1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <asm/unaligned.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "print-tree.h" 37 #include "ordered-data.h" 38 #include "xattr.h" 39 #include "tree-log.h" 40 #include "volumes.h" 41 #include "compression.h" 42 #include "locking.h" 43 #include "free-space-cache.h" 44 #include "inode-map.h" 45 #include "backref.h" 46 #include "props.h" 47 #include "qgroup.h" 48 #include "dedupe.h" 49 50 struct btrfs_iget_args { 51 struct btrfs_key *location; 52 struct btrfs_root *root; 53 }; 54 55 struct btrfs_dio_data { 56 u64 reserve; 57 u64 unsubmitted_oe_range_start; 58 u64 unsubmitted_oe_range_end; 59 int overwrite; 60 }; 61 62 static const struct inode_operations btrfs_dir_inode_operations; 63 static const struct inode_operations btrfs_symlink_inode_operations; 64 static const struct inode_operations btrfs_dir_ro_inode_operations; 65 static const struct inode_operations btrfs_special_inode_operations; 66 static const struct inode_operations btrfs_file_inode_operations; 67 static const struct address_space_operations btrfs_aops; 68 static const struct file_operations btrfs_dir_file_operations; 69 static const struct extent_io_ops btrfs_extent_io_ops; 70 71 static struct kmem_cache *btrfs_inode_cachep; 72 struct kmem_cache *btrfs_trans_handle_cachep; 73 struct kmem_cache *btrfs_path_cachep; 74 struct kmem_cache *btrfs_free_space_cachep; 75 76 #define S_SHIFT 12 77 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 85 }; 86 87 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 88 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 90 static noinline int cow_file_range(struct inode *inode, 91 struct page *locked_page, 92 u64 start, u64 end, u64 delalloc_end, 93 int *page_started, unsigned long *nr_written, 94 int unlock, struct btrfs_dedupe_hash *hash); 95 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 96 u64 orig_start, u64 block_start, 97 u64 block_len, u64 orig_block_len, 98 u64 ram_bytes, int compress_type, 99 int type); 100 101 static void __endio_write_update_ordered(struct inode *inode, 102 const u64 offset, const u64 bytes, 103 const bool uptodate); 104 105 /* 106 * Cleanup all submitted ordered extents in specified range to handle errors 107 * from the btrfs_run_delalloc_range() callback. 108 * 109 * NOTE: caller must ensure that when an error happens, it can not call 110 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 111 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 112 * to be released, which we want to happen only when finishing the ordered 113 * extent (btrfs_finish_ordered_io()). 114 */ 115 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 116 struct page *locked_page, 117 u64 offset, u64 bytes) 118 { 119 unsigned long index = offset >> PAGE_SHIFT; 120 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 121 u64 page_start = page_offset(locked_page); 122 u64 page_end = page_start + PAGE_SIZE - 1; 123 124 struct page *page; 125 126 while (index <= end_index) { 127 page = find_get_page(inode->i_mapping, index); 128 index++; 129 if (!page) 130 continue; 131 ClearPagePrivate2(page); 132 put_page(page); 133 } 134 135 /* 136 * In case this page belongs to the delalloc range being instantiated 137 * then skip it, since the first page of a range is going to be 138 * properly cleaned up by the caller of run_delalloc_range 139 */ 140 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 141 offset += PAGE_SIZE; 142 bytes -= PAGE_SIZE; 143 } 144 145 return __endio_write_update_ordered(inode, offset, bytes, false); 146 } 147 148 static int btrfs_dirty_inode(struct inode *inode); 149 150 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 151 void btrfs_test_inode_set_ops(struct inode *inode) 152 { 153 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 154 } 155 #endif 156 157 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 158 struct inode *inode, struct inode *dir, 159 const struct qstr *qstr) 160 { 161 int err; 162 163 err = btrfs_init_acl(trans, inode, dir); 164 if (!err) 165 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 166 return err; 167 } 168 169 /* 170 * this does all the hard work for inserting an inline extent into 171 * the btree. The caller should have done a btrfs_drop_extents so that 172 * no overlapping inline items exist in the btree 173 */ 174 static int insert_inline_extent(struct btrfs_trans_handle *trans, 175 struct btrfs_path *path, int extent_inserted, 176 struct btrfs_root *root, struct inode *inode, 177 u64 start, size_t size, size_t compressed_size, 178 int compress_type, 179 struct page **compressed_pages) 180 { 181 struct extent_buffer *leaf; 182 struct page *page = NULL; 183 char *kaddr; 184 unsigned long ptr; 185 struct btrfs_file_extent_item *ei; 186 int ret; 187 size_t cur_size = size; 188 unsigned long offset; 189 190 if (compressed_size && compressed_pages) 191 cur_size = compressed_size; 192 193 inode_add_bytes(inode, size); 194 195 if (!extent_inserted) { 196 struct btrfs_key key; 197 size_t datasize; 198 199 key.objectid = btrfs_ino(BTRFS_I(inode)); 200 key.offset = start; 201 key.type = BTRFS_EXTENT_DATA_KEY; 202 203 datasize = btrfs_file_extent_calc_inline_size(cur_size); 204 path->leave_spinning = 1; 205 ret = btrfs_insert_empty_item(trans, root, path, &key, 206 datasize); 207 if (ret) 208 goto fail; 209 } 210 leaf = path->nodes[0]; 211 ei = btrfs_item_ptr(leaf, path->slots[0], 212 struct btrfs_file_extent_item); 213 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 214 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 215 btrfs_set_file_extent_encryption(leaf, ei, 0); 216 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 217 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 218 ptr = btrfs_file_extent_inline_start(ei); 219 220 if (compress_type != BTRFS_COMPRESS_NONE) { 221 struct page *cpage; 222 int i = 0; 223 while (compressed_size > 0) { 224 cpage = compressed_pages[i]; 225 cur_size = min_t(unsigned long, compressed_size, 226 PAGE_SIZE); 227 228 kaddr = kmap_atomic(cpage); 229 write_extent_buffer(leaf, kaddr, ptr, cur_size); 230 kunmap_atomic(kaddr); 231 232 i++; 233 ptr += cur_size; 234 compressed_size -= cur_size; 235 } 236 btrfs_set_file_extent_compression(leaf, ei, 237 compress_type); 238 } else { 239 page = find_get_page(inode->i_mapping, 240 start >> PAGE_SHIFT); 241 btrfs_set_file_extent_compression(leaf, ei, 0); 242 kaddr = kmap_atomic(page); 243 offset = offset_in_page(start); 244 write_extent_buffer(leaf, kaddr + offset, ptr, size); 245 kunmap_atomic(kaddr); 246 put_page(page); 247 } 248 btrfs_mark_buffer_dirty(leaf); 249 btrfs_release_path(path); 250 251 /* 252 * we're an inline extent, so nobody can 253 * extend the file past i_size without locking 254 * a page we already have locked. 255 * 256 * We must do any isize and inode updates 257 * before we unlock the pages. Otherwise we 258 * could end up racing with unlink. 259 */ 260 BTRFS_I(inode)->disk_i_size = inode->i_size; 261 ret = btrfs_update_inode(trans, root, inode); 262 263 fail: 264 return ret; 265 } 266 267 268 /* 269 * conditionally insert an inline extent into the file. This 270 * does the checks required to make sure the data is small enough 271 * to fit as an inline extent. 272 */ 273 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 274 u64 end, size_t compressed_size, 275 int compress_type, 276 struct page **compressed_pages) 277 { 278 struct btrfs_root *root = BTRFS_I(inode)->root; 279 struct btrfs_fs_info *fs_info = root->fs_info; 280 struct btrfs_trans_handle *trans; 281 u64 isize = i_size_read(inode); 282 u64 actual_end = min(end + 1, isize); 283 u64 inline_len = actual_end - start; 284 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 285 u64 data_len = inline_len; 286 int ret; 287 struct btrfs_path *path; 288 int extent_inserted = 0; 289 u32 extent_item_size; 290 291 if (compressed_size) 292 data_len = compressed_size; 293 294 if (start > 0 || 295 actual_end > fs_info->sectorsize || 296 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 297 (!compressed_size && 298 (actual_end & (fs_info->sectorsize - 1)) == 0) || 299 end + 1 < isize || 300 data_len > fs_info->max_inline) { 301 return 1; 302 } 303 304 path = btrfs_alloc_path(); 305 if (!path) 306 return -ENOMEM; 307 308 trans = btrfs_join_transaction(root); 309 if (IS_ERR(trans)) { 310 btrfs_free_path(path); 311 return PTR_ERR(trans); 312 } 313 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 314 315 if (compressed_size && compressed_pages) 316 extent_item_size = btrfs_file_extent_calc_inline_size( 317 compressed_size); 318 else 319 extent_item_size = btrfs_file_extent_calc_inline_size( 320 inline_len); 321 322 ret = __btrfs_drop_extents(trans, root, inode, path, 323 start, aligned_end, NULL, 324 1, 1, extent_item_size, &extent_inserted); 325 if (ret) { 326 btrfs_abort_transaction(trans, ret); 327 goto out; 328 } 329 330 if (isize > actual_end) 331 inline_len = min_t(u64, isize, actual_end); 332 ret = insert_inline_extent(trans, path, extent_inserted, 333 root, inode, start, 334 inline_len, compressed_size, 335 compress_type, compressed_pages); 336 if (ret && ret != -ENOSPC) { 337 btrfs_abort_transaction(trans, ret); 338 goto out; 339 } else if (ret == -ENOSPC) { 340 ret = 1; 341 goto out; 342 } 343 344 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 345 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 346 out: 347 /* 348 * Don't forget to free the reserved space, as for inlined extent 349 * it won't count as data extent, free them directly here. 350 * And at reserve time, it's always aligned to page size, so 351 * just free one page here. 352 */ 353 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 354 btrfs_free_path(path); 355 btrfs_end_transaction(trans); 356 return ret; 357 } 358 359 struct async_extent { 360 u64 start; 361 u64 ram_size; 362 u64 compressed_size; 363 struct page **pages; 364 unsigned long nr_pages; 365 int compress_type; 366 struct list_head list; 367 }; 368 369 struct async_cow { 370 struct inode *inode; 371 struct btrfs_fs_info *fs_info; 372 struct page *locked_page; 373 u64 start; 374 u64 end; 375 unsigned int write_flags; 376 struct list_head extents; 377 struct btrfs_work work; 378 }; 379 380 static noinline int add_async_extent(struct async_cow *cow, 381 u64 start, u64 ram_size, 382 u64 compressed_size, 383 struct page **pages, 384 unsigned long nr_pages, 385 int compress_type) 386 { 387 struct async_extent *async_extent; 388 389 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 390 BUG_ON(!async_extent); /* -ENOMEM */ 391 async_extent->start = start; 392 async_extent->ram_size = ram_size; 393 async_extent->compressed_size = compressed_size; 394 async_extent->pages = pages; 395 async_extent->nr_pages = nr_pages; 396 async_extent->compress_type = compress_type; 397 list_add_tail(&async_extent->list, &cow->extents); 398 return 0; 399 } 400 401 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 402 { 403 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 404 405 /* force compress */ 406 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 407 return 1; 408 /* defrag ioctl */ 409 if (BTRFS_I(inode)->defrag_compress) 410 return 1; 411 /* bad compression ratios */ 412 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 413 return 0; 414 if (btrfs_test_opt(fs_info, COMPRESS) || 415 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 416 BTRFS_I(inode)->prop_compress) 417 return btrfs_compress_heuristic(inode, start, end); 418 return 0; 419 } 420 421 static inline void inode_should_defrag(struct btrfs_inode *inode, 422 u64 start, u64 end, u64 num_bytes, u64 small_write) 423 { 424 /* If this is a small write inside eof, kick off a defrag */ 425 if (num_bytes < small_write && 426 (start > 0 || end + 1 < inode->disk_i_size)) 427 btrfs_add_inode_defrag(NULL, inode); 428 } 429 430 /* 431 * we create compressed extents in two phases. The first 432 * phase compresses a range of pages that have already been 433 * locked (both pages and state bits are locked). 434 * 435 * This is done inside an ordered work queue, and the compression 436 * is spread across many cpus. The actual IO submission is step 437 * two, and the ordered work queue takes care of making sure that 438 * happens in the same order things were put onto the queue by 439 * writepages and friends. 440 * 441 * If this code finds it can't get good compression, it puts an 442 * entry onto the work queue to write the uncompressed bytes. This 443 * makes sure that both compressed inodes and uncompressed inodes 444 * are written in the same order that the flusher thread sent them 445 * down. 446 */ 447 static noinline void compress_file_range(struct inode *inode, 448 struct page *locked_page, 449 u64 start, u64 end, 450 struct async_cow *async_cow, 451 int *num_added) 452 { 453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 454 u64 blocksize = fs_info->sectorsize; 455 u64 actual_end; 456 u64 isize = i_size_read(inode); 457 int ret = 0; 458 struct page **pages = NULL; 459 unsigned long nr_pages; 460 unsigned long total_compressed = 0; 461 unsigned long total_in = 0; 462 int i; 463 int will_compress; 464 int compress_type = fs_info->compress_type; 465 int redirty = 0; 466 467 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 468 SZ_16K); 469 470 actual_end = min_t(u64, isize, end + 1); 471 again: 472 will_compress = 0; 473 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 474 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 475 nr_pages = min_t(unsigned long, nr_pages, 476 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 477 478 /* 479 * we don't want to send crud past the end of i_size through 480 * compression, that's just a waste of CPU time. So, if the 481 * end of the file is before the start of our current 482 * requested range of bytes, we bail out to the uncompressed 483 * cleanup code that can deal with all of this. 484 * 485 * It isn't really the fastest way to fix things, but this is a 486 * very uncommon corner. 487 */ 488 if (actual_end <= start) 489 goto cleanup_and_bail_uncompressed; 490 491 total_compressed = actual_end - start; 492 493 /* 494 * skip compression for a small file range(<=blocksize) that 495 * isn't an inline extent, since it doesn't save disk space at all. 496 */ 497 if (total_compressed <= blocksize && 498 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 499 goto cleanup_and_bail_uncompressed; 500 501 total_compressed = min_t(unsigned long, total_compressed, 502 BTRFS_MAX_UNCOMPRESSED); 503 total_in = 0; 504 ret = 0; 505 506 /* 507 * we do compression for mount -o compress and when the 508 * inode has not been flagged as nocompress. This flag can 509 * change at any time if we discover bad compression ratios. 510 */ 511 if (inode_need_compress(inode, start, end)) { 512 WARN_ON(pages); 513 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 514 if (!pages) { 515 /* just bail out to the uncompressed code */ 516 nr_pages = 0; 517 goto cont; 518 } 519 520 if (BTRFS_I(inode)->defrag_compress) 521 compress_type = BTRFS_I(inode)->defrag_compress; 522 else if (BTRFS_I(inode)->prop_compress) 523 compress_type = BTRFS_I(inode)->prop_compress; 524 525 /* 526 * we need to call clear_page_dirty_for_io on each 527 * page in the range. Otherwise applications with the file 528 * mmap'd can wander in and change the page contents while 529 * we are compressing them. 530 * 531 * If the compression fails for any reason, we set the pages 532 * dirty again later on. 533 * 534 * Note that the remaining part is redirtied, the start pointer 535 * has moved, the end is the original one. 536 */ 537 if (!redirty) { 538 extent_range_clear_dirty_for_io(inode, start, end); 539 redirty = 1; 540 } 541 542 /* Compression level is applied here and only here */ 543 ret = btrfs_compress_pages( 544 compress_type | (fs_info->compress_level << 4), 545 inode->i_mapping, start, 546 pages, 547 &nr_pages, 548 &total_in, 549 &total_compressed); 550 551 if (!ret) { 552 unsigned long offset = offset_in_page(total_compressed); 553 struct page *page = pages[nr_pages - 1]; 554 char *kaddr; 555 556 /* zero the tail end of the last page, we might be 557 * sending it down to disk 558 */ 559 if (offset) { 560 kaddr = kmap_atomic(page); 561 memset(kaddr + offset, 0, 562 PAGE_SIZE - offset); 563 kunmap_atomic(kaddr); 564 } 565 will_compress = 1; 566 } 567 } 568 cont: 569 if (start == 0) { 570 /* lets try to make an inline extent */ 571 if (ret || total_in < actual_end) { 572 /* we didn't compress the entire range, try 573 * to make an uncompressed inline extent. 574 */ 575 ret = cow_file_range_inline(inode, start, end, 0, 576 BTRFS_COMPRESS_NONE, NULL); 577 } else { 578 /* try making a compressed inline extent */ 579 ret = cow_file_range_inline(inode, start, end, 580 total_compressed, 581 compress_type, pages); 582 } 583 if (ret <= 0) { 584 unsigned long clear_flags = EXTENT_DELALLOC | 585 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 586 EXTENT_DO_ACCOUNTING; 587 unsigned long page_error_op; 588 589 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 590 591 /* 592 * inline extent creation worked or returned error, 593 * we don't need to create any more async work items. 594 * Unlock and free up our temp pages. 595 * 596 * We use DO_ACCOUNTING here because we need the 597 * delalloc_release_metadata to be done _after_ we drop 598 * our outstanding extent for clearing delalloc for this 599 * range. 600 */ 601 extent_clear_unlock_delalloc(inode, start, end, end, 602 NULL, clear_flags, 603 PAGE_UNLOCK | 604 PAGE_CLEAR_DIRTY | 605 PAGE_SET_WRITEBACK | 606 page_error_op | 607 PAGE_END_WRITEBACK); 608 goto free_pages_out; 609 } 610 } 611 612 if (will_compress) { 613 /* 614 * we aren't doing an inline extent round the compressed size 615 * up to a block size boundary so the allocator does sane 616 * things 617 */ 618 total_compressed = ALIGN(total_compressed, blocksize); 619 620 /* 621 * one last check to make sure the compression is really a 622 * win, compare the page count read with the blocks on disk, 623 * compression must free at least one sector size 624 */ 625 total_in = ALIGN(total_in, PAGE_SIZE); 626 if (total_compressed + blocksize <= total_in) { 627 *num_added += 1; 628 629 /* 630 * The async work queues will take care of doing actual 631 * allocation on disk for these compressed pages, and 632 * will submit them to the elevator. 633 */ 634 add_async_extent(async_cow, start, total_in, 635 total_compressed, pages, nr_pages, 636 compress_type); 637 638 if (start + total_in < end) { 639 start += total_in; 640 pages = NULL; 641 cond_resched(); 642 goto again; 643 } 644 return; 645 } 646 } 647 if (pages) { 648 /* 649 * the compression code ran but failed to make things smaller, 650 * free any pages it allocated and our page pointer array 651 */ 652 for (i = 0; i < nr_pages; i++) { 653 WARN_ON(pages[i]->mapping); 654 put_page(pages[i]); 655 } 656 kfree(pages); 657 pages = NULL; 658 total_compressed = 0; 659 nr_pages = 0; 660 661 /* flag the file so we don't compress in the future */ 662 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 663 !(BTRFS_I(inode)->prop_compress)) { 664 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 665 } 666 } 667 cleanup_and_bail_uncompressed: 668 /* 669 * No compression, but we still need to write the pages in the file 670 * we've been given so far. redirty the locked page if it corresponds 671 * to our extent and set things up for the async work queue to run 672 * cow_file_range to do the normal delalloc dance. 673 */ 674 if (page_offset(locked_page) >= start && 675 page_offset(locked_page) <= end) 676 __set_page_dirty_nobuffers(locked_page); 677 /* unlocked later on in the async handlers */ 678 679 if (redirty) 680 extent_range_redirty_for_io(inode, start, end); 681 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 682 BTRFS_COMPRESS_NONE); 683 *num_added += 1; 684 685 return; 686 687 free_pages_out: 688 for (i = 0; i < nr_pages; i++) { 689 WARN_ON(pages[i]->mapping); 690 put_page(pages[i]); 691 } 692 kfree(pages); 693 } 694 695 static void free_async_extent_pages(struct async_extent *async_extent) 696 { 697 int i; 698 699 if (!async_extent->pages) 700 return; 701 702 for (i = 0; i < async_extent->nr_pages; i++) { 703 WARN_ON(async_extent->pages[i]->mapping); 704 put_page(async_extent->pages[i]); 705 } 706 kfree(async_extent->pages); 707 async_extent->nr_pages = 0; 708 async_extent->pages = NULL; 709 } 710 711 /* 712 * phase two of compressed writeback. This is the ordered portion 713 * of the code, which only gets called in the order the work was 714 * queued. We walk all the async extents created by compress_file_range 715 * and send them down to the disk. 716 */ 717 static noinline void submit_compressed_extents(struct inode *inode, 718 struct async_cow *async_cow) 719 { 720 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 721 struct async_extent *async_extent; 722 u64 alloc_hint = 0; 723 struct btrfs_key ins; 724 struct extent_map *em; 725 struct btrfs_root *root = BTRFS_I(inode)->root; 726 struct extent_io_tree *io_tree; 727 int ret = 0; 728 729 again: 730 while (!list_empty(&async_cow->extents)) { 731 async_extent = list_entry(async_cow->extents.next, 732 struct async_extent, list); 733 list_del(&async_extent->list); 734 735 io_tree = &BTRFS_I(inode)->io_tree; 736 737 retry: 738 /* did the compression code fall back to uncompressed IO? */ 739 if (!async_extent->pages) { 740 int page_started = 0; 741 unsigned long nr_written = 0; 742 743 lock_extent(io_tree, async_extent->start, 744 async_extent->start + 745 async_extent->ram_size - 1); 746 747 /* allocate blocks */ 748 ret = cow_file_range(inode, async_cow->locked_page, 749 async_extent->start, 750 async_extent->start + 751 async_extent->ram_size - 1, 752 async_extent->start + 753 async_extent->ram_size - 1, 754 &page_started, &nr_written, 0, 755 NULL); 756 757 /* JDM XXX */ 758 759 /* 760 * if page_started, cow_file_range inserted an 761 * inline extent and took care of all the unlocking 762 * and IO for us. Otherwise, we need to submit 763 * all those pages down to the drive. 764 */ 765 if (!page_started && !ret) 766 extent_write_locked_range(inode, 767 async_extent->start, 768 async_extent->start + 769 async_extent->ram_size - 1, 770 WB_SYNC_ALL); 771 else if (ret) 772 unlock_page(async_cow->locked_page); 773 kfree(async_extent); 774 cond_resched(); 775 continue; 776 } 777 778 lock_extent(io_tree, async_extent->start, 779 async_extent->start + async_extent->ram_size - 1); 780 781 ret = btrfs_reserve_extent(root, async_extent->ram_size, 782 async_extent->compressed_size, 783 async_extent->compressed_size, 784 0, alloc_hint, &ins, 1, 1); 785 if (ret) { 786 free_async_extent_pages(async_extent); 787 788 if (ret == -ENOSPC) { 789 unlock_extent(io_tree, async_extent->start, 790 async_extent->start + 791 async_extent->ram_size - 1); 792 793 /* 794 * we need to redirty the pages if we decide to 795 * fallback to uncompressed IO, otherwise we 796 * will not submit these pages down to lower 797 * layers. 798 */ 799 extent_range_redirty_for_io(inode, 800 async_extent->start, 801 async_extent->start + 802 async_extent->ram_size - 1); 803 804 goto retry; 805 } 806 goto out_free; 807 } 808 /* 809 * here we're doing allocation and writeback of the 810 * compressed pages 811 */ 812 em = create_io_em(inode, async_extent->start, 813 async_extent->ram_size, /* len */ 814 async_extent->start, /* orig_start */ 815 ins.objectid, /* block_start */ 816 ins.offset, /* block_len */ 817 ins.offset, /* orig_block_len */ 818 async_extent->ram_size, /* ram_bytes */ 819 async_extent->compress_type, 820 BTRFS_ORDERED_COMPRESSED); 821 if (IS_ERR(em)) 822 /* ret value is not necessary due to void function */ 823 goto out_free_reserve; 824 free_extent_map(em); 825 826 ret = btrfs_add_ordered_extent_compress(inode, 827 async_extent->start, 828 ins.objectid, 829 async_extent->ram_size, 830 ins.offset, 831 BTRFS_ORDERED_COMPRESSED, 832 async_extent->compress_type); 833 if (ret) { 834 btrfs_drop_extent_cache(BTRFS_I(inode), 835 async_extent->start, 836 async_extent->start + 837 async_extent->ram_size - 1, 0); 838 goto out_free_reserve; 839 } 840 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 841 842 /* 843 * clear dirty, set writeback and unlock the pages. 844 */ 845 extent_clear_unlock_delalloc(inode, async_extent->start, 846 async_extent->start + 847 async_extent->ram_size - 1, 848 async_extent->start + 849 async_extent->ram_size - 1, 850 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 851 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 852 PAGE_SET_WRITEBACK); 853 if (btrfs_submit_compressed_write(inode, 854 async_extent->start, 855 async_extent->ram_size, 856 ins.objectid, 857 ins.offset, async_extent->pages, 858 async_extent->nr_pages, 859 async_cow->write_flags)) { 860 struct page *p = async_extent->pages[0]; 861 const u64 start = async_extent->start; 862 const u64 end = start + async_extent->ram_size - 1; 863 864 p->mapping = inode->i_mapping; 865 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 866 867 p->mapping = NULL; 868 extent_clear_unlock_delalloc(inode, start, end, end, 869 NULL, 0, 870 PAGE_END_WRITEBACK | 871 PAGE_SET_ERROR); 872 free_async_extent_pages(async_extent); 873 } 874 alloc_hint = ins.objectid + ins.offset; 875 kfree(async_extent); 876 cond_resched(); 877 } 878 return; 879 out_free_reserve: 880 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 881 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 882 out_free: 883 extent_clear_unlock_delalloc(inode, async_extent->start, 884 async_extent->start + 885 async_extent->ram_size - 1, 886 async_extent->start + 887 async_extent->ram_size - 1, 888 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 889 EXTENT_DELALLOC_NEW | 890 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 891 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 892 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 893 PAGE_SET_ERROR); 894 free_async_extent_pages(async_extent); 895 kfree(async_extent); 896 goto again; 897 } 898 899 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 900 u64 num_bytes) 901 { 902 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 903 struct extent_map *em; 904 u64 alloc_hint = 0; 905 906 read_lock(&em_tree->lock); 907 em = search_extent_mapping(em_tree, start, num_bytes); 908 if (em) { 909 /* 910 * if block start isn't an actual block number then find the 911 * first block in this inode and use that as a hint. If that 912 * block is also bogus then just don't worry about it. 913 */ 914 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 915 free_extent_map(em); 916 em = search_extent_mapping(em_tree, 0, 0); 917 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 918 alloc_hint = em->block_start; 919 if (em) 920 free_extent_map(em); 921 } else { 922 alloc_hint = em->block_start; 923 free_extent_map(em); 924 } 925 } 926 read_unlock(&em_tree->lock); 927 928 return alloc_hint; 929 } 930 931 /* 932 * when extent_io.c finds a delayed allocation range in the file, 933 * the call backs end up in this code. The basic idea is to 934 * allocate extents on disk for the range, and create ordered data structs 935 * in ram to track those extents. 936 * 937 * locked_page is the page that writepage had locked already. We use 938 * it to make sure we don't do extra locks or unlocks. 939 * 940 * *page_started is set to one if we unlock locked_page and do everything 941 * required to start IO on it. It may be clean and already done with 942 * IO when we return. 943 */ 944 static noinline int cow_file_range(struct inode *inode, 945 struct page *locked_page, 946 u64 start, u64 end, u64 delalloc_end, 947 int *page_started, unsigned long *nr_written, 948 int unlock, struct btrfs_dedupe_hash *hash) 949 { 950 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 951 struct btrfs_root *root = BTRFS_I(inode)->root; 952 u64 alloc_hint = 0; 953 u64 num_bytes; 954 unsigned long ram_size; 955 u64 cur_alloc_size = 0; 956 u64 blocksize = fs_info->sectorsize; 957 struct btrfs_key ins; 958 struct extent_map *em; 959 unsigned clear_bits; 960 unsigned long page_ops; 961 bool extent_reserved = false; 962 int ret = 0; 963 964 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 965 WARN_ON_ONCE(1); 966 ret = -EINVAL; 967 goto out_unlock; 968 } 969 970 num_bytes = ALIGN(end - start + 1, blocksize); 971 num_bytes = max(blocksize, num_bytes); 972 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 973 974 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 975 976 if (start == 0) { 977 /* lets try to make an inline extent */ 978 ret = cow_file_range_inline(inode, start, end, 0, 979 BTRFS_COMPRESS_NONE, NULL); 980 if (ret == 0) { 981 /* 982 * We use DO_ACCOUNTING here because we need the 983 * delalloc_release_metadata to be run _after_ we drop 984 * our outstanding extent for clearing delalloc for this 985 * range. 986 */ 987 extent_clear_unlock_delalloc(inode, start, end, 988 delalloc_end, NULL, 989 EXTENT_LOCKED | EXTENT_DELALLOC | 990 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 991 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 992 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 993 PAGE_END_WRITEBACK); 994 *nr_written = *nr_written + 995 (end - start + PAGE_SIZE) / PAGE_SIZE; 996 *page_started = 1; 997 goto out; 998 } else if (ret < 0) { 999 goto out_unlock; 1000 } 1001 } 1002 1003 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1004 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1005 start + num_bytes - 1, 0); 1006 1007 while (num_bytes > 0) { 1008 cur_alloc_size = num_bytes; 1009 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1010 fs_info->sectorsize, 0, alloc_hint, 1011 &ins, 1, 1); 1012 if (ret < 0) 1013 goto out_unlock; 1014 cur_alloc_size = ins.offset; 1015 extent_reserved = true; 1016 1017 ram_size = ins.offset; 1018 em = create_io_em(inode, start, ins.offset, /* len */ 1019 start, /* orig_start */ 1020 ins.objectid, /* block_start */ 1021 ins.offset, /* block_len */ 1022 ins.offset, /* orig_block_len */ 1023 ram_size, /* ram_bytes */ 1024 BTRFS_COMPRESS_NONE, /* compress_type */ 1025 BTRFS_ORDERED_REGULAR /* type */); 1026 if (IS_ERR(em)) { 1027 ret = PTR_ERR(em); 1028 goto out_reserve; 1029 } 1030 free_extent_map(em); 1031 1032 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1033 ram_size, cur_alloc_size, 0); 1034 if (ret) 1035 goto out_drop_extent_cache; 1036 1037 if (root->root_key.objectid == 1038 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1039 ret = btrfs_reloc_clone_csums(inode, start, 1040 cur_alloc_size); 1041 /* 1042 * Only drop cache here, and process as normal. 1043 * 1044 * We must not allow extent_clear_unlock_delalloc() 1045 * at out_unlock label to free meta of this ordered 1046 * extent, as its meta should be freed by 1047 * btrfs_finish_ordered_io(). 1048 * 1049 * So we must continue until @start is increased to 1050 * skip current ordered extent. 1051 */ 1052 if (ret) 1053 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1054 start + ram_size - 1, 0); 1055 } 1056 1057 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1058 1059 /* we're not doing compressed IO, don't unlock the first 1060 * page (which the caller expects to stay locked), don't 1061 * clear any dirty bits and don't set any writeback bits 1062 * 1063 * Do set the Private2 bit so we know this page was properly 1064 * setup for writepage 1065 */ 1066 page_ops = unlock ? PAGE_UNLOCK : 0; 1067 page_ops |= PAGE_SET_PRIVATE2; 1068 1069 extent_clear_unlock_delalloc(inode, start, 1070 start + ram_size - 1, 1071 delalloc_end, locked_page, 1072 EXTENT_LOCKED | EXTENT_DELALLOC, 1073 page_ops); 1074 if (num_bytes < cur_alloc_size) 1075 num_bytes = 0; 1076 else 1077 num_bytes -= cur_alloc_size; 1078 alloc_hint = ins.objectid + ins.offset; 1079 start += cur_alloc_size; 1080 extent_reserved = false; 1081 1082 /* 1083 * btrfs_reloc_clone_csums() error, since start is increased 1084 * extent_clear_unlock_delalloc() at out_unlock label won't 1085 * free metadata of current ordered extent, we're OK to exit. 1086 */ 1087 if (ret) 1088 goto out_unlock; 1089 } 1090 out: 1091 return ret; 1092 1093 out_drop_extent_cache: 1094 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1095 out_reserve: 1096 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1097 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1098 out_unlock: 1099 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1100 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1101 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1102 PAGE_END_WRITEBACK; 1103 /* 1104 * If we reserved an extent for our delalloc range (or a subrange) and 1105 * failed to create the respective ordered extent, then it means that 1106 * when we reserved the extent we decremented the extent's size from 1107 * the data space_info's bytes_may_use counter and incremented the 1108 * space_info's bytes_reserved counter by the same amount. We must make 1109 * sure extent_clear_unlock_delalloc() does not try to decrement again 1110 * the data space_info's bytes_may_use counter, therefore we do not pass 1111 * it the flag EXTENT_CLEAR_DATA_RESV. 1112 */ 1113 if (extent_reserved) { 1114 extent_clear_unlock_delalloc(inode, start, 1115 start + cur_alloc_size, 1116 start + cur_alloc_size, 1117 locked_page, 1118 clear_bits, 1119 page_ops); 1120 start += cur_alloc_size; 1121 if (start >= end) 1122 goto out; 1123 } 1124 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1125 locked_page, 1126 clear_bits | EXTENT_CLEAR_DATA_RESV, 1127 page_ops); 1128 goto out; 1129 } 1130 1131 /* 1132 * work queue call back to started compression on a file and pages 1133 */ 1134 static noinline void async_cow_start(struct btrfs_work *work) 1135 { 1136 struct async_cow *async_cow; 1137 int num_added = 0; 1138 async_cow = container_of(work, struct async_cow, work); 1139 1140 compress_file_range(async_cow->inode, async_cow->locked_page, 1141 async_cow->start, async_cow->end, async_cow, 1142 &num_added); 1143 if (num_added == 0) { 1144 btrfs_add_delayed_iput(async_cow->inode); 1145 async_cow->inode = NULL; 1146 } 1147 } 1148 1149 /* 1150 * work queue call back to submit previously compressed pages 1151 */ 1152 static noinline void async_cow_submit(struct btrfs_work *work) 1153 { 1154 struct btrfs_fs_info *fs_info; 1155 struct async_cow *async_cow; 1156 unsigned long nr_pages; 1157 1158 async_cow = container_of(work, struct async_cow, work); 1159 1160 fs_info = async_cow->fs_info; 1161 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1162 PAGE_SHIFT; 1163 1164 /* atomic_sub_return implies a barrier */ 1165 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1166 5 * SZ_1M) 1167 cond_wake_up_nomb(&fs_info->async_submit_wait); 1168 1169 if (async_cow->inode) 1170 submit_compressed_extents(async_cow->inode, async_cow); 1171 } 1172 1173 static noinline void async_cow_free(struct btrfs_work *work) 1174 { 1175 struct async_cow *async_cow; 1176 async_cow = container_of(work, struct async_cow, work); 1177 if (async_cow->inode) 1178 btrfs_add_delayed_iput(async_cow->inode); 1179 kfree(async_cow); 1180 } 1181 1182 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1183 u64 start, u64 end, int *page_started, 1184 unsigned long *nr_written, 1185 unsigned int write_flags) 1186 { 1187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1188 struct async_cow *async_cow; 1189 unsigned long nr_pages; 1190 u64 cur_end; 1191 1192 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1193 1, 0, NULL); 1194 while (start < end) { 1195 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1196 BUG_ON(!async_cow); /* -ENOMEM */ 1197 async_cow->inode = igrab(inode); 1198 async_cow->fs_info = fs_info; 1199 async_cow->locked_page = locked_page; 1200 async_cow->start = start; 1201 async_cow->write_flags = write_flags; 1202 1203 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1204 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1205 cur_end = end; 1206 else 1207 cur_end = min(end, start + SZ_512K - 1); 1208 1209 async_cow->end = cur_end; 1210 INIT_LIST_HEAD(&async_cow->extents); 1211 1212 btrfs_init_work(&async_cow->work, 1213 btrfs_delalloc_helper, 1214 async_cow_start, async_cow_submit, 1215 async_cow_free); 1216 1217 nr_pages = (cur_end - start + PAGE_SIZE) >> 1218 PAGE_SHIFT; 1219 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1220 1221 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1222 1223 *nr_written += nr_pages; 1224 start = cur_end + 1; 1225 } 1226 *page_started = 1; 1227 return 0; 1228 } 1229 1230 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1231 u64 bytenr, u64 num_bytes) 1232 { 1233 int ret; 1234 struct btrfs_ordered_sum *sums; 1235 LIST_HEAD(list); 1236 1237 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1238 bytenr + num_bytes - 1, &list, 0); 1239 if (ret == 0 && list_empty(&list)) 1240 return 0; 1241 1242 while (!list_empty(&list)) { 1243 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1244 list_del(&sums->list); 1245 kfree(sums); 1246 } 1247 if (ret < 0) 1248 return ret; 1249 return 1; 1250 } 1251 1252 /* 1253 * when nowcow writeback call back. This checks for snapshots or COW copies 1254 * of the extents that exist in the file, and COWs the file as required. 1255 * 1256 * If no cow copies or snapshots exist, we write directly to the existing 1257 * blocks on disk 1258 */ 1259 static noinline int run_delalloc_nocow(struct inode *inode, 1260 struct page *locked_page, 1261 u64 start, u64 end, int *page_started, int force, 1262 unsigned long *nr_written) 1263 { 1264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1265 struct btrfs_root *root = BTRFS_I(inode)->root; 1266 struct extent_buffer *leaf; 1267 struct btrfs_path *path; 1268 struct btrfs_file_extent_item *fi; 1269 struct btrfs_key found_key; 1270 struct extent_map *em; 1271 u64 cow_start; 1272 u64 cur_offset; 1273 u64 extent_end; 1274 u64 extent_offset; 1275 u64 disk_bytenr; 1276 u64 num_bytes; 1277 u64 disk_num_bytes; 1278 u64 ram_bytes; 1279 int extent_type; 1280 int ret; 1281 int type; 1282 int nocow; 1283 int check_prev = 1; 1284 bool nolock; 1285 u64 ino = btrfs_ino(BTRFS_I(inode)); 1286 1287 path = btrfs_alloc_path(); 1288 if (!path) { 1289 extent_clear_unlock_delalloc(inode, start, end, end, 1290 locked_page, 1291 EXTENT_LOCKED | EXTENT_DELALLOC | 1292 EXTENT_DO_ACCOUNTING | 1293 EXTENT_DEFRAG, PAGE_UNLOCK | 1294 PAGE_CLEAR_DIRTY | 1295 PAGE_SET_WRITEBACK | 1296 PAGE_END_WRITEBACK); 1297 return -ENOMEM; 1298 } 1299 1300 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1301 1302 cow_start = (u64)-1; 1303 cur_offset = start; 1304 while (1) { 1305 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1306 cur_offset, 0); 1307 if (ret < 0) 1308 goto error; 1309 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1310 leaf = path->nodes[0]; 1311 btrfs_item_key_to_cpu(leaf, &found_key, 1312 path->slots[0] - 1); 1313 if (found_key.objectid == ino && 1314 found_key.type == BTRFS_EXTENT_DATA_KEY) 1315 path->slots[0]--; 1316 } 1317 check_prev = 0; 1318 next_slot: 1319 leaf = path->nodes[0]; 1320 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1321 ret = btrfs_next_leaf(root, path); 1322 if (ret < 0) { 1323 if (cow_start != (u64)-1) 1324 cur_offset = cow_start; 1325 goto error; 1326 } 1327 if (ret > 0) 1328 break; 1329 leaf = path->nodes[0]; 1330 } 1331 1332 nocow = 0; 1333 disk_bytenr = 0; 1334 num_bytes = 0; 1335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1336 1337 if (found_key.objectid > ino) 1338 break; 1339 if (WARN_ON_ONCE(found_key.objectid < ino) || 1340 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1341 path->slots[0]++; 1342 goto next_slot; 1343 } 1344 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1345 found_key.offset > end) 1346 break; 1347 1348 if (found_key.offset > cur_offset) { 1349 extent_end = found_key.offset; 1350 extent_type = 0; 1351 goto out_check; 1352 } 1353 1354 fi = btrfs_item_ptr(leaf, path->slots[0], 1355 struct btrfs_file_extent_item); 1356 extent_type = btrfs_file_extent_type(leaf, fi); 1357 1358 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1359 if (extent_type == BTRFS_FILE_EXTENT_REG || 1360 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1361 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1362 extent_offset = btrfs_file_extent_offset(leaf, fi); 1363 extent_end = found_key.offset + 1364 btrfs_file_extent_num_bytes(leaf, fi); 1365 disk_num_bytes = 1366 btrfs_file_extent_disk_num_bytes(leaf, fi); 1367 if (extent_end <= start) { 1368 path->slots[0]++; 1369 goto next_slot; 1370 } 1371 if (disk_bytenr == 0) 1372 goto out_check; 1373 if (btrfs_file_extent_compression(leaf, fi) || 1374 btrfs_file_extent_encryption(leaf, fi) || 1375 btrfs_file_extent_other_encoding(leaf, fi)) 1376 goto out_check; 1377 /* 1378 * Do the same check as in btrfs_cross_ref_exist but 1379 * without the unnecessary search. 