1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include "compat.h" 41 #include "ctree.h" 42 #include "disk-io.h" 43 #include "transaction.h" 44 #include "btrfs_inode.h" 45 #include "ioctl.h" 46 #include "print-tree.h" 47 #include "volumes.h" 48 #include "ordered-data.h" 49 #include "xattr.h" 50 #include "tree-log.h" 51 #include "compression.h" 52 #include "locking.h" 53 54 struct btrfs_iget_args { 55 u64 ino; 56 struct btrfs_root *root; 57 }; 58 59 static const struct inode_operations btrfs_dir_inode_operations; 60 static const struct inode_operations btrfs_symlink_inode_operations; 61 static const struct inode_operations btrfs_dir_ro_inode_operations; 62 static const struct inode_operations btrfs_special_inode_operations; 63 static const struct inode_operations btrfs_file_inode_operations; 64 static const struct address_space_operations btrfs_aops; 65 static const struct address_space_operations btrfs_symlink_aops; 66 static const struct file_operations btrfs_dir_file_operations; 67 static struct extent_io_ops btrfs_extent_io_ops; 68 69 static struct kmem_cache *btrfs_inode_cachep; 70 struct kmem_cache *btrfs_trans_handle_cachep; 71 struct kmem_cache *btrfs_transaction_cachep; 72 struct kmem_cache *btrfs_path_cachep; 73 74 #define S_SHIFT 12 75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 83 }; 84 85 static void btrfs_truncate(struct inode *inode); 86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 87 static noinline int cow_file_range(struct inode *inode, 88 struct page *locked_page, 89 u64 start, u64 end, int *page_started, 90 unsigned long *nr_written, int unlock); 91 92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 93 struct inode *inode, struct inode *dir, 94 const struct qstr *qstr) 95 { 96 int err; 97 98 err = btrfs_init_acl(trans, inode, dir); 99 if (!err) 100 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 101 return err; 102 } 103 104 /* 105 * this does all the hard work for inserting an inline extent into 106 * the btree. The caller should have done a btrfs_drop_extents so that 107 * no overlapping inline items exist in the btree 108 */ 109 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 110 struct btrfs_root *root, struct inode *inode, 111 u64 start, size_t size, size_t compressed_size, 112 struct page **compressed_pages) 113 { 114 struct btrfs_key key; 115 struct btrfs_path *path; 116 struct extent_buffer *leaf; 117 struct page *page = NULL; 118 char *kaddr; 119 unsigned long ptr; 120 struct btrfs_file_extent_item *ei; 121 int err = 0; 122 int ret; 123 size_t cur_size = size; 124 size_t datasize; 125 unsigned long offset; 126 int compress_type = BTRFS_COMPRESS_NONE; 127 128 if (compressed_size && compressed_pages) { 129 compress_type = root->fs_info->compress_type; 130 cur_size = compressed_size; 131 } 132 133 path = btrfs_alloc_path(); 134 if (!path) 135 return -ENOMEM; 136 137 path->leave_spinning = 1; 138 btrfs_set_trans_block_group(trans, inode); 139 140 key.objectid = inode->i_ino; 141 key.offset = start; 142 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 143 datasize = btrfs_file_extent_calc_inline_size(cur_size); 144 145 inode_add_bytes(inode, size); 146 ret = btrfs_insert_empty_item(trans, root, path, &key, 147 datasize); 148 BUG_ON(ret); 149 if (ret) { 150 err = ret; 151 goto fail; 152 } 153 leaf = path->nodes[0]; 154 ei = btrfs_item_ptr(leaf, path->slots[0], 155 struct btrfs_file_extent_item); 156 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 157 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 158 btrfs_set_file_extent_encryption(leaf, ei, 0); 159 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 160 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 161 ptr = btrfs_file_extent_inline_start(ei); 162 163 if (compress_type != BTRFS_COMPRESS_NONE) { 164 struct page *cpage; 165 int i = 0; 166 while (compressed_size > 0) { 167 cpage = compressed_pages[i]; 168 cur_size = min_t(unsigned long, compressed_size, 169 PAGE_CACHE_SIZE); 170 171 kaddr = kmap_atomic(cpage, KM_USER0); 172 write_extent_buffer(leaf, kaddr, ptr, cur_size); 173 kunmap_atomic(kaddr, KM_USER0); 174 175 i++; 176 ptr += cur_size; 177 compressed_size -= cur_size; 178 } 179 btrfs_set_file_extent_compression(leaf, ei, 180 compress_type); 181 } else { 182 page = find_get_page(inode->i_mapping, 183 start >> PAGE_CACHE_SHIFT); 184 btrfs_set_file_extent_compression(leaf, ei, 0); 185 kaddr = kmap_atomic(page, KM_USER0); 186 offset = start & (PAGE_CACHE_SIZE - 1); 187 write_extent_buffer(leaf, kaddr + offset, ptr, size); 188 kunmap_atomic(kaddr, KM_USER0); 189 page_cache_release(page); 190 } 191 btrfs_mark_buffer_dirty(leaf); 192 btrfs_free_path(path); 193 194 /* 195 * we're an inline extent, so nobody can 196 * extend the file past i_size without locking 197 * a page we already have locked. 198 * 199 * We must do any isize and inode updates 200 * before we unlock the pages. Otherwise we 201 * could end up racing with unlink. 202 */ 203 BTRFS_I(inode)->disk_i_size = inode->i_size; 204 btrfs_update_inode(trans, root, inode); 205 206 return 0; 207 fail: 208 btrfs_free_path(path); 209 return err; 210 } 211 212 213 /* 214 * conditionally insert an inline extent into the file. This 215 * does the checks required to make sure the data is small enough 216 * to fit as an inline extent. 217 */ 218 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 219 struct btrfs_root *root, 220 struct inode *inode, u64 start, u64 end, 221 size_t compressed_size, 222 struct page **compressed_pages) 223 { 224 u64 isize = i_size_read(inode); 225 u64 actual_end = min(end + 1, isize); 226 u64 inline_len = actual_end - start; 227 u64 aligned_end = (end + root->sectorsize - 1) & 228 ~((u64)root->sectorsize - 1); 229 u64 hint_byte; 230 u64 data_len = inline_len; 231 int ret; 232 233 if (compressed_size) 234 data_len = compressed_size; 235 236 if (start > 0 || 237 actual_end >= PAGE_CACHE_SIZE || 238 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 239 (!compressed_size && 240 (actual_end & (root->sectorsize - 1)) == 0) || 241 end + 1 < isize || 242 data_len > root->fs_info->max_inline) { 243 return 1; 244 } 245 246 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 247 &hint_byte, 1); 248 BUG_ON(ret); 249 250 if (isize > actual_end) 251 inline_len = min_t(u64, isize, actual_end); 252 ret = insert_inline_extent(trans, root, inode, start, 253 inline_len, compressed_size, 254 compressed_pages); 255 BUG_ON(ret); 256 btrfs_delalloc_release_metadata(inode, end + 1 - start); 257 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 258 return 0; 259 } 260 261 struct async_extent { 262 u64 start; 263 u64 ram_size; 264 u64 compressed_size; 265 struct page **pages; 266 unsigned long nr_pages; 267 int compress_type; 268 struct list_head list; 269 }; 270 271 struct async_cow { 272 struct inode *inode; 273 struct btrfs_root *root; 274 struct page *locked_page; 275 u64 start; 276 u64 end; 277 struct list_head extents; 278 struct btrfs_work work; 279 }; 280 281 static noinline int add_async_extent(struct async_cow *cow, 282 u64 start, u64 ram_size, 283 u64 compressed_size, 284 struct page **pages, 285 unsigned long nr_pages, 286 int compress_type) 287 { 288 struct async_extent *async_extent; 289 290 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 291 async_extent->start = start; 292 async_extent->ram_size = ram_size; 293 async_extent->compressed_size = compressed_size; 294 async_extent->pages = pages; 295 async_extent->nr_pages = nr_pages; 296 async_extent->compress_type = compress_type; 297 list_add_tail(&async_extent->list, &cow->extents); 298 return 0; 299 } 300 301 /* 302 * we create compressed extents in two phases. The first 303 * phase compresses a range of pages that have already been 304 * locked (both pages and state bits are locked). 305 * 306 * This is done inside an ordered work queue, and the compression 307 * is spread across many cpus. The actual IO submission is step 308 * two, and the ordered work queue takes care of making sure that 309 * happens in the same order things were put onto the queue by 310 * writepages and friends. 311 * 312 * If this code finds it can't get good compression, it puts an 313 * entry onto the work queue to write the uncompressed bytes. This 314 * makes sure that both compressed inodes and uncompressed inodes 315 * are written in the same order that pdflush sent them down. 316 */ 317 static noinline int compress_file_range(struct inode *inode, 318 struct page *locked_page, 319 u64 start, u64 end, 320 struct async_cow *async_cow, 321 int *num_added) 322 { 323 struct btrfs_root *root = BTRFS_I(inode)->root; 324 struct btrfs_trans_handle *trans; 325 u64 num_bytes; 326 u64 blocksize = root->sectorsize; 327 u64 actual_end; 328 u64 isize = i_size_read(inode); 329 int ret = 0; 330 struct page **pages = NULL; 331 unsigned long nr_pages; 332 unsigned long nr_pages_ret = 0; 333 unsigned long total_compressed = 0; 334 unsigned long total_in = 0; 335 unsigned long max_compressed = 128 * 1024; 336 unsigned long max_uncompressed = 128 * 1024; 337 int i; 338 int will_compress; 339 int compress_type = root->fs_info->compress_type; 340 341 actual_end = min_t(u64, isize, end + 1); 342 again: 343 will_compress = 0; 344 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 345 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 346 347 /* 348 * we don't want to send crud past the end of i_size through 349 * compression, that's just a waste of CPU time. So, if the 350 * end of the file is before the start of our current 351 * requested range of bytes, we bail out to the uncompressed 352 * cleanup code that can deal with all of this. 353 * 354 * It isn't really the fastest way to fix things, but this is a 355 * very uncommon corner. 356 */ 357 if (actual_end <= start) 358 goto cleanup_and_bail_uncompressed; 359 360 total_compressed = actual_end - start; 361 362 /* we want to make sure that amount of ram required to uncompress 363 * an extent is reasonable, so we limit the total size in ram 364 * of a compressed extent to 128k. This is a crucial number 365 * because it also controls how easily we can spread reads across 366 * cpus for decompression. 367 * 368 * We also want to make sure the amount of IO required to do 369 * a random read is reasonably small, so we limit the size of 370 * a compressed extent to 128k. 371 */ 372 total_compressed = min(total_compressed, max_uncompressed); 373 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 374 num_bytes = max(blocksize, num_bytes); 375 total_in = 0; 376 ret = 0; 377 378 /* 379 * we do compression for mount -o compress and when the 380 * inode has not been flagged as nocompress. This flag can 381 * change at any time if we discover bad compression ratios. 382 */ 383 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 384 (btrfs_test_opt(root, COMPRESS) || 385 (BTRFS_I(inode)->force_compress))) { 386 WARN_ON(pages); 387 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 388 389 if (BTRFS_I(inode)->force_compress) 390 compress_type = BTRFS_I(inode)->force_compress; 391 392 ret = btrfs_compress_pages(compress_type, 393 inode->i_mapping, start, 394 total_compressed, pages, 395 nr_pages, &nr_pages_ret, 396 &total_in, 397 &total_compressed, 398 max_compressed); 399 400 if (!ret) { 401 unsigned long offset = total_compressed & 402 (PAGE_CACHE_SIZE - 1); 403 struct page *page = pages[nr_pages_ret - 1]; 404 char *kaddr; 405 406 /* zero the tail end of the last page, we might be 407 * sending it down to disk 408 */ 409 if (offset) { 410 kaddr = kmap_atomic(page, KM_USER0); 411 memset(kaddr + offset, 0, 412 PAGE_CACHE_SIZE - offset); 413 kunmap_atomic(kaddr, KM_USER0); 414 } 415 will_compress = 1; 416 } 417 } 418 if (start == 0) { 419 trans = btrfs_join_transaction(root, 1); 420 BUG_ON(IS_ERR(trans)); 421 btrfs_set_trans_block_group(trans, inode); 422 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 423 424 /* lets try to make an inline extent */ 425 if (ret || total_in < (actual_end - start)) { 426 /* we didn't compress the entire range, try 427 * to make an uncompressed inline extent. 428 */ 429 ret = cow_file_range_inline(trans, root, inode, 430 start, end, 0, NULL); 431 } else { 432 /* try making a compressed inline extent */ 433 ret = cow_file_range_inline(trans, root, inode, 434 start, end, 435 total_compressed, pages); 436 } 437 if (ret == 0) { 438 /* 439 * inline extent creation worked, we don't need 440 * to create any more async work items. Unlock 441 * and free up our temp pages. 442 */ 443 extent_clear_unlock_delalloc(inode, 444 &BTRFS_I(inode)->io_tree, 445 start, end, NULL, 446 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 447 EXTENT_CLEAR_DELALLOC | 448 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 449 450 btrfs_end_transaction(trans, root); 451 goto free_pages_out; 452 } 453 btrfs_end_transaction(trans, root); 454 } 455 456 if (will_compress) { 457 /* 458 * we aren't doing an inline extent round the compressed size 459 * up to a block size boundary so the allocator does sane 460 * things 461 */ 462 total_compressed = (total_compressed + blocksize - 1) & 463 ~(blocksize - 1); 464 465 /* 466 * one last check to make sure the compression is really a 467 * win, compare the page count read with the blocks on disk 468 */ 469 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 470 ~(PAGE_CACHE_SIZE - 1); 471 if (total_compressed >= total_in) { 472 will_compress = 0; 473 } else { 474 num_bytes = total_in; 475 } 476 } 477 if (!will_compress && pages) { 478 /* 479 * the compression code ran but failed to make things smaller, 480 * free any pages it allocated and our page pointer array 481 */ 482 for (i = 0; i < nr_pages_ret; i++) { 483 WARN_ON(pages[i]->mapping); 484 page_cache_release(pages[i]); 485 } 486 kfree(pages); 487 pages = NULL; 488 total_compressed = 0; 489 nr_pages_ret = 0; 490 491 /* flag the file so we don't compress in the future */ 492 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 493 !(BTRFS_I(inode)->force_compress)) { 494 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 495 } 496 } 497 if (will_compress) { 498 *num_added += 1; 499 500 /* the async work queues will take care of doing actual 501 * allocation on disk for these compressed pages, 502 * and will submit them to the elevator. 503 */ 504 add_async_extent(async_cow, start, num_bytes, 505 total_compressed, pages, nr_pages_ret, 506 compress_type); 507 508 if (start + num_bytes < end) { 509 start += num_bytes; 510 pages = NULL; 511 cond_resched(); 512 goto again; 513 } 514 } else { 515 cleanup_and_bail_uncompressed: 516 /* 517 * No compression, but we still need to write the pages in 518 * the file we've been given so far. redirty the locked 519 * page if it corresponds to our extent and set things up 520 * for the async work queue to run cow_file_range to do 521 * the normal delalloc dance 522 */ 523 if (page_offset(locked_page) >= start && 524 page_offset(locked_page) <= end) { 525 __set_page_dirty_nobuffers(locked_page); 526 /* unlocked later on in the async handlers */ 527 } 528 add_async_extent(async_cow, start, end - start + 1, 529 0, NULL, 0, BTRFS_COMPRESS_NONE); 530 *num_added += 1; 531 } 532 533 out: 534 return 0; 535 536 free_pages_out: 537 for (i = 0; i < nr_pages_ret; i++) { 538 WARN_ON(pages[i]->mapping); 539 page_cache_release(pages[i]); 540 } 541 kfree(pages); 542 543 goto out; 544 } 545 546 /* 547 * phase two of compressed writeback. This is the ordered portion 548 * of the code, which only gets called in the order the work was 549 * queued. We walk all the async extents created by compress_file_range 550 * and send them down to the disk. 551 */ 552 static noinline int submit_compressed_extents(struct inode *inode, 553 struct async_cow *async_cow) 554 { 555 struct async_extent *async_extent; 556 u64 alloc_hint = 0; 557 struct btrfs_trans_handle *trans; 558 struct btrfs_key ins; 559 struct extent_map *em; 560 struct btrfs_root *root = BTRFS_I(inode)->root; 561 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 562 struct extent_io_tree *io_tree; 563 int ret = 0; 564 565 if (list_empty(&async_cow->extents)) 566 return 0; 567 568 569 while (!list_empty(&async_cow->extents)) { 570 async_extent = list_entry(async_cow->extents.next, 571 struct async_extent, list); 572 list_del(&async_extent->list); 573 574 io_tree = &BTRFS_I(inode)->io_tree; 575 576 retry: 577 /* did the compression code fall back to uncompressed IO? */ 578 if (!async_extent->pages) { 579 int page_started = 0; 580 unsigned long nr_written = 0; 581 582 lock_extent(io_tree, async_extent->start, 583 async_extent->start + 584 async_extent->ram_size - 1, GFP_NOFS); 585 586 /* allocate blocks */ 587 ret = cow_file_range(inode, async_cow->locked_page, 588 async_extent->start, 589 async_extent->start + 590 async_extent->ram_size - 1, 591 &page_started, &nr_written, 0); 592 593 /* 594 * if page_started, cow_file_range inserted an 595 * inline extent and took care of all the unlocking 596 * and IO for us. Otherwise, we need to submit 597 * all those pages down to the drive. 598 */ 599 if (!page_started && !ret) 600 extent_write_locked_range(io_tree, 601 inode, async_extent->start, 602 async_extent->start + 603 async_extent->ram_size - 1, 604 btrfs_get_extent, 605 WB_SYNC_ALL); 606 kfree(async_extent); 607 cond_resched(); 608 continue; 609 } 610 611 lock_extent(io_tree, async_extent->start, 612 async_extent->start + async_extent->ram_size - 1, 613 GFP_NOFS); 614 615 trans = btrfs_join_transaction(root, 1); 616 BUG_ON(IS_ERR(trans)); 617 ret = btrfs_reserve_extent(trans, root, 618 async_extent->compressed_size, 619 async_extent->compressed_size, 620 0, alloc_hint, 621 (u64)-1, &ins, 1); 622 btrfs_end_transaction(trans, root); 623 624 if (ret) { 625 int i; 626 for (i = 0; i < async_extent->nr_pages; i++) { 627 WARN_ON(async_extent->pages[i]->mapping); 628 page_cache_release(async_extent->pages[i]); 629 } 630 kfree(async_extent->pages); 631 async_extent->nr_pages = 0; 632 async_extent->pages = NULL; 633 unlock_extent(io_tree, async_extent->start, 634 async_extent->start + 635 async_extent->ram_size - 1, GFP_NOFS); 636 goto retry; 637 } 638 639 /* 640 * here we're doing allocation and writeback of the 641 * compressed pages 642 */ 643 btrfs_drop_extent_cache(inode, async_extent->start, 644 async_extent->start + 645 async_extent->ram_size - 1, 0); 646 647 em = alloc_extent_map(GFP_NOFS); 648 BUG_ON(!em); 649 em->start = async_extent->start; 650 em->len = async_extent->ram_size; 651 em->orig_start = em->start; 652 653 em->block_start = ins.objectid; 654 em->block_len = ins.offset; 655 em->bdev = root->fs_info->fs_devices->latest_bdev; 656 em->compress_type = async_extent->compress_type; 657 set_bit(EXTENT_FLAG_PINNED, &em->flags); 658 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 659 660 while (1) { 661 write_lock(&em_tree->lock); 662 ret = add_extent_mapping(em_tree, em); 663 write_unlock(&em_tree->lock); 664 if (ret != -EEXIST) { 665 free_extent_map(em); 666 break; 667 } 668 btrfs_drop_extent_cache(inode, async_extent->start, 669 async_extent->start + 670 async_extent->ram_size - 1, 0); 671 } 672 673 ret = btrfs_add_ordered_extent_compress(inode, 674 async_extent->start, 675 ins.objectid, 676 async_extent->ram_size, 677 ins.offset, 678 BTRFS_ORDERED_COMPRESSED, 679 async_extent->compress_type); 680 BUG_ON(ret); 681 682 /* 683 * clear dirty, set writeback and unlock the pages. 684 */ 685 extent_clear_unlock_delalloc(inode, 686 &BTRFS_I(inode)->io_tree, 687 async_extent->start, 688 async_extent->start + 689 async_extent->ram_size - 1, 690 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 691 EXTENT_CLEAR_UNLOCK | 692 EXTENT_CLEAR_DELALLOC | 693 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 694 695 ret = btrfs_submit_compressed_write(inode, 696 async_extent->start, 697 async_extent->ram_size, 698 ins.objectid, 699 ins.offset, async_extent->pages, 700 async_extent->nr_pages); 701 702 BUG_ON(ret); 703 alloc_hint = ins.objectid + ins.offset; 704 kfree(async_extent); 705 cond_resched(); 706 } 707 708 return 0; 709 } 710 711 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 712 u64 num_bytes) 713 { 714 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 715 struct extent_map *em; 716 u64 alloc_hint = 0; 717 718 read_lock(&em_tree->lock); 719 em = search_extent_mapping(em_tree, start, num_bytes); 720 if (em) { 721 /* 722 * if block start isn't an actual block number then find the 723 * first block in this inode and use that as a hint. If that 724 * block is also bogus then just don't worry about it. 725 */ 726 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 727 free_extent_map(em); 728 em = search_extent_mapping(em_tree, 0, 0); 729 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 730 alloc_hint = em->block_start; 731 if (em) 732 free_extent_map(em); 733 } else { 734 alloc_hint = em->block_start; 735 free_extent_map(em); 736 } 737 } 738 read_unlock(&em_tree->lock); 739 740 return alloc_hint; 741 } 742 743 /* 744 * when extent_io.c finds a delayed allocation range in the file, 745 * the call backs end up in this code. The basic idea is to 746 * allocate extents on disk for the range, and create ordered data structs 747 * in ram to track those extents. 748 * 749 * locked_page is the page that writepage had locked already. We use 750 * it to make sure we don't do extra locks or unlocks. 751 * 752 * *page_started is set to one if we unlock locked_page and do everything 753 * required to start IO on it. It may be clean and already done with 754 * IO when we return. 755 */ 756 static noinline int cow_file_range(struct inode *inode, 757 struct page *locked_page, 758 u64 start, u64 end, int *page_started, 759 unsigned long *nr_written, 760 int unlock) 761 { 762 struct btrfs_root *root = BTRFS_I(inode)->root; 763 struct btrfs_trans_handle *trans; 764 u64 alloc_hint = 0; 765 u64 num_bytes; 766 unsigned long ram_size; 767 u64 disk_num_bytes; 768 u64 cur_alloc_size; 769 u64 blocksize = root->sectorsize; 770 struct btrfs_key ins; 771 struct extent_map *em; 772 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 773 int ret = 0; 774 775 BUG_ON(root == root->fs_info->tree_root); 776 trans = btrfs_join_transaction(root, 1); 777 BUG_ON(IS_ERR(trans)); 778 btrfs_set_trans_block_group(trans, inode); 779 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 780 781 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 782 num_bytes = max(blocksize, num_bytes); 783 disk_num_bytes = num_bytes; 784 ret = 0; 785 786 if (start == 0) { 787 /* lets try to make an inline extent */ 788 ret = cow_file_range_inline(trans, root, inode, 789 start, end, 0, NULL); 790 if (ret == 0) { 791 extent_clear_unlock_delalloc(inode, 792 &BTRFS_I(inode)->io_tree, 793 start, end, NULL, 794 EXTENT_CLEAR_UNLOCK_PAGE | 795 EXTENT_CLEAR_UNLOCK | 796 EXTENT_CLEAR_DELALLOC | 797 EXTENT_CLEAR_DIRTY | 798 EXTENT_SET_WRITEBACK | 799 EXTENT_END_WRITEBACK); 800 801 *nr_written = *nr_written + 802 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 803 *page_started = 1; 804 ret = 0; 805 goto out; 806 } 807 } 808 809 BUG_ON(disk_num_bytes > 810 btrfs_super_total_bytes(&root->fs_info->super_copy)); 811 812 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 813 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 814 815 while (disk_num_bytes > 0) { 816 unsigned long op; 817 818 cur_alloc_size = disk_num_bytes; 819 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 820 root->sectorsize, 0, alloc_hint, 821 (u64)-1, &ins, 1); 822 BUG_ON(ret); 823 824 em = alloc_extent_map(GFP_NOFS); 825 BUG_ON(!em); 826 em->start = start; 827 em->orig_start = em->start; 828 ram_size = ins.offset; 829 em->len = ins.offset; 830 831 em->block_start = ins.objectid; 832 em->block_len = ins.offset; 833 em->bdev = root->fs_info->fs_devices->latest_bdev; 834 set_bit(EXTENT_FLAG_PINNED, &em->flags); 835 836 while (1) { 837 write_lock(&em_tree->lock); 838 ret = add_extent_mapping(em_tree, em); 839 write_unlock(&em_tree->lock); 840 if (ret != -EEXIST) { 841 free_extent_map(em); 842 break; 843 } 844 btrfs_drop_extent_cache(inode, start, 845 start + ram_size - 1, 0); 846 } 847 848 cur_alloc_size = ins.offset; 849 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 850 ram_size, cur_alloc_size, 0); 851 BUG_ON(ret); 852 853 if (root->root_key.objectid == 854 BTRFS_DATA_RELOC_TREE_OBJECTID) { 855 ret = btrfs_reloc_clone_csums(inode, start, 856 cur_alloc_size); 857 BUG_ON(ret); 858 } 859 860 if (disk_num_bytes < cur_alloc_size) 861 break; 862 863 /* we're not doing compressed IO, don't unlock the first 864 * page (which the caller expects to stay locked), don't 865 * clear any dirty bits and don't set any writeback bits 866 * 867 * Do set the Private2 bit so we know this page was properly 868 * setup for writepage 869 */ 870 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 871 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 872 EXTENT_SET_PRIVATE2; 873 874 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 875 start, start + ram_size - 1, 876 locked_page, op); 877 disk_num_bytes -= cur_alloc_size; 878 num_bytes -= cur_alloc_size; 879 alloc_hint = ins.objectid + ins.offset; 880 start += cur_alloc_size; 881 } 882 out: 883 ret = 0; 884 btrfs_end_transaction(trans, root); 885 886 return ret; 887 } 888 889 /* 890 * work queue call back to started compression on a file and pages 891 */ 892 static noinline void async_cow_start(struct btrfs_work *work) 893 { 894 struct async_cow *async_cow; 895 int num_added = 0; 896 async_cow = container_of(work, struct async_cow, work); 897 898 compress_file_range(async_cow->inode, async_cow->locked_page, 899 async_cow->start, async_cow->end, async_cow, 900 &num_added); 901 if (num_added == 0) 902 async_cow->inode = NULL; 903 } 904 905 /* 906 * work queue call back to submit previously compressed pages 907 */ 908 static noinline void async_cow_submit(struct btrfs_work *work) 909 { 910 struct async_cow *async_cow; 911 struct btrfs_root *root; 912 unsigned long nr_pages; 913 914 async_cow = container_of(work, struct async_cow, work); 915 916 root = async_cow->root; 917 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 918 PAGE_CACHE_SHIFT; 919 920 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 921 922 if (atomic_read(&root->fs_info->async_delalloc_pages) < 923 5 * 1042 * 1024 && 924 waitqueue_active(&root->fs_info->async_submit_wait)) 925 wake_up(&root->fs_info->async_submit_wait); 926 927 if (async_cow->inode) 928 submit_compressed_extents(async_cow->inode, async_cow); 929 } 930 931 static noinline void async_cow_free(struct btrfs_work *work) 932 { 933 struct async_cow *async_cow; 934 async_cow = container_of(work, struct async_cow, work); 935 kfree(async_cow); 936 } 937 938 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 939 u64 start, u64 end, int *page_started, 940 unsigned long *nr_written) 941 { 942 struct async_cow *async_cow; 943 struct btrfs_root *root = BTRFS_I(inode)->root; 944 unsigned long nr_pages; 945 u64 cur_end; 946 int limit = 10 * 1024 * 1042; 947 948 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 949 1, 0, NULL, GFP_NOFS); 950 while (start < end) { 951 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 952 async_cow->inode = inode; 953 async_cow->root = root; 954 async_cow->locked_page = locked_page; 955 async_cow->start = start; 956 957 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 958 cur_end = end; 959 else 960 cur_end = min(end, start + 512 * 1024 - 1); 961 962 async_cow->end = cur_end; 963 INIT_LIST_HEAD(&async_cow->extents); 964 965 async_cow->work.func = async_cow_start; 966 async_cow->work.ordered_func = async_cow_submit; 967 async_cow->work.ordered_free = async_cow_free; 968 async_cow->work.flags = 0; 969 970 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 971 PAGE_CACHE_SHIFT; 972 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 973 974 btrfs_queue_worker(&root->fs_info->delalloc_workers, 975 &async_cow->work); 976 977 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 978 wait_event(root->fs_info->async_submit_wait, 979 (atomic_read(&root->fs_info->async_delalloc_pages) < 980 limit)); 981 } 982 983 while (atomic_read(&root->fs_info->async_submit_draining) && 984 atomic_read(&root->fs_info->async_delalloc_pages)) { 985 wait_event(root->fs_info->async_submit_wait, 986 (atomic_read(&root->fs_info->async_delalloc_pages) == 987 0)); 988 } 989 990 *nr_written += nr_pages; 991 start = cur_end + 1; 992 } 993 *page_started = 1; 994 return 0; 995 } 996 997 static noinline int csum_exist_in_range(struct btrfs_root *root, 998 u64 bytenr, u64 num_bytes) 999 { 1000 int ret; 1001 struct btrfs_ordered_sum *sums; 1002 LIST_HEAD(list); 1003 1004 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1005 bytenr + num_bytes - 1, &list); 1006 if (ret == 0 && list_empty(&list)) 1007 return 0; 1008 1009 while (!list_empty(&list)) { 1010 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1011 list_del(&sums->list); 1012 kfree(sums); 1013 } 1014 return 1; 1015 } 1016 1017 /* 1018 * when nowcow writeback call back. This checks for snapshots or COW copies 1019 * of the extents that exist in the file, and COWs the file as required. 