xref: /openbmc/linux/fs/btrfs/inode.c (revision 4e1a33b1)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
51 #include "xattr.h"
52 #include "tree-log.h"
53 #include "volumes.h"
54 #include "compression.h"
55 #include "locking.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
58 #include "backref.h"
59 #include "hash.h"
60 #include "props.h"
61 #include "qgroup.h"
62 #include "dedupe.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 struct btrfs_dio_data {
70 	u64 outstanding_extents;
71 	u64 reserve;
72 	u64 unsubmitted_oe_range_start;
73 	u64 unsubmitted_oe_range_end;
74 };
75 
76 static const struct inode_operations btrfs_dir_inode_operations;
77 static const struct inode_operations btrfs_symlink_inode_operations;
78 static const struct inode_operations btrfs_dir_ro_inode_operations;
79 static const struct inode_operations btrfs_special_inode_operations;
80 static const struct inode_operations btrfs_file_inode_operations;
81 static const struct address_space_operations btrfs_aops;
82 static const struct address_space_operations btrfs_symlink_aops;
83 static const struct file_operations btrfs_dir_file_operations;
84 static const struct extent_io_ops btrfs_extent_io_ops;
85 
86 static struct kmem_cache *btrfs_inode_cachep;
87 struct kmem_cache *btrfs_trans_handle_cachep;
88 struct kmem_cache *btrfs_transaction_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91 
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
95 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
96 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
97 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
98 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
99 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
100 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
101 };
102 
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 				   struct page *locked_page,
108 				   u64 start, u64 end, u64 delalloc_end,
109 				   int *page_started, unsigned long *nr_written,
110 				   int unlock, struct btrfs_dedupe_hash *hash);
111 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
112 					   u64 len, u64 orig_start,
113 					   u64 block_start, u64 block_len,
114 					   u64 orig_block_len, u64 ram_bytes,
115 					   int type);
116 
117 static int btrfs_dirty_inode(struct inode *inode);
118 
119 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
120 void btrfs_test_inode_set_ops(struct inode *inode)
121 {
122 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
123 }
124 #endif
125 
126 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
127 				     struct inode *inode,  struct inode *dir,
128 				     const struct qstr *qstr)
129 {
130 	int err;
131 
132 	err = btrfs_init_acl(trans, inode, dir);
133 	if (!err)
134 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
135 	return err;
136 }
137 
138 /*
139  * this does all the hard work for inserting an inline extent into
140  * the btree.  The caller should have done a btrfs_drop_extents so that
141  * no overlapping inline items exist in the btree
142  */
143 static int insert_inline_extent(struct btrfs_trans_handle *trans,
144 				struct btrfs_path *path, int extent_inserted,
145 				struct btrfs_root *root, struct inode *inode,
146 				u64 start, size_t size, size_t compressed_size,
147 				int compress_type,
148 				struct page **compressed_pages)
149 {
150 	struct extent_buffer *leaf;
151 	struct page *page = NULL;
152 	char *kaddr;
153 	unsigned long ptr;
154 	struct btrfs_file_extent_item *ei;
155 	int err = 0;
156 	int ret;
157 	size_t cur_size = size;
158 	unsigned long offset;
159 
160 	if (compressed_size && compressed_pages)
161 		cur_size = compressed_size;
162 
163 	inode_add_bytes(inode, size);
164 
165 	if (!extent_inserted) {
166 		struct btrfs_key key;
167 		size_t datasize;
168 
169 		key.objectid = btrfs_ino(inode);
170 		key.offset = start;
171 		key.type = BTRFS_EXTENT_DATA_KEY;
172 
173 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
174 		path->leave_spinning = 1;
175 		ret = btrfs_insert_empty_item(trans, root, path, &key,
176 					      datasize);
177 		if (ret) {
178 			err = ret;
179 			goto fail;
180 		}
181 	}
182 	leaf = path->nodes[0];
183 	ei = btrfs_item_ptr(leaf, path->slots[0],
184 			    struct btrfs_file_extent_item);
185 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
186 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
187 	btrfs_set_file_extent_encryption(leaf, ei, 0);
188 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
189 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
190 	ptr = btrfs_file_extent_inline_start(ei);
191 
192 	if (compress_type != BTRFS_COMPRESS_NONE) {
193 		struct page *cpage;
194 		int i = 0;
195 		while (compressed_size > 0) {
196 			cpage = compressed_pages[i];
197 			cur_size = min_t(unsigned long, compressed_size,
198 				       PAGE_SIZE);
199 
200 			kaddr = kmap_atomic(cpage);
201 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
202 			kunmap_atomic(kaddr);
203 
204 			i++;
205 			ptr += cur_size;
206 			compressed_size -= cur_size;
207 		}
208 		btrfs_set_file_extent_compression(leaf, ei,
209 						  compress_type);
210 	} else {
211 		page = find_get_page(inode->i_mapping,
212 				     start >> PAGE_SHIFT);
213 		btrfs_set_file_extent_compression(leaf, ei, 0);
214 		kaddr = kmap_atomic(page);
215 		offset = start & (PAGE_SIZE - 1);
216 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
217 		kunmap_atomic(kaddr);
218 		put_page(page);
219 	}
220 	btrfs_mark_buffer_dirty(leaf);
221 	btrfs_release_path(path);
222 
223 	/*
224 	 * we're an inline extent, so nobody can
225 	 * extend the file past i_size without locking
226 	 * a page we already have locked.
227 	 *
228 	 * We must do any isize and inode updates
229 	 * before we unlock the pages.  Otherwise we
230 	 * could end up racing with unlink.
231 	 */
232 	BTRFS_I(inode)->disk_i_size = inode->i_size;
233 	ret = btrfs_update_inode(trans, root, inode);
234 
235 	return ret;
236 fail:
237 	return err;
238 }
239 
240 
241 /*
242  * conditionally insert an inline extent into the file.  This
243  * does the checks required to make sure the data is small enough
244  * to fit as an inline extent.
245  */
246 static noinline int cow_file_range_inline(struct btrfs_root *root,
247 					  struct inode *inode, u64 start,
248 					  u64 end, size_t compressed_size,
249 					  int compress_type,
250 					  struct page **compressed_pages)
251 {
252 	struct btrfs_fs_info *fs_info = root->fs_info;
253 	struct btrfs_trans_handle *trans;
254 	u64 isize = i_size_read(inode);
255 	u64 actual_end = min(end + 1, isize);
256 	u64 inline_len = actual_end - start;
257 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
258 	u64 data_len = inline_len;
259 	int ret;
260 	struct btrfs_path *path;
261 	int extent_inserted = 0;
262 	u32 extent_item_size;
263 
264 	if (compressed_size)
265 		data_len = compressed_size;
266 
267 	if (start > 0 ||
268 	    actual_end > fs_info->sectorsize ||
269 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
270 	    (!compressed_size &&
271 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
272 	    end + 1 < isize ||
273 	    data_len > fs_info->max_inline) {
274 		return 1;
275 	}
276 
277 	path = btrfs_alloc_path();
278 	if (!path)
279 		return -ENOMEM;
280 
281 	trans = btrfs_join_transaction(root);
282 	if (IS_ERR(trans)) {
283 		btrfs_free_path(path);
284 		return PTR_ERR(trans);
285 	}
286 	trans->block_rsv = &fs_info->delalloc_block_rsv;
287 
288 	if (compressed_size && compressed_pages)
289 		extent_item_size = btrfs_file_extent_calc_inline_size(
290 		   compressed_size);
291 	else
292 		extent_item_size = btrfs_file_extent_calc_inline_size(
293 		    inline_len);
294 
295 	ret = __btrfs_drop_extents(trans, root, inode, path,
296 				   start, aligned_end, NULL,
297 				   1, 1, extent_item_size, &extent_inserted);
298 	if (ret) {
299 		btrfs_abort_transaction(trans, ret);
300 		goto out;
301 	}
302 
303 	if (isize > actual_end)
304 		inline_len = min_t(u64, isize, actual_end);
305 	ret = insert_inline_extent(trans, path, extent_inserted,
306 				   root, inode, start,
307 				   inline_len, compressed_size,
308 				   compress_type, compressed_pages);
309 	if (ret && ret != -ENOSPC) {
310 		btrfs_abort_transaction(trans, ret);
311 		goto out;
312 	} else if (ret == -ENOSPC) {
313 		ret = 1;
314 		goto out;
315 	}
316 
317 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
318 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
319 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
320 out:
321 	/*
322 	 * Don't forget to free the reserved space, as for inlined extent
323 	 * it won't count as data extent, free them directly here.
324 	 * And at reserve time, it's always aligned to page size, so
325 	 * just free one page here.
326 	 */
327 	btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
328 	btrfs_free_path(path);
329 	btrfs_end_transaction(trans);
330 	return ret;
331 }
332 
333 struct async_extent {
334 	u64 start;
335 	u64 ram_size;
336 	u64 compressed_size;
337 	struct page **pages;
338 	unsigned long nr_pages;
339 	int compress_type;
340 	struct list_head list;
341 };
342 
343 struct async_cow {
344 	struct inode *inode;
345 	struct btrfs_root *root;
346 	struct page *locked_page;
347 	u64 start;
348 	u64 end;
349 	struct list_head extents;
350 	struct btrfs_work work;
351 };
352 
353 static noinline int add_async_extent(struct async_cow *cow,
354 				     u64 start, u64 ram_size,
355 				     u64 compressed_size,
356 				     struct page **pages,
357 				     unsigned long nr_pages,
358 				     int compress_type)
359 {
360 	struct async_extent *async_extent;
361 
362 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
363 	BUG_ON(!async_extent); /* -ENOMEM */
364 	async_extent->start = start;
365 	async_extent->ram_size = ram_size;
366 	async_extent->compressed_size = compressed_size;
367 	async_extent->pages = pages;
368 	async_extent->nr_pages = nr_pages;
369 	async_extent->compress_type = compress_type;
370 	list_add_tail(&async_extent->list, &cow->extents);
371 	return 0;
372 }
373 
374 static inline int inode_need_compress(struct inode *inode)
375 {
376 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
377 
378 	/* force compress */
379 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
380 		return 1;
381 	/* bad compression ratios */
382 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
383 		return 0;
384 	if (btrfs_test_opt(fs_info, COMPRESS) ||
385 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 	    BTRFS_I(inode)->force_compress)
387 		return 1;
388 	return 0;
389 }
390 
391 /*
392  * we create compressed extents in two phases.  The first
393  * phase compresses a range of pages that have already been
394  * locked (both pages and state bits are locked).
395  *
396  * This is done inside an ordered work queue, and the compression
397  * is spread across many cpus.  The actual IO submission is step
398  * two, and the ordered work queue takes care of making sure that
399  * happens in the same order things were put onto the queue by
400  * writepages and friends.
401  *
402  * If this code finds it can't get good compression, it puts an
403  * entry onto the work queue to write the uncompressed bytes.  This
404  * makes sure that both compressed inodes and uncompressed inodes
405  * are written in the same order that the flusher thread sent them
406  * down.
407  */
408 static noinline void compress_file_range(struct inode *inode,
409 					struct page *locked_page,
410 					u64 start, u64 end,
411 					struct async_cow *async_cow,
412 					int *num_added)
413 {
414 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
415 	struct btrfs_root *root = BTRFS_I(inode)->root;
416 	u64 num_bytes;
417 	u64 blocksize = fs_info->sectorsize;
418 	u64 actual_end;
419 	u64 isize = i_size_read(inode);
420 	int ret = 0;
421 	struct page **pages = NULL;
422 	unsigned long nr_pages;
423 	unsigned long nr_pages_ret = 0;
424 	unsigned long total_compressed = 0;
425 	unsigned long total_in = 0;
426 	unsigned long max_compressed = SZ_128K;
427 	unsigned long max_uncompressed = SZ_128K;
428 	int i;
429 	int will_compress;
430 	int compress_type = fs_info->compress_type;
431 	int redirty = 0;
432 
433 	/* if this is a small write inside eof, kick off a defrag */
434 	if ((end - start + 1) < SZ_16K &&
435 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
436 		btrfs_add_inode_defrag(NULL, inode);
437 
438 	actual_end = min_t(u64, isize, end + 1);
439 again:
440 	will_compress = 0;
441 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
442 	nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
443 
444 	/*
445 	 * we don't want to send crud past the end of i_size through
446 	 * compression, that's just a waste of CPU time.  So, if the
447 	 * end of the file is before the start of our current
448 	 * requested range of bytes, we bail out to the uncompressed
449 	 * cleanup code that can deal with all of this.
450 	 *
451 	 * It isn't really the fastest way to fix things, but this is a
452 	 * very uncommon corner.
453 	 */
454 	if (actual_end <= start)
455 		goto cleanup_and_bail_uncompressed;
456 
457 	total_compressed = actual_end - start;
458 
459 	/*
460 	 * skip compression for a small file range(<=blocksize) that
461 	 * isn't an inline extent, since it doesn't save disk space at all.
462 	 */
463 	if (total_compressed <= blocksize &&
464 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
465 		goto cleanup_and_bail_uncompressed;
466 
467 	/* we want to make sure that amount of ram required to uncompress
468 	 * an extent is reasonable, so we limit the total size in ram
469 	 * of a compressed extent to 128k.  This is a crucial number
470 	 * because it also controls how easily we can spread reads across
471 	 * cpus for decompression.
472 	 *
473 	 * We also want to make sure the amount of IO required to do
474 	 * a random read is reasonably small, so we limit the size of
475 	 * a compressed extent to 128k.
476 	 */
477 	total_compressed = min(total_compressed, max_uncompressed);
478 	num_bytes = ALIGN(end - start + 1, blocksize);
479 	num_bytes = max(blocksize,  num_bytes);
480 	total_in = 0;
481 	ret = 0;
482 
483 	/*
484 	 * we do compression for mount -o compress and when the
485 	 * inode has not been flagged as nocompress.  This flag can
486 	 * change at any time if we discover bad compression ratios.
487 	 */
488 	if (inode_need_compress(inode)) {
489 		WARN_ON(pages);
490 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
491 		if (!pages) {
492 			/* just bail out to the uncompressed code */
493 			goto cont;
494 		}
495 
496 		if (BTRFS_I(inode)->force_compress)
497 			compress_type = BTRFS_I(inode)->force_compress;
498 
499 		/*
500 		 * we need to call clear_page_dirty_for_io on each
501 		 * page in the range.  Otherwise applications with the file
502 		 * mmap'd can wander in and change the page contents while
503 		 * we are compressing them.
504 		 *
505 		 * If the compression fails for any reason, we set the pages
506 		 * dirty again later on.
507 		 */
508 		extent_range_clear_dirty_for_io(inode, start, end);
509 		redirty = 1;
510 		ret = btrfs_compress_pages(compress_type,
511 					   inode->i_mapping, start,
512 					   total_compressed, pages,
513 					   nr_pages, &nr_pages_ret,
514 					   &total_in,
515 					   &total_compressed,
516 					   max_compressed);
517 
518 		if (!ret) {
519 			unsigned long offset = total_compressed &
520 				(PAGE_SIZE - 1);
521 			struct page *page = pages[nr_pages_ret - 1];
522 			char *kaddr;
523 
524 			/* zero the tail end of the last page, we might be
525 			 * sending it down to disk
526 			 */
527 			if (offset) {
528 				kaddr = kmap_atomic(page);
529 				memset(kaddr + offset, 0,
530 				       PAGE_SIZE - offset);
531 				kunmap_atomic(kaddr);
532 			}
533 			will_compress = 1;
534 		}
535 	}
536 cont:
537 	if (start == 0) {
538 		/* lets try to make an inline extent */
539 		if (ret || total_in < (actual_end - start)) {
540 			/* we didn't compress the entire range, try
541 			 * to make an uncompressed inline extent.
542 			 */
543 			ret = cow_file_range_inline(root, inode, start, end,
544 						    0, 0, NULL);
545 		} else {
546 			/* try making a compressed inline extent */
547 			ret = cow_file_range_inline(root, inode, start, end,
548 						    total_compressed,
549 						    compress_type, pages);
550 		}
551 		if (ret <= 0) {
552 			unsigned long clear_flags = EXTENT_DELALLOC |
553 				EXTENT_DEFRAG;
554 			unsigned long page_error_op;
555 
556 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
557 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
558 
559 			/*
560 			 * inline extent creation worked or returned error,
561 			 * we don't need to create any more async work items.
562 			 * Unlock and free up our temp pages.
563 			 */
564 			extent_clear_unlock_delalloc(inode, start, end, end,
565 						     NULL, clear_flags,
566 						     PAGE_UNLOCK |
567 						     PAGE_CLEAR_DIRTY |
568 						     PAGE_SET_WRITEBACK |
569 						     page_error_op |
570 						     PAGE_END_WRITEBACK);
571 			btrfs_free_reserved_data_space_noquota(inode, start,
572 						end - start + 1);
573 			goto free_pages_out;
574 		}
575 	}
576 
577 	if (will_compress) {
578 		/*
579 		 * we aren't doing an inline extent round the compressed size
580 		 * up to a block size boundary so the allocator does sane
581 		 * things
582 		 */
583 		total_compressed = ALIGN(total_compressed, blocksize);
584 
585 		/*
586 		 * one last check to make sure the compression is really a
587 		 * win, compare the page count read with the blocks on disk
588 		 */
589 		total_in = ALIGN(total_in, PAGE_SIZE);
590 		if (total_compressed >= total_in) {
591 			will_compress = 0;
592 		} else {
593 			num_bytes = total_in;
594 			*num_added += 1;
595 
596 			/*
597 			 * The async work queues will take care of doing actual
598 			 * allocation on disk for these compressed pages, and
599 			 * will submit them to the elevator.
600 			 */
601 			add_async_extent(async_cow, start, num_bytes,
602 					total_compressed, pages, nr_pages_ret,
603 					compress_type);
604 
605 			if (start + num_bytes < end) {
606 				start += num_bytes;
607 				pages = NULL;
608 				cond_resched();
609 				goto again;
610 			}
611 			return;
612 		}
613 	}
614 	if (pages) {
615 		/*
616 		 * the compression code ran but failed to make things smaller,
617 		 * free any pages it allocated and our page pointer array
618 		 */
619 		for (i = 0; i < nr_pages_ret; i++) {
620 			WARN_ON(pages[i]->mapping);
621 			put_page(pages[i]);
622 		}
623 		kfree(pages);
624 		pages = NULL;
625 		total_compressed = 0;
626 		nr_pages_ret = 0;
627 
628 		/* flag the file so we don't compress in the future */
629 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
630 		    !(BTRFS_I(inode)->force_compress)) {
631 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
632 		}
633 	}
634 cleanup_and_bail_uncompressed:
635 	/*
636 	 * No compression, but we still need to write the pages in the file
637 	 * we've been given so far.  redirty the locked page if it corresponds
638 	 * to our extent and set things up for the async work queue to run
639 	 * cow_file_range to do the normal delalloc dance.
640 	 */
641 	if (page_offset(locked_page) >= start &&
642 	    page_offset(locked_page) <= end)
643 		__set_page_dirty_nobuffers(locked_page);
644 		/* unlocked later on in the async handlers */
645 
646 	if (redirty)
647 		extent_range_redirty_for_io(inode, start, end);
648 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
649 			 BTRFS_COMPRESS_NONE);
650 	*num_added += 1;
651 
652 	return;
653 
654 free_pages_out:
655 	for (i = 0; i < nr_pages_ret; i++) {
656 		WARN_ON(pages[i]->mapping);
657 		put_page(pages[i]);
658 	}
659 	kfree(pages);
660 }
661 
662 static void free_async_extent_pages(struct async_extent *async_extent)
663 {
664 	int i;
665 
666 	if (!async_extent->pages)
667 		return;
668 
669 	for (i = 0; i < async_extent->nr_pages; i++) {
670 		WARN_ON(async_extent->pages[i]->mapping);
671 		put_page(async_extent->pages[i]);
672 	}
673 	kfree(async_extent->pages);
674 	async_extent->nr_pages = 0;
675 	async_extent->pages = NULL;
676 }
677 
678 /*
679  * phase two of compressed writeback.  This is the ordered portion
680  * of the code, which only gets called in the order the work was
681  * queued.  We walk all the async extents created by compress_file_range
682  * and send them down to the disk.
683  */
684 static noinline void submit_compressed_extents(struct inode *inode,
685 					      struct async_cow *async_cow)
686 {
687 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
688 	struct async_extent *async_extent;
689 	u64 alloc_hint = 0;
690 	struct btrfs_key ins;
691 	struct extent_map *em;
692 	struct btrfs_root *root = BTRFS_I(inode)->root;
693 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
694 	struct extent_io_tree *io_tree;
695 	int ret = 0;
696 
697 again:
698 	while (!list_empty(&async_cow->extents)) {
699 		async_extent = list_entry(async_cow->extents.next,
700 					  struct async_extent, list);
701 		list_del(&async_extent->list);
702 
703 		io_tree = &BTRFS_I(inode)->io_tree;
704 
705 retry:
706 		/* did the compression code fall back to uncompressed IO? */
707 		if (!async_extent->pages) {
708 			int page_started = 0;
709 			unsigned long nr_written = 0;
710 
711 			lock_extent(io_tree, async_extent->start,
712 					 async_extent->start +
713 					 async_extent->ram_size - 1);
714 
715 			/* allocate blocks */
716 			ret = cow_file_range(inode, async_cow->locked_page,
717 					     async_extent->start,
718 					     async_extent->start +
719 					     async_extent->ram_size - 1,
720 					     async_extent->start +
721 					     async_extent->ram_size - 1,
722 					     &page_started, &nr_written, 0,
723 					     NULL);
724 
725 			/* JDM XXX */
726 
727 			/*
728 			 * if page_started, cow_file_range inserted an
729 			 * inline extent and took care of all the unlocking
730 			 * and IO for us.  Otherwise, we need to submit
731 			 * all those pages down to the drive.
732 			 */
733 			if (!page_started && !ret)
734 				extent_write_locked_range(io_tree,
735 						  inode, async_extent->start,
736 						  async_extent->start +
737 						  async_extent->ram_size - 1,
738 						  btrfs_get_extent,
739 						  WB_SYNC_ALL);
740 			else if (ret)
741 				unlock_page(async_cow->locked_page);
742 			kfree(async_extent);
743 			cond_resched();
744 			continue;
745 		}
746 
747 		lock_extent(io_tree, async_extent->start,
748 			    async_extent->start + async_extent->ram_size - 1);
749 
750 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
751 					   async_extent->compressed_size,
752 					   async_extent->compressed_size,
753 					   0, alloc_hint, &ins, 1, 1);
754 		if (ret) {
755 			free_async_extent_pages(async_extent);
756 
757 			if (ret == -ENOSPC) {
758 				unlock_extent(io_tree, async_extent->start,
759 					      async_extent->start +
760 					      async_extent->ram_size - 1);
761 
762 				/*
763 				 * we need to redirty the pages if we decide to
764 				 * fallback to uncompressed IO, otherwise we
765 				 * will not submit these pages down to lower
766 				 * layers.
767 				 */
768 				extent_range_redirty_for_io(inode,
769 						async_extent->start,
770 						async_extent->start +
771 						async_extent->ram_size - 1);
772 
773 				goto retry;
774 			}
775 			goto out_free;
776 		}
777 		/*
778 		 * here we're doing allocation and writeback of the
779 		 * compressed pages
780 		 */
781 		btrfs_drop_extent_cache(inode, async_extent->start,
782 					async_extent->start +
783 					async_extent->ram_size - 1, 0);
784 
785 		em = alloc_extent_map();
786 		if (!em) {
787 			ret = -ENOMEM;
788 			goto out_free_reserve;
789 		}
790 		em->start = async_extent->start;
791 		em->len = async_extent->ram_size;
792 		em->orig_start = em->start;
793 		em->mod_start = em->start;
794 		em->mod_len = em->len;
795 
796 		em->block_start = ins.objectid;
797 		em->block_len = ins.offset;
798 		em->orig_block_len = ins.offset;
799 		em->ram_bytes = async_extent->ram_size;
800 		em->bdev = fs_info->fs_devices->latest_bdev;
801 		em->compress_type = async_extent->compress_type;
802 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
803 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
804 		em->generation = -1;
805 
806 		while (1) {
807 			write_lock(&em_tree->lock);
808 			ret = add_extent_mapping(em_tree, em, 1);
809 			write_unlock(&em_tree->lock);
810 			if (ret != -EEXIST) {
811 				free_extent_map(em);
812 				break;
813 			}
814 			btrfs_drop_extent_cache(inode, async_extent->start,
815 						async_extent->start +
816 						async_extent->ram_size - 1, 0);
817 		}
818 
819 		if (ret)
820 			goto out_free_reserve;
821 
822 		ret = btrfs_add_ordered_extent_compress(inode,
823 						async_extent->start,
824 						ins.objectid,
825 						async_extent->ram_size,
826 						ins.offset,
827 						BTRFS_ORDERED_COMPRESSED,
828 						async_extent->compress_type);
829 		if (ret) {
830 			btrfs_drop_extent_cache(inode, async_extent->start,
831 						async_extent->start +
832 						async_extent->ram_size - 1, 0);
833 			goto out_free_reserve;
834 		}
835 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
836 
837 		/*
838 		 * clear dirty, set writeback and unlock the pages.
839 		 */
840 		extent_clear_unlock_delalloc(inode, async_extent->start,
841 				async_extent->start +
842 				async_extent->ram_size - 1,
843 				async_extent->start +
844 				async_extent->ram_size - 1,
845 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
846 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
847 				PAGE_SET_WRITEBACK);
848 		ret = btrfs_submit_compressed_write(inode,
849 				    async_extent->start,
850 				    async_extent->ram_size,
851 				    ins.objectid,
852 				    ins.offset, async_extent->pages,
853 				    async_extent->nr_pages);
854 		if (ret) {
855 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
856 			struct page *p = async_extent->pages[0];
857 			const u64 start = async_extent->start;
858 			const u64 end = start + async_extent->ram_size - 1;
859 
860 			p->mapping = inode->i_mapping;
861 			tree->ops->writepage_end_io_hook(p, start, end,
862 							 NULL, 0);
863 			p->mapping = NULL;
864 			extent_clear_unlock_delalloc(inode, start, end, end,
865 						     NULL, 0,
866 						     PAGE_END_WRITEBACK |
867 						     PAGE_SET_ERROR);
868 			free_async_extent_pages(async_extent);
869 		}
870 		alloc_hint = ins.objectid + ins.offset;
871 		kfree(async_extent);
872 		cond_resched();
873 	}
874 	return;
875 out_free_reserve:
876 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
877 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
878 out_free:
879 	extent_clear_unlock_delalloc(inode, async_extent->start,
880 				     async_extent->start +
881 				     async_extent->ram_size - 1,
882 				     async_extent->start +
883 				     async_extent->ram_size - 1,
884 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
885 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
886 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
887 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
888 				     PAGE_SET_ERROR);
889 	free_async_extent_pages(async_extent);
890 	kfree(async_extent);
891 	goto again;
892 }
893 
894 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 				      u64 num_bytes)
896 {
897 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 	struct extent_map *em;
899 	u64 alloc_hint = 0;
900 
901 	read_lock(&em_tree->lock);
902 	em = search_extent_mapping(em_tree, start, num_bytes);
903 	if (em) {
904 		/*
905 		 * if block start isn't an actual block number then find the
906 		 * first block in this inode and use that as a hint.  If that
907 		 * block is also bogus then just don't worry about it.
908 		 */
909 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
910 			free_extent_map(em);
911 			em = search_extent_mapping(em_tree, 0, 0);
912 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
913 				alloc_hint = em->block_start;
914 			if (em)
915 				free_extent_map(em);
916 		} else {
917 			alloc_hint = em->block_start;
918 			free_extent_map(em);
919 		}
920 	}
921 	read_unlock(&em_tree->lock);
922 
923 	return alloc_hint;
924 }
925 
926 /*
927  * when extent_io.c finds a delayed allocation range in the file,
928  * the call backs end up in this code.  The basic idea is to
929  * allocate extents on disk for the range, and create ordered data structs
930  * in ram to track those extents.
931  *
932  * locked_page is the page that writepage had locked already.  We use
933  * it to make sure we don't do extra locks or unlocks.
934  *
935  * *page_started is set to one if we unlock locked_page and do everything
936  * required to start IO on it.  It may be clean and already done with
937  * IO when we return.
938  */
939 static noinline int cow_file_range(struct inode *inode,
940 				   struct page *locked_page,
941 				   u64 start, u64 end, u64 delalloc_end,
942 				   int *page_started, unsigned long *nr_written,
943 				   int unlock, struct btrfs_dedupe_hash *hash)
944 {
945 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
946 	struct btrfs_root *root = BTRFS_I(inode)->root;
947 	u64 alloc_hint = 0;
948 	u64 num_bytes;
949 	unsigned long ram_size;
950 	u64 disk_num_bytes;
951 	u64 cur_alloc_size;
952 	u64 blocksize = fs_info->sectorsize;
953 	struct btrfs_key ins;
954 	struct extent_map *em;
955 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
956 	int ret = 0;
957 
958 	if (btrfs_is_free_space_inode(inode)) {
959 		WARN_ON_ONCE(1);
960 		ret = -EINVAL;
961 		goto out_unlock;
962 	}
963 
964 	num_bytes = ALIGN(end - start + 1, blocksize);
965 	num_bytes = max(blocksize,  num_bytes);
966 	disk_num_bytes = num_bytes;
967 
968 	/* if this is a small write inside eof, kick off defrag */
969 	if (num_bytes < SZ_64K &&
970 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
971 		btrfs_add_inode_defrag(NULL, inode);
972 
973 	if (start == 0) {
974 		/* lets try to make an inline extent */
975 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
976 					    NULL);
977 		if (ret == 0) {
978 			extent_clear_unlock_delalloc(inode, start, end,
979 				     delalloc_end, NULL,
980 				     EXTENT_LOCKED | EXTENT_DELALLOC |
981 				     EXTENT_DEFRAG, PAGE_UNLOCK |
982 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
983 				     PAGE_END_WRITEBACK);
984 			btrfs_free_reserved_data_space_noquota(inode, start,
985 						end - start + 1);
986 			*nr_written = *nr_written +
987 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
988 			*page_started = 1;
989 			goto out;
990 		} else if (ret < 0) {
991 			goto out_unlock;
992 		}
993 	}
994 
995 	BUG_ON(disk_num_bytes >
996 	       btrfs_super_total_bytes(fs_info->super_copy));
997 
998 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
999 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1000 
1001 	while (disk_num_bytes > 0) {
1002 		unsigned long op;
1003 
1004 		cur_alloc_size = disk_num_bytes;
1005 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1006 					   fs_info->sectorsize, 0, alloc_hint,
1007 					   &ins, 1, 1);
1008 		if (ret < 0)
1009 			goto out_unlock;
1010 
1011 		em = alloc_extent_map();
1012 		if (!em) {
1013 			ret = -ENOMEM;
1014 			goto out_reserve;
1015 		}
1016 		em->start = start;
1017 		em->orig_start = em->start;
1018 		ram_size = ins.offset;
1019 		em->len = ins.offset;
1020 		em->mod_start = em->start;
1021 		em->mod_len = em->len;
1022 
1023 		em->block_start = ins.objectid;
1024 		em->block_len = ins.offset;
1025 		em->orig_block_len = ins.offset;
1026 		em->ram_bytes = ram_size;
1027 		em->bdev = fs_info->fs_devices->latest_bdev;
1028 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1029 		em->generation = -1;
1030 
1031 		while (1) {
1032 			write_lock(&em_tree->lock);
1033 			ret = add_extent_mapping(em_tree, em, 1);
1034 			write_unlock(&em_tree->lock);
1035 			if (ret != -EEXIST) {
1036 				free_extent_map(em);
1037 				break;
1038 			}
1039 			btrfs_drop_extent_cache(inode, start,
1040 						start + ram_size - 1, 0);
1041 		}
1042 		if (ret)
1043 			goto out_reserve;
1044 
1045 		cur_alloc_size = ins.offset;
1046 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1047 					       ram_size, cur_alloc_size, 0);
1048 		if (ret)
1049 			goto out_drop_extent_cache;
1050 
1051 		if (root->root_key.objectid ==
1052 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1053 			ret = btrfs_reloc_clone_csums(inode, start,
1054 						      cur_alloc_size);
1055 			if (ret)
1056 				goto out_drop_extent_cache;
1057 		}
1058 
1059 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1060 
1061 		if (disk_num_bytes < cur_alloc_size)
1062 			break;
1063 
1064 		/* we're not doing compressed IO, don't unlock the first
1065 		 * page (which the caller expects to stay locked), don't
1066 		 * clear any dirty bits and don't set any writeback bits
1067 		 *
1068 		 * Do set the Private2 bit so we know this page was properly
1069 		 * setup for writepage
1070 		 */
1071 		op = unlock ? PAGE_UNLOCK : 0;
1072 		op |= PAGE_SET_PRIVATE2;
1073 
1074 		extent_clear_unlock_delalloc(inode, start,
1075 					     start + ram_size - 1,
1076 					     delalloc_end, locked_page,
1077 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1078 					     op);
1079 		disk_num_bytes -= cur_alloc_size;
1080 		num_bytes -= cur_alloc_size;
1081 		alloc_hint = ins.objectid + ins.offset;
1082 		start += cur_alloc_size;
1083 	}
1084 out:
1085 	return ret;
1086 
1087 out_drop_extent_cache:
1088 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1089 out_reserve:
1090 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1091 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1092 out_unlock:
1093 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1094 				     locked_page,
1095 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1096 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1097 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1098 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1099 	goto out;
1100 }
1101 
1102 /*
1103  * work queue call back to started compression on a file and pages
1104  */
1105 static noinline void async_cow_start(struct btrfs_work *work)
1106 {
1107 	struct async_cow *async_cow;
1108 	int num_added = 0;
1109 	async_cow = container_of(work, struct async_cow, work);
1110 
1111 	compress_file_range(async_cow->inode, async_cow->locked_page,
1112 			    async_cow->start, async_cow->end, async_cow,
1113 			    &num_added);
1114 	if (num_added == 0) {
1115 		btrfs_add_delayed_iput(async_cow->inode);
1116 		async_cow->inode = NULL;
1117 	}
1118 }
1119 
1120 /*
1121  * work queue call back to submit previously compressed pages
1122  */
1123 static noinline void async_cow_submit(struct btrfs_work *work)
1124 {
1125 	struct btrfs_fs_info *fs_info;
1126 	struct async_cow *async_cow;
1127 	struct btrfs_root *root;
1128 	unsigned long nr_pages;
1129 
1130 	async_cow = container_of(work, struct async_cow, work);
1131 
1132 	root = async_cow->root;
1133 	fs_info = root->fs_info;
1134 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1135 		PAGE_SHIFT;
1136 
1137 	/*
1138 	 * atomic_sub_return implies a barrier for waitqueue_active
1139 	 */
1140 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1141 	    5 * SZ_1M &&
1142 	    waitqueue_active(&fs_info->async_submit_wait))
1143 		wake_up(&fs_info->async_submit_wait);
1144 
1145 	if (async_cow->inode)
1146 		submit_compressed_extents(async_cow->inode, async_cow);
1147 }
1148 
1149 static noinline void async_cow_free(struct btrfs_work *work)
1150 {
1151 	struct async_cow *async_cow;
1152 	async_cow = container_of(work, struct async_cow, work);
1153 	if (async_cow->inode)
1154 		btrfs_add_delayed_iput(async_cow->inode);
1155 	kfree(async_cow);
1156 }
1157 
1158 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1159 				u64 start, u64 end, int *page_started,
1160 				unsigned long *nr_written)
1161 {
1162 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1163 	struct async_cow *async_cow;
1164 	struct btrfs_root *root = BTRFS_I(inode)->root;
1165 	unsigned long nr_pages;
1166 	u64 cur_end;
1167 	int limit = 10 * SZ_1M;
1168 
1169 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1170 			 1, 0, NULL, GFP_NOFS);
1171 	while (start < end) {
1172 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1173 		BUG_ON(!async_cow); /* -ENOMEM */
1174 		async_cow->inode = igrab(inode);
1175 		async_cow->root = root;
1176 		async_cow->locked_page = locked_page;
1177 		async_cow->start = start;
1178 
1179 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1180 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1181 			cur_end = end;
1182 		else
1183 			cur_end = min(end, start + SZ_512K - 1);
1184 
1185 		async_cow->end = cur_end;
1186 		INIT_LIST_HEAD(&async_cow->extents);
1187 
1188 		btrfs_init_work(&async_cow->work,
1189 				btrfs_delalloc_helper,
1190 				async_cow_start, async_cow_submit,
1191 				async_cow_free);
1192 
1193 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1194 			PAGE_SHIFT;
1195 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1196 
1197 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1198 
1199 		if (atomic_read(&fs_info->async_delalloc_pages) > limit) {
1200 			wait_event(fs_info->async_submit_wait,
1201 				   (atomic_read(&fs_info->async_delalloc_pages) <
1202 				    limit));
1203 		}
1204 
1205 		while (atomic_read(&fs_info->async_submit_draining) &&
1206 		       atomic_read(&fs_info->async_delalloc_pages)) {
1207 			wait_event(fs_info->async_submit_wait,
1208 				   (atomic_read(&fs_info->async_delalloc_pages) ==
1209 				    0));
1210 		}
1211 
1212 		*nr_written += nr_pages;
1213 		start = cur_end + 1;
1214 	}
1215 	*page_started = 1;
1216 	return 0;
1217 }
1218 
1219 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1220 					u64 bytenr, u64 num_bytes)
1221 {
1222 	int ret;
1223 	struct btrfs_ordered_sum *sums;
1224 	LIST_HEAD(list);
1225 
1226 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1227 				       bytenr + num_bytes - 1, &list, 0);
1228 	if (ret == 0 && list_empty(&list))
1229 		return 0;
1230 
1231 	while (!list_empty(&list)) {
1232 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1233 		list_del(&sums->list);
1234 		kfree(sums);
1235 	}
1236 	return 1;
1237 }
1238 
1239 /*
1240  * when nowcow writeback call back.  This checks for snapshots or COW copies
1241  * of the extents that exist in the file, and COWs the file as required.
1242  *
1243  * If no cow copies or snapshots exist, we write directly to the existing
1244  * blocks on disk
1245  */
1246 static noinline int run_delalloc_nocow(struct inode *inode,
1247 				       struct page *locked_page,
1248 			      u64 start, u64 end, int *page_started, int force,
1249 			      unsigned long *nr_written)
1250 {
1251 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1252 	struct btrfs_root *root = BTRFS_I(inode)->root;
1253 	struct btrfs_trans_handle *trans;
1254 	struct extent_buffer *leaf;
1255 	struct btrfs_path *path;
1256 	struct btrfs_file_extent_item *fi;
1257 	struct btrfs_key found_key;
1258 	u64 cow_start;
1259 	u64 cur_offset;
1260 	u64 extent_end;
1261 	u64 extent_offset;
1262 	u64 disk_bytenr;
1263 	u64 num_bytes;
1264 	u64 disk_num_bytes;
1265 	u64 ram_bytes;
1266 	int extent_type;
1267 	int ret, err;
1268 	int type;
1269 	int nocow;
1270 	int check_prev = 1;
1271 	bool nolock;
1272 	u64 ino = btrfs_ino(inode);
1273 
1274 	path = btrfs_alloc_path();
1275 	if (!path) {
1276 		extent_clear_unlock_delalloc(inode, start, end, end,
1277 					     locked_page,
1278 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1279 					     EXTENT_DO_ACCOUNTING |
1280 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1281 					     PAGE_CLEAR_DIRTY |
1282 					     PAGE_SET_WRITEBACK |
1283 					     PAGE_END_WRITEBACK);
1284 		return -ENOMEM;
1285 	}
1286 
1287 	nolock = btrfs_is_free_space_inode(inode);
1288 
1289 	if (nolock)
1290 		trans = btrfs_join_transaction_nolock(root);
1291 	else
1292 		trans = btrfs_join_transaction(root);
1293 
1294 	if (IS_ERR(trans)) {
1295 		extent_clear_unlock_delalloc(inode, start, end, end,
1296 					     locked_page,
1297 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1298 					     EXTENT_DO_ACCOUNTING |
1299 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1300 					     PAGE_CLEAR_DIRTY |
1301 					     PAGE_SET_WRITEBACK |
1302 					     PAGE_END_WRITEBACK);
1303 		btrfs_free_path(path);
1304 		return PTR_ERR(trans);
1305 	}
1306 
1307 	trans->block_rsv = &fs_info->delalloc_block_rsv;
1308 
1309 	cow_start = (u64)-1;
1310 	cur_offset = start;
1311 	while (1) {
1312 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1313 					       cur_offset, 0);
1314 		if (ret < 0)
1315 			goto error;
1316 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1317 			leaf = path->nodes[0];
1318 			btrfs_item_key_to_cpu(leaf, &found_key,
1319 					      path->slots[0] - 1);
1320 			if (found_key.objectid == ino &&
1321 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1322 				path->slots[0]--;
1323 		}
1324 		check_prev = 0;
1325 next_slot:
1326 		leaf = path->nodes[0];
1327 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1328 			ret = btrfs_next_leaf(root, path);
1329 			if (ret < 0)
1330 				goto error;
1331 			if (ret > 0)
1332 				break;
1333 			leaf = path->nodes[0];
1334 		}
1335 
1336 		nocow = 0;
1337 		disk_bytenr = 0;
1338 		num_bytes = 0;
1339 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1340 
1341 		if (found_key.objectid > ino)
1342 			break;
1343 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1344 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1345 			path->slots[0]++;
1346 			goto next_slot;
1347 		}
1348 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1349 		    found_key.offset > end)
1350 			break;
1351 
1352 		if (found_key.offset > cur_offset) {
1353 			extent_end = found_key.offset;
1354 			extent_type = 0;
1355 			goto out_check;
1356 		}
1357 
1358 		fi = btrfs_item_ptr(leaf, path->slots[0],
1359 				    struct btrfs_file_extent_item);
1360 		extent_type = btrfs_file_extent_type(leaf, fi);
1361 
1362 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1363 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1364 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1365 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1366 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1367 			extent_end = found_key.offset +
1368 				btrfs_file_extent_num_bytes(leaf, fi);
1369 			disk_num_bytes =
1370 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1371 			if (extent_end <= start) {
1372 				path->slots[0]++;
1373 				goto next_slot;
1374 			}
1375 			if (disk_bytenr == 0)
1376 				goto out_check;
1377 			if (btrfs_file_extent_compression(leaf, fi) ||
1378 			    btrfs_file_extent_encryption(leaf, fi) ||
1379 			    btrfs_file_extent_other_encoding(leaf, fi))
1380 				goto out_check;
1381 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1382 				goto out_check;
1383 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1384 				goto out_check;
1385 			if (btrfs_cross_ref_exist(trans, root, ino,
1386 						  found_key.offset -
1387 						  extent_offset, disk_bytenr))
1388 				goto out_check;
1389 			disk_bytenr += extent_offset;
1390 			disk_bytenr += cur_offset - found_key.offset;
1391 			num_bytes = min(end + 1, extent_end) - cur_offset;
1392 			/*
1393 			 * if there are pending snapshots for this root,
1394 			 * we fall into common COW way.