1380 */ 1381 if (!nolock && 1382 btrfs_file_extent_generation(leaf, fi) <= 1383 btrfs_root_last_snapshot(&root->root_item)) 1384 goto out_check; 1385 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1386 goto out_check; 1387 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1388 goto out_check; 1389 ret = btrfs_cross_ref_exist(root, ino, 1390 found_key.offset - 1391 extent_offset, disk_bytenr); 1392 if (ret) { 1393 /* 1394 * ret could be -EIO if the above fails to read 1395 * metadata. 1396 */ 1397 if (ret < 0) { 1398 if (cow_start != (u64)-1) 1399 cur_offset = cow_start; 1400 goto error; 1401 } 1402 1403 WARN_ON_ONCE(nolock); 1404 goto out_check; 1405 } 1406 disk_bytenr += extent_offset; 1407 disk_bytenr += cur_offset - found_key.offset; 1408 num_bytes = min(end + 1, extent_end) - cur_offset; 1409 /* 1410 * if there are pending snapshots for this root, 1411 * we fall into common COW way. 1412 */ 1413 if (!nolock && atomic_read(&root->snapshot_force_cow)) 1414 goto out_check; 1415 /* 1416 * force cow if csum exists in the range. 1417 * this ensure that csum for a given extent are 1418 * either valid or do not exist. 1419 */ 1420 ret = csum_exist_in_range(fs_info, disk_bytenr, 1421 num_bytes); 1422 if (ret) { 1423 /* 1424 * ret could be -EIO if the above fails to read 1425 * metadata. 1426 */ 1427 if (ret < 0) { 1428 if (cow_start != (u64)-1) 1429 cur_offset = cow_start; 1430 goto error; 1431 } 1432 WARN_ON_ONCE(nolock); 1433 goto out_check; 1434 } 1435 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1436 goto out_check; 1437 nocow = 1; 1438 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1439 extent_end = found_key.offset + 1440 btrfs_file_extent_ram_bytes(leaf, fi); 1441 extent_end = ALIGN(extent_end, 1442 fs_info->sectorsize); 1443 } else { 1444 BUG_ON(1); 1445 } 1446 out_check: 1447 if (extent_end <= start) { 1448 path->slots[0]++; 1449 if (nocow) 1450 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1451 goto next_slot; 1452 } 1453 if (!nocow) { 1454 if (cow_start == (u64)-1) 1455 cow_start = cur_offset; 1456 cur_offset = extent_end; 1457 if (cur_offset > end) 1458 break; 1459 path->slots[0]++; 1460 goto next_slot; 1461 } 1462 1463 btrfs_release_path(path); 1464 if (cow_start != (u64)-1) { 1465 ret = cow_file_range(inode, locked_page, 1466 cow_start, found_key.offset - 1, 1467 end, page_started, nr_written, 1, 1468 NULL); 1469 if (ret) { 1470 if (nocow) 1471 btrfs_dec_nocow_writers(fs_info, 1472 disk_bytenr); 1473 goto error; 1474 } 1475 cow_start = (u64)-1; 1476 } 1477 1478 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1479 u64 orig_start = found_key.offset - extent_offset; 1480 1481 em = create_io_em(inode, cur_offset, num_bytes, 1482 orig_start, 1483 disk_bytenr, /* block_start */ 1484 num_bytes, /* block_len */ 1485 disk_num_bytes, /* orig_block_len */ 1486 ram_bytes, BTRFS_COMPRESS_NONE, 1487 BTRFS_ORDERED_PREALLOC); 1488 if (IS_ERR(em)) { 1489 if (nocow) 1490 btrfs_dec_nocow_writers(fs_info, 1491 disk_bytenr); 1492 ret = PTR_ERR(em); 1493 goto error; 1494 } 1495 free_extent_map(em); 1496 } 1497 1498 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1499 type = BTRFS_ORDERED_PREALLOC; 1500 } else { 1501 type = BTRFS_ORDERED_NOCOW; 1502 } 1503 1504 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1505 num_bytes, num_bytes, type); 1506 if (nocow) 1507 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1508 BUG_ON(ret); /* -ENOMEM */ 1509 1510 if (root->root_key.objectid == 1511 BTRFS_DATA_RELOC_TREE_OBJECTID) 1512 /* 1513 * Error handled later, as we must prevent 1514 * extent_clear_unlock_delalloc() in error handler 1515 * from freeing metadata of created ordered extent. 1516 */ 1517 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1518 num_bytes); 1519 1520 extent_clear_unlock_delalloc(inode, cur_offset, 1521 cur_offset + num_bytes - 1, end, 1522 locked_page, EXTENT_LOCKED | 1523 EXTENT_DELALLOC | 1524 EXTENT_CLEAR_DATA_RESV, 1525 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1526 1527 cur_offset = extent_end; 1528 1529 /* 1530 * btrfs_reloc_clone_csums() error, now we're OK to call error 1531 * handler, as metadata for created ordered extent will only 1532 * be freed by btrfs_finish_ordered_io(). 1533 */ 1534 if (ret) 1535 goto error; 1536 if (cur_offset > end) 1537 break; 1538 } 1539 btrfs_release_path(path); 1540 1541 if (cur_offset <= end && cow_start == (u64)-1) 1542 cow_start = cur_offset; 1543 1544 if (cow_start != (u64)-1) { 1545 cur_offset = end; 1546 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1547 page_started, nr_written, 1, NULL); 1548 if (ret) 1549 goto error; 1550 } 1551 1552 error: 1553 if (ret && cur_offset < end) 1554 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1555 locked_page, EXTENT_LOCKED | 1556 EXTENT_DELALLOC | EXTENT_DEFRAG | 1557 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1558 PAGE_CLEAR_DIRTY | 1559 PAGE_SET_WRITEBACK | 1560 PAGE_END_WRITEBACK); 1561 btrfs_free_path(path); 1562 return ret; 1563 } 1564 1565 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1566 { 1567 1568 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1569 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1570 return 0; 1571 1572 /* 1573 * @defrag_bytes is a hint value, no spinlock held here, 1574 * if is not zero, it means the file is defragging. 1575 * Force cow if given extent needs to be defragged. 1576 */ 1577 if (BTRFS_I(inode)->defrag_bytes && 1578 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1579 EXTENT_DEFRAG, 0, NULL)) 1580 return 1; 1581 1582 return 0; 1583 } 1584 1585 /* 1586 * Function to process delayed allocation (create CoW) for ranges which are 1587 * being touched for the first time. 1588 */ 1589 int btrfs_run_delalloc_range(void *private_data, struct page *locked_page, 1590 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1591 struct writeback_control *wbc) 1592 { 1593 struct inode *inode = private_data; 1594 int ret; 1595 int force_cow = need_force_cow(inode, start, end); 1596 unsigned int write_flags = wbc_to_write_flags(wbc); 1597 1598 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1599 ret = run_delalloc_nocow(inode, locked_page, start, end, 1600 page_started, 1, nr_written); 1601 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1602 ret = run_delalloc_nocow(inode, locked_page, start, end, 1603 page_started, 0, nr_written); 1604 } else if (!inode_need_compress(inode, start, end)) { 1605 ret = cow_file_range(inode, locked_page, start, end, end, 1606 page_started, nr_written, 1, NULL); 1607 } else { 1608 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1609 &BTRFS_I(inode)->runtime_flags); 1610 ret = cow_file_range_async(inode, locked_page, start, end, 1611 page_started, nr_written, 1612 write_flags); 1613 } 1614 if (ret) 1615 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1616 end - start + 1); 1617 return ret; 1618 } 1619 1620 void btrfs_split_delalloc_extent(struct inode *inode, 1621 struct extent_state *orig, u64 split) 1622 { 1623 u64 size; 1624 1625 /* not delalloc, ignore it */ 1626 if (!(orig->state & EXTENT_DELALLOC)) 1627 return; 1628 1629 size = orig->end - orig->start + 1; 1630 if (size > BTRFS_MAX_EXTENT_SIZE) { 1631 u32 num_extents; 1632 u64 new_size; 1633 1634 /* 1635 * See the explanation in btrfs_merge_delalloc_extent, the same 1636 * applies here, just in reverse. 1637 */ 1638 new_size = orig->end - split + 1; 1639 num_extents = count_max_extents(new_size); 1640 new_size = split - orig->start; 1641 num_extents += count_max_extents(new_size); 1642 if (count_max_extents(size) >= num_extents) 1643 return; 1644 } 1645 1646 spin_lock(&BTRFS_I(inode)->lock); 1647 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1648 spin_unlock(&BTRFS_I(inode)->lock); 1649 } 1650 1651 /* 1652 * Handle merged delayed allocation extents so we can keep track of new extents 1653 * that are just merged onto old extents, such as when we are doing sequential 1654 * writes, so we can properly account for the metadata space we'll need. 1655 */ 1656 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1657 struct extent_state *other) 1658 { 1659 u64 new_size, old_size; 1660 u32 num_extents; 1661 1662 /* not delalloc, ignore it */ 1663 if (!(other->state & EXTENT_DELALLOC)) 1664 return; 1665 1666 if (new->start > other->start) 1667 new_size = new->end - other->start + 1; 1668 else 1669 new_size = other->end - new->start + 1; 1670 1671 /* we're not bigger than the max, unreserve the space and go */ 1672 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1673 spin_lock(&BTRFS_I(inode)->lock); 1674 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1675 spin_unlock(&BTRFS_I(inode)->lock); 1676 return; 1677 } 1678 1679 /* 1680 * We have to add up either side to figure out how many extents were 1681 * accounted for before we merged into one big extent. If the number of 1682 * extents we accounted for is <= the amount we need for the new range 1683 * then we can return, otherwise drop. Think of it like this 1684 * 1685 * [ 4k][MAX_SIZE] 1686 * 1687 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1688 * need 2 outstanding extents, on one side we have 1 and the other side 1689 * we have 1 so they are == and we can return. But in this case 1690 * 1691 * [MAX_SIZE+4k][MAX_SIZE+4k] 1692 * 1693 * Each range on their own accounts for 2 extents, but merged together 1694 * they are only 3 extents worth of accounting, so we need to drop in 1695 * this case. 1696 */ 1697 old_size = other->end - other->start + 1; 1698 num_extents = count_max_extents(old_size); 1699 old_size = new->end - new->start + 1; 1700 num_extents += count_max_extents(old_size); 1701 if (count_max_extents(new_size) >= num_extents) 1702 return; 1703 1704 spin_lock(&BTRFS_I(inode)->lock); 1705 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1706 spin_unlock(&BTRFS_I(inode)->lock); 1707 } 1708 1709 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1710 struct inode *inode) 1711 { 1712 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1713 1714 spin_lock(&root->delalloc_lock); 1715 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1716 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1717 &root->delalloc_inodes); 1718 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1719 &BTRFS_I(inode)->runtime_flags); 1720 root->nr_delalloc_inodes++; 1721 if (root->nr_delalloc_inodes == 1) { 1722 spin_lock(&fs_info->delalloc_root_lock); 1723 BUG_ON(!list_empty(&root->delalloc_root)); 1724 list_add_tail(&root->delalloc_root, 1725 &fs_info->delalloc_roots); 1726 spin_unlock(&fs_info->delalloc_root_lock); 1727 } 1728 } 1729 spin_unlock(&root->delalloc_lock); 1730 } 1731 1732 1733 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1734 struct btrfs_inode *inode) 1735 { 1736 struct btrfs_fs_info *fs_info = root->fs_info; 1737 1738 if (!list_empty(&inode->delalloc_inodes)) { 1739 list_del_init(&inode->delalloc_inodes); 1740 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1741 &inode->runtime_flags); 1742 root->nr_delalloc_inodes--; 1743 if (!root->nr_delalloc_inodes) { 1744 ASSERT(list_empty(&root->delalloc_inodes)); 1745 spin_lock(&fs_info->delalloc_root_lock); 1746 BUG_ON(list_empty(&root->delalloc_root)); 1747 list_del_init(&root->delalloc_root); 1748 spin_unlock(&fs_info->delalloc_root_lock); 1749 } 1750 } 1751 } 1752 1753 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1754 struct btrfs_inode *inode) 1755 { 1756 spin_lock(&root->delalloc_lock); 1757 __btrfs_del_delalloc_inode(root, inode); 1758 spin_unlock(&root->delalloc_lock); 1759 } 1760 1761 /* 1762 * Properly track delayed allocation bytes in the inode and to maintain the 1763 * list of inodes that have pending delalloc work to be done. 1764 */ 1765 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1766 unsigned *bits) 1767 { 1768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1769 1770 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1771 WARN_ON(1); 1772 /* 1773 * set_bit and clear bit hooks normally require _irqsave/restore 1774 * but in this case, we are only testing for the DELALLOC 1775 * bit, which is only set or cleared with irqs on 1776 */ 1777 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1778 struct btrfs_root *root = BTRFS_I(inode)->root; 1779 u64 len = state->end + 1 - state->start; 1780 u32 num_extents = count_max_extents(len); 1781 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1782 1783 spin_lock(&BTRFS_I(inode)->lock); 1784 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1785 spin_unlock(&BTRFS_I(inode)->lock); 1786 1787 /* For sanity tests */ 1788 if (btrfs_is_testing(fs_info)) 1789 return; 1790 1791 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1792 fs_info->delalloc_batch); 1793 spin_lock(&BTRFS_I(inode)->lock); 1794 BTRFS_I(inode)->delalloc_bytes += len; 1795 if (*bits & EXTENT_DEFRAG) 1796 BTRFS_I(inode)->defrag_bytes += len; 1797 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1798 &BTRFS_I(inode)->runtime_flags)) 1799 btrfs_add_delalloc_inodes(root, inode); 1800 spin_unlock(&BTRFS_I(inode)->lock); 1801 } 1802 1803 if (!(state->state & EXTENT_DELALLOC_NEW) && 1804 (*bits & EXTENT_DELALLOC_NEW)) { 1805 spin_lock(&BTRFS_I(inode)->lock); 1806 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1807 state->start; 1808 spin_unlock(&BTRFS_I(inode)->lock); 1809 } 1810 } 1811 1812 /* 1813 * Once a range is no longer delalloc this function ensures that proper 1814 * accounting happens. 1815 */ 1816 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 1817 struct extent_state *state, unsigned *bits) 1818 { 1819 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1820 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 1821 u64 len = state->end + 1 - state->start; 1822 u32 num_extents = count_max_extents(len); 1823 1824 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1825 spin_lock(&inode->lock); 1826 inode->defrag_bytes -= len; 1827 spin_unlock(&inode->lock); 1828 } 1829 1830 /* 1831 * set_bit and clear bit hooks normally require _irqsave/restore 1832 * but in this case, we are only testing for the DELALLOC 1833 * bit, which is only set or cleared with irqs on 1834 */ 1835 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1836 struct btrfs_root *root = inode->root; 1837 bool do_list = !btrfs_is_free_space_inode(inode); 1838 1839 spin_lock(&inode->lock); 1840 btrfs_mod_outstanding_extents(inode, -num_extents); 1841 spin_unlock(&inode->lock); 1842 1843 /* 1844 * We don't reserve metadata space for space cache inodes so we 1845 * don't need to call delalloc_release_metadata if there is an 1846 * error. 1847 */ 1848 if (*bits & EXTENT_CLEAR_META_RESV && 1849 root != fs_info->tree_root) 1850 btrfs_delalloc_release_metadata(inode, len, false); 1851 1852 /* For sanity tests. */ 1853 if (btrfs_is_testing(fs_info)) 1854 return; 1855 1856 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1857 do_list && !(state->state & EXTENT_NORESERVE) && 1858 (*bits & EXTENT_CLEAR_DATA_RESV)) 1859 btrfs_free_reserved_data_space_noquota( 1860 &inode->vfs_inode, 1861 state->start, len); 1862 1863 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1864 fs_info->delalloc_batch); 1865 spin_lock(&inode->lock); 1866 inode->delalloc_bytes -= len; 1867 if (do_list && inode->delalloc_bytes == 0 && 1868 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1869 &inode->runtime_flags)) 1870 btrfs_del_delalloc_inode(root, inode); 1871 spin_unlock(&inode->lock); 1872 } 1873 1874 if ((state->state & EXTENT_DELALLOC_NEW) && 1875 (*bits & EXTENT_DELALLOC_NEW)) { 1876 spin_lock(&inode->lock); 1877 ASSERT(inode->new_delalloc_bytes >= len); 1878 inode->new_delalloc_bytes -= len; 1879 spin_unlock(&inode->lock); 1880 } 1881 } 1882 1883 /* 1884 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 1885 * in a chunk's stripe. This function ensures that bios do not span a 1886 * stripe/chunk 1887 * 1888 * @page - The page we are about to add to the bio 1889 * @size - size we want to add to the bio 1890 * @bio - bio we want to ensure is smaller than a stripe 1891 * @bio_flags - flags of the bio 1892 * 1893 * return 1 if page cannot be added to the bio 1894 * return 0 if page can be added to the bio 1895 * return error otherwise 1896 */ 1897 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 1898 unsigned long bio_flags) 1899 { 1900 struct inode *inode = page->mapping->host; 1901 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1902 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1903 u64 length = 0; 1904 u64 map_length; 1905 int ret; 1906 1907 if (bio_flags & EXTENT_BIO_COMPRESSED) 1908 return 0; 1909 1910 length = bio->bi_iter.bi_size; 1911 map_length = length; 1912 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1913 NULL, 0); 1914 if (ret < 0) 1915 return ret; 1916 if (map_length < length + size) 1917 return 1; 1918 return 0; 1919 } 1920 1921 /* 1922 * in order to insert checksums into the metadata in large chunks, 1923 * we wait until bio submission time. All the pages in the bio are 1924 * checksummed and sums are attached onto the ordered extent record. 1925 * 1926 * At IO completion time the cums attached on the ordered extent record 1927 * are inserted into the btree 1928 */ 1929 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 1930 u64 bio_offset) 1931 { 1932 struct inode *inode = private_data; 1933 blk_status_t ret = 0; 1934 1935 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1936 BUG_ON(ret); /* -ENOMEM */ 1937 return 0; 1938 } 1939 1940 /* 1941 * extent_io.c submission hook. This does the right thing for csum calculation 1942 * on write, or reading the csums from the tree before a read. 1943 * 1944 * Rules about async/sync submit, 1945 * a) read: sync submit 1946 * 1947 * b) write without checksum: sync submit 1948 * 1949 * c) write with checksum: 1950 * c-1) if bio is issued by fsync: sync submit 1951 * (sync_writers != 0) 1952 * 1953 * c-2) if root is reloc root: sync submit 1954 * (only in case of buffered IO) 1955 * 1956 * c-3) otherwise: async submit 1957 */ 1958 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1959 int mirror_num, unsigned long bio_flags, 1960 u64 bio_offset) 1961 { 1962 struct inode *inode = private_data; 1963 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1964 struct btrfs_root *root = BTRFS_I(inode)->root; 1965 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1966 blk_status_t ret = 0; 1967 int skip_sum; 1968 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1969 1970 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1971 1972 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1973 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1974 1975 if (bio_op(bio) != REQ_OP_WRITE) { 1976 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1977 if (ret) 1978 goto out; 1979 1980 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1981 ret = btrfs_submit_compressed_read(inode, bio, 1982 mirror_num, 1983 bio_flags); 1984 goto out; 1985 } else if (!skip_sum) { 1986 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 1987 if (ret) 1988 goto out; 1989 } 1990 goto mapit; 1991 } else if (async && !skip_sum) { 1992 /* csum items have already been cloned */ 1993 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1994 goto mapit; 1995 /* we're doing a write, do the async checksumming */ 1996 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 1997 bio_offset, inode, 1998 btrfs_submit_bio_start); 1999 goto out; 2000 } else if (!skip_sum) { 2001 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2002 if (ret) 2003 goto out; 2004 } 2005 2006 mapit: 2007 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2008 2009 out: 2010 if (ret) { 2011 bio->bi_status = ret; 2012 bio_endio(bio); 2013 } 2014 return ret; 2015 } 2016 2017 /* 2018 * given a list of ordered sums record them in the inode. This happens 2019 * at IO completion time based on sums calculated at bio submission time. 2020 */ 2021 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2022 struct inode *inode, struct list_head *list) 2023 { 2024 struct btrfs_ordered_sum *sum; 2025 int ret; 2026 2027 list_for_each_entry(sum, list, list) { 2028 trans->adding_csums = true; 2029 ret = btrfs_csum_file_blocks(trans, 2030 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2031 trans->adding_csums = false; 2032 if (ret) 2033 return ret; 2034 } 2035 return 0; 2036 } 2037 2038 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2039 unsigned int extra_bits, 2040 struct extent_state **cached_state, int dedupe) 2041 { 2042 WARN_ON(PAGE_ALIGNED(end)); 2043 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2044 extra_bits, cached_state); 2045 } 2046 2047 /* see btrfs_writepage_start_hook for details on why this is required */ 2048 struct btrfs_writepage_fixup { 2049 struct page *page; 2050 struct btrfs_work work; 2051 }; 2052 2053 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2054 { 2055 struct btrfs_writepage_fixup *fixup; 2056 struct btrfs_ordered_extent *ordered; 2057 struct extent_state *cached_state = NULL; 2058 struct extent_changeset *data_reserved = NULL; 2059 struct page *page; 2060 struct inode *inode; 2061 u64 page_start; 2062 u64 page_end; 2063 int ret; 2064 2065 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2066 page = fixup->page; 2067 again: 2068 lock_page(page); 2069 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2070 ClearPageChecked(page); 2071 goto out_page; 2072 } 2073 2074 inode = page->mapping->host; 2075 page_start = page_offset(page); 2076 page_end = page_offset(page) + PAGE_SIZE - 1; 2077 2078 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2079 &cached_state); 2080 2081 /* already ordered? We're done */ 2082 if (PagePrivate2(page)) 2083 goto out; 2084 2085 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2086 PAGE_SIZE); 2087 if (ordered) { 2088 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2089 page_end, &cached_state); 2090 unlock_page(page); 2091 btrfs_start_ordered_extent(inode, ordered, 1); 2092 btrfs_put_ordered_extent(ordered); 2093 goto again; 2094 } 2095 2096 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2097 PAGE_SIZE); 2098 if (ret) { 2099 mapping_set_error(page->mapping, ret); 2100 end_extent_writepage(page, ret, page_start, page_end); 2101 ClearPageChecked(page); 2102 goto out; 2103 } 2104 2105 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2106 &cached_state, 0); 2107 if (ret) { 2108 mapping_set_error(page->mapping, ret); 2109 end_extent_writepage(page, ret, page_start, page_end); 2110 ClearPageChecked(page); 2111 goto out; 2112 } 2113 2114 ClearPageChecked(page); 2115 set_page_dirty(page); 2116 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false); 2117 out: 2118 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2119 &cached_state); 2120 out_page: 2121 unlock_page(page); 2122 put_page(page); 2123 kfree(fixup); 2124 extent_changeset_free(data_reserved); 2125 } 2126 2127 /* 2128 * There are a few paths in the higher layers of the kernel that directly 2129 * set the page dirty bit without asking the filesystem if it is a 2130 * good idea. This causes problems because we want to make sure COW 2131 * properly happens and the data=ordered rules are followed. 2132 * 2133 * In our case any range that doesn't have the ORDERED bit set 2134 * hasn't been properly setup for IO. We kick off an async process 2135 * to fix it up. The async helper will wait for ordered extents, set 2136 * the delalloc bit and make it safe to write the page. 2137 */ 2138 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2139 { 2140 struct inode *inode = page->mapping->host; 2141 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2142 struct btrfs_writepage_fixup *fixup; 2143 2144 /* this page is properly in the ordered list */ 2145 if (TestClearPagePrivate2(page)) 2146 return 0; 2147 2148 if (PageChecked(page)) 2149 return -EAGAIN; 2150 2151 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2152 if (!fixup) 2153 return -EAGAIN; 2154 2155 SetPageChecked(page); 2156 get_page(page); 2157 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2158 btrfs_writepage_fixup_worker, NULL, NULL); 2159 fixup->page = page; 2160 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2161 return -EBUSY; 2162 } 2163 2164 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2165 struct inode *inode, u64 file_pos, 2166 u64 disk_bytenr, u64 disk_num_bytes, 2167 u64 num_bytes, u64 ram_bytes, 2168 u8 compression, u8 encryption, 2169 u16 other_encoding, int extent_type) 2170 { 2171 struct btrfs_root *root = BTRFS_I(inode)->root; 2172 struct btrfs_file_extent_item *fi; 2173 struct btrfs_path *path; 2174 struct extent_buffer *leaf; 2175 struct btrfs_key ins; 2176 u64 qg_released; 2177 int extent_inserted = 0; 2178 int ret; 2179 2180 path = btrfs_alloc_path(); 2181 if (!path) 2182 return -ENOMEM; 2183 2184 /* 2185 * we may be replacing one extent in the tree with another. 2186 * The new extent is pinned in the extent map, and we don't want 2187 * to drop it from the cache until it is completely in the btree. 2188 * 2189 * So, tell btrfs_drop_extents to leave this extent in the cache. 2190 * the caller is expected to unpin it and allow it to be merged 2191 * with the others. 2192 */ 2193 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2194 file_pos + num_bytes, NULL, 0, 2195 1, sizeof(*fi), &extent_inserted); 2196 if (ret) 2197 goto out; 2198 2199 if (!extent_inserted) { 2200 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2201 ins.offset = file_pos; 2202 ins.type = BTRFS_EXTENT_DATA_KEY; 2203 2204 path->leave_spinning = 1; 2205 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2206 sizeof(*fi)); 2207 if (ret) 2208 goto out; 2209 } 2210 leaf = path->nodes[0]; 2211 fi = btrfs_item_ptr(leaf, path->slots[0], 2212 struct btrfs_file_extent_item); 2213 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2214 btrfs_set_file_extent_type(leaf, fi, extent_type); 2215 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2216 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2217 btrfs_set_file_extent_offset(leaf, fi, 0); 2218 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2219 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2220 btrfs_set_file_extent_compression(leaf, fi, compression); 2221 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2222 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2223 2224 btrfs_mark_buffer_dirty(leaf); 2225 btrfs_release_path(path); 2226 2227 inode_add_bytes(inode, num_bytes); 2228 2229 ins.objectid = disk_bytenr; 2230 ins.offset = disk_num_bytes; 2231 ins.type = BTRFS_EXTENT_ITEM_KEY; 2232 2233 /* 2234 * Release the reserved range from inode dirty range map, as it is 2235 * already moved into delayed_ref_head 2236 */ 2237 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2238 if (ret < 0) 2239 goto out; 2240 qg_released = ret; 2241 ret = btrfs_alloc_reserved_file_extent(trans, root, 2242 btrfs_ino(BTRFS_I(inode)), 2243 file_pos, qg_released, &ins); 2244 out: 2245 btrfs_free_path(path); 2246 2247 return ret; 2248 } 2249 2250 /* snapshot-aware defrag */ 2251 struct sa_defrag_extent_backref { 2252 struct rb_node node; 2253 struct old_sa_defrag_extent *old; 2254 u64 root_id; 2255 u64 inum; 2256 u64 file_pos; 2257 u64 extent_offset; 2258 u64 num_bytes; 2259 u64 generation; 2260 }; 2261 2262 struct old_sa_defrag_extent { 2263 struct list_head list; 2264 struct new_sa_defrag_extent *new; 2265 2266 u64 extent_offset; 2267 u64 bytenr; 2268 u64 offset; 2269 u64 len; 2270 int count; 2271 }; 2272 2273 struct new_sa_defrag_extent { 2274 struct rb_root root; 2275 struct list_head head; 2276 struct btrfs_path *path; 2277 struct inode *inode; 2278 u64 file_pos; 2279 u64 len; 2280 u64 bytenr; 2281 u64 disk_len; 2282 u8 compress_type; 2283 }; 2284 2285 static int backref_comp(struct sa_defrag_extent_backref *b1, 2286 struct sa_defrag_extent_backref *b2) 2287 { 2288 if (b1->root_id < b2->root_id) 2289 return -1; 2290 else if (b1->root_id > b2->root_id) 2291 return 1; 2292 2293 if (b1->inum < b2->inum) 2294 return -1; 2295 else if (b1->inum > b2->inum) 2296 return 1; 2297 2298 if (b1->file_pos < b2->file_pos) 2299 return -1; 2300 else if (b1->file_pos > b2->file_pos) 2301 return 1; 2302 2303 /* 2304 * [------------------------------] ===> (a range of space) 2305 * |<--->| |<---->| =============> (fs/file tree A) 2306 * |<---------------------------->| ===> (fs/file tree B) 2307 * 2308 * A range of space can refer to two file extents in one tree while 2309 * refer to only one file extent in another tree. 2310 * 2311 * So we may process a disk offset more than one time(two extents in A) 2312 * and locate at the same extent(one extent in B), then insert two same 2313 * backrefs(both refer to the extent in B). 2314 */ 2315 return 0; 2316 } 2317 2318 static void backref_insert(struct rb_root *root, 2319 struct sa_defrag_extent_backref *backref) 2320 { 2321 struct rb_node **p = &root->rb_node; 2322 struct rb_node *parent = NULL; 2323 struct sa_defrag_extent_backref *entry; 2324 int ret; 2325 2326 while (*p) { 2327 parent = *p; 2328 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2329 2330 ret = backref_comp(backref, entry); 2331 if (ret < 0) 2332 p = &(*p)->rb_left; 2333 else 2334 p = &(*p)->rb_right; 2335 } 2336 2337 rb_link_node(&backref->node, parent, p); 2338 rb_insert_color(&backref->node, root); 2339 } 2340 2341 /* 2342 * Note the backref might has changed, and in this case we just return 0. 2343 */ 2344 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2345 void *ctx) 2346 { 2347 struct btrfs_file_extent_item *extent; 2348 struct old_sa_defrag_extent *old = ctx; 2349 struct new_sa_defrag_extent *new = old->new; 2350 struct btrfs_path *path = new->path; 2351 struct btrfs_key key; 2352 struct btrfs_root *root; 2353 struct sa_defrag_extent_backref *backref; 2354 struct extent_buffer *leaf; 2355 struct inode *inode = new->inode; 2356 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2357 int slot; 2358 int ret; 2359 u64 extent_offset; 2360 u64 num_bytes; 2361 2362 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2363 inum == btrfs_ino(BTRFS_I(inode))) 2364 return 0; 2365 2366 key.objectid = root_id; 2367 key.type = BTRFS_ROOT_ITEM_KEY; 2368 key.offset = (u64)-1; 2369 2370 root = btrfs_read_fs_root_no_name(fs_info, &key); 2371 if (IS_ERR(root)) { 2372 if (PTR_ERR(root) == -ENOENT) 2373 return 0; 2374 WARN_ON(1); 2375 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2376 inum, offset, root_id); 2377 return PTR_ERR(root); 2378 } 2379 2380 key.objectid = inum; 2381 key.type = BTRFS_EXTENT_DATA_KEY; 2382 if (offset > (u64)-1 << 32) 2383 key.offset = 0; 2384 else 2385 key.offset = offset; 2386 2387 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2388 if (WARN_ON(ret < 0)) 2389 return ret; 2390 ret = 0; 2391 2392 while (1) { 2393 cond_resched(); 2394 2395 leaf = path->nodes[0]; 2396 slot = path->slots[0]; 2397 2398 if (slot >= btrfs_header_nritems(leaf)) { 2399 ret = btrfs_next_leaf(root, path); 2400 if (ret < 0) { 2401 goto out; 2402 } else if (ret > 0) { 2403 ret = 0; 2404 goto out; 2405 } 2406 continue; 2407 } 2408 2409 path->slots[0]++; 2410 2411 btrfs_item_key_to_cpu(leaf, &key, slot); 2412 2413 if (key.objectid > inum) 2414 goto out; 2415 2416 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2417 continue; 2418 2419 extent = btrfs_item_ptr(leaf, slot, 2420 struct btrfs_file_extent_item); 2421 2422 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2423 continue; 2424 2425 /* 2426 * 'offset' refers to the exact key.offset, 2427 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2428 * (key.offset - extent_offset). 2429 */ 2430 if (key.offset != offset) 2431 continue; 2432 2433 extent_offset = btrfs_file_extent_offset(leaf, extent); 2434 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2435 2436 if (extent_offset >= old->extent_offset + old->offset + 2437 old->len || extent_offset + num_bytes <= 2438 old->extent_offset + old->offset) 2439 continue; 2440 break; 2441 } 2442 2443 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2444 if (!backref) { 2445 ret = -ENOENT; 2446 goto out; 2447 } 2448 2449 backref->root_id = root_id; 2450 backref->inum = inum; 2451 backref->file_pos = offset; 2452 backref->num_bytes = num_bytes; 2453 backref->extent_offset = extent_offset; 2454 backref->generation = btrfs_file_extent_generation(leaf, extent); 2455 backref->old = old; 2456 backref_insert(&new->root, backref); 2457 old->count++; 2458 out: 2459 btrfs_release_path(path); 2460 WARN_ON(ret); 2461 return ret; 2462 } 2463 2464 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2465 struct new_sa_defrag_extent *new) 2466 { 2467 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2468 struct old_sa_defrag_extent *old, *tmp; 2469 int ret; 2470 2471 new->path = path; 2472 2473 list_for_each_entry_safe(old, tmp, &new->head, list) { 2474 ret = iterate_inodes_from_logical(old->bytenr + 2475 old->extent_offset, fs_info, 2476 path, record_one_backref, 2477 old, false); 2478 if (ret < 0 && ret != -ENOENT) 2479 return false; 2480 2481 /* no backref to be processed for this extent */ 2482 if (!old->count) { 2483 list_del(&old->list); 2484 kfree(old); 2485 } 2486 } 2487 2488 if (list_empty(&new->head)) 2489 return false; 2490 2491 return true; 2492 } 2493 2494 static int relink_is_mergable(struct extent_buffer *leaf, 2495 struct btrfs_file_extent_item *fi, 2496 struct new_sa_defrag_extent *new) 2497 { 2498 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2499 return 0; 2500 2501 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2502 return 0; 2503 2504 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2505 return 0; 2506 2507 if (btrfs_file_extent_encryption(leaf, fi) || 2508 btrfs_file_extent_other_encoding(leaf, fi)) 2509 return 0; 2510 2511 return 1; 2512 } 2513 2514 /* 2515 * Note the backref might has changed, and in this case we just return 0. 2516 */ 2517 static noinline int relink_extent_backref(struct btrfs_path *path, 2518 struct sa_defrag_extent_backref *prev, 2519 struct sa_defrag_extent_backref *backref) 2520 { 2521 struct btrfs_file_extent_item *extent; 2522 struct btrfs_file_extent_item *item; 2523 struct btrfs_ordered_extent *ordered; 2524 struct btrfs_trans_handle *trans; 2525 struct btrfs_root *root; 2526 struct btrfs_key key; 2527 struct extent_buffer *leaf; 2528 struct old_sa_defrag_extent *old = backref->old; 2529 struct new_sa_defrag_extent *new = old->new; 2530 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2531 struct inode *inode; 2532 struct extent_state *cached = NULL; 2533 int ret = 0; 2534 u64 start; 2535 u64 len; 2536 u64 lock_start; 2537 u64 lock_end; 2538 bool merge = false; 2539 int index; 2540 2541 if (prev && prev->root_id == backref->root_id && 2542 prev->inum == backref->inum && 2543 prev->file_pos + prev->num_bytes == backref->file_pos) 2544 merge = true; 2545 2546 /* step 1: get root */ 2547 key.objectid = backref->root_id; 2548 key.type = BTRFS_ROOT_ITEM_KEY; 2549 key.offset = (u64)-1; 2550 2551 index = srcu_read_lock(&fs_info->subvol_srcu); 2552 2553 root = btrfs_read_fs_root_no_name(fs_info, &key); 2554 if (IS_ERR(root)) { 2555 srcu_read_unlock(&fs_info->subvol_srcu, index); 2556 if (PTR_ERR(root) == -ENOENT) 2557 return 0; 2558 return PTR_ERR(root); 2559 } 2560 2561 if (btrfs_root_readonly(root)) { 2562 srcu_read_unlock(&fs_info->subvol_srcu, index); 2563 return 0; 2564 } 2565 2566 /* step 2: get inode */ 2567 key.objectid = backref->inum; 2568 key.type = BTRFS_INODE_ITEM_KEY; 2569 key.offset = 0; 2570 2571 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2572 if (IS_ERR(inode)) { 2573 srcu_read_unlock(&fs_info->subvol_srcu, index); 2574 return 0; 2575 } 2576 2577 srcu_read_unlock(&fs_info->subvol_srcu, index); 2578 2579 /* step 3: relink backref */ 2580 lock_start = backref->file_pos; 2581 lock_end = backref->file_pos + backref->num_bytes - 1; 2582 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2583 &cached); 2584 2585 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2586 if (ordered) { 2587 btrfs_put_ordered_extent(ordered); 2588 goto out_unlock; 2589 } 2590 2591 trans = btrfs_join_transaction(root); 2592 if (IS_ERR(trans)) { 2593 ret = PTR_ERR(trans); 2594 goto out_unlock; 2595 } 2596 2597 key.objectid = backref->inum; 2598 key.type = BTRFS_EXTENT_DATA_KEY; 2599 key.offset = backref->file_pos; 2600 2601 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2602 if (ret < 0) { 2603 goto out_free_path; 2604 } else if (ret > 0) { 2605 ret = 0; 2606 goto out_free_path; 2607 } 2608 2609 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2610 struct btrfs_file_extent_item); 2611 2612 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2613 backref->generation) 2614 goto out_free_path; 2615 2616 btrfs_release_path(path); 2617 2618 start = backref->file_pos; 2619 if (backref->extent_offset < old->extent_offset + old->offset) 2620 start += old->extent_offset + old->offset - 2621 backref->extent_offset; 2622 2623 len = min(backref->extent_offset + backref->num_bytes, 2624 old->extent_offset + old->offset + old->len); 2625 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2626 2627 ret = btrfs_drop_extents(trans, root, inode, start, 2628 start + len, 1); 2629 if (ret) 2630 goto out_free_path; 2631 again: 2632 key.objectid = btrfs_ino(BTRFS_I(inode)); 2633 key.type = BTRFS_EXTENT_DATA_KEY; 2634 key.offset = start; 2635 2636 path->leave_spinning = 1; 2637 if (merge) { 2638 struct btrfs_file_extent_item *fi; 2639 u64 extent_len; 2640 struct btrfs_key found_key; 2641 2642 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2643 if (ret < 0) 2644 goto out_free_path; 2645 2646 path->slots[0]--; 2647 leaf = path->nodes[0]; 2648 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2649 2650 fi = btrfs_item_ptr(leaf, path->slots[0], 2651 struct btrfs_file_extent_item); 2652 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2653 2654 if (extent_len + found_key.offset == start && 2655 relink_is_mergable(leaf, fi, new)) { 2656 btrfs_set_file_extent_num_bytes(leaf, fi, 2657 extent_len + len); 2658 btrfs_mark_buffer_dirty(leaf); 2659 inode_add_bytes(inode, len); 2660 2661 ret = 1; 2662 goto out_free_path; 2663 } else { 2664 merge = false; 2665 btrfs_release_path(path); 2666 goto again; 2667 } 2668 } 2669 2670 ret = btrfs_insert_empty_item(trans, root, path, &key, 2671 sizeof(*extent)); 2672 if (ret) { 2673 btrfs_abort_transaction(trans, ret); 2674 goto out_free_path; 2675 } 2676 2677 leaf = path->nodes[0]; 2678 item = btrfs_item_ptr(leaf, path->slots[0], 2679 struct btrfs_file_extent_item); 2680 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2681 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2682 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2683 btrfs_set_file_extent_num_bytes(leaf, item, len); 2684 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2685 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2686 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2687 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2688 btrfs_set_file_extent_encryption(leaf, item, 0); 2689 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2690 2691 btrfs_mark_buffer_dirty(leaf); 2692 inode_add_bytes(inode, len); 2693 btrfs_release_path(path); 2694 2695 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2696 new->disk_len, 0, 2697 backref->root_id, backref->inum, 2698 new->file_pos); /* start - extent_offset */ 2699 if (ret) { 2700 btrfs_abort_transaction(trans, ret); 2701 goto out_free_path; 2702 } 2703 2704 ret = 1; 2705 out_free_path: 2706 btrfs_release_path(path); 2707 path->leave_spinning = 0; 2708 btrfs_end_transaction(trans); 2709 out_unlock: 2710 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2711 &cached); 2712 iput(inode); 2713 return ret; 2714 } 2715 2716 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2717 { 2718 struct old_sa_defrag_extent *old, *tmp; 2719 2720 if (!new) 2721 return; 2722 2723 list_for_each_entry_safe(old, tmp, &new->head, list) { 2724 kfree(old); 2725 } 2726 kfree(new); 2727 } 2728 2729 static void relink_file_extents(struct new_sa_defrag_extent *new) 2730 { 2731 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2732 struct btrfs_path *path; 2733 struct sa_defrag_extent_backref *backref; 2734 struct sa_defrag_extent_backref *prev = NULL; 2735 struct rb_node *node; 2736 int ret; 2737 2738 path = btrfs_alloc_path(); 2739 if (!path) 2740 return; 2741 2742 if (!record_extent_backrefs(path, new)) { 2743 btrfs_free_path(path); 2744 goto out; 2745 } 2746 btrfs_release_path(path); 2747 2748 while (1) { 2749 node = rb_first(&new->root); 2750 if (!node) 2751 break; 2752 rb_erase(node, &new->root); 2753 2754 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2755 2756 ret = relink_extent_backref(path, prev, backref); 2757 WARN_ON(ret < 0); 2758 2759 kfree(prev); 2760 2761 if (ret == 1) 2762 prev = backref; 2763 else 2764 prev = NULL; 2765 cond_resched(); 2766 } 2767 kfree(prev); 2768 2769 btrfs_free_path(path); 2770 out: 2771 free_sa_defrag_extent(new); 2772 2773 atomic_dec(&fs_info->defrag_running); 2774 wake_up(&fs_info->transaction_wait); 2775 } 2776 2777 static struct new_sa_defrag_extent * 2778 record_old_file_extents(struct inode *inode, 2779 struct btrfs_ordered_extent *ordered) 2780 { 2781 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2782 struct btrfs_root *root = BTRFS_I(inode)->root; 2783 struct btrfs_path *path; 2784 struct btrfs_key key; 2785 struct old_sa_defrag_extent *old; 2786 struct new_sa_defrag_extent *new; 2787 int ret; 2788 2789 new = kmalloc(sizeof(*new), GFP_NOFS); 2790 if (!new) 2791 return NULL; 2792 2793 new->inode = inode; 2794 new->file_pos = ordered->file_offset; 2795 new->len = ordered->len; 2796 new->bytenr = ordered->start; 2797 new->disk_len = ordered->disk_len; 2798 new->compress_type = ordered->compress_type; 2799 new->root = RB_ROOT; 2800 INIT_LIST_HEAD(&new->head); 2801 2802 path = btrfs_alloc_path(); 2803 if (!path) 2804 goto out_kfree; 2805 2806 key.objectid = btrfs_ino(BTRFS_I(inode)); 2807 key.type = BTRFS_EXTENT_DATA_KEY; 2808 key.offset = new->file_pos; 2809 2810 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2811 if (ret < 0) 2812 goto out_free_path; 2813 if (ret > 0 && path->slots[0] > 0) 2814 path->slots[0]--; 2815 2816 /* find out all the old extents for the file range */ 2817 while (1) { 2818 struct btrfs_file_extent_item *extent; 2819 struct extent_buffer *l; 2820 int slot; 2821 u64 num_bytes; 2822 u64 offset; 2823 u64 end; 2824 u64 disk_bytenr; 2825 u64 extent_offset; 2826 2827 l = path->nodes[0]; 2828 slot = path->slots[0]; 2829 2830 if (slot >= btrfs_header_nritems(l)) { 2831 ret = btrfs_next_leaf(root, path); 2832 if (ret < 0) 2833 goto out_free_path; 2834 else if (ret > 0) 2835 break; 2836 continue; 2837 } 2838 2839 btrfs_item_key_to_cpu(l, &key, slot); 2840 2841 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2842 break; 2843 if (key.type != BTRFS_EXTENT_DATA_KEY) 2844 break; 2845 if (key.offset >= new->file_pos + new->len) 2846 break; 2847 2848 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2849 2850 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2851 if (key.offset + num_bytes < new->file_pos) 2852 goto next; 2853 2854 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2855 if (!disk_bytenr) 2856 goto next; 2857 2858 extent_offset = btrfs_file_extent_offset(l, extent); 2859 2860 old = kmalloc(sizeof(*old), GFP_NOFS); 2861 if (!old) 2862 goto out_free_path; 2863 2864 offset = max(new->file_pos, key.offset); 2865 end = min(new->file_pos + new->len, key.offset + num_bytes); 2866 2867 old->bytenr = disk_bytenr; 2868 old->extent_offset = extent_offset; 2869 old->offset = offset - key.offset; 2870 old->len = end - offset; 2871 old->new = new; 2872 old->count = 0; 2873 list_add_tail(&old->list, &new->head); 2874 next: 2875 path->slots[0]++; 2876 cond_resched(); 2877 } 2878 2879 btrfs_free_path(path); 2880 atomic_inc(&fs_info->defrag_running); 2881 2882 return new; 2883 2884 out_free_path: 2885 btrfs_free_path(path); 2886 out_kfree: 2887 free_sa_defrag_extent(new); 2888 return NULL; 2889 } 2890 2891 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2892 u64 start, u64 len) 2893 { 2894 struct btrfs_block_group_cache *cache; 2895 2896 cache = btrfs_lookup_block_group(fs_info, start); 2897 ASSERT(cache); 2898 2899 spin_lock(&cache->lock); 2900 cache->delalloc_bytes -= len; 2901 spin_unlock(&cache->lock); 2902 2903 btrfs_put_block_group(cache); 2904 } 2905 2906 /* as ordered data IO finishes, this gets called so we can finish 2907 * an ordered extent if the range of bytes in the file it covers are 2908 * fully written. 