xref: /openbmc/linux/fs/btrfs/inode.c (revision 54d8c1d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_dio_data {
81 	ssize_t submitted;
82 	struct extent_changeset *data_reserved;
83 	struct btrfs_ordered_extent *ordered;
84 	bool data_space_reserved;
85 	bool nocow_done;
86 };
87 
88 struct btrfs_dio_private {
89 	/* Range of I/O */
90 	u64 file_offset;
91 	u32 bytes;
92 
93 	/* This must be last */
94 	struct btrfs_bio bbio;
95 };
96 
97 static struct bio_set btrfs_dio_bioset;
98 
99 struct btrfs_rename_ctx {
100 	/* Output field. Stores the index number of the old directory entry. */
101 	u64 index;
102 };
103 
104 /*
105  * Used by data_reloc_print_warning_inode() to pass needed info for filename
106  * resolution and output of error message.
107  */
108 struct data_reloc_warn {
109 	struct btrfs_path path;
110 	struct btrfs_fs_info *fs_info;
111 	u64 extent_item_size;
112 	u64 logical;
113 	int mirror_num;
114 };
115 
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
122 
123 static struct kmem_cache *btrfs_inode_cachep;
124 
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
127 
128 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
129 				     struct page *locked_page, u64 start,
130 				     u64 end, struct writeback_control *wbc,
131 				     bool pages_dirty);
132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
133 				       u64 len, u64 orig_start, u64 block_start,
134 				       u64 block_len, u64 orig_block_len,
135 				       u64 ram_bytes, int compress_type,
136 				       int type);
137 
138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
139 					  u64 root, void *warn_ctx)
140 {
141 	struct data_reloc_warn *warn = warn_ctx;
142 	struct btrfs_fs_info *fs_info = warn->fs_info;
143 	struct extent_buffer *eb;
144 	struct btrfs_inode_item *inode_item;
145 	struct inode_fs_paths *ipath = NULL;
146 	struct btrfs_root *local_root;
147 	struct btrfs_key key;
148 	unsigned int nofs_flag;
149 	u32 nlink;
150 	int ret;
151 
152 	local_root = btrfs_get_fs_root(fs_info, root, true);
153 	if (IS_ERR(local_root)) {
154 		ret = PTR_ERR(local_root);
155 		goto err;
156 	}
157 
158 	/* This makes the path point to (inum INODE_ITEM ioff). */
159 	key.objectid = inum;
160 	key.type = BTRFS_INODE_ITEM_KEY;
161 	key.offset = 0;
162 
163 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
164 	if (ret) {
165 		btrfs_put_root(local_root);
166 		btrfs_release_path(&warn->path);
167 		goto err;
168 	}
169 
170 	eb = warn->path.nodes[0];
171 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
172 	nlink = btrfs_inode_nlink(eb, inode_item);
173 	btrfs_release_path(&warn->path);
174 
175 	nofs_flag = memalloc_nofs_save();
176 	ipath = init_ipath(4096, local_root, &warn->path);
177 	memalloc_nofs_restore(nofs_flag);
178 	if (IS_ERR(ipath)) {
179 		btrfs_put_root(local_root);
180 		ret = PTR_ERR(ipath);
181 		ipath = NULL;
182 		/*
183 		 * -ENOMEM, not a critical error, just output an generic error
184 		 * without filename.
185 		 */
186 		btrfs_warn(fs_info,
187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
188 			   warn->logical, warn->mirror_num, root, inum, offset);
189 		return ret;
190 	}
191 	ret = paths_from_inode(inum, ipath);
192 	if (ret < 0)
193 		goto err;
194 
195 	/*
196 	 * We deliberately ignore the bit ipath might have been too small to
197 	 * hold all of the paths here
198 	 */
199 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
200 		btrfs_warn(fs_info,
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
202 			   warn->logical, warn->mirror_num, root, inum, offset,
203 			   fs_info->sectorsize, nlink,
204 			   (char *)(unsigned long)ipath->fspath->val[i]);
205 	}
206 
207 	btrfs_put_root(local_root);
208 	free_ipath(ipath);
209 	return 0;
210 
211 err:
212 	btrfs_warn(fs_info,
213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
214 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
215 
216 	free_ipath(ipath);
217 	return ret;
218 }
219 
220 /*
221  * Do extra user-friendly error output (e.g. lookup all the affected files).
222  *
223  * Return true if we succeeded doing the backref lookup.
224  * Return false if such lookup failed, and has to fallback to the old error message.
225  */
226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
227 				   const u8 *csum, const u8 *csum_expected,
228 				   int mirror_num)
229 {
230 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
231 	struct btrfs_path path = { 0 };
232 	struct btrfs_key found_key = { 0 };
233 	struct extent_buffer *eb;
234 	struct btrfs_extent_item *ei;
235 	const u32 csum_size = fs_info->csum_size;
236 	u64 logical;
237 	u64 flags;
238 	u32 item_size;
239 	int ret;
240 
241 	mutex_lock(&fs_info->reloc_mutex);
242 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
243 	mutex_unlock(&fs_info->reloc_mutex);
244 
245 	if (logical == U64_MAX) {
246 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
247 		btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
249 			inode->root->root_key.objectid, btrfs_ino(inode), file_off,
250 			CSUM_FMT_VALUE(csum_size, csum),
251 			CSUM_FMT_VALUE(csum_size, csum_expected),
252 			mirror_num);
253 		return;
254 	}
255 
256 	logical += file_off;
257 	btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 			inode->root->root_key.objectid,
260 			btrfs_ino(inode), file_off, logical,
261 			CSUM_FMT_VALUE(csum_size, csum),
262 			CSUM_FMT_VALUE(csum_size, csum_expected),
263 			mirror_num);
264 
265 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
266 	if (ret < 0) {
267 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
268 			     logical, ret);
269 		return;
270 	}
271 	eb = path.nodes[0];
272 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
273 	item_size = btrfs_item_size(eb, path.slots[0]);
274 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
275 		unsigned long ptr = 0;
276 		u64 ref_root;
277 		u8 ref_level;
278 
279 		while (true) {
280 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
281 						      item_size, &ref_root,
282 						      &ref_level);
283 			if (ret < 0) {
284 				btrfs_warn_rl(fs_info,
285 				"failed to resolve tree backref for logical %llu: %d",
286 					      logical, ret);
287 				break;
288 			}
289 			if (ret > 0)
290 				break;
291 
292 			btrfs_warn_rl(fs_info,
293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
294 				logical, mirror_num,
295 				(ref_level ? "node" : "leaf"),
296 				ref_level, ref_root);
297 		}
298 		btrfs_release_path(&path);
299 	} else {
300 		struct btrfs_backref_walk_ctx ctx = { 0 };
301 		struct data_reloc_warn reloc_warn = { 0 };
302 
303 		btrfs_release_path(&path);
304 
305 		ctx.bytenr = found_key.objectid;
306 		ctx.extent_item_pos = logical - found_key.objectid;
307 		ctx.fs_info = fs_info;
308 
309 		reloc_warn.logical = logical;
310 		reloc_warn.extent_item_size = found_key.offset;
311 		reloc_warn.mirror_num = mirror_num;
312 		reloc_warn.fs_info = fs_info;
313 
314 		iterate_extent_inodes(&ctx, true,
315 				      data_reloc_print_warning_inode, &reloc_warn);
316 	}
317 }
318 
319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
320 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
321 {
322 	struct btrfs_root *root = inode->root;
323 	const u32 csum_size = root->fs_info->csum_size;
324 
325 	/* For data reloc tree, it's better to do a backref lookup instead. */
326 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
327 		return print_data_reloc_error(inode, logical_start, csum,
328 					      csum_expected, mirror_num);
329 
330 	/* Output without objectid, which is more meaningful */
331 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
332 		btrfs_warn_rl(root->fs_info,
333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
334 			root->root_key.objectid, btrfs_ino(inode),
335 			logical_start,
336 			CSUM_FMT_VALUE(csum_size, csum),
337 			CSUM_FMT_VALUE(csum_size, csum_expected),
338 			mirror_num);
339 	} else {
340 		btrfs_warn_rl(root->fs_info,
341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 			root->root_key.objectid, btrfs_ino(inode),
343 			logical_start,
344 			CSUM_FMT_VALUE(csum_size, csum),
345 			CSUM_FMT_VALUE(csum_size, csum_expected),
346 			mirror_num);
347 	}
348 }
349 
350 /*
351  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
352  *
353  * ilock_flags can have the following bit set:
354  *
355  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
356  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
357  *		     return -EAGAIN
358  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
359  */
360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
361 {
362 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
363 		if (ilock_flags & BTRFS_ILOCK_TRY) {
364 			if (!inode_trylock_shared(&inode->vfs_inode))
365 				return -EAGAIN;
366 			else
367 				return 0;
368 		}
369 		inode_lock_shared(&inode->vfs_inode);
370 	} else {
371 		if (ilock_flags & BTRFS_ILOCK_TRY) {
372 			if (!inode_trylock(&inode->vfs_inode))
373 				return -EAGAIN;
374 			else
375 				return 0;
376 		}
377 		inode_lock(&inode->vfs_inode);
378 	}
379 	if (ilock_flags & BTRFS_ILOCK_MMAP)
380 		down_write(&inode->i_mmap_lock);
381 	return 0;
382 }
383 
384 /*
385  * btrfs_inode_unlock - unock inode i_rwsem
386  *
387  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
388  * to decide whether the lock acquired is shared or exclusive.
389  */
390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
391 {
392 	if (ilock_flags & BTRFS_ILOCK_MMAP)
393 		up_write(&inode->i_mmap_lock);
394 	if (ilock_flags & BTRFS_ILOCK_SHARED)
395 		inode_unlock_shared(&inode->vfs_inode);
396 	else
397 		inode_unlock(&inode->vfs_inode);
398 }
399 
400 /*
401  * Cleanup all submitted ordered extents in specified range to handle errors
402  * from the btrfs_run_delalloc_range() callback.
403  *
404  * NOTE: caller must ensure that when an error happens, it can not call
405  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
406  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
407  * to be released, which we want to happen only when finishing the ordered
408  * extent (btrfs_finish_ordered_io()).
409  */
410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
411 						 struct page *locked_page,
412 						 u64 offset, u64 bytes)
413 {
414 	unsigned long index = offset >> PAGE_SHIFT;
415 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
416 	u64 page_start = 0, page_end = 0;
417 	struct page *page;
418 
419 	if (locked_page) {
420 		page_start = page_offset(locked_page);
421 		page_end = page_start + PAGE_SIZE - 1;
422 	}
423 
424 	while (index <= end_index) {
425 		/*
426 		 * For locked page, we will call btrfs_mark_ordered_io_finished
427 		 * through btrfs_mark_ordered_io_finished() on it
428 		 * in run_delalloc_range() for the error handling, which will
429 		 * clear page Ordered and run the ordered extent accounting.
430 		 *
431 		 * Here we can't just clear the Ordered bit, or
432 		 * btrfs_mark_ordered_io_finished() would skip the accounting
433 		 * for the page range, and the ordered extent will never finish.
434 		 */
435 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
436 			index++;
437 			continue;
438 		}
439 		page = find_get_page(inode->vfs_inode.i_mapping, index);
440 		index++;
441 		if (!page)
442 			continue;
443 
444 		/*
445 		 * Here we just clear all Ordered bits for every page in the
446 		 * range, then btrfs_mark_ordered_io_finished() will handle
447 		 * the ordered extent accounting for the range.
448 		 */
449 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
450 					       offset, bytes);
451 		put_page(page);
452 	}
453 
454 	if (locked_page) {
455 		/* The locked page covers the full range, nothing needs to be done */
456 		if (bytes + offset <= page_start + PAGE_SIZE)
457 			return;
458 		/*
459 		 * In case this page belongs to the delalloc range being
460 		 * instantiated then skip it, since the first page of a range is
461 		 * going to be properly cleaned up by the caller of
462 		 * run_delalloc_range
463 		 */
464 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
465 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
466 			offset = page_offset(locked_page) + PAGE_SIZE;
467 		}
468 	}
469 
470 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
471 }
472 
473 static int btrfs_dirty_inode(struct btrfs_inode *inode);
474 
475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
476 				     struct btrfs_new_inode_args *args)
477 {
478 	int err;
479 
480 	if (args->default_acl) {
481 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
482 				      ACL_TYPE_DEFAULT);
483 		if (err)
484 			return err;
485 	}
486 	if (args->acl) {
487 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
488 		if (err)
489 			return err;
490 	}
491 	if (!args->default_acl && !args->acl)
492 		cache_no_acl(args->inode);
493 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
494 					 &args->dentry->d_name);
495 }
496 
497 /*
498  * this does all the hard work for inserting an inline extent into
499  * the btree.  The caller should have done a btrfs_drop_extents so that
500  * no overlapping inline items exist in the btree
501  */
502 static int insert_inline_extent(struct btrfs_trans_handle *trans,
503 				struct btrfs_path *path,
504 				struct btrfs_inode *inode, bool extent_inserted,
505 				size_t size, size_t compressed_size,
506 				int compress_type,
507 				struct page **compressed_pages,
508 				bool update_i_size)
509 {
510 	struct btrfs_root *root = inode->root;
511 	struct extent_buffer *leaf;
512 	struct page *page = NULL;
513 	char *kaddr;
514 	unsigned long ptr;
515 	struct btrfs_file_extent_item *ei;
516 	int ret;
517 	size_t cur_size = size;
518 	u64 i_size;
519 
520 	ASSERT((compressed_size > 0 && compressed_pages) ||
521 	       (compressed_size == 0 && !compressed_pages));
522 
523 	if (compressed_size && compressed_pages)
524 		cur_size = compressed_size;
525 
526 	if (!extent_inserted) {
527 		struct btrfs_key key;
528 		size_t datasize;
529 
530 		key.objectid = btrfs_ino(inode);
531 		key.offset = 0;
532 		key.type = BTRFS_EXTENT_DATA_KEY;
533 
534 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
535 		ret = btrfs_insert_empty_item(trans, root, path, &key,
536 					      datasize);
537 		if (ret)
538 			goto fail;
539 	}
540 	leaf = path->nodes[0];
541 	ei = btrfs_item_ptr(leaf, path->slots[0],
542 			    struct btrfs_file_extent_item);
543 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
544 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
545 	btrfs_set_file_extent_encryption(leaf, ei, 0);
546 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
547 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
548 	ptr = btrfs_file_extent_inline_start(ei);
549 
550 	if (compress_type != BTRFS_COMPRESS_NONE) {
551 		struct page *cpage;
552 		int i = 0;
553 		while (compressed_size > 0) {
554 			cpage = compressed_pages[i];
555 			cur_size = min_t(unsigned long, compressed_size,
556 				       PAGE_SIZE);
557 
558 			kaddr = kmap_local_page(cpage);
559 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
560 			kunmap_local(kaddr);
561 
562 			i++;
563 			ptr += cur_size;
564 			compressed_size -= cur_size;
565 		}
566 		btrfs_set_file_extent_compression(leaf, ei,
567 						  compress_type);
568 	} else {
569 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
570 		btrfs_set_file_extent_compression(leaf, ei, 0);
571 		kaddr = kmap_local_page(page);
572 		write_extent_buffer(leaf, kaddr, ptr, size);
573 		kunmap_local(kaddr);
574 		put_page(page);
575 	}
576 	btrfs_mark_buffer_dirty(trans, leaf);
577 	btrfs_release_path(path);
578 
579 	/*
580 	 * We align size to sectorsize for inline extents just for simplicity
581 	 * sake.
582 	 */
583 	ret = btrfs_inode_set_file_extent_range(inode, 0,
584 					ALIGN(size, root->fs_info->sectorsize));
585 	if (ret)
586 		goto fail;
587 
588 	/*
589 	 * We're an inline extent, so nobody can extend the file past i_size
590 	 * without locking a page we already have locked.
591 	 *
592 	 * We must do any i_size and inode updates before we unlock the pages.
593 	 * Otherwise we could end up racing with unlink.
594 	 */
595 	i_size = i_size_read(&inode->vfs_inode);
596 	if (update_i_size && size > i_size) {
597 		i_size_write(&inode->vfs_inode, size);
598 		i_size = size;
599 	}
600 	inode->disk_i_size = i_size;
601 
602 fail:
603 	return ret;
604 }
605 
606 
607 /*
608  * conditionally insert an inline extent into the file.  This
609  * does the checks required to make sure the data is small enough
610  * to fit as an inline extent.
611  */
612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
613 					  size_t compressed_size,
614 					  int compress_type,
615 					  struct page **compressed_pages,
616 					  bool update_i_size)
617 {
618 	struct btrfs_drop_extents_args drop_args = { 0 };
619 	struct btrfs_root *root = inode->root;
620 	struct btrfs_fs_info *fs_info = root->fs_info;
621 	struct btrfs_trans_handle *trans;
622 	u64 data_len = (compressed_size ?: size);
623 	int ret;
624 	struct btrfs_path *path;
625 
626 	/*
627 	 * We can create an inline extent if it ends at or beyond the current
628 	 * i_size, is no larger than a sector (decompressed), and the (possibly
629 	 * compressed) data fits in a leaf and the configured maximum inline
630 	 * size.
631 	 */
632 	if (size < i_size_read(&inode->vfs_inode) ||
633 	    size > fs_info->sectorsize ||
634 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
635 	    data_len > fs_info->max_inline)
636 		return 1;
637 
638 	path = btrfs_alloc_path();
639 	if (!path)
640 		return -ENOMEM;
641 
642 	trans = btrfs_join_transaction(root);
643 	if (IS_ERR(trans)) {
644 		btrfs_free_path(path);
645 		return PTR_ERR(trans);
646 	}
647 	trans->block_rsv = &inode->block_rsv;
648 
649 	drop_args.path = path;
650 	drop_args.start = 0;
651 	drop_args.end = fs_info->sectorsize;
652 	drop_args.drop_cache = true;
653 	drop_args.replace_extent = true;
654 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
655 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
656 	if (ret) {
657 		btrfs_abort_transaction(trans, ret);
658 		goto out;
659 	}
660 
661 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
662 				   size, compressed_size, compress_type,
663 				   compressed_pages, update_i_size);
664 	if (ret && ret != -ENOSPC) {
665 		btrfs_abort_transaction(trans, ret);
666 		goto out;
667 	} else if (ret == -ENOSPC) {
668 		ret = 1;
669 		goto out;
670 	}
671 
672 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
673 	ret = btrfs_update_inode(trans, root, inode);
674 	if (ret && ret != -ENOSPC) {
675 		btrfs_abort_transaction(trans, ret);
676 		goto out;
677 	} else if (ret == -ENOSPC) {
678 		ret = 1;
679 		goto out;
680 	}
681 
682 	btrfs_set_inode_full_sync(inode);
683 out:
684 	/*
685 	 * Don't forget to free the reserved space, as for inlined extent
686 	 * it won't count as data extent, free them directly here.
687 	 * And at reserve time, it's always aligned to page size, so
688 	 * just free one page here.
689 	 */
690 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
691 	btrfs_free_path(path);
692 	btrfs_end_transaction(trans);
693 	return ret;
694 }
695 
696 struct async_extent {
697 	u64 start;
698 	u64 ram_size;
699 	u64 compressed_size;
700 	struct page **pages;
701 	unsigned long nr_pages;
702 	int compress_type;
703 	struct list_head list;
704 };
705 
706 struct async_chunk {
707 	struct btrfs_inode *inode;
708 	struct page *locked_page;
709 	u64 start;
710 	u64 end;
711 	blk_opf_t write_flags;
712 	struct list_head extents;
713 	struct cgroup_subsys_state *blkcg_css;
714 	struct btrfs_work work;
715 	struct async_cow *async_cow;
716 };
717 
718 struct async_cow {
719 	atomic_t num_chunks;
720 	struct async_chunk chunks[];
721 };
722 
723 static noinline int add_async_extent(struct async_chunk *cow,
724 				     u64 start, u64 ram_size,
725 				     u64 compressed_size,
726 				     struct page **pages,
727 				     unsigned long nr_pages,
728 				     int compress_type)
729 {
730 	struct async_extent *async_extent;
731 
732 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
733 	BUG_ON(!async_extent); /* -ENOMEM */
734 	async_extent->start = start;
735 	async_extent->ram_size = ram_size;
736 	async_extent->compressed_size = compressed_size;
737 	async_extent->pages = pages;
738 	async_extent->nr_pages = nr_pages;
739 	async_extent->compress_type = compress_type;
740 	list_add_tail(&async_extent->list, &cow->extents);
741 	return 0;
742 }
743 
744 /*
745  * Check if the inode needs to be submitted to compression, based on mount
746  * options, defragmentation, properties or heuristics.
747  */
748 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
749 				      u64 end)
750 {
751 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
752 
753 	if (!btrfs_inode_can_compress(inode)) {
754 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
755 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
756 			btrfs_ino(inode));
757 		return 0;
758 	}
759 	/*
760 	 * Special check for subpage.
761 	 *
762 	 * We lock the full page then run each delalloc range in the page, thus
763 	 * for the following case, we will hit some subpage specific corner case:
764 	 *
765 	 * 0		32K		64K
766 	 * |	|///////|	|///////|
767 	 *		\- A		\- B
768 	 *
769 	 * In above case, both range A and range B will try to unlock the full
770 	 * page [0, 64K), causing the one finished later will have page
771 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
772 	 *
773 	 * So here we add an artificial limit that subpage compression can only
774 	 * if the range is fully page aligned.
775 	 *
776 	 * In theory we only need to ensure the first page is fully covered, but
777 	 * the tailing partial page will be locked until the full compression
778 	 * finishes, delaying the write of other range.
779 	 *
780 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
781 	 * first to prevent any submitted async extent to unlock the full page.
782 	 * By this, we can ensure for subpage case that only the last async_cow
783 	 * will unlock the full page.
784 	 */
785 	if (fs_info->sectorsize < PAGE_SIZE) {
786 		if (!PAGE_ALIGNED(start) ||
787 		    !PAGE_ALIGNED(end + 1))
788 			return 0;
789 	}
790 
791 	/* force compress */
792 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
793 		return 1;
794 	/* defrag ioctl */
795 	if (inode->defrag_compress)
796 		return 1;
797 	/* bad compression ratios */
798 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
799 		return 0;
800 	if (btrfs_test_opt(fs_info, COMPRESS) ||
801 	    inode->flags & BTRFS_INODE_COMPRESS ||
802 	    inode->prop_compress)
803 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
804 	return 0;
805 }
806 
807 static inline void inode_should_defrag(struct btrfs_inode *inode,
808 		u64 start, u64 end, u64 num_bytes, u32 small_write)
809 {
810 	/* If this is a small write inside eof, kick off a defrag */
811 	if (num_bytes < small_write &&
812 	    (start > 0 || end + 1 < inode->disk_i_size))
813 		btrfs_add_inode_defrag(NULL, inode, small_write);
814 }
815 
816 /*
817  * Work queue call back to started compression on a file and pages.
818  *
819  * This is done inside an ordered work queue, and the compression is spread
820  * across many cpus.  The actual IO submission is step two, and the ordered work
821  * queue takes care of making sure that happens in the same order things were
822  * put onto the queue by writepages and friends.
823  *
824  * If this code finds it can't get good compression, it puts an entry onto the
825  * work queue to write the uncompressed bytes.  This makes sure that both
826  * compressed inodes and uncompressed inodes are written in the same order that
827  * the flusher thread sent them down.
828  */
829 static void compress_file_range(struct btrfs_work *work)
830 {
831 	struct async_chunk *async_chunk =
832 		container_of(work, struct async_chunk, work);
833 	struct btrfs_inode *inode = async_chunk->inode;
834 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
835 	struct address_space *mapping = inode->vfs_inode.i_mapping;
836 	u64 blocksize = fs_info->sectorsize;
837 	u64 start = async_chunk->start;
838 	u64 end = async_chunk->end;
839 	u64 actual_end;
840 	u64 i_size;
841 	int ret = 0;
842 	struct page **pages;
843 	unsigned long nr_pages;
844 	unsigned long total_compressed = 0;
845 	unsigned long total_in = 0;
846 	unsigned int poff;
847 	int i;
848 	int compress_type = fs_info->compress_type;
849 
850 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
851 
852 	/*
853 	 * We need to call clear_page_dirty_for_io on each page in the range.
854 	 * Otherwise applications with the file mmap'd can wander in and change
855 	 * the page contents while we are compressing them.
856 	 */
857 	extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
858 
859 	/*
860 	 * We need to save i_size before now because it could change in between
861 	 * us evaluating the size and assigning it.  This is because we lock and
862 	 * unlock the page in truncate and fallocate, and then modify the i_size
863 	 * later on.
864 	 *
865 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
866 	 * does that for us.
867 	 */
868 	barrier();
869 	i_size = i_size_read(&inode->vfs_inode);
870 	barrier();
871 	actual_end = min_t(u64, i_size, end + 1);
872 again:
873 	pages = NULL;
874 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
875 	nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
876 
877 	/*
878 	 * we don't want to send crud past the end of i_size through
879 	 * compression, that's just a waste of CPU time.  So, if the
880 	 * end of the file is before the start of our current
881 	 * requested range of bytes, we bail out to the uncompressed
882 	 * cleanup code that can deal with all of this.
883 	 *
884 	 * It isn't really the fastest way to fix things, but this is a
885 	 * very uncommon corner.
886 	 */
887 	if (actual_end <= start)
888 		goto cleanup_and_bail_uncompressed;
889 
890 	total_compressed = actual_end - start;
891 
892 	/*
893 	 * Skip compression for a small file range(<=blocksize) that
894 	 * isn't an inline extent, since it doesn't save disk space at all.
895 	 */
896 	if (total_compressed <= blocksize &&
897 	   (start > 0 || end + 1 < inode->disk_i_size))
898 		goto cleanup_and_bail_uncompressed;
899 
900 	/*
901 	 * For subpage case, we require full page alignment for the sector
902 	 * aligned range.
903 	 * Thus we must also check against @actual_end, not just @end.
904 	 */
905 	if (blocksize < PAGE_SIZE) {
906 		if (!PAGE_ALIGNED(start) ||
907 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
908 			goto cleanup_and_bail_uncompressed;
909 	}
910 
911 	total_compressed = min_t(unsigned long, total_compressed,
912 			BTRFS_MAX_UNCOMPRESSED);
913 	total_in = 0;
914 	ret = 0;
915 
916 	/*
917 	 * We do compression for mount -o compress and when the inode has not
918 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
919 	 * discover bad compression ratios.
920 	 */
921 	if (!inode_need_compress(inode, start, end))
922 		goto cleanup_and_bail_uncompressed;
923 
924 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
925 	if (!pages) {
926 		/*
927 		 * Memory allocation failure is not a fatal error, we can fall
928 		 * back to uncompressed code.
929 		 */
930 		goto cleanup_and_bail_uncompressed;
931 	}
932 
933 	if (inode->defrag_compress)
934 		compress_type = inode->defrag_compress;
935 	else if (inode->prop_compress)
936 		compress_type = inode->prop_compress;
937 
938 	/* Compression level is applied here. */
939 	ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
940 				   mapping, start, pages, &nr_pages, &total_in,
941 				   &total_compressed);
942 	if (ret)
943 		goto mark_incompressible;
944 
945 	/*
946 	 * Zero the tail end of the last page, as we might be sending it down
947 	 * to disk.
948 	 */
949 	poff = offset_in_page(total_compressed);
950 	if (poff)
951 		memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
952 
953 	/*
954 	 * Try to create an inline extent.
955 	 *
956 	 * If we didn't compress the entire range, try to create an uncompressed
957 	 * inline extent, else a compressed one.
958 	 *
959 	 * Check cow_file_range() for why we don't even try to create inline
960 	 * extent for the subpage case.
961 	 */
962 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
963 		if (total_in < actual_end) {
964 			ret = cow_file_range_inline(inode, actual_end, 0,
965 						    BTRFS_COMPRESS_NONE, NULL,
966 						    false);
967 		} else {
968 			ret = cow_file_range_inline(inode, actual_end,
969 						    total_compressed,
970 						    compress_type, pages,
971 						    false);
972 		}
973 		if (ret <= 0) {
974 			unsigned long clear_flags = EXTENT_DELALLOC |
975 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
976 				EXTENT_DO_ACCOUNTING;
977 
978 			if (ret < 0)
979 				mapping_set_error(mapping, -EIO);
980 
981 			/*
982 			 * inline extent creation worked or returned error,
983 			 * we don't need to create any more async work items.
984 			 * Unlock and free up our temp pages.
985 			 *
986 			 * We use DO_ACCOUNTING here because we need the
987 			 * delalloc_release_metadata to be done _after_ we drop
988 			 * our outstanding extent for clearing delalloc for this
989 			 * range.
990 			 */
991 			extent_clear_unlock_delalloc(inode, start, end,
992 						     NULL,
993 						     clear_flags,
994 						     PAGE_UNLOCK |
995 						     PAGE_START_WRITEBACK |
996 						     PAGE_END_WRITEBACK);
997 			goto free_pages;
998 		}
999 	}
1000 
1001 	/*
1002 	 * We aren't doing an inline extent. Round the compressed size up to a
1003 	 * block size boundary so the allocator does sane things.
1004 	 */
1005 	total_compressed = ALIGN(total_compressed, blocksize);
1006 
1007 	/*
1008 	 * One last check to make sure the compression is really a win, compare
1009 	 * the page count read with the blocks on disk, compression must free at
1010 	 * least one sector.
1011 	 */
1012 	total_in = round_up(total_in, fs_info->sectorsize);
1013 	if (total_compressed + blocksize > total_in)
1014 		goto mark_incompressible;
1015 
1016 	/*
1017 	 * The async work queues will take care of doing actual allocation on
1018 	 * disk for these compressed pages, and will submit the bios.
1019 	 */
1020 	add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1021 			 nr_pages, compress_type);
1022 	if (start + total_in < end) {
1023 		start += total_in;
1024 		cond_resched();
1025 		goto again;
1026 	}
1027 	return;
1028 
1029 mark_incompressible:
1030 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1031 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1032 cleanup_and_bail_uncompressed:
1033 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1034 			 BTRFS_COMPRESS_NONE);
1035 free_pages:
1036 	if (pages) {
1037 		for (i = 0; i < nr_pages; i++) {
1038 			WARN_ON(pages[i]->mapping);
1039 			put_page(pages[i]);
1040 		}
1041 		kfree(pages);
1042 	}
1043 }
1044 
1045 static void free_async_extent_pages(struct async_extent *async_extent)
1046 {
1047 	int i;
1048 
1049 	if (!async_extent->pages)
1050 		return;
1051 
1052 	for (i = 0; i < async_extent->nr_pages; i++) {
1053 		WARN_ON(async_extent->pages[i]->mapping);
1054 		put_page(async_extent->pages[i]);
1055 	}
1056 	kfree(async_extent->pages);
1057 	async_extent->nr_pages = 0;
1058 	async_extent->pages = NULL;
1059 }
1060 
1061 static void submit_uncompressed_range(struct btrfs_inode *inode,
1062 				      struct async_extent *async_extent,
1063 				      struct page *locked_page)
1064 {
1065 	u64 start = async_extent->start;
1066 	u64 end = async_extent->start + async_extent->ram_size - 1;
1067 	int ret;
1068 	struct writeback_control wbc = {
1069 		.sync_mode		= WB_SYNC_ALL,
1070 		.range_start		= start,
1071 		.range_end		= end,
1072 		.no_cgroup_owner	= 1,
1073 	};
1074 
1075 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1076 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1077 	wbc_detach_inode(&wbc);
1078 	if (ret < 0) {
1079 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1080 		if (locked_page) {
1081 			const u64 page_start = page_offset(locked_page);
1082 
1083 			set_page_writeback(locked_page);
1084 			end_page_writeback(locked_page);
1085 			btrfs_mark_ordered_io_finished(inode, locked_page,
1086 						       page_start, PAGE_SIZE,
1087 						       !ret);
1088 			mapping_set_error(locked_page->mapping, ret);
1089 			unlock_page(locked_page);
1090 		}
1091 	}
1092 }
1093 
1094 static void submit_one_async_extent(struct async_chunk *async_chunk,
1095 				    struct async_extent *async_extent,
1096 				    u64 *alloc_hint)
1097 {
1098 	struct btrfs_inode *inode = async_chunk->inode;
1099 	struct extent_io_tree *io_tree = &inode->io_tree;
1100 	struct btrfs_root *root = inode->root;
1101 	struct btrfs_fs_info *fs_info = root->fs_info;
1102 	struct btrfs_ordered_extent *ordered;
1103 	struct btrfs_key ins;
1104 	struct page *locked_page = NULL;
1105 	struct extent_map *em;
1106 	int ret = 0;
1107 	u64 start = async_extent->start;
1108 	u64 end = async_extent->start + async_extent->ram_size - 1;
1109 
1110 	if (async_chunk->blkcg_css)
1111 		kthread_associate_blkcg(async_chunk->blkcg_css);
1112 
1113 	/*
1114 	 * If async_chunk->locked_page is in the async_extent range, we need to
1115 	 * handle it.
1116 	 */
1117 	if (async_chunk->locked_page) {
1118 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1119 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1120 
1121 		if (!(start >= locked_page_end || end <= locked_page_start))
1122 			locked_page = async_chunk->locked_page;
1123 	}
1124 	lock_extent(io_tree, start, end, NULL);
1125 
1126 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1127 		submit_uncompressed_range(inode, async_extent, locked_page);
1128 		goto done;
1129 	}
1130 
1131 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1132 				   async_extent->compressed_size,
1133 				   async_extent->compressed_size,
1134 				   0, *alloc_hint, &ins, 1, 1);
1135 	if (ret) {
1136 		/*
1137 		 * Here we used to try again by going back to non-compressed
1138 		 * path for ENOSPC.  But we can't reserve space even for
1139 		 * compressed size, how could it work for uncompressed size
1140 		 * which requires larger size?  So here we directly go error
1141 		 * path.
1142 		 */
1143 		goto out_free;
1144 	}
1145 
1146 	/* Here we're doing allocation and writeback of the compressed pages */
1147 	em = create_io_em(inode, start,
1148 			  async_extent->ram_size,	/* len */
1149 			  start,			/* orig_start */
1150 			  ins.objectid,			/* block_start */
1151 			  ins.offset,			/* block_len */
1152 			  ins.offset,			/* orig_block_len */
1153 			  async_extent->ram_size,	/* ram_bytes */
1154 			  async_extent->compress_type,
1155 			  BTRFS_ORDERED_COMPRESSED);
1156 	if (IS_ERR(em)) {
1157 		ret = PTR_ERR(em);
1158 		goto out_free_reserve;
1159 	}
1160 	free_extent_map(em);
1161 
1162 	ordered = btrfs_alloc_ordered_extent(inode, start,	/* file_offset */
1163 				       async_extent->ram_size,	/* num_bytes */
1164 				       async_extent->ram_size,	/* ram_bytes */
1165 				       ins.objectid,		/* disk_bytenr */
1166 				       ins.offset,		/* disk_num_bytes */
1167 				       0,			/* offset */
1168 				       1 << BTRFS_ORDERED_COMPRESSED,
1169 				       async_extent->compress_type);
1170 	if (IS_ERR(ordered)) {
1171 		btrfs_drop_extent_map_range(inode, start, end, false);
1172 		ret = PTR_ERR(ordered);
1173 		goto out_free_reserve;
1174 	}
1175 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1176 
1177 	/* Clear dirty, set writeback and unlock the pages. */
1178 	extent_clear_unlock_delalloc(inode, start, end,
1179 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1180 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1181 	btrfs_submit_compressed_write(ordered,
1182 			    async_extent->pages,	/* compressed_pages */
1183 			    async_extent->nr_pages,
1184 			    async_chunk->write_flags, true);
1185 	*alloc_hint = ins.objectid + ins.offset;
1186 done:
1187 	if (async_chunk->blkcg_css)
1188 		kthread_associate_blkcg(NULL);
1189 	kfree(async_extent);
1190 	return;
1191 
1192 out_free_reserve:
1193 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1194 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1195 out_free:
1196 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1197 	extent_clear_unlock_delalloc(inode, start, end,
1198 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1199 				     EXTENT_DELALLOC_NEW |
1200 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1201 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1202 				     PAGE_END_WRITEBACK);
1203 	free_async_extent_pages(async_extent);
1204 	if (async_chunk->blkcg_css)
1205 		kthread_associate_blkcg(NULL);
1206 	btrfs_debug(fs_info,
1207 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1208 		    root->root_key.objectid, btrfs_ino(inode), start,
1209 		    async_extent->ram_size, ret);
1210 	kfree(async_extent);
1211 }
1212 
1213 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1214 				      u64 num_bytes)
1215 {
1216 	struct extent_map_tree *em_tree = &inode->extent_tree;
1217 	struct extent_map *em;
1218 	u64 alloc_hint = 0;
1219 
1220 	read_lock(&em_tree->lock);
1221 	em = search_extent_mapping(em_tree, start, num_bytes);
1222 	if (em) {
1223 		/*
1224 		 * if block start isn't an actual block number then find the
1225 		 * first block in this inode and use that as a hint.  If that
1226 		 * block is also bogus then just don't worry about it.
1227 		 */
1228 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1229 			free_extent_map(em);
1230 			em = search_extent_mapping(em_tree, 0, 0);
1231 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1232 				alloc_hint = em->block_start;
1233 			if (em)
1234 				free_extent_map(em);
1235 		} else {
1236 			alloc_hint = em->block_start;
1237 			free_extent_map(em);
1238 		}
1239 	}
1240 	read_unlock(&em_tree->lock);
1241 
1242 	return alloc_hint;
1243 }
1244 
1245 /*
1246  * when extent_io.c finds a delayed allocation range in the file,
1247  * the call backs end up in this code.  The basic idea is to
1248  * allocate extents on disk for the range, and create ordered data structs
1249  * in ram to track those extents.
1250  *
1251  * locked_page is the page that writepage had locked already.  We use
1252  * it to make sure we don't do extra locks or unlocks.
1253  *
1254  * When this function fails, it unlocks all pages except @locked_page.
1255  *
1256  * When this function successfully creates an inline extent, it returns 1 and
1257  * unlocks all pages including locked_page and starts I/O on them.
1258  * (In reality inline extents are limited to a single page, so locked_page is
1259  * the only page handled anyway).
1260  *
1261  * When this function succeed and creates a normal extent, the page locking
1262  * status depends on the passed in flags:
1263  *
1264  * - If @keep_locked is set, all pages are kept locked.
1265  * - Else all pages except for @locked_page are unlocked.
1266  *
1267  * When a failure happens in the second or later iteration of the
1268  * while-loop, the ordered extents created in previous iterations are kept
1269  * intact. So, the caller must clean them up by calling
1270  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1271  * example.
1272  */
1273 static noinline int cow_file_range(struct btrfs_inode *inode,
1274 				   struct page *locked_page, u64 start, u64 end,
1275 				   u64 *done_offset,
1276 				   bool keep_locked, bool no_inline)
1277 {
1278 	struct btrfs_root *root = inode->root;
1279 	struct btrfs_fs_info *fs_info = root->fs_info;
1280 	u64 alloc_hint = 0;
1281 	u64 orig_start = start;
1282 	u64 num_bytes;
1283 	unsigned long ram_size;
1284 	u64 cur_alloc_size = 0;
1285 	u64 min_alloc_size;
1286 	u64 blocksize = fs_info->sectorsize;
1287 	struct btrfs_key ins;
1288 	struct extent_map *em;
1289 	unsigned clear_bits;
1290 	unsigned long page_ops;
1291 	bool extent_reserved = false;
1292 	int ret = 0;
1293 
1294 	if (btrfs_is_free_space_inode(inode)) {
1295 		ret = -EINVAL;
1296 		goto out_unlock;
1297 	}
1298 
1299 	num_bytes = ALIGN(end - start + 1, blocksize);
1300 	num_bytes = max(blocksize,  num_bytes);
1301 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1302 
1303 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1304 
1305 	/*
1306 	 * Due to the page size limit, for subpage we can only trigger the
1307 	 * writeback for the dirty sectors of page, that means data writeback
1308 	 * is doing more writeback than what we want.
1309 	 *
1310 	 * This is especially unexpected for some call sites like fallocate,
1311 	 * where we only increase i_size after everything is done.
1312 	 * This means we can trigger inline extent even if we didn't want to.
1313 	 * So here we skip inline extent creation completely.
1314 	 */
1315 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1316 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1317 				       end + 1);
1318 
1319 		/* lets try to make an inline extent */
1320 		ret = cow_file_range_inline(inode, actual_end, 0,
1321 					    BTRFS_COMPRESS_NONE, NULL, false);
1322 		if (ret == 0) {
1323 			/*
1324 			 * We use DO_ACCOUNTING here because we need the
1325 			 * delalloc_release_metadata to be run _after_ we drop
1326 			 * our outstanding extent for clearing delalloc for this
1327 			 * range.
1328 			 */
1329 			extent_clear_unlock_delalloc(inode, start, end,
1330 				     locked_page,
1331 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1332 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1333 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1334 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1335 			/*
1336 			 * locked_page is locked by the caller of
1337 			 * writepage_delalloc(), not locked by
1338 			 * __process_pages_contig().
1339 			 *
1340 			 * We can't let __process_pages_contig() to unlock it,
1341 			 * as it doesn't have any subpage::writers recorded.
1342 			 *
1343 			 * Here we manually unlock the page, since the caller
1344 			 * can't determine if it's an inline extent or a
1345 			 * compressed extent.
1346 			 */
1347 			unlock_page(locked_page);
1348 			ret = 1;
1349 			goto done;
1350 		} else if (ret < 0) {
1351 			goto out_unlock;
1352 		}
1353 	}
1354 
1355 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1356 
1357 	/*
1358 	 * Relocation relies on the relocated extents to have exactly the same
1359 	 * size as the original extents. Normally writeback for relocation data
1360 	 * extents follows a NOCOW path because relocation preallocates the
1361 	 * extents. However, due to an operation such as scrub turning a block
1362 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1363 	 * an extent allocated during COW has exactly the requested size and can
1364 	 * not be split into smaller extents, otherwise relocation breaks and
1365 	 * fails during the stage where it updates the bytenr of file extent
1366 	 * items.
1367 	 */
1368 	if (btrfs_is_data_reloc_root(root))
1369 		min_alloc_size = num_bytes;
1370 	else
1371 		min_alloc_size = fs_info->sectorsize;
1372 
1373 	while (num_bytes > 0) {
1374 		struct btrfs_ordered_extent *ordered;
1375 
1376 		cur_alloc_size = num_bytes;
1377 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1378 					   min_alloc_size, 0, alloc_hint,
1379 					   &ins, 1, 1);
1380 		if (ret == -EAGAIN) {
1381 			/*
1382 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1383 			 * file systems, which is an indication that there are
1384 			 * no active zones to allocate from at the moment.
1385 			 *
1386 			 * If this is the first loop iteration, wait for at
1387 			 * least one zone to finish before retrying the
1388 			 * allocation.  Otherwise ask the caller to write out
1389 			 * the already allocated blocks before coming back to
1390 			 * us, or return -ENOSPC if it can't handle retries.
