xref: /openbmc/linux/fs/btrfs/inode.c (revision 504148fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "volumes.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 
59 struct btrfs_iget_args {
60 	u64 ino;
61 	struct btrfs_root *root;
62 };
63 
64 struct btrfs_dio_data {
65 	ssize_t submitted;
66 	struct extent_changeset *data_reserved;
67 	bool data_space_reserved;
68 	bool nocow_done;
69 };
70 
71 struct btrfs_dio_private {
72 	struct inode *inode;
73 
74 	/*
75 	 * Since DIO can use anonymous page, we cannot use page_offset() to
76 	 * grab the file offset, thus need a dedicated member for file offset.
77 	 */
78 	u64 file_offset;
79 	/* Used for bio::bi_size */
80 	u32 bytes;
81 
82 	/*
83 	 * References to this structure. There is one reference per in-flight
84 	 * bio plus one while we're still setting up.
85 	 */
86 	refcount_t refs;
87 
88 	/* Array of checksums */
89 	u8 *csums;
90 
91 	/* This must be last */
92 	struct bio bio;
93 };
94 
95 static struct bio_set btrfs_dio_bioset;
96 
97 struct btrfs_rename_ctx {
98 	/* Output field. Stores the index number of the old directory entry. */
99 	u64 index;
100 };
101 
102 static const struct inode_operations btrfs_dir_inode_operations;
103 static const struct inode_operations btrfs_symlink_inode_operations;
104 static const struct inode_operations btrfs_special_inode_operations;
105 static const struct inode_operations btrfs_file_inode_operations;
106 static const struct address_space_operations btrfs_aops;
107 static const struct file_operations btrfs_dir_file_operations;
108 
109 static struct kmem_cache *btrfs_inode_cachep;
110 struct kmem_cache *btrfs_trans_handle_cachep;
111 struct kmem_cache *btrfs_path_cachep;
112 struct kmem_cache *btrfs_free_space_cachep;
113 struct kmem_cache *btrfs_free_space_bitmap_cachep;
114 
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
117 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
118 static noinline int cow_file_range(struct btrfs_inode *inode,
119 				   struct page *locked_page,
120 				   u64 start, u64 end, int *page_started,
121 				   unsigned long *nr_written, int unlock);
122 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
123 				       u64 len, u64 orig_start, u64 block_start,
124 				       u64 block_len, u64 orig_block_len,
125 				       u64 ram_bytes, int compress_type,
126 				       int type);
127 
128 static void __endio_write_update_ordered(struct btrfs_inode *inode,
129 					 const u64 offset, const u64 bytes,
130 					 const bool uptodate);
131 
132 /*
133  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
134  *
135  * ilock_flags can have the following bit set:
136  *
137  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
138  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
139  *		     return -EAGAIN
140  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
141  */
142 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
143 {
144 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
145 		if (ilock_flags & BTRFS_ILOCK_TRY) {
146 			if (!inode_trylock_shared(inode))
147 				return -EAGAIN;
148 			else
149 				return 0;
150 		}
151 		inode_lock_shared(inode);
152 	} else {
153 		if (ilock_flags & BTRFS_ILOCK_TRY) {
154 			if (!inode_trylock(inode))
155 				return -EAGAIN;
156 			else
157 				return 0;
158 		}
159 		inode_lock(inode);
160 	}
161 	if (ilock_flags & BTRFS_ILOCK_MMAP)
162 		down_write(&BTRFS_I(inode)->i_mmap_lock);
163 	return 0;
164 }
165 
166 /*
167  * btrfs_inode_unlock - unock inode i_rwsem
168  *
169  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
170  * to decide whether the lock acquired is shared or exclusive.
171  */
172 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
173 {
174 	if (ilock_flags & BTRFS_ILOCK_MMAP)
175 		up_write(&BTRFS_I(inode)->i_mmap_lock);
176 	if (ilock_flags & BTRFS_ILOCK_SHARED)
177 		inode_unlock_shared(inode);
178 	else
179 		inode_unlock(inode);
180 }
181 
182 /*
183  * Cleanup all submitted ordered extents in specified range to handle errors
184  * from the btrfs_run_delalloc_range() callback.
185  *
186  * NOTE: caller must ensure that when an error happens, it can not call
187  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
188  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
189  * to be released, which we want to happen only when finishing the ordered
190  * extent (btrfs_finish_ordered_io()).
191  */
192 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
193 						 struct page *locked_page,
194 						 u64 offset, u64 bytes)
195 {
196 	unsigned long index = offset >> PAGE_SHIFT;
197 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
198 	u64 page_start = page_offset(locked_page);
199 	u64 page_end = page_start + PAGE_SIZE - 1;
200 
201 	struct page *page;
202 
203 	while (index <= end_index) {
204 		/*
205 		 * For locked page, we will call end_extent_writepage() on it
206 		 * in run_delalloc_range() for the error handling.  That
207 		 * end_extent_writepage() function will call
208 		 * btrfs_mark_ordered_io_finished() to clear page Ordered and
209 		 * run the ordered extent accounting.
210 		 *
211 		 * Here we can't just clear the Ordered bit, or
212 		 * btrfs_mark_ordered_io_finished() would skip the accounting
213 		 * for the page range, and the ordered extent will never finish.
214 		 */
215 		if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
216 			index++;
217 			continue;
218 		}
219 		page = find_get_page(inode->vfs_inode.i_mapping, index);
220 		index++;
221 		if (!page)
222 			continue;
223 
224 		/*
225 		 * Here we just clear all Ordered bits for every page in the
226 		 * range, then __endio_write_update_ordered() will handle
227 		 * the ordered extent accounting for the range.
228 		 */
229 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
230 					       offset, bytes);
231 		put_page(page);
232 	}
233 
234 	/* The locked page covers the full range, nothing needs to be done */
235 	if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
236 		return;
237 	/*
238 	 * In case this page belongs to the delalloc range being instantiated
239 	 * then skip it, since the first page of a range is going to be
240 	 * properly cleaned up by the caller of run_delalloc_range
241 	 */
242 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
243 		bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
244 		offset = page_offset(locked_page) + PAGE_SIZE;
245 	}
246 
247 	return __endio_write_update_ordered(inode, offset, bytes, false);
248 }
249 
250 static int btrfs_dirty_inode(struct inode *inode);
251 
252 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
253 				     struct btrfs_new_inode_args *args)
254 {
255 	int err;
256 
257 	if (args->default_acl) {
258 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
259 				      ACL_TYPE_DEFAULT);
260 		if (err)
261 			return err;
262 	}
263 	if (args->acl) {
264 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
265 		if (err)
266 			return err;
267 	}
268 	if (!args->default_acl && !args->acl)
269 		cache_no_acl(args->inode);
270 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
271 					 &args->dentry->d_name);
272 }
273 
274 /*
275  * this does all the hard work for inserting an inline extent into
276  * the btree.  The caller should have done a btrfs_drop_extents so that
277  * no overlapping inline items exist in the btree
278  */
279 static int insert_inline_extent(struct btrfs_trans_handle *trans,
280 				struct btrfs_path *path,
281 				struct btrfs_inode *inode, bool extent_inserted,
282 				size_t size, size_t compressed_size,
283 				int compress_type,
284 				struct page **compressed_pages,
285 				bool update_i_size)
286 {
287 	struct btrfs_root *root = inode->root;
288 	struct extent_buffer *leaf;
289 	struct page *page = NULL;
290 	char *kaddr;
291 	unsigned long ptr;
292 	struct btrfs_file_extent_item *ei;
293 	int ret;
294 	size_t cur_size = size;
295 	u64 i_size;
296 
297 	ASSERT((compressed_size > 0 && compressed_pages) ||
298 	       (compressed_size == 0 && !compressed_pages));
299 
300 	if (compressed_size && compressed_pages)
301 		cur_size = compressed_size;
302 
303 	if (!extent_inserted) {
304 		struct btrfs_key key;
305 		size_t datasize;
306 
307 		key.objectid = btrfs_ino(inode);
308 		key.offset = 0;
309 		key.type = BTRFS_EXTENT_DATA_KEY;
310 
311 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
312 		ret = btrfs_insert_empty_item(trans, root, path, &key,
313 					      datasize);
314 		if (ret)
315 			goto fail;
316 	}
317 	leaf = path->nodes[0];
318 	ei = btrfs_item_ptr(leaf, path->slots[0],
319 			    struct btrfs_file_extent_item);
320 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
321 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
322 	btrfs_set_file_extent_encryption(leaf, ei, 0);
323 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
324 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
325 	ptr = btrfs_file_extent_inline_start(ei);
326 
327 	if (compress_type != BTRFS_COMPRESS_NONE) {
328 		struct page *cpage;
329 		int i = 0;
330 		while (compressed_size > 0) {
331 			cpage = compressed_pages[i];
332 			cur_size = min_t(unsigned long, compressed_size,
333 				       PAGE_SIZE);
334 
335 			kaddr = kmap_atomic(cpage);
336 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
337 			kunmap_atomic(kaddr);
338 
339 			i++;
340 			ptr += cur_size;
341 			compressed_size -= cur_size;
342 		}
343 		btrfs_set_file_extent_compression(leaf, ei,
344 						  compress_type);
345 	} else {
346 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
347 		btrfs_set_file_extent_compression(leaf, ei, 0);
348 		kaddr = kmap_atomic(page);
349 		write_extent_buffer(leaf, kaddr, ptr, size);
350 		kunmap_atomic(kaddr);
351 		put_page(page);
352 	}
353 	btrfs_mark_buffer_dirty(leaf);
354 	btrfs_release_path(path);
355 
356 	/*
357 	 * We align size to sectorsize for inline extents just for simplicity
358 	 * sake.
359 	 */
360 	ret = btrfs_inode_set_file_extent_range(inode, 0,
361 					ALIGN(size, root->fs_info->sectorsize));
362 	if (ret)
363 		goto fail;
364 
365 	/*
366 	 * We're an inline extent, so nobody can extend the file past i_size
367 	 * without locking a page we already have locked.
368 	 *
369 	 * We must do any i_size and inode updates before we unlock the pages.
370 	 * Otherwise we could end up racing with unlink.
371 	 */
372 	i_size = i_size_read(&inode->vfs_inode);
373 	if (update_i_size && size > i_size) {
374 		i_size_write(&inode->vfs_inode, size);
375 		i_size = size;
376 	}
377 	inode->disk_i_size = i_size;
378 
379 fail:
380 	return ret;
381 }
382 
383 
384 /*
385  * conditionally insert an inline extent into the file.  This
386  * does the checks required to make sure the data is small enough
387  * to fit as an inline extent.
388  */
389 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
390 					  size_t compressed_size,
391 					  int compress_type,
392 					  struct page **compressed_pages,
393 					  bool update_i_size)
394 {
395 	struct btrfs_drop_extents_args drop_args = { 0 };
396 	struct btrfs_root *root = inode->root;
397 	struct btrfs_fs_info *fs_info = root->fs_info;
398 	struct btrfs_trans_handle *trans;
399 	u64 data_len = (compressed_size ?: size);
400 	int ret;
401 	struct btrfs_path *path;
402 
403 	/*
404 	 * We can create an inline extent if it ends at or beyond the current
405 	 * i_size, is no larger than a sector (decompressed), and the (possibly
406 	 * compressed) data fits in a leaf and the configured maximum inline
407 	 * size.
408 	 */
409 	if (size < i_size_read(&inode->vfs_inode) ||
410 	    size > fs_info->sectorsize ||
411 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
412 	    data_len > fs_info->max_inline)
413 		return 1;
414 
415 	path = btrfs_alloc_path();
416 	if (!path)
417 		return -ENOMEM;
418 
419 	trans = btrfs_join_transaction(root);
420 	if (IS_ERR(trans)) {
421 		btrfs_free_path(path);
422 		return PTR_ERR(trans);
423 	}
424 	trans->block_rsv = &inode->block_rsv;
425 
426 	drop_args.path = path;
427 	drop_args.start = 0;
428 	drop_args.end = fs_info->sectorsize;
429 	drop_args.drop_cache = true;
430 	drop_args.replace_extent = true;
431 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
432 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
433 	if (ret) {
434 		btrfs_abort_transaction(trans, ret);
435 		goto out;
436 	}
437 
438 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
439 				   size, compressed_size, compress_type,
440 				   compressed_pages, update_i_size);
441 	if (ret && ret != -ENOSPC) {
442 		btrfs_abort_transaction(trans, ret);
443 		goto out;
444 	} else if (ret == -ENOSPC) {
445 		ret = 1;
446 		goto out;
447 	}
448 
449 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
450 	ret = btrfs_update_inode(trans, root, inode);
451 	if (ret && ret != -ENOSPC) {
452 		btrfs_abort_transaction(trans, ret);
453 		goto out;
454 	} else if (ret == -ENOSPC) {
455 		ret = 1;
456 		goto out;
457 	}
458 
459 	btrfs_set_inode_full_sync(inode);
460 out:
461 	/*
462 	 * Don't forget to free the reserved space, as for inlined extent
463 	 * it won't count as data extent, free them directly here.
464 	 * And at reserve time, it's always aligned to page size, so
465 	 * just free one page here.
466 	 */
467 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
468 	btrfs_free_path(path);
469 	btrfs_end_transaction(trans);
470 	return ret;
471 }
472 
473 struct async_extent {
474 	u64 start;
475 	u64 ram_size;
476 	u64 compressed_size;
477 	struct page **pages;
478 	unsigned long nr_pages;
479 	int compress_type;
480 	struct list_head list;
481 };
482 
483 struct async_chunk {
484 	struct inode *inode;
485 	struct page *locked_page;
486 	u64 start;
487 	u64 end;
488 	unsigned int write_flags;
489 	struct list_head extents;
490 	struct cgroup_subsys_state *blkcg_css;
491 	struct btrfs_work work;
492 	struct async_cow *async_cow;
493 };
494 
495 struct async_cow {
496 	atomic_t num_chunks;
497 	struct async_chunk chunks[];
498 };
499 
500 static noinline int add_async_extent(struct async_chunk *cow,
501 				     u64 start, u64 ram_size,
502 				     u64 compressed_size,
503 				     struct page **pages,
504 				     unsigned long nr_pages,
505 				     int compress_type)
506 {
507 	struct async_extent *async_extent;
508 
509 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
510 	BUG_ON(!async_extent); /* -ENOMEM */
511 	async_extent->start = start;
512 	async_extent->ram_size = ram_size;
513 	async_extent->compressed_size = compressed_size;
514 	async_extent->pages = pages;
515 	async_extent->nr_pages = nr_pages;
516 	async_extent->compress_type = compress_type;
517 	list_add_tail(&async_extent->list, &cow->extents);
518 	return 0;
519 }
520 
521 /*
522  * Check if the inode needs to be submitted to compression, based on mount
523  * options, defragmentation, properties or heuristics.
524  */
525 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
526 				      u64 end)
527 {
528 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
529 
530 	if (!btrfs_inode_can_compress(inode)) {
531 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
532 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
533 			btrfs_ino(inode));
534 		return 0;
535 	}
536 	/*
537 	 * Special check for subpage.
538 	 *
539 	 * We lock the full page then run each delalloc range in the page, thus
540 	 * for the following case, we will hit some subpage specific corner case:
541 	 *
542 	 * 0		32K		64K
543 	 * |	|///////|	|///////|
544 	 *		\- A		\- B
545 	 *
546 	 * In above case, both range A and range B will try to unlock the full
547 	 * page [0, 64K), causing the one finished later will have page
548 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
549 	 *
550 	 * So here we add an artificial limit that subpage compression can only
551 	 * if the range is fully page aligned.
552 	 *
553 	 * In theory we only need to ensure the first page is fully covered, but
554 	 * the tailing partial page will be locked until the full compression
555 	 * finishes, delaying the write of other range.
556 	 *
557 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
558 	 * first to prevent any submitted async extent to unlock the full page.
559 	 * By this, we can ensure for subpage case that only the last async_cow
560 	 * will unlock the full page.
561 	 */
562 	if (fs_info->sectorsize < PAGE_SIZE) {
563 		if (!IS_ALIGNED(start, PAGE_SIZE) ||
564 		    !IS_ALIGNED(end + 1, PAGE_SIZE))
565 			return 0;
566 	}
567 
568 	/* force compress */
569 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
570 		return 1;
571 	/* defrag ioctl */
572 	if (inode->defrag_compress)
573 		return 1;
574 	/* bad compression ratios */
575 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
576 		return 0;
577 	if (btrfs_test_opt(fs_info, COMPRESS) ||
578 	    inode->flags & BTRFS_INODE_COMPRESS ||
579 	    inode->prop_compress)
580 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
581 	return 0;
582 }
583 
584 static inline void inode_should_defrag(struct btrfs_inode *inode,
585 		u64 start, u64 end, u64 num_bytes, u32 small_write)
586 {
587 	/* If this is a small write inside eof, kick off a defrag */
588 	if (num_bytes < small_write &&
589 	    (start > 0 || end + 1 < inode->disk_i_size))
590 		btrfs_add_inode_defrag(NULL, inode, small_write);
591 }
592 
593 /*
594  * we create compressed extents in two phases.  The first
595  * phase compresses a range of pages that have already been
596  * locked (both pages and state bits are locked).
597  *
598  * This is done inside an ordered work queue, and the compression
599  * is spread across many cpus.  The actual IO submission is step
600  * two, and the ordered work queue takes care of making sure that
601  * happens in the same order things were put onto the queue by
602  * writepages and friends.
603  *
604  * If this code finds it can't get good compression, it puts an
605  * entry onto the work queue to write the uncompressed bytes.  This
606  * makes sure that both compressed inodes and uncompressed inodes
607  * are written in the same order that the flusher thread sent them
608  * down.
609  */
610 static noinline int compress_file_range(struct async_chunk *async_chunk)
611 {
612 	struct inode *inode = async_chunk->inode;
613 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
614 	u64 blocksize = fs_info->sectorsize;
615 	u64 start = async_chunk->start;
616 	u64 end = async_chunk->end;
617 	u64 actual_end;
618 	u64 i_size;
619 	int ret = 0;
620 	struct page **pages = NULL;
621 	unsigned long nr_pages;
622 	unsigned long total_compressed = 0;
623 	unsigned long total_in = 0;
624 	int i;
625 	int will_compress;
626 	int compress_type = fs_info->compress_type;
627 	int compressed_extents = 0;
628 	int redirty = 0;
629 
630 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
631 			SZ_16K);
632 
633 	/*
634 	 * We need to save i_size before now because it could change in between
635 	 * us evaluating the size and assigning it.  This is because we lock and
636 	 * unlock the page in truncate and fallocate, and then modify the i_size
637 	 * later on.
638 	 *
639 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
640 	 * does that for us.
641 	 */
642 	barrier();
643 	i_size = i_size_read(inode);
644 	barrier();
645 	actual_end = min_t(u64, i_size, end + 1);
646 again:
647 	will_compress = 0;
648 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
649 	nr_pages = min_t(unsigned long, nr_pages,
650 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
651 
652 	/*
653 	 * we don't want to send crud past the end of i_size through
654 	 * compression, that's just a waste of CPU time.  So, if the
655 	 * end of the file is before the start of our current
656 	 * requested range of bytes, we bail out to the uncompressed
657 	 * cleanup code that can deal with all of this.
658 	 *
659 	 * It isn't really the fastest way to fix things, but this is a
660 	 * very uncommon corner.
661 	 */
662 	if (actual_end <= start)
663 		goto cleanup_and_bail_uncompressed;
664 
665 	total_compressed = actual_end - start;
666 
667 	/*
668 	 * Skip compression for a small file range(<=blocksize) that
669 	 * isn't an inline extent, since it doesn't save disk space at all.
670 	 */
671 	if (total_compressed <= blocksize &&
672 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
673 		goto cleanup_and_bail_uncompressed;
674 
675 	/*
676 	 * For subpage case, we require full page alignment for the sector
677 	 * aligned range.
678 	 * Thus we must also check against @actual_end, not just @end.
679 	 */
680 	if (blocksize < PAGE_SIZE) {
681 		if (!IS_ALIGNED(start, PAGE_SIZE) ||
682 		    !IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE))
683 			goto cleanup_and_bail_uncompressed;
684 	}
685 
686 	total_compressed = min_t(unsigned long, total_compressed,
687 			BTRFS_MAX_UNCOMPRESSED);
688 	total_in = 0;
689 	ret = 0;
690 
691 	/*
692 	 * we do compression for mount -o compress and when the
693 	 * inode has not been flagged as nocompress.  This flag can
694 	 * change at any time if we discover bad compression ratios.
695 	 */
696 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
697 		WARN_ON(pages);
698 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
699 		if (!pages) {
700 			/* just bail out to the uncompressed code */
701 			nr_pages = 0;
702 			goto cont;
703 		}
704 
705 		if (BTRFS_I(inode)->defrag_compress)
706 			compress_type = BTRFS_I(inode)->defrag_compress;
707 		else if (BTRFS_I(inode)->prop_compress)
708 			compress_type = BTRFS_I(inode)->prop_compress;
709 
710 		/*
711 		 * we need to call clear_page_dirty_for_io on each
712 		 * page in the range.  Otherwise applications with the file
713 		 * mmap'd can wander in and change the page contents while
714 		 * we are compressing them.
715 		 *
716 		 * If the compression fails for any reason, we set the pages
717 		 * dirty again later on.
718 		 *
719 		 * Note that the remaining part is redirtied, the start pointer
720 		 * has moved, the end is the original one.
721 		 */
722 		if (!redirty) {
723 			extent_range_clear_dirty_for_io(inode, start, end);
724 			redirty = 1;
725 		}
726 
727 		/* Compression level is applied here and only here */
728 		ret = btrfs_compress_pages(
729 			compress_type | (fs_info->compress_level << 4),
730 					   inode->i_mapping, start,
731 					   pages,
732 					   &nr_pages,
733 					   &total_in,
734 					   &total_compressed);
735 
736 		if (!ret) {
737 			unsigned long offset = offset_in_page(total_compressed);
738 			struct page *page = pages[nr_pages - 1];
739 
740 			/* zero the tail end of the last page, we might be
741 			 * sending it down to disk
742 			 */
743 			if (offset)
744 				memzero_page(page, offset, PAGE_SIZE - offset);
745 			will_compress = 1;
746 		}
747 	}
748 cont:
749 	/*
750 	 * Check cow_file_range() for why we don't even try to create inline
751 	 * extent for subpage case.
752 	 */
753 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
754 		/* lets try to make an inline extent */
755 		if (ret || total_in < actual_end) {
756 			/* we didn't compress the entire range, try
757 			 * to make an uncompressed inline extent.
758 			 */
759 			ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
760 						    0, BTRFS_COMPRESS_NONE,
761 						    NULL, false);
762 		} else {
763 			/* try making a compressed inline extent */
764 			ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
765 						    total_compressed,
766 						    compress_type, pages,
767 						    false);
768 		}
769 		if (ret <= 0) {
770 			unsigned long clear_flags = EXTENT_DELALLOC |
771 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
772 				EXTENT_DO_ACCOUNTING;
773 			unsigned long page_error_op;
774 
775 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
776 
777 			/*
778 			 * inline extent creation worked or returned error,
779 			 * we don't need to create any more async work items.
780 			 * Unlock and free up our temp pages.
781 			 *
782 			 * We use DO_ACCOUNTING here because we need the
783 			 * delalloc_release_metadata to be done _after_ we drop
784 			 * our outstanding extent for clearing delalloc for this
785 			 * range.
786 			 */
787 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
788 						     NULL,
789 						     clear_flags,
790 						     PAGE_UNLOCK |
791 						     PAGE_START_WRITEBACK |
792 						     page_error_op |
793 						     PAGE_END_WRITEBACK);
794 
795 			/*
796 			 * Ensure we only free the compressed pages if we have
797 			 * them allocated, as we can still reach here with
798 			 * inode_need_compress() == false.
799 			 */
800 			if (pages) {
801 				for (i = 0; i < nr_pages; i++) {
802 					WARN_ON(pages[i]->mapping);
803 					put_page(pages[i]);
804 				}
805 				kfree(pages);
806 			}
807 			return 0;
808 		}
809 	}
810 
811 	if (will_compress) {
812 		/*
813 		 * we aren't doing an inline extent round the compressed size
814 		 * up to a block size boundary so the allocator does sane
815 		 * things
816 		 */
817 		total_compressed = ALIGN(total_compressed, blocksize);
818 
819 		/*
820 		 * one last check to make sure the compression is really a
821 		 * win, compare the page count read with the blocks on disk,
822 		 * compression must free at least one sector size
823 		 */
824 		total_in = round_up(total_in, fs_info->sectorsize);
825 		if (total_compressed + blocksize <= total_in) {
826 			compressed_extents++;
827 
828 			/*
829 			 * The async work queues will take care of doing actual
830 			 * allocation on disk for these compressed pages, and
831 			 * will submit them to the elevator.
832 			 */
833 			add_async_extent(async_chunk, start, total_in,
834 					total_compressed, pages, nr_pages,
835 					compress_type);
836 
837 			if (start + total_in < end) {
838 				start += total_in;
839 				pages = NULL;
840 				cond_resched();
841 				goto again;
842 			}
843 			return compressed_extents;
844 		}
845 	}
846 	if (pages) {
847 		/*
848 		 * the compression code ran but failed to make things smaller,
849 		 * free any pages it allocated and our page pointer array
850 		 */
851 		for (i = 0; i < nr_pages; i++) {
852 			WARN_ON(pages[i]->mapping);
853 			put_page(pages[i]);
854 		}
855 		kfree(pages);
856 		pages = NULL;
857 		total_compressed = 0;
858 		nr_pages = 0;
859 
860 		/* flag the file so we don't compress in the future */
861 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
862 		    !(BTRFS_I(inode)->prop_compress)) {
863 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
864 		}
865 	}
866 cleanup_and_bail_uncompressed:
867 	/*
868 	 * No compression, but we still need to write the pages in the file
869 	 * we've been given so far.  redirty the locked page if it corresponds
870 	 * to our extent and set things up for the async work queue to run
871 	 * cow_file_range to do the normal delalloc dance.
872 	 */
873 	if (async_chunk->locked_page &&
874 	    (page_offset(async_chunk->locked_page) >= start &&
875 	     page_offset(async_chunk->locked_page)) <= end) {
876 		__set_page_dirty_nobuffers(async_chunk->locked_page);
877 		/* unlocked later on in the async handlers */
878 	}
879 
880 	if (redirty)
881 		extent_range_redirty_for_io(inode, start, end);
882 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
883 			 BTRFS_COMPRESS_NONE);
884 	compressed_extents++;
885 
886 	return compressed_extents;
887 }
888 
889 static void free_async_extent_pages(struct async_extent *async_extent)
890 {
891 	int i;
892 
893 	if (!async_extent->pages)
894 		return;
895 
896 	for (i = 0; i < async_extent->nr_pages; i++) {
897 		WARN_ON(async_extent->pages[i]->mapping);
898 		put_page(async_extent->pages[i]);
899 	}
900 	kfree(async_extent->pages);
901 	async_extent->nr_pages = 0;
902 	async_extent->pages = NULL;
903 }
904 
905 static int submit_uncompressed_range(struct btrfs_inode *inode,
906 				     struct async_extent *async_extent,
907 				     struct page *locked_page)
908 {
909 	u64 start = async_extent->start;
910 	u64 end = async_extent->start + async_extent->ram_size - 1;
911 	unsigned long nr_written = 0;
912 	int page_started = 0;
913 	int ret;
914 
915 	/*
916 	 * Call cow_file_range() to run the delalloc range directly, since we
917 	 * won't go to NOCOW or async path again.
918 	 *
919 	 * Also we call cow_file_range() with @unlock_page == 0, so that we
920 	 * can directly submit them without interruption.
921 	 */
922 	ret = cow_file_range(inode, locked_page, start, end, &page_started,
923 			     &nr_written, 0);
924 	/* Inline extent inserted, page gets unlocked and everything is done */
925 	if (page_started) {
926 		ret = 0;
927 		goto out;
928 	}
929 	if (ret < 0) {
930 		if (locked_page)
931 			unlock_page(locked_page);
932 		goto out;
933 	}
934 
935 	ret = extent_write_locked_range(&inode->vfs_inode, start, end);
936 	/* All pages will be unlocked, including @locked_page */
937 out:
938 	kfree(async_extent);
939 	return ret;
940 }
941 
942 static int submit_one_async_extent(struct btrfs_inode *inode,
943 				   struct async_chunk *async_chunk,
944 				   struct async_extent *async_extent,
945 				   u64 *alloc_hint)
946 {
947 	struct extent_io_tree *io_tree = &inode->io_tree;
948 	struct btrfs_root *root = inode->root;
949 	struct btrfs_fs_info *fs_info = root->fs_info;
950 	struct btrfs_key ins;
951 	struct page *locked_page = NULL;
952 	struct extent_map *em;
953 	int ret = 0;
954 	u64 start = async_extent->start;
955 	u64 end = async_extent->start + async_extent->ram_size - 1;
956 
957 	/*
958 	 * If async_chunk->locked_page is in the async_extent range, we need to
959 	 * handle it.
960 	 */
961 	if (async_chunk->locked_page) {
962 		u64 locked_page_start = page_offset(async_chunk->locked_page);
963 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
964 
965 		if (!(start >= locked_page_end || end <= locked_page_start))
966 			locked_page = async_chunk->locked_page;
967 	}
968 	lock_extent(io_tree, start, end);
969 
970 	/* We have fall back to uncompressed write */
971 	if (!async_extent->pages)
972 		return submit_uncompressed_range(inode, async_extent, locked_page);
973 
974 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
975 				   async_extent->compressed_size,
976 				   async_extent->compressed_size,
977 				   0, *alloc_hint, &ins, 1, 1);
978 	if (ret) {
979 		free_async_extent_pages(async_extent);
980 		/*
981 		 * Here we used to try again by going back to non-compressed
982 		 * path for ENOSPC.  But we can't reserve space even for
983 		 * compressed size, how could it work for uncompressed size
984 		 * which requires larger size?  So here we directly go error
985 		 * path.
986 		 */
987 		goto out_free;
988 	}
989 
990 	/* Here we're doing allocation and writeback of the compressed pages */
991 	em = create_io_em(inode, start,
992 			  async_extent->ram_size,	/* len */
993 			  start,			/* orig_start */
994 			  ins.objectid,			/* block_start */
995 			  ins.offset,			/* block_len */
996 			  ins.offset,			/* orig_block_len */
997 			  async_extent->ram_size,	/* ram_bytes */
998 			  async_extent->compress_type,
999 			  BTRFS_ORDERED_COMPRESSED);
1000 	if (IS_ERR(em)) {
1001 		ret = PTR_ERR(em);
1002 		goto out_free_reserve;
1003 	}
1004 	free_extent_map(em);
1005 
1006 	ret = btrfs_add_ordered_extent(inode, start,		/* file_offset */
1007 				       async_extent->ram_size,	/* num_bytes */
1008 				       async_extent->ram_size,	/* ram_bytes */
1009 				       ins.objectid,		/* disk_bytenr */
1010 				       ins.offset,		/* disk_num_bytes */
1011 				       0,			/* offset */
1012 				       1 << BTRFS_ORDERED_COMPRESSED,
1013 				       async_extent->compress_type);
1014 	if (ret) {
1015 		btrfs_drop_extent_cache(inode, start, end, 0);
1016 		goto out_free_reserve;
1017 	}
1018 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1019 
1020 	/* Clear dirty, set writeback and unlock the pages. */
1021 	extent_clear_unlock_delalloc(inode, start, end,
1022 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1023 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1024 	if (btrfs_submit_compressed_write(inode, start,	/* file_offset */
1025 			    async_extent->ram_size,	/* num_bytes */
1026 			    ins.objectid,		/* disk_bytenr */
1027 			    ins.offset,			/* compressed_len */
1028 			    async_extent->pages,	/* compressed_pages */
1029 			    async_extent->nr_pages,
1030 			    async_chunk->write_flags,
1031 			    async_chunk->blkcg_css, true)) {
1032 		const u64 start = async_extent->start;
1033 		const u64 end = start + async_extent->ram_size - 1;
1034 
1035 		btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1036 
1037 		extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1038 					     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1039 		free_async_extent_pages(async_extent);
1040 	}
1041 	*alloc_hint = ins.objectid + ins.offset;
1042 	kfree(async_extent);
1043 	return ret;
1044 
1045 out_free_reserve:
1046 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1047 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1048 out_free:
1049 	extent_clear_unlock_delalloc(inode, start, end,
1050 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1051 				     EXTENT_DELALLOC_NEW |
1052 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1053 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1054 				     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1055 	free_async_extent_pages(async_extent);
1056 	kfree(async_extent);
1057 	return ret;
1058 }
1059 
1060 /*
1061  * Phase two of compressed writeback.  This is the ordered portion of the code,
1062  * which only gets called in the order the work was queued.  We walk all the
1063  * async extents created by compress_file_range and send them down to the disk.
1064  */
1065 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1066 {
1067 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
1068 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1069 	struct async_extent *async_extent;
1070 	u64 alloc_hint = 0;
1071 	int ret = 0;
1072 
1073 	while (!list_empty(&async_chunk->extents)) {
1074 		u64 extent_start;
1075 		u64 ram_size;
1076 
1077 		async_extent = list_entry(async_chunk->extents.next,
1078 					  struct async_extent, list);
1079 		list_del(&async_extent->list);
1080 		extent_start = async_extent->start;
1081 		ram_size = async_extent->ram_size;
1082 
1083 		ret = submit_one_async_extent(inode, async_chunk, async_extent,
1084 					      &alloc_hint);
1085 		btrfs_debug(fs_info,
1086 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1087 			    inode->root->root_key.objectid,
1088 			    btrfs_ino(inode), extent_start, ram_size, ret);
1089 	}
1090 }
1091 
1092 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1093 				      u64 num_bytes)
1094 {
1095 	struct extent_map_tree *em_tree = &inode->extent_tree;
1096 	struct extent_map *em;
1097 	u64 alloc_hint = 0;
1098 
1099 	read_lock(&em_tree->lock);
1100 	em = search_extent_mapping(em_tree, start, num_bytes);
1101 	if (em) {
1102 		/*
1103 		 * if block start isn't an actual block number then find the
1104 		 * first block in this inode and use that as a hint.  If that
1105 		 * block is also bogus then just don't worry about it.
1106 		 */
1107 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1108 			free_extent_map(em);
1109 			em = search_extent_mapping(em_tree, 0, 0);
1110 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1111 				alloc_hint = em->block_start;
1112 			if (em)
1113 				free_extent_map(em);
1114 		} else {
1115 			alloc_hint = em->block_start;
1116 			free_extent_map(em);
1117 		}
1118 	}
1119 	read_unlock(&em_tree->lock);
1120 
1121 	return alloc_hint;
1122 }
1123 
1124 /*
1125  * when extent_io.c finds a delayed allocation range in the file,
1126  * the call backs end up in this code.  The basic idea is to
1127  * allocate extents on disk for the range, and create ordered data structs
1128  * in ram to track those extents.
1129  *
1130  * locked_page is the page that writepage had locked already.  We use
1131  * it to make sure we don't do extra locks or unlocks.
1132  *
1133  * *page_started is set to one if we unlock locked_page and do everything
1134  * required to start IO on it.  It may be clean and already done with
1135  * IO when we return.
1136  */
1137 static noinline int cow_file_range(struct btrfs_inode *inode,
1138 				   struct page *locked_page,
1139 				   u64 start, u64 end, int *page_started,
1140 				   unsigned long *nr_written, int unlock)
1141 {
1142 	struct btrfs_root *root = inode->root;
1143 	struct btrfs_fs_info *fs_info = root->fs_info;
1144 	u64 alloc_hint = 0;
1145 	u64 num_bytes;
1146 	unsigned long ram_size;
1147 	u64 cur_alloc_size = 0;
1148 	u64 min_alloc_size;
1149 	u64 blocksize = fs_info->sectorsize;
1150 	struct btrfs_key ins;
1151 	struct extent_map *em;
1152 	unsigned clear_bits;
1153 	unsigned long page_ops;
1154 	bool extent_reserved = false;
1155 	int ret = 0;
1156 
1157 	if (btrfs_is_free_space_inode(inode)) {
1158 		ret = -EINVAL;
1159 		goto out_unlock;
1160 	}
1161 
1162 	num_bytes = ALIGN(end - start + 1, blocksize);
1163 	num_bytes = max(blocksize,  num_bytes);
1164 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1165 
1166 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1167 
1168 	/*
1169 	 * Due to the page size limit, for subpage we can only trigger the
1170 	 * writeback for the dirty sectors of page, that means data writeback
1171 	 * is doing more writeback than what we want.
1172 	 *
1173 	 * This is especially unexpected for some call sites like fallocate,
1174 	 * where we only increase i_size after everything is done.
1175 	 * This means we can trigger inline extent even if we didn't want to.
1176 	 * So here we skip inline extent creation completely.
1177 	 */
1178 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1179 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1180 				       end + 1);
1181 
1182 		/* lets try to make an inline extent */
1183 		ret = cow_file_range_inline(inode, actual_end, 0,
1184 					    BTRFS_COMPRESS_NONE, NULL, false);
1185 		if (ret == 0) {
1186 			/*
1187 			 * We use DO_ACCOUNTING here because we need the
1188 			 * delalloc_release_metadata to be run _after_ we drop
1189 			 * our outstanding extent for clearing delalloc for this
1190 			 * range.
1191 			 */
1192 			extent_clear_unlock_delalloc(inode, start, end,
1193 				     locked_page,
1194 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1195 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1196 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1197 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1198 			*nr_written = *nr_written +
1199 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1200 			*page_started = 1;
1201 			/*
1202 			 * locked_page is locked by the caller of
1203 			 * writepage_delalloc(), not locked by
1204 			 * __process_pages_contig().
1205 			 *
1206 			 * We can't let __process_pages_contig() to unlock it,
1207 			 * as it doesn't have any subpage::writers recorded.
1208 			 *
1209 			 * Here we manually unlock the page, since the caller
1210 			 * can't use page_started to determine if it's an
1211 			 * inline extent or a compressed extent.
1212 			 */
1213 			unlock_page(locked_page);
1214 			goto out;
1215 		} else if (ret < 0) {
1216 			goto out_unlock;
1217 		}
1218 	}
1219 
1220 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1221 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1222 
1223 	/*
1224 	 * Relocation relies on the relocated extents to have exactly the same
1225 	 * size as the original extents. Normally writeback for relocation data
1226 	 * extents follows a NOCOW path because relocation preallocates the
1227 	 * extents. However, due to an operation such as scrub turning a block
1228 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1229 	 * an extent allocated during COW has exactly the requested size and can
1230 	 * not be split into smaller extents, otherwise relocation breaks and
1231 	 * fails during the stage where it updates the bytenr of file extent
1232 	 * items.
1233 	 */
1234 	if (btrfs_is_data_reloc_root(root))
1235 		min_alloc_size = num_bytes;
1236 	else
1237 		min_alloc_size = fs_info->sectorsize;
1238 
1239 	while (num_bytes > 0) {
1240 		cur_alloc_size = num_bytes;
1241 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1242 					   min_alloc_size, 0, alloc_hint,
1243 					   &ins, 1, 1);
1244 		if (ret < 0)
1245 			goto out_unlock;
1246 		cur_alloc_size = ins.offset;
1247 		extent_reserved = true;
1248 
1249 		ram_size = ins.offset;
1250 		em = create_io_em(inode, start, ins.offset, /* len */
1251 				  start, /* orig_start */
1252 				  ins.objectid, /* block_start */
1253 				  ins.offset, /* block_len */
1254 				  ins.offset, /* orig_block_len */
1255 				  ram_size, /* ram_bytes */
1256 				  BTRFS_COMPRESS_NONE, /* compress_type */
1257 				  BTRFS_ORDERED_REGULAR /* type */);
1258 		if (IS_ERR(em)) {
1259 			ret = PTR_ERR(em);
1260 			goto out_reserve;
1261 		}
1262 		free_extent_map(em);
1263 
1264 		ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
1265 					       ins.objectid, cur_alloc_size, 0,
1266 					       1 << BTRFS_ORDERED_REGULAR,
1267 					       BTRFS_COMPRESS_NONE);
1268 		if (ret)
1269 			goto out_drop_extent_cache;
1270 
1271 		if (btrfs_is_data_reloc_root(root)) {
1272 			ret = btrfs_reloc_clone_csums(inode, start,
1273 						      cur_alloc_size);
1274 			/*
1275 			 * Only drop cache here, and process as normal.
1276 			 *
1277 			 * We must not allow extent_clear_unlock_delalloc()
1278 			 * at out_unlock label to free meta of this ordered
1279 			 * extent, as its meta should be freed by
1280 			 * btrfs_finish_ordered_io().
1281 			 *
1282 			 * So we must continue until @start is increased to
1283 			 * skip current ordered extent.
1284 			 */
1285 			if (ret)
1286 				btrfs_drop_extent_cache(inode, start,
1287 						start + ram_size - 1, 0);
1288 		}
1289 
1290 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1291 
1292 		/*
1293 		 * We're not doing compressed IO, don't unlock the first page
1294 		 * (which the caller expects to stay locked), don't clear any
1295 		 * dirty bits and don't set any writeback bits
1296 		 *
1297 		 * Do set the Ordered (Private2) bit so we know this page was
1298 		 * properly setup for writepage.
1299 		 */
1300 		page_ops = unlock ? PAGE_UNLOCK : 0;
1301 		page_ops |= PAGE_SET_ORDERED;
1302 
1303 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1304 					     locked_page,
1305 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1306 					     page_ops);
1307 		if (num_bytes < cur_alloc_size)
1308 			num_bytes = 0;
1309 		else
1310 			num_bytes -= cur_alloc_size;
1311 		alloc_hint = ins.objectid + ins.offset;
1312 		start += cur_alloc_size;
1313 		extent_reserved = false;
1314 
1315 		/*
1316 		 * btrfs_reloc_clone_csums() error, since start is increased
1317 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1318 		 * free metadata of current ordered extent, we're OK to exit.
1319 		 */
1320 		if (ret)
1321 			goto out_unlock;
1322 	}
1323 out:
1324 	return ret;
1325 
1326 out_drop_extent_cache:
1327 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1328 out_reserve:
1329 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1330 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1331 out_unlock:
1332 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1333 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1334 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1335 	/*
1336 	 * If we reserved an extent for our delalloc range (or a subrange) and
1337 	 * failed to create the respective ordered extent, then it means that
1338 	 * when we reserved the extent we decremented the extent's size from
1339 	 * the data space_info's bytes_may_use counter and incremented the
1340 	 * space_info's bytes_reserved counter by the same amount. We must make
1341 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1342 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1343 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1344 	 */
1345 	if (extent_reserved) {
1346 		extent_clear_unlock_delalloc(inode, start,
1347 					     start + cur_alloc_size - 1,
1348 					     locked_page,
1349 					     clear_bits,
1350 					     page_ops);
1351 		start += cur_alloc_size;
1352 		if (start >= end)
1353 			goto out;
1354 	}
1355 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1356 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1357 				     page_ops);
1358 	goto out;
1359 }
1360 
1361 /*
1362  * work queue call back to started compression on a file and pages
1363  */
1364 static noinline void async_cow_start(struct btrfs_work *work)
1365 {
1366 	struct async_chunk *async_chunk;
1367 	int compressed_extents;
1368 
1369 	async_chunk = container_of(work, struct async_chunk, work);
1370 
1371 	compressed_extents = compress_file_range(async_chunk);
1372 	if (compressed_extents == 0) {
1373 		btrfs_add_delayed_iput(async_chunk->inode);
1374 		async_chunk->inode = NULL;
1375 	}
1376 }
1377 
1378 /*
1379  * work queue call back to submit previously compressed pages
1380  */
1381 static noinline void async_cow_submit(struct btrfs_work *work)
1382 {
1383 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1384 						     work);
1385 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1386 	unsigned long nr_pages;
1387 
1388 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1389 		PAGE_SHIFT;
1390 
1391 	/*
1392 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1393 	 * in which case we don't have anything to submit, yet we need to
1394 	 * always adjust ->async_delalloc_pages as its paired with the init
1395 	 * happening in cow_file_range_async
1396 	 */
1397 	if (async_chunk->inode)
1398 		submit_compressed_extents(async_chunk);
1399 
1400 	/* atomic_sub_return implies a barrier */
1401 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1402 	    5 * SZ_1M)
1403 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1404 }
1405 
1406 static noinline void async_cow_free(struct btrfs_work *work)
1407 {
1408 	struct async_chunk *async_chunk;
1409 	struct async_cow *async_cow;
1410 
1411 	async_chunk = container_of(work, struct async_chunk, work);
1412 	if (async_chunk->inode)
1413 		btrfs_add_delayed_iput(async_chunk->inode);
1414 	if (async_chunk->blkcg_css)
1415 		css_put(async_chunk->blkcg_css);
1416 
1417 	async_cow = async_chunk->async_cow;
1418 	if (atomic_dec_and_test(&async_cow->num_chunks))
1419 		kvfree(async_cow);
1420 }
1421 
1422 static int cow_file_range_async(struct btrfs_inode *inode,
1423 				struct writeback_control *wbc,
1424 				struct page *locked_page,
1425 				u64 start, u64 end, int *page_started,
1426 				unsigned long *nr_written)
1427 {
1428 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1429 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1430 	struct async_cow *ctx;
1431 	struct async_chunk *async_chunk;
1432 	unsigned long nr_pages;
1433 	u64 cur_end;
1434 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1435 	int i;
1436 	bool should_compress;
1437 	unsigned nofs_flag;
1438 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1439 
1440 	unlock_extent(&inode->io_tree, start, end);
1441 
1442 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1443 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1444 		num_chunks = 1;
1445 		should_compress = false;
1446 	} else {
1447 		should_compress = true;
1448 	}
1449 
1450 	nofs_flag = memalloc_nofs_save();
1451 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1452 	memalloc_nofs_restore(nofs_flag);
1453 
1454 	if (!ctx) {
1455 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1456 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1457 			EXTENT_DO_ACCOUNTING;
1458 		unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1459 					 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1460 
1461 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1462 					     clear_bits, page_ops);
1463 		return -ENOMEM;
1464 	}
1465 
1466 	async_chunk = ctx->chunks;
1467 	atomic_set(&ctx->num_chunks, num_chunks);
1468 
1469 	for (i = 0; i < num_chunks; i++) {
1470 		if (should_compress)
1471 			cur_end = min(end, start + SZ_512K - 1);
1472 		else
1473 			cur_end = end;
1474 
1475 		/*
1476 		 * igrab is called higher up in the call chain, take only the
1477 		 * lightweight reference for the callback lifetime
1478 		 */
1479 		ihold(&inode->vfs_inode);
1480 		async_chunk[i].async_cow = ctx;
1481 		async_chunk[i].inode = &inode->vfs_inode;
1482 		async_chunk[i].start = start;
1483 		async_chunk[i].end = cur_end;
1484 		async_chunk[i].write_flags = write_flags;
1485 		INIT_LIST_HEAD(&async_chunk[i].extents);
1486 
1487 		/*
1488 		 * The locked_page comes all the way from writepage and its
1489 		 * the original page we were actually given.  As we spread
1490 		 * this large delalloc region across multiple async_chunk
1491 		 * structs, only the first struct needs a pointer to locked_page
1492 		 *
1493 		 * This way we don't need racey decisions about who is supposed
1494 		 * to unlock it.
