1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/sched/mm.h> 32 #include <asm/unaligned.h> 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "ordered-data.h" 39 #include "xattr.h" 40 #include "tree-log.h" 41 #include "volumes.h" 42 #include "compression.h" 43 #include "locking.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "backref.h" 47 #include "props.h" 48 #include "qgroup.h" 49 #include "dedupe.h" 50 51 struct btrfs_iget_args { 52 struct btrfs_key *location; 53 struct btrfs_root *root; 54 }; 55 56 struct btrfs_dio_data { 57 u64 reserve; 58 u64 unsubmitted_oe_range_start; 59 u64 unsubmitted_oe_range_end; 60 int overwrite; 61 }; 62 63 static const struct inode_operations btrfs_dir_inode_operations; 64 static const struct inode_operations btrfs_symlink_inode_operations; 65 static const struct inode_operations btrfs_dir_ro_inode_operations; 66 static const struct inode_operations btrfs_special_inode_operations; 67 static const struct inode_operations btrfs_file_inode_operations; 68 static const struct address_space_operations btrfs_aops; 69 static const struct file_operations btrfs_dir_file_operations; 70 static const struct extent_io_ops btrfs_extent_io_ops; 71 72 static struct kmem_cache *btrfs_inode_cachep; 73 struct kmem_cache *btrfs_trans_handle_cachep; 74 struct kmem_cache *btrfs_path_cachep; 75 struct kmem_cache *btrfs_free_space_cachep; 76 77 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 78 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 79 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 80 static noinline int cow_file_range(struct inode *inode, 81 struct page *locked_page, 82 u64 start, u64 end, u64 delalloc_end, 83 int *page_started, unsigned long *nr_written, 84 int unlock, struct btrfs_dedupe_hash *hash); 85 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 86 u64 orig_start, u64 block_start, 87 u64 block_len, u64 orig_block_len, 88 u64 ram_bytes, int compress_type, 89 int type); 90 91 static void __endio_write_update_ordered(struct inode *inode, 92 const u64 offset, const u64 bytes, 93 const bool uptodate); 94 95 /* 96 * Cleanup all submitted ordered extents in specified range to handle errors 97 * from the btrfs_run_delalloc_range() callback. 98 * 99 * NOTE: caller must ensure that when an error happens, it can not call 100 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 101 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 102 * to be released, which we want to happen only when finishing the ordered 103 * extent (btrfs_finish_ordered_io()). 104 */ 105 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 106 struct page *locked_page, 107 u64 offset, u64 bytes) 108 { 109 unsigned long index = offset >> PAGE_SHIFT; 110 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 111 u64 page_start = page_offset(locked_page); 112 u64 page_end = page_start + PAGE_SIZE - 1; 113 114 struct page *page; 115 116 while (index <= end_index) { 117 page = find_get_page(inode->i_mapping, index); 118 index++; 119 if (!page) 120 continue; 121 ClearPagePrivate2(page); 122 put_page(page); 123 } 124 125 /* 126 * In case this page belongs to the delalloc range being instantiated 127 * then skip it, since the first page of a range is going to be 128 * properly cleaned up by the caller of run_delalloc_range 129 */ 130 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 131 offset += PAGE_SIZE; 132 bytes -= PAGE_SIZE; 133 } 134 135 return __endio_write_update_ordered(inode, offset, bytes, false); 136 } 137 138 static int btrfs_dirty_inode(struct inode *inode); 139 140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 141 void btrfs_test_inode_set_ops(struct inode *inode) 142 { 143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 144 } 145 #endif 146 147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 148 struct inode *inode, struct inode *dir, 149 const struct qstr *qstr) 150 { 151 int err; 152 153 err = btrfs_init_acl(trans, inode, dir); 154 if (!err) 155 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 156 return err; 157 } 158 159 /* 160 * this does all the hard work for inserting an inline extent into 161 * the btree. The caller should have done a btrfs_drop_extents so that 162 * no overlapping inline items exist in the btree 163 */ 164 static int insert_inline_extent(struct btrfs_trans_handle *trans, 165 struct btrfs_path *path, int extent_inserted, 166 struct btrfs_root *root, struct inode *inode, 167 u64 start, size_t size, size_t compressed_size, 168 int compress_type, 169 struct page **compressed_pages) 170 { 171 struct extent_buffer *leaf; 172 struct page *page = NULL; 173 char *kaddr; 174 unsigned long ptr; 175 struct btrfs_file_extent_item *ei; 176 int ret; 177 size_t cur_size = size; 178 unsigned long offset; 179 180 if (compressed_size && compressed_pages) 181 cur_size = compressed_size; 182 183 inode_add_bytes(inode, size); 184 185 if (!extent_inserted) { 186 struct btrfs_key key; 187 size_t datasize; 188 189 key.objectid = btrfs_ino(BTRFS_I(inode)); 190 key.offset = start; 191 key.type = BTRFS_EXTENT_DATA_KEY; 192 193 datasize = btrfs_file_extent_calc_inline_size(cur_size); 194 path->leave_spinning = 1; 195 ret = btrfs_insert_empty_item(trans, root, path, &key, 196 datasize); 197 if (ret) 198 goto fail; 199 } 200 leaf = path->nodes[0]; 201 ei = btrfs_item_ptr(leaf, path->slots[0], 202 struct btrfs_file_extent_item); 203 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 204 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 205 btrfs_set_file_extent_encryption(leaf, ei, 0); 206 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 207 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 208 ptr = btrfs_file_extent_inline_start(ei); 209 210 if (compress_type != BTRFS_COMPRESS_NONE) { 211 struct page *cpage; 212 int i = 0; 213 while (compressed_size > 0) { 214 cpage = compressed_pages[i]; 215 cur_size = min_t(unsigned long, compressed_size, 216 PAGE_SIZE); 217 218 kaddr = kmap_atomic(cpage); 219 write_extent_buffer(leaf, kaddr, ptr, cur_size); 220 kunmap_atomic(kaddr); 221 222 i++; 223 ptr += cur_size; 224 compressed_size -= cur_size; 225 } 226 btrfs_set_file_extent_compression(leaf, ei, 227 compress_type); 228 } else { 229 page = find_get_page(inode->i_mapping, 230 start >> PAGE_SHIFT); 231 btrfs_set_file_extent_compression(leaf, ei, 0); 232 kaddr = kmap_atomic(page); 233 offset = offset_in_page(start); 234 write_extent_buffer(leaf, kaddr + offset, ptr, size); 235 kunmap_atomic(kaddr); 236 put_page(page); 237 } 238 btrfs_mark_buffer_dirty(leaf); 239 btrfs_release_path(path); 240 241 /* 242 * we're an inline extent, so nobody can 243 * extend the file past i_size without locking 244 * a page we already have locked. 245 * 246 * We must do any isize and inode updates 247 * before we unlock the pages. Otherwise we 248 * could end up racing with unlink. 249 */ 250 BTRFS_I(inode)->disk_i_size = inode->i_size; 251 ret = btrfs_update_inode(trans, root, inode); 252 253 fail: 254 return ret; 255 } 256 257 258 /* 259 * conditionally insert an inline extent into the file. This 260 * does the checks required to make sure the data is small enough 261 * to fit as an inline extent. 262 */ 263 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 264 u64 end, size_t compressed_size, 265 int compress_type, 266 struct page **compressed_pages) 267 { 268 struct btrfs_root *root = BTRFS_I(inode)->root; 269 struct btrfs_fs_info *fs_info = root->fs_info; 270 struct btrfs_trans_handle *trans; 271 u64 isize = i_size_read(inode); 272 u64 actual_end = min(end + 1, isize); 273 u64 inline_len = actual_end - start; 274 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 275 u64 data_len = inline_len; 276 int ret; 277 struct btrfs_path *path; 278 int extent_inserted = 0; 279 u32 extent_item_size; 280 281 if (compressed_size) 282 data_len = compressed_size; 283 284 if (start > 0 || 285 actual_end > fs_info->sectorsize || 286 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 287 (!compressed_size && 288 (actual_end & (fs_info->sectorsize - 1)) == 0) || 289 end + 1 < isize || 290 data_len > fs_info->max_inline) { 291 return 1; 292 } 293 294 path = btrfs_alloc_path(); 295 if (!path) 296 return -ENOMEM; 297 298 trans = btrfs_join_transaction(root); 299 if (IS_ERR(trans)) { 300 btrfs_free_path(path); 301 return PTR_ERR(trans); 302 } 303 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 304 305 if (compressed_size && compressed_pages) 306 extent_item_size = btrfs_file_extent_calc_inline_size( 307 compressed_size); 308 else 309 extent_item_size = btrfs_file_extent_calc_inline_size( 310 inline_len); 311 312 ret = __btrfs_drop_extents(trans, root, inode, path, 313 start, aligned_end, NULL, 314 1, 1, extent_item_size, &extent_inserted); 315 if (ret) { 316 btrfs_abort_transaction(trans, ret); 317 goto out; 318 } 319 320 if (isize > actual_end) 321 inline_len = min_t(u64, isize, actual_end); 322 ret = insert_inline_extent(trans, path, extent_inserted, 323 root, inode, start, 324 inline_len, compressed_size, 325 compress_type, compressed_pages); 326 if (ret && ret != -ENOSPC) { 327 btrfs_abort_transaction(trans, ret); 328 goto out; 329 } else if (ret == -ENOSPC) { 330 ret = 1; 331 goto out; 332 } 333 334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 335 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 336 out: 337 /* 338 * Don't forget to free the reserved space, as for inlined extent 339 * it won't count as data extent, free them directly here. 340 * And at reserve time, it's always aligned to page size, so 341 * just free one page here. 342 */ 343 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 344 btrfs_free_path(path); 345 btrfs_end_transaction(trans); 346 return ret; 347 } 348 349 struct async_extent { 350 u64 start; 351 u64 ram_size; 352 u64 compressed_size; 353 struct page **pages; 354 unsigned long nr_pages; 355 int compress_type; 356 struct list_head list; 357 }; 358 359 struct async_chunk { 360 struct inode *inode; 361 struct page *locked_page; 362 u64 start; 363 u64 end; 364 unsigned int write_flags; 365 struct list_head extents; 366 struct btrfs_work work; 367 atomic_t *pending; 368 }; 369 370 struct async_cow { 371 /* Number of chunks in flight; must be first in the structure */ 372 atomic_t num_chunks; 373 struct async_chunk chunks[]; 374 }; 375 376 static noinline int add_async_extent(struct async_chunk *cow, 377 u64 start, u64 ram_size, 378 u64 compressed_size, 379 struct page **pages, 380 unsigned long nr_pages, 381 int compress_type) 382 { 383 struct async_extent *async_extent; 384 385 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 386 BUG_ON(!async_extent); /* -ENOMEM */ 387 async_extent->start = start; 388 async_extent->ram_size = ram_size; 389 async_extent->compressed_size = compressed_size; 390 async_extent->pages = pages; 391 async_extent->nr_pages = nr_pages; 392 async_extent->compress_type = compress_type; 393 list_add_tail(&async_extent->list, &cow->extents); 394 return 0; 395 } 396 397 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 398 { 399 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 400 401 /* force compress */ 402 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 403 return 1; 404 /* defrag ioctl */ 405 if (BTRFS_I(inode)->defrag_compress) 406 return 1; 407 /* bad compression ratios */ 408 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 409 return 0; 410 if (btrfs_test_opt(fs_info, COMPRESS) || 411 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 412 BTRFS_I(inode)->prop_compress) 413 return btrfs_compress_heuristic(inode, start, end); 414 return 0; 415 } 416 417 static inline void inode_should_defrag(struct btrfs_inode *inode, 418 u64 start, u64 end, u64 num_bytes, u64 small_write) 419 { 420 /* If this is a small write inside eof, kick off a defrag */ 421 if (num_bytes < small_write && 422 (start > 0 || end + 1 < inode->disk_i_size)) 423 btrfs_add_inode_defrag(NULL, inode); 424 } 425 426 /* 427 * we create compressed extents in two phases. The first 428 * phase compresses a range of pages that have already been 429 * locked (both pages and state bits are locked). 430 * 431 * This is done inside an ordered work queue, and the compression 432 * is spread across many cpus. The actual IO submission is step 433 * two, and the ordered work queue takes care of making sure that 434 * happens in the same order things were put onto the queue by 435 * writepages and friends. 436 * 437 * If this code finds it can't get good compression, it puts an 438 * entry onto the work queue to write the uncompressed bytes. This 439 * makes sure that both compressed inodes and uncompressed inodes 440 * are written in the same order that the flusher thread sent them 441 * down. 442 */ 443 static noinline void compress_file_range(struct async_chunk *async_chunk, 444 int *num_added) 445 { 446 struct inode *inode = async_chunk->inode; 447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 448 u64 blocksize = fs_info->sectorsize; 449 u64 start = async_chunk->start; 450 u64 end = async_chunk->end; 451 u64 actual_end; 452 int ret = 0; 453 struct page **pages = NULL; 454 unsigned long nr_pages; 455 unsigned long total_compressed = 0; 456 unsigned long total_in = 0; 457 int i; 458 int will_compress; 459 int compress_type = fs_info->compress_type; 460 int redirty = 0; 461 462 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 463 SZ_16K); 464 465 actual_end = min_t(u64, i_size_read(inode), end + 1); 466 again: 467 will_compress = 0; 468 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 469 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 470 nr_pages = min_t(unsigned long, nr_pages, 471 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 472 473 /* 474 * we don't want to send crud past the end of i_size through 475 * compression, that's just a waste of CPU time. So, if the 476 * end of the file is before the start of our current 477 * requested range of bytes, we bail out to the uncompressed 478 * cleanup code that can deal with all of this. 479 * 480 * It isn't really the fastest way to fix things, but this is a 481 * very uncommon corner. 482 */ 483 if (actual_end <= start) 484 goto cleanup_and_bail_uncompressed; 485 486 total_compressed = actual_end - start; 487 488 /* 489 * skip compression for a small file range(<=blocksize) that 490 * isn't an inline extent, since it doesn't save disk space at all. 491 */ 492 if (total_compressed <= blocksize && 493 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 494 goto cleanup_and_bail_uncompressed; 495 496 total_compressed = min_t(unsigned long, total_compressed, 497 BTRFS_MAX_UNCOMPRESSED); 498 total_in = 0; 499 ret = 0; 500 501 /* 502 * we do compression for mount -o compress and when the 503 * inode has not been flagged as nocompress. This flag can 504 * change at any time if we discover bad compression ratios. 505 */ 506 if (inode_need_compress(inode, start, end)) { 507 WARN_ON(pages); 508 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 509 if (!pages) { 510 /* just bail out to the uncompressed code */ 511 nr_pages = 0; 512 goto cont; 513 } 514 515 if (BTRFS_I(inode)->defrag_compress) 516 compress_type = BTRFS_I(inode)->defrag_compress; 517 else if (BTRFS_I(inode)->prop_compress) 518 compress_type = BTRFS_I(inode)->prop_compress; 519 520 /* 521 * we need to call clear_page_dirty_for_io on each 522 * page in the range. Otherwise applications with the file 523 * mmap'd can wander in and change the page contents while 524 * we are compressing them. 525 * 526 * If the compression fails for any reason, we set the pages 527 * dirty again later on. 528 * 529 * Note that the remaining part is redirtied, the start pointer 530 * has moved, the end is the original one. 531 */ 532 if (!redirty) { 533 extent_range_clear_dirty_for_io(inode, start, end); 534 redirty = 1; 535 } 536 537 /* Compression level is applied here and only here */ 538 ret = btrfs_compress_pages( 539 compress_type | (fs_info->compress_level << 4), 540 inode->i_mapping, start, 541 pages, 542 &nr_pages, 543 &total_in, 544 &total_compressed); 545 546 if (!ret) { 547 unsigned long offset = offset_in_page(total_compressed); 548 struct page *page = pages[nr_pages - 1]; 549 char *kaddr; 550 551 /* zero the tail end of the last page, we might be 552 * sending it down to disk 553 */ 554 if (offset) { 555 kaddr = kmap_atomic(page); 556 memset(kaddr + offset, 0, 557 PAGE_SIZE - offset); 558 kunmap_atomic(kaddr); 559 } 560 will_compress = 1; 561 } 562 } 563 cont: 564 if (start == 0) { 565 /* lets try to make an inline extent */ 566 if (ret || total_in < actual_end) { 567 /* we didn't compress the entire range, try 568 * to make an uncompressed inline extent. 569 */ 570 ret = cow_file_range_inline(inode, start, end, 0, 571 BTRFS_COMPRESS_NONE, NULL); 572 } else { 573 /* try making a compressed inline extent */ 574 ret = cow_file_range_inline(inode, start, end, 575 total_compressed, 576 compress_type, pages); 577 } 578 if (ret <= 0) { 579 unsigned long clear_flags = EXTENT_DELALLOC | 580 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 581 EXTENT_DO_ACCOUNTING; 582 unsigned long page_error_op; 583 584 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 585 586 /* 587 * inline extent creation worked or returned error, 588 * we don't need to create any more async work items. 589 * Unlock and free up our temp pages. 590 * 591 * We use DO_ACCOUNTING here because we need the 592 * delalloc_release_metadata to be done _after_ we drop 593 * our outstanding extent for clearing delalloc for this 594 * range. 595 */ 596 extent_clear_unlock_delalloc(inode, start, end, end, 597 NULL, clear_flags, 598 PAGE_UNLOCK | 599 PAGE_CLEAR_DIRTY | 600 PAGE_SET_WRITEBACK | 601 page_error_op | 602 PAGE_END_WRITEBACK); 603 goto free_pages_out; 604 } 605 } 606 607 if (will_compress) { 608 /* 609 * we aren't doing an inline extent round the compressed size 610 * up to a block size boundary so the allocator does sane 611 * things 612 */ 613 total_compressed = ALIGN(total_compressed, blocksize); 614 615 /* 616 * one last check to make sure the compression is really a 617 * win, compare the page count read with the blocks on disk, 618 * compression must free at least one sector size 619 */ 620 total_in = ALIGN(total_in, PAGE_SIZE); 621 if (total_compressed + blocksize <= total_in) { 622 *num_added += 1; 623 624 /* 625 * The async work queues will take care of doing actual 626 * allocation on disk for these compressed pages, and 627 * will submit them to the elevator. 628 */ 629 add_async_extent(async_chunk, start, total_in, 630 total_compressed, pages, nr_pages, 631 compress_type); 632 633 if (start + total_in < end) { 634 start += total_in; 635 pages = NULL; 636 cond_resched(); 637 goto again; 638 } 639 return; 640 } 641 } 642 if (pages) { 643 /* 644 * the compression code ran but failed to make things smaller, 645 * free any pages it allocated and our page pointer array 646 */ 647 for (i = 0; i < nr_pages; i++) { 648 WARN_ON(pages[i]->mapping); 649 put_page(pages[i]); 650 } 651 kfree(pages); 652 pages = NULL; 653 total_compressed = 0; 654 nr_pages = 0; 655 656 /* flag the file so we don't compress in the future */ 657 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 658 !(BTRFS_I(inode)->prop_compress)) { 659 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 660 } 661 } 662 cleanup_and_bail_uncompressed: 663 /* 664 * No compression, but we still need to write the pages in the file 665 * we've been given so far. redirty the locked page if it corresponds 666 * to our extent and set things up for the async work queue to run 667 * cow_file_range to do the normal delalloc dance. 668 */ 669 if (page_offset(async_chunk->locked_page) >= start && 670 page_offset(async_chunk->locked_page) <= end) 671 __set_page_dirty_nobuffers(async_chunk->locked_page); 672 /* unlocked later on in the async handlers */ 673 674 if (redirty) 675 extent_range_redirty_for_io(inode, start, end); 676 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 677 BTRFS_COMPRESS_NONE); 678 *num_added += 1; 679 680 return; 681 682 free_pages_out: 683 for (i = 0; i < nr_pages; i++) { 684 WARN_ON(pages[i]->mapping); 685 put_page(pages[i]); 686 } 687 kfree(pages); 688 } 689 690 static void free_async_extent_pages(struct async_extent *async_extent) 691 { 692 int i; 693 694 if (!async_extent->pages) 695 return; 696 697 for (i = 0; i < async_extent->nr_pages; i++) { 698 WARN_ON(async_extent->pages[i]->mapping); 699 put_page(async_extent->pages[i]); 700 } 701 kfree(async_extent->pages); 702 async_extent->nr_pages = 0; 703 async_extent->pages = NULL; 704 } 705 706 /* 707 * phase two of compressed writeback. This is the ordered portion 708 * of the code, which only gets called in the order the work was 709 * queued. We walk all the async extents created by compress_file_range 710 * and send them down to the disk. 711 */ 712 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 713 { 714 struct inode *inode = async_chunk->inode; 715 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 716 struct async_extent *async_extent; 717 u64 alloc_hint = 0; 718 struct btrfs_key ins; 719 struct extent_map *em; 720 struct btrfs_root *root = BTRFS_I(inode)->root; 721 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 722 int ret = 0; 723 724 again: 725 while (!list_empty(&async_chunk->extents)) { 726 async_extent = list_entry(async_chunk->extents.next, 727 struct async_extent, list); 728 list_del(&async_extent->list); 729 730 retry: 731 lock_extent(io_tree, async_extent->start, 732 async_extent->start + async_extent->ram_size - 1); 733 /* did the compression code fall back to uncompressed IO? */ 734 if (!async_extent->pages) { 735 int page_started = 0; 736 unsigned long nr_written = 0; 737 738 /* allocate blocks */ 739 ret = cow_file_range(inode, async_chunk->locked_page, 740 async_extent->start, 741 async_extent->start + 742 async_extent->ram_size - 1, 743 async_extent->start + 744 async_extent->ram_size - 1, 745 &page_started, &nr_written, 0, 746 NULL); 747 748 /* JDM XXX */ 749 750 /* 751 * if page_started, cow_file_range inserted an 752 * inline extent and took care of all the unlocking 753 * and IO for us. Otherwise, we need to submit 754 * all those pages down to the drive. 755 */ 756 if (!page_started && !ret) 757 extent_write_locked_range(inode, 758 async_extent->start, 759 async_extent->start + 760 async_extent->ram_size - 1, 761 WB_SYNC_ALL); 762 else if (ret) 763 unlock_page(async_chunk->locked_page); 764 kfree(async_extent); 765 cond_resched(); 766 continue; 767 } 768 769 ret = btrfs_reserve_extent(root, async_extent->ram_size, 770 async_extent->compressed_size, 771 async_extent->compressed_size, 772 0, alloc_hint, &ins, 1, 1); 773 if (ret) { 774 free_async_extent_pages(async_extent); 775 776 if (ret == -ENOSPC) { 777 unlock_extent(io_tree, async_extent->start, 778 async_extent->start + 779 async_extent->ram_size - 1); 780 781 /* 782 * we need to redirty the pages if we decide to 783 * fallback to uncompressed IO, otherwise we 784 * will not submit these pages down to lower 785 * layers. 786 */ 787 extent_range_redirty_for_io(inode, 788 async_extent->start, 789 async_extent->start + 790 async_extent->ram_size - 1); 791 792 goto retry; 793 } 794 goto out_free; 795 } 796 /* 797 * here we're doing allocation and writeback of the 798 * compressed pages 799 */ 800 em = create_io_em(inode, async_extent->start, 801 async_extent->ram_size, /* len */ 802 async_extent->start, /* orig_start */ 803 ins.objectid, /* block_start */ 804 ins.offset, /* block_len */ 805 ins.offset, /* orig_block_len */ 806 async_extent->ram_size, /* ram_bytes */ 807 async_extent->compress_type, 808 BTRFS_ORDERED_COMPRESSED); 809 if (IS_ERR(em)) 810 /* ret value is not necessary due to void function */ 811 goto out_free_reserve; 812 free_extent_map(em); 813 814 ret = btrfs_add_ordered_extent_compress(inode, 815 async_extent->start, 816 ins.objectid, 817 async_extent->ram_size, 818 ins.offset, 819 BTRFS_ORDERED_COMPRESSED, 820 async_extent->compress_type); 821 if (ret) { 822 btrfs_drop_extent_cache(BTRFS_I(inode), 823 async_extent->start, 824 async_extent->start + 825 async_extent->ram_size - 1, 0); 826 goto out_free_reserve; 827 } 828 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 829 830 /* 831 * clear dirty, set writeback and unlock the pages. 832 */ 833 extent_clear_unlock_delalloc(inode, async_extent->start, 834 async_extent->start + 835 async_extent->ram_size - 1, 836 async_extent->start + 837 async_extent->ram_size - 1, 838 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 839 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 840 PAGE_SET_WRITEBACK); 841 if (btrfs_submit_compressed_write(inode, 842 async_extent->start, 843 async_extent->ram_size, 844 ins.objectid, 845 ins.offset, async_extent->pages, 846 async_extent->nr_pages, 847 async_chunk->write_flags)) { 848 struct page *p = async_extent->pages[0]; 849 const u64 start = async_extent->start; 850 const u64 end = start + async_extent->ram_size - 1; 851 852 p->mapping = inode->i_mapping; 853 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 854 855 p->mapping = NULL; 856 extent_clear_unlock_delalloc(inode, start, end, end, 857 NULL, 0, 858 PAGE_END_WRITEBACK | 859 PAGE_SET_ERROR); 860 free_async_extent_pages(async_extent); 861 } 862 alloc_hint = ins.objectid + ins.offset; 863 kfree(async_extent); 864 cond_resched(); 865 } 866 return; 867 out_free_reserve: 868 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 869 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 870 out_free: 871 extent_clear_unlock_delalloc(inode, async_extent->start, 872 async_extent->start + 873 async_extent->ram_size - 1, 874 async_extent->start + 875 async_extent->ram_size - 1, 876 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 877 EXTENT_DELALLOC_NEW | 878 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 879 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 880 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 881 PAGE_SET_ERROR); 882 free_async_extent_pages(async_extent); 883 kfree(async_extent); 884 goto again; 885 } 886 887 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 888 u64 num_bytes) 889 { 890 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 891 struct extent_map *em; 892 u64 alloc_hint = 0; 893 894 read_lock(&em_tree->lock); 895 em = search_extent_mapping(em_tree, start, num_bytes); 896 if (em) { 897 /* 898 * if block start isn't an actual block number then find the 899 * first block in this inode and use that as a hint. If that 900 * block is also bogus then just don't worry about it. 901 */ 902 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 903 free_extent_map(em); 904 em = search_extent_mapping(em_tree, 0, 0); 905 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 906 alloc_hint = em->block_start; 907 if (em) 908 free_extent_map(em); 909 } else { 910 alloc_hint = em->block_start; 911 free_extent_map(em); 912 } 913 } 914 read_unlock(&em_tree->lock); 915 916 return alloc_hint; 917 } 918 919 /* 920 * when extent_io.c finds a delayed allocation range in the file, 921 * the call backs end up in this code. The basic idea is to 922 * allocate extents on disk for the range, and create ordered data structs 923 * in ram to track those extents. 924 * 925 * locked_page is the page that writepage had locked already. We use 926 * it to make sure we don't do extra locks or unlocks. 927 * 928 * *page_started is set to one if we unlock locked_page and do everything 929 * required to start IO on it. It may be clean and already done with 930 * IO when we return. 931 */ 932 static noinline int cow_file_range(struct inode *inode, 933 struct page *locked_page, 934 u64 start, u64 end, u64 delalloc_end, 935 int *page_started, unsigned long *nr_written, 936 int unlock, struct btrfs_dedupe_hash *hash) 937 { 938 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 939 struct btrfs_root *root = BTRFS_I(inode)->root; 940 u64 alloc_hint = 0; 941 u64 num_bytes; 942 unsigned long ram_size; 943 u64 cur_alloc_size = 0; 944 u64 blocksize = fs_info->sectorsize; 945 struct btrfs_key ins; 946 struct extent_map *em; 947 unsigned clear_bits; 948 unsigned long page_ops; 949 bool extent_reserved = false; 950 int ret = 0; 951 952 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 953 WARN_ON_ONCE(1); 954 ret = -EINVAL; 955 goto out_unlock; 956 } 957 958 num_bytes = ALIGN(end - start + 1, blocksize); 959 num_bytes = max(blocksize, num_bytes); 960 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 961 962 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 963 964 if (start == 0) { 965 /* lets try to make an inline extent */ 966 ret = cow_file_range_inline(inode, start, end, 0, 967 BTRFS_COMPRESS_NONE, NULL); 968 if (ret == 0) { 969 /* 970 * We use DO_ACCOUNTING here because we need the 971 * delalloc_release_metadata to be run _after_ we drop 972 * our outstanding extent for clearing delalloc for this 973 * range. 974 */ 975 extent_clear_unlock_delalloc(inode, start, end, 976 delalloc_end, NULL, 977 EXTENT_LOCKED | EXTENT_DELALLOC | 978 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 979 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 980 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 981 PAGE_END_WRITEBACK); 982 *nr_written = *nr_written + 983 (end - start + PAGE_SIZE) / PAGE_SIZE; 984 *page_started = 1; 985 goto out; 986 } else if (ret < 0) { 987 goto out_unlock; 988 } 989 } 990 991 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 992 btrfs_drop_extent_cache(BTRFS_I(inode), start, 993 start + num_bytes - 1, 0); 994 995 while (num_bytes > 0) { 996 cur_alloc_size = num_bytes; 997 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 998 fs_info->sectorsize, 0, alloc_hint, 999 &ins, 1, 1); 1000 if (ret < 0) 1001 goto out_unlock; 1002 cur_alloc_size = ins.offset; 1003 extent_reserved = true; 1004 1005 ram_size = ins.offset; 1006 em = create_io_em(inode, start, ins.offset, /* len */ 1007 start, /* orig_start */ 1008 ins.objectid, /* block_start */ 1009 ins.offset, /* block_len */ 1010 ins.offset, /* orig_block_len */ 1011 ram_size, /* ram_bytes */ 1012 BTRFS_COMPRESS_NONE, /* compress_type */ 1013 BTRFS_ORDERED_REGULAR /* type */); 1014 if (IS_ERR(em)) { 1015 ret = PTR_ERR(em); 1016 goto out_reserve; 1017 } 1018 free_extent_map(em); 1019 1020 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1021 ram_size, cur_alloc_size, 0); 1022 if (ret) 1023 goto out_drop_extent_cache; 1024 1025 if (root->root_key.objectid == 1026 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1027 ret = btrfs_reloc_clone_csums(inode, start, 1028 cur_alloc_size); 1029 /* 1030 * Only drop cache here, and process as normal. 1031 * 1032 * We must not allow extent_clear_unlock_delalloc() 1033 * at out_unlock label to free meta of this ordered 1034 * extent, as its meta should be freed by 1035 * btrfs_finish_ordered_io(). 1036 * 1037 * So we must continue until @start is increased to 1038 * skip current ordered extent. 1039 */ 1040 if (ret) 1041 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1042 start + ram_size - 1, 0); 1043 } 1044 1045 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1046 1047 /* we're not doing compressed IO, don't unlock the first 1048 * page (which the caller expects to stay locked), don't 1049 * clear any dirty bits and don't set any writeback bits 1050 * 1051 * Do set the Private2 bit so we know this page was properly 1052 * setup for writepage 1053 */ 1054 page_ops = unlock ? PAGE_UNLOCK : 0; 1055 page_ops |= PAGE_SET_PRIVATE2; 1056 1057 extent_clear_unlock_delalloc(inode, start, 1058 start + ram_size - 1, 1059 delalloc_end, locked_page, 1060 EXTENT_LOCKED | EXTENT_DELALLOC, 1061 page_ops); 1062 if (num_bytes < cur_alloc_size) 1063 num_bytes = 0; 1064 else 1065 num_bytes -= cur_alloc_size; 1066 alloc_hint = ins.objectid + ins.offset; 1067 start += cur_alloc_size; 1068 extent_reserved = false; 1069 1070 /* 1071 * btrfs_reloc_clone_csums() error, since start is increased 1072 * extent_clear_unlock_delalloc() at out_unlock label won't 1073 * free metadata of current ordered extent, we're OK to exit. 1074 */ 1075 if (ret) 1076 goto out_unlock; 1077 } 1078 out: 1079 return ret; 1080 1081 out_drop_extent_cache: 1082 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1083 out_reserve: 1084 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1085 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1086 out_unlock: 1087 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1088 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1089 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1090 PAGE_END_WRITEBACK; 1091 /* 1092 * If we reserved an extent for our delalloc range (or a subrange) and 1093 * failed to create the respective ordered extent, then it means that 1094 * when we reserved the extent we decremented the extent's size from 1095 * the data space_info's bytes_may_use counter and incremented the 1096 * space_info's bytes_reserved counter by the same amount. We must make 1097 * sure extent_clear_unlock_delalloc() does not try to decrement again 1098 * the data space_info's bytes_may_use counter, therefore we do not pass 1099 * it the flag EXTENT_CLEAR_DATA_RESV. 1100 */ 1101 if (extent_reserved) { 1102 extent_clear_unlock_delalloc(inode, start, 1103 start + cur_alloc_size, 1104 start + cur_alloc_size, 1105 locked_page, 1106 clear_bits, 1107 page_ops); 1108 start += cur_alloc_size; 1109 if (start >= end) 1110 goto out; 1111 } 1112 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1113 locked_page, 1114 clear_bits | EXTENT_CLEAR_DATA_RESV, 1115 page_ops); 1116 goto out; 1117 } 1118 1119 /* 1120 * work queue call back to started compression on a file and pages 1121 */ 1122 static noinline void async_cow_start(struct btrfs_work *work) 1123 { 1124 struct async_chunk *async_chunk; 1125 int num_added = 0; 1126 1127 async_chunk = container_of(work, struct async_chunk, work); 1128 1129 compress_file_range(async_chunk, &num_added); 1130 if (num_added == 0) { 1131 btrfs_add_delayed_iput(async_chunk->inode); 1132 async_chunk->inode = NULL; 1133 } 1134 } 1135 1136 /* 1137 * work queue call back to submit previously compressed pages 1138 */ 1139 static noinline void async_cow_submit(struct btrfs_work *work) 1140 { 1141 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1142 work); 1143 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1144 unsigned long nr_pages; 1145 1146 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1147 PAGE_SHIFT; 1148 1149 /* atomic_sub_return implies a barrier */ 1150 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1151 5 * SZ_1M) 1152 cond_wake_up_nomb(&fs_info->async_submit_wait); 1153 1154 /* 1155 * ->inode could be NULL if async_chunk_start has failed to compress, 1156 * in which case we don't have anything to submit, yet we need to 1157 * always adjust ->async_delalloc_pages as its paired with the init 1158 * happening in cow_file_range_async 1159 */ 1160 if (async_chunk->inode) 1161 submit_compressed_extents(async_chunk); 1162 } 1163 1164 static noinline void async_cow_free(struct btrfs_work *work) 1165 { 1166 struct async_chunk *async_chunk; 1167 1168 async_chunk = container_of(work, struct async_chunk, work); 1169 if (async_chunk->inode) 1170 btrfs_add_delayed_iput(async_chunk->inode); 1171 /* 1172 * Since the pointer to 'pending' is at the beginning of the array of 1173 * async_chunk's, freeing it ensures the whole array has been freed. 1174 */ 1175 if (atomic_dec_and_test(async_chunk->pending)) 1176 kvfree(async_chunk->pending); 1177 } 1178 1179 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1180 u64 start, u64 end, int *page_started, 1181 unsigned long *nr_written, 1182 unsigned int write_flags) 1183 { 1184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1185 struct async_cow *ctx; 1186 struct async_chunk *async_chunk; 1187 unsigned long nr_pages; 1188 u64 cur_end; 1189 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1190 int i; 1191 bool should_compress; 1192 unsigned nofs_flag; 1193 1194 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1195 1196 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1197 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1198 num_chunks = 1; 1199 should_compress = false; 1200 } else { 1201 should_compress = true; 1202 } 1203 1204 nofs_flag = memalloc_nofs_save(); 1205 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1206 memalloc_nofs_restore(nofs_flag); 1207 1208 if (!ctx) { 1209 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1210 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1211 EXTENT_DO_ACCOUNTING; 1212 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1213 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1214 PAGE_SET_ERROR; 1215 1216 extent_clear_unlock_delalloc(inode, start, end, 0, locked_page, 1217 clear_bits, page_ops); 1218 return -ENOMEM; 1219 } 1220 1221 async_chunk = ctx->chunks; 1222 atomic_set(&ctx->num_chunks, num_chunks); 1223 1224 for (i = 0; i < num_chunks; i++) { 1225 if (should_compress) 1226 cur_end = min(end, start + SZ_512K - 1); 1227 else 1228 cur_end = end; 1229 1230 /* 1231 * igrab is called higher up in the call chain, take only the 1232 * lightweight reference for the callback lifetime 1233 */ 1234 ihold(inode); 1235 async_chunk[i].pending = &ctx->num_chunks; 1236 async_chunk[i].inode = inode; 1237 async_chunk[i].start = start; 1238 async_chunk[i].end = cur_end; 1239 async_chunk[i].locked_page = locked_page; 1240 async_chunk[i].write_flags = write_flags; 1241 INIT_LIST_HEAD(&async_chunk[i].extents); 1242 1243 btrfs_init_work(&async_chunk[i].work, 1244 btrfs_delalloc_helper, 1245 async_cow_start, async_cow_submit, 1246 async_cow_free); 1247 1248 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1249 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1250 1251 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1252 1253 *nr_written += nr_pages; 1254 start = cur_end + 1; 1255 } 1256 *page_started = 1; 1257 return 0; 1258 } 1259 1260 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1261 u64 bytenr, u64 num_bytes) 1262 { 1263 int ret; 1264 struct btrfs_ordered_sum *sums; 1265 LIST_HEAD(list); 1266 1267 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1268 bytenr + num_bytes - 1, &list, 0); 1269 if (ret == 0 && list_empty(&list)) 1270 return 0; 1271 1272 while (!list_empty(&list)) { 1273 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1274 list_del(&sums->list); 1275 kfree(sums); 1276 } 1277 if (ret < 0) 1278 return ret; 1279 return 1; 1280 } 1281 1282 /* 1283 * when nowcow writeback call back. This checks for snapshots or COW copies 1284 * of the extents that exist in the file, and COWs the file as required. 1285 * 1286 * If no cow copies or snapshots exist, we write directly to the existing 1287 * blocks on disk 1288 */ 1289 static noinline int run_delalloc_nocow(struct inode *inode, 1290 struct page *locked_page, 1291 u64 start, u64 end, int *page_started, int force, 1292 unsigned long *nr_written) 1293 { 1294 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1295 struct btrfs_root *root = BTRFS_I(inode)->root; 1296 struct extent_buffer *leaf; 1297 struct btrfs_path *path; 1298 struct btrfs_file_extent_item *fi; 1299 struct btrfs_key found_key; 1300 struct extent_map *em; 1301 u64 cow_start; 1302 u64 cur_offset; 1303 u64 extent_end; 1304 u64 extent_offset; 1305 u64 disk_bytenr; 1306 u64 num_bytes; 1307 u64 disk_num_bytes; 1308 u64 ram_bytes; 1309 int extent_type; 1310 int ret; 1311 int type; 1312 int nocow; 1313 int check_prev = 1; 1314 bool nolock; 1315 u64 ino = btrfs_ino(BTRFS_I(inode)); 1316 1317 path = btrfs_alloc_path(); 1318 if (!path) { 1319 extent_clear_unlock_delalloc(inode, start, end, end, 1320 locked_page, 1321 EXTENT_LOCKED | EXTENT_DELALLOC | 1322 EXTENT_DO_ACCOUNTING | 1323 EXTENT_DEFRAG, PAGE_UNLOCK | 1324 PAGE_CLEAR_DIRTY | 1325 PAGE_SET_WRITEBACK | 1326 PAGE_END_WRITEBACK); 1327 return -ENOMEM; 1328 } 1329 1330 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1331 1332 cow_start = (u64)-1; 1333 cur_offset = start; 1334 while (1) { 1335 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1336 cur_offset, 0); 1337 if (ret < 0) 1338 goto error; 1339 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1340 leaf = path->nodes[0]; 1341 btrfs_item_key_to_cpu(leaf, &found_key, 1342 path->slots[0] - 1); 1343 if (found_key.objectid == ino && 1344 found_key.type == BTRFS_EXTENT_DATA_KEY) 1345 path->slots[0]--; 1346 } 1347 check_prev = 0; 1348 next_slot: 1349 leaf = path->nodes[0]; 1350 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1351 ret = btrfs_next_leaf(root, path); 1352 if (ret < 0) { 1353 if (cow_start != (u64)-1) 1354 cur_offset = cow_start; 1355 goto error; 1356 } 1357 if (ret > 0) 1358 break; 1359 leaf = path->nodes[0]; 1360 } 1361 1362 nocow = 0; 1363 disk_bytenr = 0; 1364 num_bytes = 0; 1365 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1366 1367 if (found_key.objectid > ino) 1368 break; 1369 if (WARN_ON_ONCE(found_key.objectid < ino) || 1370 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1371 path->slots[0]++; 1372 goto next_slot; 1373 } 1374 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1375 found_key.offset > end) 1376 break; 1377 1378 if (found_key.offset > cur_offset) { 1379 extent_end = found_key.offset; 1380 extent_type = 0; 1381 goto out_check; 1382 } 1383 1384 fi = btrfs_item_ptr(leaf, path->slots[0], 1385 struct btrfs_file_extent_item); 1386 extent_type = btrfs_file_extent_type(leaf, fi); 1387 1388 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1389 if (extent_type == BTRFS_FILE_EXTENT_REG || 1390 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1391 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1392 extent_offset = btrfs_file_extent_offset(leaf, fi); 1393 extent_end = found_key.offset + 1394 btrfs_file_extent_num_bytes(leaf, fi); 1395 disk_num_bytes = 1396 btrfs_file_extent_disk_num_bytes(leaf, fi); 1397 if (extent_end <= start) { 1398 path->slots[0]++; 1399 goto next_slot; 1400 } 1401 if (disk_bytenr == 0) 1402 goto out_check; 1403 if (btrfs_file_extent_compression(leaf, fi) || 1404 btrfs_file_extent_encryption(leaf, fi) || 1405 btrfs_file_extent_other_encoding(leaf, fi)) 1406 goto out_check; 1407 /* 1408 * Do the same check as in btrfs_cross_ref_exist but 1409 * without the unnecessary search. 