1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "bio.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 #include "fs.h" 59 #include "accessors.h" 60 #include "extent-tree.h" 61 #include "root-tree.h" 62 #include "defrag.h" 63 #include "dir-item.h" 64 #include "file-item.h" 65 #include "uuid-tree.h" 66 #include "ioctl.h" 67 #include "file.h" 68 #include "acl.h" 69 #include "relocation.h" 70 #include "verity.h" 71 #include "super.h" 72 #include "orphan.h" 73 #include "backref.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_dio_data { 81 ssize_t submitted; 82 struct extent_changeset *data_reserved; 83 struct btrfs_ordered_extent *ordered; 84 bool data_space_reserved; 85 bool nocow_done; 86 }; 87 88 struct btrfs_dio_private { 89 /* Range of I/O */ 90 u64 file_offset; 91 u32 bytes; 92 93 /* This must be last */ 94 struct btrfs_bio bbio; 95 }; 96 97 static struct bio_set btrfs_dio_bioset; 98 99 struct btrfs_rename_ctx { 100 /* Output field. Stores the index number of the old directory entry. */ 101 u64 index; 102 }; 103 104 /* 105 * Used by data_reloc_print_warning_inode() to pass needed info for filename 106 * resolution and output of error message. 107 */ 108 struct data_reloc_warn { 109 struct btrfs_path path; 110 struct btrfs_fs_info *fs_info; 111 u64 extent_item_size; 112 u64 logical; 113 int mirror_num; 114 }; 115 116 static const struct inode_operations btrfs_dir_inode_operations; 117 static const struct inode_operations btrfs_symlink_inode_operations; 118 static const struct inode_operations btrfs_special_inode_operations; 119 static const struct inode_operations btrfs_file_inode_operations; 120 static const struct address_space_operations btrfs_aops; 121 static const struct file_operations btrfs_dir_file_operations; 122 123 static struct kmem_cache *btrfs_inode_cachep; 124 125 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 127 128 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 129 struct page *locked_page, u64 start, 130 u64 end, struct writeback_control *wbc, 131 bool pages_dirty); 132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 133 u64 len, u64 orig_start, u64 block_start, 134 u64 block_len, u64 orig_block_len, 135 u64 ram_bytes, int compress_type, 136 int type); 137 138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 139 u64 root, void *warn_ctx) 140 { 141 struct data_reloc_warn *warn = warn_ctx; 142 struct btrfs_fs_info *fs_info = warn->fs_info; 143 struct extent_buffer *eb; 144 struct btrfs_inode_item *inode_item; 145 struct inode_fs_paths *ipath = NULL; 146 struct btrfs_root *local_root; 147 struct btrfs_key key; 148 unsigned int nofs_flag; 149 u32 nlink; 150 int ret; 151 152 local_root = btrfs_get_fs_root(fs_info, root, true); 153 if (IS_ERR(local_root)) { 154 ret = PTR_ERR(local_root); 155 goto err; 156 } 157 158 /* This makes the path point to (inum INODE_ITEM ioff). */ 159 key.objectid = inum; 160 key.type = BTRFS_INODE_ITEM_KEY; 161 key.offset = 0; 162 163 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 164 if (ret) { 165 btrfs_put_root(local_root); 166 btrfs_release_path(&warn->path); 167 goto err; 168 } 169 170 eb = warn->path.nodes[0]; 171 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 172 nlink = btrfs_inode_nlink(eb, inode_item); 173 btrfs_release_path(&warn->path); 174 175 nofs_flag = memalloc_nofs_save(); 176 ipath = init_ipath(4096, local_root, &warn->path); 177 memalloc_nofs_restore(nofs_flag); 178 if (IS_ERR(ipath)) { 179 btrfs_put_root(local_root); 180 ret = PTR_ERR(ipath); 181 ipath = NULL; 182 /* 183 * -ENOMEM, not a critical error, just output an generic error 184 * without filename. 185 */ 186 btrfs_warn(fs_info, 187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 188 warn->logical, warn->mirror_num, root, inum, offset); 189 return ret; 190 } 191 ret = paths_from_inode(inum, ipath); 192 if (ret < 0) 193 goto err; 194 195 /* 196 * We deliberately ignore the bit ipath might have been too small to 197 * hold all of the paths here 198 */ 199 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 200 btrfs_warn(fs_info, 201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 202 warn->logical, warn->mirror_num, root, inum, offset, 203 fs_info->sectorsize, nlink, 204 (char *)(unsigned long)ipath->fspath->val[i]); 205 } 206 207 btrfs_put_root(local_root); 208 free_ipath(ipath); 209 return 0; 210 211 err: 212 btrfs_warn(fs_info, 213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 214 warn->logical, warn->mirror_num, root, inum, offset, ret); 215 216 free_ipath(ipath); 217 return ret; 218 } 219 220 /* 221 * Do extra user-friendly error output (e.g. lookup all the affected files). 222 * 223 * Return true if we succeeded doing the backref lookup. 224 * Return false if such lookup failed, and has to fallback to the old error message. 225 */ 226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 227 const u8 *csum, const u8 *csum_expected, 228 int mirror_num) 229 { 230 struct btrfs_fs_info *fs_info = inode->root->fs_info; 231 struct btrfs_path path = { 0 }; 232 struct btrfs_key found_key = { 0 }; 233 struct extent_buffer *eb; 234 struct btrfs_extent_item *ei; 235 const u32 csum_size = fs_info->csum_size; 236 u64 logical; 237 u64 flags; 238 u32 item_size; 239 int ret; 240 241 mutex_lock(&fs_info->reloc_mutex); 242 logical = btrfs_get_reloc_bg_bytenr(fs_info); 243 mutex_unlock(&fs_info->reloc_mutex); 244 245 if (logical == U64_MAX) { 246 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 247 btrfs_warn_rl(fs_info, 248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 249 inode->root->root_key.objectid, btrfs_ino(inode), file_off, 250 CSUM_FMT_VALUE(csum_size, csum), 251 CSUM_FMT_VALUE(csum_size, csum_expected), 252 mirror_num); 253 return; 254 } 255 256 logical += file_off; 257 btrfs_warn_rl(fs_info, 258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 259 inode->root->root_key.objectid, 260 btrfs_ino(inode), file_off, logical, 261 CSUM_FMT_VALUE(csum_size, csum), 262 CSUM_FMT_VALUE(csum_size, csum_expected), 263 mirror_num); 264 265 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 266 if (ret < 0) { 267 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 268 logical, ret); 269 return; 270 } 271 eb = path.nodes[0]; 272 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 273 item_size = btrfs_item_size(eb, path.slots[0]); 274 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 275 unsigned long ptr = 0; 276 u64 ref_root; 277 u8 ref_level; 278 279 while (true) { 280 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 281 item_size, &ref_root, 282 &ref_level); 283 if (ret < 0) { 284 btrfs_warn_rl(fs_info, 285 "failed to resolve tree backref for logical %llu: %d", 286 logical, ret); 287 break; 288 } 289 if (ret > 0) 290 break; 291 292 btrfs_warn_rl(fs_info, 293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 294 logical, mirror_num, 295 (ref_level ? "node" : "leaf"), 296 ref_level, ref_root); 297 } 298 btrfs_release_path(&path); 299 } else { 300 struct btrfs_backref_walk_ctx ctx = { 0 }; 301 struct data_reloc_warn reloc_warn = { 0 }; 302 303 btrfs_release_path(&path); 304 305 ctx.bytenr = found_key.objectid; 306 ctx.extent_item_pos = logical - found_key.objectid; 307 ctx.fs_info = fs_info; 308 309 reloc_warn.logical = logical; 310 reloc_warn.extent_item_size = found_key.offset; 311 reloc_warn.mirror_num = mirror_num; 312 reloc_warn.fs_info = fs_info; 313 314 iterate_extent_inodes(&ctx, true, 315 data_reloc_print_warning_inode, &reloc_warn); 316 } 317 } 318 319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 320 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 321 { 322 struct btrfs_root *root = inode->root; 323 const u32 csum_size = root->fs_info->csum_size; 324 325 /* For data reloc tree, it's better to do a backref lookup instead. */ 326 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 327 return print_data_reloc_error(inode, logical_start, csum, 328 csum_expected, mirror_num); 329 330 /* Output without objectid, which is more meaningful */ 331 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) { 332 btrfs_warn_rl(root->fs_info, 333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 334 root->root_key.objectid, btrfs_ino(inode), 335 logical_start, 336 CSUM_FMT_VALUE(csum_size, csum), 337 CSUM_FMT_VALUE(csum_size, csum_expected), 338 mirror_num); 339 } else { 340 btrfs_warn_rl(root->fs_info, 341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 342 root->root_key.objectid, btrfs_ino(inode), 343 logical_start, 344 CSUM_FMT_VALUE(csum_size, csum), 345 CSUM_FMT_VALUE(csum_size, csum_expected), 346 mirror_num); 347 } 348 } 349 350 /* 351 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 352 * 353 * ilock_flags can have the following bit set: 354 * 355 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 356 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 357 * return -EAGAIN 358 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 359 */ 360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 361 { 362 if (ilock_flags & BTRFS_ILOCK_SHARED) { 363 if (ilock_flags & BTRFS_ILOCK_TRY) { 364 if (!inode_trylock_shared(&inode->vfs_inode)) 365 return -EAGAIN; 366 else 367 return 0; 368 } 369 inode_lock_shared(&inode->vfs_inode); 370 } else { 371 if (ilock_flags & BTRFS_ILOCK_TRY) { 372 if (!inode_trylock(&inode->vfs_inode)) 373 return -EAGAIN; 374 else 375 return 0; 376 } 377 inode_lock(&inode->vfs_inode); 378 } 379 if (ilock_flags & BTRFS_ILOCK_MMAP) 380 down_write(&inode->i_mmap_lock); 381 return 0; 382 } 383 384 /* 385 * btrfs_inode_unlock - unock inode i_rwsem 386 * 387 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 388 * to decide whether the lock acquired is shared or exclusive. 389 */ 390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 391 { 392 if (ilock_flags & BTRFS_ILOCK_MMAP) 393 up_write(&inode->i_mmap_lock); 394 if (ilock_flags & BTRFS_ILOCK_SHARED) 395 inode_unlock_shared(&inode->vfs_inode); 396 else 397 inode_unlock(&inode->vfs_inode); 398 } 399 400 /* 401 * Cleanup all submitted ordered extents in specified range to handle errors 402 * from the btrfs_run_delalloc_range() callback. 403 * 404 * NOTE: caller must ensure that when an error happens, it can not call 405 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 406 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 407 * to be released, which we want to happen only when finishing the ordered 408 * extent (btrfs_finish_ordered_io()). 409 */ 410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 411 struct page *locked_page, 412 u64 offset, u64 bytes) 413 { 414 unsigned long index = offset >> PAGE_SHIFT; 415 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 416 u64 page_start = 0, page_end = 0; 417 struct page *page; 418 419 if (locked_page) { 420 page_start = page_offset(locked_page); 421 page_end = page_start + PAGE_SIZE - 1; 422 } 423 424 while (index <= end_index) { 425 /* 426 * For locked page, we will call btrfs_mark_ordered_io_finished 427 * through btrfs_mark_ordered_io_finished() on it 428 * in run_delalloc_range() for the error handling, which will 429 * clear page Ordered and run the ordered extent accounting. 430 * 431 * Here we can't just clear the Ordered bit, or 432 * btrfs_mark_ordered_io_finished() would skip the accounting 433 * for the page range, and the ordered extent will never finish. 434 */ 435 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 436 index++; 437 continue; 438 } 439 page = find_get_page(inode->vfs_inode.i_mapping, index); 440 index++; 441 if (!page) 442 continue; 443 444 /* 445 * Here we just clear all Ordered bits for every page in the 446 * range, then btrfs_mark_ordered_io_finished() will handle 447 * the ordered extent accounting for the range. 448 */ 449 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 450 offset, bytes); 451 put_page(page); 452 } 453 454 if (locked_page) { 455 /* The locked page covers the full range, nothing needs to be done */ 456 if (bytes + offset <= page_start + PAGE_SIZE) 457 return; 458 /* 459 * In case this page belongs to the delalloc range being 460 * instantiated then skip it, since the first page of a range is 461 * going to be properly cleaned up by the caller of 462 * run_delalloc_range 463 */ 464 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 465 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 466 offset = page_offset(locked_page) + PAGE_SIZE; 467 } 468 } 469 470 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 471 } 472 473 static int btrfs_dirty_inode(struct btrfs_inode *inode); 474 475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 476 struct btrfs_new_inode_args *args) 477 { 478 int err; 479 480 if (args->default_acl) { 481 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 482 ACL_TYPE_DEFAULT); 483 if (err) 484 return err; 485 } 486 if (args->acl) { 487 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 488 if (err) 489 return err; 490 } 491 if (!args->default_acl && !args->acl) 492 cache_no_acl(args->inode); 493 return btrfs_xattr_security_init(trans, args->inode, args->dir, 494 &args->dentry->d_name); 495 } 496 497 /* 498 * this does all the hard work for inserting an inline extent into 499 * the btree. The caller should have done a btrfs_drop_extents so that 500 * no overlapping inline items exist in the btree 501 */ 502 static int insert_inline_extent(struct btrfs_trans_handle *trans, 503 struct btrfs_path *path, 504 struct btrfs_inode *inode, bool extent_inserted, 505 size_t size, size_t compressed_size, 506 int compress_type, 507 struct page **compressed_pages, 508 bool update_i_size) 509 { 510 struct btrfs_root *root = inode->root; 511 struct extent_buffer *leaf; 512 struct page *page = NULL; 513 char *kaddr; 514 unsigned long ptr; 515 struct btrfs_file_extent_item *ei; 516 int ret; 517 size_t cur_size = size; 518 u64 i_size; 519 520 ASSERT((compressed_size > 0 && compressed_pages) || 521 (compressed_size == 0 && !compressed_pages)); 522 523 if (compressed_size && compressed_pages) 524 cur_size = compressed_size; 525 526 if (!extent_inserted) { 527 struct btrfs_key key; 528 size_t datasize; 529 530 key.objectid = btrfs_ino(inode); 531 key.offset = 0; 532 key.type = BTRFS_EXTENT_DATA_KEY; 533 534 datasize = btrfs_file_extent_calc_inline_size(cur_size); 535 ret = btrfs_insert_empty_item(trans, root, path, &key, 536 datasize); 537 if (ret) 538 goto fail; 539 } 540 leaf = path->nodes[0]; 541 ei = btrfs_item_ptr(leaf, path->slots[0], 542 struct btrfs_file_extent_item); 543 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 544 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 545 btrfs_set_file_extent_encryption(leaf, ei, 0); 546 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 547 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 548 ptr = btrfs_file_extent_inline_start(ei); 549 550 if (compress_type != BTRFS_COMPRESS_NONE) { 551 struct page *cpage; 552 int i = 0; 553 while (compressed_size > 0) { 554 cpage = compressed_pages[i]; 555 cur_size = min_t(unsigned long, compressed_size, 556 PAGE_SIZE); 557 558 kaddr = kmap_local_page(cpage); 559 write_extent_buffer(leaf, kaddr, ptr, cur_size); 560 kunmap_local(kaddr); 561 562 i++; 563 ptr += cur_size; 564 compressed_size -= cur_size; 565 } 566 btrfs_set_file_extent_compression(leaf, ei, 567 compress_type); 568 } else { 569 page = find_get_page(inode->vfs_inode.i_mapping, 0); 570 btrfs_set_file_extent_compression(leaf, ei, 0); 571 kaddr = kmap_local_page(page); 572 write_extent_buffer(leaf, kaddr, ptr, size); 573 kunmap_local(kaddr); 574 put_page(page); 575 } 576 btrfs_mark_buffer_dirty(trans, leaf); 577 btrfs_release_path(path); 578 579 /* 580 * We align size to sectorsize for inline extents just for simplicity 581 * sake. 582 */ 583 ret = btrfs_inode_set_file_extent_range(inode, 0, 584 ALIGN(size, root->fs_info->sectorsize)); 585 if (ret) 586 goto fail; 587 588 /* 589 * We're an inline extent, so nobody can extend the file past i_size 590 * without locking a page we already have locked. 591 * 592 * We must do any i_size and inode updates before we unlock the pages. 593 * Otherwise we could end up racing with unlink. 594 */ 595 i_size = i_size_read(&inode->vfs_inode); 596 if (update_i_size && size > i_size) { 597 i_size_write(&inode->vfs_inode, size); 598 i_size = size; 599 } 600 inode->disk_i_size = i_size; 601 602 fail: 603 return ret; 604 } 605 606 607 /* 608 * conditionally insert an inline extent into the file. This 609 * does the checks required to make sure the data is small enough 610 * to fit as an inline extent. 611 */ 612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 613 size_t compressed_size, 614 int compress_type, 615 struct page **compressed_pages, 616 bool update_i_size) 617 { 618 struct btrfs_drop_extents_args drop_args = { 0 }; 619 struct btrfs_root *root = inode->root; 620 struct btrfs_fs_info *fs_info = root->fs_info; 621 struct btrfs_trans_handle *trans; 622 u64 data_len = (compressed_size ?: size); 623 int ret; 624 struct btrfs_path *path; 625 626 /* 627 * We can create an inline extent if it ends at or beyond the current 628 * i_size, is no larger than a sector (decompressed), and the (possibly 629 * compressed) data fits in a leaf and the configured maximum inline 630 * size. 631 */ 632 if (size < i_size_read(&inode->vfs_inode) || 633 size > fs_info->sectorsize || 634 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 635 data_len > fs_info->max_inline) 636 return 1; 637 638 path = btrfs_alloc_path(); 639 if (!path) 640 return -ENOMEM; 641 642 trans = btrfs_join_transaction(root); 643 if (IS_ERR(trans)) { 644 btrfs_free_path(path); 645 return PTR_ERR(trans); 646 } 647 trans->block_rsv = &inode->block_rsv; 648 649 drop_args.path = path; 650 drop_args.start = 0; 651 drop_args.end = fs_info->sectorsize; 652 drop_args.drop_cache = true; 653 drop_args.replace_extent = true; 654 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 655 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 656 if (ret) { 657 btrfs_abort_transaction(trans, ret); 658 goto out; 659 } 660 661 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 662 size, compressed_size, compress_type, 663 compressed_pages, update_i_size); 664 if (ret && ret != -ENOSPC) { 665 btrfs_abort_transaction(trans, ret); 666 goto out; 667 } else if (ret == -ENOSPC) { 668 ret = 1; 669 goto out; 670 } 671 672 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 673 ret = btrfs_update_inode(trans, root, inode); 674 if (ret && ret != -ENOSPC) { 675 btrfs_abort_transaction(trans, ret); 676 goto out; 677 } else if (ret == -ENOSPC) { 678 ret = 1; 679 goto out; 680 } 681 682 btrfs_set_inode_full_sync(inode); 683 out: 684 /* 685 * Don't forget to free the reserved space, as for inlined extent 686 * it won't count as data extent, free them directly here. 687 * And at reserve time, it's always aligned to page size, so 688 * just free one page here. 689 */ 690 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 691 btrfs_free_path(path); 692 btrfs_end_transaction(trans); 693 return ret; 694 } 695 696 struct async_extent { 697 u64 start; 698 u64 ram_size; 699 u64 compressed_size; 700 struct page **pages; 701 unsigned long nr_pages; 702 int compress_type; 703 struct list_head list; 704 }; 705 706 struct async_chunk { 707 struct btrfs_inode *inode; 708 struct page *locked_page; 709 u64 start; 710 u64 end; 711 blk_opf_t write_flags; 712 struct list_head extents; 713 struct cgroup_subsys_state *blkcg_css; 714 struct btrfs_work work; 715 struct async_cow *async_cow; 716 }; 717 718 struct async_cow { 719 atomic_t num_chunks; 720 struct async_chunk chunks[]; 721 }; 722 723 static noinline int add_async_extent(struct async_chunk *cow, 724 u64 start, u64 ram_size, 725 u64 compressed_size, 726 struct page **pages, 727 unsigned long nr_pages, 728 int compress_type) 729 { 730 struct async_extent *async_extent; 731 732 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 733 BUG_ON(!async_extent); /* -ENOMEM */ 734 async_extent->start = start; 735 async_extent->ram_size = ram_size; 736 async_extent->compressed_size = compressed_size; 737 async_extent->pages = pages; 738 async_extent->nr_pages = nr_pages; 739 async_extent->compress_type = compress_type; 740 list_add_tail(&async_extent->list, &cow->extents); 741 return 0; 742 } 743 744 /* 745 * Check if the inode needs to be submitted to compression, based on mount 746 * options, defragmentation, properties or heuristics. 747 */ 748 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 749 u64 end) 750 { 751 struct btrfs_fs_info *fs_info = inode->root->fs_info; 752 753 if (!btrfs_inode_can_compress(inode)) { 754 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 755 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 756 btrfs_ino(inode)); 757 return 0; 758 } 759 /* 760 * Special check for subpage. 761 * 762 * We lock the full page then run each delalloc range in the page, thus 763 * for the following case, we will hit some subpage specific corner case: 764 * 765 * 0 32K 64K 766 * | |///////| |///////| 767 * \- A \- B 768 * 769 * In above case, both range A and range B will try to unlock the full 770 * page [0, 64K), causing the one finished later will have page 771 * unlocked already, triggering various page lock requirement BUG_ON()s. 772 * 773 * So here we add an artificial limit that subpage compression can only 774 * if the range is fully page aligned. 775 * 776 * In theory we only need to ensure the first page is fully covered, but 777 * the tailing partial page will be locked until the full compression 778 * finishes, delaying the write of other range. 779 * 780 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 781 * first to prevent any submitted async extent to unlock the full page. 782 * By this, we can ensure for subpage case that only the last async_cow 783 * will unlock the full page. 784 */ 785 if (fs_info->sectorsize < PAGE_SIZE) { 786 if (!PAGE_ALIGNED(start) || 787 !PAGE_ALIGNED(end + 1)) 788 return 0; 789 } 790 791 /* force compress */ 792 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 793 return 1; 794 /* defrag ioctl */ 795 if (inode->defrag_compress) 796 return 1; 797 /* bad compression ratios */ 798 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 799 return 0; 800 if (btrfs_test_opt(fs_info, COMPRESS) || 801 inode->flags & BTRFS_INODE_COMPRESS || 802 inode->prop_compress) 803 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 804 return 0; 805 } 806 807 static inline void inode_should_defrag(struct btrfs_inode *inode, 808 u64 start, u64 end, u64 num_bytes, u32 small_write) 809 { 810 /* If this is a small write inside eof, kick off a defrag */ 811 if (num_bytes < small_write && 812 (start > 0 || end + 1 < inode->disk_i_size)) 813 btrfs_add_inode_defrag(NULL, inode, small_write); 814 } 815 816 /* 817 * Work queue call back to started compression on a file and pages. 818 * 819 * This is done inside an ordered work queue, and the compression is spread 820 * across many cpus. The actual IO submission is step two, and the ordered work 821 * queue takes care of making sure that happens in the same order things were 822 * put onto the queue by writepages and friends. 823 * 824 * If this code finds it can't get good compression, it puts an entry onto the 825 * work queue to write the uncompressed bytes. This makes sure that both 826 * compressed inodes and uncompressed inodes are written in the same order that 827 * the flusher thread sent them down. 828 */ 829 static void compress_file_range(struct btrfs_work *work) 830 { 831 struct async_chunk *async_chunk = 832 container_of(work, struct async_chunk, work); 833 struct btrfs_inode *inode = async_chunk->inode; 834 struct btrfs_fs_info *fs_info = inode->root->fs_info; 835 struct address_space *mapping = inode->vfs_inode.i_mapping; 836 u64 blocksize = fs_info->sectorsize; 837 u64 start = async_chunk->start; 838 u64 end = async_chunk->end; 839 u64 actual_end; 840 u64 i_size; 841 int ret = 0; 842 struct page **pages; 843 unsigned long nr_pages; 844 unsigned long total_compressed = 0; 845 unsigned long total_in = 0; 846 unsigned int poff; 847 int i; 848 int compress_type = fs_info->compress_type; 849 850 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 851 852 /* 853 * We need to call clear_page_dirty_for_io on each page in the range. 854 * Otherwise applications with the file mmap'd can wander in and change 855 * the page contents while we are compressing them. 856 */ 857 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 858 859 /* 860 * We need to save i_size before now because it could change in between 861 * us evaluating the size and assigning it. This is because we lock and 862 * unlock the page in truncate and fallocate, and then modify the i_size 863 * later on. 864 * 865 * The barriers are to emulate READ_ONCE, remove that once i_size_read 866 * does that for us. 867 */ 868 barrier(); 869 i_size = i_size_read(&inode->vfs_inode); 870 barrier(); 871 actual_end = min_t(u64, i_size, end + 1); 872 again: 873 pages = NULL; 874 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 875 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES); 876 877 /* 878 * we don't want to send crud past the end of i_size through 879 * compression, that's just a waste of CPU time. So, if the 880 * end of the file is before the start of our current 881 * requested range of bytes, we bail out to the uncompressed 882 * cleanup code that can deal with all of this. 883 * 884 * It isn't really the fastest way to fix things, but this is a 885 * very uncommon corner. 886 */ 887 if (actual_end <= start) 888 goto cleanup_and_bail_uncompressed; 889 890 total_compressed = actual_end - start; 891 892 /* 893 * Skip compression for a small file range(<=blocksize) that 894 * isn't an inline extent, since it doesn't save disk space at all. 895 */ 896 if (total_compressed <= blocksize && 897 (start > 0 || end + 1 < inode->disk_i_size)) 898 goto cleanup_and_bail_uncompressed; 899 900 /* 901 * For subpage case, we require full page alignment for the sector 902 * aligned range. 903 * Thus we must also check against @actual_end, not just @end. 904 */ 905 if (blocksize < PAGE_SIZE) { 906 if (!PAGE_ALIGNED(start) || 907 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 908 goto cleanup_and_bail_uncompressed; 909 } 910 911 total_compressed = min_t(unsigned long, total_compressed, 912 BTRFS_MAX_UNCOMPRESSED); 913 total_in = 0; 914 ret = 0; 915 916 /* 917 * We do compression for mount -o compress and when the inode has not 918 * been flagged as NOCOMPRESS. This flag can change at any time if we 919 * discover bad compression ratios. 920 */ 921 if (!inode_need_compress(inode, start, end)) 922 goto cleanup_and_bail_uncompressed; 923 924 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 925 if (!pages) { 926 /* 927 * Memory allocation failure is not a fatal error, we can fall 928 * back to uncompressed code. 929 */ 930 goto cleanup_and_bail_uncompressed; 931 } 932 933 if (inode->defrag_compress) 934 compress_type = inode->defrag_compress; 935 else if (inode->prop_compress) 936 compress_type = inode->prop_compress; 937 938 /* Compression level is applied here. */ 939 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4), 940 mapping, start, pages, &nr_pages, &total_in, 941 &total_compressed); 942 if (ret) 943 goto mark_incompressible; 944 945 /* 946 * Zero the tail end of the last page, as we might be sending it down 947 * to disk. 948 */ 949 poff = offset_in_page(total_compressed); 950 if (poff) 951 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff); 952 953 /* 954 * Try to create an inline extent. 955 * 956 * If we didn't compress the entire range, try to create an uncompressed 957 * inline extent, else a compressed one. 958 * 959 * Check cow_file_range() for why we don't even try to create inline 960 * extent for the subpage case. 961 */ 962 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 963 if (total_in < actual_end) { 964 ret = cow_file_range_inline(inode, actual_end, 0, 965 BTRFS_COMPRESS_NONE, NULL, 966 false); 967 } else { 968 ret = cow_file_range_inline(inode, actual_end, 969 total_compressed, 970 compress_type, pages, 971 false); 972 } 973 if (ret <= 0) { 974 unsigned long clear_flags = EXTENT_DELALLOC | 975 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 976 EXTENT_DO_ACCOUNTING; 977 978 if (ret < 0) 979 mapping_set_error(mapping, -EIO); 980 981 /* 982 * inline extent creation worked or returned error, 983 * we don't need to create any more async work items. 984 * Unlock and free up our temp pages. 985 * 986 * We use DO_ACCOUNTING here because we need the 987 * delalloc_release_metadata to be done _after_ we drop 988 * our outstanding extent for clearing delalloc for this 989 * range. 990 */ 991 extent_clear_unlock_delalloc(inode, start, end, 992 NULL, 993 clear_flags, 994 PAGE_UNLOCK | 995 PAGE_START_WRITEBACK | 996 PAGE_END_WRITEBACK); 997 goto free_pages; 998 } 999 } 1000 1001 /* 1002 * We aren't doing an inline extent. Round the compressed size up to a 1003 * block size boundary so the allocator does sane things. 1004 */ 1005 total_compressed = ALIGN(total_compressed, blocksize); 1006 1007 /* 1008 * One last check to make sure the compression is really a win, compare 1009 * the page count read with the blocks on disk, compression must free at 1010 * least one sector. 1011 */ 1012 total_in = round_up(total_in, fs_info->sectorsize); 1013 if (total_compressed + blocksize > total_in) 1014 goto mark_incompressible; 1015 1016 /* 1017 * The async work queues will take care of doing actual allocation on 1018 * disk for these compressed pages, and will submit the bios. 1019 */ 1020 add_async_extent(async_chunk, start, total_in, total_compressed, pages, 1021 nr_pages, compress_type); 1022 if (start + total_in < end) { 1023 start += total_in; 1024 cond_resched(); 1025 goto again; 1026 } 1027 return; 1028 1029 mark_incompressible: 1030 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1031 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1032 cleanup_and_bail_uncompressed: 1033 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1034 BTRFS_COMPRESS_NONE); 1035 free_pages: 1036 if (pages) { 1037 for (i = 0; i < nr_pages; i++) { 1038 WARN_ON(pages[i]->mapping); 1039 put_page(pages[i]); 1040 } 1041 kfree(pages); 1042 } 1043 } 1044 1045 static void free_async_extent_pages(struct async_extent *async_extent) 1046 { 1047 int i; 1048 1049 if (!async_extent->pages) 1050 return; 1051 1052 for (i = 0; i < async_extent->nr_pages; i++) { 1053 WARN_ON(async_extent->pages[i]->mapping); 1054 put_page(async_extent->pages[i]); 1055 } 1056 kfree(async_extent->pages); 1057 async_extent->nr_pages = 0; 1058 async_extent->pages = NULL; 1059 } 1060 1061 static void submit_uncompressed_range(struct btrfs_inode *inode, 1062 struct async_extent *async_extent, 1063 struct page *locked_page) 1064 { 1065 u64 start = async_extent->start; 1066 u64 end = async_extent->start + async_extent->ram_size - 1; 1067 int ret; 1068 struct writeback_control wbc = { 1069 .sync_mode = WB_SYNC_ALL, 1070 .range_start = start, 1071 .range_end = end, 1072 .no_cgroup_owner = 1, 1073 }; 1074 1075 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1076 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false); 1077 wbc_detach_inode(&wbc); 1078 if (ret < 0) { 1079 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 1080 if (locked_page) { 1081 const u64 page_start = page_offset(locked_page); 1082 1083 set_page_writeback(locked_page); 1084 end_page_writeback(locked_page); 1085 btrfs_mark_ordered_io_finished(inode, locked_page, 1086 page_start, PAGE_SIZE, 1087 !ret); 1088 mapping_set_error(locked_page->mapping, ret); 1089 unlock_page(locked_page); 1090 } 1091 } 1092 } 1093 1094 static void submit_one_async_extent(struct async_chunk *async_chunk, 1095 struct async_extent *async_extent, 1096 u64 *alloc_hint) 1097 { 1098 struct btrfs_inode *inode = async_chunk->inode; 1099 struct extent_io_tree *io_tree = &inode->io_tree; 1100 struct btrfs_root *root = inode->root; 1101 struct btrfs_fs_info *fs_info = root->fs_info; 1102 struct btrfs_ordered_extent *ordered; 1103 struct btrfs_key ins; 1104 struct page *locked_page = NULL; 1105 struct extent_map *em; 1106 int ret = 0; 1107 u64 start = async_extent->start; 1108 u64 end = async_extent->start + async_extent->ram_size - 1; 1109 1110 if (async_chunk->blkcg_css) 1111 kthread_associate_blkcg(async_chunk->blkcg_css); 1112 1113 /* 1114 * If async_chunk->locked_page is in the async_extent range, we need to 1115 * handle it. 1116 */ 1117 if (async_chunk->locked_page) { 1118 u64 locked_page_start = page_offset(async_chunk->locked_page); 1119 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 1120 1121 if (!(start >= locked_page_end || end <= locked_page_start)) 1122 locked_page = async_chunk->locked_page; 1123 } 1124 lock_extent(io_tree, start, end, NULL); 1125 1126 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1127 submit_uncompressed_range(inode, async_extent, locked_page); 1128 goto done; 1129 } 1130 1131 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1132 async_extent->compressed_size, 1133 async_extent->compressed_size, 1134 0, *alloc_hint, &ins, 1, 1); 1135 if (ret) { 1136 /* 1137 * Here we used to try again by going back to non-compressed 1138 * path for ENOSPC. But we can't reserve space even for 1139 * compressed size, how could it work for uncompressed size 1140 * which requires larger size? So here we directly go error 1141 * path. 1142 */ 1143 goto out_free; 1144 } 1145 1146 /* Here we're doing allocation and writeback of the compressed pages */ 1147 em = create_io_em(inode, start, 1148 async_extent->ram_size, /* len */ 1149 start, /* orig_start */ 1150 ins.objectid, /* block_start */ 1151 ins.offset, /* block_len */ 1152 ins.offset, /* orig_block_len */ 1153 async_extent->ram_size, /* ram_bytes */ 1154 async_extent->compress_type, 1155 BTRFS_ORDERED_COMPRESSED); 1156 if (IS_ERR(em)) { 1157 ret = PTR_ERR(em); 1158 goto out_free_reserve; 1159 } 1160 free_extent_map(em); 1161 1162 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */ 1163 async_extent->ram_size, /* num_bytes */ 1164 async_extent->ram_size, /* ram_bytes */ 1165 ins.objectid, /* disk_bytenr */ 1166 ins.offset, /* disk_num_bytes */ 1167 0, /* offset */ 1168 1 << BTRFS_ORDERED_COMPRESSED, 1169 async_extent->compress_type); 1170 if (IS_ERR(ordered)) { 1171 btrfs_drop_extent_map_range(inode, start, end, false); 1172 ret = PTR_ERR(ordered); 1173 goto out_free_reserve; 1174 } 1175 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1176 1177 /* Clear dirty, set writeback and unlock the pages. */ 1178 extent_clear_unlock_delalloc(inode, start, end, 1179 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 1180 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1181 btrfs_submit_compressed_write(ordered, 1182 async_extent->pages, /* compressed_pages */ 1183 async_extent->nr_pages, 1184 async_chunk->write_flags, true); 1185 *alloc_hint = ins.objectid + ins.offset; 1186 done: 1187 if (async_chunk->blkcg_css) 1188 kthread_associate_blkcg(NULL); 1189 kfree(async_extent); 1190 return; 1191 1192 out_free_reserve: 1193 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1194 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1195 out_free: 1196 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1197 extent_clear_unlock_delalloc(inode, start, end, 1198 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1199 EXTENT_DELALLOC_NEW | 1200 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1201 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1202 PAGE_END_WRITEBACK); 1203 free_async_extent_pages(async_extent); 1204 if (async_chunk->blkcg_css) 1205 kthread_associate_blkcg(NULL); 1206 btrfs_debug(fs_info, 1207 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1208 root->root_key.objectid, btrfs_ino(inode), start, 1209 async_extent->ram_size, ret); 1210 kfree(async_extent); 1211 } 1212 1213 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1214 u64 num_bytes) 1215 { 1216 struct extent_map_tree *em_tree = &inode->extent_tree; 1217 struct extent_map *em; 1218 u64 alloc_hint = 0; 1219 1220 read_lock(&em_tree->lock); 1221 em = search_extent_mapping(em_tree, start, num_bytes); 1222 if (em) { 1223 /* 1224 * if block start isn't an actual block number then find the 1225 * first block in this inode and use that as a hint. If that 1226 * block is also bogus then just don't worry about it. 1227 */ 1228 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1229 free_extent_map(em); 1230 em = search_extent_mapping(em_tree, 0, 0); 1231 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1232 alloc_hint = em->block_start; 1233 if (em) 1234 free_extent_map(em); 1235 } else { 1236 alloc_hint = em->block_start; 1237 free_extent_map(em); 1238 } 1239 } 1240 read_unlock(&em_tree->lock); 1241 1242 return alloc_hint; 1243 } 1244 1245 /* 1246 * when extent_io.c finds a delayed allocation range in the file, 1247 * the call backs end up in this code. The basic idea is to 1248 * allocate extents on disk for the range, and create ordered data structs 1249 * in ram to track those extents. 1250 * 1251 * locked_page is the page that writepage had locked already. We use 1252 * it to make sure we don't do extra locks or unlocks. 1253 * 1254 * When this function fails, it unlocks all pages except @locked_page. 1255 * 1256 * When this function successfully creates an inline extent, it returns 1 and 1257 * unlocks all pages including locked_page and starts I/O on them. 1258 * (In reality inline extents are limited to a single page, so locked_page is 1259 * the only page handled anyway). 1260 * 1261 * When this function succeed and creates a normal extent, the page locking 1262 * status depends on the passed in flags: 1263 * 1264 * - If @keep_locked is set, all pages are kept locked. 1265 * - Else all pages except for @locked_page are unlocked. 1266 * 1267 * When a failure happens in the second or later iteration of the 1268 * while-loop, the ordered extents created in previous iterations are kept 1269 * intact. So, the caller must clean them up by calling 1270 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1271 * example. 1272 */ 1273 static noinline int cow_file_range(struct btrfs_inode *inode, 1274 struct page *locked_page, u64 start, u64 end, 1275 u64 *done_offset, 1276 bool keep_locked, bool no_inline) 1277 { 1278 struct btrfs_root *root = inode->root; 1279 struct btrfs_fs_info *fs_info = root->fs_info; 1280 u64 alloc_hint = 0; 1281 u64 orig_start = start; 1282 u64 num_bytes; 1283 unsigned long ram_size; 1284 u64 cur_alloc_size = 0; 1285 u64 min_alloc_size; 1286 u64 blocksize = fs_info->sectorsize; 1287 struct btrfs_key ins; 1288 struct extent_map *em; 1289 unsigned clear_bits; 1290 unsigned long page_ops; 1291 bool extent_reserved = false; 1292 int ret = 0; 1293 1294 if (btrfs_is_free_space_inode(inode)) { 1295 ret = -EINVAL; 1296 goto out_unlock; 1297 } 1298 1299 num_bytes = ALIGN(end - start + 1, blocksize); 1300 num_bytes = max(blocksize, num_bytes); 1301 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1302 1303 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1304 1305 /* 1306 * Due to the page size limit, for subpage we can only trigger the 1307 * writeback for the dirty sectors of page, that means data writeback 1308 * is doing more writeback than what we want. 1309 * 1310 * This is especially unexpected for some call sites like fallocate, 1311 * where we only increase i_size after everything is done. 1312 * This means we can trigger inline extent even if we didn't want to. 1313 * So here we skip inline extent creation completely. 1314 */ 1315 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) { 1316 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1317 end + 1); 1318 1319 /* lets try to make an inline extent */ 1320 ret = cow_file_range_inline(inode, actual_end, 0, 1321 BTRFS_COMPRESS_NONE, NULL, false); 1322 if (ret == 0) { 1323 /* 1324 * We use DO_ACCOUNTING here because we need the 1325 * delalloc_release_metadata to be run _after_ we drop 1326 * our outstanding extent for clearing delalloc for this 1327 * range. 1328 */ 1329 extent_clear_unlock_delalloc(inode, start, end, 1330 locked_page, 1331 EXTENT_LOCKED | EXTENT_DELALLOC | 1332 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1333 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1334 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1335 /* 1336 * locked_page is locked by the caller of 1337 * writepage_delalloc(), not locked by 1338 * __process_pages_contig(). 1339 * 1340 * We can't let __process_pages_contig() to unlock it, 1341 * as it doesn't have any subpage::writers recorded. 1342 * 1343 * Here we manually unlock the page, since the caller 1344 * can't determine if it's an inline extent or a 1345 * compressed extent. 1346 */ 1347 unlock_page(locked_page); 1348 ret = 1; 1349 goto done; 1350 } else if (ret < 0) { 1351 goto out_unlock; 1352 } 1353 } 1354 1355 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1356 1357 /* 1358 * Relocation relies on the relocated extents to have exactly the same 1359 * size as the original extents. Normally writeback for relocation data 1360 * extents follows a NOCOW path because relocation preallocates the 1361 * extents. However, due to an operation such as scrub turning a block 1362 * group to RO mode, it may fallback to COW mode, so we must make sure 1363 * an extent allocated during COW has exactly the requested size and can 1364 * not be split into smaller extents, otherwise relocation breaks and 1365 * fails during the stage where it updates the bytenr of file extent 1366 * items. 1367 */ 1368 if (btrfs_is_data_reloc_root(root)) 1369 min_alloc_size = num_bytes; 1370 else 1371 min_alloc_size = fs_info->sectorsize; 1372 1373 while (num_bytes > 0) { 1374 struct btrfs_ordered_extent *ordered; 1375 1376 cur_alloc_size = num_bytes; 1377 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1378 min_alloc_size, 0, alloc_hint, 1379 &ins, 1, 1); 1380 if (ret == -EAGAIN) { 1381 /* 1382 * btrfs_reserve_extent only returns -EAGAIN for zoned 1383 * file systems, which is an indication that there are 1384 * no active zones to allocate from at the moment. 1385 * 1386 * If this is the first loop iteration, wait for at 1387 * least one zone to finish before retrying the 1388 * allocation. Otherwise ask the caller to write out 1389 * the already allocated blocks before coming back to 1390 * us, or return -ENOSPC if it can't handle retries. 