1395 			 */
1396 			if (!nolock) {
1397 				err = btrfs_start_write_no_snapshoting(root);
1398 				if (!err)
1399 					goto out_check;
1400 			}
1401 			/*
1402 			 * force cow if csum exists in the range.
1403 			 * this ensure that csum for a given extent are
1404 			 * either valid or do not exist.
1405 			 */
1406 			if (csum_exist_in_range(fs_info, disk_bytenr,
1407 						num_bytes))
1408 				goto out_check;
1409 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1410 				goto out_check;
1411 			nocow = 1;
1412 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1413 			extent_end = found_key.offset +
1414 				btrfs_file_extent_inline_len(leaf,
1415 						     path->slots[0], fi);
1416 			extent_end = ALIGN(extent_end,
1417 					   fs_info->sectorsize);
1418 		} else {
1419 			BUG_ON(1);
1420 		}
1421 out_check:
1422 		if (extent_end <= start) {
1423 			path->slots[0]++;
1424 			if (!nolock && nocow)
1425 				btrfs_end_write_no_snapshoting(root);
1426 			if (nocow)
1427 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1428 			goto next_slot;
1429 		}
1430 		if (!nocow) {
1431 			if (cow_start == (u64)-1)
1432 				cow_start = cur_offset;
1433 			cur_offset = extent_end;
1434 			if (cur_offset > end)
1435 				break;
1436 			path->slots[0]++;
1437 			goto next_slot;
1438 		}
1439 
1440 		btrfs_release_path(path);
1441 		if (cow_start != (u64)-1) {
1442 			ret = cow_file_range(inode, locked_page,
1443 					     cow_start, found_key.offset - 1,
1444 					     end, page_started, nr_written, 1,
1445 					     NULL);
1446 			if (ret) {
1447 				if (!nolock && nocow)
1448 					btrfs_end_write_no_snapshoting(root);
1449 				if (nocow)
1450 					btrfs_dec_nocow_writers(fs_info,
1451 								disk_bytenr);
1452 				goto error;
1453 			}
1454 			cow_start = (u64)-1;
1455 		}
1456 
1457 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1458 			struct extent_map *em;
1459 			struct extent_map_tree *em_tree;
1460 			em_tree = &BTRFS_I(inode)->extent_tree;
1461 			em = alloc_extent_map();
1462 			BUG_ON(!em); /* -ENOMEM */
1463 			em->start = cur_offset;
1464 			em->orig_start = found_key.offset - extent_offset;
1465 			em->len = num_bytes;
1466 			em->block_len = num_bytes;
1467 			em->block_start = disk_bytenr;
1468 			em->orig_block_len = disk_num_bytes;
1469 			em->ram_bytes = ram_bytes;
1470 			em->bdev = fs_info->fs_devices->latest_bdev;
1471 			em->mod_start = em->start;
1472 			em->mod_len = em->len;
1473 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1474 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1475 			em->generation = -1;
1476 			while (1) {
1477 				write_lock(&em_tree->lock);
1478 				ret = add_extent_mapping(em_tree, em, 1);
1479 				write_unlock(&em_tree->lock);
1480 				if (ret != -EEXIST) {
1481 					free_extent_map(em);
1482 					break;
1483 				}
1484 				btrfs_drop_extent_cache(inode, em->start,
1485 						em->start + em->len - 1, 0);
1486 			}
1487 			type = BTRFS_ORDERED_PREALLOC;
1488 		} else {
1489 			type = BTRFS_ORDERED_NOCOW;
1490 		}
1491 
1492 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1493 					       num_bytes, num_bytes, type);
1494 		if (nocow)
1495 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1496 		BUG_ON(ret); /* -ENOMEM */
1497 
1498 		if (root->root_key.objectid ==
1499 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1500 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1501 						      num_bytes);
1502 			if (ret) {
1503 				if (!nolock && nocow)
1504 					btrfs_end_write_no_snapshoting(root);
1505 				goto error;
1506 			}
1507 		}
1508 
1509 		extent_clear_unlock_delalloc(inode, cur_offset,
1510 					     cur_offset + num_bytes - 1, end,
1511 					     locked_page, EXTENT_LOCKED |
1512 					     EXTENT_DELALLOC |
1513 					     EXTENT_CLEAR_DATA_RESV,
1514 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1515 
1516 		if (!nolock && nocow)
1517 			btrfs_end_write_no_snapshoting(root);
1518 		cur_offset = extent_end;
1519 		if (cur_offset > end)
1520 			break;
1521 	}
1522 	btrfs_release_path(path);
1523 
1524 	if (cur_offset <= end && cow_start == (u64)-1) {
1525 		cow_start = cur_offset;
1526 		cur_offset = end;
1527 	}
1528 
1529 	if (cow_start != (u64)-1) {
1530 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1531 				     page_started, nr_written, 1, NULL);
1532 		if (ret)
1533 			goto error;
1534 	}
1535 
1536 error:
1537 	err = btrfs_end_transaction(trans);
1538 	if (!ret)
1539 		ret = err;
1540 
1541 	if (ret && cur_offset < end)
1542 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1543 					     locked_page, EXTENT_LOCKED |
1544 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1545 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1546 					     PAGE_CLEAR_DIRTY |
1547 					     PAGE_SET_WRITEBACK |
1548 					     PAGE_END_WRITEBACK);
1549 	btrfs_free_path(path);
1550 	return ret;
1551 }
1552 
1553 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1554 {
1555 
1556 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1557 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1558 		return 0;
1559 
1560 	/*
1561 	 * @defrag_bytes is a hint value, no spinlock held here,
1562 	 * if is not zero, it means the file is defragging.
1563 	 * Force cow if given extent needs to be defragged.
1564 	 */
1565 	if (BTRFS_I(inode)->defrag_bytes &&
1566 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1567 			   EXTENT_DEFRAG, 0, NULL))
1568 		return 1;
1569 
1570 	return 0;
1571 }
1572 
1573 /*
1574  * extent_io.c call back to do delayed allocation processing
1575  */
1576 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1577 			      u64 start, u64 end, int *page_started,
1578 			      unsigned long *nr_written)
1579 {
1580 	int ret;
1581 	int force_cow = need_force_cow(inode, start, end);
1582 
1583 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1584 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1585 					 page_started, 1, nr_written);
1586 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1587 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1588 					 page_started, 0, nr_written);
1589 	} else if (!inode_need_compress(inode)) {
1590 		ret = cow_file_range(inode, locked_page, start, end, end,
1591 				      page_started, nr_written, 1, NULL);
1592 	} else {
1593 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1594 			&BTRFS_I(inode)->runtime_flags);
1595 		ret = cow_file_range_async(inode, locked_page, start, end,
1596 					   page_started, nr_written);
1597 	}
1598 	return ret;
1599 }
1600 
1601 static void btrfs_split_extent_hook(struct inode *inode,
1602 				    struct extent_state *orig, u64 split)
1603 {
1604 	u64 size;
1605 
1606 	/* not delalloc, ignore it */
1607 	if (!(orig->state & EXTENT_DELALLOC))
1608 		return;
1609 
1610 	size = orig->end - orig->start + 1;
1611 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1612 		u64 num_extents;
1613 		u64 new_size;
1614 
1615 		/*
1616 		 * See the explanation in btrfs_merge_extent_hook, the same
1617 		 * applies here, just in reverse.
1618 		 */
1619 		new_size = orig->end - split + 1;
1620 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1621 					BTRFS_MAX_EXTENT_SIZE);
1622 		new_size = split - orig->start;
1623 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1624 					BTRFS_MAX_EXTENT_SIZE);
1625 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1626 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1627 			return;
1628 	}
1629 
1630 	spin_lock(&BTRFS_I(inode)->lock);
1631 	BTRFS_I(inode)->outstanding_extents++;
1632 	spin_unlock(&BTRFS_I(inode)->lock);
1633 }
1634 
1635 /*
1636  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1637  * extents so we can keep track of new extents that are just merged onto old
1638  * extents, such as when we are doing sequential writes, so we can properly
1639  * account for the metadata space we'll need.
1640  */
1641 static void btrfs_merge_extent_hook(struct inode *inode,
1642 				    struct extent_state *new,
1643 				    struct extent_state *other)
1644 {
1645 	u64 new_size, old_size;
1646 	u64 num_extents;
1647 
1648 	/* not delalloc, ignore it */
1649 	if (!(other->state & EXTENT_DELALLOC))
1650 		return;
1651 
1652 	if (new->start > other->start)
1653 		new_size = new->end - other->start + 1;
1654 	else
1655 		new_size = other->end - new->start + 1;
1656 
1657 	/* we're not bigger than the max, unreserve the space and go */
1658 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1659 		spin_lock(&BTRFS_I(inode)->lock);
1660 		BTRFS_I(inode)->outstanding_extents--;
1661 		spin_unlock(&BTRFS_I(inode)->lock);
1662 		return;
1663 	}
1664 
1665 	/*
1666 	 * We have to add up either side to figure out how many extents were
1667 	 * accounted for before we merged into one big extent.  If the number of
1668 	 * extents we accounted for is <= the amount we need for the new range
1669 	 * then we can return, otherwise drop.  Think of it like this
1670 	 *
1671 	 * [ 4k][MAX_SIZE]
1672 	 *
1673 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1674 	 * need 2 outstanding extents, on one side we have 1 and the other side
1675 	 * we have 1 so they are == and we can return.  But in this case
1676 	 *
1677 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1678 	 *
1679 	 * Each range on their own accounts for 2 extents, but merged together
1680 	 * they are only 3 extents worth of accounting, so we need to drop in
1681 	 * this case.
1682 	 */
1683 	old_size = other->end - other->start + 1;
1684 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1685 				BTRFS_MAX_EXTENT_SIZE);
1686 	old_size = new->end - new->start + 1;
1687 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1688 				 BTRFS_MAX_EXTENT_SIZE);
1689 
1690 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1691 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1692 		return;
1693 
1694 	spin_lock(&BTRFS_I(inode)->lock);
1695 	BTRFS_I(inode)->outstanding_extents--;
1696 	spin_unlock(&BTRFS_I(inode)->lock);
1697 }
1698 
1699 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1700 				      struct inode *inode)
1701 {
1702 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1703 
1704 	spin_lock(&root->delalloc_lock);
1705 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1706 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1707 			      &root->delalloc_inodes);
1708 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1709 			&BTRFS_I(inode)->runtime_flags);
1710 		root->nr_delalloc_inodes++;
1711 		if (root->nr_delalloc_inodes == 1) {
1712 			spin_lock(&fs_info->delalloc_root_lock);
1713 			BUG_ON(!list_empty(&root->delalloc_root));
1714 			list_add_tail(&root->delalloc_root,
1715 				      &fs_info->delalloc_roots);
1716 			spin_unlock(&fs_info->delalloc_root_lock);
1717 		}
1718 	}
1719 	spin_unlock(&root->delalloc_lock);
1720 }
1721 
1722 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1723 				     struct inode *inode)
1724 {
1725 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1726 
1727 	spin_lock(&root->delalloc_lock);
1728 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1729 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1730 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1731 			  &BTRFS_I(inode)->runtime_flags);
1732 		root->nr_delalloc_inodes--;
1733 		if (!root->nr_delalloc_inodes) {
1734 			spin_lock(&fs_info->delalloc_root_lock);
1735 			BUG_ON(list_empty(&root->delalloc_root));
1736 			list_del_init(&root->delalloc_root);
1737 			spin_unlock(&fs_info->delalloc_root_lock);
1738 		}
1739 	}
1740 	spin_unlock(&root->delalloc_lock);
1741 }
1742 
1743 /*
1744  * extent_io.c set_bit_hook, used to track delayed allocation
1745  * bytes in this file, and to maintain the list of inodes that
1746  * have pending delalloc work to be done.
1747  */
1748 static void btrfs_set_bit_hook(struct inode *inode,
1749 			       struct extent_state *state, unsigned *bits)
1750 {
1751 
1752 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1753 
1754 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1755 		WARN_ON(1);
1756 	/*
1757 	 * set_bit and clear bit hooks normally require _irqsave/restore
1758 	 * but in this case, we are only testing for the DELALLOC
1759 	 * bit, which is only set or cleared with irqs on
1760 	 */
1761 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1762 		struct btrfs_root *root = BTRFS_I(inode)->root;
1763 		u64 len = state->end + 1 - state->start;
1764 		bool do_list = !btrfs_is_free_space_inode(inode);
1765 
1766 		if (*bits & EXTENT_FIRST_DELALLOC) {
1767 			*bits &= ~EXTENT_FIRST_DELALLOC;
1768 		} else {
1769 			spin_lock(&BTRFS_I(inode)->lock);
1770 			BTRFS_I(inode)->outstanding_extents++;
1771 			spin_unlock(&BTRFS_I(inode)->lock);
1772 		}
1773 
1774 		/* For sanity tests */
1775 		if (btrfs_is_testing(fs_info))
1776 			return;
1777 
1778 		__percpu_counter_add(&fs_info->delalloc_bytes, len,
1779 				     fs_info->delalloc_batch);
1780 		spin_lock(&BTRFS_I(inode)->lock);
1781 		BTRFS_I(inode)->delalloc_bytes += len;
1782 		if (*bits & EXTENT_DEFRAG)
1783 			BTRFS_I(inode)->defrag_bytes += len;
1784 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1785 					 &BTRFS_I(inode)->runtime_flags))
1786 			btrfs_add_delalloc_inodes(root, inode);
1787 		spin_unlock(&BTRFS_I(inode)->lock);
1788 	}
1789 }
1790 
1791 /*
1792  * extent_io.c clear_bit_hook, see set_bit_hook for why
1793  */
1794 static void btrfs_clear_bit_hook(struct inode *inode,
1795 				 struct extent_state *state,
1796 				 unsigned *bits)
1797 {
1798 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1799 	u64 len = state->end + 1 - state->start;
1800 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1801 				    BTRFS_MAX_EXTENT_SIZE);
1802 
1803 	spin_lock(&BTRFS_I(inode)->lock);
1804 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1805 		BTRFS_I(inode)->defrag_bytes -= len;
1806 	spin_unlock(&BTRFS_I(inode)->lock);
1807 
1808 	/*
1809 	 * set_bit and clear bit hooks normally require _irqsave/restore
1810 	 * but in this case, we are only testing for the DELALLOC
1811 	 * bit, which is only set or cleared with irqs on
1812 	 */
1813 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1814 		struct btrfs_root *root = BTRFS_I(inode)->root;
1815 		bool do_list = !btrfs_is_free_space_inode(inode);
1816 
1817 		if (*bits & EXTENT_FIRST_DELALLOC) {
1818 			*bits &= ~EXTENT_FIRST_DELALLOC;
1819 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1820 			spin_lock(&BTRFS_I(inode)->lock);
1821 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1822 			spin_unlock(&BTRFS_I(inode)->lock);
1823 		}
1824 
1825 		/*
1826 		 * We don't reserve metadata space for space cache inodes so we
1827 		 * don't need to call dellalloc_release_metadata if there is an
1828 		 * error.
1829 		 */
1830 		if (*bits & EXTENT_DO_ACCOUNTING &&
1831 		    root != fs_info->tree_root)
1832 			btrfs_delalloc_release_metadata(inode, len);
1833 
1834 		/* For sanity tests. */
1835 		if (btrfs_is_testing(fs_info))
1836 			return;
1837 
1838 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1839 		    && do_list && !(state->state & EXTENT_NORESERVE)
1840 		    && (*bits & (EXTENT_DO_ACCOUNTING |
1841 		    EXTENT_CLEAR_DATA_RESV)))
1842 			btrfs_free_reserved_data_space_noquota(inode,
1843 					state->start, len);
1844 
1845 		__percpu_counter_add(&fs_info->delalloc_bytes, -len,
1846 				     fs_info->delalloc_batch);
1847 		spin_lock(&BTRFS_I(inode)->lock);
1848 		BTRFS_I(inode)->delalloc_bytes -= len;
1849 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1850 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1851 			     &BTRFS_I(inode)->runtime_flags))
1852 			btrfs_del_delalloc_inode(root, inode);
1853 		spin_unlock(&BTRFS_I(inode)->lock);
1854 	}
1855 }
1856 
1857 /*
1858  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1859  * we don't create bios that span stripes or chunks
1860  *
1861  * return 1 if page cannot be merged to bio
1862  * return 0 if page can be merged to bio
1863  * return error otherwise
1864  */
1865 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1866 			 size_t size, struct bio *bio,
1867 			 unsigned long bio_flags)
1868 {
1869 	struct inode *inode = page->mapping->host;
1870 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1871 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1872 	u64 length = 0;
1873 	u64 map_length;
1874 	int ret;
1875 
1876 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1877 		return 0;
1878 
1879 	length = bio->bi_iter.bi_size;
1880 	map_length = length;
1881 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1882 			      NULL, 0);
1883 	if (ret < 0)
1884 		return ret;
1885 	if (map_length < length + size)
1886 		return 1;
1887 	return 0;
1888 }
1889 
1890 /*
1891  * in order to insert checksums into the metadata in large chunks,
1892  * we wait until bio submission time.   All the pages in the bio are
1893  * checksummed and sums are attached onto the ordered extent record.
1894  *
1895  * At IO completion time the cums attached on the ordered extent record
1896  * are inserted into the btree
1897  */
1898 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1899 				    int mirror_num, unsigned long bio_flags,
1900 				    u64 bio_offset)
1901 {
1902 	int ret = 0;
1903 
1904 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1905 	BUG_ON(ret); /* -ENOMEM */
1906 	return 0;
1907 }
1908 
1909 /*
1910  * in order to insert checksums into the metadata in large chunks,
1911  * we wait until bio submission time.   All the pages in the bio are
1912  * checksummed and sums are attached onto the ordered extent record.
1913  *
1914  * At IO completion time the cums attached on the ordered extent record
1915  * are inserted into the btree
1916  */
1917 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
1918 			  int mirror_num, unsigned long bio_flags,
1919 			  u64 bio_offset)
1920 {
1921 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1922 	int ret;
1923 
1924 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1925 	if (ret) {
1926 		bio->bi_error = ret;
1927 		bio_endio(bio);
1928 	}
1929 	return ret;
1930 }
1931 
1932 /*
1933  * extent_io.c submission hook. This does the right thing for csum calculation
1934  * on write, or reading the csums from the tree before a read
1935  */
1936 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1937 			  int mirror_num, unsigned long bio_flags,
1938 			  u64 bio_offset)
1939 {
1940 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1941 	struct btrfs_root *root = BTRFS_I(inode)->root;
1942 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1943 	int ret = 0;
1944 	int skip_sum;
1945 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1946 
1947 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1948 
1949 	if (btrfs_is_free_space_inode(inode))
1950 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1951 
1952 	if (bio_op(bio) != REQ_OP_WRITE) {
1953 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1954 		if (ret)
1955 			goto out;
1956 
1957 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1958 			ret = btrfs_submit_compressed_read(inode, bio,
1959 							   mirror_num,
1960 							   bio_flags);
1961 			goto out;
1962 		} else if (!skip_sum) {
1963 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1964 			if (ret)
1965 				goto out;
1966 		}
1967 		goto mapit;
1968 	} else if (async && !skip_sum) {
1969 		/* csum items have already been cloned */
1970 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1971 			goto mapit;
1972 		/* we're doing a write, do the async checksumming */
1973 		ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num,
1974 					  bio_flags, bio_offset,
1975 					  __btrfs_submit_bio_start,
1976 					  __btrfs_submit_bio_done);
1977 		goto out;
1978 	} else if (!skip_sum) {
1979 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1980 		if (ret)
1981 			goto out;
1982 	}
1983 
1984 mapit:
1985 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1986 
1987 out:
1988 	if (ret < 0) {
1989 		bio->bi_error = ret;
1990 		bio_endio(bio);
1991 	}
1992 	return ret;
1993 }
1994 
1995 /*
1996  * given a list of ordered sums record them in the inode.  This happens
1997  * at IO completion time based on sums calculated at bio submission time.
1998  */
1999 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2000 			     struct inode *inode, u64 file_offset,
2001 			     struct list_head *list)
2002 {
2003 	struct btrfs_ordered_sum *sum;
2004 
2005 	list_for_each_entry(sum, list, list) {
2006 		trans->adding_csums = 1;
2007 		btrfs_csum_file_blocks(trans,
2008 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2009 		trans->adding_csums = 0;
2010 	}
2011 	return 0;
2012 }
2013 
2014 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2015 			      struct extent_state **cached_state, int dedupe)
2016 {
2017 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2018 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2019 				   cached_state);
2020 }
2021 
2022 /* see btrfs_writepage_start_hook for details on why this is required */
2023 struct btrfs_writepage_fixup {
2024 	struct page *page;
2025 	struct btrfs_work work;
2026 };
2027 
2028 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2029 {
2030 	struct btrfs_writepage_fixup *fixup;
2031 	struct btrfs_ordered_extent *ordered;
2032 	struct extent_state *cached_state = NULL;
2033 	struct page *page;
2034 	struct inode *inode;
2035 	u64 page_start;
2036 	u64 page_end;
2037 	int ret;
2038 
2039 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2040 	page = fixup->page;
2041 again:
2042 	lock_page(page);
2043 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2044 		ClearPageChecked(page);
2045 		goto out_page;
2046 	}
2047 
2048 	inode = page->mapping->host;
2049 	page_start = page_offset(page);
2050 	page_end = page_offset(page) + PAGE_SIZE - 1;
2051 
2052 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2053 			 &cached_state);
2054 
2055 	/* already ordered? We're done */
2056 	if (PagePrivate2(page))
2057 		goto out;
2058 
2059 	ordered = btrfs_lookup_ordered_range(inode, page_start,
2060 					PAGE_SIZE);
2061 	if (ordered) {
2062 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2063 				     page_end, &cached_state, GFP_NOFS);
2064 		unlock_page(page);
2065 		btrfs_start_ordered_extent(inode, ordered, 1);
2066 		btrfs_put_ordered_extent(ordered);
2067 		goto again;
2068 	}
2069 
2070 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2071 					   PAGE_SIZE);
2072 	if (ret) {
2073 		mapping_set_error(page->mapping, ret);
2074 		end_extent_writepage(page, ret, page_start, page_end);
2075 		ClearPageChecked(page);
2076 		goto out;
2077 	 }
2078 
2079 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2080 				  0);
2081 	ClearPageChecked(page);
2082 	set_page_dirty(page);
2083 out:
2084 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2085 			     &cached_state, GFP_NOFS);
2086 out_page:
2087 	unlock_page(page);
2088 	put_page(page);
2089 	kfree(fixup);
2090 }
2091 
2092 /*
2093  * There are a few paths in the higher layers of the kernel that directly
2094  * set the page dirty bit without asking the filesystem if it is a
2095  * good idea.  This causes problems because we want to make sure COW
2096  * properly happens and the data=ordered rules are followed.
2097  *
2098  * In our case any range that doesn't have the ORDERED bit set
2099  * hasn't been properly setup for IO.  We kick off an async process
2100  * to fix it up.  The async helper will wait for ordered extents, set
2101  * the delalloc bit and make it safe to write the page.
2102  */
2103 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2104 {
2105 	struct inode *inode = page->mapping->host;
2106 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2107 	struct btrfs_writepage_fixup *fixup;
2108 
2109 	/* this page is properly in the ordered list */
2110 	if (TestClearPagePrivate2(page))
2111 		return 0;
2112 
2113 	if (PageChecked(page))
2114 		return -EAGAIN;
2115 
2116 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2117 	if (!fixup)
2118 		return -EAGAIN;
2119 
2120 	SetPageChecked(page);
2121 	get_page(page);
2122 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2123 			btrfs_writepage_fixup_worker, NULL, NULL);
2124 	fixup->page = page;
2125 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2126 	return -EBUSY;
2127 }
2128 
2129 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2130 				       struct inode *inode, u64 file_pos,
2131 				       u64 disk_bytenr, u64 disk_num_bytes,
2132 				       u64 num_bytes, u64 ram_bytes,
2133 				       u8 compression, u8 encryption,
2134 				       u16 other_encoding, int extent_type)
2135 {
2136 	struct btrfs_root *root = BTRFS_I(inode)->root;
2137 	struct btrfs_file_extent_item *fi;
2138 	struct btrfs_path *path;
2139 	struct extent_buffer *leaf;
2140 	struct btrfs_key ins;
2141 	int extent_inserted = 0;
2142 	int ret;
2143 
2144 	path = btrfs_alloc_path();
2145 	if (!path)
2146 		return -ENOMEM;
2147 
2148 	/*
2149 	 * we may be replacing one extent in the tree with another.
2150 	 * The new extent is pinned in the extent map, and we don't want
2151 	 * to drop it from the cache until it is completely in the btree.
2152 	 *
2153 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2154 	 * the caller is expected to unpin it and allow it to be merged
2155 	 * with the others.
2156 	 */
2157 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2158 				   file_pos + num_bytes, NULL, 0,
2159 				   1, sizeof(*fi), &extent_inserted);
2160 	if (ret)
2161 		goto out;
2162 
2163 	if (!extent_inserted) {
2164 		ins.objectid = btrfs_ino(inode);
2165 		ins.offset = file_pos;
2166 		ins.type = BTRFS_EXTENT_DATA_KEY;
2167 
2168 		path->leave_spinning = 1;
2169 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2170 					      sizeof(*fi));
2171 		if (ret)
2172 			goto out;
2173 	}
2174 	leaf = path->nodes[0];
2175 	fi = btrfs_item_ptr(leaf, path->slots[0],
2176 			    struct btrfs_file_extent_item);
2177 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2178 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2179 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2180 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2181 	btrfs_set_file_extent_offset(leaf, fi, 0);
2182 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2183 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2184 	btrfs_set_file_extent_compression(leaf, fi, compression);
2185 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2186 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2187 
2188 	btrfs_mark_buffer_dirty(leaf);
2189 	btrfs_release_path(path);
2190 
2191 	inode_add_bytes(inode, num_bytes);
2192 
2193 	ins.objectid = disk_bytenr;
2194 	ins.offset = disk_num_bytes;
2195 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2196 	ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2197 					       btrfs_ino(inode), file_pos,
2198 					       ram_bytes, &ins);
2199 	/*
2200 	 * Release the reserved range from inode dirty range map, as it is
2201 	 * already moved into delayed_ref_head
2202 	 */
2203 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2204 out:
2205 	btrfs_free_path(path);
2206 
2207 	return ret;
2208 }
2209 
2210 /* snapshot-aware defrag */
2211 struct sa_defrag_extent_backref {
2212 	struct rb_node node;
2213 	struct old_sa_defrag_extent *old;
2214 	u64 root_id;
2215 	u64 inum;
2216 	u64 file_pos;
2217 	u64 extent_offset;
2218 	u64 num_bytes;
2219 	u64 generation;
2220 };
2221 
2222 struct old_sa_defrag_extent {
2223 	struct list_head list;
2224 	struct new_sa_defrag_extent *new;
2225 
2226 	u64 extent_offset;
2227 	u64 bytenr;
2228 	u64 offset;
2229 	u64 len;
2230 	int count;
2231 };
2232 
2233 struct new_sa_defrag_extent {
2234 	struct rb_root root;
2235 	struct list_head head;
2236 	struct btrfs_path *path;
2237 	struct inode *inode;
2238 	u64 file_pos;
2239 	u64 len;
2240 	u64 bytenr;
2241 	u64 disk_len;
2242 	u8 compress_type;
2243 };
2244 
2245 static int backref_comp(struct sa_defrag_extent_backref *b1,
2246 			struct sa_defrag_extent_backref *b2)
2247 {
2248 	if (b1->root_id < b2->root_id)
2249 		return -1;
2250 	else if (b1->root_id > b2->root_id)
2251 		return 1;
2252 
2253 	if (b1->inum < b2->inum)
2254 		return -1;
2255 	else if (b1->inum > b2->inum)
2256 		return 1;
2257 
2258 	if (b1->file_pos < b2->file_pos)
2259 		return -1;
2260 	else if (b1->file_pos > b2->file_pos)
2261 		return 1;
2262 
2263 	/*
2264 	 * [------------------------------] ===> (a range of space)
2265 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2266 	 * |<---------------------------->| ===> (fs/file tree B)
2267 	 *
2268 	 * A range of space can refer to two file extents in one tree while
2269 	 * refer to only one file extent in another tree.
2270 	 *
2271 	 * So we may process a disk offset more than one time(two extents in A)
2272 	 * and locate at the same extent(one extent in B), then insert two same
2273 	 * backrefs(both refer to the extent in B).
2274 	 */
2275 	return 0;
2276 }
2277 
2278 static void backref_insert(struct rb_root *root,
2279 			   struct sa_defrag_extent_backref *backref)
2280 {
2281 	struct rb_node **p = &root->rb_node;
2282 	struct rb_node *parent = NULL;
2283 	struct sa_defrag_extent_backref *entry;
2284 	int ret;
2285 
2286 	while (*p) {
2287 		parent = *p;
2288 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2289 
2290 		ret = backref_comp(backref, entry);
2291 		if (ret < 0)
2292 			p = &(*p)->rb_left;
2293 		else
2294 			p = &(*p)->rb_right;
2295 	}
2296 
2297 	rb_link_node(&backref->node, parent, p);
2298 	rb_insert_color(&backref->node, root);
2299 }
2300 
2301 /*
2302  * Note the backref might has changed, and in this case we just return 0.
2303  */
2304 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2305 				       void *ctx)
2306 {
2307 	struct btrfs_file_extent_item *extent;
2308 	struct old_sa_defrag_extent *old = ctx;
2309 	struct new_sa_defrag_extent *new = old->new;
2310 	struct btrfs_path *path = new->path;
2311 	struct btrfs_key key;
2312 	struct btrfs_root *root;
2313 	struct sa_defrag_extent_backref *backref;
2314 	struct extent_buffer *leaf;
2315 	struct inode *inode = new->inode;
2316 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2317 	int slot;
2318 	int ret;
2319 	u64 extent_offset;
2320 	u64 num_bytes;
2321 
2322 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2323 	    inum == btrfs_ino(inode))
2324 		return 0;
2325 
2326 	key.objectid = root_id;
2327 	key.type = BTRFS_ROOT_ITEM_KEY;
2328 	key.offset = (u64)-1;
2329 
2330 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2331 	if (IS_ERR(root)) {
2332 		if (PTR_ERR(root) == -ENOENT)
2333 			return 0;
2334 		WARN_ON(1);
2335 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2336 			 inum, offset, root_id);
2337 		return PTR_ERR(root);
2338 	}
2339 
2340 	key.objectid = inum;
2341 	key.type = BTRFS_EXTENT_DATA_KEY;
2342 	if (offset > (u64)-1 << 32)
2343 		key.offset = 0;
2344 	else
2345 		key.offset = offset;
2346 
2347 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2348 	if (WARN_ON(ret < 0))
2349 		return ret;
2350 	ret = 0;
2351 
2352 	while (1) {
2353 		cond_resched();
2354 
2355 		leaf = path->nodes[0];
2356 		slot = path->slots[0];
2357 
2358 		if (slot >= btrfs_header_nritems(leaf)) {
2359 			ret = btrfs_next_leaf(root, path);
2360 			if (ret < 0) {
2361 				goto out;
2362 			} else if (ret > 0) {
2363 				ret = 0;
2364 				goto out;
2365 			}
2366 			continue;
2367 		}
2368 
2369 		path->slots[0]++;
2370 
2371 		btrfs_item_key_to_cpu(leaf, &key, slot);
2372 
2373 		if (key.objectid > inum)
2374 			goto out;
2375 
2376 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2377 			continue;
2378 
2379 		extent = btrfs_item_ptr(leaf, slot,
2380 					struct btrfs_file_extent_item);
2381 
2382 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2383 			continue;
2384 
2385 		/*
2386 		 * 'offset' refers to the exact key.offset,
2387 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2388 		 * (key.offset - extent_offset).
2389 		 */
2390 		if (key.offset != offset)
2391 			continue;
2392 
2393 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2394 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2395 
2396 		if (extent_offset >= old->extent_offset + old->offset +
2397 		    old->len || extent_offset + num_bytes <=
2398 		    old->extent_offset + old->offset)
2399 			continue;
2400 		break;
2401 	}
2402 
2403 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2404 	if (!backref) {
2405 		ret = -ENOENT;
2406 		goto out;
2407 	}
2408 
2409 	backref->root_id = root_id;
2410 	backref->inum = inum;
2411 	backref->file_pos = offset;
2412 	backref->num_bytes = num_bytes;
2413 	backref->extent_offset = extent_offset;
2414 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2415 	backref->old = old;
2416 	backref_insert(&new->root, backref);
2417 	old->count++;
2418 out:
2419 	btrfs_release_path(path);
2420 	WARN_ON(ret);
2421 	return ret;
2422 }
2423 
2424 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2425 				   struct new_sa_defrag_extent *new)
2426 {
2427 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2428 	struct old_sa_defrag_extent *old, *tmp;
2429 	int ret;
2430 
2431 	new->path = path;
2432 
2433 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2434 		ret = iterate_inodes_from_logical(old->bytenr +
2435 						  old->extent_offset, fs_info,
2436 						  path, record_one_backref,
2437 						  old);
2438 		if (ret < 0 && ret != -ENOENT)
2439 			return false;
2440 
2441 		/* no backref to be processed for this extent */
2442 		if (!old->count) {
2443 			list_del(&old->list);
2444 			kfree(old);
2445 		}
2446 	}
2447 
2448 	if (list_empty(&new->head))
2449 		return false;
2450 
2451 	return true;
2452 }
2453 
2454 static int relink_is_mergable(struct extent_buffer *leaf,
2455 			      struct btrfs_file_extent_item *fi,
2456 			      struct new_sa_defrag_extent *new)
2457 {
2458 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2459 		return 0;
2460 
2461 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2462 		return 0;
2463 
2464 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2465 		return 0;
2466 
2467 	if (btrfs_file_extent_encryption(leaf, fi) ||
2468 	    btrfs_file_extent_other_encoding(leaf, fi))
2469 		return 0;
2470 
2471 	return 1;
2472 }
2473 
2474 /*
2475  * Note the backref might has changed, and in this case we just return 0.
2476  */
2477 static noinline int relink_extent_backref(struct btrfs_path *path,
2478 				 struct sa_defrag_extent_backref *prev,
2479 				 struct sa_defrag_extent_backref *backref)
2480 {
2481 	struct btrfs_file_extent_item *extent;
2482 	struct btrfs_file_extent_item *item;
2483 	struct btrfs_ordered_extent *ordered;
2484 	struct btrfs_trans_handle *trans;
2485 	struct btrfs_root *root;
2486 	struct btrfs_key key;
2487 	struct extent_buffer *leaf;
2488 	struct old_sa_defrag_extent *old = backref->old;
2489 	struct new_sa_defrag_extent *new = old->new;
2490 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2491 	struct inode *inode;
2492 	struct extent_state *cached = NULL;
2493 	int ret = 0;
2494 	u64 start;
2495 	u64 len;
2496 	u64 lock_start;
2497 	u64 lock_end;
2498 	bool merge = false;
2499 	int index;
2500 
2501 	if (prev && prev->root_id == backref->root_id &&
2502 	    prev->inum == backref->inum &&
2503 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2504 		merge = true;
2505 
2506 	/* step 1: get root */
2507 	key.objectid = backref->root_id;
2508 	key.type = BTRFS_ROOT_ITEM_KEY;
2509 	key.offset = (u64)-1;
2510 
2511 	index = srcu_read_lock(&fs_info->subvol_srcu);
2512 
2513 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2514 	if (IS_ERR(root)) {
2515 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2516 		if (PTR_ERR(root) == -ENOENT)
2517 			return 0;
2518 		return PTR_ERR(root);
2519 	}
2520 
2521 	if (btrfs_root_readonly(root)) {
2522 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2523 		return 0;
2524 	}
2525 
2526 	/* step 2: get inode */
2527 	key.objectid = backref->inum;
2528 	key.type = BTRFS_INODE_ITEM_KEY;
2529 	key.offset = 0;
2530 
2531 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2532 	if (IS_ERR(inode)) {
2533 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2534 		return 0;
2535 	}
2536 
2537 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2538 
2539 	/* step 3: relink backref */
2540 	lock_start = backref->file_pos;
2541 	lock_end = backref->file_pos + backref->num_bytes - 1;
2542 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2543 			 &cached);
2544 
2545 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2546 	if (ordered) {
2547 		btrfs_put_ordered_extent(ordered);
2548 		goto out_unlock;
2549 	}
2550 
2551 	trans = btrfs_join_transaction(root);
2552 	if (IS_ERR(trans)) {
2553 		ret = PTR_ERR(trans);
2554 		goto out_unlock;
2555 	}
2556 
2557 	key.objectid = backref->inum;
2558 	key.type = BTRFS_EXTENT_DATA_KEY;
2559 	key.offset = backref->file_pos;
2560 
2561 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2562 	if (ret < 0) {
2563 		goto out_free_path;
2564 	} else if (ret > 0) {
2565 		ret = 0;
2566 		goto out_free_path;
2567 	}
2568 
2569 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2570 				struct btrfs_file_extent_item);
2571 
2572 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2573 	    backref->generation)
2574 		goto out_free_path;
2575 
2576 	btrfs_release_path(path);
2577 
2578 	start = backref->file_pos;
2579 	if (backref->extent_offset < old->extent_offset + old->offset)
2580 		start += old->extent_offset + old->offset -
2581 			 backref->extent_offset;
2582 
2583 	len = min(backref->extent_offset + backref->num_bytes,
2584 		  old->extent_offset + old->offset + old->len);
2585 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2586 
2587 	ret = btrfs_drop_extents(trans, root, inode, start,
2588 				 start + len, 1);
2589 	if (ret)
2590 		goto out_free_path;
2591 again:
2592 	key.objectid = btrfs_ino(inode);
2593 	key.type = BTRFS_EXTENT_DATA_KEY;
2594 	key.offset = start;
2595 
2596 	path->leave_spinning = 1;
2597 	if (merge) {
2598 		struct btrfs_file_extent_item *fi;
2599 		u64 extent_len;
2600 		struct btrfs_key found_key;
2601 
2602 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2603 		if (ret < 0)
2604 			goto out_free_path;
2605 
2606 		path->slots[0]--;
2607 		leaf = path->nodes[0];
2608 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2609 
2610 		fi = btrfs_item_ptr(leaf, path->slots[0],
2611 				    struct btrfs_file_extent_item);
2612 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2613 
2614 		if (extent_len + found_key.offset == start &&
2615 		    relink_is_mergable(leaf, fi, new)) {
2616 			btrfs_set_file_extent_num_bytes(leaf, fi,
2617 							extent_len + len);
2618 			btrfs_mark_buffer_dirty(leaf);
2619 			inode_add_bytes(inode, len);
2620 
2621 			ret = 1;
2622 			goto out_free_path;
2623 		} else {
2624 			merge = false;
2625 			btrfs_release_path(path);
2626 			goto again;
2627 		}
2628 	}
2629 
2630 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2631 					sizeof(*extent));
2632 	if (ret) {
2633 		btrfs_abort_transaction(trans, ret);
2634 		goto out_free_path;
2635 	}
2636 
2637 	leaf = path->nodes[0];
2638 	item = btrfs_item_ptr(leaf, path->slots[0],
2639 				struct btrfs_file_extent_item);
2640 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2641 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2642 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2643 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2644 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2645 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2646 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2647 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2648 	btrfs_set_file_extent_encryption(leaf, item, 0);
2649 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2650 
2651 	btrfs_mark_buffer_dirty(leaf);
2652 	inode_add_bytes(inode, len);
2653 	btrfs_release_path(path);
2654 
2655 	ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
2656 			new->disk_len, 0,
2657 			backref->root_id, backref->inum,
2658 			new->file_pos);	/* start - extent_offset */
2659 	if (ret) {
2660 		btrfs_abort_transaction(trans, ret);
2661 		goto out_free_path;
2662 	}
2663 
2664 	ret = 1;
2665 out_free_path:
2666 	btrfs_release_path(path);
2667 	path->leave_spinning = 0;
2668 	btrfs_end_transaction(trans);
2669 out_unlock:
2670 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2671 			     &cached, GFP_NOFS);
2672 	iput(inode);
2673 	return ret;
2674 }
2675 
2676 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2677 {
2678 	struct old_sa_defrag_extent *old, *tmp;
2679 
2680 	if (!new)
2681 		return;
2682 
2683 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2684 		kfree(old);
2685 	}
2686 	kfree(new);
2687 }
2688 
2689 static void relink_file_extents(struct new_sa_defrag_extent *new)
2690 {
2691 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2692 	struct btrfs_path *path;
2693 	struct sa_defrag_extent_backref *backref;
2694 	struct sa_defrag_extent_backref *prev = NULL;
2695 	struct inode *inode;
2696 	struct btrfs_root *root;
2697 	struct rb_node *node;
2698 	int ret;
2699 
2700 	inode = new->inode;
2701 	root = BTRFS_I(inode)->root;
2702 
2703 	path = btrfs_alloc_path();
2704 	if (!path)
2705 		return;
2706 
2707 	if (!record_extent_backrefs(path, new)) {
2708 		btrfs_free_path(path);
2709 		goto out;
2710 	}
2711 	btrfs_release_path(path);
2712 
2713 	while (1) {
2714 		node = rb_first(&new->root);
2715 		if (!node)
2716 			break;
2717 		rb_erase(node, &new->root);
2718 
2719 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2720 
2721 		ret = relink_extent_backref(path, prev, backref);
2722 		WARN_ON(ret < 0);
2723 
2724 		kfree(prev);
2725 
2726 		if (ret == 1)
2727 			prev = backref;
2728 		else
2729 			prev = NULL;
2730 		cond_resched();
2731 	}
2732 	kfree(prev);
2733 
2734 	btrfs_free_path(path);
2735 out:
2736 	free_sa_defrag_extent(new);
2737 
2738 	atomic_dec(&fs_info->defrag_running);
2739 	wake_up(&fs_info->transaction_wait);
2740 }
2741 
2742 static struct new_sa_defrag_extent *
2743 record_old_file_extents(struct inode *inode,
2744 			struct btrfs_ordered_extent *ordered)
2745 {
2746 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2747 	struct btrfs_root *root = BTRFS_I(inode)->root;
2748 	struct btrfs_path *path;
2749 	struct btrfs_key key;
2750 	struct old_sa_defrag_extent *old;
2751 	struct new_sa_defrag_extent *new;
2752 	int ret;
2753 
2754 	new = kmalloc(sizeof(*new), GFP_NOFS);
2755 	if (!new)
2756 		return NULL;
2757 
2758 	new->inode = inode;
2759 	new->file_pos = ordered->file_offset;
2760 	new->len = ordered->len;
2761 	new->bytenr = ordered->start;
2762 	new->disk_len = ordered->disk_len;
2763 	new->compress_type = ordered->compress_type;
2764 	new->root = RB_ROOT;
2765 	INIT_LIST_HEAD(&new->head);
2766 
2767 	path = btrfs_alloc_path();
2768 	if (!path)
2769 		goto out_kfree;
2770 
2771 	key.objectid = btrfs_ino(inode);
2772 	key.type = BTRFS_EXTENT_DATA_KEY;
2773 	key.offset = new->file_pos;
2774 
2775 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2776 	if (ret < 0)
2777 		goto out_free_path;
2778 	if (ret > 0 && path->slots[0] > 0)
2779 		path->slots[0]--;
2780 
2781 	/* find out all the old extents for the file range */
2782 	while (1) {
2783 		struct btrfs_file_extent_item *extent;
2784 		struct extent_buffer *l;
2785 		int slot;
2786 		u64 num_bytes;
2787 		u64 offset;
2788 		u64 end;
2789 		u64 disk_bytenr;
2790 		u64 extent_offset;
2791 
2792 		l = path->nodes[0];
2793 		slot = path->slots[0];
2794 
2795 		if (slot >= btrfs_header_nritems(l)) {
2796 			ret = btrfs_next_leaf(root, path);
2797 			if (ret < 0)
2798 				goto out_free_path;
2799 			else if (ret > 0)
2800 				break;
2801 			continue;
2802 		}
2803 
2804 		btrfs_item_key_to_cpu(l, &key, slot);
2805 
2806 		if (key.objectid != btrfs_ino(inode))
2807 			break;
2808 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2809 			break;
2810 		if (key.offset >= new->file_pos + new->len)
2811 			break;
2812 
2813 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2814 
2815 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2816 		if (key.offset + num_bytes < new->file_pos)
2817 			goto next;
2818 
2819 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2820 		if (!disk_bytenr)
2821 			goto next;
2822 
2823 		extent_offset = btrfs_file_extent_offset(l, extent);
2824 
2825 		old = kmalloc(sizeof(*old), GFP_NOFS);
2826 		if (!old)
2827 			goto out_free_path;
2828 
2829 		offset = max(new->file_pos, key.offset);
2830 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2831 
2832 		old->bytenr = disk_bytenr;
2833 		old->extent_offset = extent_offset;
2834 		old->offset = offset - key.offset;
2835 		old->len = end - offset;
2836 		old->new = new;
2837 		old->count = 0;
2838 		list_add_tail(&old->list, &new->head);
2839 next:
2840 		path->slots[0]++;
2841 		cond_resched();
2842 	}
2843 
2844 	btrfs_free_path(path);
2845 	atomic_inc(&fs_info->defrag_running);
2846 
2847 	return new;
2848 
2849 out_free_path:
2850 	btrfs_free_path(path);
2851 out_kfree:
2852 	free_sa_defrag_extent(new);
2853 	return NULL;
2854 }
2855 
2856 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2857 					 u64 start, u64 len)
2858 {
2859 	struct btrfs_block_group_cache *cache;
2860 
2861 	cache = btrfs_lookup_block_group(fs_info, start);
2862 	ASSERT(cache);
2863 
2864 	spin_lock(&cache->lock);
2865 	cache->delalloc_bytes -= len;
2866 	spin_unlock(&cache->lock);
2867 
2868 	btrfs_put_block_group(cache);
2869 }
2870 
2871 /* as ordered data IO finishes, this gets called so we can finish
2872  * an ordered extent if the range of bytes in the file it covers are
2873  * fully written.