1410 */ 1411 if (!nolock && 1412 btrfs_file_extent_generation(leaf, fi) <= 1413 btrfs_root_last_snapshot(&root->root_item)) 1414 goto out_check; 1415 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1416 goto out_check; 1417 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1418 goto out_check; 1419 ret = btrfs_cross_ref_exist(root, ino, 1420 found_key.offset - 1421 extent_offset, disk_bytenr); 1422 if (ret) { 1423 /* 1424 * ret could be -EIO if the above fails to read 1425 * metadata. 1426 */ 1427 if (ret < 0) { 1428 if (cow_start != (u64)-1) 1429 cur_offset = cow_start; 1430 goto error; 1431 } 1432 1433 WARN_ON_ONCE(nolock); 1434 goto out_check; 1435 } 1436 disk_bytenr += extent_offset; 1437 disk_bytenr += cur_offset - found_key.offset; 1438 num_bytes = min(end + 1, extent_end) - cur_offset; 1439 /* 1440 * if there are pending snapshots for this root, 1441 * we fall into common COW way. 1442 */ 1443 if (!nolock && atomic_read(&root->snapshot_force_cow)) 1444 goto out_check; 1445 /* 1446 * force cow if csum exists in the range. 1447 * this ensure that csum for a given extent are 1448 * either valid or do not exist. 1449 */ 1450 ret = csum_exist_in_range(fs_info, disk_bytenr, 1451 num_bytes); 1452 if (ret) { 1453 /* 1454 * ret could be -EIO if the above fails to read 1455 * metadata. 1456 */ 1457 if (ret < 0) { 1458 if (cow_start != (u64)-1) 1459 cur_offset = cow_start; 1460 goto error; 1461 } 1462 WARN_ON_ONCE(nolock); 1463 goto out_check; 1464 } 1465 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1466 goto out_check; 1467 nocow = 1; 1468 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1469 extent_end = found_key.offset + 1470 btrfs_file_extent_ram_bytes(leaf, fi); 1471 extent_end = ALIGN(extent_end, 1472 fs_info->sectorsize); 1473 } else { 1474 BUG(); 1475 } 1476 out_check: 1477 if (extent_end <= start) { 1478 path->slots[0]++; 1479 if (nocow) 1480 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1481 goto next_slot; 1482 } 1483 if (!nocow) { 1484 if (cow_start == (u64)-1) 1485 cow_start = cur_offset; 1486 cur_offset = extent_end; 1487 if (cur_offset > end) 1488 break; 1489 path->slots[0]++; 1490 goto next_slot; 1491 } 1492 1493 btrfs_release_path(path); 1494 if (cow_start != (u64)-1) { 1495 ret = cow_file_range(inode, locked_page, 1496 cow_start, found_key.offset - 1, 1497 end, page_started, nr_written, 1, 1498 NULL); 1499 if (ret) { 1500 if (nocow) 1501 btrfs_dec_nocow_writers(fs_info, 1502 disk_bytenr); 1503 goto error; 1504 } 1505 cow_start = (u64)-1; 1506 } 1507 1508 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1509 u64 orig_start = found_key.offset - extent_offset; 1510 1511 em = create_io_em(inode, cur_offset, num_bytes, 1512 orig_start, 1513 disk_bytenr, /* block_start */ 1514 num_bytes, /* block_len */ 1515 disk_num_bytes, /* orig_block_len */ 1516 ram_bytes, BTRFS_COMPRESS_NONE, 1517 BTRFS_ORDERED_PREALLOC); 1518 if (IS_ERR(em)) { 1519 if (nocow) 1520 btrfs_dec_nocow_writers(fs_info, 1521 disk_bytenr); 1522 ret = PTR_ERR(em); 1523 goto error; 1524 } 1525 free_extent_map(em); 1526 } 1527 1528 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1529 type = BTRFS_ORDERED_PREALLOC; 1530 } else { 1531 type = BTRFS_ORDERED_NOCOW; 1532 } 1533 1534 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1535 num_bytes, num_bytes, type); 1536 if (nocow) 1537 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1538 BUG_ON(ret); /* -ENOMEM */ 1539 1540 if (root->root_key.objectid == 1541 BTRFS_DATA_RELOC_TREE_OBJECTID) 1542 /* 1543 * Error handled later, as we must prevent 1544 * extent_clear_unlock_delalloc() in error handler 1545 * from freeing metadata of created ordered extent. 1546 */ 1547 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1548 num_bytes); 1549 1550 extent_clear_unlock_delalloc(inode, cur_offset, 1551 cur_offset + num_bytes - 1, end, 1552 locked_page, EXTENT_LOCKED | 1553 EXTENT_DELALLOC | 1554 EXTENT_CLEAR_DATA_RESV, 1555 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1556 1557 cur_offset = extent_end; 1558 1559 /* 1560 * btrfs_reloc_clone_csums() error, now we're OK to call error 1561 * handler, as metadata for created ordered extent will only 1562 * be freed by btrfs_finish_ordered_io(). 1563 */ 1564 if (ret) 1565 goto error; 1566 if (cur_offset > end) 1567 break; 1568 } 1569 btrfs_release_path(path); 1570 1571 if (cur_offset <= end && cow_start == (u64)-1) 1572 cow_start = cur_offset; 1573 1574 if (cow_start != (u64)-1) { 1575 cur_offset = end; 1576 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1577 page_started, nr_written, 1, NULL); 1578 if (ret) 1579 goto error; 1580 } 1581 1582 error: 1583 if (ret && cur_offset < end) 1584 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1585 locked_page, EXTENT_LOCKED | 1586 EXTENT_DELALLOC | EXTENT_DEFRAG | 1587 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1588 PAGE_CLEAR_DIRTY | 1589 PAGE_SET_WRITEBACK | 1590 PAGE_END_WRITEBACK); 1591 btrfs_free_path(path); 1592 return ret; 1593 } 1594 1595 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1596 { 1597 1598 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1599 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1600 return 0; 1601 1602 /* 1603 * @defrag_bytes is a hint value, no spinlock held here, 1604 * if is not zero, it means the file is defragging. 1605 * Force cow if given extent needs to be defragged. 1606 */ 1607 if (BTRFS_I(inode)->defrag_bytes && 1608 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1609 EXTENT_DEFRAG, 0, NULL)) 1610 return 1; 1611 1612 return 0; 1613 } 1614 1615 /* 1616 * Function to process delayed allocation (create CoW) for ranges which are 1617 * being touched for the first time. 1618 */ 1619 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1620 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1621 struct writeback_control *wbc) 1622 { 1623 int ret; 1624 int force_cow = need_force_cow(inode, start, end); 1625 unsigned int write_flags = wbc_to_write_flags(wbc); 1626 1627 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1628 ret = run_delalloc_nocow(inode, locked_page, start, end, 1629 page_started, 1, nr_written); 1630 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1631 ret = run_delalloc_nocow(inode, locked_page, start, end, 1632 page_started, 0, nr_written); 1633 } else if (!inode_need_compress(inode, start, end)) { 1634 ret = cow_file_range(inode, locked_page, start, end, end, 1635 page_started, nr_written, 1, NULL); 1636 } else { 1637 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1638 &BTRFS_I(inode)->runtime_flags); 1639 ret = cow_file_range_async(inode, locked_page, start, end, 1640 page_started, nr_written, 1641 write_flags); 1642 } 1643 if (ret) 1644 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1645 end - start + 1); 1646 return ret; 1647 } 1648 1649 void btrfs_split_delalloc_extent(struct inode *inode, 1650 struct extent_state *orig, u64 split) 1651 { 1652 u64 size; 1653 1654 /* not delalloc, ignore it */ 1655 if (!(orig->state & EXTENT_DELALLOC)) 1656 return; 1657 1658 size = orig->end - orig->start + 1; 1659 if (size > BTRFS_MAX_EXTENT_SIZE) { 1660 u32 num_extents; 1661 u64 new_size; 1662 1663 /* 1664 * See the explanation in btrfs_merge_delalloc_extent, the same 1665 * applies here, just in reverse. 1666 */ 1667 new_size = orig->end - split + 1; 1668 num_extents = count_max_extents(new_size); 1669 new_size = split - orig->start; 1670 num_extents += count_max_extents(new_size); 1671 if (count_max_extents(size) >= num_extents) 1672 return; 1673 } 1674 1675 spin_lock(&BTRFS_I(inode)->lock); 1676 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1677 spin_unlock(&BTRFS_I(inode)->lock); 1678 } 1679 1680 /* 1681 * Handle merged delayed allocation extents so we can keep track of new extents 1682 * that are just merged onto old extents, such as when we are doing sequential 1683 * writes, so we can properly account for the metadata space we'll need. 1684 */ 1685 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1686 struct extent_state *other) 1687 { 1688 u64 new_size, old_size; 1689 u32 num_extents; 1690 1691 /* not delalloc, ignore it */ 1692 if (!(other->state & EXTENT_DELALLOC)) 1693 return; 1694 1695 if (new->start > other->start) 1696 new_size = new->end - other->start + 1; 1697 else 1698 new_size = other->end - new->start + 1; 1699 1700 /* we're not bigger than the max, unreserve the space and go */ 1701 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1702 spin_lock(&BTRFS_I(inode)->lock); 1703 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1704 spin_unlock(&BTRFS_I(inode)->lock); 1705 return; 1706 } 1707 1708 /* 1709 * We have to add up either side to figure out how many extents were 1710 * accounted for before we merged into one big extent. If the number of 1711 * extents we accounted for is <= the amount we need for the new range 1712 * then we can return, otherwise drop. Think of it like this 1713 * 1714 * [ 4k][MAX_SIZE] 1715 * 1716 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1717 * need 2 outstanding extents, on one side we have 1 and the other side 1718 * we have 1 so they are == and we can return. But in this case 1719 * 1720 * [MAX_SIZE+4k][MAX_SIZE+4k] 1721 * 1722 * Each range on their own accounts for 2 extents, but merged together 1723 * they are only 3 extents worth of accounting, so we need to drop in 1724 * this case. 1725 */ 1726 old_size = other->end - other->start + 1; 1727 num_extents = count_max_extents(old_size); 1728 old_size = new->end - new->start + 1; 1729 num_extents += count_max_extents(old_size); 1730 if (count_max_extents(new_size) >= num_extents) 1731 return; 1732 1733 spin_lock(&BTRFS_I(inode)->lock); 1734 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1735 spin_unlock(&BTRFS_I(inode)->lock); 1736 } 1737 1738 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1739 struct inode *inode) 1740 { 1741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1742 1743 spin_lock(&root->delalloc_lock); 1744 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1745 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1746 &root->delalloc_inodes); 1747 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1748 &BTRFS_I(inode)->runtime_flags); 1749 root->nr_delalloc_inodes++; 1750 if (root->nr_delalloc_inodes == 1) { 1751 spin_lock(&fs_info->delalloc_root_lock); 1752 BUG_ON(!list_empty(&root->delalloc_root)); 1753 list_add_tail(&root->delalloc_root, 1754 &fs_info->delalloc_roots); 1755 spin_unlock(&fs_info->delalloc_root_lock); 1756 } 1757 } 1758 spin_unlock(&root->delalloc_lock); 1759 } 1760 1761 1762 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1763 struct btrfs_inode *inode) 1764 { 1765 struct btrfs_fs_info *fs_info = root->fs_info; 1766 1767 if (!list_empty(&inode->delalloc_inodes)) { 1768 list_del_init(&inode->delalloc_inodes); 1769 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1770 &inode->runtime_flags); 1771 root->nr_delalloc_inodes--; 1772 if (!root->nr_delalloc_inodes) { 1773 ASSERT(list_empty(&root->delalloc_inodes)); 1774 spin_lock(&fs_info->delalloc_root_lock); 1775 BUG_ON(list_empty(&root->delalloc_root)); 1776 list_del_init(&root->delalloc_root); 1777 spin_unlock(&fs_info->delalloc_root_lock); 1778 } 1779 } 1780 } 1781 1782 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1783 struct btrfs_inode *inode) 1784 { 1785 spin_lock(&root->delalloc_lock); 1786 __btrfs_del_delalloc_inode(root, inode); 1787 spin_unlock(&root->delalloc_lock); 1788 } 1789 1790 /* 1791 * Properly track delayed allocation bytes in the inode and to maintain the 1792 * list of inodes that have pending delalloc work to be done. 1793 */ 1794 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1795 unsigned *bits) 1796 { 1797 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1798 1799 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1800 WARN_ON(1); 1801 /* 1802 * set_bit and clear bit hooks normally require _irqsave/restore 1803 * but in this case, we are only testing for the DELALLOC 1804 * bit, which is only set or cleared with irqs on 1805 */ 1806 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1807 struct btrfs_root *root = BTRFS_I(inode)->root; 1808 u64 len = state->end + 1 - state->start; 1809 u32 num_extents = count_max_extents(len); 1810 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1811 1812 spin_lock(&BTRFS_I(inode)->lock); 1813 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1814 spin_unlock(&BTRFS_I(inode)->lock); 1815 1816 /* For sanity tests */ 1817 if (btrfs_is_testing(fs_info)) 1818 return; 1819 1820 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1821 fs_info->delalloc_batch); 1822 spin_lock(&BTRFS_I(inode)->lock); 1823 BTRFS_I(inode)->delalloc_bytes += len; 1824 if (*bits & EXTENT_DEFRAG) 1825 BTRFS_I(inode)->defrag_bytes += len; 1826 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1827 &BTRFS_I(inode)->runtime_flags)) 1828 btrfs_add_delalloc_inodes(root, inode); 1829 spin_unlock(&BTRFS_I(inode)->lock); 1830 } 1831 1832 if (!(state->state & EXTENT_DELALLOC_NEW) && 1833 (*bits & EXTENT_DELALLOC_NEW)) { 1834 spin_lock(&BTRFS_I(inode)->lock); 1835 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1836 state->start; 1837 spin_unlock(&BTRFS_I(inode)->lock); 1838 } 1839 } 1840 1841 /* 1842 * Once a range is no longer delalloc this function ensures that proper 1843 * accounting happens. 1844 */ 1845 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 1846 struct extent_state *state, unsigned *bits) 1847 { 1848 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1849 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 1850 u64 len = state->end + 1 - state->start; 1851 u32 num_extents = count_max_extents(len); 1852 1853 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1854 spin_lock(&inode->lock); 1855 inode->defrag_bytes -= len; 1856 spin_unlock(&inode->lock); 1857 } 1858 1859 /* 1860 * set_bit and clear bit hooks normally require _irqsave/restore 1861 * but in this case, we are only testing for the DELALLOC 1862 * bit, which is only set or cleared with irqs on 1863 */ 1864 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1865 struct btrfs_root *root = inode->root; 1866 bool do_list = !btrfs_is_free_space_inode(inode); 1867 1868 spin_lock(&inode->lock); 1869 btrfs_mod_outstanding_extents(inode, -num_extents); 1870 spin_unlock(&inode->lock); 1871 1872 /* 1873 * We don't reserve metadata space for space cache inodes so we 1874 * don't need to call delalloc_release_metadata if there is an 1875 * error. 1876 */ 1877 if (*bits & EXTENT_CLEAR_META_RESV && 1878 root != fs_info->tree_root) 1879 btrfs_delalloc_release_metadata(inode, len, false); 1880 1881 /* For sanity tests. */ 1882 if (btrfs_is_testing(fs_info)) 1883 return; 1884 1885 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1886 do_list && !(state->state & EXTENT_NORESERVE) && 1887 (*bits & EXTENT_CLEAR_DATA_RESV)) 1888 btrfs_free_reserved_data_space_noquota( 1889 &inode->vfs_inode, 1890 state->start, len); 1891 1892 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1893 fs_info->delalloc_batch); 1894 spin_lock(&inode->lock); 1895 inode->delalloc_bytes -= len; 1896 if (do_list && inode->delalloc_bytes == 0 && 1897 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1898 &inode->runtime_flags)) 1899 btrfs_del_delalloc_inode(root, inode); 1900 spin_unlock(&inode->lock); 1901 } 1902 1903 if ((state->state & EXTENT_DELALLOC_NEW) && 1904 (*bits & EXTENT_DELALLOC_NEW)) { 1905 spin_lock(&inode->lock); 1906 ASSERT(inode->new_delalloc_bytes >= len); 1907 inode->new_delalloc_bytes -= len; 1908 spin_unlock(&inode->lock); 1909 } 1910 } 1911 1912 /* 1913 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 1914 * in a chunk's stripe. This function ensures that bios do not span a 1915 * stripe/chunk 1916 * 1917 * @page - The page we are about to add to the bio 1918 * @size - size we want to add to the bio 1919 * @bio - bio we want to ensure is smaller than a stripe 1920 * @bio_flags - flags of the bio 1921 * 1922 * return 1 if page cannot be added to the bio 1923 * return 0 if page can be added to the bio 1924 * return error otherwise 1925 */ 1926 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 1927 unsigned long bio_flags) 1928 { 1929 struct inode *inode = page->mapping->host; 1930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1931 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1932 u64 length = 0; 1933 u64 map_length; 1934 int ret; 1935 1936 if (bio_flags & EXTENT_BIO_COMPRESSED) 1937 return 0; 1938 1939 length = bio->bi_iter.bi_size; 1940 map_length = length; 1941 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1942 NULL, 0); 1943 if (ret < 0) 1944 return ret; 1945 if (map_length < length + size) 1946 return 1; 1947 return 0; 1948 } 1949 1950 /* 1951 * in order to insert checksums into the metadata in large chunks, 1952 * we wait until bio submission time. All the pages in the bio are 1953 * checksummed and sums are attached onto the ordered extent record. 1954 * 1955 * At IO completion time the cums attached on the ordered extent record 1956 * are inserted into the btree 1957 */ 1958 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 1959 u64 bio_offset) 1960 { 1961 struct inode *inode = private_data; 1962 blk_status_t ret = 0; 1963 1964 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1965 BUG_ON(ret); /* -ENOMEM */ 1966 return 0; 1967 } 1968 1969 /* 1970 * extent_io.c submission hook. This does the right thing for csum calculation 1971 * on write, or reading the csums from the tree before a read. 1972 * 1973 * Rules about async/sync submit, 1974 * a) read: sync submit 1975 * 1976 * b) write without checksum: sync submit 1977 * 1978 * c) write with checksum: 1979 * c-1) if bio is issued by fsync: sync submit 1980 * (sync_writers != 0) 1981 * 1982 * c-2) if root is reloc root: sync submit 1983 * (only in case of buffered IO) 1984 * 1985 * c-3) otherwise: async submit 1986 */ 1987 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 1988 int mirror_num, 1989 unsigned long bio_flags) 1990 1991 { 1992 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1993 struct btrfs_root *root = BTRFS_I(inode)->root; 1994 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1995 blk_status_t ret = 0; 1996 int skip_sum; 1997 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1998 1999 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2000 2001 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2002 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2003 2004 if (bio_op(bio) != REQ_OP_WRITE) { 2005 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2006 if (ret) 2007 goto out; 2008 2009 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2010 ret = btrfs_submit_compressed_read(inode, bio, 2011 mirror_num, 2012 bio_flags); 2013 goto out; 2014 } else if (!skip_sum) { 2015 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2016 if (ret) 2017 goto out; 2018 } 2019 goto mapit; 2020 } else if (async && !skip_sum) { 2021 /* csum items have already been cloned */ 2022 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2023 goto mapit; 2024 /* we're doing a write, do the async checksumming */ 2025 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2026 0, inode, btrfs_submit_bio_start); 2027 goto out; 2028 } else if (!skip_sum) { 2029 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2030 if (ret) 2031 goto out; 2032 } 2033 2034 mapit: 2035 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2036 2037 out: 2038 if (ret) { 2039 bio->bi_status = ret; 2040 bio_endio(bio); 2041 } 2042 return ret; 2043 } 2044 2045 /* 2046 * given a list of ordered sums record them in the inode. This happens 2047 * at IO completion time based on sums calculated at bio submission time. 2048 */ 2049 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2050 struct inode *inode, struct list_head *list) 2051 { 2052 struct btrfs_ordered_sum *sum; 2053 int ret; 2054 2055 list_for_each_entry(sum, list, list) { 2056 trans->adding_csums = true; 2057 ret = btrfs_csum_file_blocks(trans, 2058 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2059 trans->adding_csums = false; 2060 if (ret) 2061 return ret; 2062 } 2063 return 0; 2064 } 2065 2066 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2067 unsigned int extra_bits, 2068 struct extent_state **cached_state, int dedupe) 2069 { 2070 WARN_ON(PAGE_ALIGNED(end)); 2071 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2072 extra_bits, cached_state); 2073 } 2074 2075 /* see btrfs_writepage_start_hook for details on why this is required */ 2076 struct btrfs_writepage_fixup { 2077 struct page *page; 2078 struct btrfs_work work; 2079 }; 2080 2081 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2082 { 2083 struct btrfs_writepage_fixup *fixup; 2084 struct btrfs_ordered_extent *ordered; 2085 struct extent_state *cached_state = NULL; 2086 struct extent_changeset *data_reserved = NULL; 2087 struct page *page; 2088 struct inode *inode; 2089 u64 page_start; 2090 u64 page_end; 2091 int ret; 2092 2093 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2094 page = fixup->page; 2095 again: 2096 lock_page(page); 2097 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2098 ClearPageChecked(page); 2099 goto out_page; 2100 } 2101 2102 inode = page->mapping->host; 2103 page_start = page_offset(page); 2104 page_end = page_offset(page) + PAGE_SIZE - 1; 2105 2106 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2107 &cached_state); 2108 2109 /* already ordered? We're done */ 2110 if (PagePrivate2(page)) 2111 goto out; 2112 2113 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2114 PAGE_SIZE); 2115 if (ordered) { 2116 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2117 page_end, &cached_state); 2118 unlock_page(page); 2119 btrfs_start_ordered_extent(inode, ordered, 1); 2120 btrfs_put_ordered_extent(ordered); 2121 goto again; 2122 } 2123 2124 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2125 PAGE_SIZE); 2126 if (ret) { 2127 mapping_set_error(page->mapping, ret); 2128 end_extent_writepage(page, ret, page_start, page_end); 2129 ClearPageChecked(page); 2130 goto out; 2131 } 2132 2133 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2134 &cached_state, 0); 2135 if (ret) { 2136 mapping_set_error(page->mapping, ret); 2137 end_extent_writepage(page, ret, page_start, page_end); 2138 ClearPageChecked(page); 2139 goto out; 2140 } 2141 2142 ClearPageChecked(page); 2143 set_page_dirty(page); 2144 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false); 2145 out: 2146 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2147 &cached_state); 2148 out_page: 2149 unlock_page(page); 2150 put_page(page); 2151 kfree(fixup); 2152 extent_changeset_free(data_reserved); 2153 } 2154 2155 /* 2156 * There are a few paths in the higher layers of the kernel that directly 2157 * set the page dirty bit without asking the filesystem if it is a 2158 * good idea. This causes problems because we want to make sure COW 2159 * properly happens and the data=ordered rules are followed. 2160 * 2161 * In our case any range that doesn't have the ORDERED bit set 2162 * hasn't been properly setup for IO. We kick off an async process 2163 * to fix it up. The async helper will wait for ordered extents, set 2164 * the delalloc bit and make it safe to write the page. 2165 */ 2166 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2167 { 2168 struct inode *inode = page->mapping->host; 2169 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2170 struct btrfs_writepage_fixup *fixup; 2171 2172 /* this page is properly in the ordered list */ 2173 if (TestClearPagePrivate2(page)) 2174 return 0; 2175 2176 if (PageChecked(page)) 2177 return -EAGAIN; 2178 2179 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2180 if (!fixup) 2181 return -EAGAIN; 2182 2183 SetPageChecked(page); 2184 get_page(page); 2185 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2186 btrfs_writepage_fixup_worker, NULL, NULL); 2187 fixup->page = page; 2188 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2189 return -EBUSY; 2190 } 2191 2192 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2193 struct inode *inode, u64 file_pos, 2194 u64 disk_bytenr, u64 disk_num_bytes, 2195 u64 num_bytes, u64 ram_bytes, 2196 u8 compression, u8 encryption, 2197 u16 other_encoding, int extent_type) 2198 { 2199 struct btrfs_root *root = BTRFS_I(inode)->root; 2200 struct btrfs_file_extent_item *fi; 2201 struct btrfs_path *path; 2202 struct extent_buffer *leaf; 2203 struct btrfs_key ins; 2204 u64 qg_released; 2205 int extent_inserted = 0; 2206 int ret; 2207 2208 path = btrfs_alloc_path(); 2209 if (!path) 2210 return -ENOMEM; 2211 2212 /* 2213 * we may be replacing one extent in the tree with another. 2214 * The new extent is pinned in the extent map, and we don't want 2215 * to drop it from the cache until it is completely in the btree. 2216 * 2217 * So, tell btrfs_drop_extents to leave this extent in the cache. 2218 * the caller is expected to unpin it and allow it to be merged 2219 * with the others. 2220 */ 2221 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2222 file_pos + num_bytes, NULL, 0, 2223 1, sizeof(*fi), &extent_inserted); 2224 if (ret) 2225 goto out; 2226 2227 if (!extent_inserted) { 2228 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2229 ins.offset = file_pos; 2230 ins.type = BTRFS_EXTENT_DATA_KEY; 2231 2232 path->leave_spinning = 1; 2233 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2234 sizeof(*fi)); 2235 if (ret) 2236 goto out; 2237 } 2238 leaf = path->nodes[0]; 2239 fi = btrfs_item_ptr(leaf, path->slots[0], 2240 struct btrfs_file_extent_item); 2241 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2242 btrfs_set_file_extent_type(leaf, fi, extent_type); 2243 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2244 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2245 btrfs_set_file_extent_offset(leaf, fi, 0); 2246 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2247 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2248 btrfs_set_file_extent_compression(leaf, fi, compression); 2249 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2250 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2251 2252 btrfs_mark_buffer_dirty(leaf); 2253 btrfs_release_path(path); 2254 2255 inode_add_bytes(inode, num_bytes); 2256 2257 ins.objectid = disk_bytenr; 2258 ins.offset = disk_num_bytes; 2259 ins.type = BTRFS_EXTENT_ITEM_KEY; 2260 2261 /* 2262 * Release the reserved range from inode dirty range map, as it is 2263 * already moved into delayed_ref_head 2264 */ 2265 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2266 if (ret < 0) 2267 goto out; 2268 qg_released = ret; 2269 ret = btrfs_alloc_reserved_file_extent(trans, root, 2270 btrfs_ino(BTRFS_I(inode)), 2271 file_pos, qg_released, &ins); 2272 out: 2273 btrfs_free_path(path); 2274 2275 return ret; 2276 } 2277 2278 /* snapshot-aware defrag */ 2279 struct sa_defrag_extent_backref { 2280 struct rb_node node; 2281 struct old_sa_defrag_extent *old; 2282 u64 root_id; 2283 u64 inum; 2284 u64 file_pos; 2285 u64 extent_offset; 2286 u64 num_bytes; 2287 u64 generation; 2288 }; 2289 2290 struct old_sa_defrag_extent { 2291 struct list_head list; 2292 struct new_sa_defrag_extent *new; 2293 2294 u64 extent_offset; 2295 u64 bytenr; 2296 u64 offset; 2297 u64 len; 2298 int count; 2299 }; 2300 2301 struct new_sa_defrag_extent { 2302 struct rb_root root; 2303 struct list_head head; 2304 struct btrfs_path *path; 2305 struct inode *inode; 2306 u64 file_pos; 2307 u64 len; 2308 u64 bytenr; 2309 u64 disk_len; 2310 u8 compress_type; 2311 }; 2312 2313 static int backref_comp(struct sa_defrag_extent_backref *b1, 2314 struct sa_defrag_extent_backref *b2) 2315 { 2316 if (b1->root_id < b2->root_id) 2317 return -1; 2318 else if (b1->root_id > b2->root_id) 2319 return 1; 2320 2321 if (b1->inum < b2->inum) 2322 return -1; 2323 else if (b1->inum > b2->inum) 2324 return 1; 2325 2326 if (b1->file_pos < b2->file_pos) 2327 return -1; 2328 else if (b1->file_pos > b2->file_pos) 2329 return 1; 2330 2331 /* 2332 * [------------------------------] ===> (a range of space) 2333 * |<--->| |<---->| =============> (fs/file tree A) 2334 * |<---------------------------->| ===> (fs/file tree B) 2335 * 2336 * A range of space can refer to two file extents in one tree while 2337 * refer to only one file extent in another tree. 2338 * 2339 * So we may process a disk offset more than one time(two extents in A) 2340 * and locate at the same extent(one extent in B), then insert two same 2341 * backrefs(both refer to the extent in B). 2342 */ 2343 return 0; 2344 } 2345 2346 static void backref_insert(struct rb_root *root, 2347 struct sa_defrag_extent_backref *backref) 2348 { 2349 struct rb_node **p = &root->rb_node; 2350 struct rb_node *parent = NULL; 2351 struct sa_defrag_extent_backref *entry; 2352 int ret; 2353 2354 while (*p) { 2355 parent = *p; 2356 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2357 2358 ret = backref_comp(backref, entry); 2359 if (ret < 0) 2360 p = &(*p)->rb_left; 2361 else 2362 p = &(*p)->rb_right; 2363 } 2364 2365 rb_link_node(&backref->node, parent, p); 2366 rb_insert_color(&backref->node, root); 2367 } 2368 2369 /* 2370 * Note the backref might has changed, and in this case we just return 0. 2371 */ 2372 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2373 void *ctx) 2374 { 2375 struct btrfs_file_extent_item *extent; 2376 struct old_sa_defrag_extent *old = ctx; 2377 struct new_sa_defrag_extent *new = old->new; 2378 struct btrfs_path *path = new->path; 2379 struct btrfs_key key; 2380 struct btrfs_root *root; 2381 struct sa_defrag_extent_backref *backref; 2382 struct extent_buffer *leaf; 2383 struct inode *inode = new->inode; 2384 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2385 int slot; 2386 int ret; 2387 u64 extent_offset; 2388 u64 num_bytes; 2389 2390 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2391 inum == btrfs_ino(BTRFS_I(inode))) 2392 return 0; 2393 2394 key.objectid = root_id; 2395 key.type = BTRFS_ROOT_ITEM_KEY; 2396 key.offset = (u64)-1; 2397 2398 root = btrfs_read_fs_root_no_name(fs_info, &key); 2399 if (IS_ERR(root)) { 2400 if (PTR_ERR(root) == -ENOENT) 2401 return 0; 2402 WARN_ON(1); 2403 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2404 inum, offset, root_id); 2405 return PTR_ERR(root); 2406 } 2407 2408 key.objectid = inum; 2409 key.type = BTRFS_EXTENT_DATA_KEY; 2410 if (offset > (u64)-1 << 32) 2411 key.offset = 0; 2412 else 2413 key.offset = offset; 2414 2415 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2416 if (WARN_ON(ret < 0)) 2417 return ret; 2418 ret = 0; 2419 2420 while (1) { 2421 cond_resched(); 2422 2423 leaf = path->nodes[0]; 2424 slot = path->slots[0]; 2425 2426 if (slot >= btrfs_header_nritems(leaf)) { 2427 ret = btrfs_next_leaf(root, path); 2428 if (ret < 0) { 2429 goto out; 2430 } else if (ret > 0) { 2431 ret = 0; 2432 goto out; 2433 } 2434 continue; 2435 } 2436 2437 path->slots[0]++; 2438 2439 btrfs_item_key_to_cpu(leaf, &key, slot); 2440 2441 if (key.objectid > inum) 2442 goto out; 2443 2444 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2445 continue; 2446 2447 extent = btrfs_item_ptr(leaf, slot, 2448 struct btrfs_file_extent_item); 2449 2450 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2451 continue; 2452 2453 /* 2454 * 'offset' refers to the exact key.offset, 2455 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2456 * (key.offset - extent_offset). 2457 */ 2458 if (key.offset != offset) 2459 continue; 2460 2461 extent_offset = btrfs_file_extent_offset(leaf, extent); 2462 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2463 2464 if (extent_offset >= old->extent_offset + old->offset + 2465 old->len || extent_offset + num_bytes <= 2466 old->extent_offset + old->offset) 2467 continue; 2468 break; 2469 } 2470 2471 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2472 if (!backref) { 2473 ret = -ENOENT; 2474 goto out; 2475 } 2476 2477 backref->root_id = root_id; 2478 backref->inum = inum; 2479 backref->file_pos = offset; 2480 backref->num_bytes = num_bytes; 2481 backref->extent_offset = extent_offset; 2482 backref->generation = btrfs_file_extent_generation(leaf, extent); 2483 backref->old = old; 2484 backref_insert(&new->root, backref); 2485 old->count++; 2486 out: 2487 btrfs_release_path(path); 2488 WARN_ON(ret); 2489 return ret; 2490 } 2491 2492 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2493 struct new_sa_defrag_extent *new) 2494 { 2495 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2496 struct old_sa_defrag_extent *old, *tmp; 2497 int ret; 2498 2499 new->path = path; 2500 2501 list_for_each_entry_safe(old, tmp, &new->head, list) { 2502 ret = iterate_inodes_from_logical(old->bytenr + 2503 old->extent_offset, fs_info, 2504 path, record_one_backref, 2505 old, false); 2506 if (ret < 0 && ret != -ENOENT) 2507 return false; 2508 2509 /* no backref to be processed for this extent */ 2510 if (!old->count) { 2511 list_del(&old->list); 2512 kfree(old); 2513 } 2514 } 2515 2516 if (list_empty(&new->head)) 2517 return false; 2518 2519 return true; 2520 } 2521 2522 static int relink_is_mergable(struct extent_buffer *leaf, 2523 struct btrfs_file_extent_item *fi, 2524 struct new_sa_defrag_extent *new) 2525 { 2526 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2527 return 0; 2528 2529 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2530 return 0; 2531 2532 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2533 return 0; 2534 2535 if (btrfs_file_extent_encryption(leaf, fi) || 2536 btrfs_file_extent_other_encoding(leaf, fi)) 2537 return 0; 2538 2539 return 1; 2540 } 2541 2542 /* 2543 * Note the backref might has changed, and in this case we just return 0. 2544 */ 2545 static noinline int relink_extent_backref(struct btrfs_path *path, 2546 struct sa_defrag_extent_backref *prev, 2547 struct sa_defrag_extent_backref *backref) 2548 { 2549 struct btrfs_file_extent_item *extent; 2550 struct btrfs_file_extent_item *item; 2551 struct btrfs_ordered_extent *ordered; 2552 struct btrfs_trans_handle *trans; 2553 struct btrfs_ref ref = { 0 }; 2554 struct btrfs_root *root; 2555 struct btrfs_key key; 2556 struct extent_buffer *leaf; 2557 struct old_sa_defrag_extent *old = backref->old; 2558 struct new_sa_defrag_extent *new = old->new; 2559 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2560 struct inode *inode; 2561 struct extent_state *cached = NULL; 2562 int ret = 0; 2563 u64 start; 2564 u64 len; 2565 u64 lock_start; 2566 u64 lock_end; 2567 bool merge = false; 2568 int index; 2569 2570 if (prev && prev->root_id == backref->root_id && 2571 prev->inum == backref->inum && 2572 prev->file_pos + prev->num_bytes == backref->file_pos) 2573 merge = true; 2574 2575 /* step 1: get root */ 2576 key.objectid = backref->root_id; 2577 key.type = BTRFS_ROOT_ITEM_KEY; 2578 key.offset = (u64)-1; 2579 2580 index = srcu_read_lock(&fs_info->subvol_srcu); 2581 2582 root = btrfs_read_fs_root_no_name(fs_info, &key); 2583 if (IS_ERR(root)) { 2584 srcu_read_unlock(&fs_info->subvol_srcu, index); 2585 if (PTR_ERR(root) == -ENOENT) 2586 return 0; 2587 return PTR_ERR(root); 2588 } 2589 2590 if (btrfs_root_readonly(root)) { 2591 srcu_read_unlock(&fs_info->subvol_srcu, index); 2592 return 0; 2593 } 2594 2595 /* step 2: get inode */ 2596 key.objectid = backref->inum; 2597 key.type = BTRFS_INODE_ITEM_KEY; 2598 key.offset = 0; 2599 2600 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2601 if (IS_ERR(inode)) { 2602 srcu_read_unlock(&fs_info->subvol_srcu, index); 2603 return 0; 2604 } 2605 2606 srcu_read_unlock(&fs_info->subvol_srcu, index); 2607 2608 /* step 3: relink backref */ 2609 lock_start = backref->file_pos; 2610 lock_end = backref->file_pos + backref->num_bytes - 1; 2611 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2612 &cached); 2613 2614 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2615 if (ordered) { 2616 btrfs_put_ordered_extent(ordered); 2617 goto out_unlock; 2618 } 2619 2620 trans = btrfs_join_transaction(root); 2621 if (IS_ERR(trans)) { 2622 ret = PTR_ERR(trans); 2623 goto out_unlock; 2624 } 2625 2626 key.objectid = backref->inum; 2627 key.type = BTRFS_EXTENT_DATA_KEY; 2628 key.offset = backref->file_pos; 2629 2630 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2631 if (ret < 0) { 2632 goto out_free_path; 2633 } else if (ret > 0) { 2634 ret = 0; 2635 goto out_free_path; 2636 } 2637 2638 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2639 struct btrfs_file_extent_item); 2640 2641 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2642 backref->generation) 2643 goto out_free_path; 2644 2645 btrfs_release_path(path); 2646 2647 start = backref->file_pos; 2648 if (backref->extent_offset < old->extent_offset + old->offset) 2649 start += old->extent_offset + old->offset - 2650 backref->extent_offset; 2651 2652 len = min(backref->extent_offset + backref->num_bytes, 2653 old->extent_offset + old->offset + old->len); 2654 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2655 2656 ret = btrfs_drop_extents(trans, root, inode, start, 2657 start + len, 1); 2658 if (ret) 2659 goto out_free_path; 2660 again: 2661 key.objectid = btrfs_ino(BTRFS_I(inode)); 2662 key.type = BTRFS_EXTENT_DATA_KEY; 2663 key.offset = start; 2664 2665 path->leave_spinning = 1; 2666 if (merge) { 2667 struct btrfs_file_extent_item *fi; 2668 u64 extent_len; 2669 struct btrfs_key found_key; 2670 2671 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2672 if (ret < 0) 2673 goto out_free_path; 2674 2675 path->slots[0]--; 2676 leaf = path->nodes[0]; 2677 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2678 2679 fi = btrfs_item_ptr(leaf, path->slots[0], 2680 struct btrfs_file_extent_item); 2681 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2682 2683 if (extent_len + found_key.offset == start && 2684 relink_is_mergable(leaf, fi, new)) { 2685 btrfs_set_file_extent_num_bytes(leaf, fi, 2686 extent_len + len); 2687 btrfs_mark_buffer_dirty(leaf); 2688 inode_add_bytes(inode, len); 2689 2690 ret = 1; 2691 goto out_free_path; 2692 } else { 2693 merge = false; 2694 btrfs_release_path(path); 2695 goto again; 2696 } 2697 } 2698 2699 ret = btrfs_insert_empty_item(trans, root, path, &key, 2700 sizeof(*extent)); 2701 if (ret) { 2702 btrfs_abort_transaction(trans, ret); 2703 goto out_free_path; 2704 } 2705 2706 leaf = path->nodes[0]; 2707 item = btrfs_item_ptr(leaf, path->slots[0], 2708 struct btrfs_file_extent_item); 2709 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2710 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2711 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2712 btrfs_set_file_extent_num_bytes(leaf, item, len); 2713 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2714 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2715 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2716 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2717 btrfs_set_file_extent_encryption(leaf, item, 0); 2718 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2719 2720 btrfs_mark_buffer_dirty(leaf); 2721 inode_add_bytes(inode, len); 2722 btrfs_release_path(path); 2723 2724 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr, 2725 new->disk_len, 0); 2726 btrfs_init_data_ref(&ref, backref->root_id, backref->inum, 2727 new->file_pos); /* start - extent_offset */ 2728 ret = btrfs_inc_extent_ref(trans, &ref); 2729 if (ret) { 2730 btrfs_abort_transaction(trans, ret); 2731 goto out_free_path; 2732 } 2733 2734 ret = 1; 2735 out_free_path: 2736 btrfs_release_path(path); 2737 path->leave_spinning = 0; 2738 btrfs_end_transaction(trans); 2739 out_unlock: 2740 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2741 &cached); 2742 iput(inode); 2743 return ret; 2744 } 2745 2746 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2747 { 2748 struct old_sa_defrag_extent *old, *tmp; 2749 2750 if (!new) 2751 return; 2752 2753 list_for_each_entry_safe(old, tmp, &new->head, list) { 2754 kfree(old); 2755 } 2756 kfree(new); 2757 } 2758 2759 static void relink_file_extents(struct new_sa_defrag_extent *new) 2760 { 2761 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2762 struct btrfs_path *path; 2763 struct sa_defrag_extent_backref *backref; 2764 struct sa_defrag_extent_backref *prev = NULL; 2765 struct rb_node *node; 2766 int ret; 2767 2768 path = btrfs_alloc_path(); 2769 if (!path) 2770 return; 2771 2772 if (!record_extent_backrefs(path, new)) { 2773 btrfs_free_path(path); 2774 goto out; 2775 } 2776 btrfs_release_path(path); 2777 2778 while (1) { 2779 node = rb_first(&new->root); 2780 if (!node) 2781 break; 2782 rb_erase(node, &new->root); 2783 2784 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2785 2786 ret = relink_extent_backref(path, prev, backref); 2787 WARN_ON(ret < 0); 2788 2789 kfree(prev); 2790 2791 if (ret == 1) 2792 prev = backref; 2793 else 2794 prev = NULL; 2795 cond_resched(); 2796 } 2797 kfree(prev); 2798 2799 btrfs_free_path(path); 2800 out: 2801 free_sa_defrag_extent(new); 2802 2803 atomic_dec(&fs_info->defrag_running); 2804 wake_up(&fs_info->transaction_wait); 2805 } 2806 2807 static struct new_sa_defrag_extent * 2808 record_old_file_extents(struct inode *inode, 2809 struct btrfs_ordered_extent *ordered) 2810 { 2811 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2812 struct btrfs_root *root = BTRFS_I(inode)->root; 2813 struct btrfs_path *path; 2814 struct btrfs_key key; 2815 struct old_sa_defrag_extent *old; 2816 struct new_sa_defrag_extent *new; 2817 int ret; 2818 2819 new = kmalloc(sizeof(*new), GFP_NOFS); 2820 if (!new) 2821 return NULL; 2822 2823 new->inode = inode; 2824 new->file_pos = ordered->file_offset; 2825 new->len = ordered->len; 2826 new->bytenr = ordered->start; 2827 new->disk_len = ordered->disk_len; 2828 new->compress_type = ordered->compress_type; 2829 new->root = RB_ROOT; 2830 INIT_LIST_HEAD(&new->head); 2831 2832 path = btrfs_alloc_path(); 2833 if (!path) 2834 goto out_kfree; 2835 2836 key.objectid = btrfs_ino(BTRFS_I(inode)); 2837 key.type = BTRFS_EXTENT_DATA_KEY; 2838 key.offset = new->file_pos; 2839 2840 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2841 if (ret < 0) 2842 goto out_free_path; 2843 if (ret > 0 && path->slots[0] > 0) 2844 path->slots[0]--; 2845 2846 /* find out all the old extents for the file range */ 2847 while (1) { 2848 struct btrfs_file_extent_item *extent; 2849 struct extent_buffer *l; 2850 int slot; 2851 u64 num_bytes; 2852 u64 offset; 2853 u64 end; 2854 u64 disk_bytenr; 2855 u64 extent_offset; 2856 2857 l = path->nodes[0]; 2858 slot = path->slots[0]; 2859 2860 if (slot >= btrfs_header_nritems(l)) { 2861 ret = btrfs_next_leaf(root, path); 2862 if (ret < 0) 2863 goto out_free_path; 2864 else if (ret > 0) 2865 break; 2866 continue; 2867 } 2868 2869 btrfs_item_key_to_cpu(l, &key, slot); 2870 2871 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2872 break; 2873 if (key.type != BTRFS_EXTENT_DATA_KEY) 2874 break; 2875 if (key.offset >= new->file_pos + new->len) 2876 break; 2877 2878 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2879 2880 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2881 if (key.offset + num_bytes < new->file_pos) 2882 goto next; 2883 2884 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2885 if (!disk_bytenr) 2886 goto next; 2887 2888 extent_offset = btrfs_file_extent_offset(l, extent); 2889 2890 old = kmalloc(sizeof(*old), GFP_NOFS); 2891 if (!old) 2892 goto out_free_path; 2893 2894 offset = max(new->file_pos, key.offset); 2895 end = min(new->file_pos + new->len, key.offset + num_bytes); 2896 2897 old->bytenr = disk_bytenr; 2898 old->extent_offset = extent_offset; 2899 old->offset = offset - key.offset; 2900 old->len = end - offset; 2901 old->new = new; 2902 old->count = 0; 2903 list_add_tail(&old->list, &new->head); 2904 next: 2905 path->slots[0]++; 2906 cond_resched(); 2907 } 2908 2909 btrfs_free_path(path); 2910 atomic_inc(&fs_info->defrag_running); 2911 2912 return new; 2913 2914 out_free_path: 2915 btrfs_free_path(path); 2916 out_kfree: 2917 free_sa_defrag_extent(new); 2918 return NULL; 2919 } 2920 2921 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2922 u64 start, u64 len) 2923 { 2924 struct btrfs_block_group_cache *cache; 2925 2926 cache = btrfs_lookup_block_group(fs_info, start); 2927 ASSERT(cache); 2928 2929 spin_lock(&cache->lock); 2930 cache->delalloc_bytes -= len; 2931 spin_unlock(&cache->lock); 2932 2933 btrfs_put_block_group(cache); 2934 } 2935 2936 /* as ordered data IO finishes, this gets called so we can finish 2937 * an ordered extent if the range of bytes in the file it covers are 2938 * fully written. 