1495 		 */
1496 		if (locked_page) {
1497 			/*
1498 			 * Depending on the compressibility, the pages might or
1499 			 * might not go through async.  We want all of them to
1500 			 * be accounted against wbc once.  Let's do it here
1501 			 * before the paths diverge.  wbc accounting is used
1502 			 * only for foreign writeback detection and doesn't
1503 			 * need full accuracy.  Just account the whole thing
1504 			 * against the first page.
1505 			 */
1506 			wbc_account_cgroup_owner(wbc, locked_page,
1507 						 cur_end - start);
1508 			async_chunk[i].locked_page = locked_page;
1509 			locked_page = NULL;
1510 		} else {
1511 			async_chunk[i].locked_page = NULL;
1512 		}
1513 
1514 		if (blkcg_css != blkcg_root_css) {
1515 			css_get(blkcg_css);
1516 			async_chunk[i].blkcg_css = blkcg_css;
1517 		} else {
1518 			async_chunk[i].blkcg_css = NULL;
1519 		}
1520 
1521 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1522 				async_cow_submit, async_cow_free);
1523 
1524 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1525 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1526 
1527 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1528 
1529 		*nr_written += nr_pages;
1530 		start = cur_end + 1;
1531 	}
1532 	*page_started = 1;
1533 	return 0;
1534 }
1535 
1536 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1537 				       struct page *locked_page, u64 start,
1538 				       u64 end, int *page_started,
1539 				       unsigned long *nr_written)
1540 {
1541 	int ret;
1542 
1543 	ret = cow_file_range(inode, locked_page, start, end, page_started,
1544 			     nr_written, 0);
1545 	if (ret)
1546 		return ret;
1547 
1548 	if (*page_started)
1549 		return 0;
1550 
1551 	__set_page_dirty_nobuffers(locked_page);
1552 	account_page_redirty(locked_page);
1553 	extent_write_locked_range(&inode->vfs_inode, start, end);
1554 	*page_started = 1;
1555 
1556 	return 0;
1557 }
1558 
1559 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1560 					u64 bytenr, u64 num_bytes)
1561 {
1562 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1563 	struct btrfs_ordered_sum *sums;
1564 	int ret;
1565 	LIST_HEAD(list);
1566 
1567 	ret = btrfs_lookup_csums_range(csum_root, bytenr,
1568 				       bytenr + num_bytes - 1, &list, 0);
1569 	if (ret == 0 && list_empty(&list))
1570 		return 0;
1571 
1572 	while (!list_empty(&list)) {
1573 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1574 		list_del(&sums->list);
1575 		kfree(sums);
1576 	}
1577 	if (ret < 0)
1578 		return ret;
1579 	return 1;
1580 }
1581 
1582 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1583 			   const u64 start, const u64 end,
1584 			   int *page_started, unsigned long *nr_written)
1585 {
1586 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1587 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1588 	const u64 range_bytes = end + 1 - start;
1589 	struct extent_io_tree *io_tree = &inode->io_tree;
1590 	u64 range_start = start;
1591 	u64 count;
1592 
1593 	/*
1594 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1595 	 * made we had not enough available data space and therefore we did not
1596 	 * reserve data space for it, since we though we could do NOCOW for the
1597 	 * respective file range (either there is prealloc extent or the inode
1598 	 * has the NOCOW bit set).
1599 	 *
1600 	 * However when we need to fallback to COW mode (because for example the
1601 	 * block group for the corresponding extent was turned to RO mode by a
1602 	 * scrub or relocation) we need to do the following:
1603 	 *
1604 	 * 1) We increment the bytes_may_use counter of the data space info.
1605 	 *    If COW succeeds, it allocates a new data extent and after doing
1606 	 *    that it decrements the space info's bytes_may_use counter and
1607 	 *    increments its bytes_reserved counter by the same amount (we do
1608 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1609 	 *    bytes_may_use counter to compensate (when space is reserved at
1610 	 *    buffered write time, the bytes_may_use counter is incremented);
1611 	 *
1612 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1613 	 *    that if the COW path fails for any reason, it decrements (through
1614 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1615 	 *    data space info, which we incremented in the step above.
1616 	 *
1617 	 * If we need to fallback to cow and the inode corresponds to a free
1618 	 * space cache inode or an inode of the data relocation tree, we must
1619 	 * also increment bytes_may_use of the data space_info for the same
1620 	 * reason. Space caches and relocated data extents always get a prealloc
1621 	 * extent for them, however scrub or balance may have set the block
1622 	 * group that contains that extent to RO mode and therefore force COW
1623 	 * when starting writeback.
1624 	 */
1625 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1626 				 EXTENT_NORESERVE, 0);
1627 	if (count > 0 || is_space_ino || is_reloc_ino) {
1628 		u64 bytes = count;
1629 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1630 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1631 
1632 		if (is_space_ino || is_reloc_ino)
1633 			bytes = range_bytes;
1634 
1635 		spin_lock(&sinfo->lock);
1636 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1637 		spin_unlock(&sinfo->lock);
1638 
1639 		if (count > 0)
1640 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1641 					 0, 0, NULL);
1642 	}
1643 
1644 	return cow_file_range(inode, locked_page, start, end, page_started,
1645 			      nr_written, 1);
1646 }
1647 
1648 struct can_nocow_file_extent_args {
1649 	/* Input fields. */
1650 
1651 	/* Start file offset of the range we want to NOCOW. */
1652 	u64 start;
1653 	/* End file offset (inclusive) of the range we want to NOCOW. */
1654 	u64 end;
1655 	bool writeback_path;
1656 	bool strict;
1657 	/*
1658 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1659 	 * anymore.
1660 	 */
1661 	bool free_path;
1662 
1663 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1664 
1665 	u64 disk_bytenr;
1666 	u64 disk_num_bytes;
1667 	u64 extent_offset;
1668 	/* Number of bytes that can be written to in NOCOW mode. */
1669 	u64 num_bytes;
1670 };
1671 
1672 /*
1673  * Check if we can NOCOW the file extent that the path points to.
1674  * This function may return with the path released, so the caller should check
1675  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1676  *
1677  * Returns: < 0 on error
1678  *            0 if we can not NOCOW
1679  *            1 if we can NOCOW
1680  */
1681 static int can_nocow_file_extent(struct btrfs_path *path,
1682 				 struct btrfs_key *key,
1683 				 struct btrfs_inode *inode,
1684 				 struct can_nocow_file_extent_args *args)
1685 {
1686 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1687 	struct extent_buffer *leaf = path->nodes[0];
1688 	struct btrfs_root *root = inode->root;
1689 	struct btrfs_file_extent_item *fi;
1690 	u64 extent_end;
1691 	u8 extent_type;
1692 	int can_nocow = 0;
1693 	int ret = 0;
1694 
1695 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1696 	extent_type = btrfs_file_extent_type(leaf, fi);
1697 
1698 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1699 		goto out;
1700 
1701 	/* Can't access these fields unless we know it's not an inline extent. */
1702 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1703 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1704 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1705 
1706 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1707 	    extent_type == BTRFS_FILE_EXTENT_REG)
1708 		goto out;
1709 
1710 	/*
1711 	 * If the extent was created before the generation where the last snapshot
1712 	 * for its subvolume was created, then this implies the extent is shared,
1713 	 * hence we must COW.
1714 	 */
1715 	if (!args->strict &&
1716 	    btrfs_file_extent_generation(leaf, fi) <=
1717 	    btrfs_root_last_snapshot(&root->root_item))
1718 		goto out;
1719 
1720 	/* An explicit hole, must COW. */
1721 	if (args->disk_bytenr == 0)
1722 		goto out;
1723 
1724 	/* Compressed/encrypted/encoded extents must be COWed. */
1725 	if (btrfs_file_extent_compression(leaf, fi) ||
1726 	    btrfs_file_extent_encryption(leaf, fi) ||
1727 	    btrfs_file_extent_other_encoding(leaf, fi))
1728 		goto out;
1729 
1730 	extent_end = btrfs_file_extent_end(path);
1731 
1732 	/*
1733 	 * The following checks can be expensive, as they need to take other
1734 	 * locks and do btree or rbtree searches, so release the path to avoid
1735 	 * blocking other tasks for too long.
1736 	 */
1737 	btrfs_release_path(path);
1738 
1739 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1740 				    key->offset - args->extent_offset,
1741 				    args->disk_bytenr, false, path);
1742 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1743 	if (ret != 0)
1744 		goto out;
1745 
1746 	if (args->free_path) {
1747 		/*
1748 		 * We don't need the path anymore, plus through the
1749 		 * csum_exist_in_range() call below we will end up allocating
1750 		 * another path. So free the path to avoid unnecessary extra
1751 		 * memory usage.
1752 		 */
1753 		btrfs_free_path(path);
1754 		path = NULL;
1755 	}
1756 
1757 	/* If there are pending snapshots for this root, we must COW. */
1758 	if (args->writeback_path && !is_freespace_inode &&
1759 	    atomic_read(&root->snapshot_force_cow))
1760 		goto out;
1761 
1762 	args->disk_bytenr += args->extent_offset;
1763 	args->disk_bytenr += args->start - key->offset;
1764 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1765 
1766 	/*
1767 	 * Force COW if csums exist in the range. This ensures that csums for a
1768 	 * given extent are either valid or do not exist.
1769 	 */
1770 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes);
1771 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1772 	if (ret != 0)
1773 		goto out;
1774 
1775 	can_nocow = 1;
1776  out:
1777 	if (args->free_path && path)
1778 		btrfs_free_path(path);
1779 
1780 	return ret < 0 ? ret : can_nocow;
1781 }
1782 
1783 /*
1784  * when nowcow writeback call back.  This checks for snapshots or COW copies
1785  * of the extents that exist in the file, and COWs the file as required.
1786  *
1787  * If no cow copies or snapshots exist, we write directly to the existing
1788  * blocks on disk
1789  */
1790 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1791 				       struct page *locked_page,
1792 				       const u64 start, const u64 end,
1793 				       int *page_started,
1794 				       unsigned long *nr_written)
1795 {
1796 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1797 	struct btrfs_root *root = inode->root;
1798 	struct btrfs_path *path;
1799 	u64 cow_start = (u64)-1;
1800 	u64 cur_offset = start;
1801 	int ret;
1802 	bool check_prev = true;
1803 	u64 ino = btrfs_ino(inode);
1804 	struct btrfs_block_group *bg;
1805 	bool nocow = false;
1806 	struct can_nocow_file_extent_args nocow_args = { 0 };
1807 
1808 	path = btrfs_alloc_path();
1809 	if (!path) {
1810 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1811 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1812 					     EXTENT_DO_ACCOUNTING |
1813 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1814 					     PAGE_START_WRITEBACK |
1815 					     PAGE_END_WRITEBACK);
1816 		return -ENOMEM;
1817 	}
1818 
1819 	nocow_args.end = end;
1820 	nocow_args.writeback_path = true;
1821 
1822 	while (1) {
1823 		struct btrfs_key found_key;
1824 		struct btrfs_file_extent_item *fi;
1825 		struct extent_buffer *leaf;
1826 		u64 extent_end;
1827 		u64 ram_bytes;
1828 		u64 nocow_end;
1829 		int extent_type;
1830 
1831 		nocow = false;
1832 
1833 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1834 					       cur_offset, 0);
1835 		if (ret < 0)
1836 			goto error;
1837 
1838 		/*
1839 		 * If there is no extent for our range when doing the initial
1840 		 * search, then go back to the previous slot as it will be the
1841 		 * one containing the search offset
1842 		 */
1843 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1844 			leaf = path->nodes[0];
1845 			btrfs_item_key_to_cpu(leaf, &found_key,
1846 					      path->slots[0] - 1);
1847 			if (found_key.objectid == ino &&
1848 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1849 				path->slots[0]--;
1850 		}
1851 		check_prev = false;
1852 next_slot:
1853 		/* Go to next leaf if we have exhausted the current one */
1854 		leaf = path->nodes[0];
1855 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1856 			ret = btrfs_next_leaf(root, path);
1857 			if (ret < 0) {
1858 				if (cow_start != (u64)-1)
1859 					cur_offset = cow_start;
1860 				goto error;
1861 			}
1862 			if (ret > 0)
1863 				break;
1864 			leaf = path->nodes[0];
1865 		}
1866 
1867 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1868 
1869 		/* Didn't find anything for our INO */
1870 		if (found_key.objectid > ino)
1871 			break;
1872 		/*
1873 		 * Keep searching until we find an EXTENT_ITEM or there are no
1874 		 * more extents for this inode
1875 		 */
1876 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1877 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1878 			path->slots[0]++;
1879 			goto next_slot;
1880 		}
1881 
1882 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1883 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1884 		    found_key.offset > end)
1885 			break;
1886 
1887 		/*
1888 		 * If the found extent starts after requested offset, then
1889 		 * adjust extent_end to be right before this extent begins
1890 		 */
1891 		if (found_key.offset > cur_offset) {
1892 			extent_end = found_key.offset;
1893 			extent_type = 0;
1894 			goto out_check;
1895 		}
1896 
1897 		/*
1898 		 * Found extent which begins before our range and potentially
1899 		 * intersect it
1900 		 */
1901 		fi = btrfs_item_ptr(leaf, path->slots[0],
1902 				    struct btrfs_file_extent_item);
1903 		extent_type = btrfs_file_extent_type(leaf, fi);
1904 		/* If this is triggered then we have a memory corruption. */
1905 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
1906 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
1907 			ret = -EUCLEAN;
1908 			goto error;
1909 		}
1910 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1911 		extent_end = btrfs_file_extent_end(path);
1912 
1913 		/*
1914 		 * If the extent we got ends before our current offset, skip to
1915 		 * the next extent.
1916 		 */
1917 		if (extent_end <= cur_offset) {
1918 			path->slots[0]++;
1919 			goto next_slot;
1920 		}
1921 
1922 		nocow_args.start = cur_offset;
1923 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
1924 		if (ret < 0) {
1925 			if (cow_start != (u64)-1)
1926 				cur_offset = cow_start;
1927 			goto error;
1928 		} else if (ret == 0) {
1929 			goto out_check;
1930 		}
1931 
1932 		ret = 0;
1933 		bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
1934 		if (bg)
1935 			nocow = true;
1936 out_check:
1937 		/*
1938 		 * If nocow is false then record the beginning of the range
1939 		 * that needs to be COWed
1940 		 */
1941 		if (!nocow) {
1942 			if (cow_start == (u64)-1)
1943 				cow_start = cur_offset;
1944 			cur_offset = extent_end;
1945 			if (cur_offset > end)
1946 				break;
1947 			if (!path->nodes[0])
1948 				continue;
1949 			path->slots[0]++;
1950 			goto next_slot;
1951 		}
1952 
1953 		/*
1954 		 * COW range from cow_start to found_key.offset - 1. As the key
1955 		 * will contain the beginning of the first extent that can be
1956 		 * NOCOW, following one which needs to be COW'ed
1957 		 */
1958 		if (cow_start != (u64)-1) {
1959 			ret = fallback_to_cow(inode, locked_page,
1960 					      cow_start, found_key.offset - 1,
1961 					      page_started, nr_written);
1962 			if (ret)
1963 				goto error;
1964 			cow_start = (u64)-1;
1965 		}
1966 
1967 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
1968 
1969 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1970 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
1971 			struct extent_map *em;
1972 
1973 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
1974 					  orig_start,
1975 					  nocow_args.disk_bytenr, /* block_start */
1976 					  nocow_args.num_bytes, /* block_len */
1977 					  nocow_args.disk_num_bytes, /* orig_block_len */
1978 					  ram_bytes, BTRFS_COMPRESS_NONE,
1979 					  BTRFS_ORDERED_PREALLOC);
1980 			if (IS_ERR(em)) {
1981 				ret = PTR_ERR(em);
1982 				goto error;
1983 			}
1984 			free_extent_map(em);
1985 			ret = btrfs_add_ordered_extent(inode,
1986 					cur_offset, nocow_args.num_bytes,
1987 					nocow_args.num_bytes,
1988 					nocow_args.disk_bytenr,
1989 					nocow_args.num_bytes, 0,
1990 					1 << BTRFS_ORDERED_PREALLOC,
1991 					BTRFS_COMPRESS_NONE);
1992 			if (ret) {
1993 				btrfs_drop_extent_cache(inode, cur_offset,
1994 							nocow_end, 0);
1995 				goto error;
1996 			}
1997 		} else {
1998 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1999 						       nocow_args.num_bytes,
2000 						       nocow_args.num_bytes,
2001 						       nocow_args.disk_bytenr,
2002 						       nocow_args.num_bytes,
2003 						       0,
2004 						       1 << BTRFS_ORDERED_NOCOW,
2005 						       BTRFS_COMPRESS_NONE);
2006 			if (ret)
2007 				goto error;
2008 		}
2009 
2010 		if (nocow) {
2011 			btrfs_dec_nocow_writers(bg);
2012 			nocow = false;
2013 		}
2014 
2015 		if (btrfs_is_data_reloc_root(root))
2016 			/*
2017 			 * Error handled later, as we must prevent
2018 			 * extent_clear_unlock_delalloc() in error handler
2019 			 * from freeing metadata of created ordered extent.
2020 			 */
2021 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
2022 						      nocow_args.num_bytes);
2023 
2024 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2025 					     locked_page, EXTENT_LOCKED |
2026 					     EXTENT_DELALLOC |
2027 					     EXTENT_CLEAR_DATA_RESV,
2028 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2029 
2030 		cur_offset = extent_end;
2031 
2032 		/*
2033 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2034 		 * handler, as metadata for created ordered extent will only
2035 		 * be freed by btrfs_finish_ordered_io().
2036 		 */
2037 		if (ret)
2038 			goto error;
2039 		if (cur_offset > end)
2040 			break;
2041 	}
2042 	btrfs_release_path(path);
2043 
2044 	if (cur_offset <= end && cow_start == (u64)-1)
2045 		cow_start = cur_offset;
2046 
2047 	if (cow_start != (u64)-1) {
2048 		cur_offset = end;
2049 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
2050 				      page_started, nr_written);
2051 		if (ret)
2052 			goto error;
2053 	}
2054 
2055 error:
2056 	if (nocow)
2057 		btrfs_dec_nocow_writers(bg);
2058 
2059 	if (ret && cur_offset < end)
2060 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2061 					     locked_page, EXTENT_LOCKED |
2062 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2063 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2064 					     PAGE_START_WRITEBACK |
2065 					     PAGE_END_WRITEBACK);
2066 	btrfs_free_path(path);
2067 	return ret;
2068 }
2069 
2070 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2071 {
2072 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2073 		if (inode->defrag_bytes &&
2074 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2075 				   0, NULL))
2076 			return false;
2077 		return true;
2078 	}
2079 	return false;
2080 }
2081 
2082 /*
2083  * Function to process delayed allocation (create CoW) for ranges which are
2084  * being touched for the first time.
2085  */
2086 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2087 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
2088 		struct writeback_control *wbc)
2089 {
2090 	int ret;
2091 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2092 
2093 	/*
2094 	 * The range must cover part of the @locked_page, or the returned
2095 	 * @page_started can confuse the caller.
2096 	 */
2097 	ASSERT(!(end <= page_offset(locked_page) ||
2098 		 start >= page_offset(locked_page) + PAGE_SIZE));
2099 
2100 	if (should_nocow(inode, start, end)) {
2101 		/*
2102 		 * Normally on a zoned device we're only doing COW writes, but
2103 		 * in case of relocation on a zoned filesystem we have taken
2104 		 * precaution, that we're only writing sequentially. It's safe
2105 		 * to use run_delalloc_nocow() here, like for  regular
2106 		 * preallocated inodes.
2107 		 */
2108 		ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2109 		ret = run_delalloc_nocow(inode, locked_page, start, end,
2110 					 page_started, nr_written);
2111 	} else if (!btrfs_inode_can_compress(inode) ||
2112 		   !inode_need_compress(inode, start, end)) {
2113 		if (zoned)
2114 			ret = run_delalloc_zoned(inode, locked_page, start, end,
2115 						 page_started, nr_written);
2116 		else
2117 			ret = cow_file_range(inode, locked_page, start, end,
2118 					     page_started, nr_written, 1);
2119 	} else {
2120 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2121 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2122 					   page_started, nr_written);
2123 	}
2124 	ASSERT(ret <= 0);
2125 	if (ret)
2126 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2127 					      end - start + 1);
2128 	return ret;
2129 }
2130 
2131 void btrfs_split_delalloc_extent(struct inode *inode,
2132 				 struct extent_state *orig, u64 split)
2133 {
2134 	u64 size;
2135 
2136 	/* not delalloc, ignore it */
2137 	if (!(orig->state & EXTENT_DELALLOC))
2138 		return;
2139 
2140 	size = orig->end - orig->start + 1;
2141 	if (size > BTRFS_MAX_EXTENT_SIZE) {
2142 		u32 num_extents;
2143 		u64 new_size;
2144 
2145 		/*
2146 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2147 		 * applies here, just in reverse.
2148 		 */
2149 		new_size = orig->end - split + 1;
2150 		num_extents = count_max_extents(new_size);
2151 		new_size = split - orig->start;
2152 		num_extents += count_max_extents(new_size);
2153 		if (count_max_extents(size) >= num_extents)
2154 			return;
2155 	}
2156 
2157 	spin_lock(&BTRFS_I(inode)->lock);
2158 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2159 	spin_unlock(&BTRFS_I(inode)->lock);
2160 }
2161 
2162 /*
2163  * Handle merged delayed allocation extents so we can keep track of new extents
2164  * that are just merged onto old extents, such as when we are doing sequential
2165  * writes, so we can properly account for the metadata space we'll need.
2166  */
2167 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2168 				 struct extent_state *other)
2169 {
2170 	u64 new_size, old_size;
2171 	u32 num_extents;
2172 
2173 	/* not delalloc, ignore it */
2174 	if (!(other->state & EXTENT_DELALLOC))
2175 		return;
2176 
2177 	if (new->start > other->start)
2178 		new_size = new->end - other->start + 1;
2179 	else
2180 		new_size = other->end - new->start + 1;
2181 
2182 	/* we're not bigger than the max, unreserve the space and go */
2183 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
2184 		spin_lock(&BTRFS_I(inode)->lock);
2185 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2186 		spin_unlock(&BTRFS_I(inode)->lock);
2187 		return;
2188 	}
2189 
2190 	/*
2191 	 * We have to add up either side to figure out how many extents were
2192 	 * accounted for before we merged into one big extent.  If the number of
2193 	 * extents we accounted for is <= the amount we need for the new range
2194 	 * then we can return, otherwise drop.  Think of it like this
2195 	 *
2196 	 * [ 4k][MAX_SIZE]
2197 	 *
2198 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2199 	 * need 2 outstanding extents, on one side we have 1 and the other side
2200 	 * we have 1 so they are == and we can return.  But in this case
2201 	 *
2202 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2203 	 *
2204 	 * Each range on their own accounts for 2 extents, but merged together
2205 	 * they are only 3 extents worth of accounting, so we need to drop in
2206 	 * this case.
2207 	 */
2208 	old_size = other->end - other->start + 1;
2209 	num_extents = count_max_extents(old_size);
2210 	old_size = new->end - new->start + 1;
2211 	num_extents += count_max_extents(old_size);
2212 	if (count_max_extents(new_size) >= num_extents)
2213 		return;
2214 
2215 	spin_lock(&BTRFS_I(inode)->lock);
2216 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2217 	spin_unlock(&BTRFS_I(inode)->lock);
2218 }
2219 
2220 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2221 				      struct inode *inode)
2222 {
2223 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2224 
2225 	spin_lock(&root->delalloc_lock);
2226 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2227 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2228 			      &root->delalloc_inodes);
2229 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2230 			&BTRFS_I(inode)->runtime_flags);
2231 		root->nr_delalloc_inodes++;
2232 		if (root->nr_delalloc_inodes == 1) {
2233 			spin_lock(&fs_info->delalloc_root_lock);
2234 			BUG_ON(!list_empty(&root->delalloc_root));
2235 			list_add_tail(&root->delalloc_root,
2236 				      &fs_info->delalloc_roots);
2237 			spin_unlock(&fs_info->delalloc_root_lock);
2238 		}
2239 	}
2240 	spin_unlock(&root->delalloc_lock);
2241 }
2242 
2243 
2244 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2245 				struct btrfs_inode *inode)
2246 {
2247 	struct btrfs_fs_info *fs_info = root->fs_info;
2248 
2249 	if (!list_empty(&inode->delalloc_inodes)) {
2250 		list_del_init(&inode->delalloc_inodes);
2251 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2252 			  &inode->runtime_flags);
2253 		root->nr_delalloc_inodes--;
2254 		if (!root->nr_delalloc_inodes) {
2255 			ASSERT(list_empty(&root->delalloc_inodes));
2256 			spin_lock(&fs_info->delalloc_root_lock);
2257 			BUG_ON(list_empty(&root->delalloc_root));
2258 			list_del_init(&root->delalloc_root);
2259 			spin_unlock(&fs_info->delalloc_root_lock);
2260 		}
2261 	}
2262 }
2263 
2264 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2265 				     struct btrfs_inode *inode)
2266 {
2267 	spin_lock(&root->delalloc_lock);
2268 	__btrfs_del_delalloc_inode(root, inode);
2269 	spin_unlock(&root->delalloc_lock);
2270 }
2271 
2272 /*
2273  * Properly track delayed allocation bytes in the inode and to maintain the
2274  * list of inodes that have pending delalloc work to be done.
2275  */
2276 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2277 			       unsigned *bits)
2278 {
2279 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2280 
2281 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2282 		WARN_ON(1);
2283 	/*
2284 	 * set_bit and clear bit hooks normally require _irqsave/restore
2285 	 * but in this case, we are only testing for the DELALLOC
2286 	 * bit, which is only set or cleared with irqs on
2287 	 */
2288 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2289 		struct btrfs_root *root = BTRFS_I(inode)->root;
2290 		u64 len = state->end + 1 - state->start;
2291 		u32 num_extents = count_max_extents(len);
2292 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2293 
2294 		spin_lock(&BTRFS_I(inode)->lock);
2295 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2296 		spin_unlock(&BTRFS_I(inode)->lock);
2297 
2298 		/* For sanity tests */
2299 		if (btrfs_is_testing(fs_info))
2300 			return;
2301 
2302 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2303 					 fs_info->delalloc_batch);
2304 		spin_lock(&BTRFS_I(inode)->lock);
2305 		BTRFS_I(inode)->delalloc_bytes += len;
2306 		if (*bits & EXTENT_DEFRAG)
2307 			BTRFS_I(inode)->defrag_bytes += len;
2308 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2309 					 &BTRFS_I(inode)->runtime_flags))
2310 			btrfs_add_delalloc_inodes(root, inode);
2311 		spin_unlock(&BTRFS_I(inode)->lock);
2312 	}
2313 
2314 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2315 	    (*bits & EXTENT_DELALLOC_NEW)) {
2316 		spin_lock(&BTRFS_I(inode)->lock);
2317 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2318 			state->start;
2319 		spin_unlock(&BTRFS_I(inode)->lock);
2320 	}
2321 }
2322 
2323 /*
2324  * Once a range is no longer delalloc this function ensures that proper
2325  * accounting happens.
2326  */
2327 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2328 				 struct extent_state *state, unsigned *bits)
2329 {
2330 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2331 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2332 	u64 len = state->end + 1 - state->start;
2333 	u32 num_extents = count_max_extents(len);
2334 
2335 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2336 		spin_lock(&inode->lock);
2337 		inode->defrag_bytes -= len;
2338 		spin_unlock(&inode->lock);
2339 	}
2340 
2341 	/*
2342 	 * set_bit and clear bit hooks normally require _irqsave/restore
2343 	 * but in this case, we are only testing for the DELALLOC
2344 	 * bit, which is only set or cleared with irqs on
2345 	 */
2346 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2347 		struct btrfs_root *root = inode->root;
2348 		bool do_list = !btrfs_is_free_space_inode(inode);
2349 
2350 		spin_lock(&inode->lock);
2351 		btrfs_mod_outstanding_extents(inode, -num_extents);
2352 		spin_unlock(&inode->lock);
2353 
2354 		/*
2355 		 * We don't reserve metadata space for space cache inodes so we
2356 		 * don't need to call delalloc_release_metadata if there is an
2357 		 * error.
2358 		 */
2359 		if (*bits & EXTENT_CLEAR_META_RESV &&
2360 		    root != fs_info->tree_root)
2361 			btrfs_delalloc_release_metadata(inode, len, false);
2362 
2363 		/* For sanity tests. */
2364 		if (btrfs_is_testing(fs_info))
2365 			return;
2366 
2367 		if (!btrfs_is_data_reloc_root(root) &&
2368 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2369 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2370 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2371 
2372 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2373 					 fs_info->delalloc_batch);
2374 		spin_lock(&inode->lock);
2375 		inode->delalloc_bytes -= len;
2376 		if (do_list && inode->delalloc_bytes == 0 &&
2377 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2378 					&inode->runtime_flags))
2379 			btrfs_del_delalloc_inode(root, inode);
2380 		spin_unlock(&inode->lock);
2381 	}
2382 
2383 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2384 	    (*bits & EXTENT_DELALLOC_NEW)) {
2385 		spin_lock(&inode->lock);
2386 		ASSERT(inode->new_delalloc_bytes >= len);
2387 		inode->new_delalloc_bytes -= len;
2388 		if (*bits & EXTENT_ADD_INODE_BYTES)
2389 			inode_add_bytes(&inode->vfs_inode, len);
2390 		spin_unlock(&inode->lock);
2391 	}
2392 }
2393 
2394 /*
2395  * in order to insert checksums into the metadata in large chunks,
2396  * we wait until bio submission time.   All the pages in the bio are
2397  * checksummed and sums are attached onto the ordered extent record.
2398  *
2399  * At IO completion time the cums attached on the ordered extent record
2400  * are inserted into the btree
2401  */
2402 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2403 					   u64 dio_file_offset)
2404 {
2405 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2406 }
2407 
2408 /*
2409  * Split an extent_map at [start, start + len]
2410  *
2411  * This function is intended to be used only for extract_ordered_extent().
2412  */
2413 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2414 			  u64 pre, u64 post)
2415 {
2416 	struct extent_map_tree *em_tree = &inode->extent_tree;
2417 	struct extent_map *em;
2418 	struct extent_map *split_pre = NULL;
2419 	struct extent_map *split_mid = NULL;
2420 	struct extent_map *split_post = NULL;
2421 	int ret = 0;
2422 	unsigned long flags;
2423 
2424 	/* Sanity check */
2425 	if (pre == 0 && post == 0)
2426 		return 0;
2427 
2428 	split_pre = alloc_extent_map();
2429 	if (pre)
2430 		split_mid = alloc_extent_map();
2431 	if (post)
2432 		split_post = alloc_extent_map();
2433 	if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2434 		ret = -ENOMEM;
2435 		goto out;
2436 	}
2437 
2438 	ASSERT(pre + post < len);
2439 
2440 	lock_extent(&inode->io_tree, start, start + len - 1);
2441 	write_lock(&em_tree->lock);
2442 	em = lookup_extent_mapping(em_tree, start, len);
2443 	if (!em) {
2444 		ret = -EIO;
2445 		goto out_unlock;
2446 	}
2447 
2448 	ASSERT(em->len == len);
2449 	ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2450 	ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2451 	ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2452 	ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2453 	ASSERT(!list_empty(&em->list));
2454 
2455 	flags = em->flags;
2456 	clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2457 
2458 	/* First, replace the em with a new extent_map starting from * em->start */
2459 	split_pre->start = em->start;
2460 	split_pre->len = (pre ? pre : em->len - post);
2461 	split_pre->orig_start = split_pre->start;
2462 	split_pre->block_start = em->block_start;
2463 	split_pre->block_len = split_pre->len;
2464 	split_pre->orig_block_len = split_pre->block_len;
2465 	split_pre->ram_bytes = split_pre->len;
2466 	split_pre->flags = flags;
2467 	split_pre->compress_type = em->compress_type;
2468 	split_pre->generation = em->generation;
2469 
2470 	replace_extent_mapping(em_tree, em, split_pre, 1);
2471 
2472 	/*
2473 	 * Now we only have an extent_map at:
2474 	 *     [em->start, em->start + pre] if pre != 0
2475 	 *     [em->start, em->start + em->len - post] if pre == 0
2476 	 */
2477 
2478 	if (pre) {
2479 		/* Insert the middle extent_map */
2480 		split_mid->start = em->start + pre;
2481 		split_mid->len = em->len - pre - post;
2482 		split_mid->orig_start = split_mid->start;
2483 		split_mid->block_start = em->block_start + pre;
2484 		split_mid->block_len = split_mid->len;
2485 		split_mid->orig_block_len = split_mid->block_len;
2486 		split_mid->ram_bytes = split_mid->len;
2487 		split_mid->flags = flags;
2488 		split_mid->compress_type = em->compress_type;
2489 		split_mid->generation = em->generation;
2490 		add_extent_mapping(em_tree, split_mid, 1);
2491 	}
2492 
2493 	if (post) {
2494 		split_post->start = em->start + em->len - post;
2495 		split_post->len = post;
2496 		split_post->orig_start = split_post->start;
2497 		split_post->block_start = em->block_start + em->len - post;
2498 		split_post->block_len = split_post->len;
2499 		split_post->orig_block_len = split_post->block_len;
2500 		split_post->ram_bytes = split_post->len;
2501 		split_post->flags = flags;
2502 		split_post->compress_type = em->compress_type;
2503 		split_post->generation = em->generation;
2504 		add_extent_mapping(em_tree, split_post, 1);
2505 	}
2506 
2507 	/* Once for us */
2508 	free_extent_map(em);
2509 	/* Once for the tree */
2510 	free_extent_map(em);
2511 
2512 out_unlock:
2513 	write_unlock(&em_tree->lock);
2514 	unlock_extent(&inode->io_tree, start, start + len - 1);
2515 out:
2516 	free_extent_map(split_pre);
2517 	free_extent_map(split_mid);
2518 	free_extent_map(split_post);
2519 
2520 	return ret;
2521 }
2522 
2523 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2524 					   struct bio *bio, loff_t file_offset)
2525 {
2526 	struct btrfs_ordered_extent *ordered;
2527 	u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2528 	u64 file_len;
2529 	u64 len = bio->bi_iter.bi_size;
2530 	u64 end = start + len;
2531 	u64 ordered_end;
2532 	u64 pre, post;
2533 	int ret = 0;
2534 
2535 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2536 	if (WARN_ON_ONCE(!ordered))
2537 		return BLK_STS_IOERR;
2538 
2539 	/* No need to split */
2540 	if (ordered->disk_num_bytes == len)
2541 		goto out;
2542 
2543 	/* We cannot split once end_bio'd ordered extent */
2544 	if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2545 		ret = -EINVAL;
2546 		goto out;
2547 	}
2548 
2549 	/* We cannot split a compressed ordered extent */
2550 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2551 		ret = -EINVAL;
2552 		goto out;
2553 	}
2554 
2555 	ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2556 	/* bio must be in one ordered extent */
2557 	if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2558 		ret = -EINVAL;
2559 		goto out;
2560 	}
2561 
2562 	/* Checksum list should be empty */
2563 	if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2564 		ret = -EINVAL;
2565 		goto out;
2566 	}
2567 
2568 	file_len = ordered->num_bytes;
2569 	pre = start - ordered->disk_bytenr;
2570 	post = ordered_end - end;
2571 
2572 	ret = btrfs_split_ordered_extent(ordered, pre, post);
2573 	if (ret)
2574 		goto out;
2575 	ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2576 
2577 out:
2578 	btrfs_put_ordered_extent(ordered);
2579 
2580 	return errno_to_blk_status(ret);
2581 }
2582 
2583 /*
2584  * extent_io.c submission hook. This does the right thing for csum calculation
2585  * on write, or reading the csums from the tree before a read.
2586  *
2587  * Rules about async/sync submit,
2588  * a) read:				sync submit
2589  *
2590  * b) write without checksum:		sync submit
2591  *
2592  * c) write with checksum:
2593  *    c-1) if bio is issued by fsync:	sync submit
2594  *         (sync_writers != 0)
2595  *
2596  *    c-2) if root is reloc root:	sync submit
2597  *         (only in case of buffered IO)
2598  *
2599  *    c-3) otherwise:			async submit
2600  */
2601 void btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2602 			   int mirror_num, enum btrfs_compression_type compress_type)
2603 {
2604 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2605 	struct btrfs_root *root = BTRFS_I(inode)->root;
2606 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2607 	blk_status_t ret = 0;
2608 	int skip_sum;
2609 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2610 
2611 	skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2612 		test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2613 
2614 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2615 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2616 
2617 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2618 		struct page *page = bio_first_bvec_all(bio)->bv_page;
2619 		loff_t file_offset = page_offset(page);
2620 
2621 		ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2622 		if (ret)
2623 			goto out;
2624 	}
2625 
2626 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2627 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2628 		if (ret)
2629 			goto out;
2630 
2631 		if (compress_type != BTRFS_COMPRESS_NONE) {
2632 			/*
2633 			 * btrfs_submit_compressed_read will handle completing
2634 			 * the bio if there were any errors, so just return
2635 			 * here.
2636 			 */
2637 			btrfs_submit_compressed_read(inode, bio, mirror_num);
2638 			return;
2639 		} else {
2640 			/*
2641 			 * Lookup bio sums does extra checks around whether we
2642 			 * need to csum or not, which is why we ignore skip_sum
2643 			 * here.
2644 			 */
2645 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2646 			if (ret)
2647 				goto out;
2648 		}
2649 		goto mapit;
2650 	} else if (async && !skip_sum) {
2651 		/* csum items have already been cloned */
2652 		if (btrfs_is_data_reloc_root(root))
2653 			goto mapit;
2654 		/* we're doing a write, do the async checksumming */
2655 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num,
2656 					  0, btrfs_submit_bio_start);
2657 		goto out;
2658 	} else if (!skip_sum) {
2659 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2660 		if (ret)
2661 			goto out;
2662 	}
2663 
2664 mapit:
2665 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2666 
2667 out:
2668 	if (ret) {
2669 		bio->bi_status = ret;
2670 		bio_endio(bio);
2671 	}
2672 }
2673 
2674 /*
2675  * given a list of ordered sums record them in the inode.  This happens
2676  * at IO completion time based on sums calculated at bio submission time.
2677  */
2678 static int add_pending_csums(struct btrfs_trans_handle *trans,
2679 			     struct list_head *list)
2680 {
2681 	struct btrfs_ordered_sum *sum;
2682 	struct btrfs_root *csum_root = NULL;
2683 	int ret;
2684 
2685 	list_for_each_entry(sum, list, list) {
2686 		trans->adding_csums = true;
2687 		if (!csum_root)
2688 			csum_root = btrfs_csum_root(trans->fs_info,
2689 						    sum->bytenr);
2690 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2691 		trans->adding_csums = false;
2692 		if (ret)
2693 			return ret;
2694 	}
2695 	return 0;
2696 }
2697 
2698 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2699 					 const u64 start,
2700 					 const u64 len,
2701 					 struct extent_state **cached_state)
2702 {
2703 	u64 search_start = start;
2704 	const u64 end = start + len - 1;
2705 
2706 	while (search_start < end) {
2707 		const u64 search_len = end - search_start + 1;
2708 		struct extent_map *em;
2709 		u64 em_len;
2710 		int ret = 0;
2711 
2712 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2713 		if (IS_ERR(em))
2714 			return PTR_ERR(em);
2715 
2716 		if (em->block_start != EXTENT_MAP_HOLE)
2717 			goto next;
2718 
2719 		em_len = em->len;
2720 		if (em->start < search_start)
2721 			em_len -= search_start - em->start;
2722 		if (em_len > search_len)
2723 			em_len = search_len;
2724 
2725 		ret = set_extent_bit(&inode->io_tree, search_start,
2726 				     search_start + em_len - 1,
2727 				     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2728 				     GFP_NOFS, NULL);
2729 next:
2730 		search_start = extent_map_end(em);
2731 		free_extent_map(em);
2732 		if (ret)
2733 			return ret;
2734 	}
2735 	return 0;
2736 }
2737 
2738 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2739 			      unsigned int extra_bits,
2740 			      struct extent_state **cached_state)
2741 {
2742 	WARN_ON(PAGE_ALIGNED(end));
2743 
2744 	if (start >= i_size_read(&inode->vfs_inode) &&
2745 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2746 		/*
2747 		 * There can't be any extents following eof in this case so just
2748 		 * set the delalloc new bit for the range directly.
2749 		 */
2750 		extra_bits |= EXTENT_DELALLOC_NEW;
2751 	} else {
2752 		int ret;
2753 
2754 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2755 						    end + 1 - start,
2756 						    cached_state);
2757 		if (ret)
2758 			return ret;
2759 	}
2760 
2761 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2762 				   cached_state);
2763 }
2764 
2765 /* see btrfs_writepage_start_hook for details on why this is required */
2766 struct btrfs_writepage_fixup {
2767 	struct page *page;
2768 	struct inode *inode;
2769 	struct btrfs_work work;
2770 };
2771 
2772 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2773 {
2774 	struct btrfs_writepage_fixup *fixup;
2775 	struct btrfs_ordered_extent *ordered;
2776 	struct extent_state *cached_state = NULL;
2777 	struct extent_changeset *data_reserved = NULL;
2778 	struct page *page;
2779 	struct btrfs_inode *inode;
2780 	u64 page_start;
2781 	u64 page_end;
2782 	int ret = 0;
2783 	bool free_delalloc_space = true;
2784 
2785 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2786 	page = fixup->page;
2787 	inode = BTRFS_I(fixup->inode);
2788 	page_start = page_offset(page);
2789 	page_end = page_offset(page) + PAGE_SIZE - 1;
2790 
2791 	/*
2792 	 * This is similar to page_mkwrite, we need to reserve the space before
2793 	 * we take the page lock.
2794 	 */
2795 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2796 					   PAGE_SIZE);
2797 again:
2798 	lock_page(page);
2799 
2800 	/*
2801 	 * Before we queued this fixup, we took a reference on the page.
2802 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2803 	 * address space.
2804 	 */
2805 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2806 		/*
2807 		 * Unfortunately this is a little tricky, either
2808 		 *
2809 		 * 1) We got here and our page had already been dealt with and
2810 		 *    we reserved our space, thus ret == 0, so we need to just
2811 		 *    drop our space reservation and bail.  This can happen the
2812 		 *    first time we come into the fixup worker, or could happen
2813 		 *    while waiting for the ordered extent.
2814 		 * 2) Our page was already dealt with, but we happened to get an
2815 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2816 		 *    this case we obviously don't have anything to release, but
2817 		 *    because the page was already dealt with we don't want to
2818 		 *    mark the page with an error, so make sure we're resetting
2819 		 *    ret to 0.  This is why we have this check _before_ the ret
2820 		 *    check, because we do not want to have a surprise ENOSPC
2821 		 *    when the page was already properly dealt with.
2822 		 */
2823 		if (!ret) {
2824 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2825 			btrfs_delalloc_release_space(inode, data_reserved,
2826 						     page_start, PAGE_SIZE,
2827 						     true);
2828 		}
2829 		ret = 0;
2830 		goto out_page;
2831 	}
2832 
2833 	/*
2834 	 * We can't mess with the page state unless it is locked, so now that
2835 	 * it is locked bail if we failed to make our space reservation.
2836 	 */
2837 	if (ret)
2838 		goto out_page;
2839 
2840 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2841 
2842 	/* already ordered? We're done */
2843 	if (PageOrdered(page))
2844 		goto out_reserved;
2845 
2846 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2847 	if (ordered) {
2848 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2849 				     &cached_state);
2850 		unlock_page(page);
2851 		btrfs_start_ordered_extent(ordered, 1);
2852 		btrfs_put_ordered_extent(ordered);
2853 		goto again;
2854 	}
2855 
2856 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2857 					&cached_state);
2858 	if (ret)
2859 		goto out_reserved;
2860 
2861 	/*
2862 	 * Everything went as planned, we're now the owner of a dirty page with
2863 	 * delayed allocation bits set and space reserved for our COW
2864 	 * destination.
2865 	 *
2866 	 * The page was dirty when we started, nothing should have cleaned it.
2867 	 */
2868 	BUG_ON(!PageDirty(page));
2869 	free_delalloc_space = false;
2870 out_reserved:
2871 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2872 	if (free_delalloc_space)
2873 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2874 					     PAGE_SIZE, true);
2875 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2876 			     &cached_state);
2877 out_page:
2878 	if (ret) {
2879 		/*
2880 		 * We hit ENOSPC or other errors.  Update the mapping and page
2881 		 * to reflect the errors and clean the page.