2909 */ 2910 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2911 { 2912 struct inode *inode = ordered_extent->inode; 2913 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2914 struct btrfs_root *root = BTRFS_I(inode)->root; 2915 struct btrfs_trans_handle *trans = NULL; 2916 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2917 struct extent_state *cached_state = NULL; 2918 struct new_sa_defrag_extent *new = NULL; 2919 int compress_type = 0; 2920 int ret = 0; 2921 u64 logical_len = ordered_extent->len; 2922 bool nolock; 2923 bool truncated = false; 2924 bool range_locked = false; 2925 bool clear_new_delalloc_bytes = false; 2926 bool clear_reserved_extent = true; 2927 2928 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2929 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2930 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2931 clear_new_delalloc_bytes = true; 2932 2933 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2934 2935 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2936 ret = -EIO; 2937 goto out; 2938 } 2939 2940 btrfs_free_io_failure_record(BTRFS_I(inode), 2941 ordered_extent->file_offset, 2942 ordered_extent->file_offset + 2943 ordered_extent->len - 1); 2944 2945 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2946 truncated = true; 2947 logical_len = ordered_extent->truncated_len; 2948 /* Truncated the entire extent, don't bother adding */ 2949 if (!logical_len) 2950 goto out; 2951 } 2952 2953 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2954 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2955 2956 /* 2957 * For mwrite(mmap + memset to write) case, we still reserve 2958 * space for NOCOW range. 2959 * As NOCOW won't cause a new delayed ref, just free the space 2960 */ 2961 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2962 ordered_extent->len); 2963 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2964 if (nolock) 2965 trans = btrfs_join_transaction_nolock(root); 2966 else 2967 trans = btrfs_join_transaction(root); 2968 if (IS_ERR(trans)) { 2969 ret = PTR_ERR(trans); 2970 trans = NULL; 2971 goto out; 2972 } 2973 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2974 ret = btrfs_update_inode_fallback(trans, root, inode); 2975 if (ret) /* -ENOMEM or corruption */ 2976 btrfs_abort_transaction(trans, ret); 2977 goto out; 2978 } 2979 2980 range_locked = true; 2981 lock_extent_bits(io_tree, ordered_extent->file_offset, 2982 ordered_extent->file_offset + ordered_extent->len - 1, 2983 &cached_state); 2984 2985 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2986 ordered_extent->file_offset + ordered_extent->len - 1, 2987 EXTENT_DEFRAG, 0, cached_state); 2988 if (ret) { 2989 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2990 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2991 /* the inode is shared */ 2992 new = record_old_file_extents(inode, ordered_extent); 2993 2994 clear_extent_bit(io_tree, ordered_extent->file_offset, 2995 ordered_extent->file_offset + ordered_extent->len - 1, 2996 EXTENT_DEFRAG, 0, 0, &cached_state); 2997 } 2998 2999 if (nolock) 3000 trans = btrfs_join_transaction_nolock(root); 3001 else 3002 trans = btrfs_join_transaction(root); 3003 if (IS_ERR(trans)) { 3004 ret = PTR_ERR(trans); 3005 trans = NULL; 3006 goto out; 3007 } 3008 3009 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3010 3011 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3012 compress_type = ordered_extent->compress_type; 3013 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3014 BUG_ON(compress_type); 3015 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3016 ordered_extent->len); 3017 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3018 ordered_extent->file_offset, 3019 ordered_extent->file_offset + 3020 logical_len); 3021 } else { 3022 BUG_ON(root == fs_info->tree_root); 3023 ret = insert_reserved_file_extent(trans, inode, 3024 ordered_extent->file_offset, 3025 ordered_extent->start, 3026 ordered_extent->disk_len, 3027 logical_len, logical_len, 3028 compress_type, 0, 0, 3029 BTRFS_FILE_EXTENT_REG); 3030 if (!ret) { 3031 clear_reserved_extent = false; 3032 btrfs_release_delalloc_bytes(fs_info, 3033 ordered_extent->start, 3034 ordered_extent->disk_len); 3035 } 3036 } 3037 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3038 ordered_extent->file_offset, ordered_extent->len, 3039 trans->transid); 3040 if (ret < 0) { 3041 btrfs_abort_transaction(trans, ret); 3042 goto out; 3043 } 3044 3045 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3046 if (ret) { 3047 btrfs_abort_transaction(trans, ret); 3048 goto out; 3049 } 3050 3051 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3052 ret = btrfs_update_inode_fallback(trans, root, inode); 3053 if (ret) { /* -ENOMEM or corruption */ 3054 btrfs_abort_transaction(trans, ret); 3055 goto out; 3056 } 3057 ret = 0; 3058 out: 3059 if (range_locked || clear_new_delalloc_bytes) { 3060 unsigned int clear_bits = 0; 3061 3062 if (range_locked) 3063 clear_bits |= EXTENT_LOCKED; 3064 if (clear_new_delalloc_bytes) 3065 clear_bits |= EXTENT_DELALLOC_NEW; 3066 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3067 ordered_extent->file_offset, 3068 ordered_extent->file_offset + 3069 ordered_extent->len - 1, 3070 clear_bits, 3071 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3072 0, &cached_state); 3073 } 3074 3075 if (trans) 3076 btrfs_end_transaction(trans); 3077 3078 if (ret || truncated) { 3079 u64 start, end; 3080 3081 if (truncated) 3082 start = ordered_extent->file_offset + logical_len; 3083 else 3084 start = ordered_extent->file_offset; 3085 end = ordered_extent->file_offset + ordered_extent->len - 1; 3086 clear_extent_uptodate(io_tree, start, end, NULL); 3087 3088 /* Drop the cache for the part of the extent we didn't write. */ 3089 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3090 3091 /* 3092 * If the ordered extent had an IOERR or something else went 3093 * wrong we need to return the space for this ordered extent 3094 * back to the allocator. We only free the extent in the 3095 * truncated case if we didn't write out the extent at all. 3096 * 3097 * If we made it past insert_reserved_file_extent before we 3098 * errored out then we don't need to do this as the accounting 3099 * has already been done. 3100 */ 3101 if ((ret || !logical_len) && 3102 clear_reserved_extent && 3103 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3104 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3105 btrfs_free_reserved_extent(fs_info, 3106 ordered_extent->start, 3107 ordered_extent->disk_len, 1); 3108 } 3109 3110 3111 /* 3112 * This needs to be done to make sure anybody waiting knows we are done 3113 * updating everything for this ordered extent. 3114 */ 3115 btrfs_remove_ordered_extent(inode, ordered_extent); 3116 3117 /* for snapshot-aware defrag */ 3118 if (new) { 3119 if (ret) { 3120 free_sa_defrag_extent(new); 3121 atomic_dec(&fs_info->defrag_running); 3122 } else { 3123 relink_file_extents(new); 3124 } 3125 } 3126 3127 /* once for us */ 3128 btrfs_put_ordered_extent(ordered_extent); 3129 /* once for the tree */ 3130 btrfs_put_ordered_extent(ordered_extent); 3131 3132 /* Try to release some metadata so we don't get an OOM but don't wait */ 3133 btrfs_btree_balance_dirty_nodelay(fs_info); 3134 3135 return ret; 3136 } 3137 3138 static void finish_ordered_fn(struct btrfs_work *work) 3139 { 3140 struct btrfs_ordered_extent *ordered_extent; 3141 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3142 btrfs_finish_ordered_io(ordered_extent); 3143 } 3144 3145 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3146 u64 end, int uptodate) 3147 { 3148 struct inode *inode = page->mapping->host; 3149 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3150 struct btrfs_ordered_extent *ordered_extent = NULL; 3151 struct btrfs_workqueue *wq; 3152 btrfs_work_func_t func; 3153 3154 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3155 3156 ClearPagePrivate2(page); 3157 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3158 end - start + 1, uptodate)) 3159 return; 3160 3161 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3162 wq = fs_info->endio_freespace_worker; 3163 func = btrfs_freespace_write_helper; 3164 } else { 3165 wq = fs_info->endio_write_workers; 3166 func = btrfs_endio_write_helper; 3167 } 3168 3169 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3170 NULL); 3171 btrfs_queue_work(wq, &ordered_extent->work); 3172 } 3173 3174 static int __readpage_endio_check(struct inode *inode, 3175 struct btrfs_io_bio *io_bio, 3176 int icsum, struct page *page, 3177 int pgoff, u64 start, size_t len) 3178 { 3179 char *kaddr; 3180 u32 csum_expected; 3181 u32 csum = ~(u32)0; 3182 3183 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3184 3185 kaddr = kmap_atomic(page); 3186 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3187 btrfs_csum_final(csum, (u8 *)&csum); 3188 if (csum != csum_expected) 3189 goto zeroit; 3190 3191 kunmap_atomic(kaddr); 3192 return 0; 3193 zeroit: 3194 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3195 io_bio->mirror_num); 3196 memset(kaddr + pgoff, 1, len); 3197 flush_dcache_page(page); 3198 kunmap_atomic(kaddr); 3199 return -EIO; 3200 } 3201 3202 /* 3203 * when reads are done, we need to check csums to verify the data is correct 3204 * if there's a match, we allow the bio to finish. If not, the code in 3205 * extent_io.c will try to find good copies for us. 3206 */ 3207 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3208 u64 phy_offset, struct page *page, 3209 u64 start, u64 end, int mirror) 3210 { 3211 size_t offset = start - page_offset(page); 3212 struct inode *inode = page->mapping->host; 3213 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3214 struct btrfs_root *root = BTRFS_I(inode)->root; 3215 3216 if (PageChecked(page)) { 3217 ClearPageChecked(page); 3218 return 0; 3219 } 3220 3221 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3222 return 0; 3223 3224 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3225 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3226 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3227 return 0; 3228 } 3229 3230 phy_offset >>= inode->i_sb->s_blocksize_bits; 3231 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3232 start, (size_t)(end - start + 1)); 3233 } 3234 3235 /* 3236 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3237 * 3238 * @inode: The inode we want to perform iput on 3239 * 3240 * This function uses the generic vfs_inode::i_count to track whether we should 3241 * just decrement it (in case it's > 1) or if this is the last iput then link 3242 * the inode to the delayed iput machinery. Delayed iputs are processed at 3243 * transaction commit time/superblock commit/cleaner kthread. 3244 */ 3245 void btrfs_add_delayed_iput(struct inode *inode) 3246 { 3247 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3248 struct btrfs_inode *binode = BTRFS_I(inode); 3249 3250 if (atomic_add_unless(&inode->i_count, -1, 1)) 3251 return; 3252 3253 spin_lock(&fs_info->delayed_iput_lock); 3254 ASSERT(list_empty(&binode->delayed_iput)); 3255 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3256 spin_unlock(&fs_info->delayed_iput_lock); 3257 } 3258 3259 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3260 { 3261 3262 spin_lock(&fs_info->delayed_iput_lock); 3263 while (!list_empty(&fs_info->delayed_iputs)) { 3264 struct btrfs_inode *inode; 3265 3266 inode = list_first_entry(&fs_info->delayed_iputs, 3267 struct btrfs_inode, delayed_iput); 3268 list_del_init(&inode->delayed_iput); 3269 spin_unlock(&fs_info->delayed_iput_lock); 3270 iput(&inode->vfs_inode); 3271 spin_lock(&fs_info->delayed_iput_lock); 3272 } 3273 spin_unlock(&fs_info->delayed_iput_lock); 3274 } 3275 3276 /* 3277 * This creates an orphan entry for the given inode in case something goes wrong 3278 * in the middle of an unlink. 3279 */ 3280 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3281 struct btrfs_inode *inode) 3282 { 3283 int ret; 3284 3285 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3286 if (ret && ret != -EEXIST) { 3287 btrfs_abort_transaction(trans, ret); 3288 return ret; 3289 } 3290 3291 return 0; 3292 } 3293 3294 /* 3295 * We have done the delete so we can go ahead and remove the orphan item for 3296 * this particular inode. 3297 */ 3298 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3299 struct btrfs_inode *inode) 3300 { 3301 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3302 } 3303 3304 /* 3305 * this cleans up any orphans that may be left on the list from the last use 3306 * of this root. 3307 */ 3308 int btrfs_orphan_cleanup(struct btrfs_root *root) 3309 { 3310 struct btrfs_fs_info *fs_info = root->fs_info; 3311 struct btrfs_path *path; 3312 struct extent_buffer *leaf; 3313 struct btrfs_key key, found_key; 3314 struct btrfs_trans_handle *trans; 3315 struct inode *inode; 3316 u64 last_objectid = 0; 3317 int ret = 0, nr_unlink = 0; 3318 3319 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3320 return 0; 3321 3322 path = btrfs_alloc_path(); 3323 if (!path) { 3324 ret = -ENOMEM; 3325 goto out; 3326 } 3327 path->reada = READA_BACK; 3328 3329 key.objectid = BTRFS_ORPHAN_OBJECTID; 3330 key.type = BTRFS_ORPHAN_ITEM_KEY; 3331 key.offset = (u64)-1; 3332 3333 while (1) { 3334 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3335 if (ret < 0) 3336 goto out; 3337 3338 /* 3339 * if ret == 0 means we found what we were searching for, which 3340 * is weird, but possible, so only screw with path if we didn't 3341 * find the key and see if we have stuff that matches 3342 */ 3343 if (ret > 0) { 3344 ret = 0; 3345 if (path->slots[0] == 0) 3346 break; 3347 path->slots[0]--; 3348 } 3349 3350 /* pull out the item */ 3351 leaf = path->nodes[0]; 3352 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3353 3354 /* make sure the item matches what we want */ 3355 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3356 break; 3357 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3358 break; 3359 3360 /* release the path since we're done with it */ 3361 btrfs_release_path(path); 3362 3363 /* 3364 * this is where we are basically btrfs_lookup, without the 3365 * crossing root thing. we store the inode number in the 3366 * offset of the orphan item. 3367 */ 3368 3369 if (found_key.offset == last_objectid) { 3370 btrfs_err(fs_info, 3371 "Error removing orphan entry, stopping orphan cleanup"); 3372 ret = -EINVAL; 3373 goto out; 3374 } 3375 3376 last_objectid = found_key.offset; 3377 3378 found_key.objectid = found_key.offset; 3379 found_key.type = BTRFS_INODE_ITEM_KEY; 3380 found_key.offset = 0; 3381 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3382 ret = PTR_ERR_OR_ZERO(inode); 3383 if (ret && ret != -ENOENT) 3384 goto out; 3385 3386 if (ret == -ENOENT && root == fs_info->tree_root) { 3387 struct btrfs_root *dead_root; 3388 struct btrfs_fs_info *fs_info = root->fs_info; 3389 int is_dead_root = 0; 3390 3391 /* 3392 * this is an orphan in the tree root. Currently these 3393 * could come from 2 sources: 3394 * a) a snapshot deletion in progress 3395 * b) a free space cache inode 3396 * We need to distinguish those two, as the snapshot 3397 * orphan must not get deleted. 3398 * find_dead_roots already ran before us, so if this 3399 * is a snapshot deletion, we should find the root 3400 * in the dead_roots list 3401 */ 3402 spin_lock(&fs_info->trans_lock); 3403 list_for_each_entry(dead_root, &fs_info->dead_roots, 3404 root_list) { 3405 if (dead_root->root_key.objectid == 3406 found_key.objectid) { 3407 is_dead_root = 1; 3408 break; 3409 } 3410 } 3411 spin_unlock(&fs_info->trans_lock); 3412 if (is_dead_root) { 3413 /* prevent this orphan from being found again */ 3414 key.offset = found_key.objectid - 1; 3415 continue; 3416 } 3417 3418 } 3419 3420 /* 3421 * If we have an inode with links, there are a couple of 3422 * possibilities. Old kernels (before v3.12) used to create an 3423 * orphan item for truncate indicating that there were possibly 3424 * extent items past i_size that needed to be deleted. In v3.12, 3425 * truncate was changed to update i_size in sync with the extent 3426 * items, but the (useless) orphan item was still created. Since 3427 * v4.18, we don't create the orphan item for truncate at all. 3428 * 3429 * So, this item could mean that we need to do a truncate, but 3430 * only if this filesystem was last used on a pre-v3.12 kernel 3431 * and was not cleanly unmounted. The odds of that are quite 3432 * slim, and it's a pain to do the truncate now, so just delete 3433 * the orphan item. 3434 * 3435 * It's also possible that this orphan item was supposed to be 3436 * deleted but wasn't. The inode number may have been reused, 3437 * but either way, we can delete the orphan item. 3438 */ 3439 if (ret == -ENOENT || inode->i_nlink) { 3440 if (!ret) 3441 iput(inode); 3442 trans = btrfs_start_transaction(root, 1); 3443 if (IS_ERR(trans)) { 3444 ret = PTR_ERR(trans); 3445 goto out; 3446 } 3447 btrfs_debug(fs_info, "auto deleting %Lu", 3448 found_key.objectid); 3449 ret = btrfs_del_orphan_item(trans, root, 3450 found_key.objectid); 3451 btrfs_end_transaction(trans); 3452 if (ret) 3453 goto out; 3454 continue; 3455 } 3456 3457 nr_unlink++; 3458 3459 /* this will do delete_inode and everything for us */ 3460 iput(inode); 3461 } 3462 /* release the path since we're done with it */ 3463 btrfs_release_path(path); 3464 3465 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3466 3467 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3468 trans = btrfs_join_transaction(root); 3469 if (!IS_ERR(trans)) 3470 btrfs_end_transaction(trans); 3471 } 3472 3473 if (nr_unlink) 3474 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3475 3476 out: 3477 if (ret) 3478 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3479 btrfs_free_path(path); 3480 return ret; 3481 } 3482 3483 /* 3484 * very simple check to peek ahead in the leaf looking for xattrs. If we 3485 * don't find any xattrs, we know there can't be any acls. 3486 * 3487 * slot is the slot the inode is in, objectid is the objectid of the inode 3488 */ 3489 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3490 int slot, u64 objectid, 3491 int *first_xattr_slot) 3492 { 3493 u32 nritems = btrfs_header_nritems(leaf); 3494 struct btrfs_key found_key; 3495 static u64 xattr_access = 0; 3496 static u64 xattr_default = 0; 3497 int scanned = 0; 3498 3499 if (!xattr_access) { 3500 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3501 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3502 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3503 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3504 } 3505 3506 slot++; 3507 *first_xattr_slot = -1; 3508 while (slot < nritems) { 3509 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3510 3511 /* we found a different objectid, there must not be acls */ 3512 if (found_key.objectid != objectid) 3513 return 0; 3514 3515 /* we found an xattr, assume we've got an acl */ 3516 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3517 if (*first_xattr_slot == -1) 3518 *first_xattr_slot = slot; 3519 if (found_key.offset == xattr_access || 3520 found_key.offset == xattr_default) 3521 return 1; 3522 } 3523 3524 /* 3525 * we found a key greater than an xattr key, there can't 3526 * be any acls later on 3527 */ 3528 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3529 return 0; 3530 3531 slot++; 3532 scanned++; 3533 3534 /* 3535 * it goes inode, inode backrefs, xattrs, extents, 3536 * so if there are a ton of hard links to an inode there can 3537 * be a lot of backrefs. Don't waste time searching too hard, 3538 * this is just an optimization 3539 */ 3540 if (scanned >= 8) 3541 break; 3542 } 3543 /* we hit the end of the leaf before we found an xattr or 3544 * something larger than an xattr. We have to assume the inode 3545 * has acls 3546 */ 3547 if (*first_xattr_slot == -1) 3548 *first_xattr_slot = slot; 3549 return 1; 3550 } 3551 3552 /* 3553 * read an inode from the btree into the in-memory inode 3554 */ 3555 static int btrfs_read_locked_inode(struct inode *inode, 3556 struct btrfs_path *in_path) 3557 { 3558 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3559 struct btrfs_path *path = in_path; 3560 struct extent_buffer *leaf; 3561 struct btrfs_inode_item *inode_item; 3562 struct btrfs_root *root = BTRFS_I(inode)->root; 3563 struct btrfs_key location; 3564 unsigned long ptr; 3565 int maybe_acls; 3566 u32 rdev; 3567 int ret; 3568 bool filled = false; 3569 int first_xattr_slot; 3570 3571 ret = btrfs_fill_inode(inode, &rdev); 3572 if (!ret) 3573 filled = true; 3574 3575 if (!path) { 3576 path = btrfs_alloc_path(); 3577 if (!path) 3578 return -ENOMEM; 3579 } 3580 3581 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3582 3583 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3584 if (ret) { 3585 if (path != in_path) 3586 btrfs_free_path(path); 3587 return ret; 3588 } 3589 3590 leaf = path->nodes[0]; 3591 3592 if (filled) 3593 goto cache_index; 3594 3595 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3596 struct btrfs_inode_item); 3597 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3598 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3599 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3600 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3601 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3602 3603 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3604 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3605 3606 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3607 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3608 3609 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3610 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3611 3612 BTRFS_I(inode)->i_otime.tv_sec = 3613 btrfs_timespec_sec(leaf, &inode_item->otime); 3614 BTRFS_I(inode)->i_otime.tv_nsec = 3615 btrfs_timespec_nsec(leaf, &inode_item->otime); 3616 3617 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3618 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3619 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3620 3621 inode_set_iversion_queried(inode, 3622 btrfs_inode_sequence(leaf, inode_item)); 3623 inode->i_generation = BTRFS_I(inode)->generation; 3624 inode->i_rdev = 0; 3625 rdev = btrfs_inode_rdev(leaf, inode_item); 3626 3627 BTRFS_I(inode)->index_cnt = (u64)-1; 3628 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3629 3630 cache_index: 3631 /* 3632 * If we were modified in the current generation and evicted from memory 3633 * and then re-read we need to do a full sync since we don't have any 3634 * idea about which extents were modified before we were evicted from 3635 * cache. 3636 * 3637 * This is required for both inode re-read from disk and delayed inode 3638 * in delayed_nodes_tree. 3639 */ 3640 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3641 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3642 &BTRFS_I(inode)->runtime_flags); 3643 3644 /* 3645 * We don't persist the id of the transaction where an unlink operation 3646 * against the inode was last made. So here we assume the inode might 3647 * have been evicted, and therefore the exact value of last_unlink_trans 3648 * lost, and set it to last_trans to avoid metadata inconsistencies 3649 * between the inode and its parent if the inode is fsync'ed and the log 3650 * replayed. For example, in the scenario: 3651 * 3652 * touch mydir/foo 3653 * ln mydir/foo mydir/bar 3654 * sync 3655 * unlink mydir/bar 3656 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3657 * xfs_io -c fsync mydir/foo 3658 * <power failure> 3659 * mount fs, triggers fsync log replay 3660 * 3661 * We must make sure that when we fsync our inode foo we also log its 3662 * parent inode, otherwise after log replay the parent still has the 3663 * dentry with the "bar" name but our inode foo has a link count of 1 3664 * and doesn't have an inode ref with the name "bar" anymore. 3665 * 3666 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3667 * but it guarantees correctness at the expense of occasional full 3668 * transaction commits on fsync if our inode is a directory, or if our 3669 * inode is not a directory, logging its parent unnecessarily. 3670 */ 3671 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3672 /* 3673 * Similar reasoning for last_link_trans, needs to be set otherwise 3674 * for a case like the following: 3675 * 3676 * mkdir A 3677 * touch foo 3678 * ln foo A/bar 3679 * echo 2 > /proc/sys/vm/drop_caches 3680 * fsync foo 3681 * <power failure> 3682 * 3683 * Would result in link bar and directory A not existing after the power 3684 * failure. 3685 */ 3686 BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans; 3687 3688 path->slots[0]++; 3689 if (inode->i_nlink != 1 || 3690 path->slots[0] >= btrfs_header_nritems(leaf)) 3691 goto cache_acl; 3692 3693 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3694 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3695 goto cache_acl; 3696 3697 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3698 if (location.type == BTRFS_INODE_REF_KEY) { 3699 struct btrfs_inode_ref *ref; 3700 3701 ref = (struct btrfs_inode_ref *)ptr; 3702 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3703 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3704 struct btrfs_inode_extref *extref; 3705 3706 extref = (struct btrfs_inode_extref *)ptr; 3707 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3708 extref); 3709 } 3710 cache_acl: 3711 /* 3712 * try to precache a NULL acl entry for files that don't have 3713 * any xattrs or acls 3714 */ 3715 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3716 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3717 if (first_xattr_slot != -1) { 3718 path->slots[0] = first_xattr_slot; 3719 ret = btrfs_load_inode_props(inode, path); 3720 if (ret) 3721 btrfs_err(fs_info, 3722 "error loading props for ino %llu (root %llu): %d", 3723 btrfs_ino(BTRFS_I(inode)), 3724 root->root_key.objectid, ret); 3725 } 3726 if (path != in_path) 3727 btrfs_free_path(path); 3728 3729 if (!maybe_acls) 3730 cache_no_acl(inode); 3731 3732 switch (inode->i_mode & S_IFMT) { 3733 case S_IFREG: 3734 inode->i_mapping->a_ops = &btrfs_aops; 3735 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3736 inode->i_fop = &btrfs_file_operations; 3737 inode->i_op = &btrfs_file_inode_operations; 3738 break; 3739 case S_IFDIR: 3740 inode->i_fop = &btrfs_dir_file_operations; 3741 inode->i_op = &btrfs_dir_inode_operations; 3742 break; 3743 case S_IFLNK: 3744 inode->i_op = &btrfs_symlink_inode_operations; 3745 inode_nohighmem(inode); 3746 inode->i_mapping->a_ops = &btrfs_aops; 3747 break; 3748 default: 3749 inode->i_op = &btrfs_special_inode_operations; 3750 init_special_inode(inode, inode->i_mode, rdev); 3751 break; 3752 } 3753 3754 btrfs_sync_inode_flags_to_i_flags(inode); 3755 return 0; 3756 } 3757 3758 /* 3759 * given a leaf and an inode, copy the inode fields into the leaf 3760 */ 3761 static void fill_inode_item(struct btrfs_trans_handle *trans, 3762 struct extent_buffer *leaf, 3763 struct btrfs_inode_item *item, 3764 struct inode *inode) 3765 { 3766 struct btrfs_map_token token; 3767 3768 btrfs_init_map_token(&token); 3769 3770 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3771 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3772 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3773 &token); 3774 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3775 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3776 3777 btrfs_set_token_timespec_sec(leaf, &item->atime, 3778 inode->i_atime.tv_sec, &token); 3779 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3780 inode->i_atime.tv_nsec, &token); 3781 3782 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3783 inode->i_mtime.tv_sec, &token); 3784 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3785 inode->i_mtime.tv_nsec, &token); 3786 3787 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3788 inode->i_ctime.tv_sec, &token); 3789 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3790 inode->i_ctime.tv_nsec, &token); 3791 3792 btrfs_set_token_timespec_sec(leaf, &item->otime, 3793 BTRFS_I(inode)->i_otime.tv_sec, &token); 3794 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3795 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3796 3797 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3798 &token); 3799 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3800 &token); 3801 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3802 &token); 3803 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3804 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3805 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3806 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3807 } 3808 3809 /* 3810 * copy everything in the in-memory inode into the btree. 3811 */ 3812 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3813 struct btrfs_root *root, struct inode *inode) 3814 { 3815 struct btrfs_inode_item *inode_item; 3816 struct btrfs_path *path; 3817 struct extent_buffer *leaf; 3818 int ret; 3819 3820 path = btrfs_alloc_path(); 3821 if (!path) 3822 return -ENOMEM; 3823 3824 path->leave_spinning = 1; 3825 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3826 1); 3827 if (ret) { 3828 if (ret > 0) 3829 ret = -ENOENT; 3830 goto failed; 3831 } 3832 3833 leaf = path->nodes[0]; 3834 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3835 struct btrfs_inode_item); 3836 3837 fill_inode_item(trans, leaf, inode_item, inode); 3838 btrfs_mark_buffer_dirty(leaf); 3839 btrfs_set_inode_last_trans(trans, inode); 3840 ret = 0; 3841 failed: 3842 btrfs_free_path(path); 3843 return ret; 3844 } 3845 3846 /* 3847 * copy everything in the in-memory inode into the btree. 3848 */ 3849 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3850 struct btrfs_root *root, struct inode *inode) 3851 { 3852 struct btrfs_fs_info *fs_info = root->fs_info; 3853 int ret; 3854 3855 /* 3856 * If the inode is a free space inode, we can deadlock during commit 3857 * if we put it into the delayed code. 3858 * 3859 * The data relocation inode should also be directly updated 3860 * without delay 3861 */ 3862 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3863 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3864 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3865 btrfs_update_root_times(trans, root); 3866 3867 ret = btrfs_delayed_update_inode(trans, root, inode); 3868 if (!ret) 3869 btrfs_set_inode_last_trans(trans, inode); 3870 return ret; 3871 } 3872 3873 return btrfs_update_inode_item(trans, root, inode); 3874 } 3875 3876 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3877 struct btrfs_root *root, 3878 struct inode *inode) 3879 { 3880 int ret; 3881 3882 ret = btrfs_update_inode(trans, root, inode); 3883 if (ret == -ENOSPC) 3884 return btrfs_update_inode_item(trans, root, inode); 3885 return ret; 3886 } 3887 3888 /* 3889 * unlink helper that gets used here in inode.c and in the tree logging 3890 * recovery code. It remove a link in a directory with a given name, and 3891 * also drops the back refs in the inode to the directory 3892 */ 3893 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3894 struct btrfs_root *root, 3895 struct btrfs_inode *dir, 3896 struct btrfs_inode *inode, 3897 const char *name, int name_len) 3898 { 3899 struct btrfs_fs_info *fs_info = root->fs_info; 3900 struct btrfs_path *path; 3901 int ret = 0; 3902 struct extent_buffer *leaf; 3903 struct btrfs_dir_item *di; 3904 struct btrfs_key key; 3905 u64 index; 3906 u64 ino = btrfs_ino(inode); 3907 u64 dir_ino = btrfs_ino(dir); 3908 3909 path = btrfs_alloc_path(); 3910 if (!path) { 3911 ret = -ENOMEM; 3912 goto out; 3913 } 3914 3915 path->leave_spinning = 1; 3916 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3917 name, name_len, -1); 3918 if (IS_ERR_OR_NULL(di)) { 3919 ret = di ? PTR_ERR(di) : -ENOENT; 3920 goto err; 3921 } 3922 leaf = path->nodes[0]; 3923 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3924 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3925 if (ret) 3926 goto err; 3927 btrfs_release_path(path); 3928 3929 /* 3930 * If we don't have dir index, we have to get it by looking up 3931 * the inode ref, since we get the inode ref, remove it directly, 3932 * it is unnecessary to do delayed deletion. 3933 * 3934 * But if we have dir index, needn't search inode ref to get it. 3935 * Since the inode ref is close to the inode item, it is better 3936 * that we delay to delete it, and just do this deletion when 3937 * we update the inode item. 3938 */ 3939 if (inode->dir_index) { 3940 ret = btrfs_delayed_delete_inode_ref(inode); 3941 if (!ret) { 3942 index = inode->dir_index; 3943 goto skip_backref; 3944 } 3945 } 3946 3947 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3948 dir_ino, &index); 3949 if (ret) { 3950 btrfs_info(fs_info, 3951 "failed to delete reference to %.*s, inode %llu parent %llu", 3952 name_len, name, ino, dir_ino); 3953 btrfs_abort_transaction(trans, ret); 3954 goto err; 3955 } 3956 skip_backref: 3957 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3958 if (ret) { 3959 btrfs_abort_transaction(trans, ret); 3960 goto err; 3961 } 3962 3963 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3964 dir_ino); 3965 if (ret != 0 && ret != -ENOENT) { 3966 btrfs_abort_transaction(trans, ret); 3967 goto err; 3968 } 3969 3970 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3971 index); 3972 if (ret == -ENOENT) 3973 ret = 0; 3974 else if (ret) 3975 btrfs_abort_transaction(trans, ret); 3976 err: 3977 btrfs_free_path(path); 3978 if (ret) 3979 goto out; 3980 3981 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3982 inode_inc_iversion(&inode->vfs_inode); 3983 inode_inc_iversion(&dir->vfs_inode); 3984 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3985 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3986 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3987 out: 3988 return ret; 3989 } 3990 3991 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3992 struct btrfs_root *root, 3993 struct btrfs_inode *dir, struct btrfs_inode *inode, 3994 const char *name, int name_len) 3995 { 3996 int ret; 3997 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3998 if (!ret) { 3999 drop_nlink(&inode->vfs_inode); 4000 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4001 } 4002 return ret; 4003 } 4004 4005 /* 4006 * helper to start transaction for unlink and rmdir. 4007 * 4008 * unlink and rmdir are special in btrfs, they do not always free space, so 4009 * if we cannot make our reservations the normal way try and see if there is 4010 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4011 * allow the unlink to occur. 