1020 * 1021 * If no cow copies or snapshots exist, we write directly to the existing 1022 * blocks on disk 1023 */ 1024 static noinline int run_delalloc_nocow(struct inode *inode, 1025 struct page *locked_page, 1026 u64 start, u64 end, int *page_started, int force, 1027 unsigned long *nr_written) 1028 { 1029 struct btrfs_root *root = BTRFS_I(inode)->root; 1030 struct btrfs_trans_handle *trans; 1031 struct extent_buffer *leaf; 1032 struct btrfs_path *path; 1033 struct btrfs_file_extent_item *fi; 1034 struct btrfs_key found_key; 1035 u64 cow_start; 1036 u64 cur_offset; 1037 u64 extent_end; 1038 u64 extent_offset; 1039 u64 disk_bytenr; 1040 u64 num_bytes; 1041 int extent_type; 1042 int ret; 1043 int type; 1044 int nocow; 1045 int check_prev = 1; 1046 bool nolock = false; 1047 1048 path = btrfs_alloc_path(); 1049 BUG_ON(!path); 1050 if (root == root->fs_info->tree_root) { 1051 nolock = true; 1052 trans = btrfs_join_transaction_nolock(root, 1); 1053 } else { 1054 trans = btrfs_join_transaction(root, 1); 1055 } 1056 BUG_ON(IS_ERR(trans)); 1057 1058 cow_start = (u64)-1; 1059 cur_offset = start; 1060 while (1) { 1061 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 1062 cur_offset, 0); 1063 BUG_ON(ret < 0); 1064 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1065 leaf = path->nodes[0]; 1066 btrfs_item_key_to_cpu(leaf, &found_key, 1067 path->slots[0] - 1); 1068 if (found_key.objectid == inode->i_ino && 1069 found_key.type == BTRFS_EXTENT_DATA_KEY) 1070 path->slots[0]--; 1071 } 1072 check_prev = 0; 1073 next_slot: 1074 leaf = path->nodes[0]; 1075 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1076 ret = btrfs_next_leaf(root, path); 1077 if (ret < 0) 1078 BUG_ON(1); 1079 if (ret > 0) 1080 break; 1081 leaf = path->nodes[0]; 1082 } 1083 1084 nocow = 0; 1085 disk_bytenr = 0; 1086 num_bytes = 0; 1087 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1088 1089 if (found_key.objectid > inode->i_ino || 1090 found_key.type > BTRFS_EXTENT_DATA_KEY || 1091 found_key.offset > end) 1092 break; 1093 1094 if (found_key.offset > cur_offset) { 1095 extent_end = found_key.offset; 1096 extent_type = 0; 1097 goto out_check; 1098 } 1099 1100 fi = btrfs_item_ptr(leaf, path->slots[0], 1101 struct btrfs_file_extent_item); 1102 extent_type = btrfs_file_extent_type(leaf, fi); 1103 1104 if (extent_type == BTRFS_FILE_EXTENT_REG || 1105 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1106 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1107 extent_offset = btrfs_file_extent_offset(leaf, fi); 1108 extent_end = found_key.offset + 1109 btrfs_file_extent_num_bytes(leaf, fi); 1110 if (extent_end <= start) { 1111 path->slots[0]++; 1112 goto next_slot; 1113 } 1114 if (disk_bytenr == 0) 1115 goto out_check; 1116 if (btrfs_file_extent_compression(leaf, fi) || 1117 btrfs_file_extent_encryption(leaf, fi) || 1118 btrfs_file_extent_other_encoding(leaf, fi)) 1119 goto out_check; 1120 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1121 goto out_check; 1122 if (btrfs_extent_readonly(root, disk_bytenr)) 1123 goto out_check; 1124 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1125 found_key.offset - 1126 extent_offset, disk_bytenr)) 1127 goto out_check; 1128 disk_bytenr += extent_offset; 1129 disk_bytenr += cur_offset - found_key.offset; 1130 num_bytes = min(end + 1, extent_end) - cur_offset; 1131 /* 1132 * force cow if csum exists in the range. 1133 * this ensure that csum for a given extent are 1134 * either valid or do not exist. 1135 */ 1136 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1137 goto out_check; 1138 nocow = 1; 1139 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1140 extent_end = found_key.offset + 1141 btrfs_file_extent_inline_len(leaf, fi); 1142 extent_end = ALIGN(extent_end, root->sectorsize); 1143 } else { 1144 BUG_ON(1); 1145 } 1146 out_check: 1147 if (extent_end <= start) { 1148 path->slots[0]++; 1149 goto next_slot; 1150 } 1151 if (!nocow) { 1152 if (cow_start == (u64)-1) 1153 cow_start = cur_offset; 1154 cur_offset = extent_end; 1155 if (cur_offset > end) 1156 break; 1157 path->slots[0]++; 1158 goto next_slot; 1159 } 1160 1161 btrfs_release_path(root, path); 1162 if (cow_start != (u64)-1) { 1163 ret = cow_file_range(inode, locked_page, cow_start, 1164 found_key.offset - 1, page_started, 1165 nr_written, 1); 1166 BUG_ON(ret); 1167 cow_start = (u64)-1; 1168 } 1169 1170 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1171 struct extent_map *em; 1172 struct extent_map_tree *em_tree; 1173 em_tree = &BTRFS_I(inode)->extent_tree; 1174 em = alloc_extent_map(GFP_NOFS); 1175 BUG_ON(!em); 1176 em->start = cur_offset; 1177 em->orig_start = em->start; 1178 em->len = num_bytes; 1179 em->block_len = num_bytes; 1180 em->block_start = disk_bytenr; 1181 em->bdev = root->fs_info->fs_devices->latest_bdev; 1182 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1183 while (1) { 1184 write_lock(&em_tree->lock); 1185 ret = add_extent_mapping(em_tree, em); 1186 write_unlock(&em_tree->lock); 1187 if (ret != -EEXIST) { 1188 free_extent_map(em); 1189 break; 1190 } 1191 btrfs_drop_extent_cache(inode, em->start, 1192 em->start + em->len - 1, 0); 1193 } 1194 type = BTRFS_ORDERED_PREALLOC; 1195 } else { 1196 type = BTRFS_ORDERED_NOCOW; 1197 } 1198 1199 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1200 num_bytes, num_bytes, type); 1201 BUG_ON(ret); 1202 1203 if (root->root_key.objectid == 1204 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1205 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1206 num_bytes); 1207 BUG_ON(ret); 1208 } 1209 1210 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1211 cur_offset, cur_offset + num_bytes - 1, 1212 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1213 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1214 EXTENT_SET_PRIVATE2); 1215 cur_offset = extent_end; 1216 if (cur_offset > end) 1217 break; 1218 } 1219 btrfs_release_path(root, path); 1220 1221 if (cur_offset <= end && cow_start == (u64)-1) 1222 cow_start = cur_offset; 1223 if (cow_start != (u64)-1) { 1224 ret = cow_file_range(inode, locked_page, cow_start, end, 1225 page_started, nr_written, 1); 1226 BUG_ON(ret); 1227 } 1228 1229 if (nolock) { 1230 ret = btrfs_end_transaction_nolock(trans, root); 1231 BUG_ON(ret); 1232 } else { 1233 ret = btrfs_end_transaction(trans, root); 1234 BUG_ON(ret); 1235 } 1236 btrfs_free_path(path); 1237 return 0; 1238 } 1239 1240 /* 1241 * extent_io.c call back to do delayed allocation processing 1242 */ 1243 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1244 u64 start, u64 end, int *page_started, 1245 unsigned long *nr_written) 1246 { 1247 int ret; 1248 struct btrfs_root *root = BTRFS_I(inode)->root; 1249 1250 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1251 ret = run_delalloc_nocow(inode, locked_page, start, end, 1252 page_started, 1, nr_written); 1253 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1254 ret = run_delalloc_nocow(inode, locked_page, start, end, 1255 page_started, 0, nr_written); 1256 else if (!btrfs_test_opt(root, COMPRESS) && 1257 !(BTRFS_I(inode)->force_compress)) 1258 ret = cow_file_range(inode, locked_page, start, end, 1259 page_started, nr_written, 1); 1260 else 1261 ret = cow_file_range_async(inode, locked_page, start, end, 1262 page_started, nr_written); 1263 return ret; 1264 } 1265 1266 static int btrfs_split_extent_hook(struct inode *inode, 1267 struct extent_state *orig, u64 split) 1268 { 1269 /* not delalloc, ignore it */ 1270 if (!(orig->state & EXTENT_DELALLOC)) 1271 return 0; 1272 1273 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1274 return 0; 1275 } 1276 1277 /* 1278 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1279 * extents so we can keep track of new extents that are just merged onto old 1280 * extents, such as when we are doing sequential writes, so we can properly 1281 * account for the metadata space we'll need. 1282 */ 1283 static int btrfs_merge_extent_hook(struct inode *inode, 1284 struct extent_state *new, 1285 struct extent_state *other) 1286 { 1287 /* not delalloc, ignore it */ 1288 if (!(other->state & EXTENT_DELALLOC)) 1289 return 0; 1290 1291 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1292 return 0; 1293 } 1294 1295 /* 1296 * extent_io.c set_bit_hook, used to track delayed allocation 1297 * bytes in this file, and to maintain the list of inodes that 1298 * have pending delalloc work to be done. 1299 */ 1300 static int btrfs_set_bit_hook(struct inode *inode, 1301 struct extent_state *state, int *bits) 1302 { 1303 1304 /* 1305 * set_bit and clear bit hooks normally require _irqsave/restore 1306 * but in this case, we are only testeing for the DELALLOC 1307 * bit, which is only set or cleared with irqs on 1308 */ 1309 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1310 struct btrfs_root *root = BTRFS_I(inode)->root; 1311 u64 len = state->end + 1 - state->start; 1312 int do_list = (root->root_key.objectid != 1313 BTRFS_ROOT_TREE_OBJECTID); 1314 1315 if (*bits & EXTENT_FIRST_DELALLOC) 1316 *bits &= ~EXTENT_FIRST_DELALLOC; 1317 else 1318 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1319 1320 spin_lock(&root->fs_info->delalloc_lock); 1321 BTRFS_I(inode)->delalloc_bytes += len; 1322 root->fs_info->delalloc_bytes += len; 1323 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1324 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1325 &root->fs_info->delalloc_inodes); 1326 } 1327 spin_unlock(&root->fs_info->delalloc_lock); 1328 } 1329 return 0; 1330 } 1331 1332 /* 1333 * extent_io.c clear_bit_hook, see set_bit_hook for why 1334 */ 1335 static int btrfs_clear_bit_hook(struct inode *inode, 1336 struct extent_state *state, int *bits) 1337 { 1338 /* 1339 * set_bit and clear bit hooks normally require _irqsave/restore 1340 * but in this case, we are only testeing for the DELALLOC 1341 * bit, which is only set or cleared with irqs on 1342 */ 1343 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1344 struct btrfs_root *root = BTRFS_I(inode)->root; 1345 u64 len = state->end + 1 - state->start; 1346 int do_list = (root->root_key.objectid != 1347 BTRFS_ROOT_TREE_OBJECTID); 1348 1349 if (*bits & EXTENT_FIRST_DELALLOC) 1350 *bits &= ~EXTENT_FIRST_DELALLOC; 1351 else if (!(*bits & EXTENT_DO_ACCOUNTING)) 1352 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1353 1354 if (*bits & EXTENT_DO_ACCOUNTING) 1355 btrfs_delalloc_release_metadata(inode, len); 1356 1357 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1358 && do_list) 1359 btrfs_free_reserved_data_space(inode, len); 1360 1361 spin_lock(&root->fs_info->delalloc_lock); 1362 root->fs_info->delalloc_bytes -= len; 1363 BTRFS_I(inode)->delalloc_bytes -= len; 1364 1365 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1366 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1367 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1368 } 1369 spin_unlock(&root->fs_info->delalloc_lock); 1370 } 1371 return 0; 1372 } 1373 1374 /* 1375 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1376 * we don't create bios that span stripes or chunks 1377 */ 1378 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1379 size_t size, struct bio *bio, 1380 unsigned long bio_flags) 1381 { 1382 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1383 struct btrfs_mapping_tree *map_tree; 1384 u64 logical = (u64)bio->bi_sector << 9; 1385 u64 length = 0; 1386 u64 map_length; 1387 int ret; 1388 1389 if (bio_flags & EXTENT_BIO_COMPRESSED) 1390 return 0; 1391 1392 length = bio->bi_size; 1393 map_tree = &root->fs_info->mapping_tree; 1394 map_length = length; 1395 ret = btrfs_map_block(map_tree, READ, logical, 1396 &map_length, NULL, 0); 1397 1398 if (map_length < length + size) 1399 return 1; 1400 return ret; 1401 } 1402 1403 /* 1404 * in order to insert checksums into the metadata in large chunks, 1405 * we wait until bio submission time. All the pages in the bio are 1406 * checksummed and sums are attached onto the ordered extent record. 1407 * 1408 * At IO completion time the cums attached on the ordered extent record 1409 * are inserted into the btree 1410 */ 1411 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1412 struct bio *bio, int mirror_num, 1413 unsigned long bio_flags, 1414 u64 bio_offset) 1415 { 1416 struct btrfs_root *root = BTRFS_I(inode)->root; 1417 int ret = 0; 1418 1419 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1420 BUG_ON(ret); 1421 return 0; 1422 } 1423 1424 /* 1425 * in order to insert checksums into the metadata in large chunks, 1426 * we wait until bio submission time. All the pages in the bio are 1427 * checksummed and sums are attached onto the ordered extent record. 1428 * 1429 * At IO completion time the cums attached on the ordered extent record 1430 * are inserted into the btree 1431 */ 1432 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1433 int mirror_num, unsigned long bio_flags, 1434 u64 bio_offset) 1435 { 1436 struct btrfs_root *root = BTRFS_I(inode)->root; 1437 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1438 } 1439 1440 /* 1441 * extent_io.c submission hook. This does the right thing for csum calculation 1442 * on write, or reading the csums from the tree before a read 1443 */ 1444 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1445 int mirror_num, unsigned long bio_flags, 1446 u64 bio_offset) 1447 { 1448 struct btrfs_root *root = BTRFS_I(inode)->root; 1449 int ret = 0; 1450 int skip_sum; 1451 1452 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1453 1454 if (root == root->fs_info->tree_root) 1455 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2); 1456 else 1457 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1458 BUG_ON(ret); 1459 1460 if (!(rw & REQ_WRITE)) { 1461 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1462 return btrfs_submit_compressed_read(inode, bio, 1463 mirror_num, bio_flags); 1464 } else if (!skip_sum) 1465 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1466 goto mapit; 1467 } else if (!skip_sum) { 1468 /* csum items have already been cloned */ 1469 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1470 goto mapit; 1471 /* we're doing a write, do the async checksumming */ 1472 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1473 inode, rw, bio, mirror_num, 1474 bio_flags, bio_offset, 1475 __btrfs_submit_bio_start, 1476 __btrfs_submit_bio_done); 1477 } 1478 1479 mapit: 1480 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1481 } 1482 1483 /* 1484 * given a list of ordered sums record them in the inode. This happens 1485 * at IO completion time based on sums calculated at bio submission time. 1486 */ 1487 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1488 struct inode *inode, u64 file_offset, 1489 struct list_head *list) 1490 { 1491 struct btrfs_ordered_sum *sum; 1492 1493 btrfs_set_trans_block_group(trans, inode); 1494 1495 list_for_each_entry(sum, list, list) { 1496 btrfs_csum_file_blocks(trans, 1497 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1498 } 1499 return 0; 1500 } 1501 1502 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1503 struct extent_state **cached_state) 1504 { 1505 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1506 WARN_ON(1); 1507 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1508 cached_state, GFP_NOFS); 1509 } 1510 1511 /* see btrfs_writepage_start_hook for details on why this is required */ 1512 struct btrfs_writepage_fixup { 1513 struct page *page; 1514 struct btrfs_work work; 1515 }; 1516 1517 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1518 { 1519 struct btrfs_writepage_fixup *fixup; 1520 struct btrfs_ordered_extent *ordered; 1521 struct extent_state *cached_state = NULL; 1522 struct page *page; 1523 struct inode *inode; 1524 u64 page_start; 1525 u64 page_end; 1526 1527 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1528 page = fixup->page; 1529 again: 1530 lock_page(page); 1531 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1532 ClearPageChecked(page); 1533 goto out_page; 1534 } 1535 1536 inode = page->mapping->host; 1537 page_start = page_offset(page); 1538 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1539 1540 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1541 &cached_state, GFP_NOFS); 1542 1543 /* already ordered? We're done */ 1544 if (PagePrivate2(page)) 1545 goto out; 1546 1547 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1548 if (ordered) { 1549 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1550 page_end, &cached_state, GFP_NOFS); 1551 unlock_page(page); 1552 btrfs_start_ordered_extent(inode, ordered, 1); 1553 goto again; 1554 } 1555 1556 BUG(); 1557 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1558 ClearPageChecked(page); 1559 out: 1560 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1561 &cached_state, GFP_NOFS); 1562 out_page: 1563 unlock_page(page); 1564 page_cache_release(page); 1565 kfree(fixup); 1566 } 1567 1568 /* 1569 * There are a few paths in the higher layers of the kernel that directly 1570 * set the page dirty bit without asking the filesystem if it is a 1571 * good idea. This causes problems because we want to make sure COW 1572 * properly happens and the data=ordered rules are followed. 1573 * 1574 * In our case any range that doesn't have the ORDERED bit set 1575 * hasn't been properly setup for IO. We kick off an async process 1576 * to fix it up. The async helper will wait for ordered extents, set 1577 * the delalloc bit and make it safe to write the page. 1578 */ 1579 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1580 { 1581 struct inode *inode = page->mapping->host; 1582 struct btrfs_writepage_fixup *fixup; 1583 struct btrfs_root *root = BTRFS_I(inode)->root; 1584 1585 /* this page is properly in the ordered list */ 1586 if (TestClearPagePrivate2(page)) 1587 return 0; 1588 1589 if (PageChecked(page)) 1590 return -EAGAIN; 1591 1592 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1593 if (!fixup) 1594 return -EAGAIN; 1595 1596 SetPageChecked(page); 1597 page_cache_get(page); 1598 fixup->work.func = btrfs_writepage_fixup_worker; 1599 fixup->page = page; 1600 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1601 return -EAGAIN; 1602 } 1603 1604 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1605 struct inode *inode, u64 file_pos, 1606 u64 disk_bytenr, u64 disk_num_bytes, 1607 u64 num_bytes, u64 ram_bytes, 1608 u8 compression, u8 encryption, 1609 u16 other_encoding, int extent_type) 1610 { 1611 struct btrfs_root *root = BTRFS_I(inode)->root; 1612 struct btrfs_file_extent_item *fi; 1613 struct btrfs_path *path; 1614 struct extent_buffer *leaf; 1615 struct btrfs_key ins; 1616 u64 hint; 1617 int ret; 1618 1619 path = btrfs_alloc_path(); 1620 BUG_ON(!path); 1621 1622 path->leave_spinning = 1; 1623 1624 /* 1625 * we may be replacing one extent in the tree with another. 1626 * The new extent is pinned in the extent map, and we don't want 1627 * to drop it from the cache until it is completely in the btree. 1628 * 1629 * So, tell btrfs_drop_extents to leave this extent in the cache. 1630 * the caller is expected to unpin it and allow it to be merged 1631 * with the others. 1632 */ 1633 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1634 &hint, 0); 1635 BUG_ON(ret); 1636 1637 ins.objectid = inode->i_ino; 1638 ins.offset = file_pos; 1639 ins.type = BTRFS_EXTENT_DATA_KEY; 1640 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1641 BUG_ON(ret); 1642 leaf = path->nodes[0]; 1643 fi = btrfs_item_ptr(leaf, path->slots[0], 1644 struct btrfs_file_extent_item); 1645 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1646 btrfs_set_file_extent_type(leaf, fi, extent_type); 1647 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1648 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1649 btrfs_set_file_extent_offset(leaf, fi, 0); 1650 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1651 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1652 btrfs_set_file_extent_compression(leaf, fi, compression); 1653 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1654 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1655 1656 btrfs_unlock_up_safe(path, 1); 1657 btrfs_set_lock_blocking(leaf); 1658 1659 btrfs_mark_buffer_dirty(leaf); 1660 1661 inode_add_bytes(inode, num_bytes); 1662 1663 ins.objectid = disk_bytenr; 1664 ins.offset = disk_num_bytes; 1665 ins.type = BTRFS_EXTENT_ITEM_KEY; 1666 ret = btrfs_alloc_reserved_file_extent(trans, root, 1667 root->root_key.objectid, 1668 inode->i_ino, file_pos, &ins); 1669 BUG_ON(ret); 1670 btrfs_free_path(path); 1671 1672 return 0; 1673 } 1674 1675 /* 1676 * helper function for btrfs_finish_ordered_io, this 1677 * just reads in some of the csum leaves to prime them into ram 1678 * before we start the transaction. It limits the amount of btree 1679 * reads required while inside the transaction. 1680 */ 1681 /* as ordered data IO finishes, this gets called so we can finish 1682 * an ordered extent if the range of bytes in the file it covers are 1683 * fully written. 1684 */ 1685 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1686 { 1687 struct btrfs_root *root = BTRFS_I(inode)->root; 1688 struct btrfs_trans_handle *trans = NULL; 1689 struct btrfs_ordered_extent *ordered_extent = NULL; 1690 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1691 struct extent_state *cached_state = NULL; 1692 int compress_type = 0; 1693 int ret; 1694 bool nolock = false; 1695 1696 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1697 end - start + 1); 1698 if (!ret) 1699 return 0; 1700 BUG_ON(!ordered_extent); 1701 1702 nolock = (root == root->fs_info->tree_root); 1703 1704 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1705 BUG_ON(!list_empty(&ordered_extent->list)); 1706 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1707 if (!ret) { 1708 if (nolock) 1709 trans = btrfs_join_transaction_nolock(root, 1); 1710 else 1711 trans = btrfs_join_transaction(root, 1); 1712 BUG_ON(IS_ERR(trans)); 1713 btrfs_set_trans_block_group(trans, inode); 1714 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1715 ret = btrfs_update_inode(trans, root, inode); 1716 BUG_ON(ret); 1717 } 1718 goto out; 1719 } 1720 1721 lock_extent_bits(io_tree, ordered_extent->file_offset, 1722 ordered_extent->file_offset + ordered_extent->len - 1, 1723 0, &cached_state, GFP_NOFS); 1724 1725 if (nolock) 1726 trans = btrfs_join_transaction_nolock(root, 1); 1727 else 1728 trans = btrfs_join_transaction(root, 1); 1729 BUG_ON(IS_ERR(trans)); 1730 btrfs_set_trans_block_group(trans, inode); 1731 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1732 1733 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1734 compress_type = ordered_extent->compress_type; 1735 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1736 BUG_ON(compress_type); 1737 ret = btrfs_mark_extent_written(trans, inode, 1738 ordered_extent->file_offset, 1739 ordered_extent->file_offset + 1740 ordered_extent->len); 1741 BUG_ON(ret); 1742 } else { 1743 BUG_ON(root == root->fs_info->tree_root); 1744 ret = insert_reserved_file_extent(trans, inode, 1745 ordered_extent->file_offset, 1746 ordered_extent->start, 1747 ordered_extent->disk_len, 1748 ordered_extent->len, 1749 ordered_extent->len, 1750 compress_type, 0, 0, 1751 BTRFS_FILE_EXTENT_REG); 1752 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1753 ordered_extent->file_offset, 1754 ordered_extent->len); 1755 BUG_ON(ret); 1756 } 1757 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1758 ordered_extent->file_offset + 1759 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1760 1761 add_pending_csums(trans, inode, ordered_extent->file_offset, 1762 &ordered_extent->list); 1763 1764 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1765 ret = btrfs_update_inode(trans, root, inode); 1766 BUG_ON(ret); 1767 out: 1768 if (nolock) { 1769 if (trans) 1770 btrfs_end_transaction_nolock(trans, root); 1771 } else { 1772 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1773 if (trans) 1774 btrfs_end_transaction(trans, root); 1775 } 1776 1777 /* once for us */ 1778 btrfs_put_ordered_extent(ordered_extent); 1779 /* once for the tree */ 1780 btrfs_put_ordered_extent(ordered_extent); 1781 1782 return 0; 1783 } 1784 1785 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1786 struct extent_state *state, int uptodate) 1787 { 1788 ClearPagePrivate2(page); 1789 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1790 } 1791 1792 /* 1793 * When IO fails, either with EIO or csum verification fails, we 1794 * try other mirrors that might have a good copy of the data. This 1795 * io_failure_record is used to record state as we go through all the 1796 * mirrors. If another mirror has good data, the page is set up to date 1797 * and things continue. If a good mirror can't be found, the original 1798 * bio end_io callback is called to indicate things have failed. 