2882 		 */
2883 		mapping_set_error(page->mapping, ret);
2884 		end_extent_writepage(page, ret, page_start, page_end);
2885 		clear_page_dirty_for_io(page);
2886 		SetPageError(page);
2887 	}
2888 	btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2889 	unlock_page(page);
2890 	put_page(page);
2891 	kfree(fixup);
2892 	extent_changeset_free(data_reserved);
2893 	/*
2894 	 * As a precaution, do a delayed iput in case it would be the last iput
2895 	 * that could need flushing space. Recursing back to fixup worker would
2896 	 * deadlock.
2897 	 */
2898 	btrfs_add_delayed_iput(&inode->vfs_inode);
2899 }
2900 
2901 /*
2902  * There are a few paths in the higher layers of the kernel that directly
2903  * set the page dirty bit without asking the filesystem if it is a
2904  * good idea.  This causes problems because we want to make sure COW
2905  * properly happens and the data=ordered rules are followed.
2906  *
2907  * In our case any range that doesn't have the ORDERED bit set
2908  * hasn't been properly setup for IO.  We kick off an async process
2909  * to fix it up.  The async helper will wait for ordered extents, set
2910  * the delalloc bit and make it safe to write the page.
2911  */
2912 int btrfs_writepage_cow_fixup(struct page *page)
2913 {
2914 	struct inode *inode = page->mapping->host;
2915 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2916 	struct btrfs_writepage_fixup *fixup;
2917 
2918 	/* This page has ordered extent covering it already */
2919 	if (PageOrdered(page))
2920 		return 0;
2921 
2922 	/*
2923 	 * PageChecked is set below when we create a fixup worker for this page,
2924 	 * don't try to create another one if we're already PageChecked()
2925 	 *
2926 	 * The extent_io writepage code will redirty the page if we send back
2927 	 * EAGAIN.
2928 	 */
2929 	if (PageChecked(page))
2930 		return -EAGAIN;
2931 
2932 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2933 	if (!fixup)
2934 		return -EAGAIN;
2935 
2936 	/*
2937 	 * We are already holding a reference to this inode from
2938 	 * write_cache_pages.  We need to hold it because the space reservation
2939 	 * takes place outside of the page lock, and we can't trust
2940 	 * page->mapping outside of the page lock.
2941 	 */
2942 	ihold(inode);
2943 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2944 	get_page(page);
2945 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2946 	fixup->page = page;
2947 	fixup->inode = inode;
2948 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2949 
2950 	return -EAGAIN;
2951 }
2952 
2953 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2954 				       struct btrfs_inode *inode, u64 file_pos,
2955 				       struct btrfs_file_extent_item *stack_fi,
2956 				       const bool update_inode_bytes,
2957 				       u64 qgroup_reserved)
2958 {
2959 	struct btrfs_root *root = inode->root;
2960 	const u64 sectorsize = root->fs_info->sectorsize;
2961 	struct btrfs_path *path;
2962 	struct extent_buffer *leaf;
2963 	struct btrfs_key ins;
2964 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2965 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2966 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2967 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2968 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2969 	struct btrfs_drop_extents_args drop_args = { 0 };
2970 	int ret;
2971 
2972 	path = btrfs_alloc_path();
2973 	if (!path)
2974 		return -ENOMEM;
2975 
2976 	/*
2977 	 * we may be replacing one extent in the tree with another.
2978 	 * The new extent is pinned in the extent map, and we don't want
2979 	 * to drop it from the cache until it is completely in the btree.
2980 	 *
2981 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2982 	 * the caller is expected to unpin it and allow it to be merged
2983 	 * with the others.
2984 	 */
2985 	drop_args.path = path;
2986 	drop_args.start = file_pos;
2987 	drop_args.end = file_pos + num_bytes;
2988 	drop_args.replace_extent = true;
2989 	drop_args.extent_item_size = sizeof(*stack_fi);
2990 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2991 	if (ret)
2992 		goto out;
2993 
2994 	if (!drop_args.extent_inserted) {
2995 		ins.objectid = btrfs_ino(inode);
2996 		ins.offset = file_pos;
2997 		ins.type = BTRFS_EXTENT_DATA_KEY;
2998 
2999 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
3000 					      sizeof(*stack_fi));
3001 		if (ret)
3002 			goto out;
3003 	}
3004 	leaf = path->nodes[0];
3005 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3006 	write_extent_buffer(leaf, stack_fi,
3007 			btrfs_item_ptr_offset(leaf, path->slots[0]),
3008 			sizeof(struct btrfs_file_extent_item));
3009 
3010 	btrfs_mark_buffer_dirty(leaf);
3011 	btrfs_release_path(path);
3012 
3013 	/*
3014 	 * If we dropped an inline extent here, we know the range where it is
3015 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3016 	 * number of bytes only for that range containing the inline extent.
3017 	 * The remaining of the range will be processed when clearning the
3018 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3019 	 */
3020 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3021 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3022 
3023 		inline_size = drop_args.bytes_found - inline_size;
3024 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3025 		drop_args.bytes_found -= inline_size;
3026 		num_bytes -= sectorsize;
3027 	}
3028 
3029 	if (update_inode_bytes)
3030 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3031 
3032 	ins.objectid = disk_bytenr;
3033 	ins.offset = disk_num_bytes;
3034 	ins.type = BTRFS_EXTENT_ITEM_KEY;
3035 
3036 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3037 	if (ret)
3038 		goto out;
3039 
3040 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3041 					       file_pos - offset,
3042 					       qgroup_reserved, &ins);
3043 out:
3044 	btrfs_free_path(path);
3045 
3046 	return ret;
3047 }
3048 
3049 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3050 					 u64 start, u64 len)
3051 {
3052 	struct btrfs_block_group *cache;
3053 
3054 	cache = btrfs_lookup_block_group(fs_info, start);
3055 	ASSERT(cache);
3056 
3057 	spin_lock(&cache->lock);
3058 	cache->delalloc_bytes -= len;
3059 	spin_unlock(&cache->lock);
3060 
3061 	btrfs_put_block_group(cache);
3062 }
3063 
3064 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3065 					     struct btrfs_ordered_extent *oe)
3066 {
3067 	struct btrfs_file_extent_item stack_fi;
3068 	bool update_inode_bytes;
3069 	u64 num_bytes = oe->num_bytes;
3070 	u64 ram_bytes = oe->ram_bytes;
3071 
3072 	memset(&stack_fi, 0, sizeof(stack_fi));
3073 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3074 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3075 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3076 						   oe->disk_num_bytes);
3077 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3078 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3079 		num_bytes = ram_bytes = oe->truncated_len;
3080 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3081 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3082 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3083 	/* Encryption and other encoding is reserved and all 0 */
3084 
3085 	/*
3086 	 * For delalloc, when completing an ordered extent we update the inode's
3087 	 * bytes when clearing the range in the inode's io tree, so pass false
3088 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3089 	 * except if the ordered extent was truncated.
3090 	 */
3091 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3092 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3093 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3094 
3095 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3096 					   oe->file_offset, &stack_fi,
3097 					   update_inode_bytes, oe->qgroup_rsv);
3098 }
3099 
3100 /*
3101  * As ordered data IO finishes, this gets called so we can finish
3102  * an ordered extent if the range of bytes in the file it covers are
3103  * fully written.
3104  */
3105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3106 {
3107 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3108 	struct btrfs_root *root = inode->root;
3109 	struct btrfs_fs_info *fs_info = root->fs_info;
3110 	struct btrfs_trans_handle *trans = NULL;
3111 	struct extent_io_tree *io_tree = &inode->io_tree;
3112 	struct extent_state *cached_state = NULL;
3113 	u64 start, end;
3114 	int compress_type = 0;
3115 	int ret = 0;
3116 	u64 logical_len = ordered_extent->num_bytes;
3117 	bool freespace_inode;
3118 	bool truncated = false;
3119 	bool clear_reserved_extent = true;
3120 	unsigned int clear_bits = EXTENT_DEFRAG;
3121 
3122 	start = ordered_extent->file_offset;
3123 	end = start + ordered_extent->num_bytes - 1;
3124 
3125 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3126 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3127 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3128 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3129 		clear_bits |= EXTENT_DELALLOC_NEW;
3130 
3131 	freespace_inode = btrfs_is_free_space_inode(inode);
3132 
3133 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3134 		ret = -EIO;
3135 		goto out;
3136 	}
3137 
3138 	/* A valid bdev implies a write on a sequential zone */
3139 	if (ordered_extent->bdev) {
3140 		btrfs_rewrite_logical_zoned(ordered_extent);
3141 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3142 					ordered_extent->disk_num_bytes);
3143 	}
3144 
3145 	btrfs_free_io_failure_record(inode, start, end);
3146 
3147 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3148 		truncated = true;
3149 		logical_len = ordered_extent->truncated_len;
3150 		/* Truncated the entire extent, don't bother adding */
3151 		if (!logical_len)
3152 			goto out;
3153 	}
3154 
3155 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3156 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3157 
3158 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3159 		if (freespace_inode)
3160 			trans = btrfs_join_transaction_spacecache(root);
3161 		else
3162 			trans = btrfs_join_transaction(root);
3163 		if (IS_ERR(trans)) {
3164 			ret = PTR_ERR(trans);
3165 			trans = NULL;
3166 			goto out;
3167 		}
3168 		trans->block_rsv = &inode->block_rsv;
3169 		ret = btrfs_update_inode_fallback(trans, root, inode);
3170 		if (ret) /* -ENOMEM or corruption */
3171 			btrfs_abort_transaction(trans, ret);
3172 		goto out;
3173 	}
3174 
3175 	clear_bits |= EXTENT_LOCKED;
3176 	lock_extent_bits(io_tree, start, end, &cached_state);
3177 
3178 	if (freespace_inode)
3179 		trans = btrfs_join_transaction_spacecache(root);
3180 	else
3181 		trans = btrfs_join_transaction(root);
3182 	if (IS_ERR(trans)) {
3183 		ret = PTR_ERR(trans);
3184 		trans = NULL;
3185 		goto out;
3186 	}
3187 
3188 	trans->block_rsv = &inode->block_rsv;
3189 
3190 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3191 		compress_type = ordered_extent->compress_type;
3192 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3193 		BUG_ON(compress_type);
3194 		ret = btrfs_mark_extent_written(trans, inode,
3195 						ordered_extent->file_offset,
3196 						ordered_extent->file_offset +
3197 						logical_len);
3198 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3199 						  ordered_extent->disk_num_bytes);
3200 	} else {
3201 		BUG_ON(root == fs_info->tree_root);
3202 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3203 		if (!ret) {
3204 			clear_reserved_extent = false;
3205 			btrfs_release_delalloc_bytes(fs_info,
3206 						ordered_extent->disk_bytenr,
3207 						ordered_extent->disk_num_bytes);
3208 		}
3209 	}
3210 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3211 			   ordered_extent->num_bytes, trans->transid);
3212 	if (ret < 0) {
3213 		btrfs_abort_transaction(trans, ret);
3214 		goto out;
3215 	}
3216 
3217 	ret = add_pending_csums(trans, &ordered_extent->list);
3218 	if (ret) {
3219 		btrfs_abort_transaction(trans, ret);
3220 		goto out;
3221 	}
3222 
3223 	/*
3224 	 * If this is a new delalloc range, clear its new delalloc flag to
3225 	 * update the inode's number of bytes. This needs to be done first
3226 	 * before updating the inode item.
3227 	 */
3228 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3229 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3230 		clear_extent_bit(&inode->io_tree, start, end,
3231 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3232 				 0, 0, &cached_state);
3233 
3234 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3235 	ret = btrfs_update_inode_fallback(trans, root, inode);
3236 	if (ret) { /* -ENOMEM or corruption */
3237 		btrfs_abort_transaction(trans, ret);
3238 		goto out;
3239 	}
3240 	ret = 0;
3241 out:
3242 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3243 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3244 			 &cached_state);
3245 
3246 	if (trans)
3247 		btrfs_end_transaction(trans);
3248 
3249 	if (ret || truncated) {
3250 		u64 unwritten_start = start;
3251 
3252 		/*
3253 		 * If we failed to finish this ordered extent for any reason we
3254 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3255 		 * extent, and mark the inode with the error if it wasn't
3256 		 * already set.  Any error during writeback would have already
3257 		 * set the mapping error, so we need to set it if we're the ones
3258 		 * marking this ordered extent as failed.
3259 		 */
3260 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3261 					     &ordered_extent->flags))
3262 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3263 
3264 		if (truncated)
3265 			unwritten_start += logical_len;
3266 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3267 
3268 		/* Drop the cache for the part of the extent we didn't write. */
3269 		btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3270 
3271 		/*
3272 		 * If the ordered extent had an IOERR or something else went
3273 		 * wrong we need to return the space for this ordered extent
3274 		 * back to the allocator.  We only free the extent in the
3275 		 * truncated case if we didn't write out the extent at all.
3276 		 *
3277 		 * If we made it past insert_reserved_file_extent before we
3278 		 * errored out then we don't need to do this as the accounting
3279 		 * has already been done.
3280 		 */
3281 		if ((ret || !logical_len) &&
3282 		    clear_reserved_extent &&
3283 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3284 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3285 			/*
3286 			 * Discard the range before returning it back to the
3287 			 * free space pool
3288 			 */
3289 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3290 				btrfs_discard_extent(fs_info,
3291 						ordered_extent->disk_bytenr,
3292 						ordered_extent->disk_num_bytes,
3293 						NULL);
3294 			btrfs_free_reserved_extent(fs_info,
3295 					ordered_extent->disk_bytenr,
3296 					ordered_extent->disk_num_bytes, 1);
3297 		}
3298 	}
3299 
3300 	/*
3301 	 * This needs to be done to make sure anybody waiting knows we are done
3302 	 * updating everything for this ordered extent.
3303 	 */
3304 	btrfs_remove_ordered_extent(inode, ordered_extent);
3305 
3306 	/* once for us */
3307 	btrfs_put_ordered_extent(ordered_extent);
3308 	/* once for the tree */
3309 	btrfs_put_ordered_extent(ordered_extent);
3310 
3311 	return ret;
3312 }
3313 
3314 static void finish_ordered_fn(struct btrfs_work *work)
3315 {
3316 	struct btrfs_ordered_extent *ordered_extent;
3317 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3318 	btrfs_finish_ordered_io(ordered_extent);
3319 }
3320 
3321 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3322 					  struct page *page, u64 start,
3323 					  u64 end, bool uptodate)
3324 {
3325 	trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3326 
3327 	btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
3328 				       finish_ordered_fn, uptodate);
3329 }
3330 
3331 /*
3332  * check_data_csum - verify checksum of one sector of uncompressed data
3333  * @inode:	inode
3334  * @io_bio:	btrfs_io_bio which contains the csum
3335  * @bio_offset:	offset to the beginning of the bio (in bytes)
3336  * @page:	page where is the data to be verified
3337  * @pgoff:	offset inside the page
3338  * @start:	logical offset in the file
3339  *
3340  * The length of such check is always one sector size.
3341  */
3342 static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3343 			   u32 bio_offset, struct page *page, u32 pgoff,
3344 			   u64 start)
3345 {
3346 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3347 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3348 	char *kaddr;
3349 	u32 len = fs_info->sectorsize;
3350 	const u32 csum_size = fs_info->csum_size;
3351 	unsigned int offset_sectors;
3352 	u8 *csum_expected;
3353 	u8 csum[BTRFS_CSUM_SIZE];
3354 
3355 	ASSERT(pgoff + len <= PAGE_SIZE);
3356 
3357 	offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3358 	csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size;
3359 
3360 	kaddr = kmap_atomic(page);
3361 	shash->tfm = fs_info->csum_shash;
3362 
3363 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3364 	kunmap_atomic(kaddr);
3365 
3366 	if (memcmp(csum, csum_expected, csum_size))
3367 		goto zeroit;
3368 
3369 	return 0;
3370 zeroit:
3371 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3372 				    bbio->mirror_num);
3373 	if (bbio->device)
3374 		btrfs_dev_stat_inc_and_print(bbio->device,
3375 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
3376 	memzero_page(page, pgoff, len);
3377 	return -EIO;
3378 }
3379 
3380 /*
3381  * When reads are done, we need to check csums to verify the data is correct.
3382  * if there's a match, we allow the bio to finish.  If not, the code in
3383  * extent_io.c will try to find good copies for us.
3384  *
3385  * @bio_offset:	offset to the beginning of the bio (in bytes)
3386  * @start:	file offset of the range start
3387  * @end:	file offset of the range end (inclusive)
3388  *
3389  * Return a bitmap where bit set means a csum mismatch, and bit not set means
3390  * csum match.
3391  */
3392 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3393 				    u32 bio_offset, struct page *page,
3394 				    u64 start, u64 end)
3395 {
3396 	struct inode *inode = page->mapping->host;
3397 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3398 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3399 	struct btrfs_root *root = BTRFS_I(inode)->root;
3400 	const u32 sectorsize = root->fs_info->sectorsize;
3401 	u32 pg_off;
3402 	unsigned int result = 0;
3403 
3404 	if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) {
3405 		btrfs_page_clear_checked(fs_info, page, start, end + 1 - start);
3406 		return 0;
3407 	}
3408 
3409 	/*
3410 	 * This only happens for NODATASUM or compressed read.
3411 	 * Normally this should be covered by above check for compressed read
3412 	 * or the next check for NODATASUM.  Just do a quicker exit here.
3413 	 */
3414 	if (bbio->csum == NULL)
3415 		return 0;
3416 
3417 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3418 		return 0;
3419 
3420 	if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
3421 		return 0;
3422 
3423 	ASSERT(page_offset(page) <= start &&
3424 	       end <= page_offset(page) + PAGE_SIZE - 1);
3425 	for (pg_off = offset_in_page(start);
3426 	     pg_off < offset_in_page(end);
3427 	     pg_off += sectorsize, bio_offset += sectorsize) {
3428 		u64 file_offset = pg_off + page_offset(page);
3429 		int ret;
3430 
3431 		if (btrfs_is_data_reloc_root(root) &&
3432 		    test_range_bit(io_tree, file_offset,
3433 				   file_offset + sectorsize - 1,
3434 				   EXTENT_NODATASUM, 1, NULL)) {
3435 			/* Skip the range without csum for data reloc inode */
3436 			clear_extent_bits(io_tree, file_offset,
3437 					  file_offset + sectorsize - 1,
3438 					  EXTENT_NODATASUM);
3439 			continue;
3440 		}
3441 		ret = check_data_csum(inode, bbio, bio_offset, page, pg_off,
3442 				      page_offset(page) + pg_off);
3443 		if (ret < 0) {
3444 			const int nr_bit = (pg_off - offset_in_page(start)) >>
3445 				     root->fs_info->sectorsize_bits;
3446 
3447 			result |= (1U << nr_bit);
3448 		}
3449 	}
3450 	return result;
3451 }
3452 
3453 /*
3454  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3455  *
3456  * @inode: The inode we want to perform iput on
3457  *
3458  * This function uses the generic vfs_inode::i_count to track whether we should
3459  * just decrement it (in case it's > 1) or if this is the last iput then link
3460  * the inode to the delayed iput machinery. Delayed iputs are processed at
3461  * transaction commit time/superblock commit/cleaner kthread.
3462  */
3463 void btrfs_add_delayed_iput(struct inode *inode)
3464 {
3465 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3466 	struct btrfs_inode *binode = BTRFS_I(inode);
3467 
3468 	if (atomic_add_unless(&inode->i_count, -1, 1))
3469 		return;
3470 
3471 	atomic_inc(&fs_info->nr_delayed_iputs);
3472 	spin_lock(&fs_info->delayed_iput_lock);
3473 	ASSERT(list_empty(&binode->delayed_iput));
3474 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3475 	spin_unlock(&fs_info->delayed_iput_lock);
3476 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3477 		wake_up_process(fs_info->cleaner_kthread);
3478 }
3479 
3480 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3481 				    struct btrfs_inode *inode)
3482 {
3483 	list_del_init(&inode->delayed_iput);
3484 	spin_unlock(&fs_info->delayed_iput_lock);
3485 	iput(&inode->vfs_inode);
3486 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3487 		wake_up(&fs_info->delayed_iputs_wait);
3488 	spin_lock(&fs_info->delayed_iput_lock);
3489 }
3490 
3491 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3492 				   struct btrfs_inode *inode)
3493 {
3494 	if (!list_empty(&inode->delayed_iput)) {
3495 		spin_lock(&fs_info->delayed_iput_lock);
3496 		if (!list_empty(&inode->delayed_iput))
3497 			run_delayed_iput_locked(fs_info, inode);
3498 		spin_unlock(&fs_info->delayed_iput_lock);
3499 	}
3500 }
3501 
3502 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3503 {
3504 
3505 	spin_lock(&fs_info->delayed_iput_lock);
3506 	while (!list_empty(&fs_info->delayed_iputs)) {
3507 		struct btrfs_inode *inode;
3508 
3509 		inode = list_first_entry(&fs_info->delayed_iputs,
3510 				struct btrfs_inode, delayed_iput);
3511 		run_delayed_iput_locked(fs_info, inode);
3512 		cond_resched_lock(&fs_info->delayed_iput_lock);
3513 	}
3514 	spin_unlock(&fs_info->delayed_iput_lock);
3515 }
3516 
3517 /**
3518  * Wait for flushing all delayed iputs
3519  *
3520  * @fs_info:  the filesystem
3521  *
3522  * This will wait on any delayed iputs that are currently running with KILLABLE
3523  * set.  Once they are all done running we will return, unless we are killed in
3524  * which case we return EINTR. This helps in user operations like fallocate etc
3525  * that might get blocked on the iputs.
3526  *
3527  * Return EINTR if we were killed, 0 if nothing's pending
3528  */
3529 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3530 {
3531 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3532 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3533 	if (ret)
3534 		return -EINTR;
3535 	return 0;
3536 }
3537 
3538 /*
3539  * This creates an orphan entry for the given inode in case something goes wrong
3540  * in the middle of an unlink.
3541  */
3542 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3543 		     struct btrfs_inode *inode)
3544 {
3545 	int ret;
3546 
3547 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3548 	if (ret && ret != -EEXIST) {
3549 		btrfs_abort_transaction(trans, ret);
3550 		return ret;
3551 	}
3552 
3553 	return 0;
3554 }
3555 
3556 /*
3557  * We have done the delete so we can go ahead and remove the orphan item for
3558  * this particular inode.
3559  */
3560 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3561 			    struct btrfs_inode *inode)
3562 {
3563 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3564 }
3565 
3566 /*
3567  * this cleans up any orphans that may be left on the list from the last use
3568  * of this root.
3569  */
3570 int btrfs_orphan_cleanup(struct btrfs_root *root)
3571 {
3572 	struct btrfs_fs_info *fs_info = root->fs_info;
3573 	struct btrfs_path *path;
3574 	struct extent_buffer *leaf;
3575 	struct btrfs_key key, found_key;
3576 	struct btrfs_trans_handle *trans;
3577 	struct inode *inode;
3578 	u64 last_objectid = 0;
3579 	int ret = 0, nr_unlink = 0;
3580 
3581 	/* Bail out if the cleanup is already running. */
3582 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3583 		return 0;
3584 
3585 	path = btrfs_alloc_path();
3586 	if (!path) {
3587 		ret = -ENOMEM;
3588 		goto out;
3589 	}
3590 	path->reada = READA_BACK;
3591 
3592 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3593 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3594 	key.offset = (u64)-1;
3595 
3596 	while (1) {
3597 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3598 		if (ret < 0)
3599 			goto out;
3600 
3601 		/*
3602 		 * if ret == 0 means we found what we were searching for, which
3603 		 * is weird, but possible, so only screw with path if we didn't
3604 		 * find the key and see if we have stuff that matches
3605 		 */
3606 		if (ret > 0) {
3607 			ret = 0;
3608 			if (path->slots[0] == 0)
3609 				break;
3610 			path->slots[0]--;
3611 		}
3612 
3613 		/* pull out the item */
3614 		leaf = path->nodes[0];
3615 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3616 
3617 		/* make sure the item matches what we want */
3618 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3619 			break;
3620 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3621 			break;
3622 
3623 		/* release the path since we're done with it */
3624 		btrfs_release_path(path);
3625 
3626 		/*
3627 		 * this is where we are basically btrfs_lookup, without the
3628 		 * crossing root thing.  we store the inode number in the
3629 		 * offset of the orphan item.
3630 		 */
3631 
3632 		if (found_key.offset == last_objectid) {
3633 			btrfs_err(fs_info,
3634 				  "Error removing orphan entry, stopping orphan cleanup");
3635 			ret = -EINVAL;
3636 			goto out;
3637 		}
3638 
3639 		last_objectid = found_key.offset;
3640 
3641 		found_key.objectid = found_key.offset;
3642 		found_key.type = BTRFS_INODE_ITEM_KEY;
3643 		found_key.offset = 0;
3644 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3645 		ret = PTR_ERR_OR_ZERO(inode);
3646 		if (ret && ret != -ENOENT)
3647 			goto out;
3648 
3649 		if (ret == -ENOENT && root == fs_info->tree_root) {
3650 			struct btrfs_root *dead_root;
3651 			int is_dead_root = 0;
3652 
3653 			/*
3654 			 * This is an orphan in the tree root. Currently these
3655 			 * could come from 2 sources:
3656 			 *  a) a root (snapshot/subvolume) deletion in progress
3657 			 *  b) a free space cache inode
3658 			 * We need to distinguish those two, as the orphan item
3659 			 * for a root must not get deleted before the deletion
3660 			 * of the snapshot/subvolume's tree completes.
3661 			 *
3662 			 * btrfs_find_orphan_roots() ran before us, which has
3663 			 * found all deleted roots and loaded them into
3664 			 * fs_info->fs_roots. So here we can find if an
3665 			 * orphan item corresponds to a deleted root by looking
3666 			 * up the root from that xarray.
3667 			 */
3668 
3669 			spin_lock(&fs_info->fs_roots_lock);
3670 			dead_root = xa_load(&fs_info->fs_roots,
3671 					    (unsigned long)found_key.objectid);
3672 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3673 				is_dead_root = 1;
3674 			spin_unlock(&fs_info->fs_roots_lock);
3675 
3676 			if (is_dead_root) {
3677 				/* prevent this orphan from being found again */
3678 				key.offset = found_key.objectid - 1;
3679 				continue;
3680 			}
3681 
3682 		}
3683 
3684 		/*
3685 		 * If we have an inode with links, there are a couple of
3686 		 * possibilities:
3687 		 *
3688 		 * 1. We were halfway through creating fsverity metadata for the
3689 		 * file. In that case, the orphan item represents incomplete
3690 		 * fsverity metadata which must be cleaned up with
3691 		 * btrfs_drop_verity_items and deleting the orphan item.
3692 
3693 		 * 2. Old kernels (before v3.12) used to create an
3694 		 * orphan item for truncate indicating that there were possibly
3695 		 * extent items past i_size that needed to be deleted. In v3.12,
3696 		 * truncate was changed to update i_size in sync with the extent
3697 		 * items, but the (useless) orphan item was still created. Since
3698 		 * v4.18, we don't create the orphan item for truncate at all.
3699 		 *
3700 		 * So, this item could mean that we need to do a truncate, but
3701 		 * only if this filesystem was last used on a pre-v3.12 kernel
3702 		 * and was not cleanly unmounted. The odds of that are quite
3703 		 * slim, and it's a pain to do the truncate now, so just delete
3704 		 * the orphan item.
3705 		 *
3706 		 * It's also possible that this orphan item was supposed to be
3707 		 * deleted but wasn't. The inode number may have been reused,
3708 		 * but either way, we can delete the orphan item.
3709 		 */
3710 		if (ret == -ENOENT || inode->i_nlink) {
3711 			if (!ret) {
3712 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3713 				iput(inode);
3714 				if (ret)
3715 					goto out;
3716 			}
3717 			trans = btrfs_start_transaction(root, 1);
3718 			if (IS_ERR(trans)) {
3719 				ret = PTR_ERR(trans);
3720 				goto out;
3721 			}
3722 			btrfs_debug(fs_info, "auto deleting %Lu",
3723 				    found_key.objectid);
3724 			ret = btrfs_del_orphan_item(trans, root,
3725 						    found_key.objectid);
3726 			btrfs_end_transaction(trans);
3727 			if (ret)
3728 				goto out;
3729 			continue;
3730 		}
3731 
3732 		nr_unlink++;
3733 
3734 		/* this will do delete_inode and everything for us */
3735 		iput(inode);
3736 	}
3737 	/* release the path since we're done with it */
3738 	btrfs_release_path(path);
3739 
3740 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3741 		trans = btrfs_join_transaction(root);
3742 		if (!IS_ERR(trans))
3743 			btrfs_end_transaction(trans);
3744 	}
3745 
3746 	if (nr_unlink)
3747 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3748 
3749 out:
3750 	if (ret)
3751 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3752 	btrfs_free_path(path);
3753 	return ret;
3754 }
3755 
3756 /*
3757  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3758  * don't find any xattrs, we know there can't be any acls.
3759  *
3760  * slot is the slot the inode is in, objectid is the objectid of the inode
3761  */
3762 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3763 					  int slot, u64 objectid,
3764 					  int *first_xattr_slot)
3765 {
3766 	u32 nritems = btrfs_header_nritems(leaf);
3767 	struct btrfs_key found_key;
3768 	static u64 xattr_access = 0;
3769 	static u64 xattr_default = 0;
3770 	int scanned = 0;
3771 
3772 	if (!xattr_access) {
3773 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3774 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3775 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3776 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3777 	}
3778 
3779 	slot++;
3780 	*first_xattr_slot = -1;
3781 	while (slot < nritems) {
3782 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3783 
3784 		/* we found a different objectid, there must not be acls */
3785 		if (found_key.objectid != objectid)
3786 			return 0;
3787 
3788 		/* we found an xattr, assume we've got an acl */
3789 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3790 			if (*first_xattr_slot == -1)
3791 				*first_xattr_slot = slot;
3792 			if (found_key.offset == xattr_access ||
3793 			    found_key.offset == xattr_default)
3794 				return 1;
3795 		}
3796 
3797 		/*
3798 		 * we found a key greater than an xattr key, there can't
3799 		 * be any acls later on
3800 		 */
3801 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3802 			return 0;
3803 
3804 		slot++;
3805 		scanned++;
3806 
3807 		/*
3808 		 * it goes inode, inode backrefs, xattrs, extents,
3809 		 * so if there are a ton of hard links to an inode there can
3810 		 * be a lot of backrefs.  Don't waste time searching too hard,
3811 		 * this is just an optimization
3812 		 */
3813 		if (scanned >= 8)
3814 			break;
3815 	}
3816 	/* we hit the end of the leaf before we found an xattr or
3817 	 * something larger than an xattr.  We have to assume the inode
3818 	 * has acls
3819 	 */
3820 	if (*first_xattr_slot == -1)
3821 		*first_xattr_slot = slot;
3822 	return 1;
3823 }
3824 
3825 /*
3826  * read an inode from the btree into the in-memory inode
3827  */
3828 static int btrfs_read_locked_inode(struct inode *inode,
3829 				   struct btrfs_path *in_path)
3830 {
3831 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3832 	struct btrfs_path *path = in_path;
3833 	struct extent_buffer *leaf;
3834 	struct btrfs_inode_item *inode_item;
3835 	struct btrfs_root *root = BTRFS_I(inode)->root;
3836 	struct btrfs_key location;
3837 	unsigned long ptr;
3838 	int maybe_acls;
3839 	u32 rdev;
3840 	int ret;
3841 	bool filled = false;
3842 	int first_xattr_slot;
3843 
3844 	ret = btrfs_fill_inode(inode, &rdev);
3845 	if (!ret)
3846 		filled = true;
3847 
3848 	if (!path) {
3849 		path = btrfs_alloc_path();
3850 		if (!path)
3851 			return -ENOMEM;
3852 	}
3853 
3854 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3855 
3856 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3857 	if (ret) {
3858 		if (path != in_path)
3859 			btrfs_free_path(path);
3860 		return ret;
3861 	}
3862 
3863 	leaf = path->nodes[0];
3864 
3865 	if (filled)
3866 		goto cache_index;
3867 
3868 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3869 				    struct btrfs_inode_item);
3870 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3871 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3872 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3873 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3874 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3875 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3876 			round_up(i_size_read(inode), fs_info->sectorsize));
3877 
3878 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3879 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3880 
3881 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3882 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3883 
3884 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3885 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3886 
3887 	BTRFS_I(inode)->i_otime.tv_sec =
3888 		btrfs_timespec_sec(leaf, &inode_item->otime);
3889 	BTRFS_I(inode)->i_otime.tv_nsec =
3890 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3891 
3892 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3893 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3894 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3895 
3896 	inode_set_iversion_queried(inode,
3897 				   btrfs_inode_sequence(leaf, inode_item));
3898 	inode->i_generation = BTRFS_I(inode)->generation;
3899 	inode->i_rdev = 0;
3900 	rdev = btrfs_inode_rdev(leaf, inode_item);
3901 
3902 	BTRFS_I(inode)->index_cnt = (u64)-1;
3903 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3904 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3905 
3906 cache_index:
3907 	/*
3908 	 * If we were modified in the current generation and evicted from memory
3909 	 * and then re-read we need to do a full sync since we don't have any
3910 	 * idea about which extents were modified before we were evicted from
3911 	 * cache.
3912 	 *
3913 	 * This is required for both inode re-read from disk and delayed inode
3914 	 * in the delayed_nodes xarray.
3915 	 */
3916 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3917 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3918 			&BTRFS_I(inode)->runtime_flags);
3919 
3920 	/*
3921 	 * We don't persist the id of the transaction where an unlink operation
3922 	 * against the inode was last made. So here we assume the inode might
3923 	 * have been evicted, and therefore the exact value of last_unlink_trans
3924 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3925 	 * between the inode and its parent if the inode is fsync'ed and the log
3926 	 * replayed. For example, in the scenario:
3927 	 *
3928 	 * touch mydir/foo
3929 	 * ln mydir/foo mydir/bar
3930 	 * sync
3931 	 * unlink mydir/bar
3932 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3933 	 * xfs_io -c fsync mydir/foo
3934 	 * <power failure>
3935 	 * mount fs, triggers fsync log replay
3936 	 *
3937 	 * We must make sure that when we fsync our inode foo we also log its
3938 	 * parent inode, otherwise after log replay the parent still has the
3939 	 * dentry with the "bar" name but our inode foo has a link count of 1
3940 	 * and doesn't have an inode ref with the name "bar" anymore.
3941 	 *
3942 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3943 	 * but it guarantees correctness at the expense of occasional full
3944 	 * transaction commits on fsync if our inode is a directory, or if our
3945 	 * inode is not a directory, logging its parent unnecessarily.
3946 	 */
3947 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3948 
3949 	/*
3950 	 * Same logic as for last_unlink_trans. We don't persist the generation
3951 	 * of the last transaction where this inode was used for a reflink
3952 	 * operation, so after eviction and reloading the inode we must be
3953 	 * pessimistic and assume the last transaction that modified the inode.
3954 	 */
3955 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3956 
3957 	path->slots[0]++;
3958 	if (inode->i_nlink != 1 ||
3959 	    path->slots[0] >= btrfs_header_nritems(leaf))
3960 		goto cache_acl;
3961 
3962 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3963 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3964 		goto cache_acl;
3965 
3966 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3967 	if (location.type == BTRFS_INODE_REF_KEY) {
3968 		struct btrfs_inode_ref *ref;
3969 
3970 		ref = (struct btrfs_inode_ref *)ptr;
3971 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3972 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3973 		struct btrfs_inode_extref *extref;
3974 
3975 		extref = (struct btrfs_inode_extref *)ptr;
3976 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3977 								     extref);
3978 	}
3979 cache_acl:
3980 	/*
3981 	 * try to precache a NULL acl entry for files that don't have
3982 	 * any xattrs or acls
3983 	 */
3984 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3985 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3986 	if (first_xattr_slot != -1) {
3987 		path->slots[0] = first_xattr_slot;
3988 		ret = btrfs_load_inode_props(inode, path);
3989 		if (ret)
3990 			btrfs_err(fs_info,
3991 				  "error loading props for ino %llu (root %llu): %d",
3992 				  btrfs_ino(BTRFS_I(inode)),
3993 				  root->root_key.objectid, ret);
3994 	}
3995 	if (path != in_path)
3996 		btrfs_free_path(path);
3997 
3998 	if (!maybe_acls)
3999 		cache_no_acl(inode);
4000 
4001 	switch (inode->i_mode & S_IFMT) {
4002 	case S_IFREG:
4003 		inode->i_mapping->a_ops = &btrfs_aops;
4004 		inode->i_fop = &btrfs_file_operations;
4005 		inode->i_op = &btrfs_file_inode_operations;
4006 		break;
4007 	case S_IFDIR:
4008 		inode->i_fop = &btrfs_dir_file_operations;
4009 		inode->i_op = &btrfs_dir_inode_operations;
4010 		break;
4011 	case S_IFLNK:
4012 		inode->i_op = &btrfs_symlink_inode_operations;
4013 		inode_nohighmem(inode);
4014 		inode->i_mapping->a_ops = &btrfs_aops;
4015 		break;
4016 	default:
4017 		inode->i_op = &btrfs_special_inode_operations;
4018 		init_special_inode(inode, inode->i_mode, rdev);
4019 		break;
4020 	}
4021 
4022 	btrfs_sync_inode_flags_to_i_flags(inode);
4023 	return 0;
4024 }
4025 
4026 /*
4027  * given a leaf and an inode, copy the inode fields into the leaf
4028  */
4029 static void fill_inode_item(struct btrfs_trans_handle *trans,
4030 			    struct extent_buffer *leaf,
4031 			    struct btrfs_inode_item *item,
4032 			    struct inode *inode)
4033 {
4034 	struct btrfs_map_token token;
4035 	u64 flags;
4036 
4037 	btrfs_init_map_token(&token, leaf);
4038 
4039 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4040 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4041 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4042 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4043 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4044 
4045 	btrfs_set_token_timespec_sec(&token, &item->atime,
4046 				     inode->i_atime.tv_sec);
4047 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4048 				      inode->i_atime.tv_nsec);
4049 
4050 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4051 				     inode->i_mtime.tv_sec);
4052 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4053 				      inode->i_mtime.tv_nsec);
4054 
4055 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4056 				     inode->i_ctime.tv_sec);
4057 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4058 				      inode->i_ctime.tv_nsec);
4059 
4060 	btrfs_set_token_timespec_sec(&token, &item->otime,
4061 				     BTRFS_I(inode)->i_otime.tv_sec);
4062 	btrfs_set_token_timespec_nsec(&token, &item->otime,
4063 				      BTRFS_I(inode)->i_otime.tv_nsec);
4064 
4065 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4066 	btrfs_set_token_inode_generation(&token, item,
4067 					 BTRFS_I(inode)->generation);
4068 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4069 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4070 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4071 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4072 					  BTRFS_I(inode)->ro_flags);
4073 	btrfs_set_token_inode_flags(&token, item, flags);
4074 	btrfs_set_token_inode_block_group(&token, item, 0);
4075 }
4076 
4077 /*
4078  * copy everything in the in-memory inode into the btree.
4079  */
4080 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4081 				struct btrfs_root *root,
4082 				struct btrfs_inode *inode)
4083 {
4084 	struct btrfs_inode_item *inode_item;
4085 	struct btrfs_path *path;
4086 	struct extent_buffer *leaf;
4087 	int ret;
4088 
4089 	path = btrfs_alloc_path();
4090 	if (!path)
4091 		return -ENOMEM;
4092 
4093 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4094 	if (ret) {
4095 		if (ret > 0)
4096 			ret = -ENOENT;
4097 		goto failed;
4098 	}
4099 
4100 	leaf = path->nodes[0];
4101 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4102 				    struct btrfs_inode_item);
4103 
4104 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4105 	btrfs_mark_buffer_dirty(leaf);
4106 	btrfs_set_inode_last_trans(trans, inode);
4107 	ret = 0;
4108 failed:
4109 	btrfs_free_path(path);
4110 	return ret;
4111 }
4112 
4113 /*
4114  * copy everything in the in-memory inode into the btree.
4115  */
4116 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4117 				struct btrfs_root *root,
4118 				struct btrfs_inode *inode)
4119 {
4120 	struct btrfs_fs_info *fs_info = root->fs_info;
4121 	int ret;
4122 
4123 	/*
4124 	 * If the inode is a free space inode, we can deadlock during commit
4125 	 * if we put it into the delayed code.
4126 	 *
4127 	 * The data relocation inode should also be directly updated
4128 	 * without delay
4129 	 */
4130 	if (!btrfs_is_free_space_inode(inode)
4131 	    && !btrfs_is_data_reloc_root(root)
4132 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4133 		btrfs_update_root_times(trans, root);
4134 
4135 		ret = btrfs_delayed_update_inode(trans, root, inode);
4136 		if (!ret)
4137 			btrfs_set_inode_last_trans(trans, inode);
4138 		return ret;
4139 	}
4140 
4141 	return btrfs_update_inode_item(trans, root, inode);
4142 }
4143 
4144 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4145 				struct btrfs_root *root, struct btrfs_inode *inode)
4146 {
4147 	int ret;
4148 
4149 	ret = btrfs_update_inode(trans, root, inode);
4150 	if (ret == -ENOSPC)
4151 		return btrfs_update_inode_item(trans, root, inode);
4152 	return ret;
4153 }
4154 
4155 /*
4156  * unlink helper that gets used here in inode.c and in the tree logging
4157  * recovery code.  It remove a link in a directory with a given name, and
4158  * also drops the back refs in the inode to the directory
4159  */
4160 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4161 				struct btrfs_inode *dir,
4162 				struct btrfs_inode *inode,
4163 				const char *name, int name_len,
4164 				struct btrfs_rename_ctx *rename_ctx)
4165 {
4166 	struct btrfs_root *root = dir->root;
4167 	struct btrfs_fs_info *fs_info = root->fs_info;
4168 	struct btrfs_path *path;
4169 	int ret = 0;
4170 	struct btrfs_dir_item *di;
4171 	u64 index;
4172 	u64 ino = btrfs_ino(inode);
4173 	u64 dir_ino = btrfs_ino(dir);
4174 
4175 	path = btrfs_alloc_path();
4176 	if (!path) {
4177 		ret = -ENOMEM;
4178 		goto out;
4179 	}
4180 
4181 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4182 				    name, name_len, -1);
4183 	if (IS_ERR_OR_NULL(di)) {
4184 		ret = di ? PTR_ERR(di) : -ENOENT;
4185 		goto err;
4186 	}
4187 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4188 	if (ret)
4189 		goto err;
4190 	btrfs_release_path(path);
4191 
4192 	/*
4193 	 * If we don't have dir index, we have to get it by looking up
4194 	 * the inode ref, since we get the inode ref, remove it directly,
4195 	 * it is unnecessary to do delayed deletion.
4196 	 *
4197 	 * But if we have dir index, needn't search inode ref to get it.
4198 	 * Since the inode ref is close to the inode item, it is better
4199 	 * that we delay to delete it, and just do this deletion when
4200 	 * we update the inode item.
4201 	 */
4202 	if (inode->dir_index) {
4203 		ret = btrfs_delayed_delete_inode_ref(inode);
4204 		if (!ret) {
4205 			index = inode->dir_index;
4206 			goto skip_backref;
4207 		}
4208 	}
4209 
4210 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4211 				  dir_ino, &index);
4212 	if (ret) {
4213 		btrfs_info(fs_info,
4214 			"failed to delete reference to %.*s, inode %llu parent %llu",
4215 			name_len, name, ino, dir_ino);
4216 		btrfs_abort_transaction(trans, ret);
4217 		goto err;
4218 	}
4219 skip_backref:
4220 	if (rename_ctx)
4221 		rename_ctx->index = index;
4222 
4223 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4224 	if (ret) {
4225 		btrfs_abort_transaction(trans, ret);
4226 		goto err;
4227 	}
4228 
4229 	/*
4230 	 * If we are in a rename context, we don't need to update anything in the
4231 	 * log. That will be done later during the rename by btrfs_log_new_name().
4232 	 * Besides that, doing it here would only cause extra unncessary btree
4233 	 * operations on the log tree, increasing latency for applications.
4234 	 */
4235 	if (!rename_ctx) {
4236 		btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4237 					   dir_ino);
4238 		btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4239 					     index);
4240 	}
4241 
4242 	/*
4243 	 * If we have a pending delayed iput we could end up with the final iput
4244 	 * being run in btrfs-cleaner context.  If we have enough of these built
4245 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4246 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4247 	 * the inode we can run the delayed iput here without any issues as the
4248 	 * final iput won't be done until after we drop the ref we're currently
4249 	 * holding.
4250 	 */
4251 	btrfs_run_delayed_iput(fs_info, inode);
4252 err:
4253 	btrfs_free_path(path);
4254 	if (ret)
4255 		goto out;
4256 
4257 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4258 	inode_inc_iversion(&inode->vfs_inode);
4259 	inode_inc_iversion(&dir->vfs_inode);
4260 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4261 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4262 	ret = btrfs_update_inode(trans, root, dir);
4263 out:
4264 	return ret;
4265 }
4266 
4267 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4268 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4269 		       const char *name, int name_len)
4270 {
4271 	int ret;
4272 	ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL);
4273 	if (!ret) {
4274 		drop_nlink(&inode->vfs_inode);
4275 		ret = btrfs_update_inode(trans, inode->root, inode);
4276 	}
4277 	return ret;
4278 }
4279 
4280 /*
4281  * helper to start transaction for unlink and rmdir.
4282  *
4283  * unlink and rmdir are special in btrfs, they do not always free space, so
4284  * if we cannot make our reservations the normal way try and see if there is
4285  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4286  * allow the unlink to occur.
