1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/compat.h> 34 #include <linux/bit_spinlock.h> 35 #include <linux/xattr.h> 36 #include <linux/posix_acl.h> 37 #include <linux/falloc.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/mount.h> 41 #include <linux/btrfs.h> 42 #include <linux/blkdev.h> 43 #include <linux/posix_acl_xattr.h> 44 #include <linux/uio.h> 45 #include "ctree.h" 46 #include "disk-io.h" 47 #include "transaction.h" 48 #include "btrfs_inode.h" 49 #include "print-tree.h" 50 #include "ordered-data.h" 51 #include "xattr.h" 52 #include "tree-log.h" 53 #include "volumes.h" 54 #include "compression.h" 55 #include "locking.h" 56 #include "free-space-cache.h" 57 #include "inode-map.h" 58 #include "backref.h" 59 #include "hash.h" 60 #include "props.h" 61 #include "qgroup.h" 62 #include "dedupe.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 struct btrfs_dio_data { 70 u64 outstanding_extents; 71 u64 reserve; 72 u64 unsubmitted_oe_range_start; 73 u64 unsubmitted_oe_range_end; 74 }; 75 76 static const struct inode_operations btrfs_dir_inode_operations; 77 static const struct inode_operations btrfs_symlink_inode_operations; 78 static const struct inode_operations btrfs_dir_ro_inode_operations; 79 static const struct inode_operations btrfs_special_inode_operations; 80 static const struct inode_operations btrfs_file_inode_operations; 81 static const struct address_space_operations btrfs_aops; 82 static const struct address_space_operations btrfs_symlink_aops; 83 static const struct file_operations btrfs_dir_file_operations; 84 static const struct extent_io_ops btrfs_extent_io_ops; 85 86 static struct kmem_cache *btrfs_inode_cachep; 87 struct kmem_cache *btrfs_trans_handle_cachep; 88 struct kmem_cache *btrfs_transaction_cachep; 89 struct kmem_cache *btrfs_path_cachep; 90 struct kmem_cache *btrfs_free_space_cachep; 91 92 #define S_SHIFT 12 93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 101 }; 102 103 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 104 static int btrfs_truncate(struct inode *inode); 105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 106 static noinline int cow_file_range(struct inode *inode, 107 struct page *locked_page, 108 u64 start, u64 end, u64 delalloc_end, 109 int *page_started, unsigned long *nr_written, 110 int unlock, struct btrfs_dedupe_hash *hash); 111 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 112 u64 len, u64 orig_start, 113 u64 block_start, u64 block_len, 114 u64 orig_block_len, u64 ram_bytes, 115 int type); 116 117 static int btrfs_dirty_inode(struct inode *inode); 118 119 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 120 void btrfs_test_inode_set_ops(struct inode *inode) 121 { 122 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 123 } 124 #endif 125 126 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 127 struct inode *inode, struct inode *dir, 128 const struct qstr *qstr) 129 { 130 int err; 131 132 err = btrfs_init_acl(trans, inode, dir); 133 if (!err) 134 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 135 return err; 136 } 137 138 /* 139 * this does all the hard work for inserting an inline extent into 140 * the btree. The caller should have done a btrfs_drop_extents so that 141 * no overlapping inline items exist in the btree 142 */ 143 static int insert_inline_extent(struct btrfs_trans_handle *trans, 144 struct btrfs_path *path, int extent_inserted, 145 struct btrfs_root *root, struct inode *inode, 146 u64 start, size_t size, size_t compressed_size, 147 int compress_type, 148 struct page **compressed_pages) 149 { 150 struct extent_buffer *leaf; 151 struct page *page = NULL; 152 char *kaddr; 153 unsigned long ptr; 154 struct btrfs_file_extent_item *ei; 155 int err = 0; 156 int ret; 157 size_t cur_size = size; 158 unsigned long offset; 159 160 if (compressed_size && compressed_pages) 161 cur_size = compressed_size; 162 163 inode_add_bytes(inode, size); 164 165 if (!extent_inserted) { 166 struct btrfs_key key; 167 size_t datasize; 168 169 key.objectid = btrfs_ino(inode); 170 key.offset = start; 171 key.type = BTRFS_EXTENT_DATA_KEY; 172 173 datasize = btrfs_file_extent_calc_inline_size(cur_size); 174 path->leave_spinning = 1; 175 ret = btrfs_insert_empty_item(trans, root, path, &key, 176 datasize); 177 if (ret) { 178 err = ret; 179 goto fail; 180 } 181 } 182 leaf = path->nodes[0]; 183 ei = btrfs_item_ptr(leaf, path->slots[0], 184 struct btrfs_file_extent_item); 185 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 186 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 187 btrfs_set_file_extent_encryption(leaf, ei, 0); 188 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 189 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 190 ptr = btrfs_file_extent_inline_start(ei); 191 192 if (compress_type != BTRFS_COMPRESS_NONE) { 193 struct page *cpage; 194 int i = 0; 195 while (compressed_size > 0) { 196 cpage = compressed_pages[i]; 197 cur_size = min_t(unsigned long, compressed_size, 198 PAGE_SIZE); 199 200 kaddr = kmap_atomic(cpage); 201 write_extent_buffer(leaf, kaddr, ptr, cur_size); 202 kunmap_atomic(kaddr); 203 204 i++; 205 ptr += cur_size; 206 compressed_size -= cur_size; 207 } 208 btrfs_set_file_extent_compression(leaf, ei, 209 compress_type); 210 } else { 211 page = find_get_page(inode->i_mapping, 212 start >> PAGE_SHIFT); 213 btrfs_set_file_extent_compression(leaf, ei, 0); 214 kaddr = kmap_atomic(page); 215 offset = start & (PAGE_SIZE - 1); 216 write_extent_buffer(leaf, kaddr + offset, ptr, size); 217 kunmap_atomic(kaddr); 218 put_page(page); 219 } 220 btrfs_mark_buffer_dirty(leaf); 221 btrfs_release_path(path); 222 223 /* 224 * we're an inline extent, so nobody can 225 * extend the file past i_size without locking 226 * a page we already have locked. 227 * 228 * We must do any isize and inode updates 229 * before we unlock the pages. Otherwise we 230 * could end up racing with unlink. 231 */ 232 BTRFS_I(inode)->disk_i_size = inode->i_size; 233 ret = btrfs_update_inode(trans, root, inode); 234 235 return ret; 236 fail: 237 return err; 238 } 239 240 241 /* 242 * conditionally insert an inline extent into the file. This 243 * does the checks required to make sure the data is small enough 244 * to fit as an inline extent. 245 */ 246 static noinline int cow_file_range_inline(struct btrfs_root *root, 247 struct inode *inode, u64 start, 248 u64 end, size_t compressed_size, 249 int compress_type, 250 struct page **compressed_pages) 251 { 252 struct btrfs_fs_info *fs_info = root->fs_info; 253 struct btrfs_trans_handle *trans; 254 u64 isize = i_size_read(inode); 255 u64 actual_end = min(end + 1, isize); 256 u64 inline_len = actual_end - start; 257 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 258 u64 data_len = inline_len; 259 int ret; 260 struct btrfs_path *path; 261 int extent_inserted = 0; 262 u32 extent_item_size; 263 264 if (compressed_size) 265 data_len = compressed_size; 266 267 if (start > 0 || 268 actual_end > fs_info->sectorsize || 269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 270 (!compressed_size && 271 (actual_end & (fs_info->sectorsize - 1)) == 0) || 272 end + 1 < isize || 273 data_len > fs_info->max_inline) { 274 return 1; 275 } 276 277 path = btrfs_alloc_path(); 278 if (!path) 279 return -ENOMEM; 280 281 trans = btrfs_join_transaction(root); 282 if (IS_ERR(trans)) { 283 btrfs_free_path(path); 284 return PTR_ERR(trans); 285 } 286 trans->block_rsv = &fs_info->delalloc_block_rsv; 287 288 if (compressed_size && compressed_pages) 289 extent_item_size = btrfs_file_extent_calc_inline_size( 290 compressed_size); 291 else 292 extent_item_size = btrfs_file_extent_calc_inline_size( 293 inline_len); 294 295 ret = __btrfs_drop_extents(trans, root, inode, path, 296 start, aligned_end, NULL, 297 1, 1, extent_item_size, &extent_inserted); 298 if (ret) { 299 btrfs_abort_transaction(trans, ret); 300 goto out; 301 } 302 303 if (isize > actual_end) 304 inline_len = min_t(u64, isize, actual_end); 305 ret = insert_inline_extent(trans, path, extent_inserted, 306 root, inode, start, 307 inline_len, compressed_size, 308 compress_type, compressed_pages); 309 if (ret && ret != -ENOSPC) { 310 btrfs_abort_transaction(trans, ret); 311 goto out; 312 } else if (ret == -ENOSPC) { 313 ret = 1; 314 goto out; 315 } 316 317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 318 btrfs_delalloc_release_metadata(inode, end + 1 - start); 319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 320 out: 321 /* 322 * Don't forget to free the reserved space, as for inlined extent 323 * it won't count as data extent, free them directly here. 324 * And at reserve time, it's always aligned to page size, so 325 * just free one page here. 326 */ 327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE); 328 btrfs_free_path(path); 329 btrfs_end_transaction(trans); 330 return ret; 331 } 332 333 struct async_extent { 334 u64 start; 335 u64 ram_size; 336 u64 compressed_size; 337 struct page **pages; 338 unsigned long nr_pages; 339 int compress_type; 340 struct list_head list; 341 }; 342 343 struct async_cow { 344 struct inode *inode; 345 struct btrfs_root *root; 346 struct page *locked_page; 347 u64 start; 348 u64 end; 349 struct list_head extents; 350 struct btrfs_work work; 351 }; 352 353 static noinline int add_async_extent(struct async_cow *cow, 354 u64 start, u64 ram_size, 355 u64 compressed_size, 356 struct page **pages, 357 unsigned long nr_pages, 358 int compress_type) 359 { 360 struct async_extent *async_extent; 361 362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 363 BUG_ON(!async_extent); /* -ENOMEM */ 364 async_extent->start = start; 365 async_extent->ram_size = ram_size; 366 async_extent->compressed_size = compressed_size; 367 async_extent->pages = pages; 368 async_extent->nr_pages = nr_pages; 369 async_extent->compress_type = compress_type; 370 list_add_tail(&async_extent->list, &cow->extents); 371 return 0; 372 } 373 374 static inline int inode_need_compress(struct inode *inode) 375 { 376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 377 378 /* force compress */ 379 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 380 return 1; 381 /* bad compression ratios */ 382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 383 return 0; 384 if (btrfs_test_opt(fs_info, COMPRESS) || 385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 386 BTRFS_I(inode)->force_compress) 387 return 1; 388 return 0; 389 } 390 391 /* 392 * we create compressed extents in two phases. The first 393 * phase compresses a range of pages that have already been 394 * locked (both pages and state bits are locked). 395 * 396 * This is done inside an ordered work queue, and the compression 397 * is spread across many cpus. The actual IO submission is step 398 * two, and the ordered work queue takes care of making sure that 399 * happens in the same order things were put onto the queue by 400 * writepages and friends. 401 * 402 * If this code finds it can't get good compression, it puts an 403 * entry onto the work queue to write the uncompressed bytes. This 404 * makes sure that both compressed inodes and uncompressed inodes 405 * are written in the same order that the flusher thread sent them 406 * down. 407 */ 408 static noinline void compress_file_range(struct inode *inode, 409 struct page *locked_page, 410 u64 start, u64 end, 411 struct async_cow *async_cow, 412 int *num_added) 413 { 414 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 415 struct btrfs_root *root = BTRFS_I(inode)->root; 416 u64 num_bytes; 417 u64 blocksize = fs_info->sectorsize; 418 u64 actual_end; 419 u64 isize = i_size_read(inode); 420 int ret = 0; 421 struct page **pages = NULL; 422 unsigned long nr_pages; 423 unsigned long nr_pages_ret = 0; 424 unsigned long total_compressed = 0; 425 unsigned long total_in = 0; 426 unsigned long max_compressed = SZ_128K; 427 unsigned long max_uncompressed = SZ_128K; 428 int i; 429 int will_compress; 430 int compress_type = fs_info->compress_type; 431 int redirty = 0; 432 433 /* if this is a small write inside eof, kick off a defrag */ 434 if ((end - start + 1) < SZ_16K && 435 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 436 btrfs_add_inode_defrag(NULL, inode); 437 438 actual_end = min_t(u64, isize, end + 1); 439 again: 440 will_compress = 0; 441 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 442 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE); 443 444 /* 445 * we don't want to send crud past the end of i_size through 446 * compression, that's just a waste of CPU time. So, if the 447 * end of the file is before the start of our current 448 * requested range of bytes, we bail out to the uncompressed 449 * cleanup code that can deal with all of this. 450 * 451 * It isn't really the fastest way to fix things, but this is a 452 * very uncommon corner. 453 */ 454 if (actual_end <= start) 455 goto cleanup_and_bail_uncompressed; 456 457 total_compressed = actual_end - start; 458 459 /* 460 * skip compression for a small file range(<=blocksize) that 461 * isn't an inline extent, since it doesn't save disk space at all. 462 */ 463 if (total_compressed <= blocksize && 464 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 465 goto cleanup_and_bail_uncompressed; 466 467 /* we want to make sure that amount of ram required to uncompress 468 * an extent is reasonable, so we limit the total size in ram 469 * of a compressed extent to 128k. This is a crucial number 470 * because it also controls how easily we can spread reads across 471 * cpus for decompression. 472 * 473 * We also want to make sure the amount of IO required to do 474 * a random read is reasonably small, so we limit the size of 475 * a compressed extent to 128k. 476 */ 477 total_compressed = min(total_compressed, max_uncompressed); 478 num_bytes = ALIGN(end - start + 1, blocksize); 479 num_bytes = max(blocksize, num_bytes); 480 total_in = 0; 481 ret = 0; 482 483 /* 484 * we do compression for mount -o compress and when the 485 * inode has not been flagged as nocompress. This flag can 486 * change at any time if we discover bad compression ratios. 487 */ 488 if (inode_need_compress(inode)) { 489 WARN_ON(pages); 490 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 491 if (!pages) { 492 /* just bail out to the uncompressed code */ 493 goto cont; 494 } 495 496 if (BTRFS_I(inode)->force_compress) 497 compress_type = BTRFS_I(inode)->force_compress; 498 499 /* 500 * we need to call clear_page_dirty_for_io on each 501 * page in the range. Otherwise applications with the file 502 * mmap'd can wander in and change the page contents while 503 * we are compressing them. 504 * 505 * If the compression fails for any reason, we set the pages 506 * dirty again later on. 507 */ 508 extent_range_clear_dirty_for_io(inode, start, end); 509 redirty = 1; 510 ret = btrfs_compress_pages(compress_type, 511 inode->i_mapping, start, 512 total_compressed, pages, 513 nr_pages, &nr_pages_ret, 514 &total_in, 515 &total_compressed, 516 max_compressed); 517 518 if (!ret) { 519 unsigned long offset = total_compressed & 520 (PAGE_SIZE - 1); 521 struct page *page = pages[nr_pages_ret - 1]; 522 char *kaddr; 523 524 /* zero the tail end of the last page, we might be 525 * sending it down to disk 526 */ 527 if (offset) { 528 kaddr = kmap_atomic(page); 529 memset(kaddr + offset, 0, 530 PAGE_SIZE - offset); 531 kunmap_atomic(kaddr); 532 } 533 will_compress = 1; 534 } 535 } 536 cont: 537 if (start == 0) { 538 /* lets try to make an inline extent */ 539 if (ret || total_in < (actual_end - start)) { 540 /* we didn't compress the entire range, try 541 * to make an uncompressed inline extent. 542 */ 543 ret = cow_file_range_inline(root, inode, start, end, 544 0, 0, NULL); 545 } else { 546 /* try making a compressed inline extent */ 547 ret = cow_file_range_inline(root, inode, start, end, 548 total_compressed, 549 compress_type, pages); 550 } 551 if (ret <= 0) { 552 unsigned long clear_flags = EXTENT_DELALLOC | 553 EXTENT_DEFRAG; 554 unsigned long page_error_op; 555 556 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 557 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 558 559 /* 560 * inline extent creation worked or returned error, 561 * we don't need to create any more async work items. 562 * Unlock and free up our temp pages. 563 */ 564 extent_clear_unlock_delalloc(inode, start, end, end, 565 NULL, clear_flags, 566 PAGE_UNLOCK | 567 PAGE_CLEAR_DIRTY | 568 PAGE_SET_WRITEBACK | 569 page_error_op | 570 PAGE_END_WRITEBACK); 571 btrfs_free_reserved_data_space_noquota(inode, start, 572 end - start + 1); 573 goto free_pages_out; 574 } 575 } 576 577 if (will_compress) { 578 /* 579 * we aren't doing an inline extent round the compressed size 580 * up to a block size boundary so the allocator does sane 581 * things 582 */ 583 total_compressed = ALIGN(total_compressed, blocksize); 584 585 /* 586 * one last check to make sure the compression is really a 587 * win, compare the page count read with the blocks on disk 588 */ 589 total_in = ALIGN(total_in, PAGE_SIZE); 590 if (total_compressed >= total_in) { 591 will_compress = 0; 592 } else { 593 num_bytes = total_in; 594 *num_added += 1; 595 596 /* 597 * The async work queues will take care of doing actual 598 * allocation on disk for these compressed pages, and 599 * will submit them to the elevator. 600 */ 601 add_async_extent(async_cow, start, num_bytes, 602 total_compressed, pages, nr_pages_ret, 603 compress_type); 604 605 if (start + num_bytes < end) { 606 start += num_bytes; 607 pages = NULL; 608 cond_resched(); 609 goto again; 610 } 611 return; 612 } 613 } 614 if (pages) { 615 /* 616 * the compression code ran but failed to make things smaller, 617 * free any pages it allocated and our page pointer array 618 */ 619 for (i = 0; i < nr_pages_ret; i++) { 620 WARN_ON(pages[i]->mapping); 621 put_page(pages[i]); 622 } 623 kfree(pages); 624 pages = NULL; 625 total_compressed = 0; 626 nr_pages_ret = 0; 627 628 /* flag the file so we don't compress in the future */ 629 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 630 !(BTRFS_I(inode)->force_compress)) { 631 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 632 } 633 } 634 cleanup_and_bail_uncompressed: 635 /* 636 * No compression, but we still need to write the pages in the file 637 * we've been given so far. redirty the locked page if it corresponds 638 * to our extent and set things up for the async work queue to run 639 * cow_file_range to do the normal delalloc dance. 640 */ 641 if (page_offset(locked_page) >= start && 642 page_offset(locked_page) <= end) 643 __set_page_dirty_nobuffers(locked_page); 644 /* unlocked later on in the async handlers */ 645 646 if (redirty) 647 extent_range_redirty_for_io(inode, start, end); 648 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 649 BTRFS_COMPRESS_NONE); 650 *num_added += 1; 651 652 return; 653 654 free_pages_out: 655 for (i = 0; i < nr_pages_ret; i++) { 656 WARN_ON(pages[i]->mapping); 657 put_page(pages[i]); 658 } 659 kfree(pages); 660 } 661 662 static void free_async_extent_pages(struct async_extent *async_extent) 663 { 664 int i; 665 666 if (!async_extent->pages) 667 return; 668 669 for (i = 0; i < async_extent->nr_pages; i++) { 670 WARN_ON(async_extent->pages[i]->mapping); 671 put_page(async_extent->pages[i]); 672 } 673 kfree(async_extent->pages); 674 async_extent->nr_pages = 0; 675 async_extent->pages = NULL; 676 } 677 678 /* 679 * phase two of compressed writeback. This is the ordered portion 680 * of the code, which only gets called in the order the work was 681 * queued. We walk all the async extents created by compress_file_range 682 * and send them down to the disk. 683 */ 684 static noinline void submit_compressed_extents(struct inode *inode, 685 struct async_cow *async_cow) 686 { 687 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 688 struct async_extent *async_extent; 689 u64 alloc_hint = 0; 690 struct btrfs_key ins; 691 struct extent_map *em; 692 struct btrfs_root *root = BTRFS_I(inode)->root; 693 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 694 struct extent_io_tree *io_tree; 695 int ret = 0; 696 697 again: 698 while (!list_empty(&async_cow->extents)) { 699 async_extent = list_entry(async_cow->extents.next, 700 struct async_extent, list); 701 list_del(&async_extent->list); 702 703 io_tree = &BTRFS_I(inode)->io_tree; 704 705 retry: 706 /* did the compression code fall back to uncompressed IO? */ 707 if (!async_extent->pages) { 708 int page_started = 0; 709 unsigned long nr_written = 0; 710 711 lock_extent(io_tree, async_extent->start, 712 async_extent->start + 713 async_extent->ram_size - 1); 714 715 /* allocate blocks */ 716 ret = cow_file_range(inode, async_cow->locked_page, 717 async_extent->start, 718 async_extent->start + 719 async_extent->ram_size - 1, 720 async_extent->start + 721 async_extent->ram_size - 1, 722 &page_started, &nr_written, 0, 723 NULL); 724 725 /* JDM XXX */ 726 727 /* 728 * if page_started, cow_file_range inserted an 729 * inline extent and took care of all the unlocking 730 * and IO for us. Otherwise, we need to submit 731 * all those pages down to the drive. 732 */ 733 if (!page_started && !ret) 734 extent_write_locked_range(io_tree, 735 inode, async_extent->start, 736 async_extent->start + 737 async_extent->ram_size - 1, 738 btrfs_get_extent, 739 WB_SYNC_ALL); 740 else if (ret) 741 unlock_page(async_cow->locked_page); 742 kfree(async_extent); 743 cond_resched(); 744 continue; 745 } 746 747 lock_extent(io_tree, async_extent->start, 748 async_extent->start + async_extent->ram_size - 1); 749 750 ret = btrfs_reserve_extent(root, async_extent->ram_size, 751 async_extent->compressed_size, 752 async_extent->compressed_size, 753 0, alloc_hint, &ins, 1, 1); 754 if (ret) { 755 free_async_extent_pages(async_extent); 756 757 if (ret == -ENOSPC) { 758 unlock_extent(io_tree, async_extent->start, 759 async_extent->start + 760 async_extent->ram_size - 1); 761 762 /* 763 * we need to redirty the pages if we decide to 764 * fallback to uncompressed IO, otherwise we 765 * will not submit these pages down to lower 766 * layers. 767 */ 768 extent_range_redirty_for_io(inode, 769 async_extent->start, 770 async_extent->start + 771 async_extent->ram_size - 1); 772 773 goto retry; 774 } 775 goto out_free; 776 } 777 /* 778 * here we're doing allocation and writeback of the 779 * compressed pages 780 */ 781 btrfs_drop_extent_cache(inode, async_extent->start, 782 async_extent->start + 783 async_extent->ram_size - 1, 0); 784 785 em = alloc_extent_map(); 786 if (!em) { 787 ret = -ENOMEM; 788 goto out_free_reserve; 789 } 790 em->start = async_extent->start; 791 em->len = async_extent->ram_size; 792 em->orig_start = em->start; 793 em->mod_start = em->start; 794 em->mod_len = em->len; 795 796 em->block_start = ins.objectid; 797 em->block_len = ins.offset; 798 em->orig_block_len = ins.offset; 799 em->ram_bytes = async_extent->ram_size; 800 em->bdev = fs_info->fs_devices->latest_bdev; 801 em->compress_type = async_extent->compress_type; 802 set_bit(EXTENT_FLAG_PINNED, &em->flags); 803 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 804 em->generation = -1; 805 806 while (1) { 807 write_lock(&em_tree->lock); 808 ret = add_extent_mapping(em_tree, em, 1); 809 write_unlock(&em_tree->lock); 810 if (ret != -EEXIST) { 811 free_extent_map(em); 812 break; 813 } 814 btrfs_drop_extent_cache(inode, async_extent->start, 815 async_extent->start + 816 async_extent->ram_size - 1, 0); 817 } 818 819 if (ret) 820 goto out_free_reserve; 821 822 ret = btrfs_add_ordered_extent_compress(inode, 823 async_extent->start, 824 ins.objectid, 825 async_extent->ram_size, 826 ins.offset, 827 BTRFS_ORDERED_COMPRESSED, 828 async_extent->compress_type); 829 if (ret) { 830 btrfs_drop_extent_cache(inode, async_extent->start, 831 async_extent->start + 832 async_extent->ram_size - 1, 0); 833 goto out_free_reserve; 834 } 835 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 836 837 /* 838 * clear dirty, set writeback and unlock the pages. 839 */ 840 extent_clear_unlock_delalloc(inode, async_extent->start, 841 async_extent->start + 842 async_extent->ram_size - 1, 843 async_extent->start + 844 async_extent->ram_size - 1, 845 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 846 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 847 PAGE_SET_WRITEBACK); 848 ret = btrfs_submit_compressed_write(inode, 849 async_extent->start, 850 async_extent->ram_size, 851 ins.objectid, 852 ins.offset, async_extent->pages, 853 async_extent->nr_pages); 854 if (ret) { 855 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 856 struct page *p = async_extent->pages[0]; 857 const u64 start = async_extent->start; 858 const u64 end = start + async_extent->ram_size - 1; 859 860 p->mapping = inode->i_mapping; 861 tree->ops->writepage_end_io_hook(p, start, end, 862 NULL, 0); 863 p->mapping = NULL; 864 extent_clear_unlock_delalloc(inode, start, end, end, 865 NULL, 0, 866 PAGE_END_WRITEBACK | 867 PAGE_SET_ERROR); 868 free_async_extent_pages(async_extent); 869 } 870 alloc_hint = ins.objectid + ins.offset; 871 kfree(async_extent); 872 cond_resched(); 873 } 874 return; 875 out_free_reserve: 876 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 877 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 878 out_free: 879 extent_clear_unlock_delalloc(inode, async_extent->start, 880 async_extent->start + 881 async_extent->ram_size - 1, 882 async_extent->start + 883 async_extent->ram_size - 1, 884 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 885 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 886 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 887 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 888 PAGE_SET_ERROR); 889 free_async_extent_pages(async_extent); 890 kfree(async_extent); 891 goto again; 892 } 893 894 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 895 u64 num_bytes) 896 { 897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 898 struct extent_map *em; 899 u64 alloc_hint = 0; 900 901 read_lock(&em_tree->lock); 902 em = search_extent_mapping(em_tree, start, num_bytes); 903 if (em) { 904 /* 905 * if block start isn't an actual block number then find the 906 * first block in this inode and use that as a hint. If that 907 * block is also bogus then just don't worry about it. 908 */ 909 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 910 free_extent_map(em); 911 em = search_extent_mapping(em_tree, 0, 0); 912 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 913 alloc_hint = em->block_start; 914 if (em) 915 free_extent_map(em); 916 } else { 917 alloc_hint = em->block_start; 918 free_extent_map(em); 919 } 920 } 921 read_unlock(&em_tree->lock); 922 923 return alloc_hint; 924 } 925 926 /* 927 * when extent_io.c finds a delayed allocation range in the file, 928 * the call backs end up in this code. The basic idea is to 929 * allocate extents on disk for the range, and create ordered data structs 930 * in ram to track those extents. 931 * 932 * locked_page is the page that writepage had locked already. We use 933 * it to make sure we don't do extra locks or unlocks. 934 * 935 * *page_started is set to one if we unlock locked_page and do everything 936 * required to start IO on it. It may be clean and already done with 937 * IO when we return. 938 */ 939 static noinline int cow_file_range(struct inode *inode, 940 struct page *locked_page, 941 u64 start, u64 end, u64 delalloc_end, 942 int *page_started, unsigned long *nr_written, 943 int unlock, struct btrfs_dedupe_hash *hash) 944 { 945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 946 struct btrfs_root *root = BTRFS_I(inode)->root; 947 u64 alloc_hint = 0; 948 u64 num_bytes; 949 unsigned long ram_size; 950 u64 disk_num_bytes; 951 u64 cur_alloc_size; 952 u64 blocksize = fs_info->sectorsize; 953 struct btrfs_key ins; 954 struct extent_map *em; 955 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 956 int ret = 0; 957 958 if (btrfs_is_free_space_inode(inode)) { 959 WARN_ON_ONCE(1); 960 ret = -EINVAL; 961 goto out_unlock; 962 } 963 964 num_bytes = ALIGN(end - start + 1, blocksize); 965 num_bytes = max(blocksize, num_bytes); 966 disk_num_bytes = num_bytes; 967 968 /* if this is a small write inside eof, kick off defrag */ 969 if (num_bytes < SZ_64K && 970 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 971 btrfs_add_inode_defrag(NULL, inode); 972 973 if (start == 0) { 974 /* lets try to make an inline extent */ 975 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 976 NULL); 977 if (ret == 0) { 978 extent_clear_unlock_delalloc(inode, start, end, 979 delalloc_end, NULL, 980 EXTENT_LOCKED | EXTENT_DELALLOC | 981 EXTENT_DEFRAG, PAGE_UNLOCK | 982 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 983 PAGE_END_WRITEBACK); 984 btrfs_free_reserved_data_space_noquota(inode, start, 985 end - start + 1); 986 *nr_written = *nr_written + 987 (end - start + PAGE_SIZE) / PAGE_SIZE; 988 *page_started = 1; 989 goto out; 990 } else if (ret < 0) { 991 goto out_unlock; 992 } 993 } 994 995 BUG_ON(disk_num_bytes > 996 btrfs_super_total_bytes(fs_info->super_copy)); 997 998 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 999 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1000 1001 while (disk_num_bytes > 0) { 1002 unsigned long op; 1003 1004 cur_alloc_size = disk_num_bytes; 1005 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1006 fs_info->sectorsize, 0, alloc_hint, 1007 &ins, 1, 1); 1008 if (ret < 0) 1009 goto out_unlock; 1010 1011 em = alloc_extent_map(); 1012 if (!em) { 1013 ret = -ENOMEM; 1014 goto out_reserve; 1015 } 1016 em->start = start; 1017 em->orig_start = em->start; 1018 ram_size = ins.offset; 1019 em->len = ins.offset; 1020 em->mod_start = em->start; 1021 em->mod_len = em->len; 1022 1023 em->block_start = ins.objectid; 1024 em->block_len = ins.offset; 1025 em->orig_block_len = ins.offset; 1026 em->ram_bytes = ram_size; 1027 em->bdev = fs_info->fs_devices->latest_bdev; 1028 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1029 em->generation = -1; 1030 1031 while (1) { 1032 write_lock(&em_tree->lock); 1033 ret = add_extent_mapping(em_tree, em, 1); 1034 write_unlock(&em_tree->lock); 1035 if (ret != -EEXIST) { 1036 free_extent_map(em); 1037 break; 1038 } 1039 btrfs_drop_extent_cache(inode, start, 1040 start + ram_size - 1, 0); 1041 } 1042 if (ret) 1043 goto out_reserve; 1044 1045 cur_alloc_size = ins.offset; 1046 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1047 ram_size, cur_alloc_size, 0); 1048 if (ret) 1049 goto out_drop_extent_cache; 1050 1051 if (root->root_key.objectid == 1052 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1053 ret = btrfs_reloc_clone_csums(inode, start, 1054 cur_alloc_size); 1055 if (ret) 1056 goto out_drop_extent_cache; 1057 } 1058 1059 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1060 1061 if (disk_num_bytes < cur_alloc_size) 1062 break; 1063 1064 /* we're not doing compressed IO, don't unlock the first 1065 * page (which the caller expects to stay locked), don't 1066 * clear any dirty bits and don't set any writeback bits 1067 * 1068 * Do set the Private2 bit so we know this page was properly 1069 * setup for writepage 1070 */ 1071 op = unlock ? PAGE_UNLOCK : 0; 1072 op |= PAGE_SET_PRIVATE2; 1073 1074 extent_clear_unlock_delalloc(inode, start, 1075 start + ram_size - 1, 1076 delalloc_end, locked_page, 1077 EXTENT_LOCKED | EXTENT_DELALLOC, 1078 op); 1079 disk_num_bytes -= cur_alloc_size; 1080 num_bytes -= cur_alloc_size; 1081 alloc_hint = ins.objectid + ins.offset; 1082 start += cur_alloc_size; 1083 } 1084 out: 1085 return ret; 1086 1087 out_drop_extent_cache: 1088 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1089 out_reserve: 1090 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1091 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1092 out_unlock: 1093 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1094 locked_page, 1095 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1096 EXTENT_DELALLOC | EXTENT_DEFRAG, 1097 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1098 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1099 goto out; 1100 } 1101 1102 /* 1103 * work queue call back to started compression on a file and pages 1104 */ 1105 static noinline void async_cow_start(struct btrfs_work *work) 1106 { 1107 struct async_cow *async_cow; 1108 int num_added = 0; 1109 async_cow = container_of(work, struct async_cow, work); 1110 1111 compress_file_range(async_cow->inode, async_cow->locked_page, 1112 async_cow->start, async_cow->end, async_cow, 1113 &num_added); 1114 if (num_added == 0) { 1115 btrfs_add_delayed_iput(async_cow->inode); 1116 async_cow->inode = NULL; 1117 } 1118 } 1119 1120 /* 1121 * work queue call back to submit previously compressed pages 1122 */ 1123 static noinline void async_cow_submit(struct btrfs_work *work) 1124 { 1125 struct btrfs_fs_info *fs_info; 1126 struct async_cow *async_cow; 1127 struct btrfs_root *root; 1128 unsigned long nr_pages; 1129 1130 async_cow = container_of(work, struct async_cow, work); 1131 1132 root = async_cow->root; 1133 fs_info = root->fs_info; 1134 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1135 PAGE_SHIFT; 1136 1137 /* 1138 * atomic_sub_return implies a barrier for waitqueue_active 1139 */ 1140 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1141 5 * SZ_1M && 1142 waitqueue_active(&fs_info->async_submit_wait)) 1143 wake_up(&fs_info->async_submit_wait); 1144 1145 if (async_cow->inode) 1146 submit_compressed_extents(async_cow->inode, async_cow); 1147 } 1148 1149 static noinline void async_cow_free(struct btrfs_work *work) 1150 { 1151 struct async_cow *async_cow; 1152 async_cow = container_of(work, struct async_cow, work); 1153 if (async_cow->inode) 1154 btrfs_add_delayed_iput(async_cow->inode); 1155 kfree(async_cow); 1156 } 1157 1158 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1159 u64 start, u64 end, int *page_started, 1160 unsigned long *nr_written) 1161 { 1162 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1163 struct async_cow *async_cow; 1164 struct btrfs_root *root = BTRFS_I(inode)->root; 1165 unsigned long nr_pages; 1166 u64 cur_end; 1167 int limit = 10 * SZ_1M; 1168 1169 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1170 1, 0, NULL, GFP_NOFS); 1171 while (start < end) { 1172 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1173 BUG_ON(!async_cow); /* -ENOMEM */ 1174 async_cow->inode = igrab(inode); 1175 async_cow->root = root; 1176 async_cow->locked_page = locked_page; 1177 async_cow->start = start; 1178 1179 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1180 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1181 cur_end = end; 1182 else 1183 cur_end = min(end, start + SZ_512K - 1); 1184 1185 async_cow->end = cur_end; 1186 INIT_LIST_HEAD(&async_cow->extents); 1187 1188 btrfs_init_work(&async_cow->work, 1189 btrfs_delalloc_helper, 1190 async_cow_start, async_cow_submit, 1191 async_cow_free); 1192 1193 nr_pages = (cur_end - start + PAGE_SIZE) >> 1194 PAGE_SHIFT; 1195 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1196 1197 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1198 1199 if (atomic_read(&fs_info->async_delalloc_pages) > limit) { 1200 wait_event(fs_info->async_submit_wait, 1201 (atomic_read(&fs_info->async_delalloc_pages) < 1202 limit)); 1203 } 1204 1205 while (atomic_read(&fs_info->async_submit_draining) && 1206 atomic_read(&fs_info->async_delalloc_pages)) { 1207 wait_event(fs_info->async_submit_wait, 1208 (atomic_read(&fs_info->async_delalloc_pages) == 1209 0)); 1210 } 1211 1212 *nr_written += nr_pages; 1213 start = cur_end + 1; 1214 } 1215 *page_started = 1; 1216 return 0; 1217 } 1218 1219 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1220 u64 bytenr, u64 num_bytes) 1221 { 1222 int ret; 1223 struct btrfs_ordered_sum *sums; 1224 LIST_HEAD(list); 1225 1226 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1227 bytenr + num_bytes - 1, &list, 0); 1228 if (ret == 0 && list_empty(&list)) 1229 return 0; 1230 1231 while (!list_empty(&list)) { 1232 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1233 list_del(&sums->list); 1234 kfree(sums); 1235 } 1236 return 1; 1237 } 1238 1239 /* 1240 * when nowcow writeback call back. This checks for snapshots or COW copies 1241 * of the extents that exist in the file, and COWs the file as required. 1242 * 1243 * If no cow copies or snapshots exist, we write directly to the existing 1244 * blocks on disk 1245 */ 1246 static noinline int run_delalloc_nocow(struct inode *inode, 1247 struct page *locked_page, 1248 u64 start, u64 end, int *page_started, int force, 1249 unsigned long *nr_written) 1250 { 1251 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1252 struct btrfs_root *root = BTRFS_I(inode)->root; 1253 struct btrfs_trans_handle *trans; 1254 struct extent_buffer *leaf; 1255 struct btrfs_path *path; 1256 struct btrfs_file_extent_item *fi; 1257 struct btrfs_key found_key; 1258 u64 cow_start; 1259 u64 cur_offset; 1260 u64 extent_end; 1261 u64 extent_offset; 1262 u64 disk_bytenr; 1263 u64 num_bytes; 1264 u64 disk_num_bytes; 1265 u64 ram_bytes; 1266 int extent_type; 1267 int ret, err; 1268 int type; 1269 int nocow; 1270 int check_prev = 1; 1271 bool nolock; 1272 u64 ino = btrfs_ino(inode); 1273 1274 path = btrfs_alloc_path(); 1275 if (!path) { 1276 extent_clear_unlock_delalloc(inode, start, end, end, 1277 locked_page, 1278 EXTENT_LOCKED | EXTENT_DELALLOC | 1279 EXTENT_DO_ACCOUNTING | 1280 EXTENT_DEFRAG, PAGE_UNLOCK | 1281 PAGE_CLEAR_DIRTY | 1282 PAGE_SET_WRITEBACK | 1283 PAGE_END_WRITEBACK); 1284 return -ENOMEM; 1285 } 1286 1287 nolock = btrfs_is_free_space_inode(inode); 1288 1289 if (nolock) 1290 trans = btrfs_join_transaction_nolock(root); 1291 else 1292 trans = btrfs_join_transaction(root); 1293 1294 if (IS_ERR(trans)) { 1295 extent_clear_unlock_delalloc(inode, start, end, end, 1296 locked_page, 1297 EXTENT_LOCKED | EXTENT_DELALLOC | 1298 EXTENT_DO_ACCOUNTING | 1299 EXTENT_DEFRAG, PAGE_UNLOCK | 1300 PAGE_CLEAR_DIRTY | 1301 PAGE_SET_WRITEBACK | 1302 PAGE_END_WRITEBACK); 1303 btrfs_free_path(path); 1304 return PTR_ERR(trans); 1305 } 1306 1307 trans->block_rsv = &fs_info->delalloc_block_rsv; 1308 1309 cow_start = (u64)-1; 1310 cur_offset = start; 1311 while (1) { 1312 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1313 cur_offset, 0); 1314 if (ret < 0) 1315 goto error; 1316 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1317 leaf = path->nodes[0]; 1318 btrfs_item_key_to_cpu(leaf, &found_key, 1319 path->slots[0] - 1); 1320 if (found_key.objectid == ino && 1321 found_key.type == BTRFS_EXTENT_DATA_KEY) 1322 path->slots[0]--; 1323 } 1324 check_prev = 0; 1325 next_slot: 1326 leaf = path->nodes[0]; 1327 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1328 ret = btrfs_next_leaf(root, path); 1329 if (ret < 0) 1330 goto error; 1331 if (ret > 0) 1332 break; 1333 leaf = path->nodes[0]; 1334 } 1335 1336 nocow = 0; 1337 disk_bytenr = 0; 1338 num_bytes = 0; 1339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1340 1341 if (found_key.objectid > ino) 1342 break; 1343 if (WARN_ON_ONCE(found_key.objectid < ino) || 1344 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1345 path->slots[0]++; 1346 goto next_slot; 1347 } 1348 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1349 found_key.offset > end) 1350 break; 1351 1352 if (found_key.offset > cur_offset) { 1353 extent_end = found_key.offset; 1354 extent_type = 0; 1355 goto out_check; 1356 } 1357 1358 fi = btrfs_item_ptr(leaf, path->slots[0], 1359 struct btrfs_file_extent_item); 1360 extent_type = btrfs_file_extent_type(leaf, fi); 1361 1362 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1363 if (extent_type == BTRFS_FILE_EXTENT_REG || 1364 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1365 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1366 extent_offset = btrfs_file_extent_offset(leaf, fi); 1367 extent_end = found_key.offset + 1368 btrfs_file_extent_num_bytes(leaf, fi); 1369 disk_num_bytes = 1370 btrfs_file_extent_disk_num_bytes(leaf, fi); 1371 if (extent_end <= start) { 1372 path->slots[0]++; 1373 goto next_slot; 1374 } 1375 if (disk_bytenr == 0) 1376 goto out_check; 1377 if (btrfs_file_extent_compression(leaf, fi) || 1378 btrfs_file_extent_encryption(leaf, fi) || 1379 btrfs_file_extent_other_encoding(leaf, fi)) 1380 goto out_check; 1381 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1382 goto out_check; 1383 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1384 goto out_check; 1385 if (btrfs_cross_ref_exist(trans, root, ino, 1386 found_key.offset - 1387 extent_offset, disk_bytenr)) 1388 goto out_check; 1389 disk_bytenr += extent_offset; 1390 disk_bytenr += cur_offset - found_key.offset; 1391 num_bytes = min(end + 1, extent_end) - cur_offset; 1392 /* 1393 * if there are pending snapshots for this root, 1394 * we fall into common COW way. 1395 */ 1396 if (!nolock) { 1397 err = btrfs_start_write_no_snapshoting(root); 1398 if (!err) 1399 goto out_check; 1400 } 1401 /* 1402 * force cow if csum exists in the range. 