1391 */ 1392 ASSERT(btrfs_is_zoned(fs_info)); 1393 if (start == orig_start) { 1394 wait_on_bit_io(&inode->root->fs_info->flags, 1395 BTRFS_FS_NEED_ZONE_FINISH, 1396 TASK_UNINTERRUPTIBLE); 1397 continue; 1398 } 1399 if (done_offset) { 1400 *done_offset = start - 1; 1401 return 0; 1402 } 1403 ret = -ENOSPC; 1404 } 1405 if (ret < 0) 1406 goto out_unlock; 1407 cur_alloc_size = ins.offset; 1408 extent_reserved = true; 1409 1410 ram_size = ins.offset; 1411 em = create_io_em(inode, start, ins.offset, /* len */ 1412 start, /* orig_start */ 1413 ins.objectid, /* block_start */ 1414 ins.offset, /* block_len */ 1415 ins.offset, /* orig_block_len */ 1416 ram_size, /* ram_bytes */ 1417 BTRFS_COMPRESS_NONE, /* compress_type */ 1418 BTRFS_ORDERED_REGULAR /* type */); 1419 if (IS_ERR(em)) { 1420 ret = PTR_ERR(em); 1421 goto out_reserve; 1422 } 1423 free_extent_map(em); 1424 1425 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size, 1426 ram_size, ins.objectid, cur_alloc_size, 1427 0, 1 << BTRFS_ORDERED_REGULAR, 1428 BTRFS_COMPRESS_NONE); 1429 if (IS_ERR(ordered)) { 1430 ret = PTR_ERR(ordered); 1431 goto out_drop_extent_cache; 1432 } 1433 1434 if (btrfs_is_data_reloc_root(root)) { 1435 ret = btrfs_reloc_clone_csums(ordered); 1436 1437 /* 1438 * Only drop cache here, and process as normal. 1439 * 1440 * We must not allow extent_clear_unlock_delalloc() 1441 * at out_unlock label to free meta of this ordered 1442 * extent, as its meta should be freed by 1443 * btrfs_finish_ordered_io(). 1444 * 1445 * So we must continue until @start is increased to 1446 * skip current ordered extent. 1447 */ 1448 if (ret) 1449 btrfs_drop_extent_map_range(inode, start, 1450 start + ram_size - 1, 1451 false); 1452 } 1453 btrfs_put_ordered_extent(ordered); 1454 1455 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1456 1457 /* 1458 * We're not doing compressed IO, don't unlock the first page 1459 * (which the caller expects to stay locked), don't clear any 1460 * dirty bits and don't set any writeback bits 1461 * 1462 * Do set the Ordered (Private2) bit so we know this page was 1463 * properly setup for writepage. 1464 */ 1465 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1466 page_ops |= PAGE_SET_ORDERED; 1467 1468 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1469 locked_page, 1470 EXTENT_LOCKED | EXTENT_DELALLOC, 1471 page_ops); 1472 if (num_bytes < cur_alloc_size) 1473 num_bytes = 0; 1474 else 1475 num_bytes -= cur_alloc_size; 1476 alloc_hint = ins.objectid + ins.offset; 1477 start += cur_alloc_size; 1478 extent_reserved = false; 1479 1480 /* 1481 * btrfs_reloc_clone_csums() error, since start is increased 1482 * extent_clear_unlock_delalloc() at out_unlock label won't 1483 * free metadata of current ordered extent, we're OK to exit. 1484 */ 1485 if (ret) 1486 goto out_unlock; 1487 } 1488 done: 1489 if (done_offset) 1490 *done_offset = end; 1491 return ret; 1492 1493 out_drop_extent_cache: 1494 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1495 out_reserve: 1496 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1497 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1498 out_unlock: 1499 /* 1500 * Now, we have three regions to clean up: 1501 * 1502 * |-------(1)----|---(2)---|-------------(3)----------| 1503 * `- orig_start `- start `- start + cur_alloc_size `- end 1504 * 1505 * We process each region below. 1506 */ 1507 1508 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1509 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1510 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1511 1512 /* 1513 * For the range (1). We have already instantiated the ordered extents 1514 * for this region. They are cleaned up by 1515 * btrfs_cleanup_ordered_extents() in e.g, 1516 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1517 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1518 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1519 * function. 1520 * 1521 * However, in case of @keep_locked, we still need to unlock the pages 1522 * (except @locked_page) to ensure all the pages are unlocked. 1523 */ 1524 if (keep_locked && orig_start < start) { 1525 if (!locked_page) 1526 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1527 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1528 locked_page, 0, page_ops); 1529 } 1530 1531 /* 1532 * For the range (2). If we reserved an extent for our delalloc range 1533 * (or a subrange) and failed to create the respective ordered extent, 1534 * then it means that when we reserved the extent we decremented the 1535 * extent's size from the data space_info's bytes_may_use counter and 1536 * incremented the space_info's bytes_reserved counter by the same 1537 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1538 * to decrement again the data space_info's bytes_may_use counter, 1539 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1540 */ 1541 if (extent_reserved) { 1542 extent_clear_unlock_delalloc(inode, start, 1543 start + cur_alloc_size - 1, 1544 locked_page, 1545 clear_bits, 1546 page_ops); 1547 start += cur_alloc_size; 1548 } 1549 1550 /* 1551 * For the range (3). We never touched the region. In addition to the 1552 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1553 * space_info's bytes_may_use counter, reserved in 1554 * btrfs_check_data_free_space(). 1555 */ 1556 if (start < end) { 1557 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1558 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1559 clear_bits, page_ops); 1560 } 1561 return ret; 1562 } 1563 1564 /* 1565 * Phase two of compressed writeback. This is the ordered portion of the code, 1566 * which only gets called in the order the work was queued. We walk all the 1567 * async extents created by compress_file_range and send them down to the disk. 1568 */ 1569 static noinline void submit_compressed_extents(struct btrfs_work *work) 1570 { 1571 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1572 work); 1573 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1574 struct async_extent *async_extent; 1575 unsigned long nr_pages; 1576 u64 alloc_hint = 0; 1577 1578 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1579 PAGE_SHIFT; 1580 1581 while (!list_empty(&async_chunk->extents)) { 1582 async_extent = list_entry(async_chunk->extents.next, 1583 struct async_extent, list); 1584 list_del(&async_extent->list); 1585 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1586 } 1587 1588 /* atomic_sub_return implies a barrier */ 1589 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1590 5 * SZ_1M) 1591 cond_wake_up_nomb(&fs_info->async_submit_wait); 1592 } 1593 1594 static noinline void async_cow_free(struct btrfs_work *work) 1595 { 1596 struct async_chunk *async_chunk; 1597 struct async_cow *async_cow; 1598 1599 async_chunk = container_of(work, struct async_chunk, work); 1600 btrfs_add_delayed_iput(async_chunk->inode); 1601 if (async_chunk->blkcg_css) 1602 css_put(async_chunk->blkcg_css); 1603 1604 async_cow = async_chunk->async_cow; 1605 if (atomic_dec_and_test(&async_cow->num_chunks)) 1606 kvfree(async_cow); 1607 } 1608 1609 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1610 struct page *locked_page, u64 start, 1611 u64 end, struct writeback_control *wbc) 1612 { 1613 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1614 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1615 struct async_cow *ctx; 1616 struct async_chunk *async_chunk; 1617 unsigned long nr_pages; 1618 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1619 int i; 1620 unsigned nofs_flag; 1621 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1622 1623 nofs_flag = memalloc_nofs_save(); 1624 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1625 memalloc_nofs_restore(nofs_flag); 1626 if (!ctx) 1627 return false; 1628 1629 unlock_extent(&inode->io_tree, start, end, NULL); 1630 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1631 1632 async_chunk = ctx->chunks; 1633 atomic_set(&ctx->num_chunks, num_chunks); 1634 1635 for (i = 0; i < num_chunks; i++) { 1636 u64 cur_end = min(end, start + SZ_512K - 1); 1637 1638 /* 1639 * igrab is called higher up in the call chain, take only the 1640 * lightweight reference for the callback lifetime 1641 */ 1642 ihold(&inode->vfs_inode); 1643 async_chunk[i].async_cow = ctx; 1644 async_chunk[i].inode = inode; 1645 async_chunk[i].start = start; 1646 async_chunk[i].end = cur_end; 1647 async_chunk[i].write_flags = write_flags; 1648 INIT_LIST_HEAD(&async_chunk[i].extents); 1649 1650 /* 1651 * The locked_page comes all the way from writepage and its 1652 * the original page we were actually given. As we spread 1653 * this large delalloc region across multiple async_chunk 1654 * structs, only the first struct needs a pointer to locked_page 1655 * 1656 * This way we don't need racey decisions about who is supposed 1657 * to unlock it. 1658 */ 1659 if (locked_page) { 1660 /* 1661 * Depending on the compressibility, the pages might or 1662 * might not go through async. We want all of them to 1663 * be accounted against wbc once. Let's do it here 1664 * before the paths diverge. wbc accounting is used 1665 * only for foreign writeback detection and doesn't 1666 * need full accuracy. Just account the whole thing 1667 * against the first page. 1668 */ 1669 wbc_account_cgroup_owner(wbc, locked_page, 1670 cur_end - start); 1671 async_chunk[i].locked_page = locked_page; 1672 locked_page = NULL; 1673 } else { 1674 async_chunk[i].locked_page = NULL; 1675 } 1676 1677 if (blkcg_css != blkcg_root_css) { 1678 css_get(blkcg_css); 1679 async_chunk[i].blkcg_css = blkcg_css; 1680 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1681 } else { 1682 async_chunk[i].blkcg_css = NULL; 1683 } 1684 1685 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1686 submit_compressed_extents, async_cow_free); 1687 1688 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1689 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1690 1691 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1692 1693 start = cur_end + 1; 1694 } 1695 return true; 1696 } 1697 1698 /* 1699 * Run the delalloc range from start to end, and write back any dirty pages 1700 * covered by the range. 1701 */ 1702 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1703 struct page *locked_page, u64 start, 1704 u64 end, struct writeback_control *wbc, 1705 bool pages_dirty) 1706 { 1707 u64 done_offset = end; 1708 int ret; 1709 1710 while (start <= end) { 1711 ret = cow_file_range(inode, locked_page, start, end, &done_offset, 1712 true, false); 1713 if (ret) 1714 return ret; 1715 extent_write_locked_range(&inode->vfs_inode, locked_page, start, 1716 done_offset, wbc, pages_dirty); 1717 start = done_offset + 1; 1718 } 1719 1720 return 1; 1721 } 1722 1723 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1724 u64 bytenr, u64 num_bytes, bool nowait) 1725 { 1726 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1727 struct btrfs_ordered_sum *sums; 1728 int ret; 1729 LIST_HEAD(list); 1730 1731 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1, 1732 &list, 0, nowait); 1733 if (ret == 0 && list_empty(&list)) 1734 return 0; 1735 1736 while (!list_empty(&list)) { 1737 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1738 list_del(&sums->list); 1739 kfree(sums); 1740 } 1741 if (ret < 0) 1742 return ret; 1743 return 1; 1744 } 1745 1746 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1747 const u64 start, const u64 end) 1748 { 1749 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1750 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1751 const u64 range_bytes = end + 1 - start; 1752 struct extent_io_tree *io_tree = &inode->io_tree; 1753 u64 range_start = start; 1754 u64 count; 1755 int ret; 1756 1757 /* 1758 * If EXTENT_NORESERVE is set it means that when the buffered write was 1759 * made we had not enough available data space and therefore we did not 1760 * reserve data space for it, since we though we could do NOCOW for the 1761 * respective file range (either there is prealloc extent or the inode 1762 * has the NOCOW bit set). 1763 * 1764 * However when we need to fallback to COW mode (because for example the 1765 * block group for the corresponding extent was turned to RO mode by a 1766 * scrub or relocation) we need to do the following: 1767 * 1768 * 1) We increment the bytes_may_use counter of the data space info. 1769 * If COW succeeds, it allocates a new data extent and after doing 1770 * that it decrements the space info's bytes_may_use counter and 1771 * increments its bytes_reserved counter by the same amount (we do 1772 * this at btrfs_add_reserved_bytes()). So we need to increment the 1773 * bytes_may_use counter to compensate (when space is reserved at 1774 * buffered write time, the bytes_may_use counter is incremented); 1775 * 1776 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1777 * that if the COW path fails for any reason, it decrements (through 1778 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1779 * data space info, which we incremented in the step above. 1780 * 1781 * If we need to fallback to cow and the inode corresponds to a free 1782 * space cache inode or an inode of the data relocation tree, we must 1783 * also increment bytes_may_use of the data space_info for the same 1784 * reason. Space caches and relocated data extents always get a prealloc 1785 * extent for them, however scrub or balance may have set the block 1786 * group that contains that extent to RO mode and therefore force COW 1787 * when starting writeback. 1788 */ 1789 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1790 EXTENT_NORESERVE, 0, NULL); 1791 if (count > 0 || is_space_ino || is_reloc_ino) { 1792 u64 bytes = count; 1793 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1794 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1795 1796 if (is_space_ino || is_reloc_ino) 1797 bytes = range_bytes; 1798 1799 spin_lock(&sinfo->lock); 1800 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1801 spin_unlock(&sinfo->lock); 1802 1803 if (count > 0) 1804 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1805 NULL); 1806 } 1807 1808 /* 1809 * Don't try to create inline extents, as a mix of inline extent that 1810 * is written out and unlocked directly and a normal NOCOW extent 1811 * doesn't work. 1812 */ 1813 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true); 1814 ASSERT(ret != 1); 1815 return ret; 1816 } 1817 1818 struct can_nocow_file_extent_args { 1819 /* Input fields. */ 1820 1821 /* Start file offset of the range we want to NOCOW. */ 1822 u64 start; 1823 /* End file offset (inclusive) of the range we want to NOCOW. */ 1824 u64 end; 1825 bool writeback_path; 1826 bool strict; 1827 /* 1828 * Free the path passed to can_nocow_file_extent() once it's not needed 1829 * anymore. 1830 */ 1831 bool free_path; 1832 1833 /* Output fields. Only set when can_nocow_file_extent() returns 1. */ 1834 1835 u64 disk_bytenr; 1836 u64 disk_num_bytes; 1837 u64 extent_offset; 1838 /* Number of bytes that can be written to in NOCOW mode. */ 1839 u64 num_bytes; 1840 }; 1841 1842 /* 1843 * Check if we can NOCOW the file extent that the path points to. 1844 * This function may return with the path released, so the caller should check 1845 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1846 * 1847 * Returns: < 0 on error 1848 * 0 if we can not NOCOW 1849 * 1 if we can NOCOW 1850 */ 1851 static int can_nocow_file_extent(struct btrfs_path *path, 1852 struct btrfs_key *key, 1853 struct btrfs_inode *inode, 1854 struct can_nocow_file_extent_args *args) 1855 { 1856 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1857 struct extent_buffer *leaf = path->nodes[0]; 1858 struct btrfs_root *root = inode->root; 1859 struct btrfs_file_extent_item *fi; 1860 u64 extent_end; 1861 u8 extent_type; 1862 int can_nocow = 0; 1863 int ret = 0; 1864 bool nowait = path->nowait; 1865 1866 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1867 extent_type = btrfs_file_extent_type(leaf, fi); 1868 1869 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1870 goto out; 1871 1872 /* Can't access these fields unless we know it's not an inline extent. */ 1873 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1874 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1875 args->extent_offset = btrfs_file_extent_offset(leaf, fi); 1876 1877 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1878 extent_type == BTRFS_FILE_EXTENT_REG) 1879 goto out; 1880 1881 /* 1882 * If the extent was created before the generation where the last snapshot 1883 * for its subvolume was created, then this implies the extent is shared, 1884 * hence we must COW. 1885 */ 1886 if (!args->strict && 1887 btrfs_file_extent_generation(leaf, fi) <= 1888 btrfs_root_last_snapshot(&root->root_item)) 1889 goto out; 1890 1891 /* An explicit hole, must COW. */ 1892 if (args->disk_bytenr == 0) 1893 goto out; 1894 1895 /* Compressed/encrypted/encoded extents must be COWed. */ 1896 if (btrfs_file_extent_compression(leaf, fi) || 1897 btrfs_file_extent_encryption(leaf, fi) || 1898 btrfs_file_extent_other_encoding(leaf, fi)) 1899 goto out; 1900 1901 extent_end = btrfs_file_extent_end(path); 1902 1903 /* 1904 * The following checks can be expensive, as they need to take other 1905 * locks and do btree or rbtree searches, so release the path to avoid 1906 * blocking other tasks for too long. 1907 */ 1908 btrfs_release_path(path); 1909 1910 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1911 key->offset - args->extent_offset, 1912 args->disk_bytenr, args->strict, path); 1913 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1914 if (ret != 0) 1915 goto out; 1916 1917 if (args->free_path) { 1918 /* 1919 * We don't need the path anymore, plus through the 1920 * csum_exist_in_range() call below we will end up allocating 1921 * another path. So free the path to avoid unnecessary extra 1922 * memory usage. 1923 */ 1924 btrfs_free_path(path); 1925 path = NULL; 1926 } 1927 1928 /* If there are pending snapshots for this root, we must COW. */ 1929 if (args->writeback_path && !is_freespace_inode && 1930 atomic_read(&root->snapshot_force_cow)) 1931 goto out; 1932 1933 args->disk_bytenr += args->extent_offset; 1934 args->disk_bytenr += args->start - key->offset; 1935 args->num_bytes = min(args->end + 1, extent_end) - args->start; 1936 1937 /* 1938 * Force COW if csums exist in the range. This ensures that csums for a 1939 * given extent are either valid or do not exist. 1940 */ 1941 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes, 1942 nowait); 1943 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1944 if (ret != 0) 1945 goto out; 1946 1947 can_nocow = 1; 1948 out: 1949 if (args->free_path && path) 1950 btrfs_free_path(path); 1951 1952 return ret < 0 ? ret : can_nocow; 1953 } 1954 1955 /* 1956 * when nowcow writeback call back. This checks for snapshots or COW copies 1957 * of the extents that exist in the file, and COWs the file as required. 1958 * 1959 * If no cow copies or snapshots exist, we write directly to the existing 1960 * blocks on disk 1961 */ 1962 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1963 struct page *locked_page, 1964 const u64 start, const u64 end) 1965 { 1966 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1967 struct btrfs_root *root = inode->root; 1968 struct btrfs_path *path; 1969 u64 cow_start = (u64)-1; 1970 u64 cur_offset = start; 1971 int ret; 1972 bool check_prev = true; 1973 u64 ino = btrfs_ino(inode); 1974 struct can_nocow_file_extent_args nocow_args = { 0 }; 1975 1976 /* 1977 * Normally on a zoned device we're only doing COW writes, but in case 1978 * of relocation on a zoned filesystem serializes I/O so that we're only 1979 * writing sequentially and can end up here as well. 1980 */ 1981 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 1982 1983 path = btrfs_alloc_path(); 1984 if (!path) { 1985 ret = -ENOMEM; 1986 goto error; 1987 } 1988 1989 nocow_args.end = end; 1990 nocow_args.writeback_path = true; 1991 1992 while (1) { 1993 struct btrfs_block_group *nocow_bg = NULL; 1994 struct btrfs_ordered_extent *ordered; 1995 struct btrfs_key found_key; 1996 struct btrfs_file_extent_item *fi; 1997 struct extent_buffer *leaf; 1998 u64 extent_end; 1999 u64 ram_bytes; 2000 u64 nocow_end; 2001 int extent_type; 2002 bool is_prealloc; 2003 2004 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2005 cur_offset, 0); 2006 if (ret < 0) 2007 goto error; 2008 2009 /* 2010 * If there is no extent for our range when doing the initial 2011 * search, then go back to the previous slot as it will be the 2012 * one containing the search offset 2013 */ 2014 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2015 leaf = path->nodes[0]; 2016 btrfs_item_key_to_cpu(leaf, &found_key, 2017 path->slots[0] - 1); 2018 if (found_key.objectid == ino && 2019 found_key.type == BTRFS_EXTENT_DATA_KEY) 2020 path->slots[0]--; 2021 } 2022 check_prev = false; 2023 next_slot: 2024 /* Go to next leaf if we have exhausted the current one */ 2025 leaf = path->nodes[0]; 2026 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2027 ret = btrfs_next_leaf(root, path); 2028 if (ret < 0) 2029 goto error; 2030 if (ret > 0) 2031 break; 2032 leaf = path->nodes[0]; 2033 } 2034 2035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2036 2037 /* Didn't find anything for our INO */ 2038 if (found_key.objectid > ino) 2039 break; 2040 /* 2041 * Keep searching until we find an EXTENT_ITEM or there are no 2042 * more extents for this inode 2043 */ 2044 if (WARN_ON_ONCE(found_key.objectid < ino) || 2045 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2046 path->slots[0]++; 2047 goto next_slot; 2048 } 2049 2050 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2051 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2052 found_key.offset > end) 2053 break; 2054 2055 /* 2056 * If the found extent starts after requested offset, then 2057 * adjust extent_end to be right before this extent begins 2058 */ 2059 if (found_key.offset > cur_offset) { 2060 extent_end = found_key.offset; 2061 extent_type = 0; 2062 goto must_cow; 2063 } 2064 2065 /* 2066 * Found extent which begins before our range and potentially 2067 * intersect it 2068 */ 2069 fi = btrfs_item_ptr(leaf, path->slots[0], 2070 struct btrfs_file_extent_item); 2071 extent_type = btrfs_file_extent_type(leaf, fi); 2072 /* If this is triggered then we have a memory corruption. */ 2073 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2074 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2075 ret = -EUCLEAN; 2076 goto error; 2077 } 2078 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 2079 extent_end = btrfs_file_extent_end(path); 2080 2081 /* 2082 * If the extent we got ends before our current offset, skip to 2083 * the next extent. 2084 */ 2085 if (extent_end <= cur_offset) { 2086 path->slots[0]++; 2087 goto next_slot; 2088 } 2089 2090 nocow_args.start = cur_offset; 2091 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2092 if (ret < 0) 2093 goto error; 2094 if (ret == 0) 2095 goto must_cow; 2096 2097 ret = 0; 2098 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); 2099 if (!nocow_bg) { 2100 must_cow: 2101 /* 2102 * If we can't perform NOCOW writeback for the range, 2103 * then record the beginning of the range that needs to 2104 * be COWed. It will be written out before the next 2105 * NOCOW range if we find one, or when exiting this 2106 * loop. 2107 */ 2108 if (cow_start == (u64)-1) 2109 cow_start = cur_offset; 2110 cur_offset = extent_end; 2111 if (cur_offset > end) 2112 break; 2113 if (!path->nodes[0]) 2114 continue; 2115 path->slots[0]++; 2116 goto next_slot; 2117 } 2118 2119 /* 2120 * COW range from cow_start to found_key.offset - 1. As the key 2121 * will contain the beginning of the first extent that can be 2122 * NOCOW, following one which needs to be COW'ed 2123 */ 2124 if (cow_start != (u64)-1) { 2125 ret = fallback_to_cow(inode, locked_page, 2126 cow_start, found_key.offset - 1); 2127 cow_start = (u64)-1; 2128 if (ret) { 2129 btrfs_dec_nocow_writers(nocow_bg); 2130 goto error; 2131 } 2132 } 2133 2134 nocow_end = cur_offset + nocow_args.num_bytes - 1; 2135 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2136 if (is_prealloc) { 2137 u64 orig_start = found_key.offset - nocow_args.extent_offset; 2138 struct extent_map *em; 2139 2140 em = create_io_em(inode, cur_offset, nocow_args.num_bytes, 2141 orig_start, 2142 nocow_args.disk_bytenr, /* block_start */ 2143 nocow_args.num_bytes, /* block_len */ 2144 nocow_args.disk_num_bytes, /* orig_block_len */ 2145 ram_bytes, BTRFS_COMPRESS_NONE, 2146 BTRFS_ORDERED_PREALLOC); 2147 if (IS_ERR(em)) { 2148 btrfs_dec_nocow_writers(nocow_bg); 2149 ret = PTR_ERR(em); 2150 goto error; 2151 } 2152 free_extent_map(em); 2153 } 2154 2155 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2156 nocow_args.num_bytes, nocow_args.num_bytes, 2157 nocow_args.disk_bytenr, nocow_args.num_bytes, 0, 2158 is_prealloc 2159 ? (1 << BTRFS_ORDERED_PREALLOC) 2160 : (1 << BTRFS_ORDERED_NOCOW), 2161 BTRFS_COMPRESS_NONE); 2162 btrfs_dec_nocow_writers(nocow_bg); 2163 if (IS_ERR(ordered)) { 2164 if (is_prealloc) { 2165 btrfs_drop_extent_map_range(inode, cur_offset, 2166 nocow_end, false); 2167 } 2168 ret = PTR_ERR(ordered); 2169 goto error; 2170 } 2171 2172 if (btrfs_is_data_reloc_root(root)) 2173 /* 2174 * Error handled later, as we must prevent 2175 * extent_clear_unlock_delalloc() in error handler 2176 * from freeing metadata of created ordered extent. 2177 */ 2178 ret = btrfs_reloc_clone_csums(ordered); 2179 btrfs_put_ordered_extent(ordered); 2180 2181 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2182 locked_page, EXTENT_LOCKED | 2183 EXTENT_DELALLOC | 2184 EXTENT_CLEAR_DATA_RESV, 2185 PAGE_UNLOCK | PAGE_SET_ORDERED); 2186 2187 cur_offset = extent_end; 2188 2189 /* 2190 * btrfs_reloc_clone_csums() error, now we're OK to call error 2191 * handler, as metadata for created ordered extent will only 2192 * be freed by btrfs_finish_ordered_io(). 2193 */ 2194 if (ret) 2195 goto error; 2196 if (cur_offset > end) 2197 break; 2198 } 2199 btrfs_release_path(path); 2200 2201 if (cur_offset <= end && cow_start == (u64)-1) 2202 cow_start = cur_offset; 2203 2204 if (cow_start != (u64)-1) { 2205 cur_offset = end; 2206 ret = fallback_to_cow(inode, locked_page, cow_start, end); 2207 cow_start = (u64)-1; 2208 if (ret) 2209 goto error; 2210 } 2211 2212 btrfs_free_path(path); 2213 return 0; 2214 2215 error: 2216 /* 2217 * If an error happened while a COW region is outstanding, cur_offset 2218 * needs to be reset to cow_start to ensure the COW region is unlocked 2219 * as well. 2220 */ 2221 if (cow_start != (u64)-1) 2222 cur_offset = cow_start; 2223 if (cur_offset < end) 2224 extent_clear_unlock_delalloc(inode, cur_offset, end, 2225 locked_page, EXTENT_LOCKED | 2226 EXTENT_DELALLOC | EXTENT_DEFRAG | 2227 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2228 PAGE_START_WRITEBACK | 2229 PAGE_END_WRITEBACK); 2230 btrfs_free_path(path); 2231 return ret; 2232 } 2233 2234 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2235 { 2236 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2237 if (inode->defrag_bytes && 2238 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 2239 0, NULL)) 2240 return false; 2241 return true; 2242 } 2243 return false; 2244 } 2245 2246 /* 2247 * Function to process delayed allocation (create CoW) for ranges which are 2248 * being touched for the first time. 2249 */ 2250 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2251 u64 start, u64 end, struct writeback_control *wbc) 2252 { 2253 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2254 int ret; 2255 2256 /* 2257 * The range must cover part of the @locked_page, or a return of 1 2258 * can confuse the caller. 2259 */ 2260 ASSERT(!(end <= page_offset(locked_page) || 2261 start >= page_offset(locked_page) + PAGE_SIZE)); 2262 2263 if (should_nocow(inode, start, end)) { 2264 ret = run_delalloc_nocow(inode, locked_page, start, end); 2265 goto out; 2266 } 2267 2268 if (btrfs_inode_can_compress(inode) && 2269 inode_need_compress(inode, start, end) && 2270 run_delalloc_compressed(inode, locked_page, start, end, wbc)) 2271 return 1; 2272 2273 if (zoned) 2274 ret = run_delalloc_cow(inode, locked_page, start, end, wbc, 2275 true); 2276 else 2277 ret = cow_file_range(inode, locked_page, start, end, NULL, 2278 false, false); 2279 2280 out: 2281 if (ret < 0) 2282 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2283 end - start + 1); 2284 return ret; 2285 } 2286 2287 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2288 struct extent_state *orig, u64 split) 2289 { 2290 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2291 u64 size; 2292 2293 /* not delalloc, ignore it */ 2294 if (!(orig->state & EXTENT_DELALLOC)) 2295 return; 2296 2297 size = orig->end - orig->start + 1; 2298 if (size > fs_info->max_extent_size) { 2299 u32 num_extents; 2300 u64 new_size; 2301 2302 /* 2303 * See the explanation in btrfs_merge_delalloc_extent, the same 2304 * applies here, just in reverse. 2305 */ 2306 new_size = orig->end - split + 1; 2307 num_extents = count_max_extents(fs_info, new_size); 2308 new_size = split - orig->start; 2309 num_extents += count_max_extents(fs_info, new_size); 2310 if (count_max_extents(fs_info, size) >= num_extents) 2311 return; 2312 } 2313 2314 spin_lock(&inode->lock); 2315 btrfs_mod_outstanding_extents(inode, 1); 2316 spin_unlock(&inode->lock); 2317 } 2318 2319 /* 2320 * Handle merged delayed allocation extents so we can keep track of new extents 2321 * that are just merged onto old extents, such as when we are doing sequential 2322 * writes, so we can properly account for the metadata space we'll need. 2323 */ 2324 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2325 struct extent_state *other) 2326 { 2327 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2328 u64 new_size, old_size; 2329 u32 num_extents; 2330 2331 /* not delalloc, ignore it */ 2332 if (!(other->state & EXTENT_DELALLOC)) 2333 return; 2334 2335 if (new->start > other->start) 2336 new_size = new->end - other->start + 1; 2337 else 2338 new_size = other->end - new->start + 1; 2339 2340 /* we're not bigger than the max, unreserve the space and go */ 2341 if (new_size <= fs_info->max_extent_size) { 2342 spin_lock(&inode->lock); 2343 btrfs_mod_outstanding_extents(inode, -1); 2344 spin_unlock(&inode->lock); 2345 return; 2346 } 2347 2348 /* 2349 * We have to add up either side to figure out how many extents were 2350 * accounted for before we merged into one big extent. If the number of 2351 * extents we accounted for is <= the amount we need for the new range 2352 * then we can return, otherwise drop. Think of it like this 2353 * 2354 * [ 4k][MAX_SIZE] 2355 * 2356 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2357 * need 2 outstanding extents, on one side we have 1 and the other side 2358 * we have 1 so they are == and we can return. But in this case 2359 * 2360 * [MAX_SIZE+4k][MAX_SIZE+4k] 2361 * 2362 * Each range on their own accounts for 2 extents, but merged together 2363 * they are only 3 extents worth of accounting, so we need to drop in 2364 * this case. 2365 */ 2366 old_size = other->end - other->start + 1; 2367 num_extents = count_max_extents(fs_info, old_size); 2368 old_size = new->end - new->start + 1; 2369 num_extents += count_max_extents(fs_info, old_size); 2370 if (count_max_extents(fs_info, new_size) >= num_extents) 2371 return; 2372 2373 spin_lock(&inode->lock); 2374 btrfs_mod_outstanding_extents(inode, -1); 2375 spin_unlock(&inode->lock); 2376 } 2377 2378 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2379 struct btrfs_inode *inode) 2380 { 2381 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2382 2383 spin_lock(&root->delalloc_lock); 2384 if (list_empty(&inode->delalloc_inodes)) { 2385 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2386 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags); 2387 root->nr_delalloc_inodes++; 2388 if (root->nr_delalloc_inodes == 1) { 2389 spin_lock(&fs_info->delalloc_root_lock); 2390 BUG_ON(!list_empty(&root->delalloc_root)); 2391 list_add_tail(&root->delalloc_root, 2392 &fs_info->delalloc_roots); 2393 spin_unlock(&fs_info->delalloc_root_lock); 2394 } 2395 } 2396 spin_unlock(&root->delalloc_lock); 2397 } 2398 2399 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2400 struct btrfs_inode *inode) 2401 { 2402 struct btrfs_fs_info *fs_info = root->fs_info; 2403 2404 if (!list_empty(&inode->delalloc_inodes)) { 2405 list_del_init(&inode->delalloc_inodes); 2406 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2407 &inode->runtime_flags); 2408 root->nr_delalloc_inodes--; 2409 if (!root->nr_delalloc_inodes) { 2410 ASSERT(list_empty(&root->delalloc_inodes)); 2411 spin_lock(&fs_info->delalloc_root_lock); 2412 BUG_ON(list_empty(&root->delalloc_root)); 2413 list_del_init(&root->delalloc_root); 2414 spin_unlock(&fs_info->delalloc_root_lock); 2415 } 2416 } 2417 } 2418 2419 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2420 struct btrfs_inode *inode) 2421 { 2422 spin_lock(&root->delalloc_lock); 2423 __btrfs_del_delalloc_inode(root, inode); 2424 spin_unlock(&root->delalloc_lock); 2425 } 2426 2427 /* 2428 * Properly track delayed allocation bytes in the inode and to maintain the 2429 * list of inodes that have pending delalloc work to be done. 2430 */ 2431 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2432 u32 bits) 2433 { 2434 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2435 2436 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2437 WARN_ON(1); 2438 /* 2439 * set_bit and clear bit hooks normally require _irqsave/restore 2440 * but in this case, we are only testing for the DELALLOC 2441 * bit, which is only set or cleared with irqs on 2442 */ 2443 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2444 struct btrfs_root *root = inode->root; 2445 u64 len = state->end + 1 - state->start; 2446 u32 num_extents = count_max_extents(fs_info, len); 2447 bool do_list = !btrfs_is_free_space_inode(inode); 2448 2449 spin_lock(&inode->lock); 2450 btrfs_mod_outstanding_extents(inode, num_extents); 2451 spin_unlock(&inode->lock); 2452 2453 /* For sanity tests */ 2454 if (btrfs_is_testing(fs_info)) 2455 return; 2456 2457 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2458 fs_info->delalloc_batch); 2459 spin_lock(&inode->lock); 2460 inode->delalloc_bytes += len; 2461 if (bits & EXTENT_DEFRAG) 2462 inode->defrag_bytes += len; 2463 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2464 &inode->runtime_flags)) 2465 btrfs_add_delalloc_inodes(root, inode); 2466 spin_unlock(&inode->lock); 2467 } 2468 2469 if (!(state->state & EXTENT_DELALLOC_NEW) && 2470 (bits & EXTENT_DELALLOC_NEW)) { 2471 spin_lock(&inode->lock); 2472 inode->new_delalloc_bytes += state->end + 1 - state->start; 2473 spin_unlock(&inode->lock); 2474 } 2475 } 2476 2477 /* 2478 * Once a range is no longer delalloc this function ensures that proper 2479 * accounting happens. 2480 */ 2481 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2482 struct extent_state *state, u32 bits) 2483 { 2484 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2485 u64 len = state->end + 1 - state->start; 2486 u32 num_extents = count_max_extents(fs_info, len); 2487 2488 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2489 spin_lock(&inode->lock); 2490 inode->defrag_bytes -= len; 2491 spin_unlock(&inode->lock); 2492 } 2493 2494 /* 2495 * set_bit and clear bit hooks normally require _irqsave/restore 2496 * but in this case, we are only testing for the DELALLOC 2497 * bit, which is only set or cleared with irqs on 2498 */ 2499 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2500 struct btrfs_root *root = inode->root; 2501 bool do_list = !btrfs_is_free_space_inode(inode); 2502 2503 spin_lock(&inode->lock); 2504 btrfs_mod_outstanding_extents(inode, -num_extents); 2505 spin_unlock(&inode->lock); 2506 2507 /* 2508 * We don't reserve metadata space for space cache inodes so we 2509 * don't need to call delalloc_release_metadata if there is an 2510 * error. 2511 */ 2512 if (bits & EXTENT_CLEAR_META_RESV && 2513 root != fs_info->tree_root) 2514 btrfs_delalloc_release_metadata(inode, len, false); 2515 2516 /* For sanity tests. */ 2517 if (btrfs_is_testing(fs_info)) 2518 return; 2519 2520 if (!btrfs_is_data_reloc_root(root) && 2521 do_list && !(state->state & EXTENT_NORESERVE) && 2522 (bits & EXTENT_CLEAR_DATA_RESV)) 2523 btrfs_free_reserved_data_space_noquota(fs_info, len); 2524 2525 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2526 fs_info->delalloc_batch); 2527 spin_lock(&inode->lock); 2528 inode->delalloc_bytes -= len; 2529 if (do_list && inode->delalloc_bytes == 0 && 2530 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2531 &inode->runtime_flags)) 2532 btrfs_del_delalloc_inode(root, inode); 2533 spin_unlock(&inode->lock); 2534 } 2535 2536 if ((state->state & EXTENT_DELALLOC_NEW) && 2537 (bits & EXTENT_DELALLOC_NEW)) { 2538 spin_lock(&inode->lock); 2539 ASSERT(inode->new_delalloc_bytes >= len); 2540 inode->new_delalloc_bytes -= len; 2541 if (bits & EXTENT_ADD_INODE_BYTES) 2542 inode_add_bytes(&inode->vfs_inode, len); 2543 spin_unlock(&inode->lock); 2544 } 2545 } 2546 2547 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio, 2548 struct btrfs_ordered_extent *ordered) 2549 { 2550 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 2551 u64 len = bbio->bio.bi_iter.bi_size; 2552 struct btrfs_ordered_extent *new; 2553 int ret; 2554 2555 /* Must always be called for the beginning of an ordered extent. */ 2556 if (WARN_ON_ONCE(start != ordered->disk_bytenr)) 2557 return -EINVAL; 2558 2559 /* No need to split if the ordered extent covers the entire bio. */ 2560 if (ordered->disk_num_bytes == len) { 2561 refcount_inc(&ordered->refs); 2562 bbio->ordered = ordered; 2563 return 0; 2564 } 2565 2566 /* 2567 * Don't split the extent_map for NOCOW extents, as we're writing into 2568 * a pre-existing one. 2569 */ 2570 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 2571 ret = split_extent_map(bbio->inode, bbio->file_offset, 2572 ordered->num_bytes, len, 2573 ordered->disk_bytenr); 2574 if (ret) 2575 return ret; 2576 } 2577 2578 new = btrfs_split_ordered_extent(ordered, len); 2579 if (IS_ERR(new)) 2580 return PTR_ERR(new); 2581 bbio->ordered = new; 2582 return 0; 2583 } 2584 2585 /* 2586 * given a list of ordered sums record them in the inode. This happens 2587 * at IO completion time based on sums calculated at bio submission time. 2588 */ 2589 static int add_pending_csums(struct btrfs_trans_handle *trans, 2590 struct list_head *list) 2591 { 2592 struct btrfs_ordered_sum *sum; 2593 struct btrfs_root *csum_root = NULL; 2594 int ret; 2595 2596 list_for_each_entry(sum, list, list) { 2597 trans->adding_csums = true; 2598 if (!csum_root) 2599 csum_root = btrfs_csum_root(trans->fs_info, 2600 sum->logical); 2601 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2602 trans->adding_csums = false; 2603 if (ret) 2604 return ret; 2605 } 2606 return 0; 2607 } 2608 2609 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2610 const u64 start, 2611 const u64 len, 2612 struct extent_state **cached_state) 2613 { 2614 u64 search_start = start; 2615 const u64 end = start + len - 1; 2616 2617 while (search_start < end) { 2618 const u64 search_len = end - search_start + 1; 2619 struct extent_map *em; 2620 u64 em_len; 2621 int ret = 0; 2622 2623 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2624 if (IS_ERR(em)) 2625 return PTR_ERR(em); 2626 2627 if (em->block_start != EXTENT_MAP_HOLE) 2628 goto next; 2629 2630 em_len = em->len; 2631 if (em->start < search_start) 2632 em_len -= search_start - em->start; 2633 if (em_len > search_len) 2634 em_len = search_len; 2635 2636 ret = set_extent_bit(&inode->io_tree, search_start, 2637 search_start + em_len - 1, 2638 EXTENT_DELALLOC_NEW, cached_state); 2639 next: 2640 search_start = extent_map_end(em); 2641 free_extent_map(em); 2642 if (ret) 2643 return ret; 2644 } 2645 return 0; 2646 } 2647 2648 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2649 unsigned int extra_bits, 2650 struct extent_state **cached_state) 2651 { 2652 WARN_ON(PAGE_ALIGNED(end)); 2653 2654 if (start >= i_size_read(&inode->vfs_inode) && 2655 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2656 /* 2657 * There can't be any extents following eof in this case so just 2658 * set the delalloc new bit for the range directly. 2659 */ 2660 extra_bits |= EXTENT_DELALLOC_NEW; 2661 } else { 2662 int ret; 2663 2664 ret = btrfs_find_new_delalloc_bytes(inode, start, 2665 end + 1 - start, 2666 cached_state); 2667 if (ret) 2668 return ret; 2669 } 2670 2671 return set_extent_bit(&inode->io_tree, start, end, 2672 EXTENT_DELALLOC | extra_bits, cached_state); 2673 } 2674 2675 /* see btrfs_writepage_start_hook for details on why this is required */ 2676 struct btrfs_writepage_fixup { 2677 struct page *page; 2678 struct btrfs_inode *inode; 2679 struct btrfs_work work; 2680 }; 2681 2682 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2683 { 2684 struct btrfs_writepage_fixup *fixup = 2685 container_of(work, struct btrfs_writepage_fixup, work); 2686 struct btrfs_ordered_extent *ordered; 2687 struct extent_state *cached_state = NULL; 2688 struct extent_changeset *data_reserved = NULL; 2689 struct page *page = fixup->page; 2690 struct btrfs_inode *inode = fixup->inode; 2691 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2692 u64 page_start = page_offset(page); 2693 u64 page_end = page_offset(page) + PAGE_SIZE - 1; 2694 int ret = 0; 2695 bool free_delalloc_space = true; 2696 2697 /* 2698 * This is similar to page_mkwrite, we need to reserve the space before 2699 * we take the page lock. 2700 */ 2701 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2702 PAGE_SIZE); 2703 again: 2704 lock_page(page); 2705 2706 /* 2707 * Before we queued this fixup, we took a reference on the page. 2708 * page->mapping may go NULL, but it shouldn't be moved to a different 2709 * address space. 2710 */ 2711 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2712 /* 2713 * Unfortunately this is a little tricky, either 2714 * 2715 * 1) We got here and our page had already been dealt with and 2716 * we reserved our space, thus ret == 0, so we need to just 2717 * drop our space reservation and bail. This can happen the 2718 * first time we come into the fixup worker, or could happen 2719 * while waiting for the ordered extent. 2720 * 2) Our page was already dealt with, but we happened to get an 2721 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2722 * this case we obviously don't have anything to release, but 2723 * because the page was already dealt with we don't want to 2724 * mark the page with an error, so make sure we're resetting 2725 * ret to 0. This is why we have this check _before_ the ret 2726 * check, because we do not want to have a surprise ENOSPC 2727 * when the page was already properly dealt with. 2728 */ 2729 if (!ret) { 2730 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2731 btrfs_delalloc_release_space(inode, data_reserved, 2732 page_start, PAGE_SIZE, 2733 true); 2734 } 2735 ret = 0; 2736 goto out_page; 2737 } 2738 2739 /* 2740 * We can't mess with the page state unless it is locked, so now that 2741 * it is locked bail if we failed to make our space reservation. 