4012 */ 4013 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4014 { 4015 struct btrfs_root *root = BTRFS_I(dir)->root; 4016 4017 /* 4018 * 1 for the possible orphan item 4019 * 1 for the dir item 4020 * 1 for the dir index 4021 * 1 for the inode ref 4022 * 1 for the inode 4023 */ 4024 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4025 } 4026 4027 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4028 { 4029 struct btrfs_root *root = BTRFS_I(dir)->root; 4030 struct btrfs_trans_handle *trans; 4031 struct inode *inode = d_inode(dentry); 4032 int ret; 4033 4034 trans = __unlink_start_trans(dir); 4035 if (IS_ERR(trans)) 4036 return PTR_ERR(trans); 4037 4038 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4039 0); 4040 4041 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4042 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4043 dentry->d_name.len); 4044 if (ret) 4045 goto out; 4046 4047 if (inode->i_nlink == 0) { 4048 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4049 if (ret) 4050 goto out; 4051 } 4052 4053 out: 4054 btrfs_end_transaction(trans); 4055 btrfs_btree_balance_dirty(root->fs_info); 4056 return ret; 4057 } 4058 4059 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4060 struct inode *dir, u64 objectid, 4061 const char *name, int name_len) 4062 { 4063 struct btrfs_root *root = BTRFS_I(dir)->root; 4064 struct btrfs_path *path; 4065 struct extent_buffer *leaf; 4066 struct btrfs_dir_item *di; 4067 struct btrfs_key key; 4068 u64 index; 4069 int ret; 4070 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4071 4072 path = btrfs_alloc_path(); 4073 if (!path) 4074 return -ENOMEM; 4075 4076 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4077 name, name_len, -1); 4078 if (IS_ERR_OR_NULL(di)) { 4079 ret = di ? PTR_ERR(di) : -ENOENT; 4080 goto out; 4081 } 4082 4083 leaf = path->nodes[0]; 4084 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4085 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4086 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4087 if (ret) { 4088 btrfs_abort_transaction(trans, ret); 4089 goto out; 4090 } 4091 btrfs_release_path(path); 4092 4093 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid, 4094 dir_ino, &index, name, name_len); 4095 if (ret < 0) { 4096 if (ret != -ENOENT) { 4097 btrfs_abort_transaction(trans, ret); 4098 goto out; 4099 } 4100 di = btrfs_search_dir_index_item(root, path, dir_ino, 4101 name, name_len); 4102 if (IS_ERR_OR_NULL(di)) { 4103 if (!di) 4104 ret = -ENOENT; 4105 else 4106 ret = PTR_ERR(di); 4107 btrfs_abort_transaction(trans, ret); 4108 goto out; 4109 } 4110 4111 leaf = path->nodes[0]; 4112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4113 index = key.offset; 4114 } 4115 btrfs_release_path(path); 4116 4117 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4118 if (ret) { 4119 btrfs_abort_transaction(trans, ret); 4120 goto out; 4121 } 4122 4123 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4124 inode_inc_iversion(dir); 4125 dir->i_mtime = dir->i_ctime = current_time(dir); 4126 ret = btrfs_update_inode_fallback(trans, root, dir); 4127 if (ret) 4128 btrfs_abort_transaction(trans, ret); 4129 out: 4130 btrfs_free_path(path); 4131 return ret; 4132 } 4133 4134 /* 4135 * Helper to check if the subvolume references other subvolumes or if it's 4136 * default. 4137 */ 4138 static noinline int may_destroy_subvol(struct btrfs_root *root) 4139 { 4140 struct btrfs_fs_info *fs_info = root->fs_info; 4141 struct btrfs_path *path; 4142 struct btrfs_dir_item *di; 4143 struct btrfs_key key; 4144 u64 dir_id; 4145 int ret; 4146 4147 path = btrfs_alloc_path(); 4148 if (!path) 4149 return -ENOMEM; 4150 4151 /* Make sure this root isn't set as the default subvol */ 4152 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4153 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4154 dir_id, "default", 7, 0); 4155 if (di && !IS_ERR(di)) { 4156 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4157 if (key.objectid == root->root_key.objectid) { 4158 ret = -EPERM; 4159 btrfs_err(fs_info, 4160 "deleting default subvolume %llu is not allowed", 4161 key.objectid); 4162 goto out; 4163 } 4164 btrfs_release_path(path); 4165 } 4166 4167 key.objectid = root->root_key.objectid; 4168 key.type = BTRFS_ROOT_REF_KEY; 4169 key.offset = (u64)-1; 4170 4171 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4172 if (ret < 0) 4173 goto out; 4174 BUG_ON(ret == 0); 4175 4176 ret = 0; 4177 if (path->slots[0] > 0) { 4178 path->slots[0]--; 4179 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4180 if (key.objectid == root->root_key.objectid && 4181 key.type == BTRFS_ROOT_REF_KEY) 4182 ret = -ENOTEMPTY; 4183 } 4184 out: 4185 btrfs_free_path(path); 4186 return ret; 4187 } 4188 4189 /* Delete all dentries for inodes belonging to the root */ 4190 static void btrfs_prune_dentries(struct btrfs_root *root) 4191 { 4192 struct btrfs_fs_info *fs_info = root->fs_info; 4193 struct rb_node *node; 4194 struct rb_node *prev; 4195 struct btrfs_inode *entry; 4196 struct inode *inode; 4197 u64 objectid = 0; 4198 4199 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4200 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4201 4202 spin_lock(&root->inode_lock); 4203 again: 4204 node = root->inode_tree.rb_node; 4205 prev = NULL; 4206 while (node) { 4207 prev = node; 4208 entry = rb_entry(node, struct btrfs_inode, rb_node); 4209 4210 if (objectid < btrfs_ino(entry)) 4211 node = node->rb_left; 4212 else if (objectid > btrfs_ino(entry)) 4213 node = node->rb_right; 4214 else 4215 break; 4216 } 4217 if (!node) { 4218 while (prev) { 4219 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4220 if (objectid <= btrfs_ino(entry)) { 4221 node = prev; 4222 break; 4223 } 4224 prev = rb_next(prev); 4225 } 4226 } 4227 while (node) { 4228 entry = rb_entry(node, struct btrfs_inode, rb_node); 4229 objectid = btrfs_ino(entry) + 1; 4230 inode = igrab(&entry->vfs_inode); 4231 if (inode) { 4232 spin_unlock(&root->inode_lock); 4233 if (atomic_read(&inode->i_count) > 1) 4234 d_prune_aliases(inode); 4235 /* 4236 * btrfs_drop_inode will have it removed from the inode 4237 * cache when its usage count hits zero. 4238 */ 4239 iput(inode); 4240 cond_resched(); 4241 spin_lock(&root->inode_lock); 4242 goto again; 4243 } 4244 4245 if (cond_resched_lock(&root->inode_lock)) 4246 goto again; 4247 4248 node = rb_next(node); 4249 } 4250 spin_unlock(&root->inode_lock); 4251 } 4252 4253 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4254 { 4255 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4256 struct btrfs_root *root = BTRFS_I(dir)->root; 4257 struct inode *inode = d_inode(dentry); 4258 struct btrfs_root *dest = BTRFS_I(inode)->root; 4259 struct btrfs_trans_handle *trans; 4260 struct btrfs_block_rsv block_rsv; 4261 u64 root_flags; 4262 int ret; 4263 int err; 4264 4265 /* 4266 * Don't allow to delete a subvolume with send in progress. This is 4267 * inside the inode lock so the error handling that has to drop the bit 4268 * again is not run concurrently. 4269 */ 4270 spin_lock(&dest->root_item_lock); 4271 if (dest->send_in_progress) { 4272 spin_unlock(&dest->root_item_lock); 4273 btrfs_warn(fs_info, 4274 "attempt to delete subvolume %llu during send", 4275 dest->root_key.objectid); 4276 return -EPERM; 4277 } 4278 root_flags = btrfs_root_flags(&dest->root_item); 4279 btrfs_set_root_flags(&dest->root_item, 4280 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4281 spin_unlock(&dest->root_item_lock); 4282 4283 down_write(&fs_info->subvol_sem); 4284 4285 err = may_destroy_subvol(dest); 4286 if (err) 4287 goto out_up_write; 4288 4289 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4290 /* 4291 * One for dir inode, 4292 * two for dir entries, 4293 * two for root ref/backref. 4294 */ 4295 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4296 if (err) 4297 goto out_up_write; 4298 4299 trans = btrfs_start_transaction(root, 0); 4300 if (IS_ERR(trans)) { 4301 err = PTR_ERR(trans); 4302 goto out_release; 4303 } 4304 trans->block_rsv = &block_rsv; 4305 trans->bytes_reserved = block_rsv.size; 4306 4307 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4308 4309 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid, 4310 dentry->d_name.name, dentry->d_name.len); 4311 if (ret) { 4312 err = ret; 4313 btrfs_abort_transaction(trans, ret); 4314 goto out_end_trans; 4315 } 4316 4317 btrfs_record_root_in_trans(trans, dest); 4318 4319 memset(&dest->root_item.drop_progress, 0, 4320 sizeof(dest->root_item.drop_progress)); 4321 dest->root_item.drop_level = 0; 4322 btrfs_set_root_refs(&dest->root_item, 0); 4323 4324 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4325 ret = btrfs_insert_orphan_item(trans, 4326 fs_info->tree_root, 4327 dest->root_key.objectid); 4328 if (ret) { 4329 btrfs_abort_transaction(trans, ret); 4330 err = ret; 4331 goto out_end_trans; 4332 } 4333 } 4334 4335 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4336 BTRFS_UUID_KEY_SUBVOL, 4337 dest->root_key.objectid); 4338 if (ret && ret != -ENOENT) { 4339 btrfs_abort_transaction(trans, ret); 4340 err = ret; 4341 goto out_end_trans; 4342 } 4343 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4344 ret = btrfs_uuid_tree_remove(trans, 4345 dest->root_item.received_uuid, 4346 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4347 dest->root_key.objectid); 4348 if (ret && ret != -ENOENT) { 4349 btrfs_abort_transaction(trans, ret); 4350 err = ret; 4351 goto out_end_trans; 4352 } 4353 } 4354 4355 out_end_trans: 4356 trans->block_rsv = NULL; 4357 trans->bytes_reserved = 0; 4358 ret = btrfs_end_transaction(trans); 4359 if (ret && !err) 4360 err = ret; 4361 inode->i_flags |= S_DEAD; 4362 out_release: 4363 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4364 out_up_write: 4365 up_write(&fs_info->subvol_sem); 4366 if (err) { 4367 spin_lock(&dest->root_item_lock); 4368 root_flags = btrfs_root_flags(&dest->root_item); 4369 btrfs_set_root_flags(&dest->root_item, 4370 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4371 spin_unlock(&dest->root_item_lock); 4372 } else { 4373 d_invalidate(dentry); 4374 btrfs_prune_dentries(dest); 4375 ASSERT(dest->send_in_progress == 0); 4376 4377 /* the last ref */ 4378 if (dest->ino_cache_inode) { 4379 iput(dest->ino_cache_inode); 4380 dest->ino_cache_inode = NULL; 4381 } 4382 } 4383 4384 return err; 4385 } 4386 4387 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4388 { 4389 struct inode *inode = d_inode(dentry); 4390 int err = 0; 4391 struct btrfs_root *root = BTRFS_I(dir)->root; 4392 struct btrfs_trans_handle *trans; 4393 u64 last_unlink_trans; 4394 4395 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4396 return -ENOTEMPTY; 4397 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4398 return btrfs_delete_subvolume(dir, dentry); 4399 4400 trans = __unlink_start_trans(dir); 4401 if (IS_ERR(trans)) 4402 return PTR_ERR(trans); 4403 4404 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4405 err = btrfs_unlink_subvol(trans, dir, 4406 BTRFS_I(inode)->location.objectid, 4407 dentry->d_name.name, 4408 dentry->d_name.len); 4409 goto out; 4410 } 4411 4412 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4413 if (err) 4414 goto out; 4415 4416 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4417 4418 /* now the directory is empty */ 4419 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4420 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4421 dentry->d_name.len); 4422 if (!err) { 4423 btrfs_i_size_write(BTRFS_I(inode), 0); 4424 /* 4425 * Propagate the last_unlink_trans value of the deleted dir to 4426 * its parent directory. This is to prevent an unrecoverable 4427 * log tree in the case we do something like this: 4428 * 1) create dir foo 4429 * 2) create snapshot under dir foo 4430 * 3) delete the snapshot 4431 * 4) rmdir foo 4432 * 5) mkdir foo 4433 * 6) fsync foo or some file inside foo 4434 */ 4435 if (last_unlink_trans >= trans->transid) 4436 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4437 } 4438 out: 4439 btrfs_end_transaction(trans); 4440 btrfs_btree_balance_dirty(root->fs_info); 4441 4442 return err; 4443 } 4444 4445 /* 4446 * Return this if we need to call truncate_block for the last bit of the 4447 * truncate. 4448 */ 4449 #define NEED_TRUNCATE_BLOCK 1 4450 4451 /* 4452 * this can truncate away extent items, csum items and directory items. 4453 * It starts at a high offset and removes keys until it can't find 4454 * any higher than new_size 4455 * 4456 * csum items that cross the new i_size are truncated to the new size 4457 * as well. 4458 * 4459 * min_type is the minimum key type to truncate down to. If set to 0, this 4460 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4461 */ 4462 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4463 struct btrfs_root *root, 4464 struct inode *inode, 4465 u64 new_size, u32 min_type) 4466 { 4467 struct btrfs_fs_info *fs_info = root->fs_info; 4468 struct btrfs_path *path; 4469 struct extent_buffer *leaf; 4470 struct btrfs_file_extent_item *fi; 4471 struct btrfs_key key; 4472 struct btrfs_key found_key; 4473 u64 extent_start = 0; 4474 u64 extent_num_bytes = 0; 4475 u64 extent_offset = 0; 4476 u64 item_end = 0; 4477 u64 last_size = new_size; 4478 u32 found_type = (u8)-1; 4479 int found_extent; 4480 int del_item; 4481 int pending_del_nr = 0; 4482 int pending_del_slot = 0; 4483 int extent_type = -1; 4484 int ret; 4485 u64 ino = btrfs_ino(BTRFS_I(inode)); 4486 u64 bytes_deleted = 0; 4487 bool be_nice = false; 4488 bool should_throttle = false; 4489 4490 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4491 4492 /* 4493 * for non-free space inodes and ref cows, we want to back off from 4494 * time to time 4495 */ 4496 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4497 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4498 be_nice = true; 4499 4500 path = btrfs_alloc_path(); 4501 if (!path) 4502 return -ENOMEM; 4503 path->reada = READA_BACK; 4504 4505 /* 4506 * We want to drop from the next block forward in case this new size is 4507 * not block aligned since we will be keeping the last block of the 4508 * extent just the way it is. 4509 */ 4510 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4511 root == fs_info->tree_root) 4512 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4513 fs_info->sectorsize), 4514 (u64)-1, 0); 4515 4516 /* 4517 * This function is also used to drop the items in the log tree before 4518 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4519 * it is used to drop the logged items. So we shouldn't kill the delayed 4520 * items. 4521 */ 4522 if (min_type == 0 && root == BTRFS_I(inode)->root) 4523 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4524 4525 key.objectid = ino; 4526 key.offset = (u64)-1; 4527 key.type = (u8)-1; 4528 4529 search_again: 4530 /* 4531 * with a 16K leaf size and 128MB extents, you can actually queue 4532 * up a huge file in a single leaf. Most of the time that 4533 * bytes_deleted is > 0, it will be huge by the time we get here 4534 */ 4535 if (be_nice && bytes_deleted > SZ_32M && 4536 btrfs_should_end_transaction(trans)) { 4537 ret = -EAGAIN; 4538 goto out; 4539 } 4540 4541 path->leave_spinning = 1; 4542 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4543 if (ret < 0) 4544 goto out; 4545 4546 if (ret > 0) { 4547 ret = 0; 4548 /* there are no items in the tree for us to truncate, we're 4549 * done 4550 */ 4551 if (path->slots[0] == 0) 4552 goto out; 4553 path->slots[0]--; 4554 } 4555 4556 while (1) { 4557 fi = NULL; 4558 leaf = path->nodes[0]; 4559 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4560 found_type = found_key.type; 4561 4562 if (found_key.objectid != ino) 4563 break; 4564 4565 if (found_type < min_type) 4566 break; 4567 4568 item_end = found_key.offset; 4569 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4570 fi = btrfs_item_ptr(leaf, path->slots[0], 4571 struct btrfs_file_extent_item); 4572 extent_type = btrfs_file_extent_type(leaf, fi); 4573 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4574 item_end += 4575 btrfs_file_extent_num_bytes(leaf, fi); 4576 4577 trace_btrfs_truncate_show_fi_regular( 4578 BTRFS_I(inode), leaf, fi, 4579 found_key.offset); 4580 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4581 item_end += btrfs_file_extent_ram_bytes(leaf, 4582 fi); 4583 4584 trace_btrfs_truncate_show_fi_inline( 4585 BTRFS_I(inode), leaf, fi, path->slots[0], 4586 found_key.offset); 4587 } 4588 item_end--; 4589 } 4590 if (found_type > min_type) { 4591 del_item = 1; 4592 } else { 4593 if (item_end < new_size) 4594 break; 4595 if (found_key.offset >= new_size) 4596 del_item = 1; 4597 else 4598 del_item = 0; 4599 } 4600 found_extent = 0; 4601 /* FIXME, shrink the extent if the ref count is only 1 */ 4602 if (found_type != BTRFS_EXTENT_DATA_KEY) 4603 goto delete; 4604 4605 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4606 u64 num_dec; 4607 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4608 if (!del_item) { 4609 u64 orig_num_bytes = 4610 btrfs_file_extent_num_bytes(leaf, fi); 4611 extent_num_bytes = ALIGN(new_size - 4612 found_key.offset, 4613 fs_info->sectorsize); 4614 btrfs_set_file_extent_num_bytes(leaf, fi, 4615 extent_num_bytes); 4616 num_dec = (orig_num_bytes - 4617 extent_num_bytes); 4618 if (test_bit(BTRFS_ROOT_REF_COWS, 4619 &root->state) && 4620 extent_start != 0) 4621 inode_sub_bytes(inode, num_dec); 4622 btrfs_mark_buffer_dirty(leaf); 4623 } else { 4624 extent_num_bytes = 4625 btrfs_file_extent_disk_num_bytes(leaf, 4626 fi); 4627 extent_offset = found_key.offset - 4628 btrfs_file_extent_offset(leaf, fi); 4629 4630 /* FIXME blocksize != 4096 */ 4631 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4632 if (extent_start != 0) { 4633 found_extent = 1; 4634 if (test_bit(BTRFS_ROOT_REF_COWS, 4635 &root->state)) 4636 inode_sub_bytes(inode, num_dec); 4637 } 4638 } 4639 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4640 /* 4641 * we can't truncate inline items that have had 4642 * special encodings 4643 */ 4644 if (!del_item && 4645 btrfs_file_extent_encryption(leaf, fi) == 0 && 4646 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4647 btrfs_file_extent_compression(leaf, fi) == 0) { 4648 u32 size = (u32)(new_size - found_key.offset); 4649 4650 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4651 size = btrfs_file_extent_calc_inline_size(size); 4652 btrfs_truncate_item(root->fs_info, path, size, 1); 4653 } else if (!del_item) { 4654 /* 4655 * We have to bail so the last_size is set to 4656 * just before this extent. 4657 */ 4658 ret = NEED_TRUNCATE_BLOCK; 4659 break; 4660 } 4661 4662 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4663 inode_sub_bytes(inode, item_end + 1 - new_size); 4664 } 4665 delete: 4666 if (del_item) 4667 last_size = found_key.offset; 4668 else 4669 last_size = new_size; 4670 if (del_item) { 4671 if (!pending_del_nr) { 4672 /* no pending yet, add ourselves */ 4673 pending_del_slot = path->slots[0]; 4674 pending_del_nr = 1; 4675 } else if (pending_del_nr && 4676 path->slots[0] + 1 == pending_del_slot) { 4677 /* hop on the pending chunk */ 4678 pending_del_nr++; 4679 pending_del_slot = path->slots[0]; 4680 } else { 4681 BUG(); 4682 } 4683 } else { 4684 break; 4685 } 4686 should_throttle = false; 4687 4688 if (found_extent && 4689 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4690 root == fs_info->tree_root)) { 4691 btrfs_set_path_blocking(path); 4692 bytes_deleted += extent_num_bytes; 4693 ret = btrfs_free_extent(trans, root, extent_start, 4694 extent_num_bytes, 0, 4695 btrfs_header_owner(leaf), 4696 ino, extent_offset); 4697 if (ret) { 4698 btrfs_abort_transaction(trans, ret); 4699 break; 4700 } 4701 if (be_nice) { 4702 if (btrfs_should_throttle_delayed_refs(trans)) 4703 should_throttle = true; 4704 } 4705 } 4706 4707 if (found_type == BTRFS_INODE_ITEM_KEY) 4708 break; 4709 4710 if (path->slots[0] == 0 || 4711 path->slots[0] != pending_del_slot || 4712 should_throttle) { 4713 if (pending_del_nr) { 4714 ret = btrfs_del_items(trans, root, path, 4715 pending_del_slot, 4716 pending_del_nr); 4717 if (ret) { 4718 btrfs_abort_transaction(trans, ret); 4719 break; 4720 } 4721 pending_del_nr = 0; 4722 } 4723 btrfs_release_path(path); 4724 4725 /* 4726 * We can generate a lot of delayed refs, so we need to 4727 * throttle every once and a while and make sure we're 4728 * adding enough space to keep up with the work we are 4729 * generating. Since we hold a transaction here we 4730 * can't flush, and we don't want to FLUSH_LIMIT because 4731 * we could have generated too many delayed refs to 4732 * actually allocate, so just bail if we're short and 4733 * let the normal reservation dance happen higher up. 4734 */ 4735 if (should_throttle) { 4736 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4737 BTRFS_RESERVE_NO_FLUSH); 4738 if (ret) { 4739 ret = -EAGAIN; 4740 break; 4741 } 4742 } 4743 goto search_again; 4744 } else { 4745 path->slots[0]--; 4746 } 4747 } 4748 out: 4749 if (ret >= 0 && pending_del_nr) { 4750 int err; 4751 4752 err = btrfs_del_items(trans, root, path, pending_del_slot, 4753 pending_del_nr); 4754 if (err) { 4755 btrfs_abort_transaction(trans, err); 4756 ret = err; 4757 } 4758 } 4759 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4760 ASSERT(last_size >= new_size); 4761 if (!ret && last_size > new_size) 4762 last_size = new_size; 4763 btrfs_ordered_update_i_size(inode, last_size, NULL); 4764 } 4765 4766 btrfs_free_path(path); 4767 return ret; 4768 } 4769 4770 /* 4771 * btrfs_truncate_block - read, zero a chunk and write a block 4772 * @inode - inode that we're zeroing 4773 * @from - the offset to start zeroing 4774 * @len - the length to zero, 0 to zero the entire range respective to the 4775 * offset 4776 * @front - zero up to the offset instead of from the offset on 4777 * 4778 * This will find the block for the "from" offset and cow the block and zero the 4779 * part we want to zero. This is used with truncate and hole punching. 4780 */ 4781 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4782 int front) 4783 { 4784 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4785 struct address_space *mapping = inode->i_mapping; 4786 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4787 struct btrfs_ordered_extent *ordered; 4788 struct extent_state *cached_state = NULL; 4789 struct extent_changeset *data_reserved = NULL; 4790 char *kaddr; 4791 u32 blocksize = fs_info->sectorsize; 4792 pgoff_t index = from >> PAGE_SHIFT; 4793 unsigned offset = from & (blocksize - 1); 4794 struct page *page; 4795 gfp_t mask = btrfs_alloc_write_mask(mapping); 4796 int ret = 0; 4797 u64 block_start; 4798 u64 block_end; 4799 4800 if (IS_ALIGNED(offset, blocksize) && 4801 (!len || IS_ALIGNED(len, blocksize))) 4802 goto out; 4803 4804 block_start = round_down(from, blocksize); 4805 block_end = block_start + blocksize - 1; 4806 4807 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4808 block_start, blocksize); 4809 if (ret) 4810 goto out; 4811 4812 again: 4813 page = find_or_create_page(mapping, index, mask); 4814 if (!page) { 4815 btrfs_delalloc_release_space(inode, data_reserved, 4816 block_start, blocksize, true); 4817 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true); 4818 ret = -ENOMEM; 4819 goto out; 4820 } 4821 4822 if (!PageUptodate(page)) { 4823 ret = btrfs_readpage(NULL, page); 4824 lock_page(page); 4825 if (page->mapping != mapping) { 4826 unlock_page(page); 4827 put_page(page); 4828 goto again; 4829 } 4830 if (!PageUptodate(page)) { 4831 ret = -EIO; 4832 goto out_unlock; 4833 } 4834 } 4835 wait_on_page_writeback(page); 4836 4837 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4838 set_page_extent_mapped(page); 4839 4840 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4841 if (ordered) { 4842 unlock_extent_cached(io_tree, block_start, block_end, 4843 &cached_state); 4844 unlock_page(page); 4845 put_page(page); 4846 btrfs_start_ordered_extent(inode, ordered, 1); 4847 btrfs_put_ordered_extent(ordered); 4848 goto again; 4849 } 4850 4851 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4852 EXTENT_DIRTY | EXTENT_DELALLOC | 4853 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4854 0, 0, &cached_state); 4855 4856 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4857 &cached_state, 0); 4858 if (ret) { 4859 unlock_extent_cached(io_tree, block_start, block_end, 4860 &cached_state); 4861 goto out_unlock; 4862 } 4863 4864 if (offset != blocksize) { 4865 if (!len) 4866 len = blocksize - offset; 4867 kaddr = kmap(page); 4868 if (front) 4869 memset(kaddr + (block_start - page_offset(page)), 4870 0, offset); 4871 else 4872 memset(kaddr + (block_start - page_offset(page)) + offset, 4873 0, len); 4874 flush_dcache_page(page); 4875 kunmap(page); 4876 } 4877 ClearPageChecked(page); 4878 set_page_dirty(page); 4879 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4880 4881 out_unlock: 4882 if (ret) 4883 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4884 blocksize, true); 4885 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0)); 4886 unlock_page(page); 4887 put_page(page); 4888 out: 4889 extent_changeset_free(data_reserved); 4890 return ret; 4891 } 4892 4893 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4894 u64 offset, u64 len) 4895 { 4896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4897 struct btrfs_trans_handle *trans; 4898 int ret; 4899 4900 /* 4901 * Still need to make sure the inode looks like it's been updated so 4902 * that any holes get logged if we fsync. 4903 */ 4904 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4905 BTRFS_I(inode)->last_trans = fs_info->generation; 4906 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4907 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4908 return 0; 4909 } 4910 4911 /* 4912 * 1 - for the one we're dropping 4913 * 1 - for the one we're adding 4914 * 1 - for updating the inode. 4915 */ 4916 trans = btrfs_start_transaction(root, 3); 4917 if (IS_ERR(trans)) 4918 return PTR_ERR(trans); 4919 4920 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4921 if (ret) { 4922 btrfs_abort_transaction(trans, ret); 4923 btrfs_end_transaction(trans); 4924 return ret; 4925 } 4926 4927 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4928 offset, 0, 0, len, 0, len, 0, 0, 0); 4929 if (ret) 4930 btrfs_abort_transaction(trans, ret); 4931 else 4932 btrfs_update_inode(trans, root, inode); 4933 btrfs_end_transaction(trans); 4934 return ret; 4935 } 4936 4937 /* 4938 * This function puts in dummy file extents for the area we're creating a hole 4939 * for. So if we are truncating this file to a larger size we need to insert 4940 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4941 * the range between oldsize and size 4942 */ 4943 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4944 { 4945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4946 struct btrfs_root *root = BTRFS_I(inode)->root; 4947 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4948 struct extent_map *em = NULL; 4949 struct extent_state *cached_state = NULL; 4950 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4951 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4952 u64 block_end = ALIGN(size, fs_info->sectorsize); 4953 u64 last_byte; 4954 u64 cur_offset; 4955 u64 hole_size; 4956 int err = 0; 4957 4958 /* 4959 * If our size started in the middle of a block we need to zero out the 4960 * rest of the block before we expand the i_size, otherwise we could 4961 * expose stale data. 4962 */ 4963 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4964 if (err) 4965 return err; 4966 4967 if (size <= hole_start) 4968 return 0; 4969 4970 while (1) { 4971 struct btrfs_ordered_extent *ordered; 4972 4973 lock_extent_bits(io_tree, hole_start, block_end - 1, 4974 &cached_state); 4975 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 4976 block_end - hole_start); 4977 if (!ordered) 4978 break; 4979 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4980 &cached_state); 4981 btrfs_start_ordered_extent(inode, ordered, 1); 4982 btrfs_put_ordered_extent(ordered); 4983 } 4984 4985 cur_offset = hole_start; 4986 while (1) { 4987 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4988 block_end - cur_offset, 0); 4989 if (IS_ERR(em)) { 4990 err = PTR_ERR(em); 4991 em = NULL; 4992 break; 4993 } 4994 last_byte = min(extent_map_end(em), block_end); 4995 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4996 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4997 struct extent_map *hole_em; 4998 hole_size = last_byte - cur_offset; 4999 5000 err = maybe_insert_hole(root, inode, cur_offset, 5001 hole_size); 5002 if (err) 5003 break; 5004 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5005 cur_offset + hole_size - 1, 0); 5006 hole_em = alloc_extent_map(); 5007 if (!hole_em) { 5008 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5009 &BTRFS_I(inode)->runtime_flags); 5010 goto next; 5011 } 5012 hole_em->start = cur_offset; 5013 hole_em->len = hole_size; 5014 hole_em->orig_start = cur_offset; 5015 5016 hole_em->block_start = EXTENT_MAP_HOLE; 5017 hole_em->block_len = 0; 5018 hole_em->orig_block_len = 0; 5019 hole_em->ram_bytes = hole_size; 5020 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5021 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5022 hole_em->generation = fs_info->generation; 5023 5024 while (1) { 5025 write_lock(&em_tree->lock); 5026 err = add_extent_mapping(em_tree, hole_em, 1); 5027 write_unlock(&em_tree->lock); 5028 if (err != -EEXIST) 5029 break; 5030 btrfs_drop_extent_cache(BTRFS_I(inode), 5031 cur_offset, 5032 cur_offset + 5033 hole_size - 1, 0); 5034 } 5035 free_extent_map(hole_em); 5036 } 5037 next: 5038 free_extent_map(em); 5039 em = NULL; 5040 cur_offset = last_byte; 5041 if (cur_offset >= block_end) 5042 break; 5043 } 5044 free_extent_map(em); 5045 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5046 return err; 5047 } 5048 5049 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5050 { 5051 struct btrfs_root *root = BTRFS_I(inode)->root; 5052 struct btrfs_trans_handle *trans; 5053 loff_t oldsize = i_size_read(inode); 5054 loff_t newsize = attr->ia_size; 5055 int mask = attr->ia_valid; 5056 int ret; 5057 5058 /* 5059 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5060 * special case where we need to update the times despite not having 5061 * these flags set. For all other operations the VFS set these flags 5062 * explicitly if it wants a timestamp update. 5063 */ 5064 if (newsize != oldsize) { 5065 inode_inc_iversion(inode); 5066 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5067 inode->i_ctime = inode->i_mtime = 5068 current_time(inode); 5069 } 5070 5071 if (newsize > oldsize) { 5072 /* 5073 * Don't do an expanding truncate while snapshotting is ongoing. 5074 * This is to ensure the snapshot captures a fully consistent 5075 * state of this file - if the snapshot captures this expanding 5076 * truncation, it must capture all writes that happened before 5077 * this truncation. 5078 */ 5079 btrfs_wait_for_snapshot_creation(root); 5080 ret = btrfs_cont_expand(inode, oldsize, newsize); 5081 if (ret) { 5082 btrfs_end_write_no_snapshotting(root); 5083 return ret; 5084 } 5085 5086 trans = btrfs_start_transaction(root, 1); 5087 if (IS_ERR(trans)) { 5088 btrfs_end_write_no_snapshotting(root); 5089 return PTR_ERR(trans); 5090 } 5091 5092 i_size_write(inode, newsize); 5093 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5094 pagecache_isize_extended(inode, oldsize, newsize); 5095 ret = btrfs_update_inode(trans, root, inode); 5096 btrfs_end_write_no_snapshotting(root); 5097 btrfs_end_transaction(trans); 5098 } else { 5099 5100 /* 5101 * We're truncating a file that used to have good data down to 5102 * zero. Make sure it gets into the ordered flush list so that 5103 * any new writes get down to disk quickly. 5104 */ 5105 if (newsize == 0) 5106 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5107 &BTRFS_I(inode)->runtime_flags); 5108 5109 truncate_setsize(inode, newsize); 5110 5111 /* Disable nonlocked read DIO to avoid the endless truncate */ 5112 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5113 inode_dio_wait(inode); 5114 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5115 5116 ret = btrfs_truncate(inode, newsize == oldsize); 5117 if (ret && inode->i_nlink) { 5118 int err; 5119 5120 /* 5121 * Truncate failed, so fix up the in-memory size. We 5122 * adjusted disk_i_size down as we removed extents, so 5123 * wait for disk_i_size to be stable and then update the 5124 * in-memory size to match. 5125 */ 5126 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5127 if (err) 5128 return err; 5129 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5130 } 5131 } 5132 5133 return ret; 5134 } 5135 5136 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5137 { 5138 struct inode *inode = d_inode(dentry); 5139 struct btrfs_root *root = BTRFS_I(inode)->root; 5140 int err; 5141 5142 if (btrfs_root_readonly(root)) 5143 return -EROFS; 5144 5145 err = setattr_prepare(dentry, attr); 5146 if (err) 5147 return err; 5148 5149 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5150 err = btrfs_setsize(inode, attr); 5151 if (err) 5152 return err; 5153 } 5154 5155 if (attr->ia_valid) { 5156 setattr_copy(inode, attr); 5157 inode_inc_iversion(inode); 5158 err = btrfs_dirty_inode(inode); 5159 5160 if (!err && attr->ia_valid & ATTR_MODE) 5161 err = posix_acl_chmod(inode, inode->i_mode); 5162 } 5163 5164 return err; 5165 } 5166 5167 /* 5168 * While truncating the inode pages during eviction, we get the VFS calling 5169 * btrfs_invalidatepage() against each page of the inode. This is slow because 5170 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5171 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5172 * extent_state structures over and over, wasting lots of time. 5173 * 5174 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5175 * those expensive operations on a per page basis and do only the ordered io 5176 * finishing, while we release here the extent_map and extent_state structures, 5177 * without the excessive merging and splitting. 5178 */ 5179 static void evict_inode_truncate_pages(struct inode *inode) 5180 { 5181 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5182 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5183 struct rb_node *node; 5184 5185 ASSERT(inode->i_state & I_FREEING); 5186 truncate_inode_pages_final(&inode->i_data); 5187 5188 write_lock(&map_tree->lock); 5189 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5190 struct extent_map *em; 5191 5192 node = rb_first_cached(&map_tree->map); 5193 em = rb_entry(node, struct extent_map, rb_node); 5194 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5195 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5196 remove_extent_mapping(map_tree, em); 5197 free_extent_map(em); 5198 if (need_resched()) { 5199 write_unlock(&map_tree->lock); 5200 cond_resched(); 5201 write_lock(&map_tree->lock); 5202 } 5203 } 5204 write_unlock(&map_tree->lock); 5205 5206 /* 5207 * Keep looping until we have no more ranges in the io tree. 5208 * We can have ongoing bios started by readpages (called from readahead) 5209 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5210 * still in progress (unlocked the pages in the bio but did not yet 5211 * unlocked the ranges in the io tree). Therefore this means some 5212 * ranges can still be locked and eviction started because before 5213 * submitting those bios, which are executed by a separate task (work 5214 * queue kthread), inode references (inode->i_count) were not taken 5215 * (which would be dropped in the end io callback of each bio). 5216 * Therefore here we effectively end up waiting for those bios and 5217 * anyone else holding locked ranges without having bumped the inode's 5218 * reference count - if we don't do it, when they access the inode's 5219 * io_tree to unlock a range it may be too late, leading to an 5220 * use-after-free issue. 5221 */ 5222 spin_lock(&io_tree->lock); 5223 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5224 struct extent_state *state; 5225 struct extent_state *cached_state = NULL; 5226 u64 start; 5227 u64 end; 5228 unsigned state_flags; 5229 5230 node = rb_first(&io_tree->state); 5231 state = rb_entry(node, struct extent_state, rb_node); 5232 start = state->start; 5233 end = state->end; 5234 state_flags = state->state; 5235 spin_unlock(&io_tree->lock); 5236 5237 lock_extent_bits(io_tree, start, end, &cached_state); 5238 5239 /* 5240 * If still has DELALLOC flag, the extent didn't reach disk, 5241 * and its reserved space won't be freed by delayed_ref. 5242 * So we need to free its reserved space here. 5243 * (Refer to comment in btrfs_invalidatepage, case 2) 5244 * 5245 * Note, end is the bytenr of last byte, so we need + 1 here. 5246 */ 5247 if (state_flags & EXTENT_DELALLOC) 5248 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5249 5250 clear_extent_bit(io_tree, start, end, 5251 EXTENT_LOCKED | EXTENT_DIRTY | 5252 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5253 EXTENT_DEFRAG, 1, 1, &cached_state); 5254 5255 cond_resched(); 5256 spin_lock(&io_tree->lock); 5257 } 5258 spin_unlock(&io_tree->lock); 5259 } 5260 5261 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5262 struct btrfs_block_rsv *rsv) 5263 { 5264 struct btrfs_fs_info *fs_info = root->fs_info; 5265 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5266 int failures = 0; 5267 5268 for (;;) { 5269 struct btrfs_trans_handle *trans; 5270 int ret; 5271 5272 ret = btrfs_block_rsv_refill(root, rsv, rsv->size, 5273 BTRFS_RESERVE_FLUSH_LIMIT); 5274 5275 if (ret && ++failures > 2) { 5276 btrfs_warn(fs_info, 5277 "could not allocate space for a delete; will truncate on mount"); 5278 return ERR_PTR(-ENOSPC); 5279 } 5280 5281 trans = btrfs_join_transaction(root); 5282 if (IS_ERR(trans) || !ret) 5283 return trans; 5284 5285 /* 5286 * Try to steal from the global reserve if there is space for 5287 * it. 5288 */ 5289 if (!btrfs_check_space_for_delayed_refs(fs_info) && 5290 !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) 5291 return trans; 5292 5293 /* If not, commit and try again. */ 5294 ret = btrfs_commit_transaction(trans); 5295 if (ret) 5296 return ERR_PTR(ret); 5297 } 5298 } 5299 5300 void btrfs_evict_inode(struct inode *inode) 5301 { 5302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5303 struct btrfs_trans_handle *trans; 5304 struct btrfs_root *root = BTRFS_I(inode)->root; 5305 struct btrfs_block_rsv *rsv; 5306 int ret; 5307 5308 trace_btrfs_inode_evict(inode); 5309 5310 if (!root) { 5311 clear_inode(inode); 5312 return; 5313 } 5314 5315 evict_inode_truncate_pages(inode); 5316 5317 if (inode->i_nlink && 5318 ((btrfs_root_refs(&root->root_item) != 0 && 5319 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5320 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5321 goto no_delete; 5322 5323 if (is_bad_inode(inode)) 5324 goto no_delete; 5325 5326 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5327 5328 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5329 goto no_delete; 5330 5331 if (inode->i_nlink > 0) { 5332 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5333 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5334 goto no_delete; 5335 } 5336 5337 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5338 if (ret) 5339 goto no_delete; 5340 5341 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5342 if (!rsv) 5343 goto no_delete; 5344 rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5345 rsv->failfast = 1; 5346 5347 btrfs_i_size_write(BTRFS_I(inode), 0); 5348 5349 while (1) { 5350 trans = evict_refill_and_join(root, rsv); 5351 if (IS_ERR(trans)) 5352 goto free_rsv; 5353 5354 trans->block_rsv = rsv; 5355 5356 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5357 trans->block_rsv = &fs_info->trans_block_rsv; 5358 btrfs_end_transaction(trans); 5359 btrfs_btree_balance_dirty(fs_info); 5360 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5361 goto free_rsv; 5362 else if (!ret) 5363 break; 5364 } 5365 5366 /* 5367 * Errors here aren't a big deal, it just means we leave orphan items in 5368 * the tree. They will be cleaned up on the next mount. If the inode 5369 * number gets reused, cleanup deletes the orphan item without doing 5370 * anything, and unlink reuses the existing orphan item. 5371 * 5372 * If it turns out that we are dropping too many of these, we might want 5373 * to add a mechanism for retrying these after a commit. 5374 */ 5375 trans = evict_refill_and_join(root, rsv); 5376 if (!IS_ERR(trans)) { 5377 trans->block_rsv = rsv; 5378 btrfs_orphan_del(trans, BTRFS_I(inode)); 5379 trans->block_rsv = &fs_info->trans_block_rsv; 5380 btrfs_end_transaction(trans); 5381 } 5382 5383 if (!(root == fs_info->tree_root || 5384 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5385 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5386 5387 free_rsv: 5388 btrfs_free_block_rsv(fs_info, rsv); 5389 no_delete: 5390 /* 5391 * If we didn't successfully delete, the orphan item will still be in 5392 * the tree and we'll retry on the next mount. Again, we might also want 5393 * to retry these periodically in the future. 5394 */ 5395 btrfs_remove_delayed_node(BTRFS_I(inode)); 5396 clear_inode(inode); 5397 } 5398 5399 /* 5400 * this returns the key found in the dir entry in the location pointer. 5401 * If no dir entries were found, returns -ENOENT. 5402 * If found a corrupted location in dir entry, returns -EUCLEAN. 