1403 * this ensure that csum for a given extent are 1404 * either valid or do not exist. 1405 */ 1406 if (csum_exist_in_range(fs_info, disk_bytenr, 1407 num_bytes)) 1408 goto out_check; 1409 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1410 goto out_check; 1411 nocow = 1; 1412 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1413 extent_end = found_key.offset + 1414 btrfs_file_extent_inline_len(leaf, 1415 path->slots[0], fi); 1416 extent_end = ALIGN(extent_end, 1417 fs_info->sectorsize); 1418 } else { 1419 BUG_ON(1); 1420 } 1421 out_check: 1422 if (extent_end <= start) { 1423 path->slots[0]++; 1424 if (!nolock && nocow) 1425 btrfs_end_write_no_snapshoting(root); 1426 if (nocow) 1427 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1428 goto next_slot; 1429 } 1430 if (!nocow) { 1431 if (cow_start == (u64)-1) 1432 cow_start = cur_offset; 1433 cur_offset = extent_end; 1434 if (cur_offset > end) 1435 break; 1436 path->slots[0]++; 1437 goto next_slot; 1438 } 1439 1440 btrfs_release_path(path); 1441 if (cow_start != (u64)-1) { 1442 ret = cow_file_range(inode, locked_page, 1443 cow_start, found_key.offset - 1, 1444 end, page_started, nr_written, 1, 1445 NULL); 1446 if (ret) { 1447 if (!nolock && nocow) 1448 btrfs_end_write_no_snapshoting(root); 1449 if (nocow) 1450 btrfs_dec_nocow_writers(fs_info, 1451 disk_bytenr); 1452 goto error; 1453 } 1454 cow_start = (u64)-1; 1455 } 1456 1457 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1458 struct extent_map *em; 1459 struct extent_map_tree *em_tree; 1460 em_tree = &BTRFS_I(inode)->extent_tree; 1461 em = alloc_extent_map(); 1462 BUG_ON(!em); /* -ENOMEM */ 1463 em->start = cur_offset; 1464 em->orig_start = found_key.offset - extent_offset; 1465 em->len = num_bytes; 1466 em->block_len = num_bytes; 1467 em->block_start = disk_bytenr; 1468 em->orig_block_len = disk_num_bytes; 1469 em->ram_bytes = ram_bytes; 1470 em->bdev = fs_info->fs_devices->latest_bdev; 1471 em->mod_start = em->start; 1472 em->mod_len = em->len; 1473 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1474 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1475 em->generation = -1; 1476 while (1) { 1477 write_lock(&em_tree->lock); 1478 ret = add_extent_mapping(em_tree, em, 1); 1479 write_unlock(&em_tree->lock); 1480 if (ret != -EEXIST) { 1481 free_extent_map(em); 1482 break; 1483 } 1484 btrfs_drop_extent_cache(inode, em->start, 1485 em->start + em->len - 1, 0); 1486 } 1487 type = BTRFS_ORDERED_PREALLOC; 1488 } else { 1489 type = BTRFS_ORDERED_NOCOW; 1490 } 1491 1492 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1493 num_bytes, num_bytes, type); 1494 if (nocow) 1495 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1496 BUG_ON(ret); /* -ENOMEM */ 1497 1498 if (root->root_key.objectid == 1499 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1500 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1501 num_bytes); 1502 if (ret) { 1503 if (!nolock && nocow) 1504 btrfs_end_write_no_snapshoting(root); 1505 goto error; 1506 } 1507 } 1508 1509 extent_clear_unlock_delalloc(inode, cur_offset, 1510 cur_offset + num_bytes - 1, end, 1511 locked_page, EXTENT_LOCKED | 1512 EXTENT_DELALLOC | 1513 EXTENT_CLEAR_DATA_RESV, 1514 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1515 1516 if (!nolock && nocow) 1517 btrfs_end_write_no_snapshoting(root); 1518 cur_offset = extent_end; 1519 if (cur_offset > end) 1520 break; 1521 } 1522 btrfs_release_path(path); 1523 1524 if (cur_offset <= end && cow_start == (u64)-1) { 1525 cow_start = cur_offset; 1526 cur_offset = end; 1527 } 1528 1529 if (cow_start != (u64)-1) { 1530 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1531 page_started, nr_written, 1, NULL); 1532 if (ret) 1533 goto error; 1534 } 1535 1536 error: 1537 err = btrfs_end_transaction(trans); 1538 if (!ret) 1539 ret = err; 1540 1541 if (ret && cur_offset < end) 1542 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1543 locked_page, EXTENT_LOCKED | 1544 EXTENT_DELALLOC | EXTENT_DEFRAG | 1545 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1546 PAGE_CLEAR_DIRTY | 1547 PAGE_SET_WRITEBACK | 1548 PAGE_END_WRITEBACK); 1549 btrfs_free_path(path); 1550 return ret; 1551 } 1552 1553 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1554 { 1555 1556 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1557 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1558 return 0; 1559 1560 /* 1561 * @defrag_bytes is a hint value, no spinlock held here, 1562 * if is not zero, it means the file is defragging. 1563 * Force cow if given extent needs to be defragged. 1564 */ 1565 if (BTRFS_I(inode)->defrag_bytes && 1566 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1567 EXTENT_DEFRAG, 0, NULL)) 1568 return 1; 1569 1570 return 0; 1571 } 1572 1573 /* 1574 * extent_io.c call back to do delayed allocation processing 1575 */ 1576 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1577 u64 start, u64 end, int *page_started, 1578 unsigned long *nr_written) 1579 { 1580 int ret; 1581 int force_cow = need_force_cow(inode, start, end); 1582 1583 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1584 ret = run_delalloc_nocow(inode, locked_page, start, end, 1585 page_started, 1, nr_written); 1586 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1587 ret = run_delalloc_nocow(inode, locked_page, start, end, 1588 page_started, 0, nr_written); 1589 } else if (!inode_need_compress(inode)) { 1590 ret = cow_file_range(inode, locked_page, start, end, end, 1591 page_started, nr_written, 1, NULL); 1592 } else { 1593 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1594 &BTRFS_I(inode)->runtime_flags); 1595 ret = cow_file_range_async(inode, locked_page, start, end, 1596 page_started, nr_written); 1597 } 1598 return ret; 1599 } 1600 1601 static void btrfs_split_extent_hook(struct inode *inode, 1602 struct extent_state *orig, u64 split) 1603 { 1604 u64 size; 1605 1606 /* not delalloc, ignore it */ 1607 if (!(orig->state & EXTENT_DELALLOC)) 1608 return; 1609 1610 size = orig->end - orig->start + 1; 1611 if (size > BTRFS_MAX_EXTENT_SIZE) { 1612 u64 num_extents; 1613 u64 new_size; 1614 1615 /* 1616 * See the explanation in btrfs_merge_extent_hook, the same 1617 * applies here, just in reverse. 1618 */ 1619 new_size = orig->end - split + 1; 1620 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1621 BTRFS_MAX_EXTENT_SIZE); 1622 new_size = split - orig->start; 1623 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1624 BTRFS_MAX_EXTENT_SIZE); 1625 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1626 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1627 return; 1628 } 1629 1630 spin_lock(&BTRFS_I(inode)->lock); 1631 BTRFS_I(inode)->outstanding_extents++; 1632 spin_unlock(&BTRFS_I(inode)->lock); 1633 } 1634 1635 /* 1636 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1637 * extents so we can keep track of new extents that are just merged onto old 1638 * extents, such as when we are doing sequential writes, so we can properly 1639 * account for the metadata space we'll need. 1640 */ 1641 static void btrfs_merge_extent_hook(struct inode *inode, 1642 struct extent_state *new, 1643 struct extent_state *other) 1644 { 1645 u64 new_size, old_size; 1646 u64 num_extents; 1647 1648 /* not delalloc, ignore it */ 1649 if (!(other->state & EXTENT_DELALLOC)) 1650 return; 1651 1652 if (new->start > other->start) 1653 new_size = new->end - other->start + 1; 1654 else 1655 new_size = other->end - new->start + 1; 1656 1657 /* we're not bigger than the max, unreserve the space and go */ 1658 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1659 spin_lock(&BTRFS_I(inode)->lock); 1660 BTRFS_I(inode)->outstanding_extents--; 1661 spin_unlock(&BTRFS_I(inode)->lock); 1662 return; 1663 } 1664 1665 /* 1666 * We have to add up either side to figure out how many extents were 1667 * accounted for before we merged into one big extent. If the number of 1668 * extents we accounted for is <= the amount we need for the new range 1669 * then we can return, otherwise drop. Think of it like this 1670 * 1671 * [ 4k][MAX_SIZE] 1672 * 1673 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1674 * need 2 outstanding extents, on one side we have 1 and the other side 1675 * we have 1 so they are == and we can return. But in this case 1676 * 1677 * [MAX_SIZE+4k][MAX_SIZE+4k] 1678 * 1679 * Each range on their own accounts for 2 extents, but merged together 1680 * they are only 3 extents worth of accounting, so we need to drop in 1681 * this case. 1682 */ 1683 old_size = other->end - other->start + 1; 1684 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1685 BTRFS_MAX_EXTENT_SIZE); 1686 old_size = new->end - new->start + 1; 1687 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1688 BTRFS_MAX_EXTENT_SIZE); 1689 1690 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1691 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1692 return; 1693 1694 spin_lock(&BTRFS_I(inode)->lock); 1695 BTRFS_I(inode)->outstanding_extents--; 1696 spin_unlock(&BTRFS_I(inode)->lock); 1697 } 1698 1699 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1700 struct inode *inode) 1701 { 1702 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1703 1704 spin_lock(&root->delalloc_lock); 1705 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1706 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1707 &root->delalloc_inodes); 1708 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1709 &BTRFS_I(inode)->runtime_flags); 1710 root->nr_delalloc_inodes++; 1711 if (root->nr_delalloc_inodes == 1) { 1712 spin_lock(&fs_info->delalloc_root_lock); 1713 BUG_ON(!list_empty(&root->delalloc_root)); 1714 list_add_tail(&root->delalloc_root, 1715 &fs_info->delalloc_roots); 1716 spin_unlock(&fs_info->delalloc_root_lock); 1717 } 1718 } 1719 spin_unlock(&root->delalloc_lock); 1720 } 1721 1722 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1723 struct inode *inode) 1724 { 1725 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1726 1727 spin_lock(&root->delalloc_lock); 1728 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1729 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1730 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1731 &BTRFS_I(inode)->runtime_flags); 1732 root->nr_delalloc_inodes--; 1733 if (!root->nr_delalloc_inodes) { 1734 spin_lock(&fs_info->delalloc_root_lock); 1735 BUG_ON(list_empty(&root->delalloc_root)); 1736 list_del_init(&root->delalloc_root); 1737 spin_unlock(&fs_info->delalloc_root_lock); 1738 } 1739 } 1740 spin_unlock(&root->delalloc_lock); 1741 } 1742 1743 /* 1744 * extent_io.c set_bit_hook, used to track delayed allocation 1745 * bytes in this file, and to maintain the list of inodes that 1746 * have pending delalloc work to be done. 1747 */ 1748 static void btrfs_set_bit_hook(struct inode *inode, 1749 struct extent_state *state, unsigned *bits) 1750 { 1751 1752 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1753 1754 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1755 WARN_ON(1); 1756 /* 1757 * set_bit and clear bit hooks normally require _irqsave/restore 1758 * but in this case, we are only testing for the DELALLOC 1759 * bit, which is only set or cleared with irqs on 1760 */ 1761 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1762 struct btrfs_root *root = BTRFS_I(inode)->root; 1763 u64 len = state->end + 1 - state->start; 1764 bool do_list = !btrfs_is_free_space_inode(inode); 1765 1766 if (*bits & EXTENT_FIRST_DELALLOC) { 1767 *bits &= ~EXTENT_FIRST_DELALLOC; 1768 } else { 1769 spin_lock(&BTRFS_I(inode)->lock); 1770 BTRFS_I(inode)->outstanding_extents++; 1771 spin_unlock(&BTRFS_I(inode)->lock); 1772 } 1773 1774 /* For sanity tests */ 1775 if (btrfs_is_testing(fs_info)) 1776 return; 1777 1778 __percpu_counter_add(&fs_info->delalloc_bytes, len, 1779 fs_info->delalloc_batch); 1780 spin_lock(&BTRFS_I(inode)->lock); 1781 BTRFS_I(inode)->delalloc_bytes += len; 1782 if (*bits & EXTENT_DEFRAG) 1783 BTRFS_I(inode)->defrag_bytes += len; 1784 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1785 &BTRFS_I(inode)->runtime_flags)) 1786 btrfs_add_delalloc_inodes(root, inode); 1787 spin_unlock(&BTRFS_I(inode)->lock); 1788 } 1789 } 1790 1791 /* 1792 * extent_io.c clear_bit_hook, see set_bit_hook for why 1793 */ 1794 static void btrfs_clear_bit_hook(struct inode *inode, 1795 struct extent_state *state, 1796 unsigned *bits) 1797 { 1798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1799 u64 len = state->end + 1 - state->start; 1800 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1801 BTRFS_MAX_EXTENT_SIZE); 1802 1803 spin_lock(&BTRFS_I(inode)->lock); 1804 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1805 BTRFS_I(inode)->defrag_bytes -= len; 1806 spin_unlock(&BTRFS_I(inode)->lock); 1807 1808 /* 1809 * set_bit and clear bit hooks normally require _irqsave/restore 1810 * but in this case, we are only testing for the DELALLOC 1811 * bit, which is only set or cleared with irqs on 1812 */ 1813 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1814 struct btrfs_root *root = BTRFS_I(inode)->root; 1815 bool do_list = !btrfs_is_free_space_inode(inode); 1816 1817 if (*bits & EXTENT_FIRST_DELALLOC) { 1818 *bits &= ~EXTENT_FIRST_DELALLOC; 1819 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1820 spin_lock(&BTRFS_I(inode)->lock); 1821 BTRFS_I(inode)->outstanding_extents -= num_extents; 1822 spin_unlock(&BTRFS_I(inode)->lock); 1823 } 1824 1825 /* 1826 * We don't reserve metadata space for space cache inodes so we 1827 * don't need to call dellalloc_release_metadata if there is an 1828 * error. 1829 */ 1830 if (*bits & EXTENT_DO_ACCOUNTING && 1831 root != fs_info->tree_root) 1832 btrfs_delalloc_release_metadata(inode, len); 1833 1834 /* For sanity tests. */ 1835 if (btrfs_is_testing(fs_info)) 1836 return; 1837 1838 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1839 && do_list && !(state->state & EXTENT_NORESERVE) 1840 && (*bits & (EXTENT_DO_ACCOUNTING | 1841 EXTENT_CLEAR_DATA_RESV))) 1842 btrfs_free_reserved_data_space_noquota(inode, 1843 state->start, len); 1844 1845 __percpu_counter_add(&fs_info->delalloc_bytes, -len, 1846 fs_info->delalloc_batch); 1847 spin_lock(&BTRFS_I(inode)->lock); 1848 BTRFS_I(inode)->delalloc_bytes -= len; 1849 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1850 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1851 &BTRFS_I(inode)->runtime_flags)) 1852 btrfs_del_delalloc_inode(root, inode); 1853 spin_unlock(&BTRFS_I(inode)->lock); 1854 } 1855 } 1856 1857 /* 1858 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1859 * we don't create bios that span stripes or chunks 1860 * 1861 * return 1 if page cannot be merged to bio 1862 * return 0 if page can be merged to bio 1863 * return error otherwise 1864 */ 1865 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1866 size_t size, struct bio *bio, 1867 unsigned long bio_flags) 1868 { 1869 struct inode *inode = page->mapping->host; 1870 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1871 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1872 u64 length = 0; 1873 u64 map_length; 1874 int ret; 1875 1876 if (bio_flags & EXTENT_BIO_COMPRESSED) 1877 return 0; 1878 1879 length = bio->bi_iter.bi_size; 1880 map_length = length; 1881 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1882 NULL, 0); 1883 if (ret < 0) 1884 return ret; 1885 if (map_length < length + size) 1886 return 1; 1887 return 0; 1888 } 1889 1890 /* 1891 * in order to insert checksums into the metadata in large chunks, 1892 * we wait until bio submission time. All the pages in the bio are 1893 * checksummed and sums are attached onto the ordered extent record. 1894 * 1895 * At IO completion time the cums attached on the ordered extent record 1896 * are inserted into the btree 1897 */ 1898 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 1899 int mirror_num, unsigned long bio_flags, 1900 u64 bio_offset) 1901 { 1902 int ret = 0; 1903 1904 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1905 BUG_ON(ret); /* -ENOMEM */ 1906 return 0; 1907 } 1908 1909 /* 1910 * in order to insert checksums into the metadata in large chunks, 1911 * we wait until bio submission time. All the pages in the bio are 1912 * checksummed and sums are attached onto the ordered extent record. 1913 * 1914 * At IO completion time the cums attached on the ordered extent record 1915 * are inserted into the btree 1916 */ 1917 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio, 1918 int mirror_num, unsigned long bio_flags, 1919 u64 bio_offset) 1920 { 1921 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1922 int ret; 1923 1924 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1925 if (ret) { 1926 bio->bi_error = ret; 1927 bio_endio(bio); 1928 } 1929 return ret; 1930 } 1931 1932 /* 1933 * extent_io.c submission hook. This does the right thing for csum calculation 1934 * on write, or reading the csums from the tree before a read 1935 */ 1936 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 1937 int mirror_num, unsigned long bio_flags, 1938 u64 bio_offset) 1939 { 1940 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1941 struct btrfs_root *root = BTRFS_I(inode)->root; 1942 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1943 int ret = 0; 1944 int skip_sum; 1945 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1946 1947 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1948 1949 if (btrfs_is_free_space_inode(inode)) 1950 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1951 1952 if (bio_op(bio) != REQ_OP_WRITE) { 1953 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1954 if (ret) 1955 goto out; 1956 1957 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1958 ret = btrfs_submit_compressed_read(inode, bio, 1959 mirror_num, 1960 bio_flags); 1961 goto out; 1962 } else if (!skip_sum) { 1963 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 1964 if (ret) 1965 goto out; 1966 } 1967 goto mapit; 1968 } else if (async && !skip_sum) { 1969 /* csum items have already been cloned */ 1970 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1971 goto mapit; 1972 /* we're doing a write, do the async checksumming */ 1973 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 1974 bio_flags, bio_offset, 1975 __btrfs_submit_bio_start, 1976 __btrfs_submit_bio_done); 1977 goto out; 1978 } else if (!skip_sum) { 1979 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1980 if (ret) 1981 goto out; 1982 } 1983 1984 mapit: 1985 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 1986 1987 out: 1988 if (ret < 0) { 1989 bio->bi_error = ret; 1990 bio_endio(bio); 1991 } 1992 return ret; 1993 } 1994 1995 /* 1996 * given a list of ordered sums record them in the inode. This happens 1997 * at IO completion time based on sums calculated at bio submission time. 1998 */ 1999 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2000 struct inode *inode, u64 file_offset, 2001 struct list_head *list) 2002 { 2003 struct btrfs_ordered_sum *sum; 2004 2005 list_for_each_entry(sum, list, list) { 2006 trans->adding_csums = 1; 2007 btrfs_csum_file_blocks(trans, 2008 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2009 trans->adding_csums = 0; 2010 } 2011 return 0; 2012 } 2013 2014 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2015 struct extent_state **cached_state, int dedupe) 2016 { 2017 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2018 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2019 cached_state); 2020 } 2021 2022 /* see btrfs_writepage_start_hook for details on why this is required */ 2023 struct btrfs_writepage_fixup { 2024 struct page *page; 2025 struct btrfs_work work; 2026 }; 2027 2028 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2029 { 2030 struct btrfs_writepage_fixup *fixup; 2031 struct btrfs_ordered_extent *ordered; 2032 struct extent_state *cached_state = NULL; 2033 struct page *page; 2034 struct inode *inode; 2035 u64 page_start; 2036 u64 page_end; 2037 int ret; 2038 2039 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2040 page = fixup->page; 2041 again: 2042 lock_page(page); 2043 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2044 ClearPageChecked(page); 2045 goto out_page; 2046 } 2047 2048 inode = page->mapping->host; 2049 page_start = page_offset(page); 2050 page_end = page_offset(page) + PAGE_SIZE - 1; 2051 2052 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2053 &cached_state); 2054 2055 /* already ordered? We're done */ 2056 if (PagePrivate2(page)) 2057 goto out; 2058 2059 ordered = btrfs_lookup_ordered_range(inode, page_start, 2060 PAGE_SIZE); 2061 if (ordered) { 2062 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2063 page_end, &cached_state, GFP_NOFS); 2064 unlock_page(page); 2065 btrfs_start_ordered_extent(inode, ordered, 1); 2066 btrfs_put_ordered_extent(ordered); 2067 goto again; 2068 } 2069 2070 ret = btrfs_delalloc_reserve_space(inode, page_start, 2071 PAGE_SIZE); 2072 if (ret) { 2073 mapping_set_error(page->mapping, ret); 2074 end_extent_writepage(page, ret, page_start, page_end); 2075 ClearPageChecked(page); 2076 goto out; 2077 } 2078 2079 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state, 2080 0); 2081 ClearPageChecked(page); 2082 set_page_dirty(page); 2083 out: 2084 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2085 &cached_state, GFP_NOFS); 2086 out_page: 2087 unlock_page(page); 2088 put_page(page); 2089 kfree(fixup); 2090 } 2091 2092 /* 2093 * There are a few paths in the higher layers of the kernel that directly 2094 * set the page dirty bit without asking the filesystem if it is a 2095 * good idea. This causes problems because we want to make sure COW 2096 * properly happens and the data=ordered rules are followed. 2097 * 2098 * In our case any range that doesn't have the ORDERED bit set 2099 * hasn't been properly setup for IO. We kick off an async process 2100 * to fix it up. The async helper will wait for ordered extents, set 2101 * the delalloc bit and make it safe to write the page. 2102 */ 2103 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2104 { 2105 struct inode *inode = page->mapping->host; 2106 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2107 struct btrfs_writepage_fixup *fixup; 2108 2109 /* this page is properly in the ordered list */ 2110 if (TestClearPagePrivate2(page)) 2111 return 0; 2112 2113 if (PageChecked(page)) 2114 return -EAGAIN; 2115 2116 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2117 if (!fixup) 2118 return -EAGAIN; 2119 2120 SetPageChecked(page); 2121 get_page(page); 2122 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2123 btrfs_writepage_fixup_worker, NULL, NULL); 2124 fixup->page = page; 2125 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2126 return -EBUSY; 2127 } 2128 2129 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2130 struct inode *inode, u64 file_pos, 2131 u64 disk_bytenr, u64 disk_num_bytes, 2132 u64 num_bytes, u64 ram_bytes, 2133 u8 compression, u8 encryption, 2134 u16 other_encoding, int extent_type) 2135 { 2136 struct btrfs_root *root = BTRFS_I(inode)->root; 2137 struct btrfs_file_extent_item *fi; 2138 struct btrfs_path *path; 2139 struct extent_buffer *leaf; 2140 struct btrfs_key ins; 2141 int extent_inserted = 0; 2142 int ret; 2143 2144 path = btrfs_alloc_path(); 2145 if (!path) 2146 return -ENOMEM; 2147 2148 /* 2149 * we may be replacing one extent in the tree with another. 2150 * The new extent is pinned in the extent map, and we don't want 2151 * to drop it from the cache until it is completely in the btree. 2152 * 2153 * So, tell btrfs_drop_extents to leave this extent in the cache. 2154 * the caller is expected to unpin it and allow it to be merged 2155 * with the others. 2156 */ 2157 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2158 file_pos + num_bytes, NULL, 0, 2159 1, sizeof(*fi), &extent_inserted); 2160 if (ret) 2161 goto out; 2162 2163 if (!extent_inserted) { 2164 ins.objectid = btrfs_ino(inode); 2165 ins.offset = file_pos; 2166 ins.type = BTRFS_EXTENT_DATA_KEY; 2167 2168 path->leave_spinning = 1; 2169 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2170 sizeof(*fi)); 2171 if (ret) 2172 goto out; 2173 } 2174 leaf = path->nodes[0]; 2175 fi = btrfs_item_ptr(leaf, path->slots[0], 2176 struct btrfs_file_extent_item); 2177 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2178 btrfs_set_file_extent_type(leaf, fi, extent_type); 2179 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2180 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2181 btrfs_set_file_extent_offset(leaf, fi, 0); 2182 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2183 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2184 btrfs_set_file_extent_compression(leaf, fi, compression); 2185 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2186 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2187 2188 btrfs_mark_buffer_dirty(leaf); 2189 btrfs_release_path(path); 2190 2191 inode_add_bytes(inode, num_bytes); 2192 2193 ins.objectid = disk_bytenr; 2194 ins.offset = disk_num_bytes; 2195 ins.type = BTRFS_EXTENT_ITEM_KEY; 2196 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid, 2197 btrfs_ino(inode), file_pos, 2198 ram_bytes, &ins); 2199 /* 2200 * Release the reserved range from inode dirty range map, as it is 2201 * already moved into delayed_ref_head 2202 */ 2203 btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2204 out: 2205 btrfs_free_path(path); 2206 2207 return ret; 2208 } 2209 2210 /* snapshot-aware defrag */ 2211 struct sa_defrag_extent_backref { 2212 struct rb_node node; 2213 struct old_sa_defrag_extent *old; 2214 u64 root_id; 2215 u64 inum; 2216 u64 file_pos; 2217 u64 extent_offset; 2218 u64 num_bytes; 2219 u64 generation; 2220 }; 2221 2222 struct old_sa_defrag_extent { 2223 struct list_head list; 2224 struct new_sa_defrag_extent *new; 2225 2226 u64 extent_offset; 2227 u64 bytenr; 2228 u64 offset; 2229 u64 len; 2230 int count; 2231 }; 2232 2233 struct new_sa_defrag_extent { 2234 struct rb_root root; 2235 struct list_head head; 2236 struct btrfs_path *path; 2237 struct inode *inode; 2238 u64 file_pos; 2239 u64 len; 2240 u64 bytenr; 2241 u64 disk_len; 2242 u8 compress_type; 2243 }; 2244 2245 static int backref_comp(struct sa_defrag_extent_backref *b1, 2246 struct sa_defrag_extent_backref *b2) 2247 { 2248 if (b1->root_id < b2->root_id) 2249 return -1; 2250 else if (b1->root_id > b2->root_id) 2251 return 1; 2252 2253 if (b1->inum < b2->inum) 2254 return -1; 2255 else if (b1->inum > b2->inum) 2256 return 1; 2257 2258 if (b1->file_pos < b2->file_pos) 2259 return -1; 2260 else if (b1->file_pos > b2->file_pos) 2261 return 1; 2262 2263 /* 2264 * [------------------------------] ===> (a range of space) 2265 * |<--->| |<---->| =============> (fs/file tree A) 2266 * |<---------------------------->| ===> (fs/file tree B) 2267 * 2268 * A range of space can refer to two file extents in one tree while 2269 * refer to only one file extent in another tree. 2270 * 2271 * So we may process a disk offset more than one time(two extents in A) 2272 * and locate at the same extent(one extent in B), then insert two same 2273 * backrefs(both refer to the extent in B). 2274 */ 2275 return 0; 2276 } 2277 2278 static void backref_insert(struct rb_root *root, 2279 struct sa_defrag_extent_backref *backref) 2280 { 2281 struct rb_node **p = &root->rb_node; 2282 struct rb_node *parent = NULL; 2283 struct sa_defrag_extent_backref *entry; 2284 int ret; 2285 2286 while (*p) { 2287 parent = *p; 2288 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2289 2290 ret = backref_comp(backref, entry); 2291 if (ret < 0) 2292 p = &(*p)->rb_left; 2293 else 2294 p = &(*p)->rb_right; 2295 } 2296 2297 rb_link_node(&backref->node, parent, p); 2298 rb_insert_color(&backref->node, root); 2299 } 2300 2301 /* 2302 * Note the backref might has changed, and in this case we just return 0. 2303 */ 2304 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2305 void *ctx) 2306 { 2307 struct btrfs_file_extent_item *extent; 2308 struct old_sa_defrag_extent *old = ctx; 2309 struct new_sa_defrag_extent *new = old->new; 2310 struct btrfs_path *path = new->path; 2311 struct btrfs_key key; 2312 struct btrfs_root *root; 2313 struct sa_defrag_extent_backref *backref; 2314 struct extent_buffer *leaf; 2315 struct inode *inode = new->inode; 2316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2317 int slot; 2318 int ret; 2319 u64 extent_offset; 2320 u64 num_bytes; 2321 2322 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2323 inum == btrfs_ino(inode)) 2324 return 0; 2325 2326 key.objectid = root_id; 2327 key.type = BTRFS_ROOT_ITEM_KEY; 2328 key.offset = (u64)-1; 2329 2330 root = btrfs_read_fs_root_no_name(fs_info, &key); 2331 if (IS_ERR(root)) { 2332 if (PTR_ERR(root) == -ENOENT) 2333 return 0; 2334 WARN_ON(1); 2335 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2336 inum, offset, root_id); 2337 return PTR_ERR(root); 2338 } 2339 2340 key.objectid = inum; 2341 key.type = BTRFS_EXTENT_DATA_KEY; 2342 if (offset > (u64)-1 << 32) 2343 key.offset = 0; 2344 else 2345 key.offset = offset; 2346 2347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2348 if (WARN_ON(ret < 0)) 2349 return ret; 2350 ret = 0; 2351 2352 while (1) { 2353 cond_resched(); 2354 2355 leaf = path->nodes[0]; 2356 slot = path->slots[0]; 2357 2358 if (slot >= btrfs_header_nritems(leaf)) { 2359 ret = btrfs_next_leaf(root, path); 2360 if (ret < 0) { 2361 goto out; 2362 } else if (ret > 0) { 2363 ret = 0; 2364 goto out; 2365 } 2366 continue; 2367 } 2368 2369 path->slots[0]++; 2370 2371 btrfs_item_key_to_cpu(leaf, &key, slot); 2372 2373 if (key.objectid > inum) 2374 goto out; 2375 2376 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2377 continue; 2378 2379 extent = btrfs_item_ptr(leaf, slot, 2380 struct btrfs_file_extent_item); 2381 2382 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2383 continue; 2384 2385 /* 2386 * 'offset' refers to the exact key.offset, 2387 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2388 * (key.offset - extent_offset). 2389 */ 2390 if (key.offset != offset) 2391 continue; 2392 2393 extent_offset = btrfs_file_extent_offset(leaf, extent); 2394 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2395 2396 if (extent_offset >= old->extent_offset + old->offset + 2397 old->len || extent_offset + num_bytes <= 2398 old->extent_offset + old->offset) 2399 continue; 2400 break; 2401 } 2402 2403 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2404 if (!backref) { 2405 ret = -ENOENT; 2406 goto out; 2407 } 2408 2409 backref->root_id = root_id; 2410 backref->inum = inum; 2411 backref->file_pos = offset; 2412 backref->num_bytes = num_bytes; 2413 backref->extent_offset = extent_offset; 2414 backref->generation = btrfs_file_extent_generation(leaf, extent); 2415 backref->old = old; 2416 backref_insert(&new->root, backref); 2417 old->count++; 2418 out: 2419 btrfs_release_path(path); 2420 WARN_ON(ret); 2421 return ret; 2422 } 2423 2424 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2425 struct new_sa_defrag_extent *new) 2426 { 2427 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2428 struct old_sa_defrag_extent *old, *tmp; 2429 int ret; 2430 2431 new->path = path; 2432 2433 list_for_each_entry_safe(old, tmp, &new->head, list) { 2434 ret = iterate_inodes_from_logical(old->bytenr + 2435 old->extent_offset, fs_info, 2436 path, record_one_backref, 2437 old); 2438 if (ret < 0 && ret != -ENOENT) 2439 return false; 2440 2441 /* no backref to be processed for this extent */ 2442 if (!old->count) { 2443 list_del(&old->list); 2444 kfree(old); 2445 } 2446 } 2447 2448 if (list_empty(&new->head)) 2449 return false; 2450 2451 return true; 2452 } 2453 2454 static int relink_is_mergable(struct extent_buffer *leaf, 2455 struct btrfs_file_extent_item *fi, 2456 struct new_sa_defrag_extent *new) 2457 { 2458 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2459 return 0; 2460 2461 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2462 return 0; 2463 2464 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2465 return 0; 2466 2467 if (btrfs_file_extent_encryption(leaf, fi) || 2468 btrfs_file_extent_other_encoding(leaf, fi)) 2469 return 0; 2470 2471 return 1; 2472 } 2473 2474 /* 2475 * Note the backref might has changed, and in this case we just return 0. 2476 */ 2477 static noinline int relink_extent_backref(struct btrfs_path *path, 2478 struct sa_defrag_extent_backref *prev, 2479 struct sa_defrag_extent_backref *backref) 2480 { 2481 struct btrfs_file_extent_item *extent; 2482 struct btrfs_file_extent_item *item; 2483 struct btrfs_ordered_extent *ordered; 2484 struct btrfs_trans_handle *trans; 2485 struct btrfs_root *root; 2486 struct btrfs_key key; 2487 struct extent_buffer *leaf; 2488 struct old_sa_defrag_extent *old = backref->old; 2489 struct new_sa_defrag_extent *new = old->new; 2490 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2491 struct inode *inode; 2492 struct extent_state *cached = NULL; 2493 int ret = 0; 2494 u64 start; 2495 u64 len; 2496 u64 lock_start; 2497 u64 lock_end; 2498 bool merge = false; 2499 int index; 2500 2501 if (prev && prev->root_id == backref->root_id && 2502 prev->inum == backref->inum && 2503 prev->file_pos + prev->num_bytes == backref->file_pos) 2504 merge = true; 2505 2506 /* step 1: get root */ 2507 key.objectid = backref->root_id; 2508 key.type = BTRFS_ROOT_ITEM_KEY; 2509 key.offset = (u64)-1; 2510 2511 index = srcu_read_lock(&fs_info->subvol_srcu); 2512 2513 root = btrfs_read_fs_root_no_name(fs_info, &key); 2514 if (IS_ERR(root)) { 2515 srcu_read_unlock(&fs_info->subvol_srcu, index); 2516 if (PTR_ERR(root) == -ENOENT) 2517 return 0; 2518 return PTR_ERR(root); 2519 } 2520 2521 if (btrfs_root_readonly(root)) { 2522 srcu_read_unlock(&fs_info->subvol_srcu, index); 2523 return 0; 2524 } 2525 2526 /* step 2: get inode */ 2527 key.objectid = backref->inum; 2528 key.type = BTRFS_INODE_ITEM_KEY; 2529 key.offset = 0; 2530 2531 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2532 if (IS_ERR(inode)) { 2533 srcu_read_unlock(&fs_info->subvol_srcu, index); 2534 return 0; 2535 } 2536 2537 srcu_read_unlock(&fs_info->subvol_srcu, index); 2538 2539 /* step 3: relink backref */ 2540 lock_start = backref->file_pos; 2541 lock_end = backref->file_pos + backref->num_bytes - 1; 2542 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2543 &cached); 2544 2545 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2546 if (ordered) { 2547 btrfs_put_ordered_extent(ordered); 2548 goto out_unlock; 2549 } 2550 2551 trans = btrfs_join_transaction(root); 2552 if (IS_ERR(trans)) { 2553 ret = PTR_ERR(trans); 2554 goto out_unlock; 2555 } 2556 2557 key.objectid = backref->inum; 2558 key.type = BTRFS_EXTENT_DATA_KEY; 2559 key.offset = backref->file_pos; 2560 2561 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2562 if (ret < 0) { 2563 goto out_free_path; 2564 } else if (ret > 0) { 2565 ret = 0; 2566 goto out_free_path; 2567 } 2568 2569 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2570 struct btrfs_file_extent_item); 2571 2572 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2573 backref->generation) 2574 goto out_free_path; 2575 2576 btrfs_release_path(path); 2577 2578 start = backref->file_pos; 2579 if (backref->extent_offset < old->extent_offset + old->offset) 2580 start += old->extent_offset + old->offset - 2581 backref->extent_offset; 2582 2583 len = min(backref->extent_offset + backref->num_bytes, 2584 old->extent_offset + old->offset + old->len); 2585 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2586 2587 ret = btrfs_drop_extents(trans, root, inode, start, 2588 start + len, 1); 2589 if (ret) 2590 goto out_free_path; 2591 again: 2592 key.objectid = btrfs_ino(inode); 2593 key.type = BTRFS_EXTENT_DATA_KEY; 2594 key.offset = start; 2595 2596 path->leave_spinning = 1; 2597 if (merge) { 2598 struct btrfs_file_extent_item *fi; 2599 u64 extent_len; 2600 struct btrfs_key found_key; 2601 2602 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2603 if (ret < 0) 2604 goto out_free_path; 2605 2606 path->slots[0]--; 2607 leaf = path->nodes[0]; 2608 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2609 2610 fi = btrfs_item_ptr(leaf, path->slots[0], 2611 struct btrfs_file_extent_item); 2612 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2613 2614 if (extent_len + found_key.offset == start && 2615 relink_is_mergable(leaf, fi, new)) { 2616 btrfs_set_file_extent_num_bytes(leaf, fi, 2617 extent_len + len); 2618 btrfs_mark_buffer_dirty(leaf); 2619 inode_add_bytes(inode, len); 2620 2621 ret = 1; 2622 goto out_free_path; 2623 } else { 2624 merge = false; 2625 btrfs_release_path(path); 2626 goto again; 2627 } 2628 } 2629 2630 ret = btrfs_insert_empty_item(trans, root, path, &key, 2631 sizeof(*extent)); 2632 if (ret) { 2633 btrfs_abort_transaction(trans, ret); 2634 goto out_free_path; 2635 } 2636 2637 leaf = path->nodes[0]; 2638 item = btrfs_item_ptr(leaf, path->slots[0], 2639 struct btrfs_file_extent_item); 2640 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2641 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2642 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2643 btrfs_set_file_extent_num_bytes(leaf, item, len); 2644 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2645 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2646 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2647 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2648 btrfs_set_file_extent_encryption(leaf, item, 0); 2649 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2650 2651 btrfs_mark_buffer_dirty(leaf); 2652 inode_add_bytes(inode, len); 2653 btrfs_release_path(path); 2654 2655 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr, 2656 new->disk_len, 0, 2657 backref->root_id, backref->inum, 2658 new->file_pos); /* start - extent_offset */ 2659 if (ret) { 2660 btrfs_abort_transaction(trans, ret); 2661 goto out_free_path; 2662 } 2663 2664 ret = 1; 2665 out_free_path: 2666 btrfs_release_path(path); 2667 path->leave_spinning = 0; 2668 btrfs_end_transaction(trans); 2669 out_unlock: 2670 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2671 &cached, GFP_NOFS); 2672 iput(inode); 2673 return ret; 2674 } 2675 2676 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2677 { 2678 struct old_sa_defrag_extent *old, *tmp; 2679 2680 if (!new) 2681 return; 2682 2683 list_for_each_entry_safe(old, tmp, &new->head, list) { 2684 kfree(old); 2685 } 2686 kfree(new); 2687 } 2688 2689 static void relink_file_extents(struct new_sa_defrag_extent *new) 2690 { 2691 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2692 struct btrfs_path *path; 2693 struct sa_defrag_extent_backref *backref; 2694 struct sa_defrag_extent_backref *prev = NULL; 2695 struct inode *inode; 2696 struct btrfs_root *root; 2697 struct rb_node *node; 2698 int ret; 2699 2700 inode = new->inode; 2701 root = BTRFS_I(inode)->root; 2702 2703 path = btrfs_alloc_path(); 2704 if (!path) 2705 return; 2706 2707 if (!record_extent_backrefs(path, new)) { 2708 btrfs_free_path(path); 2709 goto out; 2710 } 2711 btrfs_release_path(path); 2712 2713 while (1) { 2714 node = rb_first(&new->root); 2715 if (!node) 2716 break; 2717 rb_erase(node, &new->root); 2718 2719 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2720 2721 ret = relink_extent_backref(path, prev, backref); 2722 WARN_ON(ret < 0); 2723 2724 kfree(prev); 2725 2726 if (ret == 1) 2727 prev = backref; 2728 else 2729 prev = NULL; 2730 cond_resched(); 2731 } 2732 kfree(prev); 2733 2734 btrfs_free_path(path); 2735 out: 2736 free_sa_defrag_extent(new); 2737 2738 atomic_dec(&fs_info->defrag_running); 2739 wake_up(&fs_info->transaction_wait); 2740 } 2741 2742 static struct new_sa_defrag_extent * 2743 record_old_file_extents(struct inode *inode, 2744 struct btrfs_ordered_extent *ordered) 2745 { 2746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2747 struct btrfs_root *root = BTRFS_I(inode)->root; 2748 struct btrfs_path *path; 2749 struct btrfs_key key; 2750 struct old_sa_defrag_extent *old; 2751 struct new_sa_defrag_extent *new; 2752 int ret; 2753 2754 new = kmalloc(sizeof(*new), GFP_NOFS); 2755 if (!new) 2756 return NULL; 2757 2758 new->inode = inode; 2759 new->file_pos = ordered->file_offset; 2760 new->len = ordered->len; 2761 new->bytenr = ordered->start; 2762 new->disk_len = ordered->disk_len; 2763 new->compress_type = ordered->compress_type; 2764 new->root = RB_ROOT; 2765 INIT_LIST_HEAD(&new->head); 2766 2767 path = btrfs_alloc_path(); 2768 if (!path) 2769 goto out_kfree; 2770 2771 key.objectid = btrfs_ino(inode); 2772 key.type = BTRFS_EXTENT_DATA_KEY; 2773 key.offset = new->file_pos; 2774 2775 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2776 if (ret < 0) 2777 goto out_free_path; 2778 if (ret > 0 && path->slots[0] > 0) 2779 path->slots[0]--; 2780 2781 /* find out all the old extents for the file range */ 2782 while (1) { 2783 struct btrfs_file_extent_item *extent; 2784 struct extent_buffer *l; 2785 int slot; 2786 u64 num_bytes; 2787 u64 offset; 2788 u64 end; 2789 u64 disk_bytenr; 2790 u64 extent_offset; 2791 2792 l = path->nodes[0]; 2793 slot = path->slots[0]; 2794 2795 if (slot >= btrfs_header_nritems(l)) { 2796 ret = btrfs_next_leaf(root, path); 2797 if (ret < 0) 2798 goto out_free_path; 2799 else if (ret > 0) 2800 break; 2801 continue; 2802 } 2803 2804 btrfs_item_key_to_cpu(l, &key, slot); 2805 2806 if (key.objectid != btrfs_ino(inode)) 2807 break; 2808 if (key.type != BTRFS_EXTENT_DATA_KEY) 2809 break; 2810 if (key.offset >= new->file_pos + new->len) 2811 break; 2812 2813 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2814 2815 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2816 if (key.offset + num_bytes < new->file_pos) 2817 goto next; 2818 2819 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2820 if (!disk_bytenr) 2821 goto next; 2822 2823 extent_offset = btrfs_file_extent_offset(l, extent); 2824 2825 old = kmalloc(sizeof(*old), GFP_NOFS); 2826 if (!old) 2827 goto out_free_path; 2828 2829 offset = max(new->file_pos, key.offset); 2830 end = min(new->file_pos + new->len, key.offset + num_bytes); 2831 2832 old->bytenr = disk_bytenr; 2833 old->extent_offset = extent_offset; 2834 old->offset = offset - key.offset; 2835 old->len = end - offset; 2836 old->new = new; 2837 old->count = 0; 2838 list_add_tail(&old->list, &new->head); 2839 next: 2840 path->slots[0]++; 2841 cond_resched(); 2842 } 2843 2844 btrfs_free_path(path); 2845 atomic_inc(&fs_info->defrag_running); 2846 2847 return new; 2848 2849 out_free_path: 2850 btrfs_free_path(path); 2851 out_kfree: 2852 free_sa_defrag_extent(new); 2853 return NULL; 2854 } 2855 2856 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2857 u64 start, u64 len) 2858 { 2859 struct btrfs_block_group_cache *cache; 2860 2861 cache = btrfs_lookup_block_group(fs_info, start); 2862 ASSERT(cache); 2863 2864 spin_lock(&cache->lock); 2865 cache->delalloc_bytes -= len; 2866 spin_unlock(&cache->lock); 2867 2868 btrfs_put_block_group(cache); 2869 } 2870 2871 /* as ordered data IO finishes, this gets called so we can finish 2872 * an ordered extent if the range of bytes in the file it covers are 2873 * fully written. 