1799 */ 1800 struct io_failure_record { 1801 struct page *page; 1802 u64 start; 1803 u64 len; 1804 u64 logical; 1805 unsigned long bio_flags; 1806 int last_mirror; 1807 }; 1808 1809 static int btrfs_io_failed_hook(struct bio *failed_bio, 1810 struct page *page, u64 start, u64 end, 1811 struct extent_state *state) 1812 { 1813 struct io_failure_record *failrec = NULL; 1814 u64 private; 1815 struct extent_map *em; 1816 struct inode *inode = page->mapping->host; 1817 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1818 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1819 struct bio *bio; 1820 int num_copies; 1821 int ret; 1822 int rw; 1823 u64 logical; 1824 1825 ret = get_state_private(failure_tree, start, &private); 1826 if (ret) { 1827 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1828 if (!failrec) 1829 return -ENOMEM; 1830 failrec->start = start; 1831 failrec->len = end - start + 1; 1832 failrec->last_mirror = 0; 1833 failrec->bio_flags = 0; 1834 1835 read_lock(&em_tree->lock); 1836 em = lookup_extent_mapping(em_tree, start, failrec->len); 1837 if (em->start > start || em->start + em->len < start) { 1838 free_extent_map(em); 1839 em = NULL; 1840 } 1841 read_unlock(&em_tree->lock); 1842 1843 if (!em || IS_ERR(em)) { 1844 kfree(failrec); 1845 return -EIO; 1846 } 1847 logical = start - em->start; 1848 logical = em->block_start + logical; 1849 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1850 logical = em->block_start; 1851 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1852 extent_set_compress_type(&failrec->bio_flags, 1853 em->compress_type); 1854 } 1855 failrec->logical = logical; 1856 free_extent_map(em); 1857 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1858 EXTENT_DIRTY, GFP_NOFS); 1859 set_state_private(failure_tree, start, 1860 (u64)(unsigned long)failrec); 1861 } else { 1862 failrec = (struct io_failure_record *)(unsigned long)private; 1863 } 1864 num_copies = btrfs_num_copies( 1865 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1866 failrec->logical, failrec->len); 1867 failrec->last_mirror++; 1868 if (!state) { 1869 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1870 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1871 failrec->start, 1872 EXTENT_LOCKED); 1873 if (state && state->start != failrec->start) 1874 state = NULL; 1875 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1876 } 1877 if (!state || failrec->last_mirror > num_copies) { 1878 set_state_private(failure_tree, failrec->start, 0); 1879 clear_extent_bits(failure_tree, failrec->start, 1880 failrec->start + failrec->len - 1, 1881 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1882 kfree(failrec); 1883 return -EIO; 1884 } 1885 bio = bio_alloc(GFP_NOFS, 1); 1886 bio->bi_private = state; 1887 bio->bi_end_io = failed_bio->bi_end_io; 1888 bio->bi_sector = failrec->logical >> 9; 1889 bio->bi_bdev = failed_bio->bi_bdev; 1890 bio->bi_size = 0; 1891 1892 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1893 if (failed_bio->bi_rw & REQ_WRITE) 1894 rw = WRITE; 1895 else 1896 rw = READ; 1897 1898 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1899 failrec->last_mirror, 1900 failrec->bio_flags, 0); 1901 return 0; 1902 } 1903 1904 /* 1905 * each time an IO finishes, we do a fast check in the IO failure tree 1906 * to see if we need to process or clean up an io_failure_record 1907 */ 1908 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1909 { 1910 u64 private; 1911 u64 private_failure; 1912 struct io_failure_record *failure; 1913 int ret; 1914 1915 private = 0; 1916 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1917 (u64)-1, 1, EXTENT_DIRTY, 0)) { 1918 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1919 start, &private_failure); 1920 if (ret == 0) { 1921 failure = (struct io_failure_record *)(unsigned long) 1922 private_failure; 1923 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1924 failure->start, 0); 1925 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1926 failure->start, 1927 failure->start + failure->len - 1, 1928 EXTENT_DIRTY | EXTENT_LOCKED, 1929 GFP_NOFS); 1930 kfree(failure); 1931 } 1932 } 1933 return 0; 1934 } 1935 1936 /* 1937 * when reads are done, we need to check csums to verify the data is correct 1938 * if there's a match, we allow the bio to finish. If not, we go through 1939 * the io_failure_record routines to find good copies 1940 */ 1941 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1942 struct extent_state *state) 1943 { 1944 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1945 struct inode *inode = page->mapping->host; 1946 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1947 char *kaddr; 1948 u64 private = ~(u32)0; 1949 int ret; 1950 struct btrfs_root *root = BTRFS_I(inode)->root; 1951 u32 csum = ~(u32)0; 1952 1953 if (PageChecked(page)) { 1954 ClearPageChecked(page); 1955 goto good; 1956 } 1957 1958 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1959 return 0; 1960 1961 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1962 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1963 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1964 GFP_NOFS); 1965 return 0; 1966 } 1967 1968 if (state && state->start == start) { 1969 private = state->private; 1970 ret = 0; 1971 } else { 1972 ret = get_state_private(io_tree, start, &private); 1973 } 1974 kaddr = kmap_atomic(page, KM_USER0); 1975 if (ret) 1976 goto zeroit; 1977 1978 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1979 btrfs_csum_final(csum, (char *)&csum); 1980 if (csum != private) 1981 goto zeroit; 1982 1983 kunmap_atomic(kaddr, KM_USER0); 1984 good: 1985 /* if the io failure tree for this inode is non-empty, 1986 * check to see if we've recovered from a failed IO 1987 */ 1988 btrfs_clean_io_failures(inode, start); 1989 return 0; 1990 1991 zeroit: 1992 if (printk_ratelimit()) { 1993 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1994 "private %llu\n", page->mapping->host->i_ino, 1995 (unsigned long long)start, csum, 1996 (unsigned long long)private); 1997 } 1998 memset(kaddr + offset, 1, end - start + 1); 1999 flush_dcache_page(page); 2000 kunmap_atomic(kaddr, KM_USER0); 2001 if (private == 0) 2002 return 0; 2003 return -EIO; 2004 } 2005 2006 struct delayed_iput { 2007 struct list_head list; 2008 struct inode *inode; 2009 }; 2010 2011 void btrfs_add_delayed_iput(struct inode *inode) 2012 { 2013 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2014 struct delayed_iput *delayed; 2015 2016 if (atomic_add_unless(&inode->i_count, -1, 1)) 2017 return; 2018 2019 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2020 delayed->inode = inode; 2021 2022 spin_lock(&fs_info->delayed_iput_lock); 2023 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2024 spin_unlock(&fs_info->delayed_iput_lock); 2025 } 2026 2027 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2028 { 2029 LIST_HEAD(list); 2030 struct btrfs_fs_info *fs_info = root->fs_info; 2031 struct delayed_iput *delayed; 2032 int empty; 2033 2034 spin_lock(&fs_info->delayed_iput_lock); 2035 empty = list_empty(&fs_info->delayed_iputs); 2036 spin_unlock(&fs_info->delayed_iput_lock); 2037 if (empty) 2038 return; 2039 2040 down_read(&root->fs_info->cleanup_work_sem); 2041 spin_lock(&fs_info->delayed_iput_lock); 2042 list_splice_init(&fs_info->delayed_iputs, &list); 2043 spin_unlock(&fs_info->delayed_iput_lock); 2044 2045 while (!list_empty(&list)) { 2046 delayed = list_entry(list.next, struct delayed_iput, list); 2047 list_del(&delayed->list); 2048 iput(delayed->inode); 2049 kfree(delayed); 2050 } 2051 up_read(&root->fs_info->cleanup_work_sem); 2052 } 2053 2054 /* 2055 * calculate extra metadata reservation when snapshotting a subvolume 2056 * contains orphan files. 2057 */ 2058 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans, 2059 struct btrfs_pending_snapshot *pending, 2060 u64 *bytes_to_reserve) 2061 { 2062 struct btrfs_root *root; 2063 struct btrfs_block_rsv *block_rsv; 2064 u64 num_bytes; 2065 int index; 2066 2067 root = pending->root; 2068 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2069 return; 2070 2071 block_rsv = root->orphan_block_rsv; 2072 2073 /* orphan block reservation for the snapshot */ 2074 num_bytes = block_rsv->size; 2075 2076 /* 2077 * after the snapshot is created, COWing tree blocks may use more 2078 * space than it frees. So we should make sure there is enough 2079 * reserved space. 2080 */ 2081 index = trans->transid & 0x1; 2082 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2083 num_bytes += block_rsv->size - 2084 (block_rsv->reserved + block_rsv->freed[index]); 2085 } 2086 2087 *bytes_to_reserve += num_bytes; 2088 } 2089 2090 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans, 2091 struct btrfs_pending_snapshot *pending) 2092 { 2093 struct btrfs_root *root = pending->root; 2094 struct btrfs_root *snap = pending->snap; 2095 struct btrfs_block_rsv *block_rsv; 2096 u64 num_bytes; 2097 int index; 2098 int ret; 2099 2100 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2101 return; 2102 2103 /* refill source subvolume's orphan block reservation */ 2104 block_rsv = root->orphan_block_rsv; 2105 index = trans->transid & 0x1; 2106 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2107 num_bytes = block_rsv->size - 2108 (block_rsv->reserved + block_rsv->freed[index]); 2109 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2110 root->orphan_block_rsv, 2111 num_bytes); 2112 BUG_ON(ret); 2113 } 2114 2115 /* setup orphan block reservation for the snapshot */ 2116 block_rsv = btrfs_alloc_block_rsv(snap); 2117 BUG_ON(!block_rsv); 2118 2119 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2120 snap->orphan_block_rsv = block_rsv; 2121 2122 num_bytes = root->orphan_block_rsv->size; 2123 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2124 block_rsv, num_bytes); 2125 BUG_ON(ret); 2126 2127 #if 0 2128 /* insert orphan item for the snapshot */ 2129 WARN_ON(!root->orphan_item_inserted); 2130 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2131 snap->root_key.objectid); 2132 BUG_ON(ret); 2133 snap->orphan_item_inserted = 1; 2134 #endif 2135 } 2136 2137 enum btrfs_orphan_cleanup_state { 2138 ORPHAN_CLEANUP_STARTED = 1, 2139 ORPHAN_CLEANUP_DONE = 2, 2140 }; 2141 2142 /* 2143 * This is called in transaction commmit time. If there are no orphan 2144 * files in the subvolume, it removes orphan item and frees block_rsv 2145 * structure. 2146 */ 2147 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2148 struct btrfs_root *root) 2149 { 2150 int ret; 2151 2152 if (!list_empty(&root->orphan_list) || 2153 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2154 return; 2155 2156 if (root->orphan_item_inserted && 2157 btrfs_root_refs(&root->root_item) > 0) { 2158 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2159 root->root_key.objectid); 2160 BUG_ON(ret); 2161 root->orphan_item_inserted = 0; 2162 } 2163 2164 if (root->orphan_block_rsv) { 2165 WARN_ON(root->orphan_block_rsv->size > 0); 2166 btrfs_free_block_rsv(root, root->orphan_block_rsv); 2167 root->orphan_block_rsv = NULL; 2168 } 2169 } 2170 2171 /* 2172 * This creates an orphan entry for the given inode in case something goes 2173 * wrong in the middle of an unlink/truncate. 2174 * 2175 * NOTE: caller of this function should reserve 5 units of metadata for 2176 * this function. 2177 */ 2178 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2179 { 2180 struct btrfs_root *root = BTRFS_I(inode)->root; 2181 struct btrfs_block_rsv *block_rsv = NULL; 2182 int reserve = 0; 2183 int insert = 0; 2184 int ret; 2185 2186 if (!root->orphan_block_rsv) { 2187 block_rsv = btrfs_alloc_block_rsv(root); 2188 BUG_ON(!block_rsv); 2189 } 2190 2191 spin_lock(&root->orphan_lock); 2192 if (!root->orphan_block_rsv) { 2193 root->orphan_block_rsv = block_rsv; 2194 } else if (block_rsv) { 2195 btrfs_free_block_rsv(root, block_rsv); 2196 block_rsv = NULL; 2197 } 2198 2199 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2200 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2201 #if 0 2202 /* 2203 * For proper ENOSPC handling, we should do orphan 2204 * cleanup when mounting. But this introduces backward 2205 * compatibility issue. 2206 */ 2207 if (!xchg(&root->orphan_item_inserted, 1)) 2208 insert = 2; 2209 else 2210 insert = 1; 2211 #endif 2212 insert = 1; 2213 } else { 2214 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved); 2215 } 2216 2217 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2218 BTRFS_I(inode)->orphan_meta_reserved = 1; 2219 reserve = 1; 2220 } 2221 spin_unlock(&root->orphan_lock); 2222 2223 if (block_rsv) 2224 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2225 2226 /* grab metadata reservation from transaction handle */ 2227 if (reserve) { 2228 ret = btrfs_orphan_reserve_metadata(trans, inode); 2229 BUG_ON(ret); 2230 } 2231 2232 /* insert an orphan item to track this unlinked/truncated file */ 2233 if (insert >= 1) { 2234 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 2235 BUG_ON(ret); 2236 } 2237 2238 /* insert an orphan item to track subvolume contains orphan files */ 2239 if (insert >= 2) { 2240 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2241 root->root_key.objectid); 2242 BUG_ON(ret); 2243 } 2244 return 0; 2245 } 2246 2247 /* 2248 * We have done the truncate/delete so we can go ahead and remove the orphan 2249 * item for this particular inode. 2250 */ 2251 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2252 { 2253 struct btrfs_root *root = BTRFS_I(inode)->root; 2254 int delete_item = 0; 2255 int release_rsv = 0; 2256 int ret = 0; 2257 2258 spin_lock(&root->orphan_lock); 2259 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2260 list_del_init(&BTRFS_I(inode)->i_orphan); 2261 delete_item = 1; 2262 } 2263 2264 if (BTRFS_I(inode)->orphan_meta_reserved) { 2265 BTRFS_I(inode)->orphan_meta_reserved = 0; 2266 release_rsv = 1; 2267 } 2268 spin_unlock(&root->orphan_lock); 2269 2270 if (trans && delete_item) { 2271 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 2272 BUG_ON(ret); 2273 } 2274 2275 if (release_rsv) 2276 btrfs_orphan_release_metadata(inode); 2277 2278 return 0; 2279 } 2280 2281 /* 2282 * this cleans up any orphans that may be left on the list from the last use 2283 * of this root. 2284 */ 2285 void btrfs_orphan_cleanup(struct btrfs_root *root) 2286 { 2287 struct btrfs_path *path; 2288 struct extent_buffer *leaf; 2289 struct btrfs_key key, found_key; 2290 struct btrfs_trans_handle *trans; 2291 struct inode *inode; 2292 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2293 2294 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2295 return; 2296 2297 path = btrfs_alloc_path(); 2298 BUG_ON(!path); 2299 path->reada = -1; 2300 2301 key.objectid = BTRFS_ORPHAN_OBJECTID; 2302 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2303 key.offset = (u64)-1; 2304 2305 while (1) { 2306 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2307 if (ret < 0) { 2308 printk(KERN_ERR "Error searching slot for orphan: %d" 2309 "\n", ret); 2310 break; 2311 } 2312 2313 /* 2314 * if ret == 0 means we found what we were searching for, which 2315 * is weird, but possible, so only screw with path if we didnt 2316 * find the key and see if we have stuff that matches 2317 */ 2318 if (ret > 0) { 2319 if (path->slots[0] == 0) 2320 break; 2321 path->slots[0]--; 2322 } 2323 2324 /* pull out the item */ 2325 leaf = path->nodes[0]; 2326 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2327 2328 /* make sure the item matches what we want */ 2329 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2330 break; 2331 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2332 break; 2333 2334 /* release the path since we're done with it */ 2335 btrfs_release_path(root, path); 2336 2337 /* 2338 * this is where we are basically btrfs_lookup, without the 2339 * crossing root thing. we store the inode number in the 2340 * offset of the orphan item. 2341 */ 2342 found_key.objectid = found_key.offset; 2343 found_key.type = BTRFS_INODE_ITEM_KEY; 2344 found_key.offset = 0; 2345 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2346 BUG_ON(IS_ERR(inode)); 2347 2348 /* 2349 * add this inode to the orphan list so btrfs_orphan_del does 2350 * the proper thing when we hit it 2351 */ 2352 spin_lock(&root->orphan_lock); 2353 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2354 spin_unlock(&root->orphan_lock); 2355 2356 /* 2357 * if this is a bad inode, means we actually succeeded in 2358 * removing the inode, but not the orphan record, which means 2359 * we need to manually delete the orphan since iput will just 2360 * do a destroy_inode 2361 */ 2362 if (is_bad_inode(inode)) { 2363 trans = btrfs_start_transaction(root, 0); 2364 BUG_ON(IS_ERR(trans)); 2365 btrfs_orphan_del(trans, inode); 2366 btrfs_end_transaction(trans, root); 2367 iput(inode); 2368 continue; 2369 } 2370 2371 /* if we have links, this was a truncate, lets do that */ 2372 if (inode->i_nlink) { 2373 nr_truncate++; 2374 btrfs_truncate(inode); 2375 } else { 2376 nr_unlink++; 2377 } 2378 2379 /* this will do delete_inode and everything for us */ 2380 iput(inode); 2381 } 2382 btrfs_free_path(path); 2383 2384 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2385 2386 if (root->orphan_block_rsv) 2387 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2388 (u64)-1); 2389 2390 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2391 trans = btrfs_join_transaction(root, 1); 2392 BUG_ON(IS_ERR(trans)); 2393 btrfs_end_transaction(trans, root); 2394 } 2395 2396 if (nr_unlink) 2397 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2398 if (nr_truncate) 2399 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2400 } 2401 2402 /* 2403 * very simple check to peek ahead in the leaf looking for xattrs. If we 2404 * don't find any xattrs, we know there can't be any acls. 2405 * 2406 * slot is the slot the inode is in, objectid is the objectid of the inode 2407 */ 2408 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2409 int slot, u64 objectid) 2410 { 2411 u32 nritems = btrfs_header_nritems(leaf); 2412 struct btrfs_key found_key; 2413 int scanned = 0; 2414 2415 slot++; 2416 while (slot < nritems) { 2417 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2418 2419 /* we found a different objectid, there must not be acls */ 2420 if (found_key.objectid != objectid) 2421 return 0; 2422 2423 /* we found an xattr, assume we've got an acl */ 2424 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2425 return 1; 2426 2427 /* 2428 * we found a key greater than an xattr key, there can't 2429 * be any acls later on 2430 */ 2431 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2432 return 0; 2433 2434 slot++; 2435 scanned++; 2436 2437 /* 2438 * it goes inode, inode backrefs, xattrs, extents, 2439 * so if there are a ton of hard links to an inode there can 2440 * be a lot of backrefs. Don't waste time searching too hard, 2441 * this is just an optimization 2442 */ 2443 if (scanned >= 8) 2444 break; 2445 } 2446 /* we hit the end of the leaf before we found an xattr or 2447 * something larger than an xattr. We have to assume the inode 2448 * has acls 2449 */ 2450 return 1; 2451 } 2452 2453 /* 2454 * read an inode from the btree into the in-memory inode 2455 */ 2456 static void btrfs_read_locked_inode(struct inode *inode) 2457 { 2458 struct btrfs_path *path; 2459 struct extent_buffer *leaf; 2460 struct btrfs_inode_item *inode_item; 2461 struct btrfs_timespec *tspec; 2462 struct btrfs_root *root = BTRFS_I(inode)->root; 2463 struct btrfs_key location; 2464 int maybe_acls; 2465 u64 alloc_group_block; 2466 u32 rdev; 2467 int ret; 2468 2469 path = btrfs_alloc_path(); 2470 BUG_ON(!path); 2471 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2472 2473 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2474 if (ret) 2475 goto make_bad; 2476 2477 leaf = path->nodes[0]; 2478 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2479 struct btrfs_inode_item); 2480 2481 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2482 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2483 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2484 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2485 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2486 2487 tspec = btrfs_inode_atime(inode_item); 2488 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2489 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2490 2491 tspec = btrfs_inode_mtime(inode_item); 2492 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2493 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2494 2495 tspec = btrfs_inode_ctime(inode_item); 2496 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2497 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2498 2499 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2500 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2501 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2502 inode->i_generation = BTRFS_I(inode)->generation; 2503 inode->i_rdev = 0; 2504 rdev = btrfs_inode_rdev(leaf, inode_item); 2505 2506 BTRFS_I(inode)->index_cnt = (u64)-1; 2507 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2508 2509 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2510 2511 /* 2512 * try to precache a NULL acl entry for files that don't have 2513 * any xattrs or acls 2514 */ 2515 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino); 2516 if (!maybe_acls) 2517 cache_no_acl(inode); 2518 2519 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2520 alloc_group_block, 0); 2521 btrfs_free_path(path); 2522 inode_item = NULL; 2523 2524 switch (inode->i_mode & S_IFMT) { 2525 case S_IFREG: 2526 inode->i_mapping->a_ops = &btrfs_aops; 2527 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2528 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2529 inode->i_fop = &btrfs_file_operations; 2530 inode->i_op = &btrfs_file_inode_operations; 2531 break; 2532 case S_IFDIR: 2533 inode->i_fop = &btrfs_dir_file_operations; 2534 if (root == root->fs_info->tree_root) 2535 inode->i_op = &btrfs_dir_ro_inode_operations; 2536 else 2537 inode->i_op = &btrfs_dir_inode_operations; 2538 break; 2539 case S_IFLNK: 2540 inode->i_op = &btrfs_symlink_inode_operations; 2541 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2542 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2543 break; 2544 default: 2545 inode->i_op = &btrfs_special_inode_operations; 2546 init_special_inode(inode, inode->i_mode, rdev); 2547 break; 2548 } 2549 2550 btrfs_update_iflags(inode); 2551 return; 2552 2553 make_bad: 2554 btrfs_free_path(path); 2555 make_bad_inode(inode); 2556 } 2557 2558 /* 2559 * given a leaf and an inode, copy the inode fields into the leaf 2560 */ 2561 static void fill_inode_item(struct btrfs_trans_handle *trans, 2562 struct extent_buffer *leaf, 2563 struct btrfs_inode_item *item, 2564 struct inode *inode) 2565 { 2566 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2567 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2568 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2569 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2570 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2571 2572 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2573 inode->i_atime.tv_sec); 2574 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2575 inode->i_atime.tv_nsec); 2576 2577 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2578 inode->i_mtime.tv_sec); 2579 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2580 inode->i_mtime.tv_nsec); 2581 2582 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2583 inode->i_ctime.tv_sec); 2584 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2585 inode->i_ctime.tv_nsec); 2586 2587 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2588 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2589 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2590 btrfs_set_inode_transid(leaf, item, trans->transid); 2591 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2592 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2593 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2594 } 2595 2596 /* 2597 * copy everything in the in-memory inode into the btree. 2598 */ 2599 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2600 struct btrfs_root *root, struct inode *inode) 2601 { 2602 struct btrfs_inode_item *inode_item; 2603 struct btrfs_path *path; 2604 struct extent_buffer *leaf; 2605 int ret; 2606 2607 path = btrfs_alloc_path(); 2608 BUG_ON(!path); 2609 path->leave_spinning = 1; 2610 ret = btrfs_lookup_inode(trans, root, path, 2611 &BTRFS_I(inode)->location, 1); 2612 if (ret) { 2613 if (ret > 0) 2614 ret = -ENOENT; 2615 goto failed; 2616 } 2617 2618 btrfs_unlock_up_safe(path, 1); 2619 leaf = path->nodes[0]; 2620 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2621 struct btrfs_inode_item); 2622 2623 fill_inode_item(trans, leaf, inode_item, inode); 2624 btrfs_mark_buffer_dirty(leaf); 2625 btrfs_set_inode_last_trans(trans, inode); 2626 ret = 0; 2627 failed: 2628 btrfs_free_path(path); 2629 return ret; 2630 } 2631 2632 2633 /* 2634 * unlink helper that gets used here in inode.c and in the tree logging 2635 * recovery code. It remove a link in a directory with a given name, and 2636 * also drops the back refs in the inode to the directory 2637 */ 2638 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2639 struct btrfs_root *root, 2640 struct inode *dir, struct inode *inode, 2641 const char *name, int name_len) 2642 { 2643 struct btrfs_path *path; 2644 int ret = 0; 2645 struct extent_buffer *leaf; 2646 struct btrfs_dir_item *di; 2647 struct btrfs_key key; 2648 u64 index; 2649 2650 path = btrfs_alloc_path(); 2651 if (!path) { 2652 ret = -ENOMEM; 2653 goto out; 2654 } 2655 2656 path->leave_spinning = 1; 2657 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2658 name, name_len, -1); 2659 if (IS_ERR(di)) { 2660 ret = PTR_ERR(di); 2661 goto err; 2662 } 2663 if (!di) { 2664 ret = -ENOENT; 2665 goto err; 2666 } 2667 leaf = path->nodes[0]; 2668 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2669 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2670 if (ret) 2671 goto err; 2672 btrfs_release_path(root, path); 2673 2674 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2675 inode->i_ino, 2676 dir->i_ino, &index); 2677 if (ret) { 2678 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2679 "inode %lu parent %lu\n", name_len, name, 2680 inode->i_ino, dir->i_ino); 2681 goto err; 2682 } 2683 2684 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2685 index, name, name_len, -1); 2686 if (IS_ERR(di)) { 2687 ret = PTR_ERR(di); 2688 goto err; 2689 } 2690 if (!di) { 2691 ret = -ENOENT; 2692 goto err; 2693 } 2694 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2695 btrfs_release_path(root, path); 2696 2697 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2698 inode, dir->i_ino); 2699 BUG_ON(ret != 0 && ret != -ENOENT); 2700 2701 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2702 dir, index); 2703 if (ret == -ENOENT) 2704 ret = 0; 2705 err: 2706 btrfs_free_path(path); 2707 if (ret) 2708 goto out; 2709 2710 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2711 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2712 btrfs_update_inode(trans, root, dir); 2713 btrfs_drop_nlink(inode); 2714 ret = btrfs_update_inode(trans, root, inode); 2715 out: 2716 return ret; 2717 } 2718 2719 /* helper to check if there is any shared block in the path */ 2720 static int check_path_shared(struct btrfs_root *root, 2721 struct btrfs_path *path) 2722 { 2723 struct extent_buffer *eb; 2724 int level; 2725 u64 refs = 1; 2726 2727 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2728 int ret; 2729 2730 if (!path->nodes[level]) 2731 break; 2732 eb = path->nodes[level]; 2733 if (!btrfs_block_can_be_shared(root, eb)) 2734 continue; 2735 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2736 &refs, NULL); 2737 if (refs > 1) 2738 return 1; 2739 } 2740 return 0; 2741 } 2742 2743 /* 2744 * helper to start transaction for unlink and rmdir. 