1391 			 */
1392 			ASSERT(btrfs_is_zoned(fs_info));
1393 			if (start == orig_start) {
1394 				wait_on_bit_io(&inode->root->fs_info->flags,
1395 					       BTRFS_FS_NEED_ZONE_FINISH,
1396 					       TASK_UNINTERRUPTIBLE);
1397 				continue;
1398 			}
1399 			if (done_offset) {
1400 				*done_offset = start - 1;
1401 				return 0;
1402 			}
1403 			ret = -ENOSPC;
1404 		}
1405 		if (ret < 0)
1406 			goto out_unlock;
1407 		cur_alloc_size = ins.offset;
1408 		extent_reserved = true;
1409 
1410 		ram_size = ins.offset;
1411 		em = create_io_em(inode, start, ins.offset, /* len */
1412 				  start, /* orig_start */
1413 				  ins.objectid, /* block_start */
1414 				  ins.offset, /* block_len */
1415 				  ins.offset, /* orig_block_len */
1416 				  ram_size, /* ram_bytes */
1417 				  BTRFS_COMPRESS_NONE, /* compress_type */
1418 				  BTRFS_ORDERED_REGULAR /* type */);
1419 		if (IS_ERR(em)) {
1420 			ret = PTR_ERR(em);
1421 			goto out_reserve;
1422 		}
1423 		free_extent_map(em);
1424 
1425 		ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1426 					ram_size, ins.objectid, cur_alloc_size,
1427 					0, 1 << BTRFS_ORDERED_REGULAR,
1428 					BTRFS_COMPRESS_NONE);
1429 		if (IS_ERR(ordered)) {
1430 			ret = PTR_ERR(ordered);
1431 			goto out_drop_extent_cache;
1432 		}
1433 
1434 		if (btrfs_is_data_reloc_root(root)) {
1435 			ret = btrfs_reloc_clone_csums(ordered);
1436 
1437 			/*
1438 			 * Only drop cache here, and process as normal.
1439 			 *
1440 			 * We must not allow extent_clear_unlock_delalloc()
1441 			 * at out_unlock label to free meta of this ordered
1442 			 * extent, as its meta should be freed by
1443 			 * btrfs_finish_ordered_io().
1444 			 *
1445 			 * So we must continue until @start is increased to
1446 			 * skip current ordered extent.
1447 			 */
1448 			if (ret)
1449 				btrfs_drop_extent_map_range(inode, start,
1450 							    start + ram_size - 1,
1451 							    false);
1452 		}
1453 		btrfs_put_ordered_extent(ordered);
1454 
1455 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1456 
1457 		/*
1458 		 * We're not doing compressed IO, don't unlock the first page
1459 		 * (which the caller expects to stay locked), don't clear any
1460 		 * dirty bits and don't set any writeback bits
1461 		 *
1462 		 * Do set the Ordered (Private2) bit so we know this page was
1463 		 * properly setup for writepage.
1464 		 */
1465 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1466 		page_ops |= PAGE_SET_ORDERED;
1467 
1468 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1469 					     locked_page,
1470 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1471 					     page_ops);
1472 		if (num_bytes < cur_alloc_size)
1473 			num_bytes = 0;
1474 		else
1475 			num_bytes -= cur_alloc_size;
1476 		alloc_hint = ins.objectid + ins.offset;
1477 		start += cur_alloc_size;
1478 		extent_reserved = false;
1479 
1480 		/*
1481 		 * btrfs_reloc_clone_csums() error, since start is increased
1482 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1483 		 * free metadata of current ordered extent, we're OK to exit.
1484 		 */
1485 		if (ret)
1486 			goto out_unlock;
1487 	}
1488 done:
1489 	if (done_offset)
1490 		*done_offset = end;
1491 	return ret;
1492 
1493 out_drop_extent_cache:
1494 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1495 out_reserve:
1496 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1497 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1498 out_unlock:
1499 	/*
1500 	 * Now, we have three regions to clean up:
1501 	 *
1502 	 * |-------(1)----|---(2)---|-------------(3)----------|
1503 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1504 	 *
1505 	 * We process each region below.
1506 	 */
1507 
1508 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1509 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1510 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1511 
1512 	/*
1513 	 * For the range (1). We have already instantiated the ordered extents
1514 	 * for this region. They are cleaned up by
1515 	 * btrfs_cleanup_ordered_extents() in e.g,
1516 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1517 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1518 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1519 	 * function.
1520 	 *
1521 	 * However, in case of @keep_locked, we still need to unlock the pages
1522 	 * (except @locked_page) to ensure all the pages are unlocked.
1523 	 */
1524 	if (keep_locked && orig_start < start) {
1525 		if (!locked_page)
1526 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1527 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1528 					     locked_page, 0, page_ops);
1529 	}
1530 
1531 	/*
1532 	 * For the range (2). If we reserved an extent for our delalloc range
1533 	 * (or a subrange) and failed to create the respective ordered extent,
1534 	 * then it means that when we reserved the extent we decremented the
1535 	 * extent's size from the data space_info's bytes_may_use counter and
1536 	 * incremented the space_info's bytes_reserved counter by the same
1537 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1538 	 * to decrement again the data space_info's bytes_may_use counter,
1539 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1540 	 */
1541 	if (extent_reserved) {
1542 		extent_clear_unlock_delalloc(inode, start,
1543 					     start + cur_alloc_size - 1,
1544 					     locked_page,
1545 					     clear_bits,
1546 					     page_ops);
1547 		start += cur_alloc_size;
1548 	}
1549 
1550 	/*
1551 	 * For the range (3). We never touched the region. In addition to the
1552 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1553 	 * space_info's bytes_may_use counter, reserved in
1554 	 * btrfs_check_data_free_space().
1555 	 */
1556 	if (start < end) {
1557 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1558 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1559 					     clear_bits, page_ops);
1560 	}
1561 	return ret;
1562 }
1563 
1564 /*
1565  * Phase two of compressed writeback.  This is the ordered portion of the code,
1566  * which only gets called in the order the work was queued.  We walk all the
1567  * async extents created by compress_file_range and send them down to the disk.
1568  */
1569 static noinline void submit_compressed_extents(struct btrfs_work *work)
1570 {
1571 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1572 						     work);
1573 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1574 	struct async_extent *async_extent;
1575 	unsigned long nr_pages;
1576 	u64 alloc_hint = 0;
1577 
1578 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1579 		PAGE_SHIFT;
1580 
1581 	while (!list_empty(&async_chunk->extents)) {
1582 		async_extent = list_entry(async_chunk->extents.next,
1583 					  struct async_extent, list);
1584 		list_del(&async_extent->list);
1585 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1586 	}
1587 
1588 	/* atomic_sub_return implies a barrier */
1589 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1590 	    5 * SZ_1M)
1591 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1592 }
1593 
1594 static noinline void async_cow_free(struct btrfs_work *work)
1595 {
1596 	struct async_chunk *async_chunk;
1597 	struct async_cow *async_cow;
1598 
1599 	async_chunk = container_of(work, struct async_chunk, work);
1600 	btrfs_add_delayed_iput(async_chunk->inode);
1601 	if (async_chunk->blkcg_css)
1602 		css_put(async_chunk->blkcg_css);
1603 
1604 	async_cow = async_chunk->async_cow;
1605 	if (atomic_dec_and_test(&async_cow->num_chunks))
1606 		kvfree(async_cow);
1607 }
1608 
1609 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1610 				    struct page *locked_page, u64 start,
1611 				    u64 end, struct writeback_control *wbc)
1612 {
1613 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1614 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1615 	struct async_cow *ctx;
1616 	struct async_chunk *async_chunk;
1617 	unsigned long nr_pages;
1618 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1619 	int i;
1620 	unsigned nofs_flag;
1621 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1622 
1623 	nofs_flag = memalloc_nofs_save();
1624 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1625 	memalloc_nofs_restore(nofs_flag);
1626 	if (!ctx)
1627 		return false;
1628 
1629 	unlock_extent(&inode->io_tree, start, end, NULL);
1630 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1631 
1632 	async_chunk = ctx->chunks;
1633 	atomic_set(&ctx->num_chunks, num_chunks);
1634 
1635 	for (i = 0; i < num_chunks; i++) {
1636 		u64 cur_end = min(end, start + SZ_512K - 1);
1637 
1638 		/*
1639 		 * igrab is called higher up in the call chain, take only the
1640 		 * lightweight reference for the callback lifetime
1641 		 */
1642 		ihold(&inode->vfs_inode);
1643 		async_chunk[i].async_cow = ctx;
1644 		async_chunk[i].inode = inode;
1645 		async_chunk[i].start = start;
1646 		async_chunk[i].end = cur_end;
1647 		async_chunk[i].write_flags = write_flags;
1648 		INIT_LIST_HEAD(&async_chunk[i].extents);
1649 
1650 		/*
1651 		 * The locked_page comes all the way from writepage and its
1652 		 * the original page we were actually given.  As we spread
1653 		 * this large delalloc region across multiple async_chunk
1654 		 * structs, only the first struct needs a pointer to locked_page
1655 		 *
1656 		 * This way we don't need racey decisions about who is supposed
1657 		 * to unlock it.
1658 		 */
1659 		if (locked_page) {
1660 			/*
1661 			 * Depending on the compressibility, the pages might or
1662 			 * might not go through async.  We want all of them to
1663 			 * be accounted against wbc once.  Let's do it here
1664 			 * before the paths diverge.  wbc accounting is used
1665 			 * only for foreign writeback detection and doesn't
1666 			 * need full accuracy.  Just account the whole thing
1667 			 * against the first page.
1668 			 */
1669 			wbc_account_cgroup_owner(wbc, locked_page,
1670 						 cur_end - start);
1671 			async_chunk[i].locked_page = locked_page;
1672 			locked_page = NULL;
1673 		} else {
1674 			async_chunk[i].locked_page = NULL;
1675 		}
1676 
1677 		if (blkcg_css != blkcg_root_css) {
1678 			css_get(blkcg_css);
1679 			async_chunk[i].blkcg_css = blkcg_css;
1680 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1681 		} else {
1682 			async_chunk[i].blkcg_css = NULL;
1683 		}
1684 
1685 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1686 				submit_compressed_extents, async_cow_free);
1687 
1688 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1689 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1690 
1691 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1692 
1693 		start = cur_end + 1;
1694 	}
1695 	return true;
1696 }
1697 
1698 /*
1699  * Run the delalloc range from start to end, and write back any dirty pages
1700  * covered by the range.
1701  */
1702 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1703 				     struct page *locked_page, u64 start,
1704 				     u64 end, struct writeback_control *wbc,
1705 				     bool pages_dirty)
1706 {
1707 	u64 done_offset = end;
1708 	int ret;
1709 
1710 	while (start <= end) {
1711 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1712 				     true, false);
1713 		if (ret)
1714 			return ret;
1715 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1716 					  done_offset, wbc, pages_dirty);
1717 		start = done_offset + 1;
1718 	}
1719 
1720 	return 1;
1721 }
1722 
1723 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1724 					u64 bytenr, u64 num_bytes, bool nowait)
1725 {
1726 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1727 	struct btrfs_ordered_sum *sums;
1728 	int ret;
1729 	LIST_HEAD(list);
1730 
1731 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1732 				      &list, 0, nowait);
1733 	if (ret == 0 && list_empty(&list))
1734 		return 0;
1735 
1736 	while (!list_empty(&list)) {
1737 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1738 		list_del(&sums->list);
1739 		kfree(sums);
1740 	}
1741 	if (ret < 0)
1742 		return ret;
1743 	return 1;
1744 }
1745 
1746 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1747 			   const u64 start, const u64 end)
1748 {
1749 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1750 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1751 	const u64 range_bytes = end + 1 - start;
1752 	struct extent_io_tree *io_tree = &inode->io_tree;
1753 	u64 range_start = start;
1754 	u64 count;
1755 	int ret;
1756 
1757 	/*
1758 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1759 	 * made we had not enough available data space and therefore we did not
1760 	 * reserve data space for it, since we though we could do NOCOW for the
1761 	 * respective file range (either there is prealloc extent or the inode
1762 	 * has the NOCOW bit set).
1763 	 *
1764 	 * However when we need to fallback to COW mode (because for example the
1765 	 * block group for the corresponding extent was turned to RO mode by a
1766 	 * scrub or relocation) we need to do the following:
1767 	 *
1768 	 * 1) We increment the bytes_may_use counter of the data space info.
1769 	 *    If COW succeeds, it allocates a new data extent and after doing
1770 	 *    that it decrements the space info's bytes_may_use counter and
1771 	 *    increments its bytes_reserved counter by the same amount (we do
1772 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1773 	 *    bytes_may_use counter to compensate (when space is reserved at
1774 	 *    buffered write time, the bytes_may_use counter is incremented);
1775 	 *
1776 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1777 	 *    that if the COW path fails for any reason, it decrements (through
1778 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1779 	 *    data space info, which we incremented in the step above.
1780 	 *
1781 	 * If we need to fallback to cow and the inode corresponds to a free
1782 	 * space cache inode or an inode of the data relocation tree, we must
1783 	 * also increment bytes_may_use of the data space_info for the same
1784 	 * reason. Space caches and relocated data extents always get a prealloc
1785 	 * extent for them, however scrub or balance may have set the block
1786 	 * group that contains that extent to RO mode and therefore force COW
1787 	 * when starting writeback.
1788 	 */
1789 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1790 				 EXTENT_NORESERVE, 0, NULL);
1791 	if (count > 0 || is_space_ino || is_reloc_ino) {
1792 		u64 bytes = count;
1793 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1794 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1795 
1796 		if (is_space_ino || is_reloc_ino)
1797 			bytes = range_bytes;
1798 
1799 		spin_lock(&sinfo->lock);
1800 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1801 		spin_unlock(&sinfo->lock);
1802 
1803 		if (count > 0)
1804 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1805 					 NULL);
1806 	}
1807 
1808 	/*
1809 	 * Don't try to create inline extents, as a mix of inline extent that
1810 	 * is written out and unlocked directly and a normal NOCOW extent
1811 	 * doesn't work.
1812 	 */
1813 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1814 	ASSERT(ret != 1);
1815 	return ret;
1816 }
1817 
1818 struct can_nocow_file_extent_args {
1819 	/* Input fields. */
1820 
1821 	/* Start file offset of the range we want to NOCOW. */
1822 	u64 start;
1823 	/* End file offset (inclusive) of the range we want to NOCOW. */
1824 	u64 end;
1825 	bool writeback_path;
1826 	bool strict;
1827 	/*
1828 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1829 	 * anymore.
1830 	 */
1831 	bool free_path;
1832 
1833 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1834 
1835 	u64 disk_bytenr;
1836 	u64 disk_num_bytes;
1837 	u64 extent_offset;
1838 	/* Number of bytes that can be written to in NOCOW mode. */
1839 	u64 num_bytes;
1840 };
1841 
1842 /*
1843  * Check if we can NOCOW the file extent that the path points to.
1844  * This function may return with the path released, so the caller should check
1845  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1846  *
1847  * Returns: < 0 on error
1848  *            0 if we can not NOCOW
1849  *            1 if we can NOCOW
1850  */
1851 static int can_nocow_file_extent(struct btrfs_path *path,
1852 				 struct btrfs_key *key,
1853 				 struct btrfs_inode *inode,
1854 				 struct can_nocow_file_extent_args *args)
1855 {
1856 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1857 	struct extent_buffer *leaf = path->nodes[0];
1858 	struct btrfs_root *root = inode->root;
1859 	struct btrfs_file_extent_item *fi;
1860 	u64 extent_end;
1861 	u8 extent_type;
1862 	int can_nocow = 0;
1863 	int ret = 0;
1864 	bool nowait = path->nowait;
1865 
1866 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1867 	extent_type = btrfs_file_extent_type(leaf, fi);
1868 
1869 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1870 		goto out;
1871 
1872 	/* Can't access these fields unless we know it's not an inline extent. */
1873 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1874 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1875 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1876 
1877 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1878 	    extent_type == BTRFS_FILE_EXTENT_REG)
1879 		goto out;
1880 
1881 	/*
1882 	 * If the extent was created before the generation where the last snapshot
1883 	 * for its subvolume was created, then this implies the extent is shared,
1884 	 * hence we must COW.
1885 	 */
1886 	if (!args->strict &&
1887 	    btrfs_file_extent_generation(leaf, fi) <=
1888 	    btrfs_root_last_snapshot(&root->root_item))
1889 		goto out;
1890 
1891 	/* An explicit hole, must COW. */
1892 	if (args->disk_bytenr == 0)
1893 		goto out;
1894 
1895 	/* Compressed/encrypted/encoded extents must be COWed. */
1896 	if (btrfs_file_extent_compression(leaf, fi) ||
1897 	    btrfs_file_extent_encryption(leaf, fi) ||
1898 	    btrfs_file_extent_other_encoding(leaf, fi))
1899 		goto out;
1900 
1901 	extent_end = btrfs_file_extent_end(path);
1902 
1903 	/*
1904 	 * The following checks can be expensive, as they need to take other
1905 	 * locks and do btree or rbtree searches, so release the path to avoid
1906 	 * blocking other tasks for too long.
1907 	 */
1908 	btrfs_release_path(path);
1909 
1910 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1911 				    key->offset - args->extent_offset,
1912 				    args->disk_bytenr, args->strict, path);
1913 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1914 	if (ret != 0)
1915 		goto out;
1916 
1917 	if (args->free_path) {
1918 		/*
1919 		 * We don't need the path anymore, plus through the
1920 		 * csum_exist_in_range() call below we will end up allocating
1921 		 * another path. So free the path to avoid unnecessary extra
1922 		 * memory usage.
1923 		 */
1924 		btrfs_free_path(path);
1925 		path = NULL;
1926 	}
1927 
1928 	/* If there are pending snapshots for this root, we must COW. */
1929 	if (args->writeback_path && !is_freespace_inode &&
1930 	    atomic_read(&root->snapshot_force_cow))
1931 		goto out;
1932 
1933 	args->disk_bytenr += args->extent_offset;
1934 	args->disk_bytenr += args->start - key->offset;
1935 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1936 
1937 	/*
1938 	 * Force COW if csums exist in the range. This ensures that csums for a
1939 	 * given extent are either valid or do not exist.
1940 	 */
1941 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1942 				  nowait);
1943 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1944 	if (ret != 0)
1945 		goto out;
1946 
1947 	can_nocow = 1;
1948  out:
1949 	if (args->free_path && path)
1950 		btrfs_free_path(path);
1951 
1952 	return ret < 0 ? ret : can_nocow;
1953 }
1954 
1955 /*
1956  * when nowcow writeback call back.  This checks for snapshots or COW copies
1957  * of the extents that exist in the file, and COWs the file as required.
1958  *
1959  * If no cow copies or snapshots exist, we write directly to the existing
1960  * blocks on disk
1961  */
1962 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1963 				       struct page *locked_page,
1964 				       const u64 start, const u64 end)
1965 {
1966 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1967 	struct btrfs_root *root = inode->root;
1968 	struct btrfs_path *path;
1969 	u64 cow_start = (u64)-1;
1970 	u64 cur_offset = start;
1971 	int ret;
1972 	bool check_prev = true;
1973 	u64 ino = btrfs_ino(inode);
1974 	struct can_nocow_file_extent_args nocow_args = { 0 };
1975 
1976 	/*
1977 	 * Normally on a zoned device we're only doing COW writes, but in case
1978 	 * of relocation on a zoned filesystem serializes I/O so that we're only
1979 	 * writing sequentially and can end up here as well.
1980 	 */
1981 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1982 
1983 	path = btrfs_alloc_path();
1984 	if (!path) {
1985 		ret = -ENOMEM;
1986 		goto error;
1987 	}
1988 
1989 	nocow_args.end = end;
1990 	nocow_args.writeback_path = true;
1991 
1992 	while (1) {
1993 		struct btrfs_block_group *nocow_bg = NULL;
1994 		struct btrfs_ordered_extent *ordered;
1995 		struct btrfs_key found_key;
1996 		struct btrfs_file_extent_item *fi;
1997 		struct extent_buffer *leaf;
1998 		u64 extent_end;
1999 		u64 ram_bytes;
2000 		u64 nocow_end;
2001 		int extent_type;
2002 		bool is_prealloc;
2003 
2004 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2005 					       cur_offset, 0);
2006 		if (ret < 0)
2007 			goto error;
2008 
2009 		/*
2010 		 * If there is no extent for our range when doing the initial
2011 		 * search, then go back to the previous slot as it will be the
2012 		 * one containing the search offset
2013 		 */
2014 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2015 			leaf = path->nodes[0];
2016 			btrfs_item_key_to_cpu(leaf, &found_key,
2017 					      path->slots[0] - 1);
2018 			if (found_key.objectid == ino &&
2019 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2020 				path->slots[0]--;
2021 		}
2022 		check_prev = false;
2023 next_slot:
2024 		/* Go to next leaf if we have exhausted the current one */
2025 		leaf = path->nodes[0];
2026 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2027 			ret = btrfs_next_leaf(root, path);
2028 			if (ret < 0)
2029 				goto error;
2030 			if (ret > 0)
2031 				break;
2032 			leaf = path->nodes[0];
2033 		}
2034 
2035 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2036 
2037 		/* Didn't find anything for our INO */
2038 		if (found_key.objectid > ino)
2039 			break;
2040 		/*
2041 		 * Keep searching until we find an EXTENT_ITEM or there are no
2042 		 * more extents for this inode
2043 		 */
2044 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2045 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2046 			path->slots[0]++;
2047 			goto next_slot;
2048 		}
2049 
2050 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2051 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2052 		    found_key.offset > end)
2053 			break;
2054 
2055 		/*
2056 		 * If the found extent starts after requested offset, then
2057 		 * adjust extent_end to be right before this extent begins
2058 		 */
2059 		if (found_key.offset > cur_offset) {
2060 			extent_end = found_key.offset;
2061 			extent_type = 0;
2062 			goto must_cow;
2063 		}
2064 
2065 		/*
2066 		 * Found extent which begins before our range and potentially
2067 		 * intersect it
2068 		 */
2069 		fi = btrfs_item_ptr(leaf, path->slots[0],
2070 				    struct btrfs_file_extent_item);
2071 		extent_type = btrfs_file_extent_type(leaf, fi);
2072 		/* If this is triggered then we have a memory corruption. */
2073 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2074 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2075 			ret = -EUCLEAN;
2076 			goto error;
2077 		}
2078 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2079 		extent_end = btrfs_file_extent_end(path);
2080 
2081 		/*
2082 		 * If the extent we got ends before our current offset, skip to
2083 		 * the next extent.
2084 		 */
2085 		if (extent_end <= cur_offset) {
2086 			path->slots[0]++;
2087 			goto next_slot;
2088 		}
2089 
2090 		nocow_args.start = cur_offset;
2091 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2092 		if (ret < 0)
2093 			goto error;
2094 		if (ret == 0)
2095 			goto must_cow;
2096 
2097 		ret = 0;
2098 		nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2099 		if (!nocow_bg) {
2100 must_cow:
2101 			/*
2102 			 * If we can't perform NOCOW writeback for the range,
2103 			 * then record the beginning of the range that needs to
2104 			 * be COWed.  It will be written out before the next
2105 			 * NOCOW range if we find one, or when exiting this
2106 			 * loop.
2107 			 */
2108 			if (cow_start == (u64)-1)
2109 				cow_start = cur_offset;
2110 			cur_offset = extent_end;
2111 			if (cur_offset > end)
2112 				break;
2113 			if (!path->nodes[0])
2114 				continue;
2115 			path->slots[0]++;
2116 			goto next_slot;
2117 		}
2118 
2119 		/*
2120 		 * COW range from cow_start to found_key.offset - 1. As the key
2121 		 * will contain the beginning of the first extent that can be
2122 		 * NOCOW, following one which needs to be COW'ed
2123 		 */
2124 		if (cow_start != (u64)-1) {
2125 			ret = fallback_to_cow(inode, locked_page,
2126 					      cow_start, found_key.offset - 1);
2127 			cow_start = (u64)-1;
2128 			if (ret) {
2129 				btrfs_dec_nocow_writers(nocow_bg);
2130 				goto error;
2131 			}
2132 		}
2133 
2134 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2135 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2136 		if (is_prealloc) {
2137 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2138 			struct extent_map *em;
2139 
2140 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2141 					  orig_start,
2142 					  nocow_args.disk_bytenr, /* block_start */
2143 					  nocow_args.num_bytes, /* block_len */
2144 					  nocow_args.disk_num_bytes, /* orig_block_len */
2145 					  ram_bytes, BTRFS_COMPRESS_NONE,
2146 					  BTRFS_ORDERED_PREALLOC);
2147 			if (IS_ERR(em)) {
2148 				btrfs_dec_nocow_writers(nocow_bg);
2149 				ret = PTR_ERR(em);
2150 				goto error;
2151 			}
2152 			free_extent_map(em);
2153 		}
2154 
2155 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2156 				nocow_args.num_bytes, nocow_args.num_bytes,
2157 				nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2158 				is_prealloc
2159 				? (1 << BTRFS_ORDERED_PREALLOC)
2160 				: (1 << BTRFS_ORDERED_NOCOW),
2161 				BTRFS_COMPRESS_NONE);
2162 		btrfs_dec_nocow_writers(nocow_bg);
2163 		if (IS_ERR(ordered)) {
2164 			if (is_prealloc) {
2165 				btrfs_drop_extent_map_range(inode, cur_offset,
2166 							    nocow_end, false);
2167 			}
2168 			ret = PTR_ERR(ordered);
2169 			goto error;
2170 		}
2171 
2172 		if (btrfs_is_data_reloc_root(root))
2173 			/*
2174 			 * Error handled later, as we must prevent
2175 			 * extent_clear_unlock_delalloc() in error handler
2176 			 * from freeing metadata of created ordered extent.
2177 			 */
2178 			ret = btrfs_reloc_clone_csums(ordered);
2179 		btrfs_put_ordered_extent(ordered);
2180 
2181 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2182 					     locked_page, EXTENT_LOCKED |
2183 					     EXTENT_DELALLOC |
2184 					     EXTENT_CLEAR_DATA_RESV,
2185 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2186 
2187 		cur_offset = extent_end;
2188 
2189 		/*
2190 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2191 		 * handler, as metadata for created ordered extent will only
2192 		 * be freed by btrfs_finish_ordered_io().
2193 		 */
2194 		if (ret)
2195 			goto error;
2196 		if (cur_offset > end)
2197 			break;
2198 	}
2199 	btrfs_release_path(path);
2200 
2201 	if (cur_offset <= end && cow_start == (u64)-1)
2202 		cow_start = cur_offset;
2203 
2204 	if (cow_start != (u64)-1) {
2205 		cur_offset = end;
2206 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2207 		cow_start = (u64)-1;
2208 		if (ret)
2209 			goto error;
2210 	}
2211 
2212 	btrfs_free_path(path);
2213 	return 0;
2214 
2215 error:
2216 	/*
2217 	 * If an error happened while a COW region is outstanding, cur_offset
2218 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2219 	 * as well.
2220 	 */
2221 	if (cow_start != (u64)-1)
2222 		cur_offset = cow_start;
2223 	if (cur_offset < end)
2224 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2225 					     locked_page, EXTENT_LOCKED |
2226 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2227 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2228 					     PAGE_START_WRITEBACK |
2229 					     PAGE_END_WRITEBACK);
2230 	btrfs_free_path(path);
2231 	return ret;
2232 }
2233 
2234 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2235 {
2236 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2237 		if (inode->defrag_bytes &&
2238 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2239 				   0, NULL))
2240 			return false;
2241 		return true;
2242 	}
2243 	return false;
2244 }
2245 
2246 /*
2247  * Function to process delayed allocation (create CoW) for ranges which are
2248  * being touched for the first time.
2249  */
2250 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2251 			     u64 start, u64 end, struct writeback_control *wbc)
2252 {
2253 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2254 	int ret;
2255 
2256 	/*
2257 	 * The range must cover part of the @locked_page, or a return of 1
2258 	 * can confuse the caller.
2259 	 */
2260 	ASSERT(!(end <= page_offset(locked_page) ||
2261 		 start >= page_offset(locked_page) + PAGE_SIZE));
2262 
2263 	if (should_nocow(inode, start, end)) {
2264 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2265 		goto out;
2266 	}
2267 
2268 	if (btrfs_inode_can_compress(inode) &&
2269 	    inode_need_compress(inode, start, end) &&
2270 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2271 		return 1;
2272 
2273 	if (zoned)
2274 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2275 				       true);
2276 	else
2277 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2278 				     false, false);
2279 
2280 out:
2281 	if (ret < 0)
2282 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2283 					      end - start + 1);
2284 	return ret;
2285 }
2286 
2287 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2288 				 struct extent_state *orig, u64 split)
2289 {
2290 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2291 	u64 size;
2292 
2293 	/* not delalloc, ignore it */
2294 	if (!(orig->state & EXTENT_DELALLOC))
2295 		return;
2296 
2297 	size = orig->end - orig->start + 1;
2298 	if (size > fs_info->max_extent_size) {
2299 		u32 num_extents;
2300 		u64 new_size;
2301 
2302 		/*
2303 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2304 		 * applies here, just in reverse.
2305 		 */
2306 		new_size = orig->end - split + 1;
2307 		num_extents = count_max_extents(fs_info, new_size);
2308 		new_size = split - orig->start;
2309 		num_extents += count_max_extents(fs_info, new_size);
2310 		if (count_max_extents(fs_info, size) >= num_extents)
2311 			return;
2312 	}
2313 
2314 	spin_lock(&inode->lock);
2315 	btrfs_mod_outstanding_extents(inode, 1);
2316 	spin_unlock(&inode->lock);
2317 }
2318 
2319 /*
2320  * Handle merged delayed allocation extents so we can keep track of new extents
2321  * that are just merged onto old extents, such as when we are doing sequential
2322  * writes, so we can properly account for the metadata space we'll need.
2323  */
2324 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2325 				 struct extent_state *other)
2326 {
2327 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2328 	u64 new_size, old_size;
2329 	u32 num_extents;
2330 
2331 	/* not delalloc, ignore it */
2332 	if (!(other->state & EXTENT_DELALLOC))
2333 		return;
2334 
2335 	if (new->start > other->start)
2336 		new_size = new->end - other->start + 1;
2337 	else
2338 		new_size = other->end - new->start + 1;
2339 
2340 	/* we're not bigger than the max, unreserve the space and go */
2341 	if (new_size <= fs_info->max_extent_size) {
2342 		spin_lock(&inode->lock);
2343 		btrfs_mod_outstanding_extents(inode, -1);
2344 		spin_unlock(&inode->lock);
2345 		return;
2346 	}
2347 
2348 	/*
2349 	 * We have to add up either side to figure out how many extents were
2350 	 * accounted for before we merged into one big extent.  If the number of
2351 	 * extents we accounted for is <= the amount we need for the new range
2352 	 * then we can return, otherwise drop.  Think of it like this
2353 	 *
2354 	 * [ 4k][MAX_SIZE]
2355 	 *
2356 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2357 	 * need 2 outstanding extents, on one side we have 1 and the other side
2358 	 * we have 1 so they are == and we can return.  But in this case
2359 	 *
2360 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2361 	 *
2362 	 * Each range on their own accounts for 2 extents, but merged together
2363 	 * they are only 3 extents worth of accounting, so we need to drop in
2364 	 * this case.
2365 	 */
2366 	old_size = other->end - other->start + 1;
2367 	num_extents = count_max_extents(fs_info, old_size);
2368 	old_size = new->end - new->start + 1;
2369 	num_extents += count_max_extents(fs_info, old_size);
2370 	if (count_max_extents(fs_info, new_size) >= num_extents)
2371 		return;
2372 
2373 	spin_lock(&inode->lock);
2374 	btrfs_mod_outstanding_extents(inode, -1);
2375 	spin_unlock(&inode->lock);
2376 }
2377 
2378 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2379 				      struct btrfs_inode *inode)
2380 {
2381 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2382 
2383 	spin_lock(&root->delalloc_lock);
2384 	if (list_empty(&inode->delalloc_inodes)) {
2385 		list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2386 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2387 		root->nr_delalloc_inodes++;
2388 		if (root->nr_delalloc_inodes == 1) {
2389 			spin_lock(&fs_info->delalloc_root_lock);
2390 			BUG_ON(!list_empty(&root->delalloc_root));
2391 			list_add_tail(&root->delalloc_root,
2392 				      &fs_info->delalloc_roots);
2393 			spin_unlock(&fs_info->delalloc_root_lock);
2394 		}
2395 	}
2396 	spin_unlock(&root->delalloc_lock);
2397 }
2398 
2399 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2400 				struct btrfs_inode *inode)
2401 {
2402 	struct btrfs_fs_info *fs_info = root->fs_info;
2403 
2404 	if (!list_empty(&inode->delalloc_inodes)) {
2405 		list_del_init(&inode->delalloc_inodes);
2406 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2407 			  &inode->runtime_flags);
2408 		root->nr_delalloc_inodes--;
2409 		if (!root->nr_delalloc_inodes) {
2410 			ASSERT(list_empty(&root->delalloc_inodes));
2411 			spin_lock(&fs_info->delalloc_root_lock);
2412 			BUG_ON(list_empty(&root->delalloc_root));
2413 			list_del_init(&root->delalloc_root);
2414 			spin_unlock(&fs_info->delalloc_root_lock);
2415 		}
2416 	}
2417 }
2418 
2419 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2420 				     struct btrfs_inode *inode)
2421 {
2422 	spin_lock(&root->delalloc_lock);
2423 	__btrfs_del_delalloc_inode(root, inode);
2424 	spin_unlock(&root->delalloc_lock);
2425 }
2426 
2427 /*
2428  * Properly track delayed allocation bytes in the inode and to maintain the
2429  * list of inodes that have pending delalloc work to be done.
2430  */
2431 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2432 			       u32 bits)
2433 {
2434 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2435 
2436 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2437 		WARN_ON(1);
2438 	/*
2439 	 * set_bit and clear bit hooks normally require _irqsave/restore
2440 	 * but in this case, we are only testing for the DELALLOC
2441 	 * bit, which is only set or cleared with irqs on
2442 	 */
2443 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2444 		struct btrfs_root *root = inode->root;
2445 		u64 len = state->end + 1 - state->start;
2446 		u32 num_extents = count_max_extents(fs_info, len);
2447 		bool do_list = !btrfs_is_free_space_inode(inode);
2448 
2449 		spin_lock(&inode->lock);
2450 		btrfs_mod_outstanding_extents(inode, num_extents);
2451 		spin_unlock(&inode->lock);
2452 
2453 		/* For sanity tests */
2454 		if (btrfs_is_testing(fs_info))
2455 			return;
2456 
2457 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2458 					 fs_info->delalloc_batch);
2459 		spin_lock(&inode->lock);
2460 		inode->delalloc_bytes += len;
2461 		if (bits & EXTENT_DEFRAG)
2462 			inode->defrag_bytes += len;
2463 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2464 					 &inode->runtime_flags))
2465 			btrfs_add_delalloc_inodes(root, inode);
2466 		spin_unlock(&inode->lock);
2467 	}
2468 
2469 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2470 	    (bits & EXTENT_DELALLOC_NEW)) {
2471 		spin_lock(&inode->lock);
2472 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2473 		spin_unlock(&inode->lock);
2474 	}
2475 }
2476 
2477 /*
2478  * Once a range is no longer delalloc this function ensures that proper
2479  * accounting happens.
2480  */
2481 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2482 				 struct extent_state *state, u32 bits)
2483 {
2484 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2485 	u64 len = state->end + 1 - state->start;
2486 	u32 num_extents = count_max_extents(fs_info, len);
2487 
2488 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2489 		spin_lock(&inode->lock);
2490 		inode->defrag_bytes -= len;
2491 		spin_unlock(&inode->lock);
2492 	}
2493 
2494 	/*
2495 	 * set_bit and clear bit hooks normally require _irqsave/restore
2496 	 * but in this case, we are only testing for the DELALLOC
2497 	 * bit, which is only set or cleared with irqs on
2498 	 */
2499 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2500 		struct btrfs_root *root = inode->root;
2501 		bool do_list = !btrfs_is_free_space_inode(inode);
2502 
2503 		spin_lock(&inode->lock);
2504 		btrfs_mod_outstanding_extents(inode, -num_extents);
2505 		spin_unlock(&inode->lock);
2506 
2507 		/*
2508 		 * We don't reserve metadata space for space cache inodes so we
2509 		 * don't need to call delalloc_release_metadata if there is an
2510 		 * error.
2511 		 */
2512 		if (bits & EXTENT_CLEAR_META_RESV &&
2513 		    root != fs_info->tree_root)
2514 			btrfs_delalloc_release_metadata(inode, len, false);
2515 
2516 		/* For sanity tests. */
2517 		if (btrfs_is_testing(fs_info))
2518 			return;
2519 
2520 		if (!btrfs_is_data_reloc_root(root) &&
2521 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2522 		    (bits & EXTENT_CLEAR_DATA_RESV))
2523 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2524 
2525 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2526 					 fs_info->delalloc_batch);
2527 		spin_lock(&inode->lock);
2528 		inode->delalloc_bytes -= len;
2529 		if (do_list && inode->delalloc_bytes == 0 &&
2530 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2531 					&inode->runtime_flags))
2532 			btrfs_del_delalloc_inode(root, inode);
2533 		spin_unlock(&inode->lock);
2534 	}
2535 
2536 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2537 	    (bits & EXTENT_DELALLOC_NEW)) {
2538 		spin_lock(&inode->lock);
2539 		ASSERT(inode->new_delalloc_bytes >= len);
2540 		inode->new_delalloc_bytes -= len;
2541 		if (bits & EXTENT_ADD_INODE_BYTES)
2542 			inode_add_bytes(&inode->vfs_inode, len);
2543 		spin_unlock(&inode->lock);
2544 	}
2545 }
2546 
2547 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2548 					struct btrfs_ordered_extent *ordered)
2549 {
2550 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2551 	u64 len = bbio->bio.bi_iter.bi_size;
2552 	struct btrfs_ordered_extent *new;
2553 	int ret;
2554 
2555 	/* Must always be called for the beginning of an ordered extent. */
2556 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2557 		return -EINVAL;
2558 
2559 	/* No need to split if the ordered extent covers the entire bio. */
2560 	if (ordered->disk_num_bytes == len) {
2561 		refcount_inc(&ordered->refs);
2562 		bbio->ordered = ordered;
2563 		return 0;
2564 	}
2565 
2566 	/*
2567 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2568 	 * a pre-existing one.
2569 	 */
2570 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2571 		ret = split_extent_map(bbio->inode, bbio->file_offset,
2572 				       ordered->num_bytes, len,
2573 				       ordered->disk_bytenr);
2574 		if (ret)
2575 			return ret;
2576 	}
2577 
2578 	new = btrfs_split_ordered_extent(ordered, len);
2579 	if (IS_ERR(new))
2580 		return PTR_ERR(new);
2581 	bbio->ordered = new;
2582 	return 0;
2583 }
2584 
2585 /*
2586  * given a list of ordered sums record them in the inode.  This happens
2587  * at IO completion time based on sums calculated at bio submission time.
2588  */
2589 static int add_pending_csums(struct btrfs_trans_handle *trans,
2590 			     struct list_head *list)
2591 {
2592 	struct btrfs_ordered_sum *sum;
2593 	struct btrfs_root *csum_root = NULL;
2594 	int ret;
2595 
2596 	list_for_each_entry(sum, list, list) {
2597 		trans->adding_csums = true;
2598 		if (!csum_root)
2599 			csum_root = btrfs_csum_root(trans->fs_info,
2600 						    sum->logical);
2601 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2602 		trans->adding_csums = false;
2603 		if (ret)
2604 			return ret;
2605 	}
2606 	return 0;
2607 }
2608 
2609 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2610 					 const u64 start,
2611 					 const u64 len,
2612 					 struct extent_state **cached_state)
2613 {
2614 	u64 search_start = start;
2615 	const u64 end = start + len - 1;
2616 
2617 	while (search_start < end) {
2618 		const u64 search_len = end - search_start + 1;
2619 		struct extent_map *em;
2620 		u64 em_len;
2621 		int ret = 0;
2622 
2623 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2624 		if (IS_ERR(em))
2625 			return PTR_ERR(em);
2626 
2627 		if (em->block_start != EXTENT_MAP_HOLE)
2628 			goto next;
2629 
2630 		em_len = em->len;
2631 		if (em->start < search_start)
2632 			em_len -= search_start - em->start;
2633 		if (em_len > search_len)
2634 			em_len = search_len;
2635 
2636 		ret = set_extent_bit(&inode->io_tree, search_start,
2637 				     search_start + em_len - 1,
2638 				     EXTENT_DELALLOC_NEW, cached_state);
2639 next:
2640 		search_start = extent_map_end(em);
2641 		free_extent_map(em);
2642 		if (ret)
2643 			return ret;
2644 	}
2645 	return 0;
2646 }
2647 
2648 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2649 			      unsigned int extra_bits,
2650 			      struct extent_state **cached_state)
2651 {
2652 	WARN_ON(PAGE_ALIGNED(end));
2653 
2654 	if (start >= i_size_read(&inode->vfs_inode) &&
2655 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2656 		/*
2657 		 * There can't be any extents following eof in this case so just
2658 		 * set the delalloc new bit for the range directly.
2659 		 */
2660 		extra_bits |= EXTENT_DELALLOC_NEW;
2661 	} else {
2662 		int ret;
2663 
2664 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2665 						    end + 1 - start,
2666 						    cached_state);
2667 		if (ret)
2668 			return ret;
2669 	}
2670 
2671 	return set_extent_bit(&inode->io_tree, start, end,
2672 			      EXTENT_DELALLOC | extra_bits, cached_state);
2673 }
2674 
2675 /* see btrfs_writepage_start_hook for details on why this is required */
2676 struct btrfs_writepage_fixup {
2677 	struct page *page;
2678 	struct btrfs_inode *inode;
2679 	struct btrfs_work work;
2680 };
2681 
2682 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2683 {
2684 	struct btrfs_writepage_fixup *fixup =
2685 		container_of(work, struct btrfs_writepage_fixup, work);
2686 	struct btrfs_ordered_extent *ordered;
2687 	struct extent_state *cached_state = NULL;
2688 	struct extent_changeset *data_reserved = NULL;
2689 	struct page *page = fixup->page;
2690 	struct btrfs_inode *inode = fixup->inode;
2691 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2692 	u64 page_start = page_offset(page);
2693 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2694 	int ret = 0;
2695 	bool free_delalloc_space = true;
2696 
2697 	/*
2698 	 * This is similar to page_mkwrite, we need to reserve the space before
2699 	 * we take the page lock.
2700 	 */
2701 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2702 					   PAGE_SIZE);
2703 again:
2704 	lock_page(page);
2705 
2706 	/*
2707 	 * Before we queued this fixup, we took a reference on the page.
2708 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2709 	 * address space.
2710 	 */
2711 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2712 		/*
2713 		 * Unfortunately this is a little tricky, either
2714 		 *
2715 		 * 1) We got here and our page had already been dealt with and
2716 		 *    we reserved our space, thus ret == 0, so we need to just
2717 		 *    drop our space reservation and bail.  This can happen the
2718 		 *    first time we come into the fixup worker, or could happen
2719 		 *    while waiting for the ordered extent.
2720 		 * 2) Our page was already dealt with, but we happened to get an
2721 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2722 		 *    this case we obviously don't have anything to release, but
2723 		 *    because the page was already dealt with we don't want to
2724 		 *    mark the page with an error, so make sure we're resetting
2725 		 *    ret to 0.  This is why we have this check _before_ the ret
2726 		 *    check, because we do not want to have a surprise ENOSPC
2727 		 *    when the page was already properly dealt with.
2728 		 */
2729 		if (!ret) {
2730 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2731 			btrfs_delalloc_release_space(inode, data_reserved,
2732 						     page_start, PAGE_SIZE,
2733 						     true);
2734 		}
2735 		ret = 0;
2736 		goto out_page;
2737 	}
2738 
2739 	/*
2740 	 * We can't mess with the page state unless it is locked, so now that
2741 	 * it is locked bail if we failed to make our space reservation.