2874  */
2875 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2876 {
2877 	struct inode *inode = ordered_extent->inode;
2878 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2879 	struct btrfs_root *root = BTRFS_I(inode)->root;
2880 	struct btrfs_trans_handle *trans = NULL;
2881 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2882 	struct extent_state *cached_state = NULL;
2883 	struct new_sa_defrag_extent *new = NULL;
2884 	int compress_type = 0;
2885 	int ret = 0;
2886 	u64 logical_len = ordered_extent->len;
2887 	bool nolock;
2888 	bool truncated = false;
2889 
2890 	nolock = btrfs_is_free_space_inode(inode);
2891 
2892 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2893 		ret = -EIO;
2894 		goto out;
2895 	}
2896 
2897 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2898 				     ordered_extent->file_offset +
2899 				     ordered_extent->len - 1);
2900 
2901 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2902 		truncated = true;
2903 		logical_len = ordered_extent->truncated_len;
2904 		/* Truncated the entire extent, don't bother adding */
2905 		if (!logical_len)
2906 			goto out;
2907 	}
2908 
2909 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2910 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2911 
2912 		/*
2913 		 * For mwrite(mmap + memset to write) case, we still reserve
2914 		 * space for NOCOW range.
2915 		 * As NOCOW won't cause a new delayed ref, just free the space
2916 		 */
2917 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2918 				       ordered_extent->len);
2919 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2920 		if (nolock)
2921 			trans = btrfs_join_transaction_nolock(root);
2922 		else
2923 			trans = btrfs_join_transaction(root);
2924 		if (IS_ERR(trans)) {
2925 			ret = PTR_ERR(trans);
2926 			trans = NULL;
2927 			goto out;
2928 		}
2929 		trans->block_rsv = &fs_info->delalloc_block_rsv;
2930 		ret = btrfs_update_inode_fallback(trans, root, inode);
2931 		if (ret) /* -ENOMEM or corruption */
2932 			btrfs_abort_transaction(trans, ret);
2933 		goto out;
2934 	}
2935 
2936 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2937 			 ordered_extent->file_offset + ordered_extent->len - 1,
2938 			 &cached_state);
2939 
2940 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2941 			ordered_extent->file_offset + ordered_extent->len - 1,
2942 			EXTENT_DEFRAG, 1, cached_state);
2943 	if (ret) {
2944 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2945 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2946 			/* the inode is shared */
2947 			new = record_old_file_extents(inode, ordered_extent);
2948 
2949 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2950 			ordered_extent->file_offset + ordered_extent->len - 1,
2951 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2952 	}
2953 
2954 	if (nolock)
2955 		trans = btrfs_join_transaction_nolock(root);
2956 	else
2957 		trans = btrfs_join_transaction(root);
2958 	if (IS_ERR(trans)) {
2959 		ret = PTR_ERR(trans);
2960 		trans = NULL;
2961 		goto out_unlock;
2962 	}
2963 
2964 	trans->block_rsv = &fs_info->delalloc_block_rsv;
2965 
2966 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2967 		compress_type = ordered_extent->compress_type;
2968 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2969 		BUG_ON(compress_type);
2970 		ret = btrfs_mark_extent_written(trans, inode,
2971 						ordered_extent->file_offset,
2972 						ordered_extent->file_offset +
2973 						logical_len);
2974 	} else {
2975 		BUG_ON(root == fs_info->tree_root);
2976 		ret = insert_reserved_file_extent(trans, inode,
2977 						ordered_extent->file_offset,
2978 						ordered_extent->start,
2979 						ordered_extent->disk_len,
2980 						logical_len, logical_len,
2981 						compress_type, 0, 0,
2982 						BTRFS_FILE_EXTENT_REG);
2983 		if (!ret)
2984 			btrfs_release_delalloc_bytes(fs_info,
2985 						     ordered_extent->start,
2986 						     ordered_extent->disk_len);
2987 	}
2988 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2989 			   ordered_extent->file_offset, ordered_extent->len,
2990 			   trans->transid);
2991 	if (ret < 0) {
2992 		btrfs_abort_transaction(trans, ret);
2993 		goto out_unlock;
2994 	}
2995 
2996 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2997 			  &ordered_extent->list);
2998 
2999 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3000 	ret = btrfs_update_inode_fallback(trans, root, inode);
3001 	if (ret) { /* -ENOMEM or corruption */
3002 		btrfs_abort_transaction(trans, ret);
3003 		goto out_unlock;
3004 	}
3005 	ret = 0;
3006 out_unlock:
3007 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
3008 			     ordered_extent->file_offset +
3009 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
3010 out:
3011 	if (root != fs_info->tree_root)
3012 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
3013 	if (trans)
3014 		btrfs_end_transaction(trans);
3015 
3016 	if (ret || truncated) {
3017 		u64 start, end;
3018 
3019 		if (truncated)
3020 			start = ordered_extent->file_offset + logical_len;
3021 		else
3022 			start = ordered_extent->file_offset;
3023 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3024 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3025 
3026 		/* Drop the cache for the part of the extent we didn't write. */
3027 		btrfs_drop_extent_cache(inode, start, end, 0);
3028 
3029 		/*
3030 		 * If the ordered extent had an IOERR or something else went
3031 		 * wrong we need to return the space for this ordered extent
3032 		 * back to the allocator.  We only free the extent in the
3033 		 * truncated case if we didn't write out the extent at all.
3034 		 */
3035 		if ((ret || !logical_len) &&
3036 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3037 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3038 			btrfs_free_reserved_extent(fs_info,
3039 						   ordered_extent->start,
3040 						   ordered_extent->disk_len, 1);
3041 	}
3042 
3043 
3044 	/*
3045 	 * This needs to be done to make sure anybody waiting knows we are done
3046 	 * updating everything for this ordered extent.
3047 	 */
3048 	btrfs_remove_ordered_extent(inode, ordered_extent);
3049 
3050 	/* for snapshot-aware defrag */
3051 	if (new) {
3052 		if (ret) {
3053 			free_sa_defrag_extent(new);
3054 			atomic_dec(&fs_info->defrag_running);
3055 		} else {
3056 			relink_file_extents(new);
3057 		}
3058 	}
3059 
3060 	/* once for us */
3061 	btrfs_put_ordered_extent(ordered_extent);
3062 	/* once for the tree */
3063 	btrfs_put_ordered_extent(ordered_extent);
3064 
3065 	return ret;
3066 }
3067 
3068 static void finish_ordered_fn(struct btrfs_work *work)
3069 {
3070 	struct btrfs_ordered_extent *ordered_extent;
3071 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3072 	btrfs_finish_ordered_io(ordered_extent);
3073 }
3074 
3075 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3076 				struct extent_state *state, int uptodate)
3077 {
3078 	struct inode *inode = page->mapping->host;
3079 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3080 	struct btrfs_ordered_extent *ordered_extent = NULL;
3081 	struct btrfs_workqueue *wq;
3082 	btrfs_work_func_t func;
3083 
3084 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3085 
3086 	ClearPagePrivate2(page);
3087 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3088 					    end - start + 1, uptodate))
3089 		return 0;
3090 
3091 	if (btrfs_is_free_space_inode(inode)) {
3092 		wq = fs_info->endio_freespace_worker;
3093 		func = btrfs_freespace_write_helper;
3094 	} else {
3095 		wq = fs_info->endio_write_workers;
3096 		func = btrfs_endio_write_helper;
3097 	}
3098 
3099 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3100 			NULL);
3101 	btrfs_queue_work(wq, &ordered_extent->work);
3102 
3103 	return 0;
3104 }
3105 
3106 static int __readpage_endio_check(struct inode *inode,
3107 				  struct btrfs_io_bio *io_bio,
3108 				  int icsum, struct page *page,
3109 				  int pgoff, u64 start, size_t len)
3110 {
3111 	char *kaddr;
3112 	u32 csum_expected;
3113 	u32 csum = ~(u32)0;
3114 
3115 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3116 
3117 	kaddr = kmap_atomic(page);
3118 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3119 	btrfs_csum_final(csum, (u8 *)&csum);
3120 	if (csum != csum_expected)
3121 		goto zeroit;
3122 
3123 	kunmap_atomic(kaddr);
3124 	return 0;
3125 zeroit:
3126 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3127 		"csum failed ino %llu off %llu csum %u expected csum %u",
3128 			   btrfs_ino(inode), start, csum, csum_expected);
3129 	memset(kaddr + pgoff, 1, len);
3130 	flush_dcache_page(page);
3131 	kunmap_atomic(kaddr);
3132 	if (csum_expected == 0)
3133 		return 0;
3134 	return -EIO;
3135 }
3136 
3137 /*
3138  * when reads are done, we need to check csums to verify the data is correct
3139  * if there's a match, we allow the bio to finish.  If not, the code in
3140  * extent_io.c will try to find good copies for us.
3141  */
3142 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3143 				      u64 phy_offset, struct page *page,
3144 				      u64 start, u64 end, int mirror)
3145 {
3146 	size_t offset = start - page_offset(page);
3147 	struct inode *inode = page->mapping->host;
3148 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3149 	struct btrfs_root *root = BTRFS_I(inode)->root;
3150 
3151 	if (PageChecked(page)) {
3152 		ClearPageChecked(page);
3153 		return 0;
3154 	}
3155 
3156 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3157 		return 0;
3158 
3159 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3160 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3161 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3162 		return 0;
3163 	}
3164 
3165 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3166 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3167 				      start, (size_t)(end - start + 1));
3168 }
3169 
3170 void btrfs_add_delayed_iput(struct inode *inode)
3171 {
3172 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3173 	struct btrfs_inode *binode = BTRFS_I(inode);
3174 
3175 	if (atomic_add_unless(&inode->i_count, -1, 1))
3176 		return;
3177 
3178 	spin_lock(&fs_info->delayed_iput_lock);
3179 	if (binode->delayed_iput_count == 0) {
3180 		ASSERT(list_empty(&binode->delayed_iput));
3181 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3182 	} else {
3183 		binode->delayed_iput_count++;
3184 	}
3185 	spin_unlock(&fs_info->delayed_iput_lock);
3186 }
3187 
3188 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3189 {
3190 
3191 	spin_lock(&fs_info->delayed_iput_lock);
3192 	while (!list_empty(&fs_info->delayed_iputs)) {
3193 		struct btrfs_inode *inode;
3194 
3195 		inode = list_first_entry(&fs_info->delayed_iputs,
3196 				struct btrfs_inode, delayed_iput);
3197 		if (inode->delayed_iput_count) {
3198 			inode->delayed_iput_count--;
3199 			list_move_tail(&inode->delayed_iput,
3200 					&fs_info->delayed_iputs);
3201 		} else {
3202 			list_del_init(&inode->delayed_iput);
3203 		}
3204 		spin_unlock(&fs_info->delayed_iput_lock);
3205 		iput(&inode->vfs_inode);
3206 		spin_lock(&fs_info->delayed_iput_lock);
3207 	}
3208 	spin_unlock(&fs_info->delayed_iput_lock);
3209 }
3210 
3211 /*
3212  * This is called in transaction commit time. If there are no orphan
3213  * files in the subvolume, it removes orphan item and frees block_rsv
3214  * structure.
3215  */
3216 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3217 			      struct btrfs_root *root)
3218 {
3219 	struct btrfs_fs_info *fs_info = root->fs_info;
3220 	struct btrfs_block_rsv *block_rsv;
3221 	int ret;
3222 
3223 	if (atomic_read(&root->orphan_inodes) ||
3224 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3225 		return;
3226 
3227 	spin_lock(&root->orphan_lock);
3228 	if (atomic_read(&root->orphan_inodes)) {
3229 		spin_unlock(&root->orphan_lock);
3230 		return;
3231 	}
3232 
3233 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3234 		spin_unlock(&root->orphan_lock);
3235 		return;
3236 	}
3237 
3238 	block_rsv = root->orphan_block_rsv;
3239 	root->orphan_block_rsv = NULL;
3240 	spin_unlock(&root->orphan_lock);
3241 
3242 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3243 	    btrfs_root_refs(&root->root_item) > 0) {
3244 		ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3245 					    root->root_key.objectid);
3246 		if (ret)
3247 			btrfs_abort_transaction(trans, ret);
3248 		else
3249 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3250 				  &root->state);
3251 	}
3252 
3253 	if (block_rsv) {
3254 		WARN_ON(block_rsv->size > 0);
3255 		btrfs_free_block_rsv(fs_info, block_rsv);
3256 	}
3257 }
3258 
3259 /*
3260  * This creates an orphan entry for the given inode in case something goes
3261  * wrong in the middle of an unlink/truncate.
3262  *
3263  * NOTE: caller of this function should reserve 5 units of metadata for
3264  *	 this function.
3265  */
3266 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3267 {
3268 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3269 	struct btrfs_root *root = BTRFS_I(inode)->root;
3270 	struct btrfs_block_rsv *block_rsv = NULL;
3271 	int reserve = 0;
3272 	int insert = 0;
3273 	int ret;
3274 
3275 	if (!root->orphan_block_rsv) {
3276 		block_rsv = btrfs_alloc_block_rsv(fs_info,
3277 						  BTRFS_BLOCK_RSV_TEMP);
3278 		if (!block_rsv)
3279 			return -ENOMEM;
3280 	}
3281 
3282 	spin_lock(&root->orphan_lock);
3283 	if (!root->orphan_block_rsv) {
3284 		root->orphan_block_rsv = block_rsv;
3285 	} else if (block_rsv) {
3286 		btrfs_free_block_rsv(fs_info, block_rsv);
3287 		block_rsv = NULL;
3288 	}
3289 
3290 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3291 			      &BTRFS_I(inode)->runtime_flags)) {
3292 #if 0
3293 		/*
3294 		 * For proper ENOSPC handling, we should do orphan
3295 		 * cleanup when mounting. But this introduces backward
3296 		 * compatibility issue.
3297 		 */
3298 		if (!xchg(&root->orphan_item_inserted, 1))
3299 			insert = 2;
3300 		else
3301 			insert = 1;
3302 #endif
3303 		insert = 1;
3304 		atomic_inc(&root->orphan_inodes);
3305 	}
3306 
3307 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3308 			      &BTRFS_I(inode)->runtime_flags))
3309 		reserve = 1;
3310 	spin_unlock(&root->orphan_lock);
3311 
3312 	/* grab metadata reservation from transaction handle */
3313 	if (reserve) {
3314 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3315 		ASSERT(!ret);
3316 		if (ret) {
3317 			atomic_dec(&root->orphan_inodes);
3318 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3319 				  &BTRFS_I(inode)->runtime_flags);
3320 			if (insert)
3321 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3322 					  &BTRFS_I(inode)->runtime_flags);
3323 			return ret;
3324 		}
3325 	}
3326 
3327 	/* insert an orphan item to track this unlinked/truncated file */
3328 	if (insert >= 1) {
3329 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3330 		if (ret) {
3331 			atomic_dec(&root->orphan_inodes);
3332 			if (reserve) {
3333 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3334 					  &BTRFS_I(inode)->runtime_flags);
3335 				btrfs_orphan_release_metadata(inode);
3336 			}
3337 			if (ret != -EEXIST) {
3338 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3339 					  &BTRFS_I(inode)->runtime_flags);
3340 				btrfs_abort_transaction(trans, ret);
3341 				return ret;
3342 			}
3343 		}
3344 		ret = 0;
3345 	}
3346 
3347 	/* insert an orphan item to track subvolume contains orphan files */
3348 	if (insert >= 2) {
3349 		ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3350 					       root->root_key.objectid);
3351 		if (ret && ret != -EEXIST) {
3352 			btrfs_abort_transaction(trans, ret);
3353 			return ret;
3354 		}
3355 	}
3356 	return 0;
3357 }
3358 
3359 /*
3360  * We have done the truncate/delete so we can go ahead and remove the orphan
3361  * item for this particular inode.
3362  */
3363 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3364 			    struct inode *inode)
3365 {
3366 	struct btrfs_root *root = BTRFS_I(inode)->root;
3367 	int delete_item = 0;
3368 	int release_rsv = 0;
3369 	int ret = 0;
3370 
3371 	spin_lock(&root->orphan_lock);
3372 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3373 			       &BTRFS_I(inode)->runtime_flags))
3374 		delete_item = 1;
3375 
3376 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3377 			       &BTRFS_I(inode)->runtime_flags))
3378 		release_rsv = 1;
3379 	spin_unlock(&root->orphan_lock);
3380 
3381 	if (delete_item) {
3382 		atomic_dec(&root->orphan_inodes);
3383 		if (trans)
3384 			ret = btrfs_del_orphan_item(trans, root,
3385 						    btrfs_ino(inode));
3386 	}
3387 
3388 	if (release_rsv)
3389 		btrfs_orphan_release_metadata(inode);
3390 
3391 	return ret;
3392 }
3393 
3394 /*
3395  * this cleans up any orphans that may be left on the list from the last use
3396  * of this root.
3397  */
3398 int btrfs_orphan_cleanup(struct btrfs_root *root)
3399 {
3400 	struct btrfs_fs_info *fs_info = root->fs_info;
3401 	struct btrfs_path *path;
3402 	struct extent_buffer *leaf;
3403 	struct btrfs_key key, found_key;
3404 	struct btrfs_trans_handle *trans;
3405 	struct inode *inode;
3406 	u64 last_objectid = 0;
3407 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3408 
3409 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3410 		return 0;
3411 
3412 	path = btrfs_alloc_path();
3413 	if (!path) {
3414 		ret = -ENOMEM;
3415 		goto out;
3416 	}
3417 	path->reada = READA_BACK;
3418 
3419 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3420 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3421 	key.offset = (u64)-1;
3422 
3423 	while (1) {
3424 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3425 		if (ret < 0)
3426 			goto out;
3427 
3428 		/*
3429 		 * if ret == 0 means we found what we were searching for, which
3430 		 * is weird, but possible, so only screw with path if we didn't
3431 		 * find the key and see if we have stuff that matches
3432 		 */
3433 		if (ret > 0) {
3434 			ret = 0;
3435 			if (path->slots[0] == 0)
3436 				break;
3437 			path->slots[0]--;
3438 		}
3439 
3440 		/* pull out the item */
3441 		leaf = path->nodes[0];
3442 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3443 
3444 		/* make sure the item matches what we want */
3445 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3446 			break;
3447 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3448 			break;
3449 
3450 		/* release the path since we're done with it */
3451 		btrfs_release_path(path);
3452 
3453 		/*
3454 		 * this is where we are basically btrfs_lookup, without the
3455 		 * crossing root thing.  we store the inode number in the
3456 		 * offset of the orphan item.
3457 		 */
3458 
3459 		if (found_key.offset == last_objectid) {
3460 			btrfs_err(fs_info,
3461 				  "Error removing orphan entry, stopping orphan cleanup");
3462 			ret = -EINVAL;
3463 			goto out;
3464 		}
3465 
3466 		last_objectid = found_key.offset;
3467 
3468 		found_key.objectid = found_key.offset;
3469 		found_key.type = BTRFS_INODE_ITEM_KEY;
3470 		found_key.offset = 0;
3471 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3472 		ret = PTR_ERR_OR_ZERO(inode);
3473 		if (ret && ret != -ENOENT)
3474 			goto out;
3475 
3476 		if (ret == -ENOENT && root == fs_info->tree_root) {
3477 			struct btrfs_root *dead_root;
3478 			struct btrfs_fs_info *fs_info = root->fs_info;
3479 			int is_dead_root = 0;
3480 
3481 			/*
3482 			 * this is an orphan in the tree root. Currently these
3483 			 * could come from 2 sources:
3484 			 *  a) a snapshot deletion in progress
3485 			 *  b) a free space cache inode
3486 			 * We need to distinguish those two, as the snapshot
3487 			 * orphan must not get deleted.
3488 			 * find_dead_roots already ran before us, so if this
3489 			 * is a snapshot deletion, we should find the root
3490 			 * in the dead_roots list
3491 			 */
3492 			spin_lock(&fs_info->trans_lock);
3493 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3494 					    root_list) {
3495 				if (dead_root->root_key.objectid ==
3496 				    found_key.objectid) {
3497 					is_dead_root = 1;
3498 					break;
3499 				}
3500 			}
3501 			spin_unlock(&fs_info->trans_lock);
3502 			if (is_dead_root) {
3503 				/* prevent this orphan from being found again */
3504 				key.offset = found_key.objectid - 1;
3505 				continue;
3506 			}
3507 		}
3508 		/*
3509 		 * Inode is already gone but the orphan item is still there,
3510 		 * kill the orphan item.
3511 		 */
3512 		if (ret == -ENOENT) {
3513 			trans = btrfs_start_transaction(root, 1);
3514 			if (IS_ERR(trans)) {
3515 				ret = PTR_ERR(trans);
3516 				goto out;
3517 			}
3518 			btrfs_debug(fs_info, "auto deleting %Lu",
3519 				    found_key.objectid);
3520 			ret = btrfs_del_orphan_item(trans, root,
3521 						    found_key.objectid);
3522 			btrfs_end_transaction(trans);
3523 			if (ret)
3524 				goto out;
3525 			continue;
3526 		}
3527 
3528 		/*
3529 		 * add this inode to the orphan list so btrfs_orphan_del does
3530 		 * the proper thing when we hit it
3531 		 */
3532 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3533 			&BTRFS_I(inode)->runtime_flags);
3534 		atomic_inc(&root->orphan_inodes);
3535 
3536 		/* if we have links, this was a truncate, lets do that */
3537 		if (inode->i_nlink) {
3538 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3539 				iput(inode);
3540 				continue;
3541 			}
3542 			nr_truncate++;
3543 
3544 			/* 1 for the orphan item deletion. */
3545 			trans = btrfs_start_transaction(root, 1);
3546 			if (IS_ERR(trans)) {
3547 				iput(inode);
3548 				ret = PTR_ERR(trans);
3549 				goto out;
3550 			}
3551 			ret = btrfs_orphan_add(trans, inode);
3552 			btrfs_end_transaction(trans);
3553 			if (ret) {
3554 				iput(inode);
3555 				goto out;
3556 			}
3557 
3558 			ret = btrfs_truncate(inode);
3559 			if (ret)
3560 				btrfs_orphan_del(NULL, inode);
3561 		} else {
3562 			nr_unlink++;
3563 		}
3564 
3565 		/* this will do delete_inode and everything for us */
3566 		iput(inode);
3567 		if (ret)
3568 			goto out;
3569 	}
3570 	/* release the path since we're done with it */
3571 	btrfs_release_path(path);
3572 
3573 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3574 
3575 	if (root->orphan_block_rsv)
3576 		btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3577 					(u64)-1);
3578 
3579 	if (root->orphan_block_rsv ||
3580 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3581 		trans = btrfs_join_transaction(root);
3582 		if (!IS_ERR(trans))
3583 			btrfs_end_transaction(trans);
3584 	}
3585 
3586 	if (nr_unlink)
3587 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3588 	if (nr_truncate)
3589 		btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3590 
3591 out:
3592 	if (ret)
3593 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3594 	btrfs_free_path(path);
3595 	return ret;
3596 }
3597 
3598 /*
3599  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3600  * don't find any xattrs, we know there can't be any acls.
3601  *
3602  * slot is the slot the inode is in, objectid is the objectid of the inode
3603  */
3604 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3605 					  int slot, u64 objectid,
3606 					  int *first_xattr_slot)
3607 {
3608 	u32 nritems = btrfs_header_nritems(leaf);
3609 	struct btrfs_key found_key;
3610 	static u64 xattr_access = 0;
3611 	static u64 xattr_default = 0;
3612 	int scanned = 0;
3613 
3614 	if (!xattr_access) {
3615 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3616 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3617 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3618 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3619 	}
3620 
3621 	slot++;
3622 	*first_xattr_slot = -1;
3623 	while (slot < nritems) {
3624 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3625 
3626 		/* we found a different objectid, there must not be acls */
3627 		if (found_key.objectid != objectid)
3628 			return 0;
3629 
3630 		/* we found an xattr, assume we've got an acl */
3631 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3632 			if (*first_xattr_slot == -1)
3633 				*first_xattr_slot = slot;
3634 			if (found_key.offset == xattr_access ||
3635 			    found_key.offset == xattr_default)
3636 				return 1;
3637 		}
3638 
3639 		/*
3640 		 * we found a key greater than an xattr key, there can't
3641 		 * be any acls later on
3642 		 */
3643 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3644 			return 0;
3645 
3646 		slot++;
3647 		scanned++;
3648 
3649 		/*
3650 		 * it goes inode, inode backrefs, xattrs, extents,
3651 		 * so if there are a ton of hard links to an inode there can
3652 		 * be a lot of backrefs.  Don't waste time searching too hard,
3653 		 * this is just an optimization
3654 		 */
3655 		if (scanned >= 8)
3656 			break;
3657 	}
3658 	/* we hit the end of the leaf before we found an xattr or
3659 	 * something larger than an xattr.  We have to assume the inode
3660 	 * has acls
3661 	 */
3662 	if (*first_xattr_slot == -1)
3663 		*first_xattr_slot = slot;
3664 	return 1;
3665 }
3666 
3667 /*
3668  * read an inode from the btree into the in-memory inode
3669  */
3670 static int btrfs_read_locked_inode(struct inode *inode)
3671 {
3672 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3673 	struct btrfs_path *path;
3674 	struct extent_buffer *leaf;
3675 	struct btrfs_inode_item *inode_item;
3676 	struct btrfs_root *root = BTRFS_I(inode)->root;
3677 	struct btrfs_key location;
3678 	unsigned long ptr;
3679 	int maybe_acls;
3680 	u32 rdev;
3681 	int ret;
3682 	bool filled = false;
3683 	int first_xattr_slot;
3684 
3685 	ret = btrfs_fill_inode(inode, &rdev);
3686 	if (!ret)
3687 		filled = true;
3688 
3689 	path = btrfs_alloc_path();
3690 	if (!path) {
3691 		ret = -ENOMEM;
3692 		goto make_bad;
3693 	}
3694 
3695 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3696 
3697 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3698 	if (ret) {
3699 		if (ret > 0)
3700 			ret = -ENOENT;
3701 		goto make_bad;
3702 	}
3703 
3704 	leaf = path->nodes[0];
3705 
3706 	if (filled)
3707 		goto cache_index;
3708 
3709 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3710 				    struct btrfs_inode_item);
3711 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3712 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3713 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3714 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3715 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3716 
3717 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3718 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3719 
3720 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3721 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3722 
3723 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3724 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3725 
3726 	BTRFS_I(inode)->i_otime.tv_sec =
3727 		btrfs_timespec_sec(leaf, &inode_item->otime);
3728 	BTRFS_I(inode)->i_otime.tv_nsec =
3729 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3730 
3731 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3732 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3733 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3734 
3735 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3736 	inode->i_generation = BTRFS_I(inode)->generation;
3737 	inode->i_rdev = 0;
3738 	rdev = btrfs_inode_rdev(leaf, inode_item);
3739 
3740 	BTRFS_I(inode)->index_cnt = (u64)-1;
3741 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3742 
3743 cache_index:
3744 	/*
3745 	 * If we were modified in the current generation and evicted from memory
3746 	 * and then re-read we need to do a full sync since we don't have any
3747 	 * idea about which extents were modified before we were evicted from
3748 	 * cache.
3749 	 *
3750 	 * This is required for both inode re-read from disk and delayed inode
3751 	 * in delayed_nodes_tree.
3752 	 */
3753 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3754 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3755 			&BTRFS_I(inode)->runtime_flags);
3756 
3757 	/*
3758 	 * We don't persist the id of the transaction where an unlink operation
3759 	 * against the inode was last made. So here we assume the inode might
3760 	 * have been evicted, and therefore the exact value of last_unlink_trans
3761 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3762 	 * between the inode and its parent if the inode is fsync'ed and the log
3763 	 * replayed. For example, in the scenario:
3764 	 *
3765 	 * touch mydir/foo
3766 	 * ln mydir/foo mydir/bar
3767 	 * sync
3768 	 * unlink mydir/bar
3769 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3770 	 * xfs_io -c fsync mydir/foo
3771 	 * <power failure>
3772 	 * mount fs, triggers fsync log replay
3773 	 *
3774 	 * We must make sure that when we fsync our inode foo we also log its
3775 	 * parent inode, otherwise after log replay the parent still has the
3776 	 * dentry with the "bar" name but our inode foo has a link count of 1
3777 	 * and doesn't have an inode ref with the name "bar" anymore.
3778 	 *
3779 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3780 	 * but it guarantees correctness at the expense of occasional full
3781 	 * transaction commits on fsync if our inode is a directory, or if our
3782 	 * inode is not a directory, logging its parent unnecessarily.
3783 	 */
3784 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3785 
3786 	path->slots[0]++;
3787 	if (inode->i_nlink != 1 ||
3788 	    path->slots[0] >= btrfs_header_nritems(leaf))
3789 		goto cache_acl;
3790 
3791 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3792 	if (location.objectid != btrfs_ino(inode))
3793 		goto cache_acl;
3794 
3795 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3796 	if (location.type == BTRFS_INODE_REF_KEY) {
3797 		struct btrfs_inode_ref *ref;
3798 
3799 		ref = (struct btrfs_inode_ref *)ptr;
3800 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3801 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3802 		struct btrfs_inode_extref *extref;
3803 
3804 		extref = (struct btrfs_inode_extref *)ptr;
3805 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3806 								     extref);
3807 	}
3808 cache_acl:
3809 	/*
3810 	 * try to precache a NULL acl entry for files that don't have
3811 	 * any xattrs or acls
3812 	 */
3813 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3814 					   btrfs_ino(inode), &first_xattr_slot);
3815 	if (first_xattr_slot != -1) {
3816 		path->slots[0] = first_xattr_slot;
3817 		ret = btrfs_load_inode_props(inode, path);
3818 		if (ret)
3819 			btrfs_err(fs_info,
3820 				  "error loading props for ino %llu (root %llu): %d",
3821 				  btrfs_ino(inode),
3822 				  root->root_key.objectid, ret);
3823 	}
3824 	btrfs_free_path(path);
3825 
3826 	if (!maybe_acls)
3827 		cache_no_acl(inode);
3828 
3829 	switch (inode->i_mode & S_IFMT) {
3830 	case S_IFREG:
3831 		inode->i_mapping->a_ops = &btrfs_aops;
3832 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3833 		inode->i_fop = &btrfs_file_operations;
3834 		inode->i_op = &btrfs_file_inode_operations;
3835 		break;
3836 	case S_IFDIR:
3837 		inode->i_fop = &btrfs_dir_file_operations;
3838 		inode->i_op = &btrfs_dir_inode_operations;
3839 		break;
3840 	case S_IFLNK:
3841 		inode->i_op = &btrfs_symlink_inode_operations;
3842 		inode_nohighmem(inode);
3843 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3844 		break;
3845 	default:
3846 		inode->i_op = &btrfs_special_inode_operations;
3847 		init_special_inode(inode, inode->i_mode, rdev);
3848 		break;
3849 	}
3850 
3851 	btrfs_update_iflags(inode);
3852 	return 0;
3853 
3854 make_bad:
3855 	btrfs_free_path(path);
3856 	make_bad_inode(inode);
3857 	return ret;
3858 }
3859 
3860 /*
3861  * given a leaf and an inode, copy the inode fields into the leaf
3862  */
3863 static void fill_inode_item(struct btrfs_trans_handle *trans,
3864 			    struct extent_buffer *leaf,
3865 			    struct btrfs_inode_item *item,
3866 			    struct inode *inode)
3867 {
3868 	struct btrfs_map_token token;
3869 
3870 	btrfs_init_map_token(&token);
3871 
3872 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3873 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3874 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3875 				   &token);
3876 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3877 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3878 
3879 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3880 				     inode->i_atime.tv_sec, &token);
3881 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3882 				      inode->i_atime.tv_nsec, &token);
3883 
3884 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3885 				     inode->i_mtime.tv_sec, &token);
3886 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3887 				      inode->i_mtime.tv_nsec, &token);
3888 
3889 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3890 				     inode->i_ctime.tv_sec, &token);
3891 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3892 				      inode->i_ctime.tv_nsec, &token);
3893 
3894 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3895 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3896 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3897 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3898 
3899 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3900 				     &token);
3901 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3902 					 &token);
3903 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3904 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3905 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3906 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3907 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3908 }
3909 
3910 /*
3911  * copy everything in the in-memory inode into the btree.
3912  */
3913 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3914 				struct btrfs_root *root, struct inode *inode)
3915 {
3916 	struct btrfs_inode_item *inode_item;
3917 	struct btrfs_path *path;
3918 	struct extent_buffer *leaf;
3919 	int ret;
3920 
3921 	path = btrfs_alloc_path();
3922 	if (!path)
3923 		return -ENOMEM;
3924 
3925 	path->leave_spinning = 1;
3926 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3927 				 1);
3928 	if (ret) {
3929 		if (ret > 0)
3930 			ret = -ENOENT;
3931 		goto failed;
3932 	}
3933 
3934 	leaf = path->nodes[0];
3935 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3936 				    struct btrfs_inode_item);
3937 
3938 	fill_inode_item(trans, leaf, inode_item, inode);
3939 	btrfs_mark_buffer_dirty(leaf);
3940 	btrfs_set_inode_last_trans(trans, inode);
3941 	ret = 0;
3942 failed:
3943 	btrfs_free_path(path);
3944 	return ret;
3945 }
3946 
3947 /*
3948  * copy everything in the in-memory inode into the btree.
3949  */
3950 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3951 				struct btrfs_root *root, struct inode *inode)
3952 {
3953 	struct btrfs_fs_info *fs_info = root->fs_info;
3954 	int ret;
3955 
3956 	/*
3957 	 * If the inode is a free space inode, we can deadlock during commit
3958 	 * if we put it into the delayed code.
3959 	 *
3960 	 * The data relocation inode should also be directly updated
3961 	 * without delay
3962 	 */
3963 	if (!btrfs_is_free_space_inode(inode)
3964 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3965 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3966 		btrfs_update_root_times(trans, root);
3967 
3968 		ret = btrfs_delayed_update_inode(trans, root, inode);
3969 		if (!ret)
3970 			btrfs_set_inode_last_trans(trans, inode);
3971 		return ret;
3972 	}
3973 
3974 	return btrfs_update_inode_item(trans, root, inode);
3975 }
3976 
3977 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3978 					 struct btrfs_root *root,
3979 					 struct inode *inode)
3980 {
3981 	int ret;
3982 
3983 	ret = btrfs_update_inode(trans, root, inode);
3984 	if (ret == -ENOSPC)
3985 		return btrfs_update_inode_item(trans, root, inode);
3986 	return ret;
3987 }
3988 
3989 /*
3990  * unlink helper that gets used here in inode.c and in the tree logging
3991  * recovery code.  It remove a link in a directory with a given name, and
3992  * also drops the back refs in the inode to the directory
3993  */
3994 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3995 				struct btrfs_root *root,
3996 				struct inode *dir, struct inode *inode,
3997 				const char *name, int name_len)
3998 {
3999 	struct btrfs_fs_info *fs_info = root->fs_info;
4000 	struct btrfs_path *path;
4001 	int ret = 0;
4002 	struct extent_buffer *leaf;
4003 	struct btrfs_dir_item *di;
4004 	struct btrfs_key key;
4005 	u64 index;
4006 	u64 ino = btrfs_ino(inode);
4007 	u64 dir_ino = btrfs_ino(dir);
4008 
4009 	path = btrfs_alloc_path();
4010 	if (!path) {
4011 		ret = -ENOMEM;
4012 		goto out;
4013 	}
4014 
4015 	path->leave_spinning = 1;
4016 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4017 				    name, name_len, -1);
4018 	if (IS_ERR(di)) {
4019 		ret = PTR_ERR(di);
4020 		goto err;
4021 	}
4022 	if (!di) {
4023 		ret = -ENOENT;
4024 		goto err;
4025 	}
4026 	leaf = path->nodes[0];
4027 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4028 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4029 	if (ret)
4030 		goto err;
4031 	btrfs_release_path(path);
4032 
4033 	/*
4034 	 * If we don't have dir index, we have to get it by looking up
4035 	 * the inode ref, since we get the inode ref, remove it directly,
4036 	 * it is unnecessary to do delayed deletion.
4037 	 *
4038 	 * But if we have dir index, needn't search inode ref to get it.
4039 	 * Since the inode ref is close to the inode item, it is better
4040 	 * that we delay to delete it, and just do this deletion when
4041 	 * we update the inode item.
4042 	 */
4043 	if (BTRFS_I(inode)->dir_index) {
4044 		ret = btrfs_delayed_delete_inode_ref(inode);
4045 		if (!ret) {
4046 			index = BTRFS_I(inode)->dir_index;
4047 			goto skip_backref;
4048 		}
4049 	}
4050 
4051 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4052 				  dir_ino, &index);
4053 	if (ret) {
4054 		btrfs_info(fs_info,
4055 			"failed to delete reference to %.*s, inode %llu parent %llu",
4056 			name_len, name, ino, dir_ino);
4057 		btrfs_abort_transaction(trans, ret);
4058 		goto err;
4059 	}
4060 skip_backref:
4061 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4062 	if (ret) {
4063 		btrfs_abort_transaction(trans, ret);
4064 		goto err;
4065 	}
4066 
4067 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4068 					 inode, dir_ino);
4069 	if (ret != 0 && ret != -ENOENT) {
4070 		btrfs_abort_transaction(trans, ret);
4071 		goto err;
4072 	}
4073 
4074 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4075 					   dir, index);
4076 	if (ret == -ENOENT)
4077 		ret = 0;
4078 	else if (ret)
4079 		btrfs_abort_transaction(trans, ret);
4080 err:
4081 	btrfs_free_path(path);
4082 	if (ret)
4083 		goto out;
4084 
4085 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4086 	inode_inc_iversion(inode);
4087 	inode_inc_iversion(dir);
4088 	inode->i_ctime = dir->i_mtime =
4089 		dir->i_ctime = current_time(inode);
4090 	ret = btrfs_update_inode(trans, root, dir);
4091 out:
4092 	return ret;
4093 }
4094 
4095 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4096 		       struct btrfs_root *root,
4097 		       struct inode *dir, struct inode *inode,
4098 		       const char *name, int name_len)
4099 {
4100 	int ret;
4101 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4102 	if (!ret) {
4103 		drop_nlink(inode);
4104 		ret = btrfs_update_inode(trans, root, inode);
4105 	}
4106 	return ret;
4107 }
4108 
4109 /*
4110  * helper to start transaction for unlink and rmdir.