2742 */ 2743 if (ret) 2744 goto out_page; 2745 2746 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2747 2748 /* already ordered? We're done */ 2749 if (PageOrdered(page)) 2750 goto out_reserved; 2751 2752 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2753 if (ordered) { 2754 unlock_extent(&inode->io_tree, page_start, page_end, 2755 &cached_state); 2756 unlock_page(page); 2757 btrfs_start_ordered_extent(ordered); 2758 btrfs_put_ordered_extent(ordered); 2759 goto again; 2760 } 2761 2762 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2763 &cached_state); 2764 if (ret) 2765 goto out_reserved; 2766 2767 /* 2768 * Everything went as planned, we're now the owner of a dirty page with 2769 * delayed allocation bits set and space reserved for our COW 2770 * destination. 2771 * 2772 * The page was dirty when we started, nothing should have cleaned it. 2773 */ 2774 BUG_ON(!PageDirty(page)); 2775 free_delalloc_space = false; 2776 out_reserved: 2777 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2778 if (free_delalloc_space) 2779 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2780 PAGE_SIZE, true); 2781 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2782 out_page: 2783 if (ret) { 2784 /* 2785 * We hit ENOSPC or other errors. Update the mapping and page 2786 * to reflect the errors and clean the page. 2787 */ 2788 mapping_set_error(page->mapping, ret); 2789 btrfs_mark_ordered_io_finished(inode, page, page_start, 2790 PAGE_SIZE, !ret); 2791 clear_page_dirty_for_io(page); 2792 } 2793 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 2794 unlock_page(page); 2795 put_page(page); 2796 kfree(fixup); 2797 extent_changeset_free(data_reserved); 2798 /* 2799 * As a precaution, do a delayed iput in case it would be the last iput 2800 * that could need flushing space. Recursing back to fixup worker would 2801 * deadlock. 2802 */ 2803 btrfs_add_delayed_iput(inode); 2804 } 2805 2806 /* 2807 * There are a few paths in the higher layers of the kernel that directly 2808 * set the page dirty bit without asking the filesystem if it is a 2809 * good idea. This causes problems because we want to make sure COW 2810 * properly happens and the data=ordered rules are followed. 2811 * 2812 * In our case any range that doesn't have the ORDERED bit set 2813 * hasn't been properly setup for IO. We kick off an async process 2814 * to fix it up. The async helper will wait for ordered extents, set 2815 * the delalloc bit and make it safe to write the page. 2816 */ 2817 int btrfs_writepage_cow_fixup(struct page *page) 2818 { 2819 struct inode *inode = page->mapping->host; 2820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2821 struct btrfs_writepage_fixup *fixup; 2822 2823 /* This page has ordered extent covering it already */ 2824 if (PageOrdered(page)) 2825 return 0; 2826 2827 /* 2828 * PageChecked is set below when we create a fixup worker for this page, 2829 * don't try to create another one if we're already PageChecked() 2830 * 2831 * The extent_io writepage code will redirty the page if we send back 2832 * EAGAIN. 2833 */ 2834 if (PageChecked(page)) 2835 return -EAGAIN; 2836 2837 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2838 if (!fixup) 2839 return -EAGAIN; 2840 2841 /* 2842 * We are already holding a reference to this inode from 2843 * write_cache_pages. We need to hold it because the space reservation 2844 * takes place outside of the page lock, and we can't trust 2845 * page->mapping outside of the page lock. 2846 */ 2847 ihold(inode); 2848 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); 2849 get_page(page); 2850 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2851 fixup->page = page; 2852 fixup->inode = BTRFS_I(inode); 2853 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2854 2855 return -EAGAIN; 2856 } 2857 2858 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2859 struct btrfs_inode *inode, u64 file_pos, 2860 struct btrfs_file_extent_item *stack_fi, 2861 const bool update_inode_bytes, 2862 u64 qgroup_reserved) 2863 { 2864 struct btrfs_root *root = inode->root; 2865 const u64 sectorsize = root->fs_info->sectorsize; 2866 struct btrfs_path *path; 2867 struct extent_buffer *leaf; 2868 struct btrfs_key ins; 2869 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2870 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2871 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2872 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2873 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2874 struct btrfs_drop_extents_args drop_args = { 0 }; 2875 int ret; 2876 2877 path = btrfs_alloc_path(); 2878 if (!path) 2879 return -ENOMEM; 2880 2881 /* 2882 * we may be replacing one extent in the tree with another. 2883 * The new extent is pinned in the extent map, and we don't want 2884 * to drop it from the cache until it is completely in the btree. 2885 * 2886 * So, tell btrfs_drop_extents to leave this extent in the cache. 2887 * the caller is expected to unpin it and allow it to be merged 2888 * with the others. 2889 */ 2890 drop_args.path = path; 2891 drop_args.start = file_pos; 2892 drop_args.end = file_pos + num_bytes; 2893 drop_args.replace_extent = true; 2894 drop_args.extent_item_size = sizeof(*stack_fi); 2895 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2896 if (ret) 2897 goto out; 2898 2899 if (!drop_args.extent_inserted) { 2900 ins.objectid = btrfs_ino(inode); 2901 ins.offset = file_pos; 2902 ins.type = BTRFS_EXTENT_DATA_KEY; 2903 2904 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2905 sizeof(*stack_fi)); 2906 if (ret) 2907 goto out; 2908 } 2909 leaf = path->nodes[0]; 2910 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2911 write_extent_buffer(leaf, stack_fi, 2912 btrfs_item_ptr_offset(leaf, path->slots[0]), 2913 sizeof(struct btrfs_file_extent_item)); 2914 2915 btrfs_mark_buffer_dirty(trans, leaf); 2916 btrfs_release_path(path); 2917 2918 /* 2919 * If we dropped an inline extent here, we know the range where it is 2920 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2921 * number of bytes only for that range containing the inline extent. 2922 * The remaining of the range will be processed when clearning the 2923 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2924 */ 2925 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2926 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2927 2928 inline_size = drop_args.bytes_found - inline_size; 2929 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2930 drop_args.bytes_found -= inline_size; 2931 num_bytes -= sectorsize; 2932 } 2933 2934 if (update_inode_bytes) 2935 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2936 2937 ins.objectid = disk_bytenr; 2938 ins.offset = disk_num_bytes; 2939 ins.type = BTRFS_EXTENT_ITEM_KEY; 2940 2941 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2942 if (ret) 2943 goto out; 2944 2945 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2946 file_pos - offset, 2947 qgroup_reserved, &ins); 2948 out: 2949 btrfs_free_path(path); 2950 2951 return ret; 2952 } 2953 2954 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2955 u64 start, u64 len) 2956 { 2957 struct btrfs_block_group *cache; 2958 2959 cache = btrfs_lookup_block_group(fs_info, start); 2960 ASSERT(cache); 2961 2962 spin_lock(&cache->lock); 2963 cache->delalloc_bytes -= len; 2964 spin_unlock(&cache->lock); 2965 2966 btrfs_put_block_group(cache); 2967 } 2968 2969 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2970 struct btrfs_ordered_extent *oe) 2971 { 2972 struct btrfs_file_extent_item stack_fi; 2973 bool update_inode_bytes; 2974 u64 num_bytes = oe->num_bytes; 2975 u64 ram_bytes = oe->ram_bytes; 2976 2977 memset(&stack_fi, 0, sizeof(stack_fi)); 2978 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2979 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2980 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2981 oe->disk_num_bytes); 2982 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 2983 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { 2984 num_bytes = oe->truncated_len; 2985 ram_bytes = num_bytes; 2986 } 2987 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 2988 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 2989 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2990 /* Encryption and other encoding is reserved and all 0 */ 2991 2992 /* 2993 * For delalloc, when completing an ordered extent we update the inode's 2994 * bytes when clearing the range in the inode's io tree, so pass false 2995 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2996 * except if the ordered extent was truncated. 2997 */ 2998 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 2999 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3000 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3001 3002 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3003 oe->file_offset, &stack_fi, 3004 update_inode_bytes, oe->qgroup_rsv); 3005 } 3006 3007 /* 3008 * As ordered data IO finishes, this gets called so we can finish 3009 * an ordered extent if the range of bytes in the file it covers are 3010 * fully written. 3011 */ 3012 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3013 { 3014 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3015 struct btrfs_root *root = inode->root; 3016 struct btrfs_fs_info *fs_info = root->fs_info; 3017 struct btrfs_trans_handle *trans = NULL; 3018 struct extent_io_tree *io_tree = &inode->io_tree; 3019 struct extent_state *cached_state = NULL; 3020 u64 start, end; 3021 int compress_type = 0; 3022 int ret = 0; 3023 u64 logical_len = ordered_extent->num_bytes; 3024 bool freespace_inode; 3025 bool truncated = false; 3026 bool clear_reserved_extent = true; 3027 unsigned int clear_bits = EXTENT_DEFRAG; 3028 3029 start = ordered_extent->file_offset; 3030 end = start + ordered_extent->num_bytes - 1; 3031 3032 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3033 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3034 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3035 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3036 clear_bits |= EXTENT_DELALLOC_NEW; 3037 3038 freespace_inode = btrfs_is_free_space_inode(inode); 3039 if (!freespace_inode) 3040 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3041 3042 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3043 ret = -EIO; 3044 goto out; 3045 } 3046 3047 if (btrfs_is_zoned(fs_info)) 3048 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3049 ordered_extent->disk_num_bytes); 3050 3051 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3052 truncated = true; 3053 logical_len = ordered_extent->truncated_len; 3054 /* Truncated the entire extent, don't bother adding */ 3055 if (!logical_len) 3056 goto out; 3057 } 3058 3059 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3060 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3061 3062 btrfs_inode_safe_disk_i_size_write(inode, 0); 3063 if (freespace_inode) 3064 trans = btrfs_join_transaction_spacecache(root); 3065 else 3066 trans = btrfs_join_transaction(root); 3067 if (IS_ERR(trans)) { 3068 ret = PTR_ERR(trans); 3069 trans = NULL; 3070 goto out; 3071 } 3072 trans->block_rsv = &inode->block_rsv; 3073 ret = btrfs_update_inode_fallback(trans, root, inode); 3074 if (ret) /* -ENOMEM or corruption */ 3075 btrfs_abort_transaction(trans, ret); 3076 goto out; 3077 } 3078 3079 clear_bits |= EXTENT_LOCKED; 3080 lock_extent(io_tree, start, end, &cached_state); 3081 3082 if (freespace_inode) 3083 trans = btrfs_join_transaction_spacecache(root); 3084 else 3085 trans = btrfs_join_transaction(root); 3086 if (IS_ERR(trans)) { 3087 ret = PTR_ERR(trans); 3088 trans = NULL; 3089 goto out; 3090 } 3091 3092 trans->block_rsv = &inode->block_rsv; 3093 3094 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3095 compress_type = ordered_extent->compress_type; 3096 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3097 BUG_ON(compress_type); 3098 ret = btrfs_mark_extent_written(trans, inode, 3099 ordered_extent->file_offset, 3100 ordered_extent->file_offset + 3101 logical_len); 3102 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3103 ordered_extent->disk_num_bytes); 3104 } else { 3105 BUG_ON(root == fs_info->tree_root); 3106 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3107 if (!ret) { 3108 clear_reserved_extent = false; 3109 btrfs_release_delalloc_bytes(fs_info, 3110 ordered_extent->disk_bytenr, 3111 ordered_extent->disk_num_bytes); 3112 } 3113 } 3114 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3115 ordered_extent->num_bytes, trans->transid); 3116 if (ret < 0) { 3117 btrfs_abort_transaction(trans, ret); 3118 goto out; 3119 } 3120 3121 ret = add_pending_csums(trans, &ordered_extent->list); 3122 if (ret) { 3123 btrfs_abort_transaction(trans, ret); 3124 goto out; 3125 } 3126 3127 /* 3128 * If this is a new delalloc range, clear its new delalloc flag to 3129 * update the inode's number of bytes. This needs to be done first 3130 * before updating the inode item. 3131 */ 3132 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3133 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3134 clear_extent_bit(&inode->io_tree, start, end, 3135 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3136 &cached_state); 3137 3138 btrfs_inode_safe_disk_i_size_write(inode, 0); 3139 ret = btrfs_update_inode_fallback(trans, root, inode); 3140 if (ret) { /* -ENOMEM or corruption */ 3141 btrfs_abort_transaction(trans, ret); 3142 goto out; 3143 } 3144 ret = 0; 3145 out: 3146 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3147 &cached_state); 3148 3149 if (trans) 3150 btrfs_end_transaction(trans); 3151 3152 if (ret || truncated) { 3153 u64 unwritten_start = start; 3154 3155 /* 3156 * If we failed to finish this ordered extent for any reason we 3157 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3158 * extent, and mark the inode with the error if it wasn't 3159 * already set. Any error during writeback would have already 3160 * set the mapping error, so we need to set it if we're the ones 3161 * marking this ordered extent as failed. 3162 */ 3163 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3164 &ordered_extent->flags)) 3165 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3166 3167 if (truncated) 3168 unwritten_start += logical_len; 3169 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3170 3171 /* Drop extent maps for the part of the extent we didn't write. */ 3172 btrfs_drop_extent_map_range(inode, unwritten_start, end, false); 3173 3174 /* 3175 * If the ordered extent had an IOERR or something else went 3176 * wrong we need to return the space for this ordered extent 3177 * back to the allocator. We only free the extent in the 3178 * truncated case if we didn't write out the extent at all. 3179 * 3180 * If we made it past insert_reserved_file_extent before we 3181 * errored out then we don't need to do this as the accounting 3182 * has already been done. 3183 */ 3184 if ((ret || !logical_len) && 3185 clear_reserved_extent && 3186 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3187 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3188 /* 3189 * Discard the range before returning it back to the 3190 * free space pool 3191 */ 3192 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3193 btrfs_discard_extent(fs_info, 3194 ordered_extent->disk_bytenr, 3195 ordered_extent->disk_num_bytes, 3196 NULL); 3197 btrfs_free_reserved_extent(fs_info, 3198 ordered_extent->disk_bytenr, 3199 ordered_extent->disk_num_bytes, 1); 3200 /* 3201 * Actually free the qgroup rsv which was released when 3202 * the ordered extent was created. 3203 */ 3204 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid, 3205 ordered_extent->qgroup_rsv, 3206 BTRFS_QGROUP_RSV_DATA); 3207 } 3208 } 3209 3210 /* 3211 * This needs to be done to make sure anybody waiting knows we are done 3212 * updating everything for this ordered extent. 3213 */ 3214 btrfs_remove_ordered_extent(inode, ordered_extent); 3215 3216 /* once for us */ 3217 btrfs_put_ordered_extent(ordered_extent); 3218 /* once for the tree */ 3219 btrfs_put_ordered_extent(ordered_extent); 3220 3221 return ret; 3222 } 3223 3224 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3225 { 3226 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) && 3227 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 3228 btrfs_finish_ordered_zoned(ordered); 3229 return btrfs_finish_one_ordered(ordered); 3230 } 3231 3232 /* 3233 * Verify the checksum for a single sector without any extra action that depend 3234 * on the type of I/O. 3235 */ 3236 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3237 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3238 { 3239 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3240 char *kaddr; 3241 3242 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3243 3244 shash->tfm = fs_info->csum_shash; 3245 3246 kaddr = kmap_local_page(page) + pgoff; 3247 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3248 kunmap_local(kaddr); 3249 3250 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3251 return -EIO; 3252 return 0; 3253 } 3254 3255 /* 3256 * Verify the checksum of a single data sector. 3257 * 3258 * @bbio: btrfs_io_bio which contains the csum 3259 * @dev: device the sector is on 3260 * @bio_offset: offset to the beginning of the bio (in bytes) 3261 * @bv: bio_vec to check 3262 * 3263 * Check if the checksum on a data block is valid. When a checksum mismatch is 3264 * detected, report the error and fill the corrupted range with zero. 3265 * 3266 * Return %true if the sector is ok or had no checksum to start with, else %false. 3267 */ 3268 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3269 u32 bio_offset, struct bio_vec *bv) 3270 { 3271 struct btrfs_inode *inode = bbio->inode; 3272 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3273 u64 file_offset = bbio->file_offset + bio_offset; 3274 u64 end = file_offset + bv->bv_len - 1; 3275 u8 *csum_expected; 3276 u8 csum[BTRFS_CSUM_SIZE]; 3277 3278 ASSERT(bv->bv_len == fs_info->sectorsize); 3279 3280 if (!bbio->csum) 3281 return true; 3282 3283 if (btrfs_is_data_reloc_root(inode->root) && 3284 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3285 1, NULL)) { 3286 /* Skip the range without csum for data reloc inode */ 3287 clear_extent_bits(&inode->io_tree, file_offset, end, 3288 EXTENT_NODATASUM); 3289 return true; 3290 } 3291 3292 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3293 fs_info->csum_size; 3294 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3295 csum_expected)) 3296 goto zeroit; 3297 return true; 3298 3299 zeroit: 3300 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3301 bbio->mirror_num); 3302 if (dev) 3303 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3304 memzero_bvec(bv); 3305 return false; 3306 } 3307 3308 /* 3309 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3310 * 3311 * @inode: The inode we want to perform iput on 3312 * 3313 * This function uses the generic vfs_inode::i_count to track whether we should 3314 * just decrement it (in case it's > 1) or if this is the last iput then link 3315 * the inode to the delayed iput machinery. Delayed iputs are processed at 3316 * transaction commit time/superblock commit/cleaner kthread. 3317 */ 3318 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3319 { 3320 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3321 unsigned long flags; 3322 3323 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3324 return; 3325 3326 atomic_inc(&fs_info->nr_delayed_iputs); 3327 /* 3328 * Need to be irq safe here because we can be called from either an irq 3329 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3330 * context. 3331 */ 3332 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3333 ASSERT(list_empty(&inode->delayed_iput)); 3334 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3335 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3336 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3337 wake_up_process(fs_info->cleaner_kthread); 3338 } 3339 3340 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3341 struct btrfs_inode *inode) 3342 { 3343 list_del_init(&inode->delayed_iput); 3344 spin_unlock_irq(&fs_info->delayed_iput_lock); 3345 iput(&inode->vfs_inode); 3346 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3347 wake_up(&fs_info->delayed_iputs_wait); 3348 spin_lock_irq(&fs_info->delayed_iput_lock); 3349 } 3350 3351 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3352 struct btrfs_inode *inode) 3353 { 3354 if (!list_empty(&inode->delayed_iput)) { 3355 spin_lock_irq(&fs_info->delayed_iput_lock); 3356 if (!list_empty(&inode->delayed_iput)) 3357 run_delayed_iput_locked(fs_info, inode); 3358 spin_unlock_irq(&fs_info->delayed_iput_lock); 3359 } 3360 } 3361 3362 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3363 { 3364 /* 3365 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3366 * calls btrfs_add_delayed_iput() and that needs to lock 3367 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3368 * prevent a deadlock. 3369 */ 3370 spin_lock_irq(&fs_info->delayed_iput_lock); 3371 while (!list_empty(&fs_info->delayed_iputs)) { 3372 struct btrfs_inode *inode; 3373 3374 inode = list_first_entry(&fs_info->delayed_iputs, 3375 struct btrfs_inode, delayed_iput); 3376 run_delayed_iput_locked(fs_info, inode); 3377 if (need_resched()) { 3378 spin_unlock_irq(&fs_info->delayed_iput_lock); 3379 cond_resched(); 3380 spin_lock_irq(&fs_info->delayed_iput_lock); 3381 } 3382 } 3383 spin_unlock_irq(&fs_info->delayed_iput_lock); 3384 } 3385 3386 /* 3387 * Wait for flushing all delayed iputs 3388 * 3389 * @fs_info: the filesystem 3390 * 3391 * This will wait on any delayed iputs that are currently running with KILLABLE 3392 * set. Once they are all done running we will return, unless we are killed in 3393 * which case we return EINTR. This helps in user operations like fallocate etc 3394 * that might get blocked on the iputs. 3395 * 3396 * Return EINTR if we were killed, 0 if nothing's pending 3397 */ 3398 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3399 { 3400 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3401 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3402 if (ret) 3403 return -EINTR; 3404 return 0; 3405 } 3406 3407 /* 3408 * This creates an orphan entry for the given inode in case something goes wrong 3409 * in the middle of an unlink. 3410 */ 3411 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3412 struct btrfs_inode *inode) 3413 { 3414 int ret; 3415 3416 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3417 if (ret && ret != -EEXIST) { 3418 btrfs_abort_transaction(trans, ret); 3419 return ret; 3420 } 3421 3422 return 0; 3423 } 3424 3425 /* 3426 * We have done the delete so we can go ahead and remove the orphan item for 3427 * this particular inode. 3428 */ 3429 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3430 struct btrfs_inode *inode) 3431 { 3432 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3433 } 3434 3435 /* 3436 * this cleans up any orphans that may be left on the list from the last use 3437 * of this root. 3438 */ 3439 int btrfs_orphan_cleanup(struct btrfs_root *root) 3440 { 3441 struct btrfs_fs_info *fs_info = root->fs_info; 3442 struct btrfs_path *path; 3443 struct extent_buffer *leaf; 3444 struct btrfs_key key, found_key; 3445 struct btrfs_trans_handle *trans; 3446 struct inode *inode; 3447 u64 last_objectid = 0; 3448 int ret = 0, nr_unlink = 0; 3449 3450 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3451 return 0; 3452 3453 path = btrfs_alloc_path(); 3454 if (!path) { 3455 ret = -ENOMEM; 3456 goto out; 3457 } 3458 path->reada = READA_BACK; 3459 3460 key.objectid = BTRFS_ORPHAN_OBJECTID; 3461 key.type = BTRFS_ORPHAN_ITEM_KEY; 3462 key.offset = (u64)-1; 3463 3464 while (1) { 3465 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3466 if (ret < 0) 3467 goto out; 3468 3469 /* 3470 * if ret == 0 means we found what we were searching for, which 3471 * is weird, but possible, so only screw with path if we didn't 3472 * find the key and see if we have stuff that matches 3473 */ 3474 if (ret > 0) { 3475 ret = 0; 3476 if (path->slots[0] == 0) 3477 break; 3478 path->slots[0]--; 3479 } 3480 3481 /* pull out the item */ 3482 leaf = path->nodes[0]; 3483 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3484 3485 /* make sure the item matches what we want */ 3486 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3487 break; 3488 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3489 break; 3490 3491 /* release the path since we're done with it */ 3492 btrfs_release_path(path); 3493 3494 /* 3495 * this is where we are basically btrfs_lookup, without the 3496 * crossing root thing. we store the inode number in the 3497 * offset of the orphan item. 3498 */ 3499 3500 if (found_key.offset == last_objectid) { 3501 /* 3502 * We found the same inode as before. This means we were 3503 * not able to remove its items via eviction triggered 3504 * by an iput(). A transaction abort may have happened, 3505 * due to -ENOSPC for example, so try to grab the error 3506 * that lead to a transaction abort, if any. 3507 */ 3508 btrfs_err(fs_info, 3509 "Error removing orphan entry, stopping orphan cleanup"); 3510 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3511 goto out; 3512 } 3513 3514 last_objectid = found_key.offset; 3515 3516 found_key.objectid = found_key.offset; 3517 found_key.type = BTRFS_INODE_ITEM_KEY; 3518 found_key.offset = 0; 3519 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3520 if (IS_ERR(inode)) { 3521 ret = PTR_ERR(inode); 3522 inode = NULL; 3523 if (ret != -ENOENT) 3524 goto out; 3525 } 3526 3527 if (!inode && root == fs_info->tree_root) { 3528 struct btrfs_root *dead_root; 3529 int is_dead_root = 0; 3530 3531 /* 3532 * This is an orphan in the tree root. Currently these 3533 * could come from 2 sources: 3534 * a) a root (snapshot/subvolume) deletion in progress 3535 * b) a free space cache inode 3536 * We need to distinguish those two, as the orphan item 3537 * for a root must not get deleted before the deletion 3538 * of the snapshot/subvolume's tree completes. 3539 * 3540 * btrfs_find_orphan_roots() ran before us, which has 3541 * found all deleted roots and loaded them into 3542 * fs_info->fs_roots_radix. So here we can find if an 3543 * orphan item corresponds to a deleted root by looking 3544 * up the root from that radix tree. 3545 */ 3546 3547 spin_lock(&fs_info->fs_roots_radix_lock); 3548 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3549 (unsigned long)found_key.objectid); 3550 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3551 is_dead_root = 1; 3552 spin_unlock(&fs_info->fs_roots_radix_lock); 3553 3554 if (is_dead_root) { 3555 /* prevent this orphan from being found again */ 3556 key.offset = found_key.objectid - 1; 3557 continue; 3558 } 3559 3560 } 3561 3562 /* 3563 * If we have an inode with links, there are a couple of 3564 * possibilities: 3565 * 3566 * 1. We were halfway through creating fsverity metadata for the 3567 * file. In that case, the orphan item represents incomplete 3568 * fsverity metadata which must be cleaned up with 3569 * btrfs_drop_verity_items and deleting the orphan item. 3570 3571 * 2. Old kernels (before v3.12) used to create an 3572 * orphan item for truncate indicating that there were possibly 3573 * extent items past i_size that needed to be deleted. In v3.12, 3574 * truncate was changed to update i_size in sync with the extent 3575 * items, but the (useless) orphan item was still created. Since 3576 * v4.18, we don't create the orphan item for truncate at all. 3577 * 3578 * So, this item could mean that we need to do a truncate, but 3579 * only if this filesystem was last used on a pre-v3.12 kernel 3580 * and was not cleanly unmounted. The odds of that are quite 3581 * slim, and it's a pain to do the truncate now, so just delete 3582 * the orphan item. 3583 * 3584 * It's also possible that this orphan item was supposed to be 3585 * deleted but wasn't. The inode number may have been reused, 3586 * but either way, we can delete the orphan item. 3587 */ 3588 if (!inode || inode->i_nlink) { 3589 if (inode) { 3590 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3591 iput(inode); 3592 inode = NULL; 3593 if (ret) 3594 goto out; 3595 } 3596 trans = btrfs_start_transaction(root, 1); 3597 if (IS_ERR(trans)) { 3598 ret = PTR_ERR(trans); 3599 goto out; 3600 } 3601 btrfs_debug(fs_info, "auto deleting %Lu", 3602 found_key.objectid); 3603 ret = btrfs_del_orphan_item(trans, root, 3604 found_key.objectid); 3605 btrfs_end_transaction(trans); 3606 if (ret) 3607 goto out; 3608 continue; 3609 } 3610 3611 nr_unlink++; 3612 3613 /* this will do delete_inode and everything for us */ 3614 iput(inode); 3615 } 3616 /* release the path since we're done with it */ 3617 btrfs_release_path(path); 3618 3619 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3620 trans = btrfs_join_transaction(root); 3621 if (!IS_ERR(trans)) 3622 btrfs_end_transaction(trans); 3623 } 3624 3625 if (nr_unlink) 3626 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3627 3628 out: 3629 if (ret) 3630 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3631 btrfs_free_path(path); 3632 return ret; 3633 } 3634 3635 /* 3636 * very simple check to peek ahead in the leaf looking for xattrs. If we 3637 * don't find any xattrs, we know there can't be any acls. 3638 * 3639 * slot is the slot the inode is in, objectid is the objectid of the inode 3640 */ 3641 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3642 int slot, u64 objectid, 3643 int *first_xattr_slot) 3644 { 3645 u32 nritems = btrfs_header_nritems(leaf); 3646 struct btrfs_key found_key; 3647 static u64 xattr_access = 0; 3648 static u64 xattr_default = 0; 3649 int scanned = 0; 3650 3651 if (!xattr_access) { 3652 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3653 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3654 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3655 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3656 } 3657 3658 slot++; 3659 *first_xattr_slot = -1; 3660 while (slot < nritems) { 3661 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3662 3663 /* we found a different objectid, there must not be acls */ 3664 if (found_key.objectid != objectid) 3665 return 0; 3666 3667 /* we found an xattr, assume we've got an acl */ 3668 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3669 if (*first_xattr_slot == -1) 3670 *first_xattr_slot = slot; 3671 if (found_key.offset == xattr_access || 3672 found_key.offset == xattr_default) 3673 return 1; 3674 } 3675 3676 /* 3677 * we found a key greater than an xattr key, there can't 3678 * be any acls later on 3679 */ 3680 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3681 return 0; 3682 3683 slot++; 3684 scanned++; 3685 3686 /* 3687 * it goes inode, inode backrefs, xattrs, extents, 3688 * so if there are a ton of hard links to an inode there can 3689 * be a lot of backrefs. Don't waste time searching too hard, 3690 * this is just an optimization 3691 */ 3692 if (scanned >= 8) 3693 break; 3694 } 3695 /* we hit the end of the leaf before we found an xattr or 3696 * something larger than an xattr. We have to assume the inode 3697 * has acls 3698 */ 3699 if (*first_xattr_slot == -1) 3700 *first_xattr_slot = slot; 3701 return 1; 3702 } 3703 3704 /* 3705 * read an inode from the btree into the in-memory inode 3706 */ 3707 static int btrfs_read_locked_inode(struct inode *inode, 3708 struct btrfs_path *in_path) 3709 { 3710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3711 struct btrfs_path *path = in_path; 3712 struct extent_buffer *leaf; 3713 struct btrfs_inode_item *inode_item; 3714 struct btrfs_root *root = BTRFS_I(inode)->root; 3715 struct btrfs_key location; 3716 unsigned long ptr; 3717 int maybe_acls; 3718 u32 rdev; 3719 int ret; 3720 bool filled = false; 3721 int first_xattr_slot; 3722 3723 ret = btrfs_fill_inode(inode, &rdev); 3724 if (!ret) 3725 filled = true; 3726 3727 if (!path) { 3728 path = btrfs_alloc_path(); 3729 if (!path) 3730 return -ENOMEM; 3731 } 3732 3733 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3734 3735 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3736 if (ret) { 3737 if (path != in_path) 3738 btrfs_free_path(path); 3739 return ret; 3740 } 3741 3742 leaf = path->nodes[0]; 3743 3744 if (filled) 3745 goto cache_index; 3746 3747 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3748 struct btrfs_inode_item); 3749 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3750 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3751 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3752 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3753 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3754 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3755 round_up(i_size_read(inode), fs_info->sectorsize)); 3756 3757 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3758 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3759 3760 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3761 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3762 3763 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3764 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3765 3766 BTRFS_I(inode)->i_otime.tv_sec = 3767 btrfs_timespec_sec(leaf, &inode_item->otime); 3768 BTRFS_I(inode)->i_otime.tv_nsec = 3769 btrfs_timespec_nsec(leaf, &inode_item->otime); 3770 3771 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3772 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3773 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3774 3775 inode_set_iversion_queried(inode, 3776 btrfs_inode_sequence(leaf, inode_item)); 3777 inode->i_generation = BTRFS_I(inode)->generation; 3778 inode->i_rdev = 0; 3779 rdev = btrfs_inode_rdev(leaf, inode_item); 3780 3781 BTRFS_I(inode)->index_cnt = (u64)-1; 3782 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3783 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3784 3785 cache_index: 3786 /* 3787 * If we were modified in the current generation and evicted from memory 3788 * and then re-read we need to do a full sync since we don't have any 3789 * idea about which extents were modified before we were evicted from 3790 * cache. 3791 * 3792 * This is required for both inode re-read from disk and delayed inode 3793 * in delayed_nodes_tree. 3794 */ 3795 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3796 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3797 &BTRFS_I(inode)->runtime_flags); 3798 3799 /* 3800 * We don't persist the id of the transaction where an unlink operation 3801 * against the inode was last made. So here we assume the inode might 3802 * have been evicted, and therefore the exact value of last_unlink_trans 3803 * lost, and set it to last_trans to avoid metadata inconsistencies 3804 * between the inode and its parent if the inode is fsync'ed and the log 3805 * replayed. For example, in the scenario: 3806 * 3807 * touch mydir/foo 3808 * ln mydir/foo mydir/bar 3809 * sync 3810 * unlink mydir/bar 3811 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3812 * xfs_io -c fsync mydir/foo 3813 * <power failure> 3814 * mount fs, triggers fsync log replay 3815 * 3816 * We must make sure that when we fsync our inode foo we also log its 3817 * parent inode, otherwise after log replay the parent still has the 3818 * dentry with the "bar" name but our inode foo has a link count of 1 3819 * and doesn't have an inode ref with the name "bar" anymore. 3820 * 3821 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3822 * but it guarantees correctness at the expense of occasional full 3823 * transaction commits on fsync if our inode is a directory, or if our 3824 * inode is not a directory, logging its parent unnecessarily. 3825 */ 3826 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3827 3828 /* 3829 * Same logic as for last_unlink_trans. We don't persist the generation 3830 * of the last transaction where this inode was used for a reflink 3831 * operation, so after eviction and reloading the inode we must be 3832 * pessimistic and assume the last transaction that modified the inode. 3833 */ 3834 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3835 3836 path->slots[0]++; 3837 if (inode->i_nlink != 1 || 3838 path->slots[0] >= btrfs_header_nritems(leaf)) 3839 goto cache_acl; 3840 3841 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3842 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3843 goto cache_acl; 3844 3845 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3846 if (location.type == BTRFS_INODE_REF_KEY) { 3847 struct btrfs_inode_ref *ref; 3848 3849 ref = (struct btrfs_inode_ref *)ptr; 3850 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3851 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3852 struct btrfs_inode_extref *extref; 3853 3854 extref = (struct btrfs_inode_extref *)ptr; 3855 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3856 extref); 3857 } 3858 cache_acl: 3859 /* 3860 * try to precache a NULL acl entry for files that don't have 3861 * any xattrs or acls 3862 */ 3863 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3864 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3865 if (first_xattr_slot != -1) { 3866 path->slots[0] = first_xattr_slot; 3867 ret = btrfs_load_inode_props(inode, path); 3868 if (ret) 3869 btrfs_err(fs_info, 3870 "error loading props for ino %llu (root %llu): %d", 3871 btrfs_ino(BTRFS_I(inode)), 3872 root->root_key.objectid, ret); 3873 } 3874 if (path != in_path) 3875 btrfs_free_path(path); 3876 3877 if (!maybe_acls) 3878 cache_no_acl(inode); 3879 3880 switch (inode->i_mode & S_IFMT) { 3881 case S_IFREG: 3882 inode->i_mapping->a_ops = &btrfs_aops; 3883 inode->i_fop = &btrfs_file_operations; 3884 inode->i_op = &btrfs_file_inode_operations; 3885 break; 3886 case S_IFDIR: 3887 inode->i_fop = &btrfs_dir_file_operations; 3888 inode->i_op = &btrfs_dir_inode_operations; 3889 break; 3890 case S_IFLNK: 3891 inode->i_op = &btrfs_symlink_inode_operations; 3892 inode_nohighmem(inode); 3893 inode->i_mapping->a_ops = &btrfs_aops; 3894 break; 3895 default: 3896 inode->i_op = &btrfs_special_inode_operations; 3897 init_special_inode(inode, inode->i_mode, rdev); 3898 break; 3899 } 3900 3901 btrfs_sync_inode_flags_to_i_flags(inode); 3902 return 0; 3903 } 3904 3905 /* 3906 * given a leaf and an inode, copy the inode fields into the leaf 3907 */ 3908 static void fill_inode_item(struct btrfs_trans_handle *trans, 3909 struct extent_buffer *leaf, 3910 struct btrfs_inode_item *item, 3911 struct inode *inode) 3912 { 3913 struct btrfs_map_token token; 3914 u64 flags; 3915 3916 btrfs_init_map_token(&token, leaf); 3917 3918 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3919 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3920 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3921 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3922 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3923 3924 btrfs_set_token_timespec_sec(&token, &item->atime, 3925 inode->i_atime.tv_sec); 3926 btrfs_set_token_timespec_nsec(&token, &item->atime, 3927 inode->i_atime.tv_nsec); 3928 3929 btrfs_set_token_timespec_sec(&token, &item->mtime, 3930 inode->i_mtime.tv_sec); 3931 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3932 inode->i_mtime.tv_nsec); 3933 3934 btrfs_set_token_timespec_sec(&token, &item->ctime, 3935 inode_get_ctime(inode).tv_sec); 3936 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3937 inode_get_ctime(inode).tv_nsec); 3938 3939 btrfs_set_token_timespec_sec(&token, &item->otime, 3940 BTRFS_I(inode)->i_otime.tv_sec); 3941 btrfs_set_token_timespec_nsec(&token, &item->otime, 3942 BTRFS_I(inode)->i_otime.tv_nsec); 3943 3944 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3945 btrfs_set_token_inode_generation(&token, item, 3946 BTRFS_I(inode)->generation); 3947 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3948 btrfs_set_token_inode_transid(&token, item, trans->transid); 3949 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3950 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 3951 BTRFS_I(inode)->ro_flags); 3952 btrfs_set_token_inode_flags(&token, item, flags); 3953 btrfs_set_token_inode_block_group(&token, item, 0); 3954 } 3955 3956 /* 3957 * copy everything in the in-memory inode into the btree. 3958 */ 3959 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3960 struct btrfs_root *root, 3961 struct btrfs_inode *inode) 3962 { 3963 struct btrfs_inode_item *inode_item; 3964 struct btrfs_path *path; 3965 struct extent_buffer *leaf; 3966 int ret; 3967 3968 path = btrfs_alloc_path(); 3969 if (!path) 3970 return -ENOMEM; 3971 3972 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 3973 if (ret) { 3974 if (ret > 0) 3975 ret = -ENOENT; 3976 goto failed; 3977 } 3978 3979 leaf = path->nodes[0]; 3980 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3981 struct btrfs_inode_item); 3982 3983 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3984 btrfs_mark_buffer_dirty(trans, leaf); 3985 btrfs_set_inode_last_trans(trans, inode); 3986 ret = 0; 3987 failed: 3988 btrfs_free_path(path); 3989 return ret; 3990 } 3991 3992 /* 3993 * copy everything in the in-memory inode into the btree. 3994 */ 3995 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3996 struct btrfs_root *root, 3997 struct btrfs_inode *inode) 3998 { 3999 struct btrfs_fs_info *fs_info = root->fs_info; 4000 int ret; 4001 4002 /* 4003 * If the inode is a free space inode, we can deadlock during commit 4004 * if we put it into the delayed code. 4005 * 4006 * The data relocation inode should also be directly updated 4007 * without delay 4008 */ 4009 if (!btrfs_is_free_space_inode(inode) 4010 && !btrfs_is_data_reloc_root(root) 4011 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4012 btrfs_update_root_times(trans, root); 4013 4014 ret = btrfs_delayed_update_inode(trans, root, inode); 4015 if (!ret) 4016 btrfs_set_inode_last_trans(trans, inode); 4017 return ret; 4018 } 4019 4020 return btrfs_update_inode_item(trans, root, inode); 4021 } 4022 4023 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4024 struct btrfs_root *root, struct btrfs_inode *inode) 4025 { 4026 int ret; 4027 4028 ret = btrfs_update_inode(trans, root, inode); 4029 if (ret == -ENOSPC) 4030 return btrfs_update_inode_item(trans, root, inode); 4031 return ret; 4032 } 4033 4034 /* 4035 * unlink helper that gets used here in inode.c and in the tree logging 4036 * recovery code. It remove a link in a directory with a given name, and 4037 * also drops the back refs in the inode to the directory 4038 */ 4039 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4040 struct btrfs_inode *dir, 4041 struct btrfs_inode *inode, 4042 const struct fscrypt_str *name, 4043 struct btrfs_rename_ctx *rename_ctx) 4044 { 4045 struct btrfs_root *root = dir->root; 4046 struct btrfs_fs_info *fs_info = root->fs_info; 4047 struct btrfs_path *path; 4048 int ret = 0; 4049 struct btrfs_dir_item *di; 4050 u64 index; 4051 u64 ino = btrfs_ino(inode); 4052 u64 dir_ino = btrfs_ino(dir); 4053 4054 path = btrfs_alloc_path(); 4055 if (!path) { 4056 ret = -ENOMEM; 4057 goto out; 4058 } 4059 4060 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4061 if (IS_ERR_OR_NULL(di)) { 4062 ret = di ? PTR_ERR(di) : -ENOENT; 4063 goto err; 4064 } 4065 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4066 if (ret) 4067 goto err; 4068 btrfs_release_path(path); 4069 4070 /* 4071 * If we don't have dir index, we have to get it by looking up 4072 * the inode ref, since we get the inode ref, remove it directly, 4073 * it is unnecessary to do delayed deletion. 