2874 */ 2875 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2876 { 2877 struct inode *inode = ordered_extent->inode; 2878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2879 struct btrfs_root *root = BTRFS_I(inode)->root; 2880 struct btrfs_trans_handle *trans = NULL; 2881 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2882 struct extent_state *cached_state = NULL; 2883 struct new_sa_defrag_extent *new = NULL; 2884 int compress_type = 0; 2885 int ret = 0; 2886 u64 logical_len = ordered_extent->len; 2887 bool nolock; 2888 bool truncated = false; 2889 2890 nolock = btrfs_is_free_space_inode(inode); 2891 2892 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2893 ret = -EIO; 2894 goto out; 2895 } 2896 2897 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2898 ordered_extent->file_offset + 2899 ordered_extent->len - 1); 2900 2901 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2902 truncated = true; 2903 logical_len = ordered_extent->truncated_len; 2904 /* Truncated the entire extent, don't bother adding */ 2905 if (!logical_len) 2906 goto out; 2907 } 2908 2909 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2910 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2911 2912 /* 2913 * For mwrite(mmap + memset to write) case, we still reserve 2914 * space for NOCOW range. 2915 * As NOCOW won't cause a new delayed ref, just free the space 2916 */ 2917 btrfs_qgroup_free_data(inode, ordered_extent->file_offset, 2918 ordered_extent->len); 2919 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2920 if (nolock) 2921 trans = btrfs_join_transaction_nolock(root); 2922 else 2923 trans = btrfs_join_transaction(root); 2924 if (IS_ERR(trans)) { 2925 ret = PTR_ERR(trans); 2926 trans = NULL; 2927 goto out; 2928 } 2929 trans->block_rsv = &fs_info->delalloc_block_rsv; 2930 ret = btrfs_update_inode_fallback(trans, root, inode); 2931 if (ret) /* -ENOMEM or corruption */ 2932 btrfs_abort_transaction(trans, ret); 2933 goto out; 2934 } 2935 2936 lock_extent_bits(io_tree, ordered_extent->file_offset, 2937 ordered_extent->file_offset + ordered_extent->len - 1, 2938 &cached_state); 2939 2940 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2941 ordered_extent->file_offset + ordered_extent->len - 1, 2942 EXTENT_DEFRAG, 1, cached_state); 2943 if (ret) { 2944 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2945 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2946 /* the inode is shared */ 2947 new = record_old_file_extents(inode, ordered_extent); 2948 2949 clear_extent_bit(io_tree, ordered_extent->file_offset, 2950 ordered_extent->file_offset + ordered_extent->len - 1, 2951 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2952 } 2953 2954 if (nolock) 2955 trans = btrfs_join_transaction_nolock(root); 2956 else 2957 trans = btrfs_join_transaction(root); 2958 if (IS_ERR(trans)) { 2959 ret = PTR_ERR(trans); 2960 trans = NULL; 2961 goto out_unlock; 2962 } 2963 2964 trans->block_rsv = &fs_info->delalloc_block_rsv; 2965 2966 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2967 compress_type = ordered_extent->compress_type; 2968 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2969 BUG_ON(compress_type); 2970 ret = btrfs_mark_extent_written(trans, inode, 2971 ordered_extent->file_offset, 2972 ordered_extent->file_offset + 2973 logical_len); 2974 } else { 2975 BUG_ON(root == fs_info->tree_root); 2976 ret = insert_reserved_file_extent(trans, inode, 2977 ordered_extent->file_offset, 2978 ordered_extent->start, 2979 ordered_extent->disk_len, 2980 logical_len, logical_len, 2981 compress_type, 0, 0, 2982 BTRFS_FILE_EXTENT_REG); 2983 if (!ret) 2984 btrfs_release_delalloc_bytes(fs_info, 2985 ordered_extent->start, 2986 ordered_extent->disk_len); 2987 } 2988 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2989 ordered_extent->file_offset, ordered_extent->len, 2990 trans->transid); 2991 if (ret < 0) { 2992 btrfs_abort_transaction(trans, ret); 2993 goto out_unlock; 2994 } 2995 2996 add_pending_csums(trans, inode, ordered_extent->file_offset, 2997 &ordered_extent->list); 2998 2999 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3000 ret = btrfs_update_inode_fallback(trans, root, inode); 3001 if (ret) { /* -ENOMEM or corruption */ 3002 btrfs_abort_transaction(trans, ret); 3003 goto out_unlock; 3004 } 3005 ret = 0; 3006 out_unlock: 3007 unlock_extent_cached(io_tree, ordered_extent->file_offset, 3008 ordered_extent->file_offset + 3009 ordered_extent->len - 1, &cached_state, GFP_NOFS); 3010 out: 3011 if (root != fs_info->tree_root) 3012 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 3013 if (trans) 3014 btrfs_end_transaction(trans); 3015 3016 if (ret || truncated) { 3017 u64 start, end; 3018 3019 if (truncated) 3020 start = ordered_extent->file_offset + logical_len; 3021 else 3022 start = ordered_extent->file_offset; 3023 end = ordered_extent->file_offset + ordered_extent->len - 1; 3024 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 3025 3026 /* Drop the cache for the part of the extent we didn't write. */ 3027 btrfs_drop_extent_cache(inode, start, end, 0); 3028 3029 /* 3030 * If the ordered extent had an IOERR or something else went 3031 * wrong we need to return the space for this ordered extent 3032 * back to the allocator. We only free the extent in the 3033 * truncated case if we didn't write out the extent at all. 3034 */ 3035 if ((ret || !logical_len) && 3036 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3037 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3038 btrfs_free_reserved_extent(fs_info, 3039 ordered_extent->start, 3040 ordered_extent->disk_len, 1); 3041 } 3042 3043 3044 /* 3045 * This needs to be done to make sure anybody waiting knows we are done 3046 * updating everything for this ordered extent. 3047 */ 3048 btrfs_remove_ordered_extent(inode, ordered_extent); 3049 3050 /* for snapshot-aware defrag */ 3051 if (new) { 3052 if (ret) { 3053 free_sa_defrag_extent(new); 3054 atomic_dec(&fs_info->defrag_running); 3055 } else { 3056 relink_file_extents(new); 3057 } 3058 } 3059 3060 /* once for us */ 3061 btrfs_put_ordered_extent(ordered_extent); 3062 /* once for the tree */ 3063 btrfs_put_ordered_extent(ordered_extent); 3064 3065 return ret; 3066 } 3067 3068 static void finish_ordered_fn(struct btrfs_work *work) 3069 { 3070 struct btrfs_ordered_extent *ordered_extent; 3071 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3072 btrfs_finish_ordered_io(ordered_extent); 3073 } 3074 3075 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3076 struct extent_state *state, int uptodate) 3077 { 3078 struct inode *inode = page->mapping->host; 3079 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3080 struct btrfs_ordered_extent *ordered_extent = NULL; 3081 struct btrfs_workqueue *wq; 3082 btrfs_work_func_t func; 3083 3084 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3085 3086 ClearPagePrivate2(page); 3087 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3088 end - start + 1, uptodate)) 3089 return 0; 3090 3091 if (btrfs_is_free_space_inode(inode)) { 3092 wq = fs_info->endio_freespace_worker; 3093 func = btrfs_freespace_write_helper; 3094 } else { 3095 wq = fs_info->endio_write_workers; 3096 func = btrfs_endio_write_helper; 3097 } 3098 3099 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3100 NULL); 3101 btrfs_queue_work(wq, &ordered_extent->work); 3102 3103 return 0; 3104 } 3105 3106 static int __readpage_endio_check(struct inode *inode, 3107 struct btrfs_io_bio *io_bio, 3108 int icsum, struct page *page, 3109 int pgoff, u64 start, size_t len) 3110 { 3111 char *kaddr; 3112 u32 csum_expected; 3113 u32 csum = ~(u32)0; 3114 3115 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3116 3117 kaddr = kmap_atomic(page); 3118 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3119 btrfs_csum_final(csum, (u8 *)&csum); 3120 if (csum != csum_expected) 3121 goto zeroit; 3122 3123 kunmap_atomic(kaddr); 3124 return 0; 3125 zeroit: 3126 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info, 3127 "csum failed ino %llu off %llu csum %u expected csum %u", 3128 btrfs_ino(inode), start, csum, csum_expected); 3129 memset(kaddr + pgoff, 1, len); 3130 flush_dcache_page(page); 3131 kunmap_atomic(kaddr); 3132 if (csum_expected == 0) 3133 return 0; 3134 return -EIO; 3135 } 3136 3137 /* 3138 * when reads are done, we need to check csums to verify the data is correct 3139 * if there's a match, we allow the bio to finish. If not, the code in 3140 * extent_io.c will try to find good copies for us. 3141 */ 3142 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3143 u64 phy_offset, struct page *page, 3144 u64 start, u64 end, int mirror) 3145 { 3146 size_t offset = start - page_offset(page); 3147 struct inode *inode = page->mapping->host; 3148 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3149 struct btrfs_root *root = BTRFS_I(inode)->root; 3150 3151 if (PageChecked(page)) { 3152 ClearPageChecked(page); 3153 return 0; 3154 } 3155 3156 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3157 return 0; 3158 3159 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3160 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3161 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3162 return 0; 3163 } 3164 3165 phy_offset >>= inode->i_sb->s_blocksize_bits; 3166 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3167 start, (size_t)(end - start + 1)); 3168 } 3169 3170 void btrfs_add_delayed_iput(struct inode *inode) 3171 { 3172 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3173 struct btrfs_inode *binode = BTRFS_I(inode); 3174 3175 if (atomic_add_unless(&inode->i_count, -1, 1)) 3176 return; 3177 3178 spin_lock(&fs_info->delayed_iput_lock); 3179 if (binode->delayed_iput_count == 0) { 3180 ASSERT(list_empty(&binode->delayed_iput)); 3181 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3182 } else { 3183 binode->delayed_iput_count++; 3184 } 3185 spin_unlock(&fs_info->delayed_iput_lock); 3186 } 3187 3188 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3189 { 3190 3191 spin_lock(&fs_info->delayed_iput_lock); 3192 while (!list_empty(&fs_info->delayed_iputs)) { 3193 struct btrfs_inode *inode; 3194 3195 inode = list_first_entry(&fs_info->delayed_iputs, 3196 struct btrfs_inode, delayed_iput); 3197 if (inode->delayed_iput_count) { 3198 inode->delayed_iput_count--; 3199 list_move_tail(&inode->delayed_iput, 3200 &fs_info->delayed_iputs); 3201 } else { 3202 list_del_init(&inode->delayed_iput); 3203 } 3204 spin_unlock(&fs_info->delayed_iput_lock); 3205 iput(&inode->vfs_inode); 3206 spin_lock(&fs_info->delayed_iput_lock); 3207 } 3208 spin_unlock(&fs_info->delayed_iput_lock); 3209 } 3210 3211 /* 3212 * This is called in transaction commit time. If there are no orphan 3213 * files in the subvolume, it removes orphan item and frees block_rsv 3214 * structure. 3215 */ 3216 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3217 struct btrfs_root *root) 3218 { 3219 struct btrfs_fs_info *fs_info = root->fs_info; 3220 struct btrfs_block_rsv *block_rsv; 3221 int ret; 3222 3223 if (atomic_read(&root->orphan_inodes) || 3224 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3225 return; 3226 3227 spin_lock(&root->orphan_lock); 3228 if (atomic_read(&root->orphan_inodes)) { 3229 spin_unlock(&root->orphan_lock); 3230 return; 3231 } 3232 3233 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3234 spin_unlock(&root->orphan_lock); 3235 return; 3236 } 3237 3238 block_rsv = root->orphan_block_rsv; 3239 root->orphan_block_rsv = NULL; 3240 spin_unlock(&root->orphan_lock); 3241 3242 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3243 btrfs_root_refs(&root->root_item) > 0) { 3244 ret = btrfs_del_orphan_item(trans, fs_info->tree_root, 3245 root->root_key.objectid); 3246 if (ret) 3247 btrfs_abort_transaction(trans, ret); 3248 else 3249 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3250 &root->state); 3251 } 3252 3253 if (block_rsv) { 3254 WARN_ON(block_rsv->size > 0); 3255 btrfs_free_block_rsv(fs_info, block_rsv); 3256 } 3257 } 3258 3259 /* 3260 * This creates an orphan entry for the given inode in case something goes 3261 * wrong in the middle of an unlink/truncate. 3262 * 3263 * NOTE: caller of this function should reserve 5 units of metadata for 3264 * this function. 3265 */ 3266 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3267 { 3268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3269 struct btrfs_root *root = BTRFS_I(inode)->root; 3270 struct btrfs_block_rsv *block_rsv = NULL; 3271 int reserve = 0; 3272 int insert = 0; 3273 int ret; 3274 3275 if (!root->orphan_block_rsv) { 3276 block_rsv = btrfs_alloc_block_rsv(fs_info, 3277 BTRFS_BLOCK_RSV_TEMP); 3278 if (!block_rsv) 3279 return -ENOMEM; 3280 } 3281 3282 spin_lock(&root->orphan_lock); 3283 if (!root->orphan_block_rsv) { 3284 root->orphan_block_rsv = block_rsv; 3285 } else if (block_rsv) { 3286 btrfs_free_block_rsv(fs_info, block_rsv); 3287 block_rsv = NULL; 3288 } 3289 3290 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3291 &BTRFS_I(inode)->runtime_flags)) { 3292 #if 0 3293 /* 3294 * For proper ENOSPC handling, we should do orphan 3295 * cleanup when mounting. But this introduces backward 3296 * compatibility issue. 3297 */ 3298 if (!xchg(&root->orphan_item_inserted, 1)) 3299 insert = 2; 3300 else 3301 insert = 1; 3302 #endif 3303 insert = 1; 3304 atomic_inc(&root->orphan_inodes); 3305 } 3306 3307 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3308 &BTRFS_I(inode)->runtime_flags)) 3309 reserve = 1; 3310 spin_unlock(&root->orphan_lock); 3311 3312 /* grab metadata reservation from transaction handle */ 3313 if (reserve) { 3314 ret = btrfs_orphan_reserve_metadata(trans, inode); 3315 ASSERT(!ret); 3316 if (ret) { 3317 atomic_dec(&root->orphan_inodes); 3318 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3319 &BTRFS_I(inode)->runtime_flags); 3320 if (insert) 3321 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3322 &BTRFS_I(inode)->runtime_flags); 3323 return ret; 3324 } 3325 } 3326 3327 /* insert an orphan item to track this unlinked/truncated file */ 3328 if (insert >= 1) { 3329 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3330 if (ret) { 3331 atomic_dec(&root->orphan_inodes); 3332 if (reserve) { 3333 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3334 &BTRFS_I(inode)->runtime_flags); 3335 btrfs_orphan_release_metadata(inode); 3336 } 3337 if (ret != -EEXIST) { 3338 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3339 &BTRFS_I(inode)->runtime_flags); 3340 btrfs_abort_transaction(trans, ret); 3341 return ret; 3342 } 3343 } 3344 ret = 0; 3345 } 3346 3347 /* insert an orphan item to track subvolume contains orphan files */ 3348 if (insert >= 2) { 3349 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root, 3350 root->root_key.objectid); 3351 if (ret && ret != -EEXIST) { 3352 btrfs_abort_transaction(trans, ret); 3353 return ret; 3354 } 3355 } 3356 return 0; 3357 } 3358 3359 /* 3360 * We have done the truncate/delete so we can go ahead and remove the orphan 3361 * item for this particular inode. 3362 */ 3363 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3364 struct inode *inode) 3365 { 3366 struct btrfs_root *root = BTRFS_I(inode)->root; 3367 int delete_item = 0; 3368 int release_rsv = 0; 3369 int ret = 0; 3370 3371 spin_lock(&root->orphan_lock); 3372 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3373 &BTRFS_I(inode)->runtime_flags)) 3374 delete_item = 1; 3375 3376 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3377 &BTRFS_I(inode)->runtime_flags)) 3378 release_rsv = 1; 3379 spin_unlock(&root->orphan_lock); 3380 3381 if (delete_item) { 3382 atomic_dec(&root->orphan_inodes); 3383 if (trans) 3384 ret = btrfs_del_orphan_item(trans, root, 3385 btrfs_ino(inode)); 3386 } 3387 3388 if (release_rsv) 3389 btrfs_orphan_release_metadata(inode); 3390 3391 return ret; 3392 } 3393 3394 /* 3395 * this cleans up any orphans that may be left on the list from the last use 3396 * of this root. 3397 */ 3398 int btrfs_orphan_cleanup(struct btrfs_root *root) 3399 { 3400 struct btrfs_fs_info *fs_info = root->fs_info; 3401 struct btrfs_path *path; 3402 struct extent_buffer *leaf; 3403 struct btrfs_key key, found_key; 3404 struct btrfs_trans_handle *trans; 3405 struct inode *inode; 3406 u64 last_objectid = 0; 3407 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3408 3409 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3410 return 0; 3411 3412 path = btrfs_alloc_path(); 3413 if (!path) { 3414 ret = -ENOMEM; 3415 goto out; 3416 } 3417 path->reada = READA_BACK; 3418 3419 key.objectid = BTRFS_ORPHAN_OBJECTID; 3420 key.type = BTRFS_ORPHAN_ITEM_KEY; 3421 key.offset = (u64)-1; 3422 3423 while (1) { 3424 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3425 if (ret < 0) 3426 goto out; 3427 3428 /* 3429 * if ret == 0 means we found what we were searching for, which 3430 * is weird, but possible, so only screw with path if we didn't 3431 * find the key and see if we have stuff that matches 3432 */ 3433 if (ret > 0) { 3434 ret = 0; 3435 if (path->slots[0] == 0) 3436 break; 3437 path->slots[0]--; 3438 } 3439 3440 /* pull out the item */ 3441 leaf = path->nodes[0]; 3442 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3443 3444 /* make sure the item matches what we want */ 3445 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3446 break; 3447 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3448 break; 3449 3450 /* release the path since we're done with it */ 3451 btrfs_release_path(path); 3452 3453 /* 3454 * this is where we are basically btrfs_lookup, without the 3455 * crossing root thing. we store the inode number in the 3456 * offset of the orphan item. 3457 */ 3458 3459 if (found_key.offset == last_objectid) { 3460 btrfs_err(fs_info, 3461 "Error removing orphan entry, stopping orphan cleanup"); 3462 ret = -EINVAL; 3463 goto out; 3464 } 3465 3466 last_objectid = found_key.offset; 3467 3468 found_key.objectid = found_key.offset; 3469 found_key.type = BTRFS_INODE_ITEM_KEY; 3470 found_key.offset = 0; 3471 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3472 ret = PTR_ERR_OR_ZERO(inode); 3473 if (ret && ret != -ENOENT) 3474 goto out; 3475 3476 if (ret == -ENOENT && root == fs_info->tree_root) { 3477 struct btrfs_root *dead_root; 3478 struct btrfs_fs_info *fs_info = root->fs_info; 3479 int is_dead_root = 0; 3480 3481 /* 3482 * this is an orphan in the tree root. Currently these 3483 * could come from 2 sources: 3484 * a) a snapshot deletion in progress 3485 * b) a free space cache inode 3486 * We need to distinguish those two, as the snapshot 3487 * orphan must not get deleted. 3488 * find_dead_roots already ran before us, so if this 3489 * is a snapshot deletion, we should find the root 3490 * in the dead_roots list 3491 */ 3492 spin_lock(&fs_info->trans_lock); 3493 list_for_each_entry(dead_root, &fs_info->dead_roots, 3494 root_list) { 3495 if (dead_root->root_key.objectid == 3496 found_key.objectid) { 3497 is_dead_root = 1; 3498 break; 3499 } 3500 } 3501 spin_unlock(&fs_info->trans_lock); 3502 if (is_dead_root) { 3503 /* prevent this orphan from being found again */ 3504 key.offset = found_key.objectid - 1; 3505 continue; 3506 } 3507 } 3508 /* 3509 * Inode is already gone but the orphan item is still there, 3510 * kill the orphan item. 3511 */ 3512 if (ret == -ENOENT) { 3513 trans = btrfs_start_transaction(root, 1); 3514 if (IS_ERR(trans)) { 3515 ret = PTR_ERR(trans); 3516 goto out; 3517 } 3518 btrfs_debug(fs_info, "auto deleting %Lu", 3519 found_key.objectid); 3520 ret = btrfs_del_orphan_item(trans, root, 3521 found_key.objectid); 3522 btrfs_end_transaction(trans); 3523 if (ret) 3524 goto out; 3525 continue; 3526 } 3527 3528 /* 3529 * add this inode to the orphan list so btrfs_orphan_del does 3530 * the proper thing when we hit it 3531 */ 3532 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3533 &BTRFS_I(inode)->runtime_flags); 3534 atomic_inc(&root->orphan_inodes); 3535 3536 /* if we have links, this was a truncate, lets do that */ 3537 if (inode->i_nlink) { 3538 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3539 iput(inode); 3540 continue; 3541 } 3542 nr_truncate++; 3543 3544 /* 1 for the orphan item deletion. */ 3545 trans = btrfs_start_transaction(root, 1); 3546 if (IS_ERR(trans)) { 3547 iput(inode); 3548 ret = PTR_ERR(trans); 3549 goto out; 3550 } 3551 ret = btrfs_orphan_add(trans, inode); 3552 btrfs_end_transaction(trans); 3553 if (ret) { 3554 iput(inode); 3555 goto out; 3556 } 3557 3558 ret = btrfs_truncate(inode); 3559 if (ret) 3560 btrfs_orphan_del(NULL, inode); 3561 } else { 3562 nr_unlink++; 3563 } 3564 3565 /* this will do delete_inode and everything for us */ 3566 iput(inode); 3567 if (ret) 3568 goto out; 3569 } 3570 /* release the path since we're done with it */ 3571 btrfs_release_path(path); 3572 3573 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3574 3575 if (root->orphan_block_rsv) 3576 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, 3577 (u64)-1); 3578 3579 if (root->orphan_block_rsv || 3580 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3581 trans = btrfs_join_transaction(root); 3582 if (!IS_ERR(trans)) 3583 btrfs_end_transaction(trans); 3584 } 3585 3586 if (nr_unlink) 3587 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3588 if (nr_truncate) 3589 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate); 3590 3591 out: 3592 if (ret) 3593 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3594 btrfs_free_path(path); 3595 return ret; 3596 } 3597 3598 /* 3599 * very simple check to peek ahead in the leaf looking for xattrs. If we 3600 * don't find any xattrs, we know there can't be any acls. 3601 * 3602 * slot is the slot the inode is in, objectid is the objectid of the inode 3603 */ 3604 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3605 int slot, u64 objectid, 3606 int *first_xattr_slot) 3607 { 3608 u32 nritems = btrfs_header_nritems(leaf); 3609 struct btrfs_key found_key; 3610 static u64 xattr_access = 0; 3611 static u64 xattr_default = 0; 3612 int scanned = 0; 3613 3614 if (!xattr_access) { 3615 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3616 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3617 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3618 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3619 } 3620 3621 slot++; 3622 *first_xattr_slot = -1; 3623 while (slot < nritems) { 3624 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3625 3626 /* we found a different objectid, there must not be acls */ 3627 if (found_key.objectid != objectid) 3628 return 0; 3629 3630 /* we found an xattr, assume we've got an acl */ 3631 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3632 if (*first_xattr_slot == -1) 3633 *first_xattr_slot = slot; 3634 if (found_key.offset == xattr_access || 3635 found_key.offset == xattr_default) 3636 return 1; 3637 } 3638 3639 /* 3640 * we found a key greater than an xattr key, there can't 3641 * be any acls later on 3642 */ 3643 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3644 return 0; 3645 3646 slot++; 3647 scanned++; 3648 3649 /* 3650 * it goes inode, inode backrefs, xattrs, extents, 3651 * so if there are a ton of hard links to an inode there can 3652 * be a lot of backrefs. Don't waste time searching too hard, 3653 * this is just an optimization 3654 */ 3655 if (scanned >= 8) 3656 break; 3657 } 3658 /* we hit the end of the leaf before we found an xattr or 3659 * something larger than an xattr. We have to assume the inode 3660 * has acls 3661 */ 3662 if (*first_xattr_slot == -1) 3663 *first_xattr_slot = slot; 3664 return 1; 3665 } 3666 3667 /* 3668 * read an inode from the btree into the in-memory inode 3669 */ 3670 static int btrfs_read_locked_inode(struct inode *inode) 3671 { 3672 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3673 struct btrfs_path *path; 3674 struct extent_buffer *leaf; 3675 struct btrfs_inode_item *inode_item; 3676 struct btrfs_root *root = BTRFS_I(inode)->root; 3677 struct btrfs_key location; 3678 unsigned long ptr; 3679 int maybe_acls; 3680 u32 rdev; 3681 int ret; 3682 bool filled = false; 3683 int first_xattr_slot; 3684 3685 ret = btrfs_fill_inode(inode, &rdev); 3686 if (!ret) 3687 filled = true; 3688 3689 path = btrfs_alloc_path(); 3690 if (!path) { 3691 ret = -ENOMEM; 3692 goto make_bad; 3693 } 3694 3695 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3696 3697 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3698 if (ret) { 3699 if (ret > 0) 3700 ret = -ENOENT; 3701 goto make_bad; 3702 } 3703 3704 leaf = path->nodes[0]; 3705 3706 if (filled) 3707 goto cache_index; 3708 3709 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3710 struct btrfs_inode_item); 3711 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3712 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3713 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3714 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3715 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3716 3717 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3718 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3719 3720 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3721 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3722 3723 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3724 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3725 3726 BTRFS_I(inode)->i_otime.tv_sec = 3727 btrfs_timespec_sec(leaf, &inode_item->otime); 3728 BTRFS_I(inode)->i_otime.tv_nsec = 3729 btrfs_timespec_nsec(leaf, &inode_item->otime); 3730 3731 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3732 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3733 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3734 3735 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3736 inode->i_generation = BTRFS_I(inode)->generation; 3737 inode->i_rdev = 0; 3738 rdev = btrfs_inode_rdev(leaf, inode_item); 3739 3740 BTRFS_I(inode)->index_cnt = (u64)-1; 3741 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3742 3743 cache_index: 3744 /* 3745 * If we were modified in the current generation and evicted from memory 3746 * and then re-read we need to do a full sync since we don't have any 3747 * idea about which extents were modified before we were evicted from 3748 * cache. 3749 * 3750 * This is required for both inode re-read from disk and delayed inode 3751 * in delayed_nodes_tree. 3752 */ 3753 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3754 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3755 &BTRFS_I(inode)->runtime_flags); 3756 3757 /* 3758 * We don't persist the id of the transaction where an unlink operation 3759 * against the inode was last made. So here we assume the inode might 3760 * have been evicted, and therefore the exact value of last_unlink_trans 3761 * lost, and set it to last_trans to avoid metadata inconsistencies 3762 * between the inode and its parent if the inode is fsync'ed and the log 3763 * replayed. For example, in the scenario: 3764 * 3765 * touch mydir/foo 3766 * ln mydir/foo mydir/bar 3767 * sync 3768 * unlink mydir/bar 3769 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3770 * xfs_io -c fsync mydir/foo 3771 * <power failure> 3772 * mount fs, triggers fsync log replay 3773 * 3774 * We must make sure that when we fsync our inode foo we also log its 3775 * parent inode, otherwise after log replay the parent still has the 3776 * dentry with the "bar" name but our inode foo has a link count of 1 3777 * and doesn't have an inode ref with the name "bar" anymore. 3778 * 3779 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3780 * but it guarantees correctness at the expense of occasional full 3781 * transaction commits on fsync if our inode is a directory, or if our 3782 * inode is not a directory, logging its parent unnecessarily. 3783 */ 3784 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3785 3786 path->slots[0]++; 3787 if (inode->i_nlink != 1 || 3788 path->slots[0] >= btrfs_header_nritems(leaf)) 3789 goto cache_acl; 3790 3791 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3792 if (location.objectid != btrfs_ino(inode)) 3793 goto cache_acl; 3794 3795 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3796 if (location.type == BTRFS_INODE_REF_KEY) { 3797 struct btrfs_inode_ref *ref; 3798 3799 ref = (struct btrfs_inode_ref *)ptr; 3800 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3801 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3802 struct btrfs_inode_extref *extref; 3803 3804 extref = (struct btrfs_inode_extref *)ptr; 3805 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3806 extref); 3807 } 3808 cache_acl: 3809 /* 3810 * try to precache a NULL acl entry for files that don't have 3811 * any xattrs or acls 3812 */ 3813 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3814 btrfs_ino(inode), &first_xattr_slot); 3815 if (first_xattr_slot != -1) { 3816 path->slots[0] = first_xattr_slot; 3817 ret = btrfs_load_inode_props(inode, path); 3818 if (ret) 3819 btrfs_err(fs_info, 3820 "error loading props for ino %llu (root %llu): %d", 3821 btrfs_ino(inode), 3822 root->root_key.objectid, ret); 3823 } 3824 btrfs_free_path(path); 3825 3826 if (!maybe_acls) 3827 cache_no_acl(inode); 3828 3829 switch (inode->i_mode & S_IFMT) { 3830 case S_IFREG: 3831 inode->i_mapping->a_ops = &btrfs_aops; 3832 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3833 inode->i_fop = &btrfs_file_operations; 3834 inode->i_op = &btrfs_file_inode_operations; 3835 break; 3836 case S_IFDIR: 3837 inode->i_fop = &btrfs_dir_file_operations; 3838 inode->i_op = &btrfs_dir_inode_operations; 3839 break; 3840 case S_IFLNK: 3841 inode->i_op = &btrfs_symlink_inode_operations; 3842 inode_nohighmem(inode); 3843 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3844 break; 3845 default: 3846 inode->i_op = &btrfs_special_inode_operations; 3847 init_special_inode(inode, inode->i_mode, rdev); 3848 break; 3849 } 3850 3851 btrfs_update_iflags(inode); 3852 return 0; 3853 3854 make_bad: 3855 btrfs_free_path(path); 3856 make_bad_inode(inode); 3857 return ret; 3858 } 3859 3860 /* 3861 * given a leaf and an inode, copy the inode fields into the leaf 3862 */ 3863 static void fill_inode_item(struct btrfs_trans_handle *trans, 3864 struct extent_buffer *leaf, 3865 struct btrfs_inode_item *item, 3866 struct inode *inode) 3867 { 3868 struct btrfs_map_token token; 3869 3870 btrfs_init_map_token(&token); 3871 3872 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3873 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3874 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3875 &token); 3876 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3877 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3878 3879 btrfs_set_token_timespec_sec(leaf, &item->atime, 3880 inode->i_atime.tv_sec, &token); 3881 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3882 inode->i_atime.tv_nsec, &token); 3883 3884 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3885 inode->i_mtime.tv_sec, &token); 3886 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3887 inode->i_mtime.tv_nsec, &token); 3888 3889 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3890 inode->i_ctime.tv_sec, &token); 3891 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3892 inode->i_ctime.tv_nsec, &token); 3893 3894 btrfs_set_token_timespec_sec(leaf, &item->otime, 3895 BTRFS_I(inode)->i_otime.tv_sec, &token); 3896 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3897 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3898 3899 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3900 &token); 3901 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3902 &token); 3903 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3904 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3905 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3906 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3907 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3908 } 3909 3910 /* 3911 * copy everything in the in-memory inode into the btree. 3912 */ 3913 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3914 struct btrfs_root *root, struct inode *inode) 3915 { 3916 struct btrfs_inode_item *inode_item; 3917 struct btrfs_path *path; 3918 struct extent_buffer *leaf; 3919 int ret; 3920 3921 path = btrfs_alloc_path(); 3922 if (!path) 3923 return -ENOMEM; 3924 3925 path->leave_spinning = 1; 3926 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3927 1); 3928 if (ret) { 3929 if (ret > 0) 3930 ret = -ENOENT; 3931 goto failed; 3932 } 3933 3934 leaf = path->nodes[0]; 3935 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3936 struct btrfs_inode_item); 3937 3938 fill_inode_item(trans, leaf, inode_item, inode); 3939 btrfs_mark_buffer_dirty(leaf); 3940 btrfs_set_inode_last_trans(trans, inode); 3941 ret = 0; 3942 failed: 3943 btrfs_free_path(path); 3944 return ret; 3945 } 3946 3947 /* 3948 * copy everything in the in-memory inode into the btree. 