7579 if (ret) 7580 return ret; 7581 7582 wait_for_completion(&done.done); 7583 7584 if (!done.uptodate) { 7585 /* We might have another mirror, so try again */ 7586 goto try_again; 7587 } 7588 7589 start += bvec->bv_len; 7590 } 7591 7592 return 0; 7593 } 7594 7595 static void btrfs_retry_endio(struct bio *bio, int err) 7596 { 7597 struct btrfs_retry_complete *done = bio->bi_private; 7598 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7599 struct bio_vec *bvec; 7600 int uptodate; 7601 int ret; 7602 int i; 7603 7604 if (err) 7605 goto end; 7606 7607 uptodate = 1; 7608 bio_for_each_segment_all(bvec, bio, i) { 7609 ret = __readpage_endio_check(done->inode, io_bio, i, 7610 bvec->bv_page, 0, 7611 done->start, bvec->bv_len); 7612 if (!ret) 7613 clean_io_failure(done->inode, done->start, 7614 bvec->bv_page, 0); 7615 else 7616 uptodate = 0; 7617 } 7618 7619 done->uptodate = uptodate; 7620 end: 7621 complete(&done->done); 7622 bio_put(bio); 7623 } 7624 7625 static int __btrfs_subio_endio_read(struct inode *inode, 7626 struct btrfs_io_bio *io_bio, int err) 7627 { 7628 struct bio_vec *bvec; 7629 struct btrfs_retry_complete done; 7630 u64 start; 7631 u64 offset = 0; 7632 int i; 7633 int ret; 7634 7635 err = 0; 7636 start = io_bio->logical; 7637 done.inode = inode; 7638 7639 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7640 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7641 0, start, bvec->bv_len); 7642 if (likely(!ret)) 7643 goto next; 7644 try_again: 7645 done.uptodate = 0; 7646 done.start = start; 7647 init_completion(&done.done); 7648 7649 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7650 start + bvec->bv_len - 1, 7651 io_bio->mirror_num, 7652 btrfs_retry_endio, &done); 7653 if (ret) { 7654 err = ret; 7655 goto next; 7656 } 7657 7658 wait_for_completion(&done.done); 7659 7660 if (!done.uptodate) { 7661 /* We might have another mirror, so try again */ 7662 goto try_again; 7663 } 7664 next: 7665 offset += bvec->bv_len; 7666 start += bvec->bv_len; 7667 } 7668 7669 return err; 7670 } 7671 7672 static int btrfs_subio_endio_read(struct inode *inode, 7673 struct btrfs_io_bio *io_bio, int err) 7674 { 7675 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7676 7677 if (skip_csum) { 7678 if (unlikely(err)) 7679 return __btrfs_correct_data_nocsum(inode, io_bio); 7680 else 7681 return 0; 7682 } else { 7683 return __btrfs_subio_endio_read(inode, io_bio, err); 7684 } 7685 } 7686 7687 static void btrfs_endio_direct_read(struct bio *bio, int err) 7688 { 7689 struct btrfs_dio_private *dip = bio->bi_private; 7690 struct inode *inode = dip->inode; 7691 struct bio *dio_bio; 7692 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7693 7694 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 7695 err = btrfs_subio_endio_read(inode, io_bio, err); 7696 7697 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7698 dip->logical_offset + dip->bytes - 1); 7699 dio_bio = dip->dio_bio; 7700 7701 kfree(dip); 7702 7703 /* If we had a csum failure make sure to clear the uptodate flag */ 7704 if (err) 7705 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7706 dio_end_io(dio_bio, err); 7707 7708 if (io_bio->end_io) 7709 io_bio->end_io(io_bio, err); 7710 bio_put(bio); 7711 } 7712 7713 static void btrfs_endio_direct_write(struct bio *bio, int err) 7714 { 7715 struct btrfs_dio_private *dip = bio->bi_private; 7716 struct inode *inode = dip->inode; 7717 struct btrfs_root *root = BTRFS_I(inode)->root; 7718 struct btrfs_ordered_extent *ordered = NULL; 7719 u64 ordered_offset = dip->logical_offset; 7720 u64 ordered_bytes = dip->bytes; 7721 struct bio *dio_bio; 7722 int ret; 7723 7724 if (err) 7725 goto out_done; 7726 again: 7727 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 7728 &ordered_offset, 7729 ordered_bytes, !err); 7730 if (!ret) 7731 goto out_test; 7732 7733 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 7734 finish_ordered_fn, NULL, NULL); 7735 btrfs_queue_work(root->fs_info->endio_write_workers, 7736 &ordered->work); 7737 out_test: 7738 /* 7739 * our bio might span multiple ordered extents. If we haven't 7740 * completed the accounting for the whole dio, go back and try again 7741 */ 7742 if (ordered_offset < dip->logical_offset + dip->bytes) { 7743 ordered_bytes = dip->logical_offset + dip->bytes - 7744 ordered_offset; 7745 ordered = NULL; 7746 goto again; 7747 } 7748 out_done: 7749 dio_bio = dip->dio_bio; 7750 7751 kfree(dip); 7752 7753 /* If we had an error make sure to clear the uptodate flag */ 7754 if (err) 7755 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7756 dio_end_io(dio_bio, err); 7757 bio_put(bio); 7758 } 7759 7760 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7761 struct bio *bio, int mirror_num, 7762 unsigned long bio_flags, u64 offset) 7763 { 7764 int ret; 7765 struct btrfs_root *root = BTRFS_I(inode)->root; 7766 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7767 BUG_ON(ret); /* -ENOMEM */ 7768 return 0; 7769 } 7770 7771 static void btrfs_end_dio_bio(struct bio *bio, int err) 7772 { 7773 struct btrfs_dio_private *dip = bio->bi_private; 7774 7775 if (err) 7776 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7777 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 7778 btrfs_ino(dip->inode), bio->bi_rw, 7779 (unsigned long long)bio->bi_iter.bi_sector, 7780 bio->bi_iter.bi_size, err); 7781 7782 if (dip->subio_endio) 7783 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 7784 7785 if (err) { 7786 dip->errors = 1; 7787 7788 /* 7789 * before atomic variable goto zero, we must make sure 7790 * dip->errors is perceived to be set. 7791 */ 7792 smp_mb__before_atomic(); 7793 } 7794 7795 /* if there are more bios still pending for this dio, just exit */ 7796 if (!atomic_dec_and_test(&dip->pending_bios)) 7797 goto out; 7798 7799 if (dip->errors) { 7800 bio_io_error(dip->orig_bio); 7801 } else { 7802 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 7803 bio_endio(dip->orig_bio, 0); 7804 } 7805 out: 7806 bio_put(bio); 7807 } 7808 7809 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7810 u64 first_sector, gfp_t gfp_flags) 7811 { 7812 int nr_vecs = bio_get_nr_vecs(bdev); 7813 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 7814 } 7815 7816 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 7817 struct inode *inode, 7818 struct btrfs_dio_private *dip, 7819 struct bio *bio, 7820 u64 file_offset) 7821 { 7822 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7823 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 7824 int ret; 7825 7826 /* 7827 * We load all the csum data we need when we submit 7828 * the first bio to reduce the csum tree search and 7829 * contention. 7830 */ 7831 if (dip->logical_offset == file_offset) { 7832 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 7833 file_offset); 7834 if (ret) 7835 return ret; 7836 } 7837 7838 if (bio == dip->orig_bio) 7839 return 0; 7840 7841 file_offset -= dip->logical_offset; 7842 file_offset >>= inode->i_sb->s_blocksize_bits; 7843 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 7844 7845 return 0; 7846 } 7847 7848 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7849 int rw, u64 file_offset, int skip_sum, 7850 int async_submit) 7851 { 7852 struct btrfs_dio_private *dip = bio->bi_private; 7853 int write = rw & REQ_WRITE; 7854 struct btrfs_root *root = BTRFS_I(inode)->root; 7855 int ret; 7856 7857 if (async_submit) 7858 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7859 7860 bio_get(bio); 7861 7862 if (!write) { 7863 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7864 BTRFS_WQ_ENDIO_DATA); 7865 if (ret) 7866 goto err; 7867 } 7868 7869 if (skip_sum) 7870 goto map; 7871 7872 if (write && async_submit) { 7873 ret = btrfs_wq_submit_bio(root->fs_info, 7874 inode, rw, bio, 0, 0, 7875 file_offset, 7876 __btrfs_submit_bio_start_direct_io, 7877 __btrfs_submit_bio_done); 7878 goto err; 7879 } else if (write) { 7880 /* 7881 * If we aren't doing async submit, calculate the csum of the 7882 * bio now. 7883 */ 7884 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 7885 if (ret) 7886 goto err; 7887 } else { 7888 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 7889 