2742 	 */
2743 	if (ret)
2744 		goto out_page;
2745 
2746 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2747 
2748 	/* already ordered? We're done */
2749 	if (PageOrdered(page))
2750 		goto out_reserved;
2751 
2752 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2753 	if (ordered) {
2754 		unlock_extent(&inode->io_tree, page_start, page_end,
2755 			      &cached_state);
2756 		unlock_page(page);
2757 		btrfs_start_ordered_extent(ordered);
2758 		btrfs_put_ordered_extent(ordered);
2759 		goto again;
2760 	}
2761 
2762 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2763 					&cached_state);
2764 	if (ret)
2765 		goto out_reserved;
2766 
2767 	/*
2768 	 * Everything went as planned, we're now the owner of a dirty page with
2769 	 * delayed allocation bits set and space reserved for our COW
2770 	 * destination.
2771 	 *
2772 	 * The page was dirty when we started, nothing should have cleaned it.
2773 	 */
2774 	BUG_ON(!PageDirty(page));
2775 	free_delalloc_space = false;
2776 out_reserved:
2777 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2778 	if (free_delalloc_space)
2779 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2780 					     PAGE_SIZE, true);
2781 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2782 out_page:
2783 	if (ret) {
2784 		/*
2785 		 * We hit ENOSPC or other errors.  Update the mapping and page
2786 		 * to reflect the errors and clean the page.
2787 		 */
2788 		mapping_set_error(page->mapping, ret);
2789 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2790 					       PAGE_SIZE, !ret);
2791 		clear_page_dirty_for_io(page);
2792 	}
2793 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2794 	unlock_page(page);
2795 	put_page(page);
2796 	kfree(fixup);
2797 	extent_changeset_free(data_reserved);
2798 	/*
2799 	 * As a precaution, do a delayed iput in case it would be the last iput
2800 	 * that could need flushing space. Recursing back to fixup worker would
2801 	 * deadlock.
2802 	 */
2803 	btrfs_add_delayed_iput(inode);
2804 }
2805 
2806 /*
2807  * There are a few paths in the higher layers of the kernel that directly
2808  * set the page dirty bit without asking the filesystem if it is a
2809  * good idea.  This causes problems because we want to make sure COW
2810  * properly happens and the data=ordered rules are followed.
2811  *
2812  * In our case any range that doesn't have the ORDERED bit set
2813  * hasn't been properly setup for IO.  We kick off an async process
2814  * to fix it up.  The async helper will wait for ordered extents, set
2815  * the delalloc bit and make it safe to write the page.
2816  */
2817 int btrfs_writepage_cow_fixup(struct page *page)
2818 {
2819 	struct inode *inode = page->mapping->host;
2820 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2821 	struct btrfs_writepage_fixup *fixup;
2822 
2823 	/* This page has ordered extent covering it already */
2824 	if (PageOrdered(page))
2825 		return 0;
2826 
2827 	/*
2828 	 * PageChecked is set below when we create a fixup worker for this page,
2829 	 * don't try to create another one if we're already PageChecked()
2830 	 *
2831 	 * The extent_io writepage code will redirty the page if we send back
2832 	 * EAGAIN.
2833 	 */
2834 	if (PageChecked(page))
2835 		return -EAGAIN;
2836 
2837 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2838 	if (!fixup)
2839 		return -EAGAIN;
2840 
2841 	/*
2842 	 * We are already holding a reference to this inode from
2843 	 * write_cache_pages.  We need to hold it because the space reservation
2844 	 * takes place outside of the page lock, and we can't trust
2845 	 * page->mapping outside of the page lock.
2846 	 */
2847 	ihold(inode);
2848 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2849 	get_page(page);
2850 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2851 	fixup->page = page;
2852 	fixup->inode = BTRFS_I(inode);
2853 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2854 
2855 	return -EAGAIN;
2856 }
2857 
2858 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2859 				       struct btrfs_inode *inode, u64 file_pos,
2860 				       struct btrfs_file_extent_item *stack_fi,
2861 				       const bool update_inode_bytes,
2862 				       u64 qgroup_reserved)
2863 {
2864 	struct btrfs_root *root = inode->root;
2865 	const u64 sectorsize = root->fs_info->sectorsize;
2866 	struct btrfs_path *path;
2867 	struct extent_buffer *leaf;
2868 	struct btrfs_key ins;
2869 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2870 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2871 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2872 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2873 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2874 	struct btrfs_drop_extents_args drop_args = { 0 };
2875 	int ret;
2876 
2877 	path = btrfs_alloc_path();
2878 	if (!path)
2879 		return -ENOMEM;
2880 
2881 	/*
2882 	 * we may be replacing one extent in the tree with another.
2883 	 * The new extent is pinned in the extent map, and we don't want
2884 	 * to drop it from the cache until it is completely in the btree.
2885 	 *
2886 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2887 	 * the caller is expected to unpin it and allow it to be merged
2888 	 * with the others.
2889 	 */
2890 	drop_args.path = path;
2891 	drop_args.start = file_pos;
2892 	drop_args.end = file_pos + num_bytes;
2893 	drop_args.replace_extent = true;
2894 	drop_args.extent_item_size = sizeof(*stack_fi);
2895 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2896 	if (ret)
2897 		goto out;
2898 
2899 	if (!drop_args.extent_inserted) {
2900 		ins.objectid = btrfs_ino(inode);
2901 		ins.offset = file_pos;
2902 		ins.type = BTRFS_EXTENT_DATA_KEY;
2903 
2904 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2905 					      sizeof(*stack_fi));
2906 		if (ret)
2907 			goto out;
2908 	}
2909 	leaf = path->nodes[0];
2910 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2911 	write_extent_buffer(leaf, stack_fi,
2912 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2913 			sizeof(struct btrfs_file_extent_item));
2914 
2915 	btrfs_mark_buffer_dirty(trans, leaf);
2916 	btrfs_release_path(path);
2917 
2918 	/*
2919 	 * If we dropped an inline extent here, we know the range where it is
2920 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2921 	 * number of bytes only for that range containing the inline extent.
2922 	 * The remaining of the range will be processed when clearning the
2923 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2924 	 */
2925 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2926 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2927 
2928 		inline_size = drop_args.bytes_found - inline_size;
2929 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2930 		drop_args.bytes_found -= inline_size;
2931 		num_bytes -= sectorsize;
2932 	}
2933 
2934 	if (update_inode_bytes)
2935 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2936 
2937 	ins.objectid = disk_bytenr;
2938 	ins.offset = disk_num_bytes;
2939 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2940 
2941 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2942 	if (ret)
2943 		goto out;
2944 
2945 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2946 					       file_pos - offset,
2947 					       qgroup_reserved, &ins);
2948 out:
2949 	btrfs_free_path(path);
2950 
2951 	return ret;
2952 }
2953 
2954 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2955 					 u64 start, u64 len)
2956 {
2957 	struct btrfs_block_group *cache;
2958 
2959 	cache = btrfs_lookup_block_group(fs_info, start);
2960 	ASSERT(cache);
2961 
2962 	spin_lock(&cache->lock);
2963 	cache->delalloc_bytes -= len;
2964 	spin_unlock(&cache->lock);
2965 
2966 	btrfs_put_block_group(cache);
2967 }
2968 
2969 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2970 					     struct btrfs_ordered_extent *oe)
2971 {
2972 	struct btrfs_file_extent_item stack_fi;
2973 	bool update_inode_bytes;
2974 	u64 num_bytes = oe->num_bytes;
2975 	u64 ram_bytes = oe->ram_bytes;
2976 
2977 	memset(&stack_fi, 0, sizeof(stack_fi));
2978 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2979 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2980 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2981 						   oe->disk_num_bytes);
2982 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2983 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2984 		num_bytes = oe->truncated_len;
2985 		ram_bytes = num_bytes;
2986 	}
2987 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2988 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2989 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2990 	/* Encryption and other encoding is reserved and all 0 */
2991 
2992 	/*
2993 	 * For delalloc, when completing an ordered extent we update the inode's
2994 	 * bytes when clearing the range in the inode's io tree, so pass false
2995 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2996 	 * except if the ordered extent was truncated.
2997 	 */
2998 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2999 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3000 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3001 
3002 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3003 					   oe->file_offset, &stack_fi,
3004 					   update_inode_bytes, oe->qgroup_rsv);
3005 }
3006 
3007 /*
3008  * As ordered data IO finishes, this gets called so we can finish
3009  * an ordered extent if the range of bytes in the file it covers are
3010  * fully written.
3011  */
3012 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3013 {
3014 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3015 	struct btrfs_root *root = inode->root;
3016 	struct btrfs_fs_info *fs_info = root->fs_info;
3017 	struct btrfs_trans_handle *trans = NULL;
3018 	struct extent_io_tree *io_tree = &inode->io_tree;
3019 	struct extent_state *cached_state = NULL;
3020 	u64 start, end;
3021 	int compress_type = 0;
3022 	int ret = 0;
3023 	u64 logical_len = ordered_extent->num_bytes;
3024 	bool freespace_inode;
3025 	bool truncated = false;
3026 	bool clear_reserved_extent = true;
3027 	unsigned int clear_bits = EXTENT_DEFRAG;
3028 
3029 	start = ordered_extent->file_offset;
3030 	end = start + ordered_extent->num_bytes - 1;
3031 
3032 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3033 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3034 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3035 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3036 		clear_bits |= EXTENT_DELALLOC_NEW;
3037 
3038 	freespace_inode = btrfs_is_free_space_inode(inode);
3039 	if (!freespace_inode)
3040 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3041 
3042 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3043 		ret = -EIO;
3044 		goto out;
3045 	}
3046 
3047 	if (btrfs_is_zoned(fs_info))
3048 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3049 					ordered_extent->disk_num_bytes);
3050 
3051 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3052 		truncated = true;
3053 		logical_len = ordered_extent->truncated_len;
3054 		/* Truncated the entire extent, don't bother adding */
3055 		if (!logical_len)
3056 			goto out;
3057 	}
3058 
3059 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3060 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3061 
3062 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3063 		if (freespace_inode)
3064 			trans = btrfs_join_transaction_spacecache(root);
3065 		else
3066 			trans = btrfs_join_transaction(root);
3067 		if (IS_ERR(trans)) {
3068 			ret = PTR_ERR(trans);
3069 			trans = NULL;
3070 			goto out;
3071 		}
3072 		trans->block_rsv = &inode->block_rsv;
3073 		ret = btrfs_update_inode_fallback(trans, root, inode);
3074 		if (ret) /* -ENOMEM or corruption */
3075 			btrfs_abort_transaction(trans, ret);
3076 		goto out;
3077 	}
3078 
3079 	clear_bits |= EXTENT_LOCKED;
3080 	lock_extent(io_tree, start, end, &cached_state);
3081 
3082 	if (freespace_inode)
3083 		trans = btrfs_join_transaction_spacecache(root);
3084 	else
3085 		trans = btrfs_join_transaction(root);
3086 	if (IS_ERR(trans)) {
3087 		ret = PTR_ERR(trans);
3088 		trans = NULL;
3089 		goto out;
3090 	}
3091 
3092 	trans->block_rsv = &inode->block_rsv;
3093 
3094 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3095 		compress_type = ordered_extent->compress_type;
3096 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3097 		BUG_ON(compress_type);
3098 		ret = btrfs_mark_extent_written(trans, inode,
3099 						ordered_extent->file_offset,
3100 						ordered_extent->file_offset +
3101 						logical_len);
3102 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3103 						  ordered_extent->disk_num_bytes);
3104 	} else {
3105 		BUG_ON(root == fs_info->tree_root);
3106 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3107 		if (!ret) {
3108 			clear_reserved_extent = false;
3109 			btrfs_release_delalloc_bytes(fs_info,
3110 						ordered_extent->disk_bytenr,
3111 						ordered_extent->disk_num_bytes);
3112 		}
3113 	}
3114 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3115 			   ordered_extent->num_bytes, trans->transid);
3116 	if (ret < 0) {
3117 		btrfs_abort_transaction(trans, ret);
3118 		goto out;
3119 	}
3120 
3121 	ret = add_pending_csums(trans, &ordered_extent->list);
3122 	if (ret) {
3123 		btrfs_abort_transaction(trans, ret);
3124 		goto out;
3125 	}
3126 
3127 	/*
3128 	 * If this is a new delalloc range, clear its new delalloc flag to
3129 	 * update the inode's number of bytes. This needs to be done first
3130 	 * before updating the inode item.
3131 	 */
3132 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3133 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3134 		clear_extent_bit(&inode->io_tree, start, end,
3135 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3136 				 &cached_state);
3137 
3138 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3139 	ret = btrfs_update_inode_fallback(trans, root, inode);
3140 	if (ret) { /* -ENOMEM or corruption */
3141 		btrfs_abort_transaction(trans, ret);
3142 		goto out;
3143 	}
3144 	ret = 0;
3145 out:
3146 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3147 			 &cached_state);
3148 
3149 	if (trans)
3150 		btrfs_end_transaction(trans);
3151 
3152 	if (ret || truncated) {
3153 		u64 unwritten_start = start;
3154 
3155 		/*
3156 		 * If we failed to finish this ordered extent for any reason we
3157 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3158 		 * extent, and mark the inode with the error if it wasn't
3159 		 * already set.  Any error during writeback would have already
3160 		 * set the mapping error, so we need to set it if we're the ones
3161 		 * marking this ordered extent as failed.
3162 		 */
3163 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3164 					     &ordered_extent->flags))
3165 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3166 
3167 		if (truncated)
3168 			unwritten_start += logical_len;
3169 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3170 
3171 		/* Drop extent maps for the part of the extent we didn't write. */
3172 		btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3173 
3174 		/*
3175 		 * If the ordered extent had an IOERR or something else went
3176 		 * wrong we need to return the space for this ordered extent
3177 		 * back to the allocator.  We only free the extent in the
3178 		 * truncated case if we didn't write out the extent at all.
3179 		 *
3180 		 * If we made it past insert_reserved_file_extent before we
3181 		 * errored out then we don't need to do this as the accounting
3182 		 * has already been done.
3183 		 */
3184 		if ((ret || !logical_len) &&
3185 		    clear_reserved_extent &&
3186 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3187 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3188 			/*
3189 			 * Discard the range before returning it back to the
3190 			 * free space pool
3191 			 */
3192 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3193 				btrfs_discard_extent(fs_info,
3194 						ordered_extent->disk_bytenr,
3195 						ordered_extent->disk_num_bytes,
3196 						NULL);
3197 			btrfs_free_reserved_extent(fs_info,
3198 					ordered_extent->disk_bytenr,
3199 					ordered_extent->disk_num_bytes, 1);
3200 			/*
3201 			 * Actually free the qgroup rsv which was released when
3202 			 * the ordered extent was created.
3203 			 */
3204 			btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3205 						  ordered_extent->qgroup_rsv,
3206 						  BTRFS_QGROUP_RSV_DATA);
3207 		}
3208 	}
3209 
3210 	/*
3211 	 * This needs to be done to make sure anybody waiting knows we are done
3212 	 * updating everything for this ordered extent.
3213 	 */
3214 	btrfs_remove_ordered_extent(inode, ordered_extent);
3215 
3216 	/* once for us */
3217 	btrfs_put_ordered_extent(ordered_extent);
3218 	/* once for the tree */
3219 	btrfs_put_ordered_extent(ordered_extent);
3220 
3221 	return ret;
3222 }
3223 
3224 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3225 {
3226 	if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3227 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3228 		btrfs_finish_ordered_zoned(ordered);
3229 	return btrfs_finish_one_ordered(ordered);
3230 }
3231 
3232 /*
3233  * Verify the checksum for a single sector without any extra action that depend
3234  * on the type of I/O.
3235  */
3236 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3237 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3238 {
3239 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3240 	char *kaddr;
3241 
3242 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3243 
3244 	shash->tfm = fs_info->csum_shash;
3245 
3246 	kaddr = kmap_local_page(page) + pgoff;
3247 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3248 	kunmap_local(kaddr);
3249 
3250 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3251 		return -EIO;
3252 	return 0;
3253 }
3254 
3255 /*
3256  * Verify the checksum of a single data sector.
3257  *
3258  * @bbio:	btrfs_io_bio which contains the csum
3259  * @dev:	device the sector is on
3260  * @bio_offset:	offset to the beginning of the bio (in bytes)
3261  * @bv:		bio_vec to check
3262  *
3263  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3264  * detected, report the error and fill the corrupted range with zero.
3265  *
3266  * Return %true if the sector is ok or had no checksum to start with, else %false.
3267  */
3268 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3269 			u32 bio_offset, struct bio_vec *bv)
3270 {
3271 	struct btrfs_inode *inode = bbio->inode;
3272 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3273 	u64 file_offset = bbio->file_offset + bio_offset;
3274 	u64 end = file_offset + bv->bv_len - 1;
3275 	u8 *csum_expected;
3276 	u8 csum[BTRFS_CSUM_SIZE];
3277 
3278 	ASSERT(bv->bv_len == fs_info->sectorsize);
3279 
3280 	if (!bbio->csum)
3281 		return true;
3282 
3283 	if (btrfs_is_data_reloc_root(inode->root) &&
3284 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3285 			   1, NULL)) {
3286 		/* Skip the range without csum for data reloc inode */
3287 		clear_extent_bits(&inode->io_tree, file_offset, end,
3288 				  EXTENT_NODATASUM);
3289 		return true;
3290 	}
3291 
3292 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3293 				fs_info->csum_size;
3294 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3295 				    csum_expected))
3296 		goto zeroit;
3297 	return true;
3298 
3299 zeroit:
3300 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3301 				    bbio->mirror_num);
3302 	if (dev)
3303 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3304 	memzero_bvec(bv);
3305 	return false;
3306 }
3307 
3308 /*
3309  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3310  *
3311  * @inode: The inode we want to perform iput on
3312  *
3313  * This function uses the generic vfs_inode::i_count to track whether we should
3314  * just decrement it (in case it's > 1) or if this is the last iput then link
3315  * the inode to the delayed iput machinery. Delayed iputs are processed at
3316  * transaction commit time/superblock commit/cleaner kthread.
3317  */
3318 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3319 {
3320 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3321 	unsigned long flags;
3322 
3323 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3324 		return;
3325 
3326 	atomic_inc(&fs_info->nr_delayed_iputs);
3327 	/*
3328 	 * Need to be irq safe here because we can be called from either an irq
3329 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3330 	 * context.
3331 	 */
3332 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3333 	ASSERT(list_empty(&inode->delayed_iput));
3334 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3335 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3336 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3337 		wake_up_process(fs_info->cleaner_kthread);
3338 }
3339 
3340 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3341 				    struct btrfs_inode *inode)
3342 {
3343 	list_del_init(&inode->delayed_iput);
3344 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3345 	iput(&inode->vfs_inode);
3346 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3347 		wake_up(&fs_info->delayed_iputs_wait);
3348 	spin_lock_irq(&fs_info->delayed_iput_lock);
3349 }
3350 
3351 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3352 				   struct btrfs_inode *inode)
3353 {
3354 	if (!list_empty(&inode->delayed_iput)) {
3355 		spin_lock_irq(&fs_info->delayed_iput_lock);
3356 		if (!list_empty(&inode->delayed_iput))
3357 			run_delayed_iput_locked(fs_info, inode);
3358 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3359 	}
3360 }
3361 
3362 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3363 {
3364 	/*
3365 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3366 	 * calls btrfs_add_delayed_iput() and that needs to lock
3367 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3368 	 * prevent a deadlock.
3369 	 */
3370 	spin_lock_irq(&fs_info->delayed_iput_lock);
3371 	while (!list_empty(&fs_info->delayed_iputs)) {
3372 		struct btrfs_inode *inode;
3373 
3374 		inode = list_first_entry(&fs_info->delayed_iputs,
3375 				struct btrfs_inode, delayed_iput);
3376 		run_delayed_iput_locked(fs_info, inode);
3377 		if (need_resched()) {
3378 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3379 			cond_resched();
3380 			spin_lock_irq(&fs_info->delayed_iput_lock);
3381 		}
3382 	}
3383 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3384 }
3385 
3386 /*
3387  * Wait for flushing all delayed iputs
3388  *
3389  * @fs_info:  the filesystem
3390  *
3391  * This will wait on any delayed iputs that are currently running with KILLABLE
3392  * set.  Once they are all done running we will return, unless we are killed in
3393  * which case we return EINTR. This helps in user operations like fallocate etc
3394  * that might get blocked on the iputs.
3395  *
3396  * Return EINTR if we were killed, 0 if nothing's pending
3397  */
3398 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3399 {
3400 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3401 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3402 	if (ret)
3403 		return -EINTR;
3404 	return 0;
3405 }
3406 
3407 /*
3408  * This creates an orphan entry for the given inode in case something goes wrong
3409  * in the middle of an unlink.
3410  */
3411 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3412 		     struct btrfs_inode *inode)
3413 {
3414 	int ret;
3415 
3416 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3417 	if (ret && ret != -EEXIST) {
3418 		btrfs_abort_transaction(trans, ret);
3419 		return ret;
3420 	}
3421 
3422 	return 0;
3423 }
3424 
3425 /*
3426  * We have done the delete so we can go ahead and remove the orphan item for
3427  * this particular inode.
3428  */
3429 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3430 			    struct btrfs_inode *inode)
3431 {
3432 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3433 }
3434 
3435 /*
3436  * this cleans up any orphans that may be left on the list from the last use
3437  * of this root.
3438  */
3439 int btrfs_orphan_cleanup(struct btrfs_root *root)
3440 {
3441 	struct btrfs_fs_info *fs_info = root->fs_info;
3442 	struct btrfs_path *path;
3443 	struct extent_buffer *leaf;
3444 	struct btrfs_key key, found_key;
3445 	struct btrfs_trans_handle *trans;
3446 	struct inode *inode;
3447 	u64 last_objectid = 0;
3448 	int ret = 0, nr_unlink = 0;
3449 
3450 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3451 		return 0;
3452 
3453 	path = btrfs_alloc_path();
3454 	if (!path) {
3455 		ret = -ENOMEM;
3456 		goto out;
3457 	}
3458 	path->reada = READA_BACK;
3459 
3460 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3461 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3462 	key.offset = (u64)-1;
3463 
3464 	while (1) {
3465 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3466 		if (ret < 0)
3467 			goto out;
3468 
3469 		/*
3470 		 * if ret == 0 means we found what we were searching for, which
3471 		 * is weird, but possible, so only screw with path if we didn't
3472 		 * find the key and see if we have stuff that matches
3473 		 */
3474 		if (ret > 0) {
3475 			ret = 0;
3476 			if (path->slots[0] == 0)
3477 				break;
3478 			path->slots[0]--;
3479 		}
3480 
3481 		/* pull out the item */
3482 		leaf = path->nodes[0];
3483 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3484 
3485 		/* make sure the item matches what we want */
3486 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3487 			break;
3488 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3489 			break;
3490 
3491 		/* release the path since we're done with it */
3492 		btrfs_release_path(path);
3493 
3494 		/*
3495 		 * this is where we are basically btrfs_lookup, without the
3496 		 * crossing root thing.  we store the inode number in the
3497 		 * offset of the orphan item.
3498 		 */
3499 
3500 		if (found_key.offset == last_objectid) {
3501 			/*
3502 			 * We found the same inode as before. This means we were
3503 			 * not able to remove its items via eviction triggered
3504 			 * by an iput(). A transaction abort may have happened,
3505 			 * due to -ENOSPC for example, so try to grab the error
3506 			 * that lead to a transaction abort, if any.
3507 			 */
3508 			btrfs_err(fs_info,
3509 				  "Error removing orphan entry, stopping orphan cleanup");
3510 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3511 			goto out;
3512 		}
3513 
3514 		last_objectid = found_key.offset;
3515 
3516 		found_key.objectid = found_key.offset;
3517 		found_key.type = BTRFS_INODE_ITEM_KEY;
3518 		found_key.offset = 0;
3519 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3520 		if (IS_ERR(inode)) {
3521 			ret = PTR_ERR(inode);
3522 			inode = NULL;
3523 			if (ret != -ENOENT)
3524 				goto out;
3525 		}
3526 
3527 		if (!inode && root == fs_info->tree_root) {
3528 			struct btrfs_root *dead_root;
3529 			int is_dead_root = 0;
3530 
3531 			/*
3532 			 * This is an orphan in the tree root. Currently these
3533 			 * could come from 2 sources:
3534 			 *  a) a root (snapshot/subvolume) deletion in progress
3535 			 *  b) a free space cache inode
3536 			 * We need to distinguish those two, as the orphan item
3537 			 * for a root must not get deleted before the deletion
3538 			 * of the snapshot/subvolume's tree completes.
3539 			 *
3540 			 * btrfs_find_orphan_roots() ran before us, which has
3541 			 * found all deleted roots and loaded them into
3542 			 * fs_info->fs_roots_radix. So here we can find if an
3543 			 * orphan item corresponds to a deleted root by looking
3544 			 * up the root from that radix tree.
3545 			 */
3546 
3547 			spin_lock(&fs_info->fs_roots_radix_lock);
3548 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3549 							 (unsigned long)found_key.objectid);
3550 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3551 				is_dead_root = 1;
3552 			spin_unlock(&fs_info->fs_roots_radix_lock);
3553 
3554 			if (is_dead_root) {
3555 				/* prevent this orphan from being found again */
3556 				key.offset = found_key.objectid - 1;
3557 				continue;
3558 			}
3559 
3560 		}
3561 
3562 		/*
3563 		 * If we have an inode with links, there are a couple of
3564 		 * possibilities:
3565 		 *
3566 		 * 1. We were halfway through creating fsverity metadata for the
3567 		 * file. In that case, the orphan item represents incomplete
3568 		 * fsverity metadata which must be cleaned up with
3569 		 * btrfs_drop_verity_items and deleting the orphan item.
3570 
3571 		 * 2. Old kernels (before v3.12) used to create an
3572 		 * orphan item for truncate indicating that there were possibly
3573 		 * extent items past i_size that needed to be deleted. In v3.12,
3574 		 * truncate was changed to update i_size in sync with the extent
3575 		 * items, but the (useless) orphan item was still created. Since
3576 		 * v4.18, we don't create the orphan item for truncate at all.
3577 		 *
3578 		 * So, this item could mean that we need to do a truncate, but
3579 		 * only if this filesystem was last used on a pre-v3.12 kernel
3580 		 * and was not cleanly unmounted. The odds of that are quite
3581 		 * slim, and it's a pain to do the truncate now, so just delete
3582 		 * the orphan item.
3583 		 *
3584 		 * It's also possible that this orphan item was supposed to be
3585 		 * deleted but wasn't. The inode number may have been reused,
3586 		 * but either way, we can delete the orphan item.
3587 		 */
3588 		if (!inode || inode->i_nlink) {
3589 			if (inode) {
3590 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3591 				iput(inode);
3592 				inode = NULL;
3593 				if (ret)
3594 					goto out;
3595 			}
3596 			trans = btrfs_start_transaction(root, 1);
3597 			if (IS_ERR(trans)) {
3598 				ret = PTR_ERR(trans);
3599 				goto out;
3600 			}
3601 			btrfs_debug(fs_info, "auto deleting %Lu",
3602 				    found_key.objectid);
3603 			ret = btrfs_del_orphan_item(trans, root,
3604 						    found_key.objectid);
3605 			btrfs_end_transaction(trans);
3606 			if (ret)
3607 				goto out;
3608 			continue;
3609 		}
3610 
3611 		nr_unlink++;
3612 
3613 		/* this will do delete_inode and everything for us */
3614 		iput(inode);
3615 	}
3616 	/* release the path since we're done with it */
3617 	btrfs_release_path(path);
3618 
3619 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3620 		trans = btrfs_join_transaction(root);
3621 		if (!IS_ERR(trans))
3622 			btrfs_end_transaction(trans);
3623 	}
3624 
3625 	if (nr_unlink)
3626 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3627 
3628 out:
3629 	if (ret)
3630 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3631 	btrfs_free_path(path);
3632 	return ret;
3633 }
3634 
3635 /*
3636  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3637  * don't find any xattrs, we know there can't be any acls.
3638  *
3639  * slot is the slot the inode is in, objectid is the objectid of the inode
3640  */
3641 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3642 					  int slot, u64 objectid,
3643 					  int *first_xattr_slot)
3644 {
3645 	u32 nritems = btrfs_header_nritems(leaf);
3646 	struct btrfs_key found_key;
3647 	static u64 xattr_access = 0;
3648 	static u64 xattr_default = 0;
3649 	int scanned = 0;
3650 
3651 	if (!xattr_access) {
3652 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3653 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3654 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3655 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3656 	}
3657 
3658 	slot++;
3659 	*first_xattr_slot = -1;
3660 	while (slot < nritems) {
3661 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3662 
3663 		/* we found a different objectid, there must not be acls */
3664 		if (found_key.objectid != objectid)
3665 			return 0;
3666 
3667 		/* we found an xattr, assume we've got an acl */
3668 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3669 			if (*first_xattr_slot == -1)
3670 				*first_xattr_slot = slot;
3671 			if (found_key.offset == xattr_access ||
3672 			    found_key.offset == xattr_default)
3673 				return 1;
3674 		}
3675 
3676 		/*
3677 		 * we found a key greater than an xattr key, there can't
3678 		 * be any acls later on
3679 		 */
3680 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3681 			return 0;
3682 
3683 		slot++;
3684 		scanned++;
3685 
3686 		/*
3687 		 * it goes inode, inode backrefs, xattrs, extents,
3688 		 * so if there are a ton of hard links to an inode there can
3689 		 * be a lot of backrefs.  Don't waste time searching too hard,
3690 		 * this is just an optimization
3691 		 */
3692 		if (scanned >= 8)
3693 			break;
3694 	}
3695 	/* we hit the end of the leaf before we found an xattr or
3696 	 * something larger than an xattr.  We have to assume the inode
3697 	 * has acls
3698 	 */
3699 	if (*first_xattr_slot == -1)
3700 		*first_xattr_slot = slot;
3701 	return 1;
3702 }
3703 
3704 /*
3705  * read an inode from the btree into the in-memory inode
3706  */
3707 static int btrfs_read_locked_inode(struct inode *inode,
3708 				   struct btrfs_path *in_path)
3709 {
3710 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3711 	struct btrfs_path *path = in_path;
3712 	struct extent_buffer *leaf;
3713 	struct btrfs_inode_item *inode_item;
3714 	struct btrfs_root *root = BTRFS_I(inode)->root;
3715 	struct btrfs_key location;
3716 	unsigned long ptr;
3717 	int maybe_acls;
3718 	u32 rdev;
3719 	int ret;
3720 	bool filled = false;
3721 	int first_xattr_slot;
3722 
3723 	ret = btrfs_fill_inode(inode, &rdev);
3724 	if (!ret)
3725 		filled = true;
3726 
3727 	if (!path) {
3728 		path = btrfs_alloc_path();
3729 		if (!path)
3730 			return -ENOMEM;
3731 	}
3732 
3733 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3734 
3735 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3736 	if (ret) {
3737 		if (path != in_path)
3738 			btrfs_free_path(path);
3739 		return ret;
3740 	}
3741 
3742 	leaf = path->nodes[0];
3743 
3744 	if (filled)
3745 		goto cache_index;
3746 
3747 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3748 				    struct btrfs_inode_item);
3749 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3750 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3751 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3752 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3753 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3754 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3755 			round_up(i_size_read(inode), fs_info->sectorsize));
3756 
3757 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3758 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3759 
3760 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3761 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3762 
3763 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3764 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3765 
3766 	BTRFS_I(inode)->i_otime.tv_sec =
3767 		btrfs_timespec_sec(leaf, &inode_item->otime);
3768 	BTRFS_I(inode)->i_otime.tv_nsec =
3769 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3770 
3771 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3772 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3773 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3774 
3775 	inode_set_iversion_queried(inode,
3776 				   btrfs_inode_sequence(leaf, inode_item));
3777 	inode->i_generation = BTRFS_I(inode)->generation;
3778 	inode->i_rdev = 0;
3779 	rdev = btrfs_inode_rdev(leaf, inode_item);
3780 
3781 	BTRFS_I(inode)->index_cnt = (u64)-1;
3782 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3783 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3784 
3785 cache_index:
3786 	/*
3787 	 * If we were modified in the current generation and evicted from memory
3788 	 * and then re-read we need to do a full sync since we don't have any
3789 	 * idea about which extents were modified before we were evicted from
3790 	 * cache.
3791 	 *
3792 	 * This is required for both inode re-read from disk and delayed inode
3793 	 * in delayed_nodes_tree.
3794 	 */
3795 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3796 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3797 			&BTRFS_I(inode)->runtime_flags);
3798 
3799 	/*
3800 	 * We don't persist the id of the transaction where an unlink operation
3801 	 * against the inode was last made. So here we assume the inode might
3802 	 * have been evicted, and therefore the exact value of last_unlink_trans
3803 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3804 	 * between the inode and its parent if the inode is fsync'ed and the log
3805 	 * replayed. For example, in the scenario:
3806 	 *
3807 	 * touch mydir/foo
3808 	 * ln mydir/foo mydir/bar
3809 	 * sync
3810 	 * unlink mydir/bar
3811 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3812 	 * xfs_io -c fsync mydir/foo
3813 	 * <power failure>
3814 	 * mount fs, triggers fsync log replay
3815 	 *
3816 	 * We must make sure that when we fsync our inode foo we also log its
3817 	 * parent inode, otherwise after log replay the parent still has the
3818 	 * dentry with the "bar" name but our inode foo has a link count of 1
3819 	 * and doesn't have an inode ref with the name "bar" anymore.
3820 	 *
3821 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3822 	 * but it guarantees correctness at the expense of occasional full
3823 	 * transaction commits on fsync if our inode is a directory, or if our
3824 	 * inode is not a directory, logging its parent unnecessarily.
3825 	 */
3826 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3827 
3828 	/*
3829 	 * Same logic as for last_unlink_trans. We don't persist the generation
3830 	 * of the last transaction where this inode was used for a reflink
3831 	 * operation, so after eviction and reloading the inode we must be
3832 	 * pessimistic and assume the last transaction that modified the inode.
3833 	 */
3834 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3835 
3836 	path->slots[0]++;
3837 	if (inode->i_nlink != 1 ||
3838 	    path->slots[0] >= btrfs_header_nritems(leaf))
3839 		goto cache_acl;
3840 
3841 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3842 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3843 		goto cache_acl;
3844 
3845 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3846 	if (location.type == BTRFS_INODE_REF_KEY) {
3847 		struct btrfs_inode_ref *ref;
3848 
3849 		ref = (struct btrfs_inode_ref *)ptr;
3850 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3851 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3852 		struct btrfs_inode_extref *extref;
3853 
3854 		extref = (struct btrfs_inode_extref *)ptr;
3855 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3856 								     extref);
3857 	}
3858 cache_acl:
3859 	/*
3860 	 * try to precache a NULL acl entry for files that don't have
3861 	 * any xattrs or acls
3862 	 */
3863 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3864 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3865 	if (first_xattr_slot != -1) {
3866 		path->slots[0] = first_xattr_slot;
3867 		ret = btrfs_load_inode_props(inode, path);
3868 		if (ret)
3869 			btrfs_err(fs_info,
3870 				  "error loading props for ino %llu (root %llu): %d",
3871 				  btrfs_ino(BTRFS_I(inode)),
3872 				  root->root_key.objectid, ret);
3873 	}
3874 	if (path != in_path)
3875 		btrfs_free_path(path);
3876 
3877 	if (!maybe_acls)
3878 		cache_no_acl(inode);
3879 
3880 	switch (inode->i_mode & S_IFMT) {
3881 	case S_IFREG:
3882 		inode->i_mapping->a_ops = &btrfs_aops;
3883 		inode->i_fop = &btrfs_file_operations;
3884 		inode->i_op = &btrfs_file_inode_operations;
3885 		break;
3886 	case S_IFDIR:
3887 		inode->i_fop = &btrfs_dir_file_operations;
3888 		inode->i_op = &btrfs_dir_inode_operations;
3889 		break;
3890 	case S_IFLNK:
3891 		inode->i_op = &btrfs_symlink_inode_operations;
3892 		inode_nohighmem(inode);
3893 		inode->i_mapping->a_ops = &btrfs_aops;
3894 		break;
3895 	default:
3896 		inode->i_op = &btrfs_special_inode_operations;
3897 		init_special_inode(inode, inode->i_mode, rdev);
3898 		break;
3899 	}
3900 
3901 	btrfs_sync_inode_flags_to_i_flags(inode);
3902 	return 0;
3903 }
3904 
3905 /*
3906  * given a leaf and an inode, copy the inode fields into the leaf
3907  */
3908 static void fill_inode_item(struct btrfs_trans_handle *trans,
3909 			    struct extent_buffer *leaf,
3910 			    struct btrfs_inode_item *item,
3911 			    struct inode *inode)
3912 {
3913 	struct btrfs_map_token token;
3914 	u64 flags;
3915 
3916 	btrfs_init_map_token(&token, leaf);
3917 
3918 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3919 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3920 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3921 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3922 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3923 
3924 	btrfs_set_token_timespec_sec(&token, &item->atime,
3925 				     inode->i_atime.tv_sec);
3926 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3927 				      inode->i_atime.tv_nsec);
3928 
3929 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3930 				     inode->i_mtime.tv_sec);
3931 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3932 				      inode->i_mtime.tv_nsec);
3933 
3934 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3935 				     inode_get_ctime(inode).tv_sec);
3936 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3937 				      inode_get_ctime(inode).tv_nsec);
3938 
3939 	btrfs_set_token_timespec_sec(&token, &item->otime,
3940 				     BTRFS_I(inode)->i_otime.tv_sec);
3941 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3942 				      BTRFS_I(inode)->i_otime.tv_nsec);
3943 
3944 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3945 	btrfs_set_token_inode_generation(&token, item,
3946 					 BTRFS_I(inode)->generation);
3947 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3948 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3949 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3950 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3951 					  BTRFS_I(inode)->ro_flags);
3952 	btrfs_set_token_inode_flags(&token, item, flags);
3953 	btrfs_set_token_inode_block_group(&token, item, 0);
3954 }
3955 
3956 /*
3957  * copy everything in the in-memory inode into the btree.
3958  */
3959 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3960 				struct btrfs_root *root,
3961 				struct btrfs_inode *inode)
3962 {
3963 	struct btrfs_inode_item *inode_item;
3964 	struct btrfs_path *path;
3965 	struct extent_buffer *leaf;
3966 	int ret;
3967 
3968 	path = btrfs_alloc_path();
3969 	if (!path)
3970 		return -ENOMEM;
3971 
3972 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3973 	if (ret) {
3974 		if (ret > 0)
3975 			ret = -ENOENT;
3976 		goto failed;
3977 	}
3978 
3979 	leaf = path->nodes[0];
3980 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3981 				    struct btrfs_inode_item);
3982 
3983 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3984 	btrfs_mark_buffer_dirty(trans, leaf);
3985 	btrfs_set_inode_last_trans(trans, inode);
3986 	ret = 0;
3987 failed:
3988 	btrfs_free_path(path);
3989 	return ret;
3990 }
3991 
3992 /*
3993  * copy everything in the in-memory inode into the btree.
3994  */
3995 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3996 				struct btrfs_root *root,
3997 				struct btrfs_inode *inode)
3998 {
3999 	struct btrfs_fs_info *fs_info = root->fs_info;
4000 	int ret;
4001 
4002 	/*
4003 	 * If the inode is a free space inode, we can deadlock during commit
4004 	 * if we put it into the delayed code.
4005 	 *
4006 	 * The data relocation inode should also be directly updated
4007 	 * without delay
4008 	 */
4009 	if (!btrfs_is_free_space_inode(inode)
4010 	    && !btrfs_is_data_reloc_root(root)
4011 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4012 		btrfs_update_root_times(trans, root);
4013 
4014 		ret = btrfs_delayed_update_inode(trans, root, inode);
4015 		if (!ret)
4016 			btrfs_set_inode_last_trans(trans, inode);
4017 		return ret;
4018 	}
4019 
4020 	return btrfs_update_inode_item(trans, root, inode);
4021 }
4022 
4023 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4024 				struct btrfs_root *root, struct btrfs_inode *inode)
4025 {
4026 	int ret;
4027 
4028 	ret = btrfs_update_inode(trans, root, inode);
4029 	if (ret == -ENOSPC)
4030 		return btrfs_update_inode_item(trans, root, inode);
4031 	return ret;
4032 }
4033 
4034 /*
4035  * unlink helper that gets used here in inode.c and in the tree logging
4036  * recovery code.  It remove a link in a directory with a given name, and
4037  * also drops the back refs in the inode to the directory
4038  */
4039 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4040 				struct btrfs_inode *dir,
4041 				struct btrfs_inode *inode,
4042 				const struct fscrypt_str *name,
4043 				struct btrfs_rename_ctx *rename_ctx)
4044 {
4045 	struct btrfs_root *root = dir->root;
4046 	struct btrfs_fs_info *fs_info = root->fs_info;
4047 	struct btrfs_path *path;
4048 	int ret = 0;
4049 	struct btrfs_dir_item *di;
4050 	u64 index;
4051 	u64 ino = btrfs_ino(inode);
4052 	u64 dir_ino = btrfs_ino(dir);
4053 
4054 	path = btrfs_alloc_path();
4055 	if (!path) {
4056 		ret = -ENOMEM;
4057 		goto out;
4058 	}
4059 
4060 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4061 	if (IS_ERR_OR_NULL(di)) {
4062 		ret = di ? PTR_ERR(di) : -ENOENT;
4063 		goto err;
4064 	}
4065 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4066 	if (ret)
4067 		goto err;
4068 	btrfs_release_path(path);
4069 
4070 	/*
4071 	 * If we don't have dir index, we have to get it by looking up
4072 	 * the inode ref, since we get the inode ref, remove it directly,
4073 	 * it is unnecessary to do delayed deletion.
4074 	 *
4075 	 * But if we have dir index, needn't search inode ref to get it.
4076 	 * Since the inode ref is close to the inode item, it is better
4077 	 * that we delay to delete it, and just do this deletion when
4078 	 * we update the inode item.
4079 	 */
4080 	if (inode->dir_index) {
4081 		ret = btrfs_delayed_delete_inode_ref(inode);
4082 		if (!ret) {
4083 			index = inode->dir_index;
4084 			goto skip_backref;
4085 		}
4086 	}
4087 
4088 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4089 	if (ret) {
4090 		btrfs_info(fs_info,
4091 			"failed to delete reference to %.*s, inode %llu parent %llu",
4092 			name->len, name->name, ino, dir_ino);
4093 		btrfs_abort_transaction(trans, ret);
4094 		goto err;
4095 	}
4096 skip_backref:
4097 	if (rename_ctx)
4098 		rename_ctx->index = index;
4099 
4100 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4101 	if (ret) {
4102 		btrfs_abort_transaction(trans, ret);
4103 		goto err;
4104 	}
4105 
4106 	/*
4107 	 * If we are in a rename context, we don't need to update anything in the
4108 	 * log. That will be done later during the rename by btrfs_log_new_name().
4109 	 * Besides that, doing it here would only cause extra unnecessary btree
4110 	 * operations on the log tree, increasing latency for applications.
4111 	 */
4112 	if (!rename_ctx) {
4113 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4114 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4115 	}
4116 
4117 	/*
4118 	 * If we have a pending delayed iput we could end up with the final iput
4119 	 * being run in btrfs-cleaner context.  If we have enough of these built
4120 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4121 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4122 	 * the inode we can run the delayed iput here without any issues as the
4123 	 * final iput won't be done until after we drop the ref we're currently
4124 	 * holding.