3949 */ 3950 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3951 struct btrfs_root *root, struct inode *inode) 3952 { 3953 struct btrfs_fs_info *fs_info = root->fs_info; 3954 int ret; 3955 3956 /* 3957 * If the inode is a free space inode, we can deadlock during commit 3958 * if we put it into the delayed code. 3959 * 3960 * The data relocation inode should also be directly updated 3961 * without delay 3962 */ 3963 if (!btrfs_is_free_space_inode(inode) 3964 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3965 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3966 btrfs_update_root_times(trans, root); 3967 3968 ret = btrfs_delayed_update_inode(trans, root, inode); 3969 if (!ret) 3970 btrfs_set_inode_last_trans(trans, inode); 3971 return ret; 3972 } 3973 3974 return btrfs_update_inode_item(trans, root, inode); 3975 } 3976 3977 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3978 struct btrfs_root *root, 3979 struct inode *inode) 3980 { 3981 int ret; 3982 3983 ret = btrfs_update_inode(trans, root, inode); 3984 if (ret == -ENOSPC) 3985 return btrfs_update_inode_item(trans, root, inode); 3986 return ret; 3987 } 3988 3989 /* 3990 * unlink helper that gets used here in inode.c and in the tree logging 3991 * recovery code. It remove a link in a directory with a given name, and 3992 * also drops the back refs in the inode to the directory 3993 */ 3994 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3995 struct btrfs_root *root, 3996 struct inode *dir, struct inode *inode, 3997 const char *name, int name_len) 3998 { 3999 struct btrfs_fs_info *fs_info = root->fs_info; 4000 struct btrfs_path *path; 4001 int ret = 0; 4002 struct extent_buffer *leaf; 4003 struct btrfs_dir_item *di; 4004 struct btrfs_key key; 4005 u64 index; 4006 u64 ino = btrfs_ino(inode); 4007 u64 dir_ino = btrfs_ino(dir); 4008 4009 path = btrfs_alloc_path(); 4010 if (!path) { 4011 ret = -ENOMEM; 4012 goto out; 4013 } 4014 4015 path->leave_spinning = 1; 4016 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4017 name, name_len, -1); 4018 if (IS_ERR(di)) { 4019 ret = PTR_ERR(di); 4020 goto err; 4021 } 4022 if (!di) { 4023 ret = -ENOENT; 4024 goto err; 4025 } 4026 leaf = path->nodes[0]; 4027 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4028 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4029 if (ret) 4030 goto err; 4031 btrfs_release_path(path); 4032 4033 /* 4034 * If we don't have dir index, we have to get it by looking up 4035 * the inode ref, since we get the inode ref, remove it directly, 4036 * it is unnecessary to do delayed deletion. 4037 * 4038 * But if we have dir index, needn't search inode ref to get it. 4039 * Since the inode ref is close to the inode item, it is better 4040 * that we delay to delete it, and just do this deletion when 4041 * we update the inode item. 4042 */ 4043 if (BTRFS_I(inode)->dir_index) { 4044 ret = btrfs_delayed_delete_inode_ref(inode); 4045 if (!ret) { 4046 index = BTRFS_I(inode)->dir_index; 4047 goto skip_backref; 4048 } 4049 } 4050 4051 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4052 dir_ino, &index); 4053 if (ret) { 4054 btrfs_info(fs_info, 4055 "failed to delete reference to %.*s, inode %llu parent %llu", 4056 name_len, name, ino, dir_ino); 4057 btrfs_abort_transaction(trans, ret); 4058 goto err; 4059 } 4060 skip_backref: 4061 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index); 4062 if (ret) { 4063 btrfs_abort_transaction(trans, ret); 4064 goto err; 4065 } 4066 4067 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 4068 inode, dir_ino); 4069 if (ret != 0 && ret != -ENOENT) { 4070 btrfs_abort_transaction(trans, ret); 4071 goto err; 4072 } 4073 4074 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 4075 dir, index); 4076 if (ret == -ENOENT) 4077 ret = 0; 4078 else if (ret) 4079 btrfs_abort_transaction(trans, ret); 4080 err: 4081 btrfs_free_path(path); 4082 if (ret) 4083 goto out; 4084 4085 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4086 inode_inc_iversion(inode); 4087 inode_inc_iversion(dir); 4088 inode->i_ctime = dir->i_mtime = 4089 dir->i_ctime = current_time(inode); 4090 ret = btrfs_update_inode(trans, root, dir); 4091 out: 4092 return ret; 4093 } 4094 4095 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4096 struct btrfs_root *root, 4097 struct inode *dir, struct inode *inode, 4098 const char *name, int name_len) 4099 { 4100 int ret; 4101 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4102 if (!ret) { 4103 drop_nlink(inode); 4104 ret = btrfs_update_inode(trans, root, inode); 4105 } 4106 return ret; 4107 } 4108 4109 /* 4110 * helper to start transaction for unlink and rmdir. 4111 * 4112 * unlink and rmdir are special in btrfs, they do not always free space, so 4113 * if we cannot make our reservations the normal way try and see if there is 4114 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4115 * allow the unlink to occur. 4116 */ 4117 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4118 { 4119 struct btrfs_root *root = BTRFS_I(dir)->root; 4120 4121 /* 4122 * 1 for the possible orphan item 4123 * 1 for the dir item 4124 * 1 for the dir index 4125 * 1 for the inode ref 4126 * 1 for the inode 4127 */ 4128 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4129 } 4130 4131 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4132 { 4133 struct btrfs_root *root = BTRFS_I(dir)->root; 4134 struct btrfs_trans_handle *trans; 4135 struct inode *inode = d_inode(dentry); 4136 int ret; 4137 4138 trans = __unlink_start_trans(dir); 4139 if (IS_ERR(trans)) 4140 return PTR_ERR(trans); 4141 4142 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4143 4144 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4145 dentry->d_name.name, dentry->d_name.len); 4146 if (ret) 4147 goto out; 4148 4149 if (inode->i_nlink == 0) { 4150 ret = btrfs_orphan_add(trans, inode); 4151 if (ret) 4152 goto out; 4153 } 4154 4155 out: 4156 btrfs_end_transaction(trans); 4157 btrfs_btree_balance_dirty(root->fs_info); 4158 return ret; 4159 } 4160 4161 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4162 struct btrfs_root *root, 4163 struct inode *dir, u64 objectid, 4164 const char *name, int name_len) 4165 { 4166 struct btrfs_fs_info *fs_info = root->fs_info; 4167 struct btrfs_path *path; 4168 struct extent_buffer *leaf; 4169 struct btrfs_dir_item *di; 4170 struct btrfs_key key; 4171 u64 index; 4172 int ret; 4173 u64 dir_ino = btrfs_ino(dir); 4174 4175 path = btrfs_alloc_path(); 4176 if (!path) 4177 return -ENOMEM; 4178 4179 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4180 name, name_len, -1); 4181 if (IS_ERR_OR_NULL(di)) { 4182 if (!di) 4183 ret = -ENOENT; 4184 else 4185 ret = PTR_ERR(di); 4186 goto out; 4187 } 4188 4189 leaf = path->nodes[0]; 4190 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4191 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4192 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4193 if (ret) { 4194 btrfs_abort_transaction(trans, ret); 4195 goto out; 4196 } 4197 btrfs_release_path(path); 4198 4199 ret = btrfs_del_root_ref(trans, fs_info, objectid, 4200 root->root_key.objectid, dir_ino, 4201 &index, name, name_len); 4202 if (ret < 0) { 4203 if (ret != -ENOENT) { 4204 btrfs_abort_transaction(trans, ret); 4205 goto out; 4206 } 4207 di = btrfs_search_dir_index_item(root, path, dir_ino, 4208 name, name_len); 4209 if (IS_ERR_OR_NULL(di)) { 4210 if (!di) 4211 ret = -ENOENT; 4212 else 4213 ret = PTR_ERR(di); 4214 btrfs_abort_transaction(trans, ret); 4215 goto out; 4216 } 4217 4218 leaf = path->nodes[0]; 4219 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4220 btrfs_release_path(path); 4221 index = key.offset; 4222 } 4223 btrfs_release_path(path); 4224 4225 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index); 4226 if (ret) { 4227 btrfs_abort_transaction(trans, ret); 4228 goto out; 4229 } 4230 4231 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4232 inode_inc_iversion(dir); 4233 dir->i_mtime = dir->i_ctime = current_time(dir); 4234 ret = btrfs_update_inode_fallback(trans, root, dir); 4235 if (ret) 4236 btrfs_abort_transaction(trans, ret); 4237 out: 4238 btrfs_free_path(path); 4239 return ret; 4240 } 4241 4242 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4243 { 4244 struct inode *inode = d_inode(dentry); 4245 int err = 0; 4246 struct btrfs_root *root = BTRFS_I(dir)->root; 4247 struct btrfs_trans_handle *trans; 4248 u64 last_unlink_trans; 4249 4250 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4251 return -ENOTEMPTY; 4252 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4253 return -EPERM; 4254 4255 trans = __unlink_start_trans(dir); 4256 if (IS_ERR(trans)) 4257 return PTR_ERR(trans); 4258 4259 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4260 err = btrfs_unlink_subvol(trans, root, dir, 4261 BTRFS_I(inode)->location.objectid, 4262 dentry->d_name.name, 4263 dentry->d_name.len); 4264 goto out; 4265 } 4266 4267 err = btrfs_orphan_add(trans, inode); 4268 if (err) 4269 goto out; 4270 4271 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4272 4273 /* now the directory is empty */ 4274 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4275 dentry->d_name.name, dentry->d_name.len); 4276 if (!err) { 4277 btrfs_i_size_write(inode, 0); 4278 /* 4279 * Propagate the last_unlink_trans value of the deleted dir to 4280 * its parent directory. This is to prevent an unrecoverable 4281 * log tree in the case we do something like this: 4282 * 1) create dir foo 4283 * 2) create snapshot under dir foo 4284 * 3) delete the snapshot 4285 * 4) rmdir foo 4286 * 5) mkdir foo 4287 * 6) fsync foo or some file inside foo 4288 */ 4289 if (last_unlink_trans >= trans->transid) 4290 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4291 } 4292 out: 4293 btrfs_end_transaction(trans); 4294 btrfs_btree_balance_dirty(root->fs_info); 4295 4296 return err; 4297 } 4298 4299 static int truncate_space_check(struct btrfs_trans_handle *trans, 4300 struct btrfs_root *root, 4301 u64 bytes_deleted) 4302 { 4303 struct btrfs_fs_info *fs_info = root->fs_info; 4304 int ret; 4305 4306 /* 4307 * This is only used to apply pressure to the enospc system, we don't 4308 * intend to use this reservation at all. 4309 */ 4310 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4311 bytes_deleted *= fs_info->nodesize; 4312 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4313 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4314 if (!ret) { 4315 trace_btrfs_space_reservation(fs_info, "transaction", 4316 trans->transid, 4317 bytes_deleted, 1); 4318 trans->bytes_reserved += bytes_deleted; 4319 } 4320 return ret; 4321 4322 } 4323 4324 static int truncate_inline_extent(struct inode *inode, 4325 struct btrfs_path *path, 4326 struct btrfs_key *found_key, 4327 const u64 item_end, 4328 const u64 new_size) 4329 { 4330 struct extent_buffer *leaf = path->nodes[0]; 4331 int slot = path->slots[0]; 4332 struct btrfs_file_extent_item *fi; 4333 u32 size = (u32)(new_size - found_key->offset); 4334 struct btrfs_root *root = BTRFS_I(inode)->root; 4335 4336 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4337 4338 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4339 loff_t offset = new_size; 4340 loff_t page_end = ALIGN(offset, PAGE_SIZE); 4341 4342 /* 4343 * Zero out the remaining of the last page of our inline extent, 4344 * instead of directly truncating our inline extent here - that 4345 * would be much more complex (decompressing all the data, then 4346 * compressing the truncated data, which might be bigger than 4347 * the size of the inline extent, resize the extent, etc). 4348 * We release the path because to get the page we might need to 4349 * read the extent item from disk (data not in the page cache). 4350 */ 4351 btrfs_release_path(path); 4352 return btrfs_truncate_block(inode, offset, page_end - offset, 4353 0); 4354 } 4355 4356 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4357 size = btrfs_file_extent_calc_inline_size(size); 4358 btrfs_truncate_item(root->fs_info, path, size, 1); 4359 4360 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4361 inode_sub_bytes(inode, item_end + 1 - new_size); 4362 4363 return 0; 4364 } 4365 4366 /* 4367 * this can truncate away extent items, csum items and directory items. 4368 * It starts at a high offset and removes keys until it can't find 4369 * any higher than new_size 4370 * 4371 * csum items that cross the new i_size are truncated to the new size 4372 * as well. 4373 * 4374 * min_type is the minimum key type to truncate down to. If set to 0, this 4375 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4376 */ 4377 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4378 struct btrfs_root *root, 4379 struct inode *inode, 4380 u64 new_size, u32 min_type) 4381 { 4382 struct btrfs_fs_info *fs_info = root->fs_info; 4383 struct btrfs_path *path; 4384 struct extent_buffer *leaf; 4385 struct btrfs_file_extent_item *fi; 4386 struct btrfs_key key; 4387 struct btrfs_key found_key; 4388 u64 extent_start = 0; 4389 u64 extent_num_bytes = 0; 4390 u64 extent_offset = 0; 4391 u64 item_end = 0; 4392 u64 last_size = new_size; 4393 u32 found_type = (u8)-1; 4394 int found_extent; 4395 int del_item; 4396 int pending_del_nr = 0; 4397 int pending_del_slot = 0; 4398 int extent_type = -1; 4399 int ret; 4400 int err = 0; 4401 u64 ino = btrfs_ino(inode); 4402 u64 bytes_deleted = 0; 4403 bool be_nice = 0; 4404 bool should_throttle = 0; 4405 bool should_end = 0; 4406 4407 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4408 4409 /* 4410 * for non-free space inodes and ref cows, we want to back off from 4411 * time to time 4412 */ 4413 if (!btrfs_is_free_space_inode(inode) && 4414 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4415 be_nice = 1; 4416 4417 path = btrfs_alloc_path(); 4418 if (!path) 4419 return -ENOMEM; 4420 path->reada = READA_BACK; 4421 4422 /* 4423 * We want to drop from the next block forward in case this new size is 4424 * not block aligned since we will be keeping the last block of the 4425 * extent just the way it is. 4426 */ 4427 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4428 root == fs_info->tree_root) 4429 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4430 fs_info->sectorsize), 4431 (u64)-1, 0); 4432 4433 /* 4434 * This function is also used to drop the items in the log tree before 4435 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4436 * it is used to drop the loged items. So we shouldn't kill the delayed 4437 * items. 4438 */ 4439 if (min_type == 0 && root == BTRFS_I(inode)->root) 4440 btrfs_kill_delayed_inode_items(inode); 4441 4442 key.objectid = ino; 4443 key.offset = (u64)-1; 4444 key.type = (u8)-1; 4445 4446 search_again: 4447 /* 4448 * with a 16K leaf size and 128MB extents, you can actually queue 4449 * up a huge file in a single leaf. Most of the time that 4450 * bytes_deleted is > 0, it will be huge by the time we get here 4451 */ 4452 if (be_nice && bytes_deleted > SZ_32M) { 4453 if (btrfs_should_end_transaction(trans)) { 4454 err = -EAGAIN; 4455 goto error; 4456 } 4457 } 4458 4459 4460 path->leave_spinning = 1; 4461 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4462 if (ret < 0) { 4463 err = ret; 4464 goto out; 4465 } 4466 4467 if (ret > 0) { 4468 /* there are no items in the tree for us to truncate, we're 4469 * done 4470 */ 4471 if (path->slots[0] == 0) 4472 goto out; 4473 path->slots[0]--; 4474 } 4475 4476 while (1) { 4477 fi = NULL; 4478 leaf = path->nodes[0]; 4479 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4480 found_type = found_key.type; 4481 4482 if (found_key.objectid != ino) 4483 break; 4484 4485 if (found_type < min_type) 4486 break; 4487 4488 item_end = found_key.offset; 4489 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4490 fi = btrfs_item_ptr(leaf, path->slots[0], 4491 struct btrfs_file_extent_item); 4492 extent_type = btrfs_file_extent_type(leaf, fi); 4493 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4494 item_end += 4495 btrfs_file_extent_num_bytes(leaf, fi); 4496 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4497 item_end += btrfs_file_extent_inline_len(leaf, 4498 path->slots[0], fi); 4499 } 4500 item_end--; 4501 } 4502 if (found_type > min_type) { 4503 del_item = 1; 4504 } else { 4505 if (item_end < new_size) { 4506 /* 4507 * With NO_HOLES mode, for the following mapping 4508 * 4509 * [0-4k][hole][8k-12k] 4510 * 4511 * if truncating isize down to 6k, it ends up 4512 * isize being 8k. 4513 */ 4514 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) 4515 last_size = new_size; 4516 break; 4517 } 4518 if (found_key.offset >= new_size) 4519 del_item = 1; 4520 else 4521 del_item = 0; 4522 } 4523 found_extent = 0; 4524 /* FIXME, shrink the extent if the ref count is only 1 */ 4525 if (found_type != BTRFS_EXTENT_DATA_KEY) 4526 goto delete; 4527 4528 if (del_item) 4529 last_size = found_key.offset; 4530 else 4531 last_size = new_size; 4532 4533 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4534 u64 num_dec; 4535 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4536 if (!del_item) { 4537 u64 orig_num_bytes = 4538 btrfs_file_extent_num_bytes(leaf, fi); 4539 extent_num_bytes = ALIGN(new_size - 4540 found_key.offset, 4541 fs_info->sectorsize); 4542 btrfs_set_file_extent_num_bytes(leaf, fi, 4543 extent_num_bytes); 4544 num_dec = (orig_num_bytes - 4545 extent_num_bytes); 4546 if (test_bit(BTRFS_ROOT_REF_COWS, 4547 &root->state) && 4548 extent_start != 0) 4549 inode_sub_bytes(inode, num_dec); 4550 btrfs_mark_buffer_dirty(leaf); 4551 } else { 4552 extent_num_bytes = 4553 btrfs_file_extent_disk_num_bytes(leaf, 4554 fi); 4555 extent_offset = found_key.offset - 4556 btrfs_file_extent_offset(leaf, fi); 4557 4558 /* FIXME blocksize != 4096 */ 4559 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4560 if (extent_start != 0) { 4561 found_extent = 1; 4562 if (test_bit(BTRFS_ROOT_REF_COWS, 4563 &root->state)) 4564 inode_sub_bytes(inode, num_dec); 4565 } 4566 } 4567 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4568 /* 4569 * we can't truncate inline items that have had 4570 * special encodings 4571 */ 4572 if (!del_item && 4573 btrfs_file_extent_encryption(leaf, fi) == 0 && 4574 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4575 4576 /* 4577 * Need to release path in order to truncate a 4578 * compressed extent. So delete any accumulated 4579 * extent items so far. 4580 */ 4581 if (btrfs_file_extent_compression(leaf, fi) != 4582 BTRFS_COMPRESS_NONE && pending_del_nr) { 4583 err = btrfs_del_items(trans, root, path, 4584 pending_del_slot, 4585 pending_del_nr); 4586 if (err) { 4587 btrfs_abort_transaction(trans, 4588 err); 4589 goto error; 4590 } 4591 pending_del_nr = 0; 4592 } 4593 4594 err = truncate_inline_extent(inode, path, 4595 &found_key, 4596 item_end, 4597 new_size); 4598 if (err) { 4599 btrfs_abort_transaction(trans, err); 4600 goto error; 4601 } 4602 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4603 &root->state)) { 4604 inode_sub_bytes(inode, item_end + 1 - new_size); 4605 } 4606 } 4607 delete: 4608 if (del_item) { 4609 if (!pending_del_nr) { 4610 /* no pending yet, add ourselves */ 4611 pending_del_slot = path->slots[0]; 4612 pending_del_nr = 1; 4613 } else if (pending_del_nr && 4614 path->slots[0] + 1 == pending_del_slot) { 4615 /* hop on the pending chunk */ 4616 pending_del_nr++; 4617 pending_del_slot = path->slots[0]; 4618 } else { 4619 BUG(); 4620 } 4621 } else { 4622 break; 4623 } 4624 should_throttle = 0; 4625 4626 if (found_extent && 4627 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4628 root == fs_info->tree_root)) { 4629 btrfs_set_path_blocking(path); 4630 bytes_deleted += extent_num_bytes; 4631 ret = btrfs_free_extent(trans, fs_info, extent_start, 4632 extent_num_bytes, 0, 4633 btrfs_header_owner(leaf), 4634 ino, extent_offset); 4635 BUG_ON(ret); 4636 if (btrfs_should_throttle_delayed_refs(trans, fs_info)) 4637 btrfs_async_run_delayed_refs(fs_info, 4638 trans->delayed_ref_updates * 2, 4639 trans->transid, 0); 4640 if (be_nice) { 4641 if (truncate_space_check(trans, root, 4642 extent_num_bytes)) { 4643 should_end = 1; 4644 } 4645 if (btrfs_should_throttle_delayed_refs(trans, 4646 fs_info)) 4647 should_throttle = 1; 4648 } 4649 } 4650 4651 if (found_type == BTRFS_INODE_ITEM_KEY) 4652 break; 4653 4654 if (path->slots[0] == 0 || 4655 path->slots[0] != pending_del_slot || 4656 should_throttle || should_end) { 4657 if (pending_del_nr) { 4658 ret = btrfs_del_items(trans, root, path, 4659 pending_del_slot, 4660 pending_del_nr); 4661 if (ret) { 4662 btrfs_abort_transaction(trans, ret); 4663 goto error; 4664 } 4665 pending_del_nr = 0; 4666 } 4667 btrfs_release_path(path); 4668 if (should_throttle) { 4669 unsigned long updates = trans->delayed_ref_updates; 4670 if (updates) { 4671 trans->delayed_ref_updates = 0; 4672 ret = btrfs_run_delayed_refs(trans, 4673 fs_info, 4674 updates * 2); 4675 if (ret && !err) 4676 err = ret; 4677 } 4678 } 4679 /* 4680 * if we failed to refill our space rsv, bail out 4681 * and let the transaction restart 4682 */ 4683 if (should_end) { 4684 err = -EAGAIN; 4685 goto error; 4686 } 4687 goto search_again; 4688 } else { 4689 path->slots[0]--; 4690 } 4691 } 4692 out: 4693 if (pending_del_nr) { 4694 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4695 pending_del_nr); 4696 if (ret) 4697 btrfs_abort_transaction(trans, ret); 4698 } 4699 error: 4700 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4701 btrfs_ordered_update_i_size(inode, last_size, NULL); 4702 4703 btrfs_free_path(path); 4704 4705 if (be_nice && bytes_deleted > SZ_32M) { 4706 unsigned long updates = trans->delayed_ref_updates; 4707 if (updates) { 4708 trans->delayed_ref_updates = 0; 4709 ret = btrfs_run_delayed_refs(trans, fs_info, 4710 updates * 2); 4711 if (ret && !err) 4712 err = ret; 4713 } 4714 } 4715 return err; 4716 } 4717 4718 /* 4719 * btrfs_truncate_block - read, zero a chunk and write a block 4720 * @inode - inode that we're zeroing 4721 * @from - the offset to start zeroing 4722 * @len - the length to zero, 0 to zero the entire range respective to the 4723 * offset 4724 * @front - zero up to the offset instead of from the offset on 4725 * 4726 * This will find the block for the "from" offset and cow the block and zero the 4727 * part we want to zero. This is used with truncate and hole punching. 4728 */ 4729 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4730 int front) 4731 { 4732 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4733 struct address_space *mapping = inode->i_mapping; 4734 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4735 struct btrfs_ordered_extent *ordered; 4736 struct extent_state *cached_state = NULL; 4737 char *kaddr; 4738 u32 blocksize = fs_info->sectorsize; 4739 pgoff_t index = from >> PAGE_SHIFT; 4740 unsigned offset = from & (blocksize - 1); 4741 struct page *page; 4742 gfp_t mask = btrfs_alloc_write_mask(mapping); 4743 int ret = 0; 4744 u64 block_start; 4745 u64 block_end; 4746 4747 if ((offset & (blocksize - 1)) == 0 && 4748 (!len || ((len & (blocksize - 1)) == 0))) 4749 goto out; 4750 4751 ret = btrfs_delalloc_reserve_space(inode, 4752 round_down(from, blocksize), blocksize); 4753 if (ret) 4754 goto out; 4755 4756 again: 4757 page = find_or_create_page(mapping, index, mask); 4758 if (!page) { 4759 btrfs_delalloc_release_space(inode, 4760 round_down(from, blocksize), 4761 blocksize); 4762 ret = -ENOMEM; 4763 goto out; 4764 } 4765 4766 block_start = round_down(from, blocksize); 4767 block_end = block_start + blocksize - 1; 4768 4769 if (!PageUptodate(page)) { 4770 ret = btrfs_readpage(NULL, page); 4771 lock_page(page); 4772 if (page->mapping != mapping) { 4773 unlock_page(page); 4774 put_page(page); 4775 goto again; 4776 } 4777 if (!PageUptodate(page)) { 4778 ret = -EIO; 4779 goto out_unlock; 4780 } 4781 } 4782 wait_on_page_writeback(page); 4783 4784 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4785 set_page_extent_mapped(page); 4786 4787 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4788 if (ordered) { 4789 unlock_extent_cached(io_tree, block_start, block_end, 4790 &cached_state, GFP_NOFS); 4791 unlock_page(page); 4792 put_page(page); 4793 btrfs_start_ordered_extent(inode, ordered, 1); 4794 btrfs_put_ordered_extent(ordered); 4795 goto again; 4796 } 4797 4798 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4799 EXTENT_DIRTY | EXTENT_DELALLOC | 4800 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4801 0, 0, &cached_state, GFP_NOFS); 4802 4803 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4804 &cached_state, 0); 4805 if (ret) { 4806 unlock_extent_cached(io_tree, block_start, block_end, 4807 &cached_state, GFP_NOFS); 4808 goto out_unlock; 4809 } 4810 4811 if (offset != blocksize) { 4812 if (!len) 4813 len = blocksize - offset; 4814 kaddr = kmap(page); 4815 if (front) 4816 memset(kaddr + (block_start - page_offset(page)), 4817 0, offset); 4818 else 4819 memset(kaddr + (block_start - page_offset(page)) + offset, 4820 0, len); 4821 flush_dcache_page(page); 4822 kunmap(page); 4823 } 4824 ClearPageChecked(page); 4825 set_page_dirty(page); 4826 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4827 GFP_NOFS); 4828 4829 out_unlock: 4830 if (ret) 4831 btrfs_delalloc_release_space(inode, block_start, 4832 blocksize); 4833 unlock_page(page); 4834 put_page(page); 4835 out: 4836 return ret; 4837 } 4838 4839 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4840 u64 offset, u64 len) 4841 { 4842 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4843 struct btrfs_trans_handle *trans; 4844 int ret; 4845 4846 /* 4847 * Still need to make sure the inode looks like it's been updated so 4848 * that any holes get logged if we fsync. 4849 */ 4850 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4851 BTRFS_I(inode)->last_trans = fs_info->generation; 4852 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4853 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4854 return 0; 4855 } 4856 4857 /* 4858 * 1 - for the one we're dropping 4859 * 1 - for the one we're adding 4860 * 1 - for updating the inode. 4861 */ 4862 trans = btrfs_start_transaction(root, 3); 4863 if (IS_ERR(trans)) 4864 return PTR_ERR(trans); 4865 4866 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4867 if (ret) { 4868 btrfs_abort_transaction(trans, ret); 4869 btrfs_end_transaction(trans); 4870 return ret; 4871 } 4872 4873 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4874 0, 0, len, 0, len, 0, 0, 0); 4875 if (ret) 4876 btrfs_abort_transaction(trans, ret); 4877 else 4878 btrfs_update_inode(trans, root, inode); 4879 btrfs_end_transaction(trans); 4880 return ret; 4881 } 4882 4883 /* 4884 * This function puts in dummy file extents for the area we're creating a hole 4885 * for. So if we are truncating this file to a larger size we need to insert 4886 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4887 * the range between oldsize and size 4888 */ 4889 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4890 { 4891 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4892 struct btrfs_root *root = BTRFS_I(inode)->root; 4893 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4894 struct extent_map *em = NULL; 4895 struct extent_state *cached_state = NULL; 4896 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4897 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4898 u64 block_end = ALIGN(size, fs_info->sectorsize); 4899 u64 last_byte; 4900 u64 cur_offset; 4901 u64 hole_size; 4902 int err = 0; 4903 4904 /* 4905 * If our size started in the middle of a block we need to zero out the 4906 * rest of the block before we expand the i_size, otherwise we could 4907 * expose stale data. 4908 */ 4909 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4910 if (err) 4911 return err; 4912 4913 if (size <= hole_start) 4914 return 0; 4915 4916 while (1) { 4917 struct btrfs_ordered_extent *ordered; 4918 4919 lock_extent_bits(io_tree, hole_start, block_end - 1, 4920 &cached_state); 4921 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4922 block_end - hole_start); 4923 if (!ordered) 4924 break; 4925 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4926 &cached_state, GFP_NOFS); 4927 btrfs_start_ordered_extent(inode, ordered, 1); 4928 btrfs_put_ordered_extent(ordered); 4929 } 4930 4931 cur_offset = hole_start; 4932 while (1) { 4933 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4934 block_end - cur_offset, 0); 4935 if (IS_ERR(em)) { 4936 err = PTR_ERR(em); 4937 em = NULL; 4938 break; 4939 } 4940 last_byte = min(extent_map_end(em), block_end); 4941 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4942 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4943 struct extent_map *hole_em; 4944 hole_size = last_byte - cur_offset; 4945 4946 err = maybe_insert_hole(root, inode, cur_offset, 4947 hole_size); 4948 if (err) 4949 break; 4950 btrfs_drop_extent_cache(inode, cur_offset, 4951 cur_offset + hole_size - 1, 0); 4952 hole_em = alloc_extent_map(); 4953 if (!hole_em) { 4954 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4955 &BTRFS_I(inode)->runtime_flags); 4956 goto next; 4957 } 4958 hole_em->start = cur_offset; 4959 hole_em->len = hole_size; 4960 hole_em->orig_start = cur_offset; 4961 4962 hole_em->block_start = EXTENT_MAP_HOLE; 4963 hole_em->block_len = 0; 4964 hole_em->orig_block_len = 0; 4965 hole_em->ram_bytes = hole_size; 4966 hole_em->bdev = fs_info->fs_devices->latest_bdev; 4967 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4968 hole_em->generation = fs_info->generation; 4969 4970 while (1) { 4971 write_lock(&em_tree->lock); 4972 err = add_extent_mapping(em_tree, hole_em, 1); 4973 write_unlock(&em_tree->lock); 4974 if (err != -EEXIST) 4975 break; 4976 btrfs_drop_extent_cache(inode, cur_offset, 4977 cur_offset + 4978 hole_size - 1, 0); 4979 } 4980 free_extent_map(hole_em); 4981 } 4982 next: 4983 free_extent_map(em); 4984 em = NULL; 4985 cur_offset = last_byte; 4986 if (cur_offset >= block_end) 4987 break; 4988 } 4989 free_extent_map(em); 4990 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4991 GFP_NOFS); 4992 return err; 4993 } 4994 4995 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4996 { 4997 struct btrfs_root *root = BTRFS_I(inode)->root; 4998 struct btrfs_trans_handle *trans; 4999 loff_t oldsize = i_size_read(inode); 5000 loff_t newsize = attr->ia_size; 5001 int mask = attr->ia_valid; 5002 int ret; 5003 5004 /* 5005 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5006 * special case where we need to update the times despite not having 5007 * these flags set. For all other operations the VFS set these flags 5008 * explicitly if it wants a timestamp update. 5009 */ 5010 if (newsize != oldsize) { 5011 inode_inc_iversion(inode); 5012 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5013 inode->i_ctime = inode->i_mtime = 5014 current_time(inode); 5015 } 5016 5017 if (newsize > oldsize) { 5018 /* 5019 * Don't do an expanding truncate while snapshoting is ongoing. 5020 * This is to ensure the snapshot captures a fully consistent 5021 * state of this file - if the snapshot captures this expanding 5022 * truncation, it must capture all writes that happened before 5023 * this truncation. 5024 */ 5025 btrfs_wait_for_snapshot_creation(root); 5026 ret = btrfs_cont_expand(inode, oldsize, newsize); 5027 if (ret) { 5028 btrfs_end_write_no_snapshoting(root); 5029 return ret; 5030 } 5031 5032 trans = btrfs_start_transaction(root, 1); 5033 if (IS_ERR(trans)) { 5034 btrfs_end_write_no_snapshoting(root); 5035 return PTR_ERR(trans); 5036 } 5037 5038 i_size_write(inode, newsize); 5039 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5040 pagecache_isize_extended(inode, oldsize, newsize); 5041 ret = btrfs_update_inode(trans, root, inode); 5042 btrfs_end_write_no_snapshoting(root); 5043 btrfs_end_transaction(trans); 5044 } else { 5045 5046 /* 5047 * We're truncating a file that used to have good data down to 5048 * zero. Make sure it gets into the ordered flush list so that 5049 * any new writes get down to disk quickly. 5050 */ 5051 if (newsize == 0) 5052 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5053 &BTRFS_I(inode)->runtime_flags); 5054 5055 /* 5056 * 1 for the orphan item we're going to add 5057 * 1 for the orphan item deletion. 5058 */ 5059 trans = btrfs_start_transaction(root, 2); 5060 if (IS_ERR(trans)) 5061 return PTR_ERR(trans); 5062 5063 /* 5064 * We need to do this in case we fail at _any_ point during the 5065 * actual truncate. Once we do the truncate_setsize we could 5066 * invalidate pages which forces any outstanding ordered io to 5067 * be instantly completed which will give us extents that need 5068 * to be truncated. If we fail to get an orphan inode down we 5069 * could have left over extents that were never meant to live, 5070 * so we need to guarantee from this point on that everything 5071 * will be consistent. 5072 */ 5073 ret = btrfs_orphan_add(trans, inode); 5074 btrfs_end_transaction(trans); 5075 if (ret) 5076 return ret; 5077 5078 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5079 truncate_setsize(inode, newsize); 5080 5081 /* Disable nonlocked read DIO to avoid the end less truncate */ 5082 btrfs_inode_block_unlocked_dio(inode); 5083 inode_dio_wait(inode); 5084 btrfs_inode_resume_unlocked_dio(inode); 5085 5086 ret = btrfs_truncate(inode); 5087 if (ret && inode->i_nlink) { 5088 int err; 5089 5090 /* 5091 * failed to truncate, disk_i_size is only adjusted down 5092 * as we remove extents, so it should represent the true 5093 * size of the inode, so reset the in memory size and 5094 * delete our orphan entry. 5095 */ 5096 trans = btrfs_join_transaction(root); 5097 if (IS_ERR(trans)) { 5098 btrfs_orphan_del(NULL, inode); 5099 return ret; 5100 } 5101 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5102 err = btrfs_orphan_del(trans, inode); 5103 if (err) 5104 btrfs_abort_transaction(trans, err); 5105 btrfs_end_transaction(trans); 5106 } 5107 } 5108 5109 return ret; 5110 } 5111 5112 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5113 { 5114 struct inode *inode = d_inode(dentry); 5115 struct btrfs_root *root = BTRFS_I(inode)->root; 5116 int err; 5117 5118 if (btrfs_root_readonly(root)) 5119 return -EROFS; 5120 5121 err = setattr_prepare(dentry, attr); 5122 if (err) 5123 return err; 5124 5125 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5126 err = btrfs_setsize(inode, attr); 5127 if (err) 5128 return err; 5129 } 5130 5131 if (attr->ia_valid) { 5132 setattr_copy(inode, attr); 5133 inode_inc_iversion(inode); 5134 err = btrfs_dirty_inode(inode); 5135 5136 if (!err && attr->ia_valid & ATTR_MODE) 5137 err = posix_acl_chmod(inode, inode->i_mode); 5138 } 5139 5140 return err; 5141 } 5142 5143 /* 5144 * While truncating the inode pages during eviction, we get the VFS calling 5145 * btrfs_invalidatepage() against each page of the inode. This is slow because 5146 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5147 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5148 * extent_state structures over and over, wasting lots of time. 5149 * 5150 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5151 * those expensive operations on a per page basis and do only the ordered io 5152 * finishing, while we release here the extent_map and extent_state structures, 5153 * without the excessive merging and splitting. 5154 */ 5155 static void evict_inode_truncate_pages(struct inode *inode) 5156 { 5157 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5158 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5159 struct rb_node *node; 5160 5161 ASSERT(inode->i_state & I_FREEING); 5162 truncate_inode_pages_final(&inode->i_data); 5163 5164 write_lock(&map_tree->lock); 5165 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5166 struct extent_map *em; 5167 5168 node = rb_first(&map_tree->map); 5169 em = rb_entry(node, struct extent_map, rb_node); 5170 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5171 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5172 remove_extent_mapping(map_tree, em); 5173 free_extent_map(em); 5174 if (need_resched()) { 5175 write_unlock(&map_tree->lock); 5176 cond_resched(); 5177 write_lock(&map_tree->lock); 5178 } 5179 } 5180 write_unlock(&map_tree->lock); 5181 5182 /* 5183 * Keep looping until we have no more ranges in the io tree. 5184 * We can have ongoing bios started by readpages (called from readahead) 5185 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5186 * still in progress (unlocked the pages in the bio but did not yet 5187 * unlocked the ranges in the io tree). Therefore this means some 5188 * ranges can still be locked and eviction started because before 5189 * submitting those bios, which are executed by a separate task (work 5190 * queue kthread), inode references (inode->i_count) were not taken 5191 * (which would be dropped in the end io callback of each bio). 5192 * Therefore here we effectively end up waiting for those bios and 5193 * anyone else holding locked ranges without having bumped the inode's 5194 * reference count - if we don't do it, when they access the inode's 5195 * io_tree to unlock a range it may be too late, leading to an 5196 * use-after-free issue. 5197 */ 5198 spin_lock(&io_tree->lock); 5199 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5200 struct extent_state *state; 5201 struct extent_state *cached_state = NULL; 5202 u64 start; 5203 u64 end; 5204 5205 node = rb_first(&io_tree->state); 5206 state = rb_entry(node, struct extent_state, rb_node); 5207 start = state->start; 5208 end = state->end; 5209 spin_unlock(&io_tree->lock); 5210 5211 lock_extent_bits(io_tree, start, end, &cached_state); 5212 5213 /* 5214 * If still has DELALLOC flag, the extent didn't reach disk, 5215 * and its reserved space won't be freed by delayed_ref. 5216 * So we need to free its reserved space here. 5217 * (Refer to comment in btrfs_invalidatepage, case 2) 5218 * 5219 * Note, end is the bytenr of last byte, so we need + 1 here. 5220 */ 5221 if (state->state & EXTENT_DELALLOC) 5222 btrfs_qgroup_free_data(inode, start, end - start + 1); 5223 5224 clear_extent_bit(io_tree, start, end, 5225 EXTENT_LOCKED | EXTENT_DIRTY | 5226 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5227 EXTENT_DEFRAG, 1, 1, 5228 &cached_state, GFP_NOFS); 5229 5230 cond_resched(); 5231 spin_lock(&io_tree->lock); 5232 } 5233 spin_unlock(&io_tree->lock); 5234 } 5235 5236 void btrfs_evict_inode(struct inode *inode) 5237 { 5238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5239 struct btrfs_trans_handle *trans; 5240 struct btrfs_root *root = BTRFS_I(inode)->root; 5241 struct btrfs_block_rsv *rsv, *global_rsv; 5242 int steal_from_global = 0; 5243 u64 min_size; 5244 int ret; 5245 5246 trace_btrfs_inode_evict(inode); 5247 5248 if (!root) { 5249 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 5250 return; 5251 } 5252 5253 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5254 5255 evict_inode_truncate_pages(inode); 5256 5257 if (inode->i_nlink && 5258 ((btrfs_root_refs(&root->root_item) != 0 && 5259 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5260 btrfs_is_free_space_inode(inode))) 5261 goto no_delete; 5262 5263 if (is_bad_inode(inode)) { 5264 btrfs_orphan_del(NULL, inode); 5265 goto no_delete; 5266 } 5267 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5268 if (!special_file(inode->i_mode)) 5269 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5270 5271 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5272 5273 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 5274 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5275 &BTRFS_I(inode)->runtime_flags)); 5276 goto no_delete; 5277 } 5278 5279 if (inode->i_nlink > 0) { 5280 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5281 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5282 goto no_delete; 5283 } 5284 5285 ret = btrfs_commit_inode_delayed_inode(inode); 5286 if (ret) { 5287 btrfs_orphan_del(NULL, inode); 5288 goto no_delete; 5289 } 5290 5291 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5292 if (!rsv) { 5293 btrfs_orphan_del(NULL, inode); 5294 goto no_delete; 5295 } 5296 rsv->size = min_size; 5297 rsv->failfast = 1; 5298 global_rsv = &fs_info->global_block_rsv; 5299 5300 btrfs_i_size_write(inode, 0); 5301 5302 /* 5303 * This is a bit simpler than btrfs_truncate since we've already 5304 * reserved our space for our orphan item in the unlink, so we just 5305 * need to reserve some slack space in case we add bytes and update 5306 * inode item when doing the truncate. 