file_offset); 7890 if (ret) 7891 goto err; 7892 } 7893 map: 7894 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 7895 err: 7896 bio_put(bio); 7897 return ret; 7898 } 7899 7900 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 7901 int skip_sum) 7902 { 7903 struct inode *inode = dip->inode; 7904 struct btrfs_root *root = BTRFS_I(inode)->root; 7905 struct bio *bio; 7906 struct bio *orig_bio = dip->orig_bio; 7907 struct bio_vec *bvec = orig_bio->bi_io_vec; 7908 u64 start_sector = orig_bio->bi_iter.bi_sector; 7909 u64 file_offset = dip->logical_offset; 7910 u64 submit_len = 0; 7911 u64 map_length; 7912 int nr_pages = 0; 7913 int ret; 7914 int async_submit = 0; 7915 7916 map_length = orig_bio->bi_iter.bi_size; 7917 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 7918 &map_length, NULL, 0); 7919 if (ret) 7920 return -EIO; 7921 7922 if (map_length >= orig_bio->bi_iter.bi_size) { 7923 bio = orig_bio; 7924 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 7925 goto submit; 7926 } 7927 7928 /* async crcs make it difficult to collect full stripe writes. */ 7929 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 7930 async_submit = 0; 7931 else 7932 async_submit = 1; 7933 7934 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 7935 if (!bio) 7936 return -ENOMEM; 7937 7938 bio->bi_private = dip; 7939 bio->bi_end_io = btrfs_end_dio_bio; 7940 btrfs_io_bio(bio)->logical = file_offset; 7941 atomic_inc(&dip->pending_bios); 7942 7943 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 7944 if (map_length < submit_len + bvec->bv_len || 7945 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 7946 bvec->bv_offset) < bvec->bv_len) { 7947 /* 7948 * inc the count before we submit the bio so 7949 * we know the end IO handler won't happen before 7950 * we inc the count. Otherwise, the dip might get freed 7951 * before we're done setting it up 7952 */ 7953 atomic_inc(&dip->pending_bios); 7954 ret = __btrfs_submit_dio_bio(bio, inode, rw, 7955 file_offset, skip_sum, 7956 async_submit); 7957 if (ret) { 7958 bio_put(bio); 7959 atomic_dec(&dip->pending_bios); 7960 goto out_err; 7961 } 7962 7963 start_sector += submit_len >> 9; 7964 file_offset += submit_len; 7965 7966 submit_len = 0; 7967 nr_pages = 0; 7968 7969 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 7970 start_sector, GFP_NOFS); 7971 if (!bio) 7972 goto out_err; 7973 bio->bi_private = dip; 7974 bio->bi_end_io = btrfs_end_dio_bio; 7975 btrfs_io_bio(bio)->logical = file_offset; 7976 7977 map_length = orig_bio->bi_iter.bi_size; 7978 ret = btrfs_map_block(root->fs_info, rw, 7979 start_sector << 9, 7980 &map_length, NULL, 0); 7981 if (ret) { 7982 bio_put(bio); 7983 goto out_err; 7984 } 7985 } else { 7986 submit_len += bvec->bv_len; 7987 nr_pages++; 7988 bvec++; 7989 } 7990 } 7991 7992 submit: 7993 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 7994 async_submit); 7995 if (!ret) 7996 return 0; 7997 7998 bio_put(bio); 7999 out_err: 8000 dip->errors = 1; 8001 /* 8002 * before atomic variable goto zero, we must 8003 * make sure dip->errors is perceived to be set. 8004 */ 8005 smp_mb__before_atomic(); 8006 if (atomic_dec_and_test(&dip->pending_bios)) 8007 bio_io_error(dip->orig_bio); 8008 8009 /* bio_end_io() will handle error, so we needn't return it */ 8010 return 0; 8011 } 8012 8013 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 8014 struct inode *inode, loff_t file_offset) 8015 { 8016 struct btrfs_root *root = BTRFS_I(inode)->root; 8017 struct btrfs_dio_private *dip; 8018 struct bio *io_bio; 8019 struct btrfs_io_bio *btrfs_bio; 8020 int skip_sum; 8021 int write = rw & REQ_WRITE; 8022 int ret = 0; 8023 8024 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8025 8026 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8027 if (!io_bio) { 8028 ret = -ENOMEM; 8029 goto free_ordered; 8030 } 8031 8032 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8033 if (!dip) { 8034 ret = -ENOMEM; 8035 goto free_io_bio; 8036 } 8037 8038 dip->private = dio_bio->bi_private; 8039 dip->inode = inode; 8040 dip->logical_offset = file_offset; 8041 dip->bytes = dio_bio->bi_iter.bi_size; 8042 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8043 io_bio->bi_private = dip; 8044 dip->orig_bio = io_bio; 8045 dip->dio_bio = dio_bio; 8046 atomic_set(&dip->pending_bios, 0); 8047 btrfs_bio = btrfs_io_bio(io_bio); 8048 btrfs_bio->logical = file_offset; 8049 8050 if (write) { 8051 io_bio->bi_end_io = btrfs_endio_direct_write; 8052 } else { 8053 io_bio->bi_end_io = btrfs_endio_direct_read; 8054 dip->subio_endio = btrfs_subio_endio_read; 8055 } 8056 8057 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 8058 if (!ret) 8059 return; 8060 8061 if (btrfs_bio->end_io) 8062 btrfs_bio->end_io(btrfs_bio, ret); 8063 free_io_bio: 8064 bio_put(io_bio); 8065 8066 free_ordered: 8067 /* 8068 * If this is a write, we need to clean up the reserved space and kill 8069 * the ordered extent. 8070 */ 8071 if (write) { 8072 struct btrfs_ordered_extent *ordered; 8073 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 8074 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 8075 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 8076 btrfs_free_reserved_extent(root, ordered->start, 8077 ordered->disk_len, 1); 8078 btrfs_put_ordered_extent(ordered); 8079 btrfs_put_ordered_extent(ordered); 8080 } 8081 bio_endio(dio_bio, ret); 8082 } 8083 8084 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8085 const struct iov_iter *iter, loff_t offset) 8086 { 8087 int seg; 8088 int i; 8089 unsigned blocksize_mask = root->sectorsize - 1; 8090 ssize_t retval = -EINVAL; 8091 8092 if (offset & blocksize_mask) 8093 goto out; 8094 8095 if (iov_iter_alignment(iter) & blocksize_mask) 8096 goto out; 8097 8098 /* If this is a write we don't need to check anymore */ 8099 if (iov_iter_rw(iter) == WRITE) 8100 return 0; 8101 /* 8102 * Check to make sure we don't have duplicate iov_base's in this 8103 * iovec, if so return EINVAL, otherwise we'll get csum errors 8104 * when reading back. 8105 */ 8106 for (seg = 0; seg < iter->nr_segs; seg++) { 8107 for (i = seg + 1; i < iter->nr_segs; i++) { 8108 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8109 goto out; 8110 } 8111 } 8112 retval = 0; 8113 out: 8114 return retval; 8115 } 8116 8117 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 8118 loff_t offset) 8119 { 8120 struct file *file = iocb->ki_filp; 8121 struct inode *inode = file->f_mapping->host; 8122 u64 outstanding_extents = 0; 8123 size_t count = 0; 8124 int flags = 0; 8125 bool wakeup = true; 8126 bool relock = false; 8127 ssize_t ret; 8128 8129 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8130 return 0; 8131 8132 atomic_inc(&inode->i_dio_count); 8133 smp_mb__after_atomic(); 8134 8135 /* 8136 * The generic stuff only does filemap_write_and_wait_range, which 8137 * isn't enough if we've written compressed pages to this area, so 8138 * we need to flush the dirty pages again to make absolutely sure 8139 * that any outstanding dirty pages are on disk. 8140 */ 8141 count = iov_iter_count(iter); 8142 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8143 &BTRFS_I(inode)->runtime_flags)) 8144 filemap_fdatawrite_range(inode->i_mapping, offset, 8145 offset + count - 1); 8146 8147 if (iov_iter_rw(iter) == WRITE) { 8148 /* 8149 * If the write DIO is beyond the EOF, we need update 8150 * the isize, but it is protected by i_mutex. So we can 8151 * not unlock the i_mutex at this case. 8152 */ 8153 if (offset + count <= inode->i_size) { 8154 mutex_unlock(&inode->i_mutex); 8155 relock = true; 8156 } 8157 ret = btrfs_delalloc_reserve_space(inode, count); 8158 if (ret) 8159 goto out; 8160 outstanding_extents = div64_u64(count + 8161 BTRFS_MAX_EXTENT_SIZE - 1, 8162 BTRFS_MAX_EXTENT_SIZE); 8163 8164 /* 8165 * We need to know how many extents we reserved so that we can 8166 * do the accounting properly if we go over the number we 8167 * originally calculated. Abuse current->journal_info for this. 8168 */ 8169 current->journal_info = &outstanding_extents; 8170 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8171 &BTRFS_I(inode)->runtime_flags)) { 8172 inode_dio_done(inode); 8173 