2939 */ 2940 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2941 { 2942 struct inode *inode = ordered_extent->inode; 2943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2944 struct btrfs_root *root = BTRFS_I(inode)->root; 2945 struct btrfs_trans_handle *trans = NULL; 2946 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2947 struct extent_state *cached_state = NULL; 2948 struct new_sa_defrag_extent *new = NULL; 2949 int compress_type = 0; 2950 int ret = 0; 2951 u64 logical_len = ordered_extent->len; 2952 bool nolock; 2953 bool truncated = false; 2954 bool range_locked = false; 2955 bool clear_new_delalloc_bytes = false; 2956 bool clear_reserved_extent = true; 2957 2958 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2959 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2960 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2961 clear_new_delalloc_bytes = true; 2962 2963 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2964 2965 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2966 ret = -EIO; 2967 goto out; 2968 } 2969 2970 btrfs_free_io_failure_record(BTRFS_I(inode), 2971 ordered_extent->file_offset, 2972 ordered_extent->file_offset + 2973 ordered_extent->len - 1); 2974 2975 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2976 truncated = true; 2977 logical_len = ordered_extent->truncated_len; 2978 /* Truncated the entire extent, don't bother adding */ 2979 if (!logical_len) 2980 goto out; 2981 } 2982 2983 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2984 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2985 2986 /* 2987 * For mwrite(mmap + memset to write) case, we still reserve 2988 * space for NOCOW range. 2989 * As NOCOW won't cause a new delayed ref, just free the space 2990 */ 2991 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2992 ordered_extent->len); 2993 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2994 if (nolock) 2995 trans = btrfs_join_transaction_nolock(root); 2996 else 2997 trans = btrfs_join_transaction(root); 2998 if (IS_ERR(trans)) { 2999 ret = PTR_ERR(trans); 3000 trans = NULL; 3001 goto out; 3002 } 3003 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3004 ret = btrfs_update_inode_fallback(trans, root, inode); 3005 if (ret) /* -ENOMEM or corruption */ 3006 btrfs_abort_transaction(trans, ret); 3007 goto out; 3008 } 3009 3010 range_locked = true; 3011 lock_extent_bits(io_tree, ordered_extent->file_offset, 3012 ordered_extent->file_offset + ordered_extent->len - 1, 3013 &cached_state); 3014 3015 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3016 ordered_extent->file_offset + ordered_extent->len - 1, 3017 EXTENT_DEFRAG, 0, cached_state); 3018 if (ret) { 3019 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3020 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3021 /* the inode is shared */ 3022 new = record_old_file_extents(inode, ordered_extent); 3023 3024 clear_extent_bit(io_tree, ordered_extent->file_offset, 3025 ordered_extent->file_offset + ordered_extent->len - 1, 3026 EXTENT_DEFRAG, 0, 0, &cached_state); 3027 } 3028 3029 if (nolock) 3030 trans = btrfs_join_transaction_nolock(root); 3031 else 3032 trans = btrfs_join_transaction(root); 3033 if (IS_ERR(trans)) { 3034 ret = PTR_ERR(trans); 3035 trans = NULL; 3036 goto out; 3037 } 3038 3039 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3040 3041 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3042 compress_type = ordered_extent->compress_type; 3043 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3044 BUG_ON(compress_type); 3045 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3046 ordered_extent->len); 3047 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3048 ordered_extent->file_offset, 3049 ordered_extent->file_offset + 3050 logical_len); 3051 } else { 3052 BUG_ON(root == fs_info->tree_root); 3053 ret = insert_reserved_file_extent(trans, inode, 3054 ordered_extent->file_offset, 3055 ordered_extent->start, 3056 ordered_extent->disk_len, 3057 logical_len, logical_len, 3058 compress_type, 0, 0, 3059 BTRFS_FILE_EXTENT_REG); 3060 if (!ret) { 3061 clear_reserved_extent = false; 3062 btrfs_release_delalloc_bytes(fs_info, 3063 ordered_extent->start, 3064 ordered_extent->disk_len); 3065 } 3066 } 3067 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3068 ordered_extent->file_offset, ordered_extent->len, 3069 trans->transid); 3070 if (ret < 0) { 3071 btrfs_abort_transaction(trans, ret); 3072 goto out; 3073 } 3074 3075 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3076 if (ret) { 3077 btrfs_abort_transaction(trans, ret); 3078 goto out; 3079 } 3080 3081 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3082 ret = btrfs_update_inode_fallback(trans, root, inode); 3083 if (ret) { /* -ENOMEM or corruption */ 3084 btrfs_abort_transaction(trans, ret); 3085 goto out; 3086 } 3087 ret = 0; 3088 out: 3089 if (range_locked || clear_new_delalloc_bytes) { 3090 unsigned int clear_bits = 0; 3091 3092 if (range_locked) 3093 clear_bits |= EXTENT_LOCKED; 3094 if (clear_new_delalloc_bytes) 3095 clear_bits |= EXTENT_DELALLOC_NEW; 3096 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3097 ordered_extent->file_offset, 3098 ordered_extent->file_offset + 3099 ordered_extent->len - 1, 3100 clear_bits, 3101 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3102 0, &cached_state); 3103 } 3104 3105 if (trans) 3106 btrfs_end_transaction(trans); 3107 3108 if (ret || truncated) { 3109 u64 start, end; 3110 3111 if (truncated) 3112 start = ordered_extent->file_offset + logical_len; 3113 else 3114 start = ordered_extent->file_offset; 3115 end = ordered_extent->file_offset + ordered_extent->len - 1; 3116 clear_extent_uptodate(io_tree, start, end, NULL); 3117 3118 /* Drop the cache for the part of the extent we didn't write. */ 3119 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3120 3121 /* 3122 * If the ordered extent had an IOERR or something else went 3123 * wrong we need to return the space for this ordered extent 3124 * back to the allocator. We only free the extent in the 3125 * truncated case if we didn't write out the extent at all. 3126 * 3127 * If we made it past insert_reserved_file_extent before we 3128 * errored out then we don't need to do this as the accounting 3129 * has already been done. 3130 */ 3131 if ((ret || !logical_len) && 3132 clear_reserved_extent && 3133 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3134 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3135 btrfs_free_reserved_extent(fs_info, 3136 ordered_extent->start, 3137 ordered_extent->disk_len, 1); 3138 } 3139 3140 3141 /* 3142 * This needs to be done to make sure anybody waiting knows we are done 3143 * updating everything for this ordered extent. 3144 */ 3145 btrfs_remove_ordered_extent(inode, ordered_extent); 3146 3147 /* for snapshot-aware defrag */ 3148 if (new) { 3149 if (ret) { 3150 free_sa_defrag_extent(new); 3151 atomic_dec(&fs_info->defrag_running); 3152 } else { 3153 relink_file_extents(new); 3154 } 3155 } 3156 3157 /* once for us */ 3158 btrfs_put_ordered_extent(ordered_extent); 3159 /* once for the tree */ 3160 btrfs_put_ordered_extent(ordered_extent); 3161 3162 return ret; 3163 } 3164 3165 static void finish_ordered_fn(struct btrfs_work *work) 3166 { 3167 struct btrfs_ordered_extent *ordered_extent; 3168 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3169 btrfs_finish_ordered_io(ordered_extent); 3170 } 3171 3172 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3173 u64 end, int uptodate) 3174 { 3175 struct inode *inode = page->mapping->host; 3176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3177 struct btrfs_ordered_extent *ordered_extent = NULL; 3178 struct btrfs_workqueue *wq; 3179 btrfs_work_func_t func; 3180 3181 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3182 3183 ClearPagePrivate2(page); 3184 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3185 end - start + 1, uptodate)) 3186 return; 3187 3188 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3189 wq = fs_info->endio_freespace_worker; 3190 func = btrfs_freespace_write_helper; 3191 } else { 3192 wq = fs_info->endio_write_workers; 3193 func = btrfs_endio_write_helper; 3194 } 3195 3196 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3197 NULL); 3198 btrfs_queue_work(wq, &ordered_extent->work); 3199 } 3200 3201 static int __readpage_endio_check(struct inode *inode, 3202 struct btrfs_io_bio *io_bio, 3203 int icsum, struct page *page, 3204 int pgoff, u64 start, size_t len) 3205 { 3206 char *kaddr; 3207 u32 csum_expected; 3208 u32 csum = ~(u32)0; 3209 3210 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3211 3212 kaddr = kmap_atomic(page); 3213 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3214 btrfs_csum_final(csum, (u8 *)&csum); 3215 if (csum != csum_expected) 3216 goto zeroit; 3217 3218 kunmap_atomic(kaddr); 3219 return 0; 3220 zeroit: 3221 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3222 io_bio->mirror_num); 3223 memset(kaddr + pgoff, 1, len); 3224 flush_dcache_page(page); 3225 kunmap_atomic(kaddr); 3226 return -EIO; 3227 } 3228 3229 /* 3230 * when reads are done, we need to check csums to verify the data is correct 3231 * if there's a match, we allow the bio to finish. If not, the code in 3232 * extent_io.c will try to find good copies for us. 3233 */ 3234 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3235 u64 phy_offset, struct page *page, 3236 u64 start, u64 end, int mirror) 3237 { 3238 size_t offset = start - page_offset(page); 3239 struct inode *inode = page->mapping->host; 3240 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3241 struct btrfs_root *root = BTRFS_I(inode)->root; 3242 3243 if (PageChecked(page)) { 3244 ClearPageChecked(page); 3245 return 0; 3246 } 3247 3248 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3249 return 0; 3250 3251 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3252 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3253 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3254 return 0; 3255 } 3256 3257 phy_offset >>= inode->i_sb->s_blocksize_bits; 3258 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3259 start, (size_t)(end - start + 1)); 3260 } 3261 3262 /* 3263 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3264 * 3265 * @inode: The inode we want to perform iput on 3266 * 3267 * This function uses the generic vfs_inode::i_count to track whether we should 3268 * just decrement it (in case it's > 1) or if this is the last iput then link 3269 * the inode to the delayed iput machinery. Delayed iputs are processed at 3270 * transaction commit time/superblock commit/cleaner kthread. 3271 */ 3272 void btrfs_add_delayed_iput(struct inode *inode) 3273 { 3274 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3275 struct btrfs_inode *binode = BTRFS_I(inode); 3276 3277 if (atomic_add_unless(&inode->i_count, -1, 1)) 3278 return; 3279 3280 atomic_inc(&fs_info->nr_delayed_iputs); 3281 spin_lock(&fs_info->delayed_iput_lock); 3282 ASSERT(list_empty(&binode->delayed_iput)); 3283 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3284 spin_unlock(&fs_info->delayed_iput_lock); 3285 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3286 wake_up_process(fs_info->cleaner_kthread); 3287 } 3288 3289 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3290 { 3291 3292 spin_lock(&fs_info->delayed_iput_lock); 3293 while (!list_empty(&fs_info->delayed_iputs)) { 3294 struct btrfs_inode *inode; 3295 3296 inode = list_first_entry(&fs_info->delayed_iputs, 3297 struct btrfs_inode, delayed_iput); 3298 list_del_init(&inode->delayed_iput); 3299 spin_unlock(&fs_info->delayed_iput_lock); 3300 iput(&inode->vfs_inode); 3301 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3302 wake_up(&fs_info->delayed_iputs_wait); 3303 spin_lock(&fs_info->delayed_iput_lock); 3304 } 3305 spin_unlock(&fs_info->delayed_iput_lock); 3306 } 3307 3308 /** 3309 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 3310 * @fs_info - the fs_info for this fs 3311 * @return - EINTR if we were killed, 0 if nothing's pending 3312 * 3313 * This will wait on any delayed iputs that are currently running with KILLABLE 3314 * set. Once they are all done running we will return, unless we are killed in 3315 * which case we return EINTR. This helps in user operations like fallocate etc 3316 * that might get blocked on the iputs. 3317 */ 3318 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3319 { 3320 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3321 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3322 if (ret) 3323 return -EINTR; 3324 return 0; 3325 } 3326 3327 /* 3328 * This creates an orphan entry for the given inode in case something goes wrong 3329 * in the middle of an unlink. 3330 */ 3331 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3332 struct btrfs_inode *inode) 3333 { 3334 int ret; 3335 3336 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3337 if (ret && ret != -EEXIST) { 3338 btrfs_abort_transaction(trans, ret); 3339 return ret; 3340 } 3341 3342 return 0; 3343 } 3344 3345 /* 3346 * We have done the delete so we can go ahead and remove the orphan item for 3347 * this particular inode. 3348 */ 3349 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3350 struct btrfs_inode *inode) 3351 { 3352 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3353 } 3354 3355 /* 3356 * this cleans up any orphans that may be left on the list from the last use 3357 * of this root. 3358 */ 3359 int btrfs_orphan_cleanup(struct btrfs_root *root) 3360 { 3361 struct btrfs_fs_info *fs_info = root->fs_info; 3362 struct btrfs_path *path; 3363 struct extent_buffer *leaf; 3364 struct btrfs_key key, found_key; 3365 struct btrfs_trans_handle *trans; 3366 struct inode *inode; 3367 u64 last_objectid = 0; 3368 int ret = 0, nr_unlink = 0; 3369 3370 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3371 return 0; 3372 3373 path = btrfs_alloc_path(); 3374 if (!path) { 3375 ret = -ENOMEM; 3376 goto out; 3377 } 3378 path->reada = READA_BACK; 3379 3380 key.objectid = BTRFS_ORPHAN_OBJECTID; 3381 key.type = BTRFS_ORPHAN_ITEM_KEY; 3382 key.offset = (u64)-1; 3383 3384 while (1) { 3385 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3386 if (ret < 0) 3387 goto out; 3388 3389 /* 3390 * if ret == 0 means we found what we were searching for, which 3391 * is weird, but possible, so only screw with path if we didn't 3392 * find the key and see if we have stuff that matches 3393 */ 3394 if (ret > 0) { 3395 ret = 0; 3396 if (path->slots[0] == 0) 3397 break; 3398 path->slots[0]--; 3399 } 3400 3401 /* pull out the item */ 3402 leaf = path->nodes[0]; 3403 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3404 3405 /* make sure the item matches what we want */ 3406 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3407 break; 3408 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3409 break; 3410 3411 /* release the path since we're done with it */ 3412 btrfs_release_path(path); 3413 3414 /* 3415 * this is where we are basically btrfs_lookup, without the 3416 * crossing root thing. we store the inode number in the 3417 * offset of the orphan item. 3418 */ 3419 3420 if (found_key.offset == last_objectid) { 3421 btrfs_err(fs_info, 3422 "Error removing orphan entry, stopping orphan cleanup"); 3423 ret = -EINVAL; 3424 goto out; 3425 } 3426 3427 last_objectid = found_key.offset; 3428 3429 found_key.objectid = found_key.offset; 3430 found_key.type = BTRFS_INODE_ITEM_KEY; 3431 found_key.offset = 0; 3432 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3433 ret = PTR_ERR_OR_ZERO(inode); 3434 if (ret && ret != -ENOENT) 3435 goto out; 3436 3437 if (ret == -ENOENT && root == fs_info->tree_root) { 3438 struct btrfs_root *dead_root; 3439 struct btrfs_fs_info *fs_info = root->fs_info; 3440 int is_dead_root = 0; 3441 3442 /* 3443 * this is an orphan in the tree root. Currently these 3444 * could come from 2 sources: 3445 * a) a snapshot deletion in progress 3446 * b) a free space cache inode 3447 * We need to distinguish those two, as the snapshot 3448 * orphan must not get deleted. 3449 * find_dead_roots already ran before us, so if this 3450 * is a snapshot deletion, we should find the root 3451 * in the dead_roots list 3452 */ 3453 spin_lock(&fs_info->trans_lock); 3454 list_for_each_entry(dead_root, &fs_info->dead_roots, 3455 root_list) { 3456 if (dead_root->root_key.objectid == 3457 found_key.objectid) { 3458 is_dead_root = 1; 3459 break; 3460 } 3461 } 3462 spin_unlock(&fs_info->trans_lock); 3463 if (is_dead_root) { 3464 /* prevent this orphan from being found again */ 3465 key.offset = found_key.objectid - 1; 3466 continue; 3467 } 3468 3469 } 3470 3471 /* 3472 * If we have an inode with links, there are a couple of 3473 * possibilities. Old kernels (before v3.12) used to create an 3474 * orphan item for truncate indicating that there were possibly 3475 * extent items past i_size that needed to be deleted. In v3.12, 3476 * truncate was changed to update i_size in sync with the extent 3477 * items, but the (useless) orphan item was still created. Since 3478 * v4.18, we don't create the orphan item for truncate at all. 3479 * 3480 * So, this item could mean that we need to do a truncate, but 3481 * only if this filesystem was last used on a pre-v3.12 kernel 3482 * and was not cleanly unmounted. The odds of that are quite 3483 * slim, and it's a pain to do the truncate now, so just delete 3484 * the orphan item. 3485 * 3486 * It's also possible that this orphan item was supposed to be 3487 * deleted but wasn't. The inode number may have been reused, 3488 * but either way, we can delete the orphan item. 3489 */ 3490 if (ret == -ENOENT || inode->i_nlink) { 3491 if (!ret) 3492 iput(inode); 3493 trans = btrfs_start_transaction(root, 1); 3494 if (IS_ERR(trans)) { 3495 ret = PTR_ERR(trans); 3496 goto out; 3497 } 3498 btrfs_debug(fs_info, "auto deleting %Lu", 3499 found_key.objectid); 3500 ret = btrfs_del_orphan_item(trans, root, 3501 found_key.objectid); 3502 btrfs_end_transaction(trans); 3503 if (ret) 3504 goto out; 3505 continue; 3506 } 3507 3508 nr_unlink++; 3509 3510 /* this will do delete_inode and everything for us */ 3511 iput(inode); 3512 } 3513 /* release the path since we're done with it */ 3514 btrfs_release_path(path); 3515 3516 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3517 3518 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3519 trans = btrfs_join_transaction(root); 3520 if (!IS_ERR(trans)) 3521 btrfs_end_transaction(trans); 3522 } 3523 3524 if (nr_unlink) 3525 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3526 3527 out: 3528 if (ret) 3529 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3530 btrfs_free_path(path); 3531 return ret; 3532 } 3533 3534 /* 3535 * very simple check to peek ahead in the leaf looking for xattrs. If we 3536 * don't find any xattrs, we know there can't be any acls. 3537 * 3538 * slot is the slot the inode is in, objectid is the objectid of the inode 3539 */ 3540 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3541 int slot, u64 objectid, 3542 int *first_xattr_slot) 3543 { 3544 u32 nritems = btrfs_header_nritems(leaf); 3545 struct btrfs_key found_key; 3546 static u64 xattr_access = 0; 3547 static u64 xattr_default = 0; 3548 int scanned = 0; 3549 3550 if (!xattr_access) { 3551 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3552 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3553 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3554 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3555 } 3556 3557 slot++; 3558 *first_xattr_slot = -1; 3559 while (slot < nritems) { 3560 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3561 3562 /* we found a different objectid, there must not be acls */ 3563 if (found_key.objectid != objectid) 3564 return 0; 3565 3566 /* we found an xattr, assume we've got an acl */ 3567 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3568 if (*first_xattr_slot == -1) 3569 *first_xattr_slot = slot; 3570 if (found_key.offset == xattr_access || 3571 found_key.offset == xattr_default) 3572 return 1; 3573 } 3574 3575 /* 3576 * we found a key greater than an xattr key, there can't 3577 * be any acls later on 3578 */ 3579 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3580 return 0; 3581 3582 slot++; 3583 scanned++; 3584 3585 /* 3586 * it goes inode, inode backrefs, xattrs, extents, 3587 * so if there are a ton of hard links to an inode there can 3588 * be a lot of backrefs. Don't waste time searching too hard, 3589 * this is just an optimization 3590 */ 3591 if (scanned >= 8) 3592 break; 3593 } 3594 /* we hit the end of the leaf before we found an xattr or 3595 * something larger than an xattr. We have to assume the inode 3596 * has acls 3597 */ 3598 if (*first_xattr_slot == -1) 3599 *first_xattr_slot = slot; 3600 return 1; 3601 } 3602 3603 /* 3604 * read an inode from the btree into the in-memory inode 3605 */ 3606 static int btrfs_read_locked_inode(struct inode *inode, 3607 struct btrfs_path *in_path) 3608 { 3609 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3610 struct btrfs_path *path = in_path; 3611 struct extent_buffer *leaf; 3612 struct btrfs_inode_item *inode_item; 3613 struct btrfs_root *root = BTRFS_I(inode)->root; 3614 struct btrfs_key location; 3615 unsigned long ptr; 3616 int maybe_acls; 3617 u32 rdev; 3618 int ret; 3619 bool filled = false; 3620 int first_xattr_slot; 3621 3622 ret = btrfs_fill_inode(inode, &rdev); 3623 if (!ret) 3624 filled = true; 3625 3626 if (!path) { 3627 path = btrfs_alloc_path(); 3628 if (!path) 3629 return -ENOMEM; 3630 } 3631 3632 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3633 3634 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3635 if (ret) { 3636 if (path != in_path) 3637 btrfs_free_path(path); 3638 return ret; 3639 } 3640 3641 leaf = path->nodes[0]; 3642 3643 if (filled) 3644 goto cache_index; 3645 3646 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3647 struct btrfs_inode_item); 3648 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3649 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3650 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3651 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3652 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3653 3654 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3655 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3656 3657 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3658 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3659 3660 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3661 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3662 3663 BTRFS_I(inode)->i_otime.tv_sec = 3664 btrfs_timespec_sec(leaf, &inode_item->otime); 3665 BTRFS_I(inode)->i_otime.tv_nsec = 3666 btrfs_timespec_nsec(leaf, &inode_item->otime); 3667 3668 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3669 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3670 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3671 3672 inode_set_iversion_queried(inode, 3673 btrfs_inode_sequence(leaf, inode_item)); 3674 inode->i_generation = BTRFS_I(inode)->generation; 3675 inode->i_rdev = 0; 3676 rdev = btrfs_inode_rdev(leaf, inode_item); 3677 3678 BTRFS_I(inode)->index_cnt = (u64)-1; 3679 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3680 3681 cache_index: 3682 /* 3683 * If we were modified in the current generation and evicted from memory 3684 * and then re-read we need to do a full sync since we don't have any 3685 * idea about which extents were modified before we were evicted from 3686 * cache. 3687 * 3688 * This is required for both inode re-read from disk and delayed inode 3689 * in delayed_nodes_tree. 3690 */ 3691 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3692 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3693 &BTRFS_I(inode)->runtime_flags); 3694 3695 /* 3696 * We don't persist the id of the transaction where an unlink operation 3697 * against the inode was last made. So here we assume the inode might 3698 * have been evicted, and therefore the exact value of last_unlink_trans 3699 * lost, and set it to last_trans to avoid metadata inconsistencies 3700 * between the inode and its parent if the inode is fsync'ed and the log 3701 * replayed. For example, in the scenario: 3702 * 3703 * touch mydir/foo 3704 * ln mydir/foo mydir/bar 3705 * sync 3706 * unlink mydir/bar 3707 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3708 * xfs_io -c fsync mydir/foo 3709 * <power failure> 3710 * mount fs, triggers fsync log replay 3711 * 3712 * We must make sure that when we fsync our inode foo we also log its 3713 * parent inode, otherwise after log replay the parent still has the 3714 * dentry with the "bar" name but our inode foo has a link count of 1 3715 * and doesn't have an inode ref with the name "bar" anymore. 3716 * 3717 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3718 * but it guarantees correctness at the expense of occasional full 3719 * transaction commits on fsync if our inode is a directory, or if our 3720 * inode is not a directory, logging its parent unnecessarily. 3721 */ 3722 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3723 3724 path->slots[0]++; 3725 if (inode->i_nlink != 1 || 3726 path->slots[0] >= btrfs_header_nritems(leaf)) 3727 goto cache_acl; 3728 3729 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3730 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3731 goto cache_acl; 3732 3733 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3734 if (location.type == BTRFS_INODE_REF_KEY) { 3735 struct btrfs_inode_ref *ref; 3736 3737 ref = (struct btrfs_inode_ref *)ptr; 3738 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3739 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3740 struct btrfs_inode_extref *extref; 3741 3742 extref = (struct btrfs_inode_extref *)ptr; 3743 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3744 extref); 3745 } 3746 cache_acl: 3747 /* 3748 * try to precache a NULL acl entry for files that don't have 3749 * any xattrs or acls 3750 */ 3751 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3752 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3753 if (first_xattr_slot != -1) { 3754 path->slots[0] = first_xattr_slot; 3755 ret = btrfs_load_inode_props(inode, path); 3756 if (ret) 3757 btrfs_err(fs_info, 3758 "error loading props for ino %llu (root %llu): %d", 3759 btrfs_ino(BTRFS_I(inode)), 3760 root->root_key.objectid, ret); 3761 } 3762 if (path != in_path) 3763 btrfs_free_path(path); 3764 3765 if (!maybe_acls) 3766 cache_no_acl(inode); 3767 3768 switch (inode->i_mode & S_IFMT) { 3769 case S_IFREG: 3770 inode->i_mapping->a_ops = &btrfs_aops; 3771 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3772 inode->i_fop = &btrfs_file_operations; 3773 inode->i_op = &btrfs_file_inode_operations; 3774 break; 3775 case S_IFDIR: 3776 inode->i_fop = &btrfs_dir_file_operations; 3777 inode->i_op = &btrfs_dir_inode_operations; 3778 break; 3779 case S_IFLNK: 3780 inode->i_op = &btrfs_symlink_inode_operations; 3781 inode_nohighmem(inode); 3782 inode->i_mapping->a_ops = &btrfs_aops; 3783 break; 3784 default: 3785 inode->i_op = &btrfs_special_inode_operations; 3786 init_special_inode(inode, inode->i_mode, rdev); 3787 break; 3788 } 3789 3790 btrfs_sync_inode_flags_to_i_flags(inode); 3791 return 0; 3792 } 3793 3794 /* 3795 * given a leaf and an inode, copy the inode fields into the leaf 3796 */ 3797 static void fill_inode_item(struct btrfs_trans_handle *trans, 3798 struct extent_buffer *leaf, 3799 struct btrfs_inode_item *item, 3800 struct inode *inode) 3801 { 3802 struct btrfs_map_token token; 3803 3804 btrfs_init_map_token(&token); 3805 3806 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3807 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3808 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3809 &token); 3810 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3811 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3812 3813 btrfs_set_token_timespec_sec(leaf, &item->atime, 3814 inode->i_atime.tv_sec, &token); 3815 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3816 inode->i_atime.tv_nsec, &token); 3817 3818 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3819 inode->i_mtime.tv_sec, &token); 3820 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3821 inode->i_mtime.tv_nsec, &token); 3822 3823 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3824 inode->i_ctime.tv_sec, &token); 3825 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3826 inode->i_ctime.tv_nsec, &token); 3827 3828 btrfs_set_token_timespec_sec(leaf, &item->otime, 3829 BTRFS_I(inode)->i_otime.tv_sec, &token); 3830 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3831 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3832 3833 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3834 &token); 3835 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3836 &token); 3837 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3838 &token); 3839 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3840 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3841 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3842 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3843 } 3844 3845 /* 3846 * copy everything in the in-memory inode into the btree. 3847 */ 3848 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3849 struct btrfs_root *root, struct inode *inode) 3850 { 3851 struct btrfs_inode_item *inode_item; 3852 struct btrfs_path *path; 3853 struct extent_buffer *leaf; 3854 int ret; 3855 3856 path = btrfs_alloc_path(); 3857 if (!path) 3858 return -ENOMEM; 3859 3860 path->leave_spinning = 1; 3861 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3862 1); 3863 if (ret) { 3864 if (ret > 0) 3865 ret = -ENOENT; 3866 goto failed; 3867 } 3868 3869 leaf = path->nodes[0]; 3870 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3871 struct btrfs_inode_item); 3872 3873 fill_inode_item(trans, leaf, inode_item, inode); 3874 btrfs_mark_buffer_dirty(leaf); 3875 btrfs_set_inode_last_trans(trans, inode); 3876 ret = 0; 3877 failed: 3878 btrfs_free_path(path); 3879 return ret; 3880 } 3881 3882 /* 3883 * copy everything in the in-memory inode into the btree. 3884 */ 3885 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3886 struct btrfs_root *root, struct inode *inode) 3887 { 3888 struct btrfs_fs_info *fs_info = root->fs_info; 3889 int ret; 3890 3891 /* 3892 * If the inode is a free space inode, we can deadlock during commit 3893 * if we put it into the delayed code. 3894 * 3895 * The data relocation inode should also be directly updated 3896 * without delay 3897 */ 3898 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3899 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3900 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3901 btrfs_update_root_times(trans, root); 3902 3903 ret = btrfs_delayed_update_inode(trans, root, inode); 3904 if (!ret) 3905 btrfs_set_inode_last_trans(trans, inode); 3906 return ret; 3907 } 3908 3909 return btrfs_update_inode_item(trans, root, inode); 3910 } 3911 3912 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3913 struct btrfs_root *root, 3914 struct inode *inode) 3915 { 3916 int ret; 3917 3918 ret = btrfs_update_inode(trans, root, inode); 3919 if (ret == -ENOSPC) 3920 return btrfs_update_inode_item(trans, root, inode); 3921 return ret; 3922 } 3923 3924 /* 3925 * unlink helper that gets used here in inode.c and in the tree logging 3926 * recovery code. It remove a link in a directory with a given name, and 3927 * also drops the back refs in the inode to the directory 3928 */ 3929 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3930 struct btrfs_root *root, 3931 struct btrfs_inode *dir, 3932 struct btrfs_inode *inode, 3933 const char *name, int name_len) 3934 { 3935 struct btrfs_fs_info *fs_info = root->fs_info; 3936 struct btrfs_path *path; 3937 int ret = 0; 3938 struct extent_buffer *leaf; 3939 struct btrfs_dir_item *di; 3940 struct btrfs_key key; 3941 u64 index; 3942 u64 ino = btrfs_ino(inode); 3943 u64 dir_ino = btrfs_ino(dir); 3944 3945 path = btrfs_alloc_path(); 3946 if (!path) { 3947 ret = -ENOMEM; 3948 goto out; 3949 } 3950 3951 path->leave_spinning = 1; 3952 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3953 name, name_len, -1); 3954 if (IS_ERR_OR_NULL(di)) { 3955 ret = di ? PTR_ERR(di) : -ENOENT; 3956 goto err; 3957 } 3958 leaf = path->nodes[0]; 3959 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3960 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3961 if (ret) 3962 goto err; 3963 btrfs_release_path(path); 3964 3965 /* 3966 * If we don't have dir index, we have to get it by looking up 3967 * the inode ref, since we get the inode ref, remove it directly, 3968 * it is unnecessary to do delayed deletion. 3969 * 3970 * But if we have dir index, needn't search inode ref to get it. 3971 * Since the inode ref is close to the inode item, it is better 3972 * that we delay to delete it, and just do this deletion when 3973 * we update the inode item. 3974 */ 3975 if (inode->dir_index) { 3976 ret = btrfs_delayed_delete_inode_ref(inode); 3977 if (!ret) { 3978 index = inode->dir_index; 3979 goto skip_backref; 3980 } 3981 } 3982 3983 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3984 dir_ino, &index); 3985 if (ret) { 3986 btrfs_info(fs_info, 3987 "failed to delete reference to %.*s, inode %llu parent %llu", 3988 name_len, name, ino, dir_ino); 3989 btrfs_abort_transaction(trans, ret); 3990 goto err; 3991 } 3992 skip_backref: 3993 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3994 if (ret) { 3995 btrfs_abort_transaction(trans, ret); 3996 goto err; 3997 } 3998 3999 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4000 dir_ino); 4001 if (ret != 0 && ret != -ENOENT) { 4002 btrfs_abort_transaction(trans, ret); 4003 goto err; 4004 } 4005 4006 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4007 index); 4008 if (ret == -ENOENT) 4009 ret = 0; 4010 else if (ret) 4011 btrfs_abort_transaction(trans, ret); 4012 err: 4013 btrfs_free_path(path); 4014 if (ret) 4015 goto out; 4016 4017 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4018 inode_inc_iversion(&inode->vfs_inode); 4019 inode_inc_iversion(&dir->vfs_inode); 4020 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4021 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4022 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4023 out: 4024 return ret; 4025 } 4026 4027 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4028 struct btrfs_root *root, 4029 struct btrfs_inode *dir, struct btrfs_inode *inode, 4030 const char *name, int name_len) 4031 { 4032 int ret; 4033 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4034 if (!ret) { 4035 drop_nlink(&inode->vfs_inode); 4036 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4037 } 4038 return ret; 4039 } 4040 4041 /* 4042 * helper to start transaction for unlink and rmdir. 4043 * 4044 * unlink and rmdir are special in btrfs, they do not always free space, so 4045 * if we cannot make our reservations the normal way try and see if there is 4046 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4047 * allow the unlink to occur. 