5307 */ 5308 while (1) { 5309 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5310 BTRFS_RESERVE_FLUSH_LIMIT); 5311 5312 /* 5313 * Try and steal from the global reserve since we will 5314 * likely not use this space anyway, we want to try as 5315 * hard as possible to get this to work. 5316 */ 5317 if (ret) 5318 steal_from_global++; 5319 else 5320 steal_from_global = 0; 5321 ret = 0; 5322 5323 /* 5324 * steal_from_global == 0: we reserved stuff, hooray! 5325 * steal_from_global == 1: we didn't reserve stuff, boo! 5326 * steal_from_global == 2: we've committed, still not a lot of 5327 * room but maybe we'll have room in the global reserve this 5328 * time. 5329 * steal_from_global == 3: abandon all hope! 5330 */ 5331 if (steal_from_global > 2) { 5332 btrfs_warn(fs_info, 5333 "Could not get space for a delete, will truncate on mount %d", 5334 ret); 5335 btrfs_orphan_del(NULL, inode); 5336 btrfs_free_block_rsv(fs_info, rsv); 5337 goto no_delete; 5338 } 5339 5340 trans = btrfs_join_transaction(root); 5341 if (IS_ERR(trans)) { 5342 btrfs_orphan_del(NULL, inode); 5343 btrfs_free_block_rsv(fs_info, rsv); 5344 goto no_delete; 5345 } 5346 5347 /* 5348 * We can't just steal from the global reserve, we need to make 5349 * sure there is room to do it, if not we need to commit and try 5350 * again. 5351 */ 5352 if (steal_from_global) { 5353 if (!btrfs_check_space_for_delayed_refs(trans, fs_info)) 5354 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5355 min_size, 0); 5356 else 5357 ret = -ENOSPC; 5358 } 5359 5360 /* 5361 * Couldn't steal from the global reserve, we have too much 5362 * pending stuff built up, commit the transaction and try it 5363 * again. 5364 */ 5365 if (ret) { 5366 ret = btrfs_commit_transaction(trans); 5367 if (ret) { 5368 btrfs_orphan_del(NULL, inode); 5369 btrfs_free_block_rsv(fs_info, rsv); 5370 goto no_delete; 5371 } 5372 continue; 5373 } else { 5374 steal_from_global = 0; 5375 } 5376 5377 trans->block_rsv = rsv; 5378 5379 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5380 if (ret != -ENOSPC && ret != -EAGAIN) 5381 break; 5382 5383 trans->block_rsv = &fs_info->trans_block_rsv; 5384 btrfs_end_transaction(trans); 5385 trans = NULL; 5386 btrfs_btree_balance_dirty(fs_info); 5387 } 5388 5389 btrfs_free_block_rsv(fs_info, rsv); 5390 5391 /* 5392 * Errors here aren't a big deal, it just means we leave orphan items 5393 * in the tree. They will be cleaned up on the next mount. 5394 */ 5395 if (ret == 0) { 5396 trans->block_rsv = root->orphan_block_rsv; 5397 btrfs_orphan_del(trans, inode); 5398 } else { 5399 btrfs_orphan_del(NULL, inode); 5400 } 5401 5402 trans->block_rsv = &fs_info->trans_block_rsv; 5403 if (!(root == fs_info->tree_root || 5404 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5405 btrfs_return_ino(root, btrfs_ino(inode)); 5406 5407 btrfs_end_transaction(trans); 5408 btrfs_btree_balance_dirty(fs_info); 5409 no_delete: 5410 btrfs_remove_delayed_node(inode); 5411 clear_inode(inode); 5412 } 5413 5414 /* 5415 * this returns the key found in the dir entry in the location pointer. 5416 * If no dir entries were found, location->objectid is 0. 5417 */ 5418 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5419 struct btrfs_key *location) 5420 { 5421 const char *name = dentry->d_name.name; 5422 int namelen = dentry->d_name.len; 5423 struct btrfs_dir_item *di; 5424 struct btrfs_path *path; 5425 struct btrfs_root *root = BTRFS_I(dir)->root; 5426 int ret = 0; 5427 5428 path = btrfs_alloc_path(); 5429 if (!path) 5430 return -ENOMEM; 5431 5432 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5433 namelen, 0); 5434 if (IS_ERR(di)) 5435 ret = PTR_ERR(di); 5436 5437 if (IS_ERR_OR_NULL(di)) 5438 goto out_err; 5439 5440 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5441 out: 5442 btrfs_free_path(path); 5443 return ret; 5444 out_err: 5445 location->objectid = 0; 5446 goto out; 5447 } 5448 5449 /* 5450 * when we hit a tree root in a directory, the btrfs part of the inode 5451 * needs to be changed to reflect the root directory of the tree root. This 5452 * is kind of like crossing a mount point. 5453 */ 5454 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5455 struct inode *dir, 5456 struct dentry *dentry, 5457 struct btrfs_key *location, 5458 struct btrfs_root **sub_root) 5459 { 5460 struct btrfs_path *path; 5461 struct btrfs_root *new_root; 5462 struct btrfs_root_ref *ref; 5463 struct extent_buffer *leaf; 5464 struct btrfs_key key; 5465 int ret; 5466 int err = 0; 5467 5468 path = btrfs_alloc_path(); 5469 if (!path) { 5470 err = -ENOMEM; 5471 goto out; 5472 } 5473 5474 err = -ENOENT; 5475 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5476 key.type = BTRFS_ROOT_REF_KEY; 5477 key.offset = location->objectid; 5478 5479 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5480 if (ret) { 5481 if (ret < 0) 5482 err = ret; 5483 goto out; 5484 } 5485 5486 leaf = path->nodes[0]; 5487 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5488 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5489 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5490 goto out; 5491 5492 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5493 (unsigned long)(ref + 1), 5494 dentry->d_name.len); 5495 if (ret) 5496 goto out; 5497 5498 btrfs_release_path(path); 5499 5500 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5501 if (IS_ERR(new_root)) { 5502 err = PTR_ERR(new_root); 5503 goto out; 5504 } 5505 5506 *sub_root = new_root; 5507 location->objectid = btrfs_root_dirid(&new_root->root_item); 5508 location->type = BTRFS_INODE_ITEM_KEY; 5509 location->offset = 0; 5510 err = 0; 5511 out: 5512 btrfs_free_path(path); 5513 return err; 5514 } 5515 5516 static void inode_tree_add(struct inode *inode) 5517 { 5518 struct btrfs_root *root = BTRFS_I(inode)->root; 5519 struct btrfs_inode *entry; 5520 struct rb_node **p; 5521 struct rb_node *parent; 5522 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5523 u64 ino = btrfs_ino(inode); 5524 5525 if (inode_unhashed(inode)) 5526 return; 5527 parent = NULL; 5528 spin_lock(&root->inode_lock); 5529 p = &root->inode_tree.rb_node; 5530 while (*p) { 5531 parent = *p; 5532 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5533 5534 if (ino < btrfs_ino(&entry->vfs_inode)) 5535 p = &parent->rb_left; 5536 else if (ino > btrfs_ino(&entry->vfs_inode)) 5537 p = &parent->rb_right; 5538 else { 5539 WARN_ON(!(entry->vfs_inode.i_state & 5540 (I_WILL_FREE | I_FREEING))); 5541 rb_replace_node(parent, new, &root->inode_tree); 5542 RB_CLEAR_NODE(parent); 5543 spin_unlock(&root->inode_lock); 5544 return; 5545 } 5546 } 5547 rb_link_node(new, parent, p); 5548 rb_insert_color(new, &root->inode_tree); 5549 spin_unlock(&root->inode_lock); 5550 } 5551 5552 static void inode_tree_del(struct inode *inode) 5553 { 5554 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5555 struct btrfs_root *root = BTRFS_I(inode)->root; 5556 int empty = 0; 5557 5558 spin_lock(&root->inode_lock); 5559 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5560 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5561 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5562 empty = RB_EMPTY_ROOT(&root->inode_tree); 5563 } 5564 spin_unlock(&root->inode_lock); 5565 5566 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5567 synchronize_srcu(&fs_info->subvol_srcu); 5568 spin_lock(&root->inode_lock); 5569 empty = RB_EMPTY_ROOT(&root->inode_tree); 5570 spin_unlock(&root->inode_lock); 5571 if (empty) 5572 btrfs_add_dead_root(root); 5573 } 5574 } 5575 5576 void btrfs_invalidate_inodes(struct btrfs_root *root) 5577 { 5578 struct btrfs_fs_info *fs_info = root->fs_info; 5579 struct rb_node *node; 5580 struct rb_node *prev; 5581 struct btrfs_inode *entry; 5582 struct inode *inode; 5583 u64 objectid = 0; 5584 5585 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 5586 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5587 5588 spin_lock(&root->inode_lock); 5589 again: 5590 node = root->inode_tree.rb_node; 5591 prev = NULL; 5592 while (node) { 5593 prev = node; 5594 entry = rb_entry(node, struct btrfs_inode, rb_node); 5595 5596 if (objectid < btrfs_ino(&entry->vfs_inode)) 5597 node = node->rb_left; 5598 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5599 node = node->rb_right; 5600 else 5601 break; 5602 } 5603 if (!node) { 5604 while (prev) { 5605 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5606 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5607 node = prev; 5608 break; 5609 } 5610 prev = rb_next(prev); 5611 } 5612 } 5613 while (node) { 5614 entry = rb_entry(node, struct btrfs_inode, rb_node); 5615 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5616 inode = igrab(&entry->vfs_inode); 5617 if (inode) { 5618 spin_unlock(&root->inode_lock); 5619 if (atomic_read(&inode->i_count) > 1) 5620 d_prune_aliases(inode); 5621 /* 5622 * btrfs_drop_inode will have it removed from 5623 * the inode cache when its usage count 5624 * hits zero. 5625 */ 5626 iput(inode); 5627 cond_resched(); 5628 spin_lock(&root->inode_lock); 5629 goto again; 5630 } 5631 5632 if (cond_resched_lock(&root->inode_lock)) 5633 goto again; 5634 5635 node = rb_next(node); 5636 } 5637 spin_unlock(&root->inode_lock); 5638 } 5639 5640 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5641 { 5642 struct btrfs_iget_args *args = p; 5643 inode->i_ino = args->location->objectid; 5644 memcpy(&BTRFS_I(inode)->location, args->location, 5645 sizeof(*args->location)); 5646 BTRFS_I(inode)->root = args->root; 5647 return 0; 5648 } 5649 5650 static int btrfs_find_actor(struct inode *inode, void *opaque) 5651 { 5652 struct btrfs_iget_args *args = opaque; 5653 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5654 args->root == BTRFS_I(inode)->root; 5655 } 5656 5657 static struct inode *btrfs_iget_locked(struct super_block *s, 5658 struct btrfs_key *location, 5659 struct btrfs_root *root) 5660 { 5661 struct inode *inode; 5662 struct btrfs_iget_args args; 5663 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5664 5665 args.location = location; 5666 args.root = root; 5667 5668 inode = iget5_locked(s, hashval, btrfs_find_actor, 5669 btrfs_init_locked_inode, 5670 (void *)&args); 5671 return inode; 5672 } 5673 5674 /* Get an inode object given its location and corresponding root. 5675 * Returns in *is_new if the inode was read from disk 5676 */ 5677 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5678 struct btrfs_root *root, int *new) 5679 { 5680 struct inode *inode; 5681 5682 inode = btrfs_iget_locked(s, location, root); 5683 if (!inode) 5684 return ERR_PTR(-ENOMEM); 5685 5686 if (inode->i_state & I_NEW) { 5687 int ret; 5688 5689 ret = btrfs_read_locked_inode(inode); 5690 if (!is_bad_inode(inode)) { 5691 inode_tree_add(inode); 5692 unlock_new_inode(inode); 5693 if (new) 5694 *new = 1; 5695 } else { 5696 unlock_new_inode(inode); 5697 iput(inode); 5698 ASSERT(ret < 0); 5699 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5700 } 5701 } 5702 5703 return inode; 5704 } 5705 5706 static struct inode *new_simple_dir(struct super_block *s, 5707 struct btrfs_key *key, 5708 struct btrfs_root *root) 5709 { 5710 struct inode *inode = new_inode(s); 5711 5712 if (!inode) 5713 return ERR_PTR(-ENOMEM); 5714 5715 BTRFS_I(inode)->root = root; 5716 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5717 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5718 5719 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5720 inode->i_op = &btrfs_dir_ro_inode_operations; 5721 inode->i_opflags &= ~IOP_XATTR; 5722 inode->i_fop = &simple_dir_operations; 5723 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5724 inode->i_mtime = current_time(inode); 5725 inode->i_atime = inode->i_mtime; 5726 inode->i_ctime = inode->i_mtime; 5727 BTRFS_I(inode)->i_otime = inode->i_mtime; 5728 5729 return inode; 5730 } 5731 5732 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5733 { 5734 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5735 struct inode *inode; 5736 struct btrfs_root *root = BTRFS_I(dir)->root; 5737 struct btrfs_root *sub_root = root; 5738 struct btrfs_key location; 5739 int index; 5740 int ret = 0; 5741 5742 if (dentry->d_name.len > BTRFS_NAME_LEN) 5743 return ERR_PTR(-ENAMETOOLONG); 5744 5745 ret = btrfs_inode_by_name(dir, dentry, &location); 5746 if (ret < 0) 5747 return ERR_PTR(ret); 5748 5749 if (location.objectid == 0) 5750 return ERR_PTR(-ENOENT); 5751 5752 if (location.type == BTRFS_INODE_ITEM_KEY) { 5753 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5754 return inode; 5755 } 5756 5757 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5758 5759 index = srcu_read_lock(&fs_info->subvol_srcu); 5760 ret = fixup_tree_root_location(fs_info, dir, dentry, 5761 &location, &sub_root); 5762 if (ret < 0) { 5763 if (ret != -ENOENT) 5764 inode = ERR_PTR(ret); 5765 else 5766 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5767 } else { 5768 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5769 } 5770 srcu_read_unlock(&fs_info->subvol_srcu, index); 5771 5772 if (!IS_ERR(inode) && root != sub_root) { 5773 down_read(&fs_info->cleanup_work_sem); 5774 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5775 ret = btrfs_orphan_cleanup(sub_root); 5776 up_read(&fs_info->cleanup_work_sem); 5777 if (ret) { 5778 iput(inode); 5779 inode = ERR_PTR(ret); 5780 } 5781 } 5782 5783 return inode; 5784 } 5785 5786 static int btrfs_dentry_delete(const struct dentry *dentry) 5787 { 5788 struct btrfs_root *root; 5789 struct inode *inode = d_inode(dentry); 5790 5791 if (!inode && !IS_ROOT(dentry)) 5792 inode = d_inode(dentry->d_parent); 5793 5794 if (inode) { 5795 root = BTRFS_I(inode)->root; 5796 if (btrfs_root_refs(&root->root_item) == 0) 5797 return 1; 5798 5799 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5800 return 1; 5801 } 5802 return 0; 5803 } 5804 5805 static void btrfs_dentry_release(struct dentry *dentry) 5806 { 5807 kfree(dentry->d_fsdata); 5808 } 5809 5810 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5811 unsigned int flags) 5812 { 5813 struct inode *inode; 5814 5815 inode = btrfs_lookup_dentry(dir, dentry); 5816 if (IS_ERR(inode)) { 5817 if (PTR_ERR(inode) == -ENOENT) 5818 inode = NULL; 5819 else 5820 return ERR_CAST(inode); 5821 } 5822 5823 return d_splice_alias(inode, dentry); 5824 } 5825 5826 unsigned char btrfs_filetype_table[] = { 5827 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5828 }; 5829 5830 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5831 { 5832 struct inode *inode = file_inode(file); 5833 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5834 struct btrfs_root *root = BTRFS_I(inode)->root; 5835 struct btrfs_item *item; 5836 struct btrfs_dir_item *di; 5837 struct btrfs_key key; 5838 struct btrfs_key found_key; 5839 struct btrfs_path *path; 5840 struct list_head ins_list; 5841 struct list_head del_list; 5842 int ret; 5843 struct extent_buffer *leaf; 5844 int slot; 5845 unsigned char d_type; 5846 int over = 0; 5847 char tmp_name[32]; 5848 char *name_ptr; 5849 int name_len; 5850 bool put = false; 5851 struct btrfs_key location; 5852 5853 if (!dir_emit_dots(file, ctx)) 5854 return 0; 5855 5856 path = btrfs_alloc_path(); 5857 if (!path) 5858 return -ENOMEM; 5859 5860 path->reada = READA_FORWARD; 5861 5862 INIT_LIST_HEAD(&ins_list); 5863 INIT_LIST_HEAD(&del_list); 5864 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5865 5866 key.type = BTRFS_DIR_INDEX_KEY; 5867 key.offset = ctx->pos; 5868 key.objectid = btrfs_ino(inode); 5869 5870 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5871 if (ret < 0) 5872 goto err; 5873 5874 while (1) { 5875 leaf = path->nodes[0]; 5876 slot = path->slots[0]; 5877 if (slot >= btrfs_header_nritems(leaf)) { 5878 ret = btrfs_next_leaf(root, path); 5879 if (ret < 0) 5880 goto err; 5881 else if (ret > 0) 5882 break; 5883 continue; 5884 } 5885 5886 item = btrfs_item_nr(slot); 5887 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5888 5889 if (found_key.objectid != key.objectid) 5890 break; 5891 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5892 break; 5893 if (found_key.offset < ctx->pos) 5894 goto next; 5895 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5896 goto next; 5897 5898 ctx->pos = found_key.offset; 5899 5900 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5901 if (verify_dir_item(fs_info, leaf, di)) 5902 goto next; 5903 5904 name_len = btrfs_dir_name_len(leaf, di); 5905 if (name_len <= sizeof(tmp_name)) { 5906 name_ptr = tmp_name; 5907 } else { 5908 name_ptr = kmalloc(name_len, GFP_KERNEL); 5909 if (!name_ptr) { 5910 ret = -ENOMEM; 5911 goto err; 5912 } 5913 } 5914 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5915 name_len); 5916 5917 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5918 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5919 5920 over = !dir_emit(ctx, name_ptr, name_len, location.objectid, 5921 d_type); 5922 5923 if (name_ptr != tmp_name) 5924 kfree(name_ptr); 5925 5926 if (over) 5927 goto nopos; 5928 ctx->pos++; 5929 next: 5930 path->slots[0]++; 5931 } 5932 5933 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5934 if (ret) 5935 goto nopos; 5936 5937 /* 5938 * Stop new entries from being returned after we return the last 5939 * entry. 5940 * 5941 * New directory entries are assigned a strictly increasing 5942 * offset. This means that new entries created during readdir 5943 * are *guaranteed* to be seen in the future by that readdir. 5944 * This has broken buggy programs which operate on names as 5945 * they're returned by readdir. Until we re-use freed offsets 5946 * we have this hack to stop new entries from being returned 5947 * under the assumption that they'll never reach this huge 5948 * offset. 5949 * 5950 * This is being careful not to overflow 32bit loff_t unless the 5951 * last entry requires it because doing so has broken 32bit apps 5952 * in the past. 5953 */ 5954 if (ctx->pos >= INT_MAX) 5955 ctx->pos = LLONG_MAX; 5956 else 5957 ctx->pos = INT_MAX; 5958 nopos: 5959 ret = 0; 5960 err: 5961 if (put) 5962 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5963 btrfs_free_path(path); 5964 return ret; 5965 } 5966 5967 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5968 { 5969 struct btrfs_root *root = BTRFS_I(inode)->root; 5970 struct btrfs_trans_handle *trans; 5971 int ret = 0; 5972 bool nolock = false; 5973 5974 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5975 return 0; 5976 5977 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5978 nolock = true; 5979 5980 if (wbc->sync_mode == WB_SYNC_ALL) { 5981 if (nolock) 5982 trans = btrfs_join_transaction_nolock(root); 5983 else 5984 trans = btrfs_join_transaction(root); 5985 if (IS_ERR(trans)) 5986 return PTR_ERR(trans); 5987 ret = btrfs_commit_transaction(trans); 5988 } 5989 return ret; 5990 } 5991 5992 /* 5993 * This is somewhat expensive, updating the tree every time the 5994 * inode changes. But, it is most likely to find the inode in cache. 5995 * FIXME, needs more benchmarking...there are no reasons other than performance 5996 * to keep or drop this code. 5997 */ 5998 static int btrfs_dirty_inode(struct inode *inode) 5999 { 6000 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6001 struct btrfs_root *root = BTRFS_I(inode)->root; 6002 struct btrfs_trans_handle *trans; 6003 int ret; 6004 6005 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6006 return 0; 6007 6008 trans = btrfs_join_transaction(root); 6009 if (IS_ERR(trans)) 6010 return PTR_ERR(trans); 6011 6012 ret = btrfs_update_inode(trans, root, inode); 6013 if (ret && ret == -ENOSPC) { 6014 /* whoops, lets try again with the full transaction */ 6015 btrfs_end_transaction(trans); 6016 trans = btrfs_start_transaction(root, 1); 6017 if (IS_ERR(trans)) 6018 return PTR_ERR(trans); 6019 6020 ret = btrfs_update_inode(trans, root, inode); 6021 } 6022 btrfs_end_transaction(trans); 6023 if (BTRFS_I(inode)->delayed_node) 6024 btrfs_balance_delayed_items(fs_info); 6025 6026 return ret; 6027 } 6028 6029 /* 6030 * This is a copy of file_update_time. We need this so we can return error on 6031 * ENOSPC for updating the inode in the case of file write and mmap writes. 6032 */ 6033 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6034 int flags) 6035 { 6036 struct btrfs_root *root = BTRFS_I(inode)->root; 6037 6038 if (btrfs_root_readonly(root)) 6039 return -EROFS; 6040 6041 if (flags & S_VERSION) 6042 inode_inc_iversion(inode); 6043 if (flags & S_CTIME) 6044 inode->i_ctime = *now; 6045 if (flags & S_MTIME) 6046 inode->i_mtime = *now; 6047 if (flags & S_ATIME) 6048 inode->i_atime = *now; 6049 return btrfs_dirty_inode(inode); 6050 } 6051 6052 /* 6053 * find the highest existing sequence number in a directory 6054 * and then set the in-memory index_cnt variable to reflect 6055 * free sequence numbers 6056 */ 6057 static int btrfs_set_inode_index_count(struct inode *inode) 6058 { 6059 struct btrfs_root *root = BTRFS_I(inode)->root; 6060 struct btrfs_key key, found_key; 6061 struct btrfs_path *path; 6062 struct extent_buffer *leaf; 6063 int ret; 6064 6065 key.objectid = btrfs_ino(inode); 6066 key.type = BTRFS_DIR_INDEX_KEY; 6067 key.offset = (u64)-1; 6068 6069 path = btrfs_alloc_path(); 6070 if (!path) 6071 return -ENOMEM; 6072 6073 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6074 if (ret < 0) 6075 goto out; 6076 /* FIXME: we should be able to handle this */ 6077 if (ret == 0) 6078 goto out; 6079 ret = 0; 6080 6081 /* 6082 * MAGIC NUMBER EXPLANATION: 6083 * since we search a directory based on f_pos we have to start at 2 6084 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6085 * else has to start at 2 6086 */ 6087 if (path->slots[0] == 0) { 6088 BTRFS_I(inode)->index_cnt = 2; 6089 goto out; 6090 } 6091 6092 path->slots[0]--; 6093 6094 leaf = path->nodes[0]; 6095 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6096 6097 if (found_key.objectid != btrfs_ino(inode) || 6098 found_key.type != BTRFS_DIR_INDEX_KEY) { 6099 BTRFS_I(inode)->index_cnt = 2; 6100 goto out; 6101 } 6102 6103 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 6104 out: 6105 btrfs_free_path(path); 6106 return ret; 6107 } 6108 6109 /* 6110 * helper to find a free sequence number in a given directory. This current 6111 * code is very simple, later versions will do smarter things in the btree 6112 */ 6113 int btrfs_set_inode_index(struct inode *dir, u64 *index) 6114 { 6115 int ret = 0; 6116 6117 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 6118 ret = btrfs_inode_delayed_dir_index_count(dir); 6119 if (ret) { 6120 ret = btrfs_set_inode_index_count(dir); 6121 if (ret) 6122 return ret; 6123 } 6124 } 6125 6126 *index = BTRFS_I(dir)->index_cnt; 6127 BTRFS_I(dir)->index_cnt++; 6128 6129 return ret; 6130 } 6131 6132 static int btrfs_insert_inode_locked(struct inode *inode) 6133 { 6134 struct btrfs_iget_args args; 6135 args.location = &BTRFS_I(inode)->location; 6136 args.root = BTRFS_I(inode)->root; 6137 6138 return insert_inode_locked4(inode, 6139 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6140 btrfs_find_actor, &args); 6141 } 6142 6143 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6144 struct btrfs_root *root, 6145 struct inode *dir, 6146 const char *name, int name_len, 6147 u64 ref_objectid, u64 objectid, 6148 umode_t mode, u64 *index) 6149 { 6150 struct btrfs_fs_info *fs_info = root->fs_info; 6151 struct inode *inode; 6152 struct btrfs_inode_item *inode_item; 6153 struct btrfs_key *location; 6154 struct btrfs_path *path; 6155 struct btrfs_inode_ref *ref; 6156 struct btrfs_key key[2]; 6157 u32 sizes[2]; 6158 int nitems = name ? 2 : 1; 6159 unsigned long ptr; 6160 int ret; 6161 6162 path = btrfs_alloc_path(); 6163 if (!path) 6164 return ERR_PTR(-ENOMEM); 6165 6166 inode = new_inode(fs_info->sb); 6167 if (!inode) { 6168 btrfs_free_path(path); 6169 return ERR_PTR(-ENOMEM); 6170 } 6171 6172 /* 6173 * O_TMPFILE, set link count to 0, so that after this point, 6174 * we fill in an inode item with the correct link count. 6175 */ 6176 if (!name) 6177 set_nlink(inode, 0); 6178 6179 /* 6180 * we have to initialize this early, so we can reclaim the inode 6181 * number if we fail afterwards in this function. 6182 */ 6183 inode->i_ino = objectid; 6184 6185 if (dir && name) { 6186 trace_btrfs_inode_request(dir); 6187 6188 ret = btrfs_set_inode_index(dir, index); 6189 if (ret) { 6190 btrfs_free_path(path); 6191 iput(inode); 6192 return ERR_PTR(ret); 6193 } 6194 } else if (dir) { 6195 *index = 0; 6196 } 6197 /* 6198 * index_cnt is ignored for everything but a dir, 6199 * btrfs_get_inode_index_count has an explanation for the magic 6200 * number 6201 */ 6202 BTRFS_I(inode)->index_cnt = 2; 6203 BTRFS_I(inode)->dir_index = *index; 6204 BTRFS_I(inode)->root = root; 6205 BTRFS_I(inode)->generation = trans->transid; 6206 inode->i_generation = BTRFS_I(inode)->generation; 6207 6208 /* 6209 * We could have gotten an inode number from somebody who was fsynced 6210 * and then removed in this same transaction, so let's just set full 6211 * sync since it will be a full sync anyway and this will blow away the 6212 * old info in the log. 6213 */ 6214 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6215 6216 key[0].objectid = objectid; 6217 key[0].type = BTRFS_INODE_ITEM_KEY; 6218 key[0].offset = 0; 6219 6220 sizes[0] = sizeof(struct btrfs_inode_item); 6221 6222 if (name) { 6223 /* 6224 * Start new inodes with an inode_ref. This is slightly more 6225 * efficient for small numbers of hard links since they will 6226 * be packed into one item. Extended refs will kick in if we 6227 * add more hard links than can fit in the ref item. 6228 */ 6229 key[1].objectid = objectid; 6230 key[1].type = BTRFS_INODE_REF_KEY; 6231 key[1].offset = ref_objectid; 6232 6233 sizes[1] = name_len + sizeof(*ref); 6234 } 6235 6236 location = &BTRFS_I(inode)->location; 6237 location->objectid = objectid; 6238 location->offset = 0; 6239 location->type = BTRFS_INODE_ITEM_KEY; 6240 6241 ret = btrfs_insert_inode_locked(inode); 6242 if (ret < 0) 6243 goto fail; 6244 6245 path->leave_spinning = 1; 6246 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6247 if (ret != 0) 6248 goto fail_unlock; 6249 6250 inode_init_owner(inode, dir, mode); 6251 inode_set_bytes(inode, 0); 6252 6253 inode->i_mtime = current_time(inode); 6254 inode->i_atime = inode->i_mtime; 6255 inode->i_ctime = inode->i_mtime; 6256 BTRFS_I(inode)->i_otime = inode->i_mtime; 6257 6258 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6259 struct btrfs_inode_item); 6260 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6261 sizeof(*inode_item)); 6262 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6263 6264 if (name) { 6265 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6266 struct btrfs_inode_ref); 6267 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6268 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6269 ptr = (unsigned long)(ref + 1); 6270 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6271 } 6272 6273 btrfs_mark_buffer_dirty(path->nodes[0]); 6274 btrfs_free_path(path); 6275 6276 btrfs_inherit_iflags(inode, dir); 6277 6278 if (S_ISREG(mode)) { 6279 if (btrfs_test_opt(fs_info, NODATASUM)) 6280 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6281 if (btrfs_test_opt(fs_info, NODATACOW)) 6282 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6283 BTRFS_INODE_NODATASUM; 6284 } 6285 6286 inode_tree_add(inode); 6287 6288 trace_btrfs_inode_new(inode); 6289 btrfs_set_inode_last_trans(trans, inode); 6290 6291 btrfs_update_root_times(trans, root); 6292 6293 ret = btrfs_inode_inherit_props(trans, inode, dir); 6294 if (ret) 6295 btrfs_err(fs_info, 6296 "error inheriting props for ino %llu (root %llu): %d", 6297 btrfs_ino(inode), root->root_key.objectid, ret); 6298 6299 return inode; 6300 6301 fail_unlock: 6302 unlock_new_inode(inode); 6303 fail: 6304 if (dir && name) 6305 BTRFS_I(dir)->index_cnt--; 6306 btrfs_free_path(path); 6307 iput(inode); 6308 return ERR_PTR(ret); 6309 } 6310 6311 static inline u8 btrfs_inode_type(struct inode *inode) 6312 { 6313 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6314 } 6315 6316 /* 6317 * utility function to add 'inode' into 'parent_inode' with 6318 * a give name and a given sequence number. 6319 * if 'add_backref' is true, also insert a backref from the 6320 * inode to the parent directory. 6321 */ 6322 int btrfs_add_link(struct btrfs_trans_handle *trans, 6323 struct inode *parent_inode, struct inode *inode, 6324 const char *name, int name_len, int add_backref, u64 index) 6325 { 6326 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6327 int ret = 0; 6328 struct btrfs_key key; 6329 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6330 u64 ino = btrfs_ino(inode); 6331 u64 parent_ino = btrfs_ino(parent_inode); 6332 6333 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6334 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6335 } else { 6336 key.objectid = ino; 6337 key.type = BTRFS_INODE_ITEM_KEY; 6338 key.offset = 0; 6339 } 6340 6341 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6342 ret = btrfs_add_root_ref(trans, fs_info, key.objectid, 6343 root->root_key.objectid, parent_ino, 6344 index, name, name_len); 6345 } else if (add_backref) { 6346 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6347 parent_ino, index); 6348 } 6349 6350 /* Nothing to clean up yet */ 6351 if (ret) 6352 return ret; 6353 6354 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6355 parent_inode, &key, 6356 btrfs_inode_type(inode), index); 6357 if (ret == -EEXIST || ret == -EOVERFLOW) 6358 goto fail_dir_item; 6359 else if (ret) { 6360 btrfs_abort_transaction(trans, ret); 6361 return ret; 6362 } 6363 6364 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6365 name_len * 2); 6366 inode_inc_iversion(parent_inode); 6367 parent_inode->i_mtime = parent_inode->i_ctime = 6368 current_time(parent_inode); 6369 ret = btrfs_update_inode(trans, root, parent_inode); 6370 if (ret) 6371 btrfs_abort_transaction(trans, ret); 6372 return ret; 6373 6374 fail_dir_item: 6375 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6376 u64 local_index; 6377 int err; 6378 err = btrfs_del_root_ref(trans, fs_info, key.objectid, 6379 root->root_key.objectid, parent_ino, 6380 &local_index, name, name_len); 6381 6382 } else if (add_backref) { 6383 u64 local_index; 6384 int err; 6385 6386 err = btrfs_del_inode_ref(trans, root, name, name_len, 6387 ino, parent_ino, &local_index); 6388 } 6389 return ret; 6390 } 6391 6392 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6393 struct inode *dir, struct dentry *dentry, 6394 struct inode *inode, int backref, u64 index) 6395 { 6396 int err = btrfs_add_link(trans, dir, inode, 6397 dentry->d_name.name, dentry->d_name.len, 6398 backref, index); 6399 if (err > 0) 6400 err = -EEXIST; 6401 return err; 6402 } 6403 6404 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6405 umode_t mode, dev_t rdev) 6406 { 6407 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6408 struct btrfs_trans_handle *trans; 6409 struct btrfs_root *root = BTRFS_I(dir)->root; 6410 struct inode *inode = NULL; 6411 int err; 6412 int drop_inode = 0; 6413 u64 objectid; 6414 u64 index = 0; 6415 6416 /* 6417 * 2 for inode item and ref 6418 * 2 for dir items 6419 * 1 for xattr if selinux is on 6420 */ 6421 trans = btrfs_start_transaction(root, 5); 6422 if (IS_ERR(trans)) 6423 return PTR_ERR(trans); 6424 6425 err = btrfs_find_free_ino(root, &objectid); 6426 if (err) 6427 goto out_unlock; 6428 6429 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6430 dentry->d_name.len, btrfs_ino(dir), objectid, 6431 mode, &index); 6432 if (IS_ERR(inode)) { 6433 err = PTR_ERR(inode); 6434 goto out_unlock; 6435 } 6436 6437 /* 6438 * If the active LSM wants to access the inode during 6439 * d_instantiate it needs these. Smack checks to see 6440 * if the filesystem supports xattrs by looking at the 6441 * ops vector. 6442 */ 6443 inode->i_op = &btrfs_special_inode_operations; 6444 init_special_inode(inode, inode->i_mode, rdev); 6445 6446 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6447 if (err) 6448 goto out_unlock_inode; 6449 6450 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6451 if (err) { 6452 goto out_unlock_inode; 6453 } else { 6454 btrfs_update_inode(trans, root, inode); 6455 unlock_new_inode(inode); 6456 d_instantiate(dentry, inode); 6457 } 6458 6459 out_unlock: 6460 btrfs_end_transaction(trans); 6461 btrfs_balance_delayed_items(fs_info); 6462 btrfs_btree_balance_dirty(fs_info); 6463 if (drop_inode) { 6464 inode_dec_link_count(inode); 6465 iput(inode); 6466 } 6467 return err; 6468 6469 out_unlock_inode: 6470 drop_inode = 1; 6471 unlock_new_inode(inode); 6472 goto out_unlock; 6473 6474 } 6475 6476 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6477 umode_t mode, bool excl) 6478 { 6479 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6480 struct btrfs_trans_handle *trans; 6481 struct btrfs_root *root = BTRFS_I(dir)->root; 6482 struct inode *inode = NULL; 6483 int drop_inode_on_err = 0; 6484 int err; 6485 u64 objectid; 6486 u64 index = 0; 6487 6488 /* 6489 * 2 for inode item and ref 6490 * 2 for dir items 6491 * 1 for xattr if selinux is on 6492 */ 6493 trans = btrfs_start_transaction(root, 5); 6494 if (IS_ERR(trans)) 6495 return PTR_ERR(trans); 6496 6497 err = btrfs_find_free_ino(root, &objectid); 6498 if (err) 6499 goto out_unlock; 6500 6501 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6502 dentry->d_name.len, btrfs_ino(dir), objectid, 6503 mode, &index); 6504 if (IS_ERR(inode)) { 6505 err = PTR_ERR(inode); 6506 goto out_unlock; 6507 } 6508 drop_inode_on_err = 1; 6509 /* 6510 * If the active LSM wants to access the inode during 6511 * d_instantiate it needs these. Smack checks to see 6512 * if the filesystem supports xattrs by looking at the 6513 * ops vector. 6514 */ 6515 inode->i_fop = &btrfs_file_operations; 6516 inode->i_op = &btrfs_file_inode_operations; 6517 inode->i_mapping->a_ops = &btrfs_aops; 6518 6519 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6520 if (err) 6521 goto out_unlock_inode; 6522 6523 err = btrfs_update_inode(trans, root, inode); 6524 if (err) 6525 goto out_unlock_inode; 6526 6527 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6528 if (err) 6529 goto out_unlock_inode; 6530 6531 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6532 unlock_new_inode(inode); 6533 d_instantiate(dentry, inode); 6534 6535 out_unlock: 6536 btrfs_end_transaction(trans); 6537 if (err && drop_inode_on_err) { 6538 inode_dec_link_count(inode); 6539 iput(inode); 6540 } 6541 btrfs_balance_delayed_items(fs_info); 6542 btrfs_btree_balance_dirty(fs_info); 6543 return err; 6544 6545 out_unlock_inode: 6546 unlock_new_inode(inode); 6547 goto out_unlock; 6548 6549 } 6550 6551 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6552 struct dentry *dentry) 6553 { 6554 struct btrfs_trans_handle *trans = NULL; 6555 struct btrfs_root *root = BTRFS_I(dir)->root; 6556 struct inode *inode = d_inode(old_dentry); 6557 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6558 u64 index; 6559 int err; 6560 int drop_inode = 0; 6561 6562 /* do not allow sys_link's with other subvols of the same device */ 6563 if (root->objectid != BTRFS_I(inode)->root->objectid) 6564 return -EXDEV; 6565 6566 if (inode->i_nlink >= BTRFS_LINK_MAX) 6567 return -EMLINK; 6568 6569 err = btrfs_set_inode_index(dir, &index); 6570 if (err) 6571 goto fail; 6572 6573 /* 6574 * 2 items for inode and inode ref 6575 * 2 items for dir items 6576 * 1 item for parent inode 6577 */ 6578 trans = btrfs_start_transaction(root, 5); 6579 if (IS_ERR(trans)) { 6580 err = PTR_ERR(trans); 6581 trans = NULL; 6582 goto fail; 6583 } 6584 6585 /* There are several dir indexes for this inode, clear the cache. */ 6586 BTRFS_I(inode)->dir_index = 0ULL; 6587 inc_nlink(inode); 6588 inode_inc_iversion(inode); 6589 inode->i_ctime = current_time(inode); 6590 ihold(inode); 6591 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6592 6593 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6594 6595 if (err) { 6596 drop_inode = 1; 6597 } else { 6598 struct dentry *parent = dentry->d_parent; 6599 err = btrfs_update_inode(trans, root, inode); 6600 if (err) 6601 goto fail; 6602 if (inode->i_nlink == 1) { 6603 /* 6604 * If new hard link count is 1, it's a file created 6605 * with open(2) O_TMPFILE flag. 6606 */ 6607 err = btrfs_orphan_del(trans, inode); 6608 if (err) 6609 goto fail; 6610 } 6611 d_instantiate(dentry, inode); 6612 btrfs_log_new_name(trans, inode, NULL, parent); 6613 } 6614 6615 btrfs_balance_delayed_items(fs_info); 6616 fail: 6617 if (trans) 6618 btrfs_end_transaction(trans); 6619 if (drop_inode) { 6620 inode_dec_link_count(inode); 6621 iput(inode); 6622 } 6623 btrfs_btree_balance_dirty(fs_info); 6624 return err; 6625 } 6626 6627 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6628 { 6629 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6630 struct inode *inode = NULL; 6631 struct btrfs_trans_handle *trans; 6632 struct btrfs_root *root = BTRFS_I(dir)->root; 6633 int err = 0; 6634 int drop_on_err = 0; 6635 u64 objectid = 0; 6636 u64 index = 0; 6637 6638 /* 6639 * 2 items for inode and ref 6640 * 2 items for dir items 6641 * 1 for xattr if selinux is on 6642 */ 6643 trans = btrfs_start_transaction(root, 5); 6644 if (IS_ERR(trans)) 6645 return PTR_ERR(trans); 6646 6647 err = btrfs_find_free_ino(root, &objectid); 6648 if (err) 6649 goto out_fail; 6650 6651 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6652 dentry->d_name.len, btrfs_ino(dir), objectid, 6653 S_IFDIR | mode, &index); 6654 if (IS_ERR(inode)) { 6655 err = PTR_ERR(inode); 6656 goto out_fail; 6657 } 6658 6659 drop_on_err = 1; 6660 /* these must be set before we unlock the inode */ 6661 inode->i_op = &btrfs_dir_inode_operations; 6662 inode->i_fop = &btrfs_dir_file_operations; 6663 6664 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6665 if (err) 6666 goto out_fail_inode; 6667 6668 btrfs_i_size_write(inode, 0); 6669 err = btrfs_update_inode(trans, root, inode); 6670 if (err) 6671 goto out_fail_inode; 6672 6673 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6674 dentry->d_name.len, 0, index); 6675 if (err) 6676 goto out_fail_inode; 6677 6678 d_instantiate(dentry, inode); 6679 /* 6680 * mkdir is special. We're unlocking after we call d_instantiate 6681 * to avoid a race with nfsd calling d_instantiate. 