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8174 wakeup = false; 8175 } 8176 8177 ret = __blockdev_direct_IO(iocb, inode, 8178 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8179 iter, offset, btrfs_get_blocks_direct, NULL, 8180 btrfs_submit_direct, flags); 8181 if (iov_iter_rw(iter) == WRITE) { 8182 current->journal_info = NULL; 8183 if (ret < 0 && ret != -EIOCBQUEUED) 8184 btrfs_delalloc_release_space(inode, count); 8185 else if (ret >= 0 && (size_t)ret < count) 8186 btrfs_delalloc_release_space(inode, 8187 count - (size_t)ret); 8188 } 8189 out: 8190 if (wakeup) 8191 inode_dio_done(inode); 8192 if (relock) 8193 mutex_lock(&inode->i_mutex); 8194 8195 return ret; 8196 } 8197 8198 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8199 8200 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8201 __u64 start, __u64 len) 8202 { 8203 int ret; 8204 8205 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8206 if (ret) 8207 return ret; 8208 8209 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8210 } 8211 8212 int btrfs_readpage(struct file *file, struct page *page) 8213 { 8214 struct extent_io_tree *tree; 8215 tree = &BTRFS_I(page->mapping->host)->io_tree; 8216 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8217 } 8218 8219 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8220 { 8221 struct extent_io_tree *tree; 8222 8223 8224 if (current->flags & PF_MEMALLOC) { 8225 redirty_page_for_writepage(wbc, page); 8226 unlock_page(page); 8227 return 0; 8228 } 8229 tree = &BTRFS_I(page->mapping->host)->io_tree; 8230 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8231 } 8232 8233 static int btrfs_writepages(struct address_space *mapping, 8234 struct writeback_control *wbc) 8235 { 8236 struct extent_io_tree *tree; 8237 8238 tree = &BTRFS_I(mapping->host)->io_tree; 8239 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8240 } 8241 8242 static int 8243 btrfs_readpages(struct file *file, struct address_space *mapping, 8244 struct list_head *pages, unsigned nr_pages) 8245 { 8246 struct extent_io_tree *tree; 8247 tree = &BTRFS_I(mapping->host)->io_tree; 8248 return extent_readpages(tree, mapping, pages, nr_pages, 8249 btrfs_get_extent); 8250 } 8251 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8252 { 8253 struct extent_io_tree *tree; 8254 struct extent_map_tree *map; 8255 int ret; 8256 8257 tree = &BTRFS_I(page->mapping->host)->io_tree; 8258 map = &BTRFS_I(page->mapping->host)->extent_tree; 8259 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8260 if (ret == 1) { 8261 ClearPagePrivate(page); 8262 set_page_private(page, 0); 8263 page_cache_release(page); 8264 } 8265 return ret; 8266 } 8267 8268 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8269 { 8270 if (PageWriteback(page) || PageDirty(page)) 8271 return 0; 8272 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8273 } 8274 8275 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8276 unsigned int length) 8277 { 8278 struct inode *inode = page->mapping->host; 8279 struct extent_io_tree *tree; 8280 struct btrfs_ordered_extent *ordered; 8281 struct extent_state *cached_state = NULL; 8282 u64 page_start = page_offset(page); 8283 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 8284 int inode_evicting = inode->i_state & I_FREEING; 8285 8286 /* 8287 * we have the page locked, so new writeback can't start, 8288 * and the dirty bit won't be cleared while we are here. 8289 * 8290 * Wait for IO on this page so that we can safely clear 8291 * the PagePrivate2 bit and do ordered accounting 8292 */ 8293 wait_on_page_writeback(page); 8294 8295 tree = &BTRFS_I(inode)->io_tree; 8296 if (offset) { 8297 btrfs_releasepage(page, GFP_NOFS); 8298 return; 8299 } 8300 8301 if (!inode_evicting) 8302 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 8303 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8304 if (ordered) { 8305 /* 8306 * IO on this page will never be started, so we need 8307 * to account for any ordered extents now 8308 */ 8309 if (!inode_evicting) 8310 clear_extent_bit(tree, page_start, page_end, 8311 EXTENT_DIRTY | EXTENT_DELALLOC | 8312 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8313 EXTENT_DEFRAG, 1, 0, &cached_state, 8314 GFP_NOFS); 8315 /* 8316 * whoever cleared the private bit is responsible 8317 * for the finish_ordered_io 8318 */ 8319 if (TestClearPagePrivate2(page)) { 8320 struct btrfs_ordered_inode_tree *tree; 8321 u64 new_len; 8322 8323 tree = &BTRFS_I(inode)->ordered_tree; 8324 8325 spin_lock_irq(&tree->lock); 8326 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8327 new_len = page_start - ordered->file_offset; 8328 if (new_len < ordered->truncated_len) 8329 ordered->truncated_len = new_len; 8330 spin_unlock_irq(&tree->lock); 8331 8332 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8333 page_start, 8334 PAGE_CACHE_SIZE, 1)) 8335 btrfs_finish_ordered_io(ordered); 8336 } 8337 btrfs_put_ordered_extent(ordered); 8338 if (!inode_evicting) { 8339 cached_state = NULL; 8340 lock_extent_bits(tree, page_start, page_end, 0, 8341 &cached_state); 8342 } 8343 } 8344 8345 if (!inode_evicting) { 8346 clear_extent_bit(tree, page_start, page_end, 8347 EXTENT_LOCKED | EXTENT_DIRTY | 8348 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8349 EXTENT_DEFRAG, 1, 1, 8350 &cached_state, GFP_NOFS); 8351 8352 __btrfs_releasepage(page, GFP_NOFS); 8353 } 8354 8355 ClearPageChecked(page); 8356 if (PagePrivate(page)) { 8357 ClearPagePrivate(page); 8358 set_page_private(page, 0); 8359 page_cache_release(page); 8360 } 8361 } 8362 8363 /* 8364 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8365 * called from a page fault handler when a page is first dirtied. Hence we must 8366 * be careful to check for EOF conditions here. We set the page up correctly 8367 * for a written page which means we get ENOSPC checking when writing into 8368 * holes and correct delalloc and unwritten extent mapping on filesystems that 8369 * support these features. 8370 * 8371 * We are not allowed to take the i_mutex here so we have to play games to 8372 * protect against truncate races as the page could now be beyond EOF. Because 8373 * vmtruncate() writes the inode size before removing pages, once we have the 8374 * page lock we can determine safely if the page is beyond EOF. If it is not 8375 * beyond EOF, then the page is guaranteed safe against truncation until we 8376 * unlock the page. 8377 */ 8378 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8379 { 8380 struct page *page = vmf->page; 8381 struct inode *inode = file_inode(vma->vm_file); 8382 struct btrfs_root *root = BTRFS_I(inode)->root; 8383 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8384 struct btrfs_ordered_extent *ordered; 8385 struct extent_state *cached_state = NULL; 8386 char *kaddr; 8387 unsigned long zero_start; 8388 loff_t size; 8389 int ret; 8390 int reserved = 0; 8391 u64 page_start; 8392 u64 page_end; 8393 8394 sb_start_pagefault(inode->i_sb); 8395 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 8396 if (!ret) { 8397 ret = file_update_time(vma->vm_file); 8398 reserved = 1; 8399 } 8400 if (ret) { 8401 if (ret == -ENOMEM) 8402 ret = VM_FAULT_OOM; 8403 else /* -ENOSPC, -EIO, etc */ 8404 ret = VM_FAULT_SIGBUS; 8405 if (reserved) 8406 goto out; 8407 goto out_noreserve; 8408 } 8409 8410 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8411 again: 8412 lock_page(page); 8413 size = i_size_read(inode); 8414 page_start = page_offset(page); 8415 page_end = page_start + PAGE_CACHE_SIZE - 1; 8416 8417 if ((page->mapping != inode->i_mapping) || 8418 (page_start >= size)) { 8419 /* page got truncated out from underneath us */ 8420 goto out_unlock; 8421 } 8422 wait_on_page_writeback(page); 8423 8424 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 8425 set_page_extent_mapped(page); 8426 8427 /* 8428 * we can't set the delalloc bits if there are pending ordered 8429 * extents. Drop our locks and wait for them to finish 8430 */ 8431 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8432 if (ordered) { 8433 unlock_extent_cached(io_tree, page_start, page_end, 8434 &cached_state, GFP_NOFS); 8435 unlock_page(page); 8436 btrfs_start_ordered_extent(inode, ordered, 