4048 */ 4049 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4050 { 4051 struct btrfs_root *root = BTRFS_I(dir)->root; 4052 4053 /* 4054 * 1 for the possible orphan item 4055 * 1 for the dir item 4056 * 1 for the dir index 4057 * 1 for the inode ref 4058 * 1 for the inode 4059 */ 4060 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4061 } 4062 4063 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4064 { 4065 struct btrfs_root *root = BTRFS_I(dir)->root; 4066 struct btrfs_trans_handle *trans; 4067 struct inode *inode = d_inode(dentry); 4068 int ret; 4069 4070 trans = __unlink_start_trans(dir); 4071 if (IS_ERR(trans)) 4072 return PTR_ERR(trans); 4073 4074 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4075 0); 4076 4077 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4078 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4079 dentry->d_name.len); 4080 if (ret) 4081 goto out; 4082 4083 if (inode->i_nlink == 0) { 4084 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4085 if (ret) 4086 goto out; 4087 } 4088 4089 out: 4090 btrfs_end_transaction(trans); 4091 btrfs_btree_balance_dirty(root->fs_info); 4092 return ret; 4093 } 4094 4095 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4096 struct inode *dir, u64 objectid, 4097 const char *name, int name_len) 4098 { 4099 struct btrfs_root *root = BTRFS_I(dir)->root; 4100 struct btrfs_path *path; 4101 struct extent_buffer *leaf; 4102 struct btrfs_dir_item *di; 4103 struct btrfs_key key; 4104 u64 index; 4105 int ret; 4106 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4107 4108 path = btrfs_alloc_path(); 4109 if (!path) 4110 return -ENOMEM; 4111 4112 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4113 name, name_len, -1); 4114 if (IS_ERR_OR_NULL(di)) { 4115 ret = di ? PTR_ERR(di) : -ENOENT; 4116 goto out; 4117 } 4118 4119 leaf = path->nodes[0]; 4120 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4121 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4122 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4123 if (ret) { 4124 btrfs_abort_transaction(trans, ret); 4125 goto out; 4126 } 4127 btrfs_release_path(path); 4128 4129 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid, 4130 dir_ino, &index, name, name_len); 4131 if (ret < 0) { 4132 if (ret != -ENOENT) { 4133 btrfs_abort_transaction(trans, ret); 4134 goto out; 4135 } 4136 di = btrfs_search_dir_index_item(root, path, dir_ino, 4137 name, name_len); 4138 if (IS_ERR_OR_NULL(di)) { 4139 if (!di) 4140 ret = -ENOENT; 4141 else 4142 ret = PTR_ERR(di); 4143 btrfs_abort_transaction(trans, ret); 4144 goto out; 4145 } 4146 4147 leaf = path->nodes[0]; 4148 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4149 index = key.offset; 4150 } 4151 btrfs_release_path(path); 4152 4153 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4154 if (ret) { 4155 btrfs_abort_transaction(trans, ret); 4156 goto out; 4157 } 4158 4159 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4160 inode_inc_iversion(dir); 4161 dir->i_mtime = dir->i_ctime = current_time(dir); 4162 ret = btrfs_update_inode_fallback(trans, root, dir); 4163 if (ret) 4164 btrfs_abort_transaction(trans, ret); 4165 out: 4166 btrfs_free_path(path); 4167 return ret; 4168 } 4169 4170 /* 4171 * Helper to check if the subvolume references other subvolumes or if it's 4172 * default. 4173 */ 4174 static noinline int may_destroy_subvol(struct btrfs_root *root) 4175 { 4176 struct btrfs_fs_info *fs_info = root->fs_info; 4177 struct btrfs_path *path; 4178 struct btrfs_dir_item *di; 4179 struct btrfs_key key; 4180 u64 dir_id; 4181 int ret; 4182 4183 path = btrfs_alloc_path(); 4184 if (!path) 4185 return -ENOMEM; 4186 4187 /* Make sure this root isn't set as the default subvol */ 4188 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4189 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4190 dir_id, "default", 7, 0); 4191 if (di && !IS_ERR(di)) { 4192 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4193 if (key.objectid == root->root_key.objectid) { 4194 ret = -EPERM; 4195 btrfs_err(fs_info, 4196 "deleting default subvolume %llu is not allowed", 4197 key.objectid); 4198 goto out; 4199 } 4200 btrfs_release_path(path); 4201 } 4202 4203 key.objectid = root->root_key.objectid; 4204 key.type = BTRFS_ROOT_REF_KEY; 4205 key.offset = (u64)-1; 4206 4207 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4208 if (ret < 0) 4209 goto out; 4210 BUG_ON(ret == 0); 4211 4212 ret = 0; 4213 if (path->slots[0] > 0) { 4214 path->slots[0]--; 4215 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4216 if (key.objectid == root->root_key.objectid && 4217 key.type == BTRFS_ROOT_REF_KEY) 4218 ret = -ENOTEMPTY; 4219 } 4220 out: 4221 btrfs_free_path(path); 4222 return ret; 4223 } 4224 4225 /* Delete all dentries for inodes belonging to the root */ 4226 static void btrfs_prune_dentries(struct btrfs_root *root) 4227 { 4228 struct btrfs_fs_info *fs_info = root->fs_info; 4229 struct rb_node *node; 4230 struct rb_node *prev; 4231 struct btrfs_inode *entry; 4232 struct inode *inode; 4233 u64 objectid = 0; 4234 4235 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4236 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4237 4238 spin_lock(&root->inode_lock); 4239 again: 4240 node = root->inode_tree.rb_node; 4241 prev = NULL; 4242 while (node) { 4243 prev = node; 4244 entry = rb_entry(node, struct btrfs_inode, rb_node); 4245 4246 if (objectid < btrfs_ino(entry)) 4247 node = node->rb_left; 4248 else if (objectid > btrfs_ino(entry)) 4249 node = node->rb_right; 4250 else 4251 break; 4252 } 4253 if (!node) { 4254 while (prev) { 4255 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4256 if (objectid <= btrfs_ino(entry)) { 4257 node = prev; 4258 break; 4259 } 4260 prev = rb_next(prev); 4261 } 4262 } 4263 while (node) { 4264 entry = rb_entry(node, struct btrfs_inode, rb_node); 4265 objectid = btrfs_ino(entry) + 1; 4266 inode = igrab(&entry->vfs_inode); 4267 if (inode) { 4268 spin_unlock(&root->inode_lock); 4269 if (atomic_read(&inode->i_count) > 1) 4270 d_prune_aliases(inode); 4271 /* 4272 * btrfs_drop_inode will have it removed from the inode 4273 * cache when its usage count hits zero. 4274 */ 4275 iput(inode); 4276 cond_resched(); 4277 spin_lock(&root->inode_lock); 4278 goto again; 4279 } 4280 4281 if (cond_resched_lock(&root->inode_lock)) 4282 goto again; 4283 4284 node = rb_next(node); 4285 } 4286 spin_unlock(&root->inode_lock); 4287 } 4288 4289 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4290 { 4291 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4292 struct btrfs_root *root = BTRFS_I(dir)->root; 4293 struct inode *inode = d_inode(dentry); 4294 struct btrfs_root *dest = BTRFS_I(inode)->root; 4295 struct btrfs_trans_handle *trans; 4296 struct btrfs_block_rsv block_rsv; 4297 u64 root_flags; 4298 int ret; 4299 int err; 4300 4301 /* 4302 * Don't allow to delete a subvolume with send in progress. This is 4303 * inside the inode lock so the error handling that has to drop the bit 4304 * again is not run concurrently. 4305 */ 4306 spin_lock(&dest->root_item_lock); 4307 if (dest->send_in_progress) { 4308 spin_unlock(&dest->root_item_lock); 4309 btrfs_warn(fs_info, 4310 "attempt to delete subvolume %llu during send", 4311 dest->root_key.objectid); 4312 return -EPERM; 4313 } 4314 root_flags = btrfs_root_flags(&dest->root_item); 4315 btrfs_set_root_flags(&dest->root_item, 4316 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4317 spin_unlock(&dest->root_item_lock); 4318 4319 down_write(&fs_info->subvol_sem); 4320 4321 err = may_destroy_subvol(dest); 4322 if (err) 4323 goto out_up_write; 4324 4325 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4326 /* 4327 * One for dir inode, 4328 * two for dir entries, 4329 * two for root ref/backref. 4330 */ 4331 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4332 if (err) 4333 goto out_up_write; 4334 4335 trans = btrfs_start_transaction(root, 0); 4336 if (IS_ERR(trans)) { 4337 err = PTR_ERR(trans); 4338 goto out_release; 4339 } 4340 trans->block_rsv = &block_rsv; 4341 trans->bytes_reserved = block_rsv.size; 4342 4343 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4344 4345 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid, 4346 dentry->d_name.name, dentry->d_name.len); 4347 if (ret) { 4348 err = ret; 4349 btrfs_abort_transaction(trans, ret); 4350 goto out_end_trans; 4351 } 4352 4353 btrfs_record_root_in_trans(trans, dest); 4354 4355 memset(&dest->root_item.drop_progress, 0, 4356 sizeof(dest->root_item.drop_progress)); 4357 dest->root_item.drop_level = 0; 4358 btrfs_set_root_refs(&dest->root_item, 0); 4359 4360 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4361 ret = btrfs_insert_orphan_item(trans, 4362 fs_info->tree_root, 4363 dest->root_key.objectid); 4364 if (ret) { 4365 btrfs_abort_transaction(trans, ret); 4366 err = ret; 4367 goto out_end_trans; 4368 } 4369 } 4370 4371 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4372 BTRFS_UUID_KEY_SUBVOL, 4373 dest->root_key.objectid); 4374 if (ret && ret != -ENOENT) { 4375 btrfs_abort_transaction(trans, ret); 4376 err = ret; 4377 goto out_end_trans; 4378 } 4379 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4380 ret = btrfs_uuid_tree_remove(trans, 4381 dest->root_item.received_uuid, 4382 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4383 dest->root_key.objectid); 4384 if (ret && ret != -ENOENT) { 4385 btrfs_abort_transaction(trans, ret); 4386 err = ret; 4387 goto out_end_trans; 4388 } 4389 } 4390 4391 out_end_trans: 4392 trans->block_rsv = NULL; 4393 trans->bytes_reserved = 0; 4394 ret = btrfs_end_transaction(trans); 4395 if (ret && !err) 4396 err = ret; 4397 inode->i_flags |= S_DEAD; 4398 out_release: 4399 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4400 out_up_write: 4401 up_write(&fs_info->subvol_sem); 4402 if (err) { 4403 spin_lock(&dest->root_item_lock); 4404 root_flags = btrfs_root_flags(&dest->root_item); 4405 btrfs_set_root_flags(&dest->root_item, 4406 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4407 spin_unlock(&dest->root_item_lock); 4408 } else { 4409 d_invalidate(dentry); 4410 btrfs_prune_dentries(dest); 4411 ASSERT(dest->send_in_progress == 0); 4412 4413 /* the last ref */ 4414 if (dest->ino_cache_inode) { 4415 iput(dest->ino_cache_inode); 4416 dest->ino_cache_inode = NULL; 4417 } 4418 } 4419 4420 return err; 4421 } 4422 4423 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4424 { 4425 struct inode *inode = d_inode(dentry); 4426 int err = 0; 4427 struct btrfs_root *root = BTRFS_I(dir)->root; 4428 struct btrfs_trans_handle *trans; 4429 u64 last_unlink_trans; 4430 4431 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4432 return -ENOTEMPTY; 4433 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4434 return btrfs_delete_subvolume(dir, dentry); 4435 4436 trans = __unlink_start_trans(dir); 4437 if (IS_ERR(trans)) 4438 return PTR_ERR(trans); 4439 4440 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4441 err = btrfs_unlink_subvol(trans, dir, 4442 BTRFS_I(inode)->location.objectid, 4443 dentry->d_name.name, 4444 dentry->d_name.len); 4445 goto out; 4446 } 4447 4448 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4449 if (err) 4450 goto out; 4451 4452 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4453 4454 /* now the directory is empty */ 4455 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4456 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4457 dentry->d_name.len); 4458 if (!err) { 4459 btrfs_i_size_write(BTRFS_I(inode), 0); 4460 /* 4461 * Propagate the last_unlink_trans value of the deleted dir to 4462 * its parent directory. This is to prevent an unrecoverable 4463 * log tree in the case we do something like this: 4464 * 1) create dir foo 4465 * 2) create snapshot under dir foo 4466 * 3) delete the snapshot 4467 * 4) rmdir foo 4468 * 5) mkdir foo 4469 * 6) fsync foo or some file inside foo 4470 */ 4471 if (last_unlink_trans >= trans->transid) 4472 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4473 } 4474 out: 4475 btrfs_end_transaction(trans); 4476 btrfs_btree_balance_dirty(root->fs_info); 4477 4478 return err; 4479 } 4480 4481 /* 4482 * Return this if we need to call truncate_block for the last bit of the 4483 * truncate. 4484 */ 4485 #define NEED_TRUNCATE_BLOCK 1 4486 4487 /* 4488 * this can truncate away extent items, csum items and directory items. 4489 * It starts at a high offset and removes keys until it can't find 4490 * any higher than new_size 4491 * 4492 * csum items that cross the new i_size are truncated to the new size 4493 * as well. 4494 * 4495 * min_type is the minimum key type to truncate down to. If set to 0, this 4496 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4497 */ 4498 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4499 struct btrfs_root *root, 4500 struct inode *inode, 4501 u64 new_size, u32 min_type) 4502 { 4503 struct btrfs_fs_info *fs_info = root->fs_info; 4504 struct btrfs_path *path; 4505 struct extent_buffer *leaf; 4506 struct btrfs_file_extent_item *fi; 4507 struct btrfs_key key; 4508 struct btrfs_key found_key; 4509 u64 extent_start = 0; 4510 u64 extent_num_bytes = 0; 4511 u64 extent_offset = 0; 4512 u64 item_end = 0; 4513 u64 last_size = new_size; 4514 u32 found_type = (u8)-1; 4515 int found_extent; 4516 int del_item; 4517 int pending_del_nr = 0; 4518 int pending_del_slot = 0; 4519 int extent_type = -1; 4520 int ret; 4521 u64 ino = btrfs_ino(BTRFS_I(inode)); 4522 u64 bytes_deleted = 0; 4523 bool be_nice = false; 4524 bool should_throttle = false; 4525 4526 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4527 4528 /* 4529 * for non-free space inodes and ref cows, we want to back off from 4530 * time to time 4531 */ 4532 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4533 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4534 be_nice = true; 4535 4536 path = btrfs_alloc_path(); 4537 if (!path) 4538 return -ENOMEM; 4539 path->reada = READA_BACK; 4540 4541 /* 4542 * We want to drop from the next block forward in case this new size is 4543 * not block aligned since we will be keeping the last block of the 4544 * extent just the way it is. 4545 */ 4546 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4547 root == fs_info->tree_root) 4548 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4549 fs_info->sectorsize), 4550 (u64)-1, 0); 4551 4552 /* 4553 * This function is also used to drop the items in the log tree before 4554 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4555 * it is used to drop the logged items. So we shouldn't kill the delayed 4556 * items. 4557 */ 4558 if (min_type == 0 && root == BTRFS_I(inode)->root) 4559 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4560 4561 key.objectid = ino; 4562 key.offset = (u64)-1; 4563 key.type = (u8)-1; 4564 4565 search_again: 4566 /* 4567 * with a 16K leaf size and 128MB extents, you can actually queue 4568 * up a huge file in a single leaf. Most of the time that 4569 * bytes_deleted is > 0, it will be huge by the time we get here 4570 */ 4571 if (be_nice && bytes_deleted > SZ_32M && 4572 btrfs_should_end_transaction(trans)) { 4573 ret = -EAGAIN; 4574 goto out; 4575 } 4576 4577 path->leave_spinning = 1; 4578 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4579 if (ret < 0) 4580 goto out; 4581 4582 if (ret > 0) { 4583 ret = 0; 4584 /* there are no items in the tree for us to truncate, we're 4585 * done 4586 */ 4587 if (path->slots[0] == 0) 4588 goto out; 4589 path->slots[0]--; 4590 } 4591 4592 while (1) { 4593 fi = NULL; 4594 leaf = path->nodes[0]; 4595 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4596 found_type = found_key.type; 4597 4598 if (found_key.objectid != ino) 4599 break; 4600 4601 if (found_type < min_type) 4602 break; 4603 4604 item_end = found_key.offset; 4605 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4606 fi = btrfs_item_ptr(leaf, path->slots[0], 4607 struct btrfs_file_extent_item); 4608 extent_type = btrfs_file_extent_type(leaf, fi); 4609 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4610 item_end += 4611 btrfs_file_extent_num_bytes(leaf, fi); 4612 4613 trace_btrfs_truncate_show_fi_regular( 4614 BTRFS_I(inode), leaf, fi, 4615 found_key.offset); 4616 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4617 item_end += btrfs_file_extent_ram_bytes(leaf, 4618 fi); 4619 4620 trace_btrfs_truncate_show_fi_inline( 4621 BTRFS_I(inode), leaf, fi, path->slots[0], 4622 found_key.offset); 4623 } 4624 item_end--; 4625 } 4626 if (found_type > min_type) { 4627 del_item = 1; 4628 } else { 4629 if (item_end < new_size) 4630 break; 4631 if (found_key.offset >= new_size) 4632 del_item = 1; 4633 else 4634 del_item = 0; 4635 } 4636 found_extent = 0; 4637 /* FIXME, shrink the extent if the ref count is only 1 */ 4638 if (found_type != BTRFS_EXTENT_DATA_KEY) 4639 goto delete; 4640 4641 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4642 u64 num_dec; 4643 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4644 if (!del_item) { 4645 u64 orig_num_bytes = 4646 btrfs_file_extent_num_bytes(leaf, fi); 4647 extent_num_bytes = ALIGN(new_size - 4648 found_key.offset, 4649 fs_info->sectorsize); 4650 btrfs_set_file_extent_num_bytes(leaf, fi, 4651 extent_num_bytes); 4652 num_dec = (orig_num_bytes - 4653 extent_num_bytes); 4654 if (test_bit(BTRFS_ROOT_REF_COWS, 4655 &root->state) && 4656 extent_start != 0) 4657 inode_sub_bytes(inode, num_dec); 4658 btrfs_mark_buffer_dirty(leaf); 4659 } else { 4660 extent_num_bytes = 4661 btrfs_file_extent_disk_num_bytes(leaf, 4662 fi); 4663 extent_offset = found_key.offset - 4664 btrfs_file_extent_offset(leaf, fi); 4665 4666 /* FIXME blocksize != 4096 */ 4667 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4668 if (extent_start != 0) { 4669 found_extent = 1; 4670 if (test_bit(BTRFS_ROOT_REF_COWS, 4671 &root->state)) 4672 inode_sub_bytes(inode, num_dec); 4673 } 4674 } 4675 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4676 /* 4677 * we can't truncate inline items that have had 4678 * special encodings 4679 */ 4680 if (!del_item && 4681 btrfs_file_extent_encryption(leaf, fi) == 0 && 4682 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4683 btrfs_file_extent_compression(leaf, fi) == 0) { 4684 u32 size = (u32)(new_size - found_key.offset); 4685 4686 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4687 size = btrfs_file_extent_calc_inline_size(size); 4688 btrfs_truncate_item(path, size, 1); 4689 } else if (!del_item) { 4690 /* 4691 * We have to bail so the last_size is set to 4692 * just before this extent. 4693 */ 4694 ret = NEED_TRUNCATE_BLOCK; 4695 break; 4696 } 4697 4698 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4699 inode_sub_bytes(inode, item_end + 1 - new_size); 4700 } 4701 delete: 4702 if (del_item) 4703 last_size = found_key.offset; 4704 else 4705 last_size = new_size; 4706 if (del_item) { 4707 if (!pending_del_nr) { 4708 /* no pending yet, add ourselves */ 4709 pending_del_slot = path->slots[0]; 4710 pending_del_nr = 1; 4711 } else if (pending_del_nr && 4712 path->slots[0] + 1 == pending_del_slot) { 4713 /* hop on the pending chunk */ 4714 pending_del_nr++; 4715 pending_del_slot = path->slots[0]; 4716 } else { 4717 BUG(); 4718 } 4719 } else { 4720 break; 4721 } 4722 should_throttle = false; 4723 4724 if (found_extent && 4725 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4726 root == fs_info->tree_root)) { 4727 struct btrfs_ref ref = { 0 }; 4728 4729 btrfs_set_path_blocking(path); 4730 bytes_deleted += extent_num_bytes; 4731 4732 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4733 extent_start, extent_num_bytes, 0); 4734 ref.real_root = root->root_key.objectid; 4735 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4736 ino, extent_offset); 4737 ret = btrfs_free_extent(trans, &ref); 4738 if (ret) { 4739 btrfs_abort_transaction(trans, ret); 4740 break; 4741 } 4742 if (be_nice) { 4743 if (btrfs_should_throttle_delayed_refs(trans)) 4744 should_throttle = true; 4745 } 4746 } 4747 4748 if (found_type == BTRFS_INODE_ITEM_KEY) 4749 break; 4750 4751 if (path->slots[0] == 0 || 4752 path->slots[0] != pending_del_slot || 4753 should_throttle) { 4754 if (pending_del_nr) { 4755 ret = btrfs_del_items(trans, root, path, 4756 pending_del_slot, 4757 pending_del_nr); 4758 if (ret) { 4759 btrfs_abort_transaction(trans, ret); 4760 break; 4761 } 4762 pending_del_nr = 0; 4763 } 4764 btrfs_release_path(path); 4765 4766 /* 4767 * We can generate a lot of delayed refs, so we need to 4768 * throttle every once and a while and make sure we're 4769 * adding enough space to keep up with the work we are 4770 * generating. Since we hold a transaction here we 4771 * can't flush, and we don't want to FLUSH_LIMIT because 4772 * we could have generated too many delayed refs to 4773 * actually allocate, so just bail if we're short and 4774 * let the normal reservation dance happen higher up. 4775 */ 4776 if (should_throttle) { 4777 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4778 BTRFS_RESERVE_NO_FLUSH); 4779 if (ret) { 4780 ret = -EAGAIN; 4781 break; 4782 } 4783 } 4784 goto search_again; 4785 } else { 4786 path->slots[0]--; 4787 } 4788 } 4789 out: 4790 if (ret >= 0 && pending_del_nr) { 4791 int err; 4792 4793 err = btrfs_del_items(trans, root, path, pending_del_slot, 4794 pending_del_nr); 4795 if (err) { 4796 btrfs_abort_transaction(trans, err); 4797 ret = err; 4798 } 4799 } 4800 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4801 ASSERT(last_size >= new_size); 4802 if (!ret && last_size > new_size) 4803 last_size = new_size; 4804 btrfs_ordered_update_i_size(inode, last_size, NULL); 4805 } 4806 4807 btrfs_free_path(path); 4808 return ret; 4809 } 4810 4811 /* 4812 * btrfs_truncate_block - read, zero a chunk and write a block 4813 * @inode - inode that we're zeroing 4814 * @from - the offset to start zeroing 4815 * @len - the length to zero, 0 to zero the entire range respective to the 4816 * offset 4817 * @front - zero up to the offset instead of from the offset on 4818 * 4819 * This will find the block for the "from" offset and cow the block and zero the 4820 * part we want to zero. This is used with truncate and hole punching. 4821 */ 4822 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4823 int front) 4824 { 4825 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4826 struct address_space *mapping = inode->i_mapping; 4827 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4828 struct btrfs_ordered_extent *ordered; 4829 struct extent_state *cached_state = NULL; 4830 struct extent_changeset *data_reserved = NULL; 4831 char *kaddr; 4832 u32 blocksize = fs_info->sectorsize; 4833 pgoff_t index = from >> PAGE_SHIFT; 4834 unsigned offset = from & (blocksize - 1); 4835 struct page *page; 4836 gfp_t mask = btrfs_alloc_write_mask(mapping); 4837 int ret = 0; 4838 u64 block_start; 4839 u64 block_end; 4840 4841 if (IS_ALIGNED(offset, blocksize) && 4842 (!len || IS_ALIGNED(len, blocksize))) 4843 goto out; 4844 4845 block_start = round_down(from, blocksize); 4846 block_end = block_start + blocksize - 1; 4847 4848 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4849 block_start, blocksize); 4850 if (ret) 4851 goto out; 4852 4853 again: 4854 page = find_or_create_page(mapping, index, mask); 4855 if (!page) { 4856 btrfs_delalloc_release_space(inode, data_reserved, 4857 block_start, blocksize, true); 4858 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true); 4859 ret = -ENOMEM; 4860 goto out; 4861 } 4862 4863 if (!PageUptodate(page)) { 4864 ret = btrfs_readpage(NULL, page); 4865 lock_page(page); 4866 if (page->mapping != mapping) { 4867 unlock_page(page); 4868 put_page(page); 4869 goto again; 4870 } 4871 if (!PageUptodate(page)) { 4872 ret = -EIO; 4873 goto out_unlock; 4874 } 4875 } 4876 wait_on_page_writeback(page); 4877 4878 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4879 set_page_extent_mapped(page); 4880 4881 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4882 if (ordered) { 4883 unlock_extent_cached(io_tree, block_start, block_end, 4884 &cached_state); 4885 unlock_page(page); 4886 put_page(page); 4887 btrfs_start_ordered_extent(inode, ordered, 1); 4888 btrfs_put_ordered_extent(ordered); 4889 goto again; 4890 } 4891 4892 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4893 EXTENT_DIRTY | EXTENT_DELALLOC | 4894 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4895 0, 0, &cached_state); 4896 4897 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4898 &cached_state, 0); 4899 if (ret) { 4900 unlock_extent_cached(io_tree, block_start, block_end, 4901 &cached_state); 4902 goto out_unlock; 4903 } 4904 4905 if (offset != blocksize) { 4906 if (!len) 4907 len = blocksize - offset; 4908 kaddr = kmap(page); 4909 if (front) 4910 memset(kaddr + (block_start - page_offset(page)), 4911 0, offset); 4912 else 4913 memset(kaddr + (block_start - page_offset(page)) + offset, 4914 0, len); 4915 flush_dcache_page(page); 4916 kunmap(page); 4917 } 4918 ClearPageChecked(page); 4919 set_page_dirty(page); 4920 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4921 4922 out_unlock: 4923 if (ret) 4924 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4925 blocksize, true); 4926 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0)); 4927 unlock_page(page); 4928 put_page(page); 4929 out: 4930 extent_changeset_free(data_reserved); 4931 return ret; 4932 } 4933 4934 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4935 u64 offset, u64 len) 4936 { 4937 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4938 struct btrfs_trans_handle *trans; 4939 int ret; 4940 4941 /* 4942 * Still need to make sure the inode looks like it's been updated so 4943 * that any holes get logged if we fsync. 4944 */ 4945 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4946 BTRFS_I(inode)->last_trans = fs_info->generation; 4947 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4948 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4949 return 0; 4950 } 4951 4952 /* 4953 * 1 - for the one we're dropping 4954 * 1 - for the one we're adding 4955 * 1 - for updating the inode. 4956 */ 4957 trans = btrfs_start_transaction(root, 3); 4958 if (IS_ERR(trans)) 4959 return PTR_ERR(trans); 4960 4961 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4962 if (ret) { 4963 btrfs_abort_transaction(trans, ret); 4964 btrfs_end_transaction(trans); 4965 return ret; 4966 } 4967 4968 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4969 offset, 0, 0, len, 0, len, 0, 0, 0); 4970 if (ret) 4971 btrfs_abort_transaction(trans, ret); 4972 else 4973 btrfs_update_inode(trans, root, inode); 4974 btrfs_end_transaction(trans); 4975 return ret; 4976 } 4977 4978 /* 4979 * This function puts in dummy file extents for the area we're creating a hole 4980 * for. So if we are truncating this file to a larger size we need to insert 4981 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4982 * the range between oldsize and size 4983 */ 4984 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4985 { 4986 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4987 struct btrfs_root *root = BTRFS_I(inode)->root; 4988 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4989 struct extent_map *em = NULL; 4990 struct extent_state *cached_state = NULL; 4991 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4992 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4993 u64 block_end = ALIGN(size, fs_info->sectorsize); 4994 u64 last_byte; 4995 u64 cur_offset; 4996 u64 hole_size; 4997 int err = 0; 4998 4999 /* 5000 * If our size started in the middle of a block we need to zero out the 5001 * rest of the block before we expand the i_size, otherwise we could 5002 * expose stale data. 5003 */ 5004 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5005 if (err) 5006 return err; 5007 5008 if (size <= hole_start) 5009 return 0; 5010 5011 while (1) { 5012 struct btrfs_ordered_extent *ordered; 5013 5014 lock_extent_bits(io_tree, hole_start, block_end - 1, 5015 &cached_state); 5016 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 5017 block_end - hole_start); 5018 if (!ordered) 5019 break; 5020 unlock_extent_cached(io_tree, hole_start, block_end - 1, 5021 &cached_state); 5022 btrfs_start_ordered_extent(inode, ordered, 1); 5023 btrfs_put_ordered_extent(ordered); 5024 } 5025 5026 cur_offset = hole_start; 5027 while (1) { 5028 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 5029 block_end - cur_offset, 0); 5030 if (IS_ERR(em)) { 5031 err = PTR_ERR(em); 5032 em = NULL; 5033 break; 5034 } 5035 last_byte = min(extent_map_end(em), block_end); 5036 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5037 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5038 struct extent_map *hole_em; 5039 hole_size = last_byte - cur_offset; 5040 5041 err = maybe_insert_hole(root, inode, cur_offset, 5042 hole_size); 5043 if (err) 5044 break; 5045 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5046 cur_offset + hole_size - 1, 0); 5047 hole_em = alloc_extent_map(); 5048 if (!hole_em) { 5049 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5050 &BTRFS_I(inode)->runtime_flags); 5051 goto next; 5052 } 5053 hole_em->start = cur_offset; 5054 hole_em->len = hole_size; 5055 hole_em->orig_start = cur_offset; 5056 5057 hole_em->block_start = EXTENT_MAP_HOLE; 5058 hole_em->block_len = 0; 5059 hole_em->orig_block_len = 0; 5060 hole_em->ram_bytes = hole_size; 5061 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5062 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5063 hole_em->generation = fs_info->generation; 5064 5065 while (1) { 5066 write_lock(&em_tree->lock); 5067 err = add_extent_mapping(em_tree, hole_em, 1); 5068 write_unlock(&em_tree->lock); 5069 if (err != -EEXIST) 5070 break; 5071 btrfs_drop_extent_cache(BTRFS_I(inode), 5072 cur_offset, 5073 cur_offset + 5074 hole_size - 1, 0); 5075 } 5076 free_extent_map(hole_em); 5077 } 5078 next: 5079 free_extent_map(em); 5080 em = NULL; 5081 cur_offset = last_byte; 5082 if (cur_offset >= block_end) 5083 break; 5084 } 5085 free_extent_map(em); 5086 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5087 return err; 5088 } 5089 5090 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5091 { 5092 struct btrfs_root *root = BTRFS_I(inode)->root; 5093 struct btrfs_trans_handle *trans; 5094 loff_t oldsize = i_size_read(inode); 5095 loff_t newsize = attr->ia_size; 5096 int mask = attr->ia_valid; 5097 int ret; 5098 5099 /* 5100 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5101 * special case where we need to update the times despite not having 5102 * these flags set. For all other operations the VFS set these flags 5103 * explicitly if it wants a timestamp update. 5104 */ 5105 if (newsize != oldsize) { 5106 inode_inc_iversion(inode); 5107 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5108 inode->i_ctime = inode->i_mtime = 5109 current_time(inode); 5110 } 5111 5112 if (newsize > oldsize) { 5113 /* 5114 * Don't do an expanding truncate while snapshotting is ongoing. 5115 * This is to ensure the snapshot captures a fully consistent 5116 * state of this file - if the snapshot captures this expanding 5117 * truncation, it must capture all writes that happened before 5118 * this truncation. 5119 */ 5120 btrfs_wait_for_snapshot_creation(root); 5121 ret = btrfs_cont_expand(inode, oldsize, newsize); 5122 if (ret) { 5123 btrfs_end_write_no_snapshotting(root); 5124 return ret; 5125 } 5126 5127 trans = btrfs_start_transaction(root, 1); 5128 if (IS_ERR(trans)) { 5129 btrfs_end_write_no_snapshotting(root); 5130 return PTR_ERR(trans); 5131 } 5132 5133 i_size_write(inode, newsize); 5134 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5135 pagecache_isize_extended(inode, oldsize, newsize); 5136 ret = btrfs_update_inode(trans, root, inode); 5137 btrfs_end_write_no_snapshotting(root); 5138 btrfs_end_transaction(trans); 5139 } else { 5140 5141 /* 5142 * We're truncating a file that used to have good data down to 5143 * zero. Make sure it gets into the ordered flush list so that 5144 * any new writes get down to disk quickly. 5145 */ 5146 if (newsize == 0) 5147 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5148 &BTRFS_I(inode)->runtime_flags); 5149 5150 truncate_setsize(inode, newsize); 5151 5152 /* Disable nonlocked read DIO to avoid the endless truncate */ 5153 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5154 inode_dio_wait(inode); 5155 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5156 5157 ret = btrfs_truncate(inode, newsize == oldsize); 5158 if (ret && inode->i_nlink) { 5159 int err; 5160 5161 /* 5162 * Truncate failed, so fix up the in-memory size. We 5163 * adjusted disk_i_size down as we removed extents, so 5164 * wait for disk_i_size to be stable and then update the 5165 * in-memory size to match. 5166 */ 5167 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5168 if (err) 5169 return err; 5170 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5171 } 5172 } 5173 5174 return ret; 5175 } 5176 5177 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5178 { 5179 struct inode *inode = d_inode(dentry); 5180 struct btrfs_root *root = BTRFS_I(inode)->root; 5181 int err; 5182 5183 if (btrfs_root_readonly(root)) 5184 return -EROFS; 5185 5186 err = setattr_prepare(dentry, attr); 5187 if (err) 5188 return err; 5189 5190 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5191 err = btrfs_setsize(inode, attr); 5192 if (err) 5193 return err; 5194 } 5195 5196 if (attr->ia_valid) { 5197 setattr_copy(inode, attr); 5198 inode_inc_iversion(inode); 5199 err = btrfs_dirty_inode(inode); 5200 5201 if (!err && attr->ia_valid & ATTR_MODE) 5202 err = posix_acl_chmod(inode, inode->i_mode); 5203 } 5204 5205 return err; 5206 } 5207 5208 /* 5209 * While truncating the inode pages during eviction, we get the VFS calling 5210 * btrfs_invalidatepage() against each page of the inode. This is slow because 5211 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5212 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5213 * extent_state structures over and over, wasting lots of time. 5214 * 5215 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5216 * those expensive operations on a per page basis and do only the ordered io 5217 * finishing, while we release here the extent_map and extent_state structures, 5218 * without the excessive merging and splitting. 5219 */ 5220 static void evict_inode_truncate_pages(struct inode *inode) 5221 { 5222 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5223 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5224 struct rb_node *node; 5225 5226 ASSERT(inode->i_state & I_FREEING); 5227 truncate_inode_pages_final(&inode->i_data); 5228 5229 write_lock(&map_tree->lock); 5230 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5231 struct extent_map *em; 5232 5233 node = rb_first_cached(&map_tree->map); 5234 em = rb_entry(node, struct extent_map, rb_node); 5235 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5236 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5237 remove_extent_mapping(map_tree, em); 5238 free_extent_map(em); 5239 if (need_resched()) { 5240 write_unlock(&map_tree->lock); 5241 cond_resched(); 5242 write_lock(&map_tree->lock); 5243 } 5244 } 5245 write_unlock(&map_tree->lock); 5246 5247 /* 5248 * Keep looping until we have no more ranges in the io tree. 5249 * We can have ongoing bios started by readpages (called from readahead) 5250 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5251 * still in progress (unlocked the pages in the bio but did not yet 5252 * unlocked the ranges in the io tree). Therefore this means some 5253 * ranges can still be locked and eviction started because before 5254 * submitting those bios, which are executed by a separate task (work 5255 * queue kthread), inode references (inode->i_count) were not taken 5256 * (which would be dropped in the end io callback of each bio). 5257 * Therefore here we effectively end up waiting for those bios and 5258 * anyone else holding locked ranges without having bumped the inode's 5259 * reference count - if we don't do it, when they access the inode's 5260 * io_tree to unlock a range it may be too late, leading to an 5261 * use-after-free issue. 5262 */ 5263 spin_lock(&io_tree->lock); 5264 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5265 struct extent_state *state; 5266 struct extent_state *cached_state = NULL; 5267 u64 start; 5268 u64 end; 5269 unsigned state_flags; 5270 5271 node = rb_first(&io_tree->state); 5272 state = rb_entry(node, struct extent_state, rb_node); 5273 start = state->start; 5274 end = state->end; 5275 state_flags = state->state; 5276 spin_unlock(&io_tree->lock); 5277 5278 lock_extent_bits(io_tree, start, end, &cached_state); 5279 5280 /* 5281 * If still has DELALLOC flag, the extent didn't reach disk, 5282 * and its reserved space won't be freed by delayed_ref. 5283 * So we need to free its reserved space here. 5284 * (Refer to comment in btrfs_invalidatepage, case 2) 5285 * 5286 * Note, end is the bytenr of last byte, so we need + 1 here. 5287 */ 5288 if (state_flags & EXTENT_DELALLOC) 5289 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5290 5291 clear_extent_bit(io_tree, start, end, 5292 EXTENT_LOCKED | EXTENT_DIRTY | 5293 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5294 EXTENT_DEFRAG, 1, 1, &cached_state); 5295 5296 cond_resched(); 5297 spin_lock(&io_tree->lock); 5298 } 5299 spin_unlock(&io_tree->lock); 5300 } 5301 5302 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5303 struct btrfs_block_rsv *rsv) 5304 { 5305 struct btrfs_fs_info *fs_info = root->fs_info; 5306 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5307 u64 delayed_refs_extra = btrfs_calc_trans_metadata_size(fs_info, 1); 5308 int failures = 0; 5309 5310 for (;;) { 5311 struct btrfs_trans_handle *trans; 5312 int ret; 5313 5314 ret = btrfs_block_rsv_refill(root, rsv, 5315 rsv->size + delayed_refs_extra, 5316 BTRFS_RESERVE_FLUSH_LIMIT); 5317 5318 if (ret && ++failures > 2) { 5319 btrfs_warn(fs_info, 5320 "could not allocate space for a delete; will truncate on mount"); 5321 return ERR_PTR(-ENOSPC); 5322 } 5323 5324 /* 5325 * Evict can generate a large amount of delayed refs without 5326 * having a way to add space back since we exhaust our temporary 5327 * block rsv. We aren't allowed to do FLUSH_ALL in this case 5328 * because we could deadlock with so many things in the flushing 5329 * code, so we have to try and hold some extra space to 5330 * compensate for our delayed ref generation. If we can't get 5331 * that space then we need see if we can steal our minimum from 5332 * the global reserve. We will be ratelimited by the amount of 5333 * space we have for the delayed refs rsv, so we'll end up 5334 * committing and trying again. 5335 */ 5336 trans = btrfs_join_transaction(root); 5337 if (IS_ERR(trans) || !ret) { 5338 if (!IS_ERR(trans)) { 5339 trans->block_rsv = &fs_info->trans_block_rsv; 5340 trans->bytes_reserved = delayed_refs_extra; 5341 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5342 delayed_refs_extra, 1); 5343 } 5344 return trans; 5345 } 5346 5347 /* 5348 * Try to steal from the global reserve if there is space for 5349 * it. 5350 */ 5351 if (!btrfs_check_space_for_delayed_refs(fs_info) && 5352 !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) 5353 return trans; 5354 5355 /* If not, commit and try again. */ 5356 ret = btrfs_commit_transaction(trans); 5357 if (ret) 5358 return ERR_PTR(ret); 5359 } 5360 } 5361 5362 void btrfs_evict_inode(struct inode *inode) 5363 { 5364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5365 struct btrfs_trans_handle *trans; 5366 struct btrfs_root *root = BTRFS_I(inode)->root; 5367 struct btrfs_block_rsv *rsv; 5368 int ret; 5369 5370 trace_btrfs_inode_evict(inode); 5371 5372 if (!root) { 5373 clear_inode(inode); 5374 return; 5375 } 5376 5377 evict_inode_truncate_pages(inode); 5378 5379 if (inode->i_nlink && 5380 ((btrfs_root_refs(&root->root_item) != 0 && 5381 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5382 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5383 goto no_delete; 5384 5385 if (is_bad_inode(inode)) 5386 goto no_delete; 5387 5388 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5389 5390 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5391 goto no_delete; 5392 5393 if (inode->i_nlink > 0) { 5394 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5395 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5396 goto no_delete; 5397 } 5398 5399 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5400 if (ret) 5401 goto no_delete; 5402 5403 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5404 if (!rsv) 5405 goto no_delete; 5406 rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5407 rsv->failfast = 1; 5408 5409 btrfs_i_size_write(BTRFS_I(inode), 0); 5410 5411 while (1) { 5412 trans = evict_refill_and_join(root, rsv); 5413 if (IS_ERR(trans)) 5414 goto free_rsv; 5415 5416 trans->block_rsv = rsv; 5417 5418 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5419 trans->block_rsv = &fs_info->trans_block_rsv; 5420 btrfs_end_transaction(trans); 5421 btrfs_btree_balance_dirty(fs_info); 5422 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5423 goto free_rsv; 5424 else if (!ret) 5425 break; 5426 } 5427 5428 /* 5429 * Errors here aren't a big deal, it just means we leave orphan items in 5430 * the tree. They will be cleaned up on the next mount. If the inode 5431 * number gets reused, cleanup deletes the orphan item without doing 5432 * anything, and unlink reuses the existing orphan item. 5433 * 5434 * If it turns out that we are dropping too many of these, we might want 5435 * to add a mechanism for retrying these after a commit. 5436 */ 5437 trans = evict_refill_and_join(root, rsv); 5438 if (!IS_ERR(trans)) { 5439 trans->block_rsv = rsv; 5440 btrfs_orphan_del(trans, BTRFS_I(inode)); 5441 trans->block_rsv = &fs_info->trans_block_rsv; 5442 btrfs_end_transaction(trans); 5443 } 5444 5445 if (!