4074 * 4075 * But if we have dir index, needn't search inode ref to get it. 4076 * Since the inode ref is close to the inode item, it is better 4077 * that we delay to delete it, and just do this deletion when 4078 * we update the inode item. 4079 */ 4080 if (inode->dir_index) { 4081 ret = btrfs_delayed_delete_inode_ref(inode); 4082 if (!ret) { 4083 index = inode->dir_index; 4084 goto skip_backref; 4085 } 4086 } 4087 4088 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4089 if (ret) { 4090 btrfs_info(fs_info, 4091 "failed to delete reference to %.*s, inode %llu parent %llu", 4092 name->len, name->name, ino, dir_ino); 4093 btrfs_abort_transaction(trans, ret); 4094 goto err; 4095 } 4096 skip_backref: 4097 if (rename_ctx) 4098 rename_ctx->index = index; 4099 4100 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4101 if (ret) { 4102 btrfs_abort_transaction(trans, ret); 4103 goto err; 4104 } 4105 4106 /* 4107 * If we are in a rename context, we don't need to update anything in the 4108 * log. That will be done later during the rename by btrfs_log_new_name(). 4109 * Besides that, doing it here would only cause extra unnecessary btree 4110 * operations on the log tree, increasing latency for applications. 4111 */ 4112 if (!rename_ctx) { 4113 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4114 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4115 } 4116 4117 /* 4118 * If we have a pending delayed iput we could end up with the final iput 4119 * being run in btrfs-cleaner context. If we have enough of these built 4120 * up we can end up burning a lot of time in btrfs-cleaner without any 4121 * way to throttle the unlinks. Since we're currently holding a ref on 4122 * the inode we can run the delayed iput here without any issues as the 4123 * final iput won't be done until after we drop the ref we're currently 4124 * holding. 4125 */ 4126 btrfs_run_delayed_iput(fs_info, inode); 4127 err: 4128 btrfs_free_path(path); 4129 if (ret) 4130 goto out; 4131 4132 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4133 inode_inc_iversion(&inode->vfs_inode); 4134 inode_inc_iversion(&dir->vfs_inode); 4135 inode_set_ctime_current(&inode->vfs_inode); 4136 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode); 4137 ret = btrfs_update_inode(trans, root, dir); 4138 out: 4139 return ret; 4140 } 4141 4142 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4143 struct btrfs_inode *dir, struct btrfs_inode *inode, 4144 const struct fscrypt_str *name) 4145 { 4146 int ret; 4147 4148 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4149 if (!ret) { 4150 drop_nlink(&inode->vfs_inode); 4151 ret = btrfs_update_inode(trans, inode->root, inode); 4152 } 4153 return ret; 4154 } 4155 4156 /* 4157 * helper to start transaction for unlink and rmdir. 4158 * 4159 * unlink and rmdir are special in btrfs, they do not always free space, so 4160 * if we cannot make our reservations the normal way try and see if there is 4161 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4162 * allow the unlink to occur. 4163 */ 4164 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4165 { 4166 struct btrfs_root *root = dir->root; 4167 4168 return btrfs_start_transaction_fallback_global_rsv(root, 4169 BTRFS_UNLINK_METADATA_UNITS); 4170 } 4171 4172 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4173 { 4174 struct btrfs_trans_handle *trans; 4175 struct inode *inode = d_inode(dentry); 4176 int ret; 4177 struct fscrypt_name fname; 4178 4179 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4180 if (ret) 4181 return ret; 4182 4183 /* This needs to handle no-key deletions later on */ 4184 4185 trans = __unlink_start_trans(BTRFS_I(dir)); 4186 if (IS_ERR(trans)) { 4187 ret = PTR_ERR(trans); 4188 goto fscrypt_free; 4189 } 4190 4191 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4192 false); 4193 4194 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4195 &fname.disk_name); 4196 if (ret) 4197 goto end_trans; 4198 4199 if (inode->i_nlink == 0) { 4200 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4201 if (ret) 4202 goto end_trans; 4203 } 4204 4205 end_trans: 4206 btrfs_end_transaction(trans); 4207 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4208 fscrypt_free: 4209 fscrypt_free_filename(&fname); 4210 return ret; 4211 } 4212 4213 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4214 struct btrfs_inode *dir, struct dentry *dentry) 4215 { 4216 struct btrfs_root *root = dir->root; 4217 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4218 struct btrfs_path *path; 4219 struct extent_buffer *leaf; 4220 struct btrfs_dir_item *di; 4221 struct btrfs_key key; 4222 u64 index; 4223 int ret; 4224 u64 objectid; 4225 u64 dir_ino = btrfs_ino(dir); 4226 struct fscrypt_name fname; 4227 4228 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4229 if (ret) 4230 return ret; 4231 4232 /* This needs to handle no-key deletions later on */ 4233 4234 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4235 objectid = inode->root->root_key.objectid; 4236 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4237 objectid = inode->location.objectid; 4238 } else { 4239 WARN_ON(1); 4240 fscrypt_free_filename(&fname); 4241 return -EINVAL; 4242 } 4243 4244 path = btrfs_alloc_path(); 4245 if (!path) { 4246 ret = -ENOMEM; 4247 goto out; 4248 } 4249 4250 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4251 &fname.disk_name, -1); 4252 if (IS_ERR_OR_NULL(di)) { 4253 ret = di ? PTR_ERR(di) : -ENOENT; 4254 goto out; 4255 } 4256 4257 leaf = path->nodes[0]; 4258 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4259 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4260 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4261 if (ret) { 4262 btrfs_abort_transaction(trans, ret); 4263 goto out; 4264 } 4265 btrfs_release_path(path); 4266 4267 /* 4268 * This is a placeholder inode for a subvolume we didn't have a 4269 * reference to at the time of the snapshot creation. In the meantime 4270 * we could have renamed the real subvol link into our snapshot, so 4271 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4272 * Instead simply lookup the dir_index_item for this entry so we can 4273 * remove it. Otherwise we know we have a ref to the root and we can 4274 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4275 */ 4276 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4277 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4278 if (IS_ERR_OR_NULL(di)) { 4279 if (!di) 4280 ret = -ENOENT; 4281 else 4282 ret = PTR_ERR(di); 4283 btrfs_abort_transaction(trans, ret); 4284 goto out; 4285 } 4286 4287 leaf = path->nodes[0]; 4288 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4289 index = key.offset; 4290 btrfs_release_path(path); 4291 } else { 4292 ret = btrfs_del_root_ref(trans, objectid, 4293 root->root_key.objectid, dir_ino, 4294 &index, &fname.disk_name); 4295 if (ret) { 4296 btrfs_abort_transaction(trans, ret); 4297 goto out; 4298 } 4299 } 4300 4301 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4302 if (ret) { 4303 btrfs_abort_transaction(trans, ret); 4304 goto out; 4305 } 4306 4307 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4308 inode_inc_iversion(&dir->vfs_inode); 4309 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode); 4310 ret = btrfs_update_inode_fallback(trans, root, dir); 4311 if (ret) 4312 btrfs_abort_transaction(trans, ret); 4313 out: 4314 btrfs_free_path(path); 4315 fscrypt_free_filename(&fname); 4316 return ret; 4317 } 4318 4319 /* 4320 * Helper to check if the subvolume references other subvolumes or if it's 4321 * default. 4322 */ 4323 static noinline int may_destroy_subvol(struct btrfs_root *root) 4324 { 4325 struct btrfs_fs_info *fs_info = root->fs_info; 4326 struct btrfs_path *path; 4327 struct btrfs_dir_item *di; 4328 struct btrfs_key key; 4329 struct fscrypt_str name = FSTR_INIT("default", 7); 4330 u64 dir_id; 4331 int ret; 4332 4333 path = btrfs_alloc_path(); 4334 if (!path) 4335 return -ENOMEM; 4336 4337 /* Make sure this root isn't set as the default subvol */ 4338 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4339 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4340 dir_id, &name, 0); 4341 if (di && !IS_ERR(di)) { 4342 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4343 if (key.objectid == root->root_key.objectid) { 4344 ret = -EPERM; 4345 btrfs_err(fs_info, 4346 "deleting default subvolume %llu is not allowed", 4347 key.objectid); 4348 goto out; 4349 } 4350 btrfs_release_path(path); 4351 } 4352 4353 key.objectid = root->root_key.objectid; 4354 key.type = BTRFS_ROOT_REF_KEY; 4355 key.offset = (u64)-1; 4356 4357 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4358 if (ret < 0) 4359 goto out; 4360 BUG_ON(ret == 0); 4361 4362 ret = 0; 4363 if (path->slots[0] > 0) { 4364 path->slots[0]--; 4365 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4366 if (key.objectid == root->root_key.objectid && 4367 key.type == BTRFS_ROOT_REF_KEY) 4368 ret = -ENOTEMPTY; 4369 } 4370 out: 4371 btrfs_free_path(path); 4372 return ret; 4373 } 4374 4375 /* Delete all dentries for inodes belonging to the root */ 4376 static void btrfs_prune_dentries(struct btrfs_root *root) 4377 { 4378 struct btrfs_fs_info *fs_info = root->fs_info; 4379 struct rb_node *node; 4380 struct rb_node *prev; 4381 struct btrfs_inode *entry; 4382 struct inode *inode; 4383 u64 objectid = 0; 4384 4385 if (!BTRFS_FS_ERROR(fs_info)) 4386 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4387 4388 spin_lock(&root->inode_lock); 4389 again: 4390 node = root->inode_tree.rb_node; 4391 prev = NULL; 4392 while (node) { 4393 prev = node; 4394 entry = rb_entry(node, struct btrfs_inode, rb_node); 4395 4396 if (objectid < btrfs_ino(entry)) 4397 node = node->rb_left; 4398 else if (objectid > btrfs_ino(entry)) 4399 node = node->rb_right; 4400 else 4401 break; 4402 } 4403 if (!node) { 4404 while (prev) { 4405 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4406 if (objectid <= btrfs_ino(entry)) { 4407 node = prev; 4408 break; 4409 } 4410 prev = rb_next(prev); 4411 } 4412 } 4413 while (node) { 4414 entry = rb_entry(node, struct btrfs_inode, rb_node); 4415 objectid = btrfs_ino(entry) + 1; 4416 inode = igrab(&entry->vfs_inode); 4417 if (inode) { 4418 spin_unlock(&root->inode_lock); 4419 if (atomic_read(&inode->i_count) > 1) 4420 d_prune_aliases(inode); 4421 /* 4422 * btrfs_drop_inode will have it removed from the inode 4423 * cache when its usage count hits zero. 4424 */ 4425 iput(inode); 4426 cond_resched(); 4427 spin_lock(&root->inode_lock); 4428 goto again; 4429 } 4430 4431 if (cond_resched_lock(&root->inode_lock)) 4432 goto again; 4433 4434 node = rb_next(node); 4435 } 4436 spin_unlock(&root->inode_lock); 4437 } 4438 4439 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4440 { 4441 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4442 struct btrfs_root *root = dir->root; 4443 struct inode *inode = d_inode(dentry); 4444 struct btrfs_root *dest = BTRFS_I(inode)->root; 4445 struct btrfs_trans_handle *trans; 4446 struct btrfs_block_rsv block_rsv; 4447 u64 root_flags; 4448 int ret; 4449 4450 /* 4451 * Don't allow to delete a subvolume with send in progress. This is 4452 * inside the inode lock so the error handling that has to drop the bit 4453 * again is not run concurrently. 4454 */ 4455 spin_lock(&dest->root_item_lock); 4456 if (dest->send_in_progress) { 4457 spin_unlock(&dest->root_item_lock); 4458 btrfs_warn(fs_info, 4459 "attempt to delete subvolume %llu during send", 4460 dest->root_key.objectid); 4461 return -EPERM; 4462 } 4463 if (atomic_read(&dest->nr_swapfiles)) { 4464 spin_unlock(&dest->root_item_lock); 4465 btrfs_warn(fs_info, 4466 "attempt to delete subvolume %llu with active swapfile", 4467 root->root_key.objectid); 4468 return -EPERM; 4469 } 4470 root_flags = btrfs_root_flags(&dest->root_item); 4471 btrfs_set_root_flags(&dest->root_item, 4472 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4473 spin_unlock(&dest->root_item_lock); 4474 4475 down_write(&fs_info->subvol_sem); 4476 4477 ret = may_destroy_subvol(dest); 4478 if (ret) 4479 goto out_up_write; 4480 4481 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4482 /* 4483 * One for dir inode, 4484 * two for dir entries, 4485 * two for root ref/backref. 4486 */ 4487 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4488 if (ret) 4489 goto out_up_write; 4490 4491 trans = btrfs_start_transaction(root, 0); 4492 if (IS_ERR(trans)) { 4493 ret = PTR_ERR(trans); 4494 goto out_release; 4495 } 4496 trans->block_rsv = &block_rsv; 4497 trans->bytes_reserved = block_rsv.size; 4498 4499 btrfs_record_snapshot_destroy(trans, dir); 4500 4501 ret = btrfs_unlink_subvol(trans, dir, dentry); 4502 if (ret) { 4503 btrfs_abort_transaction(trans, ret); 4504 goto out_end_trans; 4505 } 4506 4507 ret = btrfs_record_root_in_trans(trans, dest); 4508 if (ret) { 4509 btrfs_abort_transaction(trans, ret); 4510 goto out_end_trans; 4511 } 4512 4513 memset(&dest->root_item.drop_progress, 0, 4514 sizeof(dest->root_item.drop_progress)); 4515 btrfs_set_root_drop_level(&dest->root_item, 0); 4516 btrfs_set_root_refs(&dest->root_item, 0); 4517 4518 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4519 ret = btrfs_insert_orphan_item(trans, 4520 fs_info->tree_root, 4521 dest->root_key.objectid); 4522 if (ret) { 4523 btrfs_abort_transaction(trans, ret); 4524 goto out_end_trans; 4525 } 4526 } 4527 4528 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4529 BTRFS_UUID_KEY_SUBVOL, 4530 dest->root_key.objectid); 4531 if (ret && ret != -ENOENT) { 4532 btrfs_abort_transaction(trans, ret); 4533 goto out_end_trans; 4534 } 4535 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4536 ret = btrfs_uuid_tree_remove(trans, 4537 dest->root_item.received_uuid, 4538 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4539 dest->root_key.objectid); 4540 if (ret && ret != -ENOENT) { 4541 btrfs_abort_transaction(trans, ret); 4542 goto out_end_trans; 4543 } 4544 } 4545 4546 free_anon_bdev(dest->anon_dev); 4547 dest->anon_dev = 0; 4548 out_end_trans: 4549 trans->block_rsv = NULL; 4550 trans->bytes_reserved = 0; 4551 ret = btrfs_end_transaction(trans); 4552 inode->i_flags |= S_DEAD; 4553 out_release: 4554 btrfs_subvolume_release_metadata(root, &block_rsv); 4555 out_up_write: 4556 up_write(&fs_info->subvol_sem); 4557 if (ret) { 4558 spin_lock(&dest->root_item_lock); 4559 root_flags = btrfs_root_flags(&dest->root_item); 4560 btrfs_set_root_flags(&dest->root_item, 4561 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4562 spin_unlock(&dest->root_item_lock); 4563 } else { 4564 d_invalidate(dentry); 4565 btrfs_prune_dentries(dest); 4566 ASSERT(dest->send_in_progress == 0); 4567 } 4568 4569 return ret; 4570 } 4571 4572 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4573 { 4574 struct inode *inode = d_inode(dentry); 4575 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4576 int err = 0; 4577 struct btrfs_trans_handle *trans; 4578 u64 last_unlink_trans; 4579 struct fscrypt_name fname; 4580 4581 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4582 return -ENOTEMPTY; 4583 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4584 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4585 btrfs_err(fs_info, 4586 "extent tree v2 doesn't support snapshot deletion yet"); 4587 return -EOPNOTSUPP; 4588 } 4589 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4590 } 4591 4592 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4593 if (err) 4594 return err; 4595 4596 /* This needs to handle no-key deletions later on */ 4597 4598 trans = __unlink_start_trans(BTRFS_I(dir)); 4599 if (IS_ERR(trans)) { 4600 err = PTR_ERR(trans); 4601 goto out_notrans; 4602 } 4603 4604 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4605 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4606 goto out; 4607 } 4608 4609 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4610 if (err) 4611 goto out; 4612 4613 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4614 4615 /* now the directory is empty */ 4616 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4617 &fname.disk_name); 4618 if (!err) { 4619 btrfs_i_size_write(BTRFS_I(inode), 0); 4620 /* 4621 * Propagate the last_unlink_trans value of the deleted dir to 4622 * its parent directory. This is to prevent an unrecoverable 4623 * log tree in the case we do something like this: 4624 * 1) create dir foo 4625 * 2) create snapshot under dir foo 4626 * 3) delete the snapshot 4627 * 4) rmdir foo 4628 * 5) mkdir foo 4629 * 6) fsync foo or some file inside foo 4630 */ 4631 if (last_unlink_trans >= trans->transid) 4632 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4633 } 4634 out: 4635 btrfs_end_transaction(trans); 4636 out_notrans: 4637 btrfs_btree_balance_dirty(fs_info); 4638 fscrypt_free_filename(&fname); 4639 4640 return err; 4641 } 4642 4643 /* 4644 * btrfs_truncate_block - read, zero a chunk and write a block 4645 * @inode - inode that we're zeroing 4646 * @from - the offset to start zeroing 4647 * @len - the length to zero, 0 to zero the entire range respective to the 4648 * offset 4649 * @front - zero up to the offset instead of from the offset on 4650 * 4651 * This will find the block for the "from" offset and cow the block and zero the 4652 * part we want to zero. This is used with truncate and hole punching. 4653 */ 4654 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4655 int front) 4656 { 4657 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4658 struct address_space *mapping = inode->vfs_inode.i_mapping; 4659 struct extent_io_tree *io_tree = &inode->io_tree; 4660 struct btrfs_ordered_extent *ordered; 4661 struct extent_state *cached_state = NULL; 4662 struct extent_changeset *data_reserved = NULL; 4663 bool only_release_metadata = false; 4664 u32 blocksize = fs_info->sectorsize; 4665 pgoff_t index = from >> PAGE_SHIFT; 4666 unsigned offset = from & (blocksize - 1); 4667 struct page *page; 4668 gfp_t mask = btrfs_alloc_write_mask(mapping); 4669 size_t write_bytes = blocksize; 4670 int ret = 0; 4671 u64 block_start; 4672 u64 block_end; 4673 4674 if (IS_ALIGNED(offset, blocksize) && 4675 (!len || IS_ALIGNED(len, blocksize))) 4676 goto out; 4677 4678 block_start = round_down(from, blocksize); 4679 block_end = block_start + blocksize - 1; 4680 4681 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4682 blocksize, false); 4683 if (ret < 0) { 4684 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4685 /* For nocow case, no need to reserve data space */ 4686 only_release_metadata = true; 4687 } else { 4688 goto out; 4689 } 4690 } 4691 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4692 if (ret < 0) { 4693 if (!only_release_metadata) 4694 btrfs_free_reserved_data_space(inode, data_reserved, 4695 block_start, blocksize); 4696 goto out; 4697 } 4698 again: 4699 page = find_or_create_page(mapping, index, mask); 4700 if (!page) { 4701 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4702 blocksize, true); 4703 btrfs_delalloc_release_extents(inode, blocksize); 4704 ret = -ENOMEM; 4705 goto out; 4706 } 4707 4708 if (!PageUptodate(page)) { 4709 ret = btrfs_read_folio(NULL, page_folio(page)); 4710 lock_page(page); 4711 if (page->mapping != mapping) { 4712 unlock_page(page); 4713 put_page(page); 4714 goto again; 4715 } 4716 if (!PageUptodate(page)) { 4717 ret = -EIO; 4718 goto out_unlock; 4719 } 4720 } 4721 4722 /* 4723 * We unlock the page after the io is completed and then re-lock it 4724 * above. release_folio() could have come in between that and cleared 4725 * PagePrivate(), but left the page in the mapping. Set the page mapped 4726 * here to make sure it's properly set for the subpage stuff. 4727 */ 4728 ret = set_page_extent_mapped(page); 4729 if (ret < 0) 4730 goto out_unlock; 4731 4732 wait_on_page_writeback(page); 4733 4734 lock_extent(io_tree, block_start, block_end, &cached_state); 4735 4736 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4737 if (ordered) { 4738 unlock_extent(io_tree, block_start, block_end, &cached_state); 4739 unlock_page(page); 4740 put_page(page); 4741 btrfs_start_ordered_extent(ordered); 4742 btrfs_put_ordered_extent(ordered); 4743 goto again; 4744 } 4745 4746 clear_extent_bit(&inode->io_tree, block_start, block_end, 4747 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4748 &cached_state); 4749 4750 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4751 &cached_state); 4752 if (ret) { 4753 unlock_extent(io_tree, block_start, block_end, &cached_state); 4754 goto out_unlock; 4755 } 4756 4757 if (offset != blocksize) { 4758 if (!len) 4759 len = blocksize - offset; 4760 if (front) 4761 memzero_page(page, (block_start - page_offset(page)), 4762 offset); 4763 else 4764 memzero_page(page, (block_start - page_offset(page)) + offset, 4765 len); 4766 } 4767 btrfs_page_clear_checked(fs_info, page, block_start, 4768 block_end + 1 - block_start); 4769 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 4770 unlock_extent(io_tree, block_start, block_end, &cached_state); 4771 4772 if (only_release_metadata) 4773 set_extent_bit(&inode->io_tree, block_start, block_end, 4774 EXTENT_NORESERVE, NULL); 4775 4776 out_unlock: 4777 if (ret) { 4778 if (only_release_metadata) 4779 btrfs_delalloc_release_metadata(inode, blocksize, true); 4780 else 4781 btrfs_delalloc_release_space(inode, data_reserved, 4782 block_start, blocksize, true); 4783 } 4784 btrfs_delalloc_release_extents(inode, blocksize); 4785 unlock_page(page); 4786 put_page(page); 4787 out: 4788 if (only_release_metadata) 4789 btrfs_check_nocow_unlock(inode); 4790 extent_changeset_free(data_reserved); 4791 return ret; 4792 } 4793 4794 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4795 u64 offset, u64 len) 4796 { 4797 struct btrfs_fs_info *fs_info = root->fs_info; 4798 struct btrfs_trans_handle *trans; 4799 struct btrfs_drop_extents_args drop_args = { 0 }; 4800 int ret; 4801 4802 /* 4803 * If NO_HOLES is enabled, we don't need to do anything. 4804 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4805 * or btrfs_update_inode() will be called, which guarantee that the next 4806 * fsync will know this inode was changed and needs to be logged. 4807 */ 4808 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4809 return 0; 4810 4811 /* 4812 * 1 - for the one we're dropping 4813 * 1 - for the one we're adding 4814 * 1 - for updating the inode. 4815 */ 4816 trans = btrfs_start_transaction(root, 3); 4817 if (IS_ERR(trans)) 4818 return PTR_ERR(trans); 4819 4820 drop_args.start = offset; 4821 drop_args.end = offset + len; 4822 drop_args.drop_cache = true; 4823 4824 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4825 if (ret) { 4826 btrfs_abort_transaction(trans, ret); 4827 btrfs_end_transaction(trans); 4828 return ret; 4829 } 4830 4831 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4832 if (ret) { 4833 btrfs_abort_transaction(trans, ret); 4834 } else { 4835 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4836 btrfs_update_inode(trans, root, inode); 4837 } 4838 btrfs_end_transaction(trans); 4839 return ret; 4840 } 4841 4842 /* 4843 * This function puts in dummy file extents for the area we're creating a hole 4844 * for. So if we are truncating this file to a larger size we need to insert 4845 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4846 * the range between oldsize and size 4847 */ 4848 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4849 { 4850 struct btrfs_root *root = inode->root; 4851 struct btrfs_fs_info *fs_info = root->fs_info; 4852 struct extent_io_tree *io_tree = &inode->io_tree; 4853 struct extent_map *em = NULL; 4854 struct extent_state *cached_state = NULL; 4855 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4856 u64 block_end = ALIGN(size, fs_info->sectorsize); 4857 u64 last_byte; 4858 u64 cur_offset; 4859 u64 hole_size; 4860 int err = 0; 4861 4862 /* 4863 * If our size started in the middle of a block we need to zero out the 4864 * rest of the block before we expand the i_size, otherwise we could 4865 * expose stale data. 4866 */ 4867 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4868 if (err) 4869 return err; 4870 4871 if (size <= hole_start) 4872 return 0; 4873 4874 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4875 &cached_state); 4876 cur_offset = hole_start; 4877 while (1) { 4878 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4879 block_end - cur_offset); 4880 if (IS_ERR(em)) { 4881 err = PTR_ERR(em); 4882 em = NULL; 4883 break; 4884 } 4885 last_byte = min(extent_map_end(em), block_end); 4886 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4887 hole_size = last_byte - cur_offset; 4888 4889 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4890 struct extent_map *hole_em; 4891 4892 err = maybe_insert_hole(root, inode, cur_offset, 4893 hole_size); 4894 if (err) 4895 break; 4896 4897 err = btrfs_inode_set_file_extent_range(inode, 4898 cur_offset, hole_size); 4899 if (err) 4900 break; 4901 4902 hole_em = alloc_extent_map(); 4903 if (!hole_em) { 4904 btrfs_drop_extent_map_range(inode, cur_offset, 4905 cur_offset + hole_size - 1, 4906 false); 4907 btrfs_set_inode_full_sync(inode); 4908 goto next; 4909 } 4910 hole_em->start = cur_offset; 4911 hole_em->len = hole_size; 4912 hole_em->orig_start = cur_offset; 4913 4914 hole_em->block_start = EXTENT_MAP_HOLE; 4915 hole_em->block_len = 0; 4916 hole_em->orig_block_len = 0; 4917 hole_em->ram_bytes = hole_size; 4918 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4919 hole_em->generation = fs_info->generation; 4920 4921 err = btrfs_replace_extent_map_range(inode, hole_em, true); 4922 free_extent_map(hole_em); 4923 } else { 4924 err = btrfs_inode_set_file_extent_range(inode, 4925 cur_offset, hole_size); 4926 if (err) 4927 break; 4928 } 4929 next: 4930 free_extent_map(em); 4931 em = NULL; 4932 cur_offset = last_byte; 4933 if (cur_offset >= block_end) 4934 break; 4935 } 4936 free_extent_map(em); 4937 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 4938 return err; 4939 } 4940 4941 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4942 { 4943 struct btrfs_root *root = BTRFS_I(inode)->root; 4944 struct btrfs_trans_handle *trans; 4945 loff_t oldsize = i_size_read(inode); 4946 loff_t newsize = attr->ia_size; 4947 int mask = attr->ia_valid; 4948 int ret; 4949 4950 /* 4951 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4952 * special case where we need to update the times despite not having 4953 * these flags set. For all other operations the VFS set these flags 4954 * explicitly if it wants a timestamp update. 4955 */ 4956 if (newsize != oldsize) { 4957 inode_inc_iversion(inode); 4958 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 4959 inode->i_mtime = inode_set_ctime_current(inode); 4960 } 4961 } 4962 4963 if (newsize > oldsize) { 4964 /* 4965 * Don't do an expanding truncate while snapshotting is ongoing. 4966 * This is to ensure the snapshot captures a fully consistent 4967 * state of this file - if the snapshot captures this expanding 4968 * truncation, it must capture all writes that happened before 4969 * this truncation. 4970 */ 4971 btrfs_drew_write_lock(&root->snapshot_lock); 4972 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 4973 if (ret) { 4974 btrfs_drew_write_unlock(&root->snapshot_lock); 4975 return ret; 4976 } 4977 4978 trans = btrfs_start_transaction(root, 1); 4979 if (IS_ERR(trans)) { 4980 btrfs_drew_write_unlock(&root->snapshot_lock); 4981 return PTR_ERR(trans); 4982 } 4983 4984 i_size_write(inode, newsize); 4985 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 4986 pagecache_isize_extended(inode, oldsize, newsize); 4987 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 4988 btrfs_drew_write_unlock(&root->snapshot_lock); 4989 btrfs_end_transaction(trans); 4990 } else { 4991 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4992 4993 if (btrfs_is_zoned(fs_info)) { 4994 ret = btrfs_wait_ordered_range(inode, 4995 ALIGN(newsize, fs_info->sectorsize), 4996 (u64)-1); 4997 if (ret) 4998 return ret; 4999 } 5000 5001 /* 5002 * We're truncating a file that used to have good data down to 5003 * zero. Make sure any new writes to the file get on disk 5004 * on close. 5005 */ 5006 if (newsize == 0) 5007 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5008 &BTRFS_I(inode)->runtime_flags); 5009 5010 truncate_setsize(inode, newsize); 5011 5012 inode_dio_wait(inode); 5013 5014 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5015 if (ret && inode->i_nlink) { 5016 int err; 5017 5018 /* 5019 * Truncate failed, so fix up the in-memory size. We 5020 * adjusted disk_i_size down as we removed extents, so 5021 * wait for disk_i_size to be stable and then update the 5022 * in-memory size to match. 5023 */ 5024 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5025 if (err) 5026 return err; 5027 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5028 } 5029 } 5030 5031 return ret; 5032 } 5033 5034 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5035 struct iattr *attr) 5036 { 5037 struct inode *inode = d_inode(dentry); 5038 struct btrfs_root *root = BTRFS_I(inode)->root; 5039 int err; 5040 5041 if (btrfs_root_readonly(root)) 5042 return -EROFS; 5043 5044 err = setattr_prepare(idmap, dentry, attr); 5045 if (err) 5046 return err; 5047 5048 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5049 err = btrfs_setsize(inode, attr); 5050 if (err) 5051 return err; 5052 } 5053 5054 if (attr->ia_valid) { 5055 setattr_copy(idmap, inode, attr); 5056 inode_inc_iversion(inode); 5057 err = btrfs_dirty_inode(BTRFS_I(inode)); 5058 5059 if (!err && attr->ia_valid & ATTR_MODE) 5060 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5061 } 5062 5063 return err; 5064 } 5065 5066 /* 5067 * While truncating the inode pages during eviction, we get the VFS 5068 * calling btrfs_invalidate_folio() against each folio of the inode. This 5069 * is slow because the calls to btrfs_invalidate_folio() result in a 5070 * huge amount of calls to lock_extent() and clear_extent_bit(), 5071 * which keep merging and splitting extent_state structures over and over, 5072 * wasting lots of time. 5073 * 5074 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5075 * skip all those expensive operations on a per folio basis and do only 5076 * the ordered io finishing, while we release here the extent_map and 5077 * extent_state structures, without the excessive merging and splitting. 5078 */ 5079 static void evict_inode_truncate_pages(struct inode *inode) 5080 { 5081 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5082 struct rb_node *node; 5083 5084 ASSERT(inode->i_state & I_FREEING); 5085 truncate_inode_pages_final(&inode->i_data); 5086 5087 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5088 5089 /* 5090 * Keep looping until we have no more ranges in the io tree. 5091 * We can have ongoing bios started by readahead that have 5092 * their endio callback (extent_io.c:end_bio_extent_readpage) 5093 * still in progress (unlocked the pages in the bio but did not yet 5094 * unlocked the ranges in the io tree). Therefore this means some 5095 * ranges can still be locked and eviction started because before 5096 * submitting those bios, which are executed by a separate task (work 5097 * queue kthread), inode references (inode->i_count) were not taken 5098 * (which would be dropped in the end io callback of each bio). 5099 * Therefore here we effectively end up waiting for those bios and 5100 * anyone else holding locked ranges without having bumped the inode's 5101 * reference count - if we don't do it, when they access the inode's 5102 * io_tree to unlock a range it may be too late, leading to an 5103 * use-after-free issue. 5104 */ 5105 spin_lock(&io_tree->lock); 5106 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5107 struct extent_state *state; 5108 struct extent_state *cached_state = NULL; 5109 u64 start; 5110 u64 end; 5111 unsigned state_flags; 5112 5113 node = rb_first(&io_tree->state); 5114 state = rb_entry(node, struct extent_state, rb_node); 5115 start = state->start; 5116 end = state->end; 5117 state_flags = state->state; 5118 spin_unlock(&io_tree->lock); 5119 5120 lock_extent(io_tree, start, end, &cached_state); 5121 5122 /* 5123 * If still has DELALLOC flag, the extent didn't reach disk, 5124 * and its reserved space won't be freed by delayed_ref. 5125 * So we need to free its reserved space here. 5126 * (Refer to comment in btrfs_invalidate_folio, case 2) 5127 * 5128 * Note, end is the bytenr of last byte, so we need + 1 here. 5129 */ 5130 if (state_flags & EXTENT_DELALLOC) 5131 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5132 end - start + 1); 5133 5134 clear_extent_bit(io_tree, start, end, 5135 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5136 &cached_state); 5137 5138 cond_resched(); 5139 spin_lock(&io_tree->lock); 5140 } 5141 spin_unlock(&io_tree->lock); 5142 } 5143 5144 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5145 struct btrfs_block_rsv *rsv) 5146 { 5147 struct btrfs_fs_info *fs_info = root->fs_info; 5148 struct btrfs_trans_handle *trans; 5149 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5150 int ret; 5151 5152 /* 5153 * Eviction should be taking place at some place safe because of our 5154 * delayed iputs. However the normal flushing code will run delayed 5155 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5156 * 5157 * We reserve the delayed_refs_extra here again because we can't use 5158 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5159 * above. We reserve our extra bit here because we generate a ton of 5160 * delayed refs activity by truncating. 5161 * 5162 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5163 * if we fail to make this reservation we can re-try without the 5164 * delayed_refs_extra so we can make some forward progress. 5165 */ 5166 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5167 BTRFS_RESERVE_FLUSH_EVICT); 5168 if (ret) { 5169 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5170 BTRFS_RESERVE_FLUSH_EVICT); 5171 if (ret) { 5172 btrfs_warn(fs_info, 5173 "could not allocate space for delete; will truncate on mount"); 5174 return ERR_PTR(-ENOSPC); 5175 } 5176 delayed_refs_extra = 0; 5177 } 5178 5179 trans = btrfs_join_transaction(root); 5180 if (IS_ERR(trans)) 5181 return trans; 5182 5183 if (delayed_refs_extra) { 5184 trans->block_rsv = &fs_info->trans_block_rsv; 5185 trans->bytes_reserved = delayed_refs_extra; 5186 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5187 delayed_refs_extra, true); 5188 } 5189 return trans; 5190 } 5191 5192 void btrfs_evict_inode(struct inode *inode) 5193 { 5194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5195 struct btrfs_trans_handle *trans; 5196 struct btrfs_root *root = BTRFS_I(inode)->root; 5197 struct btrfs_block_rsv *rsv = NULL; 5198 int ret; 5199 5200 trace_btrfs_inode_evict(inode); 5201 5202 if (!root) { 5203 fsverity_cleanup_inode(inode); 5204 clear_inode(inode); 5205 return; 5206 } 5207 5208 evict_inode_truncate_pages(inode); 5209 5210 if (inode->i_nlink && 5211 ((btrfs_root_refs(&root->root_item) != 0 && 5212 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5213 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5214 goto out; 5215 5216 if (is_bad_inode(inode)) 5217 goto out; 5218 5219 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5220 goto out; 5221 5222 if (inode->i_nlink > 0) { 5223 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5224 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5225 goto out; 5226 } 5227 5228 /* 5229 * This makes sure the inode item in tree is uptodate and the space for 5230 * the inode update is released. 5231 */ 5232 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5233 if (ret) 5234 goto out; 5235 5236 /* 5237 * This drops any pending insert or delete operations we have for this 5238 * inode. We could have a delayed dir index deletion queued up, but 5239 * we're removing the inode completely so that'll be taken care of in 5240 * the truncate. 5241 */ 5242 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5243 5244 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5245 if (!rsv) 5246 goto out; 5247 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5248 rsv->failfast = true; 5249 5250 btrfs_i_size_write(BTRFS_I(inode), 0); 5251 5252 while (1) { 5253 struct btrfs_truncate_control control = { 5254 .inode = BTRFS_I(inode), 5255 .ino = btrfs_ino(BTRFS_I(inode)), 5256 .new_size = 0, 5257 .min_type = 0, 5258 }; 5259 5260 trans = evict_refill_and_join(root, rsv); 5261 if (IS_ERR(trans)) 5262 goto out; 5263 5264 trans->block_rsv = rsv; 5265 5266 ret = btrfs_truncate_inode_items(trans, root, &control); 5267 trans->block_rsv = &fs_info->trans_block_rsv; 5268 btrfs_end_transaction(trans); 5269 /* 5270 * We have not added new delayed items for our inode after we 5271 * have flushed its delayed items, so no need to throttle on 5272 * delayed items. However we have modified extent buffers. 5273 */ 5274 btrfs_btree_balance_dirty_nodelay(fs_info); 5275 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5276 goto out; 5277 else if (!ret) 5278 break; 5279 } 5280 5281 /* 5282 * Errors here aren't a big deal, it just means we leave orphan items in 5283 * the tree. They will be cleaned up on the next mount. If the inode 5284 * number gets reused, cleanup deletes the orphan item without doing 5285 * anything, and unlink reuses the existing orphan item. 5286 * 5287 * If it turns out that we are dropping too many of these, we might want 5288 * to add a mechanism for retrying these after a commit. 5289 */ 5290 trans = evict_refill_and_join(root, rsv); 5291 if (!IS_ERR(trans)) { 5292 trans->block_rsv = rsv; 5293 btrfs_orphan_del(trans, BTRFS_I(inode)); 5294 trans->block_rsv = &fs_info->trans_block_rsv; 5295 btrfs_end_transaction(trans); 5296 } 5297 5298 out: 5299 btrfs_free_block_rsv(fs_info, rsv); 5300 /* 5301 * If we didn't successfully delete, the orphan item will still be in 5302 * the tree and we'll retry on the next mount. Again, we might also want 5303 * to retry these periodically in the future. 5304 */ 5305 btrfs_remove_delayed_node(BTRFS_I(inode)); 5306 fsverity_cleanup_inode(inode); 5307 clear_inode(inode); 5308 } 5309 5310 /* 5311 * Return the key found in the dir entry in the location pointer, fill @type 5312 * with BTRFS_FT_*, and return 0. 5313 * 5314 * If no dir entries were found, returns -ENOENT. 5315 * If found a corrupted location in dir entry, returns -EUCLEAN. 5316 */ 5317 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5318 struct btrfs_key *location, u8 *type) 5319 { 5320 struct btrfs_dir_item *di; 5321 struct btrfs_path *path; 5322 struct btrfs_root *root = dir->root; 5323 int ret = 0; 5324 struct fscrypt_name fname; 5325 5326 path = btrfs_alloc_path(); 5327 if (!path) 5328 return -ENOMEM; 5329 5330 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5331 if (ret < 0) 5332 goto out; 5333 /* 5334 * fscrypt_setup_filename() should never return a positive value, but 5335 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5336 */ 5337 ASSERT(ret == 0); 5338 5339 /* This needs to handle no-key deletions later on */ 5340 5341 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5342 &fname.disk_name, 0); 5343 if (IS_ERR_OR_NULL(di)) { 5344 ret = di ? PTR_ERR(di) : -ENOENT; 5345 goto out; 5346 } 5347 5348 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5349 if (location->type != BTRFS_INODE_ITEM_KEY && 5350 location->type != BTRFS_ROOT_ITEM_KEY) { 5351 ret = -EUCLEAN; 5352 btrfs_warn(root->fs_info, 5353 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5354 __func__, fname.disk_name.name, btrfs_ino(dir), 5355 location->objectid, location->type, location->offset); 5356 } 5357 if (!ret) 5358 *type = btrfs_dir_ftype(path->nodes[0], di); 5359 out: 5360 fscrypt_free_filename(&fname); 5361 btrfs_free_path(path); 5362 return ret; 5363 } 5364 5365 /* 5366 * when we hit a tree root in a directory, the btrfs part of the inode 5367 * needs to be changed to reflect the root directory of the tree root. This 5368 * is kind of like crossing a mount point. 5369 */ 5370 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5371 struct btrfs_inode *dir, 5372 struct dentry *dentry, 5373 struct btrfs_key *location, 5374 struct btrfs_root **sub_root) 5375 { 5376 struct btrfs_path *path; 5377 struct btrfs_root *new_root; 5378 struct btrfs_root_ref *ref; 5379 struct extent_buffer *leaf; 5380 struct btrfs_key key; 5381 int ret; 5382 int err = 0; 5383 struct fscrypt_name fname; 5384 5385 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5386 if (ret) 5387 return ret; 5388 5389 path = btrfs_alloc_path(); 5390 if (!path) { 5391 err = -ENOMEM; 5392 goto out; 5393 } 5394 5395 err = -ENOENT; 5396 key.objectid = dir->root->root_key.objectid; 5397 key.type = BTRFS_ROOT_REF_KEY; 5398 key.offset = location->objectid; 5399 5400 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5401 if (ret) { 5402 if (ret < 0) 5403 err = ret; 5404 goto out; 5405 } 5406 5407 leaf = path->nodes[0]; 5408 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5409 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5410 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5411 goto out; 5412 5413 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5414 (unsigned long)(ref + 1), fname.disk_name.len); 5415 if (ret) 5416 goto out; 5417 5418 btrfs_release_path(path); 5419 5420 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5421 if (IS_ERR(new_root)) { 5422 err = PTR_ERR(new_root); 5423 goto out; 5424 } 5425 5426 *sub_root = new_root; 5427 location->objectid = btrfs_root_dirid(&new_root->root_item); 5428 location->type = BTRFS_INODE_ITEM_KEY; 5429 location->offset = 0; 5430 err = 0; 5431 out: 5432 btrfs_free_path(path); 5433 fscrypt_free_filename(&fname); 5434 return err; 5435 } 5436 5437 static void inode_tree_add(struct btrfs_inode *inode) 5438 { 5439 struct btrfs_root *root = inode->root; 5440 struct btrfs_inode *entry; 5441 struct rb_node **p; 5442 struct rb_node *parent; 5443 struct rb_node *new = &inode->rb_node; 5444 u64 ino = btrfs_ino(inode); 5445 5446 if (inode_unhashed(&inode->vfs_inode)) 5447 return; 5448 parent = NULL; 5449 spin_lock(&root->inode_lock); 5450 p = &root->inode_tree.rb_node; 5451 while (*p) { 5452 parent = *p; 5453 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5454 5455 if (ino < btrfs_ino(entry)) 5456 p = &parent->rb_left; 5457 else if (ino > btrfs_ino(entry)) 5458 p = &parent->rb_right; 5459 else { 5460 WARN_ON(!