5403 */ 5404 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5405 struct btrfs_key *location) 5406 { 5407 const char *name = dentry->d_name.name; 5408 int namelen = dentry->d_name.len; 5409 struct btrfs_dir_item *di; 5410 struct btrfs_path *path; 5411 struct btrfs_root *root = BTRFS_I(dir)->root; 5412 int ret = 0; 5413 5414 path = btrfs_alloc_path(); 5415 if (!path) 5416 return -ENOMEM; 5417 5418 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5419 name, namelen, 0); 5420 if (IS_ERR_OR_NULL(di)) { 5421 ret = di ? PTR_ERR(di) : -ENOENT; 5422 goto out; 5423 } 5424 5425 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5426 if (location->type != BTRFS_INODE_ITEM_KEY && 5427 location->type != BTRFS_ROOT_ITEM_KEY) { 5428 ret = -EUCLEAN; 5429 btrfs_warn(root->fs_info, 5430 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5431 __func__, name, btrfs_ino(BTRFS_I(dir)), 5432 location->objectid, location->type, location->offset); 5433 } 5434 out: 5435 btrfs_free_path(path); 5436 return ret; 5437 } 5438 5439 /* 5440 * when we hit a tree root in a directory, the btrfs part of the inode 5441 * needs to be changed to reflect the root directory of the tree root. This 5442 * is kind of like crossing a mount point. 5443 */ 5444 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5445 struct inode *dir, 5446 struct dentry *dentry, 5447 struct btrfs_key *location, 5448 struct btrfs_root **sub_root) 5449 { 5450 struct btrfs_path *path; 5451 struct btrfs_root *new_root; 5452 struct btrfs_root_ref *ref; 5453 struct extent_buffer *leaf; 5454 struct btrfs_key key; 5455 int ret; 5456 int err = 0; 5457 5458 path = btrfs_alloc_path(); 5459 if (!path) { 5460 err = -ENOMEM; 5461 goto out; 5462 } 5463 5464 err = -ENOENT; 5465 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5466 key.type = BTRFS_ROOT_REF_KEY; 5467 key.offset = location->objectid; 5468 5469 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5470 if (ret) { 5471 if (ret < 0) 5472 err = ret; 5473 goto out; 5474 } 5475 5476 leaf = path->nodes[0]; 5477 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5478 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5479 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5480 goto out; 5481 5482 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5483 (unsigned long)(ref + 1), 5484 dentry->d_name.len); 5485 if (ret) 5486 goto out; 5487 5488 btrfs_release_path(path); 5489 5490 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5491 if (IS_ERR(new_root)) { 5492 err = PTR_ERR(new_root); 5493 goto out; 5494 } 5495 5496 *sub_root = new_root; 5497 location->objectid = btrfs_root_dirid(&new_root->root_item); 5498 location->type = BTRFS_INODE_ITEM_KEY; 5499 location->offset = 0; 5500 err = 0; 5501 out: 5502 btrfs_free_path(path); 5503 return err; 5504 } 5505 5506 static void inode_tree_add(struct inode *inode) 5507 { 5508 struct btrfs_root *root = BTRFS_I(inode)->root; 5509 struct btrfs_inode *entry; 5510 struct rb_node **p; 5511 struct rb_node *parent; 5512 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5513 u64 ino = btrfs_ino(BTRFS_I(inode)); 5514 5515 if (inode_unhashed(inode)) 5516 return; 5517 parent = NULL; 5518 spin_lock(&root->inode_lock); 5519 p = &root->inode_tree.rb_node; 5520 while (*p) { 5521 parent = *p; 5522 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5523 5524 if (ino < btrfs_ino(entry)) 5525 p = &parent->rb_left; 5526 else if (ino > btrfs_ino(entry)) 5527 p = &parent->rb_right; 5528 else { 5529 WARN_ON(!(entry->vfs_inode.i_state & 5530 (I_WILL_FREE | I_FREEING))); 5531 rb_replace_node(parent, new, &root->inode_tree); 5532 RB_CLEAR_NODE(parent); 5533 spin_unlock(&root->inode_lock); 5534 return; 5535 } 5536 } 5537 rb_link_node(new, parent, p); 5538 rb_insert_color(new, &root->inode_tree); 5539 spin_unlock(&root->inode_lock); 5540 } 5541 5542 static void inode_tree_del(struct inode *inode) 5543 { 5544 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5545 struct btrfs_root *root = BTRFS_I(inode)->root; 5546 int empty = 0; 5547 5548 spin_lock(&root->inode_lock); 5549 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5550 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5551 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5552 empty = RB_EMPTY_ROOT(&root->inode_tree); 5553 } 5554 spin_unlock(&root->inode_lock); 5555 5556 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5557 synchronize_srcu(&fs_info->subvol_srcu); 5558 spin_lock(&root->inode_lock); 5559 empty = RB_EMPTY_ROOT(&root->inode_tree); 5560 spin_unlock(&root->inode_lock); 5561 if (empty) 5562 btrfs_add_dead_root(root); 5563 } 5564 } 5565 5566 5567 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5568 { 5569 struct btrfs_iget_args *args = p; 5570 inode->i_ino = args->location->objectid; 5571 memcpy(&BTRFS_I(inode)->location, args->location, 5572 sizeof(*args->location)); 5573 BTRFS_I(inode)->root = args->root; 5574 return 0; 5575 } 5576 5577 static int btrfs_find_actor(struct inode *inode, void *opaque) 5578 { 5579 struct btrfs_iget_args *args = opaque; 5580 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5581 args->root == BTRFS_I(inode)->root; 5582 } 5583 5584 static struct inode *btrfs_iget_locked(struct super_block *s, 5585 struct btrfs_key *location, 5586 struct btrfs_root *root) 5587 { 5588 struct inode *inode; 5589 struct btrfs_iget_args args; 5590 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5591 5592 args.location = location; 5593 args.root = root; 5594 5595 inode = iget5_locked(s, hashval, btrfs_find_actor, 5596 btrfs_init_locked_inode, 5597 (void *)&args); 5598 return inode; 5599 } 5600 5601 /* Get an inode object given its location and corresponding root. 5602 * Returns in *is_new if the inode was read from disk 5603 */ 5604 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5605 struct btrfs_root *root, int *new, 5606 struct btrfs_path *path) 5607 { 5608 struct inode *inode; 5609 5610 inode = btrfs_iget_locked(s, location, root); 5611 if (!inode) 5612 return ERR_PTR(-ENOMEM); 5613 5614 if (inode->i_state & I_NEW) { 5615 int ret; 5616 5617 ret = btrfs_read_locked_inode(inode, path); 5618 if (!ret) { 5619 inode_tree_add(inode); 5620 unlock_new_inode(inode); 5621 if (new) 5622 *new = 1; 5623 } else { 5624 iget_failed(inode); 5625 /* 5626 * ret > 0 can come from btrfs_search_slot called by 5627 * btrfs_read_locked_inode, this means the inode item 5628 * was not found. 5629 */ 5630 if (ret > 0) 5631 ret = -ENOENT; 5632 inode = ERR_PTR(ret); 5633 } 5634 } 5635 5636 return inode; 5637 } 5638 5639 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5640 struct btrfs_root *root, int *new) 5641 { 5642 return btrfs_iget_path(s, location, root, new, NULL); 5643 } 5644 5645 static struct inode *new_simple_dir(struct super_block *s, 5646 struct btrfs_key *key, 5647 struct btrfs_root *root) 5648 { 5649 struct inode *inode = new_inode(s); 5650 5651 if (!inode) 5652 return ERR_PTR(-ENOMEM); 5653 5654 BTRFS_I(inode)->root = root; 5655 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5656 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5657 5658 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5659 inode->i_op = &btrfs_dir_ro_inode_operations; 5660 inode->i_opflags &= ~IOP_XATTR; 5661 inode->i_fop = &simple_dir_operations; 5662 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5663 inode->i_mtime = current_time(inode); 5664 inode->i_atime = inode->i_mtime; 5665 inode->i_ctime = inode->i_mtime; 5666 BTRFS_I(inode)->i_otime = inode->i_mtime; 5667 5668 return inode; 5669 } 5670 5671 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5672 { 5673 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5674 struct inode *inode; 5675 struct btrfs_root *root = BTRFS_I(dir)->root; 5676 struct btrfs_root *sub_root = root; 5677 struct btrfs_key location; 5678 int index; 5679 int ret = 0; 5680 5681 if (dentry->d_name.len > BTRFS_NAME_LEN) 5682 return ERR_PTR(-ENAMETOOLONG); 5683 5684 ret = btrfs_inode_by_name(dir, dentry, &location); 5685 if (ret < 0) 5686 return ERR_PTR(ret); 5687 5688 if (location.type == BTRFS_INODE_ITEM_KEY) { 5689 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5690 return inode; 5691 } 5692 5693 index = srcu_read_lock(&fs_info->subvol_srcu); 5694 ret = fixup_tree_root_location(fs_info, dir, dentry, 5695 &location, &sub_root); 5696 if (ret < 0) { 5697 if (ret != -ENOENT) 5698 inode = ERR_PTR(ret); 5699 else 5700 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5701 } else { 5702 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5703 } 5704 srcu_read_unlock(&fs_info->subvol_srcu, index); 5705 5706 if (!IS_ERR(inode) && root != sub_root) { 5707 down_read(&fs_info->cleanup_work_sem); 5708 if (!sb_rdonly(inode->i_sb)) 5709 ret = btrfs_orphan_cleanup(sub_root); 5710 up_read(&fs_info->cleanup_work_sem); 5711 if (ret) { 5712 iput(inode); 5713 inode = ERR_PTR(ret); 5714 } 5715 } 5716 5717 return inode; 5718 } 5719 5720 static int btrfs_dentry_delete(const struct dentry *dentry) 5721 { 5722 struct btrfs_root *root; 5723 struct inode *inode = d_inode(dentry); 5724 5725 if (!inode && !IS_ROOT(dentry)) 5726 inode = d_inode(dentry->d_parent); 5727 5728 if (inode) { 5729 root = BTRFS_I(inode)->root; 5730 if (btrfs_root_refs(&root->root_item) == 0) 5731 return 1; 5732 5733 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5734 return 1; 5735 } 5736 return 0; 5737 } 5738 5739 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5740 unsigned int flags) 5741 { 5742 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5743 5744 if (inode == ERR_PTR(-ENOENT)) 5745 inode = NULL; 5746 return d_splice_alias(inode, dentry); 5747 } 5748 5749 unsigned char btrfs_filetype_table[] = { 5750 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5751 }; 5752 5753 /* 5754 * All this infrastructure exists because dir_emit can fault, and we are holding 5755 * the tree lock when doing readdir. For now just allocate a buffer and copy 5756 * our information into that, and then dir_emit from the buffer. This is 5757 * similar to what NFS does, only we don't keep the buffer around in pagecache 5758 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5759 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5760 * tree lock. 5761 */ 5762 static int btrfs_opendir(struct inode *inode, struct file *file) 5763 { 5764 struct btrfs_file_private *private; 5765 5766 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5767 if (!private) 5768 return -ENOMEM; 5769 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5770 if (!private->filldir_buf) { 5771 kfree(private); 5772 return -ENOMEM; 5773 } 5774 file->private_data = private; 5775 return 0; 5776 } 5777 5778 struct dir_entry { 5779 u64 ino; 5780 u64 offset; 5781 unsigned type; 5782 int name_len; 5783 }; 5784 5785 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5786 { 5787 while (entries--) { 5788 struct dir_entry *entry = addr; 5789 char *name = (char *)(entry + 1); 5790 5791 ctx->pos = get_unaligned(&entry->offset); 5792 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5793 get_unaligned(&entry->ino), 5794 get_unaligned(&entry->type))) 5795 return 1; 5796 addr += sizeof(struct dir_entry) + 5797 get_unaligned(&entry->name_len); 5798 ctx->pos++; 5799 } 5800 return 0; 5801 } 5802 5803 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5804 { 5805 struct inode *inode = file_inode(file); 5806 struct btrfs_root *root = BTRFS_I(inode)->root; 5807 struct btrfs_file_private *private = file->private_data; 5808 struct btrfs_dir_item *di; 5809 struct btrfs_key key; 5810 struct btrfs_key found_key; 5811 struct btrfs_path *path; 5812 void *addr; 5813 struct list_head ins_list; 5814 struct list_head del_list; 5815 int ret; 5816 struct extent_buffer *leaf; 5817 int slot; 5818 char *name_ptr; 5819 int name_len; 5820 int entries = 0; 5821 int total_len = 0; 5822 bool put = false; 5823 struct btrfs_key location; 5824 5825 if (!dir_emit_dots(file, ctx)) 5826 return 0; 5827 5828 path = btrfs_alloc_path(); 5829 if (!path) 5830 return -ENOMEM; 5831 5832 addr = private->filldir_buf; 5833 path->reada = READA_FORWARD; 5834 5835 INIT_LIST_HEAD(&ins_list); 5836 INIT_LIST_HEAD(&del_list); 5837 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5838 5839 again: 5840 key.type = BTRFS_DIR_INDEX_KEY; 5841 key.offset = ctx->pos; 5842 key.objectid = btrfs_ino(BTRFS_I(inode)); 5843 5844 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5845 if (ret < 0) 5846 goto err; 5847 5848 while (1) { 5849 struct dir_entry *entry; 5850 5851 leaf = path->nodes[0]; 5852 slot = path->slots[0]; 5853 if (slot >= btrfs_header_nritems(leaf)) { 5854 ret = btrfs_next_leaf(root, path); 5855 if (ret < 0) 5856 goto err; 5857 else if (ret > 0) 5858 break; 5859 continue; 5860 } 5861 5862 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5863 5864 if (found_key.objectid != key.objectid) 5865 break; 5866 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5867 break; 5868 if (found_key.offset < ctx->pos) 5869 goto next; 5870 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5871 goto next; 5872 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5873 name_len = btrfs_dir_name_len(leaf, di); 5874 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5875 PAGE_SIZE) { 5876 btrfs_release_path(path); 5877 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5878 if (ret) 5879 goto nopos; 5880 addr = private->filldir_buf; 5881 entries = 0; 5882 total_len = 0; 5883 goto again; 5884 } 5885 5886 entry = addr; 5887 put_unaligned(name_len, &entry->name_len); 5888 name_ptr = (char *)(entry + 1); 5889 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5890 name_len); 5891 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)], 5892 &entry->type); 5893 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5894 put_unaligned(location.objectid, &entry->ino); 5895 put_unaligned(found_key.offset, &entry->offset); 5896 entries++; 5897 addr += sizeof(struct dir_entry) + name_len; 5898 total_len += sizeof(struct dir_entry) + name_len; 5899 next: 5900 path->slots[0]++; 5901 } 5902 btrfs_release_path(path); 5903 5904 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5905 if (ret) 5906 goto nopos; 5907 5908 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5909 if (ret) 5910 goto nopos; 5911 5912 /* 5913 * Stop new entries from being returned after we return the last 5914 * entry. 5915 * 5916 * New directory entries are assigned a strictly increasing 5917 * offset. This means that new entries created during readdir 5918 * are *guaranteed* to be seen in the future by that readdir. 5919 * This has broken buggy programs which operate on names as 5920 * they're returned by readdir. Until we re-use freed offsets 5921 * we have this hack to stop new entries from being returned 5922 * under the assumption that they'll never reach this huge 5923 * offset. 5924 * 5925 * This is being careful not to overflow 32bit loff_t unless the 5926 * last entry requires it because doing so has broken 32bit apps 5927 * in the past. 5928 */ 5929 if (ctx->pos >= INT_MAX) 5930 ctx->pos = LLONG_MAX; 5931 else 5932 ctx->pos = INT_MAX; 5933 nopos: 5934 ret = 0; 5935 err: 5936 if (put) 5937 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5938 btrfs_free_path(path); 5939 return ret; 5940 } 5941 5942 /* 5943 * This is somewhat expensive, updating the tree every time the 5944 * inode changes. But, it is most likely to find the inode in cache. 5945 * FIXME, needs more benchmarking...there are no reasons other than performance 5946 * to keep or drop this code. 5947 */ 5948 static int btrfs_dirty_inode(struct inode *inode) 5949 { 5950 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5951 struct btrfs_root *root = BTRFS_I(inode)->root; 5952 struct btrfs_trans_handle *trans; 5953 int ret; 5954 5955 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5956 return 0; 5957 5958 trans = btrfs_join_transaction(root); 5959 if (IS_ERR(trans)) 5960 return PTR_ERR(trans); 5961 5962 ret = btrfs_update_inode(trans, root, inode); 5963 if (ret && ret == -ENOSPC) { 5964 /* whoops, lets try again with the full transaction */ 5965 btrfs_end_transaction(trans); 5966 trans = btrfs_start_transaction(root, 1); 5967 if (IS_ERR(trans)) 5968 return PTR_ERR(trans); 5969 5970 ret = btrfs_update_inode(trans, root, inode); 5971 } 5972 btrfs_end_transaction(trans); 5973 if (BTRFS_I(inode)->delayed_node) 5974 btrfs_balance_delayed_items(fs_info); 5975 5976 return ret; 5977 } 5978 5979 /* 5980 * This is a copy of file_update_time. We need this so we can return error on 5981 * ENOSPC for updating the inode in the case of file write and mmap writes. 5982 */ 5983 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5984 int flags) 5985 { 5986 struct btrfs_root *root = BTRFS_I(inode)->root; 5987 bool dirty = flags & ~S_VERSION; 5988 5989 if (btrfs_root_readonly(root)) 5990 return -EROFS; 5991 5992 if (flags & S_VERSION) 5993 dirty |= inode_maybe_inc_iversion(inode, dirty); 5994 if (flags & S_CTIME) 5995 inode->i_ctime = *now; 5996 if (flags & S_MTIME) 5997 inode->i_mtime = *now; 5998 if (flags & S_ATIME) 5999 inode->i_atime = *now; 6000 return dirty ? btrfs_dirty_inode(inode) : 0; 6001 } 6002 6003 /* 6004 * find the highest existing sequence number in a directory 6005 * and then set the in-memory index_cnt variable to reflect 6006 * free sequence numbers 6007 */ 6008 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6009 { 6010 struct btrfs_root *root = inode->root; 6011 struct btrfs_key key, found_key; 6012 struct btrfs_path *path; 6013 struct extent_buffer *leaf; 6014 int ret; 6015 6016 key.objectid = btrfs_ino(inode); 6017 key.type = BTRFS_DIR_INDEX_KEY; 6018 key.offset = (u64)-1; 6019 6020 path = btrfs_alloc_path(); 6021 if (!path) 6022 return -ENOMEM; 6023 6024 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6025 if (ret < 0) 6026 goto out; 6027 /* FIXME: we should be able to handle this */ 6028 if (ret == 0) 6029 goto out; 6030 ret = 0; 6031 6032 /* 6033 * MAGIC NUMBER EXPLANATION: 6034 * since we search a directory based on f_pos we have to start at 2 6035 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6036 * else has to start at 2 6037 */ 6038 if (path->slots[0] == 0) { 6039 inode->index_cnt = 2; 6040 goto out; 6041 } 6042 6043 path->slots[0]--; 6044 6045 leaf = path->nodes[0]; 6046 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6047 6048 if (found_key.objectid != btrfs_ino(inode) || 6049 found_key.type != BTRFS_DIR_INDEX_KEY) { 6050 inode->index_cnt = 2; 6051 goto out; 6052 } 6053 6054 inode->index_cnt = found_key.offset + 1; 6055 out: 6056 btrfs_free_path(path); 6057 return ret; 6058 } 6059 6060 /* 6061 * helper to find a free sequence number in a given directory. This current 6062 * code is very simple, later versions will do smarter things in the btree 6063 */ 6064 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6065 { 6066 int ret = 0; 6067 6068 if (dir->index_cnt == (u64)-1) { 6069 ret = btrfs_inode_delayed_dir_index_count(dir); 6070 if (ret) { 6071 ret = btrfs_set_inode_index_count(dir); 6072 if (ret) 6073 return ret; 6074 } 6075 } 6076 6077 *index = dir->index_cnt; 6078 dir->index_cnt++; 6079 6080 return ret; 6081 } 6082 6083 static int btrfs_insert_inode_locked(struct inode *inode) 6084 { 6085 struct btrfs_iget_args args; 6086 args.location = &BTRFS_I(inode)->location; 6087 args.root = BTRFS_I(inode)->root; 6088 6089 return insert_inode_locked4(inode, 6090 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6091 btrfs_find_actor, &args); 6092 } 6093 6094 /* 6095 * Inherit flags from the parent inode. 6096 * 6097 * Currently only the compression flags and the cow flags are inherited. 6098 */ 6099 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6100 { 6101 unsigned int flags; 6102 6103 if (!dir) 6104 return; 6105 6106 flags = BTRFS_I(dir)->flags; 6107 6108 if (flags & BTRFS_INODE_NOCOMPRESS) { 6109 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6110 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6111 } else if (flags & BTRFS_INODE_COMPRESS) { 6112 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6113 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6114 } 6115 6116 if (flags & BTRFS_INODE_NODATACOW) { 6117 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6118 if (S_ISREG(inode->i_mode)) 6119 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6120 } 6121 6122 btrfs_sync_inode_flags_to_i_flags(inode); 6123 } 6124 6125 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6126 struct btrfs_root *root, 6127 struct inode *dir, 6128 const char *name, int name_len, 6129 u64 ref_objectid, u64 objectid, 6130 umode_t mode, u64 *index) 6131 { 6132 struct btrfs_fs_info *fs_info = root->fs_info; 6133 struct inode *inode; 6134 struct btrfs_inode_item *inode_item; 6135 struct btrfs_key *location; 6136 struct btrfs_path *path; 6137 struct btrfs_inode_ref *ref; 6138 struct btrfs_key key[2]; 6139 u32 sizes[2]; 6140 int nitems = name ? 2 : 1; 6141 unsigned long ptr; 6142 int ret; 6143 6144 path = btrfs_alloc_path(); 6145 if (!path) 6146 return ERR_PTR(-ENOMEM); 6147 6148 inode = new_inode(fs_info->sb); 6149 if (!inode) { 6150 btrfs_free_path(path); 6151 return ERR_PTR(-ENOMEM); 6152 } 6153 6154 /* 6155 * O_TMPFILE, set link count to 0, so that after this point, 6156 * we fill in an inode item with the correct link count. 6157 */ 6158 if (!name) 6159 set_nlink(inode, 0); 6160 6161 /* 6162 * we have to initialize this early, so we can reclaim the inode 6163 * number if we fail afterwards in this function. 6164 */ 6165 inode->i_ino = objectid; 6166 6167 if (dir && name) { 6168 trace_btrfs_inode_request(dir); 6169 6170 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6171 if (ret) { 6172 btrfs_free_path(path); 6173 iput(inode); 6174 return ERR_PTR(ret); 6175 } 6176 } else if (dir) { 6177 *index = 0; 6178 } 6179 /* 6180 * index_cnt is ignored for everything but a dir, 6181 * btrfs_set_inode_index_count has an explanation for the magic 6182 * number 6183 */ 6184 BTRFS_I(inode)->index_cnt = 2; 6185 BTRFS_I(inode)->dir_index = *index; 6186 BTRFS_I(inode)->root = root; 6187 BTRFS_I(inode)->generation = trans->transid; 6188 inode->i_generation = BTRFS_I(inode)->generation; 6189 6190 /* 6191 * We could have gotten an inode number from somebody who was fsynced 6192 * and then removed in this same transaction, so let's just set full 6193 * sync since it will be a full sync anyway and this will blow away the 6194 * old info in the log. 6195 */ 6196 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6197 6198 key[0].objectid = objectid; 6199 key[0].type = BTRFS_INODE_ITEM_KEY; 6200 key[0].offset = 0; 6201 6202 sizes[0] = sizeof(struct btrfs_inode_item); 6203 6204 if (name) { 6205 /* 6206 * Start new inodes with an inode_ref. This is slightly more 6207 * efficient for small numbers of hard links since they will 6208 * be packed into one item. Extended refs will kick in if we 6209 * add more hard links than can fit in the ref item. 6210 */ 6211 key[1].objectid = objectid; 6212 key[1].type = BTRFS_INODE_REF_KEY; 6213 key[1].offset = ref_objectid; 6214 6215 sizes[1] = name_len + sizeof(*ref); 6216 } 6217 6218 location = &BTRFS_I(inode)->location; 6219 location->objectid = objectid; 6220 location->offset = 0; 6221 location->type = BTRFS_INODE_ITEM_KEY; 6222 6223 ret = btrfs_insert_inode_locked(inode); 6224 if (ret < 0) { 6225 iput(inode); 6226 goto fail; 6227 } 6228 6229 path->leave_spinning = 1; 6230 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6231 if (ret != 0) 6232 goto fail_unlock; 6233 6234 inode_init_owner(inode, dir, mode); 6235 inode_set_bytes(inode, 0); 6236 6237 inode->i_mtime = current_time(inode); 6238 inode->i_atime = inode->i_mtime; 6239 inode->i_ctime = inode->i_mtime; 6240 BTRFS_I(inode)->i_otime = inode->i_mtime; 6241 6242 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6243 struct btrfs_inode_item); 6244 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6245 sizeof(*inode_item)); 6246 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6247 6248 if (name) { 6249 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6250 struct btrfs_inode_ref); 6251 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6252 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6253 ptr = (unsigned long)(ref + 1); 6254 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6255 } 6256 6257 btrfs_mark_buffer_dirty(path->nodes[0]); 6258 btrfs_free_path(path); 6259 6260 btrfs_inherit_iflags(inode, dir); 6261 6262 if (S_ISREG(mode)) { 6263 if (btrfs_test_opt(fs_info, NODATASUM)) 6264 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6265 if (btrfs_test_opt(fs_info, NODATACOW)) 6266 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6267 BTRFS_INODE_NODATASUM; 6268 } 6269 6270 inode_tree_add(inode); 6271 6272 trace_btrfs_inode_new(inode); 6273 btrfs_set_inode_last_trans(trans, inode); 6274 6275 btrfs_update_root_times(trans, root); 6276 6277 ret = btrfs_inode_inherit_props(trans, inode, dir); 6278 if (ret) 6279 btrfs_err(fs_info, 6280 "error inheriting props for ino %llu (root %llu): %d", 6281 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6282 6283 return inode; 6284 6285 fail_unlock: 6286 discard_new_inode(inode); 6287 fail: 6288 if (dir && name) 6289 BTRFS_I(dir)->index_cnt--; 6290 btrfs_free_path(path); 6291 return ERR_PTR(ret); 6292 } 6293 6294 static inline u8 btrfs_inode_type(struct inode *inode) 6295 { 6296 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6297 } 6298 6299 /* 6300 * utility function to add 'inode' into 'parent_inode' with 6301 * a give name and a given sequence number. 6302 * if 'add_backref' is true, also insert a backref from the 6303 * inode to the parent directory. 6304 */ 6305 int btrfs_add_link(struct btrfs_trans_handle *trans, 6306 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6307 const char *name, int name_len, int add_backref, u64 index) 6308 { 6309 int ret = 0; 6310 struct btrfs_key key; 6311 struct btrfs_root *root = parent_inode->root; 6312 u64 ino = btrfs_ino(inode); 6313 u64 parent_ino = btrfs_ino(parent_inode); 6314 6315 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6316 memcpy(&key, &inode->root->root_key, sizeof(key)); 6317 } else { 6318 key.objectid = ino; 6319 key.type = BTRFS_INODE_ITEM_KEY; 6320 key.offset = 0; 6321 } 6322 6323 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6324 ret = btrfs_add_root_ref(trans, key.objectid, 6325 root->root_key.objectid, parent_ino, 6326 index, name, name_len); 6327 } else if (add_backref) { 6328 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6329 parent_ino, index); 6330 } 6331 6332 /* Nothing to clean up yet */ 6333 if (ret) 6334 return ret; 6335 6336 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6337 btrfs_inode_type(&inode->vfs_inode), index); 6338 if (ret == -EEXIST || ret == -EOVERFLOW) 6339 goto fail_dir_item; 6340 else if (ret) { 6341 btrfs_abort_transaction(trans, ret); 6342 return ret; 6343 } 6344 6345 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6346 name_len * 2); 6347 inode_inc_iversion(&parent_inode->vfs_inode); 6348 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6349 current_time(&parent_inode->vfs_inode); 6350 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6351 if (ret) 6352 btrfs_abort_transaction(trans, ret); 6353 return ret; 6354 6355 fail_dir_item: 6356 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6357 u64 local_index; 6358 int err; 6359 err = btrfs_del_root_ref(trans, key.objectid, 6360 root->root_key.objectid, parent_ino, 6361 &local_index, name, name_len); 6362 if (err) 6363 btrfs_abort_transaction(trans, err); 6364 } else if (add_backref) { 6365 u64 local_index; 6366 int err; 6367 6368 err = btrfs_del_inode_ref(trans, root, name, name_len, 6369 ino, parent_ino, &local_index); 6370 if (err) 6371 btrfs_abort_transaction(trans, err); 6372 } 6373 6374 /* Return the original error code */ 6375 return ret; 6376 } 6377 6378 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6379 struct btrfs_inode *dir, struct dentry *dentry, 6380 struct btrfs_inode *inode, int backref, u64 index) 6381 { 6382 int err = btrfs_add_link(trans, dir, inode, 6383 dentry->d_name.name, dentry->d_name.len, 6384 backref, index); 6385 if (err > 0) 6386 err = -EEXIST; 6387 return err; 6388 } 6389 6390 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6391 umode_t mode, dev_t rdev) 6392 { 6393 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6394 struct btrfs_trans_handle *trans; 6395 struct btrfs_root *root = BTRFS_I(dir)->root; 6396 struct inode *inode = NULL; 6397 int err; 6398 u64 objectid; 6399 u64 index = 0; 6400 6401 /* 6402 * 2 for inode item and ref 6403 * 2 for dir items 6404 * 1 for xattr if selinux is on 6405 */ 6406 trans = btrfs_start_transaction(root, 5); 6407 if (IS_ERR(trans)) 6408 return PTR_ERR(trans); 6409 6410 err = btrfs_find_free_ino(root, &objectid); 6411 if (err) 6412 goto out_unlock; 6413 6414 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6415 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6416 mode, &index); 6417 if (IS_ERR(inode)) { 6418 err = PTR_ERR(inode); 6419 inode = NULL; 6420 goto out_unlock; 6421 } 6422 6423 /* 6424 * If the active LSM wants to access the inode during 6425 * d_instantiate it needs these. Smack checks to see 6426 * if the filesystem supports xattrs by looking at the 6427 * ops vector. 6428 */ 6429 inode->i_op = &btrfs_special_inode_operations; 6430 init_special_inode(inode, inode->i_mode, rdev); 6431 6432 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6433 if (err) 6434 goto out_unlock; 6435 6436 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6437 0, index); 6438 if (err) 6439 goto out_unlock; 6440 6441 btrfs_update_inode(trans, root, inode); 6442 d_instantiate_new(dentry, inode); 6443 6444 out_unlock: 6445 btrfs_end_transaction(trans); 6446 btrfs_btree_balance_dirty(fs_info); 6447 if (err && inode) { 6448 inode_dec_link_count(inode); 6449 discard_new_inode(inode); 6450 } 6451 return err; 6452 } 6453 6454 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6455 umode_t mode, bool excl) 6456 { 6457 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6458 struct btrfs_trans_handle *trans; 6459 struct btrfs_root *root = BTRFS_I(dir)->root; 6460 struct inode *inode = NULL; 6461 int err; 6462 u64 objectid; 6463 u64 index = 0; 6464 6465 /* 6466 * 2 for inode item and ref 6467 * 2 for dir items 6468 * 1 for xattr if selinux is on 6469 */ 6470 trans = btrfs_start_transaction(root, 5); 6471 if (IS_ERR(trans)) 6472 return PTR_ERR(trans); 6473 6474 err = btrfs_find_free_ino(root, &objectid); 6475 if (err) 6476 goto out_unlock; 6477 6478 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6479 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6480 mode, &index); 6481 if (IS_ERR(inode)) { 6482 err = PTR_ERR(inode); 6483 inode = NULL; 6484 goto out_unlock; 6485 } 6486 /* 6487 * If the active LSM wants to access the inode during 6488 * d_instantiate it needs these. Smack checks to see 6489 * if the filesystem supports xattrs by looking at the 6490 * ops vector. 6491 */ 6492 inode->i_fop = &btrfs_file_operations; 6493 inode->i_op = &btrfs_file_inode_operations; 6494 inode->i_mapping->a_ops = &btrfs_aops; 6495 6496 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6497 if (err) 6498 goto out_unlock; 6499 6500 err = btrfs_update_inode(trans, root, inode); 6501 if (err) 6502 goto out_unlock; 6503 6504 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6505 0, index); 6506 if (err) 6507 goto out_unlock; 6508 6509 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6510 d_instantiate_new(dentry, inode); 6511 6512 out_unlock: 6513 btrfs_end_transaction(trans); 6514 if (err && inode) { 6515 inode_dec_link_count(inode); 6516 discard_new_inode(inode); 6517 } 6518 btrfs_btree_balance_dirty(fs_info); 6519 return err; 6520 } 6521 6522 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6523 struct dentry *dentry) 6524 { 6525 struct btrfs_trans_handle *trans = NULL; 6526 struct btrfs_root *root = BTRFS_I(dir)->root; 6527 struct inode *inode = d_inode(old_dentry); 6528 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6529 u64 index; 6530 int err; 6531 int drop_inode = 0; 6532 6533 /* do not allow sys_link's with other subvols of the same device */ 6534 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6535 return -EXDEV; 6536 6537 if (inode->i_nlink >= BTRFS_LINK_MAX) 6538 return -EMLINK; 6539 6540 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6541 if (err) 6542 goto fail; 6543 6544 /* 6545 * 2 items for inode and inode ref 6546 * 2 items for dir items 6547 * 1 item for parent inode 6548 * 1 item for orphan item deletion if O_TMPFILE 6549 */ 6550 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6551 if (IS_ERR(trans)) { 6552 err = PTR_ERR(trans); 6553 trans = NULL; 6554 goto fail; 6555 } 6556 6557 /* There are several dir indexes for this inode, clear the cache. */ 6558 BTRFS_I(inode)->dir_index = 0ULL; 6559 inc_nlink(inode); 6560 inode_inc_iversion(inode); 6561 inode->i_ctime = current_time(inode); 6562 ihold(inode); 6563 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6564 6565 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6566 1, index); 6567 6568 if (err) { 6569 drop_inode = 1; 6570 } else { 6571 struct dentry *parent = dentry->d_parent; 6572 int ret; 6573 6574 err = btrfs_update_inode(trans, root, inode); 6575 if (err) 6576 goto fail; 6577 if (inode->i_nlink == 1) { 6578 /* 6579 * If new hard link count is 1, it's a file created 6580 * with open(2) O_TMPFILE flag. 6581 */ 6582 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6583 if (err) 6584 goto fail; 6585 } 6586 BTRFS_I(inode)->last_link_trans = trans->transid; 6587 d_instantiate(dentry, inode); 6588 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6589 true, NULL); 6590 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6591 err = btrfs_commit_transaction(trans); 6592 trans = NULL; 6593 } 6594 } 6595 6596 fail: 6597 if (trans) 6598 btrfs_end_transaction(trans); 6599 if (drop_inode) { 6600 inode_dec_link_count(inode); 6601 iput(inode); 6602 } 6603 btrfs_btree_balance_dirty(fs_info); 6604 return err; 6605 } 6606 6607 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6608 { 6609 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6610 struct inode *inode = NULL; 6611 struct btrfs_trans_handle *trans; 6612 struct btrfs_root *root = BTRFS_I(dir)->root; 6613 int err = 0; 6614 u64 objectid = 0; 6615 u64 index = 0; 6616 6617 /* 6618 * 2 items for inode and ref 6619 * 2 items for dir items 6620 * 1 for xattr if selinux is on 6621 */ 6622 trans = btrfs_start_transaction(root, 5); 6623 if (IS_ERR(trans)) 6624 return PTR_ERR(trans); 6625 6626 err = btrfs_find_free_ino(root, &objectid); 6627 if (err) 6628 goto out_fail; 6629 6630 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6631 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6632 S_IFDIR | mode, &index); 6633 if (IS_ERR(inode)) { 6634 err = PTR_ERR(inode); 6635 inode = NULL; 6636 goto out_fail; 6637 } 6638 6639 /* these must be set before we unlock the inode */ 6640 inode->i_op = &btrfs_dir_inode_operations; 6641 inode->i_fop = &btrfs_dir_file_operations; 6642 6643 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6644 if (err) 6645 goto out_fail; 6646 6647 btrfs_i_size_write(BTRFS_I(inode), 0); 6648 err = btrfs_update_inode(trans, root, inode); 6649 if (err) 6650 goto out_fail; 6651 6652 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6653 dentry->d_name.name, 6654 dentry->d_name.len, 0, index); 6655 if (err) 6656 goto out_fail; 6657 6658 d_instantiate_new(dentry, inode); 6659 6660 out_fail: 6661 btrfs_end_transaction(trans); 6662 if (err && inode) { 6663 inode_dec_link_count(inode); 6664 discard_new_inode(inode); 6665 } 6666 btrfs_btree_balance_dirty(fs_info); 6667 return err; 6668 } 6669 6670 static noinline int uncompress_inline(struct btrfs_path *path, 6671 struct page *page, 6672 size_t pg_offset, u64 extent_offset, 6673 struct btrfs_file_extent_item *item) 6674 { 6675 int ret; 6676 struct extent_buffer *leaf = path->nodes[0]; 6677 char *tmp; 6678 size_t max_size; 6679 unsigned long inline_size; 6680 unsigned long ptr; 6681 int compress_type; 6682 6683 WARN_ON(pg_offset != 0); 6684 compress_type = btrfs_file_extent_compression(leaf, item); 6685 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6686 inline_size = btrfs_file_extent_inline_item_len(leaf, 6687 btrfs_item_nr(path->slots[0])); 6688 tmp = kmalloc(inline_size, GFP_NOFS); 6689 if (!tmp) 6690 return -ENOMEM; 6691 ptr = btrfs_file_extent_inline_start(item); 6692 6693 read_extent_buffer(leaf, tmp, ptr, inline_size); 6694 6695 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6696 ret = btrfs_decompress(compress_type, tmp, page, 6697 extent_offset, inline_size, max_size); 6698 6699 /* 6700 * decompression code contains a memset to fill in any space between the end 6701 * of the uncompressed data and the end of max_size in case the decompressed 6702 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6703 * the end of an inline extent and the beginning of the next block, so we 6704 * cover that region here. 6705 */ 6706 6707 if (max_size + pg_offset < PAGE_SIZE) { 6708 char *map = kmap(page); 6709 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6710 kunmap(page); 6711 } 6712 kfree(tmp); 6713 return ret; 6714 } 6715 6716 /* 6717 * a bit scary, this does extent mapping from logical file offset to the disk. 6718 * the ugly parts come from merging extents from the disk with the in-ram 6719 * representation. This gets more complex because of the data=ordered code, 6720 * where the in-ram extents might be locked pending data=ordered completion. 6721 * 6722 * This also copies inline extents directly into the page. 6723 */ 6724 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6725 struct page *page, 6726 size_t pg_offset, u64 start, u64 len, 6727 int create) 6728 { 6729 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6730 int ret; 6731 int err = 0; 6732 u64 extent_start = 0; 6733 u64 extent_end = 0; 6734 u64 objectid = btrfs_ino(inode); 6735 u32 found_type; 6736 struct btrfs_path *path = NULL; 6737 struct btrfs_root *root = inode->root; 6738 struct btrfs_file_extent_item *item; 6739 struct extent_buffer *leaf; 6740 struct btrfs_key found_key; 6741 struct extent_map *em = NULL; 6742 struct extent_map_tree *em_tree = &inode->extent_tree; 6743 struct extent_io_tree *io_tree = &inode->io_tree; 6744 const bool new_inline = !page || create; 6745 6746 read_lock(&em_tree->lock); 6747 em = lookup_extent_mapping(em_tree, start, len); 6748 if (em) 6749 em->bdev = fs_info->fs_devices->latest_bdev; 6750 read_unlock(&em_tree->lock); 6751 6752 if (em) { 6753 if (em->start > start || em->start + em->len <= start) 6754 free_extent_map(em); 6755 else if (em->block_start == EXTENT_MAP_INLINE && page) 6756 free_extent_map(em); 6757 else 6758 goto out; 6759 } 6760 em = alloc_extent_map(); 6761 if (!em) { 6762 err = -ENOMEM; 6763 goto out; 6764 } 6765 em->bdev = fs_info->fs_devices->latest_bdev; 6766 em->start = EXTENT_MAP_HOLE; 6767 em->orig_start = EXTENT_MAP_HOLE; 6768 em->len = (u64)-1; 6769 em->block_len = (u64)-1; 6770 6771 path = btrfs_alloc_path(); 6772 if (!path) { 6773 err = -ENOMEM; 6774 goto out; 6775 } 6776 6777 /* Chances are we'll be called again, so go ahead and do readahead */ 6778 path->reada = READA_FORWARD; 6779 6780 /* 6781 * Unless we're going to uncompress the inline extent, no sleep would 6782 * happen. 6783 */ 6784 path->leave_spinning = 1; 6785 6786 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6787 if (ret < 0) { 6788 err = ret; 6789 goto out; 6790 } 6791 6792 if (ret != 0) { 6793 if (path->slots[0] == 0) 6794 goto not_found; 6795 path->slots[0]--; 6796 } 6797 6798 leaf = path->nodes[0]; 6799 item = btrfs_item_ptr(leaf, path->slots[0], 6800 struct btrfs_file_extent_item); 6801 /* are we inside the extent that was found? */ 6802 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6803 found_type = found_key.type; 6804 if (found_key.objectid != objectid || 6805 found_type != BTRFS_EXTENT_DATA_KEY) { 6806 /* 6807 * If we backup past the first extent we want to move forward 6808 * and see if there is an extent in front of us, otherwise we'll 6809 * say there is a hole for our whole search range which can 6810 * cause problems. 