4111  *
4112  * unlink and rmdir are special in btrfs, they do not always free space, so
4113  * if we cannot make our reservations the normal way try and see if there is
4114  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4115  * allow the unlink to occur.
4116  */
4117 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4118 {
4119 	struct btrfs_root *root = BTRFS_I(dir)->root;
4120 
4121 	/*
4122 	 * 1 for the possible orphan item
4123 	 * 1 for the dir item
4124 	 * 1 for the dir index
4125 	 * 1 for the inode ref
4126 	 * 1 for the inode
4127 	 */
4128 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4129 }
4130 
4131 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4132 {
4133 	struct btrfs_root *root = BTRFS_I(dir)->root;
4134 	struct btrfs_trans_handle *trans;
4135 	struct inode *inode = d_inode(dentry);
4136 	int ret;
4137 
4138 	trans = __unlink_start_trans(dir);
4139 	if (IS_ERR(trans))
4140 		return PTR_ERR(trans);
4141 
4142 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4143 
4144 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4145 				 dentry->d_name.name, dentry->d_name.len);
4146 	if (ret)
4147 		goto out;
4148 
4149 	if (inode->i_nlink == 0) {
4150 		ret = btrfs_orphan_add(trans, inode);
4151 		if (ret)
4152 			goto out;
4153 	}
4154 
4155 out:
4156 	btrfs_end_transaction(trans);
4157 	btrfs_btree_balance_dirty(root->fs_info);
4158 	return ret;
4159 }
4160 
4161 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4162 			struct btrfs_root *root,
4163 			struct inode *dir, u64 objectid,
4164 			const char *name, int name_len)
4165 {
4166 	struct btrfs_fs_info *fs_info = root->fs_info;
4167 	struct btrfs_path *path;
4168 	struct extent_buffer *leaf;
4169 	struct btrfs_dir_item *di;
4170 	struct btrfs_key key;
4171 	u64 index;
4172 	int ret;
4173 	u64 dir_ino = btrfs_ino(dir);
4174 
4175 	path = btrfs_alloc_path();
4176 	if (!path)
4177 		return -ENOMEM;
4178 
4179 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4180 				   name, name_len, -1);
4181 	if (IS_ERR_OR_NULL(di)) {
4182 		if (!di)
4183 			ret = -ENOENT;
4184 		else
4185 			ret = PTR_ERR(di);
4186 		goto out;
4187 	}
4188 
4189 	leaf = path->nodes[0];
4190 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4191 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4192 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4193 	if (ret) {
4194 		btrfs_abort_transaction(trans, ret);
4195 		goto out;
4196 	}
4197 	btrfs_release_path(path);
4198 
4199 	ret = btrfs_del_root_ref(trans, fs_info, objectid,
4200 				 root->root_key.objectid, dir_ino,
4201 				 &index, name, name_len);
4202 	if (ret < 0) {
4203 		if (ret != -ENOENT) {
4204 			btrfs_abort_transaction(trans, ret);
4205 			goto out;
4206 		}
4207 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4208 						 name, name_len);
4209 		if (IS_ERR_OR_NULL(di)) {
4210 			if (!di)
4211 				ret = -ENOENT;
4212 			else
4213 				ret = PTR_ERR(di);
4214 			btrfs_abort_transaction(trans, ret);
4215 			goto out;
4216 		}
4217 
4218 		leaf = path->nodes[0];
4219 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4220 		btrfs_release_path(path);
4221 		index = key.offset;
4222 	}
4223 	btrfs_release_path(path);
4224 
4225 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4226 	if (ret) {
4227 		btrfs_abort_transaction(trans, ret);
4228 		goto out;
4229 	}
4230 
4231 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4232 	inode_inc_iversion(dir);
4233 	dir->i_mtime = dir->i_ctime = current_time(dir);
4234 	ret = btrfs_update_inode_fallback(trans, root, dir);
4235 	if (ret)
4236 		btrfs_abort_transaction(trans, ret);
4237 out:
4238 	btrfs_free_path(path);
4239 	return ret;
4240 }
4241 
4242 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4243 {
4244 	struct inode *inode = d_inode(dentry);
4245 	int err = 0;
4246 	struct btrfs_root *root = BTRFS_I(dir)->root;
4247 	struct btrfs_trans_handle *trans;
4248 	u64 last_unlink_trans;
4249 
4250 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4251 		return -ENOTEMPTY;
4252 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4253 		return -EPERM;
4254 
4255 	trans = __unlink_start_trans(dir);
4256 	if (IS_ERR(trans))
4257 		return PTR_ERR(trans);
4258 
4259 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4260 		err = btrfs_unlink_subvol(trans, root, dir,
4261 					  BTRFS_I(inode)->location.objectid,
4262 					  dentry->d_name.name,
4263 					  dentry->d_name.len);
4264 		goto out;
4265 	}
4266 
4267 	err = btrfs_orphan_add(trans, inode);
4268 	if (err)
4269 		goto out;
4270 
4271 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4272 
4273 	/* now the directory is empty */
4274 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4275 				 dentry->d_name.name, dentry->d_name.len);
4276 	if (!err) {
4277 		btrfs_i_size_write(inode, 0);
4278 		/*
4279 		 * Propagate the last_unlink_trans value of the deleted dir to
4280 		 * its parent directory. This is to prevent an unrecoverable
4281 		 * log tree in the case we do something like this:
4282 		 * 1) create dir foo
4283 		 * 2) create snapshot under dir foo
4284 		 * 3) delete the snapshot
4285 		 * 4) rmdir foo
4286 		 * 5) mkdir foo
4287 		 * 6) fsync foo or some file inside foo
4288 		 */
4289 		if (last_unlink_trans >= trans->transid)
4290 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4291 	}
4292 out:
4293 	btrfs_end_transaction(trans);
4294 	btrfs_btree_balance_dirty(root->fs_info);
4295 
4296 	return err;
4297 }
4298 
4299 static int truncate_space_check(struct btrfs_trans_handle *trans,
4300 				struct btrfs_root *root,
4301 				u64 bytes_deleted)
4302 {
4303 	struct btrfs_fs_info *fs_info = root->fs_info;
4304 	int ret;
4305 
4306 	/*
4307 	 * This is only used to apply pressure to the enospc system, we don't
4308 	 * intend to use this reservation at all.
4309 	 */
4310 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4311 	bytes_deleted *= fs_info->nodesize;
4312 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4313 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4314 	if (!ret) {
4315 		trace_btrfs_space_reservation(fs_info, "transaction",
4316 					      trans->transid,
4317 					      bytes_deleted, 1);
4318 		trans->bytes_reserved += bytes_deleted;
4319 	}
4320 	return ret;
4321 
4322 }
4323 
4324 static int truncate_inline_extent(struct inode *inode,
4325 				  struct btrfs_path *path,
4326 				  struct btrfs_key *found_key,
4327 				  const u64 item_end,
4328 				  const u64 new_size)
4329 {
4330 	struct extent_buffer *leaf = path->nodes[0];
4331 	int slot = path->slots[0];
4332 	struct btrfs_file_extent_item *fi;
4333 	u32 size = (u32)(new_size - found_key->offset);
4334 	struct btrfs_root *root = BTRFS_I(inode)->root;
4335 
4336 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4337 
4338 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4339 		loff_t offset = new_size;
4340 		loff_t page_end = ALIGN(offset, PAGE_SIZE);
4341 
4342 		/*
4343 		 * Zero out the remaining of the last page of our inline extent,
4344 		 * instead of directly truncating our inline extent here - that
4345 		 * would be much more complex (decompressing all the data, then
4346 		 * compressing the truncated data, which might be bigger than
4347 		 * the size of the inline extent, resize the extent, etc).
4348 		 * We release the path because to get the page we might need to
4349 		 * read the extent item from disk (data not in the page cache).
4350 		 */
4351 		btrfs_release_path(path);
4352 		return btrfs_truncate_block(inode, offset, page_end - offset,
4353 					0);
4354 	}
4355 
4356 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4357 	size = btrfs_file_extent_calc_inline_size(size);
4358 	btrfs_truncate_item(root->fs_info, path, size, 1);
4359 
4360 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4361 		inode_sub_bytes(inode, item_end + 1 - new_size);
4362 
4363 	return 0;
4364 }
4365 
4366 /*
4367  * this can truncate away extent items, csum items and directory items.
4368  * It starts at a high offset and removes keys until it can't find
4369  * any higher than new_size
4370  *
4371  * csum items that cross the new i_size are truncated to the new size
4372  * as well.
4373  *
4374  * min_type is the minimum key type to truncate down to.  If set to 0, this
4375  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4376  */
4377 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4378 			       struct btrfs_root *root,
4379 			       struct inode *inode,
4380 			       u64 new_size, u32 min_type)
4381 {
4382 	struct btrfs_fs_info *fs_info = root->fs_info;
4383 	struct btrfs_path *path;
4384 	struct extent_buffer *leaf;
4385 	struct btrfs_file_extent_item *fi;
4386 	struct btrfs_key key;
4387 	struct btrfs_key found_key;
4388 	u64 extent_start = 0;
4389 	u64 extent_num_bytes = 0;
4390 	u64 extent_offset = 0;
4391 	u64 item_end = 0;
4392 	u64 last_size = new_size;
4393 	u32 found_type = (u8)-1;
4394 	int found_extent;
4395 	int del_item;
4396 	int pending_del_nr = 0;
4397 	int pending_del_slot = 0;
4398 	int extent_type = -1;
4399 	int ret;
4400 	int err = 0;
4401 	u64 ino = btrfs_ino(inode);
4402 	u64 bytes_deleted = 0;
4403 	bool be_nice = 0;
4404 	bool should_throttle = 0;
4405 	bool should_end = 0;
4406 
4407 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4408 
4409 	/*
4410 	 * for non-free space inodes and ref cows, we want to back off from
4411 	 * time to time
4412 	 */
4413 	if (!btrfs_is_free_space_inode(inode) &&
4414 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4415 		be_nice = 1;
4416 
4417 	path = btrfs_alloc_path();
4418 	if (!path)
4419 		return -ENOMEM;
4420 	path->reada = READA_BACK;
4421 
4422 	/*
4423 	 * We want to drop from the next block forward in case this new size is
4424 	 * not block aligned since we will be keeping the last block of the
4425 	 * extent just the way it is.
4426 	 */
4427 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4428 	    root == fs_info->tree_root)
4429 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4430 					fs_info->sectorsize),
4431 					(u64)-1, 0);
4432 
4433 	/*
4434 	 * This function is also used to drop the items in the log tree before
4435 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4436 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4437 	 * items.
4438 	 */
4439 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4440 		btrfs_kill_delayed_inode_items(inode);
4441 
4442 	key.objectid = ino;
4443 	key.offset = (u64)-1;
4444 	key.type = (u8)-1;
4445 
4446 search_again:
4447 	/*
4448 	 * with a 16K leaf size and 128MB extents, you can actually queue
4449 	 * up a huge file in a single leaf.  Most of the time that
4450 	 * bytes_deleted is > 0, it will be huge by the time we get here
4451 	 */
4452 	if (be_nice && bytes_deleted > SZ_32M) {
4453 		if (btrfs_should_end_transaction(trans)) {
4454 			err = -EAGAIN;
4455 			goto error;
4456 		}
4457 	}
4458 
4459 
4460 	path->leave_spinning = 1;
4461 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4462 	if (ret < 0) {
4463 		err = ret;
4464 		goto out;
4465 	}
4466 
4467 	if (ret > 0) {
4468 		/* there are no items in the tree for us to truncate, we're
4469 		 * done
4470 		 */
4471 		if (path->slots[0] == 0)
4472 			goto out;
4473 		path->slots[0]--;
4474 	}
4475 
4476 	while (1) {
4477 		fi = NULL;
4478 		leaf = path->nodes[0];
4479 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4480 		found_type = found_key.type;
4481 
4482 		if (found_key.objectid != ino)
4483 			break;
4484 
4485 		if (found_type < min_type)
4486 			break;
4487 
4488 		item_end = found_key.offset;
4489 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4490 			fi = btrfs_item_ptr(leaf, path->slots[0],
4491 					    struct btrfs_file_extent_item);
4492 			extent_type = btrfs_file_extent_type(leaf, fi);
4493 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4494 				item_end +=
4495 				    btrfs_file_extent_num_bytes(leaf, fi);
4496 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4497 				item_end += btrfs_file_extent_inline_len(leaf,
4498 							 path->slots[0], fi);
4499 			}
4500 			item_end--;
4501 		}
4502 		if (found_type > min_type) {
4503 			del_item = 1;
4504 		} else {
4505 			if (item_end < new_size) {
4506 				/*
4507 				 * With NO_HOLES mode, for the following mapping
4508 				 *
4509 				 * [0-4k][hole][8k-12k]
4510 				 *
4511 				 * if truncating isize down to 6k, it ends up
4512 				 * isize being 8k.
4513 				 */
4514 				if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
4515 					last_size = new_size;
4516 				break;
4517 			}
4518 			if (found_key.offset >= new_size)
4519 				del_item = 1;
4520 			else
4521 				del_item = 0;
4522 		}
4523 		found_extent = 0;
4524 		/* FIXME, shrink the extent if the ref count is only 1 */
4525 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4526 			goto delete;
4527 
4528 		if (del_item)
4529 			last_size = found_key.offset;
4530 		else
4531 			last_size = new_size;
4532 
4533 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4534 			u64 num_dec;
4535 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4536 			if (!del_item) {
4537 				u64 orig_num_bytes =
4538 					btrfs_file_extent_num_bytes(leaf, fi);
4539 				extent_num_bytes = ALIGN(new_size -
4540 						found_key.offset,
4541 						fs_info->sectorsize);
4542 				btrfs_set_file_extent_num_bytes(leaf, fi,
4543 							 extent_num_bytes);
4544 				num_dec = (orig_num_bytes -
4545 					   extent_num_bytes);
4546 				if (test_bit(BTRFS_ROOT_REF_COWS,
4547 					     &root->state) &&
4548 				    extent_start != 0)
4549 					inode_sub_bytes(inode, num_dec);
4550 				btrfs_mark_buffer_dirty(leaf);
4551 			} else {
4552 				extent_num_bytes =
4553 					btrfs_file_extent_disk_num_bytes(leaf,
4554 									 fi);
4555 				extent_offset = found_key.offset -
4556 					btrfs_file_extent_offset(leaf, fi);
4557 
4558 				/* FIXME blocksize != 4096 */
4559 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4560 				if (extent_start != 0) {
4561 					found_extent = 1;
4562 					if (test_bit(BTRFS_ROOT_REF_COWS,
4563 						     &root->state))
4564 						inode_sub_bytes(inode, num_dec);
4565 				}
4566 			}
4567 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4568 			/*
4569 			 * we can't truncate inline items that have had
4570 			 * special encodings
4571 			 */
4572 			if (!del_item &&
4573 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4574 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4575 
4576 				/*
4577 				 * Need to release path in order to truncate a
4578 				 * compressed extent. So delete any accumulated
4579 				 * extent items so far.
4580 				 */
4581 				if (btrfs_file_extent_compression(leaf, fi) !=
4582 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4583 					err = btrfs_del_items(trans, root, path,
4584 							      pending_del_slot,
4585 							      pending_del_nr);
4586 					if (err) {
4587 						btrfs_abort_transaction(trans,
4588 									err);
4589 						goto error;
4590 					}
4591 					pending_del_nr = 0;
4592 				}
4593 
4594 				err = truncate_inline_extent(inode, path,
4595 							     &found_key,
4596 							     item_end,
4597 							     new_size);
4598 				if (err) {
4599 					btrfs_abort_transaction(trans, err);
4600 					goto error;
4601 				}
4602 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4603 					    &root->state)) {
4604 				inode_sub_bytes(inode, item_end + 1 - new_size);
4605 			}
4606 		}
4607 delete:
4608 		if (del_item) {
4609 			if (!pending_del_nr) {
4610 				/* no pending yet, add ourselves */
4611 				pending_del_slot = path->slots[0];
4612 				pending_del_nr = 1;
4613 			} else if (pending_del_nr &&
4614 				   path->slots[0] + 1 == pending_del_slot) {
4615 				/* hop on the pending chunk */
4616 				pending_del_nr++;
4617 				pending_del_slot = path->slots[0];
4618 			} else {
4619 				BUG();
4620 			}
4621 		} else {
4622 			break;
4623 		}
4624 		should_throttle = 0;
4625 
4626 		if (found_extent &&
4627 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4628 		     root == fs_info->tree_root)) {
4629 			btrfs_set_path_blocking(path);
4630 			bytes_deleted += extent_num_bytes;
4631 			ret = btrfs_free_extent(trans, fs_info, extent_start,
4632 						extent_num_bytes, 0,
4633 						btrfs_header_owner(leaf),
4634 						ino, extent_offset);
4635 			BUG_ON(ret);
4636 			if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4637 				btrfs_async_run_delayed_refs(fs_info,
4638 					trans->delayed_ref_updates * 2,
4639 					trans->transid, 0);
4640 			if (be_nice) {
4641 				if (truncate_space_check(trans, root,
4642 							 extent_num_bytes)) {
4643 					should_end = 1;
4644 				}
4645 				if (btrfs_should_throttle_delayed_refs(trans,
4646 								       fs_info))
4647 					should_throttle = 1;
4648 			}
4649 		}
4650 
4651 		if (found_type == BTRFS_INODE_ITEM_KEY)
4652 			break;
4653 
4654 		if (path->slots[0] == 0 ||
4655 		    path->slots[0] != pending_del_slot ||
4656 		    should_throttle || should_end) {
4657 			if (pending_del_nr) {
4658 				ret = btrfs_del_items(trans, root, path,
4659 						pending_del_slot,
4660 						pending_del_nr);
4661 				if (ret) {
4662 					btrfs_abort_transaction(trans, ret);
4663 					goto error;
4664 				}
4665 				pending_del_nr = 0;
4666 			}
4667 			btrfs_release_path(path);
4668 			if (should_throttle) {
4669 				unsigned long updates = trans->delayed_ref_updates;
4670 				if (updates) {
4671 					trans->delayed_ref_updates = 0;
4672 					ret = btrfs_run_delayed_refs(trans,
4673 								   fs_info,
4674 								   updates * 2);
4675 					if (ret && !err)
4676 						err = ret;
4677 				}
4678 			}
4679 			/*
4680 			 * if we failed to refill our space rsv, bail out
4681 			 * and let the transaction restart
4682 			 */
4683 			if (should_end) {
4684 				err = -EAGAIN;
4685 				goto error;
4686 			}
4687 			goto search_again;
4688 		} else {
4689 			path->slots[0]--;
4690 		}
4691 	}
4692 out:
4693 	if (pending_del_nr) {
4694 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4695 				      pending_del_nr);
4696 		if (ret)
4697 			btrfs_abort_transaction(trans, ret);
4698 	}
4699 error:
4700 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4701 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4702 
4703 	btrfs_free_path(path);
4704 
4705 	if (be_nice && bytes_deleted > SZ_32M) {
4706 		unsigned long updates = trans->delayed_ref_updates;
4707 		if (updates) {
4708 			trans->delayed_ref_updates = 0;
4709 			ret = btrfs_run_delayed_refs(trans, fs_info,
4710 						     updates * 2);
4711 			if (ret && !err)
4712 				err = ret;
4713 		}
4714 	}
4715 	return err;
4716 }
4717 
4718 /*
4719  * btrfs_truncate_block - read, zero a chunk and write a block
4720  * @inode - inode that we're zeroing
4721  * @from - the offset to start zeroing
4722  * @len - the length to zero, 0 to zero the entire range respective to the
4723  *	offset
4724  * @front - zero up to the offset instead of from the offset on
4725  *
4726  * This will find the block for the "from" offset and cow the block and zero the
4727  * part we want to zero.  This is used with truncate and hole punching.
4728  */
4729 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4730 			int front)
4731 {
4732 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4733 	struct address_space *mapping = inode->i_mapping;
4734 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4735 	struct btrfs_ordered_extent *ordered;
4736 	struct extent_state *cached_state = NULL;
4737 	char *kaddr;
4738 	u32 blocksize = fs_info->sectorsize;
4739 	pgoff_t index = from >> PAGE_SHIFT;
4740 	unsigned offset = from & (blocksize - 1);
4741 	struct page *page;
4742 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4743 	int ret = 0;
4744 	u64 block_start;
4745 	u64 block_end;
4746 
4747 	if ((offset & (blocksize - 1)) == 0 &&
4748 	    (!len || ((len & (blocksize - 1)) == 0)))
4749 		goto out;
4750 
4751 	ret = btrfs_delalloc_reserve_space(inode,
4752 			round_down(from, blocksize), blocksize);
4753 	if (ret)
4754 		goto out;
4755 
4756 again:
4757 	page = find_or_create_page(mapping, index, mask);
4758 	if (!page) {
4759 		btrfs_delalloc_release_space(inode,
4760 				round_down(from, blocksize),
4761 				blocksize);
4762 		ret = -ENOMEM;
4763 		goto out;
4764 	}
4765 
4766 	block_start = round_down(from, blocksize);
4767 	block_end = block_start + blocksize - 1;
4768 
4769 	if (!PageUptodate(page)) {
4770 		ret = btrfs_readpage(NULL, page);
4771 		lock_page(page);
4772 		if (page->mapping != mapping) {
4773 			unlock_page(page);
4774 			put_page(page);
4775 			goto again;
4776 		}
4777 		if (!PageUptodate(page)) {
4778 			ret = -EIO;
4779 			goto out_unlock;
4780 		}
4781 	}
4782 	wait_on_page_writeback(page);
4783 
4784 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4785 	set_page_extent_mapped(page);
4786 
4787 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4788 	if (ordered) {
4789 		unlock_extent_cached(io_tree, block_start, block_end,
4790 				     &cached_state, GFP_NOFS);
4791 		unlock_page(page);
4792 		put_page(page);
4793 		btrfs_start_ordered_extent(inode, ordered, 1);
4794 		btrfs_put_ordered_extent(ordered);
4795 		goto again;
4796 	}
4797 
4798 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4799 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4800 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4801 			  0, 0, &cached_state, GFP_NOFS);
4802 
4803 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4804 					&cached_state, 0);
4805 	if (ret) {
4806 		unlock_extent_cached(io_tree, block_start, block_end,
4807 				     &cached_state, GFP_NOFS);
4808 		goto out_unlock;
4809 	}
4810 
4811 	if (offset != blocksize) {
4812 		if (!len)
4813 			len = blocksize - offset;
4814 		kaddr = kmap(page);
4815 		if (front)
4816 			memset(kaddr + (block_start - page_offset(page)),
4817 				0, offset);
4818 		else
4819 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4820 				0, len);
4821 		flush_dcache_page(page);
4822 		kunmap(page);
4823 	}
4824 	ClearPageChecked(page);
4825 	set_page_dirty(page);
4826 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4827 			     GFP_NOFS);
4828 
4829 out_unlock:
4830 	if (ret)
4831 		btrfs_delalloc_release_space(inode, block_start,
4832 					     blocksize);
4833 	unlock_page(page);
4834 	put_page(page);
4835 out:
4836 	return ret;
4837 }
4838 
4839 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4840 			     u64 offset, u64 len)
4841 {
4842 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4843 	struct btrfs_trans_handle *trans;
4844 	int ret;
4845 
4846 	/*
4847 	 * Still need to make sure the inode looks like it's been updated so
4848 	 * that any holes get logged if we fsync.
4849 	 */
4850 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4851 		BTRFS_I(inode)->last_trans = fs_info->generation;
4852 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4853 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4854 		return 0;
4855 	}
4856 
4857 	/*
4858 	 * 1 - for the one we're dropping
4859 	 * 1 - for the one we're adding
4860 	 * 1 - for updating the inode.
4861 	 */
4862 	trans = btrfs_start_transaction(root, 3);
4863 	if (IS_ERR(trans))
4864 		return PTR_ERR(trans);
4865 
4866 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4867 	if (ret) {
4868 		btrfs_abort_transaction(trans, ret);
4869 		btrfs_end_transaction(trans);
4870 		return ret;
4871 	}
4872 
4873 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4874 				       0, 0, len, 0, len, 0, 0, 0);
4875 	if (ret)
4876 		btrfs_abort_transaction(trans, ret);
4877 	else
4878 		btrfs_update_inode(trans, root, inode);
4879 	btrfs_end_transaction(trans);
4880 	return ret;
4881 }
4882 
4883 /*
4884  * This function puts in dummy file extents for the area we're creating a hole
4885  * for.  So if we are truncating this file to a larger size we need to insert
4886  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4887  * the range between oldsize and size
4888  */
4889 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4890 {
4891 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4892 	struct btrfs_root *root = BTRFS_I(inode)->root;
4893 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4894 	struct extent_map *em = NULL;
4895 	struct extent_state *cached_state = NULL;
4896 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4897 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4898 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4899 	u64 last_byte;
4900 	u64 cur_offset;
4901 	u64 hole_size;
4902 	int err = 0;
4903 
4904 	/*
4905 	 * If our size started in the middle of a block we need to zero out the
4906 	 * rest of the block before we expand the i_size, otherwise we could
4907 	 * expose stale data.
4908 	 */
4909 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4910 	if (err)
4911 		return err;
4912 
4913 	if (size <= hole_start)
4914 		return 0;
4915 
4916 	while (1) {
4917 		struct btrfs_ordered_extent *ordered;
4918 
4919 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4920 				 &cached_state);
4921 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4922 						     block_end - hole_start);
4923 		if (!ordered)
4924 			break;
4925 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4926 				     &cached_state, GFP_NOFS);
4927 		btrfs_start_ordered_extent(inode, ordered, 1);
4928 		btrfs_put_ordered_extent(ordered);
4929 	}
4930 
4931 	cur_offset = hole_start;
4932 	while (1) {
4933 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4934 				block_end - cur_offset, 0);
4935 		if (IS_ERR(em)) {
4936 			err = PTR_ERR(em);
4937 			em = NULL;
4938 			break;
4939 		}
4940 		last_byte = min(extent_map_end(em), block_end);
4941 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4942 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4943 			struct extent_map *hole_em;
4944 			hole_size = last_byte - cur_offset;
4945 
4946 			err = maybe_insert_hole(root, inode, cur_offset,
4947 						hole_size);
4948 			if (err)
4949 				break;
4950 			btrfs_drop_extent_cache(inode, cur_offset,
4951 						cur_offset + hole_size - 1, 0);
4952 			hole_em = alloc_extent_map();
4953 			if (!hole_em) {
4954 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4955 					&BTRFS_I(inode)->runtime_flags);
4956 				goto next;
4957 			}
4958 			hole_em->start = cur_offset;
4959 			hole_em->len = hole_size;
4960 			hole_em->orig_start = cur_offset;
4961 
4962 			hole_em->block_start = EXTENT_MAP_HOLE;
4963 			hole_em->block_len = 0;
4964 			hole_em->orig_block_len = 0;
4965 			hole_em->ram_bytes = hole_size;
4966 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
4967 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4968 			hole_em->generation = fs_info->generation;
4969 
4970 			while (1) {
4971 				write_lock(&em_tree->lock);
4972 				err = add_extent_mapping(em_tree, hole_em, 1);
4973 				write_unlock(&em_tree->lock);
4974 				if (err != -EEXIST)
4975 					break;
4976 				btrfs_drop_extent_cache(inode, cur_offset,
4977 							cur_offset +
4978 							hole_size - 1, 0);
4979 			}
4980 			free_extent_map(hole_em);
4981 		}
4982 next:
4983 		free_extent_map(em);
4984 		em = NULL;
4985 		cur_offset = last_byte;
4986 		if (cur_offset >= block_end)
4987 			break;
4988 	}
4989 	free_extent_map(em);
4990 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4991 			     GFP_NOFS);
4992 	return err;
4993 }
4994 
4995 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4996 {
4997 	struct btrfs_root *root = BTRFS_I(inode)->root;
4998 	struct btrfs_trans_handle *trans;
4999 	loff_t oldsize = i_size_read(inode);
5000 	loff_t newsize = attr->ia_size;
5001 	int mask = attr->ia_valid;
5002 	int ret;
5003 
5004 	/*
5005 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5006 	 * special case where we need to update the times despite not having
5007 	 * these flags set.  For all other operations the VFS set these flags
5008 	 * explicitly if it wants a timestamp update.
5009 	 */
5010 	if (newsize != oldsize) {
5011 		inode_inc_iversion(inode);
5012 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5013 			inode->i_ctime = inode->i_mtime =
5014 				current_time(inode);
5015 	}
5016 
5017 	if (newsize > oldsize) {
5018 		/*
5019 		 * Don't do an expanding truncate while snapshoting is ongoing.
5020 		 * This is to ensure the snapshot captures a fully consistent
5021 		 * state of this file - if the snapshot captures this expanding
5022 		 * truncation, it must capture all writes that happened before
5023 		 * this truncation.
5024 		 */
5025 		btrfs_wait_for_snapshot_creation(root);
5026 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5027 		if (ret) {
5028 			btrfs_end_write_no_snapshoting(root);
5029 			return ret;
5030 		}
5031 
5032 		trans = btrfs_start_transaction(root, 1);
5033 		if (IS_ERR(trans)) {
5034 			btrfs_end_write_no_snapshoting(root);
5035 			return PTR_ERR(trans);
5036 		}
5037 
5038 		i_size_write(inode, newsize);
5039 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5040 		pagecache_isize_extended(inode, oldsize, newsize);
5041 		ret = btrfs_update_inode(trans, root, inode);
5042 		btrfs_end_write_no_snapshoting(root);
5043 		btrfs_end_transaction(trans);
5044 	} else {
5045 
5046 		/*
5047 		 * We're truncating a file that used to have good data down to
5048 		 * zero. Make sure it gets into the ordered flush list so that
5049 		 * any new writes get down to disk quickly.
5050 		 */
5051 		if (newsize == 0)
5052 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5053 				&BTRFS_I(inode)->runtime_flags);
5054 
5055 		/*
5056 		 * 1 for the orphan item we're going to add
5057 		 * 1 for the orphan item deletion.
5058 		 */
5059 		trans = btrfs_start_transaction(root, 2);
5060 		if (IS_ERR(trans))
5061 			return PTR_ERR(trans);
5062 
5063 		/*
5064 		 * We need to do this in case we fail at _any_ point during the
5065 		 * actual truncate.  Once we do the truncate_setsize we could
5066 		 * invalidate pages which forces any outstanding ordered io to
5067 		 * be instantly completed which will give us extents that need
5068 		 * to be truncated.  If we fail to get an orphan inode down we
5069 		 * could have left over extents that were never meant to live,
5070 		 * so we need to guarantee from this point on that everything
5071 		 * will be consistent.
5072 		 */
5073 		ret = btrfs_orphan_add(trans, inode);
5074 		btrfs_end_transaction(trans);
5075 		if (ret)
5076 			return ret;
5077 
5078 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5079 		truncate_setsize(inode, newsize);
5080 
5081 		/* Disable nonlocked read DIO to avoid the end less truncate */
5082 		btrfs_inode_block_unlocked_dio(inode);
5083 		inode_dio_wait(inode);
5084 		btrfs_inode_resume_unlocked_dio(inode);
5085 
5086 		ret = btrfs_truncate(inode);
5087 		if (ret && inode->i_nlink) {
5088 			int err;
5089 
5090 			/*
5091 			 * failed to truncate, disk_i_size is only adjusted down
5092 			 * as we remove extents, so it should represent the true
5093 			 * size of the inode, so reset the in memory size and
5094 			 * delete our orphan entry.
5095 			 */
5096 			trans = btrfs_join_transaction(root);
5097 			if (IS_ERR(trans)) {
5098 				btrfs_orphan_del(NULL, inode);
5099 				return ret;
5100 			}
5101 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5102 			err = btrfs_orphan_del(trans, inode);
5103 			if (err)
5104 				btrfs_abort_transaction(trans, err);
5105 			btrfs_end_transaction(trans);
5106 		}
5107 	}
5108 
5109 	return ret;
5110 }
5111 
5112 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5113 {
5114 	struct inode *inode = d_inode(dentry);
5115 	struct btrfs_root *root = BTRFS_I(inode)->root;
5116 	int err;
5117 
5118 	if (btrfs_root_readonly(root))
5119 		return -EROFS;
5120 
5121 	err = setattr_prepare(dentry, attr);
5122 	if (err)
5123 		return err;
5124 
5125 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5126 		err = btrfs_setsize(inode, attr);
5127 		if (err)
5128 			return err;
5129 	}
5130 
5131 	if (attr->ia_valid) {
5132 		setattr_copy(inode, attr);
5133 		inode_inc_iversion(inode);
5134 		err = btrfs_dirty_inode(inode);
5135 
5136 		if (!err && attr->ia_valid & ATTR_MODE)
5137 			err = posix_acl_chmod(inode, inode->i_mode);
5138 	}
5139 
5140 	return err;
5141 }
5142 
5143 /*
5144  * While truncating the inode pages during eviction, we get the VFS calling
5145  * btrfs_invalidatepage() against each page of the inode. This is slow because
5146  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5147  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5148  * extent_state structures over and over, wasting lots of time.
5149  *
5150  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5151  * those expensive operations on a per page basis and do only the ordered io
5152  * finishing, while we release here the extent_map and extent_state structures,
5153  * without the excessive merging and splitting.
5154  */
5155 static void evict_inode_truncate_pages(struct inode *inode)
5156 {
5157 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5158 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5159 	struct rb_node *node;
5160 
5161 	ASSERT(inode->i_state & I_FREEING);
5162 	truncate_inode_pages_final(&inode->i_data);
5163 
5164 	write_lock(&map_tree->lock);
5165 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5166 		struct extent_map *em;
5167 
5168 		node = rb_first(&map_tree->map);
5169 		em = rb_entry(node, struct extent_map, rb_node);
5170 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5171 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5172 		remove_extent_mapping(map_tree, em);
5173 		free_extent_map(em);
5174 		if (need_resched()) {
5175 			write_unlock(&map_tree->lock);
5176 			cond_resched();
5177 			write_lock(&map_tree->lock);
5178 		}
5179 	}
5180 	write_unlock(&map_tree->lock);
5181 
5182 	/*
5183 	 * Keep looping until we have no more ranges in the io tree.
5184 	 * We can have ongoing bios started by readpages (called from readahead)
5185 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5186 	 * still in progress (unlocked the pages in the bio but did not yet
5187 	 * unlocked the ranges in the io tree). Therefore this means some
5188 	 * ranges can still be locked and eviction started because before
5189 	 * submitting those bios, which are executed by a separate task (work
5190 	 * queue kthread), inode references (inode->i_count) were not taken
5191 	 * (which would be dropped in the end io callback of each bio).
5192 	 * Therefore here we effectively end up waiting for those bios and
5193 	 * anyone else holding locked ranges without having bumped the inode's
5194 	 * reference count - if we don't do it, when they access the inode's
5195 	 * io_tree to unlock a range it may be too late, leading to an
5196 	 * use-after-free issue.
5197 	 */
5198 	spin_lock(&io_tree->lock);
5199 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5200 		struct extent_state *state;
5201 		struct extent_state *cached_state = NULL;
5202 		u64 start;
5203 		u64 end;
5204 
5205 		node = rb_first(&io_tree->state);
5206 		state = rb_entry(node, struct extent_state, rb_node);
5207 		start = state->start;
5208 		end = state->end;
5209 		spin_unlock(&io_tree->lock);
5210 
5211 		lock_extent_bits(io_tree, start, end, &cached_state);
5212 
5213 		/*
5214 		 * If still has DELALLOC flag, the extent didn't reach disk,
5215 		 * and its reserved space won't be freed by delayed_ref.
5216 		 * So we need to free its reserved space here.
5217 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5218 		 *
5219 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5220 		 */
5221 		if (state->state & EXTENT_DELALLOC)
5222 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5223 
5224 		clear_extent_bit(io_tree, start, end,
5225 				 EXTENT_LOCKED | EXTENT_DIRTY |
5226 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5227 				 EXTENT_DEFRAG, 1, 1,
5228 				 &cached_state, GFP_NOFS);
5229 
5230 		cond_resched();
5231 		spin_lock(&io_tree->lock);
5232 	}
5233 	spin_unlock(&io_tree->lock);
5234 }
5235 
5236 void btrfs_evict_inode(struct inode *inode)
5237 {
5238 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5239 	struct btrfs_trans_handle *trans;
5240 	struct btrfs_root *root = BTRFS_I(inode)->root;
5241 	struct btrfs_block_rsv *rsv, *global_rsv;
5242 	int steal_from_global = 0;
5243 	u64 min_size;
5244 	int ret;
5245 
5246 	trace_btrfs_inode_evict(inode);
5247 
5248 	if (!root) {
5249 		kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5250 		return;
5251 	}
5252 
5253 	min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5254 
5255 	evict_inode_truncate_pages(inode);
5256 
5257 	if (inode->i_nlink &&
5258 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5259 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5260 	     btrfs_is_free_space_inode(inode)))
5261 		goto no_delete;
5262 
5263 	if (is_bad_inode(inode)) {
5264 		btrfs_orphan_del(NULL, inode);
5265 		goto no_delete;
5266 	}
5267 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5268 	if (!special_file(inode->i_mode))
5269 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5270 
5271 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5272 
5273 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5274 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5275 				 &BTRFS_I(inode)->runtime_flags));
5276 		goto no_delete;
5277 	}
5278 
5279 	if (inode->i_nlink > 0) {
5280 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5281 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5282 		goto no_delete;
5283 	}
5284 
5285 	ret = btrfs_commit_inode_delayed_inode(inode);
5286 	if (ret) {
5287 		btrfs_orphan_del(NULL, inode);
5288 		goto no_delete;
5289 	}
5290 
5291 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5292 	if (!rsv) {
5293 		btrfs_orphan_del(NULL, inode);
5294 		goto no_delete;
5295 	}
5296 	rsv->size = min_size;
5297 	rsv->failfast = 1;
5298 	global_rsv = &fs_info->global_block_rsv;
5299 
5300 	btrfs_i_size_write(inode, 0);
5301 
5302 	/*
5303 	 * This is a bit simpler than btrfs_truncate since we've already
5304 	 * reserved our space for our orphan item in the unlink, so we just
5305 	 * need to reserve some slack space in case we add bytes and update
5306 	 * inode item when doing the truncate.
5307 	 */
5308 	while (1) {
5309 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5310 					     BTRFS_RESERVE_FLUSH_LIMIT);
5311 
5312 		/*
5313 		 * Try and steal from the global reserve since we will
5314 		 * likely not use this space anyway, we want to try as
5315 		 * hard as possible to get this to work.
5316 		 */
5317 		if (ret)
5318 			steal_from_global++;
5319 		else
5320 			steal_from_global = 0;
5321 		ret = 0;
5322 
5323 		/*
5324 		 * steal_from_global == 0: we reserved stuff, hooray!
5325 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5326 		 * steal_from_global == 2: we've committed, still not a lot of
5327 		 * room but maybe we'll have room in the global reserve this
5328 		 * time.
5329 		 * steal_from_global == 3: abandon all hope!
5330 		 */
5331 		if (steal_from_global > 2) {
5332 			btrfs_warn(fs_info,
5333 				   "Could not get space for a delete, will truncate on mount %d",
5334 				   ret);
5335 			btrfs_orphan_del(NULL, inode);
5336 			btrfs_free_block_rsv(fs_info, rsv);
5337 			goto no_delete;
5338 		}
5339 
5340 		trans = btrfs_join_transaction(root);
5341 		if (IS_ERR(trans)) {
5342 			btrfs_orphan_del(NULL, inode);
5343 			btrfs_free_block_rsv(fs_info, rsv);
5344 			goto no_delete;
5345 		}
5346 
5347 		/*
5348 		 * We can't just steal from the global reserve, we need to make
5349 		 * sure there is room to do it, if not we need to commit and try
5350 		 * again.
5351 		 */
5352 		if (steal_from_global) {
5353 			if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5354 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5355 							      min_size, 0);
5356 			else
5357 				ret = -ENOSPC;
5358 		}
5359 
5360 		/*
5361 		 * Couldn't steal from the global reserve, we have too much
5362 		 * pending stuff built up, commit the transaction and try it
5363 		 * again.
5364 		 */
5365 		if (ret) {
5366 			ret = btrfs_commit_transaction(trans);
5367 			if (ret) {
5368 				btrfs_orphan_del(NULL, inode);
5369 				btrfs_free_block_rsv(fs_info, rsv);
5370 				goto no_delete;
5371 			}
5372 			continue;
5373 		} else {
5374 			steal_from_global = 0;
5375 		}
5376 
5377 		trans->block_rsv = rsv;
5378 
5379 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5380 		if (ret != -ENOSPC && ret != -EAGAIN)
5381 			break;
5382 
5383 		trans->block_rsv = &fs_info->trans_block_rsv;
5384 		btrfs_end_transaction(trans);
5385 		trans = NULL;
5386 		btrfs_btree_balance_dirty(fs_info);
5387 	}
5388 
5389 	btrfs_free_block_rsv(fs_info, rsv);
5390 
5391 	/*
5392 	 * Errors here aren't a big deal, it just means we leave orphan items
5393 	 * in the tree.  They will be cleaned up on the next mount.
5394 	 */
5395 	if (ret == 0) {
5396 		trans->block_rsv = root->orphan_block_rsv;
5397 		btrfs_orphan_del(trans, inode);
5398 	} else {
5399 		btrfs_orphan_del(NULL, inode);
5400 	}
5401 
5402 	trans->block_rsv = &fs_info->trans_block_rsv;
5403 	if (!(root == fs_info->tree_root ||
5404 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5405 		btrfs_return_ino(root, btrfs_ino(inode));
5406 
5407 	btrfs_end_transaction(trans);
5408 	btrfs_btree_balance_dirty(fs_info);
5409 no_delete:
5410 	btrfs_remove_delayed_node(inode);
5411 	clear_inode(inode);
5412 }
5413 
5414 /*
5415  * this returns the key found in the dir entry in the location pointer.