(entry->vfs_inode.i_state & 5461 (I_WILL_FREE | I_FREEING))); 5462 rb_replace_node(parent, new, &root->inode_tree); 5463 RB_CLEAR_NODE(parent); 5464 spin_unlock(&root->inode_lock); 5465 return; 5466 } 5467 } 5468 rb_link_node(new, parent, p); 5469 rb_insert_color(new, &root->inode_tree); 5470 spin_unlock(&root->inode_lock); 5471 } 5472 5473 static void inode_tree_del(struct btrfs_inode *inode) 5474 { 5475 struct btrfs_root *root = inode->root; 5476 int empty = 0; 5477 5478 spin_lock(&root->inode_lock); 5479 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5480 rb_erase(&inode->rb_node, &root->inode_tree); 5481 RB_CLEAR_NODE(&inode->rb_node); 5482 empty = RB_EMPTY_ROOT(&root->inode_tree); 5483 } 5484 spin_unlock(&root->inode_lock); 5485 5486 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5487 spin_lock(&root->inode_lock); 5488 empty = RB_EMPTY_ROOT(&root->inode_tree); 5489 spin_unlock(&root->inode_lock); 5490 if (empty) 5491 btrfs_add_dead_root(root); 5492 } 5493 } 5494 5495 5496 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5497 { 5498 struct btrfs_iget_args *args = p; 5499 5500 inode->i_ino = args->ino; 5501 BTRFS_I(inode)->location.objectid = args->ino; 5502 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5503 BTRFS_I(inode)->location.offset = 0; 5504 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5505 BUG_ON(args->root && !BTRFS_I(inode)->root); 5506 5507 if (args->root && args->root == args->root->fs_info->tree_root && 5508 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5509 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5510 &BTRFS_I(inode)->runtime_flags); 5511 return 0; 5512 } 5513 5514 static int btrfs_find_actor(struct inode *inode, void *opaque) 5515 { 5516 struct btrfs_iget_args *args = opaque; 5517 5518 return args->ino == BTRFS_I(inode)->location.objectid && 5519 args->root == BTRFS_I(inode)->root; 5520 } 5521 5522 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5523 struct btrfs_root *root) 5524 { 5525 struct inode *inode; 5526 struct btrfs_iget_args args; 5527 unsigned long hashval = btrfs_inode_hash(ino, root); 5528 5529 args.ino = ino; 5530 args.root = root; 5531 5532 inode = iget5_locked(s, hashval, btrfs_find_actor, 5533 btrfs_init_locked_inode, 5534 (void *)&args); 5535 return inode; 5536 } 5537 5538 /* 5539 * Get an inode object given its inode number and corresponding root. 5540 * Path can be preallocated to prevent recursing back to iget through 5541 * allocator. NULL is also valid but may require an additional allocation 5542 * later. 5543 */ 5544 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5545 struct btrfs_root *root, struct btrfs_path *path) 5546 { 5547 struct inode *inode; 5548 5549 inode = btrfs_iget_locked(s, ino, root); 5550 if (!inode) 5551 return ERR_PTR(-ENOMEM); 5552 5553 if (inode->i_state & I_NEW) { 5554 int ret; 5555 5556 ret = btrfs_read_locked_inode(inode, path); 5557 if (!ret) { 5558 inode_tree_add(BTRFS_I(inode)); 5559 unlock_new_inode(inode); 5560 } else { 5561 iget_failed(inode); 5562 /* 5563 * ret > 0 can come from btrfs_search_slot called by 5564 * btrfs_read_locked_inode, this means the inode item 5565 * was not found. 5566 */ 5567 if (ret > 0) 5568 ret = -ENOENT; 5569 inode = ERR_PTR(ret); 5570 } 5571 } 5572 5573 return inode; 5574 } 5575 5576 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5577 { 5578 return btrfs_iget_path(s, ino, root, NULL); 5579 } 5580 5581 static struct inode *new_simple_dir(struct inode *dir, 5582 struct btrfs_key *key, 5583 struct btrfs_root *root) 5584 { 5585 struct inode *inode = new_inode(dir->i_sb); 5586 5587 if (!inode) 5588 return ERR_PTR(-ENOMEM); 5589 5590 BTRFS_I(inode)->root = btrfs_grab_root(root); 5591 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5592 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5593 5594 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5595 /* 5596 * We only need lookup, the rest is read-only and there's no inode 5597 * associated with the dentry 5598 */ 5599 inode->i_op = &simple_dir_inode_operations; 5600 inode->i_opflags &= ~IOP_XATTR; 5601 inode->i_fop = &simple_dir_operations; 5602 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5603 inode->i_mtime = inode_set_ctime_current(inode); 5604 inode->i_atime = dir->i_atime; 5605 BTRFS_I(inode)->i_otime = inode->i_mtime; 5606 inode->i_uid = dir->i_uid; 5607 inode->i_gid = dir->i_gid; 5608 5609 return inode; 5610 } 5611 5612 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5613 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5614 static_assert(BTRFS_FT_DIR == FT_DIR); 5615 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5616 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5617 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5618 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5619 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5620 5621 static inline u8 btrfs_inode_type(struct inode *inode) 5622 { 5623 return fs_umode_to_ftype(inode->i_mode); 5624 } 5625 5626 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5627 { 5628 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5629 struct inode *inode; 5630 struct btrfs_root *root = BTRFS_I(dir)->root; 5631 struct btrfs_root *sub_root = root; 5632 struct btrfs_key location; 5633 u8 di_type = 0; 5634 int ret = 0; 5635 5636 if (dentry->d_name.len > BTRFS_NAME_LEN) 5637 return ERR_PTR(-ENAMETOOLONG); 5638 5639 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5640 if (ret < 0) 5641 return ERR_PTR(ret); 5642 5643 if (location.type == BTRFS_INODE_ITEM_KEY) { 5644 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5645 if (IS_ERR(inode)) 5646 return inode; 5647 5648 /* Do extra check against inode mode with di_type */ 5649 if (btrfs_inode_type(inode) != di_type) { 5650 btrfs_crit(fs_info, 5651 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5652 inode->i_mode, btrfs_inode_type(inode), 5653 di_type); 5654 iput(inode); 5655 return ERR_PTR(-EUCLEAN); 5656 } 5657 return inode; 5658 } 5659 5660 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5661 &location, &sub_root); 5662 if (ret < 0) { 5663 if (ret != -ENOENT) 5664 inode = ERR_PTR(ret); 5665 else 5666 inode = new_simple_dir(dir, &location, root); 5667 } else { 5668 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5669 btrfs_put_root(sub_root); 5670 5671 if (IS_ERR(inode)) 5672 return inode; 5673 5674 down_read(&fs_info->cleanup_work_sem); 5675 if (!sb_rdonly(inode->i_sb)) 5676 ret = btrfs_orphan_cleanup(sub_root); 5677 up_read(&fs_info->cleanup_work_sem); 5678 if (ret) { 5679 iput(inode); 5680 inode = ERR_PTR(ret); 5681 } 5682 } 5683 5684 return inode; 5685 } 5686 5687 static int btrfs_dentry_delete(const struct dentry *dentry) 5688 { 5689 struct btrfs_root *root; 5690 struct inode *inode = d_inode(dentry); 5691 5692 if (!inode && !IS_ROOT(dentry)) 5693 inode = d_inode(dentry->d_parent); 5694 5695 if (inode) { 5696 root = BTRFS_I(inode)->root; 5697 if (btrfs_root_refs(&root->root_item) == 0) 5698 return 1; 5699 5700 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5701 return 1; 5702 } 5703 return 0; 5704 } 5705 5706 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5707 unsigned int flags) 5708 { 5709 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5710 5711 if (inode == ERR_PTR(-ENOENT)) 5712 inode = NULL; 5713 return d_splice_alias(inode, dentry); 5714 } 5715 5716 /* 5717 * Find the highest existing sequence number in a directory and then set the 5718 * in-memory index_cnt variable to the first free sequence number. 5719 */ 5720 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5721 { 5722 struct btrfs_root *root = inode->root; 5723 struct btrfs_key key, found_key; 5724 struct btrfs_path *path; 5725 struct extent_buffer *leaf; 5726 int ret; 5727 5728 key.objectid = btrfs_ino(inode); 5729 key.type = BTRFS_DIR_INDEX_KEY; 5730 key.offset = (u64)-1; 5731 5732 path = btrfs_alloc_path(); 5733 if (!path) 5734 return -ENOMEM; 5735 5736 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5737 if (ret < 0) 5738 goto out; 5739 /* FIXME: we should be able to handle this */ 5740 if (ret == 0) 5741 goto out; 5742 ret = 0; 5743 5744 if (path->slots[0] == 0) { 5745 inode->index_cnt = BTRFS_DIR_START_INDEX; 5746 goto out; 5747 } 5748 5749 path->slots[0]--; 5750 5751 leaf = path->nodes[0]; 5752 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5753 5754 if (found_key.objectid != btrfs_ino(inode) || 5755 found_key.type != BTRFS_DIR_INDEX_KEY) { 5756 inode->index_cnt = BTRFS_DIR_START_INDEX; 5757 goto out; 5758 } 5759 5760 inode->index_cnt = found_key.offset + 1; 5761 out: 5762 btrfs_free_path(path); 5763 return ret; 5764 } 5765 5766 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5767 { 5768 int ret = 0; 5769 5770 btrfs_inode_lock(dir, 0); 5771 if (dir->index_cnt == (u64)-1) { 5772 ret = btrfs_inode_delayed_dir_index_count(dir); 5773 if (ret) { 5774 ret = btrfs_set_inode_index_count(dir); 5775 if (ret) 5776 goto out; 5777 } 5778 } 5779 5780 /* index_cnt is the index number of next new entry, so decrement it. */ 5781 *index = dir->index_cnt - 1; 5782 out: 5783 btrfs_inode_unlock(dir, 0); 5784 5785 return ret; 5786 } 5787 5788 /* 5789 * All this infrastructure exists because dir_emit can fault, and we are holding 5790 * the tree lock when doing readdir. For now just allocate a buffer and copy 5791 * our information into that, and then dir_emit from the buffer. This is 5792 * similar to what NFS does, only we don't keep the buffer around in pagecache 5793 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5794 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5795 * tree lock. 5796 */ 5797 static int btrfs_opendir(struct inode *inode, struct file *file) 5798 { 5799 struct btrfs_file_private *private; 5800 u64 last_index; 5801 int ret; 5802 5803 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5804 if (ret) 5805 return ret; 5806 5807 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5808 if (!private) 5809 return -ENOMEM; 5810 private->last_index = last_index; 5811 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5812 if (!private->filldir_buf) { 5813 kfree(private); 5814 return -ENOMEM; 5815 } 5816 file->private_data = private; 5817 return 0; 5818 } 5819 5820 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5821 { 5822 struct btrfs_file_private *private = file->private_data; 5823 int ret; 5824 5825 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5826 &private->last_index); 5827 if (ret) 5828 return ret; 5829 5830 return generic_file_llseek(file, offset, whence); 5831 } 5832 5833 struct dir_entry { 5834 u64 ino; 5835 u64 offset; 5836 unsigned type; 5837 int name_len; 5838 }; 5839 5840 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5841 { 5842 while (entries--) { 5843 struct dir_entry *entry = addr; 5844 char *name = (char *)(entry + 1); 5845 5846 ctx->pos = get_unaligned(&entry->offset); 5847 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5848 get_unaligned(&entry->ino), 5849 get_unaligned(&entry->type))) 5850 return 1; 5851 addr += sizeof(struct dir_entry) + 5852 get_unaligned(&entry->name_len); 5853 ctx->pos++; 5854 } 5855 return 0; 5856 } 5857 5858 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5859 { 5860 struct inode *inode = file_inode(file); 5861 struct btrfs_root *root = BTRFS_I(inode)->root; 5862 struct btrfs_file_private *private = file->private_data; 5863 struct btrfs_dir_item *di; 5864 struct btrfs_key key; 5865 struct btrfs_key found_key; 5866 struct btrfs_path *path; 5867 void *addr; 5868 LIST_HEAD(ins_list); 5869 LIST_HEAD(del_list); 5870 int ret; 5871 char *name_ptr; 5872 int name_len; 5873 int entries = 0; 5874 int total_len = 0; 5875 bool put = false; 5876 struct btrfs_key location; 5877 5878 if (!dir_emit_dots(file, ctx)) 5879 return 0; 5880 5881 path = btrfs_alloc_path(); 5882 if (!path) 5883 return -ENOMEM; 5884 5885 addr = private->filldir_buf; 5886 path->reada = READA_FORWARD; 5887 5888 put = btrfs_readdir_get_delayed_items(inode, private->last_index, 5889 &ins_list, &del_list); 5890 5891 again: 5892 key.type = BTRFS_DIR_INDEX_KEY; 5893 key.offset = ctx->pos; 5894 key.objectid = btrfs_ino(BTRFS_I(inode)); 5895 5896 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5897 struct dir_entry *entry; 5898 struct extent_buffer *leaf = path->nodes[0]; 5899 u8 ftype; 5900 5901 if (found_key.objectid != key.objectid) 5902 break; 5903 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5904 break; 5905 if (found_key.offset < ctx->pos) 5906 continue; 5907 if (found_key.offset > private->last_index) 5908 break; 5909 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5910 continue; 5911 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5912 name_len = btrfs_dir_name_len(leaf, di); 5913 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5914 PAGE_SIZE) { 5915 btrfs_release_path(path); 5916 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5917 if (ret) 5918 goto nopos; 5919 addr = private->filldir_buf; 5920 entries = 0; 5921 total_len = 0; 5922 goto again; 5923 } 5924 5925 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5926 entry = addr; 5927 name_ptr = (char *)(entry + 1); 5928 read_extent_buffer(leaf, name_ptr, 5929 (unsigned long)(di + 1), name_len); 5930 put_unaligned(name_len, &entry->name_len); 5931 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5932 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5933 put_unaligned(location.objectid, &entry->ino); 5934 put_unaligned(found_key.offset, &entry->offset); 5935 entries++; 5936 addr += sizeof(struct dir_entry) + name_len; 5937 total_len += sizeof(struct dir_entry) + name_len; 5938 } 5939 /* Catch error encountered during iteration */ 5940 if (ret < 0) 5941 goto err; 5942 5943 btrfs_release_path(path); 5944 5945 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5946 if (ret) 5947 goto nopos; 5948 5949 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5950 if (ret) 5951 goto nopos; 5952 5953 /* 5954 * Stop new entries from being returned after we return the last 5955 * entry. 5956 * 5957 * New directory entries are assigned a strictly increasing 5958 * offset. This means that new entries created during readdir 5959 * are *guaranteed* to be seen in the future by that readdir. 5960 * This has broken buggy programs which operate on names as 5961 * they're returned by readdir. Until we re-use freed offsets 5962 * we have this hack to stop new entries from being returned 5963 * under the assumption that they'll never reach this huge 5964 * offset. 5965 * 5966 * This is being careful not to overflow 32bit loff_t unless the 5967 * last entry requires it because doing so has broken 32bit apps 5968 * in the past. 5969 */ 5970 if (ctx->pos >= INT_MAX) 5971 ctx->pos = LLONG_MAX; 5972 else 5973 ctx->pos = INT_MAX; 5974 nopos: 5975 ret = 0; 5976 err: 5977 if (put) 5978 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5979 btrfs_free_path(path); 5980 return ret; 5981 } 5982 5983 /* 5984 * This is somewhat expensive, updating the tree every time the 5985 * inode changes. But, it is most likely to find the inode in cache. 5986 * FIXME, needs more benchmarking...there are no reasons other than performance 5987 * to keep or drop this code. 5988 */ 5989 static int btrfs_dirty_inode(struct btrfs_inode *inode) 5990 { 5991 struct btrfs_root *root = inode->root; 5992 struct btrfs_fs_info *fs_info = root->fs_info; 5993 struct btrfs_trans_handle *trans; 5994 int ret; 5995 5996 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 5997 return 0; 5998 5999 trans = btrfs_join_transaction(root); 6000 if (IS_ERR(trans)) 6001 return PTR_ERR(trans); 6002 6003 ret = btrfs_update_inode(trans, root, inode); 6004 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6005 /* whoops, lets try again with the full transaction */ 6006 btrfs_end_transaction(trans); 6007 trans = btrfs_start_transaction(root, 1); 6008 if (IS_ERR(trans)) 6009 return PTR_ERR(trans); 6010 6011 ret = btrfs_update_inode(trans, root, inode); 6012 } 6013 btrfs_end_transaction(trans); 6014 if (inode->delayed_node) 6015 btrfs_balance_delayed_items(fs_info); 6016 6017 return ret; 6018 } 6019 6020 /* 6021 * This is a copy of file_update_time. We need this so we can return error on 6022 * ENOSPC for updating the inode in the case of file write and mmap writes. 6023 */ 6024 static int btrfs_update_time(struct inode *inode, int flags) 6025 { 6026 struct btrfs_root *root = BTRFS_I(inode)->root; 6027 bool dirty = flags & ~S_VERSION; 6028 6029 if (btrfs_root_readonly(root)) 6030 return -EROFS; 6031 6032 dirty = inode_update_timestamps(inode, flags); 6033 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6034 } 6035 6036 /* 6037 * helper to find a free sequence number in a given directory. This current 6038 * code is very simple, later versions will do smarter things in the btree 6039 */ 6040 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6041 { 6042 int ret = 0; 6043 6044 if (dir->index_cnt == (u64)-1) { 6045 ret = btrfs_inode_delayed_dir_index_count(dir); 6046 if (ret) { 6047 ret = btrfs_set_inode_index_count(dir); 6048 if (ret) 6049 return ret; 6050 } 6051 } 6052 6053 *index = dir->index_cnt; 6054 dir->index_cnt++; 6055 6056 return ret; 6057 } 6058 6059 static int btrfs_insert_inode_locked(struct inode *inode) 6060 { 6061 struct btrfs_iget_args args; 6062 6063 args.ino = BTRFS_I(inode)->location.objectid; 6064 args.root = BTRFS_I(inode)->root; 6065 6066 return insert_inode_locked4(inode, 6067 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6068 btrfs_find_actor, &args); 6069 } 6070 6071 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6072 unsigned int *trans_num_items) 6073 { 6074 struct inode *dir = args->dir; 6075 struct inode *inode = args->inode; 6076 int ret; 6077 6078 if (!args->orphan) { 6079 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6080 &args->fname); 6081 if (ret) 6082 return ret; 6083 } 6084 6085 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6086 if (ret) { 6087 fscrypt_free_filename(&args->fname); 6088 return ret; 6089 } 6090 6091 /* 1 to add inode item */ 6092 *trans_num_items = 1; 6093 /* 1 to add compression property */ 6094 if (BTRFS_I(dir)->prop_compress) 6095 (*trans_num_items)++; 6096 /* 1 to add default ACL xattr */ 6097 if (args->default_acl) 6098 (*trans_num_items)++; 6099 /* 1 to add access ACL xattr */ 6100 if (args->acl) 6101 (*trans_num_items)++; 6102 #ifdef CONFIG_SECURITY 6103 /* 1 to add LSM xattr */ 6104 if (dir->i_security) 6105 (*trans_num_items)++; 6106 #endif 6107 if (args->orphan) { 6108 /* 1 to add orphan item */ 6109 (*trans_num_items)++; 6110 } else { 6111 /* 6112 * 1 to add dir item 6113 * 1 to add dir index 6114 * 1 to update parent inode item 6115 * 6116 * No need for 1 unit for the inode ref item because it is 6117 * inserted in a batch together with the inode item at 6118 * btrfs_create_new_inode(). 6119 */ 6120 *trans_num_items += 3; 6121 } 6122 return 0; 6123 } 6124 6125 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6126 { 6127 posix_acl_release(args->acl); 6128 posix_acl_release(args->default_acl); 6129 fscrypt_free_filename(&args->fname); 6130 } 6131 6132 /* 6133 * Inherit flags from the parent inode. 6134 * 6135 * Currently only the compression flags and the cow flags are inherited. 6136 */ 6137 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6138 { 6139 unsigned int flags; 6140 6141 flags = dir->flags; 6142 6143 if (flags & BTRFS_INODE_NOCOMPRESS) { 6144 inode->flags &= ~BTRFS_INODE_COMPRESS; 6145 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6146 } else if (flags & BTRFS_INODE_COMPRESS) { 6147 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6148 inode->flags |= BTRFS_INODE_COMPRESS; 6149 } 6150 6151 if (flags & BTRFS_INODE_NODATACOW) { 6152 inode->flags |= BTRFS_INODE_NODATACOW; 6153 if (S_ISREG(inode->vfs_inode.i_mode)) 6154 inode->flags |= BTRFS_INODE_NODATASUM; 6155 } 6156 6157 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6158 } 6159 6160 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6161 struct btrfs_new_inode_args *args) 6162 { 6163 struct inode *dir = args->dir; 6164 struct inode *inode = args->inode; 6165 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6166 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6167 struct btrfs_root *root; 6168 struct btrfs_inode_item *inode_item; 6169 struct btrfs_key *location; 6170 struct btrfs_path *path; 6171 u64 objectid; 6172 struct btrfs_inode_ref *ref; 6173 struct btrfs_key key[2]; 6174 u32 sizes[2]; 6175 struct btrfs_item_batch batch; 6176 unsigned long ptr; 6177 int ret; 6178 6179 path = btrfs_alloc_path(); 6180 if (!path) 6181 return -ENOMEM; 6182 6183 if (!args->subvol) 6184 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6185 root = BTRFS_I(inode)->root; 6186 6187 ret = btrfs_get_free_objectid(root, &objectid); 6188 if (ret) 6189 goto out; 6190 inode->i_ino = objectid; 6191 6192 if (args->orphan) { 6193 /* 6194 * O_TMPFILE, set link count to 0, so that after this point, we 6195 * fill in an inode item with the correct link count. 6196 */ 6197 set_nlink(inode, 0); 6198 } else { 6199 trace_btrfs_inode_request(dir); 6200 6201 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6202 if (ret) 6203 goto out; 6204 } 6205 /* index_cnt is ignored for everything but a dir. */ 6206 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6207 BTRFS_I(inode)->generation = trans->transid; 6208 inode->i_generation = BTRFS_I(inode)->generation; 6209 6210 /* 6211 * Subvolumes don't inherit flags from their parent directory. 6212 * Originally this was probably by accident, but we probably can't 6213 * change it now without compatibility issues. 6214 */ 6215 if (!args->subvol) 6216 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6217 6218 if (S_ISREG(inode->i_mode)) { 6219 if (btrfs_test_opt(fs_info, NODATASUM)) 6220 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6221 if (btrfs_test_opt(fs_info, NODATACOW)) 6222 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6223 BTRFS_INODE_NODATASUM; 6224 } 6225 6226 location = &BTRFS_I(inode)->location; 6227 location->objectid = objectid; 6228 location->offset = 0; 6229 location->type = BTRFS_INODE_ITEM_KEY; 6230 6231 ret = btrfs_insert_inode_locked(inode); 6232 if (ret < 0) { 6233 if (!args->orphan) 6234 BTRFS_I(dir)->index_cnt--; 6235 goto out; 6236 } 6237 6238 /* 6239 * We could have gotten an inode number from somebody who was fsynced 6240 * and then removed in this same transaction, so let's just set full 6241 * sync since it will be a full sync anyway and this will blow away the 6242 * old info in the log. 6243 */ 6244 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6245 6246 key[0].objectid = objectid; 6247 key[0].type = BTRFS_INODE_ITEM_KEY; 6248 key[0].offset = 0; 6249 6250 sizes[0] = sizeof(struct btrfs_inode_item); 6251 6252 if (!args->orphan) { 6253 /* 6254 * Start new inodes with an inode_ref. This is slightly more 6255 * efficient for small numbers of hard links since they will 6256 * be packed into one item. Extended refs will kick in if we 6257 * add more hard links than can fit in the ref item. 6258 */ 6259 key[1].objectid = objectid; 6260 key[1].type = BTRFS_INODE_REF_KEY; 6261 if (args->subvol) { 6262 key[1].offset = objectid; 6263 sizes[1] = 2 + sizeof(*ref); 6264 } else { 6265 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6266 sizes[1] = name->len + sizeof(*ref); 6267 } 6268 } 6269 6270 batch.keys = &key[0]; 6271 batch.data_sizes = &sizes[0]; 6272 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6273 batch.nr = args->orphan ? 1 : 2; 6274 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6275 if (ret != 0) { 6276 btrfs_abort_transaction(trans, ret); 6277 goto discard; 6278 } 6279 6280 inode->i_mtime = inode_set_ctime_current(inode); 6281 inode->i_atime = inode->i_mtime; 6282 BTRFS_I(inode)->i_otime = inode->i_mtime; 6283 6284 /* 6285 * We're going to fill the inode item now, so at this point the inode 6286 * must be fully initialized. 6287 */ 6288 6289 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6290 struct btrfs_inode_item); 6291 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6292 sizeof(*inode_item)); 6293 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6294 6295 if (!args->orphan) { 6296 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6297 struct btrfs_inode_ref); 6298 ptr = (unsigned long)(ref + 1); 6299 if (args->subvol) { 6300 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6301 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6302 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6303 } else { 6304 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6305 name->len); 6306 btrfs_set_inode_ref_index(path->nodes[0], ref, 6307 BTRFS_I(inode)->dir_index); 6308 write_extent_buffer(path->nodes[0], name->name, ptr, 6309 name->len); 6310 } 6311 } 6312 6313 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6314 /* 6315 * We don't need the path anymore, plus inheriting properties, adding 6316 * ACLs, security xattrs, orphan item or adding the link, will result in 6317 * allocating yet another path. So just free our path. 6318 */ 6319 btrfs_free_path(path); 6320 path = NULL; 6321 6322 if (args->subvol) { 6323 struct inode *parent; 6324 6325 /* 6326 * Subvolumes inherit properties from their parent subvolume, 6327 * not the directory they were created in. 6328 */ 6329 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, 6330 BTRFS_I(dir)->root); 6331 if (IS_ERR(parent)) { 6332 ret = PTR_ERR(parent); 6333 } else { 6334 ret = btrfs_inode_inherit_props(trans, inode, parent); 6335 iput(parent); 6336 } 6337 } else { 6338 ret = btrfs_inode_inherit_props(trans, inode, dir); 6339 } 6340 if (ret) { 6341 btrfs_err(fs_info, 6342 "error inheriting props for ino %llu (root %llu): %d", 6343 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, 6344 ret); 6345 } 6346 6347 /* 6348 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6349 * probably a bug. 6350 */ 6351 if (!args->subvol) { 6352 ret = btrfs_init_inode_security(trans, args); 6353 if (ret) { 6354 btrfs_abort_transaction(trans, ret); 6355 goto discard; 6356 } 6357 } 6358 6359 inode_tree_add(BTRFS_I(inode)); 6360 6361 trace_btrfs_inode_new(inode); 6362 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6363 6364 btrfs_update_root_times(trans, root); 6365 6366 if (args->orphan) { 6367 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6368 } else { 6369 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6370 0, BTRFS_I(inode)->dir_index); 6371 } 6372 if (ret) { 6373 btrfs_abort_transaction(trans, ret); 6374 goto discard; 6375 } 6376 6377 return 0; 6378 6379 discard: 6380 /* 6381 * discard_new_inode() calls iput(), but the caller owns the reference 6382 * to the inode. 6383 */ 6384 ihold(inode); 6385 discard_new_inode(inode); 6386 out: 6387 btrfs_free_path(path); 6388 return ret; 6389 } 6390 6391 /* 6392 * utility function to add 'inode' into 'parent_inode' with 6393 * a give name and a given sequence number. 6394 * if 'add_backref' is true, also insert a backref from the 6395 * inode to the parent directory. 6396 */ 6397 int btrfs_add_link(struct btrfs_trans_handle *trans, 6398 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6399 const struct fscrypt_str *name, int add_backref, u64 index) 6400 { 6401 int ret = 0; 6402 struct btrfs_key key; 6403 struct btrfs_root *root = parent_inode->root; 6404 u64 ino = btrfs_ino(inode); 6405 u64 parent_ino = btrfs_ino(parent_inode); 6406 6407 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6408 memcpy(&key, &inode->root->root_key, sizeof(key)); 6409 } else { 6410 key.objectid = ino; 6411 key.type = BTRFS_INODE_ITEM_KEY; 6412 key.offset = 0; 6413 } 6414 6415 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6416 ret = btrfs_add_root_ref(trans, key.objectid, 6417 root->root_key.objectid, parent_ino, 6418 index, name); 6419 } else if (add_backref) { 6420 ret = btrfs_insert_inode_ref(trans, root, name, 6421 ino, parent_ino, index); 6422 } 6423 6424 /* Nothing to clean up yet */ 6425 if (ret) 6426 return ret; 6427 6428 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6429 btrfs_inode_type(&inode->vfs_inode), index); 6430 if (ret == -EEXIST || ret == -EOVERFLOW) 6431 goto fail_dir_item; 6432 else if (ret) { 6433 btrfs_abort_transaction(trans, ret); 6434 return ret; 6435 } 6436 6437 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6438 name->len * 2); 6439 inode_inc_iversion(&parent_inode->vfs_inode); 6440 /* 6441 * If we are replaying a log tree, we do not want to update the mtime 6442 * and ctime of the parent directory with the current time, since the 6443 * log replay procedure is responsible for setting them to their correct 6444 * values (the ones it had when the fsync was done). 6445 */ 6446 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6447 parent_inode->vfs_inode.i_mtime = 6448 inode_set_ctime_current(&parent_inode->vfs_inode); 6449 6450 ret = btrfs_update_inode(trans, root, parent_inode); 6451 if (ret) 6452 btrfs_abort_transaction(trans, ret); 6453 return ret; 6454 6455 fail_dir_item: 6456 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6457 u64 local_index; 6458 int err; 6459 err = btrfs_del_root_ref(trans, key.objectid, 6460 root->root_key.objectid, parent_ino, 6461 &local_index, name); 6462 if (err) 6463 btrfs_abort_transaction(trans, err); 6464 } else if (add_backref) { 6465 u64 local_index; 6466 int err; 6467 6468 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6469 &local_index); 6470 if (err) 6471 btrfs_abort_transaction(trans, err); 6472 } 6473 6474 /* Return the original error code */ 6475 return ret; 6476 } 6477 6478 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6479 struct inode *inode) 6480 { 6481 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6482 struct btrfs_root *root = BTRFS_I(dir)->root; 6483 struct btrfs_new_inode_args new_inode_args = { 6484 .dir = dir, 6485 .dentry = dentry, 6486 .inode = inode, 6487 }; 6488 unsigned int trans_num_items; 6489 struct btrfs_trans_handle *trans; 6490 int err; 6491 6492 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6493 if (err) 6494 goto out_inode; 6495 6496 trans = btrfs_start_transaction(root, trans_num_items); 6497 if (IS_ERR(trans)) { 6498 err = PTR_ERR(trans); 6499 goto out_new_inode_args; 6500 } 6501 6502 err = btrfs_create_new_inode(trans, &new_inode_args); 6503 if (!err) 6504 d_instantiate_new(dentry, inode); 6505 6506 btrfs_end_transaction(trans); 6507 btrfs_btree_balance_dirty(fs_info); 6508 out_new_inode_args: 6509 btrfs_new_inode_args_destroy(&new_inode_args); 6510 out_inode: 6511 if (err) 6512 iput(inode); 6513 return err; 6514 } 6515 6516 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6517 struct dentry *dentry, umode_t mode, dev_t rdev) 6518 { 6519 struct inode *inode; 6520 6521 inode = new_inode(dir->i_sb); 6522 if (!inode) 6523 return -ENOMEM; 6524 inode_init_owner(idmap, inode, dir, mode); 6525 inode->i_op = &btrfs_special_inode_operations; 6526 init_special_inode(inode, inode->i_mode, rdev); 6527 return btrfs_create_common(dir, dentry, inode); 6528 } 6529 6530 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6531 struct dentry *dentry, umode_t mode, bool excl) 6532 { 6533 struct inode *inode; 6534 6535 inode = new_inode(dir->i_sb); 6536 if (!inode) 6537 return -ENOMEM; 6538 inode_init_owner(idmap, inode, dir, mode); 6539 inode->i_fop = &btrfs_file_operations; 6540 inode->i_op = &btrfs_file_inode_operations; 6541 inode->i_mapping->a_ops = &btrfs_aops; 6542 return btrfs_create_common(dir, dentry, inode); 6543 } 6544 6545 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6546 struct dentry *dentry) 6547 { 6548 struct btrfs_trans_handle *trans = NULL; 6549 struct btrfs_root *root = BTRFS_I(dir)->root; 6550 struct inode *inode = d_inode(old_dentry); 6551 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6552 struct fscrypt_name fname; 6553 u64 index; 6554 int err; 6555 int drop_inode = 0; 6556 6557 /* do not allow sys_link's with other subvols of the same device */ 6558 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6559 return -EXDEV; 6560 6561 if (inode->i_nlink >= BTRFS_LINK_MAX) 6562 return -EMLINK; 6563 6564 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6565 if (err) 6566 goto fail; 6567 6568 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6569 if (err) 6570 goto fail; 6571 6572 /* 6573 * 2 items for inode and inode ref 6574 * 2 items for dir items 6575 * 1 item for parent inode 6576 * 1 item for orphan item deletion if O_TMPFILE 6577 */ 6578 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6579 if (IS_ERR(trans)) { 6580 err = PTR_ERR(trans); 6581 trans = NULL; 6582 goto fail; 6583 } 6584 6585 /* There are several dir indexes for this inode, clear the cache. */ 6586 BTRFS_I(inode)->dir_index = 0ULL; 6587 inc_nlink(inode); 6588 inode_inc_iversion(inode); 6589 inode_set_ctime_current(inode); 6590 ihold(inode); 6591 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6592 6593 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6594 &fname.disk_name, 1, index); 6595 6596 if (err) { 6597 drop_inode = 1; 6598 } else { 6599 struct dentry *parent = dentry->d_parent; 6600 6601 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6602 if (err) 6603 goto fail; 6604 if (inode->i_nlink == 1) { 6605 /* 6606 * If new hard link count is 1, it's a file created 6607 * with open(2) O_TMPFILE flag. 6608 */ 6609 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6610 if (err) 6611 goto fail; 6612 } 6613 d_instantiate(dentry, inode); 6614 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6615 } 6616 6617 fail: 6618 fscrypt_free_filename(&fname); 6619 if (trans) 6620 btrfs_end_transaction(trans); 6621 if (drop_inode) { 6622 inode_dec_link_count(inode); 6623 iput(inode); 6624 } 6625 btrfs_btree_balance_dirty(fs_info); 6626 return err; 6627 } 6628 6629 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6630 struct dentry *dentry, umode_t mode) 6631 { 6632 struct inode *inode; 6633 6634 inode = new_inode(dir->i_sb); 6635 if (!inode) 6636 return -ENOMEM; 6637 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6638 inode->i_op = &btrfs_dir_inode_operations; 6639 inode->i_fop = &btrfs_dir_file_operations; 6640 return btrfs_create_common(dir, dentry, inode); 6641 } 6642 6643 static noinline int uncompress_inline(struct btrfs_path *path, 6644 struct page *page, 6645 struct btrfs_file_extent_item *item) 6646 { 6647 int ret; 6648 struct extent_buffer *leaf = path->nodes[0]; 6649 char *tmp; 6650 size_t max_size; 6651 unsigned long inline_size; 6652 unsigned long ptr; 6653 int compress_type; 6654 6655 compress_type = btrfs_file_extent_compression(leaf, item); 6656 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6657 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6658 tmp = kmalloc(inline_size, GFP_NOFS); 6659 if (!tmp) 6660 return -ENOMEM; 6661 ptr = btrfs_file_extent_inline_start(item); 6662 6663 read_extent_buffer(leaf, tmp, ptr, inline_size); 6664 6665 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6666 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); 6667 6668 /* 6669 * decompression code contains a memset to fill in any space between the end 6670 * of the uncompressed data and the end of max_size in case the decompressed 6671 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6672 * the end of an inline extent and the beginning of the next block, so we 6673 * cover that region here. 6674 */ 6675 6676 if (max_size < PAGE_SIZE) 6677 memzero_page(page, max_size, PAGE_SIZE - max_size); 6678 kfree(tmp); 6679 return ret; 6680 } 6681 6682 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6683 struct page *page) 6684 { 6685 struct btrfs_file_extent_item *fi; 6686 void *kaddr; 6687 size_t copy_size; 6688 6689 if (!page || PageUptodate(page)) 6690 return 0; 6691 6692 ASSERT(page_offset(page) == 0); 6693 6694 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6695 struct btrfs_file_extent_item); 6696 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6697 return uncompress_inline(path, page, fi); 6698 6699 copy_size = min_t(u64, PAGE_SIZE, 6700 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6701 kaddr = kmap_local_page(page); 6702 read_extent_buffer(path->nodes[0], kaddr, 6703 btrfs_file_extent_inline_start(fi), copy_size); 6704 kunmap_local(kaddr); 6705 if (copy_size < PAGE_SIZE) 6706 memzero_page(page, copy_size, PAGE_SIZE - copy_size); 6707 return 0; 6708 } 6709 6710 /* 6711 * Lookup the first extent overlapping a range in a file. 6712 * 6713 * @inode: file to search in 6714 * @page: page to read extent data into if the extent is inline 6715 * @pg_offset: offset into @page to copy to 6716 * @start: file offset 6717 * @len: length of range starting at @start 6718 * 6719 * Return the first &struct extent_map which overlaps the given range, reading 6720 * it from the B-tree and caching it if necessary. Note that there may be more 6721 * extents which overlap the given range after the returned extent_map. 6722 * 6723 * If @page is not NULL and the extent is inline, this also reads the extent 6724 * data directly into the page and marks the extent up to date in the io_tree. 6725 * 6726 * Return: ERR_PTR on error, non-NULL extent_map on success. 6727 */ 6728 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6729 struct page *page, size_t pg_offset, 6730 u64 start, u64 len) 6731 { 6732 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6733 int ret = 0; 6734 u64 extent_start = 0; 6735 u64 extent_end = 0; 6736 u64 objectid = btrfs_ino(inode); 6737 int extent_type = -1; 6738 struct btrfs_path *path = NULL; 6739 struct btrfs_root *root = inode->root; 6740 struct btrfs_file_extent_item *item; 6741 struct extent_buffer *leaf; 6742 struct btrfs_key found_key; 6743 struct extent_map *em = NULL; 6744 struct extent_map_tree *em_tree = &inode->extent_tree; 6745 6746 read_lock(&em_tree->lock); 6747 em = lookup_extent_mapping(em_tree, start, len); 6748 read_unlock(&em_tree->lock); 6749 6750 if (em) { 6751 if (em->start > start || em->start + em->len <= start) 6752 free_extent_map(em); 6753 else if (em->block_start == EXTENT_MAP_INLINE && page) 6754 free_extent_map(em); 6755 else 6756 goto out; 6757 } 6758 em = alloc_extent_map(); 6759 if (!em) { 6760 ret = -ENOMEM; 6761 goto out; 6762 } 6763 em->start = EXTENT_MAP_HOLE; 6764 em->orig_start = EXTENT_MAP_HOLE; 6765 em->len = (u64)-1; 6766 em->block_len = (u64)-1; 6767 6768 path = btrfs_alloc_path(); 6769 if (!path) { 6770 ret = -ENOMEM; 6771 goto out; 6772 } 6773 6774 /* Chances are we'll be called again, so go ahead and do readahead */ 6775 path->reada = READA_FORWARD; 6776 6777 /* 6778 * The same explanation in load_free_space_cache applies here as well, 6779 * we only read when we're loading the free space cache, and at that 6780 * point the commit_root has everything we need. 6781 */ 6782 if (btrfs_is_free_space_inode(inode)) { 6783 path->search_commit_root = 1; 6784 path->skip_locking = 1; 6785 } 6786 6787 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6788 if (ret < 0) { 6789 goto out; 6790 } else if (ret > 0) { 6791 if (path->slots[0] == 0) 6792 goto not_found; 6793 path->slots[0]--; 6794 ret = 0; 6795 } 6796 6797 leaf = path->nodes[0]; 6798 item = btrfs_item_ptr(leaf, path->slots[0], 6799 struct btrfs_file_extent_item); 6800 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6801 if (found_key.objectid != objectid || 6802 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6803 /* 6804 * If we backup past the first extent we want to move forward 6805 * and see if there is an extent in front of us, otherwise we'll 6806 * say there is a hole for our whole search range which can 6807 * cause problems. 6808 */ 6809 extent_end = start; 6810 goto next; 6811 } 6812 6813 extent_type = btrfs_file_extent_type(leaf, item); 6814 extent_start = found_key.offset; 6815 extent_end = btrfs_file_extent_end(path); 6816 if (extent_type == BTRFS_FILE_EXTENT_REG || 6817 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6818 /* Only regular file could have regular/prealloc extent */ 6819 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6820 ret = -EUCLEAN; 6821 btrfs_crit(fs_info, 6822 "regular/prealloc extent found for non-regular inode %llu", 6823 btrfs_ino(inode)); 6824 goto out; 6825 } 6826 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6827 extent_start); 6828 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6829 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6830 path->slots[0], 6831 extent_start); 6832 } 6833 next: 6834 if (start >= extent_end) { 6835 path->slots[0]++; 6836 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6837 ret = btrfs_next_leaf(root, path); 6838 if (ret < 0) 6839 goto out; 6840 else if (ret > 0) 6841 goto not_found; 6842 6843 leaf = path->nodes[0]; 6844 } 6845 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6846 if (found_key.objectid != objectid || 6847 found_key.type != BTRFS_EXTENT_DATA_KEY) 6848 goto not_found; 6849 if (start + len <= found_key.offset) 6850 goto not_found; 6851 if (start > found_key.offset) 6852 goto next; 6853 6854 /* New extent overlaps with existing one */ 6855 em->start = start; 6856 em->orig_start = start; 6857 em->len = found_key.offset - start; 6858 em->block_start = EXTENT_MAP_HOLE; 6859 goto insert; 6860 } 6861 6862 btrfs_extent_item_to_extent_map(inode, path, item, em); 6863 6864 if (extent_type == BTRFS_FILE_EXTENT_REG || 6865 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6866 goto insert; 6867 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6868 /* 6869 * Inline extent can only exist at file offset 0. This is 6870 * ensured by tree-checker and inline extent creation path. 6871 * Thus all members representing file offsets should be zero. 6872 */ 6873 ASSERT(pg_offset == 0); 6874 ASSERT(extent_start == 0); 6875 ASSERT(em->start == 0); 6876 6877 /* 6878 * btrfs_extent_item_to_extent_map() should have properly 6879 * initialized em members already. 6880 * 6881 * Other members are not utilized for inline extents. 