4125 	 */
4126 	btrfs_run_delayed_iput(fs_info, inode);
4127 err:
4128 	btrfs_free_path(path);
4129 	if (ret)
4130 		goto out;
4131 
4132 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4133 	inode_inc_iversion(&inode->vfs_inode);
4134 	inode_inc_iversion(&dir->vfs_inode);
4135 	inode_set_ctime_current(&inode->vfs_inode);
4136 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4137 	ret = btrfs_update_inode(trans, root, dir);
4138 out:
4139 	return ret;
4140 }
4141 
4142 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4143 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4144 		       const struct fscrypt_str *name)
4145 {
4146 	int ret;
4147 
4148 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4149 	if (!ret) {
4150 		drop_nlink(&inode->vfs_inode);
4151 		ret = btrfs_update_inode(trans, inode->root, inode);
4152 	}
4153 	return ret;
4154 }
4155 
4156 /*
4157  * helper to start transaction for unlink and rmdir.
4158  *
4159  * unlink and rmdir are special in btrfs, they do not always free space, so
4160  * if we cannot make our reservations the normal way try and see if there is
4161  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4162  * allow the unlink to occur.
4163  */
4164 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4165 {
4166 	struct btrfs_root *root = dir->root;
4167 
4168 	return btrfs_start_transaction_fallback_global_rsv(root,
4169 						   BTRFS_UNLINK_METADATA_UNITS);
4170 }
4171 
4172 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4173 {
4174 	struct btrfs_trans_handle *trans;
4175 	struct inode *inode = d_inode(dentry);
4176 	int ret;
4177 	struct fscrypt_name fname;
4178 
4179 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4180 	if (ret)
4181 		return ret;
4182 
4183 	/* This needs to handle no-key deletions later on */
4184 
4185 	trans = __unlink_start_trans(BTRFS_I(dir));
4186 	if (IS_ERR(trans)) {
4187 		ret = PTR_ERR(trans);
4188 		goto fscrypt_free;
4189 	}
4190 
4191 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4192 				false);
4193 
4194 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4195 				 &fname.disk_name);
4196 	if (ret)
4197 		goto end_trans;
4198 
4199 	if (inode->i_nlink == 0) {
4200 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4201 		if (ret)
4202 			goto end_trans;
4203 	}
4204 
4205 end_trans:
4206 	btrfs_end_transaction(trans);
4207 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4208 fscrypt_free:
4209 	fscrypt_free_filename(&fname);
4210 	return ret;
4211 }
4212 
4213 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4214 			       struct btrfs_inode *dir, struct dentry *dentry)
4215 {
4216 	struct btrfs_root *root = dir->root;
4217 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4218 	struct btrfs_path *path;
4219 	struct extent_buffer *leaf;
4220 	struct btrfs_dir_item *di;
4221 	struct btrfs_key key;
4222 	u64 index;
4223 	int ret;
4224 	u64 objectid;
4225 	u64 dir_ino = btrfs_ino(dir);
4226 	struct fscrypt_name fname;
4227 
4228 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4229 	if (ret)
4230 		return ret;
4231 
4232 	/* This needs to handle no-key deletions later on */
4233 
4234 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4235 		objectid = inode->root->root_key.objectid;
4236 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4237 		objectid = inode->location.objectid;
4238 	} else {
4239 		WARN_ON(1);
4240 		fscrypt_free_filename(&fname);
4241 		return -EINVAL;
4242 	}
4243 
4244 	path = btrfs_alloc_path();
4245 	if (!path) {
4246 		ret = -ENOMEM;
4247 		goto out;
4248 	}
4249 
4250 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4251 				   &fname.disk_name, -1);
4252 	if (IS_ERR_OR_NULL(di)) {
4253 		ret = di ? PTR_ERR(di) : -ENOENT;
4254 		goto out;
4255 	}
4256 
4257 	leaf = path->nodes[0];
4258 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4259 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4260 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4261 	if (ret) {
4262 		btrfs_abort_transaction(trans, ret);
4263 		goto out;
4264 	}
4265 	btrfs_release_path(path);
4266 
4267 	/*
4268 	 * This is a placeholder inode for a subvolume we didn't have a
4269 	 * reference to at the time of the snapshot creation.  In the meantime
4270 	 * we could have renamed the real subvol link into our snapshot, so
4271 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4272 	 * Instead simply lookup the dir_index_item for this entry so we can
4273 	 * remove it.  Otherwise we know we have a ref to the root and we can
4274 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4275 	 */
4276 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4277 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4278 		if (IS_ERR_OR_NULL(di)) {
4279 			if (!di)
4280 				ret = -ENOENT;
4281 			else
4282 				ret = PTR_ERR(di);
4283 			btrfs_abort_transaction(trans, ret);
4284 			goto out;
4285 		}
4286 
4287 		leaf = path->nodes[0];
4288 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4289 		index = key.offset;
4290 		btrfs_release_path(path);
4291 	} else {
4292 		ret = btrfs_del_root_ref(trans, objectid,
4293 					 root->root_key.objectid, dir_ino,
4294 					 &index, &fname.disk_name);
4295 		if (ret) {
4296 			btrfs_abort_transaction(trans, ret);
4297 			goto out;
4298 		}
4299 	}
4300 
4301 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4302 	if (ret) {
4303 		btrfs_abort_transaction(trans, ret);
4304 		goto out;
4305 	}
4306 
4307 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4308 	inode_inc_iversion(&dir->vfs_inode);
4309 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4310 	ret = btrfs_update_inode_fallback(trans, root, dir);
4311 	if (ret)
4312 		btrfs_abort_transaction(trans, ret);
4313 out:
4314 	btrfs_free_path(path);
4315 	fscrypt_free_filename(&fname);
4316 	return ret;
4317 }
4318 
4319 /*
4320  * Helper to check if the subvolume references other subvolumes or if it's
4321  * default.
4322  */
4323 static noinline int may_destroy_subvol(struct btrfs_root *root)
4324 {
4325 	struct btrfs_fs_info *fs_info = root->fs_info;
4326 	struct btrfs_path *path;
4327 	struct btrfs_dir_item *di;
4328 	struct btrfs_key key;
4329 	struct fscrypt_str name = FSTR_INIT("default", 7);
4330 	u64 dir_id;
4331 	int ret;
4332 
4333 	path = btrfs_alloc_path();
4334 	if (!path)
4335 		return -ENOMEM;
4336 
4337 	/* Make sure this root isn't set as the default subvol */
4338 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4339 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4340 				   dir_id, &name, 0);
4341 	if (di && !IS_ERR(di)) {
4342 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4343 		if (key.objectid == root->root_key.objectid) {
4344 			ret = -EPERM;
4345 			btrfs_err(fs_info,
4346 				  "deleting default subvolume %llu is not allowed",
4347 				  key.objectid);
4348 			goto out;
4349 		}
4350 		btrfs_release_path(path);
4351 	}
4352 
4353 	key.objectid = root->root_key.objectid;
4354 	key.type = BTRFS_ROOT_REF_KEY;
4355 	key.offset = (u64)-1;
4356 
4357 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4358 	if (ret < 0)
4359 		goto out;
4360 	BUG_ON(ret == 0);
4361 
4362 	ret = 0;
4363 	if (path->slots[0] > 0) {
4364 		path->slots[0]--;
4365 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4366 		if (key.objectid == root->root_key.objectid &&
4367 		    key.type == BTRFS_ROOT_REF_KEY)
4368 			ret = -ENOTEMPTY;
4369 	}
4370 out:
4371 	btrfs_free_path(path);
4372 	return ret;
4373 }
4374 
4375 /* Delete all dentries for inodes belonging to the root */
4376 static void btrfs_prune_dentries(struct btrfs_root *root)
4377 {
4378 	struct btrfs_fs_info *fs_info = root->fs_info;
4379 	struct rb_node *node;
4380 	struct rb_node *prev;
4381 	struct btrfs_inode *entry;
4382 	struct inode *inode;
4383 	u64 objectid = 0;
4384 
4385 	if (!BTRFS_FS_ERROR(fs_info))
4386 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4387 
4388 	spin_lock(&root->inode_lock);
4389 again:
4390 	node = root->inode_tree.rb_node;
4391 	prev = NULL;
4392 	while (node) {
4393 		prev = node;
4394 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4395 
4396 		if (objectid < btrfs_ino(entry))
4397 			node = node->rb_left;
4398 		else if (objectid > btrfs_ino(entry))
4399 			node = node->rb_right;
4400 		else
4401 			break;
4402 	}
4403 	if (!node) {
4404 		while (prev) {
4405 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4406 			if (objectid <= btrfs_ino(entry)) {
4407 				node = prev;
4408 				break;
4409 			}
4410 			prev = rb_next(prev);
4411 		}
4412 	}
4413 	while (node) {
4414 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4415 		objectid = btrfs_ino(entry) + 1;
4416 		inode = igrab(&entry->vfs_inode);
4417 		if (inode) {
4418 			spin_unlock(&root->inode_lock);
4419 			if (atomic_read(&inode->i_count) > 1)
4420 				d_prune_aliases(inode);
4421 			/*
4422 			 * btrfs_drop_inode will have it removed from the inode
4423 			 * cache when its usage count hits zero.
4424 			 */
4425 			iput(inode);
4426 			cond_resched();
4427 			spin_lock(&root->inode_lock);
4428 			goto again;
4429 		}
4430 
4431 		if (cond_resched_lock(&root->inode_lock))
4432 			goto again;
4433 
4434 		node = rb_next(node);
4435 	}
4436 	spin_unlock(&root->inode_lock);
4437 }
4438 
4439 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4440 {
4441 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4442 	struct btrfs_root *root = dir->root;
4443 	struct inode *inode = d_inode(dentry);
4444 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4445 	struct btrfs_trans_handle *trans;
4446 	struct btrfs_block_rsv block_rsv;
4447 	u64 root_flags;
4448 	int ret;
4449 
4450 	/*
4451 	 * Don't allow to delete a subvolume with send in progress. This is
4452 	 * inside the inode lock so the error handling that has to drop the bit
4453 	 * again is not run concurrently.
4454 	 */
4455 	spin_lock(&dest->root_item_lock);
4456 	if (dest->send_in_progress) {
4457 		spin_unlock(&dest->root_item_lock);
4458 		btrfs_warn(fs_info,
4459 			   "attempt to delete subvolume %llu during send",
4460 			   dest->root_key.objectid);
4461 		return -EPERM;
4462 	}
4463 	if (atomic_read(&dest->nr_swapfiles)) {
4464 		spin_unlock(&dest->root_item_lock);
4465 		btrfs_warn(fs_info,
4466 			   "attempt to delete subvolume %llu with active swapfile",
4467 			   root->root_key.objectid);
4468 		return -EPERM;
4469 	}
4470 	root_flags = btrfs_root_flags(&dest->root_item);
4471 	btrfs_set_root_flags(&dest->root_item,
4472 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4473 	spin_unlock(&dest->root_item_lock);
4474 
4475 	down_write(&fs_info->subvol_sem);
4476 
4477 	ret = may_destroy_subvol(dest);
4478 	if (ret)
4479 		goto out_up_write;
4480 
4481 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4482 	/*
4483 	 * One for dir inode,
4484 	 * two for dir entries,
4485 	 * two for root ref/backref.
4486 	 */
4487 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4488 	if (ret)
4489 		goto out_up_write;
4490 
4491 	trans = btrfs_start_transaction(root, 0);
4492 	if (IS_ERR(trans)) {
4493 		ret = PTR_ERR(trans);
4494 		goto out_release;
4495 	}
4496 	trans->block_rsv = &block_rsv;
4497 	trans->bytes_reserved = block_rsv.size;
4498 
4499 	btrfs_record_snapshot_destroy(trans, dir);
4500 
4501 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4502 	if (ret) {
4503 		btrfs_abort_transaction(trans, ret);
4504 		goto out_end_trans;
4505 	}
4506 
4507 	ret = btrfs_record_root_in_trans(trans, dest);
4508 	if (ret) {
4509 		btrfs_abort_transaction(trans, ret);
4510 		goto out_end_trans;
4511 	}
4512 
4513 	memset(&dest->root_item.drop_progress, 0,
4514 		sizeof(dest->root_item.drop_progress));
4515 	btrfs_set_root_drop_level(&dest->root_item, 0);
4516 	btrfs_set_root_refs(&dest->root_item, 0);
4517 
4518 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4519 		ret = btrfs_insert_orphan_item(trans,
4520 					fs_info->tree_root,
4521 					dest->root_key.objectid);
4522 		if (ret) {
4523 			btrfs_abort_transaction(trans, ret);
4524 			goto out_end_trans;
4525 		}
4526 	}
4527 
4528 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4529 				  BTRFS_UUID_KEY_SUBVOL,
4530 				  dest->root_key.objectid);
4531 	if (ret && ret != -ENOENT) {
4532 		btrfs_abort_transaction(trans, ret);
4533 		goto out_end_trans;
4534 	}
4535 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4536 		ret = btrfs_uuid_tree_remove(trans,
4537 					  dest->root_item.received_uuid,
4538 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4539 					  dest->root_key.objectid);
4540 		if (ret && ret != -ENOENT) {
4541 			btrfs_abort_transaction(trans, ret);
4542 			goto out_end_trans;
4543 		}
4544 	}
4545 
4546 	free_anon_bdev(dest->anon_dev);
4547 	dest->anon_dev = 0;
4548 out_end_trans:
4549 	trans->block_rsv = NULL;
4550 	trans->bytes_reserved = 0;
4551 	ret = btrfs_end_transaction(trans);
4552 	inode->i_flags |= S_DEAD;
4553 out_release:
4554 	btrfs_subvolume_release_metadata(root, &block_rsv);
4555 out_up_write:
4556 	up_write(&fs_info->subvol_sem);
4557 	if (ret) {
4558 		spin_lock(&dest->root_item_lock);
4559 		root_flags = btrfs_root_flags(&dest->root_item);
4560 		btrfs_set_root_flags(&dest->root_item,
4561 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4562 		spin_unlock(&dest->root_item_lock);
4563 	} else {
4564 		d_invalidate(dentry);
4565 		btrfs_prune_dentries(dest);
4566 		ASSERT(dest->send_in_progress == 0);
4567 	}
4568 
4569 	return ret;
4570 }
4571 
4572 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4573 {
4574 	struct inode *inode = d_inode(dentry);
4575 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4576 	int err = 0;
4577 	struct btrfs_trans_handle *trans;
4578 	u64 last_unlink_trans;
4579 	struct fscrypt_name fname;
4580 
4581 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4582 		return -ENOTEMPTY;
4583 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4584 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4585 			btrfs_err(fs_info,
4586 			"extent tree v2 doesn't support snapshot deletion yet");
4587 			return -EOPNOTSUPP;
4588 		}
4589 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4590 	}
4591 
4592 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4593 	if (err)
4594 		return err;
4595 
4596 	/* This needs to handle no-key deletions later on */
4597 
4598 	trans = __unlink_start_trans(BTRFS_I(dir));
4599 	if (IS_ERR(trans)) {
4600 		err = PTR_ERR(trans);
4601 		goto out_notrans;
4602 	}
4603 
4604 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4605 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4606 		goto out;
4607 	}
4608 
4609 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4610 	if (err)
4611 		goto out;
4612 
4613 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4614 
4615 	/* now the directory is empty */
4616 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4617 				 &fname.disk_name);
4618 	if (!err) {
4619 		btrfs_i_size_write(BTRFS_I(inode), 0);
4620 		/*
4621 		 * Propagate the last_unlink_trans value of the deleted dir to
4622 		 * its parent directory. This is to prevent an unrecoverable
4623 		 * log tree in the case we do something like this:
4624 		 * 1) create dir foo
4625 		 * 2) create snapshot under dir foo
4626 		 * 3) delete the snapshot
4627 		 * 4) rmdir foo
4628 		 * 5) mkdir foo
4629 		 * 6) fsync foo or some file inside foo
4630 		 */
4631 		if (last_unlink_trans >= trans->transid)
4632 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4633 	}
4634 out:
4635 	btrfs_end_transaction(trans);
4636 out_notrans:
4637 	btrfs_btree_balance_dirty(fs_info);
4638 	fscrypt_free_filename(&fname);
4639 
4640 	return err;
4641 }
4642 
4643 /*
4644  * btrfs_truncate_block - read, zero a chunk and write a block
4645  * @inode - inode that we're zeroing
4646  * @from - the offset to start zeroing
4647  * @len - the length to zero, 0 to zero the entire range respective to the
4648  *	offset
4649  * @front - zero up to the offset instead of from the offset on
4650  *
4651  * This will find the block for the "from" offset and cow the block and zero the
4652  * part we want to zero.  This is used with truncate and hole punching.
4653  */
4654 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4655 			 int front)
4656 {
4657 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4658 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4659 	struct extent_io_tree *io_tree = &inode->io_tree;
4660 	struct btrfs_ordered_extent *ordered;
4661 	struct extent_state *cached_state = NULL;
4662 	struct extent_changeset *data_reserved = NULL;
4663 	bool only_release_metadata = false;
4664 	u32 blocksize = fs_info->sectorsize;
4665 	pgoff_t index = from >> PAGE_SHIFT;
4666 	unsigned offset = from & (blocksize - 1);
4667 	struct page *page;
4668 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4669 	size_t write_bytes = blocksize;
4670 	int ret = 0;
4671 	u64 block_start;
4672 	u64 block_end;
4673 
4674 	if (IS_ALIGNED(offset, blocksize) &&
4675 	    (!len || IS_ALIGNED(len, blocksize)))
4676 		goto out;
4677 
4678 	block_start = round_down(from, blocksize);
4679 	block_end = block_start + blocksize - 1;
4680 
4681 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4682 					  blocksize, false);
4683 	if (ret < 0) {
4684 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4685 			/* For nocow case, no need to reserve data space */
4686 			only_release_metadata = true;
4687 		} else {
4688 			goto out;
4689 		}
4690 	}
4691 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4692 	if (ret < 0) {
4693 		if (!only_release_metadata)
4694 			btrfs_free_reserved_data_space(inode, data_reserved,
4695 						       block_start, blocksize);
4696 		goto out;
4697 	}
4698 again:
4699 	page = find_or_create_page(mapping, index, mask);
4700 	if (!page) {
4701 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4702 					     blocksize, true);
4703 		btrfs_delalloc_release_extents(inode, blocksize);
4704 		ret = -ENOMEM;
4705 		goto out;
4706 	}
4707 
4708 	if (!PageUptodate(page)) {
4709 		ret = btrfs_read_folio(NULL, page_folio(page));
4710 		lock_page(page);
4711 		if (page->mapping != mapping) {
4712 			unlock_page(page);
4713 			put_page(page);
4714 			goto again;
4715 		}
4716 		if (!PageUptodate(page)) {
4717 			ret = -EIO;
4718 			goto out_unlock;
4719 		}
4720 	}
4721 
4722 	/*
4723 	 * We unlock the page after the io is completed and then re-lock it
4724 	 * above.  release_folio() could have come in between that and cleared
4725 	 * PagePrivate(), but left the page in the mapping.  Set the page mapped
4726 	 * here to make sure it's properly set for the subpage stuff.
4727 	 */
4728 	ret = set_page_extent_mapped(page);
4729 	if (ret < 0)
4730 		goto out_unlock;
4731 
4732 	wait_on_page_writeback(page);
4733 
4734 	lock_extent(io_tree, block_start, block_end, &cached_state);
4735 
4736 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4737 	if (ordered) {
4738 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4739 		unlock_page(page);
4740 		put_page(page);
4741 		btrfs_start_ordered_extent(ordered);
4742 		btrfs_put_ordered_extent(ordered);
4743 		goto again;
4744 	}
4745 
4746 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4747 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4748 			 &cached_state);
4749 
4750 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4751 					&cached_state);
4752 	if (ret) {
4753 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4754 		goto out_unlock;
4755 	}
4756 
4757 	if (offset != blocksize) {
4758 		if (!len)
4759 			len = blocksize - offset;
4760 		if (front)
4761 			memzero_page(page, (block_start - page_offset(page)),
4762 				     offset);
4763 		else
4764 			memzero_page(page, (block_start - page_offset(page)) + offset,
4765 				     len);
4766 	}
4767 	btrfs_page_clear_checked(fs_info, page, block_start,
4768 				 block_end + 1 - block_start);
4769 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4770 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4771 
4772 	if (only_release_metadata)
4773 		set_extent_bit(&inode->io_tree, block_start, block_end,
4774 			       EXTENT_NORESERVE, NULL);
4775 
4776 out_unlock:
4777 	if (ret) {
4778 		if (only_release_metadata)
4779 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4780 		else
4781 			btrfs_delalloc_release_space(inode, data_reserved,
4782 					block_start, blocksize, true);
4783 	}
4784 	btrfs_delalloc_release_extents(inode, blocksize);
4785 	unlock_page(page);
4786 	put_page(page);
4787 out:
4788 	if (only_release_metadata)
4789 		btrfs_check_nocow_unlock(inode);
4790 	extent_changeset_free(data_reserved);
4791 	return ret;
4792 }
4793 
4794 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4795 			     u64 offset, u64 len)
4796 {
4797 	struct btrfs_fs_info *fs_info = root->fs_info;
4798 	struct btrfs_trans_handle *trans;
4799 	struct btrfs_drop_extents_args drop_args = { 0 };
4800 	int ret;
4801 
4802 	/*
4803 	 * If NO_HOLES is enabled, we don't need to do anything.
4804 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4805 	 * or btrfs_update_inode() will be called, which guarantee that the next
4806 	 * fsync will know this inode was changed and needs to be logged.
4807 	 */
4808 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4809 		return 0;
4810 
4811 	/*
4812 	 * 1 - for the one we're dropping
4813 	 * 1 - for the one we're adding
4814 	 * 1 - for updating the inode.
4815 	 */
4816 	trans = btrfs_start_transaction(root, 3);
4817 	if (IS_ERR(trans))
4818 		return PTR_ERR(trans);
4819 
4820 	drop_args.start = offset;
4821 	drop_args.end = offset + len;
4822 	drop_args.drop_cache = true;
4823 
4824 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4825 	if (ret) {
4826 		btrfs_abort_transaction(trans, ret);
4827 		btrfs_end_transaction(trans);
4828 		return ret;
4829 	}
4830 
4831 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4832 	if (ret) {
4833 		btrfs_abort_transaction(trans, ret);
4834 	} else {
4835 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4836 		btrfs_update_inode(trans, root, inode);
4837 	}
4838 	btrfs_end_transaction(trans);
4839 	return ret;
4840 }
4841 
4842 /*
4843  * This function puts in dummy file extents for the area we're creating a hole
4844  * for.  So if we are truncating this file to a larger size we need to insert
4845  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4846  * the range between oldsize and size
4847  */
4848 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4849 {
4850 	struct btrfs_root *root = inode->root;
4851 	struct btrfs_fs_info *fs_info = root->fs_info;
4852 	struct extent_io_tree *io_tree = &inode->io_tree;
4853 	struct extent_map *em = NULL;
4854 	struct extent_state *cached_state = NULL;
4855 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4856 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4857 	u64 last_byte;
4858 	u64 cur_offset;
4859 	u64 hole_size;
4860 	int err = 0;
4861 
4862 	/*
4863 	 * If our size started in the middle of a block we need to zero out the
4864 	 * rest of the block before we expand the i_size, otherwise we could
4865 	 * expose stale data.
4866 	 */
4867 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4868 	if (err)
4869 		return err;
4870 
4871 	if (size <= hole_start)
4872 		return 0;
4873 
4874 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4875 					   &cached_state);
4876 	cur_offset = hole_start;
4877 	while (1) {
4878 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4879 				      block_end - cur_offset);
4880 		if (IS_ERR(em)) {
4881 			err = PTR_ERR(em);
4882 			em = NULL;
4883 			break;
4884 		}
4885 		last_byte = min(extent_map_end(em), block_end);
4886 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4887 		hole_size = last_byte - cur_offset;
4888 
4889 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4890 			struct extent_map *hole_em;
4891 
4892 			err = maybe_insert_hole(root, inode, cur_offset,
4893 						hole_size);
4894 			if (err)
4895 				break;
4896 
4897 			err = btrfs_inode_set_file_extent_range(inode,
4898 							cur_offset, hole_size);
4899 			if (err)
4900 				break;
4901 
4902 			hole_em = alloc_extent_map();
4903 			if (!hole_em) {
4904 				btrfs_drop_extent_map_range(inode, cur_offset,
4905 						    cur_offset + hole_size - 1,
4906 						    false);
4907 				btrfs_set_inode_full_sync(inode);
4908 				goto next;
4909 			}
4910 			hole_em->start = cur_offset;
4911 			hole_em->len = hole_size;
4912 			hole_em->orig_start = cur_offset;
4913 
4914 			hole_em->block_start = EXTENT_MAP_HOLE;
4915 			hole_em->block_len = 0;
4916 			hole_em->orig_block_len = 0;
4917 			hole_em->ram_bytes = hole_size;
4918 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4919 			hole_em->generation = fs_info->generation;
4920 
4921 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
4922 			free_extent_map(hole_em);
4923 		} else {
4924 			err = btrfs_inode_set_file_extent_range(inode,
4925 							cur_offset, hole_size);
4926 			if (err)
4927 				break;
4928 		}
4929 next:
4930 		free_extent_map(em);
4931 		em = NULL;
4932 		cur_offset = last_byte;
4933 		if (cur_offset >= block_end)
4934 			break;
4935 	}
4936 	free_extent_map(em);
4937 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4938 	return err;
4939 }
4940 
4941 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4942 {
4943 	struct btrfs_root *root = BTRFS_I(inode)->root;
4944 	struct btrfs_trans_handle *trans;
4945 	loff_t oldsize = i_size_read(inode);
4946 	loff_t newsize = attr->ia_size;
4947 	int mask = attr->ia_valid;
4948 	int ret;
4949 
4950 	/*
4951 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4952 	 * special case where we need to update the times despite not having
4953 	 * these flags set.  For all other operations the VFS set these flags
4954 	 * explicitly if it wants a timestamp update.
4955 	 */
4956 	if (newsize != oldsize) {
4957 		inode_inc_iversion(inode);
4958 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4959 			inode->i_mtime = inode_set_ctime_current(inode);
4960 		}
4961 	}
4962 
4963 	if (newsize > oldsize) {
4964 		/*
4965 		 * Don't do an expanding truncate while snapshotting is ongoing.
4966 		 * This is to ensure the snapshot captures a fully consistent
4967 		 * state of this file - if the snapshot captures this expanding
4968 		 * truncation, it must capture all writes that happened before
4969 		 * this truncation.
4970 		 */
4971 		btrfs_drew_write_lock(&root->snapshot_lock);
4972 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
4973 		if (ret) {
4974 			btrfs_drew_write_unlock(&root->snapshot_lock);
4975 			return ret;
4976 		}
4977 
4978 		trans = btrfs_start_transaction(root, 1);
4979 		if (IS_ERR(trans)) {
4980 			btrfs_drew_write_unlock(&root->snapshot_lock);
4981 			return PTR_ERR(trans);
4982 		}
4983 
4984 		i_size_write(inode, newsize);
4985 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
4986 		pagecache_isize_extended(inode, oldsize, newsize);
4987 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
4988 		btrfs_drew_write_unlock(&root->snapshot_lock);
4989 		btrfs_end_transaction(trans);
4990 	} else {
4991 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4992 
4993 		if (btrfs_is_zoned(fs_info)) {
4994 			ret = btrfs_wait_ordered_range(inode,
4995 					ALIGN(newsize, fs_info->sectorsize),
4996 					(u64)-1);
4997 			if (ret)
4998 				return ret;
4999 		}
5000 
5001 		/*
5002 		 * We're truncating a file that used to have good data down to
5003 		 * zero. Make sure any new writes to the file get on disk
5004 		 * on close.
5005 		 */
5006 		if (newsize == 0)
5007 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5008 				&BTRFS_I(inode)->runtime_flags);
5009 
5010 		truncate_setsize(inode, newsize);
5011 
5012 		inode_dio_wait(inode);
5013 
5014 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5015 		if (ret && inode->i_nlink) {
5016 			int err;
5017 
5018 			/*
5019 			 * Truncate failed, so fix up the in-memory size. We
5020 			 * adjusted disk_i_size down as we removed extents, so
5021 			 * wait for disk_i_size to be stable and then update the
5022 			 * in-memory size to match.
5023 			 */
5024 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5025 			if (err)
5026 				return err;
5027 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5028 		}
5029 	}
5030 
5031 	return ret;
5032 }
5033 
5034 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5035 			 struct iattr *attr)
5036 {
5037 	struct inode *inode = d_inode(dentry);
5038 	struct btrfs_root *root = BTRFS_I(inode)->root;
5039 	int err;
5040 
5041 	if (btrfs_root_readonly(root))
5042 		return -EROFS;
5043 
5044 	err = setattr_prepare(idmap, dentry, attr);
5045 	if (err)
5046 		return err;
5047 
5048 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5049 		err = btrfs_setsize(inode, attr);
5050 		if (err)
5051 			return err;
5052 	}
5053 
5054 	if (attr->ia_valid) {
5055 		setattr_copy(idmap, inode, attr);
5056 		inode_inc_iversion(inode);
5057 		err = btrfs_dirty_inode(BTRFS_I(inode));
5058 
5059 		if (!err && attr->ia_valid & ATTR_MODE)
5060 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5061 	}
5062 
5063 	return err;
5064 }
5065 
5066 /*
5067  * While truncating the inode pages during eviction, we get the VFS
5068  * calling btrfs_invalidate_folio() against each folio of the inode. This
5069  * is slow because the calls to btrfs_invalidate_folio() result in a
5070  * huge amount of calls to lock_extent() and clear_extent_bit(),
5071  * which keep merging and splitting extent_state structures over and over,
5072  * wasting lots of time.
5073  *
5074  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5075  * skip all those expensive operations on a per folio basis and do only
5076  * the ordered io finishing, while we release here the extent_map and
5077  * extent_state structures, without the excessive merging and splitting.
5078  */
5079 static void evict_inode_truncate_pages(struct inode *inode)
5080 {
5081 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5082 	struct rb_node *node;
5083 
5084 	ASSERT(inode->i_state & I_FREEING);
5085 	truncate_inode_pages_final(&inode->i_data);
5086 
5087 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5088 
5089 	/*
5090 	 * Keep looping until we have no more ranges in the io tree.
5091 	 * We can have ongoing bios started by readahead that have
5092 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5093 	 * still in progress (unlocked the pages in the bio but did not yet
5094 	 * unlocked the ranges in the io tree). Therefore this means some
5095 	 * ranges can still be locked and eviction started because before
5096 	 * submitting those bios, which are executed by a separate task (work
5097 	 * queue kthread), inode references (inode->i_count) were not taken
5098 	 * (which would be dropped in the end io callback of each bio).
5099 	 * Therefore here we effectively end up waiting for those bios and
5100 	 * anyone else holding locked ranges without having bumped the inode's
5101 	 * reference count - if we don't do it, when they access the inode's
5102 	 * io_tree to unlock a range it may be too late, leading to an
5103 	 * use-after-free issue.
5104 	 */
5105 	spin_lock(&io_tree->lock);
5106 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5107 		struct extent_state *state;
5108 		struct extent_state *cached_state = NULL;
5109 		u64 start;
5110 		u64 end;
5111 		unsigned state_flags;
5112 
5113 		node = rb_first(&io_tree->state);
5114 		state = rb_entry(node, struct extent_state, rb_node);
5115 		start = state->start;
5116 		end = state->end;
5117 		state_flags = state->state;
5118 		spin_unlock(&io_tree->lock);
5119 
5120 		lock_extent(io_tree, start, end, &cached_state);
5121 
5122 		/*
5123 		 * If still has DELALLOC flag, the extent didn't reach disk,
5124 		 * and its reserved space won't be freed by delayed_ref.
5125 		 * So we need to free its reserved space here.
5126 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5127 		 *
5128 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5129 		 */
5130 		if (state_flags & EXTENT_DELALLOC)
5131 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5132 					       end - start + 1);
5133 
5134 		clear_extent_bit(io_tree, start, end,
5135 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5136 				 &cached_state);
5137 
5138 		cond_resched();
5139 		spin_lock(&io_tree->lock);
5140 	}
5141 	spin_unlock(&io_tree->lock);
5142 }
5143 
5144 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5145 							struct btrfs_block_rsv *rsv)
5146 {
5147 	struct btrfs_fs_info *fs_info = root->fs_info;
5148 	struct btrfs_trans_handle *trans;
5149 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5150 	int ret;
5151 
5152 	/*
5153 	 * Eviction should be taking place at some place safe because of our
5154 	 * delayed iputs.  However the normal flushing code will run delayed
5155 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5156 	 *
5157 	 * We reserve the delayed_refs_extra here again because we can't use
5158 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5159 	 * above.  We reserve our extra bit here because we generate a ton of
5160 	 * delayed refs activity by truncating.
5161 	 *
5162 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5163 	 * if we fail to make this reservation we can re-try without the
5164 	 * delayed_refs_extra so we can make some forward progress.
5165 	 */
5166 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5167 				     BTRFS_RESERVE_FLUSH_EVICT);
5168 	if (ret) {
5169 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5170 					     BTRFS_RESERVE_FLUSH_EVICT);
5171 		if (ret) {
5172 			btrfs_warn(fs_info,
5173 				   "could not allocate space for delete; will truncate on mount");
5174 			return ERR_PTR(-ENOSPC);
5175 		}
5176 		delayed_refs_extra = 0;
5177 	}
5178 
5179 	trans = btrfs_join_transaction(root);
5180 	if (IS_ERR(trans))
5181 		return trans;
5182 
5183 	if (delayed_refs_extra) {
5184 		trans->block_rsv = &fs_info->trans_block_rsv;
5185 		trans->bytes_reserved = delayed_refs_extra;
5186 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5187 					delayed_refs_extra, true);
5188 	}
5189 	return trans;
5190 }
5191 
5192 void btrfs_evict_inode(struct inode *inode)
5193 {
5194 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5195 	struct btrfs_trans_handle *trans;
5196 	struct btrfs_root *root = BTRFS_I(inode)->root;
5197 	struct btrfs_block_rsv *rsv = NULL;
5198 	int ret;
5199 
5200 	trace_btrfs_inode_evict(inode);
5201 
5202 	if (!root) {
5203 		fsverity_cleanup_inode(inode);
5204 		clear_inode(inode);
5205 		return;
5206 	}
5207 
5208 	evict_inode_truncate_pages(inode);
5209 
5210 	if (inode->i_nlink &&
5211 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5212 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5213 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5214 		goto out;
5215 
5216 	if (is_bad_inode(inode))
5217 		goto out;
5218 
5219 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5220 		goto out;
5221 
5222 	if (inode->i_nlink > 0) {
5223 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5224 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5225 		goto out;
5226 	}
5227 
5228 	/*
5229 	 * This makes sure the inode item in tree is uptodate and the space for
5230 	 * the inode update is released.
5231 	 */
5232 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5233 	if (ret)
5234 		goto out;
5235 
5236 	/*
5237 	 * This drops any pending insert or delete operations we have for this
5238 	 * inode.  We could have a delayed dir index deletion queued up, but
5239 	 * we're removing the inode completely so that'll be taken care of in
5240 	 * the truncate.
5241 	 */
5242 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5243 
5244 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5245 	if (!rsv)
5246 		goto out;
5247 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5248 	rsv->failfast = true;
5249 
5250 	btrfs_i_size_write(BTRFS_I(inode), 0);
5251 
5252 	while (1) {
5253 		struct btrfs_truncate_control control = {
5254 			.inode = BTRFS_I(inode),
5255 			.ino = btrfs_ino(BTRFS_I(inode)),
5256 			.new_size = 0,
5257 			.min_type = 0,
5258 		};
5259 
5260 		trans = evict_refill_and_join(root, rsv);
5261 		if (IS_ERR(trans))
5262 			goto out;
5263 
5264 		trans->block_rsv = rsv;
5265 
5266 		ret = btrfs_truncate_inode_items(trans, root, &control);
5267 		trans->block_rsv = &fs_info->trans_block_rsv;
5268 		btrfs_end_transaction(trans);
5269 		/*
5270 		 * We have not added new delayed items for our inode after we
5271 		 * have flushed its delayed items, so no need to throttle on
5272 		 * delayed items. However we have modified extent buffers.
5273 		 */
5274 		btrfs_btree_balance_dirty_nodelay(fs_info);
5275 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5276 			goto out;
5277 		else if (!ret)
5278 			break;
5279 	}
5280 
5281 	/*
5282 	 * Errors here aren't a big deal, it just means we leave orphan items in
5283 	 * the tree. They will be cleaned up on the next mount. If the inode
5284 	 * number gets reused, cleanup deletes the orphan item without doing
5285 	 * anything, and unlink reuses the existing orphan item.
5286 	 *
5287 	 * If it turns out that we are dropping too many of these, we might want
5288 	 * to add a mechanism for retrying these after a commit.
5289 	 */
5290 	trans = evict_refill_and_join(root, rsv);
5291 	if (!IS_ERR(trans)) {
5292 		trans->block_rsv = rsv;
5293 		btrfs_orphan_del(trans, BTRFS_I(inode));
5294 		trans->block_rsv = &fs_info->trans_block_rsv;
5295 		btrfs_end_transaction(trans);
5296 	}
5297 
5298 out:
5299 	btrfs_free_block_rsv(fs_info, rsv);
5300 	/*
5301 	 * If we didn't successfully delete, the orphan item will still be in
5302 	 * the tree and we'll retry on the next mount. Again, we might also want
5303 	 * to retry these periodically in the future.
5304 	 */
5305 	btrfs_remove_delayed_node(BTRFS_I(inode));
5306 	fsverity_cleanup_inode(inode);
5307 	clear_inode(inode);
5308 }
5309 
5310 /*
5311  * Return the key found in the dir entry in the location pointer, fill @type
5312  * with BTRFS_FT_*, and return 0.
5313  *
5314  * If no dir entries were found, returns -ENOENT.
5315  * If found a corrupted location in dir entry, returns -EUCLEAN.
5316  */
5317 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5318 			       struct btrfs_key *location, u8 *type)
5319 {
5320 	struct btrfs_dir_item *di;
5321 	struct btrfs_path *path;
5322 	struct btrfs_root *root = dir->root;
5323 	int ret = 0;
5324 	struct fscrypt_name fname;
5325 
5326 	path = btrfs_alloc_path();
5327 	if (!path)
5328 		return -ENOMEM;
5329 
5330 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5331 	if (ret < 0)
5332 		goto out;
5333 	/*
5334 	 * fscrypt_setup_filename() should never return a positive value, but
5335 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5336 	 */
5337 	ASSERT(ret == 0);
5338 
5339 	/* This needs to handle no-key deletions later on */
5340 
5341 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5342 				   &fname.disk_name, 0);
5343 	if (IS_ERR_OR_NULL(di)) {
5344 		ret = di ? PTR_ERR(di) : -ENOENT;
5345 		goto out;
5346 	}
5347 
5348 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5349 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5350 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5351 		ret = -EUCLEAN;
5352 		btrfs_warn(root->fs_info,
5353 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5354 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5355 			   location->objectid, location->type, location->offset);
5356 	}
5357 	if (!ret)
5358 		*type = btrfs_dir_ftype(path->nodes[0], di);
5359 out:
5360 	fscrypt_free_filename(&fname);
5361 	btrfs_free_path(path);
5362 	return ret;
5363 }
5364 
5365 /*
5366  * when we hit a tree root in a directory, the btrfs part of the inode
5367  * needs to be changed to reflect the root directory of the tree root.  This
5368  * is kind of like crossing a mount point.
5369  */
5370 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5371 				    struct btrfs_inode *dir,
5372 				    struct dentry *dentry,
5373 				    struct btrfs_key *location,
5374 				    struct btrfs_root **sub_root)
5375 {
5376 	struct btrfs_path *path;
5377 	struct btrfs_root *new_root;
5378 	struct btrfs_root_ref *ref;
5379 	struct extent_buffer *leaf;
5380 	struct btrfs_key key;
5381 	int ret;
5382 	int err = 0;
5383 	struct fscrypt_name fname;
5384 
5385 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5386 	if (ret)
5387 		return ret;
5388 
5389 	path = btrfs_alloc_path();
5390 	if (!path) {
5391 		err = -ENOMEM;
5392 		goto out;
5393 	}
5394 
5395 	err = -ENOENT;
5396 	key.objectid = dir->root->root_key.objectid;
5397 	key.type = BTRFS_ROOT_REF_KEY;
5398 	key.offset = location->objectid;
5399 
5400 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5401 	if (ret) {
5402 		if (ret < 0)
5403 			err = ret;
5404 		goto out;
5405 	}
5406 
5407 	leaf = path->nodes[0];
5408 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5409 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5410 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5411 		goto out;
5412 
5413 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5414 				   (unsigned long)(ref + 1), fname.disk_name.len);
5415 	if (ret)
5416 		goto out;
5417 
5418 	btrfs_release_path(path);
5419 
5420 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5421 	if (IS_ERR(new_root)) {
5422 		err = PTR_ERR(new_root);
5423 		goto out;
5424 	}
5425 
5426 	*sub_root = new_root;
5427 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5428 	location->type = BTRFS_INODE_ITEM_KEY;
5429 	location->offset = 0;
5430 	err = 0;
5431 out:
5432 	btrfs_free_path(path);
5433 	fscrypt_free_filename(&fname);
5434 	return err;
5435 }
5436 
5437 static void inode_tree_add(struct btrfs_inode *inode)
5438 {
5439 	struct btrfs_root *root = inode->root;
5440 	struct btrfs_inode *entry;
5441 	struct rb_node **p;
5442 	struct rb_node *parent;
5443 	struct rb_node *new = &inode->rb_node;
5444 	u64 ino = btrfs_ino(inode);
5445 
5446 	if (inode_unhashed(&inode->vfs_inode))
5447 		return;
5448 	parent = NULL;
5449 	spin_lock(&root->inode_lock);
5450 	p = &root->inode_tree.rb_node;
5451 	while (*p) {
5452 		parent = *p;
5453 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5454 
5455 		if (ino < btrfs_ino(entry))
5456 			p = &parent->rb_left;
5457 		else if (ino > btrfs_ino(entry))
5458 			p = &parent->rb_right;
5459 		else {
5460 			WARN_ON(!(entry->vfs_inode.i_state &
5461 				  (I_WILL_FREE | I_FREEING)));
5462 			rb_replace_node(parent, new, &root->inode_tree);
5463 			RB_CLEAR_NODE(parent);
5464 			spin_unlock(&root->inode_lock);
5465 			return;
5466 		}
5467 	}
5468 	rb_link_node(new, parent, p);
5469 	rb_insert_color(new, &root->inode_tree);
5470 	spin_unlock(&root->inode_lock);
5471 }
5472 
5473 static void inode_tree_del(struct btrfs_inode *inode)
5474 {
5475 	struct btrfs_root *root = inode->root;
5476 	int empty = 0;
5477 
5478 	spin_lock(&root->inode_lock);
5479 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5480 		rb_erase(&inode->rb_node, &root->inode_tree);
5481 		RB_CLEAR_NODE(&inode->rb_node);
5482 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5483 	}
5484 	spin_unlock(&root->inode_lock);
5485 
5486 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5487 		spin_lock(&root->inode_lock);
5488 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5489 		spin_unlock(&root->inode_lock);
5490 		if (empty)
5491 			btrfs_add_dead_root(root);
5492 	}
5493 }
5494 
5495 
5496 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5497 {
5498 	struct btrfs_iget_args *args = p;
5499 
5500 	inode->i_ino = args->ino;
5501 	BTRFS_I(inode)->location.objectid = args->ino;
5502 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5503 	BTRFS_I(inode)->location.offset = 0;
5504 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5505 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5506 
5507 	if (args->root && args->root == args->root->fs_info->tree_root &&
5508 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5509 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5510 			&BTRFS_I(inode)->runtime_flags);
5511 	return 0;
5512 }
5513 
5514 static int btrfs_find_actor(struct inode *inode, void *opaque)
5515 {
5516 	struct btrfs_iget_args *args = opaque;
5517 
5518 	return args->ino == BTRFS_I(inode)->location.objectid &&
5519 		args->root == BTRFS_I(inode)->root;
5520 }
5521 
5522 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5523 				       struct btrfs_root *root)
5524 {
5525 	struct inode *inode;
5526 	struct btrfs_iget_args args;
5527 	unsigned long hashval = btrfs_inode_hash(ino, root);
5528 
5529 	args.ino = ino;
5530 	args.root = root;
5531 
5532 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5533 			     btrfs_init_locked_inode,
5534 			     (void *)&args);
5535 	return inode;
5536 }
5537 
5538 /*
5539  * Get an inode object given its inode number and corresponding root.