5416  * If no dir entries were found, location->objectid is 0.
5417  */
5418 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5419 			       struct btrfs_key *location)
5420 {
5421 	const char *name = dentry->d_name.name;
5422 	int namelen = dentry->d_name.len;
5423 	struct btrfs_dir_item *di;
5424 	struct btrfs_path *path;
5425 	struct btrfs_root *root = BTRFS_I(dir)->root;
5426 	int ret = 0;
5427 
5428 	path = btrfs_alloc_path();
5429 	if (!path)
5430 		return -ENOMEM;
5431 
5432 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5433 				    namelen, 0);
5434 	if (IS_ERR(di))
5435 		ret = PTR_ERR(di);
5436 
5437 	if (IS_ERR_OR_NULL(di))
5438 		goto out_err;
5439 
5440 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5441 out:
5442 	btrfs_free_path(path);
5443 	return ret;
5444 out_err:
5445 	location->objectid = 0;
5446 	goto out;
5447 }
5448 
5449 /*
5450  * when we hit a tree root in a directory, the btrfs part of the inode
5451  * needs to be changed to reflect the root directory of the tree root.  This
5452  * is kind of like crossing a mount point.
5453  */
5454 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5455 				    struct inode *dir,
5456 				    struct dentry *dentry,
5457 				    struct btrfs_key *location,
5458 				    struct btrfs_root **sub_root)
5459 {
5460 	struct btrfs_path *path;
5461 	struct btrfs_root *new_root;
5462 	struct btrfs_root_ref *ref;
5463 	struct extent_buffer *leaf;
5464 	struct btrfs_key key;
5465 	int ret;
5466 	int err = 0;
5467 
5468 	path = btrfs_alloc_path();
5469 	if (!path) {
5470 		err = -ENOMEM;
5471 		goto out;
5472 	}
5473 
5474 	err = -ENOENT;
5475 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5476 	key.type = BTRFS_ROOT_REF_KEY;
5477 	key.offset = location->objectid;
5478 
5479 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5480 	if (ret) {
5481 		if (ret < 0)
5482 			err = ret;
5483 		goto out;
5484 	}
5485 
5486 	leaf = path->nodes[0];
5487 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5488 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5489 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5490 		goto out;
5491 
5492 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5493 				   (unsigned long)(ref + 1),
5494 				   dentry->d_name.len);
5495 	if (ret)
5496 		goto out;
5497 
5498 	btrfs_release_path(path);
5499 
5500 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5501 	if (IS_ERR(new_root)) {
5502 		err = PTR_ERR(new_root);
5503 		goto out;
5504 	}
5505 
5506 	*sub_root = new_root;
5507 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5508 	location->type = BTRFS_INODE_ITEM_KEY;
5509 	location->offset = 0;
5510 	err = 0;
5511 out:
5512 	btrfs_free_path(path);
5513 	return err;
5514 }
5515 
5516 static void inode_tree_add(struct inode *inode)
5517 {
5518 	struct btrfs_root *root = BTRFS_I(inode)->root;
5519 	struct btrfs_inode *entry;
5520 	struct rb_node **p;
5521 	struct rb_node *parent;
5522 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5523 	u64 ino = btrfs_ino(inode);
5524 
5525 	if (inode_unhashed(inode))
5526 		return;
5527 	parent = NULL;
5528 	spin_lock(&root->inode_lock);
5529 	p = &root->inode_tree.rb_node;
5530 	while (*p) {
5531 		parent = *p;
5532 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5533 
5534 		if (ino < btrfs_ino(&entry->vfs_inode))
5535 			p = &parent->rb_left;
5536 		else if (ino > btrfs_ino(&entry->vfs_inode))
5537 			p = &parent->rb_right;
5538 		else {
5539 			WARN_ON(!(entry->vfs_inode.i_state &
5540 				  (I_WILL_FREE | I_FREEING)));
5541 			rb_replace_node(parent, new, &root->inode_tree);
5542 			RB_CLEAR_NODE(parent);
5543 			spin_unlock(&root->inode_lock);
5544 			return;
5545 		}
5546 	}
5547 	rb_link_node(new, parent, p);
5548 	rb_insert_color(new, &root->inode_tree);
5549 	spin_unlock(&root->inode_lock);
5550 }
5551 
5552 static void inode_tree_del(struct inode *inode)
5553 {
5554 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5555 	struct btrfs_root *root = BTRFS_I(inode)->root;
5556 	int empty = 0;
5557 
5558 	spin_lock(&root->inode_lock);
5559 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5560 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5561 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5562 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5563 	}
5564 	spin_unlock(&root->inode_lock);
5565 
5566 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5567 		synchronize_srcu(&fs_info->subvol_srcu);
5568 		spin_lock(&root->inode_lock);
5569 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5570 		spin_unlock(&root->inode_lock);
5571 		if (empty)
5572 			btrfs_add_dead_root(root);
5573 	}
5574 }
5575 
5576 void btrfs_invalidate_inodes(struct btrfs_root *root)
5577 {
5578 	struct btrfs_fs_info *fs_info = root->fs_info;
5579 	struct rb_node *node;
5580 	struct rb_node *prev;
5581 	struct btrfs_inode *entry;
5582 	struct inode *inode;
5583 	u64 objectid = 0;
5584 
5585 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5586 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5587 
5588 	spin_lock(&root->inode_lock);
5589 again:
5590 	node = root->inode_tree.rb_node;
5591 	prev = NULL;
5592 	while (node) {
5593 		prev = node;
5594 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5595 
5596 		if (objectid < btrfs_ino(&entry->vfs_inode))
5597 			node = node->rb_left;
5598 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5599 			node = node->rb_right;
5600 		else
5601 			break;
5602 	}
5603 	if (!node) {
5604 		while (prev) {
5605 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5606 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5607 				node = prev;
5608 				break;
5609 			}
5610 			prev = rb_next(prev);
5611 		}
5612 	}
5613 	while (node) {
5614 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5615 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5616 		inode = igrab(&entry->vfs_inode);
5617 		if (inode) {
5618 			spin_unlock(&root->inode_lock);
5619 			if (atomic_read(&inode->i_count) > 1)
5620 				d_prune_aliases(inode);
5621 			/*
5622 			 * btrfs_drop_inode will have it removed from
5623 			 * the inode cache when its usage count
5624 			 * hits zero.
5625 			 */
5626 			iput(inode);
5627 			cond_resched();
5628 			spin_lock(&root->inode_lock);
5629 			goto again;
5630 		}
5631 
5632 		if (cond_resched_lock(&root->inode_lock))
5633 			goto again;
5634 
5635 		node = rb_next(node);
5636 	}
5637 	spin_unlock(&root->inode_lock);
5638 }
5639 
5640 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5641 {
5642 	struct btrfs_iget_args *args = p;
5643 	inode->i_ino = args->location->objectid;
5644 	memcpy(&BTRFS_I(inode)->location, args->location,
5645 	       sizeof(*args->location));
5646 	BTRFS_I(inode)->root = args->root;
5647 	return 0;
5648 }
5649 
5650 static int btrfs_find_actor(struct inode *inode, void *opaque)
5651 {
5652 	struct btrfs_iget_args *args = opaque;
5653 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5654 		args->root == BTRFS_I(inode)->root;
5655 }
5656 
5657 static struct inode *btrfs_iget_locked(struct super_block *s,
5658 				       struct btrfs_key *location,
5659 				       struct btrfs_root *root)
5660 {
5661 	struct inode *inode;
5662 	struct btrfs_iget_args args;
5663 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5664 
5665 	args.location = location;
5666 	args.root = root;
5667 
5668 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5669 			     btrfs_init_locked_inode,
5670 			     (void *)&args);
5671 	return inode;
5672 }
5673 
5674 /* Get an inode object given its location and corresponding root.
5675  * Returns in *is_new if the inode was read from disk
5676  */
5677 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5678 			 struct btrfs_root *root, int *new)
5679 {
5680 	struct inode *inode;
5681 
5682 	inode = btrfs_iget_locked(s, location, root);
5683 	if (!inode)
5684 		return ERR_PTR(-ENOMEM);
5685 
5686 	if (inode->i_state & I_NEW) {
5687 		int ret;
5688 
5689 		ret = btrfs_read_locked_inode(inode);
5690 		if (!is_bad_inode(inode)) {
5691 			inode_tree_add(inode);
5692 			unlock_new_inode(inode);
5693 			if (new)
5694 				*new = 1;
5695 		} else {
5696 			unlock_new_inode(inode);
5697 			iput(inode);
5698 			ASSERT(ret < 0);
5699 			inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5700 		}
5701 	}
5702 
5703 	return inode;
5704 }
5705 
5706 static struct inode *new_simple_dir(struct super_block *s,
5707 				    struct btrfs_key *key,
5708 				    struct btrfs_root *root)
5709 {
5710 	struct inode *inode = new_inode(s);
5711 
5712 	if (!inode)
5713 		return ERR_PTR(-ENOMEM);
5714 
5715 	BTRFS_I(inode)->root = root;
5716 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5717 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5718 
5719 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5720 	inode->i_op = &btrfs_dir_ro_inode_operations;
5721 	inode->i_opflags &= ~IOP_XATTR;
5722 	inode->i_fop = &simple_dir_operations;
5723 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5724 	inode->i_mtime = current_time(inode);
5725 	inode->i_atime = inode->i_mtime;
5726 	inode->i_ctime = inode->i_mtime;
5727 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5728 
5729 	return inode;
5730 }
5731 
5732 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5733 {
5734 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5735 	struct inode *inode;
5736 	struct btrfs_root *root = BTRFS_I(dir)->root;
5737 	struct btrfs_root *sub_root = root;
5738 	struct btrfs_key location;
5739 	int index;
5740 	int ret = 0;
5741 
5742 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5743 		return ERR_PTR(-ENAMETOOLONG);
5744 
5745 	ret = btrfs_inode_by_name(dir, dentry, &location);
5746 	if (ret < 0)
5747 		return ERR_PTR(ret);
5748 
5749 	if (location.objectid == 0)
5750 		return ERR_PTR(-ENOENT);
5751 
5752 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5753 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5754 		return inode;
5755 	}
5756 
5757 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5758 
5759 	index = srcu_read_lock(&fs_info->subvol_srcu);
5760 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5761 				       &location, &sub_root);
5762 	if (ret < 0) {
5763 		if (ret != -ENOENT)
5764 			inode = ERR_PTR(ret);
5765 		else
5766 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5767 	} else {
5768 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5769 	}
5770 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5771 
5772 	if (!IS_ERR(inode) && root != sub_root) {
5773 		down_read(&fs_info->cleanup_work_sem);
5774 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5775 			ret = btrfs_orphan_cleanup(sub_root);
5776 		up_read(&fs_info->cleanup_work_sem);
5777 		if (ret) {
5778 			iput(inode);
5779 			inode = ERR_PTR(ret);
5780 		}
5781 	}
5782 
5783 	return inode;
5784 }
5785 
5786 static int btrfs_dentry_delete(const struct dentry *dentry)
5787 {
5788 	struct btrfs_root *root;
5789 	struct inode *inode = d_inode(dentry);
5790 
5791 	if (!inode && !IS_ROOT(dentry))
5792 		inode = d_inode(dentry->d_parent);
5793 
5794 	if (inode) {
5795 		root = BTRFS_I(inode)->root;
5796 		if (btrfs_root_refs(&root->root_item) == 0)
5797 			return 1;
5798 
5799 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5800 			return 1;
5801 	}
5802 	return 0;
5803 }
5804 
5805 static void btrfs_dentry_release(struct dentry *dentry)
5806 {
5807 	kfree(dentry->d_fsdata);
5808 }
5809 
5810 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5811 				   unsigned int flags)
5812 {
5813 	struct inode *inode;
5814 
5815 	inode = btrfs_lookup_dentry(dir, dentry);
5816 	if (IS_ERR(inode)) {
5817 		if (PTR_ERR(inode) == -ENOENT)
5818 			inode = NULL;
5819 		else
5820 			return ERR_CAST(inode);
5821 	}
5822 
5823 	return d_splice_alias(inode, dentry);
5824 }
5825 
5826 unsigned char btrfs_filetype_table[] = {
5827 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5828 };
5829 
5830 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5831 {
5832 	struct inode *inode = file_inode(file);
5833 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5834 	struct btrfs_root *root = BTRFS_I(inode)->root;
5835 	struct btrfs_item *item;
5836 	struct btrfs_dir_item *di;
5837 	struct btrfs_key key;
5838 	struct btrfs_key found_key;
5839 	struct btrfs_path *path;
5840 	struct list_head ins_list;
5841 	struct list_head del_list;
5842 	int ret;
5843 	struct extent_buffer *leaf;
5844 	int slot;
5845 	unsigned char d_type;
5846 	int over = 0;
5847 	char tmp_name[32];
5848 	char *name_ptr;
5849 	int name_len;
5850 	bool put = false;
5851 	struct btrfs_key location;
5852 
5853 	if (!dir_emit_dots(file, ctx))
5854 		return 0;
5855 
5856 	path = btrfs_alloc_path();
5857 	if (!path)
5858 		return -ENOMEM;
5859 
5860 	path->reada = READA_FORWARD;
5861 
5862 	INIT_LIST_HEAD(&ins_list);
5863 	INIT_LIST_HEAD(&del_list);
5864 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5865 
5866 	key.type = BTRFS_DIR_INDEX_KEY;
5867 	key.offset = ctx->pos;
5868 	key.objectid = btrfs_ino(inode);
5869 
5870 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5871 	if (ret < 0)
5872 		goto err;
5873 
5874 	while (1) {
5875 		leaf = path->nodes[0];
5876 		slot = path->slots[0];
5877 		if (slot >= btrfs_header_nritems(leaf)) {
5878 			ret = btrfs_next_leaf(root, path);
5879 			if (ret < 0)
5880 				goto err;
5881 			else if (ret > 0)
5882 				break;
5883 			continue;
5884 		}
5885 
5886 		item = btrfs_item_nr(slot);
5887 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5888 
5889 		if (found_key.objectid != key.objectid)
5890 			break;
5891 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5892 			break;
5893 		if (found_key.offset < ctx->pos)
5894 			goto next;
5895 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5896 			goto next;
5897 
5898 		ctx->pos = found_key.offset;
5899 
5900 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5901 		if (verify_dir_item(fs_info, leaf, di))
5902 			goto next;
5903 
5904 		name_len = btrfs_dir_name_len(leaf, di);
5905 		if (name_len <= sizeof(tmp_name)) {
5906 			name_ptr = tmp_name;
5907 		} else {
5908 			name_ptr = kmalloc(name_len, GFP_KERNEL);
5909 			if (!name_ptr) {
5910 				ret = -ENOMEM;
5911 				goto err;
5912 			}
5913 		}
5914 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5915 				   name_len);
5916 
5917 		d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5918 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5919 
5920 		over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5921 				 d_type);
5922 
5923 		if (name_ptr != tmp_name)
5924 			kfree(name_ptr);
5925 
5926 		if (over)
5927 			goto nopos;
5928 		ctx->pos++;
5929 next:
5930 		path->slots[0]++;
5931 	}
5932 
5933 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5934 	if (ret)
5935 		goto nopos;
5936 
5937 	/*
5938 	 * Stop new entries from being returned after we return the last
5939 	 * entry.
5940 	 *
5941 	 * New directory entries are assigned a strictly increasing
5942 	 * offset.  This means that new entries created during readdir
5943 	 * are *guaranteed* to be seen in the future by that readdir.
5944 	 * This has broken buggy programs which operate on names as
5945 	 * they're returned by readdir.  Until we re-use freed offsets
5946 	 * we have this hack to stop new entries from being returned
5947 	 * under the assumption that they'll never reach this huge
5948 	 * offset.
5949 	 *
5950 	 * This is being careful not to overflow 32bit loff_t unless the
5951 	 * last entry requires it because doing so has broken 32bit apps
5952 	 * in the past.
5953 	 */
5954 	if (ctx->pos >= INT_MAX)
5955 		ctx->pos = LLONG_MAX;
5956 	else
5957 		ctx->pos = INT_MAX;
5958 nopos:
5959 	ret = 0;
5960 err:
5961 	if (put)
5962 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5963 	btrfs_free_path(path);
5964 	return ret;
5965 }
5966 
5967 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5968 {
5969 	struct btrfs_root *root = BTRFS_I(inode)->root;
5970 	struct btrfs_trans_handle *trans;
5971 	int ret = 0;
5972 	bool nolock = false;
5973 
5974 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5975 		return 0;
5976 
5977 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5978 		nolock = true;
5979 
5980 	if (wbc->sync_mode == WB_SYNC_ALL) {
5981 		if (nolock)
5982 			trans = btrfs_join_transaction_nolock(root);
5983 		else
5984 			trans = btrfs_join_transaction(root);
5985 		if (IS_ERR(trans))
5986 			return PTR_ERR(trans);
5987 		ret = btrfs_commit_transaction(trans);
5988 	}
5989 	return ret;
5990 }
5991 
5992 /*
5993  * This is somewhat expensive, updating the tree every time the
5994  * inode changes.  But, it is most likely to find the inode in cache.
5995  * FIXME, needs more benchmarking...there are no reasons other than performance
5996  * to keep or drop this code.
5997  */
5998 static int btrfs_dirty_inode(struct inode *inode)
5999 {
6000 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6001 	struct btrfs_root *root = BTRFS_I(inode)->root;
6002 	struct btrfs_trans_handle *trans;
6003 	int ret;
6004 
6005 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6006 		return 0;
6007 
6008 	trans = btrfs_join_transaction(root);
6009 	if (IS_ERR(trans))
6010 		return PTR_ERR(trans);
6011 
6012 	ret = btrfs_update_inode(trans, root, inode);
6013 	if (ret && ret == -ENOSPC) {
6014 		/* whoops, lets try again with the full transaction */
6015 		btrfs_end_transaction(trans);
6016 		trans = btrfs_start_transaction(root, 1);
6017 		if (IS_ERR(trans))
6018 			return PTR_ERR(trans);
6019 
6020 		ret = btrfs_update_inode(trans, root, inode);
6021 	}
6022 	btrfs_end_transaction(trans);
6023 	if (BTRFS_I(inode)->delayed_node)
6024 		btrfs_balance_delayed_items(fs_info);
6025 
6026 	return ret;
6027 }
6028 
6029 /*
6030  * This is a copy of file_update_time.  We need this so we can return error on
6031  * ENOSPC for updating the inode in the case of file write and mmap writes.
6032  */
6033 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6034 			     int flags)
6035 {
6036 	struct btrfs_root *root = BTRFS_I(inode)->root;
6037 
6038 	if (btrfs_root_readonly(root))
6039 		return -EROFS;
6040 
6041 	if (flags & S_VERSION)
6042 		inode_inc_iversion(inode);
6043 	if (flags & S_CTIME)
6044 		inode->i_ctime = *now;
6045 	if (flags & S_MTIME)
6046 		inode->i_mtime = *now;
6047 	if (flags & S_ATIME)
6048 		inode->i_atime = *now;
6049 	return btrfs_dirty_inode(inode);
6050 }
6051 
6052 /*
6053  * find the highest existing sequence number in a directory
6054  * and then set the in-memory index_cnt variable to reflect
6055  * free sequence numbers
6056  */
6057 static int btrfs_set_inode_index_count(struct inode *inode)
6058 {
6059 	struct btrfs_root *root = BTRFS_I(inode)->root;
6060 	struct btrfs_key key, found_key;
6061 	struct btrfs_path *path;
6062 	struct extent_buffer *leaf;
6063 	int ret;
6064 
6065 	key.objectid = btrfs_ino(inode);
6066 	key.type = BTRFS_DIR_INDEX_KEY;
6067 	key.offset = (u64)-1;
6068 
6069 	path = btrfs_alloc_path();
6070 	if (!path)
6071 		return -ENOMEM;
6072 
6073 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6074 	if (ret < 0)
6075 		goto out;
6076 	/* FIXME: we should be able to handle this */
6077 	if (ret == 0)
6078 		goto out;
6079 	ret = 0;
6080 
6081 	/*
6082 	 * MAGIC NUMBER EXPLANATION:
6083 	 * since we search a directory based on f_pos we have to start at 2
6084 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6085 	 * else has to start at 2
6086 	 */
6087 	if (path->slots[0] == 0) {
6088 		BTRFS_I(inode)->index_cnt = 2;
6089 		goto out;
6090 	}
6091 
6092 	path->slots[0]--;
6093 
6094 	leaf = path->nodes[0];
6095 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6096 
6097 	if (found_key.objectid != btrfs_ino(inode) ||
6098 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6099 		BTRFS_I(inode)->index_cnt = 2;
6100 		goto out;
6101 	}
6102 
6103 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6104 out:
6105 	btrfs_free_path(path);
6106 	return ret;
6107 }
6108 
6109 /*
6110  * helper to find a free sequence number in a given directory.  This current
6111  * code is very simple, later versions will do smarter things in the btree
6112  */
6113 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6114 {
6115 	int ret = 0;
6116 
6117 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6118 		ret = btrfs_inode_delayed_dir_index_count(dir);
6119 		if (ret) {
6120 			ret = btrfs_set_inode_index_count(dir);
6121 			if (ret)
6122 				return ret;
6123 		}
6124 	}
6125 
6126 	*index = BTRFS_I(dir)->index_cnt;
6127 	BTRFS_I(dir)->index_cnt++;
6128 
6129 	return ret;
6130 }
6131 
6132 static int btrfs_insert_inode_locked(struct inode *inode)
6133 {
6134 	struct btrfs_iget_args args;
6135 	args.location = &BTRFS_I(inode)->location;
6136 	args.root = BTRFS_I(inode)->root;
6137 
6138 	return insert_inode_locked4(inode,
6139 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6140 		   btrfs_find_actor, &args);
6141 }
6142 
6143 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6144 				     struct btrfs_root *root,
6145 				     struct inode *dir,
6146 				     const char *name, int name_len,
6147 				     u64 ref_objectid, u64 objectid,
6148 				     umode_t mode, u64 *index)
6149 {
6150 	struct btrfs_fs_info *fs_info = root->fs_info;
6151 	struct inode *inode;
6152 	struct btrfs_inode_item *inode_item;
6153 	struct btrfs_key *location;
6154 	struct btrfs_path *path;
6155 	struct btrfs_inode_ref *ref;
6156 	struct btrfs_key key[2];
6157 	u32 sizes[2];
6158 	int nitems = name ? 2 : 1;
6159 	unsigned long ptr;
6160 	int ret;
6161 
6162 	path = btrfs_alloc_path();
6163 	if (!path)
6164 		return ERR_PTR(-ENOMEM);
6165 
6166 	inode = new_inode(fs_info->sb);
6167 	if (!inode) {
6168 		btrfs_free_path(path);
6169 		return ERR_PTR(-ENOMEM);
6170 	}
6171 
6172 	/*
6173 	 * O_TMPFILE, set link count to 0, so that after this point,
6174 	 * we fill in an inode item with the correct link count.
6175 	 */
6176 	if (!name)
6177 		set_nlink(inode, 0);
6178 
6179 	/*
6180 	 * we have to initialize this early, so we can reclaim the inode
6181 	 * number if we fail afterwards in this function.
6182 	 */
6183 	inode->i_ino = objectid;
6184 
6185 	if (dir && name) {
6186 		trace_btrfs_inode_request(dir);
6187 
6188 		ret = btrfs_set_inode_index(dir, index);
6189 		if (ret) {
6190 			btrfs_free_path(path);
6191 			iput(inode);
6192 			return ERR_PTR(ret);
6193 		}
6194 	} else if (dir) {
6195 		*index = 0;
6196 	}
6197 	/*
6198 	 * index_cnt is ignored for everything but a dir,
6199 	 * btrfs_get_inode_index_count has an explanation for the magic
6200 	 * number
6201 	 */
6202 	BTRFS_I(inode)->index_cnt = 2;
6203 	BTRFS_I(inode)->dir_index = *index;
6204 	BTRFS_I(inode)->root = root;
6205 	BTRFS_I(inode)->generation = trans->transid;
6206 	inode->i_generation = BTRFS_I(inode)->generation;
6207 
6208 	/*
6209 	 * We could have gotten an inode number from somebody who was fsynced
6210 	 * and then removed in this same transaction, so let's just set full
6211 	 * sync since it will be a full sync anyway and this will blow away the
6212 	 * old info in the log.
6213 	 */
6214 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6215 
6216 	key[0].objectid = objectid;
6217 	key[0].type = BTRFS_INODE_ITEM_KEY;
6218 	key[0].offset = 0;
6219 
6220 	sizes[0] = sizeof(struct btrfs_inode_item);
6221 
6222 	if (name) {
6223 		/*
6224 		 * Start new inodes with an inode_ref. This is slightly more
6225 		 * efficient for small numbers of hard links since they will
6226 		 * be packed into one item. Extended refs will kick in if we
6227 		 * add more hard links than can fit in the ref item.
6228 		 */
6229 		key[1].objectid = objectid;
6230 		key[1].type = BTRFS_INODE_REF_KEY;
6231 		key[1].offset = ref_objectid;
6232 
6233 		sizes[1] = name_len + sizeof(*ref);
6234 	}
6235 
6236 	location = &BTRFS_I(inode)->location;
6237 	location->objectid = objectid;
6238 	location->offset = 0;
6239 	location->type = BTRFS_INODE_ITEM_KEY;
6240 
6241 	ret = btrfs_insert_inode_locked(inode);
6242 	if (ret < 0)
6243 		goto fail;
6244 
6245 	path->leave_spinning = 1;
6246 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6247 	if (ret != 0)
6248 		goto fail_unlock;
6249 
6250 	inode_init_owner(inode, dir, mode);
6251 	inode_set_bytes(inode, 0);
6252 
6253 	inode->i_mtime = current_time(inode);
6254 	inode->i_atime = inode->i_mtime;
6255 	inode->i_ctime = inode->i_mtime;
6256 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6257 
6258 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6259 				  struct btrfs_inode_item);
6260 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6261 			     sizeof(*inode_item));
6262 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6263 
6264 	if (name) {
6265 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6266 				     struct btrfs_inode_ref);
6267 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6268 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6269 		ptr = (unsigned long)(ref + 1);
6270 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6271 	}
6272 
6273 	btrfs_mark_buffer_dirty(path->nodes[0]);
6274 	btrfs_free_path(path);
6275 
6276 	btrfs_inherit_iflags(inode, dir);
6277 
6278 	if (S_ISREG(mode)) {
6279 		if (btrfs_test_opt(fs_info, NODATASUM))
6280 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6281 		if (btrfs_test_opt(fs_info, NODATACOW))
6282 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6283 				BTRFS_INODE_NODATASUM;
6284 	}
6285 
6286 	inode_tree_add(inode);
6287 
6288 	trace_btrfs_inode_new(inode);
6289 	btrfs_set_inode_last_trans(trans, inode);
6290 
6291 	btrfs_update_root_times(trans, root);
6292 
6293 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6294 	if (ret)
6295 		btrfs_err(fs_info,
6296 			  "error inheriting props for ino %llu (root %llu): %d",
6297 			  btrfs_ino(inode), root->root_key.objectid, ret);
6298 
6299 	return inode;
6300 
6301 fail_unlock:
6302 	unlock_new_inode(inode);
6303 fail:
6304 	if (dir && name)
6305 		BTRFS_I(dir)->index_cnt--;
6306 	btrfs_free_path(path);
6307 	iput(inode);
6308 	return ERR_PTR(ret);
6309 }
6310 
6311 static inline u8 btrfs_inode_type(struct inode *inode)
6312 {
6313 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6314 }
6315 
6316 /*
6317  * utility function to add 'inode' into 'parent_inode' with
6318  * a give name and a given sequence number.
6319  * if 'add_backref' is true, also insert a backref from the
6320  * inode to the parent directory.
6321  */
6322 int btrfs_add_link(struct btrfs_trans_handle *trans,
6323 		   struct inode *parent_inode, struct inode *inode,
6324 		   const char *name, int name_len, int add_backref, u64 index)
6325 {
6326 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6327 	int ret = 0;
6328 	struct btrfs_key key;
6329 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6330 	u64 ino = btrfs_ino(inode);
6331 	u64 parent_ino = btrfs_ino(parent_inode);
6332 
6333 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6334 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6335 	} else {
6336 		key.objectid = ino;
6337 		key.type = BTRFS_INODE_ITEM_KEY;
6338 		key.offset = 0;
6339 	}
6340 
6341 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6342 		ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6343 					 root->root_key.objectid, parent_ino,
6344 					 index, name, name_len);
6345 	} else if (add_backref) {
6346 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6347 					     parent_ino, index);
6348 	}
6349 
6350 	/* Nothing to clean up yet */
6351 	if (ret)
6352 		return ret;
6353 
6354 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6355 				    parent_inode, &key,
6356 				    btrfs_inode_type(inode), index);
6357 	if (ret == -EEXIST || ret == -EOVERFLOW)
6358 		goto fail_dir_item;
6359 	else if (ret) {
6360 		btrfs_abort_transaction(trans, ret);
6361 		return ret;
6362 	}
6363 
6364 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6365 			   name_len * 2);
6366 	inode_inc_iversion(parent_inode);
6367 	parent_inode->i_mtime = parent_inode->i_ctime =
6368 		current_time(parent_inode);
6369 	ret = btrfs_update_inode(trans, root, parent_inode);
6370 	if (ret)
6371 		btrfs_abort_transaction(trans, ret);
6372 	return ret;
6373 
6374 fail_dir_item:
6375 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6376 		u64 local_index;
6377 		int err;
6378 		err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6379 					 root->root_key.objectid, parent_ino,
6380 					 &local_index, name, name_len);
6381 
6382 	} else if (add_backref) {
6383 		u64 local_index;
6384 		int err;
6385 
6386 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6387 					  ino, parent_ino, &local_index);
6388 	}
6389 	return ret;
6390 }
6391 
6392 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6393 			    struct inode *dir, struct dentry *dentry,
6394 			    struct inode *inode, int backref, u64 index)
6395 {
6396 	int err = btrfs_add_link(trans, dir, inode,
6397 				 dentry->d_name.name, dentry->d_name.len,
6398 				 backref, index);
6399 	if (err > 0)
6400 		err = -EEXIST;
6401 	return err;
6402 }
6403 
6404 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6405 			umode_t mode, dev_t rdev)
6406 {
6407 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6408 	struct btrfs_trans_handle *trans;
6409 	struct btrfs_root *root = BTRFS_I(dir)->root;
6410 	struct inode *inode = NULL;
6411 	int err;
6412 	int drop_inode = 0;
6413 	u64 objectid;
6414 	u64 index = 0;
6415 
6416 	/*
6417 	 * 2 for inode item and ref
6418 	 * 2 for dir items
6419 	 * 1 for xattr if selinux is on
6420 	 */
6421 	trans = btrfs_start_transaction(root, 5);
6422 	if (IS_ERR(trans))
6423 		return PTR_ERR(trans);
6424 
6425 	err = btrfs_find_free_ino(root, &objectid);
6426 	if (err)
6427 		goto out_unlock;
6428 
6429 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6430 				dentry->d_name.len, btrfs_ino(dir), objectid,
6431 				mode, &index);
6432 	if (IS_ERR(inode)) {
6433 		err = PTR_ERR(inode);
6434 		goto out_unlock;
6435 	}
6436 
6437 	/*
6438 	* If the active LSM wants to access the inode during
6439 	* d_instantiate it needs these. Smack checks to see
6440 	* if the filesystem supports xattrs by looking at the
6441 	* ops vector.
6442 	*/
6443 	inode->i_op = &btrfs_special_inode_operations;
6444 	init_special_inode(inode, inode->i_mode, rdev);
6445 
6446 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6447 	if (err)
6448 		goto out_unlock_inode;
6449 
6450 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6451 	if (err) {
6452 		goto out_unlock_inode;
6453 	} else {
6454 		btrfs_update_inode(trans, root, inode);
6455 		unlock_new_inode(inode);
6456 		d_instantiate(dentry, inode);
6457 	}
6458 
6459 out_unlock:
6460 	btrfs_end_transaction(trans);
6461 	btrfs_balance_delayed_items(fs_info);
6462 	btrfs_btree_balance_dirty(fs_info);
6463 	if (drop_inode) {
6464 		inode_dec_link_count(inode);
6465 		iput(inode);
6466 	}
6467 	return err;
6468 
6469 out_unlock_inode:
6470 	drop_inode = 1;
6471 	unlock_new_inode(inode);
6472 	goto out_unlock;
6473 
6474 }
6475 
6476 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6477 			umode_t mode, bool excl)
6478 {
6479 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6480 	struct btrfs_trans_handle *trans;
6481 	struct btrfs_root *root = BTRFS_I(dir)->root;
6482 	struct inode *inode = NULL;
6483 	int drop_inode_on_err = 0;
6484 	int err;
6485 	u64 objectid;
6486 	u64 index = 0;
6487 
6488 	/*
6489 	 * 2 for inode item and ref
6490 	 * 2 for dir items
6491 	 * 1 for xattr if selinux is on
6492 	 */
6493 	trans = btrfs_start_transaction(root, 5);
6494 	if (IS_ERR(trans))
6495 		return PTR_ERR(trans);
6496 
6497 	err = btrfs_find_free_ino(root, &objectid);
6498 	if (err)
6499 		goto out_unlock;
6500 
6501 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6502 				dentry->d_name.len, btrfs_ino(dir), objectid,
6503 				mode, &index);
6504 	if (IS_ERR(inode)) {
6505 		err = PTR_ERR(inode);
6506 		goto out_unlock;
6507 	}
6508 	drop_inode_on_err = 1;
6509 	/*
6510 	* If the active LSM wants to access the inode during
6511 	* d_instantiate it needs these. Smack checks to see
6512 	* if the filesystem supports xattrs by looking at the
6513 	* ops vector.
6514 	*/
6515 	inode->i_fop = &btrfs_file_operations;
6516 	inode->i_op = &btrfs_file_inode_operations;
6517 	inode->i_mapping->a_ops = &btrfs_aops;
6518 
6519 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6520 	if (err)
6521 		goto out_unlock_inode;
6522 
6523 	err = btrfs_update_inode(trans, root, inode);
6524 	if (err)
6525 		goto out_unlock_inode;
6526 
6527 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6528 	if (err)
6529 		goto out_unlock_inode;
6530 
6531 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6532 	unlock_new_inode(inode);
6533 	d_instantiate(dentry, inode);
6534 
6535 out_unlock:
6536 	btrfs_end_transaction(trans);
6537 	if (err && drop_inode_on_err) {
6538 		inode_dec_link_count(inode);
6539 		iput(inode);
6540 	}
6541 	btrfs_balance_delayed_items(fs_info);
6542 	btrfs_btree_balance_dirty(fs_info);
6543 	return err;
6544 
6545 out_unlock_inode:
6546 	unlock_new_inode(inode);
6547 	goto out_unlock;
6548 
6549 }
6550 
6551 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6552 		      struct dentry *dentry)
6553 {
6554 	struct btrfs_trans_handle *trans = NULL;
6555 	struct btrfs_root *root = BTRFS_I(dir)->root;
6556 	struct inode *inode = d_inode(old_dentry);
6557 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6558 	u64 index;
6559 	int err;
6560 	int drop_inode = 0;
6561 
6562 	/* do not allow sys_link's with other subvols of the same device */
6563 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6564 		return -EXDEV;
6565 
6566 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6567 		return -EMLINK;
6568 
6569 	err = btrfs_set_inode_index(dir, &index);
6570 	if (err)
6571 		goto fail;
6572 
6573 	/*
6574 	 * 2 items for inode and inode ref
6575 	 * 2 items for dir items
6576 	 * 1 item for parent inode
6577 	 */
6578 	trans = btrfs_start_transaction(root, 5);
6579 	if (IS_ERR(trans)) {
6580 		err = PTR_ERR(trans);
6581 		trans = NULL;
6582 		goto fail;
6583 	}
6584 
6585 	/* There are several dir indexes for this inode, clear the cache. */
6586 	BTRFS_I(inode)->dir_index = 0ULL;
6587 	inc_nlink(inode);
6588 	inode_inc_iversion(inode);
6589 	inode->i_ctime = current_time(inode);
6590 	ihold(inode);
6591 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6592 
6593 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6594 
6595 	if (err) {
6596 		drop_inode = 1;
6597 	} else {
6598 		struct dentry *parent = dentry->d_parent;
6599 		err = btrfs_update_inode(trans, root, inode);
6600 		if (err)
6601 			goto fail;
6602 		if (inode->i_nlink == 1) {
6603 			/*
6604 			 * If new hard link count is 1, it's a file created
6605 			 * with open(2) O_TMPFILE flag.
6606 			 */
6607 			err = btrfs_orphan_del(trans, inode);
6608 			if (err)
6609 				goto fail;
6610 		}
6611 		d_instantiate(dentry, inode);
6612 		btrfs_log_new_name(trans, inode, NULL, parent);
6613 	}
6614 
6615 	btrfs_balance_delayed_items(fs_info);
6616 fail:
6617 	if (trans)
6618 		btrfs_end_transaction(trans);
6619 	if (drop_inode) {
6620 		inode_dec_link_count(inode);
6621 		iput(inode);
6622 	}
6623 	btrfs_btree_balance_dirty(fs_info);
6624 	return err;
6625 }
6626 
6627 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6628 {
6629 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6630 	struct inode *inode = NULL;
6631 	struct btrfs_trans_handle *trans;
6632 	struct btrfs_root *root = BTRFS_I(dir)->root;
6633 	int err = 0;
6634 	int drop_on_err = 0;
6635 	u64 objectid = 0;
6636 	u64 index = 0;
6637 
6638 	/*
6639 	 * 2 items for inode and ref
6640 	 * 2 items for dir items
6641 	 * 1 for xattr if selinux is on
6642 	 */
6643 	trans = btrfs_start_transaction(root, 5);
6644 	if (IS_ERR(trans))
6645 		return PTR_ERR(trans);
6646 
6647 	err = btrfs_find_free_ino(root, &objectid);
6648 	if (err)
6649 		goto out_fail;
6650 
6651 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6652 				dentry->d_name.len, btrfs_ino(dir), objectid,
6653 				S_IFDIR | mode, &index);
6654 	if (IS_ERR(inode)) {
6655 		err = PTR_ERR(inode);
6656 		goto out_fail;
6657 	}
6658 
6659 	drop_on_err = 1;
6660 	/* these must be set before we unlock the inode */
6661 	inode->i_op = &btrfs_dir_inode_operations;
6662 	inode->i_fop = &btrfs_dir_file_operations;
6663 
6664 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6665 	if (err)
6666 		goto out_fail_inode;
6667 
6668 	btrfs_i_size_write(inode, 0);
6669 	err = btrfs_update_inode(trans, root, inode);
6670 	if (err)
6671 		goto out_fail_inode;
6672 
6673 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6674 			     dentry->d_name.len, 0, index);
6675 	if (err)
6676 		goto out_fail_inode;
6677 
6678 	d_instantiate(dentry, inode);
6679 	/*
6680 	 * mkdir is special.  We're unlocking after we call d_instantiate
6681 	 * to avoid a race with nfsd calling d_instantiate.
6682 	 */
6683 	unlock_new_inode(inode);
6684 	drop_on_err = 0;
6685 
6686 out_fail:
6687 	btrfs_end_transaction(trans);
6688 	if (drop_on_err) {
6689 		inode_dec_link_count(inode);
6690 		iput(inode);
6691 	}
6692 	btrfs_balance_delayed_items(fs_info);
6693 	btrfs_btree_balance_dirty(fs_info);
6694 	return err;
6695 
6696 out_fail_inode:
6697 	unlock_new_inode(inode);
6698 	goto out_fail;
6699 }
6700 
6701 /* Find next extent map of a given extent map, caller needs to ensure locks */
6702 static struct extent_map *next_extent_map(struct extent_map *em)
6703 {
6704 	struct rb_node *next;
6705 
6706 	next = rb_next(&em->rb_node);
6707 	if (!next)
6708 		return NULL;
6709 	return container_of(next, struct extent_map, rb_node);
6710 }
6711 
6712 static struct extent_map *prev_extent_map(struct extent_map *em)
6713 {
6714 	struct rb_node *prev;
6715 
6716 	prev = rb_prev(&em->rb_node);
6717 	if (!prev)
6718 		return NULL;
6719 	return container_of(prev, struct extent_map, rb_node);
6720 }
6721 
6722 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6723  * the existing extent is the nearest extent to map_start,
6724  * and an extent that you want to insert, deal with overlap and insert
6725  * the best fitted new extent into the tree.
6726  */
6727 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6728 				struct extent_map *existing,
6729 				struct extent_map *em,
6730 				u64 map_start)
6731 {
6732 	struct extent_map *prev;
6733 	struct extent_map *next;
6734 	u64 start;
6735 	u64 end;
6736 	u64 start_diff;
6737 
6738 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6739 
6740 	if (existing->start > map_start) {
6741 		next = existing;
6742 		prev = prev_extent_map(next);
6743 	} else {
6744 		prev = existing;
6745 		next = next_extent_map(prev);
6746 	}
6747 
6748 	start = prev ? extent_map_end(prev) : em->start;
6749 	start = max_t(u64, start, em->start);
6750 	end = next ? next->start : extent_map_end(em);
6751 	end = min_t(u64, end, extent_map_end(em));
6752 	start_diff = start - em->start;
6753 	em->start = start;
6754 	em->len = end - start;
6755 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6756 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6757 		em->block_start += start_diff;
6758 		em->block_len -= start_diff;
6759 	}
6760 	return add_extent_mapping(em_tree, em, 0);
6761 }
6762 
6763 static noinline int uncompress_inline(struct btrfs_path *path,
6764 				      struct page *page,
6765 				      size_t pg_offset, u64 extent_offset,
6766 				      struct btrfs_file_extent_item *item)
6767 {
6768 	int ret;
6769 	struct extent_buffer *leaf = path->nodes[0];
6770 	char *tmp;
6771 	size_t max_size;
6772 	unsigned long inline_size;
6773 	unsigned long ptr;
6774 	int compress_type;
6775 
6776 	WARN_ON(pg_offset != 0);
6777 	compress_type = btrfs_file_extent_compression(leaf, item);
6778 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6779 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6780 					btrfs_item_nr(path->slots[0]));
6781 	tmp = kmalloc(inline_size, GFP_NOFS);
6782 	if (!tmp)
6783 		return -ENOMEM;
6784 	ptr = btrfs_file_extent_inline_start(item);
6785 
6786 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6787 
6788 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6789 	ret = btrfs_decompress(compress_type, tmp, page,
6790 			       extent_offset, inline_size, max_size);
6791 	kfree(tmp);
6792 	return ret;
6793 }
6794 
6795 /*
6796  * a bit scary, this does extent mapping from logical file offset to the disk.