2745 * 2746 * unlink and rmdir are special in btrfs, they do not always free space. 2747 * so in enospc case, we should make sure they will free space before 2748 * allowing them to use the global metadata reservation. 2749 */ 2750 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2751 struct dentry *dentry) 2752 { 2753 struct btrfs_trans_handle *trans; 2754 struct btrfs_root *root = BTRFS_I(dir)->root; 2755 struct btrfs_path *path; 2756 struct btrfs_inode_ref *ref; 2757 struct btrfs_dir_item *di; 2758 struct inode *inode = dentry->d_inode; 2759 u64 index; 2760 int check_link = 1; 2761 int err = -ENOSPC; 2762 int ret; 2763 2764 trans = btrfs_start_transaction(root, 10); 2765 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2766 return trans; 2767 2768 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2769 return ERR_PTR(-ENOSPC); 2770 2771 /* check if there is someone else holds reference */ 2772 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2773 return ERR_PTR(-ENOSPC); 2774 2775 if (atomic_read(&inode->i_count) > 2) 2776 return ERR_PTR(-ENOSPC); 2777 2778 if (xchg(&root->fs_info->enospc_unlink, 1)) 2779 return ERR_PTR(-ENOSPC); 2780 2781 path = btrfs_alloc_path(); 2782 if (!path) { 2783 root->fs_info->enospc_unlink = 0; 2784 return ERR_PTR(-ENOMEM); 2785 } 2786 2787 trans = btrfs_start_transaction(root, 0); 2788 if (IS_ERR(trans)) { 2789 btrfs_free_path(path); 2790 root->fs_info->enospc_unlink = 0; 2791 return trans; 2792 } 2793 2794 path->skip_locking = 1; 2795 path->search_commit_root = 1; 2796 2797 ret = btrfs_lookup_inode(trans, root, path, 2798 &BTRFS_I(dir)->location, 0); 2799 if (ret < 0) { 2800 err = ret; 2801 goto out; 2802 } 2803 if (ret == 0) { 2804 if (check_path_shared(root, path)) 2805 goto out; 2806 } else { 2807 check_link = 0; 2808 } 2809 btrfs_release_path(root, path); 2810 2811 ret = btrfs_lookup_inode(trans, root, path, 2812 &BTRFS_I(inode)->location, 0); 2813 if (ret < 0) { 2814 err = ret; 2815 goto out; 2816 } 2817 if (ret == 0) { 2818 if (check_path_shared(root, path)) 2819 goto out; 2820 } else { 2821 check_link = 0; 2822 } 2823 btrfs_release_path(root, path); 2824 2825 if (ret == 0 && S_ISREG(inode->i_mode)) { 2826 ret = btrfs_lookup_file_extent(trans, root, path, 2827 inode->i_ino, (u64)-1, 0); 2828 if (ret < 0) { 2829 err = ret; 2830 goto out; 2831 } 2832 BUG_ON(ret == 0); 2833 if (check_path_shared(root, path)) 2834 goto out; 2835 btrfs_release_path(root, path); 2836 } 2837 2838 if (!check_link) { 2839 err = 0; 2840 goto out; 2841 } 2842 2843 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2844 dentry->d_name.name, dentry->d_name.len, 0); 2845 if (IS_ERR(di)) { 2846 err = PTR_ERR(di); 2847 goto out; 2848 } 2849 if (di) { 2850 if (check_path_shared(root, path)) 2851 goto out; 2852 } else { 2853 err = 0; 2854 goto out; 2855 } 2856 btrfs_release_path(root, path); 2857 2858 ref = btrfs_lookup_inode_ref(trans, root, path, 2859 dentry->d_name.name, dentry->d_name.len, 2860 inode->i_ino, dir->i_ino, 0); 2861 if (IS_ERR(ref)) { 2862 err = PTR_ERR(ref); 2863 goto out; 2864 } 2865 BUG_ON(!ref); 2866 if (check_path_shared(root, path)) 2867 goto out; 2868 index = btrfs_inode_ref_index(path->nodes[0], ref); 2869 btrfs_release_path(root, path); 2870 2871 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index, 2872 dentry->d_name.name, dentry->d_name.len, 0); 2873 if (IS_ERR(di)) { 2874 err = PTR_ERR(di); 2875 goto out; 2876 } 2877 BUG_ON(ret == -ENOENT); 2878 if (check_path_shared(root, path)) 2879 goto out; 2880 2881 err = 0; 2882 out: 2883 btrfs_free_path(path); 2884 if (err) { 2885 btrfs_end_transaction(trans, root); 2886 root->fs_info->enospc_unlink = 0; 2887 return ERR_PTR(err); 2888 } 2889 2890 trans->block_rsv = &root->fs_info->global_block_rsv; 2891 return trans; 2892 } 2893 2894 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2895 struct btrfs_root *root) 2896 { 2897 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2898 BUG_ON(!root->fs_info->enospc_unlink); 2899 root->fs_info->enospc_unlink = 0; 2900 } 2901 btrfs_end_transaction_throttle(trans, root); 2902 } 2903 2904 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2905 { 2906 struct btrfs_root *root = BTRFS_I(dir)->root; 2907 struct btrfs_trans_handle *trans; 2908 struct inode *inode = dentry->d_inode; 2909 int ret; 2910 unsigned long nr = 0; 2911 2912 trans = __unlink_start_trans(dir, dentry); 2913 if (IS_ERR(trans)) 2914 return PTR_ERR(trans); 2915 2916 btrfs_set_trans_block_group(trans, dir); 2917 2918 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2919 2920 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2921 dentry->d_name.name, dentry->d_name.len); 2922 BUG_ON(ret); 2923 2924 if (inode->i_nlink == 0) { 2925 ret = btrfs_orphan_add(trans, inode); 2926 BUG_ON(ret); 2927 } 2928 2929 nr = trans->blocks_used; 2930 __unlink_end_trans(trans, root); 2931 btrfs_btree_balance_dirty(root, nr); 2932 return ret; 2933 } 2934 2935 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 2936 struct btrfs_root *root, 2937 struct inode *dir, u64 objectid, 2938 const char *name, int name_len) 2939 { 2940 struct btrfs_path *path; 2941 struct extent_buffer *leaf; 2942 struct btrfs_dir_item *di; 2943 struct btrfs_key key; 2944 u64 index; 2945 int ret; 2946 2947 path = btrfs_alloc_path(); 2948 if (!path) 2949 return -ENOMEM; 2950 2951 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2952 name, name_len, -1); 2953 BUG_ON(!di || IS_ERR(di)); 2954 2955 leaf = path->nodes[0]; 2956 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2957 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2958 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2959 BUG_ON(ret); 2960 btrfs_release_path(root, path); 2961 2962 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 2963 objectid, root->root_key.objectid, 2964 dir->i_ino, &index, name, name_len); 2965 if (ret < 0) { 2966 BUG_ON(ret != -ENOENT); 2967 di = btrfs_search_dir_index_item(root, path, dir->i_ino, 2968 name, name_len); 2969 BUG_ON(!di || IS_ERR(di)); 2970 2971 leaf = path->nodes[0]; 2972 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2973 btrfs_release_path(root, path); 2974 index = key.offset; 2975 } 2976 2977 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2978 index, name, name_len, -1); 2979 BUG_ON(!di || IS_ERR(di)); 2980 2981 leaf = path->nodes[0]; 2982 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2983 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2984 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2985 BUG_ON(ret); 2986 btrfs_release_path(root, path); 2987 2988 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2989 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2990 ret = btrfs_update_inode(trans, root, dir); 2991 BUG_ON(ret); 2992 2993 btrfs_free_path(path); 2994 return 0; 2995 } 2996 2997 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2998 { 2999 struct inode *inode = dentry->d_inode; 3000 int err = 0; 3001 struct btrfs_root *root = BTRFS_I(dir)->root; 3002 struct btrfs_trans_handle *trans; 3003 unsigned long nr = 0; 3004 3005 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 3006 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 3007 return -ENOTEMPTY; 3008 3009 trans = __unlink_start_trans(dir, dentry); 3010 if (IS_ERR(trans)) 3011 return PTR_ERR(trans); 3012 3013 btrfs_set_trans_block_group(trans, dir); 3014 3015 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3016 err = btrfs_unlink_subvol(trans, root, dir, 3017 BTRFS_I(inode)->location.objectid, 3018 dentry->d_name.name, 3019 dentry->d_name.len); 3020 goto out; 3021 } 3022 3023 err = btrfs_orphan_add(trans, inode); 3024 if (err) 3025 goto out; 3026 3027 /* now the directory is empty */ 3028 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3029 dentry->d_name.name, dentry->d_name.len); 3030 if (!err) 3031 btrfs_i_size_write(inode, 0); 3032 out: 3033 nr = trans->blocks_used; 3034 __unlink_end_trans(trans, root); 3035 btrfs_btree_balance_dirty(root, nr); 3036 3037 return err; 3038 } 3039 3040 #if 0 3041 /* 3042 * when truncating bytes in a file, it is possible to avoid reading 3043 * the leaves that contain only checksum items. This can be the 3044 * majority of the IO required to delete a large file, but it must 3045 * be done carefully. 3046 * 3047 * The keys in the level just above the leaves are checked to make sure 3048 * the lowest key in a given leaf is a csum key, and starts at an offset 3049 * after the new size. 3050 * 3051 * Then the key for the next leaf is checked to make sure it also has 3052 * a checksum item for the same file. If it does, we know our target leaf 3053 * contains only checksum items, and it can be safely freed without reading 3054 * it. 3055 * 3056 * This is just an optimization targeted at large files. It may do 3057 * nothing. It will return 0 unless things went badly. 3058 */ 3059 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 3060 struct btrfs_root *root, 3061 struct btrfs_path *path, 3062 struct inode *inode, u64 new_size) 3063 { 3064 struct btrfs_key key; 3065 int ret; 3066 int nritems; 3067 struct btrfs_key found_key; 3068 struct btrfs_key other_key; 3069 struct btrfs_leaf_ref *ref; 3070 u64 leaf_gen; 3071 u64 leaf_start; 3072 3073 path->lowest_level = 1; 3074 key.objectid = inode->i_ino; 3075 key.type = BTRFS_CSUM_ITEM_KEY; 3076 key.offset = new_size; 3077 again: 3078 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3079 if (ret < 0) 3080 goto out; 3081 3082 if (path->nodes[1] == NULL) { 3083 ret = 0; 3084 goto out; 3085 } 3086 ret = 0; 3087 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 3088 nritems = btrfs_header_nritems(path->nodes[1]); 3089 3090 if (!nritems) 3091 goto out; 3092 3093 if (path->slots[1] >= nritems) 3094 goto next_node; 3095 3096 /* did we find a key greater than anything we want to delete? */ 3097 if (found_key.objectid > inode->i_ino || 3098 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 3099 goto out; 3100 3101 /* we check the next key in the node to make sure the leave contains 3102 * only checksum items. This comparison doesn't work if our 3103 * leaf is the last one in the node 3104 */ 3105 if (path->slots[1] + 1 >= nritems) { 3106 next_node: 3107 /* search forward from the last key in the node, this 3108 * will bring us into the next node in the tree 3109 */ 3110 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 3111 3112 /* unlikely, but we inc below, so check to be safe */ 3113 if (found_key.offset == (u64)-1) 3114 goto out; 3115 3116 /* search_forward needs a path with locks held, do the 3117 * search again for the original key. It is possible 3118 * this will race with a balance and return a path that 3119 * we could modify, but this drop is just an optimization 3120 * and is allowed to miss some leaves. 3121 */ 3122 btrfs_release_path(root, path); 3123 found_key.offset++; 3124 3125 /* setup a max key for search_forward */ 3126 other_key.offset = (u64)-1; 3127 other_key.type = key.type; 3128 other_key.objectid = key.objectid; 3129 3130 path->keep_locks = 1; 3131 ret = btrfs_search_forward(root, &found_key, &other_key, 3132 path, 0, 0); 3133 path->keep_locks = 0; 3134 if (ret || found_key.objectid != key.objectid || 3135 found_key.type != key.type) { 3136 ret = 0; 3137 goto out; 3138 } 3139 3140 key.offset = found_key.offset; 3141 btrfs_release_path(root, path); 3142 cond_resched(); 3143 goto again; 3144 } 3145 3146 /* we know there's one more slot after us in the tree, 3147 * read that key so we can verify it is also a checksum item 3148 */ 3149 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 3150 3151 if (found_key.objectid < inode->i_ino) 3152 goto next_key; 3153 3154 if (found_key.type != key.type || found_key.offset < new_size) 3155 goto next_key; 3156 3157 /* 3158 * if the key for the next leaf isn't a csum key from this objectid, 3159 * we can't be sure there aren't good items inside this leaf. 3160 * Bail out 3161 */ 3162 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 3163 goto out; 3164 3165 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 3166 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 3167 /* 3168 * it is safe to delete this leaf, it contains only 3169 * csum items from this inode at an offset >= new_size 3170 */ 3171 ret = btrfs_del_leaf(trans, root, path, leaf_start); 3172 BUG_ON(ret); 3173 3174 if (root->ref_cows && leaf_gen < trans->transid) { 3175 ref = btrfs_alloc_leaf_ref(root, 0); 3176 if (ref) { 3177 ref->root_gen = root->root_key.offset; 3178 ref->bytenr = leaf_start; 3179 ref->owner = 0; 3180 ref->generation = leaf_gen; 3181 ref->nritems = 0; 3182 3183 btrfs_sort_leaf_ref(ref); 3184 3185 ret = btrfs_add_leaf_ref(root, ref, 0); 3186 WARN_ON(ret); 3187 btrfs_free_leaf_ref(root, ref); 3188 } else { 3189 WARN_ON(1); 3190 } 3191 } 3192 next_key: 3193 btrfs_release_path(root, path); 3194 3195 if (other_key.objectid == inode->i_ino && 3196 other_key.type == key.type && other_key.offset > key.offset) { 3197 key.offset = other_key.offset; 3198 cond_resched(); 3199 goto again; 3200 } 3201 ret = 0; 3202 out: 3203 /* fixup any changes we've made to the path */ 3204 path->lowest_level = 0; 3205 path->keep_locks = 0; 3206 btrfs_release_path(root, path); 3207 return ret; 3208 } 3209 3210 #endif 3211 3212 /* 3213 * this can truncate away extent items, csum items and directory items. 3214 * It starts at a high offset and removes keys until it can't find 3215 * any higher than new_size 3216 * 3217 * csum items that cross the new i_size are truncated to the new size 3218 * as well. 3219 * 3220 * min_type is the minimum key type to truncate down to. If set to 0, this 3221 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3222 */ 3223 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3224 struct btrfs_root *root, 3225 struct inode *inode, 3226 u64 new_size, u32 min_type) 3227 { 3228 struct btrfs_path *path; 3229 struct extent_buffer *leaf; 3230 struct btrfs_file_extent_item *fi; 3231 struct btrfs_key key; 3232 struct btrfs_key found_key; 3233 u64 extent_start = 0; 3234 u64 extent_num_bytes = 0; 3235 u64 extent_offset = 0; 3236 u64 item_end = 0; 3237 u64 mask = root->sectorsize - 1; 3238 u32 found_type = (u8)-1; 3239 int found_extent; 3240 int del_item; 3241 int pending_del_nr = 0; 3242 int pending_del_slot = 0; 3243 int extent_type = -1; 3244 int encoding; 3245 int ret; 3246 int err = 0; 3247 3248 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3249 3250 if (root->ref_cows || root == root->fs_info->tree_root) 3251 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3252 3253 path = btrfs_alloc_path(); 3254 BUG_ON(!path); 3255 path->reada = -1; 3256 3257 key.objectid = inode->i_ino; 3258 key.offset = (u64)-1; 3259 key.type = (u8)-1; 3260 3261 search_again: 3262 path->leave_spinning = 1; 3263 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3264 if (ret < 0) { 3265 err = ret; 3266 goto out; 3267 } 3268 3269 if (ret > 0) { 3270 /* there are no items in the tree for us to truncate, we're 3271 * done 3272 */ 3273 if (path->slots[0] == 0) 3274 goto out; 3275 path->slots[0]--; 3276 } 3277 3278 while (1) { 3279 fi = NULL; 3280 leaf = path->nodes[0]; 3281 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3282 found_type = btrfs_key_type(&found_key); 3283 encoding = 0; 3284 3285 if (found_key.objectid != inode->i_ino) 3286 break; 3287 3288 if (found_type < min_type) 3289 break; 3290 3291 item_end = found_key.offset; 3292 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3293 fi = btrfs_item_ptr(leaf, path->slots[0], 3294 struct btrfs_file_extent_item); 3295 extent_type = btrfs_file_extent_type(leaf, fi); 3296 encoding = btrfs_file_extent_compression(leaf, fi); 3297 encoding |= btrfs_file_extent_encryption(leaf, fi); 3298 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 3299 3300 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3301 item_end += 3302 btrfs_file_extent_num_bytes(leaf, fi); 3303 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3304 item_end += btrfs_file_extent_inline_len(leaf, 3305 fi); 3306 } 3307 item_end--; 3308 } 3309 if (found_type > min_type) { 3310 del_item = 1; 3311 } else { 3312 if (item_end < new_size) 3313 break; 3314 if (found_key.offset >= new_size) 3315 del_item = 1; 3316 else 3317 del_item = 0; 3318 } 3319 found_extent = 0; 3320 /* FIXME, shrink the extent if the ref count is only 1 */ 3321 if (found_type != BTRFS_EXTENT_DATA_KEY) 3322 goto delete; 3323 3324 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3325 u64 num_dec; 3326 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3327 if (!del_item && !encoding) { 3328 u64 orig_num_bytes = 3329 btrfs_file_extent_num_bytes(leaf, fi); 3330 extent_num_bytes = new_size - 3331 found_key.offset + root->sectorsize - 1; 3332 extent_num_bytes = extent_num_bytes & 3333 ~((u64)root->sectorsize - 1); 3334 btrfs_set_file_extent_num_bytes(leaf, fi, 3335 extent_num_bytes); 3336 num_dec = (orig_num_bytes - 3337 extent_num_bytes); 3338 if (root->ref_cows && extent_start != 0) 3339 inode_sub_bytes(inode, num_dec); 3340 btrfs_mark_buffer_dirty(leaf); 3341 } else { 3342 extent_num_bytes = 3343 btrfs_file_extent_disk_num_bytes(leaf, 3344 fi); 3345 extent_offset = found_key.offset - 3346 btrfs_file_extent_offset(leaf, fi); 3347 3348 /* FIXME blocksize != 4096 */ 3349 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3350 if (extent_start != 0) { 3351 found_extent = 1; 3352 if (root->ref_cows) 3353 inode_sub_bytes(inode, num_dec); 3354 } 3355 } 3356 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3357 /* 3358 * we can't truncate inline items that have had 3359 * special encodings 3360 */ 3361 if (!del_item && 3362 btrfs_file_extent_compression(leaf, fi) == 0 && 3363 btrfs_file_extent_encryption(leaf, fi) == 0 && 3364 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3365 u32 size = new_size - found_key.offset; 3366 3367 if (root->ref_cows) { 3368 inode_sub_bytes(inode, item_end + 1 - 3369 new_size); 3370 } 3371 size = 3372 btrfs_file_extent_calc_inline_size(size); 3373 ret = btrfs_truncate_item(trans, root, path, 3374 size, 1); 3375 BUG_ON(ret); 3376 } else if (root->ref_cows) { 3377 inode_sub_bytes(inode, item_end + 1 - 3378 found_key.offset); 3379 } 3380 } 3381 delete: 3382 if (del_item) { 3383 if (!pending_del_nr) { 3384 /* no pending yet, add ourselves */ 3385 pending_del_slot = path->slots[0]; 3386 pending_del_nr = 1; 3387 } else if (pending_del_nr && 3388 path->slots[0] + 1 == pending_del_slot) { 3389 /* hop on the pending chunk */ 3390 pending_del_nr++; 3391 pending_del_slot = path->slots[0]; 3392 } else { 3393 BUG(); 3394 } 3395 } else { 3396 break; 3397 } 3398 if (found_extent && (root->ref_cows || 3399 root == root->fs_info->tree_root)) { 3400 btrfs_set_path_blocking(path); 3401 ret = btrfs_free_extent(trans, root, extent_start, 3402 extent_num_bytes, 0, 3403 btrfs_header_owner(leaf), 3404 inode->i_ino, extent_offset); 3405 BUG_ON(ret); 3406 } 3407 3408 if (found_type == BTRFS_INODE_ITEM_KEY) 3409 break; 3410 3411 if (path->slots[0] == 0 || 3412 path->slots[0] != pending_del_slot) { 3413 if (root->ref_cows) { 3414 err = -EAGAIN; 3415 goto out; 3416 } 3417 if (pending_del_nr) { 3418 ret = btrfs_del_items(trans, root, path, 3419 pending_del_slot, 3420 pending_del_nr); 3421 BUG_ON(ret); 3422 pending_del_nr = 0; 3423 } 3424 btrfs_release_path(root, path); 3425 goto search_again; 3426 } else { 3427 path->slots[0]--; 3428 } 3429 } 3430 out: 3431 if (pending_del_nr) { 3432 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3433 pending_del_nr); 3434 BUG_ON(ret); 3435 } 3436 btrfs_free_path(path); 3437 return err; 3438 } 3439 3440 /* 3441 * taken from block_truncate_page, but does cow as it zeros out 3442 * any bytes left in the last page in the file. 3443 */ 3444 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3445 { 3446 struct inode *inode = mapping->host; 3447 struct btrfs_root *root = BTRFS_I(inode)->root; 3448 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3449 struct btrfs_ordered_extent *ordered; 3450 struct extent_state *cached_state = NULL; 3451 char *kaddr; 3452 u32 blocksize = root->sectorsize; 3453 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3454 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3455 struct page *page; 3456 int ret = 0; 3457 u64 page_start; 3458 u64 page_end; 3459 3460 if ((offset & (blocksize - 1)) == 0) 3461 goto out; 3462 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3463 if (ret) 3464 goto out; 3465 3466 ret = -ENOMEM; 3467 again: 3468 page = grab_cache_page(mapping, index); 3469 if (!page) { 3470 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3471 goto out; 3472 } 3473 3474 page_start = page_offset(page); 3475 page_end = page_start + PAGE_CACHE_SIZE - 1; 3476 3477 if (!PageUptodate(page)) { 3478 ret = btrfs_readpage(NULL, page); 3479 lock_page(page); 3480 if (page->mapping != mapping) { 3481 unlock_page(page); 3482 page_cache_release(page); 3483 goto again; 3484 } 3485 if (!PageUptodate(page)) { 3486 ret = -EIO; 3487 goto out_unlock; 3488 } 3489 } 3490 wait_on_page_writeback(page); 3491 3492 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3493 GFP_NOFS); 3494 set_page_extent_mapped(page); 3495 3496 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3497 if (ordered) { 3498 unlock_extent_cached(io_tree, page_start, page_end, 3499 &cached_state, GFP_NOFS); 3500 unlock_page(page); 3501 page_cache_release(page); 3502 btrfs_start_ordered_extent(inode, ordered, 1); 3503 btrfs_put_ordered_extent(ordered); 3504 goto again; 3505 } 3506 3507 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3508 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3509 0, 0, &cached_state, GFP_NOFS); 3510 3511 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3512 &cached_state); 3513 if (ret) { 3514 unlock_extent_cached(io_tree, page_start, page_end, 3515 &cached_state, GFP_NOFS); 3516 goto out_unlock; 3517 } 3518 3519 ret = 0; 3520 if (offset != PAGE_CACHE_SIZE) { 3521 kaddr = kmap(page); 3522 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3523 flush_dcache_page(page); 3524 kunmap(page); 3525 } 3526 ClearPageChecked(page); 3527 set_page_dirty(page); 3528 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3529 GFP_NOFS); 3530 3531 out_unlock: 3532 if (ret) 3533 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3534 unlock_page(page); 3535 page_cache_release(page); 3536 out: 3537 return ret; 3538 } 3539 3540 int btrfs_cont_expand(struct inode *inode, loff_t size) 3541 { 3542 struct btrfs_trans_handle *trans; 3543 struct btrfs_root *root = BTRFS_I(inode)->root; 3544 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3545 struct extent_map *em = NULL; 3546 struct extent_state *cached_state = NULL; 3547 u64 mask = root->sectorsize - 1; 3548 u64 hole_start = (inode->i_size + mask) & ~mask; 3549 u64 block_end = (size + mask) & ~mask; 3550 u64 last_byte; 3551 u64 cur_offset; 3552 u64 hole_size; 3553 int err = 0; 3554 3555 if (size <= hole_start) 3556 return 0; 3557 3558 while (1) { 3559 struct btrfs_ordered_extent *ordered; 3560 btrfs_wait_ordered_range(inode, hole_start, 3561 block_end - hole_start); 3562 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3563 &cached_state, GFP_NOFS); 3564 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3565 if (!ordered) 3566 break; 3567 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3568 &cached_state, GFP_NOFS); 3569 btrfs_put_ordered_extent(ordered); 3570 } 3571 3572 cur_offset = hole_start; 3573 while (1) { 3574 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3575 block_end - cur_offset, 0); 3576 BUG_ON(IS_ERR(em) || !em); 3577 last_byte = min(extent_map_end(em), block_end); 3578 last_byte = (last_byte + mask) & ~mask; 3579 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3580 u64 hint_byte = 0; 3581 hole_size = last_byte - cur_offset; 3582 3583 trans = btrfs_start_transaction(root, 2); 3584 if (IS_ERR(trans)) { 3585 err = PTR_ERR(trans); 3586 break; 3587 } 3588 btrfs_set_trans_block_group(trans, inode); 3589 3590 err = btrfs_drop_extents(trans, inode, cur_offset, 3591 cur_offset + hole_size, 3592 &hint_byte, 1); 3593 BUG_ON(err); 3594 3595 err = btrfs_insert_file_extent(trans, root, 3596 inode->i_ino, cur_offset, 0, 3597 0, hole_size, 0, hole_size, 3598 0, 0, 0); 3599 BUG_ON(err); 3600 3601 btrfs_drop_extent_cache(inode, hole_start, 3602 last_byte - 1, 0); 3603 3604 btrfs_end_transaction(trans, root); 3605 } 3606 free_extent_map(em); 3607 em = NULL; 3608 cur_offset = last_byte; 3609 if (cur_offset >= block_end) 3610 break; 3611 } 3612 3613 free_extent_map(em); 3614 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3615 GFP_NOFS); 3616 return err; 3617 } 3618 3619 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr) 3620 { 3621 struct btrfs_root *root = BTRFS_I(inode)->root; 3622 struct btrfs_trans_handle *trans; 3623 unsigned long nr; 3624 int ret; 3625 3626 if (attr->ia_size == inode->i_size) 3627 return 0; 3628 3629 if (attr->ia_size > inode->i_size) { 3630 unsigned long limit; 3631 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 3632 if (attr->ia_size > inode->i_sb->s_maxbytes) 3633 return -EFBIG; 3634 if (limit != RLIM_INFINITY && attr->ia_size > limit) { 3635 send_sig(SIGXFSZ, current, 0); 3636 return -EFBIG; 3637 } 3638 } 3639 3640 trans = btrfs_start_transaction(root, 5); 3641 if (IS_ERR(trans)) 3642 return PTR_ERR(trans); 3643 3644 btrfs_set_trans_block_group(trans, inode); 3645 3646 ret = btrfs_orphan_add(trans, inode); 3647 BUG_ON(ret); 3648 3649 nr = trans->blocks_used; 3650 btrfs_end_transaction(trans, root); 3651 btrfs_btree_balance_dirty(root, nr); 3652 3653 if (attr->ia_size > inode->i_size) { 3654 ret = btrfs_cont_expand(inode, attr->ia_size); 3655 if (ret) { 3656 btrfs_truncate(inode); 3657 return ret; 3658 } 3659 3660 i_size_write(inode, attr->ia_size); 3661 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 3662 3663 trans = btrfs_start_transaction(root, 0); 3664 BUG_ON(IS_ERR(trans)); 3665 btrfs_set_trans_block_group(trans, inode); 3666 trans->block_rsv = root->orphan_block_rsv; 3667 BUG_ON(!trans->block_rsv); 3668 3669 ret = btrfs_update_inode(trans, root, inode); 3670 BUG_ON(ret); 3671 if (inode->i_nlink > 0) { 3672 ret = btrfs_orphan_del(trans, inode); 3673 BUG_ON(ret); 3674 } 3675 nr = trans->blocks_used; 3676 btrfs_end_transaction(trans, root); 3677 btrfs_btree_balance_dirty(root, nr); 3678 return 0; 3679 } 3680 3681 /* 3682 * We're truncating a file that used to have good data down to 3683 * zero. Make sure it gets into the ordered flush list so that 3684 * any new writes get down to disk quickly. 