4287  */
4288 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4289 {
4290 	struct btrfs_root *root = BTRFS_I(dir)->root;
4291 
4292 	/*
4293 	 * 1 for the possible orphan item
4294 	 * 1 for the dir item
4295 	 * 1 for the dir index
4296 	 * 1 for the inode ref
4297 	 * 1 for the inode
4298 	 * 1 for the parent inode
4299 	 */
4300 	return btrfs_start_transaction_fallback_global_rsv(root, 6);
4301 }
4302 
4303 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4304 {
4305 	struct btrfs_trans_handle *trans;
4306 	struct inode *inode = d_inode(dentry);
4307 	int ret;
4308 
4309 	trans = __unlink_start_trans(dir);
4310 	if (IS_ERR(trans))
4311 		return PTR_ERR(trans);
4312 
4313 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4314 			0);
4315 
4316 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
4317 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4318 			dentry->d_name.len);
4319 	if (ret)
4320 		goto out;
4321 
4322 	if (inode->i_nlink == 0) {
4323 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4324 		if (ret)
4325 			goto out;
4326 	}
4327 
4328 out:
4329 	btrfs_end_transaction(trans);
4330 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4331 	return ret;
4332 }
4333 
4334 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4335 			       struct inode *dir, struct dentry *dentry)
4336 {
4337 	struct btrfs_root *root = BTRFS_I(dir)->root;
4338 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4339 	struct btrfs_path *path;
4340 	struct extent_buffer *leaf;
4341 	struct btrfs_dir_item *di;
4342 	struct btrfs_key key;
4343 	const char *name = dentry->d_name.name;
4344 	int name_len = dentry->d_name.len;
4345 	u64 index;
4346 	int ret;
4347 	u64 objectid;
4348 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4349 
4350 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4351 		objectid = inode->root->root_key.objectid;
4352 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4353 		objectid = inode->location.objectid;
4354 	} else {
4355 		WARN_ON(1);
4356 		return -EINVAL;
4357 	}
4358 
4359 	path = btrfs_alloc_path();
4360 	if (!path)
4361 		return -ENOMEM;
4362 
4363 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4364 				   name, name_len, -1);
4365 	if (IS_ERR_OR_NULL(di)) {
4366 		ret = di ? PTR_ERR(di) : -ENOENT;
4367 		goto out;
4368 	}
4369 
4370 	leaf = path->nodes[0];
4371 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4372 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4373 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4374 	if (ret) {
4375 		btrfs_abort_transaction(trans, ret);
4376 		goto out;
4377 	}
4378 	btrfs_release_path(path);
4379 
4380 	/*
4381 	 * This is a placeholder inode for a subvolume we didn't have a
4382 	 * reference to at the time of the snapshot creation.  In the meantime
4383 	 * we could have renamed the real subvol link into our snapshot, so
4384 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4385 	 * Instead simply lookup the dir_index_item for this entry so we can
4386 	 * remove it.  Otherwise we know we have a ref to the root and we can
4387 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4388 	 */
4389 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4390 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4391 						 name, name_len);
4392 		if (IS_ERR_OR_NULL(di)) {
4393 			if (!di)
4394 				ret = -ENOENT;
4395 			else
4396 				ret = PTR_ERR(di);
4397 			btrfs_abort_transaction(trans, ret);
4398 			goto out;
4399 		}
4400 
4401 		leaf = path->nodes[0];
4402 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4403 		index = key.offset;
4404 		btrfs_release_path(path);
4405 	} else {
4406 		ret = btrfs_del_root_ref(trans, objectid,
4407 					 root->root_key.objectid, dir_ino,
4408 					 &index, name, name_len);
4409 		if (ret) {
4410 			btrfs_abort_transaction(trans, ret);
4411 			goto out;
4412 		}
4413 	}
4414 
4415 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4416 	if (ret) {
4417 		btrfs_abort_transaction(trans, ret);
4418 		goto out;
4419 	}
4420 
4421 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4422 	inode_inc_iversion(dir);
4423 	dir->i_mtime = dir->i_ctime = current_time(dir);
4424 	ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4425 	if (ret)
4426 		btrfs_abort_transaction(trans, ret);
4427 out:
4428 	btrfs_free_path(path);
4429 	return ret;
4430 }
4431 
4432 /*
4433  * Helper to check if the subvolume references other subvolumes or if it's
4434  * default.
4435  */
4436 static noinline int may_destroy_subvol(struct btrfs_root *root)
4437 {
4438 	struct btrfs_fs_info *fs_info = root->fs_info;
4439 	struct btrfs_path *path;
4440 	struct btrfs_dir_item *di;
4441 	struct btrfs_key key;
4442 	u64 dir_id;
4443 	int ret;
4444 
4445 	path = btrfs_alloc_path();
4446 	if (!path)
4447 		return -ENOMEM;
4448 
4449 	/* Make sure this root isn't set as the default subvol */
4450 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4451 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4452 				   dir_id, "default", 7, 0);
4453 	if (di && !IS_ERR(di)) {
4454 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4455 		if (key.objectid == root->root_key.objectid) {
4456 			ret = -EPERM;
4457 			btrfs_err(fs_info,
4458 				  "deleting default subvolume %llu is not allowed",
4459 				  key.objectid);
4460 			goto out;
4461 		}
4462 		btrfs_release_path(path);
4463 	}
4464 
4465 	key.objectid = root->root_key.objectid;
4466 	key.type = BTRFS_ROOT_REF_KEY;
4467 	key.offset = (u64)-1;
4468 
4469 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4470 	if (ret < 0)
4471 		goto out;
4472 	BUG_ON(ret == 0);
4473 
4474 	ret = 0;
4475 	if (path->slots[0] > 0) {
4476 		path->slots[0]--;
4477 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4478 		if (key.objectid == root->root_key.objectid &&
4479 		    key.type == BTRFS_ROOT_REF_KEY)
4480 			ret = -ENOTEMPTY;
4481 	}
4482 out:
4483 	btrfs_free_path(path);
4484 	return ret;
4485 }
4486 
4487 /* Delete all dentries for inodes belonging to the root */
4488 static void btrfs_prune_dentries(struct btrfs_root *root)
4489 {
4490 	struct btrfs_fs_info *fs_info = root->fs_info;
4491 	struct rb_node *node;
4492 	struct rb_node *prev;
4493 	struct btrfs_inode *entry;
4494 	struct inode *inode;
4495 	u64 objectid = 0;
4496 
4497 	if (!BTRFS_FS_ERROR(fs_info))
4498 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4499 
4500 	spin_lock(&root->inode_lock);
4501 again:
4502 	node = root->inode_tree.rb_node;
4503 	prev = NULL;
4504 	while (node) {
4505 		prev = node;
4506 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4507 
4508 		if (objectid < btrfs_ino(entry))
4509 			node = node->rb_left;
4510 		else if (objectid > btrfs_ino(entry))
4511 			node = node->rb_right;
4512 		else
4513 			break;
4514 	}
4515 	if (!node) {
4516 		while (prev) {
4517 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4518 			if (objectid <= btrfs_ino(entry)) {
4519 				node = prev;
4520 				break;
4521 			}
4522 			prev = rb_next(prev);
4523 		}
4524 	}
4525 	while (node) {
4526 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4527 		objectid = btrfs_ino(entry) + 1;
4528 		inode = igrab(&entry->vfs_inode);
4529 		if (inode) {
4530 			spin_unlock(&root->inode_lock);
4531 			if (atomic_read(&inode->i_count) > 1)
4532 				d_prune_aliases(inode);
4533 			/*
4534 			 * btrfs_drop_inode will have it removed from the inode
4535 			 * cache when its usage count hits zero.
4536 			 */
4537 			iput(inode);
4538 			cond_resched();
4539 			spin_lock(&root->inode_lock);
4540 			goto again;
4541 		}
4542 
4543 		if (cond_resched_lock(&root->inode_lock))
4544 			goto again;
4545 
4546 		node = rb_next(node);
4547 	}
4548 	spin_unlock(&root->inode_lock);
4549 }
4550 
4551 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4552 {
4553 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4554 	struct btrfs_root *root = BTRFS_I(dir)->root;
4555 	struct inode *inode = d_inode(dentry);
4556 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4557 	struct btrfs_trans_handle *trans;
4558 	struct btrfs_block_rsv block_rsv;
4559 	u64 root_flags;
4560 	int ret;
4561 
4562 	/*
4563 	 * Don't allow to delete a subvolume with send in progress. This is
4564 	 * inside the inode lock so the error handling that has to drop the bit
4565 	 * again is not run concurrently.
4566 	 */
4567 	spin_lock(&dest->root_item_lock);
4568 	if (dest->send_in_progress) {
4569 		spin_unlock(&dest->root_item_lock);
4570 		btrfs_warn(fs_info,
4571 			   "attempt to delete subvolume %llu during send",
4572 			   dest->root_key.objectid);
4573 		return -EPERM;
4574 	}
4575 	if (atomic_read(&dest->nr_swapfiles)) {
4576 		spin_unlock(&dest->root_item_lock);
4577 		btrfs_warn(fs_info,
4578 			   "attempt to delete subvolume %llu with active swapfile",
4579 			   root->root_key.objectid);
4580 		return -EPERM;
4581 	}
4582 	root_flags = btrfs_root_flags(&dest->root_item);
4583 	btrfs_set_root_flags(&dest->root_item,
4584 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4585 	spin_unlock(&dest->root_item_lock);
4586 
4587 	down_write(&fs_info->subvol_sem);
4588 
4589 	ret = may_destroy_subvol(dest);
4590 	if (ret)
4591 		goto out_up_write;
4592 
4593 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4594 	/*
4595 	 * One for dir inode,
4596 	 * two for dir entries,
4597 	 * two for root ref/backref.
4598 	 */
4599 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4600 	if (ret)
4601 		goto out_up_write;
4602 
4603 	trans = btrfs_start_transaction(root, 0);
4604 	if (IS_ERR(trans)) {
4605 		ret = PTR_ERR(trans);
4606 		goto out_release;
4607 	}
4608 	trans->block_rsv = &block_rsv;
4609 	trans->bytes_reserved = block_rsv.size;
4610 
4611 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4612 
4613 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4614 	if (ret) {
4615 		btrfs_abort_transaction(trans, ret);
4616 		goto out_end_trans;
4617 	}
4618 
4619 	ret = btrfs_record_root_in_trans(trans, dest);
4620 	if (ret) {
4621 		btrfs_abort_transaction(trans, ret);
4622 		goto out_end_trans;
4623 	}
4624 
4625 	memset(&dest->root_item.drop_progress, 0,
4626 		sizeof(dest->root_item.drop_progress));
4627 	btrfs_set_root_drop_level(&dest->root_item, 0);
4628 	btrfs_set_root_refs(&dest->root_item, 0);
4629 
4630 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4631 		ret = btrfs_insert_orphan_item(trans,
4632 					fs_info->tree_root,
4633 					dest->root_key.objectid);
4634 		if (ret) {
4635 			btrfs_abort_transaction(trans, ret);
4636 			goto out_end_trans;
4637 		}
4638 	}
4639 
4640 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4641 				  BTRFS_UUID_KEY_SUBVOL,
4642 				  dest->root_key.objectid);
4643 	if (ret && ret != -ENOENT) {
4644 		btrfs_abort_transaction(trans, ret);
4645 		goto out_end_trans;
4646 	}
4647 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4648 		ret = btrfs_uuid_tree_remove(trans,
4649 					  dest->root_item.received_uuid,
4650 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4651 					  dest->root_key.objectid);
4652 		if (ret && ret != -ENOENT) {
4653 			btrfs_abort_transaction(trans, ret);
4654 			goto out_end_trans;
4655 		}
4656 	}
4657 
4658 	free_anon_bdev(dest->anon_dev);
4659 	dest->anon_dev = 0;
4660 out_end_trans:
4661 	trans->block_rsv = NULL;
4662 	trans->bytes_reserved = 0;
4663 	ret = btrfs_end_transaction(trans);
4664 	inode->i_flags |= S_DEAD;
4665 out_release:
4666 	btrfs_subvolume_release_metadata(root, &block_rsv);
4667 out_up_write:
4668 	up_write(&fs_info->subvol_sem);
4669 	if (ret) {
4670 		spin_lock(&dest->root_item_lock);
4671 		root_flags = btrfs_root_flags(&dest->root_item);
4672 		btrfs_set_root_flags(&dest->root_item,
4673 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4674 		spin_unlock(&dest->root_item_lock);
4675 	} else {
4676 		d_invalidate(dentry);
4677 		btrfs_prune_dentries(dest);
4678 		ASSERT(dest->send_in_progress == 0);
4679 	}
4680 
4681 	return ret;
4682 }
4683 
4684 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4685 {
4686 	struct inode *inode = d_inode(dentry);
4687 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4688 	int err = 0;
4689 	struct btrfs_trans_handle *trans;
4690 	u64 last_unlink_trans;
4691 
4692 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4693 		return -ENOTEMPTY;
4694 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4695 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4696 			btrfs_err(fs_info,
4697 			"extent tree v2 doesn't support snapshot deletion yet");
4698 			return -EOPNOTSUPP;
4699 		}
4700 		return btrfs_delete_subvolume(dir, dentry);
4701 	}
4702 
4703 	trans = __unlink_start_trans(dir);
4704 	if (IS_ERR(trans))
4705 		return PTR_ERR(trans);
4706 
4707 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4708 		err = btrfs_unlink_subvol(trans, dir, dentry);
4709 		goto out;
4710 	}
4711 
4712 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4713 	if (err)
4714 		goto out;
4715 
4716 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4717 
4718 	/* now the directory is empty */
4719 	err = btrfs_unlink_inode(trans, BTRFS_I(dir),
4720 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4721 			dentry->d_name.len);
4722 	if (!err) {
4723 		btrfs_i_size_write(BTRFS_I(inode), 0);
4724 		/*
4725 		 * Propagate the last_unlink_trans value of the deleted dir to
4726 		 * its parent directory. This is to prevent an unrecoverable
4727 		 * log tree in the case we do something like this:
4728 		 * 1) create dir foo
4729 		 * 2) create snapshot under dir foo
4730 		 * 3) delete the snapshot
4731 		 * 4) rmdir foo
4732 		 * 5) mkdir foo
4733 		 * 6) fsync foo or some file inside foo
4734 		 */
4735 		if (last_unlink_trans >= trans->transid)
4736 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4737 	}
4738 out:
4739 	btrfs_end_transaction(trans);
4740 	btrfs_btree_balance_dirty(fs_info);
4741 
4742 	return err;
4743 }
4744 
4745 /*
4746  * btrfs_truncate_block - read, zero a chunk and write a block
4747  * @inode - inode that we're zeroing
4748  * @from - the offset to start zeroing
4749  * @len - the length to zero, 0 to zero the entire range respective to the
4750  *	offset
4751  * @front - zero up to the offset instead of from the offset on
4752  *
4753  * This will find the block for the "from" offset and cow the block and zero the
4754  * part we want to zero.  This is used with truncate and hole punching.
4755  */
4756 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4757 			 int front)
4758 {
4759 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4760 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4761 	struct extent_io_tree *io_tree = &inode->io_tree;
4762 	struct btrfs_ordered_extent *ordered;
4763 	struct extent_state *cached_state = NULL;
4764 	struct extent_changeset *data_reserved = NULL;
4765 	bool only_release_metadata = false;
4766 	u32 blocksize = fs_info->sectorsize;
4767 	pgoff_t index = from >> PAGE_SHIFT;
4768 	unsigned offset = from & (blocksize - 1);
4769 	struct page *page;
4770 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4771 	size_t write_bytes = blocksize;
4772 	int ret = 0;
4773 	u64 block_start;
4774 	u64 block_end;
4775 
4776 	if (IS_ALIGNED(offset, blocksize) &&
4777 	    (!len || IS_ALIGNED(len, blocksize)))
4778 		goto out;
4779 
4780 	block_start = round_down(from, blocksize);
4781 	block_end = block_start + blocksize - 1;
4782 
4783 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4784 					  blocksize);
4785 	if (ret < 0) {
4786 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4787 			/* For nocow case, no need to reserve data space */
4788 			only_release_metadata = true;
4789 		} else {
4790 			goto out;
4791 		}
4792 	}
4793 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4794 	if (ret < 0) {
4795 		if (!only_release_metadata)
4796 			btrfs_free_reserved_data_space(inode, data_reserved,
4797 						       block_start, blocksize);
4798 		goto out;
4799 	}
4800 again:
4801 	page = find_or_create_page(mapping, index, mask);
4802 	if (!page) {
4803 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4804 					     blocksize, true);
4805 		btrfs_delalloc_release_extents(inode, blocksize);
4806 		ret = -ENOMEM;
4807 		goto out;
4808 	}
4809 	ret = set_page_extent_mapped(page);
4810 	if (ret < 0)
4811 		goto out_unlock;
4812 
4813 	if (!PageUptodate(page)) {
4814 		ret = btrfs_read_folio(NULL, page_folio(page));
4815 		lock_page(page);
4816 		if (page->mapping != mapping) {
4817 			unlock_page(page);
4818 			put_page(page);
4819 			goto again;
4820 		}
4821 		if (!PageUptodate(page)) {
4822 			ret = -EIO;
4823 			goto out_unlock;
4824 		}
4825 	}
4826 	wait_on_page_writeback(page);
4827 
4828 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4829 
4830 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4831 	if (ordered) {
4832 		unlock_extent_cached(io_tree, block_start, block_end,
4833 				     &cached_state);
4834 		unlock_page(page);
4835 		put_page(page);
4836 		btrfs_start_ordered_extent(ordered, 1);
4837 		btrfs_put_ordered_extent(ordered);
4838 		goto again;
4839 	}
4840 
4841 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4842 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4843 			 0, 0, &cached_state);
4844 
4845 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4846 					&cached_state);
4847 	if (ret) {
4848 		unlock_extent_cached(io_tree, block_start, block_end,
4849 				     &cached_state);
4850 		goto out_unlock;
4851 	}
4852 
4853 	if (offset != blocksize) {
4854 		if (!len)
4855 			len = blocksize - offset;
4856 		if (front)
4857 			memzero_page(page, (block_start - page_offset(page)),
4858 				     offset);
4859 		else
4860 			memzero_page(page, (block_start - page_offset(page)) + offset,
4861 				     len);
4862 		flush_dcache_page(page);
4863 	}
4864 	btrfs_page_clear_checked(fs_info, page, block_start,
4865 				 block_end + 1 - block_start);
4866 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4867 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4868 
4869 	if (only_release_metadata)
4870 		set_extent_bit(&inode->io_tree, block_start, block_end,
4871 			       EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4872 
4873 out_unlock:
4874 	if (ret) {
4875 		if (only_release_metadata)
4876 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4877 		else
4878 			btrfs_delalloc_release_space(inode, data_reserved,
4879 					block_start, blocksize, true);
4880 	}
4881 	btrfs_delalloc_release_extents(inode, blocksize);
4882 	unlock_page(page);
4883 	put_page(page);
4884 out:
4885 	if (only_release_metadata)
4886 		btrfs_check_nocow_unlock(inode);
4887 	extent_changeset_free(data_reserved);
4888 	return ret;
4889 }
4890 
4891 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4892 			     u64 offset, u64 len)
4893 {
4894 	struct btrfs_fs_info *fs_info = root->fs_info;
4895 	struct btrfs_trans_handle *trans;
4896 	struct btrfs_drop_extents_args drop_args = { 0 };
4897 	int ret;
4898 
4899 	/*
4900 	 * If NO_HOLES is enabled, we don't need to do anything.
4901 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4902 	 * or btrfs_update_inode() will be called, which guarantee that the next
4903 	 * fsync will know this inode was changed and needs to be logged.
4904 	 */
4905 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4906 		return 0;
4907 
4908 	/*
4909 	 * 1 - for the one we're dropping
4910 	 * 1 - for the one we're adding
4911 	 * 1 - for updating the inode.
4912 	 */
4913 	trans = btrfs_start_transaction(root, 3);
4914 	if (IS_ERR(trans))
4915 		return PTR_ERR(trans);
4916 
4917 	drop_args.start = offset;
4918 	drop_args.end = offset + len;
4919 	drop_args.drop_cache = true;
4920 
4921 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4922 	if (ret) {
4923 		btrfs_abort_transaction(trans, ret);
4924 		btrfs_end_transaction(trans);
4925 		return ret;
4926 	}
4927 
4928 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
4929 			offset, 0, 0, len, 0, len, 0, 0, 0);
4930 	if (ret) {
4931 		btrfs_abort_transaction(trans, ret);
4932 	} else {
4933 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4934 		btrfs_update_inode(trans, root, inode);
4935 	}
4936 	btrfs_end_transaction(trans);
4937 	return ret;
4938 }
4939 
4940 /*
4941  * This function puts in dummy file extents for the area we're creating a hole
4942  * for.  So if we are truncating this file to a larger size we need to insert
4943  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4944  * the range between oldsize and size
4945  */
4946 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4947 {
4948 	struct btrfs_root *root = inode->root;
4949 	struct btrfs_fs_info *fs_info = root->fs_info;
4950 	struct extent_io_tree *io_tree = &inode->io_tree;
4951 	struct extent_map *em = NULL;
4952 	struct extent_state *cached_state = NULL;
4953 	struct extent_map_tree *em_tree = &inode->extent_tree;
4954 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4955 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4956 	u64 last_byte;
4957 	u64 cur_offset;
4958 	u64 hole_size;
4959 	int err = 0;
4960 
4961 	/*
4962 	 * If our size started in the middle of a block we need to zero out the
4963 	 * rest of the block before we expand the i_size, otherwise we could
4964 	 * expose stale data.
4965 	 */
4966 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4967 	if (err)
4968 		return err;
4969 
4970 	if (size <= hole_start)
4971 		return 0;
4972 
4973 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4974 					   &cached_state);
4975 	cur_offset = hole_start;
4976 	while (1) {
4977 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4978 				      block_end - cur_offset);
4979 		if (IS_ERR(em)) {
4980 			err = PTR_ERR(em);
4981 			em = NULL;
4982 			break;
4983 		}
4984 		last_byte = min(extent_map_end(em), block_end);
4985 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4986 		hole_size = last_byte - cur_offset;
4987 
4988 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4989 			struct extent_map *hole_em;
4990 
4991 			err = maybe_insert_hole(root, inode, cur_offset,
4992 						hole_size);
4993 			if (err)
4994 				break;
4995 
4996 			err = btrfs_inode_set_file_extent_range(inode,
4997 							cur_offset, hole_size);
4998 			if (err)
4999 				break;
5000 
5001 			btrfs_drop_extent_cache(inode, cur_offset,
5002 						cur_offset + hole_size - 1, 0);
5003 			hole_em = alloc_extent_map();
5004 			if (!hole_em) {
5005 				btrfs_set_inode_full_sync(inode);
5006 				goto next;
5007 			}
5008 			hole_em->start = cur_offset;
5009 			hole_em->len = hole_size;
5010 			hole_em->orig_start = cur_offset;
5011 
5012 			hole_em->block_start = EXTENT_MAP_HOLE;
5013 			hole_em->block_len = 0;
5014 			hole_em->orig_block_len = 0;
5015 			hole_em->ram_bytes = hole_size;
5016 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5017 			hole_em->generation = fs_info->generation;
5018 
5019 			while (1) {
5020 				write_lock(&em_tree->lock);
5021 				err = add_extent_mapping(em_tree, hole_em, 1);
5022 				write_unlock(&em_tree->lock);
5023 				if (err != -EEXIST)
5024 					break;
5025 				btrfs_drop_extent_cache(inode, cur_offset,
5026 							cur_offset +
5027 							hole_size - 1, 0);
5028 			}
5029 			free_extent_map(hole_em);
5030 		} else {
5031 			err = btrfs_inode_set_file_extent_range(inode,
5032 							cur_offset, hole_size);
5033 			if (err)
5034 				break;
5035 		}
5036 next:
5037 		free_extent_map(em);
5038 		em = NULL;
5039 		cur_offset = last_byte;
5040 		if (cur_offset >= block_end)
5041 			break;
5042 	}
5043 	free_extent_map(em);
5044 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5045 	return err;
5046 }
5047 
5048 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5049 {
5050 	struct btrfs_root *root = BTRFS_I(inode)->root;
5051 	struct btrfs_trans_handle *trans;
5052 	loff_t oldsize = i_size_read(inode);
5053 	loff_t newsize = attr->ia_size;
5054 	int mask = attr->ia_valid;
5055 	int ret;
5056 
5057 	/*
5058 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5059 	 * special case where we need to update the times despite not having
5060 	 * these flags set.  For all other operations the VFS set these flags
5061 	 * explicitly if it wants a timestamp update.
5062 	 */
5063 	if (newsize != oldsize) {
5064 		inode_inc_iversion(inode);
5065 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5066 			inode->i_ctime = inode->i_mtime =
5067 				current_time(inode);
5068 	}
5069 
5070 	if (newsize > oldsize) {
5071 		/*
5072 		 * Don't do an expanding truncate while snapshotting is ongoing.
5073 		 * This is to ensure the snapshot captures a fully consistent
5074 		 * state of this file - if the snapshot captures this expanding
5075 		 * truncation, it must capture all writes that happened before
5076 		 * this truncation.
5077 		 */
5078 		btrfs_drew_write_lock(&root->snapshot_lock);
5079 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5080 		if (ret) {
5081 			btrfs_drew_write_unlock(&root->snapshot_lock);
5082 			return ret;
5083 		}
5084 
5085 		trans = btrfs_start_transaction(root, 1);
5086 		if (IS_ERR(trans)) {
5087 			btrfs_drew_write_unlock(&root->snapshot_lock);
5088 			return PTR_ERR(trans);
5089 		}
5090 
5091 		i_size_write(inode, newsize);
5092 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5093 		pagecache_isize_extended(inode, oldsize, newsize);
5094 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5095 		btrfs_drew_write_unlock(&root->snapshot_lock);
5096 		btrfs_end_transaction(trans);
5097 	} else {
5098 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5099 
5100 		if (btrfs_is_zoned(fs_info)) {
5101 			ret = btrfs_wait_ordered_range(inode,
5102 					ALIGN(newsize, fs_info->sectorsize),
5103 					(u64)-1);
5104 			if (ret)
5105 				return ret;
5106 		}
5107 
5108 		/*
5109 		 * We're truncating a file that used to have good data down to
5110 		 * zero. Make sure any new writes to the file get on disk
5111 		 * on close.
5112 		 */
5113 		if (newsize == 0)
5114 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5115 				&BTRFS_I(inode)->runtime_flags);
5116 
5117 		truncate_setsize(inode, newsize);
5118 
5119 		inode_dio_wait(inode);
5120 
5121 		ret = btrfs_truncate(inode, newsize == oldsize);
5122 		if (ret && inode->i_nlink) {
5123 			int err;
5124 
5125 			/*
5126 			 * Truncate failed, so fix up the in-memory size. We
5127 			 * adjusted disk_i_size down as we removed extents, so
5128 			 * wait for disk_i_size to be stable and then update the
5129 			 * in-memory size to match.
5130 			 */
5131 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5132 			if (err)
5133 				return err;
5134 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5135 		}
5136 	}
5137 
5138 	return ret;
5139 }
5140 
5141 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5142 			 struct iattr *attr)
5143 {
5144 	struct inode *inode = d_inode(dentry);
5145 	struct btrfs_root *root = BTRFS_I(inode)->root;
5146 	int err;
5147 
5148 	if (btrfs_root_readonly(root))
5149 		return -EROFS;
5150 
5151 	err = setattr_prepare(mnt_userns, dentry, attr);
5152 	if (err)
5153 		return err;
5154 
5155 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5156 		err = btrfs_setsize(inode, attr);
5157 		if (err)
5158 			return err;
5159 	}
5160 
5161 	if (attr->ia_valid) {
5162 		setattr_copy(mnt_userns, inode, attr);
5163 		inode_inc_iversion(inode);
5164 		err = btrfs_dirty_inode(inode);
5165 
5166 		if (!err && attr->ia_valid & ATTR_MODE)
5167 			err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5168 	}
5169 
5170 	return err;
5171 }
5172 
5173 /*
5174  * While truncating the inode pages during eviction, we get the VFS
5175  * calling btrfs_invalidate_folio() against each folio of the inode. This
5176  * is slow because the calls to btrfs_invalidate_folio() result in a
5177  * huge amount of calls to lock_extent_bits() and clear_extent_bit(),
5178  * which keep merging and splitting extent_state structures over and over,
5179  * wasting lots of time.
5180  *
5181  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5182  * skip all those expensive operations on a per folio basis and do only
5183  * the ordered io finishing, while we release here the extent_map and
5184  * extent_state structures, without the excessive merging and splitting.
5185  */
5186 static void evict_inode_truncate_pages(struct inode *inode)
5187 {
5188 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5189 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5190 	struct rb_node *node;
5191 
5192 	ASSERT(inode->i_state & I_FREEING);
5193 	truncate_inode_pages_final(&inode->i_data);
5194 
5195 	write_lock(&map_tree->lock);
5196 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5197 		struct extent_map *em;
5198 
5199 		node = rb_first_cached(&map_tree->map);
5200 		em = rb_entry(node, struct extent_map, rb_node);
5201 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5202 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5203 		remove_extent_mapping(map_tree, em);
5204 		free_extent_map(em);
5205 		if (need_resched()) {
5206 			write_unlock(&map_tree->lock);
5207 			cond_resched();
5208 			write_lock(&map_tree->lock);
5209 		}
5210 	}
5211 	write_unlock(&map_tree->lock);
5212 
5213 	/*
5214 	 * Keep looping until we have no more ranges in the io tree.
5215 	 * We can have ongoing bios started by readahead that have
5216 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5217 	 * still in progress (unlocked the pages in the bio but did not yet
5218 	 * unlocked the ranges in the io tree). Therefore this means some
5219 	 * ranges can still be locked and eviction started because before
5220 	 * submitting those bios, which are executed by a separate task (work
5221 	 * queue kthread), inode references (inode->i_count) were not taken
5222 	 * (which would be dropped in the end io callback of each bio).
5223 	 * Therefore here we effectively end up waiting for those bios and
5224 	 * anyone else holding locked ranges without having bumped the inode's
5225 	 * reference count - if we don't do it, when they access the inode's
5226 	 * io_tree to unlock a range it may be too late, leading to an
5227 	 * use-after-free issue.
5228 	 */
5229 	spin_lock(&io_tree->lock);
5230 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5231 		struct extent_state *state;
5232 		struct extent_state *cached_state = NULL;
5233 		u64 start;
5234 		u64 end;
5235 		unsigned state_flags;
5236 
5237 		node = rb_first(&io_tree->state);
5238 		state = rb_entry(node, struct extent_state, rb_node);
5239 		start = state->start;
5240 		end = state->end;
5241 		state_flags = state->state;
5242 		spin_unlock(&io_tree->lock);
5243 
5244 		lock_extent_bits(io_tree, start, end, &cached_state);
5245 
5246 		/*
5247 		 * If still has DELALLOC flag, the extent didn't reach disk,
5248 		 * and its reserved space won't be freed by delayed_ref.
5249 		 * So we need to free its reserved space here.
5250 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5251 		 *
5252 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5253 		 */
5254 		if (state_flags & EXTENT_DELALLOC)
5255 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5256 					       end - start + 1);
5257 
5258 		clear_extent_bit(io_tree, start, end,
5259 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5260 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5261 				 &cached_state);
5262 
5263 		cond_resched();
5264 		spin_lock(&io_tree->lock);
5265 	}
5266 	spin_unlock(&io_tree->lock);
5267 }
5268 
5269 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5270 							struct btrfs_block_rsv *rsv)
5271 {
5272 	struct btrfs_fs_info *fs_info = root->fs_info;
5273 	struct btrfs_trans_handle *trans;
5274 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5275 	int ret;
5276 
5277 	/*
5278 	 * Eviction should be taking place at some place safe because of our
5279 	 * delayed iputs.  However the normal flushing code will run delayed
5280 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5281 	 *
5282 	 * We reserve the delayed_refs_extra here again because we can't use
5283 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5284 	 * above.  We reserve our extra bit here because we generate a ton of
5285 	 * delayed refs activity by truncating.
5286 	 *
5287 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5288 	 * if we fail to make this reservation we can re-try without the
5289 	 * delayed_refs_extra so we can make some forward progress.
5290 	 */
5291 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5292 				     BTRFS_RESERVE_FLUSH_EVICT);
5293 	if (ret) {
5294 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5295 					     BTRFS_RESERVE_FLUSH_EVICT);
5296 		if (ret) {
5297 			btrfs_warn(fs_info,
5298 				   "could not allocate space for delete; will truncate on mount");
5299 			return ERR_PTR(-ENOSPC);
5300 		}
5301 		delayed_refs_extra = 0;
5302 	}
5303 
5304 	trans = btrfs_join_transaction(root);
5305 	if (IS_ERR(trans))
5306 		return trans;
5307 
5308 	if (delayed_refs_extra) {
5309 		trans->block_rsv = &fs_info->trans_block_rsv;
5310 		trans->bytes_reserved = delayed_refs_extra;
5311 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5312 					delayed_refs_extra, 1);
5313 	}
5314 	return trans;
5315 }
5316 
5317 void btrfs_evict_inode(struct inode *inode)
5318 {
5319 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5320 	struct btrfs_trans_handle *trans;
5321 	struct btrfs_root *root = BTRFS_I(inode)->root;
5322 	struct btrfs_block_rsv *rsv;
5323 	int ret;
5324 
5325 	trace_btrfs_inode_evict(inode);
5326 
5327 	if (!root) {
5328 		fsverity_cleanup_inode(inode);
5329 		clear_inode(inode);
5330 		return;
5331 	}
5332 
5333 	evict_inode_truncate_pages(inode);
5334 
5335 	if (inode->i_nlink &&
5336 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5337 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5338 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5339 		goto no_delete;
5340 
5341 	if (is_bad_inode(inode))
5342 		goto no_delete;
5343 
5344 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5345 
5346 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5347 		goto no_delete;
5348 
5349 	if (inode->i_nlink > 0) {
5350 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5351 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5352 		goto no_delete;
5353 	}
5354 
5355 	/*
5356 	 * This makes sure the inode item in tree is uptodate and the space for
5357 	 * the inode update is released.
5358 	 */
5359 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5360 	if (ret)
5361 		goto no_delete;
5362 
5363 	/*
5364 	 * This drops any pending insert or delete operations we have for this
5365 	 * inode.  We could have a delayed dir index deletion queued up, but
5366 	 * we're removing the inode completely so that'll be taken care of in
5367 	 * the truncate.
5368 	 */
5369 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5370 
5371 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5372 	if (!rsv)
5373 		goto no_delete;
5374 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5375 	rsv->failfast = 1;
5376 
5377 	btrfs_i_size_write(BTRFS_I(inode), 0);
5378 
5379 	while (1) {
5380 		struct btrfs_truncate_control control = {
5381 			.inode = BTRFS_I(inode),
5382 			.ino = btrfs_ino(BTRFS_I(inode)),
5383 			.new_size = 0,
5384 			.min_type = 0,
5385 		};
5386 
5387 		trans = evict_refill_and_join(root, rsv);
5388 		if (IS_ERR(trans))
5389 			goto free_rsv;
5390 
5391 		trans->block_rsv = rsv;
5392 
5393 		ret = btrfs_truncate_inode_items(trans, root, &control);
5394 		trans->block_rsv = &fs_info->trans_block_rsv;
5395 		btrfs_end_transaction(trans);
5396 		btrfs_btree_balance_dirty(fs_info);
5397 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5398 			goto free_rsv;
5399 		else if (!ret)
5400 			break;
5401 	}
5402 
5403 	/*
5404 	 * Errors here aren't a big deal, it just means we leave orphan items in
5405 	 * the tree. They will be cleaned up on the next mount. If the inode
5406 	 * number gets reused, cleanup deletes the orphan item without doing
5407 	 * anything, and unlink reuses the existing orphan item.
5408 	 *
5409 	 * If it turns out that we are dropping too many of these, we might want
5410 	 * to add a mechanism for retrying these after a commit.
5411 	 */
5412 	trans = evict_refill_and_join(root, rsv);
5413 	if (!IS_ERR(trans)) {
5414 		trans->block_rsv = rsv;
5415 		btrfs_orphan_del(trans, BTRFS_I(inode));
5416 		trans->block_rsv = &fs_info->trans_block_rsv;
5417 		btrfs_end_transaction(trans);
5418 	}
5419 
5420 free_rsv:
5421 	btrfs_free_block_rsv(fs_info, rsv);
5422 no_delete:
5423 	/*
5424 	 * If we didn't successfully delete, the orphan item will still be in
5425 	 * the tree and we'll retry on the next mount. Again, we might also want
5426 	 * to retry these periodically in the future.
5427 	 */
5428 	btrfs_remove_delayed_node(BTRFS_I(inode));
5429 	fsverity_cleanup_inode(inode);
5430 	clear_inode(inode);
5431 }
5432 
5433 /*
5434  * Return the key found in the dir entry in the location pointer, fill @type
5435  * with BTRFS_FT_*, and return 0.
5436  *
5437  * If no dir entries were found, returns -ENOENT.
5438  * If found a corrupted location in dir entry, returns -EUCLEAN.
5439  */
5440 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5441 			       struct btrfs_key *location, u8 *type)
5442 {
5443 	const char *name = dentry->d_name.name;
5444 	int namelen = dentry->d_name.len;
5445 	struct btrfs_dir_item *di;
5446 	struct btrfs_path *path;
5447 	struct btrfs_root *root = BTRFS_I(dir)->root;
5448 	int ret = 0;
5449 
5450 	path = btrfs_alloc_path();
5451 	if (!path)
5452 		return -ENOMEM;
5453 
5454 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5455 			name, namelen, 0);
5456 	if (IS_ERR_OR_NULL(di)) {
5457 		ret = di ? PTR_ERR(di) : -ENOENT;
5458 		goto out;
5459 	}
5460 
5461 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5462 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5463 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5464 		ret = -EUCLEAN;
5465 		btrfs_warn(root->fs_info,
5466 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5467 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5468 			   location->objectid, location->type, location->offset);
5469 	}
5470 	if (!ret)
5471 		*type = btrfs_dir_type(path->nodes[0], di);
5472 out:
5473 	btrfs_free_path(path);
5474 	return ret;
5475 }
5476 
5477 /*
5478  * when we hit a tree root in a directory, the btrfs part of the inode
5479  * needs to be changed to reflect the root directory of the tree root.  This
5480  * is kind of like crossing a mount point.
5481  */
5482 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5483 				    struct inode *dir,
5484 				    struct dentry *dentry,
5485 				    struct btrfs_key *location,
5486 				    struct btrfs_root **sub_root)
5487 {
5488 	struct btrfs_path *path;
5489 	struct btrfs_root *new_root;
5490 	struct btrfs_root_ref *ref;
5491 	struct extent_buffer *leaf;
5492 	struct btrfs_key key;
5493 	int ret;
5494 	int err = 0;
5495 
5496 	path = btrfs_alloc_path();
5497 	if (!path) {
5498 		err = -ENOMEM;
5499 		goto out;
5500 	}
5501 
5502 	err = -ENOENT;
5503 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5504 	key.type = BTRFS_ROOT_REF_KEY;
5505 	key.offset = location->objectid;
5506 
5507 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5508 	if (ret) {
5509 		if (ret < 0)
5510 			err = ret;
5511 		goto out;
5512 	}
5513 
5514 	leaf = path->nodes[0];
5515 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5516 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5517 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5518 		goto out;
5519 
5520 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5521 				   (unsigned long)(ref + 1),
5522 				   dentry->d_name.len);
5523 	if (ret)
5524 		goto out;
5525 
5526 	btrfs_release_path(path);
5527 
5528 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5529 	if (IS_ERR(new_root)) {
5530 		err = PTR_ERR(new_root);
5531 		goto out;
5532 	}
5533 
5534 	*sub_root = new_root;
5535 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5536 	location->type = BTRFS_INODE_ITEM_KEY;
5537 	location->offset = 0;
5538 	err = 0;
5539 out:
5540 	btrfs_free_path(path);
5541 	return err;
5542 }
5543 
5544 static void inode_tree_add(struct inode *inode)
5545 {
5546 	struct btrfs_root *root = BTRFS_I(inode)->root;
5547 	struct btrfs_inode *entry;
5548 	struct rb_node **p;
5549 	struct rb_node *parent;
5550 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5551 	u64 ino = btrfs_ino(BTRFS_I(inode));
5552 
5553 	if (inode_unhashed(inode))
5554 		return;
5555 	parent = NULL;
5556 	spin_lock(&root->inode_lock);
5557 	p = &root->inode_tree.rb_node;
5558 	while (*p) {
5559 		parent = *p;
5560 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5561 
5562 		if (ino < btrfs_ino(entry))
5563 			p = &parent->rb_left;
5564 		else if (ino > btrfs_ino(entry))
5565 			p = &parent->rb_right;
5566 		else {
5567 			WARN_ON(!(entry->vfs_inode.i_state &
5568 				  (I_WILL_FREE | I_FREEING)));
5569 			rb_replace_node(parent, new, &root->inode_tree);
5570 			RB_CLEAR_NODE(parent);
5571 			spin_unlock(&root->inode_lock);
5572 			return;
5573 		}
5574 	}
5575 	rb_link_node(new, parent, p);
5576 	rb_insert_color(new, &root->inode_tree);
5577 	spin_unlock(&root->inode_lock);
5578 }
5579 
5580 static void inode_tree_del(struct btrfs_inode *inode)
5581 {
5582 	struct btrfs_root *root = inode->root;
5583 	int empty = 0;
5584 
5585 	spin_lock(&root->inode_lock);
5586 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5587 		rb_erase(&inode->rb_node, &root->inode_tree);
5588 		RB_CLEAR_NODE(&inode->rb_node);
5589 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5590 	}
5591 	spin_unlock(&root->inode_lock);
5592 
5593 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5594 		spin_lock(&root->inode_lock);
5595 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5596 		spin_unlock(&root->inode_lock);
5597 		if (empty)
5598 			btrfs_add_dead_root(root);
5599 	}
5600 }
5601 
5602 
5603 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5604 {
5605 	struct btrfs_iget_args *args = p;
5606 
5607 	inode->i_ino = args->ino;
5608 	BTRFS_I(inode)->location.objectid = args->ino;
5609 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5610 	BTRFS_I(inode)->location.offset = 0;
5611 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5612 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5613 	return 0;
5614 }
5615 
5616 static int btrfs_find_actor(struct inode *inode, void *opaque)
5617 {
5618 	struct btrfs_iget_args *args = opaque;
5619 
5620 	return args->ino == BTRFS_I(inode)->location.objectid &&
5621 		args->root == BTRFS_I(inode)->root;
5622 }
5623 
5624 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5625 				       struct btrfs_root *root)
5626 {
5627 	struct inode *inode;
5628 	struct btrfs_iget_args args;
5629 	unsigned long hashval = btrfs_inode_hash(ino, root);
5630 
5631 	args.ino = ino;
5632 	args.root = root;
5633 
5634 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5635 			     btrfs_init_locked_inode,
5636 			     (void *)&args);
5637 	return inode;
5638 }
5639 
5640 /*
5641  * Get an inode object given its inode number and corresponding root.
5642  * Path can be preallocated to prevent recursing back to iget through
5643  * allocator. NULL is also valid but may require an additional allocation
5644  * later.
5645  */
5646 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5647 			      struct btrfs_root *root, struct btrfs_path *path)
5648 {
5649 	struct inode *inode;
5650 
5651 	inode = btrfs_iget_locked(s, ino, root);
5652 	if (!inode)
5653 		return ERR_PTR(-ENOMEM);
5654 
5655 	if (inode->i_state & I_NEW) {
5656 		int ret;
5657 
5658 		ret = btrfs_read_locked_inode(inode, path);
5659 		if (!ret) {
5660 			inode_tree_add(inode);
5661 			unlock_new_inode(inode);
5662 		} else {
5663 			iget_failed(inode);
5664 			/*
5665 			 * ret > 0 can come from btrfs_search_slot called by
5666 			 * btrfs_read_locked_inode, this means the inode item
5667 			 * was not found.
5668 			 */
5669 			if (ret > 0)
5670 				ret = -ENOENT;
5671 			inode = ERR_PTR(ret);
5672 		}
5673 	}
5674 
5675 	return inode;
5676 }
5677 
5678 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5679 {
5680 	return btrfs_iget_path(s, ino, root, NULL);
5681 }
5682 
5683 static struct inode *new_simple_dir(struct super_block *s,
5684 				    struct btrfs_key *key,
5685 				    struct btrfs_root *root)
5686 {
5687 	struct inode *inode = new_inode(s);
5688 
5689 	if (!inode)
5690 		return ERR_PTR(-ENOMEM);
5691 
5692 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5693 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5694 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5695 
5696 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5697 	/*
5698 	 * We only need lookup, the rest is read-only and there's no inode
5699 	 * associated with the dentry
5700 	 */
5701 	inode->i_op = &simple_dir_inode_operations;
5702 	inode->i_opflags &= ~IOP_XATTR;
5703 	inode->i_fop = &simple_dir_operations;
5704 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5705 	inode->i_mtime = current_time(inode);
5706 	inode->i_atime = inode->i_mtime;
5707 	inode->i_ctime = inode->i_mtime;
5708 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5709 
5710 	return inode;
5711 }
5712 
5713 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5714 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5715 static_assert(BTRFS_FT_DIR == FT_DIR);
5716 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5717 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5718 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5719 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5720 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5721 
5722 static inline u8 btrfs_inode_type(struct inode *inode)
5723 {
5724 	return fs_umode_to_ftype(inode->i_mode);
5725 }
5726 
5727 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5728 {
5729 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5730 	struct inode *inode;
5731 	struct btrfs_root *root = BTRFS_I(dir)->root;
5732 	struct btrfs_root *sub_root = root;
5733 	struct btrfs_key location;
5734 	u8 di_type = 0;
5735 	int ret = 0;
5736 
5737 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5738 		return ERR_PTR(-ENAMETOOLONG);
5739 
5740 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5741 	if (ret < 0)
5742 		return ERR_PTR(ret);
5743 
5744 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5745 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5746 		if (IS_ERR(inode))
5747 			return inode;
5748 
5749 		/* Do extra check against inode mode with di_type */
5750 		if (btrfs_inode_type(inode) != di_type) {
5751 			btrfs_crit(fs_info,
5752 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5753 				  inode->i_mode, btrfs_inode_type(inode),
5754 				  di_type);
5755 			iput(inode);
5756 			return ERR_PTR(-EUCLEAN);
5757 		}
5758 		return inode;
5759 	}
5760 
5761 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5762 				       &location, &sub_root);
5763 	if (ret < 0) {
5764 		if (ret != -ENOENT)
5765 			inode = ERR_PTR(ret);
5766 		else
5767 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5768 	} else {
5769 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5770 	}
5771 	if (root != sub_root)
5772 		btrfs_put_root(sub_root);
5773 
5774 	if (!IS_ERR(inode) && root != sub_root) {
5775 		down_read(&fs_info->cleanup_work_sem);
5776 		if (!sb_rdonly(inode->i_sb))
5777 			ret = btrfs_orphan_cleanup(sub_root);
5778 		up_read(&fs_info->cleanup_work_sem);
5779 		if (ret) {
5780 			iput(inode);
5781 			inode = ERR_PTR(ret);
5782 		}
5783 	}
5784 
5785 	return inode;
5786 }
5787 
5788 static int btrfs_dentry_delete(const struct dentry *dentry)
5789 {
5790 	struct btrfs_root *root;
5791 	struct inode *inode = d_inode(dentry);
5792 
5793 	if (!inode && !IS_ROOT(dentry))
5794 		inode = d_inode(dentry->d_parent);
5795 
5796 	if (inode) {
5797 		root = BTRFS_I(inode)->root;
5798 		if (btrfs_root_refs(&root->root_item) == 0)
5799 			return 1;
5800 
5801 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5802 			return 1;
5803 	}
5804 	return 0;
5805 }
5806 
5807 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5808 				   unsigned int flags)
5809 {
5810 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5811 
5812 	if (inode == ERR_PTR(-ENOENT))
5813 		inode = NULL;
5814 	return d_splice_alias(inode, dentry);
5815 }
5816 
5817 /*
5818  * All this infrastructure exists because dir_emit can fault, and we are holding
5819  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5820  * our information into that, and then dir_emit from the buffer.  This is
5821  * similar to what NFS does, only we don't keep the buffer around in pagecache
5822  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5823  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5824  * tree lock.