6882 */ 6883 ASSERT(em->block_start == EXTENT_MAP_INLINE); 6884 ASSERT(em->len == fs_info->sectorsize); 6885 6886 ret = read_inline_extent(inode, path, page); 6887 if (ret < 0) 6888 goto out; 6889 goto insert; 6890 } 6891 not_found: 6892 em->start = start; 6893 em->orig_start = start; 6894 em->len = len; 6895 em->block_start = EXTENT_MAP_HOLE; 6896 insert: 6897 ret = 0; 6898 btrfs_release_path(path); 6899 if (em->start > start || extent_map_end(em) <= start) { 6900 btrfs_err(fs_info, 6901 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6902 em->start, em->len, start, len); 6903 ret = -EIO; 6904 goto out; 6905 } 6906 6907 write_lock(&em_tree->lock); 6908 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6909 write_unlock(&em_tree->lock); 6910 out: 6911 btrfs_free_path(path); 6912 6913 trace_btrfs_get_extent(root, inode, em); 6914 6915 if (ret) { 6916 free_extent_map(em); 6917 return ERR_PTR(ret); 6918 } 6919 return em; 6920 } 6921 6922 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 6923 struct btrfs_dio_data *dio_data, 6924 const u64 start, 6925 const u64 len, 6926 const u64 orig_start, 6927 const u64 block_start, 6928 const u64 block_len, 6929 const u64 orig_block_len, 6930 const u64 ram_bytes, 6931 const int type) 6932 { 6933 struct extent_map *em = NULL; 6934 struct btrfs_ordered_extent *ordered; 6935 6936 if (type != BTRFS_ORDERED_NOCOW) { 6937 em = create_io_em(inode, start, len, orig_start, block_start, 6938 block_len, orig_block_len, ram_bytes, 6939 BTRFS_COMPRESS_NONE, /* compress_type */ 6940 type); 6941 if (IS_ERR(em)) 6942 goto out; 6943 } 6944 ordered = btrfs_alloc_ordered_extent(inode, start, len, len, 6945 block_start, block_len, 0, 6946 (1 << type) | 6947 (1 << BTRFS_ORDERED_DIRECT), 6948 BTRFS_COMPRESS_NONE); 6949 if (IS_ERR(ordered)) { 6950 if (em) { 6951 free_extent_map(em); 6952 btrfs_drop_extent_map_range(inode, start, 6953 start + len - 1, false); 6954 } 6955 em = ERR_CAST(ordered); 6956 } else { 6957 ASSERT(!dio_data->ordered); 6958 dio_data->ordered = ordered; 6959 } 6960 out: 6961 6962 return em; 6963 } 6964 6965 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 6966 struct btrfs_dio_data *dio_data, 6967 u64 start, u64 len) 6968 { 6969 struct btrfs_root *root = inode->root; 6970 struct btrfs_fs_info *fs_info = root->fs_info; 6971 struct extent_map *em; 6972 struct btrfs_key ins; 6973 u64 alloc_hint; 6974 int ret; 6975 6976 alloc_hint = get_extent_allocation_hint(inode, start, len); 6977 again: 6978 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6979 0, alloc_hint, &ins, 1, 1); 6980 if (ret == -EAGAIN) { 6981 ASSERT(btrfs_is_zoned(fs_info)); 6982 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH, 6983 TASK_UNINTERRUPTIBLE); 6984 goto again; 6985 } 6986 if (ret) 6987 return ERR_PTR(ret); 6988 6989 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start, 6990 ins.objectid, ins.offset, ins.offset, 6991 ins.offset, BTRFS_ORDERED_REGULAR); 6992 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 6993 if (IS_ERR(em)) 6994 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 6995 1); 6996 6997 return em; 6998 } 6999 7000 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7001 { 7002 struct btrfs_block_group *block_group; 7003 bool readonly = false; 7004 7005 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7006 if (!block_group || block_group->ro) 7007 readonly = true; 7008 if (block_group) 7009 btrfs_put_block_group(block_group); 7010 return readonly; 7011 } 7012 7013 /* 7014 * Check if we can do nocow write into the range [@offset, @offset + @len) 7015 * 7016 * @offset: File offset 7017 * @len: The length to write, will be updated to the nocow writeable 7018 * range 7019 * @orig_start: (optional) Return the original file offset of the file extent 7020 * @orig_len: (optional) Return the original on-disk length of the file extent 7021 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7022 * @strict: if true, omit optimizations that might force us into unnecessary 7023 * cow. e.g., don't trust generation number. 7024 * 7025 * Return: 7026 * >0 and update @len if we can do nocow write 7027 * 0 if we can't do nocow write 7028 * <0 if error happened 7029 * 7030 * NOTE: This only checks the file extents, caller is responsible to wait for 7031 * any ordered extents. 7032 */ 7033 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7034 u64 *orig_start, u64 *orig_block_len, 7035 u64 *ram_bytes, bool nowait, bool strict) 7036 { 7037 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7038 struct can_nocow_file_extent_args nocow_args = { 0 }; 7039 struct btrfs_path *path; 7040 int ret; 7041 struct extent_buffer *leaf; 7042 struct btrfs_root *root = BTRFS_I(inode)->root; 7043 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7044 struct btrfs_file_extent_item *fi; 7045 struct btrfs_key key; 7046 int found_type; 7047 7048 path = btrfs_alloc_path(); 7049 if (!path) 7050 return -ENOMEM; 7051 path->nowait = nowait; 7052 7053 ret = btrfs_lookup_file_extent(NULL, root, path, 7054 btrfs_ino(BTRFS_I(inode)), offset, 0); 7055 if (ret < 0) 7056 goto out; 7057 7058 if (ret == 1) { 7059 if (path->slots[0] == 0) { 7060 /* can't find the item, must cow */ 7061 ret = 0; 7062 goto out; 7063 } 7064 path->slots[0]--; 7065 } 7066 ret = 0; 7067 leaf = path->nodes[0]; 7068 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7069 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7070 key.type != BTRFS_EXTENT_DATA_KEY) { 7071 /* not our file or wrong item type, must cow */ 7072 goto out; 7073 } 7074 7075 if (key.offset > offset) { 7076 /* Wrong offset, must cow */ 7077 goto out; 7078 } 7079 7080 if (btrfs_file_extent_end(path) <= offset) 7081 goto out; 7082 7083 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7084 found_type = btrfs_file_extent_type(leaf, fi); 7085 if (ram_bytes) 7086 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7087 7088 nocow_args.start = offset; 7089 nocow_args.end = offset + *len - 1; 7090 nocow_args.strict = strict; 7091 nocow_args.free_path = true; 7092 7093 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7094 /* can_nocow_file_extent() has freed the path. */ 7095 path = NULL; 7096 7097 if (ret != 1) { 7098 /* Treat errors as not being able to NOCOW. */ 7099 ret = 0; 7100 goto out; 7101 } 7102 7103 ret = 0; 7104 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) 7105 goto out; 7106 7107 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7108 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7109 u64 range_end; 7110 7111 range_end = round_up(offset + nocow_args.num_bytes, 7112 root->fs_info->sectorsize) - 1; 7113 ret = test_range_bit(io_tree, offset, range_end, 7114 EXTENT_DELALLOC, 0, NULL); 7115 if (ret) { 7116 ret = -EAGAIN; 7117 goto out; 7118 } 7119 } 7120 7121 if (orig_start) 7122 *orig_start = key.offset - nocow_args.extent_offset; 7123 if (orig_block_len) 7124 *orig_block_len = nocow_args.disk_num_bytes; 7125 7126 *len = nocow_args.num_bytes; 7127 ret = 1; 7128 out: 7129 btrfs_free_path(path); 7130 return ret; 7131 } 7132 7133 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7134 struct extent_state **cached_state, 7135 unsigned int iomap_flags) 7136 { 7137 const bool writing = (iomap_flags & IOMAP_WRITE); 7138 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7139 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7140 struct btrfs_ordered_extent *ordered; 7141 int ret = 0; 7142 7143 while (1) { 7144 if (nowait) { 7145 if (!try_lock_extent(io_tree, lockstart, lockend, 7146 cached_state)) 7147 return -EAGAIN; 7148 } else { 7149 lock_extent(io_tree, lockstart, lockend, cached_state); 7150 } 7151 /* 7152 * We're concerned with the entire range that we're going to be 7153 * doing DIO to, so we need to make sure there's no ordered 7154 * extents in this range. 7155 */ 7156 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7157 lockend - lockstart + 1); 7158 7159 /* 7160 * We need to make sure there are no buffered pages in this 7161 * range either, we could have raced between the invalidate in 7162 * generic_file_direct_write and locking the extent. The 7163 * invalidate needs to happen so that reads after a write do not 7164 * get stale data. 7165 */ 7166 if (!ordered && 7167 (!writing || !filemap_range_has_page(inode->i_mapping, 7168 lockstart, lockend))) 7169 break; 7170 7171 unlock_extent(io_tree, lockstart, lockend, cached_state); 7172 7173 if (ordered) { 7174 if (nowait) { 7175 btrfs_put_ordered_extent(ordered); 7176 ret = -EAGAIN; 7177 break; 7178 } 7179 /* 7180 * If we are doing a DIO read and the ordered extent we 7181 * found is for a buffered write, we can not wait for it 7182 * to complete and retry, because if we do so we can 7183 * deadlock with concurrent buffered writes on page 7184 * locks. This happens only if our DIO read covers more 7185 * than one extent map, if at this point has already 7186 * created an ordered extent for a previous extent map 7187 * and locked its range in the inode's io tree, and a 7188 * concurrent write against that previous extent map's 7189 * range and this range started (we unlock the ranges 7190 * in the io tree only when the bios complete and 7191 * buffered writes always lock pages before attempting 7192 * to lock range in the io tree). 7193 */ 7194 if (writing || 7195 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7196 btrfs_start_ordered_extent(ordered); 7197 else 7198 ret = nowait ? -EAGAIN : -ENOTBLK; 7199 btrfs_put_ordered_extent(ordered); 7200 } else { 7201 /* 7202 * We could trigger writeback for this range (and wait 7203 * for it to complete) and then invalidate the pages for 7204 * this range (through invalidate_inode_pages2_range()), 7205 * but that can lead us to a deadlock with a concurrent 7206 * call to readahead (a buffered read or a defrag call 7207 * triggered a readahead) on a page lock due to an 7208 * ordered dio extent we created before but did not have 7209 * yet a corresponding bio submitted (whence it can not 7210 * complete), which makes readahead wait for that 7211 * ordered extent to complete while holding a lock on 7212 * that page. 7213 */ 7214 ret = nowait ? -EAGAIN : -ENOTBLK; 7215 } 7216 7217 if (ret) 7218 break; 7219 7220 cond_resched(); 7221 } 7222 7223 return ret; 7224 } 7225 7226 /* The callers of this must take lock_extent() */ 7227 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7228 u64 len, u64 orig_start, u64 block_start, 7229 u64 block_len, u64 orig_block_len, 7230 u64 ram_bytes, int compress_type, 7231 int type) 7232 { 7233 struct extent_map *em; 7234 int ret; 7235 7236 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7237 type == BTRFS_ORDERED_COMPRESSED || 7238 type == BTRFS_ORDERED_NOCOW || 7239 type == BTRFS_ORDERED_REGULAR); 7240 7241 em = alloc_extent_map(); 7242 if (!em) 7243 return ERR_PTR(-ENOMEM); 7244 7245 em->start = start; 7246 em->orig_start = orig_start; 7247 em->len = len; 7248 em->block_len = block_len; 7249 em->block_start = block_start; 7250 em->orig_block_len = orig_block_len; 7251 em->ram_bytes = ram_bytes; 7252 em->generation = -1; 7253 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7254 if (type == BTRFS_ORDERED_PREALLOC) { 7255 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7256 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7257 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7258 em->compress_type = compress_type; 7259 } 7260 7261 ret = btrfs_replace_extent_map_range(inode, em, true); 7262 if (ret) { 7263 free_extent_map(em); 7264 return ERR_PTR(ret); 7265 } 7266 7267 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7268 return em; 7269 } 7270 7271 7272 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7273 struct inode *inode, 7274 struct btrfs_dio_data *dio_data, 7275 u64 start, u64 *lenp, 7276 unsigned int iomap_flags) 7277 { 7278 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7280 struct extent_map *em = *map; 7281 int type; 7282 u64 block_start, orig_start, orig_block_len, ram_bytes; 7283 struct btrfs_block_group *bg; 7284 bool can_nocow = false; 7285 bool space_reserved = false; 7286 u64 len = *lenp; 7287 u64 prev_len; 7288 int ret = 0; 7289 7290 /* 7291 * We don't allocate a new extent in the following cases 7292 * 7293 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7294 * existing extent. 7295 * 2) The extent is marked as PREALLOC. We're good to go here and can 7296 * just use the extent. 7297 * 7298 */ 7299 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7300 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7301 em->block_start != EXTENT_MAP_HOLE)) { 7302 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7303 type = BTRFS_ORDERED_PREALLOC; 7304 else 7305 type = BTRFS_ORDERED_NOCOW; 7306 len = min(len, em->len - (start - em->start)); 7307 block_start = em->block_start + (start - em->start); 7308 7309 if (can_nocow_extent(inode, start, &len, &orig_start, 7310 &orig_block_len, &ram_bytes, false, false) == 1) { 7311 bg = btrfs_inc_nocow_writers(fs_info, block_start); 7312 if (bg) 7313 can_nocow = true; 7314 } 7315 } 7316 7317 prev_len = len; 7318 if (can_nocow) { 7319 struct extent_map *em2; 7320 7321 /* We can NOCOW, so only need to reserve metadata space. */ 7322 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7323 nowait); 7324 if (ret < 0) { 7325 /* Our caller expects us to free the input extent map. */ 7326 free_extent_map(em); 7327 *map = NULL; 7328 btrfs_dec_nocow_writers(bg); 7329 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 7330 ret = -EAGAIN; 7331 goto out; 7332 } 7333 space_reserved = true; 7334 7335 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len, 7336 orig_start, block_start, 7337 len, orig_block_len, 7338 ram_bytes, type); 7339 btrfs_dec_nocow_writers(bg); 7340 if (type == BTRFS_ORDERED_PREALLOC) { 7341 free_extent_map(em); 7342 *map = em2; 7343 em = em2; 7344 } 7345 7346 if (IS_ERR(em2)) { 7347 ret = PTR_ERR(em2); 7348 goto out; 7349 } 7350 7351 dio_data->nocow_done = true; 7352 } else { 7353 /* Our caller expects us to free the input extent map. */ 7354 free_extent_map(em); 7355 *map = NULL; 7356 7357 if (nowait) { 7358 ret = -EAGAIN; 7359 goto out; 7360 } 7361 7362 /* 7363 * If we could not allocate data space before locking the file 7364 * range and we can't do a NOCOW write, then we have to fail. 7365 */ 7366 if (!dio_data->data_space_reserved) { 7367 ret = -ENOSPC; 7368 goto out; 7369 } 7370 7371 /* 7372 * We have to COW and we have already reserved data space before, 7373 * so now we reserve only metadata. 7374 */ 7375 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7376 false); 7377 if (ret < 0) 7378 goto out; 7379 space_reserved = true; 7380 7381 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len); 7382 if (IS_ERR(em)) { 7383 ret = PTR_ERR(em); 7384 goto out; 7385 } 7386 *map = em; 7387 len = min(len, em->len - (start - em->start)); 7388 if (len < prev_len) 7389 btrfs_delalloc_release_metadata(BTRFS_I(inode), 7390 prev_len - len, true); 7391 } 7392 7393 /* 7394 * We have created our ordered extent, so we can now release our reservation 7395 * for an outstanding extent. 7396 */ 7397 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7398 7399 /* 7400 * Need to update the i_size under the extent lock so buffered 7401 * readers will get the updated i_size when we unlock. 7402 */ 7403 if (start + len > i_size_read(inode)) 7404 i_size_write(inode, start + len); 7405 out: 7406 if (ret && space_reserved) { 7407 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7408 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7409 } 7410 *lenp = len; 7411 return ret; 7412 } 7413 7414 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7415 loff_t length, unsigned int flags, struct iomap *iomap, 7416 struct iomap *srcmap) 7417 { 7418 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7420 struct extent_map *em; 7421 struct extent_state *cached_state = NULL; 7422 struct btrfs_dio_data *dio_data = iter->private; 7423 u64 lockstart, lockend; 7424 const bool write = !!(flags & IOMAP_WRITE); 7425 int ret = 0; 7426 u64 len = length; 7427 const u64 data_alloc_len = length; 7428 bool unlock_extents = false; 7429 7430 /* 7431 * We could potentially fault if we have a buffer > PAGE_SIZE, and if 7432 * we're NOWAIT we may submit a bio for a partial range and return 7433 * EIOCBQUEUED, which would result in an errant short read. 7434 * 7435 * The best way to handle this would be to allow for partial completions 7436 * of iocb's, so we could submit the partial bio, return and fault in 7437 * the rest of the pages, and then submit the io for the rest of the 7438 * range. However we don't have that currently, so simply return 7439 * -EAGAIN at this point so that the normal path is used. 7440 */ 7441 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) 7442 return -EAGAIN; 7443 7444 /* 7445 * Cap the size of reads to that usually seen in buffered I/O as we need 7446 * to allocate a contiguous array for the checksums. 7447 */ 7448 if (!write) 7449 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); 7450 7451 lockstart = start; 7452 lockend = start + len - 1; 7453 7454 /* 7455 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 7456 * enough if we've written compressed pages to this area, so we need to 7457 * flush the dirty pages again to make absolutely sure that any 7458 * outstanding dirty pages are on disk - the first flush only starts 7459 * compression on the data, while keeping the pages locked, so by the 7460 * time the second flush returns we know bios for the compressed pages 7461 * were submitted and finished, and the pages no longer under writeback. 7462 * 7463 * If we have a NOWAIT request and we have any pages in the range that 7464 * are locked, likely due to compression still in progress, we don't want 7465 * to block on page locks. We also don't want to block on pages marked as 7466 * dirty or under writeback (same as for the non-compression case). 7467 * iomap_dio_rw() did the same check, but after that and before we got 7468 * here, mmap'ed writes may have happened or buffered reads started 7469 * (readpage() and readahead(), which lock pages), as we haven't locked 7470 * the file range yet. 7471 */ 7472 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7473 &BTRFS_I(inode)->runtime_flags)) { 7474 if (flags & IOMAP_NOWAIT) { 7475 if (filemap_range_needs_writeback(inode->i_mapping, 7476 lockstart, lockend)) 7477 return -EAGAIN; 7478 } else { 7479 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7480 start + length - 1); 7481 if (ret) 7482 return ret; 7483 } 7484 } 7485 7486 memset(dio_data, 0, sizeof(*dio_data)); 7487 7488 /* 7489 * We always try to allocate data space and must do it before locking 7490 * the file range, to avoid deadlocks with concurrent writes to the same 7491 * range if the range has several extents and the writes don't expand the 7492 * current i_size (the inode lock is taken in shared mode). If we fail to 7493 * allocate data space here we continue and later, after locking the 7494 * file range, we fail with ENOSPC only if we figure out we can not do a 7495 * NOCOW write. 7496 */ 7497 if (write && !(flags & IOMAP_NOWAIT)) { 7498 ret = btrfs_check_data_free_space(BTRFS_I(inode), 7499 &dio_data->data_reserved, 7500 start, data_alloc_len, false); 7501 if (!ret) 7502 dio_data->data_space_reserved = true; 7503 else if (ret && !(BTRFS_I(inode)->flags & 7504 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 7505 goto err; 7506 } 7507 7508 /* 7509 * If this errors out it's because we couldn't invalidate pagecache for 7510 * this range and we need to fallback to buffered IO, or we are doing a 7511 * NOWAIT read/write and we need to block. 7512 */ 7513 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 7514 if (ret < 0) 7515 goto err; 7516 7517 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7518 if (IS_ERR(em)) { 7519 ret = PTR_ERR(em); 7520 goto unlock_err; 7521 } 7522 7523 /* 7524 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7525 * io. INLINE is special, and we could probably kludge it in here, but 7526 * it's still buffered so for safety lets just fall back to the generic 7527 * buffered path. 7528 * 7529 * For COMPRESSED we _have_ to read the entire extent in so we can 7530 * decompress it, so there will be buffering required no matter what we 7531 * do, so go ahead and fallback to buffered. 7532 * 7533 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7534 * to buffered IO. Don't blame me, this is the price we pay for using 7535 * the generic code. 7536 */ 7537 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7538 em->block_start == EXTENT_MAP_INLINE) { 7539 free_extent_map(em); 7540 /* 7541 * If we are in a NOWAIT context, return -EAGAIN in order to 7542 * fallback to buffered IO. This is not only because we can 7543 * block with buffered IO (no support for NOWAIT semantics at 7544 * the moment) but also to avoid returning short reads to user 7545 * space - this happens if we were able to read some data from 7546 * previous non-compressed extents and then when we fallback to 7547 * buffered IO, at btrfs_file_read_iter() by calling 7548 * filemap_read(), we fail to fault in pages for the read buffer, 7549 * in which case filemap_read() returns a short read (the number 7550 * of bytes previously read is > 0, so it does not return -EFAULT). 7551 */ 7552 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 7553 goto unlock_err; 7554 } 7555 7556 len = min(len, em->len - (start - em->start)); 7557 7558 /* 7559 * If we have a NOWAIT request and the range contains multiple extents 7560 * (or a mix of extents and holes), then we return -EAGAIN to make the 7561 * caller fallback to a context where it can do a blocking (without 7562 * NOWAIT) request. This way we avoid doing partial IO and returning 7563 * success to the caller, which is not optimal for writes and for reads 7564 * it can result in unexpected behaviour for an application. 7565 * 7566 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7567 * iomap_dio_rw(), we can end up returning less data then what the caller 7568 * asked for, resulting in an unexpected, and incorrect, short read. 7569 * That is, the caller asked to read N bytes and we return less than that, 7570 * which is wrong unless we are crossing EOF. This happens if we get a 7571 * page fault error when trying to fault in pages for the buffer that is 7572 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7573 * have previously submitted bios for other extents in the range, in 7574 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7575 * those bios have completed by the time we get the page fault error, 7576 * which we return back to our caller - we should only return EIOCBQUEUED 7577 * after we have submitted bios for all the extents in the range. 7578 */ 7579 if ((flags & IOMAP_NOWAIT) && len < length) { 7580 free_extent_map(em); 7581 ret = -EAGAIN; 7582 goto unlock_err; 7583 } 7584 7585 if (write) { 7586 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7587 start, &len, flags); 7588 if (ret < 0) 7589 goto unlock_err; 7590 unlock_extents = true; 7591 /* Recalc len in case the new em is smaller than requested */ 7592 len = min(len, em->len - (start - em->start)); 7593 if (dio_data->data_space_reserved) { 7594 u64 release_offset; 7595 u64 release_len = 0; 7596 7597 if (dio_data->nocow_done) { 7598 release_offset = start; 7599 release_len = data_alloc_len; 7600 } else if (len < data_alloc_len) { 7601 release_offset = start + len; 7602 release_len = data_alloc_len - len; 7603 } 7604 7605 if (release_len > 0) 7606 btrfs_free_reserved_data_space(BTRFS_I(inode), 7607 dio_data->data_reserved, 7608 release_offset, 7609 release_len); 7610 } 7611 } else { 7612 /* 7613 * We need to unlock only the end area that we aren't using. 7614 * The rest is going to be unlocked by the endio routine. 7615 */ 7616 lockstart = start + len; 7617 if (lockstart < lockend) 7618 unlock_extents = true; 7619 } 7620 7621 if (unlock_extents) 7622 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7623 &cached_state); 7624 else 7625 free_extent_state(cached_state); 7626 7627 /* 7628 * Translate extent map information to iomap. 7629 * We trim the extents (and move the addr) even though iomap code does 7630 * that, since we have locked only the parts we are performing I/O in. 7631 */ 7632 if ((em->block_start == EXTENT_MAP_HOLE) || 7633 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7634 iomap->addr = IOMAP_NULL_ADDR; 7635 iomap->type = IOMAP_HOLE; 7636 } else { 7637 iomap->addr = em->block_start + (start - em->start); 7638 iomap->type = IOMAP_MAPPED; 7639 } 7640 iomap->offset = start; 7641 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7642 iomap->length = len; 7643 free_extent_map(em); 7644 7645 return 0; 7646 7647 unlock_err: 7648 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7649 &cached_state); 7650 err: 7651 if (dio_data->data_space_reserved) { 7652 btrfs_free_reserved_data_space(BTRFS_I(inode), 7653 dio_data->data_reserved, 7654 start, data_alloc_len); 7655 extent_changeset_free(dio_data->data_reserved); 7656 } 7657 7658 return ret; 7659 } 7660 7661 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7662 ssize_t written, unsigned int flags, struct iomap *iomap) 7663 { 7664 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7665 struct btrfs_dio_data *dio_data = iter->private; 7666 size_t submitted = dio_data->submitted; 7667 const bool write = !!(flags & IOMAP_WRITE); 7668 int ret = 0; 7669 7670 if (!write && (iomap->type == IOMAP_HOLE)) { 7671 /* If reading from a hole, unlock and return */ 7672 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, 7673 NULL); 7674 return 0; 7675 } 7676 7677 if (submitted < length) { 7678 pos += submitted; 7679 length -= submitted; 7680 if (write) 7681 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7682 pos, length, false); 7683 else 7684 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7685 pos + length - 1, NULL); 7686 ret = -ENOTBLK; 7687 } 7688 if (write) { 7689 btrfs_put_ordered_extent(dio_data->ordered); 7690 dio_data->ordered = NULL; 7691 } 7692 7693 if (write) 7694 extent_changeset_free(dio_data->data_reserved); 7695 return ret; 7696 } 7697 7698 static void btrfs_dio_end_io(struct btrfs_bio *bbio) 7699 { 7700 struct btrfs_dio_private *dip = 7701 container_of(bbio, struct btrfs_dio_private, bbio); 7702 struct btrfs_inode *inode = bbio->inode; 7703 struct bio *bio = &bbio->bio; 7704 7705 if (bio->bi_status) { 7706 btrfs_warn(inode->root->fs_info, 7707 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d", 7708 btrfs_ino(inode), bio->bi_opf, 7709 dip->file_offset, dip->bytes, bio->bi_status); 7710 } 7711 7712 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 7713 btrfs_finish_ordered_extent(bbio->ordered, NULL, 7714 dip->file_offset, dip->bytes, 7715 !bio->bi_status); 7716 } else { 7717 unlock_extent(&inode->io_tree, dip->file_offset, 7718 dip->file_offset + dip->bytes - 1, NULL); 7719 } 7720 7721 bbio->bio.bi_private = bbio->private; 7722 iomap_dio_bio_end_io(bio); 7723 } 7724 7725 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio, 7726 loff_t file_offset) 7727 { 7728 struct btrfs_bio *bbio = btrfs_bio(bio); 7729 struct btrfs_dio_private *dip = 7730 container_of(bbio, struct btrfs_dio_private, bbio); 7731 struct btrfs_dio_data *dio_data = iter->private; 7732 7733 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info, 7734 btrfs_dio_end_io, bio->bi_private); 7735 bbio->inode = BTRFS_I(iter->inode); 7736 bbio->file_offset = file_offset; 7737 7738 dip->file_offset = file_offset; 7739 dip->bytes = bio->bi_iter.bi_size; 7740 7741 dio_data->submitted += bio->bi_iter.bi_size; 7742 7743 /* 7744 * Check if we are doing a partial write. If we are, we need to split 7745 * the ordered extent to match the submitted bio. Hang on to the 7746 * remaining unfinishable ordered_extent in dio_data so that it can be 7747 * cancelled in iomap_end to avoid a deadlock wherein faulting the 7748 * remaining pages is blocked on the outstanding ordered extent. 7749 */ 7750 if (iter->flags & IOMAP_WRITE) { 7751 int ret; 7752 7753 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered); 7754 if (ret) { 7755 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7756 file_offset, dip->bytes, 7757 !ret); 7758 bio->bi_status = errno_to_blk_status(ret); 7759 iomap_dio_bio_end_io(bio); 7760 return; 7761 } 7762 } 7763 7764 btrfs_submit_bio(bbio, 0); 7765 } 7766 7767 static const struct iomap_ops btrfs_dio_iomap_ops = { 7768 .iomap_begin = btrfs_dio_iomap_begin, 7769 .iomap_end = btrfs_dio_iomap_end, 7770 }; 7771 7772 static const struct iomap_dio_ops btrfs_dio_ops = { 7773 .submit_io = btrfs_dio_submit_io, 7774 .bio_set = &btrfs_dio_bioset, 7775 }; 7776 7777 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) 7778 { 7779 struct btrfs_dio_data data = { 0 }; 7780 7781 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7782 IOMAP_DIO_PARTIAL, &data, done_before); 7783 } 7784 7785 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 7786 size_t done_before) 7787 { 7788 struct btrfs_dio_data data = { 0 }; 7789 7790 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7791 IOMAP_DIO_PARTIAL, &data, done_before); 7792 } 7793 7794 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7795 u64 start, u64 len) 7796 { 7797 int ret; 7798 7799 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7800 if (ret) 7801 return ret; 7802 7803 /* 7804 * fiemap_prep() called filemap_write_and_wait() for the whole possible 7805 * file range (0 to LLONG_MAX), but that is not enough if we have 7806 * compression enabled. The first filemap_fdatawrite_range() only kicks 7807 * in the compression of data (in an async thread) and will return 7808 * before the compression is done and writeback is started. A second 7809 * filemap_fdatawrite_range() is needed to wait for the compression to 7810 * complete and writeback to start. We also need to wait for ordered 7811 * extents to complete, because our fiemap implementation uses mainly 7812 * file extent items to list the extents, searching for extent maps 7813 * only for file ranges with holes or prealloc extents to figure out 7814 * if we have delalloc in those ranges. 7815 */ 7816 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7817 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7818 if (ret) 7819 return ret; 7820 } 7821 7822 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 7823 } 7824 7825 static int btrfs_writepages(struct address_space *mapping, 7826 struct writeback_control *wbc) 7827 { 7828 return extent_writepages(mapping, wbc); 7829 } 7830 7831 static void btrfs_readahead(struct readahead_control *rac) 7832 { 7833 extent_readahead(rac); 7834 } 7835 7836 /* 7837 * For release_folio() and invalidate_folio() we have a race window where 7838 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7839 * If we continue to release/invalidate the page, we could cause use-after-free 7840 * for subpage spinlock. So this function is to spin and wait for subpage 7841 * spinlock. 7842 */ 7843 static void wait_subpage_spinlock(struct page *page) 7844 { 7845 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7846 struct btrfs_subpage *subpage; 7847 7848 if (!btrfs_is_subpage(fs_info, page)) 7849 return; 7850 7851 ASSERT(PagePrivate(page) && page->private); 7852 subpage = (struct btrfs_subpage *)page->private; 7853 7854 /* 7855 * This may look insane as we just acquire the spinlock and release it, 7856 * without doing anything. But we just want to make sure no one is 7857 * still holding the subpage spinlock. 7858 * And since the page is not dirty nor writeback, and we have page 7859 * locked, the only possible way to hold a spinlock is from the endio 7860 * function to clear page writeback. 7861 * 7862 * Here we just acquire the spinlock so that all existing callers 7863 * should exit and we're safe to release/invalidate the page. 7864 */ 7865 spin_lock_irq(&subpage->lock); 7866 spin_unlock_irq(&subpage->lock); 7867 } 7868 7869 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7870 { 7871 int ret = try_release_extent_mapping(&folio->page, gfp_flags); 7872 7873 if (ret == 1) { 7874 wait_subpage_spinlock(&folio->page); 7875 clear_page_extent_mapped(&folio->page); 7876 } 7877 return ret; 7878 } 7879 7880 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7881 { 7882 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7883 return false; 7884 return __btrfs_release_folio(folio, gfp_flags); 7885 } 7886 7887 #ifdef CONFIG_MIGRATION 7888 static int btrfs_migrate_folio(struct address_space *mapping, 7889 struct folio *dst, struct folio *src, 7890 enum migrate_mode mode) 7891 { 7892 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7893 7894 if (ret != MIGRATEPAGE_SUCCESS) 7895 return ret; 7896 7897 if (folio_test_ordered(src)) { 7898 folio_clear_ordered(src); 7899 folio_set_ordered(dst); 7900 } 7901 7902 return MIGRATEPAGE_SUCCESS; 7903 } 7904 #else 7905 #define btrfs_migrate_folio NULL 7906 #endif 7907 7908 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7909 size_t length) 7910 { 7911 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 7912 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7913 struct extent_io_tree *tree = &inode->io_tree; 7914 struct extent_state *cached_state = NULL; 7915 u64 page_start = folio_pos(folio); 7916 u64 page_end = page_start + folio_size(folio) - 1; 7917 u64 cur; 7918 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7919 7920 /* 7921 * We have folio locked so no new ordered extent can be created on this 7922 * page, nor bio can be submitted for this folio. 7923 * 7924 * But already submitted bio can still be finished on this folio. 7925 * Furthermore, endio function won't skip folio which has Ordered 7926 * (Private2) already cleared, so it's possible for endio and 7927 * invalidate_folio to do the same ordered extent accounting twice 7928 * on one folio. 7929 * 7930 * So here we wait for any submitted bios to finish, so that we won't 7931 * do double ordered extent accounting on the same folio. 7932 */ 7933 folio_wait_writeback(folio); 7934 wait_subpage_spinlock(&folio->page); 7935 7936 /* 7937 * For subpage case, we have call sites like 7938 * btrfs_punch_hole_lock_range() which passes range not aligned to 7939 * sectorsize. 7940 * If the range doesn't cover the full folio, we don't need to and 7941 * shouldn't clear page extent mapped, as folio->private can still 7942 * record subpage dirty bits for other part of the range. 7943 * 7944 * For cases that invalidate the full folio even the range doesn't 7945 * cover the full folio, like invalidating the last folio, we're 7946 * still safe to wait for ordered extent to finish. 7947 */ 7948 if (!(offset == 0 && length == folio_size(folio))) { 7949 btrfs_release_folio(folio, GFP_NOFS); 7950 return; 7951 } 7952 7953 if (!inode_evicting) 7954 lock_extent(tree, page_start, page_end, &cached_state); 7955 7956 cur = page_start; 7957 while (cur < page_end) { 7958 struct btrfs_ordered_extent *ordered; 7959 u64 range_end; 7960 u32 range_len; 7961 u32 extra_flags = 0; 7962 7963 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7964 page_end + 1 - cur); 7965 if (!ordered) { 7966 range_end = page_end; 7967 /* 7968 * No ordered extent covering this range, we are safe 7969 * to delete all extent states in the range. 7970 */ 7971 extra_flags = EXTENT_CLEAR_ALL_BITS; 7972 goto next; 7973 } 7974 if (ordered->file_offset > cur) { 7975 /* 7976 * There is a range between [cur, oe->file_offset) not 7977 * covered by any ordered extent. 7978 * We are safe to delete all extent states, and handle 7979 * the ordered extent in the next iteration. 7980 */ 7981 range_end = ordered->file_offset - 1; 7982 extra_flags = EXTENT_CLEAR_ALL_BITS; 7983 goto next; 7984 } 7985 7986 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7987 page_end); 7988 ASSERT(range_end + 1 - cur < U32_MAX); 7989 range_len = range_end + 1 - cur; 7990 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { 7991 /* 7992 * If Ordered (Private2) is cleared, it means endio has 7993 * already been executed for the range. 7994 * We can't delete the extent states as 7995 * btrfs_finish_ordered_io() may still use some of them. 7996 */ 7997 goto next; 7998 } 7999 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); 8000 8001 /* 8002 * IO on this page will never be started, so we need to account 8003 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8004 * here, must leave that up for the ordered extent completion. 8005 * 8006 * This will also unlock the range for incoming 8007 * btrfs_finish_ordered_io(). 8008 */ 8009 if (!inode_evicting) 8010 clear_extent_bit(tree, cur, range_end, 8011 EXTENT_DELALLOC | 8012 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8013 EXTENT_DEFRAG, &cached_state); 8014 8015 spin_lock_irq(&inode->ordered_tree.lock); 8016 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8017 ordered->truncated_len = min(ordered->truncated_len, 8018 cur - ordered->file_offset); 8019 spin_unlock_irq(&inode->ordered_tree.lock); 8020 8021 /* 8022 * If the ordered extent has finished, we're safe to delete all 8023 * the extent states of the range, otherwise 8024 * btrfs_finish_ordered_io() will get executed by endio for 8025 * other pages, so we can't delete extent states. 8026 */ 8027 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8028 cur, range_end + 1 - cur)) { 8029 btrfs_finish_ordered_io(ordered); 8030 /* 8031 * The ordered extent has finished, now we're again 8032 * safe to delete all extent states of the range. 8033 */ 8034 extra_flags = EXTENT_CLEAR_ALL_BITS; 8035 } 8036 next: 8037 if (ordered) 8038 btrfs_put_ordered_extent(ordered); 8039 /* 8040 * Qgroup reserved space handler 8041 * Sector(s) here will be either: 8042 * 8043 * 1) Already written to disk or bio already finished 8044 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8045 * Qgroup will be handled by its qgroup_record then. 8046 * btrfs_qgroup_free_data() call will do nothing here. 8047 * 8048 * 2) Not written to disk yet 8049 * Then btrfs_qgroup_free_data() call will clear the 8050 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8051 * reserved data space. 8052 * Since the IO will never happen for this page. 8053 */ 8054 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); 8055 if (!inode_evicting) { 8056 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8057 EXTENT_DELALLOC | EXTENT_UPTODATE | 8058 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 8059 extra_flags, &cached_state); 8060 } 8061 cur = range_end + 1; 8062 } 8063 /* 8064 * We have iterated through all ordered extents of the page, the page 8065 * should not have Ordered (Private2) anymore, or the above iteration 8066 * did something wrong. 8067 */ 8068 ASSERT(!folio_test_ordered(folio)); 8069 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); 8070 if (!inode_evicting) 8071 __btrfs_release_folio(folio, GFP_NOFS); 8072 clear_page_extent_mapped(&folio->page); 8073 } 8074 8075 /* 8076 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8077 * called from a page fault handler when a page is first dirtied. Hence we must 8078 * be careful to check for EOF conditions here. We set the page up correctly 8079 * for a written page which means we get ENOSPC checking when writing into 8080 * holes and correct delalloc and unwritten extent mapping on filesystems that 8081 * support these features. 8082 * 8083 * We are not allowed to take the i_mutex here so we have to play games to 8084 * protect against truncate races as the page could now be beyond EOF. Because 8085 * truncate_setsize() writes the inode size before removing pages, once we have 8086 * the page lock we can determine safely if the page is beyond EOF. If it is not 8087 * beyond EOF, then the page is guaranteed safe against truncation until we 8088 * unlock the page. 8089 */ 8090 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8091 { 8092 struct page *page = vmf->page; 8093 struct inode *inode = file_inode(vmf->vma->vm_file); 8094 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8095 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8096 struct btrfs_ordered_extent *ordered; 8097 struct extent_state *cached_state = NULL; 8098 struct extent_changeset *data_reserved = NULL; 8099 unsigned long zero_start; 8100 loff_t size; 8101 vm_fault_t ret; 8102 int ret2; 8103 int reserved = 0; 8104 u64 reserved_space; 8105 u64 page_start; 8106 u64 page_end; 8107 u64 end; 8108 8109 reserved_space = PAGE_SIZE; 8110 8111 sb_start_pagefault(inode->i_sb); 8112 page_start = page_offset(page); 8113 page_end = page_start + PAGE_SIZE - 1; 8114 end = page_end; 8115 8116 /* 8117 * Reserving delalloc space after obtaining the page lock can lead to 8118 * deadlock. For example, if a dirty page is locked by this function 8119 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8120 * dirty page write out, then the btrfs_writepages() function could 8121 * end up waiting indefinitely to get a lock on the page currently 8122 * being processed by btrfs_page_mkwrite() function. 8123 */ 8124 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8125 page_start, reserved_space); 8126 if (!ret2) { 8127 ret2 = file_update_time(vmf->vma->vm_file); 8128 reserved = 1; 8129 } 8130 if (ret2) { 8131 ret = vmf_error(ret2); 8132 if (reserved) 8133 goto out; 8134 goto out_noreserve; 8135 } 8136 8137 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8138 again: 8139 down_read(&BTRFS_I(inode)->i_mmap_lock); 8140 lock_page(page); 8141 size = i_size_read(inode); 8142 8143 if ((page->mapping != inode->i_mapping) || 8144 (page_start >= size)) { 8145 /* page got truncated out from underneath us */ 8146 goto out_unlock; 8147 } 8148 wait_on_page_writeback(page); 8149 8150 lock_extent(io_tree, page_start, page_end, &cached_state); 8151 ret2 = set_page_extent_mapped(page); 8152 if (ret2 < 0) { 8153 ret = vmf_error(ret2); 8154 unlock_extent(io_tree, page_start, page_end, &cached_state); 8155 goto out_unlock; 8156 } 8157 8158 /* 8159 * we can't set the delalloc bits if there are pending ordered 8160 * extents. Drop our locks and wait for them to finish 8161 */ 8162 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8163 PAGE_SIZE); 8164 if (ordered) { 8165 unlock_extent(io_tree, page_start, page_end, &cached_state); 8166 unlock_page(page); 8167 up_read(&BTRFS_I(inode)->i_mmap_lock); 8168 btrfs_start_ordered_extent(ordered); 8169 btrfs_put_ordered_extent(ordered); 8170 goto again; 8171 } 8172 8173 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8174 reserved_space = round_up(size - page_start, 8175 fs_info->sectorsize); 8176 if (reserved_space < PAGE_SIZE) { 8177 end = page_start + reserved_space - 1; 8178 btrfs_delalloc_release_space(BTRFS_I(inode), 8179 data_reserved, page_start, 8180 PAGE_SIZE - reserved_space, true); 8181 } 8182 } 8183 8184 /* 8185 * page_mkwrite gets called when the page is firstly dirtied after it's 8186 * faulted in, but write(2) could also dirty a page and set delalloc 8187 * bits, thus in this case for space account reason, we still need to 8188 * clear any delalloc bits within this page range since we have to 8189 * reserve data&meta space before lock_page() (see above comments). 