5540  * Path can be preallocated to prevent recursing back to iget through
5541  * allocator. NULL is also valid but may require an additional allocation
5542  * later.
5543  */
5544 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5545 			      struct btrfs_root *root, struct btrfs_path *path)
5546 {
5547 	struct inode *inode;
5548 
5549 	inode = btrfs_iget_locked(s, ino, root);
5550 	if (!inode)
5551 		return ERR_PTR(-ENOMEM);
5552 
5553 	if (inode->i_state & I_NEW) {
5554 		int ret;
5555 
5556 		ret = btrfs_read_locked_inode(inode, path);
5557 		if (!ret) {
5558 			inode_tree_add(BTRFS_I(inode));
5559 			unlock_new_inode(inode);
5560 		} else {
5561 			iget_failed(inode);
5562 			/*
5563 			 * ret > 0 can come from btrfs_search_slot called by
5564 			 * btrfs_read_locked_inode, this means the inode item
5565 			 * was not found.
5566 			 */
5567 			if (ret > 0)
5568 				ret = -ENOENT;
5569 			inode = ERR_PTR(ret);
5570 		}
5571 	}
5572 
5573 	return inode;
5574 }
5575 
5576 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5577 {
5578 	return btrfs_iget_path(s, ino, root, NULL);
5579 }
5580 
5581 static struct inode *new_simple_dir(struct inode *dir,
5582 				    struct btrfs_key *key,
5583 				    struct btrfs_root *root)
5584 {
5585 	struct inode *inode = new_inode(dir->i_sb);
5586 
5587 	if (!inode)
5588 		return ERR_PTR(-ENOMEM);
5589 
5590 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5591 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5592 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5593 
5594 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5595 	/*
5596 	 * We only need lookup, the rest is read-only and there's no inode
5597 	 * associated with the dentry
5598 	 */
5599 	inode->i_op = &simple_dir_inode_operations;
5600 	inode->i_opflags &= ~IOP_XATTR;
5601 	inode->i_fop = &simple_dir_operations;
5602 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5603 	inode->i_mtime = inode_set_ctime_current(inode);
5604 	inode->i_atime = dir->i_atime;
5605 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5606 	inode->i_uid = dir->i_uid;
5607 	inode->i_gid = dir->i_gid;
5608 
5609 	return inode;
5610 }
5611 
5612 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5613 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5614 static_assert(BTRFS_FT_DIR == FT_DIR);
5615 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5616 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5617 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5618 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5619 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5620 
5621 static inline u8 btrfs_inode_type(struct inode *inode)
5622 {
5623 	return fs_umode_to_ftype(inode->i_mode);
5624 }
5625 
5626 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5627 {
5628 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5629 	struct inode *inode;
5630 	struct btrfs_root *root = BTRFS_I(dir)->root;
5631 	struct btrfs_root *sub_root = root;
5632 	struct btrfs_key location;
5633 	u8 di_type = 0;
5634 	int ret = 0;
5635 
5636 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5637 		return ERR_PTR(-ENAMETOOLONG);
5638 
5639 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5640 	if (ret < 0)
5641 		return ERR_PTR(ret);
5642 
5643 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5644 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5645 		if (IS_ERR(inode))
5646 			return inode;
5647 
5648 		/* Do extra check against inode mode with di_type */
5649 		if (btrfs_inode_type(inode) != di_type) {
5650 			btrfs_crit(fs_info,
5651 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5652 				  inode->i_mode, btrfs_inode_type(inode),
5653 				  di_type);
5654 			iput(inode);
5655 			return ERR_PTR(-EUCLEAN);
5656 		}
5657 		return inode;
5658 	}
5659 
5660 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5661 				       &location, &sub_root);
5662 	if (ret < 0) {
5663 		if (ret != -ENOENT)
5664 			inode = ERR_PTR(ret);
5665 		else
5666 			inode = new_simple_dir(dir, &location, root);
5667 	} else {
5668 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5669 		btrfs_put_root(sub_root);
5670 
5671 		if (IS_ERR(inode))
5672 			return inode;
5673 
5674 		down_read(&fs_info->cleanup_work_sem);
5675 		if (!sb_rdonly(inode->i_sb))
5676 			ret = btrfs_orphan_cleanup(sub_root);
5677 		up_read(&fs_info->cleanup_work_sem);
5678 		if (ret) {
5679 			iput(inode);
5680 			inode = ERR_PTR(ret);
5681 		}
5682 	}
5683 
5684 	return inode;
5685 }
5686 
5687 static int btrfs_dentry_delete(const struct dentry *dentry)
5688 {
5689 	struct btrfs_root *root;
5690 	struct inode *inode = d_inode(dentry);
5691 
5692 	if (!inode && !IS_ROOT(dentry))
5693 		inode = d_inode(dentry->d_parent);
5694 
5695 	if (inode) {
5696 		root = BTRFS_I(inode)->root;
5697 		if (btrfs_root_refs(&root->root_item) == 0)
5698 			return 1;
5699 
5700 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5701 			return 1;
5702 	}
5703 	return 0;
5704 }
5705 
5706 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5707 				   unsigned int flags)
5708 {
5709 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5710 
5711 	if (inode == ERR_PTR(-ENOENT))
5712 		inode = NULL;
5713 	return d_splice_alias(inode, dentry);
5714 }
5715 
5716 /*
5717  * Find the highest existing sequence number in a directory and then set the
5718  * in-memory index_cnt variable to the first free sequence number.
5719  */
5720 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5721 {
5722 	struct btrfs_root *root = inode->root;
5723 	struct btrfs_key key, found_key;
5724 	struct btrfs_path *path;
5725 	struct extent_buffer *leaf;
5726 	int ret;
5727 
5728 	key.objectid = btrfs_ino(inode);
5729 	key.type = BTRFS_DIR_INDEX_KEY;
5730 	key.offset = (u64)-1;
5731 
5732 	path = btrfs_alloc_path();
5733 	if (!path)
5734 		return -ENOMEM;
5735 
5736 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5737 	if (ret < 0)
5738 		goto out;
5739 	/* FIXME: we should be able to handle this */
5740 	if (ret == 0)
5741 		goto out;
5742 	ret = 0;
5743 
5744 	if (path->slots[0] == 0) {
5745 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5746 		goto out;
5747 	}
5748 
5749 	path->slots[0]--;
5750 
5751 	leaf = path->nodes[0];
5752 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5753 
5754 	if (found_key.objectid != btrfs_ino(inode) ||
5755 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5756 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5757 		goto out;
5758 	}
5759 
5760 	inode->index_cnt = found_key.offset + 1;
5761 out:
5762 	btrfs_free_path(path);
5763 	return ret;
5764 }
5765 
5766 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5767 {
5768 	int ret = 0;
5769 
5770 	btrfs_inode_lock(dir, 0);
5771 	if (dir->index_cnt == (u64)-1) {
5772 		ret = btrfs_inode_delayed_dir_index_count(dir);
5773 		if (ret) {
5774 			ret = btrfs_set_inode_index_count(dir);
5775 			if (ret)
5776 				goto out;
5777 		}
5778 	}
5779 
5780 	/* index_cnt is the index number of next new entry, so decrement it. */
5781 	*index = dir->index_cnt - 1;
5782 out:
5783 	btrfs_inode_unlock(dir, 0);
5784 
5785 	return ret;
5786 }
5787 
5788 /*
5789  * All this infrastructure exists because dir_emit can fault, and we are holding
5790  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5791  * our information into that, and then dir_emit from the buffer.  This is
5792  * similar to what NFS does, only we don't keep the buffer around in pagecache
5793  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5794  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5795  * tree lock.
5796  */
5797 static int btrfs_opendir(struct inode *inode, struct file *file)
5798 {
5799 	struct btrfs_file_private *private;
5800 	u64 last_index;
5801 	int ret;
5802 
5803 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5804 	if (ret)
5805 		return ret;
5806 
5807 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5808 	if (!private)
5809 		return -ENOMEM;
5810 	private->last_index = last_index;
5811 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5812 	if (!private->filldir_buf) {
5813 		kfree(private);
5814 		return -ENOMEM;
5815 	}
5816 	file->private_data = private;
5817 	return 0;
5818 }
5819 
5820 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5821 {
5822 	struct btrfs_file_private *private = file->private_data;
5823 	int ret;
5824 
5825 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5826 				       &private->last_index);
5827 	if (ret)
5828 		return ret;
5829 
5830 	return generic_file_llseek(file, offset, whence);
5831 }
5832 
5833 struct dir_entry {
5834 	u64 ino;
5835 	u64 offset;
5836 	unsigned type;
5837 	int name_len;
5838 };
5839 
5840 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5841 {
5842 	while (entries--) {
5843 		struct dir_entry *entry = addr;
5844 		char *name = (char *)(entry + 1);
5845 
5846 		ctx->pos = get_unaligned(&entry->offset);
5847 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5848 					 get_unaligned(&entry->ino),
5849 					 get_unaligned(&entry->type)))
5850 			return 1;
5851 		addr += sizeof(struct dir_entry) +
5852 			get_unaligned(&entry->name_len);
5853 		ctx->pos++;
5854 	}
5855 	return 0;
5856 }
5857 
5858 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5859 {
5860 	struct inode *inode = file_inode(file);
5861 	struct btrfs_root *root = BTRFS_I(inode)->root;
5862 	struct btrfs_file_private *private = file->private_data;
5863 	struct btrfs_dir_item *di;
5864 	struct btrfs_key key;
5865 	struct btrfs_key found_key;
5866 	struct btrfs_path *path;
5867 	void *addr;
5868 	LIST_HEAD(ins_list);
5869 	LIST_HEAD(del_list);
5870 	int ret;
5871 	char *name_ptr;
5872 	int name_len;
5873 	int entries = 0;
5874 	int total_len = 0;
5875 	bool put = false;
5876 	struct btrfs_key location;
5877 
5878 	if (!dir_emit_dots(file, ctx))
5879 		return 0;
5880 
5881 	path = btrfs_alloc_path();
5882 	if (!path)
5883 		return -ENOMEM;
5884 
5885 	addr = private->filldir_buf;
5886 	path->reada = READA_FORWARD;
5887 
5888 	put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5889 					      &ins_list, &del_list);
5890 
5891 again:
5892 	key.type = BTRFS_DIR_INDEX_KEY;
5893 	key.offset = ctx->pos;
5894 	key.objectid = btrfs_ino(BTRFS_I(inode));
5895 
5896 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5897 		struct dir_entry *entry;
5898 		struct extent_buffer *leaf = path->nodes[0];
5899 		u8 ftype;
5900 
5901 		if (found_key.objectid != key.objectid)
5902 			break;
5903 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5904 			break;
5905 		if (found_key.offset < ctx->pos)
5906 			continue;
5907 		if (found_key.offset > private->last_index)
5908 			break;
5909 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5910 			continue;
5911 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5912 		name_len = btrfs_dir_name_len(leaf, di);
5913 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5914 		    PAGE_SIZE) {
5915 			btrfs_release_path(path);
5916 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5917 			if (ret)
5918 				goto nopos;
5919 			addr = private->filldir_buf;
5920 			entries = 0;
5921 			total_len = 0;
5922 			goto again;
5923 		}
5924 
5925 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5926 		entry = addr;
5927 		name_ptr = (char *)(entry + 1);
5928 		read_extent_buffer(leaf, name_ptr,
5929 				   (unsigned long)(di + 1), name_len);
5930 		put_unaligned(name_len, &entry->name_len);
5931 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5932 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5933 		put_unaligned(location.objectid, &entry->ino);
5934 		put_unaligned(found_key.offset, &entry->offset);
5935 		entries++;
5936 		addr += sizeof(struct dir_entry) + name_len;
5937 		total_len += sizeof(struct dir_entry) + name_len;
5938 	}
5939 	/* Catch error encountered during iteration */
5940 	if (ret < 0)
5941 		goto err;
5942 
5943 	btrfs_release_path(path);
5944 
5945 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5946 	if (ret)
5947 		goto nopos;
5948 
5949 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5950 	if (ret)
5951 		goto nopos;
5952 
5953 	/*
5954 	 * Stop new entries from being returned after we return the last
5955 	 * entry.
5956 	 *
5957 	 * New directory entries are assigned a strictly increasing
5958 	 * offset.  This means that new entries created during readdir
5959 	 * are *guaranteed* to be seen in the future by that readdir.
5960 	 * This has broken buggy programs which operate on names as
5961 	 * they're returned by readdir.  Until we re-use freed offsets
5962 	 * we have this hack to stop new entries from being returned
5963 	 * under the assumption that they'll never reach this huge
5964 	 * offset.
5965 	 *
5966 	 * This is being careful not to overflow 32bit loff_t unless the
5967 	 * last entry requires it because doing so has broken 32bit apps
5968 	 * in the past.
5969 	 */
5970 	if (ctx->pos >= INT_MAX)
5971 		ctx->pos = LLONG_MAX;
5972 	else
5973 		ctx->pos = INT_MAX;
5974 nopos:
5975 	ret = 0;
5976 err:
5977 	if (put)
5978 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5979 	btrfs_free_path(path);
5980 	return ret;
5981 }
5982 
5983 /*
5984  * This is somewhat expensive, updating the tree every time the
5985  * inode changes.  But, it is most likely to find the inode in cache.
5986  * FIXME, needs more benchmarking...there are no reasons other than performance
5987  * to keep or drop this code.
5988  */
5989 static int btrfs_dirty_inode(struct btrfs_inode *inode)
5990 {
5991 	struct btrfs_root *root = inode->root;
5992 	struct btrfs_fs_info *fs_info = root->fs_info;
5993 	struct btrfs_trans_handle *trans;
5994 	int ret;
5995 
5996 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
5997 		return 0;
5998 
5999 	trans = btrfs_join_transaction(root);
6000 	if (IS_ERR(trans))
6001 		return PTR_ERR(trans);
6002 
6003 	ret = btrfs_update_inode(trans, root, inode);
6004 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6005 		/* whoops, lets try again with the full transaction */
6006 		btrfs_end_transaction(trans);
6007 		trans = btrfs_start_transaction(root, 1);
6008 		if (IS_ERR(trans))
6009 			return PTR_ERR(trans);
6010 
6011 		ret = btrfs_update_inode(trans, root, inode);
6012 	}
6013 	btrfs_end_transaction(trans);
6014 	if (inode->delayed_node)
6015 		btrfs_balance_delayed_items(fs_info);
6016 
6017 	return ret;
6018 }
6019 
6020 /*
6021  * This is a copy of file_update_time.  We need this so we can return error on
6022  * ENOSPC for updating the inode in the case of file write and mmap writes.
6023  */
6024 static int btrfs_update_time(struct inode *inode, int flags)
6025 {
6026 	struct btrfs_root *root = BTRFS_I(inode)->root;
6027 	bool dirty = flags & ~S_VERSION;
6028 
6029 	if (btrfs_root_readonly(root))
6030 		return -EROFS;
6031 
6032 	dirty = inode_update_timestamps(inode, flags);
6033 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6034 }
6035 
6036 /*
6037  * helper to find a free sequence number in a given directory.  This current
6038  * code is very simple, later versions will do smarter things in the btree
6039  */
6040 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6041 {
6042 	int ret = 0;
6043 
6044 	if (dir->index_cnt == (u64)-1) {
6045 		ret = btrfs_inode_delayed_dir_index_count(dir);
6046 		if (ret) {
6047 			ret = btrfs_set_inode_index_count(dir);
6048 			if (ret)
6049 				return ret;
6050 		}
6051 	}
6052 
6053 	*index = dir->index_cnt;
6054 	dir->index_cnt++;
6055 
6056 	return ret;
6057 }
6058 
6059 static int btrfs_insert_inode_locked(struct inode *inode)
6060 {
6061 	struct btrfs_iget_args args;
6062 
6063 	args.ino = BTRFS_I(inode)->location.objectid;
6064 	args.root = BTRFS_I(inode)->root;
6065 
6066 	return insert_inode_locked4(inode,
6067 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6068 		   btrfs_find_actor, &args);
6069 }
6070 
6071 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6072 			    unsigned int *trans_num_items)
6073 {
6074 	struct inode *dir = args->dir;
6075 	struct inode *inode = args->inode;
6076 	int ret;
6077 
6078 	if (!args->orphan) {
6079 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6080 					     &args->fname);
6081 		if (ret)
6082 			return ret;
6083 	}
6084 
6085 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6086 	if (ret) {
6087 		fscrypt_free_filename(&args->fname);
6088 		return ret;
6089 	}
6090 
6091 	/* 1 to add inode item */
6092 	*trans_num_items = 1;
6093 	/* 1 to add compression property */
6094 	if (BTRFS_I(dir)->prop_compress)
6095 		(*trans_num_items)++;
6096 	/* 1 to add default ACL xattr */
6097 	if (args->default_acl)
6098 		(*trans_num_items)++;
6099 	/* 1 to add access ACL xattr */
6100 	if (args->acl)
6101 		(*trans_num_items)++;
6102 #ifdef CONFIG_SECURITY
6103 	/* 1 to add LSM xattr */
6104 	if (dir->i_security)
6105 		(*trans_num_items)++;
6106 #endif
6107 	if (args->orphan) {
6108 		/* 1 to add orphan item */
6109 		(*trans_num_items)++;
6110 	} else {
6111 		/*
6112 		 * 1 to add dir item
6113 		 * 1 to add dir index
6114 		 * 1 to update parent inode item
6115 		 *
6116 		 * No need for 1 unit for the inode ref item because it is
6117 		 * inserted in a batch together with the inode item at
6118 		 * btrfs_create_new_inode().
6119 		 */
6120 		*trans_num_items += 3;
6121 	}
6122 	return 0;
6123 }
6124 
6125 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6126 {
6127 	posix_acl_release(args->acl);
6128 	posix_acl_release(args->default_acl);
6129 	fscrypt_free_filename(&args->fname);
6130 }
6131 
6132 /*
6133  * Inherit flags from the parent inode.
6134  *
6135  * Currently only the compression flags and the cow flags are inherited.
6136  */
6137 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6138 {
6139 	unsigned int flags;
6140 
6141 	flags = dir->flags;
6142 
6143 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6144 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6145 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6146 	} else if (flags & BTRFS_INODE_COMPRESS) {
6147 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6148 		inode->flags |= BTRFS_INODE_COMPRESS;
6149 	}
6150 
6151 	if (flags & BTRFS_INODE_NODATACOW) {
6152 		inode->flags |= BTRFS_INODE_NODATACOW;
6153 		if (S_ISREG(inode->vfs_inode.i_mode))
6154 			inode->flags |= BTRFS_INODE_NODATASUM;
6155 	}
6156 
6157 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6158 }
6159 
6160 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6161 			   struct btrfs_new_inode_args *args)
6162 {
6163 	struct inode *dir = args->dir;
6164 	struct inode *inode = args->inode;
6165 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6166 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6167 	struct btrfs_root *root;
6168 	struct btrfs_inode_item *inode_item;
6169 	struct btrfs_key *location;
6170 	struct btrfs_path *path;
6171 	u64 objectid;
6172 	struct btrfs_inode_ref *ref;
6173 	struct btrfs_key key[2];
6174 	u32 sizes[2];
6175 	struct btrfs_item_batch batch;
6176 	unsigned long ptr;
6177 	int ret;
6178 
6179 	path = btrfs_alloc_path();
6180 	if (!path)
6181 		return -ENOMEM;
6182 
6183 	if (!args->subvol)
6184 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6185 	root = BTRFS_I(inode)->root;
6186 
6187 	ret = btrfs_get_free_objectid(root, &objectid);
6188 	if (ret)
6189 		goto out;
6190 	inode->i_ino = objectid;
6191 
6192 	if (args->orphan) {
6193 		/*
6194 		 * O_TMPFILE, set link count to 0, so that after this point, we
6195 		 * fill in an inode item with the correct link count.
6196 		 */
6197 		set_nlink(inode, 0);
6198 	} else {
6199 		trace_btrfs_inode_request(dir);
6200 
6201 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6202 		if (ret)
6203 			goto out;
6204 	}
6205 	/* index_cnt is ignored for everything but a dir. */
6206 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6207 	BTRFS_I(inode)->generation = trans->transid;
6208 	inode->i_generation = BTRFS_I(inode)->generation;
6209 
6210 	/*
6211 	 * Subvolumes don't inherit flags from their parent directory.
6212 	 * Originally this was probably by accident, but we probably can't
6213 	 * change it now without compatibility issues.
6214 	 */
6215 	if (!args->subvol)
6216 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6217 
6218 	if (S_ISREG(inode->i_mode)) {
6219 		if (btrfs_test_opt(fs_info, NODATASUM))
6220 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6221 		if (btrfs_test_opt(fs_info, NODATACOW))
6222 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6223 				BTRFS_INODE_NODATASUM;
6224 	}
6225 
6226 	location = &BTRFS_I(inode)->location;
6227 	location->objectid = objectid;
6228 	location->offset = 0;
6229 	location->type = BTRFS_INODE_ITEM_KEY;
6230 
6231 	ret = btrfs_insert_inode_locked(inode);
6232 	if (ret < 0) {
6233 		if (!args->orphan)
6234 			BTRFS_I(dir)->index_cnt--;
6235 		goto out;
6236 	}
6237 
6238 	/*
6239 	 * We could have gotten an inode number from somebody who was fsynced
6240 	 * and then removed in this same transaction, so let's just set full
6241 	 * sync since it will be a full sync anyway and this will blow away the
6242 	 * old info in the log.
6243 	 */
6244 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6245 
6246 	key[0].objectid = objectid;
6247 	key[0].type = BTRFS_INODE_ITEM_KEY;
6248 	key[0].offset = 0;
6249 
6250 	sizes[0] = sizeof(struct btrfs_inode_item);
6251 
6252 	if (!args->orphan) {
6253 		/*
6254 		 * Start new inodes with an inode_ref. This is slightly more
6255 		 * efficient for small numbers of hard links since they will
6256 		 * be packed into one item. Extended refs will kick in if we
6257 		 * add more hard links than can fit in the ref item.
6258 		 */
6259 		key[1].objectid = objectid;
6260 		key[1].type = BTRFS_INODE_REF_KEY;
6261 		if (args->subvol) {
6262 			key[1].offset = objectid;
6263 			sizes[1] = 2 + sizeof(*ref);
6264 		} else {
6265 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6266 			sizes[1] = name->len + sizeof(*ref);
6267 		}
6268 	}
6269 
6270 	batch.keys = &key[0];
6271 	batch.data_sizes = &sizes[0];
6272 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6273 	batch.nr = args->orphan ? 1 : 2;
6274 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6275 	if (ret != 0) {
6276 		btrfs_abort_transaction(trans, ret);
6277 		goto discard;
6278 	}
6279 
6280 	inode->i_mtime = inode_set_ctime_current(inode);
6281 	inode->i_atime = inode->i_mtime;
6282 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6283 
6284 	/*
6285 	 * We're going to fill the inode item now, so at this point the inode
6286 	 * must be fully initialized.
6287 	 */
6288 
6289 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6290 				  struct btrfs_inode_item);
6291 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6292 			     sizeof(*inode_item));
6293 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6294 
6295 	if (!args->orphan) {
6296 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6297 				     struct btrfs_inode_ref);
6298 		ptr = (unsigned long)(ref + 1);
6299 		if (args->subvol) {
6300 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6301 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6302 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6303 		} else {
6304 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6305 						     name->len);
6306 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6307 						  BTRFS_I(inode)->dir_index);
6308 			write_extent_buffer(path->nodes[0], name->name, ptr,
6309 					    name->len);
6310 		}
6311 	}
6312 
6313 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6314 	/*
6315 	 * We don't need the path anymore, plus inheriting properties, adding
6316 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6317 	 * allocating yet another path. So just free our path.
6318 	 */
6319 	btrfs_free_path(path);
6320 	path = NULL;
6321 
6322 	if (args->subvol) {
6323 		struct inode *parent;
6324 
6325 		/*
6326 		 * Subvolumes inherit properties from their parent subvolume,
6327 		 * not the directory they were created in.
6328 		 */
6329 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6330 				    BTRFS_I(dir)->root);
6331 		if (IS_ERR(parent)) {
6332 			ret = PTR_ERR(parent);
6333 		} else {
6334 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6335 			iput(parent);
6336 		}
6337 	} else {
6338 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6339 	}
6340 	if (ret) {
6341 		btrfs_err(fs_info,
6342 			  "error inheriting props for ino %llu (root %llu): %d",
6343 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6344 			  ret);
6345 	}
6346 
6347 	/*
6348 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6349 	 * probably a bug.
6350 	 */
6351 	if (!args->subvol) {
6352 		ret = btrfs_init_inode_security(trans, args);
6353 		if (ret) {
6354 			btrfs_abort_transaction(trans, ret);
6355 			goto discard;
6356 		}
6357 	}
6358 
6359 	inode_tree_add(BTRFS_I(inode));
6360 
6361 	trace_btrfs_inode_new(inode);
6362 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6363 
6364 	btrfs_update_root_times(trans, root);
6365 
6366 	if (args->orphan) {
6367 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6368 	} else {
6369 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6370 				     0, BTRFS_I(inode)->dir_index);
6371 	}
6372 	if (ret) {
6373 		btrfs_abort_transaction(trans, ret);
6374 		goto discard;
6375 	}
6376 
6377 	return 0;
6378 
6379 discard:
6380 	/*
6381 	 * discard_new_inode() calls iput(), but the caller owns the reference
6382 	 * to the inode.
6383 	 */
6384 	ihold(inode);
6385 	discard_new_inode(inode);
6386 out:
6387 	btrfs_free_path(path);
6388 	return ret;
6389 }
6390 
6391 /*
6392  * utility function to add 'inode' into 'parent_inode' with
6393  * a give name and a given sequence number.
6394  * if 'add_backref' is true, also insert a backref from the
6395  * inode to the parent directory.
6396  */
6397 int btrfs_add_link(struct btrfs_trans_handle *trans,
6398 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6399 		   const struct fscrypt_str *name, int add_backref, u64 index)
6400 {
6401 	int ret = 0;
6402 	struct btrfs_key key;
6403 	struct btrfs_root *root = parent_inode->root;
6404 	u64 ino = btrfs_ino(inode);
6405 	u64 parent_ino = btrfs_ino(parent_inode);
6406 
6407 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6408 		memcpy(&key, &inode->root->root_key, sizeof(key));
6409 	} else {
6410 		key.objectid = ino;
6411 		key.type = BTRFS_INODE_ITEM_KEY;
6412 		key.offset = 0;
6413 	}
6414 
6415 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6416 		ret = btrfs_add_root_ref(trans, key.objectid,
6417 					 root->root_key.objectid, parent_ino,
6418 					 index, name);
6419 	} else if (add_backref) {
6420 		ret = btrfs_insert_inode_ref(trans, root, name,
6421 					     ino, parent_ino, index);
6422 	}
6423 
6424 	/* Nothing to clean up yet */
6425 	if (ret)
6426 		return ret;
6427 
6428 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6429 				    btrfs_inode_type(&inode->vfs_inode), index);
6430 	if (ret == -EEXIST || ret == -EOVERFLOW)
6431 		goto fail_dir_item;
6432 	else if (ret) {
6433 		btrfs_abort_transaction(trans, ret);
6434 		return ret;
6435 	}
6436 
6437 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6438 			   name->len * 2);
6439 	inode_inc_iversion(&parent_inode->vfs_inode);
6440 	/*
6441 	 * If we are replaying a log tree, we do not want to update the mtime
6442 	 * and ctime of the parent directory with the current time, since the
6443 	 * log replay procedure is responsible for setting them to their correct
6444 	 * values (the ones it had when the fsync was done).
6445 	 */
6446 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6447 		parent_inode->vfs_inode.i_mtime =
6448 			inode_set_ctime_current(&parent_inode->vfs_inode);
6449 
6450 	ret = btrfs_update_inode(trans, root, parent_inode);
6451 	if (ret)
6452 		btrfs_abort_transaction(trans, ret);
6453 	return ret;
6454 
6455 fail_dir_item:
6456 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6457 		u64 local_index;
6458 		int err;
6459 		err = btrfs_del_root_ref(trans, key.objectid,
6460 					 root->root_key.objectid, parent_ino,
6461 					 &local_index, name);
6462 		if (err)
6463 			btrfs_abort_transaction(trans, err);
6464 	} else if (add_backref) {
6465 		u64 local_index;
6466 		int err;
6467 
6468 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6469 					  &local_index);
6470 		if (err)
6471 			btrfs_abort_transaction(trans, err);
6472 	}
6473 
6474 	/* Return the original error code */
6475 	return ret;
6476 }
6477 
6478 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6479 			       struct inode *inode)
6480 {
6481 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6482 	struct btrfs_root *root = BTRFS_I(dir)->root;
6483 	struct btrfs_new_inode_args new_inode_args = {
6484 		.dir = dir,
6485 		.dentry = dentry,
6486 		.inode = inode,
6487 	};
6488 	unsigned int trans_num_items;
6489 	struct btrfs_trans_handle *trans;
6490 	int err;
6491 
6492 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6493 	if (err)
6494 		goto out_inode;
6495 
6496 	trans = btrfs_start_transaction(root, trans_num_items);
6497 	if (IS_ERR(trans)) {
6498 		err = PTR_ERR(trans);
6499 		goto out_new_inode_args;
6500 	}
6501 
6502 	err = btrfs_create_new_inode(trans, &new_inode_args);
6503 	if (!err)
6504 		d_instantiate_new(dentry, inode);
6505 
6506 	btrfs_end_transaction(trans);
6507 	btrfs_btree_balance_dirty(fs_info);
6508 out_new_inode_args:
6509 	btrfs_new_inode_args_destroy(&new_inode_args);
6510 out_inode:
6511 	if (err)
6512 		iput(inode);
6513 	return err;
6514 }
6515 
6516 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6517 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6518 {
6519 	struct inode *inode;
6520 
6521 	inode = new_inode(dir->i_sb);
6522 	if (!inode)
6523 		return -ENOMEM;
6524 	inode_init_owner(idmap, inode, dir, mode);
6525 	inode->i_op = &btrfs_special_inode_operations;
6526 	init_special_inode(inode, inode->i_mode, rdev);
6527 	return btrfs_create_common(dir, dentry, inode);
6528 }
6529 
6530 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6531 			struct dentry *dentry, umode_t mode, bool excl)
6532 {
6533 	struct inode *inode;
6534 
6535 	inode = new_inode(dir->i_sb);
6536 	if (!inode)
6537 		return -ENOMEM;
6538 	inode_init_owner(idmap, inode, dir, mode);
6539 	inode->i_fop = &btrfs_file_operations;
6540 	inode->i_op = &btrfs_file_inode_operations;
6541 	inode->i_mapping->a_ops = &btrfs_aops;
6542 	return btrfs_create_common(dir, dentry, inode);
6543 }
6544 
6545 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6546 		      struct dentry *dentry)
6547 {
6548 	struct btrfs_trans_handle *trans = NULL;
6549 	struct btrfs_root *root = BTRFS_I(dir)->root;
6550 	struct inode *inode = d_inode(old_dentry);
6551 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6552 	struct fscrypt_name fname;
6553 	u64 index;
6554 	int err;
6555 	int drop_inode = 0;
6556 
6557 	/* do not allow sys_link's with other subvols of the same device */
6558 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6559 		return -EXDEV;
6560 
6561 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6562 		return -EMLINK;
6563 
6564 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6565 	if (err)
6566 		goto fail;
6567 
6568 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6569 	if (err)
6570 		goto fail;
6571 
6572 	/*
6573 	 * 2 items for inode and inode ref
6574 	 * 2 items for dir items
6575 	 * 1 item for parent inode
6576 	 * 1 item for orphan item deletion if O_TMPFILE
6577 	 */
6578 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6579 	if (IS_ERR(trans)) {
6580 		err = PTR_ERR(trans);
6581 		trans = NULL;
6582 		goto fail;
6583 	}
6584 
6585 	/* There are several dir indexes for this inode, clear the cache. */
6586 	BTRFS_I(inode)->dir_index = 0ULL;
6587 	inc_nlink(inode);
6588 	inode_inc_iversion(inode);
6589 	inode_set_ctime_current(inode);
6590 	ihold(inode);
6591 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6592 
6593 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6594 			     &fname.disk_name, 1, index);
6595 
6596 	if (err) {
6597 		drop_inode = 1;
6598 	} else {
6599 		struct dentry *parent = dentry->d_parent;
6600 
6601 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6602 		if (err)
6603 			goto fail;
6604 		if (inode->i_nlink == 1) {
6605 			/*
6606 			 * If new hard link count is 1, it's a file created
6607 			 * with open(2) O_TMPFILE flag.
6608 			 */
6609 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6610 			if (err)
6611 				goto fail;
6612 		}
6613 		d_instantiate(dentry, inode);
6614 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6615 	}
6616 
6617 fail:
6618 	fscrypt_free_filename(&fname);
6619 	if (trans)
6620 		btrfs_end_transaction(trans);
6621 	if (drop_inode) {
6622 		inode_dec_link_count(inode);
6623 		iput(inode);
6624 	}
6625 	btrfs_btree_balance_dirty(fs_info);
6626 	return err;
6627 }
6628 
6629 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6630 		       struct dentry *dentry, umode_t mode)
6631 {
6632 	struct inode *inode;
6633 
6634 	inode = new_inode(dir->i_sb);
6635 	if (!inode)
6636 		return -ENOMEM;
6637 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6638 	inode->i_op = &btrfs_dir_inode_operations;
6639 	inode->i_fop = &btrfs_dir_file_operations;
6640 	return btrfs_create_common(dir, dentry, inode);
6641 }
6642 
6643 static noinline int uncompress_inline(struct btrfs_path *path,
6644 				      struct page *page,
6645 				      struct btrfs_file_extent_item *item)
6646 {
6647 	int ret;
6648 	struct extent_buffer *leaf = path->nodes[0];
6649 	char *tmp;
6650 	size_t max_size;
6651 	unsigned long inline_size;
6652 	unsigned long ptr;
6653 	int compress_type;
6654 
6655 	compress_type = btrfs_file_extent_compression(leaf, item);
6656 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6657 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6658 	tmp = kmalloc(inline_size, GFP_NOFS);
6659 	if (!tmp)
6660 		return -ENOMEM;
6661 	ptr = btrfs_file_extent_inline_start(item);
6662 
6663 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6664 
6665 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6666 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6667 
6668 	/*
6669 	 * decompression code contains a memset to fill in any space between the end
6670 	 * of the uncompressed data and the end of max_size in case the decompressed
6671 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6672 	 * the end of an inline extent and the beginning of the next block, so we
6673 	 * cover that region here.
6674 	 */
6675 
6676 	if (max_size < PAGE_SIZE)
6677 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6678 	kfree(tmp);
6679 	return ret;
6680 }
6681 
6682 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6683 			      struct page *page)
6684 {
6685 	struct btrfs_file_extent_item *fi;
6686 	void *kaddr;
6687 	size_t copy_size;
6688 
6689 	if (!page || PageUptodate(page))
6690 		return 0;
6691 
6692 	ASSERT(page_offset(page) == 0);
6693 
6694 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6695 			    struct btrfs_file_extent_item);
6696 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6697 		return uncompress_inline(path, page, fi);
6698 
6699 	copy_size = min_t(u64, PAGE_SIZE,
6700 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6701 	kaddr = kmap_local_page(page);
6702 	read_extent_buffer(path->nodes[0], kaddr,
6703 			   btrfs_file_extent_inline_start(fi), copy_size);
6704 	kunmap_local(kaddr);
6705 	if (copy_size < PAGE_SIZE)
6706 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6707 	return 0;
6708 }
6709 
6710 /*
6711  * Lookup the first extent overlapping a range in a file.
6712  *
6713  * @inode:	file to search in
6714  * @page:	page to read extent data into if the extent is inline
6715  * @pg_offset:	offset into @page to copy to
6716  * @start:	file offset
6717  * @len:	length of range starting at @start
6718  *
6719  * Return the first &struct extent_map which overlaps the given range, reading
6720  * it from the B-tree and caching it if necessary. Note that there may be more
6721  * extents which overlap the given range after the returned extent_map.
6722  *
6723  * If @page is not NULL and the extent is inline, this also reads the extent
6724  * data directly into the page and marks the extent up to date in the io_tree.
6725  *
6726  * Return: ERR_PTR on error, non-NULL extent_map on success.
6727  */
6728 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6729 				    struct page *page, size_t pg_offset,
6730 				    u64 start, u64 len)
6731 {
6732 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6733 	int ret = 0;
6734 	u64 extent_start = 0;
6735 	u64 extent_end = 0;
6736 	u64 objectid = btrfs_ino(inode);
6737 	int extent_type = -1;
6738 	struct btrfs_path *path = NULL;
6739 	struct btrfs_root *root = inode->root;
6740 	struct btrfs_file_extent_item *item;
6741 	struct extent_buffer *leaf;
6742 	struct btrfs_key found_key;
6743 	struct extent_map *em = NULL;
6744 	struct extent_map_tree *em_tree = &inode->extent_tree;
6745 
6746 	read_lock(&em_tree->lock);
6747 	em = lookup_extent_mapping(em_tree, start, len);
6748 	read_unlock(&em_tree->lock);
6749 
6750 	if (em) {
6751 		if (em->start > start || em->start + em->len <= start)
6752 			free_extent_map(em);
6753 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6754 			free_extent_map(em);
6755 		else
6756 			goto out;
6757 	}
6758 	em = alloc_extent_map();
6759 	if (!em) {
6760 		ret = -ENOMEM;
6761 		goto out;
6762 	}
6763 	em->start = EXTENT_MAP_HOLE;
6764 	em->orig_start = EXTENT_MAP_HOLE;
6765 	em->len = (u64)-1;
6766 	em->block_len = (u64)-1;
6767 
6768 	path = btrfs_alloc_path();
6769 	if (!path) {
6770 		ret = -ENOMEM;
6771 		goto out;
6772 	}
6773 
6774 	/* Chances are we'll be called again, so go ahead and do readahead */
6775 	path->reada = READA_FORWARD;
6776 
6777 	/*
6778 	 * The same explanation in load_free_space_cache applies here as well,
6779 	 * we only read when we're loading the free space cache, and at that
6780 	 * point the commit_root has everything we need.
6781 	 */
6782 	if (btrfs_is_free_space_inode(inode)) {
6783 		path->search_commit_root = 1;
6784 		path->skip_locking = 1;
6785 	}
6786 
6787 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6788 	if (ret < 0) {
6789 		goto out;
6790 	} else if (ret > 0) {
6791 		if (path->slots[0] == 0)
6792 			goto not_found;
6793 		path->slots[0]--;
6794 		ret = 0;
6795 	}
6796 
6797 	leaf = path->nodes[0];
6798 	item = btrfs_item_ptr(leaf, path->slots[0],
6799 			      struct btrfs_file_extent_item);
6800 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6801 	if (found_key.objectid != objectid ||
6802 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6803 		/*
6804 		 * If we backup past the first extent we want to move forward
6805 		 * and see if there is an extent in front of us, otherwise we'll
6806 		 * say there is a hole for our whole search range which can
6807 		 * cause problems.
6808 		 */
6809 		extent_end = start;
6810 		goto next;
6811 	}
6812 
6813 	extent_type = btrfs_file_extent_type(leaf, item);
6814 	extent_start = found_key.offset;
6815 	extent_end = btrfs_file_extent_end(path);
6816 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6817 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6818 		/* Only regular file could have regular/prealloc extent */
6819 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6820 			ret = -EUCLEAN;
6821 			btrfs_crit(fs_info,
6822 		"regular/prealloc extent found for non-regular inode %llu",
6823 				   btrfs_ino(inode));
6824 			goto out;
6825 		}
6826 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6827 						       extent_start);
6828 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6829 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6830 						      path->slots[0],
6831 						      extent_start);
6832 	}
6833 next:
6834 	if (start >= extent_end) {
6835 		path->slots[0]++;
6836 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6837 			ret = btrfs_next_leaf(root, path);
6838 			if (ret < 0)
6839 				goto out;
6840 			else if (ret > 0)
6841 				goto not_found;
6842 
6843 			leaf = path->nodes[0];
6844 		}
6845 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6846 		if (found_key.objectid != objectid ||
6847 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6848 			goto not_found;
6849 		if (start + len <= found_key.offset)
6850 			goto not_found;
6851 		if (start > found_key.offset)
6852 			goto next;
6853 
6854 		/* New extent overlaps with existing one */
6855 		em->start = start;
6856 		em->orig_start = start;
6857 		em->len = found_key.offset - start;
6858 		em->block_start = EXTENT_MAP_HOLE;
6859 		goto insert;
6860 	}
6861 
6862 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6863 
6864 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6865 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6866 		goto insert;
6867 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6868 		/*
6869 		 * Inline extent can only exist at file offset 0. This is
6870 		 * ensured by tree-checker and inline extent creation path.
6871 		 * Thus all members representing file offsets should be zero.
6872 		 */
6873 		ASSERT(pg_offset == 0);
6874 		ASSERT(extent_start == 0);
6875 		ASSERT(em->start == 0);
6876 
6877 		/*
6878 		 * btrfs_extent_item_to_extent_map() should have properly
6879 		 * initialized em members already.
6880 		 *
6881 		 * Other members are not utilized for inline extents.