5825  */
5826 static int btrfs_opendir(struct inode *inode, struct file *file)
5827 {
5828 	struct btrfs_file_private *private;
5829 
5830 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5831 	if (!private)
5832 		return -ENOMEM;
5833 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5834 	if (!private->filldir_buf) {
5835 		kfree(private);
5836 		return -ENOMEM;
5837 	}
5838 	file->private_data = private;
5839 	return 0;
5840 }
5841 
5842 struct dir_entry {
5843 	u64 ino;
5844 	u64 offset;
5845 	unsigned type;
5846 	int name_len;
5847 };
5848 
5849 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5850 {
5851 	while (entries--) {
5852 		struct dir_entry *entry = addr;
5853 		char *name = (char *)(entry + 1);
5854 
5855 		ctx->pos = get_unaligned(&entry->offset);
5856 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5857 					 get_unaligned(&entry->ino),
5858 					 get_unaligned(&entry->type)))
5859 			return 1;
5860 		addr += sizeof(struct dir_entry) +
5861 			get_unaligned(&entry->name_len);
5862 		ctx->pos++;
5863 	}
5864 	return 0;
5865 }
5866 
5867 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5868 {
5869 	struct inode *inode = file_inode(file);
5870 	struct btrfs_root *root = BTRFS_I(inode)->root;
5871 	struct btrfs_file_private *private = file->private_data;
5872 	struct btrfs_dir_item *di;
5873 	struct btrfs_key key;
5874 	struct btrfs_key found_key;
5875 	struct btrfs_path *path;
5876 	void *addr;
5877 	struct list_head ins_list;
5878 	struct list_head del_list;
5879 	int ret;
5880 	char *name_ptr;
5881 	int name_len;
5882 	int entries = 0;
5883 	int total_len = 0;
5884 	bool put = false;
5885 	struct btrfs_key location;
5886 
5887 	if (!dir_emit_dots(file, ctx))
5888 		return 0;
5889 
5890 	path = btrfs_alloc_path();
5891 	if (!path)
5892 		return -ENOMEM;
5893 
5894 	addr = private->filldir_buf;
5895 	path->reada = READA_FORWARD;
5896 
5897 	INIT_LIST_HEAD(&ins_list);
5898 	INIT_LIST_HEAD(&del_list);
5899 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5900 
5901 again:
5902 	key.type = BTRFS_DIR_INDEX_KEY;
5903 	key.offset = ctx->pos;
5904 	key.objectid = btrfs_ino(BTRFS_I(inode));
5905 
5906 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5907 		struct dir_entry *entry;
5908 		struct extent_buffer *leaf = path->nodes[0];
5909 
5910 		if (found_key.objectid != key.objectid)
5911 			break;
5912 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5913 			break;
5914 		if (found_key.offset < ctx->pos)
5915 			continue;
5916 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5917 			continue;
5918 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5919 		name_len = btrfs_dir_name_len(leaf, di);
5920 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5921 		    PAGE_SIZE) {
5922 			btrfs_release_path(path);
5923 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5924 			if (ret)
5925 				goto nopos;
5926 			addr = private->filldir_buf;
5927 			entries = 0;
5928 			total_len = 0;
5929 			goto again;
5930 		}
5931 
5932 		entry = addr;
5933 		put_unaligned(name_len, &entry->name_len);
5934 		name_ptr = (char *)(entry + 1);
5935 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5936 				   name_len);
5937 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5938 				&entry->type);
5939 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5940 		put_unaligned(location.objectid, &entry->ino);
5941 		put_unaligned(found_key.offset, &entry->offset);
5942 		entries++;
5943 		addr += sizeof(struct dir_entry) + name_len;
5944 		total_len += sizeof(struct dir_entry) + name_len;
5945 	}
5946 	/* Catch error encountered during iteration */
5947 	if (ret < 0)
5948 		goto err;
5949 
5950 	btrfs_release_path(path);
5951 
5952 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5953 	if (ret)
5954 		goto nopos;
5955 
5956 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5957 	if (ret)
5958 		goto nopos;
5959 
5960 	/*
5961 	 * Stop new entries from being returned after we return the last
5962 	 * entry.
5963 	 *
5964 	 * New directory entries are assigned a strictly increasing
5965 	 * offset.  This means that new entries created during readdir
5966 	 * are *guaranteed* to be seen in the future by that readdir.
5967 	 * This has broken buggy programs which operate on names as
5968 	 * they're returned by readdir.  Until we re-use freed offsets
5969 	 * we have this hack to stop new entries from being returned
5970 	 * under the assumption that they'll never reach this huge
5971 	 * offset.
5972 	 *
5973 	 * This is being careful not to overflow 32bit loff_t unless the
5974 	 * last entry requires it because doing so has broken 32bit apps
5975 	 * in the past.
5976 	 */
5977 	if (ctx->pos >= INT_MAX)
5978 		ctx->pos = LLONG_MAX;
5979 	else
5980 		ctx->pos = INT_MAX;
5981 nopos:
5982 	ret = 0;
5983 err:
5984 	if (put)
5985 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5986 	btrfs_free_path(path);
5987 	return ret;
5988 }
5989 
5990 /*
5991  * This is somewhat expensive, updating the tree every time the
5992  * inode changes.  But, it is most likely to find the inode in cache.
5993  * FIXME, needs more benchmarking...there are no reasons other than performance
5994  * to keep or drop this code.
5995  */
5996 static int btrfs_dirty_inode(struct inode *inode)
5997 {
5998 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5999 	struct btrfs_root *root = BTRFS_I(inode)->root;
6000 	struct btrfs_trans_handle *trans;
6001 	int ret;
6002 
6003 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6004 		return 0;
6005 
6006 	trans = btrfs_join_transaction(root);
6007 	if (IS_ERR(trans))
6008 		return PTR_ERR(trans);
6009 
6010 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6011 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6012 		/* whoops, lets try again with the full transaction */
6013 		btrfs_end_transaction(trans);
6014 		trans = btrfs_start_transaction(root, 1);
6015 		if (IS_ERR(trans))
6016 			return PTR_ERR(trans);
6017 
6018 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6019 	}
6020 	btrfs_end_transaction(trans);
6021 	if (BTRFS_I(inode)->delayed_node)
6022 		btrfs_balance_delayed_items(fs_info);
6023 
6024 	return ret;
6025 }
6026 
6027 /*
6028  * This is a copy of file_update_time.  We need this so we can return error on
6029  * ENOSPC for updating the inode in the case of file write and mmap writes.
6030  */
6031 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6032 			     int flags)
6033 {
6034 	struct btrfs_root *root = BTRFS_I(inode)->root;
6035 	bool dirty = flags & ~S_VERSION;
6036 
6037 	if (btrfs_root_readonly(root))
6038 		return -EROFS;
6039 
6040 	if (flags & S_VERSION)
6041 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6042 	if (flags & S_CTIME)
6043 		inode->i_ctime = *now;
6044 	if (flags & S_MTIME)
6045 		inode->i_mtime = *now;
6046 	if (flags & S_ATIME)
6047 		inode->i_atime = *now;
6048 	return dirty ? btrfs_dirty_inode(inode) : 0;
6049 }
6050 
6051 /*
6052  * find the highest existing sequence number in a directory
6053  * and then set the in-memory index_cnt variable to reflect
6054  * free sequence numbers
6055  */
6056 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6057 {
6058 	struct btrfs_root *root = inode->root;
6059 	struct btrfs_key key, found_key;
6060 	struct btrfs_path *path;
6061 	struct extent_buffer *leaf;
6062 	int ret;
6063 
6064 	key.objectid = btrfs_ino(inode);
6065 	key.type = BTRFS_DIR_INDEX_KEY;
6066 	key.offset = (u64)-1;
6067 
6068 	path = btrfs_alloc_path();
6069 	if (!path)
6070 		return -ENOMEM;
6071 
6072 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6073 	if (ret < 0)
6074 		goto out;
6075 	/* FIXME: we should be able to handle this */
6076 	if (ret == 0)
6077 		goto out;
6078 	ret = 0;
6079 
6080 	if (path->slots[0] == 0) {
6081 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6082 		goto out;
6083 	}
6084 
6085 	path->slots[0]--;
6086 
6087 	leaf = path->nodes[0];
6088 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6089 
6090 	if (found_key.objectid != btrfs_ino(inode) ||
6091 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6092 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6093 		goto out;
6094 	}
6095 
6096 	inode->index_cnt = found_key.offset + 1;
6097 out:
6098 	btrfs_free_path(path);
6099 	return ret;
6100 }
6101 
6102 /*
6103  * helper to find a free sequence number in a given directory.  This current
6104  * code is very simple, later versions will do smarter things in the btree
6105  */
6106 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6107 {
6108 	int ret = 0;
6109 
6110 	if (dir->index_cnt == (u64)-1) {
6111 		ret = btrfs_inode_delayed_dir_index_count(dir);
6112 		if (ret) {
6113 			ret = btrfs_set_inode_index_count(dir);
6114 			if (ret)
6115 				return ret;
6116 		}
6117 	}
6118 
6119 	*index = dir->index_cnt;
6120 	dir->index_cnt++;
6121 
6122 	return ret;
6123 }
6124 
6125 static int btrfs_insert_inode_locked(struct inode *inode)
6126 {
6127 	struct btrfs_iget_args args;
6128 
6129 	args.ino = BTRFS_I(inode)->location.objectid;
6130 	args.root = BTRFS_I(inode)->root;
6131 
6132 	return insert_inode_locked4(inode,
6133 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6134 		   btrfs_find_actor, &args);
6135 }
6136 
6137 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6138 			    unsigned int *trans_num_items)
6139 {
6140 	struct inode *dir = args->dir;
6141 	struct inode *inode = args->inode;
6142 	int ret;
6143 
6144 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6145 	if (ret)
6146 		return ret;
6147 
6148 	/* 1 to add inode item */
6149 	*trans_num_items = 1;
6150 	/* 1 to add compression property */
6151 	if (BTRFS_I(dir)->prop_compress)
6152 		(*trans_num_items)++;
6153 	/* 1 to add default ACL xattr */
6154 	if (args->default_acl)
6155 		(*trans_num_items)++;
6156 	/* 1 to add access ACL xattr */
6157 	if (args->acl)
6158 		(*trans_num_items)++;
6159 #ifdef CONFIG_SECURITY
6160 	/* 1 to add LSM xattr */
6161 	if (dir->i_security)
6162 		(*trans_num_items)++;
6163 #endif
6164 	if (args->orphan) {
6165 		/* 1 to add orphan item */
6166 		(*trans_num_items)++;
6167 	} else {
6168 		/*
6169 		 * 1 to add dir item
6170 		 * 1 to add dir index
6171 		 * 1 to update parent inode item
6172 		 *
6173 		 * No need for 1 unit for the inode ref item because it is
6174 		 * inserted in a batch together with the inode item at
6175 		 * btrfs_create_new_inode().
6176 		 */
6177 		*trans_num_items += 3;
6178 	}
6179 	return 0;
6180 }
6181 
6182 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6183 {
6184 	posix_acl_release(args->acl);
6185 	posix_acl_release(args->default_acl);
6186 }
6187 
6188 /*
6189  * Inherit flags from the parent inode.
6190  *
6191  * Currently only the compression flags and the cow flags are inherited.
6192  */
6193 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6194 {
6195 	unsigned int flags;
6196 
6197 	flags = BTRFS_I(dir)->flags;
6198 
6199 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6200 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6201 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6202 	} else if (flags & BTRFS_INODE_COMPRESS) {
6203 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6204 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6205 	}
6206 
6207 	if (flags & BTRFS_INODE_NODATACOW) {
6208 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6209 		if (S_ISREG(inode->i_mode))
6210 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6211 	}
6212 
6213 	btrfs_sync_inode_flags_to_i_flags(inode);
6214 }
6215 
6216 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6217 			   struct btrfs_new_inode_args *args)
6218 {
6219 	struct inode *dir = args->dir;
6220 	struct inode *inode = args->inode;
6221 	const char *name = args->orphan ? NULL : args->dentry->d_name.name;
6222 	int name_len = args->orphan ? 0 : args->dentry->d_name.len;
6223 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6224 	struct btrfs_root *root;
6225 	struct btrfs_inode_item *inode_item;
6226 	struct btrfs_key *location;
6227 	struct btrfs_path *path;
6228 	u64 objectid;
6229 	struct btrfs_inode_ref *ref;
6230 	struct btrfs_key key[2];
6231 	u32 sizes[2];
6232 	struct btrfs_item_batch batch;
6233 	unsigned long ptr;
6234 	int ret;
6235 
6236 	path = btrfs_alloc_path();
6237 	if (!path)
6238 		return -ENOMEM;
6239 
6240 	if (!args->subvol)
6241 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6242 	root = BTRFS_I(inode)->root;
6243 
6244 	ret = btrfs_get_free_objectid(root, &objectid);
6245 	if (ret)
6246 		goto out;
6247 	inode->i_ino = objectid;
6248 
6249 	if (args->orphan) {
6250 		/*
6251 		 * O_TMPFILE, set link count to 0, so that after this point, we
6252 		 * fill in an inode item with the correct link count.
6253 		 */
6254 		set_nlink(inode, 0);
6255 	} else {
6256 		trace_btrfs_inode_request(dir);
6257 
6258 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6259 		if (ret)
6260 			goto out;
6261 	}
6262 	/* index_cnt is ignored for everything but a dir. */
6263 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6264 	BTRFS_I(inode)->generation = trans->transid;
6265 	inode->i_generation = BTRFS_I(inode)->generation;
6266 
6267 	/*
6268 	 * Subvolumes don't inherit flags from their parent directory.
6269 	 * Originally this was probably by accident, but we probably can't
6270 	 * change it now without compatibility issues.
6271 	 */
6272 	if (!args->subvol)
6273 		btrfs_inherit_iflags(inode, dir);
6274 
6275 	if (S_ISREG(inode->i_mode)) {
6276 		if (btrfs_test_opt(fs_info, NODATASUM))
6277 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6278 		if (btrfs_test_opt(fs_info, NODATACOW))
6279 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6280 				BTRFS_INODE_NODATASUM;
6281 	}
6282 
6283 	location = &BTRFS_I(inode)->location;
6284 	location->objectid = objectid;
6285 	location->offset = 0;
6286 	location->type = BTRFS_INODE_ITEM_KEY;
6287 
6288 	ret = btrfs_insert_inode_locked(inode);
6289 	if (ret < 0) {
6290 		if (!args->orphan)
6291 			BTRFS_I(dir)->index_cnt--;
6292 		goto out;
6293 	}
6294 
6295 	/*
6296 	 * We could have gotten an inode number from somebody who was fsynced
6297 	 * and then removed in this same transaction, so let's just set full
6298 	 * sync since it will be a full sync anyway and this will blow away the
6299 	 * old info in the log.
6300 	 */
6301 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6302 
6303 	key[0].objectid = objectid;
6304 	key[0].type = BTRFS_INODE_ITEM_KEY;
6305 	key[0].offset = 0;
6306 
6307 	sizes[0] = sizeof(struct btrfs_inode_item);
6308 
6309 	if (!args->orphan) {
6310 		/*
6311 		 * Start new inodes with an inode_ref. This is slightly more
6312 		 * efficient for small numbers of hard links since they will
6313 		 * be packed into one item. Extended refs will kick in if we
6314 		 * add more hard links than can fit in the ref item.
6315 		 */
6316 		key[1].objectid = objectid;
6317 		key[1].type = BTRFS_INODE_REF_KEY;
6318 		if (args->subvol) {
6319 			key[1].offset = objectid;
6320 			sizes[1] = 2 + sizeof(*ref);
6321 		} else {
6322 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6323 			sizes[1] = name_len + sizeof(*ref);
6324 		}
6325 	}
6326 
6327 	batch.keys = &key[0];
6328 	batch.data_sizes = &sizes[0];
6329 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6330 	batch.nr = args->orphan ? 1 : 2;
6331 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6332 	if (ret != 0) {
6333 		btrfs_abort_transaction(trans, ret);
6334 		goto discard;
6335 	}
6336 
6337 	inode->i_mtime = current_time(inode);
6338 	inode->i_atime = inode->i_mtime;
6339 	inode->i_ctime = inode->i_mtime;
6340 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6341 
6342 	/*
6343 	 * We're going to fill the inode item now, so at this point the inode
6344 	 * must be fully initialized.
6345 	 */
6346 
6347 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6348 				  struct btrfs_inode_item);
6349 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6350 			     sizeof(*inode_item));
6351 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6352 
6353 	if (!args->orphan) {
6354 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6355 				     struct btrfs_inode_ref);
6356 		ptr = (unsigned long)(ref + 1);
6357 		if (args->subvol) {
6358 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6359 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6360 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6361 		} else {
6362 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6363 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6364 						  BTRFS_I(inode)->dir_index);
6365 			write_extent_buffer(path->nodes[0], name, ptr, name_len);
6366 		}
6367 	}
6368 
6369 	btrfs_mark_buffer_dirty(path->nodes[0]);
6370 	btrfs_release_path(path);
6371 
6372 	if (args->subvol) {
6373 		struct inode *parent;
6374 
6375 		/*
6376 		 * Subvolumes inherit properties from their parent subvolume,
6377 		 * not the directory they were created in.
6378 		 */
6379 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6380 				    BTRFS_I(dir)->root);
6381 		if (IS_ERR(parent)) {
6382 			ret = PTR_ERR(parent);
6383 		} else {
6384 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6385 			iput(parent);
6386 		}
6387 	} else {
6388 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6389 	}
6390 	if (ret) {
6391 		btrfs_err(fs_info,
6392 			  "error inheriting props for ino %llu (root %llu): %d",
6393 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6394 			  ret);
6395 	}
6396 
6397 	/*
6398 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6399 	 * probably a bug.
6400 	 */
6401 	if (!args->subvol) {
6402 		ret = btrfs_init_inode_security(trans, args);
6403 		if (ret) {
6404 			btrfs_abort_transaction(trans, ret);
6405 			goto discard;
6406 		}
6407 	}
6408 
6409 	inode_tree_add(inode);
6410 
6411 	trace_btrfs_inode_new(inode);
6412 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6413 
6414 	btrfs_update_root_times(trans, root);
6415 
6416 	if (args->orphan) {
6417 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6418 	} else {
6419 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6420 				     name_len, 0, BTRFS_I(inode)->dir_index);
6421 	}
6422 	if (ret) {
6423 		btrfs_abort_transaction(trans, ret);
6424 		goto discard;
6425 	}
6426 
6427 	ret = 0;
6428 	goto out;
6429 
6430 discard:
6431 	/*
6432 	 * discard_new_inode() calls iput(), but the caller owns the reference
6433 	 * to the inode.
6434 	 */
6435 	ihold(inode);
6436 	discard_new_inode(inode);
6437 out:
6438 	btrfs_free_path(path);
6439 	return ret;
6440 }
6441 
6442 /*
6443  * utility function to add 'inode' into 'parent_inode' with
6444  * a give name and a given sequence number.
6445  * if 'add_backref' is true, also insert a backref from the
6446  * inode to the parent directory.
6447  */
6448 int btrfs_add_link(struct btrfs_trans_handle *trans,
6449 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6450 		   const char *name, int name_len, int add_backref, u64 index)
6451 {
6452 	int ret = 0;
6453 	struct btrfs_key key;
6454 	struct btrfs_root *root = parent_inode->root;
6455 	u64 ino = btrfs_ino(inode);
6456 	u64 parent_ino = btrfs_ino(parent_inode);
6457 
6458 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6459 		memcpy(&key, &inode->root->root_key, sizeof(key));
6460 	} else {
6461 		key.objectid = ino;
6462 		key.type = BTRFS_INODE_ITEM_KEY;
6463 		key.offset = 0;
6464 	}
6465 
6466 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6467 		ret = btrfs_add_root_ref(trans, key.objectid,
6468 					 root->root_key.objectid, parent_ino,
6469 					 index, name, name_len);
6470 	} else if (add_backref) {
6471 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6472 					     parent_ino, index);
6473 	}
6474 
6475 	/* Nothing to clean up yet */
6476 	if (ret)
6477 		return ret;
6478 
6479 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6480 				    btrfs_inode_type(&inode->vfs_inode), index);
6481 	if (ret == -EEXIST || ret == -EOVERFLOW)
6482 		goto fail_dir_item;
6483 	else if (ret) {
6484 		btrfs_abort_transaction(trans, ret);
6485 		return ret;
6486 	}
6487 
6488 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6489 			   name_len * 2);
6490 	inode_inc_iversion(&parent_inode->vfs_inode);
6491 	/*
6492 	 * If we are replaying a log tree, we do not want to update the mtime
6493 	 * and ctime of the parent directory with the current time, since the
6494 	 * log replay procedure is responsible for setting them to their correct
6495 	 * values (the ones it had when the fsync was done).
6496 	 */
6497 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6498 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6499 
6500 		parent_inode->vfs_inode.i_mtime = now;
6501 		parent_inode->vfs_inode.i_ctime = now;
6502 	}
6503 	ret = btrfs_update_inode(trans, root, parent_inode);
6504 	if (ret)
6505 		btrfs_abort_transaction(trans, ret);
6506 	return ret;
6507 
6508 fail_dir_item:
6509 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6510 		u64 local_index;
6511 		int err;
6512 		err = btrfs_del_root_ref(trans, key.objectid,
6513 					 root->root_key.objectid, parent_ino,
6514 					 &local_index, name, name_len);
6515 		if (err)
6516 			btrfs_abort_transaction(trans, err);
6517 	} else if (add_backref) {
6518 		u64 local_index;
6519 		int err;
6520 
6521 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6522 					  ino, parent_ino, &local_index);
6523 		if (err)
6524 			btrfs_abort_transaction(trans, err);
6525 	}
6526 
6527 	/* Return the original error code */
6528 	return ret;
6529 }
6530 
6531 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6532 			       struct inode *inode)
6533 {
6534 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6535 	struct btrfs_root *root = BTRFS_I(dir)->root;
6536 	struct btrfs_new_inode_args new_inode_args = {
6537 		.dir = dir,
6538 		.dentry = dentry,
6539 		.inode = inode,
6540 	};
6541 	unsigned int trans_num_items;
6542 	struct btrfs_trans_handle *trans;
6543 	int err;
6544 
6545 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6546 	if (err)
6547 		goto out_inode;
6548 
6549 	trans = btrfs_start_transaction(root, trans_num_items);
6550 	if (IS_ERR(trans)) {
6551 		err = PTR_ERR(trans);
6552 		goto out_new_inode_args;
6553 	}
6554 
6555 	err = btrfs_create_new_inode(trans, &new_inode_args);
6556 	if (!err)
6557 		d_instantiate_new(dentry, inode);
6558 
6559 	btrfs_end_transaction(trans);
6560 	btrfs_btree_balance_dirty(fs_info);
6561 out_new_inode_args:
6562 	btrfs_new_inode_args_destroy(&new_inode_args);
6563 out_inode:
6564 	if (err)
6565 		iput(inode);
6566 	return err;
6567 }
6568 
6569 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6570 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6571 {
6572 	struct inode *inode;
6573 
6574 	inode = new_inode(dir->i_sb);
6575 	if (!inode)
6576 		return -ENOMEM;
6577 	inode_init_owner(mnt_userns, inode, dir, mode);
6578 	inode->i_op = &btrfs_special_inode_operations;
6579 	init_special_inode(inode, inode->i_mode, rdev);
6580 	return btrfs_create_common(dir, dentry, inode);
6581 }
6582 
6583 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6584 			struct dentry *dentry, umode_t mode, bool excl)
6585 {
6586 	struct inode *inode;
6587 
6588 	inode = new_inode(dir->i_sb);
6589 	if (!inode)
6590 		return -ENOMEM;
6591 	inode_init_owner(mnt_userns, inode, dir, mode);
6592 	inode->i_fop = &btrfs_file_operations;
6593 	inode->i_op = &btrfs_file_inode_operations;
6594 	inode->i_mapping->a_ops = &btrfs_aops;
6595 	return btrfs_create_common(dir, dentry, inode);
6596 }
6597 
6598 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6599 		      struct dentry *dentry)
6600 {
6601 	struct btrfs_trans_handle *trans = NULL;
6602 	struct btrfs_root *root = BTRFS_I(dir)->root;
6603 	struct inode *inode = d_inode(old_dentry);
6604 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6605 	u64 index;
6606 	int err;
6607 	int drop_inode = 0;
6608 
6609 	/* do not allow sys_link's with other subvols of the same device */
6610 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6611 		return -EXDEV;
6612 
6613 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6614 		return -EMLINK;
6615 
6616 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6617 	if (err)
6618 		goto fail;
6619 
6620 	/*
6621 	 * 2 items for inode and inode ref
6622 	 * 2 items for dir items
6623 	 * 1 item for parent inode
6624 	 * 1 item for orphan item deletion if O_TMPFILE
6625 	 */
6626 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6627 	if (IS_ERR(trans)) {
6628 		err = PTR_ERR(trans);
6629 		trans = NULL;
6630 		goto fail;
6631 	}
6632 
6633 	/* There are several dir indexes for this inode, clear the cache. */
6634 	BTRFS_I(inode)->dir_index = 0ULL;
6635 	inc_nlink(inode);
6636 	inode_inc_iversion(inode);
6637 	inode->i_ctime = current_time(inode);
6638 	ihold(inode);
6639 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6640 
6641 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6642 			     dentry->d_name.name, dentry->d_name.len, 1, index);
6643 
6644 	if (err) {
6645 		drop_inode = 1;
6646 	} else {
6647 		struct dentry *parent = dentry->d_parent;
6648 
6649 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6650 		if (err)
6651 			goto fail;
6652 		if (inode->i_nlink == 1) {
6653 			/*
6654 			 * If new hard link count is 1, it's a file created
6655 			 * with open(2) O_TMPFILE flag.
6656 			 */
6657 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6658 			if (err)
6659 				goto fail;
6660 		}
6661 		d_instantiate(dentry, inode);
6662 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6663 	}
6664 
6665 fail:
6666 	if (trans)
6667 		btrfs_end_transaction(trans);
6668 	if (drop_inode) {
6669 		inode_dec_link_count(inode);
6670 		iput(inode);
6671 	}
6672 	btrfs_btree_balance_dirty(fs_info);
6673 	return err;
6674 }
6675 
6676 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6677 		       struct dentry *dentry, umode_t mode)
6678 {
6679 	struct inode *inode;
6680 
6681 	inode = new_inode(dir->i_sb);
6682 	if (!inode)
6683 		return -ENOMEM;
6684 	inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode);
6685 	inode->i_op = &btrfs_dir_inode_operations;
6686 	inode->i_fop = &btrfs_dir_file_operations;
6687 	return btrfs_create_common(dir, dentry, inode);
6688 }
6689 
6690 static noinline int uncompress_inline(struct btrfs_path *path,
6691 				      struct page *page,
6692 				      size_t pg_offset, u64 extent_offset,
6693 				      struct btrfs_file_extent_item *item)
6694 {
6695 	int ret;
6696 	struct extent_buffer *leaf = path->nodes[0];
6697 	char *tmp;
6698 	size_t max_size;
6699 	unsigned long inline_size;
6700 	unsigned long ptr;
6701 	int compress_type;
6702 
6703 	WARN_ON(pg_offset != 0);
6704 	compress_type = btrfs_file_extent_compression(leaf, item);
6705 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6706 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6707 	tmp = kmalloc(inline_size, GFP_NOFS);
6708 	if (!tmp)
6709 		return -ENOMEM;
6710 	ptr = btrfs_file_extent_inline_start(item);
6711 
6712 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6713 
6714 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6715 	ret = btrfs_decompress(compress_type, tmp, page,
6716 			       extent_offset, inline_size, max_size);
6717 
6718 	/*
6719 	 * decompression code contains a memset to fill in any space between the end
6720 	 * of the uncompressed data and the end of max_size in case the decompressed
6721 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6722 	 * the end of an inline extent and the beginning of the next block, so we
6723 	 * cover that region here.
6724 	 */
6725 
6726 	if (max_size + pg_offset < PAGE_SIZE)
6727 		memzero_page(page,  pg_offset + max_size,
6728 			     PAGE_SIZE - max_size - pg_offset);
6729 	kfree(tmp);
6730 	return ret;
6731 }
6732 
6733 /**
6734  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6735  * @inode:	file to search in
6736  * @page:	page to read extent data into if the extent is inline
6737  * @pg_offset:	offset into @page to copy to
6738  * @start:	file offset
6739  * @len:	length of range starting at @start
6740  *
6741  * This returns the first &struct extent_map which overlaps with the given
6742  * range, reading it from the B-tree and caching it if necessary. Note that
6743  * there may be more extents which overlap the given range after the returned
6744  * extent_map.
6745  *
6746  * If @page is not NULL and the extent is inline, this also reads the extent
6747  * data directly into the page and marks the extent up to date in the io_tree.
6748  *
6749  * Return: ERR_PTR on error, non-NULL extent_map on success.
6750  */
6751 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6752 				    struct page *page, size_t pg_offset,
6753 				    u64 start, u64 len)
6754 {
6755 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6756 	int ret = 0;
6757 	u64 extent_start = 0;
6758 	u64 extent_end = 0;
6759 	u64 objectid = btrfs_ino(inode);
6760 	int extent_type = -1;
6761 	struct btrfs_path *path = NULL;
6762 	struct btrfs_root *root = inode->root;
6763 	struct btrfs_file_extent_item *item;
6764 	struct extent_buffer *leaf;
6765 	struct btrfs_key found_key;
6766 	struct extent_map *em = NULL;
6767 	struct extent_map_tree *em_tree = &inode->extent_tree;
6768 	struct extent_io_tree *io_tree = &inode->io_tree;
6769 
6770 	read_lock(&em_tree->lock);
6771 	em = lookup_extent_mapping(em_tree, start, len);
6772 	read_unlock(&em_tree->lock);
6773 
6774 	if (em) {
6775 		if (em->start > start || em->start + em->len <= start)
6776 			free_extent_map(em);
6777 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6778 			free_extent_map(em);
6779 		else
6780 			goto out;
6781 	}
6782 	em = alloc_extent_map();
6783 	if (!em) {
6784 		ret = -ENOMEM;
6785 		goto out;
6786 	}
6787 	em->start = EXTENT_MAP_HOLE;
6788 	em->orig_start = EXTENT_MAP_HOLE;
6789 	em->len = (u64)-1;
6790 	em->block_len = (u64)-1;
6791 
6792 	path = btrfs_alloc_path();
6793 	if (!path) {
6794 		ret = -ENOMEM;
6795 		goto out;
6796 	}
6797 
6798 	/* Chances are we'll be called again, so go ahead and do readahead */
6799 	path->reada = READA_FORWARD;
6800 
6801 	/*
6802 	 * The same explanation in load_free_space_cache applies here as well,
6803 	 * we only read when we're loading the free space cache, and at that
6804 	 * point the commit_root has everything we need.
6805 	 */
6806 	if (btrfs_is_free_space_inode(inode)) {
6807 		path->search_commit_root = 1;
6808 		path->skip_locking = 1;
6809 	}
6810 
6811 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6812 	if (ret < 0) {
6813 		goto out;
6814 	} else if (ret > 0) {
6815 		if (path->slots[0] == 0)
6816 			goto not_found;
6817 		path->slots[0]--;
6818 		ret = 0;
6819 	}
6820 
6821 	leaf = path->nodes[0];
6822 	item = btrfs_item_ptr(leaf, path->slots[0],
6823 			      struct btrfs_file_extent_item);
6824 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6825 	if (found_key.objectid != objectid ||
6826 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6827 		/*
6828 		 * If we backup past the first extent we want to move forward
6829 		 * and see if there is an extent in front of us, otherwise we'll
6830 		 * say there is a hole for our whole search range which can
6831 		 * cause problems.
6832 		 */
6833 		extent_end = start;
6834 		goto next;
6835 	}
6836 
6837 	extent_type = btrfs_file_extent_type(leaf, item);
6838 	extent_start = found_key.offset;
6839 	extent_end = btrfs_file_extent_end(path);
6840 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6841 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6842 		/* Only regular file could have regular/prealloc extent */
6843 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6844 			ret = -EUCLEAN;
6845 			btrfs_crit(fs_info,
6846 		"regular/prealloc extent found for non-regular inode %llu",
6847 				   btrfs_ino(inode));
6848 			goto out;
6849 		}
6850 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6851 						       extent_start);
6852 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6853 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6854 						      path->slots[0],
6855 						      extent_start);
6856 	}
6857 next:
6858 	if (start >= extent_end) {
6859 		path->slots[0]++;
6860 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6861 			ret = btrfs_next_leaf(root, path);
6862 			if (ret < 0)
6863 				goto out;
6864 			else if (ret > 0)
6865 				goto not_found;
6866 
6867 			leaf = path->nodes[0];
6868 		}
6869 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6870 		if (found_key.objectid != objectid ||
6871 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6872 			goto not_found;
6873 		if (start + len <= found_key.offset)
6874 			goto not_found;
6875 		if (start > found_key.offset)
6876 			goto next;
6877 
6878 		/* New extent overlaps with existing one */
6879 		em->start = start;
6880 		em->orig_start = start;
6881 		em->len = found_key.offset - start;
6882 		em->block_start = EXTENT_MAP_HOLE;
6883 		goto insert;
6884 	}
6885 
6886 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6887 
6888 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6889 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6890 		goto insert;
6891 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6892 		unsigned long ptr;
6893 		char *map;
6894 		size_t size;
6895 		size_t extent_offset;
6896 		size_t copy_size;
6897 
6898 		if (!page)
6899 			goto out;
6900 
6901 		size = btrfs_file_extent_ram_bytes(leaf, item);
6902 		extent_offset = page_offset(page) + pg_offset - extent_start;
6903 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6904 				  size - extent_offset);
6905 		em->start = extent_start + extent_offset;
6906 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6907 		em->orig_block_len = em->len;
6908 		em->orig_start = em->start;
6909 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6910 
6911 		if (!PageUptodate(page)) {
6912 			if (btrfs_file_extent_compression(leaf, item) !=
6913 			    BTRFS_COMPRESS_NONE) {
6914 				ret = uncompress_inline(path, page, pg_offset,
6915 							extent_offset, item);
6916 				if (ret)
6917 					goto out;
6918 			} else {
6919 				map = kmap_local_page(page);
6920 				read_extent_buffer(leaf, map + pg_offset, ptr,
6921 						   copy_size);
6922 				if (pg_offset + copy_size < PAGE_SIZE) {
6923 					memset(map + pg_offset + copy_size, 0,
6924 					       PAGE_SIZE - pg_offset -
6925 					       copy_size);
6926 				}
6927 				kunmap_local(map);
6928 			}
6929 			flush_dcache_page(page);
6930 		}
6931 		set_extent_uptodate(io_tree, em->start,
6932 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6933 		goto insert;
6934 	}
6935 not_found:
6936 	em->start = start;
6937 	em->orig_start = start;
6938 	em->len = len;
6939 	em->block_start = EXTENT_MAP_HOLE;
6940 insert:
6941 	ret = 0;
6942 	btrfs_release_path(path);
6943 	if (em->start > start || extent_map_end(em) <= start) {
6944 		btrfs_err(fs_info,
6945 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6946 			  em->start, em->len, start, len);
6947 		ret = -EIO;
6948 		goto out;
6949 	}
6950 
6951 	write_lock(&em_tree->lock);
6952 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6953 	write_unlock(&em_tree->lock);
6954 out:
6955 	btrfs_free_path(path);
6956 
6957 	trace_btrfs_get_extent(root, inode, em);
6958 
6959 	if (ret) {
6960 		free_extent_map(em);
6961 		return ERR_PTR(ret);
6962 	}
6963 	return em;
6964 }
6965 
6966 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6967 					   u64 start, u64 len)
6968 {
6969 	struct extent_map *em;
6970 	struct extent_map *hole_em = NULL;
6971 	u64 delalloc_start = start;
6972 	u64 end;
6973 	u64 delalloc_len;
6974 	u64 delalloc_end;
6975 	int err = 0;
6976 
6977 	em = btrfs_get_extent(inode, NULL, 0, start, len);
6978 	if (IS_ERR(em))
6979 		return em;
6980 	/*
6981 	 * If our em maps to:
6982 	 * - a hole or
6983 	 * - a pre-alloc extent,
6984 	 * there might actually be delalloc bytes behind it.
6985 	 */
6986 	if (em->block_start != EXTENT_MAP_HOLE &&
6987 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6988 		return em;
6989 	else
6990 		hole_em = em;
6991 
6992 	/* check to see if we've wrapped (len == -1 or similar) */
6993 	end = start + len;
6994 	if (end < start)
6995 		end = (u64)-1;
6996 	else
6997 		end -= 1;
6998 
6999 	em = NULL;
7000 
7001 	/* ok, we didn't find anything, lets look for delalloc */
7002 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7003 				 end, len, EXTENT_DELALLOC, 1);
7004 	delalloc_end = delalloc_start + delalloc_len;
7005 	if (delalloc_end < delalloc_start)
7006 		delalloc_end = (u64)-1;
7007 
7008 	/*
7009 	 * We didn't find anything useful, return the original results from
7010 	 * get_extent()
7011 	 */
7012 	if (delalloc_start > end || delalloc_end <= start) {
7013 		em = hole_em;
7014 		hole_em = NULL;
7015 		goto out;
7016 	}
7017 
7018 	/*
7019 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7020 	 * the start they passed in
7021 	 */
7022 	delalloc_start = max(start, delalloc_start);
7023 	delalloc_len = delalloc_end - delalloc_start;
7024 
7025 	if (delalloc_len > 0) {
7026 		u64 hole_start;
7027 		u64 hole_len;
7028 		const u64 hole_end = extent_map_end(hole_em);
7029 
7030 		em = alloc_extent_map();
7031 		if (!em) {
7032 			err = -ENOMEM;
7033 			goto out;
7034 		}
7035 
7036 		ASSERT(hole_em);
7037 		/*
7038 		 * When btrfs_get_extent can't find anything it returns one
7039 		 * huge hole
7040 		 *
7041 		 * Make sure what it found really fits our range, and adjust to
7042 		 * make sure it is based on the start from the caller
7043 		 */
7044 		if (hole_end <= start || hole_em->start > end) {
7045 		       free_extent_map(hole_em);
7046 		       hole_em = NULL;
7047 		} else {
7048 		       hole_start = max(hole_em->start, start);
7049 		       hole_len = hole_end - hole_start;
7050 		}
7051 
7052 		if (hole_em && delalloc_start > hole_start) {
7053 			/*
7054 			 * Our hole starts before our delalloc, so we have to
7055 			 * return just the parts of the hole that go until the
7056 			 * delalloc starts
7057 			 */
7058 			em->len = min(hole_len, delalloc_start - hole_start);
7059 			em->start = hole_start;
7060 			em->orig_start = hole_start;
7061 			/*
7062 			 * Don't adjust block start at all, it is fixed at
7063 			 * EXTENT_MAP_HOLE
7064 			 */
7065 			em->block_start = hole_em->block_start;
7066 			em->block_len = hole_len;
7067 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7068 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7069 		} else {
7070 			/*
7071 			 * Hole is out of passed range or it starts after
7072 			 * delalloc range
7073 			 */
7074 			em->start = delalloc_start;
7075 			em->len = delalloc_len;
7076 			em->orig_start = delalloc_start;
7077 			em->block_start = EXTENT_MAP_DELALLOC;
7078 			em->block_len = delalloc_len;
7079 		}
7080 	} else {
7081 		return hole_em;
7082 	}
7083 out:
7084 
7085 	free_extent_map(hole_em);
7086 	if (err) {
7087 		free_extent_map(em);
7088 		return ERR_PTR(err);
7089 	}
7090 	return em;
7091 }
7092 
7093 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7094 						  const u64 start,
7095 						  const u64 len,
7096 						  const u64 orig_start,
7097 						  const u64 block_start,
7098 						  const u64 block_len,
7099 						  const u64 orig_block_len,
7100 						  const u64 ram_bytes,
7101 						  const int type)
7102 {
7103 	struct extent_map *em = NULL;
7104 	int ret;
7105 
7106 	if (type != BTRFS_ORDERED_NOCOW) {
7107 		em = create_io_em(inode, start, len, orig_start, block_start,
7108 				  block_len, orig_block_len, ram_bytes,
7109 				  BTRFS_COMPRESS_NONE, /* compress_type */
7110 				  type);
7111 		if (IS_ERR(em))
7112 			goto out;
7113 	}
7114 	ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
7115 				       block_len, 0,
7116 				       (1 << type) |
7117 				       (1 << BTRFS_ORDERED_DIRECT),
7118 				       BTRFS_COMPRESS_NONE);
7119 	if (ret) {
7120 		if (em) {
7121 			free_extent_map(em);
7122 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7123 		}
7124 		em = ERR_PTR(ret);
7125 	}
7126  out:
7127 
7128 	return em;
7129 }
7130 
7131 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7132 						  u64 start, u64 len)
7133 {
7134 	struct btrfs_root *root = inode->root;
7135 	struct btrfs_fs_info *fs_info = root->fs_info;
7136 	struct extent_map *em;
7137 	struct btrfs_key ins;
7138 	u64 alloc_hint;
7139 	int ret;
7140 
7141 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7142 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7143 				   0, alloc_hint, &ins, 1, 1);
7144 	if (ret)
7145 		return ERR_PTR(ret);
7146 
7147 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7148 				     ins.objectid, ins.offset, ins.offset,
7149 				     ins.offset, BTRFS_ORDERED_REGULAR);
7150 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7151 	if (IS_ERR(em))
7152 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7153 					   1);
7154 
7155 	return em;
7156 }
7157 
7158 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7159 {
7160 	struct btrfs_block_group *block_group;
7161 	bool readonly = false;
7162 
7163 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7164 	if (!block_group || block_group->ro)
7165 		readonly = true;
7166 	if (block_group)
7167 		btrfs_put_block_group(block_group);
7168 	return readonly;
7169 }
7170 
7171 /*
7172  * Check if we can do nocow write into the range [@offset, @offset + @len)
7173  *
7174  * @offset:	File offset
7175  * @len:	The length to write, will be updated to the nocow writeable
7176  *		range
7177  * @orig_start:	(optional) Return the original file offset of the file extent
7178  * @orig_len:	(optional) Return the original on-disk length of the file extent
7179  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7180  * @strict:	if true, omit optimizations that might force us into unnecessary
7181  *		cow. e.g., don't trust generation number.
7182  *
7183  * Return:
7184  * >0	and update @len if we can do nocow write
7185  *  0	if we can't do nocow write
7186  * <0	if error happened
7187  *
7188  * NOTE: This only checks the file extents, caller is responsible to wait for
7189  *	 any ordered extents.