1); 8437 btrfs_put_ordered_extent(ordered); 8438 goto again; 8439 } 8440 8441 /* 8442 * XXX - page_mkwrite gets called every time the page is dirtied, even 8443 * if it was already dirty, so for space accounting reasons we need to 8444 * clear any delalloc bits for the range we are fixing to save. There 8445 * is probably a better way to do this, but for now keep consistent with 8446 * prepare_pages in the normal write path. 8447 */ 8448 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 8449 EXTENT_DIRTY | EXTENT_DELALLOC | 8450 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8451 0, 0, &cached_state, GFP_NOFS); 8452 8453 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 8454 &cached_state); 8455 if (ret) { 8456 unlock_extent_cached(io_tree, page_start, page_end, 8457 &cached_state, GFP_NOFS); 8458 ret = VM_FAULT_SIGBUS; 8459 goto out_unlock; 8460 } 8461 ret = 0; 8462 8463 /* page is wholly or partially inside EOF */ 8464 if (page_start + PAGE_CACHE_SIZE > size) 8465 zero_start = size & ~PAGE_CACHE_MASK; 8466 else 8467 zero_start = PAGE_CACHE_SIZE; 8468 8469 if (zero_start != PAGE_CACHE_SIZE) { 8470 kaddr = kmap(page); 8471 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 8472 flush_dcache_page(page); 8473 kunmap(page); 8474 } 8475 ClearPageChecked(page); 8476 set_page_dirty(page); 8477 SetPageUptodate(page); 8478 8479 BTRFS_I(inode)->last_trans = root->fs_info->generation; 8480 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8481 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8482 8483 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 8484 8485 out_unlock: 8486 if (!ret) { 8487 sb_end_pagefault(inode->i_sb); 8488 return VM_FAULT_LOCKED; 8489 } 8490 unlock_page(page); 8491 out: 8492 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 8493 out_noreserve: 8494 sb_end_pagefault(inode->i_sb); 8495 return ret; 8496 } 8497 8498 static int btrfs_truncate(struct inode *inode) 8499 { 8500 struct btrfs_root *root = BTRFS_I(inode)->root; 8501 struct btrfs_block_rsv *rsv; 8502 int ret = 0; 8503 int err = 0; 8504 struct btrfs_trans_handle *trans; 8505 u64 mask = root->sectorsize - 1; 8506 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 8507 8508 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8509 (u64)-1); 8510 if (ret) 8511 return ret; 8512 8513 /* 8514 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 8515 * 3 things going on here 8516 * 8517 * 1) We need to reserve space for our orphan item and the space to 8518 * delete our orphan item. Lord knows we don't want to have a dangling 8519 * orphan item because we didn't reserve space to remove it. 8520 * 8521 * 2) We need to reserve space to update our inode. 8522 * 8523 * 3) We need to have something to cache all the space that is going to 8524 * be free'd up by the truncate operation, but also have some slack 8525 * space reserved in case it uses space during the truncate (thank you 8526 * very much snapshotting). 8527 * 8528 * And we need these to all be seperate. The fact is we can use alot of 8529 * space doing the truncate, and we have no earthly idea how much space 8530 * we will use, so we need the truncate reservation to be seperate so it 8531 * doesn't end up using space reserved for updating the inode or 8532 * removing the orphan item. We also need to be able to stop the 8533 * transaction and start a new one, which means we need to be able to 8534 * update the inode several times, and we have no idea of knowing how 8535 * many times that will be, so we can't just reserve 1 item for the 8536 * entirety of the opration, so that has to be done seperately as well. 8537 * Then there is the orphan item, which does indeed need to be held on 8538 * to for the whole operation, and we need nobody to touch this reserved 8539 * space except the orphan code. 8540 * 8541 * So that leaves us with 8542 * 8543 * 1) root->orphan_block_rsv - for the orphan deletion. 8544 * 2) rsv - for the truncate reservation, which we will steal from the 8545 * transaction reservation. 8546 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 8547 * updating the inode. 8548 */ 8549 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 8550 if (!rsv) 8551 return -ENOMEM; 8552 rsv->size = min_size; 8553 rsv->failfast = 1; 8554 8555 /* 8556 * 1 for the truncate slack space 8557 * 1 for updating the inode. 8558 */ 8559 trans = btrfs_start_transaction(root, 2); 8560 if (IS_ERR(trans)) { 8561 err = PTR_ERR(trans); 8562 goto out; 8563 } 8564 8565 /* Migrate the slack space for the truncate to our reserve */ 8566 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 8567 min_size); 8568 BUG_ON(ret); 8569 8570 /* 8571 * So if we truncate and then write and fsync we normally would just 8572 * write the extents that changed, which is a problem if we need to 8573 * first truncate that entire inode. So set this flag so we write out 8574 * all of the extents in the inode to the sync log so we're completely 8575 * safe. 8576 */ 8577 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8578 trans->block_rsv = rsv; 8579 8580 while (1) { 8581 ret = btrfs_truncate_inode_items(trans, root, inode, 8582 inode->i_size, 8583 BTRFS_EXTENT_DATA_KEY); 8584 if (ret != -ENOSPC) { 8585 err = ret; 8586 break; 8587 } 8588 8589 trans->block_rsv = &root->fs_info->trans_block_rsv; 8590 ret = btrfs_update_inode(trans, root, inode); 8591 if (ret) { 8592 err = ret; 8593 break; 8594 } 8595 8596 btrfs_end_transaction(trans, root); 8597 btrfs_btree_balance_dirty(root); 8598 8599 trans = btrfs_start_transaction(root, 2); 8600 if (IS_ERR(trans)) { 8601 ret = err = PTR_ERR(trans); 8602 trans = NULL; 8603 break; 8604 } 8605 8606 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 8607 rsv, min_size); 8608 BUG_ON(ret); /* shouldn't happen */ 8609 trans->block_rsv = rsv; 8610 } 8611 8612 if (ret == 0 && inode->i_nlink > 0) { 8613 trans->block_rsv = root->orphan_block_rsv; 8614 ret = btrfs_orphan_del(trans, inode); 8615 if (ret) 8616 err = ret; 8617 } 8618 8619 if (trans) { 8620 trans->block_rsv = &root->fs_info->trans_block_rsv; 8621 ret = btrfs_update_inode(trans, root, inode); 8622 if (ret && !err) 8623 err = ret; 8624 8625 ret = btrfs_end_transaction(trans, root); 8626 btrfs_btree_balance_dirty(root); 8627 } 8628 8629 out: 8630 btrfs_free_block_rsv(root, rsv); 8631 8632 if (ret && !err) 8633 err = ret; 8634 8635 return err; 8636 } 8637 8638 /* 8639 * create a new subvolume directory/inode (helper for the ioctl). 8640 */ 8641 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8642 struct btrfs_root *new_root, 8643 struct btrfs_root *parent_root, 8644 u64 new_dirid) 8645 { 8646 struct inode *inode; 8647 int err; 8648 u64 index = 0; 8649 8650 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8651 new_dirid, new_dirid, 8652 S_IFDIR | (~current_umask() & S_IRWXUGO), 8653 &index); 8654 if (IS_ERR(inode)) 8655 return PTR_ERR(inode); 8656 inode->i_op = &btrfs_dir_inode_operations; 8657 inode->i_fop = &btrfs_dir_file_operations; 8658 8659 set_nlink(inode, 1); 8660 btrfs_i_size_write(inode, 0); 8661 unlock_new_inode(inode); 8662 8663 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8664 if (err) 8665 btrfs_err(new_root->fs_info, 8666 "error inheriting subvolume %llu properties: %d", 8667 new_root->root_key.objectid, err); 8668 8669 err = btrfs_update_inode(trans, new_root, inode); 8670 8671 iput(inode); 8672 return err; 8673 } 8674 8675 struct inode *btrfs_alloc_inode(struct super_block *sb) 8676 { 8677 struct btrfs_inode *ei; 8678 struct inode *inode; 8679 8680 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 8681 if (!ei) 8682 return NULL; 8683 8684 ei->root = NULL; 8685 ei->generation = 0; 8686 ei->last_trans = 0; 8687 ei->last_sub_trans = 0; 8688 ei->logged_trans = 0; 8689 ei->delalloc_bytes = 0; 8690 ei->defrag_bytes = 0; 8691 ei->disk_i_size = 0; 8692 ei->flags = 0; 8693 ei->csum_bytes = 0; 8694 ei->index_cnt = (u64)-1; 8695 ei->dir_index = 0; 8696 ei->last_unlink_trans = 0; 8697 ei->last_log_commit = 0; 8698 8699 spin_lock_init(&ei->lock); 8700 ei->outstanding_extents = 0; 8701 ei->reserved_extents = 0; 8702 8703 ei->runtime_flags = 0; 8704 ei->force_compress = BTRFS_COMPRESS_NONE; 8705 8706 ei->delayed_node = NULL; 8707 8708 ei->i_otime.tv_sec = 0; 8709 ei->i_otime.tv_nsec = 0; 8710 8711 inode = &ei->vfs_inode; 8712 extent_map_tree_init(&ei->extent_tree); 8713 extent_io_tree_init(&ei->io_tree, &inode->i_data); 8714 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 8715 ei->io_tree.track_uptodate = 1; 8716 ei->io_failure_tree.track_uptodate = 1; 8717 atomic_set(&ei->sync_writers, 0); 8718 mutex_init(&ei->log_mutex); 8719 mutex_init(&ei->delalloc_mutex); 8720 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8721 INIT_LIST_HEAD(&ei->delalloc_inodes); 8722 RB_CLEAR_NODE(&ei->rb_node); 8723 8724 return inode; 8725 } 8726 8727 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8728 void btrfs_test_destroy_inode(struct inode *inode) 8729 { 8730 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8731 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8732 } 8733 #endif 8734 8735 static void btrfs_i_callback(struct rcu_head *head) 8736 { 8737 struct inode *inode = container_of(head, struct inode, i_rcu); 8738 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8739 } 8740 8741 void btrfs_destroy_inode(struct inode *inode) 8742 { 8743 struct btrfs_ordered_extent *ordered; 8744 struct btrfs_root *root = BTRFS_I(inode)->root; 8745 8746 WARN_ON(!hlist_empty(&inode->i_dentry)); 8747 WARN_ON(inode->i_data.nrpages); 8748 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8749 WARN_ON(BTRFS_I(inode)->reserved_extents); 8750 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8751 WARN_ON(BTRFS_I(inode)->csum_bytes); 8752 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8753 8754 /* 8755 * This can happen where we create an inode, but somebody else also 8756 * created the same inode and we need to destroy the one we already 8757 * created. 8758 */ 8759 if (!root) 8760 goto free; 8761 8762 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 8763 &BTRFS_I(inode)->runtime_flags)) { 8764 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 8765 btrfs_ino(inode)); 8766 atomic_dec(&root->orphan_inodes); 8767 } 8768 8769 while (1) { 8770 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8771 if (!ordered) 8772 break; 8773 else { 8774 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 8775 ordered->file_offset, ordered->len); 8776 btrfs_remove_ordered_extent(inode, ordered); 8777 btrfs_put_ordered_extent(ordered); 8778 btrfs_put_ordered_extent(ordered); 8779 } 8780 } 8781 inode_tree_del(inode); 8782 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8783 free: 8784 call_rcu(&inode->i_rcu, btrfs_i_callback); 8785 } 8786 8787 int btrfs_drop_inode(struct inode *inode) 8788 { 8789 struct btrfs_root *root = BTRFS_I(inode)->root; 8790 8791 if (root == NULL) 8792 return 1; 8793 8794 /* the snap/subvol tree is on deleting */ 8795 if (btrfs_root_refs(&root->root_item) == 0) 8796 return 1; 8797 else 8798 return generic_drop_inode(inode); 8799 } 8800 8801 static void init_once(void *foo) 8802 { 8803 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8804 8805 inode_init_once(&ei->vfs_inode); 8806 } 8807 8808 void btrfs_destroy_cachep(void) 8809 { 8810 /* 8811 * Make sure all delayed rcu free inodes are flushed before we 8812 * destroy cache. 8813 */ 8814 rcu_barrier(); 8815 if (btrfs_inode_cachep) 8816 kmem_cache_destroy(btrfs_inode_cachep); 8817 if (btrfs_trans_handle_cachep) 8818 kmem_cache_destroy(btrfs_trans_handle_cachep); 8819 if (btrfs_transaction_cachep) 8820 kmem_cache_destroy(btrfs_transaction_cachep); 8821 if (btrfs_path_cachep) 8822 kmem_cache_destroy(btrfs_path_cachep); 8823 if (btrfs_free_space_cachep) 8824 kmem_cache_destroy(btrfs_free_space_cachep); 8825 if (btrfs_delalloc_work_cachep) 8826 kmem_cache_destroy(btrfs_delalloc_work_cachep); 8827 } 8828 8829 int btrfs_init_cachep(void) 8830 { 8831 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8832 sizeof(struct btrfs_inode), 0, 8833 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 8834 if (!btrfs_inode_cachep) 8835 goto fail; 8836 8837 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8838 sizeof(struct btrfs_trans_handle), 0, 8839 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8840 if (!btrfs_trans_handle_cachep) 8841 goto fail; 8842 8843 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 8844 sizeof(struct btrfs_transaction), 0, 8845 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8846 if (!btrfs_transaction_cachep) 8847 goto fail; 8848 8849 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8850 sizeof(struct btrfs_path), 0, 8851 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8852 if (!btrfs_path_cachep) 8853 goto fail; 8854 8855 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8856 sizeof(struct btrfs_free_space), 0, 8857 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8858 if (!btrfs_free_space_cachep) 8859 goto fail; 8860 8861 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 8862 sizeof(struct btrfs_delalloc_work), 0, 8863 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 8864 NULL); 8865 if (!btrfs_delalloc_work_cachep) 8866 goto fail; 8867 8868 return 0; 8869 fail: 8870 btrfs_destroy_cachep(); 8871 return -ENOMEM; 8872 } 8873 8874 static int btrfs_getattr(struct vfsmount *mnt, 8875 struct dentry *dentry, struct kstat *stat) 8876 { 8877 u64 delalloc_bytes; 8878 struct inode *inode = dentry->d_inode; 8879 u32 blocksize = inode->i_sb->s_blocksize; 8880 8881 generic_fillattr(inode, stat); 8882 stat->dev = BTRFS_I(inode)->root->anon_dev; 8883 stat->blksize = PAGE_CACHE_SIZE; 8884 8885 spin_lock(&BTRFS_I(inode)->lock); 8886 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 8887 spin_unlock(&BTRFS_I(inode)->lock); 8888 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8889 ALIGN(delalloc_bytes, blocksize)) >> 9; 8890 return 0; 8891 } 8892 8893 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 8894 struct inode *new_dir, struct dentry *new_dentry) 8895 { 8896 struct btrfs_trans_handle *trans; 8897 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8898 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8899 struct inode *new_inode = new_dentry->d_inode; 8900 struct inode *old_inode = old_dentry->d_inode; 8901 struct timespec ctime = CURRENT_TIME; 8902 u64 index = 0; 8903 u64 root_objectid; 8904 int ret; 8905 u64 old_ino = btrfs_ino(old_inode); 8906 8907 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8908 return -EPERM; 8909 8910 /* we only allow rename subvolume link between subvolumes */ 8911 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8912 return -EXDEV; 8913 8914 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8915 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 8916 return -ENOTEMPTY; 8917 8918 if (S_ISDIR(old_inode->i_mode) && new_inode && 8919 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8920 return -ENOTEMPTY; 8921 8922 8923 /* check for collisions, even if the name isn't there */ 8924 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 8925 new_dentry->d_name.name, 8926 new_dentry->d_name.len); 8927 8928 if (ret) { 8929 if (ret == -EEXIST) { 8930 /* we shouldn't get 8931 * eexist without a new_inode */ 8932 if (WARN_ON(!new_inode)) { 8933 return ret; 8934 } 8935 } else { 8936 /* maybe -EOVERFLOW */ 8937 return ret; 8938 } 8939 } 8940 ret = 0; 8941 8942 /* 8943 * we're using rename to replace one file with another. Start IO on it 8944 * now so we don't add too much work to the end of the transaction 8945 */ 8946 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8947 filemap_flush(old_inode->i_mapping); 8948 8949 /* close the racy window with snapshot create/destroy ioctl */ 8950 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8951 down_read(&root->fs_info->subvol_sem); 8952 /* 8953 * We want to reserve the absolute worst case amount of items. So if 8954 * both inodes are subvols and we need to unlink them then that would 8955 * require 4 item modifications, but if they are both normal inodes it 8956 * would require 5 item modifications, so we'll assume their normal 8957 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 8958 * should cover the worst case number of items we'll modify. 