6882 		 */
6883 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
6884 		ASSERT(em->len == fs_info->sectorsize);
6885 
6886 		ret = read_inline_extent(inode, path, page);
6887 		if (ret < 0)
6888 			goto out;
6889 		goto insert;
6890 	}
6891 not_found:
6892 	em->start = start;
6893 	em->orig_start = start;
6894 	em->len = len;
6895 	em->block_start = EXTENT_MAP_HOLE;
6896 insert:
6897 	ret = 0;
6898 	btrfs_release_path(path);
6899 	if (em->start > start || extent_map_end(em) <= start) {
6900 		btrfs_err(fs_info,
6901 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6902 			  em->start, em->len, start, len);
6903 		ret = -EIO;
6904 		goto out;
6905 	}
6906 
6907 	write_lock(&em_tree->lock);
6908 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6909 	write_unlock(&em_tree->lock);
6910 out:
6911 	btrfs_free_path(path);
6912 
6913 	trace_btrfs_get_extent(root, inode, em);
6914 
6915 	if (ret) {
6916 		free_extent_map(em);
6917 		return ERR_PTR(ret);
6918 	}
6919 	return em;
6920 }
6921 
6922 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6923 						  struct btrfs_dio_data *dio_data,
6924 						  const u64 start,
6925 						  const u64 len,
6926 						  const u64 orig_start,
6927 						  const u64 block_start,
6928 						  const u64 block_len,
6929 						  const u64 orig_block_len,
6930 						  const u64 ram_bytes,
6931 						  const int type)
6932 {
6933 	struct extent_map *em = NULL;
6934 	struct btrfs_ordered_extent *ordered;
6935 
6936 	if (type != BTRFS_ORDERED_NOCOW) {
6937 		em = create_io_em(inode, start, len, orig_start, block_start,
6938 				  block_len, orig_block_len, ram_bytes,
6939 				  BTRFS_COMPRESS_NONE, /* compress_type */
6940 				  type);
6941 		if (IS_ERR(em))
6942 			goto out;
6943 	}
6944 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6945 					     block_start, block_len, 0,
6946 					     (1 << type) |
6947 					     (1 << BTRFS_ORDERED_DIRECT),
6948 					     BTRFS_COMPRESS_NONE);
6949 	if (IS_ERR(ordered)) {
6950 		if (em) {
6951 			free_extent_map(em);
6952 			btrfs_drop_extent_map_range(inode, start,
6953 						    start + len - 1, false);
6954 		}
6955 		em = ERR_CAST(ordered);
6956 	} else {
6957 		ASSERT(!dio_data->ordered);
6958 		dio_data->ordered = ordered;
6959 	}
6960  out:
6961 
6962 	return em;
6963 }
6964 
6965 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6966 						  struct btrfs_dio_data *dio_data,
6967 						  u64 start, u64 len)
6968 {
6969 	struct btrfs_root *root = inode->root;
6970 	struct btrfs_fs_info *fs_info = root->fs_info;
6971 	struct extent_map *em;
6972 	struct btrfs_key ins;
6973 	u64 alloc_hint;
6974 	int ret;
6975 
6976 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6977 again:
6978 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6979 				   0, alloc_hint, &ins, 1, 1);
6980 	if (ret == -EAGAIN) {
6981 		ASSERT(btrfs_is_zoned(fs_info));
6982 		wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
6983 			       TASK_UNINTERRUPTIBLE);
6984 		goto again;
6985 	}
6986 	if (ret)
6987 		return ERR_PTR(ret);
6988 
6989 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
6990 				     ins.objectid, ins.offset, ins.offset,
6991 				     ins.offset, BTRFS_ORDERED_REGULAR);
6992 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6993 	if (IS_ERR(em))
6994 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6995 					   1);
6996 
6997 	return em;
6998 }
6999 
7000 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7001 {
7002 	struct btrfs_block_group *block_group;
7003 	bool readonly = false;
7004 
7005 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7006 	if (!block_group || block_group->ro)
7007 		readonly = true;
7008 	if (block_group)
7009 		btrfs_put_block_group(block_group);
7010 	return readonly;
7011 }
7012 
7013 /*
7014  * Check if we can do nocow write into the range [@offset, @offset + @len)
7015  *
7016  * @offset:	File offset
7017  * @len:	The length to write, will be updated to the nocow writeable
7018  *		range
7019  * @orig_start:	(optional) Return the original file offset of the file extent
7020  * @orig_len:	(optional) Return the original on-disk length of the file extent
7021  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7022  * @strict:	if true, omit optimizations that might force us into unnecessary
7023  *		cow. e.g., don't trust generation number.
7024  *
7025  * Return:
7026  * >0	and update @len if we can do nocow write
7027  *  0	if we can't do nocow write
7028  * <0	if error happened
7029  *
7030  * NOTE: This only checks the file extents, caller is responsible to wait for
7031  *	 any ordered extents.
7032  */
7033 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7034 			      u64 *orig_start, u64 *orig_block_len,
7035 			      u64 *ram_bytes, bool nowait, bool strict)
7036 {
7037 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7038 	struct can_nocow_file_extent_args nocow_args = { 0 };
7039 	struct btrfs_path *path;
7040 	int ret;
7041 	struct extent_buffer *leaf;
7042 	struct btrfs_root *root = BTRFS_I(inode)->root;
7043 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7044 	struct btrfs_file_extent_item *fi;
7045 	struct btrfs_key key;
7046 	int found_type;
7047 
7048 	path = btrfs_alloc_path();
7049 	if (!path)
7050 		return -ENOMEM;
7051 	path->nowait = nowait;
7052 
7053 	ret = btrfs_lookup_file_extent(NULL, root, path,
7054 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7055 	if (ret < 0)
7056 		goto out;
7057 
7058 	if (ret == 1) {
7059 		if (path->slots[0] == 0) {
7060 			/* can't find the item, must cow */
7061 			ret = 0;
7062 			goto out;
7063 		}
7064 		path->slots[0]--;
7065 	}
7066 	ret = 0;
7067 	leaf = path->nodes[0];
7068 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7069 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7070 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7071 		/* not our file or wrong item type, must cow */
7072 		goto out;
7073 	}
7074 
7075 	if (key.offset > offset) {
7076 		/* Wrong offset, must cow */
7077 		goto out;
7078 	}
7079 
7080 	if (btrfs_file_extent_end(path) <= offset)
7081 		goto out;
7082 
7083 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7084 	found_type = btrfs_file_extent_type(leaf, fi);
7085 	if (ram_bytes)
7086 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7087 
7088 	nocow_args.start = offset;
7089 	nocow_args.end = offset + *len - 1;
7090 	nocow_args.strict = strict;
7091 	nocow_args.free_path = true;
7092 
7093 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7094 	/* can_nocow_file_extent() has freed the path. */
7095 	path = NULL;
7096 
7097 	if (ret != 1) {
7098 		/* Treat errors as not being able to NOCOW. */
7099 		ret = 0;
7100 		goto out;
7101 	}
7102 
7103 	ret = 0;
7104 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7105 		goto out;
7106 
7107 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7108 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7109 		u64 range_end;
7110 
7111 		range_end = round_up(offset + nocow_args.num_bytes,
7112 				     root->fs_info->sectorsize) - 1;
7113 		ret = test_range_bit(io_tree, offset, range_end,
7114 				     EXTENT_DELALLOC, 0, NULL);
7115 		if (ret) {
7116 			ret = -EAGAIN;
7117 			goto out;
7118 		}
7119 	}
7120 
7121 	if (orig_start)
7122 		*orig_start = key.offset - nocow_args.extent_offset;
7123 	if (orig_block_len)
7124 		*orig_block_len = nocow_args.disk_num_bytes;
7125 
7126 	*len = nocow_args.num_bytes;
7127 	ret = 1;
7128 out:
7129 	btrfs_free_path(path);
7130 	return ret;
7131 }
7132 
7133 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7134 			      struct extent_state **cached_state,
7135 			      unsigned int iomap_flags)
7136 {
7137 	const bool writing = (iomap_flags & IOMAP_WRITE);
7138 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7139 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7140 	struct btrfs_ordered_extent *ordered;
7141 	int ret = 0;
7142 
7143 	while (1) {
7144 		if (nowait) {
7145 			if (!try_lock_extent(io_tree, lockstart, lockend,
7146 					     cached_state))
7147 				return -EAGAIN;
7148 		} else {
7149 			lock_extent(io_tree, lockstart, lockend, cached_state);
7150 		}
7151 		/*
7152 		 * We're concerned with the entire range that we're going to be
7153 		 * doing DIO to, so we need to make sure there's no ordered
7154 		 * extents in this range.
7155 		 */
7156 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7157 						     lockend - lockstart + 1);
7158 
7159 		/*
7160 		 * We need to make sure there are no buffered pages in this
7161 		 * range either, we could have raced between the invalidate in
7162 		 * generic_file_direct_write and locking the extent.  The
7163 		 * invalidate needs to happen so that reads after a write do not
7164 		 * get stale data.
7165 		 */
7166 		if (!ordered &&
7167 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7168 							 lockstart, lockend)))
7169 			break;
7170 
7171 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7172 
7173 		if (ordered) {
7174 			if (nowait) {
7175 				btrfs_put_ordered_extent(ordered);
7176 				ret = -EAGAIN;
7177 				break;
7178 			}
7179 			/*
7180 			 * If we are doing a DIO read and the ordered extent we
7181 			 * found is for a buffered write, we can not wait for it
7182 			 * to complete and retry, because if we do so we can
7183 			 * deadlock with concurrent buffered writes on page
7184 			 * locks. This happens only if our DIO read covers more
7185 			 * than one extent map, if at this point has already
7186 			 * created an ordered extent for a previous extent map
7187 			 * and locked its range in the inode's io tree, and a
7188 			 * concurrent write against that previous extent map's
7189 			 * range and this range started (we unlock the ranges
7190 			 * in the io tree only when the bios complete and
7191 			 * buffered writes always lock pages before attempting
7192 			 * to lock range in the io tree).
7193 			 */
7194 			if (writing ||
7195 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7196 				btrfs_start_ordered_extent(ordered);
7197 			else
7198 				ret = nowait ? -EAGAIN : -ENOTBLK;
7199 			btrfs_put_ordered_extent(ordered);
7200 		} else {
7201 			/*
7202 			 * We could trigger writeback for this range (and wait
7203 			 * for it to complete) and then invalidate the pages for
7204 			 * this range (through invalidate_inode_pages2_range()),
7205 			 * but that can lead us to a deadlock with a concurrent
7206 			 * call to readahead (a buffered read or a defrag call
7207 			 * triggered a readahead) on a page lock due to an
7208 			 * ordered dio extent we created before but did not have
7209 			 * yet a corresponding bio submitted (whence it can not
7210 			 * complete), which makes readahead wait for that
7211 			 * ordered extent to complete while holding a lock on
7212 			 * that page.
7213 			 */
7214 			ret = nowait ? -EAGAIN : -ENOTBLK;
7215 		}
7216 
7217 		if (ret)
7218 			break;
7219 
7220 		cond_resched();
7221 	}
7222 
7223 	return ret;
7224 }
7225 
7226 /* The callers of this must take lock_extent() */
7227 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7228 				       u64 len, u64 orig_start, u64 block_start,
7229 				       u64 block_len, u64 orig_block_len,
7230 				       u64 ram_bytes, int compress_type,
7231 				       int type)
7232 {
7233 	struct extent_map *em;
7234 	int ret;
7235 
7236 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7237 	       type == BTRFS_ORDERED_COMPRESSED ||
7238 	       type == BTRFS_ORDERED_NOCOW ||
7239 	       type == BTRFS_ORDERED_REGULAR);
7240 
7241 	em = alloc_extent_map();
7242 	if (!em)
7243 		return ERR_PTR(-ENOMEM);
7244 
7245 	em->start = start;
7246 	em->orig_start = orig_start;
7247 	em->len = len;
7248 	em->block_len = block_len;
7249 	em->block_start = block_start;
7250 	em->orig_block_len = orig_block_len;
7251 	em->ram_bytes = ram_bytes;
7252 	em->generation = -1;
7253 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7254 	if (type == BTRFS_ORDERED_PREALLOC) {
7255 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7256 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7257 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7258 		em->compress_type = compress_type;
7259 	}
7260 
7261 	ret = btrfs_replace_extent_map_range(inode, em, true);
7262 	if (ret) {
7263 		free_extent_map(em);
7264 		return ERR_PTR(ret);
7265 	}
7266 
7267 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7268 	return em;
7269 }
7270 
7271 
7272 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7273 					 struct inode *inode,
7274 					 struct btrfs_dio_data *dio_data,
7275 					 u64 start, u64 *lenp,
7276 					 unsigned int iomap_flags)
7277 {
7278 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7279 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7280 	struct extent_map *em = *map;
7281 	int type;
7282 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7283 	struct btrfs_block_group *bg;
7284 	bool can_nocow = false;
7285 	bool space_reserved = false;
7286 	u64 len = *lenp;
7287 	u64 prev_len;
7288 	int ret = 0;
7289 
7290 	/*
7291 	 * We don't allocate a new extent in the following cases
7292 	 *
7293 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7294 	 * existing extent.
7295 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7296 	 * just use the extent.
7297 	 *
7298 	 */
7299 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7300 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7301 	     em->block_start != EXTENT_MAP_HOLE)) {
7302 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7303 			type = BTRFS_ORDERED_PREALLOC;
7304 		else
7305 			type = BTRFS_ORDERED_NOCOW;
7306 		len = min(len, em->len - (start - em->start));
7307 		block_start = em->block_start + (start - em->start);
7308 
7309 		if (can_nocow_extent(inode, start, &len, &orig_start,
7310 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7311 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7312 			if (bg)
7313 				can_nocow = true;
7314 		}
7315 	}
7316 
7317 	prev_len = len;
7318 	if (can_nocow) {
7319 		struct extent_map *em2;
7320 
7321 		/* We can NOCOW, so only need to reserve metadata space. */
7322 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7323 						      nowait);
7324 		if (ret < 0) {
7325 			/* Our caller expects us to free the input extent map. */
7326 			free_extent_map(em);
7327 			*map = NULL;
7328 			btrfs_dec_nocow_writers(bg);
7329 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7330 				ret = -EAGAIN;
7331 			goto out;
7332 		}
7333 		space_reserved = true;
7334 
7335 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7336 					      orig_start, block_start,
7337 					      len, orig_block_len,
7338 					      ram_bytes, type);
7339 		btrfs_dec_nocow_writers(bg);
7340 		if (type == BTRFS_ORDERED_PREALLOC) {
7341 			free_extent_map(em);
7342 			*map = em2;
7343 			em = em2;
7344 		}
7345 
7346 		if (IS_ERR(em2)) {
7347 			ret = PTR_ERR(em2);
7348 			goto out;
7349 		}
7350 
7351 		dio_data->nocow_done = true;
7352 	} else {
7353 		/* Our caller expects us to free the input extent map. */
7354 		free_extent_map(em);
7355 		*map = NULL;
7356 
7357 		if (nowait) {
7358 			ret = -EAGAIN;
7359 			goto out;
7360 		}
7361 
7362 		/*
7363 		 * If we could not allocate data space before locking the file
7364 		 * range and we can't do a NOCOW write, then we have to fail.
7365 		 */
7366 		if (!dio_data->data_space_reserved) {
7367 			ret = -ENOSPC;
7368 			goto out;
7369 		}
7370 
7371 		/*
7372 		 * We have to COW and we have already reserved data space before,
7373 		 * so now we reserve only metadata.
7374 		 */
7375 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7376 						      false);
7377 		if (ret < 0)
7378 			goto out;
7379 		space_reserved = true;
7380 
7381 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7382 		if (IS_ERR(em)) {
7383 			ret = PTR_ERR(em);
7384 			goto out;
7385 		}
7386 		*map = em;
7387 		len = min(len, em->len - (start - em->start));
7388 		if (len < prev_len)
7389 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7390 							prev_len - len, true);
7391 	}
7392 
7393 	/*
7394 	 * We have created our ordered extent, so we can now release our reservation
7395 	 * for an outstanding extent.
7396 	 */
7397 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7398 
7399 	/*
7400 	 * Need to update the i_size under the extent lock so buffered
7401 	 * readers will get the updated i_size when we unlock.
7402 	 */
7403 	if (start + len > i_size_read(inode))
7404 		i_size_write(inode, start + len);
7405 out:
7406 	if (ret && space_reserved) {
7407 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7408 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7409 	}
7410 	*lenp = len;
7411 	return ret;
7412 }
7413 
7414 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7415 		loff_t length, unsigned int flags, struct iomap *iomap,
7416 		struct iomap *srcmap)
7417 {
7418 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7419 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7420 	struct extent_map *em;
7421 	struct extent_state *cached_state = NULL;
7422 	struct btrfs_dio_data *dio_data = iter->private;
7423 	u64 lockstart, lockend;
7424 	const bool write = !!(flags & IOMAP_WRITE);
7425 	int ret = 0;
7426 	u64 len = length;
7427 	const u64 data_alloc_len = length;
7428 	bool unlock_extents = false;
7429 
7430 	/*
7431 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7432 	 * we're NOWAIT we may submit a bio for a partial range and return
7433 	 * EIOCBQUEUED, which would result in an errant short read.
7434 	 *
7435 	 * The best way to handle this would be to allow for partial completions
7436 	 * of iocb's, so we could submit the partial bio, return and fault in
7437 	 * the rest of the pages, and then submit the io for the rest of the
7438 	 * range.  However we don't have that currently, so simply return
7439 	 * -EAGAIN at this point so that the normal path is used.
7440 	 */
7441 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7442 		return -EAGAIN;
7443 
7444 	/*
7445 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7446 	 * to allocate a contiguous array for the checksums.
7447 	 */
7448 	if (!write)
7449 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7450 
7451 	lockstart = start;
7452 	lockend = start + len - 1;
7453 
7454 	/*
7455 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7456 	 * enough if we've written compressed pages to this area, so we need to
7457 	 * flush the dirty pages again to make absolutely sure that any
7458 	 * outstanding dirty pages are on disk - the first flush only starts
7459 	 * compression on the data, while keeping the pages locked, so by the
7460 	 * time the second flush returns we know bios for the compressed pages
7461 	 * were submitted and finished, and the pages no longer under writeback.
7462 	 *
7463 	 * If we have a NOWAIT request and we have any pages in the range that
7464 	 * are locked, likely due to compression still in progress, we don't want
7465 	 * to block on page locks. We also don't want to block on pages marked as
7466 	 * dirty or under writeback (same as for the non-compression case).
7467 	 * iomap_dio_rw() did the same check, but after that and before we got
7468 	 * here, mmap'ed writes may have happened or buffered reads started
7469 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7470 	 * the file range yet.
7471 	 */
7472 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7473 		     &BTRFS_I(inode)->runtime_flags)) {
7474 		if (flags & IOMAP_NOWAIT) {
7475 			if (filemap_range_needs_writeback(inode->i_mapping,
7476 							  lockstart, lockend))
7477 				return -EAGAIN;
7478 		} else {
7479 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7480 						       start + length - 1);
7481 			if (ret)
7482 				return ret;
7483 		}
7484 	}
7485 
7486 	memset(dio_data, 0, sizeof(*dio_data));
7487 
7488 	/*
7489 	 * We always try to allocate data space and must do it before locking
7490 	 * the file range, to avoid deadlocks with concurrent writes to the same
7491 	 * range if the range has several extents and the writes don't expand the
7492 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7493 	 * allocate data space here we continue and later, after locking the
7494 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7495 	 * NOCOW write.
7496 	 */
7497 	if (write && !(flags & IOMAP_NOWAIT)) {
7498 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7499 						  &dio_data->data_reserved,
7500 						  start, data_alloc_len, false);
7501 		if (!ret)
7502 			dio_data->data_space_reserved = true;
7503 		else if (ret && !(BTRFS_I(inode)->flags &
7504 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7505 			goto err;
7506 	}
7507 
7508 	/*
7509 	 * If this errors out it's because we couldn't invalidate pagecache for
7510 	 * this range and we need to fallback to buffered IO, or we are doing a
7511 	 * NOWAIT read/write and we need to block.
7512 	 */
7513 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7514 	if (ret < 0)
7515 		goto err;
7516 
7517 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7518 	if (IS_ERR(em)) {
7519 		ret = PTR_ERR(em);
7520 		goto unlock_err;
7521 	}
7522 
7523 	/*
7524 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7525 	 * io.  INLINE is special, and we could probably kludge it in here, but
7526 	 * it's still buffered so for safety lets just fall back to the generic
7527 	 * buffered path.
7528 	 *
7529 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7530 	 * decompress it, so there will be buffering required no matter what we
7531 	 * do, so go ahead and fallback to buffered.
7532 	 *
7533 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7534 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7535 	 * the generic code.
7536 	 */
7537 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7538 	    em->block_start == EXTENT_MAP_INLINE) {
7539 		free_extent_map(em);
7540 		/*
7541 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7542 		 * fallback to buffered IO. This is not only because we can
7543 		 * block with buffered IO (no support for NOWAIT semantics at
7544 		 * the moment) but also to avoid returning short reads to user
7545 		 * space - this happens if we were able to read some data from
7546 		 * previous non-compressed extents and then when we fallback to
7547 		 * buffered IO, at btrfs_file_read_iter() by calling
7548 		 * filemap_read(), we fail to fault in pages for the read buffer,
7549 		 * in which case filemap_read() returns a short read (the number
7550 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7551 		 */
7552 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7553 		goto unlock_err;
7554 	}
7555 
7556 	len = min(len, em->len - (start - em->start));
7557 
7558 	/*
7559 	 * If we have a NOWAIT request and the range contains multiple extents
7560 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7561 	 * caller fallback to a context where it can do a blocking (without
7562 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7563 	 * success to the caller, which is not optimal for writes and for reads
7564 	 * it can result in unexpected behaviour for an application.
7565 	 *
7566 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7567 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7568 	 * asked for, resulting in an unexpected, and incorrect, short read.
7569 	 * That is, the caller asked to read N bytes and we return less than that,
7570 	 * which is wrong unless we are crossing EOF. This happens if we get a
7571 	 * page fault error when trying to fault in pages for the buffer that is
7572 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7573 	 * have previously submitted bios for other extents in the range, in
7574 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7575 	 * those bios have completed by the time we get the page fault error,
7576 	 * which we return back to our caller - we should only return EIOCBQUEUED
7577 	 * after we have submitted bios for all the extents in the range.
7578 	 */
7579 	if ((flags & IOMAP_NOWAIT) && len < length) {
7580 		free_extent_map(em);
7581 		ret = -EAGAIN;
7582 		goto unlock_err;
7583 	}
7584 
7585 	if (write) {
7586 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7587 						    start, &len, flags);
7588 		if (ret < 0)
7589 			goto unlock_err;
7590 		unlock_extents = true;
7591 		/* Recalc len in case the new em is smaller than requested */
7592 		len = min(len, em->len - (start - em->start));
7593 		if (dio_data->data_space_reserved) {
7594 			u64 release_offset;
7595 			u64 release_len = 0;
7596 
7597 			if (dio_data->nocow_done) {
7598 				release_offset = start;
7599 				release_len = data_alloc_len;
7600 			} else if (len < data_alloc_len) {
7601 				release_offset = start + len;
7602 				release_len = data_alloc_len - len;
7603 			}
7604 
7605 			if (release_len > 0)
7606 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7607 							       dio_data->data_reserved,
7608 							       release_offset,
7609 							       release_len);
7610 		}
7611 	} else {
7612 		/*
7613 		 * We need to unlock only the end area that we aren't using.
7614 		 * The rest is going to be unlocked by the endio routine.
7615 		 */
7616 		lockstart = start + len;
7617 		if (lockstart < lockend)
7618 			unlock_extents = true;
7619 	}
7620 
7621 	if (unlock_extents)
7622 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7623 			      &cached_state);
7624 	else
7625 		free_extent_state(cached_state);
7626 
7627 	/*
7628 	 * Translate extent map information to iomap.
7629 	 * We trim the extents (and move the addr) even though iomap code does
7630 	 * that, since we have locked only the parts we are performing I/O in.
7631 	 */
7632 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7633 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7634 		iomap->addr = IOMAP_NULL_ADDR;
7635 		iomap->type = IOMAP_HOLE;
7636 	} else {
7637 		iomap->addr = em->block_start + (start - em->start);
7638 		iomap->type = IOMAP_MAPPED;
7639 	}
7640 	iomap->offset = start;
7641 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7642 	iomap->length = len;
7643 	free_extent_map(em);
7644 
7645 	return 0;
7646 
7647 unlock_err:
7648 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7649 		      &cached_state);
7650 err:
7651 	if (dio_data->data_space_reserved) {
7652 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7653 					       dio_data->data_reserved,
7654 					       start, data_alloc_len);
7655 		extent_changeset_free(dio_data->data_reserved);
7656 	}
7657 
7658 	return ret;
7659 }
7660 
7661 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7662 		ssize_t written, unsigned int flags, struct iomap *iomap)
7663 {
7664 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7665 	struct btrfs_dio_data *dio_data = iter->private;
7666 	size_t submitted = dio_data->submitted;
7667 	const bool write = !!(flags & IOMAP_WRITE);
7668 	int ret = 0;
7669 
7670 	if (!write && (iomap->type == IOMAP_HOLE)) {
7671 		/* If reading from a hole, unlock and return */
7672 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7673 			      NULL);
7674 		return 0;
7675 	}
7676 
7677 	if (submitted < length) {
7678 		pos += submitted;
7679 		length -= submitted;
7680 		if (write)
7681 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7682 						    pos, length, false);
7683 		else
7684 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7685 				      pos + length - 1, NULL);
7686 		ret = -ENOTBLK;
7687 	}
7688 	if (write) {
7689 		btrfs_put_ordered_extent(dio_data->ordered);
7690 		dio_data->ordered = NULL;
7691 	}
7692 
7693 	if (write)
7694 		extent_changeset_free(dio_data->data_reserved);
7695 	return ret;
7696 }
7697 
7698 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7699 {
7700 	struct btrfs_dio_private *dip =
7701 		container_of(bbio, struct btrfs_dio_private, bbio);
7702 	struct btrfs_inode *inode = bbio->inode;
7703 	struct bio *bio = &bbio->bio;
7704 
7705 	if (bio->bi_status) {
7706 		btrfs_warn(inode->root->fs_info,
7707 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7708 			   btrfs_ino(inode), bio->bi_opf,
7709 			   dip->file_offset, dip->bytes, bio->bi_status);
7710 	}
7711 
7712 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7713 		btrfs_finish_ordered_extent(bbio->ordered, NULL,
7714 					    dip->file_offset, dip->bytes,
7715 					    !bio->bi_status);
7716 	} else {
7717 		unlock_extent(&inode->io_tree, dip->file_offset,
7718 			      dip->file_offset + dip->bytes - 1, NULL);
7719 	}
7720 
7721 	bbio->bio.bi_private = bbio->private;
7722 	iomap_dio_bio_end_io(bio);
7723 }
7724 
7725 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7726 				loff_t file_offset)
7727 {
7728 	struct btrfs_bio *bbio = btrfs_bio(bio);
7729 	struct btrfs_dio_private *dip =
7730 		container_of(bbio, struct btrfs_dio_private, bbio);
7731 	struct btrfs_dio_data *dio_data = iter->private;
7732 
7733 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7734 		       btrfs_dio_end_io, bio->bi_private);
7735 	bbio->inode = BTRFS_I(iter->inode);
7736 	bbio->file_offset = file_offset;
7737 
7738 	dip->file_offset = file_offset;
7739 	dip->bytes = bio->bi_iter.bi_size;
7740 
7741 	dio_data->submitted += bio->bi_iter.bi_size;
7742 
7743 	/*
7744 	 * Check if we are doing a partial write.  If we are, we need to split
7745 	 * the ordered extent to match the submitted bio.  Hang on to the
7746 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7747 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7748 	 * remaining pages is blocked on the outstanding ordered extent.
7749 	 */
7750 	if (iter->flags & IOMAP_WRITE) {
7751 		int ret;
7752 
7753 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7754 		if (ret) {
7755 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7756 						    file_offset, dip->bytes,
7757 						    !ret);
7758 			bio->bi_status = errno_to_blk_status(ret);
7759 			iomap_dio_bio_end_io(bio);
7760 			return;
7761 		}
7762 	}
7763 
7764 	btrfs_submit_bio(bbio, 0);
7765 }
7766 
7767 static const struct iomap_ops btrfs_dio_iomap_ops = {
7768 	.iomap_begin            = btrfs_dio_iomap_begin,
7769 	.iomap_end              = btrfs_dio_iomap_end,
7770 };
7771 
7772 static const struct iomap_dio_ops btrfs_dio_ops = {
7773 	.submit_io		= btrfs_dio_submit_io,
7774 	.bio_set		= &btrfs_dio_bioset,
7775 };
7776 
7777 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7778 {
7779 	struct btrfs_dio_data data = { 0 };
7780 
7781 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7782 			    IOMAP_DIO_PARTIAL, &data, done_before);
7783 }
7784 
7785 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7786 				  size_t done_before)
7787 {
7788 	struct btrfs_dio_data data = { 0 };
7789 
7790 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7791 			    IOMAP_DIO_PARTIAL, &data, done_before);
7792 }
7793 
7794 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7795 			u64 start, u64 len)
7796 {
7797 	int	ret;
7798 
7799 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7800 	if (ret)
7801 		return ret;
7802 
7803 	/*
7804 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7805 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7806 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7807 	 * in the compression of data (in an async thread) and will return
7808 	 * before the compression is done and writeback is started. A second
7809 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7810 	 * complete and writeback to start. We also need to wait for ordered
7811 	 * extents to complete, because our fiemap implementation uses mainly
7812 	 * file extent items to list the extents, searching for extent maps
7813 	 * only for file ranges with holes or prealloc extents to figure out
7814 	 * if we have delalloc in those ranges.
7815 	 */
7816 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7817 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7818 		if (ret)
7819 			return ret;
7820 	}
7821 
7822 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
7823 }
7824 
7825 static int btrfs_writepages(struct address_space *mapping,
7826 			    struct writeback_control *wbc)
7827 {
7828 	return extent_writepages(mapping, wbc);
7829 }
7830 
7831 static void btrfs_readahead(struct readahead_control *rac)
7832 {
7833 	extent_readahead(rac);
7834 }
7835 
7836 /*
7837  * For release_folio() and invalidate_folio() we have a race window where
7838  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7839  * If we continue to release/invalidate the page, we could cause use-after-free
7840  * for subpage spinlock.  So this function is to spin and wait for subpage
7841  * spinlock.
7842  */
7843 static void wait_subpage_spinlock(struct page *page)
7844 {
7845 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7846 	struct btrfs_subpage *subpage;
7847 
7848 	if (!btrfs_is_subpage(fs_info, page))
7849 		return;
7850 
7851 	ASSERT(PagePrivate(page) && page->private);
7852 	subpage = (struct btrfs_subpage *)page->private;
7853 
7854 	/*
7855 	 * This may look insane as we just acquire the spinlock and release it,
7856 	 * without doing anything.  But we just want to make sure no one is
7857 	 * still holding the subpage spinlock.
7858 	 * And since the page is not dirty nor writeback, and we have page
7859 	 * locked, the only possible way to hold a spinlock is from the endio
7860 	 * function to clear page writeback.
7861 	 *
7862 	 * Here we just acquire the spinlock so that all existing callers
7863 	 * should exit and we're safe to release/invalidate the page.
7864 	 */
7865 	spin_lock_irq(&subpage->lock);
7866 	spin_unlock_irq(&subpage->lock);
7867 }
7868 
7869 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7870 {
7871 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7872 
7873 	if (ret == 1) {
7874 		wait_subpage_spinlock(&folio->page);
7875 		clear_page_extent_mapped(&folio->page);
7876 	}
7877 	return ret;
7878 }
7879 
7880 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7881 {
7882 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7883 		return false;
7884 	return __btrfs_release_folio(folio, gfp_flags);
7885 }
7886 
7887 #ifdef CONFIG_MIGRATION
7888 static int btrfs_migrate_folio(struct address_space *mapping,
7889 			     struct folio *dst, struct folio *src,
7890 			     enum migrate_mode mode)
7891 {
7892 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7893 
7894 	if (ret != MIGRATEPAGE_SUCCESS)
7895 		return ret;
7896 
7897 	if (folio_test_ordered(src)) {
7898 		folio_clear_ordered(src);
7899 		folio_set_ordered(dst);
7900 	}
7901 
7902 	return MIGRATEPAGE_SUCCESS;
7903 }
7904 #else
7905 #define btrfs_migrate_folio NULL
7906 #endif
7907 
7908 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7909 				 size_t length)
7910 {
7911 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7912 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7913 	struct extent_io_tree *tree = &inode->io_tree;
7914 	struct extent_state *cached_state = NULL;
7915 	u64 page_start = folio_pos(folio);
7916 	u64 page_end = page_start + folio_size(folio) - 1;
7917 	u64 cur;
7918 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7919 
7920 	/*
7921 	 * We have folio locked so no new ordered extent can be created on this
7922 	 * page, nor bio can be submitted for this folio.
7923 	 *
7924 	 * But already submitted bio can still be finished on this folio.
7925 	 * Furthermore, endio function won't skip folio which has Ordered
7926 	 * (Private2) already cleared, so it's possible for endio and
7927 	 * invalidate_folio to do the same ordered extent accounting twice
7928 	 * on one folio.
7929 	 *
7930 	 * So here we wait for any submitted bios to finish, so that we won't
7931 	 * do double ordered extent accounting on the same folio.
7932 	 */
7933 	folio_wait_writeback(folio);
7934 	wait_subpage_spinlock(&folio->page);
7935 
7936 	/*
7937 	 * For subpage case, we have call sites like
7938 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7939 	 * sectorsize.
7940 	 * If the range doesn't cover the full folio, we don't need to and
7941 	 * shouldn't clear page extent mapped, as folio->private can still
7942 	 * record subpage dirty bits for other part of the range.
7943 	 *
7944 	 * For cases that invalidate the full folio even the range doesn't
7945 	 * cover the full folio, like invalidating the last folio, we're
7946 	 * still safe to wait for ordered extent to finish.
7947 	 */
7948 	if (!(offset == 0 && length == folio_size(folio))) {
7949 		btrfs_release_folio(folio, GFP_NOFS);
7950 		return;
7951 	}
7952 
7953 	if (!inode_evicting)
7954 		lock_extent(tree, page_start, page_end, &cached_state);
7955 
7956 	cur = page_start;
7957 	while (cur < page_end) {
7958 		struct btrfs_ordered_extent *ordered;
7959 		u64 range_end;
7960 		u32 range_len;
7961 		u32 extra_flags = 0;
7962 
7963 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
7964 							   page_end + 1 - cur);
7965 		if (!ordered) {
7966 			range_end = page_end;
7967 			/*
7968 			 * No ordered extent covering this range, we are safe
7969 			 * to delete all extent states in the range.
7970 			 */
7971 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7972 			goto next;
7973 		}
7974 		if (ordered->file_offset > cur) {
7975 			/*
7976 			 * There is a range between [cur, oe->file_offset) not
7977 			 * covered by any ordered extent.
7978 			 * We are safe to delete all extent states, and handle
7979 			 * the ordered extent in the next iteration.
7980 			 */
7981 			range_end = ordered->file_offset - 1;
7982 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7983 			goto next;
7984 		}
7985 
7986 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7987 				page_end);
7988 		ASSERT(range_end + 1 - cur < U32_MAX);
7989 		range_len = range_end + 1 - cur;
7990 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
7991 			/*
7992 			 * If Ordered (Private2) is cleared, it means endio has
7993 			 * already been executed for the range.
7994 			 * We can't delete the extent states as
7995 			 * btrfs_finish_ordered_io() may still use some of them.
7996 			 */
7997 			goto next;
7998 		}
7999 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8000 
8001 		/*
8002 		 * IO on this page will never be started, so we need to account
8003 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8004 		 * here, must leave that up for the ordered extent completion.
8005 		 *
8006 		 * This will also unlock the range for incoming
8007 		 * btrfs_finish_ordered_io().
8008 		 */
8009 		if (!inode_evicting)
8010 			clear_extent_bit(tree, cur, range_end,
8011 					 EXTENT_DELALLOC |
8012 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8013 					 EXTENT_DEFRAG, &cached_state);
8014 
8015 		spin_lock_irq(&inode->ordered_tree.lock);
8016 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8017 		ordered->truncated_len = min(ordered->truncated_len,
8018 					     cur - ordered->file_offset);
8019 		spin_unlock_irq(&inode->ordered_tree.lock);
8020 
8021 		/*
8022 		 * If the ordered extent has finished, we're safe to delete all
8023 		 * the extent states of the range, otherwise
8024 		 * btrfs_finish_ordered_io() will get executed by endio for
8025 		 * other pages, so we can't delete extent states.
8026 		 */
8027 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8028 						   cur, range_end + 1 - cur)) {
8029 			btrfs_finish_ordered_io(ordered);
8030 			/*
8031 			 * The ordered extent has finished, now we're again
8032 			 * safe to delete all extent states of the range.
8033 			 */
8034 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8035 		}
8036 next:
8037 		if (ordered)
8038 			btrfs_put_ordered_extent(ordered);
8039 		/*
8040 		 * Qgroup reserved space handler
8041 		 * Sector(s) here will be either:
8042 		 *
8043 		 * 1) Already written to disk or bio already finished
8044 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8045 		 *    Qgroup will be handled by its qgroup_record then.
8046 		 *    btrfs_qgroup_free_data() call will do nothing here.
8047 		 *
8048 		 * 2) Not written to disk yet
8049 		 *    Then btrfs_qgroup_free_data() call will clear the
8050 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8051 		 *    reserved data space.
8052 		 *    Since the IO will never happen for this page.
8053 		 */
8054 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8055 		if (!inode_evicting) {
8056 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8057 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8058 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8059 				 extra_flags, &cached_state);
8060 		}
8061 		cur = range_end + 1;
8062 	}
8063 	/*
8064 	 * We have iterated through all ordered extents of the page, the page
8065 	 * should not have Ordered (Private2) anymore, or the above iteration
8066 	 * did something wrong.
8067 	 */
8068 	ASSERT(!folio_test_ordered(folio));
8069 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8070 	if (!inode_evicting)
8071 		__btrfs_release_folio(folio, GFP_NOFS);
8072 	clear_page_extent_mapped(&folio->page);
8073 }
8074 
8075 /*
8076  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8077  * called from a page fault handler when a page is first dirtied. Hence we must
8078  * be careful to check for EOF conditions here. We set the page up correctly
8079  * for a written page which means we get ENOSPC checking when writing into
8080  * holes and correct delalloc and unwritten extent mapping on filesystems that
8081  * support these features.
8082  *
8083  * We are not allowed to take the i_mutex here so we have to play games to
8084  * protect against truncate races as the page could now be beyond EOF.  Because
8085  * truncate_setsize() writes the inode size before removing pages, once we have
8086  * the page lock we can determine safely if the page is beyond EOF. If it is not
8087  * beyond EOF, then the page is guaranteed safe against truncation until we
8088  * unlock the page.
8089  */
8090 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8091 {
8092 	struct page *page = vmf->page;
8093 	struct inode *inode = file_inode(vmf->vma->vm_file);
8094 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8095 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8096 	struct btrfs_ordered_extent *ordered;
8097 	struct extent_state *cached_state = NULL;
8098 	struct extent_changeset *data_reserved = NULL;
8099 	unsigned long zero_start;
8100 	loff_t size;
8101 	vm_fault_t ret;
8102 	int ret2;
8103 	int reserved = 0;
8104 	u64 reserved_space;
8105 	u64 page_start;
8106 	u64 page_end;
8107 	u64 end;
8108 
8109 	reserved_space = PAGE_SIZE;
8110 
8111 	sb_start_pagefault(inode->i_sb);
8112 	page_start = page_offset(page);
8113 	page_end = page_start + PAGE_SIZE - 1;
8114 	end = page_end;
8115 
8116 	/*
8117 	 * Reserving delalloc space after obtaining the page lock can lead to
8118 	 * deadlock. For example, if a dirty page is locked by this function
8119 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8120 	 * dirty page write out, then the btrfs_writepages() function could
8121 	 * end up waiting indefinitely to get a lock on the page currently
8122 	 * being processed by btrfs_page_mkwrite() function.
8123 	 */
8124 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8125 					    page_start, reserved_space);
8126 	if (!ret2) {
8127 		ret2 = file_update_time(vmf->vma->vm_file);
8128 		reserved = 1;
8129 	}
8130 	if (ret2) {
8131 		ret = vmf_error(ret2);
8132 		if (reserved)
8133 			goto out;
8134 		goto out_noreserve;
8135 	}
8136 
8137 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8138 again:
8139 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8140 	lock_page(page);
8141 	size = i_size_read(inode);
8142 
8143 	if ((page->mapping != inode->i_mapping) ||
8144 	    (page_start >= size)) {
8145 		/* page got truncated out from underneath us */
8146 		goto out_unlock;
8147 	}
8148 	wait_on_page_writeback(page);
8149 
8150 	lock_extent(io_tree, page_start, page_end, &cached_state);
8151 	ret2 = set_page_extent_mapped(page);
8152 	if (ret2 < 0) {
8153 		ret = vmf_error(ret2);
8154 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8155 		goto out_unlock;
8156 	}
8157 
8158 	/*
8159 	 * we can't set the delalloc bits if there are pending ordered
8160 	 * extents.  Drop our locks and wait for them to finish
8161 	 */
8162 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8163 			PAGE_SIZE);
8164 	if (ordered) {
8165 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8166 		unlock_page(page);
8167 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8168 		btrfs_start_ordered_extent(ordered);
8169 		btrfs_put_ordered_extent(ordered);
8170 		goto again;
8171 	}
8172 
8173 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8174 		reserved_space = round_up(size - page_start,
8175 					  fs_info->sectorsize);
8176 		if (reserved_space < PAGE_SIZE) {
8177 			end = page_start + reserved_space - 1;
8178 			btrfs_delalloc_release_space(BTRFS_I(inode),
8179 					data_reserved, page_start,
8180 					PAGE_SIZE - reserved_space, true);
8181 		}
8182 	}
8183 
8184 	/*
8185 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8186 	 * faulted in, but write(2) could also dirty a page and set delalloc
8187 	 * bits, thus in this case for space account reason, we still need to
8188 	 * clear any delalloc bits within this page range since we have to
8189 	 * reserve data&meta space before lock_page() (see above comments).
8190 	 */
8191 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8192 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8193 			  EXTENT_DEFRAG, &cached_state);
8194 
8195 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8196 					&cached_state);
8197 	if (ret2) {
8198 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8199 		ret = VM_FAULT_SIGBUS;
8200 		goto out_unlock;
8201 	}
8202 
8203 	/* page is wholly or partially inside EOF */
8204 	if (page_start + PAGE_SIZE > size)
8205 		zero_start = offset_in_page(size);
8206 	else
8207 		zero_start = PAGE_SIZE;
8208 
8209 	if (zero_start != PAGE_SIZE)
8210 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8211 
8212 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8213 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8214 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8215 
8216 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8217 
8218 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8219 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8220 
8221 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8222 	sb_end_pagefault(inode->i_sb);
8223 	extent_changeset_free(data_reserved);
8224 	return VM_FAULT_LOCKED;
8225 
8226 out_unlock:
8227 	unlock_page(page);
8228 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8229 out:
8230 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8231 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8232 				     reserved_space, (ret != 0));
8233 out_noreserve:
8234 	sb_end_pagefault(inode->i_sb);
8235 	extent_changeset_free(data_reserved);
8236 	return ret;
8237 }
8238 
8239 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8240 {
8241 	struct btrfs_truncate_control control = {
8242 		.inode = inode,
8243 		.ino = btrfs_ino(inode),
8244 		.min_type = BTRFS_EXTENT_DATA_KEY,
8245 		.clear_extent_range = true,
8246 	};
8247 	struct btrfs_root *root = inode->root;
8248 	struct btrfs_fs_info *fs_info = root->fs_info;
8249 	struct btrfs_block_rsv *rsv;
8250 	int ret;
8251 	struct btrfs_trans_handle *trans;
8252 	u64 mask = fs_info->sectorsize - 1;
8253 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8254 
8255 	if (!skip_writeback) {
8256 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8257 					       inode->vfs_inode.i_size & (~mask),
8258 					       (u64)-1);
8259 		if (ret)
8260 			return ret;
8261 	}
8262 
8263 	/*
8264 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8265 	 * things going on here:
8266 	 *
8267 	 * 1) We need to reserve space to update our inode.