7190  */
7191 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7192 			      u64 *orig_start, u64 *orig_block_len,
7193 			      u64 *ram_bytes, bool strict)
7194 {
7195 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7196 	struct can_nocow_file_extent_args nocow_args = { 0 };
7197 	struct btrfs_path *path;
7198 	int ret;
7199 	struct extent_buffer *leaf;
7200 	struct btrfs_root *root = BTRFS_I(inode)->root;
7201 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7202 	struct btrfs_file_extent_item *fi;
7203 	struct btrfs_key key;
7204 	int found_type;
7205 
7206 	path = btrfs_alloc_path();
7207 	if (!path)
7208 		return -ENOMEM;
7209 
7210 	ret = btrfs_lookup_file_extent(NULL, root, path,
7211 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7212 	if (ret < 0)
7213 		goto out;
7214 
7215 	if (ret == 1) {
7216 		if (path->slots[0] == 0) {
7217 			/* can't find the item, must cow */
7218 			ret = 0;
7219 			goto out;
7220 		}
7221 		path->slots[0]--;
7222 	}
7223 	ret = 0;
7224 	leaf = path->nodes[0];
7225 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7226 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7227 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7228 		/* not our file or wrong item type, must cow */
7229 		goto out;
7230 	}
7231 
7232 	if (key.offset > offset) {
7233 		/* Wrong offset, must cow */
7234 		goto out;
7235 	}
7236 
7237 	if (btrfs_file_extent_end(path) <= offset)
7238 		goto out;
7239 
7240 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7241 	found_type = btrfs_file_extent_type(leaf, fi);
7242 	if (ram_bytes)
7243 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7244 
7245 	nocow_args.start = offset;
7246 	nocow_args.end = offset + *len - 1;
7247 	nocow_args.strict = strict;
7248 	nocow_args.free_path = true;
7249 
7250 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7251 	/* can_nocow_file_extent() has freed the path. */
7252 	path = NULL;
7253 
7254 	if (ret != 1) {
7255 		/* Treat errors as not being able to NOCOW. */
7256 		ret = 0;
7257 		goto out;
7258 	}
7259 
7260 	ret = 0;
7261 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7262 		goto out;
7263 
7264 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7265 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7266 		u64 range_end;
7267 
7268 		range_end = round_up(offset + nocow_args.num_bytes,
7269 				     root->fs_info->sectorsize) - 1;
7270 		ret = test_range_bit(io_tree, offset, range_end,
7271 				     EXTENT_DELALLOC, 0, NULL);
7272 		if (ret) {
7273 			ret = -EAGAIN;
7274 			goto out;
7275 		}
7276 	}
7277 
7278 	if (orig_start)
7279 		*orig_start = key.offset - nocow_args.extent_offset;
7280 	if (orig_block_len)
7281 		*orig_block_len = nocow_args.disk_num_bytes;
7282 
7283 	*len = nocow_args.num_bytes;
7284 	ret = 1;
7285 out:
7286 	btrfs_free_path(path);
7287 	return ret;
7288 }
7289 
7290 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7291 			      struct extent_state **cached_state,
7292 			      unsigned int iomap_flags)
7293 {
7294 	const bool writing = (iomap_flags & IOMAP_WRITE);
7295 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7296 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7297 	struct btrfs_ordered_extent *ordered;
7298 	int ret = 0;
7299 
7300 	while (1) {
7301 		if (nowait) {
7302 			if (!try_lock_extent(io_tree, lockstart, lockend))
7303 				return -EAGAIN;
7304 		} else {
7305 			lock_extent_bits(io_tree, lockstart, lockend, cached_state);
7306 		}
7307 		/*
7308 		 * We're concerned with the entire range that we're going to be
7309 		 * doing DIO to, so we need to make sure there's no ordered
7310 		 * extents in this range.
7311 		 */
7312 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7313 						     lockend - lockstart + 1);
7314 
7315 		/*
7316 		 * We need to make sure there are no buffered pages in this
7317 		 * range either, we could have raced between the invalidate in
7318 		 * generic_file_direct_write and locking the extent.  The
7319 		 * invalidate needs to happen so that reads after a write do not
7320 		 * get stale data.
7321 		 */
7322 		if (!ordered &&
7323 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7324 							 lockstart, lockend)))
7325 			break;
7326 
7327 		unlock_extent_cached(io_tree, lockstart, lockend, cached_state);
7328 
7329 		if (ordered) {
7330 			if (nowait) {
7331 				btrfs_put_ordered_extent(ordered);
7332 				ret = -EAGAIN;
7333 				break;
7334 			}
7335 			/*
7336 			 * If we are doing a DIO read and the ordered extent we
7337 			 * found is for a buffered write, we can not wait for it
7338 			 * to complete and retry, because if we do so we can
7339 			 * deadlock with concurrent buffered writes on page
7340 			 * locks. This happens only if our DIO read covers more
7341 			 * than one extent map, if at this point has already
7342 			 * created an ordered extent for a previous extent map
7343 			 * and locked its range in the inode's io tree, and a
7344 			 * concurrent write against that previous extent map's
7345 			 * range and this range started (we unlock the ranges
7346 			 * in the io tree only when the bios complete and
7347 			 * buffered writes always lock pages before attempting
7348 			 * to lock range in the io tree).
7349 			 */
7350 			if (writing ||
7351 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7352 				btrfs_start_ordered_extent(ordered, 1);
7353 			else
7354 				ret = nowait ? -EAGAIN : -ENOTBLK;
7355 			btrfs_put_ordered_extent(ordered);
7356 		} else {
7357 			/*
7358 			 * We could trigger writeback for this range (and wait
7359 			 * for it to complete) and then invalidate the pages for
7360 			 * this range (through invalidate_inode_pages2_range()),
7361 			 * but that can lead us to a deadlock with a concurrent
7362 			 * call to readahead (a buffered read or a defrag call
7363 			 * triggered a readahead) on a page lock due to an
7364 			 * ordered dio extent we created before but did not have
7365 			 * yet a corresponding bio submitted (whence it can not
7366 			 * complete), which makes readahead wait for that
7367 			 * ordered extent to complete while holding a lock on
7368 			 * that page.
7369 			 */
7370 			ret = nowait ? -EAGAIN : -ENOTBLK;
7371 		}
7372 
7373 		if (ret)
7374 			break;
7375 
7376 		cond_resched();
7377 	}
7378 
7379 	return ret;
7380 }
7381 
7382 /* The callers of this must take lock_extent() */
7383 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7384 				       u64 len, u64 orig_start, u64 block_start,
7385 				       u64 block_len, u64 orig_block_len,
7386 				       u64 ram_bytes, int compress_type,
7387 				       int type)
7388 {
7389 	struct extent_map_tree *em_tree;
7390 	struct extent_map *em;
7391 	int ret;
7392 
7393 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7394 	       type == BTRFS_ORDERED_COMPRESSED ||
7395 	       type == BTRFS_ORDERED_NOCOW ||
7396 	       type == BTRFS_ORDERED_REGULAR);
7397 
7398 	em_tree = &inode->extent_tree;
7399 	em = alloc_extent_map();
7400 	if (!em)
7401 		return ERR_PTR(-ENOMEM);
7402 
7403 	em->start = start;
7404 	em->orig_start = orig_start;
7405 	em->len = len;
7406 	em->block_len = block_len;
7407 	em->block_start = block_start;
7408 	em->orig_block_len = orig_block_len;
7409 	em->ram_bytes = ram_bytes;
7410 	em->generation = -1;
7411 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7412 	if (type == BTRFS_ORDERED_PREALLOC) {
7413 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7414 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7415 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7416 		em->compress_type = compress_type;
7417 	}
7418 
7419 	do {
7420 		btrfs_drop_extent_cache(inode, em->start,
7421 					em->start + em->len - 1, 0);
7422 		write_lock(&em_tree->lock);
7423 		ret = add_extent_mapping(em_tree, em, 1);
7424 		write_unlock(&em_tree->lock);
7425 		/*
7426 		 * The caller has taken lock_extent(), who could race with us
7427 		 * to add em?
7428 		 */
7429 	} while (ret == -EEXIST);
7430 
7431 	if (ret) {
7432 		free_extent_map(em);
7433 		return ERR_PTR(ret);
7434 	}
7435 
7436 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7437 	return em;
7438 }
7439 
7440 
7441 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7442 					 struct inode *inode,
7443 					 struct btrfs_dio_data *dio_data,
7444 					 u64 start, u64 len,
7445 					 unsigned int iomap_flags)
7446 {
7447 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7448 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7449 	struct extent_map *em = *map;
7450 	int type;
7451 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7452 	struct btrfs_block_group *bg;
7453 	bool can_nocow = false;
7454 	bool space_reserved = false;
7455 	u64 prev_len;
7456 	int ret = 0;
7457 
7458 	/*
7459 	 * We don't allocate a new extent in the following cases
7460 	 *
7461 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7462 	 * existing extent.
7463 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7464 	 * just use the extent.
7465 	 *
7466 	 */
7467 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7468 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7469 	     em->block_start != EXTENT_MAP_HOLE)) {
7470 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7471 			type = BTRFS_ORDERED_PREALLOC;
7472 		else
7473 			type = BTRFS_ORDERED_NOCOW;
7474 		len = min(len, em->len - (start - em->start));
7475 		block_start = em->block_start + (start - em->start);
7476 
7477 		if (can_nocow_extent(inode, start, &len, &orig_start,
7478 				     &orig_block_len, &ram_bytes, false) == 1) {
7479 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7480 			if (bg)
7481 				can_nocow = true;
7482 		}
7483 	}
7484 
7485 	prev_len = len;
7486 	if (can_nocow) {
7487 		struct extent_map *em2;
7488 
7489 		/* We can NOCOW, so only need to reserve metadata space. */
7490 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7491 						      nowait);
7492 		if (ret < 0) {
7493 			/* Our caller expects us to free the input extent map. */
7494 			free_extent_map(em);
7495 			*map = NULL;
7496 			btrfs_dec_nocow_writers(bg);
7497 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7498 				ret = -EAGAIN;
7499 			goto out;
7500 		}
7501 		space_reserved = true;
7502 
7503 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7504 					      orig_start, block_start,
7505 					      len, orig_block_len,
7506 					      ram_bytes, type);
7507 		btrfs_dec_nocow_writers(bg);
7508 		if (type == BTRFS_ORDERED_PREALLOC) {
7509 			free_extent_map(em);
7510 			*map = em = em2;
7511 		}
7512 
7513 		if (IS_ERR(em2)) {
7514 			ret = PTR_ERR(em2);
7515 			goto out;
7516 		}
7517 
7518 		dio_data->nocow_done = true;
7519 	} else {
7520 		/* Our caller expects us to free the input extent map. */
7521 		free_extent_map(em);
7522 		*map = NULL;
7523 
7524 		if (nowait)
7525 			return -EAGAIN;
7526 
7527 		/*
7528 		 * If we could not allocate data space before locking the file
7529 		 * range and we can't do a NOCOW write, then we have to fail.
7530 		 */
7531 		if (!dio_data->data_space_reserved)
7532 			return -ENOSPC;
7533 
7534 		/*
7535 		 * We have to COW and we have already reserved data space before,
7536 		 * so now we reserve only metadata.
7537 		 */
7538 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7539 						      false);
7540 		if (ret < 0)
7541 			goto out;
7542 		space_reserved = true;
7543 
7544 		em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7545 		if (IS_ERR(em)) {
7546 			ret = PTR_ERR(em);
7547 			goto out;
7548 		}
7549 		*map = em;
7550 		len = min(len, em->len - (start - em->start));
7551 		if (len < prev_len)
7552 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7553 							prev_len - len, true);
7554 	}
7555 
7556 	/*
7557 	 * We have created our ordered extent, so we can now release our reservation
7558 	 * for an outstanding extent.
7559 	 */
7560 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7561 
7562 	/*
7563 	 * Need to update the i_size under the extent lock so buffered
7564 	 * readers will get the updated i_size when we unlock.
7565 	 */
7566 	if (start + len > i_size_read(inode))
7567 		i_size_write(inode, start + len);
7568 out:
7569 	if (ret && space_reserved) {
7570 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7571 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7572 	}
7573 	return ret;
7574 }
7575 
7576 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7577 		loff_t length, unsigned int flags, struct iomap *iomap,
7578 		struct iomap *srcmap)
7579 {
7580 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7581 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7582 	struct extent_map *em;
7583 	struct extent_state *cached_state = NULL;
7584 	struct btrfs_dio_data *dio_data = iter->private;
7585 	u64 lockstart, lockend;
7586 	const bool write = !!(flags & IOMAP_WRITE);
7587 	int ret = 0;
7588 	u64 len = length;
7589 	const u64 data_alloc_len = length;
7590 	bool unlock_extents = false;
7591 
7592 	if (!write)
7593 		len = min_t(u64, len, fs_info->sectorsize);
7594 
7595 	lockstart = start;
7596 	lockend = start + len - 1;
7597 
7598 	/*
7599 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7600 	 * enough if we've written compressed pages to this area, so we need to
7601 	 * flush the dirty pages again to make absolutely sure that any
7602 	 * outstanding dirty pages are on disk - the first flush only starts
7603 	 * compression on the data, while keeping the pages locked, so by the
7604 	 * time the second flush returns we know bios for the compressed pages
7605 	 * were submitted and finished, and the pages no longer under writeback.
7606 	 *
7607 	 * If we have a NOWAIT request and we have any pages in the range that
7608 	 * are locked, likely due to compression still in progress, we don't want
7609 	 * to block on page locks. We also don't want to block on pages marked as
7610 	 * dirty or under writeback (same as for the non-compression case).
7611 	 * iomap_dio_rw() did the same check, but after that and before we got
7612 	 * here, mmap'ed writes may have happened or buffered reads started
7613 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7614 	 * the file range yet.
7615 	 */
7616 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7617 		     &BTRFS_I(inode)->runtime_flags)) {
7618 		if (flags & IOMAP_NOWAIT) {
7619 			if (filemap_range_needs_writeback(inode->i_mapping,
7620 							  lockstart, lockend))
7621 				return -EAGAIN;
7622 		} else {
7623 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7624 						       start + length - 1);
7625 			if (ret)
7626 				return ret;
7627 		}
7628 	}
7629 
7630 	memset(dio_data, 0, sizeof(*dio_data));
7631 
7632 	/*
7633 	 * We always try to allocate data space and must do it before locking
7634 	 * the file range, to avoid deadlocks with concurrent writes to the same
7635 	 * range if the range has several extents and the writes don't expand the
7636 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7637 	 * allocate data space here we continue and later, after locking the
7638 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7639 	 * NOCOW write.
7640 	 */
7641 	if (write && !(flags & IOMAP_NOWAIT)) {
7642 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7643 						  &dio_data->data_reserved,
7644 						  start, data_alloc_len);
7645 		if (!ret)
7646 			dio_data->data_space_reserved = true;
7647 		else if (ret && !(BTRFS_I(inode)->flags &
7648 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7649 			goto err;
7650 	}
7651 
7652 	/*
7653 	 * If this errors out it's because we couldn't invalidate pagecache for
7654 	 * this range and we need to fallback to buffered IO, or we are doing a
7655 	 * NOWAIT read/write and we need to block.
7656 	 */
7657 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7658 	if (ret < 0)
7659 		goto err;
7660 
7661 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7662 	if (IS_ERR(em)) {
7663 		ret = PTR_ERR(em);
7664 		goto unlock_err;
7665 	}
7666 
7667 	/*
7668 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7669 	 * io.  INLINE is special, and we could probably kludge it in here, but
7670 	 * it's still buffered so for safety lets just fall back to the generic
7671 	 * buffered path.
7672 	 *
7673 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7674 	 * decompress it, so there will be buffering required no matter what we
7675 	 * do, so go ahead and fallback to buffered.
7676 	 *
7677 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7678 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7679 	 * the generic code.
7680 	 */
7681 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7682 	    em->block_start == EXTENT_MAP_INLINE) {
7683 		free_extent_map(em);
7684 		ret = -ENOTBLK;
7685 		goto unlock_err;
7686 	}
7687 
7688 	len = min(len, em->len - (start - em->start));
7689 
7690 	/*
7691 	 * If we have a NOWAIT request and the range contains multiple extents
7692 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7693 	 * caller fallback to a context where it can do a blocking (without
7694 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7695 	 * success to the caller, which is not optimal for writes and for reads
7696 	 * it can result in unexpected behaviour for an application.
7697 	 *
7698 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7699 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7700 	 * asked for, resulting in an unexpected, and incorrect, short read.
7701 	 * That is, the caller asked to read N bytes and we return less than that,
7702 	 * which is wrong unless we are crossing EOF. This happens if we get a
7703 	 * page fault error when trying to fault in pages for the buffer that is
7704 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7705 	 * have previously submitted bios for other extents in the range, in
7706 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7707 	 * those bios have completed by the time we get the page fault error,
7708 	 * which we return back to our caller - we should only return EIOCBQUEUED
7709 	 * after we have submitted bios for all the extents in the range.
7710 	 */
7711 	if ((flags & IOMAP_NOWAIT) && len < length) {
7712 		free_extent_map(em);
7713 		ret = -EAGAIN;
7714 		goto unlock_err;
7715 	}
7716 
7717 	if (write) {
7718 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7719 						    start, len, flags);
7720 		if (ret < 0)
7721 			goto unlock_err;
7722 		unlock_extents = true;
7723 		/* Recalc len in case the new em is smaller than requested */
7724 		len = min(len, em->len - (start - em->start));
7725 		if (dio_data->data_space_reserved) {
7726 			u64 release_offset;
7727 			u64 release_len = 0;
7728 
7729 			if (dio_data->nocow_done) {
7730 				release_offset = start;
7731 				release_len = data_alloc_len;
7732 			} else if (len < data_alloc_len) {
7733 				release_offset = start + len;
7734 				release_len = data_alloc_len - len;
7735 			}
7736 
7737 			if (release_len > 0)
7738 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7739 							       dio_data->data_reserved,
7740 							       release_offset,
7741 							       release_len);
7742 		}
7743 	} else {
7744 		/*
7745 		 * We need to unlock only the end area that we aren't using.
7746 		 * The rest is going to be unlocked by the endio routine.
7747 		 */
7748 		lockstart = start + len;
7749 		if (lockstart < lockend)
7750 			unlock_extents = true;
7751 	}
7752 
7753 	if (unlock_extents)
7754 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7755 				     lockstart, lockend, &cached_state);
7756 	else
7757 		free_extent_state(cached_state);
7758 
7759 	/*
7760 	 * Translate extent map information to iomap.
7761 	 * We trim the extents (and move the addr) even though iomap code does
7762 	 * that, since we have locked only the parts we are performing I/O in.
7763 	 */
7764 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7765 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7766 		iomap->addr = IOMAP_NULL_ADDR;
7767 		iomap->type = IOMAP_HOLE;
7768 	} else {
7769 		iomap->addr = em->block_start + (start - em->start);
7770 		iomap->type = IOMAP_MAPPED;
7771 	}
7772 	iomap->offset = start;
7773 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7774 	iomap->length = len;
7775 
7776 	if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7777 		iomap->flags |= IOMAP_F_ZONE_APPEND;
7778 
7779 	free_extent_map(em);
7780 
7781 	return 0;
7782 
7783 unlock_err:
7784 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7785 			     &cached_state);
7786 err:
7787 	if (dio_data->data_space_reserved) {
7788 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7789 					       dio_data->data_reserved,
7790 					       start, data_alloc_len);
7791 		extent_changeset_free(dio_data->data_reserved);
7792 	}
7793 
7794 	return ret;
7795 }
7796 
7797 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7798 		ssize_t written, unsigned int flags, struct iomap *iomap)
7799 {
7800 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7801 	struct btrfs_dio_data *dio_data = iter->private;
7802 	size_t submitted = dio_data->submitted;
7803 	const bool write = !!(flags & IOMAP_WRITE);
7804 	int ret = 0;
7805 
7806 	if (!write && (iomap->type == IOMAP_HOLE)) {
7807 		/* If reading from a hole, unlock and return */
7808 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7809 		return 0;
7810 	}
7811 
7812 	if (submitted < length) {
7813 		pos += submitted;
7814 		length -= submitted;
7815 		if (write)
7816 			__endio_write_update_ordered(BTRFS_I(inode), pos,
7817 					length, false);
7818 		else
7819 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7820 				      pos + length - 1);
7821 		ret = -ENOTBLK;
7822 	}
7823 
7824 	if (write)
7825 		extent_changeset_free(dio_data->data_reserved);
7826 	return ret;
7827 }
7828 
7829 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7830 {
7831 	/*
7832 	 * This implies a barrier so that stores to dio_bio->bi_status before
7833 	 * this and loads of dio_bio->bi_status after this are fully ordered.
7834 	 */
7835 	if (!refcount_dec_and_test(&dip->refs))
7836 		return;
7837 
7838 	if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) {
7839 		__endio_write_update_ordered(BTRFS_I(dip->inode),
7840 					     dip->file_offset,
7841 					     dip->bytes,
7842 					     !dip->bio.bi_status);
7843 	} else {
7844 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7845 			      dip->file_offset,
7846 			      dip->file_offset + dip->bytes - 1);
7847 	}
7848 
7849 	kfree(dip->csums);
7850 	bio_endio(&dip->bio);
7851 }
7852 
7853 static void submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7854 				  int mirror_num,
7855 				  enum btrfs_compression_type compress_type)
7856 {
7857 	struct btrfs_dio_private *dip = bio->bi_private;
7858 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7859 
7860 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7861 
7862 	if (btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA))
7863 		return;
7864 
7865 	refcount_inc(&dip->refs);
7866 	if (btrfs_map_bio(fs_info, bio, mirror_num))
7867 		refcount_dec(&dip->refs);
7868 }
7869 
7870 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
7871 					     struct btrfs_bio *bbio,
7872 					     const bool uptodate)
7873 {
7874 	struct inode *inode = dip->inode;
7875 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7876 	const u32 sectorsize = fs_info->sectorsize;
7877 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7878 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7879 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7880 	struct bio_vec bvec;
7881 	struct bvec_iter iter;
7882 	u32 bio_offset = 0;
7883 	blk_status_t err = BLK_STS_OK;
7884 
7885 	__bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) {
7886 		unsigned int i, nr_sectors, pgoff;
7887 
7888 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7889 		pgoff = bvec.bv_offset;
7890 		for (i = 0; i < nr_sectors; i++) {
7891 			u64 start = bbio->file_offset + bio_offset;
7892 
7893 			ASSERT(pgoff < PAGE_SIZE);
7894 			if (uptodate &&
7895 			    (!csum || !check_data_csum(inode, bbio,
7896 						       bio_offset, bvec.bv_page,
7897 						       pgoff, start))) {
7898 				clean_io_failure(fs_info, failure_tree, io_tree,
7899 						 start, bvec.bv_page,
7900 						 btrfs_ino(BTRFS_I(inode)),
7901 						 pgoff);
7902 			} else {
7903 				int ret;
7904 
7905 				ret = btrfs_repair_one_sector(inode, &bbio->bio,
7906 						bio_offset, bvec.bv_page, pgoff,
7907 						start, bbio->mirror_num,
7908 						submit_dio_repair_bio);
7909 				if (ret)
7910 					err = errno_to_blk_status(ret);
7911 			}
7912 			ASSERT(bio_offset + sectorsize > bio_offset);
7913 			bio_offset += sectorsize;
7914 			pgoff += sectorsize;
7915 		}
7916 	}
7917 	return err;
7918 }
7919 
7920 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7921 					 const u64 offset, const u64 bytes,
7922 					 const bool uptodate)
7923 {
7924 	btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
7925 				       finish_ordered_fn, uptodate);
7926 }
7927 
7928 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7929 						     struct bio *bio,
7930 						     u64 dio_file_offset)
7931 {
7932 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false);
7933 }
7934 
7935 static void btrfs_end_dio_bio(struct bio *bio)
7936 {
7937 	struct btrfs_dio_private *dip = bio->bi_private;
7938 	struct btrfs_bio *bbio = btrfs_bio(bio);
7939 	blk_status_t err = bio->bi_status;
7940 
7941 	if (err)
7942 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7943 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7944 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7945 			   bio->bi_opf, bio->bi_iter.bi_sector,
7946 			   bio->bi_iter.bi_size, err);
7947 
7948 	if (bio_op(bio) == REQ_OP_READ)
7949 		err = btrfs_check_read_dio_bio(dip, bbio, !err);
7950 
7951 	if (err)
7952 		dip->bio.bi_status = err;
7953 
7954 	btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio);
7955 
7956 	bio_put(bio);
7957 	btrfs_dio_private_put(dip);
7958 }
7959 
7960 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7961 		struct inode *inode, u64 file_offset, int async_submit)
7962 {
7963 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7964 	struct btrfs_dio_private *dip = bio->bi_private;
7965 	bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
7966 	blk_status_t ret;
7967 
7968 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
7969 	if (async_submit)
7970 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7971 
7972 	if (!write) {
7973 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7974 		if (ret)
7975 			goto err;
7976 	}
7977 
7978 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7979 		goto map;
7980 
7981 	if (write && async_submit) {
7982 		ret = btrfs_wq_submit_bio(inode, bio, 0, file_offset,
7983 					  btrfs_submit_bio_start_direct_io);
7984 		goto err;
7985 	} else if (write) {
7986 		/*
7987 		 * If we aren't doing async submit, calculate the csum of the
7988 		 * bio now.
7989 		 */
7990 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false);
7991 		if (ret)
7992 			goto err;
7993 	} else {
7994 		u64 csum_offset;
7995 
7996 		csum_offset = file_offset - dip->file_offset;
7997 		csum_offset >>= fs_info->sectorsize_bits;
7998 		csum_offset *= fs_info->csum_size;
7999 		btrfs_bio(bio)->csum = dip->csums + csum_offset;
8000 	}
8001 map:
8002 	ret = btrfs_map_bio(fs_info, bio, 0);
8003 err:
8004 	return ret;
8005 }
8006 
8007 static void btrfs_submit_direct(const struct iomap_iter *iter,
8008 		struct bio *dio_bio, loff_t file_offset)
8009 {
8010 	struct btrfs_dio_private *dip =
8011 		container_of(dio_bio, struct btrfs_dio_private, bio);
8012 	struct inode *inode = iter->inode;
8013 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8014 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8015 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8016 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
8017 	struct bio *bio;
8018 	u64 start_sector;
8019 	int async_submit = 0;
8020 	u64 submit_len;
8021 	u64 clone_offset = 0;
8022 	u64 clone_len;
8023 	u64 logical;
8024 	int ret;
8025 	blk_status_t status;
8026 	struct btrfs_io_geometry geom;
8027 	struct btrfs_dio_data *dio_data = iter->private;
8028 	struct extent_map *em = NULL;
8029 
8030 	dip->inode = inode;
8031 	dip->file_offset = file_offset;
8032 	dip->bytes = dio_bio->bi_iter.bi_size;
8033 	refcount_set(&dip->refs, 1);
8034 	dip->csums = NULL;
8035 
8036 	if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
8037 		unsigned int nr_sectors =
8038 			(dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
8039 
8040 		/*
8041 		 * Load the csums up front to reduce csum tree searches and
8042 		 * contention when submitting bios.
8043 		 */
8044 		status = BLK_STS_RESOURCE;
8045 		dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS);
8046 		if (!dip)
8047 			goto out_err;
8048 
8049 		status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8050 		if (status != BLK_STS_OK)
8051 			goto out_err;
8052 	}
8053 
8054 	start_sector = dio_bio->bi_iter.bi_sector;
8055 	submit_len = dio_bio->bi_iter.bi_size;
8056 
8057 	do {
8058 		logical = start_sector << 9;
8059 		em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8060 		if (IS_ERR(em)) {
8061 			status = errno_to_blk_status(PTR_ERR(em));
8062 			em = NULL;
8063 			goto out_err_em;
8064 		}
8065 		ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8066 					    logical, &geom);
8067 		if (ret) {
8068 			status = errno_to_blk_status(ret);
8069 			goto out_err_em;
8070 		}
8071 
8072 		clone_len = min(submit_len, geom.len);
8073 		ASSERT(clone_len <= UINT_MAX);
8074 
8075 		/*
8076 		 * This will never fail as it's passing GPF_NOFS and
8077 		 * the allocation is backed by btrfs_bioset.
8078 		 */
8079 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8080 		bio->bi_private = dip;
8081 		bio->bi_end_io = btrfs_end_dio_bio;
8082 		btrfs_bio(bio)->file_offset = file_offset;
8083 
8084 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8085 			status = extract_ordered_extent(BTRFS_I(inode), bio,
8086 							file_offset);
8087 			if (status) {
8088 				bio_put(bio);
8089 				goto out_err;
8090 			}
8091 		}
8092 
8093 		ASSERT(submit_len >= clone_len);
8094 		submit_len -= clone_len;
8095 
8096 		/*
8097 		 * Increase the count before we submit the bio so we know
8098 		 * the end IO handler won't happen before we increase the
8099 		 * count. Otherwise, the dip might get freed before we're
8100 		 * done setting it up.
8101 		 *
8102 		 * We transfer the initial reference to the last bio, so we
8103 		 * don't need to increment the reference count for the last one.
8104 		 */
8105 		if (submit_len > 0) {
8106 			refcount_inc(&dip->refs);
8107 			/*
8108 			 * If we are submitting more than one bio, submit them
8109 			 * all asynchronously. The exception is RAID 5 or 6, as
8110 			 * asynchronous checksums make it difficult to collect
8111 			 * full stripe writes.
8112 			 */
8113 			if (!raid56)
8114 				async_submit = 1;
8115 		}
8116 
8117 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8118 						async_submit);
8119 		if (status) {
8120 			bio_put(bio);
8121 			if (submit_len > 0)
8122 				refcount_dec(&dip->refs);
8123 			goto out_err_em;
8124 		}
8125 
8126 		dio_data->submitted += clone_len;
8127 		clone_offset += clone_len;
8128 		start_sector += clone_len >> 9;
8129 		file_offset += clone_len;
8130 
8131 		free_extent_map(em);
8132 	} while (submit_len > 0);
8133 	return;
8134 
8135 out_err_em:
8136 	free_extent_map(em);
8137 out_err:
8138 	dio_bio->bi_status = status;
8139 	btrfs_dio_private_put(dip);
8140 }
8141 
8142 static const struct iomap_ops btrfs_dio_iomap_ops = {
8143 	.iomap_begin            = btrfs_dio_iomap_begin,
8144 	.iomap_end              = btrfs_dio_iomap_end,
8145 };
8146 
8147 static const struct iomap_dio_ops btrfs_dio_ops = {
8148 	.submit_io		= btrfs_submit_direct,
8149 	.bio_set		= &btrfs_dio_bioset,
8150 };
8151 
8152 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
8153 {
8154 	struct btrfs_dio_data data;
8155 
8156 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8157 			    IOMAP_DIO_PARTIAL, &data, done_before);
8158 }
8159 
8160 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8161 			u64 start, u64 len)
8162 {
8163 	int	ret;
8164 
8165 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8166 	if (ret)
8167 		return ret;
8168 
8169 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8170 }
8171 
8172 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8173 {
8174 	struct inode *inode = page->mapping->host;
8175 	int ret;
8176 
8177 	if (current->flags & PF_MEMALLOC) {
8178 		redirty_page_for_writepage(wbc, page);
8179 		unlock_page(page);
8180 		return 0;
8181 	}
8182 
8183 	/*
8184 	 * If we are under memory pressure we will call this directly from the
8185 	 * VM, we need to make sure we have the inode referenced for the ordered
8186 	 * extent.  If not just return like we didn't do anything.
8187 	 */
8188 	if (!igrab(inode)) {
8189 		redirty_page_for_writepage(wbc, page);
8190 		return AOP_WRITEPAGE_ACTIVATE;
8191 	}
8192 	ret = extent_write_full_page(page, wbc);
8193 	btrfs_add_delayed_iput(inode);
8194 	return ret;
8195 }
8196 
8197 static int btrfs_writepages(struct address_space *mapping,
8198 			    struct writeback_control *wbc)
8199 {
8200 	return extent_writepages(mapping, wbc);
8201 }
8202 
8203 static void btrfs_readahead(struct readahead_control *rac)
8204 {
8205 	extent_readahead(rac);
8206 }
8207 
8208 /*
8209  * For release_folio() and invalidate_folio() we have a race window where
8210  * folio_end_writeback() is called but the subpage spinlock is not yet released.
8211  * If we continue to release/invalidate the page, we could cause use-after-free
8212  * for subpage spinlock.  So this function is to spin and wait for subpage
8213  * spinlock.
8214  */
8215 static void wait_subpage_spinlock(struct page *page)
8216 {
8217 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8218 	struct btrfs_subpage *subpage;
8219 
8220 	if (!btrfs_is_subpage(fs_info, page))
8221 		return;
8222 
8223 	ASSERT(PagePrivate(page) && page->private);
8224 	subpage = (struct btrfs_subpage *)page->private;
8225 
8226 	/*
8227 	 * This may look insane as we just acquire the spinlock and release it,
8228 	 * without doing anything.  But we just want to make sure no one is
8229 	 * still holding the subpage spinlock.
8230 	 * And since the page is not dirty nor writeback, and we have page
8231 	 * locked, the only possible way to hold a spinlock is from the endio
8232 	 * function to clear page writeback.
8233 	 *
8234 	 * Here we just acquire the spinlock so that all existing callers
8235 	 * should exit and we're safe to release/invalidate the page.
8236 	 */
8237 	spin_lock_irq(&subpage->lock);
8238 	spin_unlock_irq(&subpage->lock);
8239 }
8240 
8241 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8242 {
8243 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
8244 
8245 	if (ret == 1) {
8246 		wait_subpage_spinlock(&folio->page);
8247 		clear_page_extent_mapped(&folio->page);
8248 	}
8249 	return ret;
8250 }
8251 
8252 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8253 {
8254 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
8255 		return false;
8256 	return __btrfs_release_folio(folio, gfp_flags);
8257 }
8258 
8259 #ifdef CONFIG_MIGRATION
8260 static int btrfs_migratepage(struct address_space *mapping,
8261 			     struct page *newpage, struct page *page,
8262 			     enum migrate_mode mode)
8263 {
8264 	int ret;
8265 
8266 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8267 	if (ret != MIGRATEPAGE_SUCCESS)
8268 		return ret;
8269 
8270 	if (page_has_private(page))
8271 		attach_page_private(newpage, detach_page_private(page));
8272 
8273 	if (PageOrdered(page)) {
8274 		ClearPageOrdered(page);
8275 		SetPageOrdered(newpage);
8276 	}
8277 
8278 	if (mode != MIGRATE_SYNC_NO_COPY)
8279 		migrate_page_copy(newpage, page);
8280 	else
8281 		migrate_page_states(newpage, page);
8282 	return MIGRATEPAGE_SUCCESS;
8283 }
8284 #endif
8285 
8286 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8287 				 size_t length)
8288 {
8289 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8290 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8291 	struct extent_io_tree *tree = &inode->io_tree;
8292 	struct extent_state *cached_state = NULL;
8293 	u64 page_start = folio_pos(folio);
8294 	u64 page_end = page_start + folio_size(folio) - 1;
8295 	u64 cur;
8296 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8297 
8298 	/*
8299 	 * We have folio locked so no new ordered extent can be created on this
8300 	 * page, nor bio can be submitted for this folio.
8301 	 *
8302 	 * But already submitted bio can still be finished on this folio.
8303 	 * Furthermore, endio function won't skip folio which has Ordered
8304 	 * (Private2) already cleared, so it's possible for endio and
8305 	 * invalidate_folio to do the same ordered extent accounting twice
8306 	 * on one folio.
8307 	 *
8308 	 * So here we wait for any submitted bios to finish, so that we won't
8309 	 * do double ordered extent accounting on the same folio.
8310 	 */
8311 	folio_wait_writeback(folio);
8312 	wait_subpage_spinlock(&folio->page);
8313 
8314 	/*
8315 	 * For subpage case, we have call sites like
8316 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8317 	 * sectorsize.
8318 	 * If the range doesn't cover the full folio, we don't need to and
8319 	 * shouldn't clear page extent mapped, as folio->private can still
8320 	 * record subpage dirty bits for other part of the range.
8321 	 *
8322 	 * For cases that invalidate the full folio even the range doesn't
8323 	 * cover the full folio, like invalidating the last folio, we're
8324 	 * still safe to wait for ordered extent to finish.
8325 	 */
8326 	if (!(offset == 0 && length == folio_size(folio))) {
8327 		btrfs_release_folio(folio, GFP_NOFS);
8328 		return;
8329 	}
8330 
8331 	if (!inode_evicting)
8332 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8333 
8334 	cur = page_start;
8335 	while (cur < page_end) {
8336 		struct btrfs_ordered_extent *ordered;
8337 		bool delete_states;
8338 		u64 range_end;
8339 		u32 range_len;
8340 
8341 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8342 							   page_end + 1 - cur);
8343 		if (!ordered) {
8344 			range_end = page_end;
8345 			/*
8346 			 * No ordered extent covering this range, we are safe
8347 			 * to delete all extent states in the range.
8348 			 */
8349 			delete_states = true;
8350 			goto next;
8351 		}
8352 		if (ordered->file_offset > cur) {
8353 			/*
8354 			 * There is a range between [cur, oe->file_offset) not
8355 			 * covered by any ordered extent.
8356 			 * We are safe to delete all extent states, and handle
8357 			 * the ordered extent in the next iteration.
8358 			 */
8359 			range_end = ordered->file_offset - 1;
8360 			delete_states = true;
8361 			goto next;
8362 		}
8363 
8364 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8365 				page_end);
8366 		ASSERT(range_end + 1 - cur < U32_MAX);
8367 		range_len = range_end + 1 - cur;
8368 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8369 			/*
8370 			 * If Ordered (Private2) is cleared, it means endio has
8371 			 * already been executed for the range.
8372 			 * We can't delete the extent states as
8373 			 * btrfs_finish_ordered_io() may still use some of them.
8374 			 */
8375 			delete_states = false;
8376 			goto next;
8377 		}
8378 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8379 
8380 		/*
8381 		 * IO on this page will never be started, so we need to account
8382 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8383 		 * here, must leave that up for the ordered extent completion.
8384 		 *
8385 		 * This will also unlock the range for incoming
8386 		 * btrfs_finish_ordered_io().
8387 		 */
8388 		if (!inode_evicting)
8389 			clear_extent_bit(tree, cur, range_end,
8390 					 EXTENT_DELALLOC |
8391 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8392 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8393 
8394 		spin_lock_irq(&inode->ordered_tree.lock);
8395 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8396 		ordered->truncated_len = min(ordered->truncated_len,
8397 					     cur - ordered->file_offset);
8398 		spin_unlock_irq(&inode->ordered_tree.lock);
8399 
8400 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8401 						   cur, range_end + 1 - cur)) {
8402 			btrfs_finish_ordered_io(ordered);
8403 			/*
8404 			 * The ordered extent has finished, now we're again
8405 			 * safe to delete all extent states of the range.
8406 			 */
8407 			delete_states = true;
8408 		} else {
8409 			/*
8410 			 * btrfs_finish_ordered_io() will get executed by endio
8411 			 * of other pages, thus we can't delete extent states
8412 			 * anymore
8413 			 */
8414 			delete_states = false;
8415 		}
8416 next:
8417 		if (ordered)
8418 			btrfs_put_ordered_extent(ordered);
8419 		/*
8420 		 * Qgroup reserved space handler
8421 		 * Sector(s) here will be either:
8422 		 *
8423 		 * 1) Already written to disk or bio already finished
8424 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8425 		 *    Qgroup will be handled by its qgroup_record then.
8426 		 *    btrfs_qgroup_free_data() call will do nothing here.
8427 		 *
8428 		 * 2) Not written to disk yet
8429 		 *    Then btrfs_qgroup_free_data() call will clear the
8430 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8431 		 *    reserved data space.
8432 		 *    Since the IO will never happen for this page.
8433 		 */
8434 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8435 		if (!inode_evicting) {
8436 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8437 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8438 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8439 				 delete_states, &cached_state);
8440 		}
8441 		cur = range_end + 1;
8442 	}
8443 	/*
8444 	 * We have iterated through all ordered extents of the page, the page
8445 	 * should not have Ordered (Private2) anymore, or the above iteration
8446 	 * did something wrong.
8447 	 */
8448 	ASSERT(!folio_test_ordered(folio));
8449 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8450 	if (!inode_evicting)
8451 		__btrfs_release_folio(folio, GFP_NOFS);
8452 	clear_page_extent_mapped(&folio->page);
8453 }
8454 
8455 /*
8456  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8457  * called from a page fault handler when a page is first dirtied. Hence we must
8458  * be careful to check for EOF conditions here. We set the page up correctly
8459  * for a written page which means we get ENOSPC checking when writing into
8460  * holes and correct delalloc and unwritten extent mapping on filesystems that
8461  * support these features.
8462  *
8463  * We are not allowed to take the i_mutex here so we have to play games to
8464  * protect against truncate races as the page could now be beyond EOF.  Because
8465  * truncate_setsize() writes the inode size before removing pages, once we have
8466  * the page lock we can determine safely if the page is beyond EOF. If it is not
8467  * beyond EOF, then the page is guaranteed safe against truncation until we
8468  * unlock the page.
8469  */
8470 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8471 {
8472 	struct page *page = vmf->page;
8473 	struct inode *inode = file_inode(vmf->vma->vm_file);
8474 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8475 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8476 	struct btrfs_ordered_extent *ordered;
8477 	struct extent_state *cached_state = NULL;
8478 	struct extent_changeset *data_reserved = NULL;
8479 	unsigned long zero_start;
8480 	loff_t size;
8481 	vm_fault_t ret;
8482 	int ret2;
8483 	int reserved = 0;
8484 	u64 reserved_space;
8485 	u64 page_start;
8486 	u64 page_end;
8487 	u64 end;
8488 
8489 	reserved_space = PAGE_SIZE;
8490 
8491 	sb_start_pagefault(inode->i_sb);
8492 	page_start = page_offset(page);
8493 	page_end = page_start + PAGE_SIZE - 1;
8494 	end = page_end;
8495 
8496 	/*
8497 	 * Reserving delalloc space after obtaining the page lock can lead to
8498 	 * deadlock. For example, if a dirty page is locked by this function
8499 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8500 	 * dirty page write out, then the btrfs_writepage() function could
8501 	 * end up waiting indefinitely to get a lock on the page currently
8502 	 * being processed by btrfs_page_mkwrite() function.
8503 	 */
8504 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8505 					    page_start, reserved_space);
8506 	if (!ret2) {
8507 		ret2 = file_update_time(vmf->vma->vm_file);
8508 		reserved = 1;
8509 	}
8510 	if (ret2) {
8511 		ret = vmf_error(ret2);
8512 		if (reserved)
8513 			goto out;
8514 		goto out_noreserve;
8515 	}
8516 
8517 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8518 again:
8519 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8520 	lock_page(page);
8521 	size = i_size_read(inode);
8522 
8523 	if ((page->mapping != inode->i_mapping) ||
8524 	    (page_start >= size)) {
8525 		/* page got truncated out from underneath us */
8526 		goto out_unlock;
8527 	}
8528 	wait_on_page_writeback(page);
8529 
8530 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8531 	ret2 = set_page_extent_mapped(page);
8532 	if (ret2 < 0) {
8533 		ret = vmf_error(ret2);
8534 		unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8535 		goto out_unlock;
8536 	}
8537 
8538 	/*
8539 	 * we can't set the delalloc bits if there are pending ordered
8540 	 * extents.  Drop our locks and wait for them to finish
8541 	 */
8542 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8543 			PAGE_SIZE);
8544 	if (ordered) {
8545 		unlock_extent_cached(io_tree, page_start, page_end,
8546 				     &cached_state);
8547 		unlock_page(page);
8548 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8549 		btrfs_start_ordered_extent(ordered, 1);
8550 		btrfs_put_ordered_extent(ordered);
8551 		goto again;
8552 	}
8553 
8554 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8555 		reserved_space = round_up(size - page_start,
8556 					  fs_info->sectorsize);
8557 		if (reserved_space < PAGE_SIZE) {
8558 			end = page_start + reserved_space - 1;
8559 			btrfs_delalloc_release_space(BTRFS_I(inode),
8560 					data_reserved, page_start,
8561 					PAGE_SIZE - reserved_space, true);
8562 		}
8563 	}
8564 
8565 	/*
8566 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8567 	 * faulted in, but write(2) could also dirty a page and set delalloc
8568 	 * bits, thus in this case for space account reason, we still need to
8569 	 * clear any delalloc bits within this page range since we have to
8570 	 * reserve data&meta space before lock_page() (see above comments).
8571 	 */
8572 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8573 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8574 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8575 
8576 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8577 					&cached_state);
8578 	if (ret2) {
8579 		unlock_extent_cached(io_tree, page_start, page_end,
8580 				     &cached_state);
8581 		ret = VM_FAULT_SIGBUS;
8582 		goto out_unlock;
8583 	}
8584 
8585 	/* page is wholly or partially inside EOF */
8586 	if (page_start + PAGE_SIZE > size)
8587 		zero_start = offset_in_page(size);
8588 	else
8589 		zero_start = PAGE_SIZE;
8590 
8591 	if (zero_start != PAGE_SIZE) {
8592 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8593 		flush_dcache_page(page);
8594 	}
8595 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8596 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8597 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8598 
8599 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8600 
8601 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8602 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8603 
8604 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8605 	sb_end_pagefault(inode->i_sb);
8606 	extent_changeset_free(data_reserved);
8607 	return VM_FAULT_LOCKED;
8608 
8609 out_unlock:
8610 	unlock_page(page);
8611 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8612 out:
8613 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8614 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8615 				     reserved_space, (ret != 0));
8616 out_noreserve:
8617 	sb_end_pagefault(inode->i_sb);
8618 	extent_changeset_free(data_reserved);
8619 	return ret;
8620 }
8621 
8622 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8623 {
8624 	struct btrfs_truncate_control control = {
8625 		.inode = BTRFS_I(inode),
8626 		.ino = btrfs_ino(BTRFS_I(inode)),
8627 		.min_type = BTRFS_EXTENT_DATA_KEY,
8628 		.clear_extent_range = true,
8629 	};
8630 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8631 	struct btrfs_root *root = BTRFS_I(inode)->root;
8632 	struct btrfs_block_rsv *rsv;
8633 	int ret;
8634 	struct btrfs_trans_handle *trans;
8635 	u64 mask = fs_info->sectorsize - 1;
8636 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8637 
8638 	if (!skip_writeback) {
8639 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8640 					       (u64)-1);
8641 		if (ret)
8642 			return ret;
8643 	}
8644 
8645 	/*
8646 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8647 	 * things going on here:
8648 	 *
8649 	 * 1) We need to reserve space to update our inode.
8650 	 *
8651 	 * 2) We need to have something to cache all the space that is going to
8652 	 * be free'd up by the truncate operation, but also have some slack
8653 	 * space reserved in case it uses space during the truncate (thank you
8654 	 * very much snapshotting).
8655 	 *
8656 	 * And we need these to be separate.  The fact is we can use a lot of
8657 	 * space doing the truncate, and we have no earthly idea how much space
8658 	 * we will use, so we need the truncate reservation to be separate so it
8659 	 * doesn't end up using space reserved for updating the inode.  We also
8660 	 * need to be able to stop the transaction and start a new one, which
8661 	 * means we need to be able to update the inode several times, and we
8662 	 * have no idea of knowing how many times that will be, so we can't just
8663 	 * reserve 1 item for the entirety of the operation, so that has to be
8664 	 * done separately as well.
8665 	 *
8666 	 * So that leaves us with
8667 	 *
8668 	 * 1) rsv - for the truncate reservation, which we will steal from the
8669 	 * transaction reservation.
8670 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8671 	 * updating the inode.