6797  * the ugly parts come from merging extents from the disk with the in-ram
6798  * representation.  This gets more complex because of the data=ordered code,
6799  * where the in-ram extents might be locked pending data=ordered completion.
6800  *
6801  * This also copies inline extents directly into the page.
6802  */
6803 
6804 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6805 				    size_t pg_offset, u64 start, u64 len,
6806 				    int create)
6807 {
6808 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6809 	int ret;
6810 	int err = 0;
6811 	u64 extent_start = 0;
6812 	u64 extent_end = 0;
6813 	u64 objectid = btrfs_ino(inode);
6814 	u32 found_type;
6815 	struct btrfs_path *path = NULL;
6816 	struct btrfs_root *root = BTRFS_I(inode)->root;
6817 	struct btrfs_file_extent_item *item;
6818 	struct extent_buffer *leaf;
6819 	struct btrfs_key found_key;
6820 	struct extent_map *em = NULL;
6821 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6822 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6823 	struct btrfs_trans_handle *trans = NULL;
6824 	const bool new_inline = !page || create;
6825 
6826 again:
6827 	read_lock(&em_tree->lock);
6828 	em = lookup_extent_mapping(em_tree, start, len);
6829 	if (em)
6830 		em->bdev = fs_info->fs_devices->latest_bdev;
6831 	read_unlock(&em_tree->lock);
6832 
6833 	if (em) {
6834 		if (em->start > start || em->start + em->len <= start)
6835 			free_extent_map(em);
6836 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6837 			free_extent_map(em);
6838 		else
6839 			goto out;
6840 	}
6841 	em = alloc_extent_map();
6842 	if (!em) {
6843 		err = -ENOMEM;
6844 		goto out;
6845 	}
6846 	em->bdev = fs_info->fs_devices->latest_bdev;
6847 	em->start = EXTENT_MAP_HOLE;
6848 	em->orig_start = EXTENT_MAP_HOLE;
6849 	em->len = (u64)-1;
6850 	em->block_len = (u64)-1;
6851 
6852 	if (!path) {
6853 		path = btrfs_alloc_path();
6854 		if (!path) {
6855 			err = -ENOMEM;
6856 			goto out;
6857 		}
6858 		/*
6859 		 * Chances are we'll be called again, so go ahead and do
6860 		 * readahead
6861 		 */
6862 		path->reada = READA_FORWARD;
6863 	}
6864 
6865 	ret = btrfs_lookup_file_extent(trans, root, path,
6866 				       objectid, start, trans != NULL);
6867 	if (ret < 0) {
6868 		err = ret;
6869 		goto out;
6870 	}
6871 
6872 	if (ret != 0) {
6873 		if (path->slots[0] == 0)
6874 			goto not_found;
6875 		path->slots[0]--;
6876 	}
6877 
6878 	leaf = path->nodes[0];
6879 	item = btrfs_item_ptr(leaf, path->slots[0],
6880 			      struct btrfs_file_extent_item);
6881 	/* are we inside the extent that was found? */
6882 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6883 	found_type = found_key.type;
6884 	if (found_key.objectid != objectid ||
6885 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6886 		/*
6887 		 * If we backup past the first extent we want to move forward
6888 		 * and see if there is an extent in front of us, otherwise we'll
6889 		 * say there is a hole for our whole search range which can
6890 		 * cause problems.
6891 		 */
6892 		extent_end = start;
6893 		goto next;
6894 	}
6895 
6896 	found_type = btrfs_file_extent_type(leaf, item);
6897 	extent_start = found_key.offset;
6898 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6899 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6900 		extent_end = extent_start +
6901 		       btrfs_file_extent_num_bytes(leaf, item);
6902 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6903 		size_t size;
6904 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6905 		extent_end = ALIGN(extent_start + size,
6906 				   fs_info->sectorsize);
6907 	}
6908 next:
6909 	if (start >= extent_end) {
6910 		path->slots[0]++;
6911 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6912 			ret = btrfs_next_leaf(root, path);
6913 			if (ret < 0) {
6914 				err = ret;
6915 				goto out;
6916 			}
6917 			if (ret > 0)
6918 				goto not_found;
6919 			leaf = path->nodes[0];
6920 		}
6921 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6922 		if (found_key.objectid != objectid ||
6923 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6924 			goto not_found;
6925 		if (start + len <= found_key.offset)
6926 			goto not_found;
6927 		if (start > found_key.offset)
6928 			goto next;
6929 		em->start = start;
6930 		em->orig_start = start;
6931 		em->len = found_key.offset - start;
6932 		goto not_found_em;
6933 	}
6934 
6935 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6936 
6937 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6938 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6939 		goto insert;
6940 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6941 		unsigned long ptr;
6942 		char *map;
6943 		size_t size;
6944 		size_t extent_offset;
6945 		size_t copy_size;
6946 
6947 		if (new_inline)
6948 			goto out;
6949 
6950 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6951 		extent_offset = page_offset(page) + pg_offset - extent_start;
6952 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6953 				  size - extent_offset);
6954 		em->start = extent_start + extent_offset;
6955 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6956 		em->orig_block_len = em->len;
6957 		em->orig_start = em->start;
6958 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6959 		if (create == 0 && !PageUptodate(page)) {
6960 			if (btrfs_file_extent_compression(leaf, item) !=
6961 			    BTRFS_COMPRESS_NONE) {
6962 				ret = uncompress_inline(path, page, pg_offset,
6963 							extent_offset, item);
6964 				if (ret) {
6965 					err = ret;
6966 					goto out;
6967 				}
6968 			} else {
6969 				map = kmap(page);
6970 				read_extent_buffer(leaf, map + pg_offset, ptr,
6971 						   copy_size);
6972 				if (pg_offset + copy_size < PAGE_SIZE) {
6973 					memset(map + pg_offset + copy_size, 0,
6974 					       PAGE_SIZE - pg_offset -
6975 					       copy_size);
6976 				}
6977 				kunmap(page);
6978 			}
6979 			flush_dcache_page(page);
6980 		} else if (create && PageUptodate(page)) {
6981 			BUG();
6982 			if (!trans) {
6983 				kunmap(page);
6984 				free_extent_map(em);
6985 				em = NULL;
6986 
6987 				btrfs_release_path(path);
6988 				trans = btrfs_join_transaction(root);
6989 
6990 				if (IS_ERR(trans))
6991 					return ERR_CAST(trans);
6992 				goto again;
6993 			}
6994 			map = kmap(page);
6995 			write_extent_buffer(leaf, map + pg_offset, ptr,
6996 					    copy_size);
6997 			kunmap(page);
6998 			btrfs_mark_buffer_dirty(leaf);
6999 		}
7000 		set_extent_uptodate(io_tree, em->start,
7001 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7002 		goto insert;
7003 	}
7004 not_found:
7005 	em->start = start;
7006 	em->orig_start = start;
7007 	em->len = len;
7008 not_found_em:
7009 	em->block_start = EXTENT_MAP_HOLE;
7010 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7011 insert:
7012 	btrfs_release_path(path);
7013 	if (em->start > start || extent_map_end(em) <= start) {
7014 		btrfs_err(fs_info,
7015 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7016 			  em->start, em->len, start, len);
7017 		err = -EIO;
7018 		goto out;
7019 	}
7020 
7021 	err = 0;
7022 	write_lock(&em_tree->lock);
7023 	ret = add_extent_mapping(em_tree, em, 0);
7024 	/* it is possible that someone inserted the extent into the tree
7025 	 * while we had the lock dropped.  It is also possible that
7026 	 * an overlapping map exists in the tree
7027 	 */
7028 	if (ret == -EEXIST) {
7029 		struct extent_map *existing;
7030 
7031 		ret = 0;
7032 
7033 		existing = search_extent_mapping(em_tree, start, len);
7034 		/*
7035 		 * existing will always be non-NULL, since there must be
7036 		 * extent causing the -EEXIST.
7037 		 */
7038 		if (existing->start == em->start &&
7039 		    extent_map_end(existing) >= extent_map_end(em) &&
7040 		    em->block_start == existing->block_start) {
7041 			/*
7042 			 * The existing extent map already encompasses the
7043 			 * entire extent map we tried to add.
7044 			 */
7045 			free_extent_map(em);
7046 			em = existing;
7047 			err = 0;
7048 
7049 		} else if (start >= extent_map_end(existing) ||
7050 		    start <= existing->start) {
7051 			/*
7052 			 * The existing extent map is the one nearest to
7053 			 * the [start, start + len) range which overlaps
7054 			 */
7055 			err = merge_extent_mapping(em_tree, existing,
7056 						   em, start);
7057 			free_extent_map(existing);
7058 			if (err) {
7059 				free_extent_map(em);
7060 				em = NULL;
7061 			}
7062 		} else {
7063 			free_extent_map(em);
7064 			em = existing;
7065 			err = 0;
7066 		}
7067 	}
7068 	write_unlock(&em_tree->lock);
7069 out:
7070 
7071 	trace_btrfs_get_extent(root, inode, em);
7072 
7073 	btrfs_free_path(path);
7074 	if (trans) {
7075 		ret = btrfs_end_transaction(trans);
7076 		if (!err)
7077 			err = ret;
7078 	}
7079 	if (err) {
7080 		free_extent_map(em);
7081 		return ERR_PTR(err);
7082 	}
7083 	BUG_ON(!em); /* Error is always set */
7084 	return em;
7085 }
7086 
7087 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7088 					   size_t pg_offset, u64 start, u64 len,
7089 					   int create)
7090 {
7091 	struct extent_map *em;
7092 	struct extent_map *hole_em = NULL;
7093 	u64 range_start = start;
7094 	u64 end;
7095 	u64 found;
7096 	u64 found_end;
7097 	int err = 0;
7098 
7099 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7100 	if (IS_ERR(em))
7101 		return em;
7102 	if (em) {
7103 		/*
7104 		 * if our em maps to
7105 		 * -  a hole or
7106 		 * -  a pre-alloc extent,
7107 		 * there might actually be delalloc bytes behind it.
7108 		 */
7109 		if (em->block_start != EXTENT_MAP_HOLE &&
7110 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7111 			return em;
7112 		else
7113 			hole_em = em;
7114 	}
7115 
7116 	/* check to see if we've wrapped (len == -1 or similar) */
7117 	end = start + len;
7118 	if (end < start)
7119 		end = (u64)-1;
7120 	else
7121 		end -= 1;
7122 
7123 	em = NULL;
7124 
7125 	/* ok, we didn't find anything, lets look for delalloc */
7126 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7127 				 end, len, EXTENT_DELALLOC, 1);
7128 	found_end = range_start + found;
7129 	if (found_end < range_start)
7130 		found_end = (u64)-1;
7131 
7132 	/*
7133 	 * we didn't find anything useful, return
7134 	 * the original results from get_extent()
7135 	 */
7136 	if (range_start > end || found_end <= start) {
7137 		em = hole_em;
7138 		hole_em = NULL;
7139 		goto out;
7140 	}
7141 
7142 	/* adjust the range_start to make sure it doesn't
7143 	 * go backwards from the start they passed in
7144 	 */
7145 	range_start = max(start, range_start);
7146 	found = found_end - range_start;
7147 
7148 	if (found > 0) {
7149 		u64 hole_start = start;
7150 		u64 hole_len = len;
7151 
7152 		em = alloc_extent_map();
7153 		if (!em) {
7154 			err = -ENOMEM;
7155 			goto out;
7156 		}
7157 		/*
7158 		 * when btrfs_get_extent can't find anything it
7159 		 * returns one huge hole
7160 		 *
7161 		 * make sure what it found really fits our range, and
7162 		 * adjust to make sure it is based on the start from
7163 		 * the caller
7164 		 */
7165 		if (hole_em) {
7166 			u64 calc_end = extent_map_end(hole_em);
7167 
7168 			if (calc_end <= start || (hole_em->start > end)) {
7169 				free_extent_map(hole_em);
7170 				hole_em = NULL;
7171 			} else {
7172 				hole_start = max(hole_em->start, start);
7173 				hole_len = calc_end - hole_start;
7174 			}
7175 		}
7176 		em->bdev = NULL;
7177 		if (hole_em && range_start > hole_start) {
7178 			/* our hole starts before our delalloc, so we
7179 			 * have to return just the parts of the hole
7180 			 * that go until  the delalloc starts
7181 			 */
7182 			em->len = min(hole_len,
7183 				      range_start - hole_start);
7184 			em->start = hole_start;
7185 			em->orig_start = hole_start;
7186 			/*
7187 			 * don't adjust block start at all,
7188 			 * it is fixed at EXTENT_MAP_HOLE
7189 			 */
7190 			em->block_start = hole_em->block_start;
7191 			em->block_len = hole_len;
7192 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7193 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7194 		} else {
7195 			em->start = range_start;
7196 			em->len = found;
7197 			em->orig_start = range_start;
7198 			em->block_start = EXTENT_MAP_DELALLOC;
7199 			em->block_len = found;
7200 		}
7201 	} else if (hole_em) {
7202 		return hole_em;
7203 	}
7204 out:
7205 
7206 	free_extent_map(hole_em);
7207 	if (err) {
7208 		free_extent_map(em);
7209 		return ERR_PTR(err);
7210 	}
7211 	return em;
7212 }
7213 
7214 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7215 						  const u64 start,
7216 						  const u64 len,
7217 						  const u64 orig_start,
7218 						  const u64 block_start,
7219 						  const u64 block_len,
7220 						  const u64 orig_block_len,
7221 						  const u64 ram_bytes,
7222 						  const int type)
7223 {
7224 	struct extent_map *em = NULL;
7225 	int ret;
7226 
7227 	if (type != BTRFS_ORDERED_NOCOW) {
7228 		em = create_pinned_em(inode, start, len, orig_start,
7229 				      block_start, block_len, orig_block_len,
7230 				      ram_bytes, type);
7231 		if (IS_ERR(em))
7232 			goto out;
7233 	}
7234 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7235 					   len, block_len, type);
7236 	if (ret) {
7237 		if (em) {
7238 			free_extent_map(em);
7239 			btrfs_drop_extent_cache(inode, start,
7240 						start + len - 1, 0);
7241 		}
7242 		em = ERR_PTR(ret);
7243 	}
7244  out:
7245 
7246 	return em;
7247 }
7248 
7249 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7250 						  u64 start, u64 len)
7251 {
7252 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7253 	struct btrfs_root *root = BTRFS_I(inode)->root;
7254 	struct extent_map *em;
7255 	struct btrfs_key ins;
7256 	u64 alloc_hint;
7257 	int ret;
7258 
7259 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7260 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7261 				   0, alloc_hint, &ins, 1, 1);
7262 	if (ret)
7263 		return ERR_PTR(ret);
7264 
7265 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7266 				     ins.objectid, ins.offset, ins.offset,
7267 				     ins.offset, 0);
7268 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7269 	if (IS_ERR(em))
7270 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7271 					   ins.offset, 1);
7272 
7273 	return em;
7274 }
7275 
7276 /*
7277  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7278  * block must be cow'd
7279  */
7280 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7281 			      u64 *orig_start, u64 *orig_block_len,
7282 			      u64 *ram_bytes)
7283 {
7284 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7285 	struct btrfs_trans_handle *trans;
7286 	struct btrfs_path *path;
7287 	int ret;
7288 	struct extent_buffer *leaf;
7289 	struct btrfs_root *root = BTRFS_I(inode)->root;
7290 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7291 	struct btrfs_file_extent_item *fi;
7292 	struct btrfs_key key;
7293 	u64 disk_bytenr;
7294 	u64 backref_offset;
7295 	u64 extent_end;
7296 	u64 num_bytes;
7297 	int slot;
7298 	int found_type;
7299 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7300 
7301 	path = btrfs_alloc_path();
7302 	if (!path)
7303 		return -ENOMEM;
7304 
7305 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7306 				       offset, 0);
7307 	if (ret < 0)
7308 		goto out;
7309 
7310 	slot = path->slots[0];
7311 	if (ret == 1) {
7312 		if (slot == 0) {
7313 			/* can't find the item, must cow */
7314 			ret = 0;
7315 			goto out;
7316 		}
7317 		slot--;
7318 	}
7319 	ret = 0;
7320 	leaf = path->nodes[0];
7321 	btrfs_item_key_to_cpu(leaf, &key, slot);
7322 	if (key.objectid != btrfs_ino(inode) ||
7323 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7324 		/* not our file or wrong item type, must cow */
7325 		goto out;
7326 	}
7327 
7328 	if (key.offset > offset) {
7329 		/* Wrong offset, must cow */
7330 		goto out;
7331 	}
7332 
7333 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7334 	found_type = btrfs_file_extent_type(leaf, fi);
7335 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7336 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7337 		/* not a regular extent, must cow */
7338 		goto out;
7339 	}
7340 
7341 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7342 		goto out;
7343 
7344 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7345 	if (extent_end <= offset)
7346 		goto out;
7347 
7348 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7349 	if (disk_bytenr == 0)
7350 		goto out;
7351 
7352 	if (btrfs_file_extent_compression(leaf, fi) ||
7353 	    btrfs_file_extent_encryption(leaf, fi) ||
7354 	    btrfs_file_extent_other_encoding(leaf, fi))
7355 		goto out;
7356 
7357 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7358 
7359 	if (orig_start) {
7360 		*orig_start = key.offset - backref_offset;
7361 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7362 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7363 	}
7364 
7365 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7366 		goto out;
7367 
7368 	num_bytes = min(offset + *len, extent_end) - offset;
7369 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7370 		u64 range_end;
7371 
7372 		range_end = round_up(offset + num_bytes,
7373 				     root->fs_info->sectorsize) - 1;
7374 		ret = test_range_bit(io_tree, offset, range_end,
7375 				     EXTENT_DELALLOC, 0, NULL);
7376 		if (ret) {
7377 			ret = -EAGAIN;
7378 			goto out;
7379 		}
7380 	}
7381 
7382 	btrfs_release_path(path);
7383 
7384 	/*
7385 	 * look for other files referencing this extent, if we
7386 	 * find any we must cow
7387 	 */
7388 	trans = btrfs_join_transaction(root);
7389 	if (IS_ERR(trans)) {
7390 		ret = 0;
7391 		goto out;
7392 	}
7393 
7394 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7395 				    key.offset - backref_offset, disk_bytenr);
7396 	btrfs_end_transaction(trans);
7397 	if (ret) {
7398 		ret = 0;
7399 		goto out;
7400 	}
7401 
7402 	/*
7403 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7404 	 * in this extent we are about to write.  If there
7405 	 * are any csums in that range we have to cow in order
7406 	 * to keep the csums correct
7407 	 */
7408 	disk_bytenr += backref_offset;
7409 	disk_bytenr += offset - key.offset;
7410 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7411 		goto out;
7412 	/*
7413 	 * all of the above have passed, it is safe to overwrite this extent
7414 	 * without cow
7415 	 */
7416 	*len = num_bytes;
7417 	ret = 1;
7418 out:
7419 	btrfs_free_path(path);
7420 	return ret;
7421 }
7422 
7423 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7424 {
7425 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7426 	int found = false;
7427 	void **pagep = NULL;
7428 	struct page *page = NULL;
7429 	int start_idx;
7430 	int end_idx;
7431 
7432 	start_idx = start >> PAGE_SHIFT;
7433 
7434 	/*
7435 	 * end is the last byte in the last page.  end == start is legal
7436 	 */
7437 	end_idx = end >> PAGE_SHIFT;
7438 
7439 	rcu_read_lock();
7440 
7441 	/* Most of the code in this while loop is lifted from
7442 	 * find_get_page.  It's been modified to begin searching from a
7443 	 * page and return just the first page found in that range.  If the
7444 	 * found idx is less than or equal to the end idx then we know that
7445 	 * a page exists.  If no pages are found or if those pages are
7446 	 * outside of the range then we're fine (yay!) */
7447 	while (page == NULL &&
7448 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7449 		page = radix_tree_deref_slot(pagep);
7450 		if (unlikely(!page))
7451 			break;
7452 
7453 		if (radix_tree_exception(page)) {
7454 			if (radix_tree_deref_retry(page)) {
7455 				page = NULL;
7456 				continue;
7457 			}
7458 			/*
7459 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7460 			 * here as an exceptional entry: so return it without
7461 			 * attempting to raise page count.
7462 			 */
7463 			page = NULL;
7464 			break; /* TODO: Is this relevant for this use case? */
7465 		}
7466 
7467 		if (!page_cache_get_speculative(page)) {
7468 			page = NULL;
7469 			continue;
7470 		}
7471 
7472 		/*
7473 		 * Has the page moved?
7474 		 * This is part of the lockless pagecache protocol. See
7475 		 * include/linux/pagemap.h for details.
7476 		 */
7477 		if (unlikely(page != *pagep)) {
7478 			put_page(page);
7479 			page = NULL;
7480 		}
7481 	}
7482 
7483 	if (page) {
7484 		if (page->index <= end_idx)
7485 			found = true;
7486 		put_page(page);
7487 	}
7488 
7489 	rcu_read_unlock();
7490 	return found;
7491 }
7492 
7493 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7494 			      struct extent_state **cached_state, int writing)
7495 {
7496 	struct btrfs_ordered_extent *ordered;
7497 	int ret = 0;
7498 
7499 	while (1) {
7500 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7501 				 cached_state);
7502 		/*
7503 		 * We're concerned with the entire range that we're going to be
7504 		 * doing DIO to, so we need to make sure there's no ordered
7505 		 * extents in this range.
7506 		 */
7507 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7508 						     lockend - lockstart + 1);
7509 
7510 		/*
7511 		 * We need to make sure there are no buffered pages in this
7512 		 * range either, we could have raced between the invalidate in
7513 		 * generic_file_direct_write and locking the extent.  The
7514 		 * invalidate needs to happen so that reads after a write do not
7515 		 * get stale data.
7516 		 */
7517 		if (!ordered &&
7518 		    (!writing ||
7519 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7520 			break;
7521 
7522 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7523 				     cached_state, GFP_NOFS);
7524 
7525 		if (ordered) {
7526 			/*
7527 			 * If we are doing a DIO read and the ordered extent we
7528 			 * found is for a buffered write, we can not wait for it
7529 			 * to complete and retry, because if we do so we can
7530 			 * deadlock with concurrent buffered writes on page
7531 			 * locks. This happens only if our DIO read covers more
7532 			 * than one extent map, if at this point has already
7533 			 * created an ordered extent for a previous extent map
7534 			 * and locked its range in the inode's io tree, and a
7535 			 * concurrent write against that previous extent map's
7536 			 * range and this range started (we unlock the ranges
7537 			 * in the io tree only when the bios complete and
7538 			 * buffered writes always lock pages before attempting
7539 			 * to lock range in the io tree).
7540 			 */
7541 			if (writing ||
7542 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7543 				btrfs_start_ordered_extent(inode, ordered, 1);
7544 			else
7545 				ret = -ENOTBLK;
7546 			btrfs_put_ordered_extent(ordered);
7547 		} else {
7548 			/*
7549 			 * We could trigger writeback for this range (and wait
7550 			 * for it to complete) and then invalidate the pages for
7551 			 * this range (through invalidate_inode_pages2_range()),
7552 			 * but that can lead us to a deadlock with a concurrent
7553 			 * call to readpages() (a buffered read or a defrag call
7554 			 * triggered a readahead) on a page lock due to an
7555 			 * ordered dio extent we created before but did not have
7556 			 * yet a corresponding bio submitted (whence it can not
7557 			 * complete), which makes readpages() wait for that
7558 			 * ordered extent to complete while holding a lock on
7559 			 * that page.
7560 			 */
7561 			ret = -ENOTBLK;
7562 		}
7563 
7564 		if (ret)
7565 			break;
7566 
7567 		cond_resched();
7568 	}
7569 
7570 	return ret;
7571 }
7572 
7573 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7574 					   u64 len, u64 orig_start,
7575 					   u64 block_start, u64 block_len,
7576 					   u64 orig_block_len, u64 ram_bytes,
7577 					   int type)
7578 {
7579 	struct extent_map_tree *em_tree;
7580 	struct extent_map *em;
7581 	struct btrfs_root *root = BTRFS_I(inode)->root;
7582 	int ret;
7583 
7584 	em_tree = &BTRFS_I(inode)->extent_tree;
7585 	em = alloc_extent_map();
7586 	if (!em)
7587 		return ERR_PTR(-ENOMEM);
7588 
7589 	em->start = start;
7590 	em->orig_start = orig_start;
7591 	em->mod_start = start;
7592 	em->mod_len = len;
7593 	em->len = len;
7594 	em->block_len = block_len;
7595 	em->block_start = block_start;
7596 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7597 	em->orig_block_len = orig_block_len;
7598 	em->ram_bytes = ram_bytes;
7599 	em->generation = -1;
7600 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7601 	if (type == BTRFS_ORDERED_PREALLOC)
7602 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7603 
7604 	do {
7605 		btrfs_drop_extent_cache(inode, em->start,
7606 				em->start + em->len - 1, 0);
7607 		write_lock(&em_tree->lock);
7608 		ret = add_extent_mapping(em_tree, em, 1);
7609 		write_unlock(&em_tree->lock);
7610 	} while (ret == -EEXIST);
7611 
7612 	if (ret) {
7613 		free_extent_map(em);
7614 		return ERR_PTR(ret);
7615 	}
7616 
7617 	return em;
7618 }
7619 
7620 static void adjust_dio_outstanding_extents(struct inode *inode,
7621 					   struct btrfs_dio_data *dio_data,
7622 					   const u64 len)
7623 {
7624 	unsigned num_extents;
7625 
7626 	num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7627 					   BTRFS_MAX_EXTENT_SIZE);
7628 	/*
7629 	 * If we have an outstanding_extents count still set then we're
7630 	 * within our reservation, otherwise we need to adjust our inode
7631 	 * counter appropriately.
7632 	 */
7633 	if (dio_data->outstanding_extents >= num_extents) {
7634 		dio_data->outstanding_extents -= num_extents;
7635 	} else {
7636 		/*
7637 		 * If dio write length has been split due to no large enough
7638 		 * contiguous space, we need to compensate our inode counter
7639 		 * appropriately.
7640 		 */
7641 		u64 num_needed = num_extents - dio_data->outstanding_extents;
7642 
7643 		spin_lock(&BTRFS_I(inode)->lock);
7644 		BTRFS_I(inode)->outstanding_extents += num_needed;
7645 		spin_unlock(&BTRFS_I(inode)->lock);
7646 	}
7647 }
7648 
7649 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7650 				   struct buffer_head *bh_result, int create)
7651 {
7652 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7653 	struct extent_map *em;
7654 	struct extent_state *cached_state = NULL;
7655 	struct btrfs_dio_data *dio_data = NULL;
7656 	u64 start = iblock << inode->i_blkbits;
7657 	u64 lockstart, lockend;
7658 	u64 len = bh_result->b_size;
7659 	int unlock_bits = EXTENT_LOCKED;
7660 	int ret = 0;
7661 
7662 	if (create)
7663 		unlock_bits |= EXTENT_DIRTY;
7664 	else
7665 		len = min_t(u64, len, fs_info->sectorsize);
7666 
7667 	lockstart = start;
7668 	lockend = start + len - 1;
7669 
7670 	if (current->journal_info) {
7671 		/*
7672 		 * Need to pull our outstanding extents and set journal_info to NULL so
7673 		 * that anything that needs to check if there's a transaction doesn't get
7674 		 * confused.
7675 		 */
7676 		dio_data = current->journal_info;
7677 		current->journal_info = NULL;
7678 	}
7679 
7680 	/*
7681 	 * If this errors out it's because we couldn't invalidate pagecache for
7682 	 * this range and we need to fallback to buffered.
7683 	 */
7684 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7685 			       create)) {
7686 		ret = -ENOTBLK;
7687 		goto err;
7688 	}
7689 
7690 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7691 	if (IS_ERR(em)) {
7692 		ret = PTR_ERR(em);
7693 		goto unlock_err;
7694 	}
7695 
7696 	/*
7697 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7698 	 * io.  INLINE is special, and we could probably kludge it in here, but
7699 	 * it's still buffered so for safety lets just fall back to the generic
7700 	 * buffered path.
7701 	 *
7702 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7703 	 * decompress it, so there will be buffering required no matter what we
7704 	 * do, so go ahead and fallback to buffered.
7705 	 *
7706 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7707 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7708 	 * the generic code.
7709 	 */
7710 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7711 	    em->block_start == EXTENT_MAP_INLINE) {
7712 		free_extent_map(em);
7713 		ret = -ENOTBLK;
7714 		goto unlock_err;
7715 	}
7716 
7717 	/* Just a good old fashioned hole, return */
7718 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7719 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7720 		free_extent_map(em);
7721 		goto unlock_err;
7722 	}
7723 
7724 	/*
7725 	 * We don't allocate a new extent in the following cases
7726 	 *
7727 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7728 	 * existing extent.
7729 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7730 	 * just use the extent.
7731 	 *
7732 	 */
7733 	if (!create) {
7734 		len = min(len, em->len - (start - em->start));
7735 		lockstart = start + len;
7736 		goto unlock;
7737 	}
7738 
7739 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7740 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7741 	     em->block_start != EXTENT_MAP_HOLE)) {
7742 		int type;
7743 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7744 
7745 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7746 			type = BTRFS_ORDERED_PREALLOC;
7747 		else
7748 			type = BTRFS_ORDERED_NOCOW;
7749 		len = min(len, em->len - (start - em->start));
7750 		block_start = em->block_start + (start - em->start);
7751 
7752 		if (can_nocow_extent(inode, start, &len, &orig_start,
7753 				     &orig_block_len, &ram_bytes) == 1 &&
7754 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7755 			struct extent_map *em2;
7756 
7757 			em2 = btrfs_create_dio_extent(inode, start, len,
7758 						      orig_start, block_start,
7759 						      len, orig_block_len,
7760 						      ram_bytes, type);
7761 			btrfs_dec_nocow_writers(fs_info, block_start);
7762 			if (type == BTRFS_ORDERED_PREALLOC) {
7763 				free_extent_map(em);
7764 				em = em2;
7765 			}
7766 			if (em2 && IS_ERR(em2)) {
7767 				ret = PTR_ERR(em2);
7768 				goto unlock_err;
7769 			}
7770 			/*
7771 			 * For inode marked NODATACOW or extent marked PREALLOC,
7772 			 * use the existing or preallocated extent, so does not
7773 			 * need to adjust btrfs_space_info's bytes_may_use.
7774 			 */
7775 			btrfs_free_reserved_data_space_noquota(inode,
7776 					start, len);
7777 			goto unlock;
7778 		}
7779 	}
7780 
7781 	/*
7782 	 * this will cow the extent, reset the len in case we changed
7783 	 * it above
7784 	 */
7785 	len = bh_result->b_size;
7786 	free_extent_map(em);
7787 	em = btrfs_new_extent_direct(inode, start, len);
7788 	if (IS_ERR(em)) {
7789 		ret = PTR_ERR(em);
7790 		goto unlock_err;
7791 	}
7792 	len = min(len, em->len - (start - em->start));
7793 unlock:
7794 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7795 		inode->i_blkbits;
7796 	bh_result->b_size = len;
7797 	bh_result->b_bdev = em->bdev;
7798 	set_buffer_mapped(bh_result);
7799 	if (create) {
7800 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7801 			set_buffer_new(bh_result);
7802 
7803 		/*
7804 		 * Need to update the i_size under the extent lock so buffered
7805 		 * readers will get the updated i_size when we unlock.
7806 		 */
7807 		if (start + len > i_size_read(inode))
7808 			i_size_write(inode, start + len);
7809 
7810 		adjust_dio_outstanding_extents(inode, dio_data, len);
7811 		WARN_ON(dio_data->reserve < len);
7812 		dio_data->reserve -= len;
7813 		dio_data->unsubmitted_oe_range_end = start + len;
7814 		current->journal_info = dio_data;
7815 	}
7816 
7817 	/*
7818 	 * In the case of write we need to clear and unlock the entire range,
7819 	 * in the case of read we need to unlock only the end area that we
7820 	 * aren't using if there is any left over space.
7821 	 */
7822 	if (lockstart < lockend) {
7823 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7824 				 lockend, unlock_bits, 1, 0,
7825 				 &cached_state, GFP_NOFS);
7826 	} else {
7827 		free_extent_state(cached_state);
7828 	}
7829 
7830 	free_extent_map(em);
7831 
7832 	return 0;
7833 
7834 unlock_err:
7835 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7836 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7837 err:
7838 	if (dio_data)
7839 		current->journal_info = dio_data;
7840 	/*
7841 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7842 	 * write less data then expected, so that we don't underflow our inode's
7843 	 * outstanding extents counter.
7844 	 */
7845 	if (create && dio_data)
7846 		adjust_dio_outstanding_extents(inode, dio_data, len);
7847 
7848 	return ret;
7849 }
7850 
7851 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7852 					int mirror_num)
7853 {
7854 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7855 	int ret;
7856 
7857 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7858 
7859 	bio_get(bio);
7860 
7861 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7862 	if (ret)
7863 		goto err;
7864 
7865 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7866 err:
7867 	bio_put(bio);
7868 	return ret;
7869 }
7870 
7871 static int btrfs_check_dio_repairable(struct inode *inode,
7872 				      struct bio *failed_bio,
7873 				      struct io_failure_record *failrec,
7874 				      int failed_mirror)
7875 {
7876 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7877 	int num_copies;
7878 
7879 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7880 	if (num_copies == 1) {
7881 		/*
7882 		 * we only have a single copy of the data, so don't bother with
7883 		 * all the retry and error correction code that follows. no
7884 		 * matter what the error is, it is very likely to persist.
7885 		 */
7886 		btrfs_debug(fs_info,
7887 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7888 			num_copies, failrec->this_mirror, failed_mirror);
7889 		return 0;
7890 	}
7891 
7892 	failrec->failed_mirror = failed_mirror;
7893 	failrec->this_mirror++;
7894 	if (failrec->this_mirror == failed_mirror)
7895 		failrec->this_mirror++;
7896 
7897 	if (failrec->this_mirror > num_copies) {
7898 		btrfs_debug(fs_info,
7899 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7900 			num_copies, failrec->this_mirror, failed_mirror);
7901 		return 0;
7902 	}
7903 
7904 	return 1;
7905 }
7906 
7907 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7908 			struct page *page, unsigned int pgoff,
7909 			u64 start, u64 end, int failed_mirror,
7910 			bio_end_io_t *repair_endio, void *repair_arg)
7911 {
7912 	struct io_failure_record *failrec;
7913 	struct bio *bio;
7914 	int isector;
7915 	int read_mode = 0;
7916 	int ret;
7917 
7918 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7919 
7920 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7921 	if (ret)
7922 		return ret;
7923 
7924 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7925 					 failed_mirror);
7926 	if (!ret) {
7927 		free_io_failure(inode, failrec);
7928 		return -EIO;
7929 	}
7930 
7931 	if ((failed_bio->bi_vcnt > 1)
7932 		|| (failed_bio->bi_io_vec->bv_len
7933 			> btrfs_inode_sectorsize(inode)))
7934 		read_mode |= REQ_FAILFAST_DEV;
7935 
7936 	isector = start - btrfs_io_bio(failed_bio)->logical;
7937 	isector >>= inode->i_sb->s_blocksize_bits;
7938 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7939 				pgoff, isector, repair_endio, repair_arg);
7940 	if (!bio) {
7941 		free_io_failure(inode, failrec);
7942 		return -EIO;
7943 	}
7944 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7945 
7946 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7947 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7948 		    read_mode, failrec->this_mirror, failrec->in_validation);
7949 
7950 	ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7951 	if (ret) {
7952 		free_io_failure(inode, failrec);
7953 		bio_put(bio);
7954 	}
7955 
7956 	return ret;
7957 }
7958 
7959 struct btrfs_retry_complete {
7960 	struct completion done;
7961 	struct inode *inode;
7962 	u64 start;
7963 	int uptodate;
7964 };
7965 
7966 static void btrfs_retry_endio_nocsum(struct bio *bio)
7967 {
7968 	struct btrfs_retry_complete *done = bio->bi_private;
7969 	struct inode *inode;
7970 	struct bio_vec *bvec;
7971 	int i;
7972 
7973 	if (bio->bi_error)
7974 		goto end;
7975 
7976 	ASSERT(bio->bi_vcnt == 1);
7977 	inode = bio->bi_io_vec->bv_page->mapping->host;
7978 	ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
7979 
7980 	done->uptodate = 1;
7981 	bio_for_each_segment_all(bvec, bio, i)
7982 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7983 end:
7984 	complete(&done->done);
7985 	bio_put(bio);
7986 }
7987 
7988 static int __btrfs_correct_data_nocsum(struct inode *inode,
7989 				       struct btrfs_io_bio *io_bio)
7990 {
7991 	struct btrfs_fs_info *fs_info;
7992 	struct bio_vec *bvec;
7993 	struct btrfs_retry_complete done;
7994 	u64 start;
7995 	unsigned int pgoff;
7996 	u32 sectorsize;
7997 	int nr_sectors;
7998 	int i;
7999 	int ret;
8000 
8001 	fs_info = BTRFS_I(inode)->root->fs_info;
8002 	sectorsize = fs_info->sectorsize;
8003 
8004 	start = io_bio->logical;
8005 	done.inode = inode;
8006 
8007 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8008 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8009 		pgoff = bvec->bv_offset;
8010 
8011 next_block_or_try_again:
8012 		done.uptodate = 0;
8013 		done.start = start;
8014 		init_completion(&done.done);
8015 
8016 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8017 				pgoff, start, start + sectorsize - 1,
8018 				io_bio->mirror_num,
8019 				btrfs_retry_endio_nocsum, &done);
8020 		if (ret)
8021 			return ret;
8022 
8023 		wait_for_completion(&done.done);
8024 
8025 		if (!done.uptodate) {
8026 			/* We might have another mirror, so try again */
8027 			goto next_block_or_try_again;
8028 		}
8029 
8030 		start += sectorsize;
8031 
8032 		if (nr_sectors--) {
8033 			pgoff += sectorsize;
8034 			goto next_block_or_try_again;
8035 		}
8036 	}
8037 
8038 	return 0;
8039 }
8040 
8041 static void btrfs_retry_endio(struct bio *bio)
8042 {
8043 	struct btrfs_retry_complete *done = bio->bi_private;
8044 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8045 	struct inode *inode;
8046 	struct bio_vec *bvec;
8047 	u64 start;
8048 	int uptodate;
8049 	int ret;
8050 	int i;
8051 
8052 	if (bio->bi_error)
8053 		goto end;
8054 
8055 	uptodate = 1;
8056 
8057 	start = done->start;
8058 
8059 	ASSERT(bio->bi_vcnt == 1);
8060 	inode = bio->bi_io_vec->bv_page->mapping->host;
8061 	ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
8062 
8063 	bio_for_each_segment_all(bvec, bio, i) {
8064 		ret = __readpage_endio_check(done->inode, io_bio, i,
8065 					bvec->bv_page, bvec->bv_offset,
8066 					done->start, bvec->bv_len);
8067 		if (!ret)
8068 			clean_io_failure(done->inode, done->start,
8069 					bvec->bv_page, bvec->bv_offset);
8070 		else
8071 			uptodate = 0;
8072 	}
8073 
8074 	done->uptodate = uptodate;
8075 end:
8076 	complete(&done->done);
8077 	bio_put(bio);
8078 }
8079 
8080 static int __btrfs_subio_endio_read(struct inode *inode,
8081 				    struct btrfs_io_bio *io_bio, int err)
8082 {
8083 	struct btrfs_fs_info *fs_info;
8084 	struct bio_vec *bvec;
8085 	struct btrfs_retry_complete done;
8086 	u64 start;
8087 	u64 offset = 0;
8088 	u32 sectorsize;
8089 	int nr_sectors;
8090 	unsigned int pgoff;
8091 	int csum_pos;
8092 	int i;
8093 	int ret;
8094 
8095 	fs_info = BTRFS_I(inode)->root->fs_info;
8096 	sectorsize = fs_info->sectorsize;
8097 
8098 	err = 0;
8099 	start = io_bio->logical;
8100 	done.inode = inode;
8101 
8102 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8103 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8104 
8105 		pgoff = bvec->bv_offset;
8106 next_block:
8107 		csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8108 		ret = __readpage_endio_check(inode, io_bio, csum_pos,
8109 					bvec->bv_page, pgoff, start,
8110 					sectorsize);
8111 		if (likely(!ret))
8112 			goto next;
8113 try_again:
8114 		done.uptodate = 0;
8115 		done.start = start;
8116 		init_completion(&done.done);
8117 
8118 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8119 				pgoff, start, start + sectorsize - 1,
8120 				io_bio->mirror_num,
8121 				btrfs_retry_endio, &done);
8122 		if (ret) {
8123 			err = ret;
8124 			goto next;
8125 		}
8126 
8127 		wait_for_completion(&done.done);
8128 
8129 		if (!done.uptodate) {
8130 			/* We might have another mirror, so try again */
8131 			goto try_again;
8132 		}
8133 next:
8134 		offset += sectorsize;
8135 		start += sectorsize;
8136 
8137 		ASSERT(nr_sectors);
8138 
8139 		if (--nr_sectors) {
8140 			pgoff += sectorsize;
8141 			goto next_block;
8142 		}
8143 	}
8144 
8145 	return err;
8146 }
8147 
8148 static int btrfs_subio_endio_read(struct inode *inode,
8149 				  struct btrfs_io_bio *io_bio, int err)
8150 {
8151 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8152 
8153 	if (skip_csum) {
8154 		if (unlikely(err))
8155 			return __btrfs_correct_data_nocsum(inode, io_bio);
8156 		else
8157 			return 0;
8158 	} else {
8159 		return __btrfs_subio_endio_read(inode, io_bio, err);
8160 	}
8161 }
8162 
8163 static void btrfs_endio_direct_read(struct bio *bio)
8164 {
8165 	struct btrfs_dio_private *dip = bio->bi_private;
8166 	struct inode *inode = dip->inode;
8167 	struct bio *dio_bio;
8168 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8169 	int err = bio->bi_error;
8170 
8171 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8172 		err = btrfs_subio_endio_read(inode, io_bio, err);
8173 
8174 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8175 		      dip->logical_offset + dip->bytes - 1);
8176 	dio_bio = dip->dio_bio;
8177 
8178 	kfree(dip);
8179 
8180 	dio_bio->bi_error = bio->bi_error;
8181 	dio_end_io(dio_bio, bio->bi_error);
8182 
8183 	if (io_bio->end_io)
8184 		io_bio->end_io(io_bio, err);
8185 	bio_put(bio);
8186 }
8187 
8188 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8189 						    const u64 offset,
8190 						    const u64 bytes,
8191 						    const int uptodate)
8192 {
8193 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8194 	struct btrfs_ordered_extent *ordered = NULL;
8195 	u64 ordered_offset = offset;
8196 	u64 ordered_bytes = bytes;
8197 	int ret;
8198 
8199 again:
8200 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8201 						   &ordered_offset,
8202 						   ordered_bytes,
8203 						   uptodate);
8204 	if (!ret)
8205 		goto out_test;
8206 
8207 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8208 			finish_ordered_fn, NULL, NULL);
8209 	btrfs_queue_work(fs_info->endio_write_workers, &ordered->work);
8210 out_test:
8211 	/*
8212 	 * our bio might span multiple ordered extents.  If we haven't
8213 	 * completed the accounting for the whole dio, go back and try again
8214 	 */
8215 	if (ordered_offset < offset + bytes) {
8216 		ordered_bytes = offset + bytes - ordered_offset;
8217 		ordered = NULL;
8218 		goto again;
8219 	}
8220 }
8221 
8222 static void btrfs_endio_direct_write(struct bio *bio)
8223 {
8224 	struct btrfs_dio_private *dip = bio->bi_private;
8225 	struct bio *dio_bio = dip->dio_bio;
8226 
8227 	btrfs_endio_direct_write_update_ordered(dip->inode,
8228 						dip->logical_offset,
8229 						dip->bytes,
8230 						!bio->bi_error);
8231 
8232 	kfree(dip);
8233 
8234 	dio_bio->bi_error = bio->bi_error;
8235 	dio_end_io(dio_bio, bio->bi_error);
8236 	bio_put(bio);
8237 }
8238 
8239 static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
8240 				    struct bio *bio, int mirror_num,
8241 				    unsigned long bio_flags, u64 offset)
8242 {
8243 	int ret;
8244 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8245 	BUG_ON(ret); /* -ENOMEM */
8246 	return 0;
8247 }
8248 
8249 static void btrfs_end_dio_bio(struct bio *bio)
8250 {
8251 	struct btrfs_dio_private *dip = bio->bi_private;
8252 	int err = bio->bi_error;
8253 
8254 	if (err)
8255 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8256 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8257 			   btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf,
8258 			   (unsigned long long)bio->bi_iter.bi_sector,
8259 			   bio->bi_iter.bi_size, err);
8260 
8261 	if (dip->subio_endio)
8262 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8263 
8264 	if (err) {
8265 		dip->errors = 1;
8266 
8267 		/*
8268 		 * before atomic variable goto zero, we must make sure
8269 		 * dip->errors is perceived to be set.