8268 	 *
8269 	 * 2) We need to have something to cache all the space that is going to
8270 	 * be free'd up by the truncate operation, but also have some slack
8271 	 * space reserved in case it uses space during the truncate (thank you
8272 	 * very much snapshotting).
8273 	 *
8274 	 * And we need these to be separate.  The fact is we can use a lot of
8275 	 * space doing the truncate, and we have no earthly idea how much space
8276 	 * we will use, so we need the truncate reservation to be separate so it
8277 	 * doesn't end up using space reserved for updating the inode.  We also
8278 	 * need to be able to stop the transaction and start a new one, which
8279 	 * means we need to be able to update the inode several times, and we
8280 	 * have no idea of knowing how many times that will be, so we can't just
8281 	 * reserve 1 item for the entirety of the operation, so that has to be
8282 	 * done separately as well.
8283 	 *
8284 	 * So that leaves us with
8285 	 *
8286 	 * 1) rsv - for the truncate reservation, which we will steal from the
8287 	 * transaction reservation.
8288 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8289 	 * updating the inode.
8290 	 */
8291 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8292 	if (!rsv)
8293 		return -ENOMEM;
8294 	rsv->size = min_size;
8295 	rsv->failfast = true;
8296 
8297 	/*
8298 	 * 1 for the truncate slack space
8299 	 * 1 for updating the inode.
8300 	 */
8301 	trans = btrfs_start_transaction(root, 2);
8302 	if (IS_ERR(trans)) {
8303 		ret = PTR_ERR(trans);
8304 		goto out;
8305 	}
8306 
8307 	/* Migrate the slack space for the truncate to our reserve */
8308 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8309 				      min_size, false);
8310 	/*
8311 	 * We have reserved 2 metadata units when we started the transaction and
8312 	 * min_size matches 1 unit, so this should never fail, but if it does,
8313 	 * it's not critical we just fail truncation.
8314 	 */
8315 	if (WARN_ON(ret)) {
8316 		btrfs_end_transaction(trans);
8317 		goto out;
8318 	}
8319 
8320 	trans->block_rsv = rsv;
8321 
8322 	while (1) {
8323 		struct extent_state *cached_state = NULL;
8324 		const u64 new_size = inode->vfs_inode.i_size;
8325 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8326 
8327 		control.new_size = new_size;
8328 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8329 		/*
8330 		 * We want to drop from the next block forward in case this new
8331 		 * size is not block aligned since we will be keeping the last
8332 		 * block of the extent just the way it is.
8333 		 */
8334 		btrfs_drop_extent_map_range(inode,
8335 					    ALIGN(new_size, fs_info->sectorsize),
8336 					    (u64)-1, false);
8337 
8338 		ret = btrfs_truncate_inode_items(trans, root, &control);
8339 
8340 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8341 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8342 
8343 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8344 
8345 		trans->block_rsv = &fs_info->trans_block_rsv;
8346 		if (ret != -ENOSPC && ret != -EAGAIN)
8347 			break;
8348 
8349 		ret = btrfs_update_inode(trans, root, inode);
8350 		if (ret)
8351 			break;
8352 
8353 		btrfs_end_transaction(trans);
8354 		btrfs_btree_balance_dirty(fs_info);
8355 
8356 		trans = btrfs_start_transaction(root, 2);
8357 		if (IS_ERR(trans)) {
8358 			ret = PTR_ERR(trans);
8359 			trans = NULL;
8360 			break;
8361 		}
8362 
8363 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8364 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8365 					      rsv, min_size, false);
8366 		/*
8367 		 * We have reserved 2 metadata units when we started the
8368 		 * transaction and min_size matches 1 unit, so this should never
8369 		 * fail, but if it does, it's not critical we just fail truncation.
8370 		 */
8371 		if (WARN_ON(ret))
8372 			break;
8373 
8374 		trans->block_rsv = rsv;
8375 	}
8376 
8377 	/*
8378 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8379 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8380 	 * know we've truncated everything except the last little bit, and can
8381 	 * do btrfs_truncate_block and then update the disk_i_size.
8382 	 */
8383 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8384 		btrfs_end_transaction(trans);
8385 		btrfs_btree_balance_dirty(fs_info);
8386 
8387 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8388 		if (ret)
8389 			goto out;
8390 		trans = btrfs_start_transaction(root, 1);
8391 		if (IS_ERR(trans)) {
8392 			ret = PTR_ERR(trans);
8393 			goto out;
8394 		}
8395 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8396 	}
8397 
8398 	if (trans) {
8399 		int ret2;
8400 
8401 		trans->block_rsv = &fs_info->trans_block_rsv;
8402 		ret2 = btrfs_update_inode(trans, root, inode);
8403 		if (ret2 && !ret)
8404 			ret = ret2;
8405 
8406 		ret2 = btrfs_end_transaction(trans);
8407 		if (ret2 && !ret)
8408 			ret = ret2;
8409 		btrfs_btree_balance_dirty(fs_info);
8410 	}
8411 out:
8412 	btrfs_free_block_rsv(fs_info, rsv);
8413 	/*
8414 	 * So if we truncate and then write and fsync we normally would just
8415 	 * write the extents that changed, which is a problem if we need to
8416 	 * first truncate that entire inode.  So set this flag so we write out
8417 	 * all of the extents in the inode to the sync log so we're completely
8418 	 * safe.
8419 	 *
8420 	 * If no extents were dropped or trimmed we don't need to force the next
8421 	 * fsync to truncate all the inode's items from the log and re-log them
8422 	 * all. This means the truncate operation did not change the file size,
8423 	 * or changed it to a smaller size but there was only an implicit hole
8424 	 * between the old i_size and the new i_size, and there were no prealloc
8425 	 * extents beyond i_size to drop.
8426 	 */
8427 	if (control.extents_found > 0)
8428 		btrfs_set_inode_full_sync(inode);
8429 
8430 	return ret;
8431 }
8432 
8433 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8434 				     struct inode *dir)
8435 {
8436 	struct inode *inode;
8437 
8438 	inode = new_inode(dir->i_sb);
8439 	if (inode) {
8440 		/*
8441 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8442 		 * the parent's sgid bit is set. This is probably a bug.
8443 		 */
8444 		inode_init_owner(idmap, inode, NULL,
8445 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8446 		inode->i_op = &btrfs_dir_inode_operations;
8447 		inode->i_fop = &btrfs_dir_file_operations;
8448 	}
8449 	return inode;
8450 }
8451 
8452 struct inode *btrfs_alloc_inode(struct super_block *sb)
8453 {
8454 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8455 	struct btrfs_inode *ei;
8456 	struct inode *inode;
8457 
8458 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8459 	if (!ei)
8460 		return NULL;
8461 
8462 	ei->root = NULL;
8463 	ei->generation = 0;
8464 	ei->last_trans = 0;
8465 	ei->last_sub_trans = 0;
8466 	ei->logged_trans = 0;
8467 	ei->delalloc_bytes = 0;
8468 	ei->new_delalloc_bytes = 0;
8469 	ei->defrag_bytes = 0;
8470 	ei->disk_i_size = 0;
8471 	ei->flags = 0;
8472 	ei->ro_flags = 0;
8473 	ei->csum_bytes = 0;
8474 	ei->index_cnt = (u64)-1;
8475 	ei->dir_index = 0;
8476 	ei->last_unlink_trans = 0;
8477 	ei->last_reflink_trans = 0;
8478 	ei->last_log_commit = 0;
8479 
8480 	spin_lock_init(&ei->lock);
8481 	ei->outstanding_extents = 0;
8482 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8483 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8484 					      BTRFS_BLOCK_RSV_DELALLOC);
8485 	ei->runtime_flags = 0;
8486 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8487 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8488 
8489 	ei->delayed_node = NULL;
8490 
8491 	ei->i_otime.tv_sec = 0;
8492 	ei->i_otime.tv_nsec = 0;
8493 
8494 	inode = &ei->vfs_inode;
8495 	extent_map_tree_init(&ei->extent_tree);
8496 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8497 	ei->io_tree.inode = ei;
8498 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8499 			    IO_TREE_INODE_FILE_EXTENT);
8500 	mutex_init(&ei->log_mutex);
8501 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8502 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8503 	INIT_LIST_HEAD(&ei->delayed_iput);
8504 	RB_CLEAR_NODE(&ei->rb_node);
8505 	init_rwsem(&ei->i_mmap_lock);
8506 
8507 	return inode;
8508 }
8509 
8510 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8511 void btrfs_test_destroy_inode(struct inode *inode)
8512 {
8513 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8514 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8515 }
8516 #endif
8517 
8518 void btrfs_free_inode(struct inode *inode)
8519 {
8520 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8521 }
8522 
8523 void btrfs_destroy_inode(struct inode *vfs_inode)
8524 {
8525 	struct btrfs_ordered_extent *ordered;
8526 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8527 	struct btrfs_root *root = inode->root;
8528 	bool freespace_inode;
8529 
8530 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8531 	WARN_ON(vfs_inode->i_data.nrpages);
8532 	WARN_ON(inode->block_rsv.reserved);
8533 	WARN_ON(inode->block_rsv.size);
8534 	WARN_ON(inode->outstanding_extents);
8535 	if (!S_ISDIR(vfs_inode->i_mode)) {
8536 		WARN_ON(inode->delalloc_bytes);
8537 		WARN_ON(inode->new_delalloc_bytes);
8538 	}
8539 	WARN_ON(inode->csum_bytes);
8540 	WARN_ON(inode->defrag_bytes);
8541 
8542 	/*
8543 	 * This can happen where we create an inode, but somebody else also
8544 	 * created the same inode and we need to destroy the one we already
8545 	 * created.
8546 	 */
8547 	if (!root)
8548 		return;
8549 
8550 	/*
8551 	 * If this is a free space inode do not take the ordered extents lockdep
8552 	 * map.
8553 	 */
8554 	freespace_inode = btrfs_is_free_space_inode(inode);
8555 
8556 	while (1) {
8557 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8558 		if (!ordered)
8559 			break;
8560 		else {
8561 			btrfs_err(root->fs_info,
8562 				  "found ordered extent %llu %llu on inode cleanup",
8563 				  ordered->file_offset, ordered->num_bytes);
8564 
8565 			if (!freespace_inode)
8566 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8567 
8568 			btrfs_remove_ordered_extent(inode, ordered);
8569 			btrfs_put_ordered_extent(ordered);
8570 			btrfs_put_ordered_extent(ordered);
8571 		}
8572 	}
8573 	btrfs_qgroup_check_reserved_leak(inode);
8574 	inode_tree_del(inode);
8575 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8576 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8577 	btrfs_put_root(inode->root);
8578 }
8579 
8580 int btrfs_drop_inode(struct inode *inode)
8581 {
8582 	struct btrfs_root *root = BTRFS_I(inode)->root;
8583 
8584 	if (root == NULL)
8585 		return 1;
8586 
8587 	/* the snap/subvol tree is on deleting */
8588 	if (btrfs_root_refs(&root->root_item) == 0)
8589 		return 1;
8590 	else
8591 		return generic_drop_inode(inode);
8592 }
8593 
8594 static void init_once(void *foo)
8595 {
8596 	struct btrfs_inode *ei = foo;
8597 
8598 	inode_init_once(&ei->vfs_inode);
8599 }
8600 
8601 void __cold btrfs_destroy_cachep(void)
8602 {
8603 	/*
8604 	 * Make sure all delayed rcu free inodes are flushed before we
8605 	 * destroy cache.
8606 	 */
8607 	rcu_barrier();
8608 	bioset_exit(&btrfs_dio_bioset);
8609 	kmem_cache_destroy(btrfs_inode_cachep);
8610 }
8611 
8612 int __init btrfs_init_cachep(void)
8613 {
8614 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8615 			sizeof(struct btrfs_inode), 0,
8616 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8617 			init_once);
8618 	if (!btrfs_inode_cachep)
8619 		goto fail;
8620 
8621 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8622 			offsetof(struct btrfs_dio_private, bbio.bio),
8623 			BIOSET_NEED_BVECS))
8624 		goto fail;
8625 
8626 	return 0;
8627 fail:
8628 	btrfs_destroy_cachep();
8629 	return -ENOMEM;
8630 }
8631 
8632 static int btrfs_getattr(struct mnt_idmap *idmap,
8633 			 const struct path *path, struct kstat *stat,
8634 			 u32 request_mask, unsigned int flags)
8635 {
8636 	u64 delalloc_bytes;
8637 	u64 inode_bytes;
8638 	struct inode *inode = d_inode(path->dentry);
8639 	u32 blocksize = inode->i_sb->s_blocksize;
8640 	u32 bi_flags = BTRFS_I(inode)->flags;
8641 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8642 
8643 	stat->result_mask |= STATX_BTIME;
8644 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8645 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8646 	if (bi_flags & BTRFS_INODE_APPEND)
8647 		stat->attributes |= STATX_ATTR_APPEND;
8648 	if (bi_flags & BTRFS_INODE_COMPRESS)
8649 		stat->attributes |= STATX_ATTR_COMPRESSED;
8650 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8651 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8652 	if (bi_flags & BTRFS_INODE_NODUMP)
8653 		stat->attributes |= STATX_ATTR_NODUMP;
8654 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8655 		stat->attributes |= STATX_ATTR_VERITY;
8656 
8657 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8658 				  STATX_ATTR_COMPRESSED |
8659 				  STATX_ATTR_IMMUTABLE |
8660 				  STATX_ATTR_NODUMP);
8661 
8662 	generic_fillattr(idmap, request_mask, inode, stat);
8663 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8664 
8665 	spin_lock(&BTRFS_I(inode)->lock);
8666 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8667 	inode_bytes = inode_get_bytes(inode);
8668 	spin_unlock(&BTRFS_I(inode)->lock);
8669 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8670 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8671 	return 0;
8672 }
8673 
8674 static int btrfs_rename_exchange(struct inode *old_dir,
8675 			      struct dentry *old_dentry,
8676 			      struct inode *new_dir,
8677 			      struct dentry *new_dentry)
8678 {
8679 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8680 	struct btrfs_trans_handle *trans;
8681 	unsigned int trans_num_items;
8682 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8683 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8684 	struct inode *new_inode = new_dentry->d_inode;
8685 	struct inode *old_inode = old_dentry->d_inode;
8686 	struct btrfs_rename_ctx old_rename_ctx;
8687 	struct btrfs_rename_ctx new_rename_ctx;
8688 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8689 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8690 	u64 old_idx = 0;
8691 	u64 new_idx = 0;
8692 	int ret;
8693 	int ret2;
8694 	bool need_abort = false;
8695 	struct fscrypt_name old_fname, new_fname;
8696 	struct fscrypt_str *old_name, *new_name;
8697 
8698 	/*
8699 	 * For non-subvolumes allow exchange only within one subvolume, in the
8700 	 * same inode namespace. Two subvolumes (represented as directory) can
8701 	 * be exchanged as they're a logical link and have a fixed inode number.
8702 	 */
8703 	if (root != dest &&
8704 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8705 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8706 		return -EXDEV;
8707 
8708 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8709 	if (ret)
8710 		return ret;
8711 
8712 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8713 	if (ret) {
8714 		fscrypt_free_filename(&old_fname);
8715 		return ret;
8716 	}
8717 
8718 	old_name = &old_fname.disk_name;
8719 	new_name = &new_fname.disk_name;
8720 
8721 	/* close the race window with snapshot create/destroy ioctl */
8722 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8723 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8724 		down_read(&fs_info->subvol_sem);
8725 
8726 	/*
8727 	 * For each inode:
8728 	 * 1 to remove old dir item
8729 	 * 1 to remove old dir index
8730 	 * 1 to add new dir item
8731 	 * 1 to add new dir index
8732 	 * 1 to update parent inode
8733 	 *
8734 	 * If the parents are the same, we only need to account for one
8735 	 */
8736 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8737 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8738 		/*
8739 		 * 1 to remove old root ref
8740 		 * 1 to remove old root backref
8741 		 * 1 to add new root ref
8742 		 * 1 to add new root backref
8743 		 */
8744 		trans_num_items += 4;
8745 	} else {
8746 		/*
8747 		 * 1 to update inode item
8748 		 * 1 to remove old inode ref
8749 		 * 1 to add new inode ref
8750 		 */
8751 		trans_num_items += 3;
8752 	}
8753 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8754 		trans_num_items += 4;
8755 	else
8756 		trans_num_items += 3;
8757 	trans = btrfs_start_transaction(root, trans_num_items);
8758 	if (IS_ERR(trans)) {
8759 		ret = PTR_ERR(trans);
8760 		goto out_notrans;
8761 	}
8762 
8763 	if (dest != root) {
8764 		ret = btrfs_record_root_in_trans(trans, dest);
8765 		if (ret)
8766 			goto out_fail;
8767 	}
8768 
8769 	/*
8770 	 * We need to find a free sequence number both in the source and
8771 	 * in the destination directory for the exchange.
8772 	 */
8773 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8774 	if (ret)
8775 		goto out_fail;
8776 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8777 	if (ret)
8778 		goto out_fail;
8779 
8780 	BTRFS_I(old_inode)->dir_index = 0ULL;
8781 	BTRFS_I(new_inode)->dir_index = 0ULL;
8782 
8783 	/* Reference for the source. */
8784 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8785 		/* force full log commit if subvolume involved. */
8786 		btrfs_set_log_full_commit(trans);
8787 	} else {
8788 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8789 					     btrfs_ino(BTRFS_I(new_dir)),
8790 					     old_idx);
8791 		if (ret)
8792 			goto out_fail;
8793 		need_abort = true;
8794 	}
8795 
8796 	/* And now for the dest. */
8797 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8798 		/* force full log commit if subvolume involved. */
8799 		btrfs_set_log_full_commit(trans);
8800 	} else {
8801 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8802 					     btrfs_ino(BTRFS_I(old_dir)),
8803 					     new_idx);
8804 		if (ret) {
8805 			if (need_abort)
8806 				btrfs_abort_transaction(trans, ret);
8807 			goto out_fail;
8808 		}
8809 	}
8810 
8811 	/* Update inode version and ctime/mtime. */
8812 	inode_inc_iversion(old_dir);
8813 	inode_inc_iversion(new_dir);
8814 	inode_inc_iversion(old_inode);
8815 	inode_inc_iversion(new_inode);
8816 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8817 
8818 	if (old_dentry->d_parent != new_dentry->d_parent) {
8819 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8820 					BTRFS_I(old_inode), true);
8821 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8822 					BTRFS_I(new_inode), true);
8823 	}
8824 
8825 	/* src is a subvolume */
8826 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8827 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8828 	} else { /* src is an inode */
8829 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8830 					   BTRFS_I(old_dentry->d_inode),
8831 					   old_name, &old_rename_ctx);
8832 		if (!ret)
8833 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8834 	}
8835 	if (ret) {
8836 		btrfs_abort_transaction(trans, ret);
8837 		goto out_fail;
8838 	}
8839 
8840 	/* dest is a subvolume */
8841 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8842 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8843 	} else { /* dest is an inode */
8844 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8845 					   BTRFS_I(new_dentry->d_inode),
8846 					   new_name, &new_rename_ctx);
8847 		if (!ret)
8848 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8849 	}
8850 	if (ret) {
8851 		btrfs_abort_transaction(trans, ret);
8852 		goto out_fail;
8853 	}
8854 
8855 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8856 			     new_name, 0, old_idx);
8857 	if (ret) {
8858 		btrfs_abort_transaction(trans, ret);
8859 		goto out_fail;
8860 	}
8861 
8862 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8863 			     old_name, 0, new_idx);
8864 	if (ret) {
8865 		btrfs_abort_transaction(trans, ret);
8866 		goto out_fail;
8867 	}
8868 
8869 	if (old_inode->i_nlink == 1)
8870 		BTRFS_I(old_inode)->dir_index = old_idx;
8871 	if (new_inode->i_nlink == 1)
8872 		BTRFS_I(new_inode)->dir_index = new_idx;
8873 
8874 	/*
8875 	 * Now pin the logs of the roots. We do it to ensure that no other task
8876 	 * can sync the logs while we are in progress with the rename, because
8877 	 * that could result in an inconsistency in case any of the inodes that
8878 	 * are part of this rename operation were logged before.
8879 	 */
8880 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8881 		btrfs_pin_log_trans(root);
8882 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8883 		btrfs_pin_log_trans(dest);
8884 
8885 	/* Do the log updates for all inodes. */
8886 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8887 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8888 				   old_rename_ctx.index, new_dentry->d_parent);
8889 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8890 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8891 				   new_rename_ctx.index, old_dentry->d_parent);
8892 
8893 	/* Now unpin the logs. */
8894 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8895 		btrfs_end_log_trans(root);
8896 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8897 		btrfs_end_log_trans(dest);
8898 out_fail:
8899 	ret2 = btrfs_end_transaction(trans);
8900 	ret = ret ? ret : ret2;
8901 out_notrans:
8902 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8903 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8904 		up_read(&fs_info->subvol_sem);
8905 
8906 	fscrypt_free_filename(&new_fname);
8907 	fscrypt_free_filename(&old_fname);
8908 	return ret;
8909 }
8910 
8911 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8912 					struct inode *dir)
8913 {
8914 	struct inode *inode;
8915 
8916 	inode = new_inode(dir->i_sb);
8917 	if (inode) {
8918 		inode_init_owner(idmap, inode, dir,
8919 				 S_IFCHR | WHITEOUT_MODE);
8920 		inode->i_op = &btrfs_special_inode_operations;
8921 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8922 	}
8923 	return inode;
8924 }
8925 
8926 static int btrfs_rename(struct mnt_idmap *idmap,
8927 			struct inode *old_dir, struct dentry *old_dentry,
8928 			struct inode *new_dir, struct dentry *new_dentry,
8929 			unsigned int flags)
8930 {
8931 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8932 	struct btrfs_new_inode_args whiteout_args = {
8933 		.dir = old_dir,
8934 		.dentry = old_dentry,
8935 	};
8936 	struct btrfs_trans_handle *trans;
8937 	unsigned int trans_num_items;
8938 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8939 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8940 	struct inode *new_inode = d_inode(new_dentry);
8941 	struct inode *old_inode = d_inode(old_dentry);
8942 	struct btrfs_rename_ctx rename_ctx;
8943 	u64 index = 0;
8944 	int ret;
8945 	int ret2;
8946 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8947 	struct fscrypt_name old_fname, new_fname;
8948 
8949 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8950 		return -EPERM;
8951 
8952 	/* we only allow rename subvolume link between subvolumes */
8953 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8954 		return -EXDEV;
8955 
8956 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8957 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8958 		return -ENOTEMPTY;
8959 
8960 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8961 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8962 		return -ENOTEMPTY;
8963 
8964 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8965 	if (ret)
8966 		return ret;
8967 
8968 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8969 	if (ret) {
8970 		fscrypt_free_filename(&old_fname);
8971 		return ret;
8972 	}
8973 
8974 	/* check for collisions, even if the  name isn't there */
8975 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8976 	if (ret) {
8977 		if (ret == -EEXIST) {
8978 			/* we shouldn't get
8979 			 * eexist without a new_inode */
8980 			if (WARN_ON(!new_inode)) {
8981 				goto out_fscrypt_names;
8982 			}
8983 		} else {
8984 			/* maybe -EOVERFLOW */
8985 			goto out_fscrypt_names;
8986 		}
8987 	}
8988 	ret = 0;
8989 
8990 	/*
8991 	 * we're using rename to replace one file with another.  Start IO on it
8992 	 * now so  we don't add too much work to the end of the transaction
8993 	 */
8994 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8995 		filemap_flush(old_inode->i_mapping);
8996 
8997 	if (flags & RENAME_WHITEOUT) {
8998 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8999 		if (!whiteout_args.inode) {
9000 			ret = -ENOMEM;
9001 			goto out_fscrypt_names;
9002 		}
9003 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9004 		if (ret)
9005 			goto out_whiteout_inode;
9006 	} else {
9007 		/* 1 to update the old parent inode. */
9008 		trans_num_items = 1;
9009 	}
9010 
9011 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9012 		/* Close the race window with snapshot create/destroy ioctl */
9013 		down_read(&fs_info->subvol_sem);
9014 		/*
9015 		 * 1 to remove old root ref
9016 		 * 1 to remove old root backref
9017 		 * 1 to add new root ref
9018 		 * 1 to add new root backref
9019 		 */
9020 		trans_num_items += 4;
9021 	} else {
9022 		/*
9023 		 * 1 to update inode
9024 		 * 1 to remove old inode ref
9025 		 * 1 to add new inode ref
9026 		 */
9027 		trans_num_items += 3;
9028 	}
9029 	/*
9030 	 * 1 to remove old dir item
9031 	 * 1 to remove old dir index
9032 	 * 1 to add new dir item
9033 	 * 1 to add new dir index
9034 	 */
9035 	trans_num_items += 4;
9036 	/* 1 to update new parent inode if it's not the same as the old parent */
9037 	if (new_dir != old_dir)
9038 		trans_num_items++;
9039 	if (new_inode) {
9040 		/*
9041 		 * 1 to update inode
9042 		 * 1 to remove inode ref
9043 		 * 1 to remove dir item
9044 		 * 1 to remove dir index
9045 		 * 1 to possibly add orphan item
9046 		 */
9047 		trans_num_items += 5;
9048 	}
9049 	trans = btrfs_start_transaction(root, trans_num_items);
9050 	if (IS_ERR(trans)) {
9051 		ret = PTR_ERR(trans);
9052 		goto out_notrans;
9053 	}
9054 
9055 	if (dest != root) {
9056 		ret = btrfs_record_root_in_trans(trans, dest);
9057 		if (ret)
9058 			goto out_fail;
9059 	}
9060 
9061 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9062 	if (ret)
9063 		goto out_fail;
9064 
9065 	BTRFS_I(old_inode)->dir_index = 0ULL;
9066 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9067 		/* force full log commit if subvolume involved. */
9068 		btrfs_set_log_full_commit(trans);
9069 	} else {
9070 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9071 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9072 					     index);
9073 		if (ret)
9074 			goto out_fail;
9075 	}
9076 
9077 	inode_inc_iversion(old_dir);
9078 	inode_inc_iversion(new_dir);
9079 	inode_inc_iversion(old_inode);
9080 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9081 
9082 	if (old_dentry->d_parent != new_dentry->d_parent)
9083 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9084 					BTRFS_I(old_inode), true);
9085 
9086 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9087 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9088 	} else {
9089 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9090 					   BTRFS_I(d_inode(old_dentry)),
9091 					   &old_fname.disk_name, &rename_ctx);
9092 		if (!ret)
9093 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9094 	}
9095 	if (ret) {
9096 		btrfs_abort_transaction(trans, ret);
9097 		goto out_fail;
9098 	}
9099 
9100 	if (new_inode) {
9101 		inode_inc_iversion(new_inode);
9102 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9103 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9104 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9105 			BUG_ON(new_inode->i_nlink == 0);
9106 		} else {
9107 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9108 						 BTRFS_I(d_inode(new_dentry)),
9109 						 &new_fname.disk_name);
9110 		}
9111 		if (!ret && new_inode->i_nlink == 0)
9112 			ret = btrfs_orphan_add(trans,
9113 					BTRFS_I(d_inode(new_dentry)));
9114 		if (ret) {
9115 			btrfs_abort_transaction(trans, ret);
9116 			goto out_fail;
9117 		}
9118 	}
9119 
9120 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9121 			     &new_fname.disk_name, 0, index);
9122 	if (ret) {
9123 		btrfs_abort_transaction(trans, ret);
9124 		goto out_fail;
9125 	}
9126 
9127 	if (old_inode->i_nlink == 1)
9128 		BTRFS_I(old_inode)->dir_index = index;
9129 
9130 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9131 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9132 				   rename_ctx.index, new_dentry->d_parent);
9133 
9134 	if (flags & RENAME_WHITEOUT) {
9135 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9136 		if (ret) {
9137 			btrfs_abort_transaction(trans, ret);
9138 			goto out_fail;
9139 		} else {
9140 			unlock_new_inode(whiteout_args.inode);
9141 			iput(whiteout_args.inode);
9142 			whiteout_args.inode = NULL;
9143 		}
9144 	}
9145 out_fail:
9146 	ret2 = btrfs_end_transaction(trans);
9147 	ret = ret ? ret : ret2;
9148 out_notrans:
9149 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9150 		up_read(&fs_info->subvol_sem);
9151 	if (flags & RENAME_WHITEOUT)
9152 		btrfs_new_inode_args_destroy(&whiteout_args);
9153 out_whiteout_inode:
9154 	if (flags & RENAME_WHITEOUT)
9155 		iput(whiteout_args.inode);
9156 out_fscrypt_names:
9157 	fscrypt_free_filename(&old_fname);
9158 	fscrypt_free_filename(&new_fname);
9159 	return ret;
9160 }
9161 
9162 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9163 			 struct dentry *old_dentry, struct inode *new_dir,
9164 			 struct dentry *new_dentry, unsigned int flags)
9165 {
9166 	int ret;
9167 
9168 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9169 		return -EINVAL;
9170 
9171 	if (flags & RENAME_EXCHANGE)
9172 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9173 					    new_dentry);
9174 	else
9175 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9176 				   new_dentry, flags);
9177 
9178 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9179 
9180 	return ret;
9181 }
9182 
9183 struct btrfs_delalloc_work {
9184 	struct inode *inode;
9185 	struct completion completion;
9186 	struct list_head list;
9187 	struct btrfs_work work;
9188 };
9189 
9190 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9191 {
9192 	struct btrfs_delalloc_work *delalloc_work;
9193 	struct inode *inode;
9194 
9195 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9196 				     work);
9197 	inode = delalloc_work->inode;
9198 	filemap_flush(inode->i_mapping);
9199 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9200 				&BTRFS_I(inode)->runtime_flags))
9201 		filemap_flush(inode->i_mapping);
9202 
9203 	iput(inode);
9204 	complete(&delalloc_work->completion);
9205 }
9206 
9207 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9208 {
9209 	struct btrfs_delalloc_work *work;
9210 
9211 	work = kmalloc(sizeof(*work), GFP_NOFS);
9212 	if (!work)
9213 		return NULL;
9214 
9215 	init_completion(&work->completion);
9216 	INIT_LIST_HEAD(&work->list);
9217 	work->inode = inode;
9218 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9219 
9220 	return work;
9221 }
9222 
9223 /*
9224  * some fairly slow code that needs optimization. This walks the list
9225  * of all the inodes with pending delalloc and forces them to disk.
9226  */
9227 static int start_delalloc_inodes(struct btrfs_root *root,
9228 				 struct writeback_control *wbc, bool snapshot,
9229 				 bool in_reclaim_context)
9230 {
9231 	struct btrfs_inode *binode;
9232 	struct inode *inode;
9233 	struct btrfs_delalloc_work *work, *next;
9234 	LIST_HEAD(works);
9235 	LIST_HEAD(splice);
9236 	int ret = 0;
9237 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9238 
9239 	mutex_lock(&root->delalloc_mutex);
9240 	spin_lock(&root->delalloc_lock);
9241 	list_splice_init(&root->delalloc_inodes, &splice);
9242 	while (!list_empty(&splice)) {
9243 		binode = list_entry(splice.next, struct btrfs_inode,
9244 				    delalloc_inodes);
9245 
9246 		list_move_tail(&binode->delalloc_inodes,
9247 			       &root->delalloc_inodes);
9248 
9249 		if (in_reclaim_context &&
9250 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9251 			continue;
9252 
9253 		inode = igrab(&binode->vfs_inode);
9254 		if (!inode) {
9255 			cond_resched_lock(&root->delalloc_lock);
9256 			continue;
9257 		}
9258 		spin_unlock(&root->delalloc_lock);
9259 
9260 		if (snapshot)
9261 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9262 				&binode->runtime_flags);
9263 		if (full_flush) {
9264 			work = btrfs_alloc_delalloc_work(inode);
9265 			if (!work) {
9266 				iput(inode);
9267 				ret = -ENOMEM;
9268 				goto out;
9269 			}
9270 			list_add_tail(&work->list, &works);
9271 			btrfs_queue_work(root->fs_info->flush_workers,
9272 					 &work->work);
9273 		} else {
9274 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9275 			btrfs_add_delayed_iput(BTRFS_I(inode));
9276 			if (ret || wbc->nr_to_write <= 0)
9277 				goto out;
9278 		}
9279 		cond_resched();
9280 		spin_lock(&root->delalloc_lock);
9281 	}
9282 	spin_unlock(&root->delalloc_lock);
9283 
9284 out:
9285 	list_for_each_entry_safe(work, next, &works, list) {
9286 		list_del_init(&work->list);
9287 		wait_for_completion(&work->completion);
9288 		kfree(work);
9289 	}
9290 
9291 	if (!list_empty(&splice)) {
9292 		spin_lock(&root->delalloc_lock);
9293 		list_splice_tail(&splice, &root->delalloc_inodes);
9294 		spin_unlock(&root->delalloc_lock);
9295 	}
9296 	mutex_unlock(&root->delalloc_mutex);
9297 	return ret;
9298 }
9299 
9300 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9301 {
9302 	struct writeback_control wbc = {
9303 		.nr_to_write = LONG_MAX,
9304 		.sync_mode = WB_SYNC_NONE,
9305 		.range_start = 0,
9306 		.range_end = LLONG_MAX,
9307 	};
9308 	struct btrfs_fs_info *fs_info = root->fs_info;
9309 
9310 	if (BTRFS_FS_ERROR(fs_info))
9311 		return -EROFS;
9312 
9313 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9314 }
9315 
9316 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9317 			       bool in_reclaim_context)
9318 {
9319 	struct writeback_control wbc = {
9320 		.nr_to_write = nr,
9321 		.sync_mode = WB_SYNC_NONE,
9322 		.range_start = 0,
9323 		.range_end = LLONG_MAX,
9324 	};
9325 	struct btrfs_root *root;
9326 	LIST_HEAD(splice);
9327 	int ret;
9328 
9329 	if (BTRFS_FS_ERROR(fs_info))
9330 		return -EROFS;
9331 
9332 	mutex_lock(&fs_info->delalloc_root_mutex);
9333 	spin_lock(&fs_info->delalloc_root_lock);
9334 	list_splice_init(&fs_info->delalloc_roots, &splice);
9335 	while (!list_empty(&splice)) {
9336 		/*
9337 		 * Reset nr_to_write here so we know that we're doing a full
9338 		 * flush.
9339 		 */
9340 		if (nr == LONG_MAX)
9341 			wbc.nr_to_write = LONG_MAX;
9342 
9343 		root = list_first_entry(&splice, struct btrfs_root,
9344 					delalloc_root);
9345 		root = btrfs_grab_root(root);
9346 		BUG_ON(!root);
9347 		list_move_tail(&root->delalloc_root,
9348 			       &fs_info->delalloc_roots);
9349 		spin_unlock(&fs_info->delalloc_root_lock);
9350 
9351 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9352 		btrfs_put_root(root);
9353 		if (ret < 0 || wbc.nr_to_write <= 0)
9354 			goto out;
9355 		spin_lock(&fs_info->delalloc_root_lock);
9356 	}
9357 	spin_unlock(&fs_info->delalloc_root_lock);
9358 
9359 	ret = 0;
9360 out:
9361 	if (!list_empty(&splice)) {
9362 		spin_lock(&fs_info->delalloc_root_lock);
9363 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9364 		spin_unlock(&fs_info->delalloc_root_lock);
9365 	}
9366 	mutex_unlock(&fs_info->delalloc_root_mutex);
9367 	return ret;
9368 }
9369 
9370 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9371 			 struct dentry *dentry, const char *symname)
9372 {
9373 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9374 	struct btrfs_trans_handle *trans;
9375 	struct btrfs_root *root = BTRFS_I(dir)->root;
9376 	struct btrfs_path *path;
9377 	struct btrfs_key key;
9378 	struct inode *inode;
9379 	struct btrfs_new_inode_args new_inode_args = {
9380 		.dir = dir,
9381 		.dentry = dentry,
9382 	};
9383 	unsigned int trans_num_items;
9384 	int err;
9385 	int name_len;
9386 	int datasize;
9387 	unsigned long ptr;
9388 	struct btrfs_file_extent_item *ei;
9389 	struct extent_buffer *leaf;
9390 
9391 	name_len = strlen(symname);
9392 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9393 		return -ENAMETOOLONG;
9394 
9395 	inode = new_inode(dir->i_sb);
9396 	if (!inode)
9397 		return -ENOMEM;
9398 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9399 	inode->i_op = &btrfs_symlink_inode_operations;
9400 	inode_nohighmem(inode);
9401 	inode->i_mapping->a_ops = &btrfs_aops;
9402 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9403 	inode_set_bytes(inode, name_len);
9404 
9405 	new_inode_args.inode = inode;
9406 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9407 	if (err)
9408 		goto out_inode;
9409 	/* 1 additional item for the inline extent */
9410 	trans_num_items++;
9411 
9412 	trans = btrfs_start_transaction(root, trans_num_items);
9413 	if (IS_ERR(trans)) {
9414 		err = PTR_ERR(trans);
9415 		goto out_new_inode_args;
9416 	}
9417 
9418 	err = btrfs_create_new_inode(trans, &new_inode_args);
9419 	if (err)
9420 		goto out;
9421 
9422 	path = btrfs_alloc_path();
9423 	if (!path) {
9424 		err = -ENOMEM;
9425 		btrfs_abort_transaction(trans, err);
9426 		discard_new_inode(inode);
9427 		inode = NULL;
9428 		goto out;
9429 	}
9430 	key.objectid = btrfs_ino(BTRFS_I(inode));
9431 	key.offset = 0;
9432 	key.type = BTRFS_EXTENT_DATA_KEY;
9433 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9434 	err = btrfs_insert_empty_item(trans, root, path, &key,
9435 				      datasize);
9436 	if (err) {
9437 		btrfs_abort_transaction(trans, err);
9438 		btrfs_free_path(path);
9439 		discard_new_inode(inode);
9440 		inode = NULL;
9441 		goto out;
9442 	}
9443 	leaf = path->nodes[0];
9444 	ei = btrfs_item_ptr(leaf, path->slots[0],
9445 			    struct btrfs_file_extent_item);
9446 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9447 	btrfs_set_file_extent_type(leaf, ei,
9448 				   BTRFS_FILE_EXTENT_INLINE);
9449 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9450 	btrfs_set_file_extent_compression(leaf, ei, 0);
9451 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9452 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9453 
9454 	ptr = btrfs_file_extent_inline_start(ei);
9455 	write_extent_buffer(leaf, symname, ptr, name_len);
9456 	btrfs_mark_buffer_dirty(trans, leaf);
9457 	btrfs_free_path(path);
9458 
9459 	d_instantiate_new(dentry, inode);
9460 	err = 0;
9461 out:
9462 	btrfs_end_transaction(trans);
9463 	btrfs_btree_balance_dirty(fs_info);
9464 out_new_inode_args:
9465 	btrfs_new_inode_args_destroy(&new_inode_args);
9466 out_inode:
9467 	if (err)
9468 		iput(inode);
9469 	return err;
9470 }
9471 
9472 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9473 				       struct btrfs_trans_handle *trans_in,
9474 				       struct btrfs_inode *inode,
9475 				       struct btrfs_key *ins,
9476 				       u64 file_offset)
9477 {
9478 	struct btrfs_file_extent_item stack_fi;
9479 	struct btrfs_replace_extent_info extent_info;
9480 	struct btrfs_trans_handle *trans = trans_in;
9481 	struct btrfs_path *path;
9482 	u64 start = ins->objectid;
9483 	u64 len = ins->offset;
9484 	int qgroup_released;
9485 	int ret;
9486 
9487 	memset(&stack_fi, 0, sizeof(stack_fi));
9488 
9489 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9490 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9491 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9492 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9493 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9494 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9495 	/* Encryption and other encoding is reserved and all 0 */
9496 
9497 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9498 	if (qgroup_released < 0)
9499 		return ERR_PTR(qgroup_released);
9500 
9501 	if (trans) {
9502 		ret = insert_reserved_file_extent(trans, inode,
9503 						  file_offset, &stack_fi,
9504 						  true, qgroup_released);
9505 		if (ret)
9506 			goto free_qgroup;
9507 		return trans;
9508 	}
9509 
9510 	extent_info.disk_offset = start;
9511 	extent_info.disk_len = len;
9512 	extent_info.data_offset = 0;
9513 	extent_info.data_len = len;
9514 	extent_info.file_offset = file_offset;
9515 	extent_info.extent_buf = (char *)&stack_fi;
9516 	extent_info.is_new_extent = true;
9517 	extent_info.update_times = true;
9518 	extent_info.qgroup_reserved = qgroup_released;
9519 	extent_info.insertions = 0;
9520 
9521 	path = btrfs_alloc_path();
9522 	if (!path) {
9523 		ret = -ENOMEM;
9524 		goto free_qgroup;
9525 	}
9526 
9527 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9528 				     file_offset + len - 1, &extent_info,
9529 				     &trans);
9530 	btrfs_free_path(path);
9531 	if (ret)
9532 		goto free_qgroup;
9533 	return trans;
9534 
9535 free_qgroup:
9536 	/*
9537 	 * We have released qgroup data range at the beginning of the function,
9538 	 * and normally qgroup_released bytes will be freed when committing
9539 	 * transaction.
9540 	 * But if we error out early, we have to free what we have released
9541 	 * or we leak qgroup data reservation.
9542 	 */
9543 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9544 			inode->root->root_key.objectid, qgroup_released,
9545 			BTRFS_QGROUP_RSV_DATA);
9546 	return ERR_PTR(ret);
9547 }
9548 
9549 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9550 				       u64 start, u64 num_bytes, u64 min_size,
9551 				       loff_t actual_len, u64 *alloc_hint,
9552 				       struct btrfs_trans_handle *trans)
9553 {
9554 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9555 	struct extent_map *em;
9556 	struct btrfs_root *root = BTRFS_I(inode)->root;
9557 	struct btrfs_key ins;
9558 	u64 cur_offset = start;
9559 	u64 clear_offset = start;
9560 	u64 i_size;
9561 	u64 cur_bytes;
9562 	u64 last_alloc = (u64)-1;
9563 	int ret = 0;
9564 	bool own_trans = true;
9565 	u64 end = start + num_bytes - 1;
9566 
9567 	if (trans)
9568 		own_trans = false;
9569 	while (num_bytes > 0) {
9570 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9571 		cur_bytes = max(cur_bytes, min_size);
9572 		/*
9573 		 * If we are severely fragmented we could end up with really
9574 		 * small allocations, so if the allocator is returning small
9575 		 * chunks lets make its job easier by only searching for those
9576 		 * sized chunks.
9577 		 */
9578 		cur_bytes = min(cur_bytes, last_alloc);
9579 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9580 				min_size, 0, *alloc_hint, &ins, 1, 0);
9581 		if (ret)
9582 			break;
9583 
9584 		/*
9585 		 * We've reserved this space, and thus converted it from
9586 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9587 		 * from here on out we will only need to clear our reservation
9588 		 * for the remaining unreserved area, so advance our
9589 		 * clear_offset by our extent size.
9590 		 */
9591 		clear_offset += ins.offset;
9592 
9593 		last_alloc = ins.offset;
9594 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9595 						    &ins, cur_offset);
9596 		/*
9597 		 * Now that we inserted the prealloc extent we can finally
9598 		 * decrement the number of reservations in the block group.
9599 		 * If we did it before, we could race with relocation and have
9600 		 * relocation miss the reserved extent, making it fail later.