3685 */ 3686 if (attr->ia_size == 0) 3687 BTRFS_I(inode)->ordered_data_close = 1; 3688 3689 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3690 ret = vmtruncate(inode, attr->ia_size); 3691 BUG_ON(ret); 3692 3693 return 0; 3694 } 3695 3696 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3697 { 3698 struct inode *inode = dentry->d_inode; 3699 struct btrfs_root *root = BTRFS_I(inode)->root; 3700 int err; 3701 3702 if (btrfs_root_readonly(root)) 3703 return -EROFS; 3704 3705 err = inode_change_ok(inode, attr); 3706 if (err) 3707 return err; 3708 3709 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3710 err = btrfs_setattr_size(inode, attr); 3711 if (err) 3712 return err; 3713 } 3714 3715 if (attr->ia_valid) { 3716 setattr_copy(inode, attr); 3717 mark_inode_dirty(inode); 3718 3719 if (attr->ia_valid & ATTR_MODE) 3720 err = btrfs_acl_chmod(inode); 3721 } 3722 3723 return err; 3724 } 3725 3726 void btrfs_evict_inode(struct inode *inode) 3727 { 3728 struct btrfs_trans_handle *trans; 3729 struct btrfs_root *root = BTRFS_I(inode)->root; 3730 unsigned long nr; 3731 int ret; 3732 3733 truncate_inode_pages(&inode->i_data, 0); 3734 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3735 root == root->fs_info->tree_root)) 3736 goto no_delete; 3737 3738 if (is_bad_inode(inode)) { 3739 btrfs_orphan_del(NULL, inode); 3740 goto no_delete; 3741 } 3742 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3743 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3744 3745 if (root->fs_info->log_root_recovering) { 3746 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3747 goto no_delete; 3748 } 3749 3750 if (inode->i_nlink > 0) { 3751 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3752 goto no_delete; 3753 } 3754 3755 btrfs_i_size_write(inode, 0); 3756 3757 while (1) { 3758 trans = btrfs_start_transaction(root, 0); 3759 BUG_ON(IS_ERR(trans)); 3760 btrfs_set_trans_block_group(trans, inode); 3761 trans->block_rsv = root->orphan_block_rsv; 3762 3763 ret = btrfs_block_rsv_check(trans, root, 3764 root->orphan_block_rsv, 0, 5); 3765 if (ret) { 3766 BUG_ON(ret != -EAGAIN); 3767 ret = btrfs_commit_transaction(trans, root); 3768 BUG_ON(ret); 3769 continue; 3770 } 3771 3772 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3773 if (ret != -EAGAIN) 3774 break; 3775 3776 nr = trans->blocks_used; 3777 btrfs_end_transaction(trans, root); 3778 trans = NULL; 3779 btrfs_btree_balance_dirty(root, nr); 3780 3781 } 3782 3783 if (ret == 0) { 3784 ret = btrfs_orphan_del(trans, inode); 3785 BUG_ON(ret); 3786 } 3787 3788 nr = trans->blocks_used; 3789 btrfs_end_transaction(trans, root); 3790 btrfs_btree_balance_dirty(root, nr); 3791 no_delete: 3792 end_writeback(inode); 3793 return; 3794 } 3795 3796 /* 3797 * this returns the key found in the dir entry in the location pointer. 3798 * If no dir entries were found, location->objectid is 0. 3799 */ 3800 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3801 struct btrfs_key *location) 3802 { 3803 const char *name = dentry->d_name.name; 3804 int namelen = dentry->d_name.len; 3805 struct btrfs_dir_item *di; 3806 struct btrfs_path *path; 3807 struct btrfs_root *root = BTRFS_I(dir)->root; 3808 int ret = 0; 3809 3810 path = btrfs_alloc_path(); 3811 BUG_ON(!path); 3812 3813 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 3814 namelen, 0); 3815 if (IS_ERR(di)) 3816 ret = PTR_ERR(di); 3817 3818 if (!di || IS_ERR(di)) 3819 goto out_err; 3820 3821 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3822 out: 3823 btrfs_free_path(path); 3824 return ret; 3825 out_err: 3826 location->objectid = 0; 3827 goto out; 3828 } 3829 3830 /* 3831 * when we hit a tree root in a directory, the btrfs part of the inode 3832 * needs to be changed to reflect the root directory of the tree root. This 3833 * is kind of like crossing a mount point. 3834 */ 3835 static int fixup_tree_root_location(struct btrfs_root *root, 3836 struct inode *dir, 3837 struct dentry *dentry, 3838 struct btrfs_key *location, 3839 struct btrfs_root **sub_root) 3840 { 3841 struct btrfs_path *path; 3842 struct btrfs_root *new_root; 3843 struct btrfs_root_ref *ref; 3844 struct extent_buffer *leaf; 3845 int ret; 3846 int err = 0; 3847 3848 path = btrfs_alloc_path(); 3849 if (!path) { 3850 err = -ENOMEM; 3851 goto out; 3852 } 3853 3854 err = -ENOENT; 3855 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3856 BTRFS_I(dir)->root->root_key.objectid, 3857 location->objectid); 3858 if (ret) { 3859 if (ret < 0) 3860 err = ret; 3861 goto out; 3862 } 3863 3864 leaf = path->nodes[0]; 3865 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3866 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino || 3867 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3868 goto out; 3869 3870 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3871 (unsigned long)(ref + 1), 3872 dentry->d_name.len); 3873 if (ret) 3874 goto out; 3875 3876 btrfs_release_path(root->fs_info->tree_root, path); 3877 3878 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3879 if (IS_ERR(new_root)) { 3880 err = PTR_ERR(new_root); 3881 goto out; 3882 } 3883 3884 if (btrfs_root_refs(&new_root->root_item) == 0) { 3885 err = -ENOENT; 3886 goto out; 3887 } 3888 3889 *sub_root = new_root; 3890 location->objectid = btrfs_root_dirid(&new_root->root_item); 3891 location->type = BTRFS_INODE_ITEM_KEY; 3892 location->offset = 0; 3893 err = 0; 3894 out: 3895 btrfs_free_path(path); 3896 return err; 3897 } 3898 3899 static void inode_tree_add(struct inode *inode) 3900 { 3901 struct btrfs_root *root = BTRFS_I(inode)->root; 3902 struct btrfs_inode *entry; 3903 struct rb_node **p; 3904 struct rb_node *parent; 3905 again: 3906 p = &root->inode_tree.rb_node; 3907 parent = NULL; 3908 3909 if (inode_unhashed(inode)) 3910 return; 3911 3912 spin_lock(&root->inode_lock); 3913 while (*p) { 3914 parent = *p; 3915 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3916 3917 if (inode->i_ino < entry->vfs_inode.i_ino) 3918 p = &parent->rb_left; 3919 else if (inode->i_ino > entry->vfs_inode.i_ino) 3920 p = &parent->rb_right; 3921 else { 3922 WARN_ON(!(entry->vfs_inode.i_state & 3923 (I_WILL_FREE | I_FREEING))); 3924 rb_erase(parent, &root->inode_tree); 3925 RB_CLEAR_NODE(parent); 3926 spin_unlock(&root->inode_lock); 3927 goto again; 3928 } 3929 } 3930 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3931 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3932 spin_unlock(&root->inode_lock); 3933 } 3934 3935 static void inode_tree_del(struct inode *inode) 3936 { 3937 struct btrfs_root *root = BTRFS_I(inode)->root; 3938 int empty = 0; 3939 3940 spin_lock(&root->inode_lock); 3941 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3942 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3943 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3944 empty = RB_EMPTY_ROOT(&root->inode_tree); 3945 } 3946 spin_unlock(&root->inode_lock); 3947 3948 /* 3949 * Free space cache has inodes in the tree root, but the tree root has a 3950 * root_refs of 0, so this could end up dropping the tree root as a 3951 * snapshot, so we need the extra !root->fs_info->tree_root check to 3952 * make sure we don't drop it. 3953 */ 3954 if (empty && btrfs_root_refs(&root->root_item) == 0 && 3955 root != root->fs_info->tree_root) { 3956 synchronize_srcu(&root->fs_info->subvol_srcu); 3957 spin_lock(&root->inode_lock); 3958 empty = RB_EMPTY_ROOT(&root->inode_tree); 3959 spin_unlock(&root->inode_lock); 3960 if (empty) 3961 btrfs_add_dead_root(root); 3962 } 3963 } 3964 3965 int btrfs_invalidate_inodes(struct btrfs_root *root) 3966 { 3967 struct rb_node *node; 3968 struct rb_node *prev; 3969 struct btrfs_inode *entry; 3970 struct inode *inode; 3971 u64 objectid = 0; 3972 3973 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3974 3975 spin_lock(&root->inode_lock); 3976 again: 3977 node = root->inode_tree.rb_node; 3978 prev = NULL; 3979 while (node) { 3980 prev = node; 3981 entry = rb_entry(node, struct btrfs_inode, rb_node); 3982 3983 if (objectid < entry->vfs_inode.i_ino) 3984 node = node->rb_left; 3985 else if (objectid > entry->vfs_inode.i_ino) 3986 node = node->rb_right; 3987 else 3988 break; 3989 } 3990 if (!node) { 3991 while (prev) { 3992 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3993 if (objectid <= entry->vfs_inode.i_ino) { 3994 node = prev; 3995 break; 3996 } 3997 prev = rb_next(prev); 3998 } 3999 } 4000 while (node) { 4001 entry = rb_entry(node, struct btrfs_inode, rb_node); 4002 objectid = entry->vfs_inode.i_ino + 1; 4003 inode = igrab(&entry->vfs_inode); 4004 if (inode) { 4005 spin_unlock(&root->inode_lock); 4006 if (atomic_read(&inode->i_count) > 1) 4007 d_prune_aliases(inode); 4008 /* 4009 * btrfs_drop_inode will have it removed from 4010 * the inode cache when its usage count 4011 * hits zero. 4012 */ 4013 iput(inode); 4014 cond_resched(); 4015 spin_lock(&root->inode_lock); 4016 goto again; 4017 } 4018 4019 if (cond_resched_lock(&root->inode_lock)) 4020 goto again; 4021 4022 node = rb_next(node); 4023 } 4024 spin_unlock(&root->inode_lock); 4025 return 0; 4026 } 4027 4028 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4029 { 4030 struct btrfs_iget_args *args = p; 4031 inode->i_ino = args->ino; 4032 BTRFS_I(inode)->root = args->root; 4033 btrfs_set_inode_space_info(args->root, inode); 4034 return 0; 4035 } 4036 4037 static int btrfs_find_actor(struct inode *inode, void *opaque) 4038 { 4039 struct btrfs_iget_args *args = opaque; 4040 return args->ino == inode->i_ino && 4041 args->root == BTRFS_I(inode)->root; 4042 } 4043 4044 static struct inode *btrfs_iget_locked(struct super_block *s, 4045 u64 objectid, 4046 struct btrfs_root *root) 4047 { 4048 struct inode *inode; 4049 struct btrfs_iget_args args; 4050 args.ino = objectid; 4051 args.root = root; 4052 4053 inode = iget5_locked(s, objectid, btrfs_find_actor, 4054 btrfs_init_locked_inode, 4055 (void *)&args); 4056 return inode; 4057 } 4058 4059 /* Get an inode object given its location and corresponding root. 4060 * Returns in *is_new if the inode was read from disk 4061 */ 4062 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4063 struct btrfs_root *root, int *new) 4064 { 4065 struct inode *inode; 4066 4067 inode = btrfs_iget_locked(s, location->objectid, root); 4068 if (!inode) 4069 return ERR_PTR(-ENOMEM); 4070 4071 if (inode->i_state & I_NEW) { 4072 BTRFS_I(inode)->root = root; 4073 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4074 btrfs_read_locked_inode(inode); 4075 4076 inode_tree_add(inode); 4077 unlock_new_inode(inode); 4078 if (new) 4079 *new = 1; 4080 } 4081 4082 return inode; 4083 } 4084 4085 static struct inode *new_simple_dir(struct super_block *s, 4086 struct btrfs_key *key, 4087 struct btrfs_root *root) 4088 { 4089 struct inode *inode = new_inode(s); 4090 4091 if (!inode) 4092 return ERR_PTR(-ENOMEM); 4093 4094 BTRFS_I(inode)->root = root; 4095 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4096 BTRFS_I(inode)->dummy_inode = 1; 4097 4098 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4099 inode->i_op = &simple_dir_inode_operations; 4100 inode->i_fop = &simple_dir_operations; 4101 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4102 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4103 4104 return inode; 4105 } 4106 4107 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4108 { 4109 struct inode *inode; 4110 struct btrfs_root *root = BTRFS_I(dir)->root; 4111 struct btrfs_root *sub_root = root; 4112 struct btrfs_key location; 4113 int index; 4114 int ret; 4115 4116 if (dentry->d_name.len > BTRFS_NAME_LEN) 4117 return ERR_PTR(-ENAMETOOLONG); 4118 4119 ret = btrfs_inode_by_name(dir, dentry, &location); 4120 4121 if (ret < 0) 4122 return ERR_PTR(ret); 4123 4124 if (location.objectid == 0) 4125 return NULL; 4126 4127 if (location.type == BTRFS_INODE_ITEM_KEY) { 4128 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4129 return inode; 4130 } 4131 4132 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4133 4134 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4135 ret = fixup_tree_root_location(root, dir, dentry, 4136 &location, &sub_root); 4137 if (ret < 0) { 4138 if (ret != -ENOENT) 4139 inode = ERR_PTR(ret); 4140 else 4141 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4142 } else { 4143 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4144 } 4145 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4146 4147 if (!IS_ERR(inode) && root != sub_root) { 4148 down_read(&root->fs_info->cleanup_work_sem); 4149 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4150 btrfs_orphan_cleanup(sub_root); 4151 up_read(&root->fs_info->cleanup_work_sem); 4152 } 4153 4154 return inode; 4155 } 4156 4157 static int btrfs_dentry_delete(const struct dentry *dentry) 4158 { 4159 struct btrfs_root *root; 4160 4161 if (!dentry->d_inode && !IS_ROOT(dentry)) 4162 dentry = dentry->d_parent; 4163 4164 if (dentry->d_inode) { 4165 root = BTRFS_I(dentry->d_inode)->root; 4166 if (btrfs_root_refs(&root->root_item) == 0) 4167 return 1; 4168 } 4169 return 0; 4170 } 4171 4172 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4173 struct nameidata *nd) 4174 { 4175 struct inode *inode; 4176 4177 inode = btrfs_lookup_dentry(dir, dentry); 4178 if (IS_ERR(inode)) 4179 return ERR_CAST(inode); 4180 4181 return d_splice_alias(inode, dentry); 4182 } 4183 4184 static unsigned char btrfs_filetype_table[] = { 4185 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4186 }; 4187 4188 static int btrfs_real_readdir(struct file *filp, void *dirent, 4189 filldir_t filldir) 4190 { 4191 struct inode *inode = filp->f_dentry->d_inode; 4192 struct btrfs_root *root = BTRFS_I(inode)->root; 4193 struct btrfs_item *item; 4194 struct btrfs_dir_item *di; 4195 struct btrfs_key key; 4196 struct btrfs_key found_key; 4197 struct btrfs_path *path; 4198 int ret; 4199 u32 nritems; 4200 struct extent_buffer *leaf; 4201 int slot; 4202 int advance; 4203 unsigned char d_type; 4204 int over = 0; 4205 u32 di_cur; 4206 u32 di_total; 4207 u32 di_len; 4208 int key_type = BTRFS_DIR_INDEX_KEY; 4209 char tmp_name[32]; 4210 char *name_ptr; 4211 int name_len; 4212 4213 /* FIXME, use a real flag for deciding about the key type */ 4214 if (root->fs_info->tree_root == root) 4215 key_type = BTRFS_DIR_ITEM_KEY; 4216 4217 /* special case for "." */ 4218 if (filp->f_pos == 0) { 4219 over = filldir(dirent, ".", 1, 4220 1, inode->i_ino, 4221 DT_DIR); 4222 if (over) 4223 return 0; 4224 filp->f_pos = 1; 4225 } 4226 /* special case for .., just use the back ref */ 4227 if (filp->f_pos == 1) { 4228 u64 pino = parent_ino(filp->f_path.dentry); 4229 over = filldir(dirent, "..", 2, 4230 2, pino, DT_DIR); 4231 if (over) 4232 return 0; 4233 filp->f_pos = 2; 4234 } 4235 path = btrfs_alloc_path(); 4236 path->reada = 2; 4237 4238 btrfs_set_key_type(&key, key_type); 4239 key.offset = filp->f_pos; 4240 key.objectid = inode->i_ino; 4241 4242 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4243 if (ret < 0) 4244 goto err; 4245 advance = 0; 4246 4247 while (1) { 4248 leaf = path->nodes[0]; 4249 nritems = btrfs_header_nritems(leaf); 4250 slot = path->slots[0]; 4251 if (advance || slot >= nritems) { 4252 if (slot >= nritems - 1) { 4253 ret = btrfs_next_leaf(root, path); 4254 if (ret) 4255 break; 4256 leaf = path->nodes[0]; 4257 nritems = btrfs_header_nritems(leaf); 4258 slot = path->slots[0]; 4259 } else { 4260 slot++; 4261 path->slots[0]++; 4262 } 4263 } 4264 4265 advance = 1; 4266 item = btrfs_item_nr(leaf, slot); 4267 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4268 4269 if (found_key.objectid != key.objectid) 4270 break; 4271 if (btrfs_key_type(&found_key) != key_type) 4272 break; 4273 if (found_key.offset < filp->f_pos) 4274 continue; 4275 4276 filp->f_pos = found_key.offset; 4277 4278 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4279 di_cur = 0; 4280 di_total = btrfs_item_size(leaf, item); 4281 4282 while (di_cur < di_total) { 4283 struct btrfs_key location; 4284 4285 name_len = btrfs_dir_name_len(leaf, di); 4286 if (name_len <= sizeof(tmp_name)) { 4287 name_ptr = tmp_name; 4288 } else { 4289 name_ptr = kmalloc(name_len, GFP_NOFS); 4290 if (!name_ptr) { 4291 ret = -ENOMEM; 4292 goto err; 4293 } 4294 } 4295 read_extent_buffer(leaf, name_ptr, 4296 (unsigned long)(di + 1), name_len); 4297 4298 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4299 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4300 4301 /* is this a reference to our own snapshot? If so 4302 * skip it 4303 */ 4304 if (location.type == BTRFS_ROOT_ITEM_KEY && 4305 location.objectid == root->root_key.objectid) { 4306 over = 0; 4307 goto skip; 4308 } 4309 over = filldir(dirent, name_ptr, name_len, 4310 found_key.offset, location.objectid, 4311 d_type); 4312 4313 skip: 4314 if (name_ptr != tmp_name) 4315 kfree(name_ptr); 4316 4317 if (over) 4318 goto nopos; 4319 di_len = btrfs_dir_name_len(leaf, di) + 4320 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4321 di_cur += di_len; 4322 di = (struct btrfs_dir_item *)((char *)di + di_len); 4323 } 4324 } 4325 4326 /* Reached end of directory/root. Bump pos past the last item. */ 4327 if (key_type == BTRFS_DIR_INDEX_KEY) 4328 /* 4329 * 32-bit glibc will use getdents64, but then strtol - 4330 * so the last number we can serve is this. 4331 */ 4332 filp->f_pos = 0x7fffffff; 4333 else 4334 filp->f_pos++; 4335 nopos: 4336 ret = 0; 4337 err: 4338 btrfs_free_path(path); 4339 return ret; 4340 } 4341 4342 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4343 { 4344 struct btrfs_root *root = BTRFS_I(inode)->root; 4345 struct btrfs_trans_handle *trans; 4346 int ret = 0; 4347 bool nolock = false; 4348 4349 if (BTRFS_I(inode)->dummy_inode) 4350 return 0; 4351 4352 smp_mb(); 4353 nolock = (root->fs_info->closing && root == root->fs_info->tree_root); 4354 4355 if (wbc->sync_mode == WB_SYNC_ALL) { 4356 if (nolock) 4357 trans = btrfs_join_transaction_nolock(root, 1); 4358 else 4359 trans = btrfs_join_transaction(root, 1); 4360 if (IS_ERR(trans)) 4361 return PTR_ERR(trans); 4362 btrfs_set_trans_block_group(trans, inode); 4363 if (nolock) 4364 ret = btrfs_end_transaction_nolock(trans, root); 4365 else 4366 ret = btrfs_commit_transaction(trans, root); 4367 } 4368 return ret; 4369 } 4370 4371 /* 4372 * This is somewhat expensive, updating the tree every time the 4373 * inode changes. But, it is most likely to find the inode in cache. 4374 * FIXME, needs more benchmarking...there are no reasons other than performance 4375 * to keep or drop this code. 4376 */ 4377 void btrfs_dirty_inode(struct inode *inode) 4378 { 4379 struct btrfs_root *root = BTRFS_I(inode)->root; 4380 struct btrfs_trans_handle *trans; 4381 int ret; 4382 4383 if (BTRFS_I(inode)->dummy_inode) 4384 return; 4385 4386 trans = btrfs_join_transaction(root, 1); 4387 BUG_ON(IS_ERR(trans)); 4388 btrfs_set_trans_block_group(trans, inode); 4389 4390 ret = btrfs_update_inode(trans, root, inode); 4391 if (ret && ret == -ENOSPC) { 4392 /* whoops, lets try again with the full transaction */ 4393 btrfs_end_transaction(trans, root); 4394 trans = btrfs_start_transaction(root, 1); 4395 if (IS_ERR(trans)) { 4396 if (printk_ratelimit()) { 4397 printk(KERN_ERR "btrfs: fail to " 4398 "dirty inode %lu error %ld\n", 4399 inode->i_ino, PTR_ERR(trans)); 4400 } 4401 return; 4402 } 4403 btrfs_set_trans_block_group(trans, inode); 4404 4405 ret = btrfs_update_inode(trans, root, inode); 4406 if (ret) { 4407 if (printk_ratelimit()) { 4408 printk(KERN_ERR "btrfs: fail to " 4409 "dirty inode %lu error %d\n", 4410 inode->i_ino, ret); 4411 } 4412 } 4413 } 4414 btrfs_end_transaction(trans, root); 4415 } 4416 4417 /* 4418 * find the highest existing sequence number in a directory 4419 * and then set the in-memory index_cnt variable to reflect 4420 * free sequence numbers 4421 */ 4422 static int btrfs_set_inode_index_count(struct inode *inode) 4423 { 4424 struct btrfs_root *root = BTRFS_I(inode)->root; 4425 struct btrfs_key key, found_key; 4426 struct btrfs_path *path; 4427 struct extent_buffer *leaf; 4428 int ret; 4429 4430 key.objectid = inode->i_ino; 4431 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4432 key.offset = (u64)-1; 4433 4434 path = btrfs_alloc_path(); 4435 if (!path) 4436 return -ENOMEM; 4437 4438 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4439 if (ret < 0) 4440 goto out; 4441 /* FIXME: we should be able to handle this */ 4442 if (ret == 0) 4443 goto out; 4444 ret = 0; 4445 4446 /* 4447 * MAGIC NUMBER EXPLANATION: 4448 * since we search a directory based on f_pos we have to start at 2 4449 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4450 * else has to start at 2 4451 */ 4452 if (path->slots[0] == 0) { 4453 BTRFS_I(inode)->index_cnt = 2; 4454 goto out; 4455 } 4456 4457 path->slots[0]--; 4458 4459 leaf = path->nodes[0]; 4460 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4461 4462 if (found_key.objectid != inode->i_ino || 4463 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4464 BTRFS_I(inode)->index_cnt = 2; 4465 goto out; 4466 } 4467 4468 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4469 out: 4470 btrfs_free_path(path); 4471 return ret; 4472 } 4473 4474 /* 4475 * helper to find a free sequence number in a given directory. This current 4476 * code is very simple, later versions will do smarter things in the btree 4477 */ 4478 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4479 { 4480 int ret = 0; 4481 4482 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4483 ret = btrfs_set_inode_index_count(dir); 4484 if (ret) 4485 return ret; 4486 } 4487 4488 *index = BTRFS_I(dir)->index_cnt; 4489 BTRFS_I(dir)->index_cnt++; 4490 4491 return ret; 4492 } 4493 4494 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4495 struct btrfs_root *root, 4496 struct inode *dir, 4497 const char *name, int name_len, 4498 u64 ref_objectid, u64 objectid, 4499 u64 alloc_hint, int mode, u64 *index) 4500 { 4501 struct inode *inode; 4502 struct btrfs_inode_item *inode_item; 4503 struct btrfs_key *location; 4504 struct btrfs_path *path; 4505 struct btrfs_inode_ref *ref; 4506 struct btrfs_key key[2]; 4507 u32 sizes[2]; 4508 unsigned long ptr; 4509 int ret; 4510 int owner; 4511 4512 path = btrfs_alloc_path(); 4513 BUG_ON(!path); 4514 4515 inode = new_inode(root->fs_info->sb); 4516 if (!inode) 4517 return ERR_PTR(-ENOMEM); 4518 4519 if (dir) { 4520 ret = btrfs_set_inode_index(dir, index); 4521 if (ret) { 4522 iput(inode); 4523 return ERR_PTR(ret); 4524 } 4525 } 4526 /* 4527 * index_cnt is ignored for everything but a dir, 4528 * btrfs_get_inode_index_count has an explanation for the magic 4529 * number 4530 */ 4531 BTRFS_I(inode)->index_cnt = 2; 4532 BTRFS_I(inode)->root = root; 4533 BTRFS_I(inode)->generation = trans->transid; 4534 inode->i_generation = BTRFS_I(inode)->generation; 4535 btrfs_set_inode_space_info(root, inode); 4536 4537 if (mode & S_IFDIR) 4538 owner = 0; 4539 else 4540 owner = 1; 4541 BTRFS_I(inode)->block_group = 4542 btrfs_find_block_group(root, 0, alloc_hint, owner); 4543 4544 key[0].objectid = objectid; 4545 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4546 key[0].offset = 0; 4547 4548 key[1].objectid = objectid; 4549 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4550 key[1].offset = ref_objectid; 4551 4552 sizes[0] = sizeof(struct btrfs_inode_item); 4553 sizes[1] = name_len + sizeof(*ref); 4554 4555 path->leave_spinning = 1; 4556 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4557 if (ret != 0) 4558 goto fail; 4559 4560 inode_init_owner(inode, dir, mode); 4561 inode->i_ino = objectid; 4562 inode_set_bytes(inode, 0); 4563 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4564 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4565 struct btrfs_inode_item); 4566 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4567 4568 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4569 struct btrfs_inode_ref); 4570 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4571 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4572 ptr = (unsigned long)(ref + 1); 4573 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4574 4575 btrfs_mark_buffer_dirty(path->nodes[0]); 4576 btrfs_free_path(path); 4577 4578 location = &BTRFS_I(inode)->location; 4579 location->objectid = objectid; 4580 location->offset = 0; 4581 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4582 4583 btrfs_inherit_iflags(inode, dir); 4584 4585 if ((mode & S_IFREG)) { 4586 if (btrfs_test_opt(root, NODATASUM)) 4587 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4588 if (btrfs_test_opt(root, NODATACOW)) 4589 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4590 } 4591 4592 insert_inode_hash(inode); 4593 inode_tree_add(inode); 4594 return inode; 4595 fail: 4596 if (dir) 4597 BTRFS_I(dir)->index_cnt--; 4598 btrfs_free_path(path); 4599 iput(inode); 4600 return ERR_PTR(ret); 4601 } 4602 4603 static inline u8 btrfs_inode_type(struct inode *inode) 4604 { 4605 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4606 } 4607 4608 /* 4609 * utility function to add 'inode' into 'parent_inode' with 4610 * a give name and a given sequence number. 4611 * if 'add_backref' is true, also insert a backref from the 4612 * inode to the parent directory. 