(root == fs_info->tree_root || 5446 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5447 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5448 5449 free_rsv: 5450 btrfs_free_block_rsv(fs_info, rsv); 5451 no_delete: 5452 /* 5453 * If we didn't successfully delete, the orphan item will still be in 5454 * the tree and we'll retry on the next mount. Again, we might also want 5455 * to retry these periodically in the future. 5456 */ 5457 btrfs_remove_delayed_node(BTRFS_I(inode)); 5458 clear_inode(inode); 5459 } 5460 5461 /* 5462 * Return the key found in the dir entry in the location pointer, fill @type 5463 * with BTRFS_FT_*, and return 0. 5464 * 5465 * If no dir entries were found, returns -ENOENT. 5466 * If found a corrupted location in dir entry, returns -EUCLEAN. 5467 */ 5468 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5469 struct btrfs_key *location, u8 *type) 5470 { 5471 const char *name = dentry->d_name.name; 5472 int namelen = dentry->d_name.len; 5473 struct btrfs_dir_item *di; 5474 struct btrfs_path *path; 5475 struct btrfs_root *root = BTRFS_I(dir)->root; 5476 int ret = 0; 5477 5478 path = btrfs_alloc_path(); 5479 if (!path) 5480 return -ENOMEM; 5481 5482 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5483 name, namelen, 0); 5484 if (IS_ERR_OR_NULL(di)) { 5485 ret = di ? PTR_ERR(di) : -ENOENT; 5486 goto out; 5487 } 5488 5489 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5490 if (location->type != BTRFS_INODE_ITEM_KEY && 5491 location->type != BTRFS_ROOT_ITEM_KEY) { 5492 ret = -EUCLEAN; 5493 btrfs_warn(root->fs_info, 5494 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5495 __func__, name, btrfs_ino(BTRFS_I(dir)), 5496 location->objectid, location->type, location->offset); 5497 } 5498 if (!ret) 5499 *type = btrfs_dir_type(path->nodes[0], di); 5500 out: 5501 btrfs_free_path(path); 5502 return ret; 5503 } 5504 5505 /* 5506 * when we hit a tree root in a directory, the btrfs part of the inode 5507 * needs to be changed to reflect the root directory of the tree root. This 5508 * is kind of like crossing a mount point. 5509 */ 5510 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5511 struct inode *dir, 5512 struct dentry *dentry, 5513 struct btrfs_key *location, 5514 struct btrfs_root **sub_root) 5515 { 5516 struct btrfs_path *path; 5517 struct btrfs_root *new_root; 5518 struct btrfs_root_ref *ref; 5519 struct extent_buffer *leaf; 5520 struct btrfs_key key; 5521 int ret; 5522 int err = 0; 5523 5524 path = btrfs_alloc_path(); 5525 if (!path) { 5526 err = -ENOMEM; 5527 goto out; 5528 } 5529 5530 err = -ENOENT; 5531 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5532 key.type = BTRFS_ROOT_REF_KEY; 5533 key.offset = location->objectid; 5534 5535 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5536 if (ret) { 5537 if (ret < 0) 5538 err = ret; 5539 goto out; 5540 } 5541 5542 leaf = path->nodes[0]; 5543 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5544 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5545 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5546 goto out; 5547 5548 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5549 (unsigned long)(ref + 1), 5550 dentry->d_name.len); 5551 if (ret) 5552 goto out; 5553 5554 btrfs_release_path(path); 5555 5556 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5557 if (IS_ERR(new_root)) { 5558 err = PTR_ERR(new_root); 5559 goto out; 5560 } 5561 5562 *sub_root = new_root; 5563 location->objectid = btrfs_root_dirid(&new_root->root_item); 5564 location->type = BTRFS_INODE_ITEM_KEY; 5565 location->offset = 0; 5566 err = 0; 5567 out: 5568 btrfs_free_path(path); 5569 return err; 5570 } 5571 5572 static void inode_tree_add(struct inode *inode) 5573 { 5574 struct btrfs_root *root = BTRFS_I(inode)->root; 5575 struct btrfs_inode *entry; 5576 struct rb_node **p; 5577 struct rb_node *parent; 5578 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5579 u64 ino = btrfs_ino(BTRFS_I(inode)); 5580 5581 if (inode_unhashed(inode)) 5582 return; 5583 parent = NULL; 5584 spin_lock(&root->inode_lock); 5585 p = &root->inode_tree.rb_node; 5586 while (*p) { 5587 parent = *p; 5588 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5589 5590 if (ino < btrfs_ino(entry)) 5591 p = &parent->rb_left; 5592 else if (ino > btrfs_ino(entry)) 5593 p = &parent->rb_right; 5594 else { 5595 WARN_ON(!(entry->vfs_inode.i_state & 5596 (I_WILL_FREE | I_FREEING))); 5597 rb_replace_node(parent, new, &root->inode_tree); 5598 RB_CLEAR_NODE(parent); 5599 spin_unlock(&root->inode_lock); 5600 return; 5601 } 5602 } 5603 rb_link_node(new, parent, p); 5604 rb_insert_color(new, &root->inode_tree); 5605 spin_unlock(&root->inode_lock); 5606 } 5607 5608 static void inode_tree_del(struct inode *inode) 5609 { 5610 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5611 struct btrfs_root *root = BTRFS_I(inode)->root; 5612 int empty = 0; 5613 5614 spin_lock(&root->inode_lock); 5615 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5616 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5617 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5618 empty = RB_EMPTY_ROOT(&root->inode_tree); 5619 } 5620 spin_unlock(&root->inode_lock); 5621 5622 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5623 synchronize_srcu(&fs_info->subvol_srcu); 5624 spin_lock(&root->inode_lock); 5625 empty = RB_EMPTY_ROOT(&root->inode_tree); 5626 spin_unlock(&root->inode_lock); 5627 if (empty) 5628 btrfs_add_dead_root(root); 5629 } 5630 } 5631 5632 5633 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5634 { 5635 struct btrfs_iget_args *args = p; 5636 inode->i_ino = args->location->objectid; 5637 memcpy(&BTRFS_I(inode)->location, args->location, 5638 sizeof(*args->location)); 5639 BTRFS_I(inode)->root = args->root; 5640 return 0; 5641 } 5642 5643 static int btrfs_find_actor(struct inode *inode, void *opaque) 5644 { 5645 struct btrfs_iget_args *args = opaque; 5646 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5647 args->root == BTRFS_I(inode)->root; 5648 } 5649 5650 static struct inode *btrfs_iget_locked(struct super_block *s, 5651 struct btrfs_key *location, 5652 struct btrfs_root *root) 5653 { 5654 struct inode *inode; 5655 struct btrfs_iget_args args; 5656 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5657 5658 args.location = location; 5659 args.root = root; 5660 5661 inode = iget5_locked(s, hashval, btrfs_find_actor, 5662 btrfs_init_locked_inode, 5663 (void *)&args); 5664 return inode; 5665 } 5666 5667 /* Get an inode object given its location and corresponding root. 5668 * Returns in *is_new if the inode was read from disk 5669 */ 5670 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5671 struct btrfs_root *root, int *new, 5672 struct btrfs_path *path) 5673 { 5674 struct inode *inode; 5675 5676 inode = btrfs_iget_locked(s, location, root); 5677 if (!inode) 5678 return ERR_PTR(-ENOMEM); 5679 5680 if (inode->i_state & I_NEW) { 5681 int ret; 5682 5683 ret = btrfs_read_locked_inode(inode, path); 5684 if (!ret) { 5685 inode_tree_add(inode); 5686 unlock_new_inode(inode); 5687 if (new) 5688 *new = 1; 5689 } else { 5690 iget_failed(inode); 5691 /* 5692 * ret > 0 can come from btrfs_search_slot called by 5693 * btrfs_read_locked_inode, this means the inode item 5694 * was not found. 5695 */ 5696 if (ret > 0) 5697 ret = -ENOENT; 5698 inode = ERR_PTR(ret); 5699 } 5700 } 5701 5702 return inode; 5703 } 5704 5705 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5706 struct btrfs_root *root, int *new) 5707 { 5708 return btrfs_iget_path(s, location, root, new, NULL); 5709 } 5710 5711 static struct inode *new_simple_dir(struct super_block *s, 5712 struct btrfs_key *key, 5713 struct btrfs_root *root) 5714 { 5715 struct inode *inode = new_inode(s); 5716 5717 if (!inode) 5718 return ERR_PTR(-ENOMEM); 5719 5720 BTRFS_I(inode)->root = root; 5721 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5722 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5723 5724 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5725 inode->i_op = &btrfs_dir_ro_inode_operations; 5726 inode->i_opflags &= ~IOP_XATTR; 5727 inode->i_fop = &simple_dir_operations; 5728 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5729 inode->i_mtime = current_time(inode); 5730 inode->i_atime = inode->i_mtime; 5731 inode->i_ctime = inode->i_mtime; 5732 BTRFS_I(inode)->i_otime = inode->i_mtime; 5733 5734 return inode; 5735 } 5736 5737 static inline u8 btrfs_inode_type(struct inode *inode) 5738 { 5739 /* 5740 * Compile-time asserts that generic FT_* types still match 5741 * BTRFS_FT_* types 5742 */ 5743 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5744 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5745 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5746 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5747 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5748 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5749 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5750 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5751 5752 return fs_umode_to_ftype(inode->i_mode); 5753 } 5754 5755 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5756 { 5757 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5758 struct inode *inode; 5759 struct btrfs_root *root = BTRFS_I(dir)->root; 5760 struct btrfs_root *sub_root = root; 5761 struct btrfs_key location; 5762 u8 di_type = 0; 5763 int index; 5764 int ret = 0; 5765 5766 if (dentry->d_name.len > BTRFS_NAME_LEN) 5767 return ERR_PTR(-ENAMETOOLONG); 5768 5769 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5770 if (ret < 0) 5771 return ERR_PTR(ret); 5772 5773 if (location.type == BTRFS_INODE_ITEM_KEY) { 5774 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5775 if (IS_ERR(inode)) 5776 return inode; 5777 5778 /* Do extra check against inode mode with di_type */ 5779 if (btrfs_inode_type(inode) != di_type) { 5780 btrfs_crit(fs_info, 5781 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5782 inode->i_mode, btrfs_inode_type(inode), 5783 di_type); 5784 iput(inode); 5785 return ERR_PTR(-EUCLEAN); 5786 } 5787 return inode; 5788 } 5789 5790 index = srcu_read_lock(&fs_info->subvol_srcu); 5791 ret = fixup_tree_root_location(fs_info, dir, dentry, 5792 &location, &sub_root); 5793 if (ret < 0) { 5794 if (ret != -ENOENT) 5795 inode = ERR_PTR(ret); 5796 else 5797 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5798 } else { 5799 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5800 } 5801 srcu_read_unlock(&fs_info->subvol_srcu, index); 5802 5803 if (!IS_ERR(inode) && root != sub_root) { 5804 down_read(&fs_info->cleanup_work_sem); 5805 if (!sb_rdonly(inode->i_sb)) 5806 ret = btrfs_orphan_cleanup(sub_root); 5807 up_read(&fs_info->cleanup_work_sem); 5808 if (ret) { 5809 iput(inode); 5810 inode = ERR_PTR(ret); 5811 } 5812 } 5813 5814 return inode; 5815 } 5816 5817 static int btrfs_dentry_delete(const struct dentry *dentry) 5818 { 5819 struct btrfs_root *root; 5820 struct inode *inode = d_inode(dentry); 5821 5822 if (!inode && !IS_ROOT(dentry)) 5823 inode = d_inode(dentry->d_parent); 5824 5825 if (inode) { 5826 root = BTRFS_I(inode)->root; 5827 if (btrfs_root_refs(&root->root_item) == 0) 5828 return 1; 5829 5830 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5831 return 1; 5832 } 5833 return 0; 5834 } 5835 5836 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5837 unsigned int flags) 5838 { 5839 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5840 5841 if (inode == ERR_PTR(-ENOENT)) 5842 inode = NULL; 5843 return d_splice_alias(inode, dentry); 5844 } 5845 5846 /* 5847 * All this infrastructure exists because dir_emit can fault, and we are holding 5848 * the tree lock when doing readdir. For now just allocate a buffer and copy 5849 * our information into that, and then dir_emit from the buffer. This is 5850 * similar to what NFS does, only we don't keep the buffer around in pagecache 5851 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5852 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5853 * tree lock. 5854 */ 5855 static int btrfs_opendir(struct inode *inode, struct file *file) 5856 { 5857 struct btrfs_file_private *private; 5858 5859 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5860 if (!private) 5861 return -ENOMEM; 5862 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5863 if (!private->filldir_buf) { 5864 kfree(private); 5865 return -ENOMEM; 5866 } 5867 file->private_data = private; 5868 return 0; 5869 } 5870 5871 struct dir_entry { 5872 u64 ino; 5873 u64 offset; 5874 unsigned type; 5875 int name_len; 5876 }; 5877 5878 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5879 { 5880 while (entries--) { 5881 struct dir_entry *entry = addr; 5882 char *name = (char *)(entry + 1); 5883 5884 ctx->pos = get_unaligned(&entry->offset); 5885 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5886 get_unaligned(&entry->ino), 5887 get_unaligned(&entry->type))) 5888 return 1; 5889 addr += sizeof(struct dir_entry) + 5890 get_unaligned(&entry->name_len); 5891 ctx->pos++; 5892 } 5893 return 0; 5894 } 5895 5896 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5897 { 5898 struct inode *inode = file_inode(file); 5899 struct btrfs_root *root = BTRFS_I(inode)->root; 5900 struct btrfs_file_private *private = file->private_data; 5901 struct btrfs_dir_item *di; 5902 struct btrfs_key key; 5903 struct btrfs_key found_key; 5904 struct btrfs_path *path; 5905 void *addr; 5906 struct list_head ins_list; 5907 struct list_head del_list; 5908 int ret; 5909 struct extent_buffer *leaf; 5910 int slot; 5911 char *name_ptr; 5912 int name_len; 5913 int entries = 0; 5914 int total_len = 0; 5915 bool put = false; 5916 struct btrfs_key location; 5917 5918 if (!dir_emit_dots(file, ctx)) 5919 return 0; 5920 5921 path = btrfs_alloc_path(); 5922 if (!path) 5923 return -ENOMEM; 5924 5925 addr = private->filldir_buf; 5926 path->reada = READA_FORWARD; 5927 5928 INIT_LIST_HEAD(&ins_list); 5929 INIT_LIST_HEAD(&del_list); 5930 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5931 5932 again: 5933 key.type = BTRFS_DIR_INDEX_KEY; 5934 key.offset = ctx->pos; 5935 key.objectid = btrfs_ino(BTRFS_I(inode)); 5936 5937 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5938 if (ret < 0) 5939 goto err; 5940 5941 while (1) { 5942 struct dir_entry *entry; 5943 5944 leaf = path->nodes[0]; 5945 slot = path->slots[0]; 5946 if (slot >= btrfs_header_nritems(leaf)) { 5947 ret = btrfs_next_leaf(root, path); 5948 if (ret < 0) 5949 goto err; 5950 else if (ret > 0) 5951 break; 5952 continue; 5953 } 5954 5955 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5956 5957 if (found_key.objectid != key.objectid) 5958 break; 5959 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5960 break; 5961 if (found_key.offset < ctx->pos) 5962 goto next; 5963 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5964 goto next; 5965 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5966 name_len = btrfs_dir_name_len(leaf, di); 5967 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5968 PAGE_SIZE) { 5969 btrfs_release_path(path); 5970 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5971 if (ret) 5972 goto nopos; 5973 addr = private->filldir_buf; 5974 entries = 0; 5975 total_len = 0; 5976 goto again; 5977 } 5978 5979 entry = addr; 5980 put_unaligned(name_len, &entry->name_len); 5981 name_ptr = (char *)(entry + 1); 5982 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5983 name_len); 5984 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5985 &entry->type); 5986 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5987 put_unaligned(location.objectid, &entry->ino); 5988 put_unaligned(found_key.offset, &entry->offset); 5989 entries++; 5990 addr += sizeof(struct dir_entry) + name_len; 5991 total_len += sizeof(struct dir_entry) + name_len; 5992 next: 5993 path->slots[0]++; 5994 } 5995 btrfs_release_path(path); 5996 5997 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5998 if (ret) 5999 goto nopos; 6000 6001 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6002 if (ret) 6003 goto nopos; 6004 6005 /* 6006 * Stop new entries from being returned after we return the last 6007 * entry. 6008 * 6009 * New directory entries are assigned a strictly increasing 6010 * offset. This means that new entries created during readdir 6011 * are *guaranteed* to be seen in the future by that readdir. 6012 * This has broken buggy programs which operate on names as 6013 * they're returned by readdir. Until we re-use freed offsets 6014 * we have this hack to stop new entries from being returned 6015 * under the assumption that they'll never reach this huge 6016 * offset. 6017 * 6018 * This is being careful not to overflow 32bit loff_t unless the 6019 * last entry requires it because doing so has broken 32bit apps 6020 * in the past. 6021 */ 6022 if (ctx->pos >= INT_MAX) 6023 ctx->pos = LLONG_MAX; 6024 else 6025 ctx->pos = INT_MAX; 6026 nopos: 6027 ret = 0; 6028 err: 6029 if (put) 6030 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6031 btrfs_free_path(path); 6032 return ret; 6033 } 6034 6035 /* 6036 * This is somewhat expensive, updating the tree every time the 6037 * inode changes. But, it is most likely to find the inode in cache. 6038 * FIXME, needs more benchmarking...there are no reasons other than performance 6039 * to keep or drop this code. 6040 */ 6041 static int btrfs_dirty_inode(struct inode *inode) 6042 { 6043 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6044 struct btrfs_root *root = BTRFS_I(inode)->root; 6045 struct btrfs_trans_handle *trans; 6046 int ret; 6047 6048 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6049 return 0; 6050 6051 trans = btrfs_join_transaction(root); 6052 if (IS_ERR(trans)) 6053 return PTR_ERR(trans); 6054 6055 ret = btrfs_update_inode(trans, root, inode); 6056 if (ret && ret == -ENOSPC) { 6057 /* whoops, lets try again with the full transaction */ 6058 btrfs_end_transaction(trans); 6059 trans = btrfs_start_transaction(root, 1); 6060 if (IS_ERR(trans)) 6061 return PTR_ERR(trans); 6062 6063 ret = btrfs_update_inode(trans, root, inode); 6064 } 6065 btrfs_end_transaction(trans); 6066 if (BTRFS_I(inode)->delayed_node) 6067 btrfs_balance_delayed_items(fs_info); 6068 6069 return ret; 6070 } 6071 6072 /* 6073 * This is a copy of file_update_time. We need this so we can return error on 6074 * ENOSPC for updating the inode in the case of file write and mmap writes. 6075 */ 6076 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6077 int flags) 6078 { 6079 struct btrfs_root *root = BTRFS_I(inode)->root; 6080 bool dirty = flags & ~S_VERSION; 6081 6082 if (btrfs_root_readonly(root)) 6083 return -EROFS; 6084 6085 if (flags & S_VERSION) 6086 dirty |= inode_maybe_inc_iversion(inode, dirty); 6087 if (flags & S_CTIME) 6088 inode->i_ctime = *now; 6089 if (flags & S_MTIME) 6090 inode->i_mtime = *now; 6091 if (flags & S_ATIME) 6092 inode->i_atime = *now; 6093 return dirty ? btrfs_dirty_inode(inode) : 0; 6094 } 6095 6096 /* 6097 * find the highest existing sequence number in a directory 6098 * and then set the in-memory index_cnt variable to reflect 6099 * free sequence numbers 6100 */ 6101 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6102 { 6103 struct btrfs_root *root = inode->root; 6104 struct btrfs_key key, found_key; 6105 struct btrfs_path *path; 6106 struct extent_buffer *leaf; 6107 int ret; 6108 6109 key.objectid = btrfs_ino(inode); 6110 key.type = BTRFS_DIR_INDEX_KEY; 6111 key.offset = (u64)-1; 6112 6113 path = btrfs_alloc_path(); 6114 if (!path) 6115 return -ENOMEM; 6116 6117 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6118 if (ret < 0) 6119 goto out; 6120 /* FIXME: we should be able to handle this */ 6121 if (ret == 0) 6122 goto out; 6123 ret = 0; 6124 6125 /* 6126 * MAGIC NUMBER EXPLANATION: 6127 * since we search a directory based on f_pos we have to start at 2 6128 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6129 * else has to start at 2 6130 */ 6131 if (path->slots[0] == 0) { 6132 inode->index_cnt = 2; 6133 goto out; 6134 } 6135 6136 path->slots[0]--; 6137 6138 leaf = path->nodes[0]; 6139 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6140 6141 if (found_key.objectid != btrfs_ino(inode) || 6142 found_key.type != BTRFS_DIR_INDEX_KEY) { 6143 inode->index_cnt = 2; 6144 goto out; 6145 } 6146 6147 inode->index_cnt = found_key.offset + 1; 6148 out: 6149 btrfs_free_path(path); 6150 return ret; 6151 } 6152 6153 /* 6154 * helper to find a free sequence number in a given directory. This current 6155 * code is very simple, later versions will do smarter things in the btree 6156 */ 6157 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6158 { 6159 int ret = 0; 6160 6161 if (dir->index_cnt == (u64)-1) { 6162 ret = btrfs_inode_delayed_dir_index_count(dir); 6163 if (ret) { 6164 ret = btrfs_set_inode_index_count(dir); 6165 if (ret) 6166 return ret; 6167 } 6168 } 6169 6170 *index = dir->index_cnt; 6171 dir->index_cnt++; 6172 6173 return ret; 6174 } 6175 6176 static int btrfs_insert_inode_locked(struct inode *inode) 6177 { 6178 struct btrfs_iget_args args; 6179 args.location = &BTRFS_I(inode)->location; 6180 args.root = BTRFS_I(inode)->root; 6181 6182 return insert_inode_locked4(inode, 6183 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6184 btrfs_find_actor, &args); 6185 } 6186 6187 /* 6188 * Inherit flags from the parent inode. 6189 * 6190 * Currently only the compression flags and the cow flags are inherited. 6191 */ 6192 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6193 { 6194 unsigned int flags; 6195 6196 if (!dir) 6197 return; 6198 6199 flags = BTRFS_I(dir)->flags; 6200 6201 if (flags & BTRFS_INODE_NOCOMPRESS) { 6202 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6203 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6204 } else if (flags & BTRFS_INODE_COMPRESS) { 6205 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6206 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6207 } 6208 6209 if (flags & BTRFS_INODE_NODATACOW) { 6210 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6211 if (S_ISREG(inode->i_mode)) 6212 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6213 } 6214 6215 btrfs_sync_inode_flags_to_i_flags(inode); 6216 } 6217 6218 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6219 struct btrfs_root *root, 6220 struct inode *dir, 6221 const char *name, int name_len, 6222 u64 ref_objectid, u64 objectid, 6223 umode_t mode, u64 *index) 6224 { 6225 struct btrfs_fs_info *fs_info = root->fs_info; 6226 struct inode *inode; 6227 struct btrfs_inode_item *inode_item; 6228 struct btrfs_key *location; 6229 struct btrfs_path *path; 6230 struct btrfs_inode_ref *ref; 6231 struct btrfs_key key[2]; 6232 u32 sizes[2]; 6233 int nitems = name ? 2 : 1; 6234 unsigned long ptr; 6235 int ret; 6236 6237 path = btrfs_alloc_path(); 6238 if (!path) 6239 return ERR_PTR(-ENOMEM); 6240 6241 inode = new_inode(fs_info->sb); 6242 if (!inode) { 6243 btrfs_free_path(path); 6244 return ERR_PTR(-ENOMEM); 6245 } 6246 6247 /* 6248 * O_TMPFILE, set link count to 0, so that after this point, 6249 * we fill in an inode item with the correct link count. 6250 */ 6251 if (!name) 6252 set_nlink(inode, 0); 6253 6254 /* 6255 * we have to initialize this early, so we can reclaim the inode 6256 * number if we fail afterwards in this function. 6257 */ 6258 inode->i_ino = objectid; 6259 6260 if (dir && name) { 6261 trace_btrfs_inode_request(dir); 6262 6263 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6264 if (ret) { 6265 btrfs_free_path(path); 6266 iput(inode); 6267 return ERR_PTR(ret); 6268 } 6269 } else if (dir) { 6270 *index = 0; 6271 } 6272 /* 6273 * index_cnt is ignored for everything but a dir, 6274 * btrfs_set_inode_index_count has an explanation for the magic 6275 * number 6276 */ 6277 BTRFS_I(inode)->index_cnt = 2; 6278 BTRFS_I(inode)->dir_index = *index; 6279 BTRFS_I(inode)->root = root; 6280 BTRFS_I(inode)->generation = trans->transid; 6281 inode->i_generation = BTRFS_I(inode)->generation; 6282 6283 /* 6284 * We could have gotten an inode number from somebody who was fsynced 6285 * and then removed in this same transaction, so let's just set full 6286 * sync since it will be a full sync anyway and this will blow away the 6287 * old info in the log. 6288 */ 6289 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6290 6291 key[0].objectid = objectid; 6292 key[0].type = BTRFS_INODE_ITEM_KEY; 6293 key[0].offset = 0; 6294 6295 sizes[0] = sizeof(struct btrfs_inode_item); 6296 6297 if (name) { 6298 /* 6299 * Start new inodes with an inode_ref. This is slightly more 6300 * efficient for small numbers of hard links since they will 6301 * be packed into one item. Extended refs will kick in if we 6302 * add more hard links than can fit in the ref item. 6303 */ 6304 key[1].objectid = objectid; 6305 key[1].type = BTRFS_INODE_REF_KEY; 6306 key[1].offset = ref_objectid; 6307 6308 sizes[1] = name_len + sizeof(*ref); 6309 } 6310 6311 location = &BTRFS_I(inode)->location; 6312 location->objectid = objectid; 6313 location->offset = 0; 6314 location->type = BTRFS_INODE_ITEM_KEY; 6315 6316 ret = btrfs_insert_inode_locked(inode); 6317 if (ret < 0) { 6318 iput(inode); 6319 goto fail; 6320 } 6321 6322 path->leave_spinning = 1; 6323 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6324 if (ret != 0) 6325 goto fail_unlock; 6326 6327 inode_init_owner(inode, dir, mode); 6328 inode_set_bytes(inode, 0); 6329 6330 inode->i_mtime = current_time(inode); 6331 inode->i_atime = inode->i_mtime; 6332 inode->i_ctime = inode->i_mtime; 6333 BTRFS_I(inode)->i_otime = inode->i_mtime; 6334 6335 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6336 struct btrfs_inode_item); 6337 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6338 sizeof(*inode_item)); 6339 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6340 6341 if (name) { 6342 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6343 struct btrfs_inode_ref); 6344 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6345 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6346 ptr = (unsigned long)(ref + 1); 6347 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6348 } 6349 6350 btrfs_mark_buffer_dirty(path->nodes[0]); 6351 btrfs_free_path(path); 6352 6353 btrfs_inherit_iflags(inode, dir); 6354 6355 if (S_ISREG(mode)) { 6356 if (btrfs_test_opt(fs_info, NODATASUM)) 6357 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6358 if (btrfs_test_opt(fs_info, NODATACOW)) 6359 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6360 BTRFS_INODE_NODATASUM; 6361 } 6362 6363 inode_tree_add(inode); 6364 6365 trace_btrfs_inode_new(inode); 6366 btrfs_set_inode_last_trans(trans, inode); 6367 6368 btrfs_update_root_times(trans, root); 6369 6370 ret = btrfs_inode_inherit_props(trans, inode, dir); 6371 if (ret) 6372 btrfs_err(fs_info, 6373 "error inheriting props for ino %llu (root %llu): %d", 6374 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6375 6376 return inode; 6377 6378 fail_unlock: 6379 discard_new_inode(inode); 6380 fail: 6381 if (dir && name) 6382 BTRFS_I(dir)->index_cnt--; 6383 btrfs_free_path(path); 6384 return ERR_PTR(ret); 6385 } 6386 6387 /* 6388 * utility function to add 'inode' into 'parent_inode' with 6389 * a give name and a given sequence number. 6390 * if 'add_backref' is true, also insert a backref from the 6391 * inode to the parent directory. 6392 */ 6393 int btrfs_add_link(struct btrfs_trans_handle *trans, 6394 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6395 const char *name, int name_len, int add_backref, u64 index) 6396 { 6397 int ret = 0; 6398 struct btrfs_key key; 6399 struct btrfs_root *root = parent_inode->root; 6400 u64 ino = btrfs_ino(inode); 6401 u64 parent_ino = btrfs_ino(parent_inode); 6402 6403 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6404 memcpy(&key, &inode->root->root_key, sizeof(key)); 6405 } else { 6406 key.objectid = ino; 6407 key.type = BTRFS_INODE_ITEM_KEY; 6408 key.offset = 0; 6409 } 6410 6411 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6412 ret = btrfs_add_root_ref(trans, key.objectid, 6413 root->root_key.objectid, parent_ino, 6414 index, name, name_len); 6415 } else if (add_backref) { 6416 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6417 parent_ino, index); 6418 } 6419 6420 /* Nothing to clean up yet */ 6421 if (ret) 6422 return ret; 6423 6424 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6425 btrfs_inode_type(&inode->vfs_inode), index); 6426 if (ret == -EEXIST || ret == -EOVERFLOW) 6427 goto fail_dir_item; 6428 else if (ret) { 6429 btrfs_abort_transaction(trans, ret); 6430 return ret; 6431 } 6432 6433 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6434 name_len * 2); 6435 inode_inc_iversion(&parent_inode->vfs_inode); 6436 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6437 current_time(&parent_inode->vfs_inode); 6438 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6439 if (ret) 6440 btrfs_abort_transaction(trans, ret); 6441 return ret; 6442 6443 fail_dir_item: 6444 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6445 u64 local_index; 6446 int err; 6447 err = btrfs_del_root_ref(trans, key.objectid, 6448 root->root_key.objectid, parent_ino, 6449 &local_index, name, name_len); 6450 if (err) 6451 btrfs_abort_transaction(trans, err); 6452 } else if (add_backref) { 6453 u64 local_index; 6454 int err; 6455 6456 err = btrfs_del_inode_ref(trans, root, name, name_len, 6457 ino, parent_ino, &local_index); 6458 if (err) 6459 btrfs_abort_transaction(trans, err); 6460 } 6461 6462 /* Return the original error code */ 6463 return ret; 6464 } 6465 6466 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6467 struct btrfs_inode *dir, struct dentry *dentry, 6468 struct btrfs_inode *inode, int backref, u64 index) 6469 { 6470 int err = btrfs_add_link(trans, dir, inode, 6471 dentry->d_name.name, dentry->d_name.len, 6472 backref, index); 6473 if (err > 0) 6474 err = -EEXIST; 6475 return err; 6476 } 6477 6478 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6479 umode_t mode, dev_t rdev) 6480 { 6481 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6482 struct btrfs_trans_handle *trans; 6483 struct btrfs_root *root = BTRFS_I(dir)->root; 6484 struct inode *inode = NULL; 6485 int err; 6486 u64 objectid; 6487 u64 index = 0; 6488 6489 /* 6490 * 2 for inode item and ref 6491 * 2 for dir items 6492 * 1 for xattr if selinux is on 6493 */ 6494 trans = btrfs_start_transaction(root, 5); 6495 if (IS_ERR(trans)) 6496 return PTR_ERR(trans); 6497 6498 err = btrfs_find_free_ino(root, &objectid); 6499 if (err) 6500 goto out_unlock; 6501 6502 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6503 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6504 mode, &index); 6505 if (IS_ERR(inode)) { 6506 err = PTR_ERR(inode); 6507 inode = NULL; 6508 goto out_unlock; 6509 } 6510 6511 /* 6512 * If the active LSM wants to access the inode during 6513 * d_instantiate it needs these. Smack checks to see 6514 * if the filesystem supports xattrs by looking at the 6515 * ops vector. 6516 */ 6517 inode->i_op = &btrfs_special_inode_operations; 6518 init_special_inode(inode, inode->i_mode, rdev); 6519 6520 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6521 if (err) 6522 goto out_unlock; 6523 6524 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6525 0, index); 6526 if (err) 6527 goto out_unlock; 6528 6529 btrfs_update_inode(trans, root, inode); 6530 d_instantiate_new(dentry, inode); 6531 6532 out_unlock: 6533 btrfs_end_transaction(trans); 6534 btrfs_btree_balance_dirty(fs_info); 6535 if (err && inode) { 6536 inode_dec_link_count(inode); 6537 discard_new_inode(inode); 6538 } 6539 return err; 6540 } 6541 6542 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6543 umode_t mode, bool excl) 6544 { 6545 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6546 struct btrfs_trans_handle *trans; 6547 struct btrfs_root *root = BTRFS_I(dir)->root; 6548 struct inode *inode = NULL; 6549 int err; 6550 u64 objectid; 6551 u64 index = 0; 6552 6553 /* 6554 * 2 for inode item and ref 6555 * 2 for dir items 6556 * 1 for xattr if selinux is on 6557 */ 6558 trans = btrfs_start_transaction(root, 5); 6559 if (IS_ERR(trans)) 6560 return PTR_ERR(trans); 6561 6562 err = btrfs_find_free_ino(root, &objectid); 6563 if (err) 6564 goto out_unlock; 6565 6566 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6567 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6568 mode, &index); 6569 if (IS_ERR(inode)) { 6570 err = PTR_ERR(inode); 6571 inode = NULL; 6572 goto out_unlock; 6573 } 6574 /* 6575 * If the active LSM wants to access the inode during 6576 * d_instantiate it needs these. Smack checks to see 6577 * if the filesystem supports xattrs by looking at the 6578 * ops vector. 6579 */ 6580 inode->i_fop = &btrfs_file_operations; 6581 inode->i_op = &btrfs_file_inode_operations; 6582 inode->i_mapping->a_ops = &btrfs_aops; 6583 6584 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6585 if (err) 6586 goto out_unlock; 6587 6588 err = btrfs_update_inode(trans, root, inode); 6589 if (err) 6590 goto out_unlock; 6591 6592 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6593 0, index); 6594 if (err) 6595 goto out_unlock; 6596 6597 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6598 d_instantiate_new(dentry, inode); 6599 6600 out_unlock: 6601 btrfs_end_transaction(trans); 6602 if (err && inode) { 6603 inode_dec_link_count(inode); 6604 discard_new_inode(inode); 6605 } 6606 btrfs_btree_balance_dirty(fs_info); 6607 return err; 6608 } 6609 6610 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6611 struct dentry *dentry) 6612 { 6613 struct btrfs_trans_handle *trans = NULL; 6614 struct btrfs_root *root = BTRFS_I(dir)->root; 6615 struct inode *inode = d_inode(old_dentry); 6616 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6617 u64 index; 6618 int err; 6619 int drop_inode = 0; 6620 6621 /* do not allow sys_link's with other subvols of the same device */ 6622 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6623 return -EXDEV; 6624 6625 if (inode->i_nlink >= BTRFS_LINK_MAX) 6626 return -EMLINK; 6627 6628 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6629 if (err) 6630 goto fail; 6631 6632 /* 6633 * 2 items for inode and inode ref 6634 * 2 items for dir items 6635 * 1 item for parent inode 6636 * 1 item for orphan item deletion if O_TMPFILE 6637 */ 6638 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6639 if (IS_ERR(trans)) { 6640 err = PTR_ERR(trans); 6641 trans = NULL; 6642 goto fail; 6643 } 6644 6645 /* There are several dir indexes for this inode, clear the cache. */ 6646 BTRFS_I(inode)->dir_index = 0ULL; 6647 inc_nlink(inode); 6648 inode_inc_iversion(inode); 6649 inode->i_ctime = current_time(inode); 6650 ihold(inode); 6651 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6652 6653 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6654 1, index); 6655 6656 if (err) { 6657 drop_inode = 1; 6658 } else { 6659 struct dentry *parent = dentry->d_parent; 6660 int ret; 6661 6662 err = btrfs_update_inode(trans, root, inode); 6663 if (err) 6664 goto fail; 6665 if (inode->i_nlink == 1) { 6666 /* 6667 * If new hard link count is 1, it's a file created 6668 * with open(2) O_TMPFILE flag. 6669 */ 6670 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6671 if (err) 6672 goto fail; 6673 } 6674 d_instantiate(dentry, inode); 6675 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6676 true, NULL); 6677 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6678 err = btrfs_commit_transaction(trans); 6679 trans = NULL; 6680 } 6681 } 6682 6683 fail: 6684 if (trans) 6685 btrfs_end_transaction(trans); 6686 if (drop_inode) { 6687 inode_dec_link_count(inode); 6688 iput(inode); 6689 } 6690 btrfs_btree_balance_dirty(fs_info); 6691 return err; 6692 } 6693 6694 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6695 { 6696 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6697 struct inode *inode = NULL; 6698 struct btrfs_trans_handle *trans; 6699 struct btrfs_root *root = BTRFS_I(dir)->root; 6700 int err = 0; 6701 u64 objectid = 0; 6702 u64 index = 0; 6703 6704 /* 6705 * 2 items for inode and ref 6706 * 2 items for dir items 6707 * 1 for xattr if selinux is on 6708 */ 6709 trans = btrfs_start_transaction(root, 5); 6710 if (IS_ERR(trans)) 6711 return PTR_ERR(trans); 6712 6713 err = btrfs_find_free_ino(root, &objectid); 6714 if (err) 6715 goto out_fail; 6716 6717 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6718 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6719 S_IFDIR | mode, &index); 6720 if (IS_ERR(inode)) { 6721 err = PTR_ERR(inode); 6722 inode = NULL; 6723 goto out_fail; 6724 } 6725 6726 /* these must be set before we unlock the inode */ 6727 inode->i_op = &btrfs_dir_inode_operations; 6728 inode->i_fop = &btrfs_dir_file_operations; 6729 6730 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6731 if (err) 6732 goto out_fail; 6733 6734 btrfs_i_size_write(BTRFS_I(inode), 0); 6735 err = btrfs_update_inode(trans, root, inode); 6736 if (err) 6737 goto out_fail; 6738 6739 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6740 dentry->d_name.name, 6741 dentry->d_name.len, 0, index); 6742 if (err) 6743 goto out_fail; 6744 6745 d_instantiate_new(dentry, inode); 6746 6747 out_fail: 6748 btrfs_end_transaction(trans); 6749 if (err && inode) { 6750 inode_dec_link_count(inode); 6751 discard_new_inode(inode); 6752 } 6753 btrfs_btree_balance_dirty(fs_info); 6754 return err; 6755 } 6756 6757 static noinline int uncompress_inline(struct btrfs_path *path, 6758 struct page *page, 6759 size_t pg_offset, u64 extent_offset, 6760 struct btrfs_file_extent_item *item) 6761 { 6762 int ret; 6763 struct extent_buffer *leaf = path->nodes[0]; 6764 char *tmp; 6765 size_t max_size; 6766 unsigned long inline_size; 6767 unsigned long ptr; 6768 int compress_type; 6769 6770 WARN_ON(pg_offset != 0); 6771 compress_type = btrfs_file_extent_compression(leaf, item); 6772 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6773 inline_size = btrfs_file_extent_inline_item_len(leaf, 6774 btrfs_item_nr(path->slots[0])); 6775 tmp = kmalloc(inline_size, GFP_NOFS); 6776 if (!tmp) 6777 return -ENOMEM; 6778 ptr = btrfs_file_extent_inline_start(item); 6779 6780 read_extent_buffer(leaf, tmp, ptr, inline_size); 6781 6782 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6783 ret = btrfs_decompress(compress_type, tmp, page, 6784 extent_offset, inline_size, max_size); 6785 6786 /* 6787 * decompression code contains a memset to fill in any space between the end 6788 * of the uncompressed data and the end of max_size in case the decompressed 6789 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6790 * the end of an inline extent and the beginning of the next block, so we 6791 * cover that region here. 6792 */ 6793 6794 if (max_size + pg_offset < PAGE_SIZE) { 6795 char *map = kmap(page); 6796 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6797 kunmap(page); 6798 } 6799 kfree(tmp); 6800 return ret; 6801 } 6802 6803 /* 6804 * a bit scary, this does extent mapping from logical file offset to the disk. 6805 * the ugly parts come from merging extents from the disk with the in-ram 6806 * representation. This gets more complex because of the data=ordered code, 6807 * where the in-ram extents might be locked pending data=ordered completion. 6808 * 6809 * This also copies inline extents directly into the page. 6810 */ 6811 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6812 struct page *page, 6813 size_t pg_offset, u64 start, u64 len, 6814 int create) 6815 { 6816 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6817 int ret; 6818 int err = 0; 6819 u64 extent_start = 0; 6820 u64 extent_end = 0; 6821 u64 objectid = btrfs_ino(inode); 6822 int extent_type = -1; 6823 struct btrfs_path *path = NULL; 6824 struct btrfs_root *root = inode->root; 6825 struct btrfs_file_extent_item *item; 6826 struct extent_buffer *leaf; 6827 struct btrfs_key found_key; 6828 struct extent_map *em = NULL; 6829 struct extent_map_tree *em_tree = &inode->extent_tree; 6830 struct extent_io_tree *io_tree = &inode->io_tree; 6831 const bool new_inline = !page || create; 6832 6833 read_lock(&em_tree->lock); 6834 em = lookup_extent_mapping(em_tree, start, len); 6835 if (em) 6836 em->bdev = fs_info->fs_devices->latest_bdev; 6837 read_unlock(&em_tree->lock); 6838 6839 if (em) { 6840 if (em->start > start || em->start + em->len <= start) 6841 free_extent_map(em); 6842 else if (em->block_start == EXTENT_MAP_INLINE && page) 6843 free_extent_map(em); 6844 else 6845 goto out; 6846 } 6847 em = alloc_extent_map(); 6848 if (!em) { 6849 err = -ENOMEM; 6850 goto out; 6851 } 6852 em->bdev = fs_info->fs_devices->latest_bdev; 6853 em->start = EXTENT_MAP_HOLE; 6854 em->orig_start = EXTENT_MAP_HOLE; 6855 em->len = (u64)-1; 6856 em->block_len = (u64)-1; 6857 6858 path = btrfs_alloc_path(); 6859 if (!path) { 6860 err = -ENOMEM; 6861 goto out; 6862 } 6863 6864 /* Chances are we'll be called again, so go ahead and do readahead */ 6865 path->reada = READA_FORWARD; 6866 6867 /* 6868 * Unless we're going to uncompress the inline extent, no sleep would 6869 * happen. 