8270 		 */
8271 		smp_mb__before_atomic();
8272 	}
8273 
8274 	/* if there are more bios still pending for this dio, just exit */
8275 	if (!atomic_dec_and_test(&dip->pending_bios))
8276 		goto out;
8277 
8278 	if (dip->errors) {
8279 		bio_io_error(dip->orig_bio);
8280 	} else {
8281 		dip->dio_bio->bi_error = 0;
8282 		bio_endio(dip->orig_bio);
8283 	}
8284 out:
8285 	bio_put(bio);
8286 }
8287 
8288 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8289 				       u64 first_sector, gfp_t gfp_flags)
8290 {
8291 	struct bio *bio;
8292 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8293 	if (bio)
8294 		bio_associate_current(bio);
8295 	return bio;
8296 }
8297 
8298 static inline int btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8299 						 struct btrfs_dio_private *dip,
8300 						 struct bio *bio,
8301 						 u64 file_offset)
8302 {
8303 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8304 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8305 	int ret;
8306 
8307 	/*
8308 	 * We load all the csum data we need when we submit
8309 	 * the first bio to reduce the csum tree search and
8310 	 * contention.
8311 	 */
8312 	if (dip->logical_offset == file_offset) {
8313 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8314 						file_offset);
8315 		if (ret)
8316 			return ret;
8317 	}
8318 
8319 	if (bio == dip->orig_bio)
8320 		return 0;
8321 
8322 	file_offset -= dip->logical_offset;
8323 	file_offset >>= inode->i_sb->s_blocksize_bits;
8324 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8325 
8326 	return 0;
8327 }
8328 
8329 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8330 					 u64 file_offset, int skip_sum,
8331 					 int async_submit)
8332 {
8333 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8334 	struct btrfs_dio_private *dip = bio->bi_private;
8335 	bool write = bio_op(bio) == REQ_OP_WRITE;
8336 	int ret;
8337 
8338 	if (async_submit)
8339 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8340 
8341 	bio_get(bio);
8342 
8343 	if (!write) {
8344 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8345 		if (ret)
8346 			goto err;
8347 	}
8348 
8349 	if (skip_sum)
8350 		goto map;
8351 
8352 	if (write && async_submit) {
8353 		ret = btrfs_wq_submit_bio(fs_info, inode, bio, 0, 0,
8354 					  file_offset,
8355 					  __btrfs_submit_bio_start_direct_io,
8356 					  __btrfs_submit_bio_done);
8357 		goto err;
8358 	} else if (write) {
8359 		/*
8360 		 * If we aren't doing async submit, calculate the csum of the
8361 		 * bio now.
8362 		 */
8363 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8364 		if (ret)
8365 			goto err;
8366 	} else {
8367 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8368 						     file_offset);
8369 		if (ret)
8370 			goto err;
8371 	}
8372 map:
8373 	ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
8374 err:
8375 	bio_put(bio);
8376 	return ret;
8377 }
8378 
8379 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8380 				    int skip_sum)
8381 {
8382 	struct inode *inode = dip->inode;
8383 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8384 	struct btrfs_root *root = BTRFS_I(inode)->root;
8385 	struct bio *bio;
8386 	struct bio *orig_bio = dip->orig_bio;
8387 	struct bio_vec *bvec;
8388 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8389 	u64 file_offset = dip->logical_offset;
8390 	u64 submit_len = 0;
8391 	u64 map_length;
8392 	u32 blocksize = fs_info->sectorsize;
8393 	int async_submit = 0;
8394 	int nr_sectors;
8395 	int ret;
8396 	int i, j;
8397 
8398 	map_length = orig_bio->bi_iter.bi_size;
8399 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8400 			      &map_length, NULL, 0);
8401 	if (ret)
8402 		return -EIO;
8403 
8404 	if (map_length >= orig_bio->bi_iter.bi_size) {
8405 		bio = orig_bio;
8406 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8407 		goto submit;
8408 	}
8409 
8410 	/* async crcs make it difficult to collect full stripe writes. */
8411 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8412 		async_submit = 0;
8413 	else
8414 		async_submit = 1;
8415 
8416 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8417 	if (!bio)
8418 		return -ENOMEM;
8419 
8420 	bio->bi_opf = orig_bio->bi_opf;
8421 	bio->bi_private = dip;
8422 	bio->bi_end_io = btrfs_end_dio_bio;
8423 	btrfs_io_bio(bio)->logical = file_offset;
8424 	atomic_inc(&dip->pending_bios);
8425 
8426 	bio_for_each_segment_all(bvec, orig_bio, j) {
8427 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8428 		i = 0;
8429 next_block:
8430 		if (unlikely(map_length < submit_len + blocksize ||
8431 		    bio_add_page(bio, bvec->bv_page, blocksize,
8432 			    bvec->bv_offset + (i * blocksize)) < blocksize)) {
8433 			/*
8434 			 * inc the count before we submit the bio so
8435 			 * we know the end IO handler won't happen before
8436 			 * we inc the count. Otherwise, the dip might get freed
8437 			 * before we're done setting it up
8438 			 */
8439 			atomic_inc(&dip->pending_bios);
8440 			ret = __btrfs_submit_dio_bio(bio, inode,
8441 						     file_offset, skip_sum,
8442 						     async_submit);
8443 			if (ret) {
8444 				bio_put(bio);
8445 				atomic_dec(&dip->pending_bios);
8446 				goto out_err;
8447 			}
8448 
8449 			start_sector += submit_len >> 9;
8450 			file_offset += submit_len;
8451 
8452 			submit_len = 0;
8453 
8454 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8455 						  start_sector, GFP_NOFS);
8456 			if (!bio)
8457 				goto out_err;
8458 			bio->bi_opf = orig_bio->bi_opf;
8459 			bio->bi_private = dip;
8460 			bio->bi_end_io = btrfs_end_dio_bio;
8461 			btrfs_io_bio(bio)->logical = file_offset;
8462 
8463 			map_length = orig_bio->bi_iter.bi_size;
8464 			ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8465 					      start_sector << 9,
8466 					      &map_length, NULL, 0);
8467 			if (ret) {
8468 				bio_put(bio);
8469 				goto out_err;
8470 			}
8471 
8472 			goto next_block;
8473 		} else {
8474 			submit_len += blocksize;
8475 			if (--nr_sectors) {
8476 				i++;
8477 				goto next_block;
8478 			}
8479 		}
8480 	}
8481 
8482 submit:
8483 	ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8484 				     async_submit);
8485 	if (!ret)
8486 		return 0;
8487 
8488 	bio_put(bio);
8489 out_err:
8490 	dip->errors = 1;
8491 	/*
8492 	 * before atomic variable goto zero, we must
8493 	 * make sure dip->errors is perceived to be set.
8494 	 */
8495 	smp_mb__before_atomic();
8496 	if (atomic_dec_and_test(&dip->pending_bios))
8497 		bio_io_error(dip->orig_bio);
8498 
8499 	/* bio_end_io() will handle error, so we needn't return it */
8500 	return 0;
8501 }
8502 
8503 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8504 				loff_t file_offset)
8505 {
8506 	struct btrfs_dio_private *dip = NULL;
8507 	struct bio *io_bio = NULL;
8508 	struct btrfs_io_bio *btrfs_bio;
8509 	int skip_sum;
8510 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8511 	int ret = 0;
8512 
8513 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8514 
8515 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8516 	if (!io_bio) {
8517 		ret = -ENOMEM;
8518 		goto free_ordered;
8519 	}
8520 
8521 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8522 	if (!dip) {
8523 		ret = -ENOMEM;
8524 		goto free_ordered;
8525 	}
8526 
8527 	dip->private = dio_bio->bi_private;
8528 	dip->inode = inode;
8529 	dip->logical_offset = file_offset;
8530 	dip->bytes = dio_bio->bi_iter.bi_size;
8531 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8532 	io_bio->bi_private = dip;
8533 	dip->orig_bio = io_bio;
8534 	dip->dio_bio = dio_bio;
8535 	atomic_set(&dip->pending_bios, 0);
8536 	btrfs_bio = btrfs_io_bio(io_bio);
8537 	btrfs_bio->logical = file_offset;
8538 
8539 	if (write) {
8540 		io_bio->bi_end_io = btrfs_endio_direct_write;
8541 	} else {
8542 		io_bio->bi_end_io = btrfs_endio_direct_read;
8543 		dip->subio_endio = btrfs_subio_endio_read;
8544 	}
8545 
8546 	/*
8547 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8548 	 * even if we fail to submit a bio, because in such case we do the
8549 	 * corresponding error handling below and it must not be done a second
8550 	 * time by btrfs_direct_IO().
8551 	 */
8552 	if (write) {
8553 		struct btrfs_dio_data *dio_data = current->journal_info;
8554 
8555 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8556 			dip->bytes;
8557 		dio_data->unsubmitted_oe_range_start =
8558 			dio_data->unsubmitted_oe_range_end;
8559 	}
8560 
8561 	ret = btrfs_submit_direct_hook(dip, skip_sum);
8562 	if (!ret)
8563 		return;
8564 
8565 	if (btrfs_bio->end_io)
8566 		btrfs_bio->end_io(btrfs_bio, ret);
8567 
8568 free_ordered:
8569 	/*
8570 	 * If we arrived here it means either we failed to submit the dip
8571 	 * or we either failed to clone the dio_bio or failed to allocate the
8572 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8573 	 * call bio_endio against our io_bio so that we get proper resource
8574 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8575 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8576 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8577 	 */
8578 	if (io_bio && dip) {
8579 		io_bio->bi_error = -EIO;
8580 		bio_endio(io_bio);
8581 		/*
8582 		 * The end io callbacks free our dip, do the final put on io_bio
8583 		 * and all the cleanup and final put for dio_bio (through
8584 		 * dio_end_io()).
8585 		 */
8586 		dip = NULL;
8587 		io_bio = NULL;
8588 	} else {
8589 		if (write)
8590 			btrfs_endio_direct_write_update_ordered(inode,
8591 						file_offset,
8592 						dio_bio->bi_iter.bi_size,
8593 						0);
8594 		else
8595 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8596 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8597 
8598 		dio_bio->bi_error = -EIO;
8599 		/*
8600 		 * Releases and cleans up our dio_bio, no need to bio_put()
8601 		 * nor bio_endio()/bio_io_error() against dio_bio.
8602 		 */
8603 		dio_end_io(dio_bio, ret);
8604 	}
8605 	if (io_bio)
8606 		bio_put(io_bio);
8607 	kfree(dip);
8608 }
8609 
8610 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8611 			       struct kiocb *iocb,
8612 			       const struct iov_iter *iter, loff_t offset)
8613 {
8614 	int seg;
8615 	int i;
8616 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8617 	ssize_t retval = -EINVAL;
8618 
8619 	if (offset & blocksize_mask)
8620 		goto out;
8621 
8622 	if (iov_iter_alignment(iter) & blocksize_mask)
8623 		goto out;
8624 
8625 	/* If this is a write we don't need to check anymore */
8626 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8627 		return 0;
8628 	/*
8629 	 * Check to make sure we don't have duplicate iov_base's in this
8630 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8631 	 * when reading back.
8632 	 */
8633 	for (seg = 0; seg < iter->nr_segs; seg++) {
8634 		for (i = seg + 1; i < iter->nr_segs; i++) {
8635 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8636 				goto out;
8637 		}
8638 	}
8639 	retval = 0;
8640 out:
8641 	return retval;
8642 }
8643 
8644 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8645 {
8646 	struct file *file = iocb->ki_filp;
8647 	struct inode *inode = file->f_mapping->host;
8648 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8649 	struct btrfs_dio_data dio_data = { 0 };
8650 	loff_t offset = iocb->ki_pos;
8651 	size_t count = 0;
8652 	int flags = 0;
8653 	bool wakeup = true;
8654 	bool relock = false;
8655 	ssize_t ret;
8656 
8657 	if (check_direct_IO(fs_info, iocb, iter, offset))
8658 		return 0;
8659 
8660 	inode_dio_begin(inode);
8661 	smp_mb__after_atomic();
8662 
8663 	/*
8664 	 * The generic stuff only does filemap_write_and_wait_range, which
8665 	 * isn't enough if we've written compressed pages to this area, so
8666 	 * we need to flush the dirty pages again to make absolutely sure
8667 	 * that any outstanding dirty pages are on disk.
8668 	 */
8669 	count = iov_iter_count(iter);
8670 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8671 		     &BTRFS_I(inode)->runtime_flags))
8672 		filemap_fdatawrite_range(inode->i_mapping, offset,
8673 					 offset + count - 1);
8674 
8675 	if (iov_iter_rw(iter) == WRITE) {
8676 		/*
8677 		 * If the write DIO is beyond the EOF, we need update
8678 		 * the isize, but it is protected by i_mutex. So we can
8679 		 * not unlock the i_mutex at this case.
8680 		 */
8681 		if (offset + count <= inode->i_size) {
8682 			inode_unlock(inode);
8683 			relock = true;
8684 		}
8685 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8686 		if (ret)
8687 			goto out;
8688 		dio_data.outstanding_extents = div64_u64(count +
8689 						BTRFS_MAX_EXTENT_SIZE - 1,
8690 						BTRFS_MAX_EXTENT_SIZE);
8691 
8692 		/*
8693 		 * We need to know how many extents we reserved so that we can
8694 		 * do the accounting properly if we go over the number we
8695 		 * originally calculated.  Abuse current->journal_info for this.
8696 		 */
8697 		dio_data.reserve = round_up(count,
8698 					    fs_info->sectorsize);
8699 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8700 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8701 		current->journal_info = &dio_data;
8702 		down_read(&BTRFS_I(inode)->dio_sem);
8703 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8704 				     &BTRFS_I(inode)->runtime_flags)) {
8705 		inode_dio_end(inode);
8706 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8707 		wakeup = false;
8708 	}
8709 
8710 	ret = __blockdev_direct_IO(iocb, inode,
8711 				   fs_info->fs_devices->latest_bdev,
8712 				   iter, btrfs_get_blocks_direct, NULL,
8713 				   btrfs_submit_direct, flags);
8714 	if (iov_iter_rw(iter) == WRITE) {
8715 		up_read(&BTRFS_I(inode)->dio_sem);
8716 		current->journal_info = NULL;
8717 		if (ret < 0 && ret != -EIOCBQUEUED) {
8718 			if (dio_data.reserve)
8719 				btrfs_delalloc_release_space(inode, offset,
8720 							     dio_data.reserve);
8721 			/*
8722 			 * On error we might have left some ordered extents
8723 			 * without submitting corresponding bios for them, so
8724 			 * cleanup them up to avoid other tasks getting them
8725 			 * and waiting for them to complete forever.
8726 			 */
8727 			if (dio_data.unsubmitted_oe_range_start <
8728 			    dio_data.unsubmitted_oe_range_end)
8729 				btrfs_endio_direct_write_update_ordered(inode,
8730 					dio_data.unsubmitted_oe_range_start,
8731 					dio_data.unsubmitted_oe_range_end -
8732 					dio_data.unsubmitted_oe_range_start,
8733 					0);
8734 		} else if (ret >= 0 && (size_t)ret < count)
8735 			btrfs_delalloc_release_space(inode, offset,
8736 						     count - (size_t)ret);
8737 	}
8738 out:
8739 	if (wakeup)
8740 		inode_dio_end(inode);
8741 	if (relock)
8742 		inode_lock(inode);
8743 
8744 	return ret;
8745 }
8746 
8747 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8748 
8749 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8750 		__u64 start, __u64 len)
8751 {
8752 	int	ret;
8753 
8754 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8755 	if (ret)
8756 		return ret;
8757 
8758 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8759 }
8760 
8761 int btrfs_readpage(struct file *file, struct page *page)
8762 {
8763 	struct extent_io_tree *tree;
8764 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8765 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8766 }
8767 
8768 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8769 {
8770 	struct extent_io_tree *tree;
8771 	struct inode *inode = page->mapping->host;
8772 	int ret;
8773 
8774 	if (current->flags & PF_MEMALLOC) {
8775 		redirty_page_for_writepage(wbc, page);
8776 		unlock_page(page);
8777 		return 0;
8778 	}
8779 
8780 	/*
8781 	 * If we are under memory pressure we will call this directly from the
8782 	 * VM, we need to make sure we have the inode referenced for the ordered
8783 	 * extent.  If not just return like we didn't do anything.
8784 	 */
8785 	if (!igrab(inode)) {
8786 		redirty_page_for_writepage(wbc, page);
8787 		return AOP_WRITEPAGE_ACTIVATE;
8788 	}
8789 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8790 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8791 	btrfs_add_delayed_iput(inode);
8792 	return ret;
8793 }
8794 
8795 static int btrfs_writepages(struct address_space *mapping,
8796 			    struct writeback_control *wbc)
8797 {
8798 	struct extent_io_tree *tree;
8799 
8800 	tree = &BTRFS_I(mapping->host)->io_tree;
8801 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8802 }
8803 
8804 static int
8805 btrfs_readpages(struct file *file, struct address_space *mapping,
8806 		struct list_head *pages, unsigned nr_pages)
8807 {
8808 	struct extent_io_tree *tree;
8809 	tree = &BTRFS_I(mapping->host)->io_tree;
8810 	return extent_readpages(tree, mapping, pages, nr_pages,
8811 				btrfs_get_extent);
8812 }
8813 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8814 {
8815 	struct extent_io_tree *tree;
8816 	struct extent_map_tree *map;
8817 	int ret;
8818 
8819 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8820 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8821 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8822 	if (ret == 1) {
8823 		ClearPagePrivate(page);
8824 		set_page_private(page, 0);
8825 		put_page(page);
8826 	}
8827 	return ret;
8828 }
8829 
8830 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8831 {
8832 	if (PageWriteback(page) || PageDirty(page))
8833 		return 0;
8834 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8835 }
8836 
8837 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8838 				 unsigned int length)
8839 {
8840 	struct inode *inode = page->mapping->host;
8841 	struct extent_io_tree *tree;
8842 	struct btrfs_ordered_extent *ordered;
8843 	struct extent_state *cached_state = NULL;
8844 	u64 page_start = page_offset(page);
8845 	u64 page_end = page_start + PAGE_SIZE - 1;
8846 	u64 start;
8847 	u64 end;
8848 	int inode_evicting = inode->i_state & I_FREEING;
8849 
8850 	/*
8851 	 * we have the page locked, so new writeback can't start,
8852 	 * and the dirty bit won't be cleared while we are here.
8853 	 *
8854 	 * Wait for IO on this page so that we can safely clear
8855 	 * the PagePrivate2 bit and do ordered accounting
8856 	 */
8857 	wait_on_page_writeback(page);
8858 
8859 	tree = &BTRFS_I(inode)->io_tree;
8860 	if (offset) {
8861 		btrfs_releasepage(page, GFP_NOFS);
8862 		return;
8863 	}
8864 
8865 	if (!inode_evicting)
8866 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8867 again:
8868 	start = page_start;
8869 	ordered = btrfs_lookup_ordered_range(inode, start,
8870 					page_end - start + 1);
8871 	if (ordered) {
8872 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8873 		/*
8874 		 * IO on this page will never be started, so we need
8875 		 * to account for any ordered extents now
8876 		 */
8877 		if (!inode_evicting)
8878 			clear_extent_bit(tree, start, end,
8879 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8880 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8881 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8882 					 GFP_NOFS);
8883 		/*
8884 		 * whoever cleared the private bit is responsible
8885 		 * for the finish_ordered_io
8886 		 */
8887 		if (TestClearPagePrivate2(page)) {
8888 			struct btrfs_ordered_inode_tree *tree;
8889 			u64 new_len;
8890 
8891 			tree = &BTRFS_I(inode)->ordered_tree;
8892 
8893 			spin_lock_irq(&tree->lock);
8894 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8895 			new_len = start - ordered->file_offset;
8896 			if (new_len < ordered->truncated_len)
8897 				ordered->truncated_len = new_len;
8898 			spin_unlock_irq(&tree->lock);
8899 
8900 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8901 							   start,
8902 							   end - start + 1, 1))
8903 				btrfs_finish_ordered_io(ordered);
8904 		}
8905 		btrfs_put_ordered_extent(ordered);
8906 		if (!inode_evicting) {
8907 			cached_state = NULL;
8908 			lock_extent_bits(tree, start, end,
8909 					 &cached_state);
8910 		}
8911 
8912 		start = end + 1;
8913 		if (start < page_end)
8914 			goto again;
8915 	}
8916 
8917 	/*
8918 	 * Qgroup reserved space handler
8919 	 * Page here will be either
8920 	 * 1) Already written to disk
8921 	 *    In this case, its reserved space is released from data rsv map
8922 	 *    and will be freed by delayed_ref handler finally.
8923 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8924 	 *    space.
8925 	 * 2) Not written to disk
8926 	 *    This means the reserved space should be freed here. However,
8927 	 *    if a truncate invalidates the page (by clearing PageDirty)
8928 	 *    and the page is accounted for while allocating extent
8929 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8930 	 *    free the entire extent.
8931 	 */
8932 	if (PageDirty(page))
8933 		btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8934 	if (!inode_evicting) {
8935 		clear_extent_bit(tree, page_start, page_end,
8936 				 EXTENT_LOCKED | EXTENT_DIRTY |
8937 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8938 				 EXTENT_DEFRAG, 1, 1,
8939 				 &cached_state, GFP_NOFS);
8940 
8941 		__btrfs_releasepage(page, GFP_NOFS);
8942 	}
8943 
8944 	ClearPageChecked(page);
8945 	if (PagePrivate(page)) {
8946 		ClearPagePrivate(page);
8947 		set_page_private(page, 0);
8948 		put_page(page);
8949 	}
8950 }
8951 
8952 /*
8953  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8954  * called from a page fault handler when a page is first dirtied. Hence we must
8955  * be careful to check for EOF conditions here. We set the page up correctly
8956  * for a written page which means we get ENOSPC checking when writing into
8957  * holes and correct delalloc and unwritten extent mapping on filesystems that
8958  * support these features.
8959  *
8960  * We are not allowed to take the i_mutex here so we have to play games to
8961  * protect against truncate races as the page could now be beyond EOF.  Because
8962  * vmtruncate() writes the inode size before removing pages, once we have the
8963  * page lock we can determine safely if the page is beyond EOF. If it is not
8964  * beyond EOF, then the page is guaranteed safe against truncation until we
8965  * unlock the page.
8966  */
8967 int btrfs_page_mkwrite(struct vm_fault *vmf)
8968 {
8969 	struct page *page = vmf->page;
8970 	struct inode *inode = file_inode(vmf->vma->vm_file);
8971 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8972 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8973 	struct btrfs_ordered_extent *ordered;
8974 	struct extent_state *cached_state = NULL;
8975 	char *kaddr;
8976 	unsigned long zero_start;
8977 	loff_t size;
8978 	int ret;
8979 	int reserved = 0;
8980 	u64 reserved_space;
8981 	u64 page_start;
8982 	u64 page_end;
8983 	u64 end;
8984 
8985 	reserved_space = PAGE_SIZE;
8986 
8987 	sb_start_pagefault(inode->i_sb);
8988 	page_start = page_offset(page);
8989 	page_end = page_start + PAGE_SIZE - 1;
8990 	end = page_end;
8991 
8992 	/*
8993 	 * Reserving delalloc space after obtaining the page lock can lead to
8994 	 * deadlock. For example, if a dirty page is locked by this function
8995 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8996 	 * dirty page write out, then the btrfs_writepage() function could
8997 	 * end up waiting indefinitely to get a lock on the page currently
8998 	 * being processed by btrfs_page_mkwrite() function.
8999 	 */
9000 	ret = btrfs_delalloc_reserve_space(inode, page_start,
9001 					   reserved_space);
9002 	if (!ret) {
9003 		ret = file_update_time(vmf->vma->vm_file);
9004 		reserved = 1;
9005 	}
9006 	if (ret) {
9007 		if (ret == -ENOMEM)
9008 			ret = VM_FAULT_OOM;
9009 		else /* -ENOSPC, -EIO, etc */
9010 			ret = VM_FAULT_SIGBUS;
9011 		if (reserved)
9012 			goto out;
9013 		goto out_noreserve;
9014 	}
9015 
9016 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9017 again:
9018 	lock_page(page);
9019 	size = i_size_read(inode);
9020 
9021 	if ((page->mapping != inode->i_mapping) ||
9022 	    (page_start >= size)) {
9023 		/* page got truncated out from underneath us */
9024 		goto out_unlock;
9025 	}
9026 	wait_on_page_writeback(page);
9027 
9028 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9029 	set_page_extent_mapped(page);
9030 
9031 	/*
9032 	 * we can't set the delalloc bits if there are pending ordered
9033 	 * extents.  Drop our locks and wait for them to finish
9034 	 */
9035 	ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
9036 	if (ordered) {
9037 		unlock_extent_cached(io_tree, page_start, page_end,
9038 				     &cached_state, GFP_NOFS);
9039 		unlock_page(page);
9040 		btrfs_start_ordered_extent(inode, ordered, 1);
9041 		btrfs_put_ordered_extent(ordered);
9042 		goto again;
9043 	}
9044 
9045 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9046 		reserved_space = round_up(size - page_start,
9047 					  fs_info->sectorsize);
9048 		if (reserved_space < PAGE_SIZE) {
9049 			end = page_start + reserved_space - 1;
9050 			spin_lock(&BTRFS_I(inode)->lock);
9051 			BTRFS_I(inode)->outstanding_extents++;
9052 			spin_unlock(&BTRFS_I(inode)->lock);
9053 			btrfs_delalloc_release_space(inode, page_start,
9054 						PAGE_SIZE - reserved_space);
9055 		}
9056 	}
9057 
9058 	/*
9059 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
9060 	 * if it was already dirty, so for space accounting reasons we need to
9061 	 * clear any delalloc bits for the range we are fixing to save.  There
9062 	 * is probably a better way to do this, but for now keep consistent with
9063 	 * prepare_pages in the normal write path.
9064 	 */
9065 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9066 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9067 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9068 			  0, 0, &cached_state, GFP_NOFS);
9069 
9070 	ret = btrfs_set_extent_delalloc(inode, page_start, end,
9071 					&cached_state, 0);
9072 	if (ret) {
9073 		unlock_extent_cached(io_tree, page_start, page_end,
9074 				     &cached_state, GFP_NOFS);
9075 		ret = VM_FAULT_SIGBUS;
9076 		goto out_unlock;
9077 	}
9078 	ret = 0;
9079 
9080 	/* page is wholly or partially inside EOF */
9081 	if (page_start + PAGE_SIZE > size)
9082 		zero_start = size & ~PAGE_MASK;
9083 	else
9084 		zero_start = PAGE_SIZE;
9085 
9086 	if (zero_start != PAGE_SIZE) {
9087 		kaddr = kmap(page);
9088 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9089 		flush_dcache_page(page);
9090 		kunmap(page);
9091 	}
9092 	ClearPageChecked(page);
9093 	set_page_dirty(page);
9094 	SetPageUptodate(page);
9095 
9096 	BTRFS_I(inode)->last_trans = fs_info->generation;
9097 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9098 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9099 
9100 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9101 
9102 out_unlock:
9103 	if (!ret) {
9104 		sb_end_pagefault(inode->i_sb);
9105 		return VM_FAULT_LOCKED;
9106 	}
9107 	unlock_page(page);
9108 out:
9109 	btrfs_delalloc_release_space(inode, page_start, reserved_space);
9110 out_noreserve:
9111 	sb_end_pagefault(inode->i_sb);
9112 	return ret;
9113 }
9114 
9115 static int btrfs_truncate(struct inode *inode)
9116 {
9117 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9118 	struct btrfs_root *root = BTRFS_I(inode)->root;
9119 	struct btrfs_block_rsv *rsv;
9120 	int ret = 0;
9121 	int err = 0;
9122 	struct btrfs_trans_handle *trans;
9123 	u64 mask = fs_info->sectorsize - 1;
9124 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9125 
9126 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9127 				       (u64)-1);
9128 	if (ret)
9129 		return ret;
9130 
9131 	/*
9132 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9133 	 * 3 things going on here
9134 	 *
9135 	 * 1) We need to reserve space for our orphan item and the space to
9136 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9137 	 * orphan item because we didn't reserve space to remove it.
9138 	 *
9139 	 * 2) We need to reserve space to update our inode.
9140 	 *
9141 	 * 3) We need to have something to cache all the space that is going to
9142 	 * be free'd up by the truncate operation, but also have some slack
9143 	 * space reserved in case it uses space during the truncate (thank you
9144 	 * very much snapshotting).
9145 	 *
9146 	 * And we need these to all be separate.  The fact is we can use a lot of
9147 	 * space doing the truncate, and we have no earthly idea how much space
9148 	 * we will use, so we need the truncate reservation to be separate so it
9149 	 * doesn't end up using space reserved for updating the inode or
9150 	 * removing the orphan item.  We also need to be able to stop the
9151 	 * transaction and start a new one, which means we need to be able to
9152 	 * update the inode several times, and we have no idea of knowing how
9153 	 * many times that will be, so we can't just reserve 1 item for the
9154 	 * entirety of the operation, so that has to be done separately as well.
9155 	 * Then there is the orphan item, which does indeed need to be held on
9156 	 * to for the whole operation, and we need nobody to touch this reserved
9157 	 * space except the orphan code.
9158 	 *
9159 	 * So that leaves us with
9160 	 *
9161 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9162 	 * 2) rsv - for the truncate reservation, which we will steal from the
9163 	 * transaction reservation.
9164 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9165 	 * updating the inode.
9166 	 */
9167 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9168 	if (!rsv)
9169 		return -ENOMEM;
9170 	rsv->size = min_size;
9171 	rsv->failfast = 1;
9172 
9173 	/*
9174 	 * 1 for the truncate slack space
9175 	 * 1 for updating the inode.
9176 	 */
9177 	trans = btrfs_start_transaction(root, 2);
9178 	if (IS_ERR(trans)) {
9179 		err = PTR_ERR(trans);
9180 		goto out;
9181 	}
9182 
9183 	/* Migrate the slack space for the truncate to our reserve */
9184 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9185 				      min_size, 0);
9186 	BUG_ON(ret);
9187 
9188 	/*
9189 	 * So if we truncate and then write and fsync we normally would just
9190 	 * write the extents that changed, which is a problem if we need to
9191 	 * first truncate that entire inode.  So set this flag so we write out
9192 	 * all of the extents in the inode to the sync log so we're completely
9193 	 * safe.
9194 	 */
9195 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9196 	trans->block_rsv = rsv;
9197 
9198 	while (1) {
9199 		ret = btrfs_truncate_inode_items(trans, root, inode,
9200 						 inode->i_size,
9201 						 BTRFS_EXTENT_DATA_KEY);
9202 		if (ret != -ENOSPC && ret != -EAGAIN) {
9203 			err = ret;
9204 			break;
9205 		}
9206 
9207 		trans->block_rsv = &fs_info->trans_block_rsv;
9208 		ret = btrfs_update_inode(trans, root, inode);
9209 		if (ret) {
9210 			err = ret;
9211 			break;
9212 		}
9213 
9214 		btrfs_end_transaction(trans);
9215 		btrfs_btree_balance_dirty(fs_info);
9216 
9217 		trans = btrfs_start_transaction(root, 2);
9218 		if (IS_ERR(trans)) {
9219 			ret = err = PTR_ERR(trans);
9220 			trans = NULL;
9221 			break;
9222 		}
9223 
9224 		btrfs_block_rsv_release(fs_info, rsv, -1);
9225 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9226 					      rsv, min_size, 0);
9227 		BUG_ON(ret);	/* shouldn't happen */
9228 		trans->block_rsv = rsv;
9229 	}
9230 
9231 	if (ret == 0 && inode->i_nlink > 0) {
9232 		trans->block_rsv = root->orphan_block_rsv;
9233 		ret = btrfs_orphan_del(trans, inode);
9234 		if (ret)
9235 			err = ret;
9236 	}
9237 
9238 	if (trans) {
9239 		trans->block_rsv = &fs_info->trans_block_rsv;
9240 		ret = btrfs_update_inode(trans, root, inode);
9241 		if (ret && !err)
9242 			err = ret;
9243 
9244 		ret = btrfs_end_transaction(trans);
9245 		btrfs_btree_balance_dirty(fs_info);
9246 	}
9247 out:
9248 	btrfs_free_block_rsv(fs_info, rsv);
9249 
9250 	if (ret && !err)
9251 		err = ret;
9252 
9253 	return err;
9254 }
9255 
9256 /*
9257  * create a new subvolume directory/inode (helper for the ioctl).
9258  */
9259 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9260 			     struct btrfs_root *new_root,
9261 			     struct btrfs_root *parent_root,
9262 			     u64 new_dirid)
9263 {
9264 	struct inode *inode;
9265 	int err;
9266 	u64 index = 0;
9267 
9268 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9269 				new_dirid, new_dirid,
9270 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9271 				&index);
9272 	if (IS_ERR(inode))
9273 		return PTR_ERR(inode);
9274 	inode->i_op = &btrfs_dir_inode_operations;
9275 	inode->i_fop = &btrfs_dir_file_operations;
9276 
9277 	set_nlink(inode, 1);
9278 	btrfs_i_size_write(inode, 0);
9279 	unlock_new_inode(inode);
9280 
9281 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9282 	if (err)
9283 		btrfs_err(new_root->fs_info,
9284 			  "error inheriting subvolume %llu properties: %d",
9285 			  new_root->root_key.objectid, err);
9286 
9287 	err = btrfs_update_inode(trans, new_root, inode);
9288 
9289 	iput(inode);
9290 	return err;
9291 }
9292 
9293 struct inode *btrfs_alloc_inode(struct super_block *sb)
9294 {
9295 	struct btrfs_inode *ei;
9296 	struct inode *inode;
9297 
9298 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9299 	if (!ei)
9300 		return NULL;
9301 
9302 	ei->root = NULL;
9303 	ei->generation = 0;
9304 	ei->last_trans = 0;
9305 	ei->last_sub_trans = 0;
9306 	ei->logged_trans = 0;
9307 	ei->delalloc_bytes = 0;
9308 	ei->defrag_bytes = 0;
9309 	ei->disk_i_size = 0;
9310 	ei->flags = 0;
9311 	ei->csum_bytes = 0;
9312 	ei->index_cnt = (u64)-1;
9313 	ei->dir_index = 0;
9314 	ei->last_unlink_trans = 0;
9315 	ei->last_log_commit = 0;
9316 	ei->delayed_iput_count = 0;
9317 
9318 	spin_lock_init(&ei->lock);
9319 	ei->outstanding_extents = 0;
9320 	ei->reserved_extents = 0;
9321 
9322 	ei->runtime_flags = 0;
9323 	ei->force_compress = BTRFS_COMPRESS_NONE;
9324 
9325 	ei->delayed_node = NULL;
9326 
9327 	ei->i_otime.tv_sec = 0;
9328 	ei->i_otime.tv_nsec = 0;
9329 
9330 	inode = &ei->vfs_inode;
9331 	extent_map_tree_init(&ei->extent_tree);
9332 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9333 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9334 	ei->io_tree.track_uptodate = 1;
9335 	ei->io_failure_tree.track_uptodate = 1;
9336 	atomic_set(&ei->sync_writers, 0);
9337 	mutex_init(&ei->log_mutex);
9338 	mutex_init(&ei->delalloc_mutex);
9339 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9340 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9341 	INIT_LIST_HEAD(&ei->delayed_iput);
9342 	RB_CLEAR_NODE(&ei->rb_node);
9343 	init_rwsem(&ei->dio_sem);
9344 
9345 	return inode;
9346 }
9347 
9348 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9349 void btrfs_test_destroy_inode(struct inode *inode)
9350 {
9351 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9352 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9353 }
9354 #endif
9355 
9356 static void btrfs_i_callback(struct rcu_head *head)
9357 {
9358 	struct inode *inode = container_of(head, struct inode, i_rcu);
9359 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9360 }
9361 
9362 void btrfs_destroy_inode(struct inode *inode)
9363 {
9364 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9365 	struct btrfs_ordered_extent *ordered;
9366 	struct btrfs_root *root = BTRFS_I(inode)->root;
9367 
9368 	WARN_ON(!hlist_empty(&inode->i_dentry));
9369 	WARN_ON(inode->i_data.nrpages);
9370 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9371 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9372 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9373 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9374 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9375 
9376 	/*
9377 	 * This can happen where we create an inode, but somebody else also
9378 	 * created the same inode and we need to destroy the one we already
9379 	 * created.
9380 	 */
9381 	if (!root)
9382 		goto free;
9383 
9384 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9385 		     &BTRFS_I(inode)->runtime_flags)) {
9386 		btrfs_info(fs_info, "inode %llu still on the orphan list",
9387 			   btrfs_ino(inode));
9388 		atomic_dec(&root->orphan_inodes);
9389 	}
9390 
9391 	while (1) {
9392 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9393 		if (!ordered)
9394 			break;
9395 		else {
9396 			btrfs_err(fs_info,
9397 				  "found ordered extent %llu %llu on inode cleanup",
9398 				  ordered->file_offset, ordered->len);
9399 			btrfs_remove_ordered_extent(inode, ordered);
9400 			btrfs_put_ordered_extent(ordered);
9401 			btrfs_put_ordered_extent(ordered);
9402 		}
9403 	}
9404 	btrfs_qgroup_check_reserved_leak(inode);
9405 	inode_tree_del(inode);
9406 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9407 free:
9408 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9409 }
9410 
9411 int btrfs_drop_inode(struct inode *inode)
9412 {
9413 	struct btrfs_root *root = BTRFS_I(inode)->root;
9414 
9415 	if (root == NULL)
9416 		return 1;
9417 
9418 	/* the snap/subvol tree is on deleting */
9419 	if (btrfs_root_refs(&root->root_item) == 0)
9420 		return 1;
9421 	else
9422 		return generic_drop_inode(inode);
9423 }
9424 
9425 static void init_once(void *foo)
9426 {
9427 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9428 
9429 	inode_init_once(&ei->vfs_inode);
9430 }
9431 
9432 void btrfs_destroy_cachep(void)
9433 {
9434 	/*
9435 	 * Make sure all delayed rcu free inodes are flushed before we
9436 	 * destroy cache.