6682 */ 6683 unlock_new_inode(inode); 6684 drop_on_err = 0; 6685 6686 out_fail: 6687 btrfs_end_transaction(trans); 6688 if (drop_on_err) { 6689 inode_dec_link_count(inode); 6690 iput(inode); 6691 } 6692 btrfs_balance_delayed_items(fs_info); 6693 btrfs_btree_balance_dirty(fs_info); 6694 return err; 6695 6696 out_fail_inode: 6697 unlock_new_inode(inode); 6698 goto out_fail; 6699 } 6700 6701 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6702 static struct extent_map *next_extent_map(struct extent_map *em) 6703 { 6704 struct rb_node *next; 6705 6706 next = rb_next(&em->rb_node); 6707 if (!next) 6708 return NULL; 6709 return container_of(next, struct extent_map, rb_node); 6710 } 6711 6712 static struct extent_map *prev_extent_map(struct extent_map *em) 6713 { 6714 struct rb_node *prev; 6715 6716 prev = rb_prev(&em->rb_node); 6717 if (!prev) 6718 return NULL; 6719 return container_of(prev, struct extent_map, rb_node); 6720 } 6721 6722 /* helper for btfs_get_extent. Given an existing extent in the tree, 6723 * the existing extent is the nearest extent to map_start, 6724 * and an extent that you want to insert, deal with overlap and insert 6725 * the best fitted new extent into the tree. 6726 */ 6727 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6728 struct extent_map *existing, 6729 struct extent_map *em, 6730 u64 map_start) 6731 { 6732 struct extent_map *prev; 6733 struct extent_map *next; 6734 u64 start; 6735 u64 end; 6736 u64 start_diff; 6737 6738 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6739 6740 if (existing->start > map_start) { 6741 next = existing; 6742 prev = prev_extent_map(next); 6743 } else { 6744 prev = existing; 6745 next = next_extent_map(prev); 6746 } 6747 6748 start = prev ? extent_map_end(prev) : em->start; 6749 start = max_t(u64, start, em->start); 6750 end = next ? next->start : extent_map_end(em); 6751 end = min_t(u64, end, extent_map_end(em)); 6752 start_diff = start - em->start; 6753 em->start = start; 6754 em->len = end - start; 6755 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6756 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6757 em->block_start += start_diff; 6758 em->block_len -= start_diff; 6759 } 6760 return add_extent_mapping(em_tree, em, 0); 6761 } 6762 6763 static noinline int uncompress_inline(struct btrfs_path *path, 6764 struct page *page, 6765 size_t pg_offset, u64 extent_offset, 6766 struct btrfs_file_extent_item *item) 6767 { 6768 int ret; 6769 struct extent_buffer *leaf = path->nodes[0]; 6770 char *tmp; 6771 size_t max_size; 6772 unsigned long inline_size; 6773 unsigned long ptr; 6774 int compress_type; 6775 6776 WARN_ON(pg_offset != 0); 6777 compress_type = btrfs_file_extent_compression(leaf, item); 6778 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6779 inline_size = btrfs_file_extent_inline_item_len(leaf, 6780 btrfs_item_nr(path->slots[0])); 6781 tmp = kmalloc(inline_size, GFP_NOFS); 6782 if (!tmp) 6783 return -ENOMEM; 6784 ptr = btrfs_file_extent_inline_start(item); 6785 6786 read_extent_buffer(leaf, tmp, ptr, inline_size); 6787 6788 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6789 ret = btrfs_decompress(compress_type, tmp, page, 6790 extent_offset, inline_size, max_size); 6791 kfree(tmp); 6792 return ret; 6793 } 6794 6795 /* 6796 * a bit scary, this does extent mapping from logical file offset to the disk. 6797 * the ugly parts come from merging extents from the disk with the in-ram 6798 * representation. This gets more complex because of the data=ordered code, 6799 * where the in-ram extents might be locked pending data=ordered completion. 6800 * 6801 * This also copies inline extents directly into the page. 6802 */ 6803 6804 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6805 size_t pg_offset, u64 start, u64 len, 6806 int create) 6807 { 6808 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6809 int ret; 6810 int err = 0; 6811 u64 extent_start = 0; 6812 u64 extent_end = 0; 6813 u64 objectid = btrfs_ino(inode); 6814 u32 found_type; 6815 struct btrfs_path *path = NULL; 6816 struct btrfs_root *root = BTRFS_I(inode)->root; 6817 struct btrfs_file_extent_item *item; 6818 struct extent_buffer *leaf; 6819 struct btrfs_key found_key; 6820 struct extent_map *em = NULL; 6821 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6822 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6823 struct btrfs_trans_handle *trans = NULL; 6824 const bool new_inline = !page || create; 6825 6826 again: 6827 read_lock(&em_tree->lock); 6828 em = lookup_extent_mapping(em_tree, start, len); 6829 if (em) 6830 em->bdev = fs_info->fs_devices->latest_bdev; 6831 read_unlock(&em_tree->lock); 6832 6833 if (em) { 6834 if (em->start > start || em->start + em->len <= start) 6835 free_extent_map(em); 6836 else if (em->block_start == EXTENT_MAP_INLINE && page) 6837 free_extent_map(em); 6838 else 6839 goto out; 6840 } 6841 em = alloc_extent_map(); 6842 if (!em) { 6843 err = -ENOMEM; 6844 goto out; 6845 } 6846 em->bdev = fs_info->fs_devices->latest_bdev; 6847 em->start = EXTENT_MAP_HOLE; 6848 em->orig_start = EXTENT_MAP_HOLE; 6849 em->len = (u64)-1; 6850 em->block_len = (u64)-1; 6851 6852 if (!path) { 6853 path = btrfs_alloc_path(); 6854 if (!path) { 6855 err = -ENOMEM; 6856 goto out; 6857 } 6858 /* 6859 * Chances are we'll be called again, so go ahead and do 6860 * readahead 6861 */ 6862 path->reada = READA_FORWARD; 6863 } 6864 6865 ret = btrfs_lookup_file_extent(trans, root, path, 6866 objectid, start, trans != NULL); 6867 if (ret < 0) { 6868 err = ret; 6869 goto out; 6870 } 6871 6872 if (ret != 0) { 6873 if (path->slots[0] == 0) 6874 goto not_found; 6875 path->slots[0]--; 6876 } 6877 6878 leaf = path->nodes[0]; 6879 item = btrfs_item_ptr(leaf, path->slots[0], 6880 struct btrfs_file_extent_item); 6881 /* are we inside the extent that was found? */ 6882 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6883 found_type = found_key.type; 6884 if (found_key.objectid != objectid || 6885 found_type != BTRFS_EXTENT_DATA_KEY) { 6886 /* 6887 * If we backup past the first extent we want to move forward 6888 * and see if there is an extent in front of us, otherwise we'll 6889 * say there is a hole for our whole search range which can 6890 * cause problems. 6891 */ 6892 extent_end = start; 6893 goto next; 6894 } 6895 6896 found_type = btrfs_file_extent_type(leaf, item); 6897 extent_start = found_key.offset; 6898 if (found_type == BTRFS_FILE_EXTENT_REG || 6899 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6900 extent_end = extent_start + 6901 btrfs_file_extent_num_bytes(leaf, item); 6902 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6903 size_t size; 6904 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6905 extent_end = ALIGN(extent_start + size, 6906 fs_info->sectorsize); 6907 } 6908 next: 6909 if (start >= extent_end) { 6910 path->slots[0]++; 6911 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6912 ret = btrfs_next_leaf(root, path); 6913 if (ret < 0) { 6914 err = ret; 6915 goto out; 6916 } 6917 if (ret > 0) 6918 goto not_found; 6919 leaf = path->nodes[0]; 6920 } 6921 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6922 if (found_key.objectid != objectid || 6923 found_key.type != BTRFS_EXTENT_DATA_KEY) 6924 goto not_found; 6925 if (start + len <= found_key.offset) 6926 goto not_found; 6927 if (start > found_key.offset) 6928 goto next; 6929 em->start = start; 6930 em->orig_start = start; 6931 em->len = found_key.offset - start; 6932 goto not_found_em; 6933 } 6934 6935 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6936 6937 if (found_type == BTRFS_FILE_EXTENT_REG || 6938 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6939 goto insert; 6940 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6941 unsigned long ptr; 6942 char *map; 6943 size_t size; 6944 size_t extent_offset; 6945 size_t copy_size; 6946 6947 if (new_inline) 6948 goto out; 6949 6950 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6951 extent_offset = page_offset(page) + pg_offset - extent_start; 6952 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6953 size - extent_offset); 6954 em->start = extent_start + extent_offset; 6955 em->len = ALIGN(copy_size, fs_info->sectorsize); 6956 em->orig_block_len = em->len; 6957 em->orig_start = em->start; 6958 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6959 if (create == 0 && !PageUptodate(page)) { 6960 if (btrfs_file_extent_compression(leaf, item) != 6961 BTRFS_COMPRESS_NONE) { 6962 ret = uncompress_inline(path, page, pg_offset, 6963 extent_offset, item); 6964 if (ret) { 6965 err = ret; 6966 goto out; 6967 } 6968 } else { 6969 map = kmap(page); 6970 read_extent_buffer(leaf, map + pg_offset, ptr, 6971 copy_size); 6972 if (pg_offset + copy_size < PAGE_SIZE) { 6973 memset(map + pg_offset + copy_size, 0, 6974 PAGE_SIZE - pg_offset - 6975 copy_size); 6976 } 6977 kunmap(page); 6978 } 6979 flush_dcache_page(page); 6980 } else if (create && PageUptodate(page)) { 6981 BUG(); 6982 if (!trans) { 6983 kunmap(page); 6984 free_extent_map(em); 6985 em = NULL; 6986 6987 btrfs_release_path(path); 6988 trans = btrfs_join_transaction(root); 6989 6990 if (IS_ERR(trans)) 6991 return ERR_CAST(trans); 6992 goto again; 6993 } 6994 map = kmap(page); 6995 write_extent_buffer(leaf, map + pg_offset, ptr, 6996 copy_size); 6997 kunmap(page); 6998 btrfs_mark_buffer_dirty(leaf); 6999 } 7000 set_extent_uptodate(io_tree, em->start, 7001 extent_map_end(em) - 1, NULL, GFP_NOFS); 7002 goto insert; 7003 } 7004 not_found: 7005 em->start = start; 7006 em->orig_start = start; 7007 em->len = len; 7008 not_found_em: 7009 em->block_start = EXTENT_MAP_HOLE; 7010 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 7011 insert: 7012 btrfs_release_path(path); 7013 if (em->start > start || extent_map_end(em) <= start) { 7014 btrfs_err(fs_info, 7015 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7016 em->start, em->len, start, len); 7017 err = -EIO; 7018 goto out; 7019 } 7020 7021 err = 0; 7022 write_lock(&em_tree->lock); 7023 ret = add_extent_mapping(em_tree, em, 0); 7024 /* it is possible that someone inserted the extent into the tree 7025 * while we had the lock dropped. It is also possible that 7026 * an overlapping map exists in the tree 7027 */ 7028 if (ret == -EEXIST) { 7029 struct extent_map *existing; 7030 7031 ret = 0; 7032 7033 existing = search_extent_mapping(em_tree, start, len); 7034 /* 7035 * existing will always be non-NULL, since there must be 7036 * extent causing the -EEXIST. 7037 */ 7038 if (existing->start == em->start && 7039 extent_map_end(existing) >= extent_map_end(em) && 7040 em->block_start == existing->block_start) { 7041 /* 7042 * The existing extent map already encompasses the 7043 * entire extent map we tried to add. 7044 */ 7045 free_extent_map(em); 7046 em = existing; 7047 err = 0; 7048 7049 } else if (start >= extent_map_end(existing) || 7050 start <= existing->start) { 7051 /* 7052 * The existing extent map is the one nearest to 7053 * the [start, start + len) range which overlaps 7054 */ 7055 err = merge_extent_mapping(em_tree, existing, 7056 em, start); 7057 free_extent_map(existing); 7058 if (err) { 7059 free_extent_map(em); 7060 em = NULL; 7061 } 7062 } else { 7063 free_extent_map(em); 7064 em = existing; 7065 err = 0; 7066 } 7067 } 7068 write_unlock(&em_tree->lock); 7069 out: 7070 7071 trace_btrfs_get_extent(root, inode, em); 7072 7073 btrfs_free_path(path); 7074 if (trans) { 7075 ret = btrfs_end_transaction(trans); 7076 if (!err) 7077 err = ret; 7078 } 7079 if (err) { 7080 free_extent_map(em); 7081 return ERR_PTR(err); 7082 } 7083 BUG_ON(!em); /* Error is always set */ 7084 return em; 7085 } 7086 7087 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 7088 size_t pg_offset, u64 start, u64 len, 7089 int create) 7090 { 7091 struct extent_map *em; 7092 struct extent_map *hole_em = NULL; 7093 u64 range_start = start; 7094 u64 end; 7095 u64 found; 7096 u64 found_end; 7097 int err = 0; 7098 7099 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7100 if (IS_ERR(em)) 7101 return em; 7102 if (em) { 7103 /* 7104 * if our em maps to 7105 * - a hole or 7106 * - a pre-alloc extent, 7107 * there might actually be delalloc bytes behind it. 7108 */ 7109 if (em->block_start != EXTENT_MAP_HOLE && 7110 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7111 return em; 7112 else 7113 hole_em = em; 7114 } 7115 7116 /* check to see if we've wrapped (len == -1 or similar) */ 7117 end = start + len; 7118 if (end < start) 7119 end = (u64)-1; 7120 else 7121 end -= 1; 7122 7123 em = NULL; 7124 7125 /* ok, we didn't find anything, lets look for delalloc */ 7126 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 7127 end, len, EXTENT_DELALLOC, 1); 7128 found_end = range_start + found; 7129 if (found_end < range_start) 7130 found_end = (u64)-1; 7131 7132 /* 7133 * we didn't find anything useful, return 7134 * the original results from get_extent() 7135 */ 7136 if (range_start > end || found_end <= start) { 7137 em = hole_em; 7138 hole_em = NULL; 7139 goto out; 7140 } 7141 7142 /* adjust the range_start to make sure it doesn't 7143 * go backwards from the start they passed in 7144 */ 7145 range_start = max(start, range_start); 7146 found = found_end - range_start; 7147 7148 if (found > 0) { 7149 u64 hole_start = start; 7150 u64 hole_len = len; 7151 7152 em = alloc_extent_map(); 7153 if (!em) { 7154 err = -ENOMEM; 7155 goto out; 7156 } 7157 /* 7158 * when btrfs_get_extent can't find anything it 7159 * returns one huge hole 7160 * 7161 * make sure what it found really fits our range, and 7162 * adjust to make sure it is based on the start from 7163 * the caller 7164 */ 7165 if (hole_em) { 7166 u64 calc_end = extent_map_end(hole_em); 7167 7168 if (calc_end <= start || (hole_em->start > end)) { 7169 free_extent_map(hole_em); 7170 hole_em = NULL; 7171 } else { 7172 hole_start = max(hole_em->start, start); 7173 hole_len = calc_end - hole_start; 7174 } 7175 } 7176 em->bdev = NULL; 7177 if (hole_em && range_start > hole_start) { 7178 /* our hole starts before our delalloc, so we 7179 * have to return just the parts of the hole 7180 * that go until the delalloc starts 7181 */ 7182 em->len = min(hole_len, 7183 range_start - hole_start); 7184 em->start = hole_start; 7185 em->orig_start = hole_start; 7186 /* 7187 * don't adjust block start at all, 7188 * it is fixed at EXTENT_MAP_HOLE 7189 */ 7190 em->block_start = hole_em->block_start; 7191 em->block_len = hole_len; 7192 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7193 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7194 } else { 7195 em->start = range_start; 7196 em->len = found; 7197 em->orig_start = range_start; 7198 em->block_start = EXTENT_MAP_DELALLOC; 7199 em->block_len = found; 7200 } 7201 } else if (hole_em) { 7202 return hole_em; 7203 } 7204 out: 7205 7206 free_extent_map(hole_em); 7207 if (err) { 7208 free_extent_map(em); 7209 return ERR_PTR(err); 7210 } 7211 return em; 7212 } 7213 7214 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7215 const u64 start, 7216 const u64 len, 7217 const u64 orig_start, 7218 const u64 block_start, 7219 const u64 block_len, 7220 const u64 orig_block_len, 7221 const u64 ram_bytes, 7222 const int type) 7223 { 7224 struct extent_map *em = NULL; 7225 int ret; 7226 7227 if (type != BTRFS_ORDERED_NOCOW) { 7228 em = create_pinned_em(inode, start, len, orig_start, 7229 block_start, block_len, orig_block_len, 7230 ram_bytes, type); 7231 if (IS_ERR(em)) 7232 goto out; 7233 } 7234 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7235 len, block_len, type); 7236 if (ret) { 7237 if (em) { 7238 free_extent_map(em); 7239 btrfs_drop_extent_cache(inode, start, 7240 start + len - 1, 0); 7241 } 7242 em = ERR_PTR(ret); 7243 } 7244 out: 7245 7246 return em; 7247 } 7248 7249 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7250 u64 start, u64 len) 7251 { 7252 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7253 struct btrfs_root *root = BTRFS_I(inode)->root; 7254 struct extent_map *em; 7255 struct btrfs_key ins; 7256 u64 alloc_hint; 7257 int ret; 7258 7259 alloc_hint = get_extent_allocation_hint(inode, start, len); 7260 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7261 0, alloc_hint, &ins, 1, 1); 7262 if (ret) 7263 return ERR_PTR(ret); 7264 7265 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7266 ins.objectid, ins.offset, ins.offset, 7267 ins.offset, 0); 7268 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7269 if (IS_ERR(em)) 7270 btrfs_free_reserved_extent(fs_info, ins.objectid, 7271 ins.offset, 1); 7272 7273 return em; 7274 } 7275 7276 /* 7277 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7278 * block must be cow'd 7279 */ 7280 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7281 u64 *orig_start, u64 *orig_block_len, 7282 u64 *ram_bytes) 7283 { 7284 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7285 struct btrfs_trans_handle *trans; 7286 struct btrfs_path *path; 7287 int ret; 7288 struct extent_buffer *leaf; 7289 struct btrfs_root *root = BTRFS_I(inode)->root; 7290 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7291 struct btrfs_file_extent_item *fi; 7292 struct btrfs_key key; 7293 u64 disk_bytenr; 7294 u64 backref_offset; 7295 u64 extent_end; 7296 u64 num_bytes; 7297 int slot; 7298 int found_type; 7299 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7300 7301 path = btrfs_alloc_path(); 7302 if (!path) 7303 return -ENOMEM; 7304 7305 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7306 offset, 0); 7307 if (ret < 0) 7308 goto out; 7309 7310 slot = path->slots[0]; 7311 if (ret == 1) { 7312 if (slot == 0) { 7313 /* can't find the item, must cow */ 7314 ret = 0; 7315 goto out; 7316 } 7317 slot--; 7318 } 7319 ret = 0; 7320 leaf = path->nodes[0]; 7321 btrfs_item_key_to_cpu(leaf, &key, slot); 7322 if (key.objectid != btrfs_ino(inode) || 7323 key.type != BTRFS_EXTENT_DATA_KEY) { 7324 /* not our file or wrong item type, must cow */ 7325 goto out; 7326 } 7327 7328 if (key.offset > offset) { 7329 /* Wrong offset, must cow */ 7330 goto out; 7331 } 7332 7333 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7334 found_type = btrfs_file_extent_type(leaf, fi); 7335 if (found_type != BTRFS_FILE_EXTENT_REG && 7336 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7337 /* not a regular extent, must cow */ 7338 goto out; 7339 } 7340 7341 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7342 goto out; 7343 7344 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7345 if (extent_end <= offset) 7346 goto out; 7347 7348 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7349 if (disk_bytenr == 0) 7350 goto out; 7351 7352 if (btrfs_file_extent_compression(leaf, fi) || 7353 btrfs_file_extent_encryption(leaf, fi) || 7354 btrfs_file_extent_other_encoding(leaf, fi)) 7355 goto out; 7356 7357 backref_offset = btrfs_file_extent_offset(leaf, fi); 7358 7359 if (orig_start) { 7360 *orig_start = key.offset - backref_offset; 7361 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7362 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7363 } 7364 7365 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7366 goto out; 7367 7368 num_bytes = min(offset + *len, extent_end) - offset; 7369 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7370 u64 range_end; 7371 7372 range_end = round_up(offset + num_bytes, 7373 root->fs_info->sectorsize) - 1; 7374 ret = test_range_bit(io_tree, offset, range_end, 7375 EXTENT_DELALLOC, 0, NULL); 7376 if (ret) { 7377 ret = -EAGAIN; 7378 goto out; 7379 } 7380 } 7381 7382 btrfs_release_path(path); 7383 7384 /* 7385 * look for other files referencing this extent, if we 7386 * find any we must cow 7387 */ 7388 trans = btrfs_join_transaction(root); 7389 if (IS_ERR(trans)) { 7390 ret = 0; 7391 goto out; 7392 } 7393 7394 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7395 key.offset - backref_offset, disk_bytenr); 7396 btrfs_end_transaction(trans); 7397 if (ret) { 7398 ret = 0; 7399 goto out; 7400 } 7401 7402 /* 7403 * adjust disk_bytenr and num_bytes to cover just the bytes 7404 * in this extent we are about to write. If there 7405 * are any csums in that range we have to cow in order 7406 * to keep the csums correct 7407 */ 7408 disk_bytenr += backref_offset; 7409 disk_bytenr += offset - key.offset; 7410 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7411 goto out; 7412 /* 7413 * all of the above have passed, it is safe to overwrite this extent 7414 * without cow 7415 */ 7416 *len = num_bytes; 7417 ret = 1; 7418 out: 7419 btrfs_free_path(path); 7420 return ret; 7421 } 7422 7423 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7424 { 7425 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7426 int found = false; 7427 void **pagep = NULL; 7428 struct page *page = NULL; 7429 int start_idx; 7430 int end_idx; 7431 7432 start_idx = start >> PAGE_SHIFT; 7433 7434 /* 7435 * end is the last byte in the last page. end == start is legal 7436 */ 7437 end_idx = end >> PAGE_SHIFT; 7438 7439 rcu_read_lock(); 7440 7441 /* Most of the code in this while loop is lifted from 7442 * find_get_page. It's been modified to begin searching from a 7443 * page and return just the first page found in that range. If the 7444 * found idx is less than or equal to the end idx then we know that 7445 * a page exists. If no pages are found or if those pages are 7446 * outside of the range then we're fine (yay!) */ 7447 while (page == NULL && 7448 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7449 page = radix_tree_deref_slot(pagep); 7450 if (unlikely(!page)) 7451 break; 7452 7453 if (radix_tree_exception(page)) { 7454 if (radix_tree_deref_retry(page)) { 7455 page = NULL; 7456 continue; 7457 } 7458 /* 7459 * Otherwise, shmem/tmpfs must be storing a swap entry 7460 * here as an exceptional entry: so return it without 7461 * attempting to raise page count. 7462 */ 7463 page = NULL; 7464 break; /* TODO: Is this relevant for this use case? */ 7465 } 7466 7467 if (!page_cache_get_speculative(page)) { 7468 page = NULL; 7469 continue; 7470 } 7471 7472 /* 7473 * Has the page moved? 7474 * This is part of the lockless pagecache protocol. See 7475 * include/linux/pagemap.h for details. 7476 */ 7477 if (unlikely(page != *pagep)) { 7478 put_page(page); 7479 page = NULL; 7480 } 7481 } 7482 7483 if (page) { 7484 if (page->index <= end_idx) 7485 found = true; 7486 put_page(page); 7487 } 7488 7489 rcu_read_unlock(); 7490 return found; 7491 } 7492 7493 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7494 struct extent_state **cached_state, int writing) 7495 { 7496 struct btrfs_ordered_extent *ordered; 7497 int ret = 0; 7498 7499 while (1) { 7500 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7501 cached_state); 7502 /* 7503 * We're concerned with the entire range that we're going to be 7504 * doing DIO to, so we need to make sure there's no ordered 7505 * extents in this range. 7506 */ 7507 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7508 lockend - lockstart + 1); 7509 7510 /* 7511 * We need to make sure there are no buffered pages in this 7512 * range either, we could have raced between the invalidate in 7513 * generic_file_direct_write and locking the extent. The 7514 * invalidate needs to happen so that reads after a write do not 7515 * get stale data. 7516 */ 7517 if (!ordered && 7518 (!writing || 7519 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7520 break; 7521 7522 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7523 cached_state, GFP_NOFS); 7524 7525 if (ordered) { 7526 /* 7527 * If we are doing a DIO read and the ordered extent we 7528 * found is for a buffered write, we can not wait for it 7529 * to complete and retry, because if we do so we can 7530 * deadlock with concurrent buffered writes on page 7531 * locks. This happens only if our DIO read covers more 7532 * than one extent map, if at this point has already 7533 * created an ordered extent for a previous extent map 7534 * and locked its range in the inode's io tree, and a 7535 * concurrent write against that previous extent map's 7536 * range and this range started (we unlock the ranges 7537 * in the io tree only when the bios complete and 7538 * buffered writes always lock pages before attempting 7539 * to lock range in the io tree). 7540 */ 7541 if (writing || 7542 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7543 btrfs_start_ordered_extent(inode, ordered, 1); 7544 else 7545 ret = -ENOTBLK; 7546 btrfs_put_ordered_extent(ordered); 7547 } else { 7548 /* 7549 * We could trigger writeback for this range (and wait 7550 * for it to complete) and then invalidate the pages for 7551 * this range (through invalidate_inode_pages2_range()), 7552 * but that can lead us to a deadlock with a concurrent 7553 * call to readpages() (a buffered read or a defrag call 7554 * triggered a readahead) on a page lock due to an 7555 * ordered dio extent we created before but did not have 7556 * yet a corresponding bio submitted (whence it can not 7557 * complete), which makes readpages() wait for that 7558 * ordered extent to complete while holding a lock on 7559 * that page. 7560 */ 7561 ret = -ENOTBLK; 7562 } 7563 7564 if (ret) 7565 break; 7566 7567 cond_resched(); 7568 } 7569 7570 return ret; 7571 } 7572 7573 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7574 u64 len, u64 orig_start, 7575 u64 block_start, u64 block_len, 7576 u64 orig_block_len, u64 ram_bytes, 7577 int type) 7578 { 7579 struct extent_map_tree *em_tree; 7580 struct extent_map *em; 7581 struct btrfs_root *root = BTRFS_I(inode)->root; 7582 int ret; 7583 7584 em_tree = &BTRFS_I(inode)->extent_tree; 7585 em = alloc_extent_map(); 7586 if (!em) 7587 return ERR_PTR(-ENOMEM); 7588 7589 em->start = start; 7590 em->orig_start = orig_start; 7591 em->mod_start = start; 7592 em->mod_len = len; 7593 em->len = len; 7594 em->block_len = block_len; 7595 em->block_start = block_start; 7596 em->bdev = root->fs_info->fs_devices->latest_bdev; 7597 em->orig_block_len = orig_block_len; 7598 em->ram_bytes = ram_bytes; 7599 em->generation = -1; 7600 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7601 if (type == BTRFS_ORDERED_PREALLOC) 7602 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7603 7604 do { 7605 btrfs_drop_extent_cache(inode, em->start, 7606 em->start + em->len - 1, 0); 7607 write_lock(&em_tree->lock); 7608 ret = add_extent_mapping(em_tree, em, 1); 7609 write_unlock(&em_tree->lock); 7610 } while (ret == -EEXIST); 7611 7612 if (ret) { 7613 free_extent_map(em); 7614 return ERR_PTR(ret); 7615 } 7616 7617 return em; 7618 } 7619 7620 static void adjust_dio_outstanding_extents(struct inode *inode, 7621 struct btrfs_dio_data *dio_data, 7622 const u64 len) 7623 { 7624 unsigned num_extents; 7625 7626 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1, 7627 BTRFS_MAX_EXTENT_SIZE); 7628 /* 7629 * If we have an outstanding_extents count still set then we're 7630 * within our reservation, otherwise we need to adjust our inode 7631 * counter appropriately. 7632 */ 7633 if (dio_data->outstanding_extents >= num_extents) { 7634 dio_data->outstanding_extents -= num_extents; 7635 } else { 7636 /* 7637 * If dio write length has been split due to no large enough 7638 * contiguous space, we need to compensate our inode counter 7639 * appropriately. 7640 */ 7641 u64 num_needed = num_extents - dio_data->outstanding_extents; 7642 7643 spin_lock(&BTRFS_I(inode)->lock); 7644 BTRFS_I(inode)->outstanding_extents += num_needed; 7645 spin_unlock(&BTRFS_I(inode)->lock); 7646 } 7647 } 7648 7649 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7650 struct buffer_head *bh_result, int create) 7651 { 7652 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7653 struct extent_map *em; 7654 struct extent_state *cached_state = NULL; 7655 struct btrfs_dio_data *dio_data = NULL; 7656 u64 start = iblock << inode->i_blkbits; 7657 u64 lockstart, lockend; 7658 u64 len = bh_result->b_size; 7659 int unlock_bits = EXTENT_LOCKED; 7660 int ret = 0; 7661 7662 if (create) 7663 unlock_bits |= EXTENT_DIRTY; 7664 else 7665 len = min_t(u64, len, fs_info->sectorsize); 7666 7667 lockstart = start; 7668 lockend = start + len - 1; 7669 7670 if (current->journal_info) { 7671 /* 7672 * Need to pull our outstanding extents and set journal_info to NULL so 7673 * that anything that needs to check if there's a transaction doesn't get 7674 * confused. 7675 */ 7676 dio_data = current->journal_info; 7677 current->journal_info = NULL; 7678 } 7679 7680 /* 7681 * If this errors out it's because we couldn't invalidate pagecache for 7682 * this range and we need to fallback to buffered. 7683 */ 7684 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7685 create)) { 7686 ret = -ENOTBLK; 7687 goto err; 7688 } 7689 7690 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7691 if (IS_ERR(em)) { 7692 ret = PTR_ERR(em); 7693 goto unlock_err; 7694 } 7695 7696 /* 7697 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7698 * io. INLINE is special, and we could probably kludge it in here, but 7699 * it's still buffered so for safety lets just fall back to the generic 7700 * buffered path. 7701 * 7702 * For COMPRESSED we _have_ to read the entire extent in so we can 7703 * decompress it, so there will be buffering required no matter what we 7704 * do, so go ahead and fallback to buffered. 7705 * 7706 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7707 * to buffered IO. Don't blame me, this is the price we pay for using 7708 * the generic code. 7709 */ 7710 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7711 em->block_start == EXTENT_MAP_INLINE) { 7712 free_extent_map(em); 7713 ret = -ENOTBLK; 7714 goto unlock_err; 7715 } 7716 7717 /* Just a good old fashioned hole, return */ 7718 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7719 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7720 free_extent_map(em); 7721 goto unlock_err; 7722 } 7723 7724 /* 7725 * We don't allocate a new extent in the following cases 7726 * 7727 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7728 * existing extent. 7729 * 2) The extent is marked as PREALLOC. We're good to go here and can 7730 * just use the extent. 7731 * 7732 */ 7733 if (!create) { 7734 len = min(len, em->len - (start - em->start)); 7735 lockstart = start + len; 7736 goto unlock; 7737 } 7738 7739 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7740 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7741 em->block_start != EXTENT_MAP_HOLE)) { 7742 int type; 7743 u64 block_start, orig_start, orig_block_len, ram_bytes; 7744 7745 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7746 type = BTRFS_ORDERED_PREALLOC; 7747 else 7748 type = BTRFS_ORDERED_NOCOW; 7749 len = min(len, em->len - (start - em->start)); 7750 block_start = em->block_start + (start - em->start); 7751 7752 if (can_nocow_extent(inode, start, &len, &orig_start, 7753 &orig_block_len, &ram_bytes) == 1 && 7754 btrfs_inc_nocow_writers(fs_info, block_start)) { 7755 struct extent_map *em2; 7756 7757 em2 = btrfs_create_dio_extent(inode, start, len, 7758 orig_start, block_start, 7759 len, orig_block_len, 7760 ram_bytes, type); 7761 btrfs_dec_nocow_writers(fs_info, block_start); 7762 if (type == BTRFS_ORDERED_PREALLOC) { 7763 free_extent_map(em); 7764 em = em2; 7765 } 7766 if (em2 && IS_ERR(em2)) { 7767 ret = PTR_ERR(em2); 7768 goto unlock_err; 7769 } 7770 /* 7771 * For inode marked NODATACOW or extent marked PREALLOC, 7772 * use the existing or preallocated extent, so does not 7773 * need to adjust btrfs_space_info's bytes_may_use. 7774 */ 7775 btrfs_free_reserved_data_space_noquota(inode, 7776 start, len); 7777 goto unlock; 7778 } 7779 } 7780 7781 /* 7782 * this will cow the extent, reset the len in case we changed 7783 * it above 7784 */ 7785 len = bh_result->b_size; 7786 free_extent_map(em); 7787 em = btrfs_new_extent_direct(inode, start, len); 7788 if (IS_ERR(em)) { 7789 ret = PTR_ERR(em); 7790 goto unlock_err; 7791 } 7792 len = min(len, em->len - (start - em->start)); 7793 unlock: 7794 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7795 inode->i_blkbits; 7796 bh_result->b_size = len; 7797 bh_result->b_bdev = em->bdev; 7798 set_buffer_mapped(bh_result); 7799 if (create) { 7800 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7801 set_buffer_new(bh_result); 7802 7803 /* 7804 * Need to update the i_size under the extent lock so buffered 7805 * readers will get the updated i_size when we unlock. 7806 */ 7807 if (start + len > i_size_read(inode)) 7808 i_size_write(inode, start + len); 7809 7810 adjust_dio_outstanding_extents(inode, dio_data, len); 7811 WARN_ON(dio_data->reserve < len); 7812 dio_data->reserve -= len; 7813 dio_data->unsubmitted_oe_range_end = start + len; 7814 current->journal_info = dio_data; 7815 } 7816 7817 /* 7818 * In the case of write we need to clear and unlock the entire range, 7819 * in the case of read we need to unlock only the end area that we 7820 * aren't using if there is any left over space. 7821 */ 7822 if (lockstart < lockend) { 7823 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7824 lockend, unlock_bits, 1, 0, 7825 &cached_state, GFP_NOFS); 7826 } else { 7827 free_extent_state(cached_state); 7828 } 7829 7830 free_extent_map(em); 7831 7832 return 0; 7833 7834 unlock_err: 7835 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7836 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7837 err: 7838 if (dio_data) 7839 current->journal_info = dio_data; 7840 /* 7841 * Compensate the delalloc release we do in btrfs_direct_IO() when we 7842 * write less data then expected, so that we don't underflow our inode's 7843 * outstanding extents counter. 7844 */ 7845 if (create && dio_data) 7846 adjust_dio_outstanding_extents(inode, dio_data, len); 7847 7848 return ret; 7849 } 7850 7851 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7852 int mirror_num) 7853 { 7854 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7855 int ret; 7856 7857 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7858 7859 bio_get(bio); 7860 7861 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7862 if (ret) 7863 goto err; 7864 7865 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7866 err: 7867 bio_put(bio); 7868 return ret; 7869 } 7870 7871 static int btrfs_check_dio_repairable(struct inode *inode, 7872 struct bio *failed_bio, 7873 struct io_failure_record *failrec, 7874 int failed_mirror) 7875 { 7876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7877 int num_copies; 7878 7879 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7880 if (num_copies == 1) { 7881 /* 7882 * we only have a single copy of the data, so don't bother with 7883 * all the retry and error correction code that follows. no 7884 * matter what the error is, it is very likely to persist. 7885 */ 7886 btrfs_debug(fs_info, 7887 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7888 num_copies, failrec->this_mirror, failed_mirror); 7889 return 0; 7890 } 7891 7892 failrec->failed_mirror = failed_mirror; 7893 failrec->this_mirror++; 7894 if (failrec->this_mirror == failed_mirror) 7895 failrec->this_mirror++; 7896 7897 if (failrec->this_mirror > num_copies) { 7898 btrfs_debug(fs_info, 7899 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7900 num_copies, failrec->this_mirror, failed_mirror); 7901 return 0; 7902 } 7903 7904 return 1; 7905 } 7906 7907 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7908 struct page *page, unsigned int pgoff, 7909 u64 start, u64 end, int failed_mirror, 7910 bio_end_io_t *repair_endio, void *repair_arg) 7911 { 7912 struct io_failure_record *failrec; 7913 struct bio *bio; 7914 int isector; 7915 int read_mode = 0; 7916 int ret; 7917 7918 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7919 7920 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7921 if (ret) 7922 return ret; 7923 7924 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7925 failed_mirror); 7926 if (!ret) { 7927 free_io_failure(inode, failrec); 7928 return -EIO; 7929 } 7930 7931 if ((failed_bio->bi_vcnt > 1) 7932 || (failed_bio->bi_io_vec->bv_len 7933 > btrfs_inode_sectorsize(inode))) 7934 read_mode |= REQ_FAILFAST_DEV; 7935 7936 isector = start - btrfs_io_bio(failed_bio)->logical; 7937 isector >>= inode->i_sb->s_blocksize_bits; 7938 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7939 pgoff, isector, repair_endio, repair_arg); 7940 if (!bio) { 7941 free_io_failure(inode, failrec); 7942 return -EIO; 7943 } 7944 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 7945 7946 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7947 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7948 read_mode, failrec->this_mirror, failrec->in_validation); 7949 7950 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7951 if (ret) { 7952 free_io_failure(inode, failrec); 7953 bio_put(bio); 7954 } 7955 7956 return ret; 7957 } 7958 7959 struct btrfs_retry_complete { 7960 struct completion done; 7961 struct inode *inode; 7962 u64 start; 7963 int uptodate; 7964 }; 7965 7966 static void btrfs_retry_endio_nocsum(struct bio *bio) 7967 { 7968 struct btrfs_retry_complete *done = bio->bi_private; 7969 struct inode *inode; 7970 struct bio_vec *bvec; 7971 int i; 7972 7973 if (bio->bi_error) 7974 goto end; 7975 7976 ASSERT(bio->bi_vcnt == 1); 7977 inode = bio->bi_io_vec->bv_page->mapping->host; 7978 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode)); 7979 7980 done->uptodate = 1; 7981 bio_for_each_segment_all(bvec, bio, i) 7982 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7983 end: 7984 complete(&done->done); 7985 bio_put(bio); 7986 } 7987 7988 static int __btrfs_correct_data_nocsum(struct inode *inode, 7989 struct btrfs_io_bio *io_bio) 7990 { 7991 struct btrfs_fs_info *fs_info; 7992 struct bio_vec *bvec; 7993 struct btrfs_retry_complete done; 7994 u64 start; 7995 unsigned int pgoff; 7996 u32 sectorsize; 7997 int nr_sectors; 7998 int i; 7999 int ret; 8000 8001 fs_info = BTRFS_I(inode)->root->fs_info; 8002 sectorsize = fs_info->sectorsize; 8003 8004 start = io_bio->logical; 8005 done.inode = inode; 8006 8007 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8008 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8009 pgoff = bvec->bv_offset; 8010 8011 next_block_or_try_again: 8012 done.uptodate = 0; 8013 done.start = start; 8014 init_completion(&done.done); 8015 8016 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8017 pgoff, start, start + sectorsize - 1, 8018 io_bio->mirror_num, 8019 btrfs_retry_endio_nocsum, &done); 8020 if (ret) 8021 return ret; 8022 8023 wait_for_completion(&done.done); 8024 8025 if (!done.uptodate) { 8026 /* We might have another mirror, so try again */ 8027 goto next_block_or_try_again; 8028 } 8029 8030 start += sectorsize; 8031 8032 if (nr_sectors--) { 8033 pgoff += sectorsize; 8034 goto next_block_or_try_again; 8035 } 8036 } 8037 8038 return 0; 8039 } 8040 8041 static void btrfs_retry_endio(struct bio *bio) 8042 { 8043 struct btrfs_retry_complete *done = bio->bi_private; 8044 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8045 struct inode *inode; 8046 struct bio_vec *bvec; 8047 u64 start; 8048 int uptodate; 8049 int ret; 8050 int i; 8051 8052 if (bio->bi_error) 8053 goto end; 8054 8055 uptodate = 1; 8056 8057 start = done->start; 8058 8059 ASSERT(bio->bi_vcnt == 1); 8060 inode = bio->bi_io_vec->bv_page->mapping->host; 8061 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode)); 8062 8063 bio_for_each_segment_all(bvec, bio, i) { 8064 ret = __readpage_endio_check(done->inode, io_bio, i, 8065 bvec->bv_page, bvec->bv_offset, 8066 done->start, bvec->bv_len); 8067 if (!ret) 8068 clean_io_failure(done->inode, done->start, 8069 bvec->bv_page, bvec->bv_offset); 8070 else 8071 uptodate = 0; 8072 } 8073 8074 done->uptodate = uptodate; 8075 end: 8076 complete(&done->done); 8077 bio_put(bio); 8078 } 8079 8080 static int __btrfs_subio_endio_read(struct inode *inode, 8081 struct btrfs_io_bio *io_bio, int err) 8082 { 8083 struct btrfs_fs_info *fs_info; 8084 struct bio_vec *bvec; 8085 struct btrfs_retry_complete done; 8086 u64 start; 8087 u64 offset = 0; 8088 u32 sectorsize; 8089 int nr_sectors; 8090 unsigned int pgoff; 8091 int csum_pos; 8092 int i; 8093 int ret; 8094 8095 fs_info = BTRFS_I(inode)->root->fs_info; 8096 sectorsize = fs_info->sectorsize; 8097 8098 err = 0; 8099 start = io_bio->logical; 8100 done.inode = inode; 8101 8102 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8103 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8104 8105 pgoff = bvec->bv_offset; 8106 next_block: 8107 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8108 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8109 bvec->bv_page, pgoff, start, 8110 sectorsize); 8111 if (likely(!ret)) 8112 goto next; 8113 try_again: 8114 done.uptodate = 0; 8115 done.start = start; 8116 init_completion(&done.done); 8117 8118 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8119 pgoff, start, start + sectorsize - 1, 8120 io_bio->mirror_num, 8121 btrfs_retry_endio, &done); 8122 if (ret) { 8123 err = ret; 8124 goto next; 8125 } 8126 8127 wait_for_completion(&done.done); 8128 8129 if (!done.uptodate) { 8130 /* We might have another mirror, so try again */ 8131 goto try_again; 8132 } 8133 next: 8134 offset += sectorsize; 8135 start += sectorsize; 8136 8137 ASSERT(nr_sectors); 8138 8139 if (--nr_sectors) { 8140 pgoff += sectorsize; 8141 goto next_block; 8142 } 8143 } 8144 8145 return err; 8146 } 8147 8148 static int btrfs_subio_endio_read(struct inode *inode, 8149 struct btrfs_io_bio *io_bio, int err) 8150 { 8151 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8152 8153 if (skip_csum) { 8154 if (unlikely(err)) 8155 return __btrfs_correct_data_nocsum(inode, io_bio); 8156 else 8157 return 0; 8158 } else { 8159 return __btrfs_subio_endio_read(inode, io_bio, err); 8160 } 8161 } 8162 8163 static void btrfs_endio_direct_read(struct bio *bio) 8164 { 8165 struct btrfs_dio_private *dip = bio->bi_private; 8166 struct inode *inode = dip->inode; 8167 struct bio *dio_bio; 8168 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8169 int err = bio->bi_error; 8170 8171 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8172 err = btrfs_subio_endio_read(inode, io_bio, err); 8173 8174 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8175 dip->logical_offset + dip->bytes - 1); 8176 dio_bio = dip->dio_bio; 8177 8178 kfree(dip); 8179 8180 dio_bio->bi_error = bio->bi_error; 8181 dio_end_io(dio_bio, bio->bi_error); 8182 8183 if (io_bio->end_io) 8184 io_bio->end_io(io_bio, err); 8185 bio_put(bio); 8186 } 8187 8188 static void btrfs_endio_direct_write_update_ordered(struct inode *inode, 8189 const u64 offset, 8190 const u64 bytes, 8191 const int uptodate) 8192 { 8193 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8194 struct btrfs_ordered_extent *ordered = NULL; 8195 u64 ordered_offset = offset; 8196 u64 ordered_bytes = bytes; 8197 int ret; 8198 8199 again: 8200 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8201 &ordered_offset, 8202 ordered_bytes, 8203 uptodate); 8204 if (!ret) 8205 goto out_test; 8206 8207 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 8208 finish_ordered_fn, NULL, NULL); 8209 btrfs_queue_work(fs_info->endio_write_workers, &ordered->work); 8210 out_test: 8211 /* 8212 * our bio might span multiple ordered extents. If we haven't 8213 * completed the accounting for the whole dio, go back and try again 8214 */ 8215 if (ordered_offset < offset + bytes) { 8216 ordered_bytes = offset + bytes - ordered_offset; 8217 ordered = NULL; 8218 goto again; 8219 } 8220 } 8221 8222 static void btrfs_endio_direct_write(struct bio *bio) 8223 { 8224 struct btrfs_dio_private *dip = bio->bi_private; 8225 struct bio *dio_bio = dip->dio_bio; 8226 8227 btrfs_endio_direct_write_update_ordered(dip->inode, 8228 dip->logical_offset, 8229 dip->bytes, 8230 !bio->bi_error); 8231 8232 kfree(dip); 8233 8234 dio_bio->bi_error = bio->bi_error; 8235 dio_end_io(dio_bio, bio->bi_error); 8236 bio_put(bio); 8237 } 8238 8239 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, 8240 struct bio *bio, int mirror_num, 8241 unsigned long bio_flags, u64 offset) 8242 { 8243 int ret; 8244 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8245 BUG_ON(ret); /* -ENOMEM */ 8246 return 0; 8247 } 8248 8249 static void btrfs_end_dio_bio(struct bio *bio) 8250 { 8251 struct btrfs_dio_private *dip = bio->bi_private; 8252 int err = bio->bi_error; 8253 8254 if (err) 8255 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8256 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8257 btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf, 8258 (unsigned long long)bio->bi_iter.bi_sector, 8259 bio->bi_iter.bi_size, err); 8260 8261 if (dip->subio_endio) 8262 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8263 8264 if (err) { 8265 dip->errors = 1; 8266 8267 /* 8268 * before atomic variable goto zero, we must make sure 8269 * dip->errors is perceived to be set. 8270 */ 8271 smp_mb__before_atomic(); 8272 } 8273 8274 /* if there are more bios still pending for this dio, just exit */ 8275 if (!atomic_dec_and_test(&dip->pending_bios)) 8276 goto out; 8277 8278 if (dip->errors) { 8279 bio_io_error(dip->orig_bio); 8280 } else { 8281 dip->dio_bio->bi_error = 0; 8282 bio_endio(dip->orig_bio); 8283 } 8284 out: 8285 bio_put(bio); 8286 } 8287 8288 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 8289 u64 first_sector, gfp_t gfp_flags) 8290 { 8291 struct bio *bio; 8292 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 8293 if (bio) 8294 bio_associate_current(bio); 8295 return bio; 8296 } 8297 8298 static inline int btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8299 struct btrfs_dio_private *dip, 8300 struct bio *bio, 8301 u64 file_offset) 8302 { 8303 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8304 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8305 int ret; 8306 8307 /* 8308 * We load all the csum data we need when we submit 8309 * the first bio to reduce the csum tree search and 8310 * contention. 