4613 */ 4614 int btrfs_add_link(struct btrfs_trans_handle *trans, 4615 struct inode *parent_inode, struct inode *inode, 4616 const char *name, int name_len, int add_backref, u64 index) 4617 { 4618 int ret = 0; 4619 struct btrfs_key key; 4620 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4621 4622 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4623 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4624 } else { 4625 key.objectid = inode->i_ino; 4626 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4627 key.offset = 0; 4628 } 4629 4630 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4631 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4632 key.objectid, root->root_key.objectid, 4633 parent_inode->i_ino, 4634 index, name, name_len); 4635 } else if (add_backref) { 4636 ret = btrfs_insert_inode_ref(trans, root, 4637 name, name_len, inode->i_ino, 4638 parent_inode->i_ino, index); 4639 } 4640 4641 if (ret == 0) { 4642 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4643 parent_inode->i_ino, &key, 4644 btrfs_inode_type(inode), index); 4645 BUG_ON(ret); 4646 4647 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4648 name_len * 2); 4649 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4650 ret = btrfs_update_inode(trans, root, parent_inode); 4651 } 4652 return ret; 4653 } 4654 4655 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4656 struct inode *dir, struct dentry *dentry, 4657 struct inode *inode, int backref, u64 index) 4658 { 4659 int err = btrfs_add_link(trans, dir, inode, 4660 dentry->d_name.name, dentry->d_name.len, 4661 backref, index); 4662 if (!err) { 4663 d_instantiate(dentry, inode); 4664 return 0; 4665 } 4666 if (err > 0) 4667 err = -EEXIST; 4668 return err; 4669 } 4670 4671 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4672 int mode, dev_t rdev) 4673 { 4674 struct btrfs_trans_handle *trans; 4675 struct btrfs_root *root = BTRFS_I(dir)->root; 4676 struct inode *inode = NULL; 4677 int err; 4678 int drop_inode = 0; 4679 u64 objectid; 4680 unsigned long nr = 0; 4681 u64 index = 0; 4682 4683 if (!new_valid_dev(rdev)) 4684 return -EINVAL; 4685 4686 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4687 if (err) 4688 return err; 4689 4690 /* 4691 * 2 for inode item and ref 4692 * 2 for dir items 4693 * 1 for xattr if selinux is on 4694 */ 4695 trans = btrfs_start_transaction(root, 5); 4696 if (IS_ERR(trans)) 4697 return PTR_ERR(trans); 4698 4699 btrfs_set_trans_block_group(trans, dir); 4700 4701 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4702 dentry->d_name.len, dir->i_ino, objectid, 4703 BTRFS_I(dir)->block_group, mode, &index); 4704 err = PTR_ERR(inode); 4705 if (IS_ERR(inode)) 4706 goto out_unlock; 4707 4708 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4709 if (err) { 4710 drop_inode = 1; 4711 goto out_unlock; 4712 } 4713 4714 btrfs_set_trans_block_group(trans, inode); 4715 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4716 if (err) 4717 drop_inode = 1; 4718 else { 4719 inode->i_op = &btrfs_special_inode_operations; 4720 init_special_inode(inode, inode->i_mode, rdev); 4721 btrfs_update_inode(trans, root, inode); 4722 } 4723 btrfs_update_inode_block_group(trans, inode); 4724 btrfs_update_inode_block_group(trans, dir); 4725 out_unlock: 4726 nr = trans->blocks_used; 4727 btrfs_end_transaction_throttle(trans, root); 4728 btrfs_btree_balance_dirty(root, nr); 4729 if (drop_inode) { 4730 inode_dec_link_count(inode); 4731 iput(inode); 4732 } 4733 return err; 4734 } 4735 4736 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4737 int mode, struct nameidata *nd) 4738 { 4739 struct btrfs_trans_handle *trans; 4740 struct btrfs_root *root = BTRFS_I(dir)->root; 4741 struct inode *inode = NULL; 4742 int drop_inode = 0; 4743 int err; 4744 unsigned long nr = 0; 4745 u64 objectid; 4746 u64 index = 0; 4747 4748 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4749 if (err) 4750 return err; 4751 /* 4752 * 2 for inode item and ref 4753 * 2 for dir items 4754 * 1 for xattr if selinux is on 4755 */ 4756 trans = btrfs_start_transaction(root, 5); 4757 if (IS_ERR(trans)) 4758 return PTR_ERR(trans); 4759 4760 btrfs_set_trans_block_group(trans, dir); 4761 4762 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4763 dentry->d_name.len, dir->i_ino, objectid, 4764 BTRFS_I(dir)->block_group, mode, &index); 4765 err = PTR_ERR(inode); 4766 if (IS_ERR(inode)) 4767 goto out_unlock; 4768 4769 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4770 if (err) { 4771 drop_inode = 1; 4772 goto out_unlock; 4773 } 4774 4775 btrfs_set_trans_block_group(trans, inode); 4776 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4777 if (err) 4778 drop_inode = 1; 4779 else { 4780 inode->i_mapping->a_ops = &btrfs_aops; 4781 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4782 inode->i_fop = &btrfs_file_operations; 4783 inode->i_op = &btrfs_file_inode_operations; 4784 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4785 } 4786 btrfs_update_inode_block_group(trans, inode); 4787 btrfs_update_inode_block_group(trans, dir); 4788 out_unlock: 4789 nr = trans->blocks_used; 4790 btrfs_end_transaction_throttle(trans, root); 4791 if (drop_inode) { 4792 inode_dec_link_count(inode); 4793 iput(inode); 4794 } 4795 btrfs_btree_balance_dirty(root, nr); 4796 return err; 4797 } 4798 4799 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4800 struct dentry *dentry) 4801 { 4802 struct btrfs_trans_handle *trans; 4803 struct btrfs_root *root = BTRFS_I(dir)->root; 4804 struct inode *inode = old_dentry->d_inode; 4805 u64 index; 4806 unsigned long nr = 0; 4807 int err; 4808 int drop_inode = 0; 4809 4810 /* do not allow sys_link's with other subvols of the same device */ 4811 if (root->objectid != BTRFS_I(inode)->root->objectid) 4812 return -EPERM; 4813 4814 btrfs_inc_nlink(inode); 4815 inode->i_ctime = CURRENT_TIME; 4816 4817 err = btrfs_set_inode_index(dir, &index); 4818 if (err) 4819 goto fail; 4820 4821 /* 4822 * 2 items for inode and inode ref 4823 * 2 items for dir items 4824 * 1 item for parent inode 4825 */ 4826 trans = btrfs_start_transaction(root, 5); 4827 if (IS_ERR(trans)) { 4828 err = PTR_ERR(trans); 4829 goto fail; 4830 } 4831 4832 btrfs_set_trans_block_group(trans, dir); 4833 ihold(inode); 4834 4835 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 4836 4837 if (err) { 4838 drop_inode = 1; 4839 } else { 4840 struct dentry *parent = dget_parent(dentry); 4841 btrfs_update_inode_block_group(trans, dir); 4842 err = btrfs_update_inode(trans, root, inode); 4843 BUG_ON(err); 4844 btrfs_log_new_name(trans, inode, NULL, parent); 4845 dput(parent); 4846 } 4847 4848 nr = trans->blocks_used; 4849 btrfs_end_transaction_throttle(trans, root); 4850 fail: 4851 if (drop_inode) { 4852 inode_dec_link_count(inode); 4853 iput(inode); 4854 } 4855 btrfs_btree_balance_dirty(root, nr); 4856 return err; 4857 } 4858 4859 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4860 { 4861 struct inode *inode = NULL; 4862 struct btrfs_trans_handle *trans; 4863 struct btrfs_root *root = BTRFS_I(dir)->root; 4864 int err = 0; 4865 int drop_on_err = 0; 4866 u64 objectid = 0; 4867 u64 index = 0; 4868 unsigned long nr = 1; 4869 4870 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4871 if (err) 4872 return err; 4873 4874 /* 4875 * 2 items for inode and ref 4876 * 2 items for dir items 4877 * 1 for xattr if selinux is on 4878 */ 4879 trans = btrfs_start_transaction(root, 5); 4880 if (IS_ERR(trans)) 4881 return PTR_ERR(trans); 4882 btrfs_set_trans_block_group(trans, dir); 4883 4884 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4885 dentry->d_name.len, dir->i_ino, objectid, 4886 BTRFS_I(dir)->block_group, S_IFDIR | mode, 4887 &index); 4888 if (IS_ERR(inode)) { 4889 err = PTR_ERR(inode); 4890 goto out_fail; 4891 } 4892 4893 drop_on_err = 1; 4894 4895 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4896 if (err) 4897 goto out_fail; 4898 4899 inode->i_op = &btrfs_dir_inode_operations; 4900 inode->i_fop = &btrfs_dir_file_operations; 4901 btrfs_set_trans_block_group(trans, inode); 4902 4903 btrfs_i_size_write(inode, 0); 4904 err = btrfs_update_inode(trans, root, inode); 4905 if (err) 4906 goto out_fail; 4907 4908 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 4909 dentry->d_name.len, 0, index); 4910 if (err) 4911 goto out_fail; 4912 4913 d_instantiate(dentry, inode); 4914 drop_on_err = 0; 4915 btrfs_update_inode_block_group(trans, inode); 4916 btrfs_update_inode_block_group(trans, dir); 4917 4918 out_fail: 4919 nr = trans->blocks_used; 4920 btrfs_end_transaction_throttle(trans, root); 4921 if (drop_on_err) 4922 iput(inode); 4923 btrfs_btree_balance_dirty(root, nr); 4924 return err; 4925 } 4926 4927 /* helper for btfs_get_extent. Given an existing extent in the tree, 4928 * and an extent that you want to insert, deal with overlap and insert 4929 * the new extent into the tree. 4930 */ 4931 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4932 struct extent_map *existing, 4933 struct extent_map *em, 4934 u64 map_start, u64 map_len) 4935 { 4936 u64 start_diff; 4937 4938 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4939 start_diff = map_start - em->start; 4940 em->start = map_start; 4941 em->len = map_len; 4942 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4943 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4944 em->block_start += start_diff; 4945 em->block_len -= start_diff; 4946 } 4947 return add_extent_mapping(em_tree, em); 4948 } 4949 4950 static noinline int uncompress_inline(struct btrfs_path *path, 4951 struct inode *inode, struct page *page, 4952 size_t pg_offset, u64 extent_offset, 4953 struct btrfs_file_extent_item *item) 4954 { 4955 int ret; 4956 struct extent_buffer *leaf = path->nodes[0]; 4957 char *tmp; 4958 size_t max_size; 4959 unsigned long inline_size; 4960 unsigned long ptr; 4961 int compress_type; 4962 4963 WARN_ON(pg_offset != 0); 4964 compress_type = btrfs_file_extent_compression(leaf, item); 4965 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4966 inline_size = btrfs_file_extent_inline_item_len(leaf, 4967 btrfs_item_nr(leaf, path->slots[0])); 4968 tmp = kmalloc(inline_size, GFP_NOFS); 4969 ptr = btrfs_file_extent_inline_start(item); 4970 4971 read_extent_buffer(leaf, tmp, ptr, inline_size); 4972 4973 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4974 ret = btrfs_decompress(compress_type, tmp, page, 4975 extent_offset, inline_size, max_size); 4976 if (ret) { 4977 char *kaddr = kmap_atomic(page, KM_USER0); 4978 unsigned long copy_size = min_t(u64, 4979 PAGE_CACHE_SIZE - pg_offset, 4980 max_size - extent_offset); 4981 memset(kaddr + pg_offset, 0, copy_size); 4982 kunmap_atomic(kaddr, KM_USER0); 4983 } 4984 kfree(tmp); 4985 return 0; 4986 } 4987 4988 /* 4989 * a bit scary, this does extent mapping from logical file offset to the disk. 4990 * the ugly parts come from merging extents from the disk with the in-ram 4991 * representation. This gets more complex because of the data=ordered code, 4992 * where the in-ram extents might be locked pending data=ordered completion. 4993 * 4994 * This also copies inline extents directly into the page. 4995 */ 4996 4997 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4998 size_t pg_offset, u64 start, u64 len, 4999 int create) 5000 { 5001 int ret; 5002 int err = 0; 5003 u64 bytenr; 5004 u64 extent_start = 0; 5005 u64 extent_end = 0; 5006 u64 objectid = inode->i_ino; 5007 u32 found_type; 5008 struct btrfs_path *path = NULL; 5009 struct btrfs_root *root = BTRFS_I(inode)->root; 5010 struct btrfs_file_extent_item *item; 5011 struct extent_buffer *leaf; 5012 struct btrfs_key found_key; 5013 struct extent_map *em = NULL; 5014 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5015 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5016 struct btrfs_trans_handle *trans = NULL; 5017 int compress_type; 5018 5019 again: 5020 read_lock(&em_tree->lock); 5021 em = lookup_extent_mapping(em_tree, start, len); 5022 if (em) 5023 em->bdev = root->fs_info->fs_devices->latest_bdev; 5024 read_unlock(&em_tree->lock); 5025 5026 if (em) { 5027 if (em->start > start || em->start + em->len <= start) 5028 free_extent_map(em); 5029 else if (em->block_start == EXTENT_MAP_INLINE && page) 5030 free_extent_map(em); 5031 else 5032 goto out; 5033 } 5034 em = alloc_extent_map(GFP_NOFS); 5035 if (!em) { 5036 err = -ENOMEM; 5037 goto out; 5038 } 5039 em->bdev = root->fs_info->fs_devices->latest_bdev; 5040 em->start = EXTENT_MAP_HOLE; 5041 em->orig_start = EXTENT_MAP_HOLE; 5042 em->len = (u64)-1; 5043 em->block_len = (u64)-1; 5044 5045 if (!path) { 5046 path = btrfs_alloc_path(); 5047 BUG_ON(!path); 5048 } 5049 5050 ret = btrfs_lookup_file_extent(trans, root, path, 5051 objectid, start, trans != NULL); 5052 if (ret < 0) { 5053 err = ret; 5054 goto out; 5055 } 5056 5057 if (ret != 0) { 5058 if (path->slots[0] == 0) 5059 goto not_found; 5060 path->slots[0]--; 5061 } 5062 5063 leaf = path->nodes[0]; 5064 item = btrfs_item_ptr(leaf, path->slots[0], 5065 struct btrfs_file_extent_item); 5066 /* are we inside the extent that was found? */ 5067 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5068 found_type = btrfs_key_type(&found_key); 5069 if (found_key.objectid != objectid || 5070 found_type != BTRFS_EXTENT_DATA_KEY) { 5071 goto not_found; 5072 } 5073 5074 found_type = btrfs_file_extent_type(leaf, item); 5075 extent_start = found_key.offset; 5076 compress_type = btrfs_file_extent_compression(leaf, item); 5077 if (found_type == BTRFS_FILE_EXTENT_REG || 5078 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5079 extent_end = extent_start + 5080 btrfs_file_extent_num_bytes(leaf, item); 5081 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5082 size_t size; 5083 size = btrfs_file_extent_inline_len(leaf, item); 5084 extent_end = (extent_start + size + root->sectorsize - 1) & 5085 ~((u64)root->sectorsize - 1); 5086 } 5087 5088 if (start >= extent_end) { 5089 path->slots[0]++; 5090 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5091 ret = btrfs_next_leaf(root, path); 5092 if (ret < 0) { 5093 err = ret; 5094 goto out; 5095 } 5096 if (ret > 0) 5097 goto not_found; 5098 leaf = path->nodes[0]; 5099 } 5100 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5101 if (found_key.objectid != objectid || 5102 found_key.type != BTRFS_EXTENT_DATA_KEY) 5103 goto not_found; 5104 if (start + len <= found_key.offset) 5105 goto not_found; 5106 em->start = start; 5107 em->len = found_key.offset - start; 5108 goto not_found_em; 5109 } 5110 5111 if (found_type == BTRFS_FILE_EXTENT_REG || 5112 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5113 em->start = extent_start; 5114 em->len = extent_end - extent_start; 5115 em->orig_start = extent_start - 5116 btrfs_file_extent_offset(leaf, item); 5117 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5118 if (bytenr == 0) { 5119 em->block_start = EXTENT_MAP_HOLE; 5120 goto insert; 5121 } 5122 if (compress_type != BTRFS_COMPRESS_NONE) { 5123 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5124 em->compress_type = compress_type; 5125 em->block_start = bytenr; 5126 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5127 item); 5128 } else { 5129 bytenr += btrfs_file_extent_offset(leaf, item); 5130 em->block_start = bytenr; 5131 em->block_len = em->len; 5132 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5133 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5134 } 5135 goto insert; 5136 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5137 unsigned long ptr; 5138 char *map; 5139 size_t size; 5140 size_t extent_offset; 5141 size_t copy_size; 5142 5143 em->block_start = EXTENT_MAP_INLINE; 5144 if (!page || create) { 5145 em->start = extent_start; 5146 em->len = extent_end - extent_start; 5147 goto out; 5148 } 5149 5150 size = btrfs_file_extent_inline_len(leaf, item); 5151 extent_offset = page_offset(page) + pg_offset - extent_start; 5152 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5153 size - extent_offset); 5154 em->start = extent_start + extent_offset; 5155 em->len = (copy_size + root->sectorsize - 1) & 5156 ~((u64)root->sectorsize - 1); 5157 em->orig_start = EXTENT_MAP_INLINE; 5158 if (compress_type) { 5159 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5160 em->compress_type = compress_type; 5161 } 5162 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5163 if (create == 0 && !PageUptodate(page)) { 5164 if (btrfs_file_extent_compression(leaf, item) != 5165 BTRFS_COMPRESS_NONE) { 5166 ret = uncompress_inline(path, inode, page, 5167 pg_offset, 5168 extent_offset, item); 5169 BUG_ON(ret); 5170 } else { 5171 map = kmap(page); 5172 read_extent_buffer(leaf, map + pg_offset, ptr, 5173 copy_size); 5174 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5175 memset(map + pg_offset + copy_size, 0, 5176 PAGE_CACHE_SIZE - pg_offset - 5177 copy_size); 5178 } 5179 kunmap(page); 5180 } 5181 flush_dcache_page(page); 5182 } else if (create && PageUptodate(page)) { 5183 WARN_ON(1); 5184 if (!trans) { 5185 kunmap(page); 5186 free_extent_map(em); 5187 em = NULL; 5188 btrfs_release_path(root, path); 5189 trans = btrfs_join_transaction(root, 1); 5190 if (IS_ERR(trans)) 5191 return ERR_CAST(trans); 5192 goto again; 5193 } 5194 map = kmap(page); 5195 write_extent_buffer(leaf, map + pg_offset, ptr, 5196 copy_size); 5197 kunmap(page); 5198 btrfs_mark_buffer_dirty(leaf); 5199 } 5200 set_extent_uptodate(io_tree, em->start, 5201 extent_map_end(em) - 1, GFP_NOFS); 5202 goto insert; 5203 } else { 5204 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5205 WARN_ON(1); 5206 } 5207 not_found: 5208 em->start = start; 5209 em->len = len; 5210 not_found_em: 5211 em->block_start = EXTENT_MAP_HOLE; 5212 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5213 insert: 5214 btrfs_release_path(root, path); 5215 if (em->start > start || extent_map_end(em) <= start) { 5216 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5217 "[%llu %llu]\n", (unsigned long long)em->start, 5218 (unsigned long long)em->len, 5219 (unsigned long long)start, 5220 (unsigned long long)len); 5221 err = -EIO; 5222 goto out; 5223 } 5224 5225 err = 0; 5226 write_lock(&em_tree->lock); 5227 ret = add_extent_mapping(em_tree, em); 5228 /* it is possible that someone inserted the extent into the tree 5229 * while we had the lock dropped. It is also possible that 5230 * an overlapping map exists in the tree 5231 */ 5232 if (ret == -EEXIST) { 5233 struct extent_map *existing; 5234 5235 ret = 0; 5236 5237 existing = lookup_extent_mapping(em_tree, start, len); 5238 if (existing && (existing->start > start || 5239 existing->start + existing->len <= start)) { 5240 free_extent_map(existing); 5241 existing = NULL; 5242 } 5243 if (!existing) { 5244 existing = lookup_extent_mapping(em_tree, em->start, 5245 em->len); 5246 if (existing) { 5247 err = merge_extent_mapping(em_tree, existing, 5248 em, start, 5249 root->sectorsize); 5250 free_extent_map(existing); 5251 if (err) { 5252 free_extent_map(em); 5253 em = NULL; 5254 } 5255 } else { 5256 err = -EIO; 5257 free_extent_map(em); 5258 em = NULL; 5259 } 5260 } else { 5261 free_extent_map(em); 5262 em = existing; 5263 err = 0; 5264 } 5265 } 5266 write_unlock(&em_tree->lock); 5267 out: 5268 if (path) 5269 btrfs_free_path(path); 5270 if (trans) { 5271 ret = btrfs_end_transaction(trans, root); 5272 if (!err) 5273 err = ret; 5274 } 5275 if (err) { 5276 free_extent_map(em); 5277 return ERR_PTR(err); 5278 } 5279 return em; 5280 } 5281 5282 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5283 size_t pg_offset, u64 start, u64 len, 5284 int create) 5285 { 5286 struct extent_map *em; 5287 struct extent_map *hole_em = NULL; 5288 u64 range_start = start; 5289 u64 end; 5290 u64 found; 5291 u64 found_end; 5292 int err = 0; 5293 5294 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5295 if (IS_ERR(em)) 5296 return em; 5297 if (em) { 5298 /* 5299 * if our em maps to a hole, there might 5300 * actually be delalloc bytes behind it 5301 */ 5302 if (em->block_start != EXTENT_MAP_HOLE) 5303 return em; 5304 else 5305 hole_em = em; 5306 } 5307 5308 /* check to see if we've wrapped (len == -1 or similar) */ 5309 end = start + len; 5310 if (end < start) 5311 end = (u64)-1; 5312 else 5313 end -= 1; 5314 5315 em = NULL; 5316 5317 /* ok, we didn't find anything, lets look for delalloc */ 5318 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5319 end, len, EXTENT_DELALLOC, 1); 5320 found_end = range_start + found; 5321 if (found_end < range_start) 5322 found_end = (u64)-1; 5323 5324 /* 5325 * we didn't find anything useful, return 5326 * the original results from get_extent() 5327 */ 5328 if (range_start > end || found_end <= start) { 5329 em = hole_em; 5330 hole_em = NULL; 5331 goto out; 5332 } 5333 5334 /* adjust the range_start to make sure it doesn't 5335 * go backwards from the start they passed in 5336 */ 5337 range_start = max(start,range_start); 5338 found = found_end - range_start; 5339 5340 if (found > 0) { 5341 u64 hole_start = start; 5342 u64 hole_len = len; 5343 5344 em = alloc_extent_map(GFP_NOFS); 5345 if (!em) { 5346 err = -ENOMEM; 5347 goto out; 5348 } 5349 /* 5350 * when btrfs_get_extent can't find anything it 5351 * returns one huge hole 5352 * 5353 * make sure what it found really fits our range, and 5354 * adjust to make sure it is based on the start from 5355 * the caller 5356 */ 5357 if (hole_em) { 5358 u64 calc_end = extent_map_end(hole_em); 5359 5360 if (calc_end <= start || (hole_em->start > end)) { 5361 free_extent_map(hole_em); 5362 hole_em = NULL; 5363 } else { 5364 hole_start = max(hole_em->start, start); 5365 hole_len = calc_end - hole_start; 5366 } 5367 } 5368 em->bdev = NULL; 5369 if (hole_em && range_start > hole_start) { 5370 /* our hole starts before our delalloc, so we 5371 * have to return just the parts of the hole 5372 * that go until the delalloc starts 5373 */ 5374 em->len = min(hole_len, 5375 range_start - hole_start); 5376 em->start = hole_start; 5377 em->orig_start = hole_start; 5378 /* 5379 * don't adjust block start at all, 5380 * it is fixed at EXTENT_MAP_HOLE 5381 */ 5382 em->block_start = hole_em->block_start; 5383 em->block_len = hole_len; 5384 } else { 5385 em->start = range_start; 5386 em->len = found; 5387 em->orig_start = range_start; 5388 em->block_start = EXTENT_MAP_DELALLOC; 5389 em->block_len = found; 5390 } 5391 } else if (hole_em) { 5392 return hole_em; 5393 } 5394 out: 5395 5396 free_extent_map(hole_em); 5397 if (err) { 5398 free_extent_map(em); 5399 return ERR_PTR(err); 5400 } 5401 return em; 5402 } 5403 5404 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5405 u64 start, u64 len) 5406 { 5407 struct btrfs_root *root = BTRFS_I(inode)->root; 5408 struct btrfs_trans_handle *trans; 5409 struct extent_map *em; 5410 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5411 struct btrfs_key ins; 5412 u64 alloc_hint; 5413 int ret; 5414 5415 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5416 5417 trans = btrfs_join_transaction(root, 0); 5418 if (IS_ERR(trans)) 5419 return ERR_CAST(trans); 5420 5421 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5422 5423 alloc_hint = get_extent_allocation_hint(inode, start, len); 5424 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5425 alloc_hint, (u64)-1, &ins, 1); 5426 if (ret) { 5427 em = ERR_PTR(ret); 5428 goto out; 5429 } 5430 5431 em = alloc_extent_map(GFP_NOFS); 5432 if (!em) { 5433 em = ERR_PTR(-ENOMEM); 5434 goto out; 5435 } 5436 5437 em->start = start; 5438 em->orig_start = em->start; 5439 em->len = ins.offset; 5440 5441 em->block_start = ins.objectid; 5442 em->block_len = ins.offset; 5443 em->bdev = root->fs_info->fs_devices->latest_bdev; 5444 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5445 5446 while (1) { 5447 write_lock(&em_tree->lock); 5448 ret = add_extent_mapping(em_tree, em); 5449 write_unlock(&em_tree->lock); 5450 if (ret != -EEXIST) 5451 break; 5452 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5453 } 5454 5455 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5456 ins.offset, ins.offset, 0); 5457 if (ret) { 5458 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5459 em = ERR_PTR(ret); 5460 } 5461 out: 5462 btrfs_end_transaction(trans, root); 5463 return em; 5464 } 5465 5466 /* 5467 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5468 * block must be cow'd 5469 */ 5470 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5471 struct inode *inode, u64 offset, u64 len) 5472 { 5473 struct btrfs_path *path; 5474 int ret; 5475 struct extent_buffer *leaf; 5476 struct btrfs_root *root = BTRFS_I(inode)->root; 5477 struct btrfs_file_extent_item *fi; 5478 struct btrfs_key key; 5479 u64 disk_bytenr; 5480 u64 backref_offset; 5481 u64 extent_end; 5482 u64 num_bytes; 5483 int slot; 5484 int found_type; 5485 5486 path = btrfs_alloc_path(); 5487 if (!path) 5488 return -ENOMEM; 5489 5490 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 5491 offset, 0); 5492 if (ret < 0) 5493 goto out; 5494 5495 slot = path->slots[0]; 5496 if (ret == 1) { 5497 if (slot == 0) { 5498 /* can't find the item, must cow */ 5499 ret = 0; 5500 goto out; 5501 } 5502 slot--; 5503 } 5504 ret = 0; 5505 leaf = path->nodes[0]; 5506 btrfs_item_key_to_cpu(leaf, &key, slot); 5507 if (key.objectid != inode->i_ino || 5508 key.type != BTRFS_EXTENT_DATA_KEY) { 5509 /* not our file or wrong item type, must cow */ 5510 goto out; 5511 } 5512 5513 if (key.offset > offset) { 5514 /* Wrong offset, must cow */ 5515 goto out; 5516 } 5517 5518 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5519 found_type = btrfs_file_extent_type(leaf, fi); 5520 if (found_type != BTRFS_FILE_EXTENT_REG && 5521 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5522 /* not a regular extent, must cow */ 5523 goto out; 5524 } 5525 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5526 backref_offset = btrfs_file_extent_offset(leaf, fi); 5527 5528 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5529 if (extent_end < offset + len) { 5530 /* extent doesn't include our full range, must cow */ 5531 goto out; 5532 } 5533 5534 if (btrfs_extent_readonly(root, disk_bytenr)) 5535 goto out; 5536 5537 /* 5538 * look for other files referencing this extent, if we 5539 * find any we must cow 5540 */ 5541 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 5542 key.offset - backref_offset, disk_bytenr)) 5543 goto out; 5544 5545 /* 5546 * adjust disk_bytenr and num_bytes to cover just the bytes 5547 * in this extent we are about to write. If there 5548 * are any csums in that range we have to cow in order 5549 * to keep the csums correct 5550 */ 5551 disk_bytenr += backref_offset; 5552 disk_bytenr += offset - key.offset; 5553 num_bytes = min(offset + len, extent_end) - offset; 5554 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5555 goto out; 5556 /* 5557 * all of the above have passed, it is safe to overwrite this extent 5558 * without cow 5559 */ 5560 ret = 1; 5561 out: 5562 btrfs_free_path(path); 5563 return ret; 5564 } 5565 5566 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5567 struct buffer_head *bh_result, int create) 5568 { 5569 struct extent_map *em; 5570 struct btrfs_root *root = BTRFS_I(inode)->root; 5571 u64 start = iblock << inode->i_blkbits; 5572 u64 len = bh_result->b_size; 5573 struct btrfs_trans_handle *trans; 5574 5575 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5576 if (IS_ERR(em)) 5577 return PTR_ERR(em); 5578 5579 /* 5580 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5581 * io. INLINE is special, and we could probably kludge it in here, but 5582 * it's still buffered so for safety lets just fall back to the generic 5583 * buffered path. 5584 * 5585 * For COMPRESSED we _have_ to read the entire extent in so we can 5586 * decompress it, so there will be buffering required no matter what we 5587 * do, so go ahead and fallback to buffered. 5588 * 5589 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5590 * to buffered IO. Don't blame me, this is the price we pay for using 5591 * the generic code. 5592 */ 5593 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5594 em->block_start == EXTENT_MAP_INLINE) { 5595 free_extent_map(em); 5596 return -ENOTBLK; 5597 } 5598 5599 /* Just a good old fashioned hole, return */ 5600 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5601 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5602 free_extent_map(em); 5603 /* DIO will do one hole at a time, so just unlock a sector */ 5604 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5605 start + root->sectorsize - 1, GFP_NOFS); 5606 return 0; 5607 } 5608 5609 /* 5610 * We don't allocate a new extent in the following cases 5611 * 5612 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5613 * existing extent. 5614 * 2) The extent is marked as PREALLOC. We're good to go here and can 5615 * just use the extent. 