9437 	 */
9438 	rcu_barrier();
9439 	kmem_cache_destroy(btrfs_inode_cachep);
9440 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9441 	kmem_cache_destroy(btrfs_transaction_cachep);
9442 	kmem_cache_destroy(btrfs_path_cachep);
9443 	kmem_cache_destroy(btrfs_free_space_cachep);
9444 }
9445 
9446 int btrfs_init_cachep(void)
9447 {
9448 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9449 			sizeof(struct btrfs_inode), 0,
9450 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9451 			init_once);
9452 	if (!btrfs_inode_cachep)
9453 		goto fail;
9454 
9455 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9456 			sizeof(struct btrfs_trans_handle), 0,
9457 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9458 	if (!btrfs_trans_handle_cachep)
9459 		goto fail;
9460 
9461 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9462 			sizeof(struct btrfs_transaction), 0,
9463 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9464 	if (!btrfs_transaction_cachep)
9465 		goto fail;
9466 
9467 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9468 			sizeof(struct btrfs_path), 0,
9469 			SLAB_MEM_SPREAD, NULL);
9470 	if (!btrfs_path_cachep)
9471 		goto fail;
9472 
9473 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9474 			sizeof(struct btrfs_free_space), 0,
9475 			SLAB_MEM_SPREAD, NULL);
9476 	if (!btrfs_free_space_cachep)
9477 		goto fail;
9478 
9479 	return 0;
9480 fail:
9481 	btrfs_destroy_cachep();
9482 	return -ENOMEM;
9483 }
9484 
9485 static int btrfs_getattr(struct vfsmount *mnt,
9486 			 struct dentry *dentry, struct kstat *stat)
9487 {
9488 	u64 delalloc_bytes;
9489 	struct inode *inode = d_inode(dentry);
9490 	u32 blocksize = inode->i_sb->s_blocksize;
9491 
9492 	generic_fillattr(inode, stat);
9493 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9494 
9495 	spin_lock(&BTRFS_I(inode)->lock);
9496 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9497 	spin_unlock(&BTRFS_I(inode)->lock);
9498 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9499 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9500 	return 0;
9501 }
9502 
9503 static int btrfs_rename_exchange(struct inode *old_dir,
9504 			      struct dentry *old_dentry,
9505 			      struct inode *new_dir,
9506 			      struct dentry *new_dentry)
9507 {
9508 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9509 	struct btrfs_trans_handle *trans;
9510 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9511 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9512 	struct inode *new_inode = new_dentry->d_inode;
9513 	struct inode *old_inode = old_dentry->d_inode;
9514 	struct timespec ctime = current_time(old_inode);
9515 	struct dentry *parent;
9516 	u64 old_ino = btrfs_ino(old_inode);
9517 	u64 new_ino = btrfs_ino(new_inode);
9518 	u64 old_idx = 0;
9519 	u64 new_idx = 0;
9520 	u64 root_objectid;
9521 	int ret;
9522 	bool root_log_pinned = false;
9523 	bool dest_log_pinned = false;
9524 
9525 	/* we only allow rename subvolume link between subvolumes */
9526 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9527 		return -EXDEV;
9528 
9529 	/* close the race window with snapshot create/destroy ioctl */
9530 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9531 		down_read(&fs_info->subvol_sem);
9532 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9533 		down_read(&fs_info->subvol_sem);
9534 
9535 	/*
9536 	 * We want to reserve the absolute worst case amount of items.  So if
9537 	 * both inodes are subvols and we need to unlink them then that would
9538 	 * require 4 item modifications, but if they are both normal inodes it
9539 	 * would require 5 item modifications, so we'll assume their normal
9540 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9541 	 * should cover the worst case number of items we'll modify.
9542 	 */
9543 	trans = btrfs_start_transaction(root, 12);
9544 	if (IS_ERR(trans)) {
9545 		ret = PTR_ERR(trans);
9546 		goto out_notrans;
9547 	}
9548 
9549 	/*
9550 	 * We need to find a free sequence number both in the source and
9551 	 * in the destination directory for the exchange.
9552 	 */
9553 	ret = btrfs_set_inode_index(new_dir, &old_idx);
9554 	if (ret)
9555 		goto out_fail;
9556 	ret = btrfs_set_inode_index(old_dir, &new_idx);
9557 	if (ret)
9558 		goto out_fail;
9559 
9560 	BTRFS_I(old_inode)->dir_index = 0ULL;
9561 	BTRFS_I(new_inode)->dir_index = 0ULL;
9562 
9563 	/* Reference for the source. */
9564 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9565 		/* force full log commit if subvolume involved. */
9566 		btrfs_set_log_full_commit(fs_info, trans);
9567 	} else {
9568 		btrfs_pin_log_trans(root);
9569 		root_log_pinned = true;
9570 		ret = btrfs_insert_inode_ref(trans, dest,
9571 					     new_dentry->d_name.name,
9572 					     new_dentry->d_name.len,
9573 					     old_ino,
9574 					     btrfs_ino(new_dir), old_idx);
9575 		if (ret)
9576 			goto out_fail;
9577 	}
9578 
9579 	/* And now for the dest. */
9580 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9581 		/* force full log commit if subvolume involved. */
9582 		btrfs_set_log_full_commit(fs_info, trans);
9583 	} else {
9584 		btrfs_pin_log_trans(dest);
9585 		dest_log_pinned = true;
9586 		ret = btrfs_insert_inode_ref(trans, root,
9587 					     old_dentry->d_name.name,
9588 					     old_dentry->d_name.len,
9589 					     new_ino,
9590 					     btrfs_ino(old_dir), new_idx);
9591 		if (ret)
9592 			goto out_fail;
9593 	}
9594 
9595 	/* Update inode version and ctime/mtime. */
9596 	inode_inc_iversion(old_dir);
9597 	inode_inc_iversion(new_dir);
9598 	inode_inc_iversion(old_inode);
9599 	inode_inc_iversion(new_inode);
9600 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9601 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9602 	old_inode->i_ctime = ctime;
9603 	new_inode->i_ctime = ctime;
9604 
9605 	if (old_dentry->d_parent != new_dentry->d_parent) {
9606 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9607 		btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9608 	}
9609 
9610 	/* src is a subvolume */
9611 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9612 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9613 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9614 					  root_objectid,
9615 					  old_dentry->d_name.name,
9616 					  old_dentry->d_name.len);
9617 	} else { /* src is an inode */
9618 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9619 					   old_dentry->d_inode,
9620 					   old_dentry->d_name.name,
9621 					   old_dentry->d_name.len);
9622 		if (!ret)
9623 			ret = btrfs_update_inode(trans, root, old_inode);
9624 	}
9625 	if (ret) {
9626 		btrfs_abort_transaction(trans, ret);
9627 		goto out_fail;
9628 	}
9629 
9630 	/* dest is a subvolume */
9631 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9632 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9633 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9634 					  root_objectid,
9635 					  new_dentry->d_name.name,
9636 					  new_dentry->d_name.len);
9637 	} else { /* dest is an inode */
9638 		ret = __btrfs_unlink_inode(trans, dest, new_dir,
9639 					   new_dentry->d_inode,
9640 					   new_dentry->d_name.name,
9641 					   new_dentry->d_name.len);
9642 		if (!ret)
9643 			ret = btrfs_update_inode(trans, dest, new_inode);
9644 	}
9645 	if (ret) {
9646 		btrfs_abort_transaction(trans, ret);
9647 		goto out_fail;
9648 	}
9649 
9650 	ret = btrfs_add_link(trans, new_dir, old_inode,
9651 			     new_dentry->d_name.name,
9652 			     new_dentry->d_name.len, 0, old_idx);
9653 	if (ret) {
9654 		btrfs_abort_transaction(trans, ret);
9655 		goto out_fail;
9656 	}
9657 
9658 	ret = btrfs_add_link(trans, old_dir, new_inode,
9659 			     old_dentry->d_name.name,
9660 			     old_dentry->d_name.len, 0, new_idx);
9661 	if (ret) {
9662 		btrfs_abort_transaction(trans, ret);
9663 		goto out_fail;
9664 	}
9665 
9666 	if (old_inode->i_nlink == 1)
9667 		BTRFS_I(old_inode)->dir_index = old_idx;
9668 	if (new_inode->i_nlink == 1)
9669 		BTRFS_I(new_inode)->dir_index = new_idx;
9670 
9671 	if (root_log_pinned) {
9672 		parent = new_dentry->d_parent;
9673 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9674 		btrfs_end_log_trans(root);
9675 		root_log_pinned = false;
9676 	}
9677 	if (dest_log_pinned) {
9678 		parent = old_dentry->d_parent;
9679 		btrfs_log_new_name(trans, new_inode, new_dir, parent);
9680 		btrfs_end_log_trans(dest);
9681 		dest_log_pinned = false;
9682 	}
9683 out_fail:
9684 	/*
9685 	 * If we have pinned a log and an error happened, we unpin tasks
9686 	 * trying to sync the log and force them to fallback to a transaction
9687 	 * commit if the log currently contains any of the inodes involved in
9688 	 * this rename operation (to ensure we do not persist a log with an
9689 	 * inconsistent state for any of these inodes or leading to any
9690 	 * inconsistencies when replayed). If the transaction was aborted, the
9691 	 * abortion reason is propagated to userspace when attempting to commit
9692 	 * the transaction. If the log does not contain any of these inodes, we
9693 	 * allow the tasks to sync it.
9694 	 */
9695 	if (ret && (root_log_pinned || dest_log_pinned)) {
9696 		if (btrfs_inode_in_log(old_dir, fs_info->generation) ||
9697 		    btrfs_inode_in_log(new_dir, fs_info->generation) ||
9698 		    btrfs_inode_in_log(old_inode, fs_info->generation) ||
9699 		    (new_inode &&
9700 		     btrfs_inode_in_log(new_inode, fs_info->generation)))
9701 			btrfs_set_log_full_commit(fs_info, trans);
9702 
9703 		if (root_log_pinned) {
9704 			btrfs_end_log_trans(root);
9705 			root_log_pinned = false;
9706 		}
9707 		if (dest_log_pinned) {
9708 			btrfs_end_log_trans(dest);
9709 			dest_log_pinned = false;
9710 		}
9711 	}
9712 	ret = btrfs_end_transaction(trans);
9713 out_notrans:
9714 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9715 		up_read(&fs_info->subvol_sem);
9716 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9717 		up_read(&fs_info->subvol_sem);
9718 
9719 	return ret;
9720 }
9721 
9722 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9723 				     struct btrfs_root *root,
9724 				     struct inode *dir,
9725 				     struct dentry *dentry)
9726 {
9727 	int ret;
9728 	struct inode *inode;
9729 	u64 objectid;
9730 	u64 index;
9731 
9732 	ret = btrfs_find_free_ino(root, &objectid);
9733 	if (ret)
9734 		return ret;
9735 
9736 	inode = btrfs_new_inode(trans, root, dir,
9737 				dentry->d_name.name,
9738 				dentry->d_name.len,
9739 				btrfs_ino(dir),
9740 				objectid,
9741 				S_IFCHR | WHITEOUT_MODE,
9742 				&index);
9743 
9744 	if (IS_ERR(inode)) {
9745 		ret = PTR_ERR(inode);
9746 		return ret;
9747 	}
9748 
9749 	inode->i_op = &btrfs_special_inode_operations;
9750 	init_special_inode(inode, inode->i_mode,
9751 		WHITEOUT_DEV);
9752 
9753 	ret = btrfs_init_inode_security(trans, inode, dir,
9754 				&dentry->d_name);
9755 	if (ret)
9756 		goto out;
9757 
9758 	ret = btrfs_add_nondir(trans, dir, dentry,
9759 				inode, 0, index);
9760 	if (ret)
9761 		goto out;
9762 
9763 	ret = btrfs_update_inode(trans, root, inode);
9764 out:
9765 	unlock_new_inode(inode);
9766 	if (ret)
9767 		inode_dec_link_count(inode);
9768 	iput(inode);
9769 
9770 	return ret;
9771 }
9772 
9773 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9774 			   struct inode *new_dir, struct dentry *new_dentry,
9775 			   unsigned int flags)
9776 {
9777 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9778 	struct btrfs_trans_handle *trans;
9779 	unsigned int trans_num_items;
9780 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9781 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9782 	struct inode *new_inode = d_inode(new_dentry);
9783 	struct inode *old_inode = d_inode(old_dentry);
9784 	u64 index = 0;
9785 	u64 root_objectid;
9786 	int ret;
9787 	u64 old_ino = btrfs_ino(old_inode);
9788 	bool log_pinned = false;
9789 
9790 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9791 		return -EPERM;
9792 
9793 	/* we only allow rename subvolume link between subvolumes */
9794 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9795 		return -EXDEV;
9796 
9797 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9798 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9799 		return -ENOTEMPTY;
9800 
9801 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9802 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9803 		return -ENOTEMPTY;
9804 
9805 
9806 	/* check for collisions, even if the  name isn't there */
9807 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9808 			     new_dentry->d_name.name,
9809 			     new_dentry->d_name.len);
9810 
9811 	if (ret) {
9812 		if (ret == -EEXIST) {
9813 			/* we shouldn't get
9814 			 * eexist without a new_inode */
9815 			if (WARN_ON(!new_inode)) {
9816 				return ret;
9817 			}
9818 		} else {
9819 			/* maybe -EOVERFLOW */
9820 			return ret;
9821 		}
9822 	}
9823 	ret = 0;
9824 
9825 	/*
9826 	 * we're using rename to replace one file with another.  Start IO on it
9827 	 * now so  we don't add too much work to the end of the transaction
9828 	 */
9829 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9830 		filemap_flush(old_inode->i_mapping);
9831 
9832 	/* close the racy window with snapshot create/destroy ioctl */
9833 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9834 		down_read(&fs_info->subvol_sem);
9835 	/*
9836 	 * We want to reserve the absolute worst case amount of items.  So if
9837 	 * both inodes are subvols and we need to unlink them then that would
9838 	 * require 4 item modifications, but if they are both normal inodes it
9839 	 * would require 5 item modifications, so we'll assume they are normal
9840 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9841 	 * should cover the worst case number of items we'll modify.
9842 	 * If our rename has the whiteout flag, we need more 5 units for the
9843 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9844 	 * when selinux is enabled).
9845 	 */
9846 	trans_num_items = 11;
9847 	if (flags & RENAME_WHITEOUT)
9848 		trans_num_items += 5;
9849 	trans = btrfs_start_transaction(root, trans_num_items);
9850 	if (IS_ERR(trans)) {
9851 		ret = PTR_ERR(trans);
9852 		goto out_notrans;
9853 	}
9854 
9855 	if (dest != root)
9856 		btrfs_record_root_in_trans(trans, dest);
9857 
9858 	ret = btrfs_set_inode_index(new_dir, &index);
9859 	if (ret)
9860 		goto out_fail;
9861 
9862 	BTRFS_I(old_inode)->dir_index = 0ULL;
9863 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9864 		/* force full log commit if subvolume involved. */
9865 		btrfs_set_log_full_commit(fs_info, trans);
9866 	} else {
9867 		btrfs_pin_log_trans(root);
9868 		log_pinned = true;
9869 		ret = btrfs_insert_inode_ref(trans, dest,
9870 					     new_dentry->d_name.name,
9871 					     new_dentry->d_name.len,
9872 					     old_ino,
9873 					     btrfs_ino(new_dir), index);
9874 		if (ret)
9875 			goto out_fail;
9876 	}
9877 
9878 	inode_inc_iversion(old_dir);
9879 	inode_inc_iversion(new_dir);
9880 	inode_inc_iversion(old_inode);
9881 	old_dir->i_ctime = old_dir->i_mtime =
9882 	new_dir->i_ctime = new_dir->i_mtime =
9883 	old_inode->i_ctime = current_time(old_dir);
9884 
9885 	if (old_dentry->d_parent != new_dentry->d_parent)
9886 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9887 
9888 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9889 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9890 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9891 					old_dentry->d_name.name,
9892 					old_dentry->d_name.len);
9893 	} else {
9894 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9895 					d_inode(old_dentry),
9896 					old_dentry->d_name.name,
9897 					old_dentry->d_name.len);
9898 		if (!ret)
9899 			ret = btrfs_update_inode(trans, root, old_inode);
9900 	}
9901 	if (ret) {
9902 		btrfs_abort_transaction(trans, ret);
9903 		goto out_fail;
9904 	}
9905 
9906 	if (new_inode) {
9907 		inode_inc_iversion(new_inode);
9908 		new_inode->i_ctime = current_time(new_inode);
9909 		if (unlikely(btrfs_ino(new_inode) ==
9910 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9911 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9912 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9913 						root_objectid,
9914 						new_dentry->d_name.name,
9915 						new_dentry->d_name.len);
9916 			BUG_ON(new_inode->i_nlink == 0);
9917 		} else {
9918 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9919 						 d_inode(new_dentry),
9920 						 new_dentry->d_name.name,
9921 						 new_dentry->d_name.len);
9922 		}
9923 		if (!ret && new_inode->i_nlink == 0)
9924 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9925 		if (ret) {
9926 			btrfs_abort_transaction(trans, ret);
9927 			goto out_fail;
9928 		}
9929 	}
9930 
9931 	ret = btrfs_add_link(trans, new_dir, old_inode,
9932 			     new_dentry->d_name.name,
9933 			     new_dentry->d_name.len, 0, index);
9934 	if (ret) {
9935 		btrfs_abort_transaction(trans, ret);
9936 		goto out_fail;
9937 	}
9938 
9939 	if (old_inode->i_nlink == 1)
9940 		BTRFS_I(old_inode)->dir_index = index;
9941 
9942 	if (log_pinned) {
9943 		struct dentry *parent = new_dentry->d_parent;
9944 
9945 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9946 		btrfs_end_log_trans(root);
9947 		log_pinned = false;
9948 	}
9949 
9950 	if (flags & RENAME_WHITEOUT) {
9951 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9952 						old_dentry);
9953 
9954 		if (ret) {
9955 			btrfs_abort_transaction(trans, ret);
9956 			goto out_fail;
9957 		}
9958 	}
9959 out_fail:
9960 	/*
9961 	 * If we have pinned the log and an error happened, we unpin tasks
9962 	 * trying to sync the log and force them to fallback to a transaction
9963 	 * commit if the log currently contains any of the inodes involved in
9964 	 * this rename operation (to ensure we do not persist a log with an
9965 	 * inconsistent state for any of these inodes or leading to any
9966 	 * inconsistencies when replayed). If the transaction was aborted, the
9967 	 * abortion reason is propagated to userspace when attempting to commit
9968 	 * the transaction. If the log does not contain any of these inodes, we
9969 	 * allow the tasks to sync it.
9970 	 */
9971 	if (ret && log_pinned) {
9972 		if (btrfs_inode_in_log(old_dir, fs_info->generation) ||
9973 		    btrfs_inode_in_log(new_dir, fs_info->generation) ||
9974 		    btrfs_inode_in_log(old_inode, fs_info->generation) ||
9975 		    (new_inode &&
9976 		     btrfs_inode_in_log(new_inode, fs_info->generation)))
9977 			btrfs_set_log_full_commit(fs_info, trans);
9978 
9979 		btrfs_end_log_trans(root);
9980 		log_pinned = false;
9981 	}
9982 	btrfs_end_transaction(trans);
9983 out_notrans:
9984 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9985 		up_read(&fs_info->subvol_sem);
9986 
9987 	return ret;
9988 }
9989 
9990 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9991 			 struct inode *new_dir, struct dentry *new_dentry,
9992 			 unsigned int flags)
9993 {
9994 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9995 		return -EINVAL;
9996 
9997 	if (flags & RENAME_EXCHANGE)
9998 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9999 					  new_dentry);
10000 
10001 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10002 }
10003 
10004 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10005 {
10006 	struct btrfs_delalloc_work *delalloc_work;
10007 	struct inode *inode;
10008 
10009 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10010 				     work);
10011 	inode = delalloc_work->inode;
10012 	filemap_flush(inode->i_mapping);
10013 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10014 				&BTRFS_I(inode)->runtime_flags))
10015 		filemap_flush(inode->i_mapping);
10016 
10017 	if (delalloc_work->delay_iput)
10018 		btrfs_add_delayed_iput(inode);
10019 	else
10020 		iput(inode);
10021 	complete(&delalloc_work->completion);
10022 }
10023 
10024 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10025 						    int delay_iput)
10026 {
10027 	struct btrfs_delalloc_work *work;
10028 
10029 	work = kmalloc(sizeof(*work), GFP_NOFS);
10030 	if (!work)
10031 		return NULL;
10032 
10033 	init_completion(&work->completion);
10034 	INIT_LIST_HEAD(&work->list);
10035 	work->inode = inode;
10036 	work->delay_iput = delay_iput;
10037 	WARN_ON_ONCE(!inode);
10038 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10039 			btrfs_run_delalloc_work, NULL, NULL);
10040 
10041 	return work;
10042 }
10043 
10044 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10045 {
10046 	wait_for_completion(&work->completion);
10047 	kfree(work);
10048 }
10049 
10050 /*
10051  * some fairly slow code that needs optimization. This walks the list
10052  * of all the inodes with pending delalloc and forces them to disk.
10053  */
10054 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10055 				   int nr)
10056 {
10057 	struct btrfs_inode *binode;
10058 	struct inode *inode;
10059 	struct btrfs_delalloc_work *work, *next;
10060 	struct list_head works;
10061 	struct list_head splice;
10062 	int ret = 0;
10063 
10064 	INIT_LIST_HEAD(&works);
10065 	INIT_LIST_HEAD(&splice);
10066 
10067 	mutex_lock(&root->delalloc_mutex);
10068 	spin_lock(&root->delalloc_lock);
10069 	list_splice_init(&root->delalloc_inodes, &splice);
10070 	while (!list_empty(&splice)) {
10071 		binode = list_entry(splice.next, struct btrfs_inode,
10072 				    delalloc_inodes);
10073 
10074 		list_move_tail(&binode->delalloc_inodes,
10075 			       &root->delalloc_inodes);
10076 		inode = igrab(&binode->vfs_inode);
10077 		if (!inode) {
10078 			cond_resched_lock(&root->delalloc_lock);
10079 			continue;
10080 		}
10081 		spin_unlock(&root->delalloc_lock);
10082 
10083 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10084 		if (!work) {
10085 			if (delay_iput)
10086 				btrfs_add_delayed_iput(inode);
10087 			else
10088 				iput(inode);
10089 			ret = -ENOMEM;
10090 			goto out;
10091 		}
10092 		list_add_tail(&work->list, &works);
10093 		btrfs_queue_work(root->fs_info->flush_workers,
10094 				 &work->work);
10095 		ret++;
10096 		if (nr != -1 && ret >= nr)
10097 			goto out;
10098 		cond_resched();
10099 		spin_lock(&root->delalloc_lock);
10100 	}
10101 	spin_unlock(&root->delalloc_lock);
10102 
10103 out:
10104 	list_for_each_entry_safe(work, next, &works, list) {
10105 		list_del_init(&work->list);
10106 		btrfs_wait_and_free_delalloc_work(work);
10107 	}
10108 
10109 	if (!list_empty_careful(&splice)) {
10110 		spin_lock(&root->delalloc_lock);
10111 		list_splice_tail(&splice, &root->delalloc_inodes);
10112 		spin_unlock(&root->delalloc_lock);
10113 	}
10114 	mutex_unlock(&root->delalloc_mutex);
10115 	return ret;
10116 }
10117 
10118 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10119 {
10120 	struct btrfs_fs_info *fs_info = root->fs_info;
10121 	int ret;
10122 
10123 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10124 		return -EROFS;
10125 
10126 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10127 	if (ret > 0)
10128 		ret = 0;
10129 	/*
10130 	 * the filemap_flush will queue IO into the worker threads, but
10131 	 * we have to make sure the IO is actually started and that
10132 	 * ordered extents get created before we return
10133 	 */
10134 	atomic_inc(&fs_info->async_submit_draining);
10135 	while (atomic_read(&fs_info->nr_async_submits) ||
10136 	       atomic_read(&fs_info->async_delalloc_pages)) {
10137 		wait_event(fs_info->async_submit_wait,
10138 			   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10139 			    atomic_read(&fs_info->async_delalloc_pages) == 0));
10140 	}
10141 	atomic_dec(&fs_info->async_submit_draining);
10142 	return ret;
10143 }
10144 
10145 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10146 			       int nr)
10147 {
10148 	struct btrfs_root *root;
10149 	struct list_head splice;
10150 	int ret;
10151 
10152 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10153 		return -EROFS;
10154 
10155 	INIT_LIST_HEAD(&splice);
10156 
10157 	mutex_lock(&fs_info->delalloc_root_mutex);
10158 	spin_lock(&fs_info->delalloc_root_lock);
10159 	list_splice_init(&fs_info->delalloc_roots, &splice);
10160 	while (!list_empty(&splice) && nr) {
10161 		root = list_first_entry(&splice, struct btrfs_root,
10162 					delalloc_root);
10163 		root = btrfs_grab_fs_root(root);
10164 		BUG_ON(!root);
10165 		list_move_tail(&root->delalloc_root,
10166 			       &fs_info->delalloc_roots);
10167 		spin_unlock(&fs_info->delalloc_root_lock);
10168 
10169 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10170 		btrfs_put_fs_root(root);
10171 		if (ret < 0)
10172 			goto out;
10173 
10174 		if (nr != -1) {
10175 			nr -= ret;
10176 			WARN_ON(nr < 0);
10177 		}
10178 		spin_lock(&fs_info->delalloc_root_lock);
10179 	}
10180 	spin_unlock(&fs_info->delalloc_root_lock);
10181 
10182 	ret = 0;
10183 	atomic_inc(&fs_info->async_submit_draining);
10184 	while (atomic_read(&fs_info->nr_async_submits) ||
10185 	      atomic_read(&fs_info->async_delalloc_pages)) {
10186 		wait_event(fs_info->async_submit_wait,
10187 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10188 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
10189 	}
10190 	atomic_dec(&fs_info->async_submit_draining);
10191 out:
10192 	if (!list_empty_careful(&splice)) {
10193 		spin_lock(&fs_info->delalloc_root_lock);
10194 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10195 		spin_unlock(&fs_info->delalloc_root_lock);
10196 	}
10197 	mutex_unlock(&fs_info->delalloc_root_mutex);
10198 	return ret;
10199 }
10200 
10201 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10202 			 const char *symname)
10203 {
10204 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10205 	struct btrfs_trans_handle *trans;
10206 	struct btrfs_root *root = BTRFS_I(dir)->root;
10207 	struct btrfs_path *path;
10208 	struct btrfs_key key;
10209 	struct inode *inode = NULL;
10210 	int err;
10211 	int drop_inode = 0;
10212 	u64 objectid;
10213 	u64 index = 0;
10214 	int name_len;
10215 	int datasize;
10216 	unsigned long ptr;
10217 	struct btrfs_file_extent_item *ei;
10218 	struct extent_buffer *leaf;
10219 
10220 	name_len = strlen(symname);
10221 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10222 		return -ENAMETOOLONG;
10223 
10224 	/*
10225 	 * 2 items for inode item and ref
10226 	 * 2 items for dir items
10227 	 * 1 item for updating parent inode item
10228 	 * 1 item for the inline extent item
10229 	 * 1 item for xattr if selinux is on
10230 	 */
10231 	trans = btrfs_start_transaction(root, 7);
10232 	if (IS_ERR(trans))
10233 		return PTR_ERR(trans);
10234 
10235 	err = btrfs_find_free_ino(root, &objectid);
10236 	if (err)
10237 		goto out_unlock;
10238 
10239 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10240 				dentry->d_name.len, btrfs_ino(dir), objectid,
10241 				S_IFLNK|S_IRWXUGO, &index);
10242 	if (IS_ERR(inode)) {
10243 		err = PTR_ERR(inode);
10244 		goto out_unlock;
10245 	}
10246 
10247 	/*
10248 	* If the active LSM wants to access the inode during
10249 	* d_instantiate it needs these. Smack checks to see
10250 	* if the filesystem supports xattrs by looking at the
10251 	* ops vector.
10252 	*/
10253 	inode->i_fop = &btrfs_file_operations;
10254 	inode->i_op = &btrfs_file_inode_operations;
10255 	inode->i_mapping->a_ops = &btrfs_aops;
10256 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10257 
10258 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10259 	if (err)
10260 		goto out_unlock_inode;
10261 
10262 	path = btrfs_alloc_path();
10263 	if (!path) {
10264 		err = -ENOMEM;
10265 		goto out_unlock_inode;
10266 	}
10267 	key.objectid = btrfs_ino(inode);
10268 	key.offset = 0;
10269 	key.type = BTRFS_EXTENT_DATA_KEY;
10270 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10271 	err = btrfs_insert_empty_item(trans, root, path, &key,
10272 				      datasize);
10273 	if (err) {
10274 		btrfs_free_path(path);
10275 		goto out_unlock_inode;
10276 	}
10277 	leaf = path->nodes[0];
10278 	ei = btrfs_item_ptr(leaf, path->slots[0],
10279 			    struct btrfs_file_extent_item);
10280 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10281 	btrfs_set_file_extent_type(leaf, ei,
10282 				   BTRFS_FILE_EXTENT_INLINE);
10283 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10284 	btrfs_set_file_extent_compression(leaf, ei, 0);
10285 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10286 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10287 
10288 	ptr = btrfs_file_extent_inline_start(ei);
10289 	write_extent_buffer(leaf, symname, ptr, name_len);
10290 	btrfs_mark_buffer_dirty(leaf);
10291 	btrfs_free_path(path);
10292 
10293 	inode->i_op = &btrfs_symlink_inode_operations;
10294 	inode_nohighmem(inode);
10295 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10296 	inode_set_bytes(inode, name_len);
10297 	btrfs_i_size_write(inode, name_len);
10298 	err = btrfs_update_inode(trans, root, inode);
10299 	/*
10300 	 * Last step, add directory indexes for our symlink inode. This is the
10301 	 * last step to avoid extra cleanup of these indexes if an error happens
10302 	 * elsewhere above.
10303 	 */
10304 	if (!err)
10305 		err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10306 	if (err) {
10307 		drop_inode = 1;
10308 		goto out_unlock_inode;
10309 	}
10310 
10311 	unlock_new_inode(inode);
10312 	d_instantiate(dentry, inode);
10313 
10314 out_unlock:
10315 	btrfs_end_transaction(trans);
10316 	if (drop_inode) {
10317 		inode_dec_link_count(inode);
10318 		iput(inode);
10319 	}
10320 	btrfs_btree_balance_dirty(fs_info);
10321 	return err;
10322 
10323 out_unlock_inode:
10324 	drop_inode = 1;
10325 	unlock_new_inode(inode);
10326 	goto out_unlock;
10327 }
10328 
10329 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10330 				       u64 start, u64 num_bytes, u64 min_size,
10331 				       loff_t actual_len, u64 *alloc_hint,
10332 				       struct btrfs_trans_handle *trans)
10333 {
10334 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10335 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10336 	struct extent_map *em;
10337 	struct btrfs_root *root = BTRFS_I(inode)->root;
10338 	struct btrfs_key ins;
10339 	u64 cur_offset = start;
10340 	u64 i_size;
10341 	u64 cur_bytes;
10342 	u64 last_alloc = (u64)-1;
10343 	int ret = 0;
10344 	bool own_trans = true;
10345 	u64 end = start + num_bytes - 1;
10346 
10347 	if (trans)
10348 		own_trans = false;
10349 	while (num_bytes > 0) {
10350 		if (own_trans) {
10351 			trans = btrfs_start_transaction(root, 3);
10352 			if (IS_ERR(trans)) {
10353 				ret = PTR_ERR(trans);
10354 				break;
10355 			}
10356 		}
10357 
10358 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10359 		cur_bytes = max(cur_bytes, min_size);
10360 		/*
10361 		 * If we are severely fragmented we could end up with really
10362 		 * small allocations, so if the allocator is returning small
10363 		 * chunks lets make its job easier by only searching for those
10364 		 * sized chunks.
10365 		 */
10366 		cur_bytes = min(cur_bytes, last_alloc);
10367 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10368 				min_size, 0, *alloc_hint, &ins, 1, 0);
10369 		if (ret) {
10370 			if (own_trans)
10371 				btrfs_end_transaction(trans);
10372 			break;
10373 		}
10374 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10375 
10376 		last_alloc = ins.offset;
10377 		ret = insert_reserved_file_extent(trans, inode,
10378 						  cur_offset, ins.objectid,
10379 						  ins.offset, ins.offset,
10380 						  ins.offset, 0, 0, 0,
10381 						  BTRFS_FILE_EXTENT_PREALLOC);
10382 		if (ret) {
10383 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10384 						   ins.offset, 0);
10385 			btrfs_abort_transaction(trans, ret);
10386 			if (own_trans)
10387 				btrfs_end_transaction(trans);
10388 			break;
10389 		}
10390 
10391 		btrfs_drop_extent_cache(inode, cur_offset,
10392 					cur_offset + ins.offset -1, 0);
10393 
10394 		em = alloc_extent_map();
10395 		if (!em) {
10396 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10397 				&BTRFS_I(inode)->runtime_flags);
10398 			goto next;
10399 		}
10400 
10401 		em->start = cur_offset;
10402 		em->orig_start = cur_offset;
10403 		em->len = ins.offset;
10404 		em->block_start = ins.objectid;
10405 		em->block_len = ins.offset;
10406 		em->orig_block_len = ins.offset;
10407 		em->ram_bytes = ins.offset;
10408 		em->bdev = fs_info->fs_devices->latest_bdev;
10409 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10410 		em->generation = trans->transid;
10411 
10412 		while (1) {
10413 			write_lock(&em_tree->lock);
10414 			ret = add_extent_mapping(em_tree, em, 1);
10415 			write_unlock(&em_tree->lock);
10416 			if (ret != -EEXIST)
10417 				break;
10418 			btrfs_drop_extent_cache(inode, cur_offset,
10419 						cur_offset + ins.offset - 1,
10420 						0);
10421 		}
10422 		free_extent_map(em);
10423 next:
10424 		num_bytes -= ins.offset;
10425 		cur_offset += ins.offset;
10426 		*alloc_hint = ins.objectid + ins.offset;
10427 
10428 		inode_inc_iversion(inode);
10429 		inode->i_ctime = current_time(inode);
10430 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10431 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10432 		    (actual_len > inode->i_size) &&
10433 		    (cur_offset > inode->i_size)) {
10434 			if (cur_offset > actual_len)
10435 				i_size = actual_len;
10436 			else
10437 				i_size = cur_offset;
10438 			i_size_write(inode, i_size);
10439 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10440 		}
10441 
10442 		ret = btrfs_update_inode(trans, root, inode);
10443 
10444 		if (ret) {
10445 			btrfs_abort_transaction(trans, ret);
10446 			if (own_trans)
10447 				btrfs_end_transaction(trans);
10448 			break;
10449 		}
10450 
10451 		if (own_trans)
10452 			btrfs_end_transaction(trans);
10453 	}
10454 	if (cur_offset < end)
10455 		btrfs_free_reserved_data_space(inode, cur_offset,
10456 			end - cur_offset + 1);
10457 	return ret;
10458 }
10459 
10460 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10461 			      u64 start, u64 num_bytes, u64 min_size,
10462 			      loff_t actual_len, u64 *alloc_hint)
10463 {
10464 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10465 					   min_size, actual_len, alloc_hint,
10466 					   NULL);
10467 }
10468 
10469 int btrfs_prealloc_file_range_trans(struct inode *inode,
10470 				    struct btrfs_trans_handle *trans, int mode,
10471 				    u64 start, u64 num_bytes, u64 min_size,
10472 				    loff_t actual_len, u64 *alloc_hint)
10473 {
10474 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10475 					   min_size, actual_len, alloc_hint, trans);
10476 }
10477 
10478 static int btrfs_set_page_dirty(struct page *page)
10479 {
10480 	return __set_page_dirty_nobuffers(page);
10481 }
10482 
10483 static int btrfs_permission(struct inode *inode, int mask)
10484 {
10485 	struct btrfs_root *root = BTRFS_I(inode)->root;
10486 	umode_t mode = inode->i_mode;
10487 
10488 	if (mask & MAY_WRITE &&
10489 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10490 		if (btrfs_root_readonly(root))
10491 			return -EROFS;
10492 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10493 			return -EACCES;
10494 	}
10495 	return generic_permission(inode, mask);
10496 }
10497 
10498 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10499 {
10500 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10501 	struct btrfs_trans_handle *trans;
10502 	struct btrfs_root *root = BTRFS_I(dir)->root;
10503 	struct inode *inode = NULL;
10504 	u64 objectid;
10505 	u64 index;
10506 	int ret = 0;
10507 
10508 	/*
10509 	 * 5 units required for adding orphan entry
10510 	 */
10511 	trans = btrfs_start_transaction(root, 5);
10512 	if (IS_ERR(trans))
10513 		return PTR_ERR(trans);
10514 
10515 	ret = btrfs_find_free_ino(root, &objectid);
10516 	if (ret)
10517 		goto out;
10518 
10519 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10520 				btrfs_ino(dir), objectid, mode, &index);
10521 	if (IS_ERR(inode)) {
10522 		ret = PTR_ERR(inode);
10523 		inode = NULL;
10524 		goto out;
10525 	}
10526 
10527 	inode->i_fop = &btrfs_file_operations;
10528 	inode->i_op = &btrfs_file_inode_operations;
10529 
10530 	inode->i_mapping->a_ops = &btrfs_aops;
10531 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10532 
10533 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10534 	if (ret)
10535 		goto out_inode;
10536 
10537 	ret = btrfs_update_inode(trans, root, inode);
10538 	if (ret)
10539 		goto out_inode;
10540 	ret = btrfs_orphan_add(trans, inode);
10541 	if (ret)
10542 		goto out_inode;
10543 
10544 	/*
10545 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10546 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10547 	 * through:
10548 	 *
10549 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10550 	 */
10551 	set_nlink(inode, 1);
10552 	unlock_new_inode(inode);
10553 	d_tmpfile(dentry, inode);
10554 	mark_inode_dirty(inode);
10555 
10556 out:
10557 	btrfs_end_transaction(trans);
10558 	if (ret)
10559 		iput(inode);
10560 	btrfs_balance_delayed_items(fs_info);
10561 	btrfs_btree_balance_dirty(fs_info);
10562 	return ret;
10563 
10564 out_inode:
10565 	unlock_new_inode(inode);
10566 	goto out;
10567 
10568 }
10569 
10570 static const struct inode_operations btrfs_dir_inode_operations = {
10571 	.getattr	= btrfs_getattr,
10572 	.lookup		= btrfs_lookup,
10573 	.create		= btrfs_create,
10574 	.unlink		= btrfs_unlink,
10575 	.link		= btrfs_link,
10576 	.mkdir		= btrfs_mkdir,
10577 	.rmdir		= btrfs_rmdir,
10578 	.rename		= btrfs_rename2,
10579 	.symlink	= btrfs_symlink,
10580 	.setattr	= btrfs_setattr,
10581 	.mknod		= btrfs_mknod,
10582 	.listxattr	= btrfs_listxattr,
10583 	.permission	= btrfs_permission,
10584 	.get_acl	= btrfs_get_acl,
10585 	.set_acl	= btrfs_set_acl,
10586 	.update_time	= btrfs_update_time,
10587 	.tmpfile        = btrfs_tmpfile,
10588 };
10589 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10590 	.lookup		= btrfs_lookup,
10591 	.permission	= btrfs_permission,
10592 	.update_time	= btrfs_update_time,
10593 };
10594 
10595 static const struct file_operations btrfs_dir_file_operations = {
10596 	.llseek		= generic_file_llseek,
10597 	.read		= generic_read_dir,
10598 	.iterate_shared	= btrfs_real_readdir,
10599 	.unlocked_ioctl	= btrfs_ioctl,
10600 #ifdef CONFIG_COMPAT
10601 	.compat_ioctl	= btrfs_compat_ioctl,
10602 #endif
10603 	.release        = btrfs_release_file,
10604 	.fsync		= btrfs_sync_file,
10605 };
10606 
10607 static const struct extent_io_ops btrfs_extent_io_ops = {
10608 	.fill_delalloc = run_delalloc_range,
10609 	.submit_bio_hook = btrfs_submit_bio_hook,
10610 	.merge_bio_hook = btrfs_merge_bio_hook,
10611 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10612 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10613 	.writepage_start_hook = btrfs_writepage_start_hook,
10614 	.set_bit_hook = btrfs_set_bit_hook,
10615 	.clear_bit_hook = btrfs_clear_bit_hook,
10616 	.merge_extent_hook = btrfs_merge_extent_hook,
10617 	.split_extent_hook = btrfs_split_extent_hook,
10618 };
10619 
10620 /*
10621  * btrfs doesn't support the bmap operation because swapfiles
10622  * use bmap to make a mapping of extents in the file.  They assume
10623  * these extents won't change over the life of the file and they
10624  * use the bmap result to do IO directly to the drive.
10625  *
10626  * the btrfs bmap call would return logical addresses that aren't
10627  * suitable for IO and they also will change frequently as COW
10628  * operations happen.  So, swapfile + btrfs == corruption.
10629  *
10630  * For now we're avoiding this by dropping bmap.
10631  */
10632 static const struct address_space_operations btrfs_aops = {
10633 	.readpage	= btrfs_readpage,
10634 	.writepage	= btrfs_writepage,
10635 	.writepages	= btrfs_writepages,
10636 	.readpages	= btrfs_readpages,
10637 	.direct_IO	= btrfs_direct_IO,
10638 	.invalidatepage = btrfs_invalidatepage,
10639 	.releasepage	= btrfs_releasepage,
10640 	.set_page_dirty	= btrfs_set_page_dirty,
10641 	.error_remove_page = generic_error_remove_page,
10642 };
10643 
10644 static const struct address_space_operations btrfs_symlink_aops = {
10645 	.readpage	= btrfs_readpage,
10646 	.writepage	= btrfs_writepage,
10647 	.invalidatepage = btrfs_invalidatepage,
10648 	.releasepage	= btrfs_releasepage,
10649 };
10650 
10651 static const struct inode_operations btrfs_file_inode_operations = {
10652 	.getattr	= btrfs_getattr,
10653 	.setattr	= btrfs_setattr,
10654 	.listxattr      = btrfs_listxattr,
10655 	.permission	= btrfs_permission,
10656 	.fiemap		= btrfs_fiemap,
10657 	.get_acl	= btrfs_get_acl,
10658 	.set_acl	= btrfs_set_acl,
10659 	.update_time	= btrfs_update_time,
10660 };
10661 static const struct inode_operations btrfs_special_inode_operations = {
10662 	.getattr	= btrfs_getattr,
10663 	.setattr	= btrfs_setattr,
10664 	.permission	= btrfs_permission,
10665 	.listxattr	= btrfs_listxattr,
10666 	.get_acl	= btrfs_get_acl,
10667 	.set_acl	= btrfs_set_acl,
10668 	.update_time	= btrfs_update_time,
10669 };
10670 static const struct inode_operations btrfs_symlink_inode_operations = {
10671 	.get_link	= page_get_link,
10672 	.getattr	= btrfs_getattr,
10673 	.setattr	= btrfs_setattr,
10674 	.permission	= btrfs_permission,
10675 	.listxattr	= btrfs_listxattr,
10676 	.update_time	= btrfs_update_time,
10677 };
10678 
10679 const struct dentry_operations btrfs_dentry_operations = {
10680 	.d_delete	= btrfs_dentry_delete,
10681 	.d_release	= btrfs_dentry_release,
10682 };
10683