8959 */ 8960 trans = btrfs_start_transaction(root, 11); 8961 if (IS_ERR(trans)) { 8962 ret = PTR_ERR(trans); 8963 goto out_notrans; 8964 } 8965 8966 if (dest != root) 8967 btrfs_record_root_in_trans(trans, dest); 8968 8969 ret = btrfs_set_inode_index(new_dir, &index); 8970 if (ret) 8971 goto out_fail; 8972 8973 BTRFS_I(old_inode)->dir_index = 0ULL; 8974 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8975 /* force full log commit if subvolume involved. */ 8976 btrfs_set_log_full_commit(root->fs_info, trans); 8977 } else { 8978 ret = btrfs_insert_inode_ref(trans, dest, 8979 new_dentry->d_name.name, 8980 new_dentry->d_name.len, 8981 old_ino, 8982 btrfs_ino(new_dir), index); 8983 if (ret) 8984 goto out_fail; 8985 /* 8986 * this is an ugly little race, but the rename is required 8987 * to make sure that if we crash, the inode is either at the 8988 * old name or the new one. pinning the log transaction lets 8989 * us make sure we don't allow a log commit to come in after 8990 * we unlink the name but before we add the new name back in. 8991 */ 8992 btrfs_pin_log_trans(root); 8993 } 8994 8995 inode_inc_iversion(old_dir); 8996 inode_inc_iversion(new_dir); 8997 inode_inc_iversion(old_inode); 8998 old_dir->i_ctime = old_dir->i_mtime = ctime; 8999 new_dir->i_ctime = new_dir->i_mtime = ctime; 9000 old_inode->i_ctime = ctime; 9001 9002 if (old_dentry->d_parent != new_dentry->d_parent) 9003 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9004 9005 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9006 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9007 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9008 old_dentry->d_name.name, 9009 old_dentry->d_name.len); 9010 } else { 9011 ret = __btrfs_unlink_inode(trans, root, old_dir, 9012 old_dentry->d_inode, 9013 old_dentry->d_name.name, 9014 old_dentry->d_name.len); 9015 if (!ret) 9016 ret = btrfs_update_inode(trans, root, old_inode); 9017 } 9018 if (ret) { 9019 btrfs_abort_transaction(trans, root, ret); 9020 goto out_fail; 9021 } 9022 9023 if (new_inode) { 9024 inode_inc_iversion(new_inode); 9025 new_inode->i_ctime = CURRENT_TIME; 9026 if (unlikely(btrfs_ino(new_inode) == 9027 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9028 root_objectid = BTRFS_I(new_inode)->location.objectid; 9029 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9030 root_objectid, 9031 new_dentry->d_name.name, 9032 new_dentry->d_name.len); 9033 BUG_ON(new_inode->i_nlink == 0); 9034 } else { 9035 ret = btrfs_unlink_inode(trans, dest, new_dir, 9036 new_dentry->d_inode, 9037 new_dentry->d_name.name, 9038 new_dentry->d_name.len); 9039 } 9040 if (!ret && new_inode->i_nlink == 0) 9041 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 9042 if (ret) { 9043 btrfs_abort_transaction(trans, root, ret); 9044 goto out_fail; 9045 } 9046 } 9047 9048 ret = btrfs_add_link(trans, new_dir, old_inode, 9049 new_dentry->d_name.name, 9050 new_dentry->d_name.len, 0, index); 9051 if (ret) { 9052 btrfs_abort_transaction(trans, root, ret); 9053 goto out_fail; 9054 } 9055 9056 if (old_inode->i_nlink == 1) 9057 BTRFS_I(old_inode)->dir_index = index; 9058 9059 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 9060 struct dentry *parent = new_dentry->d_parent; 9061 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9062 btrfs_end_log_trans(root); 9063 } 9064 out_fail: 9065 btrfs_end_transaction(trans, root); 9066 out_notrans: 9067 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9068 up_read(&root->fs_info->subvol_sem); 9069 9070 return ret; 9071 } 9072 9073 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9074 struct inode *new_dir, struct dentry *new_dentry, 9075 unsigned int flags) 9076 { 9077 if (flags & ~RENAME_NOREPLACE) 9078 return -EINVAL; 9079 9080 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry); 9081 } 9082 9083 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9084 { 9085 struct btrfs_delalloc_work *delalloc_work; 9086 struct inode *inode; 9087 9088 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9089 work); 9090 inode = delalloc_work->inode; 9091 if (delalloc_work->wait) { 9092 btrfs_wait_ordered_range(inode, 0, (u64)-1); 9093 } else { 9094 filemap_flush(inode->i_mapping); 9095 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9096 &BTRFS_I(inode)->runtime_flags)) 9097 filemap_flush(inode->i_mapping); 9098 } 9099 9100 if (delalloc_work->delay_iput) 9101 btrfs_add_delayed_iput(inode); 9102 else 9103 iput(inode); 9104 complete(&delalloc_work->completion); 9105 } 9106 9107 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9108 int wait, int delay_iput) 9109 { 9110 struct btrfs_delalloc_work *work; 9111 9112 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 9113 if (!work) 9114 return NULL; 9115 9116 init_completion(&work->completion); 9117 INIT_LIST_HEAD(&work->list); 9118 work->inode = inode; 9119 work->wait = wait; 9120 work->delay_iput = delay_iput; 9121 WARN_ON_ONCE(!inode); 9122 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9123 btrfs_run_delalloc_work, NULL, NULL); 9124 9125 return work; 9126 } 9127 9128 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9129 { 9130 wait_for_completion(&work->completion); 9131 kmem_cache_free(btrfs_delalloc_work_cachep, work); 9132 } 9133 9134 /* 9135 * some fairly slow code that needs optimization. This walks the list 9136 * of all the inodes with pending delalloc and forces them to disk. 9137 */ 9138 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9139 int nr) 9140 { 9141 struct btrfs_inode *binode; 9142 struct inode *inode; 9143 struct btrfs_delalloc_work *work, *next; 9144 struct list_head works; 9145 struct list_head splice; 9146 int ret = 0; 9147 9148 INIT_LIST_HEAD(&works); 9149 INIT_LIST_HEAD(&splice); 9150 9151 mutex_lock(&root->delalloc_mutex); 9152 spin_lock(&root->delalloc_lock); 9153 list_splice_init(&root->delalloc_inodes, &splice); 9154 while (!list_empty(&splice)) { 9155 binode = list_entry(splice.next, struct btrfs_inode, 9156 delalloc_inodes); 9157 9158 list_move_tail(&binode->delalloc_inodes, 9159 &root->delalloc_inodes); 9160 inode = igrab(&binode->vfs_inode); 9161 if (!inode) { 9162 cond_resched_lock(&root->delalloc_lock); 9163 continue; 9164 } 9165 spin_unlock(&root->delalloc_lock); 9166 9167 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 9168 if (!work) { 9169 if (delay_iput) 9170 btrfs_add_delayed_iput(inode); 9171 else 9172 iput(inode); 9173 ret = -ENOMEM; 9174 goto out; 9175 } 9176 list_add_tail(&work->list, &works); 9177 btrfs_queue_work(root->fs_info->flush_workers, 9178 &work->work); 9179 ret++; 9180 if (nr != -1 && ret >= nr) 9181 goto out; 9182 cond_resched(); 9183 spin_lock(&root->delalloc_lock); 9184 } 9185 spin_unlock(&root->delalloc_lock); 9186 9187 out: 9188 list_for_each_entry_safe(work, next, &works, list) { 9189 list_del_init(&work->list); 9190 btrfs_wait_and_free_delalloc_work(work); 9191 } 9192 9193 if (!list_empty_careful(&splice)) { 9194 spin_lock(&root->delalloc_lock); 9195 list_splice_tail(&splice, &root->delalloc_inodes); 9196 spin_unlock(&root->delalloc_lock); 9197 } 9198 mutex_unlock(&root->delalloc_mutex); 9199 return ret; 9200 } 9201 9202 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 9203 { 9204 int ret; 9205 9206 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 9207 return -EROFS; 9208 9209 ret = __start_delalloc_inodes(root, delay_iput, -1); 9210 if (ret > 0) 9211 ret = 0; 9212 /* 9213 * the filemap_flush will queue IO into the worker threads, but 9214 * we have to make sure the IO is actually started and that 9215 * ordered extents get created before we return 9216 */ 9217 atomic_inc(&root->fs_info->async_submit_draining); 9218 while (atomic_read(&root->fs_info->nr_async_submits) || 9219 atomic_read(&root->fs_info->async_delalloc_pages)) { 9220 wait_event(root->fs_info->async_submit_wait, 9221 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 9222 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 9223 } 9224 atomic_dec(&root->fs_info->async_submit_draining); 9225 return ret; 9226 } 9227 9228 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 9229 int nr) 9230 { 9231 struct btrfs_root *root; 9232 struct