8311 */ 8312 if (dip->logical_offset == file_offset) { 8313 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8314 file_offset); 8315 if (ret) 8316 return ret; 8317 } 8318 8319 if (bio == dip->orig_bio) 8320 return 0; 8321 8322 file_offset -= dip->logical_offset; 8323 file_offset >>= inode->i_sb->s_blocksize_bits; 8324 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8325 8326 return 0; 8327 } 8328 8329 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8330 u64 file_offset, int skip_sum, 8331 int async_submit) 8332 { 8333 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8334 struct btrfs_dio_private *dip = bio->bi_private; 8335 bool write = bio_op(bio) == REQ_OP_WRITE; 8336 int ret; 8337 8338 if (async_submit) 8339 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8340 8341 bio_get(bio); 8342 8343 if (!write) { 8344 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8345 if (ret) 8346 goto err; 8347 } 8348 8349 if (skip_sum) 8350 goto map; 8351 8352 if (write && async_submit) { 8353 ret = btrfs_wq_submit_bio(fs_info, inode, bio, 0, 0, 8354 file_offset, 8355 __btrfs_submit_bio_start_direct_io, 8356 __btrfs_submit_bio_done); 8357 goto err; 8358 } else if (write) { 8359 /* 8360 * If we aren't doing async submit, calculate the csum of the 8361 * bio now. 8362 */ 8363 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8364 if (ret) 8365 goto err; 8366 } else { 8367 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8368 file_offset); 8369 if (ret) 8370 goto err; 8371 } 8372 map: 8373 ret = btrfs_map_bio(fs_info, bio, 0, async_submit); 8374 err: 8375 bio_put(bio); 8376 return ret; 8377 } 8378 8379 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip, 8380 int skip_sum) 8381 { 8382 struct inode *inode = dip->inode; 8383 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8384 struct btrfs_root *root = BTRFS_I(inode)->root; 8385 struct bio *bio; 8386 struct bio *orig_bio = dip->orig_bio; 8387 struct bio_vec *bvec; 8388 u64 start_sector = orig_bio->bi_iter.bi_sector; 8389 u64 file_offset = dip->logical_offset; 8390 u64 submit_len = 0; 8391 u64 map_length; 8392 u32 blocksize = fs_info->sectorsize; 8393 int async_submit = 0; 8394 int nr_sectors; 8395 int ret; 8396 int i, j; 8397 8398 map_length = orig_bio->bi_iter.bi_size; 8399 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8400 &map_length, NULL, 0); 8401 if (ret) 8402 return -EIO; 8403 8404 if (map_length >= orig_bio->bi_iter.bi_size) { 8405 bio = orig_bio; 8406 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8407 goto submit; 8408 } 8409 8410 /* async crcs make it difficult to collect full stripe writes. */ 8411 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8412 async_submit = 0; 8413 else 8414 async_submit = 1; 8415 8416 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8417 if (!bio) 8418 return -ENOMEM; 8419 8420 bio->bi_opf = orig_bio->bi_opf; 8421 bio->bi_private = dip; 8422 bio->bi_end_io = btrfs_end_dio_bio; 8423 btrfs_io_bio(bio)->logical = file_offset; 8424 atomic_inc(&dip->pending_bios); 8425 8426 bio_for_each_segment_all(bvec, orig_bio, j) { 8427 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8428 i = 0; 8429 next_block: 8430 if (unlikely(map_length < submit_len + blocksize || 8431 bio_add_page(bio, bvec->bv_page, blocksize, 8432 bvec->bv_offset + (i * blocksize)) < blocksize)) { 8433 /* 8434 * inc the count before we submit the bio so 8435 * we know the end IO handler won't happen before 8436 * we inc the count. Otherwise, the dip might get freed 8437 * before we're done setting it up 8438 */ 8439 atomic_inc(&dip->pending_bios); 8440 ret = __btrfs_submit_dio_bio(bio, inode, 8441 file_offset, skip_sum, 8442 async_submit); 8443 if (ret) { 8444 bio_put(bio); 8445 atomic_dec(&dip->pending_bios); 8446 goto out_err; 8447 } 8448 8449 start_sector += submit_len >> 9; 8450 file_offset += submit_len; 8451 8452 submit_len = 0; 8453 8454 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8455 start_sector, GFP_NOFS); 8456 if (!bio) 8457 goto out_err; 8458 bio->bi_opf = orig_bio->bi_opf; 8459 bio->bi_private = dip; 8460 bio->bi_end_io = btrfs_end_dio_bio; 8461 btrfs_io_bio(bio)->logical = file_offset; 8462 8463 map_length = orig_bio->bi_iter.bi_size; 8464 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8465 start_sector << 9, 8466 &map_length, NULL, 0); 8467 if (ret) { 8468 bio_put(bio); 8469 goto out_err; 8470 } 8471 8472 goto next_block; 8473 } else { 8474 submit_len += blocksize; 8475 if (--nr_sectors) { 8476 i++; 8477 goto next_block; 8478 } 8479 } 8480 } 8481 8482 submit: 8483 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum, 8484 async_submit); 8485 if (!ret) 8486 return 0; 8487 8488 bio_put(bio); 8489 out_err: 8490 dip->errors = 1; 8491 /* 8492 * before atomic variable goto zero, we must 8493 * make sure dip->errors is perceived to be set. 8494 */ 8495 smp_mb__before_atomic(); 8496 if (atomic_dec_and_test(&dip->pending_bios)) 8497 bio_io_error(dip->orig_bio); 8498 8499 /* bio_end_io() will handle error, so we needn't return it */ 8500 return 0; 8501 } 8502 8503 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8504 loff_t file_offset) 8505 { 8506 struct btrfs_dio_private *dip = NULL; 8507 struct bio *io_bio = NULL; 8508 struct btrfs_io_bio *btrfs_bio; 8509 int skip_sum; 8510 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8511 int ret = 0; 8512 8513 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8514 8515 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8516 if (!io_bio) { 8517 ret = -ENOMEM; 8518 goto free_ordered; 8519 } 8520 8521 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8522 if (!dip) { 8523 ret = -ENOMEM; 8524 goto free_ordered; 8525 } 8526 8527 dip->private = dio_bio->bi_private; 8528 dip->inode = inode; 8529 dip->logical_offset = file_offset; 8530 dip->bytes = dio_bio->bi_iter.bi_size; 8531 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8532 io_bio->bi_private = dip; 8533 dip->orig_bio = io_bio; 8534 dip->dio_bio = dio_bio; 8535 atomic_set(&dip->pending_bios, 0); 8536 btrfs_bio = btrfs_io_bio(io_bio); 8537 btrfs_bio->logical = file_offset; 8538 8539 if (write) { 8540 io_bio->bi_end_io = btrfs_endio_direct_write; 8541 } else { 8542 io_bio->bi_end_io = btrfs_endio_direct_read; 8543 dip->subio_endio = btrfs_subio_endio_read; 8544 } 8545 8546 /* 8547 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8548 * even if we fail to submit a bio, because in such case we do the 8549 * corresponding error handling below and it must not be done a second 8550 * time by btrfs_direct_IO(). 8551 */ 8552 if (write) { 8553 struct btrfs_dio_data *dio_data = current->journal_info; 8554 8555 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8556 dip->bytes; 8557 dio_data->unsubmitted_oe_range_start = 8558 dio_data->unsubmitted_oe_range_end; 8559 } 8560 8561 ret = btrfs_submit_direct_hook(dip, skip_sum); 8562 if (!ret) 8563 return; 8564 8565 if (btrfs_bio->end_io) 8566 btrfs_bio->end_io(btrfs_bio, ret); 8567 8568 free_ordered: 8569 /* 8570 * If we arrived here it means either we failed to submit the dip 8571 * or we either failed to clone the dio_bio or failed to allocate the 8572 * dip. If we cloned the dio_bio and allocated the dip, we can just 8573 * call bio_endio against our io_bio so that we get proper resource 8574 * cleanup if we fail to submit the dip, otherwise, we must do the 8575 * same as btrfs_endio_direct_[write|read] because we can't call these 8576 * callbacks - they require an allocated dip and a clone of dio_bio. 8577 */ 8578 if (io_bio && dip) { 8579 io_bio->bi_error = -EIO; 8580 bio_endio(io_bio); 8581 /* 8582 * The end io callbacks free our dip, do the final put on io_bio 8583 * and all the cleanup and final put for dio_bio (through 8584 * dio_end_io()). 8585 */ 8586 dip = NULL; 8587 io_bio = NULL; 8588 } else { 8589 if (write) 8590 btrfs_endio_direct_write_update_ordered(inode, 8591 file_offset, 8592 dio_bio->bi_iter.bi_size, 8593 0); 8594 else 8595 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8596 file_offset + dio_bio->bi_iter.bi_size - 1); 8597 8598 dio_bio->bi_error = -EIO; 8599 /* 8600 * Releases and cleans up our dio_bio, no need to bio_put() 8601 * nor bio_endio()/bio_io_error() against dio_bio. 8602 */ 8603 dio_end_io(dio_bio, ret); 8604 } 8605 if (io_bio) 8606 bio_put(io_bio); 8607 kfree(dip); 8608 } 8609 8610 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8611 struct kiocb *iocb, 8612 const struct iov_iter *iter, loff_t offset) 8613 { 8614 int seg; 8615 int i; 8616 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8617 ssize_t retval = -EINVAL; 8618 8619 if (offset & blocksize_mask) 8620 goto out; 8621 8622 if (iov_iter_alignment(iter) & blocksize_mask) 8623 goto out; 8624 8625 /* If this is a write we don't need to check anymore */ 8626 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8627 return 0; 8628 /* 8629 * Check to make sure we don't have duplicate iov_base's in this 8630 * iovec, if so return EINVAL, otherwise we'll get csum errors 8631 * when reading back. 8632 */ 8633 for (seg = 0; seg < iter->nr_segs; seg++) { 8634 for (i = seg + 1; i < iter->nr_segs; i++) { 8635 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8636 goto out; 8637 } 8638 } 8639 retval = 0; 8640 out: 8641 return retval; 8642 } 8643 8644 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8645 { 8646 struct file *file = iocb->ki_filp; 8647 struct inode *inode = file->f_mapping->host; 8648 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8649 struct btrfs_dio_data dio_data = { 0 }; 8650 loff_t offset = iocb->ki_pos; 8651 size_t count = 0; 8652 int flags = 0; 8653 bool wakeup = true; 8654 bool relock = false; 8655 ssize_t ret; 8656 8657 if (check_direct_IO(fs_info, iocb, iter, offset)) 8658 return 0; 8659 8660 inode_dio_begin(inode); 8661 smp_mb__after_atomic(); 8662 8663 /* 8664 * The generic stuff only does filemap_write_and_wait_range, which 8665 * isn't enough if we've written compressed pages to this area, so 8666 * we need to flush the dirty pages again to make absolutely sure 8667 * that any outstanding dirty pages are on disk. 8668 */ 8669 count = iov_iter_count(iter); 8670 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8671 &BTRFS_I(inode)->runtime_flags)) 8672 filemap_fdatawrite_range(inode->i_mapping, offset, 8673 offset + count - 1); 8674 8675 if (iov_iter_rw(iter) == WRITE) { 8676 /* 8677 * If the write DIO is beyond the EOF, we need update 8678 * the isize, but it is protected by i_mutex. So we can 8679 * not unlock the i_mutex at this case. 8680 */ 8681 if (offset + count <= inode->i_size) { 8682 inode_unlock(inode); 8683 relock = true; 8684 } 8685 ret = btrfs_delalloc_reserve_space(inode, offset, count); 8686 if (ret) 8687 goto out; 8688 dio_data.outstanding_extents = div64_u64(count + 8689 BTRFS_MAX_EXTENT_SIZE - 1, 8690 BTRFS_MAX_EXTENT_SIZE); 8691 8692 /* 8693 * We need to know how many extents we reserved so that we can 8694 * do the accounting properly if we go over the number we 8695 * originally calculated. Abuse current->journal_info for this. 8696 */ 8697 dio_data.reserve = round_up(count, 8698 fs_info->sectorsize); 8699 dio_data.unsubmitted_oe_range_start = (u64)offset; 8700 dio_data.unsubmitted_oe_range_end = (u64)offset; 8701 current->journal_info = &dio_data; 8702 down_read(&BTRFS_I(inode)->dio_sem); 8703 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8704 &BTRFS_I(inode)->runtime_flags)) { 8705 inode_dio_end(inode); 8706 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8707 wakeup = false; 8708 } 8709 8710 ret = __blockdev_direct_IO(iocb, inode, 8711 fs_info->fs_devices->latest_bdev, 8712 iter, btrfs_get_blocks_direct, NULL, 8713 btrfs_submit_direct, flags); 8714 if (iov_iter_rw(iter) == WRITE) { 8715 up_read(&BTRFS_I(inode)->dio_sem); 8716 current->journal_info = NULL; 8717 if (ret < 0 && ret != -EIOCBQUEUED) { 8718 if (dio_data.reserve) 8719 btrfs_delalloc_release_space(inode, offset, 8720 dio_data.reserve); 8721 /* 8722 * On error we might have left some ordered extents 8723 * without submitting corresponding bios for them, so 8724 * cleanup them up to avoid other tasks getting them 8725 * and waiting for them to complete forever. 8726 */ 8727 if (dio_data.unsubmitted_oe_range_start < 8728 dio_data.unsubmitted_oe_range_end) 8729 btrfs_endio_direct_write_update_ordered(inode, 8730 dio_data.unsubmitted_oe_range_start, 8731 dio_data.unsubmitted_oe_range_end - 8732 dio_data.unsubmitted_oe_range_start, 8733 0); 8734 } else if (ret >= 0 && (size_t)ret < count) 8735 btrfs_delalloc_release_space(inode, offset, 8736 count - (size_t)ret); 8737 } 8738 out: 8739 if (wakeup) 8740 inode_dio_end(inode); 8741 if (relock) 8742 inode_lock(inode); 8743 8744 return ret; 8745 } 8746 8747 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8748 8749 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8750 __u64 start, __u64 len) 8751 { 8752 int ret; 8753 8754 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8755 if (ret) 8756 return ret; 8757 8758 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8759 } 8760 8761 int btrfs_readpage(struct file *file, struct page *page) 8762 { 8763 struct extent_io_tree *tree; 8764 tree = &BTRFS_I(page->mapping->host)->io_tree; 8765 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8766 } 8767 8768 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8769 { 8770 struct extent_io_tree *tree; 8771 struct inode *inode = page->mapping->host; 8772 int ret; 8773 8774 if (current->flags & PF_MEMALLOC) { 8775 redirty_page_for_writepage(wbc, page); 8776 unlock_page(page); 8777 return 0; 8778 } 8779 8780 /* 8781 * If we are under memory pressure we will call this directly from the 8782 * VM, we need to make sure we have the inode referenced for the ordered 8783 * extent. If not just return like we didn't do anything. 8784 */ 8785 if (!igrab(inode)) { 8786 redirty_page_for_writepage(wbc, page); 8787 return AOP_WRITEPAGE_ACTIVATE; 8788 } 8789 tree = &BTRFS_I(page->mapping->host)->io_tree; 8790 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8791 btrfs_add_delayed_iput(inode); 8792 return ret; 8793 } 8794 8795 static int btrfs_writepages(struct address_space *mapping, 8796 struct writeback_control *wbc) 8797 { 8798 struct extent_io_tree *tree; 8799 8800 tree = &BTRFS_I(mapping->host)->io_tree; 8801 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8802 } 8803 8804 static int 8805 btrfs_readpages(struct file *file, struct address_space *mapping, 8806 struct list_head *pages, unsigned nr_pages) 8807 { 8808 struct extent_io_tree *tree; 8809 tree = &BTRFS_I(mapping->host)->io_tree; 8810 return extent_readpages(tree, mapping, pages, nr_pages, 8811 btrfs_get_extent); 8812 } 8813 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8814 { 8815 struct extent_io_tree *tree; 8816 struct extent_map_tree *map; 8817 int ret; 8818 8819 tree = &BTRFS_I(page->mapping->host)->io_tree; 8820 map = &BTRFS_I(page->mapping->host)->extent_tree; 8821 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8822 if (ret == 1) { 8823 ClearPagePrivate(page); 8824 set_page_private(page, 0); 8825 put_page(page); 8826 } 8827 return ret; 8828 } 8829 8830 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8831 { 8832 if (PageWriteback(page) || PageDirty(page)) 8833 return 0; 8834 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8835 } 8836 8837 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8838 unsigned int length) 8839 { 8840 struct inode *inode = page->mapping->host; 8841 struct extent_io_tree *tree; 8842 struct btrfs_ordered_extent *ordered; 8843 struct extent_state *cached_state = NULL; 8844 u64 page_start = page_offset(page); 8845 u64 page_end = page_start + PAGE_SIZE - 1; 8846 u64 start; 8847 u64 end; 8848 int inode_evicting = inode->i_state & I_FREEING; 8849 8850 /* 8851 * we have the page locked, so new writeback can't start, 8852 * and the dirty bit won't be cleared while we are here. 8853 * 8854 * Wait for IO on this page so that we can safely clear 8855 * the PagePrivate2 bit and do ordered accounting 8856 */ 8857 wait_on_page_writeback(page); 8858 8859 tree = &BTRFS_I(inode)->io_tree; 8860 if (offset) { 8861 btrfs_releasepage(page, GFP_NOFS); 8862 return; 8863 } 8864 8865 if (!inode_evicting) 8866 lock_extent_bits(tree, page_start, page_end, &cached_state); 8867 again: 8868 start = page_start; 8869 ordered = btrfs_lookup_ordered_range(inode, start, 8870 page_end - start + 1); 8871 if (ordered) { 8872 end = min(page_end, ordered->file_offset + ordered->len - 1); 8873 /* 8874 * IO on this page will never be started, so we need 8875 * to account for any ordered extents now 8876 */ 8877 if (!inode_evicting) 8878 clear_extent_bit(tree, start, end, 8879 EXTENT_DIRTY | EXTENT_DELALLOC | 8880 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8881 EXTENT_DEFRAG, 1, 0, &cached_state, 8882 GFP_NOFS); 8883 /* 8884 * whoever cleared the private bit is responsible 8885 * for the finish_ordered_io 8886 */ 8887 if (TestClearPagePrivate2(page)) { 8888 struct btrfs_ordered_inode_tree *tree; 8889 u64 new_len; 8890 8891 tree = &BTRFS_I(inode)->ordered_tree; 8892 8893 spin_lock_irq(&tree->lock); 8894 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8895 new_len = start - ordered->file_offset; 8896 if (new_len < ordered->truncated_len) 8897 ordered->truncated_len = new_len; 8898 spin_unlock_irq(&tree->lock); 8899 8900 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8901 start, 8902 end - start + 1, 1)) 8903 btrfs_finish_ordered_io(ordered); 8904 } 8905 btrfs_put_ordered_extent(ordered); 8906 if (!inode_evicting) { 8907 cached_state = NULL; 8908 lock_extent_bits(tree, start, end, 8909 &cached_state); 8910 } 8911 8912 start = end + 1; 8913 if (start < page_end) 8914 goto again; 8915 } 8916 8917 /* 8918 * Qgroup reserved space handler 8919 * Page here will be either 8920 * 1) Already written to disk 8921 * In this case, its reserved space is released from data rsv map 8922 * and will be freed by delayed_ref handler finally. 8923 * So even we call qgroup_free_data(), it won't decrease reserved 8924 * space. 8925 * 2) Not written to disk 8926 * This means the reserved space should be freed here. However, 8927 * if a truncate invalidates the page (by clearing PageDirty) 8928 * and the page is accounted for while allocating extent 8929 * in btrfs_check_data_free_space() we let delayed_ref to 8930 * free the entire extent. 8931 */ 8932 if (PageDirty(page)) 8933 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE); 8934 if (!inode_evicting) { 8935 clear_extent_bit(tree, page_start, page_end, 8936 EXTENT_LOCKED | EXTENT_DIRTY | 8937 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8938 EXTENT_DEFRAG, 1, 1, 8939 &cached_state, GFP_NOFS); 8940 8941 __btrfs_releasepage(page, GFP_NOFS); 8942 } 8943 8944 ClearPageChecked(page); 8945 if (PagePrivate(page)) { 8946 ClearPagePrivate(page); 8947 set_page_private(page, 0); 8948 put_page(page); 8949 } 8950 } 8951 8952 /* 8953 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8954 * called from a page fault handler when a page is first dirtied. Hence we must 8955 * be careful to check for EOF conditions here. We set the page up correctly 8956 * for a written page which means we get ENOSPC checking when writing into 8957 * holes and correct delalloc and unwritten extent mapping on filesystems that 8958 * support these features. 8959 * 8960 * We are not allowed to take the i_mutex here so we have to play games to 8961 * protect against truncate races as the page could now be beyond EOF. Because 8962 * vmtruncate() writes the inode size before removing pages, once we have the 8963 * page lock we can determine safely if the page is beyond EOF. If it is not 8964 * beyond EOF, then the page is guaranteed safe against truncation until we 8965 * unlock the page. 8966 */ 8967 int btrfs_page_mkwrite(struct vm_fault *vmf) 8968 { 8969 struct page *page = vmf->page; 8970 struct inode *inode = file_inode(vmf->vma->vm_file); 8971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8972 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8973 struct btrfs_ordered_extent *ordered; 8974 struct extent_state *cached_state = NULL; 8975 char *kaddr; 8976 unsigned long zero_start; 8977 loff_t size; 8978 int ret; 8979 int reserved = 0; 8980 u64 reserved_space; 8981 u64 page_start; 8982 u64 page_end; 8983 u64 end; 8984 8985 reserved_space = PAGE_SIZE; 8986 8987 sb_start_pagefault(inode->i_sb); 8988 page_start = page_offset(page); 8989 page_end = page_start + PAGE_SIZE - 1; 8990 end = page_end; 8991 8992 /* 8993 * Reserving delalloc space after obtaining the page lock can lead to 8994 * deadlock. For example, if a dirty page is locked by this function 8995 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8996 * dirty page write out, then the btrfs_writepage() function could 8997 * end up waiting indefinitely to get a lock on the page currently 8998 * being processed by btrfs_page_mkwrite() function. 8999 */ 9000 ret = btrfs_delalloc_reserve_space(inode, page_start, 9001 reserved_space); 9002 if (!ret) { 9003 ret = file_update_time(vmf->vma->vm_file); 9004 reserved = 1; 9005 } 9006 if (ret) { 9007 if (ret == -ENOMEM) 9008 ret = VM_FAULT_OOM; 9009 else /* -ENOSPC, -EIO, etc */ 9010 ret = VM_FAULT_SIGBUS; 9011 if (reserved) 9012 goto out; 9013 goto out_noreserve; 9014 } 9015 9016 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 9017 again: 9018 lock_page(page); 9019 size = i_size_read(inode); 9020 9021 if ((page->mapping != inode->i_mapping) || 9022 (page_start >= size)) { 9023 /* page got truncated out from underneath us */ 9024 goto out_unlock; 9025 } 9026 wait_on_page_writeback(page); 9027 9028 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9029 set_page_extent_mapped(page); 9030 9031 /* 9032 * we can't set the delalloc bits if there are pending ordered 9033 * extents. Drop our locks and wait for them to finish 9034 */ 9035 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end); 9036 if (ordered) { 9037 unlock_extent_cached(io_tree, page_start, page_end, 9038 &cached_state, GFP_NOFS); 9039 unlock_page(page); 9040 btrfs_start_ordered_extent(inode, ordered, 1); 9041 btrfs_put_ordered_extent(ordered); 9042 goto again; 9043 } 9044 9045 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9046 reserved_space = round_up(size - page_start, 9047 fs_info->sectorsize); 9048 if (reserved_space < PAGE_SIZE) { 9049 end = page_start + reserved_space - 1; 9050 spin_lock(&BTRFS_I(inode)->lock); 9051 BTRFS_I(inode)->outstanding_extents++; 9052 spin_unlock(&BTRFS_I(inode)->lock); 9053 btrfs_delalloc_release_space(inode, page_start, 9054 PAGE_SIZE - reserved_space); 9055 } 9056 } 9057 9058 /* 9059 * XXX - page_mkwrite gets called every time the page is dirtied, even 9060 * if it was already dirty, so for space accounting reasons we need to 9061 * clear any delalloc bits for the range we are fixing to save. There 9062 * is probably a better way to do this, but for now keep consistent with 9063 * prepare_pages in the normal write path. 9064 */ 9065 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9066 EXTENT_DIRTY | EXTENT_DELALLOC | 9067 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9068 0, 0, &cached_state, GFP_NOFS); 9069 9070 ret = btrfs_set_extent_delalloc(inode, page_start, end, 9071 &cached_state, 0); 9072 if (ret) { 9073 unlock_extent_cached(io_tree, page_start, page_end, 9074 &cached_state, GFP_NOFS); 9075 ret = VM_FAULT_SIGBUS; 9076 goto out_unlock; 9077 } 9078 ret = 0; 9079 9080 /* page is wholly or partially inside EOF */ 9081 if (page_start + PAGE_SIZE > size) 9082 zero_start = size & ~PAGE_MASK; 9083 else 9084 zero_start = PAGE_SIZE; 9085 9086 if (zero_start != PAGE_SIZE) { 9087 kaddr = kmap(page); 9088 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9089 flush_dcache_page(page); 9090 kunmap(page); 9091 } 9092 ClearPageChecked(page); 9093 set_page_dirty(page); 9094 SetPageUptodate(page); 9095 9096 BTRFS_I(inode)->last_trans = fs_info->generation; 9097 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9098 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9099 9100 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9101 9102 out_unlock: 9103 if (!ret) { 9104 sb_end_pagefault(inode->i_sb); 9105 return VM_FAULT_LOCKED; 9106 } 9107 unlock_page(page); 9108 out: 9109 btrfs_delalloc_release_space(inode, page_start, reserved_space); 9110 out_noreserve: 9111 sb_end_pagefault(inode->i_sb); 9112 return ret; 9113 } 9114 9115 static int btrfs_truncate(struct inode *inode) 9116 { 9117 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9118 struct btrfs_root *root = BTRFS_I(inode)->root; 9119 struct btrfs_block_rsv *rsv; 9120 int ret = 0; 9121 int err = 0; 9122 struct btrfs_trans_handle *trans; 9123 u64 mask = fs_info->sectorsize - 1; 9124 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9125 9126 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9127 (u64)-1); 9128 if (ret) 9129 return ret; 9130 9131 /* 9132 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9133 * 3 things going on here 9134 * 9135 * 1) We need to reserve space for our orphan item and the space to 9136 * delete our orphan item. Lord knows we don't want to have a dangling 9137 * orphan item because we didn't reserve space to remove it. 9138 * 9139 * 2) We need to reserve space to update our inode. 9140 * 9141 * 3) We need to have something to cache all the space that is going to 9142 * be free'd up by the truncate operation, but also have some slack 9143 * space reserved in case it uses space during the truncate (thank you 9144 * very much snapshotting). 9145 * 9146 * And we need these to all be separate. The fact is we can use a lot of 9147 * space doing the truncate, and we have no earthly idea how much space 9148 * we will use, so we need the truncate reservation to be separate so it 9149 * doesn't end up using space reserved for updating the inode or 9150 * removing the orphan item. We also need to be able to stop the 9151 * transaction and start a new one, which means we need to be able to 9152 * update the inode several times, and we have no idea of knowing how 9153 * many times that will be, so we can't just reserve 1 item for the 9154 * entirety of the operation, so that has to be done separately as well. 9155 * Then there is the orphan item, which does indeed need to be held on 9156 * to for the whole operation, and we need nobody to touch this reserved 9157 * space except the orphan code. 9158 * 9159 * So that leaves us with 9160 * 9161 * 1) root->orphan_block_rsv - for the orphan deletion. 9162 * 2) rsv - for the truncate reservation, which we will steal from the 9163 * transaction reservation. 9164 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9165 * updating the inode. 9166 */ 9167 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9168 if (!rsv) 9169 return -ENOMEM; 9170 rsv->size = min_size; 9171 rsv->failfast = 1; 9172 9173 /* 9174 * 1 for the truncate slack space 9175 * 1 for updating the inode. 9176 */ 9177 trans = btrfs_start_transaction(root, 2); 9178 if (IS_ERR(trans)) { 9179 err = PTR_ERR(trans); 9180 goto out; 9181 } 9182 9183 /* Migrate the slack space for the truncate to our reserve */ 9184 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9185 min_size, 0); 9186 BUG_ON(ret); 9187 9188 /* 9189 * So if we truncate and then write and fsync we normally would just 9190 * write the extents that changed, which is a problem if we need to 9191 * first truncate that entire inode. So set this flag so we write out 9192 * all of the extents in the inode to the sync log so we're completely 9193 * safe. 9194 */ 9195 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9196 trans->block_rsv = rsv; 9197 9198 while (1) { 9199 ret = btrfs_truncate_inode_items(trans, root, inode, 9200 inode->i_size, 9201 BTRFS_EXTENT_DATA_KEY); 9202 if (ret != -ENOSPC && ret != -EAGAIN) { 9203 err = ret; 9204 break; 9205 } 9206 9207 trans->block_rsv = &fs_info->trans_block_rsv; 9208 ret = btrfs_update_inode(trans, root, inode); 9209 if (ret) { 9210 err = ret; 9211 break; 9212 } 9213 9214 btrfs_end_transaction(trans); 9215 btrfs_btree_balance_dirty(fs_info); 9216 9217 trans = btrfs_start_transaction(root, 2); 9218 if (IS_ERR(trans)) { 9219 ret = err = PTR_ERR(trans); 9220 trans = NULL; 9221 break; 9222 } 9223 9224 btrfs_block_rsv_release(fs_info, rsv, -1); 9225 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9226 rsv, min_size, 0); 9227 BUG_ON(ret); /* shouldn't happen */ 9228 trans->block_rsv = rsv; 9229 } 9230 9231 if (ret == 0 && inode->i_nlink > 0) { 9232 trans->block_rsv = root->orphan_block_rsv; 9233 ret = btrfs_orphan_del(trans, inode); 9234 if (ret) 9235 err = ret; 9236 } 9237 9238 if (trans) { 9239 trans->block_rsv = &fs_info->trans_block_rsv; 9240 ret = btrfs_update_inode(trans, root, inode); 9241 if (ret && !err) 9242 err = ret; 9243 9244 ret = btrfs_end_transaction(trans); 9245 btrfs_btree_balance_dirty(fs_info); 9246 } 9247 out: 9248 btrfs_free_block_rsv(fs_info, rsv); 9249 9250 if (ret && !err) 9251 err = ret; 9252 9253 return err; 9254 } 9255 9256 /* 9257 * create a new subvolume directory/inode (helper for the ioctl). 9258 */ 9259 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9260 struct btrfs_root *new_root, 9261 struct btrfs_root *parent_root, 9262 u64 new_dirid) 9263 { 9264 struct inode *inode; 9265 int err; 9266 u64 index = 0; 9267 9268 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9269 new_dirid, new_dirid, 9270 S_IFDIR | (~current_umask() & S_IRWXUGO), 9271 &index); 9272 if (IS_ERR(inode)) 9273 return PTR_ERR(inode); 9274 inode->i_op = &btrfs_dir_inode_operations; 9275 inode->i_fop = &btrfs_dir_file_operations; 9276 9277 set_nlink(inode, 1); 9278 btrfs_i_size_write(inode, 0); 9279 unlock_new_inode(inode); 9280 9281 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9282 if (err) 9283 btrfs_err(new_root->fs_info, 9284 "error inheriting subvolume %llu properties: %d", 9285 new_root->root_key.objectid, err); 9286 9287 err = btrfs_update_inode(trans, new_root, inode); 9288 9289 iput(inode); 9290 return err; 9291 } 9292 9293 struct inode *btrfs_alloc_inode(struct super_block *sb) 9294 { 9295 struct btrfs_inode *ei; 9296 struct inode *inode; 9297 9298 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9299 if (!ei) 9300 return NULL; 9301 9302 ei->root = NULL; 9303 ei->generation = 0; 9304 ei->last_trans = 0; 9305 ei->last_sub_trans = 0; 9306 ei->logged_trans = 0; 9307 ei->delalloc_bytes = 0; 9308 ei->defrag_bytes = 0; 9309 ei->disk_i_size = 0; 9310 ei->flags = 0; 9311 ei->csum_bytes = 0; 9312 ei->index_cnt = (u64)-1; 9313 ei->dir_index = 0; 9314 ei->last_unlink_trans = 0; 9315 ei->last_log_commit = 0; 9316 ei->delayed_iput_count = 0; 9317 9318 spin_lock_init(&ei->lock); 9319 ei->outstanding_extents = 0; 9320 ei->reserved_extents = 0; 9321 9322 ei->runtime_flags = 0; 9323 ei->force_compress = BTRFS_COMPRESS_NONE; 9324 9325 ei->delayed_node = NULL; 9326 9327 ei->i_otime.tv_sec = 0; 9328 ei->i_otime.tv_nsec = 0; 9329 9330 inode = &ei->vfs_inode; 9331 extent_map_tree_init(&ei->extent_tree); 9332 extent_io_tree_init(&ei->io_tree, &inode->i_data); 9333 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 9334 ei->io_tree.track_uptodate = 1; 9335 ei->io_failure_tree.track_uptodate = 1; 9336 atomic_set(&ei->sync_writers, 0); 9337 mutex_init(&ei->log_mutex); 9338 mutex_init(&ei->delalloc_mutex); 9339 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9340 INIT_LIST_HEAD(&ei->delalloc_inodes); 9341 INIT_LIST_HEAD(&ei->delayed_iput); 9342 RB_CLEAR_NODE(&ei->rb_node); 9343 init_rwsem(&ei->dio_sem); 9344 9345 return inode; 9346 } 9347 9348 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9349 void btrfs_test_destroy_inode(struct inode *inode) 9350 { 9351 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9352 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9353 } 9354 #endif 9355 9356 static void btrfs_i_callback(struct rcu_head *head) 9357 { 9358 struct inode *inode = container_of(head, struct inode, i_rcu); 9359 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9360 } 9361 9362 void btrfs_destroy_inode(struct inode *inode) 9363 { 9364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9365 struct btrfs_ordered_extent *ordered; 9366 struct btrfs_root *root = BTRFS_I(inode)->root; 9367 9368 WARN_ON(!hlist_empty(&inode->i_dentry)); 9369 WARN_ON(inode->i_data.nrpages); 9370 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9371 WARN_ON(BTRFS_I(inode)->reserved_extents); 9372 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9373 WARN_ON(BTRFS_I(inode)->csum_bytes); 9374 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9375 9376 /* 9377 * This can happen where we create an inode, but somebody else also 9378 * created the same inode and we need to destroy the one we already 9379 * created. 9380 */ 9381 if (!root) 9382 goto free; 9383 9384 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9385 &BTRFS_I(inode)->runtime_flags)) { 9386 btrfs_info(fs_info, "inode %llu still on the orphan list", 9387 btrfs_ino(inode)); 9388 atomic_dec(&root->orphan_inodes); 9389 } 9390 9391 while (1) { 9392 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9393 if (!ordered) 9394 break; 9395 else { 9396 btrfs_err(fs_info, 9397 "found ordered extent %llu %llu on inode cleanup", 9398 ordered->file_offset, ordered->len); 9399 btrfs_remove_ordered_extent(inode, ordered); 9400 btrfs_put_ordered_extent(ordered); 9401 btrfs_put_ordered_extent(ordered); 9402 } 9403 } 9404 btrfs_qgroup_check_reserved_leak(inode); 9405 inode_tree_del(inode); 9406 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9407 free: 9408 call_rcu(&inode->i_rcu, btrfs_i_callback); 9409 } 9410 9411 int btrfs_drop_inode(struct inode *inode) 9412 { 9413 struct btrfs_root *root = BTRFS_I(inode)->root; 9414 9415 if (root == NULL) 9416 return 1; 9417 9418 /* the snap/subvol tree is on deleting */ 9419 if (btrfs_root_refs(&root->root_item) == 0) 9420 return 1; 9421 else 9422 return generic_drop_inode(inode); 9423 } 9424 9425 static void init_once(void *foo) 9426 { 9427 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9428 9429 inode_init_once(&ei->vfs_inode); 9430 } 9431 9432 void btrfs_destroy_cachep(void) 9433 { 9434 /* 9435 * Make sure all delayed rcu free inodes are flushed before we 9436 * destroy cache. 