6870 */ 6871 path->leave_spinning = 1; 6872 6873 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6874 if (ret < 0) { 6875 err = ret; 6876 goto out; 6877 } else if (ret > 0) { 6878 if (path->slots[0] == 0) 6879 goto not_found; 6880 path->slots[0]--; 6881 } 6882 6883 leaf = path->nodes[0]; 6884 item = btrfs_item_ptr(leaf, path->slots[0], 6885 struct btrfs_file_extent_item); 6886 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6887 if (found_key.objectid != objectid || 6888 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6889 /* 6890 * If we backup past the first extent we want to move forward 6891 * and see if there is an extent in front of us, otherwise we'll 6892 * say there is a hole for our whole search range which can 6893 * cause problems. 6894 */ 6895 extent_end = start; 6896 goto next; 6897 } 6898 6899 extent_type = btrfs_file_extent_type(leaf, item); 6900 extent_start = found_key.offset; 6901 if (extent_type == BTRFS_FILE_EXTENT_REG || 6902 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6903 /* Only regular file could have regular/prealloc extent */ 6904 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6905 ret = -EUCLEAN; 6906 btrfs_crit(fs_info, 6907 "regular/prealloc extent found for non-regular inode %llu", 6908 btrfs_ino(inode)); 6909 goto out; 6910 } 6911 extent_end = extent_start + 6912 btrfs_file_extent_num_bytes(leaf, item); 6913 6914 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6915 extent_start); 6916 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6917 size_t size; 6918 6919 size = btrfs_file_extent_ram_bytes(leaf, item); 6920 extent_end = ALIGN(extent_start + size, 6921 fs_info->sectorsize); 6922 6923 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6924 path->slots[0], 6925 extent_start); 6926 } 6927 next: 6928 if (start >= extent_end) { 6929 path->slots[0]++; 6930 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6931 ret = btrfs_next_leaf(root, path); 6932 if (ret < 0) { 6933 err = ret; 6934 goto out; 6935 } else if (ret > 0) { 6936 goto not_found; 6937 } 6938 leaf = path->nodes[0]; 6939 } 6940 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6941 if (found_key.objectid != objectid || 6942 found_key.type != BTRFS_EXTENT_DATA_KEY) 6943 goto not_found; 6944 if (start + len <= found_key.offset) 6945 goto not_found; 6946 if (start > found_key.offset) 6947 goto next; 6948 6949 /* New extent overlaps with existing one */ 6950 em->start = start; 6951 em->orig_start = start; 6952 em->len = found_key.offset - start; 6953 em->block_start = EXTENT_MAP_HOLE; 6954 goto insert; 6955 } 6956 6957 btrfs_extent_item_to_extent_map(inode, path, item, 6958 new_inline, em); 6959 6960 if (extent_type == BTRFS_FILE_EXTENT_REG || 6961 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6962 goto insert; 6963 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6964 unsigned long ptr; 6965 char *map; 6966 size_t size; 6967 size_t extent_offset; 6968 size_t copy_size; 6969 6970 if (new_inline) 6971 goto out; 6972 6973 size = btrfs_file_extent_ram_bytes(leaf, item); 6974 extent_offset = page_offset(page) + pg_offset - extent_start; 6975 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6976 size - extent_offset); 6977 em->start = extent_start + extent_offset; 6978 em->len = ALIGN(copy_size, fs_info->sectorsize); 6979 em->orig_block_len = em->len; 6980 em->orig_start = em->start; 6981 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6982 6983 btrfs_set_path_blocking(path); 6984 if (!PageUptodate(page)) { 6985 if (btrfs_file_extent_compression(leaf, item) != 6986 BTRFS_COMPRESS_NONE) { 6987 ret = uncompress_inline(path, page, pg_offset, 6988 extent_offset, item); 6989 if (ret) { 6990 err = ret; 6991 goto out; 6992 } 6993 } else { 6994 map = kmap(page); 6995 read_extent_buffer(leaf, map + pg_offset, ptr, 6996 copy_size); 6997 if (pg_offset + copy_size < PAGE_SIZE) { 6998 memset(map + pg_offset + copy_size, 0, 6999 PAGE_SIZE - pg_offset - 7000 copy_size); 7001 } 7002 kunmap(page); 7003 } 7004 flush_dcache_page(page); 7005 } 7006 set_extent_uptodate(io_tree, em->start, 7007 extent_map_end(em) - 1, NULL, GFP_NOFS); 7008 goto insert; 7009 } 7010 not_found: 7011 em->start = start; 7012 em->orig_start = start; 7013 em->len = len; 7014 em->block_start = EXTENT_MAP_HOLE; 7015 insert: 7016 btrfs_release_path(path); 7017 if (em->start > start || extent_map_end(em) <= start) { 7018 btrfs_err(fs_info, 7019 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7020 em->start, em->len, start, len); 7021 err = -EIO; 7022 goto out; 7023 } 7024 7025 err = 0; 7026 write_lock(&em_tree->lock); 7027 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7028 write_unlock(&em_tree->lock); 7029 out: 7030 btrfs_free_path(path); 7031 7032 trace_btrfs_get_extent(root, inode, em); 7033 7034 if (err) { 7035 free_extent_map(em); 7036 return ERR_PTR(err); 7037 } 7038 BUG_ON(!em); /* Error is always set */ 7039 return em; 7040 } 7041 7042 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7043 u64 start, u64 len) 7044 { 7045 struct extent_map *em; 7046 struct extent_map *hole_em = NULL; 7047 u64 delalloc_start = start; 7048 u64 end; 7049 u64 delalloc_len; 7050 u64 delalloc_end; 7051 int err = 0; 7052 7053 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7054 if (IS_ERR(em)) 7055 return em; 7056 /* 7057 * If our em maps to: 7058 * - a hole or 7059 * - a pre-alloc extent, 7060 * there might actually be delalloc bytes behind it. 7061 */ 7062 if (em->block_start != EXTENT_MAP_HOLE && 7063 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7064 return em; 7065 else 7066 hole_em = em; 7067 7068 /* check to see if we've wrapped (len == -1 or similar) */ 7069 end = start + len; 7070 if (end < start) 7071 end = (u64)-1; 7072 else 7073 end -= 1; 7074 7075 em = NULL; 7076 7077 /* ok, we didn't find anything, lets look for delalloc */ 7078 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7079 end, len, EXTENT_DELALLOC, 1); 7080 delalloc_end = delalloc_start + delalloc_len; 7081 if (delalloc_end < delalloc_start) 7082 delalloc_end = (u64)-1; 7083 7084 /* 7085 * We didn't find anything useful, return the original results from 7086 * get_extent() 7087 */ 7088 if (delalloc_start > end || delalloc_end <= start) { 7089 em = hole_em; 7090 hole_em = NULL; 7091 goto out; 7092 } 7093 7094 /* 7095 * Adjust the delalloc_start to make sure it doesn't go backwards from 7096 * the start they passed in 7097 */ 7098 delalloc_start = max(start, delalloc_start); 7099 delalloc_len = delalloc_end - delalloc_start; 7100 7101 if (delalloc_len > 0) { 7102 u64 hole_start; 7103 u64 hole_len; 7104 const u64 hole_end = extent_map_end(hole_em); 7105 7106 em = alloc_extent_map(); 7107 if (!em) { 7108 err = -ENOMEM; 7109 goto out; 7110 } 7111 em->bdev = NULL; 7112 7113 ASSERT(hole_em); 7114 /* 7115 * When btrfs_get_extent can't find anything it returns one 7116 * huge hole 7117 * 7118 * Make sure what it found really fits our range, and adjust to 7119 * make sure it is based on the start from the caller 7120 */ 7121 if (hole_end <= start || hole_em->start > end) { 7122 free_extent_map(hole_em); 7123 hole_em = NULL; 7124 } else { 7125 hole_start = max(hole_em->start, start); 7126 hole_len = hole_end - hole_start; 7127 } 7128 7129 if (hole_em && delalloc_start > hole_start) { 7130 /* 7131 * Our hole starts before our delalloc, so we have to 7132 * return just the parts of the hole that go until the 7133 * delalloc starts 7134 */ 7135 em->len = min(hole_len, delalloc_start - hole_start); 7136 em->start = hole_start; 7137 em->orig_start = hole_start; 7138 /* 7139 * Don't adjust block start at all, it is fixed at 7140 * EXTENT_MAP_HOLE 7141 */ 7142 em->block_start = hole_em->block_start; 7143 em->block_len = hole_len; 7144 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7145 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7146 } else { 7147 /* 7148 * Hole is out of passed range or it starts after 7149 * delalloc range 7150 */ 7151 em->start = delalloc_start; 7152 em->len = delalloc_len; 7153 em->orig_start = delalloc_start; 7154 em->block_start = EXTENT_MAP_DELALLOC; 7155 em->block_len = delalloc_len; 7156 } 7157 } else { 7158 return hole_em; 7159 } 7160 out: 7161 7162 free_extent_map(hole_em); 7163 if (err) { 7164 free_extent_map(em); 7165 return ERR_PTR(err); 7166 } 7167 return em; 7168 } 7169 7170 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7171 const u64 start, 7172 const u64 len, 7173 const u64 orig_start, 7174 const u64 block_start, 7175 const u64 block_len, 7176 const u64 orig_block_len, 7177 const u64 ram_bytes, 7178 const int type) 7179 { 7180 struct extent_map *em = NULL; 7181 int ret; 7182 7183 if (type != BTRFS_ORDERED_NOCOW) { 7184 em = create_io_em(inode, start, len, orig_start, 7185 block_start, block_len, orig_block_len, 7186 ram_bytes, 7187 BTRFS_COMPRESS_NONE, /* compress_type */ 7188 type); 7189 if (IS_ERR(em)) 7190 goto out; 7191 } 7192 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7193 len, block_len, type); 7194 if (ret) { 7195 if (em) { 7196 free_extent_map(em); 7197 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7198 start + len - 1, 0); 7199 } 7200 em = ERR_PTR(ret); 7201 } 7202 out: 7203 7204 return em; 7205 } 7206 7207 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7208 u64 start, u64 len) 7209 { 7210 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7211 struct btrfs_root *root = BTRFS_I(inode)->root; 7212 struct extent_map *em; 7213 struct btrfs_key ins; 7214 u64 alloc_hint; 7215 int ret; 7216 7217 alloc_hint = get_extent_allocation_hint(inode, start, len); 7218 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7219 0, alloc_hint, &ins, 1, 1); 7220 if (ret) 7221 return ERR_PTR(ret); 7222 7223 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7224 ins.objectid, ins.offset, ins.offset, 7225 ins.offset, BTRFS_ORDERED_REGULAR); 7226 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7227 if (IS_ERR(em)) 7228 btrfs_free_reserved_extent(fs_info, ins.objectid, 7229 ins.offset, 1); 7230 7231 return em; 7232 } 7233 7234 /* 7235 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7236 * block must be cow'd 7237 */ 7238 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7239 u64 *orig_start, u64 *orig_block_len, 7240 u64 *ram_bytes) 7241 { 7242 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7243 struct btrfs_path *path; 7244 int ret; 7245 struct extent_buffer *leaf; 7246 struct btrfs_root *root = BTRFS_I(inode)->root; 7247 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7248 struct btrfs_file_extent_item *fi; 7249 struct btrfs_key key; 7250 u64 disk_bytenr; 7251 u64 backref_offset; 7252 u64 extent_end; 7253 u64 num_bytes; 7254 int slot; 7255 int found_type; 7256 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7257 7258 path = btrfs_alloc_path(); 7259 if (!path) 7260 return -ENOMEM; 7261 7262 ret = btrfs_lookup_file_extent(NULL, root, path, 7263 btrfs_ino(BTRFS_I(inode)), offset, 0); 7264 if (ret < 0) 7265 goto out; 7266 7267 slot = path->slots[0]; 7268 if (ret == 1) { 7269 if (slot == 0) { 7270 /* can't find the item, must cow */ 7271 ret = 0; 7272 goto out; 7273 } 7274 slot--; 7275 } 7276 ret = 0; 7277 leaf = path->nodes[0]; 7278 btrfs_item_key_to_cpu(leaf, &key, slot); 7279 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7280 key.type != BTRFS_EXTENT_DATA_KEY) { 7281 /* not our file or wrong item type, must cow */ 7282 goto out; 7283 } 7284 7285 if (key.offset > offset) { 7286 /* Wrong offset, must cow */ 7287 goto out; 7288 } 7289 7290 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7291 found_type = btrfs_file_extent_type(leaf, fi); 7292 if (found_type != BTRFS_FILE_EXTENT_REG && 7293 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7294 /* not a regular extent, must cow */ 7295 goto out; 7296 } 7297 7298 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7299 goto out; 7300 7301 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7302 if (extent_end <= offset) 7303 goto out; 7304 7305 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7306 if (disk_bytenr == 0) 7307 goto out; 7308 7309 if (btrfs_file_extent_compression(leaf, fi) || 7310 btrfs_file_extent_encryption(leaf, fi) || 7311 btrfs_file_extent_other_encoding(leaf, fi)) 7312 goto out; 7313 7314 /* 7315 * Do the same check as in btrfs_cross_ref_exist but without the 7316 * unnecessary search. 7317 */ 7318 if (btrfs_file_extent_generation(leaf, fi) <= 7319 btrfs_root_last_snapshot(&root->root_item)) 7320 goto out; 7321 7322 backref_offset = btrfs_file_extent_offset(leaf, fi); 7323 7324 if (orig_start) { 7325 *orig_start = key.offset - backref_offset; 7326 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7327 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7328 } 7329 7330 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7331 goto out; 7332 7333 num_bytes = min(offset + *len, extent_end) - offset; 7334 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7335 u64 range_end; 7336 7337 range_end = round_up(offset + num_bytes, 7338 root->fs_info->sectorsize) - 1; 7339 ret = test_range_bit(io_tree, offset, range_end, 7340 EXTENT_DELALLOC, 0, NULL); 7341 if (ret) { 7342 ret = -EAGAIN; 7343 goto out; 7344 } 7345 } 7346 7347 btrfs_release_path(path); 7348 7349 /* 7350 * look for other files referencing this extent, if we 7351 * find any we must cow 7352 */ 7353 7354 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7355 key.offset - backref_offset, disk_bytenr); 7356 if (ret) { 7357 ret = 0; 7358 goto out; 7359 } 7360 7361 /* 7362 * adjust disk_bytenr and num_bytes to cover just the bytes 7363 * in this extent we are about to write. If there 7364 * are any csums in that range we have to cow in order 7365 * to keep the csums correct 7366 */ 7367 disk_bytenr += backref_offset; 7368 disk_bytenr += offset - key.offset; 7369 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7370 goto out; 7371 /* 7372 * all of the above have passed, it is safe to overwrite this extent 7373 * without cow 7374 */ 7375 *len = num_bytes; 7376 ret = 1; 7377 out: 7378 btrfs_free_path(path); 7379 return ret; 7380 } 7381 7382 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7383 struct extent_state **cached_state, int writing) 7384 { 7385 struct btrfs_ordered_extent *ordered; 7386 int ret = 0; 7387 7388 while (1) { 7389 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7390 cached_state); 7391 /* 7392 * We're concerned with the entire range that we're going to be 7393 * doing DIO to, so we need to make sure there's no ordered 7394 * extents in this range. 7395 */ 7396 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7397 lockend - lockstart + 1); 7398 7399 /* 7400 * We need to make sure there are no buffered pages in this 7401 * range either, we could have raced between the invalidate in 7402 * generic_file_direct_write and locking the extent. The 7403 * invalidate needs to happen so that reads after a write do not 7404 * get stale data. 7405 */ 7406 if (!ordered && 7407 (!writing || !filemap_range_has_page(inode->i_mapping, 7408 lockstart, lockend))) 7409 break; 7410 7411 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7412 cached_state); 7413 7414 if (ordered) { 7415 /* 7416 * If we are doing a DIO read and the ordered extent we 7417 * found is for a buffered write, we can not wait for it 7418 * to complete and retry, because if we do so we can 7419 * deadlock with concurrent buffered writes on page 7420 * locks. This happens only if our DIO read covers more 7421 * than one extent map, if at this point has already 7422 * created an ordered extent for a previous extent map 7423 * and locked its range in the inode's io tree, and a 7424 * concurrent write against that previous extent map's 7425 * range and this range started (we unlock the ranges 7426 * in the io tree only when the bios complete and 7427 * buffered writes always lock pages before attempting 7428 * to lock range in the io tree). 7429 */ 7430 if (writing || 7431 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7432 btrfs_start_ordered_extent(inode, ordered, 1); 7433 else 7434 ret = -ENOTBLK; 7435 btrfs_put_ordered_extent(ordered); 7436 } else { 7437 /* 7438 * We could trigger writeback for this range (and wait 7439 * for it to complete) and then invalidate the pages for 7440 * this range (through invalidate_inode_pages2_range()), 7441 * but that can lead us to a deadlock with a concurrent 7442 * call to readpages() (a buffered read or a defrag call 7443 * triggered a readahead) on a page lock due to an 7444 * ordered dio extent we created before but did not have 7445 * yet a corresponding bio submitted (whence it can not 7446 * complete), which makes readpages() wait for that 7447 * ordered extent to complete while holding a lock on 7448 * that page. 7449 */ 7450 ret = -ENOTBLK; 7451 } 7452 7453 if (ret) 7454 break; 7455 7456 cond_resched(); 7457 } 7458 7459 return ret; 7460 } 7461 7462 /* The callers of this must take lock_extent() */ 7463 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7464 u64 orig_start, u64 block_start, 7465 u64 block_len, u64 orig_block_len, 7466 u64 ram_bytes, int compress_type, 7467 int type) 7468 { 7469 struct extent_map_tree *em_tree; 7470 struct extent_map *em; 7471 struct btrfs_root *root = BTRFS_I(inode)->root; 7472 int ret; 7473 7474 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7475 type == BTRFS_ORDERED_COMPRESSED || 7476 type == BTRFS_ORDERED_NOCOW || 7477 type == BTRFS_ORDERED_REGULAR); 7478 7479 em_tree = &BTRFS_I(inode)->extent_tree; 7480 em = alloc_extent_map(); 7481 if (!em) 7482 return ERR_PTR(-ENOMEM); 7483 7484 em->start = start; 7485 em->orig_start = orig_start; 7486 em->len = len; 7487 em->block_len = block_len; 7488 em->block_start = block_start; 7489 em->bdev = root->fs_info->fs_devices->latest_bdev; 7490 em->orig_block_len = orig_block_len; 7491 em->ram_bytes = ram_bytes; 7492 em->generation = -1; 7493 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7494 if (type == BTRFS_ORDERED_PREALLOC) { 7495 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7496 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7497 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7498 em->compress_type = compress_type; 7499 } 7500 7501 do { 7502 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7503 em->start + em->len - 1, 0); 7504 write_lock(&em_tree->lock); 7505 ret = add_extent_mapping(em_tree, em, 1); 7506 write_unlock(&em_tree->lock); 7507 /* 7508 * The caller has taken lock_extent(), who could race with us 7509 * to add em? 7510 */ 7511 } while (ret == -EEXIST); 7512 7513 if (ret) { 7514 free_extent_map(em); 7515 return ERR_PTR(ret); 7516 } 7517 7518 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7519 return em; 7520 } 7521 7522 7523 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7524 struct buffer_head *bh_result, 7525 struct inode *inode, 7526 u64 start, u64 len) 7527 { 7528 if (em->block_start == EXTENT_MAP_HOLE || 7529 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7530 return -ENOENT; 7531 7532 len = min(len, em->len - (start - em->start)); 7533 7534 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7535 inode->i_blkbits; 7536 bh_result->b_size = len; 7537 bh_result->b_bdev = em->bdev; 7538 set_buffer_mapped(bh_result); 7539 7540 return 0; 7541 } 7542 7543 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7544 struct buffer_head *bh_result, 7545 struct inode *inode, 7546 struct btrfs_dio_data *dio_data, 7547 u64 start, u64 len) 7548 { 7549 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7550 struct extent_map *em = *map; 7551 int ret = 0; 7552 7553 /* 7554 * We don't allocate a new extent in the following cases 7555 * 7556 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7557 * existing extent. 7558 * 2) The extent is marked as PREALLOC. We're good to go here and can 7559 * just use the extent. 7560 * 7561 */ 7562 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7563 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7564 em->block_start != EXTENT_MAP_HOLE)) { 7565 int type; 7566 u64 block_start, orig_start, orig_block_len, ram_bytes; 7567 7568 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7569 type = BTRFS_ORDERED_PREALLOC; 7570 else 7571 type = BTRFS_ORDERED_NOCOW; 7572 len = min(len, em->len - (start - em->start)); 7573 block_start = em->block_start + (start - em->start); 7574 7575 if (can_nocow_extent(inode, start, &len, &orig_start, 7576 &orig_block_len, &ram_bytes) == 1 && 7577 btrfs_inc_nocow_writers(fs_info, block_start)) { 7578 struct extent_map *em2; 7579 7580 em2 = btrfs_create_dio_extent(inode, start, len, 7581 orig_start, block_start, 7582 len, orig_block_len, 7583 ram_bytes, type); 7584 btrfs_dec_nocow_writers(fs_info, block_start); 7585 if (type == BTRFS_ORDERED_PREALLOC) { 7586 free_extent_map(em); 7587 *map = em = em2; 7588 } 7589 7590 if (em2 && IS_ERR(em2)) { 7591 ret = PTR_ERR(em2); 7592 goto out; 7593 } 7594 /* 7595 * For inode marked NODATACOW or extent marked PREALLOC, 7596 * use the existing or preallocated extent, so does not 7597 * need to adjust btrfs_space_info's bytes_may_use. 7598 */ 7599 btrfs_free_reserved_data_space_noquota(inode, start, 7600 len); 7601 goto skip_cow; 7602 } 7603 } 7604 7605 /* this will cow the extent */ 7606 len = bh_result->b_size; 7607 free_extent_map(em); 7608 *map = em = btrfs_new_extent_direct(inode, start, len); 7609 if (IS_ERR(em)) { 7610 ret = PTR_ERR(em); 7611 goto out; 7612 } 7613 7614 len = min(len, em->len - (start - em->start)); 7615 7616 skip_cow: 7617 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7618 inode->i_blkbits; 7619 bh_result->b_size = len; 7620 bh_result->b_bdev = em->bdev; 7621 set_buffer_mapped(bh_result); 7622 7623 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7624 set_buffer_new(bh_result); 7625 7626 /* 7627 * Need to update the i_size under the extent lock so buffered 7628 * readers will get the updated i_size when we unlock. 7629 */ 7630 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7631 i_size_write(inode, start + len); 7632 7633 WARN_ON(dio_data->reserve < len); 7634 dio_data->reserve -= len; 7635 dio_data->unsubmitted_oe_range_end = start + len; 7636 current->journal_info = dio_data; 7637 out: 7638 return ret; 7639 } 7640 7641 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7642 struct buffer_head *bh_result, int create) 7643 { 7644 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7645 struct extent_map *em; 7646 struct extent_state *cached_state = NULL; 7647 struct btrfs_dio_data *dio_data = NULL; 7648 u64 start = iblock << inode->i_blkbits; 7649 u64 lockstart, lockend; 7650 u64 len = bh_result->b_size; 7651 int unlock_bits = EXTENT_LOCKED; 7652 int ret = 0; 7653 7654 if (create) 7655 unlock_bits |= EXTENT_DIRTY; 7656 else 7657 len = min_t(u64, len, fs_info->sectorsize); 7658 7659 lockstart = start; 7660 lockend = start + len - 1; 7661 7662 if (current->journal_info) { 7663 /* 7664 * Need to pull our outstanding extents and set journal_info to NULL so 7665 * that anything that needs to check if there's a transaction doesn't get 7666 * confused. 7667 */ 7668 dio_data = current->journal_info; 7669 current->journal_info = NULL; 7670 } 7671 7672 /* 7673 * If this errors out it's because we couldn't invalidate pagecache for 7674 * this range and we need to fallback to buffered. 7675 */ 7676 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7677 create)) { 7678 ret = -ENOTBLK; 7679 goto err; 7680 } 7681 7682 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7683 if (IS_ERR(em)) { 7684 ret = PTR_ERR(em); 7685 goto unlock_err; 7686 } 7687 7688 /* 7689 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7690 * io. INLINE is special, and we could probably kludge it in here, but 7691 * it's still buffered so for safety lets just fall back to the generic 7692 * buffered path. 7693 * 7694 * For COMPRESSED we _have_ to read the entire extent in so we can 7695 * decompress it, so there will be buffering required no matter what we 7696 * do, so go ahead and fallback to buffered. 7697 * 7698 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7699 * to buffered IO. Don't blame me, this is the price we pay for using 7700 * the generic code. 7701 */ 7702 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7703 em->block_start == EXTENT_MAP_INLINE) { 7704 free_extent_map(em); 7705 ret = -ENOTBLK; 7706 goto unlock_err; 7707 } 7708 7709 if (create) { 7710 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7711 dio_data, start, len); 7712 if (ret < 0) 7713 goto unlock_err; 7714 7715 /* clear and unlock the entire range */ 7716 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7717 unlock_bits, 1, 0, &cached_state); 7718 } else { 7719 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7720 start, len); 7721 /* Can be negative only if we read from a hole */ 7722 if (ret < 0) { 7723 ret = 0; 7724 free_extent_map(em); 7725 goto unlock_err; 7726 } 7727 /* 7728 * We need to unlock only the end area that we aren't using. 7729 * The rest is going to be unlocked by the endio routine. 7730 */ 7731 lockstart = start + bh_result->b_size; 7732 if (lockstart < lockend) { 7733 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7734 lockend, unlock_bits, 1, 0, 7735 &cached_state); 7736 } else { 7737 free_extent_state(cached_state); 7738 } 7739 } 7740 7741 free_extent_map(em); 7742 7743 return 0; 7744 7745 unlock_err: 7746 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7747 unlock_bits, 1, 0, &cached_state); 7748 err: 7749 if (dio_data) 7750 current->journal_info = dio_data; 7751 return ret; 7752 } 7753 7754 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7755 struct bio *bio, 7756 int mirror_num) 7757 { 7758 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7759 blk_status_t ret; 7760 7761 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7762 7763 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7764 if (ret) 7765 return ret; 7766 7767 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7768 7769 return ret; 7770 } 7771 7772 static int btrfs_check_dio_repairable(struct inode *inode, 7773 struct bio *failed_bio, 7774 struct io_failure_record *failrec, 7775 int failed_mirror) 7776 { 7777 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7778 int num_copies; 7779 7780 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7781 if (num_copies == 1) { 7782 /* 7783 * we only have a single copy of the data, so don't bother with 7784 * all the retry and error correction code that follows. no 7785 * matter what the error is, it is very likely to persist. 7786 */ 7787 btrfs_debug(fs_info, 7788 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7789 num_copies, failrec->this_mirror, failed_mirror); 7790 return 0; 7791 } 7792 7793 failrec->failed_mirror = failed_mirror; 7794 failrec->this_mirror++; 7795 if (failrec->this_mirror == failed_mirror) 7796 failrec->this_mirror++; 7797 7798 if (failrec->this_mirror > num_copies) { 7799 btrfs_debug(fs_info, 7800 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7801 num_copies, failrec->this_mirror, failed_mirror); 7802 return 0; 7803 } 7804 7805 return 1; 7806 } 7807 7808 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7809 struct page *page, unsigned int pgoff, 7810 u64 start, u64 end, int failed_mirror, 7811 bio_end_io_t *repair_endio, void *repair_arg) 7812 { 7813 struct io_failure_record *failrec; 7814 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7815 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7816 struct bio *bio; 7817 int isector; 7818 unsigned int read_mode = 0; 7819 int segs; 7820 int ret; 7821 blk_status_t status; 7822 struct bio_vec bvec; 7823 7824 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7825 7826 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7827 if (ret) 7828 return errno_to_blk_status(ret); 7829 7830 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7831 failed_mirror); 7832 if (!ret) { 7833 free_io_failure(failure_tree, io_tree, failrec); 7834 return BLK_STS_IOERR; 7835 } 7836 7837 segs = bio_segments(failed_bio); 7838 bio_get_first_bvec(failed_bio, &bvec); 7839 if (segs > 1 || 7840 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7841 read_mode |= REQ_FAILFAST_DEV; 7842 7843 isector = start - btrfs_io_bio(failed_bio)->logical; 7844 isector >>= inode->i_sb->s_blocksize_bits; 7845 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7846 pgoff, isector, repair_endio, repair_arg); 7847 bio->bi_opf = REQ_OP_READ | read_mode; 7848 7849 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7850 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7851 read_mode, failrec->this_mirror, failrec->in_validation); 7852 7853 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7854 if (status) { 7855 free_io_failure(failure_tree, io_tree, failrec); 7856 bio_put(bio); 7857 } 7858 7859 return status; 7860 } 7861 7862 struct btrfs_retry_complete { 7863 struct completion done; 7864 struct inode *inode; 7865 u64 start; 7866 int uptodate; 7867 }; 7868 7869 static void btrfs_retry_endio_nocsum(struct bio *bio) 7870 { 7871 struct btrfs_retry_complete *done = bio->bi_private; 7872 struct inode *inode = done->inode; 7873 struct bio_vec *bvec; 7874 struct extent_io_tree *io_tree, *failure_tree; 7875 struct bvec_iter_all iter_all; 7876 7877 if (bio->bi_status) 7878 goto end; 7879 7880 ASSERT(bio->bi_vcnt == 1); 7881 io_tree = &BTRFS_I(inode)->io_tree; 7882 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7883 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7884 7885 done->uptodate = 1; 7886 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7887 bio_for_each_segment_all(bvec, bio, iter_all) 7888 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7889 io_tree, done->start, bvec->bv_page, 7890 btrfs_ino(BTRFS_I(inode)), 0); 7891 end: 7892 complete(&done->done); 7893 bio_put(bio); 7894 } 7895 7896 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7897 struct btrfs_io_bio *io_bio) 7898 { 7899 struct btrfs_fs_info *fs_info; 7900 struct bio_vec bvec; 7901 struct bvec_iter iter; 7902 struct btrfs_retry_complete done; 7903 u64 start; 7904 unsigned int pgoff; 7905 u32 sectorsize; 7906 int nr_sectors; 7907 blk_status_t ret; 7908 blk_status_t err = BLK_STS_OK; 7909 7910 fs_info = BTRFS_I(inode)->root->fs_info; 7911 sectorsize = fs_info->sectorsize; 7912 7913 start = io_bio->logical; 7914 done.inode = inode; 7915 io_bio->bio.bi_iter = io_bio->iter; 7916 7917 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7918 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7919 pgoff = bvec.bv_offset; 7920 7921 next_block_or_try_again: 7922 done.uptodate = 0; 7923 done.start = start; 7924 init_completion(&done.done); 7925 7926 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7927 pgoff, start, start + sectorsize - 1, 7928 io_bio->mirror_num, 7929 btrfs_retry_endio_nocsum, &done); 7930 if (ret) { 7931 err = ret; 7932 goto next; 7933 } 7934 7935 wait_for_completion_io(&done.done); 7936 7937 if (!done.uptodate) { 7938 /* We might have another mirror, so try again */ 7939 goto next_block_or_try_again; 7940 } 7941 7942 next: 7943 start += sectorsize; 7944 7945 nr_sectors--; 7946 if (nr_sectors) { 7947 pgoff += sectorsize; 7948 ASSERT(pgoff < PAGE_SIZE); 7949 goto next_block_or_try_again; 7950 } 7951 } 7952 7953 return err; 7954 } 7955 7956 static void btrfs_retry_endio(struct bio *bio) 7957 { 7958 struct btrfs_retry_complete *done = bio->bi_private; 7959 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7960 struct extent_io_tree *io_tree, *failure_tree; 7961 struct inode *inode = done->inode; 7962 struct bio_vec *bvec; 7963 int uptodate; 7964 int ret; 7965 int i = 0; 7966 struct bvec_iter_all iter_all; 7967 7968 if (bio->bi_status) 7969 goto end; 7970 7971 uptodate = 1; 7972 7973 ASSERT(bio->bi_vcnt == 1); 7974 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 7975 7976 io_tree = &BTRFS_I(inode)->io_tree; 7977 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7978 7979 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7980 bio_for_each_segment_all(bvec, bio, iter_all) { 7981 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7982 bvec->bv_offset, done->start, 7983 bvec->bv_len); 7984 if (!ret) 7985 clean_io_failure(BTRFS_I(inode)->root->fs_info, 7986 failure_tree, io_tree, done->start, 7987 bvec->bv_page, 7988 btrfs_ino(BTRFS_I(inode)), 7989 bvec->bv_offset); 7990 else 7991 uptodate = 0; 7992 i++; 7993 } 7994 7995 done->uptodate = uptodate; 7996 end: 7997 complete(&done->done); 7998 bio_put(bio); 7999 } 8000 8001 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8002 struct btrfs_io_bio *io_bio, blk_status_t err) 8003 { 8004 struct btrfs_fs_info *fs_info; 8005 struct bio_vec bvec; 8006 struct bvec_iter iter; 8007 struct btrfs_retry_complete done; 8008 u64 start; 8009 u64 offset = 0; 8010 u32 sectorsize; 8011 int nr_sectors; 8012 unsigned int pgoff; 8013 int csum_pos; 8014 bool uptodate = (err == 0); 8015 int ret; 8016 blk_status_t status; 8017 8018 fs_info = BTRFS_I(inode)->root->fs_info; 8019 sectorsize = fs_info->sectorsize; 8020 8021 err = BLK_STS_OK; 8022 start = io_bio->logical; 8023 done.inode = inode; 8024 io_bio->bio.bi_iter = io_bio->iter; 8025 8026 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8027 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8028 8029 pgoff = bvec.bv_offset; 8030 next_block: 8031 if (uptodate) { 8032 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8033 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8034 bvec.bv_page, pgoff, start, sectorsize); 8035 if (likely(!ret)) 8036 goto next; 8037 } 8038 try_again: 8039 done.uptodate = 0; 8040 done.start = start; 8041 init_completion(&done.done); 8042 8043 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8044 pgoff, start, start + sectorsize - 1, 8045 io_bio->mirror_num, btrfs_retry_endio, 8046 &done); 8047 if (status) { 8048 err = status; 8049 goto next; 8050 } 8051 8052 wait_for_completion_io(&done.done); 8053 8054 if (!done.uptodate) { 8055 /* We might have another mirror, so try again */ 8056 goto try_again; 8057 } 8058 next: 8059 offset += sectorsize; 8060 start += sectorsize; 8061 8062 ASSERT(nr_sectors); 8063 8064 nr_sectors--; 8065 if (nr_sectors) { 8066 pgoff += sectorsize; 8067 ASSERT(pgoff < PAGE_SIZE); 8068 goto next_block; 8069 } 8070 } 8071 8072 return err; 8073 } 8074 8075 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8076 struct btrfs_io_bio *io_bio, blk_status_t err) 8077 { 8078 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8079 8080 if (skip_csum) { 8081 if (unlikely(err)) 8082 return __btrfs_correct_data_nocsum(inode, io_bio); 8083 else 8084 return BLK_STS_OK; 8085 } else { 8086 return __btrfs_subio_endio_read(inode, io_bio, err); 8087 } 8088 } 8089 8090 static void btrfs_endio_direct_read(struct bio *bio) 8091 { 8092 struct btrfs_dio_private *dip = bio->bi_private; 8093 struct inode *inode = dip->inode; 8094 struct bio *dio_bio; 8095 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8096 blk_status_t err = bio->bi_status; 8097 8098 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8099 err = btrfs_subio_endio_read(inode, io_bio, err); 8100 8101 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8102 dip->logical_offset + dip->bytes - 1); 8103 dio_bio = dip->dio_bio; 8104 8105 kfree(dip); 8106 8107 dio_bio->bi_status = err; 8108 dio_end_io(dio_bio); 8109 btrfs_io_bio_free_csum(io_bio); 8110 bio_put(bio); 8111 } 8112 8113 static void __endio_write_update_ordered(struct inode *inode, 8114 const u64 offset, const u64 bytes, 8115 const bool uptodate) 8116 { 8117 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8118 struct btrfs_ordered_extent *ordered = NULL; 8119 struct btrfs_workqueue *wq; 8120 btrfs_work_func_t func; 8121 u64 ordered_offset = offset; 8122 u64 ordered_bytes = bytes; 8123 u64 last_offset; 8124 8125 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8126 wq = fs_info->endio_freespace_worker; 8127 func = btrfs_freespace_write_helper; 8128 } else { 8129 wq = fs_info->endio_write_workers; 8130 func = btrfs_endio_write_helper; 8131 } 8132 8133 while (ordered_offset < offset + bytes) { 8134 last_offset = ordered_offset; 8135 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 8136 &ordered_offset, 8137 ordered_bytes, 8138 uptodate)) { 8139 btrfs_init_work(&ordered->work, func, 8140 finish_ordered_fn, 8141 NULL, NULL); 8142 btrfs_queue_work(wq, &ordered->work); 8143 } 8144 /* 8145 * If btrfs_dec_test_ordered_pending does not find any ordered 8146 * extent in the range, we can exit. 8147 */ 8148 if (ordered_offset == last_offset) 8149 return; 8150 /* 8151 * Our bio might span multiple ordered extents. In this case 8152 * we keep going until we have accounted the whole dio. 8153 */ 8154 if (ordered_offset < offset + bytes) { 8155 ordered_bytes = offset + bytes - ordered_offset; 8156 ordered = NULL; 8157 } 8158 } 8159 } 8160 8161 static void btrfs_endio_direct_write(struct bio *bio) 8162 { 8163 struct btrfs_dio_private *dip = bio->bi_private; 8164 struct bio *dio_bio = dip->dio_bio; 8165 8166 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8167 dip->bytes, !bio->bi_status); 8168 8169 kfree(dip); 8170 8171 dio_bio->bi_status = bio->bi_status; 8172 dio_end_io(dio_bio); 8173 bio_put(bio); 8174 } 8175 8176 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8177 struct bio *bio, u64 offset) 8178 { 8179 struct inode *inode = private_data; 8180 blk_status_t ret; 8181 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8182 BUG_ON(ret); /* -ENOMEM */ 8183 return 0; 8184 } 8185 8186 static void btrfs_end_dio_bio(struct bio *bio) 8187 { 8188 struct btrfs_dio_private *dip = bio->bi_private; 8189 blk_status_t err = bio->bi_status; 8190 8191 if (err) 8192 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8193 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8194 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8195 bio->bi_opf, 8196 (unsigned long long)bio->bi_iter.bi_sector, 8197 bio->bi_iter.bi_size, err); 8198 8199 if (dip->subio_endio) 8200 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8201 8202 if (err) { 8203 /* 8204 * We want to perceive the errors flag being set before 8205 * decrementing the reference count. We don't need a barrier 8206 * since atomic operations with a return value are fully 8207 * ordered as per atomic_t.txt 8208 */ 8209 dip->errors = 1; 8210 } 8211 8212 /* if there are more bios still pending for this dio, just exit */ 8213 if (!atomic_dec_and_test(&dip->pending_bios)) 8214 goto out; 8215 8216 if (dip->errors) { 8217 bio_io_error(dip->orig_bio); 8218 } else { 8219 dip->dio_bio->bi_status = BLK_STS_OK; 8220 bio_endio(dip->orig_bio); 8221 } 8222 out: 8223 bio_put(bio); 8224 } 8225 8226 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8227 struct btrfs_dio_private *dip, 8228 struct bio *bio, 8229 u64 file_offset) 8230 { 8231 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8232 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8233 blk_status_t ret; 8234 8235 /* 8236 * We load all the csum data we need when we submit 8237 * the first bio to reduce the csum tree search and 8238 * contention. 8239 */ 8240 if (dip->logical_offset == file_offset) { 8241 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8242 file_offset); 8243 if (ret) 8244 return ret; 8245 } 8246 8247 if (bio == dip->orig_bio) 8248 return 0; 8249 8250 file_offset -= dip->logical_offset; 8251 file_offset >>= inode->i_sb->s_blocksize_bits; 8252 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8253 8254 return 0; 8255 } 8256 8257 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8258 struct inode *inode, u64 file_offset, int async_submit) 8259 { 8260 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8261 struct btrfs_dio_private *dip = bio->bi_private; 8262 bool write = bio_op(bio) == REQ_OP_WRITE; 8263 blk_status_t ret; 8264 8265 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8266 if (async_submit) 8267 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8268 8269 if (!write) { 8270 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8271 if (ret) 8272 goto err; 8273 } 8274 8275 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8276 goto map; 8277 8278 if (write && async_submit) { 8279 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8280 file_offset, inode, 8281 btrfs_submit_bio_start_direct_io); 8282 goto err; 8283 } else if (write) { 8284 /* 8285 * If we aren't doing async submit, calculate the csum of the 8286 * bio now. 8287 */ 8288 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8289 if (ret) 8290 goto err; 8291 } else { 8292 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8293 file_offset); 8294 if (ret) 8295 goto err; 8296 } 8297 map: 8298 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8299 err: 8300 return ret; 8301 } 8302 8303 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8304 { 8305 struct inode *inode = dip->inode; 8306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8307 struct bio *bio; 8308 struct bio *orig_bio = dip->orig_bio; 8309 u64 start_sector = orig_bio->bi_iter.bi_sector; 8310 u64 file_offset = dip->logical_offset; 8311 u64 map_length; 8312 int async_submit = 0; 8313 u64 submit_len; 8314 int clone_offset = 0; 8315 int clone_len; 8316 int ret; 8317 blk_status_t status; 8318 8319 map_length = orig_bio->bi_iter.bi_size; 8320 submit_len = map_length; 8321 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8322 &map_length, NULL, 0); 8323 if (ret) 8324 return -EIO; 8325 8326 if (map_length >= submit_len) { 8327 bio = orig_bio; 8328 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8329 goto submit; 8330 } 8331 8332 /* async crcs make it difficult to collect full stripe writes. */ 8333 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8334 async_submit = 0; 8335 else 8336 async_submit = 1; 8337 8338 /* bio split */ 8339 ASSERT(map_length <= INT_MAX); 8340 atomic_inc(&dip->pending_bios); 8341 do { 8342 clone_len = min_t(int, submit_len, map_length); 8343 8344 /* 8345 * This will never fail as it's passing GPF_NOFS and 8346 * the allocation is backed by btrfs_bioset. 