6811 */ 6812 extent_end = start; 6813 goto next; 6814 } 6815 6816 found_type = btrfs_file_extent_type(leaf, item); 6817 extent_start = found_key.offset; 6818 if (found_type == BTRFS_FILE_EXTENT_REG || 6819 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6820 extent_end = extent_start + 6821 btrfs_file_extent_num_bytes(leaf, item); 6822 6823 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6824 extent_start); 6825 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6826 size_t size; 6827 6828 size = btrfs_file_extent_ram_bytes(leaf, item); 6829 extent_end = ALIGN(extent_start + size, 6830 fs_info->sectorsize); 6831 6832 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6833 path->slots[0], 6834 extent_start); 6835 } 6836 next: 6837 if (start >= extent_end) { 6838 path->slots[0]++; 6839 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6840 ret = btrfs_next_leaf(root, path); 6841 if (ret < 0) { 6842 err = ret; 6843 goto out; 6844 } 6845 if (ret > 0) 6846 goto not_found; 6847 leaf = path->nodes[0]; 6848 } 6849 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6850 if (found_key.objectid != objectid || 6851 found_key.type != BTRFS_EXTENT_DATA_KEY) 6852 goto not_found; 6853 if (start + len <= found_key.offset) 6854 goto not_found; 6855 if (start > found_key.offset) 6856 goto next; 6857 em->start = start; 6858 em->orig_start = start; 6859 em->len = found_key.offset - start; 6860 goto not_found_em; 6861 } 6862 6863 btrfs_extent_item_to_extent_map(inode, path, item, 6864 new_inline, em); 6865 6866 if (found_type == BTRFS_FILE_EXTENT_REG || 6867 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6868 goto insert; 6869 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6870 unsigned long ptr; 6871 char *map; 6872 size_t size; 6873 size_t extent_offset; 6874 size_t copy_size; 6875 6876 if (new_inline) 6877 goto out; 6878 6879 size = btrfs_file_extent_ram_bytes(leaf, item); 6880 extent_offset = page_offset(page) + pg_offset - extent_start; 6881 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6882 size - extent_offset); 6883 em->start = extent_start + extent_offset; 6884 em->len = ALIGN(copy_size, fs_info->sectorsize); 6885 em->orig_block_len = em->len; 6886 em->orig_start = em->start; 6887 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6888 6889 btrfs_set_path_blocking(path); 6890 if (!PageUptodate(page)) { 6891 if (btrfs_file_extent_compression(leaf, item) != 6892 BTRFS_COMPRESS_NONE) { 6893 ret = uncompress_inline(path, page, pg_offset, 6894 extent_offset, item); 6895 if (ret) { 6896 err = ret; 6897 goto out; 6898 } 6899 } else { 6900 map = kmap(page); 6901 read_extent_buffer(leaf, map + pg_offset, ptr, 6902 copy_size); 6903 if (pg_offset + copy_size < PAGE_SIZE) { 6904 memset(map + pg_offset + copy_size, 0, 6905 PAGE_SIZE - pg_offset - 6906 copy_size); 6907 } 6908 kunmap(page); 6909 } 6910 flush_dcache_page(page); 6911 } 6912 set_extent_uptodate(io_tree, em->start, 6913 extent_map_end(em) - 1, NULL, GFP_NOFS); 6914 goto insert; 6915 } 6916 not_found: 6917 em->start = start; 6918 em->orig_start = start; 6919 em->len = len; 6920 not_found_em: 6921 em->block_start = EXTENT_MAP_HOLE; 6922 insert: 6923 btrfs_release_path(path); 6924 if (em->start > start || extent_map_end(em) <= start) { 6925 btrfs_err(fs_info, 6926 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6927 em->start, em->len, start, len); 6928 err = -EIO; 6929 goto out; 6930 } 6931 6932 err = 0; 6933 write_lock(&em_tree->lock); 6934 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6935 write_unlock(&em_tree->lock); 6936 out: 6937 btrfs_free_path(path); 6938 6939 trace_btrfs_get_extent(root, inode, em); 6940 6941 if (err) { 6942 free_extent_map(em); 6943 return ERR_PTR(err); 6944 } 6945 BUG_ON(!em); /* Error is always set */ 6946 return em; 6947 } 6948 6949 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6950 struct page *page, 6951 size_t pg_offset, u64 start, u64 len, 6952 int create) 6953 { 6954 struct extent_map *em; 6955 struct extent_map *hole_em = NULL; 6956 u64 range_start = start; 6957 u64 end; 6958 u64 found; 6959 u64 found_end; 6960 int err = 0; 6961 6962 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6963 if (IS_ERR(em)) 6964 return em; 6965 /* 6966 * If our em maps to: 6967 * - a hole or 6968 * - a pre-alloc extent, 6969 * there might actually be delalloc bytes behind it. 6970 */ 6971 if (em->block_start != EXTENT_MAP_HOLE && 6972 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6973 return em; 6974 else 6975 hole_em = em; 6976 6977 /* check to see if we've wrapped (len == -1 or similar) */ 6978 end = start + len; 6979 if (end < start) 6980 end = (u64)-1; 6981 else 6982 end -= 1; 6983 6984 em = NULL; 6985 6986 /* ok, we didn't find anything, lets look for delalloc */ 6987 found = count_range_bits(&inode->io_tree, &range_start, 6988 end, len, EXTENT_DELALLOC, 1); 6989 found_end = range_start + found; 6990 if (found_end < range_start) 6991 found_end = (u64)-1; 6992 6993 /* 6994 * we didn't find anything useful, return 6995 * the original results from get_extent() 6996 */ 6997 if (range_start > end || found_end <= start) { 6998 em = hole_em; 6999 hole_em = NULL; 7000 goto out; 7001 } 7002 7003 /* adjust the range_start to make sure it doesn't 7004 * go backwards from the start they passed in 7005 */ 7006 range_start = max(start, range_start); 7007 found = found_end - range_start; 7008 7009 if (found > 0) { 7010 u64 hole_start = start; 7011 u64 hole_len = len; 7012 7013 em = alloc_extent_map(); 7014 if (!em) { 7015 err = -ENOMEM; 7016 goto out; 7017 } 7018 /* 7019 * when btrfs_get_extent can't find anything it 7020 * returns one huge hole 7021 * 7022 * make sure what it found really fits our range, and 7023 * adjust to make sure it is based on the start from 7024 * the caller 7025 */ 7026 if (hole_em) { 7027 u64 calc_end = extent_map_end(hole_em); 7028 7029 if (calc_end <= start || (hole_em->start > end)) { 7030 free_extent_map(hole_em); 7031 hole_em = NULL; 7032 } else { 7033 hole_start = max(hole_em->start, start); 7034 hole_len = calc_end - hole_start; 7035 } 7036 } 7037 em->bdev = NULL; 7038 if (hole_em && range_start > hole_start) { 7039 /* our hole starts before our delalloc, so we 7040 * have to return just the parts of the hole 7041 * that go until the delalloc starts 7042 */ 7043 em->len = min(hole_len, 7044 range_start - hole_start); 7045 em->start = hole_start; 7046 em->orig_start = hole_start; 7047 /* 7048 * don't adjust block start at all, 7049 * it is fixed at EXTENT_MAP_HOLE 7050 */ 7051 em->block_start = hole_em->block_start; 7052 em->block_len = hole_len; 7053 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7054 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7055 } else { 7056 em->start = range_start; 7057 em->len = found; 7058 em->orig_start = range_start; 7059 em->block_start = EXTENT_MAP_DELALLOC; 7060 em->block_len = found; 7061 } 7062 } else { 7063 return hole_em; 7064 } 7065 out: 7066 7067 free_extent_map(hole_em); 7068 if (err) { 7069 free_extent_map(em); 7070 return ERR_PTR(err); 7071 } 7072 return em; 7073 } 7074 7075 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7076 const u64 start, 7077 const u64 len, 7078 const u64 orig_start, 7079 const u64 block_start, 7080 const u64 block_len, 7081 const u64 orig_block_len, 7082 const u64 ram_bytes, 7083 const int type) 7084 { 7085 struct extent_map *em = NULL; 7086 int ret; 7087 7088 if (type != BTRFS_ORDERED_NOCOW) { 7089 em = create_io_em(inode, start, len, orig_start, 7090 block_start, block_len, orig_block_len, 7091 ram_bytes, 7092 BTRFS_COMPRESS_NONE, /* compress_type */ 7093 type); 7094 if (IS_ERR(em)) 7095 goto out; 7096 } 7097 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7098 len, block_len, type); 7099 if (ret) { 7100 if (em) { 7101 free_extent_map(em); 7102 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7103 start + len - 1, 0); 7104 } 7105 em = ERR_PTR(ret); 7106 } 7107 out: 7108 7109 return em; 7110 } 7111 7112 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7113 u64 start, u64 len) 7114 { 7115 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7116 struct btrfs_root *root = BTRFS_I(inode)->root; 7117 struct extent_map *em; 7118 struct btrfs_key ins; 7119 u64 alloc_hint; 7120 int ret; 7121 7122 alloc_hint = get_extent_allocation_hint(inode, start, len); 7123 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7124 0, alloc_hint, &ins, 1, 1); 7125 if (ret) 7126 return ERR_PTR(ret); 7127 7128 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7129 ins.objectid, ins.offset, ins.offset, 7130 ins.offset, BTRFS_ORDERED_REGULAR); 7131 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7132 if (IS_ERR(em)) 7133 btrfs_free_reserved_extent(fs_info, ins.objectid, 7134 ins.offset, 1); 7135 7136 return em; 7137 } 7138 7139 /* 7140 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7141 * block must be cow'd 7142 */ 7143 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7144 u64 *orig_start, u64 *orig_block_len, 7145 u64 *ram_bytes) 7146 { 7147 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7148 struct btrfs_path *path; 7149 int ret; 7150 struct extent_buffer *leaf; 7151 struct btrfs_root *root = BTRFS_I(inode)->root; 7152 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7153 struct btrfs_file_extent_item *fi; 7154 struct btrfs_key key; 7155 u64 disk_bytenr; 7156 u64 backref_offset; 7157 u64 extent_end; 7158 u64 num_bytes; 7159 int slot; 7160 int found_type; 7161 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7162 7163 path = btrfs_alloc_path(); 7164 if (!path) 7165 return -ENOMEM; 7166 7167 ret = btrfs_lookup_file_extent(NULL, root, path, 7168 btrfs_ino(BTRFS_I(inode)), offset, 0); 7169 if (ret < 0) 7170 goto out; 7171 7172 slot = path->slots[0]; 7173 if (ret == 1) { 7174 if (slot == 0) { 7175 /* can't find the item, must cow */ 7176 ret = 0; 7177 goto out; 7178 } 7179 slot--; 7180 } 7181 ret = 0; 7182 leaf = path->nodes[0]; 7183 btrfs_item_key_to_cpu(leaf, &key, slot); 7184 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7185 key.type != BTRFS_EXTENT_DATA_KEY) { 7186 /* not our file or wrong item type, must cow */ 7187 goto out; 7188 } 7189 7190 if (key.offset > offset) { 7191 /* Wrong offset, must cow */ 7192 goto out; 7193 } 7194 7195 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7196 found_type = btrfs_file_extent_type(leaf, fi); 7197 if (found_type != BTRFS_FILE_EXTENT_REG && 7198 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7199 /* not a regular extent, must cow */ 7200 goto out; 7201 } 7202 7203 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7204 goto out; 7205 7206 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7207 if (extent_end <= offset) 7208 goto out; 7209 7210 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7211 if (disk_bytenr == 0) 7212 goto out; 7213 7214 if (btrfs_file_extent_compression(leaf, fi) || 7215 btrfs_file_extent_encryption(leaf, fi) || 7216 btrfs_file_extent_other_encoding(leaf, fi)) 7217 goto out; 7218 7219 /* 7220 * Do the same check as in btrfs_cross_ref_exist but without the 7221 * unnecessary search. 7222 */ 7223 if (btrfs_file_extent_generation(leaf, fi) <= 7224 btrfs_root_last_snapshot(&root->root_item)) 7225 goto out; 7226 7227 backref_offset = btrfs_file_extent_offset(leaf, fi); 7228 7229 if (orig_start) { 7230 *orig_start = key.offset - backref_offset; 7231 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7232 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7233 } 7234 7235 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7236 goto out; 7237 7238 num_bytes = min(offset + *len, extent_end) - offset; 7239 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7240 u64 range_end; 7241 7242 range_end = round_up(offset + num_bytes, 7243 root->fs_info->sectorsize) - 1; 7244 ret = test_range_bit(io_tree, offset, range_end, 7245 EXTENT_DELALLOC, 0, NULL); 7246 if (ret) { 7247 ret = -EAGAIN; 7248 goto out; 7249 } 7250 } 7251 7252 btrfs_release_path(path); 7253 7254 /* 7255 * look for other files referencing this extent, if we 7256 * find any we must cow 7257 */ 7258 7259 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7260 key.offset - backref_offset, disk_bytenr); 7261 if (ret) { 7262 ret = 0; 7263 goto out; 7264 } 7265 7266 /* 7267 * adjust disk_bytenr and num_bytes to cover just the bytes 7268 * in this extent we are about to write. If there 7269 * are any csums in that range we have to cow in order 7270 * to keep the csums correct 7271 */ 7272 disk_bytenr += backref_offset; 7273 disk_bytenr += offset - key.offset; 7274 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7275 goto out; 7276 /* 7277 * all of the above have passed, it is safe to overwrite this extent 7278 * without cow 7279 */ 7280 *len = num_bytes; 7281 ret = 1; 7282 out: 7283 btrfs_free_path(path); 7284 return ret; 7285 } 7286 7287 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7288 struct extent_state **cached_state, int writing) 7289 { 7290 struct btrfs_ordered_extent *ordered; 7291 int ret = 0; 7292 7293 while (1) { 7294 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7295 cached_state); 7296 /* 7297 * We're concerned with the entire range that we're going to be 7298 * doing DIO to, so we need to make sure there's no ordered 7299 * extents in this range. 7300 */ 7301 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7302 lockend - lockstart + 1); 7303 7304 /* 7305 * We need to make sure there are no buffered pages in this 7306 * range either, we could have raced between the invalidate in 7307 * generic_file_direct_write and locking the extent. The 7308 * invalidate needs to happen so that reads after a write do not 7309 * get stale data. 7310 */ 7311 if (!ordered && 7312 (!writing || !filemap_range_has_page(inode->i_mapping, 7313 lockstart, lockend))) 7314 break; 7315 7316 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7317 cached_state); 7318 7319 if (ordered) { 7320 /* 7321 * If we are doing a DIO read and the ordered extent we 7322 * found is for a buffered write, we can not wait for it 7323 * to complete and retry, because if we do so we can 7324 * deadlock with concurrent buffered writes on page 7325 * locks. This happens only if our DIO read covers more 7326 * than one extent map, if at this point has already 7327 * created an ordered extent for a previous extent map 7328 * and locked its range in the inode's io tree, and a 7329 * concurrent write against that previous extent map's 7330 * range and this range started (we unlock the ranges 7331 * in the io tree only when the bios complete and 7332 * buffered writes always lock pages before attempting 7333 * to lock range in the io tree). 7334 */ 7335 if (writing || 7336 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7337 btrfs_start_ordered_extent(inode, ordered, 1); 7338 else 7339 ret = -ENOTBLK; 7340 btrfs_put_ordered_extent(ordered); 7341 } else { 7342 /* 7343 * We could trigger writeback for this range (and wait 7344 * for it to complete) and then invalidate the pages for 7345 * this range (through invalidate_inode_pages2_range()), 7346 * but that can lead us to a deadlock with a concurrent 7347 * call to readpages() (a buffered read or a defrag call 7348 * triggered a readahead) on a page lock due to an 7349 * ordered dio extent we created before but did not have 7350 * yet a corresponding bio submitted (whence it can not 7351 * complete), which makes readpages() wait for that 7352 * ordered extent to complete while holding a lock on 7353 * that page. 7354 */ 7355 ret = -ENOTBLK; 7356 } 7357 7358 if (ret) 7359 break; 7360 7361 cond_resched(); 7362 } 7363 7364 return ret; 7365 } 7366 7367 /* The callers of this must take lock_extent() */ 7368 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7369 u64 orig_start, u64 block_start, 7370 u64 block_len, u64 orig_block_len, 7371 u64 ram_bytes, int compress_type, 7372 int type) 7373 { 7374 struct extent_map_tree *em_tree; 7375 struct extent_map *em; 7376 struct btrfs_root *root = BTRFS_I(inode)->root; 7377 int ret; 7378 7379 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7380 type == BTRFS_ORDERED_COMPRESSED || 7381 type == BTRFS_ORDERED_NOCOW || 7382 type == BTRFS_ORDERED_REGULAR); 7383 7384 em_tree = &BTRFS_I(inode)->extent_tree; 7385 em = alloc_extent_map(); 7386 if (!em) 7387 return ERR_PTR(-ENOMEM); 7388 7389 em->start = start; 7390 em->orig_start = orig_start; 7391 em->len = len; 7392 em->block_len = block_len; 7393 em->block_start = block_start; 7394 em->bdev = root->fs_info->fs_devices->latest_bdev; 7395 em->orig_block_len = orig_block_len; 7396 em->ram_bytes = ram_bytes; 7397 em->generation = -1; 7398 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7399 if (type == BTRFS_ORDERED_PREALLOC) { 7400 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7401 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7402 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7403 em->compress_type = compress_type; 7404 } 7405 7406 do { 7407 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7408 em->start + em->len - 1, 0); 7409 write_lock(&em_tree->lock); 7410 ret = add_extent_mapping(em_tree, em, 1); 7411 write_unlock(&em_tree->lock); 7412 /* 7413 * The caller has taken lock_extent(), who could race with us 7414 * to add em? 7415 */ 7416 } while (ret == -EEXIST); 7417 7418 if (ret) { 7419 free_extent_map(em); 7420 return ERR_PTR(ret); 7421 } 7422 7423 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7424 return em; 7425 } 7426 7427 7428 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7429 struct buffer_head *bh_result, 7430 struct inode *inode, 7431 u64 start, u64 len) 7432 { 7433 if (em->block_start == EXTENT_MAP_HOLE || 7434 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7435 return -ENOENT; 7436 7437 len = min(len, em->len - (start - em->start)); 7438 7439 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7440 inode->i_blkbits; 7441 bh_result->b_size = len; 7442 bh_result->b_bdev = em->bdev; 7443 set_buffer_mapped(bh_result); 7444 7445 return 0; 7446 } 7447 7448 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7449 struct buffer_head *bh_result, 7450 struct inode *inode, 7451 struct btrfs_dio_data *dio_data, 7452 u64 start, u64 len) 7453 { 7454 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7455 struct extent_map *em = *map; 7456 int ret = 0; 7457 7458 /* 7459 * We don't allocate a new extent in the following cases 7460 * 7461 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7462 * existing extent. 7463 * 2) The extent is marked as PREALLOC. We're good to go here and can 7464 * just use the extent. 7465 * 7466 */ 7467 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7468 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7469 em->block_start != EXTENT_MAP_HOLE)) { 7470 int type; 7471 u64 block_start, orig_start, orig_block_len, ram_bytes; 7472 7473 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7474 type = BTRFS_ORDERED_PREALLOC; 7475 else 7476 type = BTRFS_ORDERED_NOCOW; 7477 len = min(len, em->len - (start - em->start)); 7478 block_start = em->block_start + (start - em->start); 7479 7480 if (can_nocow_extent(inode, start, &len, &orig_start, 7481 &orig_block_len, &ram_bytes) == 1 && 7482 btrfs_inc_nocow_writers(fs_info, block_start)) { 7483 struct extent_map *em2; 7484 7485 em2 = btrfs_create_dio_extent(inode, start, len, 7486 orig_start, block_start, 7487 len, orig_block_len, 7488 ram_bytes, type); 7489 btrfs_dec_nocow_writers(fs_info, block_start); 7490 if (type == BTRFS_ORDERED_PREALLOC) { 7491 free_extent_map(em); 7492 *map = em = em2; 7493 } 7494 7495 if (em2 && IS_ERR(em2)) { 7496 ret = PTR_ERR(em2); 7497 goto out; 7498 } 7499 /* 7500 * For inode marked NODATACOW or extent marked PREALLOC, 7501 * use the existing or preallocated extent, so does not 7502 * need to adjust btrfs_space_info's bytes_may_use. 7503 */ 7504 btrfs_free_reserved_data_space_noquota(inode, start, 7505 len); 7506 goto skip_cow; 7507 } 7508 } 7509 7510 /* this will cow the extent */ 7511 len = bh_result->b_size; 7512 free_extent_map(em); 7513 *map = em = btrfs_new_extent_direct(inode, start, len); 7514 if (IS_ERR(em)) { 7515 ret = PTR_ERR(em); 7516 goto out; 7517 } 7518 7519 len = min(len, em->len - (start - em->start)); 7520 7521 skip_cow: 7522 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7523 inode->i_blkbits; 7524 bh_result->b_size = len; 7525 bh_result->b_bdev = em->bdev; 7526 set_buffer_mapped(bh_result); 7527 7528 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7529 set_buffer_new(bh_result); 7530 7531 /* 7532 * Need to update the i_size under the extent lock so buffered 7533 * readers will get the updated i_size when we unlock. 7534 */ 7535 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7536 i_size_write(inode, start + len); 7537 7538 WARN_ON(dio_data->reserve < len); 7539 dio_data->reserve -= len; 7540 dio_data->unsubmitted_oe_range_end = start + len; 7541 current->journal_info = dio_data; 7542 out: 7543 return ret; 7544 } 7545 7546 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7547 struct buffer_head *bh_result, int create) 7548 { 7549 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7550 struct extent_map *em; 7551 struct extent_state *cached_state = NULL; 7552 struct btrfs_dio_data *dio_data = NULL; 7553 u64 start = iblock << inode->i_blkbits; 7554 u64 lockstart, lockend; 7555 u64 len = bh_result->b_size; 7556 int unlock_bits = EXTENT_LOCKED; 7557 int ret = 0; 7558 7559 if (create) 7560 unlock_bits |= EXTENT_DIRTY; 7561 else 7562 len = min_t(u64, len, fs_info->sectorsize); 7563 7564 lockstart = start; 7565 lockend = start + len - 1; 7566 7567 if (current->journal_info) { 7568 /* 7569 * Need to pull our outstanding extents and set journal_info to NULL so 7570 * that anything that needs to check if there's a transaction doesn't get 7571 * confused. 7572 */ 7573 dio_data = current->journal_info; 7574 current->journal_info = NULL; 7575 } 7576 7577 /* 7578 * If this errors out it's because we couldn't invalidate pagecache for 7579 * this range and we need to fallback to buffered. 7580 */ 7581 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7582 create)) { 7583 ret = -ENOTBLK; 7584 goto err; 7585 } 7586 7587 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7588 if (IS_ERR(em)) { 7589 ret = PTR_ERR(em); 7590 goto unlock_err; 7591 } 7592 7593 /* 7594 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7595 * io. INLINE is special, and we could probably kludge it in here, but 7596 * it's still buffered so for safety lets just fall back to the generic 7597 * buffered path. 7598 * 7599 * For COMPRESSED we _have_ to read the entire extent in so we can 7600 * decompress it, so there will be buffering required no matter what we 7601 * do, so go ahead and fallback to buffered. 7602 * 7603 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7604 * to buffered IO. Don't blame me, this is the price we pay for using 7605 * the generic code. 7606 */ 7607 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7608 em->block_start == EXTENT_MAP_INLINE) { 7609 free_extent_map(em); 7610 ret = -ENOTBLK; 7611 goto unlock_err; 7612 } 7613 7614 if (create) { 7615 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7616 dio_data, start, len); 7617 if (ret < 0) 7618 goto unlock_err; 7619 7620 /* clear and unlock the entire range */ 7621 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7622 unlock_bits, 1, 0, &cached_state); 7623 } else { 7624 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7625 start, len); 7626 /* Can be negative only if we read from a hole */ 7627 if (ret < 0) { 7628 ret = 0; 7629 free_extent_map(em); 7630 goto unlock_err; 7631 } 7632 /* 7633 * We need to unlock only the end area that we aren't using. 7634 * The rest is going to be unlocked by the endio routine. 7635 */ 7636 lockstart = start + bh_result->b_size; 7637 if (lockstart < lockend) { 7638 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7639 lockend, unlock_bits, 1, 0, 7640 &cached_state); 7641 } else { 7642 free_extent_state(cached_state); 7643 } 7644 } 7645 7646 free_extent_map(em); 7647 7648 return 0; 7649 7650 unlock_err: 7651 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7652 unlock_bits, 1, 0, &cached_state); 7653 err: 7654 if (dio_data) 7655 current->journal_info = dio_data; 7656 return ret; 7657 } 7658 7659 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7660 struct bio *bio, 7661 int mirror_num) 7662 { 7663 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7664 blk_status_t ret; 7665 7666 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7667 7668 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7669 if (ret) 7670 return ret; 7671 7672 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7673 7674 return ret; 7675 } 7676 7677 static int btrfs_check_dio_repairable(struct inode *inode, 7678 struct bio *failed_bio, 7679 struct io_failure_record *failrec, 7680 int failed_mirror) 7681 { 7682 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7683 int num_copies; 7684 7685 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7686 if (num_copies == 1) { 7687 /* 7688 * we only have a single copy of the data, so don't bother with 7689 * all the retry and error correction code that follows. no 7690 * matter what the error is, it is very likely to persist. 7691 */ 7692 btrfs_debug(fs_info, 7693 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7694 num_copies, failrec->this_mirror, failed_mirror); 7695 return 0; 7696 } 7697 7698 failrec->failed_mirror = failed_mirror; 7699 failrec->this_mirror++; 7700 if (failrec->this_mirror == failed_mirror) 7701 failrec->this_mirror++; 7702 7703 if (failrec->this_mirror > num_copies) { 7704 btrfs_debug(fs_info, 7705 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7706 num_copies, failrec->this_mirror, failed_mirror); 7707 return 0; 7708 } 7709 7710 return 1; 7711 } 7712 7713 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7714 struct page *page, unsigned int pgoff, 7715 u64 start, u64 end, int failed_mirror, 7716 bio_end_io_t *repair_endio, void *repair_arg) 7717 { 7718 struct io_failure_record *failrec; 7719 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7720 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7721 struct bio *bio; 7722 int isector; 7723 unsigned int read_mode = 0; 7724 int segs; 7725 int ret; 7726 blk_status_t status; 7727 struct bio_vec bvec; 7728 7729 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7730 7731 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7732 if (ret) 7733 return errno_to_blk_status(ret); 7734 7735 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7736 failed_mirror); 7737 if (!ret) { 7738 free_io_failure(failure_tree, io_tree, failrec); 7739 return BLK_STS_IOERR; 7740 } 7741 7742 segs = bio_segments(failed_bio); 7743 bio_get_first_bvec(failed_bio, &bvec); 7744 if (segs > 1 || 7745 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7746 read_mode |= REQ_FAILFAST_DEV; 7747 7748 isector = start - btrfs_io_bio(failed_bio)->logical; 7749 isector >>= inode->i_sb->s_blocksize_bits; 7750 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7751 pgoff, isector, repair_endio, repair_arg); 7752 bio->bi_opf = REQ_OP_READ | read_mode; 7753 7754 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7755 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7756 read_mode, failrec->this_mirror, failrec->in_validation); 7757 7758 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7759 if (status) { 7760 free_io_failure(failure_tree, io_tree, failrec); 7761 bio_put(bio); 7762 } 7763 7764 return status; 7765 } 7766 7767 struct btrfs_retry_complete { 7768 struct completion done; 7769 struct inode *inode; 7770 u64 start; 7771 int uptodate; 7772 }; 7773 7774 static void btrfs_retry_endio_nocsum(struct bio *bio) 7775 { 7776 struct btrfs_retry_complete *done = bio->bi_private; 7777 struct inode *inode = done->inode; 7778 struct bio_vec *bvec; 7779 struct extent_io_tree *io_tree, *failure_tree; 7780 int i; 7781 7782 if (bio->bi_status) 7783 goto end; 7784 7785 ASSERT(bio->bi_vcnt == 1); 7786 io_tree = &BTRFS_I(inode)->io_tree; 7787 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7788 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7789 7790 done->uptodate = 1; 7791 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7792 bio_for_each_segment_all(bvec, bio, i) 7793 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7794 io_tree, done->start, bvec->bv_page, 7795 btrfs_ino(BTRFS_I(inode)), 0); 7796 end: 7797 complete(&done->done); 7798 bio_put(bio); 7799 } 7800 7801 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7802 struct btrfs_io_bio *io_bio) 7803 { 7804 struct btrfs_fs_info *fs_info; 7805 struct bio_vec bvec; 7806 struct bvec_iter iter; 7807 struct btrfs_retry_complete done; 7808 u64 start; 7809 unsigned int pgoff; 7810 u32 sectorsize; 7811 int nr_sectors; 7812 blk_status_t ret; 7813 blk_status_t err = BLK_STS_OK; 7814 7815 fs_info = BTRFS_I(inode)->root->fs_info; 7816 sectorsize = fs_info->sectorsize; 7817 7818 start = io_bio->logical; 7819 done.inode = inode; 7820 io_bio->bio.bi_iter = io_bio->iter; 7821 7822 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7823 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7824 pgoff = bvec.bv_offset; 7825 7826 next_block_or_try_again: 7827 done.uptodate = 0; 7828 done.start = start; 7829 init_completion(&done.done); 7830 7831 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7832 pgoff, start, start + sectorsize - 1, 7833 io_bio->mirror_num, 7834 btrfs_retry_endio_nocsum, &done); 7835 if (ret) { 7836 err = ret; 7837 goto next; 7838 } 7839 7840 wait_for_completion_io(&done.done); 7841 7842 if (!done.uptodate) { 7843 /* We might have another mirror, so try again */ 7844 goto next_block_or_try_again; 7845 } 7846 7847 next: 7848 start += sectorsize; 7849 7850 nr_sectors--; 7851 if (nr_sectors) { 7852 pgoff += sectorsize; 7853 ASSERT(pgoff < PAGE_SIZE); 7854 goto next_block_or_try_again; 7855 } 7856 } 7857 7858 return err; 7859 } 7860 7861 static void btrfs_retry_endio(struct bio *bio) 7862 { 7863 struct btrfs_retry_complete *done = bio->bi_private; 7864 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7865 struct extent_io_tree *io_tree, *failure_tree; 7866 struct inode *inode = done->inode; 7867 struct bio_vec *bvec; 7868 int uptodate; 7869 int ret; 7870 int i; 7871 7872 if (bio->bi_status) 7873 goto end; 7874 7875 uptodate = 1; 7876 7877 ASSERT(bio->bi_vcnt == 1); 7878 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 7879 7880 io_tree = &BTRFS_I(inode)->io_tree; 7881 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7882 7883 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7884 bio_for_each_segment_all(bvec, bio, i) { 7885 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7886 bvec->bv_offset, done->start, 7887 bvec->bv_len); 7888 if (!ret) 7889 clean_io_failure(BTRFS_I(inode)->root->fs_info, 7890 failure_tree, io_tree, done->start, 7891 bvec->bv_page, 7892 btrfs_ino(BTRFS_I(inode)), 7893 bvec->bv_offset); 7894 else 7895 uptodate = 0; 7896 } 7897 7898 done->uptodate = uptodate; 7899 end: 7900 complete(&done->done); 7901 bio_put(bio); 7902 } 7903 7904 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 7905 struct btrfs_io_bio *io_bio, blk_status_t err) 7906 { 7907 struct btrfs_fs_info *fs_info; 7908 struct bio_vec bvec; 7909 struct bvec_iter iter; 7910 struct btrfs_retry_complete done; 7911 u64 start; 7912 u64 offset = 0; 7913 u32 sectorsize; 7914 int nr_sectors; 7915 unsigned int pgoff; 7916 int csum_pos; 7917 bool uptodate = (err == 0); 7918 int ret; 7919 blk_status_t status; 7920 7921 fs_info = BTRFS_I(inode)->root->fs_info; 7922 sectorsize = fs_info->sectorsize; 7923 7924 err = BLK_STS_OK; 7925 start = io_bio->logical; 7926 done.inode = inode; 7927 io_bio->bio.bi_iter = io_bio->iter; 7928 7929 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7930 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7931 7932 pgoff = bvec.bv_offset; 7933 next_block: 7934 if (uptodate) { 7935 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 7936 ret = __readpage_endio_check(inode, io_bio, csum_pos, 7937 bvec.bv_page, pgoff, start, sectorsize); 7938 if (likely(!ret)) 7939 goto next; 7940 } 7941 try_again: 7942 done.uptodate = 0; 7943 done.start = start; 7944 init_completion(&done.done); 7945 7946 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7947 pgoff, start, start + sectorsize - 1, 7948 io_bio->mirror_num, btrfs_retry_endio, 7949 &done); 7950 if (status) { 7951 err = status; 7952 goto next; 7953 } 7954 7955 wait_for_completion_io(&done.done); 7956 7957 if (!done.uptodate) { 7958 /* We might have another mirror, so try again */ 7959 goto try_again; 7960 } 7961 next: 7962 offset += sectorsize; 7963 start += sectorsize; 7964 7965 ASSERT(nr_sectors); 7966 7967 nr_sectors--; 7968 if (nr_sectors) { 7969 pgoff += sectorsize; 7970 ASSERT(pgoff < PAGE_SIZE); 7971 goto next_block; 7972 } 7973 } 7974 7975 return err; 7976 } 7977 7978 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 7979 struct btrfs_io_bio *io_bio, blk_status_t err) 7980 { 7981 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7982 7983 if (skip_csum) { 7984 if (unlikely(err)) 7985 return __btrfs_correct_data_nocsum(inode, io_bio); 7986 else 7987 return BLK_STS_OK; 7988 } else { 7989 return __btrfs_subio_endio_read(inode, io_bio, err); 7990 } 7991 } 7992 7993 static void btrfs_endio_direct_read(struct bio *bio) 7994 { 7995 struct btrfs_dio_private *dip = bio->bi_private; 7996 struct inode *inode = dip->inode; 7997 struct bio *dio_bio; 7998 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7999 blk_status_t err = bio->bi_status; 8000 8001 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8002 err = btrfs_subio_endio_read(inode, io_bio, err); 8003 8004 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8005 dip->logical_offset + dip->bytes - 1); 8006 dio_bio = dip->dio_bio; 8007 8008 kfree(dip); 8009 8010 dio_bio->bi_status = err; 8011 dio_end_io(dio_bio); 8012 btrfs_io_bio_free_csum(io_bio); 8013 bio_put(bio); 8014 } 8015 8016 static void __endio_write_update_ordered(struct inode *inode, 8017 const u64 offset, const u64 bytes, 8018 const bool uptodate) 8019 { 8020 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8021 struct btrfs_ordered_extent *ordered = NULL; 8022 struct btrfs_workqueue *wq; 8023 btrfs_work_func_t func; 8024 u64 ordered_offset = offset; 8025 u64 ordered_bytes = bytes; 8026 u64 last_offset; 8027 8028 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8029 wq = fs_info->endio_freespace_worker; 8030 func = btrfs_freespace_write_helper; 8031 } else { 8032 wq = fs_info->endio_write_workers; 8033 func = btrfs_endio_write_helper; 8034 } 8035 8036 while (ordered_offset < offset + bytes) { 8037 last_offset = ordered_offset; 8038 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 8039 &ordered_offset, 8040 ordered_bytes, 8041 uptodate)) { 8042 btrfs_init_work(&ordered->work, func, 8043 finish_ordered_fn, 8044 NULL, NULL); 8045 btrfs_queue_work(wq, &ordered->work); 8046 } 8047 /* 8048 * If btrfs_dec_test_ordered_pending does not find any ordered 8049 * extent in the range, we can exit. 8050 */ 8051 if (ordered_offset == last_offset) 8052 return; 8053 /* 8054 * Our bio might span multiple ordered extents. In this case 8055 * we keep going until we have accounted the whole dio. 8056 */ 8057 if (ordered_offset < offset + bytes) { 8058 ordered_bytes = offset + bytes - ordered_offset; 8059 ordered = NULL; 8060 } 8061 } 8062 } 8063 8064 static void btrfs_endio_direct_write(struct bio *bio) 8065 { 8066 struct btrfs_dio_private *dip = bio->bi_private; 8067 struct bio *dio_bio = dip->dio_bio; 8068 8069 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8070 dip->bytes, !bio->bi_status); 8071 8072 kfree(dip); 8073 8074 dio_bio->bi_status = bio->bi_status; 8075 dio_end_io(dio_bio); 8076 bio_put(bio); 8077 } 8078 8079 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8080 struct bio *bio, u64 offset) 8081 { 8082 struct inode *inode = private_data; 8083 blk_status_t ret; 8084 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8085 BUG_ON(ret); /* -ENOMEM */ 8086 return 0; 8087 } 8088 8089 static void btrfs_end_dio_bio(struct bio *bio) 8090 { 8091 struct btrfs_dio_private *dip = bio->bi_private; 8092 blk_status_t err = bio->bi_status; 8093 8094 if (err) 8095 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8096 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8097 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8098 bio->bi_opf, 8099 (unsigned long long)bio->bi_iter.bi_sector, 8100 bio->bi_iter.bi_size, err); 8101 8102 if (dip->subio_endio) 8103 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8104 8105 if (err) { 8106 /* 8107 * We want to perceive the errors flag being set before 8108 * decrementing the reference count. We don't need a barrier 8109 * since atomic operations with a return value are fully 8110 * ordered as per atomic_t.txt 8111 */ 8112 dip->errors = 1; 8113 } 8114 8115 /* if there are more bios still pending for this dio, just exit */ 8116 if (!atomic_dec_and_test(&dip->pending_bios)) 8117 goto out; 8118 8119 if (dip->errors) { 8120 bio_io_error(dip->orig_bio); 8121 } else { 8122 dip->dio_bio->bi_status = BLK_STS_OK; 8123 bio_endio(dip->orig_bio); 8124 } 8125 out: 8126 bio_put(bio); 8127 } 8128 8129 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8130 struct btrfs_dio_private *dip, 8131 struct bio *bio, 8132 u64 file_offset) 8133 { 8134 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8135 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8136 blk_status_t ret; 8137 8138 /* 8139 * We load all the csum data we need when we submit 8140 * the first bio to reduce the csum tree search and 8141 * contention. 8142 */ 8143 if (dip->logical_offset == file_offset) { 8144 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8145 file_offset); 8146 if (ret) 8147 return ret; 8148 } 8149 8150 if (bio == dip->orig_bio) 8151 return 0; 8152 8153 file_offset -= dip->logical_offset; 8154 file_offset >>= inode->i_sb->s_blocksize_bits; 8155 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8156 8157 return 0; 8158 } 8159 8160 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8161 struct inode *inode, u64 file_offset, int async_submit) 8162 { 8163 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8164 struct btrfs_dio_private *dip = bio->bi_private; 8165 bool write = bio_op(bio) == REQ_OP_WRITE; 8166 blk_status_t ret; 8167 8168 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8169 if (async_submit) 8170 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8171 8172 if (!write) { 8173 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8174 if (ret) 8175 goto err; 8176 } 8177 8178 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8179 goto map; 8180 8181 if (write && async_submit) { 8182 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8183 file_offset, inode, 8184 btrfs_submit_bio_start_direct_io); 8185 goto err; 8186 } else if (write) { 8187 /* 8188 * If we aren't doing async submit, calculate the csum of the 8189 * bio now. 8190 */ 8191 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8192 if (ret) 8193 goto err; 8194 } else { 8195 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8196 file_offset); 8197 if (ret) 8198 goto err; 8199 } 8200 map: 8201 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8202 err: 8203 return ret; 8204 } 8205 8206 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8207 { 8208 struct inode *inode = dip->inode; 8209 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8210 struct bio *bio; 8211 struct bio *orig_bio = dip->orig_bio; 8212 u64 start_sector = orig_bio->bi_iter.bi_sector; 8213 u64 file_offset = dip->logical_offset; 8214 u64 map_length; 8215 int async_submit = 0; 8216 u64 submit_len; 8217 int clone_offset = 0; 8218 int clone_len; 8219 int ret; 8220 blk_status_t status; 8221 8222 map_length = orig_bio->bi_iter.bi_size; 8223 submit_len = map_length; 8224 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8225 &map_length, NULL, 0); 8226 if (ret) 8227 return -EIO; 8228 8229 if (map_length >= submit_len) { 8230 bio = orig_bio; 8231 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8232 goto submit; 8233 } 8234 8235 /* async crcs make it difficult to collect full stripe writes. */ 8236 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8237 async_submit = 0; 8238 else 8239 async_submit = 1; 8240 8241 /* bio split */ 8242 ASSERT(map_length <= INT_MAX); 8243 atomic_inc(&dip->pending_bios); 8244 do { 8245 clone_len = min_t(int, submit_len, map_length); 8246 8247 /* 8248 * This will never fail as it's passing GPF_NOFS and 8249 * the allocation is backed by btrfs_bioset. 