5616 * 5617 */ 5618 if (!create) { 5619 len = em->len - (start - em->start); 5620 goto map; 5621 } 5622 5623 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5624 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5625 em->block_start != EXTENT_MAP_HOLE)) { 5626 int type; 5627 int ret; 5628 u64 block_start; 5629 5630 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5631 type = BTRFS_ORDERED_PREALLOC; 5632 else 5633 type = BTRFS_ORDERED_NOCOW; 5634 len = min(len, em->len - (start - em->start)); 5635 block_start = em->block_start + (start - em->start); 5636 5637 /* 5638 * we're not going to log anything, but we do need 5639 * to make sure the current transaction stays open 5640 * while we look for nocow cross refs 5641 */ 5642 trans = btrfs_join_transaction(root, 0); 5643 if (IS_ERR(trans)) 5644 goto must_cow; 5645 5646 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5647 ret = btrfs_add_ordered_extent_dio(inode, start, 5648 block_start, len, len, type); 5649 btrfs_end_transaction(trans, root); 5650 if (ret) { 5651 free_extent_map(em); 5652 return ret; 5653 } 5654 goto unlock; 5655 } 5656 btrfs_end_transaction(trans, root); 5657 } 5658 must_cow: 5659 /* 5660 * this will cow the extent, reset the len in case we changed 5661 * it above 5662 */ 5663 len = bh_result->b_size; 5664 free_extent_map(em); 5665 em = btrfs_new_extent_direct(inode, start, len); 5666 if (IS_ERR(em)) 5667 return PTR_ERR(em); 5668 len = min(len, em->len - (start - em->start)); 5669 unlock: 5670 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5671 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5672 0, NULL, GFP_NOFS); 5673 map: 5674 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5675 inode->i_blkbits; 5676 bh_result->b_size = len; 5677 bh_result->b_bdev = em->bdev; 5678 set_buffer_mapped(bh_result); 5679 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5680 set_buffer_new(bh_result); 5681 5682 free_extent_map(em); 5683 5684 return 0; 5685 } 5686 5687 struct btrfs_dio_private { 5688 struct inode *inode; 5689 u64 logical_offset; 5690 u64 disk_bytenr; 5691 u64 bytes; 5692 u32 *csums; 5693 void *private; 5694 5695 /* number of bios pending for this dio */ 5696 atomic_t pending_bios; 5697 5698 /* IO errors */ 5699 int errors; 5700 5701 struct bio *orig_bio; 5702 }; 5703 5704 static void btrfs_endio_direct_read(struct bio *bio, int err) 5705 { 5706 struct btrfs_dio_private *dip = bio->bi_private; 5707 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5708 struct bio_vec *bvec = bio->bi_io_vec; 5709 struct inode *inode = dip->inode; 5710 struct btrfs_root *root = BTRFS_I(inode)->root; 5711 u64 start; 5712 u32 *private = dip->csums; 5713 5714 start = dip->logical_offset; 5715 do { 5716 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5717 struct page *page = bvec->bv_page; 5718 char *kaddr; 5719 u32 csum = ~(u32)0; 5720 unsigned long flags; 5721 5722 local_irq_save(flags); 5723 kaddr = kmap_atomic(page, KM_IRQ0); 5724 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5725 csum, bvec->bv_len); 5726 btrfs_csum_final(csum, (char *)&csum); 5727 kunmap_atomic(kaddr, KM_IRQ0); 5728 local_irq_restore(flags); 5729 5730 flush_dcache_page(bvec->bv_page); 5731 if (csum != *private) { 5732 printk(KERN_ERR "btrfs csum failed ino %lu off" 5733 " %llu csum %u private %u\n", 5734 inode->i_ino, (unsigned long long)start, 5735 csum, *private); 5736 err = -EIO; 5737 } 5738 } 5739 5740 start += bvec->bv_len; 5741 private++; 5742 bvec++; 5743 } while (bvec <= bvec_end); 5744 5745 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5746 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5747 bio->bi_private = dip->private; 5748 5749 kfree(dip->csums); 5750 kfree(dip); 5751 dio_end_io(bio, err); 5752 } 5753 5754 static void btrfs_endio_direct_write(struct bio *bio, int err) 5755 { 5756 struct btrfs_dio_private *dip = bio->bi_private; 5757 struct inode *inode = dip->inode; 5758 struct btrfs_root *root = BTRFS_I(inode)->root; 5759 struct btrfs_trans_handle *trans; 5760 struct btrfs_ordered_extent *ordered = NULL; 5761 struct extent_state *cached_state = NULL; 5762 u64 ordered_offset = dip->logical_offset; 5763 u64 ordered_bytes = dip->bytes; 5764 int ret; 5765 5766 if (err) 5767 goto out_done; 5768 again: 5769 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 5770 &ordered_offset, 5771 ordered_bytes); 5772 if (!ret) 5773 goto out_test; 5774 5775 BUG_ON(!ordered); 5776 5777 trans = btrfs_join_transaction(root, 1); 5778 if (IS_ERR(trans)) { 5779 err = -ENOMEM; 5780 goto out; 5781 } 5782 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5783 5784 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5785 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5786 if (!ret) 5787 ret = btrfs_update_inode(trans, root, inode); 5788 err = ret; 5789 goto out; 5790 } 5791 5792 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5793 ordered->file_offset + ordered->len - 1, 0, 5794 &cached_state, GFP_NOFS); 5795 5796 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5797 ret = btrfs_mark_extent_written(trans, inode, 5798 ordered->file_offset, 5799 ordered->file_offset + 5800 ordered->len); 5801 if (ret) { 5802 err = ret; 5803 goto out_unlock; 5804 } 5805 } else { 5806 ret = insert_reserved_file_extent(trans, inode, 5807 ordered->file_offset, 5808 ordered->start, 5809 ordered->disk_len, 5810 ordered->len, 5811 ordered->len, 5812 0, 0, 0, 5813 BTRFS_FILE_EXTENT_REG); 5814 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5815 ordered->file_offset, ordered->len); 5816 if (ret) { 5817 err = ret; 5818 WARN_ON(1); 5819 goto out_unlock; 5820 } 5821 } 5822 5823 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5824 btrfs_ordered_update_i_size(inode, 0, ordered); 5825 btrfs_update_inode(trans, root, inode); 5826 out_unlock: 5827 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5828 ordered->file_offset + ordered->len - 1, 5829 &cached_state, GFP_NOFS); 5830 out: 5831 btrfs_delalloc_release_metadata(inode, ordered->len); 5832 btrfs_end_transaction(trans, root); 5833 ordered_offset = ordered->file_offset + ordered->len; 5834 btrfs_put_ordered_extent(ordered); 5835 btrfs_put_ordered_extent(ordered); 5836 5837 out_test: 5838 /* 5839 * our bio might span multiple ordered extents. If we haven't 5840 * completed the accounting for the whole dio, go back and try again 5841 */ 5842 if (ordered_offset < dip->logical_offset + dip->bytes) { 5843 ordered_bytes = dip->logical_offset + dip->bytes - 5844 ordered_offset; 5845 goto again; 5846 } 5847 out_done: 5848 bio->bi_private = dip->private; 5849 5850 kfree(dip->csums); 5851 kfree(dip); 5852 dio_end_io(bio, err); 5853 } 5854 5855 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5856 struct bio *bio, int mirror_num, 5857 unsigned long bio_flags, u64 offset) 5858 { 5859 int ret; 5860 struct btrfs_root *root = BTRFS_I(inode)->root; 5861 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5862 BUG_ON(ret); 5863 return 0; 5864 } 5865 5866 static void btrfs_end_dio_bio(struct bio *bio, int err) 5867 { 5868 struct btrfs_dio_private *dip = bio->bi_private; 5869 5870 if (err) { 5871 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu " 5872 "sector %#Lx len %u err no %d\n", 5873 dip->inode->i_ino, bio->bi_rw, 5874 (unsigned long long)bio->bi_sector, bio->bi_size, err); 5875 dip->errors = 1; 5876 5877 /* 5878 * before atomic variable goto zero, we must make sure 5879 * dip->errors is perceived to be set. 5880 */ 5881 smp_mb__before_atomic_dec(); 5882 } 5883 5884 /* if there are more bios still pending for this dio, just exit */ 5885 if (!atomic_dec_and_test(&dip->pending_bios)) 5886 goto out; 5887 5888 if (dip->errors) 5889 bio_io_error(dip->orig_bio); 5890 else { 5891 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 5892 bio_endio(dip->orig_bio, 0); 5893 } 5894 out: 5895 bio_put(bio); 5896 } 5897 5898 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 5899 u64 first_sector, gfp_t gfp_flags) 5900 { 5901 int nr_vecs = bio_get_nr_vecs(bdev); 5902 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 5903 } 5904 5905 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 5906 int rw, u64 file_offset, int skip_sum, 5907 u32 *csums) 5908 { 5909 int write = rw & REQ_WRITE; 5910 struct btrfs_root *root = BTRFS_I(inode)->root; 5911 int ret; 5912 5913 bio_get(bio); 5914 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5915 if (ret) 5916 goto err; 5917 5918 if (write && !skip_sum) { 5919 ret = btrfs_wq_submit_bio(root->fs_info, 5920 inode, rw, bio, 0, 0, 5921 file_offset, 5922 __btrfs_submit_bio_start_direct_io, 5923 __btrfs_submit_bio_done); 5924 goto err; 5925 } else if (!skip_sum) 5926 btrfs_lookup_bio_sums_dio(root, inode, bio, 5927 file_offset, csums); 5928 5929 ret = btrfs_map_bio(root, rw, bio, 0, 1); 5930 err: 5931 bio_put(bio); 5932 return ret; 5933 } 5934 5935 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 5936 int skip_sum) 5937 { 5938 struct inode *inode = dip->inode; 5939 struct btrfs_root *root = BTRFS_I(inode)->root; 5940 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5941 struct bio *bio; 5942 struct bio *orig_bio = dip->orig_bio; 5943 struct bio_vec *bvec = orig_bio->bi_io_vec; 5944 u64 start_sector = orig_bio->bi_sector; 5945 u64 file_offset = dip->logical_offset; 5946 u64 submit_len = 0; 5947 u64 map_length; 5948 int nr_pages = 0; 5949 u32 *csums = dip->csums; 5950 int ret = 0; 5951 5952 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 5953 if (!bio) 5954 return -ENOMEM; 5955 bio->bi_private = dip; 5956 bio->bi_end_io = btrfs_end_dio_bio; 5957 atomic_inc(&dip->pending_bios); 5958 5959 map_length = orig_bio->bi_size; 5960 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5961 &map_length, NULL, 0); 5962 if (ret) { 5963 bio_put(bio); 5964 return -EIO; 5965 } 5966 5967 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 5968 if (unlikely(map_length < submit_len + bvec->bv_len || 5969 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5970 bvec->bv_offset) < bvec->bv_len)) { 5971 /* 5972 * inc the count before we submit the bio so 5973 * we know the end IO handler won't happen before 5974 * we inc the count. Otherwise, the dip might get freed 5975 * before we're done setting it up 5976 */ 5977 atomic_inc(&dip->pending_bios); 5978 ret = __btrfs_submit_dio_bio(bio, inode, rw, 5979 file_offset, skip_sum, 5980 csums); 5981 if (ret) { 5982 bio_put(bio); 5983 atomic_dec(&dip->pending_bios); 5984 goto out_err; 5985 } 5986 5987 if (!skip_sum) 5988 csums = csums + nr_pages; 5989 start_sector += submit_len >> 9; 5990 file_offset += submit_len; 5991 5992 submit_len = 0; 5993 nr_pages = 0; 5994 5995 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 5996 start_sector, GFP_NOFS); 5997 if (!bio) 5998 goto out_err; 5999 bio->bi_private = dip; 6000 bio->bi_end_io = btrfs_end_dio_bio; 6001 6002 map_length = orig_bio->bi_size; 6003 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 6004 &map_length, NULL, 0); 6005 if (ret) { 6006 bio_put(bio); 6007 goto out_err; 6008 } 6009 } else { 6010 submit_len += bvec->bv_len; 6011 nr_pages ++; 6012 bvec++; 6013 } 6014 } 6015 6016 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 6017 csums); 6018 if (!ret) 6019 return 0; 6020 6021 bio_put(bio); 6022 out_err: 6023 dip->errors = 1; 6024 /* 6025 * before atomic variable goto zero, we must 6026 * make sure dip->errors is perceived to be set. 6027 */ 6028 smp_mb__before_atomic_dec(); 6029 if (atomic_dec_and_test(&dip->pending_bios)) 6030 bio_io_error(dip->orig_bio); 6031 6032 /* bio_end_io() will handle error, so we needn't return it */ 6033 return 0; 6034 } 6035 6036 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 6037 loff_t file_offset) 6038 { 6039 struct btrfs_root *root = BTRFS_I(inode)->root; 6040 struct btrfs_dio_private *dip; 6041 struct bio_vec *bvec = bio->bi_io_vec; 6042 int skip_sum; 6043 int write = rw & REQ_WRITE; 6044 int ret = 0; 6045 6046 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 6047 6048 dip = kmalloc(sizeof(*dip), GFP_NOFS); 6049 if (!dip) { 6050 ret = -ENOMEM; 6051 goto free_ordered; 6052 } 6053 dip->csums = NULL; 6054 6055 if (!skip_sum) { 6056 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 6057 if (!dip->csums) { 6058 kfree(dip); 6059 ret = -ENOMEM; 6060 goto free_ordered; 6061 } 6062 } 6063 6064 dip->private = bio->bi_private; 6065 dip->inode = inode; 6066 dip->logical_offset = file_offset; 6067 6068 dip->bytes = 0; 6069 do { 6070 dip->bytes += bvec->bv_len; 6071 bvec++; 6072 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 6073 6074 dip->disk_bytenr = (u64)bio->bi_sector << 9; 6075 bio->bi_private = dip; 6076 dip->errors = 0; 6077 dip->orig_bio = bio; 6078 atomic_set(&dip->pending_bios, 0); 6079 6080 if (write) 6081 bio->bi_end_io = btrfs_endio_direct_write; 6082 else 6083 bio->bi_end_io = btrfs_endio_direct_read; 6084 6085 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 6086 if (!ret) 6087 return; 6088 free_ordered: 6089 /* 6090 * If this is a write, we need to clean up the reserved space and kill 6091 * the ordered extent. 6092 */ 6093 if (write) { 6094 struct btrfs_ordered_extent *ordered; 6095 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6096 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6097 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6098 btrfs_free_reserved_extent(root, ordered->start, 6099 ordered->disk_len); 6100 btrfs_put_ordered_extent(ordered); 6101 btrfs_put_ordered_extent(ordered); 6102 } 6103 bio_endio(bio, ret); 6104 } 6105 6106 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6107 const struct iovec *iov, loff_t offset, 6108 unsigned long nr_segs) 6109 { 6110 int seg; 6111 size_t size; 6112 unsigned long addr; 6113 unsigned blocksize_mask = root->sectorsize - 1; 6114 ssize_t retval = -EINVAL; 6115 loff_t end = offset; 6116 6117 if (offset & blocksize_mask) 6118 goto out; 6119 6120 /* Check the memory alignment. Blocks cannot straddle pages */ 6121 for (seg = 0; seg < nr_segs; seg++) { 6122 addr = (unsigned long)iov[seg].iov_base; 6123 size = iov[seg].iov_len; 6124 end += size; 6125 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6126 goto out; 6127 } 6128 retval = 0; 6129 out: 6130 return retval; 6131 } 6132 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6133 const struct iovec *iov, loff_t offset, 6134 unsigned long nr_segs) 6135 { 6136 struct file *file = iocb->ki_filp; 6137 struct inode *inode = file->f_mapping->host; 6138 struct btrfs_ordered_extent *ordered; 6139 struct extent_state *cached_state = NULL; 6140 u64 lockstart, lockend; 6141 ssize_t ret; 6142 int writing = rw & WRITE; 6143 int write_bits = 0; 6144 size_t count = iov_length(iov, nr_segs); 6145 6146 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6147 offset, nr_segs)) { 6148 return 0; 6149 } 6150 6151 lockstart = offset; 6152 lockend = offset + count - 1; 6153 6154 if (writing) { 6155 ret = btrfs_delalloc_reserve_space(inode, count); 6156 if (ret) 6157 goto out; 6158 } 6159 6160 while (1) { 6161 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6162 0, &cached_state, GFP_NOFS); 6163 /* 6164 * We're concerned with the entire range that we're going to be 6165 * doing DIO to, so we need to make sure theres no ordered 6166 * extents in this range. 6167 */ 6168 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6169 lockend - lockstart + 1); 6170 if (!ordered) 6171 break; 6172 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6173 &cached_state, GFP_NOFS); 6174 btrfs_start_ordered_extent(inode, ordered, 1); 6175 btrfs_put_ordered_extent(ordered); 6176 cond_resched(); 6177 } 6178 6179 /* 6180 * we don't use btrfs_set_extent_delalloc because we don't want 6181 * the dirty or uptodate bits 6182 */ 6183 if (writing) { 6184 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 6185 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6186 EXTENT_DELALLOC, 0, NULL, &cached_state, 6187 GFP_NOFS); 6188 if (ret) { 6189 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6190 lockend, EXTENT_LOCKED | write_bits, 6191 1, 0, &cached_state, GFP_NOFS); 6192 goto out; 6193 } 6194 } 6195 6196 free_extent_state(cached_state); 6197 cached_state = NULL; 6198 6199 ret = __blockdev_direct_IO(rw, iocb, inode, 6200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6201 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6202 btrfs_submit_direct, 0); 6203 6204 if (ret < 0 && ret != -EIOCBQUEUED) { 6205 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 6206 offset + iov_length(iov, nr_segs) - 1, 6207 EXTENT_LOCKED | write_bits, 1, 0, 6208 &cached_state, GFP_NOFS); 6209 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 6210 /* 6211 * We're falling back to buffered, unlock the section we didn't 6212 * do IO on. 6213 */ 6214 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 6215 offset + iov_length(iov, nr_segs) - 1, 6216 EXTENT_LOCKED | write_bits, 1, 0, 6217 &cached_state, GFP_NOFS); 6218 } 6219 out: 6220 free_extent_state(cached_state); 6221 return ret; 6222 } 6223 6224 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6225 __u64 start, __u64 len) 6226 { 6227 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6228 } 6229 6230 int btrfs_readpage(struct file *file, struct page *page) 6231 { 6232 struct extent_io_tree *tree; 6233 tree = &BTRFS_I(page->mapping->host)->io_tree; 6234 return extent_read_full_page(tree, page, btrfs_get_extent); 6235 } 6236 6237 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6238 { 6239 struct extent_io_tree *tree; 6240 6241 6242 if (current->flags & PF_MEMALLOC) { 6243 redirty_page_for_writepage(wbc, page); 6244 unlock_page(page); 6245 return 0; 6246 } 6247 tree = &BTRFS_I(page->mapping->host)->io_tree; 6248 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6249 } 6250 6251 int btrfs_writepages(struct address_space *mapping, 6252 struct writeback_control *wbc) 6253 { 6254 struct extent_io_tree *tree; 6255 6256 tree = &BTRFS_I(mapping->host)->io_tree; 6257 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6258 } 6259 6260 static int 6261 btrfs_readpages(struct file *file, struct address_space *mapping, 6262 struct list_head *pages, unsigned nr_pages) 6263 { 6264 struct extent_io_tree *tree; 6265 tree = &BTRFS_I(mapping->host)->io_tree; 6266 return extent_readpages(tree, mapping, pages, nr_pages, 6267 btrfs_get_extent); 6268 } 6269 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6270 { 6271 struct extent_io_tree *tree; 6272 struct extent_map_tree *map; 6273 int ret; 6274 6275 tree = &BTRFS_I(page->mapping->host)->io_tree; 6276 map = &BTRFS_I(page->mapping->host)->extent_tree; 6277 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6278 if (ret == 1) { 6279 ClearPagePrivate(page); 6280 set_page_private(page, 0); 6281 page_cache_release(page); 6282 } 6283 return ret; 6284 } 6285 6286 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6287 { 6288 if (PageWriteback(page) || PageDirty(page)) 6289 return 0; 6290 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6291 } 6292 6293 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6294 { 6295 struct extent_io_tree *tree; 6296 struct btrfs_ordered_extent *ordered; 6297 struct extent_state *cached_state = NULL; 6298 u64 page_start = page_offset(page); 6299 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6300 6301 6302 /* 6303 * we have the page locked, so new writeback can't start, 6304 * and the dirty bit won't be cleared while we are here. 6305 * 6306 * Wait for IO on this page so that we can safely clear 6307 * the PagePrivate2 bit and do ordered accounting 6308 */ 6309 wait_on_page_writeback(page); 6310 6311 tree = &BTRFS_I(page->mapping->host)->io_tree; 6312 if (offset) { 6313 btrfs_releasepage(page, GFP_NOFS); 6314 return; 6315 } 6316 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6317 GFP_NOFS); 6318 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 6319 page_offset(page)); 6320 if (ordered) { 6321 /* 6322 * IO on this page will never be started, so we need 6323 * to account for any ordered extents now 6324 */ 6325 clear_extent_bit(tree, page_start, page_end, 6326 EXTENT_DIRTY | EXTENT_DELALLOC | 6327 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 6328 &cached_state, GFP_NOFS); 6329 /* 6330 * whoever cleared the private bit is responsible 6331 * for the finish_ordered_io 6332 */ 6333 if (TestClearPagePrivate2(page)) { 6334 btrfs_finish_ordered_io(page->mapping->host, 6335 page_start, page_end); 6336 } 6337 btrfs_put_ordered_extent(ordered); 6338 cached_state = NULL; 6339 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6340 GFP_NOFS); 6341 } 6342 clear_extent_bit(tree, page_start, page_end, 6343 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6344 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 6345 __btrfs_releasepage(page, GFP_NOFS); 6346 6347 ClearPageChecked(page); 6348 if (PagePrivate(page)) { 6349 ClearPagePrivate(page); 6350 set_page_private(page, 0); 6351 page_cache_release(page); 6352 } 6353 } 6354 6355 /* 6356 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6357 * called from a page fault handler when a page is first dirtied. Hence we must 6358 * be careful to check for EOF conditions here. We set the page up correctly 6359 * for a written page which means we get ENOSPC checking when writing into 6360 * holes and correct delalloc and unwritten extent mapping on filesystems that 6361 * support these features. 6362 * 6363 * We are not allowed to take the i_mutex here so we have to play games to 6364 * protect against truncate races as the page could now be beyond EOF. Because 6365 * vmtruncate() writes the inode size before removing pages, once we have the 6366 * page lock we can determine safely if the page is beyond EOF. If it is not 6367 * beyond EOF, then the page is guaranteed safe against truncation until we 6368 * unlock the page. 6369 */ 6370 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6371 { 6372 struct page *page = vmf->page; 6373 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6374 struct btrfs_root *root = BTRFS_I(inode)->root; 6375 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6376 struct btrfs_ordered_extent *ordered; 6377 struct extent_state *cached_state = NULL; 6378 char *kaddr; 6379 unsigned long zero_start; 6380 loff_t size; 6381 int ret; 6382 u64 page_start; 6383 u64 page_end; 6384 6385 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6386 if (ret) { 6387 if (ret == -ENOMEM) 6388 ret = VM_FAULT_OOM; 6389 else /* -ENOSPC, -EIO, etc */ 6390 ret = VM_FAULT_SIGBUS; 6391 goto out; 6392 } 6393 6394 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6395 again: 6396 lock_page(page); 6397 size = i_size_read(inode); 6398 page_start = page_offset(page); 6399 page_end = page_start + PAGE_CACHE_SIZE - 1; 6400 6401 if ((page->mapping != inode->i_mapping) || 6402 (page_start >= size)) { 6403 /* page got truncated out from underneath us */ 6404 goto out_unlock; 6405 } 6406 wait_on_page_writeback(page); 6407 6408 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6409 GFP_NOFS); 6410 set_page_extent_mapped(page); 6411 6412 /* 6413 * we can't set the delalloc bits if there are pending ordered 6414 * extents. Drop our locks and wait for them to finish 6415 */ 6416 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6417 if (ordered) { 6418 unlock_extent_cached(io_tree, page_start, page_end, 6419 &cached_state, GFP_NOFS); 6420 unlock_page(page); 6421 btrfs_start_ordered_extent(inode, ordered, 1); 6422 btrfs_put_ordered_extent(ordered); 6423 goto again; 6424 } 6425 6426 /* 6427 * XXX - page_mkwrite gets called every time the page is dirtied, even 6428 * if it was already dirty, so for space accounting reasons we need to 6429 * clear any delalloc bits for the range we are fixing to save. There 6430 * is probably a better way to do this, but for now keep consistent with 6431 * prepare_pages in the normal write path. 6432 */ 6433 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6434 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6435 0, 0, &cached_state, GFP_NOFS); 6436 6437 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6438 &cached_state); 6439 if (ret) { 6440 unlock_extent_cached(io_tree, page_start, page_end, 6441 &cached_state, GFP_NOFS); 6442 ret = VM_FAULT_SIGBUS; 6443 goto out_unlock; 6444 } 6445 ret = 0; 6446 6447 /* page is wholly or partially inside EOF */ 6448 if (page_start + PAGE_CACHE_SIZE > size) 6449 zero_start = size & ~PAGE_CACHE_MASK; 6450 else 6451 zero_start = PAGE_CACHE_SIZE; 6452 6453 if (zero_start != PAGE_CACHE_SIZE) { 6454 kaddr = kmap(page); 6455 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6456 flush_dcache_page(page); 6457 kunmap(page); 6458 } 6459 ClearPageChecked(page); 6460 set_page_dirty(page); 6461 SetPageUptodate(page); 6462 6463 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6464 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6465 6466 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6467 6468 out_unlock: 6469 if (!ret) 6470 return VM_FAULT_LOCKED; 6471 unlock_page(page); 6472 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6473 out: 6474 return ret; 6475 } 6476 6477 static void btrfs_truncate(struct inode *inode) 6478 { 6479 struct btrfs_root *root = BTRFS_I(inode)->root; 6480 int ret; 6481 struct btrfs_trans_handle *trans; 6482 unsigned long nr; 6483 u64 mask = root->sectorsize - 1; 6484 6485 if (!S_ISREG(inode->i_mode)) { 6486 WARN_ON(1); 6487 return; 6488 } 6489 6490 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6491 if (ret) 6492 return; 6493 6494 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6495 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6496 6497 trans = btrfs_start_transaction(root, 0); 6498 BUG_ON(IS_ERR(trans)); 6499 btrfs_set_trans_block_group(trans, inode); 6500 trans->block_rsv = root->orphan_block_rsv; 6501 6502 /* 6503 * setattr is responsible for setting the ordered_data_close flag, 6504 * but that is only tested during the last file release. That 6505 * could happen well after the next commit, leaving a great big 6506 * window where new writes may get lost if someone chooses to write 6507 * to this file after truncating to zero 6508 * 6509 * The inode doesn't have any dirty data here, and so if we commit 6510 * this is a noop. If someone immediately starts writing to the inode 6511 * it is very likely we'll catch some of their writes in this 6512 * transaction, and the commit will find this file on the ordered 6513 * data list with good things to send down. 6514 * 6515 * This is a best effort solution, there is still a window where 6516 * using truncate to replace the contents of the file will 6517 * end up with a zero length file after a crash. 