8672 	 */
8673 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8674 	if (!rsv)
8675 		return -ENOMEM;
8676 	rsv->size = min_size;
8677 	rsv->failfast = 1;
8678 
8679 	/*
8680 	 * 1 for the truncate slack space
8681 	 * 1 for updating the inode.
8682 	 */
8683 	trans = btrfs_start_transaction(root, 2);
8684 	if (IS_ERR(trans)) {
8685 		ret = PTR_ERR(trans);
8686 		goto out;
8687 	}
8688 
8689 	/* Migrate the slack space for the truncate to our reserve */
8690 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8691 				      min_size, false);
8692 	BUG_ON(ret);
8693 
8694 	trans->block_rsv = rsv;
8695 
8696 	while (1) {
8697 		struct extent_state *cached_state = NULL;
8698 		const u64 new_size = inode->i_size;
8699 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8700 
8701 		control.new_size = new_size;
8702 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
8703 				 &cached_state);
8704 		/*
8705 		 * We want to drop from the next block forward in case this new
8706 		 * size is not block aligned since we will be keeping the last
8707 		 * block of the extent just the way it is.
8708 		 */
8709 		btrfs_drop_extent_cache(BTRFS_I(inode),
8710 					ALIGN(new_size, fs_info->sectorsize),
8711 					(u64)-1, 0);
8712 
8713 		ret = btrfs_truncate_inode_items(trans, root, &control);
8714 
8715 		inode_sub_bytes(inode, control.sub_bytes);
8716 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
8717 
8718 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
8719 				     (u64)-1, &cached_state);
8720 
8721 		trans->block_rsv = &fs_info->trans_block_rsv;
8722 		if (ret != -ENOSPC && ret != -EAGAIN)
8723 			break;
8724 
8725 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8726 		if (ret)
8727 			break;
8728 
8729 		btrfs_end_transaction(trans);
8730 		btrfs_btree_balance_dirty(fs_info);
8731 
8732 		trans = btrfs_start_transaction(root, 2);
8733 		if (IS_ERR(trans)) {
8734 			ret = PTR_ERR(trans);
8735 			trans = NULL;
8736 			break;
8737 		}
8738 
8739 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8740 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8741 					      rsv, min_size, false);
8742 		BUG_ON(ret);	/* shouldn't happen */
8743 		trans->block_rsv = rsv;
8744 	}
8745 
8746 	/*
8747 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8748 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8749 	 * know we've truncated everything except the last little bit, and can
8750 	 * do btrfs_truncate_block and then update the disk_i_size.
8751 	 */
8752 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8753 		btrfs_end_transaction(trans);
8754 		btrfs_btree_balance_dirty(fs_info);
8755 
8756 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8757 		if (ret)
8758 			goto out;
8759 		trans = btrfs_start_transaction(root, 1);
8760 		if (IS_ERR(trans)) {
8761 			ret = PTR_ERR(trans);
8762 			goto out;
8763 		}
8764 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8765 	}
8766 
8767 	if (trans) {
8768 		int ret2;
8769 
8770 		trans->block_rsv = &fs_info->trans_block_rsv;
8771 		ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8772 		if (ret2 && !ret)
8773 			ret = ret2;
8774 
8775 		ret2 = btrfs_end_transaction(trans);
8776 		if (ret2 && !ret)
8777 			ret = ret2;
8778 		btrfs_btree_balance_dirty(fs_info);
8779 	}
8780 out:
8781 	btrfs_free_block_rsv(fs_info, rsv);
8782 	/*
8783 	 * So if we truncate and then write and fsync we normally would just
8784 	 * write the extents that changed, which is a problem if we need to
8785 	 * first truncate that entire inode.  So set this flag so we write out
8786 	 * all of the extents in the inode to the sync log so we're completely
8787 	 * safe.
8788 	 *
8789 	 * If no extents were dropped or trimmed we don't need to force the next
8790 	 * fsync to truncate all the inode's items from the log and re-log them
8791 	 * all. This means the truncate operation did not change the file size,
8792 	 * or changed it to a smaller size but there was only an implicit hole
8793 	 * between the old i_size and the new i_size, and there were no prealloc
8794 	 * extents beyond i_size to drop.
8795 	 */
8796 	if (control.extents_found > 0)
8797 		btrfs_set_inode_full_sync(BTRFS_I(inode));
8798 
8799 	return ret;
8800 }
8801 
8802 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
8803 				     struct inode *dir)
8804 {
8805 	struct inode *inode;
8806 
8807 	inode = new_inode(dir->i_sb);
8808 	if (inode) {
8809 		/*
8810 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8811 		 * the parent's sgid bit is set. This is probably a bug.
8812 		 */
8813 		inode_init_owner(mnt_userns, inode, NULL,
8814 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8815 		inode->i_op = &btrfs_dir_inode_operations;
8816 		inode->i_fop = &btrfs_dir_file_operations;
8817 	}
8818 	return inode;
8819 }
8820 
8821 struct inode *btrfs_alloc_inode(struct super_block *sb)
8822 {
8823 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8824 	struct btrfs_inode *ei;
8825 	struct inode *inode;
8826 
8827 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8828 	if (!ei)
8829 		return NULL;
8830 
8831 	ei->root = NULL;
8832 	ei->generation = 0;
8833 	ei->last_trans = 0;
8834 	ei->last_sub_trans = 0;
8835 	ei->logged_trans = 0;
8836 	ei->delalloc_bytes = 0;
8837 	ei->new_delalloc_bytes = 0;
8838 	ei->defrag_bytes = 0;
8839 	ei->disk_i_size = 0;
8840 	ei->flags = 0;
8841 	ei->ro_flags = 0;
8842 	ei->csum_bytes = 0;
8843 	ei->index_cnt = (u64)-1;
8844 	ei->dir_index = 0;
8845 	ei->last_unlink_trans = 0;
8846 	ei->last_reflink_trans = 0;
8847 	ei->last_log_commit = 0;
8848 
8849 	spin_lock_init(&ei->lock);
8850 	ei->outstanding_extents = 0;
8851 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8852 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8853 					      BTRFS_BLOCK_RSV_DELALLOC);
8854 	ei->runtime_flags = 0;
8855 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8856 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8857 
8858 	ei->delayed_node = NULL;
8859 
8860 	ei->i_otime.tv_sec = 0;
8861 	ei->i_otime.tv_nsec = 0;
8862 
8863 	inode = &ei->vfs_inode;
8864 	extent_map_tree_init(&ei->extent_tree);
8865 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8866 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
8867 			    IO_TREE_INODE_IO_FAILURE, inode);
8868 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8869 			    IO_TREE_INODE_FILE_EXTENT, inode);
8870 	ei->io_tree.track_uptodate = true;
8871 	ei->io_failure_tree.track_uptodate = true;
8872 	atomic_set(&ei->sync_writers, 0);
8873 	mutex_init(&ei->log_mutex);
8874 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8875 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8876 	INIT_LIST_HEAD(&ei->delayed_iput);
8877 	RB_CLEAR_NODE(&ei->rb_node);
8878 	init_rwsem(&ei->i_mmap_lock);
8879 
8880 	return inode;
8881 }
8882 
8883 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8884 void btrfs_test_destroy_inode(struct inode *inode)
8885 {
8886 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8887 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8888 }
8889 #endif
8890 
8891 void btrfs_free_inode(struct inode *inode)
8892 {
8893 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8894 }
8895 
8896 void btrfs_destroy_inode(struct inode *vfs_inode)
8897 {
8898 	struct btrfs_ordered_extent *ordered;
8899 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8900 	struct btrfs_root *root = inode->root;
8901 
8902 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8903 	WARN_ON(vfs_inode->i_data.nrpages);
8904 	WARN_ON(inode->block_rsv.reserved);
8905 	WARN_ON(inode->block_rsv.size);
8906 	WARN_ON(inode->outstanding_extents);
8907 	if (!S_ISDIR(vfs_inode->i_mode)) {
8908 		WARN_ON(inode->delalloc_bytes);
8909 		WARN_ON(inode->new_delalloc_bytes);
8910 	}
8911 	WARN_ON(inode->csum_bytes);
8912 	WARN_ON(inode->defrag_bytes);
8913 
8914 	/*
8915 	 * This can happen where we create an inode, but somebody else also
8916 	 * created the same inode and we need to destroy the one we already
8917 	 * created.
8918 	 */
8919 	if (!root)
8920 		return;
8921 
8922 	while (1) {
8923 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8924 		if (!ordered)
8925 			break;
8926 		else {
8927 			btrfs_err(root->fs_info,
8928 				  "found ordered extent %llu %llu on inode cleanup",
8929 				  ordered->file_offset, ordered->num_bytes);
8930 			btrfs_remove_ordered_extent(inode, ordered);
8931 			btrfs_put_ordered_extent(ordered);
8932 			btrfs_put_ordered_extent(ordered);
8933 		}
8934 	}
8935 	btrfs_qgroup_check_reserved_leak(inode);
8936 	inode_tree_del(inode);
8937 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8938 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8939 	btrfs_put_root(inode->root);
8940 }
8941 
8942 int btrfs_drop_inode(struct inode *inode)
8943 {
8944 	struct btrfs_root *root = BTRFS_I(inode)->root;
8945 
8946 	if (root == NULL)
8947 		return 1;
8948 
8949 	/* the snap/subvol tree is on deleting */
8950 	if (btrfs_root_refs(&root->root_item) == 0)
8951 		return 1;
8952 	else
8953 		return generic_drop_inode(inode);
8954 }
8955 
8956 static void init_once(void *foo)
8957 {
8958 	struct btrfs_inode *ei = foo;
8959 
8960 	inode_init_once(&ei->vfs_inode);
8961 }
8962 
8963 void __cold btrfs_destroy_cachep(void)
8964 {
8965 	/*
8966 	 * Make sure all delayed rcu free inodes are flushed before we
8967 	 * destroy cache.
8968 	 */
8969 	rcu_barrier();
8970 	bioset_exit(&btrfs_dio_bioset);
8971 	kmem_cache_destroy(btrfs_inode_cachep);
8972 	kmem_cache_destroy(btrfs_trans_handle_cachep);
8973 	kmem_cache_destroy(btrfs_path_cachep);
8974 	kmem_cache_destroy(btrfs_free_space_cachep);
8975 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8976 }
8977 
8978 int __init btrfs_init_cachep(void)
8979 {
8980 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8981 			sizeof(struct btrfs_inode), 0,
8982 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8983 			init_once);
8984 	if (!btrfs_inode_cachep)
8985 		goto fail;
8986 
8987 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8988 			sizeof(struct btrfs_trans_handle), 0,
8989 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8990 	if (!btrfs_trans_handle_cachep)
8991 		goto fail;
8992 
8993 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8994 			sizeof(struct btrfs_path), 0,
8995 			SLAB_MEM_SPREAD, NULL);
8996 	if (!btrfs_path_cachep)
8997 		goto fail;
8998 
8999 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9000 			sizeof(struct btrfs_free_space), 0,
9001 			SLAB_MEM_SPREAD, NULL);
9002 	if (!btrfs_free_space_cachep)
9003 		goto fail;
9004 
9005 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9006 							PAGE_SIZE, PAGE_SIZE,
9007 							SLAB_MEM_SPREAD, NULL);
9008 	if (!btrfs_free_space_bitmap_cachep)
9009 		goto fail;
9010 
9011 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
9012 			offsetof(struct btrfs_dio_private, bio),
9013 			BIOSET_NEED_BVECS))
9014 		goto fail;
9015 
9016 	return 0;
9017 fail:
9018 	btrfs_destroy_cachep();
9019 	return -ENOMEM;
9020 }
9021 
9022 static int btrfs_getattr(struct user_namespace *mnt_userns,
9023 			 const struct path *path, struct kstat *stat,
9024 			 u32 request_mask, unsigned int flags)
9025 {
9026 	u64 delalloc_bytes;
9027 	u64 inode_bytes;
9028 	struct inode *inode = d_inode(path->dentry);
9029 	u32 blocksize = inode->i_sb->s_blocksize;
9030 	u32 bi_flags = BTRFS_I(inode)->flags;
9031 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9032 
9033 	stat->result_mask |= STATX_BTIME;
9034 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9035 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9036 	if (bi_flags & BTRFS_INODE_APPEND)
9037 		stat->attributes |= STATX_ATTR_APPEND;
9038 	if (bi_flags & BTRFS_INODE_COMPRESS)
9039 		stat->attributes |= STATX_ATTR_COMPRESSED;
9040 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9041 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9042 	if (bi_flags & BTRFS_INODE_NODUMP)
9043 		stat->attributes |= STATX_ATTR_NODUMP;
9044 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9045 		stat->attributes |= STATX_ATTR_VERITY;
9046 
9047 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9048 				  STATX_ATTR_COMPRESSED |
9049 				  STATX_ATTR_IMMUTABLE |
9050 				  STATX_ATTR_NODUMP);
9051 
9052 	generic_fillattr(mnt_userns, inode, stat);
9053 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9054 
9055 	spin_lock(&BTRFS_I(inode)->lock);
9056 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9057 	inode_bytes = inode_get_bytes(inode);
9058 	spin_unlock(&BTRFS_I(inode)->lock);
9059 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
9060 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9061 	return 0;
9062 }
9063 
9064 static int btrfs_rename_exchange(struct inode *old_dir,
9065 			      struct dentry *old_dentry,
9066 			      struct inode *new_dir,
9067 			      struct dentry *new_dentry)
9068 {
9069 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9070 	struct btrfs_trans_handle *trans;
9071 	unsigned int trans_num_items;
9072 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9073 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9074 	struct inode *new_inode = new_dentry->d_inode;
9075 	struct inode *old_inode = old_dentry->d_inode;
9076 	struct timespec64 ctime = current_time(old_inode);
9077 	struct btrfs_rename_ctx old_rename_ctx;
9078 	struct btrfs_rename_ctx new_rename_ctx;
9079 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9080 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9081 	u64 old_idx = 0;
9082 	u64 new_idx = 0;
9083 	int ret;
9084 	int ret2;
9085 	bool need_abort = false;
9086 
9087 	/*
9088 	 * For non-subvolumes allow exchange only within one subvolume, in the
9089 	 * same inode namespace. Two subvolumes (represented as directory) can
9090 	 * be exchanged as they're a logical link and have a fixed inode number.
9091 	 */
9092 	if (root != dest &&
9093 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9094 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
9095 		return -EXDEV;
9096 
9097 	/* close the race window with snapshot create/destroy ioctl */
9098 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9099 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9100 		down_read(&fs_info->subvol_sem);
9101 
9102 	/*
9103 	 * For each inode:
9104 	 * 1 to remove old dir item
9105 	 * 1 to remove old dir index
9106 	 * 1 to add new dir item
9107 	 * 1 to add new dir index
9108 	 * 1 to update parent inode
9109 	 *
9110 	 * If the parents are the same, we only need to account for one
9111 	 */
9112 	trans_num_items = (old_dir == new_dir ? 9 : 10);
9113 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9114 		/*
9115 		 * 1 to remove old root ref
9116 		 * 1 to remove old root backref
9117 		 * 1 to add new root ref
9118 		 * 1 to add new root backref
9119 		 */
9120 		trans_num_items += 4;
9121 	} else {
9122 		/*
9123 		 * 1 to update inode item
9124 		 * 1 to remove old inode ref
9125 		 * 1 to add new inode ref
9126 		 */
9127 		trans_num_items += 3;
9128 	}
9129 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9130 		trans_num_items += 4;
9131 	else
9132 		trans_num_items += 3;
9133 	trans = btrfs_start_transaction(root, trans_num_items);
9134 	if (IS_ERR(trans)) {
9135 		ret = PTR_ERR(trans);
9136 		goto out_notrans;
9137 	}
9138 
9139 	if (dest != root) {
9140 		ret = btrfs_record_root_in_trans(trans, dest);
9141 		if (ret)
9142 			goto out_fail;
9143 	}
9144 
9145 	/*
9146 	 * We need to find a free sequence number both in the source and
9147 	 * in the destination directory for the exchange.
9148 	 */
9149 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9150 	if (ret)
9151 		goto out_fail;
9152 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9153 	if (ret)
9154 		goto out_fail;
9155 
9156 	BTRFS_I(old_inode)->dir_index = 0ULL;
9157 	BTRFS_I(new_inode)->dir_index = 0ULL;
9158 
9159 	/* Reference for the source. */
9160 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9161 		/* force full log commit if subvolume involved. */
9162 		btrfs_set_log_full_commit(trans);
9163 	} else {
9164 		ret = btrfs_insert_inode_ref(trans, dest,
9165 					     new_dentry->d_name.name,
9166 					     new_dentry->d_name.len,
9167 					     old_ino,
9168 					     btrfs_ino(BTRFS_I(new_dir)),
9169 					     old_idx);
9170 		if (ret)
9171 			goto out_fail;
9172 		need_abort = true;
9173 	}
9174 
9175 	/* And now for the dest. */
9176 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9177 		/* force full log commit if subvolume involved. */
9178 		btrfs_set_log_full_commit(trans);
9179 	} else {
9180 		ret = btrfs_insert_inode_ref(trans, root,
9181 					     old_dentry->d_name.name,
9182 					     old_dentry->d_name.len,
9183 					     new_ino,
9184 					     btrfs_ino(BTRFS_I(old_dir)),
9185 					     new_idx);
9186 		if (ret) {
9187 			if (need_abort)
9188 				btrfs_abort_transaction(trans, ret);
9189 			goto out_fail;
9190 		}
9191 	}
9192 
9193 	/* Update inode version and ctime/mtime. */
9194 	inode_inc_iversion(old_dir);
9195 	inode_inc_iversion(new_dir);
9196 	inode_inc_iversion(old_inode);
9197 	inode_inc_iversion(new_inode);
9198 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9199 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9200 	old_inode->i_ctime = ctime;
9201 	new_inode->i_ctime = ctime;
9202 
9203 	if (old_dentry->d_parent != new_dentry->d_parent) {
9204 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9205 				BTRFS_I(old_inode), 1);
9206 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9207 				BTRFS_I(new_inode), 1);
9208 	}
9209 
9210 	/* src is a subvolume */
9211 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9212 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9213 	} else { /* src is an inode */
9214 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9215 					   BTRFS_I(old_dentry->d_inode),
9216 					   old_dentry->d_name.name,
9217 					   old_dentry->d_name.len,
9218 					   &old_rename_ctx);
9219 		if (!ret)
9220 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9221 	}
9222 	if (ret) {
9223 		btrfs_abort_transaction(trans, ret);
9224 		goto out_fail;
9225 	}
9226 
9227 	/* dest is a subvolume */
9228 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9229 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9230 	} else { /* dest is an inode */
9231 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9232 					   BTRFS_I(new_dentry->d_inode),
9233 					   new_dentry->d_name.name,
9234 					   new_dentry->d_name.len,
9235 					   &new_rename_ctx);
9236 		if (!ret)
9237 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9238 	}
9239 	if (ret) {
9240 		btrfs_abort_transaction(trans, ret);
9241 		goto out_fail;
9242 	}
9243 
9244 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9245 			     new_dentry->d_name.name,
9246 			     new_dentry->d_name.len, 0, old_idx);
9247 	if (ret) {
9248 		btrfs_abort_transaction(trans, ret);
9249 		goto out_fail;
9250 	}
9251 
9252 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9253 			     old_dentry->d_name.name,
9254 			     old_dentry->d_name.len, 0, new_idx);
9255 	if (ret) {
9256 		btrfs_abort_transaction(trans, ret);
9257 		goto out_fail;
9258 	}
9259 
9260 	if (old_inode->i_nlink == 1)
9261 		BTRFS_I(old_inode)->dir_index = old_idx;
9262 	if (new_inode->i_nlink == 1)
9263 		BTRFS_I(new_inode)->dir_index = new_idx;
9264 
9265 	/*
9266 	 * Now pin the logs of the roots. We do it to ensure that no other task
9267 	 * can sync the logs while we are in progress with the rename, because
9268 	 * that could result in an inconsistency in case any of the inodes that
9269 	 * are part of this rename operation were logged before.
9270 	 */
9271 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9272 		btrfs_pin_log_trans(root);
9273 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9274 		btrfs_pin_log_trans(dest);
9275 
9276 	/* Do the log updates for all inodes. */
9277 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9278 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9279 				   old_rename_ctx.index, new_dentry->d_parent);
9280 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9281 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9282 				   new_rename_ctx.index, old_dentry->d_parent);
9283 
9284 	/* Now unpin the logs. */
9285 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9286 		btrfs_end_log_trans(root);
9287 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9288 		btrfs_end_log_trans(dest);
9289 out_fail:
9290 	ret2 = btrfs_end_transaction(trans);
9291 	ret = ret ? ret : ret2;
9292 out_notrans:
9293 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9294 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9295 		up_read(&fs_info->subvol_sem);
9296 
9297 	return ret;
9298 }
9299 
9300 static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns,
9301 					struct inode *dir)
9302 {
9303 	struct inode *inode;
9304 
9305 	inode = new_inode(dir->i_sb);
9306 	if (inode) {
9307 		inode_init_owner(mnt_userns, inode, dir,
9308 				 S_IFCHR | WHITEOUT_MODE);
9309 		inode->i_op = &btrfs_special_inode_operations;
9310 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9311 	}
9312 	return inode;
9313 }
9314 
9315 static int btrfs_rename(struct user_namespace *mnt_userns,
9316 			struct inode *old_dir, struct dentry *old_dentry,
9317 			struct inode *new_dir, struct dentry *new_dentry,
9318 			unsigned int flags)
9319 {
9320 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9321 	struct btrfs_new_inode_args whiteout_args = {
9322 		.dir = old_dir,
9323 		.dentry = old_dentry,
9324 	};
9325 	struct btrfs_trans_handle *trans;
9326 	unsigned int trans_num_items;
9327 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9328 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9329 	struct inode *new_inode = d_inode(new_dentry);
9330 	struct inode *old_inode = d_inode(old_dentry);
9331 	struct btrfs_rename_ctx rename_ctx;
9332 	u64 index = 0;
9333 	int ret;
9334 	int ret2;
9335 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9336 
9337 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9338 		return -EPERM;
9339 
9340 	/* we only allow rename subvolume link between subvolumes */
9341 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9342 		return -EXDEV;
9343 
9344 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9345 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9346 		return -ENOTEMPTY;
9347 
9348 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9349 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9350 		return -ENOTEMPTY;
9351 
9352 
9353 	/* check for collisions, even if the  name isn't there */
9354 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9355 			     new_dentry->d_name.name,
9356 			     new_dentry->d_name.len);
9357 
9358 	if (ret) {
9359 		if (ret == -EEXIST) {
9360 			/* we shouldn't get
9361 			 * eexist without a new_inode */
9362 			if (WARN_ON(!new_inode)) {
9363 				return ret;
9364 			}
9365 		} else {
9366 			/* maybe -EOVERFLOW */
9367 			return ret;
9368 		}
9369 	}
9370 	ret = 0;
9371 
9372 	/*
9373 	 * we're using rename to replace one file with another.  Start IO on it
9374 	 * now so  we don't add too much work to the end of the transaction
9375 	 */
9376 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9377 		filemap_flush(old_inode->i_mapping);
9378 
9379 	if (flags & RENAME_WHITEOUT) {
9380 		whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir);
9381 		if (!whiteout_args.inode)
9382 			return -ENOMEM;
9383 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9384 		if (ret)
9385 			goto out_whiteout_inode;
9386 	} else {
9387 		/* 1 to update the old parent inode. */
9388 		trans_num_items = 1;
9389 	}
9390 
9391 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9392 		/* Close the race window with snapshot create/destroy ioctl */
9393 		down_read(&fs_info->subvol_sem);
9394 		/*
9395 		 * 1 to remove old root ref
9396 		 * 1 to remove old root backref
9397 		 * 1 to add new root ref
9398 		 * 1 to add new root backref
9399 		 */
9400 		trans_num_items += 4;
9401 	} else {
9402 		/*
9403 		 * 1 to update inode
9404 		 * 1 to remove old inode ref
9405 		 * 1 to add new inode ref
9406 		 */
9407 		trans_num_items += 3;
9408 	}
9409 	/*
9410 	 * 1 to remove old dir item
9411 	 * 1 to remove old dir index
9412 	 * 1 to add new dir item
9413 	 * 1 to add new dir index
9414 	 */
9415 	trans_num_items += 4;
9416 	/* 1 to update new parent inode if it's not the same as the old parent */
9417 	if (new_dir != old_dir)
9418 		trans_num_items++;
9419 	if (new_inode) {
9420 		/*
9421 		 * 1 to update inode
9422 		 * 1 to remove inode ref
9423 		 * 1 to remove dir item
9424 		 * 1 to remove dir index
9425 		 * 1 to possibly add orphan item
9426 		 */
9427 		trans_num_items += 5;
9428 	}
9429 	trans = btrfs_start_transaction(root, trans_num_items);
9430 	if (IS_ERR(trans)) {
9431 		ret = PTR_ERR(trans);
9432 		goto out_notrans;
9433 	}
9434 
9435 	if (dest != root) {
9436 		ret = btrfs_record_root_in_trans(trans, dest);
9437 		if (ret)
9438 			goto out_fail;
9439 	}
9440 
9441 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9442 	if (ret)
9443 		goto out_fail;
9444 
9445 	BTRFS_I(old_inode)->dir_index = 0ULL;
9446 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9447 		/* force full log commit if subvolume involved. */
9448 		btrfs_set_log_full_commit(trans);
9449 	} else {
9450 		ret = btrfs_insert_inode_ref(trans, dest,
9451 					     new_dentry->d_name.name,
9452 					     new_dentry->d_name.len,
9453 					     old_ino,
9454 					     btrfs_ino(BTRFS_I(new_dir)), index);
9455 		if (ret)
9456 			goto out_fail;
9457 	}
9458 
9459 	inode_inc_iversion(old_dir);
9460 	inode_inc_iversion(new_dir);
9461 	inode_inc_iversion(old_inode);
9462 	old_dir->i_ctime = old_dir->i_mtime =
9463 	new_dir->i_ctime = new_dir->i_mtime =
9464 	old_inode->i_ctime = current_time(old_dir);
9465 
9466 	if (old_dentry->d_parent != new_dentry->d_parent)
9467 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9468 				BTRFS_I(old_inode), 1);
9469 
9470 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9471 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9472 	} else {
9473 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9474 					BTRFS_I(d_inode(old_dentry)),
9475 					old_dentry->d_name.name,
9476 					old_dentry->d_name.len,
9477 					&rename_ctx);
9478 		if (!ret)
9479 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9480 	}
9481 	if (ret) {
9482 		btrfs_abort_transaction(trans, ret);
9483 		goto out_fail;
9484 	}
9485 
9486 	if (new_inode) {
9487 		inode_inc_iversion(new_inode);
9488 		new_inode->i_ctime = current_time(new_inode);
9489 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9490 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9491 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9492 			BUG_ON(new_inode->i_nlink == 0);
9493 		} else {
9494 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9495 						 BTRFS_I(d_inode(new_dentry)),
9496 						 new_dentry->d_name.name,
9497 						 new_dentry->d_name.len);
9498 		}
9499 		if (!ret && new_inode->i_nlink == 0)
9500 			ret = btrfs_orphan_add(trans,
9501 					BTRFS_I(d_inode(new_dentry)));
9502 		if (ret) {
9503 			btrfs_abort_transaction(trans, ret);
9504 			goto out_fail;
9505 		}
9506 	}
9507 
9508 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9509 			     new_dentry->d_name.name,
9510 			     new_dentry->d_name.len, 0, index);
9511 	if (ret) {
9512 		btrfs_abort_transaction(trans, ret);
9513 		goto out_fail;
9514 	}
9515 
9516 	if (old_inode->i_nlink == 1)
9517 		BTRFS_I(old_inode)->dir_index = index;
9518 
9519 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9520 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9521 				   rename_ctx.index, new_dentry->d_parent);
9522 
9523 	if (flags & RENAME_WHITEOUT) {
9524 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9525 		if (ret) {
9526 			btrfs_abort_transaction(trans, ret);
9527 			goto out_fail;
9528 		} else {
9529 			unlock_new_inode(whiteout_args.inode);
9530 			iput(whiteout_args.inode);
9531 			whiteout_args.inode = NULL;
9532 		}
9533 	}
9534 out_fail:
9535 	ret2 = btrfs_end_transaction(trans);
9536 	ret = ret ? ret : ret2;
9537 out_notrans:
9538 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9539 		up_read(&fs_info->subvol_sem);
9540 	if (flags & RENAME_WHITEOUT)
9541 		btrfs_new_inode_args_destroy(&whiteout_args);
9542 out_whiteout_inode:
9543 	if (flags & RENAME_WHITEOUT)
9544 		iput(whiteout_args.inode);
9545 	return ret;
9546 }
9547 
9548 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9549 			 struct dentry *old_dentry, struct inode *new_dir,
9550 			 struct dentry *new_dentry, unsigned int flags)
9551 {
9552 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9553 		return -EINVAL;
9554 
9555 	if (flags & RENAME_EXCHANGE)
9556 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9557 					  new_dentry);
9558 
9559 	return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9560 			    new_dentry, flags);
9561 }
9562 
9563 struct btrfs_delalloc_work {
9564 	struct inode *inode;
9565 	struct completion completion;
9566 	struct list_head list;
9567 	struct btrfs_work work;
9568 };
9569 
9570 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9571 {
9572 	struct btrfs_delalloc_work *delalloc_work;
9573 	struct inode *inode;
9574 
9575 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9576 				     work);
9577 	inode = delalloc_work->inode;
9578 	filemap_flush(inode->i_mapping);
9579 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9580 				&BTRFS_I(inode)->runtime_flags))
9581 		filemap_flush(inode->i_mapping);
9582 
9583 	iput(inode);
9584 	complete(&delalloc_work->completion);
9585 }
9586 
9587 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9588 {
9589 	struct btrfs_delalloc_work *work;
9590 
9591 	work = kmalloc(sizeof(*work), GFP_NOFS);
9592 	if (!work)
9593 		return NULL;
9594 
9595 	init_completion(&work->completion);
9596 	INIT_LIST_HEAD(&work->list);
9597 	work->inode = inode;
9598 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9599 
9600 	return work;
9601 }
9602 
9603 /*
9604  * some fairly slow code that needs optimization. This walks the list
9605  * of all the inodes with pending delalloc and forces them to disk.
9606  */
9607 static int start_delalloc_inodes(struct btrfs_root *root,
9608 				 struct writeback_control *wbc, bool snapshot,
9609 				 bool in_reclaim_context)
9610 {
9611 	struct btrfs_inode *binode;
9612 	struct inode *inode;
9613 	struct btrfs_delalloc_work *work, *next;
9614 	struct list_head works;
9615 	struct list_head splice;
9616 	int ret = 0;
9617 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9618 
9619 	INIT_LIST_HEAD(&works);
9620 	INIT_LIST_HEAD(&splice);
9621 
9622 	mutex_lock(&root->delalloc_mutex);
9623 	spin_lock(&root->delalloc_lock);
9624 	list_splice_init(&root->delalloc_inodes, &splice);
9625 	while (!list_empty(&splice)) {
9626 		binode = list_entry(splice.next, struct btrfs_inode,
9627 				    delalloc_inodes);
9628 
9629 		list_move_tail(&binode->delalloc_inodes,
9630 			       &root->delalloc_inodes);
9631 
9632 		if (in_reclaim_context &&
9633 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9634 			continue;
9635 
9636 		inode = igrab(&binode->vfs_inode);
9637 		if (!inode) {
9638 			cond_resched_lock(&root->delalloc_lock);
9639 			continue;
9640 		}
9641 		spin_unlock(&root->delalloc_lock);
9642 
9643 		if (snapshot)
9644 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9645 				&binode->runtime_flags);
9646 		if (full_flush) {
9647 			work = btrfs_alloc_delalloc_work(inode);
9648 			if (!work) {
9649 				iput(inode);
9650 				ret = -ENOMEM;
9651 				goto out;
9652 			}
9653 			list_add_tail(&work->list, &works);
9654 			btrfs_queue_work(root->fs_info->flush_workers,
9655 					 &work->work);
9656 		} else {
9657 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9658 			btrfs_add_delayed_iput(inode);
9659 			if (ret || wbc->nr_to_write <= 0)
9660 				goto out;
9661 		}
9662 		cond_resched();
9663 		spin_lock(&root->delalloc_lock);
9664 	}
9665 	spin_unlock(&root->delalloc_lock);
9666 
9667 out:
9668 	list_for_each_entry_safe(work, next, &works, list) {
9669 		list_del_init(&work->list);
9670 		wait_for_completion(&work->completion);
9671 		kfree(work);
9672 	}
9673 
9674 	if (!list_empty(&splice)) {
9675 		spin_lock(&root->delalloc_lock);
9676 		list_splice_tail(&splice, &root->delalloc_inodes);
9677 		spin_unlock(&root->delalloc_lock);
9678 	}
9679 	mutex_unlock(&root->delalloc_mutex);
9680 	return ret;
9681 }
9682 
9683 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9684 {
9685 	struct writeback_control wbc = {
9686 		.nr_to_write = LONG_MAX,
9687 		.sync_mode = WB_SYNC_NONE,
9688 		.range_start = 0,
9689 		.range_end = LLONG_MAX,
9690 	};
9691 	struct btrfs_fs_info *fs_info = root->fs_info;
9692 
9693 	if (BTRFS_FS_ERROR(fs_info))
9694 		return -EROFS;
9695 
9696 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9697 }
9698 
9699 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9700 			       bool in_reclaim_context)
9701 {
9702 	struct writeback_control wbc = {
9703 		.nr_to_write = nr,
9704 		.sync_mode = WB_SYNC_NONE,
9705 		.range_start = 0,
9706 		.range_end = LLONG_MAX,
9707 	};
9708 	struct btrfs_root *root;
9709 	struct list_head splice;
9710 	int ret;
9711 
9712 	if (BTRFS_FS_ERROR(fs_info))
9713 		return -EROFS;
9714 
9715 	INIT_LIST_HEAD(&splice);
9716 
9717 	mutex_lock(&fs_info->delalloc_root_mutex);
9718 	spin_lock(&fs_info->delalloc_root_lock);
9719 	list_splice_init(&fs_info->delalloc_roots, &splice);
9720 	while (!list_empty(&splice)) {
9721 		/*
9722 		 * Reset nr_to_write here so we know that we're doing a full
9723 		 * flush.
9724 		 */
9725 		if (nr == LONG_MAX)
9726 			wbc.nr_to_write = LONG_MAX;
9727 
9728 		root = list_first_entry(&splice, struct btrfs_root,
9729 					delalloc_root);
9730 		root = btrfs_grab_root(root);
9731 		BUG_ON(!root);
9732 		list_move_tail(&root->delalloc_root,
9733 			       &fs_info->delalloc_roots);
9734 		spin_unlock(&fs_info->delalloc_root_lock);
9735 
9736 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9737 		btrfs_put_root(root);
9738 		if (ret < 0 || wbc.nr_to_write <= 0)
9739 			goto out;
9740 		spin_lock(&fs_info->delalloc_root_lock);
9741 	}
9742 	spin_unlock(&fs_info->delalloc_root_lock);
9743 
9744 	ret = 0;
9745 out:
9746 	if (!list_empty(&splice)) {
9747 		spin_lock(&fs_info->delalloc_root_lock);
9748 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9749 		spin_unlock(&fs_info->delalloc_root_lock);
9750 	}
9751 	mutex_unlock(&fs_info->delalloc_root_mutex);
9752 	return ret;
9753 }
9754 
9755 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9756 			 struct dentry *dentry, const char *symname)
9757 {
9758 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9759 	struct btrfs_trans_handle *trans;
9760 	struct btrfs_root *root = BTRFS_I(dir)->root;
9761 	struct btrfs_path *path;
9762 	struct btrfs_key key;
9763 	struct inode *inode;
9764 	struct btrfs_new_inode_args new_inode_args = {
9765 		.dir = dir,
9766 		.dentry = dentry,
9767 	};
9768 	unsigned int trans_num_items;
9769 	int err;
9770 	int name_len;
9771 	int datasize;
9772 	unsigned long ptr;
9773 	struct btrfs_file_extent_item *ei;
9774 	struct extent_buffer *leaf;
9775 
9776 	name_len = strlen(symname);
9777 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9778 		return -ENAMETOOLONG;
9779 
9780 	inode = new_inode(dir->i_sb);
9781 	if (!inode)
9782 		return -ENOMEM;
9783 	inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO);
9784 	inode->i_op = &btrfs_symlink_inode_operations;
9785 	inode_nohighmem(inode);
9786 	inode->i_mapping->a_ops = &btrfs_aops;
9787 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9788 	inode_set_bytes(inode, name_len);
9789 
9790 	new_inode_args.inode = inode;
9791 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9792 	if (err)
9793 		goto out_inode;
9794 	/* 1 additional item for the inline extent */
9795 	trans_num_items++;
9796 
9797 	trans = btrfs_start_transaction(root, trans_num_items);
9798 	if (IS_ERR(trans)) {
9799 		err = PTR_ERR(trans);
9800 		goto out_new_inode_args;
9801 	}
9802 
9803 	err = btrfs_create_new_inode(trans, &new_inode_args);
9804 	if (err)
9805 		goto out;
9806 
9807 	path = btrfs_alloc_path();
9808 	if (!path) {
9809 		err = -ENOMEM;
9810 		btrfs_abort_transaction(trans, err);
9811 		discard_new_inode(inode);
9812 		inode = NULL;
9813 		goto out;
9814 	}
9815 	key.objectid = btrfs_ino(BTRFS_I(inode));
9816 	key.offset = 0;
9817 	key.type = BTRFS_EXTENT_DATA_KEY;
9818 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9819 	err = btrfs_insert_empty_item(trans, root, path, &key,
9820 				      datasize);
9821 	if (err) {
9822 		btrfs_abort_transaction(trans, err);
9823 		btrfs_free_path(path);
9824 		discard_new_inode(inode);
9825 		inode = NULL;
9826 		goto out;
9827 	}
9828 	leaf = path->nodes[0];
9829 	ei = btrfs_item_ptr(leaf, path->slots[0],
9830 			    struct btrfs_file_extent_item);
9831 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9832 	btrfs_set_file_extent_type(leaf, ei,
9833 				   BTRFS_FILE_EXTENT_INLINE);
9834 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9835 	btrfs_set_file_extent_compression(leaf, ei, 0);
9836 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9837 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9838 
9839 	ptr = btrfs_file_extent_inline_start(ei);
9840 	write_extent_buffer(leaf, symname, ptr, name_len);
9841 	btrfs_mark_buffer_dirty(leaf);
9842 	btrfs_free_path(path);
9843 
9844 	d_instantiate_new(dentry, inode);
9845 	err = 0;
9846 out:
9847 	btrfs_end_transaction(trans);
9848 	btrfs_btree_balance_dirty(fs_info);
9849 out_new_inode_args:
9850 	btrfs_new_inode_args_destroy(&new_inode_args);
9851 out_inode:
9852 	if (err)
9853 		iput(inode);
9854 	return err;
9855 }
9856 
9857 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9858 				       struct btrfs_trans_handle *trans_in,
9859 				       struct btrfs_inode *inode,
9860 				       struct btrfs_key *ins,
9861 				       u64 file_offset)
9862 {
9863 	struct btrfs_file_extent_item stack_fi;
9864 	struct btrfs_replace_extent_info extent_info;
9865 	struct btrfs_trans_handle *trans = trans_in;
9866 	struct btrfs_path *path;
9867 	u64 start = ins->objectid;
9868 	u64 len = ins->offset;
9869 	int qgroup_released;
9870 	int ret;
9871 
9872 	memset(&stack_fi, 0, sizeof(stack_fi));
9873 
9874 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9875 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9876 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9877 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9878 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9879 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9880 	/* Encryption and other encoding is reserved and all 0 */
9881 
9882 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9883 	if (qgroup_released < 0)
9884 		return ERR_PTR(qgroup_released);
9885 
9886 	if (trans) {
9887 		ret = insert_reserved_file_extent(trans, inode,
9888 						  file_offset, &stack_fi,
9889 						  true, qgroup_released);
9890 		if (ret)
9891 			goto free_qgroup;
9892 		return trans;
9893 	}
9894 
9895 	extent_info.disk_offset = start;
9896 	extent_info.disk_len = len;
9897 	extent_info.data_offset = 0;
9898 	extent_info.data_len = len;
9899 	extent_info.file_offset = file_offset;
9900 	extent_info.extent_buf = (char *)&stack_fi;
9901 	extent_info.is_new_extent = true;
9902 	extent_info.update_times = true;
9903 	extent_info.qgroup_reserved = qgroup_released;
9904 	extent_info.insertions = 0;
9905 
9906 	path = btrfs_alloc_path();
9907 	if (!path) {
9908 		ret = -ENOMEM;
9909 		goto free_qgroup;
9910 	}
9911 
9912 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9913 				     file_offset + len - 1, &extent_info,
9914 				     &trans);
9915 	btrfs_free_path(path);
9916 	if (ret)
9917 		goto free_qgroup;
9918 	return trans;
9919 
9920 free_qgroup:
9921 	/*
9922 	 * We have released qgroup data range at the beginning of the function,
9923 	 * and normally qgroup_released bytes will be freed when committing
9924 	 * transaction.
9925 	 * But if we error out early, we have to free what we have released
9926 	 * or we leak qgroup data reservation.
9927 	 */
9928 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9929 			inode->root->root_key.objectid, qgroup_released,
9930 			BTRFS_QGROUP_RSV_DATA);
9931 	return ERR_PTR(ret);
9932 }
9933 
9934 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9935 				       u64 start, u64 num_bytes, u64 min_size,
9936 				       loff_t actual_len, u64 *alloc_hint,
9937 				       struct btrfs_trans_handle *trans)
9938 {
9939 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9940 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9941 	struct extent_map *em;
9942 	struct btrfs_root *root = BTRFS_I(inode)->root;
9943 	struct btrfs_key ins;
9944 	u64 cur_offset = start;
9945 	u64 clear_offset = start;
9946 	u64 i_size;
9947 	u64 cur_bytes;
9948 	u64 last_alloc = (u64)-1;
9949 	int ret = 0;
9950 	bool own_trans = true;
9951 	u64 end = start + num_bytes - 1;
9952 
9953 	if (trans)
9954 		own_trans = false;
9955 	while (num_bytes > 0) {
9956 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9957 		cur_bytes = max(cur_bytes, min_size);
9958 		/*
9959 		 * If we are severely fragmented we could end up with really
9960 		 * small allocations, so if the allocator is returning small
9961 		 * chunks lets make its job easier by only searching for those
9962 		 * sized chunks.
9963 		 */
9964 		cur_bytes = min(cur_bytes, last_alloc);
9965 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9966 				min_size, 0, *alloc_hint, &ins, 1, 0);
9967 		if (ret)
9968 			break;
9969 
9970 		/*
9971 		 * We've reserved this space, and thus converted it from
9972 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9973 		 * from here on out we will only need to clear our reservation
9974 		 * for the remaining unreserved area, so advance our
9975 		 * clear_offset by our extent size.
9976 		 */
9977 		clear_offset += ins.offset;
9978 
9979 		last_alloc = ins.offset;
9980 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9981 						    &ins, cur_offset);
9982 		/*
9983 		 * Now that we inserted the prealloc extent we can finally
9984 		 * decrement the number of reservations in the block group.
9985 		 * If we did it before, we could race with relocation and have
9986 		 * relocation miss the reserved extent, making it fail later.