8250 */ 8251 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8252 clone_len); 8253 bio->bi_private = dip; 8254 bio->bi_end_io = btrfs_end_dio_bio; 8255 btrfs_io_bio(bio)->logical = file_offset; 8256 8257 ASSERT(submit_len >= clone_len); 8258 submit_len -= clone_len; 8259 if (submit_len == 0) 8260 break; 8261 8262 /* 8263 * Increase the count before we submit the bio so we know 8264 * the end IO handler won't happen before we increase the 8265 * count. Otherwise, the dip might get freed before we're 8266 * done setting it up. 8267 */ 8268 atomic_inc(&dip->pending_bios); 8269 8270 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8271 async_submit); 8272 if (status) { 8273 bio_put(bio); 8274 atomic_dec(&dip->pending_bios); 8275 goto out_err; 8276 } 8277 8278 clone_offset += clone_len; 8279 start_sector += clone_len >> 9; 8280 file_offset += clone_len; 8281 8282 map_length = submit_len; 8283 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8284 start_sector << 9, &map_length, NULL, 0); 8285 if (ret) 8286 goto out_err; 8287 } while (submit_len > 0); 8288 8289 submit: 8290 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8291 if (!status) 8292 return 0; 8293 8294 bio_put(bio); 8295 out_err: 8296 dip->errors = 1; 8297 /* 8298 * Before atomic variable goto zero, we must make sure dip->errors is 8299 * perceived to be set. This ordering is ensured by the fact that an 8300 * atomic operations with a return value are fully ordered as per 8301 * atomic_t.txt 8302 */ 8303 if (atomic_dec_and_test(&dip->pending_bios)) 8304 bio_io_error(dip->orig_bio); 8305 8306 /* bio_end_io() will handle error, so we needn't return it */ 8307 return 0; 8308 } 8309 8310 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8311 loff_t file_offset) 8312 { 8313 struct btrfs_dio_private *dip = NULL; 8314 struct bio *bio = NULL; 8315 struct btrfs_io_bio *io_bio; 8316 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8317 int ret = 0; 8318 8319 bio = btrfs_bio_clone(dio_bio); 8320 8321 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8322 if (!dip) { 8323 ret = -ENOMEM; 8324 goto free_ordered; 8325 } 8326 8327 dip->private = dio_bio->bi_private; 8328 dip->inode = inode; 8329 dip->logical_offset = file_offset; 8330 dip->bytes = dio_bio->bi_iter.bi_size; 8331 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8332 bio->bi_private = dip; 8333 dip->orig_bio = bio; 8334 dip->dio_bio = dio_bio; 8335 atomic_set(&dip->pending_bios, 0); 8336 io_bio = btrfs_io_bio(bio); 8337 io_bio->logical = file_offset; 8338 8339 if (write) { 8340 bio->bi_end_io = btrfs_endio_direct_write; 8341 } else { 8342 bio->bi_end_io = btrfs_endio_direct_read; 8343 dip->subio_endio = btrfs_subio_endio_read; 8344 } 8345 8346 /* 8347 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8348 * even if we fail to submit a bio, because in such case we do the 8349 * corresponding error handling below and it must not be done a second 8350 * time by btrfs_direct_IO(). 8351 */ 8352 if (write) { 8353 struct btrfs_dio_data *dio_data = current->journal_info; 8354 8355 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8356 dip->bytes; 8357 dio_data->unsubmitted_oe_range_start = 8358 dio_data->unsubmitted_oe_range_end; 8359 } 8360 8361 ret = btrfs_submit_direct_hook(dip); 8362 if (!ret) 8363 return; 8364 8365 btrfs_io_bio_free_csum(io_bio); 8366 8367 free_ordered: 8368 /* 8369 * If we arrived here it means either we failed to submit the dip 8370 * or we either failed to clone the dio_bio or failed to allocate the 8371 * dip. If we cloned the dio_bio and allocated the dip, we can just 8372 * call bio_endio against our io_bio so that we get proper resource 8373 * cleanup if we fail to submit the dip, otherwise, we must do the 8374 * same as btrfs_endio_direct_[write|read] because we can't call these 8375 * callbacks - they require an allocated dip and a clone of dio_bio. 8376 */ 8377 if (bio && dip) { 8378 bio_io_error(bio); 8379 /* 8380 * The end io callbacks free our dip, do the final put on bio 8381 * and all the cleanup and final put for dio_bio (through 8382 * dio_end_io()). 8383 */ 8384 dip = NULL; 8385 bio = NULL; 8386 } else { 8387 if (write) 8388 __endio_write_update_ordered(inode, 8389 file_offset, 8390 dio_bio->bi_iter.bi_size, 8391 false); 8392 else 8393 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8394 file_offset + dio_bio->bi_iter.bi_size - 1); 8395 8396 dio_bio->bi_status = BLK_STS_IOERR; 8397 /* 8398 * Releases and cleans up our dio_bio, no need to bio_put() 8399 * nor bio_endio()/bio_io_error() against dio_bio. 8400 */ 8401 dio_end_io(dio_bio); 8402 } 8403 if (bio) 8404 bio_put(bio); 8405 kfree(dip); 8406 } 8407 8408 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8409 const struct iov_iter *iter, loff_t offset) 8410 { 8411 int seg; 8412 int i; 8413 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8414 ssize_t retval = -EINVAL; 8415 8416 if (offset & blocksize_mask) 8417 goto out; 8418 8419 if (iov_iter_alignment(iter) & blocksize_mask) 8420 goto out; 8421 8422 /* If this is a write we don't need to check anymore */ 8423 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8424 return 0; 8425 /* 8426 * Check to make sure we don't have duplicate iov_base's in this 8427 * iovec, if so return EINVAL, otherwise we'll get csum errors 8428 * when reading back. 8429 */ 8430 for (seg = 0; seg < iter->nr_segs; seg++) { 8431 for (i = seg + 1; i < iter->nr_segs; i++) { 8432 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8433 goto out; 8434 } 8435 } 8436 retval = 0; 8437 out: 8438 return retval; 8439 } 8440 8441 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8442 { 8443 struct file *file = iocb->ki_filp; 8444 struct inode *inode = file->f_mapping->host; 8445 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8446 struct btrfs_dio_data dio_data = { 0 }; 8447 struct extent_changeset *data_reserved = NULL; 8448 loff_t offset = iocb->ki_pos; 8449 size_t count = 0; 8450 int flags = 0; 8451 bool wakeup = true; 8452 bool relock = false; 8453 ssize_t ret; 8454 8455 if (check_direct_IO(fs_info, iter, offset)) 8456 return 0; 8457 8458 inode_dio_begin(inode); 8459 8460 /* 8461 * The generic stuff only does filemap_write_and_wait_range, which 8462 * isn't enough if we've written compressed pages to this area, so 8463 * we need to flush the dirty pages again to make absolutely sure 8464 * that any outstanding dirty pages are on disk. 8465 */ 8466 count = iov_iter_count(iter); 8467 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8468 &BTRFS_I(inode)->runtime_flags)) 8469 filemap_fdatawrite_range(inode->i_mapping, offset, 8470 offset + count - 1); 8471 8472 if (iov_iter_rw(iter) == WRITE) { 8473 /* 8474 * If the write DIO is beyond the EOF, we need update 8475 * the isize, but it is protected by i_mutex. So we can 8476 * not unlock the i_mutex at this case. 8477 */ 8478 if (offset + count <= inode->i_size) { 8479 dio_data.overwrite = 1; 8480 inode_unlock(inode); 8481 relock = true; 8482 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8483 ret = -EAGAIN; 8484 goto out; 8485 } 8486 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8487 offset, count); 8488 if (ret) 8489 goto out; 8490 8491 /* 8492 * We need to know how many extents we reserved so that we can 8493 * do the accounting properly if we go over the number we 8494 * originally calculated. Abuse current->journal_info for this. 8495 */ 8496 dio_data.reserve = round_up(count, 8497 fs_info->sectorsize); 8498 dio_data.unsubmitted_oe_range_start = (u64)offset; 8499 dio_data.unsubmitted_oe_range_end = (u64)offset; 8500 current->journal_info = &dio_data; 8501 down_read(&BTRFS_I(inode)->dio_sem); 8502 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8503 &BTRFS_I(inode)->runtime_flags)) { 8504 inode_dio_end(inode); 8505 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8506 wakeup = false; 8507 } 8508 8509 ret = __blockdev_direct_IO(iocb, inode, 8510 fs_info->fs_devices->latest_bdev, 8511 iter, btrfs_get_blocks_direct, NULL, 8512 btrfs_submit_direct, flags); 8513 if (iov_iter_rw(iter) == WRITE) { 8514 up_read(&BTRFS_I(inode)->dio_sem); 8515 current->journal_info = NULL; 8516 if (ret < 0 && ret != -EIOCBQUEUED) { 8517 if (dio_data.reserve) 8518 btrfs_delalloc_release_space(inode, data_reserved, 8519 offset, dio_data.reserve, true); 8520 /* 8521 * On error we might have left some ordered extents 8522 * without submitting corresponding bios for them, so 8523 * cleanup them up to avoid other tasks getting them 8524 * and waiting for them to complete forever. 8525 */ 8526 if (dio_data.unsubmitted_oe_range_start < 8527 dio_data.unsubmitted_oe_range_end) 8528 __endio_write_update_ordered(inode, 8529 dio_data.unsubmitted_oe_range_start, 8530 dio_data.unsubmitted_oe_range_end - 8531 dio_data.unsubmitted_oe_range_start, 8532 false); 8533 } else if (ret >= 0 && (size_t)ret < count) 8534 btrfs_delalloc_release_space(inode, data_reserved, 8535 offset, count - (size_t)ret, true); 8536 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false); 8537 } 8538 out: 8539 if (wakeup) 8540 inode_dio_end(inode); 8541 if (relock) 8542 inode_lock(inode); 8543 8544 extent_changeset_free(data_reserved); 8545 return ret; 8546 } 8547 8548 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8549 8550 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8551 __u64 start, __u64 len) 8552 { 8553 int ret; 8554 8555 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8556 if (ret) 8557 return ret; 8558 8559 return extent_fiemap(inode, fieinfo, start, len); 8560 } 8561 8562 int btrfs_readpage(struct file *file, struct page *page) 8563 { 8564 struct extent_io_tree *tree; 8565 tree = &BTRFS_I(page->mapping->host)->io_tree; 8566 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8567 } 8568 8569 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8570 { 8571 struct inode *inode = page->mapping->host; 8572 int ret; 8573 8574 if (current->flags & PF_MEMALLOC) { 8575 redirty_page_for_writepage(wbc, page); 8576 unlock_page(page); 8577 return 0; 8578 } 8579 8580 /* 8581 * If we are under memory pressure we will call this directly from the 8582 * VM, we need to make sure we have the inode referenced for the ordered 8583 * extent. If not just return like we didn't do anything. 8584 */ 8585 if (!igrab(inode)) { 8586 redirty_page_for_writepage(wbc, page); 8587 return AOP_WRITEPAGE_ACTIVATE; 8588 } 8589 ret = extent_write_full_page(page, wbc); 8590 btrfs_add_delayed_iput(inode); 8591 return ret; 8592 } 8593 8594 static int btrfs_writepages(struct address_space *mapping, 8595 struct writeback_control *wbc) 8596 { 8597 return extent_writepages(mapping, wbc); 8598 } 8599 8600 static int 8601 btrfs_readpages(struct file *file, struct address_space *mapping, 8602 struct list_head *pages, unsigned nr_pages) 8603 { 8604 return extent_readpages(mapping, pages, nr_pages); 8605 } 8606 8607 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8608 { 8609 int ret = try_release_extent_mapping(page, gfp_flags); 8610 if (ret == 1) { 8611 ClearPagePrivate(page); 8612 set_page_private(page, 0); 8613 put_page(page); 8614 } 8615 return ret; 8616 } 8617 8618 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8619 { 8620 if (PageWriteback(page) || PageDirty(page)) 8621 return 0; 8622 return __btrfs_releasepage(page, gfp_flags); 8623 } 8624 8625 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8626 unsigned int length) 8627 { 8628 struct inode *inode = page->mapping->host; 8629 struct extent_io_tree *tree; 8630 struct btrfs_ordered_extent *ordered; 8631 struct extent_state *cached_state = NULL; 8632 u64 page_start = page_offset(page); 8633 u64 page_end = page_start + PAGE_SIZE - 1; 8634 u64 start; 8635 u64 end; 8636 int inode_evicting = inode->i_state & I_FREEING; 8637 8638 /* 8639 * we have the page locked, so new writeback can't start, 8640 * and the dirty bit won't be cleared while we are here. 8641 * 8642 * Wait for IO on this page so that we can safely clear 8643 * the PagePrivate2 bit and do ordered accounting 8644 */ 8645 wait_on_page_writeback(page); 8646 8647 tree = &BTRFS_I(inode)->io_tree; 8648 if (offset) { 8649 btrfs_releasepage(page, GFP_NOFS); 8650 return; 8651 } 8652 8653 if (!inode_evicting) 8654 lock_extent_bits(tree, page_start, page_end, &cached_state); 8655 again: 8656 start = page_start; 8657 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8658 page_end - start + 1); 8659 if (ordered) { 8660 end = min(page_end, ordered->file_offset + ordered->len - 1); 8661 /* 8662 * IO on this page will never be started, so we need 8663 * to account for any ordered extents now 8664 */ 8665 if (!inode_evicting) 8666 clear_extent_bit(tree, start, end, 8667 EXTENT_DIRTY | EXTENT_DELALLOC | 8668 EXTENT_DELALLOC_NEW | 8669 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8670 EXTENT_DEFRAG, 1, 0, &cached_state); 8671 /* 8672 * whoever cleared the private bit is responsible 8673 * for the finish_ordered_io 8674 */ 8675 if (TestClearPagePrivate2(page)) { 8676 struct btrfs_ordered_inode_tree *tree; 8677 u64 new_len; 8678 8679 tree = &BTRFS_I(inode)->ordered_tree; 8680 8681 spin_lock_irq(&tree->lock); 8682 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8683 new_len = start - ordered->file_offset; 8684 if (new_len < ordered->truncated_len) 8685 ordered->truncated_len = new_len; 8686 spin_unlock_irq(&tree->lock); 8687 8688 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8689 start, 8690 end - start + 1, 1)) 8691 btrfs_finish_ordered_io(ordered); 8692 } 8693 btrfs_put_ordered_extent(ordered); 8694 if (!inode_evicting) { 8695 cached_state = NULL; 8696 lock_extent_bits(tree, start, end, 8697 &cached_state); 8698 } 8699 8700 start = end + 1; 8701 if (start < page_end) 8702 goto again; 8703 } 8704 8705 /* 8706 * Qgroup reserved space handler 8707 * Page here will be either 8708 * 1) Already written to disk 8709 * In this case, its reserved space is released from data rsv map 8710 * and will be freed by delayed_ref handler finally. 8711 * So even we call qgroup_free_data(), it won't decrease reserved 8712 * space. 8713 * 2) Not written to disk 8714 * This means the reserved space should be freed here. However, 8715 * if a truncate invalidates the page (by clearing PageDirty) 8716 * and the page is accounted for while allocating extent 8717 * in btrfs_check_data_free_space() we let delayed_ref to 8718 * free the entire extent. 8719 */ 8720 if (PageDirty(page)) 8721 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8722 if (!inode_evicting) { 8723 clear_extent_bit(tree, page_start, page_end, 8724 EXTENT_LOCKED | EXTENT_DIRTY | 8725 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8726 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8727 &cached_state); 8728 8729 __btrfs_releasepage(page, GFP_NOFS); 8730 } 8731 8732 ClearPageChecked(page); 8733 if (PagePrivate(page)) { 8734 ClearPagePrivate(page); 8735 set_page_private(page, 0); 8736 put_page(page); 8737 } 8738 } 8739 8740 /* 8741 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8742 * called from a page fault handler when a page is first dirtied. Hence we must 8743 * be careful to check for EOF conditions here. We set the page up correctly 8744 * for a written page which means we get ENOSPC checking when writing into 8745 * holes and correct delalloc and unwritten extent mapping on filesystems that 8746 * support these features. 8747 * 8748 * We are not allowed to take the i_mutex here so we have to play games to 8749 * protect against truncate races as the page could now be beyond EOF. Because 8750 * truncate_setsize() writes the inode size before removing pages, once we have 8751 * the page lock we can determine safely if the page is beyond EOF. If it is not 8752 * beyond EOF, then the page is guaranteed safe against truncation until we 8753 * unlock the page. 8754 */ 8755 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8756 { 8757 struct page *page = vmf->page; 8758 struct inode *inode = file_inode(vmf->vma->vm_file); 8759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8760 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8761 struct btrfs_ordered_extent *ordered; 8762 struct extent_state *cached_state = NULL; 8763 struct extent_changeset *data_reserved = NULL; 8764 char *kaddr; 8765 unsigned long zero_start; 8766 loff_t size; 8767 vm_fault_t ret; 8768 int ret2; 8769 int reserved = 0; 8770 u64 reserved_space; 8771 u64 page_start; 8772 u64 page_end; 8773 u64 end; 8774 8775 reserved_space = PAGE_SIZE; 8776 8777 sb_start_pagefault(inode->i_sb); 8778 page_start = page_offset(page); 8779 page_end = page_start + PAGE_SIZE - 1; 8780 end = page_end; 8781 8782 /* 8783 * Reserving delalloc space after obtaining the page lock can lead to 8784 * deadlock. For example, if a dirty page is locked by this function 8785 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8786 * dirty page write out, then the btrfs_writepage() function could 8787 * end up waiting indefinitely to get a lock on the page currently 8788 * being processed by btrfs_page_mkwrite() function. 8789 */ 8790 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8791 reserved_space); 8792 if (!ret2) { 8793 ret2 = file_update_time(vmf->vma->vm_file); 8794 reserved = 1; 8795 } 8796 if (ret2) { 8797 ret = vmf_error(ret2); 8798 if (reserved) 8799 goto out; 8800 goto out_noreserve; 8801 } 8802 8803 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8804 again: 8805 lock_page(page); 8806 size = i_size_read(inode); 8807 8808 if ((page->mapping != inode->i_mapping) || 8809 (page_start >= size)) { 8810 /* page got truncated out from underneath us */ 8811 goto out_unlock; 8812 } 8813 wait_on_page_writeback(page); 8814 8815 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8816 set_page_extent_mapped(page); 8817 8818 /* 8819 * we can't set the delalloc bits if there are pending ordered 8820 * extents. Drop our locks and wait for them to finish 8821 */ 8822 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8823 PAGE_SIZE); 8824 if (ordered) { 8825 unlock_extent_cached(io_tree, page_start, page_end, 8826 &cached_state); 8827 unlock_page(page); 8828 btrfs_start_ordered_extent(inode, ordered, 1); 8829 btrfs_put_ordered_extent(ordered); 8830 goto again; 8831 } 8832 8833 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8834 reserved_space = round_up(size - page_start, 8835 fs_info->sectorsize); 8836 if (reserved_space < PAGE_SIZE) { 8837 end = page_start + reserved_space - 1; 8838 btrfs_delalloc_release_space(inode, data_reserved, 8839 page_start, PAGE_SIZE - reserved_space, 8840 true); 8841 } 8842 } 8843 8844 /* 8845 * page_mkwrite gets called when the page is firstly dirtied after it's 8846 * faulted in, but write(2) could also dirty a page and set delalloc 8847 * bits, thus in this case for space account reason, we still need to 8848 * clear any delalloc bits within this page range since we have to 8849 * reserve data&meta space before lock_page() (see above comments). 8850 */ 8851 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8852 EXTENT_DIRTY | EXTENT_DELALLOC | 8853 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8854 0, 0, &cached_state); 8855 8856 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8857 &cached_state, 0); 8858 if (ret2) { 8859 unlock_extent_cached(io_tree, page_start, page_end, 8860 &cached_state); 8861 ret = VM_FAULT_SIGBUS; 8862 goto out_unlock; 8863 } 8864 ret2 = 0; 8865 8866 /* page is wholly or partially inside EOF */ 8867 if (page_start + PAGE_SIZE > size) 8868 zero_start = offset_in_page(size); 8869 else 8870 zero_start = PAGE_SIZE; 8871 8872 if (zero_start != PAGE_SIZE) { 8873 kaddr = kmap(page); 8874 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8875 flush_dcache_page(page); 8876 kunmap(page); 8877 } 8878 ClearPageChecked(page); 8879 set_page_dirty(page); 8880 SetPageUptodate(page); 8881 8882 BTRFS_I(inode)->last_trans = fs_info->generation; 8883 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8884 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8885 8886 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8887 8888 if (!ret2) { 8889 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true); 8890 sb_end_pagefault(inode->i_sb); 8891 extent_changeset_free(data_reserved); 8892 return VM_FAULT_LOCKED; 8893 } 8894 8895 out_unlock: 8896 unlock_page(page); 8897 out: 8898 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0)); 8899 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8900 reserved_space, (ret != 0)); 8901 out_noreserve: 8902 sb_end_pagefault(inode->i_sb); 8903 extent_changeset_free(data_reserved); 8904 return ret; 8905 } 8906 8907 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8908 { 8909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8910 struct btrfs_root *root = BTRFS_I(inode)->root; 8911 struct btrfs_block_rsv *rsv; 8912 int ret; 8913 struct btrfs_trans_handle *trans; 8914 u64 mask = fs_info->sectorsize - 1; 8915 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 8916 8917 if (!skip_writeback) { 8918 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8919 (u64)-1); 8920 if (ret) 8921 return ret; 8922 } 8923 8924 /* 8925 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8926 * things going on here: 8927 * 8928 * 1) We need to reserve space to update our inode. 8929 * 8930 * 2) We need to have something to cache all the space that is going to 8931 * be free'd up by the truncate operation, but also have some slack 8932 * space reserved in case it uses space during the truncate (thank you 8933 * very much snapshotting). 8934 * 8935 * And we need these to be separate. The fact is we can use a lot of 8936 * space doing the truncate, and we have no earthly idea how much space 8937 * we will use, so we need the truncate reservation to be separate so it 8938 * doesn't end up using space reserved for updating the inode. We also 8939 * need to be able to stop the transaction and start a new one, which 8940 * means we need to be able to update the inode several times, and we 8941 * have no idea of knowing how many times that will be, so we can't just 8942 * reserve 1 item for the entirety of the operation, so that has to be 8943 * done separately as well. 8944 * 8945 * So that leaves us with 8946 * 8947 * 1) rsv - for the truncate reservation, which we will steal from the 8948 * transaction reservation. 8949 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8950 * updating the inode. 8951 */ 8952 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8953 if (!rsv) 8954 return -ENOMEM; 8955 rsv->size = min_size; 8956 rsv->failfast = 1; 8957 8958 /* 8959 * 1 for the truncate slack space 8960 * 1 for updating the inode. 8961 */ 8962 trans = btrfs_start_transaction(root, 2); 8963 if (IS_ERR(trans)) { 8964 ret = PTR_ERR(trans); 8965 goto out; 8966 } 8967 8968 /* Migrate the slack space for the truncate to our reserve */ 8969 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8970 min_size, false); 8971 BUG_ON(ret); 8972 8973 /* 8974 * So if we truncate and then write and fsync we normally would just 8975 * write the extents that changed, which is a problem if we need to 8976 * first truncate that entire inode. So set this flag so we write out 8977 * all of the extents in the inode to the sync log so we're completely 8978 * safe. 8979 */ 8980 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8981 trans->block_rsv = rsv; 8982 8983 while (1) { 8984 ret = btrfs_truncate_inode_items(trans, root, inode, 8985 inode->i_size, 8986 BTRFS_EXTENT_DATA_KEY); 8987 trans->block_rsv = &fs_info->trans_block_rsv; 8988 if (ret != -ENOSPC && ret != -EAGAIN) 8989 break; 8990 8991 ret = btrfs_update_inode(trans, root, inode); 8992 if (ret) 8993 break; 8994 8995 btrfs_end_transaction(trans); 8996 btrfs_btree_balance_dirty(fs_info); 8997 8998 trans = btrfs_start_transaction(root, 2); 8999 if (IS_ERR(trans)) { 9000 ret = PTR_ERR(trans); 9001 trans = NULL; 9002 break; 9003 } 9004 9005 btrfs_block_rsv_release(fs_info, rsv, -1); 9006 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9007 rsv, min_size, false); 9008 BUG_ON(ret); /* shouldn't happen */ 9009 trans->block_rsv = rsv; 9010 } 9011 9012 /* 9013 * We can't call btrfs_truncate_block inside a trans handle as we could 9014 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9015 * we've truncated everything except the last little bit, and can do 9016 * btrfs_truncate_block and then update the disk_i_size. 9017 */ 9018 if (ret == NEED_TRUNCATE_BLOCK) { 9019 btrfs_end_transaction(trans); 9020 btrfs_btree_balance_dirty(fs_info); 9021 9022 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9023 if (ret) 9024 goto out; 9025 trans = btrfs_start_transaction(root, 1); 9026 if (IS_ERR(trans)) { 9027 ret = PTR_ERR(trans); 9028 goto out; 9029 } 9030 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9031 } 9032 9033 if (trans) { 9034 int ret2; 9035 9036 trans->block_rsv = &fs_info->trans_block_rsv; 9037 ret2 = btrfs_update_inode(trans, root, inode); 9038 if (ret2 && !ret) 9039 ret = ret2; 9040 9041 ret2 = btrfs_end_transaction(trans); 9042 if (ret2 && !ret) 9043 ret = ret2; 9044 btrfs_btree_balance_dirty(fs_info); 9045 } 9046 out: 9047 btrfs_free_block_rsv(fs_info, rsv); 9048 9049 return ret; 9050 } 9051 9052 /* 9053 * create a new subvolume directory/inode (helper for the ioctl). 9054 */ 9055 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9056 struct btrfs_root *new_root, 9057 struct btrfs_root *parent_root, 9058 u64 new_dirid) 9059 { 9060 struct inode *inode; 9061 int err; 9062 u64 index = 0; 9063 9064 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9065 new_dirid, new_dirid, 9066 S_IFDIR | (~current_umask() & S_IRWXUGO), 9067 &index); 9068 if (IS_ERR(inode)) 9069 return PTR_ERR(inode); 9070 inode->i_op = &btrfs_dir_inode_operations; 9071 inode->i_fop = &btrfs_dir_file_operations; 9072 9073 set_nlink(inode, 1); 9074 btrfs_i_size_write(BTRFS_I(inode), 0); 9075 unlock_new_inode(inode); 9076 9077 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9078 if (err) 9079 btrfs_err(new_root->fs_info, 9080 "error inheriting subvolume %llu properties: %d", 9081 new_root->root_key.objectid, err); 9082 9083 err = btrfs_update_inode(trans, new_root, inode); 9084 9085 iput(inode); 9086 return err; 9087 } 9088 9089 struct inode *btrfs_alloc_inode(struct super_block *sb) 9090 { 9091 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9092 struct btrfs_inode *ei; 9093 struct inode *inode; 9094 9095 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9096 if (!ei) 9097 return NULL; 9098 9099 ei->root = NULL; 9100 ei->generation = 0; 9101 ei->last_trans = 0; 9102 ei->last_sub_trans = 0; 9103 ei->logged_trans = 0; 9104 ei->delalloc_bytes = 0; 9105 ei->new_delalloc_bytes = 0; 9106 ei->defrag_bytes = 0; 9107 ei->disk_i_size = 0; 9108 ei->flags = 0; 9109 ei->csum_bytes = 0; 9110 ei->index_cnt = (u64)-1; 9111 ei->dir_index = 0; 9112 ei->last_unlink_trans = 0; 9113 ei->last_link_trans = 0; 9114 ei->last_log_commit = 0; 9115 9116 spin_lock_init(&ei->lock); 9117 ei->outstanding_extents = 0; 9118 if (sb->s_magic != BTRFS_TEST_MAGIC) 9119 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9120 BTRFS_BLOCK_RSV_DELALLOC); 9121 ei->runtime_flags = 0; 9122 ei->prop_compress = BTRFS_COMPRESS_NONE; 9123 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9124 9125 ei->delayed_node = NULL; 9126 9127 ei->i_otime.tv_sec = 0; 9128 ei->i_otime.tv_nsec = 0; 9129 9130 inode = &ei->vfs_inode; 9131 extent_map_tree_init(&ei->extent_tree); 9132 extent_io_tree_init(&ei->io_tree, inode); 9133 extent_io_tree_init(&ei->io_failure_tree, inode); 9134 ei->io_tree.track_uptodate = 1; 9135 ei->io_failure_tree.track_uptodate = 1; 9136 atomic_set(&ei->sync_writers, 0); 9137 mutex_init(&ei->log_mutex); 9138 mutex_init(&ei->delalloc_mutex); 9139 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9140 INIT_LIST_HEAD(&ei->delalloc_inodes); 9141 INIT_LIST_HEAD(&ei->delayed_iput); 9142 RB_CLEAR_NODE(&ei->rb_node); 9143 init_rwsem(&ei->dio_sem); 9144 9145 return inode; 9146 } 9147 9148 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9149 void btrfs_test_destroy_inode(struct inode *inode) 9150 { 9151 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9152 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9153 } 9154 #endif 9155 9156 static void btrfs_i_callback(struct rcu_head *head) 9157 { 9158 struct inode *inode = container_of(head, struct inode, i_rcu); 9159 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9160 } 9161 9162 void btrfs_destroy_inode(struct inode *inode) 9163 { 9164 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9165 struct btrfs_ordered_extent *ordered; 9166 struct btrfs_root *root = BTRFS_I(inode)->root; 9167 9168 WARN_ON(!hlist_empty(&inode->i_dentry)); 9169 WARN_ON(inode->i_data.nrpages); 9170 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9171 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9172 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9173 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9174 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9175 WARN_ON(BTRFS_I(inode)->csum_bytes); 9176 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9177 9178 /* 9179 * This can happen where we create an inode, but somebody else also 9180 * created the same inode and we need to destroy the one we already 9181 * created. 9182 */ 9183 if (!root) 9184 goto free; 9185 9186 while (1) { 9187 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9188 if (!ordered) 9189 break; 9190 else { 9191 btrfs_err(fs_info, 9192 "found ordered extent %llu %llu on inode cleanup", 9193 ordered->file_offset, ordered->len); 9194 btrfs_remove_ordered_extent(inode, ordered); 9195 btrfs_put_ordered_extent(ordered); 9196 btrfs_put_ordered_extent(ordered); 9197 } 9198 } 9199 btrfs_qgroup_check_reserved_leak(inode); 9200 inode_tree_del(inode); 9201 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9202 free: 9203 call_rcu(&inode->i_rcu, btrfs_i_callback); 9204 } 9205 9206 int btrfs_drop_inode(struct inode *inode) 9207 { 9208 struct btrfs_root *root = BTRFS_I(inode)->root; 9209 9210 if (root == NULL) 9211 return 1; 9212 9213 /* the snap/subvol tree is on deleting */ 9214 if (btrfs_root_refs(&root->root_item) == 0) 9215 return 1; 9216 else 9217 return generic_drop_inode(inode); 9218 } 9219 9220 static void init_once(void *foo) 9221 { 9222 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9223 9224 inode_init_once(&ei->vfs_inode); 9225 } 9226 9227 void __cold btrfs_destroy_cachep(void) 9228 { 9229 /* 9230 * Make sure all delayed rcu free inodes are flushed before we 9231 * destroy cache. 9232 */ 9233 rcu_barrier(); 9234 kmem_cache_destroy(btrfs_inode_cachep); 9235 kmem_cache_destroy(btrfs_trans_handle_cachep); 9236 kmem_cache_destroy(btrfs_path_cachep); 9237 kmem_cache_destroy(btrfs_free_space_cachep); 9238 } 9239 9240 int __init btrfs_init_cachep(void) 9241 { 9242 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9243 sizeof(struct btrfs_inode), 0, 9244 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9245 init_once); 9246 if (!btrfs_inode_cachep) 9247 goto fail; 9248 9249 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9250 sizeof(struct btrfs_trans_handle), 0, 9251 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9252 if (!btrfs_trans_handle_cachep) 9253 goto fail; 9254 9255 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9256 sizeof(struct btrfs_path), 0, 9257 SLAB_MEM_SPREAD, NULL); 9258 if (!btrfs_path_cachep) 9259 goto fail; 9260 9261 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9262 sizeof(struct btrfs_free_space), 0, 9263 SLAB_MEM_SPREAD, NULL); 9264 if (!btrfs_free_space_cachep) 9265 goto fail; 9266 9267 return 0; 9268 fail: 9269 btrfs_destroy_cachep(); 9270 return -ENOMEM; 9271 } 9272 9273 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9274 u32 request_mask, unsigned int flags) 9275 { 9276 u64 delalloc_bytes; 9277 struct inode *inode = d_inode(path->dentry); 9278 u32 blocksize = inode->i_sb->s_blocksize; 9279 u32 bi_flags = BTRFS_I(inode)->flags; 9280 9281 stat->result_mask |= STATX_BTIME; 9282 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9283 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9284 if (bi_flags & BTRFS_INODE_APPEND) 9285 stat->attributes |= STATX_ATTR_APPEND; 9286 if (bi_flags & BTRFS_INODE_COMPRESS) 9287 stat->attributes |= STATX_ATTR_COMPRESSED; 9288 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9289 stat->attributes |= STATX_ATTR_IMMUTABLE; 9290 if (bi_flags & BTRFS_INODE_NODUMP) 9291 stat->attributes |= STATX_ATTR_NODUMP; 9292 9293 stat->attributes_mask |= (STATX_ATTR_APPEND | 9294 STATX_ATTR_COMPRESSED | 9295 STATX_ATTR_IMMUTABLE | 9296 STATX_ATTR_NODUMP); 9297 9298 generic_fillattr(inode, stat); 9299 stat->dev = BTRFS_I(inode)->root->anon_dev; 9300 9301 spin_lock(&BTRFS_I(inode)->lock); 9302 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9303 spin_unlock(&BTRFS_I(inode)->lock); 9304 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9305 ALIGN(delalloc_bytes, blocksize)) >> 9; 9306 return 0; 9307 } 9308 9309 static int btrfs_rename_exchange(struct inode *old_dir, 9310 struct dentry *old_dentry, 9311 struct inode *new_dir, 9312 struct dentry *new_dentry) 9313 { 9314 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9315 struct btrfs_trans_handle *trans; 9316 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9317 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9318 struct inode *new_inode = new_dentry->d_inode; 9319 struct inode *old_inode = old_dentry->d_inode; 9320 struct timespec64 ctime = current_time(old_inode); 9321 struct dentry *parent; 9322 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9323 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9324 u64 old_idx = 0; 9325 u64 new_idx = 0; 9326 u64 root_objectid; 9327 int ret; 9328 bool root_log_pinned = false; 9329 bool dest_log_pinned = false; 9330 struct btrfs_log_ctx ctx_root; 9331 struct btrfs_log_ctx ctx_dest; 9332 bool sync_log_root = false; 9333 bool sync_log_dest = false; 9334 bool commit_transaction = false; 9335 9336 /* we only allow rename subvolume link between subvolumes */ 9337 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9338 return -EXDEV; 9339 9340 btrfs_init_log_ctx(&ctx_root, old_inode); 9341 btrfs_init_log_ctx(&ctx_dest, new_inode); 9342 9343 /* close the race window with snapshot create/destroy ioctl */ 9344 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9345 down_read(&fs_info->subvol_sem); 9346 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9347 down_read(&fs_info->subvol_sem); 9348 9349 /* 9350 * We want to reserve the absolute worst case amount of items. So if 9351 * both inodes are subvols and we need to unlink them then that would 9352 * require 4 item modifications, but if they are both normal inodes it 9353 * would require 5 item modifications, so we'll assume their normal 9354 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9355 * should cover the worst case number of items we'll modify. 9356 */ 9357 trans = btrfs_start_transaction(root, 12); 9358 if (IS_ERR(trans)) { 9359 ret = PTR_ERR(trans); 9360 goto out_notrans; 9361 } 9362 9363 /* 9364 * We need to find a free sequence number both in the source and 9365 * in the destination directory for the exchange. 9366 */ 9367 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9368 if (ret) 9369 goto out_fail; 9370 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9371 if (ret) 9372 goto out_fail; 9373 9374 BTRFS_I(old_inode)->dir_index = 0ULL; 9375 BTRFS_I(new_inode)->dir_index = 0ULL; 9376 9377 /* Reference for the source. */ 9378 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9379 /* force full log commit if subvolume involved. */ 9380 btrfs_set_log_full_commit(fs_info, trans); 9381 } else { 9382 btrfs_pin_log_trans(root); 9383 root_log_pinned = true; 9384 ret = btrfs_insert_inode_ref(trans, dest, 9385 new_dentry->d_name.name, 9386 new_dentry->d_name.len, 9387 old_ino, 9388 btrfs_ino(BTRFS_I(new_dir)), 9389 old_idx); 9390 if (ret) 9391 goto out_fail; 9392 } 9393 9394 /* And now for the dest. */ 9395 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9396 /* force full log commit if subvolume involved. */ 9397 btrfs_set_log_full_commit(fs_info, trans); 9398 } else { 9399 btrfs_pin_log_trans(dest); 9400 dest_log_pinned = true; 9401 ret = btrfs_insert_inode_ref(trans, root, 9402 old_dentry->d_name.name, 9403 old_dentry->d_name.len, 9404 new_ino, 9405 btrfs_ino(BTRFS_I(old_dir)), 9406 new_idx); 9407 if (ret) 9408 goto out_fail; 9409 } 9410 9411 /* Update inode version and ctime/mtime. */ 9412 inode_inc_iversion(old_dir); 9413 inode_inc_iversion(new_dir); 9414 inode_inc_iversion(old_inode); 9415 inode_inc_iversion(new_inode); 9416 old_dir->i_ctime = old_dir->i_mtime = ctime; 9417 new_dir->i_ctime = new_dir->i_mtime = ctime; 9418 old_inode->i_ctime = ctime; 9419 new_inode->i_ctime = ctime; 9420 9421 if (old_dentry->d_parent != new_dentry->d_parent) { 9422 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9423 BTRFS_I(old_inode), 1); 9424 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9425 BTRFS_I(new_inode), 1); 9426 } 9427 9428 /* src is a subvolume */ 9429 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9430 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9431 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9432 old_dentry->d_name.name, 9433 old_dentry->d_name.len); 9434 } else { /* src is an inode */ 9435 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9436 BTRFS_I(old_dentry->d_inode), 9437 old_dentry->d_name.name, 9438 old_dentry->d_name.len); 9439 if (!ret) 9440 ret = btrfs_update_inode(trans, root, old_inode); 9441 } 9442 if (ret) { 9443 btrfs_abort_transaction(trans, ret); 9444 goto out_fail; 9445 } 9446 9447 /* dest is a subvolume */ 9448 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9449 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9450 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9451 new_dentry->d_name.name, 9452 new_dentry->d_name.len); 9453 } else { /* dest is an inode */ 9454 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9455 BTRFS_I(new_dentry->d_inode), 9456 new_dentry->d_name.name, 9457 new_dentry->d_name.len); 9458 if (!ret) 9459 ret = btrfs_update_inode(trans, dest, new_inode); 9460 } 9461 if (ret) { 9462 btrfs_abort_transaction(trans, ret); 9463 goto out_fail; 9464 } 9465 9466 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9467 new_dentry->d_name.name, 9468 new_dentry->d_name.len, 0, old_idx); 9469 if (ret) { 9470 btrfs_abort_transaction(trans, ret); 9471 goto out_fail; 9472 } 9473 9474 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9475 old_dentry->d_name.name, 9476 old_dentry->d_name.len, 0, new_idx); 9477 if (ret) { 9478 btrfs_abort_transaction(trans, ret); 9479 goto out_fail; 9480 } 9481 9482 if (old_inode->i_nlink == 1) 9483 BTRFS_I(old_inode)->dir_index = old_idx; 9484 if (new_inode->i_nlink == 1) 9485 BTRFS_I(new_inode)->dir_index = new_idx; 9486 9487 if (root_log_pinned) { 9488 parent = new_dentry->d_parent; 9489 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9490 BTRFS_I(old_dir), parent, 9491 false, &ctx_root); 9492 if (ret == BTRFS_NEED_LOG_SYNC) 9493 sync_log_root = true; 9494 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9495 commit_transaction = true; 9496 ret = 0; 9497 btrfs_end_log_trans(root); 9498 root_log_pinned = false; 9499 } 9500 if (dest_log_pinned) { 9501 if (!commit_transaction) { 9502 parent = old_dentry->d_parent; 9503 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9504 BTRFS_I(new_dir), parent, 9505 false, &ctx_dest); 9506 if (ret == BTRFS_NEED_LOG_SYNC) 9507 sync_log_dest = true; 9508 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9509 commit_transaction = true; 9510 ret = 0; 9511 } 9512 btrfs_end_log_trans(dest); 9513 dest_log_pinned = false; 9514 } 9515 out_fail: 9516 /* 9517 * If we have pinned a log and an error happened, we unpin tasks 9518 * trying to sync the log and force them to fallback to a transaction 9519 * commit if the log currently contains any of the inodes involved in 9520 * this rename operation (to ensure we do not persist a log with an 9521 * inconsistent state for any of these inodes or leading to any 9522 * inconsistencies when replayed). If the transaction was aborted, the 9523 * abortion reason is propagated to userspace when attempting to commit 9524 * the transaction. If the log does not contain any of these inodes, we 9525 * allow the tasks to sync it. 9526 */ 9527 if (ret && (root_log_pinned || dest_log_pinned)) { 9528 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9529 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9530 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9531 (new_inode && 9532 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9533 btrfs_set_log_full_commit(fs_info, trans); 9534 9535 if (root_log_pinned) { 9536 btrfs_end_log_trans(root); 9537 root_log_pinned = false; 9538 } 9539 if (dest_log_pinned) { 9540 btrfs_end_log_trans(dest); 9541 dest_log_pinned = false; 9542 } 9543 } 9544 if (!ret && sync_log_root && !commit_transaction) { 9545 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9546 &ctx_root); 9547 if (ret) 9548 commit_transaction = true; 9549 } 9550 if (!ret && sync_log_dest && !commit_transaction) { 9551 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9552 &ctx_dest); 9553 if (ret) 9554 commit_transaction = true; 9555 } 9556 if (commit_transaction) { 9557 ret = btrfs_commit_transaction(trans); 9558 } else { 9559 int ret2; 9560 9561 ret2 = btrfs_end_transaction(trans); 9562 ret = ret ? ret : ret2; 9563 } 9564 out_notrans: 9565 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9566 up_read(&fs_info->subvol_sem); 9567 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9568 up_read(&fs_info->subvol_sem); 9569 9570 return ret; 9571 } 9572 9573 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9574 struct btrfs_root *root, 9575 struct inode *dir, 9576 struct dentry *dentry) 9577 { 9578 int ret; 9579 struct inode *inode; 9580 u64 objectid; 9581 u64 index; 9582 9583 ret = btrfs_find_free_ino(root, &objectid); 9584 if (ret) 9585 return ret; 9586 9587 inode = btrfs_new_inode(trans, root, dir, 9588 dentry->d_name.name, 9589 dentry->d_name.len, 9590 btrfs_ino(BTRFS_I(dir)), 9591 objectid, 9592 S_IFCHR | WHITEOUT_MODE, 9593 &index); 9594 9595 if (IS_ERR(inode)) { 9596 ret = PTR_ERR(inode); 9597 return ret; 9598 } 9599 9600 inode->i_op = &btrfs_special_inode_operations; 9601 init_special_inode(inode, inode->i_mode, 9602 WHITEOUT_DEV); 9603 9604 ret = btrfs_init_inode_security(trans, inode, dir, 9605 &dentry->d_name); 9606 if (ret) 9607 goto out; 9608 9609 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9610 BTRFS_I(inode), 0, index); 9611 if (ret) 9612 goto out; 9613 9614 ret = btrfs_update_inode(trans, root, inode); 9615 out: 9616 unlock_new_inode(inode); 9617 if (ret) 9618 inode_dec_link_count(inode); 9619 iput(inode); 9620 9621 return ret; 9622 } 9623 9624 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9625 struct inode *new_dir, struct dentry *new_dentry, 9626 unsigned int flags) 9627 { 9628 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9629 struct btrfs_trans_handle *trans; 9630 unsigned int trans_num_items; 9631 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9632 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9633 struct inode *new_inode = d_inode(new_dentry); 9634 struct inode *old_inode = d_inode(old_dentry); 9635 u64 index = 0; 9636 u64 root_objectid; 9637 int ret; 9638 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9639 bool log_pinned = false; 9640 struct btrfs_log_ctx ctx; 9641 bool sync_log = false; 9642 bool commit_transaction = false; 9643 9644 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9645 return -EPERM; 9646 9647 /* we only allow rename subvolume link between subvolumes */ 9648 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9649 return -EXDEV; 9650 9651 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9652 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9653 return -ENOTEMPTY; 9654 9655 if (S_ISDIR(old_inode->i_mode) && new_inode && 9656 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9657 return -ENOTEMPTY; 9658 9659 9660 /* check for collisions, even if the name isn't there */ 9661 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9662 new_dentry->d_name.name, 9663 new_dentry->d_name.len); 9664 9665 if (ret) { 9666 if (ret == -EEXIST) { 9667 /* we shouldn't get 9668 * eexist without a new_inode */ 9669 if (WARN_ON(!new_inode)) { 9670 return ret; 9671 } 9672 } else { 9673 /* maybe -EOVERFLOW */ 9674 return ret; 9675 } 9676 } 9677 ret = 0; 9678 9679 /* 9680 * we're using rename to replace one file with another. Start IO on it 9681 * now so we don't add too much work to the end of the transaction 9682 */ 9683 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9684 filemap_flush(old_inode->i_mapping); 9685 9686 /* close the racy window with snapshot create/destroy ioctl */ 9687 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9688 down_read(&fs_info->subvol_sem); 9689 /* 9690 * We want to reserve the absolute worst case amount of items. So if 9691 * both inodes are subvols and we need to unlink them then that would 9692 * require 4 item modifications, but if they are both normal inodes it 9693 * would require 5 item modifications, so we'll assume they are normal 9694 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9695 * should cover the worst case number of items we'll modify. 