8347 */ 8348 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8349 clone_len); 8350 bio->bi_private = dip; 8351 bio->bi_end_io = btrfs_end_dio_bio; 8352 btrfs_io_bio(bio)->logical = file_offset; 8353 8354 ASSERT(submit_len >= clone_len); 8355 submit_len -= clone_len; 8356 if (submit_len == 0) 8357 break; 8358 8359 /* 8360 * Increase the count before we submit the bio so we know 8361 * the end IO handler won't happen before we increase the 8362 * count. Otherwise, the dip might get freed before we're 8363 * done setting it up. 8364 */ 8365 atomic_inc(&dip->pending_bios); 8366 8367 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8368 async_submit); 8369 if (status) { 8370 bio_put(bio); 8371 atomic_dec(&dip->pending_bios); 8372 goto out_err; 8373 } 8374 8375 clone_offset += clone_len; 8376 start_sector += clone_len >> 9; 8377 file_offset += clone_len; 8378 8379 map_length = submit_len; 8380 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8381 start_sector << 9, &map_length, NULL, 0); 8382 if (ret) 8383 goto out_err; 8384 } while (submit_len > 0); 8385 8386 submit: 8387 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8388 if (!status) 8389 return 0; 8390 8391 bio_put(bio); 8392 out_err: 8393 dip->errors = 1; 8394 /* 8395 * Before atomic variable goto zero, we must make sure dip->errors is 8396 * perceived to be set. This ordering is ensured by the fact that an 8397 * atomic operations with a return value are fully ordered as per 8398 * atomic_t.txt 8399 */ 8400 if (atomic_dec_and_test(&dip->pending_bios)) 8401 bio_io_error(dip->orig_bio); 8402 8403 /* bio_end_io() will handle error, so we needn't return it */ 8404 return 0; 8405 } 8406 8407 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8408 loff_t file_offset) 8409 { 8410 struct btrfs_dio_private *dip = NULL; 8411 struct bio *bio = NULL; 8412 struct btrfs_io_bio *io_bio; 8413 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8414 int ret = 0; 8415 8416 bio = btrfs_bio_clone(dio_bio); 8417 8418 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8419 if (!dip) { 8420 ret = -ENOMEM; 8421 goto free_ordered; 8422 } 8423 8424 dip->private = dio_bio->bi_private; 8425 dip->inode = inode; 8426 dip->logical_offset = file_offset; 8427 dip->bytes = dio_bio->bi_iter.bi_size; 8428 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8429 bio->bi_private = dip; 8430 dip->orig_bio = bio; 8431 dip->dio_bio = dio_bio; 8432 atomic_set(&dip->pending_bios, 0); 8433 io_bio = btrfs_io_bio(bio); 8434 io_bio->logical = file_offset; 8435 8436 if (write) { 8437 bio->bi_end_io = btrfs_endio_direct_write; 8438 } else { 8439 bio->bi_end_io = btrfs_endio_direct_read; 8440 dip->subio_endio = btrfs_subio_endio_read; 8441 } 8442 8443 /* 8444 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8445 * even if we fail to submit a bio, because in such case we do the 8446 * corresponding error handling below and it must not be done a second 8447 * time by btrfs_direct_IO(). 8448 */ 8449 if (write) { 8450 struct btrfs_dio_data *dio_data = current->journal_info; 8451 8452 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8453 dip->bytes; 8454 dio_data->unsubmitted_oe_range_start = 8455 dio_data->unsubmitted_oe_range_end; 8456 } 8457 8458 ret = btrfs_submit_direct_hook(dip); 8459 if (!ret) 8460 return; 8461 8462 btrfs_io_bio_free_csum(io_bio); 8463 8464 free_ordered: 8465 /* 8466 * If we arrived here it means either we failed to submit the dip 8467 * or we either failed to clone the dio_bio or failed to allocate the 8468 * dip. If we cloned the dio_bio and allocated the dip, we can just 8469 * call bio_endio against our io_bio so that we get proper resource 8470 * cleanup if we fail to submit the dip, otherwise, we must do the 8471 * same as btrfs_endio_direct_[write|read] because we can't call these 8472 * callbacks - they require an allocated dip and a clone of dio_bio. 8473 */ 8474 if (bio && dip) { 8475 bio_io_error(bio); 8476 /* 8477 * The end io callbacks free our dip, do the final put on bio 8478 * and all the cleanup and final put for dio_bio (through 8479 * dio_end_io()). 8480 */ 8481 dip = NULL; 8482 bio = NULL; 8483 } else { 8484 if (write) 8485 __endio_write_update_ordered(inode, 8486 file_offset, 8487 dio_bio->bi_iter.bi_size, 8488 false); 8489 else 8490 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8491 file_offset + dio_bio->bi_iter.bi_size - 1); 8492 8493 dio_bio->bi_status = BLK_STS_IOERR; 8494 /* 8495 * Releases and cleans up our dio_bio, no need to bio_put() 8496 * nor bio_endio()/bio_io_error() against dio_bio. 8497 */ 8498 dio_end_io(dio_bio); 8499 } 8500 if (bio) 8501 bio_put(bio); 8502 kfree(dip); 8503 } 8504 8505 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8506 const struct iov_iter *iter, loff_t offset) 8507 { 8508 int seg; 8509 int i; 8510 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8511 ssize_t retval = -EINVAL; 8512 8513 if (offset & blocksize_mask) 8514 goto out; 8515 8516 if (iov_iter_alignment(iter) & blocksize_mask) 8517 goto out; 8518 8519 /* If this is a write we don't need to check anymore */ 8520 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8521 return 0; 8522 /* 8523 * Check to make sure we don't have duplicate iov_base's in this 8524 * iovec, if so return EINVAL, otherwise we'll get csum errors 8525 * when reading back. 8526 */ 8527 for (seg = 0; seg < iter->nr_segs; seg++) { 8528 for (i = seg + 1; i < iter->nr_segs; i++) { 8529 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8530 goto out; 8531 } 8532 } 8533 retval = 0; 8534 out: 8535 return retval; 8536 } 8537 8538 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8539 { 8540 struct file *file = iocb->ki_filp; 8541 struct inode *inode = file->f_mapping->host; 8542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8543 struct btrfs_dio_data dio_data = { 0 }; 8544 struct extent_changeset *data_reserved = NULL; 8545 loff_t offset = iocb->ki_pos; 8546 size_t count = 0; 8547 int flags = 0; 8548 bool wakeup = true; 8549 bool relock = false; 8550 ssize_t ret; 8551 8552 if (check_direct_IO(fs_info, iter, offset)) 8553 return 0; 8554 8555 inode_dio_begin(inode); 8556 8557 /* 8558 * The generic stuff only does filemap_write_and_wait_range, which 8559 * isn't enough if we've written compressed pages to this area, so 8560 * we need to flush the dirty pages again to make absolutely sure 8561 * that any outstanding dirty pages are on disk. 8562 */ 8563 count = iov_iter_count(iter); 8564 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8565 &BTRFS_I(inode)->runtime_flags)) 8566 filemap_fdatawrite_range(inode->i_mapping, offset, 8567 offset + count - 1); 8568 8569 if (iov_iter_rw(iter) == WRITE) { 8570 /* 8571 * If the write DIO is beyond the EOF, we need update 8572 * the isize, but it is protected by i_mutex. So we can 8573 * not unlock the i_mutex at this case. 8574 */ 8575 if (offset + count <= inode->i_size) { 8576 dio_data.overwrite = 1; 8577 inode_unlock(inode); 8578 relock = true; 8579 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8580 ret = -EAGAIN; 8581 goto out; 8582 } 8583 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8584 offset, count); 8585 if (ret) 8586 goto out; 8587 8588 /* 8589 * We need to know how many extents we reserved so that we can 8590 * do the accounting properly if we go over the number we 8591 * originally calculated. Abuse current->journal_info for this. 8592 */ 8593 dio_data.reserve = round_up(count, 8594 fs_info->sectorsize); 8595 dio_data.unsubmitted_oe_range_start = (u64)offset; 8596 dio_data.unsubmitted_oe_range_end = (u64)offset; 8597 current->journal_info = &dio_data; 8598 down_read(&BTRFS_I(inode)->dio_sem); 8599 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8600 &BTRFS_I(inode)->runtime_flags)) { 8601 inode_dio_end(inode); 8602 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8603 wakeup = false; 8604 } 8605 8606 ret = __blockdev_direct_IO(iocb, inode, 8607 fs_info->fs_devices->latest_bdev, 8608 iter, btrfs_get_blocks_direct, NULL, 8609 btrfs_submit_direct, flags); 8610 if (iov_iter_rw(iter) == WRITE) { 8611 up_read(&BTRFS_I(inode)->dio_sem); 8612 current->journal_info = NULL; 8613 if (ret < 0 && ret != -EIOCBQUEUED) { 8614 if (dio_data.reserve) 8615 btrfs_delalloc_release_space(inode, data_reserved, 8616 offset, dio_data.reserve, true); 8617 /* 8618 * On error we might have left some ordered extents 8619 * without submitting corresponding bios for them, so 8620 * cleanup them up to avoid other tasks getting them 8621 * and waiting for them to complete forever. 8622 */ 8623 if (dio_data.unsubmitted_oe_range_start < 8624 dio_data.unsubmitted_oe_range_end) 8625 __endio_write_update_ordered(inode, 8626 dio_data.unsubmitted_oe_range_start, 8627 dio_data.unsubmitted_oe_range_end - 8628 dio_data.unsubmitted_oe_range_start, 8629 false); 8630 } else if (ret >= 0 && (size_t)ret < count) 8631 btrfs_delalloc_release_space(inode, data_reserved, 8632 offset, count - (size_t)ret, true); 8633 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false); 8634 } 8635 out: 8636 if (wakeup) 8637 inode_dio_end(inode); 8638 if (relock) 8639 inode_lock(inode); 8640 8641 extent_changeset_free(data_reserved); 8642 return ret; 8643 } 8644 8645 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8646 8647 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8648 __u64 start, __u64 len) 8649 { 8650 int ret; 8651 8652 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8653 if (ret) 8654 return ret; 8655 8656 return extent_fiemap(inode, fieinfo, start, len); 8657 } 8658 8659 int btrfs_readpage(struct file *file, struct page *page) 8660 { 8661 struct extent_io_tree *tree; 8662 tree = &BTRFS_I(page->mapping->host)->io_tree; 8663 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8664 } 8665 8666 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8667 { 8668 struct inode *inode = page->mapping->host; 8669 int ret; 8670 8671 if (current->flags & PF_MEMALLOC) { 8672 redirty_page_for_writepage(wbc, page); 8673 unlock_page(page); 8674 return 0; 8675 } 8676 8677 /* 8678 * If we are under memory pressure we will call this directly from the 8679 * VM, we need to make sure we have the inode referenced for the ordered 8680 * extent. If not just return like we didn't do anything. 8681 */ 8682 if (!igrab(inode)) { 8683 redirty_page_for_writepage(wbc, page); 8684 return AOP_WRITEPAGE_ACTIVATE; 8685 } 8686 ret = extent_write_full_page(page, wbc); 8687 btrfs_add_delayed_iput(inode); 8688 return ret; 8689 } 8690 8691 static int btrfs_writepages(struct address_space *mapping, 8692 struct writeback_control *wbc) 8693 { 8694 return extent_writepages(mapping, wbc); 8695 } 8696 8697 static int 8698 btrfs_readpages(struct file *file, struct address_space *mapping, 8699 struct list_head *pages, unsigned nr_pages) 8700 { 8701 return extent_readpages(mapping, pages, nr_pages); 8702 } 8703 8704 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8705 { 8706 int ret = try_release_extent_mapping(page, gfp_flags); 8707 if (ret == 1) { 8708 ClearPagePrivate(page); 8709 set_page_private(page, 0); 8710 put_page(page); 8711 } 8712 return ret; 8713 } 8714 8715 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8716 { 8717 if (PageWriteback(page) || PageDirty(page)) 8718 return 0; 8719 return __btrfs_releasepage(page, gfp_flags); 8720 } 8721 8722 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8723 unsigned int length) 8724 { 8725 struct inode *inode = page->mapping->host; 8726 struct extent_io_tree *tree; 8727 struct btrfs_ordered_extent *ordered; 8728 struct extent_state *cached_state = NULL; 8729 u64 page_start = page_offset(page); 8730 u64 page_end = page_start + PAGE_SIZE - 1; 8731 u64 start; 8732 u64 end; 8733 int inode_evicting = inode->i_state & I_FREEING; 8734 8735 /* 8736 * we have the page locked, so new writeback can't start, 8737 * and the dirty bit won't be cleared while we are here. 8738 * 8739 * Wait for IO on this page so that we can safely clear 8740 * the PagePrivate2 bit and do ordered accounting 8741 */ 8742 wait_on_page_writeback(page); 8743 8744 tree = &BTRFS_I(inode)->io_tree; 8745 if (offset) { 8746 btrfs_releasepage(page, GFP_NOFS); 8747 return; 8748 } 8749 8750 if (!inode_evicting) 8751 lock_extent_bits(tree, page_start, page_end, &cached_state); 8752 again: 8753 start = page_start; 8754 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8755 page_end - start + 1); 8756 if (ordered) { 8757 end = min(page_end, ordered->file_offset + ordered->len - 1); 8758 /* 8759 * IO on this page will never be started, so we need 8760 * to account for any ordered extents now 8761 */ 8762 if (!inode_evicting) 8763 clear_extent_bit(tree, start, end, 8764 EXTENT_DIRTY | EXTENT_DELALLOC | 8765 EXTENT_DELALLOC_NEW | 8766 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8767 EXTENT_DEFRAG, 1, 0, &cached_state); 8768 /* 8769 * whoever cleared the private bit is responsible 8770 * for the finish_ordered_io 8771 */ 8772 if (TestClearPagePrivate2(page)) { 8773 struct btrfs_ordered_inode_tree *tree; 8774 u64 new_len; 8775 8776 tree = &BTRFS_I(inode)->ordered_tree; 8777 8778 spin_lock_irq(&tree->lock); 8779 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8780 new_len = start - ordered->file_offset; 8781 if (new_len < ordered->truncated_len) 8782 ordered->truncated_len = new_len; 8783 spin_unlock_irq(&tree->lock); 8784 8785 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8786 start, 8787 end - start + 1, 1)) 8788 btrfs_finish_ordered_io(ordered); 8789 } 8790 btrfs_put_ordered_extent(ordered); 8791 if (!inode_evicting) { 8792 cached_state = NULL; 8793 lock_extent_bits(tree, start, end, 8794 &cached_state); 8795 } 8796 8797 start = end + 1; 8798 if (start < page_end) 8799 goto again; 8800 } 8801 8802 /* 8803 * Qgroup reserved space handler 8804 * Page here will be either 8805 * 1) Already written to disk 8806 * In this case, its reserved space is released from data rsv map 8807 * and will be freed by delayed_ref handler finally. 8808 * So even we call qgroup_free_data(), it won't decrease reserved 8809 * space. 8810 * 2) Not written to disk 8811 * This means the reserved space should be freed here. However, 8812 * if a truncate invalidates the page (by clearing PageDirty) 8813 * and the page is accounted for while allocating extent 8814 * in btrfs_check_data_free_space() we let delayed_ref to 8815 * free the entire extent. 8816 */ 8817 if (PageDirty(page)) 8818 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8819 if (!inode_evicting) { 8820 clear_extent_bit(tree, page_start, page_end, 8821 EXTENT_LOCKED | EXTENT_DIRTY | 8822 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8823 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8824 &cached_state); 8825 8826 __btrfs_releasepage(page, GFP_NOFS); 8827 } 8828 8829 ClearPageChecked(page); 8830 if (PagePrivate(page)) { 8831 ClearPagePrivate(page); 8832 set_page_private(page, 0); 8833 put_page(page); 8834 } 8835 } 8836 8837 /* 8838 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8839 * called from a page fault handler when a page is first dirtied. Hence we must 8840 * be careful to check for EOF conditions here. We set the page up correctly 8841 * for a written page which means we get ENOSPC checking when writing into 8842 * holes and correct delalloc and unwritten extent mapping on filesystems that 8843 * support these features. 8844 * 8845 * We are not allowed to take the i_mutex here so we have to play games to 8846 * protect against truncate races as the page could now be beyond EOF. Because 8847 * truncate_setsize() writes the inode size before removing pages, once we have 8848 * the page lock we can determine safely if the page is beyond EOF. If it is not 8849 * beyond EOF, then the page is guaranteed safe against truncation until we 8850 * unlock the page. 8851 */ 8852 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8853 { 8854 struct page *page = vmf->page; 8855 struct inode *inode = file_inode(vmf->vma->vm_file); 8856 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8857 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8858 struct btrfs_ordered_extent *ordered; 8859 struct extent_state *cached_state = NULL; 8860 struct extent_changeset *data_reserved = NULL; 8861 char *kaddr; 8862 unsigned long zero_start; 8863 loff_t size; 8864 vm_fault_t ret; 8865 int ret2; 8866 int reserved = 0; 8867 u64 reserved_space; 8868 u64 page_start; 8869 u64 page_end; 8870 u64 end; 8871 8872 reserved_space = PAGE_SIZE; 8873 8874 sb_start_pagefault(inode->i_sb); 8875 page_start = page_offset(page); 8876 page_end = page_start + PAGE_SIZE - 1; 8877 end = page_end; 8878 8879 /* 8880 * Reserving delalloc space after obtaining the page lock can lead to 8881 * deadlock. For example, if a dirty page is locked by this function 8882 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8883 * dirty page write out, then the btrfs_writepage() function could 8884 * end up waiting indefinitely to get a lock on the page currently 8885 * being processed by btrfs_page_mkwrite() function. 8886 */ 8887 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8888 reserved_space); 8889 if (!ret2) { 8890 ret2 = file_update_time(vmf->vma->vm_file); 8891 reserved = 1; 8892 } 8893 if (ret2) { 8894 ret = vmf_error(ret2); 8895 if (reserved) 8896 goto out; 8897 goto out_noreserve; 8898 } 8899 8900 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8901 again: 8902 lock_page(page); 8903 size = i_size_read(inode); 8904 8905 if ((page->mapping != inode->i_mapping) || 8906 (page_start >= size)) { 8907 /* page got truncated out from underneath us */ 8908 goto out_unlock; 8909 } 8910 wait_on_page_writeback(page); 8911 8912 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8913 set_page_extent_mapped(page); 8914 8915 /* 8916 * we can't set the delalloc bits if there are pending ordered 8917 * extents. Drop our locks and wait for them to finish 8918 */ 8919 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8920 PAGE_SIZE); 8921 if (ordered) { 8922 unlock_extent_cached(io_tree, page_start, page_end, 8923 &cached_state); 8924 unlock_page(page); 8925 btrfs_start_ordered_extent(inode, ordered, 1); 8926 btrfs_put_ordered_extent(ordered); 8927 goto again; 8928 } 8929 8930 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8931 reserved_space = round_up(size - page_start, 8932 fs_info->sectorsize); 8933 if (reserved_space < PAGE_SIZE) { 8934 end = page_start + reserved_space - 1; 8935 btrfs_delalloc_release_space(inode, data_reserved, 8936 page_start, PAGE_SIZE - reserved_space, 8937 true); 8938 } 8939 } 8940 8941 /* 8942 * page_mkwrite gets called when the page is firstly dirtied after it's 8943 * faulted in, but write(2) could also dirty a page and set delalloc 8944 * bits, thus in this case for space account reason, we still need to 8945 * clear any delalloc bits within this page range since we have to 8946 * reserve data&meta space before lock_page() (see above comments). 8947 */ 8948 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8949 EXTENT_DIRTY | EXTENT_DELALLOC | 8950 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8951 0, 0, &cached_state); 8952 8953 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8954 &cached_state, 0); 8955 if (ret2) { 8956 unlock_extent_cached(io_tree, page_start, page_end, 8957 &cached_state); 8958 ret = VM_FAULT_SIGBUS; 8959 goto out_unlock; 8960 } 8961 ret2 = 0; 8962 8963 /* page is wholly or partially inside EOF */ 8964 if (page_start + PAGE_SIZE > size) 8965 zero_start = offset_in_page(size); 8966 else 8967 zero_start = PAGE_SIZE; 8968 8969 if (zero_start != PAGE_SIZE) { 8970 kaddr = kmap(page); 8971 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8972 flush_dcache_page(page); 8973 kunmap(page); 8974 } 8975 ClearPageChecked(page); 8976 set_page_dirty(page); 8977 SetPageUptodate(page); 8978 8979 BTRFS_I(inode)->last_trans = fs_info->generation; 8980 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8981 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8982 8983 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8984 8985 if (!ret2) { 8986 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true); 8987 sb_end_pagefault(inode->i_sb); 8988 extent_changeset_free(data_reserved); 8989 return VM_FAULT_LOCKED; 8990 } 8991 8992 out_unlock: 8993 unlock_page(page); 8994 out: 8995 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0)); 8996 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8997 reserved_space, (ret != 0)); 8998 out_noreserve: 8999 sb_end_pagefault(inode->i_sb); 9000 extent_changeset_free(data_reserved); 9001 return ret; 9002 } 9003 9004 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 9005 { 9006 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9007 struct btrfs_root *root = BTRFS_I(inode)->root; 9008 struct btrfs_block_rsv *rsv; 9009 int ret; 9010 struct btrfs_trans_handle *trans; 9011 u64 mask = fs_info->sectorsize - 1; 9012 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9013 9014 if (!skip_writeback) { 9015 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9016 (u64)-1); 9017 if (ret) 9018 return ret; 9019 } 9020 9021 /* 9022 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 9023 * things going on here: 9024 * 9025 * 1) We need to reserve space to update our inode. 9026 * 9027 * 2) We need to have something to cache all the space that is going to 9028 * be free'd up by the truncate operation, but also have some slack 9029 * space reserved in case it uses space during the truncate (thank you 9030 * very much snapshotting). 9031 * 9032 * And we need these to be separate. The fact is we can use a lot of 9033 * space doing the truncate, and we have no earthly idea how much space 9034 * we will use, so we need the truncate reservation to be separate so it 9035 * doesn't end up using space reserved for updating the inode. We also 9036 * need to be able to stop the transaction and start a new one, which 9037 * means we need to be able to update the inode several times, and we 9038 * have no idea of knowing how many times that will be, so we can't just 9039 * reserve 1 item for the entirety of the operation, so that has to be 9040 * done separately as well. 9041 * 9042 * So that leaves us with 9043 * 9044 * 1) rsv - for the truncate reservation, which we will steal from the 9045 * transaction reservation. 9046 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 9047 * updating the inode. 9048 */ 9049 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9050 if (!rsv) 9051 return -ENOMEM; 9052 rsv->size = min_size; 9053 rsv->failfast = 1; 9054 9055 /* 9056 * 1 for the truncate slack space 9057 * 1 for updating the inode. 9058 */ 9059 trans = btrfs_start_transaction(root, 2); 9060 if (IS_ERR(trans)) { 9061 ret = PTR_ERR(trans); 9062 goto out; 9063 } 9064 9065 /* Migrate the slack space for the truncate to our reserve */ 9066 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9067 min_size, false); 9068 BUG_ON(ret); 9069 9070 /* 9071 * So if we truncate and then write and fsync we normally would just 9072 * write the extents that changed, which is a problem if we need to 9073 * first truncate that entire inode. So set this flag so we write out 9074 * all of the extents in the inode to the sync log so we're completely 9075 * safe. 9076 */ 9077 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9078 trans->block_rsv = rsv; 9079 9080 while (1) { 9081 ret = btrfs_truncate_inode_items(trans, root, inode, 9082 inode->i_size, 9083 BTRFS_EXTENT_DATA_KEY); 9084 trans->block_rsv = &fs_info->trans_block_rsv; 9085 if (ret != -ENOSPC && ret != -EAGAIN) 9086 break; 9087 9088 ret = btrfs_update_inode(trans, root, inode); 9089 if (ret) 9090 break; 9091 9092 btrfs_end_transaction(trans); 9093 btrfs_btree_balance_dirty(fs_info); 9094 9095 trans = btrfs_start_transaction(root, 2); 9096 if (IS_ERR(trans)) { 9097 ret = PTR_ERR(trans); 9098 trans = NULL; 9099 break; 9100 } 9101 9102 btrfs_block_rsv_release(fs_info, rsv, -1); 9103 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9104 rsv, min_size, false); 9105 BUG_ON(ret); /* shouldn't happen */ 9106 trans->block_rsv = rsv; 9107 } 9108 9109 /* 9110 * We can't call btrfs_truncate_block inside a trans handle as we could 9111 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9112 * we've truncated everything except the last little bit, and can do 9113 * btrfs_truncate_block and then update the disk_i_size. 9114 */ 9115 if (ret == NEED_TRUNCATE_BLOCK) { 9116 btrfs_end_transaction(trans); 9117 btrfs_btree_balance_dirty(fs_info); 9118 9119 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9120 if (ret) 9121 goto out; 9122 trans = btrfs_start_transaction(root, 1); 9123 if (IS_ERR(trans)) { 9124 ret = PTR_ERR(trans); 9125 goto out; 9126 } 9127 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9128 } 9129 9130 if (trans) { 9131 int ret2; 9132 9133 trans->block_rsv = &fs_info->trans_block_rsv; 9134 ret2 = btrfs_update_inode(trans, root, inode); 9135 if (ret2 && !ret) 9136 ret = ret2; 9137 9138 ret2 = btrfs_end_transaction(trans); 9139 if (ret2 && !ret) 9140 ret = ret2; 9141 btrfs_btree_balance_dirty(fs_info); 9142 } 9143 out: 9144 btrfs_free_block_rsv(fs_info, rsv); 9145 9146 return ret; 9147 } 9148 9149 /* 9150 * create a new subvolume directory/inode (helper for the ioctl). 9151 */ 9152 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9153 struct btrfs_root *new_root, 9154 struct btrfs_root *parent_root, 9155 u64 new_dirid) 9156 { 9157 struct inode *inode; 9158 int err; 9159 u64 index = 0; 9160 9161 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9162 new_dirid, new_dirid, 9163 S_IFDIR | (~current_umask() & S_IRWXUGO), 9164 &index); 9165 if (IS_ERR(inode)) 9166 return PTR_ERR(inode); 9167 inode->i_op = &btrfs_dir_inode_operations; 9168 inode->i_fop = &btrfs_dir_file_operations; 9169 9170 set_nlink(inode, 1); 9171 btrfs_i_size_write(BTRFS_I(inode), 0); 9172 unlock_new_inode(inode); 9173 9174 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9175 if (err) 9176 btrfs_err(new_root->fs_info, 9177 "error inheriting subvolume %llu properties: %d", 9178 new_root->root_key.objectid, err); 9179 9180 err = btrfs_update_inode(trans, new_root, inode); 9181 9182 iput(inode); 9183 return err; 9184 } 9185 9186 struct inode *btrfs_alloc_inode(struct super_block *sb) 9187 { 9188 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9189 struct btrfs_inode *ei; 9190 struct inode *inode; 9191 9192 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9193 if (!ei) 9194 return NULL; 9195 9196 ei->root = NULL; 9197 ei->generation = 0; 9198 ei->last_trans = 0; 9199 ei->last_sub_trans = 0; 9200 ei->logged_trans = 0; 9201 ei->delalloc_bytes = 0; 9202 ei->new_delalloc_bytes = 0; 9203 ei->defrag_bytes = 0; 9204 ei->disk_i_size = 0; 9205 ei->flags = 0; 9206 ei->csum_bytes = 0; 9207 ei->index_cnt = (u64)-1; 9208 ei->dir_index = 0; 9209 ei->last_unlink_trans = 0; 9210 ei->last_log_commit = 0; 9211 9212 spin_lock_init(&ei->lock); 9213 ei->outstanding_extents = 0; 9214 if (sb->s_magic != BTRFS_TEST_MAGIC) 9215 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9216 BTRFS_BLOCK_RSV_DELALLOC); 9217 ei->runtime_flags = 0; 9218 ei->prop_compress = BTRFS_COMPRESS_NONE; 9219 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9220 9221 ei->delayed_node = NULL; 9222 9223 ei->i_otime.tv_sec = 0; 9224 ei->i_otime.tv_nsec = 0; 9225 9226 inode = &ei->vfs_inode; 9227 extent_map_tree_init(&ei->extent_tree); 9228 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 9229 extent_io_tree_init(fs_info, &ei->io_failure_tree, 9230 IO_TREE_INODE_IO_FAILURE, inode); 9231 ei->io_tree.track_uptodate = true; 9232 ei->io_failure_tree.track_uptodate = true; 9233 atomic_set(&ei->sync_writers, 0); 9234 mutex_init(&ei->log_mutex); 9235 mutex_init(&ei->delalloc_mutex); 9236 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9237 INIT_LIST_HEAD(&ei->delalloc_inodes); 9238 INIT_LIST_HEAD(&ei->delayed_iput); 9239 RB_CLEAR_NODE(&ei->rb_node); 9240 init_rwsem(&ei->dio_sem); 9241 9242 return inode; 9243 } 9244 9245 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9246 void btrfs_test_destroy_inode(struct inode *inode) 9247 { 9248 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9249 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9250 } 9251 #endif 9252 9253 void btrfs_free_inode(struct inode *inode) 9254 { 9255 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9256 } 9257 9258 void btrfs_destroy_inode(struct inode *inode) 9259 { 9260 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9261 struct btrfs_ordered_extent *ordered; 9262 struct btrfs_root *root = BTRFS_I(inode)->root; 9263 9264 WARN_ON(!hlist_empty(&inode->i_dentry)); 9265 WARN_ON(inode->i_data.nrpages); 9266 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9267 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9268 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9269 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9270 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9271 WARN_ON(BTRFS_I(inode)->csum_bytes); 9272 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9273 9274 /* 9275 * This can happen where we create an inode, but somebody else also 9276 * created the same inode and we need to destroy the one we already 9277 * created. 9278 */ 9279 if (!root) 9280 return; 9281 9282 while (1) { 9283 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9284 if (!ordered) 9285 break; 9286 else { 9287 btrfs_err(fs_info, 9288 "found ordered extent %llu %llu on inode cleanup", 9289 ordered->file_offset, ordered->len); 9290 btrfs_remove_ordered_extent(inode, ordered); 9291 btrfs_put_ordered_extent(ordered); 9292 btrfs_put_ordered_extent(ordered); 9293 } 9294 } 9295 btrfs_qgroup_check_reserved_leak(inode); 9296 inode_tree_del(inode); 9297 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9298 } 9299 9300 int btrfs_drop_inode(struct inode *inode) 9301 { 9302 struct btrfs_root *root = BTRFS_I(inode)->root; 9303 9304 if (root == NULL) 9305 return 1; 9306 9307 /* the snap/subvol tree is on deleting */ 9308 if (btrfs_root_refs(&root->root_item) == 0) 9309 return 1; 9310 else 9311 return generic_drop_inode(inode); 9312 } 9313 9314 static void init_once(void *foo) 9315 { 9316 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9317 9318 inode_init_once(&ei->vfs_inode); 9319 } 9320 9321 void __cold btrfs_destroy_cachep(void) 9322 { 9323 /* 9324 * Make sure all delayed rcu free inodes are flushed before we 9325 * destroy cache. 9326 */ 9327 rcu_barrier(); 9328 kmem_cache_destroy(btrfs_inode_cachep); 9329 kmem_cache_destroy(btrfs_trans_handle_cachep); 9330 kmem_cache_destroy(btrfs_path_cachep); 9331 kmem_cache_destroy(btrfs_free_space_cachep); 9332 } 9333 9334 int __init btrfs_init_cachep(void) 9335 { 9336 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9337 sizeof(struct btrfs_inode), 0, 9338 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9339 init_once); 9340 if (!btrfs_inode_cachep) 9341 goto fail; 9342 9343 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9344 sizeof(struct btrfs_trans_handle), 0, 9345 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9346 if (!btrfs_trans_handle_cachep) 9347 goto fail; 9348 9349 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9350 sizeof(struct btrfs_path), 0, 9351 SLAB_MEM_SPREAD, NULL); 9352 if (!btrfs_path_cachep) 9353 goto fail; 9354 9355 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9356 sizeof(struct btrfs_free_space), 0, 9357 SLAB_MEM_SPREAD, NULL); 9358 if (!btrfs_free_space_cachep) 9359 goto fail; 9360 9361 return 0; 9362 fail: 9363 btrfs_destroy_cachep(); 9364 return -ENOMEM; 9365 } 9366 9367 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9368 u32 request_mask, unsigned int flags) 9369 { 9370 u64 delalloc_bytes; 9371 struct inode *inode = d_inode(path->dentry); 9372 u32 blocksize = inode->i_sb->s_blocksize; 9373 u32 bi_flags = BTRFS_I(inode)->flags; 9374 9375 stat->result_mask |= STATX_BTIME; 9376 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9377 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9378 if (bi_flags & BTRFS_INODE_APPEND) 9379 stat->attributes |= STATX_ATTR_APPEND; 9380 if (bi_flags & BTRFS_INODE_COMPRESS) 9381 stat->attributes |= STATX_ATTR_COMPRESSED; 9382 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9383 stat->attributes |= STATX_ATTR_IMMUTABLE; 9384 if (bi_flags & BTRFS_INODE_NODUMP) 9385 stat->attributes |= STATX_ATTR_NODUMP; 9386 9387 stat->attributes_mask |= (STATX_ATTR_APPEND | 9388 STATX_ATTR_COMPRESSED | 9389 STATX_ATTR_IMMUTABLE | 9390 STATX_ATTR_NODUMP); 9391 9392 generic_fillattr(inode, stat); 9393 stat->dev = BTRFS_I(inode)->root->anon_dev; 9394 9395 spin_lock(&BTRFS_I(inode)->lock); 9396 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9397 spin_unlock(&BTRFS_I(inode)->lock); 9398 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9399 ALIGN(delalloc_bytes, blocksize)) >> 9; 9400 return 0; 9401 } 9402 9403 static int btrfs_rename_exchange(struct inode *old_dir, 9404 struct dentry *old_dentry, 9405 struct inode *new_dir, 9406 struct dentry *new_dentry) 9407 { 9408 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9409 struct btrfs_trans_handle *trans; 9410 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9411 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9412 struct inode *new_inode = new_dentry->d_inode; 9413 struct inode *old_inode = old_dentry->d_inode; 9414 struct timespec64 ctime = current_time(old_inode); 9415 struct dentry *parent; 9416 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9417 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9418 u64 old_idx = 0; 9419 u64 new_idx = 0; 9420 u64 root_objectid; 9421 int ret; 9422 bool root_log_pinned = false; 9423 bool dest_log_pinned = false; 9424 struct btrfs_log_ctx ctx_root; 9425 struct btrfs_log_ctx ctx_dest; 9426 bool sync_log_root = false; 9427 bool sync_log_dest = false; 9428 bool commit_transaction = false; 9429 9430 /* we only allow rename subvolume link between subvolumes */ 9431 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9432 return -EXDEV; 9433 9434 btrfs_init_log_ctx(&ctx_root, old_inode); 9435 btrfs_init_log_ctx(&ctx_dest, new_inode); 9436 9437 /* close the race window with snapshot create/destroy ioctl */ 9438 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9439 down_read(&fs_info->subvol_sem); 9440 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9441 down_read(&fs_info->subvol_sem); 9442 9443 /* 9444 * We want to reserve the absolute worst case amount of items. So if 9445 * both inodes are subvols and we need to unlink them then that would 9446 * require 4 item modifications, but if they are both normal inodes it 9447 * would require 5 item modifications, so we'll assume their normal 9448 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9449 * should cover the worst case number of items we'll modify. 9450 */ 9451 trans = btrfs_start_transaction(root, 12); 9452 if (IS_ERR(trans)) { 9453 ret = PTR_ERR(trans); 9454 goto out_notrans; 9455 } 9456 9457 /* 9458 * We need to find a free sequence number both in the source and 9459 * in the destination directory for the exchange. 