9601 		 */
9602 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9603 		if (IS_ERR(trans)) {
9604 			ret = PTR_ERR(trans);
9605 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9606 						   ins.offset, 0);
9607 			break;
9608 		}
9609 
9610 		em = alloc_extent_map();
9611 		if (!em) {
9612 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9613 					    cur_offset + ins.offset - 1, false);
9614 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9615 			goto next;
9616 		}
9617 
9618 		em->start = cur_offset;
9619 		em->orig_start = cur_offset;
9620 		em->len = ins.offset;
9621 		em->block_start = ins.objectid;
9622 		em->block_len = ins.offset;
9623 		em->orig_block_len = ins.offset;
9624 		em->ram_bytes = ins.offset;
9625 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9626 		em->generation = trans->transid;
9627 
9628 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9629 		free_extent_map(em);
9630 next:
9631 		num_bytes -= ins.offset;
9632 		cur_offset += ins.offset;
9633 		*alloc_hint = ins.objectid + ins.offset;
9634 
9635 		inode_inc_iversion(inode);
9636 		inode_set_ctime_current(inode);
9637 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9638 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9639 		    (actual_len > inode->i_size) &&
9640 		    (cur_offset > inode->i_size)) {
9641 			if (cur_offset > actual_len)
9642 				i_size = actual_len;
9643 			else
9644 				i_size = cur_offset;
9645 			i_size_write(inode, i_size);
9646 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9647 		}
9648 
9649 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9650 
9651 		if (ret) {
9652 			btrfs_abort_transaction(trans, ret);
9653 			if (own_trans)
9654 				btrfs_end_transaction(trans);
9655 			break;
9656 		}
9657 
9658 		if (own_trans) {
9659 			btrfs_end_transaction(trans);
9660 			trans = NULL;
9661 		}
9662 	}
9663 	if (clear_offset < end)
9664 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9665 			end - clear_offset + 1);
9666 	return ret;
9667 }
9668 
9669 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9670 			      u64 start, u64 num_bytes, u64 min_size,
9671 			      loff_t actual_len, u64 *alloc_hint)
9672 {
9673 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9674 					   min_size, actual_len, alloc_hint,
9675 					   NULL);
9676 }
9677 
9678 int btrfs_prealloc_file_range_trans(struct inode *inode,
9679 				    struct btrfs_trans_handle *trans, int mode,
9680 				    u64 start, u64 num_bytes, u64 min_size,
9681 				    loff_t actual_len, u64 *alloc_hint)
9682 {
9683 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9684 					   min_size, actual_len, alloc_hint, trans);
9685 }
9686 
9687 static int btrfs_permission(struct mnt_idmap *idmap,
9688 			    struct inode *inode, int mask)
9689 {
9690 	struct btrfs_root *root = BTRFS_I(inode)->root;
9691 	umode_t mode = inode->i_mode;
9692 
9693 	if (mask & MAY_WRITE &&
9694 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9695 		if (btrfs_root_readonly(root))
9696 			return -EROFS;
9697 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9698 			return -EACCES;
9699 	}
9700 	return generic_permission(idmap, inode, mask);
9701 }
9702 
9703 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9704 			 struct file *file, umode_t mode)
9705 {
9706 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9707 	struct btrfs_trans_handle *trans;
9708 	struct btrfs_root *root = BTRFS_I(dir)->root;
9709 	struct inode *inode;
9710 	struct btrfs_new_inode_args new_inode_args = {
9711 		.dir = dir,
9712 		.dentry = file->f_path.dentry,
9713 		.orphan = true,
9714 	};
9715 	unsigned int trans_num_items;
9716 	int ret;
9717 
9718 	inode = new_inode(dir->i_sb);
9719 	if (!inode)
9720 		return -ENOMEM;
9721 	inode_init_owner(idmap, inode, dir, mode);
9722 	inode->i_fop = &btrfs_file_operations;
9723 	inode->i_op = &btrfs_file_inode_operations;
9724 	inode->i_mapping->a_ops = &btrfs_aops;
9725 
9726 	new_inode_args.inode = inode;
9727 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9728 	if (ret)
9729 		goto out_inode;
9730 
9731 	trans = btrfs_start_transaction(root, trans_num_items);
9732 	if (IS_ERR(trans)) {
9733 		ret = PTR_ERR(trans);
9734 		goto out_new_inode_args;
9735 	}
9736 
9737 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9738 
9739 	/*
9740 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9741 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9742 	 * 0, through:
9743 	 *
9744 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9745 	 */
9746 	set_nlink(inode, 1);
9747 
9748 	if (!ret) {
9749 		d_tmpfile(file, inode);
9750 		unlock_new_inode(inode);
9751 		mark_inode_dirty(inode);
9752 	}
9753 
9754 	btrfs_end_transaction(trans);
9755 	btrfs_btree_balance_dirty(fs_info);
9756 out_new_inode_args:
9757 	btrfs_new_inode_args_destroy(&new_inode_args);
9758 out_inode:
9759 	if (ret)
9760 		iput(inode);
9761 	return finish_open_simple(file, ret);
9762 }
9763 
9764 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9765 {
9766 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9767 	unsigned long index = start >> PAGE_SHIFT;
9768 	unsigned long end_index = end >> PAGE_SHIFT;
9769 	struct page *page;
9770 	u32 len;
9771 
9772 	ASSERT(end + 1 - start <= U32_MAX);
9773 	len = end + 1 - start;
9774 	while (index <= end_index) {
9775 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9776 		ASSERT(page); /* Pages should be in the extent_io_tree */
9777 
9778 		btrfs_page_set_writeback(fs_info, page, start, len);
9779 		put_page(page);
9780 		index++;
9781 	}
9782 }
9783 
9784 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9785 					     int compress_type)
9786 {
9787 	switch (compress_type) {
9788 	case BTRFS_COMPRESS_NONE:
9789 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9790 	case BTRFS_COMPRESS_ZLIB:
9791 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9792 	case BTRFS_COMPRESS_LZO:
9793 		/*
9794 		 * The LZO format depends on the sector size. 64K is the maximum
9795 		 * sector size that we support.
9796 		 */
9797 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9798 			return -EINVAL;
9799 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9800 		       (fs_info->sectorsize_bits - 12);
9801 	case BTRFS_COMPRESS_ZSTD:
9802 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9803 	default:
9804 		return -EUCLEAN;
9805 	}
9806 }
9807 
9808 static ssize_t btrfs_encoded_read_inline(
9809 				struct kiocb *iocb,
9810 				struct iov_iter *iter, u64 start,
9811 				u64 lockend,
9812 				struct extent_state **cached_state,
9813 				u64 extent_start, size_t count,
9814 				struct btrfs_ioctl_encoded_io_args *encoded,
9815 				bool *unlocked)
9816 {
9817 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9818 	struct btrfs_root *root = inode->root;
9819 	struct btrfs_fs_info *fs_info = root->fs_info;
9820 	struct extent_io_tree *io_tree = &inode->io_tree;
9821 	struct btrfs_path *path;
9822 	struct extent_buffer *leaf;
9823 	struct btrfs_file_extent_item *item;
9824 	u64 ram_bytes;
9825 	unsigned long ptr;
9826 	void *tmp;
9827 	ssize_t ret;
9828 
9829 	path = btrfs_alloc_path();
9830 	if (!path) {
9831 		ret = -ENOMEM;
9832 		goto out;
9833 	}
9834 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9835 				       extent_start, 0);
9836 	if (ret) {
9837 		if (ret > 0) {
9838 			/* The extent item disappeared? */
9839 			ret = -EIO;
9840 		}
9841 		goto out;
9842 	}
9843 	leaf = path->nodes[0];
9844 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9845 
9846 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9847 	ptr = btrfs_file_extent_inline_start(item);
9848 
9849 	encoded->len = min_t(u64, extent_start + ram_bytes,
9850 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9851 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9852 				 btrfs_file_extent_compression(leaf, item));
9853 	if (ret < 0)
9854 		goto out;
9855 	encoded->compression = ret;
9856 	if (encoded->compression) {
9857 		size_t inline_size;
9858 
9859 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9860 								path->slots[0]);
9861 		if (inline_size > count) {
9862 			ret = -ENOBUFS;
9863 			goto out;
9864 		}
9865 		count = inline_size;
9866 		encoded->unencoded_len = ram_bytes;
9867 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9868 	} else {
9869 		count = min_t(u64, count, encoded->len);
9870 		encoded->len = count;
9871 		encoded->unencoded_len = count;
9872 		ptr += iocb->ki_pos - extent_start;
9873 	}
9874 
9875 	tmp = kmalloc(count, GFP_NOFS);
9876 	if (!tmp) {
9877 		ret = -ENOMEM;
9878 		goto out;
9879 	}
9880 	read_extent_buffer(leaf, tmp, ptr, count);
9881 	btrfs_release_path(path);
9882 	unlock_extent(io_tree, start, lockend, cached_state);
9883 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9884 	*unlocked = true;
9885 
9886 	ret = copy_to_iter(tmp, count, iter);
9887 	if (ret != count)
9888 		ret = -EFAULT;
9889 	kfree(tmp);
9890 out:
9891 	btrfs_free_path(path);
9892 	return ret;
9893 }
9894 
9895 struct btrfs_encoded_read_private {
9896 	wait_queue_head_t wait;
9897 	atomic_t pending;
9898 	blk_status_t status;
9899 };
9900 
9901 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9902 {
9903 	struct btrfs_encoded_read_private *priv = bbio->private;
9904 
9905 	if (bbio->bio.bi_status) {
9906 		/*
9907 		 * The memory barrier implied by the atomic_dec_return() here
9908 		 * pairs with the memory barrier implied by the
9909 		 * atomic_dec_return() or io_wait_event() in
9910 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9911 		 * write is observed before the load of status in
9912 		 * btrfs_encoded_read_regular_fill_pages().
9913 		 */
9914 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9915 	}
9916 	if (!atomic_dec_return(&priv->pending))
9917 		wake_up(&priv->wait);
9918 	bio_put(&bbio->bio);
9919 }
9920 
9921 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9922 					  u64 file_offset, u64 disk_bytenr,
9923 					  u64 disk_io_size, struct page **pages)
9924 {
9925 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9926 	struct btrfs_encoded_read_private priv = {
9927 		.pending = ATOMIC_INIT(1),
9928 	};
9929 	unsigned long i = 0;
9930 	struct btrfs_bio *bbio;
9931 
9932 	init_waitqueue_head(&priv.wait);
9933 
9934 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9935 			       btrfs_encoded_read_endio, &priv);
9936 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9937 	bbio->inode = inode;
9938 
9939 	do {
9940 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9941 
9942 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9943 			atomic_inc(&priv.pending);
9944 			btrfs_submit_bio(bbio, 0);
9945 
9946 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9947 					       btrfs_encoded_read_endio, &priv);
9948 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9949 			bbio->inode = inode;
9950 			continue;
9951 		}
9952 
9953 		i++;
9954 		disk_bytenr += bytes;
9955 		disk_io_size -= bytes;
9956 	} while (disk_io_size);
9957 
9958 	atomic_inc(&priv.pending);
9959 	btrfs_submit_bio(bbio, 0);
9960 
9961 	if (atomic_dec_return(&priv.pending))
9962 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
9963 	/* See btrfs_encoded_read_endio() for ordering. */
9964 	return blk_status_to_errno(READ_ONCE(priv.status));
9965 }
9966 
9967 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9968 					  struct iov_iter *iter,
9969 					  u64 start, u64 lockend,
9970 					  struct extent_state **cached_state,
9971 					  u64 disk_bytenr, u64 disk_io_size,
9972 					  size_t count, bool compressed,
9973 					  bool *unlocked)
9974 {
9975 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9976 	struct extent_io_tree *io_tree = &inode->io_tree;
9977 	struct page **pages;
9978 	unsigned long nr_pages, i;
9979 	u64 cur;
9980 	size_t page_offset;
9981 	ssize_t ret;
9982 
9983 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9984 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9985 	if (!pages)
9986 		return -ENOMEM;
9987 	ret = btrfs_alloc_page_array(nr_pages, pages);
9988 	if (ret) {
9989 		ret = -ENOMEM;
9990 		goto out;
9991 		}
9992 
9993 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9994 						    disk_io_size, pages);
9995 	if (ret)
9996 		goto out;
9997 
9998 	unlock_extent(io_tree, start, lockend, cached_state);
9999 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10000 	*unlocked = true;
10001 
10002 	if (compressed) {
10003 		i = 0;
10004 		page_offset = 0;
10005 	} else {
10006 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10007 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10008 	}
10009 	cur = 0;
10010 	while (cur < count) {
10011 		size_t bytes = min_t(size_t, count - cur,
10012 				     PAGE_SIZE - page_offset);
10013 
10014 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10015 				      iter) != bytes) {
10016 			ret = -EFAULT;
10017 			goto out;
10018 		}
10019 		i++;
10020 		cur += bytes;
10021 		page_offset = 0;
10022 	}
10023 	ret = count;
10024 out:
10025 	for (i = 0; i < nr_pages; i++) {
10026 		if (pages[i])
10027 			__free_page(pages[i]);
10028 	}
10029 	kfree(pages);
10030 	return ret;
10031 }
10032 
10033 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10034 			   struct btrfs_ioctl_encoded_io_args *encoded)
10035 {
10036 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10037 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10038 	struct extent_io_tree *io_tree = &inode->io_tree;
10039 	ssize_t ret;
10040 	size_t count = iov_iter_count(iter);
10041 	u64 start, lockend, disk_bytenr, disk_io_size;
10042 	struct extent_state *cached_state = NULL;
10043 	struct extent_map *em;
10044 	bool unlocked = false;
10045 
10046 	file_accessed(iocb->ki_filp);
10047 
10048 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10049 
10050 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10051 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10052 		return 0;
10053 	}
10054 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10055 	/*
10056 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10057 	 * it's compressed we know that it won't be longer than this.
10058 	 */
10059 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10060 
10061 	for (;;) {
10062 		struct btrfs_ordered_extent *ordered;
10063 
10064 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10065 					       lockend - start + 1);
10066 		if (ret)
10067 			goto out_unlock_inode;
10068 		lock_extent(io_tree, start, lockend, &cached_state);
10069 		ordered = btrfs_lookup_ordered_range(inode, start,
10070 						     lockend - start + 1);
10071 		if (!ordered)
10072 			break;
10073 		btrfs_put_ordered_extent(ordered);
10074 		unlock_extent(io_tree, start, lockend, &cached_state);
10075 		cond_resched();
10076 	}
10077 
10078 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10079 	if (IS_ERR(em)) {
10080 		ret = PTR_ERR(em);
10081 		goto out_unlock_extent;
10082 	}
10083 
10084 	if (em->block_start == EXTENT_MAP_INLINE) {
10085 		u64 extent_start = em->start;
10086 
10087 		/*
10088 		 * For inline extents we get everything we need out of the
10089 		 * extent item.
10090 		 */
10091 		free_extent_map(em);
10092 		em = NULL;
10093 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10094 						&cached_state, extent_start,
10095 						count, encoded, &unlocked);
10096 		goto out;
10097 	}
10098 
10099 	/*
10100 	 * We only want to return up to EOF even if the extent extends beyond
10101 	 * that.
10102 	 */
10103 	encoded->len = min_t(u64, extent_map_end(em),
10104 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10105 	if (em->block_start == EXTENT_MAP_HOLE ||
10106 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10107 		disk_bytenr = EXTENT_MAP_HOLE;
10108 		count = min_t(u64, count, encoded->len);
10109 		encoded->len = count;
10110 		encoded->unencoded_len = count;
10111 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10112 		disk_bytenr = em->block_start;
10113 		/*
10114 		 * Bail if the buffer isn't large enough to return the whole
10115 		 * compressed extent.
10116 		 */
10117 		if (em->block_len > count) {
10118 			ret = -ENOBUFS;
10119 			goto out_em;
10120 		}
10121 		disk_io_size = em->block_len;
10122 		count = em->block_len;
10123 		encoded->unencoded_len = em->ram_bytes;
10124 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10125 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10126 							     em->compress_type);
10127 		if (ret < 0)
10128 			goto out_em;
10129 		encoded->compression = ret;
10130 	} else {
10131 		disk_bytenr = em->block_start + (start - em->start);
10132 		if (encoded->len > count)
10133 			encoded->len = count;
10134 		/*
10135 		 * Don't read beyond what we locked. This also limits the page
10136 		 * allocations that we'll do.
10137 		 */
10138 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10139 		count = start + disk_io_size - iocb->ki_pos;
10140 		encoded->len = count;
10141 		encoded->unencoded_len = count;
10142 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10143 	}
10144 	free_extent_map(em);
10145 	em = NULL;
10146 
10147 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10148 		unlock_extent(io_tree, start, lockend, &cached_state);
10149 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10150 		unlocked = true;
10151 		ret = iov_iter_zero(count, iter);
10152 		if (ret != count)
10153 			ret = -EFAULT;
10154 	} else {
10155 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10156 						 &cached_state, disk_bytenr,
10157 						 disk_io_size, count,
10158 						 encoded->compression,
10159 						 &unlocked);
10160 	}
10161 
10162 out:
10163 	if (ret >= 0)
10164 		iocb->ki_pos += encoded->len;
10165 out_em:
10166 	free_extent_map(em);
10167 out_unlock_extent:
10168 	if (!unlocked)
10169 		unlock_extent(io_tree, start, lockend, &cached_state);
10170 out_unlock_inode:
10171 	if (!unlocked)
10172 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10173 	return ret;
10174 }
10175 
10176 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10177 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10178 {
10179 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10180 	struct btrfs_root *root = inode->root;
10181 	struct btrfs_fs_info *fs_info = root->fs_info;
10182 	struct extent_io_tree *io_tree = &inode->io_tree;
10183 	struct extent_changeset *data_reserved = NULL;
10184 	struct extent_state *cached_state = NULL;
10185 	struct btrfs_ordered_extent *ordered;
10186 	int compression;
10187 	size_t orig_count;
10188 	u64 start, end;
10189 	u64 num_bytes, ram_bytes, disk_num_bytes;
10190 	unsigned long nr_pages, i;
10191 	struct page **pages;
10192 	struct btrfs_key ins;
10193 	bool extent_reserved = false;
10194 	struct extent_map *em;
10195 	ssize_t ret;
10196 
10197 	switch (encoded->compression) {
10198 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10199 		compression = BTRFS_COMPRESS_ZLIB;
10200 		break;
10201 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10202 		compression = BTRFS_COMPRESS_ZSTD;
10203 		break;
10204 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10205 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10206 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10207 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10208 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10209 		/* The sector size must match for LZO. */
10210 		if (encoded->compression -
10211 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10212 		    fs_info->sectorsize_bits)
10213 			return -EINVAL;
10214 		compression = BTRFS_COMPRESS_LZO;
10215 		break;
10216 	default:
10217 		return -EINVAL;
10218 	}
10219 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10220 		return -EINVAL;
10221 
10222 	orig_count = iov_iter_count(from);
10223 
10224 	/* The extent size must be sane. */
10225 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10226 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10227 		return -EINVAL;
10228 
10229 	/*
10230 	 * The compressed data must be smaller than the decompressed data.
10231 	 *
10232 	 * It's of course possible for data to compress to larger or the same
10233 	 * size, but the buffered I/O path falls back to no compression for such
10234 	 * data, and we don't want to break any assumptions by creating these
10235 	 * extents.
10236 	 *
10237 	 * Note that this is less strict than the current check we have that the
10238 	 * compressed data must be at least one sector smaller than the
10239 	 * decompressed data. We only want to enforce the weaker requirement
10240 	 * from old kernels that it is at least one byte smaller.
10241 	 */
10242 	if (orig_count >= encoded->unencoded_len)
10243 		return -EINVAL;
10244 
10245 	/* The extent must start on a sector boundary. */
10246 	start = iocb->ki_pos;
10247 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10248 		return -EINVAL;
10249 
10250 	/*
10251 	 * The extent must end on a sector boundary. However, we allow a write
10252 	 * which ends at or extends i_size to have an unaligned length; we round
10253 	 * up the extent size and set i_size to the unaligned end.
10254 	 */
10255 	if (start + encoded->len < inode->vfs_inode.i_size &&
10256 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10257 		return -EINVAL;
10258 
10259 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10260 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10261 		return -EINVAL;
10262 
10263 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10264 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10265 	end = start + num_bytes - 1;
10266 
10267 	/*
10268 	 * If the extent cannot be inline, the compressed data on disk must be
10269 	 * sector-aligned. For convenience, we extend it with zeroes if it
10270 	 * isn't.
10271 	 */
10272 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10273 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10274 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10275 	if (!pages)
10276 		return -ENOMEM;
10277 	for (i = 0; i < nr_pages; i++) {
10278 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10279 		char *kaddr;
10280 
10281 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10282 		if (!pages[i]) {
10283 			ret = -ENOMEM;
10284 			goto out_pages;
10285 		}
10286 		kaddr = kmap_local_page(pages[i]);
10287 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10288 			kunmap_local(kaddr);
10289 			ret = -EFAULT;
10290 			goto out_pages;
10291 		}
10292 		if (bytes < PAGE_SIZE)
10293 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10294 		kunmap_local(kaddr);
10295 	}
10296 
10297 	for (;;) {
10298 		struct btrfs_ordered_extent *ordered;
10299 
10300 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10301 		if (ret)
10302 			goto out_pages;
10303 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10304 						    start >> PAGE_SHIFT,
10305 						    end >> PAGE_SHIFT);
10306 		if (ret)
10307 			goto out_pages;
10308 		lock_extent(io_tree, start, end, &cached_state);
10309 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10310 		if (!ordered &&
10311 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10312 			break;
10313 		if (ordered)
10314 			btrfs_put_ordered_extent(ordered);
10315 		unlock_extent(io_tree, start, end, &cached_state);
10316 		cond_resched();
10317 	}
10318 
10319 	/*
10320 	 * We don't use the higher-level delalloc space functions because our
10321 	 * num_bytes and disk_num_bytes are different.
10322 	 */
10323 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10324 	if (ret)
10325 		goto out_unlock;
10326 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10327 	if (ret)
10328 		goto out_free_data_space;
10329 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10330 					      false);
10331 	if (ret)
10332 		goto out_qgroup_free_data;
10333 
10334 	/* Try an inline extent first. */
10335 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10336 	    encoded->unencoded_offset == 0) {
10337 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10338 					    compression, pages, true);
10339 		if (ret <= 0) {
10340 			if (ret == 0)
10341 				ret = orig_count;
10342 			goto out_delalloc_release;
10343 		}
10344 	}
10345 
10346 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10347 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10348 	if (ret)
10349 		goto out_delalloc_release;
10350 	extent_reserved = true;
10351 
10352 	em = create_io_em(inode, start, num_bytes,
10353 			  start - encoded->unencoded_offset, ins.objectid,
10354 			  ins.offset, ins.offset, ram_bytes, compression,
10355 			  BTRFS_ORDERED_COMPRESSED);
10356 	if (IS_ERR(em)) {
10357 		ret = PTR_ERR(em);
10358 		goto out_free_reserved;
10359 	}
10360 	free_extent_map(em);
10361 
10362 	ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10363 				       ins.objectid, ins.offset,
10364 				       encoded->unencoded_offset,
10365 				       (1 << BTRFS_ORDERED_ENCODED) |
10366 				       (1 << BTRFS_ORDERED_COMPRESSED),
10367 				       compression);
10368 	if (IS_ERR(ordered)) {
10369 		btrfs_drop_extent_map_range(inode, start, end, false);
10370 		ret = PTR_ERR(ordered);
10371 		goto out_free_reserved;
10372 	}
10373 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10374 
10375 	if (start + encoded->len > inode->vfs_inode.i_size)
10376 		i_size_write(&inode->vfs_inode, start + encoded->len);
10377 
10378 	unlock_extent(io_tree, start, end, &cached_state);
10379 
10380 	btrfs_delalloc_release_extents(inode, num_bytes);
10381 
10382 	btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10383 	ret = orig_count;
10384 	goto out;
10385 
10386 out_free_reserved:
10387 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10388 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10389 out_delalloc_release:
10390 	btrfs_delalloc_release_extents(inode, num_bytes);
10391 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10392 out_qgroup_free_data:
10393 	if (ret < 0)
10394 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10395 out_free_data_space:
10396 	/*
10397 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10398 	 * bytes_may_use.
10399 	 */
10400 	if (!extent_reserved)
10401 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10402 out_unlock:
10403 	unlock_extent(io_tree, start, end, &cached_state);
10404 out_pages:
10405 	for (i = 0; i < nr_pages; i++) {
10406 		if (pages[i])
10407 			__free_page(pages[i]);
10408 	}
10409 	kvfree(pages);
10410 out:
10411 	if (ret >= 0)
10412 		iocb->ki_pos += encoded->len;
10413 	return ret;
10414 }
10415 
10416 #ifdef CONFIG_SWAP
10417 /*
10418  * Add an entry indicating a block group or device which is pinned by a
10419  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10420  * negative errno on failure.
10421  */
10422 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10423 				  bool is_block_group)
10424 {
10425 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10426 	struct btrfs_swapfile_pin *sp, *entry;
10427 	struct rb_node **p;
10428 	struct rb_node *parent = NULL;
10429 
10430 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10431 	if (!sp)
10432 		return -ENOMEM;
10433 	sp->ptr = ptr;
10434 	sp->inode = inode;
10435 	sp->is_block_group = is_block_group;
10436 	sp->bg_extent_count = 1;
10437 
10438 	spin_lock(&fs_info->swapfile_pins_lock);
10439 	p = &fs_info->swapfile_pins.rb_node;
10440 	while (*p) {
10441 		parent = *p;
10442 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10443 		if (sp->ptr < entry->ptr ||
10444 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10445 			p = &(*p)->rb_left;
10446 		} else if (sp->ptr > entry->ptr ||
10447 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10448 			p = &(*p)->rb_right;
10449 		} else {
10450 			if (is_block_group)
10451 				entry->bg_extent_count++;
10452 			spin_unlock(&fs_info->swapfile_pins_lock);
10453 			kfree(sp);
10454 			return 1;
10455 		}
10456 	}
10457 	rb_link_node(&sp->node, parent, p);
10458 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10459 	spin_unlock(&fs_info->swapfile_pins_lock);
10460 	return 0;
10461 }
10462 
10463 /* Free all of the entries pinned by this swapfile. */
10464 static void btrfs_free_swapfile_pins(struct inode *inode)
10465 {
10466 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10467 	struct btrfs_swapfile_pin *sp;
10468 	struct rb_node *node, *next;
10469 
10470 	spin_lock(&fs_info->swapfile_pins_lock);
10471 	node = rb_first(&fs_info->swapfile_pins);
10472 	while (node) {
10473 		next = rb_next(node);
10474 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10475 		if (sp->inode == inode) {
10476 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10477 			if (sp->is_block_group) {
10478 				btrfs_dec_block_group_swap_extents(sp->ptr,
10479 							   sp->bg_extent_count);
10480 				btrfs_put_block_group(sp->ptr);
10481 			}
10482 			kfree(sp);
10483 		}
10484 		node = next;
10485 	}
10486 	spin_unlock(&fs_info->swapfile_pins_lock);
10487 }
10488 
10489 struct btrfs_swap_info {
10490 	u64 start;
10491 	u64 block_start;
10492 	u64 block_len;
10493 	u64 lowest_ppage;
10494 	u64 highest_ppage;
10495 	unsigned long nr_pages;
10496 	int nr_extents;
10497 };
10498 
10499 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10500 				 struct btrfs_swap_info *bsi)
10501 {
10502 	unsigned long nr_pages;
10503 	unsigned long max_pages;
10504 	u64 first_ppage, first_ppage_reported, next_ppage;
10505 	int ret;
10506 
10507 	/*
10508 	 * Our swapfile may have had its size extended after the swap header was
10509 	 * written. In that case activating the swapfile should not go beyond
10510 	 * the max size set in the swap header.
10511 	 */
10512 	if (bsi->nr_pages >= sis->max)
10513 		return 0;
10514 
10515 	max_pages = sis->max - bsi->nr_pages;
10516 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10517 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10518 
10519 	if (first_ppage >= next_ppage)
10520 		return 0;
10521 	nr_pages = next_ppage - first_ppage;
10522 	nr_pages = min(nr_pages, max_pages);
10523 
10524 	first_ppage_reported = first_ppage;
10525 	if (bsi->start == 0)
10526 		first_ppage_reported++;
10527 	if (bsi->lowest_ppage > first_ppage_reported)
10528 		bsi->lowest_ppage = first_ppage_reported;
10529 	if (bsi->highest_ppage < (next_ppage - 1))
10530 		bsi->highest_ppage = next_ppage - 1;
10531 
10532 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10533 	if (ret < 0)
10534 		return ret;
10535 	bsi->nr_extents += ret;
10536 	bsi->nr_pages += nr_pages;
10537 	return 0;
10538 }
10539 
10540 static void btrfs_swap_deactivate(struct file *file)
10541 {
10542 	struct inode *inode = file_inode(file);
10543 
10544 	btrfs_free_swapfile_pins(inode);
10545 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10546 }
10547 
10548 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10549 			       sector_t *span)
10550 {
10551 	struct inode *inode = file_inode(file);
10552 	struct btrfs_root *root = BTRFS_I(inode)->root;
10553 	struct btrfs_fs_info *fs_info = root->fs_info;
10554 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10555 	struct extent_state *cached_state = NULL;
10556 	struct extent_map *em = NULL;
10557 	struct btrfs_device *device = NULL;
10558 	struct btrfs_swap_info bsi = {
10559 		.lowest_ppage = (sector_t)-1ULL,
10560 	};
10561 	int ret = 0;
10562 	u64 isize;
10563 	u64 start;
10564 
10565 	/*
10566 	 * If the swap file was just created, make sure delalloc is done. If the
10567 	 * file changes again after this, the user is doing something stupid and
10568 	 * we don't really care.
10569 	 */
10570 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10571 	if (ret)
10572 		return ret;
10573 
10574 	/*
10575 	 * The inode is locked, so these flags won't change after we check them.
10576 	 */
10577 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10578 		btrfs_warn(fs_info, "swapfile must not be compressed");
10579 		return -EINVAL;
10580 	}
10581 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10582 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10583 		return -EINVAL;
10584 	}
10585 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10586 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10587 		return -EINVAL;
10588 	}
10589 
10590 	/*
10591 	 * Balance or device remove/replace/resize can move stuff around from
10592 	 * under us. The exclop protection makes sure they aren't running/won't
10593 	 * run concurrently while we are mapping the swap extents, and
10594 	 * fs_info->swapfile_pins prevents them from running while the swap
10595 	 * file is active and moving the extents. Note that this also prevents
10596 	 * a concurrent device add which isn't actually necessary, but it's not
10597 	 * really worth the trouble to allow it.
10598 	 */
10599 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10600 		btrfs_warn(fs_info,
10601 	   "cannot activate swapfile while exclusive operation is running");
10602 		return -EBUSY;
10603 	}
10604 
10605 	/*
10606 	 * Prevent snapshot creation while we are activating the swap file.
10607 	 * We do not want to race with snapshot creation. If snapshot creation
10608 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10609 	 * completes before the first write into the swap file after it is
10610 	 * activated, than that write would fallback to COW.
10611 	 */
10612 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10613 		btrfs_exclop_finish(fs_info);
10614 		btrfs_warn(fs_info,
10615 	   "cannot activate swapfile because snapshot creation is in progress");
10616 		return -EINVAL;
10617 	}
10618 	/*
10619 	 * Snapshots can create extents which require COW even if NODATACOW is
10620 	 * set. We use this counter to prevent snapshots. We must increment it
10621 	 * before walking the extents because we don't want a concurrent
10622 	 * snapshot to run after we've already checked the extents.
10623 	 *
10624 	 * It is possible that subvolume is marked for deletion but still not
10625 	 * removed yet. To prevent this race, we check the root status before
10626 	 * activating the swapfile.
10627 	 */
10628 	spin_lock(&root->root_item_lock);
10629 	if (btrfs_root_dead(root)) {
10630 		spin_unlock(&root->root_item_lock);
10631 
10632 		btrfs_exclop_finish(fs_info);
10633 		btrfs_warn(fs_info,
10634 		"cannot activate swapfile because subvolume %llu is being deleted",
10635 			root->root_key.objectid);
10636 		return -EPERM;
10637 	}
10638 	atomic_inc(&root->nr_swapfiles);
10639 	spin_unlock(&root->root_item_lock);
10640 
10641 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10642 
10643 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10644 	start = 0;
10645 	while (start < isize) {
10646 		u64 logical_block_start, physical_block_start;
10647 		struct btrfs_block_group *bg;
10648 		u64 len = isize - start;
10649 
10650 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10651 		if (IS_ERR(em)) {
10652 			ret = PTR_ERR(em);
10653 			goto out;
10654 		}
10655 
10656 		if (em->block_start == EXTENT_MAP_HOLE) {
10657 			btrfs_warn(fs_info, "swapfile must not have holes");
10658 			ret = -EINVAL;
10659 			goto out;
10660 		}
10661 		if (em->block_start == EXTENT_MAP_INLINE) {
10662 			/*
10663 			 * It's unlikely we'll ever actually find ourselves
10664 			 * here, as a file small enough to fit inline won't be
10665 			 * big enough to store more than the swap header, but in
10666 			 * case something changes in the future, let's catch it
10667 			 * here rather than later.
10668 			 */
10669 			btrfs_warn(fs_info, "swapfile must not be inline");
10670 			ret = -EINVAL;
10671 			goto out;
10672 		}
10673 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10674 			btrfs_warn(fs_info, "swapfile must not be compressed");
10675 			ret = -EINVAL;
10676 			goto out;
10677 		}
10678 
10679 		logical_block_start = em->block_start + (start - em->start);
10680 		len = min(len, em->len - (start - em->start));
10681 		free_extent_map(em);
10682 		em = NULL;
10683 
10684 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10685 		if (ret < 0) {
10686 			goto out;
10687 		} else if (ret) {
10688 			ret = 0;
10689 		} else {
10690 			btrfs_warn(fs_info,
10691 				   "swapfile must not be copy-on-write");
10692 			ret = -EINVAL;
10693 			goto out;
10694 		}
10695 
10696 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10697 		if (IS_ERR(em)) {
10698 			ret = PTR_ERR(em);
10699 			goto out;
10700 		}
10701 
10702 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10703 			btrfs_warn(fs_info,
10704 				   "swapfile must have single data profile");
10705 			ret = -EINVAL;
10706 			goto out;
10707 		}
10708 
10709 		if (device == NULL) {
10710 			device = em->map_lookup->stripes[0].dev;
10711 			ret = btrfs_add_swapfile_pin(inode, device, false);
10712 			if (ret == 1)
10713 				ret = 0;
10714 			else if (ret)
10715 				goto out;
10716 		} else if (device != em->map_lookup->stripes[0].dev) {
10717 			btrfs_warn(fs_info, "swapfile must be on one device");
10718 			ret = -EINVAL;
10719 			goto out;
10720 		}
10721 
10722 		physical_block_start = (em->map_lookup->stripes[0].physical +
10723 					(logical_block_start - em->start));
10724 		len = min(len, em->len - (logical_block_start - em->start));
10725 		free_extent_map(em);
10726 		em = NULL;
10727 
10728 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10729 		if (!bg) {
10730 			btrfs_warn(fs_info,
10731 			   "could not find block group containing swapfile");
10732 			ret = -EINVAL;
10733 			goto out;
10734 		}
10735 
10736 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10737 			btrfs_warn(fs_info,
10738 			   "block group for swapfile at %llu is read-only%s",
10739 			   bg->start,
10740 			   atomic_read(&fs_info->scrubs_running) ?
10741 				       " (scrub running)" : "");
10742 			btrfs_put_block_group(bg);
10743 			ret = -EINVAL;
10744 			goto out;
10745 		}
10746 
10747 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10748 		if (ret) {
10749 			btrfs_put_block_group(bg);
10750 			if (ret == 1)
10751 				ret = 0;
10752 			else
10753 				goto out;
10754 		}
10755 
10756 		if (bsi.block_len &&
10757 		    bsi.block_start + bsi.block_len == physical_block_start) {
10758 			bsi.block_len += len;
10759 		} else {
10760 			if (bsi.block_len) {
10761 				ret = btrfs_add_swap_extent(sis, &bsi);
10762 				if (ret)
10763 					goto out;
10764 			}
10765 			bsi.start = start;
10766 			bsi.block_start = physical_block_start;
10767 			bsi.block_len = len;
10768 		}
10769 
10770 		start += len;
10771 	}
10772 
10773 	if (bsi.block_len)
10774 		ret = btrfs_add_swap_extent(sis, &bsi);
10775 
10776 out:
10777 	if (!IS_ERR_OR_NULL(em))
10778 		free_extent_map(em);
10779 
10780 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10781 
10782 	if (ret)
10783 		btrfs_swap_deactivate(file);
10784 
10785 	btrfs_drew_write_unlock(&root->snapshot_lock);
10786 
10787 	btrfs_exclop_finish(fs_info);
10788 
10789 	if (ret)
10790 		return ret;
10791 
10792 	if (device)
10793 		sis->bdev = device->bdev;
10794 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10795 	sis->max = bsi.nr_pages;
10796 	sis->pages = bsi.nr_pages - 1;
10797 	sis->highest_bit = bsi.nr_pages - 1;
10798 	return bsi.nr_extents;
10799 }
10800 #else
10801 static void btrfs_swap_deactivate(struct file *file)
10802 {
10803 }
10804 
10805 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10806 			       sector_t *span)
10807 {
10808 	return -EOPNOTSUPP;
10809 }
10810 #endif
10811 
10812 /*
10813  * Update the number of bytes used in the VFS' inode. When we replace extents in
10814  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10815  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10816  * always get a correct value.
10817  */
10818 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10819 			      const u64 add_bytes,
10820 			      const u64 del_bytes)
10821 {
10822 	if (add_bytes == del_bytes)
10823 		return;
10824 
10825 	spin_lock(&inode->lock);
10826 	if (del_bytes > 0)
10827 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10828 	if (add_bytes > 0)
10829 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10830 	spin_unlock(&inode->lock);
10831 }
10832 
10833 /*
10834  * Verify that there are no ordered extents for a given file range.
10835  *
10836  * @inode:   The target inode.
10837  * @start:   Start offset of the file range, should be sector size aligned.
10838  * @end:     End offset (inclusive) of the file range, its value +1 should be
10839  *           sector size aligned.
10840  *
10841  * This should typically be used for cases where we locked an inode's VFS lock in
10842  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10843  * we have flushed all delalloc in the range, we have waited for all ordered
10844  * extents in the range to complete and finally we have locked the file range in
10845  * the inode's io_tree.
10846  */
10847 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10848 {
10849 	struct btrfs_root *root = inode->root;
10850 	struct btrfs_ordered_extent *ordered;
10851 
10852 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10853 		return;
10854 
10855 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10856 	if (ordered) {
10857 		btrfs_err(root->fs_info,
10858 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10859 			  start, end, btrfs_ino(inode), root->root_key.objectid,
10860 			  ordered->file_offset,
10861 			  ordered->file_offset + ordered->num_bytes - 1);
10862 		btrfs_put_ordered_extent(ordered);
10863 	}
10864 
10865 	ASSERT(ordered == NULL);
10866 }
10867 
10868 static const struct inode_operations btrfs_dir_inode_operations = {
10869 	.getattr	= btrfs_getattr,
10870 	.lookup		= btrfs_lookup,
10871 	.create		= btrfs_create,
10872 	.unlink		= btrfs_unlink,
10873 	.link		= btrfs_link,
10874 	.mkdir		= btrfs_mkdir,
10875 	.rmdir		= btrfs_rmdir,
10876 	.rename		= btrfs_rename2,
10877 	.symlink	= btrfs_symlink,
10878 	.setattr	= btrfs_setattr,
10879 	.mknod		= btrfs_mknod,
10880 	.listxattr	= btrfs_listxattr,
10881 	.permission	= btrfs_permission,
10882 	.get_inode_acl	= btrfs_get_acl,
10883 	.set_acl	= btrfs_set_acl,
10884 	.update_time	= btrfs_update_time,
10885 	.tmpfile        = btrfs_tmpfile,
10886 	.fileattr_get	= btrfs_fileattr_get,
10887 	.fileattr_set	= btrfs_fileattr_set,
10888 };
10889 
10890 static const struct file_operations btrfs_dir_file_operations = {
10891 	.llseek		= btrfs_dir_llseek,
10892 	.read		= generic_read_dir,
10893 	.iterate_shared	= btrfs_real_readdir,
10894 	.open		= btrfs_opendir,
10895 	.unlocked_ioctl	= btrfs_ioctl,
10896 #ifdef CONFIG_COMPAT
10897 	.compat_ioctl	= btrfs_compat_ioctl,
10898 #endif
10899 	.release        = btrfs_release_file,
10900 	.fsync		= btrfs_sync_file,
10901 };
10902 
10903 /*
10904  * btrfs doesn't support the bmap operation because swapfiles
10905  * use bmap to make a mapping of extents in the file.  They assume
10906  * these extents won't change over the life of the file and they
10907  * use the bmap result to do IO directly to the drive.
10908  *
10909  * the btrfs bmap call would return logical addresses that aren't
10910  * suitable for IO and they also will change frequently as COW
10911  * operations happen.  So, swapfile + btrfs == corruption.
10912  *
10913  * For now we're avoiding this by dropping bmap.
10914  */
10915 static const struct address_space_operations btrfs_aops = {
10916 	.read_folio	= btrfs_read_folio,
10917 	.writepages	= btrfs_writepages,
10918 	.readahead	= btrfs_readahead,
10919 	.invalidate_folio = btrfs_invalidate_folio,
10920 	.release_folio	= btrfs_release_folio,
10921 	.migrate_folio	= btrfs_migrate_folio,
10922 	.dirty_folio	= filemap_dirty_folio,
10923 	.error_remove_page = generic_error_remove_page,
10924 	.swap_activate	= btrfs_swap_activate,
10925 	.swap_deactivate = btrfs_swap_deactivate,
10926 };
10927 
10928 static const struct inode_operations btrfs_file_inode_operations = {
10929 	.getattr	= btrfs_getattr,
10930 	.setattr	= btrfs_setattr,
10931 	.listxattr      = btrfs_listxattr,
10932 	.permission	= btrfs_permission,
10933 	.fiemap		= btrfs_fiemap,
10934 	.get_inode_acl	= btrfs_get_acl,
10935 	.set_acl	= btrfs_set_acl,
10936 	.update_time	= btrfs_update_time,
10937 	.fileattr_get	= btrfs_fileattr_get,
10938 	.fileattr_set	= btrfs_fileattr_set,
10939 };
10940 static const struct inode_operations btrfs_special_inode_operations = {
10941 	.getattr	= btrfs_getattr,
10942 	.setattr	= btrfs_setattr,
10943 	.permission	= btrfs_permission,
10944 	.listxattr	= btrfs_listxattr,
10945 	.get_inode_acl	= btrfs_get_acl,
10946 	.set_acl	= btrfs_set_acl,
10947 	.update_time	= btrfs_update_time,
10948 };
10949 static const struct inode_operations btrfs_symlink_inode_operations = {
10950 	.get_link	= page_get_link,
10951 	.getattr	= btrfs_getattr,
10952 	.setattr	= btrfs_setattr,
10953 	.permission	= btrfs_permission,
10954 	.listxattr	= btrfs_listxattr,
10955 	.update_time	= btrfs_update_time,
10956 };
10957 
10958 const struct dentry_operations btrfs_dentry_operations = {
10959 	.d_delete	= btrfs_dentry_delete,
10960 };
10961