8190 */ 8191 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8192 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8193 EXTENT_DEFRAG, &cached_state); 8194 8195 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8196 &cached_state); 8197 if (ret2) { 8198 unlock_extent(io_tree, page_start, page_end, &cached_state); 8199 ret = VM_FAULT_SIGBUS; 8200 goto out_unlock; 8201 } 8202 8203 /* page is wholly or partially inside EOF */ 8204 if (page_start + PAGE_SIZE > size) 8205 zero_start = offset_in_page(size); 8206 else 8207 zero_start = PAGE_SIZE; 8208 8209 if (zero_start != PAGE_SIZE) 8210 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8211 8212 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 8213 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8214 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8215 8216 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8217 8218 unlock_extent(io_tree, page_start, page_end, &cached_state); 8219 up_read(&BTRFS_I(inode)->i_mmap_lock); 8220 8221 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8222 sb_end_pagefault(inode->i_sb); 8223 extent_changeset_free(data_reserved); 8224 return VM_FAULT_LOCKED; 8225 8226 out_unlock: 8227 unlock_page(page); 8228 up_read(&BTRFS_I(inode)->i_mmap_lock); 8229 out: 8230 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8231 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8232 reserved_space, (ret != 0)); 8233 out_noreserve: 8234 sb_end_pagefault(inode->i_sb); 8235 extent_changeset_free(data_reserved); 8236 return ret; 8237 } 8238 8239 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 8240 { 8241 struct btrfs_truncate_control control = { 8242 .inode = inode, 8243 .ino = btrfs_ino(inode), 8244 .min_type = BTRFS_EXTENT_DATA_KEY, 8245 .clear_extent_range = true, 8246 }; 8247 struct btrfs_root *root = inode->root; 8248 struct btrfs_fs_info *fs_info = root->fs_info; 8249 struct btrfs_block_rsv *rsv; 8250 int ret; 8251 struct btrfs_trans_handle *trans; 8252 u64 mask = fs_info->sectorsize - 1; 8253 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8254 8255 if (!skip_writeback) { 8256 ret = btrfs_wait_ordered_range(&inode->vfs_inode, 8257 inode->vfs_inode.i_size & (~mask), 8258 (u64)-1); 8259 if (ret) 8260 return ret; 8261 } 8262 8263 /* 8264 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8265 * things going on here: 8266 * 8267 * 1) We need to reserve space to update our inode. 8268 * 8269 * 2) We need to have something to cache all the space that is going to 8270 * be free'd up by the truncate operation, but also have some slack 8271 * space reserved in case it uses space during the truncate (thank you 8272 * very much snapshotting). 8273 * 8274 * And we need these to be separate. The fact is we can use a lot of 8275 * space doing the truncate, and we have no earthly idea how much space 8276 * we will use, so we need the truncate reservation to be separate so it 8277 * doesn't end up using space reserved for updating the inode. We also 8278 * need to be able to stop the transaction and start a new one, which 8279 * means we need to be able to update the inode several times, and we 8280 * have no idea of knowing how many times that will be, so we can't just 8281 * reserve 1 item for the entirety of the operation, so that has to be 8282 * done separately as well. 8283 * 8284 * So that leaves us with 8285 * 8286 * 1) rsv - for the truncate reservation, which we will steal from the 8287 * transaction reservation. 8288 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8289 * updating the inode. 8290 */ 8291 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8292 if (!rsv) 8293 return -ENOMEM; 8294 rsv->size = min_size; 8295 rsv->failfast = true; 8296 8297 /* 8298 * 1 for the truncate slack space 8299 * 1 for updating the inode. 8300 */ 8301 trans = btrfs_start_transaction(root, 2); 8302 if (IS_ERR(trans)) { 8303 ret = PTR_ERR(trans); 8304 goto out; 8305 } 8306 8307 /* Migrate the slack space for the truncate to our reserve */ 8308 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8309 min_size, false); 8310 /* 8311 * We have reserved 2 metadata units when we started the transaction and 8312 * min_size matches 1 unit, so this should never fail, but if it does, 8313 * it's not critical we just fail truncation. 8314 */ 8315 if (WARN_ON(ret)) { 8316 btrfs_end_transaction(trans); 8317 goto out; 8318 } 8319 8320 trans->block_rsv = rsv; 8321 8322 while (1) { 8323 struct extent_state *cached_state = NULL; 8324 const u64 new_size = inode->vfs_inode.i_size; 8325 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8326 8327 control.new_size = new_size; 8328 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8329 /* 8330 * We want to drop from the next block forward in case this new 8331 * size is not block aligned since we will be keeping the last 8332 * block of the extent just the way it is. 8333 */ 8334 btrfs_drop_extent_map_range(inode, 8335 ALIGN(new_size, fs_info->sectorsize), 8336 (u64)-1, false); 8337 8338 ret = btrfs_truncate_inode_items(trans, root, &control); 8339 8340 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 8341 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 8342 8343 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8344 8345 trans->block_rsv = &fs_info->trans_block_rsv; 8346 if (ret != -ENOSPC && ret != -EAGAIN) 8347 break; 8348 8349 ret = btrfs_update_inode(trans, root, inode); 8350 if (ret) 8351 break; 8352 8353 btrfs_end_transaction(trans); 8354 btrfs_btree_balance_dirty(fs_info); 8355 8356 trans = btrfs_start_transaction(root, 2); 8357 if (IS_ERR(trans)) { 8358 ret = PTR_ERR(trans); 8359 trans = NULL; 8360 break; 8361 } 8362 8363 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8364 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8365 rsv, min_size, false); 8366 /* 8367 * We have reserved 2 metadata units when we started the 8368 * transaction and min_size matches 1 unit, so this should never 8369 * fail, but if it does, it's not critical we just fail truncation. 8370 */ 8371 if (WARN_ON(ret)) 8372 break; 8373 8374 trans->block_rsv = rsv; 8375 } 8376 8377 /* 8378 * We can't call btrfs_truncate_block inside a trans handle as we could 8379 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8380 * know we've truncated everything except the last little bit, and can 8381 * do btrfs_truncate_block and then update the disk_i_size. 8382 */ 8383 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8384 btrfs_end_transaction(trans); 8385 btrfs_btree_balance_dirty(fs_info); 8386 8387 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 8388 if (ret) 8389 goto out; 8390 trans = btrfs_start_transaction(root, 1); 8391 if (IS_ERR(trans)) { 8392 ret = PTR_ERR(trans); 8393 goto out; 8394 } 8395 btrfs_inode_safe_disk_i_size_write(inode, 0); 8396 } 8397 8398 if (trans) { 8399 int ret2; 8400 8401 trans->block_rsv = &fs_info->trans_block_rsv; 8402 ret2 = btrfs_update_inode(trans, root, inode); 8403 if (ret2 && !ret) 8404 ret = ret2; 8405 8406 ret2 = btrfs_end_transaction(trans); 8407 if (ret2 && !ret) 8408 ret = ret2; 8409 btrfs_btree_balance_dirty(fs_info); 8410 } 8411 out: 8412 btrfs_free_block_rsv(fs_info, rsv); 8413 /* 8414 * So if we truncate and then write and fsync we normally would just 8415 * write the extents that changed, which is a problem if we need to 8416 * first truncate that entire inode. So set this flag so we write out 8417 * all of the extents in the inode to the sync log so we're completely 8418 * safe. 8419 * 8420 * If no extents were dropped or trimmed we don't need to force the next 8421 * fsync to truncate all the inode's items from the log and re-log them 8422 * all. This means the truncate operation did not change the file size, 8423 * or changed it to a smaller size but there was only an implicit hole 8424 * between the old i_size and the new i_size, and there were no prealloc 8425 * extents beyond i_size to drop. 8426 */ 8427 if (control.extents_found > 0) 8428 btrfs_set_inode_full_sync(inode); 8429 8430 return ret; 8431 } 8432 8433 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 8434 struct inode *dir) 8435 { 8436 struct inode *inode; 8437 8438 inode = new_inode(dir->i_sb); 8439 if (inode) { 8440 /* 8441 * Subvolumes don't inherit the sgid bit or the parent's gid if 8442 * the parent's sgid bit is set. This is probably a bug. 8443 */ 8444 inode_init_owner(idmap, inode, NULL, 8445 S_IFDIR | (~current_umask() & S_IRWXUGO)); 8446 inode->i_op = &btrfs_dir_inode_operations; 8447 inode->i_fop = &btrfs_dir_file_operations; 8448 } 8449 return inode; 8450 } 8451 8452 struct inode *btrfs_alloc_inode(struct super_block *sb) 8453 { 8454 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8455 struct btrfs_inode *ei; 8456 struct inode *inode; 8457 8458 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8459 if (!ei) 8460 return NULL; 8461 8462 ei->root = NULL; 8463 ei->generation = 0; 8464 ei->last_trans = 0; 8465 ei->last_sub_trans = 0; 8466 ei->logged_trans = 0; 8467 ei->delalloc_bytes = 0; 8468 ei->new_delalloc_bytes = 0; 8469 ei->defrag_bytes = 0; 8470 ei->disk_i_size = 0; 8471 ei->flags = 0; 8472 ei->ro_flags = 0; 8473 ei->csum_bytes = 0; 8474 ei->index_cnt = (u64)-1; 8475 ei->dir_index = 0; 8476 ei->last_unlink_trans = 0; 8477 ei->last_reflink_trans = 0; 8478 ei->last_log_commit = 0; 8479 8480 spin_lock_init(&ei->lock); 8481 ei->outstanding_extents = 0; 8482 if (sb->s_magic != BTRFS_TEST_MAGIC) 8483 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8484 BTRFS_BLOCK_RSV_DELALLOC); 8485 ei->runtime_flags = 0; 8486 ei->prop_compress = BTRFS_COMPRESS_NONE; 8487 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8488 8489 ei->delayed_node = NULL; 8490 8491 ei->i_otime.tv_sec = 0; 8492 ei->i_otime.tv_nsec = 0; 8493 8494 inode = &ei->vfs_inode; 8495 extent_map_tree_init(&ei->extent_tree); 8496 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 8497 ei->io_tree.inode = ei; 8498 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8499 IO_TREE_INODE_FILE_EXTENT); 8500 mutex_init(&ei->log_mutex); 8501 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8502 INIT_LIST_HEAD(&ei->delalloc_inodes); 8503 INIT_LIST_HEAD(&ei->delayed_iput); 8504 RB_CLEAR_NODE(&ei->rb_node); 8505 init_rwsem(&ei->i_mmap_lock); 8506 8507 return inode; 8508 } 8509 8510 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8511 void btrfs_test_destroy_inode(struct inode *inode) 8512 { 8513 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8514 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8515 } 8516 #endif 8517 8518 void btrfs_free_inode(struct inode *inode) 8519 { 8520 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8521 } 8522 8523 void btrfs_destroy_inode(struct inode *vfs_inode) 8524 { 8525 struct btrfs_ordered_extent *ordered; 8526 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8527 struct btrfs_root *root = inode->root; 8528 bool freespace_inode; 8529 8530 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8531 WARN_ON(vfs_inode->i_data.nrpages); 8532 WARN_ON(inode->block_rsv.reserved); 8533 WARN_ON(inode->block_rsv.size); 8534 WARN_ON(inode->outstanding_extents); 8535 if (!S_ISDIR(vfs_inode->i_mode)) { 8536 WARN_ON(inode->delalloc_bytes); 8537 WARN_ON(inode->new_delalloc_bytes); 8538 } 8539 WARN_ON(inode->csum_bytes); 8540 WARN_ON(inode->defrag_bytes); 8541 8542 /* 8543 * This can happen where we create an inode, but somebody else also 8544 * created the same inode and we need to destroy the one we already 8545 * created. 8546 */ 8547 if (!root) 8548 return; 8549 8550 /* 8551 * If this is a free space inode do not take the ordered extents lockdep 8552 * map. 8553 */ 8554 freespace_inode = btrfs_is_free_space_inode(inode); 8555 8556 while (1) { 8557 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8558 if (!ordered) 8559 break; 8560 else { 8561 btrfs_err(root->fs_info, 8562 "found ordered extent %llu %llu on inode cleanup", 8563 ordered->file_offset, ordered->num_bytes); 8564 8565 if (!freespace_inode) 8566 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8567 8568 btrfs_remove_ordered_extent(inode, ordered); 8569 btrfs_put_ordered_extent(ordered); 8570 btrfs_put_ordered_extent(ordered); 8571 } 8572 } 8573 btrfs_qgroup_check_reserved_leak(inode); 8574 inode_tree_del(inode); 8575 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8576 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8577 btrfs_put_root(inode->root); 8578 } 8579 8580 int btrfs_drop_inode(struct inode *inode) 8581 { 8582 struct btrfs_root *root = BTRFS_I(inode)->root; 8583 8584 if (root == NULL) 8585 return 1; 8586 8587 /* the snap/subvol tree is on deleting */ 8588 if (btrfs_root_refs(&root->root_item) == 0) 8589 return 1; 8590 else 8591 return generic_drop_inode(inode); 8592 } 8593 8594 static void init_once(void *foo) 8595 { 8596 struct btrfs_inode *ei = foo; 8597 8598 inode_init_once(&ei->vfs_inode); 8599 } 8600 8601 void __cold btrfs_destroy_cachep(void) 8602 { 8603 /* 8604 * Make sure all delayed rcu free inodes are flushed before we 8605 * destroy cache. 8606 */ 8607 rcu_barrier(); 8608 bioset_exit(&btrfs_dio_bioset); 8609 kmem_cache_destroy(btrfs_inode_cachep); 8610 } 8611 8612 int __init btrfs_init_cachep(void) 8613 { 8614 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8615 sizeof(struct btrfs_inode), 0, 8616 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8617 init_once); 8618 if (!btrfs_inode_cachep) 8619 goto fail; 8620 8621 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 8622 offsetof(struct btrfs_dio_private, bbio.bio), 8623 BIOSET_NEED_BVECS)) 8624 goto fail; 8625 8626 return 0; 8627 fail: 8628 btrfs_destroy_cachep(); 8629 return -ENOMEM; 8630 } 8631 8632 static int btrfs_getattr(struct mnt_idmap *idmap, 8633 const struct path *path, struct kstat *stat, 8634 u32 request_mask, unsigned int flags) 8635 { 8636 u64 delalloc_bytes; 8637 u64 inode_bytes; 8638 struct inode *inode = d_inode(path->dentry); 8639 u32 blocksize = inode->i_sb->s_blocksize; 8640 u32 bi_flags = BTRFS_I(inode)->flags; 8641 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8642 8643 stat->result_mask |= STATX_BTIME; 8644 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8645 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8646 if (bi_flags & BTRFS_INODE_APPEND) 8647 stat->attributes |= STATX_ATTR_APPEND; 8648 if (bi_flags & BTRFS_INODE_COMPRESS) 8649 stat->attributes |= STATX_ATTR_COMPRESSED; 8650 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8651 stat->attributes |= STATX_ATTR_IMMUTABLE; 8652 if (bi_flags & BTRFS_INODE_NODUMP) 8653 stat->attributes |= STATX_ATTR_NODUMP; 8654 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8655 stat->attributes |= STATX_ATTR_VERITY; 8656 8657 stat->attributes_mask |= (STATX_ATTR_APPEND | 8658 STATX_ATTR_COMPRESSED | 8659 STATX_ATTR_IMMUTABLE | 8660 STATX_ATTR_NODUMP); 8661 8662 generic_fillattr(idmap, request_mask, inode, stat); 8663 stat->dev = BTRFS_I(inode)->root->anon_dev; 8664 8665 spin_lock(&BTRFS_I(inode)->lock); 8666 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8667 inode_bytes = inode_get_bytes(inode); 8668 spin_unlock(&BTRFS_I(inode)->lock); 8669 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8670 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8671 return 0; 8672 } 8673 8674 static int btrfs_rename_exchange(struct inode *old_dir, 8675 struct dentry *old_dentry, 8676 struct inode *new_dir, 8677 struct dentry *new_dentry) 8678 { 8679 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8680 struct btrfs_trans_handle *trans; 8681 unsigned int trans_num_items; 8682 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8683 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8684 struct inode *new_inode = new_dentry->d_inode; 8685 struct inode *old_inode = old_dentry->d_inode; 8686 struct btrfs_rename_ctx old_rename_ctx; 8687 struct btrfs_rename_ctx new_rename_ctx; 8688 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8689 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8690 u64 old_idx = 0; 8691 u64 new_idx = 0; 8692 int ret; 8693 int ret2; 8694 bool need_abort = false; 8695 struct fscrypt_name old_fname, new_fname; 8696 struct fscrypt_str *old_name, *new_name; 8697 8698 /* 8699 * For non-subvolumes allow exchange only within one subvolume, in the 8700 * same inode namespace. Two subvolumes (represented as directory) can 8701 * be exchanged as they're a logical link and have a fixed inode number. 8702 */ 8703 if (root != dest && 8704 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8705 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8706 return -EXDEV; 8707 8708 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8709 if (ret) 8710 return ret; 8711 8712 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8713 if (ret) { 8714 fscrypt_free_filename(&old_fname); 8715 return ret; 8716 } 8717 8718 old_name = &old_fname.disk_name; 8719 new_name = &new_fname.disk_name; 8720 8721 /* close the race window with snapshot create/destroy ioctl */ 8722 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8723 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8724 down_read(&fs_info->subvol_sem); 8725 8726 /* 8727 * For each inode: 8728 * 1 to remove old dir item 8729 * 1 to remove old dir index 8730 * 1 to add new dir item 8731 * 1 to add new dir index 8732 * 1 to update parent inode 8733 * 8734 * If the parents are the same, we only need to account for one 8735 */ 8736 trans_num_items = (old_dir == new_dir ? 9 : 10); 8737 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8738 /* 8739 * 1 to remove old root ref 8740 * 1 to remove old root backref 8741 * 1 to add new root ref 8742 * 1 to add new root backref 8743 */ 8744 trans_num_items += 4; 8745 } else { 8746 /* 8747 * 1 to update inode item 8748 * 1 to remove old inode ref 8749 * 1 to add new inode ref 8750 */ 8751 trans_num_items += 3; 8752 } 8753 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8754 trans_num_items += 4; 8755 else 8756 trans_num_items += 3; 8757 trans = btrfs_start_transaction(root, trans_num_items); 8758 if (IS_ERR(trans)) { 8759 ret = PTR_ERR(trans); 8760 goto out_notrans; 8761 } 8762 8763 if (dest != root) { 8764 ret = btrfs_record_root_in_trans(trans, dest); 8765 if (ret) 8766 goto out_fail; 8767 } 8768 8769 /* 8770 * We need to find a free sequence number both in the source and 8771 * in the destination directory for the exchange. 8772 */ 8773 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8774 if (ret) 8775 goto out_fail; 8776 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8777 if (ret) 8778 goto out_fail; 8779 8780 BTRFS_I(old_inode)->dir_index = 0ULL; 8781 BTRFS_I(new_inode)->dir_index = 0ULL; 8782 8783 /* Reference for the source. */ 8784 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8785 /* force full log commit if subvolume involved. */ 8786 btrfs_set_log_full_commit(trans); 8787 } else { 8788 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8789 btrfs_ino(BTRFS_I(new_dir)), 8790 old_idx); 8791 if (ret) 8792 goto out_fail; 8793 need_abort = true; 8794 } 8795 8796 /* And now for the dest. */ 8797 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8798 /* force full log commit if subvolume involved. */ 8799 btrfs_set_log_full_commit(trans); 8800 } else { 8801 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8802 btrfs_ino(BTRFS_I(old_dir)), 8803 new_idx); 8804 if (ret) { 8805 if (need_abort) 8806 btrfs_abort_transaction(trans, ret); 8807 goto out_fail; 8808 } 8809 } 8810 8811 /* Update inode version and ctime/mtime. */ 8812 inode_inc_iversion(old_dir); 8813 inode_inc_iversion(new_dir); 8814 inode_inc_iversion(old_inode); 8815 inode_inc_iversion(new_inode); 8816 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8817 8818 if (old_dentry->d_parent != new_dentry->d_parent) { 8819 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8820 BTRFS_I(old_inode), true); 8821 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8822 BTRFS_I(new_inode), true); 8823 } 8824 8825 /* src is a subvolume */ 8826 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8827 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8828 } else { /* src is an inode */ 8829 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8830 BTRFS_I(old_dentry->d_inode), 8831 old_name, &old_rename_ctx); 8832 if (!ret) 8833 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 8834 } 8835 if (ret) { 8836 btrfs_abort_transaction(trans, ret); 8837 goto out_fail; 8838 } 8839 8840 /* dest is a subvolume */ 8841 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8842 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8843 } else { /* dest is an inode */ 8844 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8845 BTRFS_I(new_dentry->d_inode), 8846 new_name, &new_rename_ctx); 8847 if (!ret) 8848 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 8849 } 8850 if (ret) { 8851 btrfs_abort_transaction(trans, ret); 8852 goto out_fail; 8853 } 8854 8855 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8856 new_name, 0, old_idx); 8857 if (ret) { 8858 btrfs_abort_transaction(trans, ret); 8859 goto out_fail; 8860 } 8861 8862 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8863 old_name, 0, new_idx); 8864 if (ret) { 8865 btrfs_abort_transaction(trans, ret); 8866 goto out_fail; 8867 } 8868 8869 if (old_inode->i_nlink == 1) 8870 BTRFS_I(old_inode)->dir_index = old_idx; 8871 if (new_inode->i_nlink == 1) 8872 BTRFS_I(new_inode)->dir_index = new_idx; 8873 8874 /* 8875 * Now pin the logs of the roots. We do it to ensure that no other task 8876 * can sync the logs while we are in progress with the rename, because 8877 * that could result in an inconsistency in case any of the inodes that 8878 * are part of this rename operation were logged before. 8879 */ 8880 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8881 btrfs_pin_log_trans(root); 8882 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8883 btrfs_pin_log_trans(dest); 8884 8885 /* Do the log updates for all inodes. */ 8886 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8887 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8888 old_rename_ctx.index, new_dentry->d_parent); 8889 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8890 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8891 new_rename_ctx.index, old_dentry->d_parent); 8892 8893 /* Now unpin the logs. */ 8894 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8895 btrfs_end_log_trans(root); 8896 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8897 btrfs_end_log_trans(dest); 8898 out_fail: 8899 ret2 = btrfs_end_transaction(trans); 8900 ret = ret ? ret : ret2; 8901 out_notrans: 8902 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8903 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8904 up_read(&fs_info->subvol_sem); 8905 8906 fscrypt_free_filename(&new_fname); 8907 fscrypt_free_filename(&old_fname); 8908 return ret; 8909 } 8910 8911 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8912 struct inode *dir) 8913 { 8914 struct inode *inode; 8915 8916 inode = new_inode(dir->i_sb); 8917 if (inode) { 8918 inode_init_owner(idmap, inode, dir, 8919 S_IFCHR | WHITEOUT_MODE); 8920 inode->i_op = &btrfs_special_inode_operations; 8921 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8922 } 8923 return inode; 8924 } 8925 8926 static int btrfs_rename(struct mnt_idmap *idmap, 8927 struct inode *old_dir, struct dentry *old_dentry, 8928 struct inode *new_dir, struct dentry *new_dentry, 8929 unsigned int flags) 8930 { 8931 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8932 struct btrfs_new_inode_args whiteout_args = { 8933 .dir = old_dir, 8934 .dentry = old_dentry, 8935 }; 8936 struct btrfs_trans_handle *trans; 8937 unsigned int trans_num_items; 8938 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8939 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8940 struct inode *new_inode = d_inode(new_dentry); 8941 struct inode *old_inode = d_inode(old_dentry); 8942 struct btrfs_rename_ctx rename_ctx; 8943 u64 index = 0; 8944 int ret; 8945 int ret2; 8946 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8947 struct fscrypt_name old_fname, new_fname; 8948 8949 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8950 return -EPERM; 8951 8952 /* we only allow rename subvolume link between subvolumes */ 8953 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8954 return -EXDEV; 8955 8956 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8957 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8958 return -ENOTEMPTY; 8959 8960 if (S_ISDIR(old_inode->i_mode) && new_inode && 8961 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8962 return -ENOTEMPTY; 8963 8964 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8965 if (ret) 8966 return ret; 8967 8968 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8969 if (ret) { 8970 fscrypt_free_filename(&old_fname); 8971 return ret; 8972 } 8973 8974 /* check for collisions, even if the name isn't there */ 8975 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8976 if (ret) { 8977 if (ret == -EEXIST) { 8978 /* we shouldn't get 8979 * eexist without a new_inode */ 8980 if (WARN_ON(!new_inode)) { 8981 goto out_fscrypt_names; 8982 } 8983 } else { 8984 /* maybe -EOVERFLOW */ 8985 goto out_fscrypt_names; 8986 } 8987 } 8988 ret = 0; 8989 8990 /* 8991 * we're using rename to replace one file with another. Start IO on it 8992 * now so we don't add too much work to the end of the transaction 8993 */ 8994 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8995 filemap_flush(old_inode->i_mapping); 8996 8997 if (flags & RENAME_WHITEOUT) { 8998 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8999 if (!whiteout_args.inode) { 9000 ret = -ENOMEM; 9001 goto out_fscrypt_names; 9002 } 9003 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 9004 if (ret) 9005 goto out_whiteout_inode; 9006 } else { 9007 /* 1 to update the old parent inode. */ 9008 trans_num_items = 1; 9009 } 9010 9011 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9012 /* Close the race window with snapshot create/destroy ioctl */ 9013 down_read(&fs_info->subvol_sem); 9014 /* 9015 * 1 to remove old root ref 9016 * 1 to remove old root backref 9017 * 1 to add new root ref 9018 * 1 to add new root backref 9019 */ 9020 trans_num_items += 4; 9021 } else { 9022 /* 9023 * 1 to update inode 9024 * 1 to remove old inode ref 9025 * 1 to add new inode ref 9026 */ 9027 trans_num_items += 3; 9028 } 9029 /* 9030 * 1 to remove old dir item 9031 * 1 to remove old dir index 9032 * 1 to add new dir item 9033 * 1 to add new dir index 9034 */ 9035 trans_num_items += 4; 9036 /* 1 to update new parent inode if it's not the same as the old parent */ 9037 if (new_dir != old_dir) 9038 trans_num_items++; 9039 if (new_inode) { 9040 /* 9041 * 1 to update inode 9042 * 1 to remove inode ref 9043 * 1 to remove dir item 9044 * 1 to remove dir index 9045 * 1 to possibly add orphan item 9046 */ 9047 trans_num_items += 5; 9048 } 9049 trans = btrfs_start_transaction(root, trans_num_items); 9050 if (IS_ERR(trans)) { 9051 ret = PTR_ERR(trans); 9052 goto out_notrans; 9053 } 9054 9055 if (dest != root) { 9056 ret = btrfs_record_root_in_trans(trans, dest); 9057 if (ret) 9058 goto out_fail; 9059 } 9060 9061 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9062 if (ret) 9063 goto out_fail; 9064 9065 BTRFS_I(old_inode)->dir_index = 0ULL; 9066 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9067 /* force full log commit if subvolume involved. */ 9068 btrfs_set_log_full_commit(trans); 9069 } else { 9070 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 9071 old_ino, btrfs_ino(BTRFS_I(new_dir)), 9072 index); 9073 if (ret) 9074 goto out_fail; 9075 } 9076 9077 inode_inc_iversion(old_dir); 9078 inode_inc_iversion(new_dir); 9079 inode_inc_iversion(old_inode); 9080 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 9081 9082 if (old_dentry->d_parent != new_dentry->d_parent) 9083 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9084 BTRFS_I(old_inode), true); 9085 9086 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9087 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 9088 } else { 9089 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9090 BTRFS_I(d_inode(old_dentry)), 9091 &old_fname.disk_name, &rename_ctx); 9092 if (!ret) 9093 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9094 } 9095 if (ret) { 9096 btrfs_abort_transaction(trans, ret); 9097 goto out_fail; 9098 } 9099 9100 if (new_inode) { 9101 inode_inc_iversion(new_inode); 9102 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9103 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9104 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 9105 BUG_ON(new_inode->i_nlink == 0); 9106 } else { 9107 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9108 BTRFS_I(d_inode(new_dentry)), 9109 &new_fname.disk_name); 9110 } 9111 if (!ret && new_inode->i_nlink == 0) 9112 ret = btrfs_orphan_add(trans, 9113 BTRFS_I(d_inode(new_dentry))); 9114 if (ret) { 9115 btrfs_abort_transaction(trans, ret); 9116 goto out_fail; 9117 } 9118 } 9119 9120 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9121 &new_fname.disk_name, 0, index); 9122 if (ret) { 9123 btrfs_abort_transaction(trans, ret); 9124 goto out_fail; 9125 } 9126 9127 if (old_inode->i_nlink == 1) 9128 BTRFS_I(old_inode)->dir_index = index; 9129 9130 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9131 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9132 rename_ctx.index, new_dentry->d_parent); 9133 9134 if (flags & RENAME_WHITEOUT) { 9135 ret = btrfs_create_new_inode(trans, &whiteout_args); 9136 if (ret) { 9137 btrfs_abort_transaction(trans, ret); 9138 goto out_fail; 9139 } else { 9140 unlock_new_inode(whiteout_args.inode); 9141 iput(whiteout_args.inode); 9142 whiteout_args.inode = NULL; 9143 } 9144 } 9145 out_fail: 9146 ret2 = btrfs_end_transaction(trans); 9147 ret = ret ? ret : ret2; 9148 out_notrans: 9149 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9150 up_read(&fs_info->subvol_sem); 9151 if (flags & RENAME_WHITEOUT) 9152 btrfs_new_inode_args_destroy(&whiteout_args); 9153 out_whiteout_inode: 9154 if (flags & RENAME_WHITEOUT) 9155 iput(whiteout_args.inode); 9156 out_fscrypt_names: 9157 fscrypt_free_filename(&old_fname); 9158 fscrypt_free_filename(&new_fname); 9159 return ret; 9160 } 9161 9162 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 9163 struct dentry *old_dentry, struct inode *new_dir, 9164 struct dentry *new_dentry, unsigned int flags) 9165 { 9166 int ret; 9167 9168 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9169 return -EINVAL; 9170 9171 if (flags & RENAME_EXCHANGE) 9172 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9173 new_dentry); 9174 else 9175 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 9176 new_dentry, flags); 9177 9178 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 9179 9180 return ret; 9181 } 9182 9183 struct btrfs_delalloc_work { 9184 struct inode *inode; 9185 struct completion completion; 9186 struct list_head list; 9187 struct btrfs_work work; 9188 }; 9189 9190 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9191 { 9192 struct btrfs_delalloc_work *delalloc_work; 9193 struct inode *inode; 9194 9195 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9196 work); 9197 inode = delalloc_work->inode; 9198 filemap_flush(inode->i_mapping); 9199 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9200 &BTRFS_I(inode)->runtime_flags)) 9201 filemap_flush(inode->i_mapping); 9202 9203 iput(inode); 9204 complete(&delalloc_work->completion); 9205 } 9206 9207 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9208 { 9209 struct btrfs_delalloc_work *work; 9210 9211 work = kmalloc(sizeof(*work), GFP_NOFS); 9212 if (!work) 9213 return NULL; 9214 9215 init_completion(&work->completion); 9216 INIT_LIST_HEAD(&work->list); 9217 work->inode = inode; 9218 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9219 9220 return work; 9221 } 9222 9223 /* 9224 * some fairly slow code that needs optimization. This walks the list 9225 * of all the inodes with pending delalloc and forces them to disk. 9226 */ 9227 static int start_delalloc_inodes(struct btrfs_root *root, 9228 struct writeback_control *wbc, bool snapshot, 9229 bool in_reclaim_context) 9230 { 9231 struct btrfs_inode *binode; 9232 struct inode *inode; 9233 struct btrfs_delalloc_work *work, *next; 9234 LIST_HEAD(works); 9235 LIST_HEAD(splice); 9236 int ret = 0; 9237 bool full_flush = wbc->nr_to_write == LONG_MAX; 9238 9239 mutex_lock(&root->delalloc_mutex); 9240 spin_lock(&root->delalloc_lock); 9241 list_splice_init(&root->delalloc_inodes, &splice); 9242 while (!list_empty(&splice)) { 9243 binode = list_entry(splice.next, struct btrfs_inode, 9244 delalloc_inodes); 9245 9246 list_move_tail(&binode->delalloc_inodes, 9247 &root->delalloc_inodes); 9248 9249 if (in_reclaim_context && 9250 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9251 continue; 9252 9253 inode = igrab(&binode->vfs_inode); 9254 if (!inode) { 9255 cond_resched_lock(&root->delalloc_lock); 9256 continue; 9257 } 9258 spin_unlock(&root->delalloc_lock); 9259 9260 if (snapshot) 9261 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9262 &binode->runtime_flags); 9263 if (full_flush) { 9264 work = btrfs_alloc_delalloc_work(inode); 9265 if (!work) { 9266 iput(inode); 9267 ret = -ENOMEM; 9268 goto out; 9269 } 9270 list_add_tail(&work->list, &works); 9271 btrfs_queue_work(root->fs_info->flush_workers, 9272 &work->work); 9273 } else { 9274 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9275 btrfs_add_delayed_iput(BTRFS_I(inode)); 9276 if (ret || wbc->nr_to_write <= 0) 9277 goto out; 9278 } 9279 cond_resched(); 9280 spin_lock(&root->delalloc_lock); 9281 } 9282 spin_unlock(&root->delalloc_lock); 9283 9284 out: 9285 list_for_each_entry_safe(work, next, &works, list) { 9286 list_del_init(&work->list); 9287 wait_for_completion(&work->completion); 9288 kfree(work); 9289 } 9290 9291 if (!list_empty(&splice)) { 9292 spin_lock(&root->delalloc_lock); 9293 list_splice_tail(&splice, &root->delalloc_inodes); 9294 spin_unlock(&root->delalloc_lock); 9295 } 9296 mutex_unlock(&root->delalloc_mutex); 9297 return ret; 9298 } 9299 9300 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9301 { 9302 struct writeback_control wbc = { 9303 .nr_to_write = LONG_MAX, 9304 .sync_mode = WB_SYNC_NONE, 9305 .range_start = 0, 9306 .range_end = LLONG_MAX, 9307 }; 9308 struct btrfs_fs_info *fs_info = root->fs_info; 9309 9310 if (BTRFS_FS_ERROR(fs_info)) 9311 return -EROFS; 9312 9313 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9314 } 9315 9316 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9317 bool in_reclaim_context) 9318 { 9319 struct writeback_control wbc = { 9320 .nr_to_write = nr, 9321 .sync_mode = WB_SYNC_NONE, 9322 .range_start = 0, 9323 .range_end = LLONG_MAX, 9324 }; 9325 struct btrfs_root *root; 9326 LIST_HEAD(splice); 9327 int ret; 9328 9329 if (BTRFS_FS_ERROR(fs_info)) 9330 return -EROFS; 9331 9332 mutex_lock(&fs_info->delalloc_root_mutex); 9333 spin_lock(&fs_info->delalloc_root_lock); 9334 list_splice_init(&fs_info->delalloc_roots, &splice); 9335 while (!list_empty(&splice)) { 9336 /* 9337 * Reset nr_to_write here so we know that we're doing a full 9338 * flush. 9339 */ 9340 if (nr == LONG_MAX) 9341 wbc.nr_to_write = LONG_MAX; 9342 9343 root = list_first_entry(&splice, struct btrfs_root, 9344 delalloc_root); 9345 root = btrfs_grab_root(root); 9346 BUG_ON(!root); 9347 list_move_tail(&root->delalloc_root, 9348 &fs_info->delalloc_roots); 9349 spin_unlock(&fs_info->delalloc_root_lock); 9350 9351 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9352 btrfs_put_root(root); 9353 if (ret < 0 || wbc.nr_to_write <= 0) 9354 goto out; 9355 spin_lock(&fs_info->delalloc_root_lock); 9356 } 9357 spin_unlock(&fs_info->delalloc_root_lock); 9358 9359 ret = 0; 9360 out: 9361 if (!list_empty(&splice)) { 9362 spin_lock(&fs_info->delalloc_root_lock); 9363 list_splice_tail(&splice, &fs_info->delalloc_roots); 9364 spin_unlock(&fs_info->delalloc_root_lock); 9365 } 9366 mutex_unlock(&fs_info->delalloc_root_mutex); 9367 return ret; 9368 } 9369 9370 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 9371 struct dentry *dentry, const char *symname) 9372 { 9373 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9374 struct btrfs_trans_handle *trans; 9375 struct btrfs_root *root = BTRFS_I(dir)->root; 9376 struct btrfs_path *path; 9377 struct btrfs_key key; 9378 struct inode *inode; 9379 struct btrfs_new_inode_args new_inode_args = { 9380 .dir = dir, 9381 .dentry = dentry, 9382 }; 9383 unsigned int trans_num_items; 9384 int err; 9385 int name_len; 9386 int datasize; 9387 unsigned long ptr; 9388 struct btrfs_file_extent_item *ei; 9389 struct extent_buffer *leaf; 9390 9391 name_len = strlen(symname); 9392 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9393 return -ENAMETOOLONG; 9394 9395 inode = new_inode(dir->i_sb); 9396 if (!inode) 9397 return -ENOMEM; 9398 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 9399 inode->i_op = &btrfs_symlink_inode_operations; 9400 inode_nohighmem(inode); 9401 inode->i_mapping->a_ops = &btrfs_aops; 9402 btrfs_i_size_write(BTRFS_I(inode), name_len); 9403 inode_set_bytes(inode, name_len); 9404 9405 new_inode_args.inode = inode; 9406 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9407 if (err) 9408 goto out_inode; 9409 /* 1 additional item for the inline extent */ 9410 trans_num_items++; 9411 9412 trans = btrfs_start_transaction(root, trans_num_items); 9413 if (IS_ERR(trans)) { 9414 err = PTR_ERR(trans); 9415 goto out_new_inode_args; 9416 } 9417 9418 err = btrfs_create_new_inode(trans, &new_inode_args); 9419 if (err) 9420 goto out; 9421 9422 path = btrfs_alloc_path(); 9423 if (!path) { 9424 err = -ENOMEM; 9425 btrfs_abort_transaction(trans, err); 9426 discard_new_inode(inode); 9427 inode = NULL; 9428 goto out; 9429 } 9430 key.objectid = btrfs_ino(BTRFS_I(inode)); 9431 key.offset = 0; 9432 key.type = BTRFS_EXTENT_DATA_KEY; 9433 datasize = btrfs_file_extent_calc_inline_size(name_len); 9434 err = btrfs_insert_empty_item(trans, root, path, &key, 9435 datasize); 9436 if (err) { 9437 btrfs_abort_transaction(trans, err); 9438 btrfs_free_path(path); 9439 discard_new_inode(inode); 9440 inode = NULL; 9441 goto out; 9442 } 9443 leaf = path->nodes[0]; 9444 ei = btrfs_item_ptr(leaf, path->slots[0], 9445 struct btrfs_file_extent_item); 9446 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9447 btrfs_set_file_extent_type(leaf, ei, 9448 BTRFS_FILE_EXTENT_INLINE); 9449 btrfs_set_file_extent_encryption(leaf, ei, 0); 9450 btrfs_set_file_extent_compression(leaf, ei, 0); 9451 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9452 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9453 9454 ptr = btrfs_file_extent_inline_start(ei); 9455 write_extent_buffer(leaf, symname, ptr, name_len); 9456 btrfs_mark_buffer_dirty(trans, leaf); 9457 btrfs_free_path(path); 9458 9459 d_instantiate_new(dentry, inode); 9460 err = 0; 9461 out: 9462 btrfs_end_transaction(trans); 9463 btrfs_btree_balance_dirty(fs_info); 9464 out_new_inode_args: 9465 btrfs_new_inode_args_destroy(&new_inode_args); 9466 out_inode: 9467 if (err) 9468 iput(inode); 9469 return err; 9470 } 9471 9472 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9473 struct btrfs_trans_handle *trans_in, 9474 struct btrfs_inode *inode, 9475 struct btrfs_key *ins, 9476 u64 file_offset) 9477 { 9478 struct btrfs_file_extent_item stack_fi; 9479 struct btrfs_replace_extent_info extent_info; 9480 struct btrfs_trans_handle *trans = trans_in; 9481 struct btrfs_path *path; 9482 u64 start = ins->objectid; 9483 u64 len = ins->offset; 9484 int qgroup_released; 9485 int ret; 9486 9487 memset(&stack_fi, 0, sizeof(stack_fi)); 9488 9489 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9490 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9491 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9492 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9493 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9494 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9495 /* Encryption and other encoding is reserved and all 0 */ 9496 9497 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9498 if (qgroup_released < 0) 9499 return ERR_PTR(qgroup_released); 9500 9501 if (trans) { 9502 ret = insert_reserved_file_extent(trans, inode, 9503 file_offset, &stack_fi, 9504 true, qgroup_released); 9505 if (ret) 9506 goto free_qgroup; 9507 return trans; 9508 } 9509 9510 extent_info.disk_offset = start; 9511 extent_info.disk_len = len; 9512 extent_info.data_offset = 0; 9513 extent_info.data_len = len; 9514 extent_info.file_offset = file_offset; 9515 extent_info.extent_buf = (char *)&stack_fi; 9516 extent_info.is_new_extent = true; 9517 extent_info.update_times = true; 9518 extent_info.qgroup_reserved = qgroup_released; 9519 extent_info.insertions = 0; 9520 9521 path = btrfs_alloc_path(); 9522 if (!path) { 9523 ret = -ENOMEM; 9524 goto free_qgroup; 9525 } 9526 9527 ret = btrfs_replace_file_extents(inode, path, file_offset, 9528 file_offset + len - 1, &extent_info, 9529 &trans); 9530 btrfs_free_path(path); 9531 if (ret) 9532 goto free_qgroup; 9533 return trans; 9534 9535 free_qgroup: 9536 /* 9537 * We have released qgroup data range at the beginning of the function, 9538 * and normally qgroup_released bytes will be freed when committing 9539 * transaction. 9540 * But if we error out early, we have to free what we have released 9541 * or we leak qgroup data reservation. 9542 */ 9543 btrfs_qgroup_free_refroot(inode->root->fs_info, 9544 inode->root->root_key.objectid, qgroup_released, 9545 BTRFS_QGROUP_RSV_DATA); 9546 return ERR_PTR(ret); 9547 } 9548 9549 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9550 u64 start, u64 num_bytes, u64 min_size, 9551 loff_t actual_len, u64 *alloc_hint, 9552 struct btrfs_trans_handle *trans) 9553 { 9554 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9555 struct extent_map *em; 9556 struct btrfs_root *root = BTRFS_I(inode)->root; 9557 struct btrfs_key ins; 9558 u64 cur_offset = start; 9559 u64 clear_offset = start; 9560 u64 i_size; 9561 u64 cur_bytes; 9562 u64 last_alloc = (u64)-1; 9563 int ret = 0; 9564 bool own_trans = true; 9565 u64 end = start + num_bytes - 1; 9566 9567 if (trans) 9568 own_trans = false; 9569 while (num_bytes > 0) { 9570 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9571 cur_bytes = max(cur_bytes, min_size); 9572 /* 9573 * If we are severely fragmented we could end up with really 9574 * small allocations, so if the allocator is returning small 9575 * chunks lets make its job easier by only searching for those 9576 * sized chunks. 9577 */ 9578 cur_bytes = min(cur_bytes, last_alloc); 9579 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9580 min_size, 0, *alloc_hint, &ins, 1, 0); 9581 if (ret) 9582 break; 9583 9584 /* 9585 * We've reserved this space, and thus converted it from 9586 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9587 * from here on out we will only need to clear our reservation 9588 * for the remaining unreserved area, so advance our 9589 * clear_offset by our extent size. 9590 */ 9591 clear_offset += ins.offset; 9592 9593 last_alloc = ins.offset; 9594 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9595 &ins, cur_offset); 9596 /* 9597 * Now that we inserted the prealloc extent we can finally 9598 * decrement the number of reservations in the block group. 9599 * If we did it before, we could race with relocation and have 9600 * relocation miss the reserved extent, making it fail later. 