list_head splice; 9233 int ret; 9234 9235 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9236 return -EROFS; 9237 9238 INIT_LIST_HEAD(&splice); 9239 9240 mutex_lock(&fs_info->delalloc_root_mutex); 9241 spin_lock(&fs_info->delalloc_root_lock); 9242 list_splice_init(&fs_info->delalloc_roots, &splice); 9243 while (!list_empty(&splice) && nr) { 9244 root = list_first_entry(&splice, struct btrfs_root, 9245 delalloc_root); 9246 root = btrfs_grab_fs_root(root); 9247 BUG_ON(!root); 9248 list_move_tail(&root->delalloc_root, 9249 &fs_info->delalloc_roots); 9250 spin_unlock(&fs_info->delalloc_root_lock); 9251 9252 ret = __start_delalloc_inodes(root, delay_iput, nr); 9253 btrfs_put_fs_root(root); 9254 if (ret < 0) 9255 goto out; 9256 9257 if (nr != -1) { 9258 nr -= ret; 9259 WARN_ON(nr < 0); 9260 } 9261 spin_lock(&fs_info->delalloc_root_lock); 9262 } 9263 spin_unlock(&fs_info->delalloc_root_lock); 9264 9265 ret = 0; 9266 atomic_inc(&fs_info->async_submit_draining); 9267 while (atomic_read(&fs_info->nr_async_submits) || 9268 atomic_read(&fs_info->async_delalloc_pages)) { 9269 wait_event(fs_info->async_submit_wait, 9270 (atomic_read(&fs_info->nr_async_submits) == 0 && 9271 atomic_read(&fs_info->async_delalloc_pages) == 0)); 9272 } 9273 atomic_dec(&fs_info->async_submit_draining); 9274 out: 9275 if (!list_empty_careful(&splice)) { 9276 spin_lock(&fs_info->delalloc_root_lock); 9277 list_splice_tail(&splice, &fs_info->delalloc_roots); 9278 spin_unlock(&fs_info->delalloc_root_lock); 9279 } 9280 mutex_unlock(&fs_info->delalloc_root_mutex); 9281 return ret; 9282 } 9283 9284 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9285 const char *symname) 9286 { 9287 struct btrfs_trans_handle *trans; 9288 struct btrfs_root *root = BTRFS_I(dir)->root; 9289 struct btrfs_path *path; 9290 struct btrfs_key key; 9291 struct inode *inode = NULL; 9292 int err; 9293 int drop_inode = 0; 9294 u64 objectid; 9295 u64 index = 0; 9296 int name_len; 9297 int datasize; 9298 unsigned long ptr; 9299 struct btrfs_file_extent_item *ei; 9300 struct extent_buffer *leaf; 9301 9302 name_len = strlen(symname); 9303 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 9304 return -ENAMETOOLONG; 9305 9306 /* 9307 * 2 items for inode item and ref 9308 * 2 items for dir items 9309 * 1 item for xattr if selinux is on 9310 */ 9311 trans = btrfs_start_transaction(root, 5); 9312 if (IS_ERR(trans)) 9313 return PTR_ERR(trans); 9314 9315 err = btrfs_find_free_ino(root, &objectid); 9316 if (err) 9317 goto out_unlock; 9318 9319 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9320 dentry->d_name.len, btrfs_ino(dir), objectid, 9321 S_IFLNK|S_IRWXUGO, &index); 9322 if (IS_ERR(inode)) { 9323 err = PTR_ERR(inode); 9324 goto out_unlock; 9325 } 9326 9327 /* 9328 * If the active LSM wants to access the inode during 9329 * d_instantiate it needs these. Smack checks to see 9330 * if the filesystem supports xattrs by looking at the 9331 * ops vector. 9332 */ 9333 inode->i_fop = &btrfs_file_operations; 9334 inode->i_op = &btrfs_file_inode_operations; 9335 inode->i_mapping->a_ops = &btrfs_aops; 9336 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9337 9338 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9339 if (err) 9340 goto out_unlock_inode; 9341 9342 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 9343 if (err) 9344 goto out_unlock_inode; 9345 9346 path = btrfs_alloc_path(); 9347 if (!path) { 9348 err = -ENOMEM; 9349 goto out_unlock_inode; 9350 } 9351 key.objectid = btrfs_ino(inode); 9352 key.offset = 0; 9353 key.type = BTRFS_EXTENT_DATA_KEY; 9354 datasize = btrfs_file_extent_calc_inline_size(name_len); 9355 err = btrfs_insert_empty_item(trans, root, path, &key, 9356 datasize); 9357 if (err) { 9358 btrfs_free_path(path); 9359 goto out_unlock_inode; 9360 } 9361 leaf = path->nodes[0]; 9362 ei = btrfs_item_ptr(leaf, path->slots[0], 9363 struct btrfs_file_extent_item); 9364 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9365 btrfs_set_file_extent_type(leaf, ei, 9366 BTRFS_FILE_EXTENT_INLINE); 9367 btrfs_set_file_extent_encryption(leaf, ei, 0); 9368 btrfs_set_file_extent_compression(leaf, ei, 0); 9369 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9370 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9371 9372 ptr = btrfs_file_extent_inline_start(ei); 9373 write_extent_buffer(leaf, symname, ptr, name_len); 9374 btrfs_mark_buffer_dirty(leaf); 9375 btrfs_free_path(path); 9376 9377 inode->i_op = &btrfs_symlink_inode_operations; 9378 inode->i_mapping->a_ops = &btrfs_symlink_aops; 9379 inode_set_bytes(inode, name_len); 9380 btrfs_i_size_write(inode, name_len); 9381 err = btrfs_update_inode(trans, root, inode); 9382 if (err) { 9383 drop_inode = 1; 9384 goto out_unlock_inode; 9385 } 9386 9387 unlock_new_inode(inode); 9388 d_instantiate(dentry, inode); 9389 9390 out_unlock: 9391 btrfs_end_transaction(trans, root); 9392 if (drop_inode) { 9393 inode_dec_link_count(inode); 9394 iput(inode); 9395 } 9396 btrfs_btree_balance_dirty(root); 9397 return err; 9398 9399 out_unlock_inode: 9400 drop_inode = 1; 9401 unlock_new_inode(inode); 9402 goto out_unlock; 9403 } 9404 9405 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9406 u64 start, u64 num_bytes, u64 min_size, 9407 loff_t actual_len, u64 *alloc_hint, 9408 struct btrfs_trans_handle *trans) 9409 { 9410 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9411 struct extent_map *em; 9412 struct btrfs_root *root = BTRFS_I(inode)->root; 9413 struct btrfs_key ins; 9414 u64 cur_offset = start; 9415 u64 i_size; 9416 u64 cur_bytes; 9417 int ret = 0; 9418 bool own_trans = true; 9419 9420 if (trans) 9421 own_trans = false; 9422 while (num_bytes > 0) { 9423 if (own_trans) { 9424 trans = btrfs_start_transaction(root, 3); 9425 if (IS_ERR(trans)) { 9426 ret = PTR_ERR(trans); 9427 break; 9428 } 9429 } 9430 9431 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 9432 cur_bytes = max(cur_bytes, min_size); 9433 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 9434 *alloc_hint, &ins, 1, 0); 9435 if (ret) { 9436 if (own_trans) 9437 btrfs_end_transaction(trans, root); 9438 break; 9439 } 9440 9441 ret = insert_reserved_file_extent(trans, inode, 9442 cur_offset, ins.objectid, 9443 ins.offset, ins.offset, 9444 ins.offset, 0, 0, 0, 9445 BTRFS_FILE_EXTENT_PREALLOC); 9446 if (ret) { 9447 btrfs_free_reserved_extent(root, ins.objectid, 9448 ins.offset, 0); 9449 btrfs_abort_transaction(trans, root, ret); 9450 if (own_trans) 9451 btrfs_end_transaction(trans, root); 9452 break; 9453 } 9454 btrfs_drop_extent_cache(inode, cur_offset, 9455 cur_offset + ins.offset -1, 0); 9456 9457 em = alloc_extent_map(); 9458 if (!em) { 9459 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9460 &BTRFS_I(inode)->runtime_flags); 9461 goto next; 9462 } 9463 9464 em->start = cur_offset; 9465 em->orig_start = cur_offset; 9466 em->len = ins.offset; 9467 em->block_start = ins.objectid; 9468 em->block_len = ins.offset; 9469 em->orig_block_len = ins.offset; 9470 em->ram_bytes = ins.offset; 9471 em->bdev = root->fs_info->fs_devices->latest_bdev; 9472 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9473 em->generation = trans->transid; 9474 9475 while (1) { 9476 write_lock(&em_tree->lock); 9477 ret = add_extent_mapping(em_tree, em, 1); 9478 write_unlock(&em_tree->lock); 9479 if (ret != -EEXIST) 9480 break; 9481 btrfs_drop_extent_cache(inode, cur_offset, 9482 cur_offset + ins.offset - 1, 9483 0); 9484 } 9485 free_extent_map(em); 9486 next: 9487 num_bytes -= ins.offset; 9488 cur_offset += ins.offset; 9489 *alloc_hint = ins.objectid + ins.offset; 9490 9491 inode_inc_iversion(inode); 9492 inode->i_ctime = CURRENT_TIME; 9493 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9494 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9495 (actual_len > inode->i_size) && 9496 (cur_offset > inode->i_size)) { 9497 if (cur_offset > actual_len) 9498 i_size = actual_len; 9499 else 9500 i_size = cur_offset; 9501 i_size_write(inode, i_size); 9502 btrfs_ordered_update_i_size(inode, i_size, NULL); 9503 } 9504 9505 ret = btrfs_update_inode(trans, root, inode); 9506 9507 if (ret) { 9508 btrfs_abort_transaction(trans, root, ret); 9509 if (own_trans) 9510 