9696 * If our rename has the whiteout flag, we need more 5 units for the 9697 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9698 * when selinux is enabled). 9699 */ 9700 trans_num_items = 11; 9701 if (flags & RENAME_WHITEOUT) 9702 trans_num_items += 5; 9703 trans = btrfs_start_transaction(root, trans_num_items); 9704 if (IS_ERR(trans)) { 9705 ret = PTR_ERR(trans); 9706 goto out_notrans; 9707 } 9708 9709 if (dest != root) 9710 btrfs_record_root_in_trans(trans, dest); 9711 9712 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9713 if (ret) 9714 goto out_fail; 9715 9716 BTRFS_I(old_inode)->dir_index = 0ULL; 9717 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9718 /* force full log commit if subvolume involved. */ 9719 btrfs_set_log_full_commit(fs_info, trans); 9720 } else { 9721 btrfs_pin_log_trans(root); 9722 log_pinned = true; 9723 ret = btrfs_insert_inode_ref(trans, dest, 9724 new_dentry->d_name.name, 9725 new_dentry->d_name.len, 9726 old_ino, 9727 btrfs_ino(BTRFS_I(new_dir)), index); 9728 if (ret) 9729 goto out_fail; 9730 } 9731 9732 inode_inc_iversion(old_dir); 9733 inode_inc_iversion(new_dir); 9734 inode_inc_iversion(old_inode); 9735 old_dir->i_ctime = old_dir->i_mtime = 9736 new_dir->i_ctime = new_dir->i_mtime = 9737 old_inode->i_ctime = current_time(old_dir); 9738 9739 if (old_dentry->d_parent != new_dentry->d_parent) 9740 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9741 BTRFS_I(old_inode), 1); 9742 9743 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9744 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9745 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9746 old_dentry->d_name.name, 9747 old_dentry->d_name.len); 9748 } else { 9749 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9750 BTRFS_I(d_inode(old_dentry)), 9751 old_dentry->d_name.name, 9752 old_dentry->d_name.len); 9753 if (!ret) 9754 ret = btrfs_update_inode(trans, root, old_inode); 9755 } 9756 if (ret) { 9757 btrfs_abort_transaction(trans, ret); 9758 goto out_fail; 9759 } 9760 9761 if (new_inode) { 9762 inode_inc_iversion(new_inode); 9763 new_inode->i_ctime = current_time(new_inode); 9764 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9765 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9766 root_objectid = BTRFS_I(new_inode)->location.objectid; 9767 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9768 new_dentry->d_name.name, 9769 new_dentry->d_name.len); 9770 BUG_ON(new_inode->i_nlink == 0); 9771 } else { 9772 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9773 BTRFS_I(d_inode(new_dentry)), 9774 new_dentry->d_name.name, 9775 new_dentry->d_name.len); 9776 } 9777 if (!ret && new_inode->i_nlink == 0) 9778 ret = btrfs_orphan_add(trans, 9779 BTRFS_I(d_inode(new_dentry))); 9780 if (ret) { 9781 btrfs_abort_transaction(trans, ret); 9782 goto out_fail; 9783 } 9784 } 9785 9786 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9787 new_dentry->d_name.name, 9788 new_dentry->d_name.len, 0, index); 9789 if (ret) { 9790 btrfs_abort_transaction(trans, ret); 9791 goto out_fail; 9792 } 9793 9794 if (old_inode->i_nlink == 1) 9795 BTRFS_I(old_inode)->dir_index = index; 9796 9797 if (log_pinned) { 9798 struct dentry *parent = new_dentry->d_parent; 9799 9800 btrfs_init_log_ctx(&ctx, old_inode); 9801 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9802 BTRFS_I(old_dir), parent, 9803 false, &ctx); 9804 if (ret == BTRFS_NEED_LOG_SYNC) 9805 sync_log = true; 9806 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9807 commit_transaction = true; 9808 ret = 0; 9809 btrfs_end_log_trans(root); 9810 log_pinned = false; 9811 } 9812 9813 if (flags & RENAME_WHITEOUT) { 9814 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9815 old_dentry); 9816 9817 if (ret) { 9818 btrfs_abort_transaction(trans, ret); 9819 goto out_fail; 9820 } 9821 } 9822 out_fail: 9823 /* 9824 * If we have pinned the log and an error happened, we unpin tasks 9825 * trying to sync the log and force them to fallback to a transaction 9826 * commit if the log currently contains any of the inodes involved in 9827 * this rename operation (to ensure we do not persist a log with an 9828 * inconsistent state for any of these inodes or leading to any 9829 * inconsistencies when replayed). If the transaction was aborted, the 9830 * abortion reason is propagated to userspace when attempting to commit 9831 * the transaction. If the log does not contain any of these inodes, we 9832 * allow the tasks to sync it. 9833 */ 9834 if (ret && log_pinned) { 9835 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9836 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9837 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9838 (new_inode && 9839 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9840 btrfs_set_log_full_commit(fs_info, trans); 9841 9842 btrfs_end_log_trans(root); 9843 log_pinned = false; 9844 } 9845 if (!ret && sync_log) { 9846 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9847 if (ret) 9848 commit_transaction = true; 9849 } 9850 if (commit_transaction) { 9851 ret = btrfs_commit_transaction(trans); 9852 } else { 9853 int ret2; 9854 9855 ret2 = btrfs_end_transaction(trans); 9856 ret = ret ? ret : ret2; 9857 } 9858 out_notrans: 9859 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9860 up_read(&fs_info->subvol_sem); 9861 9862 return ret; 9863 } 9864 9865 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9866 struct inode *new_dir, struct dentry *new_dentry, 9867 unsigned int flags) 9868 { 9869 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9870 return -EINVAL; 9871 9872 if (flags & RENAME_EXCHANGE) 9873 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9874 new_dentry); 9875 9876 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9877 } 9878 9879 struct btrfs_delalloc_work { 9880 struct inode *inode; 9881 struct completion completion; 9882 struct list_head list; 9883 struct btrfs_work work; 9884 }; 9885 9886 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9887 { 9888 struct btrfs_delalloc_work *delalloc_work; 9889 struct inode *inode; 9890 9891 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9892 work); 9893 inode = delalloc_work->inode; 9894 filemap_flush(inode->i_mapping); 9895 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9896 &BTRFS_I(inode)->runtime_flags)) 9897 filemap_flush(inode->i_mapping); 9898 9899 iput(inode); 9900 complete(&delalloc_work->completion); 9901 } 9902 9903 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9904 { 9905 struct btrfs_delalloc_work *work; 9906 9907 work = kmalloc(sizeof(*work), GFP_NOFS); 9908 if (!work) 9909 return NULL; 9910 9911 init_completion(&work->completion); 9912 INIT_LIST_HEAD(&work->list); 9913 work->inode = inode; 9914 WARN_ON_ONCE(!inode); 9915 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9916 btrfs_run_delalloc_work, NULL, NULL); 9917 9918 return work; 9919 } 9920 9921 /* 9922 * some fairly slow code that needs optimization. This walks the list 9923 * of all the inodes with pending delalloc and forces them to disk. 9924 */ 9925 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 9926 { 9927 struct btrfs_inode *binode; 9928 struct inode *inode; 9929 struct btrfs_delalloc_work *work, *next; 9930 struct list_head works; 9931 struct list_head splice; 9932 int ret = 0; 9933 9934 INIT_LIST_HEAD(&works); 9935 INIT_LIST_HEAD(&splice); 9936 9937 mutex_lock(&root->delalloc_mutex); 9938 spin_lock(&root->delalloc_lock); 9939 list_splice_init(&root->delalloc_inodes, &splice); 9940 while (!list_empty(&splice)) { 9941 binode = list_entry(splice.next, struct btrfs_inode, 9942 delalloc_inodes); 9943 9944 list_move_tail(&binode->delalloc_inodes, 9945 &root->delalloc_inodes); 9946 inode = igrab(&binode->vfs_inode); 9947 if (!inode) { 9948 cond_resched_lock(&root->delalloc_lock); 9949 continue; 9950 } 9951 spin_unlock(&root->delalloc_lock); 9952 9953 if (snapshot) 9954 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9955 &binode->runtime_flags); 9956 work = btrfs_alloc_delalloc_work(inode); 9957 if (!work) { 9958 iput(inode); 9959 ret = -ENOMEM; 9960 goto out; 9961 } 9962 list_add_tail(&work->list, &works); 9963 btrfs_queue_work(root->fs_info->flush_workers, 9964 &work->work); 9965 ret++; 9966 if (nr != -1 && ret >= nr) 9967 goto out; 9968 cond_resched(); 9969 spin_lock(&root->delalloc_lock); 9970 } 9971 spin_unlock(&root->delalloc_lock); 9972 9973 out: 9974 list_for_each_entry_safe(work, next, &works, list) { 9975 list_del_init(&work->list); 9976 wait_for_completion(&work->completion); 9977 kfree(work); 9978 } 9979 9980 if (!list_empty(&splice)) { 9981 spin_lock(&root->delalloc_lock); 9982 list_splice_tail(&splice, &root->delalloc_inodes); 9983 spin_unlock(&root->delalloc_lock); 9984 } 9985 mutex_unlock(&root->delalloc_mutex); 9986 return ret; 9987 } 9988 9989 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9990 { 9991 struct btrfs_fs_info *fs_info = root->fs_info; 9992 int ret; 9993 9994 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9995 return -EROFS; 9996 9997 ret = start_delalloc_inodes(root, -1, true); 9998 if (ret > 0) 9999 ret = 0; 10000 return ret; 10001 } 10002 10003 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 10004 { 10005 struct btrfs_root *root; 10006 struct list_head splice; 10007 int ret; 10008 10009 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10010 return -EROFS; 10011 10012 INIT_LIST_HEAD(&splice); 10013 10014 mutex_lock(&fs_info->delalloc_root_mutex); 10015 spin_lock(&fs_info->delalloc_root_lock); 10016 list_splice_init(&fs_info->delalloc_roots, &splice); 10017 while (!list_empty(&splice) && nr) { 10018 root = list_first_entry(&splice, struct btrfs_root, 10019 delalloc_root); 10020 root = btrfs_grab_fs_root(root); 10021 BUG_ON(!root); 10022 list_move_tail(&root->delalloc_root, 10023 &fs_info->delalloc_roots); 10024 spin_unlock(&fs_info->delalloc_root_lock); 10025 10026 ret = start_delalloc_inodes(root, nr, false); 10027 btrfs_put_fs_root(root); 10028 if (ret < 0) 10029 goto out; 10030 10031 if (nr != -1) { 10032 nr -= ret; 10033 WARN_ON(nr < 0); 10034 } 10035 spin_lock(&fs_info->delalloc_root_lock); 10036 } 10037 spin_unlock(&fs_info->delalloc_root_lock); 10038 10039 ret = 0; 10040 out: 10041 if (!list_empty(&splice)) { 10042 spin_lock(&fs_info->delalloc_root_lock); 10043 list_splice_tail(&splice, &fs_info->delalloc_roots); 10044 spin_unlock(&fs_info->delalloc_root_lock); 10045 } 10046 mutex_unlock(&fs_info->delalloc_root_mutex); 10047 return ret; 10048 } 10049 10050 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10051 const char *symname) 10052 { 10053 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10054 struct btrfs_trans_handle *trans; 10055 struct btrfs_root *root = BTRFS_I(dir)->root; 10056 struct btrfs_path *path; 10057 struct btrfs_key key; 10058 struct inode *inode = NULL; 10059 int err; 10060 u64 objectid; 10061 u64 index = 0; 10062 int name_len; 10063 int datasize; 10064 unsigned long ptr; 10065 struct btrfs_file_extent_item *ei; 10066 struct extent_buffer *leaf; 10067 10068 name_len = strlen(symname); 10069 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10070 return -ENAMETOOLONG; 10071 10072 /* 10073 * 2 items for inode item and ref 10074 * 2 items for dir items 10075 * 1 item for updating parent inode item 10076 * 1 item for the inline extent item 10077 * 1 item for xattr if selinux is on 10078 */ 10079 trans = btrfs_start_transaction(root, 7); 10080 if (IS_ERR(trans)) 10081 return PTR_ERR(trans); 10082 10083 err = btrfs_find_free_ino(root, &objectid); 10084 if (err) 10085 goto out_unlock; 10086 10087 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10088 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10089 objectid, S_IFLNK|S_IRWXUGO, &index); 10090 if (IS_ERR(inode)) { 10091 err = PTR_ERR(inode); 10092 inode = NULL; 10093 goto out_unlock; 10094 } 10095 10096 /* 10097 * If the active LSM wants to access the inode during 10098 * d_instantiate it needs these. Smack checks to see 10099 * if the filesystem supports xattrs by looking at the 10100 * ops vector. 10101 */ 10102 inode->i_fop = &btrfs_file_operations; 10103 inode->i_op = &btrfs_file_inode_operations; 10104 inode->i_mapping->a_ops = &btrfs_aops; 10105 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10106 10107 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10108 if (err) 10109 goto out_unlock; 10110 10111 path = btrfs_alloc_path(); 10112 if (!path) { 10113 err = -ENOMEM; 10114 goto out_unlock; 10115 } 10116 key.objectid = btrfs_ino(BTRFS_I(inode)); 10117 key.offset = 0; 10118 key.type = BTRFS_EXTENT_DATA_KEY; 10119 datasize = btrfs_file_extent_calc_inline_size(name_len); 10120 err = btrfs_insert_empty_item(trans, root, path, &key, 10121 datasize); 10122 if (err) { 10123 btrfs_free_path(path); 10124 goto out_unlock; 10125 } 10126 leaf = path->nodes[0]; 10127 ei = btrfs_item_ptr(leaf, path->slots[0], 10128 struct btrfs_file_extent_item); 10129 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10130 btrfs_set_file_extent_type(leaf, ei, 10131 BTRFS_FILE_EXTENT_INLINE); 10132 btrfs_set_file_extent_encryption(leaf, ei, 0); 10133 btrfs_set_file_extent_compression(leaf, ei, 0); 10134 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10135 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10136 10137 ptr = btrfs_file_extent_inline_start(ei); 10138 write_extent_buffer(leaf, symname, ptr, name_len); 10139 btrfs_mark_buffer_dirty(leaf); 10140 btrfs_free_path(path); 10141 10142 inode->i_op = &btrfs_symlink_inode_operations; 10143 inode_nohighmem(inode); 10144 inode->i_mapping->a_ops = &btrfs_aops; 10145 inode_set_bytes(inode, name_len); 10146 btrfs_i_size_write(BTRFS_I(inode), name_len); 10147 err = btrfs_update_inode(trans, root, inode); 10148 /* 10149 * Last step, add directory indexes for our symlink inode. This is the 10150 * last step to avoid extra cleanup of these indexes if an error happens 10151 * elsewhere above. 10152 */ 10153 if (!err) 10154 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10155 BTRFS_I(inode), 0, index); 10156 if (err) 10157 goto out_unlock; 10158 10159 d_instantiate_new(dentry, inode); 10160 10161 out_unlock: 10162 btrfs_end_transaction(trans); 10163 if (err && inode) { 10164 inode_dec_link_count(inode); 10165 discard_new_inode(inode); 10166 } 10167 btrfs_btree_balance_dirty(fs_info); 10168 return err; 10169 } 10170 10171 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10172 u64 start, u64 num_bytes, u64 min_size, 10173 loff_t actual_len, u64 *alloc_hint, 10174 struct btrfs_trans_handle *trans) 10175 { 10176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10177 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10178 struct extent_map *em; 10179 struct btrfs_root *root = BTRFS_I(inode)->root; 10180 struct btrfs_key ins; 10181 u64 cur_offset = start; 10182 u64 i_size; 10183 u64 cur_bytes; 10184 u64 last_alloc = (u64)-1; 10185 int ret = 0; 10186 bool own_trans = true; 10187 u64 end = start + num_bytes - 1; 10188 10189 if (trans) 10190 own_trans = false; 10191 while (num_bytes > 0) { 10192 if (own_trans) { 10193 trans = btrfs_start_transaction(root, 3); 10194 if (IS_ERR(trans)) { 10195 ret = PTR_ERR(trans); 10196 break; 10197 } 10198 } 10199 10200 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10201 cur_bytes = max(cur_bytes, min_size); 10202 /* 10203 * If we are severely fragmented we could end up with really 10204 * small allocations, so if the allocator is returning small 10205 * chunks lets make its job easier by only searching for those 10206 * sized chunks. 10207 */ 10208 cur_bytes = min(cur_bytes, last_alloc); 10209 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10210 min_size, 0, *alloc_hint, &ins, 1, 0); 10211 if (ret) { 10212 if (own_trans) 10213 btrfs_end_transaction(trans); 10214 break; 10215 } 10216 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10217 10218 last_alloc = ins.offset; 10219 ret = insert_reserved_file_extent(trans, inode, 10220 cur_offset, ins.objectid, 10221 ins.offset, ins.offset, 10222 ins.offset, 0, 0, 0, 10223 BTRFS_FILE_EXTENT_PREALLOC); 10224 if (ret) { 10225 btrfs_free_reserved_extent(fs_info, ins.objectid, 10226 ins.offset, 0); 10227 btrfs_abort_transaction(trans, ret); 10228 if (own_trans) 10229 btrfs_end_transaction(trans); 10230 break; 10231 } 10232 10233 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10234 cur_offset + ins.offset -1, 0); 10235 10236 em = alloc_extent_map(); 10237 if (!em) { 10238 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10239 &BTRFS_I(inode)->runtime_flags); 10240 goto next; 10241 } 10242 10243 em->start = cur_offset; 10244 em->orig_start = cur_offset; 10245 em->len = ins.offset; 10246 em->block_start = ins.objectid; 10247 em->block_len = ins.offset; 10248 em->orig_block_len = ins.offset; 10249 em->ram_bytes = ins.offset; 10250 em->bdev = fs_info->fs_devices->latest_bdev; 10251 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10252 em->generation = trans->transid; 10253 10254 while (1) { 10255 write_lock(&em_tree->lock); 10256 ret = add_extent_mapping(em_tree, em, 1); 10257 write_unlock(&em_tree->lock); 10258 if (ret != -EEXIST) 10259 break; 10260 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10261 cur_offset + ins.offset - 1, 10262 0); 10263 } 10264 free_extent_map(em); 10265 next: 10266 num_bytes -= ins.offset; 10267 cur_offset += ins.offset; 10268 *alloc_hint = ins.objectid + ins.offset; 10269 10270 inode_inc_iversion(inode); 10271 inode->i_ctime = current_time(inode); 10272 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10273 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10274 (actual_len > inode->i_size) && 10275 (cur_offset > inode->i_size)) { 10276 if (cur_offset > actual_len) 10277 i_size = actual_len; 10278 else 10279 i_size = cur_offset; 10280 i_size_write(inode, i_size); 10281 btrfs_ordered_update_i_size(inode, i_size, NULL); 10282 } 10283 10284 ret = btrfs_update_inode(trans, root, inode); 10285 10286 if (ret) { 10287 btrfs_abort_transaction(trans, ret); 10288 if (own_trans) 10289 btrfs_end_transaction(trans); 10290 break; 10291 } 10292 10293 if (own_trans) 10294 btrfs_end_transaction(trans); 10295 } 10296 if (cur_offset < end) 10297 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10298 end - cur_offset + 1); 10299 return ret; 10300 } 10301 10302 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10303 u64 start, u64 num_bytes, u64 min_size, 10304 loff_t actual_len, u64 *alloc_hint) 10305 { 10306 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10307 min_size, actual_len, alloc_hint, 10308 NULL); 10309 } 10310 10311 int btrfs_prealloc_file_range_trans(struct inode *inode, 10312 struct btrfs_trans_handle *trans, int mode, 10313 u64 start, u64 num_bytes, u64 min_size, 10314 loff_t actual_len, u64 *alloc_hint) 10315 { 10316 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10317 min_size, actual_len, alloc_hint, trans); 10318 } 10319 10320 static int btrfs_set_page_dirty(struct page *page) 10321 { 10322 return __set_page_dirty_nobuffers(page); 10323 } 10324 10325 static int btrfs_permission(struct inode *inode, int mask) 10326 { 10327 struct btrfs_root *root = BTRFS_I(inode)->root; 10328 umode_t mode = inode->i_mode; 10329 10330 if (mask & MAY_WRITE && 10331 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10332 if (btrfs_root_readonly(root)) 10333 return -EROFS; 10334 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10335 return -EACCES; 10336 } 10337 return generic_permission(inode, mask); 10338 } 10339 10340 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10341 { 10342 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10343 struct btrfs_trans_handle *trans; 10344 struct btrfs_root *root = BTRFS_I(dir)->root; 10345 struct inode *inode = NULL; 10346 u64 objectid; 10347 u64 index; 10348 int ret = 0; 10349 10350 /* 10351 * 5 units required for adding orphan entry 10352 */ 10353 trans = btrfs_start_transaction(root, 5); 10354 if (IS_ERR(trans)) 10355 return PTR_ERR(trans); 10356 10357 ret = btrfs_find_free_ino(root, &objectid); 10358 if (ret) 10359 goto out; 10360 10361 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10362 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10363 if (IS_ERR(inode)) { 10364 ret = PTR_ERR(inode); 10365 inode = NULL; 10366 goto out; 10367 } 10368 10369 inode->i_fop = &btrfs_file_operations; 10370 inode->i_op = &btrfs_file_inode_operations; 10371 10372 inode->i_mapping->a_ops = &btrfs_aops; 10373 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10374 10375 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10376 if (ret) 10377 goto out; 10378 10379 ret = btrfs_update_inode(trans, root, inode); 10380 if (ret) 10381 goto out; 10382 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10383 if (ret) 10384 goto out; 10385 10386 /* 10387 * We set number of links to 0 in btrfs_new_inode(), and here we set 10388 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10389 * through: 10390 * 10391 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10392 */ 10393 set_nlink(inode, 1); 10394 d_tmpfile(dentry, inode); 10395 unlock_new_inode(inode); 10396 mark_inode_dirty(inode); 10397 out: 10398 btrfs_end_transaction(trans); 10399 if (ret && inode) 10400 discard_new_inode(inode); 10401 btrfs_btree_balance_dirty(fs_info); 10402 return ret; 10403 } 10404 10405 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10406 { 10407 struct inode *inode = tree->private_data; 10408 unsigned long index = start >> PAGE_SHIFT; 10409 unsigned long end_index = end >> PAGE_SHIFT; 10410 struct page *page; 10411 10412 while (index <= end_index) { 10413 page = find_get_page(inode->i_mapping, index); 10414 ASSERT(page); /* Pages should be in the extent_io_tree */ 10415 set_page_writeback(page); 10416 put_page(page); 10417 index++; 10418 } 10419 } 10420 10421 #ifdef CONFIG_SWAP 10422 /* 10423 * Add an entry indicating a block group or device which is pinned by a 10424 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10425 * negative errno on failure. 10426 */ 10427 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10428 bool is_block_group) 10429 { 10430 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10431 struct btrfs_swapfile_pin *sp, *entry; 10432 struct rb_node **p; 10433 struct rb_node *parent = NULL; 10434 10435 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10436 if (!sp) 10437 return -ENOMEM; 10438 sp->ptr = ptr; 10439 sp->inode = inode; 10440 sp->is_block_group = is_block_group; 10441 10442 spin_lock(&fs_info->swapfile_pins_lock); 10443 p = &fs_info->swapfile_pins.rb_node; 10444 while (*p) { 10445 parent = *p; 10446 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10447 if (sp->ptr < entry->ptr || 10448 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10449 p = &(*p)->rb_left; 10450 } else if (sp->ptr > entry->ptr || 10451 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10452 p = &(*p)->rb_right; 10453 } else { 10454 spin_unlock(&fs_info->swapfile_pins_lock); 10455 kfree(sp); 10456 return 1; 10457 } 10458 } 10459 rb_link_node(&sp->node, parent, p); 10460 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10461 spin_unlock(&fs_info->swapfile_pins_lock); 10462 return 0; 10463 } 10464 10465 /* Free all of the entries pinned by this swapfile. */ 10466 static void btrfs_free_swapfile_pins(struct inode *inode) 10467 { 10468 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10469 struct btrfs_swapfile_pin *sp; 10470 struct rb_node *node, *next; 10471 10472 spin_lock(&fs_info->swapfile_pins_lock); 10473 node = rb_first(&fs_info->swapfile_pins); 10474 while (node) { 10475 next = rb_next(node); 10476 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10477 if (sp->inode == inode) { 10478 rb_erase(&sp->node, &fs_info->swapfile_pins); 10479 if (sp->is_block_group) 10480 btrfs_put_block_group(sp->ptr); 10481 kfree(sp); 10482 } 10483 node = next; 10484 } 10485 spin_unlock(&fs_info->swapfile_pins_lock); 10486 } 10487 10488 struct btrfs_swap_info { 10489 u64 start; 10490 u64 block_start; 10491 u64 block_len; 10492 u64 lowest_ppage; 10493 u64 highest_ppage; 10494 unsigned long nr_pages; 10495 int nr_extents; 10496 }; 10497 10498 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10499 struct btrfs_swap_info *bsi) 10500 { 10501 unsigned long nr_pages; 10502 u64 first_ppage, first_ppage_reported, next_ppage; 10503 int ret; 10504 10505 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10506 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10507 PAGE_SIZE) >> PAGE_SHIFT; 10508 10509 if (first_ppage >= next_ppage) 10510 return 0; 10511 nr_pages = next_ppage - first_ppage; 10512 10513 first_ppage_reported = first_ppage; 10514 if (bsi->start == 0) 10515 first_ppage_reported++; 10516 if (bsi->lowest_ppage > first_ppage_reported) 10517 bsi->lowest_ppage = first_ppage_reported; 10518 if (bsi->highest_ppage < (next_ppage - 1)) 10519 bsi->highest_ppage = next_ppage - 1; 10520 10521 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10522 if (ret < 0) 10523 return ret; 10524 bsi->nr_extents += ret; 10525 bsi->nr_pages += nr_pages; 10526 return 0; 10527 } 10528 10529 static void btrfs_swap_deactivate(struct file *file) 10530 { 10531 struct inode *inode = file_inode(file); 10532 10533 btrfs_free_swapfile_pins(inode); 10534 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10535 } 10536 10537 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10538 sector_t *span) 10539 { 10540 struct inode *inode = file_inode(file); 10541 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10542 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10543 struct extent_state *cached_state = NULL; 10544 struct extent_map *em = NULL; 10545 struct btrfs_device *device = NULL; 10546 struct btrfs_swap_info bsi = { 10547 .lowest_ppage = (sector_t)-1ULL, 10548 }; 10549 int ret = 0; 10550 u64 isize; 10551 u64 start; 10552 10553 /* 10554 * If the swap file was just created, make sure delalloc is done. If the 10555 * file changes again after this, the user is doing something stupid and 10556 * we don't really care. 10557 */ 10558 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10559 if (ret) 10560 return ret; 10561 10562 /* 10563 * The inode is locked, so these flags won't change after we check them. 10564 */ 10565 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10566 btrfs_warn(fs_info, "swapfile must not be compressed"); 10567 return -EINVAL; 10568 } 10569 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10570 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10571 return -EINVAL; 10572 } 10573 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10574 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10575 return -EINVAL; 10576 } 10577 10578 /* 10579 * Balance or device remove/replace/resize can move stuff around from 10580 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10581 * concurrently while we are mapping the swap extents, and 10582 * fs_info->swapfile_pins prevents them from running while the swap file 10583 * is active and moving the extents. Note that this also prevents a 10584 * concurrent device add which isn't actually necessary, but it's not 10585 * really worth the trouble to allow it. 10586 */ 10587 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10588 btrfs_warn(fs_info, 10589 "cannot activate swapfile while exclusive operation is running"); 10590 return -EBUSY; 10591 } 10592 /* 10593 * Snapshots can create extents which require COW even if NODATACOW is 10594 * set. We use this counter to prevent snapshots. We must increment it 10595 * before walking the extents because we don't want a concurrent 10596 * snapshot to run after we've already checked the extents. 10597 */ 10598 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10599 10600 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10601 10602 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10603 start = 0; 10604 while (start < isize) { 10605 u64 logical_block_start, physical_block_start; 10606 struct btrfs_block_group_cache *bg; 10607 u64 len = isize - start; 10608 10609 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 10610 if (IS_ERR(em)) { 10611 ret = PTR_ERR(em); 10612 goto out; 10613 } 10614 10615 if (em->block_start == EXTENT_MAP_HOLE) { 10616 btrfs_warn(fs_info, "swapfile must not have holes"); 10617 ret = -EINVAL; 10618 goto out; 10619 } 10620 if (em->block_start == EXTENT_MAP_INLINE) { 10621 /* 10622 * It's unlikely we'll ever actually find ourselves 10623 * here, as a file small enough to fit inline won't be 10624 * big enough to store more than the swap header, but in 10625 * case something changes in the future, let's catch it 10626 * here rather than later. 10627 */ 10628 btrfs_warn(fs_info, "swapfile must not be inline"); 10629 ret = -EINVAL; 10630 goto out; 10631 } 10632 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10633 btrfs_warn(fs_info, "swapfile must not be compressed"); 10634 ret = -EINVAL; 10635 goto out; 10636 } 10637 10638 logical_block_start = em->block_start + (start - em->start); 10639 len = min(len, em->len - (start - em->start)); 10640 free_extent_map(em); 10641 em = NULL; 10642 10643 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10644 if (ret < 0) { 10645 goto out; 10646 } else if (ret) { 10647 ret = 0; 10648 } else { 10649 btrfs_warn(fs_info, 10650 "swapfile must not be copy-on-write"); 10651 ret = -EINVAL; 10652 goto out; 10653 } 10654 10655 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10656 if (IS_ERR(em)) { 10657 ret = PTR_ERR(em); 10658 goto out; 10659 } 10660 10661 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10662 btrfs_warn(fs_info, 10663 "swapfile must have single data profile"); 10664 ret = -EINVAL; 10665 goto out; 10666 } 10667 10668 if (device == NULL) { 10669 device = em->map_lookup->stripes[0].dev; 10670 ret = btrfs_add_swapfile_pin(inode, device, false); 10671 if (ret == 1) 10672 ret = 0; 10673 else if (ret) 10674 goto out; 10675 } else if (device != em->map_lookup->stripes[0].dev) { 10676 btrfs_warn(fs_info, "swapfile must be on one device"); 10677 ret = -EINVAL; 10678 goto out; 10679 } 10680 10681 physical_block_start = (em->map_lookup->stripes[0].physical + 10682 (logical_block_start - em->start)); 10683 len = min(len, em->len - (logical_block_start - em->start)); 10684 free_extent_map(em); 10685 em = NULL; 10686 10687 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10688 if (!bg) { 10689 btrfs_warn(fs_info, 10690 "could not find block group containing swapfile"); 10691 ret = -EINVAL; 10692 goto out; 10693 } 10694 10695 ret = btrfs_add_swapfile_pin(inode, bg, true); 10696 if (ret) { 10697 btrfs_put_block_group(bg); 10698 if (ret == 1) 10699 ret = 0; 10700 else 10701 goto out; 10702 } 10703 10704 if (bsi.block_len && 10705 bsi.block_start + bsi.block_len == physical_block_start) { 10706 bsi.block_len += len; 10707 } else { 10708 if (bsi.block_len) { 10709 ret = btrfs_add_swap_extent(sis, &bsi); 10710 if (ret) 10711 goto out; 10712 } 10713 bsi.start = start; 10714 bsi.block_start = physical_block_start; 10715 bsi.block_len = len; 10716 } 10717 10718 start += len; 10719 } 10720 10721 if (bsi.block_len) 10722 ret = btrfs_add_swap_extent(sis, &bsi); 10723 10724 out: 10725 if (!IS_ERR_OR_NULL(em)) 10726 free_extent_map(em); 10727 10728 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10729 10730 if (ret) 10731 btrfs_swap_deactivate(file); 10732 10733 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10734 10735 if (ret) 10736 return ret; 10737 10738 if (device) 10739 sis->bdev = device->bdev; 10740 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10741 sis->max = bsi.nr_pages; 10742 sis->pages = bsi.nr_pages - 1; 10743 sis->highest_bit = bsi.nr_pages - 1; 10744 return bsi.nr_extents; 10745 } 10746 #else 10747 static void btrfs_swap_deactivate(struct file *file) 10748 { 10749 } 10750 10751 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10752 sector_t *span) 10753 { 10754 return -EOPNOTSUPP; 10755 } 10756 #endif 10757 10758 static const struct inode_operations btrfs_dir_inode_operations = { 10759 .getattr = btrfs_getattr, 10760 .lookup = btrfs_lookup, 10761 .create = btrfs_create, 10762 .unlink = btrfs_unlink, 10763 .link = btrfs_link, 10764 .mkdir = btrfs_mkdir, 10765 .rmdir = btrfs_rmdir, 10766 .rename = btrfs_rename2, 10767 .symlink = btrfs_symlink, 10768 .setattr = btrfs_setattr, 10769 .mknod = btrfs_mknod, 10770 .listxattr = btrfs_listxattr, 10771 .permission = btrfs_permission, 10772 .get_acl = btrfs_get_acl, 10773 .set_acl = btrfs_set_acl, 10774 .update_time = btrfs_update_time, 10775 .tmpfile = btrfs_tmpfile, 10776 }; 10777 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10778 .lookup = btrfs_lookup, 10779 .permission = btrfs_permission, 10780 .update_time = btrfs_update_time, 10781 }; 10782 10783 static const struct file_operations btrfs_dir_file_operations = { 10784 .llseek = generic_file_llseek, 10785 .read = generic_read_dir, 10786 .iterate_shared = btrfs_real_readdir, 10787 .open = btrfs_opendir, 10788 .unlocked_ioctl = btrfs_ioctl, 10789 #ifdef CONFIG_COMPAT 10790 .compat_ioctl = btrfs_compat_ioctl, 10791 #endif 10792 .release = btrfs_release_file, 10793 .fsync = btrfs_sync_file, 10794 }; 10795 10796 static const struct extent_io_ops btrfs_extent_io_ops = { 10797 /* mandatory callbacks */ 10798 .submit_bio_hook = btrfs_submit_bio_hook, 10799 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10800 }; 10801 10802 /* 10803 * btrfs doesn't support the bmap operation because swapfiles 10804 * use bmap to make a mapping of extents in the file. They assume 10805 * these extents won't change over the life of the file and they 10806 * use the bmap result to do IO directly to the drive. 10807 * 10808 * the btrfs bmap call would return logical addresses that aren't 10809 * suitable for IO and they also will change frequently as COW 10810 * operations happen. So, swapfile + btrfs == corruption. 10811 * 10812 * For now we're avoiding this by dropping bmap. 10813 */ 10814 static const struct address_space_operations btrfs_aops = { 10815 .readpage = btrfs_readpage, 10816 .writepage = btrfs_writepage, 10817 .writepages = btrfs_writepages, 10818 .readpages = btrfs_readpages, 10819 .direct_IO = btrfs_direct_IO, 10820 .invalidatepage = btrfs_invalidatepage, 10821 .releasepage = btrfs_releasepage, 10822 .set_page_dirty = btrfs_set_page_dirty, 10823 .error_remove_page = generic_error_remove_page, 10824 .swap_activate = btrfs_swap_activate, 10825 .swap_deactivate = btrfs_swap_deactivate, 10826 }; 10827 10828 static const struct inode_operations btrfs_file_inode_operations = { 10829 .getattr = btrfs_getattr, 10830 .setattr = btrfs_setattr, 10831 .listxattr = btrfs_listxattr, 10832 .permission = btrfs_permission, 10833 .fiemap = btrfs_fiemap, 10834 .get_acl = btrfs_get_acl, 10835 .set_acl = btrfs_set_acl, 10836 .update_time = btrfs_update_time, 10837 }; 10838 static const struct inode_operations btrfs_special_inode_operations = { 10839 .getattr = btrfs_getattr, 10840 .setattr = btrfs_setattr, 10841 .permission = btrfs_permission, 10842 .listxattr = btrfs_listxattr, 10843 .get_acl = btrfs_get_acl, 10844 .set_acl = btrfs_set_acl, 10845 .update_time = btrfs_update_time, 10846 }; 10847 static const struct inode_operations btrfs_symlink_inode_operations = { 10848 .get_link = page_get_link, 10849 .getattr = btrfs_getattr, 10850 .setattr = btrfs_setattr, 10851 .permission = btrfs_permission, 10852 .listxattr = btrfs_listxattr, 10853 .update_time = btrfs_update_time, 10854 }; 10855 10856 const struct dentry_operations btrfs_dentry_operations = { 10857 .d_delete = btrfs_dentry_delete, 10858 }; 10859