9601 */ 9602 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9603 if (IS_ERR(trans)) { 9604 ret = PTR_ERR(trans); 9605 btrfs_free_reserved_extent(fs_info, ins.objectid, 9606 ins.offset, 0); 9607 break; 9608 } 9609 9610 em = alloc_extent_map(); 9611 if (!em) { 9612 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9613 cur_offset + ins.offset - 1, false); 9614 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9615 goto next; 9616 } 9617 9618 em->start = cur_offset; 9619 em->orig_start = cur_offset; 9620 em->len = ins.offset; 9621 em->block_start = ins.objectid; 9622 em->block_len = ins.offset; 9623 em->orig_block_len = ins.offset; 9624 em->ram_bytes = ins.offset; 9625 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9626 em->generation = trans->transid; 9627 9628 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9629 free_extent_map(em); 9630 next: 9631 num_bytes -= ins.offset; 9632 cur_offset += ins.offset; 9633 *alloc_hint = ins.objectid + ins.offset; 9634 9635 inode_inc_iversion(inode); 9636 inode_set_ctime_current(inode); 9637 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9638 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9639 (actual_len > inode->i_size) && 9640 (cur_offset > inode->i_size)) { 9641 if (cur_offset > actual_len) 9642 i_size = actual_len; 9643 else 9644 i_size = cur_offset; 9645 i_size_write(inode, i_size); 9646 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9647 } 9648 9649 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9650 9651 if (ret) { 9652 btrfs_abort_transaction(trans, ret); 9653 if (own_trans) 9654 btrfs_end_transaction(trans); 9655 break; 9656 } 9657 9658 if (own_trans) { 9659 btrfs_end_transaction(trans); 9660 trans = NULL; 9661 } 9662 } 9663 if (clear_offset < end) 9664 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9665 end - clear_offset + 1); 9666 return ret; 9667 } 9668 9669 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9670 u64 start, u64 num_bytes, u64 min_size, 9671 loff_t actual_len, u64 *alloc_hint) 9672 { 9673 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9674 min_size, actual_len, alloc_hint, 9675 NULL); 9676 } 9677 9678 int btrfs_prealloc_file_range_trans(struct inode *inode, 9679 struct btrfs_trans_handle *trans, int mode, 9680 u64 start, u64 num_bytes, u64 min_size, 9681 loff_t actual_len, u64 *alloc_hint) 9682 { 9683 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9684 min_size, actual_len, alloc_hint, trans); 9685 } 9686 9687 static int btrfs_permission(struct mnt_idmap *idmap, 9688 struct inode *inode, int mask) 9689 { 9690 struct btrfs_root *root = BTRFS_I(inode)->root; 9691 umode_t mode = inode->i_mode; 9692 9693 if (mask & MAY_WRITE && 9694 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9695 if (btrfs_root_readonly(root)) 9696 return -EROFS; 9697 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9698 return -EACCES; 9699 } 9700 return generic_permission(idmap, inode, mask); 9701 } 9702 9703 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9704 struct file *file, umode_t mode) 9705 { 9706 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9707 struct btrfs_trans_handle *trans; 9708 struct btrfs_root *root = BTRFS_I(dir)->root; 9709 struct inode *inode; 9710 struct btrfs_new_inode_args new_inode_args = { 9711 .dir = dir, 9712 .dentry = file->f_path.dentry, 9713 .orphan = true, 9714 }; 9715 unsigned int trans_num_items; 9716 int ret; 9717 9718 inode = new_inode(dir->i_sb); 9719 if (!inode) 9720 return -ENOMEM; 9721 inode_init_owner(idmap, inode, dir, mode); 9722 inode->i_fop = &btrfs_file_operations; 9723 inode->i_op = &btrfs_file_inode_operations; 9724 inode->i_mapping->a_ops = &btrfs_aops; 9725 9726 new_inode_args.inode = inode; 9727 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9728 if (ret) 9729 goto out_inode; 9730 9731 trans = btrfs_start_transaction(root, trans_num_items); 9732 if (IS_ERR(trans)) { 9733 ret = PTR_ERR(trans); 9734 goto out_new_inode_args; 9735 } 9736 9737 ret = btrfs_create_new_inode(trans, &new_inode_args); 9738 9739 /* 9740 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9741 * set it to 1 because d_tmpfile() will issue a warning if the count is 9742 * 0, through: 9743 * 9744 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9745 */ 9746 set_nlink(inode, 1); 9747 9748 if (!ret) { 9749 d_tmpfile(file, inode); 9750 unlock_new_inode(inode); 9751 mark_inode_dirty(inode); 9752 } 9753 9754 btrfs_end_transaction(trans); 9755 btrfs_btree_balance_dirty(fs_info); 9756 out_new_inode_args: 9757 btrfs_new_inode_args_destroy(&new_inode_args); 9758 out_inode: 9759 if (ret) 9760 iput(inode); 9761 return finish_open_simple(file, ret); 9762 } 9763 9764 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 9765 { 9766 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9767 unsigned long index = start >> PAGE_SHIFT; 9768 unsigned long end_index = end >> PAGE_SHIFT; 9769 struct page *page; 9770 u32 len; 9771 9772 ASSERT(end + 1 - start <= U32_MAX); 9773 len = end + 1 - start; 9774 while (index <= end_index) { 9775 page = find_get_page(inode->vfs_inode.i_mapping, index); 9776 ASSERT(page); /* Pages should be in the extent_io_tree */ 9777 9778 btrfs_page_set_writeback(fs_info, page, start, len); 9779 put_page(page); 9780 index++; 9781 } 9782 } 9783 9784 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9785 int compress_type) 9786 { 9787 switch (compress_type) { 9788 case BTRFS_COMPRESS_NONE: 9789 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9790 case BTRFS_COMPRESS_ZLIB: 9791 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9792 case BTRFS_COMPRESS_LZO: 9793 /* 9794 * The LZO format depends on the sector size. 64K is the maximum 9795 * sector size that we support. 9796 */ 9797 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9798 return -EINVAL; 9799 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9800 (fs_info->sectorsize_bits - 12); 9801 case BTRFS_COMPRESS_ZSTD: 9802 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9803 default: 9804 return -EUCLEAN; 9805 } 9806 } 9807 9808 static ssize_t btrfs_encoded_read_inline( 9809 struct kiocb *iocb, 9810 struct iov_iter *iter, u64 start, 9811 u64 lockend, 9812 struct extent_state **cached_state, 9813 u64 extent_start, size_t count, 9814 struct btrfs_ioctl_encoded_io_args *encoded, 9815 bool *unlocked) 9816 { 9817 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9818 struct btrfs_root *root = inode->root; 9819 struct btrfs_fs_info *fs_info = root->fs_info; 9820 struct extent_io_tree *io_tree = &inode->io_tree; 9821 struct btrfs_path *path; 9822 struct extent_buffer *leaf; 9823 struct btrfs_file_extent_item *item; 9824 u64 ram_bytes; 9825 unsigned long ptr; 9826 void *tmp; 9827 ssize_t ret; 9828 9829 path = btrfs_alloc_path(); 9830 if (!path) { 9831 ret = -ENOMEM; 9832 goto out; 9833 } 9834 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9835 extent_start, 0); 9836 if (ret) { 9837 if (ret > 0) { 9838 /* The extent item disappeared? */ 9839 ret = -EIO; 9840 } 9841 goto out; 9842 } 9843 leaf = path->nodes[0]; 9844 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9845 9846 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9847 ptr = btrfs_file_extent_inline_start(item); 9848 9849 encoded->len = min_t(u64, extent_start + ram_bytes, 9850 inode->vfs_inode.i_size) - iocb->ki_pos; 9851 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9852 btrfs_file_extent_compression(leaf, item)); 9853 if (ret < 0) 9854 goto out; 9855 encoded->compression = ret; 9856 if (encoded->compression) { 9857 size_t inline_size; 9858 9859 inline_size = btrfs_file_extent_inline_item_len(leaf, 9860 path->slots[0]); 9861 if (inline_size > count) { 9862 ret = -ENOBUFS; 9863 goto out; 9864 } 9865 count = inline_size; 9866 encoded->unencoded_len = ram_bytes; 9867 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9868 } else { 9869 count = min_t(u64, count, encoded->len); 9870 encoded->len = count; 9871 encoded->unencoded_len = count; 9872 ptr += iocb->ki_pos - extent_start; 9873 } 9874 9875 tmp = kmalloc(count, GFP_NOFS); 9876 if (!tmp) { 9877 ret = -ENOMEM; 9878 goto out; 9879 } 9880 read_extent_buffer(leaf, tmp, ptr, count); 9881 btrfs_release_path(path); 9882 unlock_extent(io_tree, start, lockend, cached_state); 9883 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9884 *unlocked = true; 9885 9886 ret = copy_to_iter(tmp, count, iter); 9887 if (ret != count) 9888 ret = -EFAULT; 9889 kfree(tmp); 9890 out: 9891 btrfs_free_path(path); 9892 return ret; 9893 } 9894 9895 struct btrfs_encoded_read_private { 9896 wait_queue_head_t wait; 9897 atomic_t pending; 9898 blk_status_t status; 9899 }; 9900 9901 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9902 { 9903 struct btrfs_encoded_read_private *priv = bbio->private; 9904 9905 if (bbio->bio.bi_status) { 9906 /* 9907 * The memory barrier implied by the atomic_dec_return() here 9908 * pairs with the memory barrier implied by the 9909 * atomic_dec_return() or io_wait_event() in 9910 * btrfs_encoded_read_regular_fill_pages() to ensure that this 9911 * write is observed before the load of status in 9912 * btrfs_encoded_read_regular_fill_pages(). 9913 */ 9914 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9915 } 9916 if (!atomic_dec_return(&priv->pending)) 9917 wake_up(&priv->wait); 9918 bio_put(&bbio->bio); 9919 } 9920 9921 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9922 u64 file_offset, u64 disk_bytenr, 9923 u64 disk_io_size, struct page **pages) 9924 { 9925 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9926 struct btrfs_encoded_read_private priv = { 9927 .pending = ATOMIC_INIT(1), 9928 }; 9929 unsigned long i = 0; 9930 struct btrfs_bio *bbio; 9931 9932 init_waitqueue_head(&priv.wait); 9933 9934 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9935 btrfs_encoded_read_endio, &priv); 9936 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9937 bbio->inode = inode; 9938 9939 do { 9940 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9941 9942 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9943 atomic_inc(&priv.pending); 9944 btrfs_submit_bio(bbio, 0); 9945 9946 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9947 btrfs_encoded_read_endio, &priv); 9948 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9949 bbio->inode = inode; 9950 continue; 9951 } 9952 9953 i++; 9954 disk_bytenr += bytes; 9955 disk_io_size -= bytes; 9956 } while (disk_io_size); 9957 9958 atomic_inc(&priv.pending); 9959 btrfs_submit_bio(bbio, 0); 9960 9961 if (atomic_dec_return(&priv.pending)) 9962 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 9963 /* See btrfs_encoded_read_endio() for ordering. */ 9964 return blk_status_to_errno(READ_ONCE(priv.status)); 9965 } 9966 9967 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 9968 struct iov_iter *iter, 9969 u64 start, u64 lockend, 9970 struct extent_state **cached_state, 9971 u64 disk_bytenr, u64 disk_io_size, 9972 size_t count, bool compressed, 9973 bool *unlocked) 9974 { 9975 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9976 struct extent_io_tree *io_tree = &inode->io_tree; 9977 struct page **pages; 9978 unsigned long nr_pages, i; 9979 u64 cur; 9980 size_t page_offset; 9981 ssize_t ret; 9982 9983 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9984 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9985 if (!pages) 9986 return -ENOMEM; 9987 ret = btrfs_alloc_page_array(nr_pages, pages); 9988 if (ret) { 9989 ret = -ENOMEM; 9990 goto out; 9991 } 9992 9993 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 9994 disk_io_size, pages); 9995 if (ret) 9996 goto out; 9997 9998 unlock_extent(io_tree, start, lockend, cached_state); 9999 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10000 *unlocked = true; 10001 10002 if (compressed) { 10003 i = 0; 10004 page_offset = 0; 10005 } else { 10006 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10007 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10008 } 10009 cur = 0; 10010 while (cur < count) { 10011 size_t bytes = min_t(size_t, count - cur, 10012 PAGE_SIZE - page_offset); 10013 10014 if (copy_page_to_iter(pages[i], page_offset, bytes, 10015 iter) != bytes) { 10016 ret = -EFAULT; 10017 goto out; 10018 } 10019 i++; 10020 cur += bytes; 10021 page_offset = 0; 10022 } 10023 ret = count; 10024 out: 10025 for (i = 0; i < nr_pages; i++) { 10026 if (pages[i]) 10027 __free_page(pages[i]); 10028 } 10029 kfree(pages); 10030 return ret; 10031 } 10032 10033 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10034 struct btrfs_ioctl_encoded_io_args *encoded) 10035 { 10036 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10037 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10038 struct extent_io_tree *io_tree = &inode->io_tree; 10039 ssize_t ret; 10040 size_t count = iov_iter_count(iter); 10041 u64 start, lockend, disk_bytenr, disk_io_size; 10042 struct extent_state *cached_state = NULL; 10043 struct extent_map *em; 10044 bool unlocked = false; 10045 10046 file_accessed(iocb->ki_filp); 10047 10048 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 10049 10050 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10051 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10052 return 0; 10053 } 10054 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10055 /* 10056 * We don't know how long the extent containing iocb->ki_pos is, but if 10057 * it's compressed we know that it won't be longer than this. 10058 */ 10059 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10060 10061 for (;;) { 10062 struct btrfs_ordered_extent *ordered; 10063 10064 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10065 lockend - start + 1); 10066 if (ret) 10067 goto out_unlock_inode; 10068 lock_extent(io_tree, start, lockend, &cached_state); 10069 ordered = btrfs_lookup_ordered_range(inode, start, 10070 lockend - start + 1); 10071 if (!ordered) 10072 break; 10073 btrfs_put_ordered_extent(ordered); 10074 unlock_extent(io_tree, start, lockend, &cached_state); 10075 cond_resched(); 10076 } 10077 10078 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10079 if (IS_ERR(em)) { 10080 ret = PTR_ERR(em); 10081 goto out_unlock_extent; 10082 } 10083 10084 if (em->block_start == EXTENT_MAP_INLINE) { 10085 u64 extent_start = em->start; 10086 10087 /* 10088 * For inline extents we get everything we need out of the 10089 * extent item. 10090 */ 10091 free_extent_map(em); 10092 em = NULL; 10093 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10094 &cached_state, extent_start, 10095 count, encoded, &unlocked); 10096 goto out; 10097 } 10098 10099 /* 10100 * We only want to return up to EOF even if the extent extends beyond 10101 * that. 10102 */ 10103 encoded->len = min_t(u64, extent_map_end(em), 10104 inode->vfs_inode.i_size) - iocb->ki_pos; 10105 if (em->block_start == EXTENT_MAP_HOLE || 10106 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 10107 disk_bytenr = EXTENT_MAP_HOLE; 10108 count = min_t(u64, count, encoded->len); 10109 encoded->len = count; 10110 encoded->unencoded_len = count; 10111 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10112 disk_bytenr = em->block_start; 10113 /* 10114 * Bail if the buffer isn't large enough to return the whole 10115 * compressed extent. 10116 */ 10117 if (em->block_len > count) { 10118 ret = -ENOBUFS; 10119 goto out_em; 10120 } 10121 disk_io_size = em->block_len; 10122 count = em->block_len; 10123 encoded->unencoded_len = em->ram_bytes; 10124 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10125 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10126 em->compress_type); 10127 if (ret < 0) 10128 goto out_em; 10129 encoded->compression = ret; 10130 } else { 10131 disk_bytenr = em->block_start + (start - em->start); 10132 if (encoded->len > count) 10133 encoded->len = count; 10134 /* 10135 * Don't read beyond what we locked. This also limits the page 10136 * allocations that we'll do. 10137 */ 10138 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10139 count = start + disk_io_size - iocb->ki_pos; 10140 encoded->len = count; 10141 encoded->unencoded_len = count; 10142 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10143 } 10144 free_extent_map(em); 10145 em = NULL; 10146 10147 if (disk_bytenr == EXTENT_MAP_HOLE) { 10148 unlock_extent(io_tree, start, lockend, &cached_state); 10149 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10150 unlocked = true; 10151 ret = iov_iter_zero(count, iter); 10152 if (ret != count) 10153 ret = -EFAULT; 10154 } else { 10155 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10156 &cached_state, disk_bytenr, 10157 disk_io_size, count, 10158 encoded->compression, 10159 &unlocked); 10160 } 10161 10162 out: 10163 if (ret >= 0) 10164 iocb->ki_pos += encoded->len; 10165 out_em: 10166 free_extent_map(em); 10167 out_unlock_extent: 10168 if (!unlocked) 10169 unlock_extent(io_tree, start, lockend, &cached_state); 10170 out_unlock_inode: 10171 if (!unlocked) 10172 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10173 return ret; 10174 } 10175 10176 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10177 const struct btrfs_ioctl_encoded_io_args *encoded) 10178 { 10179 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10180 struct btrfs_root *root = inode->root; 10181 struct btrfs_fs_info *fs_info = root->fs_info; 10182 struct extent_io_tree *io_tree = &inode->io_tree; 10183 struct extent_changeset *data_reserved = NULL; 10184 struct extent_state *cached_state = NULL; 10185 struct btrfs_ordered_extent *ordered; 10186 int compression; 10187 size_t orig_count; 10188 u64 start, end; 10189 u64 num_bytes, ram_bytes, disk_num_bytes; 10190 unsigned long nr_pages, i; 10191 struct page **pages; 10192 struct btrfs_key ins; 10193 bool extent_reserved = false; 10194 struct extent_map *em; 10195 ssize_t ret; 10196 10197 switch (encoded->compression) { 10198 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10199 compression = BTRFS_COMPRESS_ZLIB; 10200 break; 10201 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10202 compression = BTRFS_COMPRESS_ZSTD; 10203 break; 10204 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10205 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10206 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10207 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10208 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10209 /* The sector size must match for LZO. */ 10210 if (encoded->compression - 10211 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10212 fs_info->sectorsize_bits) 10213 return -EINVAL; 10214 compression = BTRFS_COMPRESS_LZO; 10215 break; 10216 default: 10217 return -EINVAL; 10218 } 10219 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10220 return -EINVAL; 10221 10222 orig_count = iov_iter_count(from); 10223 10224 /* The extent size must be sane. */ 10225 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10226 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10227 return -EINVAL; 10228 10229 /* 10230 * The compressed data must be smaller than the decompressed data. 10231 * 10232 * It's of course possible for data to compress to larger or the same 10233 * size, but the buffered I/O path falls back to no compression for such 10234 * data, and we don't want to break any assumptions by creating these 10235 * extents. 10236 * 10237 * Note that this is less strict than the current check we have that the 10238 * compressed data must be at least one sector smaller than the 10239 * decompressed data. We only want to enforce the weaker requirement 10240 * from old kernels that it is at least one byte smaller. 10241 */ 10242 if (orig_count >= encoded->unencoded_len) 10243 return -EINVAL; 10244 10245 /* The extent must start on a sector boundary. */ 10246 start = iocb->ki_pos; 10247 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10248 return -EINVAL; 10249 10250 /* 10251 * The extent must end on a sector boundary. However, we allow a write 10252 * which ends at or extends i_size to have an unaligned length; we round 10253 * up the extent size and set i_size to the unaligned end. 10254 */ 10255 if (start + encoded->len < inode->vfs_inode.i_size && 10256 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10257 return -EINVAL; 10258 10259 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10260 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10261 return -EINVAL; 10262 10263 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10264 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10265 end = start + num_bytes - 1; 10266 10267 /* 10268 * If the extent cannot be inline, the compressed data on disk must be 10269 * sector-aligned. For convenience, we extend it with zeroes if it 10270 * isn't. 10271 */ 10272 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10273 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10274 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10275 if (!pages) 10276 return -ENOMEM; 10277 for (i = 0; i < nr_pages; i++) { 10278 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10279 char *kaddr; 10280 10281 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10282 if (!pages[i]) { 10283 ret = -ENOMEM; 10284 goto out_pages; 10285 } 10286 kaddr = kmap_local_page(pages[i]); 10287 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10288 kunmap_local(kaddr); 10289 ret = -EFAULT; 10290 goto out_pages; 10291 } 10292 if (bytes < PAGE_SIZE) 10293 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10294 kunmap_local(kaddr); 10295 } 10296 10297 for (;;) { 10298 struct btrfs_ordered_extent *ordered; 10299 10300 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10301 if (ret) 10302 goto out_pages; 10303 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10304 start >> PAGE_SHIFT, 10305 end >> PAGE_SHIFT); 10306 if (ret) 10307 goto out_pages; 10308 lock_extent(io_tree, start, end, &cached_state); 10309 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10310 if (!ordered && 10311 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10312 break; 10313 if (ordered) 10314 btrfs_put_ordered_extent(ordered); 10315 unlock_extent(io_tree, start, end, &cached_state); 10316 cond_resched(); 10317 } 10318 10319 /* 10320 * We don't use the higher-level delalloc space functions because our 10321 * num_bytes and disk_num_bytes are different. 10322 */ 10323 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10324 if (ret) 10325 goto out_unlock; 10326 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10327 if (ret) 10328 goto out_free_data_space; 10329 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 10330 false); 10331 if (ret) 10332 goto out_qgroup_free_data; 10333 10334 /* Try an inline extent first. */ 10335 if (start == 0 && encoded->unencoded_len == encoded->len && 10336 encoded->unencoded_offset == 0) { 10337 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10338 compression, pages, true); 10339 if (ret <= 0) { 10340 if (ret == 0) 10341 ret = orig_count; 10342 goto out_delalloc_release; 10343 } 10344 } 10345 10346 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10347 disk_num_bytes, 0, 0, &ins, 1, 1); 10348 if (ret) 10349 goto out_delalloc_release; 10350 extent_reserved = true; 10351 10352 em = create_io_em(inode, start, num_bytes, 10353 start - encoded->unencoded_offset, ins.objectid, 10354 ins.offset, ins.offset, ram_bytes, compression, 10355 BTRFS_ORDERED_COMPRESSED); 10356 if (IS_ERR(em)) { 10357 ret = PTR_ERR(em); 10358 goto out_free_reserved; 10359 } 10360 free_extent_map(em); 10361 10362 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes, 10363 ins.objectid, ins.offset, 10364 encoded->unencoded_offset, 10365 (1 << BTRFS_ORDERED_ENCODED) | 10366 (1 << BTRFS_ORDERED_COMPRESSED), 10367 compression); 10368 if (IS_ERR(ordered)) { 10369 btrfs_drop_extent_map_range(inode, start, end, false); 10370 ret = PTR_ERR(ordered); 10371 goto out_free_reserved; 10372 } 10373 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10374 10375 if (start + encoded->len > inode->vfs_inode.i_size) 10376 i_size_write(&inode->vfs_inode, start + encoded->len); 10377 10378 unlock_extent(io_tree, start, end, &cached_state); 10379 10380 btrfs_delalloc_release_extents(inode, num_bytes); 10381 10382 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false); 10383 ret = orig_count; 10384 goto out; 10385 10386 out_free_reserved: 10387 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10388 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10389 out_delalloc_release: 10390 btrfs_delalloc_release_extents(inode, num_bytes); 10391 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10392 out_qgroup_free_data: 10393 if (ret < 0) 10394 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes); 10395 out_free_data_space: 10396 /* 10397 * If btrfs_reserve_extent() succeeded, then we already decremented 10398 * bytes_may_use. 10399 */ 10400 if (!extent_reserved) 10401 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10402 out_unlock: 10403 unlock_extent(io_tree, start, end, &cached_state); 10404 out_pages: 10405 for (i = 0; i < nr_pages; i++) { 10406 if (pages[i]) 10407 __free_page(pages[i]); 10408 } 10409 kvfree(pages); 10410 out: 10411 if (ret >= 0) 10412 iocb->ki_pos += encoded->len; 10413 return ret; 10414 } 10415 10416 #ifdef CONFIG_SWAP 10417 /* 10418 * Add an entry indicating a block group or device which is pinned by a 10419 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10420 * negative errno on failure. 10421 */ 10422 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10423 bool is_block_group) 10424 { 10425 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10426 struct btrfs_swapfile_pin *sp, *entry; 10427 struct rb_node **p; 10428 struct rb_node *parent = NULL; 10429 10430 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10431 if (!sp) 10432 return -ENOMEM; 10433 sp->ptr = ptr; 10434 sp->inode = inode; 10435 sp->is_block_group = is_block_group; 10436 sp->bg_extent_count = 1; 10437 10438 spin_lock(&fs_info->swapfile_pins_lock); 10439 p = &fs_info->swapfile_pins.rb_node; 10440 while (*p) { 10441 parent = *p; 10442 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10443 if (sp->ptr < entry->ptr || 10444 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10445 p = &(*p)->rb_left; 10446 } else if (sp->ptr > entry->ptr || 10447 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10448 p = &(*p)->rb_right; 10449 } else { 10450 if (is_block_group) 10451 entry->bg_extent_count++; 10452 spin_unlock(&fs_info->swapfile_pins_lock); 10453 kfree(sp); 10454 return 1; 10455 } 10456 } 10457 rb_link_node(&sp->node, parent, p); 10458 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10459 spin_unlock(&fs_info->swapfile_pins_lock); 10460 return 0; 10461 } 10462 10463 /* Free all of the entries pinned by this swapfile. */ 10464 static void btrfs_free_swapfile_pins(struct inode *inode) 10465 { 10466 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10467 struct btrfs_swapfile_pin *sp; 10468 struct rb_node *node, *next; 10469 10470 spin_lock(&fs_info->swapfile_pins_lock); 10471 node = rb_first(&fs_info->swapfile_pins); 10472 while (node) { 10473 next = rb_next(node); 10474 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10475 if (sp->inode == inode) { 10476 rb_erase(&sp->node, &fs_info->swapfile_pins); 10477 if (sp->is_block_group) { 10478 btrfs_dec_block_group_swap_extents(sp->ptr, 10479 sp->bg_extent_count); 10480 btrfs_put_block_group(sp->ptr); 10481 } 10482 kfree(sp); 10483 } 10484 node = next; 10485 } 10486 spin_unlock(&fs_info->swapfile_pins_lock); 10487 } 10488 10489 struct btrfs_swap_info { 10490 u64 start; 10491 u64 block_start; 10492 u64 block_len; 10493 u64 lowest_ppage; 10494 u64 highest_ppage; 10495 unsigned long nr_pages; 10496 int nr_extents; 10497 }; 10498 10499 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10500 struct btrfs_swap_info *bsi) 10501 { 10502 unsigned long nr_pages; 10503 unsigned long max_pages; 10504 u64 first_ppage, first_ppage_reported, next_ppage; 10505 int ret; 10506 10507 /* 10508 * Our swapfile may have had its size extended after the swap header was 10509 * written. In that case activating the swapfile should not go beyond 10510 * the max size set in the swap header. 10511 */ 10512 if (bsi->nr_pages >= sis->max) 10513 return 0; 10514 10515 max_pages = sis->max - bsi->nr_pages; 10516 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10517 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10518 10519 if (first_ppage >= next_ppage) 10520 return 0; 10521 nr_pages = next_ppage - first_ppage; 10522 nr_pages = min(nr_pages, max_pages); 10523 10524 first_ppage_reported = first_ppage; 10525 if (bsi->start == 0) 10526 first_ppage_reported++; 10527 if (bsi->lowest_ppage > first_ppage_reported) 10528 bsi->lowest_ppage = first_ppage_reported; 10529 if (bsi->highest_ppage < (next_ppage - 1)) 10530 bsi->highest_ppage = next_ppage - 1; 10531 10532 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10533 if (ret < 0) 10534 return ret; 10535 bsi->nr_extents += ret; 10536 bsi->nr_pages += nr_pages; 10537 return 0; 10538 } 10539 10540 static void btrfs_swap_deactivate(struct file *file) 10541 { 10542 struct inode *inode = file_inode(file); 10543 10544 btrfs_free_swapfile_pins(inode); 10545 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10546 } 10547 10548 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10549 sector_t *span) 10550 { 10551 struct inode *inode = file_inode(file); 10552 struct btrfs_root *root = BTRFS_I(inode)->root; 10553 struct btrfs_fs_info *fs_info = root->fs_info; 10554 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10555 struct extent_state *cached_state = NULL; 10556 struct extent_map *em = NULL; 10557 struct btrfs_device *device = NULL; 10558 struct btrfs_swap_info bsi = { 10559 .lowest_ppage = (sector_t)-1ULL, 10560 }; 10561 int ret = 0; 10562 u64 isize; 10563 u64 start; 10564 10565 /* 10566 * If the swap file was just created, make sure delalloc is done. If the 10567 * file changes again after this, the user is doing something stupid and 10568 * we don't really care. 10569 */ 10570 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10571 if (ret) 10572 return ret; 10573 10574 /* 10575 * The inode is locked, so these flags won't change after we check them. 10576 */ 10577 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10578 btrfs_warn(fs_info, "swapfile must not be compressed"); 10579 return -EINVAL; 10580 } 10581 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10582 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10583 return -EINVAL; 10584 } 10585 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10586 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10587 return -EINVAL; 10588 } 10589 10590 /* 10591 * Balance or device remove/replace/resize can move stuff around from 10592 * under us. The exclop protection makes sure they aren't running/won't 10593 * run concurrently while we are mapping the swap extents, and 10594 * fs_info->swapfile_pins prevents them from running while the swap 10595 * file is active and moving the extents. Note that this also prevents 10596 * a concurrent device add which isn't actually necessary, but it's not 10597 * really worth the trouble to allow it. 10598 */ 10599 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10600 btrfs_warn(fs_info, 10601 "cannot activate swapfile while exclusive operation is running"); 10602 return -EBUSY; 10603 } 10604 10605 /* 10606 * Prevent snapshot creation while we are activating the swap file. 10607 * We do not want to race with snapshot creation. If snapshot creation 10608 * already started before we bumped nr_swapfiles from 0 to 1 and 10609 * completes before the first write into the swap file after it is 10610 * activated, than that write would fallback to COW. 10611 */ 10612 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10613 btrfs_exclop_finish(fs_info); 10614 btrfs_warn(fs_info, 10615 "cannot activate swapfile because snapshot creation is in progress"); 10616 return -EINVAL; 10617 } 10618 /* 10619 * Snapshots can create extents which require COW even if NODATACOW is 10620 * set. We use this counter to prevent snapshots. We must increment it 10621 * before walking the extents because we don't want a concurrent 10622 * snapshot to run after we've already checked the extents. 10623 * 10624 * It is possible that subvolume is marked for deletion but still not 10625 * removed yet. To prevent this race, we check the root status before 10626 * activating the swapfile. 10627 */ 10628 spin_lock(&root->root_item_lock); 10629 if (btrfs_root_dead(root)) { 10630 spin_unlock(&root->root_item_lock); 10631 10632 btrfs_exclop_finish(fs_info); 10633 btrfs_warn(fs_info, 10634 "cannot activate swapfile because subvolume %llu is being deleted", 10635 root->root_key.objectid); 10636 return -EPERM; 10637 } 10638 atomic_inc(&root->nr_swapfiles); 10639 spin_unlock(&root->root_item_lock); 10640 10641 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10642 10643 lock_extent(io_tree, 0, isize - 1, &cached_state); 10644 start = 0; 10645 while (start < isize) { 10646 u64 logical_block_start, physical_block_start; 10647 struct btrfs_block_group *bg; 10648 u64 len = isize - start; 10649 10650 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10651 if (IS_ERR(em)) { 10652 ret = PTR_ERR(em); 10653 goto out; 10654 } 10655 10656 if (em->block_start == EXTENT_MAP_HOLE) { 10657 btrfs_warn(fs_info, "swapfile must not have holes"); 10658 ret = -EINVAL; 10659 goto out; 10660 } 10661 if (em->block_start == EXTENT_MAP_INLINE) { 10662 /* 10663 * It's unlikely we'll ever actually find ourselves 10664 * here, as a file small enough to fit inline won't be 10665 * big enough to store more than the swap header, but in 10666 * case something changes in the future, let's catch it 10667 * here rather than later. 10668 */ 10669 btrfs_warn(fs_info, "swapfile must not be inline"); 10670 ret = -EINVAL; 10671 goto out; 10672 } 10673 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10674 btrfs_warn(fs_info, "swapfile must not be compressed"); 10675 ret = -EINVAL; 10676 goto out; 10677 } 10678 10679 logical_block_start = em->block_start + (start - em->start); 10680 len = min(len, em->len - (start - em->start)); 10681 free_extent_map(em); 10682 em = NULL; 10683 10684 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true); 10685 if (ret < 0) { 10686 goto out; 10687 } else if (ret) { 10688 ret = 0; 10689 } else { 10690 btrfs_warn(fs_info, 10691 "swapfile must not be copy-on-write"); 10692 ret = -EINVAL; 10693 goto out; 10694 } 10695 10696 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10697 if (IS_ERR(em)) { 10698 ret = PTR_ERR(em); 10699 goto out; 10700 } 10701 10702 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10703 btrfs_warn(fs_info, 10704 "swapfile must have single data profile"); 10705 ret = -EINVAL; 10706 goto out; 10707 } 10708 10709 if (device == NULL) { 10710 device = em->map_lookup->stripes[0].dev; 10711 ret = btrfs_add_swapfile_pin(inode, device, false); 10712 if (ret == 1) 10713 ret = 0; 10714 else if (ret) 10715 goto out; 10716 } else if (device != em->map_lookup->stripes[0].dev) { 10717 btrfs_warn(fs_info, "swapfile must be on one device"); 10718 ret = -EINVAL; 10719 goto out; 10720 } 10721 10722 physical_block_start = (em->map_lookup->stripes[0].physical + 10723 (logical_block_start - em->start)); 10724 len = min(len, em->len - (logical_block_start - em->start)); 10725 free_extent_map(em); 10726 em = NULL; 10727 10728 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10729 if (!bg) { 10730 btrfs_warn(fs_info, 10731 "could not find block group containing swapfile"); 10732 ret = -EINVAL; 10733 goto out; 10734 } 10735 10736 if (!btrfs_inc_block_group_swap_extents(bg)) { 10737 btrfs_warn(fs_info, 10738 "block group for swapfile at %llu is read-only%s", 10739 bg->start, 10740 atomic_read(&fs_info->scrubs_running) ? 10741 " (scrub running)" : ""); 10742 btrfs_put_block_group(bg); 10743 ret = -EINVAL; 10744 goto out; 10745 } 10746 10747 ret = btrfs_add_swapfile_pin(inode, bg, true); 10748 if (ret) { 10749 btrfs_put_block_group(bg); 10750 if (ret == 1) 10751 ret = 0; 10752 else 10753 goto out; 10754 } 10755 10756 if (bsi.block_len && 10757 bsi.block_start + bsi.block_len == physical_block_start) { 10758 bsi.block_len += len; 10759 } else { 10760 if (bsi.block_len) { 10761 ret = btrfs_add_swap_extent(sis, &bsi); 10762 if (ret) 10763 goto out; 10764 } 10765 bsi.start = start; 10766 bsi.block_start = physical_block_start; 10767 bsi.block_len = len; 10768 } 10769 10770 start += len; 10771 } 10772 10773 if (bsi.block_len) 10774 ret = btrfs_add_swap_extent(sis, &bsi); 10775 10776 out: 10777 if (!IS_ERR_OR_NULL(em)) 10778 free_extent_map(em); 10779 10780 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10781 10782 if (ret) 10783 btrfs_swap_deactivate(file); 10784 10785 btrfs_drew_write_unlock(&root->snapshot_lock); 10786 10787 btrfs_exclop_finish(fs_info); 10788 10789 if (ret) 10790 return ret; 10791 10792 if (device) 10793 sis->bdev = device->bdev; 10794 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10795 sis->max = bsi.nr_pages; 10796 sis->pages = bsi.nr_pages - 1; 10797 sis->highest_bit = bsi.nr_pages - 1; 10798 return bsi.nr_extents; 10799 } 10800 #else 10801 static void btrfs_swap_deactivate(struct file *file) 10802 { 10803 } 10804 10805 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10806 sector_t *span) 10807 { 10808 return -EOPNOTSUPP; 10809 } 10810 #endif 10811 10812 /* 10813 * Update the number of bytes used in the VFS' inode. When we replace extents in 10814 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10815 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10816 * always get a correct value. 10817 */ 10818 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10819 const u64 add_bytes, 10820 const u64 del_bytes) 10821 { 10822 if (add_bytes == del_bytes) 10823 return; 10824 10825 spin_lock(&inode->lock); 10826 if (del_bytes > 0) 10827 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10828 if (add_bytes > 0) 10829 inode_add_bytes(&inode->vfs_inode, add_bytes); 10830 spin_unlock(&inode->lock); 10831 } 10832 10833 /* 10834 * Verify that there are no ordered extents for a given file range. 10835 * 10836 * @inode: The target inode. 10837 * @start: Start offset of the file range, should be sector size aligned. 10838 * @end: End offset (inclusive) of the file range, its value +1 should be 10839 * sector size aligned. 10840 * 10841 * This should typically be used for cases where we locked an inode's VFS lock in 10842 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10843 * we have flushed all delalloc in the range, we have waited for all ordered 10844 * extents in the range to complete and finally we have locked the file range in 10845 * the inode's io_tree. 10846 */ 10847 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10848 { 10849 struct btrfs_root *root = inode->root; 10850 struct btrfs_ordered_extent *ordered; 10851 10852 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10853 return; 10854 10855 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10856 if (ordered) { 10857 btrfs_err(root->fs_info, 10858 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10859 start, end, btrfs_ino(inode), root->root_key.objectid, 10860 ordered->file_offset, 10861 ordered->file_offset + ordered->num_bytes - 1); 10862 btrfs_put_ordered_extent(ordered); 10863 } 10864 10865 ASSERT(ordered == NULL); 10866 } 10867 10868 static const struct inode_operations btrfs_dir_inode_operations = { 10869 .getattr = btrfs_getattr, 10870 .lookup = btrfs_lookup, 10871 .create = btrfs_create, 10872 .unlink = btrfs_unlink, 10873 .link = btrfs_link, 10874 .mkdir = btrfs_mkdir, 10875 .rmdir = btrfs_rmdir, 10876 .rename = btrfs_rename2, 10877 .symlink = btrfs_symlink, 10878 .setattr = btrfs_setattr, 10879 .mknod = btrfs_mknod, 10880 .listxattr = btrfs_listxattr, 10881 .permission = btrfs_permission, 10882 .get_inode_acl = btrfs_get_acl, 10883 .set_acl = btrfs_set_acl, 10884 .update_time = btrfs_update_time, 10885 .tmpfile = btrfs_tmpfile, 10886 .fileattr_get = btrfs_fileattr_get, 10887 .fileattr_set = btrfs_fileattr_set, 10888 }; 10889 10890 static const struct file_operations btrfs_dir_file_operations = { 10891 .llseek = btrfs_dir_llseek, 10892 .read = generic_read_dir, 10893 .iterate_shared = btrfs_real_readdir, 10894 .open = btrfs_opendir, 10895 .unlocked_ioctl = btrfs_ioctl, 10896 #ifdef CONFIG_COMPAT 10897 .compat_ioctl = btrfs_compat_ioctl, 10898 #endif 10899 .release = btrfs_release_file, 10900 .fsync = btrfs_sync_file, 10901 }; 10902 10903 /* 10904 * btrfs doesn't support the bmap operation because swapfiles 10905 * use bmap to make a mapping of extents in the file. They assume 10906 * these extents won't change over the life of the file and they 10907 * use the bmap result to do IO directly to the drive. 10908 * 10909 * the btrfs bmap call would return logical addresses that aren't 10910 * suitable for IO and they also will change frequently as COW 10911 * operations happen. So, swapfile + btrfs == corruption. 10912 * 10913 * For now we're avoiding this by dropping bmap. 10914 */ 10915 static const struct address_space_operations btrfs_aops = { 10916 .read_folio = btrfs_read_folio, 10917 .writepages = btrfs_writepages, 10918 .readahead = btrfs_readahead, 10919 .invalidate_folio = btrfs_invalidate_folio, 10920 .release_folio = btrfs_release_folio, 10921 .migrate_folio = btrfs_migrate_folio, 10922 .dirty_folio = filemap_dirty_folio, 10923 .error_remove_page = generic_error_remove_page, 10924 .swap_activate = btrfs_swap_activate, 10925 .swap_deactivate = btrfs_swap_deactivate, 10926 }; 10927 10928 static const struct inode_operations btrfs_file_inode_operations = { 10929 .getattr = btrfs_getattr, 10930 .setattr = btrfs_setattr, 10931 .listxattr = btrfs_listxattr, 10932 .permission = btrfs_permission, 10933 .fiemap = btrfs_fiemap, 10934 .get_inode_acl = btrfs_get_acl, 10935 .set_acl = btrfs_set_acl, 10936 .update_time = btrfs_update_time, 10937 .fileattr_get = btrfs_fileattr_get, 10938 .fileattr_set = btrfs_fileattr_set, 10939 }; 10940 static const struct inode_operations btrfs_special_inode_operations = { 10941 .getattr = btrfs_getattr, 10942 .setattr = btrfs_setattr, 10943 .permission = btrfs_permission, 10944 .listxattr = btrfs_listxattr, 10945 .get_inode_acl = btrfs_get_acl, 10946 .set_acl = btrfs_set_acl, 10947 .update_time = btrfs_update_time, 10948 }; 10949 static const struct inode_operations btrfs_symlink_inode_operations = { 10950 .get_link = page_get_link, 10951 .getattr = btrfs_getattr, 10952 .setattr = btrfs_setattr, 10953 .permission = btrfs_permission, 10954 .listxattr = btrfs_listxattr, 10955 .update_time = btrfs_update_time, 10956 }; 10957 10958 const struct dentry_operations btrfs_dentry_operations = { 10959 .d_delete = btrfs_dentry_delete, 10960 }; 10961