btrfs_end_transaction(trans, root); 9511 break; 9512 } 9513 9514 if (own_trans) 9515 btrfs_end_transaction(trans, root); 9516 } 9517 return ret; 9518 } 9519 9520 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9521 u64 start, u64 num_bytes, u64 min_size, 9522 loff_t actual_len, u64 *alloc_hint) 9523 { 9524 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9525 min_size, actual_len, alloc_hint, 9526 NULL); 9527 } 9528 9529 int btrfs_prealloc_file_range_trans(struct inode *inode, 9530 struct btrfs_trans_handle *trans, int mode, 9531 u64 start, u64 num_bytes, u64 min_size, 9532 loff_t actual_len, u64 *alloc_hint) 9533 { 9534 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9535 min_size, actual_len, alloc_hint, trans); 9536 } 9537 9538 static int btrfs_set_page_dirty(struct page *page) 9539 { 9540 return __set_page_dirty_nobuffers(page); 9541 } 9542 9543 static int btrfs_permission(struct inode *inode, int mask) 9544 { 9545 struct btrfs_root *root = BTRFS_I(inode)->root; 9546 umode_t mode = inode->i_mode; 9547 9548 if (mask & MAY_WRITE && 9549 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9550 if (btrfs_root_readonly(root)) 9551 return -EROFS; 9552 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9553 return -EACCES; 9554 } 9555 return generic_permission(inode, mask); 9556 } 9557 9558 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9559 { 9560 struct btrfs_trans_handle *trans; 9561 struct btrfs_root *root = BTRFS_I(dir)->root; 9562 struct inode *inode = NULL; 9563 u64 objectid; 9564 u64 index; 9565 int ret = 0; 9566 9567 /* 9568 * 5 units required for adding orphan entry 9569 */ 9570 trans = btrfs_start_transaction(root, 5); 9571 if (IS_ERR(trans)) 9572 return PTR_ERR(trans); 9573 9574 ret = btrfs_find_free_ino(root, &objectid); 9575 if (ret) 9576 goto out; 9577 9578 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9579 btrfs_ino(dir), objectid, mode, &index); 9580 if (IS_ERR(inode)) { 9581 ret = PTR_ERR(inode); 9582 inode = NULL; 9583 goto out; 9584 } 9585 9586 inode->i_fop = &btrfs_file_operations; 9587 inode->i_op = &btrfs_file_inode_operations; 9588 9589 inode->i_mapping->a_ops = &btrfs_aops; 9590 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9591 9592 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9593 if (ret) 9594 goto out_inode; 9595 9596 ret = btrfs_update_inode(trans, root, inode); 9597 if (ret) 9598 goto out_inode; 9599 ret = btrfs_orphan_add(trans, inode); 9600 if (ret) 9601 goto out_inode; 9602 9603 /* 9604 * We set number of links to 0 in btrfs_new_inode(), and here we set 9605 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9606 * through: 9607 * 9608 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9609 */ 9610 set_nlink(inode, 1); 9611 unlock_new_inode(inode); 9612 d_tmpfile(dentry, inode); 9613 mark_inode_dirty(inode); 9614 9615 out: 9616 btrfs_end_transaction(trans, root); 9617 if (ret) 9618 iput(inode); 9619 btrfs_balance_delayed_items(root); 9620 btrfs_btree_balance_dirty(root); 9621 return ret; 9622 9623 out_inode: 9624 unlock_new_inode(inode); 9625 goto out; 9626 9627 } 9628 9629 /* Inspired by filemap_check_errors() */ 9630 int btrfs_inode_check_errors(struct inode *inode) 9631 { 9632 int ret = 0; 9633 9634 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 9635 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 9636 ret = -ENOSPC; 9637 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 9638 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 9639 ret = -EIO; 9640 9641 return ret; 9642 } 9643 9644 static const struct inode_operations btrfs_dir_inode_operations = { 9645 .getattr = btrfs_getattr, 9646 .lookup = btrfs_lookup, 9647 .create = btrfs_create, 9648 .unlink = btrfs_unlink, 9649 .link = btrfs_link, 9650 .mkdir = btrfs_mkdir, 9651 .rmdir = btrfs_rmdir, 9652 .rename2 = btrfs_rename2, 9653 .symlink = btrfs_symlink, 9654 .setattr = btrfs_setattr, 9655 .mknod = btrfs_mknod, 9656 .setxattr = btrfs_setxattr, 9657 .getxattr = btrfs_getxattr, 9658 .listxattr = btrfs_listxattr, 9659 .removexattr = btrfs_removexattr, 9660 .permission = btrfs_permission, 9661 .get_acl = btrfs_get_acl, 9662 .set_acl = btrfs_set_acl, 9663 .update_time = btrfs_update_time, 9664 .tmpfile = btrfs_tmpfile, 9665 }; 9666 static const struct inode_operations btrfs_dir_ro_inode_operations = { 9667 .lookup = btrfs_lookup, 9668 .permission = btrfs_permission, 9669 .get_acl = btrfs_get_acl, 9670 .set_acl = btrfs_set_acl, 9671 .update_time = btrfs_update_time, 9672 }; 9673 9674 static const struct file_operations btrfs_dir_file_operations = { 9675 .llseek = generic_file_llseek, 9676 .read = generic_read_dir, 9677 .iterate = btrfs_real_readdir, 9678 .unlocked_ioctl = btrfs_ioctl, 9679 #ifdef CONFIG_COMPAT 9680 .compat_ioctl = btrfs_ioctl, 9681 #endif 9682 .release = btrfs_release_file, 9683 .fsync = btrfs_sync_file, 9684 }; 9685 9686 static struct extent_io_ops btrfs_extent_io_ops = { 9687 .fill_delalloc = run_delalloc_range, 9688 .submit_bio_hook = btrfs_submit_bio_hook, 9689 .merge_bio_hook = btrfs_merge_bio_hook, 9690 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 9691 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 9692 .writepage_start_hook = btrfs_writepage_start_hook, 9693 .set_bit_hook = btrfs_set_bit_hook, 9694 .clear_bit_hook = btrfs_clear_bit_hook, 9695 .merge_extent_hook = btrfs_merge_extent_hook, 9696 .split_extent_hook = btrfs_split_extent_hook, 9697 }; 9698 9699 /* 9700 * btrfs doesn't support the bmap operation because swapfiles 9701 * use bmap to make a mapping of extents in the file. They assume 9702 * these extents won't change over the life of the file and they 9703 * use the bmap result to do IO directly to the drive. 9704 * 9705 * the btrfs bmap call would return logical addresses that aren't 9706 * suitable for IO and they also will change frequently as COW 9707 * operations happen. So, swapfile + btrfs == corruption. 9708 * 9709 * For now we're avoiding this by dropping bmap. 9710 */ 9711 static const struct address_space_operations btrfs_aops = { 9712 .readpage = btrfs_readpage, 9713 .writepage = btrfs_writepage, 9714 .writepages = btrfs_writepages, 9715 .readpages = btrfs_readpages, 9716 .direct_IO = btrfs_direct_IO, 9717 .invalidatepage = btrfs_invalidatepage, 9718 .releasepage = btrfs_releasepage, 9719 .set_page_dirty = btrfs_set_page_dirty, 9720 .error_remove_page = generic_error_remove_page, 9721 }; 9722 9723 static const struct address_space_operations btrfs_symlink_aops = { 9724 .readpage = btrfs_readpage, 9725 .writepage = btrfs_writepage, 9726 .invalidatepage = btrfs_invalidatepage, 9727 .releasepage = btrfs_releasepage, 9728 }; 9729 9730 static const struct inode_operations btrfs_file_inode_operations = { 9731 .getattr = btrfs_getattr, 9732 .setattr = btrfs_setattr, 9733 .setxattr = btrfs_setxattr, 9734 .getxattr = btrfs_getxattr, 9735 .listxattr = btrfs_listxattr, 9736 .removexattr = btrfs_removexattr, 9737 .permission = btrfs_permission, 9738 .fiemap = btrfs_fiemap, 9739 .get_acl = btrfs_get_acl, 9740 .set_acl = btrfs_set_acl, 9741 .update_time = btrfs_update_time, 9742 }; 9743 static const struct inode_operations btrfs_special_inode_operations = { 9744 .getattr = btrfs_getattr, 9745 .setattr = btrfs_setattr, 9746 .permission = btrfs_permission, 9747 .setxattr = btrfs_setxattr, 9748 .getxattr = btrfs_getxattr, 9749 .listxattr = btrfs_listxattr, 9750 .removexattr = btrfs_removexattr, 9751 .get_acl = btrfs_get_acl, 9752 .set_acl = btrfs_set_acl, 9753 .update_time = btrfs_update_time, 9754 }; 9755 static const struct inode_operations btrfs_symlink_inode_operations = { 9756 .readlink = generic_readlink, 9757 .follow_link = page_follow_link_light, 9758 .put_link = page_put_link, 9759 .getattr = btrfs_getattr, 9760 .setattr = btrfs_setattr, 9761 .permission = btrfs_permission, 9762 .setxattr = btrfs_setxattr, 9763 .getxattr = btrfs_getxattr, 9764 .listxattr = btrfs_listxattr, 9765 .removexattr = btrfs_removexattr, 9766 .update_time = btrfs_update_time, 9767 }; 9768 9769 const struct dentry_operations btrfs_dentry_operations = { 9770 .d_delete = btrfs_dentry_delete, 9771 .d_release = btrfs_dentry_release, 9772 }; 9773