9460 */ 9461 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9462 if (ret) 9463 goto out_fail; 9464 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9465 if (ret) 9466 goto out_fail; 9467 9468 BTRFS_I(old_inode)->dir_index = 0ULL; 9469 BTRFS_I(new_inode)->dir_index = 0ULL; 9470 9471 /* Reference for the source. */ 9472 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9473 /* force full log commit if subvolume involved. */ 9474 btrfs_set_log_full_commit(trans); 9475 } else { 9476 btrfs_pin_log_trans(root); 9477 root_log_pinned = true; 9478 ret = btrfs_insert_inode_ref(trans, dest, 9479 new_dentry->d_name.name, 9480 new_dentry->d_name.len, 9481 old_ino, 9482 btrfs_ino(BTRFS_I(new_dir)), 9483 old_idx); 9484 if (ret) 9485 goto out_fail; 9486 } 9487 9488 /* And now for the dest. */ 9489 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9490 /* force full log commit if subvolume involved. */ 9491 btrfs_set_log_full_commit(trans); 9492 } else { 9493 btrfs_pin_log_trans(dest); 9494 dest_log_pinned = true; 9495 ret = btrfs_insert_inode_ref(trans, root, 9496 old_dentry->d_name.name, 9497 old_dentry->d_name.len, 9498 new_ino, 9499 btrfs_ino(BTRFS_I(old_dir)), 9500 new_idx); 9501 if (ret) 9502 goto out_fail; 9503 } 9504 9505 /* Update inode version and ctime/mtime. */ 9506 inode_inc_iversion(old_dir); 9507 inode_inc_iversion(new_dir); 9508 inode_inc_iversion(old_inode); 9509 inode_inc_iversion(new_inode); 9510 old_dir->i_ctime = old_dir->i_mtime = ctime; 9511 new_dir->i_ctime = new_dir->i_mtime = ctime; 9512 old_inode->i_ctime = ctime; 9513 new_inode->i_ctime = ctime; 9514 9515 if (old_dentry->d_parent != new_dentry->d_parent) { 9516 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9517 BTRFS_I(old_inode), 1); 9518 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9519 BTRFS_I(new_inode), 1); 9520 } 9521 9522 /* src is a subvolume */ 9523 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9524 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9525 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9526 old_dentry->d_name.name, 9527 old_dentry->d_name.len); 9528 } else { /* src is an inode */ 9529 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9530 BTRFS_I(old_dentry->d_inode), 9531 old_dentry->d_name.name, 9532 old_dentry->d_name.len); 9533 if (!ret) 9534 ret = btrfs_update_inode(trans, root, old_inode); 9535 } 9536 if (ret) { 9537 btrfs_abort_transaction(trans, ret); 9538 goto out_fail; 9539 } 9540 9541 /* dest is a subvolume */ 9542 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9543 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9544 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9545 new_dentry->d_name.name, 9546 new_dentry->d_name.len); 9547 } else { /* dest is an inode */ 9548 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9549 BTRFS_I(new_dentry->d_inode), 9550 new_dentry->d_name.name, 9551 new_dentry->d_name.len); 9552 if (!ret) 9553 ret = btrfs_update_inode(trans, dest, new_inode); 9554 } 9555 if (ret) { 9556 btrfs_abort_transaction(trans, ret); 9557 goto out_fail; 9558 } 9559 9560 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9561 new_dentry->d_name.name, 9562 new_dentry->d_name.len, 0, old_idx); 9563 if (ret) { 9564 btrfs_abort_transaction(trans, ret); 9565 goto out_fail; 9566 } 9567 9568 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9569 old_dentry->d_name.name, 9570 old_dentry->d_name.len, 0, new_idx); 9571 if (ret) { 9572 btrfs_abort_transaction(trans, ret); 9573 goto out_fail; 9574 } 9575 9576 if (old_inode->i_nlink == 1) 9577 BTRFS_I(old_inode)->dir_index = old_idx; 9578 if (new_inode->i_nlink == 1) 9579 BTRFS_I(new_inode)->dir_index = new_idx; 9580 9581 if (root_log_pinned) { 9582 parent = new_dentry->d_parent; 9583 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9584 BTRFS_I(old_dir), parent, 9585 false, &ctx_root); 9586 if (ret == BTRFS_NEED_LOG_SYNC) 9587 sync_log_root = true; 9588 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9589 commit_transaction = true; 9590 ret = 0; 9591 btrfs_end_log_trans(root); 9592 root_log_pinned = false; 9593 } 9594 if (dest_log_pinned) { 9595 if (!commit_transaction) { 9596 parent = old_dentry->d_parent; 9597 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9598 BTRFS_I(new_dir), parent, 9599 false, &ctx_dest); 9600 if (ret == BTRFS_NEED_LOG_SYNC) 9601 sync_log_dest = true; 9602 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9603 commit_transaction = true; 9604 ret = 0; 9605 } 9606 btrfs_end_log_trans(dest); 9607 dest_log_pinned = false; 9608 } 9609 out_fail: 9610 /* 9611 * If we have pinned a log and an error happened, we unpin tasks 9612 * trying to sync the log and force them to fallback to a transaction 9613 * commit if the log currently contains any of the inodes involved in 9614 * this rename operation (to ensure we do not persist a log with an 9615 * inconsistent state for any of these inodes or leading to any 9616 * inconsistencies when replayed). If the transaction was aborted, the 9617 * abortion reason is propagated to userspace when attempting to commit 9618 * the transaction. If the log does not contain any of these inodes, we 9619 * allow the tasks to sync it. 9620 */ 9621 if (ret && (root_log_pinned || dest_log_pinned)) { 9622 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9623 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9624 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9625 (new_inode && 9626 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9627 btrfs_set_log_full_commit(trans); 9628 9629 if (root_log_pinned) { 9630 btrfs_end_log_trans(root); 9631 root_log_pinned = false; 9632 } 9633 if (dest_log_pinned) { 9634 btrfs_end_log_trans(dest); 9635 dest_log_pinned = false; 9636 } 9637 } 9638 if (!ret && sync_log_root && !commit_transaction) { 9639 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9640 &ctx_root); 9641 if (ret) 9642 commit_transaction = true; 9643 } 9644 if (!ret && sync_log_dest && !commit_transaction) { 9645 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9646 &ctx_dest); 9647 if (ret) 9648 commit_transaction = true; 9649 } 9650 if (commit_transaction) { 9651 ret = btrfs_commit_transaction(trans); 9652 } else { 9653 int ret2; 9654 9655 ret2 = btrfs_end_transaction(trans); 9656 ret = ret ? ret : ret2; 9657 } 9658 out_notrans: 9659 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9660 up_read(&fs_info->subvol_sem); 9661 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9662 up_read(&fs_info->subvol_sem); 9663 9664 return ret; 9665 } 9666 9667 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9668 struct btrfs_root *root, 9669 struct inode *dir, 9670 struct dentry *dentry) 9671 { 9672 int ret; 9673 struct inode *inode; 9674 u64 objectid; 9675 u64 index; 9676 9677 ret = btrfs_find_free_ino(root, &objectid); 9678 if (ret) 9679 return ret; 9680 9681 inode = btrfs_new_inode(trans, root, dir, 9682 dentry->d_name.name, 9683 dentry->d_name.len, 9684 btrfs_ino(BTRFS_I(dir)), 9685 objectid, 9686 S_IFCHR | WHITEOUT_MODE, 9687 &index); 9688 9689 if (IS_ERR(inode)) { 9690 ret = PTR_ERR(inode); 9691 return ret; 9692 } 9693 9694 inode->i_op = &btrfs_special_inode_operations; 9695 init_special_inode(inode, inode->i_mode, 9696 WHITEOUT_DEV); 9697 9698 ret = btrfs_init_inode_security(trans, inode, dir, 9699 &dentry->d_name); 9700 if (ret) 9701 goto out; 9702 9703 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9704 BTRFS_I(inode), 0, index); 9705 if (ret) 9706 goto out; 9707 9708 ret = btrfs_update_inode(trans, root, inode); 9709 out: 9710 unlock_new_inode(inode); 9711 if (ret) 9712 inode_dec_link_count(inode); 9713 iput(inode); 9714 9715 return ret; 9716 } 9717 9718 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9719 struct inode *new_dir, struct dentry *new_dentry, 9720 unsigned int flags) 9721 { 9722 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9723 struct btrfs_trans_handle *trans; 9724 unsigned int trans_num_items; 9725 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9726 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9727 struct inode *new_inode = d_inode(new_dentry); 9728 struct inode *old_inode = d_inode(old_dentry); 9729 u64 index = 0; 9730 u64 root_objectid; 9731 int ret; 9732 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9733 bool log_pinned = false; 9734 struct btrfs_log_ctx ctx; 9735 bool sync_log = false; 9736 bool commit_transaction = false; 9737 9738 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9739 return -EPERM; 9740 9741 /* we only allow rename subvolume link between subvolumes */ 9742 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9743 return -EXDEV; 9744 9745 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9746 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9747 return -ENOTEMPTY; 9748 9749 if (S_ISDIR(old_inode->i_mode) && new_inode && 9750 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9751 return -ENOTEMPTY; 9752 9753 9754 /* check for collisions, even if the name isn't there */ 9755 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9756 new_dentry->d_name.name, 9757 new_dentry->d_name.len); 9758 9759 if (ret) { 9760 if (ret == -EEXIST) { 9761 /* we shouldn't get 9762 * eexist without a new_inode */ 9763 if (WARN_ON(!new_inode)) { 9764 return ret; 9765 } 9766 } else { 9767 /* maybe -EOVERFLOW */ 9768 return ret; 9769 } 9770 } 9771 ret = 0; 9772 9773 /* 9774 * we're using rename to replace one file with another. Start IO on it 9775 * now so we don't add too much work to the end of the transaction 9776 */ 9777 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9778 filemap_flush(old_inode->i_mapping); 9779 9780 /* close the racy window with snapshot create/destroy ioctl */ 9781 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9782 down_read(&fs_info->subvol_sem); 9783 /* 9784 * We want to reserve the absolute worst case amount of items. So if 9785 * both inodes are subvols and we need to unlink them then that would 9786 * require 4 item modifications, but if they are both normal inodes it 9787 * would require 5 item modifications, so we'll assume they are normal 9788 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9789 * should cover the worst case number of items we'll modify. 9790 * If our rename has the whiteout flag, we need more 5 units for the 9791 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9792 * when selinux is enabled). 9793 */ 9794 trans_num_items = 11; 9795 if (flags & RENAME_WHITEOUT) 9796 trans_num_items += 5; 9797 trans = btrfs_start_transaction(root, trans_num_items); 9798 if (IS_ERR(trans)) { 9799 ret = PTR_ERR(trans); 9800 goto out_notrans; 9801 } 9802 9803 if (dest != root) 9804 btrfs_record_root_in_trans(trans, dest); 9805 9806 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9807 if (ret) 9808 goto out_fail; 9809 9810 BTRFS_I(old_inode)->dir_index = 0ULL; 9811 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9812 /* force full log commit if subvolume involved. */ 9813 btrfs_set_log_full_commit(trans); 9814 } else { 9815 btrfs_pin_log_trans(root); 9816 log_pinned = true; 9817 ret = btrfs_insert_inode_ref(trans, dest, 9818 new_dentry->d_name.name, 9819 new_dentry->d_name.len, 9820 old_ino, 9821 btrfs_ino(BTRFS_I(new_dir)), index); 9822 if (ret) 9823 goto out_fail; 9824 } 9825 9826 inode_inc_iversion(old_dir); 9827 inode_inc_iversion(new_dir); 9828 inode_inc_iversion(old_inode); 9829 old_dir->i_ctime = old_dir->i_mtime = 9830 new_dir->i_ctime = new_dir->i_mtime = 9831 old_inode->i_ctime = current_time(old_dir); 9832 9833 if (old_dentry->d_parent != new_dentry->d_parent) 9834 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9835 BTRFS_I(old_inode), 1); 9836 9837 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9838 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9839 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9840 old_dentry->d_name.name, 9841 old_dentry->d_name.len); 9842 } else { 9843 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9844 BTRFS_I(d_inode(old_dentry)), 9845 old_dentry->d_name.name, 9846 old_dentry->d_name.len); 9847 if (!ret) 9848 ret = btrfs_update_inode(trans, root, old_inode); 9849 } 9850 if (ret) { 9851 btrfs_abort_transaction(trans, ret); 9852 goto out_fail; 9853 } 9854 9855 if (new_inode) { 9856 inode_inc_iversion(new_inode); 9857 new_inode->i_ctime = current_time(new_inode); 9858 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9859 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9860 root_objectid = BTRFS_I(new_inode)->location.objectid; 9861 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9862 new_dentry->d_name.name, 9863 new_dentry->d_name.len); 9864 BUG_ON(new_inode->i_nlink == 0); 9865 } else { 9866 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9867 BTRFS_I(d_inode(new_dentry)), 9868 new_dentry->d_name.name, 9869 new_dentry->d_name.len); 9870 } 9871 if (!ret && new_inode->i_nlink == 0) 9872 ret = btrfs_orphan_add(trans, 9873 BTRFS_I(d_inode(new_dentry))); 9874 if (ret) { 9875 btrfs_abort_transaction(trans, ret); 9876 goto out_fail; 9877 } 9878 } 9879 9880 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9881 new_dentry->d_name.name, 9882 new_dentry->d_name.len, 0, index); 9883 if (ret) { 9884 btrfs_abort_transaction(trans, ret); 9885 goto out_fail; 9886 } 9887 9888 if (old_inode->i_nlink == 1) 9889 BTRFS_I(old_inode)->dir_index = index; 9890 9891 if (log_pinned) { 9892 struct dentry *parent = new_dentry->d_parent; 9893 9894 btrfs_init_log_ctx(&ctx, old_inode); 9895 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9896 BTRFS_I(old_dir), parent, 9897 false, &ctx); 9898 if (ret == BTRFS_NEED_LOG_SYNC) 9899 sync_log = true; 9900 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9901 commit_transaction = true; 9902 ret = 0; 9903 btrfs_end_log_trans(root); 9904 log_pinned = false; 9905 } 9906 9907 if (flags & RENAME_WHITEOUT) { 9908 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9909 old_dentry); 9910 9911 if (ret) { 9912 btrfs_abort_transaction(trans, ret); 9913 goto out_fail; 9914 } 9915 } 9916 out_fail: 9917 /* 9918 * If we have pinned the log and an error happened, we unpin tasks 9919 * trying to sync the log and force them to fallback to a transaction 9920 * commit if the log currently contains any of the inodes involved in 9921 * this rename operation (to ensure we do not persist a log with an 9922 * inconsistent state for any of these inodes or leading to any 9923 * inconsistencies when replayed). If the transaction was aborted, the 9924 * abortion reason is propagated to userspace when attempting to commit 9925 * the transaction. If the log does not contain any of these inodes, we 9926 * allow the tasks to sync it. 9927 */ 9928 if (ret && log_pinned) { 9929 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9930 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9931 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9932 (new_inode && 9933 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9934 btrfs_set_log_full_commit(trans); 9935 9936 btrfs_end_log_trans(root); 9937 log_pinned = false; 9938 } 9939 if (!ret && sync_log) { 9940 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9941 if (ret) 9942 commit_transaction = true; 9943 } 9944 if (commit_transaction) { 9945 ret = btrfs_commit_transaction(trans); 9946 } else { 9947 int ret2; 9948 9949 ret2 = btrfs_end_transaction(trans); 9950 ret = ret ? ret : ret2; 9951 } 9952 out_notrans: 9953 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9954 up_read(&fs_info->subvol_sem); 9955 9956 return ret; 9957 } 9958 9959 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9960 struct inode *new_dir, struct dentry *new_dentry, 9961 unsigned int flags) 9962 { 9963 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9964 return -EINVAL; 9965 9966 if (flags & RENAME_EXCHANGE) 9967 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9968 new_dentry); 9969 9970 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9971 } 9972 9973 struct btrfs_delalloc_work { 9974 struct inode *inode; 9975 struct completion completion; 9976 struct list_head list; 9977 struct btrfs_work work; 9978 }; 9979 9980 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9981 { 9982 struct btrfs_delalloc_work *delalloc_work; 9983 struct inode *inode; 9984 9985 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9986 work); 9987 inode = delalloc_work->inode; 9988 filemap_flush(inode->i_mapping); 9989 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9990 &BTRFS_I(inode)->runtime_flags)) 9991 filemap_flush(inode->i_mapping); 9992 9993 iput(inode); 9994 complete(&delalloc_work->completion); 9995 } 9996 9997 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9998 { 9999 struct btrfs_delalloc_work *work; 10000 10001 work = kmalloc(sizeof(*work), GFP_NOFS); 10002 if (!work) 10003 return NULL; 10004 10005 init_completion(&work->completion); 10006 INIT_LIST_HEAD(&work->list); 10007 work->inode = inode; 10008 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10009 btrfs_run_delalloc_work, NULL, NULL); 10010 10011 return work; 10012 } 10013 10014 /* 10015 * some fairly slow code that needs optimization. This walks the list 10016 * of all the inodes with pending delalloc and forces them to disk. 10017 */ 10018 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 10019 { 10020 struct btrfs_inode *binode; 10021 struct inode *inode; 10022 struct btrfs_delalloc_work *work, *next; 10023 struct list_head works; 10024 struct list_head splice; 10025 int ret = 0; 10026 10027 INIT_LIST_HEAD(&works); 10028 INIT_LIST_HEAD(&splice); 10029 10030 mutex_lock(&root->delalloc_mutex); 10031 spin_lock(&root->delalloc_lock); 10032 list_splice_init(&root->delalloc_inodes, &splice); 10033 while (!list_empty(&splice)) { 10034 binode = list_entry(splice.next, struct btrfs_inode, 10035 delalloc_inodes); 10036 10037 list_move_tail(&binode->delalloc_inodes, 10038 &root->delalloc_inodes); 10039 inode = igrab(&binode->vfs_inode); 10040 if (!inode) { 10041 cond_resched_lock(&root->delalloc_lock); 10042 continue; 10043 } 10044 spin_unlock(&root->delalloc_lock); 10045 10046 if (snapshot) 10047 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 10048 &binode->runtime_flags); 10049 work = btrfs_alloc_delalloc_work(inode); 10050 if (!work) { 10051 iput(inode); 10052 ret = -ENOMEM; 10053 goto out; 10054 } 10055 list_add_tail(&work->list, &works); 10056 btrfs_queue_work(root->fs_info->flush_workers, 10057 &work->work); 10058 ret++; 10059 if (nr != -1 && ret >= nr) 10060 goto out; 10061 cond_resched(); 10062 spin_lock(&root->delalloc_lock); 10063 } 10064 spin_unlock(&root->delalloc_lock); 10065 10066 out: 10067 list_for_each_entry_safe(work, next, &works, list) { 10068 list_del_init(&work->list); 10069 wait_for_completion(&work->completion); 10070 kfree(work); 10071 } 10072 10073 if (!list_empty(&splice)) { 10074 spin_lock(&root->delalloc_lock); 10075 list_splice_tail(&splice, &root->delalloc_inodes); 10076 spin_unlock(&root->delalloc_lock); 10077 } 10078 mutex_unlock(&root->delalloc_mutex); 10079 return ret; 10080 } 10081 10082 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 10083 { 10084 struct btrfs_fs_info *fs_info = root->fs_info; 10085 int ret; 10086 10087 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10088 return -EROFS; 10089 10090 ret = start_delalloc_inodes(root, -1, true); 10091 if (ret > 0) 10092 ret = 0; 10093 return ret; 10094 } 10095 10096 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 10097 { 10098 struct btrfs_root *root; 10099 struct list_head splice; 10100 int ret; 10101 10102 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10103 return -EROFS; 10104 10105 INIT_LIST_HEAD(&splice); 10106 10107 mutex_lock(&fs_info->delalloc_root_mutex); 10108 spin_lock(&fs_info->delalloc_root_lock); 10109 list_splice_init(&fs_info->delalloc_roots, &splice); 10110 while (!list_empty(&splice) && nr) { 10111 root = list_first_entry(&splice, struct btrfs_root, 10112 delalloc_root); 10113 root = btrfs_grab_fs_root(root); 10114 BUG_ON(!root); 10115 list_move_tail(&root->delalloc_root, 10116 &fs_info->delalloc_roots); 10117 spin_unlock(&fs_info->delalloc_root_lock); 10118 10119 ret = start_delalloc_inodes(root, nr, false); 10120 btrfs_put_fs_root(root); 10121 if (ret < 0) 10122 goto out; 10123 10124 if (nr != -1) { 10125 nr -= ret; 10126 WARN_ON(nr < 0); 10127 } 10128 spin_lock(&fs_info->delalloc_root_lock); 10129 } 10130 spin_unlock(&fs_info->delalloc_root_lock); 10131 10132 ret = 0; 10133 out: 10134 if (!list_empty(&splice)) { 10135 spin_lock(&fs_info->delalloc_root_lock); 10136 list_splice_tail(&splice, &fs_info->delalloc_roots); 10137 spin_unlock(&fs_info->delalloc_root_lock); 10138 } 10139 mutex_unlock(&fs_info->delalloc_root_mutex); 10140 return ret; 10141 } 10142 10143 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10144 const char *symname) 10145 { 10146 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10147 struct btrfs_trans_handle *trans; 10148 struct btrfs_root *root = BTRFS_I(dir)->root; 10149 struct btrfs_path *path; 10150 struct btrfs_key key; 10151 struct inode *inode = NULL; 10152 int err; 10153 u64 objectid; 10154 u64 index = 0; 10155 int name_len; 10156 int datasize; 10157 unsigned long ptr; 10158 struct btrfs_file_extent_item *ei; 10159 struct extent_buffer *leaf; 10160 10161 name_len = strlen(symname); 10162 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10163 return -ENAMETOOLONG; 10164 10165 /* 10166 * 2 items for inode item and ref 10167 * 2 items for dir items 10168 * 1 item for updating parent inode item 10169 * 1 item for the inline extent item 10170 * 1 item for xattr if selinux is on 10171 */ 10172 trans = btrfs_start_transaction(root, 7); 10173 if (IS_ERR(trans)) 10174 return PTR_ERR(trans); 10175 10176 err = btrfs_find_free_ino(root, &objectid); 10177 if (err) 10178 goto out_unlock; 10179 10180 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10181 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10182 objectid, S_IFLNK|S_IRWXUGO, &index); 10183 if (IS_ERR(inode)) { 10184 err = PTR_ERR(inode); 10185 inode = NULL; 10186 goto out_unlock; 10187 } 10188 10189 /* 10190 * If the active LSM wants to access the inode during 10191 * d_instantiate it needs these. Smack checks to see 10192 * if the filesystem supports xattrs by looking at the 10193 * ops vector. 10194 */ 10195 inode->i_fop = &btrfs_file_operations; 10196 inode->i_op = &btrfs_file_inode_operations; 10197 inode->i_mapping->a_ops = &btrfs_aops; 10198 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10199 10200 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10201 if (err) 10202 goto out_unlock; 10203 10204 path = btrfs_alloc_path(); 10205 if (!path) { 10206 err = -ENOMEM; 10207 goto out_unlock; 10208 } 10209 key.objectid = btrfs_ino(BTRFS_I(inode)); 10210 key.offset = 0; 10211 key.type = BTRFS_EXTENT_DATA_KEY; 10212 datasize = btrfs_file_extent_calc_inline_size(name_len); 10213 err = btrfs_insert_empty_item(trans, root, path, &key, 10214 datasize); 10215 if (err) { 10216 btrfs_free_path(path); 10217 goto out_unlock; 10218 } 10219 leaf = path->nodes[0]; 10220 ei = btrfs_item_ptr(leaf, path->slots[0], 10221 struct btrfs_file_extent_item); 10222 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10223 btrfs_set_file_extent_type(leaf, ei, 10224 BTRFS_FILE_EXTENT_INLINE); 10225 btrfs_set_file_extent_encryption(leaf, ei, 0); 10226 btrfs_set_file_extent_compression(leaf, ei, 0); 10227 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10228 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10229 10230 ptr = btrfs_file_extent_inline_start(ei); 10231 write_extent_buffer(leaf, symname, ptr, name_len); 10232 btrfs_mark_buffer_dirty(leaf); 10233 btrfs_free_path(path); 10234 10235 inode->i_op = &btrfs_symlink_inode_operations; 10236 inode_nohighmem(inode); 10237 inode_set_bytes(inode, name_len); 10238 btrfs_i_size_write(BTRFS_I(inode), name_len); 10239 err = btrfs_update_inode(trans, root, inode); 10240 /* 10241 * Last step, add directory indexes for our symlink inode. This is the 10242 * last step to avoid extra cleanup of these indexes if an error happens 10243 * elsewhere above. 10244 */ 10245 if (!err) 10246 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10247 BTRFS_I(inode), 0, index); 10248 if (err) 10249 goto out_unlock; 10250 10251 d_instantiate_new(dentry, inode); 10252 10253 out_unlock: 10254 btrfs_end_transaction(trans); 10255 if (err && inode) { 10256 inode_dec_link_count(inode); 10257 discard_new_inode(inode); 10258 } 10259 btrfs_btree_balance_dirty(fs_info); 10260 return err; 10261 } 10262 10263 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10264 u64 start, u64 num_bytes, u64 min_size, 10265 loff_t actual_len, u64 *alloc_hint, 10266 struct btrfs_trans_handle *trans) 10267 { 10268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10269 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10270 struct extent_map *em; 10271 struct btrfs_root *root = BTRFS_I(inode)->root; 10272 struct btrfs_key ins; 10273 u64 cur_offset = start; 10274 u64 i_size; 10275 u64 cur_bytes; 10276 u64 last_alloc = (u64)-1; 10277 int ret = 0; 10278 bool own_trans = true; 10279 u64 end = start + num_bytes - 1; 10280 10281 if (trans) 10282 own_trans = false; 10283 while (num_bytes > 0) { 10284 if (own_trans) { 10285 trans = btrfs_start_transaction(root, 3); 10286 if (IS_ERR(trans)) { 10287 ret = PTR_ERR(trans); 10288 break; 10289 } 10290 } 10291 10292 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10293 cur_bytes = max(cur_bytes, min_size); 10294 /* 10295 * If we are severely fragmented we could end up with really 10296 * small allocations, so if the allocator is returning small 10297 * chunks lets make its job easier by only searching for those 10298 * sized chunks. 10299 */ 10300 cur_bytes = min(cur_bytes, last_alloc); 10301 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10302 min_size, 0, *alloc_hint, &ins, 1, 0); 10303 if (ret) { 10304 if (own_trans) 10305 btrfs_end_transaction(trans); 10306 break; 10307 } 10308 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10309 10310 last_alloc = ins.offset; 10311 ret = insert_reserved_file_extent(trans, inode, 10312 cur_offset, ins.objectid, 10313 ins.offset, ins.offset, 10314 ins.offset, 0, 0, 0, 10315 BTRFS_FILE_EXTENT_PREALLOC); 10316 if (ret) { 10317 btrfs_free_reserved_extent(fs_info, ins.objectid, 10318 ins.offset, 0); 10319 btrfs_abort_transaction(trans, ret); 10320 if (own_trans) 10321 btrfs_end_transaction(trans); 10322 break; 10323 } 10324 10325 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10326 cur_offset + ins.offset -1, 0); 10327 10328 em = alloc_extent_map(); 10329 if (!em) { 10330 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10331 &BTRFS_I(inode)->runtime_flags); 10332 goto next; 10333 } 10334 10335 em->start = cur_offset; 10336 em->orig_start = cur_offset; 10337 em->len = ins.offset; 10338 em->block_start = ins.objectid; 10339 em->block_len = ins.offset; 10340 em->orig_block_len = ins.offset; 10341 em->ram_bytes = ins.offset; 10342 em->bdev = fs_info->fs_devices->latest_bdev; 10343 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10344 em->generation = trans->transid; 10345 10346 while (1) { 10347 write_lock(&em_tree->lock); 10348 ret = add_extent_mapping(em_tree, em, 1); 10349 write_unlock(&em_tree->lock); 10350 if (ret != -EEXIST) 10351 break; 10352 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10353 cur_offset + ins.offset - 1, 10354 0); 10355 } 10356 free_extent_map(em); 10357 next: 10358 num_bytes -= ins.offset; 10359 cur_offset += ins.offset; 10360 *alloc_hint = ins.objectid + ins.offset; 10361 10362 inode_inc_iversion(inode); 10363 inode->i_ctime = current_time(inode); 10364 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10365 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10366 (actual_len > inode->i_size) && 10367 (cur_offset > inode->i_size)) { 10368 if (cur_offset > actual_len) 10369 i_size = actual_len; 10370 else 10371 i_size = cur_offset; 10372 i_size_write(inode, i_size); 10373 btrfs_ordered_update_i_size(inode, i_size, NULL); 10374 } 10375 10376 ret = btrfs_update_inode(trans, root, inode); 10377 10378 if (ret) { 10379 btrfs_abort_transaction(trans, ret); 10380 if (own_trans) 10381 btrfs_end_transaction(trans); 10382 break; 10383 } 10384 10385 if (own_trans) 10386 btrfs_end_transaction(trans); 10387 } 10388 if (cur_offset < end) 10389 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10390 end - cur_offset + 1); 10391 return ret; 10392 } 10393 10394 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10395 u64 start, u64 num_bytes, u64 min_size, 10396 loff_t actual_len, u64 *alloc_hint) 10397 { 10398 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10399 min_size, actual_len, alloc_hint, 10400 NULL); 10401 } 10402 10403 int btrfs_prealloc_file_range_trans(struct inode *inode, 10404 struct btrfs_trans_handle *trans, int mode, 10405 u64 start, u64 num_bytes, u64 min_size, 10406 loff_t actual_len, u64 *alloc_hint) 10407 { 10408 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10409 min_size, actual_len, alloc_hint, trans); 10410 } 10411 10412 static int btrfs_set_page_dirty(struct page *page) 10413 { 10414 return __set_page_dirty_nobuffers(page); 10415 } 10416 10417 static int btrfs_permission(struct inode *inode, int mask) 10418 { 10419 struct btrfs_root *root = BTRFS_I(inode)->root; 10420 umode_t mode = inode->i_mode; 10421 10422 if (mask & MAY_WRITE && 10423 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10424 if (btrfs_root_readonly(root)) 10425 return -EROFS; 10426 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10427 return -EACCES; 10428 } 10429 return generic_permission(inode, mask); 10430 } 10431 10432 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10433 { 10434 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10435 struct btrfs_trans_handle *trans; 10436 struct btrfs_root *root = BTRFS_I(dir)->root; 10437 struct inode *inode = NULL; 10438 u64 objectid; 10439 u64 index; 10440 int ret = 0; 10441 10442 /* 10443 * 5 units required for adding orphan entry 10444 */ 10445 trans = btrfs_start_transaction(root, 5); 10446 if (IS_ERR(trans)) 10447 return PTR_ERR(trans); 10448 10449 ret = btrfs_find_free_ino(root, &objectid); 10450 if (ret) 10451 goto out; 10452 10453 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10454 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10455 if (IS_ERR(inode)) { 10456 ret = PTR_ERR(inode); 10457 inode = NULL; 10458 goto out; 10459 } 10460 10461 inode->i_fop = &btrfs_file_operations; 10462 inode->i_op = &btrfs_file_inode_operations; 10463 10464 inode->i_mapping->a_ops = &btrfs_aops; 10465 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10466 10467 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10468 if (ret) 10469 goto out; 10470 10471 ret = btrfs_update_inode(trans, root, inode); 10472 if (ret) 10473 goto out; 10474 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10475 if (ret) 10476 goto out; 10477 10478 /* 10479 * We set number of links to 0 in btrfs_new_inode(), and here we set 10480 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10481 * through: 10482 * 10483 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10484 */ 10485 set_nlink(inode, 1); 10486 d_tmpfile(dentry, inode); 10487 unlock_new_inode(inode); 10488 mark_inode_dirty(inode); 10489 out: 10490 btrfs_end_transaction(trans); 10491 if (ret && inode) 10492 discard_new_inode(inode); 10493 btrfs_btree_balance_dirty(fs_info); 10494 return ret; 10495 } 10496 10497 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10498 { 10499 struct inode *inode = tree->private_data; 10500 unsigned long index = start >> PAGE_SHIFT; 10501 unsigned long end_index = end >> PAGE_SHIFT; 10502 struct page *page; 10503 10504 while (index <= end_index) { 10505 page = find_get_page(inode->i_mapping, index); 10506 ASSERT(page); /* Pages should be in the extent_io_tree */ 10507 set_page_writeback(page); 10508 put_page(page); 10509 index++; 10510 } 10511 } 10512 10513 #ifdef CONFIG_SWAP 10514 /* 10515 * Add an entry indicating a block group or device which is pinned by a 10516 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10517 * negative errno on failure. 10518 */ 10519 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10520 bool is_block_group) 10521 { 10522 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10523 struct btrfs_swapfile_pin *sp, *entry; 10524 struct rb_node **p; 10525 struct rb_node *parent = NULL; 10526 10527 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10528 if (!sp) 10529 return -ENOMEM; 10530 sp->ptr = ptr; 10531 sp->inode = inode; 10532 sp->is_block_group = is_block_group; 10533 10534 spin_lock(&fs_info->swapfile_pins_lock); 10535 p = &fs_info->swapfile_pins.rb_node; 10536 while (*p) { 10537 parent = *p; 10538 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10539 if (sp->ptr < entry->ptr || 10540 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10541 p = &(*p)->rb_left; 10542 } else if (sp->ptr > entry->ptr || 10543 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10544 p = &(*p)->rb_right; 10545 } else { 10546 spin_unlock(&fs_info->swapfile_pins_lock); 10547 kfree(sp); 10548 return 1; 10549 } 10550 } 10551 rb_link_node(&sp->node, parent, p); 10552 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10553 spin_unlock(&fs_info->swapfile_pins_lock); 10554 return 0; 10555 } 10556 10557 /* Free all of the entries pinned by this swapfile. */ 10558 static void btrfs_free_swapfile_pins(struct inode *inode) 10559 { 10560 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10561 struct btrfs_swapfile_pin *sp; 10562 struct rb_node *node, *next; 10563 10564 spin_lock(&fs_info->swapfile_pins_lock); 10565 node = rb_first(&fs_info->swapfile_pins); 10566 while (node) { 10567 next = rb_next(node); 10568 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10569 if (sp->inode == inode) { 10570 rb_erase(&sp->node, &fs_info->swapfile_pins); 10571 if (sp->is_block_group) 10572 btrfs_put_block_group(sp->ptr); 10573 kfree(sp); 10574 } 10575 node = next; 10576 } 10577 spin_unlock(&fs_info->swapfile_pins_lock); 10578 } 10579 10580 struct btrfs_swap_info { 10581 u64 start; 10582 u64 block_start; 10583 u64 block_len; 10584 u64 lowest_ppage; 10585 u64 highest_ppage; 10586 unsigned long nr_pages; 10587 int nr_extents; 10588 }; 10589 10590 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10591 struct btrfs_swap_info *bsi) 10592 { 10593 unsigned long nr_pages; 10594 u64 first_ppage, first_ppage_reported, next_ppage; 10595 int ret; 10596 10597 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10598 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10599 PAGE_SIZE) >> PAGE_SHIFT; 10600 10601 if (first_ppage >= next_ppage) 10602 return 0; 10603 nr_pages = next_ppage - first_ppage; 10604 10605 first_ppage_reported = first_ppage; 10606 if (bsi->start == 0) 10607 first_ppage_reported++; 10608 if (bsi->lowest_ppage > first_ppage_reported) 10609 bsi->lowest_ppage = first_ppage_reported; 10610 if (bsi->highest_ppage < (next_ppage - 1)) 10611 bsi->highest_ppage = next_ppage - 1; 10612 10613 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10614 if (ret < 0) 10615 return ret; 10616 bsi->nr_extents += ret; 10617 bsi->nr_pages += nr_pages; 10618 return 0; 10619 } 10620 10621 static void btrfs_swap_deactivate(struct file *file) 10622 { 10623 struct inode *inode = file_inode(file); 10624 10625 btrfs_free_swapfile_pins(inode); 10626 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10627 } 10628 10629 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10630 sector_t *span) 10631 { 10632 struct inode *inode = file_inode(file); 10633 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10634 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10635 struct extent_state *cached_state = NULL; 10636 struct extent_map *em = NULL; 10637 struct btrfs_device *device = NULL; 10638 struct btrfs_swap_info bsi = { 10639 .lowest_ppage = (sector_t)-1ULL, 10640 }; 10641 int ret = 0; 10642 u64 isize; 10643 u64 start; 10644 10645 /* 10646 * If the swap file was just created, make sure delalloc is done. If the 10647 * file changes again after this, the user is doing something stupid and 10648 * we don't really care. 10649 */ 10650 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10651 if (ret) 10652 return ret; 10653 10654 /* 10655 * The inode is locked, so these flags won't change after we check them. 10656 */ 10657 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10658 btrfs_warn(fs_info, "swapfile must not be compressed"); 10659 return -EINVAL; 10660 } 10661 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10662 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10663 return -EINVAL; 10664 } 10665 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10666 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10667 return -EINVAL; 10668 } 10669 10670 /* 10671 * Balance or device remove/replace/resize can move stuff around from 10672 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10673 * concurrently while we are mapping the swap extents, and 10674 * fs_info->swapfile_pins prevents them from running while the swap file 10675 * is active and moving the extents. Note that this also prevents a 10676 * concurrent device add which isn't actually necessary, but it's not 10677 * really worth the trouble to allow it. 10678 */ 10679 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10680 btrfs_warn(fs_info, 10681 "cannot activate swapfile while exclusive operation is running"); 10682 return -EBUSY; 10683 } 10684 /* 10685 * Snapshots can create extents which require COW even if NODATACOW is 10686 * set. We use this counter to prevent snapshots. We must increment it 10687 * before walking the extents because we don't want a concurrent 10688 * snapshot to run after we've already checked the extents. 10689 */ 10690 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10691 10692 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10693 10694 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10695 start = 0; 10696 while (start < isize) { 10697 u64 logical_block_start, physical_block_start; 10698 struct btrfs_block_group_cache *bg; 10699 u64 len = isize - start; 10700 10701 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 10702 if (IS_ERR(em)) { 10703 ret = PTR_ERR(em); 10704 goto out; 10705 } 10706 10707 if (em->block_start == EXTENT_MAP_HOLE) { 10708 btrfs_warn(fs_info, "swapfile must not have holes"); 10709 ret = -EINVAL; 10710 goto out; 10711 } 10712 if (em->block_start == EXTENT_MAP_INLINE) { 10713 /* 10714 * It's unlikely we'll ever actually find ourselves 10715 * here, as a file small enough to fit inline won't be 10716 * big enough to store more than the swap header, but in 10717 * case something changes in the future, let's catch it 10718 * here rather than later. 10719 */ 10720 btrfs_warn(fs_info, "swapfile must not be inline"); 10721 ret = -EINVAL; 10722 goto out; 10723 } 10724 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10725 btrfs_warn(fs_info, "swapfile must not be compressed"); 10726 ret = -EINVAL; 10727 goto out; 10728 } 10729 10730 logical_block_start = em->block_start + (start - em->start); 10731 len = min(len, em->len - (start - em->start)); 10732 free_extent_map(em); 10733 em = NULL; 10734 10735 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10736 if (ret < 0) { 10737 goto out; 10738 } else if (ret) { 10739 ret = 0; 10740 } else { 10741 btrfs_warn(fs_info, 10742 "swapfile must not be copy-on-write"); 10743 ret = -EINVAL; 10744 goto out; 10745 } 10746 10747 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10748 if (IS_ERR(em)) { 10749 ret = PTR_ERR(em); 10750 goto out; 10751 } 10752 10753 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10754 btrfs_warn(fs_info, 10755 "swapfile must have single data profile"); 10756 ret = -EINVAL; 10757 goto out; 10758 } 10759 10760 if (device == NULL) { 10761 device = em->map_lookup->stripes[0].dev; 10762 ret = btrfs_add_swapfile_pin(inode, device, false); 10763 if (ret == 1) 10764 ret = 0; 10765 else if (ret) 10766 goto out; 10767 } else if (device != em->map_lookup->stripes[0].dev) { 10768 btrfs_warn(fs_info, "swapfile must be on one device"); 10769 ret = -EINVAL; 10770 goto out; 10771 } 10772 10773 physical_block_start = (em->map_lookup->stripes[0].physical + 10774 (logical_block_start - em->start)); 10775 len = min(len, em->len - (logical_block_start - em->start)); 10776 free_extent_map(em); 10777 em = NULL; 10778 10779 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10780 if (!bg) { 10781 btrfs_warn(fs_info, 10782 "could not find block group containing swapfile"); 10783 ret = -EINVAL; 10784 goto out; 10785 } 10786 10787 ret = btrfs_add_swapfile_pin(inode, bg, true); 10788 if (ret) { 10789 btrfs_put_block_group(bg); 10790 if (ret == 1) 10791 ret = 0; 10792 else 10793 goto out; 10794 } 10795 10796 if (bsi.block_len && 10797 bsi.block_start + bsi.block_len == physical_block_start) { 10798 bsi.block_len += len; 10799 } else { 10800 if (bsi.block_len) { 10801 ret = btrfs_add_swap_extent(sis, &bsi); 10802 if (ret) 10803 goto out; 10804 } 10805 bsi.start = start; 10806 bsi.block_start = physical_block_start; 10807 bsi.block_len = len; 10808 } 10809 10810 start += len; 10811 } 10812 10813 if (bsi.block_len) 10814 ret = btrfs_add_swap_extent(sis, &bsi); 10815 10816 out: 10817 if (!IS_ERR_OR_NULL(em)) 10818 free_extent_map(em); 10819 10820 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10821 10822 if (ret) 10823 btrfs_swap_deactivate(file); 10824 10825 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10826 10827 if (ret) 10828 return ret; 10829 10830 if (device) 10831 sis->bdev = device->bdev; 10832 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10833 sis->max = bsi.nr_pages; 10834 sis->pages = bsi.nr_pages - 1; 10835 sis->highest_bit = bsi.nr_pages - 1; 10836 return bsi.nr_extents; 10837 } 10838 #else 10839 static void btrfs_swap_deactivate(struct file *file) 10840 { 10841 } 10842 10843 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10844 sector_t *span) 10845 { 10846 return -EOPNOTSUPP; 10847 } 10848 #endif 10849 10850 static const struct inode_operations btrfs_dir_inode_operations = { 10851 .getattr = btrfs_getattr, 10852 .lookup = btrfs_lookup, 10853 .create = btrfs_create, 10854 .unlink = btrfs_unlink, 10855 .link = btrfs_link, 10856 .mkdir = btrfs_mkdir, 10857 .rmdir = btrfs_rmdir, 10858 .rename = btrfs_rename2, 10859 .symlink = btrfs_symlink, 10860 .setattr = btrfs_setattr, 10861 .mknod = btrfs_mknod, 10862 .listxattr = btrfs_listxattr, 10863 .permission = btrfs_permission, 10864 .get_acl = btrfs_get_acl, 10865 .set_acl = btrfs_set_acl, 10866 .update_time = btrfs_update_time, 10867 .tmpfile = btrfs_tmpfile, 10868 }; 10869 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10870 .lookup = btrfs_lookup, 10871 .permission = btrfs_permission, 10872 .update_time = btrfs_update_time, 10873 }; 10874 10875 static const struct file_operations btrfs_dir_file_operations = { 10876 .llseek = generic_file_llseek, 10877 .read = generic_read_dir, 10878 .iterate_shared = btrfs_real_readdir, 10879 .open = btrfs_opendir, 10880 .unlocked_ioctl = btrfs_ioctl, 10881 #ifdef CONFIG_COMPAT 10882 .compat_ioctl = btrfs_compat_ioctl, 10883 #endif 10884 .release = btrfs_release_file, 10885 .fsync = btrfs_sync_file, 10886 }; 10887 10888 static const struct extent_io_ops btrfs_extent_io_ops = { 10889 /* mandatory callbacks */ 10890 .submit_bio_hook = btrfs_submit_bio_hook, 10891 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10892 }; 10893 10894 /* 10895 * btrfs doesn't support the bmap operation because swapfiles 10896 * use bmap to make a mapping of extents in the file. They assume 10897 * these extents won't change over the life of the file and they 10898 * use the bmap result to do IO directly to the drive. 10899 * 10900 * the btrfs bmap call would return logical addresses that aren't 10901 * suitable for IO and they also will change frequently as COW 10902 * operations happen. So, swapfile + btrfs == corruption. 10903 * 10904 * For now we're avoiding this by dropping bmap. 10905 */ 10906 static const struct address_space_operations btrfs_aops = { 10907 .readpage = btrfs_readpage, 10908 .writepage = btrfs_writepage, 10909 .writepages = btrfs_writepages, 10910 .readpages = btrfs_readpages, 10911 .direct_IO = btrfs_direct_IO, 10912 .invalidatepage = btrfs_invalidatepage, 10913 .releasepage = btrfs_releasepage, 10914 .set_page_dirty = btrfs_set_page_dirty, 10915 .error_remove_page = generic_error_remove_page, 10916 .swap_activate = btrfs_swap_activate, 10917 .swap_deactivate = btrfs_swap_deactivate, 10918 }; 10919 10920 static const struct inode_operations btrfs_file_inode_operations = { 10921 .getattr = btrfs_getattr, 10922 .setattr = btrfs_setattr, 10923 .listxattr = btrfs_listxattr, 10924 .permission = btrfs_permission, 10925 .fiemap = btrfs_fiemap, 10926 .get_acl = btrfs_get_acl, 10927 .set_acl = btrfs_set_acl, 10928 .update_time = btrfs_update_time, 10929 }; 10930 static const struct inode_operations btrfs_special_inode_operations = { 10931 .getattr = btrfs_getattr, 10932 .setattr = btrfs_setattr, 10933 .permission = btrfs_permission, 10934 .listxattr = btrfs_listxattr, 10935 .get_acl = btrfs_get_acl, 10936 .set_acl = btrfs_set_acl, 10937 .update_time = btrfs_update_time, 10938 }; 10939 static const struct inode_operations btrfs_symlink_inode_operations = { 10940 .get_link = page_get_link, 10941 .getattr = btrfs_getattr, 10942 .setattr = btrfs_setattr, 10943 .permission = btrfs_permission, 10944 .listxattr = btrfs_listxattr, 10945 .update_time = btrfs_update_time, 10946 }; 10947 10948 const struct dentry_operations btrfs_dentry_operations = { 10949 .d_delete = btrfs_dentry_delete, 10950 }; 10951