9437 */ 9438 rcu_barrier(); 9439 kmem_cache_destroy(btrfs_inode_cachep); 9440 kmem_cache_destroy(btrfs_trans_handle_cachep); 9441 kmem_cache_destroy(btrfs_transaction_cachep); 9442 kmem_cache_destroy(btrfs_path_cachep); 9443 kmem_cache_destroy(btrfs_free_space_cachep); 9444 } 9445 9446 int btrfs_init_cachep(void) 9447 { 9448 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9449 sizeof(struct btrfs_inode), 0, 9450 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9451 init_once); 9452 if (!btrfs_inode_cachep) 9453 goto fail; 9454 9455 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9456 sizeof(struct btrfs_trans_handle), 0, 9457 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9458 if (!btrfs_trans_handle_cachep) 9459 goto fail; 9460 9461 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9462 sizeof(struct btrfs_transaction), 0, 9463 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9464 if (!btrfs_transaction_cachep) 9465 goto fail; 9466 9467 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9468 sizeof(struct btrfs_path), 0, 9469 SLAB_MEM_SPREAD, NULL); 9470 if (!btrfs_path_cachep) 9471 goto fail; 9472 9473 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9474 sizeof(struct btrfs_free_space), 0, 9475 SLAB_MEM_SPREAD, NULL); 9476 if (!btrfs_free_space_cachep) 9477 goto fail; 9478 9479 return 0; 9480 fail: 9481 btrfs_destroy_cachep(); 9482 return -ENOMEM; 9483 } 9484 9485 static int btrfs_getattr(struct vfsmount *mnt, 9486 struct dentry *dentry, struct kstat *stat) 9487 { 9488 u64 delalloc_bytes; 9489 struct inode *inode = d_inode(dentry); 9490 u32 blocksize = inode->i_sb->s_blocksize; 9491 9492 generic_fillattr(inode, stat); 9493 stat->dev = BTRFS_I(inode)->root->anon_dev; 9494 9495 spin_lock(&BTRFS_I(inode)->lock); 9496 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9497 spin_unlock(&BTRFS_I(inode)->lock); 9498 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9499 ALIGN(delalloc_bytes, blocksize)) >> 9; 9500 return 0; 9501 } 9502 9503 static int btrfs_rename_exchange(struct inode *old_dir, 9504 struct dentry *old_dentry, 9505 struct inode *new_dir, 9506 struct dentry *new_dentry) 9507 { 9508 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9509 struct btrfs_trans_handle *trans; 9510 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9511 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9512 struct inode *new_inode = new_dentry->d_inode; 9513 struct inode *old_inode = old_dentry->d_inode; 9514 struct timespec ctime = current_time(old_inode); 9515 struct dentry *parent; 9516 u64 old_ino = btrfs_ino(old_inode); 9517 u64 new_ino = btrfs_ino(new_inode); 9518 u64 old_idx = 0; 9519 u64 new_idx = 0; 9520 u64 root_objectid; 9521 int ret; 9522 bool root_log_pinned = false; 9523 bool dest_log_pinned = false; 9524 9525 /* we only allow rename subvolume link between subvolumes */ 9526 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9527 return -EXDEV; 9528 9529 /* close the race window with snapshot create/destroy ioctl */ 9530 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9531 down_read(&fs_info->subvol_sem); 9532 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9533 down_read(&fs_info->subvol_sem); 9534 9535 /* 9536 * We want to reserve the absolute worst case amount of items. So if 9537 * both inodes are subvols and we need to unlink them then that would 9538 * require 4 item modifications, but if they are both normal inodes it 9539 * would require 5 item modifications, so we'll assume their normal 9540 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9541 * should cover the worst case number of items we'll modify. 9542 */ 9543 trans = btrfs_start_transaction(root, 12); 9544 if (IS_ERR(trans)) { 9545 ret = PTR_ERR(trans); 9546 goto out_notrans; 9547 } 9548 9549 /* 9550 * We need to find a free sequence number both in the source and 9551 * in the destination directory for the exchange. 9552 */ 9553 ret = btrfs_set_inode_index(new_dir, &old_idx); 9554 if (ret) 9555 goto out_fail; 9556 ret = btrfs_set_inode_index(old_dir, &new_idx); 9557 if (ret) 9558 goto out_fail; 9559 9560 BTRFS_I(old_inode)->dir_index = 0ULL; 9561 BTRFS_I(new_inode)->dir_index = 0ULL; 9562 9563 /* Reference for the source. */ 9564 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9565 /* force full log commit if subvolume involved. */ 9566 btrfs_set_log_full_commit(fs_info, trans); 9567 } else { 9568 btrfs_pin_log_trans(root); 9569 root_log_pinned = true; 9570 ret = btrfs_insert_inode_ref(trans, dest, 9571 new_dentry->d_name.name, 9572 new_dentry->d_name.len, 9573 old_ino, 9574 btrfs_ino(new_dir), old_idx); 9575 if (ret) 9576 goto out_fail; 9577 } 9578 9579 /* And now for the dest. */ 9580 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9581 /* force full log commit if subvolume involved. */ 9582 btrfs_set_log_full_commit(fs_info, trans); 9583 } else { 9584 btrfs_pin_log_trans(dest); 9585 dest_log_pinned = true; 9586 ret = btrfs_insert_inode_ref(trans, root, 9587 old_dentry->d_name.name, 9588 old_dentry->d_name.len, 9589 new_ino, 9590 btrfs_ino(old_dir), new_idx); 9591 if (ret) 9592 goto out_fail; 9593 } 9594 9595 /* Update inode version and ctime/mtime. */ 9596 inode_inc_iversion(old_dir); 9597 inode_inc_iversion(new_dir); 9598 inode_inc_iversion(old_inode); 9599 inode_inc_iversion(new_inode); 9600 old_dir->i_ctime = old_dir->i_mtime = ctime; 9601 new_dir->i_ctime = new_dir->i_mtime = ctime; 9602 old_inode->i_ctime = ctime; 9603 new_inode->i_ctime = ctime; 9604 9605 if (old_dentry->d_parent != new_dentry->d_parent) { 9606 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9607 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1); 9608 } 9609 9610 /* src is a subvolume */ 9611 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9612 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9613 ret = btrfs_unlink_subvol(trans, root, old_dir, 9614 root_objectid, 9615 old_dentry->d_name.name, 9616 old_dentry->d_name.len); 9617 } else { /* src is an inode */ 9618 ret = __btrfs_unlink_inode(trans, root, old_dir, 9619 old_dentry->d_inode, 9620 old_dentry->d_name.name, 9621 old_dentry->d_name.len); 9622 if (!ret) 9623 ret = btrfs_update_inode(trans, root, old_inode); 9624 } 9625 if (ret) { 9626 btrfs_abort_transaction(trans, ret); 9627 goto out_fail; 9628 } 9629 9630 /* dest is a subvolume */ 9631 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9632 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9633 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9634 root_objectid, 9635 new_dentry->d_name.name, 9636 new_dentry->d_name.len); 9637 } else { /* dest is an inode */ 9638 ret = __btrfs_unlink_inode(trans, dest, new_dir, 9639 new_dentry->d_inode, 9640 new_dentry->d_name.name, 9641 new_dentry->d_name.len); 9642 if (!ret) 9643 ret = btrfs_update_inode(trans, dest, new_inode); 9644 } 9645 if (ret) { 9646 btrfs_abort_transaction(trans, ret); 9647 goto out_fail; 9648 } 9649 9650 ret = btrfs_add_link(trans, new_dir, old_inode, 9651 new_dentry->d_name.name, 9652 new_dentry->d_name.len, 0, old_idx); 9653 if (ret) { 9654 btrfs_abort_transaction(trans, ret); 9655 goto out_fail; 9656 } 9657 9658 ret = btrfs_add_link(trans, old_dir, new_inode, 9659 old_dentry->d_name.name, 9660 old_dentry->d_name.len, 0, new_idx); 9661 if (ret) { 9662 btrfs_abort_transaction(trans, ret); 9663 goto out_fail; 9664 } 9665 9666 if (old_inode->i_nlink == 1) 9667 BTRFS_I(old_inode)->dir_index = old_idx; 9668 if (new_inode->i_nlink == 1) 9669 BTRFS_I(new_inode)->dir_index = new_idx; 9670 9671 if (root_log_pinned) { 9672 parent = new_dentry->d_parent; 9673 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9674 btrfs_end_log_trans(root); 9675 root_log_pinned = false; 9676 } 9677 if (dest_log_pinned) { 9678 parent = old_dentry->d_parent; 9679 btrfs_log_new_name(trans, new_inode, new_dir, parent); 9680 btrfs_end_log_trans(dest); 9681 dest_log_pinned = false; 9682 } 9683 out_fail: 9684 /* 9685 * If we have pinned a log and an error happened, we unpin tasks 9686 * trying to sync the log and force them to fallback to a transaction 9687 * commit if the log currently contains any of the inodes involved in 9688 * this rename operation (to ensure we do not persist a log with an 9689 * inconsistent state for any of these inodes or leading to any 9690 * inconsistencies when replayed). If the transaction was aborted, the 9691 * abortion reason is propagated to userspace when attempting to commit 9692 * the transaction. If the log does not contain any of these inodes, we 9693 * allow the tasks to sync it. 9694 */ 9695 if (ret && (root_log_pinned || dest_log_pinned)) { 9696 if (btrfs_inode_in_log(old_dir, fs_info->generation) || 9697 btrfs_inode_in_log(new_dir, fs_info->generation) || 9698 btrfs_inode_in_log(old_inode, fs_info->generation) || 9699 (new_inode && 9700 btrfs_inode_in_log(new_inode, fs_info->generation))) 9701 btrfs_set_log_full_commit(fs_info, trans); 9702 9703 if (root_log_pinned) { 9704 btrfs_end_log_trans(root); 9705 root_log_pinned = false; 9706 } 9707 if (dest_log_pinned) { 9708 btrfs_end_log_trans(dest); 9709 dest_log_pinned = false; 9710 } 9711 } 9712 ret = btrfs_end_transaction(trans); 9713 out_notrans: 9714 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9715 up_read(&fs_info->subvol_sem); 9716 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9717 up_read(&fs_info->subvol_sem); 9718 9719 return ret; 9720 } 9721 9722 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9723 struct btrfs_root *root, 9724 struct inode *dir, 9725 struct dentry *dentry) 9726 { 9727 int ret; 9728 struct inode *inode; 9729 u64 objectid; 9730 u64 index; 9731 9732 ret = btrfs_find_free_ino(root, &objectid); 9733 if (ret) 9734 return ret; 9735 9736 inode = btrfs_new_inode(trans, root, dir, 9737 dentry->d_name.name, 9738 dentry->d_name.len, 9739 btrfs_ino(dir), 9740 objectid, 9741 S_IFCHR | WHITEOUT_MODE, 9742 &index); 9743 9744 if (IS_ERR(inode)) { 9745 ret = PTR_ERR(inode); 9746 return ret; 9747 } 9748 9749 inode->i_op = &btrfs_special_inode_operations; 9750 init_special_inode(inode, inode->i_mode, 9751 WHITEOUT_DEV); 9752 9753 ret = btrfs_init_inode_security(trans, inode, dir, 9754 &dentry->d_name); 9755 if (ret) 9756 goto out; 9757 9758 ret = btrfs_add_nondir(trans, dir, dentry, 9759 inode, 0, index); 9760 if (ret) 9761 goto out; 9762 9763 ret = btrfs_update_inode(trans, root, inode); 9764 out: 9765 unlock_new_inode(inode); 9766 if (ret) 9767 inode_dec_link_count(inode); 9768 iput(inode); 9769 9770 return ret; 9771 } 9772 9773 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9774 struct inode *new_dir, struct dentry *new_dentry, 9775 unsigned int flags) 9776 { 9777 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9778 struct btrfs_trans_handle *trans; 9779 unsigned int trans_num_items; 9780 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9781 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9782 struct inode *new_inode = d_inode(new_dentry); 9783 struct inode *old_inode = d_inode(old_dentry); 9784 u64 index = 0; 9785 u64 root_objectid; 9786 int ret; 9787 u64 old_ino = btrfs_ino(old_inode); 9788 bool log_pinned = false; 9789 9790 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9791 return -EPERM; 9792 9793 /* we only allow rename subvolume link between subvolumes */ 9794 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9795 return -EXDEV; 9796 9797 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9798 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9799 return -ENOTEMPTY; 9800 9801 if (S_ISDIR(old_inode->i_mode) && new_inode && 9802 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9803 return -ENOTEMPTY; 9804 9805 9806 /* check for collisions, even if the name isn't there */ 9807 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9808 new_dentry->d_name.name, 9809 new_dentry->d_name.len); 9810 9811 if (ret) { 9812 if (ret == -EEXIST) { 9813 /* we shouldn't get 9814 * eexist without a new_inode */ 9815 if (WARN_ON(!new_inode)) { 9816 return ret; 9817 } 9818 } else { 9819 /* maybe -EOVERFLOW */ 9820 return ret; 9821 } 9822 } 9823 ret = 0; 9824 9825 /* 9826 * we're using rename to replace one file with another. Start IO on it 9827 * now so we don't add too much work to the end of the transaction 9828 */ 9829 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9830 filemap_flush(old_inode->i_mapping); 9831 9832 /* close the racy window with snapshot create/destroy ioctl */ 9833 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9834 down_read(&fs_info->subvol_sem); 9835 /* 9836 * We want to reserve the absolute worst case amount of items. So if 9837 * both inodes are subvols and we need to unlink them then that would 9838 * require 4 item modifications, but if they are both normal inodes it 9839 * would require 5 item modifications, so we'll assume they are normal 9840 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9841 * should cover the worst case number of items we'll modify. 9842 * If our rename has the whiteout flag, we need more 5 units for the 9843 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9844 * when selinux is enabled). 9845 */ 9846 trans_num_items = 11; 9847 if (flags & RENAME_WHITEOUT) 9848 trans_num_items += 5; 9849 trans = btrfs_start_transaction(root, trans_num_items); 9850 if (IS_ERR(trans)) { 9851 ret = PTR_ERR(trans); 9852 goto out_notrans; 9853 } 9854 9855 if (dest != root) 9856 btrfs_record_root_in_trans(trans, dest); 9857 9858 ret = btrfs_set_inode_index(new_dir, &index); 9859 if (ret) 9860 goto out_fail; 9861 9862 BTRFS_I(old_inode)->dir_index = 0ULL; 9863 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9864 /* force full log commit if subvolume involved. */ 9865 btrfs_set_log_full_commit(fs_info, trans); 9866 } else { 9867 btrfs_pin_log_trans(root); 9868 log_pinned = true; 9869 ret = btrfs_insert_inode_ref(trans, dest, 9870 new_dentry->d_name.name, 9871 new_dentry->d_name.len, 9872 old_ino, 9873 btrfs_ino(new_dir), index); 9874 if (ret) 9875 goto out_fail; 9876 } 9877 9878 inode_inc_iversion(old_dir); 9879 inode_inc_iversion(new_dir); 9880 inode_inc_iversion(old_inode); 9881 old_dir->i_ctime = old_dir->i_mtime = 9882 new_dir->i_ctime = new_dir->i_mtime = 9883 old_inode->i_ctime = current_time(old_dir); 9884 9885 if (old_dentry->d_parent != new_dentry->d_parent) 9886 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9887 9888 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9889 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9890 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9891 old_dentry->d_name.name, 9892 old_dentry->d_name.len); 9893 } else { 9894 ret = __btrfs_unlink_inode(trans, root, old_dir, 9895 d_inode(old_dentry), 9896 old_dentry->d_name.name, 9897 old_dentry->d_name.len); 9898 if (!ret) 9899 ret = btrfs_update_inode(trans, root, old_inode); 9900 } 9901 if (ret) { 9902 btrfs_abort_transaction(trans, ret); 9903 goto out_fail; 9904 } 9905 9906 if (new_inode) { 9907 inode_inc_iversion(new_inode); 9908 new_inode->i_ctime = current_time(new_inode); 9909 if (unlikely(btrfs_ino(new_inode) == 9910 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9911 root_objectid = BTRFS_I(new_inode)->location.objectid; 9912 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9913 root_objectid, 9914 new_dentry->d_name.name, 9915 new_dentry->d_name.len); 9916 BUG_ON(new_inode->i_nlink == 0); 9917 } else { 9918 ret = btrfs_unlink_inode(trans, dest, new_dir, 9919 d_inode(new_dentry), 9920 new_dentry->d_name.name, 9921 new_dentry->d_name.len); 9922 } 9923 if (!ret && new_inode->i_nlink == 0) 9924 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9925 if (ret) { 9926 btrfs_abort_transaction(trans, ret); 9927 goto out_fail; 9928 } 9929 } 9930 9931 ret = btrfs_add_link(trans, new_dir, old_inode, 9932 new_dentry->d_name.name, 9933 new_dentry->d_name.len, 0, index); 9934 if (ret) { 9935 btrfs_abort_transaction(trans, ret); 9936 goto out_fail; 9937 } 9938 9939 if (old_inode->i_nlink == 1) 9940 BTRFS_I(old_inode)->dir_index = index; 9941 9942 if (log_pinned) { 9943 struct dentry *parent = new_dentry->d_parent; 9944 9945 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9946 btrfs_end_log_trans(root); 9947 log_pinned = false; 9948 } 9949 9950 if (flags & RENAME_WHITEOUT) { 9951 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9952 old_dentry); 9953 9954 if (ret) { 9955 btrfs_abort_transaction(trans, ret); 9956 goto out_fail; 9957 } 9958 } 9959 out_fail: 9960 /* 9961 * If we have pinned the log and an error happened, we unpin tasks 9962 * trying to sync the log and force them to fallback to a transaction 9963 * commit if the log currently contains any of the inodes involved in 9964 * this rename operation (to ensure we do not persist a log with an 9965 * inconsistent state for any of these inodes or leading to any 9966 * inconsistencies when replayed). If the transaction was aborted, the 9967 * abortion reason is propagated to userspace when attempting to commit 9968 * the transaction. If the log does not contain any of these inodes, we 9969 * allow the tasks to sync it. 9970 */ 9971 if (ret && log_pinned) { 9972 if (btrfs_inode_in_log(old_dir, fs_info->generation) || 9973 btrfs_inode_in_log(new_dir, fs_info->generation) || 9974 btrfs_inode_in_log(old_inode, fs_info->generation) || 9975 (new_inode && 9976 btrfs_inode_in_log(new_inode, fs_info->generation))) 9977 btrfs_set_log_full_commit(fs_info, trans); 9978 9979 btrfs_end_log_trans(root); 9980 log_pinned = false; 9981 } 9982 btrfs_end_transaction(trans); 9983 out_notrans: 9984 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9985 up_read(&fs_info->subvol_sem); 9986 9987 return ret; 9988 } 9989 9990 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9991 struct inode *new_dir, struct dentry *new_dentry, 9992 unsigned int flags) 9993 { 9994 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9995 return -EINVAL; 9996 9997 if (flags & RENAME_EXCHANGE) 9998 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9999 new_dentry); 10000 10001 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10002 } 10003 10004 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10005 { 10006 struct btrfs_delalloc_work *delalloc_work; 10007 struct inode *inode; 10008 10009 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10010 work); 10011 inode = delalloc_work->inode; 10012 filemap_flush(inode->i_mapping); 10013 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10014 &BTRFS_I(inode)->runtime_flags)) 10015 filemap_flush(inode->i_mapping); 10016 10017 if (delalloc_work->delay_iput) 10018 btrfs_add_delayed_iput(inode); 10019 else 10020 iput(inode); 10021 complete(&delalloc_work->completion); 10022 } 10023 10024 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 10025 int delay_iput) 10026 { 10027 struct btrfs_delalloc_work *work; 10028 10029 work = kmalloc(sizeof(*work), GFP_NOFS); 10030 if (!work) 10031 return NULL; 10032 10033 init_completion(&work->completion); 10034 INIT_LIST_HEAD(&work->list); 10035 work->inode = inode; 10036 work->delay_iput = delay_iput; 10037 WARN_ON_ONCE(!inode); 10038 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10039 btrfs_run_delalloc_work, NULL, NULL); 10040 10041 return work; 10042 } 10043 10044 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10045 { 10046 wait_for_completion(&work->completion); 10047 kfree(work); 10048 } 10049 10050 /* 10051 * some fairly slow code that needs optimization. This walks the list 10052 * of all the inodes with pending delalloc and forces them to disk. 10053 */ 10054 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10055 int nr) 10056 { 10057 struct btrfs_inode *binode; 10058 struct inode *inode; 10059 struct btrfs_delalloc_work *work, *next; 10060 struct list_head works; 10061 struct list_head splice; 10062 int ret = 0; 10063 10064 INIT_LIST_HEAD(&works); 10065 INIT_LIST_HEAD(&splice); 10066 10067 mutex_lock(&root->delalloc_mutex); 10068 spin_lock(&root->delalloc_lock); 10069 list_splice_init(&root->delalloc_inodes, &splice); 10070 while (!list_empty(&splice)) { 10071 binode = list_entry(splice.next, struct btrfs_inode, 10072 delalloc_inodes); 10073 10074 list_move_tail(&binode->delalloc_inodes, 10075 &root->delalloc_inodes); 10076 inode = igrab(&binode->vfs_inode); 10077 if (!inode) { 10078 cond_resched_lock(&root->delalloc_lock); 10079 continue; 10080 } 10081 spin_unlock(&root->delalloc_lock); 10082 10083 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10084 if (!work) { 10085 if (delay_iput) 10086 btrfs_add_delayed_iput(inode); 10087 else 10088 iput(inode); 10089 ret = -ENOMEM; 10090 goto out; 10091 } 10092 list_add_tail(&work->list, &works); 10093 btrfs_queue_work(root->fs_info->flush_workers, 10094 &work->work); 10095 ret++; 10096 if (nr != -1 && ret >= nr) 10097 goto out; 10098 cond_resched(); 10099 spin_lock(&root->delalloc_lock); 10100 } 10101 spin_unlock(&root->delalloc_lock); 10102 10103 out: 10104 list_for_each_entry_safe(work, next, &works, list) { 10105 list_del_init(&work->list); 10106 btrfs_wait_and_free_delalloc_work(work); 10107 } 10108 10109 if (!list_empty_careful(&splice)) { 10110 spin_lock(&root->delalloc_lock); 10111 list_splice_tail(&splice, &root->delalloc_inodes); 10112 spin_unlock(&root->delalloc_lock); 10113 } 10114 mutex_unlock(&root->delalloc_mutex); 10115 return ret; 10116 } 10117 10118 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10119 { 10120 struct btrfs_fs_info *fs_info = root->fs_info; 10121 int ret; 10122 10123 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10124 return -EROFS; 10125 10126 ret = __start_delalloc_inodes(root, delay_iput, -1); 10127 if (ret > 0) 10128 ret = 0; 10129 /* 10130 * the filemap_flush will queue IO into the worker threads, but 10131 * we have to make sure the IO is actually started and that 10132 * ordered extents get created before we return 10133 */ 10134 atomic_inc(&fs_info->async_submit_draining); 10135 while (atomic_read(&fs_info->nr_async_submits) || 10136 atomic_read(&fs_info->async_delalloc_pages)) { 10137 wait_event(fs_info->async_submit_wait, 10138 (atomic_read(&fs_info->nr_async_submits) == 0 && 10139 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10140 } 10141 atomic_dec(&fs_info->async_submit_draining); 10142 return ret; 10143 } 10144 10145 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10146 int nr) 10147 { 10148 struct btrfs_root *root; 10149 struct list_head splice; 10150 int ret; 10151 10152 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10153 return -EROFS; 10154 10155 INIT_LIST_HEAD(&splice); 10156 10157 mutex_lock(&fs_info->delalloc_root_mutex); 10158 spin_lock(&fs_info->delalloc_root_lock); 10159 list_splice_init(&fs_info->delalloc_roots, &splice); 10160 while (!list_empty(&splice) && nr) { 10161 root = list_first_entry(&splice, struct btrfs_root, 10162 delalloc_root); 10163 root = btrfs_grab_fs_root(root); 10164 BUG_ON(!root); 10165 list_move_tail(&root->delalloc_root, 10166 &fs_info->delalloc_roots); 10167 spin_unlock(&fs_info->delalloc_root_lock); 10168 10169 ret = __start_delalloc_inodes(root, delay_iput, nr); 10170 btrfs_put_fs_root(root); 10171 if (ret < 0) 10172 goto out; 10173 10174 if (nr != -1) { 10175 nr -= ret; 10176 WARN_ON(nr < 0); 10177 } 10178 spin_lock(&fs_info->delalloc_root_lock); 10179 } 10180 spin_unlock(&fs_info->delalloc_root_lock); 10181 10182 ret = 0; 10183 atomic_inc(&fs_info->async_submit_draining); 10184 while (atomic_read(&fs_info->nr_async_submits) || 10185 atomic_read(&fs_info->async_delalloc_pages)) { 10186 wait_event(fs_info->async_submit_wait, 10187 (atomic_read(&fs_info->nr_async_submits) == 0 && 10188 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10189 } 10190 atomic_dec(&fs_info->async_submit_draining); 10191 out: 10192 if (!list_empty_careful(&splice)) { 10193 spin_lock(&fs_info->delalloc_root_lock); 10194 list_splice_tail(&splice, &fs_info->delalloc_roots); 10195 spin_unlock(&fs_info->delalloc_root_lock); 10196 } 10197 mutex_unlock(&fs_info->delalloc_root_mutex); 10198 return ret; 10199 } 10200 10201 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10202 const char *symname) 10203 { 10204 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10205 struct btrfs_trans_handle *trans; 10206 struct btrfs_root *root = BTRFS_I(dir)->root; 10207 struct btrfs_path *path; 10208 struct btrfs_key key; 10209 struct inode *inode = NULL; 10210 int err; 10211 int drop_inode = 0; 10212 u64 objectid; 10213 u64 index = 0; 10214 int name_len; 10215 int datasize; 10216 unsigned long ptr; 10217 struct btrfs_file_extent_item *ei; 10218 struct extent_buffer *leaf; 10219 10220 name_len = strlen(symname); 10221 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10222 return -ENAMETOOLONG; 10223 10224 /* 10225 * 2 items for inode item and ref 10226 * 2 items for dir items 10227 * 1 item for updating parent inode item 10228 * 1 item for the inline extent item 10229 * 1 item for xattr if selinux is on 10230 */ 10231 trans = btrfs_start_transaction(root, 7); 10232 if (IS_ERR(trans)) 10233 return PTR_ERR(trans); 10234 10235 err = btrfs_find_free_ino(root, &objectid); 10236 if (err) 10237 goto out_unlock; 10238 10239 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10240 dentry->d_name.len, btrfs_ino(dir), objectid, 10241 S_IFLNK|S_IRWXUGO, &index); 10242 if (IS_ERR(inode)) { 10243 err = PTR_ERR(inode); 10244 goto out_unlock; 10245 } 10246 10247 /* 10248 * If the active LSM wants to access the inode during 10249 * d_instantiate it needs these. Smack checks to see 10250 * if the filesystem supports xattrs by looking at the 10251 * ops vector. 10252 */ 10253 inode->i_fop = &btrfs_file_operations; 10254 inode->i_op = &btrfs_file_inode_operations; 10255 inode->i_mapping->a_ops = &btrfs_aops; 10256 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10257 10258 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10259 if (err) 10260 goto out_unlock_inode; 10261 10262 path = btrfs_alloc_path(); 10263 if (!path) { 10264 err = -ENOMEM; 10265 goto out_unlock_inode; 10266 } 10267 key.objectid = btrfs_ino(inode); 10268 key.offset = 0; 10269 key.type = BTRFS_EXTENT_DATA_KEY; 10270 datasize = btrfs_file_extent_calc_inline_size(name_len); 10271 err = btrfs_insert_empty_item(trans, root, path, &key, 10272 datasize); 10273 if (err) { 10274 btrfs_free_path(path); 10275 goto out_unlock_inode; 10276 } 10277 leaf = path->nodes[0]; 10278 ei = btrfs_item_ptr(leaf, path->slots[0], 10279 struct btrfs_file_extent_item); 10280 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10281 btrfs_set_file_extent_type(leaf, ei, 10282 BTRFS_FILE_EXTENT_INLINE); 10283 btrfs_set_file_extent_encryption(leaf, ei, 0); 10284 btrfs_set_file_extent_compression(leaf, ei, 0); 10285 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10286 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10287 10288 ptr = btrfs_file_extent_inline_start(ei); 10289 write_extent_buffer(leaf, symname, ptr, name_len); 10290 btrfs_mark_buffer_dirty(leaf); 10291 btrfs_free_path(path); 10292 10293 inode->i_op = &btrfs_symlink_inode_operations; 10294 inode_nohighmem(inode); 10295 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10296 inode_set_bytes(inode, name_len); 10297 btrfs_i_size_write(inode, name_len); 10298 err = btrfs_update_inode(trans, root, inode); 10299 /* 10300 * Last step, add directory indexes for our symlink inode. This is the 10301 * last step to avoid extra cleanup of these indexes if an error happens 10302 * elsewhere above. 10303 */ 10304 if (!err) 10305 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 10306 if (err) { 10307 drop_inode = 1; 10308 goto out_unlock_inode; 10309 } 10310 10311 unlock_new_inode(inode); 10312 d_instantiate(dentry, inode); 10313 10314 out_unlock: 10315 btrfs_end_transaction(trans); 10316 if (drop_inode) { 10317 inode_dec_link_count(inode); 10318 iput(inode); 10319 } 10320 btrfs_btree_balance_dirty(fs_info); 10321 return err; 10322 10323 out_unlock_inode: 10324 drop_inode = 1; 10325 unlock_new_inode(inode); 10326 goto out_unlock; 10327 } 10328 10329 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10330 u64 start, u64 num_bytes, u64 min_size, 10331 loff_t actual_len, u64 *alloc_hint, 10332 struct btrfs_trans_handle *trans) 10333 { 10334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10335 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10336 struct extent_map *em; 10337 struct btrfs_root *root = BTRFS_I(inode)->root; 10338 struct btrfs_key ins; 10339 u64 cur_offset = start; 10340 u64 i_size; 10341 u64 cur_bytes; 10342 u64 last_alloc = (u64)-1; 10343 int ret = 0; 10344 bool own_trans = true; 10345 u64 end = start + num_bytes - 1; 10346 10347 if (trans) 10348 own_trans = false; 10349 while (num_bytes > 0) { 10350 if (own_trans) { 10351 trans = btrfs_start_transaction(root, 3); 10352 if (IS_ERR(trans)) { 10353 ret = PTR_ERR(trans); 10354 break; 10355 } 10356 } 10357 10358 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10359 cur_bytes = max(cur_bytes, min_size); 10360 /* 10361 * If we are severely fragmented we could end up with really 10362 * small allocations, so if the allocator is returning small 10363 * chunks lets make its job easier by only searching for those 10364 * sized chunks. 10365 */ 10366 cur_bytes = min(cur_bytes, last_alloc); 10367 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10368 min_size, 0, *alloc_hint, &ins, 1, 0); 10369 if (ret) { 10370 if (own_trans) 10371 btrfs_end_transaction(trans); 10372 break; 10373 } 10374 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10375 10376 last_alloc = ins.offset; 10377 ret = insert_reserved_file_extent(trans, inode, 10378 cur_offset, ins.objectid, 10379 ins.offset, ins.offset, 10380 ins.offset, 0, 0, 0, 10381 BTRFS_FILE_EXTENT_PREALLOC); 10382 if (ret) { 10383 btrfs_free_reserved_extent(fs_info, ins.objectid, 10384 ins.offset, 0); 10385 btrfs_abort_transaction(trans, ret); 10386 if (own_trans) 10387 btrfs_end_transaction(trans); 10388 break; 10389 } 10390 10391 btrfs_drop_extent_cache(inode, cur_offset, 10392 cur_offset + ins.offset -1, 0); 10393 10394 em = alloc_extent_map(); 10395 if (!em) { 10396 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10397 &BTRFS_I(inode)->runtime_flags); 10398 goto next; 10399 } 10400 10401 em->start = cur_offset; 10402 em->orig_start = cur_offset; 10403 em->len = ins.offset; 10404 em->block_start = ins.objectid; 10405 em->block_len = ins.offset; 10406 em->orig_block_len = ins.offset; 10407 em->ram_bytes = ins.offset; 10408 em->bdev = fs_info->fs_devices->latest_bdev; 10409 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10410 em->generation = trans->transid; 10411 10412 while (1) { 10413 write_lock(&em_tree->lock); 10414 ret = add_extent_mapping(em_tree, em, 1); 10415 write_unlock(&em_tree->lock); 10416 if (ret != -EEXIST) 10417 break; 10418 btrfs_drop_extent_cache(inode, cur_offset, 10419 cur_offset + ins.offset - 1, 10420 0); 10421 } 10422 free_extent_map(em); 10423 next: 10424 num_bytes -= ins.offset; 10425 cur_offset += ins.offset; 10426 *alloc_hint = ins.objectid + ins.offset; 10427 10428 inode_inc_iversion(inode); 10429 inode->i_ctime = current_time(inode); 10430 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10431 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10432 (actual_len > inode->i_size) && 10433 (cur_offset > inode->i_size)) { 10434 if (cur_offset > actual_len) 10435 i_size = actual_len; 10436 else 10437 i_size = cur_offset; 10438 i_size_write(inode, i_size); 10439 btrfs_ordered_update_i_size(inode, i_size, NULL); 10440 } 10441 10442 ret = btrfs_update_inode(trans, root, inode); 10443 10444 if (ret) { 10445 btrfs_abort_transaction(trans, ret); 10446 if (own_trans) 10447 btrfs_end_transaction(trans); 10448 break; 10449 } 10450 10451 if (own_trans) 10452 btrfs_end_transaction(trans); 10453 } 10454 if (cur_offset < end) 10455 btrfs_free_reserved_data_space(inode, cur_offset, 10456 end - cur_offset + 1); 10457 return ret; 10458 } 10459 10460 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10461 u64 start, u64 num_bytes, u64 min_size, 10462 loff_t actual_len, u64 *alloc_hint) 10463 { 10464 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10465 min_size, actual_len, alloc_hint, 10466 NULL); 10467 } 10468 10469 int btrfs_prealloc_file_range_trans(struct inode *inode, 10470 struct btrfs_trans_handle *trans, int mode, 10471 u64 start, u64 num_bytes, u64 min_size, 10472 loff_t actual_len, u64 *alloc_hint) 10473 { 10474 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10475 min_size, actual_len, alloc_hint, trans); 10476 } 10477 10478 static int btrfs_set_page_dirty(struct page *page) 10479 { 10480 return __set_page_dirty_nobuffers(page); 10481 } 10482 10483 static int btrfs_permission(struct inode *inode, int mask) 10484 { 10485 struct btrfs_root *root = BTRFS_I(inode)->root; 10486 umode_t mode = inode->i_mode; 10487 10488 if (mask & MAY_WRITE && 10489 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10490 if (btrfs_root_readonly(root)) 10491 return -EROFS; 10492 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10493 return -EACCES; 10494 } 10495 return generic_permission(inode, mask); 10496 } 10497 10498 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10499 { 10500 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10501 struct btrfs_trans_handle *trans; 10502 struct btrfs_root *root = BTRFS_I(dir)->root; 10503 struct inode *inode = NULL; 10504 u64 objectid; 10505 u64 index; 10506 int ret = 0; 10507 10508 /* 10509 * 5 units required for adding orphan entry 10510 */ 10511 trans = btrfs_start_transaction(root, 5); 10512 if (IS_ERR(trans)) 10513 return PTR_ERR(trans); 10514 10515 ret = btrfs_find_free_ino(root, &objectid); 10516 if (ret) 10517 goto out; 10518 10519 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10520 btrfs_ino(dir), objectid, mode, &index); 10521 if (IS_ERR(inode)) { 10522 ret = PTR_ERR(inode); 10523 inode = NULL; 10524 goto out; 10525 } 10526 10527 inode->i_fop = &btrfs_file_operations; 10528 inode->i_op = &btrfs_file_inode_operations; 10529 10530 inode->i_mapping->a_ops = &btrfs_aops; 10531 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10532 10533 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10534 if (ret) 10535 goto out_inode; 10536 10537 ret = btrfs_update_inode(trans, root, inode); 10538 if (ret) 10539 goto out_inode; 10540 ret = btrfs_orphan_add(trans, inode); 10541 if (ret) 10542 goto out_inode; 10543 10544 /* 10545 * We set number of links to 0 in btrfs_new_inode(), and here we set 10546 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10547 * through: 10548 * 10549 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10550 */ 10551 set_nlink(inode, 1); 10552 unlock_new_inode(inode); 10553 d_tmpfile(dentry, inode); 10554 mark_inode_dirty(inode); 10555 10556 out: 10557 btrfs_end_transaction(trans); 10558 if (ret) 10559 iput(inode); 10560 btrfs_balance_delayed_items(fs_info); 10561 btrfs_btree_balance_dirty(fs_info); 10562 return ret; 10563 10564 out_inode: 10565 unlock_new_inode(inode); 10566 goto out; 10567 10568 } 10569 10570 static const struct inode_operations btrfs_dir_inode_operations = { 10571 .getattr = btrfs_getattr, 10572 .lookup = btrfs_lookup, 10573 .create = btrfs_create, 10574 .unlink = btrfs_unlink, 10575 .link = btrfs_link, 10576 .mkdir = btrfs_mkdir, 10577 .rmdir = btrfs_rmdir, 10578 .rename = btrfs_rename2, 10579 .symlink = btrfs_symlink, 10580 .setattr = btrfs_setattr, 10581 .mknod = btrfs_mknod, 10582 .listxattr = btrfs_listxattr, 10583 .permission = btrfs_permission, 10584 .get_acl = btrfs_get_acl, 10585 .set_acl = btrfs_set_acl, 10586 .update_time = btrfs_update_time, 10587 .tmpfile = btrfs_tmpfile, 10588 }; 10589 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10590 .lookup = btrfs_lookup, 10591 .permission = btrfs_permission, 10592 .update_time = btrfs_update_time, 10593 }; 10594 10595 static const struct file_operations btrfs_dir_file_operations = { 10596 .llseek = generic_file_llseek, 10597 .read = generic_read_dir, 10598 .iterate_shared = btrfs_real_readdir, 10599 .unlocked_ioctl = btrfs_ioctl, 10600 #ifdef CONFIG_COMPAT 10601 .compat_ioctl = btrfs_compat_ioctl, 10602 #endif 10603 .release = btrfs_release_file, 10604 .fsync = btrfs_sync_file, 10605 }; 10606 10607 static const struct extent_io_ops btrfs_extent_io_ops = { 10608 .fill_delalloc = run_delalloc_range, 10609 .submit_bio_hook = btrfs_submit_bio_hook, 10610 .merge_bio_hook = btrfs_merge_bio_hook, 10611 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10612 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10613 .writepage_start_hook = btrfs_writepage_start_hook, 10614 .set_bit_hook = btrfs_set_bit_hook, 10615 .clear_bit_hook = btrfs_clear_bit_hook, 10616 .merge_extent_hook = btrfs_merge_extent_hook, 10617 .split_extent_hook = btrfs_split_extent_hook, 10618 }; 10619 10620 /* 10621 * btrfs doesn't support the bmap operation because swapfiles 10622 * use bmap to make a mapping of extents in the file. They assume 10623 * these extents won't change over the life of the file and they 10624 * use the bmap result to do IO directly to the drive. 10625 * 10626 * the btrfs bmap call would return logical addresses that aren't 10627 * suitable for IO and they also will change frequently as COW 10628 * operations happen. So, swapfile + btrfs == corruption. 10629 * 10630 * For now we're avoiding this by dropping bmap. 10631 */ 10632 static const struct address_space_operations btrfs_aops = { 10633 .readpage = btrfs_readpage, 10634 .writepage = btrfs_writepage, 10635 .writepages = btrfs_writepages, 10636 .readpages = btrfs_readpages, 10637 .direct_IO = btrfs_direct_IO, 10638 .invalidatepage = btrfs_invalidatepage, 10639 .releasepage = btrfs_releasepage, 10640 .set_page_dirty = btrfs_set_page_dirty, 10641 .error_remove_page = generic_error_remove_page, 10642 }; 10643 10644 static const struct address_space_operations btrfs_symlink_aops = { 10645 .readpage = btrfs_readpage, 10646 .writepage = btrfs_writepage, 10647 .invalidatepage = btrfs_invalidatepage, 10648 .releasepage = btrfs_releasepage, 10649 }; 10650 10651 static const struct inode_operations btrfs_file_inode_operations = { 10652 .getattr = btrfs_getattr, 10653 .setattr = btrfs_setattr, 10654 .listxattr = btrfs_listxattr, 10655 .permission = btrfs_permission, 10656 .fiemap = btrfs_fiemap, 10657 .get_acl = btrfs_get_acl, 10658 .set_acl = btrfs_set_acl, 10659 .update_time = btrfs_update_time, 10660 }; 10661 static const struct inode_operations btrfs_special_inode_operations = { 10662 .getattr = btrfs_getattr, 10663 .setattr = btrfs_setattr, 10664 .permission = btrfs_permission, 10665 .listxattr = btrfs_listxattr, 10666 .get_acl = btrfs_get_acl, 10667 .set_acl = btrfs_set_acl, 10668 .update_time = btrfs_update_time, 10669 }; 10670 static const struct inode_operations btrfs_symlink_inode_operations = { 10671 .get_link = page_get_link, 10672 .getattr = btrfs_getattr, 10673 .setattr = btrfs_setattr, 10674 .permission = btrfs_permission, 10675 .listxattr = btrfs_listxattr, 10676 .update_time = btrfs_update_time, 10677 }; 10678 10679 const struct dentry_operations btrfs_dentry_operations = { 10680 .d_delete = btrfs_dentry_delete, 10681 .d_release = btrfs_dentry_release, 10682 }; 10683