9987 		 */
9988 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9989 		if (IS_ERR(trans)) {
9990 			ret = PTR_ERR(trans);
9991 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9992 						   ins.offset, 0);
9993 			break;
9994 		}
9995 
9996 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9997 					cur_offset + ins.offset -1, 0);
9998 
9999 		em = alloc_extent_map();
10000 		if (!em) {
10001 			btrfs_set_inode_full_sync(BTRFS_I(inode));
10002 			goto next;
10003 		}
10004 
10005 		em->start = cur_offset;
10006 		em->orig_start = cur_offset;
10007 		em->len = ins.offset;
10008 		em->block_start = ins.objectid;
10009 		em->block_len = ins.offset;
10010 		em->orig_block_len = ins.offset;
10011 		em->ram_bytes = ins.offset;
10012 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10013 		em->generation = trans->transid;
10014 
10015 		while (1) {
10016 			write_lock(&em_tree->lock);
10017 			ret = add_extent_mapping(em_tree, em, 1);
10018 			write_unlock(&em_tree->lock);
10019 			if (ret != -EEXIST)
10020 				break;
10021 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10022 						cur_offset + ins.offset - 1,
10023 						0);
10024 		}
10025 		free_extent_map(em);
10026 next:
10027 		num_bytes -= ins.offset;
10028 		cur_offset += ins.offset;
10029 		*alloc_hint = ins.objectid + ins.offset;
10030 
10031 		inode_inc_iversion(inode);
10032 		inode->i_ctime = current_time(inode);
10033 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10034 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10035 		    (actual_len > inode->i_size) &&
10036 		    (cur_offset > inode->i_size)) {
10037 			if (cur_offset > actual_len)
10038 				i_size = actual_len;
10039 			else
10040 				i_size = cur_offset;
10041 			i_size_write(inode, i_size);
10042 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10043 		}
10044 
10045 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10046 
10047 		if (ret) {
10048 			btrfs_abort_transaction(trans, ret);
10049 			if (own_trans)
10050 				btrfs_end_transaction(trans);
10051 			break;
10052 		}
10053 
10054 		if (own_trans) {
10055 			btrfs_end_transaction(trans);
10056 			trans = NULL;
10057 		}
10058 	}
10059 	if (clear_offset < end)
10060 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10061 			end - clear_offset + 1);
10062 	return ret;
10063 }
10064 
10065 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10066 			      u64 start, u64 num_bytes, u64 min_size,
10067 			      loff_t actual_len, u64 *alloc_hint)
10068 {
10069 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10070 					   min_size, actual_len, alloc_hint,
10071 					   NULL);
10072 }
10073 
10074 int btrfs_prealloc_file_range_trans(struct inode *inode,
10075 				    struct btrfs_trans_handle *trans, int mode,
10076 				    u64 start, u64 num_bytes, u64 min_size,
10077 				    loff_t actual_len, u64 *alloc_hint)
10078 {
10079 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10080 					   min_size, actual_len, alloc_hint, trans);
10081 }
10082 
10083 static int btrfs_permission(struct user_namespace *mnt_userns,
10084 			    struct inode *inode, int mask)
10085 {
10086 	struct btrfs_root *root = BTRFS_I(inode)->root;
10087 	umode_t mode = inode->i_mode;
10088 
10089 	if (mask & MAY_WRITE &&
10090 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10091 		if (btrfs_root_readonly(root))
10092 			return -EROFS;
10093 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10094 			return -EACCES;
10095 	}
10096 	return generic_permission(mnt_userns, inode, mask);
10097 }
10098 
10099 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10100 			 struct dentry *dentry, umode_t mode)
10101 {
10102 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10103 	struct btrfs_trans_handle *trans;
10104 	struct btrfs_root *root = BTRFS_I(dir)->root;
10105 	struct inode *inode;
10106 	struct btrfs_new_inode_args new_inode_args = {
10107 		.dir = dir,
10108 		.dentry = dentry,
10109 		.orphan = true,
10110 	};
10111 	unsigned int trans_num_items;
10112 	int ret;
10113 
10114 	inode = new_inode(dir->i_sb);
10115 	if (!inode)
10116 		return -ENOMEM;
10117 	inode_init_owner(mnt_userns, inode, dir, mode);
10118 	inode->i_fop = &btrfs_file_operations;
10119 	inode->i_op = &btrfs_file_inode_operations;
10120 	inode->i_mapping->a_ops = &btrfs_aops;
10121 
10122 	new_inode_args.inode = inode;
10123 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
10124 	if (ret)
10125 		goto out_inode;
10126 
10127 	trans = btrfs_start_transaction(root, trans_num_items);
10128 	if (IS_ERR(trans)) {
10129 		ret = PTR_ERR(trans);
10130 		goto out_new_inode_args;
10131 	}
10132 
10133 	ret = btrfs_create_new_inode(trans, &new_inode_args);
10134 
10135 	/*
10136 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
10137 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
10138 	 * 0, through:
10139 	 *
10140 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10141 	 */
10142 	set_nlink(inode, 1);
10143 
10144 	if (!ret) {
10145 		d_tmpfile(dentry, inode);
10146 		unlock_new_inode(inode);
10147 		mark_inode_dirty(inode);
10148 	}
10149 
10150 	btrfs_end_transaction(trans);
10151 	btrfs_btree_balance_dirty(fs_info);
10152 out_new_inode_args:
10153 	btrfs_new_inode_args_destroy(&new_inode_args);
10154 out_inode:
10155 	if (ret)
10156 		iput(inode);
10157 	return ret;
10158 }
10159 
10160 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10161 {
10162 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10163 	unsigned long index = start >> PAGE_SHIFT;
10164 	unsigned long end_index = end >> PAGE_SHIFT;
10165 	struct page *page;
10166 	u32 len;
10167 
10168 	ASSERT(end + 1 - start <= U32_MAX);
10169 	len = end + 1 - start;
10170 	while (index <= end_index) {
10171 		page = find_get_page(inode->vfs_inode.i_mapping, index);
10172 		ASSERT(page); /* Pages should be in the extent_io_tree */
10173 
10174 		btrfs_page_set_writeback(fs_info, page, start, len);
10175 		put_page(page);
10176 		index++;
10177 	}
10178 }
10179 
10180 static int btrfs_encoded_io_compression_from_extent(
10181 				struct btrfs_fs_info *fs_info,
10182 				int compress_type)
10183 {
10184 	switch (compress_type) {
10185 	case BTRFS_COMPRESS_NONE:
10186 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
10187 	case BTRFS_COMPRESS_ZLIB:
10188 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
10189 	case BTRFS_COMPRESS_LZO:
10190 		/*
10191 		 * The LZO format depends on the sector size. 64K is the maximum
10192 		 * sector size that we support.
10193 		 */
10194 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
10195 			return -EINVAL;
10196 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
10197 		       (fs_info->sectorsize_bits - 12);
10198 	case BTRFS_COMPRESS_ZSTD:
10199 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
10200 	default:
10201 		return -EUCLEAN;
10202 	}
10203 }
10204 
10205 static ssize_t btrfs_encoded_read_inline(
10206 				struct kiocb *iocb,
10207 				struct iov_iter *iter, u64 start,
10208 				u64 lockend,
10209 				struct extent_state **cached_state,
10210 				u64 extent_start, size_t count,
10211 				struct btrfs_ioctl_encoded_io_args *encoded,
10212 				bool *unlocked)
10213 {
10214 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10215 	struct btrfs_root *root = inode->root;
10216 	struct btrfs_fs_info *fs_info = root->fs_info;
10217 	struct extent_io_tree *io_tree = &inode->io_tree;
10218 	struct btrfs_path *path;
10219 	struct extent_buffer *leaf;
10220 	struct btrfs_file_extent_item *item;
10221 	u64 ram_bytes;
10222 	unsigned long ptr;
10223 	void *tmp;
10224 	ssize_t ret;
10225 
10226 	path = btrfs_alloc_path();
10227 	if (!path) {
10228 		ret = -ENOMEM;
10229 		goto out;
10230 	}
10231 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
10232 				       extent_start, 0);
10233 	if (ret) {
10234 		if (ret > 0) {
10235 			/* The extent item disappeared? */
10236 			ret = -EIO;
10237 		}
10238 		goto out;
10239 	}
10240 	leaf = path->nodes[0];
10241 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10242 
10243 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
10244 	ptr = btrfs_file_extent_inline_start(item);
10245 
10246 	encoded->len = min_t(u64, extent_start + ram_bytes,
10247 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10248 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
10249 				 btrfs_file_extent_compression(leaf, item));
10250 	if (ret < 0)
10251 		goto out;
10252 	encoded->compression = ret;
10253 	if (encoded->compression) {
10254 		size_t inline_size;
10255 
10256 		inline_size = btrfs_file_extent_inline_item_len(leaf,
10257 								path->slots[0]);
10258 		if (inline_size > count) {
10259 			ret = -ENOBUFS;
10260 			goto out;
10261 		}
10262 		count = inline_size;
10263 		encoded->unencoded_len = ram_bytes;
10264 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
10265 	} else {
10266 		count = min_t(u64, count, encoded->len);
10267 		encoded->len = count;
10268 		encoded->unencoded_len = count;
10269 		ptr += iocb->ki_pos - extent_start;
10270 	}
10271 
10272 	tmp = kmalloc(count, GFP_NOFS);
10273 	if (!tmp) {
10274 		ret = -ENOMEM;
10275 		goto out;
10276 	}
10277 	read_extent_buffer(leaf, tmp, ptr, count);
10278 	btrfs_release_path(path);
10279 	unlock_extent_cached(io_tree, start, lockend, cached_state);
10280 	btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10281 	*unlocked = true;
10282 
10283 	ret = copy_to_iter(tmp, count, iter);
10284 	if (ret != count)
10285 		ret = -EFAULT;
10286 	kfree(tmp);
10287 out:
10288 	btrfs_free_path(path);
10289 	return ret;
10290 }
10291 
10292 struct btrfs_encoded_read_private {
10293 	struct btrfs_inode *inode;
10294 	u64 file_offset;
10295 	wait_queue_head_t wait;
10296 	atomic_t pending;
10297 	blk_status_t status;
10298 	bool skip_csum;
10299 };
10300 
10301 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
10302 					    struct bio *bio, int mirror_num)
10303 {
10304 	struct btrfs_encoded_read_private *priv = bio->bi_private;
10305 	struct btrfs_bio *bbio = btrfs_bio(bio);
10306 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10307 	blk_status_t ret;
10308 
10309 	if (!priv->skip_csum) {
10310 		ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
10311 		if (ret)
10312 			return ret;
10313 	}
10314 
10315 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
10316 	if (ret) {
10317 		btrfs_bio_free_csum(bbio);
10318 		return ret;
10319 	}
10320 
10321 	atomic_inc(&priv->pending);
10322 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
10323 	if (ret) {
10324 		atomic_dec(&priv->pending);
10325 		btrfs_bio_free_csum(bbio);
10326 	}
10327 	return ret;
10328 }
10329 
10330 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
10331 {
10332 	const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
10333 	struct btrfs_encoded_read_private *priv = bbio->bio.bi_private;
10334 	struct btrfs_inode *inode = priv->inode;
10335 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10336 	u32 sectorsize = fs_info->sectorsize;
10337 	struct bio_vec *bvec;
10338 	struct bvec_iter_all iter_all;
10339 	u64 start = priv->file_offset;
10340 	u32 bio_offset = 0;
10341 
10342 	if (priv->skip_csum || !uptodate)
10343 		return bbio->bio.bi_status;
10344 
10345 	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
10346 		unsigned int i, nr_sectors, pgoff;
10347 
10348 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
10349 		pgoff = bvec->bv_offset;
10350 		for (i = 0; i < nr_sectors; i++) {
10351 			ASSERT(pgoff < PAGE_SIZE);
10352 			if (check_data_csum(&inode->vfs_inode, bbio, bio_offset,
10353 					    bvec->bv_page, pgoff, start))
10354 				return BLK_STS_IOERR;
10355 			start += sectorsize;
10356 			bio_offset += sectorsize;
10357 			pgoff += sectorsize;
10358 		}
10359 	}
10360 	return BLK_STS_OK;
10361 }
10362 
10363 static void btrfs_encoded_read_endio(struct bio *bio)
10364 {
10365 	struct btrfs_encoded_read_private *priv = bio->bi_private;
10366 	struct btrfs_bio *bbio = btrfs_bio(bio);
10367 	blk_status_t status;
10368 
10369 	status = btrfs_encoded_read_verify_csum(bbio);
10370 	if (status) {
10371 		/*
10372 		 * The memory barrier implied by the atomic_dec_return() here
10373 		 * pairs with the memory barrier implied by the
10374 		 * atomic_dec_return() or io_wait_event() in
10375 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10376 		 * write is observed before the load of status in
10377 		 * btrfs_encoded_read_regular_fill_pages().
10378 		 */
10379 		WRITE_ONCE(priv->status, status);
10380 	}
10381 	if (!atomic_dec_return(&priv->pending))
10382 		wake_up(&priv->wait);
10383 	btrfs_bio_free_csum(bbio);
10384 	bio_put(bio);
10385 }
10386 
10387 static int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10388 						 u64 file_offset,
10389 						 u64 disk_bytenr,
10390 						 u64 disk_io_size,
10391 						 struct page **pages)
10392 {
10393 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10394 	struct btrfs_encoded_read_private priv = {
10395 		.inode = inode,
10396 		.file_offset = file_offset,
10397 		.pending = ATOMIC_INIT(1),
10398 		.skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
10399 	};
10400 	unsigned long i = 0;
10401 	u64 cur = 0;
10402 	int ret;
10403 
10404 	init_waitqueue_head(&priv.wait);
10405 	/*
10406 	 * Submit bios for the extent, splitting due to bio or stripe limits as
10407 	 * necessary.
10408 	 */
10409 	while (cur < disk_io_size) {
10410 		struct extent_map *em;
10411 		struct btrfs_io_geometry geom;
10412 		struct bio *bio = NULL;
10413 		u64 remaining;
10414 
10415 		em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
10416 					 disk_io_size - cur);
10417 		if (IS_ERR(em)) {
10418 			ret = PTR_ERR(em);
10419 		} else {
10420 			ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
10421 						    disk_bytenr + cur, &geom);
10422 			free_extent_map(em);
10423 		}
10424 		if (ret) {
10425 			WRITE_ONCE(priv.status, errno_to_blk_status(ret));
10426 			break;
10427 		}
10428 		remaining = min(geom.len, disk_io_size - cur);
10429 		while (bio || remaining) {
10430 			size_t bytes = min_t(u64, remaining, PAGE_SIZE);
10431 
10432 			if (!bio) {
10433 				bio = btrfs_bio_alloc(BIO_MAX_VECS);
10434 				bio->bi_iter.bi_sector =
10435 					(disk_bytenr + cur) >> SECTOR_SHIFT;
10436 				bio->bi_end_io = btrfs_encoded_read_endio;
10437 				bio->bi_private = &priv;
10438 				bio->bi_opf = REQ_OP_READ;
10439 			}
10440 
10441 			if (!bytes ||
10442 			    bio_add_page(bio, pages[i], bytes, 0) < bytes) {
10443 				blk_status_t status;
10444 
10445 				status = submit_encoded_read_bio(inode, bio, 0);
10446 				if (status) {
10447 					WRITE_ONCE(priv.status, status);
10448 					bio_put(bio);
10449 					goto out;
10450 				}
10451 				bio = NULL;
10452 				continue;
10453 			}
10454 
10455 			i++;
10456 			cur += bytes;
10457 			remaining -= bytes;
10458 		}
10459 	}
10460 
10461 out:
10462 	if (atomic_dec_return(&priv.pending))
10463 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10464 	/* See btrfs_encoded_read_endio() for ordering. */
10465 	return blk_status_to_errno(READ_ONCE(priv.status));
10466 }
10467 
10468 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10469 					  struct iov_iter *iter,
10470 					  u64 start, u64 lockend,
10471 					  struct extent_state **cached_state,
10472 					  u64 disk_bytenr, u64 disk_io_size,
10473 					  size_t count, bool compressed,
10474 					  bool *unlocked)
10475 {
10476 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10477 	struct extent_io_tree *io_tree = &inode->io_tree;
10478 	struct page **pages;
10479 	unsigned long nr_pages, i;
10480 	u64 cur;
10481 	size_t page_offset;
10482 	ssize_t ret;
10483 
10484 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10485 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10486 	if (!pages)
10487 		return -ENOMEM;
10488 	ret = btrfs_alloc_page_array(nr_pages, pages);
10489 	if (ret) {
10490 		ret = -ENOMEM;
10491 		goto out;
10492 		}
10493 
10494 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10495 						    disk_io_size, pages);
10496 	if (ret)
10497 		goto out;
10498 
10499 	unlock_extent_cached(io_tree, start, lockend, cached_state);
10500 	btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10501 	*unlocked = true;
10502 
10503 	if (compressed) {
10504 		i = 0;
10505 		page_offset = 0;
10506 	} else {
10507 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10508 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10509 	}
10510 	cur = 0;
10511 	while (cur < count) {
10512 		size_t bytes = min_t(size_t, count - cur,
10513 				     PAGE_SIZE - page_offset);
10514 
10515 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10516 				      iter) != bytes) {
10517 			ret = -EFAULT;
10518 			goto out;
10519 		}
10520 		i++;
10521 		cur += bytes;
10522 		page_offset = 0;
10523 	}
10524 	ret = count;
10525 out:
10526 	for (i = 0; i < nr_pages; i++) {
10527 		if (pages[i])
10528 			__free_page(pages[i]);
10529 	}
10530 	kfree(pages);
10531 	return ret;
10532 }
10533 
10534 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10535 			   struct btrfs_ioctl_encoded_io_args *encoded)
10536 {
10537 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10538 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10539 	struct extent_io_tree *io_tree = &inode->io_tree;
10540 	ssize_t ret;
10541 	size_t count = iov_iter_count(iter);
10542 	u64 start, lockend, disk_bytenr, disk_io_size;
10543 	struct extent_state *cached_state = NULL;
10544 	struct extent_map *em;
10545 	bool unlocked = false;
10546 
10547 	file_accessed(iocb->ki_filp);
10548 
10549 	btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10550 
10551 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10552 		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10553 		return 0;
10554 	}
10555 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10556 	/*
10557 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10558 	 * it's compressed we know that it won't be longer than this.
10559 	 */
10560 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10561 
10562 	for (;;) {
10563 		struct btrfs_ordered_extent *ordered;
10564 
10565 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10566 					       lockend - start + 1);
10567 		if (ret)
10568 			goto out_unlock_inode;
10569 		lock_extent_bits(io_tree, start, lockend, &cached_state);
10570 		ordered = btrfs_lookup_ordered_range(inode, start,
10571 						     lockend - start + 1);
10572 		if (!ordered)
10573 			break;
10574 		btrfs_put_ordered_extent(ordered);
10575 		unlock_extent_cached(io_tree, start, lockend, &cached_state);
10576 		cond_resched();
10577 	}
10578 
10579 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10580 	if (IS_ERR(em)) {
10581 		ret = PTR_ERR(em);
10582 		goto out_unlock_extent;
10583 	}
10584 
10585 	if (em->block_start == EXTENT_MAP_INLINE) {
10586 		u64 extent_start = em->start;
10587 
10588 		/*
10589 		 * For inline extents we get everything we need out of the
10590 		 * extent item.
10591 		 */
10592 		free_extent_map(em);
10593 		em = NULL;
10594 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10595 						&cached_state, extent_start,
10596 						count, encoded, &unlocked);
10597 		goto out;
10598 	}
10599 
10600 	/*
10601 	 * We only want to return up to EOF even if the extent extends beyond
10602 	 * that.
10603 	 */
10604 	encoded->len = min_t(u64, extent_map_end(em),
10605 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10606 	if (em->block_start == EXTENT_MAP_HOLE ||
10607 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10608 		disk_bytenr = EXTENT_MAP_HOLE;
10609 		count = min_t(u64, count, encoded->len);
10610 		encoded->len = count;
10611 		encoded->unencoded_len = count;
10612 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10613 		disk_bytenr = em->block_start;
10614 		/*
10615 		 * Bail if the buffer isn't large enough to return the whole
10616 		 * compressed extent.
10617 		 */
10618 		if (em->block_len > count) {
10619 			ret = -ENOBUFS;
10620 			goto out_em;
10621 		}
10622 		disk_io_size = count = em->block_len;
10623 		encoded->unencoded_len = em->ram_bytes;
10624 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10625 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10626 							     em->compress_type);
10627 		if (ret < 0)
10628 			goto out_em;
10629 		encoded->compression = ret;
10630 	} else {
10631 		disk_bytenr = em->block_start + (start - em->start);
10632 		if (encoded->len > count)
10633 			encoded->len = count;
10634 		/*
10635 		 * Don't read beyond what we locked. This also limits the page
10636 		 * allocations that we'll do.
10637 		 */
10638 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10639 		count = start + disk_io_size - iocb->ki_pos;
10640 		encoded->len = count;
10641 		encoded->unencoded_len = count;
10642 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10643 	}
10644 	free_extent_map(em);
10645 	em = NULL;
10646 
10647 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10648 		unlock_extent_cached(io_tree, start, lockend, &cached_state);
10649 		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10650 		unlocked = true;
10651 		ret = iov_iter_zero(count, iter);
10652 		if (ret != count)
10653 			ret = -EFAULT;
10654 	} else {
10655 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10656 						 &cached_state, disk_bytenr,
10657 						 disk_io_size, count,
10658 						 encoded->compression,
10659 						 &unlocked);
10660 	}
10661 
10662 out:
10663 	if (ret >= 0)
10664 		iocb->ki_pos += encoded->len;
10665 out_em:
10666 	free_extent_map(em);
10667 out_unlock_extent:
10668 	if (!unlocked)
10669 		unlock_extent_cached(io_tree, start, lockend, &cached_state);
10670 out_unlock_inode:
10671 	if (!unlocked)
10672 		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10673 	return ret;
10674 }
10675 
10676 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10677 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10678 {
10679 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10680 	struct btrfs_root *root = inode->root;
10681 	struct btrfs_fs_info *fs_info = root->fs_info;
10682 	struct extent_io_tree *io_tree = &inode->io_tree;
10683 	struct extent_changeset *data_reserved = NULL;
10684 	struct extent_state *cached_state = NULL;
10685 	int compression;
10686 	size_t orig_count;
10687 	u64 start, end;
10688 	u64 num_bytes, ram_bytes, disk_num_bytes;
10689 	unsigned long nr_pages, i;
10690 	struct page **pages;
10691 	struct btrfs_key ins;
10692 	bool extent_reserved = false;
10693 	struct extent_map *em;
10694 	ssize_t ret;
10695 
10696 	switch (encoded->compression) {
10697 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10698 		compression = BTRFS_COMPRESS_ZLIB;
10699 		break;
10700 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10701 		compression = BTRFS_COMPRESS_ZSTD;
10702 		break;
10703 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10704 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10705 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10706 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10707 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10708 		/* The sector size must match for LZO. */
10709 		if (encoded->compression -
10710 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10711 		    fs_info->sectorsize_bits)
10712 			return -EINVAL;
10713 		compression = BTRFS_COMPRESS_LZO;
10714 		break;
10715 	default:
10716 		return -EINVAL;
10717 	}
10718 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10719 		return -EINVAL;
10720 
10721 	orig_count = iov_iter_count(from);
10722 
10723 	/* The extent size must be sane. */
10724 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10725 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10726 		return -EINVAL;
10727 
10728 	/*
10729 	 * The compressed data must be smaller than the decompressed data.
10730 	 *
10731 	 * It's of course possible for data to compress to larger or the same
10732 	 * size, but the buffered I/O path falls back to no compression for such
10733 	 * data, and we don't want to break any assumptions by creating these
10734 	 * extents.
10735 	 *
10736 	 * Note that this is less strict than the current check we have that the
10737 	 * compressed data must be at least one sector smaller than the
10738 	 * decompressed data. We only want to enforce the weaker requirement
10739 	 * from old kernels that it is at least one byte smaller.
10740 	 */
10741 	if (orig_count >= encoded->unencoded_len)
10742 		return -EINVAL;
10743 
10744 	/* The extent must start on a sector boundary. */
10745 	start = iocb->ki_pos;
10746 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10747 		return -EINVAL;
10748 
10749 	/*
10750 	 * The extent must end on a sector boundary. However, we allow a write
10751 	 * which ends at or extends i_size to have an unaligned length; we round
10752 	 * up the extent size and set i_size to the unaligned end.
10753 	 */
10754 	if (start + encoded->len < inode->vfs_inode.i_size &&
10755 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10756 		return -EINVAL;
10757 
10758 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10759 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10760 		return -EINVAL;
10761 
10762 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10763 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10764 	end = start + num_bytes - 1;
10765 
10766 	/*
10767 	 * If the extent cannot be inline, the compressed data on disk must be
10768 	 * sector-aligned. For convenience, we extend it with zeroes if it
10769 	 * isn't.
10770 	 */
10771 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10772 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10773 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10774 	if (!pages)
10775 		return -ENOMEM;
10776 	for (i = 0; i < nr_pages; i++) {
10777 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10778 		char *kaddr;
10779 
10780 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10781 		if (!pages[i]) {
10782 			ret = -ENOMEM;
10783 			goto out_pages;
10784 		}
10785 		kaddr = kmap(pages[i]);
10786 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10787 			kunmap(pages[i]);
10788 			ret = -EFAULT;
10789 			goto out_pages;
10790 		}
10791 		if (bytes < PAGE_SIZE)
10792 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10793 		kunmap(pages[i]);
10794 	}
10795 
10796 	for (;;) {
10797 		struct btrfs_ordered_extent *ordered;
10798 
10799 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10800 		if (ret)
10801 			goto out_pages;
10802 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10803 						    start >> PAGE_SHIFT,
10804 						    end >> PAGE_SHIFT);
10805 		if (ret)
10806 			goto out_pages;
10807 		lock_extent_bits(io_tree, start, end, &cached_state);
10808 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10809 		if (!ordered &&
10810 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10811 			break;
10812 		if (ordered)
10813 			btrfs_put_ordered_extent(ordered);
10814 		unlock_extent_cached(io_tree, start, end, &cached_state);
10815 		cond_resched();
10816 	}
10817 
10818 	/*
10819 	 * We don't use the higher-level delalloc space functions because our
10820 	 * num_bytes and disk_num_bytes are different.
10821 	 */
10822 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10823 	if (ret)
10824 		goto out_unlock;
10825 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10826 	if (ret)
10827 		goto out_free_data_space;
10828 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10829 					      false);
10830 	if (ret)
10831 		goto out_qgroup_free_data;
10832 
10833 	/* Try an inline extent first. */
10834 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10835 	    encoded->unencoded_offset == 0) {
10836 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10837 					    compression, pages, true);
10838 		if (ret <= 0) {
10839 			if (ret == 0)
10840 				ret = orig_count;
10841 			goto out_delalloc_release;
10842 		}
10843 	}
10844 
10845 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10846 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10847 	if (ret)
10848 		goto out_delalloc_release;
10849 	extent_reserved = true;
10850 
10851 	em = create_io_em(inode, start, num_bytes,
10852 			  start - encoded->unencoded_offset, ins.objectid,
10853 			  ins.offset, ins.offset, ram_bytes, compression,
10854 			  BTRFS_ORDERED_COMPRESSED);
10855 	if (IS_ERR(em)) {
10856 		ret = PTR_ERR(em);
10857 		goto out_free_reserved;
10858 	}
10859 	free_extent_map(em);
10860 
10861 	ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
10862 				       ins.objectid, ins.offset,
10863 				       encoded->unencoded_offset,
10864 				       (1 << BTRFS_ORDERED_ENCODED) |
10865 				       (1 << BTRFS_ORDERED_COMPRESSED),
10866 				       compression);
10867 	if (ret) {
10868 		btrfs_drop_extent_cache(inode, start, end, 0);
10869 		goto out_free_reserved;
10870 	}
10871 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10872 
10873 	if (start + encoded->len > inode->vfs_inode.i_size)
10874 		i_size_write(&inode->vfs_inode, start + encoded->len);
10875 
10876 	unlock_extent_cached(io_tree, start, end, &cached_state);
10877 
10878 	btrfs_delalloc_release_extents(inode, num_bytes);
10879 
10880 	if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
10881 					  ins.offset, pages, nr_pages, 0, NULL,
10882 					  false)) {
10883 		btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
10884 		ret = -EIO;
10885 		goto out_pages;
10886 	}
10887 	ret = orig_count;
10888 	goto out;
10889 
10890 out_free_reserved:
10891 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10892 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10893 out_delalloc_release:
10894 	btrfs_delalloc_release_extents(inode, num_bytes);
10895 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10896 out_qgroup_free_data:
10897 	if (ret < 0)
10898 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10899 out_free_data_space:
10900 	/*
10901 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10902 	 * bytes_may_use.
10903 	 */
10904 	if (!extent_reserved)
10905 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10906 out_unlock:
10907 	unlock_extent_cached(io_tree, start, end, &cached_state);
10908 out_pages:
10909 	for (i = 0; i < nr_pages; i++) {
10910 		if (pages[i])
10911 			__free_page(pages[i]);
10912 	}
10913 	kvfree(pages);
10914 out:
10915 	if (ret >= 0)
10916 		iocb->ki_pos += encoded->len;
10917 	return ret;
10918 }
10919 
10920 #ifdef CONFIG_SWAP
10921 /*
10922  * Add an entry indicating a block group or device which is pinned by a
10923  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10924  * negative errno on failure.
10925  */
10926 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10927 				  bool is_block_group)
10928 {
10929 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10930 	struct btrfs_swapfile_pin *sp, *entry;
10931 	struct rb_node **p;
10932 	struct rb_node *parent = NULL;
10933 
10934 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10935 	if (!sp)
10936 		return -ENOMEM;
10937 	sp->ptr = ptr;
10938 	sp->inode = inode;
10939 	sp->is_block_group = is_block_group;
10940 	sp->bg_extent_count = 1;
10941 
10942 	spin_lock(&fs_info->swapfile_pins_lock);
10943 	p = &fs_info->swapfile_pins.rb_node;
10944 	while (*p) {
10945 		parent = *p;
10946 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10947 		if (sp->ptr < entry->ptr ||
10948 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10949 			p = &(*p)->rb_left;
10950 		} else if (sp->ptr > entry->ptr ||
10951 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10952 			p = &(*p)->rb_right;
10953 		} else {
10954 			if (is_block_group)
10955 				entry->bg_extent_count++;
10956 			spin_unlock(&fs_info->swapfile_pins_lock);
10957 			kfree(sp);
10958 			return 1;
10959 		}
10960 	}
10961 	rb_link_node(&sp->node, parent, p);
10962 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10963 	spin_unlock(&fs_info->swapfile_pins_lock);
10964 	return 0;
10965 }
10966 
10967 /* Free all of the entries pinned by this swapfile. */
10968 static void btrfs_free_swapfile_pins(struct inode *inode)
10969 {
10970 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10971 	struct btrfs_swapfile_pin *sp;
10972 	struct rb_node *node, *next;
10973 
10974 	spin_lock(&fs_info->swapfile_pins_lock);
10975 	node = rb_first(&fs_info->swapfile_pins);
10976 	while (node) {
10977 		next = rb_next(node);
10978 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10979 		if (sp->inode == inode) {
10980 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10981 			if (sp->is_block_group) {
10982 				btrfs_dec_block_group_swap_extents(sp->ptr,
10983 							   sp->bg_extent_count);
10984 				btrfs_put_block_group(sp->ptr);
10985 			}
10986 			kfree(sp);
10987 		}
10988 		node = next;
10989 	}
10990 	spin_unlock(&fs_info->swapfile_pins_lock);
10991 }
10992 
10993 struct btrfs_swap_info {
10994 	u64 start;
10995 	u64 block_start;
10996 	u64 block_len;
10997 	u64 lowest_ppage;
10998 	u64 highest_ppage;
10999 	unsigned long nr_pages;
11000 	int nr_extents;
11001 };
11002 
11003 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
11004 				 struct btrfs_swap_info *bsi)
11005 {
11006 	unsigned long nr_pages;
11007 	unsigned long max_pages;
11008 	u64 first_ppage, first_ppage_reported, next_ppage;
11009 	int ret;
11010 
11011 	/*
11012 	 * Our swapfile may have had its size extended after the swap header was
11013 	 * written. In that case activating the swapfile should not go beyond
11014 	 * the max size set in the swap header.
11015 	 */
11016 	if (bsi->nr_pages >= sis->max)
11017 		return 0;
11018 
11019 	max_pages = sis->max - bsi->nr_pages;
11020 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
11021 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
11022 				PAGE_SIZE) >> PAGE_SHIFT;
11023 
11024 	if (first_ppage >= next_ppage)
11025 		return 0;
11026 	nr_pages = next_ppage - first_ppage;
11027 	nr_pages = min(nr_pages, max_pages);
11028 
11029 	first_ppage_reported = first_ppage;
11030 	if (bsi->start == 0)
11031 		first_ppage_reported++;
11032 	if (bsi->lowest_ppage > first_ppage_reported)
11033 		bsi->lowest_ppage = first_ppage_reported;
11034 	if (bsi->highest_ppage < (next_ppage - 1))
11035 		bsi->highest_ppage = next_ppage - 1;
11036 
11037 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
11038 	if (ret < 0)
11039 		return ret;
11040 	bsi->nr_extents += ret;
11041 	bsi->nr_pages += nr_pages;
11042 	return 0;
11043 }
11044 
11045 static void btrfs_swap_deactivate(struct file *file)
11046 {
11047 	struct inode *inode = file_inode(file);
11048 
11049 	btrfs_free_swapfile_pins(inode);
11050 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
11051 }
11052 
11053 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11054 			       sector_t *span)
11055 {
11056 	struct inode *inode = file_inode(file);
11057 	struct btrfs_root *root = BTRFS_I(inode)->root;
11058 	struct btrfs_fs_info *fs_info = root->fs_info;
11059 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
11060 	struct extent_state *cached_state = NULL;
11061 	struct extent_map *em = NULL;
11062 	struct btrfs_device *device = NULL;
11063 	struct btrfs_swap_info bsi = {
11064 		.lowest_ppage = (sector_t)-1ULL,
11065 	};
11066 	int ret = 0;
11067 	u64 isize;
11068 	u64 start;
11069 
11070 	/*
11071 	 * If the swap file was just created, make sure delalloc is done. If the
11072 	 * file changes again after this, the user is doing something stupid and
11073 	 * we don't really care.
11074 	 */
11075 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
11076 	if (ret)
11077 		return ret;
11078 
11079 	/*
11080 	 * The inode is locked, so these flags won't change after we check them.
11081 	 */
11082 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
11083 		btrfs_warn(fs_info, "swapfile must not be compressed");
11084 		return -EINVAL;
11085 	}
11086 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
11087 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
11088 		return -EINVAL;
11089 	}
11090 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
11091 		btrfs_warn(fs_info, "swapfile must not be checksummed");
11092 		return -EINVAL;
11093 	}
11094 
11095 	/*
11096 	 * Balance or device remove/replace/resize can move stuff around from
11097 	 * under us. The exclop protection makes sure they aren't running/won't
11098 	 * run concurrently while we are mapping the swap extents, and
11099 	 * fs_info->swapfile_pins prevents them from running while the swap
11100 	 * file is active and moving the extents. Note that this also prevents
11101 	 * a concurrent device add which isn't actually necessary, but it's not
11102 	 * really worth the trouble to allow it.
11103 	 */
11104 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
11105 		btrfs_warn(fs_info,
11106 	   "cannot activate swapfile while exclusive operation is running");
11107 		return -EBUSY;
11108 	}
11109 
11110 	/*
11111 	 * Prevent snapshot creation while we are activating the swap file.
11112 	 * We do not want to race with snapshot creation. If snapshot creation
11113 	 * already started before we bumped nr_swapfiles from 0 to 1 and
11114 	 * completes before the first write into the swap file after it is
11115 	 * activated, than that write would fallback to COW.
11116 	 */
11117 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
11118 		btrfs_exclop_finish(fs_info);
11119 		btrfs_warn(fs_info,
11120 	   "cannot activate swapfile because snapshot creation is in progress");
11121 		return -EINVAL;
11122 	}
11123 	/*
11124 	 * Snapshots can create extents which require COW even if NODATACOW is
11125 	 * set. We use this counter to prevent snapshots. We must increment it
11126 	 * before walking the extents because we don't want a concurrent
11127 	 * snapshot to run after we've already checked the extents.
11128 	 *
11129 	 * It is possible that subvolume is marked for deletion but still not
11130 	 * removed yet. To prevent this race, we check the root status before
11131 	 * activating the swapfile.
11132 	 */
11133 	spin_lock(&root->root_item_lock);
11134 	if (btrfs_root_dead(root)) {
11135 		spin_unlock(&root->root_item_lock);
11136 
11137 		btrfs_exclop_finish(fs_info);
11138 		btrfs_warn(fs_info,
11139 		"cannot activate swapfile because subvolume %llu is being deleted",
11140 			root->root_key.objectid);
11141 		return -EPERM;
11142 	}
11143 	atomic_inc(&root->nr_swapfiles);
11144 	spin_unlock(&root->root_item_lock);
11145 
11146 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
11147 
11148 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
11149 	start = 0;
11150 	while (start < isize) {
11151 		u64 logical_block_start, physical_block_start;
11152 		struct btrfs_block_group *bg;
11153 		u64 len = isize - start;
11154 
11155 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
11156 		if (IS_ERR(em)) {
11157 			ret = PTR_ERR(em);
11158 			goto out;
11159 		}
11160 
11161 		if (em->block_start == EXTENT_MAP_HOLE) {
11162 			btrfs_warn(fs_info, "swapfile must not have holes");
11163 			ret = -EINVAL;
11164 			goto out;
11165 		}
11166 		if (em->block_start == EXTENT_MAP_INLINE) {
11167 			/*
11168 			 * It's unlikely we'll ever actually find ourselves
11169 			 * here, as a file small enough to fit inline won't be
11170 			 * big enough to store more than the swap header, but in
11171 			 * case something changes in the future, let's catch it
11172 			 * here rather than later.
11173 			 */
11174 			btrfs_warn(fs_info, "swapfile must not be inline");
11175 			ret = -EINVAL;
11176 			goto out;
11177 		}
11178 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
11179 			btrfs_warn(fs_info, "swapfile must not be compressed");
11180 			ret = -EINVAL;
11181 			goto out;
11182 		}
11183 
11184 		logical_block_start = em->block_start + (start - em->start);
11185 		len = min(len, em->len - (start - em->start));
11186 		free_extent_map(em);
11187 		em = NULL;
11188 
11189 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
11190 		if (ret < 0) {
11191 			goto out;
11192 		} else if (ret) {
11193 			ret = 0;
11194 		} else {
11195 			btrfs_warn(fs_info,
11196 				   "swapfile must not be copy-on-write");
11197 			ret = -EINVAL;
11198 			goto out;
11199 		}
11200 
11201 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11202 		if (IS_ERR(em)) {
11203 			ret = PTR_ERR(em);
11204 			goto out;
11205 		}
11206 
11207 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11208 			btrfs_warn(fs_info,
11209 				   "swapfile must have single data profile");
11210 			ret = -EINVAL;
11211 			goto out;
11212 		}
11213 
11214 		if (device == NULL) {
11215 			device = em->map_lookup->stripes[0].dev;
11216 			ret = btrfs_add_swapfile_pin(inode, device, false);
11217 			if (ret == 1)
11218 				ret = 0;
11219 			else if (ret)
11220 				goto out;
11221 		} else if (device != em->map_lookup->stripes[0].dev) {
11222 			btrfs_warn(fs_info, "swapfile must be on one device");
11223 			ret = -EINVAL;
11224 			goto out;
11225 		}
11226 
11227 		physical_block_start = (em->map_lookup->stripes[0].physical +
11228 					(logical_block_start - em->start));
11229 		len = min(len, em->len - (logical_block_start - em->start));
11230 		free_extent_map(em);
11231 		em = NULL;
11232 
11233 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11234 		if (!bg) {
11235 			btrfs_warn(fs_info,
11236 			   "could not find block group containing swapfile");
11237 			ret = -EINVAL;
11238 			goto out;
11239 		}
11240 
11241 		if (!btrfs_inc_block_group_swap_extents(bg)) {
11242 			btrfs_warn(fs_info,
11243 			   "block group for swapfile at %llu is read-only%s",
11244 			   bg->start,
11245 			   atomic_read(&fs_info->scrubs_running) ?
11246 				       " (scrub running)" : "");
11247 			btrfs_put_block_group(bg);
11248 			ret = -EINVAL;
11249 			goto out;
11250 		}
11251 
11252 		ret = btrfs_add_swapfile_pin(inode, bg, true);
11253 		if (ret) {
11254 			btrfs_put_block_group(bg);
11255 			if (ret == 1)
11256 				ret = 0;
11257 			else
11258 				goto out;
11259 		}
11260 
11261 		if (bsi.block_len &&
11262 		    bsi.block_start + bsi.block_len == physical_block_start) {
11263 			bsi.block_len += len;
11264 		} else {
11265 			if (bsi.block_len) {
11266 				ret = btrfs_add_swap_extent(sis, &bsi);
11267 				if (ret)
11268 					goto out;
11269 			}
11270 			bsi.start = start;
11271 			bsi.block_start = physical_block_start;
11272 			bsi.block_len = len;
11273 		}
11274 
11275 		start += len;
11276 	}
11277 
11278 	if (bsi.block_len)
11279 		ret = btrfs_add_swap_extent(sis, &bsi);
11280 
11281 out:
11282 	if (!IS_ERR_OR_NULL(em))
11283 		free_extent_map(em);
11284 
11285 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
11286 
11287 	if (ret)
11288 		btrfs_swap_deactivate(file);
11289 
11290 	btrfs_drew_write_unlock(&root->snapshot_lock);
11291 
11292 	btrfs_exclop_finish(fs_info);
11293 
11294 	if (ret)
11295 		return ret;
11296 
11297 	if (device)
11298 		sis->bdev = device->bdev;
11299 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11300 	sis->max = bsi.nr_pages;
11301 	sis->pages = bsi.nr_pages - 1;
11302 	sis->highest_bit = bsi.nr_pages - 1;
11303 	return bsi.nr_extents;
11304 }
11305 #else
11306 static void btrfs_swap_deactivate(struct file *file)
11307 {
11308 }
11309 
11310 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11311 			       sector_t *span)
11312 {
11313 	return -EOPNOTSUPP;
11314 }
11315 #endif
11316 
11317 /*
11318  * Update the number of bytes used in the VFS' inode. When we replace extents in
11319  * a range (clone, dedupe, fallocate's zero range), we must update the number of
11320  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
11321  * always get a correct value.
11322  */
11323 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
11324 			      const u64 add_bytes,
11325 			      const u64 del_bytes)
11326 {
11327 	if (add_bytes == del_bytes)
11328 		return;
11329 
11330 	spin_lock(&inode->lock);
11331 	if (del_bytes > 0)
11332 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
11333 	if (add_bytes > 0)
11334 		inode_add_bytes(&inode->vfs_inode, add_bytes);
11335 	spin_unlock(&inode->lock);
11336 }
11337 
11338 /**
11339  * Verify that there are no ordered extents for a given file range.
11340  *
11341  * @inode:   The target inode.
11342  * @start:   Start offset of the file range, should be sector size aligned.
11343  * @end:     End offset (inclusive) of the file range, its value +1 should be
11344  *           sector size aligned.
11345  *
11346  * This should typically be used for cases where we locked an inode's VFS lock in
11347  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
11348  * we have flushed all delalloc in the range, we have waited for all ordered
11349  * extents in the range to complete and finally we have locked the file range in
11350  * the inode's io_tree.
11351  */
11352 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
11353 {
11354 	struct btrfs_root *root = inode->root;
11355 	struct btrfs_ordered_extent *ordered;
11356 
11357 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
11358 		return;
11359 
11360 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
11361 	if (ordered) {
11362 		btrfs_err(root->fs_info,
11363 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
11364 			  start, end, btrfs_ino(inode), root->root_key.objectid,
11365 			  ordered->file_offset,
11366 			  ordered->file_offset + ordered->num_bytes - 1);
11367 		btrfs_put_ordered_extent(ordered);
11368 	}
11369 
11370 	ASSERT(ordered == NULL);
11371 }
11372 
11373 static const struct inode_operations btrfs_dir_inode_operations = {
11374 	.getattr	= btrfs_getattr,
11375 	.lookup		= btrfs_lookup,
11376 	.create		= btrfs_create,
11377 	.unlink		= btrfs_unlink,
11378 	.link		= btrfs_link,
11379 	.mkdir		= btrfs_mkdir,
11380 	.rmdir		= btrfs_rmdir,
11381 	.rename		= btrfs_rename2,
11382 	.symlink	= btrfs_symlink,
11383 	.setattr	= btrfs_setattr,
11384 	.mknod		= btrfs_mknod,
11385 	.listxattr	= btrfs_listxattr,
11386 	.permission	= btrfs_permission,
11387 	.get_acl	= btrfs_get_acl,
11388 	.set_acl	= btrfs_set_acl,
11389 	.update_time	= btrfs_update_time,
11390 	.tmpfile        = btrfs_tmpfile,
11391 	.fileattr_get	= btrfs_fileattr_get,
11392 	.fileattr_set	= btrfs_fileattr_set,
11393 };
11394 
11395 static const struct file_operations btrfs_dir_file_operations = {
11396 	.llseek		= generic_file_llseek,
11397 	.read		= generic_read_dir,
11398 	.iterate_shared	= btrfs_real_readdir,
11399 	.open		= btrfs_opendir,
11400 	.unlocked_ioctl	= btrfs_ioctl,
11401 #ifdef CONFIG_COMPAT
11402 	.compat_ioctl	= btrfs_compat_ioctl,
11403 #endif
11404 	.release        = btrfs_release_file,
11405 	.fsync		= btrfs_sync_file,
11406 };
11407 
11408 /*
11409  * btrfs doesn't support the bmap operation because swapfiles
11410  * use bmap to make a mapping of extents in the file.  They assume
11411  * these extents won't change over the life of the file and they
11412  * use the bmap result to do IO directly to the drive.
11413  *
11414  * the btrfs bmap call would return logical addresses that aren't
11415  * suitable for IO and they also will change frequently as COW
11416  * operations happen.  So, swapfile + btrfs == corruption.
11417  *
11418  * For now we're avoiding this by dropping bmap.
11419  */
11420 static const struct address_space_operations btrfs_aops = {
11421 	.read_folio	= btrfs_read_folio,
11422 	.writepage	= btrfs_writepage,
11423 	.writepages	= btrfs_writepages,
11424 	.readahead	= btrfs_readahead,
11425 	.direct_IO	= noop_direct_IO,
11426 	.invalidate_folio = btrfs_invalidate_folio,
11427 	.release_folio	= btrfs_release_folio,
11428 #ifdef CONFIG_MIGRATION
11429 	.migratepage	= btrfs_migratepage,
11430 #endif
11431 	.dirty_folio	= filemap_dirty_folio,
11432 	.error_remove_page = generic_error_remove_page,
11433 	.swap_activate	= btrfs_swap_activate,
11434 	.swap_deactivate = btrfs_swap_deactivate,
11435 };
11436 
11437 static const struct inode_operations btrfs_file_inode_operations = {
11438 	.getattr	= btrfs_getattr,
11439 	.setattr	= btrfs_setattr,
11440 	.listxattr      = btrfs_listxattr,
11441 	.permission	= btrfs_permission,
11442 	.fiemap		= btrfs_fiemap,
11443 	.get_acl	= btrfs_get_acl,
11444 	.set_acl	= btrfs_set_acl,
11445 	.update_time	= btrfs_update_time,
11446 	.fileattr_get	= btrfs_fileattr_get,
11447 	.fileattr_set	= btrfs_fileattr_set,
11448 };
11449 static const struct inode_operations btrfs_special_inode_operations = {
11450 	.getattr	= btrfs_getattr,
11451 	.setattr	= btrfs_setattr,
11452 	.permission	= btrfs_permission,
11453 	.listxattr	= btrfs_listxattr,
11454 	.get_acl	= btrfs_get_acl,
11455 	.set_acl	= btrfs_set_acl,
11456 	.update_time	= btrfs_update_time,
11457 };
11458 static const struct inode_operations btrfs_symlink_inode_operations = {
11459 	.get_link	= page_get_link,
11460 	.getattr	= btrfs_getattr,
11461 	.setattr	= btrfs_setattr,
11462 	.permission	= btrfs_permission,
11463 	.listxattr	= btrfs_listxattr,
11464 	.update_time	= btrfs_update_time,
11465 };
11466 
11467 const struct dentry_operations btrfs_dentry_operations = {
11468 	.d_delete	= btrfs_dentry_delete,
11469 };
11470