6518 */ 6519 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6520 btrfs_add_ordered_operation(trans, root, inode); 6521 6522 while (1) { 6523 if (!trans) { 6524 trans = btrfs_start_transaction(root, 0); 6525 BUG_ON(IS_ERR(trans)); 6526 btrfs_set_trans_block_group(trans, inode); 6527 trans->block_rsv = root->orphan_block_rsv; 6528 } 6529 6530 ret = btrfs_block_rsv_check(trans, root, 6531 root->orphan_block_rsv, 0, 5); 6532 if (ret) { 6533 BUG_ON(ret != -EAGAIN); 6534 ret = btrfs_commit_transaction(trans, root); 6535 BUG_ON(ret); 6536 trans = NULL; 6537 continue; 6538 } 6539 6540 ret = btrfs_truncate_inode_items(trans, root, inode, 6541 inode->i_size, 6542 BTRFS_EXTENT_DATA_KEY); 6543 if (ret != -EAGAIN) 6544 break; 6545 6546 ret = btrfs_update_inode(trans, root, inode); 6547 BUG_ON(ret); 6548 6549 nr = trans->blocks_used; 6550 btrfs_end_transaction(trans, root); 6551 trans = NULL; 6552 btrfs_btree_balance_dirty(root, nr); 6553 } 6554 6555 if (ret == 0 && inode->i_nlink > 0) { 6556 ret = btrfs_orphan_del(trans, inode); 6557 BUG_ON(ret); 6558 } 6559 6560 ret = btrfs_update_inode(trans, root, inode); 6561 BUG_ON(ret); 6562 6563 nr = trans->blocks_used; 6564 ret = btrfs_end_transaction_throttle(trans, root); 6565 BUG_ON(ret); 6566 btrfs_btree_balance_dirty(root, nr); 6567 } 6568 6569 /* 6570 * create a new subvolume directory/inode (helper for the ioctl). 6571 */ 6572 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6573 struct btrfs_root *new_root, 6574 u64 new_dirid, u64 alloc_hint) 6575 { 6576 struct inode *inode; 6577 int err; 6578 u64 index = 0; 6579 6580 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6581 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 6582 if (IS_ERR(inode)) 6583 return PTR_ERR(inode); 6584 inode->i_op = &btrfs_dir_inode_operations; 6585 inode->i_fop = &btrfs_dir_file_operations; 6586 6587 inode->i_nlink = 1; 6588 btrfs_i_size_write(inode, 0); 6589 6590 err = btrfs_update_inode(trans, new_root, inode); 6591 BUG_ON(err); 6592 6593 iput(inode); 6594 return 0; 6595 } 6596 6597 /* helper function for file defrag and space balancing. This 6598 * forces readahead on a given range of bytes in an inode 6599 */ 6600 unsigned long btrfs_force_ra(struct address_space *mapping, 6601 struct file_ra_state *ra, struct file *file, 6602 pgoff_t offset, pgoff_t last_index) 6603 { 6604 pgoff_t req_size = last_index - offset + 1; 6605 6606 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 6607 return offset + req_size; 6608 } 6609 6610 struct inode *btrfs_alloc_inode(struct super_block *sb) 6611 { 6612 struct btrfs_inode *ei; 6613 struct inode *inode; 6614 6615 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6616 if (!ei) 6617 return NULL; 6618 6619 ei->root = NULL; 6620 ei->space_info = NULL; 6621 ei->generation = 0; 6622 ei->sequence = 0; 6623 ei->last_trans = 0; 6624 ei->last_sub_trans = 0; 6625 ei->logged_trans = 0; 6626 ei->delalloc_bytes = 0; 6627 ei->reserved_bytes = 0; 6628 ei->disk_i_size = 0; 6629 ei->flags = 0; 6630 ei->index_cnt = (u64)-1; 6631 ei->last_unlink_trans = 0; 6632 6633 spin_lock_init(&ei->accounting_lock); 6634 atomic_set(&ei->outstanding_extents, 0); 6635 ei->reserved_extents = 0; 6636 6637 ei->ordered_data_close = 0; 6638 ei->orphan_meta_reserved = 0; 6639 ei->dummy_inode = 0; 6640 ei->force_compress = BTRFS_COMPRESS_NONE; 6641 6642 inode = &ei->vfs_inode; 6643 extent_map_tree_init(&ei->extent_tree, GFP_NOFS); 6644 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS); 6645 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS); 6646 mutex_init(&ei->log_mutex); 6647 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6648 INIT_LIST_HEAD(&ei->i_orphan); 6649 INIT_LIST_HEAD(&ei->delalloc_inodes); 6650 INIT_LIST_HEAD(&ei->ordered_operations); 6651 RB_CLEAR_NODE(&ei->rb_node); 6652 6653 return inode; 6654 } 6655 6656 static void btrfs_i_callback(struct rcu_head *head) 6657 { 6658 struct inode *inode = container_of(head, struct inode, i_rcu); 6659 INIT_LIST_HEAD(&inode->i_dentry); 6660 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6661 } 6662 6663 void btrfs_destroy_inode(struct inode *inode) 6664 { 6665 struct btrfs_ordered_extent *ordered; 6666 struct btrfs_root *root = BTRFS_I(inode)->root; 6667 6668 WARN_ON(!list_empty(&inode->i_dentry)); 6669 WARN_ON(inode->i_data.nrpages); 6670 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents)); 6671 WARN_ON(BTRFS_I(inode)->reserved_extents); 6672 6673 /* 6674 * This can happen where we create an inode, but somebody else also 6675 * created the same inode and we need to destroy the one we already 6676 * created. 6677 */ 6678 if (!root) 6679 goto free; 6680 6681 /* 6682 * Make sure we're properly removed from the ordered operation 6683 * lists. 6684 */ 6685 smp_mb(); 6686 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6687 spin_lock(&root->fs_info->ordered_extent_lock); 6688 list_del_init(&BTRFS_I(inode)->ordered_operations); 6689 spin_unlock(&root->fs_info->ordered_extent_lock); 6690 } 6691 6692 if (root == root->fs_info->tree_root) { 6693 struct btrfs_block_group_cache *block_group; 6694 6695 block_group = btrfs_lookup_block_group(root->fs_info, 6696 BTRFS_I(inode)->block_group); 6697 if (block_group && block_group->inode == inode) { 6698 spin_lock(&block_group->lock); 6699 block_group->inode = NULL; 6700 spin_unlock(&block_group->lock); 6701 btrfs_put_block_group(block_group); 6702 } else if (block_group) { 6703 btrfs_put_block_group(block_group); 6704 } 6705 } 6706 6707 spin_lock(&root->orphan_lock); 6708 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6709 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n", 6710 inode->i_ino); 6711 list_del_init(&BTRFS_I(inode)->i_orphan); 6712 } 6713 spin_unlock(&root->orphan_lock); 6714 6715 while (1) { 6716 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6717 if (!ordered) 6718 break; 6719 else { 6720 printk(KERN_ERR "btrfs found ordered " 6721 "extent %llu %llu on inode cleanup\n", 6722 (unsigned long long)ordered->file_offset, 6723 (unsigned long long)ordered->len); 6724 btrfs_remove_ordered_extent(inode, ordered); 6725 btrfs_put_ordered_extent(ordered); 6726 btrfs_put_ordered_extent(ordered); 6727 } 6728 } 6729 inode_tree_del(inode); 6730 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6731 free: 6732 call_rcu(&inode->i_rcu, btrfs_i_callback); 6733 } 6734 6735 int btrfs_drop_inode(struct inode *inode) 6736 { 6737 struct btrfs_root *root = BTRFS_I(inode)->root; 6738 6739 if (btrfs_root_refs(&root->root_item) == 0 && 6740 root != root->fs_info->tree_root) 6741 return 1; 6742 else 6743 return generic_drop_inode(inode); 6744 } 6745 6746 static void init_once(void *foo) 6747 { 6748 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6749 6750 inode_init_once(&ei->vfs_inode); 6751 } 6752 6753 void btrfs_destroy_cachep(void) 6754 { 6755 if (btrfs_inode_cachep) 6756 kmem_cache_destroy(btrfs_inode_cachep); 6757 if (btrfs_trans_handle_cachep) 6758 kmem_cache_destroy(btrfs_trans_handle_cachep); 6759 if (btrfs_transaction_cachep) 6760 kmem_cache_destroy(btrfs_transaction_cachep); 6761 if (btrfs_path_cachep) 6762 kmem_cache_destroy(btrfs_path_cachep); 6763 } 6764 6765 int btrfs_init_cachep(void) 6766 { 6767 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6768 sizeof(struct btrfs_inode), 0, 6769 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6770 if (!btrfs_inode_cachep) 6771 goto fail; 6772 6773 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6774 sizeof(struct btrfs_trans_handle), 0, 6775 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6776 if (!btrfs_trans_handle_cachep) 6777 goto fail; 6778 6779 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6780 sizeof(struct btrfs_transaction), 0, 6781 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6782 if (!btrfs_transaction_cachep) 6783 goto fail; 6784 6785 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6786 sizeof(struct btrfs_path), 0, 6787 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6788 if (!btrfs_path_cachep) 6789 goto fail; 6790 6791 return 0; 6792 fail: 6793 btrfs_destroy_cachep(); 6794 return -ENOMEM; 6795 } 6796 6797 static int btrfs_getattr(struct vfsmount *mnt, 6798 struct dentry *dentry, struct kstat *stat) 6799 { 6800 struct inode *inode = dentry->d_inode; 6801 generic_fillattr(inode, stat); 6802 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 6803 stat->blksize = PAGE_CACHE_SIZE; 6804 stat->blocks = (inode_get_bytes(inode) + 6805 BTRFS_I(inode)->delalloc_bytes) >> 9; 6806 return 0; 6807 } 6808 6809 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6810 struct inode *new_dir, struct dentry *new_dentry) 6811 { 6812 struct btrfs_trans_handle *trans; 6813 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6814 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6815 struct inode *new_inode = new_dentry->d_inode; 6816 struct inode *old_inode = old_dentry->d_inode; 6817 struct timespec ctime = CURRENT_TIME; 6818 u64 index = 0; 6819 u64 root_objectid; 6820 int ret; 6821 6822 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6823 return -EPERM; 6824 6825 /* we only allow rename subvolume link between subvolumes */ 6826 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6827 return -EXDEV; 6828 6829 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6830 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) 6831 return -ENOTEMPTY; 6832 6833 if (S_ISDIR(old_inode->i_mode) && new_inode && 6834 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6835 return -ENOTEMPTY; 6836 /* 6837 * we're using rename to replace one file with another. 6838 * and the replacement file is large. Start IO on it now so 6839 * we don't add too much work to the end of the transaction 6840 */ 6841 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6842 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6843 filemap_flush(old_inode->i_mapping); 6844 6845 /* close the racy window with snapshot create/destroy ioctl */ 6846 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 6847 down_read(&root->fs_info->subvol_sem); 6848 /* 6849 * We want to reserve the absolute worst case amount of items. So if 6850 * both inodes are subvols and we need to unlink them then that would 6851 * require 4 item modifications, but if they are both normal inodes it 6852 * would require 5 item modifications, so we'll assume their normal 6853 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 6854 * should cover the worst case number of items we'll modify. 6855 */ 6856 trans = btrfs_start_transaction(root, 20); 6857 if (IS_ERR(trans)) 6858 return PTR_ERR(trans); 6859 6860 btrfs_set_trans_block_group(trans, new_dir); 6861 6862 if (dest != root) 6863 btrfs_record_root_in_trans(trans, dest); 6864 6865 ret = btrfs_set_inode_index(new_dir, &index); 6866 if (ret) 6867 goto out_fail; 6868 6869 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6870 /* force full log commit if subvolume involved. */ 6871 root->fs_info->last_trans_log_full_commit = trans->transid; 6872 } else { 6873 ret = btrfs_insert_inode_ref(trans, dest, 6874 new_dentry->d_name.name, 6875 new_dentry->d_name.len, 6876 old_inode->i_ino, 6877 new_dir->i_ino, index); 6878 if (ret) 6879 goto out_fail; 6880 /* 6881 * this is an ugly little race, but the rename is required 6882 * to make sure that if we crash, the inode is either at the 6883 * old name or the new one. pinning the log transaction lets 6884 * us make sure we don't allow a log commit to come in after 6885 * we unlink the name but before we add the new name back in. 6886 */ 6887 btrfs_pin_log_trans(root); 6888 } 6889 /* 6890 * make sure the inode gets flushed if it is replacing 6891 * something. 6892 */ 6893 if (new_inode && new_inode->i_size && 6894 old_inode && S_ISREG(old_inode->i_mode)) { 6895 btrfs_add_ordered_operation(trans, root, old_inode); 6896 } 6897 6898 old_dir->i_ctime = old_dir->i_mtime = ctime; 6899 new_dir->i_ctime = new_dir->i_mtime = ctime; 6900 old_inode->i_ctime = ctime; 6901 6902 if (old_dentry->d_parent != new_dentry->d_parent) 6903 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 6904 6905 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6906 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 6907 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 6908 old_dentry->d_name.name, 6909 old_dentry->d_name.len); 6910 } else { 6911 btrfs_inc_nlink(old_dentry->d_inode); 6912 ret = btrfs_unlink_inode(trans, root, old_dir, 6913 old_dentry->d_inode, 6914 old_dentry->d_name.name, 6915 old_dentry->d_name.len); 6916 } 6917 BUG_ON(ret); 6918 6919 if (new_inode) { 6920 new_inode->i_ctime = CURRENT_TIME; 6921 if (unlikely(new_inode->i_ino == 6922 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 6923 root_objectid = BTRFS_I(new_inode)->location.objectid; 6924 ret = btrfs_unlink_subvol(trans, dest, new_dir, 6925 root_objectid, 6926 new_dentry->d_name.name, 6927 new_dentry->d_name.len); 6928 BUG_ON(new_inode->i_nlink == 0); 6929 } else { 6930 ret = btrfs_unlink_inode(trans, dest, new_dir, 6931 new_dentry->d_inode, 6932 new_dentry->d_name.name, 6933 new_dentry->d_name.len); 6934 } 6935 BUG_ON(ret); 6936 if (new_inode->i_nlink == 0) { 6937 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 6938 BUG_ON(ret); 6939 } 6940 } 6941 6942 ret = btrfs_add_link(trans, new_dir, old_inode, 6943 new_dentry->d_name.name, 6944 new_dentry->d_name.len, 0, index); 6945 BUG_ON(ret); 6946 6947 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) { 6948 struct dentry *parent = dget_parent(new_dentry); 6949 btrfs_log_new_name(trans, old_inode, old_dir, parent); 6950 dput(parent); 6951 btrfs_end_log_trans(root); 6952 } 6953 out_fail: 6954 btrfs_end_transaction_throttle(trans, root); 6955 6956 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 6957 up_read(&root->fs_info->subvol_sem); 6958 6959 return ret; 6960 } 6961 6962 /* 6963 * some fairly slow code that needs optimization. This walks the list 6964 * of all the inodes with pending delalloc and forces them to disk. 6965 */ 6966 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 6967 { 6968 struct list_head *head = &root->fs_info->delalloc_inodes; 6969 struct btrfs_inode *binode; 6970 struct inode *inode; 6971 6972 if (root->fs_info->sb->s_flags & MS_RDONLY) 6973 return -EROFS; 6974 6975 spin_lock(&root->fs_info->delalloc_lock); 6976 while (!list_empty(head)) { 6977 binode = list_entry(head->next, struct btrfs_inode, 6978 delalloc_inodes); 6979 inode = igrab(&binode->vfs_inode); 6980 if (!inode) 6981 list_del_init(&binode->delalloc_inodes); 6982 spin_unlock(&root->fs_info->delalloc_lock); 6983 if (inode) { 6984 filemap_flush(inode->i_mapping); 6985 if (delay_iput) 6986 btrfs_add_delayed_iput(inode); 6987 else 6988 iput(inode); 6989 } 6990 cond_resched(); 6991 spin_lock(&root->fs_info->delalloc_lock); 6992 } 6993 spin_unlock(&root->fs_info->delalloc_lock); 6994 6995 /* the filemap_flush will queue IO into the worker threads, but 6996 * we have to make sure the IO is actually started and that 6997 * ordered extents get created before we return 6998 */ 6999 atomic_inc(&root->fs_info->async_submit_draining); 7000 while (atomic_read(&root->fs_info->nr_async_submits) || 7001 atomic_read(&root->fs_info->async_delalloc_pages)) { 7002 wait_event(root->fs_info->async_submit_wait, 7003 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7004 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7005 } 7006 atomic_dec(&root->fs_info->async_submit_draining); 7007 return 0; 7008 } 7009 7010 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput, 7011 int sync) 7012 { 7013 struct btrfs_inode *binode; 7014 struct inode *inode = NULL; 7015 7016 spin_lock(&root->fs_info->delalloc_lock); 7017 while (!list_empty(&root->fs_info->delalloc_inodes)) { 7018 binode = list_entry(root->fs_info->delalloc_inodes.next, 7019 struct btrfs_inode, delalloc_inodes); 7020 inode = igrab(&binode->vfs_inode); 7021 if (inode) { 7022 list_move_tail(&binode->delalloc_inodes, 7023 &root->fs_info->delalloc_inodes); 7024 break; 7025 } 7026 7027 list_del_init(&binode->delalloc_inodes); 7028 cond_resched_lock(&root->fs_info->delalloc_lock); 7029 } 7030 spin_unlock(&root->fs_info->delalloc_lock); 7031 7032 if (inode) { 7033 if (sync) { 7034 filemap_write_and_wait(inode->i_mapping); 7035 /* 7036 * We have to do this because compression doesn't 7037 * actually set PG_writeback until it submits the pages 7038 * for IO, which happens in an async thread, so we could 7039 * race and not actually wait for any writeback pages 7040 * because they've not been submitted yet. Technically 7041 * this could still be the case for the ordered stuff 7042 * since the async thread may not have started to do its 7043 * work yet. If this becomes the case then we need to 7044 * figure out a way to make sure that in writepage we 7045 * wait for any async pages to be submitted before 7046 * returning so that fdatawait does what its supposed to 7047 * do. 7048 */ 7049 btrfs_wait_ordered_range(inode, 0, (u64)-1); 7050 } else { 7051 filemap_flush(inode->i_mapping); 7052 } 7053 if (delay_iput) 7054 btrfs_add_delayed_iput(inode); 7055 else 7056 iput(inode); 7057 return 1; 7058 } 7059 return 0; 7060 } 7061 7062 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7063 const char *symname) 7064 { 7065 struct btrfs_trans_handle *trans; 7066 struct btrfs_root *root = BTRFS_I(dir)->root; 7067 struct btrfs_path *path; 7068 struct btrfs_key key; 7069 struct inode *inode = NULL; 7070 int err; 7071 int drop_inode = 0; 7072 u64 objectid; 7073 u64 index = 0 ; 7074 int name_len; 7075 int datasize; 7076 unsigned long ptr; 7077 struct btrfs_file_extent_item *ei; 7078 struct extent_buffer *leaf; 7079 unsigned long nr = 0; 7080 7081 name_len = strlen(symname) + 1; 7082 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7083 return -ENAMETOOLONG; 7084 7085 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 7086 if (err) 7087 return err; 7088 /* 7089 * 2 items for inode item and ref 7090 * 2 items for dir items 7091 * 1 item for xattr if selinux is on 7092 */ 7093 trans = btrfs_start_transaction(root, 5); 7094 if (IS_ERR(trans)) 7095 return PTR_ERR(trans); 7096 7097 btrfs_set_trans_block_group(trans, dir); 7098 7099 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7100 dentry->d_name.len, dir->i_ino, objectid, 7101 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 7102 &index); 7103 err = PTR_ERR(inode); 7104 if (IS_ERR(inode)) 7105 goto out_unlock; 7106 7107 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 7108 if (err) { 7109 drop_inode = 1; 7110 goto out_unlock; 7111 } 7112 7113 btrfs_set_trans_block_group(trans, inode); 7114 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7115 if (err) 7116 drop_inode = 1; 7117 else { 7118 inode->i_mapping->a_ops = &btrfs_aops; 7119 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7120 inode->i_fop = &btrfs_file_operations; 7121 inode->i_op = &btrfs_file_inode_operations; 7122 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7123 } 7124 btrfs_update_inode_block_group(trans, inode); 7125 btrfs_update_inode_block_group(trans, dir); 7126 if (drop_inode) 7127 goto out_unlock; 7128 7129 path = btrfs_alloc_path(); 7130 BUG_ON(!path); 7131 key.objectid = inode->i_ino; 7132 key.offset = 0; 7133 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7134 datasize = btrfs_file_extent_calc_inline_size(name_len); 7135 err = btrfs_insert_empty_item(trans, root, path, &key, 7136 datasize); 7137 if (err) { 7138 drop_inode = 1; 7139 goto out_unlock; 7140 } 7141 leaf = path->nodes[0]; 7142 ei = btrfs_item_ptr(leaf, path->slots[0], 7143 struct btrfs_file_extent_item); 7144 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7145 btrfs_set_file_extent_type(leaf, ei, 7146 BTRFS_FILE_EXTENT_INLINE); 7147 btrfs_set_file_extent_encryption(leaf, ei, 0); 7148 btrfs_set_file_extent_compression(leaf, ei, 0); 7149 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7150 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7151 7152 ptr = btrfs_file_extent_inline_start(ei); 7153 write_extent_buffer(leaf, symname, ptr, name_len); 7154 btrfs_mark_buffer_dirty(leaf); 7155 btrfs_free_path(path); 7156 7157 inode->i_op = &btrfs_symlink_inode_operations; 7158 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7159 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7160 inode_set_bytes(inode, name_len); 7161 btrfs_i_size_write(inode, name_len - 1); 7162 err = btrfs_update_inode(trans, root, inode); 7163 if (err) 7164 drop_inode = 1; 7165 7166 out_unlock: 7167 nr = trans->blocks_used; 7168 btrfs_end_transaction_throttle(trans, root); 7169 if (drop_inode) { 7170 inode_dec_link_count(inode); 7171 iput(inode); 7172 } 7173 btrfs_btree_balance_dirty(root, nr); 7174 return err; 7175 } 7176 7177 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7178 u64 start, u64 num_bytes, u64 min_size, 7179 loff_t actual_len, u64 *alloc_hint, 7180 struct btrfs_trans_handle *trans) 7181 { 7182 struct btrfs_root *root = BTRFS_I(inode)->root; 7183 struct btrfs_key ins; 7184 u64 cur_offset = start; 7185 u64 i_size; 7186 int ret = 0; 7187 bool own_trans = true; 7188 7189 if (trans) 7190 own_trans = false; 7191 while (num_bytes > 0) { 7192 if (own_trans) { 7193 trans = btrfs_start_transaction(root, 3); 7194 if (IS_ERR(trans)) { 7195 ret = PTR_ERR(trans); 7196 break; 7197 } 7198 } 7199 7200 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7201 0, *alloc_hint, (u64)-1, &ins, 1); 7202 if (ret) { 7203 if (own_trans) 7204 btrfs_end_transaction(trans, root); 7205 break; 7206 } 7207 7208 ret = insert_reserved_file_extent(trans, inode, 7209 cur_offset, ins.objectid, 7210 ins.offset, ins.offset, 7211 ins.offset, 0, 0, 0, 7212 BTRFS_FILE_EXTENT_PREALLOC); 7213 BUG_ON(ret); 7214 btrfs_drop_extent_cache(inode, cur_offset, 7215 cur_offset + ins.offset -1, 0); 7216 7217 num_bytes -= ins.offset; 7218 cur_offset += ins.offset; 7219 *alloc_hint = ins.objectid + ins.offset; 7220 7221 inode->i_ctime = CURRENT_TIME; 7222 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7223 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7224 (actual_len > inode->i_size) && 7225 (cur_offset > inode->i_size)) { 7226 if (cur_offset > actual_len) 7227 i_size = actual_len; 7228 else 7229 i_size = cur_offset; 7230 i_size_write(inode, i_size); 7231 btrfs_ordered_update_i_size(inode, i_size, NULL); 7232 } 7233 7234 ret = btrfs_update_inode(trans, root, inode); 7235 BUG_ON(ret); 7236 7237 if (own_trans) 7238 btrfs_end_transaction(trans, root); 7239 } 7240 return ret; 7241 } 7242 7243 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7244 u64 start, u64 num_bytes, u64 min_size, 7245 loff_t actual_len, u64 *alloc_hint) 7246 { 7247 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7248 min_size, actual_len, alloc_hint, 7249 NULL); 7250 } 7251 7252 int btrfs_prealloc_file_range_trans(struct inode *inode, 7253 struct btrfs_trans_handle *trans, int mode, 7254 u64 start, u64 num_bytes, u64 min_size, 7255 loff_t actual_len, u64 *alloc_hint) 7256 { 7257 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7258 min_size, actual_len, alloc_hint, trans); 7259 } 7260 7261 static int btrfs_set_page_dirty(struct page *page) 7262 { 7263 return __set_page_dirty_nobuffers(page); 7264 } 7265 7266 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags) 7267 { 7268 struct btrfs_root *root = BTRFS_I(inode)->root; 7269 7270 if (btrfs_root_readonly(root) && (mask & MAY_WRITE)) 7271 return -EROFS; 7272 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE)) 7273 return -EACCES; 7274 return generic_permission(inode, mask, flags, btrfs_check_acl); 7275 } 7276 7277 static const struct inode_operations btrfs_dir_inode_operations = { 7278 .getattr = btrfs_getattr, 7279 .lookup = btrfs_lookup, 7280 .create = btrfs_create, 7281 .unlink = btrfs_unlink, 7282 .link = btrfs_link, 7283 .mkdir = btrfs_mkdir, 7284 .rmdir = btrfs_rmdir, 7285 .rename = btrfs_rename, 7286 .symlink = btrfs_symlink, 7287 .setattr = btrfs_setattr, 7288 .mknod = btrfs_mknod, 7289 .setxattr = btrfs_setxattr, 7290 .getxattr = btrfs_getxattr, 7291 .listxattr = btrfs_listxattr, 7292 .removexattr = btrfs_removexattr, 7293 .permission = btrfs_permission, 7294 }; 7295 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7296 .lookup = btrfs_lookup, 7297 .permission = btrfs_permission, 7298 }; 7299 7300 static const struct file_operations btrfs_dir_file_operations = { 7301 .llseek = generic_file_llseek, 7302 .read = generic_read_dir, 7303 .readdir = btrfs_real_readdir, 7304 .unlocked_ioctl = btrfs_ioctl, 7305 #ifdef CONFIG_COMPAT 7306 .compat_ioctl = btrfs_ioctl, 7307 #endif 7308 .release = btrfs_release_file, 7309 .fsync = btrfs_sync_file, 7310 }; 7311 7312 static struct extent_io_ops btrfs_extent_io_ops = { 7313 .fill_delalloc = run_delalloc_range, 7314 .submit_bio_hook = btrfs_submit_bio_hook, 7315 .merge_bio_hook = btrfs_merge_bio_hook, 7316 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7317 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7318 .writepage_start_hook = btrfs_writepage_start_hook, 7319 .readpage_io_failed_hook = btrfs_io_failed_hook, 7320 .set_bit_hook = btrfs_set_bit_hook, 7321 .clear_bit_hook = btrfs_clear_bit_hook, 7322 .merge_extent_hook = btrfs_merge_extent_hook, 7323 .split_extent_hook = btrfs_split_extent_hook, 7324 }; 7325 7326 /* 7327 * btrfs doesn't support the bmap operation because swapfiles 7328 * use bmap to make a mapping of extents in the file. They assume 7329 * these extents won't change over the life of the file and they 7330 * use the bmap result to do IO directly to the drive. 7331 * 7332 * the btrfs bmap call would return logical addresses that aren't 7333 * suitable for IO and they also will change frequently as COW 7334 * operations happen. So, swapfile + btrfs == corruption. 7335 * 7336 * For now we're avoiding this by dropping bmap. 7337 */ 7338 static const struct address_space_operations btrfs_aops = { 7339 .readpage = btrfs_readpage, 7340 .writepage = btrfs_writepage, 7341 .writepages = btrfs_writepages, 7342 .readpages = btrfs_readpages, 7343 .sync_page = block_sync_page, 7344 .direct_IO = btrfs_direct_IO, 7345 .invalidatepage = btrfs_invalidatepage, 7346 .releasepage = btrfs_releasepage, 7347 .set_page_dirty = btrfs_set_page_dirty, 7348 .error_remove_page = generic_error_remove_page, 7349 }; 7350 7351 static const struct address_space_operations btrfs_symlink_aops = { 7352 .readpage = btrfs_readpage, 7353 .writepage = btrfs_writepage, 7354 .invalidatepage = btrfs_invalidatepage, 7355 .releasepage = btrfs_releasepage, 7356 }; 7357 7358 static const struct inode_operations btrfs_file_inode_operations = { 7359 .truncate = btrfs_truncate, 7360 .getattr = btrfs_getattr, 7361 .setattr = btrfs_setattr, 7362 .setxattr = btrfs_setxattr, 7363 .getxattr = btrfs_getxattr, 7364 .listxattr = btrfs_listxattr, 7365 .removexattr = btrfs_removexattr, 7366 .permission = btrfs_permission, 7367 .fiemap = btrfs_fiemap, 7368 }; 7369 static const struct inode_operations btrfs_special_inode_operations = { 7370 .getattr = btrfs_getattr, 7371 .setattr = btrfs_setattr, 7372 .permission = btrfs_permission, 7373 .setxattr = btrfs_setxattr, 7374 .getxattr = btrfs_getxattr, 7375 .listxattr = btrfs_listxattr, 7376 .removexattr = btrfs_removexattr, 7377 }; 7378 static const struct inode_operations btrfs_symlink_inode_operations = { 7379 .readlink = generic_readlink, 7380 .follow_link = page_follow_link_light, 7381 .put_link = page_put_link, 7382 .getattr = btrfs_getattr, 7383 .permission = btrfs_permission, 7384 .setxattr = btrfs_setxattr, 7385 .getxattr = btrfs_getxattr, 7386 .listxattr = btrfs_listxattr, 7387 .removexattr = btrfs_removexattr, 7388 }; 7389 7390 const struct dentry_operations btrfs_dentry_operations = { 7391 .d_delete = btrfs_dentry_delete, 7392 }; 7393